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Abstract: 
The early steps of activation are crucial in deciding the fate of T-cells leading to the proliferation. 

These steps strongly depend on the initial conditions, especially the avidity of the T-cell receptor 

for the specific ligand and the concentration of this ligand. The recognition induces a rapid 

decrease of membrane TCR-CD3 complexes inside the T-cell, then the up-regulation of CD25 

and then CD25–IL2 binding which down-regulates into the T-cell. This process can be monitored 

by flow cytometry technique. We propose several models based on the level of complexity by 

using population balance modeling technique to study the dynamics of T cells population density 

during the activation process. These models provide us a relation between the population of T-

cells with their intracellular and extracellular components. Moreover, the hypotheses are 

proposed for the activation process of daughter T-cells after proliferation. The corresponding 

population balance equations (PBEs) include reaction term (i.e. assimilated as growth term) and 

activation term (i.e. assimilated as nucleation term). Further the PBEs are solved by newly 

developed method that is validated against analytical method wherever possible and various 

approximate techniques available in the literature. 
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 Introduction 1.1

Mathematical modeling (MM) of dispersed systems is well enriched in all fields of sciences. It is 

sufficiently prevalent in chemical industries and biological sciences where population density of 

particulate systems is studied as a function of the particle size, age and other physical properties. 

Crystallization, comminution, fluidized-bed granulation and aerosol-science are the most 

common applications in the chemical industries [1], [2]. In biological sciences, MM is getting 

enriched by modeling of continuous variation in the microbial populations [3] and the immunity 

response against such pathogens [4], [5]. Correspondingly, the applications include the 

population dynamics of virus replication and vaccine production for their control [6], [7]. The 

immune response was studied for the activation of T-cells against the influenza virus infection 

[8], [4]. This study is a continuation of the previous work for the population dynamics that was 

based on the experimental observations of in-vitro [8], [4]. Here the cell population balance 

model is applied efficiently as a modeling technique in order to analyze the population density 

function for the activated T-cells with respect to the surface protein concentration. Several 

analytical and numerical methods are utilized to find the solution of the modeled problem. 

 Literature Review 1.1.1

T-cells are responsible for the cognitive immunity response by providing specific protection 

against infections such as virus. Each T-cell clone is highly specific for one antigenic determinant 

peptide that is exposed by the self MHC molecule as a peptide – MHC complex. The T-cell has 

the capacity to recognize the antigenic determinant and starts an activation process that could 

eventually lead to its proliferation and maturation. The TCR – peptide – MHC complex binding 

is very fragile but strengthened by co-receptors (proteins) such as CD4 or CD8 and adhesion 

molecules, forming the immune synapse [9], [10]. As TCR does not have cytoplasmic tail, the 

signal induced by the recognition is transduced through the CD3 molecular complex that is 

physically associated to the TCR [11], [12]. The involved CD3-TCR complex is then internalized 

inducing a significant decrease of the membrane CD3/TCR density [13], [14]. A minimal level of 

TCR/CD3 engagement in a limited period of time is required to reach an efficient threshold for a 

full T-cell activation [15], [16].  

 



1.1  Introduction 

 

3 
 

The full engagement of T-cells in the activation process leads to the production of several 

proteins required for the next steps. These proteins can be measured on cell surface (e.g. CD69, 

CD25, CD71, HLA–DR …) [17], [18] or as soluble cytokines released in the biological medium 

such as IL-2 [17]. The CD25, the alpha chain of the IL-2 receptor, is also induced in T-cell 

activation and join the other (β, γ) chains to constitute a complete, functional receptor with high 

affinity for IL-2 on the cell membrane [17], [18]. Thus, the produced IL-2 binds to its newly 

produced receptor. The complex is internalized and induces signal transduction that amplifies the 

subsequent steps of the T-cell activation. The internalized level of IL-2 IL-2R complex (CD25-

IL2 binding) makes the decision for the full T-cell activation that ends in the cell proliferation 

[17]. 

 

Thus, the dynamics of T-cell activation directly depends on biophysical parameters such as the 

respective membrane concentrations of the peptide-MHC and TCR-CD3 and their mutual avidity 

[19], [20]. It can be quantified according to the classical kinetic rules of association and 

dissociation. It can then be modeled by using ordinary differential equation systems (ODEs) that 

have been already used in modeling other biological processes [21], [22], [23]. Previously an 

ODE model is developed mimicking the dynamics of specific activation of a single T-cell [3]. 

 

We achieved experiments where a selected peptide is presented to the relevant specific T-cells 

ex-vivo in perfectly controlled conditions using an animal model and ex-vivo cell stimulation, 

and we measured the early activation induced changes on T-cell by multicolor flow cytometry 

[4], [8]. On flow cytometry, the membrane amount of proteins can be directly estimated by 

immune-labeling. The protein concentration is directly proportional to their fluorescence intensity 

and several markers can be analyzed simultaneously, at high speed, on a large amount of 

individual cells. However, actual tools available are not adapted for the analysis of the dynamics 

of each single cell inside a heterogeneous population with continuous variable. This is why we 

considered using dynamics of cell population concept. This leads us to propose a Population 

Balance Equation (PBE) with an order depending on the number of internal variables considered 

(protein concentrations). Higher is the number of internal cell parameters describing the cell state, 

more difficult is solving the population balance equation. 
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Population balance modeling has been successfully applied in chemical engineering including 

polymerization, crystallization and precipitation processes [2], [24], [25]. PBE is a partial 

differential equation containing terms for birth and death of individuals such as particles or 

crystals. In this example, each term of the PBE corresponds to a precipitation status such as 

particle nucleation, growth or dissolution, settling, collision and agglomeration. Each single 

particle of the population is individually characterized. PBE has also been used for the 

mathematical description of the biological processes occurring in microbial or eukaryote cell 

populations [26], [27]. Cell populations are complex heterogeneous systems in which each cell is 

characterized by its size, morphological parameters and proteins content. Generally, the PBE 

cannot be solved analytically. Deterministic numerical schemes or stochastic approach have to be 

implemented for getting the solution of the given PBE [26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to better analyze the precise individual dynamics of T-cell activation FCM (Flow 

Cytometer Machine) data, we have developed an original mathematical model based on PBE by 

Figure 1.1: Evolution due to the activation of T-cells after recognition against viral infection. 



1.2  Mechanism of Immune response 

 

5 
 

considering theoretical single T-cell fate on the basis of the rules of ligand-receptor interaction 

which had been developed previously [3]. The cell distribution of the complete heterogeneous 

population could then be addressed considering the diversity of their initial parameters. Our 

approach has opened a new area of interest on the very early steps of the activation process and 

analysis by flow cytometry. 

 Mechanism of Immune response 1.2

T-lymphocytes lie in the category of leucocytes and have a very important role in the antigen 

specific (cognitive) cellular immunity. T-lymphocytes response is considered as the secondary 

immune response as it comes into action after the frontline immune system in order to prevent 

further viral infection. They are antigen specific and need to be educated before optimal 

activation performances. They can detect virally infected cells and tumor cells. Cytotoxic T-cells 

gradually exposed to the infected cell and kill them either by means of cell surface interactions 

between them and infected cell or through intermediates soluble mediators by forming pores in 

the infected cell and releasing cytotoxins in it. 

 The Pathogens 1.2.1

Pathogens are microscopic organisms that are natural disease producers. Mainly there are three 

types of pathogens, namely, bacteria, virus and parasites. Bacteria are unicellular micro-

organisms that can survive in any hot place with nutriments. It can also live in animal’s body and 

can be helpful in digesting the food (saprophytes). Most of the bacteria are not infectious, some 

are infectious (invade and harm the body by invasion, proliferation and toxin production) but 

their treatment is possible by antibiotics that strongly help immune system to perform its role to 

reduce the burden. 

 

On the other hand the viruses are smaller than bacteria but are biggest threat to human and other 

animals. They cannot survive without living hosts (organism) and, after invasion, enters inside 

the cell and holds the cell mechanism to reproduce identical viruses. The virus reproduction ends 

in the destruction of the host cell and the invasion of nearby new fresh cells. Unfortunately, 

antibodies failed to help once the virus is inside the cell. Early destruction of the cell is the most 
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efficient way to stop the virus reproduction. Alternatively some viruses can alter the behavior of 

host cells and possibly induce cancer or cell degeneration. Below is a table that describes such 

viral infections with their invasion targets and transmission mediums. 

 

Virus induced response can induce misrecognition and self-damaging of the host itself. These are 

called an auto-immune attack that includes insulin-dependent diabetes mellitus, rheumatoid 

arthritis, multiple sclerosis and Guillain-Barré (GB) syndrome. As an example, the GB syndrome 

appearance has been related to bacterium Campylobacter-jejuni or by influenza viral infection but 

the main cause for 60% of such cases is still unknown [28]. 

 

Disease Causal Agent Organs affected Transmission 

Influenza  RNA  Respiratory Track  Droplets  

Hepatitis A  RNA  Liver  Food, Water, Contact  

Hepatitis B  DNA  Liver  Contact with body Fluids  

Dengue Fever  RNA  Blood, Muscles  Mosquito (Aedes Aegypti
1

)  

AIDS  Retrovirus (RNA)  T-lymphocytes  Contact with body Fluids  

Polio RNA Intestine, Spinal Cord  Food, Water, Contact  

Chicken pox  DNA Skin, Nervous System  Droplets, Contact  

Table I: Diseases caused by viruses. 

 Antigen Presenting Cell 1.2.2

Certain cells are antigen presenting cells (APCs). APCs act as the primary response against the 

virus infection. In the primary infection, the virus needs to invade the body and, after some rest 

that can be several days or years, the virus starts replicating and inducing cell damages, and 

thereafter disease. At this stage, viral particles can be trapped by APCs and presented to the 

specific immune cells. The immune response takes further time (few 10-15 days) to mature and 

become efficient. The immune response must be strong, fat enough and adapted. Too light 

response will not be efficient and a too strong response may be harmful for the host itself. In 

                                                 
1 A mosquito that transmits yellow fever and dengue. 
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some conditions, some cells can act as antigen presentation (non-professional APCs) with lower 

performances.  

 

The professional APCs include dendritic cells, macrophages, B-cells and certain activated 

epithelial cells. They are very efficient to internalize the virus and present it on the surface by a 

peptide attached with a molecule major histocompatibility complex class 2 (MHC-II). The non-

professional APCs include all other body cells. It presents the pathogen (particularly virus) by a 

peptide attached with different molecule, namely MHC-I. A detailed analysis of the structure and 

function of APCs can be found in [29]. 

 

In the secondary exposure, the specific immune response is already prepared and can act directly 

and efficiently. Thus in the primary response, the kinetics of both the infection and the immune 

process are crucial to know which of the invader or the defense will be prominent. The delay, the 

speed and the intensity of the response depend mainly on the density and avidity of the peptide 

presented to the T-cells. For one given cause (virus), many peptides are made available and many 

T-cells can act in different way according to their avidity for their respective peptide and their 

own individual capacity to respond. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Invasion of pathogen into antigen presenting cell and the presentation of antigen by MHC. 
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 T-cell Development I)

In mammals, lymphocytes (B and T) and professional APCs are mainly brought to full 

maturation in the primary lymphoid organs. During fetal life they are found in yolk sac that is 

taken over by the fetal liver and spleen. In adult life, all the blood cells including lymphocytes 

and professional APCs are generated in Bone-marrow. All the cells including B lymphocytes and 

Natural Killer (NK) cells diffuse into the blood stream [31]. While T-cells leave early bone-

marrow as immature and come to develop in thymus where CD4 and CD8 distinction takes place 

after passing through different stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The development of T-cells in the thymus involves a strict selection process in which 1% to 3% 

of thymocytes succeed and export into the blood stream. The selection procedure involves the 

recognition roots that are produced randomly and useful (not self-dangerous) cells are eliminated. 

Thymocytes dynamically migrate across different regions of thymic lobule each representing a 

unique strong environment in order to introduce key elements in the development process of T-

cells. The most notable regions are the corticomedullary junctions (CMJ), cortex, subcapsular 

zone and finally the medulla. T-cells arrive from stem cells and differentiate into lymphoid 

progenitor cells. 

Figure 1.3: Schematic representation of thymic lobule. thymocyte enters into the thymic lobule from CMJ and goes to the 
subcapsular region. Double negative get converted to double positive thymocyte that interacts with macrophage in order to 
differentiate CD4+ and CD8+ T-cells. The survived cells are mature T-cells and they migrate to blood stream through CMJ. 
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different maturation signal. Finally this cell stops expressing CD8 and maintain the expression of 

CD4. Those thymocytes that are unable to recognize either MHC-I or MHC-II molecules fails to 

receive any survival signals and die by programmed cell death or apoptosis [34]. 

 

Thymocytes that are able to recognize MHC-I or MHC-II peptide complexes too avidly receives 

strong signals and it drives them into cell death. In this way thymocytes that are able to respond 

against self-peptide antigens are eliminated in a process known as negative selection or central 

tolerance. The surviving T-cells migrate from thymic cortex to medulla. At this stage they remain 

capable of recognizing self-peptide antigens expressed on other cell types such as dendritic cells 

or thymic macrophages and receive sufficient signals to cause them to undergo program cell 

death. The remaining thymocytes are now mature CD4+ and CD8+ T-cells and pass out of the 

thymus. They either return into the blood stream directly by passing through the venules or by the 

lymphatic system. These cells are fully equipped with the necessary knowledge and tools to 

mount an immune response [31]. 

 Importance and Structure of T-cells II)

T-cells are the type of lymphocytes that have a prominent role in specific immune recognition in 

variety of cell-mediated responses that includes anti-viral immunity, anti-tumor immunity and 

help in the production of antibody by B-cells. They play an important role in cell-mediated 

immunity and memory eventually when innate immune response has removed a limited invasion. 

There are various types of T-cells which have specific functions to fight against the foreign 

invaders, e.g. CD4+ T-cells and CD8+ T-cells. The limitation of T-cells is that they can only 

recognize the foreign antigen when it is presented on the surface of the body cell that is also 

known as Antigen Presenting Cell (APC). 

 

The importance of T-cells can be categorized according to their structure and function. Like other 

body cells, T-cells are also composed of nucleus and cytoplasmic region that are covered by cell 

membrane. Nucleus is covered up by nuclear membrane that mostly contains genetic information. 

Tiny pores on the membrane cover whole nucleus by making a complex known as nuclear pore 

complex (NPC). The cytoplasm of T-cell is mostly composed of water, salt and organic 

molecules [35]. It includes cell organelles for all cell functions like respiration, digestion, etc. 
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In particular to our interest, cell membrane plays a vital role due to its selective permeability 

property by which it can interact selectively with the foreign components. Cell membranes are 

mostly composed of fluidic substances and it contains several components. The composition of 

cell membrane is well defined by fluid mosaic model (FMM) [36]. According to this model, cell 

membrane can be divided into rafted and non-rafted regions. Part of the cell membrane is 

composed of glycoprotein, cholesterol and glycolipids that have significant importance. The rest 

of the portion is based on the phospholipids (i.e. fats, phosphoric acid, and nitrogenous base) that 

are amphipathic in nature. The glycoproteins like TCR, CD3, CD25 and CD69 etc. are inserted in 

between phospholipids as shown in Figure 1.5. 

 

The phospholipids have a shape like a head with a long tail as shown in Figure 1.6. The head has 

a charge that makes it polarized while in contrast, the tail is non-polarized. This stops the 

diffusion of charged substance like water between the inner and outer portion of T-cell. The cell 

membrane, phospholipids, is in a continuous motion. The phospholipids are bind with cholesterol 

molecules so that they stick together at any circumstances. Therefore the uncharged but small 

elements like oxygen and carbon dioxide are allowed to pass. For the bigger and charged 

molecules, proteins receptors are usually used. These proteins come in bunch of different shapes 

and sizes and, therefore, it is not possible for them to accept each kind of molecule. This 

Figure 1.5: Cell membrane and its components continuously move on the surface to detect the signals and tiny particles. Receptor 
proteins are of different shapes and can allow a specific type of protein to get attached and enter or leave the cell cytoplasm. 
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initiating autocrine and paracrine signaling. This means that T-cell diffuses signals eventually 

into the blood and transduces signals randomly into any specific CD25+ T-cell [38].  

 Activation Process of T-cells IV)

The activation of T-cells is physically interpreted by the dynamical changes occurring on the 

surface of T-cells by means of the degradation or the up regulation of membrane proteins. In 

particular to our interests, the surface proteins, like CD3 is internalized, CD25 is produced and 

CD25-IL2 is the binding of CD25 and IL-2 protein, vary their concentrations in order to keep up 

the process of activation. Each T-cell (specific to the antigen) follows the same procedure 

according to the kinetics rule, depending upon their avidity towards antigen, during the process of 

activation and lasts until it becomes fully activated. 

 

The process triggers when the interaction of TCR-pMHC results with the down-regulation of 

CD3 protein from the surface into the cytoplasm of T-cell. Due to the continuous interaction of 

TCRs with pMHC, a significant decrease in the CD3 protein (along TCR) is observed on the 

surface of T-cell. This variation differs from cell to cell depending upon the concentration of 

pMHC on the surface of the APC and the association and dissociation rate of the TCR-pMHC 

binding. 

Table II: Six processes involved in this study to describe the T-cell activation dynamics. 

 

The population of activated T-cells increases with the passage of time during the process of 

internalization of CD3 protein. The simulation time starts after the first recognition of antigen by 

any specific T-cell. From time to time, other T-cells also start recognizing and down regulating 

CD3/TCR for the partial activation. This process continues throughout the simulation time until 

1 Binding of CD3 to its receptor TCR and CD3 internalization........ L + T → LT → T* 

2 Subsequent Production of CD3i (due to internalization of CD3).... T* → T*i 

3 Induction of CD25 protein………….....………………………….. T*i → CD25 

4 Production of IL-2 protein………………………………………... T*i → IL-2 

5 Binding of IL-2 to its receptor CD25 protein……………...……... CD25+IL2→CD25–IL2 

6  Full Activation / internalization of IL-2 receptor……...….…....... CD25–IL2→ CD25–IL2i 
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the antigen available on APC. Although the activation is partial, yet the CD3 T-cells, that are 

varying the CD3 protein concentration on the surface, are considered as activated. The 

internalization of CD3/TCR consequently produces CD25 surface protein. This makes the T-cell 

activated regarding CD25 protein. The T-cells produce some cytokines like IL-2 that interacts 

with other T-cells containing the CD25 protein on their surface. The process continues as IL-2 

receptor protein combines with its receptor CD25 in order to make a binding complex CD25-IL2. 

The T-cell population with CD25-IL2 bound protein increases gradually depending upon the 

concentration of CD25 and IL2 proteins. The internalization of CD25-IL2 leads to the T-cell in a 

state where T-cell gets ready to proliferate. Some simple steps are written in the Table II and 

these steps are presented in the Figure 1.10. During the activation time, all the cells shows the 

similar process regarding the protein dynamics but their concentrations of proteins can be 

different. 

 

 

 

 

 

 
 

 

 

 

 Proliferation and Differentiation V)

The proliferation of T-cells is a division process which starts when the full activation of T-cells is 

achieved. This process needs a threshold of the activation measured by internalized protein 

CD25-IL2i concentration that will build a sufficient force inside the parent T-cell to divide it into 

two daughter cells. These daughter cells further divides into two and this process goes on for 

several generations. During this process, the total population increases while the concentration of 

proteins divides between the new daughter cells. 

 

Figure 1.10: Activation process of T-cells. Table II illustrate the numbers written in this figure. 



1.2  Mechanism of Immune response 

 

18 
 

After the proliferation of T-cells, another major event takes place that is known as differentiation. 

The differentiation of T-cells assigns the responsibility either to become effector or a memory T-

cell. The effector T-cells act to kill the body cell containing virus while the memory cells 

remember the infection for a long time for an early and efficient response in case of re-exposure 

with the same antigen. The effector CD4+ T-cells help in proliferation of CD8+ T-cells and B-

cells while the effector CD8+ T-cells directly attacks on the diseased cells.  

 

The population of T-cells starts decreasing after the pathogen is killed and majority of the killer 

cells abolish after taking some time but the memory cells remains alive for long period of time. 

The above phenomenon of protein dynamics can be observed by flow cytometry technique 

(FCM) as it is described in Section 1.2.4. 

 

The variation in the concentrations of different proteins depends upon the stage of activation 

process. After the activation of T-cell, we observe the response of activated T-cells against such 

infections. The activation rate (production of new T-cells which undergo the process of 

activation) and the reaction rate (rate of change in the concentration of proteins) of T-cells are the 

two major biological processes that reflect the quality and level of immune response against the 

viral infections. 

 Flow-cytometry 1.2.4

The flow cytometry is a powerful technique to study the dynamical behavior of multiple 

parameters of microscopic individuals (cells), in heterogeneous population, by mixing in a fluid 

and passing cells one-by-one from a thin flow. It has wide range of applications in cell 

characterization such as immunophenotyping, ploidy analysis, cell counting and GFP expression 

analysis. The cells are at a very small distance from each other and passed with the speed of 10 

m/s. The flow cytometer can detect T-cells with different magnitudes from 1 µm to 15µm, and 

well adapted for lymphocytes with 8 µm of diameter. 

 

A laser beam focuses with a single wavelength that is followed by an optical focus to make it 

sufficiently narrow for a single cell. The flow cytometer is efficient enough to pass up to 10 

thousands of cells per second and capturing the light from each cell that passes through. The laser 
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strikes the cell surface to scatter the fluorescence in different directions. It produces the spectrum 

of light which further strikes dichroic filter. A deflection process takes place that is divided into 

two types of scattering. One is ‘forward scatter’ that send low angle diffraction towards the 

detector by passing from the lens proportional to cell sign. Another large angle diffraction (after 

striking the cell) moves towards the side filters known as ‘side scatter’ that gives information on 

cell structure (presence of organelles). Cell proteins / compounds labeled by fluorescence of 

different wavelength are captured by electronic amplifier and that are selected by filter. The 

filtered light is sent to the respective detector after passing from a lens. All these detectors send 

signals towards the computer that represents different properties of cells. In the Figure 1.11, there 

is one forward-scatter and four side-scatters shown but in some laboratories of the world there are 

cytometers that can recognize up to 18 different colors. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: Flow cytometer with one forward-scatter and four side-scatter detectors 

http://probes.invitrogen.com/resources/education/tutorials/4Intro_Flow/player.html 

 

Flow cytometry is a distinctive tool that not only counts the cells but also note down their 

respective properties by sending signals to the computer device on large number of cells among 

heterogeneous population. The information gathered by flow cytometry can be analyzed 

statistically and can be graphically represented in respect to the populations selected with the 

given properties. This study is concerned to the dynamical changes of the protein concentration 

on the surface of each cell. 



1.3  Mathematical Modeling for the Immune Response against Viral Infection 

 

20 
 

In Figure 1.12, four panels have been shown to illustrate the result found by FCM. Panel–1 shows 

CD4+ and CD8+ T-cells selected population. Panel–2 shows the up regulation of CD25 protein 

in the activated CD4+ and CD8+ T-cells. The contour plot shows the concentration of CD25 

present in the selected population of CD4+ and CD8+ T-cells. Here we can see the stimulation is 

not so strong in CD8 CD25+ T-cells while in panel–3 the stimulation is much strong not only in 

CD8+ CD25+ T-cells but also in CD4+ CD25+ T-cells. The panel–4 shows the selected T-cells 

from the population of lymphocytes present in the sample that is studied by using FCM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mathematical Modeling for the Immune 1.3

Response against Viral Infection 

The mathematical modeling for the dynamical response of immune system turns into a 

frontrunner against the experimental procedures due to its continuity in time and the availability 

of vast variety of techniques. Although experimental results are necessary to understand the 

Figure 1.12: CD3+ and CD25+ T-cells population detected by Flow cytometer (FCM) 
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phenomenon of any natural process but it is difficult to revise the procedure after small variations 

especially because of the time consumption. In particular to our interest, several modeling 

techniques have been developed against the viral infections to understand and try to anticipate the 

fortune of disease dynamics. 

 Infections and Mathematical Models 1.3.1

Infections caused by viruses have numerous types depending upon the affection of organs in the 

body. Among all, some viral infections are epidemic that needs continuous efforts to control their 

transmission to other individuals [39]. Different Stochastic and deterministic models have been 

studied to represent the susceptibility, transmission and treatment of such epidemic infections 

[40], [41]. These models mainly deal with the large populations of infected patients which have 

subgroups known as compartments. Each compartment is abbreviated according to its epidemic 

stage as M (Maternally-derived immunity), S (Susceptible), E (Exposed), I (Infective) and R 

(Recovered). The analysis of population dynamics of such models are based on simple ordinary 

differential equations (ODEs) where each ODE represents a compartment [42]. Public health 

practitioners and researchers are frequently pointing out the emerging areas in order to make their 

mathematical models and classify ongoing challenges [43]. These epidemic models mainly work 

on the outbreaks and spread of diseases in the society. 

 

 

 

 

 

 

 

 

Another category in the modeling techniques is the mathematical modeling of the mechanism 

involved in virus propagation and immune response during the epidemic infection (in a human 

body). These models are used to analyze the dynamical changes by following the behavior of 

their physical parameters. Many researchers have shown their interest to model such evolutions 

by using numerous modeling techniques. The multi-scale modeling of such infections are used to 

Epidemic Models 

Experimental analysis 

Mathematical Models 

 Viral Infection 

 Infection outbreaks 
and control 

Population dynamics 
of immune response  

Survey data analysis 

Figure 1.13: Ongoing research in viral disease dynamics 
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study the variation in the population of infectious cells due to their age of infections [21] and the 

population dynamics of specific T-lymphocytes activated after the antigen detection [4], [44].  

 

If we go further deep in the study of specific immune system, we come across the activation and 

proliferation of T-lymphocytes that are based upon the chemical signals exchange by the help of 

numerous markers (proteins) associated with T-lymphocytes. These viral infections are 

mathematically modeled by using variety of modeling techniques that have effectively revealed 

the implicit mechanism of their pathogenesis. For example, the rate of viral production, the age of 

infected cells, the treatment for infection caused by Hepititis B virus (HBV) and Hepititis C virus 

(HCV) are modeled to analyze the interferon and ribavirin therapy [21], [45] and the memory of 

the infections by means of memory T-cells in order to respond more abruptly in future. 

 Modeling Population dynamics 1.3.2

The modeling techniques for discrete particle systems of chemical engineering are assimilated in 

the biological sciences in order to understand, particularly, the dynamics at a single cell level and 

at the population level. Each model is based on distinct assumptions and therefore can yield 

unique information at different computational expense. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14: Various modeling techniques for population techn 
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 Stochastic Modeling I)

Stochastic modeling (SM) technique is based upon the probability of being in a state rather than 

predictable selection of the state. It has wide variety of applications in chemical engineering as 

well as in the biological sciences including cell population dynamics.  

 

The dynamical effects at single cell level are defined by a random variable that can vary under 

the possible range of values. The random variable represents the rate at which the intracellular 

content changes, for example concentration of proteins etc. The range of values gives an entire 

space to the stochastic variable to decide the path according to the defined parameters. 

 

The population dynamics involves the physical properties of cell by introducing a probability of 

virion interaction with uninfected cells to make it infected, the probability of infected cell to 

become uninfected and the probability of degradation of infected cells [6], [7].  

 

The dynamical behavior is not predictable at any stage and the repetition of the simulations can 

vary the random variable value according to its defined probability. This makes it less interactive 

for the analysis of the cell population. Although the physical processes are random yet the 

random variables lack the tools and techniques to analyze their behavior under the desired 

circumstances. These arguments compel us to use the deterministic modeling that is more 

focused to follow the set directions; therefore one can anticipate the succeeding situation. 

 

The stochastic models deal separately with the single cell dynamics and the population dynamics 

of cells. However, many dynamical systems in cell biology need a relation between the 

intracellular contents and the cell population due to the influence of cell on each other. Our aim 

of this study is to deal with such relations in order to develop a better idea about the immune 

response against viral infections. 

  Deterministic Modeling II)

Deterministic modeling (DM) involves prediction of dynamical changes under the given data 

without involving any randomness during the simulation. DM techniques are based up on the 

differential and integral equations to study the dynamical changes at intracellular and 
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extracellular levels as well as at the population level depending upon their deterministic 

frameworks. In these frameworks, it is assumed that the system evolves in a continuous and well-

prescribed manner by considering that the population of cells is sufficiently large [46]. Following 

are the modeling techniques that are frequently used to study the natural processes. 

Discrete Element Modeling 

Discrete element modeling (DEM) is a numerical method for predicting the flow of individuals 

and moving objects. This technique best fits with the analysis of disaggregation and motion of 

particles or where the scientific principles are applied to govern each particle interaction possibly 

including particle-particle interaction, friction, electrostatic, magnetic, and gravitational forces. 

 

A Discrete element modeling starts with the collection of particles along with their current 

position and velocities. The physical characteristics depend upon the forces applied on the 

particle and some other effects like cohesion. These forces are then used to determine the position 

based on the current velocity. Similar steps can be followed to determine the behavior of each 

particle during the whole simulation time.  

 

This technique is capable of treating simple particle shapes like spheres and ellipsoids that puts a 

restriction on its usage. However the cell population dynamics can be followed due to their 

rounded shapes and structures. DEM allows the analysis of particulate systems in more depth as 

compared to the physical experiments but it is bounded to either the simulation time or the 

number of particles due to lack of computational resources. Several software have been 

developed to enhance the computational needs. Until now the number of particles up to 107 is 

allowed to study with sufficiently long simulation time. This reason has decisively blocked the 

DEM technique in the biological sciences, particularly to study the cell population dynamics, 

because the population of cells is normally treated above its computational bound. 

Continuum and Ensemble Modeling 

At a single cell level, the intracellular and surface contents (e.g. concentrations) are considered as 

dispersed in the continuous phase of the cell. Ordinary differential equations are used to represent 

such models by assuming that all the cells share the same concentrations [27]. Therefore, the 
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variation at a single cell level is reflected as a general behavior of cell dynamics. Such models are 

denoted as Continuum models. These models are simpler but do not address the distribution of 

contents among the population of T-cells. Therefore, the heterogeneity of the contents among the 

cells is neglected. 

 

A more effective modeling technique is the ensemble modeling which treats the heterogeneous 

nature of the cells by dealing with the concentration of each cell individually. Each ODE 

represents rate of change at the single cell level with randomly distributing the initial 

concentration, known as ensemble [27]. This gives efficient analysis of contents at single cell 

level but in a case of huge population, the simulation of this modeling technique is time 

consuming. Also, the homogeneity in the cellular contents can make this technique less 

advantageous as compared to continuum modeling. 

Population Balance Model 

Deterministic models, like continuum and ensemble models, works at single cell level or at the 

population level while we need the modeling technique that can work at both ends to provide a 

relation among them. Population balance models provide such interface that helps us to make a 

connection between the single T-cell dynamics with the population dynamics of T-cells during 

their process of activation. 

 

Population balance modeling symbolizes the diversity of features in a given population. These 

features are measurable intrinsic qualities such as age, size, shape, DNA/RNA contents and 

concentration belongs to an isolated set of population. Therefore, the population can be 

distributed according to the strength of such feature. The population undergoes several physical 

and chemical processes with the passage of time. These processes make the evolutionary changes 

in the population by varying the measure of the feature. However, the total population remains 

conserved during the course of action as shown in the Figure 1.15. Such conservation in the 

population is generally referred as balance law or conservation law for population balances. 

 

The population balance model (PBM) is introduced by Huburt and Katz in the field of chemical 

engineering that is followed by Fredrickson in 1970s in biological sciences. It has shown 
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Qamar has investigated the single-variate and bivariate cell population balance modeling by 

assuming the internal coordinates as biomass or internal property variables; however the cell 

biomass contains several contents which vary dynamically depending upon each other throughout 

the cell life. The biomass always increased in this case which gives a conventional cell growth 

rate. Also the work of Qamar discusses the process of division and how the biomass is shared 

between the daughter cells. In our study, the mathematical models are investigated as single-

variate CPBM and analyzed according to their cell contents (proteins). These proteins are 

depending upon each other and therefore sometimes the concentration of cell content follows an 

increasing as well as decreasing phenomena with the passage of time which makes the problem 

more interesting. Also, in our study, the process of division is not explicitly studied. We 

investigated the dynamics of cell before and after cell division (but not during the cell division). 

 

The numerical schemes are highly efficient in the work done by Qamar and have provided 

efficient results. These methods are validated when the model is based on PDEs while in our 

case, due to non-monotonic behavior by internal property variable, i.e. concentration of cell 

contents, the PDE formation is questionable. Therefore, we need such method which can directly 

find the population density instead of following the population balance equation. 

 Our contribution 1.4

This dissertation describes the mathematical modeling of immune response against influenza 

virus infection. This work is divided into two main parts: the dynamical behavior of proteins at 

single T-cell level and the overall population dynamics of activated T-cells. Also, there are some 

hypothetical models that are validated for the process of evolution in the T-cells after 

proliferation.  

 

At single T-cell level, continuum models are studied. These models are divided into four 

categories (Cases 1 – 4) according to their level of complexities as given in Chapter 2. The 

models are presented by using ordinary differential equations (ODEs) that are solved analytically 

whenever possible while a simple Euler method and Runge-Kutta order four method are also 

used to validate the results for Case 3 and Case 4. A graphical analysis of these models made a 
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thorough investigation of the intracellular dynamics. The kinetic parameters used in this study are 

defined according to experimental observations presented in [3], [13]. 

 

At population level, the population balance models are studied by introducing the reaction and 

activation rates in order to analyze the population dynamics of T-cells during the process of 

activation, Chapter 3. The ODEs used in the Chapter 2 are considered as the reaction rates at 

single T-cell level while the initial population of activated T-cells is defined by an activation rate. 

Again four cases are studied in the same complexity sequence followed in Chapter 2. Each one 

has described the population dynamics of T-cells with respect to their surface proteins under the 

conservation laws for hyperbolic equations. Several methods have been used to find the solution 

for each model depending upon the complexity of the model. An innovative approach is used to 

find the solution by the methods existing in the literature. Also a new method ‘Transport Method’ 

has been introduced by using the differential geometry in order to deal with such conundrums 

without using the PBMs. 

 

The Chapter 4 is based upon the proliferation of T-cells occurring after the full activation stage. 

The behavior of T-cells after proliferation is observed based on single T-cell level and also at 

population level. Three hypotheses are defined for the proliferation process. The results have 

been obtained by using the Transport Method that are validated by comparing the results found in 

Chapter 3.  

 

The deduction and critical analysis of the thesis is written at the end of the thesis as a Conclusion. 

 Terminology Used in the Thesis 1.5

In the biological and mathematical literatures, several words exist which have the similar 

meaning but they can confuse the reader as their second meanings also exists. For the sake of 

convenience, in Table III, we define a decisive terminology according to the literature that can 

help to understand the dissertation. 
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Chapter 2 

Proteins Dynamics 



2.1  Introduction 
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Figure 2.1: Interaction of T-cell with pMHC 

 Introduction 2.1

The recognition of foreign invasion by T-cells requires several proteins. These proteins play a 

vital role to trigger the process of T-cell activation by moving inside the T-cell from the cell 

membrane and compel the nucleus to produce more proteins. Consequently, several proteins, 

each with different function, come on the surface or go into the blood stream to alarm the other 

specific T-cells as shown in Figure 2.1. The process of activation needs an immediate and 

continuous action in order to reach the threshold level that is necessary to ready the T-cell for 

further actions like proliferation. In this study, four levels of mathematical modeling are studied 

in order to depict the protein dynamics during the activation process. The evolutionary models 

are based on the analysis of experimental observations done by [4], [8]. These mathematical 

models are comprised of the set of ordinary differential equations (ODEs) and cover almost all 

the circumstances that are possible to study the rate of change in the proteins concentration at the 

cell scale. The system of ODEs is solved by using analytical methods wherever possible while 

the Euler method as well as the Runge-Kutta (order 4) method is also used to find their numerical 

solutions. The kinetic parameters and initial conditions are chosen according to the values given 

in the literature [3].  

 Mathematical Modeling 2.2

The protein dynamics in the activation process needs to be understood by the help of 

mathematical modeling that can simulate the behavior by varying the kinetic parameters. After 
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reviewing the literature about experimental works and the mathematical models, a conviction has 

been made to develop a model based on the protein concentration at single T-cell level.  

 

The established concept of T-cell activation is considered [3] that explains us about the binding 

of peptide-MHC complex and the TCR with the help of accessory molecules present on the 

surface with their particular ligand(s) under classical thermo-physical rules as shown in Figure 

2.1. This initial step induces sequential involvement of the evolution in the proteins including 

production, binding to its ligand, activation and destruction that are considered all together in the 

previous work [3]. The mechanism of the activation of T-cell is based on hundreds of proteins 

that make it pretty complex. The major steps required for T-cell activation can be mathematically 

represented as in Table IV. 

 

Table IV: Step wise description of T-cell activation process 

 

The resolution of the above defined steps provides the cell kinetics at different activation levels at 

time t . The CD69 and CD25 proteins show a very similar behavior. Therefore, it is permissible 

to understand the behavior of one of the two proteins in order to understand the other. The 

mathematical models are presented to analyze the evolution in the above proteins concentrations. 

To solve such models, they are divided into four cases and are studied and presented in a 

sequence as given below. Following are the cases that we are going to discuss: 

 

1. TCR (T) recognizes the pMHC complexes from APC (L)…………….. L + T → LT 

2. First step of the TCR activation……………...……………...…………. T→ T* 

3. Second step of TCR activation ends with an irreversible internalization T*→ T*i 

4. Induction of early activation marker CD69……………………………. T*i→ CD69 

5. Subsequently induction of CD25……………...……………...……….. T*i→ CD25 

6. CD69 meets its ligand and get internalized……………………………. CD69→CD69*i 

7. Stimulation of production of soluble IL-2 protein……………………...  CD69*i→IL2 

8. Binding of IL-2 to its receptor……………...……………... CD25+IL2→CD25–IL2 

9. Internalization of IL-2 receptor…………………………… CD25–IL2→CD25–IL2i 
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1. Monotonic variation in the protein concentrations. 

2. Non-monotonic variation in the protein concentrations with same behavior in all T-cells. 

3. Non-monotonic variation with different behavior of each T-cell. 

4. Non-monotonic variation with different behavior of each T-cell while the concentration of 

proteins present in/on any T-cell can intersect the others concentration at any time t . 

 

The models are based on the single type of T-cell protein dynamics (also known as single T-cell 

dynamics) that are defined by the set of ODEs. Each ODE presents the rate of change in the 

concentration of a particular protein during activation process. Let’s start with the first case 

describing the internalization of CD3 protein: 

 Case 1 2.3

The interaction of T-cells with an antigen presenting cell (APC) is the first and foremost among 

the other processes. This process is done by the help of CD3 protein which lies on the surface of 

T-cell attached with T-cell receptor (TCR) and CD8 protein (or CD4 protein that is not physically 

associated with CD3-TCR) in order to give the primary activation signals to the cytoplasm. The 

combination of the above three proteins is known as CD3 complex. It is closely associated with 

the T cell receptor and is internalized when the TCR recognizes the Major Histo-compatibility 

Complex peptide (pMHC).  

 

During the process of activation, the concentration 

of CD3 protein decreases on the surface of T-cell 

after dissociation with pMHC and the CD3-TCR 

engagement carries on until the cell gets its minimal 

level of activation [15]. The rate of association and 

dissociation of CD3-TCR with pMHC motivates T-

cells to produce other proteins and amplify the 

process of activation [51]. On the other hand, 

several studies have experimentally proved that 

CD8+ T cell activation is governed by TCR- Figure 2.2: CD3 protein degradation and the production 
of CD3i protein. 



τ

τ

τ

τ

− ∈



− −×

−

τ τ

τ

τ



′

′

→



→

→

−− −

′ ′−

′

−

− −′ ′ ′′ ′ ′ ′− −



τ

τ τ

τ

α β γ− −′ ′′ ′ −

τ
τ

τ

τ τ τ
τ

− −− −



− −′

− −

′

′

′

τ



′

′

−

−

− −′
− −

′

′ ′ ′ ′− − −

′ −−
−

′



′−
′→ ∞ → −

− −×

τ−

− −− − −
− −

−

− −

′− −
′ ′−

−
−

′ −′ ′

− −

− −

′ ′− − −
−

′
− −

−

′

′ ′−

×



τ



2.5  Case 3 

 

54 
 

2.6(d) where the concentration of CD3 and CD3* are added to show the total concentration of 

CD3 protein. Recall that the maximum capacity of CD3* protein is considered equal to the initial 

CD3 concentration present in the synapse. The increase in the combined concentration of CD3 

protein confines itself in the middle as shown in Figure 2.6(d). The reason is the death of the 

internalized protein CD3i due to its half-life and the limited capacity of CD3*. The kinetic 

increase on the membrane is balanced with the disappearance of CD3 protein from the synapse 

due to internalization. 

 

The phenomenon of reappearance of CD3 protein on the surface is more hypothetical while the 

recruitment of CD3 protein in the synapse is studied in the literature [15], [53]. Since the non-

increasing phenomenon studied in the above model for CD3 protein present inside synapse 

clearly states that the membrane concentration is irreversible. But it is possible to include it so 

that the protein again works like a reversible protein. Mathematically, there will be no significant 

change in total CD3 protein concentration but it is possible that it can contribute significantly 

with any other aspect during the activation process. For example, it can affect the threshold level 

needed to produce other proteins that are depending on the rate of internalization of CD3 co-

receptor proteins. 

 

In the above cases we studied only the CD3 protein concentration. It has given the idea of 

modeling the dynamical changes at one T-cell level. Now we extend our model to study the 

evolution of several proteins depending upon each other. The reappearance of CD3 protein is not 

considered in the cases below. 

 Case 3 2.5

In our case 3, we study about the non-monotonic variation with different behavior of each cell 

activating with the same concentration of proteins. The study of this case reveals the protein 

dynamics of some other proteins that are necessary for the proliferation of T-cells. It is assumed 

that the T-cells with the concentration of these proteins activated at different times are not 

coinciding at any time even though the proteins are depending upon each other. A mathematical 

model is presented that analyze the evolution of these proteins concentrations with the passage of 
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CD25 protein concentration, it is expected that the rate of internalization of CD25-IL2 protein is 

less effective in a given curve than the rate of internalization in the next curves.  

 Conclusion 2.7

In this chapter, we developed several dynamical models categorized in four cases to analyze the 

evolutionary changes that took place in the proteins at a single T-cell level. These models were 

based on the phenomena observed experimentally in [4]. The models were classified into 

monotonic and non-monotonic behaviors. The non-monotonic behavior is diversified in three 

different cases. The solution curves presented in the Case 2 have shown a shifting phenomenon 

but the slope of each curve remains same. The last two models have shown the solution curves 

which vary the slope of each curve starting at different activation times. Despite their non-

monotonic behaviors, another interesting phenomenon was the crossing of curves that was 

observed by taking an image of a surface plot on the plane. 

  

We started from a simple problem where only the concentration of CD3 protein decreased. This 

case was studied to understand the initial immune response. The CD3/TCR engagement with the 

pMHC exposed a rapid decrease in protein at the start that has been observed experimentally by 

various researchers concluded it as the partial activation of T-cells [37], [54]. In spite of a rapid 

decrease observed in the Figure 2.3, the model lacked some information that is necessary to better 

analyze the physical phenomenon. For example, it is not necessary that a decrease in the CD3 

protein concentration could fully engage the T-cell during the activation process to produce other 

proteins. However, it was possible to adjust the kinetic parameters according to the experimental 

values where the range of each kinetic parameter has been defined. Despite the simplicity of the 

model, it has provided the basis to study the information waiting ahead. 

 

The increase of internalized protein CD3i inside the T-cell led to the production of several other 

proteins. Beside other proteins, in Case 2, we studied an interesting phenomenon about the CD3 

protein reappearance on the surface of T-cell which has revealed an innovative approach to study 

the variation in CD3 protein concentration [55]. The major fascination of such problem was the 

crossing of curves that has given an impression of real problem. This model has shown an 
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unbounded increase in the protein concentration that was the major flaw in the model. The 

subsection Second Model in Case 2 has taken into account the limitation of CD3i protein by 

considering its half-life as well as the phenomenon of bounded concentration of CD3 protein on 

the surface of T-cell. This model has overcome the deficiency of the first model but it has 

originated more questions about the generalization like the study of Single T-cell dynamics if 

each type of T-cell, activating at different activation times, has followed the different phenomena 

(shifting and similar slope). Although the model has used the kinetic parameters that were 

observed experimentally, yet the model was simple and therefore it was possible to find the 

analytical solution. Despite of the analytical solution, numerical methods have also been 

validated in this case in order to apply them in the cases where the analytical solutions were not 

possible. 

 

The internalization of CD3 protein produced many other proteins which have shown versatile 

behaviors during the simulation time. The mathematical modeling of the third case included the 

two major proteins that were depending upon each other, i.e. the CD25 and IL-2 proteins. The 

rapid binding of both proteins was another interesting phenomenon that has originated the reason 

of decrease in the concentration of CD25 and IL-2 proteins. We have observed this decrease by 

studying the change in the slope of each solution curve of CD25 protein concentration which has 

shown the impact of IL2 protein intervention. Although the model has the deficiency due to a 

non-intersecting behavior of curves and needs to be modified, yet the integro-differential 

equation has motivated us to analyze it before moving towards the next step. 

 

In Case 4, the change in the parameters values investigated the fast reaction rate (in comparison 

to Case 3) and it has shown a wide range of intersection between the curves. This model was 

generalized for the problem of one point crossing. However, during the activation process, it was 

possible to have more than two different types of T-cells crossing each other at the same time. 

For such idea, we may need to follow more complex model by introducing other dynamical 

behaviors. Probably, e.g., if the CD3 protein concentration shows the non-monotonic behavior 

that was discussed in our Case 2 we can observe crossing within three types of T-cells during the 

simulation time. 
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 Introduction 3.1

The population dynamics of T-cells deal with the evolution process of the population that is 

affected by the change in the protein concentration. It is considered as one of the most effective 

ways to understand the immune response against viral infections. The continuum modeling of 

such dynamical systems is popular among the modern scientific environs. There are variety of 

models that helps us to understand the evolutionary process by means of age, size and some 

internal and external characteristics of infected cells ( i.e. concentration of proteins) [3], [7], [46], 

[27]. In this chapter we study four mathematical models describing the population density ( , )n c t  

of T-cells with respect to their surface proteins concentration c . These models are studied in an 

increasing pattern of complexity. First three cases are represented for each surface protein by a 

population balance equation (PBE) while the fourth case is validated against a newly developed 

approximate method based on differential geometry technique called as Transport Method (TM). 

The work described in the previous chapter is frequently referred here in order to reduce 

repetition. 

 

The population balance equation has been previously studied by many researchers [47], [2]. Such 

type of complexity is dealt in the first case where the exact solution was possible by using 

Method of Characteristics (MOC). In the next cases, the exact solution of the hyperbolic 

equations was not possible due to dependency of protein concentrations on each other. Therefore, 

it was inevitable to introduce an approximate technique to find the population density function. 

The results are compared between the TM and numerical methods like finite difference and finite 

volume schemes. The exact solution is found whenever possible. At the end of this chapter is the 

conclusion where we critically overviewed the mathematical models and tried to elaborate the 

difficulties regarding the future improvements. 

 Biological aspects 3.1.1

A detailed experimental analysis of Flow-cytometry technique for the discussed proteins and T-

cell dynamics has been studied in the literature [3], [4], [15], [56]. The population densities of 

activated T-cells are studied with respect to the concentration of proteins present on their 

surfaces. During an experiment of immune response, sampling of the biological fluid is carried 
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out. Then, by using FCM (Flow-Cytometry) technique, individual cells are analyzed and their 

protein content is measured. From these data, cell densities n(c,t) for each protein are deduced. 

The evolution of proteins and the T-cells dynamics are observed at particular times as shown in 

Figure 3.1. The figure shows various bunches of activated T-cells with CD3 and CD25 markers 

present on the surfaces of CD4+ T-cells and CD8+ T-cells at different times t. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each bunch of dots indicates the level of the protein at different time t. It is obvious to observe 

the decrease in the CD3 protein level while an increase followed by a decrease in the CD25 

protein level. This phenomenon describes the protein dynamics of CD3 protein present on the 

surface of activated T-cells. Experimental values are always based on discrete time steps that 

cannot predict those drastic changes that are possible to happen in the intervening time. But it 

Figure 3.1: Population of CD3 and CD25 proteins on the surface of CD8+ T-cells 
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makes an overall scenario that can be further used to analyze by mathematical models. By 

following the same approach, these observations have given an idea to mathematically model and 

analyze the FCM by using population balance equations. 

 

It is mandatory to briefly introduce the biological phenomena before defining the main problem. 

During an experimental study of the immune response against viral infection, it is observed that 

first of all the T-cell encounters antigen presenting cell (APC). Shortly, T-cell receptors connect 

with a specific antigen fraction (peptide) that is linked with a self-molecule Major Histo-

compatibility Complex (MHC) of Antigen Presenting Cell (MHC) and induces the cell activation 

whose first effect is revealed by changes of protein concentration at their surface or in the close 

medium. This first step is the source of activated T-cells and it is assimilated as an activation rate 

of the T-cells. The dynamics of the process depends upon the strength of the binding that 

involves many components. In this study, we consider the cells with different time of activation 

but the same level of proteins present at the time of activation. Therefore, the number of activated 

T-cells at a certain amount of initial protein concentration, produced per unit time, will be known 

as the activation rate (or rate of activation) of the T-cells. It corresponds to the start of the 

activation process at the cell scale. 

 

A high concentration of CD3 protein is present on the surface of the T-cells and this 

concentration varies during the activation process. Due to its variation, the T-cells produce 

several other proteins in order to react against the infected cells (i.e. APCs). The variation in the 

protein concentration with time is assimilated as the reaction rate of the activated T-cells. The 

reaction rate can be an increase or a decrease of the concentration of the considered protein. In 

chapter 2, we talked in detail about the complexity of reaction rates in four cases.  

 

A mathematical modeling of the above discussed evolutionary process is presented below. The 

models follow the linear first order hyperbolic conservation laws with a source term representing 

the birth of activated T-cells after collision between T-cells and APCs. 
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described in Chapter 2. The Table V reminds the prominent attributes of activated T-cells and 

gives a critical overview about the cases according to their limitation and advantages. 

 

Cases – Proteins Characteristics Limitation Advantages 

1. CD3 protein 

Surface protein. 

Decreases with the 

course of time  

Do not increase. No 

analysis about other 

dynamical processes. 

A leading process that 

trigger the activation 

process. 

2(a). CD3, CD3i and 

CD3* proteins 

Surface & internalized 

protein. 

Not bounded. Follows 

the population density 

of CD3+CD3* protein.  

Non-monotonic 

behavior. Discuss the 

reappearance of CD3. 

2(b). CD3, CD3i and 

CD3* proteins 

Surface & internalized 

protein. 

Follows the density of 

CD3+CD3* protein. 

Only the CD3 protein. 

Bounds CD3+CD3* by 

limited capacity and 

half-life phenomena. 

3. CD3, CD3i, CD25, 

IL-2, CD25-IL2 and 

CD25-IL2i proteins 

Surface, internalized & 

a fluid protein that is 

shared by all T-cells. 

T-cells populations do 

not coincide. Exact 

solution not possible. 

Follows the overall 

initial behavior ( 28 

hrs approx.) of 

activated T-cells.  

4. CD3, CD3i, CD25, 

IL-2, CD25-IL2 and 

CD25-IL2i proteins 

Differs from case 3 by 

the values of the 

kinetic parameters. 

No PBM. T-cells 

dynamics before 

proliferation. 

More realistic 

behavior. T-cells are 

ready for proliferation 

Table V: Prominent attributes of activated T-cells 

 Solving Techniques 3.3

In the previous chapter, Runge-Kutta Method of order four is used to find the solution 

(characteristic) curves. Here several methods are studied in order to validate the above described 

PBM. As we found the reaction rate for CD3 protein analytically, the Method of Characteristics 

(MOC) is applied to find the density functions. Also an innovative numerical approach 

(Transport Method – TM) is used to find the solution for the density functions by the 

mathematical analysis as described below. For more complex population balance models, when 

there is non-conservative term, it can be difficult to find the analytical solution and the solution 
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In this case, the model is considered as the simplest way to describe the activation process of T-

cells. The solution of the above defined problem is sketched in the Figure 3.9 at four different 

times 20000t s= , 50000s , 80000s , 100000s . The figure is a log-log plot because the values are 

at extreme ends. One can observe the validation of both approximate methods that are 

overlapping the exact solution. This validation will be helpful in dealing with other cases where 

the exact solution is not possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Population density of T-cells according to their protein levels at different time t 

 Case 2a 3.5

In case 2a, T-cell activation is studied with respect to their surface protein (CD3) concentration 

that internalizes and reappear on the surface of T-cell outside of the synapse. The activation is 
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Population Density of T-cells for CD3+CD3* Protein - Case 2a
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Figure 3.13: Results with finite volume scheme (Upwind as dashed line) and Transport Method (TM as line) 

 Case 2b 3.6

In the first model, the increase in the CD3 reappearance on the surface is realized without any 

limitation. Therefore the limited capacity of T-cell makes a contradiction and clearly shows the 

deficiency of that model. However, mathematically, it has shown an adequate analysis about the 

crossing of two curves in the linear hyperbolic PDEs. The deficiency of that model is removed, as 

discussed in the section 2.4.2 of Chapter 2, by introducing the half-life of internalized protein in 
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Population Density of T-cells for CD3+CD3* Protein Case2b
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concentration on the surface matches to the population density of T-cells with increasing the 

concentration of the same protein. The steep descend in the solution due to discontinuity indicates 

that the T-cells are no more crossing each other with respect to their protein concentration. The 

discontinuity moves further towards right as we can observe in Figure 3.14(b) and gets vanished 

in the next figures. It can also be observed that the population density is increasing more rapidly 

at the right with the passage of time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.14: Results with finite volume scheme (Upwind – dashed line) and Transport Method (CM - line) 
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The possible reason for the above two arguments is that the activation rate ( )B t  is a decreasing 

function of time. In contrary to the previous case, the increase in the concentration of protein 

does not exceed from the initial level, Figure 2.6. Therefore, the population density at the initial 

concentration 0c  shows no discontinuity at any time t  as shown in Figure 3.14. 

 Case 3 3.7

The case 3 is established in order to study the evolutionary process of population densities of T-

cells based on six proteins which are remarkably changing during the activation process. The 

process starts from the CD3 protein internalization that results as CD3i protein. Due to its 

internalization, many proteins produce and come on the surface of T-cell.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, we are not going to deal with CD3 reappearance. The surface proteins are CD3, 

CD25 and CD25-IL2 proteins. The CD25-IL2 is a binding of CD25 and IL2 proteins whereas IL2 

protein is shared by the other T-cells. It goes into the blood and bind to the CD25 protein that lies 

Figure 3.15: Dynamical changes in T-cells with respect to proteins and the population dynamics of the activation T-cells 
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give us a better analysis for the population density. At time 10,000t s= , Figure 2.9 shows that the 

concentration is increased at a high rate. Moreover, in Figure 3.17(a), the population density 

shows that there is a range of concentration of CD25 protein present on the surface of activated 

T-cells. It is probably because, initially, the binding rate between CD25 and IL-2 is not so high 

due to low concentration of IL-2 in the blood. The increase in the concentration of CD25 starts 

decreasing afterwards due to the high level of binding of CD25 and IL2 protein. The most 

important phenomenon is that the characteristic curves are not crossing each other but they are 

converging to the specific level of the concentration as shown in the Figure 2.9. Therefore, the 

population density of the activated T-cells is increasing rapidly in the Figure 3.17 (c), (d)  

 

In contrary to the CD3 protein, the CD25 and IL-2 proteins dynamics were dependent on each 

other. Therefore it was impossible to find the analytical solution for their population densities. 

The population density of T-cells was diversified rapidly in a range of CD25 protein 

concentration and afterwards it confined to a smaller range. But, in this confined range, the 

density of T-cells was very high as we can observe from the discontinuity front in the Figure 

3.17. Due to the change in the kinetic parameters, the reaction rate was not so high. Similar 

behavior has been observed for CD25-IL2 protein but the reaction rate is not as complex as in the 

case of CD25 due to the monotone behavior of the solution curves.  

 CD25–IL2 Protein III)

The binding of IL-2 on CD25 protein starts early, after their productions. The concentration of 

CD25-IL2 binding increases gradually, Figure 2.9 that can be observed by the diversity of the 

population density of activated T-cells in the Figure 3.18. One can also observe that more and 

more cells are gathering with high concentration of this CD25-IL2 complex although this cluster 

is going inside the cell afterwards. The increase in the binding process of the protein present on 

the surface of the activated T-cells can subsequently affect the internalization speed that is 

necessary for the T-cells proliferation.  

 

The results obtained by analytical and numerical methods have shown a nice agreement with 

each other and follows the natural phenomena. We use the same technique as we have used above 

to solve for the population density of T-cells for CD25 protein. The flux limiter is used to solve 
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The population density has been diversified with the passage of time. As the concentration of IL-

2 rose in the blood stream, the binding of CD25 and IL-2 has increased gradually. Probably the 

stability at the discontinuity front in the Figure 3.18 (b), (c) and (d) is due to the degradation of 

the binding into the cell. This phenomenon has been observed by perceiving the range of protein 

concentrations on the surface of activated T-cells. At the same time, the T-cells were 

continuously activating and expressing their CD25 protein on the surface as well as diffusing the 

IL-2 signals in the blood stream which continued the process of binding and degradation until the 

threshold level would be reached to start the proliferation. 

 

In the next case, the reaction rates for CD3, CD3i and IL-2 proteins are chosen higher. Therefore 

we observe the intersection between the concentration curves of CD25 and CD25-IL2 

respectively as shown in Figure 2.10. At these intersection points, a drastic change is observed in 

the population density of CD25 and CD25-IL2 T-cells and the conservation laws are no more be 

applicable by a classical way. Not only this, but also, it is not possible to apply the classical 

numerical techniques near such intersections. Therefore, Case 3 was obligatory in order to find 

the solution of the crossing problem by following TM. 

 Case 4 3.8

In case 4, we will focus on the same proteins as discussed before but here we have more general 

phenomena with regards to the population density of the T-cells with variation of proteins on 

their surfaces. If we consider that the characteristic line increases or decreases more rapidly as 

compared to the above case, we can observe the curves crossings each other as shown in Figure 

2.10. This can make trouble to write the conservation laws for linear hyperbolic equation because 

the population density at crossing point has multiple origins. Moreover, we need further analysis 

of the Transport Method in order to find the solution. 

 Modified Transport Method 3.8.1

The characteristic lines are showing non-monotonic behavior and crossing each other at different 

points. The natural grid defined for this case by solving the system of ODEs in chapter 2 is 
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concentrations. This phenomenon produces the discontinuity in the T-cells population density as 

we can observe from the above Figure 3.20(a). The other plots show that, after time t , the protein 

concentration is getting low on most of the activated T-cells that can be observed by the shift in 

the discontinuities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CD25-IL2 binding on the surface of T-cell rapidly increases after the production of CD25 

and IL-2 proteins during T-cell activation. Due to the internalization of the binding, T-cells show 
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a gradual decrease of CD25-IL2 on the surface at different rates. The non-monotonic behavior of 

different types of T-cells coincides after a certain time and shows discontinuous behavior similar 

to CD25 T-cells. The discontinuity moves gradually towards left as shown in the Figure 3.21. 

This shows that the internalization rate is not so high because a wide range of protein 

concentration still remains on the activated T-cells. 

 

The internalization of CD25-IL2 plays an important role in the proliferation of T-cells and that 

was one of the main reasons to study this model. Now we consider this situation as the T-cell is 

fully activated and now ready to divide and therefore, we can turn towards the division process 

by analyzing the proliferation of T-cells in the next chapter. 

 Conclusion 3.9

The process of activation of T-cells has shown diversified behaviors in the dynamics of 

population density. The dynamical changes at individual scales were dependent upon the proteins 

concentration at the initial time not only inside the cell or on the surface of the T-cells but also 

the outside (in the fluid). The population densities of T-cells were studied according to the 

surface proteins concentration. 

 

The TM has shown a good commitment with the classical FVM and LWF. For the CD3 protein, 

the exact solution by MOC overlapped not only the classical methods but also TM. In the further 

cases, the error, observed between the numerical methods, compelled us to use the constant grid 

for the c-axis. This need was inevitable due to dissimilar behavior of characteristic curves. One 

can imagine it just by observing that the global maximum of each concentration curve is not same 

as shown in Figure 2.9 and Figure 2.10. Similarly, the range of concentration was also different 

for each curve which has made problem for the CFL condition that is mandatory to find the 

population density by using numerical methods. 

 

The TM was modified according to the need in section 3.8. Since each solution curve found by 

solving the reaction rate in the section 2.6 has followed its own path particularly in CD25 and 

CD25-IL2 plots. Due to such variation in the behavior of the solution curves, conservation laws 
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 Introduction 4.1

Proliferation is a division process that results with an increase in the number of several types of 

T-cells. This is the most important process to kill the virus as well as to produce memory T-cells 

that are long lasting and act more quickly and firmly against the specific viral infection. The T-

cells repeat the evolutionary process of activation after the division process. The division of T-

cells needs a threshold level of internalized protein CD25-IL2i that is considered in this work as 

the final step before T-cell division. The proliferation is followed by all the T-cells but probably 

at different level of CD25-IL2i protein. Also the concentrations of all the other surface proteins, 

including CD3, CD25 and CD25-IL2, do not have the same concentration. Instead of considering 

the surface proteins concentration, we consider that the T-cells start proliferation at a certain 

concentration of CD25-IL2i protein. The divided T-cells then follow the same process of 

activation. In short, in this chapter, we study the reaction rate of six proteins and the activation 

rate of T-cells before and after proliferation. The population densities of T-cells with and without 

proliferation are compared. 

 Biological Structures 4.1.1

The division of T-cells needs a threshold level of internalized binding CD25-IL2i. It is considered 

here as the last signal inside an activated T-cell before the commencement of division process. 

The previous studies reveal that the T-cells start the process of division after 2 days and lasts this 

process of division for the next two to three days. Normally, the immune system do not take more 

than a week to get rid of the acute viral infection. It is important to review the proliferation 

process of T-cells with respect to their two major types, the helper CD4+ and cytotoxic CD8+ T-

cells. It is observed experimentally that the activation process of CD4+ T-cells is slower than the 

CD8+ T-cells and therefore CD4+ T-cells takes more time to start their proliferation [45]. Also, 

no cell division has been observed during the first day ( 86400s= ) by both in-vivo and in-vitro 

[45]. Normally, the CD8+ T-cells start dividing in the next couple of hours and takes 6-8 hours 

per division. On the other hand, CD4+ T-cells take more 12-24 hours to start the proliferation and 

each division needs approximately 10 hours [60], [61], [62]. The CD8+ T-cells divide 7-10 times 

during the process while very less CD4+ T-cells are showing their division seven or more times, 

[45], [63], [64]. 
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During the proliferation, many intrinsic differences between the CD4+ and CD8+ T-cells have 

been noted at the population level. But there are still some holes that need to be filled up in order 

to model the activation process after proliferation. For example, at single T-cell level, the division 

of T-cells is asymmetric, [65], [66]. It means that the asymmetric division distributes the proteins 

unequally (CD3, CD25 and CD25-IL2) between the two daughter cells after division. It is 

possible that the proteins are randomly distributed between the daughter cells.  

 

Another ambiguity is that how many number of T-cells going to repeat the process of activation 

after proliferation? In order to analyze the proliferation according to the experimental observation 

and hypothetical slants, we make some hypotheses which may help us to model the problem in a 

better way. This would help us to understand the subsequent stimulation and proliferation effects 

on the magnitude of the response. Furthermore, it can help us to choose a better model which can 

be validated against experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Division of a single parent T-cell after the getting fully activated. 
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flow of population density n(c,t) in terms of the associated surface protein concentration c. In this 

figure, the associated proteins can be CD25 or CD25-IL2 as they increase their concentration 

with the passage of time on the surface of T-cell. For the CD3 protein concentration, the 

discontinuity of the dashed line will move towards the left hand side, instead of right hand side, 

because the concentration is decreasing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 4.6, the first category of ‘no proliferation’ is same as discussed in the Chapter 3 with 

prolongation of time. The second category is the combination of the population density for 

daughter T-cells and the population density of those activated T-cells which continued the first 

Single T-cell dynamics 
CD3, CD3i, CD25, IL2, CD25-IL2 and 

CD25-IL2i 

Population dynamic of T-cells 
CD3, CD25, CD25-IL2 and CD25-IL2i 

 

Hypothesis 1 Hypothesis 2 Hypothesis 3 

Results 
 

Without Crossing Crossing 

Figure 4.7: Results for the activation of T-cells after proliferation. 
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The simulation is done for the next 100,000s . Afterwards, the daughter cells can repeat the 

process of activation since the CD25-IL2i protien concentration reaches the threshold again. IL-2 

protein continues to increase as it is a global protein that is shared by all T-cells. But its 

concentration does also affect due to those T-cells that are in the process of division and they are 

not producing IL-2 protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Graphical representation of protein dynamics at single T-cell level that are activating at succeeding activation times. 
The threshold level at which the division start is  that is almost t=100,000 s. The daughter cells start activating after 

t =150,000 s. The kinetic constants are given the following values: 
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Population Dynamics 

The population dynamics for the surface proteins concentration and the internalized protein 

concentration CD25-IL2i are investigated subject to their reaction rates and activation rates. All 

the results have been found by using our methods TM and MTM that are compared with the 

solutions found by without proliferation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The population density of T-cells for the CD3, CD25 and CD25-IL2 proteins are found in the 

Figure 4.15, Figure 4.16 and Figure 4.17. We observe the similar difference among the 

population densities of T-cells without and with proliferation as we observed in the previous 

section, i.e. Without Crossing. 

Figure 4.14: Population density of T-cells with CD25-IL2i internalized protein. The threshold level at which the division starts is 
 mol.m-3 and the time is after almost a day (t =100,000 s). The daughter cells start activating after t =150,000 s. 
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Figure 4.18: Population density of T-cells for CD3 protein. The threshold level at which the division starts is  mol.m-3 
and the time is almost a day (t =100,000 s). The daughter cells start activating after t =150,000 s. 
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Figure 4.19: Population density of T-cells for CD25 protein. The threshold level at which the division starts is  mol.m-3 
and the time is almost a day (t =100,000 s). The daughter cells start activating after t =150,000 s. 
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 Crossing II)

The protein dynamics for this section can be followed from the Figure 4.13. Also the population 

dynamics of T-cells for the internalized protein (CD25-IL2i) concentration can be viewed by the 

Figure 4.14. The population densities for the surface proteins are investigated with and without 

Figure 4.20: Population density of T-cells for CD25-IL2 protein. The threshold level at which the division starts is  
mol.m-3 and the time is almost a day (t =100,000 s). The daughter cells start activating after t =150,000 s. 
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proliferation. The solution is analyzed at four distinct parametric pairs for distribution of daughter 

T-cells over time as shown in the Figure 4.21, Figure 4.22 and Figure 4.23.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We observe the similar phenomena as defined in the above section of Without Crossing but now 

the reaction rate is fast and therefore we have crossing in the solution curves as we discussed in 

Figure 4.21: Population density of T-cells for CD3 protein. The threshold level at which the division starts is  
mol.m-3 and the time is almost a day (t =100,000 s). The daughter cells start activating after t =150,000 s. 
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the Figure 4.13. The discontinuity rear in CD3 and discontinuity front in CD25 and CD25-IL2 

move in the directions described in the Figure 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One can observe in the Figure 4.21, the simulation time taken is t=175,000s while in the Figure 

4.22 and Figure 4.23 the simulation time taken is t=155,000s in order to observe a discontinuity 

Figure 4.22: Population density of T-cells for CD25 protein. The threshold level at which the division starts is  
mol.m-3 and the time is almost a day (t =100,000 s). The daughter cells start activating after t =150,000 s. 
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front and the overlapping between ‘no-proliferation’ and ‘proliferation’. The time variation is due 

to the parametric change in the reaction rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: Population density of T-cells for CD25-IL2 protein. The threshold level at which the division starts is  
mol.m-3 and the time is almost a day (t =100,000 s). The daughter cells start activating after t =150,000 s. 
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This dissertation has addressed the mathematical modeling and simulation of the activation 

process of T-cells by using the population balance models and the concepts of differential 

geometry. This work has two primary focuses: the Single T-cell dynamics and the population 

dynamics of T-cells. Each of the subjects was focused on the activation process before and after 

the proliferation of T-cells. In this chapter, we briefly state these primary focuses and outline the 

extension of this work in the near future. 

 

The single T-cell dynamics was discussed in Chapter 2 under four levels of complexities (four 

cases). Each case has dealt with the set of concentration of proteins which were depending upon 

each other and the variation in the concentration was represented by the set of ODEs. The 

simulation initiated when the T-cell started the process of activation and after each time step, a 

new type of T-cell followed the same phenomena. The exact solutions were found whenever 

possible while two numerical schemes, the Euler method and the Runge-Kutta Method of order 4, 

were also used to find the solutions of the system of ODEs. Moreover, the solutions were also 

presented in three dimensions in which activation time was introduced as the third dimension. 

The activation time was considered as the initial time of each type of T-cell at which the T-cell 

triggers its process of activation. The three-dimensional presentation has simplified the 

phenomena of intracellular dynamics of T-cells particularly the crossing problem in Section 2.6. 

 

First case was based upon one protein analysis and examined the phenomena of the 

internalization of CD3 protein. This was the simplest model that made the basis for the next cases 

by investigating the 3D plots and its projection on the 2D plots. The CD3 protein dynamics has 

shown us the same behavior as observed in the literature [3] , [13], [15]. It has also given us an 

idea to extend our work towards new horizons like the reappearance of CD3 protein, Section 2.4, 

and the production of other proteins during the T-cells activation before proliferation.  

 

In the second case, we discussed two models where 2nd model is the refinement of the 1st model. 

In both cases, the phenomenon of internalization of CD3 protein was followed from the first case 

which has given us a decrease on the surface concentration. Consequently it increased the 

concentration of CD3i protein inside the T-cell. The main reason of investigating this case was to 

model and analyze the concept of reappearance of the CD3 protein on the surface of T-cells 
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outside CD3 synapse. This made an increase in the concentration of CD3 protein on the surface 

and the reappeared protein is represented by CD3* protein. The commonality between these two 

models was the crossing of the curves due to the decrease in the concentration followed by an 

increase. However the first model didn’t address the surface bound of T-cells while the second 

model was specifically introduced in order to overcome the deficiency of the first model, i.e. the 

concentration of CD3* protein (reappeared protein) was bounded by the limited capacity of the 

surface area. 

 

The next two cases, i.e. Case 3 and Case 4, have investigated the multi-protein dynamics. There 

are hundreds of proteins involved in the real activation process. However it was possible to 

reduce the number of proteins and focus on only those proteins that were interlinked to each 

other. This has made the problem less difficult and more understandable. The Case 3 and Case 4 

have sufficiently exposed the complexity of a single T-cell dynamics by presenting the 

dependency of proteins on each other. Moreover the 3D visualization of the conspicuous surface 

proteins concentration, CD25 and CD25-IL2, has given their geometrical interpretation that is 

helpful to anticipate their distribution on the total population of T-cells.  

 

The exact solution of this system of ODEs was not possible; therefore, Runge-Kutta method of 

order 4 method has been used to find out their numerical results. For both cases, the choses 

parameters are taken from the literature. They have made the only difference of slowing and 

fastening the reaction rate in order to have the same complex system without crossing of curves 

and with crossing of curves phenomena. The Case 3 and Case 4 were further studied in Chapter 4 

that has followed the same behavior after division of T-cell because the division process does not 

affect the dynamical changes at the intracellular level. 

 

The above discussed four cases for the single T-cell dynamics have originated the following 

innovative ideas: 

1. The non-monotonic behaviors of intracellular components depend upon each other. 

2. The crossing of curves having a shift in time but the slope is same. 

3. The crossing of curves having a shift in time and follows its own trajectory. 

4. The validation of Runge-Kutta method for the system of differential equations. 
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Despite the study of non-monotonicity, the realistic behavior of protein dynamics can be much 

complex as the concentration of surface proteins can fluctuate more than once that makes the 

problem more complicated. However, the given algorithm of RK-Method is flexible enough to 

adapt itself for finding the solutions of such cases, e.g. the sinusoidal behavior of proteins. 

Moreover, delays in the production of proteins can be added that are produced after the 

internalization of CD3 protein. The reason is, realistically, the production of CD25 protein does 

not start unless T-cell gets the threshold of CD3 internalization. However, for long simulation 

times, this phenomenon could have a minimum effect on the activation process of T-cell. 

 

Chapter 3 and Chapter 4 focused on the population dynamics of T-cells and investigated the 

activation process before and after proliferation. The Chapter 3 was divided into four levels of 

complexities, named as four cases, which were followed from the Chapter 2, respectively, 

whereas the Chapter 4 has investigated the activation process of T-cells before and after division 

for Case 3 and Case 4 only. 

 

Several numerical techniques have been used to validate the results in Chapter 3. A new efficient 

approximate technique has been introduced by geometrical study of hyperbolic conservation law 

known as the Transport Method (TM). This technique is based on the simple concept of 

differential geometry. The three other methods used to compare the results include the Method of 

Characteristics (MOC), Upwind Finite Volume Method (Upwind) and the Lax-Wendroff Finite 

Difference Method (LWF). 

 

In the Chapter 3, each case has been investigated in order to anticipate the behavior of initial 

population density of T-cells over the range of concentration of surface proteins. For this 

purpose, the population balance modeling (PBMs) was introduced as the modeling technique that 

was based on two dynamical processes. The model is represented by the population balance 

equation (PBE) which has provided us the mathematical notations for these processes. First 

process is termed as activation term (assimilated as nucleation in chemical engineering) while the 

second process is termed as reaction term (assimilated as growth term in chemical engineering). 

Therefore, in this study, the general PBE became the 1st order inhomogeneous hyperbolic partial 

differential equation with a source term. 



Δ
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First hypothesis addressed the simplest way to describe the population dynamics of T-cells after 

proliferation. The initial population of daughter T-cells after proliferation was considered as 

activated after proliferation. All the initial population of daughter T-cells originated from the 

same type of parent T-cells was assumed to start the activation process at once (at the same 

activation time) after proliferation. The distribution of initial population of daughter T-cells over 

concentration is also defined in this hypothesis as the 2nd proposition. 

 

The second hypothesis dealt with the distribution of daughter T-cells over the activation time 

after proliferation. This hypothesis also talked about the distribution of initial population of 

daughter T-cells over concentration of proteins. Therefore, the population is distributed over time 

as well as over concentration which made this hypothesis more realistic. However, after 

proliferation, the initial population of daughter T-cells was considered activated as in the first 

hypothesis. 

 

In the first and second hypotheses, the daughter T-cells are considered activated after 

proliferation. Due to this reason they are treated separately as the activated population of T-cells. 

The third hypothesis proposed another way to deal with the activation process of T-cells after 

proliferation. In this hypothesis, the daughter T-cells were considered as non-activated and 

therefore, the discrimination between the activated and non-activated initial population of T-cells 

was abolished. 

 

The TM has been used to study without crossing problems in Chapter 4 while the MTM was used 

to find the population density of T-cells with crossing problem. However, the population balance 

modeling can be applied to without crossing problems. Also the PBM can be extended from 

dirac-delta concentration distribution to continuous concentration distribution of the activation 

term, as given in Eq. (3.5).  

 

This study has given an innovative approach to PBM by introducing non-monotonic behavior of 

concentration curves and the interdependent of proteins on each other. However the Transport 

Method has shown a very nice commitment to the whole study and overcame the deficiency of 

PBE at certain cases. Now it is a challenge to extend the PBM to the problem of crossings. 
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