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Abstract

We study the approximate answers to OLAP queries on data warehouses. We consider
the relative answers to OLAP queries on a schema, as distributions with the L1

distance and approximate the answers without storing the entire data warehouse.
We first introduce three specific methods: the uniform sampling, the measure -based
sampling and the statistical model. We introduce also an edit distance between data
warehouses with edit operations adapted for data warehouses. Then, in the OLAP
data exchange, we study how to sample each source and combine the samples to
approximate any OLAP query. We next consider a streaming context, where a data
warehouse is built by streams of different sources. We show a lower bound on the size
of the memory necessary to approximate queries. In this case, we approximate OLAP
queries with a finite memory. We describe also a method to discover the statistical
dependencies, a new notion we introduce. We are looking for them based on the
decision tree. We apply the method to two data warehouses. The first one simulates
the data of sensors, which provide weather parameters over time and location from
different sources. The second one is the collection of RSS from the web sites on
Internet.

Keywords: OLAP, approximate query answering, OLAP data exchange, streaming
data, edit distance, sampling algorithm, statistical dependencies, statistical model.
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Résumé

Nous étudions les réponses proches à des requêtes OLAP sur les entrepôts de données.
Nous considérons les réponses relatives aux requêtes OLAP sur un schéma, comme
les distributions avec la distance L1 et rapprocher les réponses sans stocker totale-
ment l’entrepôt de données. Nous présentons d’abord trois méthodes spécifiques:
l’échantillonnage uniforme, l’échantillonnage basé sur la mesure et le modèle statis-
tique. Nous introduisons également une distance d’édition entre les entrepôts de
données avec des opérations d’édition adaptées aux entrepôts de données. Puis, dans
l’échange de données OLAP, nous étudions comment échantillonner chaque source et
combiner les échantillons pour rapprocher toutes requêtes OLAP. Nous examinons
ensuite un contexte streaming, où un entrepôt de données est construit par les flux
de différentes sources. Nous montrons une borne inférieure de la taille de la mémoire
nécessaire aux requêtes approximatives. Dans ce cas, nous avons les réponses pour les
requêtes OLAP avec une mémoire finie. Nous décrivons également une méthode pour
découvrir les dépendances statistique, une nouvelle notion que nous introduisons.
Nous recherchons ces dépendances en basant sur l’arbre de décision. Nous appliquons
la méthode à deux entrepôts de données. Le premier simule les données de capteurs,
qui fournissent des paramètres météorologiques au fil du temps et de l’emplacement
à partir de différentes sources. Le deuxième est la collecte de RSS à partir des sites
web sur Internet.

Mots-clés: OLAP, réponses proches de la requête, échange de données OLAP,
des flux de données, distance d’édition, algorithme d’échantillonnage, dépendances
statistiques, modèle statistique.
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1
Introduction

Data warehouses collect the history of many physical processes, such as the sales
of items, the measure of sensors, the traffic of data in a network. When these data
are collected in a relational form, its analysis is the subject of OnLine Anaytical
Processing (OLAP). An OLAP schema fixes a set of functional dependencies between
attributes, and defines possible dimensions. The answer to OLAP queries can be
considered as distributions, such as the distribution of sales per country or the
distribution of sensors measures per city.

In practice, approximate answers to OLAP queries [1, 8, 11, 12, 18, 19, 25], may
be sufficient, and could be obtained much more efficiently than exact answers.
The algorithmic complexity theory studies the tradeoff between approximation and
efficiency. In many cases we can use randomized algorithms which achieve an ε
approximation with a high confidence (1 − δ) and are much more efficient than
deterministic algorithms. In the case of large data warehouses, we exhibit such
algorithms for the approximation of OLAP queries. We consider two sampling
methods: a uniform sampling and a measure-based sampling which both give good
approximations.

Data warehouses are built by collecting data from different Sources, and assembling
them. The theory of Data Exchange studies how to efficiently decide consistency
constraints given the Sources. We extend this approach to OLAP queries and
ask if we can directly sample the sources, collect some statistical information, and
approximately answer OLAP queries from the statistics, i.e. without storing the
whole data. Similar questions concern the Streaming model [2, 9, 10, 23, 29], i.e.

1



2 CHAPTER 1. INTRODUCTION

when each Source streams data to a data warehouse. Could we replace the whole
large data warehouse by some other data using logarithmic space? We answer both
these questions, by generalizing the sampling approach.

The main results of the thesis concern the approximation of OLAP queries in a data
exchange setting, and in the special case of statistical dependencies, a notion we
introduce. It generalizes the notion the functional dependencies, as some attributes
may imply fixed distributions on the measure. In this case, we can reduce the data
to some limited statistics. We also study how to discover such dependencies by
generalizing the construction of decision trees in data mining.

1.1 State of the art

Most database systems have modules which offer the possibility of OLAP analysis.
Some originated from the relational model (Oracle, DB2, MS SQL/Server) and later
included modules for the analysis, whereas some other systems (SAS) started with
the analysis and later included the classical relational model.

In these systems, the data are well structured in a data warehouse and OLAP
schema are constructed and modified. Queries are specified by filters, dimensions
and aggregation operators, and results need to have good graphical representations.
Dashboards integrate the graphical outputs. For open source software, Pentaho [17]
is one of the most complete systems, which integrate modules for ETL (Extract,
Transform, Load), generation for schemas and graphical interface (Jpivot). We will
use this system in our implementation.

OLAP tools for semi structured data are less developed, and the analysis of massive
data remains a research area. The classical systems maintain a physical data
warehouse which can be extremely large.

We propose approximate solutions which may apply to the current technology or
may extrapolate to new systems. In the first case, we just sample the data warehouse
and obtain approximate answers more efficiently. In the second case, we propose a
general setting, where we can replace the large data warehouse by some statistics and
still keep the approximate OLAP analysis. This may apply to massive or streaming
data.

The general question we ask is: can we replace these data by some statistics? In
the case of OLAP analysis, when the attributes satisfy some statistical hypothesis
(independence), we answer positively.
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1.2 Thesis plan

This thesis is structured as follows:

Chapter 1 gives a brief overview about the context of our research. We present the
objective and the main results.

In Chapter 2, we review the main notions in OLAP system: data warehouses and
schemas. Moreover, we describe the components of a query and the definition of
relative answers which we use. In this chapter, our new approximate methods are
introduced briefly. These methods are based on the sampling techniques. The quality
of our sampling algorithms is guaranteed by using Hoeffding-Chernoff bounds- the
probability inequalities for the sum of bounded random variables. At the end of
this chapter, we present the different contexts in which we study the approximation
algorithms.

Our main contributions appear in Chapter 3, Chapter 4, Chapter 5, Chapter 6,
Chapter 7 and Chapter 8.

The Chapter 3 introduces two specific methods: the uniform sampling and the
measure-based sampling. They use two probabilistic spaces to approximate the
answers to the OLAP query. These two methods produce a much smaller data
warehouse on which we can approximate OLAP queries. We will prove that these
two algorithms can approximate the answers with good accuracy ε and with high
probability 1− δ.

In Chapter 4, we study an edit distance between data warehouses. We introduce edit
operations adapted for data warehouses. Moreover, we define the distance betweens
two data warehouses. We show that this edit distance is a metric, i.e. it is always
in [0, 1], symmetric and has the triangular inequality property. We then prove the
continuity theorem that the close data warehouses imply that the answers to OLAP
queries must also be close.

In Chapter 5, we present the statistical model based on the statistical dependency.
The core of this method is the reduction of data warehouse by one more compact
structure: some limited statistics. Then, we combine these limited statistics and the
statistical dependencies to approximate the OLAP query. Finally, we show how to
learn the statistics of the model.

The Chapter 6 covers the approximation in the context of OLAP data exchange. In
this context, we present the different approximate algorithms: the approximation
with the uniform distribution, the approximation with the measure-based sampling,
and the approximation by the statistical model.

In Chapter 7, we consider streaming data. We first show some lower bounds on the
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space complexity for unbounded domains. For unbounded domains, we design the
counters for the exact distribution used by statistical model.

In Chapter 8, we describe a method to discover the statistical dependencies. We
may not know these dependencies. We generalize the construction of decision trees
in data mining. In a classical decision tree, some attributes predict the value of the
target attribute M . This value is predicted with high probability. In the case of
statistical dependency, we built the decision tree in which some attributes predict
the distribution of values of the target attribute with high probability.

In Chapter 9, we test our approximation methods: the approximation by uniform
sampling, the approximation by measure-based sampling and by the statistical model.
We use a data warehouse simulates sensors and a real data warehouse collecting RSS
from the web sites on Internet. For each method, we are interested in the quality of
approximation such as the error ratio and the confident level. At the end we analyze
the results and compare the methods.

In Chapter 10, we present the conclusion and the future work.
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Preliminaries

2.1 Introduction

This chapter introduces basic notions, definitions and results which are used in this
thesis. We first describe the notations for OLAP (On-Line Analytical Processing)
such as schemas, queries, query answering. We then present the approximation
model by mainly using the sampling technique. Finally, these methods will be used
in the context of data exchange, of distributed data and of streaming data.

2.2 On-Line Analytical Processing (OLAP)

On-Line Analytical Processing, or OLAP for short is the main activity carried out
by analysts and decision makers [27]. The applications are widely used to assist
management from dashboards, which assemble graphical representations of OLAP
queries. We present the notions and the definitions of schemas, data warehouses,
queries and answers to queries.

2.2.1 Schemas

We follow the functional model associated with an OLAP schema [27].

The OLAP or star schema is a tree where each node is a set of attributes, the root
is the set of all the attributes of the data warehouse relation, and an edge exists if
there is a functional dependency between the attributes of the origin node and the

5



6 CHAPTER 2. PRELIMINARIES

Figure 2.1: An OLAP schema.

attributes of the extremity node. The measures are specific nodes at depth 1 from
the root.

Example 2.2.1. Consider the simple OLAP schema of Figure 2.1, where the func-
tional dependencies follow the edges up. The measures are sun and rain.

2.2.2 Relational representation

We describe the mapping from a schema to a relational representation.[27]

Definition 2.2.1. Let S be an OLAP schema, the relational representation of S
consists of a fact table and a set of dimensional tables:

• All nodes at depth 1 from the root constitutes the fact table. These nodes called
dimensions are considered as the key of the fact table except for the measures.

• Every dimension D of the fact table gives rise to a dimensional table defined as
follows. If A1, ..., Am are the attributes appearing in all functional dependencies
starting at D, then the dimensional table of D is a relational table with
attributes D,A1, ..., Am having D as its only key.

Example 2.2.2. We can represent the OLAP schema of Figure 9.5 by two relations:
the fact table DW(recordID, sensorID, day, month, year, sun, rain) which stores
every day the measures sun and rain, and a dimensional table C(sensorID, manuf,
city, country).



2.2. ON-LINE ANALYTICAL PROCESSING (OLAP) 7

2.2.3 Data warehouses

The fact table is called the data warehouse. It provides integrated, consolidated and
historic data for analysis. A data warehouse functions just like a database, with the
following important differences [27]:

• (Integration) The data of a data warehouse is not production data but the
result of integration of production data coming from various sources. The
data warehouse is organized by subjects or themes. All the necessary data for
performing a particular analysis can be found in the data warehouse.

• (Historic data) The data of a data warehouse can include data accumulated
over time.

• (No volatility) The access to the data warehouse by analysts is almost exclusively
for reading and not for writing.

• (Periodical updating) The changes of data happen only at the sources, and
such changes are propagated periodically to the data warehouse.

2.2.4 Queries and answers

Definition 2.2.2. An OLAP query for a schema S is determined by:

1. A condition filter which selects a subset of the tuples of the data warehouse.

2. A measure.

3. The selection of dimensions or classifiers, C1, ..., Cp where each Ci is a node of
the schema S.

4. An aggregation operator (COUNT, SUM, AVG, ...).

Assume for simplicity that the aggregation operator is SUM.

Definition 2.2.3. The relative answer to an OLAP query Q with respect to I is a
function:

QC1,...,Cp : I → σ =

 m1

...

mk


where σ is the density vector with mi =

∑
t.C1=c1,...t.Cp=cp

t.M∑
t∈I t.M

on the tuples obtained

after the filter and k ≤ |C1| ∗ |C2| ∗ ... ∗ |Cp|
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We consider relative measures as answers to OLAP queries. This vector σ is also
a probabilistic distribution. For simplicity, we write QI

C as the density vector for
the answer to Q on dimension C and on data warehouse I. Each component of QI

C

is written QI
C=c or QI

C [c] and is the relative density for the dimension C = c. In
another way, we can interpret QI

C=c as the probability that a random tuple t is such
that t.C = c.

Example 2.2.3. Consider the simple OLAP schema of Figure 2.1, where the func-
tional dependencies follow the edges up.

(a) Absolute answer to Q1: Analysis for
each country.

Measures
COUNTRY SUM OF SUNLIGHT
All country 689,960
France 450,022
U.K. 104,980
Germany 134,958

France 

U.K. 

Germany 

All country 

 

(b) Piechart answer of Q1: Analysis for
each country.

Figure 2.2: Representations of answers.

We suppose two relations: the data warehouse DW(recordID, sensorID, date, month,
year, sun, rain) which stores every day the measures sun and rain in hours in
the interval [1, 10] for all sensors, and an auxiliary table C(sensorID, manuf, city,
country).

A typical OLAP query may select country as a dimension, asking for the relative sun
of the countries, and an absolute answer would be as in Figure 2.2(a).

A relative answer would be: (France, 0.65), (Germany, 0.2), (U.K., 0.15), as 0.65 =
450022/689960.

The answer to an OLAP query Q is the vector of relative values. In our example,
QI
country = (0.65, 0.2, 0.15) as represented by a pie-chart in Figure 2.2(b).
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2.3 Approximation

The goal of our research is to approximate the answers to OLAP queries. We design
randomized algorithms with two parameters 0 ≤ ε, δ ≤ 1 where ε is the error, and
1 − δ is the confidence. Let us recall the notion of a (ε, δ)-approximation for a
function F : Σ∗ → R.

Definition 2.3.1. Let A be a randomized algorithm with input x and output y = A(x).
The algorithm A (ε, δ)-approximates the function F if for all x,

Prob[F (x)− ε ≤ A(x) ≤ F (x) + ε] ≥ 1− δ

In our case, the probabilistic space will be the samples, which may be selected with
a uniform distribution. If we have a data warehouse with N samples, we select
each tuple t with probability 1/N . We will call Îu the probabilistic data warehouse
obtained by m samples, selected with the uniform distribution. Each one has a
probability of (1/N)m.

2.3.1 Approximate query answering

In our context, we approximate vectors whose values are less than 1 which are
relative answers to an OLAP query. In this situation, F (x) is QI

C=c (for all c) and
x = I. We use randomized algorithms with an additive error and mainly use the L1

distance between two vectors. Strictly speaking, the L1 distances are less than 2,

and we usually have a
1

2
factor to normalize the distance in [0..1], which we omit for

simplicity.

Definition 2.3.2. The distance between two relative answers to an OLAP query is
the L1 distance between the relative densities.

Let σ, µ be two distributions. They are ε-close if |σ − µ|1 =
∑

v |σ(v)− µ(v)| ≤ ε.

Example 2.3.1. For example, the distance between the (0.65, 0.2, 0.15) distribution
over (France, Germany, U.K.) and the (0.6, 0.4) distribution over (France, Germany)
is (0.05 + 0.2 + 0.15) = 0.4. We can see that the distance between two distributions
are in [0, 2].

In our case, the ε, δ-approximation is defined as follows. A randomized algorithm Q̂
defines a function:

Q̂C : I → σ̂ =

 m′1
...

m′k

 ,
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where k ≤ |C|, and let σ̂ = Q̂I
C .

Definition 2.3.3. The algorithm Q̂ (ε, δ)-approximates the function QC if for all I,

[Prob[QI
C − ε ≤ Q̂I

C ≤ QI
C + ε] ≥ 1− δ]

The approximation by sampling is introduced in chapter 3, and the approximation
by a statistical model is discussed in chapter 5.

2.3.2 Sampling methods

The objective of sampling is to approximate the answer on the small set of samples
instead of finding the answers on the entire data warehouse. The randomized
algorithms may take samples t ∈ I with different distributions. The probability is
over these probabilistic spaces.

2.3.2.1 Uniform sampling

In this case, we select Îu, made of m distinct samples of the data warehouse I, with
a uniform distribution on the N tuples. In order to implement the technique, we
use a standard random generator. A function random(N) generates an element
i ∈r {1, 2, ...N} with probability 1/N . There is a constraint for the number of
samples m, in order to have an (ε, δ)-approximation. We will show that in chapter 4
that m only depends on the parameters ε and δ but not on N .

2.3.2.2 Measure-based sampling

This technique samples the data warehouse to have m distinct tuples. But the
probability of selection of each tuple depends on its measure. Moreover, the algorithm
executes in two steps:

1. We first select a tuple t with a uniform distribution

2. Keep t with probability proportional to its measure

When we generate the samples Îe, we replace the measure by 1. We assume that
max is the maximum value of the measure. If max is small in relation with the size
of the data warehouse, both techniques allow to approximate OLAP queries. But if
max is large (unbounded), only the measure-based sampling can be applied on our
sense. The context of application and the comparison between two techniques are
introduced in chapter 4.
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2.4 Probabilistic tools

In this thesis, we use the probability inequalities for the sums of bounded random
variables [20],to guarantee that our algorithms (ε, δ)-approximate the queries. These
bounds give exponentially decreasing upper bounds on tail distributions (ie. Pr(X ≥
a), where a ≥ IE[a]) that the sums of independent random variables vary from their
expectation by some ε.

We need to bound

[Prob[QI
C − ε ≤ Q̂I

C ≤ QI
C + ε] ≥ 1− δ

or equivalently that
[Prob[|Q̂I

C −QI
C | > ε] ≤ δ

Notice however that IE(Q̂I
C) = QI

C . Hence we need to show that:

[Prob[|Q̂I
C − IE(Q̂I

C)| > ε] ≤ δ

which is of the form [Prob[|X − IE(X)| > ε] ≤ δ and we say that the error is
additive. In the case of [Prob[|X − IE(X)| > ε.IE(X)] ≤ δ we say that the error is
multiplicative.

We first recall the Chernoff bounds before coming to the Hoeffding bounds which we
will use.

2.4.1 Chernoff bounds

Chernoff bounds give estimates on the probability that the sum of random variables
vary from its expected value.[7]

2.4.1.1 Additive form (absolute error)

Theorem 2.4.1. (Chernoff-Hoeffding) Assume random variables X1, X2 , ..., Xm are
independent and identically distributed random variables. Let p = IE[Xi], Xi ∈ {0, 1},
and ε ≥ 0. Then,

1. Pr[
1

m

∑
Xi ≥ p+ ε] ≤ ((

p

p+ ε
)p+ε(

1− p
1− p− ε

)1−p−ε)m = e−D(p+ε‖p)m

2. Pr[
1

m

∑
Xi ≤ p− ε] ≤ ((

p

p− ε
)p−ε(

1− p
1− p+ ε

)1−p+ε)m = e−D(p−ε‖p)m

where D(x‖y) = xlog
x

y
+ (1− x)log

1− x
1− y

.
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2.4.1.2 Multiplicative form (relative error)

Theorem 2.4.2. Let random variables X1, X2, ..., Xm be independent variables

taking on values 0 or 1 with Pr(Xi = 1) = pi, X =
n∑
i=1

Xi, and µ = IE[X]. Then:

1. for any δ > 0,

Pr[X ≥ (1 + δ)µ] < (
eδ

(1 + δ)(1+δ)
)µ

and

Pr[X ≤ (1− δ)µ] ≤ (
e−δ

(1− δ)(1−δ) )µ.

2. for any 0 < δ < 1,

Pr[X > (1 + δ)µ] ≤ e

−δ2µ

3

and

Pr[X < (1− δ)µ] ≤ e

−δ2µ

2 .

In the theorem 2.4.2, the second bound for any 0 < δ < 1 is derived from the first
one. The absolute error ε is greater and easier to compute than the relative error δ.

2.4.1.3 Better Chernoff bounds for some special cases

We can derive many deviations of Chernoff bounds by using different proof techniques.
Here are some special cases of symmetric random variables.

Theorem 2.4.3. Let X be a sum of n independent random variables {Xi}. Let µ

denote the expected value of X. If Pr(Xi = 1) = Pr(Xi = −1) =
1

2
then

• Pr[X ≥ a] ≤ e

−a2

2n , with a > 0

• Pr[|X| ≥ a] ≤ 2e

−a2

2n , with a > 0.

Theorem 2.4.4. Let X be a sum of n independent random variables {Xi}. Let µ

denote the expected value of X. If Pr(Xi = 1) = Pr(Xi = −0) =
1

2
, IE[X] = µ =

n

2
then
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• Pr[X ≥ µ+ a] ≤ e

−2a2

n , with a > 0

• Pr[X ≤ µ− a] ≤ e

−2a2

n , with 0 < a < µ.

2.4.2 Hoeffding bounds

Theorem 2.4.5 (Hoeffding bound). [16] Let X be a sum of m independent random
variables {Xi}, with IE[Xi] = p and Xi ∈ [0, 1] for all i ≤ m. Let µ denote the

expected value of
X

m
. For all t: 0 ≤ t ≤ 1− µ, then:

Pr[
X

m
− IE(

X

m
) ≥ t] ≤ e−2t2m.

This last bound is the one we use.

2.4.3 Number of samples

The goal of sampling is to find a close answer. But how large does the number of
samples has to be so that we obtain a answer with a good accuracy ε and a hight
confidence 1− δ? In this section, by using Hoeffding’s bound, we show the constraint
for the number of samples to satisfy the property of a (ε, δ) approximate algorithm.

Theorem 2.4.6. Let X be a sum of m independent random variables {Xi}, with
IE[Xi] = pi and Xi ∈ {0, 1} for all i ≤ m. For all ε, δ: 0 ≤ ε, δ ≤ 1, if the number
of samples m we use satisfy

m ≥ 1

2
.(

1

ε
)2. log

1

δ
,

then Pr[
X

m
− IE(

X

m
) ≥ ε] ≤ δ.

Proof. With the above hypothesis, we can apply Hoeffding’s bound for
X

m
. Let µ

denote the expected value of
X

m
. For all t: 0 ≤ t ≤ 1− µ, we have

Pr[
X

m
− IE(

X

m
) ≥ t] ≤ e−2t2m
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As we want the accuracy ε, we need to get t = ε. Moreover, if we want the confidence
1− δ in the estimate, we would like the right-hand side in the above to be at most
δ. Therefore we have,

δ ≥ e−2t2m ⇔ δ ≥ e−2ε2m ⇔ 2ε2m ≥ log
1

δ
⇔ m ≥ 1

2
.(

1

ε
)2. log

1

δ

2.5 Contexts

We study the approximation in different contexts: data exchange and streaming data.
In the next subsections, we present each context.

2.5.1 Data exchange

A data exchange context captures the situation when a source I exchanges data
with a target J [15]. A setting is a triple (S,Σ, T ) where S is a source schema, T a
target schema and Σ a set of dependencies between the source and the target. A
tuple dependency states that if a tuple t is in a relation R of the S, it is also in a
relation R′ of T , maybe slightly modified. In [13], an approximate version of the
data exchange problems is introduced in order to cope with errors in the source
and in the target. In [14], the data exchange setting is generalized to probabilistic
sources and targets. Standard problems are: Consistency i.e. whether there is a
solution J which satisfies the setting (S,Σ, T ) for a given source I, Typechecking and
Query-answering.

In this thesis, we study approximate query answering in the context of an OLAP
target data warehouse with several sources (Figure 2.3). We consider the simplest
situation where the tuples of each source are copied in the target: in this case the
tuple dependency Σ states this constraint. In a more general situation, different
sources may follow different statistical models and the main difficulty is to combine
them for query answering. The approximation in the OLAP data exchange will be
discussed in Chapter 6.

2.5.2 Streaming

We consider tuples of a data warehouse which arrive as a stream and study if it is
possible to approximately answer OLAP queries with a small memory. If there are
N tuples, an O((logN)k) memory is considered as small, i.e. polylogarithmic. In
the classical literature [24], there are many examples for upper and lower bounds.
A standard example [3] is the stream of values a1, a2, ..., an ∈ [1, ...,m] where n is
unknown and n,m are arbitrarily large.
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Figure 2.3: OLAP data exchange

The Frequencies fj = |{i ∈ [1;n], ai = j}|, j ∈ [1;m] and the Moments Fk =
m∑
j=1

(fj)
k.

The Moments F0 = |{j ∈ [1;m], fj 6= 0}|, F1 = n and F2 are approximable with
a small memory, whereas F p is not approximable for p > 2 and in particular
F∞ = max

j
fj is not approximable. In the OLAP setting (Figure 2.4), tuples t ∈ I

are the ai , and we only want to approximate OLAP queries. We will show a lower
bound based on the non approximability of F∞ in the general case where the domains
are unbounded. We consider the bounded case, and want to approximate the OLAP
queries with the smallest possible memory. Our results will be presented in chapter 7.

Figure 2.4: OLAP streaming
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2.6 Conclusion

This chapter gives an overview of the main notions. We presented OnLine Analytical
Processing, schemas, OLAP queries, query answering. We explained the probability
inequalities for the sum of bounded random variables, and the notions of approxi-
mation by sampling. The goal is to approximate answers in different contexts such
as the data exchange and the streaming model. We propose different methods of
approximation in the next chapters.
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3
Approximation by Sampling a

Data Warehouse

There are many different methods to sample a data warehouse. We introduce two
specific techniques: the uniform sampling and the measure-based sampling. We use
two probabilistic spaces to approximate the answers to the OLAP query. These
techniques define a set of samples, a much smaller data warehouse, on which we
approximate OLAP queries.

Massive data can not be totally read but can be sampled. Our model tries to capture
when queries on such massive data can be approximated. OLAP queries on data
warehouses is an example where it is possible.

3.1 Uniform sampling

Sampling a data warehouse with a uniform distribution is a classical technique.
Tuples are selected with the same probability. We select Îu, made of m distinct
samples of I, with a uniform distribution on the N tuples. It is important that the
number of samples is large enough but independent of N .

We consider relative measures as answers to OLAP queries which are vectors or
probabilistic distributions. For simplicity, we write QI

C as the density vector for
the answer to Q on dimension C and on data warehouse I. Each component of QI

C

is written QI
C=c or QI

C [c] and is the relative density for the dimension C = c. In
another way, we can interpret QI

C=c as the probability that a random tuple t is such

17
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that t.C = c.

The distance between two relative answers to an OLAP query is the L1 distance
between relative densities. Let σ, µ be two distributions of two answers. These two
answers are ε-close if

|σ − µ|1 =
∑
v

|σ(v)− µ(v)| ≤ ε

We approximate a query QI
C by QÎ

C , i.e. replace the large source I by a small Î. We

prove that if m ≥ 1

2
.(
|C|
ε

)2. log
1

δ
then the answer QI

C1,...,Cp
to any OLAP query Q

on dimensions C1, . . . , Cp without selection, is ε-close to QÎ
C1,...,Cp

with probability
larger than 1− δ, where |C| = |C1| ∗ |C2| ∗ ... ∗ |Cp|.

We will select m =
1

2
.(
|C|
ε

)2. log
1

δ
tuples as follows:

Data: I
Result: Î
for i := 0 to m do

Select ti in I with probability 1/size(I) ;

ti in Î ;

end
Algorithm 1: Sampling Algorithm

Consider any OLAP query without filter condition. In case of a filter, we would
apply the same procedure after the filter. For simplicity, let us suppose we have a
single classifier C with values c1, ...ck. By definition

QI
C=c1

=

∑
t.C=c1

ti.M∑
ti.M

The answer to the query QI
C is a density vector, whose component on the value c1,

i.e. QI
C [c1] is also written QI

C=c1
. It is by definition the sum of the measures ti.M

for all tuples such that t.C = c1, divided by the sum of the measures of all tuples.

We first want to show that Pr[| QI
C=c1

− QÎ
C=c1

|≤ ε

|C|
] ≥ 1 − δ. and similarly for

c2, ..., ck. We can then conclude that:

Pr[| QI
C −QÎ

C |≤ ε] ≥ 1− δ.
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3.1.1 Close answers for each component

Let Xi, Yi be random variables associated with the sampling algorithm such that
Xi = t.M if the i-th random tuple ti of Î is such that ti.C = c1, and Xi = 0 otherwise.
Let Yi = t.M . Let X ′ =

∑
i=1,..mXi and Y ′ =

∑
i=1,..m Yi. Equivalently,

QÎ
C=c1

= X ′/Y ′.

Lemma 3.1.1. For i = 1..m, IE(Xi) = QI
C=c1

.
∑
t.M/N

Proof. In the data warehouse I with N tuples, let ni be the number of tuples
where t.M = i and ni,c be the number of tuples where t.M = i and t.C = c, for
i = 0, 1, ...max.

By definition, IE(Xi) =
∑

i i.ni,c/N as each tuple ti hasXi = t.M = i with probability
ni,c/N . The numerator is also QI

C=c1
.
∑
t.M . Hence,

IE(Xi) = QI
C=c1

.
∑

t.M/N.

Lemma 3.1.2. IE(Y ′) = m.
∑
t.M/N

Proof. By definition, IE(Yi) =
∑

i i.ni/N as each tuple ti has Yi = t.M = i with
probability ni/N . The numerator is also

∑
t.M Hence, IE(Yi) =

∑
t.M/N and by

linearity IE(Y ′) = m.
∑
t.M/N

All X1, .., Xm are independent with the same expectation IE(Xi) = QI
C=c1

.
∑
t.M/N.

By linearity IE(
X1 + ..+Xm

Y ′
) = IE(

X ′

Y ′
) =

m.IE(Xi)

IE(Y ′)
= QI

C=c1
.

Chernoff bounds give upper bounds for the probability that the sum of independent
variables vary from their expectation by some ε. When the variables are bounded,
we can use Hoeffding’s bound [16] which deals with an additive error:

Pr[
X ′

Y ′
− IE(

X ′

Y ′
) ≥ t] ≤ e−2t2.m

In this form, t is the absolute error, and e−2t2.m is also called the confidence δ. In our
case, we estimate the answer as a distribution. The components of this distribution
have very small values. So, we choose the additive form of Chernoff bounds to verify
the distance between the close answer and the exact answer.
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Theorem 3.1.1. If m ≥ 1

2
.(
|C|
ε

)2. log
1

δ
then

Pr[| QI
C=c1

−QÎ
C=c1

|≥ ε

|C|
] ≤ δ.

Proof. Because all Xi are independent, bounded and have the same expectations,

we can use the previous Hoeffding’s bound with t =
ε

|C|
.

Because IE(
X ′

Y ′
) = QI

C=c1
, then

Pr[| QI
C=c1

−QÎ
C=c1

|≥ ε

|C|
] ≤ e

−2(
ε

|C|
)2.m

If m =
1

2
.(
|C|
ε

)2. log
1

δ
, then

Pr[| QI
C=c1

−QÎ
C=c1

|≥ ε

|C|
] ≤ δ

.

3.1.2 Close answers of an OLAP query

We can apply the theorem 3.1.1 on each of the coordinates:

Theorem 3.1.2. If m ≥ 1

2
.(
|C|
ε

)2. log
1

δ
then the answer QI

C1,...,Cp
to any query Q

on dimensions C1, . . . , Cp, is ε-close to QÎ
C1,...,Cp

.

Proof. In the case of a single dimension C, we apply the previous theorem for all
values ci,

Pr[| QI
C=ci
−QÎ

C=ci
|≥ ε

|C|
] ≤ δ

and with a union bound for c1, ..., ck ∈ C, we can conclude that

Pr[| QI
C −QÎ

C |≥ ε] ≤ δ

Notice that this theorem gives the number of samples m necessary to guarantee the
approximation, and it is independent of N .
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3.2 Measure-based sampling

This sampling technique is different from the uniform sampling. It samples the data
warehouse to get m distinct tuples, but the probability of selection of each tuple
depends on its measure. We select ÎM made of m distinct samples in two phases:

1. We first select a tuple t with a uniform distribution

2. We then keep t with probability which is proportional to its measure, t.M/max
where max is the maximum value of the measure. We then replace the value
of the measure by 1 if we keep the sample.

We approximate a query QI
C by QÎ

C , i.e. replace the large source I by a small Î. We

prove that if m ≥ 1

2
.(
|C|
ε

)2. log
1

δ
then the answer QI

C1,...,Cp
to any OLAP query Q

on dimensions C1, . . . , Cp without selection, is ε-close to QÎ
C1,...,Cp

with probability is
larger than 1− δ, where |C| = |C1| ∗ |C2| ∗ ... ∗ |Cp|.

We will select m =
1

2
.(
|C|
ε

)2. log
1

δ
tuples as follows:

Data: I
Result: Î
for i := 0 to m do

Select ti in I with probability 1/size(I) ;
Select k in [1,max] with uniform distribution ;
if k ≤ ti.M then

ti.M := 1 ;

Add ti in Î ;

end

end
Algorithm 2: Measure-based Sampling Algorithm

Consider any OLAP query without filter condition. In case of a filter, we would
apply the same procedure after the filter. For simplicity, let us suppose we have a
single classifier C with values c1, ...ck. We first want to show that

Pr[| QI
C=c1

−QÎ
C=c1

|≤ ε

|C|
] ≥ 1− δ

and similarly for c2, ...ck. We can then conclude that:
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Pr[| QI
C −QÎ

C |≤ ε] ≥ 1− δ.

3.2.1 Close answers for each component

Let Xi be the random variable associated with the sampling algorithm such that
Xi = 1 if the i-th tuple of Î is such that ti.C = c1, and Xi = 0 otherwise. Let IE(Xi)
be the expectation of Xi.

Let X ′ =
∑

i=1,..mXi. Equivalently,

QÎ
C=c1

= X ′/m.

Lemma 3.2.1. For i = 1..m, IE(Xi) = QI
C=c1

.

Proof. For each tuple ti in I, i = 1..N , the probability to randomly choose ti is 1/N .

The probability pi that ti is chosen and kept in Î is:

pi = (1/N).(ti.M/max).

The probability p′ to choose one tuple in Î is the sum of the pi, i.e.

p′ = (1/N.max).Σ(ti.M).

The probability to choose one tuple in Î such that t.C = c1 is:

p′′ = (1/N.max).Σt.C=c1(ti.M).

Hence

IE(Xi) = P (Xi = 1) = p′′/p′ =
Σt.C=c1(ti.M)

Σ(ti.M)
= QI

C=c1
.

All X1, .., Xm are independent with the same expectation IE(Xi) = QI
C=c1

. By

linearity IE(
X1 + ..+Xm

m
) = IE(

X ′

m
) = QI

C=c1
.

The variables are bounded, so we can use Hoeffding’s bound [16] again:

Pr[
X ′

m
− IE(

X ′

m
) ≥ t] ≤ e−2t2.m
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.

Theorem 3.2.1. If m ≥ 1

2
.(
|C|
ε

)2. log
1

δ
then

Pr[| QI
C=c1

−QÎ
C=c1

|≥ ε

|C|
] ≤ δ.

Proof. Because all Xi are independent, bounded and have the same expectations,

we can use the previous Hoeffding’s bound with t =
ε

|C|
. Because IE(

X ′

m
) = QI

C=c1
,

then

Pr[| QI
C=c1

−QÎ
C=c1

|≥ ε

|C|
] ≤ e

−2(
ε

|C|
)2.m

If m =
1

2
.(
|C|
ε

)2. log
1

δ
, then

Pr[| QI
C=c1

−QÎ
C=c1

|≥ ε

|C|
] ≤ δ.

3.2.2 Close answers of an OLAP query

We can apply the theorem 3.2.1 on each of the coordinates:

Theorem 3.2.2. If m ≥ 1

2
.(
|C|
ε

)2. log
1

δ
then the answer QI

C1,...,Cp
to any query Q

on dimensions C1, . . . , Cp, is ε-close to QÎ
C1,...,Cp

.

Proof. In the case of a single dimension C, we apply the theorem 3.2.1,

Pr[| QI
C=c1

−QÎ
C=c1

|≥ ε

|C|
] ≤ δ

With a union bound for c1, ..., ck ∈ C, we can conclude that

Pr[| QI
C −QÎ

C |≥ ε] ≤ δ

3.3 Important comparisons

These two methods produce distinct random data warehouses Î. We approximate a
query QI

C by QÎ
C , i.e. replacing the large source I by a small Î. If max is small in



24 CHAPTER 3. APPROXIMATION BY SAMPLING A DATA WAREHOUSE

relation with N , both techniques allow to approximate OLAP queries if the number
of samples is large enough, but independent of N .

We proved that if m ≥ 1

2
.(
|C|
ε

)2. log
1

δ
then the answer QI

C1,...,Cp
to any OLAP query

Q on dimensions C1, . . . , Cp without selection, is ε-close to QÎ
C1,...,Cp

with probability
is larger than 1− δ, where |C| = |C1| ∗ |C2| ∗ ... ∗ |Cp|.

This is an application of a Chernoff-Hoeffding bound to estimate the error on each
density, and a union bound on the global vectors. It is important that the number
of tuples is large, and possible selections may alter the result. In case of a selection,
the number of tuples after the selection must be large to apply for the result.

Notice that if max is large (unbounded), these two distributions differ, and only
the second one can approximate OLAP queries in our sense. Another important
difference is when we have several measures (2 in our example): one set of samples
is enough for the uniform distribution, but we need two sets for the measure-based
distribution, one for each measure.

The specific L1 distance between answers is important. As noticed in [1], the uniform
sampling may miss small groups of data, and the relative error for such a group
could be 100%. As the measures are bounded, the total value would be small and
our relative error would then be less than ε. In case of a selection, if the number
of selected tuples is too small, the error could be large for the same reason. If
the number of selected tuples is large, the same approximation holds. We give the

Sampling by uniform
distribution

Measure- based sam-
pling

Number of samples m =
1

2
.(
|C|
ε

)2. log
1

δ
m =

1

2
.(
|C|
ε

)2. log
1

δ

Number of set of samples 1 One set of samples for
each measures

Probability that one tuple is
chosen and kept in the set of
samples

That does not depend
on its measures

That depends on its
measures

Situation for applying Small max Small and large max

Table 3.1: Two sampling methods.
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summary of the two methods in Table 3.1

3.4 Conclusion

We presented two algorithms for estimating the answers to OLAP queries. The first
is the uniform sampling. The second is the measured-based sampling. Chernoff-
Hoeffding bounds were applied to guarantee the quality of the approximation. We
proved that these two algorithms can approximate the answers with good accuracy ε
and with high probability 1−δ. The comparison between two algorithms is discussed.
The chapter 9 will give us the experimental results on a data warehouse collecting
sensors values and on a data warehouse collecting RSS data.
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4
Edit Distance on Data Warehouses

4.1 Introduction

We introduce an edit distance on data warehouses, i.e. on tables where one column,
the measure, plays a specific role. We introduce the M-Edit distance which adapts
the classical edit distances on words and trees to relations with a specific measure
attribute. Edit operations on the standard attributes have a unit cost, but edit
operations on the measure attribute have a cost proportional to the variation of the
measure.

4.2 Edit operations and cost functions

There are three types of edit operations: tuple deletion, tuple insertion and tuple
modification. The cost function w assigns to each operation a positive real number to
denote its cost. Let t.M be the value of the measure M of tuple t, which we assume
bounded by a maximum fixed value max. Let d be the number of dimensions of the
relation I, and A1, A2, ..., Ad,M be the sequence of attributes. The (absolute) cost
for each edit operation is defined as:

• (Tuple deletion) The cost to delete a tuple t in the relation I is equal to its
measure plus the number of dimensions:

wd = t.M + d

27
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• (Tuple insertion) The cost to insert a tuple t in the relation I is equal to its
measure plus the number of dimensions:

wi = t.M + d

• (Tuple modification) A modification may concern several attributes, including
the measure.

wm = Σmodified attributesw(Ai)

If Ai = M , i.e. is the measure: w(Ai) =| t.M − t′.M | where t.M and t′.M are
the old measure and the new measure of tuple t.

If Ai is an attribute (string, integer, real,...): w(Ai) = 1.

A sequence of edit operations is abbreviated: i1,m2, i3, d4, .... if the first edit is an
insertion, the second a modification, the third a insertion, the fourth a deletion and
so on.

If we assume that all modifications apply to distinct tuples, we can then do all the
insertion first, then all the modifications and then all the deletions. The change of
its position in the sequence does not influence its cost.

Let S = (̄i, m̄, d̄) be a normalized sequence of insertions, modifications and deletions.
The absolute cost of S is defined by formula: (w(̄i) + w(m̄) + w(d̄)) where w(̄i) =∑

ij∈īwi(ij) and similarly for w(m̄) and w(d̄).

We normalize the cost to obtain a relative cost between 0 and 1. Let s be the number
of inserted tuples in the transformation S plus the size of I before the transformation,
i.e. the maximum size along the transformation. Let Max(t.M) be the maximum
value of the measure M of a tuple t along the transformation. If no modification is
applied to t, then Max(t.M) = t.M .

The relative cost of S, w(S) is defined by:

w(S) =
(w(̄i) + w(m̄) + w(d̄))

(d.s+ Σt Max(t.M))

4.3 Distance between two data warehouses

Definition 4.3.1 (M-Edit Distance). The distance d(I, I ′) between two data ware-
houses I and I ′ on the same schema is the minimum relative cost over all sequences
S of edit operations that transforms I into I ′:
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d(I, I ′) = MinS {w(S)}

According the above definition, the bigger the distance is, the more different two
relations are. If d(I, I ′) = 0, I and I ′ are identical.

4.4 Distance between two answers

A typical OLAP query may select COUNTRY as dimension and an absolute answer
would be: (France, 600), (Germany, 400). We consider the answer to any OLAP
Query as the vector of relative values. In our example, QI

Country = (0.6, 0.4) and
QI
Country=Germany = 0.4.

Definition 4.4.1. The distance between two relative answers to an OLAP query is
the L1 distance between relative densities.

Therefore, the values of the distance are in [0, 2]. For example, the distance between
the (0.65, 0.2, 0.15) distribution over (France, Germany, U.K.) and the (0.6, 0.4)
distribution over (France, Germany) is (0.05 + 0.2 + 0.15) = 0.4.

4.5 Properties of distance between two

data warehouses

We show that the M-Edit distance is a metric, i.e. it is always in [0, 1], symmetric
and has the triangular inequality property.

Lemma 4.5.1. Let I and I ′ be two data warehouses. The distance between I and I ′

is always such that 0 ≤ d(I, I ′) ≤ 1.

Proof. If I is identical to I ′,then d(I, I ′) = 0. If I is different from I ′, then let us
show that 0 < (w(̄i) + w(m̄) + w(d̄)) ≤ (d.s+ Σt Max(t.M)) for the minimum cost
sequence S = (̄i, m̄, d̄) which transforms I into I ′,

Let v the number of modified attributes and let j an index ranging on the modified
tuples. Then

(w(̄i) + w(m̄) + w(d̄)) = Σjd+ Σjv + Σjt.M + Σj(| t.M − t′.M |)

Moreover,
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Σjd+ Σjv ≤ d.s

,

and

Σjt.M + Σj(| t.M − t′.M |) ≤ Σt Max(t.M)

So,

0 < (w(̄i) + w(m̄) + w(d̄)) ≤ (d.s+ Σt Max(t.M))

hence

0 < d(I, I ′) ≤ 1

Lemma 4.5.2. The function d(I, I ′) is symmetric.

Proof. Let S = (̄i, m̄, d̄) be the minimum cost sequence which transforms I into I ′.
We construct a sequence S ′ = (ī′, m̄′, d̄′) of edit operations which transforms I ′ into
I with the following operations:

1. An insertion in S is replaced by the corresponding deletion in S ′.

2. A deletion in S is replaced by the corresponding insertion in S ′.

3. If a modification in m̄ increases the measure, then the corresponding modifica-
tion in m̄′ decreases the measure by the same value.

4. If a modification in m̄ modifies the values of the standard attributes, then the
corresponding modification in m̄′ gives back the old values.

After we normalize S ′,

(w(ī′) + w(m̄′) + w(d̄′)) = (w(̄i) + w(m̄) + w(d̄))

The maximum number of tuples s from I along the transformation is equal to the
size of I plus the number of insertions in S.

s =| I | + | ī |
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The maximum number of tuples s′ from I ′ along the transformation is equal to the
size of I ′ plus the number of insertions in S ′.

Moreover, the number of insertions in S ′ is equal to the number of deletions in S.

| ī′ |=| d̄ |

We have

s′ =| I ′ | + | ī′ |= (| I | + | ī | − | d̄ |)+ | d̄ |=| I | + | ī |

We see that: s′ = s

then,
(d.s′ + Σt′ Max(t′.M)) = (d.s+ Σt Max(t.M))

So,
d(I ′, I) = d(I, I ′)

In the lemma below, we show that function d(I, I ′) has the property of triangular
inequality.

Lemma 4.5.3. The function d(I, I ′) satisfies the triangular inequality.

Proof. Let I ′′ be an arbitrary relation. Let S1 = (ī1, m̄1, d̄1) be the sequence has the
minimum relative cost to transform I into I ′′. Let S2 = (ī2, m̄2, d̄2) be the sequence
has the minimum relative cost to transform I ′′ into I ′. Then, S = (ī1, ī2, m̄1, m̄2, d̄1, d̄2)
is the sequence to transform I into I ′. We have:

d(I, I ′′) =
(w(ī1) + w(m̄1) + w(d̄1))

(d.(| I | + | ī1 |) + Σt Max(t.M))

with t along the tranformation in S1.

d(I ′′, I ′) =
(w(ī2) + w(m̄2) + w(d̄2))

(d.(| I | + | ī1 | − | d̄1 | + | ī2 |) + Σt Max(t.M))

with t along the tranformation in S2.

w(S) =
(w(ī1) + w(ī2) + w(m̄1) + w(m̄2) + w(d̄1) + w(d̄2))

(d.(| I | + | ī1 | + | ī2 |) + ΣtMax(t.M))
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with t along the tranformation in S.

We can see that w(S) ≤ d(I, I ′′) + d(I ′′, I ′).

According the definition of distance between two relations, d(I, I ′) is the miminum
value: d(I, I ′) ≤ w(S).

Then,
d(I, I ′) ≤ d(I, I ′′) + d(I ′′, I ′).

4.6 Continuity theorem

Suppose that max is the maximum value of the measure and | C | is the cardinality
of dimension C.

Theorem 4.6.1. If the distance between two data warehouses is smaller than ε then
the distance between two answers on C is smaller than | C | .max.ε.

Proof. The answer to the query QI
C for the component on the value c.

QI
C=c =

∑
t.C=c t.M∑
t.M

Consider the worst case for a table T in Table 4.1 with N tuples. There are ε.N
tuples having t.C = c and t.M = max. All (N − ε.N) other tuples having t.M = 1.
Suppose that we delete all tuples whose t.C = c and t.M = max.

ID B C M

1 c max

... ... ... ...

ε.N c max

ε.N + 1 a 1

... ... ... ...

N a 1

Table 4.1: Table T.

The answer for the query QI′
C whose component on the value c.

QI′

C=c = 0

So, we have the distance between two answers on the value c:
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| QI
C=c −QI′

C=c |=|
max.ε.N∑

t.M
− 0 |= max.ε.N∑

t.M

⇒| QI
C=c −QI′

C=c |=
max.ε.N

(N − ε.N).1 + ε.N.max

⇒| QI
C=c −QI′

C=c |=
max.ε

1− ε+ ε.max

⇒| QI
C=c −QI′

C=c |≤ max.ε

With a union bound for c1, ..., ck ∈ C, the distance between two answers:

⇒| QI
C −QI′

C |≤| C | .max.ε

The bound on the error is only meaningful for small values of ε, i.e. ε < |C|.max

4.7 Conclusion

We studies the edit distance for data warehouses. We describe the edit operations:
tuples deletion, tuple insertion and tuple modification. Moreover, we define the
distance betweens two data warehouses. We prove that this edit distance is a metric,
i.e. it is always in [0, 1], symmetric and has the triangular inequality property. We
then prove the continuity theorem.

The edit distance we introduced is adapted to data warehouses, as it guarantees that
close data warehouses imply that the answers to OLAP queries must also be close.
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5
Statistical Model

In the relational model, classical dependencies, such as Functional dependencie
play an important role. For data warehouses, there are some other important
dependencies, in particular statistical dependencies, which we introduce. In this
case, some attributes imply fixed distributions of the measure, and we can then
approximate a data warehouse by some fixed set of distributions.

In this context, we study another method of approximation for query answering.
It is the statistical model. In our model [26], a set of attributes determines f ixed
distributions of the measure M with high probability. In this section, the notion of
statistical dependency is presented. Then, we prove that the OLAP query answering
can be obtained from the statistical model. Finally, we show how to learn the
distributions of statistical dependencies of the model.

5.1 Statistical dependencies

Assume each set of attributes ranges over a finite domain D and let ∆ be the set of
distributions over D. We first define the notion of a distribution for a set of attributes
A1..Ak and then the notion of a statistical dependency, which generalizes the classical
functional dependency. For simplicity, we assume only one attribute A which follows
a distribution σ, and we note σ(a) the probability that A = a. We define A /M if
each value a ∈ A implies a fixed distribution µa over the values of M .

Definition 5.1.1. (Distribution for a set of attributes) A set of attributes A1, .., Ak
follows a distribution σ(A1, .., Ak) on the data warehouse I of size N of an OLAP

35
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schema, if for all a1 ∈ A1, .., ak ∈ Ak,

Probt∈rI [t.A1 = a1, .., t.Ak = ak] = σA1,..,Ak
(a1, .., ak)

The notation t ∈r I means that the tuple t is taken with the uniform distribution
on I.

Let a family of data warehouse I = {I1, .., IN ...} of increasing sizes N of an OLAP
schema. A statistical dependency applies to such a family as the distributions are
limit objects, as for graph limits [22].

Definition 5.1.2. (Statistical dependency) The attribute A over values {a1, ..., ap}
statistically implies M on I, written A/M , if there are fixed distributions µa1 , µa2 , ..., µap
over the domain of M , if for all i = 1, .., p,

lim
N→∞

Probt∈rI [t.M = b/t.A = ai] = µai(b)

Given some statistical dependencies A / M , we map a data warehouse I to the
statistics σA, and σA,Ci

for all the dimensions Ci.

Definition 5.1.3. (Statistical model) Assume that A /M , a statistical model of a
data warehouse I on a schema T is the sequence of distributions σA, σA,Ci

, σCi,Cj
for

the dimensions Ci.

5.2 Relation between the statistical model and

the query answering

We use the statistical model to approximate the answers to OLAP queries. We show
that for a measure M , if there is an attribute A such that A/M , then the distribution
over C.A is enough to approximate an OLAP query over the dimension C.

The advantage of this technique is that the compact structure of the statistical model
makes analysis simpler. Let S be the statistical model for the data warehouse I. Let
Q be the answer and Q̂ be the approximate answer. Figure 5.1 describes the setting.
We can approximate a data warehouse by some fixed set of distributions. Moreover,
we can have the close answer by the statistical model.

5.3 Approximation by the statistical model

5.3.1 Analysis of the measure on one dimension

Let M be the measure in the model, where we approximate all the distributions
Ci, A for the all the dimensions Ci of the OLAP schema. These distributions require
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Figure 5.1: Relation between statistical model and query answering.

O(
∑

i |Ci| ∗ |A|+ |M | ∗ |A|) space, i.e. independent of N .

For each distribution µai , let Avgµ(ai) be the average value of measure with the
distribution µ(ai). Let σ(A,C)(ai, cj) be the probability such that A = ai and C = cj.
We will estimate QI

C=c by

QS
C=cj

=

∑
ai
σ(A,C)(ai, cj) ∗ Avgµ(ai)∑

cj

∑
ai
σC=ci(C.A)(ai) ∗ Avgµ(ai)

and define the approximate answer QS
C .

We fist prove the correct answer for QI
A=ai

when C = A.

5.3.1.1 Analysis of the measure on A

Theorem 5.3.1. Let S be the statistical model with the sequence of distributions
σA, σA,Ci

, σCi,Cj
for the dimensions Ci. Then, QS

A=ai
is equal to QI

A=ai
where

QS
A=ai

=
σ(A)(ai) ∗ Avgµ(ai)∑
ai
σ(A)(ai) ∗ Avgµ(ai)

.

Proof. Assume that N is the number of tuples of the data warehouse. NA=ai is the
number of tuples that A = ai. Let σ(A)(ai) be the probability that A = ai.

σ(A)(ai) =
NA=ai

N
(5.1)

For each distribution µai , let Avgµ(ai) be the average value of measure with the
distribution µ(ai).

Avgµ(ai) =

∑
A=ai

t.M

NA=ai

(5.2)

From (5.1) and (5.2), we have:
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QS
A=ai

=
σ(A)(ai) ∗ Avgµ(ai)∑
ai
σ(A)(ai) ∗ Avgµ(ai)

=

NA=ai

N
∗
∑

A=ai
t.M

NA=ai∑
ai

NA=ai

N
∗
∑

A=ai
t.M

NA=ai

=

1

N
∗
∑

A=ai
t.M∑

ai

1

N
∗
∑

A=ai
t.M

=

∑
A=ai

t.M∑
ai

∑
A=ai

t.M
= QI

A=ai

where t.M is the measure of tuples t.

Example 5.3.1. Consider the special case of an OLAP schema T1 where the data
warehouse I1 (with an attribute A and a measure M) in Table 5.1 contains the tuples:

A M

a1 10

a1 15

a2 10

a2 20

Table 5.1: Data warehouse I1.

We have µa1(10) =
1

2
, µa1(15) =

1

2
and µa1(20) = 0 → Avgµ(a1) =

25

2

µa2(10) =
1

2
, µa2(15) = 0 and µa2(20) =

1

2
→ Avgµ(a2) =

1

2
∗ 10 +

1

2
∗ 20 = 15

Moreover, σ(A)(a1) =
1

2
, σ(A)(a2) =

1

2
.

Hence, we have

QI
A=a1

= QS
A=a1

=
σ(A)(a1) ∗ Avgµ(a1)∑
ai
σ(A)(ai) ∗ Avgµ(ai)

=

1

2
∗ 25

2
1

2
∗ 25

2
+

1

2
∗ 15

=
5

11
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QI
A=a2

= QS
A=a2

=
σ(A)(a2) ∗ Avgµ(a2)∑
ai
σ(A)(ai) ∗ Avgµ(ai)

=

1

2
∗ 15

1

2
∗ 25

2
+

1

2
∗ 15

=
6

11

5.3.1.2 Analysis of the measure on C

We distinguish two cases. The first case is the analysis on C when C and A are
independent. The second case is the analysis on C when C and A are dependent.

5.3.1.3 C and A are two independent attributes for M

We recall the the property of the conditional probability of two independent variables.

Definition 5.3.1. (Independent variables) Let A and C two variables. If they are
independent then:

Pr[A] = Pr[A/C]

Definition 5.3.2. (Two independent attributes) Let A and C be two attributes. C
and A are independent for M if for all ai ∈ A, cj ∈ C,

µ(ai) = µ(ai|C = cj)

Theorem 5.3.2. Let S be the statistical model with the sequence of distributions
σA, σA,Ci

, σCi,Cj
for the dimensions Ci. Then, QS

C=cj
is equal to QI

C=cj
where

QS
C=cj

=

∑
ai
σ(C,A)(cj, ai) ∗ Avgµ(ai)∑

cj

∑
ai
σ(C,A)(cj, ai) ∗ Avgµ(ai)

Proof. From the definition 5.3.2, we have: µ(ai) = µ(ai|C = cj)

For all bk ∈M , let Avgµ(ai) be the average value of measure with the distribution
µai .

Avgµ(ai) =
∑
bk

µai(bk) ∗ bk

Let Avgµ(ai/C = cj) be the average value of measure with the distribution µ(ai/C=cj).

Avgµ(ai/C = cj) =
∑
bk

µ(ai/C=cj)(bk) ∗ bk

Hence,
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Avgµ(ai) = Avgµ(ai/C = cj) (5.3)

Assume that NA=ai,C=cj is the number of tuples such that A = ai and C = cj. Let
σ(C,A)(cj, ai) be the probability such that A = ai and C = cj.

σC,A(cj, ai) =
NA=ai,C=cj

N
(5.4)

Avgµ(ai/C = cj), the average value of measure with the distribution µ(ai/C = ci)
can be calculated as follows:

Avgµ(ai/C = cj) =

∑
A=ai,C=cj

t.M

NA=ai,C=cj

(5.5)

So, we have:

QS
C=cj

=

∑
ai
σC,A(cj, ai) ∗ Avgµ(ai)∑

cj

∑
ai
σ(C,A)(cj, ai) ∗ Avgµ(ai)

=

∑
ai
σ(C,A)(cj, ai) ∗ Avgµ(ai/C = cj)∑

cj

∑
ai
σ(C,A)(cj, ai) ∗ Avgµ(ai/C = cj)

(From (5.3))

=

∑
ai

(
NA=ai,C=cj

N
∗
∑

A=ai,C=cj
t.M

NA=ai,C=cj

)

∑
cj

∑
ai

(
NA=ai,C=cj

N
∗
∑

A=ai,C=cj
t.M

NA=ai,C=cj

)

(From (5.4) and (5.5))

=

∑
ai

(
1

N
∗
∑

A=ai,C=cj
t.M)∑

cj

∑
ai

(
1

N
∗
∑

A=ai,C=cj
t.M)

=

∑
ai

(
∑

A=ai,C=cj
t.M)∑

cj

∑
ai

(
∑

A=ai,C=cj
t.M)

=

∑
C=cj

t.M∑
t.M

= QI
C=cj

where t.M is the measure of tuples t.

Example 5.3.2. Consider the special case of an OLAP schema T2 where the data
warehouse I2 with three attributes in Table 5.2 contains the tuples:
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C1 A M

d a1 10

c a1 10

c a2 10

d a2 20

d a2 10

c a2 20

Table 5.2: Data warehouse I2.

We have µa1(10) = 1 and µa1(20) = 0 → Avgµ(a1) = 10

µa1/C=c(10) = 1 and µa1/C=c(20) = 0 → Avgµ(a1/C = c) = 10

µa1/C=d(10) = 1 and µa1/C=d(20) = 0 → Avgµ(a1/C = d) = 10

µa2(10) =
1

2
and µa2(20) =

1

2
→ Avgµ(a2) =

1

2
∗ 10 +

1

2
∗ 20 = 15

µa2/C=c(10) =
1

2
and µa2/C=c(20) =

1

2
→ Avgµ(a2/C = c) =

1

2
∗ 10 +

1

2
∗ 20 = 15

µa2/C=d(10) =
1

2
and µa2/C=d(20) =

1

2
→ Avgµ(a2/C = d) =

1

2
∗ 10 +

1

2
∗ 20 = 15

Moreover,

σC,A(c, a1) =
1

6
, σC,A(c, a2) =

2

6
, σC,A(d, a1) =

1

6
, and σC,A(d, a2) =

2

6
.

Hence, we have

QI
C=c = QS

C=c =
σC,A(c, a1) ∗ Avgµ(a1) + σC,A(c, a2) ∗ Avgµ(a2)∑

ai
σC,A(c, ai) ∗ Avgµ(ai) +

∑
ai
σC,A(d, ai) ∗ Avgµ(ai)

=
1

2

QI
C=d = QS

C=d =
σC,A(d, a1) ∗ Avgµ(a1) + σC,A(d, a2) ∗ Avgµ(a2)∑

ai
σC,A(c, ai) ∗ Avgµ(ai) +

∑
ai
σC,A(d, ai) ∗ Avgµ(ai)

=
1

2

5.3.1.4 C and A are two dependent attributes for M

In the case that C and A are two dependent attributes for M . We first calculate the
distributions of measure on values cj of C: µcj . Then, for each cj ∈ C, we calculate
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the distributions of tuples on C: σC(ci). The analysis of measure on C = cj is
computed as follows:

QS
C=cj

=
σC(cj) ∗ Avgµ(cj)∑
cj
σC(cj) ∗ Avgµ(cj)

Definition 5.3.3. (Set of independent attributes for M) Let C1, C2, ..., Ck and A
be attributes. C1, C2, ..., Ck and A are independent for M , for all ai ∈ A, c1 ∈
C1, ..., ck ∈ Ck, if

µ(ai) = µ(ai|C1 = c1, C2 = c2) = ... = µ(ai|C1 = c1, ..., Ck = ck)

5.3.2 Analysis of the measure on two dimensions

We analyze in the case when C1, C2, A are independent for M . Moreover, C1, C2, A
are independent variables.

Theorem 5.3.3. Let S be the statistical model with the sequence of distributions
σA, σA,Ci

, σCi,Cj
for the dimensions Ci. Then, QS

C1=c1,C2=c2
is equal to QI

C1=c1,C2=c2

where:

QS
C1=c1,C2=c2

=
σC1,C2(c1, c2) ∗QS

C1=c1∑
c1

∑
c2
σC1,C2(c1, c2) ∗QS

C1=c1

Proof. From the definition of independent variables for M , we have:

µ(ai) = µ(ai|C1 = c1) = µ(ai|C1 = c1, C2 = c2)

For all bk ∈M , let Avgµ(ai) be the average value of the measure with the distribu-
tion µai .

Avgµ(ai) =
∑
bk

µai(bk) ∗ bk

Let Avgµ(ai/C1 = c1, C2 = c2) be the average value of the measure with the
distribution µ(ai/C1 = c1, C2 = c2).

Avgµ(ai/C1 = c1, C2 = c2) =
∑
bk

µ(ai/C1=c1,C2=c2)(bk) ∗ bk
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Hence,

Avgµ(ai/C1 = c1, C2 = c2) = Avgµ(ai/C1 = c1) = Avgµ(ai) (5.6)

Assume that NC1=c1,C2=c2,A=ai is the number of tuples such that C1 = c1, C2 = c2

and A = ai.

Let σ(C1,C2,A)(c1, c2, ai) be the probability such that A = ai and C1 = c1, C2 = c2.

We have C1, C2, A are independent variables. So:

σC1,C2(c1, c2) ∗ σC1,A(c1, ai) = σC1,C2,A(c1, c2, ai) (5.7)

Moreover,

σ(C1,C2,A)(c1, c2, ai) =
NC1=c1,C2=c2,A=ai

N
(5.8)

Avgµ(ai/C1 = c1, C2 = c2), the average value of the measure with the distribution
µ(ai/C1 = c1, C2 = c2) can be calculated as follows:

Avgµ(ai/C1 = c1, C2 = c2) =

∑
C1=c1,C2=c2,A=ai

t.M

NC1=c1,C2=c2,A=ai

(5.9)

Hence,

σC1,C2(c1, c2) ∗QS
C1=c1

= σC1,C2(c1, c2) ∗
∑

ai
σC1,A(c1, ai) ∗ Avgµ(ai)∑

c1

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai)

=

∑
ai
σC1,C2(c1, c2) ∗ σC1,A(c1, ai) ∗ Avgµ(ai)∑

c1

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai)

=

∑
ai
σC1,C2(c1, c2) ∗ σC1,A(c1, ai) ∗ Avgµ(ai/C1 = c1, C2 = c2)∑

c1

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai)

(From (5.6))

=

∑
ai
σC1,C2,A(c1, c2, ai) ∗ Avgµ(ai/C1 = c1, C2 = c2)∑
c1

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai/C1 = c1)

(From (5.6) and (5.7))

=

∑
ai

(
NC1=c1,C2=c2,A=ai

N
∗
∑

C1=c1,C2=c2,A=ai
t.M

NC1=c1,C2=c2,A=ai

)

∑
c1

∑
ai

(
NC1=c1,A=ai

N
∗
∑

C1=c1,A=ai
t.M

NC1=c1,A=ai

)

(From (5.8) and (5.9))
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=

∑
ai

(
∑

C1=c1,C2=c2,A=ai
t.M)∑

c1

∑
ai

(
∑

C1=c1,A=ai
t.M)

=

∑
C1=c1,C2=c2

t.M∑
t.M

(5.10)

We consider the definition QS
C1=c1,C2=c2

:

QS
C1=c1,C2=c2

=
σC1,C2(c1, c2) ∗QS

C1=c1∑
c1

∑
c2
σC1,C2(c1, c2) ∗QS

C1=c1

By using (5.10), we have:

QS
C1=c1,C2=c2

=

∑
C1=c1,C2=c2

t.M∑
t.M∑

c1

∑
c2

∑
C1=c1,C2=c2

t.M∑
t.M

=

∑
C1=c1,C2=c2

t.M∑
t.M

= QI
C1=c1,C2=c2

5.3.3 Analysis of the measure on k dimensions

We analyze in the case when C1, C2, ..., Ck, A are independent for M . Moreover, we
assume that C1, C2, ..., Ck, A are independent variables.

Theorem 5.3.4. Let S be the statistical model with the sequence of distributions
σA, σA,Ci

, σCi,Cj
for the dimensions Ci. Then, QS

C1=c1,...,Ck=ck
is equal to QI

C1=c1,...,Ck=ck

where:

QS
C1=c1,...,Ck=ck

=
σCk−1,Ck

(ck−1, ck) ∗QS
C1=c1,...,Ck−1=ck−1∑

c1
....

∑
ck
σCk−1,Ck

(ck−1, ck) ∗QS
C1=c1,...,Ck−1=ck−1

Proof. We first study with k = 3. We have:

QS
C1=c1,C2=c2,C3=c3

=
σC2,C3(c2, c3) ∗QS

C1=c1,C2=c2∑
c1

∑
c2

∑
c3
σC2,C3(c2, c3) ∗QS

C1=c1,C2=c2

=

σC2,C3(c2, c3) ∗
σC1,C2(c1, c2) ∗QS

C1=c1∑
c1

∑
c2
σC1,C2(c1, c2) ∗QS

C1=c1∑
c1

∑
c2

∑
c3
σC2,C3(c2, c3) ∗

σC1,C2(c1, c2) ∗QS
C1=c1∑

c1

∑
c2
σC1,C2(c1, c2) ∗QS

C1=c1
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By using the definition QS
C1=c1,C2=c2

, we have:

σC2,C3(c2, c3) ∗QS
C1=c1,C2=c2

= σC2,C3(c2, c3) ∗
σC1,C2(c1, c2) ∗QS

C1=c1∑
c1

∑
c2
σC1,C2(c1, c2) ∗QS

C1=c1

= σC2,C3(c2, c3) ∗
σC1,C2(c1, c2) ∗

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai)∑

c1

∑
ai
σ(C1,A)(c,ai) ∗ Avgµ(ai)∑

c1

∑
c2
σC1,C2(c1, c2) ∗

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai)∑

c1

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai)

=

σC1,C2,C3(c1, c2, c3) ∗
∑

ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai)∑

c1

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai)∑

c1

∑
c2
σC1,C2(c1, c2) ∗

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai)∑

c1

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai)

=

∑
ai
σC1,C2,C3,A(c1, c2, c3, ai) ∗ Avgµ(ai)∑
c1

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai)∑

c1

∑
c2

∑
ai
σC1,C2,A(c1, c2, ai) ∗ Avgµ(ai)∑

c1

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai)

(By using (5.7))

=

∑
ai
σC1,C2,C3,A(c1, c2, c3, ai) ∗ Avgµ(ai/C1, C2, C3)∑

c1

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai/C1)∑

c1

∑
c2

∑
ai
σC1,C2,A(c1, c2, ai) ∗ Avgµ(ai/C1, C2)∑
c1

∑
ai
σ(C1,A)(c1, ai) ∗ Avgµ(ai/C1)

(By using (5.6))

=

∑
ai

NC1=c1,C2=c2,C3=c3,A=ai

N
∗ Avgµ(ai/C1, C2, C3)∑

c1

∑
ai

NC1=c1,A=ai

N
∗ Avgµ(ai/C1)

∑
c1

∑
c2

∑
ai

NC1=c1,C2=c2,A=ai

N
∗ Avgµ(ai/C1, C2)∑

c1

∑
ai

NC1=c1,A=ai

N
∗ Avgµ(ai/C1)

(By using (5.8))

=

∑
ai

NC1=c1,C2=c2,C3=c3,A=ai

N
∗
∑

C1=c1,C2=c2,C3=c3,A=ai
t.M

NC1=c1,C2=c2,C3=c3,A=ai∑
c1

∑
ai

NC1=c1,A=ai

N
∗
∑

C1=c1,A=ai
t.M

NC1=c1,A=ai

∑
c1

∑
c2

∑
ai

NC1=c1,C2=c2,A=ai

N
∗
∑

C1=c1,C2=c2,A=ai
t.M

NC1=c1,C2=c2,A=ai∑
c1

∑
ai

NC1=c1,A=ai

N
∗
∑

C1=c1,A=ai
t.M

NC1=c1,A=ai

(By using (5.9))
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=

∑
ai

∑
C1=c1,C2=c2,C3=c3,A=ai

t.M

N∑
c1

∑
ai

∑
C1=c1,A=ai

t.M

N

∑
c1

∑
c2

∑
ai

∑
C1=c1,C2=c2,A=ai

t.M

N∑
c1

∑
ai

∑
C1=c1,A=ai

t.M

N

=

∑
C1=c1,C2=c2,C3=c3

t.M∑
t.M

(5.11)

By using (5.11),

QS
C1=c1,C2=c2,C3=c3

=
σC2,C3(c2, ..., c3) ∗QS

C1=c1,C2=c(2∑
c1

∑
c2

∑
c3
σC2,C3(c2, ..., c3) ∗QS

C1=c1,C2=c(2

=

∑
C1=c1,C2=c2,C3=c3

t.M∑
t.M∑

c1

∑
c2

∑
c3

∑
C1=c1,C2=c2,C3=c3

t.M∑
t.M

=

∑
C1=c1,C2=c2,C3=c3

t.M∑
t.M

= QI
C1=c1,C2=c2,C3=c3

(5.12)

From (5.12), the theorem is hold with k = 3. We prove the theorem is hold with an
arbitrary k. By using the development technique such the case k = 3, we have

σCk−1,..,Ck
(ck−1, ..., ck) ∗QS

C1=c1,...,Ck−1=ck−1
=

= σCk−1,..,Ck−1
(ck−1, ..., ck) ∗

σCk−2,..,Ck−1
(ck−2, . . . , ck−1) ∗QS

C1=c1,...,Ck=ck−2∑
c1
. . .

∑
ck−1

σCk−2,..,Ck−1
(ck−2, . . . , ck−1) ∗QS

C1=c1,...,Ck−2=ck−2

=

∑
C1=c1,...,Ck=ck

t.M∑
t.M

(5.13)

By using (5.13),
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QS
C1=c1,...,Ck=ck

=
σCk−1,Ck

(ck−1, ck) ∗QS
C1=c1,...,Ck−1=ck−1∑

c1
....

∑
ck
σCk−1,Ck

(ck−1, ck) ∗QS
C1=c1,...,Ck−1=ck−1

=

∑
C1=c1,...,Ck=ck

t.M∑
t.M∑

c1
....

∑
ck

∑
C1=c1,...,Ck=ck

t.M∑
t.M

=

∑
C1=c1,...,Ck=ck

t.M∑
t.M

= QS
C1=c1,...,Ck=ck

From the above theorem, we see that there is the binary relationship between
QS
C1=c1,...,Ck=ck

and QS
C1=c1,...,Ck=ck−1

. Moreover, we need only binary distributions
to approximate answers. In Chapter 7, we will present the design for counters to
evaluate the exact distributions.

5.4 Learning a statistical model by sampling

To learn the statistical model, we can sample with uniform distribution to find the
approximation of distributions σ. We use the (ε, δ)-approximate algorithm where
ε is the error and 1 − δ is the confidence. The number of samples must follows a
function of ε and δ.

In the next lemma, the distribution C.A can be approximated with the error ratio ε
and the confidence 1− δ by sampling m tuples.

Lemma 5.4.1. We can ε-approximate the distribution over C.A with probability

1− δ if m >
1

2
.(
|C| ∗ |A|

ε
)2. log

1

δ
samples and N large enough.

Proof. We approximate the distribution σC.A(cj, ai) by the density of tuples for all
values cj ∈ C and ai ∈ A. We consider m uniform samples. Let

d1(j, i) =
|{t : t.C = cj ∧ t.A = ai}|

m

As
∑

j,i d1(j, i) = 1, we interpret d1 over the values cj ∈ C and ai ∈ A as σC.A(cj, ai).
Let us show that d1 and σC.A(cj, ai) are ε-close.

For each cj ∈ C and ai ∈ A, let Xk = 1 if the k-th tuple of Î is such that t.C = cj
and t.A = ai. Otherwise, Xk = 0.
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then

IE(Xk) = σC.A(cj, ai) and d1(j, i) =

∑
kXk

m

and,

IE(d1(j, i)) = IE(

∑
kXk

m
) = σC.A(cj, ai)

.

As the tuples are taken independently, we can apply a Chernoff-Hoeffding bound [16]
with the absolute error form.

Pr[| d1(j, i)− IE(d1(j, i)) |≥ t] ≤ e−2t2.m

In this form, t is the error and δ = e−2t2.m is the confidence. We set t =
ε

| C | ∗ | A |
,

and δ = e−2t2.m and conclude that if m >
1

2
.(
| C | ∗ | A |

ε
)2. log

1

δ
then:

Pr[| d1(j, i)− σC.A(cj, ai) |≤
ε

| C | ∗ | A |
] ≥ 1− δ.

With a union bound on ∀cj ∈ C and ∀ai ∈ A, we conclude that:

Pr[(
∑
cj

∑
ai

| d1(j, i)− σC.A(cj, ai) |) ≤ ε] ≥ 1− δ

We now describe how to approximate OLAP queries, assuming A / M for some
attribute A. To answer the OLAP query on dimension C, it is enough to keep
the distribution over C.A. For the same reason, as in the previous lemma, we can
approximate the distribution C.A.

Theorem 5.4.1. If A /M , we can ε-approximate QI
C by QS

C with probability 1− δ

if m > (
|C|
ε

)2. log
1

δ
samples and N large enough.

Proof. We consider each QI
C which is ε/2-approximated by QÎ

C for m > (
|C|
ε

)2. log
1

δ
.

But IE(QÎ
C) = QS

C , hence we can also apply the Hoeffding bound and conclude that



5.5. CONCLUSION 49

QS
C ε/2-approximates QÎ

C for m > (
|C|
ε

)2. log
1

δ
. By the triangular inequality, we get

the theorem.

5.5 Conclusion

We have just presented a new approximate method for OLAP query answering. With
the statistical model, to find the close answers, we need only the informations about
statistical dependencies. If the statistical dependencies exist in data warehouse, we
showed also how to approximate the distributions of statistical dependencies and
the distribution of some attributes. The advantage of this method is the compact
structure. It requires only small space and small time to approximate. It makes the
simpler analysis of approximation.

We can apply the method of statistical model when we had known the existence of
statistical dependencies in data warehouse. So, how can we discover all statistical
dependencies when we don’t have their informations. The chapter 8 will give us the
mining of this kind of dependencies.

The next chapter continues to study the approximation in the OLAP data exchange
context where a data warehouse is also build from some different sources.
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6
OLAP Data Exchange

6.1 Context

In the context of OLAP data exchange in Figure 6.1 , we consider the situation
where k different sources feed a data warehouse I. For example, the relation I1 of
source S1 feeds the data from England, the relation I2 of source S2 feeds the data
from France, etc. We want to select Îi made of mi samples from each source and
define Îe = Î1 ∪ Î2 ∪ ... ∪ Îk where each Îi follows the uniform distribution. We ask
which mi guarantee that any OLAP query Q on I will be well approximated by Îe.
We first consider the uniform distribution, the measure-based distribution and the
statistical model.

6.2 Approximation with the uniform

distribution

If each source corresponds to a unique attribute value b ∈ B (country for example),
let rB be the distribution which gives the density of tuples of each source. If
rB(U.K) = 1/4, then 1/4 of the tuples of the target come the source “U.K” and
each source is identified with a specific country. We say that I is the union on B of
I1, I2, ..., Ik if there are k distinct sources corresponding to k different countries.

We will select Îi with mi = m ∗ rB(bi) in Ii with the uniform distribution, and let

Îe = Î1 ∪ Î2 ∪ ... ∪ Îk.

51
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     ...   …  

Data warehouse 

Source S1 

Source S2 

Source Sk  Source Si 

Figure 6.1: An OLAP data exchange context.

We want to guarantee the approximation of any OLAP query, using Îe for any
attribute.

Theorem 6.2.1. If m ≥ 1

2
.(
|C|
ε

)2. log
1

δ
and mi = m ∗ rB(bi) uniform samples

are selected in each Ii, then the answer QÎe
C1,...,Cp

to any query Q on dimensions

C1, . . . , Cp, is ε-close to QI
C1,...,Cp

with probability 1− δ.

Proof. In N tuples of the target, we have N ∗ rB(bi) tuples of the source i. Notice

that in Îe, we have exactly mi tuples in Ii.

Consider a uniform sampling Îu of m tuples on I. If we expect mi tuples for each
source, what is the probability to get mi tuples in m tuples? We can show that the
probability to get the number of tuples in the interval [mi(1− ε),mi(1 + ε)] is large
by using Chernoff-Hoeffding bound.

So, any time we have m tuples on I, the number of tuples of each source i is ε-close
to mi. In the worst case, we can delete ε ∗mi tuples. For the relative distribution, it
has the small impact because the measure is bounded.

Hence, the answers is close in the sense that the probability that we get mi tuples in
[mi(1− ε),mi(1 + ε)] is large. And from that, the error of making a query is proved
as follow:

In the case of a single dimension C, we can show that,

Pr[| QÎu
C −Q

Îe
C |≤ ε] ≥ 1− δ
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We use the Chernoff-Hoeffding bound [16] and a union bound (as in the case of
sampling):

Pr[| QI
C −QÎu

C |≤ ε] ≥ 1− δ

With the triangular inequality, we conclude that:

Pr[| QI
C −QÎe

C |≤ 2.ε] ≥ 1− δ

6.3 Approximation with the measure-based

distribution

In the case of the measure-based distribution ÎM , we can’t take mi samples on each
source Ii with the distribution ÎM,i, because the union of such samples determines

a distribution which may be far from ÎM on I. It is possible that the source 1 has
very low measures and high density (3/4 for example), whereas, the source 2 has
large measures and low density (1/4). In IM the density of the tuples of source 2
will be higher than 1/4 because less tuples of source 1 will be selected. How could
we combine the sources in this case?

If B follows the distribution rB, let µ(bi) the distribution of the measure for the value
B = bi, i.e. for the source i, and let Avgµ(bi) be the average of this distribution.

Let us define m′i by:

m′i = m ∗ rB(bi) ∗ Avgµ(bi)∑
i rB(bi) ∗ Avgµ(bi)

A theorem similar to Theorem 6.2.1 could then be stated, where we replace the mi

uniform samples on each source Ii by m′i samples with the measure-based distribution

on each source. Let Îe = Î1 ∪ Î2 ∪ ...∪ Îk where each Îi is the set of samples of source
i with the measure-based distribution.

Theorem 6.3.1. If m ≥ 1

2
.(
|C|
ε

)2. log
1

δ
and m′i = m∗ rB(bi) ∗ Avgµ(bi)∑

i rB(bi) ∗ Avgµ(bi)
samples

are taken in each source i, then the answer QÎe
C1,...,Cp

to any query Q on dimensions

C1, . . . , Cp, is ε-close to QI
C1,...,Cp

with probability 1− δ.

Proof. Consider a measure-based sampling ÎM of m tuples on I.

Let NB=bi be the number of tuples such that B = bi.
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rB(bi) ∗ Avgµ(bi)∑
i rB(bi) ∗ Avgµ(bi)

=

NB=bi

N
∗
∑

B=bi
t.M

NB=bi∑
i

NB=bi

N
∗
∑

B=bi
t.M

NB=bi

=

∑
B=bi

t.M∑
t.M

With the measure-based sampling, if a tuple is selected, its measure is replaced by 1.
So, we have

rB(bi) ∗ Avgµ(bi)∑
i rB(bi) ∗ Avgµ(bi)

=

∑
B=bi

t.M∑
t.M

=

∑
B=bi

1

m
=
NB=bi

m

Hence,
rB(bi) ∗ Avgµ(bi)∑
i rB(bi) ∗ Avgµ(bi)

is the density of tuples of each source.

The m tuples contain approximately m′i = m ∗ rB(bi) ∗ Avgµ(bi)∑
i rB(bi) ∗ Avgµ(bi)

tuples of the

source i, with high probability, distributed with the measure-based distribution on Ii.
The error of answers is relative to the error of number of tuples mi. So, the difference
for each component of query answer is small.

In the case of a single dimension C, we can show that:

Pr[| QÎM
C −Q

Îe
C |≤ ε] ≥ 1− δ

We use the Chernoff-Hoeffding bound [16] and a union bound (as in the case of
sampling):

Pr[| QI
C −Q

ÎM
C |≤ ε] ≥ 1− δ

With the triangular inequality, we conclude that:

Pr[| QI
C −QÎe

C |≤ 2.ε] ≥ 1− δ

6.4 Approximation by the statistical model in

data exchange

6.4.1 Conditions for the approximation

In a data exchange setting, we can apply the same analysis as in the previous section
if we assume the same type of statistical model for each source. We need to combine
both hypothesis:
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• For each source, there is the same attribute A such that A / M ,

• Each source corresponds to a distinct attribute value b ∈ B and B follows a
fixed distribution in the data warehouse ri

We can then combine the results of the preceding sections and determine:

• The approximate models of each source, i.e. the distributions σC,A on C.A, for
each source j = 1, ..., k.

• The weight mi of each source computed as in theorem 6.2.1, such that
∑

imi =
m from the distribution σB. In this case, it is simpler to assume the uniform
distribution on each source.

6.4.2 Different evaluation methods

We suppose that the data warehouse is built from three different sources. The density
of tuples or the rate of each source in the target data warehouse is different. Assume

that the rate of source 1 is r1 =
m1

m
. The rate of sources 2 and 3 are r2 =

m2

m
and

r3 =
m3

m
.

Let Qk
C=cj

be the approximation of Q on C = cj by source k. Then, QS
C=cj

the
approximation by the statistical model is computed by one of three following methods:

1. The first way (described in Figure 6.2): the distributions σC.A(cj, ai) are
estimated by the target. The target does not stock the tuples. It stocks the
distributions. This method is adapted to streaming data, described further in
the next chapter. When new tuples arrive, we update σC.A(cj, ai).

2. The second way (described in Figure 6.3): the target asks each source to
estimate σC.A(cj, ai). Then, these informations are sent and updated in the
target when we need to approximate the answers.

3. The third way (described in Figure 6.4): the target asks each source its answer
to the query. Then, these answers are sent to the target which then interpolate
in order to approximate the global answer.

Theorem 6.4.1. If A / M on each source, we can ε-approximate QI
C by QS

C =∑
k

mk

m
∗Qk

C with probability 1− δ if m > (
|C|
ε

)2. log
1

δ
samples and N large enough.
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Figure 6.2: Statistical computation by the target.

Figure 6.3: Statistical computation by the sources.

Proof. Consider a uniform sampling Îu on I. It will contain approximately mi tuples
of each source, with high probability, distributed uniformly on Ii. Hence, QS

C is close

to QÎu
C .

In the case of a single dimension C,

Pr[| QÎu
C −Q

S
C |≤ ε] ≥ 1− δ

We use the Chernoff-Hoeffding bound [16] and a union bound (as in the case of
sampling):
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Figure 6.4: Approximate answer at each source.

Pr[| QI
C −QÎu

C |≤ ε] ≥ 1− δ

With the triangular inequality, we conclude that:

Pr[| QI
C −QS

C |≤ 2.ε] ≥ 1− δ

6.5 Conclusion

This chapter presents the techniques to approximate OLAP queries for a data
warehouse, which combines different sources. The number of samples on each source
depends on the sampling technique. Different answers can be used for the statistical
model, on the union of the sources. They all give close answers with ε accuracy
and 1− δ confidence.
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7
Streaming Data

7.1 Context

We now consider the construction of data warehouses. Where do the data come from?
In the Data Exchange setting, several Sources send their tuples to a Target database.
They may be modified by the Target and will end up in the Data Warehouse. This
process is called ETL (Extract, Transform, Load) and is well automated.

There are many applications where the Sources continuously send their tuples to
various clients. Sensors may send their data periodically to a central site and News
Sources (BBC, CNN,..) send RSS feeds to their subscribers whenever new information
arises. In both cases, these sources send XML data, which can be easily converted
into a tuple of a relation. We view these tuples as Streams, which can be stored in a
data warehouse.

In the Streaming model, data flows continuously and one of main questions is whether
we need to store it or whether we can replace it by a much smaller memory. In precise
terms, can we replace data of size O(n) by some other data of size O((log n)k), i.e.
of size polylogarithmic in order to answer specific queries? In our situation, we want
to approximately answer OLAP queries. We first consider a lower bound, directly
obtained from Communication Complexity, and then proceed with approximate
solutions, first with blocks of the stream and then with a learning method, when the
data follow a statistical model.

The stream is the sequence of tuples t1, ..., tn of the data warehouse I. In Figure 7.1

59



60 CHAPTER 7. STREAMING DATA

Figure 7.1: Streaming model.

for the schema 9.5, ti = (i, s1, 3, 12, 2010, 7, 2) stating that sensor s1 measures 7
hours of sunlight and 2 hours of rain on December 3rd 2010. The auxiliary tables
such as C(CITY,COUNTRY) are fixed and independent of the stream.

7.2 Lower Bounds on the space complexity for

unbounded domains

Communication Complexity [21] studies the number of bits Alice and Bob must
exchange to compute a function f(x, y) when Alice holds x and Bob holds y. In a
Protocol P (x, y) which combines the decisions of both Alice and Bob, the complexity
of P (x, y) is the number of bits |P (x, y)| sent between Alice and Bob, i.e. C(P ) =
Maxx,y|P (x, y)|. Let D(f) be the Minimum C(P ) over all deterministic protocols to
compute the function, i.e. D(f) = MinPC(P ) and Rε(f) be the Minimum C(P ) over
randomized protocols with public coins and error ε, i.e. Prob[P (x, y) 6= f(x, y)] ≤ ε,
Rε(f) = MinPC(P ). In the one-way model, only Alice sends bits to Bob. In this

case, we define the one-way Communication Complexity
−−−→
D(f) and

−−−→
Rε(f) as before.

The memory M used by a deterministic (resp. randomized) streaming algorithm is
always less then D(f) (resp. Rε(f)). Suppose a streaming algorithm computes f(X)
and let us write the stream X = x|y as the concatenation of the input x with the
input y. We can conceive the protocol where Alice transmits the Memory content
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M to Bob who can then computes f(X). Hence
−−−→
D(f) ≤M .

Therefore a lower bound on the Communication Complexity provides a lower bound
on the space of a streaming algorithm. If x, y ⊆ {1, 2, ..., n}, let DISJ (x, y) = 1

if x ∩ y = ∅ and 0 otherwise. A classical result shows that
−−−→
D(f) = O(n) and

−−−→
Rε(f) = O(n).

Consider the special case of an OLAP schema S where the data warehouse I3 contains
the tuples:

A M

a1 1

a2 1

... ...

an 1

Table 7.1: Data warehouse I3.

A typical situation is when m is known, but n is unknown The frequency fj = |{i ∈
[1;n], ai = j}|, j ∈ [1;m]. The moments Fk =

∑m
j=1(fj)

k and F∞ = max
j
fj. Notice

that F0 is the number of distinct values j, whereas F1 = n and F2 is the repeat rate.

Classical results show that F0 can be estimated with randomized algorithms with
a memory of O(logm), F1 with a memory of O(log(log n)), and F2 with a memory
O(log n+ logm).

In this case, we have one dimension (the first attribute) and all tuples have the same
measure, hence the analysis on A counts the number of occurrences of the ai. In this
case F∞ is hard to approximate and we can reduce the approximation of F∞ to the
approximation of the OLAP query on A. Let A[j] the density of the elements ai = j.

Theorem 7.2.1. The approximation of the OLAP query on dimension A requires a
memory O(n), i.e. proportional to the length of the stream. [26]

Proof. We use the classical reduction from DISJ (x, y) to F∞. Let x, y ∈ {0, 1}n be
the input to DISJ and let Xx = i1, i2, ...., ik for ij ∈ {1, 2, ..., n} such that ij < ij+1

and xij = 1. For example if x = 011101 then Xx = {2, 3, 4, 6}. If x ∩ y = ∅ then
F∞ = 1 and if x ∩ y 6= ∅ then F∞ = 2. Therefore if we could approximate F∞, we
could decide DISJ . In our context, the approximation of the heaviest component
is precisely F∞, i.e. there is a j such that A[j] ∗ n = F∞. As DISJ (x, y) requires
Ω(n) space for any randomized protocol, so does the approximation of the OLAP
query on A.
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As the answer to OLAP queries requires Ω(n) space, we can only hope for gains of
constant factors, in the general case.

7.3 Bounded domains

The previous lower bound implicitly uses the fact that j ∈ [1;m] and m is arbitrarily
large. In our situation, most of the dimension attributes Ci range over finite domains,
except for the time attribute T .

T C B A M

t1 c1 b1 a1 10

t2 c2 b2 a2 20

... ... ... ... ...

Table 7.2: Data warehouse I4.

In this example, the attribute T (time) has an an unbounded domain, whereas
C,B,A range over a finite domain D. If we assume that A /M , and that B,C are
independent of A for M , we need the distributions:

• σA for the analysis on A

• σB,A for the analysis on B

• σC,A for the analysis on C

• σC,B for the analysis on C,B

Each distribution is kept in matrices of size |D| or |D|2, used as counters.

• A[i] stores N ∗ σA(ai)

• BA[i, j] stores N ∗ σB,A(bi, aj)

• CA[i, j] stores N ∗ σC,A(ci,aj)

• CB[i, j] stores N ∗ σC,B(ci,bj)

For each tuple t of the stream, we just update the counters:

• if t.A = ai, we increase A[i] of +1
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• if t.B = bi ∧ t.A = aj, we increase BA[i, j] of + 1

• if t.C = ci ∧ t.A = aj, we increase CA[i, j] of +1

• if t.C = ci ∧ t.B = bj, we increase CB[i, j] of +1

The design for counters in Table 7.2.

Figure 7.2: Design of counters.

7.4 Design of counters for the analysis on more

than one dimension

In the case the analysis on more than one dimension, we need only the counter for
the binary distributions: σA, σCi,A and σCi,Cj

. All these distributions are binary
and suffice to answer OLAP queries on many dimensions. σCi,...,Ck,...,Cj

which would
require a lot more space.

The approach in this section is to organize the minimal number of counters, hence
of space, to evaluate the exact distributions σ. Notice, that we compute exact
distributions in this case.
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7.5 Conclusion

In this chapter, we describe the context of streaming data where a data warehouse is
built by different data streams. We showed lower bounds on the space complexity
for unbounded domains. We introduce specific counters to evaluate the distributions
of a statistical model. This approach optimizes the memory space.
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8
Mining Statistical Dependencies

8.1 Introduction

In this chapter, we describe a method to discover the statistical dependencies. In
general, we may not know these dependencies. We are looking for them based on
the decision tree.

The statistical dependencies generalize the classical functional dependencies as we
explain in Chapter 5. In a statistical dependency, a set of attributes determines fixed
distributions of the measure, with high probability.

Decision trees represent a functional dependency as they visualize how the values of
few attributes such as A,B can predict the value of a target attribute. In another
context, the measure M is the target attribute. The decision tree is generalized in
Figure 8.1.

In class decision tree, we try select some attributes based on the information gain.
In an exact decision tree, each leaf presents the value of the target attribute M . In
this case, this value is predict with high probability. In the case of an approximate
decision tree, each leaf predicts the distribution of the target.
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Figure 8.1: Generalize the decision tree

8.2 Entropy and information gain

The entropy of a source S, as a distribution over finite is defined as

Entropy(S) =
∑
i

−pilog2pi

where pi is the probability that S is equal i.

The information gain of the attribute A, Gain(S,A), of the distribution S, is define as

Gain(S,A) = Entropy(S)−
∑

v∈V alues(A)

| Sv |
| S |

Entropy(Sv)

where V alues(A) is the set of all possible values for attribute A, and Sv is the subset
of S for which attribute A has value v (i.e., Sv = s ∈ S | A(s) = v).

Note the first term in the definition for Gain is just the entropy of the original source
S. The second term is simply the sum of the entropies of each subset Sv, weighted
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by the fraction of examples
| Sv |
| S |

that belong to Sv. Gain(S,A) is therefore the

expected reduction in entropy caused by knowing the value of attribute A.

In classical data mining, we select attributes according to the maximal information
gain. Given a set of m0 samples for which we know all the attributes, we partition it
randomly into a set L (learning set) and a set T (testing set) of equal size. Given L,
we construct a decision tree, which provides a prediction of M for tuples. We can
then compare for each tuple of T, the prediction with the real value. This determines
the error rate, which we want to maintain at ε (about 10%).

8.3 Criteria of mining statistical dependencies

Given a set of m0 tuples for which we know the measure, we randomly divide it into
3 sets of approximate equal sizes: two learning sets L1 and L2 and a testing set T .
This is a fundamental difference with the classical method.

For each attribute A and each value ai, we can estimate the distribution µ1(ai),
i.e. the distribution of the target values for L1 and similarly for L2. We can then
estimate the distances between the two distributions and define

d(A) =
∑
i

|µ1(ai)− µ2(ai)|1

Given the two learning sets L1 and L2, we can observe the following indicators:

1. The information gain of each attribute A for L1,

2. The information gain of each attribute A for L2,

3. For each attribute A, the distance d(A).

In our context the main criteria is the distance and we want to find attributes such
that d(A) is small. If no attribute satisfies this criteria, we look for pairs Ai, Aj , and
then triples and so on.

If there is a functional dependency A− > M , the information gain is maximal in
L1 and in L2, and the distance between the two distributions is null. If we tolerate
errors, the distance would be small.

However, there may be a small distance and a low information gain, and even a zero
information gain. This is is achieved with the uniform distributions on the measure.
In this case, the distance d(A) remains small.
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The small distance criteria is hence more general than the information gain and
allows us to generalize the construction of decision trees. We can conceive the
following algorithm.

8.4 Algorithm

The basic learning technique is to compute d(Ai) for each attribute Ai, and eventually
d(Ai, Aj) for pairs of attributes, d(Ai, Aj, Ak) for triples of attributes and so on.

We first test if (d(Ai) < ε). If it is the case, Ai is a potential dependency Ai /M but
we need to test it, using the set T . Let us define the learnt distribution µ(ai) as:

µ(ai) = (µ1(ai) + µ2(ai))/2

It is indeed the distribution on all the learning tuples, in L1 ∪ L2.

In order to test µ(ai), we first compute the analogue distribution δ(ai) on the test
set T , i.e. the distribution of the measures of tuples in T for which A = ai. We then
test if |µ(ai)− δ(ai)|1 < ε. This generalizes the classical test in a decision tree.

Data: Two training sets L1, L2, a test set T and a parameter ε
Result: A set of statistical dependencies S
/ * Mining for unique attributes */ ;
for each Ai do

Compute d(Ai) from L1 and L2: d1(A) =
∑

i |µ1(ai)− µ2(ai)|1 ;
if d1(A) ≤ ε then

µ(ai) =
(µ1(ai) + µ2(ai))

2
;

if d2(A) =
∑

i |µ(ai)− δ(ai)|1 < ε then
S = S ∪ {Ai / M};

end

end

end
if no unique attribute is found then

Look for pairs, triplets, ...;
end

Algorithm 3: Mining algorithm
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8.5 Graphic representation of statistical

dependencies

Suppose that the measure M has 10 possible values and we have discovered the
statistical dependency A,B /M . ∀ai ∈ A, ∀bj ∈ B, and ∀mk ∈M , each tuple (ai, bj)
predicts the distribution of mk when A = ai and B = bj.

µ(ai,bj)(mk) = Pr(t.M = mk/t.A = ai, t.B = bj)

Assume that there are three types of distributions on leaves of this tree: µ1, µ2 and
µ3. Where µ1 = {µ1(ai,bj)(mk)}, µ2 = {µ2(ai,bj)(mk)} and µ3 = {µ3(ai,bj)(mk)}.The
decision tree represents this dependency in Figure 8.2.

 

a1 a2 a3 a4 

b1 b2 b3 

μ1 μ2 

μ3 

Figure 8.2: Statistical decision tree

8.6 Conclusion

In this chapter, we introduce an algorithm to discover statistical dependencies. We
describe the graphic representation of statistical dependencies. In our statistical
decision trees, some attributes predict the distribution of values of the target attribute
with high probability.
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9
Implementation

In this chapter, we present the environment to test our algorithms, the programs
to create data warehouses. Then, we apply our algorithms on these data bases to
evaluate results of approximation and of mining of statistical dependencies.

9.1 Environment

We use MySQL for the relational data, Mondrian for OLAP engine and an improved
version of JPivot where answers are graphically represented by multi-dimensional
pie-charts.

9.1.1 Mondrian

9.1.1.1 Introduction

The decision-making system Mondrian [5, 17] is an OLAP engine written in Java.
It allows to interactively analyze the very large datasets stored in the database
management system. It reads data from a relational database and displays the results
in a multidimensional format via a Java application programming interface (API).

9.1.1.2 Architecture

The Mondrian OLAP system consists of four layers [5, 17] from the end user to the
data center. These layers in Figure 9.1 are: the presentation layer, the calculation
layer, the aggregation layer and the storage layer.

71



72 CHAPTER 9. IMPLEMENTATION

Figure 9.1: Mondrian architecture [5].

• ”Presentation layer: the presentation layer determines what the user sees on
the screen and how we can interact with it to make new requests. There are
several ways to present sets of multidimensional data, including pivot tables,
pie, line and bar charts, and advanced visualization tools such as clickable maps
and dynamic graphics. They can be written in Swing or Java Script Pages
(JSP), format tables outgoing Joint Photographic Experts Group (JPEG) or
Graphics Interchange Forrnat (GIF) or transmitted to a remote application via
XML. That all these forms of presentation have in common is the ”grammar”
of dimensions, measures and cells in which the presentation layer asks the
query and OLAP server returns an answer”[5, 17].

• ”Calculation layer: the second layer parses, validates and executes MDX queries
(MDX stands for ’multi-dimensional expressions’. It is the main query language
implemented by Mondrian). A query is evaluated in multiple phases. The axes
are computed first, then the values of the cells within the axes. For efficiency,
the calculation layer sends cell-requests to the aggregation layer in batches. A
query transformer allows the application to manipulate existing queries, rather
than building an MDX statement from scratch for each request. And metadata
describes the the dimensional model, and how it maps onto the relational
model” [5, 17].
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• ”Aggregation layer: this layer is responsible for maintaining an aggregate cache.
An aggregation is a set of measure values (’cells’) in memory, qualified by a
set of dimension column values. The calculation layer sends requests for sets
of cells. If the requested cells are not in the cache, or derivable by rolling up
an aggregation in the cache, the aggregation manager sends a request to the
storage layer”[5, 17].

• ”Storage layer: the storage layer is a Databases Management Systems (DBMS).
It is responsible for providing aggregated cell data and members from dimension
tables”[5, 17].

These components can all exist on the same machine, or can be distributed between
machines. Layers 2 and 3, which comprise the Mondrian server, must be on the
same machine (in Figure 9.1, layers 2 and 3 are situated in the second part of this
structure). The storage layer could be on another machine, accessed via remote
JDBC connection. In a multi-user system, the presentation layer would exist on each
end-user’s machine.

In the next sub section, we see how Mondrian displays the results of queries via the
interface JPivot.

9.1.2 JPivot

9.1.2.1 Introduction

JPivot [4] is a graphic interface that allows users to perform OLAP queries and to see
answers. The new version of JPivot in our implementation is improved by Tsuyoshi
Sugibuchi (buchi@lri.fr). The interface adds new icons which allows users to select
and upload schemas. Moreover, this interface implemented new styles of chart such
as pie chart, bar chart line chart and hpie chart.

9.1.2.2 Interface

The interface JPivot is composed of a tool bar and two lists to create the queries.
An answer is displayed via a data table and a chart. The Figure 9.2 provides an
overview of the interface.

We can categorize all icons of the toolbar according to their functions as follows:

1. Group of icons to manage dimensions

2. Group of icons to select and upload schemas

3. Group of icons to choose modes of display of tables
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Figure 9.2: Jpivot interface.

4. Group of icons of navigation

5. Group of icons to manage charts

6. Group of icons to print or to export data

7. List to select one schema

8. List to choose measures, dimensions and filters for a query

9. Data table of query answering

10. Chart of query answering

9.1.2.3 Performance

We present the steps from creating a query to the answer of query.
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• Step 1: choose an OLAP schema in the list of region 7

• Step 2: select all components for a query in region 8: measures, dimensions
and filter.

• Step 3: by clicking in the button ‘OK’ of region 8 to fixe the query, Mondrian
will return the answer by an interactive and clickable pivot table in region 9. In
this pivot table, we can perform OLAP navigations. Besides of pivot table, the
icons of group 5 allow to see chart of this answer. We present Figure 9.3 which
is an example of the multi dimensional pie-charts available for the JPivot tool.
The number of dimensions is arbitrary.

Figure 9.3: Analysis of sun over country and manufacturer.

To design cube schemas, we use Mondrian Schema Workbench, in the next sub
section, we present its interface and its performance.

9.1.3 Mondrian Schema Workbench

9.1.3.1 Introduction

Mondrian Schema Workbench [28] helps you to create and test OLAP cube schemas
visually. These cube schemas are XML metadata models that are created in a specific
structure used by the Mondrian engine. These XML models can be considered
cube-like structures which utilize existing FACT and DIMENSION tables found in
the RDBMS. It does not require that an actual physical cube is built or maintained;
only that the metadata model is created.
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9.1.3.2 Interface

The interface of Mondrian Schema Workbench in Figure 9.4 provides the following
functionality: set up the properties for connection to your cube database, create
or edit elements (measures, dimensions, hierarchies) in the schema, display error
messages or results, and saving your schema.

Figure 9.4: Interface of Mondrian Schema Workbench.

9.2 Sensors data warehouse

9.2.1 Data

In the next section, we have a set of experiments using two data warehouses to
analyze the results. A data warehouse of sensors is simulated by our program. A
data warehouse of RSS streams is collected from 4 web sites of news: www.cnn.com,
www.rfi.fr, www.bbc.co.uk and www.voanews.com. We provide a summary about
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these data warehouses in Table 9.1. The programs to create these data bases and to
sample are coded in Java and PHP.

Sensor data warehouse RSS data warehouse

Number of samples 106 104

Duration of creation 5 days 3 months

Frequency of tuples Continuous Continuous

Source Simulated by our algorithm 4 web sites on Internet

Table 9.1: Information of data warehouses.

We firstly consider sensors of the OLAP schema in Figure 9.5 which provide weather
data, simulated by Algorithm 4 in page 78, such as hours of sun and hours of rain
each day, in different cities.

Figure 9.5: OLAP schema of sensors.

We assume an auxiliary table which provides for each sensor, its location (city,
country), manufacturer’s name (manuf), and a data warehouse DW lists the two
measures (sun, rain) every day for each sensor, as in Example 1. For simplicity,
there are only 2 manufacturers Siemens and Thomson.

In our experiment, we have 12 sensors: 6 in France, 3 in Germany and 3 in the U.K.
These sources have different ratios of tuples in data warehouse. We simulate (sun,
rain) values in the interval [1, 10] with the following random generator. We associate
a value τj ∈ [1, 10] for each city j ∈ [1, 9] among the 9 cities, so that the distributions
of sun are biased towards high values if τj ≥ 5 or low values if τj < 5. The sensor 1
in London has τ1 = 3 and the sensor 9 in Marseille has τ9 = 8.
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We set up τj for all cities in Table 9.3 and the location for each sensor in Table 9.2.

sensorID manufacturer city country

1 Thomson Paris France

2 Siemens Paris France

3 Thomson Lyon France

4 Siemens Lyon France

5 Thomson Marseille France

6 Siemens Marseille France

7 Thomson London United Kingdom

8 Thomson Birmingham United Kingdom

9 Thomson Manchester United Kingdom

10 Siemens Munich Germany

11 Thomson Berlin Germany

12 Thomson Hambourg Germany

Table 9.2: Location of each sensor.

We describe our method of simulation of data in Algorithm 4, we simulate the data
in N days. For each day, the data of 12 sensors are created. For each sensor, we
select k in [1, 10] with the uniform distribution (we denote k ∈r [1, 10] in Algorithm
4). If the value of k is greater than τj , the value of sun is randomly selected in [1, τj ].
If the value of k is less than or equal to τj, the value of sun is randomly selected in
[τj + 1, 10]. The value of rain is equal to (10− sun)/2.
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Data: τ1, . . . , τ12, N
Result: Table DW
/* generate 12 ∗N tuples */

for i := 1 to N do
for j := 1 to 12 do

k ∈r [1, 10] ;
/* select k in [1, 10] with uniform distribution */

if k ≥τj then sun ∈r [1, τj] ;
else sun ∈r [τj + 1, 10] ;
rain := (10− sun)/2 ;

end
date := date− 1 ;

end
Algorithm 4: Generating data for DW

Notice that we satisfy the specific statistical constraints, as city / sun, i.e. each city
determines a fixed distribution of sun over the values 1, 2, ..., 10. We give the values
τj of cities and the distribution of sun on each city in Table 9.3. As an example, the
distribution µ(Marseille) can be described as: the values 1, 2, ..., 8 with probability
2/10 and the values 9, 10 with probability 8/10.

city τj Distribution of sun on each city

Paris 6 If k ≥ 6 then sun ∈r [1, 6] else sun ∈r [7, 10]

Lyon 7 If k ≥ 7 then sun ∈r [1, 7] else sun ∈r [8, 10]

Marseille 8 If k ≥ 8 then sun ∈r [1, 8] else sun ∈r [9, 10]

London, Birmingham, Manchester 3 If k ≥ 3 then sun ∈r [1, 3] else sun ∈r [4, 10]

Munich, Berlin, Hambourg 5 If k ≥ 5 then sun ∈r [1, 5] else sun ∈r [6, 10]

Table 9.3: Distribution of sun on each city.

Figure 9.6 illustrates the distribution of sun on two cities: Marseillle and London.
For Marseillle, the high values of sun have high probability. For London, the high
values of sun have low probability.

9.2.2 Approximate answers for the different sampling
methods

The sampling algorithms are analyzed in two cases: uniform distribution, measure-
based. The real data usually introduce noise, for example undefined or incorrect
values. It is important that these sampling methods are robust to noise.
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Figure 9.6: Distribution of sun on Marseillle and London.

We consider Q2: analysis of sun on manufacturer on the three sets: Sensor which
defines the real data, Uniform which defines m samples with a uniform distribution,
and Measure-based which defines m samples with the biased distribution. To visualize
the quality of approximation, we observe the difference between pie charts of answers.
The exact answer (Siemens, 0.3911), (Thomson, 0.6089) is represented in Figure 9.7.

Siemens 

Thomson 

All country 

 

Figure 9.7: Q2: Analysis of sun on manufacturer on the set Sensor (Exact answer).

The two approximate answers of two sampling methods are represented by two pie
charts in Figure 9.8. They show that the difference between the exact answer and
the approximate answer is very small, as predicted by the theory. Notice that this
holds for any query of the schema, provided the number of tuples is larger than N0.
If we apply a selection, the number of tuples after the selection may be less than N0

and in this case the error will not be guaranteed.
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Siemens 

Thomson 

All 
manufacturer 

(a) Approximate answer to Q2 on the set
Uniform. The error is 1.2%.

Siemens 

Thomson 

All 
manufacturer 

(b) Approximate answer to Q2 on the set
Measure-based. The error is 3.7%.

Figure 9.8: Analysis of sun on manufacturer.

9.2.3 Approximate answer from the statistical model

We denote QS
manuf , the approximate answer for the analysis of sun on manufacturer

from the statistical model. From the theory discussed in chapter 5, for the measure
sun, if there is a statistical dependency city / sun, then the density of tuples over
manufacturer.city is enough to approximate the answer for the OLAP analysis of
sun on manufacturer.

When we generated tuples for these data warehouses of sensors, we defined in advance
the statistical dependency city / sun by the distribution µ. Moreover, from the
distributions µ of sun on each city, we need to compute the average value of sun for
each city: Avgµ.

In our case, the data warehouse is built from different sources. The density of tuples
(or the rate of each source ) in the target data warehouse is different. For example,
the rate of source 1 is r1 = 50%. The rate of sources 2 and 3 are r2 = r3 = 25%.
Then, QS

manuf is computed by one of three following ways

1. The first way (described in Figure 9.9): all Avgµ and σ( manuf. city) are
estimated by a counter at the target. The target does not stock the tuples of
sources. It stocks only the model of statistical dependencies computed by the
counter. We assume that the counter always knows the number of tuples of
the target. When there is a new tuples from the sources, the counter calculates
and updates Avgµ and σ(manuf.city) in the target.
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Figure 9.9: Statistical computation by the target.

2. The second way (described in Figure 9.10): the target asks each source to
estimate Avgµ and σ (manuf. city). Then, these informations are sent and
updated in the target when we need to approximate the answers.

Figure 9.10: Statistical computation by the sources.

3. The third way (described in Figure 9.11): the target asks each source its
answers. Then, these answers are sent the target to approximate for the global
answer.

9.2.3.1 Statistical computation by the target

To estimate Avgµ and σ(manuf.city), we can use the sampling method with the
uniform distribution on the whole data warehouse. The calculation of Avgµ and
σ(manuf.city) is based on the generating way of tuples for these data warehouses.
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Figure 9.11: Approximate answer at each source.

1. From the distribution µ(Marseille) in Table 9.3: the values 1, 2, ..., 8 with
probability 2/10 and the values 9, 10 with probability 8/10, we can calculate
the average value of the measure with this distribution Avgµ(Marseille) is
equal to:

Avgµ(Marseille) =
2

10
∗ 4.5 +

8

10
∗ 9.5 = 8.5

Similarly for all the 9 cities, we provide the distribution µ and Avgµ for each
city in Table 9.4.

city Avgµ(city)

Paris
4

10
∗ 3.5 +

6

10
∗ 8.5 = 6.5

Lyon
3

10
∗ 4 +

7

10
∗ 9 = 7.5

Marseille
2

10
∗ 4.5 +

8

10
∗ 9.5 = 8.5

London, Birmingham, Manchester
7

10
∗ 2 +

3

10
∗ 7 = 3.5

Munich, Berlin, Hambourg
5

10
∗ 3 +

5

10
∗ 8 = 5.5

Table 9.4: Avgµ for each city.

2. We calculate the density of tuples over manufacturer.city in data warehouse:
σ(manuf.city).

In our case, the distribution manufacturer. city is over 12 pairs: the probability
(Siemens, Paris) is 1/12, as in Table 9.5.



84 CHAPTER 9. IMPLEMENTATION

3. From the informations of Table 9.4 and of Table 9.5, QS
manuf is calculated as

follow:

-The distribution of sun on Siemens:

QS
manuf=Siemens =

∑
city=ai

σmanuf=Siemens(manuf.city)(ai) ∗ Avgµ(ai)∑
manuf=ci

∑
city=ai

σmanuf=ci(manuf.city)(ai) ∗ Avgµ(ai)

=

6.5 + 7.5 + 8.5 + 5.5

12
6.5 + 7.5 + 8.5 + 5.5

12
+

6.5 + 7.5 + 8.5 + (3.5 ∗ 3) + (5.5 ∗ 2)

12

= 0.389

manufacturer city Density of tuples

Siemens Paris
1

12

Siemens Lyon
1

12

Siemens Marseille
1

12

Siemens Munich
1

12

Thomson Paris
1

12

Thomson Lyon
1

12

Thomson Marseille
1

12

Thomson London
1

12

Thomson Birmingham
1

12

Thomson Manchester
1

12

Thomson Berlin
1

12

Thomson Hambourg
1

12

Table 9.5: Density of tuples.
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- The distribution of sun on Thomson:

QS
manuf=Thomson =

∑
city=ai

σmanuf=Thomson(manuf.city)(ai) ∗ Avgµ(ai)∑
manuf=ci

∑
city=ai

σmanuf=ci(manuf.city)(ai) ∗ Avgµ(ai)

=

6.5 + 7.5 + 8.5 + (3.5 ∗ 3) + (5.5 ∗ 2)

12
6.5 + 7.5 + 8.5 + 5.5

12
+

6.5 + 7.5 + 8.5 + (3.5 ∗ 3) + (5.5 ∗ 2)

12

= 0.611

We can see that QS
C , the approximate answer from the statistical model, is close to

the exact answer of Figure 9.12(a).

Siemens 

Thomson 

All country 

 

(a) Analysis of sun for each manufacturer
on the schema Sensor (Exact answer).

Siemens 

Thomson 

All country 

 

(b) QS
C : Linear estimation by the data

exchange. The error is 0.4%.

Figure 9.12: Exact answer and QS
C .

9.2.3.2 Statistical computation by the sources

In our case, the data warehouse is built from 3 sources in 3 countries: France, England
and Germany. The rate of tuples of each source in the data warehouse are m1 = 1/2
and m2 = m3 = 1/4. We can approximate the answer QS

manuf as follow:

Step 1: Each source i computes µ, Avgµ and σ(manuf.city). These informations are
sent to the data warehouse.
Step 2: The data warehouse uses the informations of Avgµ and σ(manuf.city) to
estimate QS

Siemens,i and QS
Thomson,i of each source.
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Step 3: Because the rate of tuples of each source in the data warehouse is m1 = 1/2
and m2 = m3 = 1/4, then the global approximation would be given by the formula:

QS
manuf =

1

2
∗QS

manuf,France +
1

4
∗QS

manuf,England +
1

4
∗QS

manuf,Germany

In this case, the distribution of sun on Siemens is equal to:

QS
manuf=Siemens =

1

2
∗QS

Siemens,France +
1

4
∗QS

Siemens,England +
1

4
∗QS

Siemens,Germany

The distribution of sun on Thomson is equal to:

QS
manuf=Thomson =

1

2
∗QS

Thomson,France +
1

4
∗QS

Thomson,England +
1

4
∗QS

Thomson,Germany

9.2.3.3 Approximate answer at each source

If we follow the third way of approximation, at the step 2, each source not only
estimates Avgµ and σ(manuf,city), but also computes QS

Siemens,i, Q
S
Thomson,i. Then,

QS
Siemens,i, Q

S
Thomson,i are sent to the data warehouse for the estimation of the global

answer. The global answer is described in Figure 9.11.

The error analysis for the query Q2 is given by Table 9.6, for the three methods:
uniform distribution, measure-based distribution and linear estimation by the data-
exchange technique. This last estimation has the smallest error 0.4%.

Manufacturer Figure
9.8(a)
(Uniform
sampling)

Figure
9.8(b)
(Measure-
based
sampling)

Figure
9.12(b)
(QS

manuf -
Linear
estimation
by the data
exchange)

Figure 9.7
(Exact an-
swer)

Siemens 0.3851 0.4100 0.3890 0.3911

Thomson 0.6149 0.5900 0.6110 0.6089

TOTAL ERROR 0.0120 0.0378 0.0042

Table 9.6: Quality of approximations on Q2.

9.2.4 Mining of statistical dependencies

In this section, we try to discover the statistical dependency city / sun on the data
warehouse of sensors by just observing the distance between two distributions of sun
on two sets of training.
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For each value of city, we can estimate the distribution of values in [1, 10] of sun. We
firstly take 1000 tuples with the uniform distribution from the data warehouse. We
then divide them in three sets having the same size: training 1, training 2 and test.

For each value ai of city, we calculate the distributions of measure sun on training
1: µ1(ai), on training 2: µ1(ai) , and on test: δ(ai).

We then calculate d1 and d2, where

d1 = Σi | µ1(ai)− µ2(ai) |1

d2 = Σi | (µ1(ai) + µ2(ai))/2)− δ(ai) |1

We observe the values of d1 and d2 to analyze the error of mining. For each ai,
| µ1(ai)− µ2(ai) |1 is in [0, 2]. We have the 9 values ai for 9 cities. So, the values of
d1, d2 are in [0, 18]. We replace d1 by d1/18, d2 by d2/18 to normalize the distance
between [0%, 100%].

To have a better observation of results, we vary the numbers of total samples to
divide in 3 sets: training 1, training 2 and test. We will have 4 graphs with 4 different
numbers of total samples: 1000, 1500, 2000 and 2500.

For each graph, we fixed the number of total samples to divide in 3 subsets. We repeat
the algorithm of mining with 100 times to observe the distances of distributions of
the statistical dependency city / sun.

As depicted in Figure 9.13, with 1000 samples, the distance d2 is from 17, 5%. With
1500 samples, the distance d2 is from 15%. With 2000 samples, the distance d2 is
from 14%. With 2500 samples, the distance d2 is from 12%. In different cases of
the total number of samples, the performance of algorithm behaves similarly. The
distance d2 is almost smaller than the distance d1. Moreover, the larger the number
of samples is, the smaller the error of mining is. With a small number of samples, we
can approximate the statistical dependencies with high accuracy and high confidence.

9.3 RSS data warehouse

In this section, we continue with the experimental result of approximation and of
mining on the data warehouse of RSS.
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(a) Repeated Mining Algorithm with 1000 sam-
ples. The distance d2 is from 17, 5%.

(b) Repeated Mining Algorithm with 1500 sam-
ples. The distance d2 is from 15%.

(c) Repeated Mining Algorithm with 2000 sam-
ples. The distance d2 is from 14%.

(d) Repeated Mining Algorithm with 2500 sam-
ples. The distance d2 is from 12%.

Figure 9.13: Quality of mining of city / sun.

9.3.1 Context

RSS is a family of data formats based on XML and used for Web syndication. It is
used for delivering the latest content from the sites. In this section, we use three
PHP programs to daily collect RSS streams from four web sites www.cnn.com,
www.rfi.fr, www.bbc.co.uk and www.voanews.com (Figure 9.14). Then these RSS
streams are aggregated into our data warehouse ‘stinvil’ on the web site http:
//www.up2.fr/M1. You can download directly these programs from this address
http://www.up2.fr/rss/download. In the next section, we analyze the experimental
result of approximation and of mining on this data warehouse.

9.3.2 Data

We study another schema corresponding the collection of several sources of RSS. The
OLAP schema of the RSS data warehouse is presented in Figure 9.15.

www.cnn.com
www.rfi.fr
www.bbc.co.uk
www.voanews.com
http://www.up2.fr/M1
http://www.up2.fr/M1
http://www.up2.fr/rss/download
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Figure 9.14: RSS streams.

The OLAP schema contains a table ‘nrss’ with 10 attributes : nrss(recordID, link,
day, month, year, region, domain, source, language, preference). In data warehouse,
the measure preference represents the important level of information in each tuple.
Its value varies between [1, 10]. We fixed the values of preference depending on
two attributes (region, domain). This defines the statistical dependency (region,
domain) / preference. The value of preference depends on region and domain is
illustrated in Table 9.7

9.3.3 Schemas of sets of samples

We produce distinct random sets of samples from the data base of RSS whose the
OLAP schema of Figure 9.15 . The data warehouse of samples have been uploaded
on the web site http://www.up2.fr/mondrian/uploader.html. You can access this
page to test the query answering on these sets. We explain the significance of each
set of samples:

• rss : the original data warehouse of RSS.

• rssUdSamples1000: the set of 1000 samples which are taken from the data
warehouse by the uniform distribution.

http://www.up2.fr/mondrian/uploader.html
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Figure 9.15: RSS OLAP schema

• rssMeasureBasedSamples1000: the set of 1000 samples which are taken from
the data warehouse by the measure-based method on the measure preference.

9.3.4 Quality of approximation in the different methods

We estimate the approximate answers of different queries with the three methods:
the uniform distribution sampling, the measure-based sampling and the statistical
model. We calculate the distance between the approximate answers and the exact
answer and compare the quality of approximation.

9.3.4.1 Analysis of the measure preference on source

We compare the query Q4: analysis of preference by source on the three schemas:
rss, rssUdSamples1000 and rssMeasureBasedSamples1000.

The approximate answers by using the uniform distribution sampling and the measure-
based sampling are presented in Figures 9.16(a) and 9.16(b). The approximate
answers from the statistical model and the exact answer are in Figures 9.16(c)
and 9.16(d).

We denote QS
source, the approximate answer for the analysis of preference on source

from the statistical model. There is a statistical dependency (region, domain) /
preference in Table 9.7, then the density of tuples over (source, region, domain)
is enough to approximate the answer QS

source. The density of tuples over (source,
region, domain) is calculated by sampling the uniform distribution as in Table 9.8.
So QS

source is estimated as follow:
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region domain preference

asia general 1

africa general 1

americas general 1

europe general 1

middle east general 1

FRANCE business 6

FRANCE entertainment 1

FRANCE science 8

FRANCE sport 1

UK business 6

UK entertainment 1

UK science 8

UK sport 1

US business 4

US entertainment 1

US science 10

US sport 1

Table 9.7: (region, domain) statistically imply preference.

QS
source=si

=∑
region=rj ,domain=dk

σsource=si(source.region.domain)(rj, dk) ∗ preference(rj, dk)∑
source=si

∑
region=rj ,domain=dk

σsource=si(source.region.domain)(rj, dk) ∗ preference(rj, dk)

The quality of approximation for the query Q4 is given as in Table 9.9, for the three
methods: uniform distribution, measure-based distribution and statistical model.

We show the answers for the query Q5: analysis on domain for preference on the
three sets fo samples: rss, rssUdSamples1000 and rssMeasureBasedSamples1000.
Figure 9.17 illustrates the results.

The approximation for the query Q5 is given by Table 9.10, for the two methods:
uniform distribution, measure-based distribution.

Because there are not enough the statistical dependencies, the query Q5 can not
be estimated by the statistical model. If we want to approximate preference on
domain, we need the statistical dependency domain / preference. But in the RSS
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(a) Approximate answer to Q4 on schema
rssUdSamples1000. The error is 4 %.

(b) Approximate answer to Q4 on schema
rssMeasureBasedSamples1000. The error
is 17.06%.

(c) Approximate answer to Q4 from the
statistical model. The error is 7%

(d) Exact answer to Q4 on schema rss.

Figure 9.16: Analysis of preference on source.

data warehouse, there is not this dependency.

9.3.4.2 Analysis of preference on region and domain

We present the answers for the query Q6: analysis of preference over region and
domain on the three schemas: rss, rssUdSamples1000 and rssMeasureBasedSam-
ples1000.

The approximate answers by using the uniform distribution sampling and the measure-
based sampling are presented in Figures 9.18(a) and 9.18(b). With the different
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(a) Approximate answer to Q5 on schema
rssUdSamples1000. The error is 13%

(b) Approximate answer to Q5 on schema
rssMeasureBasedSamples1000. The error
is 10%

(c) Exact answer to Q5 on schema rss.

Figure 9.17: Analysis of preference on domain

queries and with the different methods, the quality of approximation is good.

We consider QS
region,domain, the approximate answer for the analysis of preference

on region, domain from the statistical model. The density of tuples over (region,
domain) is calculated by sampling the uniform distribution as in Table 9.11. Then,
QS
source is estimated as follow:

QS
region=rj ,domain=dk

=
σ(region.domain)(rj, dk) ∗ preference(rj, dk)∑

region=rj ,domain=dk
σ(region.domain)(rj, dk) ∗ preference(rj, dk)
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(a) Approximate answer to Q6 on schema
rssUdSamples1000.

(b) Approximate answer to Q6 on schema
rssMeasureBasedSamples1000.

(c) Exact answer to Q6 on schema rss.

Figure 9.18: Analysis of preference on region and domain.

9.3.5 Mining of statistical dependencies

In this section, we show the experimental result of mining of statistical dependency
(region, domain) / preference on the data warehouse of RSS. For each graph of test
of performance, we fixed the number of samples of sets: training 1, training 2 and
test. We also test the algorithm of mining with 100 times to observe the distances of
distributions of the statistical dependency (region, domain) / preference.

In this case, for each pair of values (ai, bj) of (region, domain), the distributions of
measure preference on training 1: µ1(ai, bj), on training 2: µ1(ai, bj), and on test:
δ(ai, bj).
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We then calculate d1 and d2, where

d1 = ΣiΣj | µ1(ai, bj)− µ2(ai, bj) |1

d2 = ΣiΣj | (µ1(ai, bj) + µ2(ai, bj))/2)− δ(ai, bj) |1

The values of d1, d2 are in [0, 2]. We replace d1 by d1/2, d2 by d2/2 to normalize the
distance between [0%, 100%].

We test also with 4 different numbers of total samples: 1000, 1500, 2000 and 2500.
We describe here 4 graphs obtained in Figure 9.19. The result is similar to the result
on the data warehouse of sensors. The distance d2 is almost smaller than the distance
d1. With a larger number of samples, we get the smaller error. The ratio of error is
quite small. It is only about 10%.

Moreover, we can see that with the same number of samples, the error of mining
on the data warehouse of RSS is much smaller than the error of mining on the data
warehouse of sensors.

The cause of this difference is the number of elements in each distribution vector
σ. With sensors, on each set of training, we have 9 distributions which correspond
to 9 cities. Each distribution vector has 10 elements which correspond to 10 values
of sun. We can consider that d1 is the sum of distance between 90 elements. d2 is
similar to d1. With RSS streams, d1 is the sum of distances between 17 elements. So,
the quality of approximation with RSS is better than in data warehouse of sensors.

9.4 Conclusion

In this chapter, we used a data warehouse simulates sensors and a real data warehouse
collecting RSS from the web sites on Internet. We tested our approximation meth-
ods: the approximation by uniform sampling, the approximation by measure-based
sampling and by the statistical model. These algorithms have the good quality of
approximation. They guarantee a small error with a high confidence.
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(a) Repeated Mining Algorithm with 1000 sam-
ples. The distance d2 is from 7, 5%.

(b) Repeated Mining Algorithm with 1500 sam-
ples. The distance d2 is from 6%.

(c) Repeated Mining Algorithm with 2000 sam-
ples. The distance d2 is from 5%.

(d) Repeated Mining Algorithm with 2500 sam-
ples. The distance d2 is from 4.5%.

Figure 9.19: Quality of mining of (region, domain) /preference.



9.4. CONCLUSION 97

source region domain density of tuples

BBC africa general 0.0515

BBC americas general 0.0355

BBC asia general 0.0660

BBC europe general 0.0510

BBC middle east general 0.0185

BBC UK business 0.0200

BBC UK entertainment 0.0180

BBC UK science 0.0200

BBC UK sport 0.0420

CNN africa general 0.0745

CNN americas general 0.0295

CNN asia general 0.1040

CNN europe general 0.1125

CNN middle east general 0.0180

CNN US business 0.0295

CNN US entertainment 0.0115

CNN US science 0.0025

CNN US sport 0.0280

RFI africa general 0.0650

RFI americas general 0.0125

RFI asia general 0.0135

RFI europe general 0.0250

RFI middle east general 0.0180

RFI FRANCE business 0.0075

RFI FRANCE entertainment 0.0075

RFI FRANCE science 0.0075

RFI FRANCE sport 0.0075

VOA africa general 0.0250

VOA americas general 0.0135

VOA asia general 0.0250

Table 9.8: Density of tuples over (source, region, domain).
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Source Figure
9.16(a)
(Uniform
sampling)

Figure
9.16(b)
(Measure-
based
sampling)

Figure
9.16(c)
(Statistical
model)

Figure
9.16(d)
(Exact
answer)

BBC 0.4362 0.351 0.381 0.4143

CCN 0.3221 0.389 0.352 0.3356

RFI 0.1724 0.152 0.168 0.1738

VOA 0.0693 0.108 0.099 0.0763

TOTAL ERROR 0.0438 0.1706 0.0782

Table 9.9: Quality of approximations on Q4.

Domain Figure 9.17(a)
(Uniform sam-
pling)

Figure 9.17(b)
(Measure-based
sampling)

Figure
9.17(c)
(Exact
answer)

General 0.5421 0.714 0.6915

Business 0.2517 0.111 0.1716

Entertainment 0.0236 0.043 0.0224

Science 0.1753 0.059 0.1486

Sport 0.0431 0.073 0.0470

TOTAL ERROR 0.07965 0.1046

Table 9.10: Quality of approximations on Q5.
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region domain density of tuples

africa general 0.2160

americas general 0.0910

asia general 0.2085

europe general 0.2100

middle east general 0.0730

FRANCE business 0.0075

FRANCE entertainment 0.0075

FRANCE science 0.0075

FRANCE sport 0.0075

UK business 0.0200

UK entertainment 0.0180

UK science 0.0200

UK sport 0.0420

US business 0.0295

US entertainment 0.0115

US science 0.0025

US sport 0.0280

Table 9.11: Density of tuples over (region, domain).
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Conclusion and Future Work

We studied the approximation of OLAP queries, mostly when the aggregation
operator is the Sum or the Average. Some of the results generalize to other operators.
We presented two families of techniques:

• Sampling based methods: the uniform and the measure-based sampling which
assume an existing data warehouse,

• Statistics based methods: when some statistical dependencies exist, we may
rely on some finite statistics, and we don’t assume any data warehouse.

The first technique is adapted to existing data warehouses, whereas the second
technique is adapted to streaming data which do not store the entire data. These
two situations seem typical of massive data, and point to different solutions.

The notion of a statistical dependency is inspired by graphs limits [6, 22] and applied
to hypergraphs. It captures some statistical information which tends to a limit when
the data warehouse grows and its size tends to infinity. In this case, we don’t have to
keep this statistics, and if we combine it with some other statistics which we estimate
and store, we can extract approximate OLAP analysis, on any dimensions.

Besides the introduction of theory, we evaluated the algorithms by experiments. Our
algorithms satisfy the important conditions. They guarantee a good accuracy and a
high confidence and also have the small complexity of time and of memory space.
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Our results point to the following research areas when classical dependencies can be
generalized as statistical dependencies in the context of massive data. If we estimate
some specific statistics on these data, which queries can we infer by combining the
dependencies and the specific statistics? These approximate randomized techniques
provide robust methods, insensitive to noise, to solve problems such as OLAP queries.
We need to delimitate the class of queries which can be approximated, given specific
statistical dependencies
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Approximation of OLAP queries

on data warehouses
SYNTHESE EN FRANCAISE

Nous étudions les réponses proches à des requêtes OLAP sur les entrepôts de données.
Nous considérons les réponses relatives aux requêtes OLAP sur un schéma, comme
les distributions avec la distance L1 et rapprocher les réponses sans stocker totale-
ment l’entrepôt de données. Nous présentons d’abord trois méthodes spécifiques:
l’échantillonnage uniforme, l’échantillonnage basé sur la mesure et le modèle statis-
tique. Nous introduisons également une distance d’édition entre les entrepôts de
données avec des opérations d’édition adaptées aux entrepôts de données. Puis, dans
l’échange de données OLAP, nous étudions comment échantillonner chaque source et
combiner les échantillons pour rapprocher toutes requêtes OLAP. Nous examinons
ensuite un contexte streaming, où un entrepôt de données est construit par les flux
de différentes sources. Nous montrons une borne inférieure de la taille de la mémoire
nécessaire aux requêtes approximatives. Dans ce cas, nous avons les réponses pour les
requêtes OLAP avec une mémoire finie. Nous décrivons également une méthode pour
découvrir les dépendances statistique, une nouvelle notion que nous introduisons.
Nous recherchons ces dépendances en basant sur l’arbre de décision. Nous appliquons
la méthode à deux entrepôts de données. Le premier simule les données de capteurs,
qui fournissent des paramètres météorologiques au fil du temps et de l’emplacement
à partir de différentes sources. Le deuxième est la collecte de RSS à partir des sites
web sur Internet.
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CHAPTER 11. APPROXIMATION OF OLAP QUERIES ON DATA
WAREHOUSES
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I. INTRODUCTION Les entrepôts de données recueillent l’histoire de nombreux
processus physiques, tels que les ventes d’articles, la mesure de capteurs, le trafic
de données sur un réseau. Lorsque ces données sont recueillies sous une forme rela-
tionnelle, son analyse fait l’objet de traitement en ligne (OLAP). Un schéma OLAP
corrige un ensemble de dépendances fonctionnelles entre les attributs, et définit les
dimensions possibles. La réponse aux requêtes OLAP peut être considérée comme
distributions, comme la répartition des ventes par pays ou la répartition de capteurs
de mesure par ville. Dans la pratique, des réponses approximatives à des requêtes
OLAP peut être suffisant, et pourrait être obtenue beaucoup plus efficace que des
réponses exactes. La théorie de la complexité algorithmique étudie le compromis
entre rapprochement et d’efficacité. Dans de nombreux cas, nous pouvons utiliser
des algorithmes probabilistes qui permettent d’atteindre un epsilon rapprochement
avec un degré de confiance élevé 1 - delta et sont beaucoup plus efficaces que les
algorithmes déterministes. Dans le cas des grands entrepôts de données, nous ex-
posons ces algorithmes pour le rapprochement des requêtes OLAP. Nous considérons
deux méthodes d’échantillonnage: un échantillonnage uniforme et un échantillonnage
mesure fondée sur qui les deux donnent de bonnes approximations. Les entrepôts de
données sont construites par la collecte de données provenant de différentes sources
et de les assembler. La théorie de la Data Exchange étudie comment décider efficace-
ment les contraintes de cohérence, compte tenu des Sources. Nous étendons cette
approche aux requêtes OLAP et demandons si nous pouvons déguster directement
les sources, de collecter des données statistiques, et environ répondre aux requêtes
OLAP à partir des statistiques, c’est à dire sans stocker l’ensemble des données.
Des questions similaires concernent le modèle streaming, c’est à dire lorsque chaque
source les flux de données vers un entrepôt de données. Pourrions-nous remplacer
l’ensemble de l’entrepôt de données large par d’autres données en utilisant l’espace
logarithmique? Nous répondons à ces deux questions, en généralisant la méthode
d’échantillonnage. Les principaux résultats de la préoccupation de thèse le rap-
prochement des requêtes OLAP dans un cadre d’échange de données, et dans le cas
particulier de statistique dépendances, une notion que nous introduisons. Il généralise
la notion des dépendances fonctionnelles, comme certains attributs peuvent impliquer
des distributions fixes sur la mesure. Dans ce cas, nous pouvons réduire les données
à certaines statistiques limitées. Nous étudions également comment découvrir ces
dépendances en généralisant la construction d’arbres de décision dans l’exploration
de données.

II. ETAT DE L’ART La plupart des systèmes de base de données ont des modules
qui offrent la possibilité d’analyse OLAP. Certains provenaient du modèle relationnel
(Oracle, DB2, MS SQL / Server) et plus tard inclus des modules pour l’analyse, alors
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que certains autres systèmes (SAS) ont commencé avec l’analyse et plus tard inclus
le modèle relationnel classique. Dans ces systèmes, les données sont bien structurées
dans un entrepôt de données et le schéma OLAP sont construits et modifiés. Les
requêtes sont spécifiées par les filtres, les dimensions et les opérateurs d’agrégation,
et les résultats doivent avoir de bonnes représentations graphiques. Les tableaux
de bord intègrent les sorties graphiques. Pour les logiciels open source, Pentaho est
un des systèmes les plus complets qui intègrent des modules pour ETL (Extract,
Transform, Load), la génération de schémas et de l’interface graphique (JPivot). Nous
allons utiliser ce système dans notre mise en œuvre. Outils OLAP pour les données
semi-structurées sont moins développés, et l’analyse de données massives reste un
domaine de recherche. Les systèmes classiques de maintenir un entrepôt de données
physique qui peut être extrêmement large. Nous proposons des solutions approxima-
tives qui peuvent s’appliquer à la technologie actuelle ou pouvons extrapoler à de
nouveaux systèmes. Dans le premier cas, nous avons des échantillons de l’entrepôt
de données et d’obtenir des réponses approximatives de manière plus efficace. Dans
le deuxième cas, nous proposons un cadre général, où l’on peut remplacer l’entrepôt
de données volumineux par quelques statistiques et de toujours garder l’analyse
approximative OLAP. Cela peut s’appliquer à des données massives ou en streaming.
La question générale que nous demandons, c’est: pouvons-nous remplacer ces données
par quelques statistiques? Dans le cas de l’analyse OLAP, lorsque les attributs sat-
isfont certaines hypothèses statistiques (indépendance), nous répondons positivement.

Cette thèse est structurée comme suit: Le Chapitre 1 donne un bref aperçu sur le
contexte de notre recherche. Nous présentons l’objectif et les principaux résultats.
Dans le Chapitre 2, nous passons en revue les notions principales dans le système
OLAP: l’entrepôt de données et le schéma. En outre, nous décrivons les composantes
d’une requête et la définition de réponses relative que nous utilisons. Dans ce
chapitre, nos nouvelles méthodes approximatives sont brièvement présentées. Ces
méthodes sont basées sur les techniques d’échantillonnage. La qualité de nos algo-
rithmes d’échantillonnage est garantie par l’utilisation les inégalités de probabilité
de Hoeffding-Chernoff pour la somme de variables aléatoires bornées. A la fin de
ce chapitre, nous présentons les différents contextes dans lesquels nous étudions les
algorithmes d’approximation.
Nos principales contributions figurent dans le chapitre 3, Chapitre 4, Chapitre 5,
Chapitre 6, chapitres 7 et 8. Le Chapitre 3 présente deux méthodes spécifiques:
l’échantillonnage uniforme et l’échantillonnage en basant sur la mesure. Ils utilisent
deux espaces probabilistes de rapprocher les réponses à la requête OLAP. Ces
deux méthodes produisent un entrepôt de données beaucoup plus petit sur lequel
nous pouvons requêtes approximatives OLAP. Nous allons prouver que ces deux al-
gorithmes peuvent rapprocher les réponses avec une bonne précision epsilon de et avec
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une haute probabilité 1 - delta. Dans le Chapitre 4, nous étudions une distance
d’édition entre les entrepôts de données. Nous introduisons les opérations d’édition
adaptés pour les entrepôts de données. Par ailleurs, nous définissons la distance
entre deux entrepôts de données. Nous montrons que cette distance d’édition est
une métrique, c’est à dire qu’il est toujours en [0,1], symétrique et a la propriété de
l’inégalité triangulaire. La théorème de continuité indique que les proches des en-
trepôts de données impliquent que les réponses aux requêtes OLAP doivent également
être proche. Dans le Chapitre 5, nous présentons le modèle statistique basé sur la
dépendance statistique. Le noyau de cette méthode est la réduction de l’entrepôt
de données en une structure plus compacte: quelques statistiques limitées. Ensuite,
nous combinons ces statistiques limitées et les dépendances statistiques pour ap-
procher la requête OLAP. Enfin, nous montrons comment apprendre les statistiques
du modèle. Le Chapitre 6 couvre le rapprochement dans le cadre de l’échange
de données OLAP. Dans ce contexte, nous présentons les différents algorithmes
approximatifs: le rapprochement avec la distribution uniforme, le rapprochement
avec la mesure fondée sur l’échantillonnage, et le rapprochement par le modèle
statistique. Dans le Chapitre 7, nous considérons le streaming de données. Nous
montrons tout d’abord quelques bornes inférieures sur la complexité de l’espace
pour les domaines non bornés. Pour les domaines non bornés, nous concevons les
compteurs pour la distribution exacte utilisée par le modèle statistique. Au Chapitre
8, nous décrivons une méthode pour découvrir les dépendances statistiques. Nous ne
pouvons pas connâıtre ces dépendances. Nous généralisons la construction d’arbres
de décision dans l’exploration de données. Dans un arbre de décision classique,
certains attributs de prédire la valeur de l’attribut de M. cible Cette valeur est prédit
avec une haute probabilité. Dans le cas de la dépendance statistique, nous avons
construit l’arbre de décision dans laquelle certains attributs de prédire la distribution
des valeurs de l’attribut cible avec une probabilité élevée. Dans le Chapitre 9, nous
testons nos méthodes d’approximation: l’approximation par échantillonnage uniforme,
l’approximation par échantillonnage mesure fondée et par le modèle statistique. Nous
utilisons un entrepôt de données simule des capteurs et un véritable entrepôt de
collecte de données RSS à partir des sites web sur Internet. Pour chaque méthode,
nous nous intéressons à la qualité de l’approximation comme le taux d’erreur et le
niveau confiant. A la fin, nous analysons les résultats et compare les méthodes. Dans
le Chapitre 10, nous présentons la conclusion et les travaux futurs.

III. PRELIMINAIRES Ce chapitre présente les notions de base, des définitions
et des résultats qui sont utilisés dans cette thèse. Nous décrivons les notations
pour OLAP (traitement analytique en ligne) tels que des schémas, des requêtes,
répondre à la requête. Nous présentons ensuite le modèle d’approximation en utilisant
principalement la technique d’échantillonnage. Enfin, ces méthodes seront utilisées
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dans le cadre de l’échange de données, de données distribuées et des données en
continu.

III.1. OLAP Le traitement analytique en ligne ou OLAP pour faire court est la
principale activité menée par les analystes et les décideurs. Les applications sont
largement utilisées pour aider à la gestion de tableaux de bord, qui assemblent des
représentations graphiques des requêtes OLAP. Nous présentons les notions et les
définitions des schémas, des entrepôts de données, des requêtes et des réponses aux
requêtes.

III.2 Schémas Le schéma OLAP est un arbre. La racine est recordID est l’ensemble
de tous les attributs de l’entrepôt de données. De la racine, les nœuds en profondeur
1 sont les dimensions et les mesures. Une arête existe s’il y a une dépendance
fonctionnelle entre les noeuds.

III.3 Requêtes OLAP La requête OLAP est une requête d’analyse. Pour exemple,
analyser l La Somme du nombre de l’heure de Soleil sur Pays. La mesure est l’heure de
Soleil est la mesure. La dimension est Pays. La somme est l’opérateur d’agrégation.

III.4 Réponses relatives D’autres auteurs considèrent la réponse absolue. J’étudie la
réponse relative ou la distribution sous une forme de pie charte. Il y a des pie chart
du 1 au n dimensions.

IV. ECHANTILLONNAGE DE L’ENTREPOT DE DONNEES

IV.1 Echantillonnage avec la distribution uniforme Dans ce cas, nous sélectionnons
m échantillons distincts de l’entrepôt de données I, avec une distribution uniforme
sur les N tuples. Pour mettre en œuvre la technique, nous utilisons un générateur de
nombres aléatoires standard. Une fonction aléatoire(N) génère un élément i de 1 à N
avec une probabilité 1/N. Il est une contrainte pour le nombre d’échantillons m, afin
d’avoir un (epsilon, delta)-approximation. Nous allons montre que m ne dépend que
de les paramètres epsilon et delta, mais pas sur N.

IV.2 Echantillonnage avec la distribution en basant sur la mesure Cette technique
d’échantillon de l’entrepôt de données pour avoir m tuples distincts. Mais la prob-
abilité de sélection de chaque tuple dépend de sa mesure. De plus, l’algorithme
s’exécute en deux étapes: Nous sélectionnons d’abord un tuple t avec une distribution
uniforme. Ensuite, nous gardons t avec une probabilité proportionnelle à sa mesure.
Lorsque nous générons les échantillons, nous remplaçons la mesure de 1. Nous sup-
posons que max est la valeur maximale de la mesure. Si max est faible par rapport
à la taille de l’entrepôt de données, les deux techniques permettent de requêtes
approximatives OLAP. Mais si max est grand (sans limite), seul le prélèvement
mesure fondée peut être appliqué sur notre sens.

IV.3 Comparaisons Le contexte de l’application et la comparaison entre les deux
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techniques sont introduits également

V. DISTANCE D’EDITION Nous étudie la distance d’édition pour les entrepôts de
données. Nous décrivons les opérations d’édition: la suppression, l’insertion et la
modification de tuple. Par ailleurs, nous définissons la distance entre deux entrepôts
de données. Nous prouvons que cette distance d’édition est une métrique, c’est à dire
qu’il est toujours dans [0,1], symétrique et a la propriété de l’inégalité triangulaire.
Nous prouvons alors le théorème de continuité. La distance d’édition, nous avons
introduit est adapté aux entrepôts de données, car elle garantit que près des entrepôts
de données impliquent que les réponses aux requêtes OLAP doivent également être à
proximité.

VI. MODELE STATISTIQUE Dans le modèle relationnel, les dépendances classiques,
comme les dépendances fonctionnelles jouent un rôle important. Pour les entrepôts
de données, il ya quelques autres dépendances importantes, en particulier statistique
dépendances, que nous présentons. Dans ce cas, certains attributs impliquer distri-
butions fixes de la mesure, et on peut alors rapprocher d’un entrepôt de données
par un certain ensemble fixe de distributions. Dans ce contexte, nous étudions
une autre méthode d’approximation pour répondre à la requête. C’est le modèle
statistique. Dans notre modèle, un ensemble d’attributs détermine distributions
fixes de la mesure M avec une forte probabilité. Dans cette section, la notion de
dépendance statistique est présentée. Ensuite, nous montrons que la requête OLAP
répondeur peut être obtenue à partir du modèle statistique. Enfin, nous montrons
comment apprendre les distributions de dépendances statistiques du modèle.

VI.1 Relation entre le modèle statistique et l’approximation aux requêtes OLAP
Nous utilisons le modèle statistique à rapprocher les réponses aux requêtes OLAP.
Nous montrons que pour une mesure M, s’il y a un attribut A tel que A implique
M, alors la distribution de plus de CA est suffisant pour environ une requête OLAP
sur la dimension C. L’avantage de cette technique est que la structure compacte du
modèle statistique rend l’analyse plus simple.

VI.2 Avantage Nous venons de présenter une nouvelle méthode approximative pour
OLAP requête répondeur. Avec le modèle statistique, de trouver les réponses
proches, nous avons besoin que les informations sur les dépendances statistiques. Si
les dépendances statistiques existent dans l’entrepôt de données, nous avons montré
également comment rapprocher les distributions de dépendances statistiques et la
distribution de certains attributs. L’avantage de cette méthode est la structure
compacte. Il ne nécessite que peu d’espace et peu de temps pour se rapprocher. Il
rend l’analyse plus simple d’approximation.

VII. ECHANGE DE DONNEE OLAP Dans le cadre de l’échange de données OLAP
dans la figure ci-dessous, nous considérons la situation où k différentes sources
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alimentent un entrepôt de données I. Par exemple, la relation I1 de la source S1

alimente les données de l’Angleterre, la relation I2 de la source S2 alimente les
données de la France, etc. Nous voulons sélectionner Îi en mi échantillons provenant
de chaque source et de définir Îe = I1 + I2 + ..+ Ik où chaque I i suit une distribution
uniforme. Nous demandons qui mi garantie que toute requête OLAP Q sur I sera
bien approchée par Ie. Nous considérons d’abord la distribution uniforme, la mesure
basée sur la distribution et le modèle statistique.

VIII. FLUX DE DONNEES

VIII.1 Contexte Nous considérons maintenant la construction d’entrepôts de données.
D’où viennent les données proviennent-elles? Dans le cadre de l’échange de données,
plusieurs sources envoient leurs tuples à une base de données cible. Ils peuvent être
modifiés par la cible et finiront dans l’entrepôt de données. Ce processus est appelé
ETL (Extract, Transform, Load) et est bien automatisé. Il existe de nombreuses
applications où les sources envoient en permanence leurs tuples à divers clients.
Les capteurs peuvent envoyer leurs données régulièrement à un site central et des
nouvelles sources (BBC, CNN, ..) d’envoi des flux RSS à leurs abonnés dès que de
nouvelles informations se fait sentir. Dans les deux cas, ces sources envoient des
données XML, ce qui peut être facilement transformé en un tuple d’une relation.
Nous considérons ces tuples sous forme de flux, qui peuvent être stockées dans un
entrepôt de données. Dans le modèle de streaming, des flux de données en continu et
l’une des questions principales est de savoir si nous avons besoin de les stocker ou si
nous pouvons le remplacer par une mémoire beaucoup plus petit. En termes précis,
nous pouvons remplacer les données de taille O(n) par quelques autres données de
taille O(( logn)k), c’est à dire de taille polylogarithmique afin de répondre à des
questions spécifiques? Dans notre situation, nous voulons répondre à environ requêtes
OLAP. Nous considérons d’abord une borne inférieure, obtenu directement à partir
de la complexité de la communication, puis procéder à des solutions approchées,
d’abord avec les blocs du flux et ensuite à un procédé d’apprentissage, lorsque les
données suivent un modèle statistique. Le flux est la séquence de tuples t1, ..., tn
de l’entrepôt de données I. ti = (i, s1, 3, 12, 2010, 7, 2) précisant que le capteur s1
mesures 7 heures d’ensoleillement et 2 heures de pluie sur Décembre 32010. Les tables
auxiliaires tel que C(ville, pays) sont fixes et indépendants du flux. Dans ce chapitre,
nous présentons des bornes inférieures sur la complexité de l’espace pour les domaines
non bornés et pour les domaines bornés. Théorème 1 : Le rapprochement de la
requête OLAP sur la dimension A nécessite une mémoire O(n), soit proportionnelle
à la longueur du flux.

IX. DECOUVRIR DES DEPENDANCES STATISTIQUES Dans ce chapitre, nous
décrivons une méthode pour découvrir les dépendances statistiques. En général, nous
ne pouvons pas connâıtre ces dépendances. Nous recherchons pour eux en fonction
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de l’arbre de décision. Les dépendances statistiques généralisent les dépendances
fonctionnelles classiques comme nous l’expliquons dans le chapitre 5. Dans une
dépendance statistique, un ensemble d’attributs détermine les distributions fixes
d’une mesure, avec une forte probabilité. Les arbres de décision constituent une
dépendance fonctionnelle comme ils visualisent comment les valeurs de quelques
attributs tels que A, B peuvent prédire la valeur d’un attribut cible. Dans un autre
contexte, le mesure M est l’attribut cible. Dans l’arbre de décision de classe, nous
essayons de sélectionner des attributs basés sur le gain d’information. Dans un arbre
exacte de décision, chaque feuille présente la valeur de l’attribut cible M. Dans ce
cas, cette valeur est de prédire avec une forte probabilité. Dans le cas d’un arbre de
décision approximatif, chaque feuille prédit la distribution de la cible. Dans cette
distribution, les valeurs de M sont prévues avec la distribution de Dirac. Dans notre
contexte, les principaux critères sont la distance et nous voulons trouver des attributs
tels que d(A) est petit. Si aucun attribut satisfait à ces critères, nous recherchons
des paires Ai, Aj, puis triples et ainsi de suite. Si il ya une dépendance fonctionnelle
A− > M , le gain d’information est maximale dans L1 et L2, et la distance entre les
deux distributions est nulle. Si nous tolérons les erreurs, la distance serait faible.
Cependant, il peut y avoir une petite distance et un gain d’information faible, et
encore un gain d’information de zéro. Ceci est est réalisé avec les distributions
uniformes sur la mesure. Dans ce cas, la distance d(A) reste faible. Les petites
critères de distance est donc plus général que le gain d’information et permet de
généraliser la construction d’arbres de décision.

X. IMPLEMENTATION Nous testons nos méthodes d’approximation: l’approximation
par échantillonnage uniforme, l’approximation par échantillonnage mesure fondée et
par le modèle statistique. Nous utilisons un entrepôt de données simule des capteurs
et un véritable entrepôt de collecte de données RSS à partir des sites web sur Internet.
Pour chaque méthode, nous nous intéressons à la qualité de l’approximation comme
le taux d’erreur et le niveau confiant. A la fin, nous analysons les résultats et
compare les méthodes. Nous utilisons MySQL pour les données relationnelles, OLAP
Mondrian pour le moteur et une version améliorée de JPivot où les réponses sont
représentées graphiquement par pie chart multidimensionnels.
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