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Introduction

The current and future advances in electronic applications require size reduction
and performance improvement. These two subjects are not trivial and suppose a
central issue in the conception of new devices, since the limits of Si transistors
become imminent.

In the quest of new technologies, the carbon based electronics have become
promising. Of especial interest, graphene, has attracted a lot of attention in the
last years because of its high electronic mobility (more than 200,000 cm?V~! s71),
its high maximum current density (~ 2 mA/um) and its mechanical flexibility.
However, the major inconvenient for future graphene applications in logic-electronics
is its semimetallicity i.e. the absence of energy gap to guaranty a large enough
ON/OFF current ratio.

In the search of a best way to engineer an energy gap, the electronic confinement
seems the more reliable approach. If we consider the simple picture of a particle in a
box, when an electron is confined in one dimension, the hard-wall conditions impose
a quantization of the transverse k-vector. This quantization leads to the onset
of a 1D electronic band structure and the opening of an energy gap between the
highest valence band and the lowest conducting band. The same mechanism occurs
for graphene, when it is cut into nanoribbons. Except that, here, the electronic
confinement is also dependent on the edge symmetry, e.g. zigzag or armchair, that
drive the boundary conditions of the electronic wave function. This results into
a specific 1D electronic band structure depending on the edge configurations. For
zigzag graphene nanoribbons (GNRs), localized states at the edges induce a flat
energy band at zero energy. At higher energy, a perfectly conducting subband,
robust to disorder, is expected to develop and the valley degeneracy is preserved
like in graphene. In case of armchair GNRs, a direct energy gap, of the order of
[0.2—1.5]eV/W (nm) (being W, the width of the ribbon), develops and the different
1D subbands are fully valley degeneracy lifted.

Obviously, the edge configuration offer a new degree of freedom to adjust the
electrostatic properties of the GNR, in strong analogy with the rolling vector in
carbon nanotubes.

Unfortunately, the current methods to design a nanoribbon do not allow an
accurate control of the edge symmetry. Most of them introduce a high degree
of edge disorder, this induces a drastic reduction of the carrier mobility and the
formation of a transport gap in the vicinity of the charge neutrality point. At the
very end, the cut standing electronic properties of the mother material, graphene,
are not anymore present in confined structures and the specificities of the edge
symmetry only remains at a stage of theoretical predictions. This calls for additional
experimental efforts to optimize the graphene nanoribbons quality and to develop
original techniques to get some signatures of the GNR band structure even when
a reasonable degree of disorder is present in the device. Indeed, a suitable way to
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study the intrinsic band structure is the magneto-transport experiment in the high
magnetic field regime. For some of the electrons, close to the edges, the trajectories
are not closed orbits but skipping orbits, forming new conducting channels much less
sensitive to the disorder. In the same time, the electronic band structure gradually
evolves to a Landau spectrum with some reminiscence of the electronic confinement
that dominates at zero magnetic field. A measurement of the electronic transport
in such a regime would reveal the strength of the electronic confinement.

In this thesis, we propose the study of graphene nanoribbons in pulse high mag-
netic field (up to 55 T) to unveil their electronic properties which are partly hidden
by the presence of disorder.

This manuscript is divided in two parts. In the first one (the first three chapters),
we review the major concepts of the electronic transport properties of graphene and
graphene nanoribbons. We mainly focus on the size reduction effects on the band
structure, the impact of the disorder and the influence of a large magnetic field. In
this part, we also present the experimental state of art on these subjects.

The second part (from chapter four to seven) is dedicated to the presentation
of the works done during this thesis, from the sample fabrications to the experi-
mental magneto-transport results. We first start by presenting the experimental
developments from the samples fabrications (lithographically patterned GNRs and
derived from unzipping carbon nanotubes by calcilation and sonication) to the main
measurement techniques used in this work.

The heart of this work relies on magneto-transport experiments performed on
monolayer GNR made by e-beam lithography. We observe the signature of an elec-
tronic confinement through anomalous Shubnikov-de Haas oscillations and a new
Landau spectrum which may be related to the presence of armchair edges on the
GNRs.

In case of bilayer GNRs, we observe some signatures of Landau states through
quantum oscillations in the magneto-resistance as a consequence of the onset of
Landau states. However, the quantized regime is not reached. Some anomalies in
the Landau spectrum are observed, possibly related to the electronic confinement.

Finally, we present a study of quantum interferences in GNRs. We evidence the
effects of temperature and bias voltages as sources of decoherence and we provide
evidence of ergodicity in bilayer GNRs. As an additional part, we shortly present
a preliminary study of graphene under THz radiations. A good agreement between
the photoresponse fluctuations and the second order conductance fluctuations shows
the possibility to use THz radiations to probe non-linear quantum phenomena.



CHAPTER 1

Electronic Structure and
Transport in Pristine Graphene
Nanoribbons
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In the present chapter, we review the electronic structure and transport properties
of 2D graphene and graphene nanoribbons. We focus on the modifications of the
electronic band structure of graphene when electrons are confined in one dimension.

Graphene is an allotropic form of carbon, defined as a single atomic layer of
carbon atoms arranged in hexagonal structure (honeycomb lattice). Its crystalline
structure, Fig. 1.1, can be seen as two interpenetrating triangular sublattices: the
center of one sublattice (red) is at the center of the triangle defined by the other
sublattice (green). It has then, two carbon atoms per unit cell, designated A and
B (red and green in Fig. 1.1), and it is invariant under 120° rotation around any
lattice site. The external electronic structure on atom is formed by one s and three
p orbitals. Two in-plane p orbitals and the s orbital hybridize themselves to form
sp? molecular orbitals that are tied up in graphene’s strong covalent bonding and
do not contribute to its conductivity. The remaining p orbital, perpendicular to
the molecular plane, is odd under inversion in the plane and hybridizes to form
(valence) and 7* (conduction) bands.

Since early 40’s, graphene has been extensively studied in theory as the base
of graphite (3D material made of stacked graphene planes that are binded by van
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Figure 1.1: Left, Graphene crystal structure, red atoms represent sublattice A and
green ones, sublattice B. 01 2 3 are the nearest neighbor vectors and, aj 2 3 the second
nearest neighbors. Right, first Brillouin zone; by 2 are the reciprocal lattice vectors.

der Waals forces), while, at this time, the idea of a perfect 2D atomic structure
was not realistic. The electronic structure of graphene was presented for the first
time in 1947 in the pioneering work of [Wallace 1947|. It was not till 2004 that
gated graphene was finally obtained [Novoselov 2004] and since then, a tremendous
number of theoretical and experimental works have been focus on main electronic,
mechanical and chemical properties of this material (more than 25000 published
articles).

1.1 Graphene Electronic Structure and Transport

1.1.1 Graphene Monolayer

An electron moving in 2D graphene honeycomb lattice unveils unique properties
due to the two equivalent lattice sites (A and B, Fig. 1.1) which give rise to the
"chirality" in the graphene carrier dynamics.

The tight-binding Hamiltonian for electrons in graphene, considering that elec-
trons can hop to both nearest- and next-nearest-neighbor atoms, has the form (using
unit such that 2 = 1):

H=—tY (al boj+He)—t Y (al a0, + b be; + He), (1.1)
(i,9),0 ((i,d)),0

where a; » (a;{ ) annihilates (creates) an electron with spin o on site R; on sublattice
A (an equivalent definition is used for sublattice B), t(~ 2.8eV) is the nearest-
neighbor hopping energy (hopping between different sublattices, represented by 123
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Figure 1.2: Graphene energy spectrum (in units of t) calculated from eqs. (1.2) and
(1.3), using t = 2.7 eV and t' = —0.2¢t. Zoom, energy band close to the Dirac point.
Adapted from [Castro-Neto 2009].

in Fig. 1.1), and ¢’ is the next-nearest-neighbor hopping energy (hopping in the same
sublattice, represented by aj 23 in Fig. 1.1)!. The energy bands derived from this
Hamiltonian have the form [Wallace 1947]:

Ey(k) = £v3+ f(k) —t'f(k), (1.2)
with

f(k) = 2cos(V3kya) + 4 cos (?kw) cos (2]@;(1) ) (1.3)

where the plus and minus signs, in eq. (1.2), apply to the conduction (upper, 7*)
and valence (lower, 7) bands, respectively, and a = 0.142 nm is the carbon-carbon
distance. For ¢/ = 0, the energy spectrum is symmetric around zero energy and for
finite values of ¢/, the electron-hole symmetry is broken, as seen in Fig. 1.2.

The conduction and valence bands touch each other at six points. These are the
K and K’ points of the Brillouin zone (Fig. 1.1) which are non-equivalents, meaning
that they can not be connected by a reciprocal lattice vector. The existence of these
two Dirac points gives rise to the valley degeneracy (g, = 2) of graphene. If the band
structure is expanded around them, we find the almost universally used graphene
band dispersion? (for ¢’ = 0):

Ey(q) ~ +vplg| + O[(a/K)?], (1.4)

where q is the momentum measured relatively to the Dirac Point and vg is the
Fermi velocity, given by vp = 3ta/2 ~ 10% m/s. This equation reveals the linear
energy-momentum relationship with the conductance and valence band intersecting
at ¢ = 0, with no energy gap.

!The value of ¢’ is not well known but tight-binding fit to cyclotron experiments finds ¢t ~ 0.1eV
[Castro-Neto 2009].
?as k = K + q, with |q| < |K| [Wallace 1947].
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Taking the Hamiltonian, eq. (1.1), with # = 0 and the Fourier transform of the
electron operators and after some algebra (for more details see [Castro-Neto 2009|)
one remarks that the two-component of the electronic wave-function close to the K
point, obeys the 2D Dirac equation:

—jvpo - Vi(r) = Bp(r), (1.5)

where o = (0,,0,) is the usual vector of the Pauli matrices (in 2D) and (r) is
a 2D spinor wave-function. The eq. (1.5) corresponds to the effective low energy
Dirac Hamiltonian:

This is the equation for massless chiral Dirac Fermions in 2D. The spinor here
refers to the graphene pseudospin.

The graphene’s pseudospin has its origin in the existence of two equivalent, but
independent, sub-lattices A and B. This leads to the presence of a novel chirality
in graphene dynamics, where the two linear branches of graphene energy dispersion
become independent of each other, indicating the appearance of a pseudospin quan-
tum number analogous to electron spin (but completely independent of real spin).
Thus graphene carriers have a pseudospin index in addition to the spin and orbital
index.

The momentum space pseudo-spinor eigenfunctions for eq. (1.5) can be written
as:

1 e—10q/2 , 1 ¢t0q/2
¥(q, K) = 7 ( 402 > , ¥(a, K') = 7z < T > : (1.7)

where the +/— signs corresponds, again, to the conduction/valence band with
E.(q) = £vpq and 6, is the angle in momentum space given by:

6, = arctan <qm> . (1.8)
Qy

Note that the wave functions at K and K’ are related by time-reversal symmetry:
if the origin of coordinates in momentum space is set in the M point of the Brillouin
zone (Fig. 1.1), time reversal becomes equivalent to a reflection along k, axis, that
is (kg, ky) = (—Fkz,ky). Also, note that if the phase 6 is rotated by 2, the wave
function changes its sign indicating a phase of 7 (in the literature, this is commonly
called the Berry’s phase). This 7 phase change under rotation is characteristic of
spinors. In fact, the wave function is a two-component spinor.

A relevant quantity to characterize the eigenfunction is its helicity. It is defined
as the projection of the momentum operator along the (pseudo)spin direction, o.
The form of the quantum-mechanical operator for the helicity, &, is |Castro-Neto 2009]:
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Figure 1.3: Graphene energy dispersion at the Dirac point. Red arrows represent
electron’s pseudospin, o. When o and the momentum, p, are in the same (opposite)
direction the helicity is positive (negative). Adapted from [Peres 2010].

~ 1 P
27 Ipl 9

From the definition of h, we see that the states Y(r, K) and ¢(r, K') are also
eigenstates of h

hp(r, K) = %1/;(7; K), (1.10)

and equivalently for ¢ (r, K'), with the reversed sign. Consequently, electrons (holes)
have positive (negative) helicity for the valley K and the opposite for valley K’ (Fig.
1.3). Equation (1.10) implies that o has its eigenvalues either in the direction of
(1) or against ({}) the momentum p. This means that the states of the system close
to the Dirac point have well defined chirality or helicity. Note that chirality is not
defined with regard to the real spin of the electron but to a pseudospin variable
associated with the two components of the wave function. The helicity values are
good quantum numbers as long as the Hamiltonian is valid. Hence, it holds only
as an asymptotic property, which is well defined close to the Dirac points. At
larger energies or in presence of a finite ¢/, it stops to be a good quantum number
|Castro-Neto 2009].

The electronic linear dispersion and the chirality of carrier’s wave function give
to graphene its remarkable characteristic concerning electronic transport and are
the responsible for the unique properties of this material as the Klein tunneling
(Fig. 1.3). In the presence of long-range potential fluctuations, carriers move across
charge puddles. As chirality is a conserved quantity when the Fermi energy cuts the
potential barrier, carriers are converted from an electron to a hole (or from a hole to
an electron). This requires a forward moving electron hitting the potential barrier
at a normal angle to be scattered as backward moving hole (inter-band tunneling).
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The real electron continues to move in the same direction. Backscattering is then
suppressed because of the perfect charge transmission [Mucciolo 2010].

1.1.2 Graphene Bilayer

Figure 1.4: (a) Bilayer graphene crystal structure in presence of Bernal stacking, t,
1, ¥3 and 74, represent the intra and inter-layer hopping energies. (b) Graphene
bilayer band structure in absence of an external electric field. Inset: first Brillouin
zone. (c¢) Graphene bilayer band structure near the K point for an applied electric
field perpendicular to the layers. Adapted from [Min 2007].

The case of graphene bilayer is interesting since it is intermediate between
graphene monolayer and bulk graphite. The tight-binding description relies on a
specific stacking of the two layers. Graphene bilayer can be described as the sim-
plest generalization of graphite, with the so-called A-B (or Bernal) stacking of the
two layers, which is the 3D most common graphitic stacking. It consists of two
graphene layers where half of the atoms are above and below the empty centers
of the hexagonal rings, Fig. 1.4 (a). The tight-binding Hamiltonian is written as
[Castro-Neto 2009]:

H=—t Z(ajn’wbm’j’g +H.c)—m Z(‘IJ{,J’,U“?J,O + H.c)
(3,4) 5o
— 74> (al ;  bojo+ab;  brje+ He) =33 (b bajo+ He) (L11)

Jjo 3o

where ajnyi,g (bm,j,o) creates (annihilates) an electron with spin o on sublattice A (B),
in plane m = 1,2 at site R;. For the hopping parameter, the same nomenclature as
for graphite is used, Fig. 1.4 (a): t is the in-plane hopping energy, 7 is the hopping
energy between atom A; and Aj, 4 is the hopping energy between atom A; (As)
and atom Bs (Bj), and 73 connects By and Bs.

In the continuum limit, by expanding the momentum close to the K point in
the Brillouin zone, the Hamiltonian reads |Castro-Neto 2009]:

H=> Ul Hg U (1.12)
k
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where, if we ignore 74,

-V ok 0 3ysak*
’UFk?* -V Y1 0
= 1.1
Hi 0 " 174 vpk ’ (1.13)

3vsak 0 wvpk* Vv

here, k = k; + 1k, is a complex number, V' is the half of the shift in electrochemical
potential between the two layers (this term will appear if a potential bias is applied
between the layers e.g. by an applied electric field perpendicular to the layers) and

B, = (b} (k), al (k), al (k), bl (k) (1.14)

is a four-component spinor. If V = 0 and ~3,vpk < 71, it is possible to eliminate
the high-energy state pertubatively and write an effective Hamiltonian:

2.2
vk

L 4 3yzak®

Hi = ()2 . (1.15)
FT + 3vysak 0

For 73 = 0, this equation gives two parabolic bands e4  ~ +v%k?/t, (with
t, the effective interlayer hopping energy), which touch at € = 0, Fig. 1.4 (b)-(c).
The electronic spectrum is electron-hole symmetric and it has two additional bands
that start at ¢, . Within this approximation, graphene bilayer is metallic, with
a constant density of states. The term 3 changes qualitatively the spectrum at
low energies since it introduces a trigonal distortion or warping, of the bands. The
electron-hole symmetry is preserved but, instead of two bands touching at k = 0 we
obtain three sets of Dirac-like linear bands.

The term V, in eq. (1.13), breaks the equivalence of the two layers, or alterna-
tively, the inversion symmetry. In this case, the dispersion relation becomes:

€31 = V2 Bk 4 13 /2 £\ [AV202E2 + 1202 k2 1t /4, (1.16)

giving rise to the opening of an energy gap close to, but not directly at, the K point,
Fig. 1.4 (c¢). For small momenta, and V' < t, the energy of the conduction band
can be expanded as:

ep 2V = 2VuRk?/t) +upkt/23V . (1.17)

The energy dispersion for the valence band can be obtained replacing ey by —ex.
Thus, graphene bilayer has an energy gap at k% ~ 2V?2/ U%. Note, therefore, that
the energy gap in the biased bilayer system depends on the applied bias and hence
can be measured experimentally.

The electronic transport measurements in double gated graphene bilayer show
the opening of an energy gap. In Fig. 1.5 (a), we see a very sharp increase of the
resistance at the charge-neutrality point with increasing the electric field applied



Chapter 1. Electronic Structure and Transport in Pristine Graphene
18 Nanoribbons

00125¢” 0.0350e”

\V/ \, \v/
L AR /A

Momentum

A T=s50mK

Binding Energy (eV)

80 g gy 0
Vi V)

Figure 1.5: (a) Gate-induced insulating state in a bilayer graphene device. Three-
dimensional plot of the square resistance as a function of both top- and back-gate
voltages (Vi and Vpg, respectively) at 7" = 50 mK, showing a sharp rise of the
charge-neutrality peak with the electric field. Adapted from |Oostinga 2008|. From
(b) to (d): Evolution of the energy gap by changing the doping level by potassium
adsorption in synthesized bilayer graphene on a SiC substrate. Experimentally
deduced and theoretical bands (solid lines). (a) For an as-prepared graphene bilayer,
(b) and (c) with progressive adsorption of potassium. Adapted from |Ohta 2006].

perpendicular to the layer. The double-gate device configuration allows a simulta-
neous and independent control of the charge density in the layers. A transition from
a zero-gap semiconductor to an insulator is achieved, by disymmetrizing the two
layers by the double gate voltage.

The difference in electrochemical potential between the two layers can also be
induced by doping, as seen in angle-resolved photo-emission spectroscopy (ARPES)
on a chemically doped graphene bilayer [Ohta 2006]. In Fig. 1.5 (b)-(d), we observe
the variation in the apparent energy gap at the K point: first finite (b) in the as
prepared samples due to charge accumulation on the graphene layer close to the
interface with SiC, then closes (¢) by a small amount of potassium absorption and
then open (d) by the increase of doping. This gap variation is also reproduced
by tight-binding calculations (red lines in Fig. 1.5) and it is attributed to the
variations on the relative potential of the two layers due to the different levels of
doping |Ohta 2006].

1.1.3 Electronic Transport in Graphene

The conductivity in defect-free graphene is studied using the ballistic approach
(where the mean free path is larger than the distance between electrodes [, > L)
of Landauer conduction expression (for more details of the origin of the Landauer
formula see below)

L gsgve2 >
0= X T > T, (1.18)
n=0

where L and W are the length and the width of the conducting channel, respec-
tively, g4») = 2 is the spin (valley) degeneracy factor and 2e%/h =~ 77.48 uS is the
quantum of conductance, Gg. The sum holds for all the accessible 1D subbands.
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The expression (1.18) is the so-called Landauer formula, it represents the ballistic
approach of the conductance when the mean free path is larger than the distance
between electrodes (I, > L).

We consider a source-graphene-drain system as a n-p-n or n-n-n junction where
the leads are heavily electron doped and while the graphene sheet may be electron
doped, hole doped or pinned at the Dirac point with zero doping [Katsnelson 2006b)].
For graphene, the transmission at an angle normal to the junction barrier is always
perfect, although there could be some reflection at other angles (Klein tunneling).
At the Dirac point, using the non-interacting Dirac equation and the appropri-
ate boundary conditions, the transmission probability of a mode n is given by
[Das Sarma 2010]:

2

! , (1.19)

cosh(qy L)

where ¢, = m(n+1/2)/W is the transversal momentum. Considering the Landauer
formula, eq. (1.18), we obtain:

4c? §° L wor, dc?
h &= W cosh®[r(n +1/2)L/W] mh

o= (1.20)

At zero energy, for W > L, an and in the ballistic regime, we obtain a non
zero universal value of the conductivity. This has been evidenced by [F. Miao 2007].
They found that, at high aspect ratio (WW/L > 1), the conductivity at the charge
neutrality point (CNP) for a graphene monolayer saturates at ~ 4e%/wh (Fig. 1.6).
It is important to remark that this “universal value” does not hold for samples of
large areas (A > 3um?), inset Fig. 1.6.

Similar calculations in graphene bilayer, when the trigonal warping is absent
[Katsnelson 2006a, Cserti 2007]|, show a minimum of conductivity always 2 times
larger than the monolayer case, while, in presence of the trigonal warping, it becomes
6 times larger, independently of the strength of the warping [Cserti 2007].

We now calculate the conductivity as a function of the carrier density in the
ballistic regime. We assume transparent electrodes and the total number of occupied
transverse modes is defined by N = Wkp/m with kp = \/47n/gsg,. From eq.
(1.18), we deduce the following expression of the conductivity:

g = gsg};ljezN = gsg}:e2 WkF XX \/ﬁ

The sub-linear dependence of the conductivity with the carrier density has been
observed experimentally on suspended graphene samples after electrical annealing,

(1.21)

Fig. 1.6 (b). It goes along with a very long electronic mean free path of the order
of 1 ym and an extremely large electronic mobility in the range of 170 000 cm? V1
s~!. The non-zero minimum of conductivity at zero energy (i.e. for vanishing charge
carriers concentration) and the huge mobility obtained on clean devices constitute
some of the remarkable electronic properties of graphene.
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Figure 1.6: (a), oy (in units of 4e2/7h) versus the device aspect ratio W/L. Red
squares are experimental results in small monolayer devices. The dotted line is
calculated from eq. (1.20). Inset: same measurement for large monolayer devices
(blue diamonds). Adapted from [F. Miao 2007|. (b), Conductance of a suspended
graphene sample before (blue) and after (red) electrical annealing as a function
of the carrier density, measurement performed at 40 K. Inset: AFM image of the
suspended device. Adapted from |Bolotin 2008].

1.2 Graphene Nanoribbons Electronic Structure and Trans-
port

Graphene nanoribbons (GNRs) result from the cutting of a graphene sheet into
stripes with parallel edges and with width sizes in the nanometric scale. In Fig. 1.7,
we illustrate the possible edge symmetries: zigzag (b), armchair (c) and a mix of
armchair and zigzag (d).

The lateral size reduction is responsible for the electronic confinement. If we
go back to basic considerations, the straightforward consequence of an electronic
confinement along a given direction, let us say y, is to introduce hard-wall bound-
ary conditions, also called Dirichlet conditions, on the electronic wave functions.
Following the simplest picture of an electron in a box, the electronic wave func-
tions along Oy are defined by ¢(y), o sin(k,y) with quantized allowed wave vectors
k, = nm/W. Here, W is the width of the confinement and n, an integer.

If we consider a confinement along the y direction of a graphene sheet with
zigzag edges, Fig. 1.8 (a), the energy spectrum is modified by the quantization of
the transverse momentum and we obtain a set of 1D dispersive subbands defined
by E ~ hvp,/k2 + (nm/W)2. This new band structure can be seen as projections
of the 2D graphene band structure along the k, axis (blue lines Fig. 1.8 (b)).

Close to the CNP, on each projection,the two valleys at K and K’ are preserved
(Fig. 1.8 (c)-right). However, the projections alone do not allow to account for the
flat bands at zero energy (localized states) deduced from tight-binding simulations.
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Figure 1.7: (a), graphene monolayer. (b), zigzag GNR. (c), armchair GNR. (d),
GNR with mixed edges characterized by the edge vector (3,1).

This means that a deeper study of the band structure is needed.

Now,for armchair edges with a confinement along the x direction (Fig. 1.8 (a)),
the energy spectrum is approached by E ~ hvp\/k2 + (nm/W)2. The new band
structure corresponds to projections of the 2D graphene band structure along the
k, direction (Fig. 1.8 (b)). In this direction, the K and K’ points are superimposed
at the center of the Brillouin zone. The tight-binding calculation (summarized after)
will give evidence of the admixing of the two valley in the armchair configuration
(Fig. 1.8 (d)-right).

For GNRs, the minimum energy separation between the 1D sub-bands is ex-
pected to be hvp/2W ~ 1.9 eV /W (nm). This value is also the largest expected
energy gap between the highest 1D hole subband and the lowest electron subband,
that develops when the allowed k,-vectors do not match with the K and K’ points.

At this stage, a comparison with the electronic confinement in a carbon nan-
otube, a roll-up graphene layer, is instructive. Indeed, in case of a tubular geom-
etry, the boundary conditions are fixed by periodicity of the electronic wave func-
tions along the circumference (Cj). This yields to ky onT = 271 /Ch = 2 X knGNR
when we identify the ribbon width and the CNT circumference. This very rough
approach demonstrates that CNT is certainly a better candidate to achieve an ulti-
mate confinement. The situation is even more obvious if one considers the extreme
experimental conditions to realize a defect free 1-3 nm wide GNR.
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Figure 1.8: (a) Graphene crystalline structure with armchair (along z axis) and
zigzag (along the y axis) edges. (b) First Brillouin zone for graphene with projec-
tions along k, (red dashed lines) and k, (blue dashed lines) corresponding to arm-
chair and zigzag confinement, respectively. (c) Projections of the 2D band structure
of graphene along the k, (left) and &, (right) axis. (d) GNRs energy band structure
for armchair (left) and zigzag (right) edges. Adapted from [Delplace 2010].

In the next sections, we study more deeply the electronic structure and trans-
port properties of GNRs, considering the atomic configuration at the edges and the
resulting boundary conditions for zigzag and armchair GNR.
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1.2.1 Zigzag graphene nanoribbons

The crystallographic structure of a zigzag graphene nanoribbon (zGNRs) is il-
lustrated in Fig. 1.7 (b). The atoms at each edge of the zGNRs, monolayer or
bilayer, belong to different sublattices: A (red) on top edge and B (green) on the
bottom edge.

The zGNR width can be described in term of the number of zigzag chains be-
tween edges, N,, as: W, = (N, — 1)3a/2. As we said before, the electronic band
structure of a zZGNR can not be fully derived from a straightforward projection of
the band structure of 2D graphene. Tight-binding simulations have been performed
to deduce its band structure [Deretzis 2011, A. Cresti 2008] with localized states
that develop at zero energy (Fig. 1.9). These states are not related to the electronic
confinement. They have been already evidenced on finite graphite segments with
zigzag terminations [Fujita 1996].

Figure 1.9: Energy dispersion of a monolayer 22-zGNR within the extended Hiickel
theory. Adapted from [Deretzis 2011].

We study the zGNRs band structure through the Dirac Hamiltonian around the
K and K’ points, which reads in momentum space [Castro-Neto 2009, Brey 2006]:

0 Pz F ipy
N = = -q. 1.22
My (k) = VF ( pe £ ip, 0 VEpo - q (1.22)

The wave function, in real space, for sublattice A (B) is given by:
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W) (r) = BTy g (r) + €K T g (r) (1.23)

where 1 4(p) is the component of the spinor wave function of the Hamiltonian around
the K point and ¢f4(B) around the K’ point. GNR’s edges are parallel to the y axis
and the translational symmetry guarantees that the spinor wave function is written
as:

W(r) = eikyy< f;ggg ) . (1.24)

For zigzag edges, atoms at each edge of the ribbon belong to different sublattices,

this determines the boundary conditions, the wave function for the sublattices A and
B will vanish just in one edge of the system:

Uy(x=0)=0, Up(x=W)=0, (1.25)

these boundary conditions are satisfied for any x by the choice

$4(0) = ¢/a(0) = ¢5(W) = ¢(W) = 0. (1.26)
After some algebra (for more details about the calculations see [Castro-Neto 2009,
Brey 2006]), we deduce the transcendental equation for the allowed z-vectors per-
pendicular to the ribbon:
k., —
W W2 (1.27)
ky + 2
where z = 1/k:; — €2 can be real or imaginary. Remarkably, the z-vectors and the
longitudinal k,-vectors are coupled. The transcendental equation has real solutions
for z, these solutions correspond to edge states and are the electronic states in the
almost flat bands of the zigzag ribbons, Fig. 1.9. This flat band gives to zGNRs its
metallic behavior. In addition, it is also possible to find pure imaginary solutions of
the form z = ik,, leading to:

kn
ky = ——ru.
tan(k, W)
This solution corresponds to the confined modes in the ribbon. For each solution
Ky, there are two confined states with energies & = 4, /k2 + k7 and wave functions
defined by:

(1.28)

( zz ) - { +5[kn Cos?;;(xk)nf_)kx sin(kn )] } ' (1.29)

Here, the index n indicates the number of nodes of the confined wave functions.
We can examine more closely the transition from confined to extended states in the
zGNRs by having a look of the charge density in a semi-infinite graphene flake with
zigzag edges. In Fig. 1.10 A-D, a schematic representation of the wave function
is proposed. These ones are completely localized at the edge sites when k = =«
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which corresponds in the band structure, Fig. 1.9, with the places where upper
valence band and lower conduction band touch each other forming a partially flat
degenerated band with zero energy.
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Figure 1.10: Edge states. From A to D schematic figures of the real part of the
analytic solutions for the edges states in semi-infinite graphite, when A k = 7, B
k=8r/9, Ck ="T7r/9 and D k = 27/3 (from [Nakada 1996]). E and F: Wave
functions for states close to zero energy for zigzag nanoribbons. Adapted from
[Brey 2006].

Localized states start gradually to penetrate into the inner sites as k deviates
from m, reaching the extended state, where the Dirac points of 2D graphene are
projected, at k = +27/3. In Fig. 1.10 E - F, the squared wave function for the
lowest energy states of a zGNR has been presented (Fig. 1.10-E, correspond to
k = —27/3a and F corresponds to k = —(1 — 0.02) x 27/3a). We see that the
only difference with the edge state in a semi-infinite graphene flake is that due to
the finite width of the ribbon, the wave functions of each sublattice overlap. This
overlap generates a small bent in the zero energy band.

The edge states have been evidenced by sub-nanometer-resolved STM (Scanning
Tunneling Microscope) and STS (Scanning Tunneling Spectroscopy) [Tao 2011].
Fig. 1.11 A, shows the atomically-resolved edge region of a monolayer GNR al-
lowing an experimental determination of GNR’s chirality (here (8,1), a mixed edge,
with a dominant zigzag configuration).

The local electronic structure of GNR edge is explored by STS, where dI/dV
reflects the energy-resolved local density of states (LDOS). Two peaks rise up in the
dI/dV spectrum at the edges, Fig. 1.11 (b). Their amplitude decreases exponen-
tially far from the edge and oscillates parallel to the ribbon’s edge with a periodicity
of ~ 20 A, corresponding to the 21 A periodicity for a (8,1) edge.

Bilayer zGNRs

The band structure of bilayer zGNRs corresponds to two superimposed and
somehow deformed band structures of individual monolayers zGNRs (Fig. 1.12). To
understand this feature, we first assume that the two graphene layers are decoupled.
The system is therefore expected to behave as two isolated monolayer GNRs with
all bands in the dispersion relation being doubly degenerate. By turning on the
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Figure 1.11: A, Atomically-resolved STM image of the edge of an GNR of width
19.54+0.4 nm. B, dI/dV spectra of the GNR edge shown in A, measured at different
points along a line perpendicular to the GNR edge (black dots). Inset: higher
resolution dI/dV spectrum for the edge. C, dI/dV spectra measured at different
points along a line parallel to the GNR edge shown in A (red dots). Adapted from
[Tao 2011].

coupling between the two layers the degeneracy of the states is lifted, with the
degree of splitting depending on the coupling strength [Xu 2009].

Bilayer GNRs with zigzag edges (assuming Bernal stacking) come in two types
depending on their edge alignment, denoted « and § alignment, insets in Fig. 1.12.
For a-alignment, the second layer is shifted only in one direction (z direction) while,
for B-alignment, the shift is in two directions (z and y). In Fig. 1.12 (a) is plotted
the energy spectrum of the a-aligned zGNR of 1 nm width. A gapless structure
with a flat band shifted away from F = 0 is clearly seen, it occurs roughly at one
third the distance from the edge of the Brillouin zone.

The band structure for the S-aligned ribbon is shown in Fig. 1.12 (b), where
we observe an almost flat band at the Fermi level, which is also seen in single-layer
zGNR calculations.

1.2.2 Armchair graphene nanoribbons

The geometry of the armchair graphene nanoribbons (aGNRs) is illustrated in
Fig. 1.7 (¢). In this orientation, the width of the ribbon is related to the number of
dimers between edges, N,, by W, = (N, — 1)v/3a/2. Contrary to the zigzag case,
the main features of the aGNRs band structure can be deduced from cross-sections
of the 2D graphene along the transverse direction, as we saw before.

The electronic states of armchair GNRs is calculated through the Dirac Hamilto-
nian [Brey 2006] using the appropriate border conditions. Here, the border consists
of A-B dimers. As a consequence, the wave function amplitudes vanishes for both
sublattices at both edges (Fig. 1.8 (a)):
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Figure 1.12: Band structure of bilayer ribbons with an « (a) and a g-alignment (b)
calculated by a tight-binding model. The width of the ribbon is 1 nm and the Fermi
level is set to zero. Insets: crystallographic structures of bilayer zGNRs with a and
p-alignment. Adapted from [Sahu 2008|.

Valy=0)=¥p(y=0)=Valy=W) =gy =W)=0. (1.30)

The boundary conditions are satisfied for any y if

$u(0) + ¢/,(0) =0 and " Wg, (W) +e W (W) =0, (1.31)

with p = A, B. As before, after some algebra [Brey 2006, Castro-Neto 2009]. The
solutions are:

pp = Aehn¥  Cemny (1.32)
¢y = DetFn¥ 4 Fe~thny (1.33)

By applying the boundary conditions, we deduce the allowed values of k,, given
by:
™ dm

kpn=———, 1.34

n W 3\/§a ( )

with energies €2 = k2 + k2 and n an integer. Note that, in contrast to the results

found for zGNRs, the allowed values of k,, do not depend on k.. Thus, the nanorib-

bon electronic spectrum consists of a set of 1D branches labeled by the integer n.

The boundary conditions couple the K and K’ valleys: they merge in one single

valley centered in the middle of the Brillouin zone, lifting the valley degeneracy
present in 2D graphene (Fig. 1.13).
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Figure 1.13: Energy dispersions obtained by First-principles (solid line) and third-
nearest neighbor tight-binding (dashed line) for three GNRs, with N=19 (a), 20 (b)
and 21 (c). Adapted from [Gunlycke 2008].
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By using the expression (1.34), we study the energy of the system around k, = 0,
where the lower conduction band and upper valence band are closer. The energy
gap depends on the ribbons width and comes in three families N, = 3p, 3p + 1 and
3p + 2, where p is an integer. In this approach, there is a family of ribbons with
states at zero energy. However, tight-binding calculations taking into account the
third-nearest neighbor |A. Cresti 2008, Gunlycke 2008], ab initio |A. Cresti 2008|
and first principle local-density functional calculations [Gunlycke 2008] reveal the
existence of an energy gap for all aGNRs, as shown in Fig. 1.13.

We finally give the analytical expressions of the dependence of the energy gap,
for the three families, with the width of the ribbon, the first and the third nearest
neighbor hopping parameters (v3yny and y3yx) and the distortion parameter, Ay,
[Gunlycke 2008]:

3(v3 + Avi)a

Ey(p) = — W : (1.35)
(11 —2y)a  3(y3+An)a

Egp1) = — ( B o _ W ; (1.36)
m(11 —2y)a | 3(13+An)a

Egzpt2) = — V3W + W : (1.37)

The gap hierarchy Ey3,41) > Eg3p) > Ey(3pt2), as it can be observed in Fig.
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1.14. where the energy gap values are plotted for different ribbon widths, between
0.5 and 4.2 nm, corresponding to 5 and 35 dimmer chains, respectively. For the three
families of ribbons, the dependence on the inverse of the ribbon width is preserved.
From Fig. 1.14, we extract E;, = o/W (nm) where a ~ 0.2 — 1.5 eV nm. These
values are in good agreement with the gap deduced from transport experiments
[Han 2007]. The experimental data were well fitted by £, = a/(W — W*), with
a=0.2 eV nm and (W — W*) is interpreted as the active GNR width participating
to the charge transport.

Bilayer aGNRs

As in the case of bilayer zGNRs, the electronic structure is strongly dependent
on layer alignment (« or -alignment), illustrated in inset of Fig. 1.15. The border
conditions for the bilayer systems, respect to monolayer, do not change, only the
coupling between layers is added.

o~Alignment B—Alignment

b.
()4

(a) 4

£k(CV)

0 02 04 06 0.8 1
k(m/a)

Figure 1.15:  Band structure of (a) bilayer aGNR with « alignment and (b) (-
alignment (N=11), obtained by the Pariser-Parr-Pople- Restricted Hartree-Fock ap-
proach. The right hand insets contains the magnified band structure near the Fermi
energy for each band structure and, in dashed line (red), the band structure of a
monolayer aGNR of the same width. Also in insets, the crystallographic structure
for both alignments. Adapted from |Gundra 2011].

In Fig. 1.15, are presented the band structures for bilayer aGNRs with a and
alignments. When we compare with the monolayer (inset in red in the two figures)
we see that in presence of the second layer, each band splits into two bands, thus
reducing the energy gap.

One notes that the gap energy reduction is higher for the « case, suggesting that
a larger perturbation introduced by the second layer in the « case. A geometrical
explanation has been given by [Gundra 2011]. For the a-case, the difference with
respect to the AA stacking (stacking with more layer interaction) is less because the
layers are only displaced in one direction, while in the S-alignment, the layers are
displaced in both directions, resulting in a larger misalignment. Therefore, in the
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Figure 1.16: Variation of the energy gap with the width for bilayer aGNRs, ob-
tained by the tight-binding method for (a) o and (b) 8 alignment. Adapted from
|Gundra 2011].

a-alignment, the layers interact with each other more than those in § case, resulting
in a smaller energy gap.

The energy gaps in bilayer are, in general, smaller than those of monolayer
aGNRs due to the interlayer coupling [Gundra 2011] (Fig. 1.16). Three families
of bilayer aGNR are also deduced with non of them metallic. The energy gap also
follows an inverse dependence with the width of the .

1.2.3 Electronic transport in pristine GNRs

The electronic transport in ideal GNRs is directly related to the band structure
since the conductance is determined by the number of propagating modes at the
Fermi energy. Indeed, in the ballistic regime, the two-probe conductance of a 1D
confined system (Fig. 1.17 a) is easily described by the Landauer formalism.

1.2.3.1 The electronic transport from the Landauer formalism

The current results from a flux difference (IT and I7) between kT and k~ elec-
trons, injected with two different electrochemical potentials uy = Er £ eV/2 (Fig.
1.17 (b)) and is given by |Ferry 2009]:

I=I"—1"
_< [ 0’” F (kD) T(E) <ig> dE — 0“ £ Yo (k™) T(E) (‘i&) dE}

:7;/“+ T(E)dE,
. (1.38)
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Figure 1.17: (a), Narrow channel with a chemical potential difference between elec-
trodes. (b), Schematic representation of the dispersion relation in the narrow chan-
nel. k£ > 0 states are filled up to a chemical potential Er — eV/2 and right-moving
states up to Er + eV/2. Occupied states are represented by solid dots and unoccu-
pied states with open dots. Adapted from [Beenakker 1991].

where T'(E) is the transmission coefficient, v(k¥) are the velocities and f(k*) are the
reservoir distribution functions characterized by p+. At T'= 0 K, the conductance
is equal to:

N
gsgv e? gsgv
E T, = (1.39)

with IV the number of conducting 1D bands at Ep. At T# 0 K:

G(Ep,T) = /OO c(£,0-Y 45 - 959” Zf (En—Ep).  (1.40)
0 dEp

Here, E, denotes the energy of the bottom of the nth subband. The thermal
smearing df /dEp is about 4kpT. This means that the conductance steps should
disappear when the subband splitting at the Fermi energy is AE < 4kpT.

As a consequence, the analytical expressions of the conductance in pristine
zGNRs (G;) and aGNRs (G,) at T—0 K are simply expressed as follow, consid-
ering the degeneracies of each system [Onipko 2008]:

G. = (2n+1)Gy (1.41)
Go =nGo, (1.42)

where the integer n = 0,1, 2, ... is the number of conducting bands.

In zGNRs, the lower conduction band and the upper valence band touch each
other at F = 0 and they are just spin degenerated, Fig. 1.18 (a), giving a conduc-
tance for zero energy equal to Gg. The rest of the bands are four fold degenerated
(2 for spin and 2 for valley) generating steps of 2G each time a 1D band is added.

For aGNRs, the valley degeneracy is lifted and the opening of an energy gap is
present for all the ribbon families. In the plot of the transmission as a function of
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Figure 1.18: (a), One dimensional energy bands (energy in units of t) associated
with a zigzag GNR of N, = 300. Lower panels: Transmission (in units of 2¢2/h)
as a function of energy. Adapted from [Peres 2006a]. (b), Band structure and
associated transmission (in units of 2¢2/h) for aGNRs of N, = 16. Adapted from
[Dubois S. 2009].

energy, Fig. 1.18 (b), we see the appearance of this energy gap and the transmission
in step of Gg, reflecting the valley degeneracy lifting.

In the bilayer case, the analytical expressions for the conductance in zGNRs
(Gp) and aGNR (Gy,) are given by [Xu 2009]:

Gy, = 2(n+1)Go, (1.43)
G = nGo . (1.44)
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1.2.4 Experimental evidence of the 1D electronic band structure
of GNRs by electronic transport

During the last five years, tremendous experimental efforts have been devoted
to give evidence of the 1D electronic subbands spectrum of GNRs. They mainly
consist on conductance measurements on high quality GNR based transistors as a
function of the gate voltage V. The pioneer and remarkable experimental results
are summarized in Fig. 1.19.

In Fig. 1.19 (a), the conductance steps of a 31 nm wide GNR are associated
to the gain of extra conducting channels with increasing Er. In the same plot
is presented the conductance simulation (continuous and dashed lines), using the
Landauer approach for an aGNR of N = 256 (W ~ 31 nm), suggesting the validity
of the band structure even if the K and K’ valley degeneracy lifting is not evidenced
[Lin 2008|. The steps of the conductance quantizations are of 2tGy where ¢t = 0.016
is the transmission coefficient. This extremely low transmission coefficient reveals a
large contact resistance and/or strong scattering along the GNR. In this context, the
robustness of the 1D subbands signature on the electronic transport is astonishing.

For narrower (11 nm) ribbons [Poumirol 2010|, Fig. 1.19 (b), the conductance
as a function of gate voltage unveils reproducible modulations superimposed to the
overall increase of the conductance. These modulations can be favorably compared
with the presence of van Hove singularities for an aGNR of N = 90 + 3. Here, in
the diffusive regime, the divergence of the density of states at the bottom of the 1D
subbands induces a drop of the conductance each time the Er enters into a new
subband.

Additionally, more recent experiments on high mobility suspended graphene
nano-constrictions, with an estimated width of 200 nm, show a conductance quan-
tization steps of ~ 2¢2/h (Fig. 1.19 (c)). The appearance of plateaus at each
Gy for electrons and holes doping suggest valley degeneracy lifting induced by the
confinement [Tombros 2011].

1.3 Summary

The goal of this chapter is to put together the main characteristics of the
graphene nanoribbons band structure and electronic transport.

We gave evidence of some marked differences between the zigzag and armchair
GNRs, concerning their energy spectra: for zigzag, the valley degeneracy is preserved
while localized states develop, at zero energy, at the edges. In case of armchair, we
stress the opening of an energy gap and the coupling of the valleys which give rise
to a degeneracy lifting.

Pioneer experimental transport measurements already gave some evidence of 1D
subbands driven by the confinement. At this stage, no clear signature of the atomic
configuration at the edges has been observed. The disorder in real GNR certainly
play a major role. In that respect, we propose, in the next chapter to study the
influence of the main sources of disorder in aGNR and zGNR.
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Figure 1.19: (a), Measured conductance as a function of back-gate voltage (low
axis) and carrier density (upper axis) for a GNR of W = 31 nm and numerical
simulations for an aGNR with N, = 256. Here, t is the transmission coefficient for
each subband. Adapted from |Lin 2008|. (b), Conductance versus back-gate voltage
at 80 K measured on a 11 nm wide GNR for two Vj, 50 mV (red) and 1 mV (blue).
The density of states for a N = 90 aGNR is superimposed (dashed line). Inset:
G(Vy) at several temperatures. Adapted from [Poumirol 2010]. (c), Conductance
as a function of the Fermi wave number for holes in a suspended graphene nano-
constriction at 4.2 K. Inset: conductance as a function of the Fermi wave number
for electrons. Adapted from [Tombros 2011].
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In this chapter, we review the main effects of disorder on the electronic transport
properties of GNRs: decrease of the conductance, drop of the carrier mobility and
opening of a transport gap. The disorder also induces mesoscopic effects like quan-
tum interference between electron wave functions, which manifested themselves by
conductance fluctuations and weak (anti)localization. The specificities of graphene
based devices will be briefly presented.

Graphene layer is known to have only few lattice defects, however, extrinsic
disorder is regularly present in graphene based devices, limiting its carriers mobility.
The most common sources of disorder are originate from the synthesis method,
the graphene flakes’ support (substrates) and the chemical contamination from the
production of field effect devices (e. g. polymer resist, solvents and patterning
process).

2.1 Electronic transport in disordered graphene

The Hamiltonian of pristine graphene, eq. (1.6), is invariant under translation,
rotation, time reversal and chiral symmetry in the isospin space. When disorder is
introduced, translation, rotation and other symmetries, depending on the nature of
disorder, are broken (e.g. nonmagnetic disorder may break all the symmetries except
the time-reversal) [Mucciolo 2010]. The effects of disorder in graphene can be dis-
tinguished according to the range of interaction and their effect on the conductance,
depending on the carrier density.
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Figure 2.1:  Conductivity as a function of back-gate voltage at T=10 K. Inset:
optical micrography of the sample. Adapted from ref. [Novoselov 2005].

Transport at low carrier density

The electronic transport close to the charge neutrality point has some exceptional
properties. When the disorder is sufficiently smooth, varying only over length scales
larger than the lattice constant, it is called long-range disorder. It may come from:
charge impurities located at (or not far from) the interface between the graphene
layer and the oxide substrate. This local fluctuation of the electrostatic potential
creates puddles of electron/holes in the graphene flake, with an average size of
~ 30 nm [J. Martin 2008]. In this case, the two valleys present a little mixing,
making localization due to quantum interference absent (inter-valley scattering and
therefore backscattering is negligible). Since, in the presence of long-range potential
fluctuations, carriers move across charge puddles (Klein tunneling, section 1.1.1).

In the case of non-chiral, short-range scattering (e.g. localized defects, neutral
impurities or adsorbate at the atomic scale), the symmetry of the A-B sublattices
is broken and the inter-valley mixing become significant. The neutral impurities
or adsorbates can transfer enough momentum to carriers and makes the coupling
between the two valleys possible. The most common effect of short-range disorder,
at low carrier density, is the reduction, but not the complete suppression, of the
conductivity and the presence of localization when the degree of disorder becomes
important.

Transport at high carrier density

The effects of the long-range disorder in the electronic transport at high carrier
density can be studied through the Boltzman model. Assuming a diffusive homoge-
neous system, we can describe the conductivity as [Das Sarma 2010]:
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o= e;/dE <—§]J;) p(E)vir(E), (2.1)

where p(E) = gsg,Er/(2mh*v%) is the density of states, f(E) is the Fermi-Dirac
distribution function and 7(FE) is the relaxation time. The Fermi energy is calculated
self-consistently to conserve the total number of electrons. At T = 0, we express
the conductivity in a diffusive system as:

2,2
e“vE

0= p(Ep)T(EF) . (2.2)

For a Coulomb potential (charged impurities), the relaxation time (for more
details see [Castro-Neto 2009]) is expressed by:

U
T(EFr) = —kr, (2.3)

U
where ug is the strength of the scattering potential. Substituting the relaxation time,
the density of states and the expression for the Fermi wave-vector kp = \/47n/gsgy,

in eq. (2.2), we obtain the conductivity:

2,2
e Vg

5N

hug
This, explains very well the linear dependence of the conductivity with the carrier

density (or gate voltage) observed experimentally (Fig. 2.1 (a)). In such a case, the

(2.4)

o =

mobility is charge density independent. It also explain the change from linear to sub-
linear (ox \/Vg) dependence of the conductance with the gate voltage in suspended
samples before and after electrical annealing (Fig. 1.6 (b)) [Bolotin 2008|.

Let’s see now the effects of short-range disorder, like vacancies, on the conductiv-
ity. The scattering with vacancies generates a change in phase space due to midgap
states. The transition rate, 7, expressed as a function of the phase shift, d;, is given
by [Stauber 2007]:

h 8n;

— = ' gin? .
=y S, (25)

where n; is the impurity density and the phase shift due to scattering with vacancies
is:

T 1
2 In(kRo)’
and Ry is the radius of the vacancy. This means that for Rgk < 1 and at large

5 = (2.6)

carrier density p(F) ~ k, the relaxation time is:

T = (In(kRp))?. (2.7)

VpT 2 n;
This leads to a conductivity with a logarithmic density dependence of the form

[Stauber 2007]:
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2¢2 n
= — —(In(Rok))*. 2.8
7 = = (n(Rab)) (28)
Note that, apart from the logarithmic correction, the conductance has the same
behavior as in the case of long-range Coulomb scattering. This dependence has been
experimentally observed by Chen et al. irradiating graphene with Ne and He ions
to create atomic defects [Chen 2009]. The conductivity in these experiments is well

described by this midgap theory.

2.2 Electronic transport in disordered graphene nanorib-
bons

In this section, we review the main theoretical and experimental results of the
electronic transport in disordered GNRs. The conductance drop, with respect to an
ideal ribbon, depends on the type of defects (edge defects and long- or short-range
bulk defects). In Fig. 2.2 (a)-(c), we show the main numerical results for metallic
armchair GNRs when different sources of disorder are introduced. In these simu-
lations, made by [Ihnatsenka 2009], the strength and the concentration of disorder
are fixed, as well as the ribbon width, W=30 nm. The conductance is plotted as
a function of the energy for different lengths of the sample. As a general trend,
when the length is increased, the quantized steps are gradually suppressed and the
conductance drops when the localization length starts to be smaller than the sample
length.

In case of bulk vacancies (Fig. 2.2 (a)), even at small concentrations, the impact
on the conductance is very marked. The conductance depends strongly on the en-
ergy, the sample length and the vacancy location [Thnatsenka 2009]. Intra-subbands
scattering predominate and the conductance scales in a similar way for all subbands.

When we consider edge disorder (Fig. 2.2 (b)), the conductance scales non-
uniformly for all the subbands. The edge defects scatter electrons into all subbands
equally, giving rise to a strong suppression of the conductance at high energy, when
more subbands are available. At the charge neutrality point, a strong suppression of
the conductance is observed, which is not only dependent on the disorder concentra-
tion but also on the edge orientation [Mucciolo 2009]. In Fig. 2.2 bottom, we remark
that the transport gap is less pronounced in case of zigzag GNRs. Indeed, close to
the charge neutrality point, the transport is mostly carried by the bulk states mak-
ing zigzag GNRSs less sensitive to edge disorder at low energies [Mucciolo 2009]. The
opening of a transport gap due to the edge disorder, for both edge orientations, has
been demonstrated numerically to scale approximately with the inverse of ribbons
width [Mucciolo 2009].

When long-range potentials are considered (Fig. 2.2 (c)), the potential inhomo-
geneities, due to charged impurities, electron and hole puddles in the GNRs, like
in 2D graphene. In this case, the scattering with these impurities mixes the bands
and smears conductance steps. As the energy increases, the inter-valley scattering
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Figure 2.2: Top, conductance as a function of the energy for a GNR of width W=30
nm and different lengths L=10, 50, 100, 250, 500 and 1000 nm, with different types
of disorder: (a) bulk vacancies, (b) edge disorder, and (c) long-range potential.
The dotted lines in (a)-(c) show the conductance quantization for the ideal aGNR.
Adapted from [Ihnatsenka 2009]. Bottom, conductance as a function of the energy
for GNRs with different edge roughness. All GNRs have the same length, the width
for armchair is 4.4 nm (d) and 4.7 nm for zigzag (e). Typical edge profile for armchair
(f) and for a zigzag (g) (p is related to edge defect density and r is the roughness
parameter). Adapted from [Mucciolo 2009)].

becomes more efficient with a stronger backscattering for higher subbands in long
GNRs. As in the case of edge disorder, when long-range potentials are introduced
to the system, different responses are obtained depending on edge symmetry:

In case of zigzag GNRs, the partially flat band at E = 0 (edge states) is responsi-
ble for a single chiral mode in each valley. This induces a perfect conducting channel,
which is preserved in presence of long-range disorder but, it is destroyed in presence
of short-range disorder, leading to Anderson localization [Wakabayashi 2007]. The
same perfectly conducting channel behavior has been predicted for metallic CNTs
[McEuen 1999].

In armchair GNRs, spite the lack of a well separated valleys, a nearly perfect
transmission is simulated in presence of long-range scattering at low energy. This is
a consequence of the cancellation of scattering matrix terms as a manifestation of the
internal phase structure of its wave function [Yamamoto 2009]. For the multichannel
regime, the nearly-perfect transmission is not anymore valid.

A model combining edge disorder and potential fluctuations (hole/electron pud-
dles) has been developed to explain the observation of well defined Coulomb di-
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Figure 2.3: (a) Illustration of the quantum dots formation along the GNR due to
potential inhomogeneities and confinement gap. Red (blue) zones represent electron
(holes) puddles. (b) Differential conductance versus source-drain and gate voltage
measured on GNRs with different lengths. Adapted from [Gallagher 2010]. (c),
Experimental field effect mobility as a function of the GNR width. Adapted from
[Wang 2008].

amonds, resembling to quantum dots in series or parallel (Fig. 2.3 (a) and (b)).
Electron and hole puddles are now isolated by the confinement gap. In the exper-
iments of [Gallagher 2010], the study of GNRs before and after annealing shows a
size reduction and a shift of the transport gap closer to zero gate voltage. The trans-
port gap is therefore a consequence of charged impurities (that generate potential
fluctuations) plus the confinement gap (Fig. 2.3 (a)).

Another important effect of the disorder is its direct impact on the carrier
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mobility. The mobility for ultra-narrow GNRs with smooth edges reaches ~ 200
em?V~1s7! (Fig. 2.3 (c)). This represents a strong decrease of the mobility com-
pare with larger GNRs, ~ 1500 cm?V~'s™! for a 60 nm width [Hettmansperger 2012]
and a much higher drop with respect to 2D graphene on Si/SiO2 substrates where
mobilities of ~ 5 x 10* em?V~!s~1 has been achieved [Zhang 2006, Jiang 2007b].

When the phase coherence length is preserved over long distances, at low tem-
peratures, the scattering by disorder is also responsible for quantum interference
between electron wave functions. Those mesoscopic effects on the conductance are
described in the following section.

2.3 Mesoscopic effects in presence of disorder

2.3.1 Weak localization

Weak localization (WL) can be understood in term of interference around a
diffusive loop between two counter-propagating trajectories. There is a set of elastic
scatterers, for which a particle experiences multiple scattering and returns to its
original position. Since time-reversal symmetry is present, the particle may follow
the original path or its time-reversed path (inset in Fig. 2.4). The interference
between these paths is constructive, decreasing the probability of carriers to move
forward.
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Figure 2.4: Magneto-conductance curve for a short quantum Si wire (Vg, and Vy are
the upper and lower gate voltages, respectively). The conductance minimum at B =
0 is due to the weak localization. Inset: Illustration of the close loop of scattering
in which time-reversed paths interfere each other. Adapted from |de Graaf 1992].

In the case of a dirty metals, the weak localization correction to the conductance,
in absence of magnetic field, is defined as [Ferry 2009]:

o2 =In(1+747), d=2
Ao =—— (2.9)

wh l¢<1— T;T¢>, d=1
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where d is the dimension of the system, 7 represents the elastic relaxation time and
l4 is the phase coherence length defined as, Iy, = /D74, where D is the diffusion
coefficient and 74 is the phase coherence relaxation time.

When a magnetic field is applied, the time-reversal symmetry is broken due to
the circulation of the vector potential. This induces a phase shift between the two
trajectories and a suppression of the WL, resulting in an increase of the conductance
(Fig. 2.4).

According to the relation between the different lengths (the mean free path
le = vpT, the phase coherence length Iy = /DTy, the magnetic length [, = \/h/eB,
the width W and the length L of the system), we define the transport regime and
estimate the critical field, B., and the magnetic "lifetime", 75, at which the WL
contribution is reduced to the half, Table (2.1).

Regime Length scales B B,
. l2
Quasi-2D le,lg <W 2D 22;
. 314
Quasi-1D le <W <y WD V\[{g;
4
W <1, Wi < l72n Cily, I 1

WSUF We W’UF‘T¢

Cal?, e
W< le’ W2 < l72n < Wle W22UF WWU;Q,

Quasi-Ballistic

Table 2.1: Expressions for the magnetic relaxation time, 7p, and critical magnetic
field, B,, according to their transport regime, for weak localization in a channel. The
constants depend upon the nature of the boundary scattering, for specular scattering
C1 = 9.5 and Cy = 4.8, while for diffusive scattering C'y = 47 and Cy = 3. Adapted
from |Ferry 2009].

From Table (2.1) we deduce the WL conductance corrections in presence of a
magnetic field. In the 2D case, we have [Ferry 2009]:

D D W gsgv€2 1 TB 1 7B Té

2 2 _w L, 7B\ L 7B 16

AGWL(B) 5GWL(0) = v [\1/ (2 + 2T¢> 1 <2 + 27) +In (1 + T) ,
(2.10)

where W(z) is the digamma function and g,y is the spin (valley) degeneracy factor.
The weak localization is completely suppressed by the magnetic field when 75 < 7.
This field, in general, is much weaker than the usual quantum limit where Landau
levels are formed.

In the one-dimensional case, W < 4, the time-reversed trajectories are squeezed
by the finite width of the wire. The full expression for the magnetic field dependence
of the WL conductivity corrections is then given by [Ferry 2009]:

5GP (B)—gsg“e2 LI s (2.11)
WIAS)™ hL \Drsy ' Drp ' '

All these expressions suffer a series of modifications in case of graphene due to

the chirality of its electrons.
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Weak localization in graphene

When electrons in graphene perform a close loop without being scattered be-
tween valleys (absence of short-range disorder), a change in the relative weight of
the two components of the wave function leads to a Berry’s phase of 7, changing
the sign of the amplitude of one path with respect to its time-reversed path, making
a destructive interference and suppressing backscattering [Castro-Neto 2009]. In
absence of scattering between valleys, a negative magneto-conductance i.e. weak
anti-localization (WAL), is therefore expected.

Taking into account intra- and inter-valley scattering (through 7. and 7;, the
intra- and inter-valley scattering time, respectively) the conductance corrections in
presence of a magnetic field is described by the following equation [McCann 2006a]:

P(3)-r ()

1
—2F re(7 L —1 —1
B(Ty +7, +7)

F(z) =In(z) + ¥ (1 + 1) .

- W e?
~ whlL

AGGraphene (B)

(2.12)

where

2 =z

In absence of intra and inter valley scattering, in a defect free graphene layer
Ti« — 00, the expression (2.12) is totally controlled by the third term, showing a
negative magneto-conductance, characteristic of WAL. In the opposite case, where
the intra- and inter-valley scattering are strong 7; . — 0, both negative terms are
suppressed and the first term dominates, corresponding to electron localization.

A simplification of eq. (2.12), for small fields, has been derivate by [Tikhonenko 2009].
From this expression, we deduce that the favorable conditions for WAL are small
T4/ Tix ratios. This means that WAL is possible by decreasing the carrier density
(increasing 7;) or increasing the temperature (decreasing 7).

Weak anti-localization has been already observed in high quality graphene sam-
ples (Fig. 2.5-Left). These results show a transition from localization to anti-
localization, at 14 K and 27 K, when the carrier density is decreased (from region
IT to I). These means that intra- and inter-valley scattering times increase as the
carrier density decreases. However, at 5 K, where the phase coherence length is
expected to be larger, anti-localization is not observed because of the high 74/7; «
ratio, as propose by [Tikhonenko 2009].

For graphene bilayer, anti-localization is not possible due to the non-suppression
of backscattering given by a Berry phase of 27. As a consequence, the third term of
expression (2.12) is positive [Kechedzhi 2007]. In this case, the inter-valley scattering
is given by 7, ! = 277! + 7,1 where 7, is the time of chirality breaking and 7, is
the intra-valley warping time.
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Figure 2.5: Left, (a) Resistivity as a function of the carrier density, with the three re-
gions where the magneto-conductance is studied indicated by bars. (b)-(d) evolution
of the magneto-conductance with decreasing the electron density at three tempera-
tures: (b) T=5K, (c¢) T=14 K and (d) T=27 K. Adapted from [Tikhonenko 2009].
Right, Magneto-conductance for two different temperatures T=1.7 K (a) and 48
K (b). Experimental curves (black) are fitted using the 1D expression for weak
localization in metals eq. (2.11) (orange) and the expression for GNRs eq. (2.13)
(dashed blue). Adapted from [Minke 2012a.

In the case of GNRs, we can intuitively argue that unavoidable sharp defects at
the edges restore the intra-valley scattering, then making the WL most probable.
Recently, an expression for localization corrections in the presence of a magnetic
field have been obtained for graphene nanoribbons [Minke 2012a|. This expression
takes into account the intra- and inter-valley scattering times in a 1D system:

22vD [/1 1\ 2 1 2 1\ Y2
AGanr(B) = VD [(+> - <++)

hL Ty TB T Ti TB

11 1\ Y2
—2< ++—) .
’7'¢ Tk B

(2.13)

In this equation, as for 2D graphene, when 7;, — oo WAL is present. In case
of intra- and inter-valley scattering are present, WL is restored. Results of the fit
of this expression in experimental data on GNRs can be observed in Fig. 2.5-Right.
We can see that there is a good agreement for both fitting curves (1D in metal and
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1D in graphene) but at higher temperatures it seems to be a better agreement with
the recently proposed expression for GNRs [Minke 2012a].

2.3.2 Conductance fluctuations

Universal conductance fluctuations (UCF) occur when a coherent electron wave
function scatters repeatedly with fixed scatterers while it travels through a disor-
dered conductor (following all possible paths through the sample). The different
paths interfere with each other, creating fluctuations in the conductance as a func-
tion of the disorder configuration. They are time independent but sample dependent
they behave like a fingerprint of the microscopic configuration of the disorder in the
sample [Lee 1987].

When the accumulated phases along these paths are changed by varying the
Fermi energy, it induces a change of the interference pattern. The interference are
also changed as a function of the magnetic field, because of the vector potential
modifying the accumulated phase. This means that we can replace an average over
samples with different disorder configurations by an average over conductance values
versus field or energy on a given sample. This is called ergodic hypothesis [Lee 1987].

At zero-temperature, the amplitude of the conductance fluctuations is related
to the quantum mechanical transmission probability from the incident reservoir
to the outgoing reservoir (Landauer formula). The root mean square of the con-
ductance fluctuations is independent of I, and L and is expressed by [Lee 1987,
Beenakker 1991]:

5Gﬁmzzg§&B*VQCE%, (2.14)
2 h

where the factors g,(,) assume a complete spin (valley) degeneracy, 5 = 1 when the

time reversal symmetry holds and S = 2 when is broken. The constant C depends

on the sample shape: C' & 0.73 for a narrow channel (L>>W) and C'is of the order

of \/W/L for a wide and short channel (W>>L).
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Figure 2.6: Representation of the uncorrelated and coherent segments that subdivide
a mesoscopic sample when (a) W < l4 < L, the segments are in series, (b) L < [y <
W, in parallel and (c) [, < L, W, in both series and parallel. S and D are the source
and drain electrodes.
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At finite temperature, the amplitude of the UCF is reduced because of the finite
phase coherence length and because of the thermal averaging. For a narrow channel,
W < L (Fig. 2.6 (a)), if the phase coherence length is smaller than the thermal
length (ly < I, where lp = \/hD/kgT), the thermal averaging is neglected and the
system is equivalent to L/l4 uncorrelated segments in series. Each one contributes
in an incoherente way to conductance fluctuations of the order of e2/h. Then, the
amplitude of the fluctuations is given by [Lee 1987, Beenakker 1991, Gao 1989]:

<o l 3/2 2
§Glems = Vﬁ%ﬁ—m (li*j) (2) , for W<ly<Lip. (2.15)

When the thermal smearing dominates (I7 < l4), the system is still divided into
uncorrelated segments and the fluctuations are expressed by:

/2
& 1/2 GsGv _ lTl1 €2
0Grms = <3> Tﬁ 1/2 L;;? <h> , for Ip<ly<L. (2.16)

In the intermediate regime (I4 ~ I7), we use the interpolated formula [Beenakker 1991]:

-2,
e

. 2.17

(%) e

9sGv 5—1/2 lg 3/2 9 [l 2
0Gms = =——B " /"V12 | = 1+ —(—
) P <L> tor (ZT>
We now generalize to the case where the conductor is divided in W/l uncorre-
lated segments in parallel and L/l4 uncorrelated segments in series, each of them
presenting fluctuations of the order of e?/h (Fig. 2.6 (c)). Neglecting the thermal
averaging, the amplitude of the conductance fluctuations is given by [Lee 1987]:

1/2 3/2 2
-~ 9sGv p—1/2 E lis e’
0Grms = 5 <z¢> <L> <h> for I, < L,W . (2.18)

To calculate the energy scales of the system, we consider that two segments are
uncorrelated if after a time t;, the electrons acquire a phase difference of the order
of the unit: ©10FE/h = 1. During this time, the electrons diffuse over a distance
Ly = (Dt1)1/2. We define the correlation energy, F., as the energy necessary to
change the phase of electrons, and it is given by [Beenakker 1991]:

Ee(L1) = %), (2.19)
1

where L1 = min(L,l7,l,) is the correlation length. In the same way, we deduce the

magnetic field necessary to make a phase shift of 279 /Py = 27, where &g = h/e

is the magnetic quantum flux and @ is the magnetic flux across the surfaces en-

closed by the trajectories. The magnetic field necessary to decorrelate two magneto-

conductance fluctuations is given by |Lee 1987]:
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where S is the enclosed surface. According to the distribution of the uncorrelated
segments, this surface is given by S = Ly Winin where Ly, = min(L, 7, ly) and
Winin = min(W, lr,ly).

Conductance fluctuations in graphene

The theoretical work of [Kharitonov 2008] shows that, in presence of moder-
ate long-range scattering, the amplitude of conductance fluctuations are two times
larger than the conventional values for metals. When the concentration of disorder
is increased and in case of a strong intra-valley scattering and/or in presence of trig-
onal warping, the amplitude of the conductance fluctuations is reduced, being /2
times greater than in a conventional metal. On the other hand, when inter-valley
scattering is introduced, the amplitude of the fluctuations is the same as the one in
metals [Kharitonov 2008|. Experimental confirmation of these predictions are still
missing.

In Fig. 2.7, we present recent measurements of conductance fluctuations in
graphene [Bohra 2012a]. In the (a) part are plotted the conductance fluctuations
when the magnetic field and gate voltages are swept. The extracted §Grys in the
two configurations are quite different (Fig. 2.7 (b)) even when the time reversal
symmetry is completely broken (1/4/2 diminution factor) and the spin degeneracy
is lifted (a second decrease of 1/2). This difference is assigned to a non-ergodicity
of the conductance fluctuations in graphene [Bohra 2012al.
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2.4 Summary

The symmetries of graphene’s Halmitonian are responsible for some unique fea-
tures concerning the electronic transport in presence of disorder.

The impact of different kinds of disorder like vacancies, edge disorder and poten-
tial fluctuations has been numerically studied. It shows, as a common characteristic,
a drop of the conductance, the lack of quantized plateaus for moderated degree of
disorder and a strong reduction of the carrier mobility. The combination of the edge
disorder, the potential fluctuations and the energy confinement has been proposed
to explain the opening of a transport gap and the formation of quantum dots in
series and/or parallel observed in GNRs.

The mesoscopic effects of disorder, related to quantum interference, commonly
observed in dirty metals, are also present in graphene. However, the existence
of the chiral symmetry gives to graphene special features: the presence of weak
anti-localization, when the inter- and intra-valley scattering times are increased
and an enhancement of the amplitude of conductance fluctuations when inter-valley
scattering is reduced.

Experimentally, weak anti-localization has only been observed in high quality
samples but the enhancement of conductance fluctuation has not been measured
yet.

In the experimental part of this thesis, the presence of weak localization and con-
ductance fluctuations in GNRs will be analyzed to obtain the characteristic energies
of the coherent transport at low temperatures.
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In this chapter, we review the effects of a magnetic field applied perpendicular to
graphene systems (monolayer, bilayer and GNRs). The formation of Landau states
reveal the presence of an anomalous quantum Hall effect intimately related to the
band structure of graphene at zero magnetic field. In case of graphene nanoribbons,
the electronic confinement and edge configuration influence the Landau spectrum.
Such Landau signatures provide unique fingerprints for experimentalists to enlight
the edge symmetry.

In a 2D electron gas, the application of a magnetic field may have a profound
effect on the electronic band structure and the transport properties. It gives rise
to a new fundamental behavior, not observed in a bulk system, the quantum Hall
effect (QHE). This phenomenon is a consequence of the Landau level formation in
a 2D system. In order to explain the effect of a magnetic field in GNRs, we first
start start with the basic concepts of Landau states in 2D electron gas (2DEG) and
in 1D waveguides.
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3.1 A magnetic field applied perpendicular to a 2DEG:
The quantum Hall regime

When a magnetic field, B, is applied perpendicular to a 2DEG, the electrons
experience a Lorentz force:

F=¢qvxB, (3.1)

where v is the carrier velocity and ¢ its the charge. Since the Lorentz force is always
perpendicular to the velocity, its motion in the absence of other forces is circular,
with angular frequency given by the cyclotron frequency, w., written as:
eB

we == (3.2)
where e is electron’s charge and m., the cyclotron mass as the electron performs
circular orbits in k-space at constant energy. The cyclotron radius at the Fermi
energy can be expressed as r. = hkp/eB [Beenakker 1991]. Quantum mechanically,
the circular orbits associated must be quantized, in analogy with the orbital quan-
tization occurring in the central potential of an atomic nucleus. In other words, the
length of the circular orbit has to be a multiple of the de Broglie wave length. As
a consequence, the kinetic energy of the electrons become quantized. The single-
band effective mass Hamiltonian in presence of a perpendicular magnetic field can
be written as [Ferry 2009]:

2 2 2
[ it SV HaA) V)| WD =BV (33)

_QmZ@—i_ 2m

where m(,, is the effective mass, A the vector potential and Veg, the effective poten-
tial normal to the 2DEG. The solution can be separated as ¥ (r, z) = p(2)x(z,y),
where p(z) satisfies:

2
o g+ V)| e (e) = Bon(a), 5.9

and x(zx,y) satisfies:
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ieBOy’

2 52 %, 2
[ he 0 m*wg (3.5)

—%@ + T (.T - $0)2:| X(JU,?J) = ENX(iU,y); with Lo =

where Ey is the energy associated with the transverse motion. Assuming a solution
of the form y(z,y) = x(x)e?*+¥, the center coordinate associated to the center of
the circular orbits is g = hk,/eB. The corresponding energy eigenvalues are given
by the harmonic oscillator

1
Ey = [N+2] hwe, N=0,1,2,.. (3.6)
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where N represents each Landau level associated with a magnetic subband. We
calculate the cyclotron radius as a function of the Landau index and the magnetic

field:
oh 1\1?
= |— (N — . .
x [B( +2>} (3.7)

From the cyclotron radius of the ground state, we recover the magnetic length
lm = (h/eB)'/? ~ 25nm/+/B(T).

The total number of states per unit area in each Landau level, also called the
Landau degeneracy, corresponds to the number of quantum flux h/e threading the
surface and is given by Dy = gsgyeB/h, where g, is the spin (valley) degeneracy

factor.
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Figure 3.1: Shubnikov-de Haas oscillations in the longitudinal magneto-resistance
of the 2DEG formed by a GaAs/AlGaAs heterojunction quantum well. Adapted
from [Ferry 2009]. Inset: onset of the Landau levels in a 2DEG.

When we consider the effects of the Landau level formation in the electronic
transport measurements, two scenarios are discussed:

Constant magnetic field, as the carrier density is increased, the Fermi energy,
Er, is pinned in the highest occupied magnetic subband until it is completely filled,
then jumps to the next Landau level.

Constant carrier density, as the magnetic field increases, the density of states in
lowest-lying subbands increases, and at a certain critical field, the highest occupied
Landau level becomes depopulated and the Fermi level jumps to the next lower
level.

Qualitatively, the crossing of the Fermi energy with a Landau level, shows-up
in magneto-resistance measurements and results in an oscillatory behavior, known
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as Shubnikov-de Haas (SAH) oscillations (Fig. 6.10). Such oscillations are observed
only if distinct Landau levels exist, which implies that the broadening of the levels,
h/7, is less than the Landau level spacing, hw.. In other words w.r > 1. These
oscillations exhibit the well know 1/B periodicity given by:

1 _ 9sGuv€
NO .

where n is the carrier density. In contrast to the bulk SAH effect, there is no mass
dependence, and the only variable is the 2DEG carrier density.
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Figure 3.2: Hall voltage Uy, and voltage drop between the potential probes, U,
as a function of the gate voltage at 7' = 1.5 K and under 18 T. In inset, the device
configuration. Adapted from [Klitzing 1980]

Another remarkable behavior is the Hall resistance: when the Landau levels
are well defined the Hall resistance saturates at certain values over a wide range of
magnetic field. This saturation happens at the same time as the SdH oscillations
become distorted and the resistance drops to zero between two maxima, Fig. 3.2.
The Hall plateaus resistance are universal, independent on the sample’s quality and
given by the simple relation |Klitzing 1980]:

=— =1,2,3,... 3.9
V€2’ v Y Y Y ( )
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where the integer v corresponds to the number of filled Landau levels (called the
filling factor). The extremely high accuracy of these plateaus arises from the one-
dimensional transport properties of the edge states that are formed at high magnetic
field. In the bulk of these systems the conduction band is essentially flat, indepen-
dent of position. The corresponding Landau level energies are similarly constant.
However, at the boundaries of the sample, the conduction band rises well above
the Fermi level and confine the electrons at the edges. They form two counter-
propagating edge states spatially separated and acting as one-dimensional channels.
The only way in which backscattering can occur is for electrons to be transferred
across the entire width of the sample. However, electrons propagating in edge states
cannot be easily scattered over distance larger than the magnetic length, [, ~ 8
nm for B = 10 T. Therefore, the electrical current through the sample is carried
by a fixed number of edge states (corresponding to the number of occupied Landau
levels) which propagate as one-dimensional channels in a ballistic regime.

3.2 A magnetic field applied perpendicular to a 1D waveg-
uide

We consider an electron gas confined in one dimension (z) infinite along the
y direction and a magnetic field is applied along the z direction. The remaining
equation depending on (x,y) has a similar form as before [Ferry 2009]:

R 0% mrw?

g U @ V@) M) = Baxte). (10)

where V' (z) is the potential due to lateral confinement and the center coordinate
is again xg = kyl?n. Assuming a parabolic confining potential of the form V(x) =
m*wix? /2, the energies of the 1D subbands become:

1 h2k;
E = En(ky) = N+ 3 | hwe + o (3.11)
with
h2k2 m*w2w2 w2 w2 _|_w2
Yy _ 0,2 ok _ * 0
oM = 2w02 ./,UO and M=m Jg =m Tgc . (312)

The last term of eq. (3.11) removes the Landau degeneracy. We finally obtain
1D sub-bands, also called magneto-electric sub-bands, with a non-zero dispersion
along the y-direction. The group velocity is v = hk, /M. For w. > wp, the mass M
goes to infinity, giving the 2DEG case. For w. < wg, M goes to the effective mass,
m™, which is just the limit of a quantum wire with no magnetic field.

The wave functions associated with the harmonic-oscillator-type solutions are
localized on one of the two sides of the wire, depending on the center coordinate,
which in turn, depends on the sign of k,. Therefore, the flux probability in one
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direction is localized on one side of the wire, while states with a flux propagating in
the opposite direction are localized on the opposite side.

[z —|

ez —+]

-50 0 50 100 150 200 250
Center coordinate (nm)

Figure 3.3: Left, calculated energy versus center coordinate for a 200-nm-wide wire
under 5 T. The shaded regions correspond to skipping orbits. Right, three types
of orbits in a confined structure: A cyclotron and skipping orbits and B traversing
orbits. Adapted from |[Ferry 2009].

We now consider a hard wall confinement in the transverse z-direction V(z) = 0
for 0 <z < W and V(x) = oo otherwise. The exact solution cannot be expressed
analytically. In Fig. 3.3-left, we see that the dispersion relation, for a hard wall
confinement, is almost flat in the middle of the waveguide and shows a strong dis-
persion close to the edges. This behavior can be interpreted from the classical
motion of a particle in a waveguide, as shown in Fig. 3.3-right (a). Depending on
the cyclotron radius at the Fermi energy, r., and the center coordinate, xp, we can
distinguish three types of trajectories: pure cyclotron orbits, skipping orbits and
traversing orbits. In case of pure cyclotron orbits, the electronic states correspond
to the flat regions of the dispersion curves shown in Fig. 3.3-left. If the distance
from the center coordinate to a wall is less than the cyclotron radius the skipping
orbits, refered as edge states, develop (Fig. 3.3-Right (a)). They corresponds to the
shaded regions of the dispersion curves (Fig. 3.3-left). Finally, for a higher energy,
the cyclotron radius sufficiently large, so that the electron perform traversing orbits
(Fig. 3.3-Right (b)) and interact with both boundaries.

3.3 Integer quantum Hall effect in 2D graphene systems

In this section, we review the anomalous quantum Hall effect of 2D graphene
monolayer and bilayer. We also briefly present the main experimental results in
quantum Hall effect and degeneracy lifting on these systems.
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3.3.1 QHE in graphene monolayer

The unique properties of the quantum Hall effect in graphene are among the
most striking consequences of the Dirac nature of the massless low energy fermionic
excitations in graphene. If the 2D Dirac equation is solved in presence of a magnetic
field, the Landau level energies are given by:

En =sgn (N)y/2ehv?B|N|, (3.13)

where N represents an electron-like (N > 0) or a hole-like (N < 0) index (Fig.
3.4-top). In contrast to the 2DEG, there is a Landau level at zero energy. This
level is shared by both electrons and holes. It is the responsible for the anomalous
quantization rule of the Hall effect with a 1/2 shift:

h
B gsgv62(‘N’ + 1/2) '

The zero energy Landau state is a direct consequence of the chiral nature of

Ry

(3.14)

Dirac Fermions. For a given quasiparticle momentum p = (pcos ¢, psin¢), a general
effective low energy Dirac Hamiltonian can be written as [McCann 2006b]:

Hy = e(p)o-n(e), (3.15)

where n = —(cos(Jp),sin(Jp)) and the vector o is made from the Pauli matrices.
Using this notation, J = 1 for a monolayer and J = 2 for a bilayer. The eigenstates
of Hj correspond to pseudospin polarized parallel (electrons) or anti-parallel (holes)
to the ’quantization’ axis n. An adiabatic evolution of such a pseudospin state,
which accompanies the rotation of momentum p by an angle ¢, also corresponds
to the rotation of axis n by an angle Jp. As a result, if quasiparticles encircle a
closed contour in the momentum space (that is ¢ = 2m), a phase shift ® = Jr
known as Berry’s phase is gained by the quasiparticle’s wavefunction. Berry’s phase
can be viewed as arising owing to the rotation of pseudospin, when a quasiparticle
repetitively moves between different carbon sublattices (A and B for monolayer and
A1 and B2 for bilayer)

For fermions completing cyclotron orbits, the Berry’s phase contributes to the
semiclassical quantization and affects the phase of Shubnikov-de Haas oscillations.
For monolayer graphene, this results in a w-phase shift of the SdH oscillations and
a related 1/2-shift in the sequence of QHE plateaus (Fig. 3.4-bottom, (b) for the-
oretical approach and (c) for experimental measurements), as compared with the
conventional 2D system, Fig. 3.4-bottom (a), where the Berry’s phase is zero.

There is another important experimental consequence of the Dirac nature of
the fermion in graphene. Because graphene’s Landau level energy scales as VN B,
rather than linear as in a regular 2DEG, at low energies, the spacing between Landau
levels, Ay = En4+1 — Ey, can be rather large (Ag = 36meV+/B(T)), Fig. 3.4-Top.
As the quantization of o4y relies on the condition Ay > kgT', the quantum Hall
effect is observable at room temperature |[Novoselov 2007].
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Figure 3.4: Top, (a) graphene energy dispersion at B=0 T, (b) Landau energy
levels for monolayer graphene. Bottom, illustration of the integer QHE for (a)
2DEG and (b) monolayer graphene. The sequences of Landau levels as a function
of carrier concentration n are shown as dark and light peaks for electrons and holes,
respectively. (c) ozy (red) and pg, (blue) for monolayer as a function of carrier
density measured at 7'=4 K and B = 14 T. Adapted from [Novoselov 2005].

Degeneracy lifting in graphene monolayer

The plateaus sequence for o, described in eq. (3.14) refers to fully degenerated
Landau levels including the spin and valley degeneracy. For these Landau levels,
we have a filling factor of v = 4(N + 1/2) = £2,46,+10, ....
degeneracies can be lifted as a consequence of broken symmetries. These degeneracy
lifting give place to intermediate filling factors v = 0, £1 for the lowest Landau level
and v = £3,44, 45 for N = +1 Landau levels. The difficulty in observing theses
intermediate quantum Hall plateaus is the lower value of the energy gap between

But spin and valley

successive split Landau levels, requiring very high quality samples (larger mobilities)
and high magnetic fields.

Zhang et al. carried out magneto-transport measurements for several values
of magnetic field between 9 and 45 T at 1.4 K on a graphene flake on Si/SiO2
substrate with a mobility of ~ 5 x 10* ¢cm?/Vs [Zhang 2006]. In Fig. 3.5 (a), the
Hall conductivity, 0, deduced from R, and R, is plotted as a function of back-
gate voltage V4. In addition to the £4(|N| + 1/2) expected plateaus observed at
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Figure 3.5: A, 0, measured on a graphene monolayer as a function of V at different
magnetic fields: 9 T (circle), 25 T (square), 30 T (diamond), 37 T (up triangle),
42 T (down triangle), and 45 T (star). The data are taken at T—=1.4 K, except for
the B=9 T curve, which is taken at 300 mK. Left upper inset: R, and R,, for the
same device measured at 25 T. Left lower inset: a schematic drawing of the Landau
levels in low (left) and high (right) magnetic fields. Right inset: detailed o, data
near the Dirac point for B =9 T (circle), 11.5 T (pentagon) and 17.5 T (hexagon)
at T=30 mK. Adapted from [Zhang 2006]. B, Phase diagram for SU(4) quantum
Hall ferromagnetism for the N = 0 and N = 1 Landau levels of graphene. Adapted
from |[Nomura 2006].

low magnetic field (B < 9 T), new QH plateaus appear at higher magnetic fields.
Specifically, the v = 0 plateau is resolved at B > 11 T, and the v = +1, +4 plateaus
appear at B > 17 T. The degeneracies of N=0 are fully lifted at high magnetic field.
A close examination hints quantum Hall states developing at v = £3, their weaker
signatures indicate a hierarchy of the degeneracy lifting of the Landau levels.
Further measurements made by [Jiang 2007a|, also in graphene samples de-
posited on Si/SiO substrate with mobilities of the order of ~ 2 x 10* ecm?/Vs,
suggest that v = £1 states are associated with valley splitting of the N = 0 Landau
level. On the other hand, the quantum Hall state at ¥ = 0 is related to the spin
splitting of this Landau level, as well as the splitting of the level N = 1. The authors
deduce a hierarchy of the degeneracy lifting as shown schematically in the lower left
inset of the Fig. 3.5 (a). Here, up and down arrows are used to represent the spin
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of the charge carriers, and solid (blue) and open (red) dots are the different valleys.

Another remarkable characteristic of the degeneracy lifting of the level N = 0
is the increase of the longitudinal resistance. Its origin remains without consensus
and more work is needed to understand it. Later, higher quality samples also show
the Hall plateaus for v = £3 [Du X. 2009].

The phenomenon of interaction induced gaps and broken symmetries at integer
filling factors is known as quantum Hall ferromagnetism. [Nomura 2006| derived a
criterion for the occurrence of interaction-driven quantum Hall effect near interme-
diate values of e?/h due to charge gaps in broken symmetry states. Fig. 3.5 (b)
summarizes the estimated product of carriers mobility and magnetic field required
to see quantum Hall ferromagnetism in graphene. In their model, the ordered re-
gion is bounded by a maximum value of the scattering filling factor, vs;. This is
inversely proportional to the product of the sample mobility and the external mag-
netic field strength and the order near integer filling factors requires the minimum
values for this product indicated on the right-hand vertical axis of Fig. 3.5 (b).
These theoretical predictions are in a good agreement with the experimental data
shown above.

Also, in very high quality suspended graphene samples [Bolotin K. 2009, Du X. 2009
fractional quantum Hall effect has been observed for a filling factor » = 1/3. This
effect appears at low temperatures in fields as low as 2 T and up to 20 K in a field of
12 T. It is significantly more robust than in the semiconductors-based 2D electron
systems, reflecting the stronger Coulomb interaction and more the 2D nature of the
electrons in graphene.

3.3.2 QHE in graphene bilayer

In graphene bilayer, the low energy fermionic excitations are massive (section
1.1.2). This fact would suggest that QHE in graphene bilayer might be similar to
the one observed in regular 2DEG. However, two important differences subsiste for
graphene bilayer, the band structure is gapless and fermions are chiral but with
a Berry’s phase equal to 27. As a consequence, the energy levels have a different
sequence from 2DEG and graphene monolayer, given by [McCann 2006b]:

Eny = he—*B\/N(N —1) for N >2 (3.16)
m

where m* &~ 0.05m, is the effective mass (Fig. 3.6-top). Graphene bilayer, also
has a Landau level at zero energy, however, because of the difference in the Berry’s
phase, the step between the plateaus of o, across the CNP is twice as big as in
monolayer graphene. it means that both Landau levels N = 0 and N = 1 merge at
E=0.

The origin of this energy level can be studied following the discussion of section
3.3.1. For graphene bilayer, J = 2, which means a phase shift of ® = 27. One
may expect that this 27 phase does not influence the QHE sequence. However, the
exact analysis |[Novoselov 2006| of the Landau level spectrum for the Hamiltonian,
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Figure 3.6: Top, (a) energy dispersion at B=0 T and (b) Landau energy levels for
graphene bilayer. Bottom, (a) Illustration of the integer QHE for graphene bilayer.
The sequences of Landau levels as a function of carrier concentration n are shown
as dark and light peaks for electrons and holes, respectively. (b) 0.y (red) and pg.
(blue) for graphene bilayer as a function of charge density measured at 7' = 4 K
and B = 12 T. Adapted from [Novoselov 2006].

Hj, shows that the Berry’s phase of Jm has an associated J-fold degeneracy of
the zero-energy Landau level. For graphene monolayer (J = 1,® = ), there is
a single state ¢ at zero energy. For graphene bilayer (J = 2,® = 27), the two
lowest states €9 = €1 lie at zero energy (Fig. 3.6-bottom). The existence of such
a Landau level implies that there must be a QH step across the neutrality point
doublely degenerated, which takes twice the number of carriers to fill (an step in
0uy of 8¢%/h), as compared with all other Landau levels (an step in o4, of 4¢2/h),
Fig. 3.6-Bottom.

Degeneracy lifting in graphene bilayer

As discussed for graphene monolayer, we expect a degeneracy lifting by external
perturbations and/or interactions. This has been observed in graphene bilayer de-
posed on Si/SiO2 [Zhao 2010], BN [Dean 2012| and suspended [B. E. Feldman 2009].
We first remark is that the degeneracy lifting are seen in samples with mobilities
of the order of ~ 1 x 10* ecm?/Vs and in moderated magnetic fields (15 T). This
contrasts with monolayer samples where 5 times higher mobilities and two timer
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larger magnetic fields are required to observe the degeneracy lifting.
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Figure 3.7: a) Hall conductivity 0., measured on a bilayer graphene as a function of
back gate voltage V, at T' = 1.4 K for different magnetic fields: 9, 15, 20, 25, 30 and
35 T. Upper inset: Ry, (black) and Ry, (red) versus V at B = 35 T. Lower inset:
the zero-energy Landau level hierarchy in bilayer graphene at high magnetic field.
Adapted from [Zhao 2010]. b) 0., as a function of the filling factor for different
magnetic fields measured on a bilayer graphene. Adapted from [Dean 2012].

In Fig. 3.7 (a),is plotted the calculated 0., with well quantized plateaus. For
low magnetic fields (B < 10 T), QH states corresponding to v = +4 are present and
as B increases, new QH states emerge, as it is evidenced by additional QH plateaus
at v = 0 and 2, and then, v = 1 and 3, at higher fields. For B > 20, the eightfold
degeneracy of the zero-energy Landau level is fully lifted.

The new QH states are in accordance with the sequential symmetry breaking of
the zero-energy Landau level as depicted in the inset of Fig. 3.7 (a). This suggests
that different symmetry-breaking processes are relevant as B increases. Independent
measurements of the longitudinal resistance as a function of a perpendicular field and
temperature indicate that the degeneracy lifting for the v = 1,2, and 3 has its origin
in electron-electron interaction. This result is consistent with theoretical predictions
of the formation of spin polarized QH ferromagnetism in bilayer graphene at high
magnetic field [Barlas 2008]. The field dependence of the longitudinal resistance at
the v = 0 reveals an insulating behavior similar to the one in single layer graphene
|Zhao 2010].

Other experimental results in graphene based heterostructures (graphene bilayer
on BN), Fig. 3.7 (b), show a fully degeneracy lifting of higher Landau levels (N > 0).
Here, the symmetry breaking present a different hierarchy to the one observed for
N = 0. The origin of this anomaly, where the odd filling factors are developed before
the even ones, has not been established yet. It seems that the four degeneracies are
lifted at the same time but the energy gap for the even states is smaller than the
one for the odd states [Dean 2012].

For higher quality suspended bilayer graphene samples (1 ~ 27 x 10* cm?/Vs),



3.4. Landau states in graphene nanoribbons 61

a plateau at v = 1/3 has been observed (for a magnetic field between 15 and 28.5
T), characteristic of FQHE [Bao 2010].

3.4 Landau states in graphene nanoribbons

When we refer to the Landau levels formation in a GNR, two main effects have
been considered: the electronic confinement and the edge symmetry.

3.4.1 Confinement effect: Anomalous Shubnikov-de Haas oscilla-
tions in GNRs

The confinement in graphene has been theoretically addressed by Peres et al.,
giving evidence of an anomalous Landau spectrum [Peres 2006b]. The Dirac fermions
energy in presence of both a magnetic field and a confining potential is (in this sec-
tion, we use units such that ¢ = h = kp = 1):

OVF\E+ O
- 4

Im

where o = =£1 labels electrons and holes and € a dimensionless term depending on

E.. = (3.17)

the relative strength of the magnetic and the electronic confinement.

In presence of a large magnetic field, when [,,, < W (i.e. for a wide GNR), the
dimensionless energy equals 2n+1 and eq. (3.17) gives rise to an energy proportional
to v/B like in graphene (eq. (3.13)). In such a case, the SAH oscillations are like in
graphene with their maxima at B = By, defined by:

- QU%EN

By EZ

When the confining potential dominates, l,, > W, the dimensionless energy
equals (7N1,,/W)2. Then eq. (3.17) gives:

(3.18)

7N oWeB
Ev=ovr |t 5y |

The first term corresponds to the discrete transverse energies due to the confining
potential and the second term, proportional to B, represents the diamagnetic effect
on the energy sub-bands. This expression clearly demonstrates the contribution of

(3.19)

both the transverse confinement and the magnetic field effects on the energies of
the 1D sub-bands. Omne notes that the Landau level index N is, at zero field, the
1D sub-bands index. In this regime, the maxima of the SAH oscillations occur when
B = By defined by [Peres 2006b]:

1 W2e/2m2N

= (Epwi_ N) _ (3.20)

TR

Interestingly, the spaced SAH oscillations are not anymore periodic in 1/B, but
the maxima become more at low magnetic field, i.e. at large Landau index. The 1/B
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dependence is supposed to diverge at a critical Landau level index N, = EpW/mvp.
This constitutes the major confinement effect on the Dirac Fermions.

The crossover from a linear magnetic field dependence to a v/B variation for
a given subband of index N occurs when the corresponding Landau orbits fit into
the width of the ribbon. Since each orbit encloses an integer number N of quan-

tum flux @y, we deduce a crossover that manifests itself when B = B, defined by
[Peres 2006b]:

N

BC:W'

(3.21)

The gradual change of the 1D sub-bands into magneto-electric sub-bands at
higher fields is clearly illustrated in Fig. 3.8.
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Figure 3.8: Magneto-electric subbands as a function of the magnetic field for a 500
nm wide aGNRs. The red line is the position of the Fermi energy. (b) The Landau
plot for the given Fermi energy. Adapted from [Peres 2006b].

In Fig. 3.8 (a), is shown the energy spectrum as a function of the magnetic field
for a GNRs of W=500 nm. For a certain Fermi energy (marked by a red line), we
obtain the number of occupied Landau levels, N, as a function of the inverse of the
magnetic field at which the Landau level crosses the Fermi energy (Landau plot).

In the Landau plot, Fig. 3.8 (b), we see that there is a linear dependence of the
Landau level index with 1/B for high magnetic fields. For higher Landau levels, the
spacing in 1/B becomes more pronounced and the linearity is not longer present,
eq. (3.20). This corresponds to the low magnetic field regime where the cyclotron
orbits do not fit inside the GNR.

3.4.2 The energy-momentum dispersion in the Landau regime for
armchair and zigzag GNR

As we said before, when a magnetic field is applied perpendicular to a GNR
the Landau levels start to develop and once they are formed (when W > [,,,) their
energies gradually evolve into a v/ B dependence. However, we will show below that



3.4. Landau states in graphene nanoribbons

63

the fine structure of the Landau spectrum of GNR contains reminiscence of the

electronic band structure at zero field, with zigzag or armchair signatures.
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Figure 3.9: Top, Low energy tight-binding spectrum for a zigzag ribbon of width
W= 199 x 3a/2 ~ 41 nm with (red) and without (green) magnetic field. Bottom,
energy spectrum as a function of the position. Edges are represented by vertical
black lines. Green and blue horizontal lines indicate the position of the bulk Landau
level for comparison with the position of the level at the edge. The energy is given
in unit of ¢ and the magnetic flux is ® = 0.00126®y (=~ 51 T). Adapted from

[Delplace 2010].

In case of zigzag GNRs, the Fig. 3.9-left, depicts the evolution of the band
structure when a magnetic field is applied (green and red plots). The lowest Landau
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level in this case support two types of edge states: dispersionless and current caring.
The dispersionless states are the same as those studied in section 1.2.1, which are
present at zero magnetic field (green curves) and do not contributed to the Hall
conductance.

Concerning the current caring states, we see (Fig. 3.9-Right) that, for an electron
in one valley, the edge states are asymmetric between the left and right edge. The
situation is the same for the other valley but in the opposite edge. Therefore,
a propagative edge state which forms a conduction channel is present at the two
edges of the GNR, at the same energy, but belongs to different valleys. The valley
degeneracy is preserved even if the electrons occupy different edges in function of
their valley K or K'.

Standard magneto-transport measurements should not allow to distinguish this
valley asymmetry. The challenge to evidence this could be to inject or photoexcite
preferentially carriers in a chosen valley K or K'.

For the armchair GNRs case, Fig. 3.10, we observe that the lowest conduction
band and the upper valence band move to form the £ = 0 Landau level, closing the
energy gap. At low k, the 1D subbands combine themselves to conform the standard
dispersionless graphene Landau levels which are both spin and valley degenerated.
At larger k, the Landau states are dispersive and each of them splits into 2 Landau
subbands (except for F = 0), restoring the valley degeneracy lifting at the edge of
the GNR.

The valley degeneracy lifting of the propagative states is a particular signature of
the armchair symmetry. This effect is potentially observable by magneto-transport
measurements. It will be the main objective of the experimental part of this thesis.

Electron-electron interaction effects in armchair GNRs

The effect of the electronic interaction on the charges tuned by a back-gate volt-
age and its impact on the GNR band structure have been theoretically considered
in few articles within the Hartree approximation [Shylau 2010]. Self-consistent cal-
culations show a non uniform distribution of the charge density across the width of
the ribbon, with an enhancement of the density at the edges.

Under a perpendicular magnetic field, the electron interaction is responsible for
a large pinning of the Fermi energy on the dispersionless states in the center of the
GNR (Fig. ??-right from (a) to (d)). In case of an aGNR, this induces a strong
distortion of the FE(k) curves with a much larger valley degeneracy lifting between
the Landau sub-levels, compared to the non interacting case (dashed lines Fig. 77-
left). The consequence on the magneto-conductance is quite severe: the quantized
plateau of the conductance between two Landau levels are almost suppressed and it
present bumplike features as a consequence of the pinning of the Fermi energy to the
dispersionless states in the center of the GNR. Besides, the consistence of backward
and forward currents on the same edge of the ribbon makes the magneto-conductance
much more sensitive to the disorder. This arguments has been used by [Shylau 2010]
to explain the absence of experimental evidence of quantized conductance in the
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Figure 3.10: Top, low energy tight-binding spectrum for a armchair ribbon of width
W= 199/3a/2 ~ 24 nm with (red) and without (green) magnetic field. Bottom,
energy spectrum as a function of the position. Edges are represented by vertical
black lines. The energy is given in unit of ¢ and the magnetic flux is ® = 0.00126®
(=51 T). Adapted from [Delplace 2010].

Landau regime in earlier measurements on GNRs.

We finally stress that, despite some theoretical calculations on the electron-
electron interactions effects on the electronic density distribution and its impact on
the band structure in GNR, there is no experimental evidence demonstrating that
the single particle picture is no anymore valid. Indeed, recently Hettmansperger et
al. gave evidence that the function of compressible and incompressible strips due
to electrostatic interaction in quantum Hall regime, does not hold for the quantum
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Figure 3.11: Left, simulated conductance of a 50 nm wide armchair GNR as a
function of filling factor for interacting and noninteracting electrons at temperatures
T=20 K (red) and 50 K (blue) in a magnetic field of B=30 T. Right, Evolution of
the band structure of the GNR at different filling factors corresponding to arrows
(a)-(d) in left figure. Left and right part of the panels corresponds to the interacting
and noninteracting case, respectively. In order to align the noninteracting and the
Hartree bands, the one electron dispersion has been shifted along the energy axis
by averaging the Hartree energy. Adapted from [Shylau 2010].

Hall effect in GNR |Hettmansperger 2012|. The single-particle model remains more
appropriate.

3.5 Landau spectrum in bilayer GNRs

Unfortunately, there are not many theoretical works on bilayer GNRs under
magnetic field and some of them show contradictory results on the simulations of the
band structure and its magnetic field dependence [Xu 2009, Li 2009, Chung 2010].

Zigzag bilayer GNRs: The two theoretical works concerning zigzag bilayer GNRs
present different characteristics of the band structure under high magnetic field,
summarized in Fig. 3.12. The results obtained by [Chung 2010] (Fig. 3.12 upper
panel), show flat bands which represent the onset of the Landau levels. Each band for
N # 0 is four times degenerated. The lowest landau level is composed of two doubly
degenerated bands (spin degenerated). This level presents a strong asymmetry
between electrons and holes and the appearance of an energy gap of F, ~ 6.5
meV.

In the study of [Xu 2009| (Fig. 3.12 lower panel) a partially flat band at £ =0
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Figure 3.12: (a) Band structure of the AB-stacked bilayer zigzag nanoribbons of
width W=159 nm at B=0 T. The Fermi energy is Er = 0. Inset: Low energy
region. (b), band structure of the nanoribbon at B = 20 T. The inset shows the
separated four bands. The band-edge state of the partial flat band are denoted by
circle, triangle and diamond. Adapted from [Chung 2010]. Lower panels Energy
band structure of zigzag bilayer nanoribbons with N=20 (W ~ 20 nm) for different
magnetic flux through a hexagon (¢) ¢/¢9 = 0 (B=0T), (d) ¢/¢po = 1/100 (B =~ 400
T) and (e) ¢/¢po = 1/50 (B ~ 800 T). Adapted from [Xu 2009].

exists in the band structure and becomes flatter at higher magnetic field. Here,
the spectrum remains symmetric between electrons and holes and no energy gap is
reported.

Armchair bilayer GNRs: Following the procedure developed by [Xu 2009], the
electronic structure of bilayer aGNR has been reproduced by Dr. Alessandro Cresti
for several magnetic fields, preliminary results are shown in Fig. 3.13. In this figure,
we see the onset of the Landau levels for low &, as for monolayer aGNRs. We remark
that the only notable difference with respect to the monolayer case is the double
band which forms the N = 0 Landau level.
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Figure 3.13: Energy band structure of a bilayer armchair GNR with N=731 (W ~ 88
nm) for different magnetic fields (a) B =0 T and (b) B = 60 T. From [Cresti 2012].

3.6 Two-terminal magneto-conductance measurements in
graphene

In a two terminal measurement the shape of the magneto-conductance strongly
depends on the aspect ratio of the sample. In the simplest case of a square whit elec-
trodes at opposite sides, the conductance is expressed as function of the longitudinal
and Hall conductivity as follow:

G(L:W) = \/ O-%;r + O-%y (322)

An effective-medium approach has been developed to simulate the two probes
magneto-conductance as a function of the carrier density for different sample shapes
[Abanin 2008]. In this model, the local electric field and the current distribution are
calculated in each point of the sample.

In Fig. 3.14 (a), is simulated the conductance as a function of the filling factor
for several aspect rations. For a square configuration L/W = 1,the conductance
exhibits a quantized step when a new Landau state is filled, like in the Landauer
approach. When L/W < 1 the quantized plateaus (marked by arrows) are replaced
by conductance minima preceded by a conductance maxima. For L/W > 1, the
quantized values correspond to maxima of conductance preceded by minima. In
Fig. 3.14 (b), we can see how the Landau level broadening affects the conductance
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Figure 3.14: (a), Two-terminal conductance as a function of the electron density
for a rectangular graphene monolayer sample for aspect ratio L/W = 0.25, 0.5, 1,
2 and 4 (top to bottom) with a Landau level width of A =1.7. (b), Same as (a) for
broader Landau levels with A =0.5. Adapted from [Abanin 2008|.

shape. The conductance for the electron densities at which we should found the
quantized values is not recovered anymore because of the overlapping of the Landau
levels, which brings extra conducting channels and as the edge currents are not well
separated, it also allows the presence of backscattering because chiral currents are
not well separated.

3.7 Experimental observations of Landau spectra in GNRs

The first studies of the electronic confinement in graphene ribbons under mag-
netic field has been made by [Berger 2006 at GeorgiaTech. They perform magneto-
resistance and Hall-effect measurements on a Hall bar of 500 nm width made by
e-beam lithography on epitaxial graphene, (Fig. 3.15 (a)). This structure presented
a high mobility (1 ~ 2,7 x 10* cm?/Vs). Even for this quite large width, the con-
finement effects in the SAH oscillations have been observed in form of a deviation of
the linearity of the Landau index as a function of the inverse of the magnetic field,
inset in Fig. 3.15 (a). They deduced an effective width of 270 nm. However, there
were no possibility to adjust the doping level and despite the quite high mobility,
there were no sign of Hall quantization on the p,, measurements.

When the measurements are extended to much higher magnetic fields (up to
55 T) on ultra narrow ribbons W = 11 nm [Poumirol 2010] (Fig. 3.15 C), a large
positive magneto-conductance has been also evidenced over a large range of back-
gate voltages. Here, the magnetic length starts to fit entirely into the width of the
ribbon for B > 30 T (I, < 5 nm), and the mobility is of the order of u ~80 cm?V !
s—L.

The large gain of conductance in high field has been attributed to the gradual
onset of the magneto-electric subbands. They go along with the onset of chiral
conducting channels at the edge and a decrease of the backscattering probability as
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Figure 3.15: (a), SAH oscillations as a function of the Landau index for several
temperatures 7' =4, 6, 9, 15, 35 and 58 K. Inset: The experimental Landau plot
and its simulation. Adapted from [Berger 2006]. (b), Magneto-conductance at 80
K, for a 11 nm wide GNR, for several V, (continuous lines) and at 80, 50 and 20
K at the charge neutrality point (open symbols). Adapted from [Poumirol 2010].
(¢), Conductance as a function of the back-gate voltage for different applied mag-

netic fields measured on a suspended graphene nanoconstriction. Adapted from
[Tombros 2011].

the k* and £~ wave function start to be spatially separated. Conductance simula-
tions in presence of disorder in a perpendicular magnetic field support this scenario.
They also indicate that, the magnetic field induced reduction of backscattering oc-
curs mainly when two types of disorder are present: a moderate short-range disorder
at the edges with a long range potential disorder in the “bulk” of the ribbon.

Experimental observation of the Landau quantization in graphene nanoconstric-
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tions has been performed by [Tombros 2011]. As shown in section 1.2.4, for a sus-
pended nanoconstriction, of width ~ 200 nm, a quantized plateau at 2e2/h is ob-
served at zero magnetic field. When a perpendicular magnetic field is applied, this
plateau becomes more visible and a new plateaus at 6e?/h and 10e?/h develop.

3.8 Summary

In this chapter, we have briefly described the electronic band structure under
a perpendicular magnetic field considering a 2DEG, a 1D wave-guide, a graphene
mono and bilayer and finally graphene mono and bilayer nanostructures .

These theoretical works predict an unusual behavior of Dirac fermions on pres-
ence of both a magnetic and an electronic confinement. Quite spectacular is the
different Landau spectra expected for GNR depending on the edge symmetry. How-
ever, such predictions suffer from a lack of experimental confirmation. Evidence of
magneto fingerprints of the edge orientation motivates, for a large part, the experi-
mental works of this thesis. At the beginning of this thesis, the electronic transport
measurements on GNRs at zero or moderate magnetic field did not reveal yet the
Dirac fermion confinement and the edge types of the ribbons. We therefore envisage
to play with a much larger magnetic confinement, combined to optimized mobil-
ity devices on Si/SiO2 to reveal the magneto conductance driven by the onset of
magneto-electric subbands.
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In this chapter, we describe our sample fabrication methods, from Si/SiOy sub-
strates to field effect graphene nanoribbons devices, the methods to improve device
quality (electrical and thermal annealing) and the experimental techniques for the
structural and electronic characterizations: micro-Raman spectroscopy, electronic
transport at zero and under pulsed magnetic field and also photo-conductance under
THz excitation.

The mastering of graphene based high quality devices is a central issue since
the first fabrication of isolated graphene layers [Berger 2004, Novoselov 2004]. It
becomes even more critical, when graphene layers are structured into ribbons: the
reduction of the lateral size drastically degrades the mobility. In case of graphene
nanoribbons (GNRs), many techniques have been developed with relative success to
decrease the width and preserving the edge quality (i.e. atomically smooth edges).
The first graphene ribbons were obtained by e-beam lithography and oxygen plasma
on epitaxial graphene |Berger 2006]. They had a quite large width ~500 nm and a
low edge quality because of the isotropic properties of the oxygen plasma etching.
Despite this, some electronic confinement effects have been observed, as mentioned
in the previous chapter.
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Figure 4.1: Selected GNR fabrication methods: (a) e-beam lithography plus oxy-
gen plasma etching [Han 2007|, (b) Chemically derived GNRs [Li 2008], (c¢) un-
zipped carbon nanotubes by plasma etching [Jiao 2009], (d) growth on template
SiC substrates [M. Sprinkle 2010], (e) nano-constrictions made by electrical anneal-
ing [Tombros 2011] and (f) anisotropic etching [Shi 2011].

The technological efforts in the conception of narrow GNRs with smooth edges
have been tremendous. Some of the related techniques can be summarized as follow
(Fig. 4.1):

e e-beam lithography and oxygen plasma etching: This technique allows
the patterning of GNRs on different substrates. It consists in creating an
etching mask, using e-beam lithography to etch away the uncovered graphene
by an oxygen plasma. This technique is limited by the resist and e-beam
resolution and does not allow an accurate edge control due to the isotropic
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nature of the oxygen plasma [Han 2007, Berger 2006].

e Chemically derived GNRs: sub-10 nm widths with ultra-smooth edges
are obtained by chemical process where graphene is exfoliated at high tem-
peratures and then dispersed in a 1,2-dichloroethane solution of PmPV by
sonication [Li 2008].

e Unzipping carbon nanotubes: the first technique to unzip multi-walls-
CNTs consisted in etching a non-covered part of the CNT with Ar plasma.
This technique allows to obtain GNRs with widths between 10-20 nm [Jiao 2009].
A second technique based on the calcination and the sonication of multi-walls
carbon nanotubes (MWCNTSs) drastically improved the size reduction (less
than 5 nm). This technique shows high quality GNRs with atomically smooth
edges [Tao 2011].

e Scalable templates growth of graphene on SiC: this bottom-up approach
provides a high quality GNRs from the decomposition of SiC, in etched steps
on the substrate, allowing the control of the width. It also avoids the edge
damage due to the post-processing |[M. Sprinkle 2010].

e Electrical annealing: this technique is used to fabricate suspended nano-
constrictions. It consists in a controlled rupture of a suspended graphene flake
by the application of a large current. It results in the formation of a clean and
ultra narrow constriction [Moser 2009, Tombros 2011].

e Anisotropic etching (hydrogen plasma): this top-down approach is based on
a preferential etching of the hydrogen plasma along the zigzag axis of graphene.
It allows an atomically smooth edges [Shi 2011]. This technique shows very
good results in the conception of multilayer zigzag GNRs with nominal widths
around 10 nm.

4.1 Samples Fabrication

In this section, we present in more details two techniques for the fabrication of
field effect transistors from GNRs: (i) lithographically patterned GNRs using e-beam
lithography and oxygen plasma etching and (ii) GNRs derived from unzipping car-
bon nanotubes [Tao 2011]. The entire fabrication process for the lithographically
patterned GNRs and the connection process for the GNRs derived from CNTs are
carried out in the clean room (class 10.000 and 100) of the Laboratory for Anal-
ysis and Architecture of Systems (LAAS) in Toulouse with the support of TEAM
(Techniques et Equipements Appliqués a la Microélectronique).

During this thesis, other techniques were developed: GNRs patterned using Hy-
drogen silsesquiozane (HSQ) resist and oxygen plasma etching, with this technique
the ribbons’ width is reduced to ~10 nm. Unfortunately, even when ribbons con-
nection and its patterning were successful, the devices broken during the early stage
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of the measurement. We also try to contact ultra long natural GNRs made by print-
ing technique where silicon stamps are used to cleave graphite and to transfer it
onto Si/SiOg substrates. Such "natural" GNRs were provided by the group that
developed this technique [Moreno-Moreno 2009]. Unfortunately, the high ribbon
density and the large amount of graphite surrounding the GNRs made impossible
the connection of an isolated GNR.

4.1.1 Lithographically patterned GNRs

Here, we describe, step by step, the fabrication process to obtain GNRs by pat-
terning exfoliated graphene with e-beam lithography and oxygen plasma, as reactive
ion etching (RIE).

Substrates

The substrates are made in a heavily doped 6 inch Si n** (n~ 10*¥® cm™3)
wafers with thermally grown 300 nm SiO2 layer. The specific width of the SiOq
layer allows a direct observation of the graphene flakes using an optical microscope
[Novoselov 2004].

Marks on the substrates (alphanumeric and angle) are fabricated by optical
lithography. The exposure of the optical resist (LOR plus LOFT) to ultraviolet
light is made using a Canon mask aligner (stepper technique), FPA 3000i4. After
this, metals are deposited by Joule evaporation, Ti/Au (10 nm/ 40 nm), and a
conventional lift-off process with acetone is performed. This technique achieves a
resolution of ~500 nm. The substrate design is shown in Fig. 4.2.

The alphanumeric marks on the substrate are used to localize the graphene flakes
deposited by mechanical exfoliation (the "scotch tape" technique) [Novoselov 2005].
This technique gives rise to the best graphene based devices quality and graphene
flakes as large as ~1 mm? have been achieved [Peres 2010]. In our case, we use
natural graphite and we typically obtained flakes of ~10 yum by side. The angle
marks in the substrate are used for an automatic recognition of e-beam lithography
which highly improves the accuracy. The minimal size of the working area is of
100x100 pum to get a high resolution lithography.

GNRs patterning

The different steps of the fabrication process are summarized in Fig. 4.3. Once
the graphene flakes are deposited on the substrates and located by optical mi-
croscopy (step a), we proceed to the deposition of PMMA (Polymethyl Methacry-
late) (step b) on the substrate, followed by an e-beam exposure made with a Raith
150 of ultra high resolution (step c) and finally a metal deposition of Ti/Pd/Au
(Inm/10nm/40nm from Joule evaporation) (step d) for the conception of metallic
electrodes.

A second deposition of PMMA and e-beam lithography are necessary to define
the etching mask (step e). This step defines the shape of the ribbons, with a mini-
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Figure 4.2: Optical observation of a Si/SiO2 after a mechanical exfoliation and
deposition of graphene. Zoom: minimum working area for e-beam lithography (100
pum by side). Marks and alpha-numeric symbols are used to localize the graphene
flakes.

mum width of 50 nm. After this, the sample is exposed to an oxygen plasma (RF=
300 W, 40 sccm of Oxygen, 20 s) to remove the uncovered graphene by the etching
mask (step f). In the right hand of Fig. 4.3, we see the AFM image of the resulting
lithographically patterned GNR with a width of 60 nm and a length of 300 nm.

4.1.2 GNRs derived from unzipping CNTs by calcination

The samples are provided by two sources Prof. H. Dai’s group at Stanford
University, USA and Prof. X. Wang’s group at Nanjing University, China. These
GNRs present a very high quality, with smooth edges (as seen by STS and STM
[Tao 2011]). The yield of GNRs is ~2 % of the starting raw CNTs soot material,
which is an amount significantly higher than former methods based on MWCNTs.

MWCNTSs are synthesized by arc discharge (Bucky tube, Aldrich). This raw
soot material is first calcined in air at 500 °C to etch/oxidize MWCNTs at defect
sites and ends without oxidizing the pristine sidewalls of the nanotubes. In the
gas-phase oxidation step (Fig. 4.4), the oxygen reacts with pre-existing defects
on nanotubes to form etch pits on the sidewalls. Then, CNTs are dispersed in
a 1,2-dichloroethane (DCE) organic solution of poly(m-phenylenevinylene-co-2,5-
dioctoxy-p-phenylenevinylene) (PmPV). Using sonication, the calcined nanotubes
are found to unzip into nanoribbons. A last ultracentrifuge step is applied to re-
move the remaining nanotubes and graphitic carbon nanoparticles. The result is
a high percentage (>60%) of nanoribbons in the supernatant (for more details see
[Jiao 2010]).
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Figure 4.3: Left, fabrication process for lithographically patterned GNRs: a) Ex-
foliated graphene on top of a Si/SiO2 substrate b) PMMA deposition c) e-beam
exposure and development of electrodes d) metal deposition e) second PMMA de-
position plus e-beam exposure and development f) GNR after the oxygen plasma
etching to remove the non covered graphene. Right, atomic force microscopy of a
60 nm width and 300 nm length graphene nanoribbon made by e-beam lithography.
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Figure 4.4: Schematic representation of the unzipping processes of MWCNT.

Adapted from Ref. [Jiao 2010].

Substrates

The substrates on which are deposited the GNRs in liquid solutions are made
from heavily doped Si, with 300 nm layer of SiO2, wafers. Predefined macroelec-
trodes are made by optical lithography and metal deposition of Ti/Au (10 nm/ 40
nm) (Fig. 4.5 (a)). An extra layer of metal (50 nm Au) is deposited to have more

robust electrodes for the wedge bonding.

The macroelectrodes delimit a central area for nano-objects connexion (Fig. 4.5
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(A) Predefined Macro-electrodes

{B) Deposition zone
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alignement marks

Figure 4.5: Top: Si/SiO2 substrate with predefined macro-electrodes made by opti-
cal lithography: (a) Predefined macro-electrodes, (b) deposition zone and (c) marks
made by e-beam lithography to align nano-objects. Bottom, AFM images of two
micro-zone where GNRs of ~ 20 and ~ 50 nm width are located.

(b)). In this central area, 16 zones are designed by e-beam lithography to make
easier the localization of nano-object by AFM imaging (Fig. 4.5 (b) and bottom).
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Connection method

Many chemical products are involved in the synthesis of these GNRs. To elim-
inate most of the molecules absorbed around the GNRs, different annealing steps
are needed. The two first steps consist in annealing the sample at 320 °C in air for
20 min and after, at 450 °C in Ar for 30 min, to calcine any surfactant or solvent
surrounding the GNRs.

An accurate location of the GNRs is obtained by AFM (Fig. 4.5 bottom). After
this, specially designed micro-electrodes are defined by e-beam lithography in order
to electrically connect the GNRs to the macro-electrodes. These micro-electrodes
are specially challenging because the total length of the ribbon is quite moderate,
around 1 pym. To approach the ballistic regime, we first envisaged a rather short
distance between the source and drain, less than 100 nm. For such a configuration,
the electron dose of the e-beam lithography has to be increased by a factor of two.
Increasing the electronic dose reinforces the proximity effect, decreasing the size of
the unexposed resist between electrodes. After the metal deposition of Ti/Pd (1
nm/40 nm), an extra thermal annealing is made at 200 °C, under Ar, for 15 minutes
to improve the electrodes and the contact resistance.

4.1.3 Graphene devices for THz detection

We used the same substrates as for the lithographically patterned GNRs (Si/SiO2)
to design the device for graphene’s THz detection. The samples have an antenna, as
the one described in [Mendis 2005], with the appropriate dimensions to be efficient
up to ~0.7 THz. This creates an asymmetry between contacts, responsible for a
THz photoresponse in field effect transistors.

The final design is shown in Fig. 4.6, presenting a full image of the antenna
and its internal parts. As for the previous samples, the antenna and the electrodes
are performed with the Raith 150 ultra high definition e-beam writer. The distance
between source and drain is Lg_p= 1 pum, the source and drain electrode width is
Ws_p= 2 um, and the Hall probes are separated by Ly_p= 0.93 um.

4.2 Connection of the GNRs to the electrical measure-
ment system

The connection step is critical since our devices are very sensitive to electrostatic
discharge and difficult to handle. A specific procedure is adopted to ensure that the
device, the experimentalist, and the equipment are always connected to the ground
through 1 M. Steps to connect the samples are the following:

Connection to the sample holder: once the samples fabrication is finished,
the substrates are cut into 4x4 mm? and the devices are first tested by an home made
probe station. Then the substrate is glued with silver paste to the sample holder (a
circular ceramic with 8 serigraphied gold electrodes, which allow the connection of
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H1

H2

Figure 4.6: Design of graphene samples for THz detection. Left, the antenna used
to create an asymmetry between electrodes. The device has four contacts: source
S, drain D and two Hall probes H1 and H2. Right up, central area of the an-
tenna. Right down, The internal part where the electrodes connect the sample
(represented by a purple square).

a maximum of 3 GNRs with the back-gate, Fig. 4.7-Top) to ensure a connection to
the Si back-gate.

We connect the device by wedge bonding to the sample holder (Fig. 4.7-Top).
The wedge bonding may be, in some cases, a dramatic step for the sample. If the
bonding parameters are not well set, it may induce a break of the GNR or a damage
of the SiOs layer between the electrodes and the gate. After the wedge bonding,
the samples are tested again with the probe station as well as the gate effect.

Connection of the sample holder to the inset: the sample holder is con-
nected to the inset using a gold wire of 50 pm of diameter and silver paste. This
inset is specially designed for pulsed magnetic field environment and low temper-
atures (Fig. 4.7-Bottom). Its lower part is fabricated in glass fiber to avoid some
heating effects during the pulse magnetic field. It has a pick-up coil (to measure
the magnetic flux), a Si diode connected to a temperature controller, Lakeshore 332
(calibrated from 300 K to 1.2 K) and 12 connection pins to measure several devices
at the same time. After the connection of the sample to the inset, a sock is used
to hermetically close the inset, in order to control the atmosphere surrounding the
device.
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Figure 4.7: Top, GNRs sample connected to the sample holder through wedge
bonding. Millimeter scale on the left. Bottom, photo of the magneto-transport
insert specially designed for pulse magnetic field and cryogenic temperatures.

4.3 Samples annealing

Before the electronic transport measurements, an in-situ annealing of the devices
is needed to remove contaminants (resist residues, water, etc) and to improve the
electronic mobility. After this treatment, the device is not exposed anymore to the
air. Depending on the device and its degree of contamination, we use two different
types of annealing processes:
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4.3.1 The thermal annealing

It consists in warming-up the sample up to 130°C under moderate vacuum
during 3 hours. This process mainly removes water molecules and residual solvents
on the GNRs and SiOs surfaces.
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Figure 4.8: Conductance as a function of the back-gate voltage for a 100 nm wide
GNR, before thermal treatment (red), after 1 hour (blue) and 3 hours (black) of
thermal annealing at 130 °C, under vacuum.

The effect of the thermal annealing is illustrated in Fig. 4.8. A clear shift
of the charge neutrality point from ~20 V to ~5 V is obtained after 3 hours of
annealing. This is a clear signature that the unintentional doping of the sample has
been considerably reduced.

4.3.2 The electrical annealing

In some cases, and this was specially the case of GNRs from unzipping CN'T5s,
the thermal annealing treatment is not efficient enough to reveal the intrinsic prop-
erties of the GNRs. The main reasons are the chemical processes used to disperse
the GNRs into the solution. In this case, the improvement of the conductance
characteristic implies an electrical annealing.

The method is based on the application of a source-drain bias voltage of a few
Volts which induces a large Joule heating. The limitation of this technique is that
the sample’s temperature is difficult to estimate [Moser 2007|. In practice, we apply
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several sweeps of the bias voltage under vacuum (~1x107° mbar). If the sweep
shows hysteresis effects, the bias voltage has to be gradually increased. This hys-
teresis appears when the contamination is reduced: the charge neutrality point is
closer to zero which increases the resistance of the GNR. In the same time, we are
supposed to improve the contact resistance. We assume that the electrical annealing
process is finished when the hysteresis is not anymore present .
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Figure 4.9: Left: Conductance as a function of the back-gate voltage for a 23 nm
wide and 50 nm long GNR before (green) and after 2 V (blue), 2.5 V (black), and
3 V (red) of e-annealing. Right: Conductance as a function of back-gate voltage
after 3 V of e-annealing.

The Fig. 4.9 present the conductance as a function of the back-gate voltage
curves measured on a GNR derived from CNTs L= 50 nm and W= 23 nm, after
different electrical annealing and an increase of the maximum bias voltage up to 3
V. Before the electrical annealing (green curve), the conductance is quite low, with
almost no gate effect. After the different annealing processes the conductance is
increased by a factor of ~ 3, and a moderate gate effect that starts to develop (right
part of the Fig. 4.9). Here, we strongly suspect that the molecules used as surfactant
(PmPV) and the solvents are responsible for the low conductance, the bad contacts
and also of the screening of the back-gate voltage. The electrical annealing certainly
allowed to remove part of the contaminants but both the conductance and its gate
dependence remain far from the expected one for a clean GNR.

Despite several tentative on this source of GNR, with many ribbons burned
during such a risky process, we did not succeed in reaching optimal electrical char-
acteristics.
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4.4 Samples Characterization

The experimental techniques used in this thesis are, the micro-Raman spec-
troscopy to characterize the number of graphene layers, and mostly the electrical
transport measurements at zero field and in the pulsed magnetic field environment.

4.4.1 Micro-Raman spectroscopy

For some samples, the identification of the exact number of layers can not be de-
duced by optical observations. In such cases, the Raman spectroscopy is very helpful
as its spectrum evolves with the number of layers (Fig. 4.10) [Ferrari 2006]. The
micro-Raman spectroscopy measurements presented in this work were performed at
Centre d’Elaboration de Materiaux et d’Etudes Structurales (CEMES) de Toulouse,
with the help of Dr. Miguel Rubio Roy and at LNCMI-Toulouse with the collabo-
ration of Dr. Paulina Plochocka’s group.
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Figure 4.10: (a) Comparison of Raman spectra for graphite and graphene mono-
layer. the intensities have been scaled to have the similar height of the 2D peak. (b),
Evolution of the 2D peak with the number of layers. Adapted from [Ferrari 2006].

Raman spectra was performed in the reflexion mode at room temperature. For
micro-Raman measurements, a Spectrometer 2950 was used with a vertical polar-
ization and a 100x objective. A laser spot of few microns size was achieved. The
laser excitation had a wave length of 532 nm. For each session, measurements on
SiO9, monolayer graphene and HOPG were performed for calibration.

4.4.2 Electronic transport measurements

The electronic transport measurements G(V;, V4 )at zero magnetic field:

Counsist in measuring the current that passes through the device as a function of
the back-gate voltage (V;), and at a given bias voltage (V). In practice, we apply
a low AC voltage (~ 50 pV) to the device with an ultra low distortion function
generator Stanford Research Systems DS360, this generator allow us to apply si-
multaneously an AC and a DC voltage (offset). We measure the AC current that
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passes through the device with a Lock-in amplifier Stanford Research System DSP
SR850 while we sweep the back-gate voltage with a DC voltage source Yokogawa
model GS610. Once the sweep of the back-gate voltage is complete the bias voltage
of the sample (offset) is increased and we repeat measurement. We obtain a 2D
map of the conductance as a function of the back-gate voltage and the bias voltage
G(Vy, Vp). This technique used to study energy dependence of the conductance (Fig.
4.11), the Coulomb blockage regime or the Fabry-Perot oscillations depending on
the transparency of the contacts.

Figure 4.11: Conductance as a function of the back-gate voltage and the bias voltage
G(Vy, Vp) for a lithographically patterned GNR of L=350 nm and W=100nm at 2
K.

4.4.3 Electronic transport under pulsed magnetic field

The nondestructive pulsed magnetic field technique has been developed at LNCMI-
Toulouse since the 60’s. At the moment, we are able to reach 80 T in nondestructive
pulsed magnetic fields. For this thesis, we mainly used magnetic fields up to 60 T.

The technique consists in the discharge of a capacitor bank (600 capacitor with a
maximum energy of 14 MJ, Fig. 4.12 (a) in a resistive coil made of copper alloys and
Zylon, with an internal diameter of 28 mm (Fig. 4.12 (b)). Wires used for the coils
combine a very low electrical resistance, a high specific heat and held mechanical,
up to 1 GPa. The total pulse duration is around 300 ms,with an increase of the
field up to its maximum value during the first 50 ms and after, an exponential and
rather slow decrease of the field (Fig. 4.12 (c)).

Our measurement inset and the sample holder are specially designed for the
pulsed magnetic field environment. The precautions are twofold: the use of metals
to fabricate the sample holder is forbidden to avoid heating effects coming from
eddy currents during the pulse. The measuring wires are twister pairs to reduce the
induce voltage, proportional to dB/dt.
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Figure 4.12: (a) 14 MJ capacitor bank at LNCMI-Toulouse (b) Standard 60 T
resistive coil and (c) different available magnetic fields as a function of time obtained
by different resistive coils, both the inner diameter and the required energy are
indicated.
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All the magneto-transport results presented in this thesis were performed in DC
configuration by applying a voltage and measuring the current. Note that, despite
the use of twister pairs, some loops where the induce voltage develops are inevitable.
This contribution is numerically subtracted to our signal after the measurement.

4.4.4 THz detection

The idea of using FETs for emission and detection of THz radiation was put
forward by [Dyakonov 1993]. The possibility of the detection is due to non-linear
properties of the transistor, which lead to the rectification of an AC current induced
by the incoming radiation. As a result, a photo-response appears in the form of
DC voltage between the source and the drain, proportional to the radiation power
(photo-voltaic effect). Obviously, some asymmetry between the source and drain is
needed to induce such a voltage. To create this asymmetry, the samples are designed
with specific electrodes shapes (section 4.1.3).
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Figure 4.13: Schematic representation of the experimental setup for THz detection
available at the Charles Coulomb Laboratory (Montpellier University-France).

An electronic 0.3 THz source based on a frequency multiplier has been used. The
contact for the back-gate was outside from the beam spot, to avoid any coupling
between the gate and the THz radiation. The incoming radiation intensity was
mechanically chopped at 333 Hz and the source-drain voltage (photo-response) was
measured with low noise amplifier followed by a lock-in amplifier detecting the DC
rectified photo-response (Fig. 4.13). The photoresponse has been studied as a
function of the back-gate voltage.

The measurements were conducted in a cryostat at 4.5 K. For the first and sec-
ond harmonic conductance measurements, the samples were biased with ac current
Iy cos(wt), of frequency w = 133 Hz in a few ten of nanoampere range, and voltage
was measured with a low noise amplifier followed by a lock-in amplifier detecting
the first- and second-harmonic responses V; cos(wt) and V3 cos(2wt).

The THz detection experiments were carried out during my stay in Laboratoire
Charles Coulomb in the Université Montpellier II, with Prof. Dominique Coquillat.

4.5 Summary

In this chapter, the technological challenges to fabricate good quality GNR de-
vices and the experimental techniques under extreme conditions of magnetic fields
have been presented. The mastering of the lithography techniques to pattern and
to connect the GNRs has required tremendous efforts in clean room to optimize the
different parameters.

We fabricate a total of 168 lithographically patterned GNRs. From these, we
measured successfully (electronic transport at zero and under magnetic field at var-
ious temperature) only 12 GNRs, 8 of them presented a high quality. Concerning
GNRs derived from CNTs, we connected 120 ribbons and we measured completely 9
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of them. Unfortunately, non of them show good electronic transport characteristics.

We conclude by saying that our best GNR devices have been finally obtained
by e-beam lithography and oxygen plasma etching, with nominal widths between
70 and 100 nm. As we will see in the next chapter, these devices exhibit “good”
mobilities, at least high enough to unveil new quantum phenomenon in the high
magnetic field regime.
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In this chapter, we present the electronic transport and the magneto-transport (up
to 55 T) results obtained on lithographically patterned monolayer GNRs of widths
between 55 and 100 nm. The electronic transport characteristics demonstrate a
good quality of the GNRs with a mobility of few thousands. The magneto-transport
measurements unveil an anomalous Landau spectrum, which may be explained by an
armchair contribution at the edges.

Samples have been prepared from exfoliated graphene and the GNRs have been
patterned using e-beam lithography and oxygen plasma etching, following the pro-
cedure explained in section 4.1.1. Here, we focus on results obtained on two specific
GNRs, called sample A with W=100 nm (width) and L=350 nm (length), and sam-
ple B, with W=70 nm and L=750 nm (see AFM image in Fig. 5.1 (a)). Along
this chapter, we also compare these two main results with others obtained on GNRs
with similar characteristics.

5.1 Electronic transport at zero magnetic field

Prior to the electronic characterization, the samples are subjected to a thermal
annealing treatment in vacuum, as described in section 4.3.1. The conductance as a
function of the back-gate voltage, G(Vj), for several temperatures (Fig. 5.1 (b)-(c))
shows the typical ambipolar nature of graphene. A semiconducting behavior, given
by the decrease of the conductance at low temperature, and the onset of conductance
fluctuations at 4 K are observed. The charge neutrality point (CNP) is found for
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back-gate voltages of Vonp =~ 2.5 V and -0.5 V, respectively for sample A and B
(Fig. 5.1 (d)). We conclude that the residual doping, after annealing, is low on the
two samples.
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Figure 5.1: (a), AFM image of the two GNRs named sample A and B. (b) - (c),
conductance as a function of back-gate voltage for sample A and B respectively,
at several temperatures. (d), conductance as a function of back-gate voltage for
sample A (black) and B (red) at 4 K, blue lines represent the simulations using eq.
(5.1). (e), Extracted mean free path, l., as a function of the back-gate voltage for
sample A (black) and B (red), for two contact resistance R.=500 2 (dashed line)
and R.=1 k{2 (solid line). The dashed areas represent the back-gate voltages regions
where the mean free path calculation is not reliable.
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The experimental G(V;) curves, shown in Fig. 5.1 (d), can be used to estimate
the characteristic transport parameters. In a two terminals configuration, the total
resistance of the device, Ry, is simply expressed by [Farmer 2009]:

Rr=R.+ Rs =R, + (5.1)

L
Wepy/n3 + n? ’
where Ry is the sample resistance, R, is the contact resistance, ng is the residual
carrier density, p is the field effect carrier mobility, n = a(Vy — Venp) is the carrier
density!, o = Cy/e is the capacitive efficiency and C, is the electrostatic coupling.

The electrostatic coupling between the ribbons and the back-gate has been esti-
mated, using the software Fast Field Solvers, C; ~ 2.4 x 10~* F/m?. This value is
two times larger than the value calculated for a plane capacitor, regularly used for
graphene, ~ 1.1 x 107* F/m2. The difference is a consequence of the size reduction.
When the aspect ration of the GNR width and the oxide thickness d becomes smaller
than 1, in our case W/d ~ 0.33, the electric field lines deviate from that of a plane
capacitor |Lin 2008|and some fringing fields develop on the edges and onto the top
of the GNR. This induces a more intimate coupling and an increase of the effective
electrostatic coupling. The value of C; has been confirmed by the Shubnikov-de
Haas oscillation period, as described below.

The use of expression (5.1) to fit the experimental data is shown in Fig. 5.1 (d)
(blue). The fitting parameter are: the carrier mobility of x ~ 1200 (3500) cm?/Vs,
the residual carrier density ng ~ 32x10' (48x10'°) cm~2 and the contact resistance
R. = 800 (950) Q2 for sample A (B).

Another way to express the sample resistance, in the frame of the Landauer
formalism, in the diffusive regime and neglecting the coherence effects, is:

_h 1 h L/l.+1

ST T2 N

where 7' is the transmission coefficient, [, is the mean free path and N is the number
of conducting channels at the Fermi energy, Fr. Using expression (5.2), we calculate

(5.2)

the total resistance and we deduce a useful relation between the conductance and
the mean free path:

G__<Lﬂe+1+ﬁ;RJMQéﬂ><%f>' (5:3)

Note that the R, is expressed in unit of h/2e?. For wide ribbons, we express the
number of channels by:

kW EpW

N —
T Thug

~ 1.11 x 1073 Ep(meV) x W(nm). (5.4)

!Taking into account the quantum capacitance in graphene, the change in the carrier density
induced by an external gate voltage is given by n = CyVy/e + ng(l — /1 + CyV;/eng) where
nQg = g(%#f The last term in this expression is analogous to the quantum capacitance in
2DEG. For a dielectric constant x ~ 4, a gate voltage larger than few millivolts and a thickness of

the dielectric larger than few angstroms, the last term can be neglected [Das Sarma 2010].
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We assume a contact resistance between R, ~0.5 and 1 k2 in consistency with
the previous estimation from G(V;) and the magneto-transport measurements (see
below). These estimations are not reliable close to the CNP (striped regions): the
final expression for the mean free path is inversely proportional to the Fermi energy
and Er o /V,; — Venp, therefore the expression diverge as we approach the CNP.
The resulting mean free path is plotted in Fig. 5.1-(a) for sample A (black) and B
(red). At V; = =20V, we infer [, ~ 37-41 (69-73) nm for sample A (B). This rather
low value of the mean free paths, compare to the one obtained in unstructured
graphene [Peres 2010] is certainly a consequence of the edge disorder induced the
oxygen plasma etching along with the bulk disorder characteristic of graphene on
SiO9 substrates. Nevertheless, if one compare with results obtained on GNRs by
the same technique [Oostinga 2010, Minke 2012b, Hettmansperger 2012|, we remark
that the mobility we achieve belongs to the highest values. The electronic mean free
path is of the order of the ribbons width, I ~ W, and L/l ~9,5-8,5 (10,7—10,2),
for sample A (B), signature of a weakly diffusive transport regime.

5.2 Electronic transport under high magnetic field

When a magnetic field is applied perpendicular to a GNR, electrons start to
describe orbit. Once the magnetic field is high enough, full cyclotron orbits are
formed in the bulk of the ribbon and skipping orbits (edge currents) are develop at
the edges. When a complete spatial separation of the chiral currents is achieved,
the two probe conductance exhibits the Landau quantization. This quantization
is intimately related to the band structure of the system at zero magnetic field.
The study of the Landau level formation is therefore a powerful tool to explore the
electronic confinement effects on the energy dispersion of GNRs.

The magneto-transport measurements presented in this section are performed
at 4 K and under a perpendicular magnetic field, up to 55 T. In Fig. 5.2, we plot
the resistance as a function of magnetic field, for sample A, each curve represents a
different carrier density tuned by the back-gate voltage. Remarkable characteristics
are clearly visible. A quantized plateau of resistance at ~ 13 kQ (~ (2¢2/h)71) is
observed for a large range of magnetic field and for different gate voltages. We would
like to notice that this was the first reported observation of Landau quantization on
GNRs deposited on SiOg [Ribeiro 2011]. This resistance plateau is also observed in
narrower samples, down to W = 80 nm, as seen in inset Fig. 5.2. Interestingly, the
quantized plateaus are preceded by a resistance maximum. In a two probes con-
figuration and for device with an aspect ratio W/L < 1 [Abanin 2008|, an increase
of the resistance is actually expected when the Fermi energy crosses a Landau level
(section 3.6). In our case, we clearly observe a broadening and a shift to higher
magnetic field of the resistance maximum as the gate voltage is changed from -2,5
V to -20 V. The shift of the resistance maximum is a straight-forward consequence
of the moving away of the Fermi energy from the CNP. However, the broadening of
the maximum is enhanced when the Fermi energy is increased. This is certainly not
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intuitive since we would have expected more defined Landau levels when they cross
the Fermi energy at larger field.
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Figure 5.2: Two probe esistance of sample A as a function of the applied magnetic
field at 4 K, for several back gate voltages V,=-2.5, -5, -10, -20 and -40 V. Inset:
magneto-resistance for another GNR device of width 80 nm at two different back-
gate voltage V,—-10 and -15V showing similar characteristics.

Another quantized value of the resistance, forming a minimum and not a plateau,
at ~4 kQ (~ (6e2/h)~!) is seen when the carrier density is increased (curves at -
20 and -40 V, Fig. 5.2). These two values of the resistance quantization are the
expected when the Fermi energy lies between the Landau levels N=0 and 1, in
case of a monolayer graphene with a filling factor of ¥ = 2 and 6. Note that the
experimental values of the quantization plateaus and minima are slightly larger than
h/2e? and h/6e?. This is due to the non zero contact resistance still present in a
two probes configuration. We extract a contact resistance between 0,5-1 k€2, in
consistency with the field effect mobility analysis. After the plateau at v = 2, we
observe a large increase of the resistance in higher magnetic fields, this occurs when
the Fermi energy starts to enter into the lowest Landau level at zero energy, as
already observed in 2D graphene [Checkelsky 2009].

The first signatures of the electronic confinement appear at high doping levels
(Vg = —40 V), where the Shubnikov-de Haas oscillations are observed, Fig. 5.3
(a). At first look, these oscillations seem standard 1/B SdH oscillations. However,
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the location of the resistance maxima as a function of the inverse magnetic field
shows a strong departure from the 1/B periodicity (Fig. 5.3 (b)). This deviation
occurs at low fields when the electronic confinement overcomes the magnetic one
(section 3.4). We analyze this departure from the linearity using the expression of
the number of occupied subbands at the Fermi energy in a square-well potential of
width W [Beenakker 1991]:

1/2
2B (W W W >
N =Int T Arcsin (dc) + @ (1 — <d0> ) for d.>W
(5.5a)
1 Ep
N_Int{2+hwc} for d. < W
(5.5b)

This expression was originally calculated for a confined 1D electron gas. We
modify this formalism to account the Dirac fermions with their specific energy de-
pendence of the Landau states. We finally obtain:

1/2
2hn (W W W >
N = Int —B Arcsin <dc> + @ (1 — (dc) > for d.>W
(5.6a)
hn
N:Int{} for d.<W
eB
(5.6b)

By using the sample width as a fitting parameter, we reproduce the magnetic
field dependence of the number of occupied Landau states (Fig. 5.6 (b)). We extract
an effective width of Weg ~ 93 nm, which is in good agreement with the nominal
value of our ribbon width (&~ 100 nm, measured by AFM).

From the SdH oscillations at different carrier densities, we can also extract the
electrostatic coupling between the GNR and Si back-gate. The relation between the
oscillation frequency and the capacitive coupling is given by:

:szm%jm”=M%—%my (5.7)

From the slop of the Bp(Vy) curve (Fig. 5.2 (c), red line). We deduce = 1.55
T/V, and by using the expression (5.7), we infer a ~ 1.48 x 10 m=2 V! and
Cy ~ 2.3 x 107* F/m?. This value is in a very good agreement with the numerical
simulation presented in section 5.1. Note that recent results obtained on GNRs with
a similar geometrical configuration show the same enhancement of the capacitive
efficiency |Hettmansperger 2012|.

Br
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Figure 5.3: Shubnikov-de Haas oscillations analysis. (a) Resistance as a
function of the inverse magnetic field for sample A at high doping level V =-40 V.
The dashed lines indicate the resistance maxima. (b), number of occupied Landau
levels as a function of the inversed magnetic field extracted from the SAH oscillations
(red diamonds) and its fit using eq. (5.6) (blue). The dashed vertical line represents
the magnetic field where d. *W. (c¢), SdH oscillation period for different back-gate
voltage (blue stars) and the linear fit (red).

Lets now turn our attention to sample B. The magneto-resistance measurements
for high doping levels, V,=-30, -40 and -50 V (inset of Fig. 5.4), also reveal the
SdH oscillations and the presence of a quantized minimum of resistance at ~ 4 k{2
(~ (6€2/h)~!), marked by a dashed line in the plot. These SAH oscillations also
exhibit a departure from the 1/B dependence similar to the previous ribbon.

However, contrary to sample A, the magneto-resistance measurements at low
doping levels (Fig. 5.4 main panel), present a clear double peak (marked by vertical
arrows) before the expected plateau at (h/2e?) at larger fields. Only an unique and
broad maximum of resistance was observed on sample A.

We also note that the twofold resistance maxima shifts to higher magnetic field
when the carrier concentration is increased. If we plot the resistance as a function
of the filling factor, v = hn/eB, (Fig. 5.5), we see that the resistance maxima occur
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Figure 5.4: Magneto-resistance measurements of sample B for different back-gate
voltages, V;= -12 (green), -13 (red), -14 (blue) V. The arrows pintpoint the unex-
pected double peak. Inset: Magneto-resistance for sample B at high doping levels
Vy=-30 (pink), -40 (wine), -50 V (violet). The dashed line indicates a resistance
quantization of (~ h/6e?).

at identical values of v. This is a proof that this feature is related to the electronic
band structure and its magnetic field dependence.

In order to deeply understand the main characteristics of the magneto-resistance
measurements, we present in the following section, numerical simulations of the
electronic band structure of aGNR and its magnetic field dependence.

5.2.1 Evidence of magneto-electric subbands in GNRs

The simulations of the GNR band structure under a perpendicular magnetic
field have been performed by Dr. Alessandro Cresti from the CEA-INAC-Grenoble.
In this part, we bring evidence that the onset of the magneto-electric subbands
and their crossing of the Fermi energy explain in details, the magneto-resistance we
measure in high field, for different doping levels.

The electronic structure of an aGNR of 70 nm width at B=0 T is shown in Fig.
5.6 (a). As the ribbons used in our experiments are quite wide, their band structure
is not dependent on the exact number of dimmers that compose the GNR. We note



5.2. Electronic transport under high magnetic field 99

35+ .
14V |
13V

30+ 12V A

gzs- 1
o
20 .
15+ S
Sample B
2 3 4

v (nh/eB)

Figure 5.5: Resistance of sample A as a function of the filling factor at 4 K, for V,=
-12 (green), -13 (red), -14 (blue) V.

the direct gap at the center of the Brillouin zone as well as the valley degeneracy
lifting of the 1D subbands (doted and solid line) due to the mixing of the two K
and K’ valley imposed by the boundary conditions of the aGNR.

Once a strong magnetic field is applied (/,,, < W), Fig. 5.6 (b) (B=50T, l,,, =~ 4
nm), we see that the energy gap is closed forming the N=0 Landau level. The valley
degeneracy lifting is preserved at the ribbons edges, where edge currents are formed
and conduction takes place. However, at the center of the ribbon (for low k), the
standard graphene Landau levels (bulk states) develop with the K and K’ valley
degeneracy. If one follows the minima of the 1D electronic bands as a function of
the magnetic field, one obtains the magneto-electric subbands (Fig.5.6 (c)). In this
figure, the dashed and solid lines represent the valley degeneracy lifted subbands.
For moderate magnetic field (around 10 T), the magneto-electric subbands recover
the v/ B behavior expected for graphene. As the magnetic field increases, the prop-
agating states become more confined along the armchair edge and the lift of the
valley degeneracy is enhanced.

Additionally, from the energy bands, F(k), we deduce the density of states and
then the Fermi energy for a given doping level and also for a given magnetic field
(blue and green curves at Fig. 5.6 (c)).

The Fermi energy, as expected, oscillates to keep constant the number of avail-
able states filled by the extra charge carriers n(V,) below Er. As a consequence, the
Fermi energy is pinned into the van Hove singularities, at the bottom of each sub-
band. This pinning is specially large for the lowest levels where the corresponding
flat bands are more extended.
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Figure 5.6: (a) Electronic structure of an aGNR of 70 nm wide. The red circle
shows degeneracy lifting. (b) The same electronic structure under B= 50 T. The
yellow region represents the edges of the ribbon, the blue region the bulk, and the
red circle indicates the valley degeneracy lifting. (c¢) Evolution of the minima of the
band structure in high magnetic field, the gray region represents the v/B behavior
of the 1D subbands. Blue and green lines are the Fermi energy (see text). In all the
figures, the dashed lines represent the 1D branches resulting from degeneracy lifting
due to edge structure.

To correlate the magneto-transport with the magneto-electric subbands, it is
necessary to calculate the Fermi level and its field variations for each gate voltage.
At zero magnetic field, the carrier density and the Fermi energy are related by:
n = 4w E%/(h*v%). This expression holds for 2D graphene. Here, we assume that
it remains valid since, at rather high doping levels where we focus our study, the
number of 1D subbands is quite high. By using this expression, we also neglect the
influence of electron and hole puddles, which is reasonable, considering we work quite
far from the CNP. The Fermi energy versus the gate voltage is finally defined by
Er(meV) =~ 40 x \/(Vy — Vonp). Once the Fermi energy, Ep(B) for each magneto-
resistance curve is calculated, we compare the location of the maxima of resistance
with the magneto-electric subbands intercepting Er(B).



5.2. Electronic transport under high magnetic field 101

(o) o

L0 A A S W
0 10 20 30 40 50
B (T)

Figure 5.7: Magneto-electric subbands for a 100 nm wide aGNR and direct compari-
son with magneto-resistance measurements (red curves and right axis) for sample A.
The blue curves are the calculated Fermi energy (see text) and the dashed blue line
is the constant Fermi energy. (a-1), V; =-40 V and (a-2) zoom on the low magnetic
field. From top to bottom, V, = -10 (b), -20 (c¢) and -25 V (d). The vertical dot
dashed lines represent the maxima of magneto-resistance and the black arrows show
the quantized values of theresistance. The index for the lowest Landau levels are
given on the figures.

Analysis of sample A

In Fig. 5.7, we plot on a same graph the magneto-electric subbands (for a 100
nm wide aGNR) and the magneto-resistance curves of sample A.
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For low magnetic fields, from 3 to 16 T, the Fermi energy pinning is negligible.
A constant Fermi energy can reasonably be assumed (Fig. 5.7 (a) horizontal dashed
line). We see that each time the Fermi energy crosses a Landau level, there is a
maximum in the resistance due to the enhancement of the backscattering (zoom
Fig. 5.7 (a2)). This is an additional confirmation of the SAH oscillations originating
from the successive depopulation of the 1D magneto-electric subbands. At low
magnetic field (below 5T'), we can not distinguish between the SdH oscillations and
the conductance fluctuations.

At higher magnetic field, we cannot neglect anymore the pinning of the Fermi
energy on the lowest occupied subbands.

By comparing Er(B) (blue lines) and R(B) (red curve) for different doping
levels, we observe that the maxima of resistance roughly occur in the middle of the
Fermi energy pinning (Fig. 5.7 (b), (c) and (d)). The minima that may correspond
to quantized values develop when the Fermi energy is between two subbands. More
important, we remark that the broadening of the resistance maximum scales with
the strength of the Fermi energy pinning. This explains the enhanced broadening
of the resistance maximum occurring at larger doping levels (i.e. at larger magnetic

fields).

Analysis of sample B

The comparison of the calculated magneto-electric subbands for a 70 nm wide
aGNR with the magneto-resistance of sample B show interesting features, (Fig. 5.8).
As for sample A, a good agreement between the magneto-electric subbands crossing
the Fermi energy and the quantum oscillations of the magneto resistance requires to
consider the oscillatory behavior of the Fermi energy only when the lowest Landau
states are occupied, Fig. 5.8 (a). Besides, as a consequence of the smaller width,
the two sub-bands (dashed and solid lines) composing a Landau state are slightly
more separated.

At 40 T, the energy separation of the Landau sub-levels forming the N = 1
Landau state is around 14 meV, instead of 11 meV for sample A. The calculated
Fermi energy get pinned not only on the bulk states, at zero k, but also on the
minimum of the sublevel that develops at larger k. This effective Fermi pinning on
the second sublevel goes along with the experimental evidence of the splitting of the
resistance maximum into two peaks (Fig. 5.8 (b) and (c)). When the doping level
is increased, both the two fold resistance maximum as well as the twofold Fermi
energy pinning are shifted to higher magnetic fields.

The very good agreement we observe between the pinning of the Fermi energy on
the two levels and the double resistance maxima, for different doping levels, strongly
support a direct signature of the valley degeneracy lifting of the Landau levels on
the magneto-resistance curves. Such a behavior is only expected to occur on GNRs
with armchair edges (section 3.4.2). So, the quantum oscillations we measure on
sample B support an experimental evidence of an armchair type contribution at
the edges, despite the rather aggressive patterning process we used (oxygen plasma
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Figure 5.8: Magneto-electric subbands for a 70 nm wide aGNR and direct compari-
son with magneto-resistance measurements (red curves and right axis) of sample B.
The blue curves are the calculated Fermi energy (see text) and the dashed blue line
is the constant Fermi energy. From top to bottom, V, = -12, -14 and -50 V. The
vertical dot dashed lines represent the maxima of magneto-resistance and the black
arrows indicate the quantized values of the resistance. The index for the lowest
Landau levels are given on the figures.
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etching).

As concluding remarks, we stress that a convincing agreement has been obtained
between the magneto-electric subbands crossing the Fermi energy and the quantum
oscillations we measured in pulsed magnetic field. Our analysis brings evidence of:

(i) Anomalous SdH oscillations, fingerprints of the conductance that reveals the
well defined chiral edge currents on the two edge of the ribbon.

(ii) Specific magneto-electric sub-bands that are only supposed to develop for
armchair edges.

The valley degeneracy lifting we suspect on sample B, signature of an armchair
type contribution calls for the following remarks:

- The twofold resistance maxima, consequence of the twofold Fermi energy pin-
ning on the Landau sublevels are not observed on sample A. As already mentioned,
sample A is wider giving rise to a lower energy separation of the sub-levels and its
mobility is reduced, implying a larger broadening of the Landau states.

- The valley degeneracy lifting of the N = 1 Landau level has been already
reported on graphene Hall bar deposited on Si/SiOy [Zhang 2006] under B > 25
T. In such a case, the degeneracy lifting is not driven by the confinement but
rather by the electronic interactions. We strongly believe that this bulk effect is
not present in our devices since the electronic mobility of the GNR is definitively
too low [Nomura 2006]. Additional measurements performed at the LNCMI on
graphene flakes of similar mobilities than our GNRs do not reveal any degeneracy
lifting under 60 T at 2 K.

- In terms of concept, it is interesting to emphasize the role of the magnetic
confinement. On one hand, the magnetic confinement overcomes the electronic con-
finement, on the other hand, the magnetic confinement combined to a bias voltage
pushed the conducting channels at the edges of the ribbon. Such a magnetic con-
finement at the edges makes the electronic transport more sensitive to the edge
symmetry and it finally gives strong indication of the band structure at zero mag-
netic field.

5.2.2 The temperature effects on the Landau spectrum

As seen in Fig. 5.8, the energy spacing between the two sub-bands forming a
Landau level (continuous and dashed lines) is relatively small, Agg ~ 4 meV at 25 T
and ~ 5.5 meV at 45 T for N=1, in a 70 nm wide aGNR. It becomes larger at higher
magnetic field. To observe these two subbands in magneto-transport measurements,
the thermal broadening, kg7, and the disorder induced broadening must be smaller
than Agg.

In Fig. 5.9, we plot the magneto-resistance measurements at two temperatures
T = 100 (black) and 4 K (red), corresponding to a thermal broadening of Ay, ~
8.6 and 0.34 meV, respectively. The (a) and (b) figures show the magneto-resistance
curves for different back-gate voltages V, = -14 and -20 V, respectively. We note
that the temperature effects are very well marked in both cases: the broad maximum
of resistance transforms into two well defined maxima.
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Figure 5.9: Magneto-resistance of sample B for two different temperatures 100 K
(black) and 4 K (red) at different back gate voltages V, = -14 (a) and -20 V (b).
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Figure 5.10: Magneto resistance of a 55 nm wide GNR with low mobility (u ~ 600
em?V~1s71) for T= 100 (a) and 4 K (b). Measurements at two different back gate
voltages V; = 30 (black) and 40 V (red).

As an example, we show in Fig. 5.10, the magneto-resistance curves for a 55
nm wide GNR with a low mobility, x ~ 600 cm?V~!s~! at 4 K. We observe some
structures (maxima or minima of resistance) that shift as a function of the back-gate
voltage (marked by vertical arrows), signature of the onset of the Landau states. In
the insets of the Fig. 5.10 are plotted the conductance as a function of the filling
factor. Here, the maxima of conductance are present for v ~6 and 10 as expected
for a graphene monolayer. But the oscillatory behavior is poorly defined and there
is not hint of quantization.

The device quality (i.e. its electronic mobility) remains a critical parameter even
in high magnetic field.
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5.2.3 Impact of the disorder on the Landau quantization

In Fig. 5.11 (a) and (b), we present the magneto conductance curves as a
function of the filling factor, v = nh/eB, at 4.2 K for different charge densities, for
sample A and B, respectively.

The shape of the conductance as function of the filling factor is not the step-
like shape expected for the Hall conductance. Instead, this one is a mixture of the
Hall and longitudinal conductance (section 3.4.2). In the case of a sample with an
aspect ratio L/W > 1, a minimum of conductance between two quantized values
is attended [Abanin 2008]. In Fig. 5.11 (a), we plot the numerical simulation of
the conductance as a function of the filling factor for sample A in the frame of the
Abanin’s model [Abanin 2008]. We use the sample aspect ratio { = L/W and the
Landau broadening, A, as fitting parameters. We obtain £ = 4.1 as fitting parameter
for the aspect ratio, in good agreement with the nominal of £ = 3.5 and a Landau
broadening of A = 0.84 for v =2 and A = 1.05 for v = 6.

We now discuss the robustness of the conductance quantization at v = 6, for the
two samples A and B, when the doping level is gradually reduced. We see that below
a critical back-gate voltage, the conductance at v = 6 is not anymore quantized and
its value start to decrease. Such a decrease has its origin in the backscattering
between the chiral edge currents that are not anymore fully separated. From Figs.
5.11 (a) and (b), we extract the conductance values, at v =6, and the corresponding
magnetic field at which this filling factor is reached (Fig. 5.11 (c)). For sample A, a
magnetic field of 25 T is required to completely separate the edge currents and, for
sample B, this magnetic field is slightly higher, 32 T.

To visualize the width of the edge channels in pristine GNR, numerical simula-
tions of the spatial distribution of the flowing current through the device has been
performed by Dr. Alessandro Cresti. In Fig. 5.12 (a), is plotted the calculated
current density mapping in a 70 nm armchair ribbon as a function of the magnetic
field. The Fermi energy is varied accordingly to keep constant v =6. In high mag-
netic field, the chiral channels are more and more pushed toward the edges, thus
increasing their spatial separation. The possibility of backscattering is reduced and
the conductance is quantized at 6e2/h.

From the transverse distribution of the current, we extract the current separa-
tion, Al as a function of the magnetic field, Fig. 5.11 (d). The channel separation
gradually increases from 0 to 60 (30) nm when the magnetic field increase from 4
(12) to 50 T, for sample A (B). We note that, at 25 T and 32 T, magnetic field values
for which the quantization degrades, the separation between the edge channels are
estimated in Al ~ 45 nm and Al ~ 20 nm for the two samples. Such large values,
deduced in case of pristine GNR, does not allow any coupling between the k™ and
k~ currents. This result makes clear that some disorder must be introduced in the
system to mixt the edge currents at 25 and 32 T.

For sample A, the chiral currents start to mix while they are supposed to be
distanced by 45 nm. For sample B, this distance is reduced to 20 nm. This is
consistent with a higher degree of disorder for sample A, showing a lower mobility.
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Figure 5.11: Conductance as a function of the filling factor for different gate voltages
for sample A (a) and sample B (b). The red dashed line in the left figure is the
simulation of G(v) from the conformal mapping approach (see text). The green dash
dot lines represent the filling factor where maxima of conductance are expected for
monolayer graphene. (c¢) Conductance at v =6 as a function of the magnetic field
for sample A (red squares) and sample B (blue squares). (d) Numerical simulations
of the edge current separation, Al, as a function of the magnetic field for sample A
(red) and sample B (blue).

To illustrate the impact of a single and long-range impurity on the spatial dis-
tribution of the edge current, simulations have been performed by Dr. A. Cresti,
considering a Gaussian potential, which mimics a charged impurity on the substrate
(Fig. 5.12). The maximum strength of the Gaussian potential is 1 eV and its spatial
range is 1 nm. For different positions of the impurity, the edge channel turns out
to be significantly deviated and pushed toward the center of the GNR. This may
induce a non zero backscattering probability to the opposite edge state. We also
mention that an increase of the gate voltage entails a stronger screening of the im-
purities, making them less diffusive. This effect also contributes to the conductance
quantization at large back-gate voltage.

We conclude this part by mentioning that the conductance measurements in the
Landau regime along with the simulation of the spacial distribution of the current
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Figure 5.12: (a) Current density mapping of the edge channels at v = 6 calculated
on a 70 nm wide aGNR, as a function of the magnetic field. (b-d) Mapping of the
current density (Ep=119 meV and B=12 T) in presence of a charged impurity at
different positions from the edge, indicated by the black circle. The impurity pushes
the chiral edge current close together and enhances the backscattering probability.
The red region around the impurity in d) indicates the presence of current forming
closed loops.

give a qualitative indication of the impact of the disorder, mixing the edge channels.

5.3 Summary

Magneto-transport experiments (up to 55 T) at low temperatures on lithograph-
ically patterned monolayer graphene nanoribbons have been performed. The elec-
tronic transport study at zero field gives evidence of a weakly diffusive regime with
a carrier mobility large enough to observe the Landau spectrum in high magnetic
field.

We present results of the Landau quantization for a GNR of 100 nm wide where
quantized values of the resistance correspond to filling factors of 2 and 6, as ex-
pected for a graphene monolayer. At high doping, we reveal the electronic confine-
ment effects on the Shubnikov-de Hass oscillations, when the electronic confinement
overcomes the magnetic one.

For a narrower GNR device, 70 nm, a new Landau spectrum is unveiled, giving
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evidence of a degeneracy lifting which can not be related to the already observed
degeneracy lifting in 2D graphene. By comparing the band structure of an armchair
GNR in the presence of high magnetic field and the quantum oscillations, we found
a good agreement between the maxima of resistance and the pinning of the Fermi
energy on the two Landau sublevels. This agreement strongly support a contribution
of an armchair symmetry at the edges of the GNR.

We also give a qualitative description of the impact of disorder in Landau regime.
By comparing the distance between the chiral currents in pristine GNR and the
magnetic field at which we observe the full quantization at v = 6. We conclude
that some disorder, like long-range potential disorder, is necessarily present in our
devices to couple the edge channels.

This study demonstrate the power of magneto-transport experiments at high
magnetic field in rather clean devices. When these measurements were performed,
we gave one of the first experimental evidences of the Landau quantization in GNR.
The signature of a specific edge geometry on the Landau spectrum would require
further experimental evidence with different sources of GNR. Also, a local probe,
like STM, on the same device to directly address the edge structure could provide
complementary confirmations.
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This chapter merges the magneto-transport results (up to 55 T) obtained on
multilayer 2D graphene and GNRs. Measurements in multilayer graphene reveal the
presence of complex magneto-electric subbands and possible crossing of the Landau
levels. In case of multilayer GNRs, we perform measurements on samples obtained
from different sources (e-beam lithography and unzipping CNTs). In both cases, we
observe the signatures of Landau levels formation but without any sign of the Landau
quantization.

Multilayer graphene systems present distinct physical properties compared to
those observed in graphene monolayer. The electronic band structure of these
systems is modified by the presence of the interlayer coupling which brings a se-
ries of new features, as the opening of an energy gap in biased graphene bilayer
[Oostinga 2008, Ohta 2006] and the Landau level crossing in graphene trilayer [Taychatanapat 2011].
Here, we study the magneto-transport of multilayer 2D graphene and GNRs in order
to observe how the extra layers modify the electronic structure in presence of a large
magnetic field.
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6.1 2D Multilayer Graphene

The samples presented in this part were fabricated during my stay in CEA Saclay,
in the Service de Physique de I’Etat Condensé with the support of Dr. Michel Viret.

6.1.1 Structural characterization

When the number of graphene layers increases, the contrast in optical microscopy
changes. In Fig. 6.1 (a), we observe the optical images of a monolayer (bottom)
and of multilayer (top) graphene. A full recognition of the exact number of layers
can not be made only with optical images. For this purpose, we use the Raman
spectroscopy. The Raman spectroscopy presented in this section was performed at
CEMES-Toulouse with the support of Dr. Miguel Rubio-Roy.

In the graphene’s Raman spectrum, the 2D peak changes both in shape and in
position as the number of layers is increased. This is a consequence of the differ-
ences in the electronic structure, which brings a double resonant Raman process
[Ferrari 2006].
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Figure 6.1: (a), Optical image of the multilayer graphene (top) and the monolayer
(bottom). (b), Raman spectra for the multi (red) and monolayer (black) graphene
shown in (a). The monolayer signal has been scaled to have the same height of the
2D peak. Inset: zoom of the 2D peak.

Let’s start by analyzing the spectrum of the monolayer sample (Fig. 6.1 (b),
black curve). The position of the single mode 2D peak at 2690 cm™!, as well as
the high integrated intensity ratio, I(2D)/I(G)=3.51, are the clear signatures of a
single layer of graphene [Das 2009|. This confirms what we expect from the optical
observations.

In case of the multilayer sample (Fig. 6.1 (b)-red curve), the 2D peak is much
broader and up-shifted, as a consequence of a double resonant Raman process. In
fact, the analysis of the Raman spectrum is quite complex and we can not establish
the exact number of layers since other parameters like their coupling and their
stacking affect the Raman spectrum. We limit our Raman study to say that this is
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a multilayer system.

After the Raman characterization, the sample is electrically connected, in a two
terminal configuration, with electrodes designed by e-beam lithography and metal
deposition. The final dimensions of the sample are: W=5.2 pym and L= 1 pm.

6.1.2 Electronic transport characterization at zero magnetic field

The conductance as a function of the back-gate voltage, measured at 2 K and
after thermal annealing is shown in Fig. 6.2 (red curve). The charge neutrality
point is found at V, = —5 V, indicating that the unintentional doping of the sample
is quite low.
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Figure 6.2: Experimental measurement of the conductance as a function of the back-
gate voltage at 2 K (red) for the multilayer sample, and the comparison with the
one calculated from eq. (5.1) (blue).

The carrier mobility is estimated using the procedure described in chapter 5.
The fit of the experimental data is shown in Fig. 6.2 (blue curve). The capacitive
efficiency we use, a = 7 x10'9 em™2V~!, is calculated from the planar capacitor
equation and is in good agreement with the extracted value from the magneto-
transport measurements (see below). We deduce a contact resistance of R, ~67
Q, a carrier mobility of p ~ 2400 cm? V~! s7! and a residual carrier density of
no ~76 x10'° cm~2. We notice that the carrier mobility calculated for this sample
is slightly higher than the one previously reported for multilayer graphene (bilayer
or trilayer) on Si/SiOg substrates [Zhu 2009, Kumar 2011].

Using the Einstein relation, 0 = p(Er)e?D, where p(Ep) = 2m/wh? is the
density of states for graphene bilayer and trilayer [Zhu 2009], and D, the diffusion
coefficient expression, D = [.vp/2, we obtain a relation between the mean free path
and the conductance given by:
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Here, m* ~ 0.04m,. From this, we obtain a mean free path [, =~ 50 nm in the
highly doped regime, characteristic of a diffusive transport regime.

6.1.3 Electronic transport under high magnetic field

In this part we study the electronic transport in the presence of a high magnetic
field at low temperatures (all measurements were performed at 2 K). For clarity,
the magneto-transport measurements will be presented in two parts: high and low
carrier density, these two parts present distinct characteristics and physical phenom-
ena.

Magneto-transport at high carrier concentration

In Fig. 6.3-Top, we present the magneto-resistance measurements for three dif-
ferent back-gate voltages (V; =-90, -60 and -40 V). These curves exhibit a magneto-
resistance maximum that is shifted to higher magnetic fields as the carrier density
is increased (black and gray arrows), a clear signature of a band structure effect
depending on the doping level.

From the Shubnikov-de Hass oscillations (Fig. 6.3-bottom), we extract the 1/B
values corresponding to maxima of resistance, A(1/B). From the expression (3.8),
we deduce the capacitive efficiency, o ~ 6.8 x 109 cm™2 V~!. In the inset of Fig.
6.3, we plot the Landau spectrum deduced from the SdH oscillations. To build
this Landau plot in the absence of quantized values, we first calculate the filling
factor, v = nh/eB, and the Landau index associated to each maximum. We see
that the linearity of the Landau index as a function the inverse of magnetic field, as
expected in 2D systems, is preserved. In the low Landau index regime, we remark
the presence of a degeneracy lifting.

This degeneracy lifting is more obvious when we plot the conductance as a
function of the filling factor (Fig. 6.4-bottom). However, the interpretation of these
results requires some precautions. Previous calculations of the magneto-conductance
in different two probes geometries [Abanin 2008] show that, for low aspect ratios
(L < W, as in our case) the conductance present a minimum when the Fermi energy
lies between two Landau levels. These predictions have also been experimentally
confirmed |[Williams 2009].

In Fig. 6.4-top, we plot the conductance as a function of the filling factor for
different back-gate voltages. These curves present some notables features:

i) Three values of filling factors v = 6, 10 and 14, are robust and do not depend
on the applied back-gate voltage. These values would be consistent with a monolayer
or a trilayer signature. From the Raman spectrum of this sample, we exclude the
monolayer graphene scenario.

ii) For the curve at V; =-40 V, we observe that the Landau broadening is well
pronounced, hiding the conductance minimum expected for v = 14. This minimum
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Figure 6.3: Top, magneto-resistance at V,=-90, -60 and -40 V for the multilayer
sample. The black and gray arrows show the structures that persist at different
magnetic field as the carrier density changes. Bottom, Shubnikov-de Hass oscilla-
tions of the magneto-resistance at V, =-60 V. Inset: Landau plot from experimental
data (stars) and linear fit (line).

is recovered when the carrier density is increased. At V; =-60 V, the conductance
steps between the filling factor 10 and 14 is much higher than 4e?/h, this increase
may also explained by the Landau level broadening which generates an overlap of the
levels, giving as a result, a non quantized resistance and an increase of the number
of conducting channels.

In Fig. 6.4-bottom, we plot the curve at Vg = —90 V. Here, the conductance
steps as well as the Av have been expressed explicitly. For filling factors higher than
10, the conductance steps start to be larger than the one corresponding to Avr. This
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Figure 6.4: Top, conductance as a function of the filling factor at different V,, for
the multilayer sample. The curves have been slightly shifted for clarity. The black
arrows denote the reliable values of . Bottom, conductance as a function of the
filling factor for V;, =90 V.

behavior can be related to two phenomena:

a) The Landau level broadening starts to be important which increases the num-
ber of conducting channels at given charge density. For the conductance step be-
tween the filling factors 10 and 14, the number of conducting channels is increased
by 5 instead of 4.

b) In case of trilayer graphene, the appearance of conductance steps higher than
expected has been attributed to the crossing of the Landau levels coming from
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different magneto-electric subbands [Taychatanapat 2011, Kumar 2011], as shown
in Fig. 6.5. This is strongly dependent on the graphene stacking.

ABC ABA

E, [meV]

Magnetic field (T) Magnetic field (T)

Figure 6.5: Magneto-electric subbands calculated for a graphene trilayer for differ-
ent stacking (ABC left and ABA right). The solid and dashed lines stand for the
Landau levels originating from valleys K and K’. Adapted from [Kumar 2011].

At lower filling factor v < 10, the steps of 2¢2/h on the conductance correspond
very well with a change of Av = 2. This behavior is also characteristic of trilayer
graphene where the valley degeneracy is lifted (dashed and solid lines in Fig. 6.5).
Interestingly, the last step in the conductance has a value of e2?/h this corresponds
to a new degeneracy lifting, spin degeneracy, which from the best of our knowledge
has not been observed before in trilayer graphene.

Magneto-transport at low carrier density

The low carrier density magneto-transport in this sample also shows some inter-
esting features (Fig. 6.6). The first is the lack of resistance divergence for the curves
close to the charge neutrality point (V,=-6, -8 and -10 V). This has been already
observed for single [Checkelsky 2009] and bilayer [B. E. Feldman 2009] graphene. In
our case, the resistance rapidly increases by more than one order of magnitude, in
the first 20 T. After this, an abrupt decrease down to a minimum around 37 T is
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Figure 6.6: Magneto-resistance of the multilayer sample at low carrier density, mea-
sured at 2 K. Note the well defined minimum at 37 T that seems weakly dependent
on the doping level.

The lack of resistance divergence is possibly related to the degeneracy lifting of
the lowest Landau level. It would explain the fast increase of the resistance when the
N = 0 Landau level starts to be depopulated. Then, for a larger magnetic field, the
degeneracy is lifted, generating a change in the density of states, which manifests
itself by a decrease of the resistance. The second increase would correspond to the
depopulation of the remaining level. The origin of this degeneracy lifting as well as
the origin of the pronounced minimum in the magneto-conductance remain unclear
and need further studies,including the tilted magnetic field dependence at different
temperatures.

6.2 Lithographically patterned bilayer GNRs

In the this section, we present results on a set of graphene samples (monolayer
and bilayer) made from exfoliated graphene. These samples have been patterned by
e-beam lithography and oxygen plasma etching (section 4.1.1). Here, we illustrate
the differences in magneto-transport measurements on a monolayer and a bilayer
GNR, originating from the same exfoliated flake (Fig. 6.7 (a)).
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6.2.1 Structural characterization

The preliminary identification of the samples is made by optical microscopy. In
Fig. 6.8 (a), we observe the optical image of the sample: a part of the sample has
monolayer characteristics (sample A) and the other part, with a more pronounced
contrast, is a multilayer graphene (sample B).The Raman spectra (Fig. 6.8) of the
sample A (black curve) shows a mono-modal 2D peak center at ~ 2690 cm ™! with
an intensity ratio I(2D)/I(G) ~ 3.5, characteristic of a monolayer graphene. The
Raman spectroscopy for this sample was performed at LNCMI-Toulouse with the
support of Dr. Paulina Plochocka’s group.
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Figure 6.7: (a), optical image of the graphene flake before contacting. (b), AFM
image of the sample B. (c), Raman spectra for sample A (black) and B (red). Inset:
Fit of the four modes that compose the peak 2D for sample B.

In contrast to this, the Raman spectrum of sample B (Fig. 6.7 (¢) red curve),
exhibits a 2D peak much broader and up-shifted. In the inset Fig. 6.7 (c), the
2D peak is reconstructed using four Lorentz functions which corresponds to the
four modes expected for graphene bilayer. Besides, the integrated intensities is
I(2D)/I(G)=0.85, in good agreement with the results of [Das 2009] for bilayer graphene

After Raman spectrum, the graphene flake has been electrically connected by
e-beam lithography and metal deposition. After the patterning the dimensions
measured by AFM, are: for sample A (monolayer GNR) W= 80 nm and L= 295 nm
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and for sample B, (multilayer GNR) W=90 nm and L= 280 nm (Fig. 6.8 (b)). In
the following, we will focus on the results of sample B since the main characteristics
of the monolayer GNR (sample A) are similar to those presented in the previous
chapter.

6.2.2 Electronic transport characterization at zero magnetic field

The conductance as a function of the back-gate voltage, after thermal annealing,
for both samples is shown in Fig. 6.8. We note that sample A shows a semicon-
ducting behavior with a strong reduction of the conductance at the CNP at low
temperature. This is the standard behavior of GNR, when the disorder and poten-
tial fluctuations combine to open a transport gap [Gallagher 2010, Han 2007|. On
the other hand, sample B shows a much less pronounced minimum of conductance
at the CNP and a slightly metallic regime in the n doped state. The CNP, after
thermal annealing, is V; ~ —2 V and ~ —11 V for the sample A and B, respectively,
suggesting a larger unintentional doping for sample B.

Sample B
5 E

200 K.
130 K
60 K
[ 2k

0 20 30 20 10 0 10 20 30
Vg (V) Vg (V)

-20

Figure 6.8: Conductance as a function of the back-gate voltage for sample A (a)
and B (b) at different temperatures.

The carrier mobility, for both samples is deduced from the expression (5.1) and a
capacitive efficiency of o = 1.3 x10'° cm™2/V (calculated from magneto-transport
measurements). We obtain a contact resistance of R, ~200 (900) 2, a carrier mobil-
ity of 4 ~ 2100 (1900) cm? V~! s7! and a residual carrier density of ng ~15x10'°
(116x10'%) cm~2 for sample A (B). The lower mobility for sample B is consistent
with a higher doping in this sample and its higher residual carrier density, commonly
observed in multilayer systems.

6.2.3 Electronic transport under high magnetic field

In Fig. 6.9 (a), are presented the magneto-resistance curves obtained on sample
B for selected back-gate voltages, in the high doping regime (V, =20, 30 and 40 V).
The Landau level onset appears in the form of magneto-resistance modulations, that
shift to higher (lower) magnetic field as the Fermi energy is increased (decreased),
as indicated by arrows. This is quite clear in the low up to moderate magnetic field
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(B < 30 T) but becomes more complex at higher fields because of the appearance
of new structures. Note that there is not quantized values of the resistance.

In the inset of Fig. 6.9 (a), we briefly illustrate the magneto-transport measure-
ments of sample A. We see a clear quantized resistance plateau at ~ h/2e? like in
the previous chapter. This confirms the monolayer structure in consistency with the
Raman spectroscopy.

We now study the magneto-conductance as a function of the filling factor v =
nh/eB for sample B (Fig. 6.9 (b)). Most of the conductance maxima, which occur
when the Fermi energy lies between two Landau levels [Abanin 2008, scale at the
same filling factors. They correspond to the ones expected for a bilayer graphene,
v = 8 and 12. Even so, the conductance values at these filling factors are lower than
the expected ones. Indeed, we speculate that the Landau levels are not well spaced
and there is some overlap between them. As a consequence, the edge currents are
not completely separated and the backscattering between the chiral currents reduce
the conductance.

In the inset of Fig. 6.9 (b), we zoom on the low filling factor regime between
2 and 6. The G(v) curves are shifted for clarity. For the curve at 20 V, there is a
broad maximum of the conductivity around v ~4. As the carrier density is increased,
this maximum gradually splits into two more defined maxima. This experimental
evidence may originate from a very beginning of a degeneracy lifting. A deeper
study of the band structure of bilayer GNRs in high magnetic field is needed to
clarify the origin of this splitting.

The comparison between the two samples put in evidence the different nature
of the carriers in monolayer and bilayer GNRs. The distinct electronic structures
give different relations of the Landau level energy as a function of the magnetic field
(Fig. 6.10). For the graphene monolayer, the spacing for the lowest Landau level,
Ag(meV) =~ 36.3,/B(T), is larger than the one for bilayer, Aq(meV) ~ 3.2B(T).
This may explain the lack of conductance quantization for the bilayer sample despite
its quite decent mobility, comparable to monolayer one.

When we compare the results for high doping levels obtained on 2D bilayer
graphene [Dean 2012] and our results for sample B, we note that, in the 2D case
the presence of new Landau levels, due to degeneracy lifting, does not mask the
expected filling factors for graphene bilayer (v =4, 8 and 12). Iin case of the bilayer
GNR (sample B) when the doping level increases, the degeneracy lifting starts to
develop but conductance maximum for v= 4 disappears. This may be the signature
of a new Landau level spectrum where confinement effects mask the filling factors
due to the presence of additional sub-bands, as revealed in the previous chapter for
the monolayer case. Unfortunately, the lack of numerical simulations does not allow
us to go further in the analysis.

The temperature and the carrier mobility effects on the Landau spectrum

The main panel of Fig. 6.11 (a) presents the magneto-resistance for two different
back-gate voltages (V,=20 and 40 V) at two temperatures 100 K (continuous line)
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Figure 6.9: (a), Resistance as a function of a perpendicular magnetic field and
for different back-gate voltages for sample B. Inset, resistance as a function of the
magnetic field for sample A at V; =15 V and 10 V. The dashed line represents the
quantized value of the resistance at h/2e?. B, conductance as a function of the
filling factor for sample B at V,= 20 (magenta), 30 (black), and 40 V (blue). Inset:
zoom at low filling factor. The curves at 30 and 40 V have been shifted for clarity.
The dashed lines represent the filling factors expected for a bilayer graphene.
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Figure 6.10: Sequence of Landau
levels in density of states described
by Ex VNB for massless
Dirac fermions in single layer (Top),
and by Ey « /N(N —1)B for
massive Dirac fermions in bilayer
A £ graphene (Bottom). Adapted from
‘ [Geim 2007].
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and 2 K (dashed line) for sample B.

The temperature effects are obvious. At high temperature, the thermal broaden-
ing combined with an enhanced scattering, completely mask the onset of the Landau
levels. In case of sample A (inset Fig. 6.11), we see the quantized plateau at h/2e?
measured at 2 K transforms itself into a broad minimum of resistance at 100 K
and its value is not anymore quantized. The increase of resistance may be assigned
to an overlap of the Landau levels resulting in an increase of the backscattering
probability.

Again, when we compare the two results, we remark that for sample A, the
Landau level spacing, Ay, is larger than the thermal broadening (4kpT), as a
direct consequence of the BN scaling of the energy. At 20 T, we obtain Ay =
Ey — Ep =~ 1900 K. In case of bilayer graphene, the Landau level spacing for the
lowest Landau index is A; ~ 780 K at 20 T.This is still a bit larger than 4kpT at
100 K. This indicates that the disorder also play a crucial role in the edge current
mixing which prevents the Landau level formation.

As an illustration of the disorder effect on the Landau level spectrum, we present
(Fig. 6.11 (b)) the magneto-conductance obtained on another bilayer GNR of W=80
nm and L=50 nm at 2 K. This sample exhibits a rather low carrier mobility p ~
600 cm?V~!s™!. Only a broad maximum of the resistance, at moderated field,
that shifts with the doping level is present on the magneto-conductance curves
(marked by arrows). This is in strong contrast with the bilayer GNR sample with
1900 em?V~1s~! of mobility (Fig. 6.11 (a)) where, even if the quantization of the
conductance is not observed, the Landau levels start to induce several conductance
modulations in high fields.

6.3 Multilayer GNRs derived from unzipping CNTs

Here, we present the first experimental results on magneto-transport obtained
in GNRs derived from unzipping carbon nanotubes (section 4.1.2). Unfortunately,
despite a big technological and human effort to connect in the best way this kind
of GNRs, the final results are still not optimum. We strongly suspect high contact
resistance that can not be improved despite several treatments.
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Figure 6.11: (a), Resistance as a function of the magnetic field for sample B at
V4 =20 and 40 V. Dashed and continuous lines represent the measurements at 2 K
and 100 K, respectively. Inset: magneto-resistance for sample A for two different
back-gate voltages V4, =10 and 30 V. (b) Conductance as a function of the magnetic
field for a 80 nm wide bilayer GNR with a low carrier mobility (4 ~ 600 cm?V~1s™1),
for selected back-gate voltages at 2 K.

The dimensions of the GNR sample we select in this section are: W=23 nm and
L=50 nm. The resistance as a function of the back-gate voltage at 100 K (Fig. 6.12
inset), shows that the CNP remains above 20 V despite both, thermal and electrical
annealing. This is the signature of a high doping of the sample. The high resistance
of the sample is also an indication of a very high contact resistance or a strongly
disorder sample. We nevertheless exclude this possibility, considering the already
published date on GNR derived with the same technique [Tao 2011].
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Figure 6.12: Resistance as a function of the magnetic field for a GNR derived
from CNTs at several back-gate voltages V,=-80, -60, -40 and -20 V. The curves
have been shifted for clarity. Black arrows indicate possible signatures of a band
structure effect. Inset: Resistance as a function of the back-gate voltage. All the
measurements were taken at 100 K.

Concerning the magneto-transport measurements, we observe a large maximum
of resistance, between 30 and 50 T, that shifts with the doping level. This broad
maximum is certainly related to the onset of a Landau level and its crossing of the
Fermi energy since l,, < W. However, the low mobility prevents any observation
of SAH oscillations. Besides, this kind of samples turns out to be very fragile and
frequently breaks during the cooling process down to 4.2 K. We would like to point
out that the results obtained in this sample are representative of a large set of
samples that were measured without any relevant magneto-resistance curves. More
efforts are needed to prepare these samples in the right way e.g. with a more efficient
annealing before the contacts deposition to get ride of possible adsorbate molecules
that affect the mobility, the contact resistance and screen the back-gate effect.

6.4 Summary

In this chapter, we have presented experimental magneto-transport results ob-
tained on multilayer 2D graphene and GNRs.

In case of trilayer graphene: the Raman spectroscopy shows the signature of a
multilayer system and the magneto-transport measurements seem consistent with
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the non-trivial Landau spectrum expected for a trilayer. For the lowest Landau
levels, we also give evidence of a fully degeneracy lifting with a conductance step of
e?/h.

In case of bilayer GNR, we observe the presence of Landau levels for filling
factors corresponding to v = 8 and 12 but with some unconventional characteristics
at the lower filling factor, v = 4. The differences between the results obtained on
2D bilayer flake and those obtained on the bilayer GNR reveals a likely electronic
confinement effect in the electronic structure. A comparison of the experimental
results with the magneto-electric sub-bands for a bilayer GNRs is missing to fully
establish this interpretation. Note that the different possibilities of stacking, the
existence of an uncontrolled potential difference between the two layers and the
different types of edge symmetry (armchair, zigzag or mix) necessarily imply a large
variety of possible electronic band structures for a bilayer GNR. Once we add some
disorder, the comparison with experimental data becomes very challenging.

The study of the multilayer GNRs derived from CNTs, unfortunately, was not
as successful as we expected, mainly due to technological problems that we did not
improve during this thesis. We hope that these problems can be fixed in the near
future since the high edge quality of this type of GNR seems promising.
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In this chapter, we show experimental results of quantum interference in GNRs.
Weak localization and universal conductance fluctuations are studied in order to
unveil the different characteristics of the coherent transport. QOut-of-equilibrium
conductance fluctuations reveal that electron-electron interaction is the main de-
coherence mechanism in this regime. Finally, as an additional part, we investigate
graphene’s response to a THz radiation. This generates conductance fluctuations
strongly related to a non-linear quantum interference phenomenon.

7.1 Conductance Fluctuations in Bilayer GNRs

These results are obtained on a lithographically patterned bilayer GNR of W =
80 nm and L = 50 nm. From the G(Vj) curve at 2 K (Fig. 7.1 (a)) and using the
eq. (5.1), with a capacitive efficiency of a ~ 4.2 x 10'® cm=2 V~! (from magneto-
conductance measurements), we calculate the carrier mobility p ~ 200 cm? V~1s™!,
the contact resistance R, ~ 850 Q and the residual carrier density ng ~ 60 x 1010
cm~2. The charge neutrality point, after thermal annealing, is around Vonp = -22
V. The high value of Vonp and the low mobility are a clear signature of a disordered

GNR.

7.1.1 Temperature dependence of the conductance fluctuations

The conductance fluctuations are developed when the temperature decreases,
due to an increase of the phase coherence length and a decrease of the thermal
smearing. In inset Fig. 7.1 (c), the conductance fluctuations as a function of the
back-gate voltage, at low bias voltage V3 =~ 100 ©V, are plotted for different temper-
atures. Here, the monotone variation of the conductance is subtracted. We remark
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that the fluctuations are highly reproducible and their amplitude increases at low
temperatures, which confirms its quantum interference origin.
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Figure 7.1: (a), Conductance as a function of the back-gate voltage at 2 K (red)
and its simulation using eq. (5.1) (blue), with the parameters described in the
text. (b), Variation of the magneto-conductance (red) and its simulation using
the expressions (7.3) (blue) of the weak localization, see text. Measurements at
2 K. Inset: magneto-conductance at different back-gate voltages (black) and its
average value (red). (c), Root-mean-square value of the conductance fluctuations
as a function of the temperature in log-log scale. The slope above 10 K suggests a
1/V/T dependence. Inset: conductance fluctuations for several temperatures. The
curves have been shifted for clarity.



7.1. Conductance Fluctuations in Bilayer GNRs 129

We point out that previous works [Ojeda-Aristizabal 2010] show a dependence
of the conductance fluctuations with the back-gate voltage, where the amplitude is
enhanced close to the charge neutrality point. In our work, we do not observe such
dependence.

In Fig. 7.1 (¢), we show the amplitude of the conductance fluctuations, 0Gps, as
a function of the temperature. Above roughly 10 K (T>10 K) a decrease following
a 1/v/T behavior is observed. Intuitively, this regime may indicate a dephasing
process driven by the thermal dephasing length, [7. However, as we said before, the
increase of the conductance fluctuations at low temperature may have two origins:
an increase of the coherence length and a decrease of the thermal smearing.

We now consider the expressions of the conductance fluctuations when the ther-
mal length or the phase coherence length is the correlation length that drives the
dephasing [Lee 1987]:

8 Unggv o lp W2 (2
0Grms = (3) 5 3 1/2 37 (h>7 for Ip <ly <W,L (7.1)

and

1/2 1/2 7,2
0Grms = (8;> 95291;6—1/2 ld)}jgﬂ <eh> , for Iy <lp <W,L (7.2)

For the expression (7.1), when the thermal length is the minimal length, as
Ilp = \/hD/kgT, the temperature dependence is 1/v/T. When the coherence
length dominates the correlation, since [, = (D7'¢,)1/2 and T(;l is proportional to
T [Lee 1987], the temperature dependence is the same. Both mechanisms seem to
be consistent with our funding.

Below 10 K, the amplitude of the fluctuations varies much smoothly and almost
saturates, suggesting that a different dephasing mechanism limits the quantum inter-
ference. Such a saturation of the amplitude at low temperatures is usually expected
when the coherence length reaches the sample length (here 50 nm). To clarify this
mechanism, we propose two complementary approaches:

i) We evaluate the phase coherence length through the weak localization con-
tribution to the conductance: In the inset Fig. 7.1 (b), are plotted the low field
magneto-conductance curves for different back-gate voltages (black) and its average
(red) over a large back-gate voltage range to get ride of the magneto-conductance
fluctuations. One notes that below 1 T, a well defined and monotone increase of the
conductance is clearly visible suggesting an efficient averaging of the fluctuations.
This curve has been fitted with the expression of weak localization for graphene
bilayer (blue) given by [Kechedzhi 2007]:

We? 4eBI; 4eB 4eB
AG(B) = F ~F| g | +2F
B) =0T [ < h h(ly% +1;7?%) A%+ 172+ 17
(7.3)
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where

F(2) = In(2) + © @ 4 i) ,

l; is the inter-valley scattering length and [, is the intra-valley scattering length,
given by [ 2 = 212 +1,% with [, the chirality breaking length and l,,, the intra-valley
warping length. From the fitting procedure, we finally obtaine a good agreement
between the average magneto-conductance and eq. (7.3), considering [, ~ 47+ 5
nm, an inter-valley scattering I; ~ 75 nm, a chirality breaking length [, ~ 5 nm and
an intra-valley warping length [,, = 39 nm. We notice the presence of an inefficient
inter-valley scattering and a dominante intra-valley scattering. This is expected in
graphene devices on SiO9 substrates because of the long range potential variations
due to charge impurities.

ii) As a second approach, we study the correlation voltage of the conductance
fluctuations, V,, directly related to the correlation energy, E., through the expression
E. = h?maV./2m* for graphene bilayer [Ojeda-Aristizabal 2010]. Here, « is the
capacitive efficiency and m* =~ 0.04m, is the effective mass. The correlation voltage
is usually obtained from the half width at half maximum of the autocorrelation
function:

F(AV) = (AG(V + AV)AG(V)). (7.4)

At 2 K, we find V., ~ 0.98 V and E. ~ 2 meV (Fig. 7.2). The correlation energy
is also defined from the correlation length E. = hD/L? . . where D is the diffusion
coefficient and Linin = min(ly, I, L). The diffusion coefficient is approximated from
the Einstein relation, D = G(2¢*/h)AL/m*W, we obtain D ~ 22 cm?/s below 10
K. We deduce at 2 K, a correlation length L,,;, ~ 45 nm, which is very close to the
length of the device and in agreement with the calculated phase coherence length
obtained from the weak localization.

The two approaches support a phase coherence length at low temperature lim-
ited by the device length. The system is therefore coherent over its length. The
conductance fluctuations are dominated by uncorrelated and coherent segments in
parallel, since W > L.

In such a configuration, the amplitude of the fluctuations, according to the ratio

W/L [Rycerz 2007]:

2
3Girms = \/C%%Q*W <€h> , for ly~L and W>L  (7.5)

where C ia a constant equal to 0.116. In our case, it means conductance fluctuations
of about ~ 0.83¢%/h, much larger than the measured ones (Fig. 7.1 (c), at 2 K)
around ~ 0.1e?/h. This large difference remains unexplained. We note that, as
a general comment, the extraction of the characteristic lengths from a two probe
configuration is unfortunately dependent on the transmission at the contacts. As a
consequence, the use of eq. (7.5) would need an additional pre-factor, smaller than
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1 to account for non perfect contacts. This may explain, partially, the different
observed between the measured and the expected magnitude of the conductance
fluctuations.

Additionally, we study the dependence of the correlation voltage with the tem-
perature (inset Fig. 7.2), where a clear increase of the correlation voltage as the
temperature increases is observed. We deduce the correlation length as a function of
the temperature (Fig. 7.2). For T' > 10 K, the correlation length matches with the
thermal length meaning that, the electron dephasing mechanism is driven mainly
by the thermal decoherence.
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Figure 7.2: Calculated correlation length (red) and the thermal length (blue) as
a function of the temperature. The striped region represents the temperature
crossover when the correlation and thermal lengths start to have very similar val-
ues. The dashed line represents the GNR length. Inset: the correlation voltage as
a function of the temperature.

To summarize, we give evidence that the magnitude of the conductance fluc-
tuations follows a o< 1/+/T dependence above 10 K, characteristic of dirty metals
[Lee 1987, Holweg 1993]. From the best of our knowledge, this behavior has not
been observed before for graphene bilayer. In previous works, a 1/7" behavior has
been reported [Bohra 2012b], but this dependence remains unexplained. Below 10
K, a much smaller temperature dependence is measured suggesting a kind of low
temperature saturation of the fluctuations. In this regime, the phase coherence
length is expected to be driven by the coherence of the system, with Iy, < [r. The
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phase coherence length we deduce at 2 K, by two different methods, coincides with
the sample length. An additional study of the correlation voltage as a function of
the temperature reinforces our analysis. The correlation length of the system de-
duced from V,(T') equals to the thermal length I7(T") above 10 K, showing a possible
thermal dephasing of the electronic trajectories.

7.1.2 Magneto-conductance fluctuations out-of-equilibrium

The magneto-conductance fluctuations are observed when a magnetic field is
varied at a constant back-gate voltage. The magnetic field range for this study
goes from zero to 10 T. The SdH contribution is not expected until ~ 20 T (when
By > 1). The magneto-conductance fluctuations are shown in inset Fig. 7.3 (a).
The monotonous contribution has been subtracted.

Let’s start with the analysis of their amplitudes (Fig. 7.3 (a)). We compare
the amplitude obtained from the back-gate sweeping dGyns ~ 0.1¢2 /h and the one
obtained from the magneto-conductance, §G s = 0.04€? /h, measured at 2 K, and
in the equilibrium regime eV <« FE,. The ratio between these two values is =
0.35 ~ 1/2v/2. This is the expected ratio when the time-reversal symmetry is broken
(8 = 2) and the spin degeneracy is lifted [Bohra 2012a]. This is a confirmation of the
ergodicity of the conductance fluctuations in graphene bilayer. The ergodicity has
been considered for monolayer both experimentally and theoretically [Bohra 2012a,
Rycerz 2007].

The Fig. 7.3 (a) shows an evident damping of the fluctuations above a certain
bias voltage V}, > 2 mV, corresponding to a crossover from quasi-equilibrium (eV <
E.) to the out-of-equilibrium regime. The decrease of the magneto-conductance
fluctuations follows a 1/V}, dependence. This has been already observed in graphene
bilayer, by studying the conductance fluctuations as a function of the gate voltage
[Liao 2010]. Despite this, a clear explanation of the 1/V; decrease has not been
found and the origin of this behavior remains puzzling.

We also extract the correlation field, B, from the width at the half maximum of
the autocorrelation function. We observe that the correlation field (around 0.45 T)
is poorly dependent on V; (Fig. 7.3 (b)). We deduce the correlation length through
|Beenakker 1991]:

h

Bo=C—'
¢ eWmninLmin

(7.6)
where C=0.42 since Iy < Ip (from previous results), Lymin = min(L,lr,ls) and
Winin = min(W, lr, l¢). From the characteristic lengths calculated before, we know
that L ~ [y, < W ~ lp. We finally extract a weakly dependent correlation length as
a function of V4, of the order of ~ 63 nm, in consistency with the coherence length
values we previously deduced.

The bias voltage dependence of the fluctuations strongly contrasts with the cor-
relation length deduced from B, which is not affected by a large V;, dependence. In
such a case, the decrease of the conductance fluctuations at large V}, seems not to
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Figure 7.3: (a), Root-mean-square velues of the magneto-conductance fluctuations
as a function of the bias voltage, V4, in log-log scale with a clear decrease of the
amplitude for V, > 2 mV. Inset, magneto-conductance measurements where the
(b),

correlation field as a function of the bias voltage and the calculated coherence length

monotonous curves have been subtracted, for selected bias voltage values.

(inset). All the measurements are performed at 2 K.

be directly related to a change of the correlation length. A deeper understanding
would require some theoretical support which has not been addressed yet.

7.2 Out-of-equilibrium conductance fluctuations in mono-
layer GNRs

In this section, we study the conductance fluctuations in the out-of-equilibrium
regime. The energy dependence of the conductance fluctuations driven by the bias
voltage gives an original insigth onto the coherent transport in mesoscopic systems.
Indeed, a non-monotonous behavior of dGyns(Vp) has been predicted, depending
on the strengh of the inelastic scattering |Terrier 2002, Ludwig 2004|. If inelastic
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process can be neglected, the conductance fluctuations are expected to be strongly
increased by the bias voltage. This can be simply understood by considering a
subdivision of the energy range for the transport into uncorrelated energy intervals,
each participating to the fluctuations. This results into an enhancement of the
conductance fluctuations as a function of V4. On the other hand, above a critical
voltage, the bias voltage induced inelastic scattering is predicted to gradually destroy
quantum interference as a consequence of the reinforcement of the electron-electron
correlations.

Below, we address the out of equilibrium conductance fluctuations in GNR.
Note that, this topic remains poorly studied in mesoscopic systems and no specific
theoretical approach has been developped for graphene.

The results we present here are obtained on a lithographically patterned mono-
layer GNR of W = 100 nm and L=350 nm. The G(V;) curves have been already
analyzed in section 5.1. We extracted a mean free path . ~ 25 - 29 nm for the low
doping regime (-5 V >V, > -10 V). The carrier mobility is around 1200 ¢cm? V!
s~1. Using the Einstein relation, 0 = p(E)e?D, where p(E) = gsgokr/(hvr) is the
density of states, we deduce a diffusion coefficient of D ~ 81 — 68 cm? s7!.

We start the analysis studying the conductance fluctuations on the G(V;) curve
(Fig. 7.4 (a)) measured at low bias voltage (V}, = 100 V) and at 2 K. The amplitude
of the conductance fluctuations is reduced close to the CNP due to the opening of
a transport gap. Away from the CNP (e.g. V, < —2 V), the amplitude of the
conductance fluctuations is in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>