
HAL Id: tel-00904822
https://theses.hal.science/tel-00904822

Submitted on 15 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic annotations for systems interoperability in a
PLM environment

Yongxin Liao

To cite this version:
Yongxin Liao. Semantic annotations for systems interoperability in a PLM environment. Computer
Aided Engineering. Université de Lorraine, 2013. English. �NNT : �. �tel-00904822�

https://theses.hal.science/tel-00904822
https://hal.archives-ouvertes.fr

École Doctorale IAEM Lorraine

ANNOTATIONS SEMANTIQUES POUR L’INTEROPERABILITE DES SYSTEMES
DANS UN ENVIRONNEMENT PLM

(SEMANTIC ANNOTATIONS FOR SYSTEMS INTEROPERABILITY IN A PLM ENVIRONMENT)

Thèse
présentée et soutenue publiquement le 14-11-2013 pour l’obtention du

Doctorat de l’Université de Lorraine
(mentions: Automatique, Traitement du Signal et des Images, Génie Informatique,

CNU 61ème section, et Informatique, CNU 27ème section)
par

Yongxin LIAO

Composition de jury :

Président :

M. David CHEN Professeur à l’Université de Bordeaux 1

Rapporteurs :

M. John KROGSTIE Professeur à Norwegian University of Science and Technology (Norvège)

M. Lionel ROUCOULES Professeur à l’ENSAM Aix-en-Provence

Examinateurs :

M. Osiris CANCIGLIERI JUNIOR Professeur à l’Université Pontificale Catholique du Paraná (Brésil)

M. Hervé PANETTO Professeur à l’Université de Lorraine (Directeur de thèse)

M. Nacer BOUDJLIDA Professeur à l’Université de Lorraine (Directeur de thèse)

M. Mario LEZOCHE Maître de Conférences à l’Université de Lorraine (Encadrant de thèse)

Centre de Recherche en Automatique de Nancy, UMR 7039, Université de Lorraine, CNRS

Laboratoire Lorrain de Recherche en Informatique et ses Applications, UMR 7503, Université de Lorraine, CNRS, INRIA

Fédération Charles Hermite, FR 3198, Université de Lorraine, CNRS

Acknowledgement

My deepest gratitude goes first and foremost to my supervisors: Prof. Hervé
Panetto and Prof. Nacer Boudjlida. Prof. Hervé Panetto, with an enthusiastic smile on
his face all the time, guided me through the development of all this doctoral research
work and helped me a lot to clarify the research issues and gave me big instructions in
the research. Prof. Nacer Boudjlida who gave me lots of useful advices and illuminating
suggestions in each discussion we made. He enlightened me with wise ideas that enable
me to overcome obstacles in my research. I would like to give my thanks to Dr. Mario
Lezoche for his productive collaborations and inspiring encouragement during all these
three years. Not only did he help me all the way through in the organization and
modification in those papers but also he gave me in lots of helps in my life. Their
professional working attitudes have greatly influenced me, from which I gain the
benefits for my future study and also for my life.

I also would like to express my heartfelt thankfulness to the reporters of my thesis:
Prof. Lionel Roucoules and Prof. John Krogstie. They gave me many valuable
comments and effective advices that helped me to discover the existing issues I have
been omitted during my research and possible directions that can be improved in my
thesis.

In these three years PhD research, I have grown and gained a lot. I would like to
give my sincere gratitude to the CRAN laboratory for providing me such a good
environment and platform to implement all my work. I also owe my full thanks to the
financial supports of my PhD: the “Charles Hermite Research Federation” in Nancy
and the “Région Lorraine” local government.

I am so glad to have a group of knowledgeable and warm-hearted colleagues and
friends who shared with me the whole or part of the PhD path. In alphabetical order by
name: Alexis , Alexandre, Antonio, Benjamin, David, Eduardo, Esma, Fabien, Fengwei,
Gabriela, Jérémy, Jingwen, Jun, Kun, Loana, Pierre, Pascale, Phuc, Thomas, William,
Yong and so on. Particularly, I would like to thank Dr. Eduardo Loures, who is a
constructive and patient person. We had lots of worthwhile discussions during the year
that he passed in CRAN. I would like to thank Dr. Pierre Cocheteux for his guide in
CATIA software and his generous help to my family and me. Many thanks go to Dr.
Alexis Aubry and Dr. David Gouyon for their helps on the Sage X3 and Flexnet
software. I am also greatly indebted to Prof. Arvid Perego, for the mathematical advices
in the formalization part of my thesis.

Last my awesome gratitude goes to my family. I am thankful to my parents for their
loving considerations and great confidence in me all through these years. Thanks are
due to my beloved wife Xiaoyun You, from whom I benefited so much for her enormous
love and support anytime and anywhere. Also, thanks to my lovely son Youqi Liao for
bringing me happiness, surprises and energies, which really change the life of my wife
and me.

i

Contents

Chapter 1 Introduction and Context ... 1

1.1 Introduction ... 1

1.1.1 Motivation .. 1

1.1.2 Research Problems and Questions .. 1

1.1.3 The Proposed Solution ... 3

1.1.4 The Contributions ... 5

1.1.5 Thesis Outline ... 6

1.2 The Context ... 8

1.2.1 Product Life Cycle .. 9

1.2.2 Product Life Management .. 10

1.2.3 Knowledge Management .. 12

1.2.4 System Interoperability .. 17

1.2.5 Postulates .. 19

Chapter 2 Background and State of The Art .. 21

2.1 Models in a PLM Environment ... 22

2.1.1 Enterprise Modelling .. 22

2.1.2 Process Model and its Meta-model .. 23

2.2 Ontologies ... 26

2.2.1 Ontology Specification Languages ... 26

2.2.2 PLC-related Ontologies and Meta-model Ontologies .. 28

2.3 Semantic Annotations .. 32

2.3.1 Comparisons of the Semantic Annotation Researches ... 32

2.3.2 Drawbacks and Challenges ... 43

2.4 Conclusion ... 45

Chapter 3 Formal Approach to the Semantic Annotations ... 46

3.1 Formalization of Semantic Annotations .. 46

3.1.1 Meta Model of the Semantic Annotation ... 47

3.1.2 Semantic Block Delimitation ... 49

3.1.3 Formal Definitions of Semantic Annotation .. 53

3.2 Reasoning Mechanisms ... 57

3.2.1 Suggestion of Semantic Annotations .. 57

ii

3.2.2 Inconsistency Detection and Conflict Identification .. 60

3.3 The Semantic Annotation Framework ... 62

3.3.1 Semantic Annotation Procedure ... 62

3.3.2 The Framework Architecture ... 65

3.4 Conclusion ... 68

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management) 70

4.1 The Overview of the SAP-KM .. 71

4.1.1 The Requirement Specifications ... 72

4.1.2 The Prototype Development Environment ... 74

4.2 The Design of the SAP-KM .. 77

4.2.1 The Design of the Data Structure ... 77

4.2.2 The Design of the Annotation Phase .. 85

4.2.3 The Design of the Reasoning Phase ... 88

4.3 The Implementation of the SAP-KM .. 91

4.3.1 The Explicitation of Structure and Domain Semantics .. 92

4.3.2 The Preparation and Execution of Reasoning .. 96

4.3.3 The Elements Matching and Data Querying .. 101

4.4 Conclusion ... 103

Chapter 5 Case Study ... 104

5.1 The Context of Case study .. 104

5.1.1 A Product Lifecycle at the AIPL .. 104

5.1.2 The Application Scenario ... 108

5.2 Preparation, Annotation and Reasoning Phases .. 113

5.2.1 The Preparation Phases ... 113

5.2.2 The Annotation Phases with the SAP-KM ... 120

5.2.3 The Reasoning Phases with the SAP-KM .. 125

5.3 Conclusion ... 132

Chapter 6 Conclusions and Future Works .. 133

6.1 Research Questions and Answers .. 133

6.2 Summary of the Contributions .. 136

6.3 Limitations and Perspectives ... 136

APPENDICES ... 139

APPENDIX I Web Ontology Language (OWL) .. 140

APPENDIX II Semantic Annotation Schema .. 144

APPENDIX III Pseudo Codes ... 147

References .. 151

iii

List of Figures

Figure 1-1 The Logical Structure of the Thesis ... 7

Figure 1-2 Product Life Cycle Models of two Research Concerns 10

Figure 1-3 Examples of Data and Information .. 12

Figure 1-4 DIKW Pyramid .. 13

Figure 1-5 Four Modes of the Organizational Knowledge Creation [27].................... 14

Figure 1-6 Examples of the Knowledge Representation in a PLC 16

Figure 2-1 The Meta-model of the Activity in the BPMN Specification [63] 24

Figure 2-2 The Application Specific BPMN Meta-model in the MEGA. 25

Figure 2-3 Ontology Languages Stacks [68] ... 27

Figure 2-4 The Comparison of Semantic Annotation Models 41

Figure 3-1 The Meta-model of the Semantic Annotation .. 49

Figure 3-2 An Example of the Semantic Block for Semantics Description 51

Figure 3-3 An Example of the Semantic Block for Semantics Substitution 53

Figure 3-4 General Semantic Annotation Procedure. .. 63

Figure 3-5 The Proposed Semantic Annotation Framework in a PLM Environment. . 65

Figure 3-6 Three kinds of Knowledge in the Knowledge Cloud. 67

Figure 4-1 The Logical Structure of the Chapter ... 71

Figure 4-2 The Iterative Development Cycle [121] ... 72

Figure 4-3 The Collaboration between the SAP-KM and the other four Modules 76

Figure 4-4 The Name Syntax of the ei , pj and SBRelation .. 80

Figure 4-5 An Example of Instantiation of E (a), P (b), MME (c), SR (d) and MR (e)
within the Semantic Annotation Schema ... 82

Figure 4-6 The Procedure to make explicit the Domain Semantics and Structure
Semantics ... 86

Figure 4-7 The Procedure to perform the Inference .. 89

Figure 4-8 The Architecture of a MEGA Plug-in written in Java [122] 91

Figure 4-9 The Configuration of the Menu Command and the Reference of the Macro
.. 91

Figure 4-10 The Graphical User Interface of the Explicitation of Structure Semantics
.. 93

Figure 4-11 The Graphical User Interface of the Explicitation of Domain Semantics 94

Figure 4-12 The Graphical User Interface of the Annotation Suggestion 97

Figure 4-13 A Forward Rule to define a SBR for making explicit a Relation 98

Figure 4-14 The Graphical User Interface of the Semantic Similarity Comparison ... 99

Figure 4-15 Two Examples of the Rules for Annotation Inconsistency Detection and
Model Conflict Identification .. 100

Figure 4-16 The Graphical User Interface for Inference Reasoning 101

Figure 4-17 The Graphical User Interface for Elements Matching 102

Figure 4-18 The Graphical User Interface for Data Querying 103

Figure 5-1 The System Stack in the AIPL ... 105

Figure 5-2 The Overview of the Educational Combination Product in the AIPL 105

Figure 5-3 The Main Manufacturing Processes of the Educational Combination Product
.. 107

Figure 5-4 The Application Scenario of the Case Study.. 112

Figure 5-5 The four kinds of Bases that contain in the Product Model 114

Figure 5-6 The Process Model from the MEGA ... 114

iv

Figure 5-7 The Properties of an Operation in the MEGA ... 115

Figure 5-8 The Semantics of Concepts that embedded in their General/Specific Context
.. 117

Figure 5-9 A Part of the five Ontologies in the Knowledge Cloud together with the pre-
processing Results .. 119

Figure 5-10 The Selected Model Elements in the Process Model 122

Figure 5-11 Three Rules to define a SBR for making explicit the Relations 126

Figure I-1 The Example of a Segment of an OWL ontology 142

Figure I-2 The Abstract Syntax of Jena Rules[123] ... 143

v

List of Tables

Table 2-1 Comparison of five PLC-related Domain Ontologies 30

Table 2-2 Comparison of five Meta-model Ontologies .. 31

Table 2-3 The Comparison of Semantic Annotation Researches 39

Table 3-1 The Possible Results of the Inconsistency Detection between Semantic
Annotations .. 61

Table 3-2 The possible Results of Conflict Identification between two annotated
Elements in a TKR ... 61

Table 4-1 The ④, P and MM④ in the Semantic Annotation Schema 77

Table 4-2 SR and MR in the Semantic Annotation Schema ... 81

Table 4-3 PR in the Semantic Annotation Schema .. 83

Table 4-4 The Additional Properties in the Semantic Annotation Schema 84

Table 5-1 The Formal Representation of General Semantics of Concepts (in the MSDL
Ontology and the General Ontology) ... 117

Table 5-2 The Formal Representation of Specific Semantics of Concepts in the AIPL
Product Ontology ... 118

Table 5-3 The Domain Semantics of the Annotated Elements from the Upstream
System .. 121

Table 5-4 The Structure Semantics of the Annotated Model Elements in the Process
Model ... 122

Table 5-5 The Elements Matching between Product Model and Process Model 123

Table 5-6 The Domain Semantics of the Annotated Elements in the Process Model 124

Table 5-7 The Associations between two Properties ... 127

Table 5-8 The Domain Semantics of the Inferred Semantic Annotations 128

Table 5-9 The Results of Inconsistency Detection between two Domain Semantics 130

Table 5-10 The Possible Mistakes ... 130

Table 5-11 The Model Elements in Process Model with Domain Semantics. 131

Table I-1 Five types of OWL Property Characteristics [128] 140

Table I-2 Two kinds of OWL Property Restrictions [79] .. 141

vi

Chapter 1 Introduction and Context

1

Chapter 1 Introduction and Context

1.1 Introduction
This section provides an overview of the thesis, which begins with introducing the

motivation of this research work (Section 1.1.1), specifying the research problems and
posing five main research questions (Section 1.1.2). An overview of the solution that
we proposed is presented in Section 1.1.3. Finally, Section 1.1.4 describes the
contributions of this research work and Section 1.1.5 provides an outline of the thesis.

1.1.1 Motivation

In manufacturing enterprises, the Product Lifecycle Management (PLM) approach
has been considered as an essential solution for improving the product competitive
ability. It aims at providing a shared platform that brings together different enterprise
systems at each stage of a Product Life Cycle (PLC) in or across enterprises [1].
Although the main software companies are making efforts to create tools for offering a
complete and integrated set of systems, most of them have not implemented all of the
systems. Finally, they do not provide a coherent integration of the entire information
system. This results in a kind of “tower of Babel”, where each application is considered
as an island in the middle of the ocean of information, managed by many stakeholders
in an enterprise, or even in a network of enterprises. The different peculiarities of those
stakeholders are then over increasing the issue of interoperability. The objective of this
thesis is to deal with the interoperability problems, mainly the issue of semantic
interoperability, by proposing a formal semantic annotation method to support the
mutual understanding of the semantics inside the shared and exchanged information in
a PLM environment.

1.1.2 Research Problems and Questions

The concept of Product Life Cycle (PLC) has been revealed for more than sixty
years [2]. It describes every stage of a product of interest (such as imagining, defining,
realising, using/supporting and retiring/disposing of). In the meantime, along with the
advent and the evolution of Computer Aided Design (CAD) systems, the problems of
locating the required data and losing control of change process associated with these
data have gradually appeared [2]. As a solution, Product Data Management (PDM)
systems have been developed and introduced for supporting easy, quick and secured

Chapter 1 Introduction and Context

2

access to valid data during the product design phase [1]. However, as it is pointed out
in [3], the data produced by CAD systems do not cover all the information that related
to the whole product life cycle (from the requirement specification to dismantling
information). The PDM systems are not able to give enough support for non-
engineering data. In order to fill this gap, during the 1990s, the PLM solution is
proposed to support the processes of capturing, representing, retrieving and reusing
both engineering and non-engineering aspects of knowledge along the entire product
life cycle. It intends to facilitate the knowledge management in or across enterprises [1].
Therefore, the knowledge concerning the product life cycle, which we named PLC-
related knowledge, has become one of the critical concepts in a PLM solution.

Knowledge is an awareness of things that brings to its owner the capability of
grasping the meaning from the information [4]. This definition is included in a more
structured presentation of the DIKW Pyramid [5], a hierarchical model for representing
the structural relationships between Data, Information, Knowledge and Wisdom
(DIKW). In this research work, we consider knowledge as a kind of intangible thing
that is only explicit to its owner but remains tacit to the external world [6]. One of the
main purposes of knowledge management is to make knowledge accessible and
reusable [7]. Knowledge Representation is the result of embodying the knowledge from
its owner’s mind into some explicit forms. It gives a possibility for external entities to
perform some specific operations for achieving their particular needs. Knowledge
representations act as the carriers of knowledge to assist collaboration activities.

Interoperability serves as a foundational role to support collaboration. It is the
ability that diverse entities can exchange knowledge representations and make use of
those knowledge representations that they have exchanged. Five possible levels of
interoperability have been categorized by Euzenat [8]: encoding level, lexical level,
syntactic level, semantic level and semiotic level. While encoding, lexical and syntactic
issues are now can be formally solved by many technical standards, enabling a seamless
semantic interoperability remains a huge challenge [9]. In order to cope with the
semantic interoperability issue, two important obstacles still need to be overcame:

(1) The implicit semantics that is necessary for understanding a knowledge
representation that is not made explicit;

(2) The lack of mechanisms to verify the correctness of explicit semantics in the
exchanged knowledge representation.

A mutual understanding of the semantics inside the shared and exchanged
knowledge representations is the cornerstone in the quest for semantic interoperability.
Due to the essence of ontology, which is a kind of common agreement on the

Chapter 1 Introduction and Context

3

conceptualization of terms in a specific domain of interest, semantic annotations [10]
are usually considered as a possible solution to deal with these two obstacles.

In this context, semantic enrichment is considered as a process that makes any
implicit semantics more explicit through the use of semantic annotations. Some
research questions are then emerging from the needs of semantic enrichment in a PLM
environment:

(1) What are the semantic interoperability problems that exist during the
cooperation in a PLM environment?

(2) What kinds of knowledge representation in a PLM environment need semantic
enrichment?

(3) What kinds of ontology can be used to support the semantic enrichments of
those knowledge representations?

(4) What are the essential elements of a semantic annotation and how to formally
represent a semantic annotation in a suitable format?

(5) How to semantically enrich a knowledge representation and how can these
enriched semantics contribute to the semantic interoperability in a PLM
environment?

1.1.3 The Proposed Solution

Compared with the other types of annotations, a semantic annotation has two
important features: (1) it can be read and processed by a machine [10]; (2) it contains a
set of formal and shared terms in a specific context [11]. As a way to realize the
semantic enrichment, semantic annotations use ontology to capture annotator’s
knowledge and then act as a knowledge carrier to enrich annotated object’s semantics.
It can then be widely used in many contexts for various purposes. In this work, there
are two important aspects of the semantics that are made explicit by a semantic
annotation:

(1) The domain semantics, which describes the context and the meaning of an
annotated object in a specific domain;

(2) The structure semantics, which describes the interrelations between the
annotated objects and the other objects related to them in a knowledge representation.

Based on the survey and exploration of current semantic annotation researches,
three shortcomings have been identified:

(1) The formalization of semantic annotations is not the focus of most of the
semantic annotation researches. They only considered the semantic annotation
as a kind of “is a” association between one annotated object and one ontology

Chapter 1 Introduction and Context

4

concept. Even if there are some specific formalizations, they are difficult to be
reused in other researches but the studied ones;

(2) The domain semantics of the annotated objects is the only concern in most of
the semantic annotation researches, where the structure semantics is ignored,
or vice-versa;

(3) In most of the semantic annotation researches, there is lack of mechanism to
support the inconsistency detection of the semantic annotations and the
conflict identification between the annotated objects;

 Therefore, we focus our research work on: (a) clearly identifying the essential
elements of a semantic annotation by proposing a formalization that can be used to
enrich different types of models; (b) proposing two mechanisms to detect the possible
inconsistencies of semantic annotations and to identify possible conflicts between the
annotated objects for facilitating and assisting the knowledge management in a PLM
environment.

Based on this research focus, in this thesis, a semantic annotation is used as a way
to employ one or several ontologies for making explicit both structure and domain
semantics of an annotated target knowledge that needs to be made explicit. For this
reason, a semantic annotation is considered as semantic relationships between the
Target Knowledge Representations (TKRs) and the Ontology-based Knowledge
Representations (OKRs). These relationships are formally defined in a Semantic
Annotation Structure Model (SASM).

TKRs are the targets of semantic enrichment, namely the targets that semantic
annotations are attached to. They contain implicit or possibly ambiguous explicit
semantics, which is not easily intelligible. In a PLM environment, all the different types
of models throughout the entire PLC are considered as embedding elements of TKRs
(different kinds of modelling constructs represent different kinds of knowledge): such
as data models, process models, state models, resource models, decision models.

OKRs are the ontologies that capture different aspects of knowledge and provide
the common and shared conceptualizations for supporting the semantic enrichment of
TKRs. In this research work, two types of ontologies are used: (1) The PLC-related
ontologies that formalize the domain semantics of TKRs. They are normally collected
by domain specialists and formalized by knowledge engineers. (2) The meta-model
ontologies that formalize the structure semantics of TKRs. They are normally generated
by modelling language experts.

The SASM contains a set of definitions that formalize the structure of a semantic
annotation. It acts as a bridge to formally describe the semantic relationships between

Chapter 1 Introduction and Context

5

the TKRs and the OKRs. It identifies the essential elements of the semantic annotation,
which can be used as the basis for developing the common semantic annotation schema
for different kinds of models along the product life cycle. Differently from other
semantic annotation proposals, we propose to annotate an object in a TKR with a set of
selected ontology elements. These elements belong to one or more OKRs, which
describe the domain and structure semantics of the annotated objects.

Moreover, in order to detect the inconsistencies between the semantic annotations
and to identify the conflicts between the annotated objects, we proposed a semantic
annotation suggestion mechanism and two verification mechanisms that rely on the
SASM. The former verification is based on the domain semantics comparisons of two
or more related semantic annotations of a common annotated object. The later
verification is based on the results of the former verification. Both structure and domain
semantics, which are made explicit by semantic annotations, contribute to these three
mechanisms. The domain semantics acts as the data that are used for similarity
comparison. The structure semantics supports the creation of reasoning rules that are
used for the inference.

Finally, in order to apply the proposed solution into a PLM environment, a
semantic annotation framework, which is composed of a general semantic annotation
procedure and the architecture of the framework, are proposed.

1.1.4 The Contributions

This thesis presents a formal semantic annotation method that supports the
semantic enrichment of models in a PLM environment for facilitating semantic
interoperability issues. The contributions have been published in four papers ([12], [13],
[14] and [15]), which are listed as follows:

(1) We surveyed the literature that relates to the Product Lifecycle Management,
System Interoperability and Semantic Annotation. A comparison of some
current semantic annotation researches is made for identifying the exiting
drawbacks and potential challenges ([12], [13], [14] and [15]).

(2) We proposed a formalization of semantic annotations that can be used as a
basis to create a semantic annotation schema for supporting the semantic
enrichment of models ([12], [13], [14] and [15]).

(3) We proposed a semantic annotation suggestion mechanism and two
verification mechanisms to support inconsistency detection between semantic
annotations and conflict identification in model contents ([15]).

(4) We proposed a guideline that contains a number of procedures to guide an

Chapter 1 Introduction and Context

6

engineer in applying the proposed solution and a semantic annotation
framework for enriching semantics of models in a PLM environment([14] and
[15]).

(5) We designed, implemented and validated a prototype annotation tool for the
semantic annotation of process models based on the proposed formalization,
annotation procedures and framework ([15]).

1.1.5 Thesis Outline

The research method is inspired by design science [16], and it is performed in five
steps: context of the research (Chapter 1) and problem identification (Chapter 2),
solution proposal (Chapter 3), prototype implementation (Chapter 4) and solution
Validation (Chapter 5). Figure 1-1 shows the logical structure of the thesis and the
interconnections among the chapters and the sections (besides the summary sections at
the end of each chapter). In order to refine the contents of this figure, the concept that
represents the main task or focus of each section is added to the corresponding name
section in the figure. More specifically, the details of the thesis structure are illustrated
as follows:

Chapter 1 Introduction and Context

7

Figure 1-1 The Logical Structure of the Thesis

Chapter 1, Introduction and Context, first explains the motivation, states the
problems and research questions, gives a brief overview of the proposed solution, and
presents our main contributions in Section 1.1 (Introduction). The remaining of the
current chapter (Context - Section 1.2) gives a literature review of the concepts about
the Product Life Cycle, Product Lifecycle Management, Knowledge Management and
System Interoperability to determine the domain of concern and proposes three
postulates to support this research work.

Chapter 2, Background and State of the Art, is divided into three parts based on
the three components of a semantic annotation. Firstly, this chapter surveys models in
a PLM environment to investigate the TKRs that can be semantically enriched (TKRs -
Section 2.1). Then it surveys ontology languages and existing ontologies to discover
the OKRs that can be used to support the semantic enrichments (OKRs - Section 2.2).

Chapter 1 Introduction and Context

Introduction
 Section 1.1

Context
Section 1.2

Chapter 2 Background and State of the Art

TKRs
 Section 2.1

OKRs
Section 2.2

SASMs
Section 2.3

Chapter 3 Formal Approach to Semantic Annotations

Formalization
 Section 3.1

Mechanisms
Section 3.2

Framework
Section 3.3

Chapter 4 SAP-KM

Overview
 Section 4.1

Design
Section 4.2

Implementation
Section 4.3

Chapter 5 Case Study

Background
 Section 5.1

Validation
Section 5.2

-Context of the research

-Problems
Identification

-Proposed Solution

- Prototype Implementation

Chapter 6 Conclusions and Future Works

Conclusions
 Section 6.1

Future Works
Section 6.2

-Solution
Validation

Chapter 1 Introduction and Context

8

Finally, it investigates the current semantic annotation researches from different
domains and purposes to address those existing drawbacks and potential challenges
(SASM- Section 2.3).

Chapter 3, Formalization of semantic annotations, presents the proposed solution
to deal with the issues and drawbacks that are identified in the previous chapters. It first
gives the details of our semantic annotation formalization proposals and identifies the
essential elements of a semantic annotation (Formalization - section 3.1). Then the
mechanism for the suggestion of semantic annotations, the detection of inconsistencies
between semantic annotations and the identification of possible conflicts in a model are
presented (Mechanisms- section 3.2). Finally, a semantic annotation framework that
defines the semantic annotation procedure and the overall architecture are proposed
(Framework - Section 3.3).

Chapter 4, SAP-KM (Semantic Annotation Plug-in for Knowledge Management),
instantiates the formalization of semantic annotations and demonstrates the
applicability and usability for applying the proposed solution into real-life applications.
This chapter begins with an overview of the requirement specifications and the
prototype development environment (overview – section 4.1). Then the details of the
design (section 4.2) and implementation (section 4.3) of the prototype annotation tool
for the semantic enrichment of a process model are presented.

Chapter 5, Case Study, demonstrates how this proposal can be applied in order to
contribute to the semantic interoperability in a PLM environment. Firstly, this chapter
introduces the life cycle of a chosen product and presents the selected application
scenario (Background- section 5.1). Then, in Section 5.2 (Validation), based on the
semantic annotation procedure that is presented in Chapter 3, the proposed solution is
applied in that particular application scenario.

Finally, Chapter 6, Conclusions and Future Works, gives a conclusion that
summarizes this thesis, discusses the limitations and advantages of the work done, and
lists a set of possible research directions that can be addressed in future works.

1.2 The Context
This section presents the context of the research. It starts with an introduction of

the product life cycle (Section 1.2.1) and the product lifecycle management (Section
1.2.2) that helps us to determine the application domain. We then discuss the concepts
about knowledge, knowledge representation and knowledge management in Section
1.2.3 to define an unambiguous semantics of these terms that are used along the
remaining of the thesis. The issues of systems interoperability, especially the semantic

Chapter 1 Introduction and Context

9

interoperability, in a PLM environment is presented in Section 1.2.4. At the end, three
postulates are proposed in Section 1.2.5 to support the proposed solution.

1.2.1 Product Life Cycle

The concept of the Product Life Cycle (PLC) has been introduced since the 1950s
[17], and it is a biological metaphor that describes every phase a product goes through,
from the first initial requirement until it is retired and disposed of [18]. However, based
on different points of view and research concerns, a PLC model can be represented in
the following two ways.

From the marketing point of view, a PLC is used to describe the unit sales curve
for a product that extends from the time [17]. Birou et al. categorized a PLC model into
five major stages [19], which are graphically described in the Figure 1-2 (a): (1) Design
stage, which includes development and test marketing of a product; (2) Introduction
stage, which begins with the full-scale lunch of a product into the market; (3) Growth
stage, in which, unit sales grow rapidly and reach a relative peak; (4) Maturity stage,
in which, unit sales may continue slowly increase until it decreases; (5) Decline stage,
which commences with the long-run decline of unit sales. However, there are some
researches that only make use of the last four stages and ignore the design stage.
Meanwhile, a six-stage PLC is used by others through adding the abandonment stage
at the end.

From the production point of view, as shown in the Figure 1-2(b), a PLC also can
be classified into five main phases [18]: (1) Imagination phase, in which, a product
only exists as an idea in human’s mind; (2) Definition phase, in which, the idea of
product is formulated by various kinds of description; (3) Realisation phase, in which,
an actual product is manufactured following the description;(4) Using and Supporting
phase, in which, a product is used by a customer and benefits the supports from the
enterprise; (5) Retiring and Disposing of phase, in which, a product is no longer used
by a customer and needs to be recycled or disposed of. In fact, this categorization is at
a high abstraction level. Actual PLC models are always represented in a more complete
way through extending more details in one or several of these phases.

Chapter 1 Introduction and Context

10

Figure 1-2 Product Life Cycle Models of two Research Concerns

Indeed, both of these two models can be used to represent the life cycle stages
(phases) of a product. However, based on different research focuses, they should be
distinguished from each other when they are being instantiated. Due to the fact that the
scope of our research focuses more on the production knowledge management, the
second PLC model is more appropriate to describe our context.

1.2.2 Product Life Management

The Computer Aided Design systems appears in the early 1980s, along with its
evolution, the problems of locating the required data and losing control of change
process associated with these data become increasingly intense [2]. The needs of easy,
quick and secure access to valid data during the product design phase became the
primary motivation to the development of a Product Data Management (PDM) solution
[1]. However, due to the limited scope and the initial design of PDM solution, it is
usually restricted to handling the product data in the engineering domain, but it remains
inadequate with the non-engineering data, such as sales, planning, after sale services
and so on. To be more specific, unlike the comprehensive supports to Computer Aided
Design (CAD), Computer Aided Engineering (CAE), Computer Aided Process
Planning (CAPP) and Computer Aided Manufacturing (CAM), PDM solutions cannot
provide all the necessary supports to Enterprise Resource Planning (ERP), Supply
Chain Management (SCM) and Customer Relationship Management (CRM).

In order to further extend the functionalities of a PDM solution and to fill the gap
between the PDM proposal and the enterprise business activities, during the 1990s, the
concept of Product Lifecycle Management (PLM) is proposed. Different from a PDM
solution that only focuses on managing product data, a PLM solution focuses on

Chapter 1 Introduction and Context

11

managing all the PLC-related knowledge throughout the different phases of the PLC
[1]. It aims at providing a shared platform for facilitating the process of capturing,
representing, organising, retrieving and reusing the knowledge concerning the related
product in or across enterprises, and to provide the integration strategies and
technological supports to bring together all existing enterprise systems that dealt with
the product [20].

More and more enterprises adopted the PLM solutions and discovered the benefits
for their complex engineered products in the last decade. According to the market
research in IT enterprises, PLM became one of the fastest growing markets and the total
revenues of PLM in 2006 is projected to increase by＄5.5 billion compared with the
corresponding period in 2001 [1]. Presently, an increasing number of commercial PLM
solutions have been developed, for example, to mention only a few, Agilie PLM
solutions1, Siemens PLM Software2, Arena PLM solution3, SAP PLM4, PTC Windchill5.
Based on their functions, the existing PLM solutions can be classified into three groups
[21]:

(1) Information management, which provides methods to identify, structure, store,
retrieve and share product, process and project-related data;

(2) Process management, which provides methods for modelling and operating
formal and semi-formal processes;

(3) Application integration, which defines and manages the interfaces between the
PLM platform and the variety of enterprise systems (such as CAD, CAM, CAE, ERP,
MES, CRM, etc.).

Though, all existing PLM solutions try to propose an efficient and powerful
collaboration environment for the variety of enterprise systems, they are still obstructed
by various kinds of issues. From the collaboration point of view, due to multiplicity of
formats, standards and versions, Ball et al. considered the information sharing and
exchange as one of the main challenges in PLM [20]. From the implementation point
of view, CIM data concluded that the cost, the quality, the time-to-market and the
innovation are the four main challenges for a PLM solution [2]. Hewett indicated six
main directions for improving the current PLM solutions: data exchange, design
collaboration, enterprise-centric view, scale to reality, standard and technique for
engineering processes, information and knowledge representation [22]. Among all

1 Agilie PLM solutions: http://www.oracle.com/us/products/applications/agile/index.html
2 Siemens PLM Software: http://www.plm.automation.siemens.com/
3 Arena PLM solution: http://www.arenasolutions.com/
4 SAP PLM: http://www.sap.com/france/solutions/business-suite/plm/index.epx
5 PTC Windchill: http://www.ptc.com/product/windchill/

Chapter 1 Introduction and Context

12

these issues, one of the main drawbacks of existing solutions draws our attention: they
are mainly focusing on dealing with the syntax but rarely the semantics of the objects
that are produced, transformed, exchanged during the PLC. The purpose of this research
is to propose a way for assisting the mutual understanding of the semantics that
embedded inside the shared and exchanged objects for further supporting the
knowledge management processes in the context of PLC.

1.2.3 Knowledge Management

1.2.3.1 Data, Information, Knowledge and Wisdom

Making clear the definitions of data, information, knowledge and wisdom and the
distinctions among these four basic concepts is an important step before proceeding to
the introduction of knowledge management.

Data describe the unorganized and unprocessed facts or statistics [23], which is
the essential foundation for information and knowledge. Data has no significance by
itself without the related context. It can be gathered or invented by observers and
described in any forms, for example, as shown in the Figure 1-3 (a), “LOP”, “1/30”,
“PAL01”, “Barre” and “3” are data.

Information represents a set of particular organized and processed data in a given
context [24], which tries to express some meanings (semantics) in an appropriate way.
Usually, it can only be understood by the one who has the relevant knowledge. Figure
1-3 (b) shows some simple instances of information, such as the manufacturing order
of LOP, the bill of material of P0101 and a set of steps of a manufacturing process.

Figure 1-3 Examples of Data and Information

Knowledge is an awareness of things that brings to its owner the capability of
grasping the meanings (semantics) from the information [4]. It is obtained through the
learning behaviours, in which, the external information from the real world is
sublimated. In this work, knowledge is considered as a kind of intangible thing, which
has to be made perceptible and afterward to be expressed under multifaceted forms of

Chapter 1 Introduction and Context

13

representations.
Wisdom is considered as a higher level of comprehension above knowledge

[24][4]. It is defined as the quality to deal with (process, inference or reasoning) the
existing knowledge and produce an appropriate new knowledge that can be regarded as
the answers to some corresponding problems.

A so-called DIKW Pyramid (Hierarchy) is proposed by Zeleny and Ackoff [4] [5]
(Figure 1-4), which refers to a hierarchical model for representing the structural
relationships between Data, Information, Knowledge and Wisdom.

Figure 1-4 DIKW Pyramid

Nunamaker et al adopted these four concepts and used them to describe the gradual
increase in levels of understandings [25]: (1) Data level, which signifies the meanings
of symbols, in the context where they are collected, is completely understood; (2)
Information level, which indicates the relationships between symbols, related to the
context where they are presented, is being understood; (3) Knowledge level, which
signifies patterns hidden in information is being understood; (4) Wisdom level, which
indicates the principles embedded in knowledge is being understood.

1.2.3.2 Knowledge Dimension
Indeed, in the knowledge management area, there is an extensive literature devoted

to debate the essential of knowledge. However, due to the research scope of this thesis,
we are not going to give a comprehensive overview about it, but only to discuss the
major issues that help us to clearly determine the important concepts.

As described by Polanyi in his book “The tacit dimension” [26], he began to
reconsider personal knowledge from the fact that “we can know more than we can tell”.
As a result, the part that is unable to be told is named as tacit knowing (knowledge),
which acts as the core focus in his quest for the essential of personal knowledge.

Because of the different interpretations of Polanyi’s theory, the concepts of tacit
knowledge and explicit knowledge have evolved and have been expressed with various

Data

Information

Knowledge

Wisdom

Chapter 1 Introduction and Context

14

definitions. For example, Nonaka [27] adapted Polanyi’s theory to discover the
essential elements in the organizational knowledge creation. In his research [27], two
dimensions of knowledge are defined as follows:

 The Tacit Knowledge “has personal quality, which makes it hard to formalize
and communicate”.

 The Explicit Knowledge “refers to knowledge that is transmittable informal,
systematic language”.

Based on the assumption that knowledge is created through conversion between tacit
and explicit knowledge, as shown in the Figure 1-5, he proposed a four modes of
organizational knowledge conversion: (1) Socialization enables the conversion through
the interactions between individuals, for example, shared experiences; (2)
Externalization converts tacit knowledge into explicit knowledge through information
creation; (3) Combination supports the conversion through social process, such as
meetings; (4) Internalization converts explicit knowledge into tacit knowledge through
organizational learning.

Figure 1-5 Four Modes of the Organizational Knowledge Creation [27]

Although Nonaka’s organizational knowledge creation theory is the most widely
accepted and referenced description about tacit and explicit knowledge, some
researchers [28] [29] still do not want to accept his knowledge conversion proposition.
With respect to the original definition that is proposed by Polanyi, they considered the
tacit knowledge as knowledge that cannot be expressed externally. So as to overcome
the gap between Nonaka and Polanyi, another concept so-call “implicit knowledge” is
proposed as a third type of knowledge by Kim et al [28], in which, implicit knowledge
is considered as a knowledge that can be externalized when it is needed but currently it
is not. Even more, this concept is used as a substitute for the concept of tacit knowledge
in some other researches [30].

According to our knowledge, the different research objects of Polanyi and Nonaka
cannot be compared with each other directly. Because Polanyi’s object is human

Chapter 1 Introduction and Context

15

knowledge and Nonaka’s object is organizational knowledge. Furthermore, Polanyi
does not state that the tacit knowledge could not be transferred, but he suggests no
method on how this kind of knowledge could be transmitted [31]. Further, as a matter
of fact, the boundary between tacit knowledge and explicit knowledge is ambiguous in
practical [32]. Even Polanyi does not declare which things are known tacitly or
explicitly. According to the main idea that Polanyi used to define the concept of
knowledge, all knowledge is rooted in tacit knowledge [26]. Therefore, in order to avoid
above misinterpretations, we argue that knowledge is an internal awareness that is only
explicit to its owner but remains tacit to the external world.

One of the main purposes of knowledge management is to make knowledge
accessible and reusable [7]. Knowledge representation is the result of embodying the
knowledge from its owner’s mind into some explicit forms. It gives a possibility for
external entities to perform some specific operations for achieving their particular needs.
More specifically, in order to clearly characterize the nature of a knowledge
representation, Davis et al. [33] proposed in terms of five important and distinct roles
that it plays: (1) It is a substitute of the knowledge itself; (2) It is a set of ontological
commitments, which determines the terms to describe the world; (3) It is a partial theory
of intelligent reasoning; (4) It is a medium for the efficient computation; (5) It is a
medium of human expression and communication. Furthermore, we specify that each
knowledge representation contains two kinds of semantics: (1) explicit semantics,
which is directly expressed in the knowledge representation; (2) implicit semantics, in
opposite, which is hidden.

Therefore, in a PLM environment, we consider that all the relevant resources
produced by different stakeholders through the variety of enterprise systems are all
knowledge representations. Several examples are shown in the Figure 1-6, such as
requirement document, product design model, control interface design, process model,
data model and observation video. They act as the carriers of the stakeholders’
knowledge to assist the collaboration activities.

Chapter 1 Introduction and Context

16

Figure 1-6 Examples of the Knowledge Representation in a PLC

1.2.3.3 Knowledge Management
Knowledge management has gained a lot of attentions and is widely adopted by a

large number of organizations in the last decade [34]. However, the normative literature
is not able to achieve an agreement on the definition of the knowledge management
[35][36]. For example, Quintas et al. explained it as a “process of continually managing
knowledge of all kinds to meet existing and emerging needs, to identify and exploit
existing and acquired knowledge assets and to develop new opportunities” [37]; NASA
knowledge management team defined it as an approach of “getting the right
information to the right people at the right time, and helping people create knowledge
and share and act upon information in ways that will measurably improve the
performance of NASA and its partners” [38]; Schultze and Leidner suggested that
“knowledge management is the generation, representation, storage, transfer,
transformation, application, embedding, and protecting of organizational knowledge”
[39]. Even more, in the research of Ameri and Dutta, they described the PLM solution
itself as a knowledge management system that supports each phase in PLC [1].

From the above definitions, in a PLM environment, knowledge management can
be considered as a set of processes to manage the knowledge that is involved in all the
phases of the product life cycle and to support the efficient cooperation. To be more
specific, these processes can be classified as follows:

(1) Capturing knowledge, which is the primary step that focuses on identifying
the relevant critical knowledge from stakeholders’ minds;

(2) Representing knowledge, which is the foundational task that converts the

Requirement Document Product Design Model

Process Model Data Model Observation Video

Control Interface Design

Chapter 1 Introduction and Context

17

captured knowledge into knowledge representations for the subsequent
processes;

(3) Organizing knowledge, which arranges (for example, classification,
modification, update, storage, etc.) the collected knowledge representations
into the knowledge repositories;

(4) Sharing and using knowledge, which focuses on supporting dissemination
mechanism that guarantees the right information in the right context is
delivered to the right stakeholders at the right time.

Further, Nonaka and Takeuchi suggested two essential factors to achieve a
successful knowledge management approach [40]: the process of making explicit the
internalized tacit knowledge for better sharing and the process of internalizing the
knowledge that is retrieved from the knowledge management system into personal
knowledge. As the foundation to assist these two factors, the system interoperability in
a PLM environment that supports the exchange and the use of those knowledge
representations in the PLC is required.

1.2.4 System Interoperability

In the compilation of IEEE standard computer glossaries [41], the interoperability
is defined as “The ability of two or more systems or components to exchange
information and to use the information that has been exchanged”. In other words, it
assumes that at least two or more “actors” are able to exchange some kind of “object”
between them and to operate on that “object”. Therefore these “actors” need to
unambiguously interpret the exchanged “object” [10]. In this work, the “actors” are
systems in a PLM environment and the “objects” are various kinds of models or part of
models that are produced by those systems.

As stated by Lemoigne [42], who studied human organization as systems that
present special characteristics, a general system is an object doing something in a
certain environment and providing a permanent structure that is able to evolve and
generally generate some results. In a PLM environment, enterprise systems are usually
considered as a number of software components with certain relationships that are used
to manage all kinds of technical information related to products in or across enterprises
with the purposes of producing some finalities (such as a product, a decision, a strategy).

When a system tries to access the understanding of the exchanged information
from another system, five possible levels of interoperability can be categorized [8]:

(1) Encoding level, the receiver system is able to segment the information in
characters;

Chapter 1 Introduction and Context

18

(2) Lexical level, the receiver system is able to segment the information in words
(or symbols);

(3) Syntactic level, the receiver system is able to structure the information into
structured sentences (or formulas or assertions);

(4) Semantic level, the receiver system is able to construct the proposed meaning
of the information;

(5) Semiotic level, the receiver system is able to construct the pragmatic meaning
of information (or its meaning in context).

Although this layered presentation is still arguable, it represents the fact that each level
of the interoperability cannot be achieved until the previous levels are completed. While
the interoperability between two systems at the encoding, lexical and syntactic levels
are now possible to be achieved through using existing technologies (such as XML[43])
and its related applications (such as WSDL[44]), enabling the semantic and semiotic
levels of interoperability still remains a huge challenge [9]. Meanwhile, with the similar
idea of ascending levels of interoperability, European Interoperability Framework [46]
proposed to consider three aspects of interoperability: Technical interoperability, which
covers the technical issues of information exchanged between systems; Semantic
interoperability, which concerns in ensuring that the precise meaning of the exchanged
information is understandable; and Organizational interoperability, which concerns
with defining business goals, modelling business processes and supporting the
collaboration of administration stuffs. Because the issues of organizational
interoperability are out the scope of this thesis and we assume that the technical
interoperability can be achieved through certain standards, our research focus is limited
on the semantic interoperability, namely system interoperability from the semantic
perspective.

Semantic interoperability is the ability to ensure that the exchanged information
has got the same meaning considering the point of view of both the sender and the
receiver [47]. In the context of PLM, stakeholders have to work together on the
exchanged information and take decisions based on this information. They have
different backgrounds, heterogeneous expertise, unique knowledge, particular needs
and specific practices, which over increase the difficulty to achieve semantic
interoperability [48]. This situation interferes in achieving a mutual understanding
between all the stakeholders, and so does in the collaboration across the enterprise
systems. In order to cope with this issue there are two important obstacles that need to
be overcame: (1) the implicit semantics that is necessary for understanding a knowledge
representation is not be made explicit; (2) the lack of semantics mechanism to verify

Chapter 1 Introduction and Context

19

the correctness of explicit semantics in the exchanged knowledge representation.
The mutual understanding of semantics that is embedded inside the exchanged

knowledge representation is the cornerstone in the quest for semantic interoperability.
The essential of ontology [49], which is a kind of common agreement of a
conceptualization of terms in a specific domain, makes possible its utilization to
semantically enrich the exchanged knowledge representation. This is usually
considered as a possible solution to deal with these two obstacles [10]. Therefore, in
this context, semantic enrichment is considered as the process of making the implicit
semantics through ontologies. It not only provides the clear semantics for facilitating
the communication, but also gives the possibility to perform the semantics verification
for those knowledge representations that are not initially designed with this ability.

1.2.5 Postulates

According to the research context (a PLM environment) and the research questions
(semantic interoperability issues), also taking into account our research focuses and
domain expertise, three hypotheses need to be declared before we proceed to the
identification of problems and the proposition of some solutions:

The supports for these hypotheses can be provided by related researches in the

corresponding domains. The research community, which working on knowledge
discovery [26], conversion [27], and formalization[49], can give support to the
hypothesis H1. Taking advantages from the researches about ontology matching [50],
mapping [51], and merging [52], Hypothesis H2 is possible to be achieved. For the
hypothesis H3, a number of researchers, such as [53], [54], and [104], have committed
themselves in the evaluation of semantic similarities. Even if there is not any generic
automatic solution for the comparison, at least, from our perspective, this process can
be done with the participation of domain experts.

Based on these hypotheses, the research focus of this work is proposing a solution
to formalize the semantic annotation for the semantic enrichment of models in a PLM

(H1) All the knowledge that is needed for the semantic enrichment of models
 has already been captured, represented and formalized into ontologies.

(H2) The corresponding interconnections among all the used ontologies have

 already been prepared through certain methods.

(H3) The semantic similarity between two objects can be compared through

 certain mechanisms.

Chapter 1 Introduction and Context

20

environment. In the next chapter, surrounding the definition of semantic annotation, we
first discuss the targets of semantic enrichments and the ontologies that can be used to
support the semantic enrichment. And then, we make a survey on the semantic
annotation researches from different domains. This investigation will give us the
existing drawbacks and potential challenges, which are the starting points of the
proposed solution.

.

Chapter 2 Background and State of The Art

21

Chapter 2 Background and State of The Art

Oxford dictionary defines the concept of annotation as “a note by way of
explanation or comment added to a text or diagram”. It can be represented in various
kinds of forms, such as text, underlines, sequence numbers, highlights, images and links.
In order to distinguish semantic annotation from other annotations, Bechhofer et al.[55]
categorized annotation into three types: Textual annotation, which adds notes and
comments to an object; Link annotation, which extends the previous annotation by
linking the object to the annotation content; Semantic annotation, which contains
human readable as well as machine readable and processable information. Similarly,
Oren et al. [11] proposed to classify the annotation as: Informal annotation, which is
expressed in an informal language and is not machine-readable; Formal annotation,
which is machine-readable, but without ontological terms; Ontological annotation,
which is only composed of ontological terms that are commonly accepted and
understood. These classifications identify two important features of the semantic
annotation: (1) It is machine readable and processable; (2) It contains a set of formal
and shared terms in the specific context.

Because of the nature of ontology, it is usually considered as the most suitable
candidate for describing the terms in the semantic annotation. Different researchers
have suggested many definitions of the semantic annotation that related to ontologies.
For example, Talantikite et al. [56] described it as “A semantic annotation is referent to
an ontology”; Lin [57] considered it as “an approach to link ontologies to the original
information sources”; Kiryakov [58] defined it as “a specific metadata generation and
usage schema, aiming to enable new information access methods and to extend the
existing ones”. Based on the research context that we presented in Section 1.2, the
semantic annotation is considered as a mean to perform the semantic enrichment of
“something” by using one or several ontologies.

Taking Nunamaker’s understanding levels [25] as a reference, one of the major
intents of applying semantic annotation is to enable annotated objects to be “understood”
by a machine, to augment the degree of “understanding” from data level to knowledge
level and to perform certain intelligent behaviours for the semantic interoperability
based on the “understanding” at wisdom level.

In a nutshell, so as to have a complete state of the art about the semantic annotation
in our research context, this chapter is structured into three sections: Section 2.1 briefly
surveys models and their corresponding meta-models in a PLM environment, which are

Chapter 2 Background and State of The Art

22

the targets of semantic enrichments; Section 2.2 surveys ontology specifications and
various existing ontologies that are proposed by different academic research literatures,
which can be used to support the semantic enrichment; Section 2.3 first surveys the
current semantic annotation researches dealing with the semantic interoperability issues
in different domains, and then classifies, compares and discusses them to identify the
existing drawbacks that lead us to the proposed approach.

2.1 Models in a PLM Environment
To define a model of a system of interest created by an enterprise system, we

adopted the description from the OMG6’s Model Driven Architecture (MDA) approach
[59], which states that a model is a description or a specification of a system and its
environment for some certain purposes. A meta-model is defined as a model that
specifies the concepts, relationships and rules to model a model, which usually
comprises a formalized specification of the domain-specific notations [60]. An
introduction is presented to give an overview of the models in an enterprise in Section
2.1.1. Then, Section 2.1.2 describes the selected kind of model that we used to
demonstrate the proposed solution.

2.1.1 Enterprise Modelling

Enterprise modelling is a process that tries to capture and represent knowledge
from different aspects of a system of interest and for activating the interoperations in or
across enterprises. In this thesis, all different types of models along the product life
cycle are considered as the targets of semantic enrichments. For example, to mention
only a few, product design models, data models, process models, state models, resource
models, and decision models. Let’s take the data modelling, business process modelling,
state modelling and graphical product design as examples:

 Data modelling is an activity for providing certain format and structure of data
for different information systems. Data Modelling Profile in UML [61] is one
of the data modelling languages that support the expression of the data models.

 State modelling is an activity of describing the possible states of certain
behaviours in a system. State Diagram [62] is one type of diagrams that are
able to describe certain behaviours and states of systems.

 Graphical Product Design is an activity for designing a product in a 3D
dimension to facilitate the further automatic manufacture process. Computer

6 OMG(Object Management Group): http://www.omg.org/

Chapter 2 Background and State of The Art

23

Aided Design is one way that can be used to describe product design model.
 Business process modelling is an activity for representing different business

processes that are performed in or across enterprises. Business Process
Modelling Notation (BPMN) [63] is one of the standard languages that can be
used to describe process models.

These models are always created with particular perspectives and expressed in a
given modelling notation (or description language). They are helpful to provide the best
possible knowledge in order to validate a new product from the initial design to the
final market. The interoperations among the systems along a product life cycle not only
require that the models can be exchanged and operated on, but also demands the
unambiguous understandings of the exchanged models. Therefore, the necessary
implicit semantics in those models must be made explicit.

Considering the diversity of models in an enterprise, it is more suitable that we
select and use one kind of model to demonstrate the proposed solution. Since process
models often get involved with different teams in or across enterprise and each
stakeholder may have different viewpoints of some processes in a PLM environment,
process model is chosen as the target of semantic enrichment in the case study.

2.1.2 Process Model and its Meta-model

A process is a series of activities or steps that are taken to achieve some particular
objectives. A process model is a collection of related process components, which use
certain nodes or links to organize process fragments into some meaningful sub-
networks for the process that is modelled [64]. Various processes modelling languages
have been proposed to represent processes from different perspectives, for example, the
Event-driven Process Chain (EPC) [65], the UML Activity Diagram [66], the Business
Process Model and Notation (BPMN) [63] and so on. These modelling languages are
made specific, because of their disparate initial design needs.

During the enterprise process modelling, engineers are able to use those process
modelling languages, which are implemented by various kinds of modelling systems,
to model the processes of interest. However, these implementations usually contain
some specific contents that fall short of standards, even if the modelling systems claim
that they are following the corresponding standards. The application specific meta-
models are usually different from the standard one.

We took the Business Process Model and Notation (BPMN) as an example, which
is proposed by the Business Process Management Initiative and currently maintained
by OMG since 2005. Its intention is to provide a graphical notation that can be

Chapter 2 Background and State of The Art

24

understood by all business users that participate in the business [63]. It defines a
business process diagram that can be used to model the drafts of various kinds of
processes. The BPMN specification provides a set of basic notations as follows [63]:

 Flow Elements: Event, which is something that “happens” during the course
of a process; Activity, which is is performed within a process and can be atomic
(task) or non-atomic (sub-process); Gateway, which is used to control the
divergence and convergence of sequence flows within a process;

 Connecting Objects: Sequence flow, which is used to show the order of Flow
Elements in a process; Message flow, which is used to show the flow of
Messages between two Participants that are prepared to send and receive them;
Association, which is used to associate information and Artifacts with Flow
Elements;

 Swimlanes: Pool, which represents a Participant in a collaboration; Lane,
which is a sub-partition with in a process and extends the length of the Pool;

 Artefacts: Data Object, which provides information about what Activities
require to be performed and/or what they produce; Group, which is used to
highlight certain sections of a diagram without adding any constraints;
Message, which is used to describe the contents of a communication between
two Participants; Text Annotation, which is additional text information added
by a modeller.

Figure 2-1 shows part of the meta-model of the “Activity” in the BPMN specification.

Figure 2-1 The Meta-model of the Activity in the BPMN Specification [63]

Chapter 2 Background and State of The Art

25

The MEGA modelling environment7 supports the creation of various kinds of
enterprise models. The “MEGA process BPMN” in MEGA supports the modelling of
processes through the specific meta-model of BPMN notations that it implemented.
Figure 2-2 shows part of its BPMN meta-model. The differences between the standard
meta-model and the application specific meta-model can be identified. For example, to
mention only a few, the connecting object Association between the Data Object and the
Sequence Flow is omitted in this application; the Process is extended and divided into
four kinds: Organization processes, Business Process, Functional process and System
Process; the atomic Activity is extended and classified as Operation, Functional Activity
and Task which correspond to the Organization Process, Function Process and System
Process respectively.

Figure 2-2 The Application Specific BPMN Meta-model in the MEGA

Both meta-models represent the knowledge about how a process model can be
built. However, we can easily notice that, because of the differences between the two,
the knowledge that is represented by the standard BPMN meta-model might not be
sufficient enough to describe the structure semantics of a process model that is created
by MEGA. For example, there are not corresponding concepts existing in the standard
BPMN meta-model for the Organizational Process and its atomic activity Operation.
This situation requires the supplementary knowledge from MEGA, which is
represented by the application specific BPMN meta-model.

7 MEGA: http://www.mega.com/ (we use the version 2009 SP5)

Chapter 2 Background and State of The Art

26

In order to demonstrate our proposed semantic enrichment solution, in the case
study, the BPMN specification that is implemented by the MEGA Suite is chosen. It is
used to create a manufacturing process in a particular application scenario. This process
model is used as the target of semantic enrichment.

2.2 Ontologies

Based on the OMG’s definition, from the representation point of view, a model “is
often presented as a combination of drawings and text. The text may be in a modeling
language or in a natural language” [59]. The mutual understanding of a model requires
not only the understanding of the semantics of “combination of drawing” (structure
semantics) but also the semantics of the “text” (domain semantics). Therefore, the
ontologies employed by the semantic enrichment need to capture and represent both
aspects of knowledge. In Section 2.2.1 we will briefly survey some major ontology
specification languages, choose one of them, and use it in the remaining of the thesis.
Section 2.2.2 shows the two kinds of existing ontologies that correspond to the domain
semantics aspect and the structure semantic aspect respectively.

2.2.1 Ontology Specification Languages

Ontology research is one of the hottest topics that have attracted many attentions
in the last decade. An ontology can be also considered as a formal and shared
understanding of some domain of interests, which specifies the concepts and the
relationships that can exist for an agent or a community of agents [49] [67].

A great effort has been made by different researchers in developing ontology
specification languages. An ontology specification language is used to construct
ontologies, which allows to encode certain knowledge in specific domains and to
support a machine to perform reasoning, based on specific rules, on this knowledge.
We are not going to give, a complete overview of ontology specification languages, but
we will provide a brief introduction and discussion. As shown in Figure 2-3, an
ontology language stack, which classifies the typical ontology languages, is presented
by Song et al [68]:

(1) Frame-based ontology specification language, which is represented by frame
languages. For example,
a) F-Logic [69], which combines conceptual modelling with object-oriented,

frame-based languages and offers a declarative, compact and simple syntax;
b) Ontolingua [70], which is an extension of Knowledge Interchange

Format[71] through adding frame-based representation and translation

Chapter 2 Background and State of The Art

27

functionalities to enable the specification in an object-oriented style;
c) CML/OCML [72]. Conceptual Modelling Language (CML) provides a

structured textual and a diagrammatic notation to specify knowledge
models (informal notation). Operational Conceptual Modelling Language
(OCML) extends the CML with formal frame representations.

(2) Logical-based ontology specification language, which is represented by
logical languages (such as first order logic and description logic) and has a
long history in artificial intelligence domain. For example,
a) LOOM [73], which is a knowledge representation language and

environment that focuses on supporting the reasoning of knowledge
representations in the artificial intelligence domain;

b) CycL [74], which is a flexible knowledge representation language that
extends the first-order predicate calculus by handling equality, default
reasoning and some second order features.

(3) Web-based ontology specification language, which is based on HTML8, XML
and RDF/RDFS[75] technologies and is mainly used in semantic web. For
example,
a) SHOE (Simple HTML Ontology Extension) [76], which extends HTML

with a set of object-oriented tags to provide a structure for the knowledge
acquisition.

b) DAML [77] + OIL [78], which is a semantic mark-up language for web
resources that combines the features of both the DARPA (Defense
Advanced Research Projects Agency) Agent Mark-up Language (DAML)
and the Ontology Interchange Language (OIL).

c) OWL(Web Ontology Language) [79], which is a reversion of DAML+ OIL.
It has more facilities for the expressing semantics than XML, RDF and
RDFS by providing a machine interpretable content on the Web.

Figure 2-3 Ontology Languages Stacks [68]

8 HTML http://www.w3.org/TR/REC-html40/

Frame-based Logical-based Web-based

CML/OCML CycL XML

Ontolingua LOOM
RDF/RDFS

F-Logic OWL

DAML

HTML

OIL

SHOE

Chapter 2 Background and State of The Art

28

A comparison of most of above-mentioned ontology specification languages
(besides OWL) has been made by Corcho et al. [80], which is based on eight main
feature perspectives: Concepts, Attributes, Facets, Taxonomies, Relations, Functions,
Axioms and Instances. As a comparison result, Ontolingua, LOOM and OCML are the
three ontology specification languages that cover most of these evaluated features.
However, because of this comparison is made in 2003, at that moment OWL was only
a working draft, for that reason, it was not taken into account in that comparison.
Currently, as a successor of DAML+OIL, OWL has attracted more and more attentions
and became one of the W3C9 recommendations in 2004.

After all, ontology not only defines the formal semantics that enables a reasoning
machine to perform inference, but also represents a real-world semantics that enables
human to use meaningful terminologies as machine processable contents. Based on the
survey of the major ontology specification languages, and also taking into account the
expressiveness and the related reasoning supports, we found that OWL is the most
appropriate ontology specification language for supporting the implementation of the
prototype annotation tool in this research work. In order to support the expression in
Chapter 4 and 5, we briefly introduce the OWL specification together with its
corresponding reasoning rules and reasoning engines in APPENDIX I.

2.2.2 PLC-related Ontologies and Meta-model Ontologies

Ontology engineering is one of the prominent solutions that is used to capture and
represent knowledge and to provide precisely description of concepts and the
relationships between them [50]. A six steps process, which supports the ontology
creation activities during the ontology engineering, is proposed by Pulido et al [81]:

(1) Gathering, which is the collection of the relevant structured or unstructured
resources from the domain of interest;

(2) Extraction, which extracts ontology concepts, relationships and instances from
the collected resources;

(3) Organization, which uses these extracted contents to generate a formal
ontological knowledge representation;

(4) Merging, which defines the mapping rules to merge other ontology from one
context to another;

(5) Refinement, in which, domain experts are invited to improve the structure and
contents of the ontology;

9 W3C http://www.w3.org/

Chapter 2 Background and State of The Art

29

(6) Retrieval, which is the release of the ontology to support the final objective of
semantic web.

Depending on the level of the knowledge that an ontology aims to represent,
ontologies can be generally categorized into three levels as follows [82]:

(1) Top level ontology, which specifies only general concepts and relationships
(such as time and space) and can be used in different domains;

(2) Domain level ontology, which captures the knowledge that is dedicated to a
specific domain (such as production domain) and can be use and reused for
different tasks in the same domain;

(3) Application level ontology, which represents the specific knowledge that is
dedicated to a task in an application and normally is not reusable for other
applications.

With the support of the fast growth of ontology technologies, more and more
research interests focus on the realization of ontologies. In this research work, two
aspects of ontologies are categorized and can be used to support the semantic
enrichment of models in a PLM environment:

(1) PLC-related ontologies, which represent the PLC-related knowledge. They
can be used to express the domain semantics of annotated objects that related
to one or more stages of a product life cycle.

(2) Meta-model ontologies, which represent the model constructs knowledge.
They can be used to express the structure semantics of annotated objects that
are related to the interrelations between their counterpart components in its
meta-model.

Because of the development of ontologies is not the focus of this research, we need to
discover and employ some existing ontologies to support the semantic enrichment of
models in a PLM environment. In this section, a survey is carried out to investigate a
number of PLC-related ontologies and Meta-model ontologies.

PLC-related ontologies

Five ontologies that represent the knowledge related to one or more stages of a
PLC are introduced as follows:

(1) ONTO-PDM [83] is proposed to formalize all technical data and concepts
related to the definition of a product, for minimizing the loss of semantics. The
authors postulated that an ontological model of a product may be considered
as a facilitator for the interoperation of all application software, which share
information during the physical product lifecycle.

Chapter 2 Background and State of The Art

30

(2) SCOR-Full ontology [84] is proposed to resolve the semantic inconsistencies
and incompleteness of the SCOR (Supply Chain Operations Reference)
models that are used for the knowledge management among the supply chain
networks.

(3) OntoSTEP [85] is proposed to consolidate product information that are created
by different languages for building a coherent knowledge base. Authors
presents a way to transform the STEP [86] schema and its instances from
EXPRESS [87] format to OWL one via mapping rules and result in a STEP
ontology.

(4) CMMI ontology [88] is proposed to be used as a base for making fuzzy cost
estimations of a project. Authors proposed to adopt the part of the Capability
Maturity Model Integration (CMMI) [89] that is related to the development
and maintenance of products and services covering the PLC and to formalize
them as a cost estimation ontology.

(5) MSDL Ontology [90] is proposed to describe the capabilities of manufacturing
services in different abstraction levels. It provides the formal semantics for
enabling the machine agents to actively participate in the supplier discovery
process.

Table 2-1 illustrated the comparative overview of these five ontologies through four
aspects: domains of application, notations of expression, levels of ontology and
foundation

Table 2-1 Comparison of five PLC-related Domain Ontologies

ONTO-PDM

[83]
SCOR-Full

Ontology[84]
OntoSTEP

[85]
CMMI

Ontology [88]
MSDL

Ontology[91]
Domains of
Application

All product
related data

Supply Chain
Product
Design

Project
Planning

Manufacture
Capabilities

Notations of
Expression

Class

Diagram

OWL, Class
Diagram

OWL-DL
Self-define
Structure

OWL-DL

Levels of
Ontology

Domain Level Domain Level Domain Level
Application

Level
Domain

Level

Foundation
IEC62264 [92]
ISO10303 [86]

SCOR [93]
Model

ISO 10303
[86]

CMMI[89]
Standard

Author’s
Research

To our best knowledge, several conclusions can be made: (1) Although the domain
of applications are different, there are still overlapping contents between each other; (2)
According to the notations of expression, we found that OWL is the frequently used
ontology specification language; (3) Most of the PLC-related ontologies are domain
level ontology and most of them are created in relation to the corresponding standards.

Meta-model Ontologies

Chapter 2 Background and State of The Art

31

Five ontologies that represent the model constructs knowledge of different kinds
of models are introduced as follows:

(1) Bunge-Wand-Weber [94] is proposed to provide the basis and fundamental
concepts that are needed for the theoretical view of information systems. It is
not only can be used to model a wide variety of information systems
phenomena, but also can be used as essential elements for evaluating the
“grammars” of a conceptual information system modelling method.

(2) General Process Ontology [95] is proposed to support the meta-model
annotation by providing the common and core semantics of process modelling
constructs. It acts as a mediator for the semantic conciliation between GPO
concepts and different process modelling language constructs.

(3) Petri net Ontology [96] is proposed to support the annotations of different Petri
net dialects and provide an infrastructure to enable the use and share of those
Petri nets on the semantic web.

(4) Activity diagram ontology [97] is proposed to create the mutual understanding
of terms that supports the communication between different software
development teams.

(5) BPMN Ontology [98] is proposed to capture the structural components of the
BPMN and provide a clear semantic formalisation for supporting the semantic
enrichment of business process models .

Table 2-2 shows the comparative overview of these five meta-model ontologies,
through four aspects: domains of application, notations of expression, levels of ontology
and foundation

Table 2-2 Comparison of five Meta-model Ontologies
 BWW [94] GPO [95] Petri net

ontology [96]
Activity Diagram
Ontology [97]

BPMN
ontology[98]

Domains of
Application

Information
system

Process
model

Petri Net
Model

Activity Diagram BPMN

Model
Notations of
Expression

Theory OWL-DL OWL Self-define

Structure

OWL-DL

Levels of
Ontology

Domain

Ontology

Domain
Ontology

Application
Ontology

Application

Ontology

Domain
Ontology

Foundation Mario Bunge’s
ontology [99]

BWW [94] PNML [100]
APNN [101]

SE textbook [102],
SWEBOK[103]

BPMN
Specification [63]

We can assert several conclusions: (1) In scientific literature, there exists various
studies that proposes ontology for representing the structural components of a
modelling language; (2) According to the notations of expression, we discover that
OWL is also the most frequently used ontology specification language in this type of

Chapter 2 Background and State of The Art

32

ontologies; (3) most of the meta-model ontologies are domain level ontologies and most
of them are created based on the corresponding language standards or specifications.

Some researchers argued that a meta-model is not an ontology. We cannot dissert
about the specific philosophical and methodological problem. Through the comparison
between the meta-models in the model specification languages and the meta-model
ontologies that are created based on those meta-models, we discover that the contents
(concepts and relationships) that we need from a meta-model can be represented in an
ontology. We also found that the meta-model ontologies in the existing literatures are
usually used as a mediator to annotate various kinds of meta-models for supporting the
model exchange or transformation. However, there is lack of research that uses meta-
model ontologies to describe the interrelation between annotated objects, and combine
the PLC-related ontologies to support the annotation suggestion and verification. In
the next section, we will survey some current semantic annotation researches from
different aspects and give a detailed comparison.

2.3 Semantic Annotations

The objectives of semantic annotations can be categorized into three general
groups:

(1) Group 1, to specify some embedded implicit semantics to improve the
understanding of the annotated objects;

(2) Group 2, to identify the common semantics among those annotated objects
from different sources to support further operations (such as transformation,
mapping, exchanging);

(3) Group 3, to attach the machine processable semantics to those annotated
objects and to obtain a set of semantic reasoning supports (such as querying,
inferring and verification).

Usually, a semantic annotation research may involve one or more groups of the above-
mentioned usages. In this section, based on the investigation performed in [12] and
[13], an extended version of survey is presented. A number of current semantic
annotation researches is classified and compared in Section 2.3.1. And then, the existing
drawbacks and potential challenges among those researches are discussed in Section
2.3.2.

2.3.1 Comparisons of the Semantic Annotation Researches

Based on the supports of the ontologies, semantic annotations could be widely
used in many contexts. Uren et al. [104] reviewed and classified the existing semantic

Chapter 2 Background and State of The Art

33

annotation systems as four kinds: manual annotation (annotations are manually created
by users), automatic annotation (annotation are created with the assistant of automation
components), integrated annotation environments (standard tools, such as Microsoft
Word, which has integrated with an annotation process), and On-demand annotation
(tools that produce annotation-like service, such as highlighting text related to an
ontology). While this survey serves to introduce and classify those annotation tools
generally, deep analysis of the annotation formalization details is still lacking. In order
to have a more complete and detailed overview of semantic annotations, the scope of
the related semantic annotation researches are not only limited to the semantic
annotation of models, but also extended to the semantic annotation for the Web services
and texts.

2.3.1.1 Semantic Annotations for Web Services
The W3C defines a Web service as “a software system designed to support

interoperable machine-to-machine interaction over a network” [105]. Adding semantic
annotations to a Web service is mainly for supporting the automatic verification of
certain tasks, which must be executed before or during invocation of corresponding
services [106]. Lots of efforts have been made in the semantic enrichment of Web
services.

Talantikite, et al. [56] proposed to use semantic annotations to annotate the Web
service for assisting the creation of an inter-connected network (represented in OWL-S
[107]), which is then processed by a composition algorithm to discover an appropriate
composition services plan for answering the corresponding user requests. A semantic
model, which can be considered as a kind of schema, is proposed to annotate a Web
service. As shown in the Figure 2-4 (a), the inputs and outputs in this schema are used
for the similarity measurement and exec-time and All-Resources are quality criteria for
the evaluation of the best composition plan.

Patil, et al. [108] proposed MWSAF, a framework for semi-automatically
annotating Web services with domain ontologies to help Web services discovery and
composition. They first converted both WSDL and several ontologies into Schema
Graphs (a set of nodes connected by edges) and then compare each concept from the
former one versus the concepts from latter ones based on both linguistic similarity and
structure similarity. After the comparison, the best-matched ontology is provided for
user to verify the correctness of each mapping. At the end, semantic annotation is used
as a simple ”is a” association to link annotated concepts and ontology concepts based
on the accepted mappings.

Chapter 2 Background and State of The Art

34

In order to simplify and standardize the complex semantic annotation methods for
Web services, the Semantic Annotation for WSDL and XML Schema (SAWSDL) [45]
is proposed in 2007. It aims to add semantics to Web services by providing extension
attributes that can be applied to the elements of both WSDL and XML Schema. As
shown in the Figure 2-4 (b), the SAWSDL extensions can be distinguished in two kinds:

(1) Model References (sawsdl:modelReference), which describes the associations
from a WSDL component or a XML Schema component to a concept in some
semantic models;

(2) Schema Mappings (sawsdl:liftingSchemaMapping and sawsdl:lowering
SchemaMapping), which specifies how an instance data in an XML Schema
maps to a semantic data in a semantic model.

The former one lifts (transforms) an XML instance data from a Web service message
into a semantic model; the latter one lowers (transforms) a semantic data from a
semantic model into an XML message [106]. Due to the initial design of SAWSDL it
assumes the semantic model can be identified through URIs, it is supposed to be able
to cope with semantic models based on any ontology specification languages.

2.3.1.2 Semantic Annotations for Texts

The semantic enrichment of texts is designed mainly to fulfil the purpose of
helping a machine to “understand” the annotated contents in the text and supporting
automated processes (such as information navigation). These researches usually
employed some information extraction technologies, such as natural language
processing [109], to support the automatic extraction of structured information from the
unstructured of semi-structured documents. Of course, not limited to this, a large
number of researches have proposed.

Vargas-Vera, et al. [110] presented an ontology-based annotation tool, named
MnM, which integrates web browser, ontology editor and open APIs to provide both
automatic and semi-automatic supports to annotate web pages with semantic contents.
The annotation (so-called mark-up) is performed through inserting a number of tags
(based on the name of the selected ontology concept) into the selected segments of text
on the web pages. Then a learning algorithm is applied on those corpora that are
collected from the annotation phase to create new annotations. With the supports of the
annotations, MnM is able to extract information from web pages and then fill them into
a pre-defined template. Further, a simple type-based validation is proposed to verify the
correctness of contents that are being filled in.

Popov et al. [111] developed a knowledge and information management (KIM)

Chapter 2 Background and State of The Art

35

platform, which was based on a KIM ontology and a massive knowledge base to
automatic annotate, index, and retrieve of documents. Based on the hypothesis that
named entities (NE), such as people, location and others referred by name, constitute
the essential semantics in a document. The automatic semantic annotation is considered
as the process of NE recognition and annotation. KIM provides for each extracted NE
two kinds of links: one link (URI) to the most specific class in KIM ontology to specify
the named-entity type and another link to specific individual in knowledge base.

Ma et al. [112] proposed a framework to support the semantic reasoning on both
domain and linguistic information that are contained in annotations of texts. That
research uses two ontologies: (1) a domain ontology to provide semantic labels (domain
knowledge) and (2) a language ontology to give text model (linguistic knowledge). For
the former one, a semantic annotation assertion is defined as a triple <tf,ot,at>, as shown
in the Figure 2-4 (c), where tf is text fragment; at is semantic labels; ot is relation
between tf and ot. For the latter one, it is represented as a set of OWL axioms and SWRL
rules, which contributes to bridge the inference constraints between domain and
linguistic.

2.3.1.3 Semantic Annotations for Models
In a PLM environment, various kinds of models have been proposed to represent

the PLC-related knowledge. As discussed in Section 1.2.4, the mutual understanding of
the semantics inside the shared and exchanged knowledge representations is one of the
important processes to achieve the semantic interoperability. We investigate several
semantic annotation researches that focus on the semantic enrichment of enterprise
models (from the general points of view), data models, product design models and
process models.

Enterprise Models

Task Group 4 of the INTEROP project [55] committed themselves in investigating
how annotations are able to contribute in making explicit the semantics and the
structures of enterprise models to enable both semantic-based and model-based
interoperability between collaborating actors. As shown in the Figure 2-4 (d), a general
schema is proposed for the semantic annotation of all enterprise models. They assumed
that any parts within an enterprise model may be annotated and can be annotated with
multiple annotations [10]. With this hypothesis, they categorized annotations into three
types for supporting the model exchange and transformation in an heterogeneous
context: Structural annotations, which refer to a given meta-model that supports the
mapping of model constructs; Lexical/Terminological annotations, which refer to a

Chapter 2 Background and State of The Art

36

taxonomy or an ontology that supports the mapping of annotated object’s names at
semantics level; Behaviour annotations, which can be expressed in various forms to
make explicit the business logic, the procedures, the rules, and the policies of the
annotated object [113].

Data Models

Song et al. [68] investigated the issues of heterogeneous data systems and
proposed a semantic information layer (SIL), which acts as a mediation media among
these systems to overcome gaps of data and semantic heterogeneity. This research
focuses on the development of an ontology-driven framework, which supports the
extraction of ontologies from different databases and assists creation and management
of the SIL. Semantic annotations are only used as links (paths) between the SIL and
data schemas, which are generated automatically.

MOMIS project [114] proposed an annotation method to support the automatic
and semi-automatic annotation on two or more data models that are extracted and
converted from either structured or semi-structured data sources. Based on these
annotations, MOMIS system first extracts four kinds of predefined semantic
relationships (Synonyms, Border Terms, Narrower Terms, and Related Terms) from
those annotated objects and then generates a global schema to support the data
integration between different data sources. In the local source annotation phase, the
generic WordNet lexical database and a domain glossary are employed to store and
provide human readable meanings for annotators. However, semantic annotation is only
considered as a kind of association between an element in data model and its WordNet
text meanings.

Product Design Model

Attene et al. [115] developed a semantic annotation system, named
ShapeAnnotator, which is able to decompose a shape into several interested features
through a segmentation algorithm and to support the annotation of the selected features
by connecting them to the corresponding individuals. These individuals are saved in a
separated OWL file with the imports of domain ontology. Figure 2-4 (e) shows an
annotation schema that we summarized from this research, which contains four main
elements: Class that this individual asserts to; ShannGeoContextURI that contains the
value of an URI that points to a multi-segmented mesh; ShannSegmentID that contains
the value of an index that specifies a segment in that multi-segmented mesh; Related
Values that is computed and added based on the feature descriptors (topological
reactions between features and geometric aspects of a feature);

Chapter 2 Background and State of The Art

37

Li [116] proposed an ontology-driven semantic annotation framework for CAD
systems (OntoCAD) to assist the product engineering with other multiple engineering
viewpoints (such as cost estimation) in a product life cycle. An annotation data structure
is proposed to formalize those annotations, as shown in the Figure 2-4 (f), which is
composed of three parts: Anchor is filled with the geometric elements that are
represented as OWL individuals; OWL properties are the objects property and the data
property in OWL; Content can be OWL individuals or data values. A three layered
ontology architecture knowledge base is proposed to capture, represent and manage
multiple engineering viewpoints ontologies and to support the processing of querying
and reasoning requests.

Process Models

Di Francescomarino [117] proposed some techniques to support the annotation of
business process model with ontologies, which gives the possibility to perform some
reasoning for assisting designers and analysts in the management of their business
process models. On one hand, semantic annotation is represented in the “textual
annotations” of a business process diagram by using a “@” symbol with the name of
the selected ontology classes. On the other hand, annotated object in process model has
a corresponding ontology individual element and an assertion to the selected class.
Figure 2-4 (g) shows the annotation schema that we summarized from this research.
Based on those three types of assertions, the semantic annotation is treated as a kind of
assertion between individuals and classes.

Lin [57] proposed a semantic annotation framework to support the discovery and
the sharing of process models in or between enterprises by reconciling the semantic
heterogeneity between process modelling languages (meta-model) and model contents.
The meta-model is annotated by a general process ontology (GPO) and model contents
are annotated by a domain ontology. As shown in the Figure 2-4 (h), a process semantic
annotation model (PSAM), which describes the process properties and annotation
contents, is proposed to generate a common annotation schema for different process
models. In order to better describe the semantic relationships between concepts in
models and the concepts in ontologies, a set of refined relations is defined besides the
simple refers_to relations.

2.3.1.4 Comparison

To be more specific, a comparison of above-mentioned semantic annotation
researches is made in the Table 2-3 to give a more complete overview based on the
following nine aspects:

Chapter 2 Background and State of The Art

38

(1) Domains of Application: this column describes the target of semantic
annotations, which rely on the contexts of research, such as web services, texts,
models and so on.

(2) Usages of Annotation: this column describes what semantic annotations are
used in the corresponding research. It is classified into three groups at the
beginning of Section 2.3.

(3) Ways of Annotation: this column describes how semantic annotations are added
to the target. The contents of this column can be “manual annotation”, “semi-
automatic annotation” or “automatic annotation”.

(4) Semantic Browser: this column describes what kind of browser is provided to
annotators for browsing the semantic models. In the case of automatic
annotation, this aspect can be omitted.

(5) SA verification: this column describes whether there is a mechanism to detect
the inconsistencies between existing semantic annotations and a mechanism to
give warnings for potential conflicts between those annotated objects.

(6) SA Schema: this column describes whether there is a semantic annotation
schema in the corresponding research. In this aspect, the simple “is a”
association is not considered as a schema.

(7) Employed Ontologies: this column describes what ontologies are used in the
corresponding research.

(8) SA Independency: this column describes how semantic annotations attach to
the annotated object. The contents of this column can be: embedded references
in the target of annotations (such as URI, tag or ontology concept) or
independent references from the target of the annotation (storing SA
independently).

(9) Structure Semantics: this column describes whether the structure semantics of
the target of annotations is taken account by the corresponding researches.

Chapter 2 Background and State of The Art

39

Table 2-3 The Comparison of Semantic Annotation Researches
Name of the

Research/Authors
Domains of
Application

Usages of
Annotation

Ways of
Annotation

Semantic
Browser

SA
Verification

SA
Schema

Employed
Ontologies

SA
Independency

Structure
Semantics

Talantikite, et
al. [56]

Web
Services

Group 3 No mention No mention No Yes Domain
ontologies

Independent

No

MWSAF [108] Web
Services

Group 3 Manual
Semi-
automatic

Ontology
tree view

No No Domain
ontologies

Embedding
ontology
concepts

No

SAWSDL [45] Web
Services

No Specify No mention No mention No mention Yes No Specify Embedding
URIs

No
mention

MnM [110] Text Group 1 and
3

All three types

Ontology
tree view

No No Domain
ontologies

Embedding
tags

No

KIM [111] Text Group 1 and
3

Automatic No No KIM ontology,
knowledge base

Embedding
URIs

No

Yue Ma [112] Text Group 2 and
3

Automatic Yes Yes Domain ontology
Language ontology

Independent Yes

Task Group 4 of
INTEROP [55]

Enterprise
Models

Group 1, 2
and 3

No mention No mention No Yes No mention Embedding
URIs

Yes

SIL [68] Data Model Group 2 and
3

Automatic No No Extracted
ontologies

Independent No

MOMIS project
[114]

Data Model Group 1, 2
and 3

All three types Natural
Language
view

No No

WordNet
Domain Glossary

No mention No

ShapeAnnotator
[115]

Product
Design
Model

Group 3 Manual Ontology
graph view

No Yes Domain ontology Independent Yes

OntoCAD [116] Product
Design
Model

Group 1, 2
and 3

Manual Ontology
tree view

No Yes STEP ontology Independent No

Di Francesc-
omarino [117]

Process
Model

Group 2 and
3

Semi-
automatic

No mention Yes Yes BPMN ontology,
BPO

Independent Yes

Lin [57] Process
Model

Group 1, 2
and 3

Manual Ontology
tree view

No Yes GPO, goal and
domain ontology

Independent Yes

Chapter 2 Background and State of The Art

40

According to these comparison results, several conclusions can be emphasized as
follows:

(1) Most of the researches focus on using semantic annotations to support the
usage in group 3 (attaching the machine processable semantics to those
annotated objects and obtaining a set of semantic reasoning supports);

(2) In the cases of manual annotation and semi-automatic annotation, ontology
tree views are the most used browsers for annotators to browse semantic
models;

(3) The verification mechanism is not considered by most of the researches;
(4) Various kinds of semantic annotation models have been proposed by different

researches.
(5) In the cases of semantic annotation for Web services and texts, semantic

annotations are always embedded in the annotation target. To the contrary, for
models, semantic annotations are always independent;

(6) The domain semantics is usually made explicit through one or more domain
ontologies and the structure semantics is usually made explicit through a meta-
model ontology. Meanwhile, less than half of the researches take into account
the structure semantics.

In order to make a more detailed comparison of the semantic annotation models
that are proposed by above-mentioned researches, we classify six types of the elements
that are contained in those schemas:

 Element type ᬅ, which contains the identifier of annotated object.
 Element type ᬆ, which contains the domain semantics.
 Element type ᬇ, which contains the structure semantics.
 Element type ᬈ, which contains the relations between annotated object

(element type ᬅ) and its domain or structure semantics (element type ᬆ or ᬇ).
 Element type ᬉ, which contains some specific properties that are associated

to the annotated object (the additional information that do not describe the
semantics of annotated object).

 Element type ᬊ, which contains some specific properties that are associated
to the annotation itself (such as annotation id, annotation type and so on).

Figure 2-4 shows an overview of the eight semantic annotation schemas, in which, all
elements in those schemas are categorized based on the proposed classification.

Chapter 2 Background and State of The Art

41

Figure 2-4 The Comparison of Semantic Annotation Models

Combining the element type ᬅ with the contents of SA independency in the table
2-3, we can discover that this type of element only exists in (a), (c), (e), (f), (g) and (h),
which belong to the research that stores semantic annotation independently. To the
contrary, for those researches that embed references in the target of annotation, their
schemas, such as (b) and (d), do not contain this element.

All the schemas contain the element type ᬆ. Besides (b) and (d) that express this
type of element as URIs, the rest of them use ontology concepts. Normally, this type of
element is used to make explicit the domain semantics of annotated objects. However,
in particular, the domain semantics in (a) is used to express the semantics of the inputs
and outputs of the annotated object.

Based on the observation of those models, only (d) and (g) contain the element
type ᬇ. However, after the detailed analysis, we discover that the structure semantics

Semantic Annotation of Web Service (WS):
-- Sid: WS identifier
-- Sname: WS name
-- inputs: an input of the WS
-- outputs: an output of the WS
-- exec-time: an execution time of the WS
-- All-Resources: the required resources
-- Bindings: the protocol used
-- Service: the URI of the WS

(a) [46]
 Semantic Annotation is a tuple <tf,ot,at>

where
tf is text fragment;
at is semantic labels;
ot is relation between tf and ot.
 (c) [108]

 Semantic Annotation Schema:
--Class: selected class in domain ontology
--ShannGeoContextURI: a URI refer to a
 multi-segmented mesh
--ShannSegmentID: an index of a segment
 in that multi-segmented mesh.
--Related Values: value is computed and
 added by the feature descriptors

(e) [111]
 Three assertions of a BPD instance:

-- BPD instance
-- Three types of assertion
 BPM-type assertions
 BPM-structural assertions
 BPM-semantic assertions
-- Class of Ontology

(g) [113]

Extension attributes for SA:
-- sawsdl:modelReference
-- sawsdl:liftingSchemaMapping
-- sawsdl:loweringSchemaMapping
 (b) [42]

Annotation Schema:
--Annotation-Id: identifier of annotation
--Unformal Content: unformal comments
--Annotation Type: Type of annotation
--Ref2Ontology: URI of ontology concept
--Constraints: refer to ontology or meta-model

(d) [45]

Annotation data structure:
-- Anchor: the geometric elements that
are being represented as OWL individuals;
-- OWL properties: object property or
data property in OWL;
-- Content: OWL individuals or data values.

PSAM=(AV,AR,AF,WP,I,O,⊝pre, ⊝pos,E,PD)
where
AV is a set of activities
AR is a set of actor-roles
AF is a set of artifacts
WP is asset of workflow patterns
I is a set of input parameters
O is a set of output parameters ⊝pre is pre-conditions ⊝pos is post-conditions
E is a set of possible exceptions
PD is a subset of a domain ontology concept

(f) [112]

(h) [47]

Chapter 2 Background and State of The Art

42

is also taken into account by (c), (e) and (h):
 In (c) and (e), structure semantics is not directly appeared. Instead, for the

former one, it is represented as a text model (language ontology) with pre-
defined axioms and rules. For the latter one, it is expressed by the topological
relations between two features (such as adjacency, overlap, disjointness and
containment).

 In (h), besides element PD, the rest of the elements in the schema are generated
based on a meta-model ontology, named GPO. After mapping a meta-model to
GPO, the corresponding model element is converted into an individual of the
mapped class in GPO. (e.g. when a “process” is annotated as an instance of AV,
it automatically maps to activity in the GPO).

Outwardly, besides the (c), (f) and (g), the rest of them do not contain the element
type ᬈ, which defines the semantic relationship as a simple assertion or linking
between annotated object and semantic content.

 In (c), relations are classified into four kinds: “sa:Concept” states tf is annotated
by an class; “sa:Role” states tf is annotated by a property; “sa:Individual” states
tf is annotated by an individual; “sa:Ind-Con” states tf is an individual, as well
as the annotation content is the class that tf belongs to (tf is a special individual
of this class).

 In (f), the definitions of OWL properties (owl:ObjectProperty and
owl:DatatypeProperty) are reused for identifying the relations between
annotated objects and annotation contents. The former one denotes the
annotation content as an object and the latter one denotes the annotation content
as a data value.

 In (g), relations are classified into three kinds of assertions: BPM-type
assertions that assert an instance to a class of the BPMN ontology; BPM-
semantic assertions that assert an instance to a class of a domain otology, BPM-
structure assertion is used to describe the relations between two instances.

However, although element type ᬈ does not directly appear in (h), the semantic
relationships are represented as OWL properties in that research. Seven kinds of refined
relations are generated: Synonym (alternative_name, same_as), Polysemy
(different_from), Hypernym (kind_of), Hyponym (superConceptof), Meronym
(part_of, member_of, phase_of, partialEffect_of), Holonym (composition Concept_of),
Instance (instance_of).

Element type ᬉ and ᬊ are specific elements in some contexts that usually are
used to fulfil some particular requirements. For example, in (a), the “exec-time” is a

Chapter 2 Background and State of The Art

43

property of the annotated object, which is used to record the execution time of a web
service request. In (c) “Annotation-Id” is a property that is associated to the annotation
itself, which is used to record the value of the identifier of that annotation.

In short, although various kinds of semantic annotation models have been
proposed by different semantic annotation researches, they are defined differently and
limited in their own studies. The essential elements of a semantic annotation are not
clearly presented by above-mentioned researches. We will present the needs of the
formalization of semantic annotations through the discussion of existing drawbacks and
potential challenges in the next section.

2.3.2 Drawbacks and Challenges

Based on the investigations and comparisons, we found that despite lots of efforts
have been made in the research of semantic enrichments, a number of existing
drawbacks still needs to be noted.

The formalization of semantic annotations is not the focus in some of above-
mentioned researches ([68], [108], [110], [111] and [114]), where it is only considered
as a simple one to one association (a kind of “is a” association between an annotated
object and an ontology concept). Meanwhile, some specific semantic annotation models
are proposed by some of the rest ([56], [57], [112], [115] and [117]). However, these
models are difficult to be reused in other researches but the studied ones. There exists
a kind of general models in the research [45] and [55]. However, for the former one,
although it provides the user a large degree of freedom, it does not contain any semantic
relationships and without additional conventions, which results in a limited usage. As
well as the latter one is only a general annotation model without detailed formal
definitions.

Making explicit the domain semantics is the only concern in some of above-
mentioned researches ([56], [68], [108], [110], [111], [114] and [116]), where the
structure semantics is ignored. The advantages of making explicit the structure
semantics have been acquired by the rest of them ([55], [57], [112], [115] and [117]).
In [55], it is used to express modelling construct and support models transformations.
In [57], it is used as a mediator for reconciliation of various process modelling language
constructs. In [112], it is used to support the creation of text model and conserve
linguistic knowledge. In [115], it is used to support the automatic computation of
relations between features in the model. In [117], it is used to support the verification
of modelling constraints. However, among all these usages, the structure semantics and
domain semantics are defined separately. There is a lack of research that combines both

Chapter 2 Background and State of The Art

44

structure and domain semantics together to contribute to the inference process.
In the cases of automatic or semi-automatic annotation, semantic annotations are

usually suggested by some similarity measurements methods ([68], [108], [117] and
[114]) or training corpus ([110], [111] and [112]). The verification of correctness of
those semantic annotations still needs human involved. The mechanism for assisting
this verification process is only taken into account by [112] and [117]. In [112], two
SWRL rules are designed to report missing and erroneous annotations on a noun
compound (three text fragments). In [117], four axioms are proposed to prevent
erroneous annotations based on the types of concepts. However, they only focus on one
annotated object and the possible inconsistencies between two or more semantic
annotations are not taken into account.

In this research work, the process model is selected as the target of semantic
enrichment. Therefore, among all the investigated researches, [57] and [117] are close
related to the semantic annotation of process models. Besides the above-mentioned
drawbacks, several more shortcomings still need to be noted:

 In [57], (1) process models and their meta-model descriptions are represented
as tree views in the annotation tool. These tree views not only neglect the
features of process models, but also increase the difficulty for annotators to
perform the annotation; (2) During the ontology comparison, the assignment
of weights are given to semantic relationships, but these weights are given
without precise scientific evidence (for example, the weight of “same_as” is 1
and the weight of “kind_of” is 0.8, but where this 0.8 comes from?); (3) A
general process ontology (GPO) is used to map different process meta-models.
Some model constructs knowledge, which is represented by those meta-
models, cannot find the corresponding concepts or relationships in the GPO
(for example, the association in BPMN meta-model has not corresponding
mapping in the GPO).

 In [117], (1) the semantic annotation is used without formal definitions; (2) the
semantic relationships in the semantic annotation are only represented as three
types of instance assertions. These semantic relationships require the
employed ontologies to provide all the necessary classes that are needed by the
assertion process; (3) they used description logics to ensure the process model
fulfil the pre-defined constraints. However, they only used four simple axioms
to support the type verification of semantic annotations (for example, a BPMN
element of type “Activity” can be annotated only with a domain specific
concept that is equivalent or more specific than “Activity”).

Chapter 2 Background and State of The Art

45

Furthermore, we explore two main directions of the researches on semantic
annotations: (1) researches that focus on developing an appropriate knowledge base,
which has high-coverage of semantics; (2) researches that focus on discovering a
suitable semantic annotation structure model and related mechanisms, which has high-
adaptability of different knowledge bases. The challenges in the first direction are
mainly the completeness and multiplicity of semantic models. The challenges in the
second direction are mainly the applicability, tolerance and formalization of annotation
model and related mechanisms. In this thesis, we are more biased toward the second
direction.

2.4 Conclusion

In general, based on the investigation in this section, a number of requirements for
our proposed solution are identified:

(1) It should provide a general semantic annotation structure model that is able be
used to formalize semantic annotations for different kinds of models;

(2) It should discover the possibility of using both structure and domain semantics
together in the inference process;

(3) It should provide some mechanisms to assist the detection of the
inconsistencies between semantic annotations and the identification of the
conflicts between annotated objects;

(4) It should provide a way to guide annotators in how to apply the formal
semantic annotations and how to benefit from those semantic annotations;

(5) It should provide a framework to support the semantic enrichment of models
along the product life cycle.

In the next chapter, we will propose a formalization of semantic annotations that
follows these requirements.

Chapter 3 Formal Approach to the Semantic Annotations

46

Chapter 3 Formal Approach to the Semantic
Annotations

In the previous chapters, we discussed the needs for the semantic enrichment of
models in a PLM environment and highlighted that the mutual understanding of
semantics in the shared and exchanged knowledge representations is the cornerstone in
the quest for semantic interoperability. Semantic annotation is considered as one of the
possible solutions for making explicit the implicit semantics that embedded in a
knowledge representation and also for giving the possibility to perform semantic
reasoning on the annotated objects. Based on the investigation of various current
semantic annotation researches, we discovered a number of existing drawbacks and
potential challenges and identified a number of requirements for our proposed solution.
Three main drawbacks can be summarized as follows:

(1) Lack of a formalization of semantic annotations that is able to be used for the
semantic enrichments of different kinds of models;

(2) Lack of a mechanism to combine both structure and domain semantics together
to contribute in the inference process.

(3) Lack of a mechanism to assist the detection of inconsistencies between
semantic annotations and the identification of conflicts between annotated
objects.

In order to address these drawbacks, in this chapter, we propose a formal approach
to assist the semantic enrichment of models in a PLM environment. Section 3.1 presents
the details of the semantic annotation formalization proposals and identifies the
essential elements of a semantic annotation. Then, in Section 3.2, taking advantages
from the formalization, the reasoning mechanisms are proposed to support the detection
of inconsistencies between semantic annotations and the identification of possible
conflicts between model elements. Finally, Section 3.3 presents a semantic annotation
framework for addressing the issue of semantic interoperability in a PLM environment.

3.1 Formalization of Semantic Annotations

In many research works, as we discussed in Chapter 2, the essential elements of a
semantic annotation are not clearly defined. To better formalize semantic annotations,
we first identify the major components of a semantic annotation (Section 3.1.1). Then,
we propose two kinds of semantic blocks to support the definition of the semantic
annotation and the creation of reasoning rules (Section 3.1.2). At the end, in Section

Chapter 3 Formal Approach to the Semantic Annotations

47

3.1.3, we propose the formal definitions that related to all the essential elements of a
semantic annotation.

3.1.1 Meta Model of the Semantic Annotation

The comprehension of the knowledge that is represented by a model needs not
only the domain semantics that is embedded in the contents of the model, but also the
structure semantics that is embedded through the modelling constructs. Therefore, the
relevant semantics is supposed to be contained in the employed ontologies. The ideal
situation is that there exists equivalent semantics in ontologies for every annotated
element in a model. However, because of the complexity of the reality, in most of the
cases this situation rarely appears. Therefore, a more reasonable relation definition is
required for describing the semantic relationships between an element of a target
knowledge representation and its corresponding domain and structure semantics. To be
more specific, in order to define the meta-model of the semantic annotation, based on
the research context and the investigation of existing researches in the previous chapters,
several important concepts that are used throughout this chapter need to be reviewed.

Target Knowledge Representation (TKR)

Models in a PLM environment act as an important role to enable the capturing and
representation of the relevant knowledge from each product life cycle stage. These
models are always expressed in some kinds of modelling languages or notations with
designer’s specific peculiarities, such as, different backgrounds, unique knowledge,
heterogeneous expertise, particular needs and specific practices. This results in the
implicit, or possibly ambiguously explicit, semantics that is not easily intelligible by
the humans or the machines. The interoperation process between enterprise systems and
stakeholders not only requires that these models can be exchanged and operated on, but
also demands the unambiguous understandings of the exchanged models. In this
research work, all different kinds of models throughout the product life cycle are
considered as Target Knowledge Representations (TKRs).

Ontology-based Knowledge Representation (OKR)

Ontology represents a real-world semantics that enables human to use meaningful
terminologies as machine processable contents. It formalizes the common and shared
understandings in a human and machine interpretable way [49], which is frequently
chosen as a candidate procedure to formalize knowledge. According to the research
context, as we discussed in Section 2.2.2, two kinds of ontologies (PLC-related

Chapter 3 Formal Approach to the Semantic Annotations

48

ontologies and Meta-model ontologies) are used to support the semantic enrichment of
models in a PLM environment. These ontologies are considered as Ontology-based
Knowledge Representations (OKRs) in this research work.
Semantic Annotation Structure Model (SASM)

The Semantic Annotation is acting as a bridge to formally describe the semantic
relationships between TKRs and OKRs. Two aspects of semantics are made explicit
through a semantic annotation:

(1) The domain semantics that describes the context and the meaning of an
annotated object in a certain domain;

(2) The structure semantics that describes the interrelations of the annotated object
and the other related objects in the TKR.

The meta-model of the semantic annotation is presented in the Figure 3-1, which
describes the main components of a semantic annotation and their relationships.

 A “Target Knowledge Representation” is the composition of one or more
“Element of a TKR”.

 The “Ontology-based Knowledge Representation” is the generalization of the
“Meta-model Ontology” and the “PLC-related Ontology”.

 A “Meta-model Ontology” is the composition of one or more “Element of a
Meta-model Ontology”.

 A “PLC-related Ontology” is the composition of one or more “Element of a
PLC-related Ontology”.

 An “Element of a TKR” can be annotated by zero or more “Semantic
Annotation”.

 A “Semantic Annotation” contains one “Structure Semantics”.
 A “Semantic Annotation” contains zero or more “Domain Semantics”.
 A “Structure Semantics” is the aggregation of one “Element of a Meta-model

Ontology”

 A “Domain Semantics” is the aggregation of one or more “Element of a PLC-
related Ontology”.

Chapter 3 Formal Approach to the Semantic Annotations

49

Figure 3-1 The Meta-model of the Semantic Annotation

Based on this meta-model, in the next section, we propose a semantic block
delimitation method. This method will be used as a basis to support the proposition of
formal definitions and the creation of reasoning rules.

3.1.2 Semantic Block Delimitation

In order to well support semantic annotations, we adapted the concept of “semantic
block” proposed by Yahia et al. [118]. In their research, the semantic block concept
represents a kind of aggregation of semantics. It is composed by a minimal number of
mandatory concepts needed to express the full semantics of a concept. In our work, we
propose a delimitation method to create semantic blocks. It, not only, extends the
semantic block definition to cover the relations among those selected concepts, but also
further categorizes the semantic blocks into two different kinds for facilitating
annotation and reasoning processes.

Generally, both ontologies and enterprise models can be regarded as the
composition of a set of entities (such as concepts, instances or model elements) and the
corresponding explicit or implicit relations that are used to bind them together for some
specific purposes. For example, Figure 3-2 (a) depicts a part of an ontology that
contains explicit relations and Figure 3-3 (a) shows a part of a process model that
contains implicit relations. A semantic block is considered as a shape (segment) of a
model that contains a number of selected entities and corresponding relations among
them. Each semantic block represents an aggregation of semantics.

According to the objects that the semantic block delimitation method applies to

Chapter 3 Formal Approach to the Semantic Annotations

50

and the usages of those semantic blocks, two kinds can be categorized:
(1) Semantic Blocks for Semantics Description: the delimitation method supports

the creation of a “Domain Semantics” by delimitating one or more “Element
of a PLC-related Ontology” from one or more “PLC-related Ontology”. The
generated semantic block is used to describe the domain semantics of an
“Element of a TKR” based on the semantics that it aggregates.

(2) Semantic Blocks for Semantics Substitution: the delimitation method supports
the creation of a substitute by delimitating one or more “Element of a TKR”
from one “Target Knowledge Representation” based on the “Structure
Semantics” that they express. The produced semantic block is used as a
substitute of those “Element of a TKR” it aggregates and acts as a new entity
or a new relation in the “Target Knowledge Representation”.

Let ܣ be a set of entities in a model. Let ܤ ⊆ ܣ × be a set of binary relations. Given ܽ௜ ܣ , ௝ܽ א we say that ܽ௜ ,ܣ is relative to ௝ܽ through ܾ௜,௝ = (ܽ௜ , ௝ܽ) א We call ܽ௜ the .ܤ
domain of ܾ௜,௝ and ௝ܽ the range of ܾ௜,௝. The general definitions of above-mentioned two

kinds of semantic blocks are presented in the following sections.

3.1.2.1 Semantic Blocks for Semantics Description

Since the relations among entities in ontologies are already explicit, the
delimitation of semantic blocks is able to be applied directly.

Let ܽ௜బ א ೔బ�ܣ be the main entity and ܣ ⊆ be a set that contains all the entities ܣ
with selected relations, which are associated to ܽ௜బ. Let ܤ�೔బ ⊆ be a set that contains ܤ
those selected relations. Mathematically, ܣ�೔బ is defined as: ܣ�೔బ ,଴ = {ܽ௜బ}; ܣ�೔బ ,ଵ = {ܽ௜భ א ௜బ,௜భܾ∃|ܣ א ೔బ�ܤ , ܽ௜బ א ೔బ�ܣ ,଴, (ܽ௜బ , ܽ௜భ) = ܾ௜బ,௜భ}; ܣ�೔బ ,ଶ = {ܽ௜మ א ௜భ,௜మܾ∃|ܣ א ೔బ�ܤ , ܽ௜భ א ೔బ�ܣ ,ଵ, (ܽ௜భ , ܽ௜మ) = ܾ௜భ,௜మ};

೔బ�ܣ … ,௡ = {ܽ௜� א �௜�−భ,௜ܾ∃|ܣ א ೔బ�ܤ , ܽ௜�−భ א ೔బ�ܣ ,௡−ଵ, (ܽ௜�−భ , ܽ௜�) = ܾ௜�−భ,௜�}; ܣ�೔బ : = ⋃ ೔బ�ܣ ,௡௡

According to user-defined reasoning rules (for example, only certain relations that fulfil
the constraints in rules can be the relations in ܤ�೔బ) that are applied during the creation

of a semantic block, an appropriate subset of the ܣ can be determined. Then the
semantic block of the entity ܽ௜బ is defined as a pair: ܵܤ�೔బ : = ሺܣ�೔బ , ೔బ�ܤ ሻ,

where every entity in ܣ�೔బ can be attained by ܽ௜బ through, at least, one path. All the

Chapter 3 Formal Approach to the Semantic Annotations

51

relations in the paths are contained in ܤ�೔బ .

Figure 3-2 (b) shows an example of the semantic block for semantics description. ܵ7�ܤ is the semantic block of the main entity ܽ଻, which can be used to describe the

domain semantics of its annotated object based on the semantic it aggregates.

Figure 3-2 An Example of the Semantic Block for Semantics Description

3.1.2.2 Semantic Block for Semantics Substitution

Due to the fact that relations among the entities are implicit in enterprise models,
the delimitation of semantic blocks cannot be applied directly. As shown in the Figure
3-3, we propose two procedures as follows:

(1) Relation Explicitation

The relation explicitation process focuses its interest on making explicit the
implicit relations among elements in an enterprise model. Two general rules are
proposed:

 Each model element is represented as an entity of the set ܣ.
 A relation ܾ௜,௝ = ሺܽ௜ , ௝ܽሻ א is created between ܽ௜ ܤ א and ௝ܽ ܣ א if the , ܣ

model element that is represented by ܽ௜ is related to the model element that is
represented by ௝ܽ.

(2) Semantic Block Delimitation

This kind of semantic blocks can be further divided into two categories depending
on the role of a semantic block acting: as an entity or as a relation. Based on user-
defined reasoning rules, a semantic block that is composed by a set of entities and the
corresponding relations among them can be created. A number of restrictions to assist
the creation of reasoning rules are presented as follows:

A part of an ontology
(with explicit relations)

(a) (b)

Semantic Block
Delimitation

 Entity Semantic Block Relations

ܽଵ

ܽଶ

ܽଷ

ܽସ

ܽହ ܽ଺ ܽ଻

ܾଶ,ଵ

଼ܾ,ଷ

ܾସ,ଶ ܾହ,ଶ ܾ଺,ଶ, ܾ଻,଺

ܾ଻,ସ

ܾ଻,ହ ܾଷ,ଵ ܾ଻,ଷ

଼ܽ

ܽଵ

ܽଶ

ܽଷ

ܽସ

ܽହ ܽ଺ ܽ଻

ܾଶ,ଵ

଼ܾ,ଷ

ܾସ,ଶ ܾହ,ଶ ܾ଺,ଶ, ܾ଻,଺

ܾ଻,ସ

ܾ଻,ହ ܾଷ,ଵ ܾ଻,ଷ

 ���ࡿ

Chapter 3 Formal Approach to the Semantic Annotations

52

For a semantic block that acts as a new entity ܽ௫, let ܣ�ೣ ⊆ be a set of selected ܣ
entities and let ܤ�ೣ ⊆ In order to .ೣ�ܣ be a set of relations among those entities in ܤ

substitute the semantics of its contents, the following two conditions are required:
 For every entity ܽ௜ in ܣ�ೣ, at least one entity ௝ܽ exists in ܣ�ೣ that has a relation ܾ௜,௝ in ܤ�ೣ to ܽ௜. That is ∀ܽ௜ א ೣ�ܣ , ∃ ௝ܽ א ೣ�ܣ , ∃ܾ௜,௝ א ೣ�ܤ .ݏ , ௜ܽ) .ݐ , ௝ܽ) = ܾ௜,௝ .

 For every binary relation ܾ௜,௝ in ܤ�ೣ, the entities that appear in the domain and
range of ܾ௜,௝ are the entities in the ܣ�ೣ. That is ∀ܾ௜,௝ א ೣ�ܤ , (ܽ௜ , ௝ܽ) = ܾ௜,௝ ⇒ ܽ௜ , ௝ܽ א ೣ�ܣ .

Then the semantic block ܵܤ��ೣ is defined as a pair: ܵܤ��ೣ ≔ ሺܣ�ೣ , .ሻೣ�ܤ

For a semantic block that acts as a new relation between ܽ௜ א and ௝ܽ ܣ א ೔,�ೕ�ܣ Let .ܣ ⊆ ೔,�ೕ�ܤ be a set of selected entities and let ܣ ⊆ ೔,�ೕ. In order to substitute the semantics of its contents, it�ܣ be a set of relations among ܽ௜, ௝ܽ and the entities in ܤ

needs to satisfy the following three conditions:
 ܣ�೔,�ೕ does not contain ܽ௜ and ௝ܽ. That is ܽ௜ , ௝ܽ ב .೔,�ೕ�ܣ

 For every entity ܽ௞ in the ܣ�೔,�ೕ, at least one entity ܽ௟ exists in ܣ�೔,�ೕ that has
a relation ܾ௞,௟ in ܤ�೔,�ೕ to ܽ௞. That is ∀ܽ௞ א ೔,�ೕ�ܣ , ∃ܽ௟ א ೔,�ೕ�ܣ , ∃ܾ௞,௟ א ೔,�ೕ�ܤ .ݏ , ሺܽ௞ .ݐ , ܽ௟ሻ = ܾ௞,௟.

 Besides ܽ௜ and ௝ܽ, for every binary relation ܾ௞′,௟′ in the ܤ�೔,�ೕ, the entities that
appear in the domain and range of ܾ௞′,௟′ are the entities in the ܣ�೔,�ೕ. That is ∀ܾ௞′,௟′ א ೔,�ೕ�ܤ , ሺܽ௞′ , ܽ௟′ሻ = ܾ௞′,௟′ ⇒ ܽ௞′ , ܽ௟′ א ೔,�ೕ�ܣ ׫ {ܽ௜} ׫ { ௝ܽ}

Then the semantic block ܴܵܤ�೔,�ೕ is defined as a pair: ܴܵܤ�೔,�ೕ: = ሺܣ�೔,�ೕ , ೔,�ೕሻ�ܤ

Figure 3-3 (c) shows an example of the semantic block for semantics substitution. ܴܵܤ�భ,�4 is the semantic block that merges the semantics of its contents and acts as a

new relation between ܽଵ and ܽସ .

Chapter 3 Formal Approach to the Semantic Annotations

53

Figure 3-3 An Example of the Semantic Block for Semantics Substitution

The semantic blocks delimitation can be used to support the semantic annotation
from the following two aspects:

(1) Taking advantage from the semantic block for semantics description, the
annotators can, with a certain degree of freedom, delimitate an appropriate
semantics that they need in the OKRs. Furthermore, it also brings the
capability to adopt the diversity of different ontologies

(2) Taking advantage from the semantic block for semantics substitution, a
combination of elements in the TKR can be delimitated. The produced
semantic blocks act as new entities or new relations to assist the creation of
reasoning rules. In this research work, we mainly uses the latter category,
namely ܴܵܤ�೔,�ೕ.

3.1.3 Formal Definitions of Semantic Annotation

In this section, based on the definition proposed in [14] and [15], an improved
version of the formal definitions is presented. Let � be the set of elements in a TKR
and ݁௜ be one of the elements in � (݁௜ is considered as an instance of the constructs of
the meta-model that are used to design a model).

Definition 1. An ontology is a formal and shared understanding of some domains
of interest, which specifies the concepts and the relationships that can exist for an agent

A part of a process model
(with implicit relations) ܽଵ ܽଶ ܽଷ ܽସ ܽହ
ܽ଺ ܽ଻

ܽଵ ܽଶ ܽଷ ܽସ ܽହ ܽ଻

ܾଵ,ଶ ܾଶ,ଷ ܾଷ,ସ ܾହ,ଷ ܾସ,଻ ܾ଺,ହ ܽ଺

 ��,��ࡾ�ࡿ

(a) (b)

(c)
Sequence
Flow

 Sub-Process

Data
Object

Association

 Entity

Existing
Relation

Semantic
Block
New
Relation

Substitution

Procedures

Relation
Explicitation

Semantic Block
Delimitation

ܽଵ ܽଶ ܽଷ ܽସ ܽହ ܽ଻

ܾଵ,ଶ ܾଶ,ଷ ܾ ଷ,ସ ܾହ,ଷ ܾସ,଻ ܾ଺,ହ ܽ଺

Chapter 3 Formal Approach to the Semantic Annotations

54

or a community of agents [49] [67]. Let ݋௫ represent an ontology, which is formalized
by a triple: ݋௫ ≔ ሺ②oೣ , Roೣ , Aoೣሻ,

where

 ܥ௢ೣ is a set of concepts;
 ܴ௢ೣ is a set of relationships;
 ܣ௢ೣ is a set of axioms.

Let ݈݈ܽ݋௢ೣ be the set that contains all the elements from the set ܥ௢ೣand ܴ௢ೣ. An ontology
element ݁݋௢ೣ೤ is represented as: ݈݈ܽ݋௢ೣ = ௢ೣ೤݁݋|௢ೣ೤݁݋} א ௢ೣܥ ׫ ܴ௢ೣ}.

Remark 1. The ontology elements that are used as part of the semantic annotation
contents are the concepts and the relationships. The axioms only participate in the
reasoning stage.

Definition 2. A meta-model is a model that specifies the concepts, relationships
and rules to model a model. Let ݉݉௫ denote a meta-model, which is defined as a triple: ��x ≔ ሺ②mmx , Rmmx , RUmmxሻ,

where

 ܥ௠௠ೣ is a set of concepts;
 ܴ௠௠ೣ is a set of relationships;
 ܴ�௠௠ೣ is a set of rules.

Let ݉݉݋௫ be an ontology that represents the meta-model ��x, which is defined as:
௫݋݉݉ ≔ ሺܥ௠௠௢ೣ , ܴ௠௠௢ೣ , .௠௠௢ೣሻܣ

Remark 2. In scientific literature there are at least two different visions about
whether a meta-model is an ontology or not. In this work, we will take into account
only those elements (the concepts and the relationships) that are needed for describing
the interrelations among the annotated objects. Therefore we consider that a meta-
model can be represented as an ontology. The literatures in Section 2.2.2.2 also prove
this standpoint. However, because of the different representation rules and methods
used by different researches, such as the research [96], [97] and [98], in this definition
we will not discuss the matching between a meta-model and an ontology .

Definition 3. The domain semantics of a TKR is made explicit by one or more
PLC-related ontologies. Let ܱܲ be the set of PLC-related ontologies and ܲ be the set
of selected ontology element sets from the powerset of all ontology elements of the ܱܲ,
which is defined as:

Chapter 3 Formal Approach to the Semantic Annotations

55

⋃ ௉ைא௢ೣ௢ೣ݈݈ܽ݋ = ௢ೣ೤݁݋} |ሺ∃݋௫ሻሺ݋௫ א ௢ೣ೤݁݋⋀ܱܲ א ܲ ,{௢ೣሻ݈݈ܽ݋ ⊆ �(⋃ ைא௢ೣ௢ೣ݈݈ܽ݋).

Remark 3. In a different way from other semantic annotation methods, each ݁୧
from the TKR is annotated by a set of ontology elements that are delimitated by a
semantic block (the semantic block for semantics description), which contains ontology
elements from one or more PLC-related ontologies. Given ݌௝ א ܲ, let us define ݌௝ as a

set of ontology elements that represents the appropriated semantics for describing the
domain semantics of an ݁୧. This set is created by an annotator, or by a mechanism (such
as the semantic block delimitation method introduced in section 3.1.2),

Definition 4. The structure semantics of a TKR is made explicit by a meta-model
ontology ݉݉݋௫. Let MME be the set that contains all the elements from the set ܥ௠௠௢ೣ.

An ontology element ݉݉݁௟ is defined as: ܯܯ�: = {݉݉݁௟|݉݉݁௟ א .{௠௠௢ೣܥ

Remark 4. Each ݁௜ from the TKR is annotated by one ontology element from the ܥ௠௠௢ೣ of a meta-model ontology ݉݉݋௫. The relationships in ܴ௠௠௢ೣ are not used for

the annotation process, but they are used for defining the relationships between the
annotated objects in the TKR.

Definition 5. Let ܣ and ܤ be two sets, any subset of ܾݎ ⊆ ܣ × is a binary ܤ
relation from A to B. Given ܽ א ܾ and ܣ א is defined ܾ ݎܾ ܽ in the notation ݎܾ the ,ܤ
as, ܾݎ: = {ሺܽ, ܾሻ|ܽ �ݐ ݊� ݏℎ݁ ݐ�ݓ ݎܾ ݊݋�ݐ݈ܽ݁ݎℎ ܾ}.
Let ݀݉݋ሺܾݎሻ represent the domain of the ܾݎ and ݊ܽݎሺܾݎሻ represent the range of the ܾݎ, which are defined as ݀݉݋ሺܾݎሻ: = {ܽ א ܾ∃|ܣ א ,ܤ ሺܽ, ܾሻ א :ሻݎሺܾ݊ܽݎ ,{ݎܾ = {ܾ א ܽ∃|ܤ א ,ܣ ሺܽ, ܾሻ א .{ݎܾ

Definition 6. ܴܵ�,௉ is a set of binary relations that describe the semantic
relationships from � to ܲ . Given, ݁௜ א � and ݌௝ א ܲ , and let ݉݁ݏሺ݁௜ሻ represent the
semantics of ݁௜ and ݉݁ݏሺ݌௝ሻ represent the semantics of ݌௝ , we then define five
specializations of the ܴܵ�,௉ as follows: ݎݏ∼: = {(݁௜ , ݎـݏ ;{ݐ݈݊݁ܽݒ�ݑݍ݁ ݁ݎܽ ௝ሻ݌ሺ݉݁ݏ ݀݊ܽ ሺ݁௜ሻ݉݁ݏ|(௝݌ : = {(݁௜ , ;{௝ሻ݌ሺ݉݁ݏ ℎܽ݊ݐ ݈ܽݎ݁݊݁݃ ݁ݎ݋݉ ݏ� ሺ݁௜ሻ݉݁ݏ|(௝݌

Chapter 3 Formal Approach to the Semantic Annotations

56

:ؿݎݏ = {(݁௜ , :תݎݏ ;{௝ሻ݌ሺ݉݁ݏ ℎܽ݊ݐ ݈ܽݎ݁݊݁݃ ݏݏ݈݁ ݏ� ሺ݁௜ሻ݉݁ݏ|(௝݌ = {(݁௜ , ௝݌ ݀݊ܽ ௝)| ݁௜݌ ℎܽݏܿ�ݐ݊ܽ݉݁ݏ ݊݋݉݉݋ܿ ݁ݒ, (݁௜ , (௝݌ ב ݎـݏ⋃∽ݎݏ :⊥ݎݏ ;{ؿݎݏ⋃ = {(݁௜ , ௝݌ ݀݊ܽ ௝)| ݁௜݌ ℎܽݏܿ�ݐ݊ܽ݉݁ݏ ݊݋݉݉݋ܿ ݐ݋݊ ݁ݒ}.

Remark 6. Five kinds of general semantic relationships that describe the relations
from an “Element of a TKR” to a “Domain Semantics” are proposed as follows:

 The “is equivalent to” relation (marked as “∼ ”) denotes the fact that the
semantics of two related elements from the domain and the range are
equivalent. In this definition, it is sr∼.

 The “subsumes” relation (marked as “ـ”) denotes the fact that the semantics
of an element from the domain is more general than the semantics of its related
element from the range. In this definition, it is srـ.

 The “is subsumed by” relation (marked as “ؿ ”) denotes the fact that the
semantics of an element from the domain is less general than the semantics of
its related element from the range. In this definition, it is srؿ.

 The “intersects” relation (marked as “ת”) denotes the fact that the related two
elements from the domain and the range have only a part of common semantics.
In this definition, it is srת.

 The “is disjoint with” relation (marked as “⊥”) denotes the fact that the two
related elements from the domain and the range have not common semantics.
In this definition, it is sr⊥.

Definition 7. ܴܯ�,��� is a set of binary relations that describe the semantic
relations from � to ܯܯ�. Given ݁௜ א � and ݉݉݁௟ א we then define one subset ,�ܯܯ
of ܴܯ as follow: ݉ݎ௜௢: = {ሺ݁௜ , ݉݉݁௟ሻ| ݁௜ .{௟݁݉݉ ݂݋ ݁ܿ݊ܽݐݏ݊� ݊ܽ ݏ�

Remark 7. The semantic relationship that describes the relation from an “Element
of a TKR” and a “Structure Semantics” is proposed as follows:

 The “is instance of” relation denotes that an element from the domain is the
instance of its related element from the range. In this definition, it is ݉ݎ௜௢.

Finally, with all above-mentioned definitions, we are now ready to formally define
a semantic annotation.

Definition 8. Let TKR, ܱܲ and ݉݉݋௫ be given, the semantic annotation ܵܣ that
is associated to them is defined by a 5-tuple: ܵܣ ≔ ሺ�, ܲ, ܴܵ, ,�ܯܯ ,ሻܴܯ

Chapter 3 Formal Approach to the Semantic Annotations

57

where

 � is a set of elements from a TKR;
 ܲ is a set of selected ontology element sets from a set of PLC-related ontologies ܱܲ, which makes explicit the domain semantics aspect of the �;
 ܯܯ� is a set of ontology elements from a meta-model ontology ݉݉݋௫, which

makes explicit the structure semantics aspect of the �;
 ܴܵ ≔ ܴܵ�,௉;
 ܴܯ ≔ .���,�ܴܯ

We then associate ܵܣ with the following sets: ��� ≔ � × ܲ × ܴܵ × �ܯܯ × ,ܴܯ

which means explicitly: ��� ≔ {ሺ݁௜ , ௝݌ , ௞ݎݏ , ݉݉݁௟ , ௞ሻ|݁௜ݎ݉ א � , ௝݌ א ܲ, ௞ݎݏ א ܴܵ, ݉݉݁௟ א ,�ܯܯ ௞ݎ݉ .{ܴܯא

An element ܽݏ௫ א ௫ܽݏ :is then defined as ܣܵ ≔ ሺ݁௜ , ௝݌ , ௞ݎݏ , ݉݉݁௟ , ௞ሻݎ݉

The semantic relationships between a TKR and one or more OKRs that are
formalized by these formal definitions not only can be used to construct a semantic
annotation model, but also can be used as the foundation for the creation of reasoning
mechanisms.

3.2 Reasoning Mechanisms

In this work, the formalized semantic annotations mainly contribute to two main
aspects: for assisting the creation of models and for supporting the identification of
possible mistakes. Therefore, we set three main stages, with their corresponding
mechanisms, for achieving these two purposes:

(1) The suggestion of semantic annotations;
(2) The inconsistency detection between semantic annotations;
(3) The conflict identification between annotated objects in a model.

In this section, the first stage is presented in Section 3.2.1 and the last two stages are
presented in Section 3.2.2.

3.2.1 Suggestion of Semantic Annotations

In the oxford dictionary online, the term inconsistency is defined as “the fact or

Chapter 3 Formal Approach to the Semantic Annotations

58

state of being inconsistent”. The essence of an inconsistency is the contradictory among
two or more facts that describe one common object. With the same principle, the
inconsistency detection between semantic annotations is based on the comparison of
two or more semantic annotations that describe the semantics of the same “Element of
a TKR”. Therefore, to cope with this premise, two types of semantic annotations are
classified as follows:

 Initial Semantic Annotations, which are directly annotated on an “Element of
a TKR” by an annotator;

 Inferred Semantic Annotations, which are suggested to annotate an “Element
of a TKR” through the inference action that is based on its related element’s
semantic annotations and reasoning rules.

Both “Structure Semantics” and “Domain Semantics”, which are made explicit by the
semantic annotations, contribute in the annotation suggestion stage.

The “Structure Semantics” makes explicit the implicit relations between the
annotated “Element of a TKR” and its related elements. Let � be a set of Elements in
the TKR and ݉݉݋௫ be the meta-model ontology that makes explicit the structure
semantics of those elements. The following procedure is used to create a semantic block
for semantics substitution, named ܴܵܤ�೔,�ೕ, as an example:

(1) Let the elements in � be annotated by the concepts in ܥ௠௠௢ೣ (the set of

concepts in ݉݉݋௫). Through the semantic relationship ݉ݎ௜௢, these annotated
elements are treated as instances of their corresponding concepts. The
interrelations between two related instances are made explicit through the
relationships in ܴ௠௠௢ೣ (the set of relationships in ݉݉݋௫).

(2) Let select two concepts in ݉݉݋௫ for the creation of the semantic block. Let ݉ܿ݋௜ , ݋݉ ௝ܿ א .௠௠௢ೣ be these two selected conceptsܥ
(3) Let select a set of concepts ܣ௠௢�೔,௠௢�ೕ = ଵܿ݋݉} … {′௡ܿ݋݉ ⊆ ௠௠௢ೣ and a setܥ

of relationships ܤ௠௢�೔,௠௢�ೕ = ଵݎ݋݉} … {′௠ݎ݋݉ ⊆ ܴ௠௠௢ೣ , which are the
relationships among the concepts in ܣ௠௢�೔,௠௢�ೕ. The selection process need to

satisfy the following three conditions:
 ݉ܿ݋௜ , ݋݉ ௝ܿ ;௠௢�೔,௠௢�ೕܣ ב
 ∀݉ܿ݋௞ א ௠௢�೔,௠௢�ೕܣ , ௟ܿ݋݉∃ א ௠௢�೔,௠௢�ೕܣ , ௭ݎ݋݉∃ א ௠௢�೔,௠௢�ೕܤ .ݏ, ,௞ܿ݋ሺ݉ .ݐ ௟ሻܿ݋݉ = ;௭ݎ݋݉
 ∀݉ݎ݋௭ א ௠௢�೔,௠௢�ೕܤ , ሺ݉ܿ݋௞′ , ௟′ሻܿ݋݉ = ௭ݎ݋݉ ⇒ ′௞ܿ݋݉ , ′௟ܿ݋݉ ௠௢�೔,௠௢�ೕܣא ׫ {௜ܿ݋݉} ׫ ݋݉} ௝ܿ}, .

(4) Finally, the rule to delimitate the semantic block ܴܵܤ௠௢�೔,௠௢�ೕ can be created

as follows:

Chapter 3 Formal Approach to the Semantic Annotations

59

?௜௢ሺݎ݉ ܽ, ,௜ሻܿ݋݉ ?௜௢ሺݎ݉ ܾ, ,ଵሻܿ݋݉ … , ?௜௢ሺݎ݉ ܿ, ,௡ሻܿ݋݉ ?)௜௢ݎ݉ ݀, ݋݉ ௝ܿ), ݉ݎ݋ଵሺ? ܽ, ? ܾሻ, … , ?௠ሺݎ݋݉ ܿ, ? ݀ሻ → ?௠௢�೔,௠௢�ೕሺܴܤܵ ܽ, ? ݀ሻ. ܴܵܤ௠௢�೔,௠௢�ೕ acts as a new relationship from certain instances of ݉ܿ݋௜ to

certain instances of ݉݋ ௝ܿ, which fulfil all the conditions in the rule.

Because it is possible to have several different combinations of concepts and
relationships that are selected to create the semantic block, ݉ܿ݋௜ and ݉݋ ௝ܿ might have
multiple ܴܵܤ௠௢�೔,௠௢�ೕ. In this case, these ܴܵܤ௠௢�೔,௠௢�ೕ should be named differently.

The “Domain Semantics” makes explicit the meaning of an annotated “Element
of a TKR” in a domain of interest, which is used as the basis for the annotation
suggestion. Let � be a set of elements in the TKR and ܱܲ be the set of PLC-related
ontologies for making explicit the domain semantics of the TKR. The procedure to
suggest a semantic annotation is listed in the following steps:

(1) Let ݁௫, ݁௬ א � be two elements in the TKR. ݁௫ is an instance of ݉ܿ݋௜ and ݁௬
is an instance of ݉݋ ௝ܿ. Let us assume that besides the interrelations that are
made explicit by the corresponding relationships in ܴ௠௠௢ೣ, ݁௫ and ݁௬ have a
new relationship ܴܵܤ௠௢�೔,௠௢�ೕ between them.

(2) Let ܿ݋݌௜′ be a concept from the ܱܲ and acts as the main entity of the semantic
block ܵܤ௣௢�೔′ (we named the “main entity” of a semantic block for semantics
description as the “main concept” in the following of the thesis). Let ܣ௣௢�೔′ ଵܿ݋݌}= … ′௣௢�೔ܤܵ ௡′} be the set of selected concepts from ܱܲ inܿ݋݌ . Let ܤ௣௢�೔′ = ଵݎ݋݌} … ′௣௢�೔ܤܵ ௠′} be the set of corresponding relationships inݎ݋݌ .

(3) Let ݁௫ א � be annotated by ܵܤ௣௢�೔′ through the semantic relationship ݎݏ~ or ؿݎݏ.
(4) Let select a relationship ′௭ݎ݋݌ ′௣௢�೔ܤ א and associate it with the new

relationship ܴܵܤ௠௢�೔,௠௢�ೕ . If there is a concept ݋݌ ௝ܿ′ that satisfies
′௜ܿ݋݌) , ݋݌ ௝ܿ′ሻ = ′௣௢�ೕܤܵ ௭′ , a new semantic blockݎ݋݌ can be generated. It
takes ݋݌ ௝ܿ′ as starting point. The traverse that builds ܣ௣௢�ೕ′ is based on ܣ௣௢�೔′ and ܤ௣௢�೔′ in ܵܤ௣௢�೔′ in the following steps: ܣ௣௢�ೕ′ ,଴ = ݋݌} ௝ܿ′}; ܣ௣௢�ೕ′ ,ଵ = {ܽ௜భ א ′௣௢�೔ܣ |∃ܾ௜బ,௜భ א ′௣௢�೔ܤ , ܽ௜బ א ′௣௢�ೕܣ ,଴, (ܽ௜బ , ܽ௜భ) = ܾ௜బ,௜భ}; ܣ௣௢�ೕ′ ,ଶ = {ܽ௜మ א ′௣௢�೔ܣ |∃ܾ௜భ,௜మ א ′௣௢�೔ܤ , ܽ௜భ א ′௣௢�ೕܣ ,ଵ, (ܽ௜భ , ܽ௜మ) = ܾ௜భ,௜మ};

′௣௢�ೕܣ … ,௡ = {ܽ௜� א ′௣௢�೔ܣ |∃ܾ௜�−భ,௜� א ′௣௢�೔ܤ , ܽ௜�−భ א ′௣௢�ೕܣ ,௡−ଵ, (ܽ௜�−భ , ܽ௜�) = ܾ௜�−భ,௜�}; ܣ௣௢�ೕ′ : = ⋃ ′௣௢�ೕܣ ,௡௡

Chapter 3 Formal Approach to the Semantic Annotations

60

Let ܤ௣௢�ೕ′ ⊆ ′௣௢�೔ܤ be the set of relationships that appear during the creation

of ܣ௣௢�ೕ′ , then ܵܤ௣௢�ೕ′ is created.

(5) Finally, the ܵܤ௣௢�ೕ′ is suggested to annotate ݁௬ through the semantic

relationship ؿݎݏ.
Two remarks need to be pointed out: (1) only the semantic relationship ؿݎݏ and ݎݏ= can produce suggestions; (2) the semantic blocks that are nested within each other

are not taken into account. Based on the initial semantic annotations and the suggestion
rules, a number of inferred semantic annotations can be suggested by the annotation
suggestion mechanism.

3.2.2 Inconsistency Detection and Conflict Identification

Once the same annotated object has two or more semantic annotations, the
detection of inconsistencies can be performed. Using the case of inconsistency
detection between two semantic annotations as the basis, let ݁௜ be annotated by ܽݏ௫ and ܽݏ௬, in which, ݌௫ and ݌௬ are used to make explicit the domain semantics of ݁௜. The
semantic similarity comparison results between ݌௫ and ݌௬ can be categorized into five

types (similar with what we defined in ܴܵ), so as to formally represent them, we
employs the binary relation that we defined in the definition 5.

Definition 9. ܴܲ is a binary relation that describes the semantic relationships from ܲ to ܲ. Given ݌௫, ௬݌ א ܲ, and let ݉݁ݏሺ݌௬ሻ represent the semantics of ݌௫ and ݉݁ݏሺ݌௬ሻ
represent the semantics of ݌௬, we then define five subsets of the ܴܲ as follows: ݎ݌∼: = ,௫݌)} ݎـ݌ ;{ݐ݈݊݁ܽݒ�ݑݍ݁ ݁ݎܽ ௬ሻ݌ሺ݉݁ݏ ݀݊ܽ ௫ሻ݌ሺ݉݁ݏ|(௬݌ : = ,௫݌)} :ؿݎ݌ ;{௬ሻ݌ሺ݉݁ݏ ℎܽ݊ݐ ݈ܽݎ݁݊݁݃ ݁ݎ݋݉ ݏ� ௫ሻ݌ሺ݉݁ݏ|(௬݌ = ,௫݌)} :תݎ݌ ;{௬ሻ݌ሺ݉݁ݏ ℎܽ݊ݐ ݈ܽݎ݁݊݁݃ ݏݏ݈݁ ݏ� ௫ሻ݌ሺ݉݁ݏ|(௬݌ = ,௫݌)} ,ݏܿ�ݐ݊ܽ݉݁ݏ ݊݋݉݉݋ܿ ݁ݒ௬ ℎܽ݌ ݀݊ܽ ௫݌ |(௬݌ ,௫݌) (௬݌ ב ݎـ݌⋃∽ݎ݌ :⊥ݎ݌ ;{ؿݎ݌⋃ = ,௫݌)} .{ݏܿ�ݐ݊ܽ݉݁ݏ ݊݋݉݉݋ܿ ݐ݋݊ ݁ݒ௬ ℎܽ݌ ݀݊ܽ ௫݌ |(௬݌

As shown in the Table 3-1, according to the similarity comparison between two
domain semantics of a common annotated object, three types of results can be identified
as follows:

 result (a) expresses that ܽݏ௫ and ܽݏ௬ are consistent with each other;
 result (b) expresses that ܽݏ௫ and ܽݏ௬ are possible consistent with each other;
 result (c) expresses that there is an inconsistency between ܽݏ௫ and ܽݏ௬

In order to make the contents in the table more succinct, we use the concept “Others”
to replace the rest of the semantic relationships in the ܴܲ besides the one or several that

Chapter 3 Formal Approach to the Semantic Annotations

61

are shown in a grid of the table.

Table 3-1 The Possible Results of the Inconsistency Detection between Semantic Annotations

 ݁௜ ௫ ݁௜݌ ∽ݎݏ ݎـݏ ௫ ݁௜݌ ௫ ݁௜݌ ؿݎݏ ௫ ݁௜݌ תݎݏ ௫ ݁௜݌ ⊥ݎݏ ௫݌ ௬ (a)݌ ∽ݎݏ ௬݌ ∽ݎ݌

(c) Others

(a) ݌௫ ௬݌ ؿݎ݌

(c) Others

(a) ݌௫ ݎـ݌ ௬݌

(c) Others

(a) ݌௫ ௬݌ תݎ݌

(c) Others

(a) ݌௫ ௬݌ ⊥ݎ݌

(c) Others

 ݁௜ ݎـݏ ௫݌ ௬ (a)݌ ݎـ݌ ௬݌

(c) Others

(b) ݌௫ ௫݌ ௬݌ ∽ݎ݌ ݎـ݌ ௫݌ ௬݌ ௫݌ ௬݌ ؿݎ݌ ௫݌ ௬݌ תݎ݌ ௬݌ ⊥ݎ݌

(a) ݌௫ ݎـ݌ ௬݌

(c) Others

(b) ݌௫ ݎـ݌ ௫݌ ௬݌ ௫݌ ௬݌ תݎ݌ ௬݌ ⊥ݎ݌

(c) Others

(a) ݌௫ ௬݌ ⊥ݎ݌

(c) Others

݁௜ ௫݌௬ (a)݌ ؿݎݏ ௬݌ ؿݎ݌

(c) Others

(a) ݌௫ ௬݌ ؿݎ݌

(c) Others

(b) ݌௫ ௫݌ ௬݌ ∽ݎ݌ ௫݌ ௬݌ ؿݎ݌ ݎـ݌ ௫݌ ௬݌ ௬݌ תݎ݌

(c) Others

(b) ݌௫ ௫݌ ௬݌ ؿݎ݌ ௬݌ תݎ݌

(c) Others

(b) ݌௫ ௫݌ ௬݌ ؿݎ݌ ௫݌ ௬݌ תݎ݌ ௬݌ ⊥ݎ݌

(c) Others

݁௜ ௫݌ ௬ (a)݌ תݎݏ ௬݌ תݎ݌

(c) Others

(b) ݌௫ ௫݌ ௬݌ ؿݎ݌ ௫݌ ௬݌ תݎ݌ ௬݌ ⊥ݎ݌

(c) Others

(b) ݌௫ ݎـ݌ ௫݌ ௬݌ ௬݌ תݎ݌

(c) Others

(b) ݌௫ ௫݌ ௬݌ ∽ݎ݌ ݎـ݌ ௫݌ ௬݌ ௫݌ ௬݌ ؿݎ݌ ௫݌ ௬݌ תݎ݌ ௬݌ ⊥ݎ݌

(b) ݌௫ ௫݌ ௬݌ ؿݎ݌ ௫݌ ௬݌ תݎ݌ ௬݌ ⊥ݎ݌

(c) Others

݁௜ ௫݌ ௬ (a)݌ ⊥ݎݏ ௬݌ ⊥ݎ݌

(c) Others

(a) ݌௫ ௬݌ ⊥ݎ݌

(c) Others

(b) ݌௫ݎـ݌ ௬݌

௫݌ ௬݌ תݎ݌

௫݌ ௬݌ ⊥ݎ݌

(c) Others

(b)݌௫ ݎـ݌ ௬݌

௫݌ ௬݌ תݎ݌
௫݌ ௬݌ ⊥ݎ݌
(c) Others

(b) ݌௫ ௫݌ ௬݌ ∽ݎ݌ ݎـ݌ ௫݌ ௬݌ ௫݌ ௬݌ ؿݎ݌ ௫݌ ௬݌ תݎ݌ ௬݌ ⊥ݎ݌

The inconsistency detection results not only point out the inconsistencies (or
possible inconsistencies) between two (or more) semantic annotations, but also can be
used to identify the possible conflicts between those annotated elements in a TKR.

Using the case of conflict identification between two annotated elements in a TKR
as the basis, we assume that there is an inconsistency between ܽݏ௫ and ܽݏ௬ that are both
used to annotate ݁௜. Meanwhile, ௝݁ and ݁௞ are two other elements in the TKR. As shown
in the Table 3-2, based on the types of ܽݏ௫ and ܽݏ௬ (initial semantic annotation or

inferred semantic annotation, as we stated in Section 3.2.1), a possible conflict between
two annotated elements in the TKR can be identified.

Table 3-2 The possible Results of Conflict Identification between two annotated Elements in
a TKR

Chapter 3 Formal Approach to the Semantic Annotations

62

─ The ܽݏ௫ on ݁௜ is an
─
─ The ܽݏ௬ on ݁௜ is an

 Initial Semantic Annotation Inferred Semantic Annotation
(inferred from the semantic
annotation of ௝݁)

Initial Semantic Annotation ─ Between e୧ and e୨, one of them
is possibly wrong

─ Inferred Semantic Annotation
(inferred from the semantic
annotation of ݁௞)

Between ݁௜ and ݁௞, one of
them is possibly wrong

Between ௝݁ and ݁௞ (if ௝݁ ≠ ݁௞):
one of them is possibly wrong

In order to apply the above-mentioned semantic annotation proposal in a PLM
environment, a semantic annotation framework that contains a general semantic
annotation procedure and an overall architecture is presented in next section.

3.3 The Semantic Annotation Framework

In this section, the semantic annotation framework for capturing, representing and
managing the knowledge related to the system of interest through the semantic
annotation is presented. Section 3.3.1 presents the main procedures for applying the
semantic annotations. Section 3.3.2 gives an overall architecture of the framework
together with the descriptions of its four main modules.

3.3.1 Semantic Annotation Procedure

Taking advantages from the formal definitions and the three main mechanisms
presented in previous sections, as shown in the Figure 3-4, a general overview of the
procedures for applying the semantic annotations is presented. This workflow is divided
into three main phases: The Preparation Phase, The Annotation Phase and The
Reasoning Phase.

Chapter 3 Formal Approach to the Semantic Annotations

63

Figure 3-4 General Semantic Annotation Procedure.

The Preparation Phase: during this phase, all the elements that are needed by
both the annotation phase and the reasoning phase are prepared.

(1) Creation of a TKR, in which, a model, namely a Target Knowledge
Representation (TKR), is created by a modelling system. The set of elements � in this TKR are the output of this process.

(2) Collection and Formalization of OKRs, in which, the ontologies, namely
Ontology-based Knowledge Representations (OKRs), for making explicit the
domain semantics and structure semantics are captured and formalized. The
output of this process is a number of PLC-related ontologies (ܱܲ) and a meta-
model ontology (݉݉݋௫). The selection of an ontology can be based on some
ontology evaluation methods[119][120].

(3) Customization of the SA Solution, in which, the formal definitions of semantic
annotations and the reasoning mechanisms are used as the basis for

Collection and
Formalization

of OKRs
 �

Results

The Preparation Phase

The Annotation Phase

The Reasoning Phase

Start

End

Legend
Process

Start/End
Flow
Parallel

 ௫݋݉݉ ,ܱܲ

Line between
Phases

Creation of a
TKR

Customization
of the SA
Solution

Explicitation of
 Domain

Semantics

<�, <ܴܯ ,�ܯܯ ,ܴܵ ,ܲ

Explicitation of
 Structure
Semantics

Reasoning on
Semantic

Annotations

Reasoning Rules

Semantic Annotation
Schema

Configuration
of Reasoning
Parameters

Parameters

Chapter 3 Formal Approach to the Semantic Annotations

64

customizing a semantic annotation model and the reasoning rules. The output
of this process is divided into two parts: the semantic annotation schema that
can be used as a repository to conserve the objects of semantic annotation (�),
contents of semantic annotation (ܲ and ܯܯ�) and the semantic relationships
(ܴܵ and ܴܯ) between them; the Reasoning Rules that can be used to support
both delimitation of semantic block and the inference process in the reasoning
phase, such as annotation suggestion rules, inconsistency detection rules,
conflict identification rules and so on.

The Annotation Phase: during this phase, a number of semantic annotations are
generated for supporting the reasoning phase.

(1) Explicitation of Structure Semantics, in which, the structure semantics of a
TKR, namely the interrelations between the model elements, are made explicit.
The customized � and ܯܯ� are used to keep selected the elements in the
model and in the meta-model ontology ݉݉݋௫ respectively. The binary
relations in MR are used to define the semantic relationships between elements
in � and elements in ܯܯ�.

(2) Explicitation of Domain Semantics, in which, the domain semantics of a TKR,
namely the meaning of model contents in a domain of interest, are made
explicit. The customized ܲ is used to keep the selected ontology elements in
the PLC-related ontologies ܱܲ . The binary relations in the ܴܵ are used to
define the semantic relationships between the elements in the � and the
elements in ܲ.

Reasoning Phase: during this phase, the reasoning is performed based on the
outputs of the above-mentioned two phases.

(1) Configuration of Reasoning Parameters, in which, based on the customization
of semantic annotation schema and the practical situation for different TKRs,
corresponding operations that support the configuration of reasoning
parameters are performed by annotators or machines, such as the delimitation
of semantic block for semantics substitution, the determination of the
equivalents of two properties, the comparison of the semantic similarity
between two domain semantics of common annotated objects, just to name
three possible processes.

(2) Reasoning on Semantic Annotations, in which, the reasoning is performed
based on the semantic annotations, the parameters and the reasoning rules to
produce inference results. For example, the results of annotation suggestions,

Chapter 3 Formal Approach to the Semantic Annotations

65

annotation inconsistency detection, model conflict identification and so on.
This workflow describes the application of the semantic enrichment solution

within one single TKR. In order to deal with the multiple TKRs in a PLM environment
we propose a semantic annotation framework to address the issues of semantic
interoperability.

3.3.2 The Framework Architecture

As shown in the Figure 3-5, on the left side, there is a series of processes to
describe a product life cycle. They represent the TKR Creation and Management
module. On the right side, there are four main modules of this framework: the OKR
Creation and Management module, the Knowledge Cloud module the Semantic
Annotation and Processing Agent (SAPA) module and the Reasoning Engine module.

Figure 3-5 The Proposed Semantic Annotation Framework in a PLM Environment.

The TKR Creation and Management module is composed of a number of
enterprise systems. Stakeholders in or across enterprises, during a product lifecycle use
those systems to create TKRs following the modelling specifications and to manage

Knowledge Cloud

OKR Creation and Management

Analysis of
Requirement

S
A
P
A

 Reasoning
Engine

SAPA: Semantic Annotation and Processing Agent

: Request and Feedback

: Formalization

Standards Requirements

Product
Information

: Collection

: Process Flow

Product
Engineering

Manufacturing
Engineering

Production
Planning

Manufacturing

Sales and
Distribution

After Sales
Service

Recycling

TKR Creation
and Management

: Interrelations

Chapter 3 Formal Approach to the Semantic Annotations

66

those TKRs. Those systems need to provide sufficient APIs to enable the
communications between themselves and the Semantic Annotation and Processing
Agent module.

The OKR Creation and Management module is in charge of capturing, formalizing
and managing PLC-related knowledge and model constructs knowledge into a
knowledge base, namely, Knowledge Cloud. The OKRs are supposed to be in a
platform-independent form, which ensures different kinds of ontologies that are
collected from different sources, to be imported, mapped, merged and interrelated with
each other.

The Knowledge Cloud module acts as a knowledge repository, which is in charge
of storing different kinds of knowledge. As shown in the Figure 3-6, three main kinds
of knowledge are stored in the knowledge cloud:

(1) All the OKRs produced by the OKR Creation and Management module. As
shown in the Figure 3-6 (a), the OKRs are structured as the traditional three-
levels structures.
a) The top level ontology. It contains common terms and specifies the most

common terminology that can be used in different domains.
b) The domain level ontology. It is classified into two aspects:

i. The PLC-related ontologies that represent the knowledge related to the
product life cycle from different perspectives.

ii. The Meta-model ontologies that represent the knowledge related to
model constructs based on different specifications.

c) The application level ontology. Corresponding to the two aspects of
ontologies in the domain level, the related ontologies in this level are
responsible for representing the specific terms that are defined and used in
an enterprise and for representing the specific implementation of meta-
model concepts in different modelling tools respectively.

(2) All the semantic annotations that are created by different stakeholders along
the product lifecycle via the Semantic Annotation and Processing Agent
module. As shown in the Figure 3-6 (b), these semantic annotations define the
semantic relationships between TKRs and their corresponding OKRs. They
also can be used as the bridges to make explicit the interrelations between the
annotated elements in the disperse TKRs.

(3) All the reasoning rules, as shown in the Figure 3-6 (c), which are created based
on the concepts and relationships in the OKRs and the customized semantic
annotation schema. They are used for supporting the inference in the

Chapter 3 Formal Approach to the Semantic Annotations

67

Reasoning Engine module.

Figure 3-6 Three kinds of Knowledge in the Knowledge Cloud.

The Reasoning Engine module is an external call pattern-matching search engine,
which uses different reasoning algorithms according to the stakeholders’ requests. It
performs the inferences on the knowledge that is stored in the semantic annotations, in
the OKRs and in the reasoning rules.

The Semantic Annotation and Processing Agent (SAPA) model is mainly in charge
of the semantic relationships definition process. It also acts as a mediator to support the
communications (requests and feedbacks) between various kinds of modelling systems
in different processes of the PLC (TKR Creation and Management module) and the
three other modules (Knowledge Cloud module, OKR Creation and Management
module and Reasoning Engine module) in the semantic annotation framework:

(1) Between the Knowledge Cloud module and the modelling systems: according
to the particular semantic annotation requests from the stakeholders. The
SAPA is in charge of querying (with the assistant of the Reasoning Engine) the
Knowledge Cloud and provides appropriate OKRs as feedbacks. It also takes
care of the management (such as creating, modifying, loading, deleting and so
on) of existing semantic annotations and reasoning rules;

(2) Between the OKR Creation and Management module and the modelling
system: based on the requests from stakeholders. SAPA is supposed to be able
to communicate with OKR Creation and Management module for the
manipulation of the OKRs;

AO௝

General
Ontology

BPMN
Ontology

Activity
Diagram
Ontology

AO௡

... AOଵ

Product
Ontology

 Manufacture
Ontology

AO௜

...

Supply
Chain

Ontology

Process
Model

Ontology

Top level

Domain Level

Application Level

PLC-related Ontologies Meta-Model Ontologies

SAଵ
 SAଷ

SAଶ
 SA௠

Ruleଵ

Ruleଶ

Ruleଷ

Rule௞

(a) OKRs (b) Semantic Annotations

(c) Reasoning Rules

...

...

Chapter 3 Formal Approach to the Semantic Annotations

68

(3) Between the Reasoning Engine and the modelling Systems: SAPA submits the
inference requests from the stakeholders to the Reasoning Engine for
performing the reasoning actions (such as the suggestion of semantic
annotations, the detection of annotation inconsistencies, the identification of
possible model conflicts and so on) and it sends back the corresponding results
to the stakeholders.

This semantic annotation framework makes use of semantic annotations as a
bridge between TKRs and their corresponding OKRs: 1) to make explicit the implicit
semantics of TKRs; 2) to give a possibility to detect the inconsistencies between
semantic annotations and identify the possible conflicts among the annotated elements
in TKRs; 3) to make explicit the implicit relationships among all disperse TKRs.

3.4 Conclusion

In a nutshell, taking into account the five requirements that are identified at the
end of Chapter 2, the corresponding contributions for each requirement are listed as
follows:

(1) It should provide a general semantic annotation structure model that is able
be used to formalize semantic annotations for different kinds of models;

Based on the major components of a semantic annotation (Section 3.1.1)
and two semantic block delimitation methods (Section 3.1.2), we proposed a
general semantic annotation structure model through eight formal definitions
(Section 3.1.3). The structure semantics of an annotated object is represented
as the annotation contents in its semantic annotation, but not a part of
annotation schema. Therefore, this proposal can be apply in any models.

(2) It should discover the possibility of using both structure and domain semantics
together in the inference process;

Section 3.2.1 presents a possible way to use these two aspects of semantics
together for the suggestion of semantic annotations. The interrelations between
annotated objects (structure semantics) are used as candidates for the property
association. The meanings of an annotated object (domain semantics) are used
as the basis and scope for the suggestion. Once the association between a
relation in the structure semantics and a relation in domain semantics is created,
a new semantic annotation can be suggested.

(3) It should provide some mechanisms to assist the detection of the
inconsistencies between semantic annotations and the identification of the
conflicts between annotated objects;

Chapter 3 Formal Approach to the Semantic Annotations

69

We presented two mechanisms to fulfil this requirement in Section 3.2.2.
The annotation inconsistency detection mechanism takes the results of
semantic similarity comparison between two domain semantics, which are
used to annotate a common object, as input and produces possible annotation
inconsistency detection results. The model conflict identification mechanism
takes the results from the former mechanism as inputs and identifies the
possible conflicts between annotated objects.

(4) It should provide a way to guide annotators in how to apply the formal
semantic annotations and how to benefit from those semantic annotations;

In Section 3.3.1, we present a semantic annotation workflow, which is
composed of three main phases: the preparation phase, the annotation phase
and the reasoning phase. In the case study chapter, these phases are used as the
section structure for explaining how we apply and use the semantic annotations
in a particular application scenario.

(5) It should provide a framework to support the semantic enrichment of models
along the product life cycle.

Based on the general semantic annotation structure model and the
semantic annotation workflow, the overall architecture of the semantic
annotation framework is proposed in Section 3.3.2. It shows the possibility of
using formal semantic annotations to assist the modeller and the model user
along the product lifecycle to “speak in a same language with the same
semantics”.

Above all, according to the solution that we proposed, in the next chapter, we will
present one of the possible ways to design and implement a prototype annotation tool.

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

70

Chapter 4 SAP-KM (Semantic Annotation Plug-in for
Knowledge Management)

In order to apply the proposed solution into real-life applications, we designed and
implemented a prototype annotation tool, named SAP-KM (Semantic Annotation Plug-
in for Knowledge Management). It is used to support the semantic enrichment of
models for making explicit their implicit semantics and to interface with a reasoning
engine for performing reasoning on the semantic annotations.

In this chapter, Section 4.1 gives an overview of the SAP-KM through the
presentation of requirement specifications and the prototype development environment.
Section 4.2 first presents the data structure for the creation of a semantic annotation
schema (Section 4.2.1). Based on this schema, we then approach also the design of
procedures for making explicit the domain and structure semantics (Section 4.2.2) and
the design of procedures for the preparation and the execution of reasoning (Section
4.2.3). In Section 4.3, the implementation of the SAP-KM is presented through the
presentation of its seven main graphical user interfaces. Section 4.3.1 illustrates the
functions for the explicitation of structure and domain semantics. Section 4.3.2 presents
the functions for the annotation suggestions, the semantic similarity comparison and
the inference. Two extended functions, the elements matching and the data query are
introduced in Section 4.3.3. Finally, Section 4.4 concludes this chapter and discusses
the possibility of applying the proposed solution into other modelling systems. In order
to ease the understanding of the chapter’s contents, a logical structure of this chapter is
presented in the Figure 4-1, which is illustrated according to the main functions of the
SAP-KM. This figure describes the responsible sections to different functions from the
design and implementation point of view. The main dependent relations between these
sections (sections from both Chapter 3 and Chapter 4) are also summarized in this figure.
These dependencies describe the main connections between the proposed solution and
its corresponding realisation.

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

71

Figure 4-1 The Logical Structure of the Chapter

4.1 The Overview of the SAP-KM

In this work, the semantic annotation uses the concepts and relationships in
ontologies to make explicit the domain and structure semantics of models. The explicit
semantics is used to deal with the semantic interoperability issue in a PLM environment
thanks to the provision of a common terminology between different stakeholders. The
purpose of developing the SAP-KM is to cope with this objective and to demonstrate
how the proposed semantic annotation formalization can be applied into real-life
applications. The SAP-KM is designed as a plug-in of a general modelling platform,
which gives a possibility to add semantic annotations to various kinds of models in a
PLM environment. The model that we selected and used as an example is a process
model.

Explicitation of
 Domain

Semantics

Explicitation of
 Structure
Semantics

Semantics
Similarity

Comparison

Semantic
Annotations
Suggestion

Inference

Elements
Matching

Data Query

Proposed Solution
Chapter 3

Design
Section 4.2

Implementation
Section 4.3

Section 4.3.3

Section 4.3.3

Section 4.3.1.1

Section 4.2.3

Section 4.2.2

Section 4.3.2.3

Section 4.3.1.2

Section 4.3.2.1

Section 4.3.2.2

Data Structure
Section 4.2.1

Section 3.1.1
Section 3.1.2.1

Section 3.1.3

Section 3.1.2.2
Section 3.2.1
Section 3.2.2

 Main Function

 Extended Function

 Responsible Section

Main Dependent Section

Overview
Section 4.1
 Section 4.1.1

Section 4.1.2

Section 3.3.1
Section 3.3.2

SAP-KM
Main Functions

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

72

Although the main direction is clearly defined at the beginning of this manuscript,
the detailed requirements for this prototype need to be made clearer during the progress
of the research. Therefore, the development of the SAP-KM follows an iterative
development process [121], which lets engineers use the knowledge that they have
learned from the previous cycles and apply it to update the system incrementally. As
illustrated in the Figure 4-2, the initial requirements are the inputs of the iterative
development cycle. The development process includes five main stages: (i) requirement
analysis, (ii) design, (iii) implementation, (iv) testing and evaluation, and (v) generation
of new requirements. The iteration will continue until all requirements have been
achieved.

Figure 4-2 The Iterative Development Cycle [121]

To illustrate the prototype SAP-KM unambiguously, we summarize the contents
inside each iterative development stage and present them as a whole from the
requirements to the prototype validation. The main requirements of this prototype are
listed in Section 4.1.1 and the development environment is presented in Section 4.1.2
to guide the design and implementation in the remaining sections of this chapter.

4.1.1 The Requirement Specifications

The requirement analysis is mainly considered as the task that determines the
needs to achieve for a software system. They can also be extended to complete the
evaluation factors for the final testing. Besides the initial general requirements, during
the iterative development process, some new requirements may be generated. The
requirements for the SAP-KM come from the components of the semantic annotation
framework that we proposed in Section 3.3.2. The following modules are specifically

Generate New
Requirements

Testing and
Evaluation

 Implementation

Requirement
Analysis

Initial
Requirements

Final
System

Design

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

73

concerned:
 The TKR Creation and Management module represents the knowledge in a

domain of interest from different perspectives. The semantic annotations
should be added directly to the model elements in the visual model diagram in
a user-friendly way. After the annotation process, semantic annotations are
stored without changing the annotated models. It should always be possible to
load and to modify semantic annotations. The semantic conflicts between the
annotated model elements should be identified in the inference results and they
should be shown or informed to the annotator for assisting the model creation
and to guarantee its correctness.

 The OKR Creation and Management module captures, formalizes and
manages both PLC-related knowledge and model constructs knowledge. The
ontologies that are produced by this module should be coded in a platform–
independent way and should be accessed (loaded) by the prototype.

 The Knowledge Cloud module is a knowledge repository that stores all the
ontologies, semantic annotations and reasoning rules. On the one hand, the
prototype should be able to browse and select all knowledge (meta-model or
PLC-related ontologies, existing semantic annotations and existing reasoning
rules) in the knowledge cloud. On the other hand, the prototype should be able
to store the created new semantic annotations and new reasoning rules into the
knowledge cloud.

 The Reasoning Engine module is in charge of answering different kinds of
query requests and performing certain inferences based on reasoning rules. It
requires the prototype to provide sufficient inputs as the basis for reasoning.
For example, the semantic annotations should be saved in a specific format,
the rules should be written in a machine understandable syntax, etc. It also
needs that the prototype has the ability to access and handle the feedbacks it
produces.

 The Semantic Annotation and Processing Agent module is in charge of
manipulating (for example, the creation, modification, deletion, etc.) the
semantic annotations and communicating with other modules. This is the main
module of the prototype. According to its responsibilities, the requirements are
listed as follows:
1. The semantic annotation schema should be implemented based on the

formalization of the semantic annotations (Section 3.1.3).
2. The elements in a TKR, the elements in OKRs and their semantic

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

74

relationships should be stored in the semantic annotation schema.
3. The inferred semantic annotations should be suggested according to the

existing initial semantic annotations and the annotation suggestion
mechanism (Section 3.2.1).

4. The inconsistencies between two semantic annotations of a common
annotated object should be detected according to the results of the
similarity comparison among their domain semantics and according to the
inconsistency detection mechanism (Section 3.2.2).

5. The possible semantic mistakes in a model should be identified according
to the inconsistency detection results and the mistake identification
mechanism (Section 3.2.2).

6. The possibility of applying this prototype on other kinds of model should
be proved.

Because of the existence and the maturity of tools for supporting models creation,
ontology creation and ontology reasoning, we will not develop the corresponding
software related to the previous four modules, we will just employ existing ones as part
of the semantic annotation framework.

The Semantic Annotation and Processing Agent are considered as the central
module of this framework that acts as an interface to support the communications
among all the modules. In the next section we will introduce the employed tools and
the technologies that are used to develop the prototype.

4.1.2 The Prototype Development Environment

In general, the SAP-KM is designed as a plug-in for an existing modelling system.
It should support the semantic annotation processes and the reasoning processes. The
semantic annotation processes take ontologies as inputs and generate semantic
annotations as outputs. The reasoning process transfers the semantic annotations and
the reasoning rules as inputs of an existing reasoning engine and retrieves its outputs as
the reasoning results. During all these processes, the knowledge cloud is used as a
repository of ontologies, annotations and rules. Therefore, for demonstrating the
usability of the SAP-KM according to the semantic annotation framework, at least three
kinds of existing tools need to be employed: a modelling system, an ontology editor
and a reasoning engine.

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

75

As a modelling system, we chose the MEGA modelling environment 10 to
implement the TKR Creation and Management module. It is used as the modelling
environment for supporting the creation of enterprise models and providing visual
model diagrams to add semantic annotations. A number of modelling tools and supports
have been integrated into the MEGA, which fulfils different kinds of modelling
requirements. For example, among many others, (i) the “MEGA process BPMN” (as
we had introduced in Section 2.1.2) supports the modelling of processes through BPMN
notation, (ii) the “MEGA IT Governance and Specifications” supports the modelling of
IT architecture and (iii) the “MEGA Data Designer” supports the modelling of data and
databases. The models that are created by MEGA can be exported in the form of XML
that gives possibility to be easily exchanged. One of the most important features of
MEGA, which is also one of the main reasons why we chose it, is that it provides APIs
to support the development of plug-ins.

As an ontology editor, we chose the popular Protégé-OWL editor11 to implement
the OKR Creation and Management module. It responds for handling the PLC-related
ontologies and meta-model ontologies in the knowledge cloud. Protégé supports the
creation, visualization and manipulation of ontologies in various representation formats
and it is also able to assist the operation of the ontology mapping, merging and
versioning, which fulfils the needs of the knowledge cloud management.

The Knowledge Cloud module is supposed to be implemented as a server that
allows all the annotation plug-ins of different modelling systems along the product
lifecycle to load, modify and save ontologies, semantic annotations and rules. However,
due to the limited resources, we use the local Microsoft windows folder system to
manage all the knowledge. The folder “Knowledge Cloud” is created to act as the
knowledge repository, which contains three sub folders named “OKRs”, “Semantic
Annotations” and “Reasoning Rules”. The folder “OKRs” has two sub folders: the
“Meta-model Ontologies” folder and the “PLC-related Ontology” folder. The
ontologies, the semantic annotations and the reasoning rules are classified and stored in
the corresponding folders.

For the Reasoning Engine module, in this work, we chose the built-in Jena12
Reasoner for supporting the ontology query and inference processes. The Jena API
gives the SAP-KM the possibility to load one or more ontologies into its embedded

10 MEGA: http://www.mega.com/ (we use the version 2009 SP5)

11 Protégé -OWL editor: http://protege.stanford.edu/

12 Jena http://jena.apache.org/

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

76

ontology model. In the following thesis, we will use the expression “ontology model”
to represent this embedded ontology model in Jena. SAP-KM can employ an instance
of Jena reasoners to manipulate all these loaded ontologies. There are four available
default reasoners [120] that are provided by the Jena API: the transitive reasoner, the
RDFS rule reasoner, the OWL reasoner and the generic rule reasoner. We mainly use
the default OWL reasoner to support the retrieval of ontologies and the generic rule
reasoner to execute the reasoning rules.

Finally, for the Semantic Annotation and Processing Agent module, during the
development of the SAP-KM, we mainly use the NetBeans13 programming platform,
based on the Java14 programming language.

Figure 4-3 The Collaboration between the SAP-KM and the other four Modules

Figure 4-3 illustrates the collaboration between the SAP-KM and the four modules.
Through the MEGA APIs, the model elements in models can be retrieved. The PLC-
related ontologies and meta-model ontologies can be edited and transformed into the
appropriate format by the Protégé OWL Editor. The ontologies, the semantic
annotations and the reasoning rules are stored in the Knowledge Cloud. Through the
APIs that are provided by Jena, the SAP-KM is able to: (1) parse ontologies that are
created and managed by the Protégé-OWL editor; (2) support the function of loading
ontology concepts and relationships into a ontology browser; (3) execute the reasoning
rules (such as the rules for the semantic block delimitation, annotation inconsistency
detection and model conflict identification); (4) generate all the semantic annotation
results into the designed semantic annotation schema. We will present the details of its
design and implementation in the following two sections.

13 Netbeans: https://netbeans.org/

14 Java: http://www.java.com/en/

MEGA

Jena

Protégé

SAP-KM Knowledge
Cloud

 API

 API

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

77

4.2 The Design of the SAP-KM

The SAP-KM has two main tasks: (1) Define the semantic relationships between
a selected model element and its structure and domain semantics; (2) Perform the
reasoning on the existing semantic annotations according to the reasoning rules for
obtaining certain inference results. In Section 4.2.1, we will show one of the possible
designs of the data structure that follows the formalization of semantic annotations.
Taking advantages from this data structure, Section 4.2.2 illustrates the design of the
procedure of how the SAP-KM assists an annotator in using the meta-model ontology
and the PLC-related ontologies for making explicit the structure semantics and the
domain semantics of the elements in a model. Section 4.2.3 presents the design of the
procedure of how the SAP-KM supports an annotator to perform the reasoning on the
existing semantic annotations based on the corresponding reasoning rules.

4.2.1 The Design of the Data Structure

Based on the formal definitions of semantic annotations presented in Section 3.1.3,
a semantic annotation schema is designed to store the annotation results. In order to use
the existing reasoning engines to assist the annotation and reasoning processes, this
schema is structured as an ontology, named Semantic Annotation Schema. It uses
appropriate Classes, Properties and Individuals to represent the five main elements of
the Semantic Annotation ܵ15ܣ(Section 4.2.1.1 and Section 4.2.1.2) and some additional
Properties to assist the creation of reasoning rules (Section 4.2.1.3).

4.2.1.1 The Data Structure for E, P and MME �, ܲ and ܯܯ�, as shown in the Table 4-1, are represented as three disjoint Classes,
named “E”, “P” and “MME” respectively, in the Semantic Annotation Schema.

Table 4-1 The �, ܲ and ܯܯ� in the Semantic Annotation Schema

Definitions Descriptions � ݁௜ ݁௜ is represented as an Individual ܲ ܱܲ ܱܲ is a number of PLC-related ontologies ݌௝ ݌௝ is supposed to be represented by a sub ontology (ideally).
In reality, it is represented as an Individual, together with three Object
Properties “hasMainConcept”, “hasSBEntity” and “hasSBRelation”,

15 According to definition 8 in Section 3.1.3, the semantic annotation ܵܣ is defined by 5-tuples: ܵܣ ≔ሺ�, ܲ, ܴܵ, ,�ܯܯ ሻ, where � is a set of elements from a Target Knowledge Representation; ܲ is a setܴܯ

of selected ontology element sets from a set of PLC-related ontologies ܱܲ (definition 3); ܯܯ� is a set

of ontology elements from a meta-model ontology ݉݉݋௫ (definition 4); ܴܵ is a set of binary relations

that describes the semantic relationships between � and ܲ (definition 6); ܴܯ is a set of binary

relations that describe the semantic relationships between � and ܯܯ� (definition 7).

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

78

one Datatype Property “hasLongNS”, and two Classes “SBRelations”
and “NSstore”. ݋݉݉ �ܯܯ௫ ݉݉݋௫ is a meta-model ontology ݉݉݁௟ ݉݉݁௟ is a Class in the ݉݉݋௫

More specifically, the data structures for each element in the Table 4-1 are defined
as follows: ݁௜ is represented as an Individual of the Class “E”. The local name (the name of
an ontology element without its namespace) of each ݁௜ is constructed according to the
name syntax in the Figure 4-4. An example of Class � and its Individuals are shown in
the Figure 4-5 (a). ܱܲ is a number of PLC-related ontologies from the knowledge cloud, which are
imported in the Semantic Annotation Schema. ݌௝ is supposed to be represented as a

subset of one or more ontologies, which contains a number of selected ontology
elements (a semantic block for semantics description). However, due to the fact that the
OWL DL specification does not support the expression of ݌௝, we need to define an

appropriate way to represent it:
 ݌௝ is represented as an Individual of the class ܲ. The local name of each ݌௝ is

constructed based on the name syntax in the Figure 4-4.
 The Object Property “ℎܽݐ݌݁ܿ݊݋ܥ݊�ܽܯݏ” defines the relationship between a ݌௝ and a selected Class or Individual in ܱܲ.
 The Object Property “ℎܽݐ�ݐ݊�ܤܵݏ� ” defines the relationship between a ݌௝

and a selected Class or Individual in ܱܲ through the semantic block
delimitation.

 The Class “SBRelations” is used to store all the semantic block relations that
describe the relationship between two selected concepts in a semantic block.
Each semantic block relation, named SBRelaion, represents an Individual of
this Class. The local names of these Individuals are constructed according to
the name syntax in the Figure 4-4.

 The Object Property "ℎܽ݊݋�ݐ݈ܴܽ݁ܤܵݏ" defines the relationship between a ݌௝ and an Individual of the Class “SBRelations”.

 The Class “NSstore” is used to store all the namespace abbreviations that are
used for supporting the local name construction of SBRelations. Each
namespace abbreviation is represented as an Individual of this Class.

 The Datatype Property “ℎܽܵܰ݃݊݋ܮݏ ” is used to describe the relationship
between a namespace abbreviation and its full ontology namespace. Each real
ontology namespace is stored as a data with the datatype “xsd:string” and

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

79

connected to the corresponding individual in the class “NSstore” through this
property.

Additionally, because the data values contained in every “SBEntity” are difficult to be
represented, this data structure does not directly represent them in ݌௝. However, during
the utilization of ݌௝ (such as annotating, comparing, reasoning and so on), each

SBEntity’s data values is queried from the ontologies where they originally belong to
and used as a part of ݌௝ . Figure 4-5 (b) shows an example of the class ܲ and its

individuals. ݉݉݋௫ is a meta-model ontology from the knowledge cloud, which is imported in
the Semantic Annotation Schema. The ݉݉݁௟ is a class in the ݉݉݋௫. Each ݉݉݁௟ has
its model instances, which are the individuals in the Class “E”. Once the relationship
between an ݁௜ and a ݉݉݁௟ is defined, the ݉݉݁௟ will be set as a sub-class of the class
“MME”. An example of the class “MME” and its sub-classes are shown in the Figure
4-5 (c).

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

80

Figure 4-4 The Name Syntax of the ݁௜ , ݌௝ and SBRelation

4.2.1.2 The Data Structure for SR and MR ܴܵ and ܴܯ , as can be seen in the Table 4-2, are represented as two Object
Properties, named “SR” and “MR” respectively, in the Semantic Annotation Schema.

 terms1 node1 term2 =:: ࢏�

 //e.g. Manufacture_Prod3::P0110-31FB3A3052052113

�݁ term3 term4 node1 term5 node1 =:: ࢐�
 //e.g. P2-Of-Manufacture_Prod3::P0110-31FB3A3052052113

 SBRelation ::= term6 node1 term10 node2 term11 node2 term10

 //e.g. 309824-xzpfva-P0110_____ xzpfva-hasShape_____rzesed-Cylinder

 or term6 node1 term10 node2 term11 node2 term15

 //e.g. 341211-rzesed-Turing_____rzesed-isPerformedOn_____allValuesFrom

 _____ rzesed-Lathe

 term1 ::= the name of a model element //e.g. Manufacture_Prod3::Bases_Turning

 term2 ::= the unique identification of a model element //e.g. 31FB3A3052052113

 term3 ::= the striŶg ͞P͟

 term4 ::= a number // e.g. 2, 17

 term5 ::= the striŶg ͞Of͟

 term6 ::= the unique identification of a SBRelation // e.g. 309824

 term7 ::= the abbreviation of the namespace of an ontology // e.g. xzpfva, rzesed

 term8 ::= the local name of an ontology concept // e.g. P0110, Cylinder

 term9 ::= the local name of an ontology relationship // e.g. hasShape

 term10 ::= term7 node1 term8 // e.g. xzpfva-P0110

 term11 ::= term7 node1 term9 // e.g. xzpfva-hasShape

 term12 ::= the striŶg ͞allValuesFroŵ͟ or ͞soŵeValueFroŵ͟

 term13 ::= the striŶg ͞ŵaǆCardiŶalitǇ͟ or ͞minCardinality͟ or ͞Cardinality͟

 term14 ::= the striŶg ͞intersectionOf͟ or ͞unionOf͟ or ͞complementOf͟

 term15 ::= term12 node2 term10

 or term13 term4 node3 term10

 or term12 node2 term14 node3 terŵϭϬ … terŵϭϬ node4

 or term13 term4 node2 term14 node3 terŵϭϬ … terŵϭϬ node4

 node1 ::= the sǇŵbol ͞-͟

 node2 ::= the sǇŵbol ͞_____͟

 node3 ::= the sǇŵbol ͞(͟

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

81

Table 4-2 ܴܵ and ܴܯ in the Semantic Annotation Schema

Definitions Property Names Descriptions

 ܴܵ

 SR_isEquivalentTo Sub property of: SR Domain: E ∽ݎݏ
 Range: P ݎـݏ SR_subsumes Sub property of: SR Domain: E
 Range: P ؿݎݏ SR_isSubsumedBy Sub property of: SR Domain: E
 Range: P תݎݏ SR_intersects

Sub property of: SR Domain: E
 Range: P ݎݏ⊥ SR_isDisjointWith Sub property of: SR Domain: E
 Range: P ݎ݉ ܴܯ௜௢ rdf:type rdf:type is used to state that a resource is an
instance of a class

To be more specific, the data structures for each element in the Table 4-2 are
shown as follows:

The class “E” and the class “P” are defined as the domain and the range of the
Object Property “SR”. The Object Properties “SR_isEquivalentTo”, “SR_subsumes”,
“SR_isSubsumedBy”, “SR_intersects” and “SR_isDisjointWith” are used to represent ݎـݏ ,∽ݎݏ respectively. They are defined as the sub properties of Object ⊥ݎݏ and תݎݏ ,ؿݎݏ ,
Property “SR” and inherit their super property’s domain and range. Because the domain
and the range of these properties are disjointed from each other, these sub properties
have not special property characteristics. One example of ؿݎݏ is shown in the Figure 4-
5 (d). ݉ݎ௜௢ is supposed to be represented as the sub property of the Object Property “MR”
in the Semantic Annotation Schema. However, during the implementation, for
efficiency reason, we employed the “rdf:type” to represent ݉ݎ௜௢. It is used to describe
the semantic relationship between an individual of the Class “E” and a sub class of the
Class “MME”. One example of ݉ݎ௜௢ is shown in the Figure 4-5 (e).

Figure 4-5 shows an example of a semantic annotation that is represented by the
Semantic Annotation Schema. The Class “E” (the (a) in the figure) contains two
individuals. The individual “Manufacture_Prod3::P0110-31FB3A3052052113” is
annotated by an individual of the Class “P” (the (b) in the figure) and a subclass of the
Class “MME” (the (c) in the figure). The Object Property “ܴܵ_�ܤ݀݁݉ݑݏܾݑܵݏ�” (the
(d) in the figure) denotes that the domain semantics of the individual
“Manufacture_Prod3::P0110-31FB3A3052052113” is less general than the domain

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

82

semantics of the individual “P1-Of-Manufacture_Prod3::P0110-31FB3A3052052113”. The
employed property “rdf:type” (the (e) in the figure) denotes that the individual
“Manufacture_Prod3::P0110-31FB3A3052052113” is an instance of the Class “DataObject”.
The individual “P1-Of-Manufacture_Prod3::P0110-31FB3A3052052113” represents a
semantic block. It uses the Object Property “hasMainConcept” to define its main concept
(the individual “P0110”). It uses the Object Property “hasSBEntity” to define the other
concepts (the individual “Cylinder”) in the semantic block. It uses the Object Property
“hasSBRelation” to define its semantic block relations. The Class “SBRelations” has an
individual “309824-xzpfva-P0110_____xzpfva-hasShape_____rzesed-Cylinder”, which
represents the relationship (the Object Property “hasShape”) between two selected
concepts (the individual “P0110” and the individual “Cylinder”). The Class “NSstore”
has two individuals (the individual “xzpfva” and the individual “rzesed”), which keep
the full namespaces through the Datatype Property “hasLongNS”.

Figure 4-5 An Example of Instantiation of E (a), P (b), MME (c), SR (d) and MR (e) within

Thing

P

SR_isSubsumedBy

E

MME

rdfs:subClassOf

Manufacture_Prod3::Bases_Turning-FA89FE9851FD298A

Manufacture_Prod3::P0110-31FB3A3052052113

rdf:type

rdf:type

P1-Of-Manufacture_Prod3::P0110-31FB3A3052052113
rdf:type

Article

309824-xzpfva-P0110_____ xzpfva-hasShape_____rzesed-Cylinder

hasMainConcept
hasSBEntity

hasSBRelation

(a)

(b)

(c)

Artifact rdfs:subClassOf
l

rdf:type

SBRelations

rdfs:subClassOf

NSstore

rdfs:subClassOf

xzpfva

rzesed

http://www.semanticweb.org/ontologies/20
13/6/AIPL_Product_Ontology

http://www.semanticweb.org/ontologies/20
13/6/MSDL_Ontology

rdf:type

rdf:type

rdf:type

hasLongNS

hasLongNS

SemiFiniProduct

rdfs:subClassOf

rdfs:subClassOf

Bases

rdfs:subClassOf

Shape

rdfs:type

rdfs:subClassOf
 Solid Cylinder

rdfs:subClassOf

hasShape

DataObject

rdfs:subClassOf

rdfs:subClassOf
l

 Semantic Annotation Schema
lImported PLC-related Ontology 1
l
Imported PLC-related Ontology 2
l
Imported meta-model Ontology
l

rdfs:subClassOf
l

(d) (e)

P0110

rdf:type

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

83

the Semantic Annotation Schema

4.2.1.3 The Data Structure for Several Additional Properties

Furthermore, besides the above-mentioned designs in order to assist the reasoning
process and simplify the expression of reasoning rules, several additional properties are
added into the Semantic Annotation Schema.

The semantic relationship ܴܲ16 is used to represent the semantic similarity
comparison results between two domain semantics of a common annotated object. As
pictured in the Table 4-3, it is represented as an Object Property, named “PR”, in the
Semantic Annotation Schema. The class “P” is defined as the domain and as well as the
range of the Object Property “PR”. The Object Properties “PR_isEquivalentTo”,
“PR_subsumes”, “PR_isSubsumedBy”, “PR_intersects” and “PR_isDisjointWith” are
used to represent ݎـ݌ ,~ݎ݌ respectively, which are defined as the sub ⊥ݎ݌ and תݎ݌ ,ؿݎ݌ ,
properties of the Object Property “PR” and inherit their super property’s domain and
range. In this table, the corresponding property characteristics for each sub property are
defined.

Table 4-3 PR in the Semantic Annotation Schema

Definitions Property Names Descriptions

 ܴܲ

 PR_isEquivalentTo Sub property of: PR Domain: P ∽ݎ݌
Characteristic: Transitive, Symmetric Range: P ݎـ݌ PR_subsumes Sub property of: PR Domain: P
Characteristic: Transitive Range: P ؿݎ݌ PR_isSubsumedBy Sub property of: PR Domain: P
Characteristic: Transitive Range: P תݎ݌ PR_intersects Sub property of: PR Domain: P
Characteristic: Symmetric Range: P ݎ݌⊥ PR_isDisjointWith Sub property of: PR Domain: P
Characteristic: Symmetric Range: P

As shown in the first three rows of Table 4-4, the three types of results about the
detection of inconsistencies between semantic annotations are represented as three
Object Properties:

 The Object Property “isConsistentWith” denotes that the domain semantics
that is expressed by an individual in the domain and domain semantics that is
expressed by an individual in the range are consistent17 with each other.

 The Object Property “isPosConsistentWith” denotes that the domain semantics
that is expressed by an individual in the domain and an individual in the range

16 The definition 9 in Section 3.2.2
17 Consistency is defined as the two domain semantics do not contain any logical contradictions.

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

84

are possibly consistent with each other.
 The Object Property “isNotConsistentWith” denotes that the domain semantics

that is expressed by an individual in the domain and an individual in the range
is not consistent with each other.

The Class “P” is defined as the domain and as well as the range of these three properties.
As shown in the fourth row of Table 4-4, the result about the identification of

possible conflicts in a model is represented as an Object Property:
 The Object Property “isConflictWith” denotes that an individual in the domain

and an individual in the range are conflicting18.
The Class “E” is defined as the domain and as well as the range of this property.

As shown in the last two rows of the Table 4-4, two Object Properties are added
into the Semantic Annotation Schema for simplifying the expression of reasoning rules:

 The Object Property “isAnnotatedBy” denotes that an individual in its domain
is annotated by an individual in its range. The Class “E” is defined as its
domain and the Class “P” is defined as its range.

 The Object Property “isInferredFrom” denotes whether an individual in its
domain is an initial semantic annotation or an inferred semantic annotation.
The Class “E” is defined as its domain and as well as its range. For example,
if ݌௝ is inferred from the semantic annotation of ݁௜, this Object Property will
be added from ݌௝ to ݁௜. Conversely, if ݌௝ is initially added by an annotator,

this object property does not appear.

Table 4-4 The Additional Properties in the Semantic Annotation Schema

Property Names Descriptions

isConsistentWith Sub property of: topObjectProperty Domain: P
Characteristic: Symmetric Range: P

isPosNotConsistentWith Sub property of: topObjectProperty Domain: P
Characteristic: Symmetric Range: P

isNotConsistentWith Sub property of: topObjectProperty Domain: P
Characteristic: Symmetric Range: P

isConflictWith Sub property of: topObjectProperty Domain: E
Characteristic: Symmetric Range: E

isAnnotatedBy Sub property of: topObjectProperty Domain: E
 Range: P

isInferredFrom Sub property of: topObjectProperty Domain: P
 Range: E

18 Conflict is defined as the two annotated objects are incompatible or at variance.

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

85

A complete and empty Semantic Annotation Schema is shown in the Appendix II.
Of course, not limited to this designed data structure, based on the formal definitions
of semantic annotations, the Semantic Annotation Schema can be designed differently
for adopting different kinds of requirements.

4.2.2 The Design of the Annotation Phase

The flowchart in the Figure 4-6 illustrates how the SAP-KM assists an annotator
in using meta-model ontologies and PLC-related ontologies to make explicit the
structure semantics and the domain semantics of the elements in a model. This
procedure can be considered as the manipulation (such as adding, modifying, removing,
etc.) of the classes, properties and individuals in the Semantic Annotation Schema. In
the flowchart, the processes and judgements drawn with the thick line mean that the
SAP-KM needs an annotator’s participation, as well as the processes and judgements
drawn with the thin line means that it is automatically performed by the SAP-KM. To
be more specific, based on the different kinds of semantics that the SAP-KM makes
explicit, this procedure is divided into two stages: (a) the explicitation of the structure
semantics and (b) the explicitation of the domain semantics.

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

86

Figure 4-6 The Procedure to make explicit the Domain Semantics and Structure

Semantics

The path of a semantic annotation starts when an annotator selects an element X
in a model and decides to annotate it. Based on the data structure that we designed in

Select an element X in a TKR
Request for adding a SA

Acquire the ids and the names of X
and its dependent elements

Select a meta-model ontology ݉݉݋௫
Select a class ݉݉݁௟ in ݉݉݋௫. Then
mark ݁௜ as an instance of ݉݉݁௟

Create them as individuals in
the class E, in which, ݁௜
represents the model element X.

Yes

No

Mark the class Y as a sub class of
the class MME, and mark ݁௜ as an
individual of the class ݉݉݁௟

Acquire the property
restrictions on ݉݉݁௟

Do they exist
in E?

Define the properties between
 ݁௜ and its dependent elements

Select a PLC-related ontology ݋௫ from ܱܲ;
Select a class or an individual ݁݋௢ೣ೤ in the ontology ݋௫ as the main concept of a semantic block

Create an individual ݌௝ in P and set the
“hasMainConcept” property from the ݌௝
to ݁݋௢ೣ೤

Start

End

Create a SBRelation individual for that property,

and set the “hasSBRelation” property from ݌௝ to this

individual; Set the “hasSBEntity” property from ݌௝ to the object of the select property

 Creation of ݌௝ is finished?
 Yes

No

Acquire the selected class’s or
individual’s corresponding properties
and the objects of those properties

Select a property and its object as the
contents of ݌௝

Select a sub property of SR to define the
semantic relationship from ݁௜ to ݌௝

Start or End

 Process

Judgment

Flow

Legend

Parallel

Set the properties between ݁௜ and the
selected dependent elements as the

selected properties

ķ

ĸ
Ĺ

ĺ

Ļ

ļ

Ľ

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

87

Section 4.2.1, each annotated element X is represented as an individual ݁௜ of the Class
“E” in the Semantic Annotation Schema. Once the annotation request is made, the
information of X and its dependent elements (those elements that are connected to X
directly, for example, if X is an operation, the sequence flow that is connected to it will
be its dependent element.) are acquired and transferred to the SAP-KM. The
verification is made by the SAP-KM to check whether their corresponding individuals
already existed in the class “E” or not. For the model elements that will get the “not”
answer in the verification step, the SAP-KM will create their corresponding individuals
based on the name syntax in the Figure 4-4. After this preparation, the explicitation of
the structure semantics of X can be performed.

As shown in the Figure 4-6, process ᬆ, a class ݉݉݁௟ in a meta-model ontology ݉݉݋௫ is selected. According to the design of the data structure, a class ݉݉݁௟ is marked
as a sub-class of the class “MME”. The ݁௜ is marked as the individual of the selected
class ݉݉݁௟. Meanwhile, the property constraints on the class ݉݉݁௟ are acquired and
listed as candidate properties for the process ᬇ.

In the process ᬇ, the relationships from the individual ݁௜ to its dependent
elements are defined according to the listed candidate properties. These annotation
results are saved into the Semantic Annotation Schema.

The explicitation of the domain semantics of X starts from the process ᬈ in the
Figure 4-6. In this process, a class or an individual ݁݋௢ೣ೤ that is in a PLC-related

ontology ݋௫ is selected as the main concept of a semantic block (the semantic blocks
for semantics description in Section 3.1.2). According to the data structure, this
semantic block is represented as an individual ݌௝ with its three kinds of object
properties. The property “hasMainConcept” is set as the relationship from the ݌௝ to the ݁݋௢ೣ೤. A query process, started by the selection action, takes this selected class or

individual as its input and produces a list of corresponding properties (that are the
class’s property constraints or the individual’s properties) together with all the objects
that are related to these properties.

In the process ᬉ, these query results are listed as candidates for the semantic
block creation. Once a property is selected, an individual, which has got its name
following the name syntax in the Figure 4-3, will be created in the Class ”SBRelations”.
Then, the “hasSBRelation” property is used to define the relationship from the ݌௝ to

this individual. Meanwhile, the “hasSBEntity” property will be used to define the
relationship from the ݌௝ to the object of that selected property.

These query, selection and creation processes will continue until the semantic

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

88

block delimitation is finished. Once the semantic block is created, one of the sub-
properties of the Object Property “SR” can be used to define the semantic relationship
between the ݁௜ and the ݌௝. At this point, a semantic annotation for the model element X

is created. And through this semantic annotation, the structure semantics and the
domain semantics of the model element X can be made explicit.

There are some remarks need to be noted. In order to ease the complexity of Figure
4-6, the procedure presented in the figure does not contain the modification or deletion
processes. It is possible to perform the process ᬆ and the process ᬇ automatically via
pre-defined mappings between the meta-models of the modelling environment and the
selected meta-model ontology. It is also possible to perform semantic block delimitation
in the process ᬉ automatically (for example, the method that is provide by Yahia et al.
[118]). However, these are not implemented in the SAP-KM, because the main purpose
of this research is not to design a number of automatic algorithms to assist the
annotation, but to show all the steps and details of how the structure and domain
semantics can be made explicit.

4.2.3 The Design of the Reasoning Phase

Once the semantic annotations of a TKR are created, they can be used together
with the corresponding reasoning rules to produce the results of annotation suggestions,
the annotation inconsistency detection and the model conflict identification through the
reasoning process. The flowchart in the Figure 4-7 illustrates how SAP-KM supports
an annotator to perform the reasoning on the semantic annotations and the
corresponding reasoning rules. In the flowchart, the processes and judgements drawn
with the thick line mean that the SAP-KM needs an annotator’s participation, as well
as the processes and judgements drawn with the thin line mean that it is automatically
performed by the SAP-KM. To be more specific, based on the different stages of the
preparation, this procedure is divided into two parts: (i) the property association to assist
the suggestions of semantic annotations and (ii) the semantics similarity comparison to
support the detection of annotation inconsistency and the identification of possible
model content conflicts.

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

89

Figure 4-7 The Procedure to perform the Inference

The path of those semantic annotations continues when the annotator requests to
perform the reasoning (the process ᬌ). As shown in the Figure 4-7, a number of
existing SBR delimitation rules is loaded and displayed to the annotator through the
SAP-KM. If these rules can not satisfy the needs of an annotator (the process ᬍ), new
rules can be created and saved through the SAP-KM (the process ᬎ). The SBR
delimitation rules and the existing semantic annotations will be loaded as inputs of the
generic rule engine to perform the reasoning. The individuals of the Class “E”, which

Start or End

 Process

Judgment

Flow

Legend

Parallel

Request for reasoning on the
existing semantic annotations

Start

Acquire the list of annotated
individuals from E

 Need new
rules?

Create and save new rules for
 the semantic block delimitation

Yes

No

Select an ݁௜ for defining the

property association

Load the semantic annotations and
the rules to the generic rule engine,

and perform the reasoning to identify
all SBRs on the individuals of E.

Acquire the existing SBR creation
rules and display them to annotator

Acquire all the interrelation properties of ݁௜;
Acquire all the properties of the Main Concept

in one or more ݌௝ that used to annotate ݁௜ .

Select a property in ݌௝ to associate with a
selected interrelation property of ݁௜

 Association
Finished?

Yes

No

Acquire all the individuals of the class
E, which have two or more semantic
annotations.

Suggest semantic annotations based on
the associations and the corresponding ݌௝.

Define the semantic similarities
between two domain semantics of

the selected individual

Identify possible model mistakes based
on the mistake identification rules, the
inconsistency detection results

Detect possible annotation inconsistencies
based on similarity comparison results

and inconsistency detection rules

Display all the Results to the annotator

ľ

Ŀ

ŀ

○
11

○
12

○14

○
13

Make inference request
○15

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

90

satisfy the rules, are identified. The corresponding SBRs that describe the implicit
relations among these identified individuals will be added between them as the outputs
of this reasoning process.

Once the above processes are finished, the property association can be stated. A
list of annotated individuals in the class � is acquired by the SAP-KM. In the process
○
11 , once an individual ݁௜ from this list is selected, two query processes will start: (1)

the first process will query all ݁௜’s interrelation properties, which are composed of the
generated SBRs that are related to the ݁௜ and the properties that have been made explicit
in the process

○
11 ; (2) the second process will query all the properties of the main

concept of one or more ݌௝, which are used to annotate the ݁௜. Both the lists of properties
are shown to the annotator for determining the associations (the process

○
12). Once the

property association process is finished, the process ○13 will lead the annotator to the

suggestion stage. The SAP-KM takes the existing semantic annotations and the
property associations’ results as its inputs and generates the inferred semantic
annotations.

After the suggestion of the inferred semantic annotations, the semantics similarity
comparison can be performed. The SAP-KM acquires all the individuals in the
Class ”E”, which has two or more semantic annotations and shows them to the annotator.
In the process

○
14 , the similarities between two domain semantics of the same annotated

element (the selected individuals in the Class “E”) will be defined. Once the comparison
is finished, the inference request can be made (the process

○
15).

The SAP-KM loads the inconsistency detection rules, the existing semantic
annotations and the comparison results as the inputs of the Jena generic rule reasoner.
A list of possible inconsistencies among the elaborated semantic annotations will be
produced. Then, the SAP-KM loads the model conflict identification rules, the existing
semantic annotations and the inconsistency detection results as the inputs of the Jena
generic rule reasoner again. The possible conflicts between those annotated model
elements will be produced. At the end, all the results are presented to the annotator. At
this point, the path of the semantic annotations in one TKR ends up.

Figure 4-7 shows the procedure to perform the inference, from the initial
preparation until the final execution. In the process

○
12 , it is possible to design a

consultation mechanism, which processes the existing property association to support
the creation of new property associations. It is also possible to perform the similarity
comparison between two domain semantics in process

○
14 automatically. Since the

similarity comparison is out of the scope of this research, we are not going to design

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

91

the corresponding algorithms to support the automatic comparison in the SAP-KM.

4.3 The Implementation of the SAP-KM

As stated in Section 4.1.2, the SAP-KM is implemented as a plug-in of the MEGA
modelling environment. The architecture of a MEGA plug-in written in Java is
illustrated in the Figure 4-8. On the one hand, the plug-in is called by using a Macro
MEGA. On the other hand, it uses the MEGA API to call MEGA application.

Figure 4-8 The Architecture of a MEGA Plug-in written in Java [122]

In order to enable the SAP-KM to assist the annotator to perform the annotation
directly on the model diagram, as shown in the Figure 4-9, we configured the “Menu
Command” property of several meta-model elements of the process model in the
MEGA repository (such as operation, sequence flow, data object, etc.) and to create the
corresponding macro references that enable the calling of the SAP-KM. Furthermore,
with the assistance of the MEGA API, the SAP-KM is able to retrieve corresponding
information of model elements that are necessary for semantic annotations from the
MEGA. The objects and interfaces that are provided by this API can be applied by
importing the corresponding packages into the project library.

Figure 4-9 The Configuration of the Menu Command and the Reference of the Macro

Through this implementation, an annotator can directly perform the annotation on
a model diagram and the SAP-KM can retrieve the necessary information about a model
it annotates. This interaction supports the annotator to perform the process ᬅ in the
Figure 4-6 and the process ᬌ in the Figure 4-7.

MEGA

Macro
MEGA

MEGA
API

JVM
(Java Virtual Machine)

JNI
(Java Native Interface)

mj_api.jar

myplugin.jar

Calling the user design plug-in

Calling the
MEGA API

Configure the Menu Command and Macro Reference The Right Click Menu of the “Operation”

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

92

The SAP-KM also takes advantage from the Java libraries that are provided by the
Jena API, which give a powerful support for the management of ontologies. In order to
perform the reasoning on semantic annotations, the Semantic Annotation Schema is
represented as an ontology that is serialized as an RDF/XML file. As we stated in
Section 4.1.2, during the annotation process, the SAP-KM will load the Semantic
Annotation Schema into an ontology model for all the operations.

Based on the design of the data structure, the design of the annotation procedures
and the design of the reasoning, we implemented three specifics modules in the SAP-
KM: (1) The explicitation of structure and domain semantics (Section 4.3.1); (2) The
preparation and the execution of reasoning (Section 4.3.2); (3) The elements matching
and data querying (Section 4.3.3). The previous two modules are used to apply semantic
annotations in one TKR. The major graphical user interfaces in these two modules are
“Structure Semantics”, “Domain Semantics”, “Annotation Suggestion”, “Semantic
Similarity Comparison” and “Inference”. The last module is used to extend the usages
of semantic annotation to other stages of a product life cycle. The major graphical user
interfaces in this module are “Elements Matching” and “Data Querying”.

4.3.1 The Explicitation of Structure and Domain Semantics

4.3.1.1 The Explicitation of Structure Semantics

The graphical user interface under the “Structure Semantic” tabbed pane is in
charge of making explicit the structure semantics. This user interface enables an
annotator to perform the process ᬆ and the process ᬇ in the Figure 4-6. As shown in
the Figure 4-10, the tasks of the SAP-KM are divided into two parts: (1) acquiring the
information of the selected model element and its dependent elements from the model
through the MEGA API and (2) loading a selected meta-model ontology from the
knowledge cloud through the Jena API.

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

93

Figure 4-10 The Graphical User Interface of the Explicitation of Structure Semantics

For the first task, the SAP-KM acquires the name and the identifier of the model
element, we called it as “�” in the interface, which requested a semantic annotation (the
(a) in the Figure 4-10). The names and the identifiers of its dependent elements are also
acquired (the (b) in the Figure 4-10). These acquired information are used as inputs of
the name construct algorithm, which is based on the name syntax in the Figure 4-4. An
existence checking takes place to verify whether the same individuals exist in the Class
“E”. If some/all of them do not exist, the SAP-KM will use their constructed names to
create the corresponding new individuals into the Class “E”.

For the second task, SAP-KM acquires the list of classes in the imported meta-
model ontology (the (c) in the Figure 4-10) and shows them as a tree view (the (d) in
the Figure 4-10). In this way, the annotator can browse all the candidate ontology
elements and then select a class. Through the action of selecting the semantic
relationships (the (e) in the Figure 4-10) and clicking the button ‘select the mme’, � will
be defined as an instance of the selected class (the (f) in the Figure 4-10). Meanwhile,
the corresponding property restrictions of the selected class are listed (the (g) in the
Figure 4-10) as candidates for highlighting the coherent properties between � and one
of �’s dependent elements. All the existing properties of � are shown at the bottom of
this interface (the (h) in the Figure 4-10).

(c)

(d)

(g)

(f)

(b)

(a)

(e)

(h)

Contents that are going be inserted
into the semantic annotation .

Contents that are acquired from the TKR
and the OKR to support the annotation .

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

94

Once the explicitation of the structure semantics is finished, the annotator can save
the annotation results into the ontology model that keeps the semantic annotations. In
the current version of the SAP-KM, each model element in a model can only be
annotated by one class from the meta-model ontology. When the annotator wants to add
a new semantic annotation on the same model element, the SAP-KM will acquire the
existing structure semantics of this model element and shows it in this tabbed pane for
the modification.

4.3.1.2 The Explicitation of Domain Semantics

The graphical user interface under the “Domain Semantic” tabbed pane is in
charge of the explicitation of domain semantics. This user interface enables an
annotator to perform the processes ᬈ, ᬉ, ᬊ and ᬋ in the Figure 4-6. As shown in
the Figure 4-11, the tasks of the SAP-KM are divided into two parts: (1) acquiring the
value of � from the previous annotation process and (2) loading PLC-related ontologies
from the knowledge cloud trough the Jena API.

Figure 4-11 The Graphical User Interface of the Explicitation of Domain Semantics

For the first task, the value of � (the (a) in the Figure 4-11) is acquired and used as
the basis to query whether there is a sub-property of the Object Property “SR” that

(c)

(d)

(i)

(h)

(f)

(a)

(e)

(g)

(b)

Contents that are going be inserted
into the semantic annotation .

Contents that are acquired from the OKR
to support the annotation .

Note: The text in the label on top of the list (the one on the right hand side) is changed based on the annotator ‘s
 selection (for example, when annotator click a class in the tree view, the text of this label will be “Property
 restrictions of the selected class”)

Note

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

95

relates from this � to any individuals in the Class “P” (we call it � in the interface). If
there exists one or more �, the name of � will be added into the combo box (the (b) in
the Figure 4-11). On the one hand, the “remove the p” button will erase the property
between the � and the selected � and on the other hand, the “add a new p” button will
create a new � as an individual of the Class “P” and will wait for the determination of
semantic relationship. The value of the � and the value of the combo box item are used
as input of the name construct algorithm to produce the name of the new �.

For the second task, the SAP-KM acquires the list of classes in the imported PLC-
related ontology (the (c) in the Figure 4-11). These classes are showed as a tree view
(the (d) in the Figure 4-11) for an annotator to browse and select. After selecting a class,
the SAP-KM retrieves its individuals and shows them in the list view in the middle of
the interface (the (e) in the Figure 4-11). In this way, the annotator can locate all the
concepts that are contained in this ontology. According to the data structure design in
Section 4.2.1, a � has three mandatory Object Properties, namely “hasMainConcept”,
“hasSBEntity” and “hasSBRelation”. In the following paragraphs we will present the
corresponding implementation.

(1) For the “hasMainConcept” property: both classes and individuals are
candidates for the selection of the main concept of � (the (f) in the Figure 4-
11). After selecting a class or an individual and clicking the button “select the
main concept”, this Object Property will be added from � to the selected class
or from � to the selected individual.

(2) For the “hasSBEntity” property and the “hasSBRelation” property: the list
view on the right hand side (the (g) in the Figure 4-11) is in charge of listing
the corresponding properties (or property restrictions). Let us take the case that
an individual and one of its properties are selected as an example. After
clicking on the button “add I-P” (add Individual and its Property), the object
property “hasSBEntity” will be added from � to the selected individual and
from � to the object that the selected property points to. Meanwhile, a new
individual that describes the selected property will be created in the Class
“SBRelations”, through name construct algorithm. The object property
“hasSBRelation” will be added from � to this new individual. The Pseudo
Code 1 in the APPENDIX III shows this procedure. A similar process is
performed on a class and its property restrictions, through clicking the “add C-
P” (add Class and its Property restriction) button.

All the established selection results will be shown in a list view at the bottom of
this interface (the (h) in the Figure 4-11). Once this semantic block delimitation process

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

96

(the selection of the contents of the p) is finished, a sub property of Object Property
“SR” (the (i) in the Figure 4-11) can be used to describe the semantic relationship
between the e and the p. Finally, the annotation results will be saved into the ontology
model that keeps the semantic annotations. Meanwhile, the Object Property
“isAnnotatedBy” is also added from the individual � to the individual � when the
annotation result is saved.

In the current version of the SAP-KM, each model element can be annotated by
multiple �. When an annotator wants to modify an existing �, through selecting the �
in the combo box (the (b) in the Figure 4-11), the SAP-KM will acquire the existing
domain semantics and will show its contents in a list view at the bottom of the interface
(the (h) in the Figure 4-11). One more issue needs to be mentioned is that the current
version of the SAP-KM cannot deal with the complex property restriction of a class,
but only with the normal expression, such as Turing (Class) isPerformedOn (Property)
allValuesFrom Lathe (Class).

4.3.2 The Preparation and Execution of Reasoning

As we stated in Section 3.3.1, the reasoning process is based on the reasoning rules
and the corresponding reasoning parameters.

Concerning the reasoning rules, we designed three kinds of rules (the annotation
inconsistency detection rules, the model content conflict identification rules and several
SBR delimitation rules) and an annotation suggestion algorithm. The creation of these
three kinds of rules follow the syntax of Jena Rules [123], which is presented in
APPEDIX I .

Concerning the reasoning parameters, the SAP-KM needs the results of the
determination of the association between two properties (for the annotation
suggestions), the results of the similarity comparison between two domain semantics
of a common annotated object (for the detection of annotation inconsistencies) and
results of the detection of annotation inconsistencies (for the identification of possible
conflicts between annotated model elements).

4.3.2.1 The Annotation Suggestion

The graphical user interface under the “Annotation Suggestion” tabbed pane is in
charge of the delimitation of SBRs and the suggestion of inferred semantic annotations.
This user interface enables an annotator to perform the processes 9, 10, 11, 12 and 13
in the Figure 4-7.

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

97

Figure 4-12 The Graphical User Interface of the Annotation Suggestion

As shown in the Figure 4-12 (a), the SAP-KM makes the queries to the individuals
in the Class “E”, which has already been annotated, and shows them in the list view.
The SBR delimitation rules are loaded and displayed to the annotator (the (b) in the
Figure 4-12), so that the annotator can modify the existing rules or create some new
rules. In the case of SBR rule creation, the annotator needs above all to click the “add
New SBR” button to insert a new object property into the Semantic Annotation Schema,
and then begins to edit the new SBR delimitation rules. For example, in the Figure 4-
13, a rule to define a SBR that makes explicit one of the possible the relations between
an instance of the operation and an instance of the data object is shown.

After the rule execution, these SBR delimitation rules participate in the
parameterization of the generic rule reasoner. After that an instance of the reasoner,
according to this parameterization, is created to perform the reasoning on the ontology
model that keeps all the semantic annotations.

An inference model (the model keeps both the semantic annotations and the results
of reasoning) is created after the reasoning step. In this ontology model, the SBRs are
already set between two individuals in the Class “E”, which fulfil all the conditions in
the delimitation rules. When the annotator selects an individual from the listed
annotated individuals (the (a) in the Figure 4-12), all its interrelations (the structure
semantics that have been made explicit in the “Structure Semantic” tabbed pane) and

(a) (b)

Contents that are used to support
the suggestion

Contents that are acquired from the existing
Semantic Annotations and rules

(c)

(e)

(d)

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

98

the SBRs that related to it will be shown in one list view (the (c) in the Figure 4-12).
Meanwhile, the SAP-KM makes the query to the existing domain semantics (p) of the
selected individual, and then acquires all the properties that are related to the �’s main
concept and shows them in another list view (the (d) in the Figure 4-12). The pseudo
code 2 and pseudo code 3 in the APPENDIX III show how the SAP-KM decomposes
of a SBRelation and lists the properties of a p’s main concept. The annotator can
perform the association between two properties from these two list views. The results
of the association are enumerated at the bottom of the interface (the (e) in the Figure 4-
12). When the annotator clicks the button “suggest”, the suggestion algorithm takes
these results as input, and suggests the inferred semantic annotations. The pseudo code
4 in the APPENDIX III shows the annotation suggestion algorithm.

Figure 4-13 A Forward Rule to define a SBR for making explicit a Relation

4.3.2.2 The Semantic Similarity Comparison

The graphical user interface under the “Semantic Similarity Comparison” tabbed
pane is in charge of the similarity determination between two domain semantics of the
same annotated �. This user interface enables an annotator to perform the process ○14

in the Figure 4-7.
As shown in the Figure 4-14 (a), the SAP-KM acquires all the individuals of the

Class “E”, which have two or more semantic annotations (both initial semantic
annotations and inferred semantic annotations). In order to make the interface simpler,
for each �, if there exists more than two semantic annotations, the SAP-KM will create
combination couples from those semantic annotations. The corresponding couple
numbers are inserted into the combo box (the (b) in the Figure 4-14) for the selection.
Once an e that has multiple semantic annotations is chosen, two domain semantics of
this item will be shown in the list view (c) and list view (d) in the Figure 4-14 for the
semantic similarity comparison. Five kinds of semantic relationships can be selected
from the combo box in the middle (the (e) in the Figure 4-14). All the similarly

@prefix SANS: http://www.semanticweb.org/ontologies/2013/6/SemanticAnnotations#
@prefix MEGA: http://www.semanticweb.org/ontologies/2013/6/MEGA_BPMN#
@prefix BPMN: http://dkm.fbk.eu/index.php/BPMN_Ontology#

[Operation_to_DataObject: (?OP rdf:type MEGA:Operation)
 (?DO rdf:type MEGA:DataObject)
 (?SF rdf:type MEGA:SequenceFlow)
 (?DO MEGA:attachesTo ?SF)
 (?OP BPMN:has_secquence_flow_source_ref_inv ?SF)
 ->
 (?OP SANS:SBR_Operation _to_DataObject ?DO)
]

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

99

comparison results are shown in at the bottom of the interface (the (f) in the Figure 4-
14). These results will be inserted into the ontology model when the comparison is
finished.

Figure 4-14 The Graphical User Interface of the Semantic Similarity Comparison

4.3.2.3 The Inference

After the above-mentioned processes, the final inference can be performed. The
graphical user interface under the “Inference” tabbed pane is in charge of starting the
inference and displaying the inference results to the annotator. This user interface
enables an annotator to perform the process ○15 in the Figure 4-7.

The inference process is based on the existing semantic annotations, the semantic
similarity comparison results, and two kinds of reasoning rules. These rules follow the
annotation inconsistency detection mechanism and the model conflict identification
mechanism, which are presented in the Table 3-1 and Table 3-2 in Section 3.2.2. Each
column and each row of the two tables are created as reasoning rules.

Two examples of these two kinds of rules are shown in the Figure 4-15. According
to the rule (a), ?Ei is an individual of the Class “E”. ?Px and ?Py are the individuals of
Class “P”. Given the flowing three conditions are all satisfied:

 the semantic relationship between ?Ei and ?Px is “SR_isSubsumedBy”;
 the semantic relationship between ?Ei and ?Py is “SR_isSubsumedBy”;

(a)

Contents that are acquired from the existing
Semantic Annotations

(c)

(f)

Contents that are used to support
the inconsistency detection

(b)

(d)

(e)

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

100

 the semantic similarity between ?Px and ?Py is “PR_isDisjointWith”.
The Object Property “isNotConsistentwith” will be added from ?Px to ?Py for denoting
the inconsistency between them.

According to the rule (b), ?Ei and ?Ek are individuals of the Class “E”. ?Px and ?Py
are the individuals of Class “P”. Given the flowing four conditions are all satisfied:

 ?Ei is annotated by ?Px;
 ?Ei is annotated by ?Py;
 ?Py is inferred from the semantic annotation of ?Ek ;
 ?Px and ?Py are marked as inconsistent to each other.

The Object Property “isConflictWith” will be added from ?Ei to ?Ek for denoting there
is a possible conflict between them.

Figure 4-15 Two Examples of the Rules for Annotation Inconsistency Detection and Model

Conflict Identification

However, because of the rule syntax limitation, these rules can only deal with the
simple case (each inferred semantic annotation of an annotated object is suggested by
one of the other model elements), but not the complex case (multiple inferred semantic
annotation of an annotated object are suggested by one of the other model elements).
Besides these rules, an algorithm is carried out in the SAP-KM to discover whether all
the required conditions that are suggested in the inferred semantic annotation are

@prefix SANS: http://www.semanticweb.org/ontologies/2013/6/SemanticAnnotations#

[possible_wrong_table_row2_column1: (?Ei rdf:type SANS:E)
 (?Ek rdf:type SANS:E)
 (?Px rdf:type SANS:P)
 (?Py rdf:type SANS:P)
 (?Ei SANS:isAnnotatedBy ?Px)
 (?Ei SANS:isAnnotatedBy ?Py)
 (?Py SANS:isInferredFrom ?Ek)
 (?Px SANS:isNotConsistentWith ?Py)
 ->
 (?Ei SANS:isConflictWith ?Ek)
]

@prefix SANS: http://www.semanticweb.org/ontologies/2013/6/SemanticAnnotations#

[possible_inconsistance_table_row3_column3_5: (?Px rdf:type SANS:P)
 (?Py rdf:type SANS:P)
 (?Ei rdf:type SANS:E)
 (?Ei SANS:SR_isSubsumedBy ?Px)
 (?Ei SANS:SR_isSubsumedBy ?Py)
 (?Px SANS:PR_isDisjointWith ?Py)
 ->
 (?Px SANS:isNotConsistentWith ?Py)
]

(a)

(b)

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

101

satisfied. The Pseudo Code 5 in APPENDIX III shows this algorithm, which is one
possible way to deal with the complex case.

Finally, the inconsistent annotations (the (a) in the Figure 4-16) and the possible
model content mistakes (the (b) in the Figure 4-16), are generated and shown to the
annotator. These results are used to assist annotators in the detection of the
inconsistencies between existing semantic annotations and the identification of the
possible conflicts between the annotated model elements. Different from the SBR
delimitation rules, which are limited to their own specific context, these two kinds of
reasoning rules can be applied on any kind of models. Although these rules are not
shown in the graphical user interface, the annotators are able to view and edit them in
the Knowledge Cloud.

Figure 4-16 The Graphical User Interface for Inference Reasoning

At this point, the path of semantic annotations in one TKR is ended. In order to
apply the proposed solution in a PLM environment, the SAP-KM needs to be able to
exchange and share the semantic annotations with the plug-ins of the other systems.

4.3.3 The Elements Matching and Data Querying

The SAP-KM allows semantic annotation to participate in other stages of a product
life cycle in which the semantic annotations are passed from one system to another
together with the information that they exchange. It implements two extended functions:
(1) Elements Matching Function, which enables the SAP-KM to reuse the semantic

(a)

(b)

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

102

annotations that are created by other systems and (2) Data Querying Function, which
enables the SAP-KM to show the data that are kept in the semantic annotations.

The graphical user interface “Elements Matching” (Figure 4-17) is in charge of
the first function. When the SAP-KM receives semantic annotations from another
system, the annotator is able to perform the matching between the selected element in
the current model (the (a) in the Figure 4-17) and the annotated elements in the model
that is created by that system. The matching action result declares that the two selected
individuals represent the same domain semantics. It enables the selected element in the
current model to inherit the domain semantics of the matched element. The Figure 4-
17 (b) shows a list of annotated elements from one or more model systems. They are
used as candidates for the elements matching. The Figure 4-17 (c) shows all the
elements matching results.

Figure 4-17 The Graphical User Interface for Elements Matching

The graphical user interface “Data Querying” is in charge of the second function.
Taking advantages from the Jena query package that is provided by Jena API, the SAP-
KM can use the SPARQL queries to acquire the data that are kept in the existing
semantic annotations. Figure 4-18 (a) shows an example of the SPARQL queries. Figure
4-18 (b) shows the query results.

(b)

(c)

(a)

Chapter 4 SAP-KM (Semantic Annotation Plug-in for Knowledge Management)

103

Figure 4-18 The Graphical User Interface for Data Querying

In short, these two extended functions enable the SAP-KM to be used in a
cooperative situation: (1) to manipulate the semantic annotations that it received and (2)
to display the data that is kept in the existing semantic annotations.

4.4 Conclusion

The development of the SAP-KM demonstrates the possibility for applying the
proposed solution into the real-life applications. Although the presented design and the
implementation of the SAP-KM is only one of the possible realizations of the formal
approach, it can be easily extended to be applied on others types of models. Because (1)
it has not any meta-model constraints in the semantic annotation model; (2) MEGA is
an integration modelling environment that provides possible assistance to different
kinds of model. The SAP-KM can be extended to other kinds of models in MGEA
through adding macros into the related meta-classes. The issue left behind is to create
the SBR delimitation rules that correspond to the different model specifications.

Applying this prototype to other modelling environments require the selected
system has the ability to provide sufficient APIs that enable the plug-in to be launched
and allow it to retrieve necessary model information. In the next chapter, an
information flow in a particular application scenario is chosen as the background of the
case study. An example of managing semantic annotation in the current system,
exchanging and sharing semantic annotations with upstream and downstream systems
along the product lifecycle is presented.

(a)

(b)

Chapter 5 Case Study

104

Chapter 5 Case Study

In order to apply our proposed solution with the SAP-KM in a PLM environment,
a case study is developed in this chapter. Section 5.1 presents the context of the case
study. It introduces the background of an AIPL 19 product lifecycle and a selected
application scenario with different models related to the proposed product. Then
Section 5.2 presents three main phases of the semantic annotation procedure: Section
5.2.1 introduces the preparation of TKRs and OKRs; Section 5.2.2 illustrates the
annotation processes in the current system (a system in use in a specific point of an
information flow), which takes into account the semantic annotations from the upstream
system (according to the information flow, it is the system that is placed before the
current system) and for the downstream system (according to the information flow, it is
the system that is placed after the current system); Section 5.2.3 presents the reasoning
processes based on the existing semantic annotations and the reasoning rules. Finally,
a conclusion of the case study demonstrates the use of our proposed approach and tools
for assisting the model creation during the product engineering life cycle.

5.1 The Context of Case study

5.1.1 A Product Lifecycle at the AIPL

In order to show how semantic annotations are able to contribute to the systems
interoperability in a PLM environment, a small scale facility for manufacturing
products, named AIPL, has been chosen as the context of this case study. In this facility,
as shown in the Figure 5-1, various kinds of enterprise systems are participating and
interoperating together at the engineering side and at the execution one. The complex
information flows go through the entire life cycle of its products. The used systems can
be divided into two groups: the one referring to the engineering stage and the other
referring to the manufacturing stage. The former group of systems are in charge of
designing models of the products, the processes, the operation interfaces and all the
others product components and services that will be used by the production units. The
latter group of systems will use those models to perform the parameterization of some
application software and to apply them into the reality of the manufacturing system.

19 AIPL (Atelier Inter-Etablissements de Lorraine): http://www.aip-primeca.net/

Chapter 5 Case Study

105

Figure 5-1 The System Stack in the AIPL

Among the diverse products that the AIPL produces we selected the educational
combination product [124] for demonstrating how semantic annotations can be applied
to improve the engineering phase and to facilitate the parameterization of the
application software. Before presenting the life cycle of this product, we would like to
give a clear vision of the product itself. As shown in the Figure 5-2, this educational
combination product is composed of six types of Prods (components to be assembled),
which are designed to be assembled and disassembled easily.

Figure 5-2 The Overview of the Educational Combination Product in the AIPL

The requirements of this product come from the needs of reusability of the
educational materials. Some engineers at AIPL are experts in Mechanical Engineering
and they conceived and designed the educational combination product using the

Engineering Stage Manufacturing Stage

Parameterizing

TBI 450 DEA 1203
DMU 50

SPF

Production

Production Controlling

Enterprise Resource
Planning

 Produce

Prod1

Prod3

Prod2

Prod5

Prod4

Prod6

Disassemble

Assemble

PAL09/ PAL60

PAL11

PAL88

PAL01/ PAL10

6

3

3

6

http://geensoft.com/?Contact&l=en
http://geensoft.com/?Contact&l=en

Chapter 5 Case Study

106

CATIA20 Computer-Aided Design software (we name it as CATIA in the remaining
chapter), which generates, among many other models, the product technical
information into a so-called Engineering Bill of Material (EBOM). However, the
information in the EBOM represents the product structure from the designer’s point of
view, which does not include all the information that is needed by the systems at the
manufacturing stage to support the production. For this reason, a Bill of Process (BOP)
needs to be combined together with EBOM. These processes are defined and modelled
using the MEGA modelling environment (we name it as MEGA in the remaining
chapter). The Figure 5-3 gives a brief overview of the manufacturing processes of this
product:

 Bases turning process, which is in charge of chipping an aluminium bar into a
number of designed bases.

 Discs cutting process, which is in charge of cutting galvanized plates and
magnetic plates into a number of designed discs.

 Parts sticking process, which is in charge of using glues to stick the galvanized
discs or the magnetic discs to the corresponding bases for producing different
kinds of designed parts (the four kinds of components on the right hand side
of the Figure 5-3).

 Products assembling process, which is in charge of assembling different kinds
of parts into the designed Products (the six types of combinations on the left
hand side of the Figure 5-3).

Most of these processes are designed and performed within the AIPL manufacturing
workshops. However, because of the lack of a high force cutting equipment, the disc
cutting process is outsourced to the IUT21 (Institut Universitaire de Technologie Nancy-
Brabois), a partner of the AIPL that owns the required equipment for this operation.

20 CATIA http://www.3ds.com/products-services/catia/
21 IUT http://www.iutnb.uhp-nancy.fr/

Chapter 5 Case Study

107

Figure 5-3 The Main Manufacturing Processes of the Educational Combination Product

Once the engineers, at the engineering stage, finished the design (for example, the
product model and the process model), the EBOM and the BOP are used for the
parameterization of the enterprise systems during the manufacturing stage.

For example, the Sage X3 ERP system22 (we name it as Sage X3 in the remaining
chapter), after being parameterized will take into account incoming customer orders for
generating the different work orders for supporting the purchase of raw materials, the
outsourcing of some processes and the manufacturing of the components and the related
products:

 For the purchasing part, it will generate the purchasing orders to order raw
materials (aluminium bars, galvanized plates, magnetic plates and glues) from
different suppliers;

 For the outsourcing part, it will generate the outsourcing orders to send the
galvanized plates to the IUT and to retrieve the components in the form of
galvanized disc-shaped for the production;

 For the manufacturing part, it will generate the work orders to be compiled
and scheduled by the Flexnet MES application 23 , which is in charge of
executing and controlling the production, and to retrieve the production states
for updating the stocks information and various other performance indicators.

At the end, after some quality examination, all the qualified products are packed
in boxes and dispatched to the production engineering teaching group. These
educational combination products are used in an automatic assembly line, which allows
students to participate to some practical lectures in production engineering and

22 Sage X3 http://www.sage.com/
23 Apriso Flexnet http://www.apriso.com/

Chapter 5 Case Study

108

programming.
For our case study, we selected three of these systems, two at the engineering stage

and one in the manufacturing stage. We will apply our semantic annotation framework
on these systems for (a) improving the knowledge of the engineers when they are
designing the products with CATIA and MEGA and, (b) helping other engineers when
they are parameterizing Sage X3.

5.1.2 The Application Scenario

During the engineering stage, the engineers need a lot of information exchange
between each other for acquiring the exact semantics that is expressed in the received
models. They spend a lot of time in reading the corresponding documents to guarantee
the semantic consistency between the received models and the under development
models. The precise semantics of the model elements, specified by the design engineers,
is difficult to be directly passed or used by the following processes engineers through
the exchanged information. Therefore, although all the products can be produced using
the current mechanism, a great effort is required through the manual verification of the
semantic correctness and semantic consistency of model elements.

We propose to use the formal semantic annotations to assist the expression, the
storage and the sharing of the engineers’ knowledge along all the product life cycle. In
order to make explicit the implicit semantics in a TKR, according to the definition of
semantic annotations given in Chapter 2, the knowledge needs to be firstly formalized
and represented in OKRs. With the assistance of semantic annotations, the system
engineers can:

 acquire the initial semantics that the stakeholders , who manipulate the
upstream system, wanted to express;

 verify, semi-automatically, the semantic consistency between the contents in
the received models and in the developing models;

 guarantee that the embedded semantics in the under development models is
made explicit for the stakeholders, who manipulate the downstream system.

Of course, the information in the product life cycle is not just simply passed from
one system to another in a linear unique direction. The information created by a system
in a later stage might go back to a system in a former stage to improve the previous step.

Therefore, in order to determine a clear-cut information flow, to differentiate the
systems that are used in this information flow, and to show the interoperation between
those systems, we define three kinds of systems as follows:

Chapter 5 Case Study

109

 Current system, a system is in use in a specific point of the selected information
flow.

 Upstream system, according to the information flow, it is the system that is
placed before the current system.

 Downstream system, according to the selected information flow, it is the
system that is placed after the current system

We choose MEGA as the current system, together with its upstream system
(CATIA) and downstream system (Sage) as the application scenario. As shown in the
Figure 5-4, the process model at the bottom shows all the different processes that are
implied in the production of the educational combination product. There exist one or
more systems that participate in each of these processes. CATIA is used for the “product
design” process and MEGA is used for the “process design” process. They represent
the systems in the engineering stage. Sage X3 is used for the “production plan” process,
which represents one of the systems in the manufacturing stage. These three systems
represent the TKR creation and management module in the Semantic Annotation
Framework. For the other part of the framework, as stated in Section 4.1.2, the Protégé
is used as the OKR Creation and Management module, the Microsoft windows folder
system capability is used as the Knowledge Cloud module, the SAP-KM is the
Semantic Annotation and Processing Agency, and the Jena Reasoner is used as the
Reasoning Engine Module.

Besides the duty of supporting the definition and inference of the semantic
annotations, the SAP-KM also serves as a mediator to assist the interoperation between
the different modules. In the current version of the SAP-KM, there are two developed
interfaces. One is between MEGA and the SAP-KM, and the other one is between the
Jena Reasoner and the SAP-KM. The SAP-KM can also communicate with the
Knowledge Cloud module to perform some operations (such as importing, querying,
modifying and so on) on the OKRs, on the rules and on the semantic annotations.
Because this research does not focus on the creation of the OKRs, the interface between
the SAP-KM and the Protégé is not considered as part of the implementation. We used
Protégé directly to manipulate the OKRs. Furthermore, the current implementation of
SAP-KM already shows the possibility to handle the requests and feedbacks between
itself and the TKR Creation and Management Module (MEGA in this case study).
Several research literatures [115], [116], [113] and [68] show the possibility of
developing a semantic annotation plug-in for the product model and the data model. In
order to avoid the unnecessary repetition with those works, the interface between

Chapter 5 Case Study

110

CATIA/Sage X3 and the SAP-KM is not developed. In the case study, we assume that
the corresponding plug-ins are already developed, following the solution we proposed,
for CATIA and Sage.

In this application scenario, the information flow starts from the upstream system
(CATIA) and ends at the downstream system (Sage X3). As we stated in Section 4.1.1,
MEGA is in charge of creating process models, which formalized the BOP for the
production. The upstream system, CATIA, provides the EBOM to assist the creations
of the BOP. The downstream system, Sage X3, takes the EBOM and BOP to assist its
parameterization.

The remainder of this chapter is divided into three phases, according to the
semantic annotation procedure that we stated in Section 3.3.1: namely the Preparation
Phase, the Annotation Phase and the Reasoning Phase and these phases are successively
presented hereafter.

Chapter 5 Case Study

112

Figure 5-4 The Application Scenario of the Case Study

Application Scenario:

SAP-KM

Jena Reasoner

API

Knowledge Cloud

 Perspective Interface Developed Interface

One of the systems that is used in this process

Add and Use Semantic Annotations

 Semantic Annotations

The Increment of Semantic Annotations

SAs SAs

SAs

Ontologies

Protégé

Ontology Editor

Interrelations

SAs

Reasoning Rules

 Request and feedback

Legend

SAs
SAs

SAs SAs
SAs

 SAs

Chapter 5 Case Study

113

5.2 Preparation, Annotation and Reasoning Phases

In this section, we will show the activities in the case study following the three
main phases described in the semantic annotation procedure:

(1) the preparation phase: we present the preparation of the TKRs and the OKRs
which are needed in the two following phases;

(2) the annotation phase: the loading of the semantic annotations from the
upstream system and the creation of the semantic annotations for the
downstream system;

(3) the reasoning phase: the detection of inconsistencies between semantic
annotations and the identification of possible model content mistakes
according to the existing semantic annotations and reasoning rules.

5.2.1 The Preparation Phases

Concerning the TKRs, we consider two models for the application scenario: the
product model created by CATIA (the combination of four kinds of metallic bases is
shown in the Figure 5-5) and the process model created by MEGA (a segment of the
manufacturing process of the component Prod3 is shown in the Figure 5-6).

As we stated in the previous section, MEGA is considered as the current system,
and the process model created by this system is treated as the model that needs semantic
enrichment. The product model from CATIA is considered as the model from upstream
system, which has already been annotated. Sage X3 does not participate in the
preparation and annotation phases. It will use the data that are contained in the semantic
annotations.

Chapter 5 Case Study

114

Figure 5-5 The four kinds of Bases that contain in the Product Model

Figure 5-6 The Process Model from the MEGA

To be more specific, the process model in the Figure 5-6 contains five main
participants:

 the application participant, Sage X3, which produces different kinds of orders
for other participants and collects the corresponding feedbacks;

 the warehouse, which is in charge of delivering raw materials to the work
centre US (the Aluminium Bars) and to the work centre CO (the Galvanized
Discs and the Magnetic Discs). It also stores the finished component (Prod3);

Chapter 5 Case Study

115

 the work centre US, which is in charge of the bases turning operation. It takes
the aluminium bars as inputs and produces two kinds of bases (the P0110 and
the P0960);

 the work centre CO, which is in charge of the parts sticking operation. It takes
the outputs (the P0110 and the P0960) of the previous operation and the raw
materials (the Galvanized Discs and the Magnetic Discs) from the warehouse
to produce two kinds of parts (the PAL01 and the PAL60);

 the work centre AS, which is in charge of prod assembling operation. It takes
the outputs (the PAL01 and the PAL 60) from the sticking operation to produce
the component (Prod3). At the end, this component is sent to the warehouse.

The corresponding data is stored within the simulation properties of these
operations in MEGA. As shown in the Figure 5-7, the start-up time and the performing
time of the “bases turning” operation are stored in the properties of the referring model
objects. That information can be further used to support the operation simulations.

Figure 5-7 The Properties of an Operation in the MEGA

Concerning the OKR part, two domain level ontologies (the MSDL ontology [90]
and the BPMN ontology [98]) are employed. Although the focus of the research is not
the development of ontologies, we also created one top ontology (the general ontology)
and two application ontologies (the AIPL product ontology and the MEGA BPMN
ontology) to construct the three-level structures in the knowledge cloud. We generated
only some parts of these three related ontologies, which contain the necessary concepts
and relationships that can be used for the annotations in the case study.

The general ontology contains the definitions and restrictions of several general
concepts at the top level, which is used as super classes of both PLC-related ontologies
and the meta-model ontologies. The MSDL Ontology is a domain level PLC-related
ontology that describes the manufacturing capability. The AIPL product ontology is an

The Bases Turning Process
Start-up Time: 0.5 hours
Performing Time: 0.1 hours

Chapter 5 Case Study

116

application level PLC-related ontology, which formalizes the specific product
knowledge in the AIPL. The BPMN Ontology is a domain level meta-model ontology,
which represents the structure components and their relationships based on the OMG’s
business process modelling notation specification. The MEGA BPMN ontology is an
application level meta-model ontology that extends the standardised BPMN ontology
with some specific concepts and relationships. As shown in the Figure 5-9, the contents
in black colour are the extracted parts of these five ontologies. These five ontologies
have their own namespaces, which are different from each other. To ease the reading,
the namespaces are omitted in the figure.

A number of pre-processes is carried out on these five ontologies. As shown in the
Figure 5-9, the contents in green colour show some results of the pre-processes. To be
more specific, these pre-processes are used to:

(1) Add additional relationships: a set of additional relationships is added between
the concepts in different ontologies. For example, the Object Property
“hasShape” is added from the Individual “P0110” to the Individual “Cylinder”.

(2) Complete the top-level hierarchy: a set of “subClassOf” is added from the top-
level classes to the Class “Thing” (The Protégé is still able to show the top-
level classes as the subclass of Thing without this pre-process action). This
action is used to support the ontology loading in the Jena Reasoner.

(3) Enrich the semantics of existing ontologies: two aspects of the semantics are
formalized and added into the PLC-related ontology (in both domain level and
application level): (1) the semantics of a concept that is embedded in a general
context; (2) the semantics of a concept that is embedded in a specific context.

(4) Store the ontologies: these five ontologies are stored in RDF/XML format to
facilitate the ontology loading in the Jena Reasoner.

In the enriching step (3), the general concept definitions are selected from the
WordNet24 service. As shown in the Figure 5-8, (a) and (b) show the general definitions
of the concept “Turning” and “Sticking”. The context specific semantics of concepts
are acquired from the special environment in the AIPL. As shown in the Figure 5-8, (c)
and (d) show specific semantics that is embedded for the concept “BasesTurning” and
the “Sticking”.

24 WordNet http://wordnet.princeton.edu/

Chapter 5 Case Study

117

Figure 5-8 The Semantics of Concepts that embedded in their General/Specific Context

The Table 5-1 shows how the semantics of the concept “Turning” and the concept
“Sticking” in a general context are represented in the MSDL ontology and the General
ontology, based on their definitions (the (a) and (b) in the Figure 5-8).

Table 5-1 The Formal Representation of General Semantics of Concepts (in the MSDL
Ontology and the General Ontology)

Concept Relationship Definition
Turning subClassOf Activity the activity of shaping something on a lathe25

hasInput some Tinputs the activity of shaping something on a lathe
hasOutpt some Toutputs the act of fabricating something in a

particular shape
isPerformedOn some
Lathe

the activity of shaping something on a lathe

Lathe subClassOf MachineTool the machine tool for shaping metal or wood
Tinputs hasMaterial only (Metal

or Wood)
the machine tool for shaping metal or wood

Toutputs hasShape some Shape the act of fabricating something in a
particular shape

Sticking hasInput some
AdhesiveMaterial

fasten with an adhesive material like glue

hasInput some Artifact a substance that unites or bonds surfaces
together
surface: the outer boundary of an artefact

AdhesiveMaterial subClassOf Material a substance that unites or bonds surfaces
together
substance: material of a particular kind or
constitution

Glues subClassOf
AdhesiveMaterial

fasten with an adhesive material like glue

Artifact hasSurface some Surface surface: the outer boundary of an artefact

25 Lathe is a machine for shaping wood, metal, or other material by means of a rotating drive which

turns the piece being worked on against changeable cutting tools.

turning: the activity of shaping something on a lathe
lathe: the machine tool for shaping metal or wood
shaping: the act of fabricating something in a particular shape

sticking: fasten with an adhesive material like glue
adhesive material : a substance that unites or bonds surfaces together
substance: material of a particular kind or constitution
surface: the outer boundary of an artifact

(a)

(b)

(c) The bases turning operation is performed on the lathe TBI-450, which
has a input length limited (max 1 meter).

(d) After the sticking operation, a period of drying operation is necessary.

http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=surface

Chapter 5 Case Study

118

The Table 5-2 shows how the semantics of the concept “BasesTurning” and the
concept “Sticking” in a specific context are represented in the AIPL Product ontology ,
based on their definitions (the (c) and the (d) in the Figure 5-8).

Table 5-2 The Formal Representation of Specific Semantics of Concepts in the AIPL Product
Ontology

Concept Relationship Definion
BasesTurning isPerformedOn TBI-450 The BasesTurning is performed on

the lathe TBI-450,
hasInput some Tinputs has a input length limited (max 1

meter).
Tinputs hasMaxLength value T01MaxLength
T01MaxLength type Artifact

meters 1
TBI-450 IsIndividualOf Lathe The BasesTurning is performed on

the lathe TBI-450
Sticking hasNextProcess some Drying After the sticking operation, a

period of drying operation is
necessary.

The Figure 5-9 shows a fragment of the five ontologies in the knowledge cloud
together with the pre-processing results. The figure contents in black colour are the
initial ontology elements and the figure contents in the green colour are the results of
pre-processes. Most of the ontology elements that are shown in this figure are used in
the follow two phases to support the annotation and the reasoning.

Chapter 5 Case Study

119

Figure 5-9 A Part of the five Ontologies in the Knowledge Cloud together with the pre-processing Results

Chapter 5 Case Study

120

These ontologies are stored in the Knowledge Cloud and imported into the
Semantic Annotation Schema. In this way the knowledge contained in the semantic
annotation can be shared with all the systems along the product life cycle. The above-
specified manipulation of ontologies is performed through the Protégé OWL Editor.

The customized Semantic Annotation Schema that is used in this case study has
been already presented in Chapter 4. The presented solution only shows one of the
multiple possibilities to implement the formal semantic annotations. In the next section,
we will present the use of the received semantic annotations from the upstream system
and the creation of the semantic annotations in the current system and for the
downstream system.

5.2.2 The Annotation Phases with the SAP-KM

The semantic annotations that participate in the case study are divided into two
parts: (1) the received semantic annotations from the upstream system, which are
imported in the current system; (2) the created semantic annotations in the current
system, which will be used by the downstream system.

Because of the limited time and resource, we did not develop the plug-ins in
CATIA and Sage X3. We assume the existence of the corresponding plug-ins that follow
the proposed solution and can store the annotation results into the Semantic Annotation
Schema. In order to avoid the massive semantic annotation details for each annotation
(such as the semantic annotation example that is shown in the Figure 4-5) and also to
ease the explanation and reading, we omit the details of data structure. We represent the
semantic annotations in the syntax of the "�a�espace; o�tology ele�e�t".

The "namespace" represents the namespace of the ontology element. The
abbreviation namespace for the General Ontology, MSDL Ontology, BPMN Ontology,
AIPL Product Ontology, MEGA BPMN Ontology and the Semantic Annotation
Schema are respectively &GO, &MSDL, &BPMN, &AIPL, &MEGA and &SANS.
The "o�tology ele�e�t" can be a class, an individual or a property.

Those semantic annotations from the upstream system are imported by the SAP-
KM to assist the model creation and the inconsistency detection in MEGA. The Table
5-3 shows a list of model elements from the product model with their corresponding
domain semantics. The structure semantics of a model is highly specific for the
corresponding model. In our work, it is mainly used to describe the internal
relationships between the model elements. However, the domain semantics of a model

Chapter 5 Case Study

121

element is possible to be inherited by other model elements.

Table 5-3 The Domain Semantics of the Annotated Elements from the Upstream System

Model
Elements Domain Semantics SR

 ݁ଵ= ‘bar’

 ଵ= &AIPL;3mBar &AIPL;hasLength &AIPL;3mBarLength݌
 &AIPL;3mBar rdfs:subClassOf &AIPL;Bars
 &AIPL;3mBar &AIPL;hasMaterial &MSDL;Aluminium
 &AIPL;3mBarLength &AIPL; meters 3
 &AIPL;Bars rdfs:subClassOf &AIPL;RawMaterial

݁ଵ ݌ ؿ࢙࢘ଵ

 ݁ଶ= ‘0110’

 ଶ= &AIPL;P0110 &AIPL;hasShape &MSDL;Cylinder݌
 &AIPL;P0110 rdfs:subClassOf &AIPL;Bases
 &AIPL;Bases rdfs:subClassOf &AIPL;SemiFiniProduct

݁ଶ ݌ ؿ࢙࢘ଶ

݁ଷ= ‘0960’

 ଷ= &AIPL;P0960 &AIPL;hasShape &MSDL;Cylinder݌
 &AIPL;P0960 rdfs:subClassOf &AIPL;Bases

 &AIPL;Bases rdfs:subClassOf &AIPL;SemiFiniProduct

݁ଷ ݌ ؿ࢙࢘ଷ

 ݁ସ= ‘RA’

 ସ= &AIPL;MDisc &AIPL;hasShape &MSDL;Disk݌
 &AIPL;MDisc rdfs:subClassOf &AIPL;Discs

 &AIPL;MDisc &AIPL;hasMaterial &MSDL; MagneticSteel
 &AIPL;Discs rdfs:subClassOf &AIPL;RawMaterial

݁ସ ݌ ؿ࢙࢘ସ

 ݁ହ= ‘RG’
 ହ= &AIPL;GDsic &AIPL;hasShape &MSDL;Disk݌
 &AIPL;GDsic rdfs:subClassOf &AIPL;Discs

 &AIPL;GDsic &AIPL;hasMaterial &MSDL;GalvanizedSteel
 &AIPL;Discs rdfs:subClassOf &AIPL;RawMaterial

݁ହ ݌ ؿ࢙࢘ହ

 ݁଺=
‘Part09’

 ଺= &AIPL;PAL09 &AIPL;hasDiscSide &AIPL;Downward݌
 &AIPL;PAL09 rdfs:subClassOf &AIPL;Parts
 &AIPL;Parts rdfs:subClassOf &AIPL;SemiFiniProduct

݁଺ ݌ ؿ࢙࢘଺

 ݁଻=
‘Part10’

 ଻= &AIPL;PAL10 &AIPL;hasDiscSide &AIPL;Upward݌
 &AIPL;PAL10 rdfs:subClassOf &AIPL;Parts
 &AIPL;Parts rdfs:subClassOf &AIPL;SemiFiniProduct

݁଻ ݌ ؿ࢙࢘଻

 ଼݁=
‘Prod3’

 AIPL;Prod3 rdfs:subClassOf &AIPL;Prods& =଼݌
 &AIPL;Prods rdfs:subClassOf &AIPL;FiniProduct

 ଼݌ ؿ࢙࢘ ଼݁

In the current system, as shown in the Figure 5-10, a number of model elements
of the process model is selected. In order to demonstrate the applicability of our
proposal, we only chose three main operations in the manufacturing of Prod3 (the
“Bases Turning” operation, the “Parts Sticking” operation and the “Prods Assembling”
operation) together with their inputs and outputs as the candidates for semantic
enrichment.

Chapter 5 Case Study

122

Figure 5-10 The Selected Model Elements in the Process Model

For the explicitation of the structure semantics part (represented by the meta-
model ontology), the SAP-KM provides a graphical user interface under the tabbed
pane of “Structure Semantics” (the Figure 4-10). The internal relationships between the
model elements are made explicit through the use of the BPMN Ontology and the
MEGA BPMN Ontology. The Table 5-4 shows the structure semantics of the annotated
elements in the process model.

Table 5-4 The Structure Semantics of the Annotated Model Elements in the Process Model

Model
Elements Structure Semantics MR eଽ= ‘Bases

Turning’

��eଽ = &MEGA;Operation eଽ &BPMN;has_secquence_flow_target_ref_inv eଵ଴ ݁ଽ &BPMN;has_secquence_flow_source_ref_inv ݁ଵଷ

eଽ �r୧o��eଽ

݁ଵ଴= ‘Gateway-5->
Bases Turning’

��eଵ଴ = &MEGA;SequenceFlow ݁ଵ଴ &BPMN; TargetRef ݁ଽ
eଵ଴ �r୧o��eଵ଴ ݁ଵଵ= ‘Aluminium

Bars’
��eଵଵ = &MEGA;DataObject ݁ଵଵ &MEGA;attachesTo ݁ଵ଴

eଵଵ �r୧o��eଵଵ eଵଶ= ‘Gateway-6’

��eଵଶ = &MEGA;Gateway eଵଶ &BPMN;has_secquence_flow_target_ref_inv eଵଷ ݁ଵଶ &BPMN;has_secquence_flow_source_ref_inv ݁ଵ଺

eଵଶ �r୧o��eଵଶ

݁ଵଷ= ‘Bases
Turning ->
Gateway-6’

��eଵଷ = &MEGA; SequenceFlow eଵଷ &BPMN;TargetRef eଵଶ ݁ଵଷ &BPMN;SourceRef ݁ଽ

eଵଷ �r୧o��eଵଷ

݁ଵସ= ‘Gateway-5->
Gateway-6’

��eଵସ = &MEGA;SequenceFlow ݁ଵସ &BPMN; TargetRef ݁ଵଶ
eଵସ �r୧o��eଵସ eଵହ= ‘Parts

Sticking’

��eଵହ = &MEGA;Operation eଵହ &BPMN;has_secquence_flow_target_ref_inv eଵ଺ ݁ଵହ &BPMN;has_secquence_flow_source_ref_inv ݁ଶଶ

eଵହ �r୧o��eଵହ

eଵ଺= ‘Gateway-6 -
> Parts Sticking’

��eଵ଺ = &MEGA;SequenceFlow eଵ଺ &BPMN;TargetRef eଵହ
eଵ଺ �r୧o��eଵ଺

݁ଽ

݁ଵ଴

݁ଵ଻
݁ଵସ

݁ଶଵ ݁ଵ଺

݁ଵହ
݁ଵଷ

݁ଵଵ

݁ଵଶ
݁ଵ଼

݁ଶ଴ ݁ଵଽ

݁ଶଶ
݁ଶଷ

݁ଶସ ݁ଶହ
݁ଶ଺

Chapter 5 Case Study

123

 ݁ଵ଺ &BPMN;SourceRef ݁ଵଶ ݁ଵ଻= ‘P0110’ ��eଵ଻ = &MEGA;DataObject ݁ଵ଻ &MEGA;attachesTo ݁ଵଷ ݁ଵ଻ &MEGA;attachesTo ݁ଵ଺

eଵ଻ �r୧o��eଵ଻

݁ଵ଼= ‘P0960’ ��eଵ଼ = &MEGA;DataObject ݁ଵ଼ &MEGA;attachesTo ݁ଵଷ ݁ଵ଼ &MEGA;attachesTo ݁ଵ଺

eଵ଼ �r୧o��eଵ଼

݁ଵଽ= ‘Galvanized
Discs’

��eଵଽ = &MEGA;DataObject ݁ଵଽ &MEGA;attachesTo ݁ଵସ ݁ଵଽ &MEGA;attachesTo ݁ଵ଺

eଵଽ �r୧o��eଵଽ

݁ଶ଴= ‘Magnetic
Discs’

��eଶ଴ = &MEGA;DataObject ݁ଶ଴ &MEGA;attachesTo ݁ଵସ ݁ଶ଴ &MEGA;attachesTo ݁ଵ଺

eଶ଴ �r୧o��eଶ଴

݁ଶଵ= ‘Prods
Assembling’

��eଶଵ = &MEGA;Operation ݁ଶଵ &BPMN;has_secquence_flow_target_ref_inv ݁ଶଶ ݁ଶଵ &BPMN;has_secquence_flow_source_ref_inv ݁ଶହ

eଶଵ �r୧o��eଶଵ

݁ଶଶ= ‘Parts
Sticking -> Prods
Assembling’

��eଶଶ = &MEGA;SequenceFlow ݁ଶଶ &BPMN; TargetRef ݁ଶଵ ݁ଶଶ &BPMN; SourceRef ݁ଵହ

eଶଶ �r୧o��eଶଶ

݁ଶଷ= ‘PAL09’ ��eଶଷ = &MEGA;DataObject ݁ଶଷ &MEGA;attachesTo ݁ଶଶ
eଶଷ �r୧o��eଶଷ ݁ଶସ= ‘PAL10’ ��eଶଷ = &MEGA;DataObject ݁ଶଷ &MEGA;attachesTo ݁ଶଶ
eଶସ �r୧o��eଶସ

݁ଶହ= ‘Prods
Assembling ->
Store Finished
Product’

��eଶହ = &MEGA;SequenceFlow ݁ଶହ &BPMN;SourceRef ݁ଶଵ

eଶହ �r୧o��eଶହ

݁ଶ଺= ‘Prod3’ ��eଶ଺ = &MEGA;DataObject ݁ଶ଺ &MEGA;attachesTo ݁ଶହ
eଶ଺ �r୧o��eଶ଺

For the explicitation of the domain semantics part, the SAP-KM provides two
possibilities: (1) to reuse the domain semantics in the imported semantic annotations
through its Elements Matching function (Section 4.3.3) and (2) to create new domain
semantics for the selected model elements (Section 4.3.1.2).

In order to reuse the semantic annotations from the upstream system, the matching
between the annotated elements in the former model and the elements current model
need to be implemented. The SAP-KM provides a graphical user interface (the Figure
4-17) to support this matching process. Table 5-5 shows the matching results. In the
current version of SAP-KM, it is only able to deal with the one to one matching.

Table 5-5 The Elements Matching between Product Model and Process Model

Model elements (Product Model) Model elements (Process Model) eଵ= ‘bar’ eଵଵ= ‘Aluminum Bars’ eଶ= ‘0110’ eଵ଻= ‘P0110’ eଷ= ‘0960’ eଵ଼= ‘P0960’ eସ= ‘RA’ eଵଽ= ‘Galvanized Discs’ eହ= ‘RG’ eଶ଴= ‘Magnetic Discs’

Chapter 5 Case Study

124

e଺= ‘Part09’ eଶଷ= ‘PAL09’ e଻= ‘Part10’ eଶସ= ‘PAL10’ e଼= ‘Prod3’ eଶ଺= ‘Prod3’

After the matching process, the matched concepts in the product model have their
domain semantics related to their corresponding matched elements in the process model.

Besides reusing semantic annotations, the SAP-KM also supports the creation of
new semantic annotations by providing a graphical user interface under the tabbed pane
of “Domain Semantics” (the Figure 4-11). The domain semantics of the annotated
model elements are made explicit through using the General Ontology, the MSDL
Ontology and the AIPL Product Ontology. The Table 5-6 shows the domain semantics
of the annotated elements in the process model.

Table 5-6 The Domain Semantics of the Annotated Elements in the Process Model

Model
Elements Domain Semantics SR eଽ= ‘Bases

Turning’

pଽ= &MSDL;Turning &MSDL;isPerformedOn some &MSDL;Lathe
 &MSDL;Turning &MSDL;hasInput some &MSDL;TInputs
 &MSDL;Turning &MSDL;hasOutput some &MSDL;TOutputs
 &MSDL;TInputs &MSDL:hasMaterial only
 unionOf (&MSDL;Wood or &MSDL;Metal)
 &MSDL;TOutputs &MSDL:hasShape some &MSDL;Shape

݁ଽ ݌ ؿ࢙࢘ଽ

eଽ= ‘Bases
Turning’

pଵ଴= &AIPL;BasesTurning &AIPL;isPerformedOn &AIPL;TBI-450
 &AIPL;BasesTurning &AIPL;hasInput some &AIPL;TInputs
 &AIPL;BasesTurning &AIPL;needsPTime &AIPL;TPTime
 &AIPL;BasesTurning &AIPL;needsETime &AIPL;TETime
 &AIPL;TInputs &AIPL;hasMaxLength value &AIPL;T01MaxLength
 &AIPL; TBI-450 &AIPL;isLocatedAt &AIPL;US
 &AIPL; T01MaxLength &AIPL;meters 1
 &AIPL; TETtime &AIPL. hours 0.5

 &AIPL; TPTtime &AIPL. hours 0.1

eଽ srؿ pଵ଴

݁ଵଵ=
‘Aluminium
Bars’

 ଵ= &AIPL;3mBar &AIPL;hasLength &AIPL;3mBarLength݌
 &AIPL;3mBar rdfs:subClassOf &AIPL;Bars
 &AIPL;3mBar &AIPL;hasMaterial &MSDL;Aluminum
 &AIPL;3mBarLength &AIPL; meters 3
 &AIPL;Bars rdfs:subClassOf &AIPL;RawMaterial

eଵଵ srؿ pଵ

eଵହ= ‘Parts
Sticking’

 ଵଵ= &MSDL;Sticking &MSDL:hasInput some &MSDL;AdhesiveMaterial݌
 &MSDL; Sticking & MSDL:hasInput some &Artifact
 &GO; Artifact & GO:hasSurface some &GO;Surface

݁ଵହ ݌ ؿ࢙࢘ଵଵ

eଵହ= ‘Parts
Sticking’

 ଵଶ= &AIPL; PartsSticking &AIPL;isPerformedOn &AIPL;CO݌
 &AIPL; PartsSticking rdf;type &AIPL;Sticking
 &AIPL;PartsSticking &AIPL;needsPTime &AIPL;SPTime
 &AIPL; PartsSticking &AIPL;needsETime &AIPL;SETime
 &AIPL;Sticking &AIPL;hasNextOperation some &AIPL;Drying
 &AIPL; SPTime &AIPL;hours 0
 &AIPL; SETime &AIPL;hours 0.064

݁ଵହ ݌ ؿ࢙࢘ଵଶ

݁ଵ଻= ‘P0110’ ݌ଶ= &AIPL;P0110 &AIPL;hasShape &MSDL;Cylinder
 &AIPL;P0110 rdfs:subClassOf &AIPL;Bases
 &AIPL;Bases rdfs:subClassOf &AIPL;SemiFiniProduct

eଵ଻ srؿ pଶ

݁ଵ଼=
‘P0960’

 ଷ= &AIPL;P0960 &AIPL;hasShape &MSDL;Cylinder݌
 &AIPL;P0960 rdfs:subClassOf &AIPL;Bases

eଵ଼ srؿ pଷ

Chapter 5 Case Study

125

 &AIPL;Bases rdfs:subClassOf &AIPL;SemiFiniProduct ݁ଵଽ=
‘Galvanized
Discs’

 ସ= &AIPL;MDisc &AIPL;hasShape &MSDL;Disk݌
 &AIPL;MDisc rdfs:subClassOf &AIPL;Discs

 &AIPL;MDisc &AIPL;hasMaterial &MSDL; GalvanizedSteel
 &AIPL;Discs rdfs:subClassOf &AIPL;RawMaterial

eଵଽ srؿ pସ

݁ଶ଴=
‘Magnetic
Discs’

 ହ= &AIPL;GDsic &AIPL;hasShape &MSDL;Disk݌
 &AIPL;GDsic rdfs:subClassOf &AIPL;Discs

 &AIPL;GDsic &AIPL;hasMaterial &MSDL; MagneticSteel
 &AIPL;Discs rdfs:subClassOf &AIPL;RawMaterial

eଶ଴ srؿ pହ

݁ଶଵ= ‘Prods
Assembling’

 ଵସ= &AIPL; ProdsAssembling &AIPL;isPerformedOn &AIPL;SPF݌
 &AIPL;ProdsAssembling &AIPL;needsPTime &AIPL;APTime
 &AIPL;ProdsAssembling &AIPL;needsETime &AIPL;AETime
 &AIPL; SPF &AIPL;isLocatedAt &AIPL;AS
 &AIPL; AETtime &AIPL;hours 0.5

 &AIPL; APTtime &AIPL;hours 0.1

݁ଶଵ ݌ ؿ࢙࢘ଵସ

݁ଶଷ=
‘PAL09’

 ଺= &AIPL;PAL09 &AIPL;hasDiscSide &AIPL;Downward݌
 &AIPL;PAL09 rdfs:subClassOf &AIPL;Parts
 &AIPL;Parts rdfs:subClassOf &AIPL;SemiFiniProduct

eଶଷ srؿ p଺

݁ଶସ=
‘PAL10’

 AIPL; PAL10 &AIPL:hasDiscSide &AIPL; Upward& =଼݌
 &AIPL; PAL10 rdfs;subclass some &AIPL; Parts
 &AIPL;Prods rdfs:subClassOf &AIPL;FiniProduct

݁ଶ଺ ଼݌ ؿ࢙࢘

݁ଶ଺= ‘Prod3’ ଼݌= &AIPL;Prod3 rdfs:subClassOf &AIPL;Prods
 &AIPL;Prods rdfs:subClassOf &AIPL;FiniProduct

݁ଶ଺ ଼݌ ؿ࢙࢘

All the semantic annotations are stored in the Semantic Annotation Schema, which
can be used as one of the basis for the reasoning phase.

5.2.3 The Reasoning Phases with the SAP-KM

In the case study, the reasoning phase is mainly in charge of (1) suggesting inferred
semantic annotations for the corresponding model elements; (2) detecting some
inconsistencies between several semantic annotations of an annotated model element;
and (3) identifying the possible mistakes, namely conflicts, among annotated model
elements.

The SAP-KM supports the semantic block delimitation and the semantic
annotation suggestion providing a graphical user interface under the tabbed pane
“Annotation Suggestion” (as shown in the Figure 4-12). Three semantic block
delimitation rules are used in the case study to make explicit the internal relationships
among the annotated elements in the process model. As shown in the Figure 5-11, the
rule “Operation_to_DataObject” and the rule “DataObject_to_Operation” are used to
create the semantic blocks that supersede the semantics between an operation and the
data objects that are related to it (two possible situations). The former one adds a new
relationship between an operation and the data objects that are attached to its outgoing
sequence flows. The latter one adds a new relationship between an operation and the
data objects that are attached to its incoming sequence flows. The rule

Chapter 5 Case Study

126

“Operation1_to_Operation2” is used to create the semantic blocks that substitutes the
semantics between two operations, which are connected by a sequence flow. These
three rules only show three possible situations between two appointed types of model
elements. However they are enough for supporting the SBR delimitation in the case
study.

Figure 5-11 Three Rules to define a SBR for making explicit the Relations

Let us take the rule “DataObject_to_Operation” as an example. Based on this rule,
the reasoner:

 first collects all the individuals of the class “&MEGA;Operation” and puts
them in the variable ?OP (݁ଽ, ݁ଵହ and ݁ଶଵ),

 collects all the individuals of the class “&MEGA;DataObject” and puts them
in the variable ?DO (݁ଵଵ, ݁ଵ଻, ݁ଵ଼, ݁ଵଽ, ݁ଶ଴, ݁ଶଷ, ݁ଶସ and ݁ଶ଺),

 collects all the individuals of the class “&MEGA;SequenceFlow” and puts
them in the variable ?SF (݁ଵ଴, ݁ଵଷ, ݁ଵସ and ݁ଵ଺).

 Then, for each individual in the ?DO (let’s take ݁ଵଵ as example) find the
corresponding individual in the ?SF (e.g. ݁ଵ଴), where the individual of the
class “&MEGA;DataObject” has the property “&MEGA;attachesTo” to the

 @prefix SANS: http://www.semanticweb.org/ontologies/2013/6/SemanticAnnotations#
@prefix MEGA: http://www.semanticweb.org/ontologies/2013/6/MEGA_BPMN#
@prefix BPMN: http://dkm.fbk.eu/index.php/BPMN_Ontology#

[Operation_to_DataObject: (?OP rdf:type MEGA:Operation)
 (?DO rdf:type MEGA:DataObject)
 (?SF rdf:type MEGA:SequenceFlow)
 (?DO MEGA:attachesTo ?SF)
 (?OP BPMN:has_secquence_flow_source_ref_inv ?SF)
 ->
 (?OP SANS:SBR_Operation_to_DataObject ?DO)
]
[DataObject_to_Operation: (?OP rdf:type MEGA:Operation)
 (?DO rdf:type MEGA:DataObject)
 (?SF rdf:type MEGA:SequenceFlow)
 (?DO MEGA:attachesTo ?SF)
 (?OP bpmn: has_secquence_flow_target_ref_inv ?SF)
 ->
 (?OP SANS:SBR_DataObject_to_Operation ?DO)
]
[Operation1 to Operation2: (?OP1 rdf:type MEGA:Operation)
 (?SF rdf:type MEGA:SequenceFlow)
 (?OP2 rdf:type MEGA: Operation)
 (?SF BPMN:SourceRef ?OP1)
 (?SF BPMN:TargetRef ?OP2)
 ->
 (?OP1 SANS:SBR_Operation1_to_ Operation2 ?OP2)
]

Chapter 5 Case Study

127

individuals of the class “&MEGA;SequenceFlow”.
 Then based on the found sequence flow (e.g. ݁ଵ଴), find the corresponding

individual in the ?OP (e.g. ݁ଽ), which has the property
“&BPMN;has_has_secquence_flow_target_ref_inv” to the appointed
sequence flow (e.g. ݁ଵ଴).

 At the end, the “&SANS;SBR_DataObject_to_Operation” property is added
from the corresponding individuals in the ?OP (e.g. the ݁ଽ) and the
corresponding individuals in the ?DO (e.g. the ݁ଵଵ).

After the semantic block delimitation, these three propeties are added between the
corresponding ontology elements in the Semantic Annotation Schema, and then the
property association process is then able to be performed. As shown in the Table 5-7,
the first column shows properties that are made explicit based on the SBR delimitation
rules and the meta-model ontologies. The second column shows the properties in the
PLC-related ontologies.

Table 5-7 The Associations between two Properties

First Properties Second Properties
&SANS;SBR_DataObject_to_Operation &MSDL;hasInput
&SANS;SBR_DataObject_to_Operation &AIPL;hasInput
&SANS;SBR_Operation_to_DataObject &MSDL;hasOutput
&SANS;SBR_Operation_to_DataObject &AIPL;hasOutput
&SANS;SBR_Operation1_to_Operation2 &AIPL;hasNextOperation

Based on the inferred semantic annotations suggestion algorithm (the Pseudo Code
4 in APPENDIX III), corresponding inferred semantic annotations are suggested. Table
5-8 shows all the inferred semantic annotations .

Let us take the association between the “&SANS;SBR_DataObject_to_Operation”
and “&AIPL;hasInput” as an example. The SAP-KM:

 first queries all the individuals (from ݁ଵ to ݁ଶ଺) in the Class “&SANS;E” and
selects the individuals that has the property
“&SANS;SBR_DataObject_to_Operation” (݁ଽ, ݁ଵହ and ݁ଶଵ).

 Then, for each of the selected individuals (let’s take ݁ଽ as example), get the list
of objects that the property “&SANS;SBR_DataObject_to_Operation” points
to (e.g. ݁ଵଵ).

 Then, it verifies all the semantic annotations of the selected individual (e.g. ݁ଽ)
and lists all its domain semantics (e.g. ݌ଽ and ݌ଵ଴) that has the semantic
relation “&SANS;SR_isEquivalentTo” or “&SANS;SR_isSubsumedBy” to it.

 Then, it queries the main concept of the collected domain semantics (e.g.

Chapter 5 Case Study

128

“&MSDL;Turning” (in ݌ଽ) and “&AIPL;BasesTurning” (in ݌ଵ଴)). For each
main concept, it queries if it has got a property “&AIPL;hasInput” and if it gets
the object that the property points to (e.g. “&MSDL;TInputs” (in ݌ଽ) and
“&AIPL;TInputs” (in ݌ଵ଴)).

 Then it marks them (“&MSDL;TInputs” and “&AIPL;TInputs”) as the main
concepts of new domain semantics (e.g. ݌ଵ଻ and ݌ଵ଼ respectively). The
concepts of the new domain semantics are created on the base of the paths that
are related to its main concepts. The scope is limited by the original domain
semantics (e.g. ݌ଽ and ݌ଵ଴).

 At the end, the new domain semantics will be suggested to the selected
individual (e.g. ݁ଽ) and it is then marked with the property
“&SANS;SR_isSubsumedBy”.

Table 5-8 The Domain Semantics of the Inferred Semantic Annotations

Model
Elements Domain Semantics SR ݁ଵଵ=

‘Aluminium
Bars’

 ଵ଻=&AIPL;TInputs &AIPL;hasMaxLength value &AIPL;T01MaxLength݌
 &AIPL;T01MaxLength &AIPL;meters 1
 ଵ଻ &SANS;isInferredFrom ݁ଽ݌

݁ଵଵ ݌ ؿ࢙࢘ଵ଻

 ଵ଼= &MSDL;TInputs &MSDL:hasMaterial only݌
 unionOf (&MSDL;Wood or &MSDL;Metal)
 ଵ଼ &SANS;isInferredFrom ݁ଽ݌

݁ଵଵ ݌ ؿ࢙࢘ଵ଼

݁ଵ଻= ‘P0110’ ݌ଵଽ= &MSDL;TOutputs &MSDL:hasShape some &MSDL;Shape
 ଵଽ &SANS;isInferredFrom ݁ଽ݌

݁ଵ଻ ݌ ؿ࢙࢘ଵଽ ݌ଶଵ= &GO; Artifact & GO:hasSurface some &GO;Surface
 ଶଵ &SANS;isInferredFrom ݁ଵହ݌

݁ଵ଻ ݌ ؿ࢙࢘ଶଵ ݌ଶଶ= &MSDL; AdhesiveMaterial
 ଶଶ &SANS;isInferredFrom ݁ଵହ݌

݁ଵ଻ ݌ ؿ࢙࢘ଶଶ

݁ଵ଼= ‘P0960’

 ଶ଴= &MSDL;TOutputs &MSDL:hasShape some &MSDL;Shape݌
 ଶ଴ &SANS;isInferredFrom ݁ଽ݌

݁ଵ଼ ݌ ؿ࢙࢘ଶ଴ ݌ଷଶ= &GO; Artifact &GO:hasSurface some &GO;Surface
 ଶଷ &SANS;isInferredFrom ݁ଵହ݌

݁ଵ଼ ݌ ؿ࢙࢘ଶଷ ݌ଶସ= &MSDL; AdhesiveMaterial
 ଶସ &SANS;isInferredFrom ݁ଵହ݌

݁ଵ଼ ݌ ؿ࢙࢘ଶସ ݁ଵଽ=
‘Galvanized
Discs’

 ଶହ= &MSDL; Artifact & MSDL:hasSurface some &Surface݌
 ଶହ &SANS;isInferredFrom ݁ଵହ݌

݁ଵଽ ݌ ؿ࢙࢘ଶହ ݌ଶ଺= &MSDL; AdhesiveMaterial
 ଶ଺ &SANS;isInferredFrom ݁ଵହ݌

݁ଵଽ ݌ ؿ࢙࢘ଶ଺ ݁ଶ଴=
‘Magnetic
Discs’

 ଶ଻= &MSDL; Artifact & MSDL:hasSurface some &Surface݌
 ଶ଻ &SANS;isInferredFrom ݁ଵହ݌

݁ଶ଴ ݌ ؿ࢙࢘ଶ଻ ݌ଶ଼= &MSDL; AdhesiveMaterial
 ଶ଼ &SANS;isInferredFrom ݁ଵହ݌

݁ଶ଴ ݌ ؿ࢙࢘ଶ଼ ݁ଶଵ= ‘Prods
Assembling’

 ଶଽ= &MSDL; Drying݌
 ଶଽ &SANS;isInferredFrom ݁ଵହ݌

݁ଶଵ ݌ ؿ࢙࢘ଶଽ

After the suggestion of semantic annotations, the comparison of the similarity
between two domain semantics of a same annotated model element can be performed.

Chapter 5 Case Study

129

SAP-KM provides the graphical user interface under the tabbed pane of “Semantic
Similarity Comparison” (the Figure 4-14). It queries all the individuals that have both
initial and inferred semantic annotations in the Class “&SANS;E” (the first column of
Table 5-9) and it generates all the possible comparison pairs between the initial one to
the inferred one (the second column of the Table 5-9). The semantic relationships
between two domain semantics are defined in the third column of the Table 5-9. The
similarity comparison results and the inconsistency detection rules are used as inputs
of the reasoning engine to produce the inconsistency detection results. Finally, these
results are listed in the last column of the Table 5-9.

Let us take the model element eଵଵ in the Table 5-9 as an example. For the first pair
(pଵ and pଵ଻), eଵଵ srؿ pଵ and ݁ଵଵ ݌ ؿ࢙࢘ଵ଻ indicate the facts that eଵଵ is supposed to
inherit all the conditions that are described in ݌ଵ and ݌ଵ଻.

 The domain semantics ݌ଵ means that eଵଵ is a kind of “&AIPL;3mBar”, which
has the length 3 meter and is made from the material “&MSDL;aluminium”.

 The domain semantics ݌ଵ଻ means that eଵଵis a kind of “&AIPL;TInputs” that
has a maximum length of one meter.

Because eଵଵ is impossible to be an individual that fulfils the condition “has the length
3 meter” and the condition “has a maximum length of 1 meter” at the same time.
Therefore, ݌ଵ has no common semantics with ݌ଵ଻. The result is noted as ݌ଵ ݌ ⊥ݎ݌ଵ଻.

For the second pair (݌ଵ and ݌ଵ଼), ݁ଵଵ ݌ ؿ࢙࢘ଵ and ݁ଵଵ ݌ ؿ࢙࢘ଵ଼ indicate the facts
that eଵଵ is supposed to inherit all the conditions that are described in ݌ଵ and ݌ଵ଼.

 The domain semantics ݌ଵ means that ݁ଵଵ is a kind of “&AIPL;3mBar”, which
has the length 3 meter and is made from the material “&MSDL;aluminium”.

 The domain semantics ݌ଵ଼ means that ݁ଵଵ is a kind of “&MSDL;TInputs”,
which is made from the material either a kind of “&MSDL;Wood” or a kind
of “&MSDL;Metal”.

Because the “&MSDL;aluminium” is an individual of the Class “&MSDL;Non-
Ferrous”, which is the subclass of the Class “&MSDL;Metal”. Therefore, the semantics
of pଵ is less general than the semantics of ݌ଵ଼ . The result is noted as ݌ଵ ݌ ؿݎ݌ଵ଼.

Finally, according to the rules that are created based on the contents in the third
column and third row of the possible inconsistency table (the Table 3-1), the property
“&SANS;isNotConsistentWith” is added from ݌ଵ to ݌ଵ଻ and the property “&SANS;
isPosConsistentWith” is added from ݌ଵ to ݌ଵ଼.

Chapter 5 Case Study

130

Table 5-9 The Results of Inconsistency Detection between two Domain Semantics

Model Elements Pairs PR Consistency Detection Results ݁ଵଵ= ‘Aluminium
Bars’

 ଵ଻݌ ଵ &SANS;isNotConsistentWith݌ ଵ଻݌ ⊥ݎ݌ ଵ݌ 1

 ଵଽ݌ ଶ &SANS; isPosConsistentWith݌ ଵଽ݌ ؿݎ݌ ଶ݌ ଵ଼ ݁ଵ଻= ‘P0110’ 1݌ ଵ &SANS; isPosConsistentWith݌ ଵ଼݌ ؿݎ݌ ଵ݌ 2

 ଶଵ݌ ଶ &SANS; isPosConsistentWith݌ ଶଵ݌ ؿݎ݌ ଶ݌ 2

 ’ଶଶ ݁ଵ଼= ‘P0960݌ ଶ &SANS;isNotConsistentWith݌ ଶଶ݌ ⊥ݎ݌ ଶ݌ 3

 ଶ଴݌ ଷ &SANS; isPosConsistentWith݌ ଶ଴݌ ؿݎ݌ ଷ݌ 1

 ଶଷ݌ ଷ &SANS; isPosConsistentWith݌ ଶଷ݌ ؿݎ݌ ଷ݌ 2

 ଶସ ݁ଵଽ= ‘Galvanized݌ ଷ &SANS; isNotConsistentWith݌ ଶସ݌⊥ݎ݌ ଷ݌ 3
Discs’

 ଶହ݌ ସ &SANS; isPosConsistentWith݌ ଶହ݌ ؿݎ݌ ସ݌ 1

 ଶ଺ ݁ଶ଴= ‘Magnetic݌ ସ &SANS;isNotConsistentWith݌ ଶ଺݌ ⊥ݎ݌ ସ݌ 2
Discs’

 ଶ଻݌ ହ &SANS; isPosConsistentWith݌ ଶ଻݌ ؿݎ݌ ହ݌ 1

 ଶ଼ ݁ଶଵ= ‘Prods݌ ହ &SANS;isNotConsistentWith݌ ଶ଼݌ ⊥ݎ݌ ହ݌ 2
Assembling’

1

 ଶଽ݌ ଵଷ &SANS;isNotConsistentWith݌ ଶଽ݌ ⊥ݎ݌ ଵଷ݌

The inconsistency detection results in the Table 5-9 are used to assist the
identification of possible conflicts between annotated model elements during the
modelling phase. Based on the model conflict identification rules and algorithms, the
results are shown in the Table 5-10. Those results are used to draw attentions to
modellers for examining the correctness of two annotated elements in the process model.

Table 5-10 The Possible Mistakes

No The Possible Mistakes The Inconsistency Detection Results
1 ݁ଵଵ &SANS;isPosConflictWith ݁ଽ ݌ଵ &SANS;isNotConsistentWith ݌ଵ଻
2 The domain semantics described in ݌ଶଶ , ݌ଶସ , ݌ଶ଺ and ݌ଶ଼ ,which is required by ݁ଵହ, is not being satisfied.

 ଶଶ݌ ହ &SANS;isNotConsistentWith݌ ଶଶ݌ ସ &SANS;isNotConsistentWith݌ ଶଶ݌ ଷ &SANS;isNotConsistentWith݌ ଶଶ݌ ଶ &SANS;isNotConsistentWith݌
3 ݁ଶଵ &SANS;isPosConflictWith ݁ଵହ ݌ଵଷ &SANS;isNotConsistentWith ݌ଶଽ

 Ideally, the model content conflicts identification results are supposed to contain
the reason why two model elements have conflicts and how to solve these possible
mistakes. For example, these results could be used to provide suggestions as follows:

(1) The input “Aluminium Bars” is 3 meters, which is out of the range (≤1 meter)
of the “bases turning” operation. You can change the input or change the
operation.

(2) The domain semantics “&MSDL; AdhesiveMaterial” is not stratified by any
current inputs of the “Part Sticking” operation. You can add a new input related

Chapter 5 Case Study

131

to this domain semantics.
(3) The “Prods Assembling” operation is not an individual of the Class

“&MSDL;Drying”. You can change the “Prods Assembling” operation or
change the “Parts Sticking” operation.

However, these kinds of suggestions highly rely on the power of the reasoning engine.
The current reasoning engines are only able to deal with some simple reasoning, such
as classification (class subsumption and individual memberships) and class consistency
(whether a class can have individuals or not), but they cannot deal with sub-ontologies.
Therefore, we cannot use the current reasoning engine to provide these kinds of
suggestions. Once there is a reasoning engine that is able to perform the reasoning on
sub-ontologies, these kinds of suggestions might be implemented. The current version
of the SAP-KM is only able to tell if two model elements have conflicts or if there is a
domain semantics of a model element that is missing.

The process model and the created semantic annotations are sent to Sage X3 to
assist the parameterization. Let us take the table of “process planning” in Sage X3 as
an example. The “process”, “WorkCentre”, “preparation time” and “execution time”
are the four of its main elements in the parameterization. Table 5-11 shows the data that
are contained in the semantic annotations of ݁ଽ, ݁ଵହ and ݁ଶଵ.

Table 5-11 The Model Elements in Process Model with Domain Semantics.

Model Elements Domain Semantics eଽ= ‘Bases Turning’ pଵ଴= &AIPL;BasesTurning &AIPL;isPerformedOn &AIPL;TBI-450
 &AIPL;BasesTurning &AIPL;hasInput some &AIPL;TInputs
 &AIPL;BasesTurning &AIPL;needsPTime &AIPL;TPTime
 &AIPL;BasesTurning &AIPL;needsETime &AIPL;TETime
 &AIPL;TInputs &AIPL;hasMaxLength value &AIPL;T01MaxLength
 &AIPL; TBI-450 &AIPL;isLocatedAt &AIPL;US
 &AIPL; T01MaxLength &AIPL;meters 1
 &AIPL; TETime &AIPL. hours 0.5

 &AIPL; TPTime &AIPL. hours 0.1 eଵହ= ‘Parts
Sticking’

 ଵଶ= &AIPL; PartsSticking &AIPL;isPerformedOn &AIPL;CO݌
 &AIPL; PartsSticking rdf;type &AIPL;Sticking
 &AIPL;PartsSticking &AIPL;needsPTime &AIPL;SPTime
 &AIPL; PartsSticking &AIPL;needsETime &AIPL;SETime
 &AIPL;Sticking &AIPL;hasNextOperation some &AIPL;Drying
 &AIPL; SPTime &AIPL;hours 0
 &AIPL; SETime &AIPL;hours 0.064 ݁ଶଵ= ‘Prods

Assembling’
 ଵସ= &AIPL; ProdsAssembling &AIPL;isPerformedOn &AIPL;SPF݌
 &AIPL;ProdsAssembling &AIPL;needsPTime &AIPL;APTime
 &AIPL;ProdsAssembling &AIPL;needsETime &AIPL;AETime
 &AIPL; SPF &AIPL;isLocatedAt &AIPL;AS
 &AIPL; AETime &AIPL;hours 0.5

 &AIPL; APTime &AIPL;hours 0.1

Chapter 5 Case Study

132

Once the semantic annotations are created in the Sage X3 data model, the
corresponding elements matching interface in the Sage X3 plug-in is able to assist the
stakeholder to fill the right data into the right fields of the “process planning” table.

5.3 Conclusion

This case study shows the use of the formal semantic annotation proposal in a
particular application scenario. It also shows one of the possible ways of using semantic
annotations for assisting the model creation and conflict identification in the current
system and for assisting the semantic interoperability with the upstream and
downstream systems. Though the SAP-KM is only developed for MEGA modelling
environment, it also shows the possibility of using the same method to apply the formal
semantic annotation into other systems. Although the case study allow us to see the
applicability of the proposed solution, in the future work, it should be better to be
validated in a real and larger scale industrial facility with more applications and more
complex information flows.

Chapter 6 Conclusions and Future Works

133

Chapter 6 Conclusions and Future Works

This chapter provides a conclusion of this research work and a perspective for the
future work. It first gives an overall summary by answering the five research questions
that we listed in Section 6.1. Then, the main contributions are elaborated in Section 6.
2. Finally, in Section 6.3, we identify the limitations of the current work and the possible
future research directions.

6.1 Research Questions and Answers

In Chapter 1, we listed five major research questions that this work attempts to
answer:
(1) What are the semantic interoperability problems that exist during the cooperation

in a PLM environment?

A Product Lifecycle Management (PLM) approach aims at providing a shared
platform, which enables the collaboration of all different enterprise systems that
participate in each stage of the Product Life Cycle (PLC) in or across enterprises.
Interoperability serves as a foundational role to support collaboration, which, in this
context, is considered as the ability of diverse systems to be able to exchange and make
use of the knowledge representations between each other. Currently, the open issues of
a seamless semantic interoperability have attracted many research attentions. The
different backgrounds, heterogeneous expertise, unique knowledge, particular needs
and specific practices of stakeholders, also over increase this issues, not only in the
collaboration across the enterprise systems but also in the achieving a mutual
understanding between the stakeholders. Chapter 1 discusses the open issues of
interoperability, especially the semantic interoperability, within the context of a PLM
environment and it identifies that semantic enrichment is one of the solutions that could
deal with these issues. A survey is carried out in Chapter 2 to investigate: (i) the models
and their meta-models in a PLM environment that need semantic enrichments, (ii) the
ontology specification languages and existing ontologies that can be used to support the
semantic enrichment and (iii) the current semantic annotation researches that deal with
the semantic interoperability issues in different domains. Based on this investigation,
the research scope is narrowed down to a study of proposing a formalization of semantic
annotations that deal with the existing drawbacks and potential challenges (Chapter 3).
Our research work prototypes an annotation tool that shows one of the possible
implementations of the proposed solution (Chapter 4). It validates the prototype in an

Chapter 6 Conclusions and Future Works

134

application scenario to show how the proposed solution is able to semantically enrich
the models and assist the semantic interoperability (Chapter 5).
(2) What kinds of knowledge representation in a PLM environment need semantic

enrichment?
Based on the introduction of the product life cycle (Section 1.2.1), the product

lifecycle management (Section 1.2.2) and the discussion of the knowledge management
(Section 1.2.3), we discovered that the knowledge about the system of interest can be
represented in various kinds of knowledge representations in a product life cycle. While
the enterprise modelling (Section 2.1.1) is considered as a process that tries to capture
and represent knowledge for activating the interoperations in or across enterprises, in
this thesis, we consider all different types of models along the product life cycle as the
targets of semantic enrichments. Considering the diversity of models, we select and use
the process model (Section 2.1.2) to act as the target of semantic enrichment. In reality,
every knowledge representation in a PLM environment can be enriched. We perhaps
need to think at this question in the opposite way: Whether are there semantic models
that could provide sufficient semantics to enrich these knowledge representations?
(3) What kinds of ontology can be used to support the semantic enrichments of those

knowledge representations?

At least two aspects of semantics need to be made explicit in order to obtain a
mutual understanding of models through the semantic enrichment: the structure
semantics, which describes how a model is modelled, and the domain semantics, which
explains the context and the meaning of the model elements in a specific domain.
Therefore, ontologies that are used to support the semantic enrichment are supposed to
capture and represent both aspects of the knowledge. In this research work, we
classified them as the PLC-related ontology and the meta-model ontology respectively.
The major ontology specification languages that could be used to create ontologies
(Section 2.2.1) and several existing ontologies that contain these two aspects of
semantics (Section 2.2.2) are surveyed in Section 2.2. The former investigation is to
assist the selection of an appropriate ontology specification language that could be used
in this work, as well as, the latter one is to discover whether some ontologies could be
reused for the semantic enrichments of models that exist in a PLM environment.
(4) What are the essential elements of a semantic annotation and how to formally

represent a semantic annotation in a suitable format?

A detailed survey is carried out to classify and compare a number of current
semantic annotation researches (Section 2.3.1) and then it discusses the existing

Chapter 6 Conclusions and Future Works

135

drawbacks and potential challenges among these researches (Section 2.3.2). Based on
the above literature analysis, in the context of the PLC, we focus our work on clearly
identifying the essential elements of a semantic annotation by proposing a formalization
that can be used to enrich both domain and structure semantics of different types of
models. The meta-model of the semantic annotation (Section 3.1.1) is proposed to
describe the major components of a semantic annotation with their interrelations.
Taking advantages from the definitions of semantic blocks (Section 3.1.2), a formal
definition of the semantic annotation is proposed. This definition identifies and depicts
all the essential elements of a semantic annotation (Section 3.1.3). This formalization
provides a blueprint for generating a semantic annotation schema. In Section 4.2.1 we
present one of the possible designs of the data structure that formally represents the
semantic annotations.
(5) How to semantically enrich a knowledge representation and how can these

enriched semantics contribute to the semantic interoperability in a PLM
environment?

Section 3.3.1 presents the main procedures of how to perform the semantic
enrichments and how the enriched semantics can be used in a single knowledge
representation. Section 3.3.2 gives an overall architecture of the framework, which
supports annotator to perform semantic enrichment and to use the semantic annotations
in a PLM environment. A prototype annotation tool is designed and implemented to
instantiate the formal semantic annotations. It also demonstrates its applicability and
usability of our semantic enrichment solution. Taking advantages from the design of
the data structure and the semantic annotation workflow, we design two steps of
semantics enrichment (Section 4.2.2 and 4.2.3) and implemented them (Section 4.3.1)
in the prototype tool. It assists an annotator in using the meta-model ontologies and the
PLC-related ontologies to make explicit the structure semantics and the domain
semantics in a model.

In this work, the enriched semantics is mainly used to contribute in two main
aspects: assisting the creation of models and supporting the detection of possible
mistakes. Three main steps are proposed for achieving these two purposes: the
suggestion of semantic annotations (Section 3.2.1), the detection of inconsistencies
between semantic annotations and the identification of possible conflicts in a model
(Section 3.2.3). Based on these three steps, we designed the corresponding functions in
the prototype annotation tool (Section 4.2.3) and we implemented them (Section 4.3.2
and 4.3.3) for supporting an annotator to perform the reasoning on the existing semantic

Chapter 6 Conclusions and Future Works

136

annotations.

6.2 Summary of the Contributions

In conclusion, the proposed solution in this thesis provides some fundamental
contributions, which are remarked as follows:

 We presented an in-depth survey on the current semantic annotation researches,
which provides a detailed classification and a comprehensive comparison.
Based on this investigation, we identify the existing drawbacks and potential
challenges.

 The semantic annotation meta-model that unambiguously describes the major
components of a semantic annotation and their interrelations. The formal
definitions of a semantic annotation, which can be used as a basis to create
semantic annotation schemas for realizing the semantic enrichment of models.

 We proposed two kinds of semantic blocks: the semantic blocks for the
semantics description and the semantic blocks for semantics substitution. This
proposition can be adapted to other researches that need the aggregation of
semantics.

 The three reasoning mechanisms that show and validate the usages of semantic
enrichments.

 The semantic annotation procedure that provides a guideline to show how to
apply formal semantic annotations and how to benefit from them.

 The semantic annotation framework that shows the four main modules and
their inter actions that are needed to perform the semantic enrichment along a
PLM environment.

 The semantic annotation prototype, which shows as much as possible the
details of the life cycle of a semantic annotation from the initial creation step
to the final inference step.

6.3 Limitations and Perspectives

From a general point of view, the discussion of the limitations and the perspectives
can start from the three hypotheses that are presented in the Section 1.2.5. These
hypotheses, highlighted in this research work, can be considered as three important
factors that affect the semantic enrichment.

(1) All the knowledge that is needed for the semantic enrichment of models has
already been captured, represented and formalized into ontologies.

We understand that the cost of the creation of a new ontology and the management

Chapter 6 Conclusions and Future Works

137

of ontology need lots of resources and might decrease the benefits of related approach.
However in order to achieve the semantic interoperability, one way or another, a
common and shared knowledge base needs to be created. Ontology that captures
stakeholder’s knowledge can be widely used in many ways. For example, it can be used
for improving the semantic information retrieval [125], supporting meaningful
semantic verification [126] and assisting the semantic integration of information[127].
Semantic annotation is a way to support the semantic interoperability, which is also
benefiting from those formalized concepts in ontology. Though this hypothesis is strong
assumptions that limit the research problem area, the researches to support them are out
of the objective of this P.hD research.

(2) The corresponding interconnections among all the used ontologies have
already been prepared through certain methods.

The interconnections among ontologies are the fundamental of using multiple
ontologies together to perform semantic enrichment and perform inference on semantic
annotations. The absence of these interconnections results in unsafe inference results.
Reasoning engines are not able to perform reasoning on concepts coming from different
ontologies which do not have relationships (directly or indirectly) between each other.

(3) The semantic similarity between two objects can be compared through certain
mechanisms.

In this work, the semantic relationships between two objects are used as the basis
to support the reasoning. The more precise semantic similarities are, the more precise
results can be produced. These semantic similarity comparison results might be
enhanced with the assistance of the Nature Language Processing techniques and the
Artificial Intelligence techniques.

From the practical point of view, the prototype implementation and validation
shows the possibility of using the formalization of semantic annotations for system
interoperability in a PLM environment. However, the limitations of this implementation
need to be pointed out. The SAP-KM is not a commercial software, but a tool developed
through previous and on-going research. This positioning of the prototype results in
complex graphical user interfaces. Several possible improvements are listed as
perspectives:

(1) Creating mappings between the meta-model of the model of interest and the
selected meta-model ontology for assisting the automatic explicitation of
structure semantics.

(2) Creating automatic semantic block delimitation mechanisms to assist the
explicitation of domain semantics (see for example, the method proposed by

Chapter 6 Conclusions and Future Works

138

Yahia et al. [118]).
(3) Creating a more complete set of SBR delimitation rules to decrease the

annotators’ workload. This is for taking in to account all the possible meta-
model element combinations that can be found in a modelling language
specification.

(4) Improving the reasoning engine (as discussed at the end of the Section 5.2.3)
to enable the semi-automatic or automatic similarity comparison between two
domain semantics of an annotated object.

(5) Applying the proposed solution in a real and larger scale industrial facility with
more applications and more complex information flows. In this way, the
applicability of the proposed solution can be evaluated more completely.

Furthermore, in the context of a PLM, three interesting directions can also be
considered as future works.

(1) For enabling the traceability of requirements. With the assistance of semantics
annotation, it is possible to trace the validation of each requirement in every
stage of the product lifecycle, from the initial design until the final deposit of.

(2) For the explicitation the relationships among TKRs. Semantic annotations not
only make explicit the “implicit semantics” and guarantee the correctness of
“explicit semantics” of a TKR, but they can also be used to make explicit the
hidden relationships among all the disperse TKRs along the product lifecycle.

(3) For addressing the versioning of models. The issue about the versioning of
models in a PLC is difficult to be avoided. Semantically enriching models
gives the possibility to ensure that the modified model contents do not
semantically in conflict with existing ones.

In a nutshell, the purpose of this work is to deal with the issue of semantic
interoperability. Despite of some limitations, as discussed in this section, we are
convinced that the proposed formalization of semantic annotations is able to support
and guarantee the mutual understanding of the semantics inside the shared and
exchanged information in a PLM environment.

APPENDICES

139

APPENDICES

APPENDIX Number Content

APPENDIX I Web Ontology Language (OWL)
APPENDIX II Semantic Annotation Schema

APPENDIX III Pseudo Codes

APPENDIX I Web Ontology Language (OWL)

140

APPENDIX I Web Ontology Language (OWL)

Web Ontology Language (OWL) is a language for defining and instantiating web
ontologies, which provides three increasingly expressive sub-languages: OWL Lite,
OWL DL and OWL Full [128]. OWL Lite is considered as a simplest version of OWL
with a lower expressiveness, which only provides a classification hierarchy and simple
constraint features. On the contrary, OWL Full provides the maximum expressiveness
and the syntactic freedom of Resource Description Framework (RDF), but without
computational guarantees. Compared with OWL Lite and OWL Full, OWL DL not only
supports the maximum expressiveness without losing computational completeness but
also provides the decidability for inference. Due to the needs of expressive restriction
constructs and the supports degrees of reasoning, OWL DL is frequently adopted by
many different researches.

The basic elements of an OWL ontology are classes (OWL class), properties
(OWL property) and instances of classes (OWL individual). An OWL class is used to
define a concept in an ontology, while an OWL individual is used to define one member
of an OWL class. An OWL property is a binary relation, which can be classified into
two kinds:

(1) Datatype property (owl:DatatypeProperty) that signifies the relation between
OWL individuals and a RDF literal (e.g. refs:Literal) or a XML Schema
datatype (e.g. xsd:srting);

(2) Object property (owl:ObjectProperty) that represents the relations between
two OWL individuals. This relation could have a domain (rdfs:domain) and a
range (rdfs:range).

In order to provide a more powerful mechanism for enhanced reasoning capability,
OWL specifies five property characteristics, as shown in the Table I-1.

Table I-1 Five types of OWL Property Characteristics [128]

Property Characteristic Assumed Conditions Conclusion

TransitiveProperty P is a transitive property ;
x, y and z are OWL individuals.

P(x, y) ⋀ P(y, z)→ P (x, z)

SymmetricProperty P is a symmetric property;
x and y are OWL individuals.

P(x, y) ↔ P(y, x)

FunctionalProperty P is a functional property;
x, y and z are OWL individuals.

P(x, y) ⋀ P(x, z) → y=z

InverseOf P is inverse property of Q;
x and y are OWL individuals.

P(x, y) ↔ Q(y, x)

InverseFunctionalProperty P is an inverse functional property; P(y, x) ⋀ P(z, x) → y=z

APPENDIX I Web Ontology Language (OWL)

141

x, y and z are OWL individuals.

Besides designating the property characteristics, OWL distinguishes two kinds of
property restrictions to support the class description, as shown in the Table I-2: (1) value
constraint, which puts constraints on the range of a property; (2) cardinality constraint,
which puts constraints on the number of values a property can contain.

Table I-2 Two kinds of OWL Property Restrictions [79]

Types of
Restriction

Property

Restriction

Conditions and Conclusions

Value
Constraint26

allValuesFrom P has an allValuesFrom constraint on class D and links
to R; R can be a class description or data range. ∀x א D ⋀ P (x, y) → ∀y א R

someValuesFrom P has a someValuesFrom constraint on class D and links
to R; R can be a class description or data range. ∀x א D ⋀ P (x, y) → ∃y א R

hasValue

P has a hasValue constraint on class D and links to a
values v; v can be an individual or a data value. ∀x א D ⋀ P(x, y) → ∃y = v

Cardinality

Constraint27
maxCardinality

P has a maxCardinality constraint on class D and links to
n; n is a nonnegative integer data value. ∀x א D ⋀ P(x, y) → for each x, there is at most n
semantically distinct y.

miniCardinality

P has a minCardinality constraint on class D and links to
n; n is a nonnegative integer data value ∀x א D ⋀ P(x, y) → for each x, there is at least n
semantically distinct y.

cardinality P has a cardinality constraint on class D and links to n; n
is a nonnegative integer data value. ∀x א D ⋀ P(x, y) → for each x, there is exactly n
semantically distinct y.

Further, OWL also provides a number of basic set operators (such as union,
intersection and complement) to support the creation of the class expressions. Figure I-
1 shows an example of a part of an OWL ontology, in which, “Operation”,
“TimeDescription”, “DurationDescription” and “Turning” are defined as OWL classes.
The “BasesTurning” is an individual of the class “Operation”. The “TETime” is an
individual of the class “DurationDescription”. The OWL object property “needsETime”
is characterised as a functional property. Together with a cardinality constraint, the

26 In hasValue constraint, “ = ” is semantically equal: when v is a data value, it means same value; when v is an

individual, it means with the same URI reference or defined as the same individual (owl:sameAs) [79].
27 Semantically distinct: For datatypes, it means different values; for individuals, it means the those individuals are

defined as the different individuals from each other (owl: differentFrom or owl:AllDifferent)

APPENDIX I Web Ontology Language (OWL)

142

 <owl:ObjectProperty rdf:about="&aipl;needsETime">
 <rdf:type rdf:resource="&owl;FunctionalProperty"/>
 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:about="&aipl;hours"/>

<owl:Class rdf:about="&aipl;Operation"/>
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 </owl:Class>

<owl:Class rdf:about="&aipl;TimeDescription"/>
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 </owl:Class>
 <owl:Class rdf:about="&aipl;DurationDescription">
 <rdfs:subClassOf rdf:resource="&aipl;TimeDescription"/>
 </owl:Class>
 <owl:Class rdf:about="&aipl;Turning">
 <rdfs:subClassOf rdf:resource="&aipl;Operation"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&aipl;needsETime"/>
 <owl:onClass rdf:resource="&aipl;DurationDescription"/>
 <owl:qualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">
 1</owl:qualifiedCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

 <owl:NamedIndividual rdf:about="&aipl;BasesTurning">
 <rdf:type rdf:resource="&aipl;Turning"/>
 <needsETime rdf:resource="&aipl;TETime"/>
 </owl:NamedIndividual>
 <owl:NamedIndividual rdf:about="&aipl;TETime">
 <rdf:type rdf:resource="&aipl;DurationDescription"/>
 <hours rdf:datatype="&xsd;float">0.1</hours>
 </owl:NamedIndividual>

“needsETime” used to define the relationship between the class “Operation” and the
class “DurationDescription”; the “hours” is an OWL data property, which defines the
relationship between “TETime” and a data value “0.1”.

Figure I-1 The Example of a Segment of an OWL ontology

Although OWL has a series of language constructs to support the representation
of knowledge, as indicated in research [129], it still lacks power of expression
capabilities; for example, the expression of relation chain (e.g. child of married parents).
Because of this reason, reasoning rules are proposed to address this issue trough
expressing and adding user-defined rules as a complement to the OWL.

A reasoning rule can be considered as an implication between an antecedent (body)
and a consequent (head), which intends to state that if the conditions specified in the
antecedent part are satisfied, then the conditions specified in the consequent part must
also be satisfied. Various kinds of reasoning rules have been proposed, for example,

Data Property

 Object Property

 Classes

 Individuals

Property Restriction

Property Characteristic

APPENDIX I Web Ontology Language (OWL)

143

Jena Rules [123], SWRL [130], Jess Rules[131] and so on. Different reasoning rules
have their own rule format and corresponding reasoning engines. Figure I-2 shows the
abstract syntax of Jena Rules.

Figure I-2 The Abstract Syntax of Jena Rules[123]

With supports from existing reasoning engines, such as, among others, Jena
Reasoners [132], Pellet [133] and Jess Rule Engine [131], ontology users are able to
discover the advantages of reasoning based on the input ontologies and corresponding
reasoning rules. For example, to mention only a few, the consistency checking
(guarantees an ontology has not contradictory facts), the concept satisfiability (verifies
whether a class can have any instances or not), the classification (determines the
subclass relations between every named class), the realization (finds the most specific
classes that an instance belongs to).

In this work, the Jena rules syntax is chosen as the format to formalize our
reasoning rules. Consequently the Jena Reasoners are used as the reasoning engines to
support the development of prototype annotation tool.

Rule ::= bare-rule .
 or [bare-rule]
 or [ruleName : bare-rule]
bare-rule := term, ... term -> hterm, ... hterm // forward rule
 or term, ... term <- term, ... term // backward rule
hterm ::= term
 or [bare-rule]
term ::= (node, node, node) // triple pattern
 or (node, node, functor) // extended triple pattern
 or builtin(node, ... node) // invoke procedural primitive
functor ::= functorName(node, ... node) // structured literal
node ::= uri-ref // e.g. http://foo.com/eg
 or prefix:localname // e.g. rdf:type
 or <uri-ref> // e.g. <myscheme:myuri>
 or ?varname // variable
 or 'a literal' // a plain string literal
 or 'lex'^^typeURI // a typed literal, xs:* type names supported
 or number // e.g. 42 or 25.5

APPENDIX II Semantic Annotation Schema

144

APPENDIX II Semantic Annotation Schema

The empty semantic annotation schema is show as follows:

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
 <!ENTITY j.0 "http://jena.hpl.hp.com/2003/RuleReasoner#" >
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY SANS "http://www.semanticweb.org/ontologies/2013/6/SemanticAnnotations#" >

]>

<rdf:RDF xmlns="http://www.semanticweb.org/ontologies/2013/6/SemanticAnnotations#"
 xml:base="http://www.semanticweb.org/ontologies/2013/6/SemanticAnnotations"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:j.0="http://jena.hpl.hp.com/2003/RuleReasoner#"
 xmlns:SANS="http://www.semanticweb.org/ontologies/2013/6/SemanticAnnotations#">
 <owl:Ontology rdf:about="http://www.semanticweb.org/ontologies/2013/6/SemanticAnnotations"/>

 <owl:ObjectProperty rdf:about="&SANS;PR"/>

 <owl:ObjectProperty rdf:about="&SANS;PR_intersects">
 <rdf:type rdf:resource="&owl;SymmetricProperty"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 <rdfs:domain rdf:resource="&SANS;P"/>
 <rdfs:subPropertyOf rdf:resource="&SANS;PR"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;PR_isDisjointWith">
 <rdf:type rdf:resource="&owl;SymmetricProperty"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 <rdfs:domain rdf:resource="&SANS;P"/>
 <rdfs:subPropertyOf rdf:resource="&SANS;PR"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;PR_isEquivalentTo">
 <rdf:type rdf:resource="&owl;SymmetricProperty"/>
 <rdf:type rdf:resource="&owl;TransitiveProperty"/>
 <rdfs:domain rdf:resource="&SANS;P"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 <rdfs:subPropertyOf rdf:resource="&SANS;PR"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;PR_isSubsumedBy">
 <rdf:type rdf:resource="&owl;TransitiveProperty"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 <rdfs:domain rdf:resource="&SANS;P"/>
 <rdfs:subPropertyOf rdf:resource="&SANS;PR"/>
 </owl:ObjectProperty>

APPENDIX II Semantic Annotation Schema

145

 <owl:ObjectProperty rdf:about="&SANS;PR_subsumes">
 <rdf:type rdf:resource="&owl;TransitiveProperty"/>
 <rdfs:domain rdf:resource="&SANS;P"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 <rdfs:subPropertyOf rdf:resource="&SANS;PR"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;SR"/>

 <owl:ObjectProperty rdf:about="&SANS;SR_intersects">
 <rdfs:domain rdf:resource="&SANS;E"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 <rdfs:subPropertyOf rdf:resource="&SANS;SR"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;SR_isDisjointWith">
 <rdfs:domain rdf:resource="&SANS;E"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 <rdfs:subPropertyOf rdf:resource="&SANS;SR"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;SR_isEquivalentTo">
 <rdfs:domain rdf:resource="&SANS;E"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 <rdfs:subPropertyOf rdf:resource="&SANS;SR"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;SR_isSubsumedBy">
 <rdfs:domain rdf:resource="&SANS;E"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 <rdfs:subPropertyOf rdf:resource="&SANS;SR"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;SR_subsumes">
 <rdfs:domain rdf:resource="&SANS;E"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 <rdfs:subPropertyOf rdf:resource="&SANS;SR"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;hasMainConcept">
 <rdfs:domain rdf:resource="&SANS;P"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;hasSBEntity">
 <rdfs:domain rdf:resource="&SANS;P"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;hasSBRelation">
 <rdfs:domain rdf:resource="&SANS;P"/>
 <rdfs:range rdf:resource="&SANS;SBRelations"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;isAnnotatedBy">
 <rdfs:domain rdf:resource="&SANS;E"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;isConflictWith">
 <rdf:type rdf:resource="&owl;SymmetricProperty"/>

APPENDIX II Semantic Annotation Schema

146

 <rdfs:domain rdf:resource="&SANS;E"/>
 <rdfs:range rdf:resource="&SANS;E"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;isConsistentWith">
 <rdf:type rdf:resource="&owl;SymmetricProperty"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 <rdfs:domain rdf:resource="&SANS;P"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;isInferredFrom">
 <rdfs:range rdf:resource="&SANS;E"/>
 <rdfs:domain rdf:resource="&SANS;P"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;isNotConsistentWith">
 <rdf:type rdf:resource="&owl;SymmetricProperty"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 <rdfs:domain rdf:resource="&SANS;P"/>
 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="&SANS;isPosConsistentWith">
 <rdf:type rdf:resource="&owl;SymmetricProperty"/>
 <rdfs:domain rdf:resource="&SANS;P"/>
 <rdfs:range rdf:resource="&SANS;P"/>
 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:about="&SANS;hasLongNS"/>

 <owl:Class rdf:about="&SANS;E">
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 </owl:Class>

 <owl:Class rdf:about="&SANS;MME">
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 </owl:Class>

 <owl:Class rdf:about="&SANS;NSstore">
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 </owl:Class>

 <owl:Class rdf:about="&SANS;P">
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 </owl:Class>

 <owl:Class rdf:about="&SANS;SBRelations">
 <rdfs:subClassOf rdf:resource="&owl;Thing"/>
 </owl:Class>
</rdf:RDF>

APPENDIX III Pseudo Codes

147

APPENDIX III Pseudo Codes

Pseudo Code 1. This pseudo code is in charge of adding a selected individual, its
properties and the objects of the properties into a semantic block, namely the contents
of a p (an individual of the Class “P”)

Get p, the selected individual, the selected property and the object of the propoerty
// the function to add a selected individual, its properties and the objects of the properties into a semantic block,
namely the contents of a p (an individual of the Class “P”)
{ Get the namespaces of the selected individual(ni), property(np), and the object(no);
 Get the local names of the selected individual (li), property(lp), and the object(lo);
 Get the list of objects that the “hasSBEntity” (p’s) points to;
 If the selected individual is not existed in this list
 { Add “hasSBEntity” from p to the selected individual;
 }
 If the selected object is not existed in this list
 { Add “hasSBEntity” from p to the object;
 }
 Get the list of individuals of the class “SBRelations”;
 Get the first six characters of the local names of these individuals, and put them into a
 string array LN; Produce a random six numbers (to string) rn, until it do not equal to any
 string in the LN;

 Get the list of individuals of the class “NSstore”;
 Get the numbers of individuals n of the class “NSstore”;
 Create a string array L;
 Create a variable nis to represent the abbreviation of li;
 Create a variable i to compare with the numbers of individuals;
 For each the individual of the class “NSstore”
 { Get the object of the property “hasLongNS” (this individual’s) points to;
 Put the local name of the individual into L;
 i++;
 if the object (to string) equals to ni;
 { Set nis as the local name of this individual;
 }
 }
 If the i < n
 { Set nis as a random six letters string, until it do not equal to any strings in the L;
 Create an individual X to the Class “NSstore”, named it as the value of nis;
 Add “hasLongNS” from X to a data value equals to the ni;
 }
 Same processes for np and no, to acquire their abbreviation nps and nos

 Format a string S as rn+“-”+nis+”- ”+li+”_____”+nps+”-”+lp+”_____”+nos+”-”+lo;
 Create an individual K of class “SBRelations”, named it as the string S;
 Add “hasSBRelation” from p to K;
}

APPENDIX III Pseudo Codes

148

Pseudo Code 2. This pseudo code is in charge of decomposing a SBRelation

Pseudo Code 3. This pseudo code is in charge of getting the list of Properties of a p’s
main concept.

Get the SBRelation //The function to decompose a SBRelation and return real values
{ Decompose SBRelation based on its name syntax;
 Get the three namespace abbreviations na1, na2 and na3;
 Get the three local names n1, n2 and n3;
 Create three variable v1, v2 and v3;
 Get the list of individuals Z of the class “NSstore”;
 For each individual i1 in the list Z
 { If the local name of the i2 equals to the na1
 { Get the real name space rns1 through the property “hasLongNS”;
 Set the value of v1 as the value of rns1;
 }
 Same processes for the na2 to get the real name space and put into v2;
 Same processes for the na3 to get the real name space and put into v3;
 }
 }
 Format a string s1 as v1+n1;
 Format a string s2 as v2+n2;
 Format a string s3 as v3+n3;
 Return the s1, s2, s3
}

Get the InfModel;
Get the selected individual e;
Get the list of individuals X in the class “P”, which are used to annotate the e;
For each individual p in the list X
{ Get the main concept mc of the p through the property “hasMainConcept”;
 Get the list of SBRelations Y of the p through the property ”hasSBRelation”’;
 For each individual i1 in the list Y
 { Use the SBRelation decomposition function on the i1 and get the s1, s2 and s3;
 //(The Pseudo Codes 2)
 If the s1equals to mc
 { Add the s2 to the list view;
 }
 }
}

APPENDIX III Pseudo Codes

149

Pseudo code 4. This pseudo code is in charge of the suggestion of semantic annotations.

Get the InfModel; // of course all the property needs their namespaces
Get the list of association;
For each association in the that list;
{ Get the first property x and the second property y;
 Get the list of individuals L1of the class “E”;
 For each individual i1 in the list L1
 { Get the list of objects L2 of the i1 through the first property x;
 For each object o1 in the list L2
 {Get the list of objects L3 of the i1 through the property “SR_subsumes”
 For each object p1 in the list L3
 { Get the main concept mc of the p1 through the property “hasMainConcept”;
 Get the list of objects L4 of the mc through the second property y
 For each object e1 in the list L4
 {Create an individual p2 in the class “P” based on the name syntax of the p୨;
 Add “hasMainConcept” from the p2 to the e1;
 Create a string array AR;
 Get the list of objects L5 of the p1 through the property “hasSBRelation”
 For each object SBRelation1 in the list L5
 { Use the SBRelation decomposition function on the SBRelation1
 and get the s1, s2 and s3; //(The Pseudo Code 2)
 Save the s1, s2 and s3 into AR;
 }
 Traverse the array AR, discover all the paths related to the e1
 Add traverse results to p2; //(The Pseudo Code 1)
 Add “SR_subsumes” property from the e1 to the p2;
 }
 }
 }
 }
}

APPENDIX III Pseudo Codes

150

Pseudo Code 5. This pseudo code is in charge of one of the mistake identification
algorithms.

 Get the InfModel; // of course all the property needs their namespaces
Get the list of association;
For each association in the that list;
{ Get the first property x;
 Get the list of individuals L1of the class “E”;
 For each individual i1 in the list L1
 { Get the list of objects L2 of the i1 through the first property x;
 Create array AR1, AR2 and AR3;
 For each object o1 in the list L2
 { Get the list of object L3 of the o1 through the property “isAnnotatedBy”
 For each individual i2 in the list L3
 { If i2 has the property “isInferredFrom”
 { If the object of this property is i1
 { Save the i2 into AR2;}
 }
 else
 { Save the i2 into AR1;}
 }
 For each individual i3 in AR1
 { Create a variable v1=0;

 For each individual i4 in AR2
 { If i3 has the property “isConsistentWith” or “isPosConsistentWith” to i4
 { Save the i4 into AR3;
 v1=1;
 }
 }
 If v1=0 // i3 is conflict with all inferred semantic annotations
 { Add property “isConflictWith” between i1 and o1;}
 }
 }
 For each individual i5 in the AR2, if i5 is not existed in the AR3
 {
 Get the main concept mc of i5,
 Add a warning to specify the mc (i5) of i1 is not be satisfied ;j
 }
 }
}

References

151

References

1. Ameri, F., Dutta, D.: Product lifecycle management: closing the knowledge loops.
Comput.-Aided Des. Appl. 2, 577–590 (2005).

2. CIMdata: PDM to PLM: Growth of An Industry. (2003).
3. Elgueder, J., Cochennec, F., Roucoules, L., Rouhaud, E.: Product–process

interface for manufacturing data management as a support for DFM and virtual
manufacturing. Int. J. Interact. Des. Manuf. IJIDeM. 4, 251–258 (2010).

4. Ackoff, R.L.: From Data to Wisdom. J. Applies Syst. Anal. 16, 3–9 (1989).
5. Zeleny, M.: Management support systems: towards integrated knowledge

management. Management. 1, 7 (1980).
6. Leibniz, G.W.: The Monadology. In: Loemker, L.E. (ed.) Philosophical Papers

and Letters. pp. 643–653. Springer Netherlands, Dordrecht (1989).
7. O’Leary, D.E.: Enterprise knowledge management. Computer. 31, 54–61 (1998).
8. Euzenat, J.: Towards a principled approach to semantic interoperability. Presented

at the IJCAI 2001, workshop on ontology and information sharing , Seattle, USA
August (2001).

9. Panetto, H.: Towards a classification framework for interoperability of enterprise
applications. Int. J. Comput. Integr. Manuf. 20, 727–740 (2007).

10. Boudjlida, N., Panetto, H.: Annotation of enterprise models for interoperability
purposes. In: IEEE (ed.) IEEE International Workshop on Advanced Information
Systems for Enterprises, IWAISE’2008. pp. 11–17. , Constantine, Algeria (2008).

11. Oren, E., Hinnerk Möller, K., Scerri, S., Handschuh, S., Sintek, M.: What are
Semantic Annotations? (2006).

12. Liao, Y., Lezoche, M., Panetto, H., Boudjlida, N.: Semantic Annotation Model
Definition for Systems Interoperability. In: Meersman, R., Dillon, T., and Herrero,
P. (eds.) On the Move to Meaningful Internet Systems: OTM 2011 Workshops. pp.
61–70. Springer Berlin Heidelberg (2011).

13. Liao, Y., Lezoche, M., Panetto, H., Boudjlida, N.: Why, Where and How to use
Semantic Annotation for Systems Interoperability. 1st UNITE Doctoral
Symposium. pp. 71–78. , Bucarest, Roumanie (2011).

14. Liao, Y., Lezoche, M., Rocha Loures, E., Panetto, H., Boudjlida, N.:
Formalization of Semantic Annotation for Systems Interoperability in a PLM
environment. OTM 2012 Workshops 2nd INBAST. pp. 207–218. Rome, Italy
(2012).

15. Liao, Y., Lezoche, M., Rocha Loures, E., Panetto, H., Boudjlida, N.: Semantic
Enrichment of Models to Assist Knowledge Management in a PLM environment.
21 st International Conference on Cooperative Information Systems (CoopIS
2013). , Graz, Austria (2013).

16. Cross, N.: Designerly ways of knowing: design discipline versus design science.
Des. Issues. 17, 49–55 (2001).

17. Rink, D.R., Swan, J.E.: Product life cycle research: A literature review. J. Bus.
Res. 7, 219–242 (1979).

18. Stark, J.: Product Lifecycle Management. Product Lifecycle Management. pp. 1–
16. Springer London (2011).

19. Birou, L., Fawcett, S.E., Magnan, G.M.: Integrating Product Life Cycle and
Purchasing Strategies. J. Supply Chain Manag. 33, 23–31 (1997).

20. Ball, A., Ding, L., Patel, M.: An approach to accessing product data across system

References

152

and software revisions. Adv. Eng. Informatics. 22, 222–235 (2008).
21. Abramovici, M.: Future trends in product lifecycle management (PLM). The

future of product development. pp. 665–674. Springer (2007).
22. Hewett, A.: Product Lifecycle Management (PLM): Critical Issues and

Challenges in Implementation. Information Technology and Product
Development. pp. 81–105. Springer (2009).

23. Bellinger, G., Castro, D., Mills, A.: Data, information, knowledge, and wisdom.
(2004).

24. Stafford, S.P.: Data, information, knowledge, and wisdom. Knowl. Manag. Organ.
Intell. Learn. Complex. Encycl. Life Support Syst. EOLSS Www Eolss Net
Accessed. 22, (2006).

25. Nunamaker, J.J.F., Romano Jr, N.C., Briggs, R.O.: Increasing intellectual
bandwidth: generating value from intellectual capital with information technology.
Group Decis. Negot. 11, 69–86 (2002).

26. Polanyi, M.: The tacit dimension. Peter Smith Gloucester, MA (1966).
27. Nonaka, I.: A dynamic theory of organizational knowledge creation. Organ. Sci.

5, 14–37 (1994).
28. Kim, Y.-G., Yu, S.-H., Lee, J.-H.: Knowledge strategy planning: methodology and

case. Expert Syst. Appl. 24, 295–307 (2003).
29. Tsoukas, H., Vladimirou, E.: What is organizational knowledge? J. Manag. Stud.

38, 973–993 (2001).
30. Yim, N.-H., Kim, S.-H., Kim, H.-W., Kwahk, K.-Y.: Knowledge based decision

making on higher level strategic concerns: system dynamics approach. Expert Syst.
Appl. 27, 143–158 (2004).

31. Polanyi, M.: Personal knowledge: Towards a post-critical philosophy.
Psychology Press (1958).

32. Virtanen, I.: Epistemological Problems Concerning Explication Of Tacit
Knowledge. J. Knowl. Manag. Pr. 11, (2010).

33. Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation? AI Mag.
14, 17 (1993).

34. Prusak, L.: Where did knowledge management come from? IBM Syst. J. 40,
1002–1007 (2001).

35. Hlupic, V., Pouloudi, A., Rzevski, G.: Towards an integrated approach to
knowledge management:“hard”,“soft”and “abstract”issues. Knowl. Process
Manag. 9, 90–102 (2002).

36. Singh, S., Chan, Y.E., McKeen, J.D.: Knowledge Management Capability and
Organizational Performance: A Theoretical Foundation. Conference at the
University of Warwick, Coventry. pp. 1–54 (2006).

37. Quintas, P., Lefrere, P., Jones, G.: Knowledge management: A strategic agenda.
Long Range Plann. 30, 385–391 (1997).

38. Olla, P., Holm, J.: The role of knowledge management in the space industry:
important or superfluous? J. Knowl. Manag. 10, 3–7 (2006).

39. Schultze, U., Leidner, D.: Studying knowledge management in information
systems research: discourses and theoretical assumptions. Manag. Inf. Syst. Q. 26,
213–242 (2002).

40. Nonaka, I., Takeuchi, H.: The knowledge-creating company: How Japanese
companies create the dynamics of innovation. Oxford University Press, USA
(1995).

41. IEEE Standard Computer Dictionary. A Compilation of IEEE Standard Computer

References

153

Glossaries. IEEE Std 610. 1– (1991).
42. Le Moigne, J.-L.: La théorie du système général: théorie de la modélisation.

Presses Universitaires de France-PUF (1994).
43. W3C: Extensible Markup Language (XML) 1.1 (Second Edition),

http://www.w3.org/TR/xml11/.
44. W3C: Web services description language (WSDL) 1.1,

http://www.w3.org/TR/wsdl.
45. W3C: Semantic Annotations for WSDL and XML Schema,

http://www.w3.org/TR/2007/REC-sawsdl-20070828/.
46. Commission, E.: European interoperability framework for pan-european

egovernment services. IDA Work. Doc. Version. 2, (2004).
47. Pokraev, S., Quartel, D., Steen, M.W.A., Reichert, M.: Semantic Service

Modeling: Enabling System Interoperability. In: Doumeingts, P.G., Müller, P.J.,
Morel, P.G., and Vallespir, P.B. (eds.) Enterprise Interoperability. pp. 221–230.
Springer London (2007).

48. Etienne, A., Guyot, E., Wijk, D.V., Roucoules, L.: Specifications and
development of interoperability solution dedicated to multiple expertise
collaboration in a design framework. Int. J. Prod. Lifecycle Manag. 5, 272–294
(2011).

49. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5, 199–220 (1993).

50. Maedche, A., Staab, S.: Measuring Similarity between Ontologies. Presented at
the 13th International Conference on Knowledge Engineering and Knowledge
Management: Ontologies and the Semantic Web , Sigüenza, Spain (2002).

51. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to
match ontologies on the Semantic Web. VLDB J. 12, 303–319 (2003).

52. Stumme, G., Maedche, A.: Ontology merging for federated ontologies on the
semantic web. Presented at the FMII-2001, International Workshop for
Foundations of Models for Information Integration , Viterbo, Italy September
(2001).

53. Čeh, M., Podobnikar, T., Smole, D.: Semantic Similarity Measures within the
Semantic Framework of the Universal Ontology of Geographical Space. In: Riedl,
D.A., Kainz, P.W., and Elmes, P.G.A. (eds.) Progress in Spatial Data Handling. pp.
417–434. Springer Berlin Heidelberg (2006).

54. Pesaranghader, A., Muthaiyah, S.: Definition-based Information Content Vectors
for Semantic Similarity Measurement. In: Noah, S.A., Abdullah, A., Arshad, H.,
Bakar, A.A., Othman, Z.A., Sahran, S., Omar, N., and Othman, Z. (eds.) Soft
Computing Applications and Intelligent Systems. pp. 268–282. Springer Berlin
Heidelberg (2013).

55. Boudjlida, N., Dong, C., Baïna, S.: A practical experiment on semantic
enrichment of enterprise models in a homogeneous environment. (2006).

56. Talantikite, H.N., Aissani, D., Boudjlida, N.: Semantic annotations for web
services discovery and composition. Comput. Stand. Interfaces. 31, 1108–1117
(2009).

57. Lin, Y.: Semantic annotation for process models: Facilitating process knowledge
management via semantic interoperability, PhD Thesis(2008).

58. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic
annotation, indexing, and retrieval. Web Semant. Sci. Serv. Agents World Wide
Web. 2, 49 – 79 (2004).

References

154

59. Miller, J., Mukerji, J.: MDA Guide Version 1.0. 1. Object Manag. Group. 234, 51
(2003).

60. OMG: Meta Object Facility (MOF) Core Specification (2.4).,
http://www.omg.org/spec/MOF/2.4.1/.

61. OMG: Unified Modeling Language (UML) Version 2.3,
http://www.omg.org/spec/UML/2.3/.

62. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput.
Program. 8, 231–274 (1987).

63. OMG: Business Process Model and Notation (BPMN) Version 2.0,
http://www.omg.org/spec/BPMN/2.0/.

64. Krasner, H., Terrel, J., Linehan, A., Arnold, P., Ett, W.H.: Lessons learned from a
software process modeling system. Commun. ACM. 35, 91–100 (1992).

65. Van der Aalst, W.M.: Formalization and verification of event-driven process
chains. Inf. Softw. Technol. 41, 639–650 (1999).

66. OMG: Unified Modeling Language (UML) Version 2.0,
http://www.omg.org/spec/UML/2.0/.

67. Uschold, M., Gruninger, M.: Ontologies: Principles, methods and applications.
Knowl. Eng. Rev. 11, 93–136 (1996).

68. Song, F., Zacharewicz, G., Chen, D.: An ontology-driven framework towards
building enterprise semantic information layer. Adv. Eng. Informatics. 27, 38–50
(2012).

69. Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-Oriented and
Frame-Based Languages. Presented at the (1995).

70. Fikes, R., Farquhar, A., Rice, J.: Tools for Assembling Modular Ontologies in
Ontolingua. Presented at the Proceedings of the 14th national conference on
artificial intelligence and 9th conference on Innovative applications of artificial
intelligence (1997).

71. Genesereth, M.R., Fikes, R.E.: Knowledge interchange format-version 3.0:
reference manual. (1992).

72. Motta, E.: An overview of the OCML modelling language. the 8th Workshop on
Methods and Languages (1998).

73. MacGregor, R.M.: Inside the LOOM description classifier. ACM Sigart Bull. 2,
88–92 (1991).

74. Lenat, D.B., Guha, R.V.: The evolution of CycL, the Cyc representation language.
ACM SIGART Bull. 2, 84–87 (1991).

75. W3C: Resource Description Framework (RDF), http://www.w3.org/RDF/.
76. Heflin, J., Hendler, J., Luke, S.: SHOE: A knowledge representation language for

internet applications. (1999).
77. Hendler, J., McGuinness, D.L.: The DARPA agent markup language. IEEE Intell.

Syst. 15, 67–73 (2000).
78. Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-Schneider,

P.F.: OIL: An ontology infrastructure for the semantic web. Intell. Syst. IEEE. 16,
38–45 (2001).

79. W3C: OWL 2 Web Ontology Language, http://www.w3.org/TR/owl2-overview/.
80. Corcho, O., Fernández-López, M., Gómez-Pérez, A.: Methodologies, tools and

languages for building ontologies. Where is their meeting point? Data Knowl. Eng.
46, 41–64 (2003).

81. Pulido, J.R.., Ruiz, M.A.., Herrera, R., Cabello, E., Legrand, S., Elliman, D.:
Ontology languages for the semantic web: A never completely updated review.

References

155

Knowl.-Based Syst. 19, 489–497 (2006).
82. Roche, C.: ONTOLOGY: A SURVEY. Presented at the 8th Symposium on

Automated Systems Based on Human Skill and Knowledge IFAC (2003).
83. Panetto, H., Dassisti, M., Tursi, A.: ONTO-PDM: Product-driven ONTOlogy for

Product Data Management interoperability within manufacturing process
environment. Adv. Eng. Informatics. 26, 334–348 (2012).

84. Zdravković, M., Panetto, H., Trajanović, M., Aubry, A.: An approach for
formalising the supply chain operations. Enterp. Inf. Syst. 5, 401–421 (2011).

85. Barbau, R., Krima, S., Rachuri, S., Narayanan, A., Fiorentini, X., Foufou, S.,
Sriram, R.D.: OntoSTEP: Enriching product model data using ontologies.
Comput.-Aided Des. 44, 575–590 (2012).

86. ISO: ISO/TS 10303 STEP modules related to Product Data Management.
Industrial automation systems and integration - Product data representation and
exchange. Geneva, Switzerland, (2004).

87. Spiby, P.: ISO 10303 industrial automation systems–product data representation
and exchange–part 11: Description methods: The express language reference
manual. ISO DIS. 10303–11 (1992).

88. Lee, C.-S., Wang, M.-H., Yan, Z.-R., Lo, C.-F., Chuang, H.-H., Lin, Y.-C.:
Intelligent estimation agent based on CMMI ontology for project planning. IEEE
International Conference on Systems, Man and Cybernetics, 2008. SMC 2008. pp.
228–233 (2008).

89. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process
Integration and Product Improvement. 2008. Upper Saddle River, NJ: Addison-
Wesley (2002).

90. Ameri, F., McArthur, C., Asiabanpour, B., Hayasi, M.: A web-based framework
for semantic supplier discovery for discrete part manufacturing. SME/NAMRC.
39, (2011).

91. Ameri, F., Dutta, D.: A matchmaking methodology for supply chain deployment
in distributed manufacturing environments. J. Comput. Inf. Sci. Eng. 8, 010301–
1 (2008).

92. IEC: Enterprise-control system integration. Part 1. Models and terminology. Part
2: Model objectattributes: ISO/IEC FDIS Standard. Geneva, Switzerland, (2002).

93. Stewart, G.: Supply-chain operations reference model (SCOR): the first cross-
industry framework for integrated supply-chain management. Logist. Inf. Manag.
10, 62–67 (1997).

94. Wand, Y., Weber, R.: An ontological model of an information system. Softw. Eng.
IEEE Trans. 16, 1282–1292 (1990).

95. Lin, Y., Krogstie, J.: Semantic annotation of process models for facilitating
process knowledge management. Int. J. Inf. Syst. Model. Des. IJISMD. 1, 45–67
(2010).

96. Gašević, D., Devedžić, V.: Petri net ontology. Knowl.-Based Syst. 19, 220–234
(2006).

97. Wongthongtham, P., Chang, E., Dillon, T., Sommerville, I.: Development of a
Software Engineering Ontology for Multisite Software Development. Knowl.
Data Eng. IEEE Trans. 21, 1205–1217 (2009).

98. Ghidini, C., Rospocher, M., Serafini, L.: A formalisation of BPMN in description
logics. Technical report TR 2008-06-004, FBK-irst (2008).

99. Bunge, M.: Treatise on basic philosophy: Vol. 3: Ontology I: The furniture of the
world. Reidel Boston. 22, (1977).

References

156

100. Billington, J., Christensen, S., Hee, K., Kindler, E., Kummer, O., Petrucci, L.,
Post, R., Stehno, C., Weber, M.: The Petri Net Markup Language: Concepts,
Technology, and Tools. In: Aalst, W.P. and Best, E. (eds.) Applications and Theory
of Petri Nets 2003. pp. 483–505. Springer Berlin Heidelberg (2003).

101. Bause, F., Kemper, P., Kritznger, P.: Abstract Petri Net Notation. Petri Nate Newsl.
9–27 (1995).

102. Sommerville, I.: Software Engineering. International computer science series.
Addison Wesley, May (2004).

103. Dupuis, R.: Software Engineering Body of Knowledge. (2004).
104. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E.,

Ciravegna, F.: Semantic annotation for knowledge management: Requirements
and a survey of the state of the art. Web Semant. Sci. Serv. Agents World Wide
Web. 4, 14–28 (2006).

105. Haas, H., Brown, A.: Web services glossary. W3C Work. Group Note 11 Febr.
2004. (2004).

106. Kopecky, J., Vitvar, T., Bournez, C., Farrell, J.: Sawsdl: Semantic annotations for
wsdl and xml schema. Internet Comput. IEEE. 11, 60–67 (2007).

107. W3C: OWL-S: Semantic Markup for Web Services,
http://www.w3.org/Submission/OWL-S/.

108. Patil, A.A., Oundhakar, S.A., Sheth, A.P., Verma, K.: Meteor-s web service
annotation framework. Proceedings of the 13th international conference on World
Wide Web. pp. 553–562 (2004).

109. Manning, C.D., Schütze, H.: Foundations of statistical natural language
processing. MIT press (1999).

110. Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna, F.:
MnM: Ontology driven semi-automatic and automatic support for semantic
markup. Knowledge Engineering and Knowledge Management: Ontologies and
the Semantic Web. pp. 379–391. Springer (2002).

111. Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D., Goranov, M.:
KIM–semantic annotation platform. The Semantic Web-ISWC 2003. pp. 834–849.
Springer (2003).

112. Ma, Y., Lévy, F., Ghimire, S.: Reasoning with annotations of texts. 24th
International FLAIRS Conference (FLAIRS11): Track AI, Cognitive Semantics,
Computational Linguistics and Logics (2011, to appear) (2011).

113. Boudjlida, N., Panetto, H., Baïna, S., Diamantini, C., Krogstie, J., Lin, Y.,
Sarraipa, J., Zouggar, N., Hahn, A., Delgado, M.: DTG4. 2: Experimental
Semantic Enrichment of Enterprise Models for Interoperability and its Practical
Impact. (2007).

114. Bergamaschi, S., Beneventano, D., Corni, A., Kazazi, E., Orsini, M., Po, L.,
Sorrentino, S.: The Open Source release of the MOMIS Data Integration System.
Proc. of the Nineteenth Italian Symposium on Advanced Database Systems,
SEBD. pp. 26–29 (2011).

115. Attene, M., Robbiano, F., Spagnuolo, M., Falcidieno, B.: Characterization of 3D
shape parts for semantic annotation. Comput.-Aided Des. 41, 756–763 (2009).

116. Li, C.: Ontology-Driven Semantic Annotations for Multiple Engineering
Viewpoints in Computer Aided Design, PhD Thesis (2012).

117. Di Francescomarino, C.: Semantic annotation of business process models, PhD
Thesis (2011).

118. Yahia, E., Lezoche, M., Aubry, A., Panetto, H.: Semantics enactment for

References

157

interoperability assessment in Enterprise Information Systems. Annu. Rev.
Control. 36, 101–117 (2012).

119. Sabou, M., Lopez, V., Motta, E., Uren, V.: Ontology selection: Ontology
evaluation on the real semantic web. (2006).

120. Vrande\vcić, D.: Ontology evaluation. Springer (2009).
121. Basil, V.R., Turner, A.J.: Iterative enhancement: A practical technique for

software development. Softw. Eng. IEEE Trans. 390–396 (1975).
122. MEGA: MEGA Java Creating a MEGA plug-in in Java. (2009).
123. Jena: The Syntax of Jena Rules, http://jena.apache.org/documentation/inference/.
124. Gouyon, D.: Contrôle par le produit des systèmes d’exécution de la production:

apport des techniques de synthèse, http://tel.archives-ouvertes.fr/tel-00081851/,
(2004).

125. Bouramoul, A., Kholladi, M.-K., Doan, B.-L.: How ontology can be used to
improve semantic information retrieval: the AnimSe finder tool. Int. J. Comput.
Appl. IJCA–ISSN. 0975–8887 (2011).

126. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated
composition of web services. Proceedings of the 11th international conference on
World Wide Web. pp. 77–88 (2002).

127. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. ACM
Sigmod Rec. 33, 65–70 (2004).

128. McGuinness, D.L., Van Harmelen, F.: OWL web ontology language overview.
W3C Recomm. 10, 10 (2004).

129. Kuba, M.: Automated trust negotiation in identity federations using OWL-based
abduction of missing credentials. Internet Technology and Secured Transactions
(ICITST), 2011 International Conference for. pp. 164–169 (2011).

130. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A semantic web rule language combining OWL and RuleML. W3C Memb.
Submiss. 21, 79 (2004).

131. Friedman-Hill, E.: JESS in Action. Manning Greenwich, CT (2003).
132. Jena: Apache Jena, http://jena.apache.org/.
133. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-

dl reasoner. Web Semant. Sci. Serv. Agents World Wide Web. 5, 51–53 (2007).

