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Abstract:

The early steps of activation are crucial in deciding the fate of T-cells leading to the proliferation.
These steps strongly depend on the initial conditions, especially the avidity of the T-cell receptor
for the specific ligand and the concentration of this ligand. The recognition induces a rapid
decrease of membrane TCR-CD3 complexes inside the T-cell, then the up-regulation of CD25
and then CD25-IL2 binding which down-regulates into the T-cell. This process can be monitored
by flow cytometry technique. We propose several models based on the level of complexity by
using population balance modeling technique to study the dynamics of T cells population density
during the activation process. These models provide us a relation between the population of T-
cells with their intracellular and extracellular components. Moreover, the hypotheses are
proposed for the activation process of daughter T-cells after proliferation. The corresponding
population balance equations (PBEs) include reaction term (i.e. assimilated as growth term) and
activation term (i.e. assimilated as nucleation term). Further the PBEs are solved by newly
developed method that is validated against analytical method wherever possible and various

approximate techniques available in the literature.
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1.1 Introduction

1.1 Introduction

Mathematical modeling (MM) of dispersed systems is well enriched in all fields of sciences. It is
sufficiently prevalent in chemical industries and biological sciences where population density of
particulate systems is studied as a function of the particle size, age and other physical properties.
Crystallization, comminution, fluidized-bed granulation and aerosol-science are the most
common applications in the chemical industries [1], [2]. In biological sciences, MM is getting
enriched by modeling of continuous variation in the microbial populations [3] and the immunity
response against such pathogens [4], [5]. Correspondingly, the applications include the
population dynamics of virus replication and vaccine production for their control [6], [7]. The
immune response was studied for the activation of T-cells against the influenza virus infection
[8], [4]. This study is a continuation of the previous work for the population dynamics that was
based on the experimental observations of in-vitro [8], [4]. Here the cell population balance
model is applied efficiently as a modeling technique in order to analyze the population density
function for the activated T-cells with respect to the surface protein concentration. Several

analytical and numerical methods are utilized to find the solution of the modeled problem.

1.1.1 Literature Review

T-cells are responsible for the cognitive immunity response by providing specific protection
against infections such as virus. Each T-cell clone is highly specific for one antigenic determinant
peptide that is exposed by the self MHC molecule as a peptide — MHC complex. The T-cell has
the capacity to recognize the antigenic determinant and starts an activation process that could
eventually lead to its proliferation and maturation. The TCR — peptide — MHC complex binding
is very fragile but strengthened by co-receptors (proteins) such as CD4 or CD8 and adhesion
molecules, forming the immune synapse [9], [10]. As TCR does not have cytoplasmic tail, the
signal induced by the recognition is transduced through the CD3 molecular complex that is
physically associated to the TCR [11], [12]. The involved CD3-TCR complex is then internalized
inducing a significant decrease of the membrane CD3/TCR density [13], [14]. A minimal level of
TCR/CD3 engagement in a limited period of time is required to reach an efficient threshold for a

full T-cell activation [15], [16].
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The full engagement of T-cells in the activation process leads to the production of several
proteins required for the next steps. These proteins can be measured on cell surface (e.g. CD69,
CD25, CD71, HLA-DR ...) [17], [18] or as soluble cytokines released in the biological medium
such as IL-2 [17]. The CD25, the alpha chain of the IL-2 receptor, is also induced in T-cell
activation and join the other (B, y) chains to constitute a complete, functional receptor with high
affinity for IL-2 on the cell membrane [17], [18]. Thus, the produced IL-2 binds to its newly
produced receptor. The complex is internalized and induces signal transduction that amplifies the
subsequent steps of the T-cell activation. The internalized level of IL-2 IL-2R complex (CD25-
IL2 binding) makes the decision for the full T-cell activation that ends in the cell proliferation

[17].

Thus, the dynamics of T-cell activation directly depends on biophysical parameters such as the
respective membrane concentrations of the peptide-MHC and TCR-CD3 and their mutual avidity
[19], [20]. It can be quantified according to the classical kinetic rules of association and
dissociation. It can then be modeled by using ordinary differential equation systems (ODEs) that
have been already used in modeling other biological processes [21], [22], [23]. Previously an

ODE model is developed mimicking the dynamics of specific activation of a single T-cell [3].

We achieved experiments where a selected peptide is presented to the relevant specific T-cells
ex-vivo in perfectly controlled conditions using an animal model and ex-vivo cell stimulation,
and we measured the early activation induced changes on T-cell by multicolor flow cytometry
[4], [8]. On flow cytometry, the membrane amount of proteins can be directly estimated by
immune-labeling. The protein concentration is directly proportional to their fluorescence intensity
and several markers can be analyzed simultaneously, at high speed, on a large amount of
individual cells. However, actual tools available are not adapted for the analysis of the dynamics
of each single cell inside a heterogeneous population with continuous variable. This is why we
considered using dynamics of cell population concept. This leads us to propose a Population
Balance Equation (PBE) with an order depending on the number of internal variables considered
(protein concentrations). Higher is the number of internal cell parameters describing the cell state,

more difficult is solving the population balance equation.
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Population balance modeling has been successfully applied in chemical engineering including
polymerization, crystallization and precipitation processes [2], [24], [25]. PBE is a partial
differential equation containing terms for birth and death of individuals such as particles or
crystals. In this example, each term of the PBE corresponds to a precipitation status such as
particle nucleation, growth or dissolution, settling, collision and agglomeration. Each single
particle of the population is individually characterized. PBE has also been used for the
mathematical description of the biological processes occurring in microbial or eukaryote cell
populations [26], [27]. Cell populations are complex heterogeneous systems in which each cell is
characterized by its size, morphological parameters and proteins content. Generally, the PBE
cannot be solved analytically. Deterministic numerical schemes or stochastic approach have to be

implemented for getting the solution of the given PBE [26].
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Figure 1.1: Evolution due to the activation of T-cells after recognition against viral infection.

In order to better analyze the precise individual dynamics of T-cell activation FCM (Flow

Cytometer Machine) data, we have developed an original mathematical model based on PBE by
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1.2 Mechanism of Inmune response

considering theoretical single T-cell fate on the basis of the rules of ligand-receptor interaction
which had been developed previously [3]. The cell distribution of the complete heterogeneous
population could then be addressed considering the diversity of their initial parameters. Our
approach has opened a new area of interest on the very early steps of the activation process and

analysis by flow cytometry.

1.2 Mechanism of Immune response

T-lymphocytes lie in the category of leucocytes and have a very important role in the antigen
specific (cognitive) cellular immunity. T-lymphocytes response is considered as the secondary
immune response as it comes into action after the frontline immune system in order to prevent
further viral infection. They are antigen specific and need to be educated before optimal
activation performances. They can detect virally infected cells and tumor cells. Cytotoxic T-cells
gradually exposed to the infected cell and kill them either by means of cell surface interactions
between them and infected cell or through intermediates soluble mediators by forming pores in

the infected cell and releasing cytotoxins in it.

1.2.1 The Pathogens

Pathogens are microscopic organisms that are natural disease producers. Mainly there are three
types of pathogens, namely, bacteria, virus and parasites. Bacteria are unicellular micro-
organisms that can survive in any hot place with nutriments. It can also live in animal’s body and
can be helpful in digesting the food (saprophytes). Most of the bacteria are not infectious, some
are infectious (invade and harm the body by invasion, proliferation and toxin production) but
their treatment is possible by antibiotics that strongly help immune system to perform its role to

reduce the burden.

On the other hand the viruses are smaller than bacteria but are biggest threat to human and other
animals. They cannot survive without living hosts (organism) and, after invasion, enters inside
the cell and holds the cell mechanism to reproduce identical viruses. The virus reproduction ends
in the destruction of the host cell and the invasion of nearby new fresh cells. Unfortunately,

antibodies failed to help once the virus is inside the cell. Early destruction of the cell is the most
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efficient way to stop the virus reproduction. Alternatively some viruses can alter the behavior of
host cells and possibly induce cancer or cell degeneration. Below is a table that describes such

viral infections with their invasion targets and transmission mediums.

Virus induced response can induce misrecognition and self-damaging of the host itself. These are
called an auto-immune attack that includes insulin-dependent diabetes mellitus, rheumatoid
arthritis, multiple sclerosis and Guillain-Barré (GB) syndrome. As an example, the GB syndrome
appearance has been related to bacterium Campylobacter-jejuni or by influenza viral infection but

the main cause for 60% of such cases is still unknown [28].

Disease Causal Agent Organs affected Transmission

Influenza RNA Respiratory Track Droplets

Hepatitis A RNA Liver Food, Water, Contact
Hepatitis B DNA Liver Contact with body Fluids
Dengue Fever RNA Blood, Muscles Mosquito (Acdes Acgypti)
AIDS Retrovirus ®na)  T-lymphocytes Contact with body Fluids
Polio RNA Intestine, Spinal Cord Food, Water, Contact
Chicken pox  DNA Skin, Nervous System  Droplets, Contact

Table I: Diseases caused by viruses.

1.2.2 Antigen Presenting Cell

Certain cells are antigen presenting cells (APCs). APCs act as the primary response against the
virus infection. In the primary infection, the virus needs to invade the body and, after some rest
that can be several days or years, the virus starts replicating and inducing cell damages, and
thereafter disease. At this stage, viral particles can be trapped by APCs and presented to the
specific immune cells. The immune response takes further time (few 10-15 days) to mature and
become efficient. The immune response must be strong, fat enough and adapted. Too light

response will not be efficient and a too strong response may be harmful for the host itself. In

! A mosquito that transmits yellow fever and dengue.
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some conditions, some cells can act as antigen presentation (non-professional APCs) with lower

performances.

The professional APCs include dendritic cells, macrophages, B-cells and certain activated
epithelial cells. They are very efficient to internalize the virus and present it on the surface by a
peptide attached with a molecule major histocompatibility complex class 2 (MHC-II). The non-
professional APCs include all other body cells. It presents the pathogen (particularly virus) by a
peptide attached with different molecule, namely MHC-I. A detailed analysis of the structure and
function of APCs can be found in [29].

In the secondary exposure, the specific immune response is already prepared and can act directly
and efficiently. Thus in the primary response, the kinetics of both the infection and the immune
process are crucial to know which of the invader or the defense will be prominent. The delay, the
speed and the intensity of the response depend mainly on the density and avidity of the peptide
presented to the T-cells. For one given cause (virus), many peptides are made available and many
T-cells can act in different way according to their avidity for their respective peptide and their

own individual capacity to respond.

HC presentingvirus

Figure 1.2: Invasion of pathogen into antigen presenting cell and the presentation of antigen by MHC.
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1.2.3 T-cells

T-cell is one of the major types of lymphocytes present in the blood as a part of white blood cells.
T-cells are early stage matured in the thymus and later matured in lymph nodes. Some proteins
are present on the surface of T-cell according to maturation stage while hundreds of more
proteins are produced during the process of T-cell activation. They are discriminated from other
lymphocytes, mainly B-cells, and natural killer cells (NK-cells) due to the presence of T-cell
receptor [30] on their surface. This receptor protein (membrane) allows the T-cells to recognize
antigens. After the recognition of T-cells with the antigens, the T-cells activate, proliferate,
differentiate and kill those body cells that are considered as harmful for the body homeostasis. At
the end, the apoptosis of T-cells takes place that reduce the specific T-cells to a normal amount in

the blood stream.

T-cells categorize in two classes due to distinction between their T-cell receptors and they are
known as v and o T-cells. Majority of peripheral blood T-cells in humans and mice are oy T-
cells (= 98% of total T-cells). In contrast to oy T-cells, Yo T-cells have T-cell receptor made up
of y chain and 6 chain. The yd T-cells do not recognize peptide bound to MHC-I and MHC-II.
Moreover, the antigenic molecules that activate yo T-cells are not peptides but glycolipids.
Therefore, we focus on off T-cells that are activated by MHC peptides and well established by

the experimental procedures.

The oy T-cells are further classified into two main categories according to the T-cell interaction
with MHC: one is the CD4+ T-cells while the second category is CD8+ T-cells. CD4+ T-cells are
helper cells that cannot fight against the antigen directly; instead they help CD8+ T-cells and B-
cells to act against the APCs. Also they are used as regulatory cells that coordinate the immune
response after their proliferation. The CD8+ T-cells are cytotoxic and are self-motivated that can
act against the APC without any interference of other body cells, e.g. B-cells. We will further talk
about these cells consistently. Now a brief description of the T-cell development and

differentiation is stated below that explains different stages of T-cells during their life.
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) T-cell Development

In mammals, lymphocytes (B and T) and professional APCs are mainly brought to full
maturation in the primary lymphoid organs. During fetal life they are found in yolk sac that is
taken over by the fetal liver and spleen. In adult life, all the blood cells including lymphocytes
and professional APCs are generated in Bone-marrow. All the cells including B lymphocytes and
Natural Killer (NK) cells diffuse into the blood stream [31]. While T-cells leave early bone-
marrow as immature and come to develop in thymus where CD4 and CD8 distinction takes place

after passing through different stages.
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Figure 1.3: Schematic representation of thymic lobule. thymocyte enters into the thymic lobule from CMJ and goes to the
subcapsular region. Double negative get converted to double positive thymocyte that interacts with macrophage in order to
differentiate CD4+ and CD8+ T-cells. The survived cells are mature T-cells and they migrate to blood stream through CMJ.

The development of T-cells in the thymus involves a strict selection process in which 1% to 3%
of thymocytes succeed and export into the blood stream. The selection procedure involves the
recognition roots that are produced randomly and useful (not self-dangerous) cells are eliminated.
Thymocytes dynamically migrate across different regions of thymic lobule each representing a
unique strong environment in order to introduce key elements in the development process of T-
cells. The most notable regions are the corticomedullary junctions (CMJ), cortex, subcapsular

zone and finally the medulla. T-cells arrive from stem cells and differentiate into lymphoid

progenitor cells.
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T-cell progenitors move into the thymus (and become thymocytes) by means of endothelial
venules present on CMJ and crawl to a subcapsular zone. At this time the thymocytes lack TCR,
CD4 and CDS8 and therefore termed as double negative (DN). These thymocytes pass through
different stages of DN (DN1, DN2, DN3, DN4) in which they express pre-TCR oy chains [32].
During cell progress from DN2 to DN4, the thymocyte expresses both CD4 and CD8 expressions
as well as TCRs and rearrange the o and 3 chains which yield a complete o3—TCR. This leads to
extensive cell proliferation during the phase transition from double negative (DN) to double
positive (DP). As development proceeds and cell begins to express its specific receptor, these
thymocytes migrate further into the thymic cortex where a high density of MHC-I and MHC-II
molecules are associated with self-peptides. An interaction between of—TCR+CD4+CD8+ and
MHC — peptide complex takes place that is displayed by the thymic cortical epithelial cells. This
process plays an important role in deciding the faith of the thymocyte [33].

Cortex

=,
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TCR, CD4+ and CD8+
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to recognize MHC Cell survive - diffuse
to blood stream

Hematopoietic Precursor

Medulla

Figure 1.4: Interaction of DP T-cells with Mature APC that results as an apoptosis or as a mature T-cell survival. T-cells
survive with the probability of 0.1.

A TCR that is able to recognize the MHC class I molecule receives both a survival signal and a
maturation signal. Eventually, the cell stops expressing CD4 and maintains expression of CDS. A
thymocyte that obtains a survival signal is set to undergo a positive selection. Similarly, a cell

that has receptor able to recognize MHC class II molecules also receives a survival signal and a
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different maturation signal. Finally this cell stops expressing CD8 and maintain the expression of
CD4. Those thymocytes that are unable to recognize either MHC-1 or MHC-II molecules fails to

receive any survival signals and die by programmed cell death or apoptosis [34].

Thymocytes that are able to recognize MHC-I or MHC-II peptide complexes too avidly receives
strong signals and it drives them into cell death. In this way thymocytes that are able to respond
against self-peptide antigens are eliminated in a process known as negative selection or central
tolerance. The surviving T-cells migrate from thymic cortex to medulla. At this stage they remain
capable of recognizing self-peptide antigens expressed on other cell types such as dendritic cells
or thymic macrophages and receive sufficient signals to cause them to undergo program cell
death. The remaining thymocytes are now mature CD4+ and CD8+ T-cells and pass out of the
thymus. They either return into the blood stream directly by passing through the venules or by the
lymphatic system. These cells are fully equipped with the necessary knowledge and tools to

mount an immune response [31].

1) Importance and Structure of T-cells

T-cells are the type of lymphocytes that have a prominent role in specific immune recognition in
variety of cell-mediated responses that includes anti-viral immunity, anti-tumor immunity and
help in the production of antibody by B-cells. They play an important role in cell-mediated
immunity and memory eventually when innate immune response has removed a limited invasion.
There are various types of T-cells which have specific functions to fight against the foreign
invaders, e.g. CD4+ T-cells and CD8+ T-cells. The limitation of T-cells is that they can only
recognize the foreign antigen when it is presented on the surface of the body cell that is also

known as Antigen Presenting Cell (APC).

The importance of T-cells can be categorized according to their structure and function. Like other
body cells, T-cells are also composed of nucleus and cytoplasmic region that are covered by cell
membrane. Nucleus is covered up by nuclear membrane that mostly contains genetic information.
Tiny pores on the membrane cover whole nucleus by making a complex known as nuclear pore
complex (NPC). The cytoplasm of T-cell is mostly composed of water, salt and organic

molecules [35]. It includes cell organelles for all cell functions like respiration, digestion, etc.
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Figure 1.5: Cell membrane and its components continuously move on the surface to detect the signals and tiny particles. Receptor
proteins are of different shapes and can allow a specific type of protein to get attached and enter or leave the cell cytoplasm.

In particular to our interest, cell membrane plays a vital role due to its selective permeability
property by which it can interact selectively with the foreign components. Cell membranes are
mostly composed of fluidic substances and it contains several components. The composition of
cell membrane is well defined by fluid mosaic model (FMM) [36]. According to this model, cell
membrane can be divided into rafted and non-rafted regions. Part of the cell membrane is
composed of glycoprotein, cholesterol and glycolipids that have significant importance. The rest
of the portion is based on the phospholipids (i.e. fats, phosphoric acid, and nitrogenous base) that
are amphipathic in nature. The glycoproteins like TCR, CD3, CD25 and CD69 etc. are inserted in
between phospholipids as shown in Figure 1.5.

The phospholipids have a shape like a head with a long tail as shown in Figure 1.6. The head has
a charge that makes it polarized while in contrast, the tail is non-polarized. This stops the
diffusion of charged substance like water between the inner and outer portion of T-cell. The cell
membrane, phospholipids, is in a continuous motion. The phospholipids are bind with cholesterol
molecules so that they stick together at any circumstances. Therefore the uncharged but small
elements like oxygen and carbon dioxide are allowed to pass. For the bigger and charged
molecules, proteins receptors are usually used. These proteins come in bunch of different shapes

and sizes and, therefore, it is not possible for them to accept each kind of molecule. This
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1.2 Mechanism of Inmune response

classifies the T-cells into different categories and assigns the job to each of its type. This shows
the importance of the proteins receptors and why the transfer of signal needs various protein

receptors.

Hydrophilic head
(Polarized region)

Hydrophobic tail
(Non-polarized region)

Figure 1.6: Structure and behavior of Phospholipid. Head contains the positive charge while tail contains the negative charge so
that interaction of charged particles between inner and outer surfaces are restrained.

III) T-Cell Expressions

T-cells involve several hundreds of protein expressions during the process of activation against
the foreign invaders. These membrane receptors are almost the same for all T-cells and comprise
of the proteins majorly involved in recognition of antigen (by means of peptide shown by MHC
on the surface of APCs) with adhesion and co-activation of T-cells. In of T-cells, there are
helper T-cells (Ty or CD4+ T-cells), Cytotoxic T-cells (CD8+ T-cells), and Regulatory T-cells
(Tregs). CD4+ and CD8+ T-cells are the major types that are involved in the activation process

before the proliferation.

CD4+ T-cell surface proteins are 60% to 70% of mature T lymphocytes in the blood. The CD8+
proteins are also present on average 30% to 40% of mature T lymphocytes. They are expressed
either as a homo-dimer of two a chains or most frequently a hetero-dimer of a and B chain
complex [11]. The CD4+ and CD8+ proteins are necessary not only for the activation of T-cell
but also for the survival of T-cell. The CD4+ and CD8+ T-cells have most of the proteins in
common. In this study, we follow six T-cell expressions (proteins) that are present on both
(CD4+ and CD8&+) types of T-cells. These include CD3, CD3i, CD25, IL-2, CD25-1L2 and
CD25-1L2i proteins.

13
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T-cell Receptor
Recognition

CD3

CD4+/CD8+

Signaling : :
4
Figure 1.7: Structural diagram of CD3 complex in which CD3, CD4+/CD8+ and TCR proteins are shown in contact with
each other.
CD3 protein is one of the first proteins that trigger the activation process of T-cells. It is
composed of one vy, one 3, two ¢ and two { chains. TCR, CD3 and CD4/CD8 combines to make a
complex that deals with recognition of antigens and signal transduction [11]. Each T-cell contains
10* — 10° TCRs that are identical and can recognize specific antigens. T-cell receptors (TCR) are
heterodimeric® and have antigen specific a and B chains associated with four types of CD3

protein chains to make a complex called CD3 complex that is always present on T-cells.

CD3 protein synapse

i g/

T-cell during
activation
process

-
-\

’

-

D3* protein
synapse

Figure 1.8: Reappearance of CD3 protein as CD3* protein on the surface of T-cell but outside the synapse for CD3 protein.

A protein composed of two polypeptide chains differing in composition in the order, number, or kind of their amino acid
residues (© 2011 Merriam-Webster, Incorporated).
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During the process of activation, the internalized CD3 protein is known as CD3i protein. Due to
the CD3 internalization, the concentration of CD3 protein decreases in the synapse (a place on
the surface of T-cells where all the concentration of protein gathers). It is observed
experimentally that, during the activation process, a protein that behaves like CD3 gathers outside
the synapse [37]. This protein is denoted as CD3* protein. This protein has not been on the
surface before activation, therefore it is considered that it is produced after the internalization of

CD3 protein. This protein will also remain the part of our study in the next chapters.

TCR has o and B chains as shown in the Figure 1.7. During the activation process, TCR, attached
with MHC peptide, it degrades CD3 protein in order to transduce signals (ITAMs) in the
cytoplasmic domain to take first step of the activation process. Its main task is in cell

development and transduces signals to activate T-cell after the recognition of antigen.

% IL-2—Activationand
*Proliferation Signals

The engagement of CD3 protein induces X
production of several proteins like, in SR
particular to our interest, CD25 and IL-2 ‘MR—Spemflc

\y \ recognition
proteins as shown in Figure 1.9. CD25, also | |

. CD3 - Signal
known as IL-2Ra, is the o-chain of IL-2 - ' —\JyTransduction

| | .
receptor (IL-2R). It is a type-1 transmembrane | %‘.@%’“dhem”

y / and Signal Transduction
glycoprotein that acts like a binding for IL-2 in / \Q

. . / \Q CD25/CD69 —Signal
order to present it on the surface of T-cell with Transmission receptor
the help of y-chain. CD25 protein is expressed *
on all types of activated T-cells. They are also ek
IL-2 — Activation and

present during the T-cell development and on Proliferation Signals
the regulatory T-cells. It has low affinity to Figure 1.9: Protein expressions of T-cells.

bind itself with IL-2 though the high affinity is produced by heterotrimeric receptor complex
when IL-2Ra associate itself with IL2-Rf3 and IL2-Ry.

IL-2 is a molecular communicator and growth factor for activated T-cells. Interleukin-2 is a

global protein that is shared by all the T-cells. It plays a vital role in the growth of T-cells by
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1.2 Mechanism of Immune response

initiating autocrine and paracrine signaling. This means that T-cell diffuses signals eventually

into the blood and transduces signals randomly into any specific CD25+ T-cell [38].

IV) Activation Process of T-cells

The activation of T-cells is physically interpreted by the dynamical changes occurring on the
surface of T-cells by means of the degradation or the up regulation of membrane proteins. In
particular to our interests, the surface proteins, like CD3 is internalized, CD25 is produced and
CD25-1IL2 is the binding of CD25 and IL-2 protein, vary their concentrations in order to keep up
the process of activation. Each T-cell (specific to the antigen) follows the same procedure
according to the kinetics rule, depending upon their avidity towards antigen, during the process of

activation and lasts until it becomes fully activated.

The process triggers when the interaction of TCR-pMHC results with the down-regulation of
CD3 protein from the surface into the cytoplasm of T-cell. Due to the continuous interaction of
TCRs with pMHC, a significant decrease in the CD3 protein (along TCR) is observed on the
surface of T-cell. This variation differs from cell to cell depending upon the concentration of

pMHC on the surface of the APC and the association and dissociation rate of the TCR-pMHC

binding.

1 Binding of CD3 to its receptor TCR and CD3 internalization........ L+T—->LT—>T*

2 Subsequent Production of CD3i (due to internalization of CD3).... T* — T*i

3 Induction of CD25 protein...........coeceevveeiiiiiiiiiieeeennn T*1 — CD25

4 Production of IL-2 protein.............ccoevieiiiiiiiiiiiiiaiiannnnn, T*1 — IL-2

5 Binding of IL-2 to its receptor CD25 protein...............cccceeennnee. CD25+IL2—CD25-1L2
6 Full Activation / internalization of IL-2 receptor...................... CD25-IL2— CD25-1L2i

Table II: Six processes involved in this study to describe the T-cell activation dynamics.

The population of activated T-cells increases with the passage of time during the process of
internalization of CD3 protein. The simulation time starts after the first recognition of antigen by
any specific T-cell. From time to time, other T-cells also start recognizing and down regulating

CD3/TCR for the partial activation. This process continues throughout the simulation time until
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1.2 Mechanism of Inmune response

the antigen available on APC. Although the activation is partial, yet the CD3 T-cells, that are
varying the CD3 protein concentration on the surface, are considered as activated. The
internalization of CD3/TCR consequently produces CD25 surface protein. This makes the T-cell
activated regarding CD25 protein. The T-cells produce some cytokines like IL-2 that interacts
with other T-cells containing the CD25 protein on their surface. The process continues as 1L-2
receptor protein combines with its receptor CD25 in order to make a binding complex CD25-1L2.
The T-cell population with CD25-IL2 bound protein increases gradually depending upon the
concentration of CD25 and IL2 proteins. The internalization of CD25-IL2 leads to the T-cell in a
state where T-cell gets ready to proliferate. Some simple steps are written in the Table II and
these steps are presented in the Figure 1.10. During the activation time, all the cells shows the

similar process regarding the protein dynamics but their concentrations of proteins can be

~ ]k ¥ CD3 protein
j | ¢ - * Interleukin-2 ¥
T-Cell - P , !
o 7 CD25 protein —
k4

@
[¢]

different.

¥ T-cell Receptor =<
&

a } CD25-112
CDIS-IL2i  —@

Figure 1.10: Activation process of T-cells. Table II illustrate the numbers written in this figure.

V) Proliferation and Differentiation

The proliferation of T-cells is a division process which starts when the full activation of T-cells is
achieved. This process needs a threshold of the activation measured by internalized protein
CD25-IL2i concentration that will build a sufficient force inside the parent T-cell to divide it into
two daughter cells. These daughter cells further divides into two and this process goes on for
several generations. During this process, the total population increases while the concentration of

proteins divides between the new daughter cells.
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After the proliferation of T-cells, another major event takes place that is known as differentiation.
The differentiation of T-cells assigns the responsibility either to become effector or a memory T-
cell. The effector T-cells act to kill the body cell containing virus while the memory cells
remember the infection for a long time for an early and efficient response in case of re-exposure
with the same antigen. The effector CD4+ T-cells help in proliferation of CD8+ T-cells and B-
cells while the effector CD8+ T-cells directly attacks on the diseased cells.

The population of T-cells starts decreasing after the pathogen is killed and majority of the killer
cells abolish after taking some time but the memory cells remains alive for long period of time.
The above phenomenon of protein dynamics can be observed by flow cytometry technique

(FCM) as it is described in Section 1.2.4.

The variation in the concentrations of different proteins depends upon the stage of activation
process. After the activation of T-cell, we observe the response of activated T-cells against such
infections. The activation rate (production of new T-cells which undergo the process of
activation) and the reaction rate (rate of change in the concentration of proteins) of T-cells are the
two major biological processes that reflect the quality and level of immune response against the

viral infections.

1.2.4 Flow-cytometry

The flow cytometry is a powerful technique to study the dynamical behavior of multiple
parameters of microscopic individuals (cells), in heterogeneous population, by mixing in a fluid
and passing cells one-by-one from a thin flow. It has wide range of applications in cell
characterization such as immunophenotyping, ploidy analysis, cell counting and GFP expression
analysis. The cells are at a very small distance from each other and passed with the speed of 10
m/s. The flow cytometer can detect T-cells with different magnitudes from 1 pum to 15um, and

well adapted for lymphocytes with 8 um of diameter.

A laser beam focuses with a single wavelength that is followed by an optical focus to make it
sufficiently narrow for a single cell. The flow cytometer is efficient enough to pass up to 10

thousands of cells per second and capturing the light from each cell that passes through. The laser
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1.2 Mechanism of Inmune response

strikes the cell surface to scatter the fluorescence in different directions. It produces the spectrum
of light which further strikes dichroic filter. A deflection process takes place that is divided into
two types of scattering. One is ‘forward scatter’ that send low angle diffraction towards the
detector by passing from the lens proportional to cell sign. Another large angle diffraction (after
striking the cell) moves towards the side filters known as ‘side scatter’ that gives information on
cell structure (presence of organelles). Cell proteins / compounds labeled by fluorescence of
different wavelength are captured by electronic amplifier and that are selected by filter. The
filtered light is sent to the respective detector after passing from a lens. All these detectors send
signals towards the computer that represents different properties of cells. In the Figure 1.11, there
is one forward-scatter and four side-scatters shown but in some laboratories of the world there are

cytometers that can recognize up to 18 different colors.

Electronics and computer

system \

Fluidics system

Optics

4

y “Qbﬂ

Figure 1.11: Flow cytometer with one forward-scatter and four side-scatter detectors

http://probes.invitrogen.com/resources/education/tutorials/4Intro_Flow/player.html

Flow cytometry is a distinctive tool that not only counts the cells but also note down their
respective properties by sending signals to the computer device on large number of cells among
heterogeneous population. The information gathered by flow cytometry can be analyzed
statistically and can be graphically represented in respect to the populations selected with the
given properties. This study is concerned to the dynamical changes of the protein concentration

on the surface of each cell.
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1.3 Mathematical Modeling for the Immune Response against Viral Infection

In Figure 1.12, four panels have been shown to illustrate the result found by FCM. Panel-1 shows
CD4+ and CD8+ T-cells selected population. Panel-2 shows the up regulation of CD25 protein
in the activated CD4+ and CD8+ T-cells. The contour plot shows the concentration of CD25
present in the selected population of CD4+ and CD8+ T-cells. Here we can see the stimulation is
not so strong in CD8 CD25+ T-cells while in panel-3 the stimulation is much strong not only in
CD8+ CD25+ T-cells but also in CD4+ CD25+ T-cells. The panel-4 shows the selected T-cells
from the population of lymphocytes present in the sample that is studied by using FCM.
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Figure 1.12: CD3+ and CD25+ T-cells population detected by Flow cytometer (FCM)

1.3 Mathematical Modeling for the Immune

Response against Viral Infection

The mathematical modeling for the dynamical response of immune system turns into a
frontrunner against the experimental procedures due to its continuity in time and the availability

of vast variety of techniques. Although experimental results are necessary to understand the
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phenomenon of any natural process but it is difficult to revise the procedure after small variations
especially because of the time consumption. In particular to our interest, several modeling
techniques have been developed against the viral infections to understand and try to anticipate the

fortune of disease dynamics.

1.3.1 Infections and Mathematical Models

Infections caused by viruses have numerous types depending upon the affection of organs in the
body. Among all, some viral infections are epidemic that needs continuous efforts to control their
transmission to other individuals [39]. Different Stochastic and deterministic models have been
studied to represent the susceptibility, transmission and treatment of such epidemic infections
[40], [41]. These models mainly deal with the large populations of infected patients which have
subgroups known as compartments. Each compartment is abbreviated according to its epidemic
stage as M (Maternally-derived immunity), S (Susceptible), E (Exposed), I (Infective) and R
(Recovered). The analysis of population dynamics of such models are based on simple ordinary
differential equations (ODEs) where each ODE represents a compartment [42]. Public health
practitioners and researchers are frequently pointing out the emerging areas in order to make their
mathematical models and classify ongoing challenges [43]. These epidemic models mainly work

on the outbreaks and spread of diseases in the society.

Infection outbreaks
and control
Population dynamics
of immune response

Figure 1.13: Ongoing research in viral disease dynamics

> Survey data analysis

> Epidemic Models

Viral Infection

Experimental analysis

> Mathematical Models

Another category in the modeling techniques is the mathematical modeling of the mechanism
involved in virus propagation and immune response during the epidemic infection (in a human
body). These models are used to analyze the dynamical changes by following the behavior of
their physical parameters. Many researchers have shown their interest to model such evolutions

by using numerous modeling techniques. The multi-scale modeling of such infections are used to
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study the variation in the population of infectious cells due to their age of infections [21] and the

population dynamics of specific T-lymphocytes activated after the antigen detection [4], [44].

If we go further deep in the study of specific immune system, we come across the activation and
proliferation of T-lymphocytes that are based upon the chemical signals exchange by the help of
numerous markers (proteins) associated with T-lymphocytes. These viral infections are
mathematically modeled by using variety of modeling techniques that have effectively revealed
the implicit mechanism of their pathogenesis. For example, the rate of viral production, the age of
infected cells, the treatment for infection caused by Hepititis B virus (HBV) and Hepititis C virus
(HCV) are modeled to analyze the interferon and ribavirin therapy [21], [45] and the memory of

the infections by means of memory T-cells in order to respond more abruptly in future.

1.3.2 Modeling Population dynamics

The modeling techniques for discrete particle systems of chemical engineering are assimilated in
the biological sciences in order to understand, particularly, the dynamics at a single cell level and
at the population level. Each model is based on distinct assumptions and therefore can yield

unique information at different computational expense.

Modeling
Population dynamics

Stochastic Modeling Deterministic Modeling

\

Continuum and
Ensemble Modeling

Population

Balance Modeling

Discrete Element
Modeling

Figure 1.14: Various modeling techniques for population techn
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[) Stochastic Modeling

Stochastic modeling (SM) technique is based upon the probability of being in a state rather than
predictable selection of the state. It has wide variety of applications in chemical engineering as

well as in the biological sciences including cell population dynamics.

The dynamical effects at single cell level are defined by a random variable that can vary under
the possible range of values. The random variable represents the rate at which the intracellular
content changes, for example concentration of proteins etc. The range of values gives an entire

space to the stochastic variable to decide the path according to the defined parameters.

The population dynamics involves the physical properties of cell by introducing a probability of
virion interaction with uninfected cells to make it infected, the probability of infected cell to

become uninfected and the probability of degradation of infected cells [6], [7].

The dynamical behavior is not predictable at any stage and the repetition of the simulations can
vary the random variable value according to its defined probability. This makes it less interactive
for the analysis of the cell population. Although the physical processes are random yet the
random variables lack the tools and techniques to analyze their behavior under the desired
circumstances. These arguments compel us to use the deterministic modeling that is more

focused to follow the set directions; therefore one can anticipate the succeeding situation.

The stochastic models deal separately with the single cell dynamics and the population dynamics
of cells. However, many dynamical systems in cell biology need a relation between the
intracellular contents and the cell population due to the influence of cell on each other. Our aim
of this study is to deal with such relations in order to develop a better idea about the immune

response against viral infections.

II) Deterministic Modeling

Deterministic modeling (DM) involves prediction of dynamical changes under the given data
without involving any randomness during the simulation. DM techniques are based up on the

differential and integral equations to study the dynamical changes at intracellular and
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extracellular levels as well as at the population level depending upon their deterministic
frameworks. In these frameworks, it is assumed that the system evolves in a continuous and well-
prescribed manner by considering that the population of cells is sufficiently large [46]. Following

are the modeling techniques that are frequently used to study the natural processes.

Discrete Element Modeling

Discrete element modeling (DEM) is a numerical method for predicting the flow of individuals
and moving objects. This technique best fits with the analysis of disaggregation and motion of
particles or where the scientific principles are applied to govern each particle interaction possibly

including particle-particle interaction, friction, electrostatic, magnetic, and gravitational forces.

A Discrete element modeling starts with the collection of particles along with their current
position and velocities. The physical characteristics depend upon the forces applied on the
particle and some other effects like cohesion. These forces are then used to determine the position
based on the current velocity. Similar steps can be followed to determine the behavior of each

particle during the whole simulation time.

This technique is capable of treating simple particle shapes like spheres and ellipsoids that puts a
restriction on its usage. However the cell population dynamics can be followed due to their
rounded shapes and structures. DEM allows the analysis of particulate systems in more depth as
compared to the physical experiments but it is bounded to either the simulation time or the
number of particles due to lack of computational resources. Several software have been
developed to enhance the computational needs. Until now the number of particles up to 10’ is
allowed to study with sufficiently long simulation time. This reason has decisively blocked the
DEM technique in the biological sciences, particularly to study the cell population dynamics,

because the population of cells is normally treated above its computational bound.

Continuum and Ensemble Modeling

At a single cell level, the intracellular and surface contents (e.g. concentrations) are considered as
dispersed in the continuous phase of the cell. Ordinary differential equations are used to represent

such models by assuming that all the cells share the same concentrations [27]. Therefore, the
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variation at a single cell level is reflected as a general behavior of cell dynamics. Such models are
denoted as Continuum models. These models are simpler but do not address the distribution of
contents among the population of T-cells. Therefore, the heterogeneity of the contents among the

cells is neglected.

A more effective modeling technique is the ensemble modeling which treats the heterogeneous
nature of the cells by dealing with the concentration of each cell individually. Each ODE
represents rate of change at the single cell level with randomly distributing the initial
concentration, known as ensemble [27]. This gives efficient analysis of contents at single cell
level but in a case of huge population, the simulation of this modeling technique is time
consuming. Also, the homogeneity in the cellular contents can make this technique less

advantageous as compared to continuum modeling.

Population Balance Model

Deterministic models, like continuum and ensemble models, works at single cell level or at the
population level while we need the modeling technique that can work at both ends to provide a
relation among them. Population balance models provide such interface that helps us to make a
connection between the single T-cell dynamics with the population dynamics of T-cells during

their process of activation.

Population balance modeling symbolizes the diversity of features in a given population. These
features are measurable intrinsic qualities such as age, size, shape, DNA/RNA contents and
concentration belongs to an isolated set of population. Therefore, the population can be
distributed according to the strength of such feature. The population undergoes several physical
and chemical processes with the passage of time. These processes make the evolutionary changes
in the population by varying the measure of the feature. However, the total population remains
conserved during the course of action as shown in the Figure 1.15. Such conservation in the

population is generally referred as balance law or conservation law for population balances.

The population balance model (PBM) is introduced by Huburt and Katz in the field of chemical

engineering that is followed by Fredrickson in 1970s in biological sciences. It has shown
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remarkable achievements in the field of chemical industries [24], [47]. In biological science,
PBM is creating its place due to a vast application of population dynamics [5], [26]. Our study is
roughly the change in the concentration of proteins and their respective population densities of T-
lymphocytes after activation in the presence of given cell contents (proteins). For example, after
the interaction of TCR with MHC, the CD3 protein, attached with TCR, degrades into the cell
which shows a decrease of CD3 protein concentration on the cell surface. The rate of change in
the proteins concentration at a single T-cell gives the idea of reaction rate and mimics the

dynamical effects on the T-cell population density comprised of the same concentration.

c(t)

t

Figure 1.15: Illustration of balance law. The change in the protein concentration in a set of population increases the density of T-

cells for small step size AC while the total population remains conserved throughout the simulation time.

The collision with APC and the initial variation in the concentration of proteins change the status
from non-activated to the activated T-cell. This change in the status is called as activation rate. At
the initial level of T-cell activation, the above two processes, reaction rate and activation rate,
exist which evolve the population of T-cells by variations. By conserving the total population
during the whole dynamical process, the conservation law can be stated as “Under the given
initial population of T-cells which undergo the process of activation, the rate of change in the
population density of T-cells at concentration ¢ is equal to the flux of the population density

varying between the concentration ¢ to c+Ac”. If n(c,t) is the density function with ¢ as a

concentration of protein and ¢ as time, one can write the mathematical form of the above quoted

statement as,
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%+%(G(0)n(0,0) = N(c,?1) (L.1)
n(c,0)=0

The function G(c) is considered as the reaction rate while N(c,?) is the activation rate. The
associated initial condition shows that there is no activated T-cell at time # =0. According to the
conservation law defined above, the flow of the total population remains conserved while the
population density varies due to the inflow and outflow of the T-cells at a given concentration ¢
to ¢ + Ac during the process of activation, Figure 1.16. A detailed analysis of population balance

modeling technique is given in section 3.2.

Activation of new cell at
concentration ¢ + Ac AX

c+Ac

T T T

1 1+ I+
Birth of cell at a given concentration
=B(t;,)dt =n(0t) Ac t t+ At

Figure 1.16: Graphical presentation of flow of population from time t to t+dt.

There is an overview about the contributions by researchers on the population dynamics of

infected cells followed by the flow cytometry analysis and cell population balance model.
1.3.3 Former contributions to mathematical modeling

) Contribution by Sidorenko ([6], [7])

Sidorenko Y. [6], [7] worked on a stochastic population balance model that is described for

influenza—A virus replication in MDCK (Madin-Darby Canine Kidney) cells. The model
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quantitatively reproduced and interpreted flow cytometry data for the intracellular dynamics

(proteins and RNA molecules) of the population of infected cells.

In his model, the interaction of virus and host-cells are considered with an explicit population of
virions instead of considering the spread of virus from cell to cell. Let N_be the initial total
concentration of cells. The ratio between the free virions (virions in the blood but outside the cell)

concentration and N, is denoted by V (virions/cell). Similarly the ratios of uninfected and

infected cells with N, are denoted by Z  and Z, . The sum of the two ratios, Z, and Z, , is

in?

less than 1, ie. Z +Z, <1. Now, by taking ratios, the model is independent of initial

concentration. Z, is the ratio of degraded cells (dead cells) in the suspension that 1s defined as:

Z,=1-72-2,. (1.2)

mn un

The concept of transition probability is introduced for the concentration of cells in the simulation
using kinetic Monte Carlo (MC) method. By this concept, the uninfected cells are set in transient

state (change to any state) while the degraded cells are taken as in the absorbing state (no change
to their state). The infected cells are further differentiated into different classes “J” (1<J <J,,)
with respect to the internal coordinate j which corresponds to the intracellular number of viral

components stated as the virus equivalents (VEs). In this way, j virus equivalents lies between the

range WxJ to WXJ +1) where W is the width (VEs/cell). The cells in each class J are assumed

to have the same behavior. Fluorescence intensity of cells is measured by flow cytometry for
intracellular proteins M1 and NP. If j is the number of intracellular VEs then the fluorescence

intensity is defined as:

F=F,+a,xj, (13)

where F; is the low non-specific fluorescence intensity and a,. is the fluorescence intensity for

one VE. The uninfected cell (J=0) has the probability P

un—un

to remain uninfected, P, _, X/ to
become infected of class 1 and P, , to become degraded while the degraded cells will never
change their states. Random walk formulation is adopted for the study of infected cells. The

infected cell degrades with probability P,_, or shift to class J—/ (due to virus release), J (no
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change of state) or J+/ (due to virus replication) with probabilities P, P, . orP, respectively.

All the transition probabilities are defined as constants for simplicity but, in general, they depend

upon the class of the cell.

The dynamics of virus release was studied on each simulating step (k) using a deterministic
approach, rather than a stochastic approach, to reduce complexity. At each k& step, an infected

cell produces W virions with probability p,. . The ratio for the number of infection producing cells
with N_, each releases W virions, at the given step is p xZ'. Similarly the fraction of

accumulated virions in the cell at simulation step (k) is a,, >xZ*

s un

where a, 1s a constant
parameter of virus adsorption. Also a constant degradation a,, is assumed at each simulation

time step. This all process gives a mathematical equation for calculating the number of virions at

extracellular medium for (k+1)" step, denoted by V virions/cell,

s _ ) o pr N aVAS A 7 ) ~ay, ) (1.4)

m un

In simulation, at each time step Az of MC run, an array of test cells is considered. For each test
cell, random numbers are drawn to determine whether the cell changes its state or not. After that

the number of free virons V' is calculated by above formula.

Sidorenko extended his work by describing the virus replication and release process with more
detail. The concept of transcription, translation and replication of viral genome, synthesis and
degradation are held under discussion in the model formulation. The infected cells are detailed

under the 14 basic processes occurred during the influenza A virus infection [7].

The model parameters obtained from the optimization strategy (14 processes) are used to predict
the general behavior of virus and cell populations. The sharp increase of the number of infected
cells in the beginning of infection is due to the absence of a time shift in the present model. Since
all the processes are not estimated in the beginning of infection, therefore, a disagreement

between the simulation of the present model and the experimental data is appeared.
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As we discussed above in the section 1.3.2, stochastic population balance modeling analyzed the
population of infected cells and virions but there is no information present at the intracellular
dynamics. Normally the viral infection affects the intracellular processes that evoke an effect at
the population level. Lack of investigation at single T-cell level may affect the drug therapies as

drugs usually targets intracellular components.

I1) Michel Stamatakis ([27])

Three modelling frameworks are discussed by Michel Stamatakis for the mathematical
description of microbial populations, namely cell population balance (CPB), ensemble and
continuum modelling [27]. One can get a good idea for choosing the appropriate modelling

approach for the particulate application after going through his work.

Apart of the above modeling techniques, cell population balance modeling (CPBM) is also under
his discussion. The continuum and ensemble modeling techniques deals with the intracellular
contents but give no information about the population density of cells with respect to their
concentration. In CPBM, a relation is defined between the dynamical changes in the intracellular
components with the population of T-cells. Therefore, this model deals at single cell level as well
as the population level. The CPBM is well established in chemical engineering and known as
population balance modeling (PBM). The general CPB equation is a balance of expected cell
numbers in the state space and it can be written as:
M+Vz[r(z,S)N(z,t)]+F(z, S)N(z,t)

Jt (1.5)

=2[T(,8)p(z| v, SIN(y,0)dy = DN(z,1),

subject to the regularity condition
r(z,S)N(z,t)=0, ze€dG.
In the above equation, z is a vector which consist of intracellular and morphomoric contents of

the cell while S is also a vector representing the extracellular substrate concentration. N(z,?) is

the number density function, r(z,S) is the rate at which the cells goes to intracellular reaction
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and I'(z,S) is the rate at which the cells goes to intracellular division. Also D is the dilution rate

and p(z|y,S) is the probability for the division of a cell into two cells having statesz and y—z.

For single cell models, the ensemble modelling is used that tracks the timecourses and simulate

them at different initial conditions. A single cell model for the concentration C can be written as:

dc
E:f(C,S,k,t), (1.6)

where k is the random parameter and f is a vector giving the rate of change of the
concentrations. Let p,(k) be the probability density for & that deals with the change in the

intracellular contents. If p(C,¢) is the normalized density of cells in the ensemble volume dC at

time 7, then ensemble model can be formulated as:

Ip(C.1)
T A{ VX(f(C,S,k,)p(C,1)py(k))dk = 0. (1.7)

It is interesting to note that the above equation becomes an advection equation if we are

perturbing the initial condition having the parameter set fixed to %, .

The continuum modelling deals with the evolutionary changes of the intracellular concentrations

and it is represented as

dcC
EZQ(C,S,]{,Z)—,UC, (18)

where u is the average specific growth rate, that remains constant in these models, defined as

_(LdV
1= (1.9)

where V is the volume of the cell. Two exact hybrid models are derived under some biological

plausible conditions that simplifies the CPB model without any approximation. In these hybrid
models the evolution of the species concentrations is captured by an ensemble model and by a
continuum model with one-dimensional population balance equation. By these remarks, one can

write the equation (1.5) as:
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ON(x,V,t)
ot
=2 [ [T, 8)p(e,V |y, W, S)N(y, W, 1)dydW — DN(x,V 1),

R} G

+V [r(x,V,S)N(x,V,0)]+T(x,V,S)N(x,V, 1) +aiV(g(x, V,S)N(x,V,1)) (1.10)

with the regularity condition defined as

r(x,V,S)N(x,V,t)=0,
gx,V,S)N(x,V,t)=0 when x, =0 foranyi=1n or V =0,

(1.11)

where x is the replacement of z and it is a vector with molar contents that are extensive quantities.

r(x,V,S) is the reaction rate by which the intracellular contents x goes into the reactions and

g(x,V,S) is the single cell growth rate. The Eq. (1.11) ensures us the the number density is
bounded and does not leave the orthant of ze R™" . Define a transformation for x as: C :% and

take the total differential of x and C. This gives us a relation between these two variables and

we can transform the above model by using this relation. Let us define the number density as
N(x,V,t)=V""N(C,V,t) and reaction rate as r(x,V,S)=V>(C,V,S). Also suppose that the
growth and division rates with respect to concentrations are g(x,V,S)=G(C,V,S) and

I'(x,V,8)=3(C,V,t). The population balance equation can be written as:

v w +V [FHC,V, SV " N(C,V,0)]+3(C,V,SV"N(C,V,1)
0 — ~Cod —
+—(G(C,V, SV N(C,V,0))-Y ———| G(C,V,S)V " N(C,V,t (1.12)
A L) ileaCi[ (C.V, SV N(CV,1)]
=2 [ [S. W, W N, W, p(C.V | Y, W,S)dYdW — DV ™" N(C,V 1),
R; ©
with given regularity conditions:
r(C,V,S)V " N(C,V,1)=0, (1.13)

g(C,V,S)V’”N(C,V,t):O when C, =0 forany i=1n or V—0.

Six conditions are imposed to introduce a new set of equations that is simple and exact alternative

of population balance model. These conditions are: equal species concentrations in mother and
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daughter cells, size-dependent intensive reaction rates, size-dependent but concentration-
independent growth and division rates and partitioning mechanism. Under these conditions one
can derive a hybrid model that consists of 1-D population balance and an ensemble model. If two
more conditions are imposed that is the average cell growth rate is constant and the initial cell
population is homogeneous, then the ensemble model transforms to structured but unsegregated
continuum model with 1-D population balance that is actually the basis of this dissertation. The
work can be extended to more realistic model by working on multi-component cell-to-cell

interaction.

[11) Kavousanakis Work on Cell Population Balance Model [27]

The basic aim of this paper is to study the impact of extrinsic type of heterogeneity (type of
heterogeniety originating from unequal division of the intracellular contents of the mother cell)
on the behavior of entire cell population. A boundary algorithm for the numerical solution of cell
population balance (CPB) problems is developed that is based on a transformation of variables
with respect to the average intracellular content of iso-genic populations. The implementation is
studied in a software package COMSOL Multiphase. The CPB model is represented by a integro-

partial differential equation. If F(x,#)dx represents the number of cells per unit biovolume

(intracellular content between x and dx) at time t then CPB equation with B.C. is given by:

% + ai[ R(x)F(x,0)]+ T (x)F(x,t) = 2_[ T(x")P(x,x"VF(xX',t)dx, (1.14)
X
F(0,1)= F(x,,1)=0.

R(x) is the single cell reaction rate, I'(x) is the single cell division rate and P(x,x’) is the partition
probability density function by which a mother cell of content x” will produce, by division, a
daughter cells of contents x” and x” — x. The above model is reformulated by defining number

density function, n(x,7). which denotes the fraction between number of cells with content x at
time t, F(x,t), and total number of cells at the same time, i.e.
F(x,1)

n(x,t)—— .
J.O " F(x,t)dx

33



1.3 Mathematical Modeling for the Immune Response against Viral Infection

The substitution in the Eq. (1.14) yields the following equation with imposed boundary
conditions (BCs):

M + i[R(x)n(x, H]+T(x)n(x,1)
ot ox
(1.15)
=2 j T ()P, X (X, 1)dx’ —n(x', 1) j T(x)n(x, t)dx,
n(0,t)=n(x,,,t)=0.

A free boundary algorithm is used to find the co-existing solutions of the above mathematical

model. The normalized physiological state space, i.e. [0,x with respect to the average

max ] >
intracellular content < x >:

0<x<x :Oﬁfz;ﬁl

max <x>xmax : (116)

Define a transformation n(x,¢)dx = g(&,1)d& , where g(&,7) is a transformed density function,

and differentiate it with respect to time. After some manipulation of above equations, we get a

differential equation that tracks the temporal behavior of < x >in the transformed domain & with

similar boundary conditions on g(&,7) as on n(x,z):

d<x>

= R@)g€nd-<x> [T©e(&0ds,

2(0,1)=¢g(1,)=0.

S e —

(1.17)

To demonstrate the efficiency of the above algorithm, a lac operon gene regulatory network is
used as a model system and perform transient and asymptotic behavior analysis. This gives a
complete formulation of CPB problem for an isgenic population, each cell of which carries the
lac operon gene network. The analytical solution of the CPB problem is intractable, therefore a
numerical approach is necessary for it. Here finite element method is implemented for the
solution by using COMSOL software package. Finite element methods are actually
computationaly expensive and complex methods whereas the Finite volume methods (FVMs) can
best fit with CPB equation particularly when the equation obeys conservation law for population
balances. FVMs cover the entire domain by defining control volumes that are easy to handle

instead of FEM that is more useful in complex geometries and solid mechanics.
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IV) Shamsul Qamar [47]

Qamar is working on the population balance modeling in chemical engineering as well as
biological sciences. His recent article [48] is about the Multivariable cell population balance
models (CPBM) in which he studied the single-variate and bivariate cell population balance
equations (CPBEs) during the division process in terms of their biomass. The CPBE consist of
increase in the amount of cell biomass represented by cell growth and an integro-differential
equation demonstrating the substrate consumption. Let x be the amount of biomass (the protein
contents of cell), g(x,f) be the cell growth and the source term describing the substrate
consumption is denoted by Q(x,7). The total population with the amount of biomass x at time 7 is

represented by N(x,7) such that N(x,7)xdx represents the number of cells per unit volume which

at time ¢ have physiological state representation between x and x + dx. The single-variate CPBE

for the state distribution function N(x,7) can be written as:

ON(x,t) 0 _
T+§[g(x,s)N(x,t)]—Q()C,l‘), (1.18)

N(x,0)=N,(x).
The variable s is the substrate concentration. The first term in the Eq. (1.18) is the accumulation

term while the second term gives us the cell growth in which the amount of biomass

monotonically increases. The source term Q(x,7) describes the process of division that is
represented by division rate I'(x,s), and the birth process is described by the partitioning

function P(x,y,s). Thus,

O(x,t)=-T(x,s)N(x,t)— DN (x,1)+ ZLXW L. s)N(y,0)P(x, y,s)dy. (1.19)

The first term denotes the cell loss due to the partitioning of cells; the second term denotes the
rate at which the cells leave the bio reactor and the integral term is the division of parent cell into
two daughter cells. Each parent cell divides into two daughter cells is the reason of multiplying
the integral term by two. The mass of the parent cell is divided equally into two daughter cells

which can be described mathematically by assuming partition probability density function

P(x,y,s) as a dirac delta function and can be defined as P(x,y,x)=0 (x—%). Therefore, Eq.

(1.19) reduces to
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O(x,t) =-T'(x,s)N(x,t)— DN(x,t)+2°T(2x,5)N(2x,1).

Substrate consumption obeys the following integrodifferential equation:

ds X
— =D —q¢)—
dt (Sf S) J‘Xd,min

with initial condition s(0)=so. The parameter s;is the inlet concentration while s is the outlet rate

max

N(x,0)q(x,s)dx, (1.20)

from the reactor. D is the dilution constant and ¢(x,s)is the consumption rate. The integral

defines the rate of loss of substrate due to cell growth.

This model is extended afterwards to the bivariate CPBM in which two internal property
variables x and y are studied with their respective cell growths g,(x,#) and g,(x,?). The bivariate
CPBE is written as:

INCx,»,0) 9
ot ox

N(x,7,00=N,(x,y) (x,y,0)e R’

8 N 5, (N .= 0 20, (121)

The source term for equal partitioning is given by

Q(X,t) = _r(xayaS)N(xayat)_DN(xay,t) + 23r(2x,2yaS)N(2xa 2yat) (1.22)
The mass balance for the substrates is constructed as integro-differential equation

N(x,1)q(x,s)dxdy,

Xmax (" Vmax
X

d.
7‘:=D(sf —s)—J.
5(0,0)=s,.

Three numerical schemes are applied to investigate the solution for both CPBEs. A simple finite

d.min ¥ Vd ,min

volume scheme together with two high resolution schemes, namely the High resolution Flux-
Limiting Scheme of Koren [49] and the High resolution Flux-Limiting Scheme of Leveque [50],
are studied for single-variate as well as bivariate CPBM. Four test problems are studied for the
equal and unequal cell partitions with constant, linear, quadratic and linear combination growth
rates. Single-variate CPBM deals with both equal and unequal cell partitions in first three test

problems while the bivariate CPBM deals with only equal cell partitions in the last two problems.
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Qamar has investigated the single-variate and bivariate cell population balance modeling by
assuming the internal coordinates as biomass or internal property variables; however the cell
biomass contains several contents which vary dynamically depending upon each other throughout
the cell life. The biomass always increased in this case which gives a conventional cell growth
rate. Also the work of Qamar discusses the process of division and how the biomass is shared
between the daughter cells. In our study, the mathematical models are investigated as single-
variate CPBM and analyzed according to their cell contents (proteins). These proteins are
depending upon each other and therefore sometimes the concentration of cell content follows an
increasing as well as decreasing phenomena with the passage of time which makes the problem
more interesting. Also, in our study, the process of division is not explicitly studied. We

investigated the dynamics of cell before and after cell division (but not during the cell division).

The numerical schemes are highly efficient in the work done by Qamar and have provided
efficient results. These methods are validated when the model is based on PDEs while in our
case, due to non-monotonic behavior by internal property variable, i.e. concentration of cell
contents, the PDE formation is questionable. Therefore, we need such method which can directly

find the population density instead of following the population balance equation.

1.4 Our contribution

This dissertation describes the mathematical modeling of immune response against influenza
virus infection. This work is divided into two main parts: the dynamical behavior of proteins at
single T-cell level and the overall population dynamics of activated T-cells. Also, there are some
hypothetical models that are validated for the process of evolution in the T-cells after

proliferation.

At single T-cell level, continuum models are studied. These models are divided into four
categories (Cases 1 — 4) according to their level of complexities as given in Chapter 2. The
models are presented by using ordinary differential equations (ODEs) that are solved analytically
whenever possible while a simple Euler method and Runge-Kutta order four method are also

used to validate the results for Case 3 and Case 4. A graphical analysis of these models made a
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thorough investigation of the intracellular dynamics. The kinetic parameters used in this study are

defined according to experimental observations presented in [3], [13].

At population level, the population balance models are studied by introducing the reaction and
activation rates in order to analyze the population dynamics of T-cells during the process of
activation, Chapter 3. The ODEs used in the Chapter 2 are considered as the reaction rates at
single T-cell level while the initial population of activated T-cells is defined by an activation rate.
Again four cases are studied in the same complexity sequence followed in Chapter 2. Each one
has described the population dynamics of T-cells with respect to their surface proteins under the
conservation laws for hyperbolic equations. Several methods have been used to find the solution
for each model depending upon the complexity of the model. An innovative approach is used to
find the solution by the methods existing in the literature. Also a new method ‘Transport Method’
has been introduced by using the differential geometry in order to deal with such conundrums

without using the PBMs.

The Chapter 4 is based upon the proliferation of T-cells occurring after the full activation stage.
The behavior of T-cells after proliferation is observed based on single T-cell level and also at
population level. Three hypotheses are defined for the proliferation process. The results have
been obtained by using the Transport Method that are validated by comparing the results found in
Chapter 3.

The deduction and critical analysis of the thesis is written at the end of the thesis as a Conclusion.

1.5 Terminology Used in the Thesis

In the biological and mathematical literatures, several words exist which have the similar
meaning but they can confuse the reader as their second meanings also exists. For the sake of
convenience, in Table III, we define a decisive terminology according to the literature that can

help to understand the dissertation.
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Decisive Terminology | Variable / Synonyms /
Function Description
Activation rate B(t) Assimilated as Nucleation rate in Chemical Engineering
Activation time T Triggering (beginning) of the activation process of a
certain type of T-cell
Activated cells Cell that has begun its activation process but not yet
fully activated
Activation process Activated cell; The dynamical change in the T-cell after
activation time
Antigen Pathogen; invader; Virus
Concentration c Level
Population Density n(c,t) The number of T-cells per unit volume and per unit
protein concentration
Initial population N(e,t) Number of T-cells change the phase from non-activated
to become activated T-cells
Proliferation Process of division of more than one cell
Protein Membrane receptor; content; marker; binding
Reaction rate G(c) Assimilated as Growth rate in Chemical Engineering
T-cell Cell; T-lymphocyte
Table III: Terminology used in the thesis
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Chapter 2

Proteins Dynamics
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2.1 Introduction

2.1 Introduction

The recognition of foreign invasion by T-cells requires several proteins. These proteins play a
vital role to trigger the process of T-cell activation by moving inside the T-cell from the cell
membrane and compel the nucleus to produce more proteins. Consequently, several proteins,
each with different function, come on the surface or go into the blood stream to alarm the other
specific T-cells as shown in Figure 2.1. The process of activation needs an immediate and
continuous action in order to reach the threshold level that is necessary to ready the T-cell for
further actions like proliferation. In this study, four levels of mathematical modeling are studied
in order to depict the protein dynamics during the activation process. The evolutionary models
are based on the analysis of experimental observations done by [4], [8]. These mathematical
models are comprised of the set of ordinary differential equations (ODEs) and cover almost all
the circumstances that are possible to study the rate of change in the proteins concentration at the
cell scale. The system of ODEs is solved by using analytical methods wherever possible while
the Euler method as well as the Runge-Kutta (order 4) method is also used to find their numerical
solutions. The kinetic parameters and initial conditions are chosen according to the values given

in the literature [3].

2.2 Mathematical Modeling

The protein dynamics in the activation process needs to be understood by the help of

mathematical modeling that can simulate the behavior by varying the kinetic parameters. After

CPA

CD80

Peptide/MHC

Proliferation

'
Synapse
Figure 2.1: Interaction of T-cell with pMHC
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reviewing the literature about experimental works and the mathematical models, a conviction has

been made to develop a model based on the protein concentration at single T-cell level.

The established concept of T-cell activation is considered [3] that explains us about the binding
of peptide-MHC complex and the TCR with the help of accessory molecules present on the
surface with their particular ligand(s) under classical thermo-physical rules as shown in Figure
2.1. This initial step induces sequential involvement of the evolution in the proteins including
production, binding to its ligand, activation and destruction that are considered all together in the
previous work [3]. The mechanism of the activation of T-cell is based on hundreds of proteins
that make it pretty complex. The major steps required for T-cell activation can be mathematically

represented as in Table IV.

1. TCR (T) recognizes the pMHC complexes from APC (L)................. L+T—>LT

2. First step of the TCR activation..............cocieiiiiiiiiiiiiniii e, T— T*

3. Second step of TCR activation ends with an irreversible internalization T*— T*i

4. Induction of early activation marker CD69...................ccoovviiinnn. T*i— CD69

5. Subsequently induction of CD25........coiiiiiiiiiiiiiii e, T*i— CD25

6. CD69 meets its ligand and get internalized.................................. CD69—CD69*i
7. Stimulation of production of soluble IL-2 protein........................... CD69*i—IL2
8. Binding of [L-2 t0 its T€CePtOT......vvviniiiieeieeeneeneenn, CD25+IL2—CD25-1L2
9. Internalization of IL-2 receptor..............cooeviiviiiin.n. CD25-1L2—CD25-1L2i

Table IV: Step wise description of T-cell activation process

The resolution of the above defined steps provides the cell kinetics at different activation levels at
time ¢. The CD69 and CD25 proteins show a very similar behavior. Therefore, it is permissible
to understand the behavior of one of the two proteins in order to understand the other. The
mathematical models are presented to analyze the evolution in the above proteins concentrations.
To solve such models, they are divided into four cases and are studied and presented in a

sequence as given below. Following are the cases that we are going to discuss:
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1.  Monotonic variation in the protein concentrations.
Non-monotonic variation in the protein concentrations with same behavior in all T-cells.

Non-monotonic variation with different behavior of each T-cell.

el

Non-monotonic variation with different behavior of each T-cell while the concentration of

proteins present in/on any T-cell can intersect the others concentration at any time ¢.

The models are based on the single type of T-cell protein dynamics (also known as single T-cell
dynamics) that are defined by the set of ODEs. Each ODE presents the rate of change in the
concentration of a particular protein during activation process. Let’s start with the first case

describing the internalization of CD3 protein:

2.3 Case 1

The interaction of T-cells with an antigen presenting cell (APC) is the first and foremost among
the other processes. This process is done by the help of CD3 protein which lies on the surface of
T-cell attached with T-cell receptor (TCR) and CDS8 protein (or CD4 protein that is not physically
associated with CD3-TCR) in order to give the primary activation signals to the cytoplasm. The
combination of the above three proteins is known as CD3 complex. It is closely associated with
the T cell receptor and is internalized when the TCR recognizes the Major Histo-compatibility

Complex peptide (pMHC).

During the process of activation, the concentration
of CD3 protein decreases on the surface of T-cell
after dissociation with pMHC and the CD3-TCR
engagement carries on until the cell gets its minimal
level of activation [15]. The rate of association and
dissociation of CD3-TCR with pMHC motivates T-

cells to produce other proteins and amplify the

process of activation [51]. On the other hand,
several studies have experimentally proved that

CD8+ T cell activation is governed by TCR-  Figure 2.2: CD3 protein degradation and the production
of CD3i protein.
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peptide/MHC affinity, more than only the dissociation rate [52]. However, in this study, the rate
of dissociation is considered appropriate and the rate of internalization of CD3 protein is focused.
El-Hentati [4] has shown this process in a reaction way by analyzing experimentally in-vitro that

was helpful to model the equations.

The membrane concentration of CD3 decreases in a kinetic proportion to the strength of linking
to the target. This decrease on the surface of T-cells is independent of any other protein and the
cell is considered to be activated. Similarly, there are many other T-cells that are in contact with
APC (Antigen Presenting Cell) and getting activated with some delay in time ¢ at different level
of initial concentration of CD3 protein. If we want to study all such type of T-cells we need to
know about their activation time and their rate of change in concentrations. This can make a little
complex function. In order to give a better understanding of our modeling way, we start with a
simple case where we assume that we deal with only those T-cells that will have the same amount

of protein at the time of activation.

Every T-cell has a different internalization rate according to its initial condition [15] and there
can be some T-cells that will not follow the whole process (until the threshold level) of
activation. Here we are considering the association and dissociation rate appropriate for the T-cell
activation. Also beside the variability of initial condition and possible delay in meeting the

pMHC complex, we have considered that the T-cells are activating at each time #=7 and the
internalization rate is same for all the activated T-cells. If ¢ is the concentration of CD3 on the

surface of T-cell at time 7 and it is decreasing with the passage of time, one can write the rate of

change in the concentration as:

d N .
Gla)=—atn=—kx', keR.m=12,. o1
with the initial condition ¢, (0,7) = ¢,,.

where & is the kinetic constant (i.e. concentration rate constant) and m shows the order of the
polynomial equation i.e. the order of the chemical reaction. The negative sign shows the decrease

in protein concentration on the surface due to their internalization. We can clearly see that ¢, is

showing the dynamical change in the concentration of CD3 protein that is shown as ¢, =¢,(¢,7).
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G 1is the reaction rate which can be assimilated as Growth and dissolution rate by analogy with
the dynamics of growing or dissolving crystals. The linear growth rates are frequently considered
in particulate processes; the dispersed systems are mathematically modeled in order to analyze
their dynamical behavior regarding the time variation in size of particles. Despite the linearity in
the concentration rate, in biological sciences, it has significant meaning in the microbial
population balances where reaction rates are considered as the time variation in external and
internal characteristics (i.e. proteins) [46], [26] or in morphometric characteristics of cells such as

volume, membrane area, length e.t.c. [27].

Concentration ¢
Concentration 'c'

Time 't' and Activation Time 't' x 10"

Figure 2.3a: Three dimentional view Figure 2.3b: Projection to two dimensional view

Figure 2.3: Concentration decrease in CD3 Protein

The solution of Eq. (2.1) is found for the parameter values c,, =3.24x10™" molexm™, m=1 and

k, =1/3000s". It can be observed from the equation that the ‘actual time’ starts for the T-cells

after their ‘activation time’ and therefore there is no change in the protein concentration before
t<7. The cells will start their activation process after each 7#>7 and therefore we have set of
ODEs that are independent of activation time and they give simple exponential solutions that are
shown as 3D plot in Figure 2.3a. In reality, there is a continuous activation of T-cells that gives a
surface instead of discrete lines at different activation times 7. As activation time is the starting

time of each actual time 7, we can merge both the times on the same axis. In other words, we can
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easily project it into two-dimensional graph that can not only save a dimension but also give us a
better understanding of relation between actual time and the activation time as shown in Figure
2.3b. The solution of this equation will be studied for the population dynamics of activated T-

cells in the next chapter.

2.4 Case 2

In this case, we again focus on the CD3 protein in a broader aspect. The CD3 protein has shown
an interesting phenomenon in the T-cell: experimentally, it is observed that the CD3 protein
concentration decreases inside the synapse by internalization during the activation process. This
makes a significant deficiency of signals on the surface of T-cell. It is experimentally observed
that the T-cell receptors (TCRs) move towards the signaling portion rapidly in order to strengthen
the induction of T-cell activation [37]. The recruitment of CD3 protein is inevitable to make the
TCR complex that is necessary to carry on the signaling process [15], [10]. Therefore, we will be
concerned about the non-monotonic case of CD3 internalization as CD3i (volume protein) and
reappearance as CD3* (recruited protein). We divide this case into two different models
according to the level of complexity. First model is more obvious and the solution is analytically
found but for the second case, we studied the RK-4 (Runge Kutta Method of order 4) to find its

solution.

2.4.1 First Model

For each cell, the surface CD3 and CD3" concentrations are respectively noted ¢, (r) andc|(¢),
while the inner CD3i concentration is noted c,(#). The total protein surface concentration, that
can be measured by cytometry, is c¢(#) =c¢,(¢)+c/(¢) . For each cell, this concentration evolves,

from the instant the cell get activated, in a way governed by kinetic laws. For each individual T-
Cell, the following steps can describe the beginning of the activation process [15], and the

evolution of the protein concentration:

1. Recognition of p-MHC and peptide by T-cell receptor after a collision event: L+7 — LT
(the parameters L and T represent APC and TCR respectively). This step is called
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“activation”. From this collision, the T-cell becomes active, and kinetic laws describe the

evolution of proteins concentration.

2. CD3-TCR internalization: T =T,

3. Re-appearance of the CD3 protein (CD3") on the surface: T —>T

CD3 Protein ==
CD3i Protein

CD3* Protein —<

Figure 2.4: Reappearance of CD3 protein

For a given cell, activated at time 0, a linear kinetic law gives the following equations:

dcl_k dey Sck d_cl, Vck'

i G di v “o T 162> (2.2)

c

with initial conditions,

¢(0)=c,, ¢ (0)=¢/(0)=0, (2.3)
where S, and V. are the surface and volume of T-cells. The above equations can be solved

analytically by using the fact that the total initial concentration is the sum of the CD3 protein
concentration present on the synapse and the CD31 protein present inside of the T-cell. Therefore,

by integrating the Eq.(2.2), we get,

¢ =ce, (2.4)
o S, S, hy . . .
This implies that ¢,= 7(010 —q)= 7010 (1 —e " ) . The third equation follows the solution of ¢,
as,
dC’ ’ ’ — ’ ’ ! — k,
—L= kic,y — kic,pe klta o= ket +;lcloe . _;lclo' (2.2d)
1 1
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Hence the expression of ¢(z) is given by,

’ ’

o) +c@®)=ct)=|1 +% ce ket —%010 =ae ™+ Bt+7y. (2.2¢)
1 1

For a cell activated at time 7 <7, the expression of ¢ has to be shifted. We can thus define a

family of non-monotonic curves indexed by T, noted ¢(¢,7) , derived by translation from c(¢),

c.(N=ct-1)=ae " +b(t-1)+d if t>7,

2.2
c,()=¢, if t<rt. (220

Dynamical behavior of proteins concentration
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Figure 2.5: Surface concentration for individual T-cell. Blue lines show the exact solution while red-circles show the RK-4
solution and the green asteriks (*) indicate the solution by Euler method.
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The solution curves are generated for & =1/3000s",k =1/30000s""  and
¢, =3.24X0 " molexm™ at different activation times as shown in Figure 2.5. The curves are
simply shifted because neither the coefficients &, nor the initial concentration ¢,, depend on

time. But one could imagine more complex situations. It is also important to mention here that

crossing of curves is coming just because of the projection as discussed in Case 1.

The common minimum value for the curves is noted as ¢, . In Figure 2.5d, any two consecutive

curves cross each other at ¢ > cmin and cross several other curves until it reaches the initial
concentration level Also we can observe that the concentration is exceeding the initial level after
some time 7. Realistically, the concentration of protein will be steady after some time due to a
finite surface area on the cells. Here we are not considering the steady part of the problem

otherwise there will be a change in the concentration of c¢(f) by considering that the

concentration is bounded for large values of time as shown in our Second Model below.

2.4.2 Second Model

The concentration of CD3 on the surface, internalization and reappearance is represented by the

same notation as in 1* model, i.e. ¢ (¢),c,(¢) and c/(z). The total concentration on the surface

will be same as c(t)=c,(t)+c|(1).

In this model, we deal with this phenomenon more generally. As the activation process starts, the

CD3 protein internalizes with the rate &, as we discussed in our previous model. The internalized
protein increases its concentration with the same kinetic parameter &, but this time we include a
term that follows the half-life principle with kinetic parameter k,. The internalized protein
signals in the cytoplasmic domain to produce numerous other proteins. The deficiency of
CD3/TCR in the synapse compels the T-cell to recruit more CD3 proteins by membrane transfer,
at linear reappearance rate [37]. The location of these new proteins CD3* is different from the
initial protein CD3, therefore the CD3* protein concentration is denoted by ¢, . This phenomenon
will be followed at each activation time but in a similar way. Therefore, we can write the

modeled equations only at activation time 7=0 as follows:
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L S .
dt d 'V, dt S ¢

c c

:kl’&c—z(c’ ~). (2.5)

1,max

The initial conditions can be followed from the above modeled equations while the parameter

€| max 18 the bounded value of CD3* protein concentration (surface concentration of CD3* may not

c

exceed ¢/ ). Here S, and V, are the surface and volume concentrations. This case is more

sophisticated and gives a better idea to analyze the protein dynamics at a single T-cell.

The kinetic parameter responsible for the internalization of CD3 proteins is taken as

k, = 30100 s~', while the parameter value for the rate of half-life of the internalized proteins is

chosen to be k, =1/30000s™" [8]. The constant for the reappearance rate of CD3* protein on the
surface after the internalization of CD3 protein is defined by k& =6X07s™". The values of the
surface (S, =3X07'"m”) and the volume (¥, =5X07'°m’) of T-cell are taken from the literature
[8] and are also used in the next cases while the other kinetic parameters take different values.
For simplicity,

is taken as ¢,.

’
Cl,max

The first equation is dependent of its own concentration showing a simple linear concentration
rate phenomenon as it is discussed above with its analytical solution. For the second equation, if

we use the solution of ¢, in the second equation we can have a simple ordinary differential

equation that only needs an integrating factor (€ ! ) to have an analytical solution in the form of
an exponential function. Similarly, we can use the solution of ¢, in the 3" equation to find the

solution for third differential equation. The integrating factor for the 3" equation is given by,

k| (—kye'? + 1M )] 26

( ko~ Yepet 112!
].F'Cl’ = ( 1 2) 2

By using the above integrating factors of the 2™ and 3™ equation, following the solution of the

above system can be obtained,
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a(t)= Cloe_klt )
kco (S _ K
(0= (S Yy g b,
k =k \ V. - (2.7)
K —kt 5 —kot k{ /
/ ke l—k e 2 A kl —kit g kot
(= [kz Sl JJ [k] [ e e ] :
1() Cll’maxe (ki=k,) _ {’maxe @ k(K kz)( )

Now we can extract the combined solution of CD3 and CD3* by adding 1% and 31 equation:

e(1) = ¢, +¢](0)

k/ B B k/
_ ~kyt 1 kye M ke _M
=ce | [kz(kl—kz)( ’ ‘ ))_ ’ e[ kz) (2.8)

1,max 1,max

X ( [_kz(k]lcl_kz )(k2e_klt'kle_k2t)J) .
e

K
When t —oo,c > ¢ [l—e b ] gives the bounded value for ¢(7). The initial concentration of

CD3 protein is ¢,, =3.24x10""molexm™ while the initial concentration of CD3i is considered 0. It

means there is no CD3 protein outside the synapse on the surface of T-cell at the initial time. The
solution of the complex systems of ODEs is not always possible as discussed in the next cases.
Therefore we validate the results by finding the numerical solution of above system of ODEs by
using two different numerical methods, Euler Method and highly accurate RK-4 (Runge-Kutta
method of order 4) method. The solution curves are overlapping each other in order to show a
good commitment between exact and numerical solutions as shown in the Figure 2.6. This is
again a 3-dimensional plot that is presented in 2D for convenience and to save one dimension as

we discussed in our first case. The shifting of curves can be observed by replacing ¢ by -7 .

The numerical methods are applied in a routine manner as the equations are simple ODEs. It is

obvious to see that the Figure 2.7(d) is the combination of Figure 2.6(a) and Figure 2.6(c) plots

that shows the total concentration of protein evolved during the time 7=10sec. The Figure

2.7(b) is clearly showing that the term reserved for the half-life dominates the other term after
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some time 7. It means the concentration of internalized protein increases for a passage of time
and shows very less half-life effect in the start. But this effect dominates after an interval of time

that shows the proteins are diminishing inside due to their half-lives.

Dynamical behavior of proteins concentration
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Figure 2.6: CD3 protein dynamics. Sum of Internalization and reappearance of CD3 protein. Blue lines show the exact solution
while red-circles show the RK-4 simulation. The green asterisks (*) are the solution found by Euler Method

The Figure 2.6(c) is very important in the sense that the CD3 protein reappears rapidly on the
membrane that is very essential to reinforce the signal strength for the T-cell activation. On the
other hand, the stability in the concentration of protein also represents the maximum limit

available on the surface of T-cell. This phenomenon can be observed more closely in the Figure
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2.6(d) where the concentration of CD3 and CD3* are added to show the total concentration of
CD3 protein. Recall that the maximum capacity of CD3* protein is considered equal to the initial
CD3 concentration present in the synapse. The increase in the combined concentration of CD3
protein confines itself in the middle as shown in Figure 2.6(d). The reason is the death of the
internalized protein CD3i due to its half-life and the limited capacity of CD3*. The kinetic
increase on the membrane is balanced with the disappearance of CD3 protein from the synapse

due to internalization.

The phenomenon of reappearance of CD3 protein on the surface is more hypothetical while the
recruitment of CD3 protein in the synapse is studied in the literature [15], [53]. Since the non-
increasing phenomenon studied in the above model for CD3 protein present inside synapse
clearly states that the membrane concentration is irreversible. But it is possible to include it so
that the protein again works like a reversible protein. Mathematically, there will be no significant
change in total CD3 protein concentration but it is possible that it can contribute significantly
with any other aspect during the activation process. For example, it can affect the threshold level
needed to produce other proteins that are depending on the rate of internalization of CD3 co-

receptor proteins.

In the above cases we studied only the CD3 protein concentration. It has given the idea of
modeling the dynamical changes at one T-cell level. Now we extend our model to study the
evolution of several proteins depending upon each other. The reappearance of CD3 protein is not

considered in the cases below.

2.5 Case 3

In our case 3, we study about the non-monotonic variation with different behavior of each cell
activating with the same concentration of proteins. The study of this case reveals the protein
dynamics of some other proteins that are necessary for the proliferation of T-cells. It is assumed
that the T-cells with the concentration of these proteins activated at different times are not
coinciding at any time even though the proteins are depending upon each other. A mathematical

model is presented that analyze the evolution of these proteins concentrations with the passage of
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time. The model is based on the system of six ODEs that is evolved according to the kinetic
parameters and shows their dynamical behavior. Each ODE presents the rate of change in the

concentration of the protein that is solved by using the RK method for the system of ODE:s.

The process of activation, as shown in Table IV, begins as the CD3 protein gets internalized with
a rate that is considered linear with kinetic parameter k; (s™') as discussed in above cases. It is

obvious to consider here that the T-cells are beginning their activation process at different initial
times. It is therefore assumed that at every time ¢ =7, some T-cells begins internalization process

with same concentration and continue their process.

T-cell Activation

' (2) CD3i i
) duction

(5) €D25 & IL2
Binding

Figure 2.7: Protein dynamics of T-cell. CD3 protein internalizes and produces CD25 and IL-2 that again
binds together to give signals inside the T-cells

In this case, the activation time has significant impact on other proteins concentration as the rate
of change of the concentration is not depending upon the activation time. The reason for such a
distinguishable behavior is that the IL-2 protein is shared by all T-cells and it binds with CD25.

This binding decreases the concentration of IL-2 and CD25 as well. The concentration of CD3
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protein is considered independent of any other protein and it is represented by ¢,. The equation is

the same discussed in the above cases:

dclo(ll; Z') —_ lcl (t, T), Where 1>7T (29)

where ¢ (1,7) =¢,,, (1 <7) is the total initial concentration of CD3 protein present on the surface.

The concentration of the internalized CD3 protein (i.e. CD3i1) is denoted by c¢,. The CD3i
increases inside the T-cell due to the internalization of CD3 while the CD3i protein decreases
with kinetic parameter &, (s™') due to its half-life. Therefore,

de,(t,7)
dt

S
v

c

¢ (t,7)—ky,c,, where c,(t<7,7)=0. (2.10)

The first two equations are similar to Case 2b. Further, we have more proteins to include which

show more complex dynamics at a single T-cell level. Since the total concentration of CD3

protein present on the surface of T-cell is denoted by c¢,, therefore, one can write a relation

between CD3 and CD3i as,

4
atg o S, (2.11)

c

The T-cells activation needs to reach a threshold of the concentration of CD3i protein to further

undergo the chemical process that results in the increase of many other proteins like CD25, IL-2.
At each time =7, we assume that some of the T-cells start producing CD25 (concentration c¢;)
on their surfaces with the kinetic parameter k, (s'). As there are many T-cells undergoing with
the process of activation, they can have distinct rate of increase in the concentration of CD25
protein. At the same time, the production of IL-2 (¢,: concentration of IL-2 in the biological
fluid) begins at the rate k,(ms ') that is shared by all the T-cells as a messenger between them.
IL-2 uses CD25 protein as a receptor and forms a CD25-IL2 complex. We assume that the
interaction of CD25 and IL-2 happens at the rate defined by the kinetic constant k (m’mole™'s™

). Therefore, the rate of change in the CD25 protein concentration can be written as,
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dey(1,7) _ k, zcz —kycie,, where ¢,(t<7,7)=0. (2.12)
dt S.
While the IL-2 protein concentration can be written as an integro-differential equation,
dc, (1) ‘ ¢
TLZ =k, jo B(7)c,(t,7)dT — k, x5S, ¢, (t) jo B(7)c,(t,7)dT. (2.13)

The activation rate of the T-cells is denoted by B(7), i.e. number of cells activated per unit of

time and per unit of volume (S_lm_S) at f =7. « is the ratio between the volume of biological
suspension and the volume of liquid. Its value is close to 1. It is important to mention here that
IL-2 protein is independent of activation time due to its presence outside the T-cells. It is
produced by all T-cells that are undergoing in the process of activation, therefore, the integration
is defined which sums up all the concentrations of IL-2 in a continuous manner. It is also known
as the activation rate of the T-cells due to collision with APC (Antigen Presenting Cell) and it is

defined as,

B(t)=ae™, a,b>R. (2.14)

As IL-2 protein is produced and is shared by all the activated T-cells, therefore, IL-2 has one
activation time, i.e. when it is produced for the first time by any T-cell. The change in the IL-2
concentration is examined without taking their activation time into consideration. As the CD25
protein decreases due to the interaction between CD25 and IL-2, therefore, the concentration rate

of CD25-IL2 protein can be formulated as,

dey(1,7)

e (t,7)c, (1) =k, cs(t <7,7)=0. (2.15)

This binding of CD25-IL2 protein is internalized with kinetic parameter k,(s™') that results in

the production of CD25-IL2i and is modeled as,

de(t,7) _, S. B
" —k6VCCS,C6(t<T,T)—O. (2.16)
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The analytical solution of the above system of six ODEs is not possible due to their dependency
on each other. Each concentration curve of CD25 and CD25-IL2 proteins at =7 is different
from the curve at =7+ dz. On the contrary, activation time always belongs to the actual time
from where we follow the change in the concentration of any protein. We solve the above system
by fixing the time step ¢ in order to show the protein dynamics at the next time step 7+dt. The
above equations are solved simultaneously by Runge-Kutta Method of order 4 that has given the
approximate solution in order to analyze the change in the concentration with respect to time ‘t’
as shown in the Figure 2.8. It is important to mention here that the Eq. (2.13) is not treated in the
same way because it is depending only on actual time. An algorithm is written below for the

solution of above system of integro-differential equations.

The algorithm to find a solution of above system of differential equations (2.9) — (2.16) is based

on the Runge-Kutta Method of order 4 in the given time interval 0<7<10’sec.

INPUT: The values of the parameters and the initial conditions as follows,

ky=1/5X07"s", k, =1/5X407s7", ky =107*s7", k, =107 ms™",
ks = 10* m’mole™'s™, kg = 107357, Ve =5X0""m’,Sc =307 n?

B(7)=3X0% 70

a(t,7)=¢,,¢,(0)=0
¢(t,7)=0 Vi=23,56andt<t

OUTPUT: The approximation of C(¢,7) and c,(t), wheret >T

[c,(t,7) ]
¢ (1,7)
and C(1,7)=|c(1,7)|.
¢ (1,7)
| ¢6(1,7)
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We write the differential equations in the matrix form as,

de,(1,7)
_%?—+hqﬂﬂ)
dt
de,(t, Vi
%_l%S_CCZ(t’T)+kSCS(t’T)w“(t’T) =0

M —kse; (1,7)¢, (1) + kges (1,7)

e
v

c

¢ (t,7)+kyc,(1,7)

F(t,1)=

de(t,7) . S,
iT—k676C5(t,T)

and %_hm)ﬁcﬂl(t)'i'ks >@{><S’C>@4(t)><12(l‘)=0,

where the integral terms are,
t
(0= |, B@e,(t,0)dx,

Q@zﬂBUMijﬁ

Step 1: Define step size #=(b—a)/N, where a<t<b and N is an integer describing the

Number of discrete points at ¢ —axis .

Step 2: For i=1,2,..N

Define C(¢,,7)=C,, for t<7

where C, = and ¢,(0)=0.

o O O O
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Step 3: For j=1,2,..i—1

Step 4: Set
K, =F(C ,t,7))

ijotio
K,=F(C,, +hK,/2,1,7))
K,=F(C,,+hK,/2,1,7))

K,=F(C +hK,,1,7;)
Set  C(1,,7,)=C(t,, 7, )+ hX{ K, +K, +K; +K,) /6
END loopj

c,(t)=c,(t_)+axS, ><h>{k4 %Xzi‘cz(ti,Tk)B(Tk)+k5 x, ><h><ic3(ti,rk)B(rk)]

k=0 k=0

END loop i
Step 5: Output (1—7,C(#,7)), STOP.

The matlab coding was used to implement this above algorithm of Runge-Kutta method of order
4. The solutions obtained are shown in the Figure 2.8. The behavior of the considered protein can
be better visible in the 3-dimensional space. Here we will describe only the CD25 protein
dynamics in the 3D plot that has shown an unconventional variation during the simulation time.
Contrary to Figure 2.3(a) where we have drawn a discrete 3D curves plot, we have a surface (2D
manifold) plot in Figure 2.8 that shows a smooth curvy region. We need to study the evolution in

the concentration of proteins present on the T-cells at different activation times 7 .

We consider an actual time ¢ =1, and observe the concentration on T-cells at all the activation

times shown in Figure 2.8. We draw a plane (rectangular surface) that cuts the 2D manifold

(surface) into two sections at the considered actual time 7 =¢,. This plane is shown as the 2D plot

between concentration and activation time at the top-right of the Figure 2.8. We observe that it
shows a monotonically decreasing behavior. This can be observed at any actual time #. It shows

that there is a unique concentration present on the T-cells for each activation time. Therefore, we
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can deduce a statement that if we project the surface plot to a 2D plane, the curves will not cross

each other. It can be followed for all other proteins at any time 7.
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Figure 2.8: Plane cutting the 2 dimensional manifold (surface) at a point t=t0

In the Figure 2.9, we projected the solution of CD25 protein concentration together with the
solutions of all other proteins concentrations that are modeled in this case. One can observe that
the proteins have followed the natural phenomena. CD3 protein shows a decreasing behavior that
is ¢, >0 as 1 — . The internalization of CD3 protein generates CD3i while the half-life of
CD3i protein can be observed due to its curvy behavior that shows the stability in the

concentration after time ¢.

Correspondingly, CD25 increases rapidly depending on its kinetic constants k; and decrease

after taking a maximum value. The IL-2 protein starts increasing in the beginning and shows a
continuous increase in the concentration. The reason seems to be behind a rapid decrease of
CD25 protein concentration is the high production rate of IL-2 protein and a fast binding rate. As

IL-2 is produced and shared by all T-cells simultaneously, it can be clearly deduced that there is
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no activation time after its first increase. The binding CD25-IL2 shows a vital increase in the start
and its slope decreases gradually with the passage of time. The decrease in the binding on the
surface of T-cells compels us to study the internalization of CD25-IL2 protein during the
activation process. It is the most important action in our model with respect to the splitting of T-
cell into its daughter cells. This can lead the problem to study the division process of T-cells that

is actually known as the proliferation of T-cells.

. Concentration of E’roteins
x10° CD3 x10°

Concentration

10 9

x104
Time and activation time (s)

Figure 2.9: Graphical representation of the solution of above system of ODEs with the parameter values:

ky=1/5407s7", ky =1/5407s7", ky =107*s"", k, =107 ms™", ks =10’ m’mole™s™", kg =107s""
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2.6 Case 4

This case focus on the same proteins as discussed in the last case with an addition of a

phenomenon of intersection of concentration curves as shown in Figure 2.10. The rate of change

of the protein concentration for the T-cell varies in such a way that T-cell activated at time 7 =7,

may equate with the T-cell activated at time 7 # 7. Therefore, the concentration of proteins of

two or more T-cells can coincide each other at any time 7. This makes a difference with the cases

discussed above.

The mathematical model is same as in the last case. There is a change of kinetic parameters in
order to study different behavior of curves. This behavior is important to study in order to
understand the dynamics of T-cells during concurrence in their concentrations. We applied the
same technique of Runge-Kutta method of order 4 in order to find the solution of the system of
equations (2.9) — (2.16). The kinetic parameters reserved for CD3 and IL-2 proteins played an

important role to find the curve crossing problem. Here we increase the rate of internalization of

CD3 protein by defining & =1/3000s~" and increase the rate of IL-2 production by choosing

k, =10"ms™".

The kinetic parameters vary their values from cell to cell in order to decide the fate of T-cell
activation. All the other parameters including the surface area and volume of T-cells are same as
in the previous cases. The Runge Kutta method of order 4 numerical method is used again to
approximate the modeled equations. For this case, we used the same algorithm as defined in case
3. The results are shown in the Figure 2.10. In this figure, three proteins dynamics show the
phenomenon of curve crossing. We discuss two of them (CD25 and CD25-1L2) in 3-dimensional

space that will be studied in the next chapter.

The CD25 protein kinetics is showing a rapid change in the start and get stable possibly due to
less amount of protein left on the surface. The T-cells that are activated at time 0 start producing

IL-2 protein. Therefore, CD25 suddenly joins with it, results in the drastic decrease of CD25

protein. At the same time when activated T-cells at time 7 =7, starts decreasing their
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2.6 Case 4

concentration, some more T-cells start increasing CD25 proteins that are activated at time
T=1,(>7,). It is possible that the concentration of both types of T-cells cross each other at a

certain level of CD25 proteins. This behavior can be observed in the 2D plot shown in the Figure

2.11 where the 3D plot represents the concentration of CD25 versus time and activation time.

Concentration of Proteins
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Time and activation time (s)
Figure 2.10: Graphical representation of the solution of above system of ODEs with the parameter values:

k =1/3X407s7", ky =1/3407*s™", ky =107*s7", k, =107 ms™", ks =10*m’mole”'s™", ky=107s""
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2.6 Case 4

In Figure 2.11, the surface plot is cut by two planes at different times. To justify the phenomenon
of crossing curves, the crossing points are shown on the 2D plot at a particular time 7. We
observed that the behavior of concentration of proteins is non-monotonic and therefore it has

repeated itself by attaining the same level. The first plane is shown as the blue curve in the 2D
plot (i.e. the plane between the actual time t = 0 to 5x10*) while the o plane cuts at the values

displayed as green curve (i.e. the plane between the actual time t = 5x10* to 10°). One can
observe that there is more repetition in the concentration of T-cells when it is low (i.e. the green
plane is showing more repetition). This suggests that the CD25 protein increases rapidly in the
start but it gets linked with IL-2 and internalized from the surface of T-cell abruptly. The
decrease phenomenon in the concentration reveals another fact that, after some time, the
concentration of IL-2 protein gets so high that CD25 protein converges to 0.
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Figure 2.11: 3D visualization of CD25 protein concentration cut by two planes. The cutting curves are shown in the 2D plot
attached at the top right of the figure.

In a similar way one can also observe the crossing curves showing the CD25-1L2 complex in the
Figure 2.12. In this figure, we plotted several planes cutting the surface of CD25-IL2 protein

concentration that are presented in the 2D plot at the top right corner. All the repetitions in the
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concentration shows the two types of activated cells showing the same amount of concentration

at a particular time ¢ having a different rate of change of the concentration.

ax 107
N
=
o 25
AN
)
O 2
: G
81.5 -—11500s
= ——36500s
LE T ~61500s
‘ 10-11 B et ‘*8\0 . -=-86500s
35 .. 87
w4 6 8 10
— Activation Time 't' x 10°
o) :
C 254.-
i)
5 2
| -
)
C 15
(O]
()
C
(@]
O 054
0>
10
10
x10
. x10
. 3’(,\
0 o p\C‘—N

Figure 2.12: 3D visualization of CD25-IL2 protein cut by four planes. The topright plot shows the curves made due to the
intersections of the surface plot and the planes.

The concentration is not varying in the same manner as of CD25 protein but still it seems to be
converging to (. It is important to mention here that the first curve is the leading curve and all the
other curves cross afterwards. This shows that the crossing is a continuous process that ends with
the end of viral infection. If we closely observe the next curves, the peak value is not the same in
any curve of the Figure 2.12. There can be two reasons why a curve has peak higher than the
peaks of the next curves. Firstly, the CD25 protein concentration increases in the start rapidly and

then the process slows down due to the binding of IL2 protein with CD25. Secondly, due to high
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CD25 protein concentration, it is expected that the rate of internalization of CD25-IL2 protein is

less effective in a given curve than the rate of internalization in the next curves.

2.7 Conclusion

In this chapter, we developed several dynamical models categorized in four cases to analyze the
evolutionary changes that took place in the proteins at a single T-cell level. These models were
based on the phenomena observed experimentally in [4]. The models were classified into
monotonic and non-monotonic behaviors. The non-monotonic behavior is diversified in three
different cases. The solution curves presented in the Case 2 have shown a shifting phenomenon
but the slope of each curve remains same. The last two models have shown the solution curves
which vary the slope of each curve starting at different activation times. Despite their non-
monotonic behaviors, another interesting phenomenon was the crossing of curves that was

observed by taking an image of a surface plot on the plane.

We started from a simple problem where only the concentration of CD3 protein decreased. This
case was studied to understand the initial immune response. The CD3/TCR engagement with the
pMHC exposed a rapid decrease in protein at the start that has been observed experimentally by
various researchers concluded it as the partial activation of T-cells [37], [54]. In spite of a rapid
decrease observed in the Figure 2.3, the model lacked some information that is necessary to better
analyze the physical phenomenon. For example, it is not necessary that a decrease in the CD3
protein concentration could fully engage the T-cell during the activation process to produce other
proteins. However, it was possible to adjust the kinetic parameters according to the experimental
values where the range of each kinetic parameter has been defined. Despite the simplicity of the

model, it has provided the basis to study the information waiting ahead.

The increase of internalized protein CD3i inside the T-cell led to the production of several other
proteins. Beside other proteins, in Case 2, we studied an interesting phenomenon about the CD3
protein reappearance on the surface of T-cell which has revealed an innovative approach to study
the variation in CD3 protein concentration [55]. The major fascination of such problem was the

crossing of curves that has given an impression of real problem. This model has shown an
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unbounded increase in the protein concentration that was the major flaw in the model. The
subsection Second Model in Case 2 has taken into account the limitation of CD3i protein by
considering its half-life as well as the phenomenon of bounded concentration of CD3 protein on
the surface of T-cell. This model has overcome the deficiency of the first model but it has
originated more questions about the generalization like the study of Single T-cell dynamics if
each type of T-cell, activating at different activation times, has followed the different phenomena
(shifting and similar slope). Although the model has used the kinetic parameters that were
observed experimentally, yet the model was simple and therefore it was possible to find the
analytical solution. Despite of the analytical solution, numerical methods have also been
validated in this case in order to apply them in the cases where the analytical solutions were not

possible.

The internalization of CD3 protein produced many other proteins which have shown versatile
behaviors during the simulation time. The mathematical modeling of the third case included the
two major proteins that were depending upon each other, i.e. the CD25 and IL-2 proteins. The
rapid binding of both proteins was another interesting phenomenon that has originated the reason
of decrease in the concentration of CD25 and IL-2 proteins. We have observed this decrease by
studying the change in the slope of each solution curve of CD25 protein concentration which has
shown the impact of IL2 protein intervention. Although the model has the deficiency due to a
non-intersecting behavior of curves and needs to be modified, yet the integro-differential

equation has motivated us to analyze it before moving towards the next step.

In Case 4, the change in the parameters values investigated the fast reaction rate (in comparison
to Case 3) and it has shown a wide range of intersection between the curves. This model was
generalized for the problem of one point crossing. However, during the activation process, it was
possible to have more than two different types of T-cells crossing each other at the same time.
For such idea, we may need to follow more complex model by introducing other dynamical
behaviors. Probably, e.g., if the CD3 protein concentration shows the non-monotonic behavior
that was discussed in our Case 2 we can observe crossing within three types of T-cells during the

simulation time.
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3.1 Introduction

3.1 Introduction

The population dynamics of T-cells deal with the evolution process of the population that is
affected by the change in the protein concentration. It is considered as one of the most effective
ways to understand the immune response against viral infections. The continuum modeling of
such dynamical systems is popular among the modern scientific environs. There are variety of
models that helps us to understand the evolutionary process by means of age, size and some
internal and external characteristics of infected cells ( i.e. concentration of proteins) [3], [7], [46],

[27]. In this chapter we study four mathematical models describing the population density n(c,?)

of T-cells with respect to their surface proteins concentration c¢. These models are studied in an
increasing pattern of complexity. First three cases are represented for each surface protein by a
population balance equation (PBE) while the fourth case is validated against a newly developed
approximate method based on differential geometry technique called as Transport Method (TM).
The work described in the previous chapter is frequently referred here in order to reduce

repetition.

The population balance equation has been previously studied by many researchers [47], [2]. Such
type of complexity is dealt in the first case where the exact solution was possible by using
Method of Characteristics (MOC). In the next cases, the exact solution of the hyperbolic
equations was not possible due to dependency of protein concentrations on each other. Therefore,
it was inevitable to introduce an approximate technique to find the population density function.
The results are compared between the TM and numerical methods like finite difference and finite
volume schemes. The exact solution is found whenever possible. At the end of this chapter is the
conclusion where we critically overviewed the mathematical models and tried to elaborate the

difficulties regarding the future improvements.

3.1.1 Biological aspects

A detailed experimental analysis of Flow-cytometry technique for the discussed proteins and T-
cell dynamics has been studied in the literature [3], [4], [15], [56]. The population densities of
activated T-cells are studied with respect to the concentration of proteins present on their
surfaces. During an experiment of immune response, sampling of the biological fluid is carried
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out. Then, by using FCM (Flow-Cytometry) technique, individual cells are analyzed and their
protein content is measured. From these data, cell densities n(c,?) for each protein are deduced.
The evolution of proteins and the T-cells dynamics are observed at particular times as shown in
Figure 3.1. The figure shows various bunches of activated T-cells with CD3 and CD25 markers
present on the surfaces of CD4+ T-cells and CD8+ T-cells at different times t.
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Figure 3.1: Population of CD3 and CD25 proteins on the surface of CD8+ T-cells

Each bunch of dots indicates the level of the protein at different time t. It is obvious to observe
the decrease in the CD3 protein level while an increase followed by a decrease in the CD25
protein level. This phenomenon describes the protein dynamics of CD3 protein present on the
surface of activated T-cells. Experimental values are always based on discrete time steps that

cannot predict those drastic changes that are possible to happen in the intervening time. But it
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makes an overall scenario that can be further used to analyze by mathematical models. By
following the same approach, these observations have given an idea to mathematically model and

analyze the FCM by using population balance equations.

It is mandatory to briefly introduce the biological phenomena before defining the main problem.
During an experimental study of the immune response against viral infection, it is observed that
first of all the T-cell encounters antigen presenting cell (APC). Shortly, T-cell receptors connect
with a specific antigen fraction (peptide) that is linked with a self-molecule Major Histo-
compatibility Complex (MHC) of Antigen Presenting Cell (MHC) and induces the cell activation
whose first effect is revealed by changes of protein concentration at their surface or in the close
medium. This first step is the source of activated T-cells and it is assimilated as an activation rate
of the T-cells. The dynamics of the process depends upon the strength of the binding that
involves many components. In this study, we consider the cells with different time of activation
but the same level of proteins present at the time of activation. Therefore, the number of activated
T-cells at a certain amount of initial protein concentration, produced per unit time, will be known
as the activation rate (or rate of activation) of the T-cells. It corresponds to the start of the

activation process at the cell scale.

A high concentration of CD3 protein is present on the surface of the T-cells and this
concentration varies during the activation process. Due to its variation, the T-cells produce
several other proteins in order to react against the infected cells (i.e. APCs). The variation in the
protein concentration with time is assimilated as the reaction rate of the activated T-cells. The
reaction rate can be an increase or a decrease of the concentration of the considered protein. In

chapter 2, we talked in detail about the complexity of reaction rates in four cases.
A mathematical modeling of the above discussed evolutionary process is presented below. The

models follow the linear first order hyperbolic conservation laws with a source term representing

the birth of activated T-cells after collision between T-cells and APCs.
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3.2 Mathematical Modeling

The mathematical modeling for the activation process of T-cells is studied at the initial stage
when the division process (proliferation) is not started. Their evolution is divided into two
processes, the reaction rate and the activation rate, as we discussed in the Chapter 2. Since the

total amount of T-cells remains same during the activation time, it is deduced that the rate of

change in the total amount (number concentration) of activated T-cells N . (m ) is equal to the

rate of change in the non-activated T-cells N, (m~). Mathematically,

dNAC — dNNAC

B(1) =
© dt dt

:k*NNACNAPC' (3.1)

Here k" is the kinetic constant that indicates the probability of connection between non-activated
T-cells and antigen presenting cells (APCs). N, is the total amount of APCs loaded with the

specific virus. The negative sign shows that the population of non-activated T-cells is decreasing.
Let us define the initial population of activated T-cells N(c,¢) (s~ (mol /m’ )71) varies between

¢ to c¢+dc within time 7 to ¢+ At where c is considered as a surface protein. Due to voluminous
amount of activation of specific T-cells with versatile concentration of protein in a the continuous
interval of time, we get a continuous distribution describing the initial population of activated T-

cells as shown in Figure 3.2.

N (c,1)

t

Figure 3.2: Initial population of activated T-cells at two different concentrations ¢, and c;.
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One can write for the initial population (birth) of activated T-cells as,

N(c,t)At = Number of T-cells having concentration
c€ [c,c+ Ac] and activated within [7,7 + Az].

(3.2)

As T-cells activate with an initial concentration, it is possible that at a particular time ¢, they
activate with different concentrations of proteins as shown in the Figure 3.3. If the distribution for

the T-cells activated with an initial stage will be D(c) then it can be represented for the interval
[c,c+dc] by D(c)dc =portion of T-cells activated at ce [c,c+dc]. At any time ¢, the initial

amount of activated T-cells can be written as,

(3.3)

[ N(e,tyde = B(t) [ D(c)de.

provided that

The cells are activating at time ¢,
with varied concentrationc¢

t, t

Figure 3.3: T-cells are activated with different initial concentrations at time = to and distributed over the c-axis.
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Since, in our study, we consider that all the T-cells are activating at the same initial concentration

¢,, therefore, the distribution function D(c) will become a delta function that has the following

property,
o(c—c¢y)de=1.
f (c=cy) 54)
Clearly, all the T-cells activating at ¢ =c¢, give us the following equation,
N(c,t) = B()d(c =) (3.5)

The above equation gives the total initial population of activated T-cells at any time 7. In order to
understand the phenomenon that how the density functions evolve during the whole simulation
time with respect to the reaction rate (variation) of the protein concentration, we used the

population balance models.

Since the experimental observations by using FCM are based upon the concentration of proteins
involved during the activation time of T-cells, therefore we need the population density function
n(c,t). This means that the function defined for reaction rate must be the explicit function of

concentration of proteins as presented in the previous chapter.

3.2.1 Conservation Laws and Population Balance

Equation

In this study, the protein concentration based cell population balance model follows the
conservation laws that show the total number of activated T-cells at any time ¢ remains same
while the density of T-cells changes with the change in the concentration of proteins present on
the surface of T-cells. The conservation laws states that the rate of change of the total activated
population of T-cells is equal to the flow of the activated T-cells during the change in the

concentration over control volume €2. We elaborate the conservation law in the following way:

Rate of change in the total population of activated T -cells in a control volume

Source of activated T -cells at time t
+ Rate of Flow-in of activated T -cells — Rate of Flow-out of activated T -cells
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n(e,t,)4
N(e,1)
activation
Fluxin
Growth Flyx in Growth Flux out
" >
c c+Ac c

Figure 3.4: Activated T-cells flux in and flux out indicated during the variation in concentration € to ¢ + Ac at

time 7 =¢ . T-cells are activated with the activation flux in N(c,7;) .

The rate of flow-in and flow-out of activated T-cells give us the flux of the activated T-cells as
shown in Figure 3.4. The flow of activated T-cells can be followed on the solution curves that are
discussed in the previous chapter. These solution curves satisfy the rate of change in the protein

concentrations and that are considered as the reaction rates G(c,?) of the T-cells. Therefore, in

accordance with the proteins behavior, we can write the above phenomena mathematically as,

j% = [ N(c.0)+ G(aya(a,0) - G(b)xa(b,1), Qe [a,b] (3.6)
Q Q
or equivalently, by Newton-Leibniz axiom,
on(c,t) , d
dec _i N(c,t)de— i g(G(c) (e, 1) )de. 3.7

Q

where, N(c,t)=B(t)0(c —c,). Therefore, we can have the following partial differential equation:
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D) L 9 (Gleym(e,n) = BOS(c—c,)

ot oc (3.8)

Since the population density outside the computational domain is considered zero, therefore, the
above equation can be converted to homogeneous PDEs by considering the non-homogeneous
part as the boundary condition. Hence the final model for the PBE with initial and boundary

conditions can be written as,

on(c,t) 0

a0 +$(G(C) x(c,)) =0
n(c,0)=0
_ B@
n(c,,t) = |G(co )| (3.9)

where G(c)= %c(z‘, 7)

and B(t)=ae™”,a,be R

The parameters a and b = k"N ,,. are real positive numbers. It is important to mention here that

APC

G(c) is the implicit function of time ¢ and activation time 7 while it is explicitly defined by the

activation stage in terms of protein concentration as mentioned in the previous chapter for each
case. Now we have used these reaction rates to find the population density functions of T-cells
for the surface proteins (CD3, CD25 and CD25-IL2) in order to analyze the evolution in the

activated T-cells.

3.2.2 Overview of Models

In this chapter, four cases are studied that deals with several models describing the population
density functions of T-cells. These cases are constructed according to the cases defined in the
Chapter 2. The population densities are found for the surface proteins representing their
concentration. The models are defined according to their complexity levels as well as the
dependency of proteins on each other. Each of the four cases follows the respective single T-cell
dynamics that was studied in the previous chapter. The population density of T-cells is modeled
for CD3, CD25 and CD25-IL2 proteins that are lying on the surface. The data is taken from the
PhD thesis of El Hentati [4] and Bidot [8] with some adjustments for the sake of better results as
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described in Chapter 2. The Table V reminds the prominent attributes of activated T-cells and

gives a critical overview about the cases according to their limitation and advantages.

Cases — Proteins

Characteristics

Limitation

Advantages

1. CD3 protein

Surface protein.
Decreases with the

course of time

Do not increase. No
analysis about other

dynamical processes.

A leading process that
trigger the activation

process.

2(a). CD3, CD3i and
CD3* proteins

Surface & internalized

protein.

Not bounded. Follows
the population density
of CD3+CD3" protein.

Non-monotonic
behavior. Discuss the

reappearance of CD3.

2(b). CD3, CD3i and
CD3* proteins

Surface & internalized

protein.

Follows the density of
CD3+CD3" protein.
Only the CD3 protein.

Bounds CD3+CD3" by
limited capacity and

half-life phenomena.

3.CD3, CD3i, CD25,
IL-2, CD25-IL2 and
CD25-1L2i proteins

Surface, internalized &
a fluid protein that is
shared by all T-cells.

T-cells populations do
not coincide. Exact

solution not possible.

Follows the overall
initial behavior ( 28
hrs approx.) of

activated T-cells.

4. CD3, CD3i, CD25,
IL-2, CD25-IL2 and
CD25-1L2i proteins

Differs from case 3 by
the values of the

kinetic parameters.

No PBM. T-cells
dynamics before

proliferation.

More realistic
behavior. T-cells are

ready for proliferation

Table V: Prominent attributes of activated T-cells

3.3 Solving Techniques

In the previous chapter, Runge-Kutta Method of order four is used to find the solution
(characteristic) curves. Here several methods are studied in order to validate the above described
PBM. As we found the reaction rate for CD3 protein analytically, the Method of Characteristics
(MOC) is applied to find the density functions. Also an innovative numerical approach
(Transport Method — TM) is used to find the solution for the density functions by the
mathematical analysis as described below. For more complex population balance models, when

there is non-conservative term, it can be difficult to find the analytical solution and the solution
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by Transport Method. Therefore, we need some efficient numerical methods that can
approximate our model gently. A finite volume upwind scheme is used to find the numerical
solution and a 2™ order Lax-Wendroff technique is used with a “minmod” flux limiter. An

attempt has been made to give a general overview of these four solving methods.

3.3.1 Method of Characteristics

The MOC is based on the characteristic curves that satisty the required ODEs so that the given
PDE reduces to the set of ODEs that can be solved analytically or by highly accurate approximate
techniques under the given conditions [57], [58]. After manipulation the ODEs solution transform
to the solution of PDE. This method deals with every type of hyperbolic (linear/nonlinear) PDEs
[59]. In particular to our interest, the method exactly solves the one dimensional first order linear
PDEs. Below is some motivation related to our model by describing a general overview of linear

PDEs using the MOC. Consider the above system of eq. (3.9) and rewrite the PDE by assuming
without any loss of generality that y(c,,?)=G(c;)*(c,,t). Similarly, the initial and boundary
conditions can be written in terms of y(c,,?) in the following form,
Iy (c;,t)
ot
y(€o.1) = B(1) .10
y(c, 1) =0

+Gl.(cl,cz,...,cm)xi(y(ci,t)) =0
de,

1

In this study, the coefficient G;is an explicit function of c¢=[c,c,,...,c, ] while the MOC needs

G, as a function of ¢, that can be found by solving the system. The modulus in the boundary
condition shows that the population density is always positive. Now we parameterize the
variables ¢, and 7 as (¢,c,,....c,,t) =(c/(5),c,)(5),....c, (5),1(s)), such that ats=s,, we have
t=1,=0 and c=c,. Therefore the parameterized variables give the solution curves which

satisfy the following ODEs,

%=G,-<c1(s),c2<s>,...,cm<s)), Vi=Lm, wherec,(0)=c, @10
S
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Ay it 1(0)=0 ang L) A dedy (3.12)
ds ds ds ds ds oc

The last ODE is followed by taking the total derivative of the above PDE. The ODEs given in the
Eq. (3.12) can be solved easily by using their initial conditions while the Eq. (3.11) can be solved
by using any higher order method depending upon the complexity. In this study, the Eq. (3.11)
gives a system of equations that are depending on each other. Therefore, analytical solution is not
possible for whole the system and the method of characteristics cannot be applied in a classical
way. For the Eq. (3.10), the initial and boundary condition are used to find the solution of the
PDE as shown in the Figure 3.5. The final result can be followed by transforming the problem

into n(c;,t) by using the above relation with y(c,,?) .

C c=c(t)
c>c(t) °
c (96
0 Qo
= R
2 &
[e) S
°
= c<c(r)
£
Boundary condition t

Figure 3.5: Solution followed by Method of Characteristics

A Maple procedure has been defined and implemented to find the analytical solution of the above
problem by using Method of Characteristics. The method is not valid for most of our cases when
the reaction rate G is dependent of several proteins. Due to this reason, another method,
Transport Method, is developed that is based on the differential geometry. This method directly

approaches the solution without using population balance equation as described below.
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3.3.2 Transport Method

The Transport method obeys the conservation laws and allows us to find the analytical solution
by following the behavior on the characteristic curves. In order to explain the method briefly, a
general behavior is studied for the characteristic curves increasing with time t. The method is
independent of the complexity of the characteristic curves. It follows an initial population of the
activated T-cells to generate the density at required time 7. For any protein, we observe that the

T-cells activate continuously during the viral infection as discussed in chapter 2.

Let us consider the T-cells activate during the time 7€ [Ti, T +AT ] as demonstrated in the Figure
3.6. We have to find the solution for 7> 7, by following the curves. The total number of T-cells

start their process of activation at 7€ [Ti, T+ AT] can be written as,

[ B(r)dr=B(z A7 Vi=12,.. (113)
T l+§

If we observe the flow of population on the concentration axis (c-axis), it seems like the

population is increasing with the passage of time and the total population within the

concentration [c;,c,,,] is given by,

.[Ci+Acn(C,fj)dC = i’l(Ci,lj)mCi Vi=1,2,.. (1.14)

i

Figure 3.6: Flux of the protein and the density of T-cells
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3.3 Solving Techniques

By conservation laws, the rate of change of the total population of the activated T-cells at any
time ¢ is equal to the flux of that population of activated T-cells for the given number of

activated cells at the boundary. Therefore, in simple, the total population of T-cells activated

between time 7, to 7, +A7 is equal to the population density of the activated T-cells at any time

¢ within the concentration ¢, to ¢; +Ac,, that is,

n(c;,t;)X\c; =B(ri+1)><Ar Vi=12,... (3.15)
2

The Transport Method is highly efficient and gives a solution overlapping the exact one. In order
to validate the method for those cases when exact solution is not possible, we must study the
numerical solution of population balance equation that is based upon reaction rate and activation
rate as shown in Eq. (3.9). For this, we chose upwind finite volume method and second order
Lax-Wendroff method to approximate the population density functions with respect to the surface
protein concentrations. The upwind FVM is frequently used in the literature [47], [55]. A brief
description is given below about the Lax-Wendroff Finite difference Method that is applied to

solve the problems by using Flux limiters.

3.3.3 Lax-Wendroff Finite difference Scheme

Let us consider the linear hyperbolic first order PDE,

on(c,t) . OF (c,t,n)
ot o (3.16)

where F (c,t, n) =G(c)n(c,t). The initial and boundary conditions are defined below,

n(c,y,t) = é%, n(c,0)=0, where G(c)#0

The modulus of G(c) is used to ignore the negative sign in the reaction rate (decrease in the
concentration). Differentiate the above equation with respect to ¢, by solving, we get:

’n(c,t) ~ 9’F(c,t,n)

o’ otdc
:_E(BF(c,t,n))

de ot 3.17)

:i dF (c,t,n) de
dc de ot [
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3.3 Solving Techniques

ac . . : .
where G(c) =§, the rate of change of concentration. Using taylor’s series for time #, we can

find the following equation,
on(c,t) N A 9°n(c,t)

n(c,t +At) =n(c,t)+ At

ot 2 o (3.18)
:n(c,t)—AtaF(Ctn) Ar? (G()BF(ctn))
oc 2 dc oc

We define the discretization for ¢ as ¢, and for ¢ as ¢/. In order to approximate the above

equation, in terms of ¢, we define,

F'=G.n/, G(c)=(G(c,)+G(c))/2. (3.19)

i [AE

Writing the Lax-Wendroff scheme in the form of scalar conservation law, we get the final form:

W A AR - AT
W =l (R B+ (G (R R -G (B EL) o

The solution at end points, i = 1 and i = Nyax, are found by using first order upwind scheme. The
time step is chosen according to Courant — Friedrichs — Lewy (CFL) condition that is necessary

(but not sufficient) for the convergence of this scheme. CFL condition is given by:

maX|Gi|£ Sl = At SL
ISisN Ac 2 211'221)5 Gz|

Flux Limiter

Flux limiters are used to diminish the spurious oscillations that are observed in high resolution
schemes. There is several flux limiters studied in the literature where each one work at some
specific solution behaviors. The Lax-Wendroff finite difference scheme (LWF) has second order
approximation but it is highly oscillatory in nature at the discontinuities and at the portion where
solution is changing drastically. It gives better approximation by using the appropriate flux
limiter to make the solution total variation diminishing [50] as shown in Figure 3.7. Rearrange
the Eq. (3.20) in order to apply the flux limiter,

p =g AL AL ALE (7, F')+£F1 AL A (F/-F,) (21)
' " Ac T 2A¢l Ac Ac 8¢l A TN T

By considering F, (c,)=F/, F,(c;) = (1—%G )( Fj), we can write the method as,
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" At
nzj 1 :nij _A_c(f(ciﬂtj)_f(ci—l’tj))’ (3.22)
where f(c,,t,) = F,(c,)+ F, (c,)®(r;) . The function F,(c;) is the low resolution flux and £, (c;)

is the high resolution flux that makes the solution oscillatory. In this study, ®(7;) is considered as

minmod flux limiter function that remains in the interval [0,1] and chooses the smaller value

between the two slopes by using the following function,
() = minmod (1,7;) = max(0, min(L,,)),

where 7;1s the ratio between the slopes of two functions and it is defined as,

(nk+l _”k) k
n

=i— Signum(é(ci ).

i T

Oscillations

T ——
—
. —————— -—i

Lax-Wendroff Method

without Flux Limiter Lax-Wendroff Method

with Flux Limiter

Figure 3.7: The effect of flux limiter on 2nd order Lax-Wendroff Method

3.3.4 Finite Volume Method

Finite Volume Schemes (FVS) divide the entire domain into finite number of subdomains
(control volumes). Each control volume is denoted by a grid point which represents the integral
of the subdomain. Several finite volume schemes exist in the literature depending upon the
location of the grid point [50]. In this study, we used Finite Volume Upwind scheme that uses the

center of the control volume as a grid point as shown in the Figure 3.8. Let us consider the
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concentration variable c={c,~+l} such that €. is the control volume over the interval
2Ji=0

I:c,._i ’ CHL:I and it is defined as,
2 2

Sl 3.23
C%:CN;C,-:%;CNHZ:cN;i:LZ,m,N (3.23)
Ciil o
i+l ]
2
¢ 4 2y
C1 e
2
Ci1 ¢
tj—l tj tj+1

Figure 3.8: Finite volume upwind scheme on cartesian mesh.

with Ac=c v —c Y- Integrating Eq. (3.16) over the control volume Q,.ZI:C,-_BC,-;:I :
i+ ) i— o) 2 2
H% on(c,t " oF (c,t,n
f (1) .\ f (etn) (3.24)
ks ot ks dc

where F (c,t, n) is defined with Eq. (3.16). Suppose that the average population density function

for each cell Q. is n.(¢) then one can write the integral form of 7.(¢) as,

c 1

n(t)= i f n(c,t)de (3.25)

1
2
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Therefore,

f n(c,t)de = Ac% n.(z) (3.26)

The second term in Eq. (3.24) can be written as

f F(etn), o g (3.27)
1 1

i+— i——
c ¢ 2 2

By comparing the Egs. (3.26) and (3.27), we get,

d l (F, -F
Eni(I)Z_E( i+ i—l) (3.28)

2 2

The equation needs some approximation depending upon the direction of the fluxes F 1 and
2

F 1. When the concentration is increasing, we apply backward difference scheme while for the

decreasing phenomenon, we apply the forward difference scheme. Also we can use some other
high resolution scheme to find the flux of the Eq. (3.28) [47]. In this study, the flux is defined

according to first order upwind scheme as,

— J — J
F;,l - Gi_% n;, F:+l - Gi_% 1y
2

2

The results obtained from the proposed methods are analyzed by their comparison and their
graphical behaviors below. We divide our work again into four cases where each case followed

by the one mentioned in the Chapter 2.

3.4 Case 1

In this problem we deal with CD3 T-cells activation with a given initial protein concentration that
is observed just before their activation. The concentration of CD3 protein is the one present on
the surface of T-cells at the time of recognition of the viral infection. After recognition, the
concentration decreases exponentially to signal the cytoplasm of T-cell to start the process of
activation. The major component involved in this process is the highly variable affinity of the T-

cell receptor for the peptide. Also the speed and level of proteins up-regulated is proportional to
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3.4 Casel

the strength of the binding and the final effect on the T-cells. The rate of internalization (reaction

rate) of CD3 protein is followed from Eq. (2.1) while the rate of activation can be found by
solving Eq. (3.1) with initial condition: N,,.(0)=1. Thus,

B(r)=axe"" (3.29)

In this case, the characteristic curves c,(#) found by solving Eq. (2.1) are monotonic as shown in

Figure 2.3. For a given couple (c,#) with ¢>c,;, , there is only one curve c,(¢) passing through

dc dc
L(t)=—(t—7). Not
dt() dz( ) . Note

this point. Thus there is one corresponding 7(c,#) and one derivative

¢

that, the case where the curves are deduced by translation, can also be considered as a

d. de . . .
C (c)= ?j(c) . During a time step df, the number of cells activated between 7

function of cas

and 7+dr is travelling along the characteristic curve c(z,7), and the conservation of cells gives:
n(c,t)dc = B(t(c,t))dt . The population density n(c,?), is thus simply linked to the slope of this

curve and to the activation rate B(7):
B(z(c,1))

n(c,t) =
‘Z:j (t—1(c,1))

(3.30)

This is almost analytical way to derive » from B and the slopes%. This concept is described

above in detail in the section 3.3.2. The derivation of PBE for such case can be easily derived
from the general idea for the derivation of PBE described above in the Mathematical Modeling
section 3.2. Therefore, in this case, the hyperbolic conservation law can be written in terms of

PBE as defined in Eq. (3.9) with,

G(c)=—kc(t,7) (3.31)
The parameters for the activation rate defined in Eq. (3.29) are chosen as »=1/7200s"" and

a=3X0"s" (molexn*)”". The method of characteristics is used to find the analytical solution

while a frequently used numerical scheme, finite volume scheme for solving homogeneous
hyperbolic PDEs, is applied to solve the PBE. The numerical scheme is validated against the
analytical solution and the solution found by TM.
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3.5 Case?2a

In this case, the model is considered as the simplest way to describe the activation process of T-
cells. The solution of the above defined problem is sketched in the Figure 3.9 at four different
times ¢ =20000s, 50000s, 80000s, 100000s . The figure is a log-log plot because the values are
at extreme ends. One can observe the validation of both approximate methods that are
overlapping the exact solution. This validation will be helpful in dealing with other cases where

the exact solution is not possible.

Population Density of T-cells for CD3 Protein
t=20000 t=50000

Population Density

State variable "c1"

Figure 3.9: Population density of T-cells according to their protein levels at different time ¢

3.5 Case 2a

In case 2a, T-cell activation is studied with respect to their surface protein (CD3) concentration

that internalizes and reappear on the surface of T-cell outside of the synapse. The activation is
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3.5 Case2a

again described by an activation rate function B(7), number of cells activated per unit of time at

activation time 7 . Classically, the rate of variation of the number of non-activated cells N, is

N yic
dt

taken proportional to this population: =—bN,,., where N, . =aexp(=bt) with

5

b=k"N ,,.. Thus usually B(7) is a decreasing exponential function. Here we consider as,

-b

B(T)=ae I. (332)
In the Case 2a, the curves have shown the decrease as well as increase in the concentration. The
instance where <7, the behavior is very similar to the 1% case. For ¢>¢", given couple (c,?)

with ¢>c .

min

there are two curves passing through the point, 1.e. 7;<7,, with their

corresponding derivatives as shown in Figure 3.10. The value of T has been obtained either

numerically, with a Newton-Raphson method, or by approximation of ¢(#) by a polynomial and
then the determination of the roots of this polynomial. £,(c)<f,(c) are obtained from the curve
c(?), then the 7, values are deduced: 7,(c,t)=t—1t,(c). The derivatives are computed from the

expression of ¢ versus 7.

The population density is the sum of two terms #, and #,. The #, and 7, correspond to the two

populations activated at 7, and 7,, having a protein concentration ¢ at time ¢. For the first

population, the concentration is increasing, while for the second, it is decreasing. The

accumulated population density can be given by the following equation:

B(7,(c,1)) N B(z,(c,1))
dc de
‘dt(t_Tl(C’t)) ‘dt(t—fz(cat))

n(c,t) =n/(c,t)+n,(c,t) =

(3.33)

Recall the Case 2a in Chapter 2 where we have described the characteristic curves (solution
curves) on which the solution for the density of T-cells is travelling. Each curve took the
minimum value where the speed (variation in the concentration) became equal to 0. One can

observe that the population density of T-cells n(c,?) tends to infinity when the concentration

approaches its minimum level (i.e. n(c,t)—>e when c—c ), since the derivative
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3.5 Case 2a

é(czc

” ) =0. But the integral of the function n(c,#) remains finite (by quadrature rules), and

min

thus the number of cells in any interval [c,; ,c]can be computed. Moreover,

n?o

I n(c,t)dc <o when c =, .

‘min

Detemination of 1, and 1,

bg
>

oy
w

s
N

N

o
©

surface pratein concentration

surface protein concentration
o
& -

o
3

0 02 04 06 08 1 12 14 16 18
time and activation time

time and activation time

Figure 3.10: Numerical computation of T, and T,

Numerically, in case of finite volume method, the value of n(c,?) at a node is the mean value
that represents its integral on a cell divided by the size of the cell. Thus the numerical values of
n(c,t)at ¢c=c,;, for a given mesh will be finite. Nevertheless this behavior may affect the

numerical accuracy.

3.5.1 Model Derivation by using conservation laws

The validation of the Transport Method presented in the section 3.3.2 is questionable in more
complex cases because it directly approaches the solution by geometrical analysis. The
geometrical interpretation is quite difficult especially in multi-dynamical systems. Therefore, it is
more convenient to adapt the classical conservation law approach (hyperbolic equation) for the

non-monotonic variation in ¢(z) curve.
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Let us recall that, in case of monotonic function ¢ =c¢(¢), with no crossing, the conservation

equation can be written as a scalar transport equation, with the concentration ¢ as an inner

variable (space variable in classical advection equation) . For example, in our case, at a time
t<t*, the population flux at concentration c is: Q—ﬂ(c)xn(c t). The populations are

travelling downward on the c- axis. Since the curves are deduced by translation in time, the

derivative only depends on c¢. This derivative, classically called as the growth rate, is noted

G(c) =?(;(c). Thus the conservation equation and the initial and boundary conditions can be

written as,
a”(act ) = (G(c) n(c,1)) =0
n(c,0)=0, (3.34)
_ B
D= G

where ¢, is the initial concentration. We can also write the conservation equation on a non-

conservative way:

a”éct D 4 Gle )a”(c D _ _Gem(er) (3.35)

de, G(o)
Along a characteristic curve beginning at T, like the equation: { df B , the variation of

¢, (0)=¢,

n(e@n is ™ — _(1)G(¢), and
dt
dG(c

n(t) = n, exp(~ j ( ( ))dt) (3.36).

But in our case, for #>¢*, characteristics are crossing each other. At each point (c,¢), for

c¢>c_.. ,two opposite fluxes are present:

mm’
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1. Flux of the cells activated at time 7, whose concentration is increasing, and thus who

travel upward on the c - axis. If the density of population of these cells is noted 7, their

dc
flux is equal to Gj(c).i(c,?) with G,(c) = %(c) .

2. Flux of the cells activated at time 7, >7;, whose concentration is decreasing and travel

. . dcT (c,t) :
downward on the ¢ - axis with a flux G,(c).n,(c,?), G,(c) :#(c), where n; is the

population density of these cells.

n,G,(c)+n,G,(c)

n +1’12

The resulting total flux can be computed from the equation: F, = , with G, <0.

But it is not possible to compute equivalent reaction rate [ as a function of ¢ only since n; and
n; need to be known. A way of solving this problem is to write one conservation equation for

each population, and then to compute the total density n(c,?) as, n=n +n,

on(c,t) 0 )
M+—(Gi(c)‘ni(c,t))=0, i=1,2 (3.37)
ot ac
. .. . nl(C,O):O .
The initial and boundary conditions for the first equation (i=1) are: (o) .While for the
n(€y,t)="n,

second equation, the value of n at ¢ =c,_;, (minimum value of ¢) is not finite. A way to overpass

this problem is to consider a little fixed interval [c

in>Cmin TAC] on which n(c,) is replaced by
its mean value. This is naturally the case in the numerical solving, using a finite volume method.

On each cell, the unknown will be the mean value of n(c,?) on the cell.

We use here a simple one order upwind explicit finite volume scheme. n! =n(c,,¢*)is the

approximate average value of n(c,?) at time ¢ on a block centered on ¢,. F* , and F* , are

the fluxes respectively upwind and downwind at the boundary of this block. The scheme is of the

following form:
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i+1/2

(n,.k+1 —n,.k)Ac+(F.k F,.fl/z)mzo (3:38)

The fluxes are computed upwind on the following

k
Flpp= G(CH/2 ;.
way: |
Fipn= G(C,ﬂ,z o,
The two fluxes are treated in the continuity on one to o

the other, the first block on the c-axis (¢=c,)

n|n [ n=n,+n,

making the connection. But each equation is solved on

=G [~ | 92=Gzn,
a separate grid, since one have to distinguish 7, and

n,. Then, between ¢, and ¢,, 7 and #n,are added to h=n,
C

'min

obtain the density n(c,?). The principle of the scheme

. . . Figure 3.11: Principle of the numerical scheme
is exposed in Figure 3.11.

This scheme, known to be stable provided that the classical CFL condition is satisfied on the time
step, presents the drawback of developing a high numerical diffusion. In order to decrease the

numerical diffusion around the discontinuity front, we can use the following idea:

The flux at the discontinuity on the ¢ - axis can be numerically derived from the computation of
the reaction rates G(c). The reaction rates are computed at each boundary between blocks in the
finite volume scheme. Thus, the time at which the propagating discontinuity reaches a given
block can be numerically approximated. In order to avoid numerical diffusion around the
propagating discontinuity, the flux on the boundary between two grid blocks can be set to 0 until
this boundary is reached by the front computed from G(c) (diffusion limitation scheme). But this
method does not prevent diffusion behind the front. The result derived is then very close to the

solution found by Eq. (3.33).
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Density function

Discontinuity front

I
I
|
|
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I
I
|
L

Concentration

Figure 3.12: Diffusion in the numerical scheme at the rear and the front side

Comments

The results for density function obtained by TM and Upwind method are displayed in Figure
3.13. For this example, the parameters chosen are k =1/3000s"", &, =1/30000s7",
¢, =3.24x10 """ molexm™ and B(r)=aexp(-br) at four different times (in seconds) are
t=10000s, 20000s, 50000s and 100000s . The solutions found by the methods are very close to

each other. The Upwind method shows diffusion in the Figure 3.13(c) because of the

interpolation of reaction rate function G(c).

There are three discontinuities coming; one discontinuity is at the rear side while the other is in
the middle and moving from the middle of the curve to the front to meet the third discontinuity.
The rear side discontinuity shows that there is no activated T-cell with the concentration before
discontinuous point. The second discontinuity initially lies at the middle of the curve, Figure
3.13(a) and (b). This discontinuity occurs due to the intersection of the concentration curves as
shown in Figure 2.5. The discontinuity moves forward and meets the discontinuity at the front as
shown in the Figure 3.13(c) and (d). The front discontinuity is actually the maximum

concentration of CD3+CD3* protein present on the surface of T-cell.
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Population Density of T-cells for CD3+CD3* Protein - Case 2a
t= 10000 t= 20000

Population Density

4+

7777777777 Jrff*f*ﬂ‘fffffﬂiff
1 2 3 4 5
x10™"

State variable "c=c *C

Figure 3.13: Results with finite volume scheme (Upwind as dashed line) and Transport Method (TM as line)

3.6 Case 2b

In the first model, the increase in the CD3 reappearance on the surface is realized without any
limitation. Therefore the limited capacity of T-cell makes a contradiction and clearly shows the
deficiency of that model. However, mathematically, it has shown an adequate analysis about the
crossing of two curves in the linear hyperbolic PDEs. The deficiency of that model is removed, as

discussed in the section 2.4.2 of Chapter 2, by introducing the half-life of internalized protein in
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3.6 Case?2b

the Eq. 2.3a. Due to this reason, the reappearance of CD3* on the surface of T-cell affects the
population density. However, in this case, the procedure to derive the population balance
equation is similar to the previous model and the solution is found for the combined surface

protein of CD3 and CD3*.

on(c,t) 9 3
o + P (G(c)>u(c,t))=0
n(c,0)=0,
B()
n(c,,t) =
"G
where B(t)=ae™”, - (3.39)
, d
and G(C(Cl e )) = E C(ta T)
de, dc|
=141
dar dt

=—kc,tk, %Ci (1-¢])

c

The kinetic parameters (k, and k,) and the parameters for total initial population B(f) defined
for this case are same as in the Case 2a while the reaction rate G(c) is defined in the Subsection

Second Model of the Section Case 2 in the previous chapter. The approximate methods, TM and

FVS, show a nice commitment with each other as shown in Figure 3.14.

The error observed in the graph is due to the interpolation of the solutions of reaction rates,
defined in Eq. (2.8). The crossing in the curves, as shown in Figure 2.6, needs a fixed grid for c-
axis in order to study the density of T-cells at the crossing points. The time step for numerical
methods is chosen constant in order to satisfy the CFL condition. However, the error is reduced
by applying the limitation at the end of each boundary. In contrast to the numerical schemes, TM
doesn’t need any interpolation before finding the population density function. Therefore, TM has

better representation of the solution.

In the Figure 3.14, the discontinuity is moving towards the right with the passage of time. The
discontinuity shows that the population density of the T-cells with decreasing CD3+CD3* protein
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concentration on the surface matches to the population density of T-cells with increasing the

concentration of the same protein. The steep descend in the solution due to discontinuity indicates

that the T-cells are no more crossing each other with respect to their protein concentration. The

discontinuity moves further towards right as we can observe in Figure 3.14(b) and gets vanished

in the next figures. It can also be observed that the population density is increasing more rapidly

at the right with the passage of time.

Population Density of T-cells for CD3+CD3* Protein Case2b

t=10000 ”

t=20000
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t= 100000

State variable

L1] /"
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Figure 3.14: Results with finite volume scheme (Upwind — dashed line) and Transport Method (CM - line)
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The possible reason for the above two arguments is that the activation rate B(¢) is a decreasing
function of time. In contrary to the previous case, the increase in the concentration of protein
does not exceed from the initial level, Figure 2.6. Therefore, the population density at the initial

concentration ¢, shows no discontinuity at any time ¢ as shown in Figure 3.14.

3.7 Case 3

The case 3 is established in order to study the evolutionary process of population densities of T-
cells based on six proteins which are remarkably changing during the activation process. The
process starts from the CD3 protein internalization that results as CD3i protein. Due to its

internalization, many proteins produce and come on the surface of T-cell.

T cell activation process

I * {
I

] .-\ntigenPresentingCerlli i
I
I
I

“ (1) Virus ingested and
PY divided into small pieces.
) .0

\.

’_(3) CD3 protein
internalizes and
 becomes CD3i
LIS

(2) MHC proteins present
Virus pieces outside. T-
cell Receptor recognize it.

<(4) Nucleus produces I

) ~more proteins to .

become fully activated |
like CD25 and IL-2

R S LA, * & ;
! T%e + MHC peptide |=== = |
: & % o * :
| ‘ 29/ % ) £ 5 Oatase * :
. o b ¥  (5) Interleukin-II g !
! *  (6) CD25-IL2 protein F goesintotheblood _ "
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Figure 3.15: Dynamical changes in T-cells with respect to proteins and the population dynamics of the activation T-cells

In this case, we are not going to deal with CD3 reappearance. The surface proteins are CD3,
CD25 and CD25-IL2 proteins. The CD25-IL2 is a binding of CD25 and IL2 proteins whereas 1L.2
protein is shared by the other T-cells. It goes into the blood and bind to the CD25 protein that lies
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on the surface of any activated T-cell. The internalization of this binding is considered as the
sixth protein, denoted by CD25-IL2i. It has a vital role in the proliferation of T-cell as it is
considered as the last signal in the cytoplasm of T-cell before the division process starts. The
concept of protein dynamics is well described in chapter 2, Case 3 while the population dynamics

can be observed from the Figure 3.15.

Notwithstanding the proteins are depending on each other, we only discuss here the population
density of the surface proteins. Let us recall the PBE so that we can define it for the other surface
proteins like CD25 and CD25-IL2. We considered the population balance modeling concept

where each T-cell is considered individually as part of the population diversity [27] according to

its concentration of protein, e.g. CD3 (¢,). Therefore, the cell number (per volume unit) dN,in

each interval of CD3 concentration [ ¢;, ¢ +dc,] is defined as,
le =n1(l,Cl)dcl (3.40)

where ¢; is the abbreviation of the membrane CD3 concentration and 7,(c;,?) is the population

density for the activated T-cells with respect to the variable ¢;. Population densities for CD25 and

CD25-1L2 can also be defined in a similar way:

dN, =n, (t,¢;)dc,
dN; = n, (1, ¢ ) des
The CD25 and CD25-IL2 concentrations on a given cell were respectively named ¢, andc, . The

(3.41)

three population densities change with time due to the internalization of CD3. It obeys a PBE as

described in the model [25], [27]:

on. a(Gn)
iy L =B()O(c,—c.,), i=1L3and5 (3.42)
ot ac, ® ( ' ”0)

1. n, representing the cell density relative to the protein i of interest (i.e.: i=1 for CD3

protein). »; is a function of ¢, and time .

2. a—’representmg an accumulation term
t
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d(Gn,)
ac,

1

being a convection or reaction term including the rate of the protein

internalization or production ( G, ) at the single lymphocyte level.
4. B()o (c,. —c,.,o) being a term of source that in that case represented the production rate of

activated T cells (TL*) according to its initial concentration (¢, , before activation).

In order to simplify the handling of Dirac function (), Eq. (3.42) is transformed into

on. a(Gn.)
om | 9\
a o (3:43)

1

with the boundary condition,

__B®
(t.c;0) —‘ G (e )‘ : (3.44)

n.

1

The modulus is used in order to abstain from the piecewise function. This insures us that the
population density cannot be negative. Unlike CD3 internalization, the CD25 and CD25-1L2

production rates are showing the both behaviors (increasing and decreasing) as their expression
have the rise and fall during the activation process. Therefore, G, <0 while G, is a non-monotonic

function for i =3,5. The initial conditions are

n,(0,¢,)=0 forc #c,
and ¢, >0, (3.45)

whereas ¢; ,=c5, =0

The initial concentrations of CD25 and IL2 in CD8+ T-cells were considered as null. The small
minority of Trgs (Regulatory T cells) that spontaneously expressed CD25 was automatically not
considered as they belong to the CD4+ and not CD8+ T cell population.

3.7.1 Coupling of CD3 internalization and production of

CD25 and CD25-IL2

The coupling of internalization of CD3, production of CD25 and CD25-IL2 dynamics raised new
difficulties. Indeed, unlike CD3 down regulation, CD25 and CD25-IL2 up regulation are not
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only depended on their proper initial concentrations (c,,;1<i<6) but also on the external

factors such as the dependency of proteins on each other. It means that there is an ODE system
that represents the kinetics of the activation process in a given cell, as given in Egs. (2.9) — (2.16).
In order to calculate the duration of the T cell activation process at the single cell level, these
ODEs need to be solved as followed,

G, =dc,/dt= f(c)

G, =dc, /dt:fz(cl,cz)

v

G, =de,/dt = f, (c,,c3,¢,) (3.46)
G, =dey /dt = f,(cc40c5)
G, =dc, /dt=f,(cs)

with
t=t,, ¢=¢, ¢ =0 =0 ¢ =05 =0

C4=C C5=C50=0 ¢g=0¢6,=0

This required the resolution of the ODE at initial conditions(cl,o,to) during the time scale[O,t. /.] .

For that purpose, we have chosen the kinetic constants at a single cell level for describing the
activation process. Then we have calculated the rate of change of time for the above six proteins

while for CD3, CD25 and CD25-IL2 membrane expression, we find their population densities:

”l(tj’cl)’”3(tj’cs)’”5(’j’CS)
3.7.2 Solution of Density functions

The population density of T-cells is studied with the reaction rates defined above. Several
numerical methods are applied to validate the results. Since the characteristic curves, Figure 2.9,
are not same (as it can be seen in CD25 and CD25-IL2 plots), interpolation of the reaction rates is
mandatory to find the numerical solution of PBE. The reaction rates found by the Eqs (2.9) —
(2.16) are interpolated on the constant grid for the concentration. As the function is smooth, it is
possible to use any interpolation technique. In this manuscript, a defined Matlab function for
interpolation is used to do so. For the Transport Method, the interpolation is applied after finding
the density function because the solution found by TM is not based on the reaction rates defined

by the Egs. (2.9) — (2.16).
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[) CD3 Protein

The population density of T-cells for CD3 protein concentration is analyzed by using four
methods based on analytical and numerical analysis. The exact solution is found by the MOC
while the approximate solution is found by the other three methods, namely, Upwind, LWF and
TM. The exact solution for the linear hyperbolic PDE is given by

0 ¢ <X
(ch) 3 : (3.47)
n,.,t)= B(t) + In(¢y)—In(c;)
: (0] et ¢ = ¢ e
ki,
Population Density of T-cells for CD3 Protein
93 t=20000 t= 50000
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Figure 3.16: Population density of CD3 protein with respect to concentration at different times in seconds. The kinetic parameter
for CD3 protein concentration is kl =1/5X0"*s"!
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The initial population of activated T-cells is given by B(f)=ae”, a=3xX0%,b=1/7200. The
solution can be shaped by using simple algebra. Four different times (in seconds) are presented in
the Figure 3.16 for the population density function. In this figure, log-log plot is preferred
because the values are at the extreme ends and it is convenient to follow in the defined way. The
population density of the activated T-cells has the same maxima with a shift in the distribution of

proteins for each time.

The CD3 protein has shown a very obvious behavior that was expectable due to independent
linear reaction rate from the other proteins. On the other hand, it has given a good commitment
between the different methods which has validated our newly developed method. Although the
kinetic constant for the reaction rate was smaller than the previous cases, yet it has adequately
affected the production of the other proteins by the activated T-cells. This is observed in the next
population density functions for the other surface proteins due to their dependency on CD3

protein.

1) CD25 Protein

The concentration of CD25 protein is depending upon the dynamical changes occurring in the
other proteins and it has shown an eccentric behavior as shown in the Figure 2.8. First of all the
population density for such behaviors has not been studied in the literature. In the previous
studies, the population density is studied either for constant growth (reaction) rates (concentration
increases at a constant rate) or for the linear reaction rates. In this study, the decrease in the
concentration of CD25 protein is followed by an increase. Secondly, each characteristic curve is
following a path with different reaction rate that makes the problem to find the population density

of T-cells more complex.

By solving the integro-differential system numerically, given in the section 2.5, the grid points
are not same for each characteristic line. It means the variation rate of one curve is not same as
the others. Therefore, we need a fixed grid in order to find a numerical solution for the population
density function. For this purpose, we used an interpolation technique to find the fixed grid points
so that we can solve the linear hyperbolic PDEs numerically. On the other hand, the Transport

Method is not dependent of the grid points; it can give better approximation. Due to interpolation,
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3.7 Case3

the error has increased in the numerical methods but the solutions are still following the solution
found by Transport Method. The Lax-Wendroff method is used without flux limiter because there

was no oscillation found during the whole simulation of the population density function.

Population Density of T-cells for CD25 Protein
t= 10000 t= 20000

N
w

—
o

Population Density

State variable "03"

Figure 3.17: Population density of CD25 protein with respect to concentration at different times in seconds

ky=1/54077", ky, =1/5X07s™", ky =107*s™", k, =107 ms™, ks =10’ m’mole”'s™ ,k, =107

The Figure 3.17 shows the population density of activated T-cells with respect to CD25 protein

concentration at four different times. The comparison between the Figure 2.9 and Figure 3.17 can
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3.7 Case3

give us a better analysis for the population density. At time ¢=10,000s , Figure 2.9 shows that the

concentration is increased at a high rate. Moreover, in Figure 3.17(a), the population density
shows that there is a range of concentration of CD25 protein present on the surface of activated
T-cells. It is probably because, initially, the binding rate between CD25 and IL-2 is not so high
due to low concentration of IL-2 in the blood. The increase in the concentration of CD25 starts
decreasing afterwards due to the high level of binding of CD25 and IL2 protein. The most
important phenomenon is that the characteristic curves are not crossing each other but they are
converging to the specific level of the concentration as shown in the Figure 2.9. Therefore, the

population density of the activated T-cells is increasing rapidly in the Figure 3.17 (c), (d)

In contrary to the CD3 protein, the CD25 and IL-2 proteins dynamics were dependent on each
other. Therefore it was impossible to find the analytical solution for their population densities.
The population density of T-cells was diversified rapidly in a range of CD25 protein
concentration and afterwards it confined to a smaller range. But, in this confined range, the
density of T-cells was very high as we can observe from the discontinuity front in the Figure
3.17. Due to the change in the kinetic parameters, the reaction rate was not so high. Similar
behavior has been observed for CD25-1L2 protein but the reaction rate is not as complex as in the

case of CD25 due to the monotone behavior of the solution curves.

[1I) CD25-IL2 Protein

The binding of IL-2 on CD25 protein starts early, after their productions. The concentration of
CD25-IL2 binding increases gradually, Figure 2.9 that can be observed by the diversity of the
population density of activated T-cells in the Figure 3.18. One can also observe that more and
more cells are gathering with high concentration of this CD25-IL2 complex although this cluster
is going inside the cell afterwards. The increase in the binding process of the protein present on
the surface of the activated T-cells can subsequently affect the internalization speed that is

necessary for the T-cells proliferation.

The results obtained by analytical and numerical methods have shown a nice agreement with
each other and follows the natural phenomena. We use the same technique as we have used above

to solve for the population density of T-cells for CD25 protein. The flux limiter is used to solve
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this problem due to high level of diffusion observed in the LWF method. The analytical method
based on the characteristic lines and the upwind finite volume scheme has shown a good

commitment with the Lax-Wendroff method.

Population Density of T-cells for CD25-1L2 Protein
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Figure 3.18: Population density of CD25-IL2 protein with respect to concentration at different times in seconds

k =1/5407*7", k, =1/5X07s7", ky =105, k, =107 ms™", ks =10’ m’mole”'s™
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The population density has been diversified with the passage of time. As the concentration of IL-
2 rose in the blood stream, the binding of CD25 and IL-2 has increased gradually. Probably the
stability at the discontinuity front in the Figure 3.18 (b), (c) and (d) is due to the degradation of
the binding into the cell. This phenomenon has been observed by perceiving the range of protein
concentrations on the surface of activated T-cells. At the same time, the T-cells were
continuously activating and expressing their CD25 protein on the surface as well as diffusing the
IL-2 signals in the blood stream which continued the process of binding and degradation until the

threshold level would be reached to start the proliferation.

In the next case, the reaction rates for CD3, CD3i and IL-2 proteins are chosen higher. Therefore
we observe the intersection between the concentration curves of CD25 and CD25-1L2
respectively as shown in Figure 2.10. At these intersection points, a drastic change is observed in
the population density of CD25 and CD25-1L2 T-cells and the conservation laws are no more be
applicable by a classical way. Not only this, but also, it is not possible to apply the classical
numerical techniques near such intersections. Therefore, Case 3 was obligatory in order to find

the solution of the crossing problem by following TM.

3.8 Case 4

In case 4, we will focus on the same proteins as discussed before but here we have more general
phenomena with regards to the population density of the T-cells with variation of proteins on
their surfaces. If we consider that the characteristic line increases or decreases more rapidly as
compared to the above case, we can observe the curves crossings each other as shown in Figure
2.10. This can make trouble to write the conservation laws for linear hyperbolic equation because
the population density at crossing point has multiple origins. Moreover, we need further analysis

of the Transport Method in order to find the solution.

3.8.1 Modified Transport Method

The characteristic lines are showing non-monotonic behavior and crossing each other at different

points. The natural grid defined for this case by solving the system of ODEs in chapter 2 is
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irregular. It means that each curve is following a different grid for c-axis (concentration axis).
The repetition of points in each curve is discussed in the above case. In this case, instead of a
smooth curvy behavior of population density of T-cells, the curves intersect at some point that
drastically changes the density function as shown in Figure 3.19. Basically it is a genuine
behavior regarding the protein dynamics that can happen many times when the two types of T-
cells are varying their concentrations of proteins at different rates during the simulation time. But,
in this study, we consider that the two type of T-cells (started their activation process at different
activation times) can coincide at-most one time as shown in Figure 3.19. A brief description
about this phenomenon is explained in the Chapter 2 (Case 4) that can give a better understanding

about such protein dynamics.

c+Ac |- !

5] [Bepnc] 1 (A

Figure 3.19: Population dynamics between of types of T-cells meeting at the crossing point lies in the interval [,7+A4f].

Consider the two (populations of) T-cells having their respective initial concentration of
membrane proteins and follow their respective rate of change. The protein concentration on one
T-cell that activates at time # =7, varies less rapidly than the other T-cell that activates at 7 =7,
as shown in Figure 3.19. Due to this reason, the variation would not be same for each

characteristic curve. For computational purpose, we define a constant grid with c-step Ac
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between the minimum and maximum concentrations. Therefore, without any loss of generality,
we can assume that the concentrations between ¢ to c¢+Ac can coincide each other at a
particular time from ¢ to 7+ Az . The population traveling along the characteristic curves certainly
increases at this point due to same value of the protein concentrations of two T-cells and,

therefore, we observe a severe change in the T-cells population density.

In this method, firstly, we will find the solution for each curve by using the Transport Method
defined above. We have a little difference from case 2 where we find the density function

directly. Here we will sum up the densities at the crossing points afterwards. Let us consider that

c,=c(7,,t) and cy=c(7,,t) are the characteristic curves to be followed by the population
densities 7n,(c,,?) and ny(cy,?) with initial activation time 7, and 7, respectively. Note that 7,
and 7, are the average points and approximates the definite integral in the defined time intervals

[7,—A7/2,7,+A7/2]and [z, —A7/2,7,+A7/2] respectively. If the curves come across each
other at time [£,7+A¢] with concentration [c,c+Ac]| (defined on constant grid) then the total

population at the control volume will be n(c,t)=n,(c,,t)+ny(cy,1).

3.8.2 Solution of Density functions

The population density of T-cells is found for the surface proteins, namely CD3, CD25 and
CD25-1L2. In this case the kinetic parameter used for CD3 protein is same as in the 1% case, i.e.
k; =1/3000. Therefore we can refer to Figure 2.3 to analyze the population density of T-cells for

CD3 membrane concentration. The CD25 and CD25-IL2 proteins are described in the previous
case where the kinetic constant for CD25 protein production is quite small that made the problem
simpler than this case. For the case 4, the kinetic parameters were defined in Chapter 2, section

Case 4 while the rate of activation B(7) remains same as defined in Eq. (3.32).

The population density of CD25 protein is found in Figure 3.20 at four different simulation times,

i.e. t=20000,50000,80000,100000 by using the Modified Transport Method (MTM). In the

start, the protein CD25 shows a rapid increase in the activated T-cells and the protein
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concentration is well distributed among these activated T-cells. In the Figure 3.20 , we observe
that a high protein concentration is present in most of the activated T-cells while very less T-cells
have low concentration of CD25. The low concentration is possibly due to two reasons: firstly,
those cells that are newly activated and increase their concentration and, secondly, those cells that

are binding with IL2 proteins and losing their CD25 protein on the surface.

Population Density of T-cells for CD25 Protein
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Figure 3.20: Population density of CD25 protein with respect to concentration at different times in seconds

The Figure 3.20 has shown a rapid decrease in the CD25 protein concentration due to binding
with IL2 signals that are produced by all T-cells. The activated T-cells at any time #=7 can

coincide with other T-cells activated at some other time ¢#7 with respect to their protein
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concentrations. This phenomenon produces the discontinuity in the T-cells population density as
we can observe from the above Figure 3.20(a). The other plots show that, after time ¢, the protein
concentration is getting low on most of the activated T-cells that can be observed by the shift in

the discontinuities.

Population Density of T-cells for CD25-IL2 Protein
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Figure 3.21: Population density of CD25-1L2 protein with respect to concentration at different times in seconds

The CD25-IL2 binding on the surface of T-cell rapidly increases after the production of CD25

and IL-2 proteins during T-cell activation. Due to the internalization of the binding, T-cells show
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a gradual decrease of CD25-IL2 on the surface at different rates. The non-monotonic behavior of
different types of T-cells coincides after a certain time and shows discontinuous behavior similar
to CD25 T-cells. The discontinuity moves gradually towards left as shown in the Figure 3.21.
This shows that the internalization rate is not so high because a wide range of protein

concentration still remains on the activated T-cells.

The internalization of CD25-IL2 plays an important role in the proliferation of T-cells and that
was one of the main reasons to study this model. Now we consider this situation as the T-cell is
fully activated and now ready to divide and therefore, we can turn towards the division process

by analyzing the proliferation of T-cells in the next chapter.

3.9 Conclusion

The process of activation of T-cells has shown diversified behaviors in the dynamics of
population density. The dynamical changes at individual scales were dependent upon the proteins
concentration at the initial time not only inside the cell or on the surface of the T-cells but also
the outside (in the fluid). The population densities of T-cells were studied according to the

surface proteins concentration.

The TM has shown a good commitment with the classical FVM and LWF. For the CD3 protein,
the exact solution by MOC overlapped not only the classical methods but also TM. In the further
cases, the error, observed between the numerical methods, compelled us to use the constant grid
for the c-axis. This need was inevitable due to dissimilar behavior of characteristic curves. One
can imagine it just by observing that the global maximum of each concentration curve is not same
as shown in Figure 2.9 and Figure 2.10. Similarly, the range of concentration was also different
for each curve which has made problem for the CFL condition that is mandatory to find the

population density by using numerical methods.

The TM was modified according to the need in section 3.8. Since each solution curve found by
solving the reaction rate in the section 2.6 has followed its own path particularly in CD25 and

CD25-IL2 plots. Due to such variation in the behavior of the solution curves, conservation laws

112



3.9 Conclusion

didn’t hold and the representation of model by using the classical way of population balance
modeling became questionable. The Modified Transport Method (MTM) has made it possible to
study the population density in this case but it left a question: whether is it possible to solve such
conundrums by writing their (conservative) hyperbolic equations or it will remain a stunning

dream?

In the above discussed cases, the population of activated T-cells is studied with respect to the
concentration of CD3, CD25 and CD25-IL2 proteins present on the surface. Previously,
experiments had been performed by [4] and a model has been presented in order to better
understand the experimental results. The model by [4] has been studied at the hypothesis level
that has provided us the chance to extend it to the values that are approaching the experimental
data [8]. We followed some of the mechanism formed by [4] for finding the population density.
The initial population density and the initial protein concentrations were considered with altered
kinetic parameters from [8]. The results have shown a similar behavior as observed in the
experiments and models. Unfortunately, there are no experimental results for CD25-1L2 protein.
Although the mathematical modeling has played its part to investigate an innovative approach for
population density of T-cells but it has ignored a lot of difficulties that are needed to understand
the dynamics of T-cells. This dynamics was followed by all T-cells activated with same initial

concentration at any activation time 7 .

The internalization of CD25-IL2 was considered as the final step to start proliferation. This
process is complex as the proteins are asymmetrically dividing into two daughter cells and this
process repeats itself for several times. Some simple cases will be studied in the next chapter in

order to set a hypothesis for this portion.
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Chapter 4

T-cell Proliferation



4.1 Introduction

4.1 Introduction

Proliferation is a division process that results with an increase in the number of several types of
T-cells. This is the most important process to kill the virus as well as to produce memory T-cells
that are long lasting and act more quickly and firmly against the specific viral infection. The T-
cells repeat the evolutionary process of activation after the division process. The division of T-
cells needs a threshold level of internalized protein CD25-IL2i that is considered in this work as
the final step before T-cell division. The proliferation is followed by all the T-cells but probably
at different level of CD25-IL2i protein. Also the concentrations of all the other surface proteins,
including CD3, CD25 and CD25-1L2, do not have the same concentration. Instead of considering
the surface proteins concentration, we consider that the T-cells start proliferation at a certain
concentration of CD25-IL2i protein. The divided T-cells then follow the same process of
activation. In short, in this chapter, we study the reaction rate of six proteins and the activation
rate of T-cells before and after proliferation. The population densities of T-cells with and without

proliferation are compared.

4.1.1 Biological Structures

The division of T-cells needs a threshold level of internalized binding CD25-IL2i. It is considered
here as the last signal inside an activated T-cell before the commencement of division process.
The previous studies reveal that the T-cells start the process of division after 2 days and lasts this
process of division for the next two to three days. Normally, the immune system do not take more
than a week to get rid of the acute viral infection. It is important to review the proliferation
process of T-cells with respect to their two major types, the helper CD4+ and cytotoxic CD8+ T-
cells. It is observed experimentally that the activation process of CD4+ T-cells is slower than the
CD8+ T-cells and therefore CD4+ T-cells takes more time to start their proliferation [45]. Also,
no cell division has been observed during the first day (=86400s ) by both in-vivo and in-vitro
[45]. Normally, the CD8+ T-cells start dividing in the next couple of hours and takes 6-8 hours
per division. On the other hand, CD4+ T-cells take more 12-24 hours to start the proliferation and
each division needs approximately 10 hours [60], [61], [62]. The CD8+ T-cells divide 7-10 times
during the process while very less CD4+ T-cells are showing their division seven or more times,

[45], [63], [64].
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During the proliferation, many intrinsic differences between the CD4+ and CD8+ T-cells have
been noted at the population level. But there are still some holes that need to be filled up in order
to model the activation process after proliferation. For example, at single T-cell level, the division
of T-cells is asymmetric, [65], [66]. It means that the asymmetric division distributes the proteins
unequally (CD3, CD25 and CD25-IL2) between the two daughter cells after division. It is

possible that the proteins are randomly distributed between the daughter cells.

Another ambiguity is that how many number of T-cells going to repeat the process of activation
after proliferation? In order to analyze the proliferation according to the experimental observation
and hypothetical slants, we make some hypotheses which may help us to model the problem in a
better way. This would help us to understand the subsequent stimulation and proliferation effects
on the magnitude of the response. Furthermore, it can help us to choose a better model which can

be validated against experimental data.

The division process for CD8+ T-cells is shown
up to 3 divisions but it continues until 7 — 10

divisions. Each division takes 6-7 hours. The D3
resulting cells are 2’ —2'%and it takes 2 — 3 days 2 e
t D2 34 Division
o complete the process. There are effector and
memory T-cells. It is assumed that some of D3
them repeats the process of activation. 2nd Division
. 12-14 hours
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Figure 4.1: Division of a single parent T-cell after the getting fully activated.

117



4.1 Introduction

In this dissertation, we follow sequence of possibilities to study the protein dynamics and
population density of T-cells before and after proliferation. Before proliferation, the protein
dynamics and population dynamics of activated T-cells are same as described in the Chapter 2

and Chapter 3. Since the proliferation requires a sufficient amount of internalized CD25-1L21

thres

protein, a concentration c; = (7) is defined as a threshold to begin the T-cell division process.

The minimum division time is considered as the transition period T during which the parent cell
divides number of times into daughter cells. During the division time, no daughter cell is
considered to be a part of activation process. After the transition period, some of the daughter T-

cells having different concentration of proteins start their process of activation.

4.1.2 Simplified Model

In this study, we consider that the population beginning the activation process at time ¢ =17 starts
proliferation at time # =7 . This process takes a transition time T in which it divides the parent T-

cell into () daughter cells. The a(¢) is chosen as either a constant or a uniform distribution

over time 7=7+7 as shown in the Figure 4.2. For the protein dynamics, there are two
possibilities due to asymmetric (unequal sharing of proteins between the daughter cells) behavior

of T-cells during proliferation.

First possibility is that the population of daughter T-cells starts their activation process with the
same concentration of surface and internalized proteins as the parent T-cell had at their activation

time ¢ = 7. We can write it in the following way,

€ = Cp>
=0, i%l4 @1

It is important to mention here that ¢, (IL-2) is a global protein (i.e. shared by all T-cells).

Therefore, the proliferation of T-cells does not affect the concentration of IL-2 directly.

The second possible way is the asymmetrical sharing of the protein concentration during the

proliferation of T-cells. This can be defined by a uniform distribution D(c) over the total range

of concentration. Again the IL-2 protein is not included in the distribution of proteins to the
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4.2 Modeling Hypotheses

daughter T-cells. In the Figure 4.2, the concentration of CD25-IL2i protein of the daughter T-

cells starts from same initial level at the activation time #=7+T7 as for parent cell at r=7.
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Figure 4.2: Protein dynamics at a single T-cell level. Part of the daughter T-cells start their activation process after a transition
period of division.

The division of a T-cell is due to the sufficient internalization of CD25-IL2i protein concentration
and not due to the change in the concentrations of surface proteins CD3, CD25 and CD25-1L2,
therefore, we have mentioned the threshold of CD25-IL2i protein. The surface proteins
concentrations are followed relative to the time #=7 at which CD25-IL2i protein reached at its
threshold level. In the next section we define the hypotheses under the conditions given above in

this section.

4.2 Modeling Hypotheses

The initial population undergoes the activation process of T-cells after proliferation can be
modeled in several ways. Suppose that the initial population of the activated T-cells at any

activation time #=7 propagates on a concentration curve c¢=c(f—7,7), t—7=0, starts the

proliferation at time #=7 as shown in Figure 4.2. If T is the transition period for its division

process then we can define the modeling hypotheses under the possibilities given in section 4.1.2.
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4.2 Modeling Hypotheses

4.2.1 Hypothesis 1

We assume that the new cells (daughters) are activated in this hypothesis. The initial population
of the activated T-cells at time #=7+7 (the time after proliferation) is the sum of the initial

population at time =7 and =7 +7 as shown in the Figure 4.3. Recall the activation rate B(7),

one can write it for before and after proliferation as,

_dNNAC(t)
dt

PO ang,e 0 +(){[dNAc(z)

(4.2)

] t>27+T
dt dt r=2(0)

dN,,(t . o

where %() =—k N ;p-N,,- The parameter & =constant is the number of divisions per T-
t

cell which undergo the process of activation. N,.(m>) and N,,. (m) are the concentrations

in the activated and non-activated T-cells respectively, as defined in Eq. (3.1).

Initial population at 7+7 = B(t=7+T)+a - B(t=71)

_ d]v_\}lC (T ) iy .{dN.ic (f )}
a ..

dt

dN, (1
Initial population at 7= B(7) = _¢()

into «
hich activate at

Parent cell :
daughter cell I
the same Activation time but :
the concentration is distributed I D(C)-'
I
I
I
I
I

i€ the Distribution of

among the cells ly activated T-cells

Figure 4.3: Creation of activated T-cells as virgin. Cells are activated according to Eq. (4.2) and distributed at / = T+7T
according to the distribution defined in the Eqs. (4.3) and (4.4).
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4.2 Modeling Hypotheses

For the distribution of population of T-cells at time #=7+7 with respect to their protein
concentration CD25-IL21 after proliferation as shown in Figure 4.3, we can follow the concept of

distribution D(c) defined in Eq. (3.3). Therefore, by using this distribution, the hypothesis can

be divided into two categories:

1. In each daughter cell, the protein concentration at the time t=7+7 equals to its initial

concentration i.e. the concentration of protein at # =7 as shown in the Figure 4.3.

D(c)|_,,, = D(e)|_, = (c—c(7)). (4.3)

2. If the protein concentration ¢ is asymmetrically divided among ¢ daughter cells during
the transition period 7<¢<7+7 then the initial population of daughter cells at the time

t=7+T could be described by the following distribution:

D(c)=pe " (4.4)

Here p; and p, are the two parameters. The dashed line (— —) at =747 in the Figure 4.3
corresponds to the distribution defined in Eq. (4.4).

4.2.2 Hypothesis 2

In this hypothesis, we assume that the daughter cells are activated. The activated parent T-cell at
time =7 divides into ¢ daughter T-cells during the proliferation. The daughter T-cells are
distributed over concentration among the initial population of activated T-cells after the transition
period T, i.e. =7 +7 as shown in Figure 4.4. In this way T will be considered as the minimum
transition period for daughter T-cells which undergo the activation process. A part of the
daughter T-cells of the same parent T-cell will start their activation process at time t=7+71
while the others subsequently follow the activation process at time ¢>7+7 . In this way, the
daughter T-cells will be distributed over the time #=>7+7 and the time distribution density can

be denoted by (7). The activation rate can be followed by the following piecewise function:

_dNyc () t<F+T
B = dt
ANy | ]“-a ) [dNAC(t)] W 1S AT 4.5)
dt 0 dr 1 ’
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4.2 Modeling Hypotheses

where #=¢t—7+T. The «(t)distribute the population of daughter T-cells as the initial

population activated at time #>7+7 . An exponential distribution is chosen which gives a
decrease with the increase in time. Therefore, the population density daughter T-cells will be

distributed as monotonically decreasing function. We can define the distribution «(7) as,

a(t)=ge "D, (4.6)

q: and q, are the distribution parameters. Therefore «/(¢)At are the total number of daughter T-

cells in time 7€ [t,t+At] and it obeys the following distribution property:

=

J a(t)dt = Total number of activated daughter T-cells set to be activated

T+T

Initial population at 7+7 = B(t=7+T)+a(t)-B(t =7)

- — M + Ia([') [dN.ic (f) :‘ dr'
dt g dt -

dN NAC (1)
dt

Initial population at 7= B(r) = - where t'=t—(7+7)

Parent cell divides into w(t)
daughter cells which activaﬂe at
different activation times but at
same initial concentration

|
|
v 7

Figure 4.4: Distribution of daughter T-cells after proliferation

Now we categorize our hypothesis into two parts relative to the distribution of T-cells having the

concentration c:
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4.2 Modeling Hypotheses

1. The proliferated T-cells at time #=7 are distributed after the transition period over the
initial population of activated T-cells at time #=7+7 with the initial protein
concentration of Cd25-IL2i at # =7, as shown in Figure 4.4, is given by Eq. (4.3).

2. If the population of daughter T-cells is distributed over the initial population of activated
T-cells at time ¢ =7+ 7, then the initial population of daughter cells can be distributed as

given in Eq. (4.4). This is represented in Figure 4.5.

Initial population at 7+7 = B(t=7+1)+a(t)-B(t =1)

= —M+ ]ia([»’) |:d]\r_iC (1)} df’
d it

5 0 dt -,
1CA |
! o . dN . (t ~ :
i | Initial population at 7 = B(r) = —%() where t' =t —(£+7) !
i t |
E """"""""""""""""" v - a i
i | Parent cell divi I ‘ ~‘_.¢ o o o !
i daughter cells@hich activate at : e o o o :
! different acgivation times and at TS ¢ 6 6 o i
i | different pfotein concentration. ' 3 :
: ; D(c)4 4 o oo |
i | " |lo o o o |
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! T = — 7!
! T r
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Figure 4.5: Distribution of daughter T-cells over the population of activated T-cells at = T+T

4.2.3 Hypothesis 3

We assume that the new cells (daughters) are not activated in this hypothesis. This hypothesis
deals with the activation of T-cells after proliferation by following the flow of the parent T-cells
at the threshold level. Furthermore, the daughter T-cells (T-cells after division but now they are
non-activated) are « =constant times the population of the parent T-cells and start their
activation process at time ¢t=7+7 by interacting with APCs. By our previous assumption

defined in Eq. (3.1), the activation rate can be written as,
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4.3 Results

B(t)=bN,,-(t), where b=kxN .. (4.7)

It is assumed that the population of APCs remains constant during the whole simulation time.
The rate of change in the non-activated T-cells remains same for <7 +7 as discussed in the Eq.
(3.1). After the proliferation, #>7+7 , the population of activated T-cells increases depending
upon the flux of the parent T-cells at the time of division and it is followed by an additional term

after proliferation,

dNyac @) _ AN (0)
dt _bNNAC(t)"'al:#] t27+T
dt t=t
_bNNAC (t) to [G6 (C6 )n6 (C6 at - Z-)]CG:céhreshold tz f +T
By solving the above ordinary differential equation, we get the following activation rate B(?),
ae™”" t<t+T
B(t)=
ace " I(t) t2F+T
(4.9)

bt
where [(t)= Ie— Géhng'dt +1c
a

where a is the constant of integration. The distribution D(c) is defined in Egs. (4.3) and (4.4) in

which the population of daughter T-cells is distributed over the range of concentration.

4.3 Results

The hypotheses considered above are based on distinct assumptions depending upon their
generality and their complexity. Three hypotheses are proposed to explain the situation after the
proliferation when daughter cells are ready to activate their selves. First two hypotheses are
divided into two subgroups each while the third hypothesis explicates the evolution by following
the flow of activated T-cells at time # =7 . Since we are following the Dirac-delta function for the

initial distribution of activated parent T-cells before proliferation, therefore, we discuss those
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4.3 Results

subgroups of the hypotheses which follow the Dirac-delta function for initial distribution of

activated daughter T-cells after proliferation as given in Eq. (4.3).

Since we need the threshold level of CD25-IL21 protein concentration therefore two cases (the
Case 3 and Case 4) of the Chapter 2 and Chapter 3 are studied here that are based upon the
protein dynamics at single T-cell level as well as at the population level. Both cases deal with the
protein dynamics of all the six proteins as discussed in previous chapters. The population
dynamics of T-cells is simulated for their surface proteins concentrations before and after
proliferation while for the internalized CD25-1L2i protein concentration, the population dynamics

is studied only before proliferation, until the threshold level.

N
n(c,1)

The daughter cells will increase their concentration and consequently
‘. the discontinuity front will move towards the right hand side.

T
No daughter cell present
in this concentrationrange

Figure 4.6: Population density of activated T-cells with and without proliferation

For the sake of simplification, each figure is divided into two categories to investigate the
population density of activated T-cells: first one is the evolution of T-cells without proliferation
(no proliferation) in which the daughter cells are not included. The second category involves
those curves which includes the evolution process of T-cells with proliferation (proliferation with
o daughter cells) in which the daughter cells are included during the investigation of the

population density function. The Figure 4.6 represents these two categories by describing the
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4.3 Results

flow of population density n(c,?) in terms of the associated surface protein concentration c. In this
figure, the associated proteins can be CD25 or CD25-IL2 as they increase their concentration
with the passage of time on the surface of T-cell. For the CD3 protein concentration, the
discontinuity of the dashed line will move towards the left hand side, instead of right hand side,

because the concentration is decreasing.

Results

Hypothesis 1 Hypothesis 2 Hypothesis 3

Without Crossing Crossing
Single T-cell dynamics Population dynamic of T-cells
CD3, CD3i, CD25, IL2, CD25-IL2 and CD3, CD25, CD25-1L2 and CD25-1L2i
CD25-1L2i

Figure 4.7: Results for the activation of T-cells after proliferation.

In Figure 4.6, the first category of ‘no proliferation’ is same as discussed in the Chapter 3 with
prolongation of time. The second category is the combination of the population density for

daughter T-cells and the population density of those activated T-cells which continued the first
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4.3 Results

category. The discontinuity in the middle of the curve in Figure 4.6 arises due to the reason that
there is no daughter T-cell which has the concentration higher than the concentration at the
discontinuity point. As time passes, the concentration increases in the activated T-cells
(particularly in cases of CD25 and CD25-IL2). Due to this reason, the discontinuity moves

toward right hand side and show the distribution of concentration over the activated T-cells.

The simulations for the hypothesis 1, 2 and 3 are performed by using the methods TM and MTM.
A flow chart, as shown in Figure 4.7, has been drawn to make a clear idea about the result

section.

4.3.1 Hypothesis 1

This hypothesis proposes the distribution of the activated T-cells immediately after the
proliferation (at time # =7 +7 ). We follow the activation rate from Eq. (4.3) and Eq. (4.2) to find
the solution of the considered problem. Since the division of T-cell depends upon the threshold of
CD25-1L2i protein concentration, therefore, we can follow those cases which includes the protein
dynamics of CD25-IL2i. Two examples are studied here, with crossing and without crossing, in
order to understand the evolution of population density of T-cells after proliferation. The
parameters used for the reaction rates can be followed from the Case 3 (without crossing) and

Case 4 (with crossing) of Chapter 2.

) Without Crossing

The protein dynamics, as shown in Figure 4.8, follows the same pattern presented in Figure 2.9.

The dashed line (— —) in red color shows the variation of the protein concentration in a single
daughter T-cell. At the threshold of the protein concentration CD25-IL21i, i.e. ¢, =0.001, the
proliferation starts that is approximately #=100,000s. For the simulation purpose, the transition
time period for the proliferation of T-cells is considered 7#=150,000s. Therefore, the daughter T-
cells starts their process of activation after time 7=150,000s. Since the daughter cells are

identical in the behavior to the other cells undergoing the activation process, the reaction rate will

remain same for all of them as shown in Figure 4.8.
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4.3 Results

The simulation is done for the next 100,000s. Afterwards, the daughter cells can repeat the
process of activation since the CD25-1L2i protien concentration reaches the threshold again. 1L-2
protein continues to increase as it is a global protein that is shared by all T-cells. But its
concentration does also affect due to those T-cells that are in the process of division and they are

not producing IL-2 protein.

Concentration of Proteins before and after Proliferation
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Figure 4.8: Graphical representation of protein dynamics at single T-cell level that are activating at succeeding activation times.

The threshold level at which the division startis # =7 + 7 that is almost t=100,000 s. The daughter cells start activating after
t=150,000 s. The kinetic constants are given the following values:

k =1/5-10"%", k, =1/5-107°s7", ky =107*s7", k, =10 ms™", ks =10’ m’mole”'s™, k, =107
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4.3 Results

Now we discuss the population densities of T-cells for CD3, CD25, CD25-IL2 and CD25-1L2i
protein concentrations. TM method is used to find the solution that is described previously in the

section 3.3.2.

Population Dynamics

Since the threshold to start the proliferation of T-cells depends upon the CD25-1L21, we start by
investigating its density function at four different times with the maximum at #=150,000s as
shown in Figure 4.9. Afterwards, the population density for CD3, CD25 and CD25-IL2 proteins
are studied before and after proliferation at ¢ =1,4,8. Their solutions are compared with the

solution of no proliferation.

Population Density of T-cells for CD25-IL2i Protein
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Figure 4.9: Population density of T-cells with internalized CD25-IL21i protein. The threshold level at which the division starts is
Co = 107 mol.m™ and the time is after almost a day ( =100,000 s). The daughter cells start activating after time # =150,000 s.
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One can observe the drastic change between no proliferation and proliferation with a=1
(number of daughter cells are equal to the number of parent cells) in the Figures below, namely
Figure 4.10, Figure 4.11 and Figure 4.12. The main reason is that the parent cells undergo the
process of division at time 7 had started the process of activation at time T. At that time T, huge

population of T-cells was starting their process of activation.
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Figure 4.10: Population density of T-cells for CD3 protein. The threshold level at which the division starts is ¢, =1 0~ mol.m?

and the time is after almost a day (# =100,000 s). The daughter cells start activating after 7 =150,000 s. ‘No Prolif” is the ‘No
Proliferation’ curve showing the population density of T-cells without including daughter cells.
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Furthermore, for ¢ =4,8 does not seems to be so far away from the curve with a¢=1 (the
figures are plotted with logarithmic vertical axis). Otherwise, for =4, 8, the daughter cells

which undergo the process of activation are 4 and 8§ times more than the parent T-cells.
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Figure 4.11: Population density of T-cells with surface protein CD25. The threshold level at which the division starts is
¢ = 1072 mol.m™ and the time is after almost a day (£ =100,000 s). The daughter cells start activating after 7 =150,000 s. ‘No

Prolif” is the ‘No Proliferation’ curve showing the population density of T-cells without including daughter cells.
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Population Density of T-cells for CD25-IL2 Protein
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Figure 4.12: Population density of T-cells with surface binding CD25-1L2. The threshold level at which the division starts is
ce =1 0 mol.m™ and the time is after almost a day (=100000 s). The daughter cells start activating after 7 =150,000 s. ‘No

Prolif” is the ‘No Proliferation’ curve showing the population density of T-cells without including daughter cells.

I1) Crossing

The protein dynamics in the crossing problem has the same phenomena as discussed in the

section 2.6. The only difference is the studied time period that is increased up to #=250,000s .
The threshold of CD25-IL2i protein concentration in order to start the division process is

considered as ¢, =5.6x10"*. The division starts at time #=100,000s for the first T-cell which
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started its activation at time t=0 and continues with the transition period of #=150,000s and,

afterwards, the daughter cells starts their activation process as shown in the Figure 4.13. Similarly
other T-cells activating at time t>0 follows the same phenomena. The other proteins
concentration, particularly the concentration of CD25 and CD25-IL2, are subject to the threshold

time and varies relative to threshold of CD25-1L21 protein concentration.

Concentration of Proteins before and after Proliferation
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Figure 4.13: Protein dynamics at single T-cell level that are activating at succeeding activation times and crossing each other. The
threshold level at which the division startis ¢, = 5.6x10* mol.m™ that is almost t=100,000 s. The daughter cells start

activating after #=150,000 s. The kinetic constants are given the following values:

ky=1/3-10757", ky =1/5-107*s7", ks =107*s™", k, =107 ms™", ks =10°m’mole™'s™", kg =105
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Population Dynamics

The population dynamics for the surface proteins concentration and the internalized protein
concentration CD25-IL21 are investigated subject to their reaction rates and activation rates. All
the results have been found by using our methods TM and MTM that are compared with the

solutions found by without proliferation.
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Figure 4.14: Population density of T-cells with CD25-IL2i internalized protein. The threshold level at which the division starts is
¢, =5.6x 107 mol.m™ and the time is after almost a day (+ =100,000 s). The daughter cells start activating after £ =150,000 s.

The population density of T-cells for the CD3, CD25 and CD25-IL2 proteins are found in the
Figure 4.15, Figure 4.16 and Figure 4.17. We observe the similar difference among the
population densities of T-cells without and with proliferation as we observed in the previous

section, i.e. Without Crossing.
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Figure 4.15: Population density of T-cells with CD3 surface protein. The threshold level at which the division starts is
¢, =5.6x% 10~ mol.m™ and the time is after almost a day (1 =100,000 s). The daughter cells start activating after  =150,000 s.

‘No Prolif” is the ‘No Proliferation’ curve showing the population density of T-cells without including daughter cells.

The overlapping of the curves in the Figures shown for the population densities of CD3, CD25

and CD25-1L2 proteins with and without proliferation shows that there is no daughter T-cell

containing the concentration of the protein at the given time t. At the final time t=250,000, we
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can observe that there is no overlapping and it shows that the daughter T-cells have produced all

the possible variety of protein concentration as the other virgin T-cells have.
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Figure 4.16: Population density of T-cells with CD25 surface protein. The threshold level at which the division starts is
¢, =5.6x 10™* mol.m™ and the time is after almost a day (#=100,000 s). The daughter cells start activating after 7 =150,000 s.

‘No Prolif” is the ‘No Proliferation” curve showing the population density of T-cells without including daughter cells.
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Population Density of T-cells for CD25-IL2 Protein

s No Prolif ~|:
0 N —m Prolif: =1 |

t= 50000 - t=100000
\ w | 10
107 - e |
e S N I b
Before Prolif |
S S — |
0 1 2 3 10
11
> t= 175000 x10
g | | 10
GJ 1024;77777777777%77777777_:_:;;:;—_:7777
] ’:T"-——----'-_::'__'_—‘"".:',:.....----4"" I
= b e 7
-_8 1020 ] Lﬂlfﬂf
o s N0 Prolif 10 | ‘
a I PR l l
g 20 Prolif: o=1 : :
ol l l

............ Prolif: (x=4
------ Prolif: =8

x10" x 10

State variable "05"

Figure 4.17: Population density of T-cells with surface binding CD25-IL2. The threshold level at which the division starts is
ce =5.6x 10~ molm™ and the time is after almost a day (r =100,000 s). The daughter cells start activating after 7 =150,000 s.

‘No Prolif” is the ‘No Proliferation” curve showing the population density of T-cells without including daughter cells.

4.3.2 Hypothesis 2

The hypothesis 2 is proposed to investigate the behavior of T-cells at population level after the
proliferation when the daughter cells are distributed over the activation times. This hypothesis
does not affect the reaction rates of the protein concentrations. Therefore, the protein dynamics at

a single T-cell remains same as described in the Hypothesis 1. Here, again, we have two cases
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depending upon their level of complexity. Each case investigate the proposed hypothesis on the
three surface proteins CD3, CD25 and CD25-IL2. The population dynamics of T-cells for CD25-
IL21 protein can be followed from the Hypothesis 1 since it is discussed only before proliferation

of T-cells.

) Without Crossing

The population densities for the surface proteins are examined before and after proliferation. The

population density of daughter T-cells is distributed over time («(z)) among the initial
population density after proliferation. Four distinct values of «(z) are chosen by making
combinations of the values for the parameters g, and ¢, . The solutions of the density functions

are compared graphically between the ‘no proliferation’ and ‘proliferation’ as shown in the

Figure 4.18, Figure 4.19 and Figure 4.20.

Each pair of parameters, ¢, and ¢,, has shown a drastic change in the population density of T-
cells. It is observed that the increase in the parameter value g, increases the number of activated
T-cells while the increase in the value of the parameter g, decreases the population density of T-
cells. In the Figures, although the density of T-cells seems to be overlapped each other for the
parametric pairs ¢, g, =1x10~ and g¢,, g, =410~ but actually the curves are near to each other
due to small variation in the parametric values. We can observe the distance between the curves
for the parametric pairs ¢,,q, =1x10~ and g¢,, ¢, =4X10~ in the zoomed plots in the Figure
4.19 and Figure 4.20.

The population density is studied at two distinct times where a discontinuity is coming in the
middle of the curve for time t=175,000 in the Figure 4.18 and for time t=155,000 in the Figure
4.19 and Figure 4.20. The discontinuity in the population density of T-cells for CD3 protein in
the Figure 4.18 at t=175000 moves towards the left hand side that can be observed at time
t=250,000. On the other hand the discontinuities in CD25 and CD25-IL2 proteins move towards
the right hand side as shown in the Figure 4.19 and Figure 4.20. These behaviors show that the

daughters T-cells are mounting their protein concentrations with the passage of time.
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Population Density of T-cells for CD3 Protein
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Figure 4.18: Population density of T-cells for CD3 protein. The threshold level at which the division starts is ¢, = 107 mol.m™
and the time is almost a day (¢ =100,000 s). The daughter cells start activating after £ =150,000 s.
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Population Density of T-cells for CD25 Protein
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Figure 4.19: Population density of T-cells for CD25 protein. The threshold level at which the division starts is ¢, = 107 mol.m™
and the time is almost a day (¢ =100,000 s). The daughter cells start activating after  =150,000 s.
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Population Density of T-cells for CD25-IL2 Protein
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Figure 4.20: Population density of T-cells for CD25-IL2 protein. The threshold level at which the division starts is ¢, = 1073
mol.m™ and the time is almost a day (£ =100,000 s). The daughter cells start activating after £ =150,000 s.

II) Crossing

The protein dynamics for this section can be followed from the Figure 4.13. Also the population
dynamics of T-cells for the internalized protein (CD25-IL21) concentration can be viewed by the

Figure 4.14. The population densities for the surface proteins are investigated with and without

141



4.3 Results

proliferation. The solution is analyzed at four distinct parametric pairs for distribution of daughter

T-cells over time as shown in the Figure 4.21, Figure 4.22 and Figure 4.23.

Population Density of T-cells for CD3 Protein
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Figure 4.21: Population density of T-cells for CD3 protein. The threshold level at which the division starts is ¢, = 5.6 x 107
mol.m™ and the time is almost a day (£ =100,000 s). The daughter cells start activating after £ =150,000 s.

We observe the similar phenomena as defined in the above section of Without Crossing but now

the reaction rate is fast and therefore we have crossing in the solution curves as we discussed in
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the Figure 4.13. The discontinuity rear in CD3 and discontinuity front in CD25 and CD25-1L2

move in the directions described in the Figure 4.6.

Population Density of T-cells for CD25 Protein
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Figure 4.22: Population density of T-cells for CD25 protein. The threshold level at which the division starts is c, =5.6% 107
mol.m™ and the time is almost a day (+=100,000 s). The daughter cells start activating after £ =150,000 s.

One can observe in the Figure 4.21, the simulation time taken is t=175,000s while in the Figure
4.22 and Figure 4.23 the simulation time taken is t=155,000s in order to observe a discontinuity
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front and the overlapping between ‘no-proliferation’ and ‘proliferation’. The time variation is due

to the parametric change in the reaction rate.

Population Density of T-cells for CD25-IL2 Protein
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Figure 4.23: Population density of T-cells for CD25-IL2 protein. The threshold level at which the division starts is ¢ . = 5.6x107*
mol.m™ and the time is almost a day (£ =100,000 s). The daughter cells start activating after £ =150,000 s.
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4.3.3 Relation between Hypothesis 1 and Hypothesis 2

The results in the Sections 4.3.1 and 4.3.2 have shown very similar behavior between the
hypotheses 1 and 2 for the population density of T-cells as shown in the Figures 4.10 — 4.23. This

is because of the parameters q; and g, that are chosen for the daughters cells distribution over
time a(¢). However, the difference can be increased by varying the value of g, as shown in the

Figure 4.24. We can observe that the decrease in the value of the parameter q, not only increase

the population density but also it varies the slope of the curve for population density.
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Figure 4.24: Effect of the variation in the value of q2 on the population density of CD3 T-cells.
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The similar behaviors can be observed for the population density of T-cells with CD25 and
CD25-IL2 proteins.

Let us consider that the daughters T-cells lie at the beginning, i.e. just after the proliferation.
Therefore the distribution of daughter T-cells over time ‘t” will approach a constant value ¢. It

makes a relation between the hypotheses 1 and 2 by the following equation:

o= _[0 o) dt
e (4.10)
= Jim Jo q9:¢ =

tmax —oe qz

In other words, by following the above equality, the daughter distribution over time defined by
the hypothesis 2 will approach the number of daughter T-cells undergoing the process of

activation after proliferation in the hypothesis 1.

Let us choose ¢; = g, =107 then the constant &=1. In the Figure 4.25, a comparison has been
done by choosing the same parameters as defined before for case of Without Crossing of curves.

The reaction rate for CD3 protein concentration is same as shown in the Figure 4.8.

For the hypothesis 2, the distribution of T-cells over time is calculated by using Eq. (4.6). The
solutions have shown an overlapping behavior. A small variation in the curves has been observed
at time t=250,000, however, if we vary the parameter g; or g we can have more differences

between the two curves as we have observed in the Figure 4.24.
The relation between hypothesis 1 and 2 can be observed for the other proteins, i.e. CD25 and

CD25-1L2. Moreover, the crossing case defined in the Sections 4.3.1 and 4.3.2 can also give us

the similar remarks. Now we move towards the hypothesis 3 that is proposed in a different way.
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Population Density of T-cells for CD3 Protein
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Figure 4.25: For CD3 protein, the population density of T-cells by using hypothesis 2 approaches the population density of T-
cells by using hypothesis 1 if the Eq (4.10) holds.

4.3.4 Hypothesis 3

The proposition of hypothesis 3 originates the idea of considering daughter cells as non-activated
T-cells. All the daughter T-cells which start their activation process after proliferation (at time
t =7+T) are according to the flow of parent T-cells at their threshold (7 = 7 ). The threshold and
the reaction rate are same as discussed in previous hypotheses under the subsections Without

Crossing and Crossing respectively.
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In this section, the results have been found for the surface proteins before and after proliferations.
After proliferation, the number of daughter T-cells (per parent T-cell) which undergo the process

of activation are chosen « =1, 4 and 8. The dynamical changes in the population density of T-

cells are also observed before proliferation. At the time #>7+7, the population density is
compared between with and without daughter T-cells (proliferation and no proliferation) in order

to validate the simulation after proliferation.

I) Without Crossing

The protein dynamics at a single T-cell is shown in Figure 4.8. We choose the same kinetic
parameters as discussed in the previous hypotheses. The population density of T-cells for
internalized protein CD25-1L2i protein is presented in Figure 4.9. For the surface proteins, the T-
cell dynamics at the population level is proposed by the activation rate given by the Eq. (4.9). In
the figures, “No Prolif” is the ‘No Proliferation’ curve showing the population density of T-cells

without including daughter cells.

The population density is observed before and after proliferation at four distinct times for the
surface proteins as shown in Figure 4.26, Figure 4.27 and Figure 4.28. We observe the same
phenomenon for the population density of T-cells before proliferation. After proliferation, the
population density varies according to the concentration of proteins as huge population of

daughter T-cells starts activation which are considered as non-activated in the hypothesis 1 and 2.

In the Figures, we can observe that there is no discontinuity coming; instead there is a drastic
increase in the population density, after proliferation, which shows a curvy behavior. This drastic
increase is observed at the time t=175,000s in Figure 4.26 that is moving towards left hand side
(LHS) and at t=250,000s, the figure shows that the daughter T-cells are distributed over all the
given range of concentration. On the other hand, Figure 4.27 and Figure 4.28 also shows a drastic
change but this drastic change moves from left to right hand side (RHS), in contrary to Figure
4.26. The drastic change covers the whole concentration axis that is shown in the figures, Figure
4.27 and Figure 4.28, at time t=250,000s as the daughter T-cells get distributed over the same

range of the concentration of protein as the T-cells with no proliferation.
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Population Density of T-cells for CD3 Protein
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Figure 4.26: Population density of T-cells for CD3 protein. The threshold level at which the division starts is ¢, = | 0~ molm?

and the time is almost a day (1 =100,000 s). The daughter cells start activating after  =150,000 s. o is the number of daughter cells
undergo in the process of activation. The time 7 =50,000 s and the time 7 =100,000 s are before proliferation while the time
t=175,000 s and # =250,000 s are after proliferation.
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Population Density of T-cells for CD25 Protein
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Figure 4.27: Population density of T-cells for CD25 protein. The threshold level at which the division starts is ¢, = 1073 mol.m™

and the time is almost a day (1 =100,000 s). The daughter cells start activating after =150,000 s. o is the number of daughter cells
undergo in the process of activation. The time 7 =50,000 s and the time 7 =100,000 s are before proliferation while the time
t=175,000 s and £ =250,000 s are after proliferation.
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Population Density of T-cells for CD25-IL2 Protein
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Figure 4.28: Population density of T-cells for CD25-IL2 protein. The threshold level at which the division starts is ¢, = 1073

mol.m™ and the time is almost a day (£ =100,000 s). The daughter cells start activating after t=150,000s. o. is the number of
daughter cells undergo in the process of activation. The time 7 =50,000 s and the time 7 =100,000 s are before proliferation while
the time 7 =175,000 s and 7 =250,000 s are after proliferation.

I1) Crossing

The crossing of curves for the surface protein concentrations CD25 and CD25-IL2 is due to the
fast reaction rates as shown in the Figure 4.13. The population density of CD25-IL2i protein is
investigated before in the Figure 4.14.
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Population Density of T-cells for CD3 Protein
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Figure 4.29: Population density of T-cells for CD3 protein. The threshold level at which the division starts is ¢, = 5.6 107

mol.m™ and the time is almost a day (#=100,000 s). The daughter cells start activating after 7 =150,000 s. o. is the number of
daughter cells undergo in the process of activation. The time 7 =50,000 s and the time 7 =100,000 s are before proliferation while

the time 7=175,000 s and 7 =250,000 s are after proliferation.

The population densities for CD3, CD25 and CD25-IL2 proteins are studied to investigate the

dynamical variation of concentrations on the surface of T-cells as shown in Figure 4.29, Figure
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4.30 and Figure 4.31. The initial population densities of T-cells after proliferation for surface
proteins have shown a drastic increase as we observed in the previous case of Without Crossing.
The time taken for CD3 protein is same as in the previous cases while for other surface proteins,

the time after proliferation is t=155,000s in order to observe the drastic change at the front.
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Figure 4.30: Population density of T-cells for CD25 protein. The threshold level at which the division starts is ¢, = 5.6 x 10

mol.m™ and the time is almost a day (#=100,000 s). The daughter cells start activating after 7 =150,000 s. o. is the number of
daughter cells undergo in the process of activation. The time 7 =50,000 s and the time 7 =100,000 s are before proliferation while
the time 7 =155,000 s and 7 =250,000 s are after proliferation.
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In contrast to the subsection Without Crossing of the section 4.3.4, the population density for the

concentrations of CD25 and CD25-IL2 proteins moves the drastic change from the front (RHS)

to the back (LHS). This is due to the crossing of curves in the reaction rate: Figure 4.13. This

phenomenon is same as in the previous hypotheses for these proteins.

Population Density of T-cells for CD25-IL2 Protein
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Figure 4.31: Population density of T-cells for CD25-IL2 protein. The threshold level at which the division starts is
¢ =5.6x 10~* mol.m™ and the time is almost a day (1 =100,000 s). The daughter cells start activating after 7 =150,000 s. o is the

number of daughter cells undergo in the process of activation. The time # =50,000 s and the time 7 =100,000 s are before
proliferation while the time # =155,000 s and 7 =250,000 s are after proliferation.
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4.4 Conclusion

The proposed hypotheses for the activation of T-cells after proliferation have covered all the
major directions which can be followed by the T-cells during the course of action. The
distribution of T-cells after proliferation were defined in first and second hypotheses for time ‘t’
while the distribution of T-cells after proliferation for concentration ‘c’ is defined in all the three
hypotheses. The distribution defined in Eq. (4.4) can give a better analysis for the T-cell
population dynamics after proliferation. However, in this study, we investigated the concentration
distribution D(c) defined in Eq. (4.3) as we followed the same distribution of concentration in the
Chapter 3. Furthermore, the time distribution o(t) used in this study has been defined as constant

in the Eq. (4.2) and in terms of time in Eq. (4.6).

In the experimental study, particularly by n(e,t ,—)A
flow cytometry, the mechanism is
instructed to display the activated T-cells as
well as non-activated T-cells. At the

beginning,  after  proliferation,  the !

population of non-activated T-cells is high

that decreases due to their interaction with
APC. This gives us an increase in the Figure 4.32: Graphical comparison between Biological and

. . Mathematical results..
activated T-cells. This concept makes a
difference with our mathematical findings because we have investigated the T-cells which
undergo the process of activation. The non-activated T-cells were defined for the distribution to
get the initial population density for activated T-cells but the dynamics of non-activated T-cells is

not followed in this study. A graphical relation between the experimental results and the

mathematical simulation is shown in the Figure 4.32.
The hypotheses were defined at different level of complexity. The methodology used to study the

division process by means of thresh old of the internalized protein CD25-IL21 is absolutely

convincing. The first hypothesis was the simplest one and it was proposed to take the first step
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towards the daughter T-cell activation. However, the distribution for the initial population density

of T-cells over concentration ‘c’, defined in Eq. (4.4), can be closer to the lifelike phenomenon.

In the second hypothesis, the distribution of daughter T-cells over the time after proliferation has
been discussed while the distribution over concentration ‘c’ is modeled and can be operated in
future. The T-cell activation before proliferation is based upon the distribution defined in Eq.
(4.3); therefore, the same distribution is followed after proliferation. However the distribution
over time as well as over concentration shown in Figure 4.5 can give us the most general

behavior among the defined hypotheses.

The third hypothesis dealt with the daughter T-cells as non-activated and has shown another way
to the evolutionary process after proliferation. The discontinuity in the previous cases was the
deficiency that is overcome in this hypothesis by a continuous but drastic change. Moreover the
drastic change in the population density of T-cells is not as huge as in the previous hypotheses.
Nevertheless the distribution over time, in this hypothesis, can give a better insight about the
activation process of T-cells after proliferation and we can give a similar remark for the

distribution of daughter T-cells over concentration.

The population density of daughter T-cells was followed from their parent T-cells and the density
of parent cells was very high before proliferation. Therefore, the daughter cells after proliferation
showed a drastic change in the population density of T-cells. Nevertheless, the drastic increase is
smoother in the hypothesis 3 as compared to others. The hypothesis 1 and hypothesis 2 has
shown similar phenomenon but hypothesis 2 has the capacity to vary the slope of the population
density curve. The value of o did not seems to be so effective because the density function values
are very high (greater than 10*°) and the log plots have been drawn in order to visualize the
results better. But, actually, it has a significant effect on the population because o is the

controlling parameter for the population density of T-cells in the process of activation.
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Conclusion

This dissertation has addressed the mathematical modeling and simulation of the activation
process of T-cells by using the population balance models and the concepts of differential
geometry. This work has two primary focuses: the Single T-cell dynamics and the population
dynamics of T-cells. Each of the subjects was focused on the activation process before and after
the proliferation of T-cells. In this chapter, we briefly state these primary focuses and outline the

extension of this work in the near future.

The single T-cell dynamics was discussed in Chapter 2 under four levels of complexities (four
cases). Each case has dealt with the set of concentration of proteins which were depending upon
each other and the variation in the concentration was represented by the set of ODEs. The
simulation initiated when the T-cell started the process of activation and after each time step, a
new type of T-cell followed the same phenomena. The exact solutions were found whenever
possible while two numerical schemes, the Euler method and the Runge-Kutta Method of order 4,
were also used to find the solutions of the system of ODEs. Moreover, the solutions were also
presented in three dimensions in which activation time was introduced as the third dimension.
The activation time was considered as the initial time of each type of T-cell at which the T-cell
triggers its process of activation. The three-dimensional presentation has simplified the

phenomena of intracellular dynamics of T-cells particularly the crossing problem in Section 2.6.

First case was based upon one protein analysis and examined the phenomena of the
internalization of CD3 protein. This was the simplest model that made the basis for the next cases
by investigating the 3D plots and its projection on the 2D plots. The CD3 protein dynamics has
shown us the same behavior as observed in the literature [3] , [13], [15]. It has also given us an
idea to extend our work towards new horizons like the reappearance of CD3 protein, Section 2.4,

and the production of other proteins during the T-cells activation before proliferation.

In the second case, we discussed two models where 2" model is the refinement of the 1% model.
In both cases, the phenomenon of internalization of CD3 protein was followed from the first case
which has given us a decrease on the surface concentration. Consequently it increased the
concentration of CD3i protein inside the T-cell. The main reason of investigating this case was to

model and analyze the concept of reappearance of the CD3 protein on the surface of T-cells
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outside CD3 synapse. This made an increase in the concentration of CD3 protein on the surface
and the reappeared protein is represented by CD3* protein. The commonality between these two
models was the crossing of the curves due to the decrease in the concentration followed by an
increase. However the first model didn’t address the surface bound of T-cells while the second
model was specifically introduced in order to overcome the deficiency of the first model, i.e. the
concentration of CD3* protein (reappeared protein) was bounded by the limited capacity of the

surface area.

The next two cases, i.e. Case 3 and Case 4, have investigated the multi-protein dynamics. There
are hundreds of proteins involved in the real activation process. However it was possible to
reduce the number of proteins and focus on only those proteins that were interlinked to each
other. This has made the problem less difficult and more understandable. The Case 3 and Case 4
have sufficiently exposed the complexity of a single T-cell dynamics by presenting the
dependency of proteins on each other. Moreover the 3D visualization of the conspicuous surface
proteins concentration, CD25 and CD25-IL2, has given their geometrical interpretation that is

helpful to anticipate their distribution on the total population of T-cells.

The exact solution of this system of ODEs was not possible; therefore, Runge-Kutta method of
order 4 method has been used to find out their numerical results. For both cases, the choses
parameters are taken from the literature. They have made the only difference of slowing and
fastening the reaction rate in order to have the same complex system without crossing of curves
and with crossing of curves phenomena. The Case 3 and Case 4 were further studied in Chapter 4
that has followed the same behavior after division of T-cell because the division process does not

affect the dynamical changes at the intracellular level.

The above discussed four cases for the single T-cell dynamics have originated the following
innovative ideas:

1.  The non-monotonic behaviors of intracellular components depend upon each other.

2. The crossing of curves having a shift in time but the slope is same.

3. The crossing of curves having a shift in time and follows its own trajectory.

4

The validation of Runge-Kutta method for the system of differential equations.
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Despite the study of non-monotonicity, the realistic behavior of protein dynamics can be much
complex as the concentration of surface proteins can fluctuate more than once that makes the
problem more complicated. However, the given algorithm of RK-Method is flexible enough to
adapt itself for finding the solutions of such cases, e.g. the sinusoidal behavior of proteins.
Moreover, delays in the production of proteins can be added that are produced after the
internalization of CD3 protein. The reason is, realistically, the production of CD25 protein does
not start unless T-cell gets the threshold of CD3 internalization. However, for long simulation

times, this phenomenon could have a minimum effect on the activation process of T-cell.

Chapter 3 and Chapter 4 focused on the population dynamics of T-cells and investigated the
activation process before and after proliferation. The Chapter 3 was divided into four levels of
complexities, named as four cases, which were followed from the Chapter 2, respectively,
whereas the Chapter 4 has investigated the activation process of T-cells before and after division

for Case 3 and Case 4 only.

Several numerical techniques have been used to validate the results in Chapter 3. A new efficient
approximate technique has been introduced by geometrical study of hyperbolic conservation law
known as the Transport Method (TM). This technique is based on the simple concept of
differential geometry. The three other methods used to compare the results include the Method of
Characteristics (MOC), Upwind Finite Volume Method (Upwind) and the Lax-Wendroff Finite
Difference Method (LWF).

In the Chapter 3, each case has been investigated in order to anticipate the behavior of initial
population density of T-cells over the range of concentration of surface proteins. For this
purpose, the population balance modeling (PBMs) was introduced as the modeling technique that
was based on two dynamical processes. The model is represented by the population balance
equation (PBE) which has provided us the mathematical notations for these processes. First
process is termed as activation term (assimilated as nucleation in chemical engineering) while the
second process is termed as reaction term (assimilated as growth term in chemical engineering).
Therefore, in this study, the general PBE became the 1** order inhomogeneous hyperbolic partial

differential equation with a source term.
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The conservation of hyperbolic equation was depending upon the reaction rate present in the
second process, the reaction term. The reaction rates are the rate of change in the concentration of
proteins and they were followed from the Chapter 2. In Cases 1 and 3, the reaction rate didn’t
affect the associated hyperbolic conservation laws. Therefore, the numerical solutions for the
population balance equation were possible. In Case 2, the crossing of the solution curves in the
reaction rates made the equation non-conservative, however the numerical solution was possible
because the slope of the solution curves were same. While in the Case 4, each curve followed its
own trajectory for CD25 and CD25-1L2i proteins. Therefore, the numerical solution for such non-
conservative equation was not possible. Hence, at this stage, the geometrical analysis of these
curves was inevitable. In order to validate our geometrical technique (the Transport Method), the
developed procedure was successfully applied on all the previous cases (Case 1, 2 and 3).
Afterwards, the Modified Transport Method (MTM) defined that has followed the same
phenomena as TM but it followed the constant gridlines for concentration axis to sum up the
population density lying inside the control volume (¢ to ¢+ Ac). The prominent ideas of Chapter

3 are summarized as,

1. The PBM was studied with non-monotonic reaction rates. The classical methods have
shown the diffusion because of the interpolation approximation of variable grid to the
constant grid for concentration of proteins.

2. The Transport Method has given better results as compared to higher order numerical
methods. However, it has also been modified to define the constant gridlines when it was
applied to Case 4.

3. The limitation of PBM against crossing problems (particularly Case 4) compelled us
towards the geometrical analysis of the physical processes to find the population density

of T-cells.

The final chapter of thesis, i.e. Chapter 4, has been dedicated to the activation process of T-cells
after proliferation. The experimental study revealed that the parent T-cells divide into two
daughter T-cells with unequal distribution of protein concentrations. It is still not clear that how
many of the daughter T-cells repeat the process of activation. For this reason, three hypotheses

have been proposed in order to study the activation process of T-cells after proliferation.
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First hypothesis addressed the simplest way to describe the population dynamics of T-cells after
proliferation. The initial population of daughter T-cells after proliferation was considered as
activated after proliferation. All the initial population of daughter T-cells originated from the
same type of parent T-cells was assumed to start the activation process at once (at the same
activation time) after proliferation. The distribution of initial population of daughter T-cells over

concentration is also defined in this hypothesis as the 2nd proposition.

The second hypothesis dealt with the distribution of daughter T-cells over the activation time
after proliferation. This hypothesis also talked about the distribution of initial population of
daughter T-cells over concentration of proteins. Therefore, the population is distributed over time
as well as over concentration which made this hypothesis more realistic. However, after
proliferation, the initial population of daughter T-cells was considered activated as in the first

hypothesis.

In the first and second hypotheses, the daughter T-cells are considered activated after
proliferation. Due to this reason they are treated separately as the activated population of T-cells.
The third hypothesis proposed another way to deal with the activation process of T-cells after
proliferation. In this hypothesis, the daughter T-cells were considered as non-activated and
therefore, the discrimination between the activated and non-activated initial population of T-cells

was abolished.

The TM has been used to study without crossing problems in Chapter 4 while the MTM was used
to find the population density of T-cells with crossing problem. However, the population balance
modeling can be applied to without crossing problems. Also the PBM can be extended from
dirac-delta concentration distribution to continuous concentration distribution of the activation

term, as given in Eq. (3.5).

This study has given an innovative approach to PBM by introducing non-monotonic behavior of
concentration curves and the interdependent of proteins on each other. However the Transport
Method has shown a very nice commitment to the whole study and overcame the deficiency of

PBE at certain cases. Now it is a challenge to extend the PBM to the problem of crossings.
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