
HAL Id: tel-00906029
https://theses.hal.science/tel-00906029

Submitted on 19 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning algorithms and statistical software, with
applications to bioinformatics

Toby Dylan Hocking

To cite this version:
Toby Dylan Hocking. Learning algorithms and statistical software, with applications to bioinformatics.
General Mathematics [math.GM]. École normale supérieure de Cachan - ENS Cachan, 2012. English.
�NNT : 2012DENS0062�. �tel-00906029�

https://theses.hal.science/tel-00906029
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

présentée par Toby Dylan Hocking

pour obtenir le grade de
Docteur de l’École Normale Supérieure de Cachan

Domaine: Mathématiques appliquées

Sujet de la thèse:

Algorithmes d’apprentissage et logiciels pour la

statistique, avec applications à la bioinformatique

—
Learning algorithms and statistical software,

with applications to bioinformatics

Thèse présentée et soutenue à Paris le 20 novembre 2012
devant le jury composé de:

Francis BACH ENS/INRIA Paris Directeur de thèse
Jean-Philippe VERT Mines ParisTech/Institut Curie Directeur de thèse
Stéphane ROBIN AgroParisTech Rapporteur
Yves GRANDVALET Université de Compiègne Rapporteur
Idris ECKLEY Lancaster University Examinateur
Isabelle JANOUEIX-LEROSEY Institut Curie Examinateur

Thèse préparée au sein de l’équipe SIERRA
au département d’informatique de l’ENS Ulm

(INRIA/ENS/CNRS UMR 8548)
et l’équipe CBIO à Mines ParisTech, Institut Curie, INSERM U900.

Contents

Contents 2

1 Introduction 7
1.1 Résumé du travail . 8
1.2 Summary of contributions 9
1.3 Review of biology, genetics, neuroblastoma 12
1.4 Review of convex relaxation, optimality, and algorithms . . . 16
1.5 Review of current statistical software 24

I Segmentation and clustering algorithms, with
applications to bioinformatics 25

2 Hierarchical clustering using convex fusion penalties 27
2.1 Introduction . 27
2.2 Optimization . 32
2.3 The spectral clusterpath . 42
2.4 Results . 43
2.5 Conclusions . 50

3 Segmentation model selection with visual annotations 51
3.1 Introduction and related work 52
3.2 Methods . 54
3.3 Results and discussion . 62
3.4 GUI implementations . 68
3.5 Conclusions . 72

4 Optimal penalties for breakpoint detection 75
4.1 Properties of an ideal error function for breakpoint detection 76
4.2 Exact breakpoint error for simulated signals 78
4.3 Incomplete annotation error for real data 81
4.4 Link with breakpoint error using complete annotation error . 84

2

Contents

4.5 Zero-one annotation error 86
4.6 Comparing annotation error functions 87
4.7 Sampling density normalization 88
4.8 Scale normalization . 94
4.9 Signal length normalization 98
4.10 Combining normalizations 102
4.11 Optimal penalties for the fused lasso signal approximator . . 104
4.12 Application to real data . 107

5 Learning a penalty using interval regression 109
5.1 Introduction . 110
5.2 The penalty learning problem 111
5.3 A convex relaxation of the annotation error 116
5.4 Algorithms . 122
5.5 Results and discussion . 127
5.6 Conclusions . 130

6 Conclusions and future work 131

II Statistical software contributions 135

7 Adding direct labels to plots 137
7.1 Introduction and related work 139
7.2 Densityplot labels . 140
7.3 Lineplot labels using a quadratic program 141
7.4 Scatterplot labels . 146
7.5 Design of directlabels . 150
7.6 Conclusions . 152

8 Sustainable, extensible documentation generation 153
8.1 Introduction . 154
8.2 The inlinedocs syntax for inline documentation of R packages 155
8.3 The inlinedocs system of extensible documentation generators 161
8.4 Conclusions and future work 166

9 Named capture regular expressions 167
9.1 Introduction and related work 168
9.2 Implementation details . 172
9.3 Application: extracting data from HTML 174
9.4 Conclusion . 176

3

Contents

Bibliography 177

4

Acknowledgements

For providing such a wonderful scientific environment to work in, I would
like to thank all my colleagues at the Mines ParisTech Centre for Com-
putational Biology, INRIA Sierra, and the Institute Curie bioinformatics
group (INSERM u900). In particular, I would like to thank my advisors
Jean-Philippe Vert and Francis Bach, and my coauthors Armand Joulin,
Gudrun Schleiermacher, Isabelle Janoueix-Lerosey, Olivier Delattre, and
Guillem Rigaill.

For supporting me while I was growing up and for coming to Paris to
set up my PhD reception, I would like to thank my mom Lori Ann Hocking
and my aunt Diana Stevens.

For supporting me financially during the three years of my doctoral
studies, I would like to thank Digiteo.

5

Chapter 1

Introduction

In this introductory chapter, I first present a summary of the contributions
of this thesis in French and English. Then, for the rest of this thesis I will
use English. In the rest of the introduction, I present a brief review of
the relevant biology, machine learning, and statistical software necessary to
understand the contributions of this thesis.

This thesis focuses on the development of new mathematical models for
data analysis. To show results, and to explain the geometric interpretation
of the models, I will make extensive use of color figures. To integrate the
figures with the discussion, I have tried to follow the guidelines of the Yale
statistician Edward Tufte, who proposed to “completely integrate words,
numbers, images, diagrams” as a sound principle for the analysis and pre-
sentation of data [Tufte, 2006, page 131]. So to assist understanding, I have
tried to place the textual discussion of each figure on the same page as the
figure itself. If that was not practical, I have placed the figure on the facing
page. Also, this thesis contains some blank space and page breaks. Again,
I added these to ensure that figures and tables appear near the text that
discusses them.

The best way to read this thesis is in printed book form. When reading
on a computer, I suggest a reader that supports “Dual” display where two
pages are displayed at the same time. In particular, even numbered pages
should appear on the left and odd numbered pages should appear on the
right.

7

1. Introduction

1.1 Résumé du travail

L’apprentissage statistique est le domaine des mathématiques qui aborde
le développement des algorithmes d’analyse de données. Cette thèse est
divisée en deux parties : la présentation de modèles mathématiques et
l’implémentation d’outils logiciels.

Dans la première partie, je présente de nouveaux algorithmes pour la
segmentation et pour le partitionnement de données (clustering). Le par-
titionnement de données et la segmentation sont des méthodes d’analyse
qui cherche des structures dans les données. Je présente les contributions
suivantes, en soulignant les applications à la bioinformatique.

• Dans le chapitre 2, je présente “clusterpath,” un algorithme pour le
partitionnement de données utilisant l’optimisation convexe.

• Dans le chapitre 3, je développe une méthode pour la séléction de
modèle de segmentation qui exploite les annotations visuelles.

• Dans le chapitre 4, je détermine des penalités optimales pour la dé-
tection de changements dans les signaux homoscédastique et constant
par morceaux.

• Dans le chapitre 5, j’explique comment apprendre une fonction de
penalité à partir d’annotations visuelles.

Dans la deuxième partie, je présente mes contributions au logiciel libre
pour la statistique, qui est utilisé pour l’analyse quotidienne du statisticien.

• Dans le chapitre 7, je présente le paquet R directlabels, qui remplace
une légende par l’annotation directe dans les graphiques statistiques.

• Dans le chapitre 8, je présente le paquet R inlinedocs, qui permet
d’écrire la documentation du code R dans les commentaires.

• Dans le chapitre 9, je présente une fonction qui permet l’utilisation
de parenthèses de groupement pour les expressions rationelles, ce qui
peut être utilisé pour le pré-traitement de données dans R-2.14.

8

1.2. Summary of contributions

1.2 Summary of contributions

Statistical machine learning is a branch of mathematics concerned with
developing algorithms for data analysis. This thesis presents new mathe-
matical models and statistical software for data analysis, and is organized
into two parts.

In the first part, we present several new algorithms for clustering and
segmentation. Clustering and segmentation are a class of techniques that
attempt to find structures in data. We discuss the following contributions,
with a focus on applications to cancer data from bioinformatics.

• In Chapter 2, we present “clusterpath,” an algorithm for clustering
that uses fusion penalties in a convex optimization problem. Cluster-
ing algorithms are useful for finding latent classes and tree structures
in data, but classical algorithms like hierarchical clustering and k-
means have some limitations. We propose a convex relaxation of hier-
archical clustering, yielding the“clusterpath”which has a natural geo-
metric interpretation. We give efficient algorithms for calculating the
continuous regularization path of solutions, and discuss relative ad-
vantages of the model parameters. Our method experimentally gives
state-of-the-art results similar to spectral clustering for non-convex
clusters, and has the added benefit of learning a tree structure from
the data. The free/open-source code is available in the clusterpath
package on R-Forge.

• In Chapter 3, we explain a method for segmentation model selection
that uses visual annotations to train and compare models in real data.

Many models have been proposed to detect copy number alterations
in chromosomal copy number profiles, but it is usually not obvious to
decide which is most effective for a given data set. Furthermore, most
methods have a smoothing parameter that determines the number of
breakpoints and must be chosen using various heuristics.

We present three contributions for copy number profile smoothing
model selection. First, we propose to select the model and degree of
smoothness that maximizes agreement with visual breakpoint region
annotations. Second, we develop cross-validation procedures to esti-
mate the error of the trained models. Third, we apply these methods
to compare many existing models on a new database of annotated neu-
roblastoma copy number profiles, which we make available as a public
benchmark for testing new algorithms. Whereas previous studies have

9

1. Introduction

been qualitative or limited to simulated data, our approach is quan-
titative and suggests which algorithms are most accurate in practice
on real data.

Several free/open-source software packages were developed in support
of this chapter. The code that implements the model comparisons is
available in the bams package on CRAN. Two GUIs for creating
annotation databases are also available.

• In Chapter 4, we calculate optimal penalties for change-point detec-
tion in simulated piecewise constant signals. Given a latent piecewise
constant signal, we define a precise breakpoint detection error func-
tion, and discuss its relationship to the annotation error defined in
Chapter 3. We then use the error function to determine optimal
penalties for breakpoint detection in databases of simulated signals of
varying sampling density, noise, and length.

• In Chapter 5, we explain how to use visual annotations to learn an
optimal penalty function for change-point detection in real data. In
the previous chapters, we saw that the segmentation models selected
using standard criteria do not accurately recover the change-points
defined in databases of visual annotations. So to find a model that
agrees with the annotations, we propose to learn a penalty function
that minimizes the non-convex annotation error. We propose a convex
relaxation that yields an interval regression problem, and solve it us-
ing accelated proximal gradient methods. Finally, we show that this
method achieves state-of-the-art performance on several annotation
data sets based on the neuroblastoma data.

In the second part, we focus on statistical software contributions which
we implemented in the R progamming language, and are practical for use
in everyday data analysis.

• In Chapter 7, we present the R package directlabels, which replaces
confusing legends with direct labels in statistical graphics. Direct
labels are often much easier to interpret than a legend, but are not
often used in practice since the label positions must be determined
based on the data. We present several algorithms that can be used to
find readable direct labels for several common plot types, and discuss
the design and implementation of the directlabels package.

• In Chapter 8, we present the R package inlinedocs, which allows R
package documentation to be written in comments. The concept of

10

1.2. Summary of contributions

structured, interwoven code and documentation has existed for many
years, but existing systems that implement this for the R program-
ming language do not tightly integrate with R code, leading to sev-
eral drawbacks. This chapter attempts to address these issues and
presents 2 contributions for documentation generation for the R com-
munity. First, we propose a new syntax for inline documentation of R
code within comments adjacent to the relevant code, which allows for
highly readable and maintainable code and documentation. Second,
we propose an extensible system for parsing these comments, which
allows the syntax to be easily augmented.

• In Chapter 9, we present named capture regular expressions, which
can be used for data pre-processing. We explain the implementation
of capturing subpattern locations and names, which are useful for
extracting information from non-standard data files. As a result of
this work, these features are available from the regexpr and gregexpr

functions, in every copy of R starting with version 2.14.

11

1. Introduction

1.3 Review of biology, genetics,

neuroblastoma

This thesis discusses new methods in statistical machine learning with an
emphasis on applications in bioinformatics. In this section, we review some
concepts from biology that will help to understand the material in this
thesis.

Review of genetics

Deoxyribonucleic acid (DNA) is the inherited molecule that encodes infor-
mation about how biological cells and organisms function. DNA is organized
into chromosomes in the nucleus of most eukaryotic cells. In normal human
cells there are 23 pairs of chromosomes, as shown on the left of Figure 1.1.
One chromosome of each pair comes from the father, and the other comes
from the mother. One pair is called the sex chromosomes, which can be ei-
ther a large X chromosome or a small Y chromosome. A female inherits an
X chromosome from both parents, but a male inherits a Y from his father
and an X from his mother. The other 22 pairs of chromosomes are called
autosomes, and are numbered by roughly decreasing size from 1 to 22. As
can be seen in Figure 1.1 and in more detail on the UCSC genome browser
[Kent et al., 2002], chromosome 1 is the largest, chromosome 7 is roughly
the same size as the X chromosome, and the Y chromosome is even smaller
than chromosome 22.

Figure 1.1: Spectral karyotype of copy number alterations in a cancer cell,
described by Alberts et al. [2002]. In this assay, chromosomes are each
stained with a specific color so they can be counted easily. Left: a normal
genome with 2 copies of each autosome. Right: a cancer cell genome, which
contains many abnormal duplications and translocations.

12

1.3. Review of biology, genetics, neuroblastoma

In this thesis, we will analyze array comparative genomic hybridization
(aCGH) experiments that measure the copy number of cell samples. The
goal of these experiments is to quantify the number of copies of each chro-
mosome. As shown on the right of Figure 1.1, chromosomal copy number
in cancer cells can deviate significantly from the normal level of 2 copies.
A main contribution of this thesis are new methods that more accurately
estimate chromosomal copy number from aCGH experiments.

An aCGH experiment simultaneously measures the copy number of a
sample at each location in the human genome using microarray technology.
To understand microarrays, one must consider how they are constructed
based on the human genome sequence. The International Human Genome
Sequencing Consortium noted that the published genome “...facilitates ex-
perimental tools to recognize cellular components—for example, detectors
for mRNAs based on specific oligonucleotide probes...with confidence that
these features provide a unique signature” [IHGSC, 2004]. Indeed, an aCGH
microarray consists of many DNA probes, each which maps to a unique re-
gion of the genome. To analyze a tumor with aCGH, a tumor DNA sample
is tagged with a fluorescent marker and then hybridized to the probes on
the microarray. The level of fluorescence is measured for each probe, and
the amount of fluorescence depends on the number of matching sequences
in the tumor sample [Pinkel et al., 1998]. Thus, aCGH experiments yield
measurements of copy number for as many locations in the genome as there
are probes on the microarray.

Microarray pre-processing and normalization techniques are essential to
aCGH data analysis, and a review of these techniques is given by Neuvial
et al. [2010]. Data normalization procedures output a “logratio” signal that
is roughly proportional to copy number [Pinkel et al., 1998]. It is defined
as log2(E/R), or the fold-change of the experimental signal E with respect
to the reference sample R. This thesis analyzes these logratio signals and
presents new mathematical models for predicting changes in copy number.

13

1. Introduction

In Figure 1.2, we examine one tumor and show its“copy number profile,”
which is the plot of logratio measurements along the genome. The data
come from the neuroblastoma data set, a database of copy number profiles
that we have made public as part of this research. There are several copy
number changes visible in Figure 1.2, and we present a new approach to
detecting these changes in Chapter 3 of this thesis.

The terminology we will use when discussing copy number deduced from
aCGH experiments is as follows:

• Normal level corresponds to logratio 0 and in non-cancerous tissues
this corresponds to 2 copies.

• Gains are regions or entire chromosomes that are present in greater
quantity than normal. Gains can result from entire chromosome du-
plications, or chromosomal translocations where just a region of one
chromosome is copied and attached somewhere else in the genome.

• Losses are regions or entire chromosomes that are missing. These can
result from abnormal events in cell division when the DNA copying
machinery does not work properly.

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8

-1.0

-0.5

0.0

0.5

100 200 100 200 100 200 100 100 100 100 100
position on chromosome (mega base pairs)

lo
gr
at
io

Figure 1.2: The copy number profile of a neuroblastoma tumor. An aCGH
experiment was used to measure copy number of a tumor sample, and the
normalized logratio measurements are plotted against chromosomal posi-
tion. In this tumor, chromosomes 1, 2, and 8 exhibit a logratio of 0 which
corresponds to the normal level of 2 copies. Chromosomes 3, 4, and 6 clearly
show regions with a loss, and chromosome 7 exhibits a gain. Chromosomes
9-22 and X and Y were assayed but are not shown in this plot.

14

1.3. Review of biology, genetics, neuroblastoma

Review of neuroblastoma

We will focus on the analysis of neuroblastoma tumors taken from patients
at diagnosis at the Institut Curie. Neuroblastoma is a pediatric cancer that
manifests in infants and children, most frequently diagnosed at the age of
1 or 2 years. It affects approximately 1 child in 100,000, but its causes are
still largely unknown [Maris, 2010]. One goal of this thesis is to develop
statistical methods that more accurately characterize the genetic profiles
of these tumors, so we may one day understand the genetic causes of this
cancer.

Mysteriously, neuroblastoma in many children spontaneously disappears
without treatment. So if we could use a genetic test to determine which
children would have spontaneous remission, we could avoid treating those
children with painful anti-cancer drugs and still be sure that they would
recover.

There have been several previous attempts to characterize the genes
involved in neuroblastoma development. The first gene observed in neurob-
lastoma to be amplified in many more copies than normal was N-myc, which
is localized on the short arm of chromosome 2 [Schwab et al., 1984]. More re-
cently, mutations and copy number changes in the PHOX2B and ALK genes
have been observed in association with neuroblastoma [Janoueix-Lerosey
et al., 2008, Trochet et al., 2004]. So there are several genes known to be
associated to neuroblastoma, and we may be able to identify new genes by
examining copy number profiles of tumors.

Clinical outcome of patients with neuroblastoma has been shown to be
worse for tumors with segmental alterations or breakpoints in specific ge-
nomic regions [Janoueix-Lerosey et al., 2009, Schleiermacher et al., 2010].
In those studies, copy number of large chromosomal regions was estimated
by visual inspection of the copy number profiles. In this thesis, we de-
velop mathematical models that give more precise estimation of the copy
number alterations, yielding much smaller regions where we may find genes
associated with neuroblastoma.

15

1. Introduction

1.4 Review of convex relaxation,

optimality, and algorithms

In this thesis, we will make extensive use of convex optimization to formulate
and solve statistical learning problems. A good introduction to statistical
learning is given by Hastie et al. [2009]. We use the convex optimization
notation conventions of Boyd and Vandenberghe [2004].

Convex relaxation renders difficult problems tractable

We will be concerned with constrained optimization problems with real
vectors, which generally take the following form.

• Let x =
[
x1 · · · xn

]′
be the vector of n optimization variables.

• Let f0 : R
n → R be the objective function.

• For every inequality constraint i ∈ {1, . . . ,m}, let fi : Rn → R be an
inequality constraint function.

• For every equality constraint i ∈ {1, . . . , p}, let hi : R
n → R be the

equality constraint function i.

The optimization problem is to find a vector of variables x ∈ R
n such that

the objective is minimal.

min f0(x)

subject to fi(x) ≤ 0 for all i ∈ {1, . . . ,m}
hi(x) = 0 for all i ∈ {1, . . . , p}.

(1.1)

In other words, we would like to find an optimal vector x∗ such that each
constraint fi(x

∗) ≤ 0 and hi(x
∗) = 0 is satisfied, and for any x that also

satisfies the constraints we have f0(x) ≥ f0(x
∗). Note that there can be

several x1 6= x2 which attain the minimal value f ∗ = f0(x1) = f0(x2), as
shown in the top of Figure 1.3.

Many real-world statistical problems can be written in the form of (1.1),
and in this thesis we will often introduce problems of this form. However,
real-world problems are often intractable due to lack of structure.

A classical intractable problem from statistics is the best subset variable
selection problem in regression. Given a matrix of inputs A ∈ R

l×n and a

16

1.4. Review of convex relaxation, optimality, and algorithms

vector of outputs y ∈ R
l, we would like to select the best k < n variables:

min f0(x) = ||Ax− y||22

subject to f1(x) = ||x||0 =
n∑

i=1

1xi 6=0 ≤ k
(1.2)

In this problem, there are p = 0 equality constraints and there is m = 1
inequality constraint function f1. It is defined as the ℓ0 pseudo-norm of the
vector x, which is a sum of indicator functions that count if the entries are
non-zero.

The constraint function f1 is neither differentiable nor continuous, and
this lack of structure can be seen in the fourth panel of Figure 1.3. So solving
this problem requires calculating the least squares solution and checking the
value of f0 for

(
n
k

)
= (n!)/(k!(n − k)!) combinations of variables. Due to

the factorials, with large n this quantity becomes too large to handle using
even the fastest computers. Technically, we say that this problem is NP-
hard [Cormen et al., 1990, Chapter 34].

Using the technique of convex relaxation, we can alter this problem and
create a new one which is tractable. In the case of best subset selection for
regression, we can alter the constraint function f1. Instead of constraining
the number of nonzero entries of the vector x, we can constrain the size of
x using the ℓ1 norm:

min ||Ax− y||22

subject to ||x||1 =
n∑

i=1

|xi| ≤ s,
(1.3)

where s ∈ R
+ is the maximum size of the parameter vector. This alteration

results in a modified regression problem commonly known as the Lasso
[Tibshirani, 1996]. Like the original problem (1.2), the Lasso problem (1.3)
has p = 0 equality constraints and m = 1 inequality constraint. The ℓ1
norm ||x||1 is a function with a specific structure, as shown in the middle
panel of Figure 1.3. In particular, it is a convex function, which we define
precisely in the next section. We can exploit the convexity and piecewise
linearity of the ℓ1 norm to solve problem 1.3 efficiently.

One could worry that relaxing the ℓ0 pseudo-norm to the ℓ1 norm signif-
icantly changes the problem, so that we will not get a good solution to the
initial problem. However, recent results show that with just a few more ob-
servations, the relaxed problem is able to recover the same solution [Candès
and Tao, 2009].

17

1. Introduction

In summary, the technique of convex relaxation can be used on in-
tractable non-convex optimization problems. The idea is to replace a non-
convex function with a convex approximation. In particular, we often re-
place the ℓ0 pseudo-norm with the ℓ1 norm. The result is a modified opti-
mization problem which is convex and thus can be solved efficiently. In the
next section, we discuss several methods for solving convex optimization
problems.

0

1

2

3

4

0.0

2.5

5.0

7.5

0

1

2

3

0
1
2
3
4
5

0
1
2
3
4
5

p
iecew

ise
affi

n
e

x
2

|x|
1
x
6=
0

m
u
ltip

le
m
in
im

a

-2 0 2
x

f
(x
)

label

global min

open

closed

local min

Figure 1.3: Some functions f : R → R (black) and their global minima
(red). From top to bottom: a convex non-smooth piecewise affine function
with many global minima; the squared ℓ2 norm is a convex smooth function
with a unique global minimum; the ℓ1 norm is a convex non-smooth piece-
wise linear function with a unique global minimum; the ℓ0 pseudo-norm
is a discontinuous non-convex function with a unique global minimum; a
continuous non-convex function with 2 local minima, one of which is global.

18

1.4. Review of convex relaxation, optimality, and algorithms

Optimality conditions for convex functions

In the previous section we discussed the technique of convex relaxation,
which replaces non-convex functions with convex approximations. To be
precise, a function f : Rn → R is convex if for all x, y ∈ R

n, and for all θ
such that 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (1.4)

To understand the definition of convexity, consider the examples in Fig-
ure 1.3. Geometrically, the definition of convexity means that you can
choose any two points x, y on the plot of f , and the line segment that
connects x and y will never underestimate the function f .

When the objective function f0 is convex and the constraint functions
f1, . . . , fm are convex, then we have a convex optimization problem. Convex
optimization problems are tractable since we can analyze them and use their
gradients or subgradients to solve them [Boyd and Vandenberghe, 2004].

If a function f : Rn → R is differentiable, the gradient ∇f(x) ∈ R
n at

the point x ∈ R
n is the vector of partial derivatives of that function:

∇f(x) =
[

∂f(x)
∂x1

. . . ∂f(x)
∂xn

]′

. (1.5)

The gradient is useful since it allows us to characterize the stationary points
of f . In particular, we know that any point x such that ∇f(x) = 0 is either
a local minimum, local maximum, or inflection point of f .

However, functions may have several stationary points, as shown in the
bottom panel of Figure 1.3. For a function f with several local minima,
there are several points x each which satisfy ∇f(x) = 0. So for general
functions f , the gradient condition ∇f(x) = 0 is not sufficient to ensure
that x is the global minimum.

In contrast, we can use the gradient condition to find the global min-
imum of differentiable convex functions. In particular, for every differen-
tiable convex function f that achieves its infimum f ∗, we have

f(x) = f ∗ ⇔ ∇f(x) = 0. (1.6)

For example, the squared norm x2 in the second panel of Figure 1.3 is a
convex differentiable function whose global minimum is characterized by
the gradient condition. So we can characterize the global minimum of any
smooth convex function f using the gradient condition.

19

1. Introduction

However, we would also like to analyze convex, non-differentiable func-
tions such as the ℓ1 norm and the piecewise affine function shown in Fig-
ure 1.3. To analyze these functions, we define the subdifferential for any
convex function f : Rn → R as

∂f(x) = {z ∈ R
n | f(x)− f(y) ≥ z′(x− y) for any y ∈ R

n} . (1.7)

In general, the subdifferential contains all vectors z ∈ R
n that define tan-

gent planes of the convex function f at x. For smooth functions, the sub-
differential contains just the gradient vector ∂f(x) = {∇f(x)}. We plot a
non-differentiable function with its subdifferential in Figure 1.4.

We will use subdifferentials to characterize the optima of non-smooth
convex functions. In particular, we use the fact that if the subdifferential

0

1

2

3

4

fu
n
ct
io
n
f
(x
)

-3 -2 -1 0 1 2 3

-4
-3
-2
-1
0
1

x

su
b
d
iff
er
en
ti
al

∂
f
(x
)

Figure 1.4: Top: a convex function f : R→ R. Bottom: its subdifferential
∂f : R → 2R. At every x 6= 0, the function f(x) is differentiable so
∂f(x) = {∇f(x)}. At the non-differentiable point we have ∂f(0) = [0, 1].
The subdifferential at x gives the slope (red dots) of tangent lines (red lines)
of f(x). Note that since f is convex, the condition 0 ∈ ∂f(x) characterizes
its global minima.

20

1.4. Review of convex relaxation, optimality, and algorithms

at x contains the zero vector 0 ∈ ∂f(x), then x is a minimum of f :

f(x) = f ∗ ⇔ 0 ∈ ∂f(x). (1.8)

Note that when f is smooth this reduces to the usual gradient optimality
condition ∇f(x) = 0.

However, the minimum of a non-smooth convex function may not be
unique. As shown in the top panel of Figure 1.3, there could be several
distinct optimal x1 6= x2 with the same optimal value f(x1) = f(x2) = f ∗.
It is sufficient to find any one of these optimal vectors.

Algorithms for convex optimization

There are several practical methods or “solvers” that one can use to solve
convex optimization problems. Let us take the point of view of a statis-
tical programmer who will write the code that solves problem (1.3) for a
particular set of inputs A and outputs y. There is a tradeoff between the

• time it takes to analyze the problem structure on paper and write the
code that implements the solver, and the

• computational running time and memory requirements.

This thesis will focus on solvers that take a while to implement, but
run very fast on the computer. For example, we can solve problem (1.3)
using FISTA, a Fast Iterative Shrinkage-Thresholding Algorithm [Beck and
Teboulle, 2009]. To use FISTA, we must analyze the structure of the opti-
mization problem. First we must take the equivalent Lagrange formulation
of the problem, which results in the following unconstrained problem

min
x
||Ax− y||22 + λ||x||1. (1.9)

The Langrange multiplier λ ∈ R
+ is a fixed parameter that controls the size

of the parameter vector x, and plays the same role as s in problem (1.3). To
use FISTA to solve this problem, we must find the gradient and a Lipshitz
constant of the smooth part ||Ax−y||22. Then, we must derive the proximal
operator of the non-smooth part ||x||1. Finally, we must derive a stopping
condition from the subdifferential condition (1.8) that determines when we
have achieved an optimal solution vector x. When all these steps have been
done on paper, we can write the code that implements FISTA, and solves
problem (1.9) very efficiently.

Active-set methods are another class of computationally efficient opti-
mization algorithms that we will exploit in this thesis. The idea in active-set

21

1. Introduction

methods is to first determine which subset of variables xi are active, and
then save time by only considering those variables in the optimization. For
example, we know that in problem (1.9) some variables xi will be exactly
zero in the optimal solution. We refer to the other non-zero variables as
the active set. Implementing an active-set method requires detailed anal-
ysis of the optimality conditions to determine which variables are active.
In Chapter 2 of this thesis, we will use active-set methods to calculate the
clusterpath.

A special class of active-set methods that we will discuss in this thesis
are homotopy methods. For example, the solutions to problem (1.9) can
be found for all λ ∈ R

+ using a homotopy method called the Least An-
gle Regression algorithm (LARS) [Efron et al., 2004]. We refer to the set
of optimal x as λ changes as the “path of solutions,” which is why homo-
topy methods are often called path-following algorithms. These methods
are useful in statistical learning applications since we often want to use a
regularized model with an intermediate value of λ, but we do not know
what specific value of λ to use in advance. So in practice we use cross-
validation to fit the entire path of solutions on a training set of data, and
pick the model complexity λ for which prediction error is minimal on a test
set of data. A homotopy algorithm can be applied whenever the optimiza-
tion problem contains a piecewise quadratic term and a piecewise linear
term [Rosset and Zhu, 2007]. Implementing homotopy methods is usually
quite time-consuming, and requires analysis of how the optimality condition
changes with λ. In this thesis, we use a homotopy method in Chapter 2 to
calculate the ℓ1 clusterpath.

Another way to solve problem (1.3) is to use a generic quadratic pro-
gramming (QP) solver such as the quadprog package in R [Turlach and
Weingessel, 2011]. Using this method is significantly simpler to implement
than the methods discussed above. In particular, we do not need to derive
the gradient, Lipshitz constant, proximal operator, optimality conditions,
or stopping condition. We just need to convert the problem to standard
form:

min
x∈Rn,x+∈Rn,x−∈Rn

1

2
x′A′Ax− y′Ax

subject to ∀i ∈ {1, . . . , n}, xi = x+
i − x−

i

∀i ∈ {1, . . . , n}, x+
i ≥ 0

∀i ∈ {1, . . . , n}, x−
i ≥ 0

n∑

i=1

x+
i + x−

i ≤ s,

(1.10)

22

1.4. Review of convex relaxation, optimality, and algorithms

where x+
i , x

−
i are variables that we introduce so we can write the constraint

on the ℓ1 norm in standard form. Then, we apply the QP solver, which
implements the method of Goldfarb and Idnani [1983]. Though using a QP
solver requires much less derivation on paper, it generally requires more
time for the computer to calculate the solution. Conceptually, since the QP
solver uses just the objective function and constraints in standard form, it
is unable to find the solution as fast as other methods such as FISTA that
exploit the problem’s structure.

Finally, one of the fastest ways to write the code that solves (1.3) is
using disciplined convex programming [Grant et al., 2006]. Using this tech-
nique, a library such as cvxmod is used to write code that describes the
optimization problem [Mattingley and Boyd, 2008]. Then, the cvxmod li-
brary analyzes the program, translates it into standard form, and applies
a standard solver. So this is even faster to code than using a QP solver,
since we do not even need to write the problem in standard form. In con-
trast, these methods often run very slowly on the computer, and so are only
feasible for optimization problems with few variables and constraints.

So in practice there are a variety of different methods that can be used
to find the solution to statistical learning problems such as the Lasso (1.3).
Each method has its own strengths and weaknesses in terms of coding and
calculation time. However, these methods can be used to complement one
another. In this thesis, we will introduce new algorithms that take a while
to code, but result in very fast calculation times. We will use the com-
putationally slower, more generic solvers to check that our solvers find the
correct solutions.

23

1. Introduction

1.5 Review of current statistical software

In part 1 of this thesis, we will focus on defining and characterizing new
machine learning algorithms for data analysis. To use them in practical
analyses of real data, these algorithms must be implemented in computers
by writing software.

Software for data analysis can be written in many languages, but for
this thesis I used the R [R Development Core Team, 2012], Python [Pil-
grim, 2004], C [Kernighan and Ritchie, 1988], and C++ programming lan-
guages [Stroustrup, 1997]. These languages are good choices for scientific
computing for 2 main reasons.

• The compiler or interpreter for each of these languages is available
free of charge on the internet. This permits anyone to download the
code that implements my algorithms and run it on their computer.
This is particularly important for reproducible research, so that my
colleagues in the international research community may easily verify
the results that I report.

• The compiler or interpreter for each language has open source code.
This is particularly important for science so we can read the source
code to see exactly how everything works. Also, this means that
we can alter the base language interpreter if necessary. I show one
example of this in Chapter 9 when I show how to add named capture
regular expressions to R.

In part 2 of this thesis, I discuss statistical software contributions that
I have implemented in R, a language and environment for statistical com-
puting and graphics. R has data structures, built-in functions, and an
interactive interface that make it particularly well-suited for data analysis.
R is collaboratively developed by volunteers from all over the world, and
this thesis presents three contributions to that effort. Although I do not
discuss detailed usage of the R language in this thesis, I refer the reader to
the introduction given by Murrell [2009, Chapter 9].

The software I wrote in support of part 2 of this thesis works only with
R, but the underlying ideas and algorithms can be implemented using any
programming language. So I give detailed explanations that should permit
implementation of these ideas in other languages.

24

Part I

Segmentation and clustering
algorithms, with applications

to bioinformatics

25

Chapter 2

Clusterpath: a hierarchical
clustering algorithm using
convex fusion penalties

Some content of this chapter comes from the Clusterpath peer-reviewed
conference paper that was published in the proceedings of the ICML 2011
[Hocking et al., 2011]. This is joint work with Armand Joulin and my
advisors Francis Bach and Jean-Philippe Vert.

Chapter summary

We present a new clustering algorithm by proposing a convex relaxation of
hierarchical clustering, which results in a family of objective functions with
a natural geometric interpretation. We give efficient algorithms for calcu-
lating the continuous regularization path of solutions, and discuss relative
advantages of the parameters. Our method experimentally gives state-of-
the-art results similar to spectral clustering for non-convex clusters, and has
the added benefit of learning a tree structure from the data.

2.1 Introduction

In the analysis of multivariate data, cluster analysis is a family of unsuper-
vised learning techniques that allows identification of homogenous subsets of
data. Algorithms such as k-means, Gaussian mixture models, hierarchical
clustering, and spectral clustering allow recognition of a variety of cluster
shapes. However, all of these methods suffer from instabilities, either be-
cause they are cast as non-convex optimization problems, or because they

27

2. Hierarchical clustering using convex fusion penalties

rely on hard thresholding of distances. Several convex clustering methods
have been proposed, but some only focus on the 2-class problem [Xu et al.,
2004], and others require arbitrary fixing of minimal cluster sizes in advance
[Bach and Harchoui, 2008]. The main contribution of this work is the de-
velopment of a new convex hierarchical clustering algorithm that attempts
to address these concerns.

In recent years, sparsity-inducing norms have emerged as flexible tools
that allow variable selection in penalized linear models. The Lasso and
group Lasso are now well-known models that enforce sparsity or group-
wise sparsity in the estimated coefficients [Tibshirani, 1996, Yuan and Lin,
2006]. Another example, more useful for clustering, is the fused Lasso sig-
nal approximator (FLSA), which has been used for segmentation and image
denoising [Tibshirani and Saunders, 2005]. Furthermore, several recent pa-
pers have proposed optimization algorithms for linear models using ℓ1 [Chen
et al., 2010, Shen and Huang, 2010] and ℓ2 [Vert and Bleakley, 2010] fu-
sion penalties. There has even been some previous work on using ℓ1 fusion
penalties for the clustering problem [Lindsten et al., 2011, Pelckmans et al.,
2005], but in this chapter we introduce the ℓ2 and ℓ∞ norms for clustering.
This chapter develops a family of fusion penalties that results in the “clus-
terpath,” a hierarchical regularization path useful for clustering problems.

Motivation by relaxing hierarchical clustering

Hierarchical or agglomerative clustering is calculated using a greedy algo-
rithm, which for n points in R

p recursively joins the points which are closest
together. For the data matrix X ∈ R

n×p this suggests the problem

min
α∈Rn×p

1

2
||α−X||2F

subject to
∑

i<j

1αi 6=αj
≤ t,

(2.1)

where || · ||2F is the squared Frobenius norm, αi ∈ R
p is row i of α, and 1αi 6=αj

is 1 if αi 6= αj, and 0 otherwise. We use the notation
∑

i<j =
∑n−1

i=1

∑n
j=i+1

to sum over all the n(n− 1)/2 pairs of data points. Note that when we fix
t ≥ n(n− 1)/2 the problem is unconstrained and the solutions are αi = Xi

for all i. If t = n(n− 1)/2− 1, we force one pair of coefficients to fuse, and
this is equivalent to the first step in hierarchical clustering. When t = 0
at the other end of the path, all optimal coefficients αi are equal so the
solution is αi = X̄ =

∑n
i=1 Xi/n for all i. However, in general this is a

difficult combinatorial optimization problem.

28

2.1. Introduction

Instead of tackling (2.1) directly, we propose a convex relaxation. This
results in the family of optimization problems defined by

min
α∈Rn×p

1

2
||α−X||2F

subject to Ωq(α) =
∑

i<j

wij||αi − αj||q ≤ t,
(2.2)

where wij > 0, and || · ||q, q ∈ {1, 2,∞} is the ℓq-norm on R
p, which will

induce sparsity in the differences of the rows of α. When rows fuse we
say they form a cluster, and the continuous regularization path of optimal
solutions formed by varying t is what we call the “clusterpath.”

This optimization problem has an equivalent geometric interpretation
(Figure 2.1). For the identity weights wij = 1, the solution corresponds to
the closest points α to the points X, subject to a constraint on the sum
of distances between pairs of points. For general weights, we constrain the
total area of the rectangles of width wij between pairs of points.

Identity weights,
t = Ω(X)

Decreasing weights,
t = Ω(X)

Decreasing weights
after join, t < Ω(X)

ℓ2
ℓ2

ℓ2

ℓ1

ℓ1 ℓ1

ℓ1

ℓ1

ℓ1

ℓ∞

ℓ∞

ℓ∞

X1

X2

X3

w12

w13

w23

X1

X2

X3

w12

w13

X1

X2

X3

α1

αC = α2 = α3

Figure 2.1: Geometric interpretation of the optimization problem (2.2) for
data X ∈ R

3×2. Left: with the identity weights wij = 1, the constraint
Ωq(α) =

∑

i<j wij||αi − αj||q ≤ t is the ℓq distance between all pairs of
points, shown as grey lines. Middle: with general weights wij, the ℓ2
constraint is the total area of rectangles between pairs of points. Right:
after constraining the solution, α2 and α3 fuse to form the cluster C, and
the weights are additive: w1C = w12 + w13.

29

2. Hierarchical clustering using convex fusion penalties

This parameterization in terms of t is cumbersome when comparing
data sets X since we take 0 ≤ t ≤ Ωq(X), so we introduce the following
parametrization with 0 ≤ s ≤ 1:

min
α∈Rn×p

1

2
||α−X||2F

subject to Ωq(α)/Ωq(X) ≤ s.
(2.3)

The equivalent Langrangian dual formulation will also be convenient for
optimization algorithms:

min
α∈Rn×p

fq(α,X) =
1

2
||α−X||2F + λΩq(α). (2.4)

The above optimization problems require the choice of predefined, pair-
specific weights wij > 0, which can be used to control the geometry of the
solution path. In most of our experiments we use weights that decay with
the distance between points wij = exp(−γ||Xi −Xj||22), which results in a
clusterpath that is sensitive to local density in the data. Another choice
for the weights is wij = 1, which allows efficient computation of the ℓ1
clusterpath, as will be shown in Section 2.2.

30

2.1. Introduction

Visualizing the geometry of the clusterpath

In this work we develop dedicated algorithms for solving the clusterpath
which allow scaling to large data, but initially we used cvxmod for small
problems [Mattingley and Boyd, 2008], as the authors do in a similar for-
mulation [Lindsten et al., 2011].

We used cvxmod to compare the geometry of the clusterpath for several
choices of norms and weights (Figure 2.2). Note the piecewise linearity of
the ℓ1 and ℓ∞ clusterpath, which can be exploited to find the solutions using
efficient path-following homotopy algorithms. Furthermore, it is evident
that the ℓ2 path is invariant to rotation of the input data X, whereas the
others are not.

The rest of this chapter is organized as follows. In Section 2.2, we pro-
pose a specific method for each norm for solving the problem. In Section 2.3,
we propose an extension of our methods to spectral representations, thus
providing a convex formulation of spectral clustering. Finally, in Section 3.3
we empirically compare the clusterpath to standard clustering methods.

norm = 1 norm = 2 norm =∞

γ
=

0
γ
=

1

Figure 2.2: Some random normal data X ∈ R
10×2 were generated (white

dots) and their mean X̄ is marked in grey in the center. The clusterpath
(black lines) was solved using cvxmod for 3 norms (panels from left to right)
and 2 weights (panels from top to bottom), which were calculated using
wij = exp(−γ||Xi −Xj||2). For γ = 0, we have wij = 1.

31

2. Hierarchical clustering using convex fusion penalties

2.2 Optimization

A homotopy algorithm for the ℓ1 solutions

For the problem involving the ℓ1 penalty, we first note that the problem is
separable on dimensions. The cost function can be written as

f1(α,X) =
1

2
||α−X||2F + λΩ1(α) (2.5)

=
1

2

n∑

i=1

p
∑

k=1

(αik −Xik)
2 + λ

∑

i<j

wij

p
∑

k=1

|αik − αjk| (2.6)

=

p
∑

k=1

[

1

2

n∑

i=1

(αik −Xik)
2 + λ

∑

i<j

wij|αik − αjk|
]

(2.7)

=

p
∑

k=1

f1(α
k, Xk), (2.8)

where αk ∈ R
n is the k-th column from α. Thus, solving the minimization

with respect to the entire matrix X just amounts to solving p separate
minimization subproblems:

min
α∈Rn×p

f1(α,X) =

p
∑

k=1

min
αk∈Rn

f1(α
k, Xk). (2.9)

For each of these subproblems, we can exploit the FLSA path algorithm
[Hoefling, 2009]. This is a homotopy algorithm similar to the LARS that
exploits the piecewise linearity of the path to very quickly calculate the
entire set of solutions [Efron et al., 2004].

In the LARS, variables jump in and out the active set, and we must
check for these events at each step in the path. The analog in the FLSA
path algorithm is the necessity to check for cluster splits, which occur when
the optimal solution path requires unfusing a pair coefficients. Cluster splits
were not often observed on our experiments, but are also possible for the ℓ2
clusterpath, as illustrated in Figure 2.4. The FLSA path algorithm checks
for a split of a cluster of size nC by solving a max-flow problem using a
push-relabel algorithm, which has complexity O(n3

C) [Cormen et al., 2001].
For large data sets, this can be prohibitive, and for any clustering algorithm,
splits make little sense.

One way around this bottleneck is to choose weights w in a way such
that no cluster splits are possible in the path. The modified algorithm then
only considers cluster joins, and results in a complexity of O(n log n) for a

32

2.2. Optimization

single dimension, or O(pn log n) for p dimensions. One choice of weights
that results in no cluster splits is the identity weights wij = 1, which we
prove below.

The ℓ1 clusterpath using wij = 1 contains no splits

The proof will establish a contradiction by examining the necessary con-
ditions on the optimal solutions during a cluster split. We will need the
following lemma.

Lemma 1. Let C = {i : αi = αC} ⊆ {1, ..., n} be the cluster formed after
the fusion of all points in C, and let wjC =

∑

i∈C wij. At any point in the
regularization path, the slope of its coefficient is given by

vC =
dαC

dλ
=

1

|C|
∑

j 6∈C

wjC sign(αj − αC). (2.10)

Proof. Consider the following sufficient optimality condition, for all i =
1, . . . , n:

0 = αi −Xi + λ
∑

j 6=i
αi 6=αj

wij sign(αi − αj) + λ
∑

j 6=i
αi=αj

wijβij, (2.11)

with |βij| ≤ 1 and βij = −βji [Hoefling, 2009]. We can rewrite the optimal-
ity condition for all i ∈ C:

0 = αC −Xi + λ
∑

j 6∈C

wij sign(αC − αj) + λ
∑

i 6=j∈C

wijβij. (2.12)

Furthermore, by summing each of these equations, we obtain the following:

αC = X̄C +
λ

|C|
∑

j 6∈C

wjC sign(αj − αC), (2.13)

where X̄C =
∑

i∈C Xi/|C|. Taking the derivative with respect to λ gives us
the slope vC of the coefficient line for cluster C, proving Lemma 1.

We will use Lemma 1 to prove by contradiction that cluster splitting is
impossible for the case wij = 1 for all i and j.

33

2. Hierarchical clustering using convex fusion penalties

Theorem 1. Taking wij = 1 for all i and j is sufficient to ensure that the
ℓ1 clusterpath contains no splits.

Proof. Consider at some λ the optimal solution α, and let C be a cluster of
any size among these optimal solutions. Denote the set C = {i : αi > αC}
the set of indices of all larger optimal coefficients and C = {i : αi < αC}
the set of indices of all smaller optimal coefficients. Note that C ∪C ∪C =
{1, . . . , n}.

Now, assume C splits into C1 and C2 such that α1 > α2. By Lemma 1,
if this situation constitutes an optimal solution, then the slopes are:

vC1
=

1

|C1|




∑

j∈C

wjC1
−

∑

j∈C2

wjC1
−
∑

j∈C

wjC1





vC2
=

1

|C2|




∑

j∈C

wjC2
+

∑

j∈C1

wjC2
−

∑

j∈C

wjC2



 . (2.14)

For the identity weights, this simplifies to

vC1
= |C| − |C2| − |C|

vC2
= |C|+ |C1| − |C|. (2.15)

Thus vC1
< vC2

which contradicts the assumption that α1 > α2, forcing us
to conclude that no split is possible for the identity weights.

Thus the simple FLSA algorithm of complexity O(n log n) without split
checks is sufficient to calculate the ℓ1 clusterpath for 1 dimension using the
identity weights.

Furthermore, since the clusterpath is strictly agglomerative on each di-
mension, it is also strictly agglomerative when independently applied to
each column of a matrix of data. Thus the ℓ1 clusterpath for a matrix of
data is also strictly agglomerative, and results in an algorithm of complex-
ity O(pn log n). This is an interesting alternative to hierarchical clustering,
which normally requires O(pn2) space and time for p > 1. Thus the ℓ1
clusterpath can be used when n is very large, and hierarchical clustering is
not feasible.

34

2.2. Optimization

Implementation details

To calculate the ℓ1 clusterpath in O(n log n) operations we use an algorithm
that keeps track of information for each cluster and updates this information
after every cluster fusion. First, sort X such that X1 < · · · < Xn, which can
be done in O(n log n) operations on average using the quicksort algorithm
[Cormen et al., 1990]. We start at λ = 0, where the optimal αi = Xi for all
points i. Thus at the beginning of the path we have n clusters C1, . . . , Cn,
with Ci = {i} for all i. By Lemma 1, we have cluster velocity

vCi
=

1

|Ci|
∑

j 6∈Ci

wjCi
sign(αj − αCi

) (2.16)

=
∑

j 6=i

wij sign(αj − αi) (2.17)

=
∑

j 6=i

sign(Xj −Xi) (2.18)

= |C i| − |C i| (2.19)

= n− 1− 2(i− 1), (2.20)

for all points i ∈ {1, . . . , n} when we take the identity weights wij = 1. This
closed-form expression allows calculation of the starting velocities in O(n)
operations.

For every cluster i ∈ {1, . . . , n− 1}, we can calculate the λ when it may
fuse with cluster i+ 1 using the current vi, λi, and αi values. Each cluster
i ∈ {1, . . . , n} follows this line:

αi − α = vi(λi − λ), (2.21)

so it can be shown that line of each cluster i ∈ {1, . . . , n− 1} will intersect
with the line of cluster i+ 1 at

λ =
αi − αi+1 + viλi − vi+1λi+1

vi+1 − vi
. (2.22)

This closed form expression allows us to calculate the locations of the n− 1
initial possible fusion events in O(n) operations.

We keep track of fusion events in a red-black tree, as implemented in
the multimap container in the C++ Standard Template Library [Cormen
et al., 1990]. We insert the n − 1 possible initial fusion events in the red-
black tree, and each insert takes O(log n) operations. In fact we are only
interested in the fusion event with the minimal λ value. The red-black tree
keeps fusion events ordered by λ, so we can find the minimal λ fusion event
in O(1) operations.

35

2. Hierarchical clustering using convex fusion penalties

We keep track of clusters using a linked list, as shown in Figure 2.3.
When 2 clusters C1 and C2 fuse, we can use the following identity to get
the velocity of the new cluster:

vnew =
v1|C1|+ v2|C2|
|C1|+ |C2|

. (2.23)

Since following the links between clusters and events takes only O(1) oper-
ations, the bottleneck is the addition of the 2 new possible fusion events,
which takes O(log n) operations using the red-black tree.

Thus we perform n− 1 fusion events with O(log n) operations each, for
a total of O(n log n) operations. The algorithm is finished when there is
only one cluster remaining. It returns the pointer to the last cluster, which
is in fact a tree that contains links to all the smaller clusters.

Clusters Events

C1OO

��

oo // E1

Cnew
//

%%

yy

99

\\

��

C2OO

��

oo // E2

C3OO

��

oo // E3

C4

Figure 2.3: The data structure used to store clusters for efficient fusion
events. The clusters are represented by a doubly-linked list, represented
by the vertical arrows. Each cluster except the last is linked to an event
corresponding to the merge with the cluster below. These events are kept
in a red-black tree for O(1) event deletion O(log n) event insertion (links
between nodes in the tree not shown). Furthermore the event tree is sorted
by increasing λ, so to join clusters we just pop the first event off the tree
(E2), follow the link to the corresponding cluster (C2), join it with the
cluster below (C3), create the new cluster (Cnew), and update flanking events
(E1 and E3).

36

2.2. Optimization

An active-set descent algorithm for the ℓ2 solutions

The proposed homotopy algorithm only gives solutions to the ℓ1 clusterpath
for identity weights, but since the ℓ1 clusterpath in 1 dimension is a special
case of the ℓ2 clusterpath, the algorithms proposed in this section also apply
to solving the ℓ1 clusterpath with general weights.

For the ℓ2 problem, we have the following cost function:

f2(α,X) =
1

2
||α−X||2F + λΩ2(α) (2.24)

=
1

2
||α−X||2F + λ

∑

i<j

wij||αi − αj||2. (2.25)

A subgradient condition sufficient for an optimal α is for all i ∈ 1, ..., n:

0 = αi −Xi + λ
∑

j 6=i
αj 6=αi

wij
αi − αj

||αi − αj||2
+ λ

∑

j 6=i
αj=αi

wijβij, (2.26)

with βij ∈ R
p, ||βij||2 ≤ 1 and βij = −βji. Summing over all i ∈ C gives

the subgradient for the cluster C:

GC = αC − X̄C +
λ

|C|
∑

j 6∈C

wjC
αC − αj

||αC − αj||2
, (2.27)

where X̄C =
∑

i∈C Xi/|C| and wjC =
∑

i∈C wij.
To solve the ℓ2 clusterpath, we propose a subgradient descent algorithm,

with modifications to detect cluster fusion and splitting events (Algorithm
1). Note that due to the continuity of the ℓ2 clusterpath, it is advantageous
to use warm restarts between successive calls to Solve-L2, which we do
using the values of α and clusters .

37

2. Hierarchical clustering using convex fusion penalties

Algorithm 1 Clusterpath-L2

Input: data X ∈ R
n×p, weights wij > 0, starting λ > 0

α← X
clusters ← {{1}, ..., {n}}
while | clusters | > 1 do
α, clusters ← Solve-L2(α, clusters , X, w, λ)
λ← λ× 1.5
if we are considering cluster splits then
clusters ← {{1}, ..., {n}}

end if
end while
return table of all optimal α and λ values.

Surprisingly, the ℓ2 path is not always agglomerative, and in this case
to reach the optimal solution requires restarting clusters = {{1}, ..., {n}}.
The clusters will rejoin in the next call to Solve-L2 if necessary. This takes
more time but ensures that the optimal solution is found, even if there are
splits in the clusterpath, as in Figure 2.4. We compare our descent solvers’
solutions to those from cvxmod, and note that the solver without split checks
does not find the optimal solution for this pathological example.

38

2.2. Optimization

We conjecture that there exist certain choices of w for which there are
no splits in the ℓ2 clusterpath. However, a theorem analogous to Theorem 1
that establishes necessary and sufficient conditions on w and X for splits in
the ℓ2 clusterpath is beyond the scope of this chapter. We have not observed
cluster splits in our calculations of the path for identity weights wij = 1 and
decreasing weights wij = exp(−γ||Xi−Xj||22), and we conjecture that these
weights are sufficient to ensure no splits.

1

2

3

40

1

2

3

1 2 3 4
α1

α
2

descent
solver

split

no split

point

α∗
i cvxmod

X̄

Figure 2.4: An example of a split in the ℓ2 clusterpath for X ∈ R
4×2.

Data points are labeled with numbers, the Clusterpath-L2 is shown as
lines, and solutions α∗

i from cvxmod are shown as black dots. Pathological
weights that cause the split were specified using w12 = 9, w13 = w24 = 20,
and wij = 1 for the others.

39

2. Hierarchical clustering using convex fusion penalties

The subgradient optimization subproblem inside of Clusterpath-L2

works as follows.

Algorithm 2 Solve-L2

Input: initial guess α, initial clusters , data X, weights w, regulariza-
tion λ
G← Subgradient-L2(·)
while ||G||2F > ǫopt do
α← Subgradient-Step(·)
α, clusters ← Detect-Cluster-Fusion(·)
G← Subgradient-L2(·)

end while
return α, clusters

Subgradient-L2 calculates the subgradient from (2.27), for every clus-
ter C ∈ clusters .

We developed 2 approaches to implement Subgradient-Step. In
both cases we use the update α ← α − rG. With decreasing step size
r = 1/ iteration, the algorithm takes many steps before converging to the
optimal solution, even though we restart the iteration count after cluster
fusions. The second approach we used is a line search. We evaluated the
cost function at several points r and picked the r with the lowest cost. In
practice, we observed fastest performance when we alternated every other
step between decreasing and line search.

Detect-Cluster-Fusion calculates pairwise differences between points
and checks for cluster fusions, returning the updated matrix of points α and
the new list of clusters. When 2 clusters C1 and C2 fuse to produce a new
cluster C, the coefficient of the new cluster is calculated using the weighted
mean:

αC =
|C1|αC1

+ |C2|αC2

|C1|+ |C2|
. (2.28)

We developed 2 methods to detect cluster fusions. First, we can simply
use a small threshhold on ||αC1

− αC2
||2, which we usually take to be some

fraction of the smallest nonzero difference in the original points ||Xi−Xj||2.
Second, to confirm that the algorithm does not fuse points too soon, for each
possible fusion, we checked if the cost function decreases. This is similar to
the approach used by [Friedman et al., 2007], who use a coordinate descent
algorithm to optimize a cost function with an ℓ1 fusion penalty. Although
this method ensures that we reach the correct solution, it is quite slow since
it requires evaluation of the cost function for every possible fusion event.

40

2.2. Optimization

The Frank-Wolfe algorithm for ℓ∞ solutions

We consider the following ℓ∞ problem:

min
α∈Rn×p

f∞(α,X) =
1

2
||α−X||2F + λΩ∞(α). (2.29)

This problem has a piecewise linear regularization path which we can solve
using a homotopy algorithm to exactly calculate all the breakpoints [Rosset
and Zhu, 2007, Zhao et al., 2009]. However, empirically, the number of
breakpoints in the path grows fast with p and n, leading to instability in
the homotopy algorithm.

Instead, we show show that our problem is equivalent to a norm mini-
mization over a polytope, for which an efficient algorithm exists [Frank and
Wolfe, 1956].

Using the dual formulation of the ℓ∞ norm, the regularization term is
equal to:

Ω∞(α) =
∑

i<j

wij max
sij∈Rp

||sij ||1≤1

sTij(αi − αj).

Denoting by ri =
∑

j>i sijwij −
∑

j<i sjiwij ∈ R
p, and by R the set of

constraints over R = (r1, . . . , rn) such that the constraints over sij are
respected, we have:

Ω∞(α) = max
R∈R

tr
(
RTα

)
.

Since R is defined as a set of linear combinations of ℓ1-ball inequalities, R
is a polytope. Denoting by Z = X − λR and Z = {Z | 1

λ
(X − Z) ∈ R}, it

is straightforward to prove that problem (2.29) is equivalent to:

min
α∈Rn×p

max
Z∈Z

H(α, Z) = ‖α− Z‖2F − ‖Z‖2F ,

where strong duality holds [Boyd and Vandenberghe, 2004]. For a given
Z, the minimum of H in α is obtained by α = Z, leading to a norm
minimization over the polytope Z.

This problem can be solved efficiently by using the Frank-Wolfe algo-
rithm [Frank and Wolfe, 1956]. This algorithm to minimize a quadratic
function over a polytope may be used as soon as it is possible to minimize
linear functions in closed form. It is also known as the minimum-norm-
point algorithm when applied to submodular function minimization [Fu-
jishige et al., 2006]. In practice, it is several orders of magnitude faster
than other common discrete optimization algorithms, but there is no theo-
retical guarantee on its complexity [Krause and Guestrin, 2009].

41

2. Hierarchical clustering using convex fusion penalties

2.3 The spectral clusterpath

For spectral clustering, the usual formulation uses eigenvectors of the nor-
malized Laplacian as the inputs to a standard clustering algorithm like
k-means [Ng et al., 2001]. Specifically, for several values of γ, we compute
a pairwise affinity matrix W such that Wij = exp(−γ||Xi − Xj||22) and a
Laplacian matrix L = D −W where D is the diagonal matrix such that
Dii =

∑n
j=1 Wij. For each value of γ, we run k-means on the normalized

eigenvectors associated with k smallest eigenvalues of L, then keep the γ
with lowest reconstruction error.

Some instability in spectral clustering may come from the following 2
steps. First, the matrix of eigenvectors is formed by hard-thresholding
the eigenvalues, which is unstable when several eigenvalues are close. Sec-
ond, the clusters are located using the k-means algorithm, which attempts
to minimize a non-convex objective. To relax these potential sources of
instability, we propose the “spectral clusterpath,” which replaces (a) hard-
thresholding by soft-thresholding and (b) k-means by the clusterpath.

Concretely, we call (Λi)1≤i≤n the nontrivial eigenvalues sorted in ascend-
ing order, and we write the matrix of transformed eigenvectors to cluster as
V E, where V is the full matrix of sorted nontrivial eigenvectors and E is the
diagonal matrix such that Eii = e(Λi), and e : R→ R ranks importance of
eigenvectors based on their eigenvalues. Standard spectral clustering takes
e01(x) = 1x≤Λk

such that only the first k eigenvalues are selected. This is
a non-convex hard-thresholding of the full matrix of eigenvectors. We pro-
pose the exponential function eexp(x) = exp (−νx), with ν > 0, as a convex
relaxation.

42

2.4. Results

2.4 Results

Our model poses 3 free parameters to choose for each matrix to cluster:
norm, weights, and regularization. On one hand, this offers the flexibility
to tailor the geometry of the solution path and number of clusters for each
data set. On the other hand, this poses model selection problems as training
clustering models is not straightforward. Many heuristics have been pro-
posed for automatically choosing the number of clusters [Tibshirani et al.,
2001], but it is not clear which of these is applicable to any given data set.

In the experiments that follow, we chose the model based on the desired
geometry of the solution path and number of clusters. We generally expect
rotation invariance in multivariate clustering models, so we chose the ℓ2
norm with Gaussian weights to encourage sensitivity to local density.

43

2. Hierarchical clustering using convex fusion penalties

Verification on non-convex clusters

To compare our algorithm to other popular methods in the setting of non-
convex clusters, we generated data in the form of 2 interlocking half-moons
(Figure 2.5), which we used as input for several clustering algorithms (Ta-
ble 2.1). We used the original data as input for k-means, Gaussian mixtures,
average linkage hierarchical clustering, and the ℓ2 clusterpath with γ = 2.
For the other methods, we use the eigenvectors from spectral clustering as
input. Each algorithm uses 2 clusters and performance is measured using
the normalized Rand index, which varies from 1 for a perfect match to 0
for completely random assignment [Hubert and Arabie, 1985].

Figure 2.5: Typical results for 6 clustering algorithms applied to 2 half-
moon non-convex clusters. The ℓ2 clusterpath tree learned from the data
is also shown. Spectral clustering and the clusterpath correctly identify the
clusters, while average linkage hierarchical clustering and k-means fail.

44

2.4. Results

In the original input space, hierarchical clustering and k-means fail, but
the clusterpath is able to identify the clusters as well as the spectral meth-
ods, and has the added benefit of learning a tree from the data. However,
the clusterpath takes 3-10 times more time than the spectral methods. Of
the methods that cluster the eigenvectors, the most accurate 2 methods use
eexp rather than e01, providing evidence that the convex relaxation stabilizes
the clustering.

method mean.rand sd.rand mean.seconds sd.seconds
eexp spectral clusterpath 1.00 0.01 8.28 3.09
eexp spectral kmeans 1.00 0.01 2.57 0.19
e01 spectral kmeans 0.91 0.20 2.57 0.18
e01 Ng et al. kmeans 0.95 0.19 5.52 0.44
clusterpath 0.96 0.13 28.55 2.24
kmeans 0.27 0.05 0.00 0.00
average linkage 0.40 0.13 0.01 0.00
gaussian mixture 0.43 0.13 0.08 0.04

Table 2.1: Mean and standard deviation of performance and timing of
several clustering methods on identifying 20 simulations of the half-moons
in Figure 2.5. Ng et al. uses L̃ = I−D−1/2WD−1/2 rather than L = D−W
as discussed in the text.

45

2. Hierarchical clustering using convex fusion penalties

Recovery of many Gaussian clusters

We also tested our algorithm in the context of 25 Gaussian clusters arranged
in a 5×5 grid in 2 dimensions. As shown in Figure 2.6, 20 data points were
generated from each cluster, and the resulting data were clustered using
k-means, hierarchical clustering, and the weighted ℓ2 clusterpath.

Figure 2.6: A grid of gaussian clusters breaks k-means but not the cluster-
path. The result from k-means clustering with k = 25 is shown in color
with numbered labels, and the ℓ2 clusterpath tree with γ = 10 is shown in
grey.

46

2.4. Results

As shown in Table 2.2, the clusterpath performs similarly to hierarchical
clustering, which exactly recovers the clusters, and k-means fails. Thus, the
clusterpath may be useful for clustering tasks that involve many clusters.

Clustering method Rand SD

kmeans 0.8365 0.0477

clusterpath 0.9955 0.0135

average linkage hierarchical 1.0000 0.0000

Table 2.2: Performance of several clustering methods on identifying a grid
of Gaussian clusters. Means and standard deviations from 20 simulations
are shown.

47

2. Hierarchical clustering using convex fusion penalties

Application to clustering the iris data

To evaluate the clusterpath on a nontrivial task, we applied it to the scaled
iris data. In Figure 2.7, we show a scatter plot matrix of the 4-dimensional
iris data with the ℓ2 clusterpath using weight parameter γ = 1.

We compared clusterpath to other common clustering methods using
the iris and the half-moons data sets, and report the results in Figure 2.8.
We calculated a series of clusterings using each method and measured per-
formance of each using the normalized Rand index.

The iris data have 3 classes, of which 2 overlap, so the Gaussian Mixture
Model is the only algorithm capable of accurately detecting these clusters
when k = 3. These data suggest that the clusterpath is not suitable for
detecting clusters with large overlap. However, performance is as good as
hierarchical clustering, less variable than k-means, and more stable as the
number of clusters increases.

Figure 2.7: The 3-class, 4-dimensional iris data are plotted using colored
symbols, with the mean shown as a black dot. The ℓ2 clusterpath using
weight parameter γ = 1 is shown in grey.

48

2.4. Results

Also note that the clusterpath accuracy on the moons data increases as
we increase the weight parameter γ.

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

d
ata:

iris
d
ata:

m
o
on

s

2 3 5 10
Number of clusters k

N
or
m
al
iz
ed

R
an

d
in
d
ex

method

clusterpath
γ = 0.5

clusterpath
γ = 2.0

clusterpath
γ = 10.0

gaussian
mixture

average
linkage

kmeans

Figure 2.8: Performance on the iris and moons data, as measured by the
normalized Rand index of models with 2-11 clusters. The weighted ℓ2 clus-
terpath was calculated using 3 different Gaussian weight parameters γ, and
we compare with Gaussian mixture models, hierarchical clustering with av-
erage linkage, and k-means.

49

2. Hierarchical clustering using convex fusion penalties

2.5 Conclusions

We proposed a family of linear models using several convex pairwise fusion
penalties which result in hierarchical regularization paths useful for cluster-
ing. The ℓ1 path-following homotopy algorithm easily scales to thousands of
points. The other proposed algorithms can be directly applied to hundreds
of points, and could be applied to larger data sets by, for example, adding a
preprocessing step using k-means. The ℓ1 and ℓ2 solvers were implemented
in R and C++, and are available in the clusterpath package on R-Forge:

https://r-forge.r-project.org/projects/clusterpath/

The ℓ∞ solver was written in MATLAB and is available on the web page
of Armand Joulin:

http://www.di.ens.fr/~joulin/code/clusterpath_norm_Inf.zip

Our experiments demonstrated the flexibility of the ℓ2 clusterpath for the
unsupervised learning of non-convex clusters, large numbers of clusters, and
hierarchical structures. We also observed that relaxing hard-thresholding in
spectral clustering is useful for increasing clustering accuracy and stability.
For the iris data, the clusterpath performed as well as hierarchical clustering,
and is more stable than k-means.

We proved that the identity weights are sufficient for the ℓ1 clusterpath
to be strictly agglomerative. Establishing necessary and sufficient condi-
tions on the weights for the ℓ2 problem is an avenue for further research.

To extend these results, we are currently pursuing research into optimiz-
ing a linear model with a non-identity design matrix and the clusterpath
penalty. We note that there could be a future application for the algorithms
presented in this chapter in solving the proximal operator, which is the same
as (2.4) for the clusterpath penalty.

50

https://r-forge.r-project.org/projects/clusterpath/
http://www.di.ens.fr/~joulin/code/clusterpath_norm_Inf.zip

Chapter 3

Segmentation model selection
using visual annotations

In this chapter I will discuss how visual annotations may be used for seg-
mentation model selection. This work has been described in a technical
report [Hocking et al., 2012], and is submitted to a journal for peer review.

Chapter summary

Many models have been proposed to detect copy number alterations in
chromosomal copy number profiles, but it is usually not obvious to decide
which is most effective for a given data set. Furthermore, most methods
have a smoothing parameter that determines the number of breakpoints
and must be chosen using various heuristics.

We present three contributions for copy number profile smoothing model
selection. First, we propose to select the model and degree of smoothness
that maximizes agreement with visual breakpoint region annotations. Sec-
ond, we develop cross-validation procedures to estimate the error of the
trained models. Third, we apply these methods to compare many existing
models on a new database of annotated neuroblastoma copy number pro-
files, which we make available in R package neuroblastoma as a public
benchmark for testing new algorithms. Whereas previous studies have been
qualitative or limited to simulated data, our approach is quantitative and
suggests which algorithms are most accurate in practice on real data.

The annotated copy number profiles are in R package neuroblastoma:
http://cran.r-project.org/web/packages/neuroblastoma/index.html

To annotate other data sets, we developed GUI tools:
Simple Python script: http://pypi.python.org/pypi/annotate_regions
Interactive modeling web site: https://bioviz.rocq.inria.fr/plotter/

51

http://cran.r-project.org/web/packages/neuroblastoma/index.html
http://pypi.python.org/pypi/annotate_regions
https://bioviz.rocq.inria.fr/plotter/

3. Segmentation model selection with visual annotations

3.1 Introduction and related work

DNA copy number alterations (CNAs) can result from various types of ge-
nomic rearrangements, and are important in the study of many types of
cancer [Weinberg, 2006]. In particular, clinical outcome of patients with
neuroblastoma has been shown to be worse for tumors with segmental al-
terations or breakpoints in specific genomic regions [Janoueix-Lerosey et al.,
2009, Schleiermacher et al., 2010]. Thus, to construct an accurate predictive
model of clinical outcome for these tumors, we must first accurately detect
the precise location of each breakpoint.

In recent years, array comparative genomic hybridization (aCGH) mi-
croarrays have been developed as genome-wide assays for CNAs, using the
fact that microarray fluoresence intensity is proportional to DNA copy num-
ber [Pinkel et al., 1998]. In parallel, there have been many new mathemat-
ical models proposed to smooth the noisy signals from these microarray
assays in order to recover the CNAs [Willenbrock and Fridlyand, 2005].
Each model has different assumptions about the data, and it is not obvious
to decide which model is appropriate for a given data set.

Furthermore, most models have parameters that control the degree of
smoothness. Varying these smoothing parameters will vary the number
of detected breakpoints. Most authors give default values that accurately
detect breakpoints on some data, but do not necessarily generalize well
to other data. There are some specific criteria for choosing the degree of
smoothness in some models [Lavielle, 2005, Zhang and Siegmund, 2007,
Zhang et al., 2010], but the mathematical assumptions of these models are
not often verified in real noisy microarray data, which can lead to poor
estimation of CNAs.

In practice, visualization tools such as VAMP [La Rosa et al., 2006]
are often used to plot the normalized microarray signals against genomic
position for interpretation by an expert biologist looking for CNAs. Indeed,
to motivate the use of their cghFLasso smoothing model, Tibshirani and
Wang write “The results of a CGH experiment are often interpreted by
a biologist, but this is time consuming and not necessarily very accurate”
[Tibshirani and Wang, 2007].

In contrast, this chapter takes the opposite view and assumes that the
expert interpretation of the biologist is very accurate. The first contribu-
tion of this chapter is a smoothing model training protocol based on this
assumption. To tune the smoothness parameter in practice, the biologist
will often examine plots of the microarray signal with a smoothed model,
changing the smoothness parameter until the model seems to capture all
the visible breakpoints the data. In the Methods section, we make this

52

3.1. Introduction and related work

intuition concrete by defining a training protocol based on visual annota-
tions that can quantify the accuracy of a smoothing method. We note that
using databases of visual annotations is not a new idea, and has been used
successfully for object recognition in photos and cell phenotype recognition
in microscopy [Russell et al., 2008, Jones et al., 2009]. In array CGH anal-
ysis, Shah et al. [2006] attempted to model prior knowledge of locations of
CNAs, but no previous models have been designed to exploit the annotated
regions that we introduce in this chapter.

Our second contribution is a protocol to estimate the breakpoint detec-
tion ability of the trained smoothing models on real data. In the Methods
section, we propose to estimate the false positive and false negative rates of
the trained models using cross-validation. This provides a quantitative cri-
terion for deciding which smoothing algorithms are appropriate breakpoint
detectors for which data.

The third contribution of this chapter is a systematic, quantitative com-
parison of the accuracy of several common smoothing algorithms on a new
database of 575 annotated neuroblastoma copy number profiles, which we
give in the Results section. There are several publications which attempt
to assess the accuracy of smoothing algorithms, and these methods fall
into 2 categories: simulations and low-throughput experiments. GLAD,
DNAcopy, and a hidden Markov model were compared by examining false
positive and false negative rates for detection of a breakpoint at a known
location in simulated data [Willenbrock and Fridlyand, 2005]. However,
there is no way to verify if the assumptions of the simulation hold in a real
data set, so the value of the comparison is limited. In another article, the
accuracy of the CNVfinder algorithm was assessed using quantitative PCR
[Fiegler et al., 2006]. But quantitative PCR is low-throughput and costly,
so is not routinely done as a quality control. So in fact there are no previ-
ous studies that quantitatively compare breakpoint detection of smoothing
models on real data. In this chapter we propose to use annotated regions
instead of precise breakpoint locations for quantifying smoothing model
accuracy, and we make available 575 new annotated neuroblastoma copy
number profiles as a benchmark for the community to test new algorithms
on real data.

Several authors have recently proposed methods for so-called joint seg-
mentation of multiple CGH profiles, under the hypothesis that each profile
shares breakpoints in the exact same location [Vert and Bleakley, 2010, Ritz
et al., 2011]. These models are not useful in our setting, since we assume
that breakpoints do not occur in the exact same locations across copy num-
ber profiles. Instead, we learn a model that will accurately detect a different
number of breakpoints in each copy number profile.

53

3. Segmentation model selection with visual annotations

3.2 Methods

Assume that we have observed n chromosomal copy number profiles, each
with an unknown number of breakpoints at unknown locations. We would
like to recover the breakpoints accurately using a model with parameter λ
that controls the degree of smoothness. As shown in Figure 3.1, we represent
the d probes on chromosome c of profile i using the following numbers:

p1 ≤ . . . ≤ pd ∈ N positions on chromosome c
y1 , . . . , yd ∈ R logratio measurements
ŷλ1 , . . . , ŷλd ∈ R smoothed profile

1 2 3 4 7 17

-1

0

1

-1

0

1

-1

0

1

λ
=

0.5
λ
=

7.5
λ
=

10

100 200 100 200 100 200 100 200 100
position on chromosome p (mega base pairs)

lo
gr
at
io

y annotation

breakpoint

normal

Figure 3.1: Model agreement to annotated regions can be measured by
examining the positions of predicted breakpoints B̂λ

i (vertical black lines)
observed in the smoothing model ŷλ (green lines). Black circles show logra-
tio measurements y plotted against position p for a single profile i = 375.
Chromosomes are shown in panels from left to right, and different values
of the smoothing parameter λ in the flsa model are shown in panels from
top to bottom. Models with too many breakpoints (λ = 0.5) and too few
breakpoints (λ = 10) are suboptimal, so we pick an intermediate model
(λ = 7.5) that maximizes agreement with the annotations, thus detecting a
new breakpoint on chromosome 7 which was not annotated.

54

3.2. Methods

We define the breakpoints predicted on this chromosome as the set of
positions after which there is a jump in the smoothed signal:

B̂λ
ic =

{
⌊(pj + pj+1)/2⌋ | ŷλj 6= ŷλj+1, ∀j = 1, . . . , d− 1

}
(3.1)

Then, we define B̂λ
i to be the complete set of genomic breakpoints pre-

dicted by parameter λ for profile i, over all chromosomes c.

Breakpoint annotations quantify model accuracy

Intuitively, by visual inspection of the noisy signal, it is not obvious to
locate the exact location of a breakpoint, but it should be easy to determine
whether or not a region contains a breakpoint. So rather than defining
annotations in terms of precise breakpoint locations, we instead define them
in terms of regions. We define a genomic region Rk = [rk, rk] as the interval
of base pairs between the min rk and max rk.

So, we define the breakpoint annotation for profile i in region k as

bik =

{

0 if profile i has no breakpoints in Rk

1 if profile i has at least 1 breakpoint in Rk,
(3.2)

which can be determined by visual inspection of the scatterplot of logratio
measurements y versus position p, as in Figure 3.1.

The idea for model selection is to choose λ such that the predicted
breakpoints B̂λ

i agree with the annotations bik, as shown in Figure 3.1.
To quantify this, for each region k, we predict 0 if there are no predicted
breakpoints in the region, and 1 if there is at least 1 predicted breakpoint:

b̂λik =

{

0 if Rk ∩ B̂λ
i = ∅

1 otherwise
(3.3)

We can measure the error of a model at region k on profile i with the
indicator function

Ek
i (λ) =

{

0 if bik = b̂λik
1 otherwise.

(3.4)

and with respect to an entire profile i using

E local
i (λ) =

∑

k

Ek
i (λ). (3.5)

We define the local model as the model obtained by choosing a different
λ̂i to minimize Equation 3.5 for each profile i, as shown in the middle and
bottom rows of Figure 3.2.

55

3. Segmentation model selection with visual annotations

We can also learn a globally optimal smoothing parameter λ by mini-
mizing the error with respect to all the profiles:

Eglobal(λ) =
n∑

i=1

E local
i (λ). (3.6)

The global model λ̂ minimizes Equation 3.6, as shown in the top row of
Figure 3.2.

cghseg.k, pelt.n flsa.norm dnacopy.sd

2.2 4.8 11.5

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

glob
al

m
o
d
el

lo
cal

m
o
d
el

for
p
rofi

le
375

lo
cal

m
o
d
el

for
p
rofi

le
362

-5 -4 -3 -2 -1 0 -2 -1 0 1 2 3 0.0 0.5 1.0
log10(smoothing parameter λ)

p
er
ce
n
t
in
co
rr
ec
tl
y
p
re
d
ic
te
d

an
n
ot
at
io
n
s
in

tr
ai
n
in
g
se
t

statistic

false.positive

false.negative

errors

<- more breakpoints fewer breakpoints ->

Figure 3.2: Training error functions plotted against smoothing parameter
λ. In the top row, we plot Eglobal(λ) from Equation 3.6, and in the other
rows, we plot E local

i (λ) from Equation 3.5. Each column of plots shows
the error of a particular algorithm, and the minimum chosen using the
global training procedure is shown using a vertical grey line. Note that
the local model training error can be reduced by moving from the globally
optimal smoothing parameter λ̂ to a local value λ̂i, as in profile i = 375
for dnacopy.sd. For the local models trained on single profiles, there are
at most 6 training examples. So many smoothing parameters attain the
minimum, and the model we select is shown as a black dot.

56

3.2. Methods

Picking the optimal degree of smoothness

We assume that λ is a tuning parameter that is monotonic in the number
of breakpoints, which is the case for the models considered in this chapter.

Fix a set of smoothing parameters, and run the smoothing algorithm
with each of these parameters. Intuitively, we should pick the value of λ
that maximizes agreement with annotation data. For global models, we
attempt to minimize Equation 3.6, and there is usually one best value, λ∗.

However, for the local model for profile i, we want to minimize the local
error as defined in Equation 3.5. Since the training set consists of only the
annotations of one profile i, there may be no unique smoothing parameter λ
that minimizes the error. We propose to pick between models that achieve
the minimum number of errors based on the shape of the error curve, and
these cases are illustrated in Figure 3.2.

1. When the minimum error is achieved in a range of intermediate pa-
rameter values, we pick a value in the middle. This occurs in the local
error curves shown for flsa.norm and cghseg.k.

2. When the minimum is attained by the model with the most break-
points, we pick the model with the fewest breakpoints that has the
same error. This attempts to minimize the false positive rate, and
occurs for profile i = 375 with model dnacopy.sd.

3. When the minimum is attained by the model with the fewest break-
points, we pick the model with the most breakpoints that has the
same error. This attempts to minimize the false negative rate, and
occurs for profile i = 362 with model dnacopy.sd.

Leave-one-out cross-validation for comparing local
and global models

To compare the breakpoint detection performance of local and global mod-
els on un-annotated regions, we propose leave-one-out cross-validation on
regions.

• For each annotated region k:

1. Designate Rk as the test region, and set aside the annotations in
this region from all the profiles.

2. Using all the other annotations as a training set, pick the best
λ using the protocol described in Section 3.2. For local models

57

3. Segmentation model selection with visual annotations

we learn a profile-specific λi that minimizes E local
i , and for global

models we learn a global λ that minimizes Eglobal.

3. To estimate how the model generalizes, count the errors of the
learned model in the test region Rk.

• To estimate the ability of the trained model to predict breakpoints
at a general un-annotated region, take the mean test error over all
regions.

n/t-fold cross-validation to estimate error on
un-annotated profiles

Since the annotation process is time-consuming, we are interested in training
an accurate breakpoint detector with as few annotations as possible. Thus
we would like to answer the following question: how many profiles t do I
need to annotate before I get a global model that will generalize well to all
the other profiles?

To answer this question, we estimate the error of a global model trained
on the annotations from t profiles using cross-validation. We divide the set
of n annotated profiles into exactly ⌊n/t⌋ folds, each with approximately t
profiles. For each fold, we consider its annotations a training set for a global
model, and combine the other folds as a test set to quantify the model error.
The final estimate of generalization error is then the average model error
over all folds.

Normal Breakpoint annotations
annotations 0 1 2 3 4 5 6

0 0 0 0 1 0 0 2
1 0 0 0 0 3 9 0
2 0 0 0 5 29 0 0
3 0 1 3 60 0 0 0
4 0 8 64 0 0 0 0
5 8 47 0 0 0 0 0
6 335 0 0 0 0 0 0

Table 3.1: Counts of profiles in the neuroblastoma data set, conditional
on number of annotations. Note that most profiles have more normal re-
gions than breakpoint regions. For example, 335 profiles have all 6 regions
annotated as normal.

58

3.2. Methods

Data: neuroblastoma copy number profiles

We analyzed a new data set of n = 575 copy number profiles from aCGH
microarray experiments on neuroblastoma tumors taken from patients at
diagnosis. The microarrays were produced using various technologies, so
do not all have the same probes. The number of probes per microarray
varies from 1719 to 71340. In this chapter we analyzed the normalized
logratio measurements of these microarrays, which we have made available
as neuroblastoma$profiles in R package neuroblastoma on CRAN:

http://cran.r-project.org/web/packages/neuroblastoma/index.html

Six chromosome arms known to be associated with prognostic impact
were annotated in the microarray data set [Janoueix-Lerosey et al., 2009].
Each region was defined by the start and end of a chromosome arm, and
the genomic coordinates of these regions are given in Table 3.2.

For each profile i, our domain expert annotated each region k by ex-
amining the plotted profile in VAMP [La Rosa et al., 2006] and recording
0 or 1 in a spreadsheet, according to the definition of breakpoint annota-
tions in Equation 3.2. Table 3.2 shows counts of annotations per region,
and Table 3.1 shows counts of annotations per profile. Some profiles have
less than 6 annotations since we excluded regions where presence of break-
points could not be determined by visual inspection. The annotations are
shown as colored rectangles in Figure 3.1, and are available as neuroblas-
toma$annotations in R package neuroblastoma on CRAN.

min = rk max = rk chrom ck breakpoint normal (all)

0.0 125.0 1 103 464 567
0.0 93.3 2 110 464 574
0.0 91.0 3 43 531 574
0.0 50.4 4 35 534 569
53.7 135.0 11 107 464 571
24.0 81.2 17 175 388 563

(all) 573 2845 3418

Table 3.2: Counts of normal and breakpoint annotations in the neuroblas-
toma data set, conditional on region. Min and max limits of each region
are shown in mega base pairs.

59

http://cran.r-project.org/web/packages/neuroblastoma/index.html

3. Segmentation model selection with visual annotations

Algorithms: copy number profile smoothing models

In this study we considered smoothing models from the bioinformatics liter-
ature with free software implementations available as R packages on CRAN
[R Development Core Team, 2012], R-Forge [Theußl and Zeileis, 2009], or
Bioconductor [Gentleman et al., 2004]. We systematically implemented and
analyzed each of these models using the code published in R package bams,
for Breakpoint Annotation Model Smoothing:

http://cran.r-project.org/web/packages/bams/index.html

We used version 1.0 of the gada package from R-Forge to calculate
the sparse Bayesian learning model of Pique-Regi et al. [2008]. We varied
the degree of smoothness by adjusting the T parameter of the BackwardE-

limination function, and for the gada.default model, we did not use the
BackwardElimination function.

We used version 1.03 of the flsa package from CRAN to calculate the
Fused Lasso Signal Approximator as described by Hoefling [2009]. The
FLSA solves the following optimization problem for each chromosome:

ŷλ = argmin
µ∈Rd

1

2

d∑

i=1

(yi − µi)
2 + λ1

d∑

i=1

|µi|+ λ2

d−1∑

i=1

|µi − µi+1|. (3.7)

We define a grid of values λ ∈ {10−5, . . . , 1012}, take λ1 = 0, and consider
the following parameterizations for λ2:

• flsa: λ2 = λ.

• flsa.norm: λ2 = λd × 106/l where d is the number of points and l is
the length of the chromosome in base pairs.

We used version 1.29.0 of the DNAcopy package from Bioconductor
to fit the circular binary segmentation model of Venkatraman and Olshen
[2007]. We varied the degree of smoothness by adjusting the undo.SD,
undo.prune, and alpha parameters of the segment function. However, the
dnacopy.prune algorithm was too slow (> 24 hours) for some of the profiles
with many data points, so these profiles were excluded from the analysis of
dnacopy.prune.

We used version 0.2-1 of the cghFLasso package from CRAN, which
implements the method of Tibshirani and Wang [2007], but does not provide
any smoothness parameters for breakpoint detection.

We used version 2.17.0 of the GLAD package from Bioconductor to fit
the GLAD adaptive weights smoothing model of Hupé et al. [2004]. We
varied the degree of smoothness by adjusting the lambdabreak and Min-

BkpWeight parameters of the daglad function. For the glad.haarseg model,

60

http://cran.r-project.org/web/packages/bams/index.html

3.2. Methods

we used the smoothfunc="haarseg" option and varied the breaksFdrQ pa-
rameter to fit the wavelet smoothing model of Ben-Yaacov and Eldar [2008].

We used version 0.01 of the cghseg package from R-Forge to fit the
maximum-likelihood piecewise constant smoothing model of Picard et al.
[2005] for each chromosome using pruned dynamic programming [Rigaill,
2010]. For the cghseg.mBIC model, we used the modified Bayesian infor-
mation criterion described by Zhang and Siegmund [2007], which has no
smoothness parameter, and is implemented in the uniseg function of the
cghseg package. For the cghseg.k model, we used the segmeanCO func-
tion with kmax=20 to obtain the maximum-likelihood piecewise constant
smoothing model µk ∈ R

d for k = 1, . . . , 20 segments. Lavielle [2005] sug-
gested penalizing k breakpoints in a signal sampled at d points using λk,
and varying λ as a tuning parameter. We implemented this model selection
criterion as the cghseg.k model, for which we define the optimal number of
segments

k∗(λ) = argmin
k∈{1,...,20}

λk +
1

d

d∑

i=1

(yi − µk
i)

2, (3.8)

and the optimal smoothing ŷλ = µk∗(λ).
We used the cpt.mean function in vesion 0.7 of the changepoint pack-

age from CRAN to fit a penalized maximum likelihood model using a
Pruned Exact Linear Time (PELT) algorithm [Killick et al., 2011]. PELT
defines µk in the same way as cghseg, but defines the optimal number of
segments as

k∗(β) = argmin
k∈{1,...,d}

β(k − 1) +
d∑

i=1

(yi − µk
i)

2. (3.9)

For the pelt.default model, we used the default settings which specify penalty="SIC"
for the Schwarz or Bayesian Information Criterion, meaning β = log d. For
the pelt.n model, we specified penalty="Manual" which means that the
value parameter is used as β, and the cpt.mean function returns µk∗(β).
We defined the same grid of λ values that we used for cghseg.k, and let
β = λd. Note that this model is mathematically equivalent to cghseg.k.

61

3. Segmentation model selection with visual annotations

3.3 Results and discussion

All the smoothing models described in the Algorithms section were applied
to all the annotated neuroblastoma copy number profiles, described in the
Data section. Note that to decrease computation time, the model fitting
may be trivially parallelized for profiles, algorithms, and smoothing param-
eter values.

After fitting the models, we used the breakpoint annotations to quantify
the accuracy of each model. We calculated the local and global error curves
E(λ), which quantify how many breakpoint annotations disagree with the
model breakpoints, as a function of the model smoothness parameter λ.
The global model is defined as the smoothness parameter λ̂ that maximizes
agreement with the breakpoint annotations from all profiles. In contrast,
for every profile i, we define the local model as the smoothness parameter λ̂i

that maximizes agreement with the breakpoint annotations from profile i.

Among global models, cghseg.k and pelt.n exhibit the
smallest training error in the neuroblastoma data

Training error curves for cghseg.k, flsa.norm, dnacopy.sd, and glad.lambdabreak
are shown in Figure 3.2. Note that the global curves do not achieve zero
training error but the local curves often do, suggesting that the local train-
ing strategy may be useful for decreasing the training error. Also note the
inflexibility of the dnacopy.sd model, which does not detect a breakpoint
in profile i = 362, even at the smallest parameter value, corresponding to
the model with the most breakpoints. Finally, note the minimum error of
2.2% achieved by cghseg.k and pelt.n, the global models with the smallest
training error.

The ROC curves for the training error of the global models for each
algorithm are traced in Figure 3.3. It is clear that the default parameters
of each algorithm except PELT show relatively large false positive rates.
In contrast, the pelt.default model and the models chosen by maximizing
agreement with the breakpoint annotations exhibit smaller false positive
rates at the cost of smaller true positive rates. The ROC curves suggest that
the cghseg.k and pelt.n models are the most discriminative for breakpoint
detection in the neuroblastoma data.

62

3.3. Results and discussion

optimization-based models approximate optimization glad

cghseg.k

flsa.norm

flsa

pelt.n

pelt.default

cghseg.mBIC

gada

dnacopy

alpha

dnacopy

prune

dnacopy.sd

dnacopy

default

glad.haarseg

glad.lambdabreak

glad

MinBkpWeight

glad

default

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
False positive rate = probability(predict breakpoint | normal)

T
ru
e
p
os
it
iv
e
ra
te

=
p
ro
b
(p
re
d
ic
t
b
re
ak

p
oi
n
t
|b

re
ak

p
oi
n
t)

Figure 3.3: ROC curves for the training error with respect to the break-
point annotation data are shown as colored lines. The curves are shown
in 3 panels zoomed to the upper left region of ROC space to avoid visual
clutter. Each curve is traced by plotting the error of a model as the degree
of smoothness is varied, and an empty black circle shows the global model
chosen by minimizing the error with respect to all annotations. Algorithms
with no tuning parameters are shown as black dots. Note that some ROC
curves appear incomplete since some segmentation algorithms are not flex-
ible enough for the task of breakpoint detection, even though we ran each
algorithm on a very large range of smoothness parameter values.

63

3. Segmentation model selection with visual annotations

Global models generalize better than local models

The leave-one-out cross-validation protocol was used to contrast the test
error of the global and local models. Table 3.3 shows the error, false positive,
and false negative rates of each model, averaged over the 6 test regions.

It is clear that the training procedure makes no difference for models
glad.default, dnacopy.default, cghseg.mBIC, pelt.default, gada.default, and
cghFLasso, which have no smoothness parameters. The large error of these
models suggest that the assumptions of their default parameter values do
not hold in the neuroblastoma data set. More generally, these error rates
suggest that smoothness parameter tuning is critically important to obtain
an accurate smoothing of real copy number profiles.

For dnacopy.prune, glad.MinBkpWeight, glad.lambdabreak, and flsa,
there appears to be little difference between the local and global training
procedures. For models flsa.norm, gada, pelt.n, and cghseg.k, there seems to
be a clear advantage for the global models which share information between
profiles. The equivalent cghseg.k and pelt.n models show the minimal esti-
mated test error of only 2.2% on these data. The slight differences between
the local FP and FN rates of cghseg.k and pelt.n can be attributed to round-
ing errors when specifying cpt.mean(value=sprintf("n*%f",lambda)) for
pelt.n.

Finally, note that the false positive rate of locally trained models is
higher than the false negative rate for most algorithms. This can be ex-
plained by the larger fraction of normal annotations present in the training
set, and the fact that many profiles have only normal annotations (Ta-
ble 3.1).

Timing PELT and cghseg

Interestingly, the cghseg.k method is somewhat faster than pelt.n, since
these models use different algorithms to calculate the same segmentation.
For cghseg.k, we use pruned dynamic programming to calculate the best
segmentation µk for k ∈ {1, . . . , 20} segments, which is the slow step. Then,
we calculate the best segmentation for λ ∈ {λ1, . . . , λ100}, based on the
stored µk values. In contrast, the Pruned Exact Linear Time algorithm
must be run for each λ ∈ {λ1, . . . , λ100}, and there is no information shared
between λ values.

However, timing the PELT and cghseg methods without tuning param-
eters shows the opposite trend. In particular, the default cghseg.mBIC
method is slower than the pelt.default method. This makes sense since cgh-
seg must first calculate the best segmentation µk for several k, then use the

64

3.3. Results and discussion

mBIC criterion to choose among them. In contrast, the PELT algorithm
recovers just the µk which corresponds to the Schwarz Information Crite-
rion penalty constant β = log d. So if you want to use a particular penalty
constant β instead of the annotation-guided approach we suggest in this
chapter, the default PELT method offers a modest speedup over cghseg.

Global Local Timings

errors FP FN errors FP FN seconds

cghseg.k 2.2 0.6 11.6 11.1 13.0 7.0 1.69

pelt.n 2.2 0.6 11.6 11.1 12.9 6.9 5.83

gada 6.5 4.1 19.8 12.9 14.4 10.4 6.36

flsa.norm 6.7 3.6 18.5 14.8 15.2 10.5 0.08

pelt.default 8.0 1.1 44.8 8.0 1.1 44.8 0.19

dnacopy.sd 11.5 7.6 32.2 12.8 10.0 28.8 51.62

glad.haarseg 11.8 12.6 8.0 17.8 20.7 4.1 29.51

glad.lambdabreak 14.1 12.3 23.0 15.8 16.2 14.2 14.44

flsa 16.0 12.7 36.6 14.4 15.9 10.3 0.04

dnacopy.alpha 18.4 21.9 2.6 20.4 24.6 2.0 25.90

glad.MinBkpWeight 25.2 30.0 4.3 25.8 31.2 1.3 40.88

glad.default 27.4 33.3 1.2 27.4 33.3 1.2 1.13

dnacopy.prune 27.9 31.9 17.1 31.1 36.5 10.6 35.17

dnacopy.default 40.5 49.3 0.5 40.5 49.3 0.5 1.78

cghseg.mBIC 40.9 49.4 0.0 40.9 49.4 0.0 1.77

gada.default 80.5 96.9 0.0 80.5 96.9 0.0 0.23

cghFLasso 80.8 97.2 0.0 80.8 97.2 0.0 0.14

Table 3.3: Leave-one-out cross-validation over the 6 annotated regions was
used to estimate breakpoint detection error, false positive (FP), and false
negative (FN) rates. Each line shows the performance of one of the mod-
els described in the Algorithms section. Models that have a smoothness
parameter are shown with a colored square, and global and local training
procedures described in the Methods section were used to learn smoothness
parameters. The global error is used to order the rows of the table. The
Timings column shows the median time to fit the sequence of smoothing
models for a single profile.

65

3. Segmentation model selection with visual annotations

Only a few profiles need to be annotated for a good
global model

Finally, to estimate the generalization error of a global model trained on
a relatively small training set of t annotated profiles, we applied the n/t-
fold cross-validation procedure to the data. For several training set sizes t,
we plot the accuracy of the glad.lambdabreak, dnacopy.sd, flsa.norm, and
cghseg.k models in Figure 3.4.

glad.lambdabreak

dnacopy.sd

flsa.norm

cghseg.k, pelt.n

80

82

84

86

88

90

92

94

96

98

100

1 5 10 15 20 25 30
Annotated profiles in global model training set

P
er
ce
n
t
of

co
rr
ec
tl
y
p
re
d
ic
te
d

an
n
ot
at
io
n
s
on

te
st

se
t
p
ro
fi
le
s

Figure 3.4: Cross-validation was used to estimate the generalization ability
of the global models with different sized training sets for several breakpoint
detection algorithms. For each training set size t, the profiles were parti-
tioned into training sets of approximately size t, then were evaluated using
the annotations from all the other profiles. Results on these data indi-
cate increasing accuracy (lines) and decreasing standard deviation (shaded
bands) as the training set increases, with diminishing returns after approx-
imately t = 10 profiles, indicated with a vertical black line, and shown in
detail for all algorithms in Table 3.4.

66

3.3. Results and discussion

It is clear that adding more annotations to the training set increases
the breakpoint detection accuracy in general, but at a diminishing rate.
Futhermore, it is clear that the accuracy is model-dependent. So after
obtaining a moderately sized database of annotations, data analysis time is
better spent designing and testing better models.

This suggests the following protocol: annotate breakpoints until you see
the test accuracy curves flatten out. Then, train a global model using the
entire set of annotations. In Table 3.4, we used n/10-fold cross-validation
to estimate the error rates of models trained using 10 profiles. These error
estimates are slightly larger, but the model ordering is mostly unchanged,
with respect to the leave-one-out cross-validated estimates of the global
model error rates in Table 3.3. In particular, cghseg.k and pelt.n still show
the best performance on these data, with an estimated generalization error
of 3.4%.

model errors sd FP sd FN sd
pelt.n 3.4 1.4 1.7 1.9 11.8 8.3

cghseg.k 3.4 1.4 1.6 1.8 12.2 8.3
gada 5.9 1.8 3.0 3.0 20.4 11.9

flsa.norm 6.1 1.7 3.2 2.7 20.5 13.8
pelt.default 8.0 0.1 1.1 0.0 42.2 0.3
glad.haarseg 12.6 1.5 13.7 2.0 7.1 1.2
dnacopy.sd 13.0 1.9 6.0 4.9 47.8 24.3

flsa 13.5 1.7 8.4 5.4 38.6 30.9
glad.lambdabreak 14.9 2.0 12.7 4.7 25.7 17.3

dnacopy.alpha 19.0 1.0 22.4 1.2 2.4 0.1
glad.MinBkpWeight 26.8 1.5 31.3 2.1 4.3 3.1

glad.default 27.4 0.1 32.6 0.2 1.6 0.1
dnacopy.prune 28.5 1.6 31.7 2.4 12.8 2.9

dnacopy.default 40.5 0.1 48.5 0.2 0.7 0.0
cghseg.mBIC 40.8 0.1 49.1 0.2 0.0 0.0
gada.default 80.5 0.2 96.7 0.1 0.0 0.0
cghFLasso 80.9 0.1 97.2 0.0 0.0 0.0

Table 3.4: The n/t-fold cross-validation protocol was used to estimate er-
ror, false positive (FP), and false negative (FN) rates. Mean and standard
deviation (sd) over ⌊n/t⌋ = 57 folds are shown as percents. Squares show
the same colors as in the figures, and are absent for models that have no
smoothness parameters. The smoothness parameter was chosen using an-
notations from approximately t = 10 profiles.

67

3. Segmentation model selection with visual annotations

3.4 GUI implementations

To make annotation-based breakpoint detection a feasbile approach in prac-
tice on real data, I have developed free/open-source GUI software tools for
creating annotation databases. I have created 2 tools: a simple Python
script called annotate_breakpoints.py, and a web site for interactive
model building called SegAnnDB.

Simple annotator program in Python

Python is a popular free/open-source software programming language, and
its standard library contains Tkinter for GUI development. I used Tkinter
to write annotate_breakpoints.py, a program consisting of 345 lines of
Python code. Given copy number profiles defined in profiles.csv and
annotations in annotations.csv, the following command line is used to
plot the profiles and their annotations, as shown in Figure 3.5:

python annotate_breakpoints.py profiles.csv annotations.csv

The plots are interactive in the sense that they allow annotated regions
to be drawn and saved for later analysis. By clicking and dragging, a red
rectangle can be drawn on the plot to indicate a region that contains a
breakpoint. Clicking a red rectangle changes it to a yellow rectangle, which
indicates a region that contains no breakpoints. Clicking a yellow rectan-
gle deletes that annotation. Only a few profiles from the profiles.csv

database are displayed onscreen at a time, and so right-clicks are used to
cycle the profiles. When done annotating, closing the window saves the
annotations to annotations.csv.

Figure 3.5: Three copy number profiles displayed by the Python GUI. Each
copy number profile occupies 1 row and is divided into several panels, one for
each chromosome. Blue points plot logratio as a function of chromosomal
position, and breakpoint annotations can be drawn as colored rectangles.

68

3.4. GUI implementations

The simple Python annotator is available in the annotate regions
package on the Python Package Index:

http://pypi.python.org/pypi/annotate_regions

SegAnnDB: a web site for supervised, interactive
breakpoint detection

I implemented SegAnnDB, a web DataBase that can be used to Annotate
and Segment genomic copy number profiles. Its implementation uses ap-
proximately 4000 lines of R, Python, JavaScript, SQL, and HTML code. It
works in modern web browsers that support HTML5 and Scalable Vector
Graphics (SVG), so does not require installing any special software.

The web site uses SVG, HTML5, and the D3 JavaScript visualization
library to display interactive plots of copy number profiles [Bostock et al.,
2011]. The plots are even more interactive than the simple Python GUI,
since the displayed model is updated to match the annotations drawn on
the plot. After creating a breakpoint annotation, it is sent to a server
which calculates which models agree. Then, the server sends the best model
back to the web browser for display alongside the copy number profile.
Furthermore, the scatterplots may be zoomed for identification of details in
dense copy number profiles.

Figure 3.6: SegAnnDB chromosome detail page zoomed in. The signal in
green is obtained from the grey data points using the cghseg.k model ŷk,
with the number of segments k selected using the breakpoint annotations.

69

http://pypi.python.org/pypi/annotate_regions

3. Segmentation model selection with visual annotations

The statistical model that the server implements is a version of cghseg.k.
Essentially, when a profile is uploaded to the web site, we segment it using R
package cghseg to find the least squares segmentation for k ∈ {1, . . . , kmax}
segments. Then, we use Equation 3.8 to calculate the optimal number of
segments k∗(λ) for a pre-defined grid λ ∈ {λ1, . . . , λ100}. To select which λ
is best for one annotated signal, we first select only the subset of λ which
maximizes agreement with that signal’s breakpoint annotations. That usu-
ally leaves several tens of valid λ values for a given signal, and so then we
use breakpoint annotations from other signals to decide which λ to use.
This hybrid model exhibits the good training error of the local model, but
also enjoys the good generalization properties of the global model.

The specific web server that I used was Apache with mod_wsgi, which
allows Python code to control the server. I used the Django web framework
with the PostgreSQL database system to store and manipulate the data,
annotations, and models.

I implemented a user login system so that different people can create
their own databases of annotations. This can be used to create a database
that contains annotations from several different people, so in the future we
can build models with user-specific breakpoint detection parameters.

Finally, I created export features so that it is easy to send segmentation
results from the web site to the UCSC genome browser [Kent et al., 2002].
This facilitates visualization of copy number alteration results from an ex-
periment alongside genomic information such as refSeq genes, as shown in
Figure 3.7.

The free/open-source software that implements SegAnnDB is available
in the breakpoints project on INRIA GForge:

https://gforge.inria.fr/projects/breakpoints/

Furthermore, a live web site with several real data sets already uploaded
is available at:

https://bioviz.rocq.inria.fr/plotter/

70

https://gforge.inria.fr/projects/breakpoints/
https://bioviz.rocq.inria.fr/plotter/

3.4. GUI implementations

Figure 3.7: The UCSC genome browser (top window) displays data ex-
ported from SegAnnDB (bottom window). The UCSC regions track shows
the breakpoint and copy number annotations using the same colors as
SegAnnDB. The UCSC segments track shows the mean level of each seg-
ment using a color scale. The UCSC breaks track shows estimated break-
point locations, drawn using dashed vertical lines on SegAnnDB. The UCSC
copies track shows estimated changes in copy number, and it is clear that
the displayed gain affects the copy number of the UGT2B17 gene.

71

3. Segmentation model selection with visual annotations

3.5 Conclusions

We have proposed to train smoothing models using annotations determined
by visual inspection of the copy number profiles. We have demonstrated
that this approach allows quantitative comparison of smoothing models on
a new data set of 575 neuroblastoma copy number profiles. These data
provide the first set of annotations that can be used for benchmarking the
breakpoint detection ability of future algorithms. Finally, our annotation-
based approach is quite useful in practice on real data, since it provides a
quantitative criterion for choosing the model and its smoothing parameter.

One possible criticism of annotation-based model selection is the time
required to create the annotations. However, using the free/open-source
GUIs that we have developed, it takes only a few minutes to annotate the
breakpoints in a profile. This is a relatively small investment compared to
the time required to write the code for data analysis, which is typically on
the order of days or weeks. In addition, in the neuroblastoma data, we saw
diminishing returns in breakpoint detection accuracy after annotating only
10 of 575 profiles. So breakpoint annotations are a feasible approach for
finding an accurate model and smoothing parameter for real copy number
profiles.

We found that global models generalize better than local models. In
contrast with our results, in a previous work on automatic parameter tuning
of smoothing models, Zhang et al. [2010] claim that local models should be
better in some sense: “it is clear that the advantages of selecting individual-
specific λ values outweigh the benefit of selecting constant λ values that
maximize overall performance.” It is not clear if the authors mean train or
test error when they speak of “performance.” Indeed, local models fit the
breakpoint annotations better and thus have lower training error. However,
we also showed that global models often generalize better than local models,
according to our leave-one-out estimates.

We have also shown that learning a global smoothness parameter on
a limited set of annotations can generalize well to un-annotated profiles.
However, the smoothness parameterization must be carefully chosen. For
example, the flsa.norm algorithm scales the smoothness parameter λ by the
number of points and the length of the chromosome, and results in lower
error rates than the unscaled flsa algorithm. We will pursue this idea in
Chapter 4, when we define optimal penalties for breakpoint detection.

We have solved the problem of smoothness parameter selection using
breakpoint annotations, but the biological question of detecting CNAs re-
mains. By constructing a database of annotated regions of CNAs, we could
use a similar approach to train models that detect CNAs. Annotations could

72

3.5. Conclusions

be actual copy number (0, 1, 2, 3, . . .) or some simplification (loss, normal,
gain). For the future, we will be interested in developing joint breakpoint
detection and copy number calling models that directly use these annotation
data as constraints or as part of the model likelihood.

It will be interesting to apply annotation-based model training to other
algorithms and data sets. In the annotations we analyzed, cghseg.k and
pelt.n showed the best breakpoint detection, but another model may be
selected with another expert’s annotation of the neuroblastoma data. In
future work, it will be interesting to see if our conclusions are robust to the
annotator, and generalize to data from other tumor types. Furthermore,
since next-generation sequencing data sets are becoming more common, we
plan to use visual annotations to learn segmentation models for these data
as well.

73

Chapter 4

Designing optimal penalties for
breakpoint detection using
segmentation model selection

The material from this chapter has not been published elsewhere.
This chapter discusses methods for accurately detecting the breakpoints

in a piecewise constant signal µ, given some noisy observations y. In the
previous chapter, we saw that that models with different penalties like flsa
and flsa.norm have different breakpoint detection accuracy. This observa-
tion naturally poses a question: what is the penalty that will result in the
best breakpoint detection? In this chapter, I discuss a method that can be
used to find these penalties, given certain assumptions about the data.

Chapter summary

This chapter presents two contributions:

• Given a latent signal µ, we define a precise breakpoint detection error
function, and discuss its relationship to the annotation error defined
in Chapter 3.

• We use the error function to determine optimal penalties for break-
point detection in databases of simulated signals of varying sampling
density, noise, and length.

In recent years, several authors have developed a theory of minimal
penalties that can be used to accurately recover a signal from noisy ob-
servations [Arlot and Massart, 2009, Lebarbier, 2005]. These methods do
not take advantage of the breakpoint annotation data, but instead can be

75

4. Optimal penalties for breakpoint detection

used offline to analyze some assumptions about the signal and the noise of
the data. Typically, these results guarantee recovery of the correct signal
with high probability. However, in this chapter we are more interested in
accurate recovery of the breakpoints than the signal itself. So here I de-
vote several pages to directly attacking the problem of breakpoint detection
rather than signal recovery.

Starting in Section 4.7, I will explain how to construct optimal penalties
given certain assumptions about the signal and noise. But we define opti-
mality in terms of breakpoint detection error, so I will first devote several
pages to a precise definition of the breakpoint detection error.

4.1 Properties of an ideal error function for

breakpoint detection

We assume there is a chromosome with D base pairs. Let X = {1, . . . , D}
be all the base pairs, and let B = {1, . . . , D − 1} be all bases after which a
break is possible.

For the simulations we explore later in this chapter, we assume there
is some latent signal µ ∈ R

D. We sample some noisy signal y ∈ R
d at

positions p ∈ X d, sorted in increasing order p1 < · · · < pd. We will focus on
the cghseg model, which defines the estimated signal with k segments as

ŷk =argmin
x∈Rd

||y − x||22

subject to k − 1 =
d−1∑

j=1

1xj 6=xj+1
.

(4.1)

Note that we can quickly calculate ŷk for k ∈ {1, . . . , kmax} using pruned
dynamic programming [Rigaill, 2010]. We then estimate the breakpoint
locations using the mean

ϕ(ŷk, p) =
{
⌊(pj + pj+1)/2⌋ for all j ∈ {1, . . . , d− 1} such that ŷkj 6= ŷkj+1

}
.

(4.2)
Note that this is a function ϕ : Rd×X d → 2B that gives the positions after
which there is a break in ŷk. We would like to compare these estimated
breakpoints to the exact set of breakpoints in the simulated signal

B = ϕ
(

µ,
[
1 · · · D

]′
)

= {j ∈ B : µj 6= µj+1}. (4.3)

76

4.1. Properties of an ideal error function for breakpoint detection

Given some guess of the breakpoint locations G ⊆ B, the object of this
section is to define a function E(G) that quantifies how bad the breakpoint
location guess was. We would like the function E : 2B → R

+ to satisfy:

• (correctness) Guessing exactly right costs nothing: E(B) = 0.

• (precision) A guess closer to a real breakpoint is less costly:
if B = {b} and 0 ≤ i < j, then E({b + i}) ≤ E({b + j}) and
E({b− i}) ≤ E({b− j}).

• (FP) False positive breakpoints are bad: if b ∈ B and g 6∈ B, then
E({b}) < E({b, g}).

• (FN) Undiscovered breakpoints are bad: b ∈ B ⇒ E({b}) < E(∅).

Keeping these properties in mind, in this section we define 4 such break-
point detection error functions E:

• When the latent signal is available in simulations, we can use the exact
breakpoint locations B to define EB

exact, which satisfies all 4 properties.

• In real data, we do not know the exact breakpoint locations B, but we
can approximate them using regions R̂ that visually contain break-
points. Assuming that there is exactly 1 region in R̂ for every break-
point in B, we can define ER̂

complete, which also satisfies all 4 properties.

• In real data, we may not want to assume that the regions R̂ contain

all breakpoints B. So we define ER̂,A
incomplete, which only satisfies these

properties if the annotationsA are consistent with the real breakpoints
B.

• In real data, an imperfect annotator is making the database of regions

R̂ and annotations A. So we define ER̂,A
01 to limit the influence of each

annotation.

We will define each of these breakpoint detection error functions in the
next sections, then compare them in Figures 4.3 and 4.4.

77

4. Optimal penalties for breakpoint detection

4.2 Exact breakpoint error for simulated

signals

In this section, we use the exact breakpoint locations B to define a break-
point detection error function.

We define the error of a breakpoint location guess g ∈ B as a function of
the closest breakpoint in B. So first we put the breaks in order, by writing
them as B1 < · · · < Bn, with each Bi ∈ B. Then, we define a set of intervals
RB = {r1, . . . , rn} that form a partition of B. For each breakpoint Bi we
define the region ri = [ri, ri] ∈ IB, where IB ⊂ 2B denotes the set of all
intervals of B. We take the notation conventions from the interval analysis
literature [Nakao et al., 2010].

We define the right limit of region i as

ri =

{

D − 1 if i = n

⌊(Bi+1 +Bi)/2⌋ otherwise
(4.4)

and the left limit as

ri =

{

1 if i = 1

ri−1 + 1 otherwise.
(4.5)

The breakpoints Bi and regions ri are labeled for a small signal in Fig-
ure 4.1.

Intuitively, if we observe a breakpoint guess g ∈ ri, then its closest
breakpoint is Bi. To define the best guess in each region, we use piecewise
linear functions Cr,b,r : R→ [0, 1] defined as follows:

Cr,b,r(g) =







0 if g = b

(b− g)/(x− r) if r < g < b

(g − b)/(r − x) if b < g < r

1 otherwise.

(4.6)

For each breakpoint i we measure the precision of a guess g ∈ B using

ℓi(g) = Cri,Bi,ri(g). (4.7)

These functions are shown in Figure 4.1 for a small signal with 2 break-
points.

Now, we are ready to define the exact breakpoint error of a set of guesses
G ⊆ B. First, let G ∩ r be the subset of guesses G that fall in region r.

78

4.2. Exact breakpoint error for simulated signals

Then, we define the false negative rate for region r as

FN(G, r) =

{

1 if G ∩ r = ∅
0 otherwise

(4.8)

and the false positive rate for region r as

FP(G, r) =

{

0 if G ∩ r = ∅
|G ∩ r| − 1 otherwise

(4.9)

and the imprecision of the best guess in region r as

I(G, r, ℓ) =

{

0 if G ∩ r = ∅
ming∈G∩r ℓ(g) otherwise.

(4.10)

When there are no breakpoints, we have B = ∅ and RB = ∅. But we still
would like to quantify the false positives, so let G \

(
∪ RB

)
be the set of

guesses G outside of the breakpoint regions RB. Finally, we define the exact
error of guess G with respect to the true breakpoints B as

EB
exact(G) =

∣
∣G \ (∪RB)

∣
∣+

|B|
∑

i=1

FP(G, ri) + FN(G, ri) + I(G, ri, ℓi). (4.11)

r1 B1 r1 r2 B2 r2

ℓ1 = C1,4,9 ℓ2 = C10,14,21

T T C G A G G C C A A A C T G T C G T G G A

1

0

error
sign

al

1 4 9 10 14 21 22
base

Figure 4.1: For 2 breakpoints i, we plot their functions ℓi that measure the
precision of a guess. The signal µ ∈ R

22 has 2 breakpoints: B = {4, 14}.

79

4. Optimal penalties for breakpoint detection

To calculate the exact breakpoint error, we first sort lists of n = |B| and
m = |G| items. Using the quicksort algorithm, this requires O(n log n +
m logm) operations in the average case [Cormen et al., 1990]. Once sorted,
the components of the cost can be calculated in linear time O(n + m).
So, overall the calculation of the error can be accomplished in best case
O(n+m), average case O(n log n+m logm) operations.

80

4.3. Incomplete annotation error for real data

4.3 Incomplete annotation error for real

data

In real data, we do not have access to the latent signal µ, nor the under-
lying set of breakpoints B. However, by plotting the data, we can easily
identify regions that contain breakpoints by visual inspection, as shown in
Figure 4.2.

In general, letA = {a1, . . . , an} be some annotations and R̂ = {r̂1, . . . , r̂n}
be the corresponding regions. For every annotation i, let r̂i ⊂ IB be the
interval that defines the region, and let ai ⊆ {0, 1, . . .} be the interval of
allowable breakpoint counts in this region. For example, consider the an-
notated regions in Table 4.1.

Then, we define the annotation-dependent false positive rate as

F̂P(G, r, a) =
(
|G ∩ r| −max(a)

)

+
(4.12)

and the annotation-dependent false negative rate as

F̂N(G, r, a) =
(
min(a)− |G ∩ r|

)

+
. (4.13)

So then we define the incomplete annotation error for a set of regions R
with annotations A as

ER,A
incomplete(G) =

∑

(r,a)∈(R,A)

F̂P(G, r, a) + F̂N(G, r, a). (4.14)

i Annotation ai Region r̂i
1 {0} [5,10]
2 {1} [20,30]
3 {1,2,. . . } [40,70]
4 {0} [80,100]

Table 4.1: Sample annotated regions for a signal sampled on D = 100 base
pairs. An annotation ai indicates how many breakpoints are allowed in the
corresponding region ri. There are 0 breaks in bases 5-10 and 80-100. There
is exactly 1 break in bases 20-30. There is at least 1 break in bases 40-70.

81

4. Optimal penalties for breakpoint detection

In the case of analyzing the simulated signals in the top panels of Fig-
ure 4.2, let us consider the set of regions R̂ depicted using the red rectangles.
Every region r̂i ∈ R̂ contains exactly 1 breakpoint Bi ∈ r̂i, so we have a cor-
responding set of annotations A with a = {1} for every annotation a ∈ A.
In real data we will probably only be able to see a subset of the real break-
points, but we analyze it here to illustrate the approximation induced by
the annotation process.

Given the set of breakpoint regions R̂, we define |R̂|+1 negative regions

R̂0 =
{
[1, r1−1], [r1+1, r2−1], . . . , [rn−1+1, rn−1], [rn+1, d−1]

}
, (4.15)

as shown in the middle panels of Figure 4.2. There is a corresponding set
of annotations A0 with a = {0} for every annotation a ∈ A0. We will use
the complete set of regions R̂ ∪ R̂0 and annotations A ∪ A0 to define the

annotation error ER̂∪R̂0,A∪A0

incomplete for models of these simulated signals.
In Figure 4.3, we plot some model selection error functions for the 2

simulated signals shown in Figure 4.2. It is clear that the annotation er-
ror is a good approximation of the breakpoint error, and there are several
interesting observations to note.

Figure 4.2: Top: simulated noisy signals (black) with their latent signals µ
(blue) and visually-determined breakpoint annotations R̂ (red).
Middle: negative regions R̂0 constructed using (4.15).
Bottom: breakpoint detection imprecision curves for the breakpoint error
ℓi (4.10) and the annotation error ℓ̂i (4.17).

82

4.3. Incomplete annotation error for real data

• Signal: we plot the log squared error of the estimated signal ŷk with
respect to the latent signal µ, defined as

Esignal(k) = log10

[

1

d

d∑

i=1

(ŷki − µi)
2

]

. (4.16)

– For the signal sampled at 7 bases/probe, the minimum of the
error identifies the correct model with 7 segments.

– For the signal sampled at 374 bases/probe, the minimum of the
error identifies an incorrect model with only 5 segments.

• Breakpoint: for both signals, the minimum of the breakpoint error
identifies the correct model.

• Annotation: the annotation error is a close approximation of the
breakpoint error, and also identfies the correct model.

bases/probe = 374 bases/probe = 7

E E

FN

FN
I

E

I

E

FP

FP

F̂N
F̂N

E
E

F̂P

F̂P

E

E

FN

FN
I

E

I

E

FP

FP

F̂N
F̂N

E
E

F̂P

F̂P

-2

-1

0

0

5

10

15

0

5

10

15

S
ign

al
B
reak

p
oin

t
A
n
n
otation

1 5 7 20 1 5 7 20
segments of estimated signal

er
ro
r

Figure 4.3: Model selection error curves for 2 simulated signals. Minima
are highlighted using circles.
Signal: the log squared error Esignal of the estimated signal ŷk for k seg-
ments with respect to the latent signal µ.
Breakpoint: exact breakpoint error EB

exact.
Annotation: incomplete annotation error ER,A

incomplete.

83

4. Optimal penalties for breakpoint detection

4.4 Link with breakpoint error using

complete annotation error

It is clear from Figure 4.3 that the annotation error is a good approximation
of the exact breakpoint error when the annotated regions R̂, A agree with
the real breakpoints B. In this section, we make this intuition precise by
showing exactly how to relax the breakpoint error to obtain the annotation
error. There are two steps:

• First, we define the complete annotation error by relaxing the defini-
tion of the exact breakpoint error.

• Then, we show that the complete annotation error is equivalent to the
incomplete annotation error when we have a complete set of annota-
tions.

The complete annotation error

We define the complete annotation error as a relaxation of the exact break-
point error. So first, let us recall the definition of the exact breakpoint error
from Equation 4.11:

EB
exact(G) =

∣
∣G \ (∪RB)

∣
∣+

|B|
∑

i=1

FP(G, ri) + FN(G, ri) + I(G, ri, ℓi).

To define the complete annotation error, we perform two relaxations:

• Instead of using Equations 4.4 and 4.5 to determine a breakpoint
region ri, we use the region r̂i determined by visual inspection.

• Rather than the piecewise linear imprecision ℓi, we use the zero-one
imprecision ℓ̂i:

ℓ̂i(g) = 1g 6∈r̂i . (4.17)

We show this relaxation by ploting the imprecision functions ℓi and
ℓ̂i in the bottom panels of Figure 4.2.

So, performing these two relaxations results in the following definition of
the complete annotation error:

ER̂
complete(G) =

∣
∣
∣G \ (∪R̂)

∣
∣
∣+

|R̂|
∑

i=1

FP(G, r̂i) + FN(G, r̂i) + I(G, r̂i, ℓ̂i)

=
∣
∣
∣G \ (∪R̂)

∣
∣
∣+

∑

r̂∈R̂

FP(G, r̂) + FN(G, r̂) (4.18)

84

4.4. Link with breakpoint error using complete annotation error

It is clear that ER̂
complete depends on the annotations only through their

regions. In particular, the annotated breakpoint counts ai = {1} are not
used in this definition, since we assumed that each region r̂i contains exactly
1 break. Also, since we used the zero-one loss for ℓ̂i, the imprecision function
I is always zero.

Equivalence of complete and incomplete annotation
error

To see the connection between the complete and incomplete annotation
error functions, note that

F̂N(G, r, {1}) =
(
1− |G ∩ r|

)

+

= FN(G, r), (4.19)

and

F̂P(G, r, {1}) =
(
|G ∩ r| − 1

)

+

= FP(G, r). (4.20)

For the complete annotation error we quantified the false positive rate of the
breakpoints that fall outside of the breakpoint regions R̂ using G\(∪R̂). For
the incomplete annotation error, we instead created a set of 0-breakpoint
annotations R̂0 for this purpose. Note that by construction of the negative
regions in Equation 4.15, we have

G \
(

∪R̂
)

= G ∩
(

∪R̂0
)

, (4.21)

or in words, the guesses outside of the breakpoint regions R̂ are in the
negative regions R̂0. So using Equation 4.21, we have

F̂P(G, (∪R̂0), {0}) = |G ∩ (∪R̂0)|
= |G \ (∪R̂)|, (4.22)

which is the first component of the complete annotation loss.

Recall that R̂, A represent annotated regions that each contain exactly
1 breakpoint, and R̂0, A0 contain no breakpoints. So using Equations 4.19,
4.20, and 4.22, we can show that the incomplete annotation error is equiv-

85

4. Optimal penalties for breakpoint detection

alent to the complete error in this sense:

ER̂∪R̂0,A∪A0

incomplete (G) =
∑

r∈R̂0

F̂P(G, r, {0}) +
∑

r∈R̂

F̂P(G, r, {1}) + F̂N(G, r, {1})

= F̂P(G,∪R̂0, {0}) +
∑

r∈R̂

F̂P(G, r, {1}) + F̂N(G, r, {1})

= |G \ (∪R̂)|+
∑

r∈R̂

FP(G, r) + FN(G, r)

= ER̂
complete(G). (4.23)

So in fact the incomplete annotation error is equivalent to the complete
error when the annotated regions R̂ each contain exactly 1 breakpoint. But
we call this the incomplete error since it is also well-defined for arbitrary
sets of regions R̂ and annotations A.

4.5 Zero-one annotation error

The initial method that we used to quantify the breakpoint error on the
neuroblastoma data set in Chapter 3 was the zero-one loss in Equation 3.4.
In this section, we show that the zero-one loss is a thresholded version of
the incomplete annotation error function.

First, let us define the zero-one thresholding function t : Z+ → Z
+ as

t(x) = 1x 6=0 =

{

1 if x 6= 0

0 otherwise.
(4.24)

The idea of thresholding is to limit the error that any one annotation
can induce. So instead of counting incorrect breakpoint guesses, we count
incorrect annotations. We define the zero-one annotation error as

ER̂,A
01 (G) =

∑

(r,a)∈(R̂,A)

t
[

F̂P(G, r, a)
]

+ t
[

F̂N(G, r, a)
]

=
∑

(r,a)∈(R̂,A)

1|G∩r|>max(a) + 1|G∩r|<min(a)

=
∑

(r,a)∈(R̂,A)

1|G∩r|6∈a. (4.25)

86

4.6. Comparing annotation error functions

4.6 Comparing annotation error functions

In practice, we have few annotated regions per signal in real data. In
Figure 4.4, we show how the annotation error is degraded as we remove
annotations. In particular, it is clear that using the thresholded zero-one
annotation error significantly degrades the approximation of the FP curve.
Nevertheless, it is worth noting that minimum of the zero-one error still
uniquely identifies the correct model with 7 segments. Even after removing
many annotations, the minimum error still identifies the correct model, but
not uniquely.

bases/probe = 374 bases/probe = 7

F̂N
F̂N

E

E

F̂P

F̂P

F̂N
F̂N

E E

F̂P
F̂P

F̂N
F̂N

E E

F̂P
F̂P

F̂N
F̂N

E E

F̂P
F̂P

F̂N
F̂N

E

E

F̂P

F̂P

F̂N
F̂N

E E

F̂P
F̂P

F̂N
F̂N

E E

F̂P
F̂P

F̂N
F̂N

E E

F̂P
F̂P

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

C
om

p
lete

Z
ero-on

e
In
com

p
lete

P
ositive

1 5 7 20 1 5 7 20
segments of estimated signal

er
ro
r

Figure 4.4: Comparison of annotation error functions as the set of annota-
tions changes. Minima are highlighted using circles.

Complete: annotation error ER̂∪R̂0,A∪A0

incomplete for a complete set of 6 positive
and 7 negative annotations.

Zero-one: zero-one annotation error ER̂∪R̂0,A∪A0

01 for the complete annota-
tions.
Incomplete: zero-one annotation error ER̂,A

01 for 3 positive and 4 negative
annotations.
Positive: zero-one annotation error ER̂,A

01 for 3 positive annotations.

87

4. Optimal penalties for breakpoint detection

4.7 Sampling density normalization

Having properly defined how to compute the breakpoint detection error in
the previous sections, we now use it to derive several results about optimal
penalties for breakpoint detection. We start by considering a penalty that is
invariant to sampling density. First, we will present an empirical analysis of
several simulated signals using the breakpoint error. Then, we will discuss
the relationship of our results to relevant theoretical results.

In real array CGH data, the sampling density of probes along the genome
is not uniform across samples. In fact, we see a sampling density between
40 and 4400 kilobases per probe in the neuroblastoma data set.

So to construct a penalty that can best adapt to this variation, we
analyze the following simulation. We create a latent signal µ ∈ R

D over
D = 70000 base pairs, with breakpoints every 10000 base pairs, shown
as the blue line in Figure 4.5. Then, we define a signal sample size di ∈
{70, . . . , 70000} for every noisy signal i ∈ {1, . . . , n}. Let yi ∈ R

di be noisy
signal i, sampled at positions pi ∈ X di , with pi1 < · · · < pi,di . We sample
every probe j from the yij ∼ N(µpij , 1) distribution. These samples are
shown as the black points in Figure 4.5.

We would like to learn some model complexity parameter λ on the first
noisy signal, and use it for accurate breakpoint detection on the second
noisy signal. In other words, we are looking for a model selection criterion
which is invariant to sampling density.

Figure 4.5: Two noisy signals (black) sampled from a latent piecewise con-
stant signal (blue). Note that these are the same signals that appear in
Figure 4.2.

88

4.7. Sampling density normalization

To attack this problem, we proceed as follows. For every signal i, we
use pruned dynamic programming to calculate the maximum likelihood
estimator ŷki ∈ R

di , for several model sizes k ∈ {1, . . . , kmax} [Rigaill, 2010].
Then, we define the model selection criteria

kα
i (λ) = argmin

k
λkdαi + ||yi − ŷki ||22. (4.26)

Each of these is a function kα
i : R+ → {1, . . . , kmax} that takes a model

complexity tradeoff parameter λ and returns the optimal number of seg-
ments for signal i. The goal is to find a penalty exponent α ∈ R that lets
us generalize λ between different signals i.

To quantify the accuracy of a segmentation for signal i, let BErri(k)
be the breakpoint detection error of the model with k segments. This is a
function BErri : {1, . . . , kmax} → R

+, and in real data this corresponds to

the breakpoint annotation error ER̂,A
01

[
ϕ(ŷki , pi)

]
. But in these simulations

we can calculate the more precise measure

BErri(k) = EB
exact

[
ϕ(ŷki , pi)

]
. (4.27)

where B is the set of real breakpoints in the latent signal µ.
In Figure 4.6, we plot BErri for the 2 simulated signals i shown previ-

ously. As expected, the model recovers more accurate breakpoints from the
signal sampled at a higher density.

bases/probe = 374 bases/probe = 7

0
1

6

13
14

1 7 20 1 7 20
Number of segments of estimated cghseg model

E
rr
or

re
la
ti
ve

to
la
te
n
t
b
re
ak

p
oi
n
ts

Figure 4.6: Exact breakpoint error BErri(k) for two signals i and several
cghseg model sizes k. Note that these are the same error curves that appear
in the Breakpoint panels of Figure 4.3.

89

4. Optimal penalties for breakpoint detection

Now, let us define the penalized model breakpoint error Eα
i : R+ → R

+

as
Eα

i (λ) = BErri [k
α
i (λ)] . (4.28)

In Figure 4.7, we plot these functions for the two signals i shown previously,
and for several penalty exponents α.

The dots in Figure 4.7 show the optimal λ found by minimizing the
penalized model breakpoint detection error:

λ̂α
i = argmin

λ∈R+

Eα
i (λ) (4.29)

Figure 4.7 suggests that α ≈ 1/2 defines a penalty with aligned er-
ror curves, which will result in λ̂α

i values that can be generalized between
profiles.

α = 0 α = 0.5 α = 1

0

5

10

-5 0 5 -5 0 5 -5 0 5
model complexity tradeoff parameter log10(λ)

er
ro
r
E

α i
(λ
)

bases/probe

7

374

Figure 4.7: Model selection error curves Eα
i (λ) for 2 signals i and several

exponents α. The penalty contains a term for the number of points sampled
dαi .

90

4.7. Sampling density normalization

Now, we are ready to define 2 quantities that will be able to help us
choose an optimal penalty exponent α.

First, let us consider the training error over the entire database:

Eα(λ) =
n∑

i=1

Eα
i (λ), (4.30)

and we define the minimal value of this function as

E∗(α) = min
λ

Eα(λ). (4.31)

In Figure 4.8, we plot these training error functions Eα and their minimal
values E∗ for several values of α. It is clear that the minimum training error
is found for some penalty exponent α near 1/2, and we would like to find
the precise α that results in the lowest possible minimum E∗(α).

α = 0 α = 0.5 α = 1

12.1 7.3 15.330

60

90

-5 0 5 -5 0 5 -5 0 5
model complexity tradeoff parameter log10(λ)

er
ro
r
E

α i
(λ
)

Figure 4.8: Training error functions Eα in black and their minimal values
E∗(α) in red. The penalty contains a term for the number of points sampled
dαi .

91

4. Optimal penalties for breakpoint detection

We also consider the test error over all pairs of signals when training on
one and testing on another:

TestErr(α) =
∑

i 6=j

Eα
i (λ̂

α
j). (4.32)

In Figure 4.9, we plot E∗ and TestErr for a grid of α values. It is clear
that the optimal penalty is given by α = 1/2. This corresponds to the
following model selection criterion which is invariant to sampling density:

ki(λ) = argmin
k

λk
√

di + ||yi − ŷki ||22 (4.33)

10

20

30

40

0

5

10

train
test

-1 0 1 2
penalty exponent α

to
ta
l
er
ro
r
re
la
ti
ve

to
la
te
n
t
b
re
ak

s

Figure 4.9: Train and test breakpoint detection error as a function of penalty
exponent α. The penalty contains a term for the number of points sampled
dαi . Mean error is drawn as a black line, with one standard deviation shown
as a grey band.

92

4.7. Sampling density normalization

As explained by Arlot and Celisse [2010], a model selection procedure
can be either efficient or consistent. An efficient procedure for model estima-
tion accurately recovers the latent signal, whereas a consistent procedure for
model identification accurately recovers the breakpoints. Since we consider
the breakpoint detection error, we are attempting to construct a consistent
penalty, not an efficient penalty.

In general terms, the fact that we find a nonzero exponent α for our
dαi penalty term agrees with other results. In particular, Arlot [2008] pro-
posed an optimal procedure to select model complexity parameters in cross-
validation by normalizing by the sample size di.

The
√
di term that we find here using simulations is in agreement with

Fischer [2011], who used finite sample model selection theory to find a
√
di

term in a penalty optimal for clustering.
When theoretically deriving an efficient penalty for change-point model

estimation in the non-asymptotic setting, Lebarbier [2005] obtained a log di
term. This contrasts our result, which examines the identification problem
using the breakpoint error and obtains a

√
di term. But in fact this is in

agreement with classical results that AIC underpenalizes with respect to
the BIC, as shown in Table 4.2.

Estimation Penalty Identification Penalty
Model Term Model Term
AIC 2 BIC log di

Lebarbier log di This work
√
di

Table 4.2: Comparing our results with Lebarbier, in the context of classical
results involving AIC and BIC. The BIC is designed for model identification
and penalizes more than the AIC. Likewise, our penalty examines model
identification using the breakpoint detection error, and penalizes more than
the efficient penalty proposed by Lebarbier.

93

4. Optimal penalties for breakpoint detection

4.8 Scale normalization

In real array CGH data, the signal variance is not the same across samples.
In fact, using the variance estimate proposed below in Equation 4.34, over
all the profiles in the neuroblastoma data set, we see a range of values
between 0.029 and 0.371.

So we analyze the following simulation to construct a penalty that is
invariant to the scale of the data. First, we define a theoretical signal
µ ∈ R

700 with breakpoints every 100 bases, shown as the blue line for 2
signals in Figure 4.10.

Then, we generate a signal yi ∈ R
di by adding standard normal noise

to the signal, and multiplying by a scale factor σ ∈ {1, 10, 100, 1000}. The
goal is to define a penalty invariant to this scaling. For each signal i, we
estimate its variance using the robust estimator

ŝi = Mediandi−1
j=1 (|yij − yi,j+1|) , (4.34)

and then define the optimal number of segments as

kα
i (λ) = argmin

k
λkŝαi + ||yi − ŷki ||22, (4.35)

where ŷki is the least squares segmentation with k segments.

-2

0

2

4

-2000

0

2000

4000

var.
estim

ate
ŝ
i
=

1
var.

estim
ate

ŝ
i
=

1015

0 200 400 600
position in base pairs

si
m
u
la
te
d
co
p
y
n
u
m
b
er

si
gn

al

Figure 4.10: Simulated noisy signal (black) and latent signal (blue) for 2
different scales.

94

4.8. Scale normalization

Using the type of analysis in the previous section, we saw that minimum
breakpoint detection error is achieved when we choose a penalty exponent
α that results in aligned annotation error curves Eα

i . For two signals i 6= j,
this implies the condition

BErri[k
α
i (λ)] = BErrj[k

α
j (λ)]. (4.36)

Since the assumption of our simulation model is that signals i and j are
identical up to a scaling, the breakpoints are the same and so BErri = BErrj.
Thus we simply need to find the exponent α such that kα

i (λ) = kα
j (λ).

It is easy to see why α = 2 is the optimal exponent. First, let y1, y2
be two signals which are equivalent up to a scaling factor: y2 = σy1. This
implies two interesting properties:

• (a) estimated models are the same up to a scaling factor: ŷk2 = ŷk1σ
for all model sizes k.

• (b) variance estimates are the same up to a scaling factor: ŝ2 = ŝ1σ.

From the defintion of kα
i in Equation 4.35 it is clear that

k0
2(λ) = argmin

k
λk + ||y2 − ŷk2 ||22

= argmin
k

λk + ||σy1 − σŷk1 ||22 (a)

= argmin
k

λk + σ2||y1 − ŷk1 ||22
= argmin

k
λσ−2k + σ2||y1 − ŷk1 ||22

= k0
1(λσ

−2).

We use this fact to rewrite the equality of the model selection curves as
follows:

kα
1 (λ) = kα

2 (λ)

k0
1(λŝ

α
1) = k0

2(λŝ
α
2)

= k0
1(λŝ

α
2σ

−2)

= k0
1

(
λ(ŝ1σ

α)σ−2
)

(b)

= k0
1(λŝ

α
1σ

α−2).

This implies that α = 2 must be chosen in order for the model selection
curves to align kα

1 (λ) = kα
2 (λ).

95

4. Optimal penalties for breakpoint detection

We now proceed with the same kind of empirical analysis that we used
to establish an optimal penalty for sampling density. In Figure 4.11, we
plot the penalized model breakpoint detection error Eα

i and the optimal λ̂α
i

for two signals i and several α values. This plot suggests that a value of
α = 2 defines a penalty that will allow generalization of λ̂α

i values between
signals i.

α = 0 α = 1 α = 2 α = 3

0

5

10

-5 0 5 -5 0 5 -5 0 5 -5 0 5
model complexity tradeoff parameter log10(λ)

er
ro
r
E

α i
(λ
) variance

estimate

1

1015

Figure 4.11: Model breakpoint detection error functions Eα
i (lines) and op-

timal λ̂α
i (points) for several penalty exponents α and 2 signals i of different

scale. The penalty contains a term for the variance estimate ŝαi .

96

4.8. Scale normalization

In Figure 4.12, we plot the train error E∗ and TestErr as functions of
α. In agreement with our earlier analysis, these simulations clearly indicate
that α = 2 is optimal. Thus, we conclude that the following model selection
criterion is invariant to scaling:

ki(λ) = argmin
k

λkŝ2i + ||yi − ŷki ||22. (4.37)

This result agrees with the theoretical results of Lebarbier [2005], who con-
sidered constructing an optimal penalty for change-point detection with
respect to the square loss.

5

10

15

0

5

10

train
test

0 1 2 3
penalty exponent α

to
ta
l
er
ro
r
re
la
ti
ve

to
la
te
n
t
b
re
ak

s

Figure 4.12: Train and test error curves as a function of penalty exponent
α, for signals of variable scale. The penalty contains a term for the variance
estimate ŝαi .

97

4. Optimal penalties for breakpoint detection

4.9 Signal length normalization

In real array CGH data, we need to analyze chromosomes of varying length
in base pairs. For example, human chromosome 1 is the largest at about
250 mega base pairs, and chromosome 22 is the smallest with only about
36 mega base pairs. But we expect that the number of breakpoints is
proportional to the length of the chromosome in base pairs, and we would
like to design a model selection criterion that is invariant to the signal
length.

So we consider the following simulation where we fix the number of
points sampled at d = 2000 and vary the length of the signal sampled. In
Figure 4.13, we show samples of 2 different lengths li, for the same latent
signal µ.

-2.5

0.0

2.5

-2.5

0.0

2.5

len
gth

=
2000

len
gth

=
80000

0 20000 40000 60000 80000
position in base pairs

si
gn

al

Figure 4.13: Samples of 2 different lengths li but constant number of points
d = 2000.

98

4.9. Signal length normalization

For each signal i, we define the penalty

kα
i (λ) = argmin

k
λklαi + ||yi − ŷki ||22, (4.38)

where li is the length of the signal in base pairs. The goal will be to find
an α that can be used for signals of varying length.

In Figure 4.14, we show the breakpoint detection error curves for two
signals and several penalty exponents α. These curves seem to align when
α = −1/2.

α = −1 α = −0.5 α = 0

0

1

2

40

60

80

len
gth

=
2000

len
gth

=
80000

-5 0 5 10 -5 0 5 10 -5 0 5 10
model complexity tradeoff parameter log10(λ)

er
ro
r
E

α i
(λ
)

Figure 4.14: Breakpoint detection error curves for several penalty exponents
α and 2 samples of varying length in base pairs li. The penalty contains a
term lαi .

99

4. Optimal penalties for breakpoint detection

In Figure 4.15, we plot the train and test error curves over the entire set
of simulated signals. These curves indicate minimal breakpoint detection
error at α = −1/2, corresponding to the following penalty:

ki(λ) = argmin
k

λk√
li
+ ||yi − ŷki ||22. (4.39)

40

60

80

0

20

40

train
test

-2 -1 0 1
penalty exponent α

to
ta
l
er
ro
r
re
la
ti
ve

to
la
te
n
t
b
re
ak

s

Figure 4.15: Train and test error curves for signals of different length in
base pairs li. The penalty contains a term lαi .

100

4.9. Signal length normalization

Interestingly, the 1/
√
li term that we obtain here is in good agreement

with our previous result that the optimal penalty for variable sampling
density di should have a

√
di term. In particular, we can re-parameterize

the problem to be in terms of the number of points sampled per segment
ρi = di/ki. In Section 4.7 we held ki constant but in this section we hold di
constant. In both cases we have a penalty with a

√
ρi =

√

di/ki term.
However, we do not know the number of segments ki in advance. But

we supposed that the number of segments is proportional to the number of
base pairs li, so we can use that in the penalty. This suggests a penalty
that takes the form of

√

di/li. So in the next section, we confirm that this
intuition works for constructing an optimal penalty.

101

4. Optimal penalties for breakpoint detection

4.10 Combining normalizations

In this section, we show that we can combine the results of the previous
sections to create composite invariant penalties. In particular, to normalize
for sampling density di and length in base pairs li, we need

√
di and 1/

√
li

terms in the penalty, respectively. This suggests that when considering
variable di and li, we need a

√

di/li term in the penalty, and in this section
we show that this intuitive construction results in an optimal penalty.

In Figure 4.16, we plot 2 signals with different number of points di and
length in base pairs li. We would like to find a penalty that allows us to
generalize model complexity tradeoff parameters λ between these signals.

For each signal i, we define the penalty

kα
i (λ) = argmin

k
λklαi

√

di + ||yi − ŷki ||22, (4.40)

where li is the signal length in base pairs and di is the number of points
sampled. We will attempt to determine an α that allows accurate break-
point detection in signals of varying length and number of points sampled.
Based on the result in Section 4.9, we expect to find α = −1/2.

Figure 4.16: Two signals with a different number of points di and length in
base pairs li.

102

4.10. Combining normalizations

In Figure 4.17, we plot the breakpoint error functions Eα
i for 2 signals i

and several exponents α. The curves seem to align when α = −1/2.

α = −1 α = −0.5 α = 0

0

1

2

30
60
90

len
gth

200
len

gth
10000

-5 0 5 10 -5 0 5 10 -5 0 5 10
model complexity tradeoff parameter log10(λ)

er
ro
r
E

α i
(λ
)

Figure 4.17: Breakpoint error functions Eα
i for several exponents α and 2

signals i of varying number of points di and length in base pairs li. The
penalty contains a term lαi

√
di.

In Figure 4.18, we plot the train and test error as a function of penalty
exponent α. This analysis suggests that the optimal exponent is α = −1/2,
as expected from our previous analysis in Section 4.9.

40
60
80
100
120
140

0
20
40
60

train
test

-2 -1 0 1
penalty exponent α

to
ta
l
er
ro
r

Figure 4.18: Train and test error functions for several signals of varying
number of points di and length in base pairs li. The penalty contains a
term lαi

√
di.

103

4. Optimal penalties for breakpoint detection

4.11 Optimal penalties for the fused lasso

signal approximator

In the previous sections, we used theoretical arguments and simulation ex-
periments to determine the optimal penalties for cghseg. In this section, we
demonstrate that the same approach can be used to find optimal penalties
for another model, the Fused Lasso Signal Approximator (FLSA).

We used the flsa function in version 1.03 of the flsa package from
CRAN to calculate the FLSA [Hoefling, 2009]. Let x ∈ R

d be the noisy
copy number signal for one chromosome. The FLSA solves the following
optimization problem:

argmin
µ∈Rd

1

2

d∑

j=1

(xj − µj)
2 + λ1

d∑

j=1

|µj|+ λ2

d−1∑

j=1

|µj − µj+1|. (4.41)

First, we take λ1 = 0 since we are concerned with breakpoint detection,
not signal sparsity. In this section, our aim is to determine a parameteri-
zation for λ2 that we will be able to find similar breakpoints in signals of
varying sampling density.

We use the same setup that we used to determine optimal penalties for
cghseg, as described in Section 4.7 and shown again in Figure 4.19.

Figure 4.19: Simulated signals with different sampling density.

104

4.11. Optimal penalties for the fused lasso signal approximator

In particular, for every signal i ∈ {1, . . . , n}, let yi ∈ R
di be the noisy

signals, sampled at positions pi ∈ X di . To find an optimal penalty for these
data, first let λ2 = λdαi . For each signal i, exponent α ∈ R, and tradeoff
parameter λ ∈ R

+, we define the optimal smoothing as

ŷλ,αi = argmin
µ∈Rdi

1

2
||yi − µ||22 + λdαi

di−1∑

j=1

|µj − µj+1|. (4.42)

Then, we define the breakpoint detection error as a function of the breaks
in the smoothed signal:

Eα
i (λ) = EB

exact

[

ϕ
(

ŷλ,αi , pi

)]

, (4.43)

where the breakpoint function ϕ is defined in Equation 4.3 and the error
EB

exact is defined Equation 4.11.
We plot Eα

i for 2 signals i and several penalty exponents α in Figure 4.20.
Note that the functions appear to align when α = 1.

α = 0 α = 1 α = 2

5

10

15

20

-5 0 5 -5 0 5 -5 0 5
model complexity tradeoff parameter log10(λ)

er
ro
r
E

α i
(λ
)

bases/probe

7

374

Figure 4.20: Model complexity breakpoint error functions Eα
i .

105

4. Optimal penalties for breakpoint detection

To evaluate which penalty parameter α results in optimal fitting and
learning, we use E∗ and TestErr as defined in Equations 4.30 and 4.32.
These functions are plotted in Figure 4.21, and suggest that a value of
α = 1 is optimal. This analysis suggests that taking λ2 = λdi is optimal
for breakpoint detection using FLSA. This agrees with the observation in
Chapter 3 that the flsa.norm penalty with a di term works better than the
un-normalized flsa penalty.

We conclude by noting that this procedure could also be applied to find
penalties for FLSA that depend on estimated signal noise ŝ2i and length in
base pairs li. However, we did not pursue this since FLSA does not work
as well as cghseg in practice on real data, as shown in Chapter 3.

0.98

1

47

48

5

10

15

train
test

0.0 0.5 1.0 1.5 2.0
penalty exponent α

to
ta
l
er
ro
r
re
la
ti
ve

to
la
te
n
t
b
re
ak

s

Figure 4.21: Train and test error as a function of penalty exponent α. The
penalty has a term for the number of points sampled dαi .

106

4.12. Application to real data

4.12 Application to real data

In Sections 4.7-4.9, we found optimal cghseg penalties for data with varying
sampling density, scale, and length. In Section 4.10, we also demonstrated
that these results can be combined. This analysis suggests the following
penalty, for every signal i:

ki(λ) = argmin
k

λkŝ2i
√

di/li + ||yi − ŷki ||22 (4.44)

In Table 4.3, we report results of using the suggested penalties on the
neuroblastoma data set. The normalizations suggested by the analysis of
simulations do not improve breakpoint detection error in the neuroblastoma
data set. This observation suggests that distribution that generates the real
data is more complex than the simple simulation model considered in this
chapter.

Practically speaking, we still would like to find a penalty with optimal
breakpoint detection in real data. So, in the next chapter, we introduce a
new method that uses interval regression to exploit the breakpoint annota-
tions and to learn an optimal penalty from real data.

points length variance train test.mean test.sd
cghseg.k 1 0 0 2.19 2.20 1.01

cghseg.k.sqrt.d 1/2 0 0 3.51 3.87 1.58
cghseg.k.sqrt.d.var 1/2 0 2 3.19 4.47 5.02
cghseg.k.sqrt.var 1/2 −1/2 2 4.18 6.38 7.61

Table 4.3: Breakpoint detection error of cghseg on the neuroblastoma data
set, with 1 row for each penalty. The exponent of the points di, length li,
and variance ŝi terms in the penalty is shown with the train and test error
in percent.

107

Chapter 5

Learning a penalty for
change-point detection using
interval regression

The material from this chapter is taken from an article submitted for peer
review. This is joint work with Guillem Rigaill with input from my advisors
Francis Bach and Jean-Philippe Vert.

Chapter summary

In segmentation models, the number of segments is usually chosen using
penalized cost functions that compromise between data fitting and model
complexity. There are many penalties and many heuristics for choosing the
constants in those penalties. In this work, we propose to learn the penalty
and its constants in databases of signals with weak change-point annota-
tions. We propose a convex relaxation that yields an interval regression
problem, and solve it using accelated proximal gradient methods. Finally,
we show that this method achieves state-of-the-art performance on a large
database of annotated copy number profiles from neuroblastoma tumors.

109

5. Learning a penalty using interval regression

5.1 Introduction

In the previous chapter, we found optimal penalties for learning model
complexity parameters λ in simulated data with varying sampling density
di, estimated noise σi, and length in base pairs li. That analysis suggested
the penalty given in Equation 4.44, which did not work the best in real copy
number profile data.

Presumably, the real data come from a probability distribution more
complicated than the simple piecewise constant, homoscedastic simulations
that we analyzed. So instead of using the penalty exponents α that we found
using our analysis of simulations, in this chapter we develop a method to
estimate these constants from real data.

Many penalties have been proposed for the change-point detection prob-
lem. The standard AIC or BIC criteria are not well adapted in this context
since the model collection is exponential [Birgé and Massart, 2007, Schwarz,
1978, Akaike, 1973, Baraud et al., 2009], and also because change-points are
discrete parameters [Zhang and Siegmund, 2007]. Many criteria specifically
adapted to change-point models have been proposed. For example, there
are many different variants of the BIC [Yao, 1988, Lee, 1995, Zhang and
Siegmund, 2007], and the model selection theory of Birgé and Massart sug-
gest other penalties [Birgé and Massart, 2007, Lavielle, 2005, Lebarbier,
2005]. These penalties are derived from theoretical considerations and give
us insight into which features are important to select a good segmentation
model. The exact shape or formula of these penalties depends on vari-
ous assumptions such as normality and independence. These assumptions
are often violated in real data, which can lead to selection of a subopti-
mal model. So in this chapter, rather than taking a particular penalty for
granted, we propose to learn the penalty using annotation data.

In particular, we propose to learn a penalty from visual change-point an-
notations. By plotting the data, we can easily identify regions with changes
and regions without changes. In Chapter 3, we proposed to use databases of
visual annotations to calibrate standard model selection criteria up to a con-
stant λ determined by grid search. This chapter generalizes that approach
by learning a penalty as a function of features of the signal.

Since the penalty learning problem involves an intractable optimization,
we propose a convex relaxation. We propose to solve the resulting interval
regression problem using accelated proximal gradient methods, which per-
mit efficient inference of the support and constants in the penalty function.

110

5.2. The penalty learning problem

The structure of this chapter is as follows. In Section 5.2, we describe
the penalty learning problem using the non-convex annotation error. Then,
we propose a convex relaxation in Section 5.3, and describe the necessary
optimization algorithms in Section 5.4. Finally, in Section 5.5 we show
results on a large database of neuroblastoma copy number profiles.

5.2 The penalty learning problem

Assume we have a set of n annotated training signals. Two signals from the
neuroblastoma data set are shown in the top panel of Figure 5.1. For every
training signal i ∈ {1, . . . , n}, let yi ∈ R

di be the noisy signal sampled at
positions pi, sorted such that pi1 < · · · < pi,di .

We use the pruned dynamic programming algorithm to calculate the
maximum likelihood segmentations ŷki ∈ R

di for each model size k ∈ {1, . . . , kmax}
[Rigaill, 2010]. The change-point indices are

Jk
i = {j ∈ {1, . . . , di − 1} | ŷij 6= ŷi,j+1} (5.1)

and we estimate the positions after which a change-point occured using the
mean

P̂ k
i = {⌊(pij + pi,j+1)/2⌋∀j ∈ Jk

i }. (5.2)

111

5. Learning a penalty using interval regression

Change-point annotations define a non-convex error
function

Let Ri, Ai be the sets of regions and annotations used to calculate the
change-point detection error for signal i. Every annotation a ∈ Ai is a set
that specifies the number of changes in the corresponding region r ∈ Ri. The
annotation error ei : {1, . . . , kmax} → R

+ compares the estimated number
of changes in each region |P̂ k

i ∩ r| to the annotated number of changes a
using the zero-one loss:

ei(k) =
∑

(r,a)∈(Ri,Ai)

1|P̂k
i ∩r|6∈a. (5.3)

For every signal i, we define the optimal number of segments as

k∗
i (g) = argmin

k∈{1,...,kmax}

g(k, xi) + ||yi − ŷki ||22, (5.4)

where the penalty g is a function of the number of segments k and some
features xi ∈ R

m that do not depend on the annotation.
The problem we tackle in this chapter is to use the n annotated signals

to learn the best penalty g for change-point detection:

min
g

n∑

i=1

ei [k
∗
i (g)] , (5.5)

For all that follows we will consider linear penalty functions g of the
form gh(k, xi) = h(xi)k, yielding the problem

min
h

n∑

i=1

ei
[
k∗
i

(
gh
)]

. (5.6)

This simplification excludes penalty functions with nonlinear k terms [Lebar-
bier, 2005]. However, this allows efficient learning by first calculating

z∗i (L) = argmin
k∈{1,...,kmax}

exp(L)k + ||yi − ŷki ||22. (5.7)

This is a function z∗i : R→ {1, . . . , kmax} that uses the linear penalty with
tradeoff exp(L) to select the number of segments for signal i. In the bottom
of Figure 5.1, we show two functions z∗i , and their corresponding annotation
error functions Ei : R→ R

+, defined as

Ei(L) = ei [z
∗
i (L)] . (5.8)

Note that z∗i and Ei are non-convex, piecewise constant functions that can
be efficiently calculated prior to learning, using the algorithm we discuss in
Section 5.4.

112

5.2. The penalty learning problem

signal i = 189.9 signal i = 247.11

Li Li Li Li

0
1
2
3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

error
E

i (L
)

op
tim

al
n
u
m
b
er

of
segm

en
ts

z
∗i (L

)

-3 -2 -1 0 -3 -2 -1 0 1 2 3
Linear penalty exponent L

interval

target

error

segments

signal i = 189.9 signal i = 247.11

-1.0

-0.5

0.0

0.5

0 50 100 0 50 100
position on chromosome (mega base pairs)

lo
gr
at
io

annotation

>0breakpoints

0breakpoints

1breakpoint

Figure 5.1: Top: two signals yi (black points) with their annotations (rect-
angles). A consistent model ŷki (green lines) is shown with its breakpoints
P̂ k
i (vertical black lines). Bottom: the optimal number of segments z∗i

and annotation error curves Ei. The target interval [Li, Li] is drawn in
green, with a vertical dashed line to indicate the complexity of the model
ŷki plotted above.

113

5. Learning a penalty using interval regression

By definition, we have the following relation between the annotation
error functions:

ei
[
k∗
i

(
gh
)]

= ei
[
z∗i
(
log h(xi)

)]
(5.9)

= Ei [log h(xi)] . (5.10)

Rewriting the learning problem using Ei, we obtain

min
h

n∑

i=1

Ei [log h(xi)] . (5.11)

Log-linear penalty functions

Now, we need to specify what kind of penalty function h we will learn.
Although non-parametric models such as k-nearest neighbors could be used,
there are several interesting penalties defined by supposing that h is log-
linear: log h(xi) = w′xi + β. This results in the model selection criterion

z∗i (w
′xi + β) = argmin

k
||yi − ŷki ||22 + k exp(β + w′xi), (5.12)

and we compare several special cases of Equation 5.12 in Table 5.1.

Model Penalty g(k, xi) Learned Penalty h(xi) Parameters Features xi

Lavielle αkdi αdw1

i α ∈ R
+

w1 ∈ R log di
Chapter 4 αkσ2

i

√

di/li ασw1

i dw2

i lw3

i α ∈ R
+

w1 ∈ R log σi

w2 ∈ R log di
w3 ∈ R log li

BIC 2kσ2
i log di ασw1

i (log di)
w2 α ∈ R

+

w1 ∈ R log σi

w2 ∈ R log log di
Lebarbier αkσ2

i (c1 log(di/k) + c2) ≈ ασw1

i (2 log di + 5)w2 α ∈ R
+

w1 ∈ R log σi

w2 ∈ R log(2 log di + 5)
General exp(w′xi + β) β = logα ∈ R

w ∈ R
m xi ∈ R

m

Table 5.1: Some penalties that we can learn using log-linear penalty func-
tions log h(xi) = w′xi + β.

114

5.2. The penalty learning problem

For example, Lavielle [2005] suggested a penalty of the form dik, where
di is the number of points sampled from signal i. This is equivalent to using
just one feature xi = log di and taking h(xi) = αdw1

i , where α ∈ R and
w1 ∈ R are penalty parameters to learn. In the cghseg.k model that showed
the best breakpoint detection in the neuroblastoma data, the authors fixed
w1 = 1 [Hocking et al., 2012]. In contrast, in this formulation we consider
it as an optimization variable.

The simulations in Chapter 4 suggest a penalty with terms for the length
of the signal in base pairs li and the estimated variance of the signal σi. The
penalty found to be optimal in simulations of signals with homoscedastic
Gaussian noise was αkσ2

i

√

di/li, where the constant α is learned by min-
imizing the breakpoint error. We can instead learn the penalty function
in annotated signals by taking three features xi =

[
log σi log di log li

]
,

which corresponds to learning a penalty h(xi) = ασw1

i dw2

i lw3

i .
As another example, the well-known Bayesian Information Criterion due

to Schwarz [1978] uses 2kσ2
i log di as a penalty. This corresponds to choosing

two features xi =
[
log σi log log di

]′
and taking h(xi) = ασw1

i (log di)
w2 .

According to Lebarbier [2005], the optimal penalty has constants c1 and
c2. But since this penalty is not linear in the number of segments k, log-
linear models can not be applied to estimate these constants. Instead, we
can use the constants suggested by their simulations c1 = 2 and c2 = 5 to
construct a feature xi = log(2 log di+5), and use that in a log-linear model.

However, in any of these models, the learning is still intractable. Since
the annotation error Ei is a non-convex piecewise constant function, the
minimization in problem 5.11 can only be accomplished via exhaustive
search. For one or two variables this may be feasible using grid search.
However, for multivariate models, grid search is very inefficient. So instead
of minimizing the annotation error Ei directly, we propose a convex relax-
ation in the next section that yields an efficient interval regression algorithm
for finding the intercept β ∈ R and weights w ∈ R

m.

115

5. Learning a penalty using interval regression

5.3 A convex relaxation of the annotation

error

In this section, we develop a surrogate loss li that is a convex relaxation of
the annotation error Ei. In particular, we propose to make learning problem
(5.11) tractable using these two modifications:

• Instead of minimizing Ei(L) directly, we define a target interval of L
values, yielding an interval regression problem.

• We replace the non-convex annotation error Ei with a margin-based
convex surrogate loss li.

The interval regression problem

We begin by defining a target interval [Li, Li] of Ei(L), for every signal i. We
take the notation conventions from the interval analysis literature [Nakao
et al., 2010]. Note in Figure 5.1 that there may be more than one interval
that achieves the minimum of Ei, so we define the target interval as the
largest continuous minimum. Note also that depending on the annotation
data for signal i, it is possible to have Li = −∞ or Li = ∞, as shown in
the top panel of Figure 5.2.

Restating the learning problem in terms of the target interval, the goal
is to find a regression function f : Rm → R such that Li < f(xi) < Li

for every signal i. In the middle panel of Figure 5.2 we plot the target
intervals [Li, Li] as a function of one feature, a variance estimate log σi.
Geometrically, the learning problem corresponds to finding a function f
that intersects each of the target intervals.

Another interpretation is shown in the bottom panel of Figure 5.2, where
we plot just the limits Li, Li of the target interval. Here, the learning
problem corresponds to finding a function that separates the two classes
of points. However, this is not the same problem as the Support Vector
Machine, as will be explained in the next section.

It is important to note that when the number of data points n is small
relative to the number of features m, there can be infinitely many lines
that achieve zero breakpoint detection error. However, for the purposes of
learning it will be best to choose a separator with a large margin, as shown
with the dashed red horizontal line in the bottom of Figure 5.2.

116

5.3. A convex relaxation of the annotation error

1

2

3

4

5

6

7

ad
ju
st
ed

an
n
ot
at
io
n
er
ro
r
fo
r
3
si
gn

al
s

profile216chr3

profile247chr4

profile213chr17

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

lo
g(
va
ri
an

ce
es
ti
m
at
e)

in
te
rv
al
s

-4 -3 -2 -1 0 1 2

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

<- more breakpoints Linear penalty exponent L fewer breakpoints ->

lo
g(
va
ri
an

ce
es
ti
m
at
e)

p
oi
n
ts

1 error
constant

0 errors
small margin

0 errors
large margin

Figure 5.2: Idea of interval regression for predicting model complexity pa-
rameters. Top: annotation error curves Ei for 3 signals i. Middle: for
several more signals i, we show only the interval of minimal error [Li, Li],
plotted using a variance estimate σi on the vertical axis. A regression line
achieves minimal annotation error if it intersects all the intervals. Bot-
tom: only the limits Li and Li of each interval are plotted. A regression
line achieves 0 annotation error if it separates the Li from the Li. The
margin is drawn in red for two separating regression lines.

117

5. Learning a penalty using interval regression

Maximum margin regression line for separable data

For each training signal i, we have a feature vector xi ∈ R
m. We get the

best segmentation on the training set if we can find a function f : Rm → R

such that Li < f(xi) < Li for all training signals i.
If the data are linearly separable using the features xi, we can find in-

finitely many affine functions f that have minimal annotation error. How-
ever, for learning it will be best to choose the separator of maximal margin,
which we construct by solving the problem

maximize
β∈R,w∈Rm,µ∈R+

µ

subject to w′xi + β − Li ≥ µ, for all i such that Li > −∞
Li − w′xi − β ≥ µ, for all i such that Li <∞.

(5.13)

Note this is a Linear Program (LP) so the solution can be found using
any generic LP solver. An LP is a special case of a Quadratic Program
(QP), so a QP solver can also be used. I used the dual method of Goldfarb
and Idnani [1983], which is implemented in the solve.QP() function in the
quadprog R package [Turlach and Weingessel, 2011]. To use the solver,
we need to convert the problem to standard form:

minimize
β∈R,w∈Rm,µ∈R

− µ

subject to − µ+ w′xi + β ≥ Li, for all i such that Li > −∞
− µ− w′xi − β ≥ −Li, for all i such that Li <∞
µ ≥ 0.

(5.14)

The regression function found by solving problem 5.14 for a small sep-
arable data set with 1 variance estimate feature xi = log σi ∈ R is shown
in Figure 5.3. It is important to note that the geometric interpretation of
the margin is not the same as the usual Support Vector Machine for binary
classification. In fact, the margin is the distance along the L axis between
the regression line and the closest limits Li, Li.

However, any sizable real data set will not be separable. So in the next
section, we use max-margin idea to develop a surrogate loss for interval
regression on real data sets.

118

5.3. A convex relaxation of the annotation error

Li

Li

-1.4

-1.2

-1.0

-0.8

-2.5 0.0 2.5
Linear penalty exponent L

va
ri
an

ce
es
ti
m
at
e
lo
g
σ
i

Figure 5.3: The maximum margin interval regression line is found by solving
problem (5.13), and is drawn as a dashed line. The limits Li, Li of target
intervals are drawn using points for a small data set that is linearly separable
using the variance estimate feature xi = log σi. The horizontal margin µ is
drawn for the 3 border points.

119

5. Learning a penalty using interval regression

Surrogate loss for non-separable data

Let us consider the class of surrogate loss functions li : R→ R
+ defined by

li(L) = ϕ

(
L− Li

δ

)

+ ϕ

(
Li − L

δ

)

, (5.15)

where the binary classification surrogate loss function ϕ : R → R
+ is a

convex relaxation of the zero-one loss. The parameter δ > 0 controls the
size of the margin, and we used δ = 1 since that worked well in the data
we analyzed. Using the hinge loss for ϕ results in a surrogate loss similar
to the ǫ-insensitive loss used for Support Vector Regression [Vapnik et al.,
1997]. Some other choices for ϕ include log and Huber losses, but we used
the squared hinge loss since it exhibited the best learning:

ϕ(L) =

{

(L− 1)2 if L ≤ 1

0 if L ≥ 1.
(5.16)

Note that li is convex since it is the sum of two convex functions. This
convex relaxation can clearly be seen in Figure 5.4, where we plot the sur-
rogate loss li along with the annotation error Ei for several signals i. Let
the average surrogate loss be

loss(β, w) =
1

n

n∑

i=1

li(w
′xi + β). (5.17)

To encourage a sparse weight vector w, we use an ℓ1 penalty with the
surrogate loss, which yields the optimization problem

minimize
β∈R,w∈Rm

γ||w||1 + loss(β, w), (5.18)

where γ ∈ R
+ is a fixed value that controls the degree of regularization.

Note that the ℓ1 norm encourages some entries of w to be exactly zero,
which has the effect of selecting which features are used in the penalty
function h(xi) = exp(w′xi + β).

120

5.3. A convex relaxation of the annotation error

h
u
b
er

log
sq
u
are

-6 -3 0 3
Linear penalty exponent L

er
ro
r/
lo
ss

curve

annotation
error
Ei(L)

surrogate
loss
li(L)

Figure 5.4: Several relaxations of the annotation error (panels from top to
bottom). Each panel shows the annotation error Ei and its convex relax-
ation li for four signals i.

121

5. Learning a penalty using interval regression

5.4 Algorithms

In this section, we will describe the algorithms that implement the penalty
function learning methods that we have described in the previous sections.
First, we recover an exact representation of the model selection functions
z∗i , which we use to calculate the annotation error functions Ei and the
target intervals [Li, Li]. Then, we show how accelerated proximal gradient
methods may be used to learn a penalty function from these target intervals.

Calculating the exact model selection functions

For a given profile i and number of segments k, we define the model selection
criterion

critki (λ) = λk + ||yi − ŷki ||22 (5.19)

and we note that each critki is an affine function of λ. In Figure 5.5, we plot
each function critki as a line for every model size k ∈ {1, . . . , 20 = kmax} for
one signal i.

1220 3456

0.01

0.02

0.03

0.04

0.05

0.000 0.005 0.010 0.015 0.020
smoothness parameter λ

cr
it
k i
(λ
)

Figure 5.5: Calculating the exact path of optimal number of segments z∗i
(red lines). The functions critki are drawn as lines, and k ∈ {1, . . . , 6, 20} is
shown. The intersections are drawn as points.

122

5.4. Algorithms

Then we note that

z∗i (log λ) = argmin
k∈{1,...,kmax}

critki (λ), (5.20)

so to find the exact path of solutions z∗i we simply need to find the minimum
of a finite set of affine functions.

The algorithm initializes the current number of segments kc to the largest
plausible k, since ||yi−ŷki ||22 is a decreasing function of k. Then the algorithm
computes for all larger plausible k their hit-times with kc, meaning the
smallest λ for which k is preferred over kc. Then the algorithm stores the
smallest of these λ and the corresponding number of changes (nextλ, nextK).
The algorithm updates kc to nextK and continues until kc = 1.

The complexity of this algorithm is O(k2
max). In practice, calculating

the model selection functions z∗i , Ei using Algorithm 3 is much faster than
calculating the segmentation ŷki using pruned DP.

Algorithm 3 Exact-breaks

Input: model squared error ||yi − ŷki ||22 for all k ∈ {1, . . . , kmax}.
kc ← max{plausibleK}
plausibleK← plausibleK \ kc
while plausibleK 6= ∅ do
nextλ← +∞, nextK← 0
for k ∈ plausibleK do

hit time← ||yi − ŷkci ||22 − ||yi − ŷki ||22
k − kc

if nextλ > hit time then
nextλ← hit time, nextK← k

end if
end for
kc ← nextK, Save kc, nextλ
plausibleK← plausibleK \ {k | k ≥ kc}

end while
Output: Optimal number of segments function z∗i , represented by the
set of saved kc, nextλ.

123

5. Learning a penalty using interval regression

We can fix a value of L and evaluate z∗i (L) to verify that the exact path
calculation works correctly. We show these two calculations in Figure 5.6,
which indeed shows that the exact path algorithm is correct.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0
1
2

op
tim

al
n
u
m
b
er

of
segm

en
ts

cost

-4 -2 0
Linear penalty exponent L

Figure 5.6: Black lines show the exact functions z∗i calculated using the
Exact-breaks algorithm, and red points show the approximation found
by evaluating z∗i (L) on a grid of L values.

Optimization via proximal gradient methods

To efficiently solve problem 5.18, we can use FISTA [Beck and Teboulle,
2009]. To use FISTA to solve this problem, we need the partial derivatives
of the surrogate loss:

∂

∂ β
li(w

′xi + β) = ϕ′(w′xi + β − Li)− ϕ′(Li − w′xi − β) (5.21)

∂

∂ wj

li(w
′xi + β) = xij

(
ϕ′(w′xi + β − Li)− ϕ′(Li − w′xi − β)

)
. (5.22)

The squared hinge loss ϕ has the following derivative:

ϕ′(L) =

{

2(L− 1) if L ≤ 1

0 if L ≥ 1.
(5.23)

124

5.4. Algorithms

We can use an approximate subdifferential optimality condition for a
stopping criterion. The exact subdifferential optimality condition is

∇loss(β, w) ∈ γ∂||w||1, (5.24)

but on computers we will never exactly achieve this condition. So the
approximate optimality condition that we use in practice is

∣
∣
∣
∣

∂

∂ β
loss(β, w)

∣
∣
∣
∣
≤ ǫ, (5.25)

and for every variable j ∈ {1, . . . ,m},






∣
∣
∣−γ + ∂

∂ wj
loss(β, w)

∣
∣
∣ ≤ ǫ if wj < 0

(∣
∣
∣

∂
∂ wj

loss(β, w)
∣
∣
∣− γ

)

+
≤ ǫ if wj = 0

∣
∣
∣γ + ∂

∂ wj
loss(β, w)

∣
∣
∣ ≤ ǫ if wj > 0

(5.26)

for some positive constant ǫ > 0 that controls how far we are from an opti-
mal solution. For learning it is not necessary to use a very small threshold
[Bach et al., 2012], so in our experiements we used ǫ = 10−3, which was
sufficient.

Note that to apply the FISTA method we need to solve the proximal
operator pη : R

p+1 → R
p+1, which in our case is

pη(β, w) =







β − 1
η

∂
∂ β

loss(β, w)

sγ/η

(

w1 − 1
η

∂
∂ w1

loss(β, w)
)

...







(5.27)

where η is a Lipshitz constant of the smooth loss. We use a constant
η = m +

√
m which is heuristic but worked well on the data we analyzed.

The soft-thresholding function sλ : R→ R is defined as

sλ(x) =

{

0 if |x| < λ

x− λ sign(x) otherwise.
(5.28)

125

5. Learning a penalty using interval regression

To train the ℓ1 regularized model, we need to select a degree of regular-
ization γ. To do this, we split the data into a train and test set, and on
the train set we fit a sequence of ℓ1 regularized interval regression models.
We plot the annotation error and surrogate loss of the trained model as a
function of regularization in Figure 5.7. To select γ, we minimize the test
annotation error. In the example shown, this results in selecting a coeffi-
cient for the log.bases variable which is exactly zero. This training protocol
yields a sparse model that selects a subset of input features to use in the
learned penalty function.

test

test

train

train

test

test

train

train

log.bases
log.baseslog.hall

log.hall

log.n

log.n

intercept

intercept

0.20

0.25

5

6

7

-2

-1

0

1

su
rrogate

loss
p
ercen

t
an

n
otation

error
co
effi

cien
ts

1 2 3 4
model complexity − log10(γ)

Figure 5.7: Top: surrogate loss(βγ, wγ) of the model with regularization γ,
averaged over signals i in the training and test sets. Middle: train and
test annotation error

∑

i Ei(x
′
iw

γ+βγ), with a shaded grey vertical bar that
indicates the minimum test error. Bottom: estimated coefficients βγ, wγ

j ,
with dots indicating non-zero values.

126

5.5. Results and discussion

5.5 Results and discussion

We used Algorithm 3 to calculate the target intervals for 3 annotation data
sets based on the neuroblastoma data. In Figure 5.8, the scatterplots of
target intervals show a clear dependence on the estimated noise σi, which
is not modeled using the state-of-the-art cghseg.k model.

Figure 5.8: For several annotations of the neuroblastoma data (panels from
left to right), we plot the limits of the target interval as a function of a
variance estimate (log.hall) or signal dimension (log.d).

127

5. Learning a penalty using interval regression

Learned penalty functions

We learned penalty functions on these three data sets using four different
models. We focus on models of the form:

f(xi) = w1 log σi + w2 log di + β, (5.29)

where the features xi include the number of points sampled di and a difference-
based variance estimate σi [Hall et al., 1990]. We compared 3 un-regularized
versions of this model, and one multivariate model with 117 features selected
using ℓ1-regularization:

• cghseg.k takes w1 = 0 and w2 = 1, then learns β by minimizing Ei

using grid search.

• log.d takes w1 = 0, and learns w2 and β by minimizing the un-
regularized surrogate loss.

• log.s.log.d learns w1, w2, β by minimizing the un-regularized surro-
gate loss. We report the coefficients learned in this model in Table 5.2,
and it is interesting to note that the coefficients are clearly not the
same across data sets. Note that in the original data set the optimal
penalty was found to have a d0.96i term, which explains why cghseg.k
worked well in these data. Also, the models do not show the σ2

i term
that is suggested by model selection theory.

• L1-reg constructs a feature vector xi ∈ R
117 consisting of features

such as variance estimates, signal size measurements (di, log di, ...),
model RSS and MSE, and indicator variables for each chromosome.
Then we use an internal cross-validation loop to choose the degree of
regularization γ, and fit the ℓ1-regularized model.

annotation data set variance w1 points w2 β
original 1.01 0.96 −2.66

±0.03 ±0.02 ±0.10
detailed.low.density 1.30 0.93 −2.00

±0.02 ±0.02 ±0.13
detailed.high.density 3.16 0.08 6.54

±0.38 ±0.26 ±2.38
Table 5.2: Coefficients of the log.s.log.d model (5.29) were estimated using
max-margin interval regression on several annotated data sets. Data sets
were split into 10 folds, and we report the mean and standard deviation of
coefficients learned across the 10 folds.

128

5.5. Results and discussion

Change-point detection accuracy

We used cross-validation to compare the four models, and the test annota-
tion error is shown in Figure 5.9. The log.d model that minimizes the surro-
gate loss shows comparable performance to cghseg.k. The log.s.log.d model
shows change-point detection performance comparable to the ℓ1-regularized
model, but with much less training time. The step that takes a long time
when training the ℓ1 regularized model is the internal cross-validation loop
that is used to select γ. So the 2 features suggested by the theory of Lavielle
allow fast learning of a penalty function for change-point detection that per-
forms just as well as the 117-dimensional ℓ1-regularized model.

test.error.percent log10(seconds)

1 sec 1 min

L1-reg
log.s.log.d

log.d
cghseg.k

L1-reg
log.s.log.d

log.d
cghseg.k

L1-reg
log.s.log.d

log.d
cghseg.k

origin
al

d
etailed
h
igh

d
en
sity

d
etailed
low

d
en
sity

5 10 -2 0 2
mean +1 standard deviation

m
o
d
el

Figure 5.9: Breakpoint detection models were evaluated using 10-fold cross-
validation. Percent test error is shown on the left and training time is shown
on the right. The baseline cghseg.k model uses one-dimensional grid search
to find a parameter that minimizes the annotation error. The log.d model
uses interval regression on one feature xi = log di, and the log.s.log.d model
uses two features xi = [log di, log σi]. The L1-reg model many features
xi ∈ R

117 and the ℓ1 penalty with the degree of regularization γ chosen
using an internal cross-validation step.

129

5. Learning a penalty using interval regression

5.6 Conclusions

We proposed a method to learn the penalty function for change-point de-
tection using annotated regions. This led us to an interval regression prob-
lem, which we solved using FISTA. We showed that learning the penalty
function using this method results in state-of-the-art breakpoint detection
performance in a large database of annotated copy number profiles.

This approach optimizes the shape of the penalty function term based
on the annotated profiles. This way one can tune the parameters of her
favorite model selection criterion in a reproducible manner, and avoid the
use of heuristics which often yield suboptimal change-point detection.

To continue this line of work, we are considering learning more general
penalty functions. For example, Lebarbier [2005] proposed a model com-
plexity of the form k(c1log(di/k) + c2) and calibrated c1 = 2 and c2 = 5
using a large set of simulated profiles. It is reasonable to think that these
values of c1 and c2 are not optimal for real data and one would like to learn
these c1, c2 from a database of annotated profiles. To do so we are exploring
multi-dimensional interval regression.

130

Chapter 6

Conclusions and future work

To summarize part 1 of this thesis, we have discussed several new methods
for segmentation and clustering.

In Chapter 2 we introduced the clusterpath, which learns a tree struc-
ture from data by solving a sequence of convex optimization problems. This
tree can then be cut to obtain discrete clusters. We compared several com-
mon clustering methods by assuming a number of desired clusters, and the
clusterpath showed good cluster recovery in several situations. There are
several directions for future research:

• In real data analyses, the number of clusters is generally unknown.
Model selection criteria should be developed in order to automatically
choose the clusterpath regularization parameter λ which controls the
number of clusters.

• We proved that the ℓ1 clusterpath is agglomerative when we use the
identity weights, and we observed no splits using identity weights with
the ℓ2 clusterpath. To construct more efficient algorithms that do not
need to check for splits, we should try to find conditions on the weights
that guarantee no cluster splits.

In Chapter 3, we turned to the segmentation problem, which can be
seen as a structured, linear version of clustering. In particular, choosing the
number of clusters is often as difficult as choosing the number of segments
or change-points in a segmentation model. Rather than using traditional
model selection criteria, we proposed to select the model and number of
segments that maximizes agreement with a database of breakpoint annota-
tions. We also compared the breakpoint detection performance of several
models on a set of 575 annotated copy number profiles of neuroblastoma
tumors. We noted several lines of further research:

131

6. Conclusions and future work

• Standard model selection criteria such as the BIC and mBIC showed
inferior breakpoint detection performance to methods with parame-
ters learned using the breakpoint annotations. Some theoretical work
should be done to explain why this is the case, and to develop better
criteria.

• We observed that different penalty parametrizations such as flsa and
flsa.norm showed different breakpoint detection performance. This
suggested that we should look for an optimal penalty that results in
the best breakpoint detection. So in Chapter 4, we assumed several
simple noise models and derived optimal penalties. And in Chapter 5,
we proposed to learn in optimal penalty from databases of breakpoint
annotations.

• We showed that relatively few annotations are needed to get a model
with good breakpoint detection performance. This analysis was based
on picking several annotations at random, as if we annotated a ran-
domly selected subset of signals. However, there may be active learn-
ing strategies that can be used to select signals for annotation, and
more quickly get a model with good breakpoint detection. For ex-
ample, some signals clearly have no breakpoints and so once a few
of these are annotated, we should try to annotate other signals with
breakpoints. We have developed some preliminary active learning al-
gorithms for this, but we need to develop methods for proving their
effectiveness.

• We developed SegAnnDB, a web site for supervised, interactive break-
point detection. Different experts can annotate the same signals, and
thus potentially see different models of the same signal. An interesting
direction for future research is to learn a breakpoint detection models
based on sharing information from several different experts.

• We analyzed the 575 annotated copy number profiles in the neurob-
lastoma data set, but it will be interesting to apply annotation-based
smoothing model selection to copy number profiles from other tumor
types, and data types. Although we found pelt.n and cghseg.k to be
the best for breakpoint detection, another model may be the best in
a data set from another microarray technology or tumor type.

• We could use visual annotation databases to train copy number calling
models. For example, SegAnnDB allows annotation of copy number
status as normal, gain, or loss. These annotations could be used to

132

compare the performance if several copy number calling models, and
also to train the parameters of these models.

• We could also use visual annotations in many other kinds of statistical
models. In fact, visual annotations should be useful whenever a model
is plotted on top of a data set. Whenever we examine a model in the
context of its data, we are judging the goodness of the model fit.
Often, it is possible to draw on the plot to indicate what a good
or bad model would look like. For example, in clustering models, it
should be possible to project the data onto a 2D subspace, then plot
the data and identify pairs of points that should or should not be
clustered together. These pairwise annotations can be used to select
the optimal number of clusters, and one avenue for future research is
to develop GUIs that implement this procedure.

In Chapter 4, we attacked the problem of developing an optimal penalty
for breakpoint detection, using simulated noisy signals. We focused on the
cghseg maximum likelihood Gaussian segmentation model, and discussed
optimal penalties for number of points sampled, scale, and signal length in
base pairs. There are several avenues of further research:

• We mathematically justified the scale normalization term σ2
i that we

found empirically. But we did not offer a detailed theoretical analysis
for the number of points normalization

√
di that we found. This

should be pursued, but may be difficult since the breakpoint error
that we used to derive this result is not available in closed form.

• More generally, we focused on the breakpoint detection error, whereas
most other model selection criteria focus on recovering the latent sig-
nal. We showed in Figure 4.3 an example signal for which the best
model for signal reconstruction is not the same as the best model for
breakpoint detection. It will be interesting to explore the differences
between these criteria, and to use finite-sample model selection the-
ory to develop optimal penalties for breakpoint detection rather than
signal recovery.

• Finally, we saw that the penalty suggested by our theoretical analysis
and the analysis of simulations did not offer the best breakpoint de-
tection performance on the neuroblatoma data. This is probably due
to a noise structure which is more complicated than the homoscedas-
tic Gaussian noise that we assumed. It will be interesting to analyze
the distribution of this noise, and then develop theoretical arguments
for the corresponding optimal penalties.

133

6. Conclusions and future work

In Chapter 5, we proposed a method to learn an optimal penalty function
for breakpoint detection in databases of annotated signals. Rather than
considering a penalty function suggested by theoretical arguments, we took
a pragmatic viewpoint and proposed to learn the best penalty function for
a particular database of signals and annotations. There are several research
directions to pursue:

• We considered log-linear penalty functions, whose coefficients can be
interpreted as exponents of terms in the penalty function. Although
this is very interpretable, it may offer breakpoint detection inferior
to learning a general non-linear function. To learn non-linear penalty
functions, we are considering kernelized versions of the interval regres-
sion problem.

• We proposed to use interval regression, which uses a linear model to
predict a scalar model complexity parameter. However, some model
selection criteria have constants that can not be easily learned in this
framework. For example, Lebarbier [2005] proposed a penalty with
constants c1, c2 which can not be learned using the method we pro-
posed. To directly learn these constants from annotation data, we
would need a general multi-dimensional description of the annotation
error function. We could then propose a multi-dimensional relaxation,
which may permit learning these constants using multi-dimensional
interval regression algorithms.

• We solved the ℓ1-regularized interval regression algorithm using FISTA
with warm restarts, which gives an approximate regularization path.
However, the problem we proposed has a piecewise linear regulariza-
tion path, so we could develop a path-following homotopy algorithm
to find the exact regularization path [Rosset and Zhu, 2007].

We have spent much of this thesis developing algorithms for optimal
breakpoint detection, since breakpoints are important indicators in cancer
prognosis [Janoueix-Lerosey et al., 2009]. Now that we have methods for
detecting biologically relevant breakpoints, the most important avenue of
future research will be to construct prognostic models of patient outcome,
based on the detected breakpoints, gains, and losses in their tumors.

134

Part II

Statistical software
contributions

135

Chapter 7

Adding direct labels to plots

Some content of this chapter is taken from my poster, “Adding direct labels
to plots,” which won the Best Student Poster award at useR 2011, the
international R conference which took place at the University of Warwick,
England.

Chapter summary

This chapter discusses directlabels, an R package for adding direct labels
to multicolor plots. Examples of direct labels can be seen in this thesis
in Figures 3.3, 3.4, which are reproduced here in Figure 7.1. Direct labels
are often much easier to interpret than a legend, but are not often used in
practice since the label positions must be determined based on the data.

More specifically, the topic of this chapter is the design of algorithms
for direct label placement. Manually specifying direct label positions for
plots is always possible, and often done in practice to polish figures for
publication. However, statisticians interpret many multicolor plots when
performing exploratory data analysis. Manually determined direct labels
are not often used for these plots since it takes too much time to determine
the label positions.

The directlabels package provides algorithms for automatic direct la-
bel placement that can be used in everyday data analysis. This chapter
describes:

• Algorithms that can be used to find readable direct labels for several
plot types.

• directlabels, the R package that implements these algorithms for
use with grid graphics plotting systems such as lattice and ggplot2
[Sarkar, 2008, Wickham, 2009].

137

7. Adding direct labels to plots

optimization-based models approximate optimization glad

cghseg.k

flsa.norm

flsa

pelt.n

pelt.default

cghseg.mBIC

gada

dnacopy

alpha

dnacopy

prune

dnacopy.sd

dnacopy

default

glad.haarseg

glad.lambdabreak

glad

MinBkpWeight

glad

default

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
False positive rate = probability(predict breakpoint | normal)

T
ru
e
p
os
it
iv
e
ra
te

=
p
ro
b
(p
re
d
ic
t
b
re
ak

p
oi
n
t
|b

re
ak

p
oi
n
t)

glad.lambdabreak

dnacopy.sd

flsa.norm

cghseg.k, pelt.n

80

82

84

86

88

90

92

94

96

98

100

1 5 10 15 20 25 30
Annotated profiles in global model training set

P
er
ce
n
t
of

co
rr
ec
tl
y
p
re
d
ic
te
d

an
n
ot
at
io
n
s
on

te
st

se
t
p
ro
fi
le
s

Figure 7.1: Some examples of direct labels in graphics, taken from Fig-
ures 3.3 and 3.4 earlier in this thesis. Direct labels show the meaning of the
different colors, which correspond to different breakpoint detection models
in these plots. Direct labels are a readable alternative to legends since their
positions are determined as a function of the data.138

7.1. Introduction and related work

7.1 Introduction and related work

Direct labels are not a new technique for data visualization. In fact, Tufte
[2001] encourages statisticians to label their plots via manual visual label
placement. This approach is always possible with GUI tools, but becomes
impossible for the analysis of automatically-generated plots. Multicolor
plots are often labeled automatically using legends, which can be difficult to
read. The purpose of this work is to introduce new algorithms for automatic
direct label placement that result in plots that are easy to read.

In his book on R Graphics, Paul Murrell of the R core development
team offers a review of plot labeling systems for R, and notes that “the
directlabels package, still in development at the time of writing, provides
the direct.label() function for a general labeling paradigm with grid-
based packages” [Murrell, 2011, page 347].

That review also mentions several other functions for direct labeling,
including spread.labels, thigmophobe.labels, spread.labs, pointLa-
bel, and labcurve. The labcurve function is made for labeling lineplots,
which we discuss in Section 7.3. The other functions are for labeling in-
dividual points on scatterplots, which is in general an NP-hard problem
related to automatic label placement on maps [Wikipedia, 2012b]. In con-
trast, legends are used for labeling groups of points of different colors, and
the directlabels package proposes to replace confusing legends with direct
labels.

There is also a technical distinction: these other functions work with
R base graphics, whereas directlabels works with R grid graphics. For a
review on the differences between these two systems, read the textbook of
Murrell [2011, Chapters 2 and 6]. In principle, the direct labeling algorithms
discussed in the next sections could be used with R base graphics. However,
the directlabels package was designed to exploit the structure of lattice
and ggplot2 plots, which are implemented using grid graphics.

In the next sections, we discuss methods for direct labeling densityplots,
lineplots, and scatterplots. Then, at the end of the chapter, we discuss the
implementation of these methods in the directlabels package.

139

7. Adding direct labels to plots

7.2 Densityplot labels

Densityplots are visualizations that attempt to summarize univariate data
distributions. They are particularly useful for comparing distributions. For
example, Figure 7.2 shows a densityplot that compares 3 data distributions,
labeled using different colors.

Look carefully at the legend in the plot on the top of Figure 7.2. It is
apparent that the data distribution does not match the legend, which was
laid out in alphabetical order. This plot could easily be misinterpreted if it
was printed in black and white.

To solve this problem, we need to use direct labels, which use the data
to determine the label positions. In the bottom half of Figure 7.2, we
place direct labels at the mode of each density curve. In conclusion, simply
replacing an alphabetically-ordered legend with data-based direct labels
results in a plot that is much easier to interpret.

L
egen

d

score

D
en
si
ty

0
2
4
6
8
10

0.0 0.5 1.0

Balancing Neutral Positive

D
irect

lab
els

score

D
en
si
ty

0
2
4
6
8
10

0.0 0.5 1.0

Balancing
Neutral

Positive

Figure 7.2: Top: densityplot with an alphabetically-ordered legend that is
inconsistent with the data. Bottom: adding direct labels at the mode of
each density results in a plot that is much easier to interpret.

140

7.3. Lineplot labels using a quadratic program

7.3 Lineplot labels using a quadratic

program

To find a readable direct labeling algorithm for lineplots, let us consider
the model shown in the left panel of Figure 7.3. In particular, assume that
for each text label k ∈ {1, . . . , K} we have its target position tk ∈ R and
height hk ∈ R

+. We will develop several different methods for defining the
optimal position y∗k for each label.

The näıve method defines y∗k = tk, centering each label at the end of its
line. This method is depicted in the left panel of Figure 7.3, in which two
rectangles overlap so the labels would be unreadable. For a real example,
consider the top of Figure 7.4, which is taken from Figure 4.4 earlier in
this thesis. The näıve method indeed sometimes results in overlapping,
unreadable labels.

To solve the problem of overlapping labels, we formulate lineplot label-
ing as a convex optimization problem. For a good introduction to convex
optimization, see Boyd and Vandenberghe [2004]. We would like to find
direct label positions yk that do not overlap, and this can be written using
these linear inequalities:

yk+1 − hk+1/2 ≥ yk + hk/2, ∀ k ∈ {1, . . . , K − 1}. (7.1)

t1

t2

t3

t4

h1

h2

h3

h4

y∗1

y∗2

y∗3

y∗4

h1

h2

h3

h4

Figure 7.3: Left: we model lineplot labels using their text bounding boxes,
shown as rectangles. The target position tk of each label is where the
bounding box is centered around its line (bold), and the height hk of the
box is known (arrows). In this example, labels 1 and 2 overlap, so will
be difficult to read. Right: after applying the QP solver, we obtain the
optimal positions y∗k, which do not overlap.

141

7. Adding direct labels to plots
N
äıve

FN

FNI

E

I

E

FP

FP

0

5

10

1 7 20
segments of estimated signal

b
re
ak

p
oi
n
t
er
ro
r

Q
P
,
n
o
lim

its

FN

FNI

E

I

E

FP

FP

0

5

10

1 7 20
segments of estimated signal

b
re
ak

p
oi
n
t
er
ro
r

Q
P
,
lim

its

FN

FN
I

E

I

E

FP

FP

0

5

10

1 7 20
segments of estimated signal

b
re
ak

p
oi
n
t
er
ro
r

Figure 7.4: Top: the näıve labeling strategy simply places each label at its
line, and can result in unreadable, overlapping labels. Middle: a quadratic
program (QP) is used to find labels that do not overlap, but go out of the
plotting region so are only partially readable. Bottom: adding constraints
on the top and bottom labels results in labels that stay in the plotting
region.

142

7.3. Lineplot labels using a quadratic program

We would like to find label positions y which are as close as possible to
the target locations t, suggesting the optimization problem

min
y∈RK

K∑

k=1

(yk − tk)
2 = ||y − t||22

subject to yk+1 − hk+1/2 ≥ yk + hk/2, ∀ k ∈ {1, . . . , K − 1}.
(7.2)

This is a quadratic program (QP) since the objective is quadratic and the
constraints are linear. Furthermore, the objective is strongly convex with
constant 1, which means there is a unique solution which corresponds to
the best labels [Boyd and Vandenberghe, 2004, Chapter 9].

We can solve problem (7.2) using the dual method of Goldfarb and
Idnani [1983], which is implemented in the solve.QP() function in the
quadprog R package [Turlach and Weingessel, 2011]. To use the solver,
we must write the QP in standard form:

min
y∈RK

1
2
y′y − t′y (7.3)

subject to A′y =










−1 1 0
0 −1 1

.

−1 1 0
0 −1 1















y1
...
yK




 ≥






(h1 + h2)/2
...

(hK−1 + hK)/2






︸ ︷︷ ︸

(h[-K]+h[-1])/2

where A is the K ×K − 1 constraint coefficient matrix:

A =












−1 0
1 −1
0 1

. . .

. . . −1 0
1 −1
0 1












=








0 · · · 0
1 0

. . .

0 1








︸ ︷︷ ︸

rbind(0,IK−1)

−








1 0
. . .

0 1
0 · · · 0








︸ ︷︷ ︸

rbind(IK−1,0)

(7.4)

This method gives the direct labels shown in the middle panel of Fig-
ure 7.4, which indeed prevents the labels from overlapping. However, some
of the labels appear outside the plotting region, so are unreadable.

In general, we do not want the labels to go outside the top L and bottom
L limits of the plotting region. So to avoid this, we can impose y1−h1/2 ≥ L
and yK + hK/2 ≤ L, which translate into the following standard form
constraints:

[
1 0 · · · 0 0
0 0 · · · 0 −1

]

y ≥
[
L+ h1/2
hk/2− L

]

(7.5)

143

7. Adding direct labels to plots

Adding these constraints to QP (7.3) results in the direct labels shown
on the bottom of Figure 7.4. So using quadratic programming, we get direct
labels for lineplots that are constrained to be readable.

As another example of the utility of this method, consider the lineplot
on the top of Figure 7.5. The legend in this plot attempts to show the
correspondence between color and ID, but is unreadable for two reasons.
First, there are simply too many entries in the legend, so it is impossible to
map colors back to IDs. Second, the legend entries are ordered using the
value of an unplotted variable.

We can use the same QP to obtain the readable direct labels shown on
the bottom of Figure 7.5. In addition, the direct labels show the ordering
of the ID variable with respect to the plotted weight variable.

L
egen

d

1 2 3

300

400

500

600

0 20 40 60 0 20 40 60 0 20 40 60
Time

w
ei
gh

t

ID

2

3

4

1

8

5

6

7

11

9

10

12

13

15

14

16

D
irect

lab
els

1 2 3

2
3
4
1
8
5
6
7

11
9
10

12

13
15
14
16

300

400

500

600

0 20 40 60 0 20 40 60 0 20 40 60
Time

w
ei
gh

t

Figure 7.5: Top: too many classes render a legend unreadable. Bottom:
direct labels are readable and show the class order.

144

7.3. Lineplot labels using a quadratic program

Finally, let us consider direct labels for lineplots of Lasso coefficients.
We use the prostate data set described by Hastie et al. [2009, Figure 3.10].
The näıve label positions for Lasso coefficients are where the variable enters
the path, and at the end of the lines, as shown in the top panel of Figure 7.6.
These labels can sometimes overlap, and so are not easy to read.

To solve the problem of overlapping labels at the end of the lines, we
can directly use the solutions of (7.3) obtained from the QP solver. The
other labels are rotated at an angle of θ ∈ [0, 2π], so the width of each label
is hk/ sin(θ), where hk is the height of un-rotated label k. To apply the QP
solver, we substitute hk/ sin(θ) for hk in problem (7.3), and define the target
tk as the horizontal position where line k enters the path. This method gives
the clear, readable labels shown in the bottom panel of Figure 7.6.

N
äıve

lw
eig
ht

lweight

lca
vo
l

lcavol

lcp

lcp

lb
ph

lbph

pg
g4
5

pgg45

gl
ea
so
n

gleason
ag
e

age
sv
i

svi

-2

0

2

4

6

0 5 10 15 20
arclength

st
an

d
ar
d
iz
ed
.c
o
ef

Q
P

lw
eig
ht

lweight

lca
vo
l

lcavol

lcp

lcp

lb
ph

lbph

pg
g4
5

pgg45

gl
ea
so
n

gleason
ag
e

age
sv
i

svi

-2

0

2

4

6

0 5 10 15 20
arclength

st
an

d
ar
d
iz
ed
.c
o
ef

Figure 7.6: Top: näıve direct labels for Lasso coefficients can sometimes
overlap. Bottom: the QP solver can be used to avoid overlaps.

145

7. Adding direct labels to plots

7.4 Scatterplot labels

Finding the optimal direct labels for scatterplots is a problem closely related
to automatic label placement on maps. There are rule-based, greedy, simu-
lated annealing, and other optimization algorithms for this task [Wikipedia,
2012b].

To define the labeling problem, take the scatterplot of the iris data in the
top panel of Figure 7.7 as a motivating example. There are K = 3 classes
labeled using a legend and different colored points on the scatterplot. The
goal of this section is to define the position Lk ∈ R

2 of the label for each
class k ∈ {1, . . . , K}.

There are several properties that we would like for scatterplot label
positions:

• (close to class center) Each label appears close to the center ck of
its point cloud, for easy decoding.

• (no label-point overlap) Labels do not overlap any points, so are
readable.

• (no label-label overlap) Labels do not overlap other labels, so are
readable.

These criteria suggest the optimization problem

min
L∈RK×2

K∑

k=1

||Lk − ck||22

subject to Bk(Lk) ∩H = ∅ ∀k ∈ {1, . . . , K}
Bk(Lk) ∩ Bj(Lj) = ∅ ∀k 6= j,

(7.6)

where the notation is as shown in the bottom panel of Figure 7.7:

• Lk ∈ R
2 is the position of label k.

• ck ∈ R
2 is the center of point cloud k.

• Bk : R
2 → 2R

2

is the bounding box of label k.

• H ⊂ R
2 is the hull of data points, which can be defined in many ways.

Although the objective function in problem (7.6) is convex, the con-
straints are non-convex. So any optimization algorithm that uses gradient
optimality is guaranteed to find only a local minimum.

146

7.4. Scatterplot labels
L
egen

d

jitter(Sepal.Length)

ji
tt
er
(P

et
al
.L
en
gt
h
)

1

2

3

4

5

6

7

5 6 7 8

setosa
versicolor
virginica

D
irect

lab
els

jitter(Sepal.Length)

ji
tt
er
(P

et
al
.L
en
gt
h
)

1

2

3

4

5

6

7

5 6 7 8

c1

c2

c3

H

B1(L1)

L1

B3(L3)

L3

B2(L2)

L2

setosa

versicolor

virginica

Figure 7.7: Top: scatterplot of the iris data with legend for decoding.
Bottom: direct label positions Lk are drawn as black dots, bounding boxes
Bk are drawn as rectangles, point cloud centers ck are shown, and the hull
H of data is shaded in grey.

147

7. Adding direct labels to plots

So we propose the following algorithm based on grid search to find an
approximate solution to problem (7.6). For every point j ∈ {1, . . . , n}, let
xj ∈ R

2 denote its position on the scatterplot, and let κj ∈ {1, . . . , K} be
its class.

• Initialize the hull of points used for overlap detection to the set of
plotted points

H = {x1, . . . , xn}. (7.7)

• For each class k ∈ {1, . . . , K}:
1. Let Jk = {j : κj = k} be the indices of the points in this class.

2. Calculate its center ck ∈ R
2 using the mean:

ck =
1

|Jk|
∑

j∈Jk

xj. (7.8)

3. Calculate the size of text label k to obtain a bounding box Bk.

4. Use the text label size to define a grid of possible label positions
G ⊂ R

2 over the entire plot.

5. For each grid point g ∈ G, define a function ϕ : R2 → {1, . . . , n}
that gives the index of the nearest data point:

ϕ(g) = argmin
j∈{1,...,n}

||g − xj||22. (7.9)

6. Define the feasible points F as the set of grid points g closest to
class k which contain no points in a bounding box Bk : R

2 → 2R
2

around g:

F = {g ∈ G such that ϕ(g) ∈ Jk and Bk(g) ∩H = ∅}. (7.10)

7. Place the label at the nearest feasible grid point:

Lk = argmin
g∈F

||g − ck||22. (7.11)

8. Add some points in Bk(Lk) to the set of pointsH used for overlap
detection.

This algorithm is illustrated for the iris data in Figure 7.8. By construc-
tion, this algorithm gives label positions that obey the non-overlapping
constraints. However, although the label positions L are the closest points
in F to the class centers c, they are not a local minimum of problem (7.6).
Gradient-based methods could be used to find a local minimum, but in
practice the grid search suffices to find readable scatterplot labels.

148

7.4. Scatterplot labels
k
=

1

jitter(Sepal.Length)

ji
tt
er
(P

et
al
.L
en
gt
h
)

1

2

3

4

5

6

7

5 6 7 8

setosa

k
=

2

jitter(Sepal.Length)

ji
tt
er
(P

et
al
.L
en
gt
h
)

1

2

3

4

5

6

7

5 6 7 8

setosa

virginica

k
=

3

jitter(Sepal.Length)

ji
tt
er
(P

et
al
.L
en
gt
h
)

1

2

3

4

5

6

7

5 6 7 8

setosa

virginica

versicolor

Figure 7.8: Illustration of the algorithm for scatterplot labeling based on
grid search. The whole grid G is drawn as grey rectangles, and the feasible
set F is highlighted with black rectangles. The set of points H used to avoid
overlaps is drawn in black, and the class centers ck are drawn in green. Note
in the middle and bottom panels that 9 points are added to the set H based
on the label bounding box Bk(Lk) found in the previous step.

149

7. Adding direct labels to plots

7.5 Design of directlabels

In this section, I will briefly explain the design of the directlabels package.
These were the design goals:

• Adding direct labels should require very little code, to make it prac-
tical for real data visualization.

So, the direct.label function includes various heuristics to infer
sensible direct label positions for common plot types. As shown on
the top of Figure 7.9, direct.label(Plot) takes a Plot object and
returns another DirectLabeledPlot object.

• Label placement methods can be used with both lattice and ggplot2.

To address this point, the direct.label function is generic, as shown
in the middle of Figure 7.9. The directlabels package defines meth-
ods for trellis objects from the lattice package, and ggplot objects
from the ggplot2 package. Thus, adding direct labels to a Plot object
is accomplished using direct.label(Plot) for both types of objects.

• Defining methods for label placement should be straightforward.

To address this last point, label positions are defined using Positioning
Methods. A Positioning Method is an R function(d,...), where d

is a data.frame with columns x, y, and groups that define the points
to plot. The job of the Positioning Method is to return a data.frame
of direct label positions, as shown in the bottom of Figure 7.9.

Finally, note in the bottom of Figure 7.9 that the directlabels package
creates a dlgrob, a special type of graphical object that plots direct labels.
A graphical object or grob is essentially a list with data to be plotted by
the grid package. Reference on grobs and other grid graphics concepts is
given by Murrell [2011, Chapter 6].

The job of a dlgrob is to call the Positioning Method with the plot
region as the current grid viewport. This means that inside of a Positioning
Method, it is possible to determine the

• Plot region limits L,L using the grid function convertY.

• Label height hi using functions stringHeight and convertHeight.

Thus, it is possible to use this information to implement the labeling algo-
rithms for lineplots and scatterplots proposed in Sections 7.3 and 7.4.

150

7.5. Design of directlabels

ggplot2 plot object with

points to plot and attached

 Positioning Method

lattice plot object with

points to plot and attached

 Positioning Method

direct.label(Plot,Method)

ggplot2 or lattice plot object with
points to plot in different colors according

to a categorical variable
Positioning Method or NULL to pick

a sensible default based on Plot.

direct.label.ggplot
Analyze Plot to determine which layer has a

colour aesthetic, then add a geom_dl,

attaching the Method.

direct.label.trellis
Replace Plot$panel with a closure that calls

panel.superpose.dl with Method.

S3 method dispatch

print(DirectLabeledPlot)

S3 method dispatch

drawDetails.dlgrob
Called in the plotting viewport to calculate direct label positions, alignment, size, etc.

print.trellis
Calls panel.superpose.dl,

which makes a

g <- dlgrob(Points, Method)

then calls grid.draw(g).

print.ggplot
Calls geom_dl$draw, returning a

dlgrob(Points, Method),

 which will be drawn by ggplot2.

Positioning Method

data.frame of direct labelsdata.frame of all points to plot

D
ef

in
ed

 i
n

d
i
r
e
c
t
l
a
b
e
l
s

.

D
ef

in
ed

 i
n
 o

th
er

 p
ac

k
ag

es
.

D
ef

in
ed

 i
n

d
i
r
e
c
t
l
a
b
e
l
s

.

Figure 7.9: The design of the directlabels package. Functions are drawn
as beige rectangles, Plot and DirectLabeledPlot objects are drawn using
teal ovals, data.frames of points and labels are drawn as white ovals, and
the Positioning Method is drawn using a red oval.

151

7. Adding direct labels to plots

7.6 Conclusions

In this chapter, we have discussed several algorithms for adding direct labels
to common plot types. Using the implementation of these algorithms in the
R package directlabels, we have shown examples of readable direct labels
for several data sets.

Furthermore, we have argued that the directlabels package allows use
of direct labels as an alternative to legends in automatically-generated sta-
tistical plots. It is clear that manual definition of label positions is preferable
for publication-quality statistical graphics. However, directlabels should
be useful to quickly obtain readable direct labels in everyday data analysis.

152

Chapter 8

Sustainable, extensible
documentation generation
using inlinedocs

This material from this chapter is taken from the inlinedocs article, and
is joint work with Thomas Wutzler, Keith Ponting, and Philippe Grosjean
[Hocking et al., in press]. R is a statisical programming language that I
used to implement many of the methods described in the previous chapters.
Code written in the R language is normally distributed in a standard form
called a “package,” which also contains documentation that describes the
code. This chapter describes inlinedocs, a new system for writing that
documentation. I used inlinedocs to write the documentation for the R
packages mentioned in this thesis: bams, clusterpath, directlabels, and
inlinedocs itself.

Chapter summary

This chapter presents inlinedocs, an R package for generating documen-
tation from comments. The concept of structured, interwoven code and
documentation has existed for many years, but existing systems that im-
plement this for the R programming language do not tightly integrate with
R code, leading to several drawbacks. This chapter attempts to address
these issues and presents 2 contributions for documentation generation for
the R community. First, we propose a new syntax for inline documenta-
tion of R code within comments adjacent to the relevant code, which allows
for highly readable and maintainable code and documentation. Second, we
propose an extensible system for parsing these comments, which allows the
syntax to be easily augmented.

153

8. Sustainable, extensible documentation generation

8.1 Introduction

In this chapter, we present inlinedocs, an R package which allows R doc-
umentation to be written in comments. The standard way to distribute R
code is in a package along with Rd files that document the code [R Develop-
ment Core Team, 2012]. There are several existing methods for documenting
a package by writing R comments, which are later processed and converted
into standard Rd files. We first review these efforts, emphasizing the key
issues that justify the introduction of a new package like inlinedocs.

Existing documentation generation systems for R

For report generation and literate programming, the mature Sweave [Leisch,
2003] format allows integration of R code and results within LATEX docu-
ments [Lamport, 1986]. However, the goal of inlinedocs is different. It
aims for integration of documentation inside of R code files, to generate
Rd files using R code and markup in R comments. Thus for inlinedocs
we need to extract the documentation specified in R code, and the Sweave
system can not be easily applied to this parsing task.

The package.skeleton function that ships with base R is intended to
ease the generation of Rd files from R code. After specifying some input R
code files or objects to use for the package, it produces some minimal doc-
umentation that must be completed using a text editor. Although pack-

age.skeleton is sufficient for creating small packages that are published
once and forgotten, it offers little help for continued maintenance of pack-
ages for which Rd files are frequently updated.

The other existing approaches, Rdoc [Bengtsson, 2010] and Roxygen
[Danenberg, 2009], attempt to address this sustainability problem using Rd
generation from comments in R code. The documentation is thus written
closer to the code it documents, which is easier to maintain. These packages
are a step toward seamless integration of code and documentation, but they
have three major drawbacks:

1. They only use comments to generate documentation, ignoring the in-
formation already defined in the code. This is particularly problematic
for documenting function arguments, which requires the repetition of
the argument names in the function definition and the documentation.
This repetition is a possible source of disagreement between code and
documentation if both are not simultaneously updated.

154

8.2. The inlinedocs syntax for inline documentation of R packages

2. The documentation for an object appears in comments above its def-
inition. These comment blocks can grow to be quite large, and thus
they tend to be far away from the relevant code.

3. Examples are defined either in comments or in supplementary R code
files. Examples in comments are not easy to test and debug with the R
interpreter, and supplementary R code files reintroduce the separation
of code and documentation that these tools are supposed to eliminate.

There are many tools that accomplish documentation alongside code in
other programming languages. Notable examples include docstrings in Lisp
and Python, Javadoc for Java, and Doxygen, which supports several lan-
guages [Wikipedia, 2012a]. These systems use large comments in headers,
and do not support R. In contrast, inlinedocs is designed for R packages,
uses smaller comments alongside the code, and exploits the code structure
to reduce the need to repeat information in the documentation.

Documentation using inline comments

The inlinedocs package addresses the aforementioned issues by proposing
a new syntax for inline documentation of R packages. Using inlinedocs,
one writes documentation in comments right next to the relevant code, and
examples in the ex attribute of the relevant object. By design, inlinedocs
exploits the structure of the R code so that only minimal documentation
comments are required, reducing duplication and simplifying code mainte-
nance.

The remainder of this chapter is organized as follows. In Section 8.2, we
discuss the details of the inlinedocs syntax for writing documentation in
R comments. In Section 8.3, we discuss the design and implementation of
inlinedocs, and explain how the syntax can be extended. In Section 8.4,
we conclude and offer some ideas for future improvements.

8.2 The inlinedocs syntax for inline

documentation of R packages

The main idea of inlinedocs is to document an R object using ### and
##<< comments directly adjacent to its source code. Furthermore, inline-
docs allows documentation wherever it is most relevant in the code using
##section << comments. These special comment strings are designed to
work well with the default behavior of common editing environments, such

155

8. Sustainable, extensible documentation generation

as Emacs with the Emacs Speaks Statistics [Rossini et al., 2004] add-on
package:

• ### is aligned to the left margin, providing maximum space for com-
ment text.

• ##<< is aligned with the start of adjacent code lines, so that comments
using this form in the middle of a function do not obscure the code
structure.

The following Sections illustrate common usage of inlinedocs comments
through fermat, an example package inspired by the Roxygen vignette
[Danenberg, 2009]. The examples were processed and checked for validity
using inlinedocs version 1.9. For brevity, only the most frequently used
inlinedocs features will be discussed, and the reader is directed to the
inlinedocs web site for complete documentation:

http://inlinedocs.r-forge.r-project.org/

Documenting function arguments and return values

The following example demonstrates the minimal documentation a package
author should provide for every function. Note that the location of white
space, brackets, default arguments and commas is quite flexible.

fermat.test <- function

Test an integer for primality using Fermat's Little Theorem.

(n ##<< The integer to test.

){

a <- floor(runif(1,min=1,max=n))

a^n %% n == a

Whether the integer passes the Fermat test for a randomized

\eqn{0<a<n}.

}

The comments correspond to the following sections of the fermat.test.Rd
file:

• ### comments following the line of function form the description

section.

• For each argument, an item is created in the arguments section using
a ##<< comment on the same line.

• ### comments at the end of the function form the value section.

156

http://inlinedocs.r-forge.r-project.org/

8.2. The inlinedocs syntax for inline documentation of R packages

By default, name, alias and title Rd sections are set to the function
name, so this minimal level of documentation is enough to make a working
package that passes R CMD check with no errors or warnings.

Inline titles, arguments, and other sections

The following example shows some optional inlinedocs comments that al-
low detailed and flexible specification of Rd files.

is.pseudoprime <- function # Check an integer for pseudo-primality.

A number is pseudo-prime if it is probably prime, the basis of

which is the probabalistic Fermat test; if it passes two such

tests, the chances are better than 3 out of 4 that \eqn{n} is

prime.

##references<< Abelson, Hal; Jerry Sussman, and Julie

##Sussman. Structure and Interpretation of Computer

##Programs. Cambridge: MIT Press, 1984.

(n, ##<< Integer to test for pseudoprimality.

times

Number of Fermat tests to perform. More tests are more likely to

give accurate results.

){

if(times==0)TRUE

##seealso<< \code{\link{fermat.test}}

else if(fermat.test(n)) is.pseudoprime(n,times-1)

else FALSE

logical TRUE if n is probably prime.

}

On the first line, the # comment specifies the title. On the lines after
an argument, ### comments specify its documentation. This is a useful
alternative to inline ##<< comments for longer, multi-line documentation of
function arguments.

A ##section<< comment can be used anywhere within a function, for
any documentation section except examples, which is handled in a special
manner as shown below in section 8.2. In each comment, arbitrary Rd may
be written, as shown in the ##seealso<< section above. Each ##section<<

may occur several times in the documentation for a single object. Such
multiple occurrences are normally concatenated as separate paragraphs,
but special processing is applied to match the intended use of the following
documentation sections:

157

8. Sustainable, extensible documentation generation

• title sections are concatenated into a single line.

• description sections should be brief, so are concatenated into a sin-
gle paragraph.

• alias contents are split to give one alias per line of text.

• keyword contents are split at white space, each generating a separate
\keyword entry.

The ### and ##<< documentation styles may be freely mixed. In gen-
eral, ### or # lines are processed first, followed by any corresponding ##<<

or ##section<< comments. Section 8.3 will explain in more detail how
comments are processed.

Examples and named lists

The following code demonstrates inline documentation of named lists, and
the preferred method of writing examples:

try.several.times <- structure(function

Test an integer for primality using different numbers of tests.

(n, ##<< integer to test for primality.

times ##<< vector of number of tests to try.

){

is.prime <- sapply(times,function(t)is.pseudoprime(n,t))

##value<< data.frame with columns:

data.frame(times, ##<< number of Fermat tests.

is.prime, ##<< TRUE if probably prime

n) ##<< Integer tested.

##end<<

},ex=function(){

try.several.times(6,1:5)

try.several.times(5,1:5)

})

On the final lines of the function definition, a ##value<< comment al-
lows documentation of lists or data frames using the names defined in the
code. The entries are documented using ##<< in the same way as function
arguments, and this even works for nested lists. The ##end<< comment
closes the return value documentation block.

The examples are written using structure to put them in the ex at-
tribute as the body of a function without arguments. This method for

158

8.2. The inlinedocs syntax for inline documentation of R packages

documenting examples was motivated by the desire to express examples in
R code rather than in R comments, to keep the examples close to the object
definition, and to avoid repetition of the object name. When examples are
in R code, they are easily transferred to the R interpreter, and thus are
easy to debug. Furthermore, when examples are written close to the object
definition, it is easy to keep examples up to date and informative.

An alternative is attr(try.several.times,"ex") <- function(){code }

later in the code. However, we prefer using structure since it keeps the
examples near the object definition, and avoids repetition of the object
name.

The simplicity of adding examples and generating a package using in-
linedocs also allows for routine regression testing of functions with very
little extra work. Even for small collections of functions, one can use
R CMD check to run the examples and optionally check the output with
reference output.

159

8. Sustainable, extensible documentation generation

Documenting classes and methods

S3 methods may be defined using plain R, or using setConstructorS3

and setMethodS3 from the R.oo package [Bengtsson, 2003]. The inline-
docs package detects S3 methods using utils::getKnownS3generics and
utils::findGeneric, and updates the generated documentation automat-
ically. S4 class declarations using the setClass function are also supported.
The following example is from the source of inlinedocs:

setClass("DocLink", # Link documentation among related functions

The \code{DocLink} class provides the basis for hooking together

documentation of related classes/functions/objects. The aim is that

documentation sections missing from the child are inherited from

the parent class.

representation(name = "character", ##<< name of object

created = "character", ##<< how created

parent = "character", ##<< parent class or NA

code = "character", ##<< actual source lines

description = "character") ##<< more details

)

The inheritance referred to in this example is designed to avoid the need
for repetitive documentation when defining a class hierarchy. The argument
descriptions and other documentation sections default to those defined in
the parent class. At present it only functions when all the definitions are
within a single source file and this “documentation inheritance” is strictly
linear within the file.

160

8.3. The inlinedocs system of extensible documentation generators

package.skeleton.dx for generating Rd files

The main function provided by inlinedocs is package.skeleton.dx, which
generates Rd files for a package, and should be run before R CMD build.
For example, package.skeleton.dx("fermat") processes R code found
in fermat/R, and generates Rd files in fermat/man for each object in the
package. Documentation is generated even for objects that are not exported.
The generated Rd files should be treated as object files, since any edits will
be overwritten the next time the Rd files are generated.

Package authors with existing Rd files will have to convert them to
inlinedocs comments manually. However, for new adopters of inlinedocs,
it is possible to mix static Rd files and inlinedocs in the same package.
For example, the following code specifies that file1.Rd and file2.Rd are
static Rd files and so should not be generated by inlinedocs:

my.parsers <- c(default.parsers, list(do.not.generate("file1","file2")))

package.skeleton.dx(parsers = my.parsers)

By design, inlinedocs is incapable of generating Rd files that document
multiple objects, but package authors may write these Rd files manually
using this mechanism.

More generally, the parsers argument to package.skeleton.dx should
be a list of Parser Functions. In the next section, we explain how to write
Parser Functions.

8.3 The inlinedocs system of extensible

documentation generators

The previous section explains how to write inline documentation in R code
using the standard inlinedocs syntax, then process it to generate Rd files
using package.skeleton.dx. For most users of inlinedocs this should be
sufficient for everyday use.

For users who wish to extend the syntax of inlinedocs, here we ex-
plain the internal organization of the inlinedocs package. The two central
concepts are Parser Functions and Documentation Lists. Parser Functions
are used to extract documentation from R code, which is then stored in a
Documentation List before writing Rd files.

161

8. Sustainable, extensible documentation generation

Documentation Lists store the structured content of
Rd files

ADocumentation List is a list of lists that describes all of the documentation
to write to the Rd files. The elements of the outer list correspond to Rd
files in the package, and the elements of the inner list correspond to tags in
an Rd file. For example, consider the following code and its corresponding
Documentation List.

R code

give.me.a.break <- function
Create some line breaks.
(times=1,
The number of line breaks.
collapse=""
String to paste in between.
){
paste(rep("\n",times),

collapse=collapse)
Character vector of length 1.
}

give.me.five <- function
(times=1 ##<< the number of fives
){
rep(5,times)

a vector of fives
}

Documentation List

List of 2
$ give.me.a.break:List of 5
..$ description : chr "Create some line breaks."
..$ item{times} : chr "The number of line breaks."
..$ item{collapse}: chr "String to paste in between."
..$ value : chr "Character vector of length 1."
..$ title : chr "give me a break"
$ give.me.five :List of 3
..$ value : chr "a vector of fives"
..$ item{times}: chr "the number of fives"
..$ title : chr "give me five"

Parser Functions examine the lines of code on the left that define the
functions, and return the Documentation List of tags shown on the right.
This list describes the tags in the Rd files that will be written for these
functions. The names of the outer list specify the Rd file, and the names of
the inner list specify the Rd tag.

To store parsed documentation, another intermediate representation
that we considered instead of the Documentation List was the "Rd" object,
as described by Murdoch and Urbanek [2009]. It is a recursive structure
of lists and character strings, which is similar to the Documentation List
format of inlinedocs. However, we chose the Documentation List format
since it allows rapid development of Parser Functions which are straightfor-
ward to read, write, and modify.

Structure of a Parser Function and forall/forfun

The job of a Parser Function is to return a Documentation List for a pack-
age. To do this, a Parser Function requires knowledge of what is defined in
the package, so the arguments in Table 8.1 are supplied by inlinedocs.

162

8.3. The inlinedocs system of extensible documentation generators

Argument Description
code Character vector of all lines of R code in the package.
env Environment in which the lines of code are evaluated.
objs List of all R objects defined in the package.
docs Documentation List from previous Parser Functions.
desc 1-row matrix of DESCRIPTION metadata, as read by read.dcf.

Table 8.1: Arguments that are passed to every Parser Function.

The R code files in the package are concatenated into code and then
parsed into objs, and the DESCRIPTION metadata is available as desc.
These arguments allow complete flexibility in the construction of Parser
Functions that take apart the package and extract meaningful Documen-
tation Lists. In addition, the docs argument allows for checking of what
previous Parser Functions have already extracted.

In principle, one could write a single monolithic Parser Function that
extracts all tags for all Rd files for the package, then returns the entire
Documentation List. However, in practice, this results in one unwieldly
Parser Function that does many things and is hard to maintain. A simpler
strategy is to write several smaller Parser Functions, each of which produces
an inner Documentation List for a specific Rd file, such as the following:

title.from.firstline <- function (src, ...) {

first <- src[1]

if (grepl("#", first)) {

list(title = gsub("[^#]*#\\s*(.*)", "\\1", first, perl = TRUE))

} else list()

}

This function takes src, a character vector of R code lines that define a
function, and looks for a comment on the first line. If there is a comment,
title.from.firstline returns the comment as the title in an inner Doc-
umentation List. This a very simple and readable way to define a Parser
Function.

163

8. Sustainable, extensible documentation generation

Argument Description
o The R object.
name The name of the object.
src The source code lines that define the object.
doc The inner Documentation List already constructed for this object.

Table 8.2: Arguments passed to each Parser Function, when used with
forall or forfun.

But how does this Parser Function get access to the src argument,
the source code of an individual function? We introduce the forall and
forfun functions, which transform an object-specific Parser Function such
as title.from.firstline to a Parser Function that can work on an entire
package. These functions examine the objs and docs arguments, and call
the object-specific Parser Function on each object in turn. The forfun

function applies to every function in the package, whereas the forall func-
tion applies to every documentation object in the package.

Thus, when using a Parser Function such as forfun(title.from.firstline),
the additional arguments in Table 8.2 can be used in the definition of
title.from.firstline, in addition to the arguments in Table 8.1 that
are passed to every Parser Function.

This design choice of inlinedocs allows the development of modular
Parser Functions. For example, there is one Parser Function for ### com-
ments, another for ##<< comments, another for adding the author tag using
the Author line of the DESCRIPTION file, etc. Each of these Parser Func-
tions is relatively small and thus easy to maintain.

164

8.3. The inlinedocs system of extensible documentation generators

Extending the syntax with custom Parser Functions

The parsers argument to package.skeleton.dx specifies the list of Parser
Functions used to create the Documentation List. The Parser Functions
will be called in sequence, and their results will be combined to form the
final Documentation List that will be used to write Rd files. Thus, the
inlinedocs syntax can be extended by simply writing new Parser Func-
tions. To illustrate how inlinedocs may be extended using this mechanism,
consider this Parser Function, which extracts documentation from single-#
comments:

simple <- function (src, ...) {# a simple Parser Function

#item{src} character vector of R source code.

noquotes <- gsub("([\"'`]).*\\1", "", src)

comments <- grep("#", noquotes, value = TRUE)

doc.pattern <- "[^#]*#([^]*) (.*)"

tags <- gsub(doc.pattern, "\\1", comments)

docs <- as.list(gsub(doc.pattern, "\\2", comments))

names(docs) <- tags

#value all the tags with a single pound sign.

docs[tags != ""]

}

We can then define a list of custom Parser Functions as follows:

simple.parsers <- list(forfun(title.from.firstline), forfun(simple))

These custom Parser Functions can be used to extract the following
Documentation List from the definition above of simple:

List of 1

$ simple:List of 3

..$ title : chr "a simple Parser Function"

..$ item{src}: chr "character vector of R source code."

..$ value : chr "all the tags with a single pound sign."

In conclusion, a new syntax for inline documentation can be quickly
specified using Parser Functions, and then inlinedocs takes care of the
details of converting the Documentation List to Rd files.

165

8. Sustainable, extensible documentation generation

8.4 Conclusions and future work

We have presented inlinedocs, which is both a new syntax for inline docu-
mentation of R packages, and an extensible system for parsing this syntax
and generating Rd files. It has been in development since 2009 on R-Forge
[Theußl and Zeileis, 2009], has seen several releases on CRAN, and has been
used to generate documentation for itself and several other R packages. In
practice, we have found that inlinedocs significantly reduces the amount
of time it takes to create a package that passes R CMD check. In addition,
inlinedocs facilitates rapid package updates since the documentation is
written in comments right next to the relevant code.

For quality assurance, we currently have implemented unit tests for Doc-
umentation Lists, which assure that Parser Functions work as described.
We also have unit tests which ensure that the generated Rd passes R CMD

check without errors or warnings.
A potential criticism of inlinedocs is that excessive inline comments

may obscure the meaning of code. Indeed, this is a design choice, and can
be seen as a bug, but we prefer to see it as a feature: the documentation is
always near the object definition, for quick reference.

Currently, the inlinedocs package relies on the srcref attribute of a
function to access its definition. For S4 classes, we use parse on the source
files. In the future, we would like to develop Parser Functions that use this
approach to extract documentation for S4 methods and reference classes,
which are currently unsupported in inlinedocs.

For the future, we would like to make use of Rd manipulation tools such
as parse_Rd, as described by Murdoch [2009]. For package authors who
want to convert Rd files to inlinedocs comments, we may be able to use
parse_Rd to develop a converter that takes R source code and Rd, then
outputs R code with documentation in comments.

Also, it would be advantageous to have functions for converting Docu-
mentation Lists to and from Rd objects. For example, after converting an
inner Documentation List to an Rd object, we could use its print method to
write the Rd file. This could be simpler than the current system of starting
from the Rd files from package.skeleton and then doing find and replace.
Furthermore, a converter from Rd objects to Documentation Lists would
permit unit tests for the content of the Rd generated by inlinedocs.

166

Chapter 9

Support for named capture
regular expressions in R

Some material from this chapter is taken from“Fast, named capture regular
expressions in R 2.14,” a presentation I delivered on 16 August 2011 for the
international useR conference at the University of Warwick, England.

Chapter summary

Regular expressions are powerful tools for text processing, and are widely
used by statisticians for pre-processing data files before analysis. For ex-
ample, the regular expression [0-9] will match any single digit, and the
regular expression [0-9]+ will match one or more digits. These can be
used to extract numbers from non-standard data files such as:

chromStart=400000, chromEnd=800000, annotation=1

chromStart=1200000, chromEnd=2400000, annotation=0

...

This chapter discusses the use of regular expressions in the R program-
ming language [R Development Core Team, 2012]. I will focus on how I
implemented the following features:

• Capturing subpattern locations. This allows extracting several
different substrings using a single regular expression.

• Capturing subpattern names. This allows extracting substrings
using names defined in the regular expression.

As a result of this work, these features are available from the regexpr

and gregexpr functions, in every copy of R starting with version 2.14.

167

9. Named capture regular expressions

9.1 Introduction and related work

Let us consider an example of how to use regular expressions for text pro-
cessing, taken from earlier in this thesis. The lines below show the header
of a data file that I received from a collaborator:

> print(header)

[1] "DELETION 1p 0=pas de deletion 1=deletion 9=NI"

[2] " GAIN 2p 0=pas de gain 1=gain 3=amplicon MYCN 9"

[3] "DELETION 3p 0=pas de deletion 1=deletion 9=NI"

[4] "DELETION 4p 0=pas de deletion 1=deletion 9=NI"

[5] "DELETION 11q 0=pas de deletion 1=deletion 9=NI"

[6] " GAIN 17q 0=pas de gain 17q 1=gain 17q 9=N"

The header indicates the chromosome arm as 1p, 2p, etc. I needed to
convert this chromosome arm information to genome coordinates to define
the regions of the breakpoint annotations shown in Table 3.2. The first
step in this conversion is extracting the chromosome arm from the header.
Ideally, parsing the header would yield the information in Table 9.1.

In fact, this can be accomplished programmatically in many ways. In
R-2.13, we can try to use the regexpr function:

> regexpr("[0-9]+[pq]",header,perl=TRUE)

[1] 10 7 11 11 11 7

attr(,"match.length")

[1] 2 2 2 2 3 3

However, regexpr returns only the locations where the entire pattern matches.
Since it does not tell us where the chromosome ends and the arm begins, it
does not really help us to create Table 9.1.

chr arm
1 p
2 p
3 p
4 p
11 q
17 q

Table 9.1: Chromosome arm data that we would like to extract from the
header of a data file.

168

9.1. Introduction and related work

Other text processing functions such as sub can be used for extracting
matched subpatterns, but that requires some repetition in the code:

> pattern2 <- ".* ([0-9]+)([pq]) .*"

> cbind(chr=sub(pattern2,"\\1",header),

+ arm=sub(pattern2,"\\2",header))

chr arm

[1,] "1" "p"

[2,] "2" "p"

[3,] "3" "p"

[4,] "4" "p"

[5,] "11" "q"

[6,] "17" "q"

Using this method, the group names can be defined later in R code, but are
separated from the regular expression pattern.

Another method is to use the stringr::str_match function [Wickham,
2010], which extracts capture groups:

> library(stringr)

> str_match(header,"([0-9]+)([pq])")

[,1] [,2] [,3]

[1,] "1p" "1" "p"

[2,] "2p" "2" "p"

[3,] "3p" "3" "p"

[4,] "4p" "4" "p"

[5,] "11q" "11" "q"

[6,] "17q" "17" "q"

However, it has two drawbacks:

• Group names can be defined later in R code, but are separated from
the regular expression pattern.

• In R-2.13, the str_match function extracts capture groups using R
code. So it usually runs much slower than the C implementation we
propose in the next section.

169

9. Named capture regular expressions

In R-2.14, a named capture regular expression can be used:

(?<

name 1
︷︸︸︷

chr > [0-9]+
︸ ︷︷ ︸

subpattern 1

)(?<

name 2
︷︸︸︷
arm > [pq]

︸︷︷︸

subpattern 2

) (9.1)

This regular expression consists of 2 groups, delimited using parentheses.
Inside each group is its ?<name> followed by its pattern. Regular expres-
sion 9.1 defines everything we need to extract the chromosome arm infor-
mation and create Table 9.1.

First, we can use the following code to get the names and match locations
of each subpattern:

> regexpr("(?<chr>[0-9]+)(?<arm>[pq])",header,perl=TRUE)

[1] 10 7 11 11 11 7

attr(,"match.length")

[1] 2 2 2 2 3 3

attr(,"useBytes")

[1] TRUE

attr(,"capture.start")

chr arm

[1,] 10 11

[2,] 7 8

[3,] 11 12

[4,] 11 12

[5,] 11 13

[6,] 7 9

attr(,"capture.length")

chr arm

[1,] 1 1

[2,] 1 1

[3,] 1 1

[4,] 1 1

[5,] 2 1

[6,] 2 1

attr(,"capture.names")

[1] "chr" "arm"

In particular, the start and the length of each matched subpattern is
returned in the capture.start and capture.length attributes. Further-
more, the group names are returned in the capture.names attribute.

170

9.1. Introduction and related work

Then, we can build a function str_match_perl that parses the output
of regexpr and returns a matrix of matched substrings:

str_match_perl <- function(string,pattern){

parsed <- regexpr(pattern,string,perl=TRUE)

captured.text <- substr(string,parsed,parsed+attr(parsed,"match.length")-1)

captured.text[captured.text==""] <- NA

captured.groups <- do.call(rbind,lapply(seq_along(string),function(i){

st <- attr(parsed,"capture.start")[i,]

if(is.na(parsed[i]) || parsed[i]==-1)return(rep(NA,length(st)))

substring(string[i],st,st+attr(parsed,"capture.length")[i,]-1)

}))

result <- cbind(captured.text,captured.groups)

colnames(result) <- c("",attr(parsed,"capture.names"))

result

}

So it is possible to create Table 9.1 in 1 line of R code using named
capture regular expressions:

> str_match_perl(header,"(?<chr>[0-9]+)(?<arm>[pq])")

chr arm

[1,] "1p" "1" "p"

[2,] "2p" "2" "p"

[3,] "3p" "3" "p"

[4,] "4p" "4" "p"

[5,] "11q" "11" "q"

[6,] "17q" "17" "q"

The definitive reference on regular expressions is [Friedl, 2006], which
describes the concept of regular expressions and how to make the best use
of them.

Named capture regular expressions were first implemented in the Python
programming language. Later, they were implemented in the Perl program-
ming language, and in the Perl-Compatible Regular Expressions (PCRE)
library used by R [Hazel, 2012]. Although PCRE has always supported
named capture regular expressions, R has only been able to starting with
version 2.14, as a result of this work.

171

9. Named capture regular expressions

9.2 Implementation details

In this section, I will discuss the details of the PCRE library that allowed
implementation of named capture regular expressions in R.

In PCRE terminology, the pattern is the regular expression and the
subject is the string where it will look for a match.

To use named capture regular expressions, we must first use the pcre_fullinfo
C function to obtain some information about the capture groups. The
pcre_fullinfo function takes a compiled pattern re_pcre, a pointer,
and a data type CONSTANT, and stores some information at that pointer:

pcre_fullinfo(re_pcre, NULL, CONSTANT, pointer)

In particular, we need the following constants:

• PCRE_INFO_CAPTURECOUNT the number of capture groups.

• PCRE_INFO_NAMETABLE pointer to a table of characters that stores the
group names.

• PCRE_INFO_NAMECOUNT the number of named groups.

• PCRE_INFO_NAMEENTRYSIZE the size of each entry in the group name
table.

To explain the structure of the group name table, we quote the example
from the PCRE manual [Hazel, 2012, section Information about a pattern]:

As a simple example of the name/number table, consider the following

pattern after compilation by the 8-bit library (assume PCRE_EXTENDED is

set, so white space - including newlines - is ignored):

(?<date> (?<year>(\d\d)?\d\d) -

(?<month>\d\d) - (?<day>\d\d))

There are four named subpatterns, so the table has four entries, and

each entry in the table is eight bytes long. The table is as follows,

with non-printing bytes shows in hexadecimal, and undefined bytes shown

as ??:

00 01 d a t e 00 ??

00 05 d a y 00 ?? ??

00 04 m o n t h 00

00 02 y e a r 00 ??

172

9.2. Implementation details

So to access the group names in R, we simply copy data from the group
name table to the capture.names attribute of the result of regexpr.

When PCRE finds a match, it stores that match in an object called an
output vector or ovector. If the pattern has n capturing groups, the ovector
should be of size 3(n+1). Continuing the example from the previous page,
the date pattern has n = 5 capturing groups so the ovector should be of
size 18. As shown in Figure 9.1, the first 2/3 contains the start and end
locations of matches, and the last 1/3 is a workspace which is required but
can be ignored.

So to access the text matched by subpatterns, we just need to copy the
values in the ovector to an R integer vector. Two caveats to keep in mind:

• In C the ovector start is a 0-indexed byte offset, and we convert it to
a 1-indexed character offset in R.

• In C the ovector end is the 0-indexed byte after the last matching
byte, and we convert this to a match length in characters in R.

subject character offset
0 19 21 23 26 29 36

Name : Ma u d e , B o r n : 1 9 8 3 - 0 3 - 1 7 , S e x : F

memory address relative to ovector
0 2 4 6 8 10 12 17

notes

subpattern number

subpattern name

entire pattern un-named subpattern workspace

19 29 19 29 19 23 19 21 24 26 27 29 ?? ?? ?? ?? ?? ??

date year month day
1 2 3 4 5

data type

start
end
workspace

Figure 9.1: Top: subject string with match start and end locations indi-
cated using colored squares. Bottom: memory layout of the PCRE output
vector.

173

9. Named capture regular expressions

9.3 Application: extracting data from

HTML

In this section, we will show how named capture regular expressions can be
used to extract data from web pages.

Web pages are written in Hyper-Text Markup Language (HTML), which
can be rendered using a web browser. In Figure 9.2, we show an R-Forge
web page, and some of its corresponding HTML source code. The object of
this section will be to extract data from this HTML for analysis in R.

Figure 9.2: Top: a web page with information about a project on R-Forge.
Bottom: some of the HTML source code of this web page. We would like
to extract the project registration date 2009-07-29 for analysis.

174

9.3. Application: extracting data from HTML

Using the functions discussed in the previous sections, we can extract
the project registration date from several web pages using

> getHTML <- function(proj,tmp="http://r-forge.r-project.org/projects/%s/"){

+ u <- sprintf(tmp,proj)

+ paste(readLines(url(u)),collapse="\n")

+ }

> html <- sapply(c("inlinedocs","directlabels","clusterpath"),getHTML)

> pat <- paste("(?<year>(\\d\\d)?\\d\\d)",

+ "-",

+ "(?<month>\\d\\d)",

+ "-",

+ "(?<day>\\d\\d)",

+ sep="")

> str_match_perl(html,pat)

year month day

inlinedocs "2009-07-29" "2009" "20" "07" "29"

directlabels "2009-07-17" "2009" "20" "07" "17"

clusterpath "2011-05-09" "2011" "20" "05" "09"

And using that approach on all the R-Forge project web pages, we can plot
the growth of R-Forge in Figure 9.3. In conclusion, regular expressions are
useful for parsing numeric data sets out of text files such as HTML.

2007 2008 2009 2010 2011 2012

0

200

400

600

800

1000

1200

Date of project registration

T
ot
al

n
u
m
b
er

of
p
ro
je
ct
s

on
R
-F
or
ge

R-Forge announcement
at useR 2008

9 May 2012

1283

Figure 9.3: R-Forge project web pages were downloaded and parsed using
regular expressions, then analyzed to plot the number of registered projects
over time.

175

9. Named capture regular expressions

9.4 Conclusion

In this chapter, we described how regular expressions may be used for pre-
processing data files before statistical analysis. Then, we discussed how
named capture regular expressions can be implemented in R by exploiting
the PCRE library. Finally, we showed an application to extracting data
from web pages.

Starting from R-2.14, the code that implements named capture regular
expressions is included in the regexpr and gregexpr functions. Table 9.2
compares the regular expression functions in R-2.13 and R-2.14. It is clear
that the regular expression functionality in R has been augmented as a
result of this work.

R 2.13 R 2.13 R 2.14
regexpr str_match regexpr

whole match X X X

capture X X

fast C code X X

named capture X

Table 9.2: Summary of contributions for text processing with named cap-
ture regular expressions.

176

Bibliography

H. Akaike. Information theory as an extension of the maximum likelihood
principle. In B. Petrov and F. Csaki, editors, Second International Sym-
posium on Information Theory, pages 267–281. Akademiai Kiado, Bu-
dapest, 1973.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter.
Molecular Biology of the Cell. Garland Science, New York, fourth edition,
2002.

S. Arlot. V-fold cross-validation improved: V-fold penalization. Arxiv
preprint arXiv:0802.0566, 2008.

S. Arlot and A. Celisse. A survey of cross-validation procedures for model
selection. Statistics Surveys, 4:40–79, 2010.

S. Arlot and P. Massart. Data-driven calibration of penalties for least-
squares regression. J. Mach. Learn. Res., 10:245–279, June 2009. ISSN
1532-4435. http://dl.acm.org/citation.cfm?id=1577069.1577079.

F. Bach and Z. Harchoui. DIFFRAC: a discriminative and flexible frame-
work for clustering. In Adv. NIPS, 2008.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with
sparsity-inducing penalties. Foundations and Trends in Machine Learn-
ing, 4(1):1–106, 2012.

Y. Baraud, C. Giraud, and S. Huet. Gaussian model selection with unknown
variance. Ann. Statist., 37(2):630–672, 2009.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM J. Imaging Sciences, 2(1):183–202,
2009.

177

http://dl.acm.org/citation.cfm?id=1577069.1577079

Bibliography

E. Ben-Yaacov and Y. C. Eldar. A Fast and Flexible Method for the Seg-
mentation of aCGH Data. Bioinformatics, 24(16):i139–i145, September
2008.

H. Bengtsson. The R.oo package - object-oriented programming with ref-
erences using standard R code. In K. Hornik, F. Leisch, and A. Zeileis,
editors, Proceedings of the 3rd International Workshop on Distributed
Statistical Computing (DSC 2003), Vienna, Austria, March 2003.

H. Bengtsson. Aroma project developers’ corner, 2010. URL http://www.

aroma-project.org/developers.

L. Birgé and P. Massart. Minimal penalties for gaussian model selection.
Probability Th. and Related Fields, 138:33–73, 2007.

M. Bostock, V. Oglevetsky, and J. Heer. D3 data-driven documents.
IEEE Transactions on Visualization and Computer Graphics, 17(12):
2301–2309, December 2011.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, The Edinburgh Building, Cambridge, CB2 8RU, UK, 2004.

E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal
matrix completion. IEEE Trans. Inform. Theory, 56(5):2053–2080, 2009.

X. Chen, S. Kim, Q. Lin, J. G. Carbonell, and E. P. Xing. Graph-structured
multi-task regression and an efficient optimization method for general
fused lasso, 2010. arXiv:1005.3579.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms. The MIT Press, Cambridge, Massachusetts, second edition,
1990.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, chapter 26. MIT Press, 2001.

P. Danenberg. Roxygen vignette, 2009. http://cran.r-
project.org/web/packages/roxygen/vignettes/roxygen.pdf.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria,
2012. http://www.R-project.org.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.
Annals of statistics, 32(2):40–99, 2004.

178

http://www.aroma-project.org/developers
http://www.aroma-project.org/developers

Bibliography

H. Fiegler, R. Redon, D. Andrews, C. Scott, R. Andrews, C. Carder,
R. Clark, O. Dovey, P. Ellis, L. Feuk, L. French, P. Hunt, D. Kalaitzopou-
los, J. Larkin, L. Montgomery, G. H. Perry, B. W. Plumb, K. Porter, R. E.
Rigby, D. Rigler, A. Valsesia, C. Langford, S. J. Humphray, S. W. Scherer,
C. Lee, M. E. Hurles, and N. P. Carter. Accurate and reliable high-
throughput detection of copy number variation in the human genome.
Genome Res., 16(12):1566–1574, Dec. 2006. doi: 10.1101/gr.5630906.
URL http://dx.doi.org/10.1101/gr.5630906.

A. Fischer. On the number of groups in clustering. Statistics and Probability
Letters, 81:1771–1781, 2011.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3:95—110, 1956.

J. E. Friedl. Mastering Regular Expressions. O’Reilly, 1005 Gravenstein
Highway North, Sebastopol, CA 95472, third edition, 2006.

J. Friedman, T. Hastie, H. Hoefling, and R. Tibshirani. Pathwise coordinate
optimization. The Annals of Applied Statistics, 1(2):30–32, 2007.

S. Fujishige, T. Hayashi, and S. Isotani. The minimum-norm-point algo-
rithm applied to submodular function minimization and linear program-
ming, 2006. RIMS preprint No 1571. Kyoto University.

R. C. Gentleman, V. J. Carey, D. M. Bates, and others. Bioconductor:
Open software development for computational biology and bioinformat-
ics. Genome Biology, 5:R80, 2004. http://genomebiology.com/2004/

5/10/R80.

D. Goldfarb and A. Idnani. A numerically stable dual method for solving
strictly convex quadratic programs. Mathematical Programming, 27:1–33,
1983.

M. Grant, S. Boyd., and Y. Ye. Global Optimization: From Theory to Im-
plementation, chapter Disciplined convex programming. Springer, 2006.

P. Hall, J. W. Kay, and D. Titterinton. Asymptotically optimal difference-
based estimation of variance in nonparametric regression. Biometrika, 77
(3):521–528, January 1990.

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learn-
ing. Springer Series in Statistics. Springer, Springer Science+Business
Media, LLC, 233 Spring Street, New York NY 10013, USA, second edi-
tion, 2009.

179

http://dx.doi.org/10.1101/gr.5630906
http://genomebiology.com/2004/5/10/R80
http://genomebiology.com/2004/5/10/R80

Bibliography

P. Hazel. PCRE - Perl-compatible regular expressions (man page), 2012.
http://pcre.org/pcre.txt.

T. D. Hocking, A. Joulin, F. Bach, and J.-P. Vert. Clusterpath: an al-
gorithm for clustering using convex fusion penalties. In L. Getoor and
T. Scheffer, editors, Proceedings of the 28th International Conference on
Machine Learning (ICML-11), ICML ’11, pages 745–752, New York, NY,
USA, June 2011. ACM. ISBN 978-1-4503-0619-5.

T. D. Hocking, G. Schleiermacher, I. Janoueix-Lerosey, O. Delattre,
F. Bach, and J.-P. Vert. Learning smoothing models using breakpoint an-
notations. Technical report http://hal.inria.fr/hal-00663790, 2012.

T. D. Hocking, T. Wutzler, K. Ponting, and P. Grosjean. Sustainable,
Extensible Documentation Generation using inlinedocs. Journal of Sta-
tistical Software, in press.

H. Hoefling. A path algorithm for the Fused Lasso Signal Approximator.
arXiv:0910.0526, 2009.

L. Hubert and P. Arabie. Comparing partitions. J. Classification, 2:193–
218, 1985.

P. Hupé, N. Stransky, J.-P. Thiery, F. Radvanyi, and E. Barillot. Analysis
of array CGH data: from signal ratio to gain and loss of DNA regions.
Bioinformatics, 20(18):3413–3422, 2004.

IHGSC. Finishing the euchromatic sequence of the human genome. Na-
ture, 431:931–945, October 2004. IHGSC: International Human Genome
Sequencing Consortium.

I. Janoueix-Lerosey, D. Lequin, L. Brugières, A. Ribeiro, L. de Pontual,
V. Combaret, V. Raynal, A. Puisieux, G. Schleiermacher, G. Pierron,
D. Valteau-Couanet, T. Frebourg, J. Michon, S. Lyonnet, J. Amiel5, and
O. Delattre. Somatic and germline activating mutations of the alk kinase
receptor in neuroblastoma. Nature, 344:967–970, October 2008.

I. Janoueix-Lerosey, G. Schleiermacher, E. Michels, V. Mosseri, A. Ribeiro,
D. Lequin, J. Vermeulen, J. Couturier, M. Peuchmaur, A. Valent,
D. Plantaz, H. Rubie, D. Valteau-Couanet, C. Thomas, V. Combaret,
R. Rousseau, A. Eggert, J. Michon, F. Speleman, and O. Delattre. Over-
all genomic pattern is a predictor of outcome in neuroblastoma. Journal
of Clinical Oncology, 27(7):1026–1033, 2009. doi: 10.1200/JCO.2008.16.
0630. http://jco.ascopubs.org/content/27/7/1026.abstract.

180

http://hal.inria.fr/hal-00663790
http://jco.ascopubs.org/content/27/7/1026.abstract

Bibliography

T. R. Jones, A. E. Carpenter, M. R. Lamprecht, J. Moffat, S. J. Silver, J. K.
Grenier, A. B. Castoreno, U. S. Eggert, D. E. Root, P. Golland, and D. M.
Sabatini. Scoring diverse cellular morphologies in image-based screens
with iterative feedback and machine learning. Proceedings of the Na-
tional Academy of Sciences, 106(6):1826–1831, 2009. doi: 10.1073/pnas.
0808843106. http://www.pnas.org/content/106/6/1826.abstract.

W. Kent, C. Sugnet, T. Furey, K. Roskin, T. Pringle, A. Zahler, and
D. Haussler. The human genome browser at UCSC. Genome Research,
12(6):996–1006, June 2002.

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Pren-
tice Hall, Inc., 1988.

R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of change-
points with a linear computational cost. arXiv:1101.1438, 2011.

A. Krause and C. Guestrin. Beyond convexity: Submodularity in machine
learning. In IJCAI, 2009.

P. La Rosa, E. Viara, P. Hupé, G. Pierron, S. Liva, P. Neuvial, I. Brito,
S. Lair, N. Servant, N. Robine, E. Manié, C. Brennetot, I. Janoueix-
Lerosey, V. Raynal, N. Gruel, C. Rouveirol, N. Stransky, M.-H. Stern,
O. Delattre, A. Aurias, F. Radvanyi, and E. Barillot. VAMP: Visu-
alization and analysis of array-CGH, transcriptome and other molec-
ular profiles. Bioinformatics, 22(17):2066–2073, 2006. doi: 10.1093/
bioinformatics/btl359. http://bioinformatics.oxfordjournals.org/
content/22/17/2066.abstract.

L. Lamport. LATEX: A Document Preparation System. Addison-Wesley,
Reading, Massachusetts, 1986.

M. Lavielle. Using penalized contrasts for the change-point problem. Signal
Processing, 85:1501–1510, 2005.

E. Lebarbier. Detecting multiple change-points in the mean of gaussian
process by model selection. Signal Processing, 85:717–736, 2005.

C.-B. Lee. Estimating the number of change points in a sequence of in-
dependent normal random variables. Statist. Proba. Lett., 25(3):241–8,
1995.

F. Leisch. Sweave, part II: Package vignettes. R News, 3(2):21–24, October
2003. http://CRAN.R-project.org/doc/Rnews/.

181

http://www.pnas.org/content/106/6/1826.abstract
http://bioinformatics.oxfordjournals.org/content/22/17/2066.abstract
http://bioinformatics.oxfordjournals.org/content/22/17/2066.abstract

Bibliography

F. Lindsten, H. Ohlsson, and L. Ljung. Clustering using sum-of-norms reg-
ularization; with application to particle filter output computation. Tech-
nical Report LiTH-ISY-R-2993, Department of Electrical Engineering,
Linköping University, Feb. 2011.

J. M. Maris. Recent advances in neuroblastoma. New England Journal of
Medicine, 362(23):2202–2211, 2010. doi: 10.1056/NEJMra0804577. URL
http://www.nejm.org/doi/full/10.1056/NEJMra0804577.

J. Mattingley and S. Boyd. CVXMOD: Convex optimization software in
Python (web page and software), July 2008. http://cvxmod.net/.

D. Murdoch. Parsing Rd files, 2009. http://developer.r-
project.org/parseRd.pdf.

D. Murdoch and S. Urbanek. The New R Help System. The R Journal,
1(2):60–65, December 2009. http://journal.r-project.org/archive/2009-
2/RJournal 2009-2 Murdoch+Urbanek.pdf.

P. Murrell. Introduction to Data Technologies. CRC computer science and
data analysis series. Chapman & Hall, Taylor & Francis Group, 6000
Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742,
2009.

P. Murrell. R Graphics. The R Series. CRC Press, 6000 Broken Sound
Parkway NW, Suite 300, Boca Raton, FL 33487-2742, second edition,
2011.

M. T. Nakao, A. Neumaier, S. M. Rump, S. P. Shary, and P. van Hentenryck.
Standardized notation in interval analysis. http://www.mat.univie.ac.
at/~neum/papers.html, 2010.

P. Neuvial, H. Bengtsson, and T. P. Speed. Statistical analysis of single
nucleotide polymorphism microarrays in cancer studies. Technical report
http://hal.inria.fr/hal-00497273, 2010.

A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and
an algorithm. In Adv. NIPS, 2001.

K. Pelckmans, J. de Brabanter, and J. Suykens. Convex clustering shrink-
age. In Statistics and Optimization of Clustering Workshop (PASCAL),
London, UK, July 2005.

F. Picard, S. Robin, M. Lavielle, C. Vaisse, and J.-J. Daudin. A statistical
approach for array CGH data analysis. BMC Bioinformatics, 6(27), 2005.

182

http://www.nejm.org/doi/full/10.1056/NEJMra0804577
http://cvxmod.net/
http://www.mat.univie.ac.at/~neum/papers.html
http://www.mat.univie.ac.at/~neum/papers.html
http://hal.inria.fr/hal-00497273

Bibliography

M. Pilgrim. Dive into Python. Apress, July 2004.

D. Pinkel, R. Segraves, D. Sudar, S. Clark, I. Poole, D. Kowbel, C. Collins,
W.-L. Kuo, C. Chen, Y. Zhai, S. H. Dairkee, B.-m. Ljung, J. W. Gray,
and D. G. Albertson. High resolution analysis of DNA copy number vari-
ation using comparative genomic hybridization to microarrays. Nature
Genetics, 20(2):207–211, Oct. 1998. ISSN 1061-4036. doi: 10.1038/2524.
http://dx.doi.org/10.1038/2524.

R. Pique-Regi, J. Monso-Varona, A. Ortega, R. C. Seeger, T. J. Triche, and
S. Asgharzadeh. Sparse representation and Bayesian detection of genome
copy number alterations from microarray data. Bioinformatics, 24(3):
309–318, 2008.

G. Rigaill. Pruned dynamic programming for optimal multiple change-point
detection. arXiv:1004.0887, 2010.

A. Ritz, P. Paris, M. Ittmann, C. Collins, and B. Raphael. Detec-
tion of recurrent rearrangement breakpoints from copy number data.
BMC Bioinformatics, 12(1):114, 2011. ISSN 1471-2105. doi: 10.
1186/1471-2105-12-114. http://www.biomedcentral.com/1471-2105/

12/114.

S. Rosset and J. Zhu. Piecewise linear regularized solution paths. Annals
of Statistics, 35(3):1012–1030, 2007.

A. J. Rossini, R. M. Heiberger, R. A. Sparapani, M. Maechler, and
K. Hornik. Emacs Speaks Statistics: A multiplatform, multipackage
development environment for statistical analysis. Journal of Computa-
tional and Graphical Statistics, 13(1):247–261, 2004.

B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. LabelMe: a
database and web-based tool for image annotation. International Journal
of Computer Vision, 77(1–3):157–173, May 2008.

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer, New
York, 2008. URL http://lmdvr.r-forge.r-project.org. ISBN 978-
0-387-75968-5.

G. Schleiermacher, I. Janoueix-Lerosey, A. Ribeiro, J. Klijanienko, J. Cou-
turier, G. Pierron, V. Mosseri, A. Valent, N. Auger, D. Plantaz, H. Ru-
bie, D. Valteau-Couanet, F. Bourdeaut, V. Combaret, C. Bergeron,
J. Michon, and O. Delattre. Accumulation of segmental alterations

183

http://www.biomedcentral.com/1471-2105/12/114
http://www.biomedcentral.com/1471-2105/12/114
http://lmdvr.r-forge.r-project.org

Bibliography

determines progression in neuroblastoma. Journal of Clinical Oncol-
ogy, 28(19):3122–3130, 2010. doi: 10.1200/JCO.2009.26.7955. http:

//jco.ascopubs.org/cgi/content/abstract/28/19/3122.

M. Schwab, H. Varmus, J. Bishop, K. Grzeschik, S. Naylor, A. Sakaguchi,
G. Brodeur, and J. Trent. Chromosome localization in normal human
cells and neuroblastomas of a gene related to c-myc. Nature, 308(5956):
288–291, March 1984.

G. Schwarz. Estimating the dimension of a model. Ann. Statist., 6(2):
461–464, 1978.

S. P. Shah, X. Xuan, R. J. DeLeeuw, M. Khojasteh, W. L. Lam, R. Ng, and
K. P. Murphy. Integrating copy number polymorphisms into array CGH
analysis using a robust HMM. Bioinformatics, 22(14):431–439, 2006.

X. Shen and H.-C. Huang. Grouping pursuit through a regularization solu-
tion surface. Journal of the American Statistical Association, 105(490):
727–739, 2010.

B. Stroustrup. The C++ Programming Language. Addison-Wesley Profes-
sional, third edition, 1997.

S. Theußl and A. Zeileis. Collaborative Software Development Using
R-Forge. The R Journal, 1(1):9–14, May 2009. http://journal.

r-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf.

R. Tibshirani. Regression Shrinkage and Selection Via the Lasso. J. R.
Statist. Soc. B., 58(1):267–288, 1996.

R. Tibshirani and M. Saunders. Sparsity and smoothness via the fused
lasso. J. R. Statist. Soc. B., 67:9–08, 2005.

R. Tibshirani and P. Wang. Spatial smoothing and hot spot detection for
CGH data using the fused lasso. Biostatistics, 2007.

R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters
in a data set via the gap statistic. J. R. Statist. Soc. B, 63:41–23, 2001.

D. Trochet, F. Bourdeaut, I. Janoueix-Lerosey, A. Deville, L. de Pontual,
G. Schleiermacher, C. Coze, N. Philip, T. Frébourg, A. Munnich, S. Ly-
onnet, O. Delattre, and J. Amiel. Germline mutations of the paired–like
homeobox 2b (phox2b) gene in neuroblastoma. Am. J. Hum. Genet., 74:
761–764, 2004.

184

http://jco.ascopubs.org/cgi/content/abstract/28/19/3122
http://jco.ascopubs.org/cgi/content/abstract/28/19/3122
http://journal.r-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf
http://journal.r-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf

Bibliography

E. Tufte. The Visual Display of Quantitative Information. Graphics Press
LLC, Post office box 430, Cheshire, Connecticut 06410, second edition,
2001.

E. Tufte. Beautiful Evidence. Graphics Press LLC, Post office box 430,
Cheshire, Connecticut 06410, 2006.

B. A. Turlach and A. Weingessel. quadprog: Functions to solve
Quadratic Programming Problems., 2011. URL http://CRAN.

R-project.org/package=quadprog. R package version 1.5-4. S orig-
inal by Berwin A. Turlach and R port by Andreas Weingessel <An-
dreas.Weingessel@ci.tuwien.ac.at>.

V. Vapnik, S. Golowich, and A. J. Smola. Support vector method for func-
tion approximation, regression estimation, and signal processing. In M. C.
Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Infor-
mation Processing Systems 9 (NIPS), pages 281–287, 1997.

E. S. Venkatraman and A. B. Olshen. A faster circular binary segmentation
algorithm for the analysis of array CGH data. Bioinformatics, 23(6):657–
663, Mar. 2007. ISSN 1367-4811. doi: 10.1093/bioinformatics/btl646.
http://dx.doi.org/10.1093/bioinformatics/btl646.

J.-P. Vert and K. Bleakley. Fast detection of multiple change-points shared
by many signals using group LARS. In J. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R. S. Zemel, and A. Cullota, editors, Advances in Neural
Information Processing Systems 23 (NIPS), pages 2343–2351, 2010.

R. A. Weinberg. The Biology of Cancer. Garland Science, first edition,
June 2006.

H. Wickham. ggplot2: elegant graphics for data analysis. Springer New
York, 2009. ISBN 978-0-387-98140-6. http://had.co.nz/ggplot2/book.

H. Wickham. stringr: modern, consistent string processing. R Journal, 2
(2):38–40, 2010.

Wikipedia. Comparison of documentation generators, 2012a.
http://en.wikipedia.org/w/index.php?title=
Comparison of documentation generators&oldid=507629530.

Wikipedia. Automatic label placement, 2012b.
http://en.wikipedia.org/w/index.php?title=
Automatic label placement&oldid=506419827.

185

http://CRAN.R-project.org/package=quadprog
http://CRAN.R-project.org/package=quadprog
http://dx.doi.org/10.1093/bioinformatics/btl646

Bibliography

H. Willenbrock and J. Fridlyand. A comparison study: applying segmen-
tation to array CGH data for downstream analysis. Bioinformatics, 21
(22):4084–4091, 2005.

L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clus-
tering. In Adv. NIPS, 2004.

Y.-C. Yao. Estimating the number of change-points via Schwarz’ criterion.
Statistics & Probability Letters, 6(3):181–189, February 1988. URL http:

//ideas.repec.org/a/eee/stapro/v6y1988i3p181-189.html.

M. Yuan and Y. Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society, 68(B):4–7,
2006.

N. R. Zhang and D. O. Siegmund. A Modified Bayes Information Criterion
with Applications to the Analysis of Comparative Genomic Hybridization
Data. Biometrics, 63:22–32, 2007.

Z. Zhang, K. Lange, R. Ophoff, and C. Sabatti. Reconstructing DNA copy
number by penalized estimation and imputation. The Annals of Applied
Statistics, 4:1749–1773, 2010.

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family
for grouped and hierarchical variable selection. Ann. Stat., 37(6A):3468–
3497, 2009.

186

http://ideas.repec.org/a/eee/stapro/v6y1988i3p181-189.html
http://ideas.repec.org/a/eee/stapro/v6y1988i3p181-189.html

	Contents
	Introduction
	Résumé du travail
	Summary of contributions
	Review of biology, genetics, neuroblastoma
	Review of convex relaxation, optimality, and algorithms
	Review of current statistical software

	Segmentation and clustering algorithms, with applications to bioinformatics
	Hierarchical clustering using convex fusion penalties
	Introduction
	Optimization
	The spectral clusterpath
	Results
	Conclusions

	Segmentation model selection with visual annotations
	Introduction and related work
	Methods
	Results and discussion
	GUI implementations
	Conclusions

	Optimal penalties for breakpoint detection
	Properties of an ideal error function for breakpoint detection
	Exact breakpoint error for simulated signals
	Incomplete annotation error for real data
	Link with breakpoint error using complete annotation error
	Zero-one annotation error
	Comparing annotation error functions
	Sampling density normalization
	Scale normalization
	Signal length normalization
	Combining normalizations
	Optimal penalties for the fused lasso signal approximator
	Application to real data

	Learning a penalty using interval regression
	Introduction
	The penalty learning problem
	A convex relaxation of the annotation error
	Algorithms
	Results and discussion
	Conclusions

	Conclusions and future work

	Statistical software contributions
	Adding direct labels to plots
	Introduction and related work
	Densityplot labels
	Lineplot labels using a quadratic program
	Scatterplot labels
	Design of directlabels
	Conclusions

	Sustainable, extensible documentation generation
	Introduction
	The inlinedocs syntax for inline documentation of R packages
	The inlinedocs system of extensible documentation generators
	Conclusions and future work

	Named capture regular expressions
	Introduction and related work
	Implementation details
	Application: extracting data from HTML
	Conclusion

	Bibliography

