

ONER

Décomposition « champ lointain » du couple d'un rotor d'hélicoptère en vol stationnaire

Simon VERLEY 19 décembre 2012

Soutenance en vue de l'obtention du grade de docteur de l'université

d'Orléans

Définition du couple

Définition

Le couple rotor est le couple qui s'oppose à la rotation du corps en mouvement

L'approche « champ proche »

- Méthode directe : intégration sur l'interface corps/fluide
 - utilisation de grandeure géométrique (normale à la paroi)
 - utilisation de grandeure accessible depuis la simulation (pression, tenseur de cisaillement)
- Décomposition mécanique :
 - traînée/couple de pression (efforts normaux)
 - traînée/couple de frottement ≠ traînée/couple visqueux (efforts tangents)
- Souvent comparable assement aux essais en souffierte

L'approche « champ proche »

- Méthode directe : intégration sur l'interface corps/fluide
 - utilisation de grandeure géométrique (normale à la paroi)
 - utilisation de grandeure accessible depuis la simulation (pression, tenseur de cisaillement)
- Décomposition mécanique :
 - traînée/couple de pression (efforts normaux)
 - traînée/couple de frottement \neq traînée/couple visqueux (efforts tangents)

L'approche « champ proche »

- Méthode directe : intégration sur l'interface corps/fluide
 - utilisation de grandeure géométrique (normale à la paroi)
 - utilisation de grandeure accessible depuis la simulation (pression, tenseur de cisaillement)
- Décomposition mécanique :
 - traînée/couple de pression (efforts normaux)
 - traînée/couple de frottement \neq traînée/couple visqueux (efforts tangents)
- Souvent comparable aisément aux essais en soufflerie

Couple « champ proche »

Définition

Le couple obtenu par une décomposition mécanique est appelé **couple « champ proche »**. Il mesure **« l'effet du fluide sur le corps »**.

 $C = C_p + C_f$

O C_p, le couple de pression produit par la pression autour du corps :

C_f, le couple de frottement produit par les contraintes visqueuses à la paroi :

. Rotation positive selon l'axe (O**, **ž**)

Couple « champ proche »

Définition

Le couple obtenu par une décomposition mécanique est appelé **couple « champ proche »**. Il mesure **« l'effet du fluide sur le corps »**.

 $C = C_p + C_f$

O C_p, le couple de pression produit par la pression autour du corps :

O C_f, le couple de frottement produit par les contraintes visqueuses à la paroi :

**. Rotation positive selon l'axe (O, ž)

• Méthode indirecte : analyse du champ aérodynamique

- construction de grandeures a posteriori
- utilisation de la connaissance de l'ensemble du champ aérodynamique
- traînée/couple de choc ou traînée d'onde
- traînée/couple visqueuse
- traînée/couple induite (par la portance)
- Basée sur des bilans de volume fluide
 - définition de volume de contrôle
 - utilisation de critères physiques pour l'attribution phénomènologique
 - introduction d'une part de subjectivité dans le cas de conflit entre critères
- Rarement comparable aux essais en soufflerie

- Méthode indirecte : analyse du champ aérodynamique
 - construction de grandeures a posteriori
 - utilisation de la connaissance de l'ensemble du champ aérodynamique
- Décomposition phénoménologique :
 - traînée/couple de choc ou traînée d'onde
 - traînée/couple visqueuse
 - traînée/couple induite (par la portance)
- Basée sur des bilans de volume fluide
 - définition de volume de contrôle
 - utilisation de critères physiques pour l'attribution phénomènologique
 - introduction d'une part de subjectivité dans le cas de conflit entre critères.
- Rarement comparable aux essais en soufflerie

- Méthode indirecte : analyse du champ aérodynamique
 - construction de grandeures a posteriori
 - utilisation de la connaissance de l'ensemble du champ aérodynamique
- Décomposition phénoménologique :
 - traînée/couple de choc ou traînée d'onde
 - traînée/couple visqueuse
 - traînée/couple induite (par la portance)
- Basée sur des bilans de volume fluide
 - définition de volume de contrôle
 - utilisation de critères physiques pour l'attribution phénomènologique
 - introduction d'une part de subjectivité dans le cas de conflit entre critères
- Rarement comparable aux essais en soufflerie

- Méthode indirecte : analyse du champ aérodynamique
 - construction de grandeures a posteriori
 - utilisation de la connaissance de l'ensemble du champ aérodynamique
- Décomposition phénoménologique :
 - traînée/couple de choc ou traînée d'onde
 - traînée/couple visqueuse
 - traînée/couple induite (par la portance)
- Basée sur des bilans de volume fluide
 - définition de volume de contrôle
 - utilisation de critères physiques pour l'attribution phénomènologique
 - introduction d'une part de subjectivité dans le cas de conflit entre critères
- Rarement comparable aux essais en soufflerie

Définition

Le couple obtenu par une décomposition physique est couramment appelé **couple « champ lointain »**. Il peut être vu comme **« l'effet du corps sur le fluide »**.

$$C = C_w + C_v + C_i$$

- C_w, le couple d'onde produit par les ondes de choc
- Q C_v, le couple visqueux due à la viscosité du fluide;
- C_i, le couple induit crée par la génération d'une portance (nappes tourbillonnaires).

Définition

Le couple obtenu par une décomposition physique est couramment appelé **couple « champ lointain »**. Il peut être vu comme **« l'effet du corps sur le fluide »**.

$$C = C_w + C_v + C_i$$

- C_w, le couple d'onde produit par les ondes de choc
- O_v, le couple visqueux due à la viscosité du fluide;
- C_i, le couple induit crée par la génération d'une portance (nappes tourbillonnaires).

Définition

Le couple obtenu par une décomposition physique est couramment appelé **couple « champ lointain »**. Il peut être vu comme **« l'effet du corps sur le fluide »**.

$$C = C_w + C_v + C_i$$

- C_{w} , le couple d'onde produit par les ondes de choc;
- O_v, le couple visqueux due à la viscosité du fluide;
- C_i, le couple induit crée par la génération d'une portance (nappes tourbillonnaires).

Définition

Le couple obtenu par une décomposition physique est couramment appelé **couple « champ lointain »**. Il peut être vu comme **« l'effet du corps sur le fluide »**.

$$C = C_w + C_v + C_i$$

- C_w, le couple d'onde produit par les ondes de choc;
- **2** C_{v} , le **couple visqueux** due à la viscosité du fluide ;
- C_i, le couple induit crée par la génération d'une portance (nappes tourbillonnaires).

Définition

Le couple obtenu par une décomposition physique est couramment appelé **couple « champ lointain »**. Il peut être vu comme **« l'effet du corps sur le fluide »**.

$$C = C_w + C_v + C_i$$

- C_{W} , le couple d'onde produit par les ondes de choc;
- **2** C_{v} , le **couple visqueux** due à la viscosité du fluide ;
- C_i, le couple induit crée par la génération d'une portance (nappes tourbillonnaires).

Décomposition « champ lointain »

Décomposition schématique en « champ lointain »

Décomposition « champ lointain »

Décomposition schématique en « champ lointain »

Décomposition « champ lointain »

Décomposition schématique en « champ lointain »

Égalité « champ proche » / « champ lointain »

Principe d'action / réaction

L'action du fluide sur le corps est égale à l'action du corps sur le fluide

$$\underbrace{C_p + C_f}_{} = \underbrace{C_w + C_v + C_i}_{}$$

champ proche

champ lointain

Plan de la présentation

Théorie « champ lointain » Cas d'un avion Extraction du couple rotor Décomposition

Application sur un cas 3D Simulations réalisées Résultats « champ lointain » Analyse « champ proche »

Navier-Stokes stationnaire (masse, quantité de mouvement)

$$\iint_{S} \rho \vec{V} \cdot \vec{n} \, \mathrm{d}S = 0$$
$$\iint_{S} \left[-\rho \vec{V} \otimes \vec{V} - \rho \vec{I} + \vec{\tau} \right] \cdot \vec{n} \, \mathrm{d}S = \vec{0}$$

En appliquant ces bilans à une surface fluide quelconque enfermant le corps, S, on a :

Traînée totale

$$D = \oint_{S} \left[-\rho(u-u_{\infty})\vec{V} - (p-p_{\infty})\vec{x} + \vec{\tau}_{x} \right] .\vec{n} \, \mathrm{d}S$$

$$\iint_{S} \rho\left(\vec{V} - \vec{s}\right) . \vec{n} \, \mathrm{d}S = 0$$
$$\iint_{S} \left[-\rho \vec{V} \otimes (\vec{V} - \vec{s}) - \rho \overset{=}{\vec{l}} + \overset{=}{\vec{\tau}} \right] . \vec{n} \, \mathrm{d}S = \iiint_{\Omega} \vec{\omega} \wedge \rho \vec{V} \, \mathrm{d}\Omega$$

- o Introduction d'une vitesse d'entraînement de la grille **s**
- Introduction d'un terme source
- Utilisation de vitesses absolues exprimées dans le repère relatif

$$\iint_{S} \rho\left(\vec{V} - \vec{s}\right) . \vec{n} \, \mathrm{d}S = 0$$
$$\iint_{S} \left[-\rho \vec{V} \otimes (\vec{V} - \vec{s}) - \rho \vec{\bar{I}} + \vec{\bar{\tau}} \right] . \vec{n} \, \mathrm{d}S = \iiint_{\Omega} \vec{\omega} \wedge \rho \vec{V} \, \mathrm{d}\Omega$$

- Introduction d'une vitesse d'entraînement de la grille, 3
- Introduction d'un terme source
- Utilisation de vitesses absolues exprimées dans le repère relatif

$$\iint_{S} \rho\left(\vec{V} - \vec{s}\right) . \vec{n} \, \mathrm{d}S = 0$$
$$\iint_{S} \left[-\rho \vec{V} \otimes (\vec{V} - \vec{s}) - \rho \vec{\bar{l}} + \vec{\bar{\tau}} \right] . \vec{n} \, \mathrm{d}S = \iiint_{\Omega} \vec{\omega} \wedge \rho \vec{V} \, \mathrm{d}\Omega$$

- Introduction d'une vitesse d'entraînement de la grille, 3
- Introduction d'un terme source
- Utilisation de vitesses absolues exprimées dans le repère relatif

$$\iint_{S} \rho\left(\vec{V} - \vec{s}\right) . \vec{n} \, \mathrm{d}S = 0$$
$$\iint_{S} \left[-\rho \vec{V} \otimes (\vec{V} - \vec{s}) - \rho \vec{\bar{l}} + \vec{\bar{\tau}} \right] . \vec{n} \, \mathrm{d}S = \iiint_{\Omega} \vec{\omega} \wedge \rho \vec{V} \, \mathrm{d}\Omega$$

- Introduction d'une vitesse d'entraînement de la grille, 3
- Introduction d'un terme source
- Utilisation de vitesses absolues exprimées dans le repère relatif

En se placant dans le repère tournant et avec les hypothèses de volumes constants, V(t) = V, et d'écoulement permanent dans le repère tournant, $\frac{\partial}{\partial t}\Big|_{R'} = 0$ et $\vec{\omega}_{(R'/R)}(t) = \vec{\omega}$, l'équation du moment dynamique s'écrit :

$$\oint \int_{S_{fluide}} \overrightarrow{OM} \wedge \left[\left(\rho \, \vec{V} \otimes \left(\vec{V} - \vec{s} \right) + \rho \, \overline{\vec{I}} - \vec{\tau} \right) . \vec{n} \right] \mathrm{d}S = - \vec{\omega} \wedge \iiint_{V} \overrightarrow{OM} \wedge \rho \, \vec{V} \, \mathrm{d}V$$

Pour plus de lisibilité, on pose :

$$\stackrel{\Rightarrow}{f} =
ho \, \vec{V} \otimes \left(\vec{V} - \vec{s} \,
ight) +
ho \stackrel{=}{\vec{l}} - \stackrel{\Rightarrow}{\vec{\tau}}$$

The projection of this equation on the rotation axis (O, \vec{z}) gives :

$$\iint_{S} \overrightarrow{OM} \wedge (\overrightarrow{\vec{f}}.\vec{n}) \, \mathrm{d}S.\vec{z} = -\vec{\omega} \wedge \iiint_{V} \overrightarrow{OM} \wedge \rho \, \vec{V} \, \mathrm{d}V.\vec{z}$$

- $\vec{\omega}$ is necessarily aligned with the rotation axis (O, \vec{z}) : ⇒ The source term contribution is zero.
- pre-projecting along the "meaningful" direction \vec{e}_{θ} : $\Rightarrow \vec{\vec{f}}$ becomes $\vec{f} = -\rho u_{\theta}(\vec{V} - \vec{s}) - (\rho - \rho_{\infty})\vec{e}_{\theta} + \vec{\tau}_{\theta}$

The projection of this equation on the rotation axis (O, \vec{z}) gives :

$$\iint_{S} \overrightarrow{OM} \wedge (\overrightarrow{f}.\overrightarrow{n}) \, \mathrm{d}S.\overrightarrow{z} = -\overrightarrow{o} \wedge \iiint_{V} \overrightarrow{OAt} \wedge \overrightarrow{V} \, \mathrm{d}V.\overrightarrow{z}$$

- $\vec{\omega}$ is necessarily aligned with the rotation axis (O, \vec{z}) : \Rightarrow The source term contribution is zero.
- pre-projecting along the "meaningful" direction \vec{e}_{θ} : $\Rightarrow \vec{\vec{f}}$ becomes $\vec{f} = -\rho u_{\theta}(\vec{V} - \vec{s}) - (\rho - \rho_{\infty})\vec{e}_{\theta} + \vec{\tau}_{\theta}$

The projection of this equation on the rotation axis (O, \vec{z}) gives :

$$\iint_{S} \overrightarrow{OM} \wedge (\overrightarrow{f}.\overrightarrow{n}) \, \mathrm{d}S.\overrightarrow{z} = -\overrightarrow{o} \wedge \iiint_{V} \overrightarrow{OAt} \wedge \overrightarrow{V} \, \mathrm{d}V.\overrightarrow{z}$$

- $\vec{\omega}$ is necessarily aligned with the rotation axis (O, \vec{z}) : \Rightarrow The source term contribution is zero.
- pre-projecting along the "meaningful" direction \vec{e}_{θ} : $\Rightarrow \vec{f}$ becomes $\vec{f} = -\rho u_{\theta}(\vec{V} - \vec{s}) - (p - p_{\infty})\vec{e}_{\theta} + \vec{\tau}_{\theta}$

The projection of this equation on the rotation axis (O, \vec{z}) gives :

$$\iint_{S} \overrightarrow{OM} \wedge (\overrightarrow{f}.\overrightarrow{n}) \, \mathrm{d}S.\overrightarrow{z} = -\overrightarrow{o} \wedge \iiint_{V} \overrightarrow{OAt} \wedge \overrightarrow{V} \, \mathrm{d}V.\overrightarrow{z}$$

- $\vec{\omega}$ is necessarily aligned with the rotation axis (O, \vec{z}) : \Rightarrow The source term contribution is zero.
- pre-projecting along the "meaningful" direction \vec{e}_{θ} : $\Rightarrow \vec{f}$ becomes $\vec{f} = -\rho u_{\theta}(\vec{V} - \vec{s}) - (p - p_{\infty})\vec{e}_{\theta} + \vec{\tau}_{\theta}$

Nature thermodynamique

- Basée sur la répartition de von der Vooren : irréversibles onde de chocs, couches de cisaillement, effets de la discrétisation numérique réversibles nappes tourbillonnaires (effets induits)
- Quantification des pertes physiques irréversibles
- Puis quantification des pertes réversibles
- Enfin déductions des effets irréversibles artificiels

Numerical near-field/far-field balance

The torque, as the drag, being characteristic of the body, the following equality is necessarily obtained :

$$\underbrace{C_p + C_f}_{\text{Near field}} = \underbrace{C_w + C_v + C_i}_{\text{Far field}} + C_{sp}$$

with C_{sp} as spurious torque.

Bilans thermodynamiques

Les pertes irréversibles peuvent être quantifiées par :

Variation de la rothalpie

$$\Delta I = e + \frac{p}{\rho} + \frac{|\vec{V}|^2}{2} - \vec{V}.\vec{s} - I_{\infty}$$

Variation d'entropie

$$\Delta s == \frac{r}{\gamma - 1} \ln \left[\frac{p}{p_{\infty}} \left(\frac{\rho_{\infty}}{\rho} \right)^{\gamma} \right]$$

Décomposition « champ lointain » du couple d'un rotor d'hélicoptère en vol stationnaire

Vitesse fictive

• \bar{u} : vitesse qu'aurait l'écoulement s'il n'avait subit que des processus irréversibles

Déficit de vitesse fictif

$$\Delta \bar{u} = \sqrt{2\left[\Delta I - \frac{a_{\infty}^2}{\gamma - 1}(e^{\Delta s/c_{p}} - 1)\right] + |\vec{s}|^2} - |\vec{s}|$$

a div(f) = 0 permet d'écrire

$$\vec{f}_i^* = -\rho \left(u_\theta - \Delta \bar{u} \right) \left(\vec{V} - \vec{s} \right) - \left(p - p_\infty \right) \vec{e}_\theta$$

Décomposition « champ lointain » du couple d'un rotor d'hélicoptère en vol stationnaire

Vitesse fictive

• \bar{u} : vitesse qu'aurait l'écoulement s'il n'avait subit que des processus irréversibles

Déficit de vitesse fictif

$$\Delta \bar{u} = \sqrt{2\left[\Delta I - \frac{a_{\infty}^2}{\gamma - 1}(e^{\Delta s/c_{p}} - 1)\right] + |\vec{s}|^2} - |\vec{s}|$$

• $\operatorname{div}(\vec{f}) = 0$ permet d'écrire :

$$ec{f}_i^* = -
ho\left(u_ heta - \Delta ar{u}
ight)(ec{V} - ec{s}) - (p - p_\infty)ec{e}_ heta$$

Décomposition du couple

La définition judicieuse des frontières $\Sigma_w, \Sigma_v, \Sigma_i$ permet d'écrire :

Composantes du couple « champ lointain »

$$C_{w} = C_{choc} = - \oint_{\Sigma_{w}} r(M)(\vec{f}_{i}^{*}.\vec{n}) d\Sigma$$
$$C_{v} = C_{visqueux} = - \oint_{\Sigma_{v}} r(M)(\vec{f}_{i}^{*}.\vec{n}) d\Sigma + C_{p} + C_{p}$$
$$C_{i} = C_{induit} = \oint_{\Sigma_{i}} r(M)(\vec{f}_{i}^{*}.\vec{n}) d\Sigma$$

Présentation du cas

- 3D Computations
- Inviscid/Viscous fluid
- 3 multiblock grids :
 - Coarse : 0.14/0.25 Mpts
 - Medium : 1.2/2 Mpts
 - Fine : 9.2/16 Mpts
- Tip and root blade cap meshed
- Mach number :
 - 0.5 (subsonic)
 - 0.7 (weak transonic)
 - 0.8 (strong transonic)
- Pitch angle = 8°

Two types of computation

- Reference comparable to fixed wing case
- Phenomenon better understood
- Previous blade wake interaction pointed out

Three grid levels

- Grid sensivity study
- Better understanding of phenomena
- Numerical dissipation effects

Mach = 0.5 - Non visqueux

- Higher baseline torque level than isolated torque due to a higher induced torque
- Grid dependency of pressure torque in both cases
- Small and similar grid dependency of induced torque
- Baseline spurious torque less grid dependent

Décomposition « champ lointain » du couple d'un rotor d'hélicoptère en vol stationnaire

Mach = 0.5 - Visqueux

- Higher baseline torque level than isolated torque due to a higher induced torque
- Grid dependency of pressure torque in both cases
- Small and similar grid dependency of induced torque Décomposition « champ lointain » du couple d'un rotor d'hélicopt
- Baseline spurious torque less grid dependent

- ← Far-field ← Induced ← Wave
- Viscous Pres
- -+- Friction
- Proceur

Mach = 0.8 - Non visqueux

- Unexpected constant baseline pressure torque and grid dependency of baseline far-field torque
- Higher baseline induced torque (constant)
- Weaker and more grid dependent baseline wave torque
- Baseline far-field torque apparently more grid dependent

Décomposition « champ lointain » du couple d'un rotor d'hélicoptère en vol stationnaire

Mach = 0.8 - Visqueux

Mach = 0.8 - Non visqueux

Hovering rotor computation Isolated blade computation

- Strong effect of the wake on both lift and torque close to the blade tip (incoming tip vortex)
- Grid refinement modifies the tip vortex convection and preservation
- Medium grid already converged for isolated blade computation

Décomposition « champ lointain » du couple d'un rotor d'hélicoptère en vol stationnair

Mach = 0.8 - Non visqueux

Hovering rotor computation Isolated blade computation

- Strong effect of the wake on both lift and torque close to the blade tip (incoming tip vortex)
- Grid refinement modifies the tip vortex convection and preservation
- Medium grid already converged for isolated blade computation

Décomposition « champ lointain » du couple d'un rotor d'hélicoptère en vol stationnair

Tip vortex effects – Mach = 0,8 – Non visqueux

- Strong effect of incoming tip vortex on aerodynamic AoA
- Strong effect of AoA on the shock wave (tip vortex convection)
- Décomposition « champ lointain » du couple d'un rotor d'hélicoptère en vol stationnaire Small grid effect on pressure without incoming wake

Application sur un cas 3D - Analyse « champ proche »

Tip vortex effects – Mach = 0,8 – Non visqueux

- Strong effect of incoming tip vortex on aerodynamic AoA
- Strong effect of AoA on the shock wave (tip vortex convection)
- Small grid effect on the shock wave without incoming wake

Décomposition « champ lointain » du couple d'un rotor d'hélicoptère en vol stationnai

Conclusion

Conclusion et perspectives

Results

- Development of a new far-field formulation for rotor in hover derived from van der Vooren fixed wing formulation
- Implementation and validation of this new method
- Good results on a 3D inviscid and viscous application
- Improved understanding of phenomena for hovering rotor

Perspectives

- Extension to vertical rotor flight and propellers cruise conditions flight
- Application to rotor design and optimization

Conclusion

Conclusion et perspectives

Results

- Development of a new far-field formulation for rotor in hover derived from van der Vooren fixed wing formulation
- Implementation and validation of this new method
- Good results on a 3D inviscid and viscous application
- Improved understanding of phenomena for hovering rotor

Perspectives

- Extension to vertical rotor flight and propellers cruise conditions flight
- Application to rotor design and optimization