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j’ai passé de bons moments : Laurent Rodriguez, Rodrigue Imad, Babar Aziz,
David Gorisse, Thomas Lefebvre, Leı̈la Meziou, Mathilde Brandon.

iii



iv
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Short abstract

English version

This thesis addresses the problem of inference in factor graphs, especially
LDPC codes, almost solved by message-passing algorithms. The Belief Prop-
agation algorithm (BP) is extensively investigated as a particular message-
passing algorithm and it is demonstrated to be equivalent to Bethe approxima-
tion in statistical physics of spin glasses. We raise the issue about its subotpi-
mality when applied to factor graphs with loop-like topologies. Afterwards is
detailed the Generalized Belief Propagation (GBP), another message-passing
algorithm established according to a generalization of the Bethe approxima-
tion, specifically the region-based approximation. Based on an non-unique
clustering of factor graph, it is experimentally shown that GBP can signif-
icantly outperform BP when the clustering deals with harmful topological
structures, particularly trapping sets, that prevent BP from rightly decoding.
We do not only confront BP and GBP performance using the bit-error rate
but also with respect to their dynamical behaviors for non-trivial error events.
Using original dynamical quantifiers, it is shown that GBP can overcome BP
in terms of accuracy and convergence.

Version française

Dans cette thèse, nous étudions le problème de l’inférence bayésienne dans
les graphes factoriels, en particulier les codes LDPC, quasiment résolus par
les algorithmes de message-passing. Nous réalisons en particulier une étude
approfondie du Belief Propagation (BP), un algorithme de message-passing
dont nous démontrons l’équivalence avec l’approximation de Bethe utilisée
pour étudier les verres de spins en physique statistique. La question de la
sous-optimalité est soulevée dans le cas où le graphe factoriel présente des
boucles. Ensuite est détaillé le Generalized Belief Propagation (GBP), un
autre algorithme de message-passing élaboré à partir d’une généralisation
de l’approximation de Bethe, l’approximation basée régions. Fondé sur un
découpage en clusters du graphe factoriel, nous montrons par des expériences
que le GBP peut être significativement plus performant que le BP dans les
cas où le découpage donne naissance à des clusters très liés au structures
topologiques, en particulier les trapping sets, qui empêchent le BP de bien
décoder. Nous ne confrontons pas les performances des deux algorithmes
uniquement par rapport à leurs taux d’erreur binaire mais aussi par rapport
à leurs comportements dynamiques face à des événements d’erreur non trivi-
aux. En utilisant des estimateurs inédits, nous montrons que l’algorithme du
GBP peut dominer celui du BP en termes de précision et de convergence.
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Résumé

Dans cette thèse, nous nous attaquons aux problèmes liés à l’inférence statis-
tique, en particulier l’approximation des distributions marginales sur les noeuds
d’un graphe factoriel à boucles. L’algorithme type message-passing du Be-
lief Propagation (BP) créé par Pearl en 1988 ne parvient pas à approcher ces
grandeurs de manière optimale, malgré de très bonnes performances. En
effet, dans le cas des codes LDPC, le décodage par le BP présente des os-
cillations voire des comportements non classiques, comme du chaos. Après
avoir présenté le fonctionnement de cet algorithme, nous montrons qu’il est
équivalent à l’approximation de Bethe utilisée en physique statistique comme
une approche de champ moyen pour estimer la fonction de partition des ver-
res de spins par une minimisation de l’énergie libre variationnelle.

Les problèmes d’oscillations dans les graphes factoriels, dits aussi de frus-
tration pour les verres de spins, peuvent être résolus grâce à l’approximation
basée régions qui consiste à créer un réseau bayésien associé, appelé graphe
des régions, dont les noeuds, ou régions, sont des regroupements des noeuds
qui composent le graphe factoriel. Par ce moyen, il est attendu que la précision
de l’approximation soit meilleure que celle donnée par l’approximation de
Bethe. Par la même équivalence qui lie cette dernière au BP, nous démontrons
que l’approximation basée régions peut être traduite comme un algorithme
de message-passing appelé Generalized Belief Propagation (GBP). Les per-
formances de décodage du GBP peuvent s’avérer meilleures que celles du
BP pourvu que le découpage en clusters ayant donné naissance au graphe
des régions, soit bien réalisé. En effet, aucun critère de choix permettant de
justifier de l’utilisation d’un graphe des régions ou d’un autre n’a émergé
jusque-là. Après avoir détaillé les équations de mise à jour du GBP, nous
détaillons la construction du graphe des régions et nous insistons sur le fait
que, conformément à son existence, il doit gérer les structures topologiques du
graphe factoriel qui posent le plus de problèmes. Dans le cadre du décodage
des codes LDPC, modélisables graphiquement par un graphe dit de Tanner,
de telles structures ont été répertoriées dans la littérature. Il s’agit des trap-
ping sets. Responsables de la dégradation du taux d’erreur binaire à très
forts rapports signal-à-bruit (RSB), nous utilisons en conséquence ces struc-
tures pour réaliser un découpage original et pertinent du graphe de Tanner.
Nous précisons que le GBP étant un algorithme naturellement très instable,
nous introduisons un amortissement dans toutes nos simulations dont la loi
d’évolution force l’algorithme à converger.
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Par des résultats expérimentaux sur un code LDPC particulier entièrement
couvert par des trapping sets, nous montrons que le GBP muni d’un amor-
tissement a de meilleures performances que le BP pour de très forts RSB.

La comparaison du BP et du GBP pour des RSB moyens en termes de taux
d’erreur binaire n’est pas concluante, les deux algorithmes étant équivalents.
Nous utilisons donc les outils de la théorie des systèmes dynamiques pour
tenter de les départager. Le champ de recherche lié à l’étude de la dynamique
des décodeurs itératifs pour les codes LDPC est récente, par conséquent la
littérature à ce sujet n’est pas très fournie. Les articles publiés sur la dy-
namique du BP traitent de l’utilisation des fonctions classiques liées aux systèmes
chaotiques: le diagramme de bifurcation pour obtenir les RSB correspondant
à de brusques changements de comportement et l’exposant de Lyapunov pour
juger de la stabilité, i.e. de la sensibilité aux conditions initiales. Le GBP n’a
en revanche jamais été traité de ce point de vue, faisant de notre étude un
cas nouveau. A l’aide de ces fonctions mais également d’outils nouveaux que
nous introduisons, nous réalisons une étude expérimentale afin de connaı̂tre
les types d’attracteurs auxquels sont soumis le BP et le GBP ainsi que leur rela-
tion sur leurs performances de décodage. Il apparaı̂t que les deux décodeurs
ont tous deux des comportements typiques similaires: convergence vers un
point fixe, attraction vers un cycle limite, attraction vers un attracteur chao-
tique. Cependant, les propriétés de ces attracteurs nous permettent d’affirmer
que le GBP a une tendance plus prononcée que le BP à converger vers un bon
décodage.

Résultats principaux et contributions:

• utilisation des trapping sets pour la construction du graphe des régions,

• introduction d’un coefficient d’amortissement,

• mise en place d’une méthode pour l’étude des décodeurs à très forts
RSB,

• étude de la dynamique du GBP,

• introduction d’outils originaux pour la description de la dynamique des
décodeurs en lien avec leurs performances de décodage.

Cette thèse est également un travail original au sens où elle est à la croisée
entre divers champs de recherche: les codes correcteurs d’erreurs, la physique
statistique, l’inférence statistique, l’optimisation lagrangienne et la théorie des
sytèmes dynamiques. C’est pourquoi la première partie du manuscrit est
dédiée à une revue détaillée des méthodes et outils issus de ces champs de
recherche, tandis que la seconde partie traite de l’explication détaillée des
deux algorithmes BP et GBP ainsi que de leur étude d’un point de vue dy-
namique.

Mots-clés : graphe factoriel, codes LDPC, énergie libre variationnelle, approx-
imation basée régions, trapping sets, chaos.



Abstract

In this thesis, we tackle statistical inference on loopy factor graphs to approx-
imate marginal probability distributions on nodes. In 1988, Pearl introduced
a message-passing algorithm, called the Belief Propagation algorithm (BP), to
solve this problem, but in spite of very good performance, BP did not offer
optimal approximations. As a matter of fact, when applied on LDPC codes
decoding, BP may present oscillations or even chaotic behaviors. Following
the presentation of BP equations, we show that it is equivalent to Bethe ap-
proximation, used in statistical physics as a mean field approach, to estimate
partition function of spin glasses by minimizing the variational free energy.

Oscillations of factor graphs, also called frustrations for spin glasses, may
be solved by region-based approximation. It consists in creating an associated
Bayesian network, called region-graph, which nodes, or regions, are gathering
of factor graph nodes. This way, accuracy of this new approximation is hoped
to be better than Bethe approximation’s. According to equivalence between
Bethe approximation and BP, we demonstrate that region-based approxima-
tion may be derived as a message-passing algorithm, called Generalized Belief
Propagation (GBP). GBP decoding performance may be better than BP’s pro-
vided that the clustering used to gather factor graph nodes is well suited. In
fact, no choice criterion has been introduced to discriminate between all pos-
sible clusterings. After demonstrating GBP update equations, we present in
detail the region-graph construction, and we emphasize that, in accordance
with its origin, it has to deal with harmful topological structures of factor
graph. LDPC codes, represented by particular factor graphs called Tanner
graphs, present such structures, that have been published in the literature,
called trapping sets. They are responsible for degradation of the Bit-Error
Rate (BER) for high values of the Signal-to-Noise Ratio (SNR). We accordingly
use these structures to cluster, in an original and relevant way, Tanner graphs.
We specify that the GBP algorithm is naturally instable, which makes us in-
troduce damping factors, of various evolutions, that help decoder converge.
We show with experimental results on a specific LDPC code, entirely covered
with trapping sets, that a dedicated construction coupled with a damped GBP
offer better performance than BP for high SNR values.
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Comparing BP and GBP for middle SNR values only using BER is not
conclusive as both decoders exhibit equivalent results. Tools of dynamical
systems theory open opportunities to distinguish them. Research area on dy-
namics of iterative LDPC decoders has been recently introduced making the
literature on this topic not very abundant. Published papers on BP dynamics
deal with usual functions that describe chaotic systems: bifurcation diagram
offers SNR values where the decoder abruptly changes its behavior, Lyapunov
exponent informs about BP stability, i.e. sensitivity to initial conditions. GBP
has never been studied from this point of view, making this work innovative.
By means of usual functions but also of new tools, we carry out an experi-
mental investigation to bring out BP and GBP attractors and their links with
decoding performance. Both algorithms similarly behave as they present close
attractors for same SNR values: fixed point, limit cycle, chaos. However, at-
tractors properties allow us to affirm that GBP tends to converge to correct
decoding better than BP.

Main results and contributions:

• use of trapping sets construct region-graphs,

• introduction of a general damping factor for GBP,

• development of an experimental protocol to study decoders for high
SNR values,

• study of GBP dynamics,

• introduction of innovative tools to describe decoders dynamics and to
link them to their decoding performance.

The originality of this thesis remains in the fact that is is at the crossroads
of several research areas: error-correcting codes theory, statistical physics,
statistical inference, Lagrange optimization and dynamical systems theory.
Therefore, first part of the manuscript is dedicated to reviews on methods
and tools from most of these fields, and second part deals with foundations
of the BP and GBP algorithms as well as the study of their dynamics.

Keywords : factor graph, LDPC codes, variational free energy, region-based
approximation, trapping sets, chaos.
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Introduction

History and motivations

In this thesis we expose the analysis and the developments of methods to
construct and solve graphical models. Many engineering and research prob-
lems can be formulated as a statistical inference wording, provided that they
are modeled as Bayesian networks, Markov random fields or factor graphs.
These problems mostly take part in activities about image processing, neural
networks, spin glasses, error-correcting codes, etc. All of them are aimed at
extracting either the joint probability distribution of their graphical model or
the marginal distributions of the variables that build the graph. This way,
it can be extracted a large number of properties that make sense for any of
the concerned research areas, that helps construct strong connections between
them.

The spin glasses are physical networks naturally represented by factor
graphs. Statistical physics has the great challenge to obtain thermodynamical
functions at equilibrium, as average energy, free energy, entropy, pressure etc.
It has been demonstrated that all these functions are analytically dependent
on a single quantity that is the partition function Z. The partition function
has its origin in the Boltzmann’s law that provides the joint distribution of
any spin glass. Indeed, Z is a constant that ensures that the Boltzmann’s
law is normalized, i.e. it has to be a true distribution. It has been proved
that computing Z consists in spanning of all possible states of the spin glass,
that represents a considerable number of computations. Partition function is
accordingly intractable, therefore it became a central topic of research in sta-
tistical physics. Physicists created original methods to approximate its value
in particular cases: Sherrington-Kirkpatric model, Edwards-Anderson model,
etc. The main method still studied nowadays is the Mean-Field (MF) ap-
proximation. The core of this method is to consider that any spin of a given
spin glass is not singularly correlated to each of its neighbors anymore but
to a mean field. The energy function, that summarizes all spins couplings,
is then modified. Boltzmann’s law assigns a probability weight to each state
of the spin glass according to its energy, therefore the MF approximation en-
tails a modification of the joint distribution. It turns out to be the product
of all marginal distributions of probability. This mean field distribution is
the basis to approximate the partition function by minimizing the mean-field
variational free energy, whose minimum is the log-partition function.
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By means of the statistical physics, the joint distribution of any graphical
model could be approximated thanks to the MF approach. In addition, the
notions of energy and entropy became familiar in other research areas. For in-
stance, researchers connected parity-check equations of error-correcting codes
to the spin glass energy function, and they succeed in relating the information
and thermodynamical entropies. Low-Density Parity-Check (LDPC) codes,
created by R. Gallager in 1963 and known to approach Shannon’s limit, were
then given a physical meaning. In the research area on error-correcting codes,
LDPC codes are one of the main topics of research. Their links with spin
glasses still spark much interest, as shown by the numerous papers published
each year on this issue. The graphical model of any LDPC code is a Tanner
graph, a specific factor graph. Edges of any factor graph are used as supports
to solve inference by the use of message-passing algorithms, e.g. the Belief
Propagation algorithm ( BP) invented by J. Pearl in 1988. This algorithm has
proved to be the best compromise between computation time and accuracy.
Beyond energy, entropy and other physical quantities that are shared with
statistical physics, it turned out that specific methods as BP are also available
in both research fields. Indeed, fixed-points of BP are strictly equivalent to sta-
tionary points of the Bethe approximation, an extension of the MF approach.
This equivalence helped researchers define BP as an iterative procedure to
minimize the Bethe variational free energy Fβ of any factor graph. In other
words, the general inference problem was demonstrated to be identical to an
optimization problem solved by the Lagrangian formalism.

At the origin, J. Pearl specified that BP was a perfect inference algorithm
for any graphical model whose topology is tree-like. In addition, it was
demonstrated in papers of T. Heskes in the 2000s that the optimization of
Fβ of any factor graph was always possible if it contains at most one loop.
Unfortunately, this remarkable work and the related results based on the con-
vexification of Fβ could not be extended to any loopy factor graph. At this
time, the challenge was to modify the BP algorithm to overcome the unde-
sired loopy effects. Several methods were proposed, e.g. the ConCave-Convex
Procedure (CCCP) from A. Yuille, but they implied a dramatic increase in
the computation time. Once again, connections with spin glasses turned out
to be conclusive. As a matter of fact, the problem of loops especially in BP
decoding of the LDPC codes was perfectly understandable as the problem
of frustration in statistical physics. Actually, not only the quantities and the
methods but also the drawbacks are shared with the statistical physics, that
helps to solve few issues. Physicists could make use of the cluster varia-
tion method or region-based approximation invented by Kikuchi in 1951 to
deal with the frustration in spin glasses. This method, also called Kikuchi
approximation after its designer, was eventually a MF approach that gener-
alized the Bethe approximation by clustering any spin glass. Rather than
factorizing the joint distribution on the single spins marginal distributions, it
is approximated by the product of estimates of the pseudo-marginal distribu-
tions, namely the beliefs, on subsets of spins, called regions. It resulted in a
new variational free energy FK, which minimization by Lagrangian formalism
provided a message-passing algorithm, fairly detailed in 2001 by J. Yedidia et
al: the Generalized Belief Propagation algorithm (GBP). The support of this
algorithm is the region-graph: a Bayesian network constituted by regions.
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The relevancy of the region-based approximation relies on the significant de-
gree of freedom to cluster any factor graph. Therefore, it appeared that the
GBP algorithm would be an efficient substitute to the BP algorithm to annihi-
late the frustration, i.e. to cancel the harmful loops effect in the decoding of
the LDPC codes.

At this point comes the main issue of the region-based approximation.
Indeed, no criterion was given by Kikuchi to discriminate the numerous clus-
terings of any factor graph. Thus, given a factor graph, no one is able to judge
the relevancy of an arbitrary construction of the region-graph. J. Yedidia et al
introduced two principles that any region-graph should fulfill to present chal-
lenging results. The first states that the energy function of the region-graph
should strictly equal the energy function of the basic factor graph. Accord-
ingly, the number of occurrences of a given spin, or node of the factor graph,
has to be identical in both energy functions. The second principle relies on
the fact that the Kikuchi approximation evaluates the entropy by a region-
based entropy, that is a linear decomposition over the regions entropies of
the region-graph. It can be shown that even in the case of a tree-like topol-
ogy, this decomposition remains an approximation. The best that can be done
is to verify that making all the beliefs uniform distributions implies that the
region-based entropy is maximum. Despite the power of this principle, it is
again intractable to check for any region-graph. Thus the only way to evaluate
the advantage of a region-graph is to run the GBP algorithm and to analyze
the corresponding results versus BP’s. This is the core of the work presented
in this thesis.

A booming topic is the study of the dynamical behaviors of the inference
algorithms, in particular in the case of the LDPC codes decoding. Few papers
emerged in the last decade to deal with the bifurcations and the chaos in the
decoding algorithms, especially the BP algorithm. Given that the dynamical
system related to the BP algorithm is a multi-dimensional space, the math-
ematical developments are very hard tasks. Therefore, the study is oriented
toward a use of numerous experiments of specific quantifiers to highlight
typical behaviors. It appears that the BP algorithm is subject to non-trivial
behaviors for particular signal-to-noise ratio range. However, the literature on
the dynamics of the LDPC decoding is not substantial, given that this research
domain is only in its early age. We demonstrate in this thesis that the study
of the dynamics of the decoders helps compare and confront them. We intro-
duce a toolbox to analyze the behaviors of the BP and the GBP. In this way,
we emphasize the power of a region-graph construction, that provides a way
to judge its relevancy for the region-based approximation.

Organization of the manuscript

The investigation we present in this manuscript lies within the areas of error-
correcting code theory, statistical physics and dynamical systems theory. From
these three fields are extracted tools and methods to develop and analyze
message-passing algorithms with an extensive focus on BP and GBP. Thus we
organize the manuscript as follows.
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Part I is dedicated to the introducing the context in which the thesis be-
gan, digital communications. Brief notions on channel coding are presented
the Belief Propagation algorithm and its derivatives, together with the opti-
mization problem it is equivalent to. Then, we show preliminary results on
the performance of BP that tend to investigate its dynamical properties. This
constitutes Chap.1.

Chap.2 deals with statistical physics. We expose a few methods that are
aimed at providing the partition function, as MF approach, replica method
and cavity approach. About the latter, we accurately derive the corresponding
equations to highlight their similarity with the BP equations.

In Chap.3 are exposed the main notions concerning the dynamical sys-
tems. By the use of famous examples, such as the logistic map and the Lorenz
system, we present the classical quantifiers utilized to numerically describe
the non-trivial behaviors like chaos.

Part II deals with the detailed development of the message-passing algo-
rithms. Chap.4 contains the foundations of the BP algorithm. We introduce
the Bayesian inference on factor graphs, then is presented the Bethe approxi-
mation and the equivalence between its stationary points and the fixed-points
of the BP algorithm. We end this chapter by the open problems linked to the
loop-like topology of the Tanner graph.

In Chap.5 is presented the region-based approximation. We demonstrate
the equations of the GBP algorithm by the minimization of the region-based
free energy. After describing the introduction of a damping factor in the GBP
equations to maintain its convergence, we expose the basic construction rules
of the region-graph with few examples on small factor graphs. After that is
detailed our original constructions based on the specific topology of a selected
LDPC code, then we exhibit encouraging experimental results.

In Chap.6 is described a toolbox to investigate the dynamics of the BP and
the GBP algorithms for the LDPC codes. Presented as dynamical systems,
we define their mathematical environment and the classical quantifiers, the
bifurcation diagram and the Lyapunov exponents, among others. We then
expose original tools to relate dynamics and decoding performance of the
algorithms, allowing us to confront them.
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Introduction

In this first part, we tackle a large overview of different algorithms that are
aimed at analyzing and solving factor graphs. We describe the issue of this
work according to several research areas, given that this thesis deals with a
complex multifaceted investigation. As a matter of fact, inference problem
on graphical models represents a challenge in error-correcting codes theory,
statistical physics, Bayesian inference, nonlinear optimization and discrete dy-
namical systems theory. Each of these domains helps construct an exceptional
research field where it is crucial and equally hard to merge the corresponding
expertises. The work that we have carried out in this thesis needs an introduc-
tion in all these fields to well-understand the in-depth-study we will present.
To this end, we describe in a few pages essential notions that helps the reader
to get accustomed to these theories and the associated notations. It also allows
us to focus on open problems that we will deal with all along the manuscript.

The methods presented in this part are not original, as many articles and
theses have already dealt with their foundations and their properties. Thus,
we do not exhibit many experimental results but the main papers and their
significant contributions to the advances in the corresponding topics. In ad-
dition, we make an effort to introduce connections between different chapters
in order to make the whole presentation consistent, given that problems and
solutions emerging from any research field is not independent from the other
ones. Moreover, we attempt to tackle each theory with the same global vi-
sion to enlighten noteworthy points, useful in our work. Accordingly, we do
not describe all relevant aspects of each theory but only the ones that we will
make use of in the manuscript, that still represent a quite substantial work.

This part is organized as follows. In first chapter, we introduce the general
engineering context in which the thesis began, and the corresponding raised
issues. We take the time to present a few decoding algorithms that attempt
to solve inference on Tanner graphs. The second chapter is dedicated to an
overview of statistical physics, especially methods that help compute the par-
tition function – to some extent the free energy – of any spin glass. It includes
the main equations of the mean-field approximation and the cavity method
that both enable us to connect with the equations of iterative decoding algo-
rithms. The third chapter deals with a description of the tools and methods
that we generally need to describe any dynamical system. We explain the
main notions about chaos, stability and bifurcations by use of typical exam-
ples, like the Lorenz system and the logistic map. We also exhibit calculations
of the Lyapunov exponent that help numerically analyze chaos, which will
prove to be very helpful in the second part of the manuscript.

9
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- Chapter 1 -

Context: channel coding

§ 1.1 Introduction

In this chapter we present the engineering context and the motivations that
inspired this thesis. To this end, we first provide few basic definitions about
channel coding and Low-Density Parity-Check (LDPC) codes. Afterwards, we
focus on the main decoding algorithms derived from the Belief Propagation
(BP) that have been published in the literature. We exhibit brief results con-
cerning their relative performance. We also relate the iterative decoding with
the optimization of the free energy in statistical physics, that will help us fo-
cus on drawbacks of BP. We mention the main articles that made the research
progress. We end this chapter considering BP as a dynamical system, and
we give the main publications that have proposed first investigations on this
topic.

§ 1.2 Digital communications model

We consider a couple made with an emitter and a receiver. The emitter sends
a signal, mapped to a sequence u = [u1, . . . , uκ ] of κ bits, to the receiver. In
the case where no disturbance affects the signal the receiver would obtain
the very sequence u. However, in real life, the “space” between both users is
non-empty in the sense that many other signals are traveling inside it. These
signals interfere with the one we are working on. Furthermore, space itself
is disruptive due to its non-homogeneous constitution, therefore it is as well
a source of noise. The consequence is that the emitted signal is strongly dis-
turbed. The raised issue is then how to faithfully recover it. We call the space
between the emitter and the receiver the channel. A channel can be modeled
as a function ch(u) that maps the input sequence u to an output sequence
y = [y1, . . . , yκ ] which values depend on the nature of the channel, see Fig.1.2.

11
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u ch y

Figure 1.1: Channel

The channel is assumed to produce random noise and makes the output a
random reading. Therefore we can define a conditional probability distribu-
tion p(y|u) that is called the likelihood. We consider a memoryless channel
therefore the likelihood is factorisable as:

p(y|u) =
κ

∏
i=1

p(yi|ui) (1.1)

One of the main channels investigated in the literature are:

• the Binary Symmetric Channel (BSC) of crossover probability p. Any
input bit ui is flipped by the channel with a probability p. We represent
this channel by the diagram in Fig.1.2(a). The likelihood of the bit ui is:

p(yi = 0|ui = 0) = p(yi = 1|ui = 1) = 1− p (1.2)
p(yi = 0|ui = 1) = p(yi = 1|ui = 0) = p (1.3)

• the Additive White Gaussian Noise Channel (AWGNC) of power σ2.
Any input bit ui is disturbed by a random element ni that follows a
Gaussian law whose variance is σ2, i.e., ni ∼ N (0, σ). We represent this
channel by the diagram in Fig.1.2(b). The likelihood of any bit ui is given
by

pi(yi|ui) =
1√

2πσ2
e−

(yi−ui)
2

2σ2 (1.4)

1

0

1

0

p

1− p

(a) Binary symmetric channel

u ∈ Fκ
2

n ∼ N (0, σ)

y ∈ R+

(b) Additive white Gaussian noise channel

Figure 1.2: Two channel models

The aim of the receiver is to estimate u by a sequence û using the likelihoods
and metrics like the Hamming distance dH(u, û). Defined as the number of
bits that differ between both sequences, it is aimed at being as low as possible.



1.3. Naive estimation 13

§ 1.3 Naive estimation

The input sequence u is estimated by scanning all possible states of u and
extract the most likely one according to the a posteriori probability distribution
p(u, y). This distribution is computed according to the Bayes rule:

p(u, y) = p(y|u)p(u) (1.5)

As every word u ∈ Fκ
2 has the same probability to be sent, then û is:

û = arg max
u

p(y|u) (1.6)

The memoryless assumption allows us to reduce the search from 2κ states to
a search over two states for each bit, i.e. 2κ states. In other words, maximizing
the joint probability distribution is equivalent to maximizing each marginal
likelihood:

û = [û1, . . . , ûκ ] (1.7)
∀i ∈ {1, . . . , κ}, ûi = arg max

ui
pi(yi|ui) (1.8)

We display in Fig.1.3 the performance of this method with κ = 200. The
commonly used estimator to judge about the accuracy of any transmission is
the Bit-Error Rate (BER), i.e., the ratio between the number of wrong estimated
bits and κ.

0 2 4 6 8
10−6

10−5

10−4

10−3

10−2

10−1

SNR (dB)

BE
R

Figure 1.3: Bit-error rate of an uncoded transmission

This transmission method is not very efficient given that the BER is too far
away from Shannon’s limit. Practically we need the information to be more
robust against the channel noise to ensure a reliable transmission.
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§ 1.4 Channel coding

To improve the performance of a transmission, error-correcting codes (ECC)
are used. An ECC makes the input signal more robust against the channel
noise basically by encoding it. The encoding consists in adding redundancy bits
that the receiver uses to decode. The decoding process is aimed at correcting
errors caused by the channel. The model is presented in Fig.1.4.

u G x ch y D x̂ G−1 û

Figure 1.4: Model with an error-correcting code

Blocks G and D are respectively the encoding and the decoding procedures.
The dashed box frames the channel coding part, i.e., the part that we will
tackle in this manuscript, particularly the box D. We do not focus on the
design and the inversion of G that are part of a related but different research
area in coding theory.

1.4.1 Encoding

In this work, we investigate the linear ECC, whose encoding blocks are binary
matrices, denoted by G, that map u ∈ Fκ

2 to x ∈ FN
2 with N > κ. Each

coordinate xi is a linear combination of few elements of u. We define the
ECC, called simply the code, as the set C = Im(G), each vector of this set is
called a codeword. For example the Hamming encoding matrix [R.W50] is:

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
1 1 0 1
1 0 1 1


whose associated code is a set of 24 = 16 codewords C = {x = [x1 . . . x7]}
such that for any of these codewords:

x1 = u1

x2 = u2

x3 = u3

x4 = u4

x5 = u1 ⊕ u2 ⊕ u3

x6 = u1 ⊕ u2 ⊕ u4

x7 = u1 ⊕ u3 ⊕ u4
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with ⊕ the binary addition. We define the parity-check matrix H of a code
as Im(G) = Ker(H). The advantage of this matrix is that it maps the bits
x = [x1, . . . , xN ] that are the elements we work on in the channel coding. It
is easier to check if a vector x is a codeword by comparing H.x with 0 rather
than searching for a vector u such that x = G.u. For example the Hamming
parity-check matrix is:

H =

 1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1


thus any codeword x ∈ C verify the following equalities:

x1 ⊕ x2 ⊕ x3 ⊕ x5 = 0
x1 ⊕ x2 ⊕ x4 ⊕ x6 = 0
x1 ⊕ x3 ⊕ x4 ⊕ x7 = 0

The most famous codes are the Turbo-codes [C. 93] and the Low-Density
Parity-Check (LDPC) codes [R.G63]. The work we will present here is ori-
ented to the latter ones. Any row Hi of H applied on a vector x is a binary
sum of few elements of x:

Hi.x = xj ⊕ xk ⊕ xl ⊕ . . . (1.9)

with j, k, l, · · · ∈ {1, . . . , N}. This sum equals zero if x is a codeword, and one
otherwise. That is why the M rows of H are called parity-check equations.
In the example of the Hamming code, M is smaller than N which is actually
a common property of ECC. Indeed, using an ECC makes the number N of
bits to transmit x = [x1, . . . , xN ] larger than the number κ of original bits
u = [u1, . . . , uκ ]. Adding parity-check equations provides a strong robustness
against the channel noise, but it also dramatically reduces the information
flow. Using more parity-check equations than the number of transmission
bits is not reasonable, therefore we always consider that M < N, and most
times, κ = N −M.

1.4.2 Maximum Likelihood Decoding

Using the ECC that encoded the information, the receiver is now able to re-
cover the word x as faithfully as possible, which allows it to recover the in-
formation word u. To this end it uses a decoding algorithm. A decoding
algorithm or decoder consists in finding the codeword x̂ ∈ C that is the closest
one to the vector x, according to the Hamming distance, given the knowledge
of H and y. The Maximum Likelihood Decoder (MLD) is said to be optimal in
the sense that it offers the lowest Hamming distance. This algorithm consists
in spanning through the whole code to extract the codeword x̂ that maximizes
the likelihood:

∀x ∈ C\x̂, p(y|x) ≤ p(y|x̂) (1.10)

In Fig.1.5 is presented the performance of the MLD applied on the Hamming
code. Even though this algorithm is optimal, it involves a really large compu-
tation time given that the code contains 2κ codewords.
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Figure 1.5: Maximum likelihood decoding on the Hamming code

Furthermore, in practice the code C is not systematically available, i.e. the
receiver only has H at its disposal. In this case, it is unavoidable to scan
the 2N sequences of FN

2 to find the optimal x̂, given that N can reach very
large values. Finally this optimal decoding is not well-suited because of its
computation time.

§ 1.5 Practical decoding algorithms

Any error-correcting code has to be associated with a decoding algorithm,
also called decoder, to retrieve the information bits that were corrupted by
the channel noise. A few codes are associated with specific decoders, i.e.
algorithms that are either built especially according to their own topology,
e.g. the polar codes [E. 09], or built with dedicated algebraic rules e.g. the
Reed-Solomon codes [I.S60] and the non-binary BCH codes [A. 59],[R.C60].
As mentioned in the previous paragraph, the optimal decoder for any LDPC
code is the MLD but it has no practical interest therefore it is replaced by
iterative decoders of dramatic lower complexity.

1.5.1 Graphical representation

Any ECC that is represented by its parity-check matrix has a graphical rep-
resentation, called the Tanner graph [F.R01]. It is a bipartite graph whose
vertices are:

• variable nodes {Xi}i ◦ (one per bit),

• check nodes {ca}a � (one per parity-check equation).

To lighten notations, we denote by Xi (resp. ca) the corresponding bit and the
variable node (resp. the corresponding parity-check equation and the check
node). The value xi is said to be the state of Xi. We draw an edge eia between
nodes Xi and ca if and only if Xi is an argument of the parity-check equations
ca.
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And we say that ca (resp. Xi) is a neighbor of Xi (resp. ca), i.e., ca ∈ Ni (resp.
Xi ∈ Xa). Usually, we represent the Tanner graph in a 2-level mode, e.g. the
Tanner graph of the Hamming code represented in Fig.1.6.

X1 X2 X3 X4 X5 X6 X7

ca cb cc

Figure 1.6: 2-level Tanner graph of the Hamming code

1.5.2 Hard decoding

The decoders that were first introduced were the hard decoders, e.g. the Bit-
Flipping (BF) decoder [D. 11] and the Gallager-B (G-B) [R.G63],[S. 06].
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Figure 1.7: Tanner code (N = 155) hard decoding on a BSC of crossover probability
p

The G-B is a message-passing algorithm where each edge of the Tanner graph
carries two directed messages. A message from a variable node to a check
node is the state that this variable node should take according to all the check
nodes it is related to, except the destination. A message from a check node
to a variable node is the XOR between all the incoming messages except the
one from the destination. Actually, any message is valued in {0, 1}. The BF
appears to be the most natural algorithm, after the MLD: knowing that the aim
of an LDPC code is to obtain all its parity-check equations verified, it consists
in flipping the bits whose neighboring check nodes are mainly unsatisfied
until all the check nodes are verified.

Such an algorithm is not strictly speaking a message-passing algorithm,
but thinking that the flip of a variable node Xi results from the information
collected on its neighborhood, it could be regarded as messages transmissions.
In the case of a BSC, the BF and the G-B have the clear advantage to be very
light according to the hardware requirements, and of quite low complexity
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given that the update rules are very simple. We display in Fig.1.7(a) the nec-
essary number of iterations K′ to obtain a valid answer from both decoders,
i.e. when the estimate of any of them is either verified by all the check nodes
or identical to the estimate of the previous iteration. We observe that the G-B
turns out to be significantly faster than the BF. In Fig.1.7(a) we display the BER
of the two algorithms. We clearly conclude that the G-B is also more accurate
than the BF. As an example, for p ≈ 10−2, G-B yields a hundred times lower
error rate than BF with only four times less computing iterations.

1.5.3 Belief Propagation

Diversity of transmission channels made research being more active about
decoders given that some channels result in soft output values. Hard decoders
are not able to deal with them, e.g. AWGNC, Rayleigh channel etc. In addition,
even for hard valued channels, see results on Fig.1.7, generalizations of the G-
B worth studying in order to improve it. Extending the messages alphabet
should provides significant improvements.

Considering no hardware implementation, we can make use of an infinite
alphabet by assuming that any message from a node a to a node b in the
Tanner graph is the probability distribution of b conditioned by a. This as-
sumption makes the decoder being not a hard decoder anymore but a soft
decoder. Such a model was proposed in [Pea88] as a solution to the inference
problem on Bayesian trees and polytrees. It provides marginal probability
distributions, or marginals, of all random variables that build any tree. Ex-
tracting arguments of the maximum of all marginal distributions then results
in the most likely state. This model is the Belief Propagation (BP) that con-
stitutes the basis of many other iterative algorithms as it was pointed out in
[F.R98],[D. 95],[R.J98].

A decoder that is largely used in practical cases and that stems from BP is
the Viterbi algorithm [A. 67]. It was created for decoding convolutional codes
and Turbo-codes. It does not extract approximates of marginals but it provides
the most likely sequence of bits according to a graphical representation of
the code, the trellis, that is not a Bayesian network but a hidden Markov
chain. The Viterbi algorithm is also known as the Max-Product version of
BP closely related to dynamics programming [D.P01]. Also used to decode
Turbo-codes and convolutional codes, the BCJR decoder [F.R01], often called
Forward-Backward, focuses on the minimization of the bit-error rate whereas
the Viterbi is aimed at minimizing the word-error rate.

The Sum-Product Algorithm (SPA) [F.R01] is the name of BP written es-
pecially for factor graphs e.g. Tanner graphs of LDPC codes. Originally built
for pairwise Bayesian networks that are not bipartite graphs, we only find one
update rule. The message from the variable node Xi to the variable node Xj,
displayed on Fig.1.8, is defined as:

mij(xj) = ∑
xi

ψij(xi, xj)φi(xi, yi) ∏
Xk∈Ni\Xj

mki(xi) (1.11)
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where:

• ψij(xi, xj), the compatibility function, indicates if the values xi and xj of
the variable nodes Xi and Xj are valid. In the context of LDPC codes,
ψij(xi, xj) = 1⊕ xi ⊕ xj is the parity-check equations that links Xi with
Xj,

• φi(xi, yi), the evidence, provides the observation we obtain from the node
Xi. It is the likelihood pi(yi|xi).

Xi XjNi

Figure 1.8: Message mij in a Bayesian network

This update equation is a sum-product rule, given that it contains both basic
operations. Qualitatively, sum operand allows or not to propagate informa-
tion coming to Xi (except information from Xj), and product operand provides
resulting information. This update rule has been extended [F.R01],[J.S05] to
graphs that are neither pairwise nor Bayesian networks but multi-body inter-
action undirected graphs as Markov Random Fields (MRF) or factor graphs
G = (V, E). These models are bipartite, i.e. the set of nodes V is a union of
two sets of nodes of different kinds X ∪ C. Multi-body interactions between
nodes of X are not pairwise then they cannot be implicitly represented by
edges, they need their own nodes C. An edge e ∈ E represents a contribution
of a given variable of X to a given multi-body interaction in C. Two update
rules, that gave birth to the SPA, were defined according to Fig.1.9:

from variable nodes to check nodes: ∀eia ∈ E, ∀xi ∈ {0, 1},

m(k)
ia (xi, y) =

li(xi, y)
Zia

∏
cb∈Ni\ca

n(k−1)
bi (xi, y) (1.12)

from check nodes to variable nodes: ∀eia ∈ E, ∀xi ∈ {0, 1},

n(k)
ai (xi, y) = ∑

xa∪xi

fa(xa) ∏
Xj∈Xa\Xi

m(k)
ja (xj, y) (1.13)

where:

• k is the iteration index,

• li(xi, y) = p(yi|xi) is the likelihood of the variable Xi in the state xi,

• Zia ensures that m(k)
ia (0, y) + m(k)

ia (1, y) = 1,

• xa =
⋃

Xi∈Xa xi,

• fa(xa) = 1⊕⊕Xi∈Xa xi.
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Xi caNi\ca
nia

(a) Message nia from the variable
node Xi to the check node ca with
Ni = {cb ∈ C | (cb, Xi) ∈ E}

Xi ca Xa\Xi
mai

(b) Message mai from the check node
ca to the variable node Xi with
Xa = {Xj ∈ X | (Xj, ca) ∈ E}

Figure 1.9: Messages in a factor graph

At the first iteration k = 0, messages {m(0)
ia (xi, y)}i,a,xi are initialized either to

uniform random values or to the likelihoods m(0)
ia (xi, y) = li(xi, y). Statisti-

cally, the initialization choice does not wield much influence on the outcome
of the algorithm, therefore it is up to the experimenter. BP provides the prob-
ability distribution {bi(xi, y)}xi ,y of each variable node Xi, called the belief,
according to the following equation:

∀Xi ∈ X, ∀xi ∈ {0, 1}, b(k)i (xi, y) =
li(xi, y)

Zi
∏

ca∈Ni

n(k)
ai (xi, y) (1.14)

where Zi = b(k)i (0, y) + b(k)i (1, y) ensures that the belief builds a true distri-
bution. Finally a codeword estimate is computed as the concatenation of the
most likely states of these distributions:

x̂(k) =
⋃
Xi

arg max
xi

b(k)i (xi, y) (1.15)

SPA is stopped whether H.x̂ = 0, i.e. it results in a codeword, or for any edge
eia, the message m(k)

ia (xi, y) (or n(k)
ai (xi, y)) does not change from an iteration to

the next one, i.e. SPA has converged.

1.5.4 Alternatives to the BP

Even though the complexity of the SPA was very low compared with the
MLD one, it turned out necessary to simplify the update equations for specific
decoding applications. One of the solutions consists in working in the log-
domain. It leads us to the logarithm version of the SPA, partly introduced in
[R.G63], where a vector message [mai(0) mai(1)]T becomes a scalar message
Mai = log mai(0)

mai(1)
. The update rule is then:

Mai = 2 tanh−1

 ∏
Xj∈Xa\Xi

tanh
Nja

2

 (1.16)



1.6. Optimization 21

where Nja = log
nja(0)
nja(1)

. Computation complexity is dramatically decreased,

and computation memory is twice less given that only one quantity is used
for any message and for any belief. However the applications tanh and tanh−1

are not easily handled. To circumvent this undesired effect of the log-domain
we could store an accurate tab of these functions but it would need a non-
negligible memory. The Min-Sum (MS) algorithm, an approximation to the
log-SPA [J. 96], was defined such that a message from check node ca to variable
node Xi contains only basic operations:

Mai =

 ∏
Xj∈Xa\Xi

sign(Nja)

 min
Xj∈Xa\Xi

{|Nja|} (1.17)

that substantially reduced computation time, unfortunately at the expense of
the performance.

Last generic decoders we have to mention are the Finite Alphabet Iterative
Decoders (FAID) also called multilevel decoders presented in [S.K10],[S.K11].
They consist in modifying the MS algorithm by changing the update rule of
the messages from the variable nodes to the check nodes {nia}i,a, each of these
messages being computed according to nonlinear equations. Studies tend to
prove that these decoders provide lower BER than the SPA on the BSC for very
low values of the crossover probability of the channel, that is a non-negligible
progress [D. 12]. Unfortunately, FAID are somehow hard decoders that are
not easy to use on AWGNC, furthermore they cannot be used on any LDPC
code. We display on Fig.1.10 performance of hard and soft decoders on BSC
and AWGNC.
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Figure 1.10: Tanner code decoding (N = 155)

§ 1.6 Optimization

BP sparked a lot of interest among different research areas: Bayesian infer-
ence, channel coding and also nonlinear programming. In [J.S03a],[J.S02] is
described a physical aspect of the decoding algorithms for spin glasses [Nis01]
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and more generally for factor graphs, e.g. the Tanner graphs. It turns out that
the inference problem is equivalent to the minimization of the free energy F
of the graph. The free energy is computed from the Boltzmann’s joint distri-
bution p(x):

p(x) =
e−E(x)

Z
(1.18)

F = − log Z (1.19)

where Z is the partition function that ensures the normalization of the distri-
bution, Z = ∑x e−E(x). Given that computing Z consists in spanning through
the 2N possible states of the graph, we conclude that it is not tractable. In-
stead of the free energy, variational free energies [H.A35],[R. 51] computed
by tractable factorized joint distributions prove to be relevant approximations.
Therefore the main issue is to find the factorized distribution that minimizes
the variational free energy.

This problem can be solved by BP. Indeed, it was shown in [J.S05],[P. 03]
that fixed points of BP are equivalent to stationary points of the variational
Bethe free energy Fβ. However, the update rules of BP are not exactly es-
tablished according to the constrained Lagrangian optimization of Fβ, the
equivalence is only true for steady states, that are not always encountered.
In addition the loop-like topology of most factor graphs prevents the mini-
mization from being optimal, i.e. either the result is only a local minimum, or
the minimization completely fails in the sense that it oscillates between two
or more states or even it falls into chaotic behaviors. Actually, the barrier is
the fact that Fβ is very rarely a convex functions of the beliefs, making its
minimization a very hard task i.e. lack of convergence of BP is an open issue.

The optimization of Fβ is dealt in [T. 03a],[T. 04],[T. 06a] by extracting con-
ditions on the graph for the existence and the uniqueness of the stationary
points, e.g. the BP yields exact minimum of Fβ for graphs that contain only
one single loop. In spite of this encouraging property, this result makes the
investigation on the BP more complex because many graphs contains much
more than one single loop. An alternative version of the BP is proposed in
[A.L03] to ensure the convergence. This ConCave-Convex Procedure (CCCP)
consists in splitting Fβ into a convex function Fvex and a concave function Fcav
in order to iteratively find, as in Newton’s method, the point that cancels the
gradient of the variational free energy:

∇Fvex({b(k+1)
i }i) = −∇Fcav({b(k)i }i) =⇒ ∇Fβ({b

(k→K)
i }i) = 0 (1.20)

with K the large number of iterations. The algorithm is made of two nested
loops:

• the inner loop on the Lagrange multipliers ensures that the linear con-
straints are verified (iteration index: k),

• the outer loop provides the values of the beliefs (iteration index: τ).

On one hand, update equations of the multipliers involve the beliefs, on the
other hand, the update equations of the beliefs involve the multipliers. Then
depending on the initialization of the algorithm, computation time can be
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very large compared to the original BP one. This property often makes this
algorithm unpractical. However, messages update rules are strictly consis-
tent with the Bethe free energy minimization, it even appears clear that the
messages are none other than the Lagrange multipliers themselves. Thus the
CCCP is of very high interest to understand a few subtleties of BP. We display
on Fig.1.11(a) the BER of the CCCP and the BP algorithms on the Tanner code.
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Figure 1.11: CCCP decoding of the Tanner code

We observe that the accuracy of the CCCP is slightly improved compared
with the BP, as the SNR is increased. The drawback of this method is depicted
in Fig.1.11(b) where it appears that the number K′ of loops (outer loops for
the CCCP) is almost doubled by the use of the CCCP compared with the
BP. Furthermore, according to Fig.1.12, for low SNR values, the number of
inner loops τ′ is non-negligible. For instance, for an SNR = 3.2 dB, we obtain
τ′ = 77 that is very high. Even though this value decreases as k increases,
computation time is highly lengthened by the CCCP method.
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Figure 1.12: Inner loop of the CCCP decoding of the Tanner code
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§ 1.7 Dynamics of LDPC decoders

Knowledge of the average BER is not sufficient to understand the whole BP
algorithm, e.g. properties about stability, convergence, fluctuations around the
BER, etc. For instance, we represent on Fig.1.13 the convergence rate and the
required number of iterations to converge, both averaged over ten thousand
simulations.
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Figure 1.13: Tanner code (N = 155) decoding by BP on AWGNC

One would a priori think that, as the BER, these quantifiers should decrease ac-
cording to the SNR. However, it appears an unexpected behavior of BP around
SNR = 1.0dB: the convergence rate significantly decreases and the number of
iterations required to have the BP converge considerably increases. Between
2.0dB and 3.0dB both quantities recover their expected behavior relatively to
their initial values at 0.0dB. As mentioned in many papers, the loop-like topol-
ogy of most codes could be responsible for this undesired phenomenon.

Another factor is the nonlinearity of the update rule that enables us to com-
pute the messages from the check nodes to the variable nodes (1.13), (1.16),
(1.17). According to research results on dynamical systems, nonlinearities are
responsible for non-trivial or even unexpected phenomena [Hil00] e.g. oscilla-
tions, aperiodicity or even chaos.

Studies of the nonlinearities of the BP has been well introduced for Turbo-
codes [D. 00],[L. 02], with few improvements that help the decoding to be
more accurate. It was introduced measurements to quantify nonlinear effects.
The bifurcation diagram revealed that SNR values could be shared into inter-
vals according to the BP behavior, and the largest Lyapunov exponent helped
confirm the chaotic behavior of the decoder for particular SNR values. Con-
cerning LDPC codes, a less extensive work was presented in the sequel [L. 06]:
only pseudo-trajectories without any bifurcation diagram or Lyapunov spec-
trum that could exhibit BP chaotic behaviors. In [X. 05] is presented a dense
work on BP decoding using the mean square beliefs:
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E(k) =

√√√√ 1
N

N

∑
i=1

(
b(k)i (xi)

)2
(1.21)

that models quite faithfully the BP behaviors. The depicted bifurcation dia-
gram reveals clear SNR intervals, as established for Turbo-codes, and few fig-
ures that represent the eigenvalues evolutions of the Jacobian matrix accord-
ing to the SNR for fixed-points help extract the bifurcations natures. However,
chaos did not appear very easily, the largest Lyapunov exponent does not ac-
curately reflect the BP behaviors. Another work on the nonlinear dynamics
of the BP was introduced in [B.S10a],[B.S10b] but the goal was to study the
dynamics understood as the bounds of the log-a posteriori-ratio. It proved that
the BP does not generate values that increase these data ad infinitum. Finally
the whole behavior of the BP for the decoding of LDPC codes is not well
understood despite very good works that provide interesting clues.

§ 1.8 Conclusion

Research on decoding algorithms is confronted to the problem of subopti-
mality of BP-based iterative decoders. Optimizing the variational free energy,
taken as the cost function of any message-passing algorithm, is a very hard
task given that this function is almost never convex. The CCCP appears a
good candidate to overcome this problem, but we saw that its computation
time makes it unrealistic. Thus, investigating on the free energy is necessary
to understand its importance in the decoding algorithms. In this purpose, we
describe, in the following of the manuscript, basic notions of statistical physics
of spin glasses.

Furthermore, preliminary results that we exhibited about BP convergence
allows us to deeply investigate this decoder with the tools provided by the
dynamical systems theory. Therefore we need to introduce basic notions and
tools of this theory, in order to use them to highlight the dynamical properties
of the decoder.
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- Chapter 2 -

Statistical physics of spin glasses

§ 2.1 Introduction

In this chapter we describe physics behind the work presented in this thesis.
Decoding algorithms have deep relations with methods of statistical physics
of spin glasses. In order to keep a reasonable manuscript size, we will not go
deeply into the following theories. The purpose is to give an overview of the
tools used in our research.

In section 2.2 are exposed the main principles of statistical physics that are
necessary to develop the decoding algorithms for error-correcting codes. To
this end, we explain in section 2.3 the notion of spin glasses and the associated
free energy. In sections 2.4, 2.5, 2.6 and 2.7 we describe methods used to
compute or estimate the free energy.

§ 2.2 Problems

In statistical physics, one of the main goals is to estimate thermodynamical
functions of any system at equilibrium. Among them, the average energy U
and the entropy S help us compute the Helmholtz free energy F:

F = U − TS (2.1)

where T is the temperature set arbitrarily to 1 in the whole study as it simply
sets a scale for the units in which one measures energy. This quantity is crucial
because it provides knowledge of many other state functions and it is notably
related to the partition function Z as:

F = − ln Z (2.2)

27
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where Z provides the exact probability distribution of a physical network
S = {Si}i, e.g. spin glasses, given by the Boltzmann’s law:

p(S = s) =
e−E(s)

Z
(2.3)

where E(s) is the energy function. However, computing F is a very hard task
as physical systems are often very large and interactions between elements of
the system are very complex. More precisely there is no global solution but
using equation (2.1), i.e researchers have no choice but to study all systems
one by one.

Fortunately, physical systems are divided up into classes, as Sherrington-
Kirkpatrick model, Edwards-Anderson model, etc. Each class has been stud-
ied to exhibit its own solving method. Among them we focus on the spin
glasses because they are in a one-to-one match with graphs used in error-
correcting coding theory.

§ 2.3 Spin glasses

From [Ste04],[M. 87],[B. 00], spin glasses are defined as systems of atoms with
localized magnetic moments, namely spins, whose interactions are character-
ized by quenched randomness: a given pair of spins have a roughly equal a
priori probability of having a ferromagnetic or an anti-ferromagnetic interac-
tion, see Fig.2.1.

Figure 2.1: Spin glass: the dashed lines are the anti-ferromagnetic interactions and
the solid lines are the ferromagnetic interactions, the arrows are the spins (up or down)

The prototype material is a dilute magnetic alloy, with a small amount of mag-
netic impurity randomly substituted into the lattice of a nonmagnetic metallic
host. The signature feature of spin glass behavior is the phase transition, i.e.
a dramatical change in the physical magnitudes of the system. The main in-
teresting property of this kind of network, for our work, is that spin glasses
suffer from frustration: no spin configuration can simultaneously satisfy all
couplings. Such a phenomenon is observed also in channel coding when not
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all parity-check equations of an error-correcting code are satisfied because the
channel has changed the values of the bits.

According to [F. 12], the coupling Jij between two spins si, sj around a mag-
netic impurity has random sign and intensity because the distance between
two spins is a random variable. The simplest idealization of the interaction
between two spins si and sj is a coupling term −Jijsisj in the energy function
E(s) with Jij a random variable. The disorder of the material comes from the
random values of the couplings {Jij}<i,j>. Due to the time independent val-
uation of these terms, the disorder is said quenched. The spin glass energy
function without any external magnetic field is:

E(s) = − ∑
<i,j>

Jijsisj (2.4)

where the notation < ., . > means neighboring sites. The spins variables {si}i
are Ising variables i.e. they equal±1 (only pairwise interactions are considered
but we will see in our research that are often needed high order interactions).
If the terms {Jij}ij are random variables, usually Gaussian variables, then the
set of spins represent an Edwards-Anderson model [M. 06]. The infinite range
model is called the Sherrington-Kirkpatrick model [D. 75].

As explained previously, frustration is a phenomenon that emerges because
of the randomness of coupling constants: any spin is subjected to fields due
to its neighbors that have different signs. Some want it to point up and others
to point down then it cannot be set to a unique state. We represent this event
in Fig.2.2.

The first figure shows a spin glass where one interaction has been modified
such that it goes from anti-ferromagnetic to magnetic. Then on the other
figures are depicted the route to the frustration: step by step, the spins flip (in
red) to make the interactions, either ferromagnetic or anti-ferromagnetic, true.
We then observe that the left blue spin should flip to be consistent with its left
and right neighbors but in this case it prevents the interaction with its bottom
neighbor from being true. Practically, if the spin flips then we again observe a
step by step route to frustration that leads to the same situation. This is very
close to the problem of loop-like topology in the case of the LDPC codes.

Frustration makes the search for the ground state not trivial, many degen-
erate ground states, or metastable states, emerge. Actually, a challenge of the
physics is to find the state ŝ that provides the lowest value of the energy func-
tion E(s). If all the Jij’s were of same sign then the solution would appear very
easily. However, in most cases, systems are paramagnetic the coupling con-
stants have different signs. The naive though optimal method would consist
in computing the energy function for all spins configurations, then we extract
the lowest energy state. Unfortunately, if it could be done for low dimensional
systems, it is completely intractable for high dimensional systems, given that
2N states have to be computed (N being the number of spins). One would no-
tice that this is actually closely related to the MLD that is also intractable for
LDPC codes for the same reason. We here after present an alternative solution
based on the Mean-Field (MF) approximation.
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(a) Flip of one interaction from anti-
ferromagnetic to ferromagnetic

(b) One spin is flipped to verify the
interaction

(c) Neighboring spins of the flipped
spin also flip

(d) The last neighboring spins flip,
then the non-flipped spin (in blue)
prevents from verifying all the inter-
actions

Figure 2.2: Spin glass: dashed lines are anti-ferromagnetic interactions and solid
lines are ferromagnetic interactions; arrows are spins (up or down). The red line
is an interaction modified by an external noise and red spins are spins modified by
interactions.

§ 2.4 Mean-Field approach

More than thirty five years ago, Sherrington and Kirkpatrick introduced this
method to solve the spin glasses [D. 75],[M. 87]. Its relevance surely comes
from the fact that it successfully attempts to represent some important features
of the physical spin glass systems of great interest for their peculiar properties,
at least at the level of the mean field approximation. A relevant summary of
the MF with theory and results is exposed in [F. 06].

From [Kop10],[Nis01], the idea consists in developing the term J ∑<i,j> sisj
in the expression of the energy function, where J is the coupling assumed
to be invariant on the couples of spins. We consequently use the mean spin
value:

mi =< si > . (2.5)
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Its value can be derived as:

mi = pi(Si = +1)× (+1) + pi(Si = −1)× (−1) (2.6)
= 2pi(Si = +1)− 1 (2.7)

Given that for each spin Si the state is si = mi + δi, where δi is the fluctuation
of the spin around its mean value, the cross product between two neighboring
spins is:

sisj = mimj + miδj + mjδi + δiδj (2.8)

The MF approximation is to neglect the quadratic fluctuations δiδj, consider-
ing small enough in particular for high dimensional systems, i.e.:

sisj ≈ mimj + miδj + mjδi (2.9)

Furthermore the mean value mi of a spin si is expected to be site-independent,
i.e. for any spin si, < si >= m. This yields:

sisj ≈ m2 + m(δj + δi) (2.10)

Using the definition of the fluctuation δi = si −m, it appears that:

sisj ≈ −m2 + m(si + sj) (2.11)

As the spins are valued in {−1,+1} their sum is either 0 or 2si. Thus the
remaining term is:

sisj ≈ −m2 + 2msi (2.12)

The energy function is written such that all the couplings are considered
equivalent:

E(s) = −J ∑
<i,j>

sisj (2.13)

Under the MF approximation it becomes:

E(s) = JNcm2 − Jzm ∑
i

si (2.14)

where Nc is the number of interacting couples and z is said to be the coordina-
tion number. Considering an external magnetic field interacting with the spins
through the energy Eext = −h ∑i si we obtain the total MF approximation:

E(s) = JNcm2 − (h + Jzm)∑
i

si (2.15)

The whole system has then been decoupled into a sum of one-body system
with an effective mean-field he f f = h + Jzm, which is the sum of the external
field h and of the mean-field induced by the neighboring spins. Using the
Boltzmann’s law it appears that the MF joint distribution is:

pMF(x) =
1
Z

e−JNcm2
N

∏
i=1

ehe f f si (2.16)
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Finally we can write that the distribution is a factorization along the spins:

pMF(x) =
1

ZMF

N

∏
i=1

pMF,i(xi) (2.17)

The MF approximation provides analytic expressions of physical quantities as
the partition function and the free energy, i.e. it solves the spin glasses.

2.4.1 Message-Passing

The MF approximation provides an algorithm to obtain the {mi}i. Given (2.16)
and (2.17) we can write the MF marginal on the spin Si as:

pi(si) =
1
Zi

e
h+J ∑Sj∈Ni

sj (2.18)

Then the magnetization of the spin Si is according to (2.6):

mi = tanh(h + ∑
Sj∈Ni

mj) (2.19)

A simple approach to obtain {mi}i is iteratively updating them according to
the following equation:

m(k+1)
i = tanh(h + ∑

Sj∈Ni

m(k)
j ) (2.20)

This message-passing results after K iteration in the computation of the marginals
given that:

pi(si = +1) =
1 + m(K)

i
2

, pi(si = −1) =
1−m(K)

i
2

(2.21)

Actually the MF expression of mi is not as accurate as we would expect. Fur-
thermore when averaged over all the configurations of the spin glass, < mi >
is not easily handled because of the nonlinearity of the tanh function

< tanh(h + ∑
Sj∈Ni

mj) > 6= tanh(h + ∑
Sj∈Ni

< mj >)

that has been investigated, particularly in the TAP method proposed by Thou-
less, Anderson and Palmer [Mea01].

§ 2.5 Replica method

As mentioned in the introduction of the chapter, statistical physics is aimed
at computing the free energy F = − ln Z. It turns out that computing integer
moments of the partition function Zn with n ∈ N is much easier than com-
puting the log-partition function. Fortunately, mathematics offer a way to use



2.6. Cavity approach 33

this alternative by the following identity:

ln Z = lim
n→0

Zn − 1
n

(2.22)

Now we DESCRIBE, according to [M. 06],[Mea01], the basics of the replica
method based on this identity. Zn is a product of n identical partition func-
tions. We consider a system S of N spins, represented by an energy function
E(s), that is independently duplicated into n replicas. The overall distribution
of these n systems is:

p(S1 = s1, . . . ,Sn = sn) = p1(S1 = s1) . . . pn(Sn = sn) (2.23)

where the distribution of a system Si verifies the Boltzmann’s law, i.e.:

p(S1 = s1, . . . ,Sn = sn) =
1

Z1
e−E(s1) . . .

1
Zn

e−E(sn) (2.24)

=
e−(E(s1)+···+E(sn))

Z1 . . . Zn
(2.25)

We obtain a Boltzmann distribution with an energy function linearly decom-
posed over the different replicas of the system:

Ẽ(s1, . . . , sn) = E(s1) + · · ·+ E(sn) (2.26)

and the partition function is:

Z̃ = ∑
s1

· · ·∑
sn

e−(E(s1)+···+E(sn)) (2.27)

For more details on this method that sparked off much interest, we refer the
reader to the excellent reviews in [Nis01] and [M. 06].

§ 2.6 Cavity approach

The cavity method [F. 11] relies on the computation of the partition function
Z by an iterative process. We will see that such an algorithm is completely
equivalent to the BP as it propagates messages between nodes of the graph.
That is why we will describe it in a more detailed way than the other methods.

S1 S2 S3
−→
h

Figure 2.3: Ising chain with N = 3 spins embedded in an external magnetic field

The idea is to compute the partition function recursively, by considering
a dynamical graph: at each step is added a variable node to the graph, the
graph being completely recovered at the last step. Equivalently one may think
of taking one variable node out of the system and computing the change in the
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partition function. The name of the method comes exactly from this image:
one digs a cavity in the system.

2.6.1 Ising chain

As for BP, the original algorithm is defined on trees. Let’s consider an Ising
chain, i.e. a pairwise tree whose spins are binary variables and of degree ≤ 2,
with a small number of spins to develop the equations, see Fig.2.6. We now
derive the equations step by step given that two spins Si, Sj interact via the
interaction −JSiSj and that a spin Si interacts with the magnetic field via the
energy −hiSi.

Step 1: spin S1

The tree is made with spin S1 only and field
−→
h .

S1
−→
h

Figure 2.4: N = 1

Then the partition function is:

Z(1) = ∑
s1

Z1(s1) (2.28)

with Z1(s1) the partial partition function with the spin S1 fixed to the value
s1:

Z1(s1) = eh1s1 (2.29)

Step 2: spins S1 and S2

The tree is made with the spin S1 and the spin S2 and the field
−→
h .

S1 S2
−→
h

Figure 2.5: N = 2

Then the partition function is:

Z(2) = ∑
s2

Z2(s2) (2.30)

with Z2(s2) the partial partition function with the spin S2 fixed to the value
s2:

Z2(s2) = eh2s2 ∑
s1

eJs1s2 eh1s1 (2.31)

In this equation we recognize Z1(s1) defined earlier. However the context is
different given that we added a variable to the system. Therefore Z1(s1) is not
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anymore the partial partition function with S1 fixed to the value s1. In order
to make it clear we denote the former Z1(s1) by Z1→2(s1). Then:

Z2(s2) = eh2s2 ∑
s1

eJs1s2 Z1→2(s1) (2.32)

Step 3: spins S1, S2 and S3

The tree is made with the spin S1 and the spin S2 and the field
−→
h .

S1 S2 S3
−→
h

Figure 2.6: N = 3

The partition function is:
Z(3) = ∑

s3

Z3(s3) (2.33)

with Z3(s3) the partial partition function with S3 fixed to the value s3:

Z3(s3) = eh3s3 ∑
s2

eJs2s3 eh2s2 ∑
s1

eJs1s2 eh1s1 (2.34)

Extending the same previous argument, we now denote the former Z2(s2) by
Z2→3(s2), that provides:

Z3(s3) = eh3s3 ∑
s2

eJs2s3 Z2→3(s2) (2.35)

Interpretation

We observe for each step i, the partial partition function Zi(si) is a product of
information coming from the the magnetic field

ehisi

with the information coming from its neighbor Sj revealed at the previous
step

∑
sj

eJsisj Zj→i(sj)

Generally for any tree model, not necessarily a chain, the partial partition
function of any spin Si fixed to the value si is computed as:

Zi(si) = ehisi ∏
Sj∈Ni

∑
sj

eJsisj Zj→i(sj) (2.36)

where Ni is the set of spins connected to Si. The quantity Zj→i(sj) is the
partial partition function of the system without the spin Si with Sj fixed to sj.
One could verify this way that we obtain that ∑si

Zi(si) is strictly identical to
the total partition function Z.
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2.6.2 Case of a factor graph

The previous claim seems to only address pairwise trees, but it also applies to
any model such that the energy function is of the following form:

E(s) = −∑
i

hisi −∑
a

J ∏
Si∈Na

si (2.37)

where ∑a is the sum over all the spins interactions, and Na is the set of spins
that interact through a common interaction denoted by a. Let’s consider the
simple example on Fig.2.7 to develop the cavity method.

S1

S2

S3

S4

S5

S6

a

b

c

Figure 2.7: p-range model

The partial partition function for the spin S1 in the state s1 is:

Z1(s1) = eh1s1 ∑
s2

∑
s3

eJs1s2s3 Z2→a1(s2)Z3→a1(s3) (2.38)

where:

Z2→a1(s2) = eh2s2 (2.39)

Z3→a1(s3) = eh3s3 (2.40)

× ∑
s4

eJs3s4 Z4→b3(s4) (2.41)

× ∑
s5

∑
s6

eJs3s5s6 Z5→c3(s5)Z6→c3(s6) (2.42)

and:

Z5→c3(s5) = eh5s5 (2.43)

Z6→c3(s6) = eh6s6 (2.44)

The subscript a in Z2→a1 helps understand “from S2 to S1 through a”. One
could easily verify that we get the exact total partition function by computing:

∑
s1

Z1(s1)
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2.6.3 Bipartite messages

In order to simplify the implementation, above equations could be sorted into
two kinds. To understand how, one should have a look to the equations of
Zi→α j(si). Since such a quantity is a partial partition function for the system
without spin Sj, it should not depend on Sj. In the previous example, one
would check that:

Z3→a1(s3) = Z3→a2(s3) (2.45)

In this case, the spins S1 and S2 do not play any role in the computation,
therefore both quantities should be computed as a single message from the
spin S3 to the interaction, called factor, a. Generally we have for two spins
Si, Sj interacting through the factor a:

Yi→a(si) , Zi→a j(si) (2.46)

= ehisi ∏
α∈Ni\a

∑
sα1

∑
sα2

· · ·∑
sαm

eJsα1 sα1 ...sαm ∏
Sj∈Nα

Yj→α(sj) (2.47)

where {Sα1 , . . . , Sαm} is the set of spins interacting via factor α. The second
kind of message that we define is the reverse of Yi→a(si), i.e. the message that
comes from a to Si. The equations of the previous case provide that:

Wa→i(si) ,∑
sa1

∑
sa2

· · ·∑
sam

eJsa1 sa2 ...sam ∏
Sj∈Na

Yj→a(sj) (2.48)

Then we can rewrite Yi→a(si) as:

Yi→a(si) = ehisi ∏
α∈Ni\a

Wα→i(si) (2.49)

In this way it is possible to give the partial partition function for a spin Si in
the state si as:

Zi(si) = ehisi ∏
a∈Ni

Wa→i(si) (2.50)

Equations (2.48), (2.49) and (2.50) are message-passing equations, analogous
to those BP equations we mentioned in the previous chapter such that:

• Wa→i is analogous to the message ma→i from the check node ca to the
variable node Xi,

• Yi→a is analogous to the message ni→a from the variable node Xi to the
check node ca,

• Zi is analogous to the belief bi on the variable node Xi.

It helps define the equivalence between the cavity method and BP. As a notice,
the cavity method can also be expressed as a message-passing either between
the magnetizations of the spins or the probability distributions of the spins,
see [F. 11] for details about this.
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§ 2.7 Mean-Field generalizations

In chapters 4 and 5 we will present improvements of the MF approach, namely
the Bethe approximations and the region-based approximations [J.S02],[J.S05].
The common principle of both methods is to generalize the equation (2.17) to
the following:

p(x) =
1

ZR
∏
r∈R

pcr
r (xr) (2.51)

Instead of factorizing the joint distribution on single variable nodes, we factor-
ize on subsets or regions of variable nodes. This way, we keep, to some extent,
the couplings between the variables mentioned in the energy function. These
methods are actually part of the global region-based free energy approximation
detailed in the chapter 5.

§ 2.8 Conclusion

The MF approximation is a relevant way to provide tractable computation of
the thermodynamical functions. We saw that it can also be expressed as a
message-passing algorithm between the spins of any spin glass. Similarly, the
cavity approach has been showed to present the same equations as the BP’s,
highlighting a strong connection between statistical physics and decoding al-
gorithms. As such, this method is also subject to the loop-like harmful effects
of the spin glasses, or any other physical factor graphs. To our knowledge,
the replica method has not been extended to decoding algorithms, partly due
to its quite high complex theoretical content. Other methods that we did not
describe here are also investigated in this respect, e.g. the renormalization
group [G. 10],[J. 03b].

We will see in the next part that these methods can surely be improved
by considering less restrictive decoupling between spins. That is the rationale
behind MF generalizations, also known as Bethe and region-based approxi-
mations.
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Dynamical systems

§ 3.1 Introduction

In this chapter, we present a few tools that help study dynamical systems.
We cannot describe all the extent of the theory, therefore we will focus on the
ones that are to be used on the decoding algorithms that are nonlinear sys-
tems due to the nonlinearities involved by the update rules. Linear systems
are not surprising as they always give linear response, i.e. their effects are pro-
portional to the causes. On the contrary, evolutions of nonlinear systems turn
out to be often unexpected, though their update equations are deterministic.
Nonlinearities can make saturate a system or even make it diverge.

Study of so called dynamical systems results from the fact that most systems
evolve in time and that they need to be reliably anticipated. The property of
stability remains central in the study of any nonlinear system. It is qualitatively
for a system to keep a regular and controlled evolution when something is
slightly changed in its initial conditions.

Dynamical systems are defined by state variables which time evolutions, or
state equations, provide the description of the systems. These evolutions are
logically defined by differential equations when variables are continuous or
iterative equations when variables are discrete in time. Complex and often un-
expected behaviors of nonlinear systems do not appear obvious even though
state equations are completely deterministic. As a matter of fact, one could
think that the lack of control would come out if the state equations followed
some probabilistic laws, because it somehow represents a lack of knowledge.
Actually, we will see that strange behaviors do not need such a property but
only a series of causes and effects submitted to particular initializations and
parameters values. This is partly due to the absence of analytic solution to the
state equations but only numerical ones. Consequently, a slight difference in
the numerical values of few state variables or parameters can lead to massive
effects in the evolutions of the system, such as chaos. In such a case there is no
predictability and no control on the system, the evolution seems to be erratic
and random. Such a sensitivity is inherent to the system itself. Although the
purpose of the investigation is to predict the states of any nonlinear system at

39
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any time, chaos prevents us from completely mastering it. Therefore, a crucial
study is to bring out the main properties of chaos, particularly the minimal
conditions under which it occurs.

In section 3.1, we describe the notion of chaos with two well-known exam-
ples, the logistic map and the Lorenz system. Section 3.2 is dedicated to the
different scenarios that lead any nonlinear system to a chaotic behavior. In
section 3.3, we detail the computation of the Lyapunov exponent that numer-
ically estimates whether any system is chaotic or not. Last section 3.4 deals
with the situations where a dynamical system is incomplete, i.e. a few state
variables are not available. We briefly present a method that re-constructs the
state space.

§ 3.2 Chaotic attractors

It is crucial to understand that chaos is neither random nor nonsense. More
accurately, chaos is basically opposed to randomness as a chaotic system is a
deterministic system whose time evolution is perfectly described by the state
variables and the associate update rule(s). Practical systems are subject to
chaos because of our incapacity to analytically solve them and to compute
state variables with an infinite precision. More precisely, an infinite precision
on data would allow us to forecast any state of a system given its initial state
whereas a finite precision implies an uncertainty, or computation error, after
some computation time.

From [K.T96], chaos is a specific behavior defined as follows: when the
system evolution could be done through numerous motions that are initially
quite close in the state space, such that after some time, any two of them seem
to have nothing in common except they are enclosed in the same region of the
given state space (they are dissipative). The separation between them turns
out to be often exponential in time. This phenomenon is an intrinsic property
of the chaotic attractors, also called strange attractors. To illustrate this peculiar
behavior, we will use two well-known examples: the logistic map that models
population growth and Lorenz attractor that models – to some extent – the
atmospheric convection.

3.2.1 Logistic map

A common model that represents the evolution {xk}k of a resource-limited
population is given by:

xk+1 = axk(1− xk) (3.1)

with a a positive real number and x0 ∈]0, 1[. It appears that a very small
value of xk entails a quite linear growing because 1− xk ≈ 1 whereas a large
value of xk prevents from a proportional growing. In other words, the maps is
nonlinear for non small values of xk. Such a nonlinearity is the source of non
trivial behaviors presented hereafter. We restrict the study to the case a = 4
but anyone who is interested in extracting the whole information about this
system should investigate on all values of a. The first step of the study is to
visualize the sequence {xk}k. A common method is displayed in Fig.3.1.
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Figure 3.1: Logistic map xk+1 = 4xk(1− xk)

We observe that no particular pattern emerges, we cannot distinguish any
fixed-point or repeated motion. This is also exhibited in Fig.3.2(a) where a
trajectory of the map is represented, with the time evolution for a slightly
different initial condition x′0 = x0 + 10−6. At k = 14 appears the beginning of
the divergence between both trajectories and as the time increases they evolve
completely differently. In Fig.3.2(b) is represented the time evolution of the
separation between these trajectories. For k ≤ 21 it is possible to model it by
the function:

d̂(k) = eλ(k−α)

with:

λ ≈ 0.9,
α ≈ 21.
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(a) Trajectories
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(b) Separation

Figure 3.2: Logistic map

Coefficient α is a delay and λ is a crucial quantity that provides the intensity
of the divergence between trajectories. Given that the exponential function
takes precedence over any polynomial function, an exponential evolution of
the separation is the most divergent motion that can be encountered.
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Such a property is an evidence of chaos: two initially close trajectories even-
tually follow very non similar evolutions. Quantity λ is commonly called the
largest Lyapunov exponent, or simply the Lyapunov exponent.

In Fig.3.2(b) it appears that d̂(k) is not exponential for k > 21. First of all, it
is impossible for the separation to acquire values that would be larger than the
state space size itself, therefore d̂(k) ≤ 1 for all k. After that, the trajectories of
any dissipative systems live in a restricted part of the state space, named the
attractor. This property leads us to evaluate the attractor size by measuring
the maximum of d̂(k). We will study this more deeply in the last chapter of
the manuscript.

3.2.2 Lorenz attractor
In climate science, the Lorenz attractor helps predict long term atmospheric
aspects. Once more, slight difference in numerical initial conditions leads, un-
der particular assignments of external parameters, to very different behaviors.
The Ordinary Differential Equations (ODE) that model the Lorenz system are:

dx(t)
dt

= σ(y(t)− x(t)), (3.2)

dy(t)
dt

= rx(t)− y(t)− x(t)z(t), (3.3)

dz(t)
dt

= x(t)y(t)− bz(t), (3.4)

where x(t), y(t), z(t) are the state variables.

−20 −10 0 10 20

−30
−15

0
15

0

15

30

45

x(t)

y(
t)

z(t)

Figure 3.3: Lorenz attractor

As mentioned previously, a detailed study would require many values of
the parameters σ, r, b. In this context, we chose values that provide non trivial
phenomena:

σ = 10, (3.5)

b =
8
3

, (3.6)

r = 28. (3.7)
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This set of values traps the system into a non trivial attractor as depicted in
Fig.3.3. This attractor is the chaotic Lorenz attractor. The sensitivity to initial
conditions is very high, see Fig.3.4(a). The second trajectory is initially 10−6

away from the first one at the Euclidean sense.
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Figure 3.4: Lorenz map

The full circles are the initial points and the full squares are the final points.
Even though circles are very close, squares are quite far away one from the
other, divergence appears substantial. This assumption is confirmed by Fig.3.4(b)
where the Euclidean distance d(t) along the time t ≤ 2000 can be modeled by
an exponential function:

d̂(t) = eλ(t−α)

with:

λ ≈ 0.008
α ≈ 1430

From the brief study on the logistic map and the current one on the Lorenz
system, the common point is that the chaos appears as soon as the quantity λ
is positive. In other words, the sign of the Lyapunov exponent is the signature
of chaos.

§ 3.3 Route to chaos

An aspect that needs investigation is the scenario that is responsible for chaos,
in order to find out the situations where it can appear. Actually the chaos the-
ory lists several routes to chaos that are sequences of bifurcations, a bifurcation
being any sudden change in the behavior of a system as some parameter is
varied [Hil00].
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3.3.1 Period-doubling

For a given value of an external parameter β, the system originally oscillates
with a period T. Increasing β makes the oscillation period doubled i.e. T ←
2T. It is actually due to the insertion of a new pattern inside the former
periodic one. A larger value of β again doubles the period T ← 2T etc. After
a certain time we observe that the system is trapped into a completely non
periodic motion. As an illustration is displayed the evolution of the period T
of the logistic map according to the parameter a in Fig.3.5.

3.4 3.45 3.5 3.55 3.6
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20

30

40
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a

T

Figure 3.5: Logistic map - Period doubling

Even though we can pick a few inter values of the period, the main behavior is
such that the period is doubling as a increases. The circles are typical values,
also represented by stems in Fig.3.6(b), such that:

a = 3.421 =⇒ T = 2
a = 3.499 =⇒ T = 4
a = 3.566 =⇒ T = 8
a = 3.604 =⇒ T = 16
a = 3.617 =⇒ T = 32

The period-doubling process may continue until the period becomes infinite,
that is the trajectory never repeats itself, it is then chaotic. We display in
Fig.3.6(a) the bifurcation diagram, i.e. the final states xK (K = 100), of the
logistic map along the values of a. We observe the first bifurcation that results
in oscillations for a = 3 and the next bifurcations that double the period in
Fig.3.6(b).
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Figure 3.6: Bifurcation diagram of the logistic map

3.3.2 Quasi-periodicity

We use the Tinkerbell map to illustrate the quasi-periodicity and the associ-
ated route to chaos. Such a map is defined by the following state equations:

xk+1 = x2
k − y2

k + axk + byk (3.8)
yk+1 = 2xkyk + cxk + dyk (3.9)

and we choose parameters to be:

b = −0.6013,
c = 2,
d = 0.5.

The value of the parameter a will play the role of a potentiometer that makes
quasi-periodicity appear, among others.

Poincaré section Actually this two-dimensional discrete map can be thought
of as a reduced three-dimensional continuous map. This assumption comes
from the Poincaré section method. The Poincaré section is somehow a strobo-
scopic portrait of the continuous trajectory, as displayed in Fig.3.7.

The Poincaré section provides a discrete representation P1, P2, . . . , PK of the
continuous system whose state space dimension is smaller than the original
one. Formally, a system like:

Ẋ = f (X, Y, Z)
Ẏ = g(X, Y, Z)
Ż = h(X, Y, Z)

is mapped to an iterative reduced system:

Pk+1 = F(Pk)
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Figure 3.7: Poincaré section P

where Pk =

[
xk
yk

]
such that:

xk+1 = Fx(xk, yk),
yk+1 = Fy(xk, yk).

The iterative functions Fx, Fy are defined by the position of the Poincaré section
in the three-dimensional state space.

A periodic three-dimensional continuous system looks like a continuous
line in its state space, therefore the projection on the Poincaré section is a fi-
nite number of points. For a = 0.5, the Tinkerbell map follows this rule, see
Fig.3.8(a). The power spectrum Fig.3.8(b) of the sequence {xk}k reveals a sin-
gle frequency f0 and its harmonics 2 f0, 3 f0.
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Figure 3.8: Tinkerbell attractor with a = 0.5



3.3. Route to chaos 47

Quasi-periodic attractor A quasi-periodic motion presents two or more dif-
ferent frequencies. These frequencies are such that the three-dimensional con-
tinuous system is a torus and the Poincaré section is generated by using a
plane that cuts through the torus. If the ratio of any two frequencies can be
expressed as a rational fraction then the Poincaré section will consist of a finite
number of points. In other words, this is a periodic motion. However, if only
one ratio of two frequencies cannot be expressed as a ratio of integers, then
the ratio is irrational. For this case, the Poincaré map points will eventually
fill in a continuous curve, the motion is said to be quasi-periodic because the
motion never exactly repeats itself. The points of the Poincaré section drift
around the curve forming what is called a drift ring. As an example, we con-
sider the Tinkerbell map for a = 0.1, see Fig.3.10(a). We observe two leading
spectral lines on the spectrum Fig.3.10(b) whose associated frequencies f1, f2
are such that the ratio is not “strictly” rational. Actually, given that any com-
puter has a finite precision, it is always possible to extract a rational ratio
between two arbitrary values, that makes the quasi-periodicity quite hard to
detect. For instance, the current values of the two frequencies can be linked
such that f2 ≈ 20

7 f1.
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Figure 3.9: Tinkerbell attractor with a = 0.1

A crucial property of the quasi-periodic case is that it is not chaotic. The
confusion could be made considering that the chaotic motion also provides a
quite continuous curve on the Poincaré section, as we can see with the Tinker-
bell map with a = 0.9 in Fig.3.10(a). The difference comes from the fact that
a quasi-periodic behavior is composed of several periodic components then
the spectrum contains different spectral lines whereas in a chaotic motion, the
spectrum involves a continuum of frequencies, see Fig.3.10(b).

Ruelle-Takens scenario or quasi-periodicity route to chaos The system be-
gins with a limit cycle. As a control parameter is changed, a second periodicity
appears in the behavior of the system. This bifurcation event is a Hopf bifur-
cation. If the ratio of the period of the second type of motion to the period of
the first is not a rational ratio, then the motion becomes quasi-periodic.
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Figure 3.10: Tinkerbell attractor with a = 0.9

Under some circumstances, if the control parameter is change further the mo-
tion becomes chaotic. One would expect to see a long sequence of different
frequencies come in as the control parameter is changed, much like the infi-
nite sequence of period-doubling. However at least in some cases, the system
becomes chaotic instead of introducing a third frequency for its motion. In
[S.E78] the authors proved that if the trajectory of a system is confined to a
three-dimensional torus, i.e. it is made of three frequencies with irrational
ratios, then even a small perturbation of the motion will damage the motion
and lead to chaos.

3.3.3 Intermittency and crises

The intermittency route to chaos is characterized by dynamics with irregular
occurring bursts of chaotic behavior interspersed with intervals of apparently
periodic behavior. As a control parameter is changed, the chaotic bursts be-
come longer and occur more frequently until, eventually the entire time record
is chaotic.

A crisis is a bifurcation event in which a chaotic attractor and its basin of
attraction suddenly disappear or suddenly change in size as some control pa-
rameter is changed. Alternatively is the parameter is changed in the opposite
direction the chaotic attractor can suddenly appear or the size of the attractor
can suddenly be reduced. A crisis event involves the interaction between a
chaotic attractor and an unstable fixed point or an unstable limit cycle.

§ 3.4 Lyapunov exponent

If the system is behaving chaotically, the divergence of nearby trajectories
will manifest itself in the following way: if we select some value xi from the
sequence {xk}k and then search the sequence for another value xj that is close
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to xi then the sequence of differences:

d0 = |xi − xj|
d1 = |xi+1 − xj+1|

...
dk = |xi+k − xj+k|

is assumed to increase exponentially from one step k to the next one k + 1, i.e.
dk+1 = dkeλ that could be also written:

dk = d0eλk (3.10)

where λ is the Lyapunov exponent. According to this assumption we can
extract two methods to compute λ.

3.4.1 Computation method 1

The equation (3.10) stipulates that the evolution of log dk follows an affine law:

log dk = λk + log d0 (3.11)

where λ is the slope of the line. A well suited tool to estimate this slope is the
method of least squares. According to the theory we can easily show that the
estimate of the slope is:

λ̂ =

K

∑
k=1

k log dk −
1
K

(
K

∑
k=1

k

)(
K

∑
k=1

log dk

)
K

∑
k=1

k2 − 1
K

(
K

∑
k=1

k

)2 (3.12)

where K is the index of the last sample. Obviously, it is crucial to average this
value over a large set of initial conditions in order to obtain a quite faithful
value that depends much more on the parameters of the system than on its
initial states.

3.4.2 Computation method 2

The value dk is the separation between the k-th iterate of the map f from xi
and the k-th iterate of f from xj. Given that xi and xj are very close, it is more
convenient to consider xi , x0 and xj , x0 + ε where ε� 1. Thus:

dk = | f k(x0 + ε)− f k(x0)| (3.13)

Therefore:
dk
ε

=
| f k(x0 + ε)− f k(x0)|

ε
(3.14)
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In this way, it appears that:

lim
ε→0

dk
ε

= ( f k)′(x0) (3.15)

First of all, the derivatives of any function f k can be decomposed as:

( f k)′(x0) = f ′(xk) f ′(xk−1) . . . f ′(x0)

After that, the assumption that the separation evolves exponentially implies
that:

( f k)′(x0) = eλk

i.e.

λ =
1
K

K

∑
k=0

log | f ′(xk)| (3.16)

In other words, the Lyapunov exponent λ is the log-average of the slopes over
all the samples x0, . . . , xK. On Fig.3.11 are displayed the estimate of λ from
both methods.
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Figure 3.11: Lyapunov exponent estimates

Even though we can observe few differences, e.g. at a = 3.24 the least squares
method does not provide a λ as low as the differential method does, both
methods offer estimates of a global same shape. On one hand, the least
squares method presents variance for a ∈ [1.24, 3.48] but it is possible to com-
pute λ for any systems, whatever the complexity of its state equations. On the
other hand, the differential method is smooth for the whole a interval how-
ever it is not always convenient given that the derivatives of the map, or even
of the set of maps in the multidimensional case, is not an easy computation
task. As an example, it is not well suited for the iterative decoding algorithms
as their update rules are sometimes very hard to handle, see chapter 5.
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3.4.3 Assumptions

Both computation methods assume two main hypothesis:

• the number of samples K should be large enough to obtain accurate
averages,

• the number of samples K should be small enough such that dK can still
be approximated by d0eλK. For any dissipative system, any attractor
whether chaotic or periodic (or quasi-periodic), has a finite size inside
the state space. The maximum value of the separation is the attractor
size itself. Waiting for too large K iterations would lead to a wrong
estimation given that the exponential law of dK is not valid anymore.
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Figure 3.12: Time evolution of the separation

On Fig.3.12(a) is displayed the evolution of log dk for the logistic map with
a = 3.75. The k values are shared into two sets: for the interval [0, 28] indexed
with the blue arrow log dk is linear then the approximation is right, for the
interval [29, 80] indexed with the red arrow log dk is constant to the size of
the chaotic attractor then the approximation does not make sense anymore.
The maximum iteration to use is then K = 28. However, the ideal value K
is not always obvious, especially for multidimensional systems. The initial
conditions coupled with external parameters largely wield influence on the
behavior of the system, e.g. the size of the attractor or even its nature (fixed
point, periodic, quasi-periodic or chaotic). Therefore finding the value K turns
out to be a very hard task.

Furthermore, the system can mimic a chaotic behavior for few iterations
and then it collapses to a very small sized attractor or even a fixed point. We
display such a phenomenon, the transient chaos [Hil00], in Fig.3.12(b) for the
logistic map with a = 3.56. In such a case, if we still consider that K = 28
then we conclude that the logistic map is chaotic whereas it is absolutely
not. Waiting for larger K would lead to the better conclusion that the logistic
map has suffered from a temporary almost chaotic behavior. The previous
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observation about the versatility of K and the current one about the temporary
chaos lead us to consider that neither computation method is perfect.

3.4.4 Computation method 3

The issue is to model by a single value the whole behavior of the system along
the iterations for any parameter value. The most convenient solution that can
be computed for any dynamical system is to use the least squares method for
a quite large K. The main consequence is that the output λ will not be the
exact Lyapunov exponent because it cannot describe the exponential expan-
sion. Nevertheless, this λ can describe the whole movement of the system. If
the system encounters a chaotic attractor, λ is positive even though it is lower
than the true Lyapunov exponent. If the behavior is temporary chaotic then
the Lyapunov exponent would exhibit a largely positive value whereas the
current one would be considerably smaller or even negative, which is very
close to the reality. As an example, the computation of Lyapunov exponent
using both methods on the logistic map with a = 3.56 in Fig.3.13 results in:

• Lyapunov exponent: λ = 0.0022,

• alternative Lyapunov exponent: λ = −0.0694
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Figure 3.13: Fake chaos, K = 300

On Fig.3.14 is displayed the alternative exponent along the values of the pa-
rameter a in comparison with the Lyapunov exponent given by (3.16). Given
that the whole evolution of dk is used, not only the transient, therefore the
least squares approximation results in least values. That is why around a = 2
the exponent exhibits less negative values than the Lyapunov exponent ones.
Furthermore the fact it does not deal with the transient prevents it from being
deceiving as we explained previously. Even though its shape is quite similar
to the Lyapunov exponent one, it provides a more faithful explanation of the
behavior of the logistic map. We do not display any curves about other sys-
tems as the Lorenz one. Nevertheless extensive experiments confirmed that
the use of our alternative exponent to describe not only the transient but the
whole evolution is relevant.
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Figure 3.14: Solid line is the alternative Lyapunov exponent, dashed line is the Lya-
punov exponent from the differential method

§ 3.5 State space reconstruction

The tools of the chaos theory that we have just presented provide information
about the behavior of the studied system. The visualization of the associated
trajectory in its own state space allows either to confirm the information or to
improve it, e.g., the famous Hénon map and the Lorenz map represented in
their state space in Fig.3.16(a) and Fig.3.15(a).

However, multidimensional systems cannot be so easily represented, given
that our human skills prevent us from observing more than three dimensions
(or four if we consider time as a dimension). Furthermore, multidimensional
dynamical systems are described by so many variables that it appears often
very hard to acquire them all. Even in reasonable state space, as the Hénon
map one, a few state variables are unavailable. To keep a reliable representa-
tion of a system, we need an alternative state space built by the State Space
Reconstruction (SSR) [Kug96]. The SSR aims to put up an approximate state
space by the only use of a subset of the state variables. Most time, the evolu-
tion of a single variable is enough to recover a faithful alternative trajectory,
or more generally a one dimensional map of the state variables. Practically,
we get back a time series {E(1), . . . , E(K)} of K points that we will map by
the SSR to a matrix such that each column is a state variable of the alternative
state space:

T =



T1
T2
...

Tn
...

TL


=



E(1) E(1 + τ) . . . E(1 + (m− 1)τ)
E(2) E(2 + τ) . . . E(2 + (m− 1)τ)

...
...

...
E(n) E(n + τ) . . . E(n + (m− 1)τ)

...
...

...
E(L) E(L + τ) . . . E(L + (m− 1)τ)


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The quantities [T1 . . . TL] are L points of the alternative trajectory inside the
new state space that represents the system evolution. The value m is the target
dimension of the approximate space, called the embedding dimension [H. 06].
The term τ is a delay and L is chosen such that:

L + (m− 1)τ ≤ K (3.17)

The SSR is a relevant tool as we are about to see considering the following
situations:

• Hénon map: we use only one of the two state variables as the basic
sequence to construct the new state space,

• Lorenz map: we use only one of the three state variables as the basic
sequence to construct the new state space.
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Figure 3.15: Hénon map state space

We display the result in Fig.3.15(b) and Fig.3.16(b), with τ = 1, m = 2 for the
Hénon map, and τ = 5, m = 3 for the Lorenz map. These parameters are ar-
bitrarily chosen given the embedding dimension value m = 3. We carried out
numerous experiments to find the better suited τ, i.e. the delays that provide
the most faithful trajectory compared with the original one. The shape of the
Hénon map is perfectly restored although the x-axis suffers from a contraction
comparing with Fig.3.15(a). Concerning the Lorenz map, the reconstruction
is not perfect. However, the global shape is recovered, which is the goal of
the SSR. Indeed, the alternative trajectory provides more qualitative descrip-
tions of our systems than quantitative descriptions. Finally, it appears that the
SSR is a good candidate for the representation of a dynamical system. There-
fore the SSR will be a useful tool when we will expose the behaviors of the
decoding algorithms that are multidimensional systems.
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Figure 3.16: Lorenz map state space

§ 3.6 Conclusion

We now have the main tools to describe the dynamics of the message-passing
algorithms. One of the main task will be to define the state space, that ba-
sically conditions the quantifiers to use. Afterwards, it will be useful to re-
describe their computation given that the decoders are less simple than the
examples we made use of in this chapter. The goal will be to find the param-
eters that are responsible for non trivial behaviors of the algorithms, and to
evaluate the nature of the associated attractors. We will also introduce other
quantifiers dedicated to the decoder themselves.
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Conclusion

We now have all the necessary tools to tackle the core of the problem, that is
the explanation and the analysis of the Belief Propagation algorithm and its
generalization, the Generalized Belief Propagation. The statistical physics and
the optimization will help together to construct the message-passing equa-
tions of both algorithms. By the use of the probability theory on graphical
models that we will also expose, we are able to make merge the different
research areas in a single problem.

The chapter about the dynamical systems will be utilized in the last chap-
ter, where we will try to confront the decoding algorithms on their stability
and their behaviors according to the SNR of the AWGNC. Thanks to the pre-
sentation that we made, it will be possible to construct a relevant and consis-
tent analysis of the dynamics of the Belief Propagation and the Generalized
Belief Propagation.
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Part II

Graphical models and Belief Prop-
agation algorithms
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Introduction

In this second part of the manuscript, we explain in details foundations of the
Belief Propagation (BP) and the Generalized Belief Propagation (GBP) algo-
rithms. The previous part helps get accustomed with the different theories
needed to tackle this issue. In particular, statistical physics plays a major role
in understanding the whole development that leads to the very equations of
the decoding algorithms. This is essentially due to the root of this work and
many others, that is to say Boltzmann’s law. This equation allows us to roll
out the whole procedure that concludes on the formulation of the inference
problem as a constrained optimization of the free energy.

The BP and the GBP are constructed according to the stationary points
of specific formulations of the free energy. As such, they are comparable
algorithms, that is why it appears natural to confront them, even though the
BP is much more tackled than the GBP in the literature. The relevancy and
the originality of our investigation remains in the particular construction of
the region-based approximation that we propose to obtain an efficient GBP
algorithm. As a matter of fact, we study the topology of a given Tanner graph,
that is not usual in the related papers, and we make use of the trapping sets to
construct a powerful mean-field generalization, given that they represent one
of the most challenging problems in channel coding. In this way, we obtain a
relevant GBP algorithm especially for situations where the trapping sets are
particularly harmful. We then propose a method to examine and confront the
BP and the GBP in these situations.

We organize this part such that the first chapter is a deep investigation on
the BP algorithm and its deep connections with the Bethe approximation in
statistical physics. We also expose by the use of examples the suboptimality
that it is subjected to, due to the loop-like topology of Tanner graphs. In
the second chapter, we explain the origin and the functioning of the GBP
algorithm based on the region-based approximation. We introduce an original
method to factorize the joint distribution that implicitly leads to a specific
form of the free energy and then to dedicated message-passing rules. We
compare BP and GBP for LDPC codes where trapping sets are responsible
for the BER degradation. In the last chapter, we consider the BP and the
GBP algorithms as dynamical systems to bring out their properties about their
behaviors face to non trivial situations. To this end, we use tools presented in
first part, e.g. bifurcation diagram and Lyapunov exponent. We also introduce
new tools to connect the dynamical behavior to the decoding performance of

61



62

both decoders. Thus, we determine sizes and positions of attractors, according
to their natures and specific SNR values, provided by the previous dynamical
quantifiers.



- Chapter 4 -

Bethe approximation: an approach to the Belief
Propagation

§ 4.1 Introduction

BP is a well-known algorithm first introduced by Pearl [Pea88] in 1988 to
solve inference problem on Bayesian networks in the framework of artificial
intelligence. It swiftly turned out that this method could be applied to many
research fields with similar issues. As a matter of fact, problems modeled
by factor graphs, Markov Random Fields (MRF), or any other probabilistic
graphical models, can be solved or at least approximately solved by BP, e.g.
neural networks [T. 06b], image processing and video processing [M. 02], spin
glasses [M. 06], channel coding [D. 95]. For each of these examples, the goal
is to extract either an approximate of the most likely state or approximates
of marginals. As a very important example developed in this chapter, it was
proved in the 90’s that BP had deep links with statistical physics where prob-
lems were oriented towards a constrained optimization of the free energy.

In this chapter we show how error correcting codes are closely related to
networks handled by BP. We give a few properties of LDPC codes, then we
describe the rationale behind the Tanner graph. After that, we introduce a
demonstration of the BP equations according to statistical physics. Finally, we
present problems linked to BP that will open onto the next chapters.

§ 4.2 LDPC codes and factor graphs

4.2.1 Error correction capability of LDPC codes
In 1963, Gallager created the Low-Density Parity-Check codes during his PhD
[R.G63]. Impractical to implement at this time, they were forgotten until 1996

when McKay and Neal re-discovered them [D. 95]. These codes are aimed
at providing fast and relevant decoding algorithms for recovering the input
codeword x. Tanner graphs of these codes do not contain many edges, they are
sparse, making any message-passing algorithm, such as BP, low-complexity
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algorithms. To evaluate the error correction capability of a given code, we
commonly use dmin the minimum distance between any two of its codewords.
Coding theory stipulates that the Maximum Likelihood Decoder (MLD) is
able to correct a number of errors that equals:

ε = Ebdmin − 1
2

c (4.1)

with Eb·c the floor function. ε is close to an affine behavior in dmin. Therefore,
as dmin is increased, the corresponding code is able to correct more and more
errors. Coding theory is aimed at designing error correcting codes which dmin
is as large as possible. For very structured codes, defined as codes which
construction is easily mapped for different values of N, a constraint is that
dmin has to evolve the most linearly possible with N, that offers very good
codes. However, computing dmin is not a trivial task as it is closely related
to the rank of the parity-check matrix whose length N can reach very large
values. That is partly why LDPC codes design is still an open problem.

Decoders, such as BP, do not behave as MLD, i.e. nothing ensures that ε
errors would be practically corrected. This theoretical aspect makes dmin a
good indicator to describe LDPC codes performance, whereas the BER is a
fair indicator of decoders performance. The work we present in the following
does not refer to dmin as we focus on decoders constructions, but anyone has
to keep in his mind that global performance of a transmission partly rely on
the couple code+decoder.

4.2.2 Tanner graph

Tanner graph is not only a support for message-passing algorithms, it has a
deep meaning in the field of graphical models. Previously we pointed out
that any channel could be modeled as a random map on the input codeword
x. It means that we cannot obtain any deterministic information concerning x
from the data y but only a probabilistic information. From the receiver point
of view, bits x1, . . . , xN are mapped to a probabilistic set made of the random
variables X = {X1, . . . , XN}. The only feasible process for the receiver when
no knowledge of the LDPC code use to encode information is available, is to
estimate the a posteriori probability p(X = x, y) 1 according to Bayes rule, using
the likelihoods, as we mentioned in the previous chapter concerning the naive
estimation.

An LDPC code C transforms the probabilistic set X into a probabilistic
network (X, C). Any parity-check equation ca is then a correlation function
between its argument bits Xa. In other words, any conditional probability
distribution p(Xi|X1, . . . , Xi−1, Xi+1, . . . , XN) is reduced to:

p(Xi|X1, . . . , Xi−1, Xi+1, . . . , XN) = p(Xi|XNi ), (4.2)

1a posteriori probability is originally defined as p(x|y). As channels are assumed to be memory-
less, likelihoods do not depend on the LDPC code used to encode information, i.e. they only help
get an insight on possible values of bits x1, . . . , xN . Bayes rule stipulates that p(x, y) = p(x|y)p(y),
therefore provided observations y1, . . . , yN , searching for distribution p(x, y) is equivalent to
searching for distribution p(x|y). That is why we allow us to call a posteriori distribution both
distributions.
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where XNi ⊆ X is the set of variables that are linked to Xi by any parity-
check equation (distinct from Ni, the set of check nodes linked to Xi), see the
example in Fig.4.1.
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X6

X7

ca

cb

cc

Figure 4.1: Tanner graph – XN7 = {X1, . . . , X6}, N7 = {ca, cb, cc}

Thus, the network is said to fulfill the Markov property. This makes the prob-
abilistic set a Markov Random Field (MRF). We can represent this MRF by a bi-
partite graph G = (X∪C, E) where the vertices are the variables X = {X1, . . . , XN}
and the check nodes C = {c1, . . . , cM}. Any edge e = (ca, Xi) = (Xi, ca) ∈ E
is the dependence of the variables on the parity-check equations.

4.2.3 Factor graph

The Hammersley-Clifford theorem [P. 90], [J.M71] stipulates that the joint
probability distribution of any MRF can be factorized over cliques of the graph
G, a clique being defined as a fully connected subgraph. In the current study,
any check node ca accompanied by its neighborhood Xa constitute a clique.
Therefore we obtain the following form:

p(x) , p(X = x) =
1
Z

M

∏
a=1

fa(xa) (4.3)

with Z the normalization constant that ensures that p(x) is a genuine prob-
ability distribution, i.e. ∑x p(x) = 1. Functions { fa(xa)}a,xa are symmetric
functions called potentials, or kernels, depending on the context:
∀ca ∈ C, ∀Xai , Xaj ∈ Xa, ∀xai , xaj ,

fa(xa1 , . . . , xai , . . . , xaj , . . . ) = fa(xa1 , . . . , xaj , . . . , xai , . . . ) (4.4)

Such a factorization (4.3) makes any MRF a factor graph. Generally, the factor
graph distribution is a product of positive potential functions, but for LDPC
codes, potentials are only valued in {0, 1} i.e. the state of any clique ca ∪ Xa
is strictly valid ( fa(xa) = 1) or not ( fa(xa) = 0). In other words, any potential
function fa is the XOR of the associated parity-check equations ca:

∀ca ∈ C, ∀xa, fa(xa) = 1⊕
⊕

Xi∈Xa

xi (4.5)
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The factor graph of any LDPC codes is called a Tanner graph [F.R01]. Equation
(4.3) is the a priori distribution on the variables X1, . . . , XN from the receiver
point of view. This expression is quite natural in the sense that:

• for any vector that is not a codeword, there is at least one parity-check
equation that is not verified, i.e.,

∀x ∈ FN
2 \C, ∃ca, fa(xa) = 0 =⇒ p(x) = 0

• only the codewords have non-null probabilities to appear,

∀x ∈ C, ∀ca, fa(xa) 6= 0 =⇒ p(x) 6= 0

• the distribution over the codewords is uniform and can be computed
knowing that C is built with 2K codewords (K is the number of informa-
tion bits encoded by the LDPC code),

∀x ∈ C, p(x) =
1

2K .

According to Bayes rule, we can finally assert that the a posteriori probability
distribution is:

p(x, y) =
1
Z

M

∏
a=1

fa(xa)
N

∏
i=1

p(yi|xi) (4.6)

From the receiver point of view, the estimate of the input sequence x̂ corre-
sponds to:

x̂ = arg max
x

p(x, y) (4.7)

Unfortunately, as it was pointed out about MLD, this distribution is not tractable
given that we would need to span through 2N states to reach x̂, and N is typ-
ically very large (e.g. N = 64800 in LDPC codes used for DVB-S2 standard 2)
making it not practical. To circumvent this problem of computation complex-
ity, we use a trial and tractable probability distribution {b(x)}x, called the joint
belief, that we want to be as close as possible to the true distribution {p(x)}x.
In the following, we develop questions about the constraints it is subject to,
and how to evaluate its accuracy.

§ 4.3 Pairwise Tanner graph

First of all, we study the case of pairwise Tanner graphs, because they form
the simplest examples to understand and handle the factorization of the joint
distribution. In such graphs, any edge implicitly carries a check node, because
any check node only has two variable nodes as neighbors. We start with a tree,
i.e. a loop-free graph, and we continue with a square lattice that is a graph
which drawing forms a regular square tiling.

2see documentation on DVB-S2 at http://www.etsi.org/deliver/etsi_en/302300_302399/
302307/01.02.01_60/en_302307v010201p.pdf

http://www.etsi.org/deliver/etsi_en/302300_302399/302307/01.02.01_60/en_302307v010201p.pdf
http://www.etsi.org/deliver/etsi_en/302300_302399/302307/01.02.01_60/en_302307v010201p.pdf
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4.3.1 Tree case
We consider the tree represented on Fig.4.2.

X1 X2

X3 X4

Figure 4.2: Tanner tree

Bayes rule and Markov property tell us that the joint distribution is:

p(x) = p1|23(x1|x2, x3)p234(x2, x3, x4) (4.8)

p(x) =
p123(x1, x2, x3)

p23(x2, x3)
p234(x2, x3, x4) (4.9)

As {X3, X1, X2} is a chain, i.e. only one path connects these three nodes, we
can easily factorize the term p123:

p(x) =
p12(x1, x2)p13(x1, x3)p24(x2, x4)

p1(x1)p2(x2)
(4.10)

Such a formulation is a product of the couples distributions that are p12, p13, p24
divided by the single variable intersections distributions that are p1, p2:

p(x) =

∏
<Xi ,Xj>

pij(xi, xj)

∏
Xi

pdi−1
i (xi)

(4.11)

where di is the number of edges incoming on the variable node Xi.

4.3.2 Loopy case
We consider the graph represented on Fig.4.3.

X1 X2

X3 X4

Figure 4.3: Square Tanner lattice

The joint distribution is the same as (4.9). However, equation (4.10) cannot be
exact on this graph given that X2 and X3 are independent conditionally to X1
and X4 whereas in the tree case it was only conditioned to X1.
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In other words, if we can find more than one path between two nodes in the
graph, i.e. if it contains loops, then equation (4.11) holds as an approximation.
Most graphs are not trees, therefore factorization (4.11) remains an approxi-
mation in most cases. As a famous example in spin glasses theory or image
processing, the square lattice of N = 9 variable nodes, represented in Fig.4.4,
can be approximated with the formula (4.11).

X1 X2 X3

X4 X5 X6

X7 X8 X9

Figure 4.4: Square lattice of length N = 9

§ 4.4 General Tanner graph

We now consider the example of the Hamming code [R.W50] represented
on Fig.4.5(a). We attempt to extend the factorization (4.11) to non-pairwise
Tanner graphs.

X1

X2 X4

X3

X5

X6

X7fa

fb

fc

(a) Tanner graph of the Hamming code

X1

X2 X4

X3

X5

X6

X7fa

fb

fc

(b) Tanner tree of the modified Hamming
code – Dashed edges are zeros in the
parity-check matrix H

Figure 4.5: Hamming code

First, if we omit the edges ( fa, X1), ( fb, X4), ( fc, X3), see Fig.4.5(b), we obtain
a loop-free Tanner graph whose joint distribution is exactly the extension of
(4.11):

p(x) = p5|123(x5|x1, x2, x3)p6|124(x6|x1, x2, x4)p7|134(x7|x1, x3, x4)(4.12)

p(x) =
pa(xa)pb(xb)pc(xc)

p2
1(x1)p2(x2)p3(x3)p4(x4)

(4.13)
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Unfortunately, factorization for the true Hamming code cannot be reduced to
(4.13):

p(x) = p5|123(x5|x1, x2, x3)p6|124(x6|x1, x2, x4)p7|134(x7|x1, x3, x4)(4.14)

=
pa(xa)pb(xb)pc(xc)p1234(x1, x2, x3, x4)

p123(x1, x2, x3)p124(x1, x2, x4)p134(x1, x3, x4)
(4.15)

It is due to the loop-like topology of the graph: several paths link any cou-
ple of variable nodes. Therefore the general rule of factorization is only an
approximate of the joint distribution:

p(x) ≈ ∏M
a=1 pa(xa)

∏N
i=1 pdi−1

i (xi)
(4.16)

and so does the belief:

b(x, y) =

M

∏
a=1

pa(xa) ∏
Xi∈Xa

li(xi, yi)

N

∏
i=1

(
pi(xi)li(xi, yi)

)di−1 (4.17)

It is a quite hard task to evaluate the influence of a given loop on the previous
approximation, mainly because loops are very often interleaved altogether.
In addition, we will see that the degradation of the approximation strongly
depends on the transmission channel noise, therefore decoders, that we will
describe in the following, are the only method to obtain a fair insight.

The factorized form is not the only necessary practical approximation. In-
deed, in such a formula, we assume that marginal distributions of potentials
{pa(xa)}a,xa and single variable nodes {pi(xi)}i,xi are available. We recall that
for any potential fa, for any state xa:

pa(xa) = ∑
x∪xa

p(x) (4.18)

and that for any variable node Xi, for any state xi:

pi(xi) = ∑
x∪xi

p(x) (4.19)

These quantities cannot be practically obtained by these marginalizations as
they depend on the joint distribution p(x) we are trying to approximate.
Therefore, marginal distributions have to be estimated by trial distributions,
the beliefs: to any potential fa is associated a belief {ba(xa)}xa and to any single
variable Xi is associated a belief {bi(xi)}i.
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§ 4.5 Energy

To estimate marginal distributions, we use the form of the joint distribution
given by statistical physics. Previously we highlighted that any Tanner graph
was a factor graph which probability distribution is:

p(x) =
1
Z

M

∏
a=1

fa(xa) (4.20)

The Hammersley-Clifford theorem stipulates that any factor graph has the
distribution of a Boltzmann’s field [L. 64]:

p(x) =
1
Z

e−EI(x) (4.21)

where EI(x) is an energy function. According to statistical physics, EI(x)
provides links or interactions between variable nodes of the network X in the
state x, e.g. the magnetic couplings {Jij}i,j between the spins {Si, Sj}i,j of a
spin glass S. The function EI is linearly decomposed as:

EI(x) =
M

∑
a=1

Ea(xa) (4.22)

where each function Ea is the interaction energy between variable nodes of
the subset Xa ⊂ X. This linear decomposition allows us to factorize the joint
distribution as:

p(x) =
1
Z

M

∏
a=1

e−Ea(xa) (4.23)

that provides, by a simple identification with (4.20), analytical links between
potentials { fa(xa)}a,xa and energy functions {Ea(xa)}a,xa :

∀ca ∈ C, ∀xa, Ea(xa) = − log fa(xa) (4.24)

This formulation carries a physical interpretation of LDPC codes. A configu-
ration, or state, x such that at least one parity-check equation ca is not verified,
i.e. fa(xa) = 0, is an infinite energy state. In other words, a forbidden state is
made unreachable. In contrast, a state that verifies all parity-check equations
is a ground state (state of minimum energy). Thus, to search for the most
likely state of the distribution, i.e. x̂ = arg maxx p(x), is equivalent to search
for the state that minimizes the energy function, x̂ = arg minx EI(x).

Any additive channel noise, e.g. the noise from the Additive White Gaus-
sian Noise Channel (AWGNC), is equivalent to an external magnetic field H
in which a spin glass is embedded in. As the AWGNC disturbs independently
each bit of a codeword, H interacts independently with each spin. These mag-
netic interactions are modeled by another energy function:

EH(x) =
N

∑
i=1

Ei(xi) (4.25)
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which expression is a scalar product between the magnetic field and the spin
vectors 3. The total energy function is then:

E(x, H) = EI(x) + EH(x) (4.26)

=
M

∑
a=1

Ea(xa) +
N

∑
i=1

Ei(xi) (4.27)

Denoting any local interaction of a “spin” Xi with the magnetic field H by
Ei(xi) = − log li(xi, yi), where yi = xi + ni is the channel output and ni is a
noisy element, we obtain:

E(x, y) = −
M

∑
a=1

log fa(xa)−
N

∑
i=1

log li(xi, yi) (4.28)

Then, joint distribution becomes:

p(x, y) =
1
Z

M

∏
a=1

e−Ea(xa)
N

∏
i=1

e−Ei(xi) (4.29)

or:

p(x, y) =
1
Z

M

∏
a=1

fa(xa)
N

∏
i=1

li(xi, yi) (4.30)

that equals (4.6). This helps demonstrate that an LDPC code is somehow
equivalent to a spin glass, considering that:

• any coupled spins are bits of a common parity-check equation,

• any spin disturbed by an external magnetic field is a bit disturbed by a
channel noise.

§ 4.6 Variational approach

Equations (4.17) and (4.28) allow us to construct a variational approach to
solve the inference problem. The variational approach principle is to use a trial
distribution, the belief {b(x, y)}, that we modify to fit the true joint distribu-
tion {p(x, y)} as accurately as possible. Accuracy of any variational approach
is evaluated according to a specific metric, as we will see in the following.

We do not take into account the a posteriori probability distribution, but the
a priori one. Indeed, as the belief is a probability distribution, it satisfies the
Bayes rule:

b(x, y) = b(x)b(y|x) (4.31)

As likelihoods {li(xi, yi) = pi(yi|xi)}i,xi are completely independent from fac-
tor graphs 4, the probability law of Y|X does not depend on the inference
method. As a matter of fact, it helps to discriminate valid states, or code-
words, brought out by {b(x)}x, according to a given observation.

3denoting H = [h1 . . . hN ]
T and x = [x1 . . . xN ]

T , we obtain that EH(x) = −∑N
i=1 hixi

4channels studied in this thesis (AWGNC, BSC) are memoryless: p(y|x) = ∏N
i=1 pi(yi |xi)
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This way, we focus on the computation of the a priori probability distribution,
see (4.16):

b(x) =

M

∏
a=1

ba(xa)

N

∏
i=1

bdi−1
i (xi)

(4.32)

where {ba(xa)}a,xa and {bi(xi)}i,xi are beliefs on potentials and variable nodes,
respectively. To evaluate the relevancy of (4.32), a commonly used estimator
is the Kullback-Liebler divergence [Kul68]:

KL(b||p) = ∑
x

b(x) log
b(x)
p(x)

(4.33)

Reasons to select this estimator are that it offers a physical interpretation of
the variational approach as explained in the following, and also that KL(b||p)
has a meaning in information theory: it is the relative entropy between dis-
tributions b{(x)}x and p{(x)}x. This way, Kullback-Liebler divergence is a
measure of the information lost when distribution b{(x)}x is used to approx-
imate distribution p{(x)}x. Main properties of this function are:

• ∀{p(x)}x, ∀{b(x)}x, KL(b||p) ≥ 0,

• KL(b||p) = 0 if and only if ∀x, b(x) = p(x),

• KL(·||p) and KL(b||·) are convex functions.

We will not detail the fact that it does not define a metric or a distance because
we do not need this piece of information but the interested reader could refer
to [Kul68] for more details.

A physical interpretation of the variational approach consists in develop-
ing KL(b||p) considering p(x) as a Boltzmann’s field:

KL(b||p) = ∑
x

b(x) log b(x)−∑
x

b(x) log
e−EI(x)

Z
(4.34)

= Ub − Sb + log Z (4.35)

where:

• Ub = ∑x b(x)EI(x) is the expectation value of the energy function called
the variational mean energy provided that the network is described by the
law {b(x)}x,

• Sb = −∑x b(x) log b(x) is the entropy relative to the distribution {b(x)}x,
called the variational entropy.

Properties of the Kullback-Liebler divergence provide that:

Ub − Sb ≥ − log Z (4.36)
Ub − Sb = − log Z if and only if ∀x, b(x) = p(x) (4.37)
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We obtain a dual formulation of the inference problem: the variational ap-
proach consists in varying the joint belief to minimize the cost function

Fb = Ub − Sb (4.38)

called the variational free energy. Therefore it is possible to reach analytic ex-
pressions of the marginal distributions replacing the trial distribution {b(x)}x
by its factorization (4.32). The expression of the variational entropy is:

Sb = −
M

∑
a=1

∑
xa

ba(xa) log ba(xa)−
N

∑
i=1

(1− di)∑
xi

bi(xi) log bi(xi) (4.39)

The variational mean energy is computed thanks to the linear decomposition
of the energy function (4.22):

Ub =
M

∑
a=1

∑
xa

ba(xa)Ea(xa) (4.40)

= −
M

∑
a=1

∑
xa

ba(xa) log fa(xa) (4.41)

On one hand, as shown in [J.S05], the variational mean energy is not an ap-
proximation of the mean energy Up = ∑x p(x)E(x), the only difference is
due to the values of the beliefs 5. On the other hand, even though all be-
liefs {ba(xa)}a,xa , {bi(xi)}i,xi equal true marginals, the variational entropy is
an approximation of the true entropy Sp = −∑x p(x) log p(x) because the fac-
torization of the joint distribution is only an approximation for most factor
graphs (the loopy ones). We obtain the equation of the so-called variational
free energy of the Bethe approximation:

Fb =
M

∑
a=1

∑
xa

ba(xa) log
ba(xa)

fa(xa)
+

N

∑
i=1

(1− di)bi(xi) log bi(xi) (4.42)

§ 4.7 Optimization

To search for the most accurate belief is equivalent to optimize the cost func-
tion Fb i.e. to search for stationary points of the variational free energy. These
points are distributions {b(x)}x such that the gradient of Fb is zero i.e.:

∂Fb
∂b(x)

= 0 (4.43)

In the following we present constraints under which a function {b(x)}x is
acceptable to minimize Fb.

5demonstrations of (4.39) and (4.41) implicitly assume that any marginal distribution, either
on a potential or on a variable node, is exact to the associated marginalization on the joint distri-
bution, see next section for details
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4.7.1 Constraints

Factorization of belief (4.32) is constituted of variational functions {ba(xa)}a,xa

and {bi(xi)}i,xi assumed to be distributions, then they have to satisfy local
marginalizations:

• (C1) ∀ca ∈ C, ∑xa ba(xa) = 1,

• (C2) ∀Xi ∈ X, ∑xi
bi(xi) = 1.

In addition, for any check node, distributions of neighboring variable nodes
have to equal corresponding marginalizations:

• (C3) ∀ca ∈ C, ∀Xi ∈ Xa, ∀xi, bi(xi) = ∑xa∪xi
ba(xa)

Additional conditions ensure that these functions are non-negative:

• (C4) ∀ca ∈ C, ∀xa, ba(xa) ≥ 0,

• (C5) ∀Xi ∈ X, ∀xi, bi(xi) ≥ 0.

We obtain a constrained problem modeled, and sometimes solved, by the La-
grangian formalism [D.P01]. It is accordingly convenient to remove conditions
that are linear combinations of other conditions, which helps lighten writings
and computations:

• (C1) and (C3) imply constraint (C2) then (C2) is removable,

• (C3) and (C4) entail condition (C5) thus (C5) is voluntary omitted.

One would notice that the update equation of any belief {bi(xi)}i,xi (1.14), ex-
hibited in previous chapter, included a normalization constant, whereas con-
dition (C1) guarantees such a property. As a matter of fact, all conditions are
guaranteed to be satisfied for any optimum while any other points is not as-
sumed to fulfill such conditions. The BP algorithm is an iterative process that
could be interrupted at any iteration k either for time’s sake or for any other
reason. Thus {b(k)i (xi)}i,xi , {b

(k)
a (xa)}a,xa have to define acceptable solutions,

even approximative.

4.7.1.1 Normalization

It is crucial to understand the normalization constraint because failing to do
so could lead to a completely wrong optimization. We present here two for-
mulations of the minimization problem that we encountered in the literature.
In order to make the explanation quite simple, we reduce the current problem
to the following minimization:

f : Rn
+ −→ Y ⊂ R

x 7−→ f (x)

such that x ∈ X = {x ∈ Rn
+, ||x|| = 1}, where ||x|| = ∑n

i=1 xi. The first
formulation of the optimization is:

(P1) :

 f (x∗) = min
x∈X

f (x)

x∗ = arg min
x∈X

f (x) (4.44)
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A modified formulation consists in relaxing the constraint by making it in-
herent to the function. We accordingly obtain the second formulation of the
optimization:

(P2) :


f
(

x∗
||x∗ ||

)
= min

x∈Rn
+

f
(

x
||x||

)
x∗ = arg min

x∈Rn
+

f
(

x
||x||

) (4.45)

As we will now explain, (P1) and (P2) are not strictly equivalent. To this end,
we consider the example on Fig.4.6 with n = 2, where function f (x1, x2) is
assumed to be a paraboloid.

X

•

•

A

•

•

M

x1

f (x1, x2)

x2

1 2

1

2

0

1

2

(a) Constrained minimization (P1)

X

•

•

A
••

•

BB′

•

•

•

CC′

•

•

•

D

D′

x1

f (x1, x2)

x2

1 2

1

2

0

1

2

(b) Relaxed minimization (P2)

Figure 4.6: Two formulations of the normalization constraint. (a) We only scan X
to extract point A, the argument of the minimum. (b) Two points that live on the
same line (B, B′), (C, C′) or (D, D′) will have the same mapping by f

(
·
||·||

)
then

the argument of the minimum if not a unique point but a line.

Without any constraint, the minimum of f is reached in M = [x1(M), x2(M)].
The normalization constraint is the vertical plan X = {(x1, x2)|x1 + x2 = 1}.
Points of the paraboloid that match with the constraint constitute the parabola.
Problem (P1) consists in spanning through X to find the couple (x∗1 , x∗2) such
that:

∀(x1, x2) ∈ X\(x∗1 , x∗2), f (x1, x2) ≥ f (x∗1 , x∗2)

Thanks to the convexity of the parabola, it is guaranteed that we find the point
A = [x1(A), x2(A)], see Fig.4.6(a).

Considering problem (P2) Fig.4.6(b), searching for (x∗1 , x∗2) is not restricted
to X . For each point (x1, x2) ∈ R2

+, we first compute its normalized version
(z1 = x1

x1+x2
, z2 = x2

x1+x2
) that lives in X , then we check if f (z1, z2) is the

minimum. Using this method, the minimum f (A) is always found but the
argument of this minimum is not reduced to a unique point. All points on
the line that goes from the origin through (x1(A), x2(A)) are arguments of the
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minimum because their normalized version equals point A, i.e.:

arg min
x∈X

f (x) ⊂ arg min
x∈R2

+

f
(

x
||x||

)
(4.46)

Finally, this toy example makes reveal that it is not a mistake not to consider
the constraint on the normalization, given that the solution of the optimization
is not unique in this case. The current problem of the minimization of the
variational free energy Fb can then be formulated as searching for:

arg min
{ba(xa)}a,xa∈R2da

+

{bi(xi)}i,xi
∈R2

+

Fb

{ ba(xa)

∑xα
ba(xα)

}
a,xa

,

{
bi(xi)

∑xj
bi(xj)

}
i,xi

 (4.47)

This way, enforcing normalization at every iteration does not prevent the BP
from searching for and reaching the optimal solution.

Another formulation of the marginals normalizations that provides wrong
result is the following one. First of all, we extract {ba(xa)}a,xa , {bi(xi)}i,xi ,
unnormalized functions that minimize Fb. As a post-treatment, we then nor-
malize these functions. In the former example on the paraboloid, this method
leads M to be projected on X as is exhibited in Fig.4.7.
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Figure 4.7: Wrong formulation of the normalization constraint. The projection of M
on X is different from A.

We observe that point A′ differs from point A, the result is wrong. This error
is noticeable when inserting post-normalization quantities {Za}a, {Zi}i in the
equation of the variational free energy. We obtain another function:

F̃b =
M

∑
a=1

1
Za

∑
xa

ba(xa) log
ba(xa)

fa(xa)
−

M

∑
a=1

log Za

+
N

∑
i=1

1− di
Zi

bi(xi) log bi(xi)−
N

∑
i=1

(1− di) log Zi. (4.48)
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Signs and values of the new terms strongly affect the variational free en-
ergy. Then, there is absolutely no reason that F̃b = Fb, except if all post-
normalization quantities equal 1, that is rarely true without any constraint on
Fb. Finally, normalizing marginals cannot be done as a post-treatment.

4.7.1.2 Omitted constraints

We now point out constraints that are not mentioned in the literature, to our
knowledge. First of all, the global marginalizations:

∀ca ∈ C, ∀xa, ba(xa) = ∑
x∪xa

b(x) (4.49)

∀Xi ∈ X, ∀xi, bi(xi) = ∑
x∪xi

b(x) (4.50)

According to [T. 06a], the reason not to take into account the global marginal-
ization is that the Bethe approximation does not consist in factorizing the
joint belief as (4.17) but in decomposing the variational free energy according
to (4.42) using pseudo-marginals on check nodes and variable nodes. Indeed,
equation of Fb can be deduced according to the following principle: splitting
variational mean energy and variational entropy over variable nodes and po-
tentials. This principle is original whereas derivation of the joint distribution
is somehow a consequence of this principle that was not originally presented
in [H.A35]. The factorization helps introduce definitions to link with the in-
ference problem. This is only an approximation and the values of {b(x)}x are
never used in the optimization process then it turns out not to be necessary to
consider any joint belief in any inference algorithm.

The second constraint that is not mentioned is the global normalization:

∑
x

b(x) = 1 (4.51)

As we mentioned previously, the joint belief is somehow a way to create the
pseudo-marginals {ba(xa)}a,xa , {bi(xi)}i,xi . But it turns out possible to define
these pseudo-marginals without any joint belief, by asserting that we approx-
imate both the mean energy and the variational entropy by linear decomposi-
tions. Then any constraint on the joint belief is irrelevant because this quantity
does not truly exist. Furthermore conditioning the minimization to a normal-
ized joint belief does not carry any relevant information, it is equivalent to
consider that its true form is:

B(x) =
1
Z

b(x) (4.52)

B(x) =
1
Z

∏M
a=1 ba(xa)

∏N
i=1 bdi−1

i (xi)
(4.53)

where Z is the normalization such that ∑x B(x) = 1. The variational free
energy becomes:

FB =
1
Z

Fb − log Z (4.54)
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Thus, we observe that Z only implies an affine mapping of Fb to FB, that does
not affect the optimization problem. Finally we can assert that the use of Z is
not necessary. Given that it also includes a non-negligible computation time,
we do not take it into account in the optimization. Then we do not consider
the optimization of FB but of Fb.

4.7.2 Karush-Kuhn-Tucker conditions
Any problem with constraints of inequalities is generally solved using the
Lagrangian formalism [D.P01]. To this end, it is necessary to check that all the
constraints fulfill the Karush-Kuhn-Tucker conditions that are:

• continuous differentiability: any constraint and its differentiate are con-
tinuous,

• regularity: we can find a solution {b∗a (xa)}a,xa , {b∗i (xi)}i,xi such that none
of the differentiates of the constraints with these solutions is zero,

• we can find a set of non-infinite Lagrange multipliers {γ∗a}a, {λai(xi)}a,i,xi
such that:

– primal feasibility: the constraints are all verified,
– stationarity: the gradient of the Lagrange function is zero.

Given that constraints on the Bethe approximation satisfy KKT conditions, we
define Lagrange multipliers {γa}a, {λai(xi)}a,i,xi for all constraints such that
the Lagrange function is:

L = Fb + ∑
ca∈C

γa

(
∑
xa

ba(xa)− 1

)

+ ∑
ca∈C

∑
Xi∈Xa

∑
xi

λai(xi)

(
∑
xa

ba(xa)− bi(xi)

)
(4.55)

KKT conditions are used to define analytic expressions of marginal beliefs.
However, one should keep in mind that these KKT conditions are only nec-
essary conditions. The equivalence is not trivial, especially because the vari-
ational free energy is rarely convex. Proving equivalence is a very hard task
that is not tackled a lot in the literature. In [T. 06a] are introduced a few as-
sumptions that lead to the equivalence but there is no general proof, e.g. it is
demonstrated for Tanner graphs that only contain one loop, which leads to a
perfect optimization in that case. However, many loops are encountered for
most LDPC codes. To our knowledge, no proof ensures the equivalence in
these cases, and it is very likely that the equivalence is not verified. Despite
this drawback, we previously observed that BP has very decent performance,
meaning that this omission is not significantly damageable, even though it is
still an open problem.

4.7.3 Solution
We now search for positive marginal functions that minimize the Lagrange
functions, therefore we compute the gradient of the Lagrange function ac-
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cording to the marginal beliefs on check nodes and variable nodes:

∀ca ∈ C, ∀xa,
∂L

∂ba(xa)
= 1 + log

ba(xa)

fa(xa)
+ γa + ∑

Xi∈Xa

λai(xi)

∀Xi ∈ X, ∀xi,
∂L

∂bi(xi)
= (1− di)

(
1 + log bi(xi)

)
− ∑

ca∈Ni

λai(xi)

Arguments that nullify the gradient are called stationary points of Bethe ap-
proximation. We obtain their equations 6:

∀ca ∈ C, ∀xa, b∗a (xa) = fa(xa)e−1−γa ∏
Xi∈Xa

e−λai(xi) (4.56)

∀Xi ∈ X, ∀xi, b∗i (xi) = e−1 ∏
ca∈Ni

e
λai(xi)

1−di (4.57)

We observe that these functions are positive then it is not useful to consider
constraints (C4) and (C5), that is why they do not appear in the equation
of the Lagrange function (4.55). As for any variable node Xi, bi(xi, yi) =
bi(xi)li(xi, yi) and for any check node ca, ba(xa, ya) = ba(xa)la(xa, ya) with
la(xa, ya) = ∏Xi∈Xa li(xi, yi) we obtain:

∀ca ∈ C, ∀xa, b∗a (xa, ya) = la(xa, ya) fa(xa)e−1−γa ∏
Xi∈Xa

e−λai(xi) (4.58)

∀Xi ∈ X, ∀xi, b∗i (xi, yi) = li(xi, yi)e−1 ∏
ca∈Ni

e
λai(xi)

1−di (4.59)

Beliefs are solutions to what is called primal problem [D.P01]. At this point,
Lagrange multipliers are not valued, their assignments is the dual problem.
Using constraints, it is possible to obtain a system of equations that does not
depend on beliefs anymore but only on Lagrange multipliers, e.g. constraint
(C3) is equivalent to:

e
λai(xi)

1−di =

e−γa ∑
xa∪xi

fa(xa) ∏
Xj∈Xa\Xi

e−λaj(xj)

eλai(xi) ∏
Xb3Xi , fb 6= fa

e
λbi(xi)

1−di

(4.60)

However, the system is not linear and no method in the literature indicates
how to handle equations to reach a solution. Partly tackled in [T. 06a] and
[A.L03], computation of multipliers is very hard to handle but it emerged an
alternative algorithm, the CCCP 1.6 to solve it. In spite of encouraging results
[J.-13a], CCCP does not success for any LDPC code, especially due their loop-
like topologies.

6any variable node Xi of a unit degree di = 1 does not appear in (4.42). Therefore, Lagrangian
formalism cannot offer any equation of associated belief. Such a belief is obtained according to
constraint (C3).
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Another approach to this dual problem is offered by the BP algorithm. First
of all, we assume that:

e−λai(xi) = ∏
Xb3Xi ,cb 6=ca

e
λbi(xi)

1−di (4.61)

Afterwards, we can reduce (4.60):

e
λai(xi)

1−di = e−γa ∑
xa∪xi

fa(xa) ∏
Xj∈Xa\Xi

e−λaj(xj) (4.62)

These two equations are messages equations of the BP algorithm provided
that messages and Lagrange multipliers are linked such that:

mai(xi) = e
λai(xi)

1−di (4.63)

nia(xi) = e−λai(xi) (4.64)

Using an iterative process to solve these Lagrange multipliers is performing
the message-passing of BP (1.12) and (1.13). We then obtain beliefs equations
of BP:

ba(xa, ya) =
1

Za
la(xa, ya) fa(xa) ∏

Xi∈Xa

nia(xi) (4.65)

bi(xi, yi) =
1
Zi

li(xi, yi) ∏
ca∈Ni

mai(xi) (4.66)

where Zi, Za are normalization constants. Identifying messages to Lagrange
multipliers provides the crucial result that stationary points of the variational
free energy of Bethe are fixed points of BP. We summarize three equivalences
that we have encountered until now:

• searching for the most likely state of Tanner graphs is searching for the
ground state of energy functions,

• searching for the most accurate belief is minimizing the variational free
energy,

• searching for BP fixed points is searching for stationary points of the
variational free energy of Bethe.

§ 4.8 BP assumption

Many experiments have shown in the literature that BP is quite efficient to
decode LDPC codes, and more generally to infer any factor graph. However,
its equations are based on a particular assumption that prevents it from being
optimal. To understand it well, we use two very simple examples in which we
extract the belief on a given variable node.



4.8. BP assumption 81

4.8.1 Tree-like Tanner graph

A Tanner graph has a tree-like topology if and only if any two nodes are
linked by a unique path, e.g. Tanner graph in Fig.4.8.

X1

X2

X3

X4

X5

X6

X7

ca

cb

cc

Figure 4.8: Tree-like Tanner graph

In this case, messages and beliefs of BP reach canonical forms, that is to say
expressions that only depend on parity-check equations and likelihoods. In
previous figure, after few iterations, the marginal belief of variable node X1
becomes:

b(k)1 (x1, y1) =
l1(x1, y1)

Z ∑
x2,x3,x4,x5,x6,x7

l2(x2, y2)l3(x3, y3)l4(x4, y4)

×l5(x5, y5)l6(x6, y6)l7(x7, y7)

× fa(x1, x2, x3) fb(x2, x4, x5) fc(x3, x6, x7) (4.67)

We observe that it does not depend on messages or initialization quantities
due to the iterative process but only on intrinsic parameters of the problem.
As a matter of fact, anyone can verify that for any other variable node Xi:

∀xi, bi(xi, yi) = ∑
x∪xi

1
Z

M

∏
a=1

fa(xa)
N

∏
i=1

li(xi, yi) (4.68)

which is the exact marginalization of the true joint distribution (4.6). It finally
confirms that BP reaches optimal performance for tree-like LDPC codes.

4.8.2 Non tree-like Tanner graph

We use the previous Tanner graph considering variable nodes X5 and X6
merged, see Fig.4.9. Follow BP update equations, we obtain at any iteration k:
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X1

X2

X3

X4

X5

X6

ca

cb

cc

Figure 4.9: Non tree-like Tanner graph

m(k)
2a (x2, y2) =

l2(x2, y2)

Z ∑
x1,x2,x3,x4,x5,x6

fb(x2, x4, x5) fc(x3, x5, x6)

×l3(x3, y3)l4(x4, y4)l5(x5, y5)l6(x6, y6)

×m(k−3)
1a (x1, y1)m

(k−3)
2a (x2, y2) (4.69)

Message m(k)
2a depends on its value three iterations before m(k−3)

2a , due to the
loop (ca) − (X2) − (cb) − (X5) − (cc) − (X3) − (ca). It is then impossible to
reach canonical equation (4.68), making BP a suboptimal algorithm.

4.8.3 Loops
We show in Fig.4.10 local Tanner graphs used to compute BP equations (1.12)
and (1.13).

Xi

Xj

Xk

Xl

ca

(a) Message from ca to Xi

ca

cb

cc

cd

Xi

(b) Message from Xi to ca

Figure 4.10: Local Tanner graph for messages computations

Crosses indicate that BP assumes that there is a unique path between two
nodes of the Tanner graph, we call this the BP assumption. Therefore, this as-
sumption makes us temporarily ignore few edges when computing messages.
Anyone can show that this prevents us from obtaining canonical equations of



4.8. BP assumption 83

messages and then beliefs, as we previously saw (4.69). Thus, tree-like graphs
result in optimal performances, contrary to loopy graphs.

In addition, iterative process involves that errors due to loops are spread
out in the graph depending on loops sizes: the shorter a loop is, the more
harmful it is for the approximation as its effect appears in a number of itera-
tions equal to the number of variable nodes it contains.

Designing LDPC codes of a high minimum distance needs sophisticated
links between variable nodes to make them robust against channel noise. Reg-
ularly, robustness is relevant when any bit takes part in more than two parity-
check equations. The other side of the coin is that it creates loops in Tanner
graphs. Challenge of coding theory is then to design codes with a high min-
imum distance and with loops as large as possible. Optimal solution then
appear unreachable by the BP algorithm.

4.8.4 Physical interpretation

Considering the equivalence with statistical physics, such a result is not sur-
prising. Indeed, Bethe approximation is a MF approach, see in first chapters
2.4, which is obvious when confronting both fundamental equations:

(MF) : b(x) =
N

∏
i=1

bi(xi), (Bethe) : b(x) = ∏M
a=1 ba(xa)

∏N
i=1 bdi−1

i (xi)
(4.70)

It means that instead of ignoring couplings when computing marginal distri-
butions on single variable nodes, as originally done in MF equations, Bethe
approximation is aimed at neglecting longer range correlations between spins,
that are loops. In other words, Bethe approximation extends MF approach.
First of all, we will see in next chapter that this note considerably help im-
proving again MF approaches. In addition, this also helps not to consider the
BP assumption as a theoretical mistake but as a limit that goes further than
the MF one.

4.8.5 Oscillation

An effect due to the loop-like topology of Tanner graphs is the oscillation of
messages, and then of the beliefs. A simple example helps understand well
this phenomenon. We consider the Tanner graph in Fig.4.11.

X1 X2

X3 X4

ca

cb cc

cd

Figure 4.11: Tanner graph of a loop
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The only acceptable states are x ∈ {0, 1}. We now assume that likelihoods are:

l1(x1, y1) =

[
0.75
0.25

]
, l2(x2, y2) =

[
0.25
0.75

]
,

l3(x3, y3) =

[
0.25
0.75

]
, l4(x4, y4) =

[
0.75
0.25

]
.

In this case, we can show, according to BP equations, that beliefs oscillate such
that for any iteration k:

b(k)1 (x1, y1) =

[
0.25
0.75

]
, b(k+1)

1 (x1, y1) =

[
0.75
0.25

]
,

b(k)2 (x2, y2) =

[
0.75
0.25

]
, b(k+1)

2 (x2, y2) =

[
0.25
0.75

]
,

b(k)3 (x3, y3) =

[
0.75
0.25

]
, b(k+1)

3 (x3, y3) =

[
0.25
0.75

]
,

b(k)4 (x4, y4) =

[
0.25
0.75

]
, b(k+1)

4 (x4, y4) =

[
0.75
0.25

]
.

The estimate of the input codeword then also oscillates:

x(k) = [1001], x(k+1) = [0110]

Both states 1001 and 0110 are unacceptable because they do not satisfy all
parity-check equations. More precisely, for a given variable node, neighboring
check nodes carry conflicting information about its most likely state. It is
then impossible to simultaneously satisfy all parity-check equations. Such a
behavior prevents BP from reaching any steady state, which clearly damages
its performance. As we saw in chapter 2.3, oscillations also appear in statistical
physics for spin glasses and are referred to as frustration.

4.8.6 Trapping-sets
The BP assumption can seriously damage loopy LDPC codes decoding. Worse
than loops are combinations of loops, also known as trapping sets [T.J03]. A
trapping set is a nonempty set of variable nodes in a Tanner graph that are
not eventually corrected by the BP decoder 7. An (a, b) trapping set, shortly
written TS(a, b), is a set of a variable nodes such that the induced subgraph has
b odd-degree, or unverified, check nodes. A trapping sets ontology has been
created for LDPC codes which variable nodes have three checks neighbors,
and which shortest loops contain eight nodes [B. 09]. In this work, we focus
on TS(5, 3) represented in Fig.4.12.
Trapping sets are especially investigated on discrete channels, particularly
BSC, because in these cases, they match low-weight errors events, i.e. se-
quences of erroneous bits that BP cannot eventually decode. They are respon-
sible for the error floor [T.J03], an abrupt degradation of the error-rate slope that
occurs for low crossover probabilities of BSC, see Fig.4.13. Researchers deeply
investigate trapping sets and their relations to failure of iterative decoders.

7strictly speaking, the trapping sets definition does not depend on BP. As a matter of fact,
these are not eventually corrected by any arbitrary iterative decoder, as Gallager-B, Bit-flipping,
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Figure 4.12: Trapping-set of a = 5 variable nodes and b = 3 unverified check nodes
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Figure 4.13: BP error floor when decoding the Tanner code covered by TS(5, 3).

Two points of view remain to circumvent the error-floor:

• either we construct LDPC codes that contain neither small loops nor
combinations of them [D.V12],

• or we design decoders able to manage trapping sets.

First point of view has already been mentioned when we introduced loops. In
the second one, Finite Alphabet Iterative Decoders (FAID), strongly studied
in [S.K11] and [D. 12], can significantly improve error-rate for very low values
of the crossover probability. Two drawbacks of these algorithms in our study
are that they are not defined on LDPC codes with arbitrary node degrees and
they do not deal with any continuous channels, as the AWGNC. In our study,
we choose not to discriminate between any of these channels, therefore we
focus on a generalization of BP, described in next chapter, studied on BSC and
AWGNC. This decoder would help improve the BP decoding performance,
annihilating loops and often trapping sets effects.

BP, etc. In this thesis, we focus on failures of BP, that is why we orient definition towards BP
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§ 4.9 Conclusion

BP and Bethe approximation are demonstrated to be equivalent, therefore they
are two different points of view on a common problem. This result help in-
terpret any Tanner graph as a physical network, e.g. spin glasses, which can
be studied according to a variational approach. Indeed, minimizing the vari-
ational free energy of Bethe using trial distributions is searching for marginal
beliefs as close as possible to exact marginals. We saw that BP – to some
extent Bethe approximation too – was based on a crucial assumption telling
that loops must be ignored to get messages update equations. According
to statistical physics, this is somehow an extension of the MF approach that
even ignores couplings between spins (only when factorizing joint distribu-
tion). Literature on coding theory indicates that most LDPC codes are full of
loops and trapping sets which then prevent BP from being an optimal decoder.
Thus, searching for a more general MF approach turns out to be necessary to
overcome this very important problem.



- Chapter 5 -

Region-based approximation: beyond the Belief
Propagation

§ 5.1 Introduction

In this chapter, we present an extension of the BP algorithm, the General-
ized Belief Propagation (GBP) algorithm. Stemming from the cluster variation
method that gave birth to the Kikuchi approximation, also known as region-
based approximation, in statistical physics, this method provides a more gen-
eral approach to factorize the joint distribution. This is actually the general
form that the Bethe approximation and the Mean-Field are particular cases
of. It helps deal with the loops problem inside Tanner graphs of LDPC code
extending nodes to the concept of regions, where regions are defined as sub-
graphs, or gathering of nodes. This allows us to build a mapping of any Tan-
ner graph to a region-graph where harmful loop-like structures are absorbed
in regions.

We begin this chapter introducing the region-based formalism for any fac-
tor graph. The region-based approximation is then tackled from the point of
view of the inference and statistical physics, that makes emerge a new varia-
tional free energy called the region-based free energy. This stands for a new
cost function which stationary points provide equations of a new message-
passing, the GBP algorithm. We also describe general damping rules that help
the decoder converge, contrary to its original version. Afterward, we present
our original rules of the region-graph construction based on trapping sets. In
addition, we exhibit results that reflect significant performance improvements
compared with the BP, according to an original method that emphasizes on
error-events based on trapping sets.

A part of the following results are published in [J.-12c] and [J.-12a].

87
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§ 5.2 The region-based formalism

Bethe approximation, presented in previous chapter, mostly relies on an ap-
proximate factorization of the joint distribution:

p(x) ≈ ∏M
a=1 pa(xa)

∏N
i=1 pdi−1

i (xi)
(5.1)

which is exact if and only if the corresponding factor graph is a tree. We
recall that this formulation stems from Bayes rule and Markov condition 1.
As a matter of fact, Markov condition does not restrict the factorization of the
joint distribution to be only (5.1). More precisely, we are allowed to extend
Markov condition asserting that the distribution of any set of variable nodes
only depends on the neighborhoods of all these nodes. This way, we find
other factorizations that can be more accurate or even exact. To illustrate such
tellings, we consider the factor graph in Fig.5.1.

X1 X2 X3

X4 X5 X6

X7 X8 X9

Figure 5.1: Square lattice of length N = 9

Bayes rule allows us to formulate the joint distribution as:

p(x) =
p124578(x1, x2, x4, x5, x7, x8)p235689(x2, x3, x5, x6, x8, x9)

p258(x2, x5, x8)
(5.2)

Considering BP assumption2, the Markov condition offers us that:

p(x) ≈ p1245(x1, x2, x4, x5)p2356(x2, x3, x5, x6)p4578(x4, x5, x7, x8)p5689(x5, x6, x8, x9)

p25(x2, x5)p45(x4, x5)p56(x5, x6)p58(x5, x8)
p5(x5)

(5.3)
Both factorizations, either exact or approximative, are also distributions of
other graphical representations, see Fig.5.2 and Fig.5.3. For these factoriza-
tions, marginal distributions are computed over subgraphs of the factor graph.
These subgraphs are called regions, a region r being made of:

• a set of variable nodes Xr ⊆ X,

• a set of check nodes Cr ⊆ C3 that can be an empty set,

1that stipulates that the distribution of any variable node only depends on its neighborhood
2any two nodes are only linked by a unique path
3provided that any check node ca of Cr is accompanied by its neighborhood Xa ⊆ Xr because

a region has to be a subgraph (associated edges are implicitly included in r)
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The regions set used to write down the factorization is denoted by R. Joint
distribution of a factor graph is then approximated by:

p(x) ≈ ∏
r∈R

pcr
r (xr) (5.4)

X1 X2 X3

X4 X5 X6

X7 X8 X9

X1, X2, X4, X5, X7, X8 X2, X5, X8 X2, X3, X5, X6, X8, X9

Figure 5.2: A Bayesian network as a graphical representation of (5.2)

X1 X2 X3

X4 X5 X6

X7 X8 X9

X4, X5, X7, X8 X5, X6, X8, X9

X1, X2, X4, X5 X2, X3, X5, X6

X5, X8

X4, X5 X5, X6

X2, X5

X5

Figure 5.3: Another Bayesian network as a graphical representation of (5.3)

where cr denotes what is called the counting number of r, that is the weight of
its distribution inside the joint distribution, e.g. in (5.3) region {X1, X2, X4, X5}
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has a unit weight, and region {X2, X5} has a weight of −1. This formulation
is a region-based formulation of the distribution.

5.2.1 Links with MF approach

At this point appears a deep link with the mean-field approach we exposed in
chapter 2.4. We recall that MF consists in approximating the joint distribution
by the following factorization:

pMF(x) =
N

∏
i=1

pi(xi) (5.5)

This corresponds to (5.4) with any region being a single variable node with
a unit weight. The rationale behind the MF is that any single variable node
considers all the other variable nodes as a unique global field or node. The
Bethe approximation, linked to the factorization (5.1), is a first extension of
the MF. In this case, cliques of variable nodes consider the other cliques, and
to some extent the other variable nodes, as a unique global node. In this way,
the joint belief could approach the exact form of the joint distribution, and
therefore it could be more accurate than the MF. As an example, the Bethe
approximation is exact if the factor graph is a tree whereas the MF cannot be.
In the current case, we are given more freedom to write the factorization. It
allows us to deal with bigger subsets of variable nodes, and to some extent to
deal with harmful topological structures e.g. loops and trapping sets, as we
will see in the following.

5.2.2 Counting numbers

In Bethe approximation, factorization of the joint distribution is:

b(x) =
M

∏
a=1

ba(xa)
N

∏
i=1

b1−di
i (xi) (5.6)

Comparing with the region-based factorization, we observe that any potential
has a unit weight, and any variable node Xi has a weight of 1− di. These
weights directly stem from Bayes rule and Markov condition, such that any
single variable node – and to some extent any potential – has to contribute
only once to the factorization. According to the Bethe approximation, consid-
ering an arbitrary variable node Xi, we observe that:

• Xi appears in di marginal functions on potentials,

• Xi appears once in marginal {bi(xi)}xi of multiplicity 1− di.

As di +(1− di) = 1, we are ensured that Xi only “participates” once to the fac-
torization. It is somehow as chemical equations where each element appears
the same number of times on both equation sides, that we can model:

b(x1, x2, . . . , xN) −→
M

∏
a=1

ba(xa)
N

∏
i=1

b1−di
i (xi) (5.7)
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In [J.S05], {cr}r are called counting numbers, and authors introduced the con-
cept of validity of a region-based approximation when it satisfies this principle.
In the following, all region-based approximations will fulfill this rule.

5.2.2.1 Computation rule

For any couple of regions (r, s) in a given regions set R, s ⊆ r means that
Xs ⊆ Xr and Cs ⊆ Cr. We previously mentioned that regions distributions
have to be weighted not to over count inner variable nodes and potentials in
the factorization of the joint distribution (5.4). This is modeled according to
following equations:

∀Xi ∈ X, ∑
r∈R

Xi∈Xr

cr = 1, (5.8)

∀ca ∈ C, ∑
r∈R

ca∈Cr

cr = 1 (5.9)

These equations can be rephrased for regions, such that any region only con-
tributes once to the region-based factorization:

∀r ∈ R, ∑
s⊇r

cs = 1 (5.10)

which can be rephrased as:

∀r ∈ R, cr = 1−∑
s⊃r

cs = 1 (5.11)

This helps compute counting numbers. First of all, any region r that is not
included in any other region of the same regions set R has a unit counting
number according to the previous equation. Afterward, we can compute any
region that is included in other regions of unit counting numbers, and so on.
We iteratively compute counting numbers for all regions according to (5.11).

§ 5.3 Region-based approximation

Contrary to Bethe approximation that provides a unique joint belief, region-
based approximation is not so restrictive. Constructed from cluster variation
method of Kikuchi [R. 51], it offers us numerous choices of the regions set R
to factorize b(x). As indicated in previous chapter, variable nodes distribu-
tions are not available, that is still true for regions. The joint distribution is
accordingly approximated by a joint belief computed with a family of func-
tions {br(xr)}r,xr that are marginal beliefs on regions:

b(x) = ∏
r∈R

bcr
r (xr) (5.12)

Region-based approximation allows us to extend MF approach to longer ranges
than Bethe approximation. Any family of functions {br(xr)}r,xr is then ex-
pected to provide better performance than a family {ba(xa)}a,xa , {bi(xi)i,xi}i,xi .
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5.3.1 Example

We present here an evaluation of the accuracy of Mean-Field (MF), Bethe Ap-
proximation (BA) and Region-Based Approximation (RBA). Following the ex-
perimental protocol of [J.S05], we consider a square lattice of size N = 9, see
Fig.5.1, with soft factors. More precisely, as is commonly regarded in physics
of spin glasses, we consider that for each node ca:

fa(xi, xj) =

[
eJij e−Jij

e−Jij eJij

]
where {Jij}<i,j> are centered Gaussian variables of variance σ used as the
control parameter of the experiment. We display in Fig.5.4 the average error:

ε =
∑
x
|b(x)− p(x)|

2N (5.13)

for every approximation. First of all, we see that the MF error is the largest
one. It is consistent with the fact that MF does not consider any graphical
link between variable nodes, i.e. it considers them independent although they
are correlated4. We observe then that RBA is globally closer to the true dis-
tribution than other approximations. We also observe that the BA reaches a
maximum near σ = 1.4 that is not an expected phenomenon, but we do not
investigate it here because it does not deal with the current problem.

0 10 20 30 40
0

1

2

3

4
·10−3

σ

ε

MF
BA
RBA

Figure 5.4: Average errors of MF, Bethe and region-based approximations on square
lattice N = 9

5.3.2 Region graph

Any factorization stemming from RBA (5.12) is graphically represented by a
Bayesian network, e.g. Fig.5.2 and Fig.5.3, which is called region-graph, any
region r being one of its node. To present construction rules of such a graph,
specific subsets have to be defined. Given a regions set R and r ∈ R :

4more precisely, couplings {Jij}<i,j> are not ignored but probabilistic correlations are, i.e. any
< Xi , Xj > is approximated by < Xi >< Xj >
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• Fr = {q ∈ R|q ⊆ r} is family of r,

• Dr = Fr\r are descendants of r,

• Er = {q ∈ Dr| 6 ∃s ∈ Dr, q ⊂ s ⊂ r} are children of r,

• Pr = {q ∈ R\Fr|r ∈ Eq} are parents of r,

• Ar = {q ∈ R\Fr|r ∈ Dq} are ancestors of r,

Any region-graph R = {Rl}1≤l≤L is constructed level by level, or generation
by generation, a level Rl being a set of regions that have the same number
of variable nodes and check nodes. First level contains regions called clusters,
arbitrary selected according to one rule: all variables nodes and check nodes
have to be included in these clusters. We say that clusters, or the clustering,
entirely cover the factor graph, see Fig.5.5.

X1 X2 X3

X4 X5 X6

X7 X8 X9

(a) Clustering by adjacent squares

X1 X2 X3

X4 X5 X6

X7 X8 X9

(b) Clustering by squares

Figure 5.5: Two clusterings for two factorizations

A level Rl distinct from the first level is constructed according to the Bayes
rule: we search for all intersections between regions of Rl−1. In other words,
we exhibit common children between regions of Rl−1:

r = Xr ∪Cr ∈ Rl ⇐⇒ ∃(p, q) ∈ R2
l−1 s.t. Xr = Xp ∩ Xq

Cr = Cp ∩Cq

Edges of the region-graph represent links between any region and its par-
ents. The degree of freedom in a region-graph construction is then the Tanner
graph clustering. Considering example in Fig.5.5, we can exhibit at least two
region-graphs Fig.5.2 and Fig.5.3 constructed from two different clusterings.
The way clusters are picked out widely influences RBA performance. In pre-
vious chapter we highlighted that the BP algorithm was suboptimal because
of loop-like topology of most LDPC codes. RBA is aimed at absorbing harm-
ful topological structures, e.g. loops and trapping sets, in clusters in such a
way that they are quenched: no messages and then no information run on
their Tanner graph edges. Thus, effects of topological damageable structures
are hoped to be reduced or even annihilated, making region-based approxi-
mation a more efficient method than Bethe approximation.
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X1, X2, X4, X5, X7, X8 X2, X3, X5, X6, X8, X9

X2, X5, X8

(a) Region-graph by clustering with adjacent squares

X1, X2, X4, X5 X2, X3, X5, X6 X4, X5, X7, X8 X5, X6, X8, X9

X2, X5 X4, X5 X5, X6 X5, X8

X5

(b) Region-graph built by clustering with smallest squares

Figure 5.6: Two region-graphs for two factorizations

As we already mentioned, the selection of clusters is not unique, the only
conditions that must be fulfilled are:

• the whole Tanner graph has to be covered i.e. any variable node and any
check node has to be included in at least one region,

• any check node cannot be separated from the variable nodes of its neigh-
borhood.

A Tanner graph can then be clustered by a large variety of region-graphs. The
difficult task is to single out the region-graph with the most accurate marginal
beliefs. It is by no means a trivial task, as already mentioned in [J.S05] “how to
optimally choose regions [...] remains at this point more an art than a science”.
In our study, we investigate this “art” for particular cases given that, to our
knowledge, there is no general and efficient method for any graph.

§ 5.4 Generalized Belief Propagation

In this section, we make emerge the message-passing equations for any region-
graph following the same method as Bethe approximation.

5.4.1 Variational free energy
As mentioned concerning Bethe approximation, the variational free energy is
a cost function which minimization provides beliefs and messages equations.
We recall that this function, denoted by FK in the case of region-based approx-
imation, is decomposed as the sum of the variational mean energy UK and the
variational entropy Sk:

FK = UK − SK (5.14)
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with:

UK = ∑
x

b(x)E(x) (5.15)

SK = −∑
x

b(x) log b(x) (5.16)

We recall that the joint belief has the following expression:

b(x) = ∏
r∈R

bcr
r (xr) (5.17)

Therefore we obtain for the variational entropy:

SK = − ∑
r∈R

cr ∑
xr

br(xr) log br(xr) (5.18)

provided that the family is defined such that:

∀r ∈ R, ∀xr, br(xr) = ∑
x∪xr

b(x) (5.19)

Indeed, the equation (5.18) does not equal (5.16) if this condition is not re-
spected. However, this condition is hard to handle, as mentioned in 4.7.1.2.
To be consistent with the construction of Bethe approximation, we consider
that the entropy (5.16) is approximated by a linear decomposition over regions
entropies (5.18), that is the region-based entropy. The region-based mean energy
is computed using the expression of the energy function from the previous
chapter (4.26). It is possible expand it over regions:

E(x) = ∑
r∈R

crEr(xr) (5.20)

with:
Er(xr) = ∑

ca∈Cr

Ea(xa) (5.21)

We assign:
Er(xr) = − log fr(xr) (5.22)

that amounts to define a potential function of the region:

fr(xr) = ∏
ca∈Cr

fa(xa) (5.23)

Then the region-based mean energy is:

UK = − ∑
r∈R

cr ∑
xr

br(xr) log fr(xr) (5.24)

We recall that this linear decomposition is exact as it stems from the en-
ergy function expression and not from the belief factorization, contrary to
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the region-based entropy. Finally the region-based free energy becomes:

FK = ∑
r∈R

cr ∑
xr

br(xr) log
br(xr)

fr(xr)
(5.25)

5.4.2 Optimization

As mentioned in previous chapter, we know that minimizing FK under the
following constraints provides marginal beliefs equations of regions:

• (C1) ∀r ∈ R, ∑xr br(xr) = 1,

• (C2) ∀r ∈ R, ∀s ∈ Er, ∀xs, bs(xs) = ∑xr∪xs br(xr).

We include neither inequality constraints on the beliefs, nor global normal-
izations and marginalizations, see previous chapter for details. We obtain the
Lagrange function:

LK = Fk + ∑
r∈R

γr

(
∑
xr

br(xr)− 1
)

(5.26)

+ ∑
r∈R

∑
s∈Er

∑
xs

λrs(xs)

(
∑

xr∪xs

br(xr)− bs(xs)

)
(5.27)

where {γr}r and {λrs(xs)}r,s,xs are Lagrange multipliers associated with con-
straints. Anyone can check that RBA satisfies KKT assumptions, as Bethe
approximation. Lagrange multipliers are found such that critical points, i.e.
beliefs that nullify the gradient of LK, are:

b∗r (xr) = fr(xr)e−1e−
1
cr γr ∏

s∈Er

e−
1
cr λrs(xs) ∏

q∈Pr

e
1
cr λqr(xr) (5.28)

Considering observations Yr = {Yi|Xi ∈ Xr} and Bayes rule, we obtain the a
posteriori distribution:

b∗r (xr, yr) = fr(xr)lr(xr, yr)e
−1e−

1
cr γr ∏

s∈Er

e−
1
cr λrs(xs) ∏

q∈Pr

e
1
cr λqr(xr) (5.29)

where:
lr(xr, yr) = ∏

Xi∈Xr

li(xi, yi) (5.30)

5.4.3 Rotation of the Lagrange multipliers

Bethe approximation stipulated that the belief {ba(xa)}xa of a check node
ca ∈ C was the product of all incoming messages in any of its neighboring
variable nodes (4.58). We also saw that these messages were directly related
to Lagrange multipliers. Thus, generalizing it for a region would be that the
belief {br(xr)}xr of a region r ∈ R is the product of all incoming messages
in any region q of its family Fr, messages being equivalently related to the
Lagrange multipliers {λqr(xr}q,xr . However, this assumption is not consistent



5.4. Generalized Belief Propagation 97

with equation (5.28). Here we demonstrate that an equivalent formulation of
the constraints may make emerge the right generalization of the Bethe approx-
imation. First of all, we define Lagrange multipliers {µpr(xr)}p,r,xr associated
with the alternative constraint:

(C2’) ∀r ∈ R, ∀p ∈ Pr, ∀xr, crbr(xr) + ∑
q∈Ar\p∪Ap

cq ∑
xq∪xr

bq(xq) = 0

Then we prove that constraint (C2) associated with multipliers {λpr(xr)}p,r,xr

is equivalent to constraint (C2’).

5.4.3.1 From λ to µ

We consider an arbitrary region r ∈ R. We recall that its counting number cr
is given by:

cr = 1− ∑
q∈Ar

cq (5.31)

We rephrase it such that:
cr + ∑

q∈Ar

cq = 1 (5.32)

We consider a parent region p of r, then:

cp + ∑
q∈Ap

cq = 1 (5.33)

Subtracting (5.33) to (5.32), we obtain:

cr + ∑
q∈Ar\p∪Ap

cq = 0 (5.34)

Then (5.34)×br(xr) gives:

crbr(xr) + ∑
q∈Ar\p∪Ap

cqbr(xr) = 0 (5.35)

We recall that constraint (C2) associated with {λqr(xr)}q,xr is assumed to be
true. Therefore we obtain:

crbr(xr) + ∑
q∈Ar\p∪Ap

cq ∑
xq∪xr

bq(xq) = 0 (5.36)

that is constraint (C2’).

5.4.3.2 From µ to λ

This part of the equivalence is induction. We consider a region r ∈ R2, and
two of its parents p1, p2. We assume that constraint (C2’) is true:

crbr(xr) + ∑
q∈Pr\p1

∑
xq∪xr

bq(xq) = 0 (5.37)
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and:
crbr(xr) + ∑

q∈Pr\p2

∑
xq∪xr

bq(xq) = 0 (5.38)

Subtracting (5.38) to (5.37) gives:

∑
xp1∪xr

bp1(xp1) = ∑
xp2∪xr

bp2(xp2) (5.39)

In other words, marginalization does not depend on the parent of r. The fact
that r ∈ R2 involves that:

• cr = 1− Np, with Np the number of parents of r,

• ∀p ∈ Pr, cp = 1.

Considering a parent p of r, equation (5.37) becomes:

(1− Np)br(xr) + (Np − 1) ∑
xp∪xr

bp(xp) = 0 (5.40)

that implies:
br(xr) = ∑

xp∪xr

bp(xp) (5.41)

provided that Np > 15. Finally we obtain constraint (C2) associated with
λpr(xr).

First part of the induction is demonstrated, now we have to work on a
region r of an arbitrary generation Rl . We can prove by another induction
[J.S05],[R.J02] that:

(cr − 1)br(xr) + ∑
q∈Ar

cq ∑
xq\xr

bq(xq) = 0 (5.42)

Equations (5.42) and (C2’) imply that for any ancestor t of r:

crbr(xr) + ∑
q∈Ar

cq ∑
xq∪xr

bq(xq)− ∑
xt∪xr

bt(xt) = 0 (5.43)

For any couple of ancestors t1, t2 of r, subtracting (5.43) for t1 to (5.43) for t2
results in::

∑
xt1∪xr

bt1(xt1) = ∑
xt2∪xr

bt2(xt2) (5.44)

In words, it means that marginalization does not depend on the selected an-
cestor, for any region in R. It implies in (C2’) that for any ancestor (to some
extent for any parent) p:

br(xr) = ∑
xp∪xr

bp(xp) (5.45)

which is constraint associated with the Lagrange multiplier λpr(xr).

5which is true, given that if Np ≤ 1, r cannot exist
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As we proved that constraints (C2) and (C2’) are equivalent, the Lagrangian
function of FK is rephrased:

LK = Fk + ∑
r∈R

γr

(
∑
xr

br(xr)− 1
)

(5.46)

+ ∑
r∈R

∑
p∈Pr

∑
xr

µpr(xr)

(
crbr(xr) + ∑

q∈Ar\p∪Ap

cq ∑
xq∪xr

bq(xq)

)

whose stationary points are:

b∗r (xr) = fr(xr)e−1e−
γr
cr ∏

p∈Pr

e−µpr(xr) ∏
q∈Dr

∏
s∈Pq\Fr

e−µsq(xq) (5.47)

which correspond to a generalization of Bethe approximation we searched for.
Considering observations Yr = {Yi|Xi ∈ Xr} and Bayes rule, we obtain the a
posteriori distribution:

b∗r (xr, yr) = lr(xr, yr) fr(xr)e−1e−
γr
cr ∏

p∈Pr

e−µpr(xr) ∏
q∈Dr

∏
s∈Pq\Fr

e−µsq(xq) (5.48)

5.4.4 Message-passing

Belief equation (5.48) on a region r is, in words, the product of all information
concerning it and its family. This information comes from:

• the code itself represented by fr(xr),

• the channel represented by lr(xr, yr),

• the rest of the region-graph represented by all the Lagrange multipliers
{µpr(xr)}p∈Pr ,xr , {µsq(xq)}q∈Dr ,s∈Pq\Fr ,xq

In other words we can summarize it in the following formula:

br(xr, yr) = lr(xr, yr) fr(xr)mR→r(xr) (5.49)

where mR→r(xr) is information coming from the region-graph that can be
re-written as:

br(xr, yr) = lr(xr, yr) fr(xr) ∏
q∈R\Fr

s∈Fr

mqs(xs) (5.50)

where the product implies an implicit condition that regions q is a parent of
region s, i.e. (q, s) is an edge of the region-graph. Quantity mqs is a message
from q to s, closely related to Lagrange multiplier on the same edge such that:

mqs(xs) = e−µqs(xs) (5.51)

However, values of Lagrange multipliers are not available, this is the dual
problem of the optimization. Not solved in the literature, to our knowledge,
we shall deal with an iterative solution, as with Bethe approximation.
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We make use of the local marginalization constraint (C2) to extract an update
equation of a message between two regions (r, s) linked by an edge. We get:

mrs(xs, ys) =

∑
xr∪xs

lr\s(xr\s, yr\s) fr\s(xr) ∏
u∈R\Fr
v∈Fr\Fs

muv(xv, yv)

∏
u∈Dr\Fs

v∈Ds

muv(xv, yv)
(5.52)

where:
lr\s(xr\s, yr\s) = ∏

Xi∈Xr\Xs

li(xi, yi) (5.53)

The message-passing that runs on the region-graph is a generalization of the
BP algorithm that runs on the factor graph, thus it is called the Generalized
Belief Propagation algorithm (GBPA).

5.4.4.1 Example

We consider the Tanner graph in Fig.5.76. We cluster it with squares of four
check nodes, that provides us the region-graph in Fig.5.8.

X1 X2 X3

X4 X5 X6

X7 X8 X9

ca cb

cc cd ce

c f cg

ch ci cj

ck cl

Figure 5.7: Explicit square lattice of length N = 9

According to equation (5.52), message from region r, with Cr = {cb, cd, ce, cg}
and Xr = {X2, X3, X5, X6}, to region s, with Cs = cg and Xs = {X5, X6}, is:

m2356→56(x56, y56) =

∑
x23

cb(x23)cd(x25)ce(x36)l2(x2, y2)l3(x3, y3)m1245→25(x25, y25)

m25→5(x5, y5)
(5.54)

6which is the explicit representation of the square lattice, i.e. we exhibit the check nodes that
belong to the edges
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ca, cc, cd, c f
X1, X2, X4, X5

cb, cd, ce, cg
X2, X3, X5, X6

c f , ch, ci , ck
X4, X5, X7, X8

cg, ci , cj, cl
X5, X6, X8, X9

cd
X2, X5

c f
X4, X5

cg
X5, X6

ci
X5, X8

X5

Figure 5.8: Region-graph of the explicit square lattice

5.4.4.2 Complexity

For a given couple (r, s ∈ Er), the number of elementary operations required
to compute message mrs(xs), for a given xs, is near 2|Xr |−|Xs |. The total number
of elementary operations to compute all messages on edge (r → s) is accord-
ingly neo(r) = 2|Xr |. Therefore, it is necessary to cluster any Tanner graph
whose clusters are small enough such that neo(r) is reasonable for any region
r. This is the common trade-off of coding theory:

• too large clusters allow us to absorb and annihilate most loops but they
induce a GBP with a very high complexity,

• too small clusters do not help reducing loops effects but they induce a
GBP with a competitive complexity.

The GBP algorithm is not currently of a practical interest. To our knowl-
edge, there is no paper in the literature that deals with its complexity. Update
equations cannot be as easily reduced as BP ones, because messages are not
two-dimensional vectors with binary arguments but multi-dimensional vec-
tors. Nevertheless, the GBP algorithm must be investigated firstly because
there are many of its properties that are still concealed behind update equa-
tions, then because it reflects the difficulty to solve inference on most factor
graphs. Even though its implementation would ask for unreasonable hard-
ware components, it provides us very relevant information about the effects
of topology.

5.4.5 Region-graph reduction
Any loopy region-graph cannot perform optimally, only loopfree ones offer
optimal approximation as marginal belief on any region r can be derived as:

br(xr, yr) = lr(xr, yr) fr(xr) ∑
x∪xr

∏
Xi 6∈Xr

li(xi, yi) ∏
ca 6∈Cr

fa(xa) (5.55)

that is precisely the a posteriori probability distribution pr(xr, yr). In [P. 03],
Pakzad proposed a method to modify the region-graph removing few edges
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according to a specific rule. We call this method the Pakzad reduction of the
region-graph. The method is based on the fact that both Lagrange functions
(5.26) (5.46) contain few linearly dependent constraints. In optimization the-
ory [D.P01] is stipulated that all constraints must be linearly independent
to avoid redundancy. Pakzad then removed corresponding redundant con-
straints in Lagrange functions. As an example, we consider the small region-
graph in Fig.5.9.

p q r

s t

u

Figure 5.9: Small region-graph

Part of the Lagrange function dedicated to local marginalization constraints
(C2) is made with following equations:

∀xs, ∑
xp∪xs

bp(xp) = bs(xs) (5.56)

∀xs, ∑
xq∪xs

bq(xq) = bs(xs) (5.57)

∀xt, ∑
xq∪xt

bq(xq) = bt(xt) (5.58)

∀xt, ∑
xr∪xt

br(xr) = bt(xt) (5.59)

∀xu, ∑
xs∪xu

bs(xs) = bu(xu) (5.60)

∀xu, ∑
xt∪xu

bt(xt) = bu(xu) (5.61)

Constraints (5.57) and (5.60) imply that:

∀xu, ∑
xq∪xu

bq(xq) = bu(xu) (5.62)

However, constraints (5.58) and (5.61) also imply (5.62). As t ∈ Pu, we affirm
that (5.57), (5.60) and (5.58) imply (5.61). In other words, constraints (5.61) has
to be removed from Lagrange function for it to satisfy the linear independence.

Removing local marginalization constraints between regions t and u means
that the resulting GBP algorithm does not compute any message between
them. The region-graph is then reduced to the one depicted in Fig.5.10. We
obtain a loopfree region-graph with an exact RBA i.e. with an optimal GBP
algorithm. Unfortunately, Pakzad reduction hardly results in loopfree region-
graphs, e.g. we performed extensive experiments on Hamming, square lattice
and Tanner codes, and reduction does not provide loopfree region-graphs.
Simulations demonstrated that Pakzad reduction did not significantly im-
prove RBA.
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p q r

s t

u

Figure 5.10: Reduced region-graph

Eventually, Pakzad reduction is a well-suited method for specific region-graphs,
but not for all of them. However, it helps decrease computation time of GBP
as it removes a few message computations. As it does not damage the per-
formance but still improves computation time at least, we will use it in the
following of the work.

5.4.6 Damping factor

A inherent problem of the GBPA is the lack of convergence it suffers from. To
our knowledge, the literature does not provide any explanation concerning
this phenomenon, but all experiments tend to prove it. In [J.S05] is introduced
a damping on messages to avoid this problem, a well-known solution for
many iterative algorithms. We denote by Frs the implicit update function that
computes the value of m(k)

rs for any k such that:

m(k)
rs (xs, ys) =

1
2

Frs +
1
2

m(k−1)
rs (xs, ys) (5.63)

As a matter of fact this equation is a uniform blend of memory m(k−1)
rs and

update Frs. There is still no visible reason to restrict the modification to a
uniform damping, that is why we introduce a general equation:

m(k)
rs (xs, ys) = wkFrs + (1− wk)m

(k−1)
rs (xs, ys) (5.64)

where 0 ≤ wk ≤ 1 is the weight or damping factor. Currently, damping
of the GBPA is not much tackled in the literature therefore we do not have
many clues to determine properties it should verify. In [P. 03] is assumed that
convergence of the GBP decoder is mostly ensured if wk converges to zero
as k is getting larger. It contradicts (5.63) but as no general theory has been
written, we cannot testify the veracity of any assumption. Investigations may
only be made of experiments.

This way, first idea is to use the simplest damping laws, that is to say we
consider that wk is constant, wk = w0 for any k. This assumption is against the
one proposed in [P. 03] because it does not converge to zero but it is consistent
with [J.S05]. After that, second idea is to use decreasing laws of wk, which
match with assumption of [P. 03] and not really with (5.63). It is a hard task to
extract a global theory of a damped GBP, a very large set of codes should be
used to highlight inherent properties of the decoder. In our work that is not
dedicated to this problem, we have tested our own different damping laws on
Hamming and Tanner codes.
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Figure 5.11: Uniformly reweighted BP (ρ = 1.00 is BP)

We highlight an important assumption that wk does not depend on mes-
sages, that is not told in the literature whereas it is not so obvious. As an
example, a very interesting work on a reweighted BPA (RBPA) has been pre-
sented in [T.G08]. To each edge of the factor graph is assigned a particular
weight, according to a particular method based on spanning trees, detailed in
the paper. This improves convergence of the decoder. In [H. 12] and [H. 11] is
introduced that a uniformly RBPA (URBPA), i.e. a BPA with all edges equally
weighted by a value ρ. To extract the weight that offers the lowest BER, the
only method is to run decoder for many values of ρ. Displayed in Fig.5.11 for
an LDPC code of length N = 256 with M = 128, results show that the URBPA
may significantly surpass the BPA for specific values of ρ. This experimental
protocol provides the optimal weight, then we use it in our study to select the
constant damping factor.

5.4.6.1 Constant damping factor

We consider that any message mrs is updated according to the following equa-
tion:

m(k)
rs (xs, ys) = wFrs + (1− w)m(k−1)

rs (xs, ys) (5.65)
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Figure 5.12: BER of the GBP with changing w0



5.4. Generalized Belief Propagation 105

For low values of w0, memory m(k−1)
rs takes the advantage over update Frs

whereas for high values of w0 it is the other direction. We display in Fig.5.12

the BER evolution as a function of w, on Tanner code. Results are averaged
over 1000 simulations with 1000 iterations maximum. First of all, we observe
that value w = 1.0, i.e. pure GBP algorithm without any blend with memory,
provides the worse BER. As a significant example, we see that BER at w = 0.6
for the three SNR values is three times less than BER at w = 1.0. After that, it
turns out that the most relevant weight is given by the evolution of the number
of iterations K before GBP convergence or appearance of a null syndrome,
represented in Fig.5.13. Indeed for the three SNR values, the shape of K is
similar, K reaches a minimum when w ≈ 0.675.
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Figure 5.13: Number of iterations of the GBP with changing w0

We represent in Fig.5.14 the BER as a function of the SNR for three values of
w. We see significant improvement in the BER, for a damping w = 0.675, as
much as the number of iterations K.
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Figure 5.14: Performance of the GBP for three weights

Coming back to the figures Fig.5.12 and Fig.5.13, a noteworthy observation is
that low values of w do not provide the worst BER, even though correspond-
ing values of K are very high. Furthermore, BER is quite unchanged when
w ≥ 0.675. In other words, pure update Frs is less accurate than memory.
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This leads us to consider a varying damping factor with k, that offers
smoother relations between update and memory. We display in Fig.5.15 and
Fig.5.16 the BER and the number of iterations of GBP, respectively, on Ham-
ming code with a varying damping factor. We observe that the minimum of
the BER is reaches for w ≈ 0.85, that also corresponds with the minimum
number of iterations K. Contrary to Tanner code, there is no obvious evidence
that would validate the assumption for the Tanner code that stipulates that
pure update is less accurate than memory.
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Figure 5.15: BER of the GBP with changing w0
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Figure 5.16: Number of iterations of the GBP with changing w0

5.4.6.2 Decreasing damping factor

Now we consider that the damping factor follows a non-constant evolution
that converges to zero. We selected three different profiles depicted in Fig.5.17:

• the parabolic factor (P) of order n is: wk = w0(1− k
K )

n,

• the inverse parabolic factor (IP) of order n is: wk = w0

(
1− ( k

K )
n
)

,

• the affine factor (A) is: wk = w0 − k
K w0,

The affine factor (A) is only a particular case of the parabolic one, or the
inverse parabolic one, with n = 1.



5.4. Generalized Belief Propagation 107

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

k

w
k

A
P
IP

Figure 5.17: Damping factor with initial value w0 = 0.85

The key point of wk is the balance between memory m(k−1)
rq and update Frq.

For functions we introduce, this balance is different from case to case. In
the case of a parabolic function, memory is quickly favored at the expense
of update, whereas in the case of an inverse parabolic function, memory is
almost ignored for a long time. The affine damping coefficient offers a quite
balance distribution, in terms of k, between memory and update. On figures
Fig.5.18 are displayed the BER on Tanner code for the different damping laws
with an SNR = 2.90dB and order n = 2 of P and IP factors.
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Figure 5.18: BER of the GBP algorithm on Tanner code with decreasing damping
factors
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We observe that all the laws, except the constant one, allows GBP to con-
verge to the same BER, the difference remains in the convergence speed. The
fact is that the parabolic coefficient provides the fastest GBP algorithm, as it
is significantly visible for high values of w0. This property is quite surprising
because it means that update functions of GBP has to be ignored as quickly
as possible for the benefit of memory. This process seems unnatural because
any decoding algorithm is aimed at keeping control on information that pass
along edges of the associated graph. Finally, it means that the GBP algorithm
with the parabolic damping can be considered as a “starter” decoding algo-
rithm.

On Fig.5.19 we show the BER for Hamming code with a parabolic damping
factor corresponding to n = 2 and w0 = 0.855 and the BER any without
damping.
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Figure 5.19: BER of the GBP algorithm on the Hamming code

It turns out that the original version is even worse than what the BP algo-
rithm provides. On the contrary, the parabolic damping factor helps the GBP
algorithm be more accurate. It should be recommended to carry the same
investigation for many other LDPC codes to extract the best damping law. It
appears in the current case that the parabolic damping factor with an initial
value greater than 0.5 is a very good candidate to improve GBP performance.

5.4.7 Iteration index

Equation (5.52) is not practical because it does not carry any iterative data.
According to local marginalization constraints, for any couple of regions r ∈
R, s ∈ Er:

bs(xs) = ∑
xr∪xs

br(xr) (5.66)

that means that left side is computed by means of right side of the equation.
More precisely, this equation can be rephrased as a sequence:

b(k+1)
s (xs) = ∑

xr∪xs

b(k)r (xr) (5.67)
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where k is an iterative index. Thus equation (5.52) is practically:

m(k+1)
rs (xs, ys) =

∑
xr∪xs

lr\s(xr\s, yr\s) fr\s(xr) ∏
u∈R\Fr
v∈Fr\Fs

m(k)
uv (xv, yv)

∏
u∈Dr\Fs

v∈Ds

m(k+1)
uv (xv, yv)

(5.68)

It is not a strict update from k to k + 1 given that on the right side of the equa-
tion are left messages at iteration k and messages at iteration k + 1. From a
practical point of view, it is advantageous to search for a way to parallelize the
GBP as it would speed it up. At first sight, we could think of approximating
(5.68) forcing the whole right side of the equation to be at iteration k. Doing
so would allow us to implement a version where all messages at iteration k
are computed in parallel, which would dramatically reduce the computation
time. We show in Fig.5.20 the BER of the GBP algorithm from the parallel
version, denoted by GBPp, and the original one, also called the serial one,
denoted by GBPs, on Tanner code with the same initialization.
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Figure 5.20: Parallel version performance

Without any ambiguity, GBPp offers poor results compared with GBPs, the
BER is significantly damaged. Furthermore, except for SNR = 2.75dB, the
GBPp algorithm does not tangibly converge whereas the GBPs algorithm quickly
converges towards the final state it will end in. We observe for SNR = 3.20dB,
which is a quite high SNR value for this code, that GBPp has not converged
yet whereas GBPs has converged in less than 20 iterations.
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Finally, experiments show that the parallelization of the GBP algorithm
should not be done at once on the whole graph. Actually, equation (5.68) in-
dicates the scheduling of GBP: it requires messages to be computed bottom up
in the region-graph. Thus, the best choice is to compute messages generation
after generation, with a parallelization inside each generation, beginning by
the bottom of R. In this case, parallelization makes sense as we obtain same
results as original GBP.

§ 5.5 Region-graph construction

Constructing a loop free region-graph is not a trivial task. Nothing makes
sure that a loopfree region-graph exists for a given Tanner graph7. To our
knowledge, there is no general method that provides the region-graph with
the optimal GBP algorithm for a Tanner graph because there is no criterion
that helps discriminate them.

5.5.1 Systematic construction

In [J.S05] is explained a systematic process that provides a region-graph for
any Tanner graph, without using any criterion. Each cluster is made of a
single check node accompanied by its neighborhood8, someway as in Bethe
approximation. Regions of next generations are constructed as explained be-
fore, searching for common children. The advantage of this construction is
that it is systematic, i.e. we may use it for any LDPC code. The region-graph
in Fig.5.21 is an example of this method applied on Hamming code.
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X7ca
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cc

(a) Tanner graph

ca, Xa cb, Xb cc, Xc

X1, X2 X1, X3 X1, X4

X1

(b) Region-graph

Figure 5.21: A systematic region-graph for the Hamming code

In spite of the ease of this construction, it does not offer a very relevant choice
for the GBP algorithm according to the goal of the region-based approxima-
tion. Previously, we mentioned that it is aimed at absorbing harmful topolog-
ical structures of the Tanner graph. Therefore, its construction has to be based
on the shape of the Tanner graph, which is not the case here.

7except if we select the region-graph made of a unique region being the Tanner graph itself
8we recall that a region must be a subgraph of the Tanner graph
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5.5.2 Square lattice

The square lattice Tanner graph in Fig.5.22(a) has the great advantage to be
topologically regular. It is a pavement made with a constant square basis,
then it is very easy to build such a code, even for any other length N. But
squares are also the shortest loops, i.e. they are the most harmful topological
structures for BP decoding. They accordingly appear to be natural choices for
clusters, see Fig.5.22(b).
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Figure 5.22: Suited region-graph for the square lattice code N = 9

Absorbing short loops offers a better correction capability, even if the result-
ing region-graph is not loopfree9. We display in Fig.5.23 BER performance,
representing pure GBP and uniformly damped GBP compared with the BP
algorithm. We observe that even without blending update and memory, the
GBP algorithm is more efficient than BP. As an example, at SNR= 5dB, the
BER of BP is 2.10−2, whereas undamped GBP reaches a BER lower than 2.10−3

and damped GBP has a BER lower than 2.10−4: there is ten times less errors
between them, which is a significant result.

One would suggest to use concatenations of squares as basic clusters but
these clusters would be so large that computation complexity would sky-
rocket, which is not acceptable. Smallest squares succeed in fairly weighting
good performance and competitive speed.

9short loops are more harmful than large ones as the iterative aspect of BP brings out their
effect in very few iterations
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Figure 5.23: Bit-error rate of the BP and the GBP algorithms on the square lattice
code N = 36

5.5.3 Trapping-sets

For most LDPC codes, the Tanner graph topology is not as simple as the
square lattice one. It is then close to impossible to construct associated relevant
region-graphs10. In contrast, in spite of our lack of knowledge on codes topol-
ogy, significant advances have been made to bring out specific subgraphs, that
are trapping sets, responsible for BP failures, see chapter 4 for more details.
GBP may be consequently useful provided that region-graphs are constructed
taking them into account.

Each code needs a long and deep study to extract a relevant region-graph
with a GBP algorithm better than its BP equivalent, the set of trapping sets
that compose a given Tanner graph being not always available. In this thesis,
we focus on a specific code, the Tanner code of length N = 155 with check
nodes and variable nodes degrees dc = 5 and dv = 3, respectively. The reason
to choose it is that its Tanner graph is entirely covered by a set of 155 trapping
sets TS(5, 3), see Fig.5.24, that is available11. Therefore, clusters that build the
first generation of the region-graph are naturally selected.
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Figure 5.24: Trapping set TS(5, 3)

10notion of relevancy is hard to define, goal being to absorb harmful topological structures
11the fact that N is also the number of TS(5, 3) is not useful in our study
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The best way to neutralize TS(5, 3) is to absorb each trapping set in a cluster.
Problem is that it is absolutely not practical. We recall a region-graph con-
struction rule that any check node ca ∈ C, included in an arbitrary region r,
has to be accompanied by its neighborhood Xa ⊂ X. Counting the number
of neighbors of all check nodes inside a TS(5, 3), we obtain that such a cluster
would contain 9 check nodes and 35 variable nodes. According to the summa-
tion in equation (5.68), any message from a cluster would then need at least
235 elementary operations, which is not acceptable. Eventually, trapping sets
need splitting to create clusters of practical size.

5.5.3.1 Local optimality

As it is very hard to ensure optimality on the whole region-graph, we orient a
clustering by considering local optimality. This way, we introduce a basic rule
for a region-graph construction.

Local loopfree principle: the local region-graph, made of clusters and their chil-
dren, created splitting a harmful topological structure, has to be loopfree such that the
associated local RBA is exact.

Following this principle, we perform a clustering such that local region-graphs
made by splitting trapping sets are loopfree. Unfortunately, when considering
all trapping sets, the whole region-graph is not loopfree anymore12, then RBA
remains an approximation. If we do not respect the local loopfree principle,
RBA, and so GBP, are likely to provide very bad performance. For a given
TS(5, 3), we show as examples two different splittings so that a cluster may be:

• either the subgraph made by one of the three shortest loops with two
unverified connected check nodes, see Fig.5.25 where concerned nodes
are colored (cluster is called quadruplet):

– variable nodes X1, X2, X3, X4 and check nodes ca, cb, cd, ce, cg, ch,

– variable nodes X2, X3, X4, X5 and check nodes cb, cc, ce, c f , ch, ci,

– variable nodes X1, X2, X4, X5 and check nodes ca, cc, cd, c f , cg, ci,
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Figure 5.25: Split of the TS(5, 3) – Quadruplets construction

12trapping sets TS(5, 3) are strongly connected in Tanner code
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• either the subgraph made by a triplet of variable nodes and one un-
verified connected check nodes, see Fig.5.26 where concerned nodes are
colored in blue (cluster is called triplet):

– variable nodes X1, X2, X4 and check nodes ca, cd, cg,
– variable nodes X2, X3, X4 and check nodes cb, ce, ch,
– variable nodes X2, X4, X5 and check nodes cc, c f , ci.
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Figure 5.26: Split of the TS(5, 3) – Triplets construction

Splitting a trapping set in quadruplets fulfills the local loopfree principle,
see Fig.5.27. However, there is no balance between all the variable nodes as a
TS(5, 3) contains three quadruplets and not only two, see the third cluster in
Fig.5.28.

ca, cb, cd, ce, cg, ch
X1, X2, X3, X4

cb, cc, ce, c f , ch, ci
X2, X3, X4, X5

cb, ce, ch
X2, X3, X4

Figure 5.27: Region-graph resulting from the split of a TS(5, 3) in two quadruplets

The whole region-graph is not balanced too, but between all TS(5, 3). As
a matter of fact, all variables nodes equally participate to several trapping
sets13. The split in two quadruplets then involves that some variable nodes
are included in more clusters than other variable nodes. This makes the GBP
algorithm biased in the sense that noise realizations, and then likelihoods, are
not fairly introduced to initialize the region-graph. More precisely, variable
nodes that appear in a lot of clusters would wield more influence than variable
nodes included in less clusters, whereas nothing either in the Tanner code or
the channel discriminates between them. Finally, it turns out to be impossible
to determine any criterion to select either the first and the second clusters, or
the first and the third clusters, or the second and the third clusters.

13this property is inherent to Tanner code
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Figure 5.28: Third quadruplet as a cluster

Eventually, we should consider the three quadruplets to build the local region-
graph. However, this would violate the local loopfree principle, as the region-
graph is not loopfree, see Fig.5.29. Furthermore, quadruplets contain 24 vari-
able nodes that is quite too large to consider a GBP algorithm of reasonable
complexity, as a message from a cluster would need 224 = 16777216 elemen-
tary operations.
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Figure 5.29: Region-graph resulting from the split of a TS(5, 3) in quadruplets

The second split of trapping sets in triplets results in local region-graphs,
see Fig.5.30, that satisfied the local loopfree principle. This way, RBA is locally
exact, i.e. the GBP algorithm provides local optimal performance. In addition,
triplets only contain 13 variable nodes, a message would then need 213 = 8192
elementary operations, that is considerably less than quadruplets.
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Figure 5.30: Region-graph resulting from the split of a TS(5, 3) in triplets
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Embedded inside the whole Tanner graph, any TS(5, 3) has many other
connections than the edges exhibited in Fig.5.24. The complete trapping-set
in this case is Fig.5.31. Empty circles in this figure are outer variable nodes,
supposed to make the parity-check equations satisfied without assignment to
the a inner variable nodes. Construction of the region-graph then results in
a loopy Bayesian network, whose first generation is made of the clusters that
we have created, the triplets.
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Figure 5.31: A TS(5, 3) with all variable nodes connected to its check nodes

A noteworthy property of the triplets construction is that the two last genera-
tions are exactly generations of the Tanner graph:

• any of the 93 regions of the penultimate generation RL−1 is only made
of one check node and its neighborhood of variable nodes14, L being the
number of generations (3 in the current case),

• any of the 155 regions of the last generation RL is only made of a single
variable node.

As a matter of fact, this particular point makes our constructions relevant ac-
cording to the work made in [M. 04]. In this paper, Welling assumed that
a relevant region-graph, i.e. a region-graph whose GBP algorithm performs
well, has to be constructed “above” the corresponding Tanner graph15: bottom
generation R3 is made of regions each containing a single variable node such
that all variable nodes are represented, any region of the upper generation R2
is made of a check node in such a way that all check nodes are represented,
and regions of the upper generation R1, called super nodes, are clusters that
would allow us to break or absorb harmful topological structures of the two
last generations. Our triplets construction satisfies the Welling assumption as
we break inner loops of trapping sets.

14we recall that a check node has to be accompanied by its neighborhood, as a region is a
subgraph of the Tanner graph

15or more generally, factor graph
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The Welling assumption is perfectly in agreement with our local loopfree
principle provided that super nodes are added to Tanner graphs, and not
to region-graphs. As an example, one would note that in the quadruplets
construction, in Fig.5.29, children of quadruplets are triplets, i.e. quadruplets
are super nodes of triplets. We recall that a balanced region-graph made with
quadruplets contains loops, that means that adding super nodes to the region-
graph in triplets damage its local optimality. Finally, the Welling assumption
is relevant for Tanner graphs only.

5.5.4 Experiments

Considering that quadruplets construction implies a very large number of
elementary operations, we decide not to hold it for computation time’s sake.
Experiments we have performed accordingly only concerned triplets construc-
tion. All previous results concerning the damped GBP, the iteration index for
the scheduling were realized on Tanner code with triplets construction. We
now present other comparisons between BP and GBP. Usually, decoders per-
formance are delivered exhibiting the averaged BER as a function of the SNR.
Our own experiments, not displayed here, showed that BER of BP and GBP
were merged for low and middle values of the SNR on AWGNC16. This is an
encouraging result as it confirms that the special construction of the region-
graph with triplets does not damage the BER, in average17. As the triplets
construction is based on trapping sets, and as trapping sets are known to
damage BP decoding for weakly noisy channels, performance of GBP will
distinguish themselves from BP ones for high SNR values on AWGNC and
low p values on BSC.

As a channel noise is lowered, the number of simulations needed to get a
trustworthy BER is increased. We previously mentioned that GBP suffers from
a large computation complexity compared with BP one, which prevents us
from computing any average BER in this case. Instead of considering random
noise realizations, we then orient experiments on channel realizations that are
deeply linked with trapping sets.

5.5.4.1 BSC

We deal with low-weight error events18 on BSC. We only take into account
specific low-weight error events that prevent BP from correctly decoding be-
cause of TS(5, 3). To keep a reasonable amount of results, we select a single
error event, EE, that fairly represents all error events that deals with TS(5, 3).
We roll out an experimental protocol for a given crossover probability p:

• for any variable node Xi that is not in EE, we force the channel to copy
the input: yi = xi,

• for any variable node Xi that is in EE, we force the channel to flip the
input: yi = x̄i.

16and of the crossover probability p on BSC
17local loopfree principle is an assumption without proof, then experiments are the only means

to check it
18a low-weight error event is a codeword that BSC has slightly disturbed, i.e. very few bits have

been flipped
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EE is made with 7 errors, a low value compared with the codewords length
N = 155. This makes our protocol realistic as getting 7 corrupted bits is much
more encountered for low p values than for large ones.
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Figure 5.32: BER on the Tanner code for EE completely dependent on TS(5, 3)

On Fig.5.32 are represented iterative evolutions of BP and damped GBP BERs,
with different damping factors19 and decreasing values of p. We denote by
GBP-C, GBP-P and GBP-IP the GBP algorithm with constant, parabolic and
inverse parabolic damping factors, respectively. For any p, the BP BER os-
cillates within interval [0.03; 0.4], whereas GBPs present different evolutions.
First of all, for p = 0.2, GBP BERs do not oscillate as strongly as BP except
for GBP-C which local maximum though decreases along k contrary to BP:
local maximum values are 0.34, 0.26, 0.25, 0.24, 0.23 for k = 21, 39, 57, 75, 93, re-
spectively. These pseudo-oscillations may be hoped to end to a very low BER,
but experiments, not presented here, showed that it is not true, BER of GBP-C
always oscillates.

GBP-IP seems to behave in the same way, but as for GBP-P, the decreasing
law of wk makes the algorithm converge to a single value. This helps local
maximum values be dramatically reduced compared with GBP-C: we obtain
0.38, 0.21, 0.14 for k = 21, 40, 60. GBP-P exhibits a small bound around k =
20, as other decoders, but with a lower value 0.1096774. Then during thirty
iterations it keeps a constant value unfortunately increased around k = 70.
This phenomenon emphasizes that our triplets construction is dedicated to
situations where p is significantly low. If p is too high then EE is not realistic,
and the experimental protocol too.

19w0 = 0.675 for all of them
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As p is getting smaller, behaviors of GBPs merge into a single behavior. All
of them converge faster and faster to the same steady state as p decreases20.
For p = 2.10−2 and p = 2.10−3, we observe bounds of no significance for GBP-
C and GBP-IP around k = 40, as they disappear for lower values of p. For
p = 2.10−5, no more than 20 iterations are needed for all GBPs to converge,
and BERs reach a value of 0.04, which corresponds to 8 errors out of 155 bits.
We may interpret this result telling that GBPs did not succeed in obtaining as
many corrected bits as BP could do21, in addition it has added an error to EE.
From another point of view, when comparing both iterative evolutions, we
easily see that reaching 0.03 is close to a random process: BP oscillations are
not perfectly predicted, then stopping the decoder to an exact local minimum
makes the experimenter very lucky. On the contrary, all GBPs reach a unique
stable and convergent evolution which allows us to ensure these decoders
output, GBP is more reliable and trustworthy than BP.

Finally, we may assume that GBP is able to decrease TS(5, 3) effects, which
makes it able to decrease LDPC error floor on BSC 4.8.6. We cannot verify this
assumption as computation complexity of GBP is too high to simulate it for
very low p values, but the experimental protocol is a relevant substitute.

5.5.4.2 AWGNC

The experimental protocol on AWGNC is similar to the previous one, but the
error event notion has to be redefined as it is originally defined on BSC. As
a matter of fact, flipping bits does not make sense on AWGNC as noise is a
continuous elements independently added on all bits. The concept of error
event on this channel is treated using bits corruption: a bit Xi of value xi
is corrupted if likelihood, pi(yi|xi), deduced from channel observation, yi, is
maximized for x̄i. A low-weight error event EE is then defined as a codeword
that AWGNC has slightly disturbed, i.e. only very few bits have been cor-
rupted.
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Figure 5.33: Modification of moments – Dashed lines are original SNR and mean,
solid lines are their practical estimates according to EE

20any decoder is stopped as soon as it has converged
21for BP, a BER of 0.03
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Practically, on BSC, we forced a bit to be erroneous flipping it if channel
did not. On AWGNC, we make a bit Xi corrupted multiplying the channel
output yi by −1: multiplying yi by −1 is equivalent to swapping likelihoods
li(0, yi) and li(1, yi)

22. As SNR is increased any error event is then more and
more emphasized. The drawback of this protocol is that moments, as mean
and variance, of random variable Y|X are modified, as depicted in Fig.5.33.
This is due to the fact that random realizations are discriminated to only get
specific error events23. However, as the same protocol is used for BP and GBP,
comparing between both decoders still holds, we only have to keep in mind
that SNR values on next figures are not SNR f but SNRi, i.e. not estimated
ones but original ones. We display iterative evolutions of the BER of BP and
GBP-P in Fig.5.34

24. We specify that GBP-IP and GBP-C are not represented
in this figures as they behave in the same way that GBP-P, which means that
results stem from the triplets clustering, not from damping.
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Figure 5.34: BER of the BP and the GBP algorithms on a EE with an AWGNC

For low values of SNRi, the BP BER pseudo-oscillates up to a steady state of
0.13 at 5dB, that is a substantial value compared with GBP one that quickly
reaches 0.06 at 5dB. As SNRi is decreased, the BER of BP stops oscillating
by converging in less than 20 iterations to a non-negligible increasing steady
value of 0.305 at 11dB, whereas the GBP BER converges to a dramatically
lower value of 5.10−2 at 11dB i.e. about six times less errors than BP.

22on BSC, forcing a bit flipping is also swapping likelihoods
23but we obtain a subset of these genuine random realizations, i.e. they are still Gaussian

variables
24BER is averaged over 104 simulations, which is enough to obtain reliable results that reflect

behaviors of the decoders with our protocol
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For SNRi ≥ 13dB, BP does not converge anymore: it either oscillates, see at
14dB and 17dB, or it exhibits an erratic evolution, see at 15dB25. We see that
the range of values of the BER is large enough such that the choice of the last
practical iteration widely influences the performance of the algorithm. On the
contrary, GBP still convergences in nearly 30 iterations to the same value of
5.10−2 for any SNRi value. Eventually, for SNRi ≥ 18dB, the BP BER reaches
steady and decreasing values. For very high SNRi, it is stuck to the same
non-zero value as GBP around 3.10−2. We summarize the steady values of the
BER of both algorithms in Fig.5.35.
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Figure 5.35: Average BER of the BP and the GBP-P algorithms

We observe that the triplets clustering provides a robust GBP algorithm against
TS(5, 3) compared with BP. For very high values of SNRi, likelihood of any
variable node Xi of EE is almost:

li(0, yi) ≈ 0, li(1, yi) ≈ 1 (5.69)

therefore the corresponding bit is too corrupted to be correctly decoded by
either GBP or BP. That is why for both decoders converge to a non-zero value
of the BER, e.g. at SNRi = 20dB, we obtain a BER of 3.10−2 for the two
algorithms. As EE is of weight 7, such a value of the BER is equivalent to 4
errors, we conclude that BP and GBPs can only correct 3 errors.

§ 5.6 Conclusion

The Bethe approximation is a particular case of the more general region-based
approximation, as the BP algorithm is the GBP algorithm when the region-
graph is exactly made of the Tanner graph26. We observed that generalizing
the BP message-passing needs a generalization of the node definition, to create
region-graphs which edges are support for the GBP algorithm. In addition,
new damping rules for GBP help converge, as its original version is unstable,
and obtain better results in terms of BER.

25we will deal with this peculiar phenomenon in next chapter
26clusters are only check nodes and their neighborhood
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We saw that contrary to the Tanner graph, we can find a multitude of
region-graphs for any LDPC code, since the clustering is not unique. We then
introduced the local loopfree principle and an associate specific construction
based on particular clusters, the triplets, stemming from the split of trapping
sets. GBP is then aimed at dealing with error events deeply connected with
trapping sets. Exhibited simulation results, according to a dedicated protocol,
showed that the triplets clustering provided a GBP algorithm more accurate
than BP in these cases. These results tend to investigate more on the GBP
algorithm, and particularly the construction of the region-graph. This would
help bring out other clustering rules and new principles to better understand
GBP and RBA. In addition, the study of the damping factor is not closed, we
have raised an open problem.

The specific construction in triplets is a technique that can be used as a
basis to cluster any LDPC code, provided that known and harmful topological
structures entirely cover its Tanner graph. In the literature, clustering the
square grid code using squares follows the same idea, and we also observed
that GBP outperformed BP in this case. To our knowledge, no other clustering
has been proposed on any other code, therefore our construction is likely a
new lead in the research field on graphical models.
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Dynamical behavior of iterative decoders

§ 6.1 Introduction

Messages m(k) of BP and the GBP are computed at any iteration k, according
to update rules (1.12), (1.13), and (5.52). These rules are functions:

• all messages at the previous iteration {m(k)
e }e∈E, where E is the set of

edges either of a Tanner graph or a region-graph,

• initialization parameters: SNR and likelihoods.

It is accordingly legitimate to consider update rules of these algorithms as
iterated maps. This way, it is possible to describe BP and GBP with tools of dy-
namical systems theory. It allows us to introduce explanations of non-trivial
phenomenon, e.g. non monotonous evolution of the BP convergence rate ex-
hibited in 1.7. The goal of this chapter is to extract a few typical behaviors of
BP and GBP and to examine them as functions of SNR. More specifically we
want to emphasize:

• the variety of behaviors encountered with these decoders,

• how these behaviors wield influence on decoding performance.

First of all, this work needs the definition of a mathematical framework,
known as the state space. After that, we will present dynamical quantifiers
to describe the decoders. Among the large set of estimators commonly en-
countered in the literature, we chose a few of them to characterize BP and
GBP dynamics. This investigation is aimed at highlighting particular SNR
values for which their behaviors are non-trivial, describing the nature of these
behaviors and their connections with decoding performance. This would help
understand and predict, or even control, decoders behaviors. All experiments
in this chapter are performed on Tanner code, to specify dynamics of GBP
coupled with the triplets construction. In addition, from now on, the channel
used is only the AWGNC.

A part of the following results on BP are published in [J.-12b],[J.-12d],[J.-13b],
on GBP in [J.-12c],[J.-12e].

123
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§ 6.2 Preliminaries

BP and GBP are dynamical systems that sometimes behave very differently
when initialization parameters are changed. Even though iterated maps that
update messages are deterministic, we observe significant dependence on like-
lihoods, see Fig.6.1.
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Figure 6.1: Iterative BER of BP with two different sets of likelihoods at the same SNR

In this figure are depicted iterative evolutions of the BP BER for two channel
realizations at the same SNR. It clearly appears two behaviors: realization B
makes the BER converge to a zero value in 5 iterations whereas realization A
prevents the BER from converging, it oscillates. The space created by likeli-
hoods is accordingly not uniform: two likelihoods computed at the same SNR
do not systematically lead to the same decoding.

We represent in Fig.6.2 the space generated by likelihoods of two vari-
able nodes (Xi = 100, Xj = 102), randomly selected in Tanner code. For a
given channel realization at SNR = 2.3dB, we quench all likelihoods of other
variable nodes and we make vary likelihoods li(0, yi) and lj(0, yj) from their
minimum value, zero, to their maximum value, one. We then run a BP decod-
ing for each couple of values {li(0, yi) ∈ [0; 1], lj(0, yj) ∈ [0; 1]} and we pick
out the BER to plot it in the likelihoods space. We observe that two neighbor-
ing couples can reach very different BER, depending on their relative position
in the space. As an example, points A and B are defined such that variable
nodes Xi and Xj are:

lA
i (0, yi) = 0.48, lA

j (0, yj) = 0.89,

lB
i (0, yi) = 0.87, lB

j (0, yj) = 0.54.

Computing BER variances σ2
A, σ2

B in disks of radius 0.1, centered on A and B,
respectively, offers that:

σ2
A = 8.10−6,

σ2
B = 3.10−4.
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Figure 6.2: Likelihoods space at SNR = 2.3dB on the Tanner code for quenched
likelihoods except on variable nodes Xi = 100, Xj = 102 – BER of the BP

Ratio between both variances is around 102, i.e. BER may change ten times
more around point B than around point A, which is a considerable difference.
One would link this result to the specific couple (Xi = 100, Xj = 102) but
it turns out possible to observe such a behavior for other couples and noise
realizations1. It then appears that message-passing algorithms are strongly
dependent on initialization, i.e. when slight changes are induced.

The likelihoods space provides a BER map for a given couple of decoder
and LDPC code. Such a map would give access to the whole description of
the error correction capability2. Unfortunately, to compute a complete map
is needed not only two likelihoods but N likelihoods, N being the number of
variable nodes. Even for low values of N3, computing the BER map is then im-
possible, as it would need AN configurations with A the number of values to
assign values to a single likelihood. Furthermore, storing this map would ask
for unrealistic hardware requirements. Using less informative but tractable
estimators finally turns out necessary to understand decoders behaviors.

§ 6.3 State space

The study of any iterated map needs state space definition, i.e. a mathematical
space where state variables evolve. Usually, state variables are defined as
variables handled by the iterated map, e.g. the logistic map transforms x(k) in
x(k+1) by function f (x) = ax(1− x) therefore x(k) is the state variable. In the
same way, update rules of decoding algorithms may be summarized as iterate
maps according to the following rules:

BP : ∀(Xi, ca)an edge, m(k)
ai = FBP({m

(k−1)
bj }b,j, {lj}j), (6.1)

GBP : ∀(r, s)an edge, m(k)
rs = FGBP({m

(k)
uv }u,v, {m(k−1)

uv }u,v, {lj}j), (6.2)

1exhibiting all simulation would not be reasonable to keep a fair paper length
2whether it is the code or the decoder
3Tanner code of length N = 155 is considered in coding theory as a small code



126 Chapter 6. Dynamical behavior of iterative decoders

where update rules FBP, FGBP are provided in previous chapters by equations
(1.12),(1.13) and (5.52). FBP maps exactly messages from an iteration to the
next one whereas FGBP computes k − th iterated messages by former and
current messages. Furthermore, BP messages are two-dimensional functions
while GBP messages are multi-dimensional. Comparing both algorithms in-
volves that iterated maps and state variables used to describe them are compa-
rable, which is not the case here. To confront both decoders to same situations,
we need common quantities.

Beliefs on single variable nodes are common quantities between BP and
GBP. We then choose them to stand for state variables. In the following, we
consider that any belief of a node Xi refers only to bi(0, yi)

4. Expanding ex-
plicit update rules that compute beliefs as functions of former iteration beliefs,
either for BP or GBP, proves to be a hard task therefore we do not present it.
Nevertheless, we assume that such functions GBP, GGBP exist, which allows us
to define their related dynamical systems:

• the dynamical system related to BP is the state space built from beliefs
on the N single variable nodes computed from GBP,

• the dynamical system related to GBP is the state space built from beliefs
on the N single variable nodes computed from GGBP.

We note that in the case of the GBP algorithm, the bottom generationRL of the
region-graph is not always made of single variable node regions, sometimes it
does not even contain any single variable node region. For such cases, beliefs
on missing single variable nodes are computed using the local marginalization
on regions of the upper generation RL−1, or still upper if necessary. Without
any loss of generality, we now refer to any decoder and its related dynamical
system by the same denomination, in order to lighten writings5.

We now have to choose behavior descriptors for decoders. BER is quite
poor according to the quantity of information it offers as it firstly maps beliefs,
i.e. continuous values in [0; 1], to estimated bits, i.e. discrete values in {0, 1},
and then it associates an average value over these bits. As an example, consid-
ering an arbitrary bit Xi, an indecisive belief bi(0, yi) = 0.49, bi(1, yi) = 0.51 is
mapped to x̂i = 1 in the same way as the belief bi(0, yi) = 0.01, bi(1, yi) = 0.99.
It is a very rough estimate of the information contained in the belief. Using
BER finally deletes a large part of information lying on graph edges, either
Tanner graphs or region-graphs. The only advantage of BER is that it de-
livers any decoder performance with only one value, that makes it easy to
store. In this investigation, searching for other descriptors appears absolutely
necessary to obtain accurate information on decoders behaviors.

4for any variable node Xi , bi(0, yi) is enough to describe the distribution of Xi as bi(1, yi) =
1− bi(0, yi)

5strictly speaking, defining dynamical systems with beliefs is not correct as update rules GBP
and GGBP are not bijective, i.e. many different beliefs vectors at iteration k− 1 may produce the
same beliefs vector at iteration k
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§ 6.4 Mean square beliefs

6.4.1 Definition

The mean-square-belief (MSB) introduced in [X. 05] is an interesting alterna-
tive to BER, as it offers a good compromise: it is a one-dimensional map that
reflects decoding performance using directly beliefs. We may compute it at
any iteration k for a given channel realization as:

E(k) =

√√√√ 1
N

N

∑
i=1

(
b(k)i (xi)

)2
(6.3)

where x = [x1, . . . , xN ] is the emitted codeword, e.g. the null codeword that
we always use in our experiments. This function has the following properties:

• E(k) = 1.00: correct decoding,

• E(k) = 0.25: any variable node entropy is maximum, no information is
available on the emitted codeword,

• E(k) = 0.00: faulty decoding.

This function implicitly depends on SNR and likelihoods. MSB provides
smoother information about a given decoder than BER as it does not include
any threshold. Hence, it is a more faithful estimator.

6.4.2 Experimental protocol

MSB reveals performance of a given decoder according to a specific noise
realization. To cover a large range of SNR values, we firstly generate N noisy
samples n = [n1, . . . , nN ], all computed from a Gaussian law N (0, 1). After
that, these samples are scaled on the SNR multiplying them by the associated
standard deviation6. This way, we obtain a sequence of channel realizations:

y1 = x1 + σ1n (6.4)
y2 = x2 + σ2n (6.5)
y3 = x3 + σ3n (6.6)

... (6.7)

where yj = [yj,1, . . . , yj,N ] and xj = [xj,1, . . . , xj,N ]. Samples y provide us like-
lihoods that initialize decoding algorithms. In order to obtain a consistent
investigation, we use the same noise realizations for BP and GBP. We recall
that the goal of this study is to focus on non-trivial decodings, i.e. decodings
where the BER does not converge to any steady value7. To our knowledge,
there is no results in the literature that help find such realizations.

6if X and Y are two random variables s.t. Y =
√

aX, then σX = aσY
7a realization, the corresponding error event and the likelihoods are said non-trivial when

decoding results in a non-trivial BER
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The method we used in this thesis is to run the desired decoder for many
simulations, each one with a different basic noise realization n. Plotting MSB
for all of them allows us to discriminate non-trivial error events. In the fol-
lowing of this chapter, we use a specific error event EE8 to exhibit dynamical
properties of the dynamical systems related to BP and GBP. This error event
perfectly reflects all typical behaviors that we encountered with other error
events in our experiments, not displayed here, i.e. it is a reliable error event to
describe non-trivial evolutions of decoders.

6.4.2.1 Attractor

We now present essential definitions from [Hil00]. First of all, the trajectory of
a decoder is the sequence of points:

T = [[b(1)1 . . . b(1)N ]T , . . . , [b(k)1 . . . b(k)N ]T ] (6.8)

of the related dynamical system in its state space as the iteration k is increased.
In addition, an attractor is a set of points, inside the state space, to which the
system, related to any decoder, approaches as the number of iterations goes
to infinity. Moreover, the basin of attraction of a particular attractor is the set of
initial conditions, i.e. likelihoods, that give rise to trajectories approaching the
attractor as the number of iterations is increased to infinity.

The difficult task in the study of decoders dynamics is that the state space
is so immense that we can list neither all attractors nor their basins of attrac-
tion. This is why scanning a large part of the state space is required to extract
typical non-trivial error events.

6.4.3 Experiments

6.4.3.1 BP

We display in Fig.6.3 the iterative evolution of E(k) as a function of the SNR,
considering BP decoding on EE. Four typical behaviors may be distinguished,
ordered in the table 6.1.
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Figure 6.3: BP MSB of EE: four SNR values, to each one is found a typical behavior

8it is different from the error event EE of previous chapter
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Behaviors of E(k) SNR
convergence to a faulty decoding 2.00dB

oscillation 2.30dB
unknown evolution 2.90dB

convergence to the right decoding 3.09dB

Table 6.1: BP behaviors in terms of SNR values

These four behaviors are not specific to EE, we encountered them for most
other non-trivial error events. Difference remains in the SNR values where
the behavior changes. We note that continuously increasing SNR values does
not make BP behavior change as continuously, but abruptly for specific SNR
values. We call these SNR values critical SNR values. To study rough behavior
changes, it is relevant to use a bifurcation diagram.

6.4.3.2 GBP

We display on Fig.6.4 the iterative evolution of E(k) on EE as a function of the
SNR with GBP decoding.
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Figure 6.4: GBP MSB on EE

GBP-C and GBP-IP similarly behave to BP for the four critical SNR values.
A slight difference remains in transient phases that last longer. Moreover,
GBP-IP eventually converges9. In contrast, the GBP-P algorithm does not
exhibit such a vicinity. We do not observe clear oscillations at SNR = 2.30dB,
even though values of E(k) are similar in average. In addition, it reaches an
imperfect steady state at 3.09dB. However, as GBP-IP, it is due to converge in
the last iterations by means of the damping factor.

More generally, we notice that GBP behaviors, either damped or not, can
be categorized in the same way that BP behaviors, see 6.1. Therefore, we use
the critical SNR values {2.00, 2.30, 2.90, 3.09}dB in the following of the study
to describe decoders dynamics. The investigation is now oriented to highlight
SNR intervals in which typical behaviors live.

9thanks to the decreasing damping factor



130 Chapter 6. Dynamical behavior of iterative decoders

§ 6.5 Bifurcation diagram

6.5.1 Definition

Analyzing decoders behaviors for any error event and for any SNR value is a
substantial work as it results in a tremendous amount of information. Com-
puting the bifurcation diagram is a lead towards a summary of information.
This descriptor is a one-dimensional function that provides the evolution of
the MSB steady state as a function of the SNR, for any decoder. Strictly speak-
ing, steady states are not systematically found, as MSB often oscillates, see
previous figures as examples. We accordingly define the steady state, at an
arbitrary SNR, as the MSB value at the last iteration K10. The goal is to bring
out SNR values for which decoders radically change in their behavior. These
changes are called bifurcations [K.T96].

6.5.2 Experiments

6.5.2.1 BP

Bifurcation diagram of BP for the selected error event EE is displayed in
Fig.6.5. Five obvious SNR intervals may be emphasized in this figure, each
one corresponding to a specific BP behavior. We summarize corresponding
SNR intervals in table 6.2.
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Figure 6.5: Bifurcation diagram of BP

Behavior of E(K) SNR
smooth increasing [0.00 dB; 2.20 dB]
pseudo-oscillations [2.20 dB; 2.51 dB]
erratic evolutions [2.51 dB; 2.99 dB]

convergence jumps [2.99 dB; 3.04 dB]
optimal convergence [3.04 dB; ∞ dB]

Table 6.2: BP behaviors in terms of SNR intervals

10arbitrary fixed by experimenters
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Numerous other experiments, performed with other non-trivial error events,
but not displayed here, made reveal that lengths and bounds of these inter-
vals are quite constant. In addition, these behaviors are always ordered in
the same way, which indicates a regularity in BP behaviors for Tanner code.
When changing LDPC code, BP similarly behaves but with different lengths
and bounds of the SNR values, e.g. McKay code of length N = 504 which
bifurcation diagram is exhibited in Fig.6.6. Even though critical SNR values
and amplitudes of E(K) are different from Tanner code, the five intervals are
clearly distinguishable.
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Figure 6.6: Bifurcation diagram of the BP on the Mac Kay code

An important practical point is that the bifurcation diagram shape de-
pends on the last iteration K11. We display in Fig.6.7 this dependence on K
computing the bifurcation diagram, using Tanner code, for four values of K:
30, 100, 1000, 10000. We observe that SNR intervals do not change, but increas-
ing K makes their bounds emerge more significantly. For K = 30, it is hard to
split SNR values into five intervals, E(K) does not change abruptly, contrary
to the cases in which K ≥ 100. As K is increased, we may distinguish a Hopf
bifurcation [Hil00], at SNR=2.20dB, that brings out two steady states. In other
words, increasing K makes BP closer to its steady behaviors, choosing low K
values limit BP to its transient phases.

We recall that BP is practically run for less than one hundred iterations,
i.e. the BP algorithm is not fairly used. As a matter of fact, the lack of conver-
gence may often be solved considering larger K so that BP can reach a steady
behavior. Within the state space, the BP dynamical system takes a very long
time before falling into an attractor12. For K = 100004, the attractor is obvious
as the fork of the Hopf bifurcation is clearly visible, even if transient points
still appear between the two fork branches. In addition, an extra behavior
arises, for K ∈ {1000, 10000}, in interval [2.50 dB;2.54 dB], where E(K) stops
oscillating but does not begins an erratic evolution, it seems to start up again
a smooth increasing as for first interval. In spite of this noteworthy result, we
shall not consider such an extra behavior, as selecting a large value of K takes
us away from any practical interest. Thus, we use K = 100 to stay close to
realistic situations, at the expense of the decoders long-term reliability.

11E(K) is assumed to be the steady state
12for middle SNR values
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(c) K = 1000
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Figure 6.7: Influence of K on the bifurcation diagram of the BP

6.5.2.2 GBP

We present in Fig.6.8 the bifurcation diagrams of GBP and damped GBPs for
K = 100.
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(a) Constant damping – K = 100
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(b) Parabolic damping – K = 100
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(c) Inverse parabolic damping – K = 100

Figure 6.8: Bifurcation diagram of GBPs

Constant damping triggers a behavior similar to the BP one as E(K) pseudo-
oscillates before presenting erratic evolutions. GBP-C firstly differs from BP
through the fact that a bifurcation distinctly occurs at SNR = 2.6dB whereas
it is less visible for BP13.

13for the same K value
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Secondly, GBP-C presents convergence jumps from SNR = 2.87dB, and GBP-
IP too, which is lower than for BP as it has to reach larger SNR values than
2.99dB. We note that GBP-P behavior is slightly different: pseudo-oscillations
take place earlier than BP and other GBPs, no visible bifurcation occurs around
2.6dB and it erratically behaves only from 2.8dB, i.e. 0.2dB later than other
ones.

We note that for SNR values in [2.6 dB; 2.87 dB], BP and damped GBPs
with constant and inverse parabolic laws present peculiar evolutions of E(K).
The shape of bifurcation diagrams is close to the logistic map one: a cloud
of points without particular consistency. It is known [Hil00] that the logistic
map trajectory falls into a chaotic attractor for a ≥ 3.44, see Fig.6.9.

2.5 2.8 3.1 3.4 3.7
0

0.2

0.4

0.6

0.8

1

a

x
K

Figure 6.9: Chaos in the logistic map xk+1 = axk(1− xk), for a ≥ 3.44

We accordingly assume that the erratic evolution of E(K) is chaos for both
message-passing algorithms. Eventually, the bifurcation diagrams of GBPs
show the same properties that we brought out for BP on the same error event
EE. All of these decoders are similarly influenced by same likelihoods. In
other words, the distinction between them is not easy to make, based on their
bifurcation diagrams only14.

The bifurcation diagram underlines critical SNR values and associated in-
tervals in which decoders have particular behaviors. In addition, it helps us
introduce assumptions concerning behaviors nature, that we now attempt to
describe in depth.

§ 6.6 Reduced trajectory

Iterative BER and MSB are means to draw decoders evolutions according to
SNR values. Visualizing bifurcations and peculiar behaviors allows us to con-
jecture nature of associated attractors that trap decoders. Usually, if state
spaces are one, two or three-dimensional, nothing prevents us from observing
trajectories evolution, e.g. logistic and Hénon map, Lorenz system lie in hu-
manly observable state spaces of one, two and three dimensions, respectively.

14larger values of K would make the comparison easier but as pointed out earlier, it would not
reflect a realistic point of view
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In the current study, trajectories of decoders lie in N-dimensional state
spaces, with an often very large N15. Visualizing decoders trajectories is then
absolutely impossible. BER and MSB are useful to pre-investigate on decoders
behaviors but they are too restrictive as they are average of N beliefs. Another
method is therefore essential to observe and analyze decoders trajectories.

6.6.1 State space reduction

We introduce an alternative space which number of dimensions is consider-
ably lower than for the original state space. We build it through the State
Space Reconstruction (SSR), exposed in chapter 3.5. We recall that SSR helps
faithfully recover a state space only with a subset of its state variables. We in-
terpret this property such that a subset of all state variables is enough to fairly
describe any dynamical system. In other words, SSR allows us to construct
a space of an arbitrary number of dimensions m. This way, we are able to
construct three-dimensional reduced state spaces such that dynamical systems
related to decoders are now humanly observable.

Decoders state spaces are generated by beliefs assumed to be state vari-
ables. We cannot use any beliefs subset to construct a reduced space because
we do not have any criterion to discriminate three beliefs among N. One
would suggest to take into account only “very variant” beliefs but this would
mean that other parameters (SNR, EE, LDPC code) would discriminate three
other beliefs, making reduced state spaces hardly comparable.

Therefore, we have to find a way to gather all beliefs without any dis-
crimination in three quantities. As a matter of fact, this is perfectly possible
using MSB. We practically compute a sequence, called time series, of K points
[E(1) . . . E(K)] that we map to a matrix such that each column is a state vari-
able of the reduced state space:

T =



T1
T2
...

Tn
...

TL


=



E(1) E(1 + τ) . . . E(1 + (m− 1)τ)
E(2) E(2 + τ) . . . E(2 + (m− 1)τ)

...
...

...
E(n) E(n + τ) . . . E(n + (m− 1)τ)

...
...

...
E(L) E(L + τ) . . . E(L + (m− 1)τ)


Vector [T1 . . . TL] contains L points of a trajectory, called reduced trajectory,
inside the reduced space. The value m is the target dimension of the reduced
space, called the embedding dimension. Here, m must be three to get a humanly
observable space. The term τ is a delay and L is chosen such that:

L + (m− 1)τ ≤ K (6.9)

Choice of τ and m are known in the literature to condition the SSR success,
research on this topic is still on progress [H. 06]. We set the embedding di-
mension m = 3, because we need a three-dimensional space. Practically, the
number of points K is not very large, around a hundred, to keep realistic de-
coders whereas a faithful reduced trajectory needs a large number of points L.

15Tanner code of length N = 155 is considered as a small code in coding theory
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We accordingly choose the delay τ as small as possible, i.e. τ = 1. Eventually,
we obtain the 3-dimensional trajectory of K− 2 points:

T =



T1
T2
...

Tn
...

TK−2


=



E(1) E(2) E(3)
E(2) E(3) E(4)

...
...

...
E(n) E(n + 1) E(n + 2)

...
...

...
E(K− 2) E(K− 1) E(K)


We display in Fig.6.10,Fig.6.11,Fig.6.12 and Fig.6.13 reduced trajectories of BP
and GBPs for SNR ∈ {2.00, 2.30, 2.90, 3.09}dB, respectively.
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Figure 6.10: Reduced trajectory with SNR = 2.00dB

In the case SNR = 2.00dB, we observe the same convergence in spiral to the
same fixed-point for any of the decoders. This fixed-point corresponds to
what is called a faulty decoding in the study of the MSB.

We increase the SNR to 2.30dB meaning that we enter the second SNR
interval, where decoders behaviors are distinguishable. We observe that BP
and GBP-C clearly oscillates16. Associated limit cycles look like ellipses, which
axes, either minor or major, are oriented in the same direction for both of them.
The only difference is that the GBP-C limit cycle is larger than that of the BP,
i.e. oscillation of GBP-C are more important. Considering GBP-P and GBP-
IP, we recall the damping helps them converge, making observations of limit
cycle impossible, both end in fixed-points.

16the line drawn by oscillations is called a limit cycle
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Figure 6.11: Reduced trajectory with SNR = 2.30dB

Associated trajectories do not exhibit any obvious convergence as in the pre-
vious case SNR= 2.00dB. In addition, we perceive similar continuous lines
inside their clouds of points, as for GBP-C and BP. These lines stem from the
fact that damping, either parabolic or inverse parabolic, makes GBP eventu-
ally leave a “transient” limit cycle after a certain number of iterations k, as we
also saw in Fig.6.4. Limit cycles are oriented in the same direction, as for BP
and GBP-C, towards the all-one point, i.e. the perfect decoding state. More
precisely, ellipses of all decoders are close to the straight line, denoted by ∆,
that goes from the all-zero point (completely faulty decoding) to the all-one
point (perfect decoding), which is the unitary linear function in the reduced
state space. This means that all decoders do not discriminate between reduced
state variables, they are somehow equivalent. In other words, MSB smooths
beliefs such that EE do not strongly affect the reduced trajectory.

We now increase the SNR to 2.90dB. Decoders behavior appears chaotic
according to the bifurcation diagram conclusions. We do not notice any par-
ticular line or known geometric form, clouds of points are themselves chaotic
attractors: two close points in such an attractor are mapped by any update
function to separate points that belong to this chaotic attractor. However, we
observe that GBP has the advantage of stretching the attractor along ∆ line,
contrary to BP where the attractor shape is unchanged from any state space
point of view. GBP tends to make state variables “more equivalent” than BP,
i.e. EE is better smoothed by GBP than by BP, which is a clear advantage of
the GBP algorithm. Convergence jumps of GBP-P and GBP-IP confirm that
the stretched form of the chaotic attractor helps GBP correctly and quickly
converge.
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Figure 6.12: Reduced trajectory with SNR = 2.90dB
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Figure 6.13: Reduced trajectory with SNR = 3.09dB
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When SNR= 3.09dB, we observe that all decoders, whatever the damp-
ing factor for GBP, eventually converge to the perfect decoding fixed-point.
Furthermore, the number of iterations needed to converge are clearly fewer
for GBP than for BP, making GBP consistent with the previous observations
concerning the convergence jumps.

The method of the reduced trajectory allows us to visualize and confirm
nature of typical decoders behaviors. A numerical method now turns out
necessary to associate to any attractor intensity and size, to relate them to
decoding performance.

§ 6.7 Sensitivity to initial conditions

Reduced trajectories and bifurcation diagrams bring out that decoders fall into
attractors of different kinds, depending on the SNR. In the interval [2.51 dB,
2.99 dB], related dynamical systems oddly behave as attractors, in reduced
spaces, do not present any regular geometric shape. This observation is an
evidence that decoders do greatly depend on initial conditions, i.e. on likeli-
hoods. In other words, decoders reveal stability: a dynamical system is said
stable if and only if it is not strongly affected by slight changes in its initializa-
tion, otherwise it is unstable.

6.7.1 Preliminaries

Describing sensitivity to initial conditions is usually done with Lyapunov
exponent [A. 85, M.T93, Hil00]. As explained in 3.4, this quantity evalu-
ates the divergence rate λ between two trajectories initially as close as pos-
sible17. As an example, we consider two very close likelihoods vectors: LA =
[lA,1(x1, y1) . . . lA,N(xN , yN)], LB = [lB,1(x1, y1) . . . lB,N(xN , yN)]. We practically
define:

∀Xi ∈ X, ∀xi lB,i(xi, yi) = lA,i(xi, yi) + εi (6.10)

where {εi}i are random disturbances between 0 and a maximum value we set
to 10−618. For each set of N disturbances, likelihoods vectors are injected in
a given decoder, either BP or GBP. Beliefs are computed at each iteration k to
compute the Euclidean distance dk between trajectories:

dk =

√√√√ N

∑
i=1

(
b(k)A,i(0, yi)− b(k)B,i (0, yi)

)2
(6.11)

We observe the iterative evolution of log dk, known as the log-distance. The
use of the logarithm function appears legitimate as theoretically, the largest
divergence, or separation, found between two trajectories is an exponential
function of k. The logarithm allows us to cancel the exponential and to extract
the divergence rate. We present in Fig.6.14 evolutions of the log-distance of
BP for SNR values belonging to SNR intervals previously extracted.

17in the true state space, not in the reduced space
18this is arbitrary, it depends on experimenter precision
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Figure 6.14: Evolution of the BP log-distance

In figures Fig.6.14(a) and Fig.6.14(b), the distance converges to a very small
non zero value, meaning that both trajectories have reached stationary and
very close points in the state space. We evaluate dK around 7.10−6 for both
SNR, which is around the same magnitude as the distance between the like-
lihoods. Both trajectories then do not substantially get away one from the
other. We note a transient phase for SNR = 2.17dB that lasts about 600 itera-
tions where trajectories seem to pseudo-oscillate one around the other before
collapsing. This behavior is an announcement of instability, given that as the
SNR is increased, this transient phase lasts more and more.

When increasing the SNR to 2.35dB, see Fig.6.14(c), the log-distance is
getting larger in average, i.e. trajectories move away from each other. Fur-
thermore, oscillations do not stop anymore, contrary to the previous SNR
values, meaning that trajectories are also turning around. As the SNR is in-
creased theses oscillations change to strong divergence between trajectories,
e.g. the log-distance reaches a value of 0.19 for SNR = 2.90dB, represented in
Fig.6.14(d), meaning that the divergence has been multiplied by 2.104 between
both, that is a considerable change. In addition, we observe an exponential di-
vergence rate up to 200 iterations, i.e. trajectories have reached the maximum
separation, that is a sign of very high sensitivity to the initial conditions. After
200 iterations, dk reaches a stationary state, called plateau, of value dK = 0.19,
a substantial value. This plateau only appears because we observe the log-
distance, as the log-function compresses values of the true distance. As an
example, we display in Fig.6.15 the distance at SNR = 2.90dB for the BP.
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Figure 6.15: Evolution of the BP distance at 2.90dB

Values of dk after the exponential divergence range in [0.1; 0.23], with chaotic
oscillation amplitudes. It is then erroneous to conclude that the apparent con-
stant log-distance corresponds to a constant dk. We specify that the maximum
value of dk does not exactly reflect the size of the chaotic attractor, we will
tackle this point in section 6.8.

Increasing the SNR beyond the next critical value around 3dB makes trajec-
tories getting closer and closer. We still observe, in Fig.6.14(e), an exponential
divergence during first iterations k ≤ 200, but the distance then exponentially
decreases, i.e. trajectories that first seemed to move away eventually slowly
merge. This phenomenon is confirmed, in Fig.6.14(f), with SNR= 3.12dB,
where trajectories shun one another during 45 iterations and from k = 45,
they completely fuse together.

6.7.2 Lyapunov exponent

Lyapunov exponent is a good candidate to accurately reflect these observa-
tions. According to 3.4, Lyapunov exponent λ is the divergence rate between
two initially close trajectories:

dk = d0eλk (6.12)

Sign and magnitude of λ indicate the divergence or convergence nature of a
given dynamical systems. Exponentially divergent trajectories are reflected by
λ ≥ 0, whereas merging trajectories correspond to λ < 0. We recall 3.4 that
the practical method for computing λ is to extract the log-distance slope given
by:

log dk = log d0 + λk (6.13)

Usually, computing λ is well-suited for chaotic attractor as they are responsi-
ble for exponential divergence. More precisely, the shape of log dk help deduce
whether a dynamical system is attracted into a chaotic attractor or not. As a
matter of fact, the value at last iteration K strongly conditions the slope value,
and then the nature of the corresponding attractor. As an example, for an
SNR of 3.05dB, we see, in Fig.6.14(e), that taking K = 200 provides a higher λ
value than taking K = 1000 because the shape of log dk is changing.
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Furthermore, for SNR= 3.12dB, selecting K = 45 involves a positive λ whereas
K ≥ 200 involves a negative λ. Accordingly, we strongly recommend to de-
fine Lyapunov exponent as the linear regression slope not on the transient
part of log dk but on the whole values of k. This way, we combine emerg-
ing divergence and possible steady state with merging evolution, we do not
omit any information. We specify that the last iteration K is restricted to
one hundred in order to keep consistency with previous results on bifurca-
tion diagram, reduced trajectory and MSB. The linear regression provides the
following equation of Lyapunov exponent:

λ =

K

∑
k=1

k log dk −
1
K

(
K

∑
k=1

k

)(
K

∑
k=1

log dk

)
K

∑
k=1

k2 − 1
K

(
K

∑
k=1

k

)2 (6.14)

We show in Fig.6.16 the λ evolution19 as a function of the SNR.
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Figure 6.16: Lyapunov exponent on the Tanner code

We observe that the SNR intervals indicated by the bifurcation diagrams are
still valid, especially for BP:

• first interval: no change in distance, dk ≈ d0,

• second interval: distance increases to a stationary value, trajectories turn
around inside a limit cycle,

• third interval: distance increases meaning that trajectories follow very
different evolutions, trajectories are trapped into a chaotic attractor,

• fourth and fifth intervals: λ reaches infinite negative value, trajectories
merge to a fixed-point.

However, non-trivial behaviors of GBPs appear earlier than BP. The values of
λ significantly increase near 2.12dB. Furthermore, while Lyapunov exponent
of BP is stabilized to λ = 3.10−3 in the second interval, GBP-P and GBP-IP
exhibit a stronger sensitivity to initial conditions as λ ≈ 0.8.

19averaged over a thousand simulations
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In contrast, GBP-C presents values of λ comparable to those of BP, that indi-
cates that their sensitivity are quite equivalent. We then observe a common
decreasing behavior in the third interval for all decoders, we can then con-
clude that all decoders are subject to a similar chaos intensity. We specify that
it does not imply that chaotic attractors are identical, but that their sensitivity
to a slight change in the likelihoods are equivalent.

By the use of the Lyapunov exponent, we are able to quantify the behaviors
nature and their intensity, that helps confront decoders. We now deal with the
size of the attractors so as to relate them to decoders performance.

§ 6.8 Hyperspheres and attractors width

6.8.1 Static hypersphere

The nature of an attractor, e.g. fixed point, limit cycle or chaos, is not enough to
describe decoders and to relate with their decoding performance. It appears
that widths of chaotic attractors may be very unpredictable and that they
largely influence algorithms performance: as the size of a chaotic attractor is
increased, beliefs exhibit more and more fluctuations making decoding more
and more troublesome.

The size of an attractor is here defined as a measurement of its hypervol-
ume in the state space. As we previously saw, nothing ensures that shapes
of chaotic attractors are usual geometric forms (spheres, ellipsoids, hyper-
cubes, etc.), therefore computing the value of the hypervolume of a given
chaotic attractor is unfortunately hopeless because it is completely dependent
on its shape. To circumvent this problem, we establish a procedure, that we
called the hyperspheres method: for a given attractor, it consists in approximat-
ing its hypervolume by the hypersphere circumscribed to any of its trajecto-
ries. Practically, we only compute the radius R of the hypersphere given that
the corresponding hypervolume is proportional to RN . R is then a measure of
attractors width.

Figure 6.17: Lorenz chaotic attractor: hypersphere from dK in blue, from our own
method in red



6.8. Hyperspheres and attractors width 143

Practically, we compute R first by extracting the mean point of the at-
tractor, then by searching for the attractor point that is the farthest one. The
Euclidean distance between them is the radius of the hypersphere. One would
point out here that any attractor width should be provided by the maximum
of dk, the distance between initially nearby trajectories. This is quite realistic
as the radius R resulting from the hyperspheres method is not far from the
maximum of dk. As an example, we consider the Lorenz map in its chaotic
behavior, see chapter 3.2.2 for details. We recall the profile of the chaotic at-
tractor in Fig.6.17. The red hypersphere stems from our own computation
method whereas the blue one is computed by means of distance dk. We ob-
serve that the attractor is enclosed inside the red one without any ambiguity,
but not in the blue one, i.e. it is less accurate than our method. To reach same
results for both methods, it would be required to compute an average radius
over a numerous number of trajectories couples, but it represents a too large
computation time, compared with the hyperspheres method.

We display experimental results on BP and GBP in Fig.6.18, where are
exhibited radii of associated circumscribed hyperspheres as functions of the
SNR. We observe that BP falls into larger and larger attractors as the SNR is
increased, from 2.18dB to 2.80dB, where the width reaches its maximum value
RBP = 3.30. As a matter of fact, results show that chaotic attractors of BP, and
of GBPs too, are the largest ones.
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Figure 6.18: Radii evolution of BP and GBP

In the last SNR values, RBP decreases slowly up to an abrupt peak at 3.00dB.
This may be due to the fact that chaos remains only a transient behavior at
this SNR value, the steady state being the right decoding state where RBP ≈ 0.
In other words, convergence jumps, see Fig.6.13, make inaccurate the method
when attractors are not centered around the computed mean point but farther.
We also observe this phenomenon with GBPs around the same SNR value.

Contrary to GBP-C which static radius follows the same evolution as for
BP, we see that GBP-P and GBP-IP present a significant and early increase in
the attractors width, at 2.05dB and 2.10dB, respectively. While BP and GBP-C
are still enclosed in small-sized attractor, attractors of GBP-P and GBP-IP get
substantially larger up to their average steady value R = 3.25. By increasing
the SNR, both decoders fall into chaotic attractors which widths are not stable,
contrary to BP where fluctuations of RBP are less important.
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Finally, the static radius reveals that damped GBPs have their trajectory
enclosed in quite constant-sized attractors, their widths are a little larger than
the maximum width of BP attractors.

6.8.2 Local hypersphere

The hyperspheres method allows us to find an estimate of any attractor radius
R. We observe when SNR reaches value of convergence jumps appearance that
R was not very reliable, because transient disturbs the measurement. On one
hand, transient phase, especially for chaotic attractors, may last about 200 it-
erations as we can see in Fig.6.14(d), which is a non negligible value. On the
other hand, we previously mentioned that the number of iterations should not
exceed a hundred to preserve a consistency with realistic situations. There-
fore, it would be very useful to determine how to modify the hyperspheres
method to fit with realistic situations that may not reach steady states.

The idea is to transform static radius R to a dynamical radius Rk: rather
than considering the whole trajectory, we consider a temporal window, of a
finite length W < K, sliding step by step along the trajectory, each step k giving
the radius Rk of the hypersphere circumscribed to the partial trajectory. The
hyperspheres method is then transformed such that it results in a sequence of
local radii {R1+W

2
, . . . , RK−W

2
}.

Practically, for each point Tk of the trajectory, k ∈ {1 + W
2 , . . . , K − W

2 },
we compute the trajectory mean point Bk in the temporal window Wk =

]k− W
2 , k + W

2 ]. After that, we search for the farthest point to Bk inside Wk. Rk
is then computed as the Euclidean distance between both points, see repre-
sentation in Fig.6.19.
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Figure 6.19: Hypersphere of radius Rk centered on mean point Bk of the partial
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The dynamical radius Rk allows us to observe iterative evolutions of attractors
using temporal windows. The term attractor has slightly changed as it refers
here to the set of points of a given trajectory enclosed in Wk, i.e. it is only a
partial attractor. The dynamical hyperspheres method then use local average
behaviors to observe iterative evolutions of dynamical systems.



6.8. Hyperspheres and attractors width 145

For any iteration k, a large value of Rk means that the given decoder has
significant changes, whereas a small value of Rk indicates that the decoder is
slightly changing. In other words, local, or dynamical, hyperspheres provide
the decoder scattering.

The window length W wields influence on results of the method. On one
hand, selecting a too large value of W could make the method find a non vary-
ing radius along iterations as it would be too close to the static radius, i.e. the
dynamical local hyperspheres would be similar to the static hypersphere cir-
cumscribed to the whole trajectory. On the other hand, opting for a too small
length W implies that local hyperspheres are completely determined by trajec-
tory points themselves, i.e. no information can be enlightened on the attractor
width. In our experiments, we chose a window of length W = 30. The reason
for this choice is that this value is around the minimum practical number of
iterations used to run any decoder20. We present in Fig.6.20 the Rk evolution
for BP and GBPs when trapped in attractors previously mentioned21.
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Figure 6.20: Local radii Rk evolution for BP and GBP

When the SNR equals 2.00dB, decoders are attracted by fixed-points, as de-
picted in Fig.6.10. We previously saw that corresponding reduced trajectories
drew spirals in reduced spaces, justifying Rk as hyperbolic functions of k.

20no reference asserts it, but it is a commonly accepted computation detail
21values of Rk are not available for k < W

2 and k > K − W
2 , that is why figures exhibit null

values outside the interval [W
2 , K− W

2 ]
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We now consider that SNR = 2.30dB. We note that BP radius is quite
constant compared with GBPs ones. At this SNR value, BP is trapped into
a limit cycle, that explains the relative stability of Rk. Concerning the GBP
algorithms, we observe that the Rk shape of GBP-C behave in the same way
that BP one with an increasing dilatation as k increases, meaning that the
associated limit cycle is getting larger and larger. A noteworthy point is that
the GBP-P radius diminishes for k ≥ 48, i.e. the limit cycle attractor retracts.
In contrast, the GBP-IP radius does not present any decreasing values before
k = 72, meaning that the damping factor does not help focus on a single point
of the state space.

As the SNR is set to 2.90dB, decoders are trapped into chaotic attractors.
These attractors are larger than the previous limit cycles, as Rk values are
increased about a unit. We observe that the BP attractor slowly collapses as k
is increased, that could be approximated by an affine function, which makes
emerge that inside this chaotic attractor, fluctuations are linearly decreasing.
While k ≤ 60, we can distinguish that GBP-C and GBP-IP follow a BP-like
evolution, i.e. Rk slowly decreases in average too. In contrast, GBP-P evolves
pseudo-oscillating in its chaotic attractor with Rk values close to GBP-C ones.
As k > 60, each GBP changes its behavior, due to damping factors. Radii of
GBP-C and GBP-IP grow up to Rk > 3 whereas GBP-P radius decreases to
Rk ≤ 0.5, which is even lower than BP radius. Finally, for a SNR of 3.09dB, all
GBPs converge to smaller attractors than BP one. More precisely, GBP-C and
GBP-IP both converge to a fixed-point (Rk = 0) and GBP-P slowly converges
to a smaller and smaller attractor, whereas BP is still stuck to an attractor of
radius Rk ≈ 2. This piece of information could not be revealed by the static
radius, that makes the use of the local radius relevant.

These observations tend to conclude that damping factors wield substan-
tial influence on GBPs attractors, especially when these attractors are non-
trivial. We see that to select either a damping rule or another one deeply
conditions GBP performance. However, when approaching the major bound
of the chaotic interval, the GBP algorithms tend to converge to fixed-points
contrary to BP that is still stuck in an attractor of a non-negligible size. In
other words, GBP diverge more but shorter than BP.

Thanks to the hyperspheres method, we are able to offer measurements
of attractors hypervolumes for all decoders, which particularly helps con-
textualize chaos in decoding performance. The remaining question now is
where these attractors take place in their associated state space, or more sim-
ply, where trajectories evolve in the state space.

§ 6.9 Lengths ratio to determine the relative po-
sition in the state space

By means of previous descriptors, we now have information about attractors:
we know their nature, their size and the SNR values for which they appear.
The last description we need is about relative positions of these attractors to
the perfect decoding state in the state space, that will be offered by the last
quantifier, called the complementary length.
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6.9.1 Complementary length

The length of any beliefs vector, in the state space, is defined as its Euclidean
distance to all-zero point:

L(k) =

√√√√ N

∑
i=1

(
b(k)i (0)

)2

(6.15)

which is very close to MSB. To keep connections with concept of length and
positions, we prefer to keep using L(k) instead of E(k). We now define the
complementary length as the Euclidean distance to all-one point:

L̄(k) =

√√√√ N

∑
i=1

(
1− b(k)i (0)

)2

(6.16)

Experimentally, we always consider that the emitted codeword is the zero-
codeword, therefore, all-one point in the state space corresponds to perfect
decoding22. The vector length is then the distance to completely faulty decod-
ing, or wrong decoding. As a matter of fact, only one of these two quantities
does not provide decoding performance of a given decoder. We display a toy
example in Fig.6.21 where we consider a three-dimensional space which axes
are denoted by b1, b2, b3.
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Figure 6.21: Length and complementary length

Coordinates of points A,B and C are given in table 6.3. We include in this table
lengths and complementary lengths of vectors

−→
OA,
−→
OB,
−→
OC. Points A, B, C are

equidistant to all-zero point O, as LA = LB = LC. However, they are not
equidistant to all-one point M as L̄A < L̄C < L̄B, i.e. point B is the closest
to point M. This kind of information is not given by the only knowledge of
length L, as it does not take into account any other point that M. Using also
L̄ helps faithfully represent the relative position of any decoder in its state
space.

22for any variable node Xi , bi(0) = 1
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A B C
b1 0.2 0.4 0.75

b2 0.911 0.9165 0.0
b3 0.3607 0.0 0.6614

L 1.0 1.0 1.0
L̄ 1.0279 1.1692 1.0850

Table 6.3: Coordinates, lengths and complementary lengths

6.9.2 Lengths ratio

We now apply concept of complementary length to extract positions of de-
coders inside their own state space and more accurately, their vicinity with
the optimal point23. Instead of using length and complementary length, we
introduce a combination thereof to obtain a unique function that reflects the
relative decoders positions to the correct decoding state24. This combination
is called the lengths ratio and is given by:

αk =
L̄(k)
L(k)

(6.17)

This allows us to judge about the accuracy of BP and GBP. For any couple
of beliefs vectors of identical lengths, αk brings out the closest one to the
right decoding state which is also the farthest one to the wrong decoding
state. In the previous example, lengths ratios associated to points A, B, C are:
αA = 1.0279, αB = 1.1692 and αC = 1.0850. As their lengths are equal, we
consistently find that αA < αC < αB. Two points of identical lengths ratios
are comparable in the state space as their decoding performance are similar.
We display in Fig.6.22 the surface covered by αk in the plane generated by all
possible values of L(k) and L̄(k).
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Figure 6.22: Lengths ratio

23all-one point
24both quantities are required as they play dual roles in state spaces
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We link typical values of αk with decoding situations:

• αk = 0: perfect decoding, L̄(k) = 0,

• αk = +∞: completely faulty decoding, L(k) = 0,

• αk = 1: indecisive decoding, entropy is maximum on the beliefs.

Thus, the smaller αk is, the more relevant the decoding is. In Fig.6.23 are
displayed iterative evolutions of αk for BP and GBP.
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Figure 6.23: Iterative evolution of the lengths ratio

We observe for SNR= 2.00dB that all decoders are exactly in the same relative
position as αk = 0.4. This does not mean that beliefs are common to all of
them, but that trajectory points are equidistant to all-zero and all-one points.
Once the SNR reaches 2.30dB, we know that decoders oscillate, especially BP
and GBP-C25. Only small fluctuations are visible around the average value
0.4, meaning that oscillations are not very large compared with the size of the
state space26.

We previously mentioned, by means of static radius of hyperspheres, that
attractors are getting larger as the SNR is increased. This is why at 2.90dB,
significant differences between decoders behaviors are visible. In addition,
attractors are chaotic and of non-negligible widths.

25as GBP-P and GBP-IP present pseudo-oscillations
26state space made with beliefs is a hypercube which largest diagonal length is

√
N, i.e. around

12.4 for Tanner code
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Lengths ratio of any decoder is then subject to important variations. GBP-IP
lengths ratio has the great advantage of converging to the perfect decoding
state, contrary to other ones. However, by increasing again the SNR, e.g.
3.09dB, we observe that GBP-C also presents such a behavior. Surprisingly,
GBP-P still does not converge to the right state even though its lengths ratio
has been diminished compared with that of the previous SNR. In addition,
this lengths ratio is lower than the BP one, indicating that BP is even more
remote to the right state than GBP-P. Not displayed experiments have showed
that increasing again the SNR makes lengths ratios of all algorithms converge
to zero.

The noteworthy point is that the GBP algorithm, especially damped with
the inverse parabolic law, presents a better proximity to the perfect decoding
state than other decoders. This fact is not particular to the error event EE
we selected. Other experiments demonstrated that the lengths ratio of GBP is
generally smaller than the BP one. In other words, for any initial condition,
GBP approaches the right state more accurately than BP.

Practically, performance of any decoder are measured once either mes-
sages have converged, or the estimate word is valid according to the LDPC
code, or the last iteration has been reached. We then picked out the value
of the steady lengths ratio αK for different SNR values, K being the iteration
where the given decoder stopped27. We average values of αK over a thou-
sand error events close to the original error event EE, at the Euclidean sense.
Results are represented in Fig.6.24.
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Figure 6.24: Steady lengths ratio along the SNR for BP and GBP

For SNR values lower than 2.00dB, lengths ratios of all decoders merge in a
single line, as well as when SNR values greater than 3.1dB. As previously ex-
plained, the αK behavior may fluctuate more and more as the SNR is increased
up to 2.30dB. As a summary of previous observations, we observe that from
this SNR value, GBP-IP tends to approach the right decoding state signifi-
cantly earlier than other decoders, that is a manifestation of the convergence
jumps. In addition, we see that just after 3.00dB, GBP-P and GBP-IP converge
to all-one point, whereas GBP-C and BP has to wait a little bit longer. Further-
more, BP exhibits a rebound once all other algorithms have converged, which
is a sign of worse decoding.

27less than one hundred to maintain realistic situations
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§ 6.10 Conclusion

The study of dynamical behaviors of iterative decoders brought out proper-
ties cannot be deduced from the only knowledge of the average BER. We saw
that BP and GBP were comparable in terms of BER when the SNR ranges
in [2.00; 3.10]dB. But when focusing on non-trivial error events, we observed
different evolutions. Bifurcation diagram provided critical SNR values for
which message-passing algorithms encountered particular attractors that pre-
vent them from easily converging. We observed that for all decoders, critical
SNR values and even SNR intervals are similar, which makes them very in-
teresting challengers. Lyapunov exponents and reduced trajectories indicated
that algorithms are trapped by chaotic attractors in the same SNR interval,
and it was clear that their sensitivity to initial conditions in this interval was
similar, even though it is not the case for lower SNR values, partly due to
damping factors.

We introduced few original estimators to analyze widths and relative posi-
tions of attractors and trajectories in state spaces. We motivated this by trying
to relate dynamical behaviors to decoding performance, that is not an easy
task. In addition, the usual estimators from the literature on dynamical sys-
tems theory cannot reflect the whole influence of dynamical properties on BP
and GBP efficiency. By means of the hyperspheres methods, we first extracted
attractors size: it appears that damping rules make GBP evolve in attractors of
a non negligible but stationary size, contrary to BP that is enclosed in larger
and larger attractors as the SNR is increased, up to the critical SNR values
where all algorithms become chaotic. Related to reduced trajectories, chaotic
attractors of GBP are more stretched in the direction of the right state whereas
BP has a quite uniform shape in its state space. By the use of the lengths ratio,
we exhibited the vicinity of decoders to the right state, more accurately than
what has been done with MSB. We noticed once more that the chaos disappear
earlier for GBP than BP, thanks to decreasing damping rules.
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Conclusion

We demonstrated in first chapter that fixed-points of BP are stationary point
of Bethe approximation. This property allowed us to extend connections be-
tween decoding algorithms and statistical physics. Both methods are subject
to a significant suboptimality due to the non-convexity of variational free en-
ergies, in deep correlation with the loop-like topology of most Tanner graphs.

We demonstrated in second chapter that Bethe approximation could ex-
tend to Region-Based Approximation (RBA), which provided the GBP algo-
rithm, a message-passing algorithm running on edges of a region-graph. Goal
of the region-graph construction is to absorb harmful topological structures of
any Tanner graph, such that resulting RBA is less damaged than Bethe approx-
imation. We made use of this principle to introduce an original region-graph
construction based on trapping sets of Tanner code, that are responsible for
the degradation of BP performance, especially for high SNR values. By means
of an original method, we brought out relevant results of the GBP algorithm
for error events based on trapping sets. We observed that this decoder could
surpass BP in these situations, making our own construction well-suited.

In third chapter, we introduced a toolbox to examine dynamics of any iter-
ative decoder. This helps understand non-trivial behaviors of algorithms, e.g.
the lack of convergence, oscillations or even chaos. By the use of bifurcation
diagrams and Lyapunov exponent, we extracted typical attractors that trapped
decoders, and SNR values they appear at. We introduced original descriptors
of dynamics, that we called hyperspheres and lengths ratio, to discuss size
and position of these attractors, and they allowed us to determine their rela-
tions with decoding performance of BP and GBP. It appeared that the triplets
clustering presented very relevant properties as associated attractors are closer
to the right decoding state than BP ones, though Lyapunov exponent demon-
strated that BP was a little more stable. In addition, damping rules, that we
introduced to overcome the lack of convergence of the pure GBP algorithm,
provided that attractors always shrink as the iteration increases, contrary to
BP.

Statistically, BP and GBP algorithms are quite comparable. Without any
specific construction of the region-graph, results of the GBP algorithm are
strictly equal to the results of the BP. This is generally observed as the system-
atic construction for LDPC codes provides a region-graph which topology is
identical to the Tanner graph one. With our dedicated construction, we show
that it is possible to make a region-graph such that GBP surpasses BP.
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Conclusion

In this thesis, we addressed inference problems on loopy factor graphs. We
presented the Belief Propagation algorithm (BP) used as a message-passing
algorithm to almost solve inference. We exhibited its deep relations with sta-
tistical physics, especially with Bethe approximation, a method that is aimed
at minimizing the variational free energy to obtain the log-partition function.
By the use of examples and experiments, we showed that loop-like topology
of most factor graphs, and more precisely Tanner graphs for LDPC codes,
prevents BP from being optimal.

Introduction of the region-based approximation, and the associated Gener-
alized Belief Propagation algorithm (GBP), helped circumvent this problem by
mapping the factor graph to the region-graph. Provided that the region-graph
is constructed according to the factor graph topology, the GBP algorithm re-
sults in more efficient performance than BP. In the case of LDPC codes, we
used trapping sets to construct a specific region-graph dedicated to the Tan-
ner code. By means of damping factors and new principles, we developed a
method for high SNR values that demonstrated that the GBP algorithm was
able to outperform the BP algorithm.

The comparison of both decoders for middle SNR values turned out non
conclusive as they exhibit equivalent performance. From the dynamical sys-
tems theory point of view, we introduced a relevant investigation that brought
out decoders typical behaviors. Bifurcation diagrams offered that the SNR val-
ues for which they do not trivially evolve were common. Furthermore, both
are subject to chaos for same SNR values. The use of Lyapunov exponent and
reduced trajectories revealed that damping factors of the GBP algorithm wield
much influence on the decoder stability at a low memory cost. In addition,
these functions allowed us to observe that the chaos intensity was similar
to both, but that GBP always converged earlier than BP to the right decod-
ing state, especially with a decreasing damping factor. We introduced the
static hyperspheres method to approximate the attractors width, especially
for chaotic attractors. We observed that the widths of the GBP attractors were
quite stationary compared with the BP ones that grew as the SNR is increased.
Local hyperspheres helped us conclude that along the iterations, the GBP al-
gorithm is more convergent than BP, due to the damping factor particularly.
The introduction of the complementary length and the lengths ratio provided
more relevant information than the mean square beliefs as it faithfully reflects
the relative position of any decoder to the right decoding state.
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We saw that the GBP algorithm presented better length ratios when approach-
ing the major bound of the chaotic interval.

Finally, the specific region-graph construction with a triplets clustering
turned out powerful according to the number of errors decoded by the GBP
algorithm compared with the BP’s. Furthermore, the investigation on dynam-
ical aspects revealed that the GBP behavior provided with damping factors
offered a better convergence than the BP algorithm.

Future works
From this work have emerged a certain number of issues that constitute

an interesting basis for future works. Points we are about to tell belong to the
different research areas that were tackled in this thesis.

• First of all, the clustering in triplets has to be adapted to other LDPC
codes of the same family as the Tanner code’s, to acquire a larger overview
of GBP decoding performance. In addition, it will be necessary to intro-
duce constructions based on other kinds of trapping sets. The investi-
gation here remains on TS(5, 3) but nothing prevents from considering
other structures, provided that they are small enough to preserve a rea-
sonable computation complexity.

• The computation complexity of the GBP algorithm is its weak point.
Therefore, we began to study the decimation of the region-graph. The
method that we started to investigate consists in switching off a fixed
percentage of edges – to some extent, messages – in the region-graph
that we randomly select without any discrimination. After a given num-
ber of iterations, we switch them on and we switch off other edges sim-
ilarly selected. The two parameters of this method are the percentage of
switched off edges and the number of iteration before changing in the
edges. Preliminary simulations showed that with 30% of switched off
edges during about 10 iterations, the GBP algorithm does not present
significant difference in its performance in terms of the BER. By increas-
ing the percentage, we induce a too large modification that damage GBP
results. Therefore, it would be relevant to consider a more specific rule
of edges selection instead of a uniform one.

• Recently was introduced an alternative to the BP algorithm that con-
sists in weighting messages [H. 12],[H. 11],[T.G08]. It reminds us of the
damping factor of the GBP algorithm, even though the mathematical
details are different and the goal is not to ensure convergence but to
improve results. Furthermore, experiments show that regular BP, i.e.
BP provided with a unitary weight, is outperformed by non unitary
weighted BP. It appeared that this weighting should apply to other iter-
ative decoders, such as GBP, FAID, etc.
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• The lack of convergence and the suboptimality of the decoding algo-
rithms are due to the loop-like topology of the Tanner graphs, as we
try to minimize non-convex variational free energies. The CCCP pro-
posed in [A.L03] is a powerful tool to treat this problem, even though the
double-loops imply a significant increase in the computation time. As a
matter of fact, CCCP has been derived for Bethe and region-based vari-
ational free energies. Experimenting CCCP on LDPC codes, especially
with well-suited region-graphs, e.g. the Tanner code provided with the
triplets construction, to compare with the original GBP algorithm would
be an interesting work.

• In [T. 03a], authors deal with convexity of the Bethe variational free en-
ergy. Studying in the same way the region-based free energy to extract
sufficient conditions for its convexity, or even to convexify it, would
solve many problems.

• One of the drawback of decoders dynamics is that we do not know
basins of attraction of attractors. It would be very useful to know where
chaotic attractors are in the state space, that would help to control the
BP evolution. Independently from the work presented in this thesis, we
have demonstrated that it was possible to write a “reverse BP”, i.e. a
message-passing algorithm that goes back in time from a given point.
It would help associate to any state its initial conditions. “Downdate”
equations unfortunately do not result in a unique previous state but in
numerous states. In addition, what is true for regular BP is also true
for its reverse version, i.e. the sensitivity to initial conditions. Given a
point in the state space or a very close neighbor, we obtain by reverse
BP very different point when dealing with chaotic attractors. Therefore,
we did not go further in this method but it needs a deep investigation to
reveal relevant results that would help control BP dynamics, and even
GBP dynamics.
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Masson, 1995.

[CVM96] Theory and Applications of the Cluster Variation and Path Proba-
bility Methods. Plenum Press, 1996.

[D. 75] D. Sherrington and S. Kirkpatrick. Solvable model of a spin-glass.
Physics Review Letters, 35, 1975. 29, 30

[D. 95] D. J. C. MacKay and R. M. Neal. Good codes based on very sparse
matrices. In Proc. 5th IMA Conference, 1995. 18, 63

[D. 00] D. Agrawal. The turbo decoding algorithm and its phase trajectories.
In Proc. International Symposium on Information Theory, 2000. 24

[D. 11] D. V. Nguyen, B. Vasic and M. W. Marcellin. Two-bit bit flipping
decoding of LDPC codes. In Proc. International Symposium on Infor-
mation Theory, 2011. 17

[D. 12] D. Declercq, E. Li, S.K. Planjery and B. Vasic. Approaching max-
imum likelihood decoding of finite length LDPC codes via FAID
diversity. In Proc. Information Theory Workshop, 2012. 21, 85

[D.J01] D.J.C. MacKay, J.S. Yedidia, W.T. Freeman and Y. Weiss. Discussion
document: A conversation about the Bethe free energy and sum-
product, 2001.

[D.P01] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 2001. 18,
74, 78, 79, 102

[D.V12] D.V. Nguyen, S.H. Chilappagari, M.W. Marcellin and B. Vasic. On
the Construction of Structured LDPC Codes Free of Small Trapping
Sets. IEEE Transactions on Information Theory, 58, 2012. 85

[E. 09] E. Arikan. Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless
channels. IEEE Transactions on Information Theory, 55, 2009. 16

[E. 10] E. Riegler, G.E. Kirkelund, C.N. Manchón and B.H. Fleury. Merging
Belief Propagation and the Mean Field Approximation: A Free En-
ergy Approach. In Proc. 6th International Symposium on Turbo Codes,
2010.



Bibliography 169

[E.B07] E.B. Sudderth and M.J. Wainwright. Loop Series and Bethe Varia-
tional Bounds in Attractive Graphical Models. In Proc. Neural Infor-
mation Processing Systems, 2007.

[F. 06] F. Guerra. An introduction to mean field spin glass theory: methods
and results. Mathematical Statistical Physics, 47, 2006. 30

[F. 11] F. Krzakala. Belief Propagation for the (physicist) layman, 2011. 33,
37

[F. 12] F. Zamponi. Mean field theory of spin glasses, 2012. 29

[F.R98] F.R. Kschischang and B.J. Frey. Iterative decoding of compound
codes by probability propagation in graphical models. IEEE Jour-
nal of Selected Areas in Communications, 16, 1998. 18

[F.R01] F.R. Kschischang, B. J. Frey eand H.A. Loeliger. Factor Graphs and
the Sum-Product Algorithm. IEEE Transactions on Information Theory,
47, 2001. NO. 2. 16, 18, 19, 66

[fra89] A.M. fraser. Information and Entropy in Strange Attractors. IEEE
Transactions on Information Theory, 35, 1989.

[G. 10] G. Duclos-Cianci and D. Poulin. A renormalization group decoding
algorithm for topological quantum codes. In Proc. Inf. Th. Workshop,
2010. 38

[Gon04] E. Goncalvès. Introduction aux systèmes dynamiques et chaos. Institu-
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[R. 07a] R. Höns, R. Santana, P. Larrañaga and J.A. Lozano. Technical Report:
Optimization by Max-Propagation Using Kikuchi Approximations.
Technical report, Department of Computer Science and Artificial In-
telligence, University of the Basque Country, 2007.
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