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Deuxième partie : Champs aléatoire et géométrie intégrale La deuxième partie (Part II) de ce manuscrit est consacrée aux principes théoriques et fondamentaux des champs aléatoires et de la géométrie intégrale de leurs ensembles de niveaux (excursion sets). Le chapitre 2 porte sur les champs aléatoires et leurs propriétés mathématiques, stationnarité au sens faible, stationnarité au sens fort, isotropie, anisotropie, et représentation spectrale. Le champ aléatoire gaussien a été essentiellement introduit en tant que brique de base. Ce dernier est uniquement défini par les moments d'ordre un et deux, la moyenne et la fonction de covariance, respectivement, Contents β . . . .

i

Résumé étendu

La topographie d'une surface se compose généralement de plusieurs échelles, depuis l'échelle macroscopique (sa géométrie physique), jusqu'aux échelles microscopiques ou atomiques appelées rugosité. L'évolution spatiale et géométrique de la rugosité de surface fournit une description plus complète de l'état de ses microstructures, et une interprétation physique des certains problèmes importants tels que le frottement et les mécanismes d'usure pendant le contact mécanique entre deux surfaces. La topographie d'une surface rugueuse est de nature aléatoire. Cela se traduit par des altitudes spatialement corrélées, appelées pics et vallées. La relation entre leurs densités de probabilité, et leurs propriétés géométriques sont les aspects fondamentaux qui ont été développés dans cette thèse, en utilisant la théorie des champs aléatoires et la géométrie intégrale.

Un modèle aléatoire approprié pour représenter une surface rugueuse a été mis en place et étudié au moyen des paramètres les plus significatifs, dont les changements influencent la géométrie des ensembles de niveaux (excursion sets) de cette surface, constitués des points avec des hauteurs supérieures à un seuil donné. Les ensembles de niveaux ont été quantifiés par des fonctionnelles connues sous le nom de fonctionnelles de Minkowski, ou d'une manière équivalente sous le nom de volumes intrinsèques. Ces fonctionnelles ont en pratique plusieurs interprétations physiques. Leurs formules analytiques permettent d'estimer les paramètres du modèle de surface, et d'apporter une analyse statistique de ses ensembles de niveaux et de la rugosité. Ces sujets ont été essentiellement considérés dans cette thèse.

Dans un premier temps, les volumes intrinsèques des ensembles de niveaux sont calculés analytiquement sur une classe de modèles mixtes, qui sont définis par la combinaison linéaire d'un champ aléatoire Gaussien et d'un champ de t-student (t-field), et ceux d'une classe de champs aléatoires asymétriques appelés skew-t. Ces volumes sont comparés et testés sur des surfaces produites par des simulations numériques.

Dans un second temps, les modèles aléatoires proposés ont été appliqués sur des surfaces réelles acquises à partir d'une cupule d'UHMWPE (Ultra-High-Molecular-Weight Polyéthylène), utilisée pour une prothèse totale de hanche, avant et après les processus d'usure. Les résultats ont montré que le champ aléatoire skew-t est un modèle mieux approprié pour décrire la rugosité de surfaces usées, contrairement aux modèles Gaussien et skew-Gaussien adoptés dans la littérature. Une analyse statistique, basée sur le champ aléatoire skew-t, est ensuite proposée. Elle vise à estimer hiérarchiquement les ensembles de niveaux comprenant les pics/vallées affectés par l'usure. L'évolution de la moyenne des pics/vallées détectés à ces niveaux a permis de décrire le comportement de la surface d'UHMWPE en fonction du temps d'usure, et d'indiquer les mécanismes d'usure prédominants. Les résultats obtenus sont prometteurs, et des développements ultérieurs théoriques et pratiques ii sont proposés.

Mot-clés : Champs Aléatoires ; Géométrie Intégrale ; Ensembles de Niveaux ; Volumes Intrinsèques ; Rugosité ; Topographie ; Simulation ; Caractérisation ; Analyse Statistique ; Usure Mécanique ; UHMWPE (Ultra-High-Molecular-Weight Polyéthylène).

Organisation du manuscrit

Le manuscrit présente tout d'abord une introduction générale à la thèse. Celle-ci expose la problématique au niveau médical et scientifique, pour introduire les motivations et le but de ce travail de recherche.

Ensuite, il est composé de cinq parties.

Première partie : Caractérisation de la rugosité de la topographie de surface iii afin d'introduire des modèles aléatoires à base de gaussien, appelés les gaussiensassociés, comme les champs t-field, χ 2 , F -field, etc. Ces derniers ont des propriétés intéressantes en pratique, et leur loi de probabilité marginale est asymptotiquement simple et bien définie analytiquement. Celle-ci a permis d'étudier la géometrie des ensembles de niveaux de ces modèles, et de fournir des formules asymptotiques de certaines mesures de ces ensembles, comme les mesures de Minkowski.

Le chapitre 3 porte sur la géométrie intégrale des champs aléatoires. Ce chapitre poursuit les rappels des ensembles de niveaux des champs aléatoires, et présente les outils théoriques nécessaires pour estimer les mesures géométriques et topologiques de ces ensembles aléatoires. Ces mesures sont les volumes intrinsèques (d'une manière équivalente les fonctionnelles de Minkowski) : l'aire, le périmètre et le nombre d'Euler-Poincaré pour une ensemble bi-dimensionnel. Des formules explicites des volumes intrinsèques peuvent être obtenues pour les champs aléatoires gaussiens et les gaussiens-associés qui respectent certaines conditions de régularité, en utilisant la formule de Hadwiger et la théorie de Morse. En pratique, les formules explicites permettent d'estimer les paramètres caractéristiques d'une surface aléatoire, et de fournir une description complète de l'état de la surface.

Cependant, les champs aléatoires introduits dans l'état de l'art de ce manuscrit ne sont pas suffisants pour l'application proposée, ce qui justifie les développements théoriques de cette thèse.

Troisième partie : Développements théoriques

Cette troisième partie (Part III) est consacrée aux développements réalisés durant cette thèse dans le domaine théorique des champs aléatoires et dans l'estimation des volumes intrinsèques de leurs ensembles de niveaux en formules analytiques explicites. Cette partie comporte deux chapitres. Le premier chapitre (chapitre 4) introduit une classe de champs aléatoires mixtes créés par la combinaison linéaire d'un champ gaussien et d'un champ appelé t-field. Le deuxième chapitre de cette partie (chapitre 5) est consacré aux modèles aléatoires asymétriques, précisement les champs aléatoires skew-t. Les volumes intrinsèques appelés également Lipschitz-Killing curvatures (LKCs) ont été calculés explicitement, dans l'espace euclidien R N , pour les modèles de ces deux chapitres, en étendant les résultats publiés dans la littérature pour les modèles gaussiens et gaussiens-associés. Les nombres moyens des valeurs extrêmes (maxima/minima) ont été aussi estimés, et la relation entre ces nombres moyens et la fonction d'Euler-Poincaré caractéristique a été également établie. Des résultats de simulations numériques dans ces deux chapitres sont présentés.

Quatrième partie : Application

La quatrième partie (Part IV) concerne une application de la prothèse totale de hanche. L'étude théorique introduite dans la partie précédente a été initiée par un problème pratique : l'analyse de l'évolution de rugosité, et la caractérisation de la topographie des surfaces représentées par des modèles stochastiques durant l'usure mécanique. Ce problème pratique est associé à l'application médicale proposée pour cette thèse : les cupules UHMWPE (Ultra-High-Molecular-Weight Polyethylene) utilisées dans certaines prothèses totales de hanche. Le but de ce problème pratique est de mettre en oeuvre des outils pour décrire le comportement de UHMWPE avec l'usure, afin d'améliorer la durée des implants prothétiques de la hanche.

Le premier chapitre (chapitre 6) de cette partie pose précisément l'application médicale : les principes de la prothèse totale de hanche, le choix des matériaux utilisés pour ces prothèses, et les problèmes principaux rapportés avec les matériaux utilisés, en particulier l'usure de la surface de UHMWPE. Le chapitre 7 établit les développements expérimentaux : il explore les dispositifs expérimentaux aboutissant à générer artificiellement (in-vitro) l'usure sur la surface UHMWPE, et les outils techniques exploités pour observer les surfaces usées et pour fournir la carte de rugosité.

Le chapitre 8 met en pratique les développements théoriques précédents sur les surfaces réelles observées concrètement sur la cupule de UHMWPE avant et pendant le processus d'usure. Ensuite, une analyse statistique, basée sur les volumes intrinsèques des ensembles de niveaux du champ aléatoire skew-t, a été proposée. Elle permet d'estimer l'évolution des pics/vallées affectés par l'usure, en considérant que ces dernières sont du même ordre de grandeur que l'erreur systématique (l'erreur de mesures). Ainsi, un seuillage a été établi hiérarchiquement sur la surface en utilisant la fonction d'Euler-Poincaré caractéristique du model aléatoire skew-t. L'aire moyenne de pics/vallées détectés et leurs niveaux d'altitudes sont ensuite calculés et utilisés pour présenter l'évolution de paramètres de rugosités fonctionnelles qui décrivent le comportement et la fonctionnalité de la surface avec l'usure.

Cette analyse a été appliquée à huit échantillons observés autour de différentes régions de la surface hémisphérique de UHMWPE, telles que les régions aux latitudes à 45 • et 100 • . Les résultats ont démontré que les zones à 100 • sont beaucoup moins affectées par l'usure, contrairement aux zones à 45 • . Cela indique un comportement non-homogène du mécanisme d'usure sur les zones observées aux différentes latitudes de la cupule. Les résultats ont également montré que le comportement de la surface de UHMWPE, pour les échantillons mesurés autour la zone la plus usée (c'est-à-dire la zone à 45 • de latitude) est homogène, et contrôlé, d'une manière alternative par deux types d'usure appelés abrasion et adhésion.

Cinqième partie : Conclusion générale et perspectives

La dernière partie (Part V) de ce manuscrit conclut le travail de cette thèse. Le chapitre 9 présente tout d'abord des perspectives, sur la modélisation spatiotemporelle. Il introduit le modèle skew-t dans l'espace et temps, et présente les formules explicites des volumes intrinsèques de ses ensembles de niveaux. L'approche spatio-temporelle portée sur les champs aléatoires fournit des outils très intéressants et originaux sur la modélisation de la topographie de surface, l'analyse spatio-temporelle de sa rugosité pendant le temps d'usure, et la prédiction de v la fonctionnalité de la surface au travers des paramètres de rugosité prévus. Cependant, ce travail nécessite de conduire des investigations théoriques et pratiques supplémentaires.

Le chapitre 10 tire une conclusion générale qui récapitule la thèse et fournit les suggestions et les idées utiles pour d'autres améliorations, et ouvre la discussion vers des domaines différents d'application.

Finalement, les annexes sont composées de deux chapitres. La premier chapitre expose les théorèmes et les lemmes utilisés pour calculer les volumes intrinsèques des modèles proposés dans la deuxième partie du manuscrit. Le chapitre suivant introduit les outils pratiques pour générer la topographie des surfaces à partir des modèles aléatoires gaussiens isotropes et/ou anisotropes à partir de la représentation spectrale (transformée de Fourier) ou de la décomposition orthogonale de la matrice de covariance, suivis d'illustrations de simulation numérique. 

Introduction

II RANDOM FIELDS THEORY AND THEIR GEOMETRY

Medical Issue

Total hip arthroplasty is a reconstructive procedure which has improved the management of those diseases of the hip joint, that have responded poorly to conventional medical therapy, such as osteoarthritis. One of the most used total hip implants involves insertion of a femoral prosthesis, composed of a stem and smalldiameter head, inside the femur, and an acetabular component, composed of ultrahigh-molecular-weight polyethylene articulating surface, is inserted into the acetabulum cartilage. The hip prosthesis should insure high stability in the bone using either cemented or uncemented designs. Nowadays, the hip arthroplasty is one of the most widely performed surgeries in France (120000 hip prosthesis per year), and in Europe (about 800000), due to its increased role in reducing the pain, and in restoring the hip joint functions after sever degradation, and bony outgrowths related with different reasons, such as accidents, bone diseases, and ageing. Nevertheless, serious complications after hip replacement surgery might occur due to reasons caused by the wear of the prosthetic components.

Scientific Issue

The success of the total joint arthroplasty, during the last 30 years, is largely due to the use of the ultra-high-molecular-weight polyethylene (UHMWPE) as a bearing surface, which has a good resistance to wear. However, wear does occur in UHMWPE and sometimes can be excessive in younger and more active patients. The factors that affect the wear might include without limitation, design, material, surgical and patient factors. One of the most intrinsic wear factors are those related with the surface properties of the used materials, especially the surface roughness.

Generating the wear on the surface topography, of the UHMWPE component, has been achieved in-vitro using a joint simulator machine, in order to emulate the in-vivo joint implant (i.e.; the joint implant inside the patients). The worn surfaces have been measured and observed using the three-dimensional white light interferometer. This technique enables three-dimensional topographical measurements within a limited field of view, in a fast and contacltless way. The topography of the observed surface can span many length scales, ranging from the physical form, to the very small-scale structures (microstructural features) defined by the local hills (summits) and valleys (or pits), and referred as roughness. The evolution of the surface roughness during this simulation process contributes understanding the invivo wear mechanisms, and the functional behaviour of the worn surface, to finally improve the prosthesis quality and its life-duration.

Aims and Scopes

The evolution of the surface roughness, and more precisely the hills (summits) 1 and valleys at certain height levels, is one of the basic factors that governs a number of important phenomena during mechanical contact between surfaces, such as the wear of materials. Due to the random nature of the topography of rough surfaces, these hills and valleys can be robustly estimated and determined by the random field theory. An appropriate random field model should be defined by significant statistical parameters that describe the roughness evolution of the worn surface, such as the second, third and fourth order moments, referred to as variance, skewness and kurtosis, respectively.

Studying the geometry generated by random fields has been well established via the integral geometry of their excursion sets, more precisely the intrinsic volumes including the Euler-Poincaré characteristic of those sets. An excursion set of a random field is defined by the set of points where their random variables exceed some threshold. The geometric properties of these excursion sets have numerous intrinsic benefits. For example, without limitation, they quantify the content of the excursion sets, such as the volume, area, length of boundaries. Furthermore, the Euler-Poincaré characteristic of the excursion set detected at high levels is a good estimate of the number of connected components (number of hills/or valleys). These intrinsic volumes have been expected for Gaussian random fields [START_REF] Adler | The Geometry of Random Fields[END_REF][START_REF] Adler | Level crossings for random fields[END_REF] and extended to χ 2 , t, F , and Hotelling's T 2 random fields by [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF][START_REF] Cao | The detection of local shape changes via the geometry of hotelling's T 2 fields[END_REF]. Although the interesting results are obtained from these random fields in many applications, they are limited to give robust representation of the worn topography. Thus, the aim of this thesis, firstly concerns on extending the theoretical results to two types of random fields (one is defined by the linear mixture of Gaussian and t random fields, and the second is the skew-t random field). Then, these random fields have been applied to real surfaces observed from a UHMWPE component, in order to represent, and to analyze the roughness topography of those surfaces, in both machined and worn states, respectively.

A Guide to this thesis

The thesis is organized into five parts as follows. The first part (Part I) consists of chapter 1, which introduces a brief background of the surface roughness metrology. This chapter is also focused on the methods, reported in the literature, that have been used to characterize and to represent the surface roughness such as geometrical, and model-based methods. Advantages and limitations have been discussed to finally demonstrate the importance of the random field theory in combination with the geometry of their excursion sets, for topographical representation and analysis of rough surfaces.

The second part (Part II) reviews the basic framework of random fields (chapter 2) and the integral geometry of their excursion sets (chapter 3). The first chapter includes the mathematical definition and the basic properties of the random fields, giving some interesting examples. The second chapter explores the excursion sets and their geometric properties derived by the integral geometry such as Crofton's and Hadwiger's formulas, and the differential topology (Morse theory).

The third part (Part III) extends the theoretical results about the geometry of the excursion sets of some known random fields to the mixture model field defined by the linear combination of Gaussian and t random fields (chapter 4) and skew-t random field (chapter 5). In chapter 4, the mean intrinsic volumes (Lipschitz-Killing curvatures (LKCs)), also known by Minksowski functionals with some normalization and order's change, have been expected for the two-dimensional Gaussian-t random field. Furthermore, the behaviour of the expected Euler-Poincaré characteristic at high threshold for this mixture model is also discussed. Chapter 5, derives the expected formulae of the Lipschitz-Killing curvatures for the N -dimensional skew-t random field. Furthermore, the mean number of the local maxima and minima of the skew t random field at high threshold is also derived analytically. The expected Euler-Poincaré characteristic is then expressed in the special case for N = 2. Simulation results in both chapters are established to compare the analytical results with the simulated ones.

The fourth part (Part IV) is concerned on applying these theoretical developments in the application defined by the total hip implant. Chapter 6 explores the basic concepts about the artificial hip prosthesis, design, and the choice of materials. Furthermore, the main problems related with some of these materials that motivated studying the surface roughness topography have been discussed. The wear on the materials of the artificial hip prosthesis components have been generated in an experimental environment introduced in chapter 7. This chapter Introduction also presents the technical methods used to measure and export the topographic map of surface roughness. Chapter 8 provides the developments investigated on the real surfaces measured from the UHMWPE component during wear simulation process. A statistical analysis approach has been proposed based on the expected Euler-Poincaré characteristic of the skew-t random field in order to estimate the hills and the valleys of the worn surface, and hence to estimate the roughness evolution during wear time.

The last part (Part V) is structured into two chapters, chapter 9 introduces a work in progress about the spatio-temporal skew-t random field and the LKCs of its excursion sets, one of the interesting and original topics towards modelling the surface topography during wear time, analysing the spatio-temporal roughness variability for predicting the future behaviour of the worn surface. Then, chapter 10 draws a global conclusion that summarizes the thesis and provides suggestions and ideas that can be realized in the future research areas for further ameliorations, or even in other applications. 

Characterization and modelling of surface roughness topography

Introduction

The spatial and geometrical evolution of the topographic roughness of engineering surfaces avail understanding many important physical phenomena, such as friction, lubrication (liquid flow behaviour), and wear mechanism during mechanical contact between adjoined surfaces. Surface topography observed in microscopic scales are in fact extremely rough and of random nature. They are composed of alternating hills and valleys of various dimensions referred to as surface heights, or asperities and valleys. On the other hand, the height maps observed by the optical instruments can be digitized and stored as 2D images, and so they can be characterized using numerous image processing methods, such as filtration techniques [START_REF] Blateyron | New 3D parameters and filtration techniques for surface metrology[END_REF][START_REF] Jiang | Application of the lifting wavelet to rough surfaces[END_REF], spectral analysis [START_REF] Wu | Simulation of rough surfaces with fft[END_REF], texture analysis [START_REF] Stachowiak | 3-D characterization, optimization, and classification of textured surfaces[END_REF][START_REF] Stachowiak | Characterization and classification of wear particles and surfaces[END_REF], and feature extraction techniques [Sco09, Sco04, JZS + 08]. However, understanding the mechanical contact between adjoined surfaces requires definition of the geometry of the adjoined hills, quantifying their number and their size, and estimating their height levels [START_REF] Adler | The Geometry of Random Fields[END_REF]. Furthermore, the surface lubrication properties can be described by quantifying the size and the number of the valleys and pits. Such Chapter 1. Characterization of surface topography problems can not be resolved without a mathematical model that describes the microgeometry of these hills and valleys and predicts their real heights. The next section will review the traditional and technical methods in the surface metrology framework for the surface roughness characterization. A special interest in this chapter will be given to the model-based methods and the geometry of the level sets, precisely the intrinsic volumes, developed in the literature to answer the previous problems.

Surface metrology

In surface metrology science, a set of roughness parameters, and characterizing functions were defined to describe rough surfaces. They were categorized between 2-D and 3-D roughness parameters accordingly with the approaches being used to describe the surface.

Two-dimensional approaches

The early characterization methods of surface roughness were established on the two-dimensional surface profiles [START_REF] Jiang | Paradigm shifts in surface metrology. part i. historical philosophy[END_REF][START_REF] Dong | An integrated approach to the characterization of surface wear i: Qualitative characterization[END_REF][START_REF] Whitehouse | Handbook of Surface Metrology[END_REF]. Statistical parameters such as the amplitude and the spacing parameters are used to describe the roughness and the joint distribution of the surface profiles. One of the widely used parameters to describe the roughness are the amplitude parameters. They quantify either the profile heights relatively to a reference line, such as the absolute mean height, R a , and the root mean square deviation, R q , or the shape of the height's distribution by measuring its symmetry and peakedness, such as the skewness, R sk , and the kurtosis, R ku , respectively. Besides the amplitude parameters, other techniques aim at measuring the spacing parameters between the profile heights. These spacing parameters are computed from the autocorrelation function (ACF) of the profile. Another numerous parameters are defined in the standards [START_REF]Geometrical product specification (GPS) -surface texture: profile method[END_REF][START_REF]Metropro reference guid[END_REF]. The problem associated with the two-dimensional methods is that they are not descriptive. For example, one can find the same values of the amplitude parameters for two different surface profiles [START_REF] Najjar | About the relevance of roughness parameters used for characterizing worn femoral heads[END_REF][START_REF] Allan | Fractal description of rough surfaces for haptic display[END_REF]. Furthermore, the surface profiles do not contain any textural information of the surface topography such as isotropy/anisotropy, periodicity, hills/valleys shape or size [START_REF] Dong | An integrated approach to the characterization of surface wear i: Qualitative characterization[END_REF].

Three-dimensional approaches

Following the development of the 3D measurement techniques, in the last years, the three-dimensional approaches have been arisen for characterizing the two-dimensional surface topography. All the roughness parameters derived by the two-dimensional approaches have been extended by the three-dimensional methods and computed from the surface topography. Additionally, other parameters are defined to quantify the surface texture properties, surface bearing area, material 1.2. Surface metrology and void volumes. These parameters are designated under the name "S parameters" to be distinguished from the "R parameters" given by the two-dimensional methods [DSS94, SSD + 93].

Statistical methods based on height's distribution

These methods describe some amplitude-related parameters based on the height's distribution, as seen in the two-dimensional case. The amplitude parameters are used to describe the dispersion of the surface heights from a reference plane such as the mean arithmetic deviation, S a , and the root mean square arithmetic deviation (RMS), S q , given by their following digital formula for a surface Z defined on a rectilinear lattice in R 2 , with (M × N ) points, [SSD + 93]:

S a = 1 M N M i=1 N j=1 |Z(x i , y j )| S q = 1 M N M i=1 N j=1 Z 2 (x i , y j ) (1.1)
where x i is the ith x-coordinate, and y j is the jth y-coordinate of the discrete lattice in R 2 . These parameters are, in both one-dimensional and two-dimensional cases, sensitive to the length (size) of the sampling interval (area), respectively [SSD + 93].

A surface being digitized on the same measurement domain with two different sampling intervals will have different values of S a and S q . The shape of the joint distribution function of the surface heights is described by two significant parameters, namely skewness S sk and kurtosis S ku equivalently to the one dimensional case. The skew parameter measures the symmetry of the height's distribution (Fig. 1.1). Its discrete form is defined as [SSD + 93]:

S sk = 1 M N S 3 q M i=1 N j=1 Z 3 (x i , y j ) (1.2)
and the kurtosis parameter measures the peakedness (or flatness) of the height's distribution (Fig. 1.2), and it is given by [SSD + 93]:

S ku = 1 M N S 4 q M i=1 N j=1 Z 4 (x i , y j ) (1.3)
Note that the amplitude parameters of the surface topography do not have any descriptive information about the surface texture.

Autocorrelation function and spectral methods

In order to describe the spatial relation between two height values, the traditional areal autocorrelation function (AACF) and the areal power spectral density (APSD) of the surface have been used. Spacing parameters can be quantified from the AACF and the APSD that measure the isotropy/anisotropy of the surface, the texture direction and the distances between correlated heights [START_REF] Newbold | The Fourier transform and its applications[END_REF]. These spacing parameters are the fastest decay correlation length S al which measures the texture length-scale, and the texture aspect ratio 0 < S tr ≤ 1, that measures the degree of anisotropy of a surface [START_REF] Newbold | The Fourier transform and its applications[END_REF]. For example, isotropic surfaces have similar correlation length decay along all directions and the S tr value is near 1. The direction of the texture, denoted S td , can be obtained directly for stationary surfaces from the areal power spectral density function APSD using the two-dimensional Fourier transform [START_REF] Newbold | The Fourier transform and its applications[END_REF]. It is defined by the angle where the maximum value of the APSD occurs [SSD + 93]. Additionally, the density of surface summits, denoted S ds , is defined as a spatial parameter and derived from the AACF. It is given by the number of the surface hills and valleys in the unit sampling area [SSD + 93]. Unfortunately, for a surface topography, they are defined by many ways . In [START_REF] Kubo | A basic study of a three-dimensional assessment of the surface generated in a manufacturing process[END_REF], a hill or valley is defined as the highest or deepest point lying within a four or eight nearest neighbours, and in [START_REF] Wallach | Surface topography description and measurements[END_REF], it is defined by a contour-based summit detection method. So, the number of the surface summits will vary according to the way the hills and valleys are defined 1 . Some of the spacing parameters, likely the amplitude parameters, are sensitive to the sampling interval (spatial resolution), and they should be given and compared based on that later [SSD + 93].

Surface parameters are not limited to the previous discussed ones. Further parameters are reported in [SSD + 93, Bla06, DS95, Whi94] and in the different versions of the standard ISO [ISO05, ISO06], like the hybrid parameters which are based on both the amplitude and spacing parameters, and the functional parameters that describe the surface bearing area, material volume and void volume [SSD + 93, JSWB07b]. The functional parameters, as they called, describe the functional properties of the surface such as bearing, wear running-in and fluid retention [SSD + 93]. These parameters can be estimated using Abbott-Firestone curve [START_REF] Abbott | Specifying surface quality: a method based on accurate measurment and comparision[END_REF].

Abbott-Firestone curve

Abbott-Firestone curve [START_REF] Abbott | Specifying surface quality: a method based on accurate measurment and comparision[END_REF], equivalently called by marginal ratio curve or bearing area curve, was the early characterizing function for the surface roughness. Firstly, it was computed from the surface profile, then, it was extended for the two-dimensional surface heights [SSD + 93]. Abbott-Firestone curve is one of the important tools in surface characterization. The surface functional parameters such as core roughness depth S k , reduced peak height S pk , reduced valley depth S vk bearing area parameters SM r 1 , SM r 2 have been defined from Abbott-Firestone curve [SSD + 93]. Abbott-Firestone curve measures the density of the surface hills 12 Chapter 1. Characterization of surface topography (valleys) above (below) a height value. It has been used for studying the stress, in some contact deformation problems, and to predict the bearing behaviour and the fluid retention properties of the surface.

In summary, there is 14 parameters for characterizing the surface topography and they are classified between amplitude, spacing, hybrid and functional parameters. Their significance depends on the surface property and the application needs.

Geometry of level sets for surface characterization and analysis

A level set, can be simply defined here, as the result of hitting the surface by a plane at certain height level, and keeping all the points above this level. Thus, the level set can be seen as a result of threshold process of the surface heights in R 2 . The geometric properties of a given level set are quantified by some measures, which define the size and the boundaries of its content, and its connectivity, known as Minkowski measures (more details can be seen in chapter 3).

Those characterizing measures have a very interesting physical interpretations [START_REF] Schmähling | Statistical characterization of technical surface microstructure[END_REF], and they are correlated with most of the surface roughness parameters defined in surface meteorology, as will be seen in the next chapters of this thesis. The area of the level sets, calculated at different height thresholds, gives the material area ratio or equivalently the related Abbott-Firestone curve [START_REF] Abbott | Specifying surface quality: a method based on accurate measurment and comparision[END_REF]. Complementary, computing the area of the level sets below those thresholds (where the plane does not hit the part of material that is out of contact with it) defines the void area (the area of valleys and cavities or holes) which is also could be associated with the Abbott-Firestone curve discussed in subsection 1.2.2.3.

The contour length of the level sets enables measuring some spatial features of those sets [START_REF] Schmähling | Statistical characterization of technical surface microstructure[END_REF], and it describes how much the level is smooth. For rough surfaces, a level set might include much small-scale structures, and structures of irregular boundaries. In this case, the contour length will be much higher than the one estimated from level sets of smooth surfaces. Besides the material/void area ratio, and the contour length, one can estimate the number of holes, cavities, and peaks, which could be counted by the so-called Euler-Poincaré characteristic (see chapter 3). The Euler-Poincaré characteristic has an important interpretation of the surface percolation context [START_REF] Mecke | Additivity, convexity, and beyond: Applications of minkowski functionals in statistical physics[END_REF][START_REF] Mecke | Integral Geometry in Statistical Physics[END_REF]. A negative value of the Euler-Poincaré characteristic indicates that the material is governed by holes, where the fluid will be trapped inside. Thus, the number and the size of those holes could be the most significant features in the level set, in this case. Likewise; a positive value implies that the level set mainly consists of isolated blobs (or regions) of the material, so the fluid in such case can flow freely on the surface (see Fig. 1.3). 

Model-based methods for surface roughness representation and analysis

Model-based methods state that the measured roughness component of the surface topography is perceived according to an appropriate model, which is identified by some parameters that represent the most important textural information of the surface topography, and also have a direct physical interpretation. These methods are used for analysis, and for simulation of rough surfaces.

Wavelet models

A multi-scale representation of rough surface is suggested by wavelet models [WM97, LXLZ05, JBL02, LZCM98, JBS01a, JSW08]. A sequence of spatial filters of different kernel models are defined over a range of scales to represent the multi-scale surfaces. The appropriate wavelet model depends on the surface structure and the manufacturing process. The range of the significant scales can be determined by the wavelet decomposition of the surface and hence from the wavelet coefficients that significantly describes the surface. In wear analysis applications, the multi-scale descriptors are statistically dependent over some scales, and the dependence between the wavelet coefficients is often unknown. Furthermore, the descriptors that might be significant in one scale at one wear time might not have any significance at another scale and time.

Fractal models

The topography of rough surfaces have been characterized and represented by the geometry of fractal [ZVL98, ST78, Rus94, TRA99, PS00, Whi02, PS99, Cos00, PG07, WPS10, PS05], which states that the geometric features (lines, curves, area and etc.) of rough surfaces exhibit the self-similarity property, i.e. they have the same magnifications at all scales and in all directions (scale-invariant or isotropic fractal), or they exhibit the self-affinity property which states that some rough surfaces are composed of structures of unequal scaling magnifications in different directions and thus define anisotropic fractal surfaces [START_REF] Zahouani | Fractal models of surface topography and contact mechanics[END_REF][START_REF] Allan | Fractal description of rough surfaces for haptic display[END_REF]. In both cases, there is two intrinsic parameters being used to describe the geometry of the isotropic/anisotropic fractal surfaces, namely fractal dimensions D and the exponent of roughness H [START_REF] Zahouani | Fractal models of surface topography and contact mechanics[END_REF]. One of the basic assumptions in the geometry of fractal is that the surface does not follow the regular law of Euclidean geometry. The surface can be described and represented with a non-integer parameter D ∈ [1, 2] for two-dimensional profiles, and D ∈ [2, 3] for the three-dimensional profiles (or surfaces). Numerous methods have been proposed to represent the topography of rough surfaces, mainly one is the Fractional Brownian motion [START_REF] Benoit | Fractional brownian motions, fractional noises and applications[END_REF] (see a simulation example in Fig. 1.4, which states that a surface of a fractional Brownian motion will satisfy that the greatest differences between any two points located at a distance d in the parameter space will follow an exponent law d H with H = 1/2. Nevertheless, many engineered surfaces have not the self-similarity property, and the surface microstructures geometry, such as the contour, area or volume of hills and valleys, are not scale-invariant, except over a range of scales. One can see the arguments in [START_REF] Jiang | Paradigm shifts in surface metrology. part II. the current shift[END_REF][START_REF] Whitehouse | Fractal or fiction[END_REF] on the log-log plot of the volume-scale or area-scale. Furthermore, Fractal dimension lacks straightforward physical meanings and has not been directly linked with the functional behaviour of engineering surfaces [SSD + 93].

Numerical models

Numerical models by image processing techniques [MRS10, AWC02, Wu00, HT92] are commonly used to represent the topography of rough surfaces, which enable analyzing the mechanical contact properties from the represented roughness maps. A rough surface with identified statistical amplitude parameters S a , S q , S sk , S ku and autocorrelation function can be represented and simulated numerically using the Johnson translator method [START_REF] Johnson | Systems of frequency curves generated by methods of translation[END_REF]. These models do not require any assumption of surface isotropy/anisotropy, hills/valleys shape, or the distribution type of the surface heights. In fact, the geometry of the hills and valleys, and the surface texture properties have significant physical interpretation on engineered surfaces.

Random field models

Random field models are well established to model the microgeometry of the hills and valleys of a surface, in many applications related to mechanical contact of rough surfaces, using either the Gaussian or non-Gaussian random fields [Nay73, GW66, Rei11, AF81, Sch06, AA09]. Gaussian surfaces have been referred to as the dependent random heights having a joint Gaussian distribution function which is uniquely characterized by its autocorrelation function. The model of the covariance function, or the autocorrelation function, defines the spatial features of the Gaussian hills and valleys and the texture properties of the surface (see Appendix B for examples). In some applications associated with wear processes, some statistical parameters derived from the third and fourth order moments, S sk and S ku , of the height's joint distribution become significant characteristics. Thus, the Gaussian model can not approximate such worn surfaces. One of the interesting examples proposed in the literature [START_REF] Alodat | Skew-Gaussian random field[END_REF] for modelling worn surfaces is the skew-Gaussian random field. The skew-Gaussian random field generalises the Gaussian one by including the skewness concept to the normal distribution function (see Fig. 1.5 as example), so that the marginal probability density function, p(h), at each height h on the surface can be defined as: where φ(.), Φ(.), are the Gaussian density and the Gaussian cumulative distribution functions, respectively, and δ ∈ (-1, 1) is a parameter that indicates the skewness of the distribution function such that:

p(h) = 2φ(h)Φ(δh/ 1 -δ 2 ), (h ∈ R) (1.4) (a) (b)
S sk = 4 -π 2 (δ 2/π) 3 (1 -2δ 2 /π) 3/2 (1.5)
Nevertheless, the influence of the kurtosis is negligible in the skew-Gaussian random fields, which requires looking beyond the Gaussian surfaces and use the non-Gaussian random fields such as the ones introduced and defined, in this thesis, in chapters 4 and 5.

Similarly to fractal surfaces2 , the random field, being defined as a model of a rough surface, and the geometric properties of its excursions above some levels are related with the mechanical contact model. For example, in plastic contact problems between a rough surface and a hard, smooth, and flat one [START_REF] Greenwood | Contact of nominally flat surfaces[END_REF][START_REF] Nayak | Random process model of rough surfaces in plastic contact[END_REF], it was shown that the joint distribution function model of the finite contact hills, and their mean area could describe and determine the normal pressure/hardness ratio.

Conclusion

Following the arguments discussed about the model-based methods for characterizing the surface roughness topography, the random field models arise to be one of the powerful approaches in this application field, more precisely, the combination of random fields and the geometry of the level sets. The models seen in this bibliographic chapter can all be considered as stochastic models that deal with random and rough surfaces, and the research developments are not limited to only these approaches, but also to combinations between them. A combination between fractal and wavelet approaches enabled define a multi-scale fractal surfaces [START_REF] Podsiadlo | Hybrid Fractal-Wavelet method for characterization of tribological Surfaces-a preliminary study[END_REF][START_REF] Podsiadlo | Fractal-wavelet based classification of tribological surfaces[END_REF], whereas a combination between wavelet and random fields enables define a scalespace random fields [START_REF] Robert | Applications of Random Fields and Geometry: Foundations and Case Studies[END_REF][START_REF] Saint-Jean | Maxima of the continuous wavelet transform of correlated data[END_REF]. In all cases, choosing one approach over another strongly depends on the area of application to be addressed.

The next chapters in this thesis will focus on the basic theoretical topics of the random fields and their geometry, in order to export the main results required for the application. 

Part II

RANDOM FIELDS THEORY AND THEIR GEOMETRY

Random fields

This chapter reviews some basics of the random fields given in the literature, [AT03, Abr97, Yag87a, Yag87b, Van83, Adl81]. We are interested in stationary Gaussian and non-Gaussian random fields which are basically related to the Gaussian one and defined on the N -dimensional Euclidean space.

Definition

Let (Ω, F, P) be a probability space, and a topological space S ⊂ R N . Then, an N -dimensional random field is defined as a measurable mapping

Y : Ω → (R S ) d , d ≥ 1, and denoted by Y (x, ω), x ∈ S, ω ∈ Ω. When d = 1, then f is called a real-valued N -dimensional random field, and if d > 1, the measurable mappings from Ω to (R S ) d are called R d -valued N -dimensional random fields.
The notation is usually restrained in the literature so:

Y x ≡ Y (x) ≡ Y (x, ω)
In general, a random field Y (x), x ∈ S is uniquely determined by its finitedimensional (f i -di) distributions. Given an arbitrary collection of random variables Y (x 1 ), ...., Y (x n ) for any x 1 , ..., x n ∈ S and any n ≥ 1, then, the (f i -di) Chapter 2. Random Fields Theory distributions of such collection is defined by:

F x 1 ,...,xn (y 1 , ..., y n ) = P {Y (x 1 ) ≤ y 1 , ..., Y (x n ) ≤ y n } (2.1)
Thus, a random field Y (x), x ∈ S can also be defined as a collection of random variables, together with a collection of their (f i -di) distributions, or joint distribution functions, of the form F x 1 ,...,xn .

Stationarity, Isotropy, and Anisotropy

To understand the structure of the random fields, some important properties such as the stationarity, isotropy and anisotropy should be introduced. On the other hand, when dealing with stationary random fields a general and simple way to generate these random fields arises using the spectral representation, and hence, the spectral moments of random fields become the interesting result of the spectral representation theory.

Stationarity

Let consider S the parameter space in R N , such that x, s ∈ S implies that x + s ∈ S.

Definition 2.2.1 (Stationarity in strict sense). A random field Y (x), x ∈ S is said stationary in strict sense over S, if all its f i -di distributions are invariant under arbitrary translations. That is, for any n ≥ 1 and any set of points s, x 1 , ..., x n ∈ S F x 1 +s,...,xn+s (y 1 , ..., y n ) = F x 1 ,...,xn (y 1 , ..., y n )

(2.2)

An immediate definition follows the strict stationarity is the weak stationarity or stationarity in wide sense. Let E[Y (x)] = µ(x) and C(x, s) = Cov(Y (x), Y (s)) be the mean and covariance functions of a random field

Y (x), respectively, such that E[ Y (x) 2 ] < ∞ for all x ∈ S.
Definition 2.2.2 (Stationarity in wide sense). A random field Y (x), x ∈ S is said stationary in wide sense, or "weakly" stationary over S if

µ(x) = µ and C(x, s) = C(x -s) (2.3)
This means that the mean function is constant and that the covariance function only depends on the difference vector xs. The corresponding covariance function is called a stationary covariance function. Notice that, the strictly stationary implies the stationarity in wide sense, but the opposite is not always true, except for the Gaussian random fields, where strict stationarity and weak stationarity are both equivalent. Stationary random fields are also called homogeneous random fields, [START_REF] Yaglom | Correlation Theory of Stationary and Related Random Functions: Volume I: Basic Results[END_REF][START_REF] Vanmarcke | Random Fields: Analysis and Synthesis[END_REF][START_REF] Adler | The Geometry of Random Fields[END_REF].
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Isotropy

A special class of stationary or homogeneous random fields on R N are the isotropic random fields. These random fields are translation and rotation invariant. Let consider S is a metric space equipped by the Euclidean distance (or the Euclidean norm) such that:

dist(x, s) = x -s = N i=1 (x i -s i ) 2 1 2
(2.4) Definition 2.2.3. A stationary random field is said isotropic if the covariance function depends only on the Euclidean norm of the difference vector xs such that:

C(x, s) = C( x -s ) (2.5)
A covariance or correlation function implies the last definition is called an isotropic function. As can be seen, the covariance function depends only on the distance between x and s.

Anisotropy

The anisotropic covariance functions are defined by replacing the Euclidean norm of the metric space S by the general norm1 of the form:

dist(x, s) = x -s D = (x -s) t D(x -s) (2.6)
where t stands for the transpose, and the N × N matrix D is non-negative definite (i.e. x t Dx ≥ 0 for all x ∈ R N ).

Definition 2.2.4. A stationary covariance, or correlation, function on R N is said anisotropic function if it depends on the general non-Euclidean norm such that:

C(x, s) = C( x -s D ) (2.7)
The covariance functions defined by the general norm are called ellipsoidal covariance functions. A stationary random field with anisotropic covariance function is said anisotropic random field "in the wide sense".

Spectral representation on R N

The basic result that arises in the theory of stationary random fields is the spectral representation theorem [START_REF] Bochner | Monotone funktionen stieltjessche integrale and harmonishe analyse[END_REF], which states that a continuous real function C : R N → C is non-negative definite, and so called a covariance function, if and only if it can be represented in the form:

C(x) = R N e i<x,λ> d N F (λ) (2.8)
where

F (λ) : R N → [0, σ 2 ] is a N -dimensional distribution function, also called spectral distribution function of C, and σ 2 = C(0) = R N d N F (λ).
If F is continuous, then the spectral density function is defined as:

f (λ) = ∂ N F (λ) ∂λ 1 ...∂λ N (2.9)
Based on the spectral representation theorem, [START_REF] Adler | The Geometry of Random Fields[END_REF] proved that a complexvalued2 "weakly" stationary, or homogeneous, random field, Y (x), can be represented such that:

Y (x) = R N e i<x,λ> d N Z(λ) (2.10)
and it has the covariance function

C(x -s) = E[Y (x)Y (s)],
which is represented as:

C(x, s) = R N e i<(x-s),λ> d N F (λ) (2.11) where Z(λ) is the N -dimensional complex spectral distribution function of the complex noise field Z. Note that if Z is a Gaussian noise, then Y is a Gaussian random field.
When Y is a real-valued random field, then the covariance function is a symmetric function about its origin and it can be written as:

C(x, s) = R×R N -1 cos( (x -s), λ )d N F (λ) (2.12)
and the spectral representation of the real-valued random field Y is then:

Y (x) = R×R N -1 cos( x, λ )d N Z 1 (λ) + R×R N -1 sin( x, λ )d N Z 2 (λ) (2.13)
where Z 1 and Z 2 are real-valued and independent spectral noises.

Gaussian random fields

Definition

This section introduces brief details about the Gaussian random fields as an important class of random fields, and they are the main blocks of this thesis. Gaussian random fields on R N are defined by their (f i -di) distributions, F x 1 ,...,xn , which form a multivariate normal distribution for any arbitrary choice of n and any collection (x 1 , ..., x n ).

Let Y = (Y 1 , ..., Y n ) t be a R n -valued random vector with Gaussian random variable components for any choice n. Then, the multivariate normal probability density function, or the joint normal probability density function, denoted p Y , is defined as:

p Y (y) = 1 (2π) n 2 |Σ| 1 2 e -1 2 (y-µ) t Σ -1 (y-µ) (2.14)
where y t = (y 1 , ..., y n ), µ = E(Y ) is the n vector mean, and Σ is a n × n non-negative (or semi-positive) definite covariance matrix with elements

Σ ij = E[(Y (x i ) -µ i )(Y (x j ) -µ j )],
and determinant |Σ| = det(Σ).

The Gaussian random fields are completely specified by their mean vector and covariance matrix, (see Appendix B for some simulation examples).

Spectral moments of Gaussian random fields

Given the spectral representation theorem, one of the very useful and important topics, that can be derived from the spectral density and the covariance function of the R-valued Gaussian random field Y , is what's called the spectral moments, denoted by λ i 1 ,...,i N3 . They are defined [START_REF] Adler | The Geometry of Random Fields[END_REF]as:

λ i 1 ,...,i N = R N λ i 1 1 ...λ i N N d N F (λ) (2.15)
for all i 1 , ..., i N with i k ≥ 0, and λ ∈ R N .

Considering that the Gaussian random field is stationary, then its covariance function and its spectral distribution are symmetric, (i.e., C(x) = C(-x) and F (λ) = F (-λ)), consequently, the odd-order spectral moments will be zero. A special interest about stationary Gaussian random fields concerns the second-order spectral moment, denoted λ ij with (i, j = 1, ..., N ), which depends on the secondorder derivatives of the covariance function C(x) near its origin4 and it can be written as:

λ ij = ∂ 2 C(x, s) ∂x i ∂s j x=s = -C ij (0) (2.16)
for i, j = 1, ..., N . The N × N matrix of these second-order moments is denoted by Λ. On the other hand, the first-order derivatives of the R-valued Gaussian random field Y are dependent, and they have the partial derivative ∂ 2 C(x)/∂x t x as covariance function [START_REF] Adler | The Geometry of Random Fields[END_REF][START_REF] Alder | Random fields and their geometry[END_REF]. Thus, the matrix Λ, is also defined as the variance-covariance matrix of the partial derivatives of Y , and it is written as:

Λ = E ∂Y (x) ∂x ∂Y (s) ∂s (2.17)
Under the isotropy condition of random fields, the second-order spectral moment matrix Λ = λI N , where I N is the N × N identity matrix, and λ is the second spectral moment 5 , where λ is independent of the indices i = 1, ..., N in this case.

Non-Gaussian random fields

Beyond the Gaussian random fields, some non-Gaussian random fields arise, widely, for modelling and analysing many natural phenomena. This section will focus on introducing a class of Non-Gaussian random fields which are mainly based on the Gaussian one, and also namely Gaussian-related random fields. One example of these random fields is called the t random field and it will be within the focus of this thesis. Let consider Z be a centered R k -valued Gaussian random field defined on some parameter space S, such that Z : S → R k , and all its k components Z 0 , ..., Z k-1 are independent, and identically distributed (i.i.d.), with constant variance 6 . Then, a transformation function denoted F , where F : R k → R can define a Non-Gaussian, or Gaussian-related, random field, Y (x), at any fixed x ∈ R N such that:

Y (x) = F (Z(x)) = F (Z 0 (x), ..., Z k-1 (x)) (2.18)
The parameter k is called the degree of freedom of the Non-Gaussian random field.

Example 2.4.1. A t random field, with k degrees of freedom 7 , is defined taken F such that

F (Z) = Z 0 √ k ( k i=1 Z 2 i ) 1 2 (2.19)
which has a marginal density function, for y ∈ R, given as:

t(y) = Γ((k + 1)/2) Γ(k/2)(πk) 1/2 1 + y 2 k -(k+1)/2
(2.20)

where Γ(.) is the Gamma function.

One can find other interesting examples in [Adl81, Wor94, Cao97, CW99].

5. In the literature, the second spectral moment of isotropic random fields is denoted by λ2 to refer to their order. In this thesis, we will use the notation λ to refer to these moments in the case of isotropic random fields.

6. The assumption that a random field, Y , has a constant variance yields that Y and its firstorder derivative, if differentiable, are uncorrelated.

7. In the next chapters of this thesis, we will denote the degree of freedom of the t field by ν.

Conclusion

This chapter has reviewed some basics about the random fields and their properties required for further developments in this thesis. Starting from the definition of the random fields, and the covariance function. We focused on stationary random fields, that can be generated immediately using the spectral representation theorem, and showed that the structural properties of "weakly" stationary random fields can be determined from the covariance function, such as isotropy and anisotropy. More attention has been focused on the Gaussian and a class of Non-Gaussian random fields called Gaussian-related random fields. The former, if centred, is completely determined by its covariance function, and the latter is defined using a transformation function of a centred vector valued Gaussian random field of independent and identically distributed components.

In the next chapter we introduce the geometric properties of the excursion sets of random fields, derived from the integral geometry.

Chapter 3 

Geometry of random fields

Chapter 3. Geometry of random fields

Another notation can be found in the literature for the excursion sets which is expressed as

Y -1 ([h, ∞)), [Adl81].
The geometric properties of the excursion sets of random fields were pioneered by [START_REF] Adler | The Geometry of Random Fields[END_REF][START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF] and recently investigated in [Cao97, AT07, Tay08], for Gaussian and Gaussian-related random fields. For N -dimensional excursion set there is N + 1 numerical quantifiers, known under several names such as Minkowski functionals (MFs), intrinsic volumes, and Lipschitz-Killing curvatures (LKCs), which describe the geometry and the topology of these sets. As example, in two-dimensions, they measure the area, the boundary length, and the Euler-Poincaré characteristic which counts the number of connected components minus the number of holes. In three dimensions, they measure the volume, the surface area, the mean curvature length, and the Euler-Poincaré characteristic which counts this time the number of connected components minus the number of handles plus the number of holes. The basic approaches to develop the geometry of these sets could be derived from integral geometry [START_REF] Antonio | Integral geometry and geometric probability[END_REF] and differential topology [START_REF] Morse | Critical point theory in global analysis and differential topology[END_REF]. These geometric quantifiers are of special interest since they provide a complete description of the geometric structure of the excursion sets. Furthermore, [START_REF] Adler | The Geometry of Random Fields[END_REF][START_REF] Hasofer | Upcrossings of random fields[END_REF] showed that when the excursion set is obtained at a very high level, the expected Euler-Poincaré characteristic converges with probability one to the number of the local maxima of the random field, since the excursion sets will consist of only connected component with no more holes, (see Fig. 3.1(c)).

In order to tackle this subject, there is certain regularity conditions that a random field, and the subset S should satisfy, as will be seen in the next section.

Regularity conditions

The excursion sets, in this thesis, are restricted to be defined on a bounded rectangle in R N of the form

S = N i=1 [0, L i ], 0 < L i < ∞, with (N -1)-dimensional boundary, ∂S.
Let Y = Y (x) be as considered in the previous section 3.1, and let Ẏj (x) = ∂Y (x)/∂x j and Ÿkj (x) = ∂ 2 Y (x)/∂x k ∂x k , for j, k = 1, ..., N . Then, the regularity conditions that Y (x) should hold are:

(i) for any ε > 0:

P (max {ω j (τ ), ω jk (τ )} > ε) = o(τ N ) as τ ↓ 0 (3.2)
where ω j and ω jk are the moduli of continuity of Ẏj and Ÿkj , respectively, inside S and they are defined, for all x, s ∈ S, j, k = 1, ..., N , as:

ω j (τ ) = sup x-s <τ | Ẏj (x) -Ẏj (s)|, ω jk (τ ) = sup x-s <τ | Ÿjk (x) -Ÿjk (s)| (3.3) (ii) Ÿ has finite variances conditional on (Y, Ẏ ),
where Ÿ is the N × N Hessian matrix of Y , and Ẏ is the N -vector gradient of Y .

(iii) the density of (Y, Ẏ ) is bounded above, uniformly for all x ∈ S.

(iv) the marginal densities of Ẏ are continuous at 0, uniformly for all x ∈ S.

Once a stationary random field, Y , satisfies the previous regularity conditions, the following results, due to [START_REF] Adler | The Geometry of Random Fields[END_REF][START_REF] Worsley | Boundary corrections for the expected euler characteristic of excursion sets of random fields, with an application to astrophysics[END_REF] and reported in [START_REF] Cao | Excursion sets of random fields with applications to human brain mapping[END_REF][START_REF] Adler | Random Fields and Geometry[END_REF], about the expected Euler-Poincaré characteristic and the expected number of the local maxima of Y can be represented.

The expected Euler-Poincaré characteristic and the expected number of local maxima of random fields

Let M + h (Y, S) be the number of the local maxima above a level h of a stationary random field Y (x) on S. Then, under the first three regularity conditions reported in section 3.2, the expectation of M + h (Y, S), [START_REF] Adler | The Geometry of Random Fields[END_REF], is:

E(M + h (Y, S)) = vol(S) ∞ h E[-det( Ÿ -)|Y = y, Y = 0]p N (y, 0)dy (3.4)
where vol(S) is the Lebesgue measure, or the N -dimensional volume, of S, and p N (y, 0) is the joint density of (Y, Ẏ ) at (y, 0), where Ẏ ∈ R N , at any fixed x ∈ S.

Under the regularity conditions given in section 3.2, then based on Morse's theorem [START_REF] Morse | Critical point theory in global analysis and differential topology[END_REF], (one of the important results of differential topology), [START_REF] Worsley | Boundary corrections for the expected euler characteristic of excursion sets of random fields, with an application to astrophysics[END_REF] proved that the expected Euler-Poincaré characteristic for stationary random fields is represented as:

E[χ(E h (Y, S))] =vol(S)E[(Y ≥ h)det(-Ÿ )| Ẏ = 0]p Ẏ (0) + ∂S E[(Y ≥ h)( Ẏ⊥ < 0)det(-Ÿ -Ẏ⊥ c)| Ẏ = 0]p Ẏ (0) (3.5)
where p Ẏ , p Ẏ are the probability density functions of Ẏ and Ẏ , respectively. At any point x ∈ ∂S, Ẏ⊥ is the gradient of Y in the direction of the inside normal to ∂S, Ẏ is the gradient (N -1)-vector in the tangent plane to ∂S, Ÿ is the (N -1) × (N -1) Hessian matrix in the tangent plane to ∂S, and c is the

(N -1) × (N -1) inside curvature matrix of ∂S.
The first term of (3.5) can be written as vol(S)ρ N (h), where ρ N (h) is the density of Euler-Poincaré characteristic of the excursion set E h , per unit volume:

ρ N (h) = E[(Y ≥ h)det(-Ÿ )| Ẏ = 0]p Ẏ (0) (3.6)

Case of isotropy

In the case Y is an isotropic random field, Worsley [START_REF] Worsley | Boundary corrections for the expected euler characteristic of excursion sets of random fields, with an application to astrophysics[END_REF] gave a simplification of the expectations for both ρ j (h) and E[χ(E h (Y, S))]. Let Ẏ |j be the vector gradient of the first j components of Ẏ , and Ÿ j is the j × j matrix of the first j rows and columns of Ÿ , then the j-dimensional EC density 1 is defined, for j > 0, as:

ρ j (h) = E[ Ẏ + j det(-Ÿ |j-1 )| Ẏ |j-1 = 0, Y = h]p |j-1 (0, h) (3.7)
where Ẏ + j = max(0, Ẏj ), and p |j-1 (0, h) is the joint probability density function of Ẏ |j-1 and Y . For j = 0, ρ 0 (h

) = P[Y ≥ h].
Thus, under isotropy, and the regularity conditions given in section 3.2, the expected Euler-Poincaré characteristic is:

E[χ(E h (Y, S))] = vol(S)ρ N (h) + N -1 j=0 1 ω N -j ∂S detr N -1-j (c)dx ρ j (h) (3.8)
where c is the (N -1) × (N -1) inside curvature matrix of ∂S at a point x ∈ ∂S, detr j (c), (j = 0, .., N -1), is the sum of the determinants of all j × j principal minors of c, and ω j = 2π j/2 /Γ(j/2) is the surface area of unit (j -1)-sphere in R j .

The term 1 ω N -j ∂S detr N -1-j (c)dx is the j-dimensional curvature measure of S. Together with Lebesgue measure of S, vol(S), they are the (N +1) intrinsic volumes, or equivalently Minkowski functionals of S, denoted by M j (S), (j = 0, .., N ). Consequently, E[χ(E h (Y, S))], for isotropic random fields, can finally be expressed in terms of j-dimensional Minkowski functionals of S as:

E[χ(E h (Y, S))] = N j=0 M j (S)ρ j (h)
(3.9)

Non-isotropic random fields on smooth manifolds

The last expectation in equation (3.9), has been extended [START_REF] Taylor | Euler characteristic for Gaussian fields on manifolds[END_REF][START_REF] Taylor | Random fields of multivariate test statistics, with applications to shape analysis[END_REF] to deal with non-isotropic random fields on smooth manifolds with piece-wise smooth boundaries. It was shown that if a random field is defined as a function of i.i.d. non-isotropic Gaussian random fields, then it is only necessary to replace Minkowski functionals M j (S) by Lipschitz-Killing curvatures (LKCs) of S, denoted by L j (S), such that:

E[χ(E h (Y, S))] = N j=0 L j (S)ρ j (h) (3.10)
Thus, the non-isotropy property is transferred from the EC densities to LKC, and one can find the EC densities using the formulae in equation (3.9). The LKCs of S measure the intrinsic volume of S in the Riemannian metric defined by the variogram 2 . For N -dimensional and (N -1)-dimensional LKC, they have 1. ρj(h) is the density of Euler-Poincaré characteristic in any j-dimensional Euclidean subspace of R N , [START_REF] Worsley | Boundary corrections for the expected euler characteristic of excursion sets of random fields, with an application to astrophysics[END_REF] 2. The variogram of a real-valued function Z between any two points x, s ∈ R N is defined as:

V ar(Z(x) -Z(s)) (3.11)
a very simple expression. Suppose Y is a random field defined from a transformation function of i.i.d. non-isotropic Gaussian random fields, Z k , (k = 1, ..., ν), with constant variance σ 2 . Then:

L N (S) = σ -N S [det(Λ(x))] 1/2 dx (3.12)
and

L N -1 (S) = 1 2σ (N -1) ∂S [det(Λ ∂S (x))] 1/2 H N -1 (dx) (3.13)
where Λ(x) = V ar( Żk (x)) is the N × N matrix of second order spectral moments, or the variance-covariance matrix, of the gradient N -vector Żk (x), and similarly

Λ ∂S (x) = V ar( Żk (x))
is the (N -1) × (N -1) variance-covariance matrix of the gradient (N -1)-vector of Żk (x) tangential to the boundary ∂S, and H N -1 is the (N -1)-dimensional Hausdorff measure [START_REF] Hug | Kinematic and crofton formulae of integral geometry: recent variants and extensions[END_REF] on ∂S, for any selected k.

The lower dimensional LKCs have not simple formulae, except for L 0 = χ(S). One can find the explicit expressions of the LKCs in [START_REF] Taylor | Euler characteristic for Gaussian fields on manifolds[END_REF]. Note that in the isotropic case the equations (3.9) and (3.10) are equivalent, and if the random field, Y , is stationary then they are: 

L j (S) = M j (Λ 1/2 S) (3 
J = {x ∈ R N : x i = ε i L i , if i / ∈ σ(J), 0 ≤ x i ≤ L i , if i ∈ σ(J)} (3.15)
where σ(J) ⊆ {1, ...., N }, and ε(J) = {ε i , i / ∈ σ(J)} is a sequence of N -k zeros and ones. Then, the Lipschitz-Killing curvatures of S are given by

L j (S) = J∈O j |det(Λ J )| 1/2 vol j (J) (3.16)
where Λ J is the k × k matrix of the second order spectral moments associated with the k-dimensional face J. Thus, the expected Euler-Poincaré characteristic can be given by: 

E[χ(E h (Y, S))] = N j=0   J∈O j |det(Λ J )| 1/2 vol j (J)   ρ j (h) (3.17)

Mean intrinsic volumes of excursion sets

Besides the expected Euler-Poincaré characteristic of the excursion sets, another geometric quantifiers appeared in its explicit formula, known as Lipschitz-Killing curvatures or Minkowski functionals of the metric space S, can also be defined over these excursion sets. In this case, the aim is to find the mean intrinsic volumes, or mean Lipschitz-Killing curvatures, of the excursion sets that describe their geometric structures, such as their size, boundary length, and etc. Let Y be a real-valued stationary random field defined by a smooth transformation of i.i.d. non-isotropic stationary Gaussian random fields, then the following expression, proved by [START_REF] Alder | Random fields and their geometry[END_REF] and reported in [AT07, Adl08, AT11], gives the mean intrinsic volumes of the excursion sets of Y :

E[L j (E h (Y, S))] = N -j k=0 j + k k L j+k (S)ρ k (h) (3.18)
where j + k k is the flag coefficient 3 , ρ j (h) are the EC densities for Y , and L j (S)

are the LKCs of S with respect to the Riemannian metric induced on S by Y . Note that, when j = 0, then

E[L 0 (E h (Y, S))] = E[χ(E h (Y, S))]
is the expected Euler-poincaré characteristic of E h , given in the previous section. The last expression in equation (3.18) has been proved for isotropic Gaussian random fields as the result of Crofton's formula and Hadwiger's formula. Then, it was extended to the non-isotropic Gaussian random fields and the class of non-Gaussian random fields defined in chapter 2.

3. The flag coefficient is defined as

n k = n! k!(n -k)! ωn ω k ω n-k , (3.19) 
where

ω k = π k/2 Γ( k 2 +1) is the volume of the unit ball in R k
Suppose a regular (convex) set E ⊂ R N , then Crofton's formula [START_REF] Antonio | Integral geometry and geometric probability[END_REF][START_REF] Blaschke | Integralgeometrie. erstes Heft[END_REF] states that under the affine Grassmanian 4 , Graff(N, k), of k-dimensional linear subspaces of R k , (k = 0, ..., N ),

Graf f (N,N -k) L j (E ∩ V )dµ N N -k (V ) = k + j j L k+j (E) (3.21)
where µ N k is a Haar measure, and V ∈ Graf f (N, k). The special case is when j = 0, then Crofton's formula becomes the known Hadwiger's formulae [START_REF] Hadwiger | Vorlesungen über Inhalt, Oberfläche und Isoperimetrie[END_REF] so that

L k (E) = Graf f (N,N -k) L 0 (E ∩ V )dµ N N -k (V ) (3.22)
Hadwiger's formula shows that Lipschitz-Killing curvatures of the set E can be obtained from the Euler-Poincaré characteristic of the cross-sections, of various dimensions, of the set E.

For an isotropic Gaussian random field Y , one need to find the expectations of Lipschitz-Killing curvatures of the excursion set E h (Y, S). Thus, [START_REF] Alder | Random fields and their geometry[END_REF] showed that E[L j (E h (Y, S))] can be obtained immediately from Hadwiger's formula. Replacing the set E by the excursion sets E h (Y, S) of Y , we have

E[L k (E h (Y, S))] = Graf f (N,N -k) E[L 0 (E h (Y, S) ∩ V )]dµ N N -k (V ) = N -k j=0 ρ j (h) Graf f (N,N -k) L j (S ∩ V )dµ N N -k (V ) = N -k j=0 k + j j L j+k (S)ρ j (h) (3.23)
Further details and proofs of the expression in (3.18) for the non-isotropic Gaussian and the non-Gaussian random fields can be found in [AT03, AT07, Adl08, AT11].

Conclusion

This chapter highlights the basic results in both integral geometry and differential topology that enables estimating the geometric structure of the random excursion sets. At the first stage, the expected number of the local maxima of a regular random field, and the expected Euler-Poincaré characteristic of its excursion sets 4. The Grassmanian of k-dimensional linear subspaces of R k , (k = 0, ..., N ) is a compact homogeneous space with respect to the rotation group [START_REF] Schneider | Stochastic and Integral Geometry[END_REF]. The affine Grassmanian Gr(N, k) is locally compact homogeneous space with respect to the motion group and carries a locally finite motion invariant measures, denoted by µ k , and normalized so that

µ N k (Gr(N, k)) = N k (3.20) .
are reviewed. The expected Euler-Poincaré characteristic of the excursion sets obtained at high threshold becomes very close to the number of the local maxima, and for higher thresholds it tends to that number with probability one, since the excursion set will include only the number of the connected components, whereas the holes will disappear. In the second stage, a general formulae of the geometric structure of the excursion sets known as the mean intrinsic volumes, or mean Lipschitz-Killing curvatures are expressed by Hadwiger's formulae, which states that one can characterise the geometry of a given set using Euler-Poincaré characteristic of its lower dimensional cross-sections. For the random fields, the mean intrinsic volumes including the expected Euler-Poincaré characteristic are expressed in terms of the intrinsic volumes of the metric space, and the EC densities which depend on the random field model. In the next part, we will give the expectations of the EC densities of some interesting non-Gaussian random fields, that were not evaluated in the literature, in order to estimate their local maxima (or minima) and to estimate the LKCs of their excursion sets. The interest of these geometric descriptors is derived in the application part.

Part III

THEORETICAL DEVELOPMENTS

Chapter 4

Linear mixture random fields 

Introduction

This chapter defines a class of mixed random fields that results from the linear sum of Gaussian and non-Gaussian random fields, exclusively, student's t random fields, or so called t-fields, defined on a non-empty compact subsets of the twodimensional euclidean space R 2 . We are interested in studying the behaviour of the mixed Gaussian-t random fields using their geometric and topological characteristics, namely intrinsic volumes (Lipschitz-Killing curvatures LKCs), or equivalently Minkowski functionals with respect to normalization. We gave the explicit formulae of these functionals for the two-dimensional excursion sets, [START_REF] Suleiman | On the linear combination of the gaussian and student-t random fields and the geometry of its Bibliography excursion sets[END_REF][START_REF] Ahmad | On the linear combination of the gaussian and student's t random field and the integral geometry of its excursion sets[END_REF], in order to model the topography of real surfaces, (see the application part). Then, we studied the behaviour of the Gaussian-t random field near its extremal points using the expected Euler-Poincaré characteristic on simulation examples.

Linear mixed Gaussian-t distribution

Univariate distribution

Definition 4.2.1. Let G ∼ N ormal(0, 1) be a random variable of standard normal distribution and T ∼ t ν be a student's t random variable with ν degrees of free-Chapter 4. Linear mixture random fields dom independent of G. A random variable Y is said to have a mixed Gaussian-t distribution if it is expressed as:

Y = µ Y + σ Y (G + βT ν ), (4.1) 
where ν Y , σ 2 Y are the mean and the variance of Y , respectively, and β ∈ R + \ {0}. A random variable Y that has a mixed Gaussian-t distribution will be denoted by (Y ∼ GT ν β ).

The probability density function of Y , denoted by p Y (y), is then the convolution between the G and T ν probability density functions, and it is written by:

p Y (y) = Γ ν+1 2 2πβσ Y Γ ν 2 ν 2 1/2 ∞ -∞ 1 + (y -µ Y -u) 2 β 2 σ 2 Y ν -ν+1 2 e -u 2 /2σ 2 Y du, (4.2)

Mixed Gaussian-t multivariate distribution

Let Y = (Y 1 , ..., Y d ) t , (d > 1) be R d -valued random variable on R d , where each vector component Y i is represented as:

Y i = G i + β i T ν i , (i = 1, ..., d) (4.3) 
Then, Y has a mixed Gaussian-t multivariate distribution with ν degrees of freedom, and its probability density function is given by: 

p Y (y) = φ(y; Σ G ) * t d (y; β, ν, Σ), y ∈ R d (4.

Mixed Gaussian-t random field, GT ν β

Let {Y (x) : x ∈ S}, be a stationary random field on a non-empty compact subset S ⊂ R N , then Y (x) belongs to the mixed Gaussian-t random fields if it is defined as follows:

Definition

Let Z 0 (x), Z 1 (x), ..., Z ν (x), x ∈ S, be centered, homogeneous, independent, and identically distributed (i.i.d.) Gaussian random fields, with unit variance, and with Var(∂Z i /∂x) = Λ, (i = 0, ..., ν). Let G(x) be a stationary centered real-valued 4.3. Mixed Gaussian-t random field, GT ν β 39 Gaussian random field, independent of all Z i , (i = 0, ..., ν), with unit variance, and Var(∂G/∂x) = Λ G . Then, for a real value β > 0, the sum given by:

Y (x) = G(x) + βZ 0 (x) ν k=1 Z 2 k (x)/ν 1/2 , (4.5) 
defines a stationary GT ν β real-valued random field with ν degrees of freedom, at any fixed point x ∈ S. The marginal distribution of Y (x) at any fixed x is the GT ν β probability density function, given in equation (4.2), with ν degrees of freedom. Notice that the second term in the right hand of the equation (4.5) is the t-field with ν degrees of freedom, and with the scale factor β. It is restricted to the condition ν > N , in order to ensure that the t-field is well defined with almost no zeros in the denominator, [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF]. Thus, the definition of Y (x) well be restricted to ν > N .

Representation of derivatives

Following Lemmas A.0.1 and A.0.3, in the appendix part, in the next Lemma, the first and second derivatives of the mixed Gaussian-t random field Y (x) can be directly expressed in terms of independent random variables.

Lemma 4.3.1. The first and second derivatives Ẏ , and Ÿ of the mixed Gaussian-t random field, Y = Y (x), can be expressed in terms of independent random variables at any fixed point x ∈ S as follows:

(i) Ẏ = z 1 + βν 1/2 1 + (Y -G) 2 β 2 ν W -1/2 z 2 (ii) Ÿ = -GΛ G + V + βν 1/2 1 + (Y -G) 2 β 2 ν W -1 {-β -1 ν -1/2 (Y -G)(Q -2z 2 z t 2 ) -z 2 z t 3 -z 3 z t 2 + W 1/2 H} where G ∼ N ormal 1 (0, 1), W ∼ χ 2 ν+1 , z 1 ∼ N ormal N (0, Λ G ), z 2 , z 3 ∼ N ormal N (0, Λ), Q ∼ W ishart N (Λ, ν -1), V ∼ N ormal N ×N (0, M (Λ G )), and H ∼ N ormal N ×N (0, M (Λ)), all independently.
In the next section, we will focus on calculating the EC densities of the twodimensional excursion sets of the Gaussian-t random field, Y (x). Toward this aim, Y (x) should be considered suitably regular in order to use the derivatives in Lemma 4.3.1. It is trivial that Y (x) satisfies the regularity conditions discussed in chapter 3 (section 3.2), since both Gaussian and t-field do, as proved by [START_REF] Adler | The Geometry of Random Fields[END_REF] and [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF], respectively. Notice that if Λ G = Λ, then one can use the coordinate transformation x = Λ 1/2 x to simplify the calculations. In our case, we will keep the coordinates and we will assume that the variance-covariance matrix Λ G and Λ are not equal, for generality.

The EC densities of the GT ν β excursion sets

In the following theorem we derive the first three EC densities of the twodimensional mixed Gaussian-t random field, Y (x), x ∈ S, where S ⊂ R N , N = 2. To prove this theorem, we shall use some Lemmas and theorems given in [Adl81, Wor94, CW99].

Theorem 4.4.1. The j-th dimensional EC density, ρ j (.), j = 0, 1, 2 for an isotropic GT ν β random field, Y (x), x ∈ R 2 , with ν degrees of freedom, ν > 2, and β > 0, can be expressed at a given level h as follows:

(i) ρ 0 (h) = Γ ν+1 2 (2π)βΓ ν 2 ν 2 1/2 ∞ h ∞ -∞ 1 + (y -u) 2 β 2 ν -ν+1 2 e -u 2 /2 dudy (ii) ρ 1 (h) = λ 1/2 (2π) 3/2 ∞ -∞ 1 + (h -u) 2 β 2 ν -ν-1 2 e -u 2 /2 du + λ 1/2 G Γ ν+1 2 (2π) 3/2 β √ νΓ ν 2 ∞ -∞ 1 + (h -u) 2 β 2 ν -ν+1 2 e -u 2 /2 du (iii) ρ 2 (h) = 2 1 2 λΓ ν+1 2 (2π) 2 Γ ν 2 ∞ -∞ (h -u) β √ ν 1 + (h -u) 2 β 2 ν -ν-1 2 e -u 2 /2 du + λ G Γ ν+1 2 (2π) 2 Γ ν 2 β ν/2 ∞ -∞ u 1 + (h -u) 2 β 2 ν -ν+1 2 e -u 2 /2 du
where Λ G = λ G I 2 , and Λ = λI 2 .

Proof. In this proof the general formula of the EC density given in chapter 3 will be used. Furthermore, the expectations will be evaluated by conditioning on the Gaussian component, G = u, on Y = h and on W , where W is independent of both Y and G, as follows:

ρ j (h) = (-1) j-1 ∞ -∞ E W E Ẏ + j det( Ÿ |j-1 )| Ẏ1 = 0, ..., Ẏj-1 = 0, Y = h, G = u, W p Ỹ (0; h, G, W ) p Y (h; G = u)φ(u)du
where the term Ÿ |j-1 represents the sub-matrix of the first (j -1) × (j -1) elements of the Hessian matrix Ÿ with respect to x 1 , ..., x j-1 , and Ẏj refers to the j-th component of the gradient Ẏ with respect to x j . p Ỹ (0; h, G) is the joint probability density of the first (j -1) component of Ẏ , denoted Ỹ , at zero conditional on Y = h, W , and G. Whereas p Y (h; G = u) is the probability density function of Y = h conditional on G = u, and φ(u) is the normal probability density function.
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Conditional on G = u, Y is a t-field with ν degrees of freedom, scale factor β, and with mean value G = u. Thus, its marginal distribution is the known t probability density function:

p Y (h; G = u) = Γ ν+1 2 β √ πνΓ ν 2 1 + (h -u) 2 β 2 ν -ν+1 2 (4.6) Let D = Λ G + β 2 ν(1 + (h -u) 2 /β 2 ν) 2 W -1
Λ, the probability density function of Ỹ at zero conditioning on Y = h, G = u, and W is:

p Ỹ (0; Y = h, G = u, W ) = (2π) -j-1 2 det( D) -1 2 (4.7)
where D is the (j -1) × (j -1) sub-matrix of D. Furthermore, Ÿ |j-1 and Ẏj are independent, so one can write:

E ( Ẏ + j )det( Ÿ |j-1 )| Ỹ = 0, Y = h, G = u, W = E ( Ẏ + j )| Ỹ = 0, Y = h, G = u, W × E det( Ÿ |j-1 )| Ỹ = 0, Y = h, G = u, W (4.8) 
Conditioning on Ỹ = 0, i.e., ( Ẏ1 = 0, ..., Ẏj-1 = 0), then the first (j -1) components of z 1 and z 2 will be zeros since z 1 and z 2 are independent. Hence, one can write by also conditioning on Y = h, G = u, and W :

E ( Ẏ + j )| Ỹ = 0, Y = h, G = u, W = (2π) -1 2 λ G j + β 2 ν 1 + (h -u) 2 β 2 ν 2 W -1 λ j 1 2
(4.9) where λ G j , λ j are the j-th elements of the matrix Λ G , Λ, respectively, and due to isotropy one can write λ G j = λ G and λ = λ j . and

E ( Ÿ|j-1 )| Ỹ = 0, Y = h, G = u, W = E det A + a Q + b H (4.10) where a = -(h -u)(1 + (h -u) 2 /β 2 ν)W -1 , b = βν 1/2 (1 + (h -u) 2 /β 2 ν)W -1/2 , A = (-u ΛG + Ṽ ), ΛG , Λ are the (j -1) × (j -1) matrix of the first (j -1)
rows and columns of Λ G and Λ, respectively, Ṽ ∼ N ormal (j-1)×(j-1) (0, M ( ΛG )), H ∼ N ormal (j-1)×(j-1) (0, M ( Λ)), and Q ∼ W ishartl j-1 ( Λ, ν -1).

Let consider B a (j -1) × (j -1) orthogonal matrix which diagonalises Λ, such that B t ΛB = I j-1 , then:

E det( Ÿ |j-1 )| Ỹ = 0, Y = h, G = u, W = det( Λ)E[det(B t ( Ã + a Q + b H)B)] = det( Λ)E[det(A + aQ + bH )] where A = B t ÃB, Q = B t QB ∼ W ishart j-1 (I j-1 , ν -1)
, and H = B t HB ∼ N ormal (j-1)×(j-1) (0, M (I)).

Using Lemma A.0.6 in Appendix A, we obtain:

E det( Ÿ |j-1 )| Ỹ = 0, Y = h, G = u, W = det( Λ) j-1 2 n=0 j-1-2n k=0 ν -1 k (-1) n (2n + k)! 2 n n! b 2n E(detr j-1-2n-k (A )) (4.11)
where detr l (A ), (l = j -1 -2n -k), is the sum of the determinants of all l × l principal minors of A . Let C = B t ΛG B, such that A = -uC + K, where K ∼ N ormal (j-1)×(j-1) (0, M (C)), and let L be an orthogonal matrix such that L t CL = I j-1 , then:

E(detr l (A )) = j -1 l det(C |l )E(det(-uI l + K |l )) (4.12)
where K ∼ N ormal (j-1)×(j-1) (0, M (I)), and the notation |l represents the submatrix composed of the l × l components. Since, the distribution of any l × l principal minor of K is N ormal l×l (0, M (I)), then using Lemma A.0.4, and using the fact that the determinant det(B) = det( Λ) -1/2 we have:

E(detr l (A )) = det( Λ-1 |l )det( ΛG |l ) j -1 l l 2 m=0 (-1) l-m (2m)! 2 m m! u l-2m (4.13)
Putting equations (4.13) and (4.11) together yields:

E det( Ÿ |j-1 )| Ỹ = 0, Y = h, G = u, W = det( Λ)× j-1 2 n=0 j-1-2n k=0 j -1 j -1 -2n -k ν -1 k β 2n ν n (h -u) k 1 + (h -u) 2 β 2 ν 2n+k W -(n+k) × det( Λ-1 |j-1-2n-k )det( ΛG |j-1-2n-k ) j-1-2n-k 2 m=0 (-1) j-1-n-m (2n + k)!(2m)! 2 n+m n!m! u j-2n-k-2m-1 (4.14)
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Hence:

E ( Ẏ + j )det( Ÿ |j-1 )| Ỹ = 0, Y = h, G = u, W p Ỹ (0; h, u, W ) = (2π) -j 2 λ j-1 G λ G + λβ 2 ν(1 + (h -u) 2 /β 2 ν) 2 W -1 -j 2 +1 j-1 2 n=0 j-1-2n k=0 ν -1 k j -1 j -1 -2n -k β 2n ν n (h -u) k 1 + (h -u) 2 β 2 ν 2n+k λ G λ -(2n+k) × j-1-2n-k 2 m=0 (-1) j-1-n-m (2n + k)!(2m)! 2 n+m n!m! W -(n+k) u j-2n-k-2m-1 (4.15)
where ΛG = λ G I j-1 , Λ = λI j-1 due to isotropy. Since W ∼ χ 2 ν+1 , and the moment E(W k ) are given by:

E[W k ] = 2 k Γ((ν + 1)/2 + k) Γ((ν + 1)/2) (4.16)
Then by applying the expectation over W , and multiplying by the probability density function of Y conditioning on G, then integrating over the probability density function of G, we obtain the results for ρ 2 (h) and ρ 1 (h).

Finally, for j = 0, ρ 0 (h) = P[Y h] which given the result in (i) of theorem 4.4.1.

The extreme values of the Gaussian-t random field

Corollary 4.5.1. The expected Euler-Poincaré characteristic of the two-dimensional excursion set, E h (Y, S), at high levels h, (h → ∞), where it does not touch the boundaries of S, is:

E[χ(E h (Y, S))] = Area(S) 2 1 2 λΓ ν+1 2 (2π) 2 Γ ν 2 ∞ -∞ (h -u) β √ ν 1 + (h -u) 2 β 2 ν -ν-1 2 e -u 2 /2 du + Area(S) λ G Γ ν+1 2 (2π) 2 Γ ν 2 β ν/2 ∞ -∞ u 1 + (h -u) 2 β 2 ν -ν+1 2 
e -u 2 /2 du (4.17)

Corollary 4.5.2. Let Y max = sup{Y (x) : x ∈ S}. Then, for ν > 2, and h → ∞

P(Y max ≥ h) → Area(S) 2 1 2 λβ ν-2 ν ν-2 2 Γ ν+1 2 (2π) 3 2 Γ ν 2 h -(ν-2) , if β > 0 P(Y max ≥ h) → Area(S) λ G (2π) 3 2 × he -h 2 2 , if β → 0 (4.18)
Proof. From [START_REF] Hasofer | Upcrossings of random fields[END_REF] and [START_REF] Adler | The Geometry of Random Fields[END_REF], we have

P(Y max ≥ h) = P(M + h (Y, S)) ≈ E[χ(E h (Y, S))] (4.19)
when h → ∞. Where M + h (Y, S) denotes the number of the local maxima of Y (x) above h inside S. Then, the first result can be obtained immediately from equation (4.17). Whereas, the second result is obtained from replacing (h -u)/β, equation (4.17), by a variable y, then, letting β → 0 when h → ∞.

4.6

The expected intrinsic volumes of the GT ν β excursion sets over rectangles of R 2 Let S = [0, a] 2 , where a is the one side length of S, then for an isotropic stationary centered real-valued Gaussian-t random field, Y (x), the expected intrinsic volumes, which are in this case Minkwoski functionals, of its excursion set, E h (Y, [0, a] 2 ), at a given level h, using the general formula in equation (3.18), chapter 3 are:

1. E(Ar(h)) = ρ 0 (h) : the mean area function of E h (Y, [0, a] 2 ) 2. E(Cr(h)) = 2aρ 1 (h) + ρ 0 (h) : half the mean contour length of E h (Y, [0, a] 2 ) 3. E(χ(h)) = a 2 ρ 2 (h) + 2aρ 1 (h) + ρ 0 (h) : the mean Euler-Poincaré characteristic of E h (Y, [0, a] 2 )
where L 0 ([0, a] 2 ) = 1, L 1 ([0, a] 2 ) = 2a, and L 2 ([0, a] 2 ) = a 2 .

Simulation Results

In order to represent the previous formulae in theorem 4.4.1, simulation results are illustrated in this section. A set of 100 two-dimensional realizations of the GT ν β random fields are generated on a rectangle [0, 1] 2 with a resolution n = 512 × 512 pixels. Each random realization is supposed to be a linear mixture of a two-dimensional homogeneous Gaussian random field with covariance matrix Σ G = σ 2 G I 2 , such that σ G = 11 pixels, and a two-dimensional t-field with 5 degrees of freedom, and with scale factor β = 0.2, at each pixel, (see one representative result in Fig. 4.1). The 100 realizations of the t random fields in the aforementioned example are generated each one using 6 (i.i.d) homogeneous Gaussian random fields with covariance matrix Σ = σ 2 I 2 , such that σ = 3 pixels. Then, the mean Minkowski functionals, including the expected Euler-Poincaré characteristic, are estimated from the 100 simulations and they are compared to the mean ones given analytically, (see Fig. 4.2). The results show a good approximation between the simulated and the theoretical Minkowski functionals. Now, we will focus on illustrating the influence of the scale factor β on the expected Euler-Poincaré characteristic at the high thresholds, where it estimates 

P[G max ≥ h] ≈ E[χ(E h (G, h))] = Area(S)λ G he -h 2 /2 /(2π) 3/2
In the second example, we also compared the upper tail probability of Y to the one of a t-field, [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF], with same degrees of freedom and β = 0.8. The results show that when β < 0.1, the number of the maxima of Y is always close to the number of the Gaussian maxima, whereas when β ≥ 0.5 they approximate the number of the t-field maxima.

Conclusion

A stationary Gaussian-t random field is defined, in this chapter, from the linear mixture of independent Gaussian and scaled t random fields. The expected EC densities are given analytically for the two-dimensional excursion sets. The EC densities are used to estimate the intrinsic volumes including the Euler-Poincaré characteristics of the isotropic, centred Gaussian-t random fields defined on twodimensional rectangles of the Euclidean space. Simulation examples are investigated in order to illustrate the analytical expectations with the numerical one computed from the simulation examples. Furthermore, the simulations are used to illustrate the influence of the scale factor β of the t-field on the behaviour of the Gaussian-t random field near the global maxima, and demonstrated what expected theoretically. The results showed that the expected number of the maximas of the GT ν β random field approximates the number of the maximas of the t-field. However, when β → 0, the GT ν β behaves differently and the number of its extreme values converges to the number of the ones of Gaussian random fields. The motivation of this chapter could be seen in the application part (see Part IV).

Introduction

In this chapter, we present a class of skew random fields, namely skew student's t (or skew-t) random fields. The new theoretical results given in this chapter, published in [START_REF] Suleiman | Lipschitz-killing curvatures of the excursion sets of skew student' s t random fields[END_REF][START_REF] Suleiman | Lipschitz-killing curvatures of the excursion sets of skew student-t random fields[END_REF], are concerned about the geometric quantifiers of the excursion sets of the skew-t random fields, i.e.; the mean intrinsic volumes (Lipschitz-Killing curvatures) and the EC densities in both R 2 and R 3 . The definition of the skew-t random field is based on the stochastic representation of its multivariate distribution given by [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution[END_REF].

Representation of skew-t distribution

Before tackling the skew-t random fields, and the geometry of there excursion sets, this section reviews the skew-t distribution, since it will be used later in this chapter. The skew-t distribution arises as an extension of the student's t distribution family, and it has been defined in the literature by different ways, [AC03, Gen04, Jon08, BLCG10], each associated with skewing the symmetric t distribution in order to make it more useful for empirical stochastic modelling. We will focus, in this thesis, on the nicest type of the skew-t family that is based on the skew-normal distribution, related to [AC99, AC03] and also cited in [Jon08, LLBG10, BLCG10, CLP12].

Univariate skew-t distribution

A real-valued random variable Y is said to have a univariate skew-t distribution, of type [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution[END_REF], with ν degrees of freedom, and skewness parameter α ∈ R if its probability density function is given by:

f Y (y; α, ν) = 2 σ Y t 1 (h; ν)T 1 αh ν + 1 ν + h 2 ; ν + 1 , h = (y -µ Y )/σ Y , y ∈ R (5.1)
where µ Y ∈ R is the mean of Y , σ Y > 0 is the standard deviation of Y , t 1 (.; ν) is the standard student's t distribution with ν degrees of freedom, and T 1 is the student's t cumulative distribution function with ν + 1 degrees of freedom at αh ν+1 ν+h2 

The real parameter α conflates its skewing role with alternation of the weight of one of the two density tails. For α > 0 (resp. α < 0) the probability density function has a positive (resp. negative) skewness, so the right (resp. left) tail will be longer. When α = 0 the skew-t probability density is the known student's t distribution.

The stochastic representation of Y that has the probability density function defined in (5.1), is given by:

Y = µ Y + σ Y V -1/2 δ|Z| + 1 -δ 2 G (5.2)
where νV ∼ χ 2 ν , z, G ∼ N ormal(0, 1) are all independent random variables, and

δ = α/ √ 1 + α 2 [AC99]
. So, Y in Eq. ( 5.2) will be written such that Y ∼ St (ν;α) .

Multivariate skew-t distribution

An R d -valued random variable 1 Y = (Y 1 , ..., Y d ) t is said to have a multivariate skew-t distribution with ν degrees of freedom, and skewness α ∈ R d if, for a mean vector µ Y ∈ R d and a non-negative definite d × d covariance matrix Σ, the probability density function of Y can be expressed as follows: 

f Y (y) = 2t d (y; ν)T 1 α t (y -µ Y ) ν + d ν + h t h 1/2 ; ν + d , y ∈ R d (5.3) where h = Σ -1/2 (y -µ Y ),
f Y (y 1 , y 2 ) = 2t 2 (y 1 , y 2 ; ν)T 1 (q(α 1 y 1 + α 2 y 2 ); ν + 2) (5.4)
where q = (ν + 2)/(ν + y t Σ -1 y), and 

Σ = σ 2 1 σ 1 σ 2 σ 2 σ 1 σ 2

Skew student's t random field

Let {Y = Y (x) : x ∈ S} be a real-valued smooth random field defined on a nonempty compact subset S ⊂ R N . Let Ẏ = ∂Y (x)/∂x and Ÿ = ∂ 2 Y (x)/∂x∂x t be the gradient N -vector and the N × N Hessian matrix of Y , respectively. This section will concern about the stochastic representation of Y and its derivatives on R N assuming that Y is a real-valued skew-t random field.

Definition

Let G 0 (x), ...., G ν (x), x ∈ S, be a i.i.d, homogeneous, real-valued Gaussian random fields with zero mean, unit variance, and with second order-spectral moment matrix Λ = Var(∂G i /∂x), i = 0, ..., ν. Let Z be a N ormal(0, 1) random variable independent of all G i , i = 0, .., ν. Then, for a real δ ∈ (-1, 1), a skew-t random Chapter 5. Skew-t random fields field is defined at any fixed point x as follows:

Y (x) = δ|Z| + √ 1 -δ 2 G 0 (x) ν k=1 G 2 k (x)/ν 1/2
(5.5)

Notice that the marginal distribution of Y , at any fixed x, is the skew-t distribution with ν degrees of freedom and skewness α = δ/ √ 1 -δ 2 . Again recalling that the t-field is well defined when ν ≥ N , [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF]. Thus, the definition of the skew-t field will be also restricted to the condition ν ≥ N in order to avoid that the numerator and denominator both take the value zero inside a compact set S.

Representation of derivatives

In the following lemma, we extended the representation of the t-field derivatives given by [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF] to represent Ẏ and Ÿ of the skew-t random field Y . Lemma 5.3.1. The first and second derivatives of Y = Y (x), at any fixed point x ∈ R N , can be expressed in terms of independent random variables, where the equality D = is equality in law, such that:

(i) Ẏ D = ν 1 2 (1 -δ 2 ) 1 2 1 + Y 2 /ν 1 -δ 2 W -1 2 z (ii) Ÿ D = ν 1 2 (1 -δ 2 ) 1 2 1 + Y 2 /ν 1 -δ 2 W -1 -ν -1/2 1 -δ 2 -1/2 Y (P -2z 1 z t 1 ) -z 2 z t 1 -z 1 z t 2 + α|Z| 1 + Y 2 /ν 1 -δ 2 -1/2 W 1/2 Λ + W 1/2 H where δ = α/ √ 1 + α 2 , Z ∼ N ormal 1 (0, 1), Y ∼ St (ν;α) , z, z 1 , z 2 ∼ N ormal N (0, Λ), P ∼ W ishart N (Λ, ν -1), W ∼ χ 2 ν+1 (α 2 ), H ∼ N ormal N ×N (0, M (Λ)), are all independent. Proof. First, let define V = V (x) such that V = ν k=1 G 2
k , then, the marginal distribution for V , at any fixed point x ∈ S, is the χ 2 ν distribution with ν degrees of freedom. We shall use the notation F = ν -1/2 1 -δ 2 -1/2 Y to simplify the algebraic operations. So, F = V -1/2 (α|Z| + G), where V is a χ 2 field with ν degrees of freedom, G is a Gaussian random field, and Z ∼ N ormal 1 (0, 1) is a normal random variable, all are independent.

Let consider W = V +(α|Z|+G) 2 . Then, conditional on Z, W has a non-central χ 2 ν+1 marginal distribution with ν + 1 degrees of freedom and with non-centrality parameter (α 2 Z 2 ). Since Z is a standard normal random variable with unit variance, then, the unconditional distribution of W is the χ 2 ν+1 distribution with non-centrality parameter α 2 , i.e.; W ∼ χ 2 ν+1 (α 2 ).

The first derivative of F is given by:

Ḟ = - 1 2 (α|Z| + G) V -3/2 V + V -1/2 Ġ (5.6)
where Z is independent of x ∈ S. Recalling the representation of the first and second χ 2 derivatives derived in [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF], and the derivatives for the Gaussian random field derived in [START_REF] Adler | The Geometry of Random Fields[END_REF], (see Appendix A). The last equation can be written such that:

Ḟ = V -1 V 1/2 z 2 -(α|Z| + G) z 1 (5.7)
where z 1 , z 2 ∼ N ormal N (0, Λ) and are independent.

Let suppose z such that

z = W -1/2 V 1/2 z 2 -(α|Z| + G) z 1 (5.8)
then, z ∼ N ormal N (0, Λ). On the other hand, we have:

V = W 1 + F 2 ; and G = W F 2 1 + F 2 -α|Z| (5.9)
Replacing F by Y , and putting equations (5.8), (5.9) in (5.7) ends the proof of (i).

For the second derivative F we have:

∂ 2 F ∂x∂x t = 3 4 (α|Z| + G)V -5/2 ∂V ∂x ∂V ∂x t - 1 2 V -3/2 ∂V ∂x ∂G ∂x t + ∂G ∂x ∂V ∂x t - 1 2 (α|Z| + G)V -3/2 ∂ 2 V ∂x∂x t + V -1/2 ∂ 2 G ∂x∂x t
By replacing the second derivative of the χ 2 field, V , and the Gaussian field, G, (see Appendix A), we have:

∂ 2 F ∂x∂x t = V -1 -F (P -2z 1 z t 1 ) -z 1 z t 2 -z 2 z t 1 + α|Z|V 1/2 Λ + V 1/2 H 2 - (α|Z| + G)H 1 (5.10)
where H 1 , H 2 ∼ N ormal N ×N (0, M (Λ)), and P ∼ W ishart N (Λ, ν -1).

Notice that H 1 and H 2 are independent, so letting H be such that:

H = W -1/2 V 1/2 H 1 -(α|Z| + G)H 2 (5.11)
yields H ∼ N ormal N ×N (0, M (Λ)). Putting (5.9) and (5.11) in (5.10) gives the result in (ii), and end the proof of the lemma.

In the following section, we will assume that the variance-covariance matrix Λ = I N for simplicity, and we will use the derivatives given in 5.3.1 to calculate the EC densities for the isotropic skew-t random fields. The extension to the general case including Λ, for the stationary skew-t random fields, can then be done by changing the coordinates of the set S such that x = Λ 1/2 x. In order to find the mean Lipschitz-Killing curvatures for the skew-t random fields, we have to assume some regularity conditions on Y (x). Since Y (x) is based on components of Gaussian random fields by definition, then, it is sufficient that each component satisfies the conditions of theorem to consider Y is suitably regular. This was proved by [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF] for F and student's t random fields. Thus, the proof also directly holds for the skew-t random fields following the same arguments given by [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF].

The EC densities of the skew-t excursion sets

Under the assumption that the skew-t random field satisfies the regularity conditions presented by Theorem in chapter 3, the following theorem gives the j-th EC densities ρ j (h) of the skew-t random field, Y (x), x ∈ S, where S is a non-empty compact subset of R N , (N ≤ 3). Theorem 5.4.1. For ν ≥ N , (N > 1), the j-th dimensional EC density, ρ j (.), (0 < j ≤ N ), of the skew-t random field Y , on S ⊂ R N , for a given threshold h is expressed as:

ρ j (h) = (-1) j-1 (2π) -j+2 2 2 j+2 2 1 + h 2 ν -ν+1 2 T 1 αh ν + 1 ν + h 2 ; ν + 1 j-1 2 n=0 j-1-2n k=0 ν -1 k (-1) k+n (2n + k)!Γ j-2n-k 2 Γ ν-k 2 2 2n+k n!Γ ν+1 2 ν -k 2 δ j-2n-k-1 (1 -δ 2 ) -k-2 2 h k 1 + h 2 ν(1 -δ 2 ) -j-2n-k-3 2 (5.12)
where α = δ/ √ 1 -δ 2 and δ 2 < 1.

Proof. The theorem extends the results obtained by [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF] for the t-fields. In this proof, to evaluate the EC densities, we will use Morse theory mentioned in chapter 3, while the expectations will be evaluated by conditioning on Y , W and Z, and then by taking the expectations over W conditional on Z.

Conditional on Z, W ∼ χ 2 ν+1 (α 2 Z 2 ) independent of Y , where Z ∼ N ormal 1 (0, 1). So, we ρ j (h) can be expressed as:

ρ j (h) = (-1) j-1 (2π) 1 2 p Y (h) ∞ -∞ E W E Ẏ + (j) det( Ÿ |j-1 )| Ẏ |j-1 = 0, Y = h, W, Z p Ẏ |j-1 (0; h, W, Z)
× e -u 2 /2 du (5.13)
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where Ẏ |j-1 = ( Ẏ1 , ..., Ẏj-1 ), with j > 0.

The joint probability density function of the first (j-1) components of Ẏ conditional on Y , W , and Z is a Gaussian multivariate density function which has the following expression at zero:

p Ẏ |j-1 (0, ..., 0; h, W, Z) = 2πν(1 -δ 2 ) 1 + h 2 ν(1 -δ 2 ) 2 W -1 -j-1 2 (5.14)
The components Ẏ(j) and Ÿ |j-1 are both independent under the conditional expectations. Thus, the term E Ẏ + (j) det( Ÿ |j-1 )| Ẏ1 = 0, ..., Ẏj-1 = 0, Y = h, W, Z , in (5.13), can be written as:

E Ẏ + (j) det( Ÿ |j-1 )| Ẏ1 = 0, ..., Ẏj-1 = 0, Y = h, W, Z = E Ẏ + (j) | Ẏ |j-1 = 0, Y = h, W, Z E det( Ÿ |j-1 )| Ẏ |j-1 = 0, Y = h, W, Z (5.15) 
Conditioning on Y = h, W , and Z, Ẏ = az, where a = ν

1 2 (1 -δ 2 ) 1 2 (1 + h 2 /ν(1 - δ 2 ))W -1/2 and z ∼ N ormal N (0, I N ) which yields: E Ẏ + (j) | Ẏ |j-1 = 0, Y = h, W, Z = a(2π) -1/2 (5.16)
On the other hand, let

A = ν 1/2 (1 -δ 2 ) 1/2 α|Z|(1 + h 2 /ν(1 -δ 2 )) 1/2 W -1/2 , b = ν 1/2 (1 -δ 2 ) 1/2 (1 + h 2 /ν(1 -δ 2 ))W -1/2
, and c = -h(1 + h 2 /ν(1 -δ 2 ))W -1 such that Ÿ can be written as

Ÿ = c P + b c H + 1 c A (5.17)
Then, using lemmas (A.0.5) and (A.0.6) due to [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF], (see appendix A), we get:

E det( Ÿ |j-1 )| Ẏ j-1 = 0, Y = h, W, Z = c j-1 E det |j-1 P + b c H + 1 c A = j-1 2 n=0 j-1-2n k=0 ν -1 k (-1) n (2n + k)! 2 n n! b 2n c k A j-2n-k-1 (5.18)
Since W is independent of Y , the expectations are computed over W . Notice that conditioning on Z, W is the non-central χ 2 field with ν + 1 degrees of freedom and non-centrality parameter α 2 Z 2 , which yields to:

E[W k |Z] ≈ 2 k e -α 2 Z 2 2 Γ((ν + 1)/2 + k) Γ((ν + 1)/2) (5.19)
where Z ∼ N ormal 1 (0, 1). which yields to:

E W E Ẏ + (j) det( Ÿ |j-1 )| Ẏ |j-1 = 0, Y = h, W, Z p Ẏ |j-1 (0, ..., 0; h, W, Z) = (2π) -j 2 ν 1 2 (1 -δ 2 ) 1 2 j-1 2 n=0 j-2n-1 k=0 ν -1 k (-1) n+k (2n + k)!Γ ν-k 2 2 (2n+k+1)/2 n!Γ ν+1 2 ν -k 2 (1 -δ 2 ) -k 2 1 + Y 2 ν(1 -δ 2 ) -j-2n-k-3 2 Y k × (α|Z|) j-2n-k-1 e -α 2 Z 2 2 (5.20)
Putting the last result in equation (5.13), then integrating over the probability density function of Z, φ Z (.), and multiplying by the probability density function of Y :

p Y (h) = 2 Γ ν+1 2 √ νπΓ ν 2 1 + h 2 ν -ν+1 2 T 1 αh ν + 1 ν + h 2 ; ν + 1 , (5.21) 
gives ρ j (h), for j > 0, and ends the proof.

For j = 0, ρ 0 (h) = P[Y ≥ h], which yields together with theorem 5.4.1 to the following result.

Corollary 5.4.1. The first four EC densities, ρ j (.), j = 0, 1, 2, 3, of the skew-t random field Y , for a given threshold h are:

(i) ρ 0 (h) = 2 Γ ν+1 2 √ νπΓ ν 2 ∞ h 1 + y 2 ν -ν+1 2 T 1 αy ν + 1 y 2 + ν ; ν + 1 dy (ii) ρ 1 (h) = 2 2π (1 -δ 2 ) 1 + h 2 ν(1 -δ 2 ) 1 + h 2 ν -ν+1 2 T 1 αh ν + 1 ν + h 2 ; ν + 1 (iii) ρ 2 (h) = 2 (2π) 3/2 (1 -δ 2 ) 1 2 Γ ν+1 2 ν 2 1 2 Γ ν 2 h 1 + h 2 ν(1 -δ 2 ) 1 + h 2 ν -ν+1 2 T 1 αh ν + 1 ν + h 2 ; ν + 1 1 -2δ(1 -δ 2 ) 1 2 π -1 2 ν 1 2 Γ ν 2 Γ ν+1 2 h 1 + h 2 ν(1 -δ 2 ) -1 2 (iv) ρ 3 (h) = 2 (2π) 2 1 + h 2 ν(1 -δ 2 ) 1 + h 2 ν -ν+1 2 T 1 αh ν + 1 ν + h 2 ; ν + 1 ν -1 ν h 2 -(1 -δ 2 ) - Γ ν+1 2 π 1 2 ν 1 2 Γ ν 2 δ(1 -δ 2 ) 1 2 h 1 + h 2 ν(1 -δ 2 ) -1 2 + δ 2 (1 -δ 2 ) 1 + h 2 ν(1 -δ 2 )
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The extreme values of the skew-t random field

Let M + h (Y, S), and M - h (Y, S), be the number of the local maxima and the number of the local minima, greater and less than a threshold h, respectively, of a the skew-t random field Y inside S. Then, the following theorem gives the expected number of the local maxima and minima of Y inside S.

Theorem 5.5.1. Under the regularity conditions, for a stationary skew-t random field, Y , and for ν > N ,we have:

(i) P[M + h (Y, S)] = vol N (S)det(Λ)(ν -1)!ν ν-N 2 Γ ν-N +1 2 2 N -1 (π) N +1 2 (1 -δ 2 ) N -1 2 (ν -N )!Γ ν 2 h -(ν-N ) T 1 (α √ ν + 1; ν + 1) × 1 + O(h -1 ) (ii) P[M - h (Y, S)] = vol N (S)det(Λ)(-1) N -1 (ν -1)!ν ν-N 2 Γ ν-N +1 2 2 N -1 (π) N +1 2 (1 -δ 2 ) N -1 2 (ν -N )!Γ ν 2 h -(ν-N ) × T 1 (-α √ ν + 1; ν + 1) 1 + O(h -1 ) vol N (S)det(Λ) = L 2 (S)
is the N -dimensional Lipschitz-Killing curvature of S, and α = δ/ √ 1 -δ 2 is the skewness parameter.

Proof. using the formulae in and conditional on Y , W and Z we can write: 

P[M + h (Y, S)] = vol N (S)det(Λ) 1 √ 2π ∞ h ∞ -∞ E W E -det( Ÿ -)| Ẏ = 0, Y = y, W, Z
Ÿ → -1 + Y 2 /ν 1 -δ 2 Y W -1 P (1 + O(Y -1 )) (5.22)
Thus, by computing the determinant of Ÿ -, and multiplying by p Ẏ (0; y, W, Z), we obtain:

E -det( Ÿ -)| Ẏ = 0, Y = y, W, Z p Ẏ (0; y, W, Z) = (2πν(1 -δ 2 )) -N 2 y N W -N 2 E[det(P )](1 + O(y -1 ))
where E[det(P )] = (ν -1)!/(ν -N -1)!, and p Ẏ (0; y, W, Z)

= (2πν(1 -δ 2 )(1 + y 2 /ν(1 -δ 2 )) 2 W -1 ) -N/2 .
Computing the expectations over the non-central χ 2 ν+1 , denoted by W , conditional on Z, then integrating over Z, we get:

E W E -det( Ÿ -)| Ẏ = 0, Y = y, W, Z p Ẏ (0; y, W, Z) = (ν -1)!Γ ν-N +1 2 y N 2 N (πν) N 2 (1 -δ 2 ) N -1 2 (ν -N -1)!Γ ν+1 58 Chapter 5.
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Multiplying by the density of Y , yields:

E W E -det( Ÿ -)| Ẏ = 0, Y = y, W, Z p Ẏ (0; y, W, Z) p Y (y) = 2(ν -1)!Γ ν-N +1 2 ν ν-N 2 y N -ν-1 2 N (π) N +1 2 (1 -δ 2 ) N -1 2 (ν -N -1)!Γ ν 2 T 1 (α √ 1 + ν; ν + 1)
Then by integrating and over y, we obtain the first result (i).

Notice that P[M - h (Y, S)] = P[M + -h (-Y, S)]. Thus,

by evaluating the expectations of P[M +

-h (-Y, S)] and following the same previous arguments when letting h → ∞, we give the result in (ii) and ends the proof. Then, for ν > N , when h → ∞:

(i) P[Y max ≥ h] → vol N (S)det(Λ)(ν -1)!ν ν-N 2 Γ ν-N +1 2 2 N -1 (π) N +1 2 (1 -δ 2 ) N 2 (ν -N )!Γ ν 2 h -(ν-N ) × T 1 (α √ ν + 1; ν + 1), (ii) P[Y min ≤ h] → vol N (S)det(Λ)(-1) N -1 (ν -1)!ν ν-N 2 Γ ν-N +1 2 2 N -1 (π) N +1 2 (1 -δ 2 ) N 2 (ν -N )!Γ ν 2 h -(ν-N ) × T 1 (-α √ ν + 1; ν + 1) (5.23)

Simulation results on two-dimensional rectangles

In this section, simulation examples of the skew-t random fields are illustrated for positive (resp. negative) values of the skewness parameter α. The analytical expressions of the mean Lipschitz-Killing curvatures, L j [E h (Y, S)], are tested with the ones computed numerically from the simulations for illustration and validation. For this aim, 100 realizations of the skew-t random fields have been generated for two different examples. The simulations are investigated on a rectilinear lattice of 512×512 points in both x and y directions within the unit square [0, 1] 2 . Figures 5.2(a) and 5.3(a) illustrate two exemplars of stationary skew-t random fields. In the first example, 6 (i.i.d) anisotropic Gaussian random fields are generated from the convolution of the Gaussian white noise with a Gaussian covariance kernel of size σ x = 3 pixels, and σ y = 28 pixels. Then, anisotropic skew-t random field of 5 degrees of freedom and skewness parameter α = -0.7 is generated using equation (5.5), (see Fig. 5.2(a)). In the second example, an isotropic skew-t random field of 5 degrees of freedom and skewness parameter α = 2 is generated in this time using isotropic Gaussian covariance kernel of size σ x = σ y = 3 pixels, (see Fig. 

Conclusion

In this chapter, a skew-t random field is introduced and the expected EC densities are derived analytically on R N , (N > 1). Furthermore, we give in this chapter the estimated value of the number of the global maxima and minima, which can be derived from the expected Euler-Poincaré characteristic at high thresholds. This chapter is ended with simulation results for validation on two-dimensional excursion sets. 

Total hip replacement

The total hip replacement is one of the most performed procedures, and is always in increasing. In France, more than 80000 total hip arthroplasty (THA) were performed in 2001. Nowadays, 120000 THA are being performed each year, and about 800000 in Europe. The reason behind these increasing numbers is related to the great success of the THA and hence, the amelioration that can offer to the patients who suffer from the osteoarthritis, necrosis, bone tumour and other related problems. A total hip arthroplasty is an orthopaedic procedure that involves surgical replacement of the hip joint components with an artificial prosthesis. The prosthetic implant (Fig. 6.1) consists of a femoral stem associated with a femoral head placed on the upper part of the stem, and articulated with an acetabular insert (or cup). A socket (acetabular or metal-back) fixed inside the acetabulum of the pelvis is used as an intermediate component between the cup and the latter [START_REF] Geringer | Concept de double mobilité pour les prothéses totales de hanche: analyses multi-échelles de son fonctionnement[END_REF][START_REF] Geringer | Understanding the dual mobility concept for total hip arthroplasty. investigations on a multiscale analysis-highlighting the role of arthrofibrosis[END_REF]. The introduced design of the artificial implant is due to Bousquet [BGG + 85], and it is defined by the dual mobility. It involves producing two kinds of articulating surfaces; one is between the head and the acetabular insert, or the cup, and the other is between the cup and the metal-back, increasing by this way the amplitude of the joint movements as possible and allowing for more flexible implant. The acetabular insert drawn in such design is called the dual mobility cup.

Choice of materials

Various materials are used in total hip implant, for the couple head-cup. They are categorized between three essential groups: metal-on metal, ceramic-on-ceramic, and metal-on-polymer [START_REF] Geringer | Understanding the dual mobility concept for total hip arthroplasty. investigations on a multiscale analysis-highlighting the role of arthrofibrosis[END_REF]. The materials used in the present work belong to Chapter 6. Medical and scientific issue Figure 6.1: An illustration of the total hip implant [START_REF] Geringer | Understanding the dual mobility concept for total hip arthroplasty. investigations on a multiscale analysis-highlighting the role of arthrofibrosis[END_REF]. the third category. The femoral head has been chosen to be made of stainless steel alloys (SS 316L or SS 316LN), and the cup is composed of a high-molecular-weight polyethylene (UHMWPE). For the femoral stem and the metal-back, they might be made of one of the mostly used metals: stainless steel alloy, titanium alloy, or cobalt-chromium-molybdenum [START_REF] Siopack | Total hip arthroplasty[END_REF]. The couple metal-UHMWPE becomes nowadays one of the most used options for the total hip implant (THI). The reason is due to the low friction coefficient, and the hardness of the UHMWPE component (or bearing surface) which provides an ideal stability and compatibility between the prosthetic articulations [FPDF09, Lew01].

Wear of UHMWPE

The major problem of the UHMWPE is associated with its resistance to the wear which depends on its chemical structure. The wear particles (debris) reduced from the UHMWPE during its sliding against the femoral head or the metal-back is one of the most intrinsic factors that will accelerate the degradation (loosening) of the UHMWPE, and hence reduces the in-vivo life duration of the implant. Furthermore, the generated wear debris will influence the structure of the bone [START_REF] Figueiredo-Pina | UHMWPE wear response to apposing nitrogen s-phase coated and uncoated orthopaedic implant grade stainless steel[END_REF][START_REF] Lewis | Properties of crosslinked ultra-high-molecular-weight polyethylene[END_REF], such as changing the osteoclast, and osteoblast activity which might lead to the bone resorption and other non expected effects. The wear of UHMWPE is related to several factors such as the geometric structure of the acetabular cup, that means its shape, thickness and diameter, the roughness of the articulated surfaces, and the type of the materials of both the femoral head 

Motivations and objectives

As mentioned in the previous section, the roughness of the articulating surfaces is one of the reasons, actually a main reason, beyond the wear of the UHMWPE component. We should distinguish between different types of contact conditions for either head-UHMWPE or metal-back-UHMWPE: rough-on-rough, rough-onsmooth, and smooth-on-rough. The wear mechanisms [ASZ + 08] of the UHMWPE surface strongly depend on the contact condition of the bearing surface [GWG + 08], and it is governed by the roughness of the bearing surface where such types of contacts occur predominantly at the asperity levels 1 . We are interested in the third condition type, smooth (highly polished) metal-back (or femoral head) on rough UHMWPE component. The aim of this application part is to interpret the wear mechanisms, and to analyze the functional behaviour of the rough UHMWPE surface, during the sliding contact against the smooth metal-back surface, by means of its topographic roughness map. A geometrical stochastic model based on integral geometry and random fields framework is proposed to model the topographic roughness during a long duration wear engineering simulation process. The predominant wear mechanisms of the UHMWPE are then defined and associated to the dynamic changes of the surface hills/valleys at high levels. Thanks to this model one can estimate how much high these levels, and quantify the geometric properties of the level sets that include such hills and valleys to achieve our aim.

Before tackle the model of the surface roughness topography, the next chapter presents the experimental tools used to generate the wear on the UHMWPE component in order to obtain worn surfaces, and the technical instrumentation methods for observing and measuring the roughness topography. 

Wear engineering simulation

The wear tests are conducted by a one-station hip walking simulator (Fig. 7.1), 858 Mini Bionix R II test system (MTS), in experimental environment corresponds to the dynamic conditions of the the normative reference ISO 14242-1 [ISO02], to emulate the in-vivo hip movements. The artificial hip components, socket, cup, and femoral components (head, neck and stem), were positioned (Fig. 7.2 (a)) anatomically. A time-dependent axial loading force (held on Z axis), varies between 300N and 3KN , is applied though the central axis of the socket. Then, internal/external rotation, flexion/extension, and abduction/adduction are applied to the socket so the acetabular cup was initially positioned at 30 • in the plane (ZX) (Fig. 7.2 (b)). The load force and the motions were all independently controlled.

The tests were run at a frequency of 1Hz with physiological lubricant (calf serum) being replaced every 500, 000 cycles. The lubricant is controlled to the temperature 37 • ± 2 • C. Flexion/extension motion of +25 • and -18 • , abduction/adduction motion of +7 • and -4 • , and internal/external rotation of +2 • and -10 • were all applied to the socket with the mechanical contact to emulate those found in-vivo. The kinematic and environmental conditions (table 7.1) have been applied with respect to the standard norm of the simulator ISO 14242-1.

All the measurements related to wear rate, and roughness topography of the UHMWPE were realized every one million cycles. The total number of achieved cycles was approximately 20 million cycles. 

Surface roughness topographical measurements

Surface topography is of multiscale nature, ranging from its macroscopic scales to the microscopic or atomic scales. For engineered surface, surface topography can be restricted to below certain length scale, smaller than the physical size scale of the material component. These small-scale variations are of micrometer scales and referred to as surface roughness, which are the focus of the present thesis. This section presents the technical methods used to measure and observe the topographic map of rough engineered surfaces, and the experimental implementations for restoring the roughness topography from the global geometric form of the surface topography.

Instrumental measurements

Surface roughness topography has been firstly obtained using the tactile profilometer [START_REF] Schmähling | Statistical characterization of technical surface microstructure[END_REF][START_REF] Jiang | Paradigm shifts in surface metrology. part i. historical philosophy[END_REF][START_REF] Jiang | Paradigm shifts in surface metrology. part II. the current shift[END_REF]. A stylus is dragged over the surface and record the vertical deflections as the stylus moves along a line over the surface. This technique provides one-dimensional profile, measured with contacting stylus. Later, two-dimensional profile measurements have been investigated to represent the surface roughness topography. The contact profile techniques are not adequate for measuring a complete 3D height maps [START_REF] Dong | An integrated approach to the characterization of surface wear i: Qualitative characterization[END_REF]. They might be damaged, and they would damage the surface being measured with the direct contact, besides to the important limitations related to the measurement's wavelength and measurement's speed. Recently, contact profiler techniques have been replaced by non-contact optical methods [START_REF] Jiang | Paradigm shifts in surface metrology. part II. the current shift[END_REF], such as the interferometry, which allowed measuring a full and complete 3D height map at once and the possibility of storing it as a 2D image. The optical techniques are fast, non-contact, and are thus more convenient for measuring the surface topography [START_REF] Schmähling | Statistical characterization of technical surface microstructure[END_REF].

The convex UHMWPE surface was measured, at different wear times, using a white light vertical scanning interferometer, (Bruker nanoscope (r), Wyko R NT 9100, ex. Veeco), [START_REF] Wyant | White light interferometry[END_REF], which enables producing a fast, non-contact, true three-dimensional area measurements for both smooth and rough surfaces to nanometre precision. Selected samples (Fig. 7.3) of the worn surfaces were suggested from the zones at the latitudes 45 • and 100 • . The samples were digitized and 3D maps of real heights were represented on a rectilinear lattice of 480 × 640 points with spatial resolution equals to x = 1.8µm, and y = 1.8µm in both X and Y directions, respectively. Fig. 7.4 illustrates four exemplars of these worn surfaces.

Removing gross geometry and form errors

Generally engineering surfaces are composed of three essential components, namely form, waviness, and roughness components [START_REF] Whitehouse | Handbook of Surface Metrology[END_REF]. The heights variations of each component are considered of different length scales, or equivalently wavelengths. The form component has a gross geometric shape (e.g.; perfect flat shape, perfect cylindrical shape, spherical shape,...etc). It is composed of spatial components located on the largest scales with wavelength equals to, or greater than, 1/3 the sample length [START_REF] Whitehouse | Handbook of Surface Metrology[END_REF], in the measurement space. The waviness and the roughness components define the surface texture [START_REF]Metropro reference guid[END_REF]. In fact, there is a great ambiguity, in the literature (see chapter 1), about which wavelengths define each the waviness and the roughness components of the topography. Likewise; if they should be separated or assessed together, since they are dependent [START_REF] Bhushan | Principles and Applications of Tripology[END_REF], and also their wavelength ranges differ according to the manufacturing process [START_REF] Whitehouse | Handbook of Surface Metrology[END_REF][START_REF] Allan | Fractal description of rough surfaces for haptic display[END_REF]. In our work, the waviness component is included in the surface roughness component, and they are both referred to as surface roughness.

The surface may contain gross deviations resulted from the nominal shape of long wavelength, known as the error of the form. They are not considered as part of the surface texture [START_REF] Bhushan | Principles and Applications of Tripology[END_REF], and they include the tilt, curvature and the mean heights. This error type should be removed before characterizing or analysing the surface roughness. These gross geometry effects have been removed using a parabolic fitting algorithm of the form:

z(x, y) = -ax 2 -by 2 + c, (a > 0, b > 0, c > 0) (7.1)
to the three dimensional surface profile. The coefficients are computed using the least-squares fit. Then, the typical form (Fig 7 .5) has been subtracted from the surface topography, giving the roughness topography (Fig. 7.6). The roughness is represented by the heights variations relative to a reference plane.

Conclusion

This chapter highlighted the materials and the technical methods used to generate the in-vitro wear on the UHMWPE surface, in conditions similar to those in-vivo, using the hip simulator mentioned in section 7.1. Worn UHMWPE surfaces were measured at different wear times using the optical white light interferometer allowing for a complete 3D height maps visualization. The roughness topography has been restored after removing the gross geometry and the form errors. Ones the roughness map is restored, one can characterize and analyse the roughness by different ways depending on the application and the way the roughness is being measured and defined. The observed height maps are basically 2D images, and hence, image analysis methods are widely used for the roughness characterization. Among those methods are the model-based approaches discussed in chapter 1 such as random fields. The next chapter will focus on applying the results obtained from the random fields introduced in Part II of this thesis, to represent the roughness topography of the UHMWPE surface. Furthermore, a statistical analysis method has been performed to estimate the evolution of the hills/valleys affected by the wear process. 

Introduction

In this chapter, we are interested in studying a practical application associated with the functional behaviour of the UHMWPE surface, throughout a group of selected samples measured and observed by the optical interferometry, after removing the gross geometry and the form errors (see section 7.2). We apply the random field models defined in chapter 4 and chapter 5 to firstly model the topography of the manufactured UHMWPE surface, and then the deformed one during a wear process, respectively. The Euler-Poincaré characteristic is used particularly to predict the significant height levels from the uncertainty ones that might be related to errors of measurements.

We remind that the surface topography is composed of textural features of multiscale nature, and we focus on the small-scale features defined by the hills and valleys and located at high levels. These small-scale features are refereed to, in the literature, as roughness component of the rough surfaces. A statistical analysis method is developed to describe the evolution of the hills/valleys (roughness variability) and the functional behaviour of the UHMWPE surface during the wear process, and it has been published in [START_REF] Ahmad | Roughness varaibility estimation of microscopic surfaces during engineering wear processapplication to total hip implant[END_REF].

Modelling the topographic roughness of the UHMWPE surface before wear

The topographic roughness of the UHMWPE after a machining process (Fig. 8.3) has been measured, digitized on a rectilinear lattice of 640×480 points, and extracted after removing the gross geometry and the form errors (see chapter 7). The total measurement area is about A = 1.2 × 0.86mm 2 and the spatial resolution in both x and y directions is 1.8µm. The topographic roughness is composed of largescale structures (low frequency) periodic (anisotropic) and suitably smooth, and small-scale, rotation-invariant (isotropic) ones (high frequency) with extreme and arbitrary roughness. Hence, the microgeometry of the hills and valleys is modelled by the linear mixture Gaussian-t random field introduced in chapter 4.

Parameter's estimation

The RMS roughness S q 1 , skewness S sk and kurtosis S ku parameters (see Tab. 8.1) of the surface heights are estimated, from three arbitrary samples of the UHMWPE surface without smoothing, using equations (1.1), (1.2) and (1.3), respectively. The skewness value shown in Table 8.1 is small and its influence is neglected. Thus, the surface heights distribution is assumed to exhibit a symmetric behaviour. The kurtosis value of the samples demonstrates the existence of hills and valleys at high levels spikier than being Gaussian, and they are modelled by the t random field.

Gaussian component

Using the autocorrelation function (Fig. 8.1) and the spectral method, the second order spectral moment matrix Λ G of the large-scale components, that are modelled by the Gaussian random field, is estimated so that λ Gy = 15mm -2 and λ Gx = 117mm -2 . Note that the small-scale (high frequency) structures are located in the 1. The rms roughness of the surface is equivalent to its standard deviation σ 8.2. Modelling the topographic roughness of the UHMWPE surface before wear 77 

t component

Fig. 8.2 shows the log-plot between the empirical Euler-Poincaré characteristic of the surface upcrossings and the expected Euler-Poincaré characteristic χ G for the Gaussian random field, if the surface assumed as a Gaussian one:

χ G (h) = A × det(Λ G )(h/S q )exp(-h 2 /2S 2 q )/(2π) 3/2 (8.1)
where A is the area of the total measurement space. One can notice the behaviour of the local maxima (hills) above h/S q > 3 compared to the Gaussian and t ones, which insures that the hills at the high thresholds do not come from the Gaussian component but from the t component. This is adequate with the fact that the LKCs detect the high-frequency features of the surface, which are due to the t random field component. Using this assumption, the parameters of the t random field component were estimated using the non linear least-square fit between the empirical and the expected Euler-Poincaré characteristic χ T given for the T ν β random field: 

χ T (h) = A × λΓ ν+1 2 (2π) 3/2 ν 2 1/2 Γ ν 2 h β 1 + h 2 νβ 2 -(ν+1)/2 (8.2)
Sq 2 = σ 2 G + σ 2 T ∼ = β 2 ν ν -2 S ku ∼ = 6 ν -4 (8.3)
where the effects of the of the R.M.S. value of the Gaussian component σ 2 G is neglected when compared to the σ 2 T .

Validation

For validation, the three LKCs (area function, contour length and Euler-Poincaré characteristic) of the excursion sets of the estimated Gaussian-t random field GT 5 1.4

were compared with the empirical ones, computed on the surface upcrossing levels (see figure 8.3(b)). The characterizing functions show good approximation between the model and the rough surface.

Concluding remarks

Note that the t random field component of the linear mixture Gaussian-t random field is assumed isotropic, whereas the anisotropic features located at larger scales are modelled by Gaussian random field, and they are estimated using the covariance function. The roughness and anisotropy properties are adequate with the material properties during the machining process of the UHMWPE component [START_REF] Steven | The UHMWPE Handbook: Ultra-High Molecular Weight Polythylene in Total Joint Replacement[END_REF] and can be changed from one material to another. Nevertheless, the intrinsic volumes, or the LKCs, for the random field model do not depend on the shape of the covariance function but on the second spectral moment related with the derivations of the covariance function. Which means that the geometric properties of the hills and valleys can be quantified without the need to know the shape or the model of their covariance function.

Modelling the topographic roughness of the worn UHMWPE surfaces

Another application is considered for modelling the topography of rough and randomly deformable surfaces. This section focuses on the UHMWPE example which undergoes a wear engineering process as explained in chapter 7.

As seen in the previous section, the surface roughness topography is composed of two components, waviness (large-scale components) and roughness (small-scale components refereed by hills and valleys). The geometry of the small-scale hills/valleys and their number are characterized by the LKCs of the surface upcrossing's levels, since these functions tend to concentrate at the high frequencies [START_REF] Schmähling | Statistical characterization of technical surface microstructure[END_REF]. During the contact problem and wear process, the hills at the small-scales (finite contact patches) and the holes that correspond to the small-scale valleys (or the pits) are the most important and they have a direct relation with the normal pressure/hardness ratio, and the wear mechanisms [START_REF] Nayak | Random process model of rough surfaces in plastic contact[END_REF] (see Fig. 8.4 as example). In this section, we focus on modelling the microgeometry of the small-scale hills and valleys. The Lipschitz-Killing curvatures (LKCs) will be used to quantify these hills and valleys.

A rough surface illustrated in Fig. 8.5 is measured after a wear time t = 13 × 10 6 cycles from the 45 • latitude of the convex side of the UHMWPE component. The global roughness parameters S q , S sk and S ku are estimated overall the roughness topography, such that S q = 34.5nm, S sk = 4.41 and S ku = 111.81. The quantilequantile (Q-Q) plot (Fig. 8.6) between the height's distribution and the Gaussian one shows that the joint distribution of the heights tends to have asymmetric behaviour (skewed heights) around its mean and the tails of the distribution are heavier at the positive high thresholds which explains the existence of spiky hills at these heights, and a high kurtosis value. Following the last arguments, the small-scale roughness components are modelled as a skew-t random field (see chapter 5). Notice that when the skewness is zero, then the skew-t model of the hills and valleys becomes the t random field as seen in the previous section.

Parameter's estimation

The autocorrelation function (Fig. 8.7) of the roughness topography depicted in Fig. 8.5 demonstrates the roughness isotropy. The skewness index δ and the degree of freedom ν of the skew-t random field were estimated using their analytical formulae [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution[END_REF]:

S sk = µ ν(3 -δ 2 ) ν -3 - 3ν ν -2 + 2µ 2 ν ν -2 -µ 2 -3/2 S ku = 3ν 2 (ν -2)(ν -4) - 4µ 2 ν(3 -δ 2 ) ν -3 + 6µ 2 ν ν -2 -3µ 4 ν ν -2 -µ 2 -2 , (if ν > 4) (8.4) where µ = δ(ν/π) 1/2 Γ( ν-1 2 ) Γ( ν 2 )
, with (ν > 1).

Then, the spectral moment λ is estimated from fitting the empirical and the expected Euler-Poincaré characteristic between the surface upcrossing levels (excursion sets) and the skew-t random field, using the non linear least-square method.

Validation

The intrinsic volumes or LKCs of the surface upcrossing levels (excursion sets) are simply the area, contour length and the Euler-Poincaré characteristic of these sets. These characterizing functions are used to test the skew-t random field on the worn surface roughness topography, for validation, by comparing their empirical values with their analytical formulae (see Fig. 5.3(b)), with δ = 0.7, ν = 10 and λ = 0.114µm -2 .

Statistical analysis of worn UHMWPE surfaces during engineering wear process

Under the assumption that the roughness component of the randomly rough deformable surfaces can be modelled by the skew-t random field, a statistical analysis is performed in order to estimate the significant levels including the local maxima and minima (hills and valleys). This analysis is based on the expected Euler-Poincaré characteristic of the skew-t random field. Then, the mean area of these hills and valleys at the significant levels is calculated in order to describe the wear mechanisms on some regions of the UHMWPE. In this work, two regions were considered, as previously discussed in section 7.2, which are located at the longitudes 45 • and 100 • , and multiple samples were tested from both regions overall the latitudes.

Estimation of the significant levels from uncertainty heights

The local maxima and minima of the surface upcrossing's levels refer to the connected components (isolated regions or disjoint clusters) at these levels, and the expected Euler-Poincaré characteristic at high thresholds, derived in Eq. (5.23) of the skew-t random field approximates the number of these local maxima or minima. Since the expected Euler-Poincaré characteristic describes the roughness of the surface (small-scale features), it might also be influenced by the measurement errors related to the uncertainty of the measurement instrument device (systematic error). When seeing Fig. 8.5, there are spiky heights located around the contour of the deformed regions, some of them are uncorrelated and they come by chance. Our interest is to detect the significant levels h including the real hills and valleys that are associated to the mechanical deformation and wear mechanisms. Towards this aim, h should be firstly chosen to control the probability of detecting maxima and minima that are obtained by chance due to the measurement error (uncertainty levels), which are not significant. These maxima and minima are referred to as the extreme values and they are located at very high levels, i.e.; they are concentrated at the tail probability P[Y max ≥ h] or P[Y min ≤ h] of the skew-t random field (see corollary 5.5.1). Figure 8.9: Extreme values (maxima and minima) of one sample at wear process time 13 × 10 6 cycles. The white blobs in the image correspond to the excursion set above the threshold h max = 0.25µm, as well the dark blobs in the image are the excursion set below the threshold h min = -0.13µm.

Two thresholds were calculated such that the tail probability is no more than ε = 5%, which are h max = 0.25µm and h min = -0.13µm. The excursion sets E hmax and E h min obtained at h max and h min , respectively, are combined in one single set (see Fig. 8.9), denoted E (hmax,h min ) , and expressed as: This implies that most of the hills and valleys above and below the detected thresholds come by chance and correspond to error of measurement, and the probability of detecting real hills or valleys will be less than 5%. The roughness component after rejecting these levels is illustrated in Fig. 8.10(a). Nevertheless, the model's parameters will change (see Tab. 8.2) but the topographic roughness could always be considered and represented as a skew-t random field as can be seen in the Q-Q plot of the heights distribution (Fig. 8.10(b)), and the fit between the analytical and empirical LKCs (Fig. 8.11). Let h hills and h valleys be the levels including the real hills and valleys of one sample shown in Fig. 8.10(a). At this time, the local maxima and minima that are concentrated at the tail probability will correspond to the real hills and valleys, and their levels are estimated using the Euler-Poincaré characteristic of the skew-t random field at the high thresholds, such that h hills = 0.053µm and h valleys = -0.025µm (see Fig. 8.12), where the excursion set E (h hills ,h valleys ) at both detected hills h hills and valleys h valleys is expressed using the same argument given in equation (8.5).

E (hmax,h min ) = +1, if x ∈ E hmax -1, if x ∈ E h min (8.5)

Comments

One can notice that the predominant features on the surface at this stage of wear process, t = 13 × 10 6 cycles, are the valleys and pits. Their area is also more important compared to the area of the detected hills. The number and the size of the holes refer to a fatigue wear mechanism due to the loss of the UHMWPE particles after frequent abrasive and adhesive wear mechanisms on the UHMWPE surface [GWG + 08]. Furthermore Fig. 8.10(a) shows that the single peak near the global maxima has been removed although it has a significant spatial size. In fact, this maxima is not related to the worn surface but it results from the transfer of the materials of the metal-back surface in contact with the UHMWPE, yielding a maxima height value (anomaly), when measured by the optical devices, due to the maximum reflection of the light from that region.

Wear analysis induced by the statistical analysis of surface roughness

The significant upcrossing levels that include the surface hills and valleys were estimated (Fig. 8.13) over the wear time (0-19×10 6 cycles ) for one sample selected from the latitude 45 • . To insure that we measure approximately the same location during the wear process, we marked the chosen samples in a safely way that insures not damaging the samples. These results can also refer to a loosening of the UHMWPE materials occurred on the selected sample. Nevertheless, the evolution of these levels can also be used to describe the functional behaviour of the surface if they are weighted by their spatial extent. The spatial extent of the excursion sets E h hills , E h valleys was estimated during the wear time by evaluating their mean areas. The functional interpretation of these areas can be explained as follows: The evaluation of the mean area of the hills at level h hills (t) determines the amount of the surface bearing area remaining after a certain depth of material is removed, and the mean area function of the valleys estimated at level h valleys (t) describes the changes of the fluid entrapment or leakage, due to the material's void area changes. Thus, one can computethe difference between the bearing and the void areas multiplied by their detected levels, denoted by f (t), during the wear time in order to express the surface functionality as follows:

f (t) = h hills (t) × Area[E h hills (t) ] -|h valleys (t)| × Area[E h valleys (t) ] (8.6)
where In order to increase the certainty of the results, and to describe globally the wear mechanism around the most worn regions on the UHMWPE surface, which are located, in this case study, at latitude 45 • , five samples were measured and tested at different positions as discussed in 7.2.1. The significant levels (Fig. 8.17) included the hills and valleys were estimated, following the same arguments in section 8.4, on the five selected samples of the UHMWPE surface at 45 • latitude, over the approximative angles 0

Area[E h hills (t) ] = A ∞ h hills (t) p(y)dy, Area[E h valleys (t) ] = A h valleys (t) ∞ p ( 
• , 45 • , 90 • , 180 • , 175 • .
The function f (t) in equation (8.6), that computes the difference between the bearing and the void areas of the surface multiplied by their significant height levels A quantitative comparison is performed between regions selected from two different latitudes at 45 • and 100 • of the convex side of the UHMWPE component. Eight samples have been selected for the tests, four samples belong to the region located at 45 • , and the other ones were measured from the region located at 100 • . The evolution of the surface upcrossing's levels h hills and h valleys for each sample (Fig. 8.19) illustrates the non-homogeneous behaviour of the roughness throughout the UHMWPE latitudes, and hence the non homogeneity of the wear mechanisms. The regions at 100 • undergo less wear if compared with the ones at 45 • latitude. The results in Fig. 8.19 show that the levels slightly alternate around h hills = 3µm and h valleys = -2.7µm, respectively, where the surface roughness model does not exhibit significant changes, conversely to the regions at 45 • latitude. These results are convenient with the in-vitro experimental test results drawn in [START_REF] Geringer | Understanding the dual mobility concept for total hip arthroplasty. investigations on a multiscale analysis-highlighting the role of arthrofibrosis[END_REF].

Conclusion

Firstly, this chapter was concerned on applying the linear mixture Gaussian-t random field model on the UHMWPE surface after a machining process. This random field model enabled estimating the large-scale and small-scale features on the surface. Furthermore, the model shows that the Gaussian hills/valleys are mostly concentrated at low height levels, where at high levels, the hills/valleys follow another model refereed to as t random field. When the UHMWPE get worn, the wear process affects the whole scale-space structures (hills/valleys) dependently, so the separation between these scales becomes complicated. Thereby, the second step is focused on modelling the small-scale structures of the worn rough UHMWPE surface. The skewness and kurtosis parameters are the most significant parameters that have changed during the wear process. Thus, the skew-t random field was suggested to predict the functional hills/valleys related to wear. Notice that we can assume that the small-scale structures for both machined and worn UHMWPE surface are modelled by the skew-t random field since the later is an extension of the t random field including the skewness concept to the heights distribution function. The results illustrated in this application part were obtained during 20 × 10 6 cycles of wear, on samples selected from two longitudes. These results demonstrate the importance of the functional parameters such as hills/valleys level's heights and their mean area in describing the wear mechanisms and the functional behaviour of the surface during the wear. In this chapter, we focused on the intrinsic volumes (LKCs) and precisely Euler-Poincaré characteristic for estimating the roughness evolution of the surface. Even if the surface model could change from one material to another, the strategy given in this chapter is applicable for any surface. This chapter includes some work in progress and further investigations that have been realized later and they have not been finished yet. So, we suggested to put all those investigations in this concluding part of dissertation.

GENERAL CONCLUSION AND FUTURE WORK

Introduction

We consider a class of real-valued random fields that appears throughout the modelling of spatio-temporal phenomena, such as the application provided in this thesis, modelling the surface roughness topography when the material undergoes wear and mechanical contact processes over time, or in other applications such as those in physical oceanography [START_REF] Adler | Stochastic Modelling in Physical Oceanography[END_REF], and brain imaging [START_REF] Shafie | Rotation space random fields with an application to fmri data[END_REF]. For example, space-time random fields have been used to describe the time-evolution of the spatial parameter of the observed measurements and to predict future values [START_REF] Ma | Stationary random fields in space and time with rational spectral densities[END_REF].

In the previous chapters, a spatial model of the roughness topography has been realized by the skew-t random fields. An extension of this model can be considered to include the temporal changes of the surface features, such as the temporal covariance, and the temporal skewness functions. So, this chapter concerns on introducing the skew-t random field in space and time, and in deriving the LKCs of the excursion sets, towards their potential use in practice.

Preliminaries

Let G 0 (x), G 1 (x), ..., G ν (x), x ∈ S where S is a compact non-empty subset of R N , be a set of i.i.d. Gaussian random fields, so each has a mean zero, and covariance function C(x 1 , x 2 ), x 1 , x 2 ∈ S ⊂ R N , with a second order spectral moment matrix Λ x . Then, the skew-t random field, Y (x), has been defined as extension of the known t random field including the concept of skewness, as discussed in chapter 5, such that:

Y (x) = δ|z| + √ 1 -δ 2 Z(x) ν i=1 G 2 i (x)/ν 1/2 (9.1)
where δ ∈ (-1, 1) is a skewness index, z ∼ N ormal(0, 1) is a normal random variable independent of G 0 , G 1 , ..., G ν components.

It can be noticed immediately that the spatio-temporal skew-t random field might be realized from the i.i.d. centered spatio-temporal Gaussian random field components each has mean zero, and covariance function C(x 1 , x 2 ; t 1 , t 2 ), with x 1 , x 2 ∈ S ⊂ R N and t 1 , t 2 ∈ R.

Definition

Let G 0 (x, t), ..., G ν (x, t), x ∈ S and t ∈ T , be i.i.d. homogeneous, real-valued spatio-temporal Gaussian random fields, each with mean zero, variances σ 2

x and σ 2 t , and with the second spectral moment matrix Λ x = V ar(∂G i (x, t)/∂x), i = 0, ..., ν, and the second spectral moment λ t = V ar(∂G i (x, t)/∂t), for all i = 0, ..., ν. Let Z be a standard normal random variable independent of all G i , and the temporal skewness function δ(t) such that δ : T → (-1, 1), then a real-valued spatio-temporal skew-t random field is defined at any fixed x and t as follows:

Y (x, t) = δ(t)|Z| + 1 -δ 2 (t)G 0 (x, t) ν i=1 G 2 i (x, t)/ν 1/2 (9.2)
where ν is the degree of freedom and it is considered as constant over the time, with respect to the aforementioned condition ν ≥ N as discussed in chapter 5. In more general case, the degree of freedom could be also assumed to change temporally, so the shape (peakedness and tail-weight) of the marginal distribution function will change with time.

The next section concentrate on calculating the Lipchitez-Killing curvatures (LKCs) and the expected Euler-Poincaré characteristic function of the excursion sets of the spatio-temporal skew-t random field in one simple case proposed for the spatial space parameter space defined by rectangles of R N .

LKCs and the expected Euler-Poincaré characteristic of the space-time excursion sets

Let consider the subset S is a rectangle of the form S = N i=1 [0, S i ] in R N , and a time interval T = [t min , t max ] ⊂ R. Then, the Riemannian space induced by the spatio-temporal Gaussian components on the product space S × T , will be equipped with a Riemannian metric defined by the variogram of the first order partial derivatives of the Gaussian random field components, i.e., E[∂G i /∂s 1 ∂G i /∂s 2 ] with s 1 , s 2 ∈ (S × T ).

For Gaussian and Gaussian-related random fields, it was shown [AT07] that the j-th dimensional LKCs for the aforementioned products of the Riemannian space induced by such random fields, for any j ≥ 0, can be derived using Hadwiger's theorem [START_REF] Hadwiger | Vorlesungen über Inhalt, Oberfläche und Isoperimetrie[END_REF], as:

L j (S × T ) = j i=0 L i (S)L j-i (T ) = L j (S) + |T |L j-1 (S)
where |T | is the length of the temporal interval T .

In the following, a simple case will be discussed which suggests that: Firstly, the spatio-temporal covariance function, of each Gaussian random field, is stationary and separable such that:

C(x 1 , x 2 ; t 2 , t 1 ) = C x (|x 1 -x 2 |)C t (|t 1 -t 2 |) (9.3)
where C x and C t are positive-definite functions, with variances σ 2 x and σ 2 t , respectively, and with second order spectral moments Λ x , λ t , respectively. Note: the assumption that the spatio-temporal covariance function C(x, t) is separable means that the first order temporal and spatial partial derivatives of each Gaussian random field component G i , i = 0, ..., ν are uncorrelated, i.e., E[∂G i /∂x∂G i /∂t] = 0, and so for Y .

Secondly, the skewness function will be considered invariant with time, i.e.; δ(t) = δ, so the spatio-temporal effects of the skew-t random field are all restricted to the covariance function of its Gaussian components, or equivalently the second order spectral moments. Under the previous assumptions, and the result given in equation (3.16), chapter 3, the j-th dimensional LKCs of Y on S × T can be expressed as:

L j (S×T ) = σ -j x J∈O j det(Λ x J ) 1/2 vol j (J)+ λ 1/2 t (t max -t min ) σ t σ j-1 x J∈O j-1 det(Λ x J ) 1/2 vol j-1 (J)
(9.4) where O j is the N j elements of ∂ j S and J are as mentioned in chapter 3. Using the general formula in equation (3.10), the expected Euler-Poincaré charac- teristic of the spatio-temporal skew-t excursion sets can be expressed as:

E[χ(Y, S × T )] = dim(S×T ) j=0 L j (S × T )ρ ST j (h) (9.5)
where dim(S × T ) = N + 1, and ρ ST j (h), for j = 0, ..., N + 1, are the EC densities for the skew-t random field derived implicitly in chapter 5, theorem 5.4.1.

Simulation example

This section illustrates simulation example of a spatio-temporal skew-t random field with 5 degrees of freedom and fixed skewness δ = 0.5, for N = 2. The field is generated using i.i.d. Gaussian random fields with separable spatio-temporal covariance function of the exponential form:

C(x; t) = σ 2 x σ 2 t e -τx t Λxτx e -τ 2 t λt (9.6)
where τ x , τ t reefer to the spatial and temporal differences (x 1 -x 2 ), (t 1 -t 2 ), respectively (see Fig. 9.1). All the space-time Gaussian random fields are simulated on time interval [0, 1] and spatial interval [0, 0.2] 2 of 100 × 100 points. The temporal and spatial Gaussian covariance kernels are chosen such that λ t = 0.01 and Λ x = 10 3 × I 2 . Then, the spatio-temporal skew-t random field is generated using the 

Application

An interesting application of the space-time random fields can be derived from the need to predict the evolution of the surface roughness variability during wear simulation process, without the need to do further experimental tests. The spatiotemporal Euler-Poincaré characteristic is estimated over 19 × 10 6 cycles, during wear process, from ones sample at the 45 • latitude of the UHMWPE (Fig. 9.5). As can be seen from the evolution of the spatio-temporal Euler characteristic function that the variation of the spatial roughness, described by the matrix Λ x , depends on the wear cycles, which can be noticed through the variations of its width according to the surface heights. Furthermore, the function exhibits changes in its symmetry, that means the skewness parameter changes with time. The skewness variability during wear time α(t) = δ(t)/ 1 -δ 2 (t) (see Fig. 9.6), becomes a significant characteristic function that interprets the effect of the wear process on the surface roughness functionality as discussed in chapter 8. Consequently, the separa-Figure 9.3: Spatio-temporal skew-t random field with 5 degrees of freedom and skewness index δ = 0.5.

bility assumption will not be valid in this case, where the effect of the wear process on the spatial features of the surface roughness is time dependent, and hence, further development are required to well establish the space-time skew-t random field, and the LKCs of its excursion sets, taking into consideration the non-separability assumption. We suggested a regression method in order to model the temporal evolution of the skewness index, estimated from the skew-t random field at each time, at the 45 • latitude of the UHMWPE surface (see Fig. 9.7). The method aims at finding the best-fitting skewness index values α through a least squares regression in a polynomial function p(t) of n degrees such that:

p(t) = p 1 t n + p 2 t n-1 + ... + p n+1 (9.7)
where t is a variable indicating the time (number of cycles per second), and {p i } i=1,...,n+1 are the polynomial coefficients. The fitted α represented in the solid line in Fig. 9.7 is produced using the regression method for k samples (k=5) as inputs as follows:

1 k k j=1 α (j) (t) = p(t) + e(t) (9.8)
where α (j) (t) is the skewness function α(t) of the jth sample, and e(t) ∼ N ormal(0, V ar(α(t))) is the regression error term which is assumed to have normal distribution with zero mean and variance function V ar(α(t)) (see Fig. 9.8).

The best-fit is obtained for a polynomial of 6 degrees. Thus, the regression model of the temporal skewness index α(t) is expressed as: α(t) = 3.8 × 10 -5 t 6 -0.002t 5 + 0.055t 4 -0.65t 3 + 3.74t 2 -8.59t + 0.92 (9.9) over the worn regions located at 45 • latitude. Giving α(t) yields to evaluate δ(t) = α(t)/ 1 + α 2 (t), one of the spatio-temporal skew-t random field's parameters.

Conclusion

The space-time skew-t random field model is introduced using separable spatiotemporal stationary Gaussian random fields. A simple case is introduced in this chapter by fixing the skewness and the degree of freedom of the spatio-temporal skew-t random field. The Lipschitz-Killing curvatures and the expected Euler-Poincaré characteristic are derived for this simple case. However, using the proposed spatio-temporal random field in practice requires go far from the simple case and assume that the skewness index and the degree of freedom are variant with the time. Furthermore, the separability assumption does not take into consideration the interactions between spatial and temporal features. Notice that the LKCs given in equation (9.4) will change since the spectral moments can not be separated between space and time. A practical example on the UHMWPE surface in Fig. 9.5 shows by the evolution of the spatio-temporal Euler-Poincaré characteristic function that the surface exhibits high roughness with alternative and fast variations at the first 12 × 10 6 cycles of the wear time, so that the spatio-temporal model of the surface topography is of non-homogeneous nature, whereas after 12 × 10 6 cycles the roughness is significantly decreased, and the model of the worn surface exhibits isotropic and homogeneous behaviour throughout the periods 12 × 10 6 cycles until 19 × 10 6 cycles. Also in this chapter, we introduced a regression method for predicting the temporal evolution of the skewness parameter α(t) of the spatio-temporal skew-t random field over the regions at 45 • latitude.

Chapter 10

Conclusion and future work

General Conclusion

This Ph.D. thesis has focused on a theoretical framework driven by the random field models that has been used in many scientific applications, and more specifically in the ones related with rough engineered surfaces. A bibliographic background about the surface roughness metrology, and the most common approaches used to represent and characterize the topography of rough surfaces were summarized within the first part of this dissertation. Due to the random nature of rough surfaces, the topography is represented by the theory of random fields. A random field model defines the joint distribution function of the heights, the geometry and the topological properties of these later with their neighbours, which can be quantified, using the integral geometry, via the excursion sets of the random fields. The basic theoretical background of random fields and the geometric properties of their excursion sets have been reported in the second part of this thesis. The analytical formulae of the intrinsic volumes for a random field is used for fitting the model with the real surface, for estimating its parameters, and for the surface roughness analysis.

The main theoretical developments, in the third part of the manuscript, were concerned on the integral geometry of random fields, due to the lake in the literature in giving the aforementioned formulae for some random fields that have of great interest in practice. We, firstly, derived the analytical formulae of the intrinsic volumes, or Lipschitz-Killing curvatures (LKCs), of the two-dimensional excursion sets of a mixture model defined by the linear combination of a Gaussian random field and a t-field. The motivation comes from the fact that surface topography can be partitioned into two components, one with a large-scale structure and narrow roughness which is modelled by Gaussian random fields, and the second with small-scale features and heavy-tailed distribution which are modelled by the t-field. The LKCs have been derived based on Morse theory in the case that the Gaussian-t random field is isotropic, called in this case by Minkowski functionals. We proved by means of the expected Euler-Poincaré characteristic that the behaviour of the local maxima and minima of the mixture random field depends on two basic factors, the degree of freedom ν, and mainly on the scale factor β of the t-field that control the non-Gaussianity behaviour of the surface heights. Secondly, the analytical formulae of the LKCs have been derived for the skew-t random field in the N -dimensional Euclidean space. The skew-t random field was introduced as an extension of the t-field including the concept of the skewness to the height's distribution. Thus, the small-scale features, defined by the maxima and the minima (hills and valleys) of a rough surface, can be represented and characterized by the skew-t random field, and thereby they will behave in asymmetry according to their mean. An asymptotic formulae of the expected number of the hills and valleys was calculated and also expressed in terms of the expected Euler-Poincaré characteristic at high levels. In practice, the later could be considered as a useful technique to estimate the mean number of the hills and valleys which are defined by different confusing ways in surface metrology, or to estimate the significant levels including those small-scale features from the uncertain heights.

A specific application proposed in this thesis was for analysing and modelling the topography of worn rough surfaces, particularly, those involved in the total hip arthroplasty, and known by UHMWPE components. Considering both the medical and the scientific problems related with the wear of the UHMWPE component when the later articulates with other type of materials, it was necessary to understand how the UHMWPE surface gets worn, and which wear mechanisms are mostly predominant. This study would help for an ultimate aim related with improving the quality and the life duration of the artificial hip implants, and improving the manufacturing process. The UHMWPE surface in the non-worn state was modelled by the Gaussian-t random field, so that the small-scale features (hills/valleys) of the surface which diverge from Gaussianity were represented and estimated by the t-field, and the large-scale features were assumed to be of a multivariate Gaussian distribution and they are characterized using the covariance function. During the wear process, which has been generated artificially (in-vitro) using a hip wear simulator machine, the heights of the UHMWPE surface topography became to behave in asymmetry according to their mean, and led to represent the worn topography by the skew-t random field.

A statistical analysis approach based on the skew-t random field was then proposed to study the evolution of the surface roughness during the wear simulation process, by hierarchically estimating the evolution of the skewness parameter, the evolution of the hills/valleys, their mean area and their significant height's levels during wear time, which indicate the most important characteristics that interpret the wear mechanisms, tribological properties and the functionality during the mechanical contact between the articulating surfaces. The evaluation of these characteristics demonstrated fast and significant variations of roughness at the first 10 × 10 6 -12 × 10 6 cycles where the roughness evolution tends to be very slow after 12 × 10 6 cycles due to important fatigue wear mechanism on the surface. During the first 10 × 10 6 -12 × 10 6 cycles the UHMWPE surface at 45 • latitude exhibits an alternative functional behaviour, which was dominantly affected by abrasion and adhesion wear mechanisms. From topological point of view, the excursion sets detected at the significant levels include more holes with significant spatial extent 10.2. Future work than peaks (connected components), which implies that the void area is much prominent than the bearing area and yields to low friction and contact influence between the UHMWPE and the metal-back. This concluding result was also illustrated by computing the difference between bearing and void areas multiplied by their significant levels, and by the evolution of the Euler-Poincaré characteristic function in terms of time and heights. The quantitative comparison between different zones of the UHMWPE surface at 45 • and 100 • latitudes showed non-homogeneous behaviour of the surface where they demonstrated an important wear on the zones at 45 • latitude contrary to 100 • latitude. These in-vitro experimental results confirm the ex-vivo observations on cups from dual mobility concept.

To conclude, the Lipschitz-Killing curvatures (LKCs) of the excursion sets of random fields have three advantages, in practice, for analysing rough surfaces: -firstly they can be used to fit the rough surface geometry with the appropriate random field model, -secondly, some model's parameters can be determined from these characteristic functions, -and finally, the expected Euler-Poincaré characteristic is a robust technique that can be used to control and estimate the surface levels including the hills and valleys, and so for analysis of worn surfaces.

Future work

There are several possible ideas to extend the work of this thesis, in both theoretical and practical fields. We derived the analytical formulae of LKCs and the mean number of the maxima and minima for both Gaussian-t, and skew-t random fields. However, the local size of these maxima and minima (size of each connected component), if combined with the height levels of each one, can increase the robustness of the statistical analysis approach in detecting the significant hills and valleys from the uncertain ones.

A space-time skew-t random field has been introduced in chapter 9 for a work in progress which can be continued in the future. This model can be used to estimate and to predict the spatial and temporal evolution of the surface roughness during the time wear process. In such case, one can estimate an approximate time of the final degradation of the surface without the need to do further wear tests, i.e., the age of the UHMWPE component inside the artificial implant.

The skew-t random field has been defined only over one set of length scales. Thus, further development can be investigated by extending the model to multiscales using the scale-space approach, and so define a scale-space skew-t random field. In this case, independent and identically distributed scale-space Gaussian random field components will be used to realize the model. Each Gaussian component can be realized by smoothing a Gaussian white noise with a spatial filter over a range of filter scales related with λ where λ ∈ [λ 1 , λ 2 ], closely to the space-time case (see chapter 9). The scale-space approach from a practical point of view enables estimating the location and the scale of the maxima and minima, and can be considered as one solution of how estimating their local size. This can increase the reliability of the statistical analysis approach and also enables the detection of the roughness parameters associated with each scale. Furthermore, the wear process leads to, according to the results shown in this manuscript, a strong anisotropic roughness patterns, that are surely mechanically very important features which could be explored by the rotation scale-space random fields.

For the medical application given in this thesis, the experimental developments have been tested on one UHMWPE specimen. Further experimental tests on more specimens will increase the robustness of the drawn results and conclusions. Notice that the coefficients a n and b n will be replaced by the i.i.d. Gaussian variables. The Karhunen-Loève expansion is the general approach for simulation of Gaussian random fields that might be defined on the non-Euclidean space, or they might be non-stationary fields in the Euclidean-space. However, the Karhunen-Loève is an infinite expansion, even if the random field is isotropic. Thus, one might take a finite expansion using a finite number the eigenvalues which is not enough [START_REF] Alder | Random fields and their geometry[END_REF]. Further demonstrations can be found in [START_REF] George | Assessment of spectral representation and karhunen-loève expansion methods for simulation of gaussian stochastic fields[END_REF].

B.2 Spectral expansion using Fourier transform

For stationary Gaussian (or non-Gaussian) random fields, the direct approach to generate such random fields is via the spectral representation approach (see chapter). Dealing with stationary Gaussian random fields using the spectral representation means that Y can be considered as a complex-valued Gaussian random field. Thus, its covariance function can be expressed as , and the eigenfunctions of C(x, s) can be established in Fourier space via complex exponentials such that: where K stands for spectral measure (frequency). Since Y is stationary field, so the covariance function C is symmetric and C(K) is the power spectral density of Y , or the Fourier transform of the autocorrelation function. Following the orthogonal expansion theorem, the real-valued Gaussian random field can be written as:

Y (x) = Re{ ∞ n=1 Cn (K)g n e iKx } (B.7)
where Re stands for the real part, g n is a complex-valued zero mean Gaussian noise. The last expansion is the inverse Fourier transform of the spectral coefficients Cn (K)g n . Furthermore, the sum in the expansion can be considered to finite number, when Y is defined on a finite number of points giving exact generation of Y . 

Résumé :

La topographie d'une surface se compose généralement de plusieurs échelles, depuis l'échelle macroscopique (sa géométrie physique), jusqu'aux échelles microscopiques ou atomiques appelées rugosité. L'évolution spatiale et géométrique de la rugosité fournit une description plus complète de la surface, et une interprétation physique de certains problèmes importants tels que le frottement et les mécanismes d'usure pendant le contact mécanique entre deux surfaces. La topographie d'une surface rugueuse est de nature aléatoire, ce qui traduit par des altitudes spatialement corrélées, appelées pics et vallées. La relation entre leurs densités de probabilité et leurs propriétés géométriques sont les aspects fondamentaux qui ont été développés dans cette thèse, en utilisant la théorie des champs aléatoires et la géométrie intégrale.

Un modèle aléatoire approprié pour représenter une surface rugueuse a été mis en place et étudié au moyen des paramètres les plus significatifs, dont les changements influencent la géométrie des ensembles de niveaux (excursion sets) de cette surface. Les ensembles de niveaux ont été quantifiés par des fonctionnelles connues sous le nom de fonctionnelles de Minkowski, ou d'une manière équivalente sous le nom de volumes intrinsèques. Dans un premier temps, les volumes intrinsèques des ensembles de niveaux sont calculés analytiquement sur une classe de modèles mixtes, qui sont définis par la combinaison linéaire d'un champ aléatoire Gaussien et d'un champ de t-student (t-field), et ceux d'une classe de champs aléatoires asymétriques appelés skew-t. Ces volumes sont comparés et testés sur des surfaces produites par des simulations numériques. Dans un second temps, les modèles aléatoires proposés ont été appliqués sur des surfaces réelles acquises à partir d'une cupule d'UHMWPE (provenant d'une prothèse totale de hanche) avant et après les processus d'usure. Les résultats ont montré que le champ aléatoire skew-t est un modèle mieux approprié pour décrire la rugosité de surfaces usées, contrairement aux modèles adoptés dans la littérature. Une analyse statistique, basée sur le champ aléatoire skew-t, est ensuite proposée pour détecter les niveaux des pics/vallées de la surface usée et pour décrire le comportement et la fonctionnalité de la surface usée.
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Figure 1

 1 Figure 1.1: Probability density function of skew random heights with different values of skewness and different symmetry behaviors.

Figure 1 . 2 :

 12 Figure 1.2: Probability density function of different symmetric, and unit variance random models with different kurtosis values, (Gaussian; kurtosis = 3), (Laplace; kurtosis >3), and (Wigner semicircle; kurtosis <3).

Figure 1 . 3 :

 13 Figure 1.3: Example of three level sets composed of objects (materials and voids) with different Euler-Poincaré characteristics (χ). (a) χ = 388. (b). χ = 39 (c) χ = -462. The materials and voids are represented as by: materials and voids.

Figure 1

 1 Figure 1.4: Simulation example of a Brownian sheet on [0, 1] 2

Figure 1 . 5 :

 15 Figure 1.5: (a) Simulation example of a negatively skewed, isotropic, Gaussian random surface on [0.1] 2 . (b) The probability density function of the surface heights with skewness index δ = -0.5.

Contents 3 . 1 Figure 3

 313 Figure 3.1: (a). A simulation example of a two-dimensional Gaussian random field on a unit rectangle. (b). and (c). The excursion sets above the levels h = -1, and 2.5, respectively.

  .14) 3.3.3 Stationary random fields over rectangles on R N Let S = N i=1 [0, L i ] be a rectangle on R N , and suppose J be a face of k-dimensions in S, (J ∈ ∂ k S), where ∂ k S is the collection of faces of dimension k in S. The set ∂ N S contains the entire S, ∂ 0 S includes 2 N vertices of the rectangle S, and ∂ k S has 2 N -k N k faces of k-dimensions (see Fig. 9.3 as example). Then,

Figure 3

 3 Figure 3.2: Example of a rectangle in R 3 , and its k-dimensional faces, k = 0, ..., 3.

  4) where φ(y; Σ) is the multivariate normal probability density function (pdf) of the d-dimensional normal vector G with the (d × d) covariance matrix Σ G , and t d (.; β, ν, Σ) is the d-dimensional pdf of the t variate with ν degrees of freedom, (d × d) covariance matrix Σ, and scale vector β = (β 1 , ..., β d ) t .

Figure 4 . 1 :

 41 Figure 4.1: An exemplary illustration of a two-dimensional GT ν β random field generated from the linear mixture of a Gaussian RF and a student's t one with 5 degrees of freedom and with β = 0.2.

Figure 4 . 2 :

 42 Figure 4.2: Fitting the analytical and the simulated mean Minkowski functionals of 100 realizations of the GT 5 0.2 RFs.

Figure 4 . 3 :

 43 Figure 4.3: Comparing the expected Euler-Poincaré characteristic, E[χ(E h )], of the GT ν β excursion sets to the Gaussian one for β = 0.05, β = 0.8, respectively, and ν = 5 degrees of freedom. In the second example (right plot), the E[χ(E h )] for the GT 50.8 is also compared to the theoretical one for the t-field of 5 degrees of freedom.

Fig. 4 .

 4 3 shows that β = 0.05 the number of the local maxima of the GT ν β random field, Y , approximates the one of the Gaussian random field. Whereas, for β = 0.8, the number of the extreme values of Y are close to the one of t-field. However, the size of the isolated clusters will change,(see Fig.??) as example. Several simulation examples are done for different values of β in the interval [0, 1].

Figure 5 . 1 :

 51 Figure 5.1: Three illustrations of the contour plot of the bivariate skew-t pdf. (a) α = 0, Σ = 0.5I 2 , ν = 3, the skew-t bivariate pdf is equivalent to the symmetric bivariate t pdf. (b) α = (-2; -2), Σ = 0.5I 2 , ν = 3. (c) α = (2; -2), Σ = (1, -0.3; -0.3, 1), ν = 5. (d) α = (2; 2), Σ = (1, -0.3; -0.3, 1), ν = 5

  ×p Ẏ (0; y, W, Z) e -u 2 /2 p Y (y)dudy where p Ẏ (0; y, W, Z) is the probability density function of Ẏ at 0 conditional on Y = y, W , and Z, and p Y (y) is the probability density function of Y . From Lemma 5.3.1, for Ẏ = 0 and letting Y → ∞, Ÿ will converge to the following negative definite matrix:

Corollary 5 .

 5 5.1. Let Y max = sup {Y (x) : x ∈ S}, and Y min = inf {Y (x) : x ∈ S}.

  5.3(a)). The analytical and simulated Lipschitz-Killing curvatures are represented in figures 5.2(b) and 5.3(b),

Figure 5

 5 Figure 5.2: First exemplary simulation. (a) Anisotropic skew -t random field with 5 degrees of freedom and skewness α = -0.7 realized on [0, 1] 2 with resolution 512×512 points. (b) The simulated and the analytical LKCs, Ar, Cr and χ, respectively.

Figure 5 . 3 :

 53 Figure 5.3: Second simulation example. (a) Isotropic skew -t random field with 5 degrees of freedom and skewness α = 0.7 realized on [0, 1] 2 with resolution 500 × 500 points. (b) The simulated and the analytical LKCs, Ar, Cr and χ, respectively.
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 4 Motivations and objectives 65 and the metal-back [WEP + 98, GWG + 08].

Figure 7

 7 Figure 7.1: (a) General view of the one-station hip walking simulator. (b) Max view of the the hip implant location and the machine axes.

Figure 7 . 2 :

 72 Figure 7.2: Diagram of the artificial hip components with position conditions relative to the load force (front view). Abd./Add. refers to the abduction/adduction motion, Flex./Ext. is the flexion/extension motion and I/E is the internal/external motion.

  Figure 7.3: A synthetic 3D-dimensional simulation of the convex UHMWPE acetabular cup. (a). a side view of the cup. The blue colored zone refers to the latitude 45 • . (b) a top view of the cup. The selected samples around the 45 • are refereed by blue color.

Figure 7 . 4 :

 74 Figure 7.4: Surface topography of four selected samples of the worn UHMWPE surfaces, from the latitude 45 • , at different wear time cycles, observed by white light interferometer (NT 9100) with 5.5X objective lens, on a maximum measurement space 1.1×0.9mm 2 with spatial resolution of x = 1.8µm, and y = 1.8µm in both X and Y directions. (a) wear time = 2 × 10 6 cycles. (b) wear time = 9 × 10 6 cycles. (c) wear time = 11 × 10 6 cycles.(d) wear time = 19 × 10 6 cycles.

Figure 7 . 5 :

 75 Figure 7.5: Gross geometry of the four selected samples, illustrated in Fig. 7.4, of the worn UHMWPE surfaces at different wear time cycles.(a) wear time = 2 × 10 6 cycles, (b) wear time = 9 × 10 6 cycles. (c) wear time = 11 × 10 6 cycles. (d) wear time = 19 × 10 6 cycles.

Figure 7 . 6 :

 76 Figure 7.6: Roughness topography restored from the topography of the four selected samples, illustrated in Fig. 7.4, of the worn UHMWPE surfaces at different wear time cycles. (a) wear time = 2 × 10 6 cycles. (b) wear time = 9 × 10 6 cycles. (c) wear time = 11 × 10 6 cycles.(d) wear time = 19 × 10 6 cycles.
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 81 Figure 8.1: The autocorrelation function of a real 3D rough surface observed from the UHMWPE and illustrated in (Fig. 8.3(a))

Figure 8

 8 Figure 8.2: Log-Plot of the number of the local maxima using the Euler-Poincaré characteristic at high thresholds for the empirical heights and both Gaussian and t random fields

8. 2 .Figure 8

 28 Figure 8.3: (a) A real sample of 3D rough surface observed from the UHMWPE component without smoothing. (b) Fitting the empirical, (red curve), and the expected, (blue curve), intrinsic volumes (LKCs) between the real surface upcrossings, and the GT 5 1.4 excursion sets, respectively.

Figure 8

 8 Figure 8.4: A contact deformation model between a randomly rough deformable surface and a smooth, rigid and flat one (h is the height levels, p(h) is the density function, and d is the separation between the roughness reference, mean of p(h), and the rigid flat surface during loading) [ZZ04].

8. 3 .Figure 8 . 5 :

 385 Figure 8.5: A real sample of worn surface observed at 45 • latitude of the UHMWPE component at wear time t = 13 × 10 6 cycles.

Figure 8

 8 Figure 8.6: Normal Q-Q plot of the surface roughness heights, (blue plot), versus the normal distribution, (red plot), for a worn UHMWPE sample measured at 45 • latitude at wear time t = 13 × 10 6 cycles. The random heights are positively skewed with heavy tailed distribution of mean µ = 5.37nm, and standard deviation σ = 34nm.

Figure 8 . 7 :

 87 Figure 8.7: The autocorrelation function of the worn rough surface illustrated in (Fig. 8.5)

Figure 8

 8 Figure 8.10: (a) Surface roughness component after rejection of the extreme height levels. (b) The quantile-quantile plot of the heights in (a) versus the normal distribution. The random heights are always positively skewed with skewness value S sk = 1.17, and kurtosis value S ku = 9.4, and rms value S q = 26nm

Figure 8 .

 8 Figure 8.12: Hills and valleys (pits) of one sample at wear process time 13 × 10 6 cycles. The clusters above the positive threshold h hills are given the value (+1), as well the clusters indicated below the negative threshold h valleys are given the value (-1). The number of the hills N hills = 508, the number of pits N valleys = 1098

  y)dy (8.7) where A ∼ = 1mm 2 is the total area of measurement, and p(y) is the probability density function of the surface heights. The evolution of the function f (t) (see Fig. 8.14) shows significant variability of the surface roughness during the period 0 × 10 6 -10 × 10 6 cycles, which behaves alternatively and it is correlated with the predominant wear mechanisms being occurred on the UHMWPE surface at this stage of wear time [WEP + 98]. Different types of wear mechanisms can be depicted on Fig. 8.14. At the beginning of the wear process until t = 3×10 6 cycles, an abrasive

Figure 8 .

 8 Figure 8.14: Evolution of the difference between the bearing area and the void area at their significant levels with wear time on one sample example of the UHMWPE surface at 45 •

Figure 8 .

 8 Figure 8.15: 3D height maps of one worn sample of the UHMWPE cup at 45 • during wear time, restored after thresholding. The left figure corresponds to the zone at t = 0, and the center one is the surface sample at t = 1 × 10 6 wear cycles, while the right surface is measured at t = 3 × 10 6 cycles.

Figure 8 .

 8 Figure 8.16: 3D height maps of one worn sample of the UHMWPE cup at 45 • during wear time, restored after thresholding. The left figure corresponds to the zone at t = 4 × 10 6 , and the center one is the surface sample at t = 7 × 10 6 wear cycles, while the right surface is measured at t = 9 × 10 6 cycles.

Figure 8

 8 Figure 8.17: Significant hills and valleys levels versus wear time for 5 UHMWPE samples at latitude 45 • . (a) hills levels at h hills . (b) valleys levels at h valleys

Figure 8

 8 Figure 8.19: A quantitative comparison between the hills and valleys levels of the UHMWPE samples located at latitudes 45 • latitude, labelled by , and 100 • latitude, labelled by , showing different degrees of wear. (a) hills levels. (b) valleys and pits levels.

Figure 9

 9 Figure 9.1: A space-time separable covariance function C(x, t) of exponential form with σ 2 x = 1, σ 2 t = 1, and Λ x = 9 × 10 3 I x , and λ t = 40.

Figure 9

 9 Figure 9.2: A synthesized spatio-temporal skew-t random field of 5 degrees of freedom, and fixed skewness δ = 0.5 at different periods. (a). at t = 0, (b) at t = 0.5, and (c) at t = 1.

Figure 9

 9 Figure 9.4: (a) and (b) illustrate the Euler-Poincaré characteristic for the synthesized spatio-temporal skew-t random field estimated at each time t ∈ [0, 1]. The red line in Fig. (a) illustrates the analytical Euler-Poincaré characteristic for the spatiotemporal skew-t random field on the space S × [0, 1] with S = [0, 0.2] 2 .

Figure 9 . 5 :

 95 Figure 9.5: The empirical spatio-temporal Euler-Poincaré characteristic estimated, from one sample topography of the UHMWPE, over t = 0, ..., 19×10 6 cycles of wear simulation process at each 1 × 10 6 cycles.

Figure 9 . 6 :

 96 Figure 9.6: Estimation of the skewness index variability α(t) = δ(t)/ 1 -δ 2 (t) of the skew-t random field during wear time simulation from one sample of the UHMWPE component at 45 • latitude.

Figure 9 . 7 :

 97 Figure 9.7: Illustration of the regression method to fit the skewness index α in a polynomial of 6 degrees. The geometric shapes in the figure refer to the estimated skewness α of The skew-t random field for five selected samples of the worn UHMWPE surface located at the 45 • latitude. The solid line is the predicted skewness index α by the regression method.

Figure 9 . 8 :

 98 Figure 9.8: Illustration of the variance of the error term e(t) of the predicted skewness function α(t).

  Appendices isotropic/anisotropic correlation functionswhere f (x) = ∞ n=1 a n √ λ n ψ n (x) and h(x) = ∞ n=1 b n √ λ n ψ n (x), with ∞ n=1 a 2 n < ∞ and ∞ n=1 b 2 n < ∞.

S

  C(x, s)e iKs ds = S C(x -s)e iKs = e iKx S C(u)e -iKu = C(K)e iKx (B.6)

Figure B. 1 :

 1 Figure B.1: Different isotropic continuous and positive definite covariance functions.(a) Exponential covariance function for ν = 0, 0.5, 1, 1.5 and 2.0 with correlation length r = 1 for all. (b) Cauchy covariance function for ν = 0.01, 0.2, 0.5, 1.5, 2, 10, 50 and 100, with correlation length r = 1 for all. Notice the very fast and very slow decays of the covariance function with decreased and increased ν, respectively. (c) Bessel covariance function for ν = 0, 0.2, 0.5, 1, 5 and 10, with angular frequency ω = 2 for all. (d) Exponentially damped cosine covariance function with damping r = 0.2, 0.5, 0.7, 1.25 and 2.5. The angular frequency ω = 1 for all.

Figure

  Figure B.3: Examples of a two-dimensional anisotropic exponentially damped cosine covariance function with different correlation parameters. (a) Correlation rotation angle θ = 45 • with damping parameters r 1 = 100, r 2 = 0.03, and periods 2π/ω 1 = 0.01, 2π/ω 2 = 15. (b) Correlation direction θ = 0 • , with damping r 1 = 0.5, r 2 = 0.2 and period 2π/ω 1 = 0.01, 2π/ω 2 = 10.

Figure B. 4 : 2 νŸ

 42 Figure B.4: Numerical simulation of two-dimensional stationary anisotropic GRFs generated by the covariance functions illustrated in B.3 (a), and B.3 (b), respectively..
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Table 7 .

 7 1: Wear test conditions of MTS-858 testing machine:

	Parameters	ISO14242-1
	Normal load force	3.2KN
	Frequency	1.0Hz
	Cup inclination	30 •
	Adduction/Abduction +7˚/ -4F
	lexion/Extension	+25˚/ -18I
	nternal/External	+2˚/ -10T
	est fluid	calf serum
	Temperature	37T
	est cycles	1 × 10 6 cycles

Table 8 .

 8 1: roughness parameters Machined UHMWPE S a (µm) S q (µm) S sk S ku

	Sample 1	1.46	1.76	0.42	6
	Sample 2	1.41	1.73	0.3 6.35
	Sample 3	1.44	1.7	0.33 5.29

Table 8

 8 

	.2: Roughness parameters of one worn sample topography
	Worn UHMWPE S q (nm) S sk	S ku
	Before threshold	34.5	4.41 111.81
	After threshold	21.8	1.17	9.4

La première partie (Part I) présente une étude bibliographique sur la caractérisation de la rugosité de la topographie de surface. Les approches classiques et standards provenant de la métrologie de surface sont d'abord introduites, pour exposer les paramètres de la rugosité de surface, et les fonctions caractéristiques comme la courbe d'Abbott-Firestone et la fonction d'autocorrèlation. Les méthodes basées sur l'étude géométrique des ensembles de niveaux de surface ont permis de définir des fonctionnelles géométriques caractéristiques appelées volumes intrinsèques ou fonctionnelles de Minkowski. Ces dernières sont liées à la courbe d'Abbott-Firestone ainsi qu'aux paramètres de rugosité. Des méthodes basées sur la modélisation de la topographie de surface sont également introduites pour décrire la rugosité. Les avantages et les limitations sont présentés, afin de démontrer l'importance et la motivation de l'étude théorique des champs aléatoires intégrée avec l'étude de la géométrie de leurs ensembles de niveaux, pour repondre au probléme pratique constitué par l'évolution de la rugosité de surface.

Fractal surface is also a random process. We distinguish between fractal models and random fields since we need to study the geometry of the excursion sets and to estimate the number of hill and valleys. The first ones are non-differentiable erratic models, so that the number of hills/valleys inside an excursion set will tend to infinite[START_REF] Adler | The Geometry of Random Fields[END_REF] 

The general non-Euclidean norm is equivalent to the Mahalanobis norm

A complex-valued random field, Y , is of the form Y (x) = YR(x) + iYI (x), where YR and YI are real-valued random fields on R N

The third and fourth order spectral moments have specific names called, skewness and kurtosis, respectively.

4. Generally, for stationary Gaussian random fields the 2kth-order spectral moments are derived from the 2kth partial derivatives of the covariance function at the origin[START_REF] Adler | The Geometry of Random Fields[END_REF].

1. The vectors in all chapters are represented as row vectors and the notation Y t indicates the vector transpose of Y

(a) (b)

List of publications

Part of the contributions and publications introduced in the following list belongs to the Ph.D. thesis, and another part has been written and published during the Appendix A

Lemmas

Lemma A.0.1 ( [START_REF] Adler | The Geometry of Random Fields[END_REF]). Let G be a real-valued centred Gaussian random field with unit variance. Let Λ = V ar (∂G/∂x) be the N × N variance-covariance matrix of its first partial derivatives with elements λ ij , (i, j = 1, ..., N ), then,

where the elements of M (Λ) are such that:

where ε(i, j, k, l) is symmetric in its arguments.

Lemma A.0.2 ( [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF]). The first two derivatives of a χ 2 random field, with ν degrees of freedom, U = U (x), x ∈ R N can be expressed in terms of independent random variables, where the equality D = is equality in law, as follows:

). The first and second order partial derivatives of the t-field T ν = T ν (x), x ∈ R N with ν degrees of freedom, (at any fixed point x), can be expressed in term of independent random random variables as follows: [START_REF] Worsley | Local maxima and the expected euler characteristic of excursion sets of χ 2 , F and t fields[END_REF]). Let H ∼ N ormal N ×N (0, M ) and let A be a fixed symmetric N × N matrix. Then ]). Let P ∼ W ishart(I N , ν), H ∼ N ormal N ×N (0, M ) are independent, and A be a fixed symmetric N × N matrix. Let a, b be fixed scalars. Then

Simulation of Gaussian random fields with isotropic/anisotropic correlation functions

B.1 Orthogonal expansion (Karhunen-Loève expansion)

One of the most important practical aspects in Gaussian modelling and simulation is the orthogonal expansion, or Karhunen-Loève expansion, using its covariance function [START_REF] Alder | Random fields and their geometry[END_REF]. It states that every centred Gaussian random field, Y (x), x ∈ S, defined on a compact subset S of R N (in the following, S is assumed a rectangle [0, 1] N ), with a continuous covariance function has an expansion of the form:

where {g n } n≥1 , is the orthonormal sequence of i.i.d. centred Gaussian variables, λ 1 ≥ λ 2 ≥ ..., and ψ 1 , ψ 2 , ... are, respectively, the eigenvalues and the normalized eigenfunctions of the covariance matrix such that λ n and ψ n solve the integral:

These eigenfunctions are the natural expansion of C defined by Mercer's Theorem [START_REF] Mercer | Functions of positive and negative type and their connection with the theory of integral equations[END_REF], such that:

} is a complete orthonormal system in the Hilbert space H equipped by the following inner product ., . :

B.3 Some isotropic covariance functions

In the following some isotropic positive definite 1 covariance function models depicted in [START_REF] Yaglom | Correlation Theory of Stationary and Related Random Functions: Volume I: Basic Results[END_REF][START_REF] Matérn | Spatial Variation[END_REF] -Exponential covariance function: -Cauchy covariance function:

This covariance function decays rapidly for small values of ν, but very slowly when ν > 2. It is close to the exponential covariance function. -Modified Bessel covariance function: 

B.4 Numerical simulation of anisotropic stationary GRFs

In the case of stationarity and anisotropy, then following the discussion in chapter 2, the covariance function will depend on the distance τ D = xs D , where D is N × N positive definite matrix, and x, s ∈ R N . The matrix D determines the correlation properties of the spatial structures, such as their correlation length and their directions. We take the simple case N = 2, then D can be written as: 

where σ, is the covariance amplitude at the origin (C(0) = σ 2 ), d is the difference vector xs, for any x, s ∈ S, and

where r 1 , r 2 are the damping parameters, and 2π/ω 1 , 2π/ω 2 are the oscillation periods, all in the orthogonal coordinates in R 2 . R θ is the rotation matrix given by:

The damping coefficient should be restricted to 0 ≤ r 1 ≤ 3/2ω 1 and 0 ≤ r 2 ≤ 3/2ω 2 , in order to satisfy that C is positive definite in R 2 .

Appendix B. Simulation of Gaussian random fields with isotropic/anisotropic correlation functions 

Abstract:

Surface topography is, generally, composed of many length scales starting from its physical geometry, to its microscopic or atomic scales known by roughness. The spatial and geometrical evolution of the roughness topography of engineering surfaces avail comprehensive understanding, and interpretation of many physical and engineering problems such as friction, and wear mechanisms during the mechanical contact between adjoined surfaces. Obviously, the topography of rough surfaces is of random nature. It is composed of irregular hills/valleys being spatially correlated. The relation between their densities and their geometric properties are the fundamental topics that have been developed, in this research study, using the theory of random fields and the integral geometry.

An appropriate random field model of a rough surface has been defined by the most significant parameters, whose changes influence the geometry of its excursion. The excursion sets were quantified by functions known as intrinsic volumes. These functions have many physical interpretations, in practice. It is possible by deriving their analytical formula to estimate the parameters of the random field model being applied on the surface, and for statistical analysis investigation of its excursion sets. These subjects have been essentially considered in this thesis. Firstly, the intrinsic volumes of the excursion sets of a class of mixture models defined by the linear combination of Gaussian and t random fields, then for the skew-t random fields are derived analytically. They have been compared and tested on surfaces generated by simulations. In the second stage, these random fields have been applied to real surfaces measured from the UHMWPE component, involved in application of total hip implant, before and after wear simulation process. The primary results showed that the skew-t random field is more adequate, and flexible for modelling the topographic roughness. Following these arguments, a statistical analysis approach, based on the skewt random field, is then proposed. It aims at estimating, hierarchically, the significant levels including the real hills/valleys among the uncertain measurements. The evolution of the mean area of the hills/valleys and their levels enabled describing the functional behaviour of the UHMWPE surface over wear time, and indicating the predominant wear mechanisms.