Population balances for particulate processes???a volume approach, Chemical Engineering Science, vol.57, issue.12, pp.12-2287, 2002. ,
DOI : 10.1016/S0009-2509(02)00118-5
Population Balances: Theory and Applications to Particulate Systems in Engineering, 2000. ,
Mathematical Modeling of T-Cell Activation Kinetic, Journal of Computational Biology, vol.15, issue.1, pp.105-128, 2008. ,
DOI : 10.1089/cmb.2007.0125
URL : https://hal.archives-ouvertes.fr/emse-00449722
Population Balances in Biomedical Engineering, 2005. ,
Stochastic population balance modeling of influenza virus replication in vaccine production processes, Chemical Engineering Science, vol.63, issue.1, pp.157-169, 2008. ,
DOI : 10.1016/j.ces.2007.09.014
Kienle, « Stochastic population balance modeling of influenza virus replication in vaccine production processes. II. Detailed description of the replication mechanism, Chem. Eng. Sci, vol.63, issue.8, 2008. ,
« Modélisation mathématique de la réponse lymphocytaire T spécifique à une infection virale, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2006. ,
CD4 Dependence of Activation Threshold and TCR Signalling in Mouse T Lymphocytes, Scandinavian Journal of Immunology, vol.45, issue.2, pp.166-174, 1997. ,
DOI : 10.1046/j.1365-3083.1997.d01-388.x
Critical Role for CD8 in Binding of MHC Tetramers to TCR: CD8 Antibodies Block Specific Binding of Human Tumor- Specific MHC-Peptide Tetramers to TCR, The Journal of Immunology, vol.167, issue.1, pp.270-276, 2001. ,
DOI : 10.4049/jimmunol.167.1.270
Organization of proximal signal initiation at the TCR:CD3 complex, Immunological Reviews, vol.3, issue.1, pp.7-21, 2009. ,
DOI : 10.1111/j.1600-065X.2009.00843.x
Degradation of ???T Cell Receptor (TCR)???CD3-?? Complexes after Antigenic Stimulation, The Journal of Experimental Medicine, vol.262, issue.10, pp.1859-1864, 1997. ,
DOI : 10.1084/jem.184.2.777
A kinetic differentiation model for the action of altered TCR ligands, Immunology Today, vol.20, issue.1, pp.33-39, 1999. ,
DOI : 10.1016/S0167-5699(98)01379-6
Variability of CD3 membrane expression and T cell activation capacity, Cytometry Part B: Clinical Cytometry, vol.24, issue.2, pp.105-114, 2010. ,
DOI : 10.1002/cyto.b.20496
URL : https://hal.archives-ouvertes.fr/hal-00471266
Serial Triggering Model, Serial triggering model, pp.95-102, 2008. ,
DOI : 10.1007/978-0-387-09789-3_9
Expression and release of IL-2 receptor and production of IL-2 by activated T lymphocyte subsets, J. Clin. Lab. Immunol, vol.36, issue.1, pp.27-32, 1991. ,
Surface and Intracellular Interleukin-2 Receptor Expression on Various Resting and Activated Populations Involved in Cell-Mediated Immunity in Human Peripheral Blood, Scandinavian Journal of Immunology, vol.51, issue.1, pp.67-72, 2000. ,
DOI : 10.1046/j.1365-3083.2000.00644.x
The half-life of the T-cell receptor/peptide?major histocompatibility complex interaction can modulate T-cell activation in response to bacterial challenge, Immunology, vol.173, issue.2, pp.227-237, 2007. ,
DOI : 10.1074/jbc.M201613200
Differential signalling by variant ligands of the T cell receptor and the kinetic model of T cell activation, Life Sciences, vol.64, issue.9, pp.717-731, 1999. ,
DOI : 10.1016/S0024-3205(98)00381-6
Analysis of Hepatitis C Virus Decline during Treatment with the Protease Inhibitor Danoprevir Using a Multiscale Model, PLoS Computational Biology, vol.56, issue.3, p.1002959, 2013. ,
DOI : 10.1371/journal.pcbi.1002959.s001
A hypothetical mathematical construct explaining the mechanism of biological amplification in an experimental model utilizing picoTesla (PT) electromagnetic fields, Medical Hypotheses, vol.60, issue.6, pp.821-839, 2003. ,
DOI : 10.1016/S0306-9877(03)00011-2
Mathematically modeling dynamics of T cell responses: Predictions concerning the generation of memory cells, Journal of Theoretical Biology, vol.245, issue.4, pp.669-676, 2007. ,
DOI : 10.1016/j.jtbi.2006.10.017
Population balance modeling. Promise for the future, Chemical Engineering Science, vol.57, issue.4, pp.595-606, 2002. ,
DOI : 10.1016/S0009-2509(01)00386-4
Theory of particulate processes: analysis and techniques of continuous crystallization, 1988. ,
Boudouvis, « A novel free boundary algorithm for the solution of cell population balance models, Chem. Eng. Sci, vol.64, pp.20-4247, 2009. ,
Cell population balance, ensemble and continuum modeling frameworks: Conditional equivalence and hybrid approaches, Chemical Engineering Science, vol.65, issue.2, pp.1008-1015, 2010. ,
DOI : 10.1016/j.ces.2009.09.054
URL : http://discovery.ucl.ac.uk/1356192/1/Stamatakis_-_Chem_Eng_Sci_2010_-_Cell_population_balance,_ensemble_and_continuum_modeling_frameworks.pdf
Guillain???Barr?? Syndrome and Influenza Virus Infection, Clinical Infectious Diseases, vol.48, issue.1, pp.48-56, 2009. ,
DOI : 10.1086/594124
Antigen Presenting Cells: From Mechanisms to Drug Development, 2006. ,
DOI : 10.1002/3527607021
The T Cell Receptor FactsBook, 2001. ,
T-cell development and the CD4???CD8 lineage decision, Nature Reviews Immunology, vol.1, issue.5, pp.309-322, 2002. ,
DOI : 10.1126/science.286.5443.1374
« Helper T Cells and Lymphocyte Activation, Disponible sur, pp.15-2013, 2002. ,
« Feedback control of intercellular signalling in development, Nature, vol.408, issue.6810, pp.313-319, 2000. ,
DOI : 10.1038/35042500
MHC-dependent antigen processing and peptide presentation: Providing ligands for T lymphocyte activation, Cell, vol.76, issue.2, pp.287-299, 1994. ,
DOI : 10.1016/0092-8674(94)90336-0
The Yeast Nuclear Pore Complex, The Journal of Cell Biology, vol.17, issue.4, pp.635-651, 2000. ,
DOI : 10.1016/S1097-2765(00)80023-4
The Fluid Mosaic Model of the Structure of Cell Membranes, Science, vol.175, issue.4023, pp.720-731, 1972. ,
DOI : 10.1126/science.175.4023.720
TCR dynamics on the surface of living T cells, TCR dynamics on the surface of living T cells, pp.1525-1532, 2001. ,
DOI : 10.1093/intimm/13.12.1525
Interleukin-2 Signal Transduction: A Diffusion-Kinetics Model, 1993. ,
Epidemics control and logistics operations: A review, International Journal of Production Economics, vol.139, issue.2, pp.393-410 ,
DOI : 10.1016/j.ijpe.2012.05.023
Deterministic Modeling Of Infectious Diseases: Theory And Methods », Internet J. Infect. Dis, vol.1, issue.2, 2001. ,
Analysis of a stochastic SIR epidemic on a random network incorporating household structure, Mathematical Biosciences, vol.224, issue.2, pp.53-73, 2010. ,
DOI : 10.1016/j.mbs.2009.12.003
The Mathematics of Infectious Diseases, The Mathematics of Infectious Diseases, pp.599-653, 2000. ,
DOI : 10.1137/S0036144500371907
« The Role of Mathematical Modeling in Public Health Planning and Decision Making, p.2010 ,
Mathematical model of the primary CD8 T cell immune response: stability analysis of a nonlinear age-structured system, Journal of Mathematical Biology, vol.12, issue.22, pp.263-291, 2012. ,
DOI : 10.1007/s00285-011-0459-8
URL : https://hal.archives-ouvertes.fr/hal-00649219
VACCINES: EFFECTOR AND MEMORY T-CELL DIFFERENTIATION: IMPLICATIONS FOR VACCINE DEVELOPMENT, Nature Reviews Immunology, vol.166, issue.4, pp.251-262, 2002. ,
DOI : 10.1046/j.1365-2249.2001.01600.x
On the stochastic simulation of particulate systems, Chemical Engineering Science, vol.60, issue.10, pp.2627-2641, 2005. ,
DOI : 10.1016/j.ces.2004.05.038
Seidel-Morgenstern, « A comparative study of high resolution schemes for solving population balances in crystallization, Comput. Chem. Eng, vol.30, pp.6-7, 2006. ,
High Resolution Finite Volume Schemes for Solving Multivariable Biological Cell Population Balance Models, Industrial & Engineering Chemistry Research, vol.52, issue.11, pp.4323-4341, 2013. ,
DOI : 10.1021/ie302253m
« A robust upwind discretization method for advection, diffusion and source terms ». [En ligne] Disponible sur: http://www.tue.nl, Consulté le, pp.1-2013, 272984. ,
Finite Volume Methods for Hyperbolic Problems, 2002. ,
DOI : 10.1017/CBO9780511791253
Analysis of Serial Engagement and Peptide-MHC Transport in T Cell Receptor Microclusters, Biophysical Journal, vol.94, issue.9, pp.3447-3460, 2008. ,
DOI : 10.1529/biophysj.107.116897
CD8+ T Cell Activation Is Governed by TCR-Peptide/MHC Affinity, Not Dissociation Rate, The Journal of Immunology, vol.179, issue.5, pp.2952-2960, 2007. ,
DOI : 10.4049/jimmunol.179.5.2952
Kinetic proofreading in T-cell receptor signal transduction., Proceedings of the National Academy of Sciences, vol.92, issue.11, pp.5042-5046, 1995. ,
DOI : 10.1073/pnas.92.11.5042
On the Dynamics of TCR:CD3 Complex Cell Surface Expression and Downmodulation, Immunity, vol.13, issue.5, pp.665-675, 2000. ,
DOI : 10.1016/S1074-7613(00)00066-2
Mathematical Modeling for the Activation of T- Lymphocytes: Population Balance Modeling with Non Conventional Growth Law, pp.2012-662 ,
URL : https://hal.archives-ouvertes.fr/hal-00721905
The quantal theory of immunity, Cell Research, vol.172, issue.1, pp.11-19, 2006. ,
DOI : 10.1038/ni1263
An Introduction to the Method of Characteristics, 1966. ,
Handbook of Linear Partial Differential Equations for Engineers and Scientists, 1 re éd, 2001. ,
Cutting Edge: Antigen-Independent CD8 T Cell Proliferation, The Journal of Immunology, vol.166, issue.10, pp.5864-5868, 2001. ,
DOI : 10.4049/jimmunol.166.10.5864
« Memory CD8+ T-cell differentiation: initial antigen encounter triggers a developmental program in naive cells, Nat. Immunol, vol.2, pp.415-422, 2001. ,
Early Programming of T Cell Populations Responding to Bacterial Infection, The Journal of Immunology, vol.165, issue.12, pp.6833-6839, 2000. ,
DOI : 10.4049/jimmunol.165.12.6833
Cutting Edge: CD4 and CD8 T Cells Are Intrinsically Different in Their Proliferative Responses, Cutting Edge: CD4 and CD8 T Cells Are Intrinsically Different in Their Proliferative Responses, pp.1528-1532, 2002. ,
DOI : 10.4049/jimmunol.168.4.1528
Asymmetric T Lymphocyte Division in the Initiation of Adaptive Immune Responses, Science, vol.315, issue.5819, pp.1687-1691, 2007. ,
DOI : 10.1126/science.1139393