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Résumé

L’objet de cette thèse est l’étude mathématique de modèles probabilistes pour
la génération et la propagation d’un potentiel d’action dans les neurones et plus
généralement de modèles aléatoires pour les systèmes excitables. En effet, nous sou-
haitons étudier l’influence du bruit sur certains systèmes excitables multi-échelles
possédant une composante spatiale, que ce soit le bruit contenu intrinsèquement
dans le système ou le bruit provenant du milieu. Ci-dessous, nous décrivons d’abord
le contenu mathématique de la thèse. Nous abordons ensuite la situation physio-
logique décrite par les modèles que nous considérons.

Pour étudier le bruit intrinsèque, nous considérons des processus de Markov
déterministes par morceaux à valeurs dans des espaces de Hilbert (Hilbert-valued
PDMP). Nous nous sommes intéressés à l’aspect multi-échelles de ces processus et
à leur comportement en temps long.

Dans un premier temps, nous étudions le cas où la composante rapide est une
composante discrète du PDMP. Nous démontrons un théorème limite lorsque la
composante rapide est infiniment accélérée. Ainsi, nous obtenons la convergence
d’une classe de Hilbert-valued PDMP contenant plusieurs échelles de temps vers des
modèles dits moyennés qui sont, dans certains cas, aussi des PDMP. Nous étudions
ensuite les fluctuations du modèle multi-échelles autour du modèle moyenné en
montrant que celles-ci sont gaussiennes à travers la preuve d’un théorème de type
central limit.

Dans un deuxième temps, nous abordons le cas où la composante rapide est
elle-même un PDMP. Cela requiert de connaître la mesure invariante d’un PDMP
à valeurs dans un espace de Hilbert. Nous montrons, sous certaines conditions,
qu’il existe une unique mesure invariante et la convergence exponentielle du pro-
cessus vers cette mesure. Pour des PDMP dits diagonaux, la mesure invariante est
explicitée. Ces résultats nous permettent d’obtenir un théorème de moyennisation
pour des PDMP « rapides » couplés à des chaînes de Markov à temps continu
« lentes ».

Pour étudier le bruit externe, nous considérons des systèmes d’équations aux
dérivées partielles stochastiques (EDPS) conduites par des bruits colorés. Sur des
domaines bornés de R2 ou R3, nous menons l’analyse numérique d’un schéma
de type différences finies en temps et éléments finis en espace. Pour une classe
d’EDPS linéaires, nous étudions l’erreur de convergence forte de notre schéma.
Nous prouvons que l’ordre de convergence forte est deux fois moindre que l’ordre de
convergence faible. Par des simulations, nous montrons l’émergence de phénomènes
d’ondes ré-entrantes dues à la présence du bruit dans des domaines de dimension
deux pour les modèles de Barkley et Mitchell-Schaeffer.
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L’étude mathématique décrite précédemment s’inspire de modèles détermi-
nistes classiques pour les milieux excitables, principalement les neurones et les
cellules cardiaques. Il s’agit de modèles « à conductances ». Les plus utilisés dans
cette thèse sont les modèles de Hodgkin et Huxley, de Barkley et de Mitchell-
Schaeffer. Ces modèles déterministes décrivent l’évolution combinée en temps et
en espace du potentiel trans-membranaire d’une cellule isolée et l’état des canaux
ioniques situés sur la membrane. Ce phénomène électro-chimique met en jeu des
échelles de temps différentes. Pour cette raison les modèles sont multi-échelles.
De plus, ils correspondent à une évolution limite lorsque le nombre de canaux est
très grand. Les modèles probabilistes de type PDMP utilisés dans la thèse sont
plus réalistes sur le plan biologique puisqu’ils correspondent à une cellule ayant
un nombre fini de canaux. Le modèle de type EDPS correspond à une cellule non
isolée soumise au bruit ambiant.

Les théorèmes obtenus sur les Hilbert-valued PDMP avec plusieurs échelles de
temps permettent de diminuer la dimension de ces modèles ou de les remplacer par
des approximations diffusions. Cela permet d’aborder plus facilement la simulation
ainsi que l’analyse mathématique et le couplage de ces modèles. L’étude menée sur
les systèmes de type EDPS est motivée par la recherche de phénomènes d’arythmie.
En effet, ces phénomènes sont encore mal expliqués mathématiquement.

Mots clés : Processus de Markov déterministes par morceaux ; Équations aux
dérivées partielles stochastiques ; Systèmes multi-échelles ; Modèles de neurones ;
Modèles de cellules cardiaques ; Moyennisation ; Schémas numériques.
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Abstract

The purpose of the present thesis is the mathematical study of probabilistic models
for the generation and propagation of an action potential in neurons and more
generally of stochastic models for excitable cells. Indeed, we want to study the
effect of noise on multiscale spatially extended excitable systems. We address the
intrinsic as well as the extrinsic source of noise in such systems. Below, we first
describe the mathematical content of the thesis. We then consider the physiological
situation described by the considered models.

To study the intrinsic or internal noise, we consider Hilbert-valued Piecewise
Deterministic Markov Processes (PDMPs). We are interested in the multiscale
and long time behavior of these processes.

In a first part, we study the case where the fast component is a discrete compo-
nent of the PDMP. We prove a limit theorem when the speed of the fast component
is accelerated. In this way, we obtain the convergence of a class of Hilbert-valued
PDMPs with multiple timescales toward so-called averaged processes which are, in
some cases, still PDMPs. Then, we study the fluctuations of the multiscale model
around the averaged one and show that the fluctuations are Gaussians through
the proof of a Central Limit Theorem.

In a second part, we consider the case where the fast component is itself a
PDMP. This requires knowledge about the invariant measure of Hilbert-valued
PDMPs. We show, under some conditions, the existence and uniqueness of an
invariant measure and the exponential convergence of the process toward this
measure. For a particular class of PDMPs that we call diagonals, the invariant
measure is made explicit. This, in turn, allow us to obtain averaging results for
"fast" PDMPs fully coupled to "slow" continuous time Markov chains.

To study the extrinsic or external noise, we consider systems of Stochastic
Partial Differential Equations (SPDEs) driven by colored noises. On bounded
domains of R2 or R3, we analyze numerical schemes based on finite differences in
time and finite elements in space. For a class of linear SPDEs, we obtain the strong
error of convergence of such schemes. For simulations, we show the emergence of
re-entrant patterns due to the presence of noise in spatial domains of dimension
two for the Barkley and Mitchell-Schaeffer models.

The mathematical study described above is inspired by classical deterministic
models for excitable media, especially for neural and cardiac cells. They are con-
ductance based models. In the present work, the underlying deterministic models
are mostly the Hodgkin-Huxley, Barkley and Mitchell-Schaeffer models. These
models describe the evolution in time and space of the trans-membrane poten-
tial of an isolated cell as well as the evolution of the states of the ionic channels
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in the membrane. This electro-chemical phenomenon brings into play different
timescales. This is why the considered models have multiple timescales. More-
over, they correspond to an evolution at the limit for a large number of ionic
channels. The PDMP models used in the present thesis are more biologically rel-
evant since they correspond to cells with a finite number of ionic channels. The
SPDE models correspond to a cell submitted to external noise.

The theorems obtained for Hilbert-valued PDMPs with multiple timescales
show how to decrease the dimension of the models or how to approximate them
by diffusions. This allows more tractable simulations, mathematical analysis and
coupling of such models. The study of systems of SPDEs is motivated by the
search for arrhythmia in cardiac cells. Indeed, this phenomenon is still hard to
explain mathematically.

Keywords: Piecewise deterministic Markov processes; Stochastic partial differ-
ential equations; Neuron models; Cardiac models; Multiscale systems; Averaging;
Numerical schemes.
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Chapter 1

Introduction

This document gathers the works I achieved as a PhD student under the supervi-
sion of Michèle Thieullen at the Laboratoire de Probabilités et Modèles Aléatoires
of the Université Pierre et Marie Curie (Paris 6).

The central subject of the present work is the study of stochastic models for
excitable media. This thesis is composed of six chapters. After the introduction
(Chapter 1) and a chapter collecting some technical results (Chapter 2), Chapters
3 and 4 deal with the reduction of Hilbert-valued Piecewise Deterministic Markov
Processes (PDMPs) for excitable cells with multiple timescales. Then, we study
the long time behavior of Hilbert-valued PDMPs with application to averaging
(Chapter 5). At last, Chapter 6 investigates the effect of noise on excitable media
through numerical methods. These chapters are essentially made up of a published
paper [GT12] and four submitted papers [ABG+13, BGT13, GT13a, GT13b].

The introduction is organized as follows. Section 1.1 is about the mathemat-
ical modeling of excitable cells. We start with the basic properties of excitable
systems (Section 1.1.1) and then present the basic physiology of neurons (Sec-
tion 1.1.2). We go on with the description of conductance-based models (Section
1.1.3) and phenomenological models (Section 1.1.4). In Section 1.2, we present the
mathematical representations of these two kinds of models. Hilbert-valued piece-
wise deterministic Markov models (Section 1.2.1) and stochastic partial differential
equations (Section 1.2.2) are considered. Section 1.3 describes, chapter by chapter,
the main mathematical results obtained in this thesis. Some perspectives related
to our work are discussed in Section 1.4.

1



2 CHAPTER 1. INTRODUCTION

1.1 Mathematical modeling of excitable cells

1.1.1 Common facts for excitable systems

In this paragraph, we present the main features of excitable systems. Such systems
have been reported in different areas of physics, chemistry and life sciences. The
neural cell, one of the most important example of biological excitable system, is
described in the next section.

We proceed to the formal description of an excitable system. A dynamical
system (S) is said to be excitable when

• the system (S) possesses a single stable rest state. More generally, this rest
state can be simply an equilibrium point or a small-amplitude limit cycle,

• the system (S) can leave the resting state, which is dynamically stable, only
if a sufficiently strong external perturbation is applied. In this case, the
large excursions from the resting state are often called spikes, and their
occurrence is referred to as a firing. There is thus a threshold of activation
from which the system begins to spike. When the system’s variable values
are superthreshold, the system is said to be excited. Otherwise, it is said to
be quiescent or unexcited,

• the system is refractory after a spike, which means that it takes a certain
recovery time before another excitation can evoke a second spike.

These properties are illustrated in Figure 1.1. Besides having an interesting tempo-
ral behavior, when a large number of excitable systems are coupled to one another,
they exhibit a rich variety of spatio-temporal behaviors, depending on the strength
and topology of the coupling between them. Phenomena such as pulse and spiral
wave propagation, scroll waves, localized spots, periodic patterns in space and/or
in time, and spatio-temporal chaos have been recorded in a wide range of physical
systems. In perspective, one of the most remarkable properties of excitable sys-
tems is their ability to synchronize, both among themselves or to external periodic
(or more complex) signals.

For more details, we refer the reader to the review [LGONSG04] on the effect
of noise in excitable media.

1.1.2 An example of excitable cells: neurons

The aim of this paragraph is not to give an exhaustive and detailed presentation
of neurons, but rather to familiarize the reader with basic notions concerning their
bio-physiology in order to have a better understanding of the models presented
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Input Excitable dynamics Output

a)

b)

c)

d)

Figure 1.1: Features of excitable systems. This figure follows Figure 1 of
[LGONSG04]. Different kinds of inputs (left column) cause different kinds of
responses (right column) of the excitable dynamics (middle column). a) No input:
system at rest. b) An input below threshold (blue line) results in a small amplitude
motion around the system stable state. c) An input exceeding the threshold leads
to a large-amplitude excursion of the system variables (spike). d) If the pulses
are too close, the system does not respond noticeably to the second perturbation
because of refractory effects.

later in the text. This paragraph is largely inspired by [SBB+12], Chapter 6, for
the description of the neuron and the mechanisms of generation and propagation
of an action potential by the neural cell. Another classical reference used in the
text is [Hil84] about ion channels of excitable membranes.

Neurons and glia are the cellular building blocks of the nervous system. Neu-
rons are interconnected, highly differentiated bio-electrically driven cellular units
of the nervous system supported by the more numerous cells termed glia. Mor-
phologically, in a typical neuron, three major regions can be defined:

• the cell body, also referred to as the soma, which contains the nucleus and
the major cytoplasmic organelles (the ’organs’ of the cell body),
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• a variable number of dendrites, which emanate from the soma and differ in
size and shape, depending on the neuronal type. Dendrites exhibit a tree
structure.

• a single axon, which, in most cases, extends much farther from the cell body
than the dendritic tree.

axon

synapse

synapses

soma

dendrite

Figure 1.2: Schematic representation of a neuron

The cell body and dendrites are the two major domains where the neural cell
receives inputs from other neurons or muscles or peripheral organs. The axon, at
the other pole of the neuron, is responsible for transmitting neural information,
that is the inputs, to interconnected target neurons. This electrical signal is called
the nerve impulse or the action potential or the spike. At the interfaces of axon
terminals with target cells are the synapses which represent specialized zones of
contact with a dendrite or the soma of other neurons.

Like in any biological cell, the neuronal membrane exhibits a difference of po-
tential between the internal and the external cellular media which is called trans-
membrane potential, membrane potentials or simply potential. This membrane
potential is generated by the unequal distributions of ions, particularly potassium
(K+), sodium (Na+) and chloride (Cl−), across the plasma membrane. The rest-
ing membrane is permeable to these ions and their inhomogeneous distribution
between the inside and the outside of the cell is maintained by ionic pumps and
exchangers.

In most neurons, action potentials are initiated in the initial portion of the
axon, known as the axon initial segment. Once a spike is initiated, it propagates
along the axon in its normal direction to the synaptic terminals. Axons have a
threshold for the initialization of an action potential. That is, the neuron generates
a spike if the input is above a certain value termed the threshold. It is this property
that makes a neuron an excitable cell, see Section 1.1.1, a small variation in the
input may result in a dramatic variation of the membrane potential. Two major
phenomena are responsible for the generation of an action potential:
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• an increase in the voltage of the axon membrane produces a large but tran-
sient flow of positive charges carried by Na+ ions flowing into the cell (inward
current),

• this transient inward current is followed by a sustained flow of positive
charges out of the cell (the outward current) carried by a sustained flux
of K+ ions moving out of the cell.

These flows of ions across the plasma membrane take place in ionic channels.
These channels are generally permeable to one specific ion’s specie and are present
in variable density at different locations in the membrane. A channel can be,
roughly speaking, open or closed. When a spike is initiated at the axon initial
segment, the depolarization of the membrane increases the probability of Na+

channels being in the open state. This causes the flow of Na+ entering the cell,
depolarizing the axon and opening still more Na+ channels, causing yet more
depolarization of the membrane until the resting potential of the Na+ ions is
reached. In a slightly delayed time, the depolarization of the membrane potential
increases the probability of K+ channels being open and allows positive charges to
exit the cell. Then, at some point, the outward movement of K+ ions dominates
and the membrane potential is re-polarized, corresponding to the decrease of the
action potential. The persistence of the outward current for a few milliseconds
following the spike generates the after-hyper-polarization. During this phase of
hyper-polarization, the ionic channels get back to their resting states, preparing
the axon for generation of the next action potential. We stress out that the opening
and closing of the ionic channels (often referred to as conformal changes) during the
generation of a spike is a voltage-dependent phenomenon: the conformal changes
of a ionic channel depends on the membrane potential.

1.1.3 Conductance-based models

The understanding of bio-electrical properties of neurons arose in the nineteenth
century from the merging of two different domains: on the one hand the study of
current spread in nerve cells and muscles, on the other hand the development of
cable theory for long distance transmission of electric current through cables on
the ocean floor. The communication of information between neurons and between
neurons and muscles or peripheral organs requires that signals travel over consid-
erable distances (with respect to the size of the dendrites or the cell body). The
cable theory was first applied to the nervous system in the late nineteenth century
to model the flow of electric current through nerve fibers. By the 1930s and 1940s,
it was applied to the axon of simple invertebrates (crab and squid). This was
the first step toward the development of the Hodgkin-Huxley equations [HH52] for
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the action potential in an axon (1952). Hodgkin and Huxley received the 1963
Nobel prize of physiology and medicine for their work. We present in this section
the deterministic Hodgkin-Huxley equations and then a mathematical generaliza-
tion based on the works [Aus08, FWL05]. This generalization takes into account
the intrinsic stochasticity of ion channels. We choose the common denomination
of conductance-based neuron model for what is sometimes also called generalized
Hodgkin-Huxley model in the literature. Conductance-based models without spa-
tial propagation are very popular, see the review [Rin90], section 4. They are called
point models. Conductance-based models are also widely used to model cardiac
cells, see [DIP+10, Sac04]. Indeed, similar mechanisms than those described in
Section 1.1.2 for neurons lead to the generation and propagation of cardiac po-
tential. Existence and uniqueness of a solution to the Hodgkin-Huxley equations
including spatial propagation have been obtained in [ES70, Lam86, RK73]. Only
a few mathematical papers are available about the spatially extended stochastic
conductance-based models we are going to present in this section. The first one is
certainly due to [Aus08] although simulation studies have been performed earlier
[FWL05].

As explained in Section 1.1.2, in most neural cells, the action potential is
initiated in the axon initial segment. The axon is often considered as a cable much
longer than larger. It is therefore modeled as a segment I in the sequel.

The deterministic Hodgkin-Huxley model

We proceed to a brief description of the deterministic model introduced by Hodgkin
and Huxley in [HH52]. The Hodgkin-Huxley model is a system of four coupled
partial differential equations describing the evolution of the membrane potential
at a given point of the axon and the probability of ionic channels to be open. This
system reads as follows{

C∂tu = a
2R
∂xxu+ cNam

3h(vNa − u) + cKn
4(vK − u) + cl(vl − u),

∂ty = (1− y)ay(u)− yby(u), y = m,n, h.
(1.1)

Boundary conditions associated to these equations will be given later in the text,
when needed. The variable ut(x) denotes the membrane potential at position x ∈ I
on the axon at time t, that is the difference of potential between the inside and the
outside of the neuron. Only sodium, potassium and leak currents are considered
in this model. An ionic channel is composed of four gates: three gates of type m
and one of type h for a sodium channel and four gates of type n for a potassium
channel. In the model (1.1), these gates may be open or closed. A specific gate
opens and closes at voltage dependent rates ay and by, for y = m,n, h respectively.
When open, that is when all its gates are open, a channel allows a current to pass
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with conductance ci with i = Na or K. C is the capacity of the axon membrane,
R its internal resistance and a the radius of the axon. The quantities m3h and
n4 may be interpreted as the probability of open sodium and potassium channels
respectively or in other word as the inward and the outward currents respectively.
Figure 1.3 displays, at a given point x ∈ I of the axon, the evolution of the action
potential u and the inward and outward currents m3h and n4 with respect to time
according to the Hodgkin-Huxley model (1.1). The coupling of the inward and
outward currents to the evolution of the action potential described above is clearly
visible in this figure. As an illustration of propagation of an action potential,
Figure 1.4 displays simulations of the propagation of the action potential in space
and time according to the Hodgkin-Huxley system when the axon is assimilated
to a segment.

mV

t

%

t

Figure 1.3: Action potential (red) and inward (blue) and outward (green) currents
in the deterministic Hodgkin-Huxley model described by equations (1.1). The scale
for the x-axis is the same for both graphs: the system (1.1) is displayed between
the times 0 and 10 in ms. For the y-axis, the inward and outward currents are in
[0, 1] like probabilities whereas the action potential evolves between −20 and 120
mV.

Stochastic conductance-based models with a finite number of ion chan-
nels

We go on with the presentation of a class of stochastic models from which general-
ized Hodgkin-Huxley models will emerge . This class describes the evolution of an
action potential at the scale of ion channels. The influence of noise from voltage-
gated ion channels on the generation and propagation of an action potential has
been highlighted in [CW96, FL07, FWL05, FL94, WKAK98, WRK00]. Stochastic
conductance based models are studied in Chapters 3 and 4 of the present work
from the perspective of stochastic averaging.
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ms

mVcm

Figure 1.4: Propagation of an action potential according to the deterministic
Hodgkin-Huxley model (1.1). Space and time are respectively given by the y
and x-axis. The Hodgkin-Huxley system is excited on the initial segment on the
axon by a constant superthreshold stimulation. As a consequence, a train of spikes
propagating along the nerve fiber is observed.

All along the axon cable are the ionic channels in various densities at different
locations of the axon. We assume that the ionic channels are in finite numbers
and located at discrete sites zi through the axon membrane for i ∈ N where N
is a finite set. A specific channel can be in several states. Actually, a channel
can be in an activated, inactivated or deactivated state where for example, the
inactivated state can in turn correspond to different states. Moreover, an ionic
channel is permeable to only one specific ion specie, but mathematically, taking
into account this specificity only changes the notations and we consider in the
general model that a channel is permeable to all kinds of ion species. What is
mathematically relevant is that a specific ionic channel can be in a finite number
of states. We denote this state space by E and an element of this space by the
Greek letters ξ or ζ. When an ionic channel is open, it allows a flow of ions to
enter or leave the cell, that is, it allows a current to pass. When open, an ionic
channel in the state ξ allows the ions of a certain specie associated to ξ to pass
through the membrane with a driven potential vξ. This driven potential governs
the direction of the ionic flux: it says whether the current is inward or outward.
A channel possesses also its proper internal resistance according to its state. As
for system (1.1), for notation purposes, we prefer to work with the inverse of this
resistance, namely the conductance, which is denoted in the sequel by cξ for an
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ionic channel in state ξ.

As above, ut(x) denotes the membrane potential at position x of the axon at
time t. We denote by rt(i) the state of the ionic channel at position zi at time t.
According to stochastic conductance-based neuron models we are going to work
with, the evolution of the membrane potential is governed by the following cable
equation

C∂tut = ∂x(α∂xut) +
1

|N |
∑
i∈N

crt(i)(vrt(i) − Φi(ut))Ψi. (1.2)

In full generality C, the internal capacitance of the membrane, may depend on
the space variable x. The function α depends on some bio-physical constants of
the axon like its diameter and internal resistance which may both depend on the
spatial position. The function Φi indicates in which manner the local potential of
the membrane around the location zi is affected by the opening of the channel at
this location. For instance, when this influence is very localized, Φi(ut) = ut(zi).
Then in this case Ψi is equal to δzi , the Dirac mass at point zi. One may also
consider Φi(ut) = (ut, φzi) where φzi are mollifiers. Here (·, ·) denotes the usual
scalar product in L2(I). Then, in this case Ψi is equal to φzi . The biological
meaning of considering mollifiers instead of Dirac mass is that when the channel
located at zi is open and allows a current to pass, not just the voltage at zi
is affected, but also the voltage on a small area around zi (see [BR11]). More
generally, Ψi indicates which portion of the ion channel is affected by the opening
of the ion channel at position zi. Equation (1.2) tells us that the membrane current
is the sum of all the ionic currents and that this current is propagated along the
axon thanks to the diffusive operator ∂x(α∂xut).

As previously mentioned, an ion channel can be in a finite number of different
states. Therefore, we have to describe the mechanism of passing from one state to
another. If the membrane potential were held fixed, this mechanism would simply
follow the kinetic scheme of a classical Continuous Time Markov Chain (CTMC).
However, the membrane potential evolves with time and the rate of jumps from
one state to another for an ionic channel is voltage-dependent. This leads to a
non-homogeneous evolution in time for the state of the ionic channel at position
zi according to the following dynamic:

P(rt+h(i) = ζ|rt(i) = ξ) = αξζ(Φi(ut))h+ o(h). (1.3)

That is, the jump process (rt(i), t ≥ 0) goes from state ξ to state ζ at rate αξζ
where the latter is a voltage-dependent function. Moreover, the evolution of a
given ionic channel r(i) is often assumed to be independent from the evolution of
the other channels over infinitesimal timescale. More precisely, this means that
the coordinate processes (rt+h(i))h>0 for i ∈ N are independent conditionally on
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Ft to first order in h as h goes to zero (we denote by Ft the σ-algebra generated
by the process (u, r) up to time t).
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Kinetic of a sodium ionic channel
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Figure 1.5: Kinetic schemes for Sodium and Potassium ionic channels in a general-
ized Hodgkin-Huxley model. In this model, a sodium channel may be in 8 different
states in the set ENa = {m0h0,m1h0,m2h0,m3h0,m0h1,m1h1,m2h1,m3h1} where
m3h1 codes for the open state. In the same way, a potassium channel may be in
5 different states in the set EK = {n0, n1, n2, n3, n4} where n4 codes for the open
state.

As an example, in [Aus08], the author assumes that the axon can be assimilated
to the segment I = [−l, l] and that the ionic channels are at locations zi = i

N
for

i ∈ N = Z ∩ N(−l, l). This same distribution is used in the present thesis in
Chapters 3 (all along the chapter) and 4 (as an example). The equation describing
the evolution of the membrane potential for the corresponding model becomes

∂tut = ∂xxut +
1

N

∑
i∈N

crt(i)(vrt(i) − ut(zi))δzi . (1.4)

with relevant initial and boundary conditions described later in the text. The
dynamic of the ionic channels is given by

P(rt+h(i) = ζ|rt(i) = ξ) = αξζ(ut(zi))h+ o(h) (1.5)

for each channel at location i ∈ N . In this case, the following theorem has been
derived under natural hypotheses.
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Theorem 1.1.1 ([Aus08]). When the number of channels increases to infinity,
the stochastic conductance-based model given by equations (1.4-1.5) converges in
probability, in an appropriate space, towards a deterministic conductance based
model where the evolution equation for the membrane potential ut is

∂tut = ∂xxut +
∑
ξ∈E

cξ(vξ − ut)pξ,t, (1.6)

and the evolution of the conductances pξ,t is given by

dpξ,t
dt

=
∑
ζ 6=ξ

αξζ(ut)pζ,t − αζξ(ut)pξ,t, ξ ∈ E. (1.7)

Equations (1.6) and (1.7) define a spatially extended deterministic conductance-
based model often called the spatially extended generalized Hodgkin-Huxley model.
The evolution equation (1.6) on u describes the evolution of the membrane po-
tential along the axon segment over time. For ξ ∈ E, equation (1.7) gives the
time evolution of the probability pξ that the ionic channels are in state ξ, when
the number of ionic channels is infinite. As far as we know, Theorem 1.1.1 was
the first mathematical result on stochastic spatially extended conductance-based
neuron models obtained in the literature. As pointed out in the title of [Aus08],
this result shows the emergence of the deterministic Hodgkin-Huxley model as
a limit from the underlying ionic channel mechanism. This result is of first im-
portance because it confirms the consistency of the deterministic and stochastic
descriptions of the nerve equations. Generalization of Theorem 1.1.1 has been ob-
tained in [RTW12]: the authors derive a law of large numbers for a general class
of models, called compartmental models, which establishes a connection to de-
terministic macroscopic models as in Theorem 1.1.1. Moreover, they obtained an
associated martingale central limit theorem which connects the stochastic intrinsic
fluctuations around the deterministic limiting process to diffusion processes.

1.1.4 Phenomenological models

Conductance-based neuron models are biologically relevant since they are based
on the actual bio-physical properties of neurons. They describe, at the scale of
the ionic channels, the mechanisms of generation and propagation of an action
potential. However, these detailed models may present some issues for further
analysis. The models presented in the previous section may be of high dimension:
the classical deterministic Hodgkin-Huxley model is a set of four partial differen-
tial equations (PDEs). High dimensional systems of PDEs (or even ODEs) are
difficult to handle theoretically and reductions or simplifications of the original
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model are precious. The same issues arise when studying networks of neurons: the
mathematical model of one single neuron must be as tractable as possible numer-
ically if one wants to simulate a network of thousands of neurons in interaction.
To overcome these difficulties, reductions and simplifications of conductance-based
models have been proposed. The reduction techniques are much often based on
the separation of timescales: among the dynamics leading to the generation of a
nerve impulse, some are much faster than others. This is the subject of Chapters 3
and 4 of the present work where reduction techniques are applied to the stochastic
conductance-based models presented in Section 1.1.3.

These simplified models, called phenomenological, became very popular to
model neurons and cardiac cells. One of the most famous is the FitzHugh-Nagumo
system (1962-1969) [Fit55, Fit61, Fit69, NAY62] which can be considered as a
paradigm for the description of excitable media. The Fitzhugh-Nagumo model
consists in the following system of two evolution equations{

∂tut = ∂xxut + ut − 1
3
u3
t − wt,

∂twt = ε(aut − bwt).
(1.8)

Compared to the conductance-based models, the variable ut(x) is still modeling
the membrane potential of a neuron at time t and position x. w is often referred to
as the recovery variable of the system, a denomination coming from the dynamical
properties that we now proceed to introduce. When an adequate input is added
to the first equation in system (1.8), a threshold phenomenon for excitation can
be recovered. When excited, the system generates and propagates spikes in a
similar way as deterministic conductance-based neuron models. Therefore, the
qualitative properties of these more detailed and biologically relevant models are
conserved. Moreover, contrary to higher dimensional models, the dynamic of the
Fithugh-Nagumo model can be fully described, see for example [Fit69]. One of the
main features of this model is that it possesses all the characteristics of excitable
systems (c.f. Section 1.1.1), like the conductance-based neuron models presented
in the previous section.

Up to now in the present section, we have only considered the Fitzhugh-Nagumo
model as a deterministic model. One may want to add noise to this system for
several reasons, c.f. [DRL12, GSB11]. Regarding the conductance-based neuron
models presented in the previous section, it may be significant to account for the
random switching of ion channels by incorporating some noise in the equation
for the recovery variable w in system (1.8). One may also consider the random
synaptic inputs from other neurons by adding a noise term to the input applied to
the variable u of equation (1.8). For the latter, this leads to a stochastic system
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of the following form:{
∂tut = ∂xxut + ut − 1

3
u3
t − wt + Ẇt,

∂twt = ε(aut − bwt),
(1.9)

where Ẇ is a noise source which will be defined more precisely in Section 1.2.2. In
contrast to the deterministic case (1.8), phenomena induced solely by noise may
be initiated. Moreover, behaviors displayed in the deterministic setting such as
synchronization, resonant behavior and pattern formation are influenced and modi-
fied by noise. Noise induced phenomena for finite dimensional slow-fast stochastic
differential equations are studied in [BG06]. Let us remark that very recently,
the effect of noise on neural networks has received a great deal of attention, see
[Bre12, BN13, RB13, FM13, KR13, LS13]. The influence of noise on excitable
systems of the form (1.9) is the object of Chapter 6. More precisely, we study
the existence of re-entrant patterns in the Barkley [Bar91] and Mitchell-Schaeffer
stochastic models [MS03].

1.2 Mathematical tools

The aim of the present section is to introduce the reader to the two main math-
ematical objects we will work with throughout this thesis: Piecewise Determin-
istic Markov Processes (PDMPs) and Stochastic Partial Differential Equations
(SPDEs).

1.2.1 A class of Piecewise Deterministic Markov Processes

Stochastic conductance-based models of type (1.2-1.3) exhibit a very particular
dynamic: the evolution of the membrane potential follows a deterministic PDE
whose parameters are randomly updated when a change in the channel states
occurs. These models are therefore hybrid models combining a deterministic evo-
lution punctuated by random events. These particular hybrid models are referred
to as switching PDEs in the sequel and are studied in the framework of Hilbert-
valued Piecewise Deterministic Markov Processes (PDMPs). Note that we work
with PDMPs without boundaries, that is without deterministic forced jumps.

PDMPs, also called Markovian hybrid systems, have been introduced by Davis
in [Dav84, Dav93] for the finite dimensional setting and generalized in [BR11]
for the infinite dimensional case. Recently, the asymptotic behavior of finite di-
mensional PDMPs has been investigated in [BLBMZ12, BLMZ12, TK09] through
the research of an invariant measure and its uniqueness. Let us mention that,
also for finite dimensional PDMPs, control problems have been studied in [CD10,
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CD11, Gor12], law of large numbers in [CDMR12, PTW10], numerical methods in
[Rie12a, BDSD12], time reversal in [LP13], averaging in [FGC08, PTW12, WTP12]
and to end up this list with no claim of completeness, estimation of the jump
rates for PDMPs in [DHKR12, ADGP12b, Aza12]. As already mentioned, limit
theorems for infinite dimensional PDMPs have been derived in [Aus08, RB13,
RTW12, RT13]: a law of large numbers and Central Limit Theorems for sequences
of Hilbert-valued PDMPs are obtained. Let us notice that a point process approach
to PDMPs, not developed in the present thesis, is described in [Jac05]. The math-
ematical description of switching PDEs in the framework of PDMPs, as well as
the presentation of their main properties and characteristics of these processes, is
the purpose of the present paragraph.

Let R be a finite set and H a separable Hilbert space. The process we proceed
to define has two distinct components: a continuous one with values in H and a
jumping one with values in R which is càdlàg (right continuous with left limits).

For any r ∈ R, let us consider Φr = (Φr
t , t ∈ R+) a continuous dynamical

system on H continuous in time and space with the semigroup property as follows:

i) Φr
t : H → H is continuous for all t ∈ R+.

ii) Φr is a one parameter semigroup:

a) Φr
0 = IdH ,

b) Φr
t+s = Φr

tΦ
r
s, for any t, s ∈ R+.

iii) for any u ∈ H, the map t 7→ Φr
t (u) is continuous on R+.

This dynamical system describes the motion of the piecewise deterministic process
between consecutive jumps. In the present work, these dynamical systems are
defined as one parameter semigroups associated to well-posed PDEs.

We now define the jump mechanisms. For r, r̃ ∈ R, we define the jump rate
functions qrr̃ : H → R+ such that:

• qrr̃(u) ≥ 0 for r 6= r̃ and qrr(u) = 0, for any u ∈ H.

• The mapping qrr̃ is continuous on H.

Roughly speaking, if u were held fixed, the motion of the jumping component of
the Piecewise Deterministic Process (PDP) would follow the dynamic of a time
homogeneous continuous time Markov chain with generator (qrr̃(u))(r,r̃)∈R×R. That
is, qrr̃ would be the rate of jump from state r to state r̃ for the switching component
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of our PDP. We write qr(u) for the total rate of leaving the state r, namely qr(u) =∑
r̃∈R\{r} qrr̃(u) and define a family of survival functions for (u, r) ∈ H ×R by

Ss,(u,r)(t) = exp

(
−
∫ t

s

qr(Φ
r
τ (u))dτ

)
for s, t ∈ R+ and a family of probability laws on R by

J(u,r)(r̃) =
qrr̃(u)

qr(u)
.

Remark that Ss,(u,r)(t) is well defined since the application τ 7→ qr(Φ
r
τ (u)) is con-

tinuous, hence integrable, on [s, t]. To ensure the non explosion of the jump part
of our PDMP in finite time, we assume that the total rates of leaving a state are
uniformly bounded

sup
r∈R

sup
u∈H

qr(u) = q+ <∞. (1.10)

The model defined by equations (1.4) and (1.5) is a PDMP in the present sense.
Remember that E is a finite set, I = [−l, l] and N = Z ∩N(−l, l) for N ≥ 1 and
l > 0. Let H = H1

0 (I) denote the usual Sobolev space of functions in L2(I) with
first derivative in the sense of distributions also in L2(I) and trace equal to zero
on the boundary of I (c.f. Section 2.1). For r ∈ R = EN and u0 ∈ H, Φr

t (u0) is
the solution at time t of the PDE

∂tut = ∂xxut +
1

N

∑
i∈N

cr(i)(vr(i) − ut(zi))δzi ,

starting from u0 at time 0 and with zero Dirichlet boundary conditions. One can
shows that Φr is indeed a continuous dynamical system in H. In this case, the
total rate of leaving a state r ∈ R is given by

qr(u) =
∑
i∈N

∑
ξ 6=r(i)

αr(i)ξ(u(zi))

for u ∈ H. Then, for r̃ which differs from r only by the component r(i0), the state
r̃ is reached with probability

J(u,r)(r̃) =
αr(i0)r̃(i0)(u(zi0))

qr(u)
.

That is to say qrr̃(u) = αr(i0)r̃(i0)(u(zi0)). If r̃ differs from r by two or more
components, then J(u,r)(r̃) = 0.

We now present the classical construction procedure for PDMPs considered
in the present text. It is based on the original construction by Davis [Dav84].
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Let (Ω,F ,P) be the probability space consisting in all sequences of independent
uniformly distributed random variables on [0, 1]. We construct the PDMP (Xt, t ∈
R+) = ((ut, rt), t ∈ R+) from one such sequence.

We construct a PDMP (ut, rt)t≥0 taking values in H×R. Let ν be a probability
measure on H×R and (Uk, k ≥ 0) be a sequence of independent random variables
uniformly distributed on [0, 1] defined on (Ω,F ,P). The measure ν is the law of
the initial state X0 = (u0, r0). By virtue of Lemma 2.1.1 of [Rie12b], there exists
a measurable function f0 : [0, 1] → H × R such that the law of f0(U0) equals ν.
Let ω ∈ Ω.

1. The initial condition is defined by

(u0(ω), r0(ω)) = f0(U0(ω)).

2. The component u(ω) follows the deterministic dynamic given by the dynam-
ical system Φr0(ω) as long as r(ω) remains equal to r0(ω). The first jump
time is defined by

T1(ω) = inf{t ≥ 0;S0,(u0(ω),r0(ω))(t) ≥ U1(ω)}. (1.11)

Thus on [0, T1(ω)[ we have:{
us(ω) = Φ

r0(ω)
s (u0(ω)),

rs(ω) = r0(ω).

In other words, equation (1.11) characterizes the law of T1 conditional on
(u0, r0) by its survival function.

3. At time T1(ω), u is at Φr0
T1

(u0) since this component is continuous. The
jumping component r(ω) is updated according to the law J(uT1(ω)(ω),r0(ω)).
There exists a measurable function f1 : [0, 1] → R such that the law of
f1(U1) equals J(uT1(ω)(ω),r0(ω)). Then

rT1(ω)(ω) = f1(U1(ω)).

4. The whole process is obtained by re-iterating this algorithm. Let us give for
example the second jump time which is defined by

T2(ω) = inf{t ≥ T1(ω);ST1(ω),(uT1(ω)(ω),rT1(ω)(ω))(T1(ω) + t) ≥ U2(ω)}. (1.12)

Thus on [T1(ω), T2(ω)[:{
us(ω) = Φ

rT1(ω)
s (uT1(ω)(ω)),

rs(ω) = rT1(ω)(ω).
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Figure 1.6: Typical behavior of the studied class of PDMPs.

From the above construction, it is clear that PDMPs are càdlàg piecewise de-
terministic process. The following theorem gathers the main properties of the
presented class of PDMPs.

Theorem 1.2.1. The stochastic process X = ((ut, rt), t ∈ R+) defined above on
(Ω,F ,P) enjoys the following properties:

i) X is a càdlàg piecewise deterministic process.

ii) X is a strong Markov process.

iii) The domain D(A) of the extended generator A of X consists in all bounded
measurable functions φ : H ×R → R such that the map t 7→ φ(Φr

t (u), r) is
absolutely-continuous for almost every t ∈ R+ (with respect to the Lebesgue
measure on R+) for any (u, r) ∈ H ×R.

iv) For φ ∈ D(A), the extended generator is given by

Aφ(u, r) =
dφ

dt
(Φr

t (u), r) +
∑
r̃∈R

qrr̃(u)[φ(u, r̃)− φ(u, r)].

v) X is a Feller process.
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The Markov property follows essentially from the semi-group property of the
continuous dynamical systems {Φr, r ∈ R} and the functional properties of the
survival functions Ss,(r,u)(t). The strong Markov property is proved in [Rie12b]
Section 2.3.2 in our setting with arguments inspired by [Jac05], Theorems 7.3.2
and 7.5.1. As mentioned above, for the class of PDMPs we are considering there
is no boundary in the state space for the continuous variable. Thus, there is no
deterministic jumps. Moreover, we assume condition (1.10) which implies that
there is no blow up in finite time. These two facts simplify the characterization
of the domain of the extended generator, see [BLBMZ12, Rie12b]. We may notice
that, as it can be expected, the generator splits itself into two parts: the first term
describes the infinitesimal movement of the process between jumps, that is its de-
terministic behavior, whereas the second term describes at which rates the process
jumps, that is the evolution of the jump component. A very straightforward proof
of the Feller property may be derived from [BLBMZ12], Proposition 2.2. One
could ask the question of the strong Feller property for the considered class of
PDMPs. The strong Feller property is in general hard to prove, and often ’rare’
for stochastic processes in infinite dimensions (see the note [Hai08]) except for
Hilbert-valued Gaussian processes. Moreover, even for finite dimensional PDMPs,
the strong Feller property fails in most cases.

For more details, we refer the reader to [BLBMZ12, Dav84, Rie12b].

1.2.2 A class of Stochastic Partial Differential Equations

The phenomenological models presented in Section 1.1.4 correspond mathemati-
cally to evolution equations and more precisely to reaction-diffusion partial differ-
ential equations. When adding noise to these models, they fall into the class of
Stochastic Partial Differential Equations (SPDEs). In this thesis, we will consider
system of SPDEs of the following form{

dut = [ν∂xxut + f(ut, wt)]dt+ σdWt,
dwt = g(ut, wt)dt,

(1.13)

where ν is a constant of deterministic diffusion whereas σ is the intensity of the
noise which can be seen as the strength of the stochastic diffusion. The (non linear)
functions f and g are called the reaction terms. They describe the local dynamic
of (1.13), that is the dynamic without the spatial diffusion ∂xx. We always consider
in this text that we are working with SPDEs on a bounded spatial domain D of
Rd. Most of the time, we will take d equal to 1 or 2, but this is not necessary.
For us, (Wt, t ≥ 0) is a centered Gaussian process which can be white or colored
in space. We now briefly recall how the noise is constructed. Then we list its
principal properties and we state the well-definiteness of a solution to (1.13).
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As in Section 1.2.1,H denotes a real separable Hilbert space with scalar product
(·, ·) and associated Hilbert basis {ek, k ≥ 1}. Let Q be a non negative symmetric
linear operator on H of trace class. This means that

• ∀φ ∈ H, (Qφ, φ) ≥ 0 (non negativity);

• ∀(φ1, φ2) ∈ H ×H, (Qφ1, φ2) = (φ1, Qφ2) (symmetry);

• Tr(Q) =
∑

k≥1(Qek, ek) <∞ (trace class).

Actually, in our definition, Q is symmetric everywhere so that Q is a self-adjoint
operator.

Definition 1.2.1 (Q-Wiener process.). There exists a probability space (Ω,F ,P)
on which we can define a stochastic process (WQ

t , t ∈ R+) such that

i) for each t ∈ R+, WQ
t is an H-valued random variable.

ii) (WQ
t , t ∈ R+) is a Lévy process, that is, it is a process with independent and

stationary increments:

a) for any sequence t1, . . . , tn of strictly increasing times the random vari-
ables WQ

t2 −W
Q
t1 , . . . ,W

Q
tn −W

Q
tn−1

are independent (independent incre-
ments).

b) for any two times s < t the random variable WQ
t −WQ

s has the same
law as WQ

t−s (stationary increments).

iii) for any t ∈ R+ and any φ ∈ H, (WQ
t , φ) is a real centered Gaussian variable

with variance t(Qφ, φ).

iv) (WQ
t , t ∈ R+) is continuous in time P-almost surely.

The stochastic process (WQ
t , t ∈ R+) may be built in the following way. Since

Q is a non negative self adjoint operator of trace class, we can consider its square
root Q

1
2 . This is an operator on H with adjoint denoted by (Q

1
2 )∗ and such that

Q = (Q
1
2 )∗Q

1
2 . Let (βk, k ≥ 1) be a sequence of independent real Brownian motions

defined on the same probability space (Ω,F ,P). The sequence of processes defined
by

WQ,n
t =

n∑
k=1

βk,tQ
1
2 ek,

converges in L2(Ω, H) towards a processWQ satisfying the conditions of Definition
1.2.1. The fact that Q is of trace class keeps the things rather easily to understand.
We say that the noise WQ is colored by Q. However, one may consider symmetric
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non-negative operators which are not of trace class, the most common choice being
the identity operator. In this case, Definition 1.2.1 makes sense if one enlarges the
Hilbert space H. This defines what is generally called a white noise which we
denote simply by (Wt, t ∈ R+). For white noise the construction

Wt =
∑
k≥1

βk,tek,

is formal but can be made rigorous in a Hilbert space containing H.

a) b)

Figure 1.7: Simulation of two different colored noises on a bounded domainD of R2

with covariance operator on L2(D) given by Qφ(x) =
∫
D
φ(y)(4ξ2)−1e

− π2

4ξ2
|x−y|2

dy
for x ∈ D. a) ξ = 1, small spatial correlations. b) ξ = 2, higher range spatial
correlations.

In numerous places in the text we will encounter stochastic evolution equations
of the form

dX = [AX + F (X)]dt+ dWQ, (1.14)

where the noise WQ is written in the form Q
1
2 dW where (Wt, t ∈ R+) is a white

noise. We explain briefly how we can show equation (1.14) has a unique solution.
The noise is additive, that is, it does not depend on X and is in some sense simply
added to the deterministic evolution equation

dX = [AX + F (X)]dt. (1.15)

In an integral form (the mild form in the stochastic context) a solution of (1.14)
can be written as

Xt = eAtX0 +

∫ t

0

eA(t−s)F (Xs)ds+

∫ t

0

eA(t−s)dWQ
s . (1.16)

The trick is to consider the stochastic convolution
∫ t

0
eA(t−s)dWQ

s as a control term.
Let us replace the stochastic convolution in (1.16) by a control (ωt, t ∈ R+) having
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the same properties of regularity in time and space as the stochastic convolution.
If the deterministic equation with control ω, namely

Xt = eAtX0 +

∫ t

0

eA(t−s)F (Xs)ds+ ωt, (1.17)

has a unique solution, then the corresponding stochastic equation (1.16) will have
a unique solution too. One may call a measurable selection theorem to prove this
fact. These kinds of theorems allow to select in an appropriate way the stochastic
convolution

∫ t
0
eA(t−s)dWQ

s inside the class of controls ω, see [Wag80].

We end this section with some words about the martingale problem associated
to the SPDE (1.14). The formalism is taken from [Zam00]. Under usual hypotheses
on the operators A and F such that A generates a strongly continuous semi-group
(eAt, t ∈ R+) satisfying ‖eAt‖ ≤ 1 and F is θ-Hölder continuous for some θ ∈ (0, 1),
one can consider the infinitesimal generator K associated to (Xt, t ∈ R+) defined
by

∀φ ∈ D(K), ∀u ∈ H, Kφ(u) =
dφ

du
(u)[Au+ F (u)] +

1

2
Tr

(
Q

d2φ

du2
(u)

)
.

Under these assumptions, D(K), the domain of K, is a subset of C2+θ(H). Given
a time horizon T , let us define the coordinate process (Xt, t ∈ [0, T ]) on H [0,T ] by

Xt : ω ∈ H [0,T ] 7→ ω(t) := Xt(ω) ∈ H.

Definition 1.2.2 (Martingale problem for SPDEs). A solution to the martingale
problem associated to (1.14) with X0 = x ∈ H (x held fixed) is a probability
measure Px on H [0,T ] such that

Px
(
ω ∈ H [0,T ]|ω(0) = x, ω is Borel

)
= 1

and the process (
φ(Xt)−

∫ t

0

Kφ(Xs)ds, t ∈ R+

)
is a Px-martingale for all φ ∈ D(K).

For more details, we refer the reader to [DPZ92, DP04, PZ07] which are classical
references for SPDEs.

1.3 Main results of the thesis
This section displays the main results of the present thesis chapter by chapter,
except for Chapter 2 which is devoted to mathematical preliminaries.
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1.3.1 Chapter 2: mathematical preliminaries.

Chapter 2 gathers mathematical preliminaries used in the proof of the main
theorems in Chapters 3, 4 and 5. After reviewing basic facts of functional analysis
on Hilbert spaces (Section 2.1), we prove some useful estimates about the heat
semigroup on a segment with zero Dirichlet boundary conditions in Section 2.2.
We recall a tightness criterion for Hilbert-valued stochastic processes that was
proved in [Mé84] (c.f. Section 2.3).

1.3.2 Chapter 3 and 4: averaging for a class of multiscale
conductance-based models.

In Chapters 3 and 4, we consider a general class of spatially extended stochastic
conductance-based models with a finite number of ion channels like those intro-
duced in Section 1.1.3 but moreover with multiple timescales. We first recall that
these models are described mathematically as Hilbert-valued PDMPs, c.f. Sec-
tion 1.2.1. In line with results obtained for finite dimensional conductance-based
models [PTW12, WTP12], that is without spatial extension, we obtain when a
timescale ratio ε goes to zero, the so-called averaged model. We introduce dif-
ferent timescales in spatially extended conductance-based models considering that
some ion channels open and close at faster rates than others. We perform a slow-
fast analysis of this model and prove that asymptotically, it reduces to the averaged
model which is still a PDMP in infinite dimensions for which we provide effective
evolution equations and jump rates. We thus reduce the complexity of the origi-
nal model by simplifying the kinetics of ion channels. The natural step after this
averaging result is to prove the Central Limit Theorem associated to it. Thus, we
further study the fluctuations around the averaged system in the form of a Central
Limit Theorem. We apply the mathematical results of averaging and fluctuations
to the Hodgkin-Huxley and Morris-Lecar models with stochastic ion channels. To
the best of our knowledge, no averaging results were available for Hilbert-valued
PDMPs. For PDMPs in finite dimension, a theory of averaging has been developed
in [FGC08] and central limit theorem has been proved in [PTW12].

Namely, we consider the process ((uεt , r
ε
t ), t ∈ [0, T ]), T > 0, described by

equations (1.4) and (1.5) in we introduce in these equations a timescale separation
parameter ε > 0. More precisely, the evolution equation satisfied by uε reads

∂tu
ε
t = ∂xxu

ε
t +

1

N

∑
i∈N

crt(i)(vrt(i) − uεt(zi))δzi , (1.18)

and the jump component rε satisfies

P(rεt+h(i) = ζ|rεt (i) = ξ) =
1

ε
αξζ(u

ε
t(zi))h+ o(h) (1.19)
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for i ∈ N and ζ 6= ξ in E. Recall that the axon is represented as a segment I
and that a configuration for the ion channels is an element r of the set R = E|N |.
The quantity |N | = N represents the number of ion channels and E is the state
space of each of them. We show in Proposition 3.2.1 and 3.2.2 that ((uεt , r

ε
t ), t ∈

[0, T ]) is an almost-surely uniformly bounded in ε stochastic process valued in
C([0, T ], H1

0 (I)) × D([0, T ],R). We recall that D([0, T ],R) stands for the space
of R-valued càdlàg functions on [0, T ] endowed with the Skorohod topology. The
infinitesimal generator Aε of the stochastic process (uε, rε) is defined, for a Fréchet
differentiable (w.r.t. u) function f in the domain D(Aε) of Aε such that df

du
(u, r)

is in V for (u, r) ∈ V ×R, by

Aεf(u, r) =
df

du
(u, r)[∂xxu+Gr(u)] + Bεf(u, ·)(r), (1.20)

where Gr(u) = 1
N

∑
i∈N cr(i)(vr(i) − u(zi))δzi . The quantities df

du
and f(u, ·) denote

respectively the Fréchet derivative of f with respect to u (see Section 2.4 for more
details) and the vector (f(u, r), r ∈ R). Since Bε, the jump part of the generator, is
proportional to ε (c.f. (1.19)), the process has two distinct timescales. The variable
rε jumps on a fast timescale between the states of R according to the jump’s
dynamic (1.19) and between the jumps, the variable uε evolves on a slow timescale
according to the evolution equation (1.18). The above setting with Bε = 1

ε
B will

be called "all-fast", in contrast with a more general case where the jumping part
of the generator has an expansion in a slow and a fast part

Bε =
1

ε
B + B̂,

where B is the fast part of the generator, gathering the states of R communicating
at rate of order 1

ε
and B̂ is the slow part of the generator, taking account of the

communications happening at rate of order 1. This case is referred to as the
"multiscale" case since Bε decomposes itself in a slow and fast part. For simplicity
of presentation in this introduction, we state the results of Chapters 3 and 4 in the
all-fast case but emphasize that the corresponding results are stated and proved
in the multiscale case in Chapters 3 and 4.

For any fixed u ∈ H1
0 (I) the generator B has a unique stationary distribution

on R denoted by µ(u) =
⊗

i∈N µ(u(zi)) where for i ∈ N , µ(u(zi)) is a measure on
E related to the stationary measure associated to the dynamic of the ionic channel
at location zi. Then we define the averaged reaction term by

F (u) =

∫
R
Gr(u)µ(u)(dr) (1.21)

=
1

N

∑
ξ∈E

∑
i∈N

cξµ(u(
i

N
))(ξ)(vξ − u(

i

N
))δ i

N
.
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In the all-fast case, the averaged equation reads

∂tu = ∆u+ F (u) (1.22)

We have the following result.

Theorem 1.3.1. The stochastic process uε solution of (1.18-1.19) converges in
law to a solution of (1.22) when ε goes to 0.

Theorem 1.3.1 is the main result of Chapter 3. Of course, in the multiscale
case, the averaged model is no longer deterministic since jumps with frequency
of order 1 remain and the averaged limit is no longer deterministic but a PDMP.
As an application, we consider a stochastic version of the Hodgkin-Huxley model
with no potassium and leak currents: we only consider the sodium current. This
is still a case of interest since it is the sodium channels that are involved in the
generation of a spike through the inward current. Numerical simulations are pro-
vided. They show the tractability of our approach and the consistency of aver-
aged stochastic model with the averaged version of the corresponding deterministic
Hodgkin-Huxley equations.

We then proceed to analyze the fluctuations around the averaged limit when
the Dirac mass of the model δzi are replaced by the mollifiers φzi . The results stated
above (Theorem 1.3.1) remains valid with mollifiers with the appropriate modi-
fications (for example, all the occurrences of u(zi) are replaced by (u, φzi)L2(I)).
To obtain a non trivial result, the difference between the non-averaged and aver-
aged processes must be renormalized. Let us define for this purpose the stochastic
process

zε =
uε − u√

ε

for ε > 0. We denote by {fk, k ≥ 1} a Hilbert basis of L2(I).

Theorem 1.3.2. When ε goes to 0 the process zε converges in distribution in
C([0, T ], L2(I)) towards a process z. For u ∈ L2(I), let C(u) : L2(I)→ L2(I) be a
diffusion operator characterized by

(C(u)fj, fi)L2(I) =

∫
R

(Gr(u)− F (u), fi)L2(I)(Φ(r, u), fj)L2(I)µ(u)(dr),

Φ is the unique solution of the equation{
B(u)Φ(r, u) = −(Gr(u)− F (u))∫

RΦ(r, u)µ(u)(dr) = 0.
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Let us also define an operator Ḡ1 by

Ḡ1(t)ψ(z) =
dψ

dz
(z)

[
∆z +

dF

du
(ut)[z]

]
+ Tr

[
d2ψ

dz2
(z)C(ut)

]
,

for t ∈ [0, T ] and a measurable, bounded and twice Fréchet differentiable function
ψ : L2(I) → R. The process z is uniquely determined as the solution of the
following martingale problem. For any measurable, bounded and twice Fréchet
differentiable function ψ : L2(I)→ R, the process

N̄ψ(t) := ψ(zt)−
∫ t

0

Ḡ1(s)ψ(zs)ds

for t ∈ [0, T ], is a martingale.

The evolution equation associated to the martingale problem stated in Theorem
1.3.2 is the following stochastic partial differential equation

dzt =

(
∆zt +

dF

du
(ut)[zt]

)
dt+ Γ(ut)dWt. (1.23)

In particular, the limiting process z solves an SPDE. In the multiscale case, the
corresponding limiting process is an hybrid SPDE since the jumps occurring at
order 1 remain in the limit. As an application, we consider the stochastic Morris-
Lecar model where all the quantities of interest may be computed analytically and
simulated numerically. For example, the function u 7→ Tr C(u) may be computed
and provides a quantitative measure of the variations of uε around u.

The proof of Theorem 1.3.1 is based on the Prohorov method: the existence of
a limit in law for a sequence of stochastic processes is equivalent to the tightness
of this sequence. At this point, we use the tightness criterion in Hilbert spaces
recalled in Section 2.3. Then, the law of the limiting points must be identified or
characterized. For Theorem 1.3.1, we use the weak form of the evolution equation
(1.18) to identify the limit.

Theorem 1.3.2 is proved by tightness and identification of the limit like Theorem
1.3.1. But this time, in order to identify of the limit, we develop the infinitesimal
generator of the process (zε, rε) in power of ε in order to identify its first order
terms.

1.3.3 Chapter 5: quantitative ergodicity for infinite dimen-
sional PDMPs.

In Chapter 5, our aim is to average Hilbert-valued PDMPs when continuous
component and some jumping component both evolve fast. In Chapters 3 and 4,



26 CHAPTER 1. INTRODUCTION

in order to derive averaging results, it was of first importance to get informations on
the invariant measure associated to the fast motion of the ionic channels. Indeed,
it was thanks to these informations on the invariant measure that we were able to
prove that the slow-fast PDMP converges to the averaged limit when accelerating
some of the jumps of the switching process. Since now the fast part of our PDMP
is itself a PDMP, and not only a continuous time Markov chain as in Chapters
3 and 4, we start with investigating the existence of the invariant measure for
Hilbert-valued PDMPs and the rate of convergence towards this measure.

Let E be a finite set andH a separable Hilbert space with Hilbert basis {ek, k ≥
1}. On one hand, for any fixed i ∈ E we consider the non-linear problem

∂tut = Aiut + Fi(ut) (1.24)

with u0 ∈ H for t ∈ R+. The linear and non-linear operators Ai and Fi are either
dissipative or Lipschitz such that the system (5.1) has a unique solution u which
belongs to C([0, T ], H) for any time horizon T ≥ 0. On the other hand, for any
fixed u ∈ H, we consider an E-valued continuous time Markov chain I = (It, t ≥ 0)
with u-dependent generator Q(u) = (qij(u))i,j with some boundedness conditions
on the functions qij.
In line with recent results of [BLBMZ12] for finite dimensional PDMPs, Chapter
5 is concerned with the long time behavior of PDMPs of the form{

∂tut = AItut + FIt(ut),
P(It+h = j|It = i) = qij(ut)h+ o(h), i 6= j

(1.25)

for t ≥ 0 and given random initial conditions u0 ∈ H and I0 ∈ E. The pro-
cess (ut, It)t≥0 is a well-defined PDMP. We prove existence and uniqueness of the
invariant measure and the convergence of u toward this measure in Wasserstein
distance. See Chapter 5 for the definition of Wasserstein distance W and its main
properties. Let us just say that this convergence is equivalent to convergence in
law plus convergence of moments of order 1 or higher depending of the order of
the Wasserstein distance.

Proposition 1.3.1. Let L(ut) denote the law of u at time t. The process (ut, t ≥ 0)
has a unique invariant measure ν on H such that

W(L(ut), ν) ≤ α(1 + t)e−βt,

where α and β are two positive constants which we know explicitly.

That is, the rate of convergence toward the invariant measure is exponential.
Proposition 1.3.1 is proved thanks to coupling arguments developed in [BLBMZ12]
and extended to our infinite dimensional framework. Moreover we show the con-
vergence of the invariant measure of the truncation of u up to the order N toward
the invariant measure of u under the Wasserstein metric.
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Proposition 1.3.2. For N ∈ N, let u(N) be the truncation of u up to the order N :
u

(N)
t =

∑N
k=1(ut, ek)ek for t ≥ 0. Then u(N) has a unique invariant measure ν(N)

which converges toward ν when N goes to infinity. More precisely, if E(‖u0‖2) is
finite we have

W(ν(N), ν) ≤
√
aN

for any N ∈ N where the sequence (aN)N∈N goes to zero when N goes to infinity
and is explicit.

As an application, we consider the averaging of a fast PDMP fully coupled
to a slow continuous time Markov chain, a situation motivated by the study of
conductance-based neuron models. Indeed, the potential and some ionic species
are often assumed to evolve at a faster timescale than other ionic species. For
instance, in the Hodgkin-Huxley model, the potential and the gates of type m
have a faster dynamic than the gates of type h and n, see the description of
the Hodgkin-Huxley model in Section 1.1.2 and also [RW07] where averaging is
considered in this situation for the deterministic Hodgkin-Huxley model. Thus, it
is of first importance to analyze the behavior of such a system at the first order in
ε, that is the averaging of the model.

Namely, this leads us to consider, a PDMP of the following form where ε ∈ (0, 1)
∂tut = 1

ε

[
A
I

(1)
t ,I

(2)
t
ut + F

I
(1)
t ,I

(2)
t

(ut)
]
, u0 ∈ H,

P(I
(1)
t+h = j|I(1)

t = i) = 1
ε
q

(1)
ij (ut)h+ o(h), i 6= j, i, j ∈ E(1),

P(I
(2)
t+h = j|I(2)

t = i) = q
(2)
ij (ut)h+ o(h), i 6= j, i, j ∈ E(2)

(1.26)

for t ≥ 0. The PDMP (u, I(1), I(2)) gives rise to two distinct dynamic. The PDMP
(u, I(1)) evolves faster than the process I(2) according to the timescale separation
introduced by the small parameter ε. On a fixed time horizon [0, T ], when ε goes
to zero, the process (u, I(1)), denoted in the sequel by (uε, I(1),ε), will rapidly reach
its stationary behavior. Then the slow process I(2), denoted in the sequel by I2,ε,
will evolve according to the averaged dynamic of (u, I(1)). The process (u, I(1))
will be replaced by its invariant law.
Let us assume that in system (1.26), the process I(2),ε is frozen to the value i(2) ∈
E(2). Then, applying Proposition 1.3.1 above, we know that the PDMP defined
by {

∂tut =
[
A
I

(1)
t ,i(2)ut + F

I
(1)
t ,i(2)(ut)

]
, u0 ∈ H,

P(I
(1)
t+h = j|I(1)

t = i) = q
(1)
ij (ut)h+ o(h), i 6= j, i, j ∈ E(1),

(1.27)

has a unique invariant measure µi(2) on H × E(1). Let us average the dynamic of
I(2) against the invariant measure of (u, I(1)). For any i, j ∈ E(2) we define the
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averaged jump rate from i to j

q̄ij =

∫
H

q
(2)
ij (u)νi(du). (1.28)

We denote by Q̄ the intensity matrix associated to the averaged jump rates q̄ij and
by J̄ = (J̄t, t ∈ [0, T ]) the continuous time Markov chain associated to Q̄ with for
simplicity: J̄0 = I

(2),ε
0 = i

(2)
0 ∈ E(2). We obtain the following averaged result for

the sequence of processes (I(2),ε, ε ∈ (0, 1)).

Theorem 1.3.3. The process I(2),ε = (I
(2),ε
t , t ∈ [0, T ]) converges in law when ε

goes to zero towards the continuous time Markov chain J̄ . Moreover the order of
convergence is 1 in the sense that

sup
t∈[0,T ]

|E(φ(I
(2),ε
t )− φ(J̄t))| = O(ε)

for any real valued measurable and bounded function φ.

Theorem 1.3.3 implies that at first order in ε, the slow-fast system (1.26) re-
duces to a continuous time Markov chain. If we consider system (1.26) as a model
for a neural cell, we notice that the equation on the potential has disappeared in
the averaged model and the potential is only present through the invariant measure
of the fast part of the system. This may look odd since the potential is a variable of
first interest in conductance-based neuron models. As remarked in [RW07] for the
finite dimensional deterministic Hodgkin-Huxley model, one may certainly con-
sider an intermediate model between the three dimensional two timescales model
(1.26) and the one dimensional averaged model following the dynamic of J̄ . That
is a simplified model that still contains an equation on the potential remains.

1.3.4 Chapter 6: simulations of SPDEs for excitable media.

Chapter 6 is concerned with the numerical simulation of SPDEs used to model
excitable cells in order to analyze the effect of noise on such biological systems. Our
aim is twofold. The first is to propose an efficient and easy-to-implement method
to simulate this kind of models. The second is to analyze the effect of noise on
these systems thanks to numerical experiments. Namely, in models for cardiac
cells, we investigate the possibility of purely noise induced reentrant patterns such
as spiral or scroll-waves since these phenomena are related to major troubles of
the cardiac rhythm such as tachyarrhythmia.

We will consider two phenomenological stochastic models derived from classical
deterministic ones: the Barkley and the Mitchell-Schaeffer models. Mathemati-
cally, they consist in a system of PDEs driven by a colored noise. More precisely,
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they may be written{
du = [ν∆u+ 1

ε
f(u, v)]dt+ σdWQ,

dv = g(u, v)dt,
(1.29)

on [0, T ]×D, where D is a regular bounded open set of R2 or R3. This system is
completed with boundary and initial conditions. WQ is a colored Gaussian noise
source as defined in Section 1.2.2. The general structure of f and g is also typical of
excitable dynamics. In particular, in the models that we will consider, the neutral
curve f(u, v) = 0 when v is held fixed is cubic in shape.

To achieve our first aim, that is to numerically compute a solution of system
(1.29), we work with a numerical scheme based on finite difference discretization in
time and finite element method in space. The choice of finite element discretization
in space has been directed by two considerations. The first one is that this method
fits naturally to a general spatial domain: we want to investigate the behavior of
solutions to (1.29) on domains with various geometries. The second one is that
it allows to implement the numerical scheme using popular software such as the
finite element software FreeFem++ or equivalent. The discretization of SPDEs
by finite differences in time and finite elements in space has been considered by
several authors in theoretical studies, see for example [DP09, Deb11, CYY07,
LT12, Wal05]. Other methods of discretization are considered for example in
[ANZ98, GM05, GMV12, Jen09, JR10, KLNS11, KLL10, LT10, Yan05]. These
methods are based on finite difference discretization in time coupled either to finite
difference in space or to the Galerkin spectral method, or to the finite element
method on the integral formulation of the evolution equation. We emphasize that
we do not consider a Galerkin spectral method or exponential integrator, that
is, roughly speaking, we neither use the spectral decomposition of the solution of
(1.29) according to a Hilbert basis of L2(D) (or an other Hilbert space related to
D) nor the semigroup attached to the linear operator (the Laplacian in (1.29)), in
order to build our scheme. We only use the variational version of the finite element
method in order to fit to commonly used finite elements method for deterministic
PDEs. Let us note that Chapter 6 is more numerically oriented than the above
cited papers, in the spirit of [Sha05]. In [Sha05], the author numerically analyzes
the effect of noise on excitable systems thanks to a Galerkin spectral method of
discretization on the square. We pursue the same objective using the finite element
method instead of the Galerkin spectral one. Let us notice that a discretization
scheme for SPDEs driven by white noise for spatial domains of dimension greater
or equal to 2 may lead to non trivial phenomena, see [HRW12]. Considering colored
noises may also be seen as a way to circumvent these difficulties.

As is well known, one can consider two types of errors related to a numerical
scheme for stochastic evolution equations: the strong error and the weak error.
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The strong error for the discretization we consider has been analyzed for one
dimensional spatial domains (line segments) in [Wal05]. The weak error for more
general spatial domains, of dimension 2 or 3 for example, has been considered in
[DP09, Deb11]. In Chapter 6, we prefer to consider the strong error of convergence
of our scheme because we want to investigate numerally pathwise properties of
the model. Working with spatial domains of dimension 2 or 3, we show that the
strong order of convergence of the considered method for a class of linear stochastic
parabolic equations is twice less than the weak order obtained in [DP09]. This is
what is expected since this same duality between weak and strong order holds for
the discretization of finite dimensional stochastic differential equations (SDEs).

Namely, let us consider the following linear parabolic stochastic equation on
[0, T ]×D {

dut = ∆utdt+ σdWQ
t ,

u0 = ξ.
(1.30)

The initial condition ξ is a L2(D)-valued random variable. For simplicity in the
introduction, the operator ∆ is the Laplacian operator with domain H2(D) ∩
H1

0 (D). More general parabolic linear operators are considered in Chapter 6.

Let Th be a family of triangulation of the domain D by triangles (d = 2) or
tetrahedra (d = 3). The size of Th is given by

h = max
T∈Th

h(T ),

where h(T ) = maxx,y∈T |x− y| is the diameter of the element T . Let {Pi, 1 ≤ i ≤
Nh} be the set of all the nodes associated to the triangulation Th. The basis for
the P1 finite element method is given by

B1,Th = {ψi, 1 ≤ i ≤ Nh},

where ψi is the continuous piecewise affine function on D defined by ψi(Pj) = δij
(Kronecker symbol) for all 1 ≤ i, j ≤ Nh if Pj is in the interior of D and ψi(Pj) = 0
for all 1 ≤ i, j ≤ Nh if Pj is on the boundary of D. We denote by Vh this space of
P1 finite elements. The P1 approximation of the noise is

WQ,h,1
t =

Nh∑
i=1

WQ
t (Pi)ψi. (1.31)

P0 finite elements are also considered in Chapter 6.

We study the following numerical scheme to approximate equation (1.30) de-
fined recursively by: for u0 given in Vh, find (uhn)0≤n≤N in Vh such that for all
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n ≤ N − 1{
1

∆t
(uhn+1 − uhn, vh) + (∇uhn+1,∇vh) = σ

∆t
(WQ,h,1

(n+1)∆t −W
Q,h,1
n∆t , vh)

uh0 = u0

(1.32)

for all vh ∈ Vh.

Proposition 1.3.3. There exists a probability space (Ω,F ,P) satisfying the usual
conditions such that if

√
E(‖uh0 − u0‖2) = O(h) then, for all 0 ≤ n ≤ N we have√
E(‖uhn − un∆t‖2) = O(h+

√
∆t), (1.33)

where the estimate is uniform in n ∈ {0, . . . , N}.

Thanks to the spatial regularity of the considered noise, the proof we provide fol-
lows classical arguments used to analyze the error introduced by the deterministic
finite element method [RT83].

Our motivation for considering systems such as (1.29) comes from biological
considerations. In the cardiac muscle, tachyarrhythmia are disturbances of the
heart rhythm in which the heart beating rate is abnormally increased. This major
trouble of the cardiac rhythm may lead to rapid loss of consciousness and to death.
As explained in [Hin02, JC06], the vast majority of tachyarrhythmia are perpet-
uated by a reentrant mechanism. It is well known that deterministic excitable
systems of type (1.29) (when σ = 0) are able to generate sustained reentrant
patterns such as spiral or meander, see for example [Kee80, BKT90]. We show
numerically that reentrant patterns may be generated and perpetuated only by
the presence of noise. We perform the simulations on the Barkley model whose
deterministic version has been intensively studied in [BKT90, Bar92, Bar94] and
the model of Mitchell-Schaeffer which allows to get more realistic shape for the
action potential in cardiac cells [MS03, BCF+10]. For the Barkley model, similar
experiments are presented in [Sha05] where Galerkin spectral method is used as
simulation scheme on a square domain. In our simulations, done on a square with
periodic conditions and on a smoothed cardioid, we observe two kinds of reentrant
patterns due to noise: the first may be seen as a scroll wave phenomenon whereas
the second corresponds to spiral phenomenon. Both phenomena may be regarded
as sources of tachyarrhythmia since in both cases, areas of the spatial domain are
successively activated by the same wave which re-enters in the region.

The Barkley model reads as follows, for a, b two positive reals in (0, 1){
du = [ν∆u+ 1

ε
u(1− u)(u− v+b

a
)]dt+ σdWQ,

dv = [u− v]dt.
(1.34)
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Let us emphasize that the model (1.34) is endowed with a timescale parameter
ε. The presence of this parameter is fundamental for the observation of traveling
waves in the system: ε enforces the system to be either quiescent or excited with
a sharp transition between the two states. Moreover, the relative values of the
timescale parameter ε and the strength of the noise σ appear to be of first impor-
tance to obtain reentrant patterns. This fact is also pointed out by our numerical
bifurcation analysis. Let us mention that noise induced phenomena have been
studied in [BG06] for finite dimensional systems of stochastic differential equa-
tions. The theoretical study of slow-fast SPDEs, through averaging methods, has
been considered in [Bre12, CF09, WR12] for SPDEs.

All the simulations of Chapter 6 have been performed using the FreeFem++
finite element software, see [HLHOP]. This software offers the advantage to provide
the mesh of the domain, the corresponding finite element basis and to solve linear
problems related to the finite element discretization of the model on its own. The
originality of the present work is to use this software to simulate stochastic PDEs.

1.4 Perspectives
Throughout this work, a number of areas have come to light that merit further
study, they are listed below. Some questions are in progress whereas we plan to
address others in future works.

Joint limit when (N, ε) → (∞, 0). In line with the reduction of models
achieved by temporal averaging in Chapters 3 and 4, one may ask the question of
the reduction of the averaged model when the number of ionic channels converges to
infinity. Namely, how can we treat simultaneously the phenomena of acceleration
of the speed of the fast component (ε→ 0) and the increase of the number of ionic
channels (N → ∞)? For example, do we obtain the same models in permuting
the order of these two different limits ?
It is worth noting that the averaging of conductance-based neuron models with
multiple timescales leads to consider reaction terms for the evolution of the action
potential of the form

Gr(u) =
1

N

N∑
i=1

cr̄(i)(vr̄(i) − (u, φzi))λ((u, φzi))φzi .

These kinds of reaction terms are not considered in [Aus08] or [RTW12] where
limit theorems are obtained when N goes to infinity and ε is fixed. The presence
of the supplementary function λ prevents us to use the results of these papers.
However, we believe that the method used in [Aus08] can be extended to this
framework.
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Refinements for conductance-based models. An other line of work about
the reduction proposed in Chapters 3 and 4 is to consider ionic channels which
possess slow and fast jump rates as we have done but this time with the inclusion
of absorbing or transient states in the spirit of Sections 6.3 and 6.4 of [YZ98]. This
certainly results in more tedious calculations to obtain averaging results when deal-
ing with this kind of refinements for our model. One may also consider countably
many ionic channels: in this case, the equation on the potential must be modified
to incorporate this fact, one can not write 1

N

∑
i 1ξ(r((i))δzi any longer but one

may think of any finite measure ν on I replacing this sum of Dirac mass in writing∫
I

1ξ(r(x))ν(dx).

Fluctuations in N , speed of propagation of the action potential. Theo-
rem 1.1.1 says that the stochastic conductance-based model and the deterministic
one are consistent in the sense that when the number of ionic channels goes to
infinity, the stochastic model converges towards the deterministic one. Then in
[RTW12], the authors show that the variation of the empirical proportion of open
ionic channels towards the deterministic probability is Gaussian when appropri-
ately renormalized. An interesting question is to address the fluctuation of the
stochastic potential uN around its deterministic limit u. A careful reading of the
proof of Theorem 1.1.1 in [Aus08] and some supplementary work show that

sup
t∈[0,T ]

E(‖uNt − ut‖2
L2(I)) = O

(
1

N

)
.

This means that the limit of the process
√
N(uN − u) should exist in law when

N goes to infinity. Of course, this result has to be proved rigorously by tightness
arguments plus identification of the limit. Let us remark that this result has
been proved recently for more regular spatially extended stochastic conductance-
based models in [RT13] but not for models with Dirac masses. This result would
explain the observed variation between the stochastic velocity of the nerve impulse
cN and the deterministic one c. Indeed, in the averaged Hodgkin-Huxley model
without potassium dynamic for example, numerical simulations show that cN−c =

O
(

1√
N

)
. Moreover, in this case, we observed not only that cN − c = O

(
1√
N

)
but

rather that cN − c = −α 1
N

for some positive α. Why is the stochastic celerity
smaller than the deterministic celerity? Can we mathematically prove this fact?

Further analysis for multiscale Hilbert-valued PDMPs. Theorem 1.3.3
shows that we can average stochastic conductance-based neuron models when both
the potential and some ionic species evolve at fast rate. The averaged model is then
simply a continuous time Markov chain. However, for this result to be completely
satisfying, we have to understand better the properties of the invariant measure µ
associated to the fast motion in the model. Indeed, the jump rates of the averaged
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model are computed thanks to the invariant measure µ of the fast component. In a
more general setting, this raises the question of properties of invariant measures for
infinite dimensional PDMPs. The analogous question is investigated in [BLMZ12]
for PDMPs in finite dimension: the support of the invariant measure is charac-
terized and under Hörmander type conditions, the convergence to equilibrium is
proved in total variation.
Always in the framework of neuron models with accelerated potential, one may
also consider, and this is certainly the case for real neural cells, that the potential
and some ionic species evolves at a faster timescale than other ionic species but
with different speed of accelerations, let say ε1 and ε2. Is there interesting regimes
for which one obtains other limits than the averaged results obtained in Chapter
5? One may think of regimes such as

ε1

ε2

→ c ≥ 0 but other regimes could be

addressed.

Effect of noise on excitable systems. For the investigations on the effect of
noise on excitable systems for cardiac cells in Chapter 6, a lot of questions remain.
For example, if we consider the Barkley model under super-threshold forcing, one
may ask the influence of noise on the speed of propagation of the nucleated wave.
Is the mean speed of the wave smaller than the speed of the wave without noise,
as in the case of the stochastic Hodgkin-Huxley model without potassium? Is the
mean speed of the wave equal to the speed of the wave in the corresponding de-
terministic situation?
If we consider a periodic forcing of this model, one may also ask how the periodicity
of the wave train generated by the periodic forcing is affected by noise. We expect
to observe, as in [TJ10] for the case with spatial dimension one, the annihilation
by weak noise of the propagation of some generated waves.
In the regime where noise induced reentrant patterns have been observed, one may
want to determine numerically the periodicity of the generated reentrant waves as
well as the motion of the reactivation zone. This should result in a better under-
standing of the observed phenomena.
On a more theoretically oriented point of view, we have conducted the error anal-
ysis of the considered discretization method for stochastic linear equations in the
strong sense. We believe that it should be useful to derive the strong error intro-
duced by the scheme for the Barkley model. The literature on the error analysis
in the strong sense for the finite element method for SPDEs is not very developed
and such results should be appreciable. We intend to begin this analytical study
on simplified excitable system such as conductance based models with only one
ionic specie.



Chapter 2

Preliminary material

This chapter gathers some mathematical preliminaries used in the proof of some
theorems of Chapters 3, 4 and 5. Section 2.1 is made of classical facts from
functional analysis on Hilbert spaces. Then, we prove in Section 2.2 several useful
estimates about the heat semigroup on a segment with zero Dirichlet boundary
conditions. In Section 2.3, we recall a tightness criteria of [Mé84] for Hilbert-
valued stochastic processes. We end this chapter with a reminder about Fréchet
differentiability in Section 2.4 and Grönwall’s lemma in Section 2.5.

2.1 An evolution triple

We set I = [0, 1]. Let us define:

‖u‖V =

√∫
I

(u(x))2 + (u′(x))2dx, ‖u‖L2(I) =

√∫
I

(u(x))2dx.

In this chapter we will work with the following triplet of Banach spaces (evolution
triple) H1

0 (I) ⊂ L2(I) ⊂ H−1(I). We set V = H1
0 (I), it is the completion of the

set of C∞ functions with compact support on I with respect to the norm ‖ · ‖V .
L2(I) endowed with the norm ‖ ·‖L2(I) is the usual space of measurable and square
integrable functions with respect to the Lebesgue measure on I. H−1(I) is the
dual space of V and will be denoted by V ∗.

We recall here a few basic results about these three spaces. L2(I) and V are
two separable Hilbert spaces endowed with their usual scalar products denoted
respectively by (·, ·)L2(I) and (·, ·). That is

∀(u, v) ∈ L2(I)× L2(I), (u, v)L2(I) =

∫
I

f(x)g(x)dx

35
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and
∀(u, v) ∈ V × V, (u, v) =

∫
I

u(x)v(x)dx+

∫
I

u′(x)v′(x)dx.

We denote by < ·, · > the duality pairing between V and V ∗. The embeddings
V ⊂ L2(I) ⊂ V ∗ are continuous and dense. Moreover, for any h ∈ L2(I) and any
u ∈ V : < h, u >≡ (h, u)L2(I).

For an integer k ≥ 1 we define the following functions on I:

fk(·) =
√

2 sin(kπ·), ek(·) =

√
2√

1 + (kπ)2
sin(kπ·).

The family {fk, k ≥ 1} (resp. {ek, k ≥ 1}) is a Hilbert basis of L2(I) (resp. V ).
In L2(I) (resp. V ), the Laplacian with zero Dirichlet boundary conditions has the
following spectral decomposition:

∆u = −
∑
k≥1

(kπ)2(u, fk)L2(I)fk

(
resp. ∆u = −

∑
k≥1

(kπ)2(u, ek)ek

)

for u in the domain DL2(I)(∆) = {u ∈ L2(I);
∑

k≥1 k
4(u, fk)

2
L2(I) < ∞} (resp.

D(∆) = {u ∈ V ;
∑

k≥1 k
4(u, ek)

2 < ∞}). In the two proposed basis, the above
expressions mean that the laplacian operator is diagonal with eigenvalues −(kπ)2.
Note that the operator ∆ is symmetric on D(∆)

∀(u, v) ∈ D(∆)×D(∆), (∆u, v) = (v,∆u)

and −∆ is V -elliptic in the meaning of

∀(u, v) ∈ D(∆)×D(∆), (−∆u, u) ≥ π2‖u‖2
V .

We refer the reader to Chapter 1, Section 1.3 of [Hen81] for more details. A useful
result in the sequel is the continuous embedding of V in C(I): we denote by CP
the constant such that, for all u ∈ V we have:

sup
x∈I
|u(x)| ≤ CP‖u‖V .

2.2 About the heat semigroup on a segment with
zero Dirichlet boundary conditions

Note that the chosen Hilbert basis imposes that for u ∈ D(∆), ∆u is zero on
the boundaries of I, that is in 0 and 1. It corresponds to impose zero Dirichlet
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boundary conditions to the laplacian operator. These boundary conditions are
in fact included in the domain D(∆) of the laplacian operator. Indeed, one can
show that D(∆) = H2(I)∩H1

0 (I). Here, H2(I) is the space of twice differentiable
functions (in the distributional sens) which are in L2(I) and whose first and twice
derivatives are also in L2(I). Let us define (e∆t, t ∈ R+), the semigroup associated
to ∆ in V . For any u ∈ V :

e∆tu =
∑
k≥1

e−(kπ)2t(u, ek)ek, t > 0. (2.1)

(e∆t, t ∈ R+) is a C0-semigroup (also referred as strongly continuous one param-
eter semigroup) on V with generator ∆. This means that it is a one parameter
semigroup

i) e∆0 is the identity operator on V ;

ii) ∀(s, t) ∈ R+ × R+, e∆(t+s) = e∆te∆s,

which is strongly continuous

iii) ∀u ∈ V, limt→0 ‖e∆tu− u‖V = 0.

Moreover, ∆ is its infinitesimal generator

iv) ∀u ∈ D(∆), limt→0
e∆tu−u

t
= ∆u.

As defined by (2.1), the semigroup (e∆t, t ∈ R+) only acts on functions of V . We
define the semigroup at time t against a Dirac mass δy at a point y in I by

e∆tδy =
∑
k≥1

e−(kπ)2t(1 + (kπ)2)ek(y)ek.

That is we used the representation < δy, ek >= (1 + (kπ)2)ek(y). We proceed to
recall a lemma in [Aus08]. This lemma tells us how to estimate the integral of a
function against functions of the form e∆tδy . Note that the last part of conclusion
1. of Lemma 2.2.1 is contained in the proof of the corresponding lemma in [Aus08].
Comparing with [Aus08], we propose a completely different proof of this lemma.

Lemma 2.2.1. Let y be in the interior of I. Then e∆tδy is a smooth function on
I vanishing at the end-points for any t > 0. Furthermore:

1. There is some constant C1 > 0, depending on T but otherwise not on t ∈
[0, T ], such that for any continuous function u : [0, t] → R we have that the
function

I → R : x 7→
∫ t

0

u(s)e∆(t−s)δy(x)ds
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is in V and satisfies the estimate∥∥∥∥∫ t

0

u(s)e∆(t−s)δy(·)ds
∥∥∥∥
V

≤ C1‖u‖∞.

Moreover for any η > 0 we can choose ε > 0 so small that:∥∥∥∥∫ t

t−ε
u(s)e∆(t−s)δy(·)ds

∥∥∥∥
V

≤ 1

2
η‖u‖∞.

2. For any fixed ε > 0 there is some constant C2(ε), depending on ε and T but
otherwise not on t ∈ [0, T ], such that for any continuous function u : [0, t]→
R we have ∥∥∥∥∫ t−ε

0

u(s)e∆(t−s)δy(·)ds
∥∥∥∥
V

≤ C2(ε)

∫ t−ε

0

|u(s)|ds

for any t ∈ [0, T ].

Proof. Since there is no ambiguity in this proof, we simply write ‖ · ‖ for ‖ · ‖V .
Let us recall that by definition, for t ∈ [0, T ] and y in the interior of I

e∆tδy =
∑
k≥1

e−(kπ)2t(1 + (kπ)2)ek(y)ek

with

ek(y) =

√
2

1 + (kπ)2
sin(kπy).

For α, β ∈ [0, T ], we define:

A(α, β) =

∫ β

α

u(s)e∆(t−s)δyds

=
∑
k≥1

√
2(1 + (kπ)2) sin(kπy)

∫ β

α

u(s)e−(kπ)2(t−s)dsek.

We obtain the first inequality without difficulty, simply by estimating the term
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u(s) inside the integral by ‖u‖∞ = sups∈[0,T ] |u(s)|:

‖A(0, t)‖2 =

∥∥∥∥∥∑
k≥1

√
2(1 + (kπ)2) sin(kπy)

∫ t

0

u(s)e−(kπ)2(t−s)dsek

∥∥∥∥∥
2

= 2
∑
k≥1

(1 + (kπ)2) sin2(kπy)

(∫ t

0

u(s)e−(kπ)2(t−s)ds

)2

≤ 2
∑
k≥1

(1 + (kπ)2) sin2(kπy)‖u‖2
∞

(
1− e−(kπ)2t

(kπ)2

)2

≤ 2‖u‖2
∞

∑
k≥1

(1 + (kπ)2)

(kπ)4
sin2(kπy).

We choose C1 such that:

C2
1 = 2

∑
k≥1

(1 + (kπ)2)

(kπ)4
sin2(kπy),

to obtain the first inequality

‖A(0, t)‖ ≤ C1‖u‖∞.

Let us consider ε > 0 and write

‖A(t− ε, t)‖2 =

∥∥∥∥∥∑
k≥1

√
2(1 + (kπ)2) sin(kπy)

∫ t

t−ε
u(s)e−(kπ)2(t−s)dsek

∥∥∥∥∥
2

= 2
∑
k≥1

(1 + (kπ)2) sin2(kπy)

(∫ t

t−ε
u(s)e−(kπ)2(t−s)ds

)2

≤ 2
∑
k≥1

(1 + (kπ)2) sin2(kπy)‖u‖2
∞

(
1− e−(kπ)2ε

(kπ)2

)2

≤ 2‖u‖2
∞

∑
k≥1

(1 + (kπ)2)

(kπ)4
sin2(kπy)

(
1− e−(kπ)2ε

)2

.

Let us define

C1(ε) = 2
∑
k≥1

(1 + (kπ)2)

(kπ)4
sin2(kπy)

(
1− e−(kπ)2ε

)2

.
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By dominated convergence, for any η > 0 we can choose ε so small that C1(ε) ≤(
1
2
η
)2. Hence:

‖A(t− ε, t)‖ ≤ 1

2
η‖u‖∞.

We are left with the last inequality, let ε ∈]0, t] and t ∈ [0, T ]:

‖A(0, t− ε)‖2 =

∥∥∥∥∥∑
k≥1

√
2(1 + (kπ)2) sin(kπy)

∫ t−ε

0

u(s)e−(kπ)2(t−s)dsek

∥∥∥∥∥
2

= 2
∑
k≥1

(1 + (kπ)2) sin2(kπy)

(∫ t−ε

0

u(s)e−(kπ)2(t−s)ds

)

≤ 2
∑
k≥1

(1 + (kπ)2) sin2(kπy)e−(kπ)2ε

(∫ t−ε

0

u(s)ds

)2

.

The last inequality is obtained by setting

C2
2(ε) = 2

∑
k≥1

(1 + (kπ)2) sin2(kπy)e−(kπ)2ε.

2.3 Tightness in Hilbert spaces
In this part we are interested in a criteria of tightness for a family of Hilbert space
valued processes. Indeed, in the sequel, we will want to prove the convergence
in law of some family of processes (uε, ε ∈]0, 1]) valued in C([0, T ], H) when ε
goes to zero for some Hilbert space H. We begin by recalling a criteria of relative
compactness in Hilbert space. We provide a proof since we did not find any adapted
references in the literature for this theorem. Moreover, this is a pleasant exercise.

Theorem 2.3.1. Let H be a separable Hilbert space and {ek, k ≥ 1} a Hilbert basis
of H. A subset C of H has compact closure in H if and only if

i) C is bounded in H.

ii) For any η > 0, there exists a N such that

sup
x∈H
‖x− ΠNx‖ < η.

ΠN is the projection of x on the space HN = span{ek, 1 ≤ k ≤ N}.
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Figure 2.1: Relative compactness in Hilbert spaces.

Proof. Let us begin with the "if" part. Let η > 0 and C be a of compact closure
in H. We consider the following covering of C by open balls of radius 1

3
η

C ⊂
⋃
h∈C

B
(
h,

1

3
η

)
.

Since C is of compact closure in H, there exists h1, . . . , hn, n elements of C such
that

C ⊂
n⋃
k=1

B
(
hk,

1

3
η

)
.

Then, for any k ∈ {1, . . . , n}, there exists N(k) ∈ N such that

‖hk − ΠN(k)hk‖ <
1

3
η.

Let N∗ = maxk∈{1,...,n}N(k). For any h ∈ C, there is a k̃ ∈ {1, . . . , n} such that

h ∈ B
(
hk̃,

1

3
η

)
.

Thus

‖h− ΠN∗h‖ ≤ ‖h− hk̃‖+ ‖hk̃ − ΠN∗hk̃‖+ ‖ΠN∗hk̃ − ΠN∗h‖
≤ 2‖h− hk̃‖+ ‖hk̃ − ΠN∗hk̃‖

≤ 2
η

3
+
η

3
= η.

We go on with the "only if" part. The aim of the proof is to show that when
conditions i) and ii) are fulfilled the set C is of compact closure. Let (xn)n∈N be a
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sequence of elements of C. We want to show that this sequence has a convergent
subsequence. Let η > 0, by assumption ii), there exists an integer N such that

sup
x∈C
‖x− ΠNx‖ ≤

1

3
η.

By assumption i), C is bounded, thus, for any k ≥ 1, the sequence ((xn, ek))n∈N is
bounded in R since there is a constant α (independent of n) such that∑

k≥1

(xn, ek)
2 ≤ α.

Therefore, the sequence ((xn, ek))n∈N has a Cauchy sub-sequence. Let us denote by
((xnp , ek))p∈N this sub-sequence. There is an integer Pk such that for any p, q ≥ Pk

|(xnp , ek)− (xnq , ek)| ≤
1

2αN

1

9
η2.

Let us set P ∗ = maxk∈{1,...,N} Pk. For any p, q ≥ P ∗ we have

‖xnp − xnq‖ ≤ ‖xnp − ΠNxnp‖+ ‖ΠNxnq − xnq‖+ ‖ΠNxnp − ΠNxnq‖.

Then for r = p, q

‖xnr − ΠNxnr‖ ≤
1

3
η

and

‖ΠNxnp − ΠNxnq‖2 =
N∑
k=1

((xnp , ek)− (xnq , ek))
2 ≤ 2αN

1

2αN

1

9
η2 =

1

9
η2.

Assembling the above inequalities yields

‖xnp − xnq‖ ≤ η.

This means that the sequence (xnp)p∈N is a Cauchy sequence in H which is a
complete metric space. The result follows.

From the above characterization of compactness in a Hilbert space, we de-
rive the following characterization of tightness of a family of Hilbert space valued
random variables. The two theorems below come from [Mé84].

Theorem 2.3.2 (Tightness in a Hilbert space). Let H be a separable Hilbert space
endowed with the basis {ek, k ≥ 1}. We denote by HN , for N ≥ 1

HN = span{ek, 1 ≤ k ≤ N}.

Let (Ω,F ,P) be a probability space satisfying the usual conditions and {uε, ε ∈]0, 1]}
a family of H valued random variables. Then the family {uε, ε ∈]0, 1]} is tight in
H if, and only if, for any δ, η > 0 there is ρ, ε0 > 0 and a subspace Hδ,η of
{HN , N ≥ 1} such that
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1.
sup

ε∈]0,ε0]

P(‖uε‖H > ρ) ≤ δ, (2.2)

2.
sup

ε∈]0,ε0]

P(d(uε, Hδ,η) > η) ≤ δ, (2.3)

where d(uεt , Hδ,η) = infv∈,Hδ,η ‖uε − v‖H .

Proof. By Theorem 2.3.1, if the family {uε, ε ∈]0, 1]} is tight in H then the two
conditions (2.2) and (2.3) are obviously fulfilled. To prove the converse, we assume
that the conditions (2.2) and (2.3) are fulfilled. Let δ, ε0 > 0 and consider the set

Cδ = H \

(⋃
k∈N

{g ∈ H; ‖g‖ > ρδ} ∪ {g ∈ H; d(g,H δ

2k
, 1
k
) >

1

k
}

)
.

Then, by Theorem 2.3.1, Cδ is of compact closure in H and for any ε ∈]0, ε0]

P(uε ∈ Cδ) ≥ 1− 2δ,

which means that the family {uε, ε ∈]0, 1]} is tight in H.

Let T be a finite time horizon. For any separable Hilbert space H (or more
generally any complete and separable space), the space D([0, T ], H) of càdlàg paths
from [0, T ] into H is complete and separable when endowed with its Skorohod
topology. This space of paths is treated comprehensively in Chapter 3 of [EK86].
The following theorem recalls that tightness of a family of processes at each fixed
time t plus Aldous’s condition imply the tightness of the family [Ald78].

Theorem 2.3.3 (General criterion for tightness). On the probability space (Ω,F ,P),
we consider {uε, ε ∈]0, 1]} a family of D([0, T ], H) valued random variables for H
a separable Hilbert space. Let us assume that {uε, ε ∈]0, 1]} satisfies Aldous’s con-
dition which means that for any δ,M > 0, there exist η, ε0 > 0 such that for all
stopping times τ such that τ + η < T :

sup
ε∈]0,ε0]

sup
θ∈]0,η[

P(‖uετ+θ − uετ‖H ≥M) ≤ δ. (2.4)

If moreover, for each t ∈ [0, T ] fixed the family {uεt , ε ∈]0, 1]} is tight in H then
(uε, ε ∈]0, 1]) is tight in D([0, T ], H).
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2.4 Fréchet differentiability
In this section, H is a separable Hilbert space. We say that a function f : H → R
has a Fréchet derivative in u ∈ H if there exists a bounded linear operator Tu :
H 7→ R such that

lim
h→0

f(u+ h)− f(u)− Tu(h)

‖h‖H
= 0.

We then write df
du

(u) for the operator Tu. For example, with H = L2(I), the square
of the ‖ · ‖L2(I)-norm and the Dirac distribution in x ∈ I are Fréchet differentiable
on L2(I). For all u ∈ L2(I),

d‖ · ‖2
L2(I)

du
(u)[h] = 2(u, h),

dδx
du

(u)[h] = h(x)

for all h ∈ L2(I). Let us consider {ek, k ≥ 1} a Hilbert basis of H and {e∗k, k ≥ 1}
the corresponding dual basis: e∗k(ep) = δkp (Kronecker symbol) for (k, p) ∈ N×N.
Then, we see without difficulty that for any u ∈ H

df

du
(u) =

∑
k≥1

∂kf(u)e∗k,

where by definition ∂kf(u) = df
du

(u)[ek] for k ≥ 1. In the same way, we can define
the Fréchet derivative of order 2. The second Fréchet derivative of a twice Fréchet
differentiable function f : H → R is denoted by d2f

du2 (u). It can be considered as a
bilinear form on H ×H. For instance, with H = V ,

d2‖ · ‖2
V

du2
(u)[h, k] = 2(h, k),

d2δx
du2

(u)[h, k] = 0

for all (h, k) ∈ V × V . Note that {ek ⊗ ep, k, p ≥ 1} is a Hilbert basis of H ⊗ H
where we recall that (u⊗ v, ũ⊗ ṽ) = (u, ũ)(v, ṽ). The dual basis {e∗k⊗ e∗p, k, p ≥ 1}
is such that (e∗k ⊗ e∗p, ei ⊗ ej) = δkiδpj. Then

d2f

du2
(u) =

∑
k,p≥1

∂kpf(u)e∗k ⊗ e∗p,

where by definition ∂kpf(u) = d2f
du2 (u)[ek, ep] for k, p ≥ 1. Fréchet differentiation is

stable by sum and product.

2.5 Grönwall’s lemma
At numerous points in the text, we will be lead to bound the current value of
some deviation between two processes in terms of some average of the values
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this deviation has taken so far. The most common formalization of this idea is
Grönwall’s lemma.

Proposition 2.5.1. Suppose T > 0 and f : [0, T ] → R is continuous. Suppose
further that there are two positive constants A,B such that

f(t) ≤ A+B

∫ t

0

f(s)ds

for all t ∈ [0, T ]. Then f(t) ≤ AeBt for all t ∈ [0, T ].

In Chapter 6, we will use the same idea in the discrete setting. The following
result is sometimes referred to as discrete Grönwall’s lemma.

Proposition 2.5.2. Suppose N ∈ N and (xn)n≥0 and (yn)n≥0 are positive real
sequences. Suppose further that there are two positive constants a, b such that

xn+1 ≤ axn + byn

for all n ∈ {0, . . . , N − 1}. Then

xn ≤ anx0 + b
n−1∑
k=0

an−k−1yk

for all n ∈ {0, . . . , N}.
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Chapter 3

Averaging for a fully coupled
piecewise-deterministic Markov
process in infinite dimensions

The material for chapter 3 is taken from the article [GT12] Averaging for a Fully-
Coupled Piecewise Deterministic Markov Process in Infinite Dimensions published
in Advances in Applied Probability, Volume 44, Number 3 (2012), 749-773. Since
the present thesis is provided with a general introduction in Chapter 1 and espe-
cially for this chapter in Section 1.3.2, we start with a shorter introduction than
in [GT12].

3.1 Introduction

The Hodgkin-Huxley model is one of the most studied models in neuroscience
since its creation in the early 50’s by Hodgkin and Huxley [HH52]. This de-
terministic model was first created in order to describe the propagation of an
action potential or nerve impulse along the axon of a neuron of the giant squid.
In this chapter, we will consider a mathematical generalization of the Hodgkin-
Huxley model investigated numerically in [FWL05] and analytically in [Aus08].
This model, called the spatial stochastic Hodgkin-Huxley model in the sequel,
is made of a partial differential equation (PDE) describing the evolution of the
variation of the potential across the membrane, coupled with a continuous time
Markov chain which describes the dynamics of ion channels which are present all
along the axon. It is a Piecewise Deterministic Markov Process (PDMP) in in-
finite dimensions (see [BR11, Rie12b, RTW12] for PDMP in infinite dimensions
and also [CD10, CD11, CDR09, BLBMZ12] and references therein for PDMP in
finite dimension). Moreover it is fully-coupled in the sense that the evolution of

47
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the potential depends on the kinetics of ion channels and vice-versa. The role of
ion channels is fundamental because they allow and amplify the propagation of an
action potential. We introduce different time scales in this model considering that
some ion channels open and close at faster rates than others. We perform a slow-
fast analysis of this model and prove that asymptotically it reduces to the so-called
averaged model which is still a PDMP in infinite dimensions for which we provide
effective evolution equations and jump rates. We thus reduce the complexity of
the original model by simplifying the kinetics of ion channels. To the best of our
knowledge no averaging results are available for PDMP in infinite dimensions.

We conclude this short introduction with the plan of the chapter. In Section 3.2
we introduce the spatial stochastic Hodgkin-Huxley model and the formalism of
PDMP in infinite dimensions. Then we introduce the two time scales in the model
and prove a crucial result for the sequel. We finish this section by presenting the
main assumptions on the model and our main result. Section 3.3 is devoted to the
proof of our main result. In Section 3.4 we apply our result to a Hodgkin-Huxley
type model as an example. At the end of the chapter, an appendix provides the
parameter values used in the simulation presented in Section 3.4.

3.2 Statement of the model and results

3.2.1 The spatial stochastic Hodgkin-Huxley model

We recall here the stochastic Hodgkin-Huxley equations considered in [Aus08].
Basically this spatial stochastic Hodgkin-Huxley model describes the propagation
of an action potential along an axon. The axon is the part of a neuron which
transmits the information received from the soma to another neuron on long dis-
tances: the length of the axon is big relative to the size of the soma. Along the
axon are the ion channels which amplify and allow the propagation of the received
impulse. For mathematical convenience, we assume that the axon is a segment of
length one and we denote it by I = [0, 1]. The ion channels are assumed to be
in number N ≥ 1 and regularly placed along the axon at the place i

N
for i ∈ N .

This distribution of the channels is certainly unrealistic but we assume it to fix
the ideas and in accordance with [Aus08]. However the mathematics are the same
if we consider any finite subset of I instead of 1

N
N . Each ion channel can be in a

state ξ ∈ E where E is a finite states space. For example, for the Hodgkin-Huxley
model, a state can be : "receptive to sodium ions and open" (see [Hil84]).

The ion channels switch between states according to a continuous time Markov
chain whose jump intensities depend on the local potential of the membrane, that
is why the model is said to be fully-coupled. For any states ξ, ζ ∈ E we define
by αξ,ζ the jump intensity (or rate function) from the state ξ to the state ζ. It is
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a real valued function of a real variable and supposed to be, as is its derivative,
Lipschitz-continuous. We assume moreover that: 0 ≤ αξ,ζ ≤ α+ for any ξ, ζ ∈ E
and either αξ,ζ is constant equal to zero or is strictly positive bounded below by
a strictly positive constant α−. That is, the non-zero rate functions are bounded
below and above by strictly positive constants. For a given channel, the rate
function describes the rate at which it switches from one state to another.

A possible configuration of all the N ion channels is denoted by an element
r = (r(i), i ∈ N ) of R = EN : r(i) is the state of the channel which is at the
position i

N
for i ∈ N . The channels, or stochastic processes r(i), are supposed to

evolve independently over infinitesimal timescales. Denoting by ut(
i
N

) the local
potential at point i

N
at time t, we have:

P(rt+h(i) = ζ|rt(i) = ξ) = αξ,ζ

(
ut

(
i

N

))
h+ o(h). (3.1)

For any ξ ∈ E we also define the maximal conductance cξ and the steady
state potentials vξ of a channel in state ξ which are both constants, the first being
positive.

The membrane potential ut(x) along the axon evolves according to the following
PDE:

∂tut = ∆ut +
1

N

∑
ξ∈E

∑
i∈N

cξ1ξ(rt(i))(vξ − ut(
i

N
))δ i

N
. (3.2)

We will assume zero Dirichlet boundary conditions for this PDE (clamped axon).
We are interested in the process (ut, rt)t∈[0,T ].

We recall here the result of [Aus08] which states that there exists a stochas-
tic process satisfying equations (3.2) and (3.1). Let u0 be in D(∆) such that
minξ∈E vξ ≤ u0 ≤ maxξ∈E vξ, the initial potential of the axon. Let q0 ∈ R be the
initial configuration of ion channels. Let us also recall that, in accordance with
the notations of Chapter 2, V = H1

0 (I) in the present chapter.

Proposition 3.2.1 ([Aus08]). Fix N ≥ 1 and let (Ω,F , (Ft)0≤t≤T ,P) be a fil-
tered probability space satisfying the usual conditions. There exist a unique pair
(ut, rt)0≤t≤T of càdlàg adapted stochastic processes such that each sample path of u
is a continuous map from [0, T ] to V and rt is in R for all t ∈ [0, T ] and satisfying:

• (Regularity) The map t 7→ ∂tut lies in L2([0, T ], V ∗) P-almost surely.

• (Dynamic: PDE)

∂tut = ∆ut +
1

N

∑
ξ∈E

∑
i∈N

cξ1ξ(rt(i))(vξ − ut(
i

N
))δ i

N

∀t ∈ [0, T ], P-almost surely.
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• (Dynamic: jump)

P(rt+h(i) = ζ|rt(i) = ξ) = αξ,ζ

(
ut

(
i

N

))
h+ o(h).

• (Initial condition: PDE) u0 given.

• (Initial condition: jump) q0 given.

• (Boundary conditions: PDE only) ut(0) = ut(1) = 0, ∀t ∈ [0, T ].

Moreover there exists a constant C such that ‖ut‖∞ ≤ C for all t ∈ [0, T ] and ω.

In [Aus08] the author proves that when the number of ion channels increases
to infinity, the above model converges, in a sense, towards a deterministic model.
In our paper, unlike in [Aus08] we will work with a fixed number of ion channels
but introduce two timescales in the model in order to perform a slow-fast analysis.

3.2.2 The spatial stochastic Hodgkin-Huxley model as a
Piecewise Deterministic Markov Process in infinite di-
mensions

The paper [BR11] extends the theory of finite dimensional Piecewise Deterministic
Markov Processes (PDMP) introduced in [Dav84] and [Dav93] to PDMP in infinite
dimensions. The results stated here come from section 2.3 and 3.1 of [BR11]
adapted to our particular notations.

For all r ∈ R we define the following function on V :

Gr(u) =
1

N

∑
ξ∈E

∑
i∈N

cξ1ξ(r(i))(vξ − u(
i

N
))δ i

N
, (3.3)

which is V ∗ valued. We do not write the dependence in N in the notation of Gr(u)
since, unlike in [Aus08], N is a fixed parameter here.

The stochastic process (ut, rt)t∈[0,T ] can be described in the following way. We
start with a given initial potential v0 and ion channels configuration q0. Then the
u component evolves according to the evolution equation:

∂tut = ∆ut +Gq0(ut),

until the first jump of the r component at time τ1 which occurs according to the
transition rate function q : V ×R → R+ given for (u, r) ∈ V ×R by:

qr(u) =
∑
i∈N

∑
ξ 6=r(i)

αr(i),ξ(u(
i

N
)),
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according to (3.1). A new value q1 for r is then chosen according to a transition
measure J from V ×R to P(R) (the set of all probability measures on R). This
transition measure is also given by the jump distribution of the ion channels. For
(u, r) ∈ V ×R and r′ ∈ R which differs from r only by the component r(i0):

J(u,r)({r′}) =
αr(i0),r′(i0)(u( i0

N
))

Λ(u, r)
.

If r′ differs from r by two or more components then J(u,r)({r′}) = 0.

Then u evolves according to the "updated" evolution equation:

∂tut = ∆ut +Gq1(ut)

with initial condition uτ1 and Dirichlet boundary conditions, until the second jump
of the r component. And so on. This description justifies the term "Piecewise
Deterministic Process": the dynamic of the process is indeed purely deterministic
between the jumps.

As shown in [BR11] in Theorem 6, the equations of Proposition 3.2.1 define
a standard Piecewise Deterministic Process (PDP) in the sense of Definition 3 of
[BR11]. We recall briefly here what this means technically:

• for a given ion channel configuration r ∈ R, the PDE:

∂tut = ∆ut +Gr(ut)

with zero Dirichlet boundary conditions admits a unique global (weak) solu-
tion continuous on V for every initial value u0 ∈ V denoted by ψr(t, x).

• The number of state switches in the (rt)t∈[0,T ] component during any finite
time interval is finite almost surely.

• The transition rate function q : (u, r) ∈ V ×R 7→ qr(u) ∈ R+ from one state
of R to another is a measurable function and for all (u, r) ∈ V ×R, the tran-
sition rate as a function of time is integrable over every finite time interval
but diverges to ∞ when it is integrated over R+ (the expected number of
jumps tends to ∞ when the time horizon increases).

• The transition measure J from one state of R to another is such that the
mapping (u, r) 7→ J(u,r)(R) is measurable for every R ⊂ R and

J(u,r)({r}) = 0

for all (u, r) ∈ V ×R.
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In fact the stochastic process (ut, rt)t∈[0,T ] is more than a piecewise deterministic
process, it is a piecewise deterministic Markov process.

Theorem 3.2.1. 1. Our infinite-dimensional standard PDP is a homogeneous
Markov process on V ×R.

2. Locally bounded measurable functions on V ×R which are absolutely contin-
uous as maps t 7→ f(ψr(t, x), r) for all (x,r) are in the domain D(A) of the
extended generator. The extended generator is given for almost all t by:

Af(ut, rt) =
d

dt
f(ut, rt) + Bf(ut, rt), (3.4)

where

Bf(ut, rt) =
∑
i∈N

∑
ζ∈E

[f(ut, rt(rt(i)→ ζ))− f(ut, rt)]αrt(i),ζ(ut(
i

N
))

with rt(rt(i)→ ζ) is the component of R with rt(rt(i)→ ζ)(j) equals to rt(j)
if j 6= i and to ζ if j = i. The notation d

dt
f(ut, rt) means that the function

s 7→ f(u′s, r) is differentiated at s = t, where u′ is the solution of the PDE
of Proposition 3.2.1 such that u′t = ut and with the channel state r held fixed
equal to rt.

Remark 3.2.1. It is not usual to write a generator only along paths (ut, rt)t≥0

as we do. We would expect for a generator an analytical expression of the form
Af(u, r) for any (u, r) ∈ V ×R. It is in fact possible to obtain such an expression
for more regular function f . The part of the generator related to the continuous
Markov chain r takes the form Bf(u, r) with no changes but the derivative d

dt
f(u, r)

can then be expressed thanks to the Fréchet derivative of f , see [BR11] for more
details. We will not use this refinement in the sequel.

Knowing that a stochastic process is Markovian is crucial for its study since
a lot of mathematical tools have been developed for Markovian processes, see for
example [EK86].

3.2.3 Singularly perturbed model and main results

Introduction of two time scales in the model.

We introduce now two time scales in the model. Indeed, we consider that the
Hodgkin-Huxley model is a slow-fast system: some states of the ion channels
communicate faster between them than others, see for example [Hil84]. Mathe-
matically, this leads to introduce a small parameter ε > 0 in our equation. For
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the states which communicate at a faster rate, we say that they communicate at
the usual rate divided by ε.

We can then consider different classes of states or partition the state space E in
states which communicate at a high rate. This kind of description is very classical,
see for example [FGC08]. We regroup our states in classes making a partition of
the state space E into:

E = E1 t · · · t El,

where l ∈ {1, 2, · · · } is the number of classes. Inside a class Ej, the states commu-
nicate faster at jump rates of order 1

ε
. States of different classes communicate at

the usual rate of order 1. For ε > 0 fixed, we denote by (uε, rε) the modification
of the PDMP introduced in the previous section with now two time scales. Its
generator is, for f ∈ D(A):

Af(uεt , r
ε
t ) =

d

dt
f(uεt , r

ε
t ) + Bεf(uεt , r

ε
t ) (3.5)

Bε is the component of the generator related to the continuous time Markov chain
rε. According to our slow-fast description we have the two time scales decomposi-
tion of this generator:

Bε =
1

ε
B + B̂,

where the "fast" generator B is given by:

Bf(uεt , r
ε
t ) =

∑
i∈N

l∑
j=1

1Ej(r
ε
t (i))

∑
ζ∈Ej

[f(uεt , r
ε
t (r

ε
t (i)→ ζ)− f(uεt , r

ε
t )]αrεt (i),ζ(u

ε
t(
i

N
))

and the "slow" generator is given by:

B̂f(uεt , r
ε
t ) =

∑
i∈N

l∑
j=1

1Ej(r
ε
t (i))

∑
ζ /∈Ej

[f(uεt , r
ε
t (r

ε
t (i)→ ζ)− f(uεt , r

ε
t )]αrεt (i),ζ(u

ε
t(
i

N
)).

For y ∈ R fixed and g : R × E → R, we denote by Bj(y), j ∈ {1, · · · , l} the
following generator:

Bj(y)g(ξ) = 1Ej(ξ)
∑
ζ∈Ej

[g(y, ζ)− g(y, ξ)]αξ,ζ(y),

which will be of interest in the sequel.
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Uniform boundedness.

Here is a crucial result for the proof of our main result. Its proof takes back the
argument developed in [Aus08] but for the sake of completeness and given the
intensive use of this proposition in the sequel, we provide a short proof.

Proposition 3.2.2. For any T > 0, there is a deterministic constant C > 0
independent of ε ∈]0, 1] such that:

sup
t∈[0,T ]

‖uεt‖V ≤ C,

almost surely.

In the proof of this proposition, we will use the following representation of a
solution of the PDE part of our PDMP. We say that uε is a mild solution to (3.2)
if:

uεt = e∆tu0 +

∫ t

0

e∆(t−s)Grεs(u
ε
s)ds, t ≥ 0, (3.6)

almost surely where we recall that (e∆t, t ≥ 0) is the semi-group associated to ∆
in V . For any u ∈ V :

e∆tu =
∑
k≥1

e−(kπ)2t(u, ek)ek, t > 0.

Let us mention that the mild formulation (3.6) holds also up to a bounded stopping
time τ , this will be useful later in the text.

Proof. We work ω by ω. Using the mild formulation (3.6), we see that:

‖uεt‖V ≤ ‖e∆tu0‖V +
1

N

∑
ξ∈E

∑
i∈N

‖
∫ t

0

cξ1ξ(r
ε
s(i))vξe

∆(t−s)δ i
N

ds‖V

+
1

N

∑
ξ∈E

∑
i∈N

‖
∫ t

0

cξu
ε
s(
i

N
)e∆(t−s)δ i

N
ds‖V .

By Lemma 2.2.1, there exists a constant C1 depending only of T such that

‖
∫ t

0

cξ1ξ(r
ε
s(i))vξe

∆(t−s)δ i
N

ds‖V ≤ max
ξ∈E

cξ|vξ|C1.

Therefore, the two first term of the above sums are bounded by a fixed constant
α1 which can be chosen independent of t ∈ [0, T ]. For the second sum, we break
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the integral in two pieces. For all γ > 0 by Lemma 2.2.1, we can choose η > 0 so
small that:

‖
∫ t

t−η
cξu

ε
s(
i

N
)e∆(t−s)δ i

N
ds‖V ≤

1

2
γ sup
s∈[0,t]

|cξuεs(
i

N
)|.

Since

|cξuεs(
i

N
)| ≤ max cξ‖uεs‖∞ ≤ max cξCP‖uεs‖V ,

choosing γ such that γmax cξCP < 1 we have:

‖
∫ t

t−η
cξu

ε
s(
i

N
)e∆(t−s)δ i

N
ds‖V ≤

1

2|E|
sup
s∈[0,t]

‖uεs‖V .

Therefore, we have

1

N

∑
ξ∈E

∑
i∈N

‖
∫ t

t−η
cξu

ε
s(
i

N
)e∆(t−s)δ i

N
ds‖V ≤

1

2
sup
s∈[0,t]

‖uεs‖V .

Now the second estimates of Lemma 2.2.1 gives:

‖
∫ t−η

0

cξu
ε
s(
i

N
)e∆(t−s)δ i

N
ds‖V ≤ C2(η) max

ξ∈E
|cξ|
∫ t−η

0

‖uεs‖∞ds

≤ CPC2(η) max
ξ∈E
|cξ|
∫ t−η

0

sup
σ∈[0,s]

‖uεσ‖V ds.

Hence the existence of a constant α2 depending only of T and η such that

1

N

∑
ξ∈E

∑
i∈N

‖
∫ t−η

0

cξu
ε
s(
i

N
)e∆(t−s)δ i

N
ds‖V ≤ α2

∫ t

0

sup
σ∈[0,s]

‖uεσ‖V ds.

Reassembling the above inequalities, we obtain

sup
s∈[0,t]

‖uεs‖V ≤ α1 +
1

2
sup
s∈[0,t]

‖uεs‖V + α2

∫ t

0

sup
σ∈[0,s]

‖uεσ‖V ds.

The end of the proof is a classical application of the Gronwall’s lemma. We find
finally that sups∈[0,t] ‖uεt‖V is bounded by a fixed constant independent of t ∈ [0, T ],
ω and ε ∈]0, 1].
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Main assumptions and averaged equation.

We make the following assumptions. For any y ∈ R fixed, and any j ∈ {1, · · · , l},
the fast generator Bj(y) is weakly irreducible on Ej, i.e. has a unique quasi-
stationary distribution denoted by µj(y) (that is to say, µj(y) is nonnegative,
B∗j (y)µj(y) = 0 and we impose further that

∑l
j=1 µj(y)(Ej) = 1). This quasi-

stationary distribution is supposed to be, as is its derivative, Lipschitz-continuous
in its argument y (see section 3.2.3 for more details).

Following [YZ98], the states in Ej can be considered as equivalent. For any
i ∈ N we define the new stochastic process (r̄εt)t≥0 by r̄εt (i) = j when rεt (i) ∈ Ej
and abbreviate Ej by j . We then have an aggregate process r̄ε(i) with values in
{1, · · · , l}. This is not a Markov process but we have the following proposition:

Proposition 3.2.3 ([YZ98]). For any y ∈ R, i ∈ N and g : {1, · · · , l} → R, r̄ε(i)
converges weakly when ε goes to 0 to a Markov process r̄(i) generated by:

B̄(y)g(r̄(i)) =
l∑

j=1

1j(r̄(i))
l∑

k=1,k 6=j

(g(k)− g(j))
∑
ξ∈Ek

∑
ζ∈Ej

αζ,ξ(y)µj(ζ). (3.7)

The generator (3.7) expresses that if a state is in the class j, it jumps toward
the class k at rate

∑
ξ∈Ek

∑
ζ∈Ej αζ,ξ(y)µj(ζ). That is, the rates of jumps of one

state of Ej toward one state of Ek are averaged against the quasi-invariant measure
associated to the class Ej. We then average the function Gr(u) against the quasi-

E1

E2

E3

E4

Figure 3.1: Aggregation of the states of E with l = 4.

invariant distributions. That is we consider that each pack of states Ej has reached
its stationary behavior. For any r̄ ∈ R̄ = {1, · · · , l}N we define the averaged
function by:

Fr̄(u) =
1

N

∑
i∈N

l∑
j=1

1j(r̄(i))
∑
ζ∈Ej

cζµj(u(
i

N
))(ζ)(vζ − u(

i

N
))δ i

N
. (3.8)

Therefore, we call averaged equation of (3.2) the following PDE:

∂tut = ∆ut + Fr̄t(ut) (3.9)
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with zero Dirichlet boundary condition and initial condition u0 and q̄0 (where q̄0 is
the aggregation of the initial channel configuration q0). In equation (3.9), the pro-
cess (r̄t)t∈[0,T ] evolves, each coordinate independently over infinitesimal timescales,
according to the averaged jump-rates between the subsets Ej of E.

Proposition 3.2.4. For any T > 0, the equation (3.9) defines a PDMP (ut, r̄t)t∈[0,T ]

in infinite dimensions in the sense of [BR11]. Moreover, there is a constant C such
that:

sup
t∈[0,T ]

‖ut‖V ≤ C

and u ∈ C([0, T ], V ) almost-surely.

Proof. The equation (3.9) is of the form (3.2) except that the indicator function
is replaced by the probabilities µj. This changes nothing to the mathematics and
the arguments developed in [Aus08] or [BR11] still apply. We refer the reader to
[Aus08] and [BR11] for more details.

We can now state our main result which states that our approximation (3.9) is
valid.

Theorem 3.2.2. The stochastic process uε solution of (3.2) converges in law to
the solution of (3.9) when ε goes to 0.

More precisely, we will prove the following proposition:

Proposition 3.2.5. (uε, ε ∈]0, 1]) is tight in C([0, T ], V ) and any accumulation
point u verifies:

(ut, φ)L2(I) = (u0, φ)L2(I) +

∫ t

0

(us, φ
′′)L2(I)ds+

∫ t

0

< Fr̄s(us), φ > ds (3.10)

for all φ in C2
0(I). Moreover the accumulation point is unique up to indistinguisha-

bility.

Plan of the campaign.

To make the proof of our main result easier to read, we will consider in a first step
that all the states communicate at a fast rate. This is called the all-fast case. We
will prove our main result in detail in this case and then give the key points for
the validity of our proof in the general case. In the all-fast case there is a unique
class E and the generator has the simplest form:

Bf(u, r) =
∑
i∈N

∑
ζ∈E

[f(u, r(r(i)→ ζ))− f(u, r)]αr(i),ζ(u(
i

N
)). (3.11)
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We make the following assumptions: for any i ∈ N with u ∈ V held fixed, the
Markov process r(i) has a unique stationary distribution µ(u( i

N
)). Then the pro-

cess (r(i), i ∈ N ) has the following stationary distribution:

µ(u) =
⊗
i∈N

µ(u(
i

N
)).

We assume that the rate functions are Lipschitz continuous. The average (gener-
alized) function is then:

F (u) =

∫
R
Gr(u)µ(u)(dr) (3.12)

=
1

N

∑
ξ∈E

∑
i∈N

cξµ(u(
i

N
))(ξ)(vξ − u(

i

N
))δ i

N
,

if u is held fixed.
Is this hypothesis reasonable? For the most classical model in neurosciences,

the rate functions are indeed, as well as their derivatives, Lipschitz continuous.
See for example the rate functions in classical Hodgkin-Huxley model [HH52] (see
also the Appendix 3.A).

Let us show briefly that in this case the ergodic measure µ is Lipschitz contin-
uous in its argument. Let i be in N and the membrane potential at i

N
be fixed

equal to x ∈ R, the state space of the continuous time Markov chain r(i) is E
which is a finite set. We set |E| = m. We can then enumerate the elements of E :
E = {ξ1, · · · , ξm}. The generator of r(i) is then the matrix :

J(x) = (αξi,ξj(x))1≤i,j≤m

with αξi,ξi(x) = −
∑

j 6=i αξi,ξj(x). Therefore, if we assumed that our continuous
time Markov chain is ergodic, it has an invariant measure which is of the form:

µ(x)(ξ) =

∑∏
αξ,ξ′(x)∑∏
αζ,ζ′(x)

.

The sums and products involved here are calculated over subsets of E which are
given by resolving the equation µ(x)TJ = 0. µ is then Lipschitz continuous in x
since each αξ,ζ is Lipschitz continuous in x and bounded.

The assumption of independence of each coordinate of the process r over in-
finitesimal timescales is important to have a simple expression of the invariant
measure of the process r and simplify the mathematics. It is possibly unrealistic
from the biological point of view but is often assumed in mathematical neuro-
sciences.
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The plan of the campaign to prove our main result (3.2.2) in the all-fast case
is the following. We want to prove the convergence in law of a family of càdlàg
stochastic processes with values in a Hilbert space towards another, here deter-
ministic, process. There is a well known strategy to do that:

• prove the tightness of the family

• identify the limit

In our case, tightness (see subsection 3.3.1) will follow roughly from the uniform
boundedness of the family (uε, ε ∈]0, 1]) obtained in Proposition 3.2.2. The iden-
tification of the limit will follow on one side from tightness and on the other side
from some classical argument in the theory of averaging for stochastic processes,
see for example [PS08]. We will introduce a Poisson equation which will enable us
to control some problematic terms (see Proposition 3.3.1) and identify the limit
(subsection 3.3.1). We will then move to the general case with multiple classes (in
subsection 3.3.2) with an emphasis on each point which could give an issue and
show how things work in this case.

3.3 Proof of the main result

3.3.1 The all-fast case

We want to prove Proposition 3.2.5. Let us recall that in the all-fast case Fr̄ in
(3.10) reduces to F in (3.12).

Let us outline the strategy of the proof following the plan of the campaign
announced in Section 3.2.3.

• Tightness.

1. Thanks to Proposition 3.2.2, use the Markov inequality to prove that
Aldous’s condition and property (2.2) of Theorems 2.3.3 and 2.3.2 hold.

2. For t ∈ [0, T ] fixed, find the finite dimensional space Hδ,η of (2.3), The-
orem 2.3.2 using a truncation of the solution uεt in the mild formulation.
Bound E(d(uεt , Hδ,η) > η) and use the Markov inequality.

3. Obtain tightness in D([0, T ], V ) by Theorems 2.3.3 and 2.3.2 and con-
clude that tightness in C([0, T ], V ) holds as well thanks to the regularity
of the solution uε for any ε ∈]0, 1].

• Identification of the limit.
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1. The aim of this part of the proof is to show that for any φ ∈ C2
0(I):

(uεt , φ)L2(I) = (u0, φ)L2(I)+

∫ t

0

(uεs, φ
′′)L2(I)ds+

∫ t

0

< F (uεs), φ > ds+γ(ε),

where γ(ε) goes to zero with ε.

2. Begin by showing that the following property is sufficient:

lim
ε→0

E
∣∣∣∣∫ t

0

< Grεs(u
ε
s)− F (uεs), φ > ds

∣∣∣∣ = 0 ∀φ ∈ C2
0(I).

To prove this property, use the tightness of the family (uε, ε ∈]0, 1]).

3. Obtain the decomposition
∫ t

0
< Grεs(u

ε
s) − F (uεs), φ > ds = at,ε,η +∫ t

0
(Gη

rεs
(uεs) − F η(uεs), φ)L2(I)ds + ct,ε,η where for η > 0, Gη and F η are

smoother versions of G and F respectively. More precisely:

at,ε,η =

∫ t

0

< Grεs(u
ε
s)−G

η
rεs

(uεs), φ > ds,

ct,ε,η =

∫ t

0

< F (uεs)− F η(uεs), φ > ds.

4. Show that limη→0 limε→0 |at,ε,η|+ |ct,ε,η| = 0.

5. Replace the term (Gη
rεs

(uεs)− F η(uεs), φ)L2(I) by Bηf η(uεs, rεs) where f η is
the solution of a Poisson equation and Bη is a smoother version of B.
Show that this solution exists and has some nice properties. Show that
limη→0 limε→0 E

∣∣∣∫ t0 Bηf η(uεs, rεs)− Bf η(uεs, rεs)ds∣∣∣ = 0.

6. Write the semi-martingale expansion of
∫ t

0
Bf η(uεs, rεs)ds. Bound its

martingale part thanks to the bound for the bracket of the martingale.

7. Bound its finite variation part thanks to the nice properties of f η and
the uniform bound from Proposition 3.2.2.

8. Aggregate all these bounds together to obtain that

E
∣∣∣∣∫ t

0

Bf η(uεs, rεs)ds
∣∣∣∣2

is bounded by a constant (which depends on η ) times ε.

9. Let ε goes to zero and then η goes to zero and conclude that (3.10)
holds and implies uniqueness up to indistinguishability.
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Tightness. STEP 1 (Property (2.2) and Aldous condition of Theorem 2.2). We
begin with the Aldous condition. Let τ be a stopping time (for the natural filtration
associated to the process (uε, rε)) and θ such that τ + θ < T . We need to control
the size of ‖uετ+θ − uετ‖V . At first we work deterministically (or "ω by ω"). We
break the difference ‖uετ+θ − uετ‖2

V into three pieces using the mild formulation of
uε in (3.6):

‖uετ+θ − uετ‖2
V

≤ 4‖e∆(τ+θ)u0 − e∆τu0‖2
V + 4‖

∫ τ+θ

τ

e∆(τ+θ−s)Grεs(u
ε
s)ds‖2

V

+ 4‖
∫ τ

0

(
e∆(τ+θ−s) − e∆(τ−s))Grεs(u

ε
s)ds‖2

V .

Let us show now that the supremum over θ ∈]0, ε[ of each term on the right hand
side of the above inequality goes to 0 with ε (we take ε > 0). We start with the
third term:

‖
∫ τ

0

(
e∆(τ+θ−s) − e∆(τ−s))Grεs(u

ε
s)ds‖2

V .

Notice that:(
e∆(τ+θ−s) − e∆(τ−s))Grεs(u

ε
s)

=
∑
k≥1

e−(kπ)2(τ−s)
(
e−(kπ)2θ − 1

) 1

N

∑
ξ∈E

∑
i∈N

gξ(s, i)(1 + (kπ)2)ek

(
i

N

)
ek,

where we have used the fact that < ek, δ i
N
>= (1 + (kπ)2)ek(

i
N

) ( recall that

ek =
√

2√
1+(kπ)2

sin(kπ·)) and denoted cξ1ξ(rεs(i))(vξ − uεs( i
N

)) by gξ(s, i). Thus we

obtain:

‖
∫ τ

0

(
e∆(τ+θ−s) − e∆(τ−s))Grεs(u

ε
s)ds‖2

V

≤ 4|E|2 max
ξ∈E

c2
ξ(max

ξ∈E
v2
ξ + C2)

∑
k≥1

(∫ τ

0

e−(kπ)2(τ−s)
(
e−(kπ)2θ − 1

)√
1 + (kπ)2ds

)2

= 4|E|2 max
ξ∈E

c2
ξ(max

ξ∈E
v2
ξ + C2)

∑
k≥1

(
e−(kπ)2θ − 1

)2

(1 + (kπ)2)

(
1− e−(kπ)2τ

)2

(kπ)4

≤ 4|E|2 max
ξ∈E

c2
ξ(max

ξ∈E
v2
ξ + C2)

∑
k≥1

(
e−(kπ)2θ − 1

)2 1 + (kπ)2

(kπ)4
,
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where C is the constant of Proposition 3.2.2. By dominated convergence, we see
that:

lim
η→0

sup
θ∈]0,ε[

∑
k≥1

(
e−(kπ)2θ − 1

)2 1 + (kπ)2

(kπ)4
≤ lim

η→0

∑
k≥1

(
e−(kπ)2ε − 1

)2 1 + (kπ)2

(kπ)4
= 0

For the second term, as before, we can show that:

‖
∫ τ+θ

τ

e∆(τ+θ−s)Grεs(u
ε
s)ds‖2

V

≤ 4|E|2 max
ξ∈E

c2
ξ(max

ξ∈E
v2
ξ + C2)

∑
k≥1

(∫ τ+θ

τ

e−(kπ)2(τ+θ−s)
√

1 + (kπ)2ds

)2

≤ 4|E|2 max
ξ∈E

c2
ξ(max

ξ∈E
v2
ξ + C2)

∑
k≥1

(1 + (kπ)2)

(
1− e−(kπ)2θ

)2

(kπ)4
.

By dominated convergence, we see that:

lim
ε→0

sup
θ∈]0,ε[

∑
k≥1

(1 + (kπ)2)

(
1− e−(kπ)2θ

)2

(kπ)4
≤ lim

η→0

∑
k≥1

(1 + (kπ)2)

(
1− e−(kπ)2ε

)2

(kπ)4
= 0.

For the first term we have, by the Bessel-Parseval equality:

‖e∆(τ+θ)u0 − e∆τu0‖2
V

= ‖
∑
k≥1

e−(kπ)2τ (e−(kπ)2θ − 1)(u0, ek)ek‖2
V

=
∑
k≥1

e−2(kπ)2τ (e−(kπ)2θ − 1)2(u0, ek)
2

≤
∑
k≥1

(e−(kπ)2θ − 1)2(u0, ek)
2.

By dominated convergence, we see that:

lim
ε→0

sup
θ∈]0,ε[

∑
k≥1

(e−(kπ)2θ − 1)2(u0, ek)
2 ≤ lim

η→0

∑
k≥1

(e−(kπ)2ε − 1)2(u0, ek)
2 = 0

Combining the results obtained for the three terms we have:

lim
η→0

sup
θ∈]0,ε[

‖uετ+θ − uετ‖2
V = 0
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uniformly in ε ∈]0, 1]. Therefore, for all M, δ > 0, using the Chebyshev inequality,
we can choose η so small that:

sup
ε∈]0,1]

sup
θ∈]0,ε[

P(‖uετ+θ − uετ‖V ≥M) ≤ sup
ε∈]0,1]

sup
θ∈]0,ε[

E(‖uετ+θ − uετ‖2
V )

M2
< δ

The first condition (2.2) of Theorem 2.3.2 is verified by the application of the
Markov inequality. Indeed, for any t ∈ [0, T ] and δ > 0 by Proposition 3.2.2 there
exists a constant C > 0 independent of ε ∈]0, 1] and t ∈ [0, T ] such that:

sup
ε∈]0,1]

P(‖uεt‖V > ρ) ≤ 1

ρ
sup
ε∈]0,1]

E‖uεt‖V ≤
C

ρ
< δ

for any ρ > 0 large enough.

STEP 2 (Truncation). We have to show that for any δ, ε > 0 we can find ε0 > 0
and a space Hδ,ε such that:

sup
ε∈]0,ε0]

P(d(uεt , Hδ,ε) > ε) ≤ δ,

where d(uεt , Hδ,ε) = infv∈Hδ,ε ‖uεt − v‖V . We fix t ∈ [0, T ]. Recalling the mild
representation (3.6), we have:

uεt = e∆tu0 +

∫ t

0

1

N

∑
ξ∈E

∑
i∈N

cξ1ξ(r
ε
s(i))(vξ − uεs(

i

N
))e∆(t−s)δ i

N
ds,

where, using the explicit expression of the semi-group e∆t, e∆(t−s)δ i
N

is equal to∑
k≥1

e−(kπ)2(t−s)(1 + (kπ)2)ek(
i

N
)ek.

We define, for f ∈ V and x ∈ I the truncations up to the order p of uεt and e∆t:

e∆t
p f :=

p∑
k=1

e−(kπ)2t(f, ek)ek and e∆t
p δx :=

p∑
k=1

e−(kπ)2t(1 + (kπ)2)ek(x)ek,

uε,pt := e∆t
p u0 +

∫ t

0

1

N

∑
ξ∈E

∑
i∈N

cξ1ξ(r
ε
s(i))(vξ − uεs(

i

N
))e∆(t−s)

p δ i
N

ds.

For any δ, ε > 0 we can find p independent of ε such that ‖uεt −u
ε,p
t ‖V ≤ C ′εδ with

the constant C ′ deterministic and independent of δ, ε and ε ∈]0, 1]. Indeed we can
easily show, as in STEP 1, that:

‖uεt − u
ε,p
t ‖2

V ≤ 2‖
∞∑

k=p+1

e−(kπ)2t(u0, ek)ek‖2
V + 2C ′

∞∑
k=p+1

(1 + (kπ)2)
(1− e−(kπ)2t)2

(kπ)4
,
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which is independent of ε ∈]0, 1]. The convergence of each series, uniformly in ε,
enables us to choose a suitable p independent of ε. Let us denote Vp = span{ei, 1 ≤
i ≤ p}. We choose Hδ,ε = Vp. Since uε,pt ∈ Hδ,ε = Vp

E(d(uεt , Hδ,ε)) ≤ E(‖uεt − u
ε,p
t ‖V ) ≤ C ′εδ.

The Markov’s inequality gives us :

P(d(uεt , Hδ,ε) > ε) ≤ C ′δ

with δ independent of ε ∈]0, 1].

STEP 3 (Tightness). Therefore using Theorems 2.3.2 and 2.3.3, the family
{uε, ε ∈]0, 1]} is tight in D([0, T ], V ). Since we know that for each ε ∈]0, 1], uε
is in C([0, T ], V ) we have in fact that {uε, ε ∈]0, 1]} is tight in C([0, T ], V ) (the
Skorokhod topology restrict to continuous functions coincides with the uniform
topology).

Identification of the limit. STEP 1 (Reduction of the problem). We know that
the family (uε, ε ∈]0, 1]) is tight in C([0, T ], V ). We still denote by uε a converging
sub-sequence of uε and we denote by u the corresponding accumulation point. We
want to show that for all φ in C2

0(I):

(ut, φ)L2(I) = (u0, φ)L2(I) +

∫ t

0

(us, φ
′′)L2(I)ds+

∫ t

0

< F (us), φ > ds,

almost surely. We will show that:

E
∣∣∣∣(ut, φ)L2(I) − (u0, φ)L2(I) −

∫ t

0

(us, φ
′′)L2(I)ds−

∫ t

0

< F (us), φ > ds

∣∣∣∣ = 0.

(3.13)
Notice that:

E
∣∣∣∣(uεt , φ)L2(I) − (u0, φ)L2(I) −

∫ t

0

(uεs, φ
′′)L2(I)ds−

∫ t

0

< F (uεs), φ > ds

∣∣∣∣
= E

∣∣∣∣∫ t

0

< Grεs(u
ε
s)− F (uεs), φ > ds

∣∣∣∣ .
Since the function:

h(v) =

∣∣∣∣(vt, φ)L2(I) − (v0, φ)L2(I) −
∫ t

0

(vs, φ
′′)L2(I)ds−

∫ t

0

< F (vs), φ > ds

∣∣∣∣
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is continuous on C([0, T ], V ) and the arguments (uε, ε ∈]0, 1]) and u are uniformly
bounded in ε in C([0, T ], V ), by convergence in law we have that:

limε→0 E
∣∣∣∣(uεt , φ)L2(I) − (u0, φ)L2(I) −

∫ t

0

(uεs, φ
′′)L2(I)ds−

∫ t

0

< F (uεs), φ > ds

∣∣∣∣
= E

∣∣∣∣(ut, φ)L2(I) − (u0, φ)L2(I) −
∫ t

0

(us, φ
′′)L2(I)ds−

∫ t

0

< F (us), φ > ds

∣∣∣∣ .
Therefore (3.13) will follow if limε→0 E

∣∣∣∫ t0 < Grεs(u
ε
s)− F (uεs), φ > ds

∣∣∣ = 0.

STEP 2 (Mollification). Let η > 0. For i ∈ N define the mollifier ψηi ∈
C∞(I,R) such that

∀φ ∈ C(I,R), lim
η→0

(ψηi , φ)L2(I) = φ(
i

N
).

We define mollifications Gη, F η, Bη and µη of the reaction terms G and F , the
operator B and the measure µ respectively. Let f : L2(I)×R → R be measurable
and bounded on R and continuous and bounded on L2(I). For u ∈ L2(I) and
r ∈ R we define

Gη
r(u) =

1

N

∑
ξ∈E

∑
i∈N

cξ1ξ(r(i))(vξ − (u, ψηi )L2(I))ψ
η
i , (3.14)

F η(u) =
∑
ξ∈E

cξµ((u, ψηi )L2(I))(ξ)(vξ − (u, ψηi )L2(I))ψ
η
i , (3.15)

Bηf(u, r) =
∑
i∈N

∑
ζ∈E

[f(u, r(r(i)→ ζ))− f(u, r)]αr(i),ζ((u, ψ
η
i )L2(I)), (3.16)

µη(u) =
⊗
i∈N

µ((u, ψηi )L2(I)). (3.17)

We use the following decomposition of
∫ t

0
< Grεs(u

ε
s)− F (uεs), φ > ds :∫ t

0

< Grεs(u
ε
s)− F (uεs), φ > ds =

∫ t

0

< Grεs(u
ε
s)−G

η
rεs

(uεs), φ > ds (at,ε,η)

+

∫ t

0

(Gη
rεs

(uεs)− F η(uεs), φ)L2(I)ds (bt,ε,η)

+

∫ t

0

< F η(uεs)− F (uεs), φ > ds (ct,ε,η).

STEP 3 (Bound at,ε,η and ct,ε,η). Note that

at,ε,η =
1

N

∑
i∈N

∫ t

0

crεs(i)[(vrεs(i)−uεs(
i

N
))φ(

i

N
)− (vrεs(i)− (uεs, ψ

η
i )L2(I))(ψ

η
i , φ)L2(I)]ds.
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A straightforward calculation leads to the estimate

|at,ε,η| ≤ T max
ξ∈E

(|cξvξ|+ |cξ| max
s∈[0,T ]

max
x∈I
|uεs(x)|) max

i∈N
|(ψηi , φ)L2(I) − φ(

i

N
)|

+ max
ξ∈E
|cξ|max

i∈N
|(ψηi , φ)L2(I)|

∫ T

0

max
i∈N
|uεs(

i

N
)− (ψηi , u

ε
s)L2(I)|ds.

Using the property of the mollifiers ψηi , the uniform boundedness of the family
{uε, ε ∈]0, 1]} in V and the convergence in law of uε towards u in C([0, T ], V ), it is
not difficult to see that:

lim
η→0

lim
ε→0

E(|at,ε,η|) = 0.

Similarly one can show that

lim
η→0

lim
ε→0

E(|ct,ε,η|) = 0.

The remainder of the proof is therefore devoted to show that:

lim
η→0

lim
ε→0

E
∣∣∣∣∫ t

0

(Gη
rεs

(uεs)− F η(uεs), φ)L2(I)ds

∣∣∣∣ = 0.

STEP 4 (Poisson equation). We introduce the following Poisson equation on
f : L2(I)×R → R:

Bηf(u, r) = (Gη
r(u)− F η(u), φ)L2(I) (3.18)∫

R
f(u, r)µη(u)(dr) = 0

with Bη the generator given by equation (3.16):

Bηf(u, r) =
∑
i∈N

∑
ζ∈E

[f(u, r(r(i)→ ζ))− f(u, r)]αr(i),ζ((u, φ
η
i )L2(I))

and µη given by equation (3.17). Recall also that we identify the dual of L2(I)
with itself.

Proposition 3.3.1. The Poisson equation (3.18) has a unique solution f η which
is measurable and locally Lipschitz continuous in its first variable with respect to
the ‖ · ‖L2(I) norm. Moreover sups∈[0,T ] |f η(uεs, rεs)| is bounded almost surely by a
constants independent of ε and η.
For all fixed r ∈ R, the map u ∈ H 7→ f η(u, r) has a Fréchet derivative denoted by
dfη

du
(u, r). For (u, r) ∈ L2(I) × R, one may identify the linear operator dfη

du
(u, r)

on L2(I) with an element f ηu (u, r) of L2(I) which is also an element of V and is
bounded in V almost surely by a constant independent of ε (but which depends on
η).
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We begin the proof of the above Proposition by the following Lemma.

Lemma 3.3.1. Let B ⊂ L2(I) be a bounded domain and r be in R. The map
u ∈ L2(I) 7→ (Gη

r(u)− F η(u), φ)L2(I) is:

1. bounded on B by a constant independent of r and η.

2. Lipschitz continuous on B with Lipschitz constant independent of r.

3. Fréchet differentiable on B with Fréchet derivative in u ∈ H denoted by
df
du

(u, r). Moreover the Fréchet derivative is bounded in ‖ · ‖L2(I) norm uni-
formly in u ∈ B and r ∈ R (but not uniformly in η).

Proof. Recall that:

(Gη
r(u)− F η(u), φ)L2(I)

=
1

N

∑
ξ∈E

∑
i∈N

cξ(1ξ(r(i))− µ((u, ψηi )L2(I))(ξ))(vξ − (u, ψηi )L2(I))(ψ
η
i , φ)L2(I).

Since for ξ ∈ E, µ(·)(ξ) is bounded and Lipschitz continuous on R, the two first
points follow. For the third point we note that the map u ∈ H 7→ (Gr(u) −
F (u), φ)L2(I) is a linear combination of the Fréchet differentiable functions u ∈
H 7→ µ

(
(u, ψηi )L2(I)

)
(ξ), u 7→ (u, ψηi )L2(I) and of the product of these two func-

tions. The Fréchet derivative in u ∈ L2(I) against h ∈ L2(I) is given by:

− 1

N

∑
ξ∈E

∑
i∈N

cξ[µ
′((u, ψηi )L2(I))(ξ)(vξ − (u, ψηi )L2(I)) + (1ξ(r(i))− µ((u, ψηi )L2(I))(ξ))]

× (φ, ψηi )L2(I)(h, ψ
η
i )L2(I),

which gives us the boundedness property uniformly in r ∈ R and u ∈ B. Remark
also that one can identify the Fréchet derivative, which is an element of (L2(I))∗

with the element

− 1

N

∑
ξ∈E

∑
i∈N

cξ[µ
′((u, ψηi )L2(I))(ξ)(vξ − (u, ψηi )L2(I)) + (1ξ(r(i))− µ((u, ψηi )L2(I))(ξ))]

× (φ, ψηi )L2(I)ψ
η
i

of L2(I) which is also an element of V . Note that this element is bounded in V
for bounded arguments, but not uniformly in η.

Proof of Proposition 3.3.1. For u ∈ L2(I) held fixed, Bη(u, ·) is an operator on RR
which is a space of finite dimension. The Fredholm alternative in such a space is

Im(Bη) = (ker((Bη)∗))⊥.
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Moreover, by the ergodicity assumption, for any fixed u ∈ L2(I), ker((Bη)∗(u, ·)) =
span(µη(u)). Therefore equation (3.18) with u ∈ L2(I) fixed has a solution if and
only if: ∫

R
µη(u)(dr)(Gη

r(u)− F η(u), φ)L2(I) = 0.

This latter equality holds by the definition of F η and the bi-linearity of the
scalar product (·, ·)L2(I). Moreover, we can then always choose f η satisfying∫
R f

η(u, r)µη(u)(dr) = 0 by taking its projection on (ker((Bη)∗))⊥. Thus we have
a solution f η(u, ·) for any u ∈ L2(I) fixed. Uniqueness of f η follows easily from
the condition ∫

R
f η(u, r)µη(u)(dr) = 0.

Recall that for all ε ∈]0, 1], uε ∈ B where B = {u ∈ L2(I); ‖u‖L2(I) ≤ C}

y

Im (Bη)

Ker (Bη)∗

Figure 3.2: Fredholm alternative in finite dimension.

where C is the deterministic constant given by Proposition 3.2.2. Then the desired
properties of f η follow from Lemma 3.3.1 and the fact that for the bounded domain
B ⊂ L2(I), each function u ∈ B 7→ αr(i),ζ((u, ψ

η
i )L2(I)) is bounded below and above

by strictly positive constants, Lipschitz continuous and Fréchet differentiable with
Fréchet derivative uniformly bounded in u, ζ and r.

We thus have:∫ t

0

(Gη
rεs

(uεs)− F η(uεs), φ)L2(I)ds

=

∫ t

0

Bηf η(uεs, rεs)ds

=

∫ t

0

Bηf η(uεs, rεs)− Bf η(uεs, rεs)ds+

∫ t

0

Bf η(uεs, rεs)ds.
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Note that for the first term of the above some, a straightforward calculation gives
the estimate∣∣∣∣∫ t

0

Bηf η(uεs, rεs)− Bf η(uεs, rεs)ds
∣∣∣∣ ≤ 2N |E|CLipα

∫ t

0

max
i∈N
|uεs(

i

N
)− (uεs, ψ

η
i )L2(I)|ds

where C = maxs∈[0,T ],ε∈]0,1] |f η(uεs, rεs)| is bounded independently of η and ε accord-
ing to Proposition 3.3.1 and Lipα is a common Lipschitz constant for the αξζ ’s.
Using the property of the mollifiers ψηi , the uniform boundedness of the family
{uε, ε ∈]0, 1]} in V and the convergence in law of uη towards u in C([0, T ], V ), it
is not difficult to see that:

lim
η→0

lim
ε→0

E
(∣∣∣∣∫ t

0

Bηf η(uεs, rεs)− Bf η(uεs, rεs)ds
∣∣∣∣) = 0.

It remains to show that

lim
η→0

lim
ε→0

E
∣∣∣∣∫ t

0

Bf η(uεs, rεs)ds
∣∣∣∣ = 0.

We will more precisely show that:

lim
η→0

lim
ε→0

E
(∫ t

0

Bf η(uεs, rεs)ds
)2

= 0.

STEP 5 (Bound the martingale part). Our previous result implies that f η ∈
D(A) and:

Mη,ε
t = f η(uεt , r

ε
t )− f η(u0, r0)−

∫ t

0

Af η(uεs, rεs)ds (3.19)

defines a square-integrable martingale, see for example Ethier and Kurtz [EK86],
chapter 4 proposition 1.7.

Proposition 3.3.2. We have:

< Mη,ε >t=
1

ε

∫ t

0

∑
i∈N

∑
ζ 6=rs(i)

[f η(uεs, rs(rs(i)→ ζ))− f η(uεs, rεs)]2αrs(i),ζ(uεs(
i

N
))ds.

(3.20)

Proof. It is a classical proof in stochastic calculus (see for example [EK86], Chapter
1, Problem 29). The Itô and the Dynkin formulas give two distinct decompositions
of the squared process (f η)2(uεt , r

ε
t )t≥0 in a semi-martingale. The uniqueness of the

Doob-Meyer decomposition of a semi-martingale enables us to identify the bracket
of our martingale. Nevertheless, we detail the proof here. Let us temporarily
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emphasize the role of f η ∈ D(A) in the definition of Mη,ε by writing M ε,fη . On
one hand, the equation (3.19) gives for (f η)2:

(f η)2(uεt , r
ε
t ) = (f η)2(u0, r0) +

∫ t

0

A(f η)2(uεs, r
ε
s)ds+M

ε,(fη)2

t (3.21)

On the other hand, the Itô formula (see [JS87], Theorem 4.57) applied to the
process ((f η)(uεt , r

ε
t ), t ∈ [0, T ]) gives:

(f η)2(uεt , r
ε
t ) = (f η)2(u0, r0) + 2

∫ t

0

f η(uεs, r
ε
s−)df η(uεs, r

ε
s)

+ < fη(uε· , r
ε
· ) >t +

∑
s≤t

[f η(uεs, r
ε
s)− f η(uεs, rεs−)]2.

Thanks to the expression (3.19) the Itô formula leads to the following semi-
martingale decomposition:

(f η)2(uεt , r
ε
t ) (3.22)

= (f η)2(u0, r0) + 2

∫ t

0

f η(uεs, r
ε
s)Af η(uεs, rεs)ds+ < M ε,fη >t (3.23)

+ 2

∫ t

0

f η(uεs, r
ε
s−)dM ε,fη

s +
∑
s≤t

[f η(uεs, r
ε
s)− f η(uεs, rεs−)]2. (3.24)

We can thus identify the martingale and finite variation parts of the two expressions
(3.21) and (3.22) of (f η)2(uεt , r

ε
t ) to obtain:

2

∫ t

0

f η(uεs, r
ε
s)Af η(uεs, rεs)ds+ < M ε,fη >t=

∫ t

0

A(f η)2(uεs, r
ε
s)ds,

providing the desired expression for the bracket.

We have the following semi-martingale decomposition:∫ t

0

Bf η(uεs, rεs)ds = εf η(uεt , r
ε
t )−εf η(u0, r0)−ε

∫ t

0

d

ds
f η(uεs, r

ε
s)ds−εM

η,ε
t . (3.25)

Recall that we are interested in bounding E
∣∣∣∫ t0 Bf η(uεs, rεs)ds∣∣∣2. Since sups∈[0,T ] |f η(uεs, rεs)|

is bounded independently of ε ∈]0, 1] and η > 0, denoting by εg one of the two
first terms of (3.25) we have E|εg|2 ≤ C ′ε2 where C ′ is a constant independent of
ε ∈]0, 1] and η > 0. For the martingale term, by the Itô isometry:

E(|Mη,ε
t |2) = E(< Mη,ε >t) ≤

1

ε
C ′,
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since ε < Mη,ε >t is bounded uniformly in t ∈ [0, T ] and ε ∈]0, 1] thanks to the
bounds on f η and each αξ,ζ . More precisely we have:

< Mη,ε >t

=
1

ε

∫ t

0

∑
i∈N

∑
ζ 6=rs(i)

[f η(uεs, rs(rs(i)→ ζ))− f η(uεs, rεs)]2αrs(i),ζ(uεs(
i

N
))ds

≤ 4T

ε
α+N |E| sup

s∈[0,T ]

|f η(uεs, rεs)|2.

STEP 6 (Bound the finite variation part). It remains to bound the third term
of our semi-martingale decomposition.

Proposition 3.3.3. There exists a constant Cη independent of ε ∈]0, 1] such that:∫ T

0

| d
dt
f η(uεt , r

ε
t )|dt ≤ Cη,

almost surely.

Proof. Recall first in Theorem 3.2.1 the meaning of the notation d
dt
f η(uεt , r

ε
t ). Re-

call that the map u 7→ f η(u, r) for r ∈ R fixed, is Fréchet differentiable on L2(I)
with Fréchet derivative in u denoted by dfη

du
(u, r) which is a bounded linear form

on L2(I). By the Riesz representation theorem there exists f ηu (u, r) ∈ L2(I) such
that:

df η

du
(u, r)[h] = (f ηu (u, r), h)L2(I), ∀h ∈ L2(I).

Moreover the correspondence is isometric:
∥∥df

du
(u, r)

∥∥
(L2(I))∗

= ‖fu(u, r)‖L2(I). We
know that fu(u, r) is also in V for u ∈ V and r ∈ R and is bounded in V
for bounded arguments (see Lemma 3.3.1 and Proposition 3.3.1). According to
Theorem 4.iii) of [BR11] we have:

d

dt
f η(uεt , r

ε
t ) =< ∆uεt +Grεt

(uεt), f
η
u (uεt , r

ε
t ) > .

By Proposition 3.3.1, there exists a constant Cη
1 independent of ε ∈]0, 1] and

t ∈ [0, T ] such that:

‖fu(uεt , rεt )‖V =

∥∥∥∥df

du
(uεt , r

ε
t )

∥∥∥∥
V ∗
≤ Cη

1 .

Therefore:
| d
dt
f(uεt , r

ε
t )| ≤ Cη

1‖∆uεt +Grεt
(uεt)‖V ∗ .
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It remains to show that ‖∆uεt+Grεt
(uεt)‖V ∗ is bounded uniformly in ε and t ∈ [0, T ].

For φ ∈ V we have, denoting by D the derivative with respect to x:

| < ∆uεt +Grεt
(uεt), φ > |

=

∣∣∣∣∣− < Duεt , Dφ > +
1

N

∑
ξ∈E

∑
i∈N

cξ1ξ(r(i))(vξ − uεt(
i

N
))φ

(
i

N

)∣∣∣∣∣
≤ |(Duεt , Dφ)L2(I)|+ |E|max

ξ∈E
cξ(max

ξ∈E
|vξ|+ C)CP‖φ‖V

≤ ‖Duεt‖L2(I)‖Dφ‖L2(I) + |E|max
ξ∈E

cξ(max
ξ∈E
|vξ|+ C)CP‖φ‖V

≤ ‖uεt‖V ‖φ‖V + |E|max
ξ∈E

cξ(max
ξ∈E
|vξ|+ C)CP‖φ‖V

≤ (C + |E|max
ξ∈E

cξ(max
ξ∈E
|vξ|+ C)CP )‖φ‖V ,

where C is the deterministic constant given by Proposition 3.2.2. Thus:

‖∆uεt +Grεt
(uεt)‖V ∗ ≤ C + |E|max

ξ∈E
cξ(max

ξ∈E
|vξ|+ C)CP .

This ends the proof.

STEP 7 (All bounds together). Assembling all the bounds of the different
terms we see that:

E
∣∣∣∣∫ t

0

Bf η(uεs, rεs)ds
∣∣∣∣2 ≤ Cηε

with the constant Cη independent of ε ∈]0, 1] (but dependent on η). It remains to
let ε goes to 0 and then η goes to 0 to conclude the proof of the identification of
the limit.

STEP 8 (Uniqueness). We consider u1 and u2 two possible accumulation points
verifying, for i = 1, 2:

uit = e∆tu0 +

∫ t

0

e∆(t−s)F (uis)ds

for all t ∈ [0, T ] almost surely. We can show easily that for any t ∈ [0, T ]:

E( sup
s∈[0,t]

‖u1
s − u2

s‖V ) ≤ C

∫ t

0

E( sup
l∈[0,s]

‖u1
l − u2

l ‖V )dl

with the constant C independent of t ∈ [0, T ]. Therefore, by application of the
Gronwall’s lemma we obtain that E(supt∈[0,T ] ‖u1

t − u2
t‖V ) = 0.
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3.3.2 The general case

We now consider the original case with different state classes E1, · · · , El. The first
thing to do is to prove the tightness of the family ((uε, r̄ε), ε ∈]0, 1]) in the space

D([0, T ], V × {1, · · · , l}|N |),

(see section 3.2.3 for the definition of r̄ε). We apply a comparison argument. We
notice that:

P(rεt+h(i) = ζ|rεt (i) = ξ) =

{
1
ε
αξ,ζ

(
ut
(
i
N

))
h+ o(h) if ξ, ζ are in the same Ek

αξ,ζ
(
ut
(
i
N

))
h+ o(h) otherwise .

For ξ, ζ ∈ E we set:

λξ,ζ =

{
1
ε
α+ if ξ, ζ are in the same class Ek
α+ otherwise .

We denote by rε,Max the associated jump process with constant rates λξ,ζ . We have
the following stochastic domination:

P(rεt+h(i) = ζ|rεt (i) = ξ) ≤ P(rε,Max
t+h (i) = ζ|rε,Max

t (i) = ξ).

We construct the process r̄ε,Max as r̄ε by aggregation. The sequence (r̄ε,Max, ε ∈
]0, 1]) is tight in D([0, T ], {1, · · · , l}|N |), see for instance Theorem 7.4 of [YZ98].
Therefore, by comparison, the sequence (r̄ε, ε ∈]0, 1]) is also tight in

D([0, T ], {1, · · · , l}|N |),

see for instance [JS87]. Moreover, the sequence (uε, ε ∈]0, 1]) is tight in D([0, T ], V )
by applying the arguments developed for the "all-fast" case. Endowing V ×
{1, · · · , l}|N | with the product topology we see that the sequence ((uε, r̄ε), ε ∈]0, 1])
is tight in D([0, T ], V × {1, · · · , l}|N |).

We must now deal with the identification of the limit. There are eight steps in
the proof of the identification of the limit, we have to check that these eight steps
generalize to the general case (jumping slow-fast case).

In STEP 1, by the same arguments, we obtain that it is sufficient to show that:

lim
ε→0

E
∣∣∣∣∫ t

0

< Grεs(u
ε
s)− Fr̄εs(u

ε
s), φ > ds

∣∣∣∣ = 0.

Excepting notations, the arguments in STEP 2 and STEP 3 are unchanged.
In STEP 4, the Poisson equation becomes:

Bηf η(u, r) = (Gη
r(u)− F η

r̄ (u), φ)L2(I), (3.26)
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where Bη is now the "fast" part of the mollified generator (f η does not depend on r̄
explicitly because r̄ is constructed from r). A configuration r for the ion channels
is now:

r ∈ Ej1 × · · · × EjN−1
,

where (j1, · · · , jN−1) ∈ {1, · · · , l}N−1 (noting that |N | = N − 1). That is each
channel is in one of the class Ej for j ∈ {1, · · · , l}. Then, since for fixed u the
quasi-stationary measure associated to the class Ejk for k ∈ {1, · · · , N − 1} is
µjk(u), we have that the kernel of (Bη)∗ is spanned by:

{µηj1(u)× · · · × µηjN−1
(u), (j1, · · · , jN−1) ∈ {1, · · · , l}N−1}

when u is held fixed. Then, by the Fredholm alternative and the definition of the
averaged function F η

r̄ (u), the Poisson equation (3.26) has a solution. Uniqueness
follows by the projection condition:∫
R
f η(u, r)µηj1(u)(dr)× · · · × µηjN−1

(u)(dr) = 0, ∀(j1, · · · , jN−1) ∈ {1, · · · , l}N−1.

(3.27)
The proof of the last steps is then exactly the same as in the "all fast" case.

3.4 Example
In this section we give a concrete example where our result allows to reduce the
complexity of a neuronal model staying nevertheless at a stochastic level.

We consider a usual Hodgkin-Huxley model but, to be very straightforward in
the application of our result, we only consider the sodium current i.e. all the ion
channels are sodium channels. It is still a case of interest since sodium channels
are involved in the increasing phase of an action potential. At a fixed potential,
the kinetic of a sodium channel is described by Figure 3.3 which represents the
states and the jump rates of a continuous time Markov chain denoted by rε(i)
for the channel at position i

N
for i ∈ N . A sodium channel can be in 8 different

states denoted by mihj for i ∈ {0, 1, 2, 3} and j ∈ {0, 1}, the state m3h1 is the
only "open" state for the sodium channel (see [Hil84] for more details). We simply
write am, bm and ah, bh for am(u), bm(u) and ah(u), bh(u) (see Appendix 3.A for
more details on the rate functions). m is the fast variable and h the slow variable
for the kinetic of a sodium channel.

Each channel can therefore be in one of these eight states divided in two classes:
E = E0 t E1 where

E0 = {m0h0,m1h0,m2h0,m3h0} and E1 = {m0h1,m1h1,m2h1,m3h1}.
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m0h0

3ε−1am



ε−1bm
m1h0

2ε−1am



2ε−1bm
m2h0

ε−1am



3ε−1bm
m3h0

bh �� ah bh �� ah bh �� ah bh �� ah

m0h1

3ε−1am



ε−1bm
m1h1

2ε−1am



2ε−1bm
m2h1

ε−1am



3ε−1bm
m3h1

Figure 3.3: Kinetic of sodium channels.

Inside these two classes the states communicate at fast rates and transition between
these two classes occurs at slow rates. A sodium channel is open if and only if it
is in the state m3h1. We then define cm3h1 = cNa, vm3h1 = vNa and cξ = 0, vξ = 0
when ξ ∈ E \ {m3h1}.

The equation (3.2) describing the evolution of the potential, for a number N
of ion channels, is here given by :

∂tu
ε = K∆uε +

1

N

∑
i∈N

cNa1m3h1(rε(i))(vNa − u(
i

N
))δ i

N
. (3.28)

The global variable u represents the difference of potential between the inside and
the outside of the axon membrane. We see that Equation (3.28) is indeed of the
form that we have studied in this paper. K is a constant related to the radius and
the internal conductivity of the axon (see Appendix 3.A).

Let us compute the different generators and quasi-invariant measures associated
to this model according to our description. The two "fast" generators are the same
and are given for u( i

N
) fixed (again, we do not make the dependence appear), by :

Bj =


−3am 3am 0 0
bm −bm − 2am 2am 0
0 2bm −2bm − am am
0 0 3bm −3bm


with j = 0 or 1. We can compute the associated quasi-invariant measure µj(u( i

N
))

(j = 0 or 1), the only term of interest for us is :

µ1(u(
i

N
))(m3h1) =

1(
1 +

bm(u( i
N

))

am(u( i
N

))

)3 .

The reader familiar with the classical Hodgkin-Huxley model will notice that
µ1(u( i

N
))(m3h1) is in fact equal to the steady-state function associated to the ODE

describing the motion of them-gates in the classical deterministic Hodgkin-Huxley
description, see for example [HH52].
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The asymptotic aggregated Markov chain r̄ is valued in the two-state space
{0, 1}. According to Proposition 4.3.1 its generator is:(

−ah(u( i
N

)) ah(u( i
N

))
bh(u( i

N
)) −bh(u( i

N
))

)
.

Therefore, according to Theorem 3.2.2, the reduced model is described by the
following PDE coupled with the continuous-time Markov chain r̄ :

∂tu = K∆u+
1

N

∑
i∈N

11(r̄(i))cNaµ1(u(
i

N
))(m3h1)(vNa − u(

i

N
))δ i

N
. (3.29)

We display a realization of the averaged piecewise deterministic Markov process in
Figure 3.4. To perform the numerical simulation (in C) we extended Riedler’s work
(cf. [Rie12a]) to our particular framework. In [Rie12a], an algorithm (Algorithm
A2) is proposed to simulate the trajectory of a PDMP in finite dimension. The
idea is to simulate the jumping part of the PDMP and to use an accurate method
to simulate the ODE constituting the deterministic part of the PDMP. The kinetic
of the jumping component for PDMP in finite and infinite dimensions have the
same form. Here we simulate the jumping part of our infinite dimensional PDMP
following [Rie12a] and simulate the PDE between successive jumps by a determin-
istic scheme. For the PDE, we used an explicit finite difference Euler scheme in
space and time. Simulating the jumps of an inhomogeneous time Markov chain
is classical and there exist a lot of efficient numerical schemes for PDE. Therefore
the described method is natural. This argument is of course not a proof but gives
an heuristic interpretation of our approach.

In Figure 3.4, by N = ∞, we mean the limit of the averaged model (3.29)
when N goes to infinity. According to [Aus08], the model (3.29) should converge
in distribution when N goes to infinity towards the following deterministic model:{

∂tu
(∞) = K∆u(∞) + hcNaµ1(u(∞))(m3h1)(vNa − u(∞)),
∂th = (1− h)ah(u

(∞))− hbh(u(∞)).
(3.30)

This convergence is illustrated numerically in Figure 3.4. We notice that the mean
speed γN of the front wave generated by model (3.29) for a fixed N is about
γ∞ − α√

N
where γ∞ is the mean speed of the front wave for the model (3.30) and

α is a positive real. It means that the renormalized difference
√
N(γ∞ − γN) is of

order one. This is consistent with recent results of [RT13] where, for model of type
(3.29) but in replacing the Dirac masses by functions at least in L2(I), the authors
show that the renormalized difference

√
N(u(N) − u(∞)) converges in distribution.
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a) b)

c) d)

e) f)

g) h)

Figure 3.4: Simulation of the action potential against space (vertical axis) and
time (horizontal axis). The averaged model (3.29) is displayed for various number
of ion channels: a) N = 50, b) N = 100, c) N = 150, d) N = 250, e) N = 500,
f) N = 700, g) N = 900, h) N = ∞. We see what we expect from the partial
differential equation: a traveling wave connecting the initial state 0 to the stable
state vNa.
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Appendix 3.A Functions and data for the simula-
tion

For the simulation, the jump rate functions are given, for real u, by :

am(u) =
0.1(25− u)

e2.5−0.1u − 1

bm(u) = 4e
−u
18

ah(u) = 0.07e
−u
20

bh(u) =
1

e3−0.1u + 1
.

The maximal conductance associated to sodium ions is cNa = 120 mS.cm−2 and
the potential at rest is vNa = 115 mV. The constant K is given by K = a

2R
where

a is the radius of the axon, a = 0.0238 cm and R is the internal resistance of the
axon, R = 34.5 Ω.cm, these data are classical, see for example [HH52]. We have
used an input on the potential equal to µ = 6.7 all along the time on the segment
[0, 0.1] of the axon.



Chapter 4

Asymptotic normality for a class of
Hilbert-valued piecewise
deterministic Markov processes

The material for chapter 4 is taken from the submitted pre-publication [GT13a]
Multiscale Piecewise Deterministic Markov Process in Infinite Dimension: Central
Limit Theorem available on Arxiv. Notations have been modified to match up with
the other chapters of the present text. Since the present thesis is provided with a
general introduction in Chapter 1 and especially for this chapter in Section 1.3.2,
we start with a shorter introduction than in the corresponding pre-publication.

4.1 Introduction

In Chapter 3, we addressed the question of averaging for a class of multiscale
spatially extended stochastic conductance-based neuron models, also known as
spatially extended stochastic generalized Hodgkin-Huxley models. These mod-
els describe the evolution of an action potential or nerve impulse along the axon
of a neuron at the scale of ionic channels. More generally, in electro-physiology,
these equations describe the evolution of an action potential in excitable mem-
branes. Mathematically, these spatially extended stochastic conductance-based
models belong to the class of Hilbert-valued Piecewise Deterministic Markov Pro-
cesses (PDMP) with multiple time scales. We obtained averaging results for this
class of models. The averaged models are still Hilbert-valued PDMPs but of lower
dimensions in the sense that the dynamic of the jump components of the slow-
fast PDMP is simplified. In the present chapter, we study the fluctuations of
the original slow-fast systems around their averaged limit. A central limit the-
orem is derived. A numerical example based on a spatially extended stochastic

79
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Morris-Lecar model is provided at the end of the chapter.

The chapter is organized as follows. In Section 4.2 and 4.3 we present the model
and recall as briefly as possible the main results of Chapter 3 and in particular
the different properties of the averaged process. Section 4.4 introduces the main
result of the present chapter: the Central Limit Theorem. The description of the
general class of PDMP which can be included in our framework is described in
Section 4.2.3. In Section 4.5, we begin by proving the Central Limit Theorem
in the so-called all-fast case of Section 4.4.1. In the all fast case, we divide the
proof in two parts: tightness in Section 4.5.1 and identification of the limit in
Section 4.5.2. Properties of the diffusion operator related to the fluctuations are
investigated in Section 4.5.3. In Section 4.6, as an example, we consider a spatially
extended stochastic Morris-Lecar model and provide numerical experiments.

4.2 The models

4.2.1 Stochastic Hodgkin-Huxley models

In this section, we introduce the stochastic generalized Hodgkin-Huxley model
also known in the literature as stochastic conductance-based neuron models. This
model was first considered in [Aus08], and later in [BR11, GT12, RTW12]. Al-
though we are interested in multiscale stochastic conductance-based neuron mod-
els, we start by describing the model without different time scales, for the sake
of clarity. We begin by stating all our mathematical definitions and assumptions
before providing the biological interpretation of our model.

Let T be a fixed finite time horizon, I = [0, 1] and E a finite set. We fix an
integer N ≥ 1 and consider the subset N = {zi, i = 1, 2, . . . , N} of I̊ = (0, 1).
We write R for the finite set EN and V = H1

0 (I) for the space of functions in
L2(I) with first distributional derivative also belonging to L2(I). Remember that
the Hilbert spaces V and L2(I), the Laplacian operator ∆ and the Dirac delta
function on V are defined in Chapter 2, Section 2.1. Let us simply recall that V
and L2(I) are both Hilbert spaces with respective scalar products denoted by (·, ·)
and (·, ·)L2(I).

For (u, r) ∈ V ×R we define the generalized function Gr(u) (or reaction term)
in V ∗ by

Gr(u) =
1

N

N∑
i=1

cr(i)(vr(i) − u(zi))δzi , (4.1)

where V ∗ = H−1(I) is the dual space of V . We denote by < ·, · > the duality
pairing between V and V ∗. For ξ ∈ E, cξ and vξ are two real constants, the
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first being positive. We omit N in the notation of Gr(u) because, in contrary to
[Aus08, RTW12], N is held fixed all along the chapter. Notice that, in contrary
to the model developed in Section 4.2.2, Gr(u) does not belong to V , thus, the
model of the present section does not enter in the general framework of Section
4.2.3. However, we prefer to present in a first part the model given by (4.1) with
the Dirac delta functions because it corresponds exactly to the model studied in
[Aus08, GT12].

For two states ξ, ζ ∈ E, we define by αξ,ζ the jump intensity or transition
rate function from the state ξ to the state ζ. The function αξ,ζ is a real valued
function of a real variable supposed to be, as its derivative, Lipschitz-continuous.
We assume moreover that 0 ≤ αξ,ζ ≤ α+ for any ξ, ζ ∈ E and either αξ,ζ is constant
equal to zero or is positive bounded below by a positive constant α−. That is, the
non-zero rate functions are bounded below and above by positive constants.
Then, for u ∈ V and (r, r̃) two different states of R, we define by qrr̃ the jump
intensity or transition rate function from the state r to the state r̃. This is a real
valued function defined on V by

qrr̃(u) =


0 if r and r̃ differ from more than one component,

αr(i)r̃(i)(u(zi))

αr(i)(u(z(i)))
if r(i) 6= r̃(i) and all the other components are equal.

(4.2)
The quantity αr(i)(u(zi)) =

∑
ξ∈E\{r(i)} αr(i)ξ(u(zi)) represents the total rate of

leaving the state r(i) ∈ E.
The stochastic conductance-based model for excitable cells we consider consists in
the following evolution problem on I{

∂tut = ∆ut +Grt(ut),
P(rt+h = r̃|rt = r) = qrr̃(ut)h+ o(h)

(4.3)

for t ∈ [0, T ] and zero Dirichlet boundary conditions. That is ut(0) = ut(1) = 0
for all t ∈ [0, T ]. We are interested in the stochastic process (ut, rt)t∈[0,T ].

The spatially extended stochastic Hodgkin-Huxley model (4.3) describes the
propagation of an action potential along an axon at the scale of ionic channels. The
axon, or nerve fiber, is the component of a neuron which allows the propagation of
an incoming signal from the soma to another neuron on long distances. The length
of the axon is large relative to its radius, thus, for mathematical convenience, we
consider the axon as a segment I. All along the axon are the ion channels which
allow and amplify the propagation of the incoming impulse. We assume that there
are N ion channels along the axon located in the subset N = {zi, i = 1, 2, . . . , N}
of I̊ = (0, 1). In [Aus08, GT12] for instance, N = { i

N
, i = 1, . . . , N − 1} which

means that the ion channels are regularly spaced. Each ion channel can be in
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several states ξ ∈ E, for instance, in the Hodgkin-Huxley model, a state can be:
"receptive to sodium ions and open". When a ion channel is open, it allows some
ionic species to enter or leave the cell, generating in this way a current. For a
greater insight into the underlying biological phenomena governing the model, the
authors refer to [Hil84], Chapter 2.

The ion channels switch between states according to a continuous time Markov
chain whose jump intensities depend on the local potential of the axon membrane.
For a given channel, the rate function describes the rate at which it switches from
one state to another.
A possible configuration of all the N ion channels is denoted by r = (r(i), i ∈ N ),
a point in the space of all configurations R = EN : r(i) is the state of the channel
located at zi, for i ∈ N . The channels, or stochastic processes r(i), are supposed
to evolve independently over infinitesimal timescales. Denoting by ut(zi) the local
potential at point zi at time t, we have

P(rt+h(i) = ζ|rt(i) = ξ) = αξ,ζ (ut (zi))h+ o(h). (4.4)

For any ξ ∈ E, cξ represents the maximal conductance and vξ the steady state
potentials, or driven potentials, of a channel in state ξ.
The transmembrane potential ut(x), that is the difference of electrical potential
between the outside and the inside of the axon, evolves according to the following
hybrid reaction-diffusion PDE

∂tut = ∆ut +
1

N

N∑
i=1

crt(i)(vrt(i) − ut(zi))δzi . (4.5)

The zero Dirichlet boundary conditions for this PDE corresponds to the case of a
clamped axon [Hil84].

4.2.2 Stochastic Hodgkin-Huxley models with mollifiers

For technical reasons, in the present chapter, we will work with a slightly different
model where the Dirac distributions δzi in (4.5) are replaced by approximations φzi
in the sense of distributions, in the same way as in so called compartment models.
In such a model the reaction term is given by

Gr(u) =
1

N

N∑
i=1

cr(i)(vr(i) − ūi)φzi (4.6)

for (r, u) ∈ R× L2(I) and where, for any h ∈ L2(I): h̄i = (h, φzi)L2(I). For i ∈ N ,
the function φzi which belongs to L2(I) approximates the Dirac distribution δzi .



4.2. THE MODELS 83

For i ∈ {1, . . . , N} the functions φzi are defined on I by

φzi(x) =
1

κ
M

(
x− zi
κ

)
with κ small enough such that φzi is compactly supported in I. The mollifier M
is defined on R by

M(x) = e
− 1

1−x2 1[−1,1](x).

Replacing δzi by φzi corresponds to consider that when the channel located at zi is
open and allows a current to pass, not only the voltage at the point zi is affected,
but also the voltage on a small area around zi, see [BR11], Section 3.1. The family
of functions φzi is indexed by a parameter κ related to the considered membrane
area: the smaller κ is, the smaller is the area. When u is held fixed, the dynamic
of the ion channel at location zi is given by

P(rt+h(i) = ζ|rt(i) = ξ) = αξ,ζ (ūi)h+ o(h) (4.7)

for ξ, ζ ∈ E and t, h ≥ 0.

The present paper is thus concerned with the following evolution problem, for
t ∈ [0, T ] {

∂tut = ∆ut +Grt(ut),
P(rt+h(i) = ζ|rt(i) = ξ) = αξ,ζ (ūi)h+ o(h).

(4.8)

4.2.3 A general framework

The previous stochastic Hodgkin-Huxley model with mollifiers actually belongs to
a more general framework that we now describe.
Let A be a self-adjoint linear operator on a separable Hilbert space H with asso-
ciated norm ‖ · ‖H such that there exists a Hilbert basis {ek, k ≥ 1} of H made up
with eigenvectors of A

Aek = −lkek (4.9)

for k ≥ 1 and such that
sup
k≥1

sup
y∈I
|ek(y)| <∞. (4.10)

The eigenvalues {lk, k ≥ 1} are assumed to form an increasing sequence of positive
numbers enjoying the following property∑ 1

lk
<∞. (4.11)
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Let R be a finite set. For any r ∈ R, the reaction term Gr : H 7→ H is globally
Lipschitz on H uniformly on r ∈ R. That is to say, there exists a constant LG > 0
such that for any (r, u, ũ) ∈ R×H ×H we have

‖Gr(u)−Gr(ũ)‖H ≤ LG‖u− ũ‖H . (4.12)

For fixed u ∈ H let Q(u) := (qrr̃(u))(r,r̃)∈R×R be the generator of a continuous
time Markov chain (rt, t ≥ 0) on R. We assume that for r 6= r̃, the intensity rate
functions qrr̃ : H 7→ R+ are uniformly bounded and Lipschitz continuous. There
exist two constants Bq, Lq such that for any (r, r̃, u, ũ) ∈ R×R×H ×H we have

sup
(r,r̃)∈R×R

sup
u∈H

qrr̃(u) ≤ Bq, |qrr̃(u)− qrr̃(ũ)| ≤ Lq‖u− ũ‖H . (4.13)

Moreover, we assume that there exists a positive constant q− such that

inf
u∈H

λ(u) ≥ q−, (4.14)

where λ(u) is the first non-zero eigenvalue of Q(u). We also assume that there
exists a unique pseudo-invariant measure µ(u) associated to the generator Q(u)
which is bounded and Lipschitz continuous with respect to u.
The present paper is concerned with the following evolution problem, for t ∈ [0, T ]{

∂tut = Aut +Grt(ut),
P(rt+h = r̃|rt = r) = qrr̃(ut)h+ o(h).

(4.15)

Let us mention that in this framework, the model with mollifiers corresponds to
H = L2(I) and R = EN . With A = ∆, the Hilbert space basis {fk, k ≥ 1} of
L2(I) defined in Chapter 2, Section 2.1 and lk = (kπ)2 for k ≥ 1, Assumptions
(4.9)-(4.14) are satisfied.

4.2.4 Basic properties of stochastic Hodgkin-Huxley models

The following result states that there exists a stochastic process satisfying system
(4.8). Let u0 be in D(∆) such that minξ∈E vξ ≤ u0 ≤ maxξ∈E vξ, the initial
potential of the axon. Let q0 ∈ R be the initial configuration of the ion channels.

Proposition 4.2.1 ([BR11]). Fix N ≥ 1. There exists a pair (ut, rt)0≤t≤T of
càdlàg adapted stochastic processes satisfying that each sample path of u is in
C([0, T ], L2(I)), rt is in R for all t ∈ [0, T ] and (ut, rt)0≤t≤T is solution of (4.8).
Moreover (ut, rt)0≤t≤T is a so called Piecewise Deterministic Markov Process.
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The existence of a stochastic process solution of (4.3) has been first proved in
[Aus08] for the model with Dirac mass. The proof in [Aus08] is in two parts.
First, the Schaeffer fixed point theorem implies that when the jump process r
jumps at rate 1, there exists a solution to (4.3). Then the original dynamic of r is
recovered using the Girsanov theorem for càdlàg processes with finite state space.
Another approach has been developed in [BR11]. There, the process (u, r) is con-
structed explicitly as a piecewise deterministic Markov process generalizing in this
way the theory developed by Davis [Dav84, Dav93] from the finite to the infinite
dimensional setting. In [BR11], the authors prove that their process is Marko-
vian and moreover characterize its generator. Still, another approach based on the
marked point process theory is also possible, see for instance [Jac05], Chapter 7
and the extension to our framework in [Rie12b].

We proceed now by recalling the form of the generator of the process (ut, rt)0≤t≤T
solution of (4.3). For (u0, r) ∈ L2(I) ×R, we denote by (ψr(t, u0), t ∈ [0, T ]) the
unique solution starting from u0 of the PDE

∂tut = ∆ut +
1

N

N∑
i=1

cr(i)(vr(i) − uti)φzi (4.16)

with zero Dirichlet boundary conditions.

Proposition 4.2.2. Let f be a locally bounded measurable function on L2(I)×R
such that the map t 7→ f(ψr(t, u0), r) is absolutely-continuous for all (u0, r) ∈
L2(I)×R. Then f is in the domain D(A) of the extended generator of the process
(u, r). The extended generator is given for almost all t by

Af(ut, rt) =
df

dt
(u·, rt)(t) + B(ut)f(ut, ·)(rt), (4.17)

where

B(ut)f(ut, ·)(rt) =
N∑
i=1

∑
ζ∈E

[f(ut, rt(rt(i)→ ζ))− f(ut, rt)]αrt(i),ζ(uti).

The element rt(rt(i) → ζ) of R is equal to rt(j) if j 6= i and to ζ if j = i. The
notation d

dt
f(u·, rt)(t) means that the function s 7→ f(u′s, r) is differentiated at

s = t, where u′ is the solution of the PDE (4.16) with the channel state rt held
fixed equal to r. When f is continuously Fréchet differentiable with respect to its
first argument and such that the Riesz representation fu ∈ L2(I) of the Fréchet
derivative satisfies fu(u, r) ∈ V for u ∈ V and is a locally bounded composition
operator in L2((0, T ), V ) then

df

dt
(u·, rt)(t) =< fu(ut, rt),∆ut +Grt(ut) > .
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See Chapter 2 Section 2.4 for the definition and main properties of Fréchet differ-
entiable functions.

4.3 Multiscale models, singular perturbation and
averaging

In this section, we introduce a slow-fast dynamic in the stochastic Hodgkin-Huxley
model described in Section 4.2.2: some states of the ion channels communicate
faster between each other than others. This is biologically relevant as remarked
for example in [Hil84], Chapter 18. Mathematically, this leads to the introduction
of an additional small parameter ε > 0 in our previously described model: the
states which communicate at a faster rate communicate at the previous rate αξ,ζ
divided by ε. For an introduction on slow-fast systems, we refer to [PS08], for a
general theory of slow-fast continuous time Markov chain, see [YZ98] and for the
case of slow-fast systems with diffusion, see [BG06].

In the context of Section 4.2.2, we make a partition of the state space E ac-
cording to the different orders in ε of the rate functions

E = E1 t · · · t El,

where l ∈ {1, 2, · · · } is the number of classes. Inside a class Ej, the states commu-
nicate faster at jump rates of order 1

ε
. States in different classes communicate at

the usual rate of order 1. For ε > 0 fixed, we denote by (uε, rε) the modification
of the PDMP introduced in the previous section with now two time scales. Its
generator is, for f ∈ D(Aε)

Aεf(uεt , r
ε
t ) =

df

dt
(uε· , r

ε
t )(t) + Bε(uεt)f(uεt , ·)(rεt ). (4.18)

The term Bε is the component of the generator related to the continuous time
Markov chain rε. According to (4.17) and our slow-fast description, we have the
two time scales decomposition of this generator

Bε =
1

ε
B + B̂, (4.19)

where the "fast" generator B is given by

B(uεt)f(uεt , r
ε
t )

=
N∑
i=1

l∑
j=1

1Ej(r
ε
t (i))

∑
ζ∈Ej

[f(uεt , r
ε
t (r

ε
t (i)→ ζ))− f(uεt , r

ε
t )]αrεt (i),ζ(uεt i) (4.20)
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and the "slow" generator B̂ is given by

B̂(uεt)f(uεt , r
ε
t )

=
N∑
i=1

l∑
j=1

1Ej(r
ε
t (i))

∑
ζ /∈Ej

[f(uεt , r
ε
t (r

ε
t (i)→ ζ))− f(uεt , r

ε
t )]αrεt (i),ζ(uεt i). (4.21)

For y ∈ R fixed and g : R × E → R, we denote by Bj(y), j ∈ {1, · · · , l} the
following generator

Bj(y)g(ξ) = 1Ej(ξ)
∑
ζ∈Ej

[g(y, ζ)− g(y, ξ)]αξ,ζ(y).

For any y ∈ R fixed, and any j ∈ {1, · · · , l}, we assume that the fast generator
Bj(y) is weakly irreducible on Ej, i.e. has a unique quasi-stationary distribution
denoted by µj(y). This quasi-stationary distribution is supposed to be Lipschitz-
continuous in y, as well as its derivative.

Following [YZ98], the states in Ej can be considered as equivalent. For any
i = 1, . . . , N we define a new stochastic process (r̄εt)t≥0 by r̄εt (i) = j when rεt (i) ∈ Ej
and abbreviate Ej by j . We then obtain an aggregate process r̄ε(i) with values
in {1, · · · , l}. This process is also often called the coarse-grained process. It is not
a Markov process for ε > 0 but a Markovian structure is recovered at the limit
when ε goes to 0. More precisely, we have the following proposition.

Proposition 4.3.1 ([YZ98], Chapter 7). For any y ∈ R, i = 1, . . . , N , the process
r̄ε(i) converges weakly when ε goes to 0 to a Markov process r̄(i) generated by

B̄(y)g(r̄(i)) =
l∑

j=1

1j(r̄(i))
l∑

k=1,k 6=j

(g(k)− g(j))
∑
ξ∈Ej

∑
ζ∈Ek

αζ,ξ(y)µj(y)(ζ)

with g : {1, · · · , l} → R measurable and bounded.

We proved in [GT12] (in the context of the model with Dirac mass) that the limit
of (uε, r̄ε) when ε goes to zero requires to average the reaction term Gr(u) against
the quasi-invariant distributions. That is we consider that each cluster of states
Ej has reached its stationary behavior. This leads to the averaged reaction term
of the following form: for any r̄ ∈ R̄ = {1, · · · , l}N

Fr̄(u) =
1

N

N∑
i=1

l∑
j=1

1j(r̄(i))
∑
ζ∈Ej

cζµj(ūi)(ζ)(vζ − ūi)φzi . (4.22)
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Therefore, we call the following hybrid PDE

∂tut = ∆ut + Fr̄t(ut), (4.23)

the averaged equation of (4.5). We take zero Dirichlet boundary conditions and
initial conditions u0 and q̄0 where q̄0 is the aggregation of the initial channel con-
figuration q0: q̄0 =

∑l
j=1 j1Ej(q0). In equation (4.23), each coordinate of (r̄t)t∈[0,T ]

evolves independently over infinitesimal time intervals and according to the av-
eraged jump rates between the subsets Ej of E. For j and k in {1, · · · , l}, the
average jump rate from class Ej to class Ek is given by

ᾱjk(y) =
∑
ζ∈Ej

∑
ξ∈Ek

αζ,ξ(y)µj(y)(ζ). (4.24)

We can now state the averaging result proved for the model with Dirac mass in
Chapter 3 but easily adaptable to the model with mollifiers.

Theorem 4.3.1. When ε goes to 0 the stochastic process (uε, r̄ε) solution of (4.18)
converges in distribution in the space C([0, T ], L2(I))×D([0, T ],R) to (u, r̄), solu-
tion of (4.23)-(4.24).

Let us recall a result of first importance to prove Theorem 4.3.1 and in the
present paper as well. We refer the interested reader to Chapter 3 for the proof.
This result establishes the uniform boundedness in ε of the process uε.

Proposition 4.3.2. For any T > 0, there is a deterministic positive constant C
independent of ε ∈]0, 1] such that

sup
t∈[0,T ]

‖uεt‖L2(I) ≤ C,

almost-surely.

For the sake of completeness, we recall a second result which states that the aver-
aged model is well posed and is still a PDMP.

Proposition 4.3.3. For any T > 0 there exists a probability space such that
equations (4.23)-(4.24) define a PDMP (ut, r̄t)t∈[0,T ] in infinite dimension in the
sense of [BR11]. Moreover, there is a constant C such that

sup
t∈[0,T ]

‖ut‖L2(I) ≤ C

and u ∈ C([0, T ], L2(I)) almost-surely.



4.4. MAIN RESULTS 89

4.4 Main results
We present in this section the main results of the present paper. The averaging
result of Theorem 4.3.1 above may be seen as a Law of Large Numbers. The
natural next step is then to study the fluctuations of the slow-fast system around
its averaged limit, in other words, to look for a Central Limit Theorem.

4.4.1 Fluctuations for the stochastic Hodgkin-Huxley mod-
els

For the sake of clarity in our presentation, we first present our result in the so
called all-fast case that we proceed to define.
When all states in E communicate at fast rates, there is a single class as described
in Section 4.3, which is equal to the whole set E. For each ε > 0, the generator of
the process (uε, rε) is given by

Aεf(uεt , r
ε
t ) =

df

dt
(uε· , r

ε
t )(t) +

1

ε
B(uεt)f(uεt , ·)(rεt ), (4.25)

where the slow part of the generator reduces to zero, B̂ ≡ 0 in Section 4.3, and

B(uεt)f(uεt , r
ε
t ) =

N∑
i=1

∑
ξ∈E

[f(uεt , r
ε
t (r

ε
t (i)→ ξ))− f(uεt , r

ε
t )]αrεt (i),ξ(uεt i).

When u ∈ V is held fixed, the Markov process r(i) has a unique stationary distri-
bution µ(ūi) for any i = 1, . . . , N . Then the process (r(i), i = 1, . . . , N) has the
following stationary distribution

µ(u) =
N⊗
i=1

µ(ūi).

The averaged reaction term reduces to

F (u) =

∫
R
Gr(u)µ(u)(dr) =

1

N

∑
ξ∈E

N∑
i=1

cξµ(ūi)(ξ)(vξ − ūi)φzi . (4.26)

The averaged limit u is solution of the PDE

∂tut = ∆ut + F (ut)

with initial condition u0 and zero Dirichlet boundary conditions. Note that in this
case, the limit PDE is no longer hybrid in contrast with (4.23). For ε > 0, we
denote by zε the renormalized difference between uε and u:

zε =
uε − u√

ε
. (4.27)
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The main result of the present paper is the following.

Theorem 4.4.1. When ε goes to 0 the process zε converges in distribution in
C([0, T ], L2(I)) towards a process z. For u ∈ L2(I), let C(u) : L2(I)→ L2(I) be a
diffusion operator characterized by

(C(u)fj, fi)L2(I) =

∫
R

(Gr(u)− F (u), fi)L2(I)(Φ(r, u), fj)L2(I)µ(u)(dr).

Φ is the unique solution of the equation{
B(u)Φ(r, u) = −(Gr(u)− F (u))∫

RΦ(r, u)µ(u)(dr) = 0.
(4.28)

Let us also define an operator Ḡ1 by, for t ∈ [0, T ] and a measurable, bounded and
twice Fréchet differentiable function ψ : L2(I)→ R,

Ḡ1(t)ψ(z) =
dψ

dz
(z)

[
∆z +

dF

du
(ut)[z]

]
+ Tr

[
d2ψ

dz2
(z)C(ut)

]
.

The process z is uniquely determined as the solution of the following martingale
problem. For any measurable, bounded and twice Fréchet differentiable function
ψ : L2(I)→ R, the process

N̄ψ(t) := ψ(zt)−
∫ t

0

Ḡ1(s)ψ(zs)ds (4.29)

for t ∈ [0, T ], is a martingale.

The evolution equation associated to the martingale problem (4.29) is the following
SPDE (see [DPZ92])

dzt =

(
∆zt +

dF

du
(ut)[zt]

)
dt+ Γ(ut)dWt (4.30)

with initial condition 0 and zero Dirichlet boundary conditions. The operator
Γ(u) is the square root of C(u): C(u) = Γ(u)Γ(u)∗, which is well defined by
Proposition 4.5.7. W denotes the standard cylindrical Wiener process on the
Hilbert space L2(I). Formally, the cylindrical Wiener process W is defined as
follows: let ((βk(t))t≥0, k ≥ 1) be a family of independent Brownian motions, then

Wt =
∑
k≥1

βk(t)fk,

where the definition of the Hilbert basis {fk, k ≥ 1} of L2(I) is recalled in Chapter
2, Section 2.1. See [DPZ92], Sections 2.2.3 and 3.6 for more information about the
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construction of W . A complete description of the diffusion operator C is provided
is Section 4.5.3. For any u ∈ C([0, T ], L2(I)) and t > 0, the operator

Qt : ψ 7→
∫ t

0

e∆(t−s)C(us)e
∆(t−s)ψds

is of trace class in L2(I) (Proposition 4.5.8). Thus we can apply classical results
from the theory of SPDE in Hilbert spaces to deduce the existence and uniqueness
of a mild solution to equation (4.30), see the classical reference [DPZ92] on this
topic. The Langevin approximation of u

dũε = [∆ũε + F (ũε)]dt+
√
εΓ(ũε)dWt (4.31)

is then well defined as stated in Proposition 4.5.9. It can be used as a tractable
approximation of uε for small ε. For the order of convergence of ũε towards u, we
refer to [EK86], Chapter 11, Section 3.

Theorem 4.4.1 extends to the multiscale case. In this case there are at least
two classes Ej as described in Section 4.3.

Theorem 4.4.2. When ε goes to 0, the process zε converges in distribution in
C([0, T ], L2(I)) towards a process z uniquely defined as the solution of the following
martingale problem: for any measurable, bounded and twice Fréchet differentiable
function ψ : L2(I)→ R, the process

N̄ψ(t) := ψ(zt)−
∫ t

0

Ḡ1(us, r̄s)ψ(zs)ds (4.32)

is a martingale for t ∈ [0, T ]. The operator Ḡ1 is given by

Ḡ1(u, r̄)ψ(z) =
dψ

dz
(z)

[
∆z +

dFr̄
du

(ut)[z]

]
+ Tr

[
d2ψ

dz2
(z)Cr̄(u)

]
(4.33)

Note that the evolution of the limit process z is coupled with the evolution of (r̄t, t ∈
[0, T ]) and (ut, t ∈ [0, T ]) in contrary to Theorem 4.4.1 where no jumps remain.
The diffusion operator Cr̄(u) : L2(I) → L2(I) is characterized by the quantities
(Cr̄(u)fj, fi)L2(I) which are given by∫

R
(Gr(u)− Fr̄(u), fi)L2(I)(Φ(u, r), fj)L2(I) ⊗Ni=1 µr̄(i)(u)(dr),

Moreover Φ : L2(I)×R → L2(I) is the unique solution of{
B(u)Φ(u, r) = −(Gr(u)− Fr̄(u)), ∀(u, r) ∈ L2(I)×R∫

RΦ(u, r)⊗Ni=1 µji(u)(dr) = 0, ∀(j1, · · · , jN) ∈ {1, . . . , l}N ,
(4.34)

where B is the "fast" generator introduced in (4.19).



92 CHAPTER 4. ASYMPTOTIC NORMALITY

The evolution equation associated to the martingale problem (4.32) is no longer
an SPDE but a hybrid SPDE satisfying

dzt =

(
∆zt +

dFr̄t
du

(ut)[zt]

)
dt+ Γr̄t(ut)dWt (4.35)

with initial condition 0 and zero Dirichlet boundary conditions. For (u, r̄) held
fixed, Γr̄(u) is the square root of Cr̄(u): Cr̄(u) = Γr̄(u)Γr̄(u)∗. Hence, two noise
sources are present in the multiscale case: the ionic channel noise represented by
the random jumps of the process r̄ and the Gaussian noise due to the fluctuations
induced by the white noise W . In between each jump of the component r̄, the
process z follows a classical SPDE parametrized by the current value of the process
r̄. The hybrid SPDE (4.35) is well defined if for each r̄ = j ∈ {1, · · · , l} held fixed,
the SPDE

dzt =

(
∆zt +

dFj
du

(ut)[zt]

)
dt+ Γj(ut)dWt

is well defined. For any (j, u) ∈ {1, · · · , l} × C([0, T ], L2(I)) and t > 0, one can
show that the operator

Qj
t : ψ 7→

∫ t

0

e∆(t−s)Cj(us)e
∆(t−s)ψds

is of trace class in L2(I). This allows us to apply classical results from the theory
of SPDE in Hilbert spaces to deduce existence and uniqueness of a mild solution
to equation (4.35). See also [YZ09] for an introduction to switching diffusions.

Theorem 4.4.1 (all-fast case) is proved in full details in Section 4.5. The proof
of Theorem 4.4.2 (multiscale case) follows the same structure with an additional
complication in the notations and the following necessary adaptations. Regarding
the proof of tightness, the argument in Section 4.5.1 below relies on the Poisson
equation. We refer the reader to Chapter 3 Section 3.3.2, which explains how
the Poisson equation may be extended to the multiscale setting. Regarding the
identification of the limit, we adapt the method of [Wai10], Chapter 5, Section
4.3, where the multiscale case is considered in the finite dimensional setting. The
key point is to be able to write down the generator of the process (zε, uε, r̄ε). For
another instructive example dealing with slow-fast continuous Markov chain, see
[YZ98], Chapter 7.

4.5 Proofs
In Theorem 4.4.1, we want to prove the convergence in distribution of the process
zε when ε goes to zero. As usual in this context such a proof can be divided in two
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parts: the proof of tightness of the family {zε, ε ∈]0, 1]} which implies that there
exists a convergent subsequence and the identification of the limit which allows us
to characterize the limit of any converging subsequence and prove its uniqueness.
We write in full details the proof in the all fast case corresponding to Section 4.4.1,
that is when all the states in E communicate at fast rates of order 1

ε
. In this case

there is a unique class of fast communications which is the whole state space E
(that is l = 1 w.r.t. the notation of section 4.3). As already noticed, the multiscale
case (when l > 1) considered in Theorem 4.4.2 may be deduced from the all fast
case and amounts mainly in additional complication in the notations.

4.5.1 Tightness

To show that the family {zε, ε ∈]0, 1]} is tight in D([0, T ], L2(I)), we use Aldous
criterion (cf. [Mé84], or Chapter 2, Section 2.3) which can be splitted in two parts
as follows.

Criterion 4.5.1 (General criterion for tightness [Mé84]). Let us assume that the
family {zε, ε ∈]0, 1]} satisfies Aldous’s condition: for any δ,M > 0, there exist
η, ε0 > 0 such that for all stopping times τ with τ + η < T ,

sup
ε∈]0,ε0]

sup
θ∈]0,η[

P(‖zετ+θ − zετ‖L2(I) ≥M) ≤ δ (4.36)

and moreover, for each t ∈ [0, T ], the family {zεt , ε ∈]0, 1]} is tight in L2(I). Then
{zε, ε ∈]0, 1]} is tight in D([0, T ], L2(I)).

Criterion 4.5.2 (Tightness in a Hilbert space [Mé84]). Let L2(I) be a separable
Hilbert space endowed with a basis {fk, k ≥ 1} and for k ≥ 1 define

Lk = span{fi, 1 ≤ i ≤ k}.

Then, for t held fixed, (zεt , ε ∈]0, 1]) is tight in L2(I) if, and only if, for any δ, η > 0
there exist ρ, ε0 > 0 and Lδ,η ⊂ {Lk, k ≥ 1} such that

sup
ε∈]0,ε0]

P(‖zεt ‖L2(I) > ρ) ≤ δ, (4.37)

sup
ε∈]0,ε0]

P(d(zεt , Lδ,η) > η) ≤ δ, (4.38)

where d(zεt , Lδ,η) = infv∈Lδ,η ‖zεt − v‖L2(I) is the distance of zε to the subspace Lδ,η.

We begin by showing that for a fixed t ∈ [0, T ], the family {zεt , ε ∈]0, 1]} is uni-
formly bounded in L2(Ω, L2(I)). We recall the definition of the Hilbert basis
{ek, k ≥ 1} of L2(I) from Chapter 2, Section 2.1

fk(x) =
√

2 sin(kπx), x ∈ I.
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Proposition 4.5.1. There exists a constant C depending only on T but otherwise
neither on t ∈ [0, T ] nor on ε ∈]0, 1] such that

E(‖zεt ‖2
L2(I)) ≤ C

In particular, for any fixed t ∈ [0, T ], condition (4.37) is satisfied by the family
{zεt , ε ∈]0, 1]}.

Proof. Let t ∈ [0, T ] and ε ∈]0, 1] be fixed. Using the evolution equations on uε

and u and plugging F given by (4.26) in the calculation, we have:

d

dt
‖uεt − ut‖2

L2(I) = 2 < ∂t(u
ε
t − ut), uεt − ut >

= 2 < ∆(uεt − ut), uεt − ut > +2 < Grεt
(uεt)− F (ut), u

ε
t − ut >

= −2‖D(uεt − ut)‖2
L2(I) + 2(Grεt

(uεt)− F (uεt), u
ε
t − ut)L2(I)

+ 2(F (uεt)− F (ut), u
ε
t − ut)L2(I),

almost surely. We treat each of the above terms separately. Regarding the third
term, we notice that the application u 7→ (F (u), u)L2(I) is locally Lipschitz on
L2(I) and that the quantities uεt and ut are uniformly bounded w.r.t. t ∈ [0, T ]
and ε ∈]0, 1] thanks to Propositions 4.3.1 and 4.3.2. Thus there exists a constant
C, depending only on T but otherwise not on t ∈ [0, T ] and ε ∈]0, 1], such that

2(F (uεt)− F (ut), u
ε
t − ut)L2(I) ≤ C‖uεt − ut‖2

L2(I).

Integrating over [0, t] and taking expectation yields the following inequality

E(‖uεt − ut‖2
L2(I)) ≤ E(‖uε0 − u0‖2

L2(I)) + 2C

∫ t

0

E(‖uεs − us‖2
L2(I))ds

+ E
(∫ t

0

2(Grεs(u
ε
s)− F (uεs), u

ε
s − us)L2(I)ds

)
.

Let us consider the latter of these terms. Using the same approach as the one
developed for the identification of the limit in the proof of the averaging result in
[GT12], we deduce the existence of a constant C(T ) depending only on T such
that ∣∣∣∣E(∫ t

0

2(Grεs(u
ε
s)− F (uεs), u

ε
s − us)L2(I)ds

)∣∣∣∣ ≤ C(T )ε.

For the sake of completeness, we review now briefly this approach and refer to
Chapter 3 for more details. Remark that, due to the regularity of the reaction
term (4.6) which is in L2(I) and not only in H−1(I) as in Chapter 3, the situation
is easier to handle. The key point is to show, as in Proposition 3.3.1 of Chapter 3,
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that there exists a measurable and bounded function f : L2(I) ×R× [0, T ] → R
such that

∫
R f(u, r, t)µ(u)(dr) = 0 and for all (u, r, t) ∈ L2(I)×R× [0, T ]

B(u)f(u, ·, t)(r) = (Gr(u)− F (u), u− ut)L2(I). (4.39)

Equation (4.39) is called the Poisson equation related to B. Then using the regu-
larity of the mappings (u, r, t) ∈ L2(I)×R× [0, T ] 7→ (Gr(u)− F (u), u− ut)L2(I)

and the operator B(u) for u ∈ L2(I), we deduce that the application (u, r, t) ∈
L2(I)×R× [0, T ] 7→ f(u, r, t) is bounded, Fréchet differentiable in u with bounded
Fréchet derivative and differentiable in t with bounded derivative. Using the gen-
eral theory of Markov processes, we deduce that there exists a martingaleM ε such
that

f(uεt , r
ε
t , t)

= f(uε0, r
ε
0, 0) +

∫ t

0

Aεf(uεs, r
ε
s, s)ds+M ε

t

= f(uε0, r
ε
0, 0) +

1

ε

∫ t

0

B(uεs)f(uεs, r
ε
s, s) +

df

ds
(uε· , r

ε
s, s)(s) +

df

ds
(uεs, r

ε
s, ·)(s)ds+M ε

t

= f(uε0, r
ε
0, 0) +

1

ε

∫ t

0

(Grεs(u
ε
s)− F (uεs), u

ε
s − us)L2(I)ds

+

∫ t

0

df

ds
(uε· , r

ε
s, s)(s) +

df

ds
(uεs, r

ε
s, ·)(s)ds+M ε

t .

Therefore∫ t

0

(Grεs(u
ε
s)− F (uεs), u

ε
s − us)L2(I)ds

= εf(uεt , r
ε
t , t)− εf(uε0, r

ε
0, 0)− ε

∫ t

0

df

ds
(uε· , r

ε
s, s)(s)−

df

ds
(uεs, r

ε
s, ·)(s)ds− εM ε

t .

Taking the expectation, using the fact that M ε is a martingale and that f is
regular, we obtain the desired estimate.
Assembling all the above estimates we obtain

E(‖uεt − ut‖2
L2(I)) ≤ E(‖uε0 − u0‖2

L2(I)) + C(T )ε+ 2C

∫ t

0

E(‖uεs − us‖2
L2(I))ds.

Since uε0 = u0 a standard application of Gronwall’s lemma leads to the desired
result. We end this proof by showing that for any fixed t ∈ [0, T ], the family
{zεt , ε ∈]0, 1]} fulfills the requirement (4.37). Indeed, let δ > 0 and denote by C
the constant independent of ε and t ∈ [0, T ] such that

E(‖zεt ‖2
L2(I)) ≤ C.
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By the Markov inequality we have, for ρ > 0,

sup
ε∈]0,1]

P(‖zεt ‖L2(I) > ρ) ≤ sup
ε∈]0,1]

E(‖zεt ‖2
L2(I))

ρ2
≤ C

ρ2

and for ρ large enough, we obtain that supε∈]0,1] P(‖zεt ‖L2(I) > ρ) < δ.

We now prove the tightness of the family {zεt , ε ∈]0, 1]} in L2(I) for any fixed
t ∈ [0, T ]. This is the object of the following propositions.

Proposition 4.5.2. Let t ∈]0, T ] and for p ≥ 1 let us define the following trunca-
tion

zε,pt =

p∑
k=1

(zεt , fk)fk.

Then
lim
p→∞

E(‖zεt − z
ε,p
t ‖2

L2(I)) = 0,

uniformly in ε ∈]0, 1].

Proof. For a fixed k ≥ 1 we have

d

dt
(zεt , ek)

2 = 2(zεt , fk)
d

dt
(zεt , fk)

= 2(zεt , fk)

(
−(kπ)2(zεt , fk) +

1√
ε
< Grεt

(uεt)− F (ut), fk >

)
= − 2(kπ)2(zεt , fk)

2 +
2√
ε

(zεt , fk)(F (uεt)− F (ut), fk)L2(I)

+
2√
ε

(zεt , fk)(Grεt
(uεt)− F (uεt), fk)L2(I),

almost surely. A direct computation using the arguments developed in the proof of
Proposition 4.5.1 leads to the existence of a constant C(T ) independent of ε ∈]0, 1]
such that

(zεt , fk)
2 ≤ C(T )− 2(kπ)2

∫ t

0

(zεs , fk)
2ds,

almost surely. Using Gronwall’s lemma we deduce that

(zεt , fk)
2 ≤ C(T )e−2(kπ)2t.

The result follows since the series
∑
e−2(kπ)2t is convergent for t > 0.

We now check that the family {zε, ε ∈]0, 1]} satisfies the first part of Criterion
4.5.1.
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Proposition 4.5.3. Let τ > 0 be a stopping time and θ > 0 such that τ + θ ≤ T .
There exists a constant C depending only on T such that

E(‖zετ+θ − zετ‖2
L2(I)) ≤ Cθ.

Proof. We notice that for k ≥ 1, t > 0 and θ > 0 such that t+ θ ≤ T we have

∂θ(z
ε
t+θ − zεt , fk)L2(I) = −(kπ)2(zεt+θ, fk)L2(I) +

1√
ε

(Grεt+θ
(uεt+θ)− F (ut+θ), fk)L2(I).

Thus, almost surely

d

dθ
(zεt+θ − zεt , fk)2

L2(I) = −2(kπ)2(zεt+θ, fk)L2(I)(z
ε
t+θ − zεt , fk)L2(I)

+
2√
ε
< Grεt+θ

(uεt+θ)− F (ut+θ), fk > (zεt+θ − zεt , fk)L2(I).

The first term satisfies

− 2(kπ)2(zεt+θ, fk)L2(I)(z
ε
t+θ − zεt , fk)L2(I)

= −2(kπ)2(zεt+θ − zεt , fk)2 + 2(kπ)2(zεt , fk)
2
L2(I) − 2(kπ)2(zεt+θ, fk)L2(I)(z

ε
t , fk)L2(I)

≤ −2(kπ)2(zεt+θ − zεt , fk)2 + 3(kπ)2‖zεt ‖2
L2(I) + (kπ)2‖zεt+θ‖2

L2(I)

where ‖zεt ‖2
L2(I) and ‖zεt+θ‖2

L2(I) are bounded in expectation by a constant inde-
pendent of t, θ and ε by Proposition 4.5.1. For the second term, the arguments
developed in the proof of Proposition 4.5.1 lead to the existence of a constant C
depending only on T such that

E
(∫ θ

0

(Grεt+s
(uεt+s)− F (uεt+s), fk)L2(I)ds

)
≤ Cθε.

Therefore, still denoting by C a constant depending only of T

E((zεt+θ − zεt , fk)2
L2(I)) ≤ −2(kπ)2

∫ θ

0

E((zεt+s − zεt , fk)2)ds+ C(1 + (kπ)2)θ.

By application of the Gronwall’s lemma and summation over k we obtain

E(‖zεt+θ − zεt ‖2
L2(I)) ≤ Cθ

∑
k≥1

(1 + (kπ)2)e−2(kπ)2t

which yields the result for any t > 0 since the series
∑

k≥1(1 + (kπ)2)e−2(kπ)2t is
convergent for t > 0. The same arguments apply when replacing t by the stopping
time τ .

According to Criteria 4.5.1 and 4.5.2, Propositions 4.5.1, 4.5.2 and 4.5.3, the family
{zε, ε ∈]0, 1]} is tight in D([0, T ], L2(I)). The continuity of each element of the
family implies that {zε, ε ∈]0, 1]} is tight in C([0, T ], L2(I)).
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4.5.2 Identification of the limit

In this section we want to prove that (zε, ε ∈]0, 1]) has a unique accumulation
point that we identify as the unique solution of a martingale problem. For this
purpose, we study the process (zε, rε) for ε ∈]0, 1].
Let us outline the strategy of the proof.

Step 1. Use the general theory on PDMP developed in [BR11] to write down the
generator Gε of the process (zε, rε). The associated martingale problem gives
rise to martingales M ε

φ for appropriate functions φ.

Step 2. For a nice choice of φ, identify the terms of order one in ε of the martingale
M ε

φ. Since the difference between u and uε is renormalized by
√
ε, choose φ

of the form ψ +
√
εγ (perturbed test function).

Step 3. Identify the generator Ḡ of the limit process z. Prove that z is solution of
the martingale problem associated to Ḡ.

Step 1. Notice first that the process zε satisfies the following equation

∂tz
ε
t = ∆zεt +

1√
ε

(Grεt
(uεt)− F (ut)) (4.40)

= ∆zεt +
1√
ε

(Grεt
(ut +

√
εzεt )− F (ut)),

by definition of zε. The initial condition for zε is 0 and the boundary conditions
are still zero Dirichlet boundary conditions.
Let φ : L2(I) × R × R+ be a real valued, measurable and bounded function of
class C2 on L2(I) and C1 on R+. We write down the generator of the process
(zε, rε) against φ. Recall that in the all-fast case, the limit u of uε is deterministic
so that (zε, rε) is a classical PDMP with evolution equation given by (4.40) and
dynamic of jumps given by (4.7). According to Theorem 4 of [BR11], for (z, r, t) ∈
L2(I)×R× R+, the generator G of (zε, rε) is given by

G(t)φ(z, r, t) =
dφ

dz
(z, r, t)[∆z +

1√
ε

(Gr(ut +
√
εz)− F (ut))] (4.41)

+
1

ε
B(ut +

√
εz)φ(z, r, t) + ∂tφ(z, r, t).

Following the usual theory of Markov processes, see [EK86], Chapter 4, the process
(M ε

φ(t), t ∈ [0, T ]) defined for t ≥ 0 by

M ε
φ(t) = φ(zεt , r

ε
t , t)−

∫ t

0

G(s)φ(zεs , r
ε
s, s)ds,

is a martingale for the natural filtration associated to the process (zε, rε).
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Step 2. We want to identify the terms of different orders in ε of M ε
φ. For this

purpose, we choose a function φ with the following decomposition

φ(z, r, t) = ψ(z, r) +
√
εγ(z, r, t),

where the functions ψ and γ have the same regularity as φ. We write the Taylor
expansion in ε of the two following terms

Gr(ut +
√
εz) = Gr(ut) +

√
ε

dGr

du
(ut)[z] +

√
ε‖z‖L2(I)δ1(

√
εz)

B(ut +
√
εz) = B(ut) +

√
ε

dB
du

(ut)[z] +
√
ε‖z‖L2(I)δ2(

√
εz),

where δ1 and δ2 are two L2(I)-valued continuous functions such that δ1(0L2(I)) =
δ2(0L2(I)) = 0L2(I). Plugging this expansion in the expression of the generator
(4.41) we want the terms of order 1

ε
to vanish. For (z, r, t) ∈ L2(I)×R×R+ this

leads to
B(ut)ψ(z, r) = 0. (4.42)

That is to say, the application ψ does not depend on r ∈ R and is of the form

ψ(z, r) = ψ(z),

where ψ : L2(I) → R is of class C2. The generator is then of the following form,
where we gather the terms of the same order in ε

G(t)φ(z, r, t)

=
1√
ε

(
dψ

dz
(z)[Gr(ut)− F (ut)] + B(ut)γ(z, r, t) +

dB
du

(ut)[z]ψ(z)

)
+

dψ

dz
(z)

[
∆z +

dGr

du
(ut)[z]

]
+

dγ

dz
(z, r, t)[Gr(ut)− F (ut)] +

dB
du

(ut)[z]γ(z, r, t)

+
√
ε

(
∂tγ(z, r, t) +

dγ

dz
(z, r, t)

[
∆z +

dGr

du
(ut)[z]

])
+ o(
√
ε).

We now want the terms of order 1√
ε
to vanish, that is to say, for (z, r, t) ∈ L2(I)×

R× R+

dψ

dz
(z)[Gr(ut)− F (ut)] + B(ut)γ(z, r, t) +

dB
du

(ut)[z]ψ(z) = 0.

Notice that B(ut)1 = 0 implies that for all (z, t) ∈ L2(I)× R+

dB
du

(ut)[z]ψ(z) = 0
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and we are left with the equation

B(ut)γ(z, r, t) = −dψ

dz
(z)[Gr(ut)− F (ut)]. (4.43)

We look for γ of the form:

γ(z, r, t) =
dψ

dz
(z)[Φ(r, ut)],

where Φ : R× L2(I)→ L2(I) has to be identified. Inserting the above expression
of γ in (4.43) we obtain

dψ

dz
(z)[B(ut)Φ(r, ut)] = −dψ

dz
(z)[Gr(ut)− F (ut)].

Therefore, it is enough that for any (u, r) ∈ L2(I)×R

B(u)Φ(r, u) = −(Gr(u)− F (u)). (4.44)

To ensure uniqueness of the solution for equation (4.44) we impose moreover the
condition ∫

R
Φ(r, u)µ(u)(dr) = 0.

Then, from the definition of F we have
∫
R (Gr(u)− F (u))µ(u)(dr) = 0. Moreover,

equation (4.44) has a unique solution Φ thanks to the Fredholm alternative.

Step 3. We have identified the terms of order 1 in ε of the generator of the
process (zε, rε). It remains to show that the terms of order 1 in ε correspond, after
averaging, to the generator of the process z. For (z, r, t) ∈ L2(I) × R × R+ we
define

G1(t, r)ψ(z) =
dψ

dz
(z)

[
∆z +

dGr

du
(ut)[z]

]
+

d2ψ

dz2
(z)[Φ(r, ut), Gr(ut)− F (ut)]

+
dB
du

(ut)[z]
dψ

dz
(z)[Φ(r, ut)]. (4.45)

Let us define also the following process

N ε
ψ(t) = ψ(zεt )−

∫ t

0

G1(s, rεs)ψ(zεs)ds.

By construction we see that E(|M ε
φ(t)−N ε

ψ(t)|2) = O(ε). When ε goes to 0, by the
averaging result of Theorem 4.3.1, we see that the term

∫ t
0
G1(s, rεs)ψ(zεs)ds should

converge to ∫ t

0

∫
R
G1(s, r)ψ(zs)µ(us)(dr)ds.
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Therefore, we want to prove that, whenever z is an accumulation point of the
family (zε, ε ∈]0, 1]), the process

N̄ψ(t) = ψ(zt)−
∫ t

0

Ḡ1(s)ψ(zs)ds,

is a martingale w.r.t. the natural filtration associated to the process (zt, t ≥ 0)
where

Ḡ1(t)ψ(z) =
dψ

dz
(z)[∆z+

dF

du
(ut)[z]]+

d2ψ

dz2
(z)

∫
R

[Φ(r, ut), Gr(ut)−F (ut)]µ(ut)(dr).

(4.46)
This is not straightforward since we have no information on the asymptotic be-
havior of the process (zε, rε) when ε goes to 0.

Proposition 4.5.4. The process (N̄ψ(t), t ≥ 0) is a martingale w.r.t. the natural
filtration associated to the process (zt, t ≥ 0).

Proof. Let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ s ≤ t be k+2 reals, with k ≥ 1 an integer. For
i ∈ {1, · · · , k}, we take a measurable and bounded function gi. In order to show
that the process (N̄ψ(t), t ≥ 0) is a martingale for the natural filtration associated
to the process (zt, t ≥ 0) we will prove that

E((N̄ψ(t)− N̄ψ(s))g1(zt1) · · · gk(ztk)) = 0.

In order to not overload the proof with too many computations, we write Zk for the
random variable g1(zt1) · · · gk(ztk) and Zε

k for g1(zεt1) · · · gk(zεtk). Using elementary
substitution and the fact that zε converges in law toward z when ε goes to 0 we
have

E((N̄ψ(t)− N̄ψ(s))Zk)

= E
((

ψ(zt)− ψ(zs)−
∫ t

s

Ḡ1(l)ψ(zl)dl

)
Zk

)
= E((ψ(zt)− ψ(zs))Zk)− E

((∫ t

s

Ḡ1(l)ψ(zl)dl

)
Zk

)
= lim

ε→0
E((ψ(zεt )− ψ(zεs))Z

ε
k)− E

((∫ t

s

Ḡ1(l)ψ(zl)dl

)
Zk

)
= lim

ε→0
E((N ε

ψ(t)−N ε
ψ(s))Zε

k) + lim
ε→0

E
((∫ t

s

G1(l, rεl )ψ(zεl )dl

)
Zε
k

)
− E

((∫ t

s

Ḡ1(l)ψ(zl)dl

)
Zk

)
.
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On one hand, from the definition of N ε
ψ and the previous study of the different

orders in ε of the martingale M ε
φ we see that

lim
ε→0

E((N ε
ψ(t)−N ε

ψ(s))Zε
k) = lim

ε→0
E((N ε

ψ(t)−N ε
ψ(s))Zε

k)− E((M ε
φ(t)−M ε

φ(s))Zε
k)

From the previous study of the different orders in ε, the right hand side is O(
√
ε)

and therefore converges to 0 when ε goes to 0. On the other hand, for ε1 > 0
which will be chosen later

lim
ε→0

E
((∫ t

s

G1(l, rεl )ψ(zεl )dl

)
Zε
k

)
− E

((∫ t

s

Ḡ1(l)ψ(zl)dl

)
Zk

)
(4.47)

= lim
ε→0

E
((∫ t

s

G1(l, rεl )ψ(zεl )dl

)
Zε
k

)
− E

((∫ t

s

G1(l, rε
1

l )ψ(zεl )dl

)
Zε
k

)
(4.48)

+ lim
ε→0

E
((∫ t

s

G1(l, rε
1

l )ψ(zεl )dl

)
Zε
k

)
− E

((∫ t

s

G1(l, rε
1

l )ψ(zl)dl

)
Zk

)
(4.49)

+ E
((∫ t

s

G1(l, rε
1

l )ψ(zl)dl

)
Zk

)
− E

((∫ t

s

Ḡ1(l)ψ(zl)dl

)
Zk

)
. (4.50)

We know that the quantity corresponding to (4.50) can be made arbitrarily small
by conditioning appropriately (as in the proof of Proposition 4.5.1 for example)
for small enough ε1. Then, since zε converges in law towards z when ε goes to 0,
the quantity (4.49) converges to 0 when ε goes to 0. This shows finally that (4.47)
converges to 0 when ε goes to 0 and therefore

E((N̄ψ(t)− N̄ψ(s))g1(zt1) · · · gk(ztk)) = 0,

as announced.

We can now conclude that the limit process z is solution of the following martingale
problem: for any measurable, bounded and twice Fréchet differentiable function
ψ, the process defined by

N̄ψ(t) = ψ(zt)−
∫ t

0

Ḡ1(s)ψ(zs)ds,

for t ∈ [0, T ] is a martingale, where Ḡ1 is given by (4.46).
In other word, the limit process z is solution to the martingale problem associated
with the operator Ḡ1. Then z is a solution of the SPDE (4.30) where the diffusion
operator C(u) for u ∈ L2(I) is identified thanks to the relation

d2ψ

dz2
(z)

∫
R

[Φ(r, u), Gr(u)− F (u)]µ(u)(dr) = Tr
d2ψ

dz2
(z)C(u) (4.51)

for (u, z) ∈ L2(I)× L2(I). The uniqueness of z follows from the properties of the
Laplacian operator, the reaction term dF

du
and the operator C(u). For more insight

in the properties of the diffusion operator, see the following section.
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4.5.3 The diffusion operator C

In this section, we give more details about the diffusion operator C. In particular,
we make explicit the dependence of Φ in (4.51) w.r.t. the data of our problem.

Proposition 4.5.5 (First representation of the diffusion operator). For u ∈ L2(I)
and r ∈ R we have:

Φ(r, u) = −(µ∗(u)µ(u) + B∗(u)B(u))−1B∗(u)(G·(u)− F (u))(r).

That is, the function Φ(·, u) is explicitly given as a function of the "fast jumping
part" operator B(u) and the associated invariant measure µ(u).

Proof. The application Φ is defined by the two conditions{
B(u)Φ(r, u) = −(Gr(u)− F (u))∫

RΦ(r, u)µ(u)(dr) = 0
(4.52)

for (u, r) ∈ L2(I)×R. Let u ∈ L2(I) be held fixed. Defining D(u) = (µ(u),B(u))T

reduces (4.52) to

D(u)Φ(·, u) = −
(

0
G·(u)− F (u)

)
.

Then
D∗(u)D(u)Φ(·, u) = −D∗(u)

(
0

G·(u)− F (u)

)
.

It remains to prove that the operator D∗(u)D(u) is invertible which is the key
point to conclude. Indeed

D∗(u)D(u) = µ(u)∗µ(u) + B∗(u)B(u)

and the kernel of the two operators µ(u)∗µ(u) and B∗(u)B(u) are in direct sum
and span the whole space R|R|. Let x ∈ KerD∗(u)D(u), then x can be written
uniquely as z + y with z ∈ Kerµ(u)∗µ(u) and y ∈ KerB∗(u)B(u). We have

µ(u)∗µ(u)y + B∗(u)B(u)z = 0.

Since B(u)1 = 0 (where 1 ∈ R|R|) and µ(u)1 = 1, multiplying the above equation
to the left by 1T we have

µ(u)y = 0.

Since y ∈ KerB∗(u)B(u) = KerB(u) = span1 here, we have y = y1 with y ∈ R
and

µ(u)y = µ(u)y1 = y

and thus y = 0 and y = 0. Therefore x = z ∈ Kerµ(u)∗µ(u) and B∗(u)B(u)z = 0.
Thus z ∈ Kerµ(u)∗µ(u) ∩ KerB∗(u)B(u) = {0} and x = z = 0. The operator
D∗(u)D(u) is then invertible.
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Proposition 4.5.6 (Second representation of the diffusion operator). For any
(u, r) ∈ L2(I)×R

Φ(u, r) =

∫ ∞
0

Er(Grus (u)− F (u))ds,

where for a given u, ru denotes a Markov chain on R with transition rates qrr̃ (c.f.
(4.2)).

Proof. The process

Mt = Φ(u, rut )− Φ(u, r)−
∫ t

0

B(u)Φ(u, rus )ds,

is a martingale w.r.t. the natural filtration generated by the process ru. Let us
take expectation and remember that{

B(u)Φ(r, u) = −(Gr(u)− F (u))∫
RΦ(r, u)µ(u)(dr) = 0,

. (4.53)

Then,

Er(Φ(u, rut )) = Φ(u, r)−
∫ t

0

Er(Grus (u)− F (u))ds.

The desired result follows since:

lim
t→∞

Er(Φ(u, rut )) =

∫
R

Φ(r, u)µ(u)(dr) = 0.

Proposition 4.5.7. The diffusion operator C(u), for u ∈ L2(I), is positive in the
sense that

Tr C(u) ≥ 0.

Therefore the operator Γ(u) such that C(u) = Γ∗(u)Γ(u) is well defined.

Proof. For u ∈ L2(I) we have:

Tr C(u) =
∑
k≥1

∫
R

(Gr(u)− F (u), fk)L2(I)(Φ(r, u), fk)L2(I)µ(u)(dr)

= −
∑
k≥1

∫
R

(B(u)Φ(r, u), fk)L2(I)(Φ(r, u), fk)L2(I)µ(u)(dr).

We conclude that Tr C(u) ≥ 0 because all the eigenvalues of the operator B(u)
are non positive.
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Proposition 4.5.8. The following estimate holds,

Tr

∫ t

0

e∆(t−s)C(us)e
∆(t−s)ds ≤

∑
k≥1

∫ t

0

(α‖us‖2
L2(I) + β‖us‖L2(I) + γ)e−2(kπ)2(t−s)ds

for all t ∈ [0, T ] and all functions u ∈ C([0, T ], L2(I)). The trace is taken in the
L2(I)-sense and α, β, γ are three constants.

Proof. This is a direct consequence of Proposition 4.5.6. Proposition 4.5.6 implies
that

|(Φ(us, r), fk)L2(I)| ≤
c1

N

N∑
i=1

|(φzi , fk)L2(I)|(1 + ‖us‖L2(I))

for a constant c1 and (fk, k ≥ 1) a Hilbert basis of L2(I). Since each φzi is in L2(I)
we obtain

|(Φ(us, r), fk)L2(I)| ≤ c1(1 + ‖us‖L2(I))

for another constant c1. Let us write, in the same way as in the proof of Proposition
4.5.7

Tr
∫ t

0

e∆(t−s)C(us)e
∆(t−s)ds (4.54)

≤
∑
k≥1

∫ t

0

e−2(kπ)2(t−s)
∫
R

(Gr(us)− F (us), fk)L2(I)(Φ(r, us), fk)L2(I)µ(us)(dr)ds.

Using the explicit expression of Gr(u)−F (u), it is not difficult to show that there
exists a constant c2 such that

|(Gr(us)− F (us), fk)L2(I)| ≤ c2(1 + ‖us‖L2(I)).

Plugging the latter inequality in (4.54) leads to the result. An explicit computation
of Tr C is presented in Section 4.6.

In particular, the operator Qt defined by

Qt : ψ ∈7→
∫ t

0

e∆(t−s)C(us)e
∆(t−s)ψds

with (j, u) ∈ {1, · · · , l} × C([0, T ], L2(I)) is of trace class in L2(I). The Langevin
approximation of u is then well defined as stated in the following proposition. We
recall that in the all-fast case

F (u) =
1

N

N∑
i=1

∑
ξ∈E

cξµ(ūi)(ξ)(vξ − ūi)φzi

for u ∈ L2(I).
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Proposition 4.5.9. Let ε > 0. The SPDE

dũε = [∆ũε + F (ũε)]dt+
√
εΓ(ũε)dWt (4.55)

with initial condition u0 and zero Dirichlet boundary condition has a unique solu-
tion with sample paths in C([0, T ], L2(I)). Moreover the quantity

sup
t∈[0,T ]

E(‖ũεt‖2
L2(I)) <∞. (4.56)

Proof. Thanks to the properties of the laplacian operator, the local Lipschitz con-
tinuity of F and Proposition 4.5.8, we can apply classical results on SPDE, see for
example [DPZ92], Chapter 7, Theorem 7.4 to prove existence and uniqueness of
solution to (4.55) in C([0, T ], L2(I)).

4.6 Example
We consider in this section a spatially extended stochastic Morris-Lecar model.
Since the seminal work [ML81], the deterministic Morris-Lecar model is considered
as one of the classical mathematical models for investigating neuronal behavior. At
first, this model was designed to describe the voltage dynamic of the barnacle giant
muscle fiber (see [ML81] for a complete description of the deterministic Morris-
Lecar model). To take into account the intrinsic variability of the ion channels
dynamic, a stochastic interpretation of this class of models has been introduced
(see [BR11] and [Wai10], Chapter 5, Section 3) in which ion channels are modeled
by jump Markov processes. The model then falls into the class of stochastic gen-
eralized Hodgkin-Huxley models considered in the present paper. Let us proceed
to the mathematical description of the spatially extended stochastic Morris-Lecar
model. In this model, the total current GrK,rCa(u) is given by

1

C

[
1

NK

NK∑
i=1

11(rK(i))cK(vK − ūi)φzi +
1

NCa

NCa∑
i=1

11(rCa(i))cCa(vCa − ūi)φzi + I

]

and the evolution equation for the transmembrane potential

∂tut =
a

2RC
∆ut +GrKt ,r

Ca
t

(ut),

on [0, T ] × [0, 1] and with zero Dirichlet boundary condition. The total current
is the sum of the potassium K current, the calcium Ca current and the impulse
I. The positive constants a,R,C are relative to the bio-physical properties of the
membrane. When the voltage is held fixed, for any 1 ≤ i ≤ Nq where q is equal
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to K or Ca, rq(i) is a continuous time Markov chain with only two states 0 for
closed and 1 for open. The jump rate from 1 to 0 is given by βq(ūi) and from
0 to 1 by αq(ūi). All the jump rates are bounded below and above by positive
constants. We will assume that the potassium ion channels communicate at fast
rates of order 1

ε
for a small ε > 0. The calcium rates are of order 1. The invariant

measure associated to each channel 1 ≤ i ≤ NK is given by

µK
i (ūi) =

(
βK(ūi)

αK(ūi) + βK(ūi)
,

αK(ūi)

αK(u(zi)) + βK(ūi)

)
.

Therefore the averaged applied current is

FrCa(u) =
1

C

[
1

NK

NK∑
i=1

αK(ūi)

αK(ūi) + βK(ūi)
cK(vK − ūi)φzi

+
1

NCa

NCa∑
i=1

11(rCa(i))cCa(vCa − ūi)φzi + I

]
.

In this case the application Φ of Theorem 4.4.2 should read as follows for a model
with Dirac mass. For (u, r) ∈ L2(I)×RK, Φ(u, r) is given by

1

C

1

NK

NK∑
i=1

cK(vK − ūi)φzi
∫ ∞

0

Er
(

11(rK,u
s (i))− αK(ūi)

αK(ūi) + βK(ūi)

)
ds,

where, for u held fixed, rK,u
s (i) is a Markov chain on {0, 1} with jump rate from

1 to 0 is given by βK(ūi) and from 0 to 1 by αK(ūi). Of course, in this case, the
law of (rK,u

s (i), s ≥ 0) can be fully explicited. After some algebra one obtains that
Φ(u, r) is given by

1

C

1

NK

NK∑
i=1

cK
vK − ūi

αK(ūi) + βK(ūi)

(
11(r(i))− αK(ūi)

αK(ūi) + βK(ūi)

)
φzi .

Then the diffusion operator (CK(u)φ, ψ)L2(I) is given for u ∈ L2(I) by

1

N2
K

NK∑
i=1

c2
K(vK − ūi)2 aK(ūi)bK(ūi)

(αK(ūi) + βK(ūi))3
φ̄iψ̄i

for (φ, ψ) ∈ L2(I) × L2(I). From the above expression, we see that for any u ∈
L2(I), CK is of trace class in L2(I). Let us consider, for t ∈ [0, T ]

Qt : φ ∈ L2(I) 7→
∫ t

0

e∆(t−s)CK(us)e
∆(t−s)φds,
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where (us, s ∈ [0, T ]) is the averaged limit. From the expression of CK we see that
in the L2(I)-sense, Tr Qt is finite for any t > 0.

We present in Figure 4.1 numerical simulations of the slow fast Morris-Lecar
model with no Calcium current for various ε > 0. The averaged model (denoted by
ε = 0) and the trace of the diffusion operator are also plotted. We set the calcium
current equals to zero in our simulations to emphasize the convergence of the slow-
fast spatially extended Morris-Lecar model towards the associated averaged model.
See [ML81] Figure 2 for simulations of the deterministic finite dimensional Morris-
Lecar system with no calcium current. We observe in Figure 4.1 that averaging
affects the model in several ways. As ε goes to zero, the averaged number of
spikes on a fixed time duration increases until finally form a front wave in the
averaged model (ε = 0). In the same time the intensity of the spikes decreases.
Let us also mention the fact that the trace of the diffusion operator is higher in the
neighborhood of a spike in accordance to [Wai10], Chapter 5, Section 3, where the
same phenomenon has been observed for the finite dimensional stochastic Morris-
Lecar model.

Appendix 4.A Numerical data for the simulations
Here are the numerical data used for the simulations of the Morris Lecar model

C = 1, cK = 32, vK = −70,
a = 1, cCa = 0, vCa = 0,
R = 0.5, NK = 50, NCa = 0.

The length of the fiber is l = 0.5 and the time duration is T = 2.4. The impulse
I is of the form

I(x, t) = λ1[0,0.1](x)

with λ = 300. The data for the internal resistance R and the capacitance C
are arbitraly chosen for the purpose of the simulations. The values for the other
parameters correspond to [ML81].



4.A. NUMERICAL DATA FOR THE SIMULATIONS 109

a) f)

b) c)

d) e)

Figure 4.1: Simulations of the spatially extended Morris-Lecar model with no
Calcium current for ε equals successively to a) ε = 1, b) ε = 0.1, c) ε = 0.01, d)
ε = 0.001, e) ε = 0, that is for the averaged model. The plotted curve f) is related
to the simulation of the Morris Lecar model on its left side a): it is the plot of
the function t 7→ Tr Qt. A stimulus is exciting the membrane during all the time
duration of the simulation on the portion [0, 0.1] of the fiber.
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Chapter 5

On the quantitative ergodicity of
infinite dimensional switching
systems and application to averaging

The material for Chapter 5 is taken from the submitted pre-publication [GT13b]
On the quantitative ergodicity of infinite dimensional switching systems and appli-
cation to averaging available on Arxiv.

5.1 Introduction

This chapter is concerned with the long time behavior of a general class of infi-
nite dimensional Piecewise Deterministic Markov Processes (PDMP). Finite di-
mensional PDMP have been introduced in [Dav84] and generalized to the infinite
dimensional setting in [BR11]. At first, PDMPs were introduced on one hand as a
class of general non diffusion processes and on the other hand as tractable models
in optimal control theory, see [Dav93], or for more recent works in this field of appli-
cation, [BDSD12, Gor12]. Then, PDMP systems have been used to model various
situation such as motor molecular models [FGC08] and neuron models [BR11].
More generally, PDMPs constitute a very active area of current research, see for
example [ADGP12a, BDSD12, FGC08, Gor12, LP13, PTW12, Rie12a, TK09]. Re-
cently, the quantitative and qualitative ergodicity of a class of finite dimensional
PDMP have been studied, see [BLBMZ12, BLMZ12]. Our aim in the present chap-
ter is threefold. The first is to extend the results of the paper [BLBMZ12] to cover
the case of infinite dimensional PDMP. The second is to propose a class of infinite
dimensional PDMP for which the invariant measure exists, is unique and can be
made explicit in terms of the invariant measures of finite dimensional PDMPs. At
last, the third objective is to apply these results to the averaging of a fast PDMP

111
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fully coupled to a slow continuous time Markov chain, a situation motivated by
the study of biological systems.

In the present paper, we work with a general class of hybrid systems consisting
in an abstract Partial Differential Equation (PDE) coupled to a Continuous Time
Markov Chain (CTMC) with finite (in the largest part of the paper) or countable
state space. The CTMC is itself coupled to the PDE through its rate of jumps.
Therefore, this process decomposes itself in two components: the continuous com-
ponent solution of the abstract PDE, treated as an Hilbert space valued ordinary
differential equation, and the pure jump component following the dynamic of the
CTMC. This yields a general class of PDMP as considered in [BR11] and Chapter
3 and 4 for the infinite dimensional setting and [BLBMZ12, BLMZ12] for the finite
one. We propose conditions on the linear and non-linear parts of the PDE but
also on the jump rates of the CTMC under which the PDMP admits an invariant
measure. Then, under some additional assumptions, uniqueness of the invariant
measure is obtained. In this case, we show that the convergence of the law of
the continuous component toward its invariant measure is exponential in Wasser-
stein distance. This rate of convergence is obtained by coupling arguments as in
[BLBMZ12] but here in the case of infinite dimensional PDMP. Finite dimensional
projection of our PDMP model are also considered. We show that these truncated
processes have respectively unique invariant measures whose first marginals con-
verge, in the sense of the Wasserstein metric, toward the invariant measure of the
continuous component of the PDMP. This provide a way to approximate the in-
variant measure of an Hilbert space valued infinite dimensional PDMP by the use
of its finite dimensional projection. These results are then applied to a general class
of conductance based neuron model which contains the celebrated Hodgkin-Huxley
models, see [Aus08, HH52].

To push forward our analysis, we introduce a class of hybrid model consisting
as before in a PDE coupled to a CTMC but with the following changes. On one
hand the CTMC is independent of the PDE: the jump rates are no longer coupled
to the solution of the PDE. On the other hand we allow the CTMC to take values
in a countable set not necessary finite. At last, the PDE has a special structure
that we call "diagonal", leading to the study of an infinite system of independent
finite dimensional PDMPs driven by independent CTMC, see Section 5.3.1. This
diagonal class of PDMP allows us to mimic the situation of the stochastic heat
equation, see for example [Wal81], Section 5. In this specific setting, not entirely
covered by the results of Section 5.2.1, the rate of convergence toward the unique
invariant measure is obtained in Wasserstein distance and the strucure of the
invariant measure is made explicit. Convergence of the invariant measures of
the finite dimensional projection processes toward the invariant measure of the
continuous component is established as well. An example of such a diagonal PDMP
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for which the invariant measure can be fully computed is then fully treated. This
PDMP depends on a parameter β and the long time behavior of the system is
analyzed in function of β.

Numerous biological or physical situations where PDMP models are employed
exhibit different timescales. See for example [Hil84] in the case of neuron model.
Thus, as an application of the result on the rate of convergence in Wasserstein dis-
tance of the continuous component of the PDMP towards its invariant measure,
we consider the situation of averaging for infinite dimensional PDMP. See [YZ09]
for a introduction to averaging methods for inhomogeneous CTMC, a situation
different from ours but very instructive. We add a timescale in the general class of
hybrid processes studied in this paper. In this framework, the jump part decom-
poses itself in a slow and a fast component whereas the continuous component is
also fast. This ends up with a slow continuous time Markov chain fully coupled
to a fast PDMP. This kind of slow-fast systems are common in neurosciences: the
nerve impulse as well as some ionic channels have a faster dynamic than some
other ionic channels evolving at a slower timescale, see [Hil84] or Section 5.2.2 and
Remark 5.4.1 below for more details. We investigate how the system behaves in
long time. Using the results mentioned before, we show that the dynamic of the
slow component is averaged against the unique invariant measure associated to
the fast dynamic. We show that the limiting process is a classical continuous time
Markov chain.

The chapter is organized as follows. In Section 5.2.1, we introduce a gen-
eral class of infinite dimensional PDMPs for which we show the existence and
uniqueness of an invariant measure as well as the rate of convergence towards this
invariant measure with respect to the Wassertein metric. An example is provided
in Section 5.2.2: we show the existence and uniqueness for a general class of con-
ductance based neuron models. In Section 5.3.1, we define a class of "diagonal"
PDMPs for which the explicit structure of the invariant measure is obtained. A
concrete example is fully treated in Section 5.3.2. As an application of the results
of Section 5.2.1, we propose to average a fast PDMP fully coupled to a slow CTMC
in Section 5.4.

5.2 A general class of infinite dimensional switch-
ing systems

The aim of the section is to extend the results of [BLBMZ12] about the long
time behavior of a general class of finite dimensional PDMP models to the in-
finite dimensional setting. Approximating results are also obtained through the
consideration of finite dimensional projections of the model.
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5.2.1 Model and results

Let E be a finite set and H a separable Hilbert space. Scalar product and corre-
sponding norm on H are respectively denoted by (·, ·) and ‖ · ‖. Then, we are led
to consider the following family of non-linear problem. For any fixed i ∈ E{

∂tut = Aiut + Fi(ut),
u0 ∈ H

(5.1)

for t ∈ R+ = [0,∞[. We assume that for each i ∈ E, Ai is a strongly dissipative
H-valued linear operator with domain D(Ai) included in H. This means that there
exists a positive constant ωi1 such that for all u ∈ H

(Aiu, u) ≤ −ωi1‖u‖2. (5.2)

Since E is a finite set, we can choose ωi1 independent of i, i.e. set ω1 = mini∈E ω
i
1.

For any i ∈ E, the possibly non-linear term Fi is a H-valued operator with do-
main D(Fi) included in H, globally Lipschitz continuous on H: there exists a real
constant ω2 such that for any u, v in H and i ∈ E

‖Fi(u)− Fi(v)‖ ≤ ω2‖u− v‖. (5.3)

We assume that the evolution problem (5.1) is globally strongly dissipative in the
sense that:

−ω1 + ω2 < 0. (5.4)

Under the conditions (5.2), (5.3) and (5.4), for any i ∈ E, the system (5.1) has a
unique solution u which belongs to C([0, T ], H) for any time horizon T ≥ 0, see
for example [RR04], Chapter 12.

Example 5.2.1. Let E be a finite set and H = L2(0, 1). For i ∈ E, take ν(i) and
b(i) two positive constants and consider the equation

∂tut = ν(i)∆ut − b(i)u+ fi(u) (5.5)

on [0, 1] with Neumann boundary conditions ∂xut(0) = ∂xut(1). If we assume that
fi is Lipschitz continuous on H with Lipschitz constant ω2 independent of i, this
model enters in our framework if the dissipativity condition −mini∈E(ν(i)+b(i))+
ω2 < 0 is fulfilled.

Going back to the general setting, for any fixed u ∈ H, we consider an E-valued
continuous time Markov chain I = (It, t ≥ 0) with u-dependent generator Q(u) =
(qij(u))i,j. We assume that the jump rates are continuous in u and uniformly
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bounded in u and i from above and below: there exist two constant q− and q+

such that
0 < q− < min

i 6=j
inf
u
qij(u) < max

i 6=j
sup
u
qij(u) < q+ <∞. (5.6)

We propose ourselves to study the following evolution problem{
∂tut = AItut + FIt(ut),

P(It+h = j|It = i) = qij(ut)h+ o(h), i 6= j
(5.7)

for t ≥ 0 and given initial conditions u0 ∈ H and I0 ∈ E, two random variables.
The process (ut, It)t≥0 is a Piecewise Deterministic Markov Process (PDMP).
The existence and uniqueness of a solution to problem (5.7) taking values in
C([0, T ], H) × D([0, T ], E) for any finite time horizon T has been established in
[BR11]. Therefore, we are interested in the present paper in the long time behav-
ior of this solution. We proceed by showing that system (5.7) is well defined for any
positive time t. Actually, we show that the solution to (5.7) is uniformly bounded.
In particular there is no blow up at infinity for the continuous component u. The
fact that there is no blow up for the jump component I is a direct consequence of
the uniform boundedness (5.6) of the jump rate functions.

Proposition 5.2.1. Let us assume conditions (5.2), (5.3), (5.4). If the random
variable u0 is bounded in H P-almost surely, so is the process (ut, t ≥ 0): there
exists a constant C such that

sup
t∈R+

‖ut‖ ≤ C P− a.s.

Moreover, if

r =
maxi∈E ‖Fi(0)‖

(ω1 − ω2)
,

the process (ut, t ≥ 0) can not escape from the closed ball of radius r centered at
the origin.

Proof. Using successively the dissipativity property of the system and the elemen-
tary inequality

ab ≤ εa2 +
1

4ε
b2

which is valid for any positive reals a, b, ε, we see that for all t ∈ R+

d

dt
‖ut‖2 = 2(∂tut, ut)

= 2(AItut + FIt(ut), ut)

≤ −2ω1‖ut‖2 + 2ω2‖ut‖2 + 2 max
i∈E
‖Fi(0)‖‖ut‖

≤ −2(ω1 − ω2 − ε)‖ut‖2 + 2
1

4ε
max
i∈E
‖Fi(0)‖2
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P-a.s. Let us define

A(ε) = ω1 − ω2 − ε, B(ε) =
1

4ε
max
i∈E
‖Fi(0)‖2.

By the Gronwall’s lemma we deduce that for all t ∈ R+

‖ut‖2 ≤ B(ε)

A(ε)

(
1− e−2A(ε)t

)
+ ‖u0‖2e−2A(ε)t

almost-surely. For ε small enough, A(ε) > 0 and this yields

sup
t∈R+

‖ut‖2 ≤ max

(
‖u0‖2,

B(ε)

A(ε)

)
.

For ε∗ = ω1−ω2

2
we obtain that the stochastic process (ut, t ∈ R+) can not escape

the closed ball of radius

r =

√(
ε∗

2

)−1

B

(
ε∗

2

)
=

maxi∈E ‖Fi(0)‖
(ω1 − ω2)

.

Suppose moreover that there exists a Hilbert basis {ek, k ≥ 1} of H which
diagonalizes every linear operator Ai and therefore the basis does not depend on i.
However the eigenvalues denoted by −λk(i) may depend on i and we assume that

(C1) For any i ∈ E the sequence (λk(i), k ≥ 1) is a strictly increasing sequence of
positive numbers.

(C2) The following series ∑
k≥1

1

(mini∈E λk(i))2

is convergent in R.

As a consequence, the exponentiation of each operator Ai is well defined and

λ− = inf
k≥1

min
i∈E

λk(i) > 0.

Under assumptions (C1) and (C2), the process (ut, t ∈ R+) admits the following
mild representation

ut =
∑
k≥1

e−
∫ t
0 λk(Is)ds(u0, ek)ek +

∑
k≥1

∫ t

0

e−
∫ t
s λk(Iτ )dτ (FIs(us), ek)dsek (5.8)

for any t ∈ R+, P-a.s.
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Example (5.2.1 continued). These conditions are satisfied in Example 5.2.1. In-
deed, for i ∈ E, the linear operator Ai can be defined as

Aiu = ν(i)∆u− b(i)u.

If we set e1 = 1 and ek =
√

2 cos((k−1)π·) for k ≥ 2, then {ek, k ≥ 1} is a Hilbert
basis of L2(0, 1) which diagonalizes the linear operator Ai with eigenvalues

−λ1 = −b(i), −λk = −ν(i)((k − 1)π)2 − b(i), k ≥ 2.

These eigenvalues satisfy the two conditions (C1) and (C2).

Proposition 5.2.2. The family {ut, t ≥ 1} is tight in the Hilbert space H.

Proof. We already know by Proposition 5.2.1 that the family {ut, t ≥ 1} is bounded
in H almost surely. According to the criteria of tightness in a Hilbert space (cf.
Chapter 2) Section 2.3, it remains to show that the family {ut, t ≥ 1} can be
approximated uniformly in t by a sequence of finite dimensional random variables.
Let us define for N ≥ 1 the truncation of ut up to the order N as follows

u
(N)
t =

N∑
k=1

e−
∫ t
0 λk(Is)ds(u0, ek)ek +

N∑
k=1

∫ t

0

e−
∫ t
s λk(Iτ )dτ (FIs(us), ek)dsek

for any t ≥ 0. Then the random variable u(N) lies in the finite dimensional state
space H(N) = span{ek, 1 ≤ k ≤ N}. Moreover, H(N) is an approximation of H
in the sense that limN→∞ d(w,H(N)) = 0 for any w ∈ H where d(w,H(N)) =
infv∈H(N) ‖w − v‖. We are going to show that

lim
N→∞

sup
t≥1
‖ut − u(N)

t ‖ = 0, P− a.s.

For any t ≥ 1 and N ≥ 1, using successively the elementary facts that (a + b)2 ≤
2a2 + 2b2 and mini∈E λk(i) ≤ λk(j) for any j ∈ E, we have

‖ut − u(N)
t ‖2

=
∞∑

k=N+1

[
e−

∫ t
0 λk(Is)ds(u0, ek) +

∫ t

0

e−
∫ t
s λk(Iτ )dτ (FIs(us), ek)ds

]2

≤ 2
∞∑

k=N+1

e−2
∫ t
0 λk(Is)ds(u0, ek)

2 + 2
∞∑

k=N+1

(∫ t

0

e−
∫ t
s λk(Iτ )dτ (FIs(us), ek)ds

)2

≤ 2‖u0‖2

∞∑
k=N+1

e−2 mini∈E λk(i)t + 2 sup
s∈R+

max
i∈E
‖Fi(us)‖2

∞∑
k=N+1

1

mini∈E λk(i)2
,

P-a.s. The Lipschitz continuity of each Fi, the uniform boundedness of the family
{ut, t ∈ R+} proved in Proposition 5.2.1 and the convergence of each of the series
of the right hand side independently of t ≥ 1 yield the desired result.
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According to the assumptions of finiteness of the set E and uniform bounded-
ness of the jump rates of the process (It, t ≥ 0) we deduce without difficulty the
tightness of the process (It, t ≥ 0) in E. Then the couple process (u, I) is tight in
the product space H×E. According to the Prohorov theorem, by tightness, there
exists an accumulation point (u∗, I∗) such that

lim
n→∞

(utn , Itn) = (u∗, I∗)

in law inH×E for a certain strictly increasing sequence of real numbers (tn, n ≥ 1).
By the Feller property of the process (u, I) and the Krylov-Bogoliubov theorem
(see [DPZ92], Chapter 3) we deduce that the law of (u∗, I∗) is invariant for the
process (ut, It, t ≥ 0).

We are going to show the uniqueness of the invariant measure of the continuous
component (ut, t ≥ 0) as well as the rate of convergence of the law of ut toward
the law of u∗. For this purpose, we first recall the definition of the Wasserstein
metric.

Definition 5.2.1. Let ν1 and ν2 be two probability laws on a separable and complete
metric space X with finite moments of order p ∈ N. The Wasserstein distance of
order p between ν1 and ν2 is defined by

Wp(ν1, ν2) = (inf E(‖X − Y ‖pX ))
1
p , (5.9)

where the infimum runs over all the couplings (X, Y ) of probability laws on X ×X
with marginals ν1 and ν2.

The Wasserstein metric is a metric on the set P(X ) of probabilities on X .
(P(X ),Wp) is a separable and complete metric space and convergence in Wasser-
stein distance is equivalent to convergence in law plus convergence of the moments
of order 1 ≤ q ≤ p. When p = 1 we simply write W for W1. In the present paper,
we will successively use the Wasserstein metric of order one and two on the spaces
H and R.
For the proof of the following theorem we assume that there exists a constant Lq
such that for any i ∈ E and u, v ∈ H

|qi(u)− qi(v)| ≤ Lq‖u− v‖,
where qi(u) =

∑
j 6=i qij(u) is the total rate for leaving the state i. That is, the

total rate functions qi are Lipschitz in u uniformly in i.

Theorem 5.2.1. Let (u, I) and (ũ, Ĩ) be two solutions of the evolution problem
(5.7) such that the support of the laws of the random variables u0 and ũ0 are
contained in B[0, r]. Then

W(L(ut),L(ũt)) ≤ α(1 + t)e−βt,

where the positive constants α and β are made explicit in the proof.
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The proof of Theorem 5.2.1 is postponed to Appendix 5.A where we show that
the arguments used in the finite dimensional case [BLBMZ12] still work in the
infinite dimensional setting. The constants α and β depend on the characteristics
of the model, that is on the constants of dissipativity ω1 − ω2, the bound r of the
continuous part of the process, the Lipschitz constant and the lower bound of the
jump rate functions of the discontinuous part of the process.

As a direct consequence of Theorem 5.2.1, the process u has a unique invariant
measure with the following property.

Proposition 5.2.3. The process (ut, t ≥ 0) has a unique invariant measure ν on
H such that

W(L(ut), ν) ≤ α(1 + t)e−βt

where α and β are the constants of Theorem 5.2.1.

Moreover, this invariant measure ν can be approximated in the following way.

Proposition 5.2.4. For N ∈ N, let u(N) be the truncation up to the order N of u:
u

(N)
t =

∑N
k=1(ut, ek)ek for t ≥ 0. Then u(N) has a unique invariant measure ν(N)

which converges toward ν when N goes to infinity. More precisely, if E(‖u0‖2) is
finite we have

W(ν(N), ν) ≤
√
aN

for any N ∈ N where the sequence (aN)N∈N goes to zero when N goes to infinity
and is given by

aN = 4(max
i∈E
‖Fi(0)‖2 + C2)

∞∑
k=N+1

1

mini∈E λk(i)2
.

Proof. The process u(N) has a unique invariant measure ν(N) on

H(N) = span{ek, 1 ≤ k ≤ N}

by the same arguments as those developed to show the existence and uniqueness of
an invariant measure for u or by [BLBMZ12] since (u(N), I) is a finite dimensional
PDMP. To prove the convergence of ν(N) towards ν we notice that for any N ∈ N
and τ ≥ 1

sup
t≥τ
‖ut − u(N)

t ‖2

≤ 2E(‖u0‖2)
∞∑

k=N+1

e−2 mini∈E λk(i)τ + 4(max
i∈E
‖Fi(0)‖2 + C2)

∞∑
k=N+1

1

mini∈E λk(i)2
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P-a.s where C is the constant of Theorem 5.2.1, inequality which is proved in
Proposition 5.2.2. From this fact, we deduce that for any bounded Lipschitz
function f on H with Lipschitz constant less than 1 we have∣∣∣∣∫ fdν(N) −

∫
fdν

∣∣∣∣2
≤ 2E(‖u0‖2)

∞∑
k=N+1

e−2 mini∈E λk(i)τ + 4(max
i∈E
‖Fi(0)‖2 + C2)

∞∑
k=N+1

1

mini∈E λk(i)2
.

Then, taking the limit when τ goes to infinity, by dominated convergence and
Assumption (C2) we obtain∣∣∣∣∫ fdν(N) −

∫
fdν

∣∣∣∣2 ≤ 4(max
i∈E
‖Fi(0)‖2 + C2)

∞∑
k=N+1

1

mini∈E λk(i)2
.

The result follows by the Kantorovich-Rubinstein dual representation of theWasser-
stein distance.

One may want to relax the Lipschitz assumption (5.3) to cover some other
interesting situations such as the FitzHugh-Nagumo evolution equation which has
been the object of numerous investigation, see for example [San02] and references
therein, and is a paradigm in neuroscience since the seminal work [Fit69].

Theorem 5.2.2. Assume that for i ∈ E the non linear operator Fi satisfies instead
of (5.3) the weaker assumption

(F (u)− F (v), u− v) ≤ ω̃2‖u− v‖2, (5.10)

with ω̃2 ∈ R such that the condition of global dissipativity −ω1 + ω̃2 < 0 is satisfied.
Then the process (ut, t ∈ R+) has a unique invariant measure ν which satisfies the
estimate of Theorem 5.2.1

W(L(ut), ν) ≤ α(1 + t)e−βt

for α and β two positive constants.

Proof. The proof that u is bounded is identical to the proof of Proposition 5.2.1.
The tightness of the process (ut, t ∈ R+) may present some issues since under
assumption (5.10), the boundedness of the family {ut, t ∈ R+} in H is not enough
to ensure the boundedness of the family {Fi(ut), t ∈ R+} in H for i ∈ E. However,
the estimate

W(L(ut),L(ũt)) ≤ α(1 + t)e−βt

for α and β two positive constants can still be obtained as in the proof of Theorem
5.2.1 and the result follows.
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Example 5.2.2. Let E be a finite set and H = L2(0, 1). For i ∈ E, let us consider
the FitHugh-Nagumo equation

∂tut = ν(i)∆ut + b(i)ut(1− ut)(ut − a) (5.11)

on [0, 1] with Neumann boundary conditions ∂xut(0) = ∂xut(1). Moreover ν(i) and
b(i) are positive constants and a ∈

(
0, 1

2

)
. This model enters in the framework of

Theorem 5.2.2 if the dissipativity condition −mini∈E(ν(i))+maxi∈E b(i)f
′ (1+a

3

)
<

0 is fulfilled where f : x 7→ x(1− x)(x− a). Therefore, Theorem 5.2.2 applies and
the FitzHugh-Nagumo system (5.11) fully coupled to a CTMC in the sense of (5.7){

∂tut = ν(It)∆ut + b(It)ut(1− ut)(ut − a)
P(It+h = j|It = i) = qij(ut)h+ o(h), i 6= j

has a unique invariant measure ν with exponential convergence in Wasserstein
distance of the law of ut towards the first marginal of ν.

5.2.2 Example: existence and uniqueness of an invariant
measure for conductance based neuron models

We are looking for the existence and uniqueness of an invariant measure for the
generalized stochastic spatial Hodgkin-Huxley model studied in [Aus08, BR11]. In
this model, H = L2(0, 1) is endowed with its usual scalar product and associated
norm. The evolution problem is{

∂tut = ν∆ut + 1
N

∑
n∈N cIt(n)(vIt(n) − (ut, φzn))φzn

P(It+h(n) = ζ|It(n) = ξ) = qξζ(ut(zn))h+ o(h), ξ 6= ζ.
(5.12)

We still denote by u0 and I0 the two initial conditions. The PDE is endowed
with zero Dirichlet boundary conditions. The variable u describes the evolution of
the action potential along a nerve fiber which is here assimilated to the segment
[0, 1]. The action potential is propagated thanks to the diffusion operator ∆ with
a certain intensity ν > 0. N is a finite set of cardinal N . Along the nerve fiber,
at location zn for n ∈ N , a ion channel is located and can be in a finite number
of state denoted by I(n) ∈ E , where E is a finite set. Basically a state is to be
open or closed. When the ion channel is open, a current is allowed to pass through
the membrane. The associated conductance and driven potential for this current
are cI(n) > 0 and vI(n) ∈ R. The positive function φzn is an approximation of
the Dirac distribution δzn . φzn says how the opening of a channel affects the local
potential of the membrane. For a specific channel at location zn, if the value of
the local potential u(zn) was fixed equal to y ∈ R, then the evolution of the states
of the ion channels (It(n), t ≥ 0) would follow a continuous time Markov chain
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with y-dependent generator Q(y) = (qξζ(y))ξζ . However, the local potential is not
fixed. We assume here as in the previous section that the jump rates are bounded
above and below uniformly in y ∈ R.

Remark 5.2.1. We recall the corresponding deterministic conductance based model.
Assume that zn = i

N
for i ∈ {1, · · ·N−1} and that the function φzn are replaced by

the Dirac mass δzn. When N goes to infinity, the generalized Hodgkin-Huxley model
(5.12) converges in an appropriate sense [Aus08] towards (v, p) ∈ C([0, T ], H1

0 (I))×
C([0, T ], L2(I)|E|) solution of the deterministic generalized Hodgkin-Huxley model{

∂tvt = ν∆vt +
∑

ξ∈E pξ,tcξ(vξ − vt)
∂pξ,t = QT (vt)pξ,t, ξ ∈ E . (5.13)

Let us write
I = (I(n), n ∈ N ) ∈ EN ,

which will be referred as a configuration for the ionic channels. Using the formalism
of the previous section with E = EN , the partial differential equation of the system
(5.12) becomes:

∂tut = AItut + FIt(ut),

where for a given configuration i ∈ E and a given element u ∈ H the linear part
of the evolution equation is given by

Aiu = ν∆u.

Notice that for this choice, the operator Ai is independent of i. The reaction term
is then defined by

Fi(u) =
1

N

∑
n∈N

ci(n)(vi(n) − (u, φzn))φzn .

The following lemma is not difficult.

Lemma 5.2.1. For any i ∈ E, the linear operator Ai is a self-adjoint operator of
negative type. Moreover, if we define, for k ≥ 1 and x ∈ [0, 1]

ek(x) =
√

2 sin(kπx),

then the family {ek, k ≥ 1} is a Hilbert basis of H = L2(0, 1) which diagonalizes
every operator Ai. The eigenvalues are given by

−λk(i) = −ν(kπ)2.

Moreover, the reaction term Fi is dissipative, for any i ∈ E and u, v ∈ H

(Fi(u)− Fi(v), u− v) ≤ − 1

N

∑
n∈N

ci(n)(u− v, φzn)2 ≤ 0.
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We can therefore apply the results of the previous section to obtain

Proposition 5.2.5. The process (ut, t ≥ 0) has a unique invariant measure µu
such that if the support of the law of the initial value u0 is contained in the following
closed ball

B

[
0,

maxi∈E ‖Fi(0)‖
π

]
,

we have
W(L(ut), µu) ≤ α(1 + t)e−βt

for two positive constants α and β.

5.3 Infinite dimensional switching systems of diag-
onal type

In this section, we propose a class of infinite dimensional switching systems for
which the invariant measure can be described as the convolution of invariant mea-
sures of finite dimensional PDMPs. This approach is very similar to the one used
when building the invariant measure of the heat equation perturbed by a white
noise from the invariant measures of a sequence of finite dimensional Ornstein-
Uhlenbeck processes, see Section 5 of [Wal81].

5.3.1 General results

Let I = (Ik, k ≥ 1) be a sequence of independent continuous time Markov chains
taking values respectively in a finite set Ek, each one being irreducible. As in
the previous section, we assume that for each k ≥ 1, the rate of jumps of Ik are
uniformly bounded below and above: there exist two positive constants q− and q+

independent of k such that

0 < q− < min
i 6=j

qkij < max
i 6=j

qkij < q+ <∞. (5.14)

The process I is therefore itself an irreducible continuous time Markov chain with
values in the countable set E =

∏
k≥1Ek and such that the transition rates of I

are uniformly bounded below and above. We remark here that E can be of infinite
cardinality contrary to the previous section. We consider the evolution problem

∂tut = AItut + FIt , (5.15)

where for i ∈ E the operators Ai and Fi are diagonal with respect to i. That means
that for a Hilbert basis {ek, k ≥ 1} of H, on one hand for any i = (ik, k ≥ 1) ∈ E
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and u ∈ H
Aiu = −

∑
k≥1

λk(i
k)(u, ek)ek,

where for any k ≥ 1 and ik ∈ Ek, the eigenvalues λk(i) satisfy Assumptions (C1)
and (C2). As before, we assume that the series

∑
(mini∈Ek λk(i))

−2 is convergent.
On the other hand there exist measurable applications fk : Ek → Ek such that

Fi =
∑
k≥1

fk(i
k)ek

with the assumption supk≥1 maxl∈Ek |fk(l)| <∞. This assumption does not imply
that Fi is inH but the semi-group operators associated toAi regularize the problem
such that the process (ut, t ≥ 1) is H-valued. The process ((ut, It), t ∈ R+) is a
PDMP with constant jump rates. Let us define for k ≥ 1 and t ≥ 0, ukt = (ut, ek).
Then (ukt , t ∈ R+) is solution of the following finite dimensional evolution problem

d

dt
ukt = −λk(Ikt )ukt + fk(I

k
t ) (5.16)

and therefore, (uk, Ik) is a finite dimensional PDMP. In the following lemma recall
that W2 stands for Wasserstein distance of order 2 on the set of probabilities on
R with finite moment of order two.

Lemma 5.3.1. For any k ≥ 1, the PDMP (uk, Ik) has a unique invariant measure
µk on R× Ek with compact support

Ck = [−rk, rk]× Ek,

where rk =
maxl∈Ek |fk(l)|
minl∈Ek λk(l)

. Moreover, if (uk, Ik) and (ũk, Ĩk) are two solutions of

(5.16) such that the support of the law of (uk0, I
k
0 ) and (ũk0, Ĩ

k
0 ) is included in Ck

then
W2

2 (L(ukt ),L(ũkt )) ≤ 4r2
k

(
e−2 minl∈Ek λk(l)(1−γ)t + e−ρkγt

)
for any γ ∈ (0, 1) and ρk > 0 is chosen such that if Tk is the first time of coalescence
of I and Ĩ

P(T k > t) ≤ e−ρkt.

Such a ρk exists by irreducibility of the continuous time Markov chain Ik.

Proof. Let k ≥ 1 held fixed and (uk, Ik) be the stochastic process solution of (5.16).
We easily see that the process can not escape the compact set Ck = [−rk, rk]×Ek

where rk =
maxi∈Ek |fk(i)|
mini∈Ek λk(i)

. Let (uk, Ik) and (ũk, Ĩk) be two solutions of (5.16) with
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the support of the law of the initial conditions in Ck. Let T kc be the first time of
coalescence of the two independent processes Ik and Ĩk

T kc = inf{t ≥ 0, Ikt = Ĩkt }.

We couple the two processes (uk, Ik) and (ũk, Ĩk) in imposing that after the coa-
lescent time Tc, It = Ĩt. For any t ≥ 0 and γ ∈ (0, 1) we have

E(|ukt − ũkt |2) = E(|ukt − ũkt |21γt≥Tkc ) + E(|ukt − ũkt |21γt<Tkc )

= E(|ukt − ũkt |21γt≥Tkc ) + 4r2
kP(γt < T kc ).

On one hand we know that for the irreducible continuous time Markov chain Ik

there exists a positive constant ρk such that

P(γt < T kc ) ≤ e−ρkγt.

On the other hand, on the event {γt ≥ T kc } since Ikt = Ĩkt we have

d

dt
|ukt − ũkt |2 ≤ −2 min

i∈Ek
λk(i)(u

k
t − ũkt )2.

Hence

|ukt − ũkt |21γt≥Tkc ≤ |ukTkc − ũ
k
Tkc
|2e−2 mini∈Ek λk(i)(t−Tkc )1γt≥Tkc

≤ 4r2
ke
−2 mini∈Ek λk(i)t(1−γ),

almost-surely. Therefore, for any t ≥ 0 and γ ∈ (0, 1) we have

E(|ukt − ũkt |2) ≤ 4r2
k

(
e−ρkγt + e−2 mini∈Ek λk(i)t(1−γ)

)
and the result follows.

We recall that a subset C of RN × E can be viewed as a subset of H × E by
the natural identification between H with l2(R) and l2(R) with RN where l2(R)
denotes the set of real sequences (xk, k ≥ 1) such that

∑
k≥1 x

2
k < ∞. Since the

sequence (Ik, k ≥ 1) is a sequence of independent processes, we easily see that

Theorem 5.3.1. The PDMP (u, I) has a unique invariant measure in H × E
which is of the diagonal form

µ =
⊗
k≥1

µk

and supported by the set C =
∏

k≥1Ck.
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Recall that by Assumption (C1)

λ− = inf
k≥1

min
l∈E1

λk(l) > 0

and by Assumption (C2), since
∑

k≥1
(minl∈Ek |λk(l)|)−2 <∞, we have∑

k≥1

r2
k <∞.

We denote by ν the law of the first marginal of µ which is the unique invariant
law for the process (ut, t ∈ R+). Moreover ν =

⊗
k≥1 ν

k where νk is the unique
invariant measure of the process (ukt , t ∈ R+). We define ν(N) =

⊗N
k=1 ν

k the
approximation of ν up to the order N .

Theorem 5.3.2. Let us assume that all the CTMC Ik have the same law with
Ek = E1 for k ≥ 1. Then

i) for any t ∈ R+, the process (ut, t ∈ R+) converges towards its invariant
measure in the following sense

W2
2 (L(ut), ν) ≤ 8

(∑
k≥1

r2
k

)
e−τt

for any t ≥ 0 where τ = 2ρ1λ−
ρ1+2λ−

;

ii) for any N ∈ N, the measure ν(N) converges towards ν in the following sense

W(ν(N), ν) ≤
√
aN ,

where (aN)N∈N is the sequence of positive numbers converging to zero given
by

aN = 4 sup
k≥1

max
i∈E1

|fk(i)|2
∞∑

k=N+1

1

mini∈E λk(i)2
.

Proof. i) Let ((ut, It), t ∈ R+) and ((ũt, Ĩt), t ∈ R+) be two solutions of problem
(5.15). We have, for any t ≥ 0

E(‖ut − ũt‖2) =
∑
k≥1

E(|ukt − ũkt |2).

For each k, choose a coupling by saying that Ikt = Ĩkt as soon as t ≥ T k where
T k = inf{t ≥ 0, Ikt = Ĩkt } (the law of T k is independent of k because the CTMCs
Ik have the same law). By the proof of the previous lemma we have

E(|ukt − ũkt |2) ≤ 4r2
k

(
e−2 mini∈E1

λk(i)(1−γ)t + e−ρ1γt
)
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for any γ ∈ (0, 1) where ρ1 is the positive constant such that P(T1 > t) ≤
exp(−ρ1t). Therefore, with λ− = infk≥1 minl∈E1 λk(l) we obtain

E(‖ut − ũt‖2) = 4
(
e−2λ−(1−γ)t + e−ρ1γt

)∑
k≥1

r2
k.

The result follows by taking γ = 2λ−
ρ1+2λ−

.
ii) As in the proof of Proposition 5.2.2, one can show that for any time τ ≥ 1

sup
t≥τ
‖u(N)

t − ut‖2

≤ 2E(‖u(N)
0 − u0‖2)

∞∑
k=N+1

e−2 mini∈E λk(i)τ + 4 sup
k≥1

max
i∈E1

|fk(i)|2
∞∑

k=N+1

1

mini∈E λk(i)2
,

P-a.s. Then the result can be proved as in Proposition 5.2.4.

5.3.2 Example: a case where the invariant measure is ex-
plicit

Let I = (Ik, k ≥ 1) be a sequence of i.i.d. continuous time Markov chains with
state space {0, 1} and transition rate matrix

Qβ = β

(
−1 1
1 −1

)
with β a positive parameter. The smaller is β the less the chain jumps. Therefore
Ek = E1 = {0, 1} for all k ∈ N. Let g be in L2(0, 1) and {ek, k ≥ 0} be the Hilbert
basis of H = L2(0, 1) considered in Lemma 5.2.1. We consider the following
evolution problem

∂tut = ∆ut +
∑
k≥1

(2Ikt − 1)(g, ek)ek (5.17)

for t ≥ 0 with zero Dirichlet boundary conditions. If we freeze the component I
to a given i = (ik, k ≥ 1) ∈ E, we are left with the PDE

∂tut = ∆ut +
∑
k≥1

(2ik − 1)(g, ek)ek

with zero Dirichlet boundary conditions. This PDE gives rise to a very simple
dynamical system: there is a unique fixed point vi which is globally uniformly
exponentially stable (GUES)

vi = −∆−1
∑
k≥1

(2ik − 1)(g, ek)ek =
∑
k≥1

(2ik − 1)

(kπ)2
(g, ek)ek.
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Thus, when I is allowed to switch, the process (ut, t ≥ 0) is successively attracted
by the fixed points {vi, i ∈ E}.

Lemma 5.3.2. For any k ≥ 1 and t ≥ 0, the process ukt = (ut, ek) ∈ R is solution
to the following problem

ukt = −(kπ)2ukt + (2Ikt − 1)(g, ek).

Each process (ukt , I
k
t , t ≥ 0) has a unique invariant measure µkβ supported by the

compact set
Dk × E1,

where
Dk =

[
−|(g, ek)|

(kπ)2
,
|(g, ek)|
(kπ)2

]
.

Moreover the invariant measure is fully explicit: for x ∈ R and i ∈ {0, 1}, it is
given by

µkβ(dx, i)

= ak

(
10(i)

(g, ek)− (kπ)2x
+

11(i)

(g, ek) + (kπ)2x

)
((g, ek)

2 − (kπ)4x2)
β

(kπ)2 1Dk(x)dx

where ak is the constant of normalization defined by

(ak)
−1 = 2(g, ek)

∫
Dk

((g, ek)
2 − (kπ)4x2)

β

(kπ)2
−1

dx.

By independence of the coordinates, the law of the unique invariant measure
of the PDMP (ut, It, t ≥ 0) is given by the product of convolution

µβ =
⊗
k≥1

µkβ.

Take (u∗,k, I∗,k) with law µkβ. Then the law of u∗,k has the density

νkβ(dx) = 2(g, ek)ak((g, ek)
2 − (kπ)4x2)

β

(kπ)2
−1

1Dk(x)dx.

Then if (u∗, I∗) has the same law as µβ, we obtain that u∗ has the same law as the
H-valued random variable

Zβ =
∑
k≥1

Zkek,

where (Zk, k ≥ 1) is a sequence of independent real valued random variables with
respective laws νkβ . This provides a representation for νβ, the law of the first
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marginal of the invariant law µβ. Let us remark a few things about the random
variable Zβ. Firstly, the law νkβ for k ≥ 1 is centered and symmetric such that

Zk = −Zk in law.

Therefore, we obtain

Zβ = −Zβ in law,

Zβ

(
1

2
+ x

)
= Zβ

(
1

2
− x
)

in law

for any x ∈
[
0, 1

2

)
by a direct computation using the symmetry and the indepen-

dence of the {Zk, k ≥ 1}. One can also show that

E(Z2
k) ∼ (g, ek)

2

(kπ)4
,

which ensures that Zβ ∈ L2(Ω, H). We remark also that the support of νβ does
not depends on β. However the simulations of Figure 5.1 shows that the set where
the measure νβ is concentrated is highly dependent on β. When β is small (i.e. the
jump process I does not jump often), this set concentrates itself around a closed
curve connecting 0 to 1. This closed curve corresponds to the union of the two
curves defined thanks to the respective unique fixed points of the PDEs

∂tu = ∆u+ g,

∂tu = ∆u− g

for t ≥ 0 on [0, 1] with zero Dirichlet boundary conditions. These two fixed points
correspond to the two extreme configurations ik = 1 for all k ≥ 1 and ik = 0 for
all k ≥ 1 in the model (5.17). The fixed points are simply ∆−1g and −∆−1g which
are in fact the primitive of the primitive of g (respectively −g) which is null in 0
and 1. This yields for the example of Figure 5.1 where g : x ∈ [0, 1] 7→ x(1− x)

∆−1g : x ∈ [0, 1] 7→ − 1

12
x4 +

1

6
x3 − 1

12
x.

When β increases, the random variable Zβ starts to visit all the space between the
fixed points ∆−1g and −∆−1g. Then when β becomes very big (the jump process
I jumps very often), the random variable Zβ seems to concentrate itself around
the x-axis. As a conclusion one can say that the support of νβ is the domain
delimited by the two functions ∆−1g and −∆−1g. For β near zero, the measure
is concentrated on the boundary of the support and when β increases there is a
"migration" of this concentration toward the x-axis.
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Let us gain a more accurate insight in Problem (5.17) when β goes to infinity.
Let T be a fixed time horizon. In this case one can show by averaging methods
that the process (ut, t ∈ [0, T ]) converges in law when β goes to infinity toward
the process ū solution of the PDE

∂tūt = ∆ūt + F̄

with zero Dirichlet boundary conditions. The averaged reaction term F̄ is given
by

F̄ =

∫
{0,1}N

∑
k≥1

(2ik − 1)(g, ek)
⊗
k≥1

πk(di
k)ek,

where for k ≥ 1, πk is the invariant measure of the chain Ik, that is to say
πk(0) = πk(1) = 1

2
. Therefore F = 0 and

ūt = e∆tu0

for any t ∈ [0, T ]. Since we know that ūt converges to 0 in H when t goes to
infinity, this heuristically explains the behavior of Z when β increases.

If we make, at least formally, the change of time t → βt in (5.17), we end up
with the system

β∂tut = ∆ut + FIt

for t ≥ 0 where the process (It, t ≥ 0) jumps now at rate 1. Then, letting formally
β go to 0, the process u should verify the equation ∆ut + FIt = 0 for t ≥ 0 and
therefore ut = ∆−1FIt . This explains heuristically the behavior of the random
variable Z when β goes to zero.

5.4 Application: Averaging for a slow continuous
time Markov chain fully coupled to a fast infi-
nite dimensional PDMP

In this section, we apply the results of Section 5.2.1, and more particularly Theorem
5.2.1, to averaging.

5.4.1 Model and results

We place ourselves in the setting of Section 5.2.1. For ε ∈ (0, 1), we consider a
PDMP of the following form

∂tut = 1
ε

[
A
I

(1)
t ,I

(2)
t
ut + F

I
(1)
t ,I

(2)
t

(ut)
]
, u0 ∈ H,

P(I
(1)
t+h = j|I(1)

t = i) = 1
ε
q

(1)
ij (ut)h+ o(h), i 6= j, i, j ∈ E(1),

P(I
(2)
t+h = j|I(2)

t = i) = q
(2)
ij (ut)h+ o(h), i 6= j, i, j ∈ E(2)

(5.18)
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Figure 5.1: Simulation of samples of the H-valued random variable Z for
the functions g : x ∈ [0, 1] 7→ x(1 − x) and various values of β: β =
0.1, 1, 10, 50, 100, 500, 1000 from the upper left corner to the lower right corner.
The support of the law is also plotted on the lower right corner. Each point
corresponds to a value Z(x) for x ∈ [0, 1].

for t ≥ 0. Let us describe the above system. If we denote by I the process (I(1), I(2))
then the process (u, I) is nothing but a PDMP as considered in Section 5.2.1. We
require on this PDMP the same assumptions as in Section 5.2.1. Particularly

• the sets E(1) and E(2) are finite;

• the operators A(i(1),i(2)) and A(i(1),i(2)) + F(i(1),i(2)) are strongly dissipative on
H uniformly in (i(1), i(2)) ∈ E(1) × E(2);

• the jump rates satisfy

0 < q− < min
i 6=j,i,j∈E(k)

inf
u
q

(k)
ij (u) < max

i 6=j,i,j∈E(k)
sup
u
q

(k)
ij (u) < q+ <∞

for k ∈ {1, 2} and two positive constants q− and q+.

• The jump rate functions qij : H → R are globally Lipschitz uniformly in
i, j ∈ E(k) for k ∈ {1, 2}.

The PDMP (u, I(1), I(2)) gives rise to two distinct dynamic. The process (u, I(1))
evolves faster than the process I(2) according to the timescale separation introduced
by the small parameter ε. On a fixed time horizon [0, T ], when ε goes to zero,
the process (u, I(1)) ( denoted in the sequel by (uε, I(1),ε)) will rapidly reach its
stationary behavior. Then the slow process I(2)( denoted in the sequel by I2,ε) will
evolve according to the averaged dynamic of (u, I(1)): the process (u, I(1)) will be
replaced by its invariant law.
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Let us consider that in the system (5.18), the process I(2),ε is frozen to the
value i(2) ∈ E(2). Then, applying Theorem 5.2.1, we know that the PDMP defined
by {

∂tut =
[
A
I

(1)
t ,i(2)ut + F

I
(1)
t ,i(2)(ut)

]
, u0 ∈ H,

P(I
(1)
t+h = j|I(1)

t = i) = q
(1)
ij (ut)h+ o(h), i 6= j, i, j ∈ E(1)

(5.19)

has a unique invariant measure µi(2) onH×E(1) such that if νi(2) =
∫
E(1) µi(2)(du, di)

is the law of its first marginal, we have

W(L(ut), νi(2)) ≤ α(1 + t)e−βt, (5.20)

where the positive constants α and β are independent of i(2) ∈ E(2). The fact that
α and β can be chosen independently of i(2) is a direct consequence of the explicit
form of these constants that can be found at the end of Appendix 5.A. As a result
of the Kantorovich-Rubinstein dual representation of the Wasserstein distance, we
obtain that for any globally Lipschitz functional Φ on H we have∣∣∣∣E(Φ(ut))−

∫
H

Φ(u)νi(2)(du)

∣∣∣∣ ≤ ‖Φ‖Lipα(1 + t)e−βt. (5.21)

Let us average the dynamic of I(2) against the invariant measure of (u, I(1)). For
any i, j ∈ E(2) we define the averaged jump rate

q̄ij =

∫
H

q
(2)
ij (u)νi(du) (5.22)

We denote by Q̄ the intensity matrix associated to the averaged jump rates q̄ij
and by J̄ = (J̄t, t ∈ [0, T ]) the continuous time Markov chain associated to Q̄. For
simplicity, its starting point is assumed to be the one of I(2),ε: J̄0 = I

(2),ε
0 = i

(2)
0 ∈

E(2).

Theorem 5.4.1. The process I(2),ε = (I
(2),ε
t , t ∈ [0, T ]) converges in law when ε

goes to zero toward the CTMC J̄ . Moreover the order of convergence is 1 in the
sense that

sup
t≥0
|E(φ(I

(2),ε
t )− φ(J̄t))| = O(ε)

for any real valued measurable and bounded function φ.

Proof. The proof is postponed to Section 5.4.2.

Actually, we show in the proof of Theorem 5.4.1 that for any real valued measurable
and bounded function φ

E(φ(I
(2),ε
t )− φ(J̄t)) = O

(
ε+ e−β

t
ε

)
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for any t ∈ [0, T ] where the big O is uniform in t ∈ [0, T ]. This result can be
considered as a starting point for the study of the rescaled occupation measure

1√
ε

∫ t

0

(
1i(I

(2),ε
s )− 1i(J̄s)

)
γi(s)ds

for t ∈ [0, T ], i ∈ E(2) and γi a deterministic function. See [YZ09], chapter 5, for
more details in the case of non homogeneous continuous time Markov chains.

Remark 5.4.1. We consider the generalized stochastic spatial Hodgkin-Huxley
model of Section 5.2.2 with two timescales

∂tu
ε
t = 1

ε

[
ν∆uεt + F (1)(uεt , I

(1),ε) + F (2)(uεt , I
(2),ε)

]
P(I

(1),ε
t+h (n) = ζ|I(1),ε

t (n) = ξ) = 1
ε
q

(1)
ξζ ((uεt , φzn))h+ o(h), ξ 6= ζ, ξ, ζ ∈ E (1)

P(I
(2),ε
t+h (n) = ζ|I(2),ε

t (n) = ξ) = q
(2)
ξζ ((uεt , φzn))h+ o(h), ξ 6= ζ, ξ, ζ ∈ E (2),

(5.23)
where for l = 1, 2 and (u, I l) ∈ H × ENl (keeping the notations of Section 5.2.2)

F (l)(u, I(l)) =
1

Nl

∑
n∈Nl

c
I

(l)
t (n)

(v
I

(l)
t (n)

− (ut, φzn))φzn .

That is, we distinguish two different kind of ion channels located at discrete points
in the two finite subsets N1 and N2 of [0, 1]. After averaging, this system reduces
to the CTMC J̄ with rate of jumps given by

q̄ij =

∫
H

q
(2)
ij (u)νi(du) (5.24)

for i, j ∈ (E (2))N2. The measure νi is the invariant measure corresponding to the
equation on the potential u when the process I(2),ε is held fixed as explained above.
Notice that the equation on the potential disappear in the averaged model. The
potential is only present through the invariant measure ν. This may look odd since
the potential is a variable of first interest in conductance based neuron models.
As remarked in [RW07] for the finite dimensional deterministic Hodgkin-Huxley
model, there is certainly a transition between the three dimensional two timescales
model (5.23) and the one dimensional averaged model following the dynamic of J̄ .
This transition should obey the following evolution problem{

∂tu
ε
t = 1

ε

[
ν∆uεt + F̄ (1)(uεt) + F (2)(uεt , I

(2),ε)
]

P(I
(2),ε
t+h (n) = ζ|I(2),ε

t (n) = ξ) = q
(2)
ξζ ((ut, φzn))h+ o(h), ξ 6= ζ, ξ, ζ ∈ E (2),

(5.25)
where the averaged reaction term is given by

F̄ (u) =

∫
(E(1))N1

F (1)(u, i)πu(di)
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and the measure πu is the invariant measure of the process defined by

P(Ĩ
(1)
t+h(n) = ζ|Ĩ(1)

t (n) = ξ) = q
(1)
ξζ ((u, φzn))h+ o(h), ξ 6= ζ, ξ, ζ ∈ E (1)

for a given u (for averaging in this context , see Chapter 2). System (5.25) consti-
tutes a singularly perturbed model in a suitable form for biological considerations.
This transition phenomenon certainly deserves a more profound investigation.

5.4.2 Proof of Theorem 5.4.1

Since the family {I(2),ε, ε ∈ (0, 1)} takes values in a finite state space E(2) with
jump rates which satisfy estimates

0 < q− < min
i 6=j

inf
u
q

(2)
ij (u) < max

i 6=j
sup
u
q

(2)
ij (u) < q+ <∞,

the tightness of the family in D(R+, E
(2)) follows. Let J be any accumulation

point. We want to identify the generator of the process J . We follow a martingale
approach. For ε ∈ (0, 1), the generator of the process (uε, I(1),ε, I(2),ε) is given by

Aεφ(u, i(1), i(2)) =
1

ε

d

du
φ(u, i(1), i(2))[Ai(1),i(2)u+ Fi(1),i(2)(u)] (5.26)

+
1

ε

∑
j∈E1

[φ(u, j, i(2))− φ(u, i(1), i(2))]q
(1)

i(1)j
(u) (5.27)

+
∑
j∈E2

[φ(u, i(1), j)− φ(u, i(1), i(2))]q
(2)

i(2)j
(u) (5.28)

for function φ : H ×E1 ×E2 → R, C1 and bounded for bounded arguments in its
first component and measurable and bounded in its second and third components.
The usual theory of Markov processes (see [EK86], Chapter 4) tels us that the
stochastic process defined by:

M ε,φ
t = φ(uεt , I

(1),ε
t , I

(2),ε
t )− φ(u0, i

(1)
0 , i

(2)
0 )−

∫ t

0

Aεφ(uεs, I
(1),ε, I(2),ε

s )ds

is a F εt -martingale where the σ-algebra F εt is defined for t ≥ 0 by

F εt = σ(uεs, I
(1),ε
s , I(2),ε

s , 0 ≤ s ≤ t).

In particular, for φ1 : E(2) → R a bounded measurable function we have that the
process:

M ε,φ1
t = φ1(I

(2),ε
t )− φ1(i

(2)
0 )−

∫ t

0

∑
i∈E(2)

[φ1(i)− φ1(I(2),ε
s )]q

(2)

I
(2),ε
s i

(uεs)ds (5.29)
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is a F εt -martingale. Using this fact, we will show that the process:

Mφ1
t = φ1(Jt)− φ1(i

(2)
0 )−

∫ t

0

∑
i∈E(2)

[φ1(i)− φ1(Js)]q̄Jsids (5.30)

is a Ft-martingale. Let t, σ ≥ 0 and 0 ≤ t1 < t2 < · · · < tk ≤ t a collection of k
real numbers. For bounded continuous functions z1, · · · , zk on E(2) we compute:

E((Mφ1
t+σ −M

φ1
t )z1(Jt1) · · · zk(Jtk))

= E((φ1(Jt+σ)− φ1(Jt)−
∫ t+σ

t

∑
i∈E(2)

[φ1(i)− φ1(Js)]q̄Jsids)z1(Jt1) · · · zk(Jtk))

= lim
ε→0

E((φ1(I
(2),ε
t+σ )− φ1(I

(2),ε
t )

−
∫ t+σ

t

∑
i∈E(2)

[φ1(i)− φ1(I(2),ε
s )]q̄

I
(2),ε
s i

(vi)ds)z1(I
(2),ε
t1 ) · · · zk(I(2),ε

tk
))

where we have used the convergence in law of the family {(I(2),ε
t )t∈[0,T ], ε ∈]0, 1]}

towards (Jt)t∈[0,T ] when ε goes to zero. Let us write

Zε
k = z1(I

(2),ε
t1 ) · · · zk(I(2),ε

tk
).

Splitting the sum in two parts, we obtain

lim
ε→0

E((φ1(I
(2),ε
t+σ )− φ1(I

(2),ε
t )−

∫ t+σ

t

∑
i∈E(2)

[φ1(i)− φ1(I(2),ε
s )]q̄

I
(2),ε
s i

ds)Zε
k)

= lim
ε→0

Aε +Bε,

where

Aε = E((φ1(I
(2),ε
t+σ )− φ1(I

(2),ε
t )−

∫ t+σ

t

∑
i∈E(2)

[φ1(i)− φ1(I(2),ε
s )]q

I
(2),ε
s i

(uεs)ds)Z
ε
k),

Bε = E((

∫ t+σ

t

∑
i∈E(2)

[φ1(i)− φ1(I(2),ε
s )][q

I
(2),ε
s i

(uεs)− q̄I(2),ε
s i

]ds)Zε
k).

At this point, we notice that for the first term

lim
ε→0

Aε = lim
ε→0

E((M ε,φ1
t+σ −M

ε,φ1
t )Zε

k) = 0
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by the martingale property of M ε,φ1 . Then, for the second term, rearranging and
conditioning by the σ-algebra Gεs = σ(I

(2),ε
ρ , 0 ≤ ρ ≤ s) generated by I(2),ε

lim
ε→0

Bε

= lim
ε→0

∫ t+σ

t

E(
∑
i∈E(2)

[φ1(i)− φ1(I(2),ε
s )][q

I
(2),ε
s i

(uεs)− q̄I(2),ε
s i

]Zε
k)ds

= lim
ε→0

∫ t+σ

t

E(
∑
i∈E(2)

[φ1(i)− φ1(I(2),ε
s )]E(q

I
(2),ε
s i

(uεs)− q̄I(2),ε
s i
|Gεs)Zε

k)ds.

Using the uniform Lipschitz property of qji on H and the estimate (5.21) we obtain

E(q
I

(2),ε
s i

(uεs)− q̄I(2),ε
s i
|Gεs) ≤ E(Lqα(1 +

s

ε
)e−β

s
ε |Gεs).

Therefore, including the above estimate in the calculation

| lim
ε→0

∫ t+σ

t

E(
∑
i∈E(2)

[φ1(i)− φ1(I(2),ε
s )]E(q

I
(2),ε
s i

(uεs)− q̄I(2),ε
s i
|Gεs)Zε

k)ds|

≤ lim
ε→0

∫ t+σ

t

E(
∑
i∈E(2)

∣∣φ1(i)− φ1(I(2),ε
s )

∣∣E(Lqα(1 +
s

ε
)e−β

s
ε |Gεs) |Zε

k|)ds

≤ C1 lim
ε→0

∫ t+σ

t

(
1 +

s

ε

)
e−β

s
εds

≤ C2

(
ε+ e−β

t
ε

)
,

where C1 and C2 are two constants independent of ε, t and σ. Therefore for any
t ∈ (0, T ] and σ > 0:

E((Mφ1
t+σ −M

φ1
t )z1(I

(2),ε
t1 ) · · · zk(I(2),ε

tk
)) = 0.

By the same arguments, one shows that the above equality is still valid for t = 0.
Therefore, Mφ1 is a Ft-martingale for any bounded measurable function φ1. We
have thus identified J as the process with generator:

Aφ1(j) =
∑
i∈E(2)

[φ1(i)− φ1(j)]q̄ji.

This process is uniquely defined up to indistinguishability if the constants q̄ji are
given and thus the accumulation point is unique. Similarly, we can show that:

sup
t≥0
|E(φ1(I

(2),ε
t )− φ1(Jt))| = O(ε)

This implies that the order of convergence is 1.
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Appendix 5.A Proof of Theorem 5.2.1

Our proof follows the same arguments as those introduced in the finite dimensional
case [BLBMZ12]. Given two real valued random variables X and Y , we say that x
is stochastically smaller than Y if for all x ∈ R, P(X ≤ x) ≤ P(Y ≤ x). We keep
then notation of Theorem 5.2.1.

Let ((u, I), (ũ, Ĩ)) be a coupling such that the law of u0 and ũ0 are supported
in B[0, r]. ((ut, It), t ∈ R+) and ((ũt, Ĩt), t ∈ R+) are thus two solutions of Problem
(5.7) . We begin by noticing that for any t ≥ 0 we have:

‖ut − ũt‖2 ≤ ‖u0 − ũ0‖2 − 2(ω1 − ω2)

∫ t

0

‖us − ũs‖2ds

+ 2

∫ t

0

(FIs(ũs)− FĨs(ũs), us − ũs)1Is 6=Ĩsds

almost surely. Let us denote the quantity ‖ut− ũt‖ by Dt (the distance in H-norm
between ut and ũt). We see that as long as I = Ĩ, Dt decreases exponentially
fast at rate ω1 − ω2. When I 6= Ĩ, Dt can increase but will nevertheless remain
less than 2r since Dt = ‖ut − ũt‖ ≤ 2r (see Proposition 5.2.1). At worst Dt will
reach 2r before the time of coalescence of the two processes I and Ĩ. We have to
construct our coupling such that we are able to control the coalescent time and
also the time during which the two processes I and Ĩ remain equal. This can be
achieved using the infinitesimal generator Ac of the process (u, I, ũ, Ĩ) as detailed
below.

1. if i 6= ĩ

Ach(u, i, ũ, ĩ) =
dh

du
(u, i, ũ, ĩ)[Aiu+ Fi(u)] +

dh

dũ
(u, i, ũ, ĩ)[Aĩũ+ Fĩ(ũ)]

+
∑
k∈E

qik(u)(h(u, k, ũ, ĩ)− h(u, i, ũ, ĩ)) a single jump of I

+
∑
k∈E

qĩk(ũ)(h(u, i, ũ, k)− h(u, i, ũ, ĩ)) a single jump of Ĩ
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2. if i = ĩ

Ach(u, i, ũ, ĩ) =
dh

du
(u, i, ũ, i)[Aiu+ Fi(u)] +

dh

dũ
(u, i, ũ, i)[Aiũ+ Fi(ũ)]

+
∑
k∈E

(qik(u) ∧ qik(ũ))(h(u, k, ũ, k)− h(u, i, ũ, i))

two simultaneous jumps ...

+
∑
k∈E

(qik(u)− qik(ũ))+(h(u, k, ũ, i)− h(u, i, ũ, i))

... a single jump of I

+
∑
k∈E

(qik(u)− qik(ũ))−(h(u, i, ũ, k)− h(u, i, ũ, i))

... a single jump of Ĩ

Remark 5.A.1. Let us consider two neurons whose dynamic is described by the
conductance based model of Section 5.2.2. Then the proposed coupling corresponds
to a coupling on the conductances: the two neurons are linked throughout the rate
of jumps of their ionic channels and therefore the related conductances are coupled.

In between two coincidences of the processes I and Ĩ, Dt can increase up to 2r
before the coalescent time Tc of I and Ĩ. For the proposed coupling where the
law of (u, I, ũ, Ĩ) is characterized by the above generator, the coalescent time Tc is
stochastically smaller than an exponential variable of parameter b for some positive
b. For instance, if E = {1, 2}, the coalescence time is equal to the time of the first
jump of one of the two independent processes r and r̃. This event occurs at rate
qi1 ĩ1(u) + qi2 ĩ2(ũ) ≥ 2q− with ik, ĩk ∈ E = {1, 2} for k = 1, 2.

Then, after a coalescent time, the two processes It and Ĩt remain equal up to
the first single jump of one of the two processes which occurs, according to our
coupling, at rate |qi(u)−qi(ũ)| bounded above by LqDt. Then E(Dt) ≤ E(Ut) where
Ut, in a way, caricatures the dynamic of the process Dt. Ut decreases exponentially
fast at rate ω1 − ω2 and can jump from its current state x to 2r + ε with ε > 0
at rate Lqx. This caricature the fact that Dt decreases exponentially fast when I
and Ĩ remain equal and then can increase up to 2r. Here Ut increases by jumping
directly to 2r+ ε. When Ut is in the state 2r+ ε it stays there until it jumps in 2r
and that at rate b. This caricature the fact that when the processes I and Ĩ are
different and thus Dt can increase up to 2r but will recover a decreasing phase at
the time where I and Ĩ become equal and this happens after a time (stochastically)
smaller than an exponential variable with parameter b. The generator of U is given
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by:

Gf(x) = [−(ω1 − ω2)xf ′(x) + Lqx(f(2r + ε)− f(x))] 1[0,2r](x)

+ [b(f(2r)− f(2r + ε))] 12r+ε(x).

Then, by Theorem 3.1. of [BLBMZ12] we have that there exists two constants
γ, c > 0 such that:

E(Ut) ≤ 2r(1 + ct)e−ηt,

where η = ω1−ω2

1+
ω1−ω2
γ

with

γ =
(ω1 − ω2 + b)−

√
(ω1 − ω2 + b)2 − 4bp(ω1 − ω2)

2

and
c =

ω1 − ω2

ω1 − ω2 + γ

ep(ω1 − ω2)b√
(ω1 − ω2 + b)2 − 4bp(ω1 − ω2)

with e = exp(1) and p = exp
(
− 2rLq
ω1−ω2

)
. This concludes the proof.
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Chapter 6

Simulations of stochastic partial
differential equations for excitable
media using finite elements

The present chapter is based on a work in collaboration with M. Thieullen and
M. Boulakia. M. Boulakia is member of Laboratoire Jacques-Louis Lions of the
Université Pierre et Marie Curie. The preprint corresponding to this chapter is
[BGT13].

6.1 Introduction
The present chapter is concerned with the numerical simulation of Stochastic Par-
tial Differential Equations (SPDEs) used to model excitable cells in order to ana-
lyze the effect of noise on such biological systems. Our aim is twofold. The first
is to propose an efficient and easy-to-implement method to simulate this kind of
models. We focus our work on practical numerical implementation with software
used for deterministic PDEs such as FreeFem++ or equivalent. The second is
to analyze the effect of noise on these systems thanks to numerical experiments.
Namely, in models for cardiac cells, we investigate the possibility of purely noise
induced reentrant patterns such as spiral or scroll-waves as these phenomena are
related to major troubles of the cardiac rhythm such as tachyarrhythmia. For nu-
merical experiments, we focus on the Barkley and Mitchell-Schaeffer models, both
originally deterministic models to which we add a noise source.

Mathematical models for excitable systems may describe a wide range of bi-
ological phenomena. Among these phenomena, the most known and studied are
certainly the two following ones: the generation and propagation of the nerve im-
pulse along a nerve fiber and the generation and propagation of a cardiac pulse in

141
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cardiac cells. For both, following the seminal work [HH52], very detailed models
known as conductance based models have been developed, describing the physio-
biological mechanism leading to the generation and propagation of an action poten-
tial. These physiological models are quite difficult to handle mathematically and
phenomenological models have been proposed. These models describe qualitatively
the generation and propagation of an action potential in excitable systems. For
instance, the Morris-Lecar model for the nerve impulse and the Fitzhugh-Nagumo
model for the cardiac potential. In the present chapter, we will consider two
phenomenological models: the Barkley and the Mitchell-Schaeffer models. Math-
ematically, they consist in a degenerate system of Partial Differential Equations
(PDEs) driven by a stochastic term, often referred to as noise. More precisely,
they model may be written{

du = [ν∆u+ 1
ε
f(u, v)]dt+ σdW,

dv = g(u, v)dt,
(6.1)

on [0, T ] × D, where D is a regular bounded open set of R2 or R3. This system
is completed with boundary and initial conditions. W is a colored Gaussian noise
source which will be defined more precisely later. System (6.1) is degenerate in two
ways: there is no spatial operator such as the Laplacian neither noise source in the
equation on v. All the considered models have the features of classical stochastic
PDEs for excitable systems. The general structure of f and g is also typical of
excitable dynamics. In particular, in the models that we will consider, the neutral
curve f(u, v) = 0 when v is held fixed is cubic in shape.

To achieve our first aim, that is to numerically compute a solution of system
(6.1), we work with a numerical scheme based on finite difference discretization
in time and finite element method in space. The choice of finite element dis-
cretization in space has been directed by two considerations. The first is that
this method fits naturally to a general spatial domain: we want to investigate
the behavior of solutions to (6.1) on domains with various geometry. The sec-
ond is that it allows to implement numerically the scheme using popular soft-
ware such as the finite element software FreeFem++ or equivalent. The dis-
cretization of SPDE by finite differences in time and finite elements in space
has been considered by several authors in theoretical studies, see for example
[DP09, CYY07, LT12, Wal05]. Other methods of discretization are considered for
example in [ANZ98, GMV12, Jen09, JR10, KLL10, LT10, Yan05]. These methods
are based on finite difference discretization in time coupled either to finite differ-
ence in space or to the Galerkin spectral method, or to the finite element method
on the integral formulation of the evolution equation. We emphasize that we do
not consider in this chapter a Galerkin spectral method or exponential integrator,
that is, roughly speaking, we neither use the spectral decomposition of the solution
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of (6.1) according to a Hilbert basis of L2(D) (or an other Hilbert space related to
D) nor the semigroup attached to the linear operator (the Laplacian in (6.1)), in
order to build our scheme. We only use the variational version of the finite element
method in order to fit to commonly used finite elements method for deterministic
PDEs. Moreover, the present chapter is more numerically oriented than the above
cited papers, in the spirit of [Sha05]. In [Sha05], the author numerically analyzes
the effect of noise on excitable systems thanks to a Galerkin spectral method of
discretization on the square. In the present chapter, we pursue the same objective
using the finite element method instead of the Galerkin spectral one. We believe
that the finite element method is easier to adapt to various spatial domains. Let
us notice that a discretization scheme for SPDEs driven by white noise for spatial
domains of dimension greater or equal to 2 may lead to non trivial phenomena,
see [HRW12]. Considering colored noises may also be seen as a way to circumvent
these difficulties.

As is well known, one can consider two types of errors related to a numerical
scheme for stochastic evolution equations: the strong error and the weak error. The
strong error for discretization we consider has been analyzed for one dimensional
spatial domains (line segments) in [Wal05]. The weak error for more general spatial
domains, of dimension 2 or 3 for example, has been considered in [DP09]. In
the present chapter, we prefer to consider the strong error of convergence of our
scheme because we want to investigate numerally pathwise properties of the model.
Working with spatial domains of dimension 2 or 3, we show that the strong order
of convergence of the considered method for a class of linear stochastic equations is
twice less than the weak order obtained in [DP09]. This is what is expected since
this same duality between weak and strong order holds for the discretization of
finite dimensional stochastic differential equations (SDEs). Thanks to the spatial
regularity of the considered noise, the proof we provide follows classical arguments
used to analyze the error introduced by the deterministic finite element method.

Our motivation for considering systems such as (6.1) comes from biological
considerations. In the cardiac muscle, tachyarrhythmia are disturbances of the
heart rhythm in which the heart beating rate is abnormally increased. This is a
major trouble of the cardiac rhythm since it may lead to rapid loss of consciousness
and to death. As explained in [Hin02, JC06], the vast majority of tachyarrhythmia
are perpetuated by a reentrant mechanism. It is well known that deterministic
excitable systems of type (6.1) are able to generate sustained reentrant patterns
such as spiral or meander, see for example [Kee80, BKT90]. We show numerically
that reentrant patterns may be generated and perpetuated only by the presence
of noise. We perform the simulations on the Barkley model whose deterministic
version has been intensively studied in [BKT90, Bar92, Bar94] and the model of
Mitchell-Schaeffer which allows to get more realistic shape for the action potential
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in cardiac cells [MS03, BCF+10]. For the Barkley model, similar experiments are
presented in [Sha05] where Galerkin spectral method is used as simulation scheme
on a square domain. In our simulations, done on a square with periodic conditions
or on a smoothed cardioid, we observe two kinds of reentrant patterns due to
noise: the first may be seen as a scroll wave phenomenon whereas the second
corresponds to spiral phenomenon. Both phenomena may be regarded as sources
of tachyarrhythmia since in both cases, areas of the spatial domain are successively
activated by the same wave which re-enters in the region.

All the simulations in the present chapter have been performed using the
FreeFem++ finite element software, see [HLHOP]. This software offers the ad-
vantage to provide the mesh of the domain, the corresponding finite element basis
and to solve linear problems related to the finite element discretization of the
model on its own. The originality of the present work is to use this software to
simulate stochastic PDEs.

Let us emphasize that the generic model (6.1) is endowed with a timescale
parameter ε. The presence of this parameter is fundamental for the observation
of traveling waves in the system: ε enforces the system to be either quiescent
or excited with a sharp transition between the two states. Moreover, the values
of the timescale parameter ε and the strength of the noise σ appear to be of
first importance to obtain reentrant patterns. This fact is also pointed out by
our numerical bifurcation analysis. Let us mention that noise induced phenomena
have been studied in [BG06] for finite dimensional systems of stochastic differential
equations. The theoretical study of slow-fast SPDEs, through averaging methods,
has been considered in [Bre12, CF09, WR12] for SPDEs.

In forthcoming work, we plan to address the effect of noise on deterministic
periodic forcing of the Barkley and Mitchell-Schaeffer models. We expect to ob-
serve as in [TJ10] for the one dimensional case, the annihilation by weak noise
of the propagation of some waves initiated by deterministic periodic forcing. We
also want to investigate stochastic resonance phenomena in such a situation. On
a theoretical point of view, we intend to derive the strong order of convergence of
the discretization method used in the present chapter for non-linear equations and
systems of equations such as the FitzHugh-Nagumo, Barkley or Mitchell-Schaeffer
models but also on simplified conductance based models.

The remainder of the chapter is organized as follows. In Section 6.2, we begin
by the precise definition of the noise source in system (6.1) and present its finite
element discretization. In Section 6.3, we introduce a discretization scheme based
on finite element in space for a stochastic heat equation and we estimate the strong
order of convergence. Then we apply the method to the Fitzhugh-Nagumo model.
In Section 6.4, we investigate the influence of noise on the Barkley and Mitchell-
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Schaeffer models. We show that noise may initiate reentrant patterns which are
not observable in the deterministic case. We also provide numerical bifurcation
diagrams between the noise intensity σ and the time-scale ε of the models. At
last, some proofs are postponed to the Appendix.

6.2 Finite element discretization of Q-Wiener pro-
cesses.

6.2.1 Basic facts on Q-Wiener processes

LetD be an open bounded domain of Rd, d = 2 or 3, containing the origin and with
polyhedral frontier. We denote by L2(D) the set of square integrable measurable
functions with respect to the Lebesgue measure on Rd. Writing H for L2(D),
we recall that H is a real separable Hilbert space and we denote its usual scalar
product by (·, ·) and the associated norm by ‖ · ‖. They are respectively given by

∀(φ1, φ2) ∈ H ×H, (φ1, φ2) =

∫
D

φ1(x)φ2(x)dx, ‖φ1‖ =

(∫
D

φ1(x)2dx

) 1
2

.

Let Q be a non-negative symmetric operator on H. Let us recall the definition of
a Q-Wiener process on H which can be found in [PZ07], Section 4.4, as well as the
basic properties of such a process.

Definition 6.2.1. There exists a probability space (Ω,F ,P) on which we can define
a stochastic process (WQ

t , t ∈ R+) on H such that

• For each t ∈ R+, WQ
t is a H-valued random variable.

• WQ starts at 0 at time 0: WQ
0 = 0H , P-a.s.

• (WQ
t , t ∈ R+) is a Lévy process, that is, it is a process with independent and

stationary increments:

– Independent increments: for a sequence t1, . . . , tn of strictly increasing
times, the random variablesWQ

t2−W
Q
t1 , . . . ,W

Q
tn−W

Q
tn−1

are independent.

– Stationary increments: for two times s < t, the random variable WQ
t −

WQ
s has same law as WQ

t−s.

• (WQ
t , t ∈ R+) is a Gaussian process: for any t ∈ R+ and any φ ∈ H, (WQ

t , φ)
is a real centered Gaussian random variable with variance t(Qφ, φ).

• (WQ
t , t ∈ R+) is pathwise continuous P-almost surely.
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We recall the definition of non-negative symmetric linear operator on H admitting
a kernel.

Definition 6.2.2. A non-negative symmetric linear operator Q : H → H is a
linear operator defined on H such that

∀(φ1, φ2) ∈ H ×H, (Qφ1, φ2) = (Qφ2, φ1), (Qφ1, φ1) ≥ 0.

Let q be a real valued integrable function on D ×D such that

∀(x, y) ∈ D ×D, q(x, y) = q(y, x),

∀M ∈ N,∀xi, yj ∈ D, ∀ai ∈ R, i, j = 1, . . .M,
M∑
i,j=1

q(xi, yj)aiaj ≥ 0.

that is q is symmetric and non-negative definite on D×D. We say that Q has the
kernel q if

∀φ ∈ H,∀x ∈ D, Qφ(x) =

∫
D

φ(y)q(x, y)dy.

Let Q : H → H be a non-negative symmetric operator with kernel q. Then Q is a
trace class operator whose trace is given by

Tr(Q) =

∫
D

q(x, x)dx.

For examples of kernels and basic properties of symmetric non-negative linear
operators on Hilbert spaces, we refer to [PZ07], Section 4.9.2 and Appendix A. Let
us now state clearly our assumptions on the operator Q.

Assumption 6.2.1. The operator Q is a non-negative symmetric operator with
kernel q given by

∀(x, y) ∈ D ×D, q(x, y) = C(x− y),

where C belongs to C3(D) and is an even function on D satisfying:

∀M ∈ N, ∀xi, yj ∈ D, ∀ai ∈ R, i, j = 1, . . .M,
M∑
i,j=1

C(xi − yj)aiaj ≥ 0

Particularly, ∇C(0) = 0 and x 7→ C(x)−C(0)
|x|2 is bounded on a neighborhood of zero.
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For x ∈ D and t ∈ R+, one can show, see [PZ07], Section 4.4, that we can define
WQ
t at the point x such that the process (WQ

t (x), (t, x) ∈ R+ × D) is a centered
Gaussian process with covariance between the points (t, x) and (s, y) given by

E(WQ
t (x)WQ

s (y)) = t ∧ s q(x, y).

In this case, the correlations in time are said to be white whereas the correlations
in space are colored by the kernel q.

Proposition 6.2.1. Under Assumption 6.2.1, the process (WQ
t (x), (t, x) ∈ R+ ×

D) has a version with continuous paths in space and time.

Proof. This is an easy application of the Kolmogorov-Chentsov test, see [DPZ92]
Chapter 3, Section 3.2. Note that the regularity of C is important to get the
result.

Remark 6.2.1. The more the kernel q smooth is, the more the Wiener process
regular is. For example, let ~ι ∈ Rd and define f(x) = ~ι · HessC(x)~ι for x ∈ D.
Suppose that f is a twice differentiable function. Then, one can show that there
exists a probability space on which (WQ

t , t ∈ R+) is twice differentiable in the
direction ~ι.

Remark 6.2.2. Let us assume that there exists a constant α and a (small) positive
real δ such that

∀y ∈ D, |C(0)− C(y)| ≤ α|y|2+δ.

Using the Kolmogorov-Chentsov continuity theorem, one can show that the process

(WQ
t (x), (t, x) ∈ R+ ×D)

has a modification which is γ1-Hölder in time for all γ1 ∈
(
0, 1

4

)
and γ2-Hölder in

space for all γ2 ∈
(
0, 1 + δ

2

)
. Thus if δ > 0, by Rademacher theorem, for γ2 = 1,

this version is almost everywhere differentiable on D. This is another way to obtain
regularity in space for WQ without using another probability space.

Remark 6.2.3. For our purpose, on may also replace the assumption C ∈ C3(D)
by the weaker condition C ∈ C2+ε(D) for some (small) positive ε.

6.2.2 Finite element discretization

In this part, we assume that Q satisfies Assumption 6.2.1. Let us present our
approximation of the Q-Wiener process WQ. We begin with the discretization of
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ρ1h

ρ2h

Figure 6.1: Meshing (triangulation) of a domain and illustration of (6.2)

the domain D. Let Th be a family of triangulations of the domain D by triangles
(d = 2) or tetrahedra (d = 3). The size of Th is given by

h = max
T∈Th

h(T ),

where h(T ) = maxx,y∈T |x− y| is the diameter of the element T . We assume that
there exist two positive constants ρ1 and ρ2 such that

∀T ∈ Th, ∃x ∈ T, T ⊂ B(x, ρ2h), (6.2)

where B(x, r) stands for the euclidean ball centered at x with radius r. We assume
further that this triangulation is admissible as in Figure 6.1 where a triangulation
is displayed and the property (6.2) is illustrated. In the present work, we consider
two kinds of finite elements: the Lagrangian P0 and P1 finite elements. However,
the method could be adapted to other finite elements. The basis associated to the
P0 finite element method is

B0,Th = {1T , T ∈ Th},

where the function 1T denotes the indicator function of the element T . Let {Pi, 1 ≤
i ≤ Nh} be the set of all the nodes associated to the triangulation Th. The basis
for the P1 finite element method is given by

B1,Th = {ψi, 1 ≤ i ≤ Nh},

where ψi is the continuous piecewise affine function on D defined by ψi(Pj) = δij
(Kronecker symbol) for all 1 ≤ i, j ≤ Nh.

Definition 6.2.3. The P0 approximation of the noise WQ is given for t ∈ R+ by

WQ,h,0
t =

∑
T∈Th

WQ
t (gT )1T , (6.3)
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where gT is the center of gravity of T . The P1 approximation is

WQ,h,1
t =

Nh∑
i=1

WQ
t (Pi)ψi. (6.4)

We will also consider the following alternative choice for the P0 discretization

WQ,h,0a
t =

∑
T∈Th

1

|T |
(WQ

t , 1T )1T . (6.5)

WQ,h,0a corresponds to an orthonormal projection on P0. These approximations
are again Wiener processes as stated in the following proposition.

Proposition 6.2.2. For i ∈ {0, 0a, 1} the stochastic processes (WQ,h,i
t , t ∈ R+) are

centered Qh,i-Wiener processes where, for φ ∈ H

Qh,0φ =
∑

T,S∈Th

(1T , φ)q(gT , gS)1S,

Qh,0aφ =
∑

T,S∈Th

(1T , φ)
(Q1T , 1S)

|T ||S|
1S

and

Qh,1φ =

Nh∑
i,j=1

(ψi, φ)q(Pi, Pj)ψj.

Proof. The fact that for i ∈ {0, 0a, 1} the stochastic processes (WQ,h,i
t , t ∈ R+) are

Wiener processes is a direct consequence of their definition as linear functionals
of the Wiener process (WQ

t , t ∈ R+), see Definition 6.2.3. The corresponding
covariance operators are obtained by computing the quantity

E((WQ,h,i
1 , φ1)(WQ,h,i

1 , φ2))

for i ∈ {0, 0a, 1} and φ1, φ2 ∈ H (the details are left to the reader).

The P0 approximation (6.5) of the noise has been considered for white noise in
dimension 2 in [CYY07]. White noise corresponds to Q = IdH . In the white noise
case, the associated Wiener process is not at all regular in space (the trace of Q is
infinite in this case). In the present paper, we work with trace class operators and
thus with noises which are regular in space. Notice that discretization schemes
for SPDE driven by white noise for spatial domains of dimension greater or equal
to 2 may lead to non trivial phenomena. In particular, usual schemes may not
converge to the desired SPDE, see [HRW12].
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Theorem 6.2.1 (A global error). For any τ ∈ R+ and i ∈ {0, 0a, 1} we have

E

(
sup
t∈[0,τ ]

‖WQ
t −W

Q,h,i
t ‖2

)
≤ Kτh2

for a deterministic constant K depending only on |D|.

Proof. The proof is postponed to Appendix 6.A.

Let us comment the above result. Let us take, as it will be the case in the numerical
experiments, the following special form for the kernel

∀x ∈ D, Cξ(x) =
a

ξ2
e
− b
ξ2
|x|2

for three positive real numbers a, b, ξ. This is a so-called Gaussian kernel. To
a particular ξ-dependent kernel Cξ, we associate the corresponding ξ-dependent
covariance operator Qξ. Then, if we adapt the proof of Theorem 6.2.1 in this
particular case, we see that

E

(
sup
t∈[0,τ ]

‖WQξ
t −W

Qξ,h,i
t ‖2

)
= O

(
τ
h2

ξ4

)
for any τ ∈ R+. Thus, when ξ goes to zero, this estimation becomes useless since
the right hand-side goes to infinity. In fact, when ξ goes to zero, Cξ converges in
the distributional sense to a Dirac mass, and WQξ tends to a white noise which is,
as mentioned before, an irregular process. In particular, the white noise does not
belong to H and this is why our estimation is no longer useful in this case. Let
us mention that for white noise acting on steady PDEs and on particular domains
(square and disc), the error considered in Theorem 6.2.1 have been studied in
[CYY07]: the regularity of the colored noised improved these estimates in our case.
We also remark that the proof of Theorem 6.2.1 does not rely on the regularity
of the functions of the finite element basis of P0 or P1 here. The key points are
that C ∈ C2(D) is even and that

∑
i φi = 1, where {φi} corresponds to the finite

element basis.
To conclude this section, we display some simulations. In Figure 6.2 are simulations
of the noise WQξ

1 with covariance kernel defined by

∀(x, y) ∈ D ×D, qξ(x, y) = Cξ(x− y) =
1

4ξ2
e
− π

4ξ2
|x−y|2

, (6.6)

where ξ > 0. We use the same kernel as in [Sha05] for comparison purposes. As
already mentioned, when ξ goes to zero, the considered colored noise tends to
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Figure 6.2: Simulations of WQξ
1 with ξ = 1, 1.5, 2, 3 with P1 finite elements.

a white noise. On the contrary, when ξ increases, the correlation between two
distinct areas increases as well. This property is illustrated in Figure 6.2. In other
words, ξ is a parameter which allows to control the spatial correlation.
In these simulations, we have discretized WQξ,h,1 with the P1 discretization which
reads

W
Qξ,h,1
1 =

Nh∑
i=1

W
Qξ
1 (Pi)ψi.

We remark that the family {WQξ
1 (Pi), 1 ≤ i ≤ Nh} is a centered Gaussian vector

with covariance matrix (qξ(Pi, Pj))1≤i,j≤Nh . Using some basic linear algebra, it is
not difficult to simulate a realization of this vector and to project it on the P1
finite element basis to obtain Figure 6.2.
We now propose a log-log graph to illustrate the estimate of Theorem 6.2.1. In
the case where D is the square [0, 1]× [0, 1], let us consider the kernel q given by:

∀(x, y) ∈ D ×D, q(x, y) = fk0p0(x)fk0p0(y)

where for two given integers k0, p0 ≥ 1, fk0p0(x) = 2 sin(k0πx1) sin(p0πx2) (if x =
(x1, x2) ∈ D). Then, the covariance operator is given by Qφ = (φ, fk0p0)fk0p0 for
any φ ∈ L2(D). Moreover, one can show that

∀t ≥ 0, WQ
t = βtfk0p0

for some real-valued Brownian motion β. All the calculations are straightforward in
this setting. Suppose, in the finite element setting, that the square D is covered by
2N2 triangles, N ∈ N. For any N ∈ N, we denote byWQ,N,0

1 the P0 approximation
of WQ

1 given by (6.3). We show in Figure 6.3 the log-log graph of the (discrete)
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Figure 6.3: Log-log graph of N 7→ errN for N = 5, 10, 20, 30. In green is the
comparison with a line of slope −2.

function:
N 7→ errN = E(‖WQ

1 −W
Q,N,0
1 ‖2).

According to Theorem 6.2.1, we should have errN = O
(

1
2N2

)
. This result is recov-

ered numerically in Figure 6.3.

6.3 Space-time numerical scheme

In this section, we first present our numerical scheme. The considered space-
time discretization is based on the Euler-Maruyama scheme in time and on finite
elements in space. In this section and in the next section, we will use the following
notations. Let us fix a time horizon T . For N ≥ 1 we define a time step ∆t = T

N

and denote by (un, vn)0≤n≤N a sequence of approximations of the solution of (6.1)
at times tn = n∆t, 0 ≤ n ≤ N . The scheme, semi-discretized in time, is based on
the following variational formulation, for n ∈ {0, . . . , N − 1}:{ (

un+1−un
∆t

, ψ
)

+ κ(∇un+1,∇ψ) = 1
ε
(fn, ψ) + σ√

∆t
(WQ

n+1 −WQ
n , ψ),(

vn+1−vn
∆t

, ψ
)

= (gn, ψ)
(6.7)

for ψ in an appropriate space of test functions. Here, fn and gn correspond to
approximations of the reaction terms f and g in (6.1). The way we compute fn
and gn is detailed in the sequel for each considered model. WQ

n is an appropriate
approximation of WQ

tn based on one of the discretization proposed in Definition
6.2.3.
In Subsection 6.3.1, we consider the strong error in the case of a linear stochastic
partial differential equation driven by a colored noise to study the accuracy of the
finite element discretization. We obtain that the strong order of convergence of
the scheme is twice less than the weak order obtained in [DP09], as expected. In
Subsection 6.3.2, we implement the scheme for the Fitzhugh-Nagumo model with
a colored noise source since this model is one of the most used phenomenological
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models in cardiac electro-physiology, see the seminal work [Fit69] and the review
[LGONSG04].

6.3.1 Linear parabolic equation with additive colored noise

Let us consider the following linear parabolic stochastic equation on (0, T )×D{
dut = Autdt+ σdWQ

t ,
u0 = ζ.

(6.8)

Remember that H = L2(D) is a separable Hilbert space with the scalar product
and the corresponding norm respectively denoted by (·, ·) and ‖·‖. We assume that
WQ is a Q-Wiener process with an operator Q which satisfies Assumption 6.2.1.
Let ζ be a H2(D)-valued random variable. We impose the following condition on
the operator A in (6.8).

Assumption 6.3.1. The operator −A is a positive self-adjoint linear operator on
H whose domain is dense and compactly embedded in H.

It is well known that the spectrum of −A is made up of an increasing sequence
of positive eigenvalues (λi)i≥1. The corresponding eigenvectors {wi, i ≥ 1} form
a Hilbert basis of H. The following proposition states that problem (6.8) is well
posed.

Proposition 6.3.1. Equation (6.8) has a unique mild solution:

ut = eAtζ + σ

∫ t

0

eA(t−s)dWQ
s ,

Moreover u is continuous in time and ut ∈ H for all t ∈ [0, T ], P-a.s.

Proof. This result is a direct consequence of Theorem 5.4 of [DPZ92], Assumptions
6.3.1 and 6.2.1.

The domain of (−A)
1
2 is the set{
u =

∑
i≥1

(u,wi)wi,
∑
i≥1

λi(u,wi)
2 <∞

}
,

that we denote here by V . It is continuously and densely embedded in H. The V -
norm is given by |u| =

√
−(Au, u) for all u ∈ V . We define a coercive continuous

bilinear form a on V × V by

a(u, v) = −(Au, v).
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For h > 0, let Vh be a finite dimensional subset of V with the property that for all
v ∈ V , there exists a sequence of elements vh ∈ Vh such that limh→0 ‖v − vh‖ = 0.
For an element u of V , we introduce its orthogonal projection on Vh and denote it
Πhu. It is defined in a unique way by

Πhu ∈ Vh and ∀vh ∈ Vh, a(Πhu− u, vh) = 0. (6.9)

Let Ih be the dimension of Vh. Notice that there exists a basis (wi,h)1≤i≤Ih of Vh
orthonormal in H with the following property: for each 1 ≤ i ≤ Ih, there exists
λi,h such that

∀vh ∈ Vh, a(vh, wi,h) = λi,h(vh, wi,h),

(see [RT83], Section 6.4). The family (λi,h)1≤i≤Ih is an approximating sequence of
the family of eigenvalues (λi)i≥1 so that

λi,h ≥ λi, ∀1 ≤ i ≤ Ih.

We study the following numerical scheme to approximate equation (6.8) defined
recursively as follows. For u0 given in Vh, find (uhn)0≤n≤N in Vh such that for all
n ≤ N − 1{

1
∆t

(uhn+1 − uhn, vh) + a(uhn+1, vh) = σ
∆t

(WQ,h
n+1 −WQ,h

n , vh)
uh0 = u0

(6.10)

for all vh ∈ Vh where WQ,h
n is an appropriate approximation of WQ

n∆t in Vh. The
approximation error of the scheme can be written as the sum of two errors.

Definition 6.3.1. The discrete error introduced by the scheme (6.10) is defined
by Eh

n = ehn + phn where

ehn = uhn − Πhutn , phn = Πhutn − utn (6.11)

for 0 ≤ n ≤ N . The consistency error εhn is defined, for n ∈ {0, . . . , N} and
vh ∈ Vh by

(εhn, vh) =
σ

∆t
(WQ,h

n+1 −WQ,h
n , vh)−

σ

∆t
(WQ

(n+1)∆t −W
Q
n∆t, vh)

+
1

∆t

∫ (n+1)∆t

n∆t

a(us, vh)ds− a(u(n+1)∆t, vh) +
1

∆t
((I− Πh)(u(n+1)∆t − un∆t), vh).

In this definition, I is the identity operator on H. For n ∈ {0, . . . , N}, the error
ehn is the difference between the approximated solution given by the scheme and
the elliptic projection on Vh of the exact solution at time n∆t. The error phn is the
difference between the exact solution and its projection on Vh at time n∆t. The
following result gives the error ehn with respect to the previous consistency errors
(εhk)0≤k≤n−1.
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Theorem 6.3.1. For h > 0 and n ∈ {0, . . . , N − 1} we have

ehn =

Ih∑
i=1

e−µi,h,∆tn∆t(eh0 , wi,h)wi,h + ∆t

Ih∑
i=1

n−1∑
k=0

e−µi,h,∆t(n−k)∆t(εhk, wi,h)wi,h (6.12)

with, for 1 ≤ i ≤ Ih and h,∆t > 0, µi,h,∆t =
log(1+∆tλi,h)

∆t
.

For all 1 ≤ i ≤ Ih and h,∆t > 0, we have 1
1+∆tλi,h

< 1 such that the scheme (6.10)
is stable.

Proof. The proof is postponed to Appendix 6.B.

To bound the consistency error, we have to choose our approximation in H specif-
ically. This imposes to choose the space V explicitly. We set V = H1

0 (D) and Vh a
space of P1 finite elements, see Section 6.2.2. In this P1 case, for n ∈ {0, . . . , N},
we set WQ,h

n = WQ,h,1
n∆t defined by Definition 6.2.3.

For technical reasons, we make the following assumption.

Assumption 6.3.2. We assume that

2∑
p=0

∫ T

0

Tr
(
∇peAsQ

1
2

(
∇peAsQ

1
2

)∗)
ds <∞.

Remark 6.3.1. The above assumption implies that supt∈[0,T ] E(‖ut‖2
H2(D)) < ∞

(see Theorem 5.20 of [DPZ92]). With A = ∆ and D(A) = H2(D) ∩ H1
0 (D),

Assumption 6.3.2 is fulfilled as soon as Tr((−∆)1+δQ) <∞ for some δ > 0. The
latter estimate is satisfied since C ∈ C3(D) according to Assumption 6.2.1.

Theorem 6.3.2. Let us assume that Assumptions 6.2.1, 6.3.1 and 6.3.2 are
satisfied. Moreover, assume that we are in the P1 case: for n ∈ {0, . . . , N},
WQ,h
n = WQ,h,1

n∆t defined by Definition 6.2.3. Then, there exists ∆t0 > 0 such that
for all n ∈ {1, . . . , N} and ∆t ∈ [0,∆t0]

E(‖ehn‖2) ≤ E(‖eh0‖2) +K(∆t+ h2)

for a constant K depending only on |D| and T .

Proposition 6.3.2. The projection error phn satisfies, for all n ∈ {1, . . . , N}:√
E(‖phn‖2) ≤ Kh (6.13)

for a constant K depending only on |D| and T .
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Proof. Since we are working with P1 finite elements and the domain D is bounded
and polyhedral, under the Assumption 6.3.2, the result is a direct consequence of
Lemma 6.5.1 of [RT83].

Corollary 6.3.1. Suppose
√

E(‖Eh
0 ‖2) = O(h). Assume that the hypotheses of

Theorem 6.3.2 are satisfied. For all 0 ≤ n ≤ N and ∆t ∈ [0,∆t0]

√
E(‖Eh

n‖2) ≤ K(h+
√

∆t), (6.14)

where K is a constant depending only on T and |D|.

Before starting the proof of Theorem 6.3.2, we recall the weak order of convergence
of the considered scheme obtained in [DP09] but under weaker assumptions. Since
C is a twice differentiable even function on D, ∆C is a bounded function on D
and therefore, according to [DP09] Theorem 3.1, for any bounded real valued twice
differentiable function φ on L2(D), there exists a constant K depending only on
T such that

|E(φ(uhN))− E(φ(uT ))| ≤ K(h2γ + θγ) (6.15)

for a given γ < 1. In our situation, it is more natural to consider the strong error
since we study pathwise behavior. For the method that we consider, estimates for
the strong error have been obtained for one dimensional spatial domains and white
noise in [Wal05]. Many papers exist for finite dimensional systems. Our estimate
lies in between these two types of studies. We have a colored noise but our spatial
domain may be of any dimension. We notice that the order of weak convergence
(6.15) is twice the order of strong convergence (6.14), as for finite dimensional
stochastic differential equations.
We begin the proof of Theorem 6.3.2 by estimating the error induced by the
noise. From (6.12), we compare the discrete sum of the increments of the noise to
stochastic integrals to obtain the order of convergence in time. Then, we compare
the stochastic integrals to obtain the order of convergence in space. The proofs of
the two following lemmas are postponed to Appendix 6.C.

Lemma 6.3.1. Remember that, for n ∈ {0, . . . , N}, WQ,h
n = WQ,h,1

n∆t defined in
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Definition 6.2.3. Let us define, for n ∈ {1, . . . , N}

An =

Ih∑
i=1

n−1∑
k=0

e−µi,h,∆t(n∆t−k∆t)(WQ
(k+1)∆t −W

Q
k∆t, wi,h)wi,h,

Bn =

Ih∑
i=1

(∫ n∆t

0

e−µi,h,∆t(n∆t−s)dWQ
s , wi,h

)
wi,h,

Cn =

Ih∑
i=1

n−1∑
k=0

e−µi,h,∆t(n∆t−k∆t)(WQ,h
k+1 −W

Q,h
k , wi,h)wi,h,

Dn =

Ih∑
i=1

(∫ n∆t

0

e−µi,h,∆t(n∆t−s)dWQ,h,1
s , wi,h

)
wi,h.

There exists a constant Kf such that for all n ∈ {1, . . . , N}

E
(
‖An −Bn‖2

)
≤ KfTr(Q)∆t,

E
(
‖Cn −Dn‖2

)
≤ KfTr(Qh,1)∆t.

For any ∆t0 > 0, there exists a constant K depending only on |D| such that for
all n ∈ {1, . . . , N} and all ∆t ∈ [0,∆t0],

E(‖Bn −Dn‖2) ≤ Kh2.

Remark 6.3.2. The constant Kf is given by

sup
x∈R+

log (1 + x) + 1
2
x2 − x

x(x+ 2) log (1 + x)
.

We go on with dealing with the terms in (6.12) which involve the real solution u
of problem (6.8).

Lemma 6.3.2. Let us define, for n ∈ {1, . . . , N}

En =

Ih∑
i=1

n−1∑
k=0

e−µi,h,∆t(n−k)∆t((I− Πh)(u(k+1)∆t − uk∆t), wi,h)wi,h,

Fn =

Ih∑
i=1

n−1∑
k=0

e−µi,h,∆t(n−k)∆t

∫ (k+1)∆t

k∆t

a(u(k+1)∆t − us, wi,h)ds wi,h.

Under Assumption 6.3.2, there exists a constant K depending only on |D| and T
such that for all n ∈ {1, . . . , N}

E(‖En‖2) ≤ Kh2,

E(‖Fn‖2) ≤ K∆t.
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Proof of Theorem 6.3.2. This is a consequence of the fact that, from (6.12), for all
n ∈ {0, . . . , N}:

ehn =

Ih∑
i=1

e−µi,h,∆t∆tn(eh0 , wi,h)wi,h − σAn + σCn − En + Fn

=

Ih∑
i=1

e−µi,h,∆t∆tn(eh0 , wi,h)wi,h − σ(An −Bn)− σ(Bn −Dn) + σ(Cn −Dn)− En + Fn.

Then Lemmas 6.3.1 and 6.3.2 yield the result.

In the end of this subsection, we illustrate this error estimate in a simple situation.
We consider the domain D = (0, l) × (0, l) for l > 0. We set A = ∆ and D(A) =
H2(D) ∩H1

0 (D). That is we consider the equation: dut = ∆utdt+ σdWQ
t , in D,

ut = 0, on ∂D,
u0 = 0, in D

(6.16)

for t ∈ R+. WQ is a L2(D)-valued Q-Wiener process defined by Definition 6.2.1
and Q satisfies Assumption 6.2.1. Recall that in this case, there exists a ε > 0
Tr((−∆)1+δQ) < ∞ since C belongs to C3(D) such that Assumption 6.3.2 is
fulfilled. The initial condition is zero, hence the solution of the corresponding
deterministic equation, without noise, is simply zero for all time.

Proposition 6.3.3. Equation (6.16) has a unique mild solution such that ut ∈
L2(D) for all t ∈ [0, T ], P-almost surely. Moreover, u has a version with time
continuous paths and such that, for any time T > 0:

sup
t∈[0,T ]

E(‖ut‖2
H2(D)) <∞.

Proof. This result is a direct consequence of Theorem 5.20 of [DPZ92] and the fact
that Tr((−∆)1+δQ) <∞.

We denote by (e∆t, t ≥ 0) the contraction semigroup associated to the operator
∆. The mild solution to equation (6.16) is defined as the following stochastic
convolution

ut = σ

∫ t

0

e∆(t−s)dWQ
s

for t ∈ R+, P-almost-surely. In order to compute the expectation of the squared
norm of u in L2(D) analytically and also as precisely as possible numerically, we
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define the Hilbert basis (ekp, k, p ≥ 1) of L2(D) which diagonalizes the operator ∆
defined on D(A). For k, p ≥ 1 and (x, y) ∈ D

ekp(x, y) =
2

l
sin

(
kπ

l
x

)
sin
(pπ
l
y
)
.

A direct computation shows that ∆ekp = −λkpekp where λkp = π2

l2
(k2 + p2). In the

basis (ekp, k, p ≥ 1) of L2(D), the semigroup (e∆t, t ≥ 0) is given by

e∆tφ =
∑
k,p≥1

e−λkpt(φ, ekp)ekp

for t ∈ R+ and φ ∈ L2(D). Then for any t ∈ R+ (c.f. Proposition 2.2.2 of [?])

E(‖ut‖2) = σ2

∫ t

0

Tr
(
e2∆sQ

)
ds = σ2

∑
k,p≥1

1− e−2λkpt

2λkp
(Qekp, ekp).

In the sequel, we write Γt = E(‖ut‖2). The above series expansion can then be
implemented and we can compare this result with E(‖uhn‖2) which is computed
thanks to Monte-Carlo simulations. The Monte-Carlo simulation of E(‖uhn‖2) con-
sists in considering (uh,pn )1≤p≤P , P ∈ N a sequence of independent realizations of
the scheme (6.10) and define

Γ
(P )
n∆t =

1

P

P∑
p=1

‖uh,pn ‖2, (6.17)

the approximation of Γ at time n∆t, n ∈ {0, . . . , N}. We denote also by Γ(P ) the
continuous piecewise linear version of Γ. Figure 6.4 displays numerical simulations
of the processes (Γt, t ∈ R+) and (Γ

(P )
t , t ∈ R+). The simulations are done with

l = 80. Moreover the domain is triangulated with 5000 triangles giving a space step
of about h = 0.64 and a number of vertices’s of about 2600. For this simulation, we
choose P = 40 which is not big but Γ(40) matches quite well with its corresponding
theoretical version Γ, as expected by the law of large numbers. We remark also
that for the same spatial discretization of the domain D, there is no particular
statistical improvement to choose the P1 finite element basis instead of the P0.

6.3.2 Space-time discretization of the Fitzhugh-Nagumo model

We write the scheme for the Fitzhugh-Nagumo which is a widely used model of
excitable cells, see [Fit69, LGONSG04]. The stochastic Fitzhugh-Nagumo model,
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Figure 6.4: Simulations of (Γt, t ∈ [0, 10]) in green and its approximation Γ(40) in
red computed with: the P0 (on the left) and P1 (on the right) approximations of
the noise. For the simulation we choose the coefficient of correlation ξ = 2 with
the kernel qξ defined by (6.6). The intensity of the noise is σ = 0.15. The time step
is 0.05 whereas the space step is about 0.64. The two black curves are respectively
Γ plus, respectively minus, the error introduced by the scheme which is expected
to be of order

√
∆t+ h equals here to

√
0.05 + 0.64.

abbreviated by FHN model in the sequel, consists in the following 2-dimensional
system {

du = [κ∆u+ 1
ε

(u(1− u)(u− a)− v)]dt+ σdWQ,
dv = [u− v]dt,

(6.18)

on [0, T ]×D. In the above system, κ > 0 is a diffusion coefficient, ε > 0 a time-scale
coefficient, σ > 0 the intensity of the noise and a ∈ (0, 1) a parameter. WQ is a Q-
Wiener process satisfying Assumption 6.2.1. System (6.18) must be endowed with
initial and boundary conditions. We denote by u0 and v0 the initial conditions for
u and v. Moreover we assume that u satisfies zero Neumann boundary conditions:

∀t ∈ [0, T ],
∂ut
∂~n

= 0, on ∂D, (6.19)

where ∂D denotes the boundary of D and ~n is the external unit normal to this
boundary. Noisy FHN model and especially, FHN with white noise, have been
extensively studied. We refer the reader to [BM08] where all the arguments needed
to prove the following proposition are developed.

Proposition 6.3.4. Let WQ be a colored noise with Q satisfying Assumption
6.2.1. We assume that u0 and v0 are in L2(D), P-almost surely. Then, for any
time horizon T , the system (6.18) has a unique solution (u, v) defined on [0, T ]
which is P-almost surely in C([0, T ], H)× C([0, T ], H).

The proof of this proposition relies on Itô Formula, see Chapter 1, Section 4.5 of
[DPZ92], and the fact that the functional defined by

f(x) = x(1− x)(x− a), ∀x ∈ R
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u(t)

v(t)

•
•

•

Figure 6.5: Phase portrait with nullclines of system (6.20) for a = 0.1 and ε = 0.1.
The blue points correspond to the three equilibrium points of the system.

satisfies the inequality

(f(u)− f(v), u− v) ≤ 1 + a2 − a
3

‖u− v‖2, ∀(u, v) ∈ H ×H,

which implies that the map f− 1+a2−a
3

Id is dissipative. The local kinetics of system
(6.18), that is the dynamics in the absence of spatial derivative, is illustrated in
Figure 6.5. It describes the dynamics of the system of ODEs{

du = [1
ε
u(1− u)(u− a)− v]dt,

dv = [u− v]dt,
(6.20)

when the initial condition (u0, v0) is in [0, 1]× [0, 1].
We explicitly give the numerical scheme used to simulate system (6.18). Let us
define the function k given by

k(x) =
1

ε

(
−x3 + x2(1 + a)

)
,∀x ∈ R.

This function is the non linear parts of the reaction term f . Other choices are
possible like linearized f around 1 which is also a stable point or a which is unstable.
We use the following semi-implicit Euler-Maruyama scheme{

un+1−un
∆t

= κ∆un+1 − a
ε
un+1 + k(un)− vn+1 + σ√

∆t
WQ

1,n+1,
vn+1−vn

∆t
= un+1 − vn+1,

(6.21)

where (WQ
1,n)1≤n≤N+1 is a sequence of independent Q-Wiener processes evaluated

at time 1. Let (H∗,B(H∗), P̃) be chosen so that the canonical process has the same
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law as WQ
1,n+1 under P̃. Then, for a given (un, vn) ∈ H1(D)×H, the equation

(
1

∆t
+
a

ε
+

∆t

1 + ∆t
)un+1 − κ∆un+1 = k(un)− 1

1 + ∆t
vn +

σ√
∆t
WQ

1,n+1

has a unique weak solution un+1 in H1(D), P̃-almost surely. This fact follows
from Lax-Milgram Theorem and a measurable selection theorem, see Section 5 of
the survey [Wag80]. Therefore, without loss of generality, we may assume in this
section that the probability space is (C([0, T ], H∗),B(C([0, T ], H∗)),P) such that
under P, the canonical process has the same law as WQ. It is also possible to work
with a completely implicit scheme with k(un+1) instead of k(un) in (6.21).
We then consider the weak form for the first equation of (6.21). We get,{

( 1
∆t

+ a
ε

+ ∆t
1+∆t

)(un+1, ψ) + κ(∇un+1,∇ψ) = (k(un), ψ)− 1
1+∆t

(vn, ψ) + σ√
∆t

(WQ
1,n+1, ψ),

vn+1 − ∆t
1+∆t

un+1 = 1
1+∆t

vn
(6.22)

for all ψ ∈ H1(D). Let h > 0 and (ψi, 1 ≤ i ≤ Nh) be the P1 finite element basis
defined in Section 6.2. For n ≥ 0, we define the vectors

un = (un,i)1≤i≤Nh , vn = (vn,i)1≤i≤Nh , WQ
n+1 = (WQ

1,n+1(Pi))1≤i≤Nh ,

which are respectively the coordinates of un, vn andWQ
1,n+1 w.r.t. the basis (ψi, 1 ≤

i ≤ Nh). We also define the stiffness matrix A ∈ MNh(R) and the mass matrix
M ∈MNh(R) by

Aij = (∇ψi,∇ψj), Mij = (ψi, ψj).

System (6.22) can be rewritten as(
( 1

∆t
+ a

ε
+ ∆t

1+∆t
)M + κA 0

− ∆t
1+∆t

I I

)(
un+1

vn+1

)
=

(
0 − 1

1+∆t
M

0 1
1+∆t

I

)(
un
vn

)
+

(
G(un)

0

)
+

( σ√
∆t
M 0

0 0

)(
WQ

1,n+1

0

)
,

where G(un) = (k(un), ψi)1≤i≤Nh ∈ RNh . As for the parabolic stochastic equation
considered in Section 6.3.1, one may expect a numerical strong error for this scheme
of order

E(‖(ut, vt)− (ut,n, vt,n)‖2)
1
2 = O(h+

√
∆t), (6.23)

for ∆t ≤ ∆t0. In (6.23), (ut,n, vt,n)t∈[0,T ] is the interpolation of the discretized point
which is piecewise linear in time.
We end up this section with Figure 6.6 which displays simulations of the stochastic
Fitzhugh-Nagumo model (6.18) with zero Neumann boundary conditions on a



6.4. ARRHYTHMIA AND REENTRANT PATTERNS IN EXCITABLE MEDIA163

a) b) c)

d) e) f)

Figure 6.6: Simulations of system (6.18) with ξ = 2, σ = 1, ε = 0.1, a = 0.1.
These figures must be read from the up-left to the down-right. The time step is
0.05ms and there is 0.5ms between each figure.

cardioid domain and zero initial conditions. The kernel of the operator Q is given
by equation (6.6) for some ξ > 0. Due to a strong intensity of the noise source
(σ = 1), we observe the spontaneous nucleation of a front wave with irregular front
propagating throughout the whole domain.

6.4 Arrhythmia and reentrant patterns in excitable
media

In this section, we focus on classical models for excitable cells, namely Barkley and
Mitchell-Schaeffer models. We would like to observe cardiac arrhythmia, that is
troubles that may appear in the cardiac beats. Among the diversity of arrhythmia,
the phenomena of tachycardia are certainly the most dangerous as they lead to
rapid loss of consciousness and death. Tachycardia is described as follows in [JC06]

The vast majority of tachyarrhythmias are perpetuated by reentrant
mechanisms. Reentry occurs when previously activated tissue is repeat-
edly activated by the propagating action potential wave as it reenters
the same anatomical region and reactivates it.

In system (6.1), the equation on u gives the evolution of the cardiac action po-
tential. The equation on v takes into account the evolution of internal biological
mechanisms leading to the generation of this action potential. We will be more
specifically interested by two systems of this form: the Barkley and Mitchell-
Schaeffer models.
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6.4.1 Numerical study of the Barkley model

The model

In the deterministic setting, a paradigm for excitable systems where reentrant
phenomena such as spiral, meander or scroll waves have been observed and studied
is the Barkley model, see [BKT90, Bar91, Bar92, Bar94]. This deterministic model
is of the following form{

du = [κ∆u+ 1
ε
u(1− u)(u− v+b

a
)]dt,

dv = [u− v]dt.
(6.24)

The parameter ε is typically small so that the time scale of u is much faster
than that of v. For more details on the dynamic of waves in excitable media,
we refer the reader to [Kee80]. The Barkley model, like two-variables models
of this type, faithfully captures the behavior of many excitable systems. The
deterministic model (6.24) does not exhibit re-entrant patterns unless one imposes
special conditions on the domain unless, for instance, one imposes that a portion
of the spatial domain is a "dead zone". This means a region with impermeable
boundaries where equations (6.24) do not apply: when a wave reaches this dead
region, the tip of the wave may turn around and this induces a spiral behavior,
see Section 2.2 of [Kee80]. One may also impose specific initial conditions such
that some zones are intentionally hyper-polarized: the dead region is somehow
transient in this case.

Reentrant patterns

As in [Sha05] we add a colored noise with kernel of type (6.6) to equation (6.24)
and so we consider{

du = [κ∆u+ 1
ε
u(1− u)(u− v+b

a
)]dt+ σdWQξ ,

dv = [u− v]dt,
(6.25)

where the kernel of Qξ is given by (6.6) for ξ > 0.
Figure 6.7 displays a simulation of system (6.25) on the square D = [0, l] × [0, l]
with periodic boundary conditions:

∀t ∈ R+, ∀x ∈ [0, l] ut(x, 0) = ut(x, l), and ∂ut
∂~n

(x, 0) = ∂ut
∂~n

(x, l),
∀y ∈ [0, l] ut(0, y) = ut(l, y), and ∂ut

∂~n
(0, y) = ∂ut

∂~n
(l, y),

(6.26)

where ~n is the external unit normal to the boundary. The numerical scheme
is based on the following variational formulation. Given u0 and v0 in H1(D)
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a) b) c) d)

e) f) g) h)

i) j) k) l)

m) n) o) p)

Figure 6.7: Reentry is observed for system (6.25) with ξ = 2, σ = 0.15, ε = 0.05,
a = 0.75, b = 0.01 and ν = 1. These figures must be read from the top-left to
the bottom-right. The quiescent state is represented in green whereas the excited
state is in violet. If time is recorded in ms, there is 0.5ms between each figures
for a time step of 0.05ms.

and satisfying the boundary conditions (6.26), find (un, vn)1≤n≤N such that for all
0 ≤ n ≤ N − 1,{

(un+1−un
∆t

, ψ) + κ(∇un+1,∇ψ) = 1
ε
(un(1− un)(un − vn+b

a
), ψ) + σ√

∆t
(WQ

1,n+1, ψ),
vn+1−vn

∆t
= un+1 − vn+1.

(6.27)
for all ψ ∈ H1(D) satisfying ψ(x, 0) = ψ(x, l) and ψ(0, y) = ψ(l, y) for any (x, y) ∈
D. We have solved this problem using the P1 finite element methods, see Section
6.2.2.
Our aim is to observe reentrant patterns generated by the presence of the noise
source in this system. Figure 6.7 displays simulations of (6.25) using the P1 finite
element method. We observe the spontaneous generation of waves with a reentrant
pattern. At some points in the spatial domain, the system is excited and exhibits
a reentrant evolution which is self-sustained: a previously activated zone is re-
activated by the same wave periodically. As explained in [JC06] and quoted in
Section 6.4.1, this phenomenon can be interpreted biologically as tachycardia in
the heart tissue. We observe that, as in [Sha05], the constants a and b are chosen
such that the deterministic version of system (6.25) may exhibit spiral pattern, see
the bifurcation diagram between a and b in [Bar94]. However, in our context, the
generation of spiral is a phenomenon which is due solely to the presence of noise.
In particular, there is no need for a "dead region", as previously mentioned for the
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Figure 6.8: Simulations of system (6.25) with ξ = 2, σ = 0.15, ε = 0.05, a = 0.75,
b = 0.01 and ν = 1. As for the previous figure, the quiescent state is represented
in green whereas the excited state is in violet. Another phenomena of re-entry
is observed on this cardioid geometry with zero Neumann boundary conditions.
There is 2ms between each snapshot for a time step for the simulations equals to
0.05ms.

observation of spirals or reentrant patterns in a deterministic context. Figure 6.8
displays a simulation of system (6.25) on a cardioid domain with zero Neumann
boundary conditions, see (6.19). We observe the spontaneous generation of a wave
turning around itself like a spiral and thus reactivating zones already activated by
the same wave.

To gain a better insight into these reentrant phenomena, a bifurcation diagram
between ε and σ in system (6.25) is displayed in Figure 6.9. In this figure, the
other parameters a, b, ν, ξ are held fixed. The domain and boundary conditions are
the same as for Figure 6.7. Three distinct areas emerge from repeated simulations:

• the area NW (for No Wave) where no wave is observed.

• the area W (for Wave) where at least one wave is generated on average. Such
waves do not exhibit reentrant patterns.

• the area RW (for Reentrant Wave) where waves with re-entry are observed.
The wave has the same pattern as in Figure 6.7.

At transition between the areas W and RW, ring waves with the same pattern as
reentrant waves may be observed: two arms which join each other to form a ring.
We also remark that for a fixed ε, when σ increases, the number of nucleated waves
increases. On the contrary, for a fixed σ when ε increases the number of nucleated
waves decreases. Let us notice that for small ε, that is when the transition between
the quiescent and excited state is very sharp, small noise may powerfully initiate
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Figure 6.9: Numerical bifurcation diagram between ε and σ of system (6.25) with
ξ = 2, a = 0.75, b = 0.01 and ν = 1 held fixed.

spike. However, we only observe reentrant patterns when ε is large enough. Notice
also that the separation curve between the zone NW and the two zones W and
RW is exponentially shaped. This may be related to the large deviation theory for
slow-fast system of SPDE.

6.4.2 Numerical study of the Mitchel-Schaeffer model

The model

Fitzhugh-Nagumo model is the most popular phenomenological model for cardiac
cells. However this model has some flows, in particular the hyperpolarization and
the stiff slope in the repolarization phase. The Mitchell-Schaeffer model [MS03]
has been proposed to improve the shape of the action potential in cardiac cells.
The spatial version of the Mitchell-Schaeffer model reads as follows

du =

[
κ∆u+

v

τin

u2(u− 1) +
u

τout

]
dt+ σdWQξ ,

dv =

[
1

τopen

(v − 1) 1u<ugate +
v

τclose

1u≥ugate

]
dt.

(6.28)

The numerical scheme is based on the following variational formulation. Given u0

and v0 in H1(D), find (un, vn) such that for all 0 ≤ n ≤ N − 1, (un+1−un
∆t

, ψ) + κ(∇un+1,∇ψ) = 1
ε
( vn
τin
u2
n(un − 1) + 1

τout
un, ψ) + σ√

∆t
(WQ

n+1(1), ψ),

vn+1−vn
∆t

=
1

τopen

(vn − 1) 1un<ugate +
vn
τclose

1un≥ugate

(6.29)



168 CHAPTER 6. SIMULATIONS OF SPDES

for ψ ∈ H1(D). More precisely, we solve this problem with the P1 finite element
method.

Numerical investigations

Bifurcations have been investigated in Figure 6.10 for the same domain and bound-
ary conditions as for the bifurcation diagram related to Barkley model (Figure 6.9).
We choose to fix all the parameters except the intensity of the noise σ and τclose

to investigate the influence of the strength of the noise and the characteristic time
for the recovery variable v to get closed. From repeated simulations, five distinct
areas emerge:

• the area NW (for No Wave) where no wave is observed.

• the area W (for Wave) where at least one wave is generated on average.
These waves do not exhibit reentrant patterns. However, these waves may
be generated with the same pattern as reentrant waves: two arms which
meet up and agree to form a ring.

• the area RW (for Reentrant Wave) where waves with re-entry may be ob-
served as in Figure 6.7.

• the area DW (for Disorganized Wave) where reentrant waves are initiated
but break down in numerous pieces resulting in a very disorganized evolution.
In a sense, this disorganized evolution may be regarded as reentrant since
previously activated zone may be re-activated by one of these resulting pieces.

• the area T (for Transition) is a transition area between reentrant waves and
more disorganized patterns as observed in the area DW.

Appendix 6.A Proof of Theorem 6.2.1

Recall that the domain D is polyhedral such that

D =
⋃
T∈Th

T.

Let i ∈ {0, 0a, 1}. The process (Dh(t), t ∈ [0, τ ]) defined by

Dh(t) = WQ
t −W

Q,h,i
t
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τclose

NW

DW
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Figure 6.10: Numerical bifurcation diagram between τclose and σ of system (6.28)
with ξ = 2, τin = 0.07, τout = 0.7, τopen = 8., ugate = 0.13 and ν = 0.03 held fixed.

is a centered Wiener process. In particular, it is a continuous martingale and thus,
by the Burkholder-Davis-Gundy inequality (see Theorem 3.4.9 of [PZ07]) we have

E

(
sup
t∈[0,τ ]

‖Dh(t)‖2

)
≤ c2E(‖Dh(τ)‖2)

with c2 a constant which does not depend on h or τ . We begin with the case i = 1.
Since the processes WQ and WQ,h,1 are regular in space, we write

E(‖Dh(τ)‖2) = E
(∫

D

(WQ
τ (x)−WQ,h,1

τ (x))2dx

)
.

We use the definition of WQ,h,1 in Definition 6.2.3 and the fact that
∑Nh

i=1 ψi = 1
to obtain

E(‖Dh(τ)‖2) = E

(∫
D

(WQ
τ (x)−

Nh∑
i=1

WQ
τ (Pi)ψi(x))2dx

)

= E

(∫
D

(

Nh∑
i=1

(WQ
τ (x)−WQ

τ (Pi))ψi(x))2dx

)

= E

(∫
D

Nh∑
i,j=1

(WQ
τ (x)−WQ

τ (Pi))(W
Q
τ (x)−WQ

τ (Pj))ψi(x)ψj(x)dx

)
.
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By an application of Fubini’s theorem, exchanging over the expectation, integral
and summation, we get

E(‖Dh(τ)‖2) =

Nh∑
i,j=1

∫
D

E
(
(WQ

τ (x)−WQ
τ (Pi))(W

Q
τ (x)−WQ

τ (Pj))
)
ψi(x)ψj(x)dx

= τ

Nh∑
i,j=1

∫
D

(C(0)− C(Pi − x)− C(Pj − x) + C(Pi − Pj))ψi(x)ψj(x)dx.

For all 1 ≤ i, j ≤ Nh, if the intersection of the supports of ψi and ψj is not empty,
then

∀x ∈ suppψi,∀y ∈ suppψj, |x− y| ≤ Kh.

Thus, there exists K > 0 such that, for all i, j, if suppψi ∩ suppψj 6= ∅ and
x ∈ suppψi ∩ suppψj, a Taylor’s expansion yields

|C(0)− C(Pi − x)− C(Pj − x) + C(Pi − Pj)| ≤ Kh2,

where we have used the fact that ∇C(0) = 0. Then,

E(‖Dh(τ)‖2) ≤ Kτh2.

This ends the proof for the case i = 1. The case i = 0 can be treated similarly.
For the case i = 0a, we proceed as follows. Since the processes WQ and WQ,h,0a

are regular in space, as before we write

E(‖Dh(τ)‖2) = E
(∫

D

(WQ
τ (x)−WQ,h,0a

τ (x))2dx

)
.

We use the definition of WQ,h,0a and develop the square to obtain

E(‖Dh(τ)‖2) = E

(∫
D

WQ
τ (x)2 − 2

∑
T∈Th

1

|T |
(WQ

τ , 1T )WQ
τ (x)1T (x)

+
∑

T,S∈Th

1

|T ||S|
(WQ

τ , 1T )(WQ
τ , 1S)1T (x)1S(x)dx

)
.
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To simplify the above expression, we use the fact that the triangles do not intersect
to obtain

E(‖Dh(τ)‖2) = E

(∫
D

WQ
τ (x)2 − 2

∑
T∈Th

1

|T |
(WQ

τ , 1T )WQ
τ (x)1T (x)

+
∑
T∈Th

1

|T |2
(WQ

τ , 1T )21T (x)dx

)

= E

(∫
D

WQ
τ (x)2dx−

∑
T∈Th

1

|T |
(WQ

τ , 1T )2

)
.

By an application of Fubini’s theorem, exchanging over the expectation and sum-
mation, we get

E(‖Dh(τ)‖2) = τ

(
C(0)|D| −

∑
T∈Th

1

|T |
(Q1T , 1T )

)
. (6.30)

Since D =
⋃
T∈Th T we have

C(0)|D| =
∑
T∈Th

1

|T |

∫
T

∫
T

C(0)dz1dz2,

hence, plugging in (6.30)

E(‖Dh(τ)‖2) = τ
∑
T∈Th

1

|T |

∫
T

∫
T

[C(0)− C(z1 − z2)]dz1dz2. (6.31)

Thanks to the fact that ∇C = 0, a Taylor’s expansion yields

C(0)− C(z1 − z2) = (z1 − z2) · HessC(0)(z1 − z2) + o(|z1 − z2|2) (6.32)

Thus, thanks to (6.2), for all z1, z2 in the same triangle T

|C(0)− C(z1 − z2)| ≤ Kh2,

where K is independent from T ∈ Th. Plugging in (6.31) yields

E(‖Dh(τ)‖2) ≤ Kτh2

for a deterministic constant K.
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Appendix 6.B Proof of Theorem 6.3.1

Let 1 ≤ i ≤ Ih and n ∈ {0, . . . , N − 1}. A direct calculation using (6.9) and (6.10)
gives

1

∆t
(ehn+1 − ehn, wi,h) + a(ehn+1, wi,h) = (ε̃hn, wi,h)

with

(ε̃hn, wi,h) =
σ

∆t
(WQ,h

n+1 −WQ,h
n , wi,h)−

1

∆t
(Πhutn+1 − Πhutn , wi,h)− a(utn+1 , wi,h).

Then, using the fact that a(ehn+1, wi,h) = λi,h(e
h
n+1, wi,h) we obtain

(ehn+1, wi,h) =
1

1 + ∆tλi,h
(ehn, wi,h) +

∆t

1 + ∆tλi,h
(ε̃hn, wi,h). (6.33)

Moreover, we set µi,h,∆t =
log (1+∆tλi,h)

∆t
> 0 such that

e−µi,h,∆t∆t =
1

1 + ∆tλi,h
.

By induction from (6.33) we obtain, for all 1 ≤ i ≤ Ih and 0 ≤ n ≤ N − 1:

(ehn, wi,h) = e−µi,h,∆tn∆t(eh0 , wi,h) + ∆t
n−1∑
k=0

e−µi,h,∆t(n−k)∆t(ε̃hk, wi,h).

We multiply by wi,h and sum over i to obtain the desired result (6.12) with ε̃
instead of ε:

ehn =

Ih∑
i=1

e−µi,h,∆tn∆t(eh0 , wi,h)wi,h + ∆t

Ih∑
i=1

n−1∑
k=0

e−µi,h,∆t(n−k)∆t(ε̃hk, wi,h)wi,h. (6.34)

Then, we notice that, by Itô formula from the variational formulation satisfied by
u:

(u(n+1)∆t − un∆t, wi,h) = −
∫ (n+1)∆t

n∆t

a(us, wi,h)ds+ σ(WQ
(n+1)∆t −W

Q
n∆t, wi,h).
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Now we add and substract the term 1
∆t

∫ (n+1)∆t

n∆t
a(us, wi,h)ds in the definition of

(ε̃hk, wi,h) and use the above Itô formula to get:

(ε̃hn, wi,h) =
σ

∆t
(WQ,h

n+1 −WQ,h
n , wi,h)−

1

∆t
(Πhutn+1 − Πhutn , wi,h)−

1

∆t

∫ (n+1)∆t

n∆t

a(us, wi,h)ds

+
1

∆t

∫ (n+1)∆t

n∆t

a(us, wi,h)ds− a(utn+1 , wi,h)

=
σ

∆t
(WQ,h

n+1 −WQ,h
n , wi,h)−

σ

∆t
(WQ

(n+1)∆t −W
Q
n∆t, wi,h)

+
1

∆t

∫ (n+1)∆t

n∆t

a(us, wi,h)ds− a(u∆t(n+1), wi,h) +
1

∆t
((I− Πh)(u(n+1)∆t − un∆t), wi,h)

= (εhn, wi,h).

Plugging this equality in (6.34), we get the result.

Appendix 6.C Proofs of Lemmas 6.3.1 and 6.3.2

We start with a technical lemma.

Lemma 6.C.1. Let us define, for i, n ≥ 1, h,∆t > 0,

αi,n,h,∆t =
n−1∑
k=0

∫ (k+1)∆t

k∆t

(
e−µi,h,∆t(n∆t−k∆t) − e−µi,h,∆t(n∆t−s))2

ds.

Then

αi,n,h,∆t ≤ ∆tf(∆tλi,h), (6.35)

where the function f is defined on R∗+ by

f(x) =
log (1 + x) + 1

2
x2 − x

x(x+ 2) log (1 + x)
.

Proof. Since i and h are held fixed, we simply write in this proof µ∆t and λ for
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µi,h,∆t and λi,h. We have
n−1∑
k=0

∫ (k+1)∆t

k∆t

(
e−µ∆t(n∆t−k∆t) − e−µ∆t(n∆t−s))2

ds

=
n−1∑
k=0

e−2µ∆t(n∆t−k∆t)

∫ (k+1)∆t

k∆t

(
1− e−µ∆t(k∆t−s))2

ds

=
n−1∑
k=0

e−2µ∆t(n−k)∆t 1

µ∆t

∫ µ∆t∆t

0

(1− es)2 ds

=
1

µ∆t

∫ µ∆t∆t

0

(1− es)2 ds
1− e−2µ∆tn∆t

1− e−2µ∆t∆t
e−2µ∆t∆t

=
1

µ∆t

[
µ∆t∆t− 2eµ∆t∆t +

1

2
e2µ∆t∆t + 2− 1

2

]
1− e−2µ∆tn∆t

e2µ∆t∆t − 1
.

Using the definition of µ∆t this leads to
n−1∑
k=0

∫ (k+1)∆t

k∆t

(
e−µ∆t(n∆t−k∆t) − e−µ∆t(n∆t−s))2

ds

=
∆t

log (1 + ∆tλ)

[
log (1 + ∆tλ)− 2(1 + ∆tλ) +

1

2
(1 + ∆tλ)2 + 2− 1

2

]
1− e−2µ∆tn∆t

(1 + ∆tλ)2 − 1

≤ ∆t

log (1 + ∆tλ)

[
log (1 + ∆tλ) +

1

2
(∆tλ)2 −∆tλ

]
1

(1 + ∆tλ)2 − 1

=∆tf(∆tλ),

as required.

Proof of Lemma 6.3.1. We start with the detailed proof for the estimation of the
quantity E (‖An −Bn‖2). The estimation of E (‖Cn −Dn‖2) is obtained the same
way. Let us write
n−1∑
k=0

e−µi,h,∆t(n∆t−k∆t)(WQ
(k+1)∆t−W

Q
k∆t, wi,h) =

n−1∑
k=0

(∫ (k+1)∆t

k∆t

e−µi,h,∆t(n∆t−k∆t)dWQ
s , wi,h

)
and(∫ ∆tn

0

e−µi,h,∆t(n∆t−s)dWQ
s , wi,h

)
=

n−1∑
k=0

(∫ (k+1)∆t

k∆t

e−µi,h,∆t(n∆t−s)dWQ
s , wi,h

)
.

Then An −Bn is given by
Ih∑
i=1

n−1∑
k=0

(∫ (k+1)∆t

k∆t

e−µi,h,∆t(n∆t−k∆t) − e−µi,h,∆t(n∆t−s)dWQ
s , wi,h

)
wi,h.
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Since the family (wi,h, 1 ≤ i ≤ Ih) is orthonormal in H we have

E(‖An −Bn‖2)

=

Ih∑
i=1

E

(
n−1∑
k=0

(∫ (k+1)∆t

k∆t

e−µi,h,∆t(n∆t−k∆t) − e−µi,h,∆t(n∆t−s)dWQ
s , wi,h

))2

.

Completing the basis (wi,h, 1 ≤ i ≤ Ih) of Vh, which is orthonormal in H, into a
Hilbert basis (wi,h, i ≥ 1) of H, one can write

WQ
s =

∑
j≥1

βj,h,sQ
1
2wj,h,

where (βj,h,s, j ≥ 1) is a sequence of independent brownian motions. This gives

E(‖An −Bn‖2)

=

Ih∑
i=1

E

(∑
j≥1

n−1∑
k=0

∫ ∆t(k+1)

∆tk

e−µi,h,∆t(n∆t−k∆t) − e−µi,h,∆t(n∆t−s)dβj,h,s(Q
1
2wj,h, wi,h)

)2

.

(6.36)

Remember that the brownian motions (βj,h,s, j ≥ 1) are independent and remark
that for each j ≥ 1, the sequence of variables(∫ (k+1)∆t

k∆t

e−µi,h,∆t(n∆t−k∆t) − e−µi,h,∆t(n∆t−s)dβj,h,s

)
0≤k≤n−1

is a sequence of independent real-valued random variables. Hence, by independence
and Itô isometry

E

(∑
j≥1

n−1∑
k=0

∫ (k+1)∆t

k∆t

e−µi,h,∆t(n∆t−k∆t) − e−µi,h,∆t(n∆t−s)dβj,h,s(Q
1
2wj,h, wi,h)

)2

=
∑
j≥1

(Q
1
2wj,h, wi,h)

2

n−1∑
k=0

∫ (k+1)∆t

k∆t

(
e−µi,h,∆t(n∆t−k∆t) − e−µi,h,∆t(n∆t−s))2

ds

=
∑
j≥1

(Q
1
2wj,h, wi,h)

2αi,n,h,∆t,

where αi,n,h,∆t is defined in Lemma 6.C.1. Plugging this identity in (6.36) gives

E(‖An −Bn‖2) =
∑
j≥1

Ih∑
i=1

(Q
1
2wj,h, wi,h)

2αi,n,h,∆t. (6.37)
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Using the estimation of αi,n,h,∆t from Lemma 6.C.1 leads to

E(‖An −Bn‖2) ≤
∑
j≥1

Ih∑
i=1

(Q
1
2wj,h, wi,h)

2∆tf(∆tλi,h)

Notice that the function f is positive and bounded by a constant Kf on R+.
Therefore

E(‖An −Bn‖2) ≤ Kf∆t
∑
j≥1

Ih∑
i=1

(Q
1
2wj,h, wi,h)

2.

Finally, since
∑

j≥1

∑
i≥1(Q

1
2wj,h, wi,h)

2 = Tr(Q), we obtain

E(‖An −Bn‖2) ≤ KfTr(Q)∆t.

We go on with the estimation of the quantity E(‖Bn−Dn‖2). Notice that we can
write

Bn −Dn =

Ih∑
i=1

(∫ n∆t

0

e−µi,h,∆t(n∆t−s)d(WQ
s −WQ,h,1

s ), wi,h

)
wi,h.

Proceeding as above

E(‖Bn −Dn‖2) =
∑
j≥1

Ih∑
i=1

((Q
1
2 − (Qh,1)

1
2 )wj,h, wi,h)

2

∫ n∆t

0

e−2µi,h,∆t(n∆t−s)ds.

Note that
∫ n∆t

0
e−2µi,h,∆t(n∆t−s)ds ≤ 1

2µi,h,∆t
. We get

E(‖Bn −Dn‖2) ≤
∑
j≥1

Ih∑
i=1

((Q
1
2 − (Qh,1)

1
2 )wj,h, wi,h)

2

2µi,h,∆t

=
∑
j≥1

Ih∑
i=1

((Q
1
2 − (Qh,1)

1
2 )wj,h, wi,h)

2 ∆t

2 log (1 + ∆tλi,h)
.

For any ∆t0 > 0 we have

sup
∆t∈[0,∆t0]

∆t

2 log (1 + ∆tλi,h)
≤ K1 = sup

∆t∈[0,∆t0]

∆t

2 log (1 + ∆tλ1)
<∞,

we obtain

E(‖Bn −Dn‖2) ≤ K1

∑
i,j≥1

((Q
1
2 − (Qh,1)

1
2 )wj,h, wi,h)

2 = K1E(‖WQ
1 −W

Q,h
1 ‖2).
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By Theorem 6.2.1, we obtain that there exists a constant K depending only on
|D| such that

E(‖Bn −Dn‖2) ≤ Kh2.

Proof of Lemma 6.3.2. The error En, for 1 ≤ n ≤ N splits itself into the three
following terms:

En = αn + βn + γn

where

αn =

Ih∑
i=1

n−1∑
k=0

e−µi,h,∆t(n∆t−k∆t)((I− Πh)e
A∆tk(eA∆t − I)ζ, wi,h)wi,h,

βn =

Ih∑
i=1

n−1∑
k=0

e−µi,h,∆t(n∆t−k∆t)((I− Πh)

∫ ∆tk

0

eA(∆tk−s)(eA∆t − I)dWQ
s , wi,h)wi,h,

γn =

Ih∑
i=1

n−1∑
k=0

e−µi,h,∆t(n∆t−k∆t)((I− Πh)

∫ ∆t(k+1)

∆tk

eA(∆t(k+1)−s)dWQ
s , wi,h)wi,h.

We begin with the estimation of E(‖αn‖2). Using elementary calculations we
obtain

αn = (I− Πh)Snζ

with the operator Sn defined by

Sn = (eA∆t − I))(I + A∆t)−n(I− eA∆t(I + A∆t))−1(I− eAn∆t(I + A∆t)n)

Using the spectral decomposition of A, it is not difficult to show that the operator
Sn is bounded uniformly in n and ∆t. Thus, using Lemma 6.5.1 of [RT83] to
control I − Πh, we obtain that there exists a constant C (independent of n) such
that

E(‖αn‖2) ≤ Ch2

2∑
p=1

E(‖∇pζ‖2).

Recall that ζ ∈ H2(D) such that the above quantity is finite. Let us pursue with
the estimation on γn. Using similar calculation as in Lemma 6.3.1 we obtain

E(‖γn‖2) =

Ih∑
i=1

n−1∑
k=0

∑
j≥1

e−2µi,h,∆t(∆tn−∆tk)

∫ ∆t(k+1)

∆tk

e−2λi,h(∆t(k+1)−s)ds((I−Πh)Q
1
2wj,h, wi,h)

2.
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And then

E(‖γn‖2) =

Ih∑
i=1

∑
j≥1

1− e−2λj,h∆t

2λj,h
((I− Πh)Q

1
2wj,h, wi,h)

2 1

∆tλi,h

≤ 1

λ1

sup
x≥0

(
1− e−2x

2x

)
Tr((I− Πh)Q(I− Πh)

∗) ≤ Ch2.

for some constant C. Notice that we have used the fact that there exists a constant
C such that:

Tr((I− Πh)Q(I− Πh)
∗) ≤ Ch2

2∑
p=1

Tr(∇pQ).

The above quantity is finite since Tr(∆Q) < ∞ in our setting. The estimates on
E(‖βn‖2) and E(‖Fn‖2) are obtained using similar arguments.
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