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Abstract

The design of modern embedded systems is getting more and more complex, as more func-

tionality is integrated into these systems. At the same time, in order to meet the compu-

tational requirements while keeping a low level power consumption, MPSoCs have emerged

as the main solutions for such embedded systems. Furthermore, embedded systems are be-

coming more and more adaptive, as the adaptivity can bring a number of benefits, such as

software flexibility and energy efficiency. This thesis targets the safe design of such adaptive

MPSoCs.

First, each system configuration must be analyzed concerning its functional and non-

functional properties. We present an abstract design and analysis framework, which allows

for fast and cost-effective implementation decisions. This framework is intended as an in-

termediate reasoning support for system level software/hardware co-design environments.

It can prune the design space at its largest, and identify candidate design solutions in a

fast and efficient way. In the framework, we use an abstract clock-based encoding to model

system behaviors. Different mapping and scheduling scenarios of applications on MPSoCs

are analyzed via clock traces representing system simulations. Among properties of interest

are functional behavioral correctness, temporal performance and energy consumption.

Second, the reconfiguration management of adaptive MPSoCs must be addressed. We

are specially interested in MPSoCs implemented on reconfigurable hardware architectures

(i.e., FPGA fabrics), which provide a good flexibility and computational efficiency for adap-

tive MPSoCs. We propose a general design framework based on the discrete controller syn-

thesis (DCS) technique to address this issue. The main advantage of this technique is that

it allows the automatic controller synthesis w.r.t. a given specification of control objectives.

In the framework, the system reconfiguration behavior is modeled in terms of synchronous

parallel automata. The reconfiguration management computation problem w.r.t. multiple

objectives regarding e.g., resource usages, performance and power consumption is encoded

as a DCS problem. The existing BZR programming language and Sigali tool are employed

to perform DCS and generate a controller that satisfies the system requirements.

Finally, we investigate two different ways of combining the two proposed design frame-

works for adaptive MPSoCs. Firstly, they are combined to construct a complete design

flow for adaptive MPSoCs. Secondly, they are combined to present how the designed run-

time manager by the second framework can be integrated into the first framework so as to

perform combined simulations and analysis of adaptive MPSoCs.
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Chapter 1

Introduction

Contents
1.1 Trends in Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Trends in Embedded Systems

Embedded systems are specific-purpose computer systems combining software and hard-

ware components. They are used almost in everything that runs on electricity in our daily

life. Examples include consumer electronics, avionics, telecommunication, automotive elec-

tronics, etc. Some trends can be observed in emerging embedded systems.

❼ First, the functionality integrated into embedded systems is ever increasing. Mobile

phones, for example, have evolved from a simple device that supports only telephone

calls over radio links to the so-called smart phones (e.g., Apple iPhone, Samsung

Galaxy) that offer a wide variety of other services such as text messaging, Internet

accessing, music and video playing, camera, gaming and photography. Another exam-

ple is the car entertainment system [Schor et al. 2012], which integrates many similar

functions such as GPS, music playing, radio etc.

❼ Second, the high integration of functionality into embedded systems leads to a tremen-

dous increase in the amounts of data being processed by the systems. A mobile phone,

for example, can contain gigabytes of video, photo and music data files to process.

The amount of manipulated data is expected to double every two years in the future

in these domains [Byna & Sun 2011]. To be made useful, the data must be processed

in real-time for the users. The execution platforms must thus provide the required

computational power to do this. On the other hand, power/energy consumption min-

imization becomes more and more important as many of these devices are battery

powered. Parallel execution platforms play a key role for providing these applica-

tions with the required computational power to achieve data-intensive processing un-

der real-time and energy-efficient constraints. In order to obtain adequate execution

performances, a state-of-the-art solution consists in integrating multiple cores or pro-

cessors on a single chip, leading to as multiprocessor systems-on-chip (MPSoCs)

[Wolf et al. 2008]. For example, instead of accelerating the clock frequency of each

new processor generation, Intel [Borkar et al. 2005] has shifted to a strategy for which

multiple cores or processors are integrated on a single chip. Another example is the

STMicroelectronics Nomadik [Artieri et al. 2003], which contains an ARM926EJ as

its host processor, and two programmable accelerators for video and audio processing

respectively.
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❼ Third, adaptivity, the ability of a system to adapt itself, is becoming increasingly

desirable in embedded systems. This trend can be observed in the following three

aspects.

– Embedded applications are becoming increasing adaptive. For example, a video-

surveillance application for street observation needs to adapt its image analysis

algorithms according to factors like the human activity (crowded place or not),

luminosity (day or night) or the weather.

– Hardware components are becoming increasingly adaptive. An example is the

FPGAs, which allow run-time reconfiguration to implement different function-

alities. It provides a better trade-off of performance and flexibility compared to

application specific integrated circuits (ASICs) and general purpose processors.

Another example is the Dynamic Voltage/Frequency Scaling (DVFS) technique,

which allows the dynamic adjustments of supply voltage and clock frequency for

hardware like processors so as to reduce power/energy consumption. A third

example is the clock gated mechanism which allows processors or parts of circuits

to switch from active mode to sleep mode so as to save power/energy.

– Mapping and scheduling of applications are becoming increasing adaptive. For

example, application tasks that run on a faulty or over-heated processor need to

be dynamically migrated or remapped to another one.

The adaptation ability allows a system to adapt its behaviors in reaction to changing

environment conditions to maintain and/or optimize its behavior w.r.t. objectives

on, e.g., safety, performance and power/energy consumption. However, it further

complicates the system design.

❼ Fourth, the continuous increase in the size and complexity of future embedded sys-

tems, and the strict time-to-market pressures and design costs faced by the de-

signers have demanded the use of abstract models for early design analysis, evalu-

ation and validation. Traditional low-level approaches such as RTL level designs

or physical prototyping on FPGAs (e.g., [Lee et al. 2006] [May et al. 2010]), are be-

coming too slow, tedious and even infeasible to meet design requirements. As a re-

sult, system level methodologies based on models at different abstraction levels (e.g.,

[Cai & Gajski 2003] [Thompson et al. 2007] [Stuijk et al. 2006b]) have been proposed

to handle the given complexities with increased productivity and decreased time-to-

market. Such methodologies perform design space exploration (DSE) and evaluation

at an early design stage, and thus significantly reduce the design efforts. On the other

hand, embedded systems are often safety critical, and must function correctly. Relia-

bility and safety are more important than performance for such systems. Formal mod-

eling and analysis techniques are thus required for their designs [Edwards et al. 1997].

1.2 Problem Statement

The trends outlined in the previous section show that with more and more new features

integrated into embedded systems, multiprocessor systems-on-chips (MPSoCs) have become

a state-of-the-art solution to achieve high performance and energy-efficiency. Their design

complexity has significantly escalated. Meanwhile, they have to be adaptive, i.e., adapt

their behavior regarding frequent environment changes for better execution performances,

lower energy consumption, etc. Though the adaptivity feature can draw a lot of benefits,
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it further complicates their design. This leads to a real challenge about cost-effective and

safe design methodologies of adaptive/reconfigurable MPSoCs.

❼ Firstly, design correctness must be addressed to ensure system reliability in every

possible system configuration.

❼ Secondly, reconfiguration correctness must also be established to safely control the

variation between system configurations.

We further discuss these two design issues in some more details in the remainder of this

section.

Modern embedded systems often execute multiple tasks concurrently, invoke and finish

their executions at different moments in time. At different moments, different combinations

of executing tasks form different application configurations or scenarios that an embedded

system supports. A typical user expects that each application configuration provides pre-

dictable performance and reliability. This requires that the proper resource allocation and

mapping (i.e., the binding and scheduling of application tasks on the allocated resources)

decisions must be made for each application configuration w.r.t. system functional and

non-functional requirements. We refer this design issue as the design of a configuration

of an adaptive MPSoC.

Embedded systems are usually reactive, i.e., interact continuously with their environ-

ment at a speed imposed by the environment, and adaptive, i.e., must adapt their configu-

rations in reaction to the run-time situations. To build such systems, the reconfiguration

management issue, i.e., how to safely manage the system adaptive behavior w.r.t. system

run-time situations and system requirements, must be addressed. Such a run-time manager

needs to control and coordinate the system reconfiguration behavior in reaction to system

run-time situations according to system requirements.

Especially, different run-time situations may require a different design decision for an ap-

plication configuration. The reactive and adaptive features must be taken into account when

addressing the first design issue, i.e., the design of a configuration of an adaptive MPSoC.

The design for each application configuration thus should result in a number of different

solutions that provide a trade-off in e.g., resource usage, performance and energy/power

consumption, so that the run-time manager can choose among the design solutions w.r.t.

run-time situations. This thesis aims to deal with these two identified design issues of

adaptive MPSoCs.

1.3 Contributions

This thesis is carried out within the context of the French ANR project FAMOUS1, the

acronym for FAst Modeling and design flOw for dynamically reconfigUrable Systems. The

FAMOUS project aims at introducing a complete methodology for the design of embed-

ded systems, focusing on MPSoCs implemented on FPGA-based architectures. It covers

research in the following three key design aspects of reconfigurable/adaptive embedded

systems.

❼ High-level system modeling: it aims to define concepts necessary for modeling re-

configurable embedded systems through a Unified Modeling Language (UML) profile

based on the Model-Driven Engineering (MDE) approach. The UML Modeling and

Analysis of Real-Time Embedded systems (MARTE) profile, which provides a com-

mon way of modeling both hardware and software aspects of a system but does not

1http://www.lifl.fr/~meftali/famous/

http://www.lifl.fr/~meftali/famous/
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contain any concepts for modeling dynamic and reconfigurable behaviors, is consid-

ered and will be extended to include concepts for modeling reconfigurable behaviors.

❼ Transformation and code generation: starting from high level application models, it

aims to develop necessary model to model transformation rules, in order to allow safe

and fast code generation for both simulation and synthesis.

❼ Verification and analysis: it aims to develop formal and automated verification and

analysis methods for reconfigurable embedded systems, in order to guarantee that

their final implementations correspond with the initial system requirements.

This thesis targets the verification and analysis task of the project. It makes several con-

tributions to the identified design issues mentioned in the previous section.

❼ We propose a high-level framework named CLASSY for the rapid and cost-effective

design space exploration (DSE) devoted to the design of adaptive MPSoCs. A multi-

clock modeling of both software and hardware has been considered by exploiting

the notion of abstract clocks borrowed from synchronous data-flow languages. Our

approach is an ideal complement to lower-level design assessment techniques for MP-

SoCs, such as physical prototyping and simulation. It also aims to serve as an in-

termediate reasoning support that is usable, from very high-level MPSoC models

(e.g., in UML MARTE profile), to deal with critical design decisions. The framework

can be used to deal with the first design issue, i.e., the design of a configuration of

adaptive MPSoCs. Furthermore, it is also flexible enough to capture the adaptive

behaviors of MPSoCs, and can be used as a high level simulator for adaptive MPSoCs

to evaluate customized run-time managers. Some results of this work are presented

in [An et al. 2012a] [An et al. 2012b].

❼ We propose a general framework based on a tool-supported synchronous variant

[Marchand & Samaan 2000] of the discrete control [Ramadge & Wonham 1989] for

the reconfiguration management of adaptive MPSoCs. It favors automatic and correct-

by-construction manager derivation. We illustrate our approach by considering MP-

SoCs implemented on FPGA-based reconfigurable architectures, which can draw var-

ious benefits such as efficiency and flexibility. In the framework, the system recon-

figuration behavior is modeled in terms of synchronous parallel automata. The re-

configuration management computation problem w.r.t. multiple objectives regard-

ing e.g., resource usages, performance and power consumption is encoded as a dis-

crete controller synthesis (DCS) problem. The existing BZR programming language

and Sigali tool are employed to perform DCS and generate a controller that satisfies

the system requirements. The results of this work are presented in [An et al. 2013a]

[An et al. 2013b] [An et al. 2013c].

❼ We investigate two different ways of combining the two proposed design frameworks

for adaptive MPSoCs.

– First, they are combined to construct a complete design flow for adaptive MP-

SoCs. The design flow starts from the MARTE high level system modeling,

and then employs the two proposed design frameworks to respectively tackle

the two design issues. At last, the design results are integrated into the origi-

nal MARTE modeling framework, with which existing tools such as Gaspard2

[Gamatié et al. 2011] can be used to generate low level codes for further analysis

and implementation.
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– Second, they are combined to present how the CLASSY framework could serve

as a high level simulator and assist the designers to design and evaluate run-

time managers. To do this, the second framework based on the discrete control

technique is used for designing a run-time manager, which is integrated into the

CLASSY simulation process for analysis and evaluation.

1.4 Thesis Overview

This thesis is divided into two parts. Part I presents the state-of-the-art. It has two chapters.

Chapter 2 presents the adaptive MPSoCs, discusses their design issues and existing design

methodologies, and identifies the targeted design issues of the thesis. Chapter 3 presents the

existing models, languages and tools that can be employed to address the targeted design

issues. Among them, we identify and introduce the synchronous models, and discrete control

techniques and tools that will be applied in the thesis.

Part II exhibits the contributions of the thesis. It has three chapters. Chapter 4 presents

the abstract clock based design framework for the first design issue, i.e., the design of a

configuration of an adaptive MPSoC. Chapter 5 presents the discrete control technique

based design framework for the second design issue, i.e., the reconfiguration management of

adaptive MPSoCs. Chapter 6 presents the two different ways of combining the two proposed

design frameworks for adaptive MPSoCs. Finally, Chapter 7 concludes.
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An MPSoC is a system-on-chip that uses multiple processors as well as additional com-

ponents such as peripheral devices and memories for an application. Nowadays, MPSoCs

have emerged as the main solution for modern embedded systems [Siala & Saoud 2011], due

to their ability to meet the computation requirements of their applications while keeping a

low level power consumption. The adaptivity, an important feature of emerging MPSoCs,

draws a lot of benefits for embedded systems, and meanwhile further complicates their

design.

This chapter is organized as follows: Section 2.1 gives a general presentation of MPSoCs.

Section 2.2 presents the design issues of MPSoCs. Section 2.3 focuses on the MPSoC

adaptivity and its design issues.

2.1 General Presentation

The functionality integrated into embedded systems is ever increasing. This is typically

observed in embedded multimedia systems. The Apple iPhone, for example, has a variety

of applications that allow users to watch movies, listen to music, browse the Internet, send
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emails, use online Google navigation, etc. The users typically expect that they have high

performance, and at the same time, their energy consumption is kept at a minimal level,

especially for battery-powered embedded systems. MPSoCs have been constructed to meet

these requirements. In the following, we present the main components of MPSoC platforms.

The main components of an MPSoC platform are the processing elements (PEs), re-

sponsible for executing the applications, the on-chip memories, responsible for storing both

the application data and instructions, I/O components, responsible for communicating with

the outside world and, finally, the on-chip interconnect structure, responsible for linking the

processing elements with the memories and the I/O components [Nollet 2008]. Figure 2.1

details the MPSoC platform template considered throughout this thesis. It is based on the

tile-based multiprocessor platform described in [Culler et al. 1999] and consists of multiple

tiles interconnected by an interconnect fabric. Each tile contains a local processing element,

a local memory and a network interface (NI), which is accessed both by the local elements

inside the tile and by the interconnect. Besides, the MPSoC platform could also contain

some shared memory tiles to store large data sets (as shown in the third tile of Figure 2.1).

In the rest of this section, we give some more details of the main MPSoC components.

Processing
 Element
     (PE)

  Local
Memory

Network
Interface
    (NI)

Processing
 Element
     (PE)

  Local
Memory

Network
Interface
    (NI)

Memory

  
PE

Network
Interface
    (NI)

Interconnect

Figure 2.1: MPSoC platform template.

2.1.1 Processing Elements

Generally speaking, there exist three categories of processing elements: application-specific

integrated circuits (ASICs), general-purpose processors (GPP) and reconfigurable logic. These

three computing technologies are quite different concerning their performance, energy ef-

ficiency and degree of flexibility. The ASICs are designed to perform some specific appli-

cation, and can achieve the maximum energy efficiency and performance [Marwedel 2011].

However, they suffer long design times and the lack of flexibility. The key advantage of

general purpose processors, on the contrary, is their flexibility and rapid developments:

embedded system behavior can be changed by just changing the software running on such

processors. However, they are usually very slow and much less energy-efficient. The recon-

figurable computing technology combines the flexibility of general-purpose computing, and

high performance and energy efficiency of application-specific computing.

The number and types of PEs contained in an MPSoC platform are obviously con-

nected to the given application characteristics and requirements. Based on the types of

PEs integrated in an MPSoC platform, two MPSoC architecture families can be distin-

guished: homogeneous and heterogeneous MPSoCs. In a homogeneous MPSoC, PEs are

of the same type. Examples are multi- or many-core architectures used for general com-

puting and PCs. Heterogeneous MPSoCs are composed of different types of PEs, such

as micro-controllers, digital signal processing (DSP) processors, ASICs. In order to meet

the computational performance of novel applications, while, at the same time, reducing
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Figure 2.2: STMicroelectronics Nomadik platform, taken from [Wolf et al. 2008].

the power/energy consumption and remain flexible, there is a trend to use heterogeneous

MPSoC platforms. In [Wolf et al. 2008], the authors present a wide range of MPSoC archi-

tectures developed over the past decade, such as STMicroelectronics Nomadik, Philips Viper

Nexperia, Texas Instruments (TI) OMAP 5912. Figure 2.2, taken from [Wolf et al. 2008],

shows the STMicroelectronics Nomadik [Artieri et al. 2003], an heterogeneous MPSoC plat-

form for cellphones. It contains an ARM926EJ as its host processor, and two programmable

accelerators for video and audio processing respectively. In the thesis, both architecture

families are considered.

As mentioned at the beginning of this section, the key advantage of GPPs is their

flexibility but they are energy inefficient compared to ASICs [Marwedel 2011]. To make

them energy efficient, a number of techniques have been developed at various levels of

abstraction [Burd & Brodersen 2002]. Clock gating is an example of such a technique. It

is based on the consideration that clock signals do not perform any computation and are

mainly used for synchronization, while they are a great source of power dissipation because

of high frequency and load [Kathuria et al. 2011]. With clock gating, one can save power

by disconnecting parts of a processor from the clock during idle periods [Marwedel 2011].

Another commonly-used technique that can be applied at a rather high abstraction level

is the dynamic voltage and frequency scaling (DVFS). With DVFS, the clock frequency

of a processor can be decreased at run-time to obtain a corresponding reduction in the

supply voltage, which reduces power consumption and leads to significant reduction in the

energy required for a computation [Le Sueur & Heiser 2010] [Milutinovic et al. 2009]. For

example, the clock of the CrusoeTM processor [Klaiber 2000] could be varied between 200

MHz and 700 MHz in increments of 33 MHz w.r.t. 32 voltages levels between 1.1 and 1.6

volts. It takes about 20 ms for the transition from one frequency/voltage pair to the next.

2.1.2 Memory Architecture

Memories are used to store data, programs, etc. Memory architecture has a direct impact

on the performance and energy cost of MPSoCs. Memory access latency could make the

PE computations to wait, and thus drop overall system performance. On the other hand,

memory access also contributes to the overall system energy cost. As accessing smaller

memories usually require less time and less energy, there is a trend to use new hierarchical

memories organizations in MPSoCs instead of using a single on-chip memory. The hierarchy

can store data used by a PE in a local memory close to it, such as the MPSoC template

in Figure 2.1. Such a hierarchy can also avoid the access contention of PEs on a central

shared memory.

Caches and scratch pad memories (SPMs) are examples of small memories. They both
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have only one processor clock cycle access latency [Wolf et al. 2008]. Caches represent on

chip interfaces between PEs and memories. It requires a hardware controller to check

whether the cache has a valid copy of the data associated with a certain memory address.

In the contrary, SPMs are mapped into the address space, and thus do not need a hardware

controller. This makes SPMs more energy efficient than caches.

Some applications like multimedia applications may require access to quite large data

sets. A video processing application, for example, might require access to a complete video-

frame at HDTV resolution. Such a frame could be composed of over two million pixels, and

each pixel needs three bytes of memory. In this case, the local small memories within a tile

will typically not be large enough. An external memory is thus required in this case. This

can be seen as a memory tile of the MPSoC platform template as shown in Figure 2.1.

2.1.3 Interconnect

There are a number of interconnect technologies that can be used by an MPSoC platform.

The authors of [Siala & Saoud 2011] give a survey of existing interconnects w.r.t. communi-

cation topology and strategy. In the thesis, we mainly consider bus and Network-on-Chips

(NoCs).

Bus is the traditional interconnection architecture in MPSoCs. The arbitration policy of

the bus has a direct impact on the performances of an MPSoCs. The communication by bus

has the main advantage of simplicity (i.e., a single channel of communication), and requires

thus relatively less design time. On the other hand, the bus architecture is not efficient

[Lee et al. 2008], since it has a limited bandwidth and the available throughput between

two PEs connected to it is inversely proportional to the number of PEs connected to it

[Siala & Saoud 2011]. Therefore, bus is the good choice for the architectures with small

number of PEs, but it would cause low performance and high power/energy consumption

issues when the number of PEs grows big.

Network-on-Chip (NoC) is an emerging paradigm for the communication within MP-

SoCs. An NoC consists of network adapters, routing nodes (or routers), and links that con-

nect the routing nodes [Bjerregaard & Mahadevan 2006]. Routing nodes are used to route

data according to their implemented routing strategies or algorithms. Network adapters are

used to interface routing nodes with PEs. The authors of [Bjerregaard & Mahadevan 2006]

characterize an NoC by its i) topology: nodes positions and connectivity, and ii) routing

protocol: how the nodes and links are used for communication.

There exist a number of topologies for NoCs, such as Spidergon [Moadeli et al. 2007],

Mesh [Ali et al. 2009], and Tree [Adriahantenaina et al. 2003]. We take the Mesh topology

as an example to describe how such an NoC works. A n × n 2D Mesh topology NoC is

formed by [Siala & Saoud 2011]:

❼ n*n routers, each router, except for those on the sides, is connected to 4 neighbor

routers and a PE via input/output channels.

❼ an input/output channel performs unidirectional communication between two routers

or between a router and a PE.

Figure 2.3 shows such a 4×4 Mesh topology NoC.

NoC routing protocols determine how a message packet traverses the NoC channels from

its source router to its destination router [Chiu 2000]. Routing protocols can be determin-

istic or adaptive [Mirza-Aghatabar et al. 2007]. Deterministic protocols route packages by

predefined paths [Chiu 2000]. An example is the “XY” routing algorithm for 2D meshed

NoC presented above. It routes packages, from its source to its destination, first in the X
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Figure 2.3: A 4×4 Mesh topology NoC [Ali et al. 2009].

direction then in the Y direction. Such protocols are deterministic, but lack flexibility and

do not adapt to the network state dynamically. Adaptive protocols, on the contrary, detect

the network traffic and channel status during the package routing, and adapt routing path

so as to avoid congested regions of the network [Mirza-Aghatabar et al. 2007]. The routing

protocol also plays an important role in the performance of MPSoCs, and the user thus

needs to find out a proper one for his or her design.

Compared to bus, NoCs are more expensive in surface, but more scalable and efficient

with less power consumption. NoCs provide a better compromise of cost and performance.

2.2 MPSoC Design

The design of modern embedded systems, which are usually based on MPSoC architectures,

is becoming increasingly complex. To deal with this complexity, the common practice in

this area is to raise the level of abstraction and adopt system level design methodologies

[Gerstlauer et al. 2009] [Cannella et al. 2011]. Typically, system level design approaches

follow a top-down approach. They rely on computational abstract models for the descrip-

tion of system functional and non-functional requirements, and traverse the design space

by means of an iterative process, known as design space exploration (DSE), which evalu-

ates and refines different design decisions to find an optimal solution. In this section, we

firstly introduce the popular Y chart design flow model, which most of system level design

approaches follow, in Section 2.2.1. Section 2.2.2 presents the design space exploration

problem. A survey of existing design approaches is presented in Section 2.2.3.

2.2.1 A Design Flow Model

Embedded system design is a rather complex task, consisting of a number of sub-tasks such

as functionality and platform modeling, application-architecture mapping, software code

generation and hardware synthesis. A complete design flow must combine and perform

these sub-tasks to generate the final systems. A very popular design flow model is the Y

chart, as shown in Figure 2.4, proposed by Gajski and Kuhn [Gajski & Kuhn 1983]. In the

Y chart, the design information is presented in three dimensions: behavioral, structural,

and physical, represented by the three axes.

❼ Behavioral representation: it describes the system functionality, i.e., what the system

does, and says nothing about the implementation and structure.
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Figure 2.4: The Y chart design model, taken from [Tammemäe & Ellervee ].

❼ Structural representation: it describes a set of computing components and connections

that a behavioral representation maps onto. However, it does not specify any physical

parameters, like the positions of components on a board.

❼ Physical representation: it is a layout planning, and describes the physical system.

Along the axes, the circles represent various levels of abstractions. Moving down along

an axis represents moving down in the level of abstraction. In the graph, five levels of

abstraction are identified: system level, algorithmic level, register transfer level (RTL),

logic level and circuit level. Near the intersection points of the circles and the axes, the

corresponding abstraction information corresponding the three dimensions are noted.

The considered level of abstraction has an great impact on the design analysis time

and accuracy. Typically, the lower the abstraction level is considered, the more accurate

analysis result can be obtained, while the more analysis time is required. This is due to

the fact that more architectural details are taken into account when moving down in the

level of abstraction. For example, the MPSoC design simulation at the register transfer

level (RTL) could be about 400 times slower than at the transaction level (i.e., algorithmic

level), as shown in [Boukhechem 2008]. However, RTL level is more accurate.

In the literature, nearly all system level design flows follow a top-down approach. They

[Gerstlauer et al. 2009] typically start with a system level description consisting of a behav-

ioral description, which is often some kind of data-flow graphs, and a platform model, which

is typically a set of architectural components such as processors, memories. Additionally,

some implementation constraints regarding mapping, performance, energy and cost are also

given. A synthesis task is then performed to select an appropriate platform, determine a

binding of the behavioral model to the platform, and generate an implementation, e.g., a

scheduling on each platform resource. The resulting implementation is a refined model,
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which integrates design decisions such as binding and scheduling. The refined model is

then used as input to the design flow at lower levels of abstraction, where each software and

hardware component is further implemented separately. In order to optimize the design for

the synthesis task, a design space exploration (DSE) should be performed to evaluate and

traverse the design space.

2.2.2 Design Space Exploration

The term “design space exploration” (DSE) has its origin in the logic synthesis context

[Gries 2003]. Today, however, it usually deals with system-level design problems such as

hardware/software partitioning, application-architecture mapping w.r.t. multiple objectives

regarding, e.g., correctness, execution time, energy consumption. DSE is in general a multi-

objective optimization problem. It is not advisable to merge all these objectives into a single

objective function by e.g., using a weighted average, as this would hide some essential

characteristics of designs [Marwedel 2011]. Returning a set of reasonable designs among

which the designer can select an appropriate one is rather advisable. In this section, the

multi-objective optimization is firstly presented. We then present the popular Y-chart

scheme that enables systematic design space exploration.

Multi-Objective Optimization

Design Space Exploration (DSE) is a multi-objective optimization problem [Zitzler 1999]

that tries to find out one or several “optimal” design solutions w.r.t multiple objectives

regarding functional and non-functional properties such as correctness, execution time

and power/energy consumption. The multi-objective design space exploration optimiza-

tion problem can be defined as follows:

min or max f(x) = (f1(x), f2(x), ..., fn(x)) subject to C.

where x ∈ X is the decision vector, representing decisions such as which application tasks

are mapped onto which PEs, C denotes the constraints (e.g., two tasks communicating with

each other cannot be mapped onto two PEs that are not connected), and f is the objective

function composed of n objectives f1, f2, ..., fn.

Suppose Xf ∈ X is the set of feasible solutions that meet constraints C. In single-

objective optimization, the feasible set is totally ordered according to objective f : for any

two solutions a, b ∈ Xf , either f(a) 6= f(b) or f(b) 6= f(a). The solution(s) optimizing

objective f can always be found. However, when two or more objectives are involved,

the feasible solution set Xf is, in general, not totally ordered any more. This situation is

illustrated in Figure 2.5: the left gives a solution space that aims to maximize objectives

f1 and f2, and the right describes the three possible relations of solutions. For any two

solutions a and b, a dominates b if and only if a is better than b w.r.t. at least one

objective and not worse than b w.r.t. all other objectives. For example, in Figure 2.5, A

dominates B in the example where f1(A) > f1(B) ∧ f2(A) > f2(B); C dominates D in the

example where f1(C) > f1(D) ∧ f2(C) ≥ f2(D). A solution a is indifferent to solution b

if neither a dominates b nor b dominates a. For example, E and B are indifferent, as they

are better w.r.t. one objective and worse w.r.t. the other: f1(B) > f1(E)∧ f2(E) > f2(B).

As a result, there is usually no single optimal solution for a multi-objective optimization

problem, but rather a set of optimal trade-offs. A solution x is said to be Pareto optimal

if and only if x is not dominated by any solution in Xf , e.g., the white points in Figure 2.5.

The set of all Pareto optimal solutions form the Pareto front or Pareto-optimal set.
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Figure 2.5: Illustrative example of Pareto optimality in objective space (left) and the pos-

sible relations of solutions in objective space (right), taken from [Zitzler 1999].

Design space exploration (DSE) based on Pareto points is the process of finding a set

of Pareto-optimal solutions for the designer, enabling him or her to select the appropriate

one(s) among them.

The solution space of the DSE problem becomes large quickly if arbitrary mapping is

allowed. Considering an application consisting of m tasks and a platform with n PEs, the

feasible mapping choices would be nm. The complexity increases even further if multiple

objectives are considered during the exploration. In order to evaluate if a design choice is

Pareto-optimal w.r.t. a set of solutions, all objective values of the design must be compared

with those of the other designs. The use of the exhaustive exploration of the design space

is thus limited, if not infeasible. A common solution is to trade optimality for speed, and

use heuristic techniques to guide the exploration process.

Y-Chart Scheme for Automated DSE

The Y-chart scheme, proposed by Kienhuis et al. [Kienhuis et al. 2002], presents a method-

ology that allows designers to perform systematic exploration of embedded system design

space. It advocates separation of concerns, i.e., the separation of various design aspects

to allow more effective design space exploration. Two fundamental separations are i) the

separation of application behavior (what the system is supposed to do) and architecture

(how it does it), and ii) the separation of communication and computation. Figure 2.6

shows the Y-chart scheme for design space exploration. It requires an explicit definition of

the application and architecture models. The application model captures the application

functional behaviors, whereas the architecture model describes the hardware resources as

well as their performance constraints. A mapping step is applied to map application tasks

onto architecture resources, and the performance analysis is then carried out to quantify

design choices. This yields the performance numbers that designers interpret so that they

can improve the designs by changing the design parameters such as the mapping denoted by

dotted lines. This procedure is repeated in an iterative way until one or more satisfactory

designs are found.

2.2.3 A Survey of Existing Approaches

As mentioned at the beginning of Section 2.2.1, embedded system design is a rather complex

problem, and has a number of design tasks. A classification framework of design tasks has
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Figure 2.6: The Y-chart design scheme.

been defined in [Densmore & Passerone 2006], which identifies the individual design tasks,

such as modeling, functional verification, software code generation, C-to-RTL synthesis, of

more than 90 different design flows or methodologies. In contrary, [Gerstlauer et al. 2009]

focuses on the complete design flows that combine all design tasks across hardware and

software boundaries. In the thesis, we consider the system behavior and platform synthesis

task, i.e., the application mapping design task as shown in Figure 2.6. Application mapping,

which refers to the binding and scheduling of behavioral models onto platform models, has

a strong impact on the quality of design results, and is the key design issue of MPSoCs

[Marwedel et al. 2011].

Based on the Y-Chart scheme (see Figure 2.6), we survey and classify the existing

approaches based on their used behavioral and architectural models. The behavioral model

can be captured by model of computations (MoCs) [Lee & Sangiovanni-vincentelli 1998],

programming languages like C, java, system level description languages such as SystemC,

etc. We distinguish three levels of architecture modeling:

❼ system level models, which consists of an abstract architecture template, e.g., the PEs,

memories, and interconnects, and for each architecture component, a list of supported

behavioral model components and their performance requirements;

❼ transaction level model (TLM), which models the architecture by using system level

description languages such as SystemC or SpecC;

❼ register transfer level (RTL) or lower level: which models architecture by using hard-

ware description languages such as VHDL or Verilog.

The abstraction levels of architecture models have a great impact on the design analysis

time and accuracy. In the following, some existing approaches are presented based on the

identified architectural modeling levels.

We firstly introduce several complete design flows that allow gradual refinement of (ab-

stract) system-level architecture models as mentioned in [Gerstlauer et al. 2009]. Most of

the design flows cover all the identified architecture modeling levels.

❼ Daedalus [Thompson et al. 2007] provides a highly-automated framework for system-

level architectural exploration and synthesis, programming, and prototyping of het-

erogeneous MPSoC platforms. It models the system behavior by means of the Kahn

Process Network (KPN) MoC. It leads the designer in a number of refinement steps to
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produce an MPSoC implementation on an FPGA at the RTL and ISA levels for hard-

ware components and software processes, respectively. It uses a modeling and simu-

lation environment called Sesame to perform system-level architectural DSE. Sesame

supports both exhaustive and heuristic exploration methods.

❼ Metropolis [Balarin et al. 2003] provides a general framework which allows the de-

scription and refinement of a design at different levels of abstraction. The behavioral

description is captured as a set of processes that communicate through channels. A

backend is provided for the translation of meta-models into C++/SystemC simulation

code.

❼ Koski [Kangas et al. 2006] provides a framework for modeling, automatic architectural

design space exploration, and system level synthesis, programming, and prototyping

of MPSoCs. The behaviral description is based on the KPN MoC from a UML de-

scription. It has an automatic architecture exploration step which transforms the

application and architecture models to an abstracted model for fast exploration. It

allows the automatic code generation to analyze and simulate the system at multiple

levels of abstraction. The generated low-level software code and the RTL hardware

descriptions (derived from its platform library) can be used for physical implementa-

tion.

❼ Ptolemy [Lee 2003] is an environment for simulation and prototyping of heterogeneous

systems, which supports several different models of computation such as SDF, KPN,

synchronous reactive models. It allows the designers to specify and simulate applica-

tions with different computational models on heterogeneous architectures at different

levels of abstractions.

Some other examples of such design flows are PeaCE/HOPES [Ha et al. 2008], System-

CoDesigner [Keinert et al. 2009], etc.

Some other existing approaches are presented as follows following the identified archi-

tecture modeling levels from RTL to system level.

At RTL or lower level modeling of architectures, [Bailey & Martin 2010] applies phys-

ical prototyping which uses circuit board and SoC in the form of working silicon. The

authors in [Hedde et al. 2009] propose a MPSoC prototyping platform that relies on field-

programmable gate arrays (FPGAs) and register transfer level (RTL) descriptions. The

major advantage of these two techniques is their high accuracy, but they require a long

time and provide a limited flexibility when it comes to an efficient DSE of multiple archi-

tectures.

Design approaches that adopt the transaction level modeling (TLM) of architectures

include [Petrot et al. 2011] [Abdi et al. 2011]. SystemC are usually used for the behavior

modeling as well. Some simulation environments such as SoCLib [SoClib 2012] and StepNP

[Paulin et al. 2002] use cycle-accurate model or TLM for hardware modeling and ISS for

software simulation. The programming languages such as C, C++ are employed to describe

the system behavior in these environments. Approaches based on MoCs and UML for

behavioral modeling such as [Robert & Perrier 2010], [Chen et al. 2004] exist as well. The

simulation speed and timing accuracy of TLM and ISS based techniques are faster, but less

accurate than those of prototyping and emulation.

Since all these approaches based on TLM and RTL modeling of architectures need very

detailed architecture information, they are very slow, tedious, and complex for cost-effective

design and verification of modern MPSoCs that are complex and have big or even huge

design space. They are thus only be used at the very late design stage.
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At the early design stage, the system level modeling of architectures are usually con-

sidered. They usually use MoCs to model system behaviors. Some approaches based on

Kahn Process Networks (KPNs) [Kahn 1974] are [Haid et al. 2009], [Schor et al. 2012]. Ex-

amples of approaches based on Synchronous Data Flow (SDF) [Lee & Messerschmitt 1987]

are [Stuijk 2007], [Zhu et al. 2010], [Yang et al. 2009], [Stuijk et al. 2011]. The synchronous

reactive MoC [Benveniste et al. 2003] is another well-known support for the high level mod-

eling and analysis of embedded systems.

The design approaches based on system level modeling of hardware architectures ab-

stract away the architectural information, and thus significantly reduce the design time.

On the other hand, the missing of architectural information also makes the analysis results

less accurate. Furthermore, their analysis results highly depend on the input performance

model, i.e., the information of performance requirements of the application operations or

tasks on resources. These values are usually obtained by statically profiling or analyz-

ing corresponding worst case performance metrics. This could make the final results too

pessimistic, and over-estimate the resource usages.

2.3 Adaptivity of MPSoCs

The adaptivity of an MPSoC refers to its ability to dynamically adapt its behaviors and

structure over time. Reconfigurable hardware architectures (i.e., FPGA fabrics), due to

their ability to combine some of the flexibility of software with the high performance of

hardware, are becoming increasingly attractive for adaptive MPSoCs. In this section, the

motivation for adaptivity is presented in Section 2.3.1. Section 2.3.2 introduces FPGAs

as the implementation platforms for MPSoCs. Some adaptivity management issues are

discussed in Section 2.3.3.

2.3.1 Motivation for Adaptivity in MPSoCs

Over the recent decades, there have been increasing requirements for embedded systems to

be adaptive. The motivations for this trend can be observed in the following three levels:

❼ applications are becoming intrinsically dynamic: e.g., a surveillance embedded sys-

tem for street observation must adapt its image analysis algorithms according to the

luminosity of the weather.

❼ the execution platform should be adaptive to provide a better performance and/or

reduce energy consumption: e.g., a hardware accelerator gives a more powerful exe-

cution in terms of performance than a general purpose processor; PEs that are idle

should be turned off or switched to low level energy consumption mode, thanks to

techniques like gate clocking.

❼ the mapping of the running application tasks should be adaptive to provide execution

efficiency and/or fault tolerance: e.g., running application tasks need to adapt their

mapping when some new tasks are invoked, so that they can execute on the shared

computing resources in a more efficient way; a running task must adapt its mapping

when some of its used resource becomes unavailable.

2.3.2 FPGAs as Implementation Platforms for MPSoCs

An Field-Programmable Gate Array (FPGA) is an integrated circuit designed to be config-

ured by a customer or a designer after manufacturing. An FPGA is composed of an array of
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logic cells and programmable routing channels to implement custom hardware functionality.

The basic components of a logic cell (as shown in Figure 2.7) are a LUT (Look Up Table):

LUT4

Flip Flop

I1

I2

I3

I4

CLK

RST

OUT

Figure 2.7: Simplified logic cell implementation.

a memory used as a programmable device to implement any logic function between inputs

and outputs of a cell, and a D flip-flop: to hold a state between two clock cycles.

An FPGA configuration program consists of one or more bitstreams, which are binary

files storing information to configure the LUTs and the routing switches. The bitstreams are

usually generated by design tools such as the Xilinx Embedded Development Kit (EDK)

[Xilinx 2013], which includes a tool suite called Xilinx Platform Studio (XPS) used to

design an embedded system. Recent large FPGAs contain more than 200K logic cells that

can be combined and interconnected to implement very complex designs. Multiprocessor

architectures with tens of large hardware accelerators and processors can be implemented.

Run-time partial reconfiguration. In the new generation of FPGAs, the hardware

configuration can be updated at run-time by using the partial reconfiguration feature. A

portion or region of the FPGA which implements some logic functions can be swapped

with another one. This feature also enables the FPGAs to update the functionality of any

logic function at run-time if required. When multiple functions are called sequentially, the

same region can be reused so that the required size can be minimised. The best advantage

of this type of reconfiguration is its ability to reconfigure hardware during the running of

the static part, i.e., the part which does not contain any reconfigurable area. It assumes

that the hardware reconfiguration does not disturb the execution of the application. The

bitstreams therefore cover only some regions of the FPGA array.

Such Dynamically Partially Reconfigurable (DPR) FPGAs make them suitable for ad-

dressing constraints on resources (re-using some areas for different functions for applications

that can be partitioned into phases) by adapting resources to available parallelism according

to environment variations. DPR FPGAs represent a trade-off in that they are slower than

dedicated Application-Specific Integrated Circuit (ASIC) hardware, but much faster than

software running on general purpose CPUs.

2.3.3 Adaptivity Management

The management of an adaptive MPSoC concerns three possible dynamic aspects (as men-

tioned in Section 2.3.1) of the system over time: dynamic application behavior, dynamic

platform behavior and the dynamic application mapping. A run-time manager needs to

monitor the system run-time situations, make adaptation decisions based on observed in-

formation and system requirements, and perform adaptation actions.

Reconfigurable hardware architectures (i.e., FPGA fabrics) have the ambition to deliver

the same flexibility level as general purpose processors while providing a performance and

energy efficiency level close to that of an ASIC. Such architectures are becoming increasingly

attractive for MPSoCs. They operate in a very different way compared to a multi-core or

instruction set processor (ISP) architecture. The run-time management of such specific

architectures thus needs to be addressed differently.
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The run-time management problem of adaptive systems can be seen as a self-management

problem in autonomic computing. It proposes a general feedback loop structure address the

automatic management of adaptive systems, which is well suited for the management of

adaptive MPSoCs.

In the following, first, we present the existing management strategies for MPSoCs; sec-

ond, the management issue of embedded systems implemented on FPGAs is discussed; at

last, the autonomic computing paradigm is introduced.

Some Existing Management Strategies

Most of the existing approaches regarding the management of adaptive MPSoCs target the

run-time mapping problem, i.e., how to map and schedule application tasks w.r.t. the avail-

ability of platform resources and system requirements. These approaches can be classified

into two categories: purely run-time mapping approaches and hybrid design time/run-time

mapping approaches.

Purely run-time mapping approaches do not have a pre-analysis phase. Finding a rea-

sonably good solution in a reasonable short computation time, for such approaches, is more

important than seeking optimality requiring much computation time. They thus resort to

heuristic algorithms to generate fast and lightweight solutions on-line [Nollet et al. 2008].

For example, in [Smit et al. 2005] such a technique proposes an iterative hierarchical ap-

proach with simple heuristics in each individual level to solve the application mapping on

a parallel heterogeneous SoC architecture at run-time. In [Ghaffari et al. 2007], an on-line

partitioning algorithm is associated with a scheduling heuristic to address the application

mapping problem. Since all the mapping analysis is done on-line, Such approaches can deal

with the mapping of applications that are unknown a priori. However, such approaches

cannot guarantee optimal solutions and/or strict system constraints, due to unknown situ-

ations, and are usually validated by (limited) simulations.

The hybrid approaches [Schor et al. 2012] [Schranzhofer et al. 2010] [Singh et al. 2011]

firstly perform intensive analysis at design time, and then propose a run-time manager

integrating the knowledge of design time analysis. However, they do not address run-time

management problem systematically, and usually encode the run-time manager manually

by considering a limited number of run-time configurations. This is tedious and error-prone

[Gohringer et al. 2008] in consideration of more complex and dynamic system behavior.

Regarding the design verification, while simulation and testing are still widely considered

in industry, they often imply a tedious and expensive validation process that necessarily

requires a system implementation, some adequate test benches and a simulator to achieve

experiments. Formal verification, such as model-checking, is therefore a useful complement

to simulation and testing as it relies on abstract models [Mitra et al. 2010]. Two examples

of applying model checking to validate the run-time manager design are [Adler et al. 2007]

[Schaefer & Poetzsch-Heffter 2009], while the authors in [Yang et al. 2012] apply a game

theory-based approach to construct a run-time manager.

Run-Time Management of an FPGA Fabric

The reconfiguration of a DPR FPGA fabric involves the process of loading configuration

files to part of the reconfigurable surface. Figure 2.8 shows the structure of an FPGA chip,

which is abstracted from the Xilinx ML605 board. The configuration files used for the

different configurations of the partially reconfigurable regions are stored in a compact flash

card. A soft-core processor e.g., microblaze is responsible for loading them. It performs the

reconfiguration of the reconfigurable region through the Internal Configuration Access Port

(ICAP).
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Figure 2.8: FPGA with a microblaze softcore.

The run-time management of reconfiguration involves a control loop, taking decision

according to events monitored on the architecture, choosing the appropriate next config-

uration to install, and executing appropriate reconfiguration actions. The dynamism in

the architecture dimension further increases the design complexity, for which a complete

tool-chain is lacking [Santambrogio 2010].

Due to the relative novelty of DPR technologies, the management of reconfiguration has

to be designed manually for important parts. For instance, [Quadri et al. 2010b] proposes

a design flow, from high level models to automatic code generation, for the implementation

of reconfigurable FPGA based SoCs. The system control aspects need to be modeled

manually and integrated into the flow. Some other work employs model checking to verify

the controller designs. For example, in [Dahmoune & Johnston 2010], the authors address

post-silicon verification by connecting a model-checker to a physical implementation of

reconfigurable systems on FPGAs.

In the current practice, though the numbers of considered tasks and reconfigurable

regions are low (few units), ensuring a correct and optimal management by using man-

ual encoding and analysis is tedious and error-prone [Gohringer et al. 2008]. Automatic

techniques are required to better address this problem, with the foreseeable increase in

complexity.

Autonomic Computing Approach

The autonomic computing paradigm [Parashar & Hariri 2005] [Kephart & Chess 2003], in-

spired by biological systems such as the autonomic human nervous system, enables the

development of self-managing computing systems to handle the emerging complexity in

computing systems, services and applications. The function of a self-management capabil-

ity is a control loop that collects details from the system and acts accordingly [IBM 2006].

Typically, self-managing capabilities of autonomic systems can be classified into four cate-

gories:

❼ self-configuration: configure and reconfigure a system under varying conditions fol-

lowing high-level policies;

❼ self-optimization: detect sub-optimal behaviors and tune itself to optimize its execu-

tion;

❼ self-healing: discover, diagnose and recover from potential problems without disrupt-

ing the whole system environment;
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❼ self-protection: detect hostile behaviors as they occur, protect itself from both internal

and external attacks, and maintain system security and integrity.

Figure 2.9: IBM’s Monitor, Analyze, Plan, Execute, Knowledge (MAPE-K) reference model

for autonomic control loops, taken from [Huebscher & McCann 2008].

To achieve autonomic management, IBM has suggested a reference model for autonomic

control loops as shown in Figure 2.9, which is usually referred to as Monitor, Analyse, Plan,

Execute, Knowledge (MAPE-K) [IBM 2006]. In the MAPE-K loop, the managed element

represents any system software or hardware component that is managed by a coupled au-

tonomic manager. To connect to the autonomic manager, the managed element requires

a sensor to sense the changes in the internal and external environment, and an effector

or actuator to react to and counter the effects of the changes in the environment. The

autonomic manager consists of four components:

❼ the monitor, which collects the details from the managed resource via the sensor;

❼ the analyze, which models and analyzes the collected data by the monitor;

❼ the plan, which constructs the response actions needed to achieve objectives;

❼ the execute, which performs the execution of the plan via the effector.

All the four components function based on a knowledge representation of the system. The

autonomic manager can be designed and developed in many different ways, relying on tech-

niques e.g., heuristics, model checking, control theory, machine learning [Maggio et al. 2012].

2.4 Summary and Discussion

MPSoCs are becoming the main solution of modern embedded systems, as they can provide

powerful computing ability at affordable power consumption. In this chapter, we firstly pre-

sented the main components of MPSoC platforms. Regarding the design of MPSoCs, which

is quite complex and challenging, we have seen a common practice that advocates raising

the levels of abstraction and adopting system level design methodologies. By reviewing the

existing system-level design methodologies, and the design approaches at different levels

of abstractions, we can observe the importance of performing design space exploration at

early design stages. It can prune the design space when it is largest, and identify candidate

design solutions in a fast and efficient way before performing lower level refinements for

more accurate results, so that significantly reduce the design efforts.
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Furthermore, MPSoCs are getting more and more adaptive. The adaptivity adds a new

design dimension in addition to the design issue of MPSoCs as presented in Section 2.2

for which the adaptivity is usually not explicitly addressed. We have briefly reviewed the

reconfiguration management strategies of adaptive MPSoCs, and focused on particularly

adaptive MPSoCs implemented on reconfigurable architectures, i.e., FPGAs. Such archi-

tectures provide a good trade-off of flexibility and performance for implementing adaptive

MPSoCs. Regarding the control of their reconfiguration, we have observed that manual

encoding is adopted in most cases. In anticipating the increase in complexity, automatic

manager derivation thus could be more favorable.

To sum up, we have looked at two design aspects of adaptive MPSoCs in this chapter:

the design of MPSoCs without considering adaptivity, which can be seen as the design

of a configuration of adaptive MPSoCs, and the reconfiguration management of adaptive

MPSoCs. Embedded systems are typically reactive systems that are in continual interaction

with their environment and run at a pace determined by that environment [Halbwachs 1993].

These two design issues correspond intrinsically to the analysis and control of reactive

systems, for which there exist a variety of models, languages and tools.
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Embedded systems are typically reactive systems, as they are in continual interaction

with their environment and run at a pace determined by that environment [Halbwachs 1993].

In the last section, we identify the two design issues of adaptive MPSoCs in the thesis,

namely the design analysis of one configuration and the control of reconfiguration. In this

section, we will introduce the existing models, languages and tools for reactive systems that

can be employed to address the two design issues.

Sections 3.1 and 3.2 present respectively the existing data-flow and automata-based

modeling formalisms for reactive systems. In Section 3.3, we present discrete controller

synthesis (DCS), a formal technique that can be applied on automata-based modeling

formalisms for computing controllers to control the state transitions. The synchronous

language BZR whose compilation process encapsulates the DCS operation is presented in

Section 3.4. Some existing works that apply discrete control for computing systems are

presented in Section 3.5.
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3.1 Data-Flow Based Modeling Formalisms

Data flow models reflect the way in which data flows from component to component

[Stephen A. Edwards 2001]. Each component transforms the data from one form to an-

other. It is a very natural way of describing reactive systems.

A data flow model is specified by a directed graph, where the nodes or vertices represent

computations and the links or edges represent communication channels [Marwedel 2011].

The computations of nodes are assumed to be functional, i.e.. based on the inputs only.

The computation performed by each node is decomposed into a sequence of firings that are

atomic actions. Each firing consumes and produces data tokens. Conceptually, each node

performs its computation once its input data are ready. The only synchronization constraint

is thus the dependent relations between data [Halbwachs 1993]. Since unrestricted data

flow models are difficult to prove system properties, restricted models are commonly used

[Marwedel 2011].

3.1.1 Kahn Process Network and Synchronous Data Flow

Kahn Process Network (KPN)

Kahn Process Networks (KPNs) [Kahn 1974] are a special case of data flow models. It

consists of nodes and edges, where nodes correspond to computations performed by some

tasks, and edges imply communications between nodes via channels that are one way infinite

first-in, first-out (FIFO) queues with a single reader and writer. The computations are

synchronized via a blocking read and non-blocking write protocol. KNP is deterministic in

nature: for a given set of inputs, it will always generate the same outputs. KNP graphs

show computations to be performed and their dependency, but not the total order in which

computations must be performed. The computations of nodes are partially ordered.

Combining unlimited storage capacity in its unbounded FIFO buffers makes KPN a

very expressive model [Geilen & Basten 2010]. Expressiveness of an MoC is usually in

conflict with its analyzability, i.e., the ability to (statically) analyze a modeled applica-

tion for its properties, such as deadlock-freedom, static scheduling, etc. KPNs, in gen-

eral, need to be scheduled dynamically using run-time scheduling strategies such as first

come first served algorithms, since it is difficult to predict their precise behavior over time

[Marwedel 2011] due to their expressive power. Design approaches based on KNPs include

Daedalus [Thompson et al. 2007], DOL [Thiele et al. 2007], Koski [Kangas et al. 2006], etc,

as shown in Section 2.2.3 of Chapter 2.

Synchronous Data Flow (SDF)

Synchronous data flow (SDF) [Lee & Messerschmitt 1987] is another special case of data

flow in which the amount of data tokens produced or consumed by each node on each

links is specified a priori. These amounts are constant, and called rates. A node, which

represents an atomic block of computation, can only fire or perform its computation if

sufficient amount of input data are available on its incoming edges. The rates determine

how often nodes have to fire w.r.t. each other such that an SDF graph can be executed in a

repetitive pattern, called an iteration, that there is no net effect on the amounts of tokens

in channels.

The restrictions imposed on the original data-flow architecture, i.e., atomic node com-

putation and fixed rates, make the static scheduling and analysis of SDFs much easier. This

is a significant advantage in comparison to KPN models. In [Lee & Messerschmitt 1987],

the authors developed a whole theory to statically schedule SDF graphs on homogeneous
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architectures. They proposed techniques for constructing periodic admissible sequential

and parallel schedules, respectively referred to as PASS and PAPS. A period in PASS is

constructed by computing the balance equations on data rates, while PAPS is achieved

by constructing acyclic precedence graphs based on a number of periods of PASS. In the

last years, analysis techniques for e.g., throughput [Ghamarian et al. 2006], buffer sizing

[Stuijk et al. 2008] of SDF graphs have also been proposed. Such techniques abstract away

the execution platforms, and provide useful insights for their implementations. These tech-

niques have been implemented in the SDF3 tool-kit [Stuijk et al. 2006a].

SDFs are widely adopted for numerous design approaches as shown in Section 2.2.3 of

Chapter 2. However, it has a couple of limitations. One main limitation is that SDFs

cannot express conditional executions or dynamic applications.

3.1.2 Data-Flow Synchronous Languages

The synchronous approach [Benveniste et al. 2003] has been proposed in 80s to provide a

rigorous mathematical semantics for the safe design of real-time, reactive systems. It relies

on the synchronous hypothesis, which is a collection of assumptions [Potop-Butucaru et al. 2005].

The main assumption is made on instants and reactions. Behavioral activities are divided

according to (logical, abstract) discrete time, which is a sequence of non-overlapping in-

stants. Within each instant, input signals or variables possibly occur (for instance by being

sampled), internal computations take place, and control and data are propagated until out-

put values are computed and a new global system state is reached. This execution cycle is

called the reaction of the system to the input signals. Based on the hypothesis, a number of

synchronous languages, e.g., Esterel, Lustre, Signal, Argos, have been developed. This sec-

tion focuses on the data-flow oriented synchronous languages, and among them introduces

Lustre and Signal.

Lustre

Lustre [Halbwachs et al. 1991] is a declarative synchronous data-flow programming lan-

guage for programming reactive systems as well as describing hardware. In Lustre, the

system inputs and outputs are described by their flows of values along time. Time is

discrete, and described as a sequence of instants. A flow takes its n-th value of the value

sequence at the n-th instant of the time. Any Lustre program has a basic or reference clock,

slower clocks can be defined by boolean-valued flows: a clock defined by a boolean-valued

flow is the sequence of instants at which the flow has the value true.

Lustre operators. Classical operators over basic data types are available in Lustre:

❼ arithmetic operators: +,−, /,×, div,mod;

❼ binary operators: and, or, not;

❼ conditional operators: if then else.

These operators are extended so as to process data flows that have the same clock. For

example,

X = Y + 1 means that ∀t ∈ N,Xt = Yt + 1.

The conditional operator is different with regard to a classical one. For example,

X = ifC > 0 then Y else Z means that ∀t ∈ N, if Ct > 0 then Xt = Yt else Xt = Zt.
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In addition to the classical operators, Lustre also provides temporal operators that can

handle the value relations at different instants of the same clock or different clocks. We

mention the following ones:

❼ pre is used to get the value of a variable at the previous instant, i.e., the value is

memorized to be used at the next instant.

❼ -> operates on two operands owning the same clock. It is used to set the first value

of a variable to the first value of another variable.

❼ when is called a sampling operator. It operates on two operands of the same clock.

The second operand should be a Boolean variable. It samples the values of the first

operand at the instants when the second operand is true.

Table 3.1 gives some examples of these operators.

t t1 t2 t3 t4 t5 t6 t7 ...

X 1 2 3 4 5 6 7 ...

pre(X) ⊥ 1 2 3 4 5 6 ...

3 -> X 3 2 3 4 5 6 7 ...

Y F T F T F T F ...

X when Y 2 4 6 ...

Table 3.1: Examples of some Lustre temporal operators.

Lustre syntax. We give only a simplified version of Lustre syntax (see Figure 3.1), which

is enough for the following presentation of the thesis.

node node_name ({input variable declaration list})

returns ({output variable declaration list})

var {local variable declaration list}

let

{set of equations}

tel

Figure 3.1: Skeleton of a Lustre node.

❼ Node: a Lustre programs, which fulfills a certain functionality. It is identified by its

node name. The node interface, i.e., input/output variables, are declared between

corresponding brackets as shown in Figure 3.1. The program body which is composed

of a set of equations is defined between keywords let and tel.

❼ Variable declaration: input/output variables as well as local variables, that are de-

clared locally in a var statement, are declared in the form of variable name: type name.

❼ Equation: an equation is declared as an assignment identifier = expression;, where

an expression is either a variable, or an operation on variables.
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Signal

Signal [Guernic et al. 2002] [Gamatié 2010], which has been mainly developed in INRIA EP-

ATR then Espresso team since 1980s, is a declarative, polychronous, data-flow synchronous

language. It adopts a multi-clocked philosophy (thus is polychronous) to describe systems

with multiple clocks, for which each component owns a local activation clock. Different to

Lustre, which is a functional language, Signal is a relational language. The system behaviors

are described using relations between the values of observed events, and the occurrences,

also referred to as abstract clocks, of these events. The Polychrony toolset1, developed

based on Signal for embedded systems, provides a unified model-driven environment for the

analysis, simulation, verification and synthesis of embedded systems from specifications to

implementation.

3.1.3 The UML Profile MARTE and CCSL Language

The Unified Modeling Language (UML) [Object Management Group 2013b] is a graphical

language for visualizing, specifying, constructing, and documenting information system.

The main advantage of UML is that it provides a visual system expression to better un-

derstand the system, and benefit the communication between designers as well. The UML

diagrams created by the designers can be used to generate code in various languages for

design and analysis. However, being a general purpose modeling languages also make it too

general. Specific semantics need to be added to UML in order to deal with the modeling

and design of a specific domain.

The UML Profile for Modeling and Analysis of Real-Time and Embedded Systems

named MARTE [Object Management Group 2013a] is a standard proposal of OMG to sup-

port the specification, design, and verification/validation of real-time and embedded system.

It is intended to replace the existing UML Profile for Schedulability, Performance and Time.

Among the rich set of concepts that MARTE offers, we mention the following ones that

can be used to describe different features of embedded systems. The General Component

Modeling (GCM) package is used to define general aspects such as algorithms in the appli-

cation software part of a system. The Hardware Resource Modeling (HRM) package is used

to describe hardware architecture, e.g., processors and memories. The Allocation package

serves to define software/hardware mapping. Furthermore, for data-intensive applications

such as image or video processing, data-parallel algorithms and multiprocessor execution

platforms are described with the Repetitive Structure Modeling (RSM) package.

CCSL (Clock Constraint Specification Language) [André & Mallet 2008] [Mallet 2011]

is a declarative companion language, inspired by several time models of the concurrency

theory, of the specification of the UML MARTE Profile. CCSL is based on the notion

of clock which represents a set of discrete event occurrences, called instants. A clock can

be either chronometric or logical. Chronometric clocks are a means to model “physical

time” and to measure duration between two instants. Logical clocks represent discrete time

composed of abstract instants called ticks. The number of ticks between two instants may

have no relation to any “physical duration”. CCSL can be used to associate abstract clocks

with UML components such as ports. Then, the interaction between components via the

events occurring on their ports can be characterized by abstract clock relations. All these

mentioned packages are useful in the description of each system configuration.

Reconfiguration modeling formalism will be detailed in the next section. Concerning

reconfiguration modeling in MARTE, package Configurations can be used to describe dif-

ferent configurations, scenarios, or modes, of a system, while UML Finite State Machines

1http://www.irisa.fr/espresso/Polychrony

http://www.irisa.fr/espresso/Polychrony


30 Chapter 3. Models, Languages and Tools for Reactive Systems

<<configuration>> {mode=M1}
 Mode_SystemConfig1

:MyApplication

t_a :A t_c :C

:MyExecutionPlatform

<<HwComputingResource>>
     :MyArchitecture

<<HwComputingResource>>
         p1 :MyProcessor1  <<HwComputingResource>>

          p2 :MyProcessor2

<<HwCommunicationResource>>
                  bus :MyBus

t_b :B

<<allocate>> <<allocate>> <<allocate>>

InPort1 InPort2 OutPort2 OutPort1InPort3 OutPort3 InPort4 OutPort4

Figure 3.2: A system configuration modeled by MARTE.

can be used to describe configuration switches.

Figure 3.2 illustrates a UML Component representing a system mode or configuration

named Mode SystemConfig1, with the stereotype << configuration >>. A UML Com-

ponent is used to represent a modular part of a system. There is no restriction on the

granularity of a component, and a larger system part can be assembled by reusing compo-

nents as parts in an encompassing component. Here, the configuration component is such

an encompassing component. It encapsulates the details of the configuration, which is de-

fined as an allocation or mapping of an application, consisting of three tasks A, B and C, on

an hardware architecture, consisting of two processors connected by a bus. The application

and its tasks, the architecture and its resources are all defined as components. A component

may need to interact with other components or environment. The UML Ports, depicted

as small squares on the sides of components are used to specify the interaction points

between components. A connection between two ports represents that there exists some

interaction, e.g., data transformation, between the two associated components. <<>> en-

closing a name represents a stereotype defined in some package. For example, stereotype

<< allocate >> besides a dotted arrow is defined in the Allocation package. It represents an

allocation of an application task on a hardware resource. << HwComputingResource >>

and << HwCommunicationResource >> are defined in the Hardware Resource Model-

ing (HRM) package. The mode Mode SystemConfig1 component also contains a mode

attribute, which has value M1, noted on the top right.

The way mode values are produced for selecting configurations is specified via an UML

FSM, as modeled in Figure 3.3 with stereotype << modeBehavior >>. The FSM contains

two states corresponding to two configurations. Mode values defined in configuration com-

ponents (e.g., M1 in Figure 3.2) are associated with the corresponding FSM states. The

transitions between states is captured via stereotype << modeTransition >> between the

FSM states.

A hardware/software co-design framework called Gaspard2 [Gamatié et al. 2011] ded-

icated to high-performance embedded systems has been proposed to enable the designers
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<<mode>>
       M1

<<mode>>
M2

  <<modeTransition>>
        [mode_switch]

<<modeTransition>>
      [mode_switch]

<<modeBehavior>>
     SysReConfig

stm <<modeBehavior>> SysReConfig

Figure 3.3: A system reconfiguration behavior modeled by MARTE.

to automatically generate low level codes, e.g., SystemC, synchronous languages such as

Signal, VHDL, from high level MARTE descriptions for simulation, formal verification and

hardware synthesis.

3.2 Automata-Based Modeling Formalisms

3.2.1 StateCharts

StateCharts [Harel 1987] is probably the first formal language designed for the reactive sys-

tem design. It is a very prominent example of a language based on automata, and supports

modular, hierarchical descriptions of system behavior, catering for multi-level descriptions

as well as concurrency [Drusinsky & Harel 1989]. Its semantics has been defined at a suf-

ficient level of detail in [Drusinsky & Harel 1989]. Another advantage is that a number of

commercial tools based on StateCharts exist, such as StateMate and StateFlow. Most of

them support the translation of StateCharts into equivalent descriptions in C or VHDL.

StateCharts has many features of synchronous languages such as synchronous product

and broadcast mechanism, and is the origin of some automata-based synchronous languages

such as Argos [Maraninchi & Rémond 2001]. A variation of StateCharts, called state ma-

chine diagram is also included in UML, though their semantics are not completely the

same.

3.2.2 Automata-Based Synchronous Languages

Argos [Maraninchi & Rémond 2001] is a synchronous language based on parallel and hi-

erarchic automata. It takes its origin in StateCharts, but solves some existing problems

such as those concerning modularity and causality loops [Halbwachs 1993]. Its seman-

tics is formalized and compatible with the synchronous point of view adopted in Esterel

[Halbwachs 1993].

SyncCharts [André 1996], created by Prof. Charles Andre, is another example of au-

tomaton based synchronous languages. It inherits many features from StateCharts and

Argos. SyncCharts consists of states and transitions for its structure, and signals for its

dynamics. Any SyncCharts program can be automatically translated into an Esterel pro-

gram, which can benefit the users from the software environment developed for synchronous

programming.

Mode-Automata [Maraninchi & Rémond 2003] are a new programming construct that

helps building systems that exhibit clear “running modes”. They support the programming
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of mixed Argos-style automata with Statecharts-like parallel and hierarchical composition

and Lustre-style data-flow equations labeled on the states of automata.

Another example is the Heptagon synchronous language, inspired by Mode-Automata,

[Colaço et al. 2005], etc. It is considered in the thesis, and introduced with some more

details in the next section. Some data-flow synchronous languages have also been extended

with automata to deal with control-oriented designs, e.g., Signal [Brunette et al. 2009].

3.2.3 Heptagon Language

Heptagon language programs behave as synchronous Moore machines, with parallel and

hierarchical composition. It supports the programming of mixed synchronous data-flow

equations (like Lustre, as shown in Section 3.1.2) and automata with parallel and hierar-

chical composition.

Similar to Lustre, Heptagon structures the programs in nodes for scalability and ab-

straction purpose. A node has a name, a set of input flows, a set of output flows and the

body defining the component behavior. Its basic behavior is that: at each step, according to

inputs and current state values, equations associated to the current state produce outputs,

and conditions on transitions are evaluated in order to determine the state for the next

step. Inside the nodes, this is expressed as a set of equations defining, for each output and

local, the value of the flow, in terms of an expression on other flows, possibly using local

flows and state values from past steps.

The control structure, i.e., automata, is inspired from the Mode-Automata presented

in [Maraninchi & Rémond 2003]. Figure 3.4 illustrates an example of the control behavior

delayable(r,c,e) = a,s

Idle Wait

e r and c/s

Active
c/s

r and not c

a = true

a = falsea = false

Figure 3.4: The graphical description of a delayable task.

of a delayable task. It is structured in a node, with name delayable, input flows r, c, e and

output flows a, s. It describes three task states: idle, waiting and active. When it is in

the initial Idle state, the occurrence of the true value on input r requests the starting of

the task. Another input c can either allow the activation, or temporarily block the request

and make the automaton go to a waiting state. Input e notifies termination. The outputs

represent, respectively, a: activity of the task, and s: triggering starting operation in the

system’s API.

The graphical description of Figure 3.4 can be encoded in Heptagon as shown in Fig-

ure 3.5. The keywords to encode automata are shown in italics. Especially, Heptagon

supports two types of transitions: weak and strong transitions.

❼ weak transition, encoded by until c then S, indicating that when c becomes true, the

current state is executed before leaving it for target state S. The target state S is

only executed at the next instant.
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❼ strong transition, encoded by unless c then S, indicating that when c becomes true,

the automaton instantly leaves the current state, and the target state S is executed.

node delayable(r,c,e:bool) returns (a,s:bool)

let

automaton

state Idle

do a = false; s = r and c;

until r and c then Active

| r and not c then Wait

state Wait

do a = false; s = c;

until c then Active

state Active

do a = true; s=false;

until e then Idle

end

tel

Figure 3.5: The textual description of a delayable task.

The nodes can be reused by instantiation, and composed in parallel or in a hierarchical

way. Figure 3.6 shows an example with two instances of the delayable node put in parallel

(noted by “;”) defined in the twotasks node. When nodes run in parallel, one global step

corresponds to one local step for every node.

The Heptagon compilation produces executable code in target languages such as C or

Java. They have the form of an initialization function reset, and a step function imple-

menting the transition function of the resulting automaton. It takes incoming values of

input flows gathered in the environment, computes the next state on internal variables, and

returns values for the output flows. It is called at relevant instants from the infrastructure

where the controller is used.

node twotasks(r1,e1,r2,e2:bool) returns (a1,s1,a2,s2:bool)

let

(a1, s1) = delayable(r1, c1, e1);

(a2, s2) = delayable(r2, c2, e2);

tel

Figure 3.6: The textual description of two delayable tasks put in parallel.

3.2.4 Formal Definition of Automata

In the thesis, we adopt the formal framework defined in details elsewhere [Altisen et al. 2003]

[Dumitrescu et al. 2010] for the automata definition. Besides, automata and Labelled Tran-

sition Systems (LTS’s) are used interchangeably in the thesis.

Definition 1 (Automaton). An automaton is a tuple S =< Q, q0, I,O, T >, where:

❼ Q is a finite set of states;



34 Chapter 3. Models, Languages and Tools for Reactive Systems

❼ q0 ∈ Q is the initial state of S;

❼ I is a finite set of input events;

❼ O is a finite set of output events;

❼ T is the transition relation that is a subset of Q×Bool(I)×O∗×Q, such that Bool(I)
is the set of Boolean expressions of I and O∗ is the power set of O.

Each transition, denoted by q
g/a
−−→ q′, has a label of the form g/a, where guard g ∈

Bool(I) must be true for the transition to be taken, and action a ∈ O∗ is a conjunction of

output events, emitted when the transition is taken. State q is the source of the transition,

and state q′ is the destination. A path is a sequence of transitions denoted by p = qi
gi/ai

−−−→

qi+1
gi+1/ai+1

−−−−−−→ ...
gi+k−1/ai+k−1

−−−−−−−−−−→ qi+k, where ∀j, i ≤ j ≤ i+ k − 1, ∃(qj , gj , aj , qj+1) ∈ T .
The composition of two automata put in parallel is the synchronous composition, denoted

by ||. Given two automata Si =< Qi, qi,0, Ii,Oi, Ti >, i = 1, 2, with Q1 ∩ Q2 = ∅, their
composition is defined as follows: S1||S2 =< Q1×Q2, (q1,0, q2,0), I1∪I2,O1∪O2, T >, where

T = {(q1, q2)
g1∧g2/a1∧a2

−−−−−−−−→ (q′1, q
′
2)|q1

g1/a1

−−−→ q′1 ∈ T1, q2
g2/a2

−−−→ q′2 ∈ T2, g1 ∧ g2 ∧ a1 ∧ a2}.
Composed state (q1, q2) is called a macro state, where q1 and q2 are its two component

states.

The encapsulation operation, defined in [Altisen et al. 2003], is used to enforce the syn-

chronization between two composed automata by means of a variable which is an input on

one side, and an output on the other side. Let S =< Q, q0, I,O, T > be an automaton, and

Γ ⊆ I ∪ O be a set of inputs and outputs of S. The encapsulation of S w.r.t. Γ is the au-

tomaton S\Γ =< Q, q0, I\Γ,O\Γ, T
′ > where T ′ is defined by (q

g/a
−−→ q′ ∈ T )

∧

(g+
⋂

Γ ⊆
O)

∧

(g−
⋂

Γ
⋂

O = ∅) ⇔ (q, ∃Γ.g,O\Γ, q′) ∈ T ′. g+ is the set of variables that appear as

positive elements in the monomial g, i.e., g+ = {x ∈ g|(x
∧

g) = g}. g− is the set of vari-

ables that appear as negative elements in the monomial g, i.e., g− = {x ∈ g|¬(x
∧

g) = g}.
Figure 3.2.4 gives an example of using encapsulation to enforce the synchronization of two

automata A and B that are composed by a synchronous composition through variable b.

1

2

a/b

not a

A

x

y

b

not b

B

(1,x)

2,y

a

not a

(A||B)\{b}
b

Figure 3.7: An example using encapsulation to enforce the synchronization of two composed

automata.

The states of LTS’s can be associated with weights, characterising corresponding quan-

titative features. We define a cost function C : Q → N to map each state of an LTS to a

positive integer cost value. Costs can also be defined on execution paths across an LTS. For

instance, a cost function of path p can be defined as the sum of all the costs of its traversed

states. When composing LTS’s, the cost values w.r.t. the resulting global states/transitions

can be defined on the basis of the local costs as their sum or the maximal/minimal value.
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Based on the above definition of automata, and other automata-based modeling for-

malisms presented in this section, formal analysis and verification techniques, such as model

checking, discrete controller synthesis, can be applied. In the thesis, we adopt the discrete

controller synthesis technique, which is presented in the next section.

3.3 Discrete Controller Synthesis (DCS)

3.3.1 General Presentation

Discrete controller synthesis (DCS), introduced in 1980s by [Ramadge & Wonham 1989],

was proposed to deal with the control and coordination problems of discrete event systems.

A discrete event system (DES) [Ramadge & Wonham 1989] is a discrete-state, event-driven

dynamic system that evolves in accordance with the occurrences of discrete events at pos-

sibly unknown irregular intervals. An event, for example, may correspond to the invoke or

completion of a task, the failure or frequency switch of a processor. Such systems arise in

various domains of our daily life, such as manufacturing, transport, automotive, embedded

systems, healthcare. These applications have their own design requirements, and require

control and coordination to ensure their desired behavior.

The main advantage of the theory is that it separates the concept of open loop dynamics

(i.e., the DES) from feedback control, and allows the autonomic analysis and control of DESs

w.r.t. a given specification of control objectives.

Discrete controller synthesis (DCS) is an operation that applies on a DES presented

as e.g., a labeled transition system as defined in 3.2.4. In order to control a DES, i.e.,

enable a controller to influence the evolution of the DES behavior, it is postulated that

the occurrences of certain events are under control. The set of inputs Y of a DES is thus

partitioned into two subsets: Yuc and Yc, representing respectively the uncontrollable and

controllable event sets. Figure 3.8 shows the principle of discrete controller synthesis (DCS).

It is applied with a given control objective: a property that has to be enforced by control.

The objective is expressed in terms of the system’s outputs X. The controller denoted by

C is obtained automatically from a system model S and an objective, both specified by a

user, via appropriate synthesis algorithms. The synthesis algorithms, which are related to

model checking techniques, automatically compute, by exploring the system state space, a

constraint on controllable variables Yc, i.e., the controller. Its purpose is to constrain the

values of controllable variables Yc, in function of outputs X and uncontrollable inputs Yuc,

such that all remaining behaviors satisfy the given objective.

Figure 3.8: Principle of discrete controller synthesis

There can be several controllers that meet the same control objective. In the extreme

case, a controller can forbid any state transition in order to avoid the invalid states. This

is apparently not desirable for target systems. We are interested in maximally permis-

sive controllers, which ensure the largest possible set of correct behaviors of the original

uncontrolled system.
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3.3.2 Control Objectives

This section presents the control objectives considered in the thesis. They are defined in

terms of states and transitions of a LTS-modeled discrete event system. We categorize them

into logical and optimal ones. The synthesis algorithms corresponding to these objectives

exist in the literature, and have been implemented in the tool Sigali2.

Logical Control

The following two logical control objectives [Girault & Rutten 2009] are considered:

❼ invariance of a subset of states E: a function S′ = make invariant(S,E) that syn-

thesizes and returns a controllable system S′ such that the controllable transitions

leading to states qi+1 /∈ E are inhibited, as well as those leading to states from where

a sequence of uncontrollable transitions can lead to such states qi+k /∈ E.

❼ reachability of a subset of states E: a function S′ = keep reachable(S,E) that synthe-

sizes and returns a controlled system S′ such that the controllable transitions entering

subsets of states from where E is not reachable are disabled. Note that making E

invariant is equivalent to making states not in E unreachable.

Algorithms corresponding to these two objectives can be found in [Marchand & Samaan 2000].

They have been implemented in Sigali as controller synthesis operations S Security(S,prop)

and S Reachable(S, prop) respectively, where S denotes the system model and prop repre-

sents the target subset of states.

Optimal Control

Costs or weights can be defined on the states and/or transitions of a LTS as described in

Section 3.2.4. Optimal control objectives specify how to control the transitions in order

to optimize some costs. We distinguish one-step optimal and optimal control on path

objectives.

One-step optimal control. One-step optimal control objective is to minimize/maximize,

in one step, some function w.r.t. the costs or weights associated with states or transitions,

i.e., to control the system go only to the next states with optimal weight or trigger only

transitions with optimal weights. There can be several equally weighted solutions, so opti-

mization does not necessarily lead to determinism. It can be noted that this gives us only

a one step choice i.e., a local optimal, not a global optimal on all the behaviors.

Algorithms for optimizing and minimizing a cost function in one step can be found in

[Marchand & Samaan 2000].They have been implemented by Sigali operations

Strictly Greater than(S,C,C Dup, duplicate states) for maximizing a cost function, and

Strictly Lower than(S,C,C Dup, duplicate states) for minimizing a cost function, where

❼ S denotes the system model,

❼ C denotes the cost function, associating states with corresponding costs,

❼ C Dup denotes the duplicated cost function, and

❼ duplicate states denotes the duplicated states of S.

2http://www.irisa.fr/vertecs/Logiciels/sigali.html

http://www.irisa.fr/vertecs/Logiciels/sigali.html
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Optimal control on path. The optimal-control-on-path objective is to optimize the

costs accumulated along paths of bounded length across a LTS. A path of length k starting

at state q1 and ending at state qk is the sequence of k − 1 transitions between them. The

cost of a path is defined as the sum of the costs of all the states and/or transitions along

the path. An optimal control algorithm that drives a LTS from the current state towards

the target states at the best cost despite the worst moves of uncontrollable events can

be found in [Dumitrescu et al. 2010]. This has been implemented by the Sigali operation

S min weight path maxUC(S,C, T ), where

❼ S denotes the system model,

❼ C denotes the cost function, associating states with corresponding costs, and

❼ T denotes the set of target states.

Note that this operation is not available in the current version of the Sigali tool.

3.4 BZR Synchronous Language and DCS

BZR3 extends Heptagon with a new behavioural contract [Delaval et al. 2010], and encap-

sulates the DCS tool Sigali [Marchand & Samaan 2000] in its compilation process. The

contract enables users to specify the control objectives to be enforced in a declarative style.

The system behavior is described, in an imperative style, in terms of automata by the Hep-

tagon synchronous language (see Section 3.2.3). The compilation of BZR will automatically

synthesize a controller enforcing the specified objectives. This controller is then re-injected

automatically into the initial BZR program so that an executable program can be generated

(in C or Java) for execution.

twotasks(r1, e1, r2, e2)

= a1, s1, a2, s2
enforce not (a1 and a2)

with c1, c2

(a1, s1) = delayable(r1, c1, e1) ;

(a2, s2) = delayable(r2, c2, e2)

Figure 3.9: A BZR program with contract.

Figure 3.9 shows an example of a BZR program with a contract coordinating two in-

stances of the delayable task defined in Figure 3.4 of Section 3.2.3. The twotasks node

has a with part that declares controllable variables c1 and c2, and the enforce part that

asserts the objective to be enforced by the DCS. Here, we want to ensure that the two tasks

running in parallel will not be both active at the same time, defined by not (a1 and a2).

Thus, c1 and c2 will be used by the computed controller to block some requests, leading

the automaton of a task to the waiting state whenever the other task is active.

The controller or constraint produced by DCS is maximally permissive as discussed in

the end of Section 3.3.1. This implies that several solutions might be valid for the values of

controllable variables. To generate deterministic executable code for simulations, the BZR

compiler chooses the solution by giving priority, for each controllable variable, to value true

over false when both values are valid, and evaluating the controllable variables following

the order of declaration in the with statement.
3http://bzr.inria.fr

http://bzr.inria.fr
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3.5 Some Approaches Applying Discrete Control

The application of discrete control methods and techniques to computing systems is only

emerging, although the classical control theory has been readily applied to computing sys-

tems [Hellerstein et al. 2004].

In [Iordache & Antsaklis 2009], discrete control is applied for the synthesis of concur-

rent programs based on Petri net models, while the authors of [Liu et al. 2008] deals with

the schedulability analysis of Petri nets. Some other works have focused on the deadlock

avoidance problem in shared memory multi-threaded programs by applying discrete con-

trol. In [Wang et al. 2009], the authors propose a programming language-level approach,

that relies upon Petri net models, to synthesize deadlock-avoidance control logic for dead-

lock avoidance. [Auer et al. 2009] [Wang et al. ] are some of the other works that also apply

discrete control to deadlock avoidance. [Gaudin & Nixon 2012] handles another software

problem, which applies discrete control to modify programs in such a way that the run-time

exceptions that cannot be handled by the code will be inhibited.

In an approach related to reactive systems and synchronous programming, discrete con-

troller synthesis, that defined and implemented in the tool Sigali, has been integrated in the

compiler of BZR (see Section 3.4). [Delaval et al. 2010] describes how the BZR compila-

tion works to perform invariance control, with modular DCS computations. BZR has been

applied in the work concerning component-based software [Bouhadiba et al. 2011], in the

work concerning the coordination control of administration loops [Gueye et al. 2012], and

in the work concerning reconfigurations of reconfigurable architectures [Guillet et al. 2012].

Compared to [Guillet et al. 2012], more elaborate DCS algorithms would be applied, and

the integration into a design flow and compilation chain would be more developed, in the

thesis. Other works related to synchronous programming concern the articulation between

reactive programs and DCS [Marchand et al. 2000] [Altisen et al. 2003], the manual appli-

cation of the DCS to embedded systems [Gamatié et al. 2009], and the application of DCS

to fault-tolerance [Girault & Rutten 2009] [Dumitrescu et al. 2010].

3.6 Summary and Discussion

This chapter presented the existing models, languages and tools for embedded systems,

which are reactive systems. The data-flow based models, which are very natural to describe

system behaviors, are firstly presented. KPN, SDF and data-flow synchronous languages

such as Lustre and Signal are all high level models that are able to capture the system

behavior of embedded systems. They are very suitable to deal with the first design issue,

i.e., the design of a configuration of adaptive MPSoCs, identified in Chapter 2. The data-

flow synchronous languages, in particular, have the concept of abstract clocks, which make

them suitable to model the hardware platform (contains multiple PEs running at their own

clocks) as well. Moreover, they have formal mathematical semantics, which can enable

formal analysis. This is very important for embedded systems, which are usually safety-

critical.

W.r.t. the second design issue identified in Chapter 2, i.e., the reconfiguration manage-

ment of adaptive MPSoCs, the automata based modeling formalisms are presented. They

are quite natural to model system reconfiguration behaviors. Among the modeling for-

malisms, we adopt the automata-based synchronous languages to address this design issue,

as they have a rich set of formal analysis techniques. To design a safe controller for the

reconfiguration management of MPSoCs, we choose the discrete controller synthesis tech-

nique. Compared to model checking, which gives indications or diagnosis on the original
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design when a bug is detected and requires the designer to go back to the design and modify

it before performing the verification again, DCS is more constructive as it is able to synthe-

sis a controller directly. The BZR synchronous language that encapsulate the DCS in its

compilation is then presented. At last, we present some existing works that apply discrete

controller synthesis for computing systems. It is observed that discrete control is rarely

applied to the reconfiguration management of reconfigurable architectures, i.e., FPGAs.

Based on the models, languages and tools presented in this chapter, the following two

chapters will present our contributions to the two identified design issues respectively.
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This chapter presents our contribution to the first design issue, i.e., the design of a

configuration of adaptive MPSoCs. Our aim is to provide a fast and cost-effective means to

assist the designers to make early implementation (i.e., mapping and platform configuration)

decisions. In consideration of the system adaptivity, we target a number of Pareto-optimal

implementation candidates, which provide a trade-off in resource usage, performance and

energy/power consumption. They can be used by a run-time mechanism, presented in the

next chapter, to adapt the mapping in different run-time situations.

The chapter is organized as follows: Section 4.1 exposes the motivations and contribu-

tions of the study. Section 4.2 introduces the input specifications of system applications and

execution platforms. Section 4.3 presents our abstract modeling and analysis framework.
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Section 4.4 addresses application scheduling on MPSoCs and performance evaluation. Sec-

tion 4.5 presents our implementation and reports experimental results. Finally, Section 4.7

concludes.

4.1 Motivation and Contribution

Embedded systems are special-purpose computer systems combining software and hard-

ware components that are subject to external constraints coming from environment and

execution platforms. Their implementation on chips, referred to as systems-on-chip (SoCs)

makes them pervasive, ubiquitous and suitable in many modern applications. Examples are

consumer electronics among which, the most emblematic products are mobile smart-phones.

With the high integration of functions, embedded systems have become very smart

and sophisticated. Nowadays, smart phones provide users with a large panel of facilities

for communication, music and video players, built-in camera, Internet access, etc. Future

embedded multimedia systems are expected to keep on integrating more functions.

All these facilities within a single system lead to the processing of huge amounts of

information. A mobile phone can contain gigabytes of video, photo and music data files to

process. Many modern embedded application domains include data-intensive processing :

they operate on large data sets or streams, where the processing mostly consists of data

read/write and data manipulation.

Moreover, embedded applications often have real-time constraints. In video process-

ing applications, there are usually rate and deadline constraints imposed to image display.

When executed in mobile devices, further concerns such as power/energy consumption

become very important for battery life. Parallel execution platforms play a key role for pro-

viding these applications with the required computational power to achieve data-intensive

processing under real-time and energy-efficient constraints. In order to obtain adequate

execution performances, a state-of-the-art solution consists in integrating multiple cores

or processors on a single chip, leading to as multiprocessor systems-on-chip (MPSoCs)

[Wolf et al. 2008].

Adaptivity is another desirable feature in embedded systems. First, the ability to adapt

to environment variations becomes very important. For instance, a video-surveillance em-

bedded system for street observation adapts its image analysis algorithms according to

factors like the human activity (crowded place or not), luminosity (day or night) or the

weather. Some video-processing systems need to adapt their data processing according to

the consumption and production rates of input and output dataflows.

Our contribution. We consider a high-level design and analysis framework for MP-

SoCs w.r.t. the trends mentioned previously. Traditional development approaches would

program embedded data-intensive applications using data parallel languages or program-

ming models such as OpenMP or message passing interface (MPI) according to the shared

or distributed nature of memory in target platforms. We believe this abstraction level for

programming MPSoC-based applications is tedious because of the error-prone manual cod-

ing and debugging efforts for programmers, particularly with the increasing complexity of

modern embedded systems. In this context, we advocate the elevation of design abstraction

levels for parallel embedded systems in order to favor faster and cost-effective design ap-

proaches, while permitting a relevant analysis of complex design spaces. Here, we propose a

modeling and analysis framework for the design space exploration of adaptive applications

on MPSoCs. An application is represented according to its event occurrences with their

precedence relations. We analyze various design scenarios of its mapping and scheduling on

an MPSoC by using abstract models. Among properties of interest are behavioral correct-
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ness, execution times and energy consumption. A major advantage of our approach is that

it offers a simple and fast alternative to explore and reduce complex design spaces before

applying alternative but more expensive techniques, such as physical prototyping and low-

level simulations. Our design framework is seen as an intermediate design-assistance tool

usable between high-level MPSoC-based models and their implementations. Some results

in this chapter have been presented in [An et al. 2012a] [An et al. 2012b].

4.2 High-Level Modeling of Adaptive MPSoCs

The starting point for our approach is a specification comprising a high-level description

of executed applications and the associated execution platforms. Such a specification is

typically modeled with the UML Marte profile [Object Management Group 2013a]. Here,

we statically define the different scenarios (or modes) that characterize possible system

behaviors. Let us consider a motion JPEG (M-JPEG) decoding application example. The

adaptive behavior of the M-JPEG application is decomposed into two configurations as

illustrated in Figure 4.1 and 4.2 in terms of application component graphs. The former

captures the initialization phase while the latter represents the nominal pipelined execution.

Beyond these examples of configurations, note that it is possible to capture via the same

abstract specification concepts, the fact that the functionality of a given component changes

from one configuration to another, or a variation of its input/output data size according to

different configurations, etc.

Appl. config. 1

Demux VLD IQZZ

[...]

[...]

[...] [...] [...] [...] [...]

Figure 4.1: An initial application configuration.

Appl. config. 2

Demux VLD IQZZ IDCT Libu
[...] [...] [...] [...] [...] [...] [...] [...] [...] [...]

Figure 4.2: A nominal application configuration.

The way the specified configurations switch between each other during execution is

described in a manager, typically defined as a finite state machine. An example is depicted

in Fig. 4.3, where each state corresponds to a configuration. The cyclic transition from

state AppConfig2 denotes the multiple successive execution of the nominal mode (it consists

of a periodic execution performed 36 times).

AppConfig1 AppConfig2

Config. controller

Figure 4.3: Application configuration manager.
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The execution platform of the M-JPEG decoder can be specified as shown in Figure 4.4.

It consists of a set of processing elements interconnected by a communication infrastructure

that can be typically a Network-on-Chip (NoC). At this abstract level, the only required

information about communications is, for each direct path linking two different processing

elements, the best-case and worst-case latencies. On the other hand, since processors are

supposed to run at variable frequency levels, the possible values for these frequencies are

also provided in the specification. Our design space exploration framework therefore inves-

tigates which choices in these frequency values are suitable w.r.t. functionality correctness,

temporal performance and energy consumption.

Annotated
Communication
infrastructure

Proc 1
{f11, f12, ...}

Proc 3
{f31, f32, ...}

Proc 4
{f41, f42, ...}

Proc 5
{f51, f52, ...}

Proc 2
{f21, f22, ...}

Execution multiproc. platform

Figure 4.4: A multiprocessor platform model.

As for applications, note that configurations could be also considered for execution plat-

forms. For instance, one may consider configurations with distinct architecture topologies,

with different types of processing elements (e.g., processor versus FPGA), with different

frequency values of processing elements, etc. Finally, our reasoning framework requires

pre-profiled information for each elementary component of an application, regarding its

execution latency and energy consumption on processing elements to be considered in the

design space. Such an information should be also provided in the form of best-case and

worst-case latencies.

The above abstract specification can be satisfactorily modeled with high-level modeling

formalisms such as MARTE [Object Management Group 2013a]. This profile defines a rich

set of concepts to describe different features of adaptive embedded systems. The General

Component Modeling (GCM) package is used to define general aspects such as algorithms

in the application software part of a system. The Hardware Resource Modeling (HRM)

package is used to describe hardware architecture, e.g. processors and memories. The

Allocation package serves to define software/hardware mapping. The CCSL package is used

to associate abstract clocks with UML components such as ports. Then, the interaction

between components via the events occurring on their ports can be characterized by abstract

clock relations. All these packages are useful in the description of each system configuration.

Concerning reconfiguration modeling, we also need additional features: Configurations,

which is used to describe different implementation scenarios, or modes, of a system, and

UML Finite State Machines, which is used to describe configuration switches.

The Gaspard2 hardware/software codesign framework [Gamatié et al. 2011] dedicated

to high-performance embedded systems adopts Marte as input design model. It allows one

to automatically generate from such a model, simulation code in Pthreads, OpenCL or

OpenMP Fortran for massively parallel systems. The approach we present in this paper
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can be conveniently integrated in such a framework before code generation, so as to help a

design to rapidly explore his/her design space and identify the most efficient system design

choices.

4.3 An Abstract Design Framework for Adaptive Sys-

tems

We present how the input high-level system models mentioned in Section 4.2 are addressed

based on our abstract design and reasoning framework.

4.3.1 Application Behavior

We first consider a static application behavior, i.e., an application configuration, defined

via an application component graph. Tasks exchange data according to the connections

specified in the graph. Each task has its own local activation clock according to which an

associated sequence of events is observed. We use the tagged signal system presented in

[Lee & Sangiovanni-vincentelli 1998] to construct our models.

The following sets are assumed: a discrete set T of logical instants, having a smallest

element τmin and associated with a partial order ≤; and a value domain V. Then, let us

consider the following definition of static application behavior:

Definition 2 (static application behavior). Given an application composed of a set T of

tasks, its static behavior is a pair (E ,≺) with E the set of all possible events associated with

all tasks, i.e., E =
⋃

Bt, t ∈ T and a precedence relation ≺ defined on events of E.

The behavior Bt of task t is defined as a sequence of events, and an event e is a pair

(τ, v), where τ ∈ T is a logical instant, and v ∈ V is a value.

We extend the previous definition to define dynamic (i.e., adaptive) application be-

haviors. The dynamic behavior of considered embedded applications may depend on:

i) the nature of data to be processed, e.g., different behaviors of the MPEG 4 decoder

[Stuijk et al. 2010] for I frames and P frames; ii) environmental conditions, e.g., corre-

sponding to different behaviors of smart cameras for good and bad weather situations

[Wildermann et al. 2010]; and iii) execution platform resource availability. Such an ap-

plication can be captured by a set of static behaviors in combination with a controller

managing its dynamism by taking into account all relevant factors. In our vision, a dy-

namic application behavior therefore consists of a sequence of static behaviors over time,

under the control of an associated manager or controller.

A dynamic application, with a task set T , has a set of static behaviors. We call it the

behavior set of the application, denoted by BT . Given a controller C(BT ) that determines

its static behaviors over time, the dynamic application behavior is defined as follows:

Definition 3 (dynamic application behavior). Given an application composed of a set T

of tasks, with a behavior set BT and a controller C(BT ), its dynamic behavior is a (possibly

infinite) sequence of static behaviors denoted by a tuple (C(BT ), ω), where ω ∈ N∗ is the

number of application iterations over time, C(BT ) is a controller determining a behavior

from BT for each step (or iteration) of the sequence.

Figure 4.5 shows the set {b1, b2} of static behaviors for an application. Suppose it has a

dynamic behavior alternating {b1, b2} for 20 iterations, then its dynamic behavior is denoted

by (C({b1, b2}), 20) where C({b1, b2}) = bi, i = ((j−1)mod 2)+1, s.t. j is an iteration index

from 1 to 20.
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t0:

t1:

e0

e2

e1

e3

t2: e4

Figure 4.5: Set of two behaviors b1 and b2.

The application behavior definitions given previously are quite abstract. They have

abstracted away the communication concerns, and the precedence relations between events

can be interpreted as data transmission or any general controlled sequence. This allows

the designer to focus on some application analysis like functional behavioral correctness

without considering irrelevant aspects.

The communication aspect, however, plays an important role in embedded system de-

sign and analysis. Given the input specifications of Section 4.2, the set of communicating

channels, and the data production and consumption sizes to and from channels should then

be extracted to capture the application communication aspect.

In our framework, given a behavior (E ,≺) and a set of channels Ch in an application

specification, we define a function δ : E × Ch → N to capture the data production and

consumption operations of events w.r.t. channels. N is an integer representing the operating

data size. N > 0 and N < 0 indicate respectively a data production and consumption

operation, while N = 0 means no data exchange between the corresponding event and

channel.

4.3.2 Execution Platform Behavior

We consider heterogeneous execution platforms consisting of a set P of processing elements

(PEs) communicating via an interconnect I, e.g., a network-on-chip. Each PE is assumed

to be associated with a local memory with enough storage space. The interconnect is char-

acterized by the best-case and worst-case transmission bandwidths, e.g., bytes/millisecond,

for all pair of PEs. A selection strategy is defined to choose values within this interval

during simulation. Each PE pi ∈ P has a set of possible operating frequencies denoted

by fs(pi) = {f
j
i }, j = 1, 2, ..., and can adapt its frequency during execution, i.e., dynamic

frequency scaling (DFS). The need to adapt the platform configuration or behavior (i.e., the

operating frequencies of PEs) usually comes from the energy efficiency [Chen & Kuo 2007],

which aims to minimize energy consumption while all tasks are done in time. Such frequency

adaptations usually come with overheads that cannot be ignored. We define a combination

of the frequencies of all PEs as a static platform behavior, i.e., a platform configuration,

denoted by bP = {fi, 1 ≤ i ≤ |P |, fi ∈ fs(pi)}. All the PE frequency combinations thus

comprise the behavior set BP of the platform. Similar to application controllers, a platform

controller C(BP ) is in charge of platform behaviors over the time.

We model a platform behavior through the clock activations of PEs by considering the

inverse of their frequency values, i.e., clock cycles. A reference clock K is defined to synchro-

nize the activations of PEs. The frequency fK value of the reference clock K is calculated as

the least common multiple (LCM) of frequencies of all PEs: LCM(fs(p1), ..., fs(p|P |)). A

cycle 1/f j
i of a PE pi is thus equal to an integer number of cycle 1/fK. Figure 4.6 illustrates

a dynamic behavior of a platform composed of three PEs p0, p1 and p2 with frequency sets



4.4. Scheduling and Design Analysis 49

0 1 2 3 4 5 6 7 8 9 10 11 12 ...

K • • • • • • • • • • • • • ...

p0 • • • • • • • • • • ...

p1 • • • • • ...

p2 • • • • ...

Figure 4.6: A platform dynamic behavior.

{60MHz, 120MHz}, {40MHz} and {30MHz} respectively. Suppose the frequency switch

of p0 is one cycle. The dynamism of the platform is managed by a controller which imposes

the scenario (60MHz, 40MHz, 30MHz) at the beginning for p0, p1 and p2 respectively.

Then, it adapts the scenario to a new one (120MHz, 40MHz, 30MHz) at instant 4. The

second behavior only takes effect at instant 6 as the switch cost of p0 is assumed to be one

cycle here.

4.3.3 Application Mapping on Platforms

Mapping is one of the key design steps in embedded system co-design process.

Definition 4 (mapping). Given an application composed of a task set T and an execution

platform composed of a processing element set P , a mapping of the application onto the

platform is defined as a total function M : T → P .

In order to evaluate system designs, elementary costs including time and energy costs

of all events, should be provided. Such values are usually fixed and obtained statically by

either profiling each task execution on the potential processing elements, or analyzing the

worst-case execution times (WCET) and energy consumptions. However, different profiling

might get different results due to uncertainty, and worst-case values can result in very

pessimistic performance analysis values.

Our framework rather considers the time cost of each event e as an interval denoted by

[α⊥, α⊤], with lower and upper bounds represent typically the best and worst case execution

times respectively. Selection strategies such as defining a probability distribution on the

values of this interval can be defined so as to capture realistic values at simulation time.

The event energy cost is defined similarly. The event time cost values are specified in terms

of number of clock cycles of mapped PEs, and energy costs are specified as the profiling

values on PEs. Notice that the same event in different behaviors may have different cost

values.

4.4 Scheduling and Design Analysis

We firstly introduce the clock modeling of application executions on platforms in our frame-

work. The notion of admissible scheduling for applications in our framework is then intro-

duced, before we propose an iteration-based scheduling algorithm for admissible scheduling.

Afterwards, performance analysis based on abstract clocks to assess design choices is dis-

cussed.

4.4.1 Clock Modeling of System Executions

We introduce a ternary abstract clock encoding of application executions on platforms. Task

execution on PEs and data transmission on the interconnect are considered separately. We
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assume that the input data of a task are always stored in the local memory of its mapped

PE, and the time cost of reading data from a local memory is neglected for the sake of

simplicity.

A ternary abstract clock is a three-valued string over {−1, 0, 1}. The values 1 and

0 respectively represent the active and idle instants of task executions on PEs or data

transmissions on interconnects w.r.t. the reference clock K. The meaning of the value −1
depends on the context: a sequence of −1 means active at these instants if it is preceded

by 1, otherwise it denotes idle.

Figure 4.7 shows an execution example encoded by ternary clocks. It captures the

executions and communications of the application of Figure 4.5 on two PEs, p0 and p1,

linked by an interconnect I, of the platform of Figure 4.6. Here, we consider an application

behavior with two iterations b1, b2, and a static platform behavior with frequencies of p0
and p1 are 60MHz and 40MHz. Suppose each application event takes one PE clock cycle

for execution, and the data transmissions of events e0, e1 respectively take one and two

ticks of K. The clock clk(t/p) is used to represent the execution of task t on PE p, while

clk(t/I) represents the transmission of data produced by t on the interconnect I. The value
1 indicates the logical instant at which an execution or a data transmission action related to

an event starts on its mapped PE or interconnect portion. The sequence of −1’s following
1 denotes the action duration. Similarly, value 0 indicates the instant at which an event is

waiting for actions.

0 1 2 3 4 5 6 7 8 9 10 11 12

p0 • • • • • • •
clk(t0/p0) 1 -1 1 -1

clk(t0/I) 0 -1 1 0 1 -1

p1 • • • • •
clk(t1/p1) 0 -1 -1 1 -1 -1 1 -1 -1

clk(t2/p1) 0 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1

Figure 4.7: Execution encoding with ternary clocks.

Let us consider task t0 consisting of two events e0 and e1. The clocks clk(t0/p0) and

clk(t0/I) show that e0 starts at instant 0, takes one cycle and finishes at instant 2, at

which instant its produced data starts to be transmitted, and the transmission takes one

tick. The event e1 starts at instant 2 and finishes at 4, at which instant its produced data

is transmitted, and arrives at instant 6 after 2 ticks. The executions of events e2 and e3
of task t1 start after the instants when the data transmissions of their preceding events

are completed. Task t2 can only start at instant 9, as it shares p1 with task t1 and p1 is

running t1 at instant 6 when its input data are ready. clk(t1/I) and clk(t2/I) are empty

and omitted here as tasks t1 and t2 do not produce any data. Indeed, as mentioned in

the beginning of the current section, all tasks are assumed to read their data from a local

memory, which does not involve the interconnect. Only a flavor of ternary clocks is given

here, more aspects including the red “1” will be explained later.

For an efficient symbolic manipulation, ternary clocks can also be represented in a com-

pact way. For instance, in Figure 4.7, the ternary clock clk(t1/p1) is written as 0(−1)21(−1)2

1(−1)2, where the exponent denotes the number of repetitions or periods.

4.4.2 Admissible Scheduling of Applications

The following three requirements are considered for characterizing an admissible scheduling:
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i) precedence relation preservation: the precedence constraints between events defined

in application behaviors are preserved,

ii) non-simultaneous execution: the executions of two or more events at the same time

are not allowed on the same processor,

iii) cycle integrity: when the activation instants of task events and the clock instants or

ticks of their executing processors do not coincide, the non null delay between these

instants is fully taken into account, i.e., processors are not yet ready to execute the

events. For such an event, its effective execution is postponed to the next processor

clock tick from its current position in time.

Requirement i) should be further refined as follows when taking into account communication

aspect: 1) the data transmission of an event cannot start before the event ends, and 2) if

event e1 is preceded by another event e2 (e1 and e2 do not belong to the same task), then

e2 cannot start before event e1’s data transmission ends.

In literature, such as in [Lee & Messerschmitt 1987], only the first two requirements are

considered for admissible scheduling. Requirement iii), i.e., the possible non null delays

between activation instants of task events and clock ticks is not taken into account. An

example of execution scenario illustrating the issue raised by point iii) is shown in the

scheduling of t1 on p1, denoted by the italic clk(t1/p1) in Figure 4.8. Compared to Figure

4.7, here we suppose the transmission for the produced data of e0 takes 2 ticks. In this case,

the produced data of e0 starts its transmission at instant 2, and finishes the transmission

at instant 4 of the reference clock. The task t1 then starts its execution at this instant,

denoted by the first red colored “1”, which lies between two clock ticks of processor p1. This

is not a valid execution. The execution of task t1 should be postponed to some instant

which coincides with a clock tick of p1. The bold clk(t1/p1) gives a valid scheduling where

the first red “1” is postponed to instant 6. Similarly, the second red “1” also violates the

third requirement, and is postponed in the bold clk(t1/p1) to instant 9.

0 1 2 3 4 5 6 7 8 9 10 11 12

p0 • • • • • • •
clk(t0/p0) 1 -1 1 -1

clk(t0/I) 0 -1 1 -1 1 -1

p1 • • • • •
clk(t1/p1) 0 -1 -1 -1 1 -1 -1 1 -1 -1

clk(t1/p1) 0 -1 -1 -1 -1 -1 1 -1 -1 1 -1 -1

Figure 4.8: Execution encodind with ternary clocks.

4.4.3 Scheduling Algorithm

We propose an iteration based admissible scheduling algorithm for application executions

on DFS-enabled MPSoCs. An “iteration” refers to the iterative application executions, and

the scheduling algorithm schedules tasks iteratively. It supposes that tasks are statically

allocated and executed on mapped PEs, and the execution of events are non-preemptive.

Given an application behavior bT , the events that have no precedence relations need to be

ordered by defining a scheduling order denoted by φ(bT ). This order is used to indicate

the priority when events are competing for the same PE. Algorithm 1 gives the scheduling

algorithm.

The inputs of the algorithm are as follows:
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Algorithm 1 Scheduler

1: for all t ∈ T, p ∈ P do

2: clk(t/M(t)) = ⊘, clk(t/I) = ⊘;
3: clk(p) = ⊘;
4: end for

5: pre bP = C(BP );

6: for i = 1→ ω do

7: if C(BP ) 6= pre bP then

8: add costs to those PEs that have changed frequencies;

9: pre bP = C(BP );

10: end if

11: for all ej ∈ ϕ(C(BT )) do

12: if pre(ej)
⋂

ϕ = ⊘ then

13: rp = 0;

14: else

15: rp ← max{|clk(e.t/I)||∀e ∈ pre(ej)
⋂

ϕ};
16: end if

17: execute(ej ,M(ej .t), rp);

18: end for

19: end for

20: function execute(Event e, PE p, int rp)

21: if rp > |clk(p)| then
22: sp← min{index|index/nr(p) = 0, index > rp};
23: clk(p) = clk(p)⊕ 0(−1)[sp−|clk(p)|−2]

24: end if

25: if |clk(e.t)| < |clk(p)| then
26: clk(e.t) = clk(e.t)⊕ 0(−1)[|clk(p))|−|clk(e.t)|−1]

27: end if

28: clk(e.t) = clk(e.t)⊕ 1(−1)[(execSel(e,C(BT )))∗nr(p)−1];

29: clk(p) = clk(p)⊕ 1(−1)[(execSel(e,C(BT )))∗nr(p)−1];

30: if e.data = 0 then

31: return;

32: end if

33: if |clk(e.t/I)| < |clk(e.t/p)| then
34: clk(e.t/I) = clk(e.t/I)⊕ 0(−1)[|clk(e.t/p))|−|clk(e.t/I)|−1];

35: end if

36: minBW ← min{bandwidthSel(p, p′)|∀p′ ∈ P, ∃e′ ∈ suc(e)
⋂

M(e′) = p′}
37: clk(e.t/I) = clk(e.t/I)⊕ 1(−1)[(e.data/minBW )∗fK−1];

38: end function
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❼ a dynamic application behavior (C(BT ), ω),

❼ dynamic platform behavior C(BP ), and best and worst transmission bandwidths β⊥

and β⊤ for all PE pairs;

❼ a mapping function M ;

❼ scheduling orders φ(bT ), ∀bT ∈ BT ;

❼ best and worst case execution times α⊥ and α⊤ on possible mapped PEs for all events

associated with different behaviors;

❼ online selection strategies execSel(e, bT ) and

bandwidthSel(pi, pj) to select an execution time value of e in behavior bT and a

bandwidth value for transmitting data from pi to pj according to the best and worst

values respectively.

The algorithm outputs are the scheduling clocks clk(t/M(t)), clk(t/I), ∀t ∈ T and

clk(p), ∀p ∈ P . PE scheduling clock represents the execution behavior of all tasks mapped

on this processor. If there is only one task running on it, It is the same to the task’s schedul-

ing clock. When two or more tasks are mapped on the same PE, it is equal to the compo-

sition of the clocks of all tasks running on it. E.g., the scheduling clock of p1 in Figure 4.7

would be the composition of clk(t1/p1) and clk(t2/p1), that is 0(−1)
21(−1)21(−1)21(−1)2.

In the algorithm, e.t is used to represent the source task of e, and ⊕ is a binary con-

catenation operator operates on clocks, which appends the right operand to the end of the

left one. For example, 1(−1)5 ⊕ 1(−1)0(−1) = 1(−1)51(−1)0(−1).
From line 1 to 5, the algorithm initializes the scheduling clocks to empty, and the

platform behavior memory pre bP to the current platform behavior according to C(BP ).

Lines 6 to 19 specify the iteration scheduling loop. At iteration i, the algorithm firstly checks

whether the platform behavior has changed compared to the previous iteration. Frequency

adaptation costs are added to the scheduling clocks of adapted PEs (as done in Figure 4.6),

and the platform behavior memory is evaluated to the current one if it has.

Next, the scheduler schedules all the events of the current application behavior C(BT )

on their mapped PEs following the queue ϕ (lines 11 to 18). Given a behavior bT , ϕ(bT )

is constructed by ordering all its events according to φ(bT ) and the event precedence rela-

tions. pre(ej) represents the set of events preceding ej . To ensure admissible scheduling, it

takes care of the three admissibility requirements by using variables rp and sp to preserve

precedence relation and cycle integrity respectively, and the incremental construction of PE

scheduling clocks to avoid the simultaneous executions of events. rp computes the instant

w.r.t. the reference clock where all the data produced by the events preceding the event

have just arrived (line 15), and is evaluated to 0 if ej has no precedent events (line 13).

|clk| represents the length (i.e., number of instants) of clk. sp is used when the PE is idle

at rp, and computes the very next instant respecting cycle integrity of the corresponding

PE after rp (line 22). nr(p) represents the number of reference clock ticks that the cycle of

PE p occupies in the current behavior. sp represents the earliest instant at which the PE

can run an event. Between rp and sp, the event has to wait, denoted by 0 followed by −1’s
(line 23).

The scheduling clock of the task must coincide with the schedule of its mapped PE, i.e.,

the schedule of task event e should be the same on both scheduling clocks. This is ensured

by the statements from line 25 to line 27: the algorithm looks at the instant where the

PE is about to run the event, and appends 0 followed by a sequence of −1s to the task

scheduling clock if it needs to wait (e.g., some other event is executing on the PE). The
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scheduling clocks of the task and PE is then updated by appending the scheduling clock

of the event at lines 28 and 29 respectively. Lines 30 to 37 deal with the updating of the

scheduling clock clk(e.t/I). Nothing is done if the event produces no data (line 30). e.data

represents the size of e’s produced data. Otherwise, the scheduler firstly ensures that the

data transmission of the event cannot start before the instant at which the event ends (lines

33 to 35), and then appends the schedule of the data transmission to the clock (line 37).

minBW represents the minimal bandwidth between the mapped PE p of the event e and

the PEs that execute at least one event that requires its produced data as input (line 36).

suc(e) represents the set of such succeeding events of e. Using the minimal value ensures

that when event e has more than one successors, i.e., sending data to more than one events,

its data transmission finishes until its data have arrived to all successors.

Property 1 (Correctness). Algorithm 1 always generates an admissible schedule in the

sense of the three requirements given in Section 4.4.2.

Proof. To prove this property, we need to prove that the following three requirements are

met: the precedence relation preservation, cycle integrity for all scheduling clocks of tasks

on PEs i.e., clk(t/M(t)), ∀t ∈ T , and scheduling clocks of PEs i.e., clk(p), ∀p ∈ P , and

non-simultaneous execution schedules exist for the same processor.

Precedence relation preservation. We distinguish the precedence relations defined a)

on events within the same task behavior, and b) on events from different task behaviors.

For case a), ∀epj , e
q
j , e

p
j ≺ eqj , the precedence relation is preserved due to the fact that the

algorithm schedules epj before eqj and the scheduling clocks are computed incrementally, i.e.

the schedule of eqj is appended to the corresponding scheduling clocks after the one of epj .

For case b), ∀epi , e
q
j , i 6= j, epi ≺ eqj is kept due to, on the one hand, the algorithm projects epj

before eqj because of the order of φ, and on the other hand, the schedule of eqj starts after

the finish instant the schedule of epj which is under the charge of the variable rp.

Cycle integrity. This requires that the generated scheduling clocks clk(t/M(t)), ∀t ∈ T

and clk(p), ∀p ∈ P have 1s and 0s only coincide with corresponding processor tick instants.

Since these clocks are only updated in Lines 23, 26, 28, 29 of Algorithm 1, we need to prove

these updates do not introduce violation. Initially, all clocks are empty, thus if the codes of

Lines 23 and 26 are executed, the 0 would be appended to the first instant which apparently

coincides the clock tick. Moreover, after a number of −1s are appended, each clock has the

next instant coinciding with the clock tick due to sp for Line 23 and sclk(p) for Line 26

(whose next instant is a clock tick). Then for Lines 28 and 29, each 1 is appended to a

clock instant coinciding with clock tick, and each clock finishes just before a tick instant

as the schedule of an event spans a number of processor cycles. As a result, the property

follows for all these scheduling clocks.

Non-simultaneous execution schedules. This property follows due to the following two

facts of our algorithm. Firstly, before scheduling an event e, the algorithm always matches

its corresponding task and processor scheduling clocks, which ensures that the schedule

clk(e)pos of e is the same on both clocks w.r.t. the reference clock. Secondly, the processor

scheduling clock is computed incrementally, which ensures that at the same instant at most

one event could be scheduled.

4.4.4 Performance Analysis

Based on the previous scheduling algorithm, the computation of a number of performance

parameters are possible. We have integrated the following performance parameter compu-

tation in our framework.
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❼ execution time of a task ti: ET (ti) = |clk(ti/M(ti))| ∗ (1/fK), and PE pi: ET (pi) =

|clk(pi)| ∗ (1/fK);

❼ usage ratio of a PE pi: UR(pi) = nbc(clk(pi)) ÷
(nbc(clk(pi))+nic(clk(pi))), where nbc(clk(pi)) and nic(clk(pi)) represent respectively

the number of busy and idle cycles of clock clk(pi).

❼ energy consumption of a PE pi: EC(pi) =
∑

EC(tj) + nic(clk(pi)) ∗ iec(pi), where
M(tj) = pi, EC(tj) represents the accumulated energy costs of task tj during simu-

lation, and iec(pi) represents the energy cost of an idle cycle of pi;

❼ used local memory space for communicating tasks ti, tj connected by channel ch(ti, tj):

MS(ch(ti, tj)). It is assumed that an event does not produce (resp. remove) its

output (resp. input) data to (resp. from) the memory until its execution is finished.

MS(ch(ti, tj)) is computed by keeping track of the data production and consumption

operations on ch(ti, tj) during simulation. Two variables are used: the first one for

keeping track of the current stored data size, and the second one for recording the

maximal stored data size during simulation. MS(ch(ti, tj)) is equal to the value of

the second variable after simulation finishes. This storage space value gives an idea of

how much buffer space can be reserved for their communication when implementing

the mapping and scheduling.

As a general remark, the proposed scheduling algorithm based on the clock modeling

framework is flexible enough to help designers to efficiently assess several design aspects at

an early design stage. The idea is to play with the values of concerned parameters of the

algorithm and fix the rest.

4.5 Design Space Exploration

We build on top of the scheduling algorithm an exploration loop to target optimal soft-

ware/hardware mapping and platform configuration (i.e., frequency values of PEs) solu-

tions. Two exploration methods are employed: an exhaustive one and an heuristic one.

The objective is to find out a set of design points optimizing the time and energy consump-

tions, or the so-called Pareto optimal solutions [Zitzler 1999].

The exploration algorithms takes the same inputs as Algorithm 1, except the mapping

parameter which is to be explored. Moreover, the platform manager should be set to always

use the same explored platform behavior during the application scheduling. The output is a

set of Pareto optimal solutions, and each solution is a task to PE mapping and a frequency

value for each PE. In the next, we describe these two exploration methods.

Algorithm 2 gives the exhaustive exploration algorithm using two recursive functions.

It starts the exploration at line 1 by calling recursive function exploreFreqCombination

with argument 1. This function is used to explore all the PE frequency combinations, i.e.,

all the platform behaviors. The termination condition is met when the function is called for

the (|P |+1)th time (lines 3 to 5). Lines 6 to 12 enumerate all the possible frequency values

one by one for the ith PE. After each evaluation at line 7, frequency values are enumerated

for the (i + 1)th PE (line 8). We use f(pi) to denote the current frequency value of pi.

After the call is returned, if this call is for the enumeration of the last PE (i.e., line 9 is

met) the recursive function exploreMapping is invoked with argument 1 to ask the function

to recursively enumerate all the possible mappings of tasks on the current frequency values

of PEs (i.e., platform behavior) from the first task. The structure of the second function is
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the same as the first, and not explained here. Lines 22 to 24 are the steps to follow once a

mapping choice is computed regarding a platform behavior.

Algorithm 2 Exhaustive exploration

1: exploreFreqCombination(1);

2: function exploreFreqCombination(i)

3: if i = |P |+ 1 then

4: return;

5: end if

6: for all fj ∈ fs(pi) do

7: f(pi)← fj ;

8: exploreFreqCombination(i+ 1);

9: if i = |P | then
10: exploreMapping(1);

11: end if

12: end for

13: end function

14: function exploreMapping(k)

15: if k = |T |+ 1 then

16: return;

17: end if

18: for all pi → |P | do
19: M(tk)← pi
20: exploreMapping(k + 1);

21: if k = |T | then
22: 1) invoke Algorithm 1 with the current mapping and platform behavior;

23: 2) compute the system time and energy costs as in Section 4.4.4;

24: 3) check whether the current mapping and platform behavior is a Pareto optimal

solution: save it if it is, otherwise continue;

25: end if

26: end for

27: end function

As the design space of the problem grows exponentially, the use of the exhaustive explo-

ration is limited. A common solution is thus to trade optimality for speed, and uses heuristic

techniques. We consider evolutionary algorithms (EAs) [Zitzler 1999], as such algorithms

have the ability to find multiple Pareto-optimal solutions in one single run. EAs use mech-

anisms inspired by biological evolution, such as selection and variation. They operate on

a set of candidate solutions (called population), and evolve them iteratively. Solutions are

assessed by a cost function (called fitness function), and better solutions are more likely to

survive. In our framework, we consider the well-known evolutionary algorithm NSGA-II

[Deb et al. 2000]. To combine it with our framework, we have considered its implementa-

tion in the JMetal framework [Durillo & Nebro 2011]. The following adaptations have been

done based on our framework to apply the algorithm:

❼ represent the exploration space by |T | double variables, each variable corresponding

to the mapping of one task with the integer part representing the index of its mapped

PE, and fraction part for the PE frequency index;

❼ define two objectives: minimizing the time and energy consumptions;
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❼ evaluate for computed solutions the values of the two objectives: the values are ob-

tained by 1) invoking the scheduling algorithm (Algorithm 1) with the corresponding

solutions; 2) computing the time and energy costs.

4.6 Implementation and Experiments

We give an overview of the implementation of our framework, then we show some experi-

mental results.

4.6.1 CLASSY Tool

The modeling, scheduling and analysis framework presented in this paper have been imple-

mented in a prototype tool, named CLASSY (CLock AnalySis SYstem). The two design

space exploration methods: exhaustive and heuristic-based exploration have also been in-

tegrated in the tool. An automatic transformation from MARTE described system specifi-

cations to our reasoning framework, however, is still under construction. Some inspirations

will be taken from [Abdallah 2011].

System Specification
- application
- architecture
- scheduling order
  (optional)

Design Space Exploration
- elementary costs

Design Simulation
- mapping
- elementary costs

 Resulting
Scheduling
   Clocks

Performance 
    AnalysisScheduler +

Mapping Solutions 

Clocks to VCD    VCD File
(for Display 
in GTKWave)

Design Flow Use
Figure 4.9: Overview of the CLASSY tool.

Figure 4.9 shows the overview of the Classy tool. It has around two thousand Java code

lines and consists of five modules as follows:

❼ system specification provides interface for the user to define (dynamic) application

behavior including task behaviors, precedence relation between events, the associated

controller, (dynamic) execution platform behavior including PEs, their frequency val-

ues, transmission bandwidths between PEs, the associated controller, and the schedul-

ing order for those events that have no precedent relations between each other (this

is optional, if not defined, the tool follows the order that the events are defined).
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❼ scheduler and performance analysis performs scheduling as given in Algorithm 1, and

performance analysis as in Section 4.4.4 w.r.t. the system specification, a mapping

choice and corresponding elementary costs. It results in an admissible schedule which

is a set of scheduling clocks including the scheduling clocks of all tasks as well as the

composed scheduling clocks of processors, and the execution time, energy consump-

tion, etc.

❼ design simulation provides an interface to allow the designer simulate and analyze

his/her mapping choice. The elementary costs w.r.t. the mapping should also be pro-

vided. It uses the scheduler and performance analysis module to perform simulation

and analysis.

❼ clocks to vcd translates the scheduling clocks of tasks and PEs into a vcd file, so that

it can be feed to the GTKWave tool to to visualize the schedules of tasks on their

mapped processors, as well as the running states of processors.

❼ design space exploration implements the two exploration methods in Section 4.5 to

perform design space exploration and generate Pareto-optimal mapping solutions.

The elementary costs w.r.t. all the possible mappings should be defined. It uses the

scheduler and performance analysis module to perform simulation and analysis of each

mapping choice. During the exploration, the scheduling clocks are not computed in

order to make the exploration more efficient. It results in a set of Pareto-optimal

mapping solutions characterized by their performance results. If the user wants to

visualize some interesting mapping solution, he/she can then follow the path from the

design simulation module to the clocks to vcd module to generate the vcd file.

4.6.2 Experimental results

We have performed a number of experiments to show the usability and flexibility of our

framework. We also evaluate its efficiency and scalability.

In the first experiment Exp.1, we consider an implementation of the M-JPEG decoding

algorithm described in Section 4.2 in the SoCLib environment [SoClib 2012], dedicated

to SoC prototyping and cycle-accurate simulation. The results are compared with those

observed with CLASSY to see the precision.

In the second experiment Exp.2, we consider reference application models from those

used in [Stuijk et al. 2008] and compare our results with them. Their work performs

a throughput and buffering trade-off exploration based on cyclo-static and synchronous

dataflow graphs (CSDFGs and SDFs). Reasoning at this abstraction level allows designers

to quickly predict the timing behavior of an application and required buffer size before real-

izing it. The buffer size is the main concern of the throughput analysis. Our framework also

advocates high level reasoning and analysis, but has different concerns and brings different

insights for designers. In comparison with the results of [Stuijk et al. 2008], we discuss and

explain the differences.

In the third experiment Exp.3, we employ the MP3 decoder from [Stuijk 2007] to eval-

uate the scalability of our framework.

In the fourth experiment Exp.4, we use a case study from [Stuijk 2007] to show how our

framework can be used to assist a designer in embedded system design, even though the

case study has different design objectives. We also compare the results to see the precision.

At last (Exp.5), we use the example M-JPEG decoder and a NoC based MPSoC to

exhibit the flexibility of our framework, particularly the ability to capture system dynamic
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behavior, and allow customized communication and computation simulations. All experi-

ments are performed on a laptop with a Intel Core 2 Duo CPU of 2.4GHz and a 2Go main

memory.

Exp.1 : Analysis precision w.r.t. low level cycle-accurate simulation environment

We consider the implementation [Boumedien 2011] of the M-JPEG decoding algorithm in

the SoCLib environment [SoClib 2012], dedicated to SoC prototyping and cycle-accurate

simulation. The obtained results are compared with those observed with CLASSY. The

simulation results observed with our tool are correct-by-construction and obtained rapidly

at a low cost.

Configurations M-JPEG Mapped

identifiers tasks processors

1 Demux, Vld, Iqzz, Idct, Libu p1
2 Demux, Vld, Iqzz p1

Idct, Libu p2
3 Demux, Iqzz, Libu p1

Vld, Idct p2
4 Demux, Vld p1

Iqzz p2
Idct, Libu p3

5 Demux, Iqzz p1
Vld, Libu p2

Idct p3
6 Demux p1

Vld p2
Iqzz p3

Idct, Libu p4
7 Demux, Libu p1

Vld p2
Iqzz p3
Idct p4

8 Demux p1
Vld p2
Iqzz p3
Idct p4
Libu p5

Table 4.1: Analyzed mapping configurations for M-JPEG.

Experimental setup. For the execution of the M-JPEG decoder, a multiprocessor plat-

form with a shared multi-bank memory, which can be configured to support up to five

processors interconnected by using a bus or a network-on-chip (NoC), is considered in

[Boumedien 2011].

Concerning the application/platform mapping, a buffer is mapped on the memory bank

associated with its consumer task. When two communicating tasks are mapped on different

processors, a task consumes its data from its memory bank and writes produced data on

the memory bank of the processor executing the consumer task. The studied mapping

configurations are summarized in Table 4.1. Up to five processors {p1, p2, p3, p4, p5} are
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considered. For instance, in configuration number 1, all M-JPEG tasks are executed on

processor p1 while in configuration number 2, the successive tasks Demux, Vld, Iqzz are

executed on p1 and the successive tasks Idct and Libu are executed on p2. In configuration

number 3 also the same processors are considered, but the defined mapping does not select

successive tasks to execute on the same processor. We refer to multiprocessor configurations

like the number 2 as successive task mappings and multiprocessor configurations like the

number 3 as non successive task mappings.

Abstract clock-based design. The behavior of the M-JPEG application is composed of

two static behaviors: 1) an initialization part, indicated by a blue curve, where some initial

communications are achieved between the Demux task and the Vld and Iqzz tasks; and 2)

a periodic part, indicated by a red curve, which is repeated 36 times and consists of pixel

block-wise decoding of an image.

Demux

VLD

IQ-ZZ

Idct

Libu

361

e1
demux e2

demux e3
demux

e1iqzz e2
iqzz

e1vld e2vld

e1idct

e1libu

Figure 4.10: Application behavior for M-JPEG.

Regarding the input profiling data for each task of the M-JPEG, Table 4.2, taken from

[Boumedien 2011] gives the time cost values in terms of processor cycles corresponding to

each event shown in Figure 4.10. The given values are average values obtained from the

profiling of the application implementation in SoCLib. The performance properties about

the communication aspect, e.g., the bandwidth, the bandwidth selection strategy are not

given in [Boumedien 2011]. Here, we suppose the communication speed is fast enough, and

set the communication costs to 0 in our CLASSY experiment.

Tasks Observed Number of Number of

events repetitions processor cycles

Demux e1demux 1 12651

e2demux 1 21032

e3demux 36 2464

Vld e1vld 1 28042

e2vld 36 3007

Iqzz e1iqzz 1 1668

e2iqzz 36 4946

Idct e1idct 36 8978

Libu e1libu 36 1496

Table 4.2: Profiling data about M-JPEG tasks as inputs for CLASSY.

Comparison of simulation results. A part of the simulation results obtained from our

clock-based approach on the M-JPEG are reported in Figure 4.11, together with those

observed with SoCLib. They represent the temporal performances associated with the

mapping configurations summarized in Table 4.1. In Figures 4.11(a) and 4.11(b) all pro-
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Figure 4.11: Execution times for M-JPEG decoder on an image: CLASSY vs SoCLib cycle-

accurate simulations (communication via bus and NoC).

cessors always operate at the same frequency, while it is not the case in Figures 4.11(c) and

4.11(d). Two system implementations are considered in SoCLib according to the commu-

nication infrastructure: bus versus NoC.

The experiments show that our clock-based approach yields results with similar ten-

dency as those obtained with SoCLib. The precision of the results provided by CLASSY

appears good when compared to the NoC-based results. However, it is not the case when

considering the bus-based results. This observation is explained by the fact that NoCs

offer higher communication performances than buses. The execution time obtained with

NoCs is therefore shorter thanks to reduced communication time. In addition, possible bus

access conflicts, which increase the communication overhead, lead to lower performances

compared to NoC-based implementations. This issue is usually observed when the number

of processors sharing the same bus gets higher. This may explain the increase of the execu-

tion time in Figure 4.11(b), from configuration number 5 (three processors) to configuration

number 8 (five processors). Since the input profiling data given in Table 4.2 do not cover

such communication overheads and we set the communication costs to 0 in our CLASSY

experiment, the obtained results are less precise w.r.t. bus-based implementations.

Exp.2 : High level design analysis

We use five application models from [Stuijk et al. 2008] as benchmark set for this exper-

iment: H.263 decoder, MP3 decoder, a bipartite SDFG, Example SDFG and Example
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CSDFG. In their work, they aim to analyze the exact minimum buffer bounds for any

achievable throughput of modeled applications. Storage distribution is defined in their

work to represent the number of data tokens stored in each channel. The sum of the num-

bers is called distribution size of the storage distribution. Each actor is characterized by

an execution time for SDFG or a sequence of execution times for CSDFG. The throughput

is defined as the number of iterations per time unit. The storage distribution is the only

factor that influences the task executions. Its analysis abstracts away the communication

time costs and execution platform, and allows the concurrent firings of the same task. It

favors a rapid design exploration, however, needs to be combined with a particular design

flow for implementation [Stuijk 2007].

Mapping is one key design decision in system implementation. Our framework favors

the efficient exploration of mappings, while throughput and storage distribution are also

analyzed. We tune the inputs of our framework as follows, and then compare and discuss

our experimental results w.r.t. [Stuijk et al. 2008]:

❼ The communication cost is set to 0 so as to ignore communication costs;

❼ The number of PEs is set to the number of application tasks; all PEs are set to have

the same frequency value; task execution times are set to the values as in their work,

and they are the same on all PEs;

❼ The data token production and consumption operations are defined as in the graphs;

❼ Task energy cost that is irrelevant in the experiment is set to a random value, and

ten iterations are simulated for each application.

Tables 4.3 and 4.4 show respectively the results of the reference work and our experi-

mental results. The exhaustive exploration method has been employed for the analysis of

the first four examples, and the heuristic algorithm is employed for the MP3 decoder by

setting population size to 10 and number of iterations to 106.

We distinguish three reasons that lead to the throughput difference for all the examples.

First, our framework does not allow any concurrent firings of the same task (i.e., the firing

of a task can only be on its mapped PE), while the reference work does unless disallowed

in the application graph. Second, our framework assumes that buffer storage spaces are

enough for communications, while the reference work has a storage space bound during

scheduling. Third, our framework performs simulations for finite number of iterations and

compute the throughput based on the complete simulation, while the reference work assumes

infinite number of iterations, and computes the throughput based on the periodic part of a

constructed labelled transition system state space. Our framework does not investigate the

possible periodic execution behavior, as it targets fast simulations and simulation time cost

evaluations. The results for Example SDFG, Example CSDFG and H.263 decoder are close,

as they have some tasks that does not allow concurrent firing. Results for Bipartite and

MP3 decoder have quite different results, as most of the actors have high concurrent firing

possibilities. Globally, as we can see from Tables 4.3 and 4.4, even thought assuming enough

storage space in our framework, the maximal achievable throughputs for all applications

are still smaller, as well as the minimal throughputs. This implies that the concurrency

level plays a more important role than buffer size w.r.t. maximizing throughput in these

applications.
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Example SDFG Example CSDFG Bipartite H.263 Decoder MP3 Decoder

#tasks/channels 3/2 3/2 4/4 4/3 14/14

max. throughput 0.25 > 0.08 0.06 1× 10−4 6.88× 10−6

distribution size 10 16 35 8006 54

min. throughput 0.143 < 0.06 0.04 5× 10−5 5.33× 10−7

distribution size 6 11 28 4753 22

#Pareto points 9 5 8 3254 17

Run-time 1ms - 1ms 53mins 10.7s

Table 4.3: The experimental results taken from [Stuijk et al. 2008]. The unit of throughput is the number of iterations per time unit. The unit

of distribution size is the number of data tokens. The results of the example CSDFG is given in a graph, where the maximum and minimum

throughputs are not easier to recognized precisely. > and < means respectively sightly bigger and smaller than. The run-time of the experiment

is not given.

Example SDFG Example CSDFG Bipartite H.263 Decoder MP3 Decoder

#tasks/channels 3/2 3/2 4/4 4/3 14/14

max. throughput 0.227 0.08 4.0× 10−3 8.8× 10−5 2.66× 10−7

distribution size 21 24 164 7410 160

# used PEs 3 3 4 4 12

usage ratio(%) (68.2,90.1,45.5) (96,64,40) (14.2,99.5,46.2,31.6) (88.1,20.9,83.7,35.2) λ

min. throughput 0.111 0.04 2.1× 10−3 3.9× 10−5 1.23× 10−7

distribution size 8 24 86 4753 126

# used PEs 1 PE 1 PE 1 PE 1 PE 1PE

usage ratio(%) (100) (100) (100) (100) (100)

#Pareto points 4 5 7 6 10

Run-time 84ms 191ms 728ms 4.8s 14mins58s

Table 4.4: The experimental results of our framework. The unit of throughput is the number of iterations per time unit. The unit of distribution

size is the number of data tokens. λ = (3.8,99.1,99.1,0.02,3.9,0.26,0.26,2.8,4.4,0.39,1.84,1.84).
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Regarding the run-time difference, two reasons are distinguished. First, different com-

puters have been used to perform experiments. Second, our framework explores the mapping

space, while [Stuijk et al. 2008] explores the storage distribution space. In our case, if the

application has N actors/tasks and the platform is composed of M PEs, and each actor can

be mapped on any PE, the mapping space is MN . This can be observed from Tables 4.3

and 4.4. Both tools scale well for the first three applications, as they have small number

of tasks and storage distribution sizes. The run-time in Table 4.3 gets larger for the H.263

decoder (53 minutes), as the application requires a distribution size of thousands of tokens.

As it only has four actors, our framework scales well. However, when considering the MP3

decoder, the mapping space has an order of magnitude 1016. Suppose the analysis of one

mapping takes 1ms, then exploring the complete space would take thousands of years! The

exhaustive exploration is thus infeasible. We have taken the MP3 encoder example from

[Stuijk 2007], and use the SDF3 tool [Stuijk et al. 2006a] to compute the results, as we did

not find the MP3 encoder SDF model in [Stuijk et al. 2008]. This example is also used in

the next section to show the scalability of the heuristic exploration.

The computed storage distribution sizes are also given in Table 4.4. The results from

[Stuijk et al. 2008] are known to be optimal in their context. On the contrary, our frame-

work does not target the storage size minimization to achieve some throughput, but rather

gives an idea of storage distribution that can be used for a mapping to achieve the cor-

responding throughput. However, this is one direction of our future work. Moreover, our

framework provides information like mapping (show as used number of PEs, as PEs are

identical) and the usage ratio of each PE, while this is not the case for [Stuijk et al. 2008].

Exp.3 : Scalability

The MP3 decoder example presented in the previous section has 14 tasks, and when mapping

it onto a platform with 14 PEs, the mapping space would explode, and makes the exhaustive

exploration infeasible. In general, the run-time of our tool can be estimated by multiplying

the analysis time of one mapping and the size of the mapping space. The analysis time

for one mapping depends on the number of task activations within one iteration and the

number of simulated iterations. When the exploration time becomes very large, the heuristic

exploration must be applied. In the following, we use the same MP3 decoder example,

which has 14 tasks and 27 task activations within one iteration, and an execution platform

composed of 14 PEs to evaluate the scalability of our heuristic algorithms.

Table 4.5 shows the results by applying the heuristic exploration w.r.t. two parameters:

population size and the number of iterations. With the number of iterations grows by 10

times, the run-time also grows around 10 times. On the contrary, the population sizes does

not have much influence on the run-times when iterating the same numbers of times. It

shows that the heuristic exploration can significantly reduce the run-time, but does not

have much influence on the results.

Exp.4 : Supporting system design

We show how our framework can support embedded system co-design by using the H.263

decoder and the NoC based MPSoC architecture from chapter 10 of [Stuijk 2007], and

compare our results with [Stuijk 2007] to evaluate the precision of our framework. Design

inputs including execution times of actors, PE frequencies, NoC bandwidths are taken

directly from [Stuijk 2007]. The H.263 decoder is composed of four tasks: variable length

decoder (VLD), inverse quantization (IQ), inverse discrete cosine transformation (IDCT)

and motion compensation (MC). The architecture has four PEs to execute the decoder: two
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(#populations,#iterations) (10, 103) (10, 104) (10, 105) (102, 105)

max. throughput (∗10−7) 2.6464 2.6526 2.6518 2.6570

min. throughput (∗10−7) 1.2853 1.2282 1.2211 1.2308

Run-time 921ms 9.58s 1min34s 1min32s

(#populations,#iterations) (103, 105) (10, 106) (103, 106) (10, 107)

max. throughput (∗10−7) 2.6578 2.6578 2.6578 2.6578

min. throughput (∗10−7) 1.2285 1.2213 1.2202 1.2202

Run-time 1min47s 14mins58s 17mins33s 2h31mins

Table 4.5: The scalability experiment. The unit of throughput is the number of iterations

per time unit.

ARM7 processors, a VLD accelerator and a MC accelerator. The accelerators can execute

the corresponding tasks, reducing the execution time by 50% when compared to an ARM7.

All PEs operate on a 500MHz frequency, and the NoC runs at frequency 1.5GHz. The

design flow reasons on time-unit, and derives that one time unit is 2 ns. It employs the

resource virtualization technique, and the TDMA time wheels of all the PEs have thus a size

of 100000 time-units. The NoC provides a predictable bandwidth: 12 bytes/time-unit. The

design flow proposed in [Stuijk 2007] aims to meet a throughput constraint and meanwhile

minimize the resource uses, i.e., time slices on the PE time wheels. The decoder requires a

throughput 15 frames/second.

We tune our framework inputs as follows in order to compare with the results of

[Stuijk 2007]. First, each PE is set to have three operating frequency values, which are

selected based on the resulting time slice sizes of [Stuijk 2007]. One value is close to the

converted value of the resulting time slice size, while the other two values are one around

two times bigger and the other two times smaller. This allows our framework to explore the

mapping on these given operating frequencies, and compute the corresponding throughputs.

Second, tasks IQ and IDCT are not allowed to be mapped onto the two accelerators, and

task VLD (resp. MC) is not allowed to be mapped on the MC (resp. VLD) accelerator.

Third, worst-case time costs and NoC bandwidths are taken as in [Stuijk 2007], and 15

iterations are simulated. As a result, our tool computed out 13 mapping solutions with dif-

ferent throughput values within 10.36 seconds. The closest solution meeting the throughput

constraint has the throughput 990.1 milliseconds for 15 iterations. It maps tasks VLD and

MC on their accelerators with frequency values 35 ∗ 104 and 25 ∗ 104 respectively, and tasks

IQ and IDCT on one ARM 7 processor with frequency 107. By converting the frequency

values into the time slide sizes, they are 70, 50 and 2000 time units. [Stuijk 2007] has the

same resulting mapping and very close time slice sizes: 71,47 and 1916 time units.

Exp.5 : Dealing with dynamic behavior

The experiments presented so far take as input worst-case computation and communication

cost values. This ensures a predictable design, however may overestimate the resource

requirements [Stuijk et al. 2010]. This section uses the M-JPEG decoder to: 1) exhibit the

flexibility of our framework to capture dynamic behavior and allow customized simulations,

and 2) compare the analysis results between a conservative analysis and an analysis taking

into account dynamic behavior.

The decoder behavior described in Section 4.2 is firstly translated into our model com-

posing of two behaviors: b1 and b2. We consider the platform that can be configured to

support up to five processors {p1, ..., p5} interconnected by an 2*3 Hermes NoC operating at

600MHz. Each processor can operate on three frequencies {40MHz, 60MHz, 120MHz},
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and is associated with a memory buffering the data received. Processors p1, p2, p3 are allo-

cated to the three nodes in the first row, while p4, p5 are allocated on the first two nodes in

the second row. Such a NoC takes around 6 cycles for a flip (32 bits) to traverse a hop (or

node). The best and worst case transmission bandwidths between two nodes are computed

by considering the shortest and longest routing. For example, the best case and worst case

values between p1 and p2 are 3.2 bit/ns and 0.64 bit/ns. For each task, its execution time

cost lower and upper bounds are obtained by taking the best and worst profiled values

by using the SoCLib environment [SoClib 2012]. Lower and upper bounds of energy cost

can also be obtained by using existing profiling tools, e.g., Sim-Panalyzer [sim 2013]. On

average, the lower bound for task execution time (resp. energy) cost is around 10% less

than the upper bound. Energy costs for all PEs when they are idle are set to 0.

First, we use our framework as a conservative analysis tool. In this case, the worst-case

cost values for tasks and communication bandwidths are taken, and the behavior that has

the worse costs is taken as the static application behavior. Second, we use our framework

to capture the two application dynamic behavior, and task cost values and communication

bandwidths are got by a random selection strategy from defined intervals. In both cases, we

simulate the frame processing for 30 iterations. The two experiments have found respectively

56 and 83 Pareto solutions, both taking less than 10 minutes. Among them, 31 solutions

have the same mapping and frequency values. Not surprisingly, the time and energy costs

of these common solutions obtained in the second experiment are much better than the first

experiment. Around 63% time and 17% energy cost reductions can be observed on average.

Energy reduction is relatively smaller, as we do not take into account the energy cost for

communications. Our framework is flexible enough to capture system dynamic behaviors,

and support both conservative and customized designs.

4.7 Summary and Discussion

This chapter presented a high-level framework for the rapid and cost-effective design space

exploration (DSE), devoted to the design of (adaptive) data-intensive applications on MP-

SoCs. A multi-clock modeling of both software and hardware has been considered by

exploiting the notion of abstract clocks borrowed from synchronous dataflow languages.

The implementation of the proposed DSE relies on a powerful evolutionary algorithm for

heuristic exploration. Some very promising experimental results have been carried out on a

few application examples on multiprocessor execution platforms. Our approach is an ideal

complement to lower-level design assessment techniques for MPSoCs, such as physical pro-

totyping and simulation. It also aims to serve as an intermediate reasoning support that

is usable, from very high-level MPSoC models (e.g., in UML Marte profile), to deal with

critical design decisions. Finally, the whole framework has been implemented in a freely

available tool.

The presented framework can be used to deal with the first design issue, i.e., the design

of a configuration of adaptive MPSoCs, by restricting the adaptive application behavior

to a static application behavior or configuration. The DSE process is able to generate

a set of implementation choices that provide a trade-off in resource usage, performance

and energy/power consumption. They can be used by a run-time mechanism to adapt the

mapping in different run-time situations. Furthermore, the framework is also flexible enough

to capture the adaptive behaviors of MPSoCs. It can thus be used as a high level simulator

for adaptive MPSoCs to evaluate customized run-time managers. These two features will

be presented with more details in Chapter 6.

The static analysis of data-flow application designs with predictable behaviors, has
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mainly based on data-flow models, such as Kahn Process Networks (KPNs) and Syn-

chronous Data-Flows (SDFs). KPNs are quite expressive and can capture dynamic appli-

cation behaviors. The expressiveness power, on the other hand, makes it difficult to predict

their precise behavior over time. Existing techniques based on KPNs, such as [Sigdel 2011],

[Erbas et al. 2007], [Schor et al. 2012] usually employ simple run-time scheduling strategies

e.g., first come first served algorithms, and do not investigate the design of scheduling al-

gorithms. In our framework, we study admissible scheduling requirements, and propose

a correct by construction scheduling algorithm. The relative simple and static nature

of SDFs [Stuijk et al. 2011] make it possible to develop design-time analysis techniques

(e.g., [Stuijk et al. 2008] [Ghamarian et al. 2006]), as well as efficient scheduling strategies

(e.g., [Stuijk 2007]). For adaptive embedded systems, however, SDFs are not expressive

enough to capture their dynamic behaviors. Abstracting away the system dynamic be-

havior by using SDFs would overestimate resource requirements [Stuijk et al. 2010]. The

Scenario-Aware Dataflow (SADF) MoC has thus been employed (e.g., [Stuijk et al. 2010],

[Stuijk et al. 2011] to combine a finite state machine-like structure with SDFs to deal with

the modeling and analysis of adaptive applications. Compared to these SDF and SADF

based approaches, they do not investigate the impact of potential delay between processor

cycles on scheduling.

Our approach enriches the vision of the usual application of the synchronous model

[Benveniste et al. 2003], which abstracts away the system quantitative time properties by

considering that a program is faster than its environment, by encoding the quantitative

time via abstract clocks. The resulting model provides a uniform support for design assess-

ment w.r.t. quantitative properties beyond those addressed usually with the synchronous

model. The results presented in this chapter are follow-up works of [Abdallah 2011],

[Abdallah et al. 2012] and [Gamatié 2012]. Compared to them, this chapter studies the

admissible scheduling requirements, proposes a correct by construction scheduling algo-

rithm, and deals with adaptive/dynamic system behaviors. A preliminary work of parts of

the results has been presented in [An et al. 2012a] [An et al. 2012b]. Compared to it, the

CLASSY framework now is able to capture adaptive/dynamic application behavior, deals

with the communication aspect more elaborate, and reasons on elementary costs given as

best and worst case values.

The major limitation of our approach is the supported application models: applications

described as cyclic component graphs are not currently addressed. To deal with this, a

memory operator should be introduced in our framework, and this is one of the future

work. In addition, the storage distribution computed by our design space exploration

framework for application mapping solutions on MPSoCs is not optimal. We are considering

to combine our framework with [Stuijk et al. 2008] in order to address this issue. Third, the

manual transformation from MARTE (or SDF, CSDF) described application and platform

specifications to our reasoning framework is tedious, and can become very complex and

error-prone if the problem becomes big. An automatic transformation is thus needed.
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This chapter focuses on the safe reconfiguration management of adaptive MPSoCs. We

advocate the application of the discrete control technique to address the design of correct re-

configuration managers. We focus on MPSoCs implemented on FPGA-based reconfigurable

architectures, which can draw various benefits such as efficiency and flexibility.

The chapter is organized as follows: Section 5.1 exposes the motivations of the study.

Section 5.2 presents informally the class of computing systems of interest. Section 5.3

presents our modeling and reconfiguration manager computing framework through an il-

lustrative example. Section 5.4 employs the existing BZR tool to perform DCS and au-

tomatically generate a manager satisfying system requirements. Section 5.5 exposes the

experimental results regarding the scalability of our approach. Section 5.6 presents an ex-

perimental validation of our proposal by implementing a real-life video processing system

on a Xilinx FPGA platform. Section 5.7 concludes.

5.1 Motivation and Contribution

Computing systems based on reconfigurable architectures such as FPGAs can draw var-

ious benefits, such as adaptability and efficient acceleration of compute-intensive tasks

[Santambrogio 2010]. We consider MPSoCs implemented on dynamically partially recon-

figurable (DPR) FPGAs (Field Programmable Gate Arrays). Such architectures support

partial reconfigurations, where only part of the FPGA surface is reconfigured and reconfigu-

rations are performed at run-time. These characteristics make them suitable for addressing

constraints on resources (e.g., re-using some areas for different functions of applications that

can be partitioned into phases) by adapting resources to available parallelisms according to

environment variations. However, the dynamic reconfiguration capability of such architec-

tures further complicates their design, and requires more efforts to maintain such complex

infrastructure.

Due to the relative novelty of the DPR technologies, the reconfiguration management

is usually addressed by using manual encoding and analysis, which is tedious and error-

prone [Gohringer et al. 2008]. Automatic techniques are required to better address this

problem, with the foreseeable increase in complexity. The autonomic computing, introduced

in Section 2.3.3 of Chapter 2, is one solution to address their reconfiguration management,

though it has been seldom applied to such hardware systems.

Our contribution. We adopt the discrete control technique to design the autonomic

MAPE-K (Monitor, Analyze, Plan, Execute, based on Knowledge) loop for the autonomic

management of DPR FPGA based MPSoCs. We propose a systematic modelling framework,

where system application behaviour, task implementations and executions, architecture re-

configurations and environment are modelled separately by using automata. We encode the

computation of an autonomic manager as a (Discrete Controller Synthesis) DCS problem

w.r.t. multiple constraints and objectives e.g., mutual exclusion of resource uses, power cost

minimization. The existing BZR tool, which encapsulate the DCS synthesis tool Sigali, is

employed to validate our models and perform automatic manager generation. Extensive

experiments have been performed to evaluate the scalability of our framework. An exper-

imental validation of our proposal by implementing a real-life video processing system on

a Xilinx FPGA platform is also performed. The main results of this chapter have been

presented in [An et al. 2013a] [An et al. 2013b] [An et al. 2013c].
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5.2 Adaptive MPSoCs Implemented on FPGAs

We present informally the class of computing systems of interest through an illustrative ex-

ample. They are inspired by the self-adaptive embedded systems in [Eustache & Diguet 2008].

However, we address the problem in a different and original way.

5.2.1 Hardware Architecture

We consider a multiprocessor architecture implemented on an FPGA (e.g., Xilinx Zynq

device), which is composed of a general purpose processor A0 (e.g., ARM Cortex A9), and

a reconfigurable area divided into four tiles: A1–A4 (see Figure 5.1). The communications

between architecture components are achieved by a Network-on-Chip (NoC). Each processor

and reconfigurable tile implements a NoC Interface (NI). A fixed dual port memory buffer

is associated with each tile, which means that at most two tasks can simultaneously access

data stored in the shared memory. Reconfigurable tiles can be combined and configured to

implement and execute tasks by loading predefined bitstreams, such as tiles A1 and A2 of

Figure 5.1.

The architecture is equipped with a battery supplying the platform with energy. Re-

garding power management, an unused reconfigurable tile Ai can be put into sleep mode

with a clock gated mechanism such that it consumes a minimum static power.

A0

NI NI

NI NI

NI

A1 A2

A3 A4

 Mem.
Buffer

 Mem.
Buffer

 Mem.
Buffer

 Mem.
Buffer

NoC

Figure 5.1: Architecture structure.

5.2.2 Application Software

We consider system functionality described as a directed, acyclic task graph (DAG). A

DAG consists of a set of nodes representing the set of tasks to be executed, and a set

of directed edges representing the precedence constraints between tasks. Note that we do

not restrict the abstraction level of tasks associated with the nodes, and a task can be an

atomic operation, or a coarse fragment of system functionality. Figure 5.2 shows an example

consisting of four tasks.

B
A

C
D

Figure 5.2: DAG application specification.

In our framework, unless otherwise specified, we suppose each task performs its compu-

tation with the following four control points:
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❼ being requested or invoked;

❼ being delayed: requested but not yet executed;

❼ being executed: to be executed on the architecture;

❼ notifying execution finish, once it reaches its end.

Occurrences of control points being requested and notifying finishes depend on runtime sit-

uations, and are thus unpredictable and uncontrollable. The way of delaying and executing

tasks is taken charge by a runtime manager aiming to achieve system objectives.

5.2.3 Task Implementation

Given a hardware architecture, a task can be implemented in various ways characterised by

various parameters of interest, such as the set of used reconfigurable tiles (rs), worst case

execution time (WCET) (wt), reconfiguration time (rt), and power peak pp. For instance,

task A may have the two following implementations:

❼ Implementation 1: rs1 = {A1}, wt1 = 200, rt1 = 10, pp1 = 180;

❼ Implementation 2: rs2 = {A3, A4}, wt2 = 100, rt2 = 15, pp2 = 250;

Table 5.1 gives the considered implementations and corresponding profiled characteristics

of tasks A,B,C,D.

Tasks

Implementations (resource set, WCET, reconfig. time, power peak)

Implementation 1 Implementation 2 Implementation 3

A ({A1}, 200, 10, 180) ({A3, A4}, 100, 15, 250) -

B ({A2}, 450, 20, 120) ({A1, A2}, 300, 25, 160) ({A1, A2, A3, A4}, 150, 30, 400)
C ({A3}, 240, 15, 100) ({A3, A4}, 100, 20, 250) -

D ({A1}, 250, 12, 200) ({A1, A2}, 100, 15, 350) ({A1, A2, A3, A4}, 50, 20, 450)

Table 5.1: Profiled task implementation characteristics for the working example.

Among the possible task implementations, a run-time manager is in charge of choosing

the best implementation at run-time according to system objectives.

task A

or

task B

task C

task B

task C
1) 2) 3)

Figure 5.3: Configurations and reconfigurations.

5.2.4 System Reconfiguration

Figure 5.3 shows three system configuration examples. In configuration 1, task A is running

on tiles A3 and A4 while tiles A and B are set to the sleep mode. Configurations 2 and

3 show two scenarios with tasks B and C running in parallel. Once task A finishes its

execution according to the graph of Figure 5.2, the system can go to either configuration
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2 or configuration 3 depending on the system requirements. For example, if the current

state of the battery level is low, the system would choose configuration 2 as configuration 3

requires the complete FPGA working surface and therefore consumes more power. On the

contrary, when the battery level is high, configuration 3 would be chosen if the user expects

a better performance.

5.2.5 System Objectives

System objectives define the system functional and non-functional requirements. This sec-

tion gives the objectives considered in the chapter, and categorises them as logical and

optimal control objectives. Generally speaking, logical objectives concern state exclusions,

whereas optimal objectives target the states associated with optimal costs.

Considered logical control objectives are as follows:

1. resource usage constraint: exclusive uses of reconfigurable tiles A1-A4;

2. dual accesses to the shared memory (i.e., at most two functions running in parallel);

3. energy reduction constraint: switch tiles to

(a) sleep mode when executing no task;

(b) active mode when needed;

4. reachability: system execution can always finish once started;

5. power peak constraint: power peak of hardware platform is constrained w.r.t battery

levels;

Optimal control objectives of interest are as follows:

6. minimise power peak of hardware platform;

7. minimise WCET of system executions;

8. minimise worst case energy consumption of system executions.

5.2.6 High Level Modeling of Adaptive MPSoCs

The aforementioned informal system description can be satisfactorily modeled with high-

level modeling formalisms such as MARTE [Object Management Group 2013a]. It offers a

rich set of concepts to describe different features of adaptive embedded systems.

❼ Architecture behavior, which concerns the sleep and active mode switches of the

reconfigurable tiles, can be modeled by using the UML Finite State Machines (FSMs).

❼ Application behavior, which is described by a directed task graph, can be modeled by

using the General Component Modeling (GCM) package.

❼ Task implementation behavior, which concerns different task implementation modes

or configurations and their transitions, can be captured by FSMs. Moreover, to asso-

ciate characterized parameter values with the corresponding implementation configu-

rations, the UML comments can be used.

❼ System reconfiguration behavior, which concerns different system configurations and

their reconfigurations, can be modeled by the UML FSMs and comments as well.

❼ System objectives can be captured by using UML comments.
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5.3 Modeling Reconfiguration Management Computa-

tion as a DCS Problem

We specify the modelling of the computing system behaviour and control in terms of labelled

automata. System objectives are defined based on the models. We focus on the management

of computations on the reconfigurable tiles and dedicate the processor area A0 exclusively

to the resulting controller.

5.3.1 Architecture Behaviour

The architecture (see Figure 5.1) consists of a processorA0, four reconfigurable tiles {A1, A2,

A3, A4} and a battery. Each tile has two execution modes, and the mode switches are con-

trollable. Figure 5.4(a) gives the model of the behaviour of tile Ai. The mode switch action

between Sleep (Sle) and Active (Act) depends on the value of the Boolean controllable

variable c ai. The output acti represents its current mode.

a)

ActiSlei

acti = true

acti = false
c_ai

not c_ai

c_ai

acti

RMi

b)

H M L

down

upup

downdown

st=h st=m st=l

stup

BM

Figure 5.4: Models RMi for tile Ai, and BM for battery.

The battery behaviour is captured by the automaton in Figure 5.4(b). It has three

states labelled as follows: H (high), M (medium) and L (low). The model takes input from

the battery sensor, which emits level up and down events, and keeps track of the current

battery level through output st.

5.3.2 Application Behaviour

Software application is described as a DAG, which specifies the tasks to be executed and

their execution sequences and parallelism. We capture its behaviour by defining a scheduler

automaton representing all possible execution scenarios. It does so by keeping tracking of

application execution states and emitting the start requests of tasks in reaction to the task

finish notifications.

I
req/rA

A
eA/rB,rC

B,C D T
eD

eA,eB,eC,eD
rA,rC,rD

C

eB and eC/rD

eB

eC

eC/rD

B eB/rD

req

Sdl

Figure 5.5: Scheduler automaton Sdl capturing application execution behaviours.

Figure 5.5 shows the scheduler automaton of the application in Figure 5.2. It starts

the execution of the application by emitting event rA, which requests the start of task A,
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upon the receipt of application request event req in the idle state I. Upon the receipt of

event eA notifying the finish or end of A’s execution, events rB and rC are emitted together

to request the execution of tasks B and C in parallel. Task D is not requested until the

execution of both B and C is finished, denoted by events eB and eC . It reaches the final

state T , implying the end of the application execution, upon the receipt of event eD.

In the following, we describe systematically how to obtain such a scheduler automaton

from a DAG described application.

Scheduler Automaton Derivation. The scheduler automaton or LTS of a DAG

described application captures the dynamic execution behavior of the application. Its states

represent the tasks that are executing. They are denoted and labeled by the names of these

tasks. It has an initial state I, i.e., the idle state, which means the application has not been

invoked, and an end state T , which means that the application has finished its execution.

The automaton input events are the task end events ei and the application request event

req, while its output events are the task request events ri. Its transitions are of the form

g/a, where g is a firing condition, and a is an action. A firing condition is a boolean

expression of input events, and an action is a conjunction of output events. Note: 1) we

suppose the application is only invoked once. If it is allowed to be repeatedly invoked, the

end state would be the same to the initial state. 2) if the graph has a task that has more

than one instance, the instances are then seen as different tasks by the algorithm.

Algorithm 3 illustrates how to construct the scheduler automaton for a DAG. It derives

the automaton from initial state I to end state T by exploring the state space of the

application execution w.r.t. the DAG.

❼ Inputs: a directed, acyclic task graph < T,C >, where T and C represent respectively

the set of tasks, the set of edges.

❼ Local variables and functions used in the algorithm:

– s, nextState: a state, with element taskSet representing the set of tasks associ-

ated to the state (i.e., the tasks executing in the state);

– drawState(s): a function that draws state s, labeled by s.taskSet;

– drawTrans(source, sink, transition label): a function to draw a transition from

state source to state sink guarded by transition label;

– drawnStates: the set of states that have been drawn out;

– stateQueue: a FIFO queue, keeping track of the states to be processed, with

function popup() to return and delete the first state element, and function add(s)

to add state s to the end of the queue;

– ti.prec: the set of tasks that immediately precede task ti;

– readyTaskSet: the set of tasks that are enabled to execute;

– tc: a set of tasks, or a task combination;

– powerSet(set of tasks): the power set of the set of tasks without ∅;

– traversed(s): a function that returns the set of states (in the drawn automaton

so far) that are traversed by some path from state I to state s (states I and s

included), with element taskSet to return the union of the tasks associated with

all its states.

At line 1, the initial state, i.e., idle state I is drawn denoted by drawn(I). The set of

drawn states drawnStates is thus initialized to {I} at line 2. State queue stateQueue stores

the states that have been drawn but not processed. It is initialized to have element I at line
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Algorithm 3 Scheduler Automaton Derivation

1: drawState(I);

2: drawnStates = I;

3: stateQueue = stateQueue.add(I);

4: for all ti ∈ T do

5: if ti.prec = ∅ then
6: readyTaskSet = readyTaskSet

⋃

ti;

7: end if

8: end for

9: while stateQueue! = ∅ do
10: s = stateQueue.popup();

11: if s = I then

12: nextState.taskSet = readyTaskSet;

13: drawState(nextState);

14: drawTrans(I, nextState, req/rreadyTaskSet);

15: drawnStates = drawnStates
⋃

nextState;

16: stateQueue.add(nextState);

17: else if s = T then

18: continue;

19: else

20: for all tc ∈ powerSet(s.taskSet) do

21: readyTaskSet = ∅;
22: for all ti ∈ T− traversed(s).taskSet do

23: if ti.prec ⊆ (traversed(s).taskSet - s.taskSet)
⋃

tc then

24: readyTaskSet = readyTaskSet
⋃

ti;

25: end if

26: end for

27: nextState.taskSet = readyTaskSet
⋃

(s.taskSet - tc);

28: if nextState.taskSet = ∅ then
29: nextState = T;

30: end if

31: if nextState ∈ drawnStates then

32: drawTrans(s, nextState, etc);

33: else

34: drawState(nextState);

35: drawTrans(s, nextState, etc);

36: drawnStates = drawnStates
⋃

nextState;

37: stateQueue.add(nextState);

38: end if

39: end for

40: end if

41: end while

3. Variable readyTaskSet represents the set of tasks that are enabled to execute once some

event happens. A task is enabled if all its precedent tasks have finished their executions.

Lines 4 to 8 set readyTaskSet to the set of tasks that have no precedent tasks, as such

tasks can be executed immediately once the application is invoked/requested denoted by

the receipt of event req. Lines 9 to 41 deal with the sequential processing of the states stored

in stateQueue. The processing of a state concerns the drawing of its immediate following
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states and the transitions, and put the new drawn states in the queue. The automaton

derivation finishes when the queue becomes empty.

In the following, we describe how state s from queue stateQueue is processed. Line

10 evaluates the first state of the queue to s and removes it from the queue. Three types

of states are distinguished and processed accordingly. They are initial state I, end state

T and the rest. Lines 12 to 16 deal with the processing of idle state I. The algorithm

firstly computes its following state nextState by evaluating the readyTaskSet (got from

Lines 4 to 8) to its taskSet at line 12. nextState represents the state once the application

is invoked. Line 13 draws the state, and line 14 draws the transition from state I to

nextState with label req/{ri|ti ∈ readyTaskSet}, where ri is the request event of task ti,

denoted by drawTrans(I, nextState, req/rreadyTaskSet). Lines 15 and 16 add nextState to

drawnStates and the end of stateQueue. If state s is the end state (line 17), the algorithm

simply proceeds.

Lines 20 to 39 deal with the processing of state s that represents an application executing

state between I and T . In general, the algorithm explores the finishes of all the possible

subsets of the executing tasks in s (denoted by s.taskSet), and computes the following

states accordingly. Given an element tc which represents a subset of the executing tasks in

s, lines 21 to 38 deal with the drawing of the following states of s w.r.t. the simultaneous

finishes of the executions of tasks in tc. Lines 21 to 26 compute the tasks that would become

enabled if the set of tasks tc finishes. Variable readyTaskSet initialized to ∅ at line 21 is

used to keep these tasks. The union of the task sets associated with traversed(s) denoted

by traversed(s).taskSet thus represents the tasks that have been executed before reaching

s and are executing in current state s. At line 22, the algorithm explores the tasks that

have not been requested (denoted by T − traversed(s).taskSet) to find out readyTaskSet

once tc finishes. Lines 23 to 25 decides whether ti is enabled once tc finishes and adds ti
to readyTaskSet if it is. ti is enabled if the set of its precedent tasks is a subset of the

union of tasks that have finished (denoted by traversed(s)−s.taskSet) and the tasks would

finish denoted by tc. At line 27, nextState denotes the state following s due to the tasks in

tc simultaneously finish. Its taskSet thus equals to the union of computed readyTaskSet

and the tasks that are still executing in s after tc finishes denoted by s.taskSet − tc. If

nextState.taskSet is ∅, this means that once the tasks in tc finish, no more task can become

enabled or is still executing, i.e., all tasks have finished their executions and nextState is

the end state T (lines 28 to 30). In the scheduler automaton, a state might have more than

one precedent state. I.e., a state might have been drawn during the processing of some

other precedent state. The algorithm thus checks, at line 31, if nextState has been drawn.

If it has, only the transition needs to be drawn from s to nextState with label {eti |ti ∈ tc

denoted by etc at line 32. Otherwise, the algorithm draws both state nextState and the

transition at lines 34 and 35, and then updates drawnStates and stateQueue accordingly.

5.3.3 Task Execution Behaviour

Before executing a task on an FPGA, the task implementation (i.e., a bitstream) should be

loaded to reconfigure the corresponding tiles of the FPGA. The reconfiguration operations

inevitably involve some overheads regarding e.g., time and energy. Sometimes, these re-

configuration overheads can be neglected, if the reconfiguration overheads are small enough

and neglecting them does not have an impact on the global design. In some other cases,

however, these reconfiguration costs cannot be neglected and must be taken into account.

In this section, we distinguish these two cases and model their behaviors respectively. In

the rest of this chapter, the models neglecting reconfiguration overheads are considered.
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Models Neglecting Reconfiguration Overheads

In consideration of the four control points of task executions (see Section 5.2.2), the ex-

ecution behaviour of task A associated with two implementations (see Section 5.2.3) can

be modelled as Figure 5.6. It features an initial idle state IA, a wait state WA, and two

executing states X1
A, X

2
A corresponding to two implementations of task A. Controllable

variables are integrated in the model to encode the controllable points: being delayed and

executed. Upon the receipt of start request rA, task A goes to either:

❼ executing state Xi
A, i ∈ {1, 2} if the value of controllable variable ci leading to Xi

A is

true, or

❼ wait state WA if delayed, i.e., the value of Boolean expression c =
∨

ci, i ∈ {1, 2} is
false.

WA

IA

XA1 XA2

rA, c1 rA, c2rA, not c
c2

eA eA

c1

  ({A1},
200,180)  ({A3,A4},

 100,250)

({},0,0)

({},0,0)

TMA

rA eA

c1,c2 es

es=XA1 es=W es=XA2

es=I

rs,wt,pp

Figure 5.6: Execution behavior model TMA of task A without considering reconfiguration

time.

From wait state WA, upon the receipt of event ci, it goes to execution state Xi
A. When

the execution of task A finishes, i.e., the finish or end notification event eA is received, the

automaton goes back to idle state IA. Output es represents its execution state.

Local execution costs. The execution costs of different task implementations are different.

As we neglect the reconfiguration overhead, i.e., reconfiguration time in the example, three

cost parameters are considered here (see Section 5.2.3). We capture them by associating cost

values denoted by a tuple (rs, wt, pp) with the states of task models, where: rs ∈ 2RA (RA

is the set of architecture resources), wt ∈ N (a WCET value) and pp ∈ N (a power peak).

The costs associated with executing states are the values associated with their corresponding

implementations. For idle and wait states, apparently rs = ∅, wt = 0, pp = 0. Figure 5.6

gives the complete local model of task A.

Models Taking into Account Reconfiguration Overheads

To take into account reconfiguration overheads, the control point:

❼ being kept loaded or configured, after having finished,

should be added to the four task execution control points of Section 5.2.2. In this case,

once a task finishes its execution, the controller should decide either keeping it loaded on

the FPGA in order to avoid reconfiguration costs when it is executed again, or re-using

the areas it occupies for other tasks. To simplify the modeling and better illustrate the

modeling of reconfiguration overheads, in this section, we do not consider the control point

being delayed: requested but not yet executed of Section 5.2.2, and still keep four control

points for the task execution models.
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We still take task A associated with two implementations (see Section 5.2.3) as an

example to model its execution behavior. W.r.t. the four control points of task executions

considered in this section, the execution behaviour of task A is modelled as in Figure 5.7.

It features an initial idle state I, two executing and loaded state pairs (X1, L1) and (X2,

L2) corresponding to the two different implementations. Each loaded state Li corresponds

to an executing state Xi, meaning that their corresponding task implementation has been

configured in this state, and can be executed directly, i.e., go to state Xi, without the

need to reconfigure. Controllable variables c1, c2 are integrated in the model to encode

controllable points: being executed and kept loaded.

From idle state I, upon the receipt of start request rA, task A goes to one executing state

Xi, i ∈ {1, 2} depending on the value of controllable variable ci leading to Xi. Li can only

be reached from idle state I through its corresponding executing state Xi, meaning that

the task has finished its execution in Xi (i.e., eA is received), and remains configured on

the corresponding occupied surface. From state Li, once the task is requested again, it can

either go to state Xi and be executed directly without being configured, or be configured in

some new way and executed accordingly (i.e., go to state Xj , i 6= j). From state Li, it can

also go to state I if the controller at some moment decides to release its occupied surface

for the use of other tasks. When the task ends, denoted by ei, from an executing state Xi,

it might go to state I as well, instead of state Li, depending on the values of controllable

variables, e.g., its occupied tiles are taken by other tasks.

I

X1 X2

rA,c1 rA,c2

eA,c2
rA eA

c1,c2

es
L1 L2eA,c1

rA,c1 rA,c2

eA,c2

eA,c1

rA,c2rA,c1

c2 c1

Figure 5.7: Execution model of task A taking into account reconfiguration overheads.

Local execution costs. The execution costs of different task implementations are different.

Four cost parameters are considered (see Section 5.2.3). We capture them by associating

cost functions denoted by a tuple (rs, wt, rt, pp) with the states of task models, where:

rs ∈ 2RA (the occupied set of architecture resources), wt ∈ N (a WCET value), and rt ∈ N
(a reconfiguration time). We now define the costs according to three types of states:

❼ idle state I: rs = ∅, wt = 0, rt = 0, pp = 0;

❼ loaded state Li: rs = rsi, wt = 0, rt = 0, pp = 0;

❼ executing state Xi: rs = rsi, wt = eci, rt = 0 or rti, pp = ppi.

rsi represents the occupied resource set of the task implementation that corresponds to the

loaded and executing state. rs has value rsi for loaded states, as a task that is kept loaded

still occupies the corresponding resources. The cost values of WCET wt and reconfiguration

time rt for idle and loaded states are 0, as execution and reconfiguration time costs can



80
Chapter 5. Discrete Control for Reconfiguration Management of Adaptive

MPSoCs

only be induced after a task is requested (i.e., reception of r). The cost values wti and

rti corresponding to a task implementation should thus be evaluated to the corresponding

cost functions of executing states. However, the reconfiguration cost of an executing state

Xi is not always equal to the corresponding rti, but can also be 0 when the task has been

loaded or configured. Therefore, regarding the task execution model in Figure 5.7, cost

function rt of Xi should be defined in consideration of its previous states. It is evaluated

to 0 if its previous state is Li, i.e., at the moment the task is requested, it has been loaded.

Otherwise, it is evaluated to rti, i.e., the task has to be loaded before executed. Take state

X1 in Figure 5.6(b) as an example, it has three incoming edges from states I, L1 and L2.

The reconfiguration time cost rt is equal to 0 if it is reached from state L1, and rt1 if

reached from I or L2. W.r.t. the power peak function pp, no reconfiguration power peak

cost is considered in the example, it is thus evaluated to ppi in executing state Xi and 0 in

the other states.

5.3.4 Global System Behaviour Model

The parallel composition of the control models for reconfigurable tiles RM1-RM4, battery

BM and tasks TMA-TMD, plus scheduler Sdl comprises the system model:

S = RM1||...||RM4||BM ||TMA||...||TMD||Sdl

with initial state q0 = (Sle1, ..., Sle4, H, IA, ..., ID, I). It represents all the possible system

execution behaviours in the absence of control (i.e., a run-time manager is not yet inte-

grated). Each execution behaviour corresponds to a complete path, which starts from initial

state q0 and reaches one of the final states:

Qf = (q(RM1), ..., q(RM4), q(BM), IA, ..., ID, T ),

where q(Id) denotes an arbitrary state of automaton Id.

Global costs. The costs defined locally in each task execution model need to be combined

into global costs.

Costs on states. A system state q is a composition of local states (denoted by q1, ..., qn),

and we define its cost from the local ones as follows:

❼ used resources: union of used resources associated with the local states, i.e., rs(q) =
⋃

rs(qi), 1 ≤ i ≤ n;

❼ worst case execution time: this indicates how much time the system takes at most in

this current state. It is thus defined as the minimal WCET of all executing tasks in

this state, i.e., wt(q) = min(wt(qi), wt(qi) 6= 0, 1 ≤ i ≤ n); Otherwise, if no task is

executing in the state, i.e., ∀1 ≤ i ≤ n,wt(qi) = 0, wt(q) = 0;

❼ power peak: the sum of values associated with the local states, i.e., pp(q) =
∑

(pp(qi),

1 ≤ i ≤ n);

❼ worst case energy consumption: the product of the worst case execution time and

power peak of the system state, i.e., we(q) = pp(q) ∗ wt(q).

Costs on paths. We also need to define the costs associated with paths so as to capture

the characteristics of system execution behaviours. Given path p = qi → qi+1 → ...→ qi+k,

and costs associated with system states, we define corresponding costs on path p as follows:

❼ WCET: the sum of WCETs on the states along the path, i.e., wt(p) =
∑

wt(qj), i ≤
j ≤ i+ k;
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❼ power peak: the maximum value on the states along the path, i.e., pp(p) = max(pp(qj),

i ≤ j ≤ i+ k);

❼ worst case energy consumption: the sum of the worst case energy consumptions on

the states along the path, i.e., we(p) =
∑

we(qj), i ≤ j ≤ i+ k.

5.3.5 System Objectives

The two types of system objectives: logical and optimal ones, can then be described in

terms of the states and the costs defined on the states or paths of the model.

Logical control objectives. For any system state q, we want to enforce the following:

(1) exclusive uses of reconfigurable tiles by tasks: ∀qi, qj ∈ q, i 6= j, that rs(qi)
⋂

rs(qj) =

∅;

(2) dual accesses to shared memory, i.e., at most two tasks can access the memory at the

same time:
∑

vi ≤ 2, s.t. vi =

{

1 qi ∈ Xi

0 otherwise
, where Xi represents the set of executing

states of corresponding task;

(3.a) switch tile Ai to sleep mode, when executing no task: ∄qi ∈ q, Ai ∈ rs(qi) ⇒ acti =

false;

(3.b) switch tile Ai to active mode when executing task(s): ∃qi ∈ q, Ai ∈ rs(qi) ⇒ acti =

true;

(4) reachability: Qf is always reachable.

(5) battery-level constrained power peak (given threshold values P0, P1, P2): pp(q) < P0

(resp. P1 and P2) when battery level is high (resp. medium and low).

Optimal control objectives. Such objectives can be further classified into two types

of objectives: one-step optimal and optimal control on path objectives. We use pseudo

functions max and min in the following to represent the maximisation and minimisation

objectives, respectively.

One-step optimal objectives. One-step optimal objectives aim to minimise or maximise

costs associated with states and/or transitions in a single step [Marchand & Samaan 2000].

Objective 4 of Section 5.2 belongs to this type.

(6) minimise power peak pp in the next states of state q: min(pp, q).

Optimal control on path objectives. Such objectives aim to drive the system from the

current state to the target states Qf at the best cost [Dumitrescu et al. 2010]. Objective 5

and 6 are such objectives.

(7) minimise remaining WCET wt from state q: min(wt, q,Qf );

(8) minimise remaining energy consumption we from q: min(we, q,Qf ).

5.4 Automatic Manager Generation by Using BZR

Given the system graphical models and objectives of Section 5.3, this section describes the

controller synthesis by using BZR and the DCS tool Sigali. Logical and optimal objectives

are treated differently.
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5.4.1 BZR Encoding of the System Model

The automaton encoding of the system components in Section 5.3 can be translated to the

BZR textual encoding easily, as shown in Section 3.4 of Chapter 3. Here we only illustrate

the BZR encoding of automaton TMA of Figure 5.6 as follows. The rest models can be

encoded similarly. Note that: to represent the used resources of task A, Boolean variables

a onA1, ..., a onA4 are used to represent respectively that task A is using tile A1, ..., A4 or

not in the corresponding states.

node taskModelA (ra,ea,c1,c2: bool)

returns (a_onA1,a_onA2,a_onA3,a_onA4: bool; wt, pp: int)

let

automaton

state I do

a_onA1 = false; a_onA2 = false; a_onA3 = false; a_onA4 = false;

wcet = 0; pp = 0;

until ra & c1 then XA1

| ra & c2 then XA2

| ra then WA

state WA do

a_onA1 = false; a_onA2 = false; a_onA3 = false; a_onA4 = false;

wcet = 0; pp = 0;

until c1 then XA1

| c2 then XA2

state XA1 do

a_onA1 = true; a_onA2 = false; a_onA3 = false; a_onA4 = false;

wcet = 200; pp = 180;

until ea then I

state XA2 do

a_onA1 = false; a_onA2 = false; a_onA3 = true; a_onA4 = true;

wcet = 100; pp = 250;

until ea then I

end;

tel

The BZR encoding of the global system behaviour can be obtained by composing all

these models. Finally, the costs on system states are defined as described in Section 5.3.4.

We show in the following the BZR code of the global system model, which is structured in

a node, named glosys.

node glosys (req,ea,eb,ec,ed,down,up: bool)

returns (a_onA1,a_onA2,a_onA3,a_onA4,b_onA1,b_onA2,b_onA3,b_onA4,

c_onA1,c_onA2,c_onA3,c_onA4,d_onA1,d_onA2,d_onA3,d_onA4,

act1,act2,act3,act4,battery_h,battery_l: bool;

pp, wcet, we: int)

var

ra, rb, rc, rd: bool;

wt_a, pp_a, wt_b, pp_b, wt_c, pp_c, wt_d, pp_d:int;

let

(* 4 tasks *)

(a_onA1,a_onA2,a_onA3,a_onA4,wt_a, pp_a) = inlined taskModelA(ra,ea,c1,c2);
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(b_onA1,b_onA2,b_onA3,b_onA4,wt_b, pp_b) = inlined taskModelB(rb,eb,c3,c4);

(c_onA1,c_onA2,c_onA3,c_onA4,wt_c, pp_c) = inlined taskModelC(rc,ec,c5,c6);

(d_onA1,d_onA2,d_onA3,d_onA4,wt_d, pp_d) = inlined taskModelD(rd,ed,c7,c8);

(* scheduler *)

(ra,rb,rc,rd,target) = inlined scheduler(req,ea,eb,ec,ed);

(* 4 reconfig. regions *)

act1 = inlined region_manager(c_a1);

act2 = inlined region_manager(c_a2);

act3 = inlined region_manager(c_a3);

act4 = inlined region_manager(c_a4);

(* battery *)

(battery_h,battery_l) = inlined battery(down,up);

(* global costs: WCET, power peak and worst energy *)

pp = pp_a + pp_b + pp_c + pp_d;

wcet = if (wt_a <= 0 & wt_b <= 0 & wt_c <= 0 & wt_d <= 0) then 0

else min(wt_a,wt_b,wt_c,wt_d);

we = wcet*pp;

tel

The inputs of the system are the application request req, the notifications of task exe-

cution finishes ea, eb, ec, ed and the battery level transition signals down, up. The outputs

represent correspondingly the resource usages of reconfigurable tiles, denoted by t onAi, t =

{a, b, c, d}, i = {1, 2, 3, 4}, the states of the tiles, denoted by acti, i = {1, 2, 3, 4}, the states

of battery levels, denoted by battery h, battery l the power peak pp, WCET wt and worst

energy consumption we of the current system state. The start requests ra, rb, rc, rd and the

time and energy costs wtt, ppt, t = {a, b, c, d} of the four tasks are defined as local variables

by using the keyword var. In the body of the node, the system component models are com-

posed by“;”. The global costs of the system states are then defined based on the local models

as described in Section 5.3.4. For the definition of WCET wt, wt t <= 0, t = {a, b, c, d}
means that task t is not active. The if clause thus means all tasks are in either idle or

wait state. For simplicity, we use here the pseudo code min(wt a,wt b, wt c, wt d) instead

of many other if-else clauses to represent the minimal positive value of the four values.

5.4.2 Enforcing Logical Control Objectives

BZR contracts are able to directly encode the logical control objectives of Section 5.3 except

for object 4) about reachability. This section focus on these objectives that can be encoded

by contract, i.e., objectives 1, 2, 3 and 5. The following shows parts of the BZR contract

defined based on the above global system model.

1 contract

2 var exclusive_tileA1,idle_tileA1,only_A_on_tileA1,...,only_D_on_tileA1,

swt_sleep_tileA1,swt_act_tileA1,bound_pp: bool;

3 let

(*exclusive usage of tile A1*)

4 exclusive_tileA1 = idle_tileA1 or only_A_on_tileA1 or

... or only_D_on_tileA1;

5 idle_tileA1 = not a_onA1 & not b_onA1 & not c_onA1 & not d_onA1;

6 only_A_on_tileA1 = a_onA1 & not b_onA1 & not c_onA1 & not d_onA1;

...
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(*switch tile A1 to sleep mode when running no task*)

7 swt_sleep_tileA1 = not idle_tileA1 or not act1;

(*switch tile A1 to active mode when executing a task*)

8 swt_act_tileA1 = idle_tileA1 or act1;

(*bounded power peak*)

9 bound_pp = if battery_high then (pp <= 500)

else if battery_low then (pp <= 300)

else (pp <= 400);

10 tel

11 enforce exclusive_tileA1 & swt_sleep_tileA1

& swt_act_tileA1 & bound_pp

12 with (c_a1, c_a2, c_a3, c_a4, c_1,c_2, ... : bool)

Line 2 declares the local variables used within the contract with keyword var. They are

declared as boolean variables by using keyword bool, and are defined in the body, i.e., Lines

4 to 9 between keywords let and tel. Variable exclusive tileA1 represents the exclusive

usage of tile A1, i.e., objective 1, and is defined as the disjunction of five possible cases: tile

A1 is idle denoted by idle A1; only one of the four tasks is running on tile A1 denoted by

only T on tileA1, T = {A,B,C,D}. idle A1 and only T on tileA1 are defined at Lines

5 and 6 based on the states of the four task implementation models. t onA1 represents

that task t is using tile A1. objectives 3.a and 3.b Objectives 3.a and 3.b denoted by

swt sleep tileA1 and swt act tileA1 are defined at Lines 7 and 8 by using the equivalent

expressions of idle A1⇒ not act1 and not idle A1⇒ act1 respectively. act1 is the output

of tile A1’s behavior model (see Figure 5.4). Line 9 defines the objective 5 denoted by

bound pp. These objectives are then enforced at Line 11 with keyword enforce. All the

relevant controllable variables to be computed are declared at Line 12 with keyword with.

They are the controllable variables declared in the tile models (see Figure 5.4) and task

implementation models (see Figure 5.6). The exclusive usages of the other tiles, their mode

switch managements, and objective 2 can be encoded similarly.

Taking as input the system model and the contract, the BZR compiler can synthesize

a controller (in C or Java code) automatically satisfying the defined objectives. There is

also a graphical tool enabling the users to perform simulations of the controlled system by

combines the controller with the system model.

Figure 5.8 shows a simulation scenario of the controlled system (see Table 5.1 for the

implementation characteristics of the tasks) by using the graphical display tool sim2chro1

developed by Yann Rémond. At instant 3, as labeled 1 in the figure, variables a onA3 and

a onA4 become true, which implies that the second implementation of A which uses tiles

A3 and A4 is chosen by the manager. At the same instant, tiles A3 and A4 are switched

to the active mode, i.e., act3, act4 become true, which corresponds to objective 3.b). At

instant 9, as shown by label 2 in the figure, task C finishes its execution by releasing tiles

A3 and A4, i.e., c onA3 and c onA4 become false. At the same instant, tiles A3 and A4 are

switched to the sleep mode, i.e., act3, act4 become false. This corresponds to objective 3.a).

As shown in label 3, the system power peak pp is always less than 300, even though battery

level is high. This is because that, firstly, the tasks cannot change its implementation once

executed, and secondly, down and up events are uncontrollable. The power peak value is

thus always kept under 300 to avoid the system goes to an invalid state where a task uses

an implementation with a power peak bigger than the value that the lower level allows, i.e.,

300, and the battery level goes low before it finishes. The exclusive usages of all the tiles

can also be seen from the figure, e.g, for tile A1, the variables t onA1, t = {a, b, c, d} do not

1http://www-verimag.imag.fr/~raymond/edu/distrib/

http://www-verimag.imag.fr/~raymond/edu/distrib/
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have value true at the same time during the simulation. The variable num active func

representing the number of active tasks is always 1 during simulation. Objective 2) is thus

also met.

5.4.3 Enforcing Optimal Control Objectives

So far, we have considered the objectives that can be directly encoded by a contract in BZR,

i.e., objectives 1, 2, 3, 5. They are invariance objectives, which insure the invariance of a set

of states of the system model. This is achieved by applying the Sigali controller synthesis

operation S Security(S,prop), where S denotes the system model and prop represents the

target subset of states. This operation has been encapsulated in the BZR compilation

process, and thus can be used directly. Enforcing other control objectives, e.g., objective

4) ensuring a set of states reachable from initial states, and objective 6) driving the system

go to the next states with optimal costs, however, needs other Sigali synthesis operations

(see Section 3.3.2 of Chapter 3 for the description of these operations used in the section),

and cannot be encoded by the BZR contract currently.

In the following, we describe how to combine BZR with Sigali to perform DCS regarding

the other objectives. In this case, the BZR compiler serves as the front end to encode

system behaviour, and produces an intermediate file with extension z3z, which is used as

input by Sigali. The rechability and optimal control objectives can then be encoded and

integrated into this file, which feeds the Sigali tool. The DCS is finally performed by Sigali

to automatically generate a controller satisfying the objectives.

Reachability: objective 4). The reachability objective is to ensure that a set of tar-

get states E is always reachable. This has been implemented in Sigali by operation

S Reachable(S, prop), where S denotes the system model and prop represents the tar-

get subset of states. To apply this operation, the user need to open the generated z3z

file, and replace the S Security(S, prop) operation by S Reachable(S, prop′), where prop′

represents the target states. In our example, the target states are the final states defined

in Section 5.3.4.

Optimal control within one step: objective 6). One-step optimal control is to drive the

system to go to the next states optimizing the weights (or costs) associated with states.

Sigali operation Strictly Lower than(S,C,C Dup, duplicate states) is used for minimizing

the power peak cost function (see Section 3.3.2 of Chapter 3). Here, we describe how to

apply these operations with the BZR tool. There are three steps:

❼ firstly, compile the BZR program to generate the z3z file;

❼ secondly, duplicate the cost function and states of the system model, and invoke the

corresponding synthesis operation in the generated z3z file;

❼ at last, perform the DCS operation by using the extended z3z file.

The tedious work in Step 2 has been realized in a dedicated tool which extends the z3z file

generated by the BZR tool (available on demand).

Optimal synthesis on bounded paths: objectives 7) and 8). The objective for optimal

control on paths aims to drive the system from the current state to the target states at

the best costs. It aims to minimize the costs associated with states along paths. This

has been implemented by the Sigali operation S min weight path maxUC(S,C, T ) (see

Section 3.3.2 of Chapter 3). In our example, the targets states are the final states as defined

in Section 5.3.4, and the cost functions are WCET, and worst case energy consumption, as

defined in the BZR code in Section 5.4.1.
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Figure 5.8: A simulation scenario.
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5.4.4 Enforcing the Combined Logical and Optimal Objectives

The synthesis operations enforcing the logical and optimal control objectives can be com-

bined. For instance, the synthesis operation for invariance S Security and for one-step

optimal Strictly Greater than can be combined to drive the system to always go to next

optimal states within a set of states made invariant by the S Security operation. The order

of applying different operations does matter. Typically, the invariance synthesis should be

applied before others (e.g., optimal control), such that it would not cut off (e.g., optimal)

solutions if applied after. In our example, we enforce the invariance before the optimal

ones, when both the two types of objectives are applied. The two optimal control synthesis

operations are performed separately.

5.5 Experimental Results

We have carried on extensive experiments to evaluate the scalability of our framework. Table

5.2 shows our experimental results to compute the controllers by using the tools. It gives

the time costs for different DCS operations corresponding to different system objectives

w.r.t. different system models and state space sizes. The state space size of each system

model is computed by simply multiplying state space sizes of its composed automata. The

size of synthesized controllers varies from 50Kb (objective 2 on model 4:(2,3,2,3)) to 28Mb

(objective 7 on model 6:(16)). We have started our experiments from the task graph of

Figure 5.2. We then refine B to 3 tasks so as to increase the system model to 6 tasks, and

at last, refine C to 3 tasks as well to address a 8 task model, as shown in Figure 5.9. We use

A C D

B1
B2

B3
B

C1
C2
C3

Figure 5.9: The refined task graph for experiments.

the notation n : (m1, ...mn) to represent the models, where n denotes the number of tasks,

and mi the number of possible implementations of task i. Besides, we use mk to represents

k consecutive m’s. E.g., 4 : (44) denotes 4 : (4, 4, 4, 4). All experiments are performed on a

computer with a Intel(R) Core(TM)2 Duo CPU of 2.33GHz and a 3.8Gb main memory.

In our experiments, the DCS of invariance constraints, i.e., objectives 1-3,5, are applied

directly on the original system model. On the basis of the resulting controller, the optimal

and reachability ones are then performed. The objectives about invariance and reachability

appear promising, while optimal ones are, unsurprisingly, explosive. An interesting point

observed is that the time cost is not always increasing as state space size grows. System

models consisting of more tasks but less possible implementations could have less synthesis

times, e.g., DCS operations for 6:(16) model take less times than these for 4:(44) model.

The reason may come from the fact that one-step-optimal and optimal-on-path syntheses

require to examine the costs of next states, while more implementations of functions mean

more choices to explore. Due to time and resource limitations, we have decided to stop the

synthesis processes if not finished after 3 days of computation.
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target objectives

system model &
state space size

4:(2,3,2,3)

241,920

4:(44)

806,736

6:(16)

5,898,240

6:(3,1,1,2,1,3)

16,588,800

6:(3,24,3)

32,400,000

8:(18)

566,231,040

8(33,25)

5,832,000,000

1) exclusive usage of A1-A4 0.29sec 0.65sec 0.16sec 1.16sec 8.20sec 1.10sec 16min1sec

2) dual access to memory 0.12sec 0.49sec 0.10sec 0.69sec 1.50sec 1.29sec 23.05sec

3.a) switch to active mode 0.74sec 2.28sec 0.46sec 1.88sec 1min19sec 1.30sec 27min58sec

3.b) switch to sleep mode 0.76sec 2.01sec 0.22sec 1.74sec 2min11sec 0.90sec 41min29sec

5) battery-level constrained p.p. 0.89sec 2.23sec 0.68sec 4.18sec 21.18sec 2.21sec 49min24sec

4) reachability: 1.78sec 3.48sec 4.74sec 17.33sec 2min 25.16sec 3hr34min

6) minimize p.p. in next states 3min54sec 3hr18min 29min45sec stopped stopped stopped stopped

7)∗ minimize remaining WCET: 9min17sec 2hr43min 21min19sec stopped stopped stopped stopped

Table 5.2: The time costs for DCS operations corresponding to different target objectives w.r.t. different system models and state space sizes.

n : (m1, ...mn) denotes a model of n functions, with mi denoting the number of possible implementations of function Fi. ∗ Objectives 7 and 8

are the same kind of operation (objective 8 is thus omitted here).
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5.6 Case Study

In this section we describe an experimental case study and demonstrator, where some of

the previous control models and objectives are applied to a concrete FPGA based platform.

5.6.1 Case Study Description

We consider a video processing system to be implemented on a platform containing an

FPGA, so that the partial reconfigurations of the FPGA controlled by a synthesized con-

trolled can be visualised. The processing system (see Figure 5.10) consists of a camera

capturing images and sending them to the platform, a dispatcher feeding image pixels to

the FPGA, a compositor aggregating pixels produced by the FPGA, and a screen displaying

the processed images. Each captured image is divided into 9 areas by the dispatcher (see

Figure 5.11), and the processing of each area is taken care by one dedicated reconfigurable

tile of the FPGA. The FPGA is also divided into nine tiles (the same way as we had four in

Figure 5.1). In this way, when a tile is reconfigured, one can see it on the screen. We con-

sider three filtering algorithms (namely red, green and blue ones) that can be implemented

on each reconfigurable tile to process images. When configured to process the same image,

they have different performance values regarding some characteristics such as power peak,

execution time. In the study, we suppose the power peaks of each tile for running the red,

blue and green filters are respectively 3, 2 and 1.

Camera ScreenDispatcher Compositor

Tile 1
Tile 2
Tile 3

...
Tile 9
FPGA

Figure 5.10: The video processing system case study.

Figure 5.11: Each image is divided into 9 areas for processing, with those covered by grids

called corner areas, and the rest ones called cross areas.

The processing system can work at two different modes: high and low, controlled by

the user through a switch on the platform. The user can also demand the use of the red

filters for the processing of the four corner areas of images by using another switch on the

platform. Apart from the user demands, the system also needs to respect the following

three rules:
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1. the four corner areas of the images to be displayed are of the same color, the five cross

areas are of the same color, and the color of the four corner areas is different from the

color of the five cross areas;

2. the global power peaks of the platform are bounded by 30 (respectively 20) in the

high (respectively low) mode;

3. minimizing the power peaks of the next states.

A run-time manager is thus required to configure each reconfigurable tile of the FPGA

by using one of the three filtering algorithms to filter images in the way satisfying the

aforementioned requirements.

5.6.2 Controller Generation and Integration

We firstly follow the design flow in Section 5.3 to generate the run-time manager. We then

describe how to integrate the BZR generated controller into the system implementation.

Controller Generation

We model the system reconfiguration behavior by using synchronous parallel automata, and

DCS is then performed to generate a controller by using BZR.

System Modeling. Once the system gets started (modeled as the emission of event s),

the controller should decide on the system initial state and configure the nice reconfigurable

tiles of the FPGA accordingly. The behaviors of the two switches, denoted by ModeSwitch

and CornerColorSwitch, are captured by two boolean variables ms and gr respectively,

with value true means switch on and false means switch off. When the value of ms is true,

the user demands system to execute in high mode. When the value of gr is true, the user

demands to use the red filters for processing the four corner areas of images.

The reconfiguration behavior of the system execution mode is captured by a three-state

automaton (see Figure 5.12). Initially, it is in idle state I, once the system gets started

denoted by s, it goes to either state High or Low depends on the value of ms. Boolean

output h represents whether it is in mode high.

LH

ms

ms

not ms

ExecMode

h
I s&not mss&ms

Figure 5.12: The model of system execution mode behavior, with Boolean input ms cap-

turing ModeSwitch, and Boolean output h representing whether it is in mode high.

As the colors of the four corner areas are required to be the same, they always need

the same filtering algorithm. We thus use one single automaton (see Figure 5.13) to model

their choices among the three filtering algorithms. At the beginning, it is in state I. Once

the system gets started, i.e., event s is received, it goes to state R, G or B, meaning that

the red, green or blue filtering algorithm is used for processing the four corner areas of

images, depending on the values of controllable variables c1, c2, c3. As running the red

filter in a reconfigurable tile has cost 3, and R represents that all the four corner areas
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I

R

G

gr

B

gr
s,c1

s,c2 s,c3

s, gr

c1,c2,c3

not gr,c1 not gr,c2

c1

c2

CorAreas

w

fc

Figure 5.13: The model for choosing filtering algorithms for processing the four corner

areas, where inputs s ∈ {true, false} represents that the system gets started or not, gr ∈
{1, 0} represents that the user switches on or off the corner color switch, and outputs

fc ∈ {corR, corB, corG, corI} represents the current state and w ∈ {12, 8, 4, 0} represents
the weight associated with the state.

run the red filter, we associated state R with cost 12. The same to the costs of states

G and B. The automaton goes to state R upon the reception of event gr (i.e., the user

switches on CornerColorSwitch), when it is in states G or B. The rest of the transitions

(e.g., between G and B) are managed by the controller by evaluating controllable variables

c1, c2, c3 according to system requirements.

The modeling for choosing the filtering algorithms for processing the five cross areas is

done similarly. The main difference is that the user has control over using the red filter for

processing the four corner areas by switching on switch CornerColorSwitch, but has such

control for the five cross areas. The choice among the filters are always controllable. Figure

5.14 shows the model.

I

R

GB

s,c1

s,c2 s,c3

s

c1,c2,c3

c1 c2

c1

c2

CrossAreas

w

fc

c2 c1

Figure 5.14: The model for choosing filtering algorithms for processing the five cross

areas, where outputs fc ∈ {croR, croB, croG, croI} represents the current state, and

w ∈ {15, 10, 5, 0} represents the weight associated with the state.

At last, all the aforementioned models are composed to derive the global system be-

havior. All the controllable variables define the control (i.e., reconfiguration) points that a

controller should control according to the control rules. We employ BZR to automatically

synthesize a controller satisfying the control rules. Firstly, the system models are encoded

in BZR. This can be done easily as shown in Section 5.4.1. Secondly, the three control

rules described in Section 5.6.1 should be specified separately. The control rules 1, 2 can be

encoded in a BZR contract directly as given below. Variable total w represents the global

weight of the system, which is defined as the sum of the weights w in the four corner model

and the five cross areas model. Regarding the optimal control objective, i.e., control rule

3, the generated z3z code needs to be modified by adding the corresponding optimal Sigali

operation Strictly Lower than, as described in Section 5.4.3.

contract
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var bound, exclusive:bool;

let

bound = if(h) then (total_w <= 30) else (total_w <= 20);

exclusive = not ((corR & croR) or (corG & croG) or (corB & croB));

tel

assume true

enforce bound & exclusive

with (c1,c2,c3, ... :bool)

Controller Integration

By feeding the BZR program to the BZR compiler, it generated the C code of the run-time

manager within 5 seconds. The manager then needs to be integrated with the system. This

section describes the structure of the BZR generated code and the way to integrate it with

the system implementation.

The manager code is composed of two C code folders with overall size 77.8 kilobytes.One

folder contains the C code of the generated controller which computes the values of con-

trollable variables according to system states and inputs; the other folder contains the code

for keeping track of the system states by performing state transitions according to system

inputs, states and the values of computed controllable variables (this is done by invoking

the functions in the former folder. Two additional C files named main.c and main.h are

also generated by the compiler for simulation purpose. However, they can be easily adapted

to serve as the interface between the manager and the system implementation. Next we

take a closer look at the main.c code, and then describe the way of adapting them such

that the manager code can be combined with the system.

The code of main.c can be divided into three parts:

❼ input part: system input variables declared in the system model;

❼ system model declaration and initialisation part: state variables and output variables

(named as mem and res respectively) declaration and system state initialisation (by

reset(&mem));

❼ system states tracking and transition part: it is an infinite loop, and each iteration

consists of the input variable evaluation, a step function: sys_step(inputs, &mem)

computing output res and updating system state &mem according to the inputs and

current state &mem, and the printout of output variable values.

To integrate the manager with the system, one needs to

1. pass the system input values to the input variables of the manager,

2. define within the infinite loop the timing to invoke the step function, and

3. interpret the output variables as system (reconfiguration) actions.

In the next section, we show how the generated manager can be integrated with a Xilinx

platform.

5.6.3 System Implementation

We have implemented the video processing system on an ML605 board from Xilinx. It

includes a Virtex-6 FPGA (XC6VLX240T), several I/O interfaces like switches, buttons,

Compact Flash reader, and an external 512MB DDR3 memory. An Avnet extension card
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(DVI I/O FMC Module) with 2 HDMI connectors (In and Out) has been plugged onto the

platform so that it can receive and send video streams through the connectors.

Microblaze

GPIO9switchs GPIO9buttons

Frame9processing

PR1

PR4

PR2

PR5

PR7 PR8

PR3

PR6

PR9ICAP

Interrupt

controller

D
D
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3

9M
e
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Processor9Local9Bus

Mem.9Bus

CF9controller

Figure 5.15: Global structure of the implementation

Figure 5.15 illustrates the global structure of our implementation. We have divided

the FPGA surface into two regions: static and reconfigurable regions. Nine independent

reconfigurable tiles are specified in the reconfigurable region. The tiles are in charge of

the video processing tasks described in Section 5.6.1. The microblaze is a 32-bit soft-core

processor synthesised on the static region of the FPGA (like A0 in Figure 5.1). It executes

two main system tasks: the computed manager and the management of the configuration

bitstreams. The latter task involves the control of related peripherals (i.e., Compact Flash

memory, I/O interrupts, DDR3, ICAP) through corresponding implemented controllers.

The external DDR 3 memory is used to buffer the frame pixel data of video streams, and

store the software executable to be launched by the microblaze. The accesses to the DDR

by the FPGA are managed by the DDR controller. We use a compact Flash card to store

the bitstreams of the filter implementations on each reconfigurable tile. The C code of

the manager is deployed on the microblaze as an infinite loop. It is invoked whenever the

microblaze is interrupted. Two additional interrupt controllers (GPIO switches and GPIO

buttons) are added for the platform to generate interrupts. They monitor the states of the

buttons and switches, and generate interrupts when these states change. Once the manager

is invoked, it is able to read the states of the switches and computes out a new configuration.

The microblaze then selects the appropriate bitstreams from the Compact Card, and sends

them to the ICAP to reconfigure the nice reconfigurable tiles.

Experimental results show that the integrated manager did meet the system require-

ments mentioned in Section 5.6.1 after a considerable number of tests.

5.7 Summary and Discussion

This chapter presented a general framework, based on a tool-supported synchronous vari-

ant [Marchand & Samaan 2000] of the discrete control [Ramadge & Wonham 1989] for the

autonomic management of adaptive MPSoCs. We have focused on adaptive MPSoCs im-

plemented on reconfigurable architectures especially DPR FPGAs. Such architectures con-

stitute a platform for adaptive computing that is gaining widespread use. The contribution

of the work is manifold: i) we propose a systematic modeling framework for DPR FPGA

based embedded systems, where application behaviour (defined by a task graph), task im-
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plementations and executions (characterized by parameters of interest e.g., time and power

consumptions), architecture resource uses and reconfigurations are modeled separately by

using automata; ii) we apply formalisms and tools from discrete control, supported by a

programming language BZR and synthesis tool Sigali, to encode and perform the com-

putation of an autonomic manager as a DCS problem; iii) we have performed extensive

experiments to evaluate the scalability of our approaches, and an experimental validation

of our proposal by implementing a video processing system on a Xilinx FPGA platform.

Although focusing on adaptive MPSoCs implemented on reconfigurable architectures, our

framework is also general enough to deal with the reconfiguration control of other adaptive

MPSoCs. Its application to general MPSoCs will be illustrated by using an example in

Chapter 6.

Compared to other existing techniques for self-management of adaptive systems, e.g.,

heuristics and machine learning techniques, the main advantage of control techniques is

that they are able to provide formal correctness and/or performance guarantees. The au-

thors in [Maggio et al. 2012] discuss some existing approaches applying standard control

techniques such as Proportional Integral and Derivative controllers or Petri nets. However,

discrete control has only been seldom applied [Guillet et al. 2012], and to the best of our

knowledge, only few works have targeted at computing systems on reconfigurable architec-

tures. In [Sironi et al. 2010], a reconfigurable architecture based evolvable system exploiting

self-adaptive techniques is proposed. It is one of the first implementations of a FPGA-based

self-aware adaptive system. It adopts the application heartbeats as monitoring framework,

and a heuristic mechanism to switch between configurations. Self-management in the form

of self-healing exploiting FPGAs is proposed in [Jovanović et al. 2008]. However, the ap-

proach does not involve control. A new architectural proposal in [Majer et al. 2007] provides

a slot-based organisation of the reconfigurable hardware and an elaborate communication

framework with good reconfiguration support. The focus is, however, on infrastructure

aspects rather than on control.

Our approach is closer to that in [Eustache & Diguet 2008], but we focus on logical

aspects and discrete control. In [Quadri et al. 2010b], a design flow, from high level models

to automatic code generation, for the implementation of reconfigurable FPGA based SoCs is

proposed. The system control aspects need to be modeled manually and integrated into the

flow, while we advocate automatic controller synthesis. Compared to [Guillet et al. 2012],

we have applied more elaborate DCS algorithms, and the integration into a design flow and

compilation chain is more developed.

The major concern of our approach is the scalability issue, which is common to other

formal techniques like model checking. An interesting means is to exploit the modular

synthesis and compilation [Delaval et al. 2010], which allows the users to decompose big

problems in a way that breaks down the combinatorial complexity. It is also interesting for

specification and model structuring purposes. Another perspective is to enrich our models

by taking into account other aspects, such as communication and memory access costs.

At last, the automatic transformation from the MARTE described system specification

to the automata in our framework, though seeming quite direct, has not been developed.

Inspirations from [Guillet 2012] can be taken to deal with this.
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6.1 Motivation and Contribution

We have presented a high level approach to deal with configuration analysis in Chapter 4,

and an approach applying discrete control synthesis to deal with reconfiguration manage-

ment in Chapter 5 of adaptive MPSoCs. The two approaches can thus be combined to form

a complete design flow for the safe design of adaptive MPSoCs. Furthermore, the CLASSY

framework presented in Chapter 4 is flexible enough to capture adaptive behavior, and

allows the designers to design and analyze customized run-time managers by integrating

the managers into its simulation process. This feature can be illustrated by applying the

discrete control technique to design run-time managers that guide the CLASSY simulations.

This chapter is organized as follows: Section 6.2 presents the complete design flow for

adaptive MPSoCs. Section 6.3 presents how the CLASSY serves as a simulation framework

for the evaluation of designed managers. Section 6.4 concludes.
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6.2 A Design Flow for Adaptive MPSoCs

Adaptive systems are able to adapt their behaviors dynamically in reaction to the run-time

situations. The set of possible system behaviors can be seen as a set of system configura-

tions, and the adaptation behavior can be seen as the reconfiguration between the configu-

rations. Three possible adaptive aspects have been identified in Section 2.3.1 of Chapter 2,

namely, application, platform and mapping adaptations. We, accordingly, define a system

configuration as a composition of

❼ an application configuration, which is a specific application scenario,

❼ a platform configuration, which is an architecture instance, and

❼ a mapping configuration, which is the binding and scheduling of application tasks on

the platform resources w.r.t. an application configuration and a platform configura-

tion.

The system reconfiguration is, therefore, induced by reconfiguration at the three levels.

The adaptivity feature further complicates the design of MPSoCs, which leads to a real

challenge about cost-effective and safe design methodologies of adaptive MPSoCs. Firstly,

design correctness must be addressed in every possible configuration to ensure system reli-

ability. This requires that the proper mapping and platform configuration solutions must

be found for each application configuration w.r.t. system functional and non-functional re-

quirements. Secondly, reconfiguration correctness must also be established to safely control

the adaptation between system configurations. This requires a run-time manager, which

monitors the system run-time situation and performs corresponding reconfiguration at the

three levels if needed.

This section presents a design flow for the safe design of adaptive MPSoCs. We adopt

the UML profile MARTE for the system modeling. The resulting models are transformed

into formal models (i.e., abstract clocks, automata/BZR programs), by means of which, two

levels of designs are carried out: the design for each application configuration w.r.t. system

functional and nonfunctional properties by applying the CLASSY framework in Chapter 4,

and the design of a correct controller for system reconfiguration by using discrete controller

synthesis as in 5. At last, the design solutions are integrated into the original modeling

framework. With the resulting models, existing hardware/software co-design framework

such as Gaspard2 can then be used to automatically generate the corresponding programs,

such as SystemC, and VHDL, for low level simulation and hardware synthesis. The main

results of this section have been presented in [An et al. 2011].

Section 6.2.1 presents the design flow. Section 6.2.2 uses a case study to illustrate our

approach.

6.2.1 The Design Flow

We present a design flow for the safe design of adaptive MPSoCs. Safety in the design is

approached by using formal models to derive the design of each configuration, and generate

a correct controller triggering reconfiguration. It goes according to the following steps:

❼ Step 1: system modeling using the MARTE profile. The UML standard pro-

file MARTE [Object Management Group 2013a] is used to model considered adaptive

systems. The system modeling concerns the modeling of the software application and

hardware platform configurations, and their reconfiguration behavior. The result-

ing system models are then used for the two design issues: design of each system
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configuration, and derivation of a reconfiguration controller that enforces the system

requirements.

❼ Step 2: system configuration design. The design of each system configuration

concerns for each application configuration computing a platform configuration and a

mapping configuration such that system requirements regarding functional and non-

functional ones are met. We use CLASSY to address this. In particular, it produces

a set of Pareto-optimal design solutions regarding a trade-off of resource use, perfor-

mance and energy consumption. Among the solutions, the designer can pick several

candidates for each considered application configuration. They will be used by the

run-time manager to decide the choice among these candidates depending on the

run-time situations.

❼ Step 3: system reconfiguration manager derivation.

We consider DCS, as used in Chapter 5, to deal with the design of a manager that

controls the system reconfiguration w.r.t. run-time situations. The reconfiguration

from all the three aspects, i.e., application, platform and mapping reconfiguration,

should be taken into account. The application and platform reconfiguration models

are specified by MARTE in Step 1. The resulting mapping configurations for each

application configuration from Step 2 need to be organized and modeled by FSM

or automata so that the mapping reconfiguration behavior can also be explored and

managed in this step. These models are transformed into BZR programs, and the

BZR, as shown in Section 3.4 of Chapter 3, is then used to automatically synthesize

a correct manager satisfying system requirements.

❼ Step 4: integration of design analysis results with the original system.

Finally, the design analysis results from Steps 2 and 3, i.e., the platform and mapping

candidates for each application configuration, and the design manager, are integrated

into the original modeling framework. With the models, existing hardware/software

co-design framework such as Gaspard2 can then be used to perform further design

and analysis.

6.2.2 Case Study: Continuous Multimedia Player

Informal Description

We consider a simple continuous multimedia (CM) player system (as modeled in Figure

6.1) extracted from [Rowe & Smith 1993]. The CM server (i.e., the media synchronization

component in Figure 6.1) takes as input the streams of video and audio (CM) data packets

from corresponding CM sources, synchronizes and assembles data from several packets into

synchronized playable units, calculates the system time at which frames should be played,

and dispatches them to output devices (e.g., the screener to play video and the speaker to

play audio). The CM sources are responsible to convert the input media flow into required

data format for further processing. The video stream is composed of a sequence of JPEG

frames whereas the audio stream is captured in the form of Sparc audio.

Different temporal relations between media objects can be defined to achieve different

functionality. Here, we suppose that the synchronization component has two modes or

algorithms dealing with two different user requirements. They are taken and adjusted from

[Blakowski & Steinmetz 1996], as shown in Figures 6.2 and 6.3. Both of these specifications

are specified by using the reference point synchronization model. Each block of the media is
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Video source

Audio source

       Media 
Synchronization

Screener

Speaker

JPEG

Sparc audio

Figure 6.1: The continuous multimedia (CM) player system

a logical data unit (LDU) (e.g., frames for digital video) defined by the designer. Specially,

a LDU is seen as a logical processing unit for media sources.

Figure 6.2: The lip synchronization specification.

Slide 1 Slide 2 Slide 3 Slide 4

Audio

Figure 6.3: The slide show synchronization specification.

As we can see from Figure 6.2 (resp. 6.3), the lip synchronization mode (resp. slide

show synchronization mode) each time takes an audio unit and two video units (resp. one

slide and four audio units) for processing and assembling a single playable unit.

We suppose that the CM player is powered by a battery, which has two levels: high and

not high. The users can switch between the two synchronization modes. Moreover, they

expect the best performance, as long as the battery level allows.

Step 1: MARTE Modeling

Modeling of system functionality. With two different execution modes for the synchro-

nization component, we have two functional or application configurations namely LipSync,

as modeled by MARTE in Figure 6.4, and SlideShowSync. The stereotype≪configuration≫
is used to represent a specific configuration with the name labeled below, which is associ-

ated with the value of the mode noted on the top right to indicate when the configuration

is active.

Reconfiguration modeling. Having a number of possible configurations/modes for the

application functionality, the UML Finite State Machine (FSM) is used to model and

manage all these configurations as well as their switches. As shown in Figure 6.5, the

FSM specifies the application reconfiguration behavior. It has two states corresponding to

the two configurations we have mentioned above. Each state is associated with a specific

mode value and the active configuration is the one having the same mode value of the

current state of the FSM.

Modeling of execution platform. For the execution platform of this simple CM

player system, we consider a hardware architecture composed of two processors, a hardware

accelerator and memory devices adapted from the model in [Quadri et al. 2010a] (see Figure
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<<configuration>> {mode=LipSync}
Mode_ApplicationConfig1

:Application

lip:SynchronizationVideo

Audio

Screener

Speaker
jpeg

sparc

jpeg jpeg jpeg
sparc sparc

sparc

Figure 6.4: An application configuration: LipSync.

<<mode>>
    LipSyn

<<mode>>
SlideShowSyn

  <<modeTransition>>
         mode_switch

<<modeTransition>>
       mode_switch

<<modeBehavior>>
     AppReConfig

stm <<modeBehavior>> AppReConfig

Figure 6.5: The FSM for application reconfiguration.

6.6). Processor p1 has two operating frequencies 15 and 45 MHz, and processor p2 and

hardware accelerator acc have frequency values 30 and 45 MHz. The Hardware Resource

Modeling package of MARTE is used here to describe the architecture. Figure 6.6 gives the

details of our modeling.

Reconfiguration modeling. The reconfiguration of the considered platform is induced by

the changes of frequency values of the three processing elements. E.g., a possible platform

configuration is that p1, p2 and acc all have the same frequency 45 MHz. Such an con-

figuration can be modeled by using the stereotype << configuration >>, similar to the

application configuration in Figure 6.4. The reconfiguration behavior is under the control

of the manager, and can be modeled by an FSM as well. Since different application con-

figurations usually require different platform configurations to meet system requirements,

the platform reconfiguration depends on the application reconfiguration. Step 2 will de-

scribe how to choose the platform configuration for each application configuration, while

its reconfiguration behavior will be modeled in Step 3.

Step 2: Configuration Design

For each application configuration, the designer needs to choose a platform configuration

and compute a mapping configuration so that the implementation meets the system func-

tional and non-functional requirements. The CLASSY framework in Chapter 4 has been

proposed to address this design issue. We thus need to transform the MARTE models of

application configurations and platform configurations into the clock models that CLASSY

takes as input. W.r.t. each application configuration, the CLASSY design space exploration

then can be performed to compute a set of Pareto-optimal mapping solutions.
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:ExecutionPlatform

<<HwComputingResource>>
          p1:ProcessingUnit

<<HwComputingResource>>
     :QuadriPro Architecture

<<HwCommunicationResource>>
        crossbar: Crossbar

  <<HwRAM>>
datamem:nSRAM

<<HwPLD>>
  acc: HwAcc

 <<HwComputingResource>>
           p2: ProcessingUnit

       <<HwRom>>
 im: InstructionMemory

Figure 6.6: The hardware platform model.

Transformation of the MARTE models into abstract clocks.

Audio:

Synchron.:

Video:

Speaker:
Screener:

ve1 ve2
ae1

se
ce

pe

Figure 6.7: The abstract clock modeling of the lip synchronization mode.

Application configuration. For the two application configurations, i.e., lip and slide show

synchronizations, the processing and display of a playable unit form an iteration. Figure

6.7 shows the abstract clock modeling of one iteration of the lip synchronization. The slide

show synchronization can be modeled similarly.

Platform behavior. We take the platform configuration p1(15), p2(30), acc(45) as an

example. Figure 6.8 depicts the clock model of the configuration w.r.t. a reference or

ideal clock, which is defined by computing the Least Common Multiple (LCM) in order to

synchronize multiple clocks.

IdealClk(90 MHz): | | | | | | | | | | | | | ...

p1(15 MHz): | | | ...

p2(30 MHz): | | | | | ...

acc(45 MHz): | | | | | | | ...

Figure 6.8: Clock modeling of a hardware platform configuration w.r.t an ideal clock. The

values in the brackets denote the frequency of the resources.
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ID Mapping and Platform Solutions Time Energy

(task/PE(the used frequency)) (ms) (joules)

1 video/acc(45) audio/acc(45) synchron/acc(45) screener/p2(30) speaker/p1(45) 200.0 40.0

2 video/p1(45) audio/p2(45) synchron/p1(45) screener/p2(45) speaker/p2(45) 444.4 12.0

3 video/p1(45) audio/p2(45) synchron/p2(45) screener/p2(45) speaker/p1(45) 400.0 13.0

4 video/p1(45) audio/p2(45) synchron/p2(45) screener/p2(45) speaker/p2(45) 511.1 11.0

5 video/p1(45) audio/acc(30) synchron/p2(45) screener/p2(45) speaker/p2(45) 377.8 19.0

6 video/p1(45) audio/acc(30) synchron/acc(30) screener/p2(45) speaker/p2(45) 266.7 22.0

7 video/acc(30) audio/acc(30) synchron/p2(45) screener/p1(45) speaker/p2(45) 244.4 37.0

Table 6.1: The Pareto-Optimal solutions for the LipSync configuration computed by CLASSY. The time and energy costs are the values per

iteration.
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Design analysis. To perform the design analysis, elementary costs, e.g., the time

and energy costs of each event on each PE, must be defined. CLASSY is then used for

design space exploration for each application configuration, and produces a number of

design solutions with a trade-off of resource use, time and energy costs. Each generated

design solution of CLASSY consists of a mapping and a platform configuration, i.e., how

the tasks are mapped onto the platform resources, and what frequency values are used for

the computing resources.

We also take the LipSync configuration as an example. By using CLASSY (random

values are used for the elementary costs), we got 7 Pareto-optimal solutions as shown in

Table 6.1. Among the computed mapping solutions, we take three mapping configurations:

configuration 1 with the best performance (denoted by LipBestPerf), configuration 4 with

the least energy consumption (denoted by LipBestEnj), and configuration 5 with a good

trade-off (denoted by LipTradeOff) for the implementation solutions of the LipSync con-

figuration. A run-time manager, designed in the next section, would decide on which choice

to use depending on the run-time situations.

Similarly, the design analysis can be performed for the SlideShowSync configuration.

We also suppose that three configurations, namely SlideBestPerf , SlideBestEnj, and

SlideTradeOff are chosen as implementation candidates.

Step 3: Reconfiguration Manager Design

Modeling of mapping and platform reconfiguration. For each application configu-

ration, we have computed three mapping and platform configurations or implementations.

The choice among the implementations for each application configuration should be decided

at run-time by the manager according to run-time situations. The implementation recon-

figuration behavior thus needs to be modeled, so that it can be taken into account in the

manager design process.

LipTradeOff LipBestPerf
c1 & c2

LipBestEnj not c1 & not c2

not c1 & c2
not c1 & not c2

c1 & c2

not c1 & c2

c1, c2

time, energy

time = 377; 
energy = 19 time = 200; 

energy = 40

time = 511; energy = 11

Figure 6.9: The implementation reconfiguration automaton for the LipSync mode.

We take the LipSync configuration and its three computed implementation candidates

as an example. Figure 6.9 shows the reconfiguration automaton model. The transitions

between the implementations are considered to be controllable, denoted by controllable

variables c1 and c2. Each state represents a corresponding mapping and platform con-

figuration. The characteristics of each implementation, i.e., execution time and energy

consumption, are also associated with each state. The guards in terms of the controllable

variables of the transitions are encoded in such a way that the best performance mode is

preferred when it has more than one valid transition choices. This is because that the gen-

erated controller by the BZR compiler always evaluates true to the controllable variables if

possible (as described in Section 3.4 of Chapter 3).
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BZR encoding of the system reconfiguration behavior and DCS. The composi-

tion of the reconfiguration models of application, mapping and platform behaviors comprises

the system reconfiguration behavior. The application reconfiguration behavior modeled by

a FSM in Step 1 can be transformed into an automaton easily. All the automata models

are then encoded by the BZR programs. Regarding controllability of reconfiguration be-

haviors, the application reconfiguration is uncontrollable, but depends on user commands,

while the implementation (i.e., mapping and platform) reconfiguration is controllable. In

the case study, the system has two boolean uncontrollable inputs: mode switch denoted by

stc, and high battery level denoted by high. The manager to be designed needs to decide

on the implementation solutions and control their reconfigurations w.r.t. the application

configurations and system requirements by using the defined controllable variables, i.e., c1

and c2 of Figure 6.9.

As mentioned in the informal description in Section 6.2.2, there are two system require-

ments:

1. the energy consumption is constrained by the battery level;

2. among the implementation configurations that meet requirement 1), the one with the

best performance should be used.

contract
var control_rule:bool;
let
 control_rule = if high then energy <= 40
                        else energy <= 20;
tel
assume true
enforce control_rule
with (c1,c2:bool)

Figure 6.10: The BZR contract enforcing system requirements.

Figure 6.10 gives a contract describing an control objective corresponding to require-

ment 1). In consideration of the implementation configurations in Figure 6.9, when the

energy level is high, all the three configurations are valid as the energy constraint is 40.

The LipBestPerf implementation becomes invalid when the energy level is not high. Re-

quirement 2) is captured by the way of encoding the controllable variables in Figure 6.9 as

discussed above.

At last, by feeding the BZR program to the BZR compiler, it synthesizes a manager

automatically satisfying the two system requirements. Figure 6.11 depicts a simulation

scenario by using the graphical display tool sim2chro1. It simulates the system behavior by

combining the generated manager with its original BZR models.

Initially, at instant 1, the system is in the LipSync mode, denoted by variable lip equal

to true in the figure, and the energy level is not high, denoted by high equal to false.

According to the contract, the upper bound of energy cost is currently 20. Configurations

LipTradeOff and LipBestEnj are thus valid. Considering the requirement 2), the trade-off

configuration with time cost 377 and energy cost 19 is chosen by the manager. At instant 4,

the energy level becomes high, which implies the upper bound of energy cost becomes 40.

According to the two requirements, the LipBestPerf configuration should be chosen by

the manager. In the figure, it only takes effect one instant later, i.e., at instant 5, since the

weak transition “until” is used in the BZR encoding (as described in Section 3.4 of Chapter

1http://www-verimag.imag.fr/~raymond/edu/distrib/

http://www-verimag.imag.fr/~raymond/edu/distrib/
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Figure 6.11: A simulation scenario of the controlled system.

3). This is also the case at instant 9. The switch stc becomes true, and the system goes

to the SlideSync configuration, denoted by slide becomes true and lip becomes false, at

instant 10.

Step 4: Analysis Result Integration

<<configuration>> {mode=LipBestEnj}
 Mode_LipSync

:Application

slide:SynchronizationVideo

Audio

Screener

Speaker
jpeg

sparc

jpeg jpeg jpeg
sparc sparc

sparc

:ExecutionPlatform

<<HwComputingResource>>
       p1(45):ProcessingUnit

<<HwComputingResource>>
     :QuadriPro Architecture

<<HwCommunicationResource>>
        crossbar: Crossbar

  <<HwRAM>>
datamem:nSRAM

 <<HwPLD>>
acc(30): HwAcc

 <<HwComputingResource>>
       p2(45): ProcessingUnit

       <<HwRom>>
 im: InstructionMemory

Figure 6.12: The LipBestEnj implementation model of the LipSync configuration.

In Steps 2 and 3, the implementation candidates (e.g., Table 6.1) and their reconfigu-

ration behavior model (e.g., Figure 6.9) for each application configuration are computed.

These results should be modeled and integrated into the original MARTE models so that
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existing tools like Gaspard2 [Gamatié et al. 2011] can be used for generating low level codes

such as synchronous language Signal, VHDL for further analysis. Take the LipBestEnj

implementation of the LipSync configuration as an example. It can be modeled by using

the stereotype << configuration >> as shown in Figure 6.12. The automaton models

for the implementation reconfiguration, e.g., Figure 6.9, can also be transformed into FSM

models.

All the MARTE models for system application and implementation (i.e., platform and

mapping) behavior comprise the uncontrolled system behavior. They can feed tools like

Gaspard2 for generating low level codes for further analysis. To have the final controlled

system, the manager generated by BZR should also be integrated into the system imple-

mentation. BZR can generate the manager in C or Java directly. The manager can be

integrated with the generated low level code of Gaspard2 from the MARTE models for

combined analysis and/or implementation. The details on how to integrate the generated

manager with the system have been described in Section 5.6 of Chapter 5.

6.3 CLASSY for the Design and Evaluation of Run-

Time Managers

Adaptive systems require run-time managers to control their adaptive behaviors. Therefore,

there exists a need to develop a simulation framework to explore and evaluate run-time

managers for adaptive systems. CLASSY can serve as such a modular simulation framework

allowing the analysis and evaluation of various designed managers for adaptive MPSoCs.

In this section, we show how to use CLASSY as a simulation and analysis framework

for designed managers by using an illustrative example. DCS used in Chapter 5 will be

employed to design a run-time manager.

Section 6.3.1 describes the illustrative example informally. Section 6.3.2 applies DCS

to design a run-time manager. Section 6.3.3 integrates the designed controller into the

simulation process of CLASSY for analysis and evaluation.

6.3.1 An Illustrative Example

We consider a data-flow application whose functionality is described by the combination of

a task graph and automata, as shown in Figure 6.13. Tasks B and C in the graph have two

different execution modes or configurations, described by automata. The execution mode

of task B is data-dependent, i.e., depends on the run-time incoming data type. The two

modes of task C are designed to have different energy costs: mode c1 consumes less than

c2. A manager needs to decide for task C which mode to use at run-time.

B
A

C
D

b1 b2

c1 c2

Figure 6.13: System functionality described by combining a task graph and automata.

An MPSoC platform consisting of two PEs p1, p2 is considered to implement the applica-

tion. Both PEs have two operating frequencies and can switch between them dynamically.

p1 can operate on frequency 20MHz or 30MHz, while p2 operates on 45MHz or 60MHz.
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Furthermore, a battery is considered to power the platform, and two battery levels: high

and low are distinguished.

Regarding mapping, it is assumed that task A can only be mapped onto p1, and D on p2,

while tasks B and C can be mapped onto both processors and are able to migrate between

the two processors.

We consider the following adaptation policy that concerns three adaptive aspects of the

system:

1. application aspect: mode b2 of task B and mode c1 of task C cannot be active in the

same iteration; task C should stay in mode c1 that consumes less energy if possible.

2. platform aspect: the two PEs cannot use high frequency at the same time when the

battery level is low; the user always expects the best performance, i.e., two PEs use

their high frequency values if possible.

3. mapping aspect: tasks B and C cannot be mapped onto the same PE for efficiency;

when C is in c2 mode, it must be mapped onto a PE running at its high frequency

value; tasks B and C should not migrate to avoid migration costs if possible.

6.3.2 Run-Time Manager Design

We employ the design technique of Chapter 5 to address the manager design of the illustra-

tive example. Firstly, we model its reconfiguration behavior in terms of parallel automata.

The existing BZR tool is then used to perform the DCS and generate the manager auto-

matically.

Modeling Reconfiguration Behavior by Automata

Application Reconfiguration. The application reconfiguration comes from the two recon-

figurable tasks B and C. The reconfiguration of task B depends on the input data, which

is uncontrollable. The reconfiguration of task C is decided by the manager, and thus is

controllable. Figure 6.14 shows their automata models. For task B, when dt is true, which

represents that the incoming data is of some type, mode b2 is used. Otherwise, mode b1 is

used. For task C, a controllable variable c md is used to guard the transition between its

two modes.

a)

b2b1
dt

dt

not dt b)

c2c1
c_md

not c_md

c_md

Figure 6.14: Reconfiguration models a) and b) for tasks B and C, respectively.

Platform Reconfiguration. The two PEs p1 and p2 can switch between their two fre-

quencies, which is under the control of the manager. Figure 6.15 shows their automata

models. Controllable variables c up1 and c up2 are used to guard the switches. States

hf pi and lf pi, i = 1, 2 represent that the corresponding PE pi is using respectively the

high frequency and low frequency value.

Regarding the battery, we suppose a sensor is used to detect its battery state by emitting

down and up signals. We thus model the battery behavior by Figure 6.16.
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a)

lf_p1hf_p1
c_up1

not c_up1

c_up1 b)

lf_p2hf_p2
c_up2

not c_up2

c_up2

Figure 6.15: Reconfiguration models of PE p1 and p2.

LH
down down

up

up

Figure 6.16: The battery model.

Mapping Reconfiguration. The mapping of tasks A and D is fixed, and thus does not

introduce reconfiguration. Tasks B and C can be mapped onto the two PEs, and can

migrate from one to the other. The migration decision, i.e., whether to migrate, is decided

by the manager at run-time. Figure 6.17 gives the mapping behavior models of tasks B and

C. Take Figure 6.17 a), the mapping behavior of task B, as an example. Initially, B is not

mapped, i.e., in state idle denoted by I. Once it is requested, denoted by rb, the controller

decides which PE to run it, denoted by states B/p1 and B/p2, by using controllable variable

c. At the next reconfiguration point, e.g., after the execution of some iterations, when B

is in state B/p1 or B/p2 and requested again (denoted by rb), the manager should decide

whether to migrate it by using controllable variable c. In the model, B migrates if c is false.

The mapping behavior of task C is modeled similarly as in Figure 6.17 b).

a)

B/p2B/p1

rb, c

rb & not c

rb & not c

Irb
& c

rb &
not c

b)

C/p2C/p1

rc, c

rc & not c

rc & not c

Irc
& c

rc &
not c

Figure 6.17: Mapping models of tasks B and C.

Modeling of Adaptation Policy. The adaptation policy then needs to be modeled in

terms of the states and transitions of the above defined autamata. In the automata models

of this section, we did not show their Boolean output variables representing their states

for simplicity. In the following, we use the notations labeled on the states as the Boolean

output variables to represent whether the states are active. For instance, in Figure 6.14 a),

Boolean variable b1 represents that state b1 is active if variable b1 is true.

1. Application aspect:

❼ states b2 and c1 cannot be active in the same iteration: ¬(b2
∧

c1).



108
Chapter 6. Combining Configuration and Reconfiguration Designs for

Adaptive MPSoCs

❼ task C should stay in state c1 if possible: this is captured by the way of encoding

the transition guard with controllable variable c md of Figure 6.14 b). This is

because that the manager computed by BZR would evaluate the controllable

variable c md to true, when both true and false values are allowed for c md (as

described in Section 3.4 of Chapter 3). In this way, when task C is in state c1,

it would stay in state c1 if both states c1 and c2 are allowed, while when it is in

state c2, it would go to state c1 even if staying state c2 is also allowed.

2. Platform aspect:

❼ the two PEs cannot use their high frequency values at the same time when the

battery level is low: ¬(hf p1
∧

hf p2
∧

L).

❼ the user always expects the best performance, i.e., two PEs use high frequency

values if possible: similar to the reconfiguration behavior model of task C in

Figure 6.14 b), this is captured by the way of encoding the guards with the

controllable variables c up1 and c up2 of Figure 6.15.

3. Mapping aspect:

❼ tasks B and C cannot be mapped onto the same PE for efficiency:

¬(B/p1
∧

C/p1)
∧

¬(B/p2
∧

C/p2).

❼ when C is in mode/state c2, it must be mapped onto a PE running at its high

frequency value: (c2
∧

C/p1
∧

hf p1)
∨

(c2
∧

C/p2
∧

hf p2).

❼ tasks B and C should not migrate to avoid migration costs if possible: this is

captured by the transition guards with controllable variable c between the two

mapped states B/p1 and B/p2 (respectively states C/p1 and C/p2) of Figure

6.17, similar to Figure 6.14 b). The generated manager by BZR evaluates true

to variable c if both true and false values are allowed.

BZR Encoding and Controller Generation

Given the automata models of Section 6.3.2, they can be easily programmed in BZR, as

shown in Section 3.4 of Chapter 3. We do not give the code here. The BZR compiler is then

able to generate a manager automatically. As CLASSY is developed in Java, we choose

Java as the target code for the generated manager. In the next section, the manager will

be combined with CLASSY for simulation and analysis.

6.3.3 Simulation and Analysis of the Designed Manager by using
CLASSY

This section shows how a designed manager can be integrated into the CLASSY framework

for simulation and analysis. We firstly adapt the scheduling algorithm proposed in Chapter 4

to better address the scheduling of adaptive embedded systems. Then, we use the illustrative

example and the generated manager by BZR to illustrative how it works.

As presented in Algorithm 1 in Section 4.4.3 of Chapter 4, CLASSY schedules an (adap-

tive) system in an iteration-based way. It interacts with the reconfiguration manager and

applies possible reconfiguration decisions before the scheduling of each iteration. Moreover,

Algorithm 1 distinguishes an application controller C(BT ) and a platform controller C(BP )

dedicated to the application and platform reconfiguration management respectively. It does

not take into account mapping reconfiguration or task migration behavior. In the following,

we improve Algorithm 1 by
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❼ integrating a single run-time manager which manages the reconfiguration behaviors

concerning all the three aspects (i.e., application, platform and mapping) of the con-

sidered adaptive system, and

❼ allowing the user to define a reconfiguration checking interval in terms of the number

of iterations, which represents the frequency that the scheduler interacts with the

reconfiguration manager and applies reconfiguration actions if demanded.

Algorithm 4 shows the principle of the improved scheduling algorithm. An input variable

reconfigInterval, allowing the user to define the reconfiguration checking interval, and a

local variable scheduledIteratinNum, representing the number of iterations that has been

scheduled, are defined. ω represents the number of iterations to be scheduled, as defined

in Algorithm 1. M represents the run-time manager responsible for managing the system

reconfiguration behavior.

Algorithm 4 An Improved Scheduler

1: scheduledIterationNum = 0;

2: while true do

3: M.collectInformation();

4: M.computeNewConfiguration();

5: if reconfiguration happens then

6: add reconfiguration costs accordingly;

7: end if

8: if scheduledIterationNum+reconfigInterval>ω then

9: schedule (ω-scheduledIterationNum) iterations based on the current configuration;

10: break;

11: else

12: schedule reconfigInterval iterations based on the current configuration;

13: end if

14: scheduledIterationNum = scheduledIterationNum + reconfigInterval;

15: end while

At each reconfiguration checking point, the manager M firstly collects relevant infor-

mation from the run-time situations, denoted by function collectInformation(), and com-

putes a new configuration accordingly, denoted by computeNewConfiguration(), as shown

in Lines 3 and 4. Line 5 checks if some reconfiguration happens, i.e., the new computed

configuration is different from the previous one. If it does, the corresponding time and

energy costs of the reconfiguration actions would be added accordingly. From Line 8 to

Line 13, a number of iterations is scheduled based on the current system configuration

as does in Algorithm 1. Line 8 checks if the remaining number of iterations is less than

reconfigInterval. If it is, the rest iterations would be scheduled and the scheduler finishes

its scheduling. Otherwise, reconfigInterval iterations are scheduled, and the scheduler

reaches the next reconfiguration checking point. Line 14 updates the scheduled number of

iterations.

Next, we use this algorithm to simulate the illustrative example, whose reconfiguration

is controlled by the manager generated by BZR. In the example system, the factors that

affect its reconfiguration behavior are the input data type dt, the battery level indicating

signals up and down, and the requests rb and rc of tasks B and C. The BZR generated

manager in Section 6.3.2 has a step function, which takes the inputs dt, down, up, rb, rc and

computes the outputs indicating the new configuration. The outputs are: boolean variables

b1, c1 for indicating the modes of tasks B and C, hf p1, hf p2 for indicating the frequency
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values of PEs p1 and p2, and tBonP1, tBonP2, tConP1, tConP2 for indicating the mapping

configurations of tasks B and C. To integrate the BZR manager, we replace the Line 3

and Line 4 of Algorithm 4 with the step function of the manager. The outputs are then

interpreted to set the new configuration for the following scheduling.

Figure 6.18: The first simulation scenario of CLASSY combined with BZR generated con-

troller.

Figure 6.19: The second simulation scenario of CLASSY combined with BZR generated

controller.

Figures 6.18 and 6.19 give two CLASSY simulation scenarios shown by GTKWave,

with 20 iterations are scheduled and 4 iterations as the reconfiguration checking interval.

Waves −a,−b,−c,−d represent respectively the executions of tasks A, B, C and D on their

corresponding mapped PEs, while waves p1, p2 represents respectively the usages of PEs p1
and p2, with up means being executing, and down means being idle.

PEs A b1 b2 c1 c2 D

p1 1 2 4 2 4 -

p2 - 2 4 2 4 1

Table 6.2: The input time costs in terms of PE cycles of tasks on PEs.

Table 6.2 gives the input time costs of the tasks on the PEs. The costs of task A on p2
and task D on p1 are not given, as they are not allowed to be mapped on the corresponding

PEs. The communication costs and reconfiguration costs are all set to 0. Random functions

are used to evaluate values to the inputs dt, down and up. The requests rb and rc are set

to true at each reconfiguration checking point.

The arrows and dotted arrows in Figures 6.18 and 6.19 indicate, during the executions

of the four tasks, the checking points where the scheduler interacts with the manager.

The arrows indicate the points that the system is demanded to reconfigure, while dotted

arrows indicate the points that the system is demanded to keep the current configuration.

Both scenarios have five reconfiguration checking points, say reconfiguration 0 to 4. Table

6.3 shows the inputs and computed configurations of the manager at each reconfiguration

checking point of Figure 6.18. The manager computes the next system configuration based

on the inputs and the current configuration. For instance, at reconfiguration point 1, the

system configuration is computed based on the inputs at reconfiguration point 1 and the

system configuration at reconfiguration point 0.
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Reconfig. inputs (dt, down, up) system configurations

0 (false, false, true) (A/p1(30), b1/p2(60), c1/p1(30), D/p2(60))

1 (true, false, true) (A/p1(30), b2/p2(60), c2/p1(30), D/p2(60))

2 (true, true, false) (A/p1(20), b2/p2(60), c2/p1(20), D/p2(60))

3 (true, false, true) (A/p1(30), b2/p2(60), c2/p1(30), D/p2(60))

4 (false, false, true) (A/p1(30), b1/p2(60), c1/p1(30), D/p2(60))

Table 6.3: The inputs and computed system configurations at each reconfiguration checking

point.

6.4 Summary and Discussion

This chapter presented two ways of combining the proposed design frameworks in Chapters

4 and 5 for adaptive MPSoCs. Firstly, it combined the two design frameworks to construct

a design flow for adaptive MPSoCs. The design flow starts from the MARTE high level

system modeling, and then employs the two proposed design frameworks to respectively

tackle the two design issues, i.e., the design of each system configuration and the derivation

of a reconfiguration controller. At last, the design results are integrated into the original

modeling framework, and existing tools such as Gaspard2 can be used to generate low level

codes for further analysis and implementation.

There exist many high level approaches to deal with the two design issues of adap-

tive MPSoCs. Some approaches focus on a single design aspect, e.g., [Stuijk et al. 2010]

[Abdallah et al. 2012] for the design of a configuration or scenario, and [Smit et al. 2005]

[Ghaffari et al. 2007] for the run-time reconfiguration management. These approaches need

to be combined with each other to form complete design flows for adaptive MPSoCs.

Other approaches also address the two design issues of adaptive MPSoCs together, e.g.,

[Schor et al. 2012] [Schranzhofer et al. 2010] [Singh et al. 2011]. However, they usually fo-

cus on the management of one or two adaptive aspects i.e., mapping and/or platform re-

configuration management, and consider manual encoding of the run-time managers. Our

combined approach advocates correct-by-construction, and can deal with the management

of all the three adaptive aspects. The combined design flow bears the same limitations of

each design framework, e.g., the ability to capture cyclic task graphs for the design of one

configuration, and the scalability for the manager derivation. In addition, to combine the

two design frameworks, manual encoding is required to connect the results of one framework

to the other, which is tedious, and requires the users to know both frameworks well.

Secondly, it presented how the CLASSY framework of Chapter 4 could serve as a high

level simulator and assist the designers to design and evaluate run-time managers. The

discrete control technique has been considered to design such a manager, which is integrated

into the CLASSY simulation process for analysis and evaluation.

Most frameworks that deal with he design of adaptive systems e.g., [Erbas et al. 2007]

[Balarin et al. 2003] [Stuijk et al. 2011] do not (explicitly) separate the specification and

design of the reconfiguration manager from that of the uncontrolled system behavior. The

work that also employs its design framework as a simulator for analyzing and evaluating

different run-time managers is proposed in [Sigdel et al. 2012]. However, it focuses on the

management of the run-time mapping reconfiguration, and does not take into account the

management issue of application and platform reconfigurations. Although we have used

DCS to design a manager to perform integrated simulation in CLASSY, any customized

manager can be integrated in the framework. In addition to the limitations of the CLASSY

framework, the designers currently have to encode customized managers in Java and inte-

grate them in CLASSY manually.
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The two combination means presented in this chapter provide interesting supports for

different design aspects of adaptive MPSoCs. However, manual encoding has been used to

connect the results of one framework to the other. A dedicated tool allowing the extractions

of useful information from the results of one framework to the inputs of the other framework

would be favorable. E.g., a tool can take the Pareto-optimal mapping results of the CLASSY

framework, and build the corresponding reconfiguration automata taking into account the

results for the framework of Chapter 5 to perform the reconfiguration manager design.
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7.1 Conclusion

The work presented in the thesis deals with the safe design of adaptive MPSoCs. Their

design is becoming increasingly complex and challenging, because of more and more func-

tionality integrated into embedded systems, the employment of the MPSoC platforms, their

adaptivity feature, etc. At the same time, the designers also face strict time-to-market pres-

sures. To manage the increasing design complexity and time-to-market pressures, raising

the levels of abstraction and using abstract models for early design analysis, evaluation and

validation are becoming a common practice. We advocate cost-effective and safe design

methodologies based on high level formal models for adaptive MPSoCs. We believe that

such approaches can assist the designers to make the design of adaptive MPSoCs more

efficient, and at the same time, bring confidence in the reliability of their design.

We have identified two main design issues for the safe design of an adaptive MPSoC as

follows.

❼ Firstly, design correctness must be addressed to ensure system reliability in every

possible system configuration, referred as the design of a configuration of an adaptive

MPSoC issue. This requires that the proper resource allocation and mapping (i.e.,

the binding and scheduling of application tasks on the allocated resources) decisions

must be made for each system application scenario or configuration w.r.t. system

functional and non-functional requirements.

❼ Secondly, reconfiguration correctness must also be established to safely control the

variation between system configurations, referred as the reconfiguration management

issue. This requires a run-time manager that controls and coordinates the system

reconfiguration behavior in reaction to system run-time situations according to system

requirements.

The thesis firstly dealt with these two design issues separately in Chapter 4 and Chapter

5 respectively.

❼ Chapter 4 proposed a high-level framework named CLASSY for the rapid and cost-

effective design of (adaptive) applications on MPSoCs. A multi-clock modeling of

both software and hardware has been considered by exploiting the notion of abstract

clocks borrowed from synchronous data-flow languages. Our approach enriches the

vision of the application of the synchronous model [Benveniste et al. 2003] by encoding
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the quantitative time via abstract clocks. The resulting model provides a uniform

support for design assessment w.r.t. quantitative properties. Our approach is an ideal

complement to lower-level design assessment techniques for MPSoCs, such as physical

prototyping and simulation. It also aims to serve as an intermediate reasoning support

that is usable, from very high-level MPSoC models (e.g., in UML MARTE profile), to

deal with critical design decisions. The framework can be used to deal with the first

design issue, i.e., the design of a configuration of adaptive MPSoCs. Furthermore,

it is also flexible enough to capture the adaptive behaviors of MPSoCs, and can be

used as a high level simulator for adaptive MPSoCs to evaluate customized run-time

managers.

The static analysis of data-flow application designs with predictable behaviors, has

mainly based on data-flow models, such as Kahn Process Networks (KPNs) and

Synchronous Data-Flows (SDFs). KPNs are expressive enough to capture dynamic

application behaviors, but the expressiveness power also makes it difficult to pre-

dict their precise behaviors over time. Existing techniques based on KPNs, such

as [Sigdel 2011], [Erbas et al. 2007], [Schor et al. 2012] usually employ simple run-

time scheduling strategies e.g., first come first served algorithms, and do not in-

vestigate the design of scheduling algorithms. In our framework, we have studied

the requirements for admissible scheduling requirements, and proposed a correct by

construction scheduling algorithm. The relative simple and static nature of SDFs

makes it possible to develop design-time analysis techniques (e.g., [Stuijk et al. 2008]

[Ghamarian et al. 2006]), as well as efficient scheduling strategies (e.g.,[Stuijk 2007])

[Stuijk et al. 2011]. However, SDFs are not expressive enough to capture dynamic

application behaviors. Abstracting away the system dynamic behavior by using

SDFs would overestimate resource requirements [Stuijk et al. 2010]. The Scenario-

Aware Dataflow (SADF) MoC has thus been employed (e.g., [Stuijk et al. 2010],

[Stuijk et al. 2011] to combine a finite state machine-like structure with SDFs to deal

with the modeling and analysis of adaptive applications. Compared to these SDF

and SADF based approaches, they do not investigate the impact of potential delay

between processor cycles on scheduling. The major limitation of our approach is

the supported application models: applications described as cyclic component graphs

are not currently addressed. In addition, the storage distribution computed by our

design space exploration framework for each application mapping solution is not op-

timal. Third, the manual transformation from MARTE described application and

platform specifications to our reasoning framework is tedious, and can become very

complex and error-prone if the problem becomes big. An automatic transformation

has not been developed.

❼ Chapter 5 presented a general framework, based on a tool-supported synchronous vari-

ant [Marchand & Samaan 2000] of the discrete control [Ramadge & Wonham 1989],

for the autonomic management of adaptive MPSoCs. It favors automatic and correct-

by-construction manager derivation. We have focused on adaptive MPSoCs imple-

mented on reconfigurable architectures especially DPR FPGAs, which can draw vari-

ous benefits such as efficiency and flexibility. Such architectures constitute a platform

for adaptive computing that is gaining widespread use. In the framework, the system

reconfiguration behavior is modeled in terms of synchronous parallel automata. The

reconfiguration management computation problem w.r.t. multiple objectives regard-

ing e.g., resource usages, performance and power consumption is encoded as a discrete

controller synthesis (DCS) problem. The existing BZR programming language and

Sigali tool are employed to perform DCS and generate a controller that satisfies the
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system requirements. We have performed extensive experiments to evaluate the scal-

ability of our approaches, and presented an experimental validation of our proposal

by implementing a real-life video processing system on a Xilinx FPGA platform.

Compared to other existing techniques for self-management of adaptive systems, e.g.,

heuristics and machine learning techniques, the main advantage of control techniques

is that they are able to provide formal correctness and/or performance guarantees.

The authors in [Maggio et al. 2012] discuss some existing approaches applying stan-

dard control techniques such as Proportional Integral and Derivative controllers or

Petri nets. However, discrete control has only been seldom applied [Guillet et al. 2012],

and to the best of our knowledge, only few works have targeted at computing systems

on reconfigurable architectures. One of the first implementations of a FPGA-based

self-aware adaptive system is proposed in [Sironi et al. 2010]. It adopts the application

heartbeats as its monitoring framework, and a heuristic mechanism to switch between

configurations. Self-management in the form of self-healing exploiting FPGAs is pro-

posed in [Jovanović et al. 2008]. However, the approach does not involve control.

Another architectural proposal in [Majer et al. 2007] provides a slot-based organisa-

tion of the reconfigurable hardware and an elaborate communication framework with

good reconfiguration support. The focus is, however, on infrastructure aspects rather

than on control. Our approach is closer to that in [Eustache & Diguet 2008], but

we focus on logical aspects and discrete control. In [Quadri et al. 2010b], a design

flow, from high level models to automatic code generation, for the implementation

of reconfigurable FPGA based SoCs is proposed. The system control aspects need

to be modeled manually and integrated into the flow, while we advocate automatic

controller synthesis. Compared to [Guillet et al. 2012], we have applied more elabo-

rate DCS algorithms, and the integration into a design flow and compilation chain is

more developed. The major concern of our approach is the scalability issue, which

is common to other formal techniques like model checking. Besides, our models did

not take into account some other interesting aspects, such as communication. Third,

the automatic transformation from the MARTE described system specification to the

automata models employed in our framework, though seeming direct, has not been

developed.

At last, we investigated the possible ways of combining the two proposed design frame-

works for adaptive MPSoCs in Chapter 6. The following two ways of combinations have

been presented.

❼ First, they were combined to construct a complete design flow for adaptive MPSoCs.

The design flow starts from the MARTE high level system modeling, and then em-

ploys the two proposed design frameworks to respectively tackle the two design issues.

At last, the design results are integrated into the original MARTE modeling frame-

work, with which existing tools such as Gaspard2 [Gamatié et al. 2011] can be used

to generate low level codes for further analysis and implementation.

There exist many high level approaches to deal with the two design issues of adaptive

MPSoCs. Some approaches focus on a single design aspect, e.g., [Stuijk et al. 2010]

[Abdallah et al. 2012] for the design of a configuration/scenario, and [Smit et al. 2005]

[Ghaffari et al. 2007] for the run-time reconfiguration management. These approaches

need to be combined with each other to form complete design flows for adaptive MP-

SoCs. Other approaches also address the two design issues of adaptive MPSoCs

together, e.g., [Schor et al. 2012] [Schranzhofer et al. 2010] [Singh et al. 2011]. How-

ever, they usually focus on the management of one or two adaptive aspects i.e., map-

ping and/or platform reconfiguration management, and consider manual encoding of
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the run-time managers. Our combined approach advocates correct-by-construction,

and can deal with the management of all the three adaptive aspects. The combined

design flow bears the same limitations of each design framework, e.g., the ability to

capture cyclic task graphs for the design of one configuration, and the scalability for

the manager derivation. In addition, to combine the two design frameworks, manual

encoding is required to connect the results of one framework to the other, which is

tedious, and requires the users to know both frameworks well.

❼ Second, they were combined to present how the CLASSY framework could serve

as a high level modular simulator and assist the designers to design and evaluate

run-time managers. To do this, the second framework based on the discrete control

technique is used for designing a run-time manager, which is integrated into the

CLASSY simulation process for analysis and evaluation.

Most frameworks that deal with he design of adaptive systemts e.g., [Erbas et al. 2007]

[Balarin et al. 2003] [Stuijk et al. 2011] do not (explicitly) separate the specification and

design of the reconfiguration manager from the uncontrolled system behavior. The work

proposed in [Sigdel et al. 2012] also employs their design framework as a simulator for ana-

lyzing and evaluating different run-time managers. However, it focuses on the management

of the run-time mapping reconfiguration, and does not take into account the management

issue of application and platform reconfigurations. Although we have used DCS to design

a manager to perform integrated simulation in CLASSY, any customized manager can be

integrated in the framework. In addition to the limitations of the CLASSY framework,

the designers currently have to encode customized managers in Java and integrate them in

CLASSY manually.

7.2 Perspectives

The two design frameworks and their combinations presented in the thesis offer some in-

teresting supports for the design of adaptive MPSoCs. However, in order to increase their

applicability, some issues need to be researched further.

❼ W.r.t. the CLASSY framework of Chapter 4 for the design of a configuration of an

adaptive MPSoC:

– CLASSY currently does not support the modeling of applications described as

cyclic component graphs. One possible solution to deal with this is to introduce

a memory operator in our modeling framework for applications.

– The storage distribution computed by CLASSY for each application mapping

solution is not optimal. A research direction is to combine our framework with

the SDF 3 toolset [Stuijk et al. 2006a] to address this issue.

– The autonomic transformation from MARTE described application and platform

specifications to our reasoning framework has not been developed. A manual

transformation is tedious, and can become very complex and error-prone if the

problem becomes big. Some inspirations from [Abdallah 2011] will be taken to

deal with it.

❼ W.r.t. the discrete control based design framework of Chapter 5 for the reconfiguration

manager design:
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– Its major concern is the scalability issue. An interesting means is to exploit

the modular synthesis and compilation [Delaval et al. 2010], which allows the

users to decompose big problems in a way that breaks down the combinatorial

complexity. It is also interesting for specification and model structuring purposes.

– The automatic transformation from the MARTE described system specification

to the automata in our framework has not been developed. Inspirations from

[Guillet 2012] will be taken to deal with this.

– Another perspective is to enrich our models by taking into account other realistic

aspects, such as communication and memory access costs.

– We are also interested in applying our framework to the control of other real-life

embedded systems, such as some video monitoring systems, which monitor the

presences and movements of objects and perform corresponding reconfigurations.

❼ W.r.t. the combination of the two design frameworks: the two combinations have

involved manual encoding to connect the results of one framework to the other. A

dedicated tool allowing the extractions of useful information from the results of one

framework to the inputs of the other framework would be favorable. E.g., a tool

can take the Pareto-optimal mapping results of the CLASSY framework, and build

the corresponding reconfiguration automata taking into account the results for the

framework of Chapter 5 to perform the reconfiguration manager design.
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[André 1996] Charles André. Representation and Analysis of Reactive Behaviors: A Syn-

chronous Approach. In Computational Engineering in Systems Applications, CESA,

pages 19–29, 1996. (Cited on page 31.)

[Artieri et al. 2003] A. Artieri, V. D’Alto, R. Chesson, M. Hopkins and M. C. Rossi.

Nomadik-Open Multimedia Platform for Next Generation Mobile Devices. Rapport

technique TA305, STMicroelectronics, 2003. (Cited on pages 1 and 11.)

[Auer et al. 2009] A. Auer, J. Dingel and K. Rudie. Concurrency control generation for

dynamic threads using Discrete-Event Systems. In Communication, Control, and

Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on, pages 927–

934, 2009. (Cited on page 38.)

[Bailey & Martin 2010] Brian Bailey and Grant Martin. Esl models and their application:

Electronic system level design and verification in practice. Springer Publishing Com-

pany, Incorporated, 2010. (Cited on page 18.)

[Balarin et al. 2003] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone and

A. Sangiovanni-Vincentelli. Metropolis: an integrated electronic system design en-

vironment. Computer, vol. 36, no. 4, pages 45–52, 2003. (Cited on pages 18, 111

and 116.)

[Benveniste et al. 2003] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guer-

nic and R. de Simone. The synchronous languages 12 years later. Proceedings of the

IEEE, vol. 91, no. 1, pages 64 – 83, jan 2003. (Cited on pages 19, 27, 67 and 113.)

[Bjerregaard & Mahadevan 2006] Tobias Bjerregaard and Shankar Mahadevan. A survey

of research and practices of Network-on-chip. ACM Comput. Surv., vol. 38, no. 1,

Juin 2006. (Cited on page 12.)

[Blakowski & Steinmetz 1996] Gerold Blakowski and Ralf Steinmetz. A media synchro-

nization survey: reference model, specification and case studies. IEEE journal on

selected area in communications, 1996. (Cited on page 97.)

[Borkar et al. 2005] S. Y. Borkar, P. Dubey, K. C. Kahn, D. J. Kuck, H. Mul-

der, S. S. Pawlowski and J. R. Rattner. Platform 2015: Intel proces-

sor and platform evolution for the next decade. Rapport technique, Intel,

2005. http://epic.hpi.uni-potsdam.de/pub/Home/TrendsAndConceptsII2010/

HW_Trends_borkar_2015.pdf. (Cited on page 1.)

http://hal.inria.fr/inria-00280941
http://hal.inria.fr/inria-00280941
 http://epic.hpi.uni- potsdam.de/pub/Home/ TrendsAndConceptsII2010/HW_Trends_borkar_2015.pdf
 http://epic.hpi.uni- potsdam.de/pub/Home/ TrendsAndConceptsII2010/HW_Trends_borkar_2015.pdf


Bibliography 123

[Bouhadiba et al. 2011] Tayeb Bouhadiba, Quentin Sabah, Gwenaël Delaval and Eric Rut-

ten. Synchronous control of reconfiguration in fractal component-based systems: a

case study. In Proceedings of the ninth ACM international conference on Embedded

software, EMSOFT ’11, pages 309–318, 2011. (Cited on page 38.)

[Boukhechem 2008] S. Boukhechem. Contribution à la mise en place d’une plateforme open-
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A case study on controller synthesis for data-intensive embedded systems. In Proc.

6th IEEE Int. Conf. on Embedded Software and Systems, ICESS’09, pages 75–82,

2009. (Cited on page 38.)



Bibliography 125
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