
HAL Id: tel-00906074
https://theses.hal.science/tel-00906074

Submitted on 19 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Alignement élastique d’images pour la reconnaissance
d’objet

Olivier Duchenne

To cite this version:
Olivier Duchenne. Alignement élastique d’images pour la reconnaissance d’objet. General Math-
ematics [math.GM]. École normale supérieure de Cachan - ENS Cachan, 2012. English. �NNT :
2012DENS0070�. �tel-00906074�

https://theses.hal.science/tel-00906074
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

présentée par OLIVIER DUCHENNE

pour obtenir le grade de
DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE

Domaine: MATHÉMATIQUES APPLIQUÉES

Sujet de la thèse:
Alignement élastique d’images pour la

reconnaissance d’objet
—

Non-rigid image alignment for object
recognition

Thèse présentée et soutenue à l’ENS Ulm le
29 Novembre 2012 devant le jury composé de:

Jean Ponce Professeur, Directeur du DI, ENS Ulm Directeur de thèse
Pedro Felzenszwalb Professeur, Brown University Rapporteur
Martial Hebert Professeur, Carnegie Mellon University Rapporteur
Francis Bach Directeur de recherche, ENS Ulm Éxaminateur
Jitendra Malik Professeur, University of Berkeley Éxaminateur
Cordelia Schmid Professeur, INP Grenoble Éxaminateur
Andrew Zisserman Professeur, University of Oxford Éxaminateur

Thèse préparée au sein de l’ équipe WILLOW du
département d’informatique de l’École Normale Supérieure,

Ulm. (INRIA/ENS/CNRS UMR 8548).

2

Contents

1 Introduction 11

1.1 Background . 11

1.2 Motivation and aim of study . 12

1.2.1 Building a category-level object detector 12

1.2.2 Aligning to build a similarity measure 13

1.2.3 A direct approach to the misalignment problem 15

1.2.4 Aligning rigid objects 17

1.2.5 Aligning deformable objects. 18

1.3 Graph matching . 22

1.4 Objective and contributions of the thesis 24

2 A tensorial formulation for hyper-graph matching 27

2.1 Introduction . 27

2.1.1 Motivation and goals . 27

2.1.2 Problem statement . 30

2.1.3 Organization and Contributions 31

2.2 Previous work . 31

2.2.1 Historical review of literature 31

2.2.2 Spectral matching . 33

2.2.3 Power iterations for eigenvalue problems 34

2.3 Proposed approach . 35

2.3.1 Tensor formulation of hypergraph matching 35

2.3.2 Tensor power iterations 37

2.3.3 Tensor power iterations for unit-norm rows 38

2.3.4 Merging potentials of different orders 39

2.3.5 ℓ1-norm constraint for rows 40

2.3.6 Building tensors for computer vision 40

2.4 Implementation . 46

2.4.1 Separable similarity measure 48

2.5 Experiments . 50

2.5.1 Synthetic data . 50

3

4 CONTENTS

2.5.2 House dataset . 52

2.5.3 Natural images . 52

2.5.4 3D object matching . 53

2.5.5 Potentials of different orders 54

2.6 Conclusion . 56

3 Graph matching for image categorization 57

3.1 Introduction . 57

3.1.1 Motivation and goals . 57

3.1.2 Organization and contributions 59

3.2 Previous work . 59

3.2.1 Review of literature . 59

3.2.2 Caputo’s method . 62

3.3 Proposed approach . 62

3.3.1 Image representation . 63

3.3.2 Matching two images . 65

3.3.3 A kernel for image comparison 67

3.4 Implementation . 68

3.4.1 Ishikawa’s method . 68

3.4.2 Proposed method: Curve expansion 70

3.5 Experiments . 73

3.5.1 Running time . 73

3.5.2 Image matching . 75

3.5.3 Image classification . 76

3.6 Conclusion . 77

4 Image alignment for object detection. 79

4.1 Introduction . 79

4.1.1 Motivation and goals . 81

4.2 Proposed approach . 82

4.2.1 Image Model . 83

4.2.2 Efficient Similarity Computation 86

4.3 Proof of concept: automated object discovery 88

4.4 Learning a detector . 90

4.4.1 Latent SVMs . 90

4.4.2 Hybrid method: Latent SVM and exemplar SVM 91

4.5 Implementation and Results . 93

4.6 Conclusion . 96

CONTENTS 5

5 Conclusion and perspectives 99

5.1 Contributions . 99

5.2 Future work . 99

5.2.1 Detection experiments 99

5.2.2 Aspects and full object model 100

5.2.3 Joint Alignment of multiple images 101

5.3 Other work . 102

A Power iterations for unit norm rows 103

6 CONTENTS

Acknowledgment

My first thanks and thoughts go to my wife Soowon. She is my life and happiness.

She has been supporting me during my years of Ph.D. Her smile gives me strength

in down times.

I thank my parents Véronique and François Duchenne for giving me life, love,

education, and my wonderful little sister Cécile.

I thank my Ph.D. advisor Prof. Jean Ponce. He has done an amazing achieve-

ment, building the Willow lab from scratch in a few years, and attracting to ENS

half-a-dozen world first-class researchers. He has introduced me to computer vi-

sion, which has convinced me to switch from the undergrad Physics department

to do Computer Science. He provides very nice research environment to the lab

members. He has given me many great advices.

I thank the members of my thesis committee Dr Francis Bach, Prof. Pedro

Felzenszwalb, Prof. Martial Hebert, Prof. Jitendra Malik, Prof. Jean Ponce,

Prof. Cordelia Schmid, and Prof. Andrew Zisserman for their great expertise and

precious time that they use to evaluate my work.

I thank Prof. Alyosha Efros, our part-time Willow lab member and my future

boss, as a post-doc. He has transmitted to me his excitement and passion for

solving vision. He has shared with me his unusual, original and unexpected points

of view and ideas which encouraged me to think differently about my research.

I thank all the members of the Willow Lab and Sierra Team. They have all in-

fluenced me deeply and helped me improve my way of doing research. Especially

Dr Ivan Laptev, Dr Josef Sivic and Dr Francis Bach, Bryan Russell for his commu-

nicative passion and enthusiasm for vision, my co-author Armand Joulin, Y-Lan

Boureau, Warith Harchaoui, Mikel Rodriguez, Julien Mairal, Rodolph Jenatton,

Guillaume Seguin, Florent Couzinie, Neva Cherniavsky, Guillaume Obozinski,

Karteek Alahari, Vincent Delaitre.

I also thank Prof. Jitendra Malik from UC Bekeley and his lab members Chun-

hui Gu, Subhransu Maji, Chetan Nandakumar, and Pablo Arbelaez. I have spent

7 months with them, and learned what research is. Thanks to them through an

intensive reading group, I learned very quickly a big chunk of the literature of our

field. I got to know the American way of doing research: their passion for science

CONTENTS 7

deeply impressed me and influenced me.

I thank Prof. Kweon Inso from KAIST in Korea who has welcomed me 8

months in his lab, and his hard-working lab members, Hwang YoungBae, Choi

Ouk, Ju Hanbyeol, Jean-Charles Bazin, and all others.

I thank Kai Yu, Timothée Cour and the NEC Labs engineers and interns.

There, I have learned a more pragmatic way of doing science.

Of course, solving Computer Vision is a collaborative work, and I thank all the

great professors and students around the world, especially those whom my work

is based on.

Part of this work has been supported by the ERC Video World grant.

8 CONTENTS

Chapter 1

Introduction

1.1 Background

Seeing allows animals and people alike to gather information from a distance,

often with high spatial and temporal resolution. In the animal world, many species

use vision as their primary way of finding preys and food, localizing predators

and potential dangers, and recognizing familiar places and other animals. Since

the first seeing animals appeared 300 million years ago [Carroll, 1988], the fierce

competition for survival has been so unfair to the other species that few of them

remain today, and that seeing animals now represent 96% of all species [Land

and Fernald, 1992], from mammals to crustaceans and spiders. As a result, the

visual processing capabilities of animals have evolved tremendously to maximize

the information that they can extract from the world surrounding them.

The motivation for studying computer vision is similar: endowing machines

with the capability of visual perception to help them interact with the physical

world and gather information to make decisions. By now, machines have shown

an extraordinary ability to quickly and flawlessly handle well-organized and for-

matted data. However, they remain mostly incapable of understanding real-world

noisy data including images and videos. Therefore autonomous robots mainly

stay in factories where everything happens in a carefully predefined manner. In

order to interact with people and objects in a real-world environment, they need

vision.

9

10 CHAPTER 1. INTRODUCTION

However, vision is complicated: macaques use 60 per cent of their brain for

visual perception [Vanduffel et al., 2002], and people use even more in terms of

absolute size. This makes vision essentially effortless for us; over millions of

years we have developed unconscious, fast and accurate networks of neurons to

perform this primordial task. Therefore, people can see without even noticing how

complex and difficult this task is, and unlike many other computer science fields,

computer vision is still far behind human-level performance.

1.2 Motivation and aim of study

Computer vision includes many sub-fields, such as 3D reconstruction, action recog-

nition, scene understanding, image retrieval, and so on. In this thesis, we are more

specifically interested in finding a way to compare two images despite variations

in the position of local parts, with the goal of building a category-level object

recognition and detection system. We want to develop algorithms that can find

out whether or not an object of a given category (e.g., car, person, shoe) is present

in a given image (categorization) and where it is located (detection). Although

this task has already received a lot of attention from the scientific community,

it still remains very challenging. Our approach is based on image alignment, as

explained later in section 1.2.4.

1.2.1 Building a category-level object detector

Suppose we could store all possible images of a given category (for instance,

cars). Let us call these images the prototypes. Once a test image is given, we

could automatically compare this image to all our prototypes. If one prototype is

exactly equal to the test image, the algorithm outputs that the test image contains

an object of the same category than the prototype.

Of course, the number of possible images of a given category is enormous, and

it is not even nearly possible to collect them all, to store them all, and to compare

a test image with all of them.

One more feasible way to build such a detector is to store a reasonable amount

of prototypes. In this case, no test image is exactly equal to any prototype. So the

1.2. MOTIVATION AND AIM OF STUDY 11

algorithm needs to measure the similarity between the test image and the proto-

type. If, according to this measure, the test image is similar enough to one of the

prototypes, they represent the same category.

One might decompose such a method in three main tasks:

• Picking or making good prototypes that span the set of possible objects in

the category, and are dissimilar to objects outside of the category.

• Building a similarity measure that scores high to pairs of images of the same

category, and that scores low to other pairs.

• Deciding from the similarity measurements between the test image and the

prototypes whether or not it contains an object of the given category.

This thesis focuses on the second point: the construction of a similarity mea-

sure.

1.2.2 Aligning to build a similarity measure

Figure 1.1: Two unaligned cars. Circles at fixed

positions do not match.

The misalignment issue. We

would like to build a similar-

ity measure to help us deter-

mine whether or not two given

images are from the same cat-

egory. As an example, let us

consider the two toy images of

cars in Figure 1.1. They cor-

respond to different viewpoints,

and their shapes are also dissimilar (intra-class variation). They have, however,

many common features (headlights, side mirrors, wheels, doors, ...) that we might

be able to rely on to assess their similarity. Unfortunately, we do not know, a pri-

ori, which part of the first image corresponds to which part in the second image.

This is the problem of misalignment.

In this section, we try to keep a generic definition of he word "part", which

just have to be locally delimited in the image.

12 CHAPTER 1. INTRODUCTION

Feature matching. One common approach to handle that misalignment prob-

lem is to match each part of the first image to the part in the second image which

has the most similar local appearance. In addition, in the bag-of-word approach

[Sivic and Zisserman, 2003; Lazebnik et al., 2003; Csurka et al., 2004], the local

appearances are discretized in a finite set, allowing this type of similarity mea-

sures to be computed via a simple histogram comparison, and therefore making it

really fast to compute.

The drawback of such techniques is that they do not use the position of each

part: a part in the first image can be matched anywhere in the second one. In other

word, they waste the geometric information, such that any shuffled versions of

two images would have the same similarity measure.

Regular grids. One usual approach [Dalal and Triggs, 2005a; Lazebnik et al.,

2006a] to take advantage of the geometric information is to hypothesize that cor-

responding parts are roughly at the same position in both images. One way to

visualize that technique is to draw a grid on top of the two cars (Figure 1.1). The

algorithm compares each cell of the grid of the first image with the cell of the grid

of the second image at the same position. However, the same problem arises at

a smaller scale: we still do not know how to align elements inside each cell. To

tackle that, one can typically use the feature matching approach, described in the

previous paragraph. The loss of geometric information is just local, and so is not

as serious as in the pure bag-of-word approach.

In the example of Figure 1.1, one can see that the cells at the same position

on both images (colored circles) do not match. As a consequence, a similarity

measure based on the sum of the local similarities of cells at fixed positions would

not work in this example.

However, two commonly used techniques can make it practical:

(1) Using the sliding window approach (Figure 1.2(a)) that consists in com-

paring the prototypes with translated (and scaled) versions of the test image. It

is equivalent to moving the grid in the test image. We can see in Figure 1.2(a)

that, for specific choices of translation, it is possible to match many cells (green

circles), but unfortunately there is no translation for which all cells match at the

same time.

1.2. MOTIVATION AND AIM OF STUDY 13

(a) Sliding the right grid with different trans-

lations allows to match part of the cells

(green) but not all simulatenously (red).

(b) Increasing the cell size improves toler-

ance to miss-alignment.

(2) Increasing the size of the cells [Lazebnik et al., 2006a]. We can see on

figure 1.2(b) that this may allow for many good matches. One extreme example

of such a technique is the bag-of-visual-words approach [Sivic and Zisserman,

2003; Lazebnik et al., 2003; Csurka et al., 2004] described in the previous para-

graph, where each grid has only one cell. Unfortunately, this kind of method loses

all geometric information inside each cell. So the bigger the cells are, the most

information is lost.

1.2.3 A direct approach to the misalignment problem

Figure 1.2: In this work, we try to di-

rectly find correspondances.

In this thesis, we use a much more di-

rect approach to address the misalign-

ment issue. Our algorithms try to find

correspondences between parts in the

first and second image (Figure 1.2),

while keeping the geometric relation-

ship between them. This is a hard task that requires more sophisticated techniques.

We design a measure of alignment quality, and we define the similarity of the

images as the quality of the best possible alignment between them. To compute

this quality, we rely on two types of clues: (1) matching parts should have simi-

lar local appearance, and (2) the set of correspondences (matches) should satisfy

some geometric constraints:

14 CHAPTER 1. INTRODUCTION

Local appearance. Matching parts should have similar local appearance. This

can be easier to estimate than global similarity because, usually, local deforma-

tions are less severe than global ones (Figure 1.3). So, we can use a method that

assumes local rigidity (or local affine rigidity, since perspective transformation can

be assumed locally affine). One can also use local deformation-invariant features.

This loses much less exploitable information than global deformation-invariant

features.

Figure 1.3: Even though these two cars are impossible to align globally and

rigidly, it is possible to do so locally. For instance the two circled wheels are

superimposed in this figure to show that they align well.

Geometric constraints. Using local appearance only, one would just match

each part of the first image to the most similar part in the second image. This

is not satisfying because the rich geometrical relationship between parts is ig-

nored. In other words, any spatially shuffled version of the images would give the

same similarity measurement. So one usually applies geometric constraints to the

matching process. As explained in the two next sections, one can hypothesize a

parametric rigid transform, or a deformable alignment.

1.2. MOTIVATION AND AIM OF STUDY 15

1.2.4 Aligning rigid objects

Alignment methods were proposed in the 1980s to detect exact replicates of a

prototype [Faugeras and Hebert, 1983; Grimson and Lozano-Perez, 1984; Ayache

and Faugeras, 1986]. For instance, one can see the results of [Huttenlocher and

Ullman, 1987a] in Figure 1.4.

Figure 1.4: The algorithm of [Huttenlocher and Ullman, 1987a] searches for the

prototype (left) in the test image (center) by looking for correspondences, generat-

ing transformation hypotheses. Then, each hypothesized transformation is verified

(right) by transforming the prototype in the test image (right), and checking that

they match well, for each.

In such a situation, the alignment problem is reduced to finding the right ro-

tation and translation from the 3D or 2D prototype to the 2D test image. Such

transformations are parametric (typically with up to 6 parameters). So one just

has to find a few correct correspondences between points in the prototype and test

image to estimate the parameters, and, thus, get the transformation for all points.

Of course it is not easy to find even a few accurate correspondences.

16 CHAPTER 1. INTRODUCTION

Finding good correspondences. More recently, the Scale Invariant Feature Trans-

form [Lowe, 2004b] (also known as SIFT) has become the standard tool to find

accurate correspondence candidates in the rigid transformation case. First, it ex-

tracts repeatable points in both images (i.e. points which are likely to be detected

on the same position of objects independently of their viewpoint, sacle,...). Then

it computes scale-and-rotation-invariant descriptors of them, and finally generates

correspondence candidates between feature points which have similar descriptors

and have no other ambiguous possible match.

Selecting coherent correspondences. However the generated correspondence

candidates typically contain many outliers. To sort them out, the popular Ran-

dom sample consensus [Fischler and Bolles, 1981] (also known as RANSAC)

randomly samples a few of them which are used to estimate the parameters of the

transformation. Then, it checks how many other correspondence candidates agree

with this transformation (inliers). This is iterated many times, and RANSAC picks

the transformation which contains the most inliers.

Those techniques combined have been very successful at matching exact same

objects, especially when they are flat and highly-textured, and also at matching

images of a scene seen from different viewpoints. This has led to many commer-

cial systems (for instance, for 3D reconstruction, dvd/cd/book cover recognition,

logo detection, etc.) (e.g. Google Goggles1 , Acute3D2,LTU3,...).

1.2.5 Aligning deformable objects.

However in this thesis we are interested in recognizing object categories (such as

cars, dogs, houses). In that case, there is no obvious parametrization of the trans-

formation between two images of the same category (due to intra-class variation).

In this situation, it is not possible to compute the global alignment from the

prototype to the test image based on a few correct correspondences only. There-

fore, we cannot apply the techniques described in the previous section.

1http://www.google.com/mobile/goggles/
2http://www.acute3d.com/
3http://www.ltutech.com

1.2. MOTIVATION AND AIM OF STUDY 17

Constraining possible alignments. As seen in the previous section, when align-

ing rigid objects, the set of possible alignments is rather small / low-dimensional.

On the contrary, here, each part of the prototype can potentially match anywhere

in the test image. But still not all the alignments are equally desirable. As an

example, if the test image is a shuffled version of the prototype, every part of

prototype does have a match in the test image, but, the alignment field is highly

discontinuous. In contrast, we want to encourage more natural alignments with

smooth deformation fields, where two nearby parts of the prototype have nearby

matching parts in the test image.

From prototypes to models. Another problem compared to the rigid case is that

it is possible that, due to severe intra-class and viewpoint variations, two images

from the same category look very different, and therefore we cannot find a good

alignment between them. We can only hope that a test image would be similar to

at least one of the stored prototypes. So, as explained in section 1.2.1, we need a

set of prototypes with the following ideal properties: (1) All the possible images

of the given category have a high similarity with at least one prototype. (2) All

images not from this category have low similarity with all prototypes. (3) The

number of prototypes is small to reduce the computation time.

One can consider that actual images are not the best fit to satisfy those prop-

erties. Many works use models rather than prototypes which are more abstract

representations of objects from the same category. For instance, in the field of

psychology, according to the theory of [Rosch, 1973], the human brain, in order

to recognize dogs, do not actually store many images of dogs that it has seen by

the past. Rather, it stores a model of an "average dog", and hierarchically, other

average models for each dog race, and so on. Examples of model-based imple-

mentations are described in the next paragraph.

18 CHAPTER 1. INTRODUCTION

Influential past works. The early work Pictorial Structure [Fischler and Elschlager,

1973a] uses a hand-designed model (see Figure 1.5) in which a face is decom-

posed into several supposedly rigid parts (eyes, mouth, ears,...) connected by

stretchable springs. Their algorithm tries to align this model to a given test image,

while the springs penalize deformation of the relative positions between parts.

This work has introduced the concept of an abstract deformable model that can

be aligned to test images. It has been a long source of inspiration: for instance,

[Yuille, 1991] extends it by replacing the rigid parts by hand-designed deformable

templates (see Figure 1.6).

Figure 1.5: [Fischler and Elschlager, 1973a] match their hand-designed model

(left) to the test image (center). The result (right) is the positions of the sub-parts.

In their work, [Lades et al., 1993] extract parts on a regular grid and match

prototypes of faces or office objects to the test images to detect these categories

(see Figure 1.7). Although it is intellectually satisfying, in theory, to have a few

"name-able" parts (ears,mouth,...), [Lades et al., 1993] have shown that rising the

number of parts leads to better performance, even though they lose their meaning.

Following that trend, and after the success of the key point detectors [Schmid

and Mohr, 1997; Lowe, 2004b], which, in theory, localize interesting and repeat-

able points in images, several authors [Berg et al., 2005a; Leordeanu and Hebert,

2005a] have successfully developed algorithms that match hundreds of interest

points from prototypes to test images in order to measure their similarity. Then,

1.2. MOTIVATION AND AIM OF STUDY 19

Figure 1.6: [Yuille, 1991] Hand-designed eye model (deftemplates91). Eye

model to eye image alignment (center-left). Face model to face image alignment

(center-right and right).

Figure 1.7: [Lades et al., 1993] align grids on prototypes to test images in order

to detect object categories.

each test image is assigned to the category of its closest prototype.

In parallel, researchers (e.g. [Fergus et al., 2007; Felzenszwalb et al., 2008b;

Leordeanu et al., 2007]) have used machine learning techniques to learn deformable

models from training data. These algorithms try to produce models which are

similar to training images of the same category and dissimilar to others. The most

successful approach is [Felzenszwalb et al., 2008b] (see Figure 1.8) that nowadays

produce state-of-the art results on standard detection datasets.

20 CHAPTER 1. INTRODUCTION

Figure 1.8: [Felzenszwalb et al., 2008b] have produced a state-of-the-art object

detector based on a deformable models trained from data. First column: learned

HOG root model. Second column: learned parts. Third row: learned deformation

field for each part. Last column: detection example, red rectangle for root, blue

for parts.

1.3 Graph matching

In the previous section, we have described why we want to align images. In

this section, we review graph matching, which is a practical method to perform

alignment, and which is the main theme of this thesis.

Graph-matching techniques represent an image with a graph. Typically, the

nodes of this graph represent local regions of the image, and its edges represent

the geometric relationships between nodes (more concrete examples are described

later).

The alignment of two images is reduced to the matching of two graphs. Let us

define a node match as a pair of nodes one from each graph, and a graph match as

a set of node matches. So instead of finding a generic alignment, one "just" has

to find a graph match. Since the graph is a simplified representation of the image,

this reduces the complexity of the problem.

A graph matching algorithm tries to find the graph match which maximizes

a predefined quality measure (or objective function). This quality measure has

typically two parts:

1.3. GRAPH MATCHING 21

�� ��

����

Figure 1.9: Given two images to be compared (a), the graph matching approach

extracts one graph for each image (b), and forgets about the image except the node

and edge descriptors (c), then it matches the two graphs (d), the arrows represent

node matches.

• A unary part, which encourages nodes of the first graph to be matched to

similar nodes, e.g. nodes corresponding to similar local regions.

• A binary part, which encourages pairs of node of the first graph to be

matched to pairs of node of the second graph, with similar geometrical re-

lationship (see Figure 1.10 and caption).

�� ��

�� ��

Figure 1.10: Graph matching encourages the matching of nodes with similar

local descriptors (e.g. (a) and (b)). However, one node in the first graph might

have several good matching nodes in the second graph (e.g. (a) and (b)). To cope

with that kind of local ambiguities, graph matching encourages that edges (in red)

in the first graph match to edges with similar descriptors in the second graph. This

is the case in (c), but not in (d).

One concrete method to go graph matching is described in Section 2.2.2.

22 CHAPTER 1. INTRODUCTION

1.4 Objective and contributions of the thesis

��������	
���
��
����
�������������������������

����������
�����
�����������

�������
�������

�����	��������

���������������

Figure 1.11: Summary of

the introduction. The arrow

means "can be an appropriate

tool for".

Until now, we have seen some of the moti-

vations to do computer vision. We have de-

scribed the task of category-level object recogni-

tion/detection, and have explained how the design

of a good similarity measure can be useful to per-

form that task, and how we can use image align-

ment to build this similarity measure. We have

also described some previous work doing align-

ment. Finally, we have described graph matching,

which is a concrete technique to perform align-

ment (see Figure 1.11).

The objective of this thesis is to explore the

use of graph matching in object recognition systems. In the continuity of the pre-

viously described articles, rather than using descriptors invariant to misalignment,

this work directly tries to find explicit correspondences between prototypes and

test images, in order to build a robust similarity measure and infer the class of the

test images.

In chapter 2, we will present a method that given interest points in two images

tries to find correspondences between them. It extends previous graph matching

approaches [Leordeanu and Hebert, 2005a] to handle interactions between more

than two feature correspondences. This allows us to build a more discriminative

and/or more invariant matching method. The main contributions of this chapter

are:

• The introduction of an high-order objective function for hyper-graph match-

ing (Section 2.3.1).

• The application of the tensor power iteration method to the high-order match-

ing task, combined with a relaxation based on constraints on the row norms

of assignment matrices, which is tighter than previous methods (Section

2.3.1),

1.4. OBJECTIVE AND CONTRIBUTIONS OF THE THESIS 23

• An ℓ1-norm instead of the classical ℓ2-norm relaxation, that provides solu-

tions that are more interpretable but still allows an efficient power iteration

algorithm (Section 2.3.5).

• The design of appropriate similarity measures that can be chosen either to

improve the invariance of matching, or to improve the expressivity of the

model (Section 2.3.6).

• The proposed approach has been implemented, and it is compared to state-

of-the-art algorithms on both synthetic and real data. As shown by our

experiments (Section 2.5), our implementation is, overall, as fast as these

methods in spite of the higher complexity of the model, with better accuracy

on standard databases.

In chapter 3, we build a graph-matching method for object categorization. The

main contributions of this chapter are:

• Generalizing [Caputo and Jie, 2009; Wallraven et al., 2003], we propose

in Section 3.3 to use the optimum value of the graph-matching problem

associated with two images as a (non positive definite) kernel, suitable for

SVM classification.

• We propose in Section 3.4 a novel extension of Ishikawa’s method [Ishikawa,

2003] for optimizing MRFs which is orders of magnitude faster than com-

peting algorithms (e.g., [Kim and Grauman, 2010; Kolmogorov and Zabih,

2004; Leordeanu and Hebert, 2005a]) for the grids with a few hundred

nodes considered in this article). In turn, this allows us to combine our

kernel with SVMs in image classification tasks.

• We demonstrate in Section 3.5 through experiments with standard bench-

marks (Caltech 101, Caltech 256, and Scenes datasets) that our method

matches and in some cases exceeds the state of the art for methods using

a single type of features.

In chapter 4, we introduce our work about object detection that perform fast

image alignment. The main contributions of this chapter are:

24 CHAPTER 1. INTRODUCTION

• We propose a novel image similarity measure that allows for arbitrary de-

formations of the image pattern within some given disparity range and can

be evaluated very efficiently [Lemire, 2006], with a cost equal to a small

constant times that of correlation in a sliding-window mode.

• Our similarity measure relies on a hierarchical notion of parts based on sim-

ple rectangular image primitives and HOG cells [Dalal and Triggs, 2005a],

and does not require manual part specification [Felzenszwalb and Hutten-

locher, 2005b; Bourdev and Malik, 2009; Felzenszwalb et al., 2010] or au-

tomated discovery [Lazebnik et al., 2005; Kushal et al., 2007].

Chapter 2

A tensorial formulation for

hyper-graph matching

2.1 Introduction

2.1.1 Motivation and goals

We have reviewed in Chapter 1, some motivations behind graph matching. In this

chapter, we present a pure graph-matching contribution, with a few experiments

to motivate the use of this method. Applications of graph matching to object

detection and recognition are presented in the following chapters.

The motivation behind the work presented here is that the type of geometric

constraints that one can use in graph-matching might be restricted. To tackle this,

we propose an hyper-graph matching technique, that can handle relationship with

more than two points at a time. Typically, this allows our matching to be invariant

to more classes of transformation and/or to have a richer and more discriminative

description of the geometrical relationship between nodes.

As noted earlier, finding correspondences between visual features (such as in-

terest points, edges, or even raw pixels) is a key problem in many computer vision

tasks. The simplest approach to this problem is to define some measure of similar-

ity between two features (e.g., the Euclidean distance between SIFT descriptors

of small image patches [Lowe, 2004a]), and match each feature in the first image

25

26CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

Method name order number of nodes per descriptor

Feature matching 1st 1
Graph Matching 2nd 1− 2

Hypergraph matching 3rd+ any

Figure 2.1: Matching methods

to its nearest neighbor in the second one, and finally sum all the local similarities

to compute the global one. This naive first-order approach is called feature match-

ing. It will fail in the presence of ambiguities such as repeated patterns, textures

or non-discriminative local appearance. To handle this difficulty, second-order

methods (graph-matching) try to enforce geometric consistency between pairs of

feature correspondences. The basic idea is shown on Figure 2.2: if the points p1

and p′1 of image 1 are matched to points p2 and p′2 of image 2, then the geometric

relation between p1 and p′1, and the one between p2 and p′2 should be similar.

Figure 2.2: Left: second-order potentials can be made rotation-invariant by comparing

distances between matched points. Right: Third-order potentials can be made similarity-

invariant by comparing the angles of triangles.

Several pairwise geometric relations have been used. [Leordeanu and Hebert,

2005b] use only the distance between two points, leading to a matching criterion

which is invariant to rotation. In their objective function, [Berg et al., 2005a]

use a combination of potentials based on distances (rotation-invariant) and angles

(scale-invariant), to find a trade-off between rotation and scale invariance. Some

other methods (e.g., [Schmid and Mohr, 1997; Zheng and Doermann, 2006]) use

proximity, only assuming that two adjacent points should be matched in the other

image to two points which are also close to each other. One difficulty here is to

2.1. INTRODUCTION 27

define an appropriate notion of neighborhood.

Recently, the computer vision community has put much effort in increasing

the order of complexity of the models used: For example,[Kohli et al., 2007]

introduce a high-order clique potential for segmentation, but the type of energy is

limited to specific types of functions, using the alpha-expansion framework. [Zass

and Shashua, 2008] formulate the search for higher-order feature correspondences

as a hypergraph matching problem. However, they use independence assumptions

in order to reduce the hyper-graph matching to a first-order matching (feature

matching), where nodes are matched independently (except for the one-to-one

macthing constraint).

Figure 2.3: Left: Given two graphs, the matching problem is to find node correspon-

dences which preserve their topology. Right: In a hypergraph, one hyperedge can link

more than two nodes. As an example, in this figure four hyper-edges are represented by

circles. Each of them regroups three nodes that they link together. The three matches

drawn on the right figure induce a matching between two hyperedges.

The method described in this chapter also deals with hypergraph matching

(see Figure 2.3). In addition, unlike these authors, we will refrain from using

independence assumptions (that may or may not be justified depending on the sit-

uation). The method presented in this chapter generalizes the spectral matching

method of [Leordeanu and Hebert, 2005b] to higher-order potentials: The corre-

sponding hypergraph matching problem is formulated as the maximization of a

multilinear objective function over all permutations of the features. This function

is defined by a tensor representing the affinity between feature tuples. It is maxi-

mized by first using a multi-dimensional power method to solve a relaxed version

of the problem, whose solution is then projected onto the closest assignment ma-

trix. As will be shown in the comparative experiments of Section 2.5, explicitly

28CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

maintaining higher-order interactions in the optimization process leads to superior

performance.

2.1.2 Problem statement

We consider two images, and assume that we have extractedN1 points from image

1, and N2 from image 2. We do not assume that N1 = N2, i.e., there may be

different numbers of points in the two images to be matched. Moreover, instead

of points, we could use any other type of visual features such as edges, raw pixels,

etc. Throughout this paper, for s = 1, 2, all indices is, js, ks will be assumed to

vary from 1 to Ns. We will also note i = (i1, i2), j = (j1, j2), k = (k1, k2) pairs

of potentially matched points.

Let P s
n be the nth point of image s. The problem of matching points from

image 1 to points from image 2 is equivalent to looking for anN1×N2 assignment

matrixX such thatXi1,i2 a.k.a. Xi is equal to 1 when P 1
i1
is matched to P 2

i2
, and to

0 otherwise. In this paper, we assume that a point in the first image is matched to

exactly one point in the second image, but that one point in the second image may

be matched to an arbitrary number of points in the first image, i.e., we assume that

the sums of each row of X is equal to one, but put no constraints on the column

sums1. Thus, we consider the set X of assignment matrices:

X = {X ∈ {0, 1}N1×N2 , ∀i1,
∑

i2
Xi1,i2 = 1}.

Note that our definition is not symmetric (i.e., if we switch the two images, we

obtain different correspondences). It can be made symmetric by considering the

two possible matchings (image 1 to image 2 and image 2 to image 1) and com-

bining them (in a mostly application-dependent way), e.g., by taking the union or

intersection of matchings.

1This framework can easily be extended to allow matching points from the first image to no

point in the second image adding a dummy node to the second image as in [Berg et al., 2005a] (if

a point of the first image is matched to this dummy node, it means that it is matched to no point).

2.2. PREVIOUS WORK 29

2.1.3 Organization and Contributions

First, in Section 2.2.2 and 2.2.3, we explain the spectral-matching algorithm.

Then, in Section 2.3.1, we introduce our method, which extends spectral matching

to higher order matching problems.

The three main contributions of this work are (1) the introduction of an high-

order objective function for hyper-graph matching (Section 2.3.1), (2) the ap-

plication of the tensor power iteration method to the high-order matching task,

combined with a relaxation based on constraints on the row norms of assignment

matrices, which is tighter than previous methods (Section 2.3.1), (3) an ℓ1-norm

instead of the classical ℓ2-norm relaxation, that provides solutions that are more

interpretable but still allows an efficient power iteration algorithm (Section 2.3.5),

and (4) the design of appropriate similarity measures that can be chosen either to

improve the invariance of matching, or to improve the expressivity of the model

(Section 2.3.6).

The proposed approach has been implemented (Section 2.4), and it is com-

pared to state-of-the-art algorithms on both synthetic and real data. As shown

by our experiments (Section 2.5), our implementation is, overall, as fast as these

methods in spite of the higher complexity of the underlying model, with better

accuracy on standard databases.

Preliminary versions of this work appear in [Duchenne et al., 2009a] and

[Duchenne et al., 2011b]. The source code of our software is available on line

at http://www.di.ens.fr/~duchenne.

2.2 Previous work

2.2.1 Historical review of literature

Establishing correspondences between two sets of visual features is a key prob-

lem in computer vision tasks as diverse as feature tracking [Birchfield, 1998], im-

age classification [Lazebnik et al., 2006a] or retrieval [Schmid and Mohr, 1997],

object detection [Berg et al., 2005a], shape matching [Leordeanu and Hebert,

2005b; Zheng and Doermann, 2006], or wide-baseline stereo fusion [Pritchett

30CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

and Zisserman, 1998]. Different image cues may lead to very different matching

strategies. At one end of the spectrum, geometric matching techniques such as

RANSAC [Fischler and Bolles, 1981], interpretation trees [Grimson and Lozano-

Pérez, 1987], or alignment [Huttenlocher and Ullman, 1987b] can be used to effi-

ciently explore consistent correspondence hypotheses when the mapping between

image features is assumed to have some parametric form (e.g., a planar affine

transformation), or obey some parametric constraints (e.g., epipolar ones). At the

other end of the spectrum, visual appearance alone can be used to find matching

features when such an assumption does not hold: For example, bag-of-features

methods that discard all spatial information to build some invariance to intra-class

variations and viewpoint changes have been applied quite successfully in image

classification tasks [Zhang et al., 2006, 2007a]. Modern methods for image match-

ing now tend to mix both geometric and appearance cues to guide the search for

correspondences (see, for example, [Lazebnik et al., 2006a; Lowe, 2004a]).

Many matching algorithms proposed in the 80s and 90s have an iterative form

but are not explicitly aimed as optimizing a well-defined objective function (this

is the case for RANSAC and alignment methods for example). The situation has

changed in the past few years, with the advent of combinatorial or mixed con-

tinuous/combinatorial optimization approaches to feature matching (see, for ex-

ample [Berg et al., 2005a; Leordeanu and Hebert, 2005b; Maciel and Costeira,

2003; Oliveira et al., 2006; Zheng and Doermann, 2006])2. This paper builds on

this work in a framework that can accommodate both (mostly local) geometric in-

variants and image descriptors. Concretely, the search for correspondences is cast

as a hypergraph matching problem using higher-order constraints instead of the

unary or pairwise ones used by previous methods: First-order methods based (for

example) on local image descriptions are susceptible to image ambiguities due

to repeated patterns, textures or non-discriminative local appearance for example.

Geometric consistency is normally enforced using pairwise relationships between

image features. In contrast, we propose in this paper to use higher-order (mostly

third-order) constraints to enforce feature matching consistency (Figure 2.2).

2To be fair, it should be noted that optimization-based approaches to graph matching were

considered a key component of object recognition and scene analysis strategies in the 70s and 80s,

see for example the classical text by Ballard and Brown [Ballard and Brown, 1982].

2.2. PREVIOUS WORK 31

2.2.2 Spectral matching

In [Berg et al., 2005a; Cour et al., 2007; Leordeanu and Hebert, 2005b], the match-

ing problem is formulated as the maximization of the following score over X :

score(X) =
∑

i1,i2,j1,j2

Hi1,i2,j1,j2Xi1,i2Xj1,j2 ,

where Hi1,i2,j1,j2 (which is equal to Hi,j with our notations for pairs) is a binary

potential corresponding to the pairs of feature nodes (Pi1 , Pj1) of image 1, and

(Pi2 , Pj2) of image 2. H is a positive similarity measure, such that high values of

H correspond to similar pairs.

As described in Section 2.3.6, in this paper, we compute for each pair of nodes

from the same image a feature vector f , and we compute H as follow:

∀i1, i2, j1, j2, Hi1,i2,j1,j2 = exp(−γ‖fi1,j1 − fi2,j2‖2).

Many other similarity measures are of course possible.

This graph matching problem is actually an integer quadratic programming

problem, with no known polynomial-time algorithm for solving it. Approximate

methods may be divided into two groups. The first one is composed of methods

that use spectral representations of adjacency matrices (e.g., [Umeyama, 1988]).

The second group is composed of algorithms that work directly with the graph

adjacency matrices, and typically involve a relaxation of the discrete optimization

problem (e.g., [Leordeanu and Hebert, 2005b; Almohamad and Duffuaa, 1993;

Zaslavskiy et al., 2009]). In this paper, we focus on improvements of the second

group of methods.

In [Cour et al., 2007; Leordeanu and Hebert, 2005b], the set of binary matrices

over which the optimization is performed is thus relaxed to the set of real matrices

with Frobenius norm equal to
√
N1, leading to the simpler problem:

max
‖X‖F=

√
N1

∑

i1,i2,j1,j2

Hi1,i2,j1,j2Xi1,i2Xj1,j2 . (2.1)

Note that all the matrices in X have only N1 non-zeros coefficients, which are

32CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

equal to one, therefore they indeed all have their Frobenius norm equal to
√
N1.

In turn, Eq. (2.1) can be rewritten as max‖X̃‖2=
√
N1

X̃T H̃X̃ , where X̃ denotes the

vector in RN1N2 obtained by concatenating the columns ofX and, likewise, H̃ the

N1N2 × N1N2 symmetric matrix obtained by unfolding the tensor H . This is a

classical Rayleigh quotient problem, whose solution X̃∗ is equal to
√
N1 times the

eigenvector associated with the largest eigenvalue (which we refer to as the main

eigenvector V) of the matrix H̃ [Golub and Loan, 1996], and can be computed

efficiently by the power iteration method described in the next section.

An important constraint thatH must satisfy is that it is pointwise non-negative.

This is the main hypothesis of the Perron-Frobenius theorem [Frobenius, 1912]

that ensures that X̃∗ only has non-negative coefficients, which simplifies the in-

terpretation of the result (see [Leordeanu and Hebert, 2005b]).

In order to obtain an assignment matrix in X , i.e., a matrix with elements in

{0, 1} and proper row sums, the authors of [Leordeanu and Hebert, 2005b] dis-

cretize the eigenvector X̃∗ using a greedy algorithm (see [Leordeanu and Hebert,

2005b] for more details). One could also use the Hungarian algorithm with cost

matrix X̃∗ to obtain a permutation matrix.

2.2.3 Power iterations for eigenvalue problems

The power iteration method is a very simple algorithm for computing the main

eigenvector of a matrix, which is needed for matching.

Input: matrix H̃
Output: V main eigenvector of H̃
initialize V randomly ;1

repeat2

V ← H̃V ;3

V ← 1
‖V ‖2V ;4

until convergence ;5

Algorithm 1: Power iterations for eigenvalue problems.

This algorithm is guaranteed to converge geometrically to the main eigenvec-

tor of the input matrix [Golub and Loan, 1996]. As explained in Section 2.4, in

our situation, H is very sparse and we want to take advantage of this. Indeed,

2.3. PROPOSED APPROACH 33

each step of the power iteration algorithm requires only O(m) operations, where

m is the number of non-zero elements of H . Also, typically, in our situation, the

algorithm converges in a few dozen steps.

Thanks to this algorithm description, it becomes easy to see one reason why

the output V will have only non-negative values as described in the Perron-Frobenius

theorem [Frobenius, 1912]. Let us assume we initialize V with only non-negative

values (since the algorithm converges to a global optimum, this will not change

the output of the algorithm). In our caseH is also point-wise non-negative. There-

fore at each iteration, each coordinate of V will be replaced by a sum of products

of non-negative values, which is also non-negative. So this property remains true

until convergence. We will see that this nice property will be conserved in our

higher-order algorithm.

2.3 Proposed approach

2.3.1 Tensor formulation of hypergraph matching

We propose to use tensors to solve the high-order feature matching problem. In-

deed, using tensors is quite natural to generalize the spectral matching [Leordeanu

and Hebert, 2005b] introduced in the previous section which deal with a matrix.

Previous work except [Zass and Shashua, 2008] only uses one-to-one and pair-to-

pair comparisons for matching. In this paper, we want to compare tuples of points.

We denote by d the number of points per tuple, and add higher-order terms to the

score function defined in Eq. (2.1). For simplicity, we will focus from now on

third-order interactions (d = 3). Generalizations to higher-order potentials are (in

theory at least) straightforward. However, in practice, it could lead to an exponen-

tial growth of the computational complexity.

We define a new high-order score:

score(X) =
∑

i1,i2,j1,j2,k1,k2

Hi1,i2,j1,j2,k1,k2Xi1,i2Xj1,j2Xk1,k2 , (2.2)

where we assume thatH is a 6-dimensional super-symmetric tensor, i.e., invariant

under permutations of indices in {i1, j1, k1} or {i2, j2, k2}.

34CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

Here, the product Xi1,i2Xj1,j2Xk1,k2 will be equal to 1 if and only if the points

{i1, j1, k1} are respectively matched to the points {i2, j2, k2}. In this case, it will

add Hi1,i2,j1,j2,k1,k2 to the total score function and 0 otherwise.

As described in Section 2.3.6, H represents a similarity measure, which will

be high if the set of features {i1, j1, k1} is similar to the set {i2, j2, k2}. In our

experiments, we compute for each triplet of nodes in the same image a feature

vector f , and we compute H as follow:

∀i, j, k,Hi1,i2,j1,j2,k1,k2 = exp(−γ‖fi1,j1,k1 − fi2,j2,k2‖2).

More details are provided in latter sections.

As explained in the next section, we can rewrite the score compactly using

tensor notation as:

score(X̃) = H̃ ⊗3 X̃ ⊗2 X̃ ⊗1 X̃, (2.3)

with the same notation as in the matrix case: X̃ = vec(X) and H is rewritten as a

tensor H̃ of size (N1N2)
d.

This score can be interpreted as a hypergraph matching score. In a hypergraph,

an edge can link more than two vertices together (Figure 2.3). In this framework,

any element of H is a matching score between two hyper-edges.

In Section 2.3.6, we will explain how higher-orders potentials can be used to

have more invariant or more expressive features.

A short introduction to tensors

A tensor is the n-dimensional generalization of a matrix: a matrix can be rep-

resented as 2-D rectangular table, and tensors can be viewed as n-dimensional

hyper-rectangular tables. Each of the elements of such a tensor is indexed by n

numbers: H = {Hi1,i2,...,in}.
A tensor and a vector can be multiplied in different ways. In this work, we use

the following notation:

B = A⊗k V,

2.3. PROPOSED APPROACH 35

Bi1,...,ik−1,ik+1,...,in =
∑

ik

Ai1,...,ik,...,inVik ,

where V is vector and A a n-dimensional tensor. Like a matrix multiplied by a

vector produces a vector, an n-dimensional tensor multiplied by a vector is (n−1)-
dimensional. Also, like the matrix-vector multiplication that can be done in two

ways (on the left or on the right), the tensor-vector multiplication can be done in

n different ways. The index k in the notation ⊗k indicates that we multiply on the

kth dimension.

In Eq. (2.3), we use the following calculus:

score(X̃) = H̃ ⊗1 X̃ ⊗2 X̃ ⊗3 X̃

= (((H̃ ⊗1 X̃)⊗2 X̃)⊗3 X̃)

= (((
∑

k

Hi,j,kXk)i,j ⊗2 X̃)⊗3 X̃)

=
∑

i,j,k

Hi,j,kXiXjXk.

So the two expressions of the score in Eq. (2.2) and (2.3) are equivalent.

2.3.2 Tensor power iterations

To find the optimum of the high-order score of Eq. (2.2), we use a generalization

of the previously mentioned power iterations, as proposed in [Lathauwer et al.,

2000]. The algorithm presented below extends Algorithm 1.

This method is not guaranteed to reach a global optimum. However, it con-

verges to a stationary point for tensors that lead to convex functions ofX [Regalia

and Kofidis, 2000]. In our experiments, it converges almost always to a very satis-

factory solution. Also, the authors of [Regalia and Kofidis, 2000] propose a smart

way to initialize it, to lead to a quantifiable proximity to the optimal solution.

We can see that, as in the matrix case, if we initialize V with only non-negative

values, the resulting vector will have only non-negative values. This is required to

have a meaningful result. Indeed, if negative values of X in the score in Eq. (2.2)

were allowed, some product of negative values could have a positive value. There-

fore even coordinates of X with a low value could increase the final score, pre-

36CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

Input: supersymmetric tensor H̃
Output: V main eigenvector of H̃
initialize V randomly ;1

repeat2

V ← H̃ ⊗1 V ⊗2 V ;3

(i.e. ∀i, Vi ←
∑

j,k Hi,j,kVjVk)4

V ← 1
‖V ‖2V ;5

until convergence ;6

Algorithm 2: Supersymmetric tensor power iteration (third order).

venting us from interpreting the coordinates ofH as a similarity potential activated

only when all corresponding pairs are matched.

2.3.3 Tensor power iterations for unit-norm rows

In our context, we want to constrain the norm of each row of X to 1, which is a

tighter relaxation of X than matrices of fixed Frobenius norm. In addition, this

corresponds to a many-to-one matching setting: all nodes of the first images are

matched to exactly one node in the second image, but several nodes in the first

images can be matched to the same one in the second image. We denote by C2 the
set of matrices such that all theirs rows have unit Euclidean norm.

We can extend the previous algorithm to this new set of matrices (Algorithm

3).

Input: supersymmetric tensor H̃
Output: V = [v1,1, . . . , vN1,N2

]T stationary point

initialize V randomly ;1

repeat2

V ← H̃ ⊗1 V ⊗2 V ;3

(i.e. ∀i, Vi ←
∑

j,k Hi,j,kVjVk)4

∀i1, V (i1, :)← 1
‖V (i1,:)‖2V (i1, :) ;5

until convergence ;6

Algorithm 3: Supersymmetric tensor power iteration (third order) with unit

norm constraints. V (i, :) denotes the vector (Vi,1, Vi,2, . . . , Vi,N2
)T .

As shown in the appendix, we have extended the proof of [Regalia and Kofidis,

2.3. PROPOSED APPROACH 37

2000] to handle those new constraints. In particular, we have shown that this

algorithm has the same nice properties of the previous one: if the score is a convex

function of X , then Algorithm 3 converges to a stationary point V . Note that we

can always make the score convex by adding to it a multiple of the function X̃⊤X̃ .

Since the X̃ vectors in C2 all have the same norm, this change the value of the score

function only by a constant and thus does not change its optima on C2 (the set of

matrices whose Euclidean norms of each of the N1 rows are equal to one).

Finally, we want to obtain correspondences and need to compute a binary

matrix X from V . We obtain a natural projection step here on the set X : For

each row, the coordinate with maximum value in V is set to 1 in X , and the other

coordinates of X are set to 0.

2.3.4 Merging potentials of different orders

It could be interesting to include in the matching process, at the same time, in-

formation about different potential orders (e.g., considering at the same time pair

similarities and triplet similarities). To do this, a first solution is to include the

low-order information into the tensor of the highest-order potential H . Cour and

Shi [Cour et al., 2007] present a method to do this, combining second and first-

order potential. The generalization to our setting is straightforward. However, in

our power iteration framework, it is equivalent to use the simple following algo-

rithm (which could also be extended to constrain rows to have unit norms):

Input: several supersymmetric tensors H̃d of order d
Output: V main eigenvector of H

initialize V randomly ;1

repeat2

V ← H̃4 ⊗1 V ⊗2 V ⊗3 V+3

H̃3 ⊗1 V ⊗2 V + H̃2 ⊗1 V + H̃1;4

(i.e.∀i, Vi ←
∑

j,k,l H
4
i,j,k,lVjVkVl +

∑

j,k H
3
i,j,kVjVk +

∑

j H
2
i,jVj +H1

i)5

V ← 1
‖V ‖2V ;6

until convergence ;7

Algorithm 4: Multiple order supersymmetric tensor power iteration (fourth

order).

38CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

2.3.5 ℓ1-norm constraint for rows

One of the main problems of spectral relaxations is that the solution is often nearly

uniform, which means that it is hard to extract from it an assignment matrix with

values in {0, 1}. This is due in part to the relaxation of the set X of assignment

matrices to matrices in C2 with unit ℓ2-norm rows, which does not lead to sparsity.

In fact, we can also relax the set X to the matrices in C1 with rows having unit

ℓ1-norm (i.e., sum of absolute values). As shown in Figure 2.4, this leads to results

that are more easily interpretable.

In the context of second-order interactions, solving the ℓ1-norm problem can-

not be done by power iterations. However, in our higher-order context, this can be

done seamlessly. Indeed, solving the following problem on C1:

max
X∈C1,X>0

∑

i,j Hi,jXiXj

is equivalent to solving (on C2):

max
Y ∈C2

∑

i,j Hi,jY
2
i Y

2
j

with the change of variable: Y 2
i = Xi. The order of this new problem is 4 when

using the tensor power iteration algorithm, but the complexity is still as low as

second-order problem (see Algorithm 5). Using this algorithm we usually obtain

in practice an almost completely binary solution, as shown on a particular example

in Figure 2.4. This method is easily extended to solve any high-order matching

problem.

2.3.6 Building tensors for computer vision

We can use higher-order potentials to increase either the geometric invariance of

image features, or the expressivity of the models (see Figure 2.5). We describe

here a few possible potentials. They are all based on computing a Gaussian kernel

between appropriate invariant features. Clearly, many other potentials are possi-

ble.

In this section we will only consider third-order potentials. As illustrated by

2.3. PROPOSED APPROACH 39

5
10

15
20

25
30

0

10

20

30

40

0

0.1

0.2

0.3

0.4

0.5

5
10

15
20

25
30

0

10

20

30

40

0

0.2

0.4

0.6

0.8

1

Figure 2.4: We run the spectral algorithm to match a random point cloud to a ran-

domly perturbated copy of itself. We show here the resulting assignment matrices

by using ℓ2 or ℓ1-norm constraints (respectively Algorithm 1 and 5). The indexing

of the points is made such that for all i, the point i of the first cloud corresponds

to the point i of the second cloud. So the perfect assignment matrix should be

the identity matrix. The horizontal axes correspond to the coordinates of the as-

signment matrix and the vertical one to its values. Left: Values of the assignment

matrix when the ℓ2-norm is used. They are hard to project to a matrix in X , i.e.,

with values in {0, 1}. Right: When using the ℓ1-norm, we obtain directly a very

clear assignment matrix with minor adjustments. Indeed, its values are nearly

boolean.

40CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

Input: matrix H̃
Output: V stationary point

initialize V randomly ;1

repeat2

V ← (H̃(V ◦ V)) ◦ V ;3

(i.e. ∀i, Vi ← Vi

∑

j Hi,jV
2
j)4

∀i1, V (i1, :)← 1
‖V (i1,:)‖2V (i1, :) ;5

until convergence ;6

Algorithm 5: Tensor power iteration for the ℓ1-norm relaxation. Here, ◦
represents the Hadamard product (or pointwise product). V (i, :) denotes the
vector (Vi,1, Vi,2, . . . , Vi,N2

)T .

Figure 2.2, classical methods try to remove ambiguities by looking for matches

that preserve some properties of point pairs. Here, we will try to preserve proper-

ties of point triplets. In particular, in most of the cases, we will use the properties

of the triangle formed by three points. Basically, if the points (P 1
1 , P

1
2 , P

1
3) are

matched to the points (P 2
1 , P

2
2 , P

2
3), the corresponding triangles should be similar.

In [Leordeanu and Hebert, 2005b], rotation and translation-invariant potentials

based on edge lengths and angles are used since it is impossible to build invariants

to larger classes of transformations from feature pairs alone. Here, we propose

using potentials based on triplets of points, which can be made invariant to richer

classes of transformations, including (planar) similarities, affine transformations,

and projective ones.

Similarity-invariant potentials

The angles of a triangle are invariant under similarities. Thus we can describe

each triangle by its three angles (Figure 2.2). However, in our implementation,

we rather use the sines of the angles to speed-up the computation.

2.3. PROPOSED APPROACH 41

Affine-invariant potentials

When the camera is moving, in the general case, the transformation of the image is

perspective. However, this transformation can also be affine when the seen object

is planar or when looking locally at the image. Therefore affine invariance can be

a good approximation of perspective invariance.

Concretely, we normalize each triangle into an equilateral one, and then com-

pare the intensity patterns of normalized triangles by normalized cross correlation.

This description of the triangle is of course invariant under affine transformation.

Projective-invariant potentials

Inspired by [Leordeanu et al., 2007], we can also develop higher-order potentials

invariant to planar projective transforms with no parametric form when the scene

shape is unknown. If we sample only feature points on the contours in the image,

we can use the edge direction as an additional feature, and focus on properties of

three points and three directions that are conserved under projective transforms.

The main property conserved by a projective transform is the cross-ratio. So if

we suppose that the object surface in the triangle we are looking at is flat, we can

build three lines with four points on each. We compute the descriptor of the three

points P1, P2, P3 shown in Figure 2.6. We also show the three vectors N1, N2, N3

which are orthogonal to the image gradient at each point. We draw a line from

the point P1 in the direction of vectorN1 which intersects the other lines (P2, N2),

(P3, N3), (P2, P3) in the points z2, z3, z4. And we add z1 = P1. If the zi are

written with complex numbers, their cross ratio is:

(z1, z2; z3, z4) =
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)
,

and this formula is computed for each of the three points. We will use the three

cross-ratios defined by those points to make a perspective-invariant descriptor.

42CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

Figure 2.5: (a) a scale-invariant pairwise potential, the angle with respect to the horizon-

tal axis. (b) a rotation-invariant pairwise potential, the distance between the two points.

(c) a scale and rotation invariant triplet potential, the 3 angles of the triangle. (d) triplets

allow the description of the interior of the triangle, which is a much richer description,

and can be affine invariant.

More expressive potentials

Most previous approaches focus on using rather simple geometric relationships

between points. Typically the descriptor of their pairwise relationship is a scalar

or a low-dimensional vector. As a consequence, such descriptors have low dis-

criminative power, and many different pairs of points have similar descriptors.

Therefore matching becomes ambiguous. We believe that our higher-dimensional

framework makes it possible to build more expressive features. Triangles, unlike

line segments, have an interior. So, it should be possible to have image-based fea-

2.3. PROPOSED APPROACH 43

Figure 2.6: Left: diagram illustrating the features used in the proposed projective-

invariant potential. In order to describe the blue triangle, we build three red lines with

four points on each. Right: in order to describe one of these lines (the green one), we

denote the four points by z1 to z4 (complex numbers). Bottom: we use the cross ratio

formula to compute one descriptor for each of the three lines.

tures to describe this interior. To do this, we can use the affine-invariant method

explained in section 2.3.6, or, for instance, a histogram of gradient features. Obvi-

ously, many other types of features are possible (e.g., bags of words.). These new

features would be more specific, and would have higher discriminative power.

Therefore a triplet in one image would have fewer similar triplets in the other. In

this situation, the matching would become less ambiguous and easier to compute.

44CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

3D potential

We now present a high-order potential to match 3D point clouds. We assume that

the vertical axis is known and design a potential which is invariant to scale and

rotation about this axis. Clearly, many other potentials are possible depending on

the assumptions made (e.g., scale/vertical axis known or unknown). We use a 6-

dimensional feature to describe the 3D point triplets (Figure 2.7): The first three

features are the angles between the three edges of the triangle and the vertical. For

the three other features we use the angles of the triangle (as in the 2D case).

Figure 2.7: Diagram explaining the 3D invariant construction. The 3 points described

(P1 to P3) and their triangle are in blue. f1 to f6 are the angles used as features. The 3

vertical green arrows represent the vertical axis.

2.4 Implementation

In the case of d-th order potentials, the brute force algorithm (see Algorithm

2) has a complexity O(n2d) per iteration, where n = max{N1, N2}. However,

Leordeanu and Hebert [Leordeanu and Hebert, 2005b] argue that, in their case,

the matrix H̃ has approximately O(n3) non-zero values. Therefore, the complex-

ity of their algorithm is around O(n3) operations per iteration for second-order

potentials.

As we increase the order of the potential, the number of elements of the tensor

2.4. IMPLEMENTATION 45

H increases exponentially, and the computation time of the standard algorithm

would be the same. Therefore an efficient algorithm is required.

The first step of our algorithm is to build the tensor. This step is often neglected

in the literature, but actually requires as much computation as the matching itself,

even in the case of conventional graph matching. The tensor size (N1N2)
d is

huge . If we computed it completely, it would require O((N1N2)
dnf) operations,

where nf is the size of the descriptor of a tuple. However, if we use a truncated

similarity measure (i.e., with a compact support), the tensorH can be very sparse.

Moreover, in practice, it is not necessary to compute H completely. Therefore in

our algorithm, we compute only a small part of H .

In our experiment, we use a truncated Gaussian kernel: Hi,j,k = exp(−γ‖fi1,j1,k1−
fi2,j2,k2‖2) if ‖fi1,j1,k1 − fi2,j2,k2‖ ≤ σ otherwise 0, where fi1,j1,k1 is the feature

vector describing the tuple (i1, j1, k1).

So, for each tuple i of the first image, we need to find the features of image

2 in a neighborhood of size σ. In practice, we only take the k nearest neighbors

with k fixed. This allows us to use a standard implementation of approximate

nearest neighbors [Mount and Arya, 2000], which in practice is very efficient.

This ANN search implementation is based on kd-trees. In our experiments using

this approximate algorithm does not bring any significant change to the results.

However, doing this for all tuples in image 1 would be very time consuming,

and forcing all the tuples to be matched correctly is very redundant. So, as in

[Zass and Shashua, 2008], we only sample tN1 triangles in image 1, with fixed t.

Then, we sample all the possible triangles of image 2, and compute their de-

scriptors. We store them in a kd-tree to allow an efficiently search. For each of the

selected triangles of image 1, we find the k approximate nearest neighbors of im-

age 2. Then we compute the tensor values: Hi1,j1,k1,i2,j2,k2 = exp(−γ‖triangle(i1, j1, k1)−
triangle(i2, j2, k2)‖2) if triangle(i2, j2, k2) is among the k nearest neighbors of

triangle(i1, j1, k1), and 0 otherwise. Then we start the power iteration.

The total complexity of the algorithm is O(nd log(n) + ntk log(n)) per iter-

ation. The final algorithm typically takes one second for 80 points, t = 20 and

k = 500. The complete setup is summarized in Algorithm 6.

46CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

Input: images I1, I2 and point sets P1,P2

Output: tensor H

H ← empty tensor ;1

foreach t ∈ set of all tuples in P2 do2

f ←computetupleFeature(t, I2) ;3

F ← F ∪ {f} ;4

end5

T ←computeANNtree(F) ;6

S ←select some tuples in I1 ;7

foreach s ∈ S do8

N ←search for k nearest-neighbors(T , s) ;9

foreach n ∈ N do10

H(index(s), index(n))← similarity(descriptor(s), descriptor(n)) ;11

end12

end13

Algorithm 6: Efficient ANN-based algorithm for computing the tensor.

Smart selections of triangles

There are several strategies for selecting triangles depending of the final goal. If

one wants to match and allow deformations, the triangle should be selected at

small scales. On the other hand, if one wants to capture the global property of a

shape, one should select big triangles.

2.4.1 Separable similarity measure

One important problem with spectral methods (high-order or not) is thatH can be

huge. But in some cases, it is possible to avoid computing it. Hi,j,k should be a

similarity measure between the tuples (i1, j1, k1) and (i2, j2, k2). In this section,

we explain that if we can decompose this measure as the inner product of two

descriptors < fi1,j1,k1 , fi2,j2,k2 >, we do not have to compute the whole H . When

the similarity function is a positive definite kernel, it is always possible to write it

as an inner product. However, we also need to have a finite representation of f .

In this situation, we can write (for the second order case):

H̃ =
∑

d

F d
1 ⊗kro F

d
2 ,

2.4. IMPLEMENTATION 47

where ⊗kro is the Kronecker product, and Fm
I,i,j is the mth descriptor of the pair

(i, j) of image I . These two feature matrices can also be very sparse if one con-

siders only the relationship between certain pairs (e.g., pairs of close points).

In this situation we can simplify the computation of the power iteration step:

X̃ ← H̃X̃

H̃X̃ = (
∑

m

Fm
1 ⊗kro F

m
2)X̃

=
∑

m

vec(Fm
2 X(Fm

1)T)

∀i1, i2, Xi1,i2 ←
∑

j1,m

Fm
1,i1,j1

∑

j2

Xj1,j2F
m
2,i2,j2

(=
∑

j2,m

Fm
2,i2,j2

∑

j1

Xj1,j2F
m
1,i1,j1

),

by using the formula (BT ⊗kro A)vec(X) = vec(AXB).

This decomposition of the similarity measure decreases the amount of memory

required by the program. Its time complexity is only O(nnz(F1)n + nnz(F2)n)

per iteration and, unlike the method described in the previous section, it is an exact

algorithm.

In the higher-order case, we can also use this decomposition and the new

power iteration step can be written as follows (for the third order case) :

∀i1, i2,
Xi1,i2 ←

∑

j1,k1,j2,k2

Hi1,j1,k1,i2,j2,k2Xj1,j2Xk1,k2

=
∑

j1,k1,j2,k2,m

Fm
1,i1,j1,k1

Fm
2,i2,j2,k2

Xj1,j2Xk1,k2

=
∑

j1,k1,m

Fm
1,i1,j1,k1

∑

j2

Xj1,j2

∑

k2

Fm
2,i2,j2,k2

Xk1,k2 .

Here, the complexity is O(nnz(F1) ·n+ ‖F1‖inf,0,0 · ‖F2‖0,0,inf · d+nnz(F2) ·
n) per iteration, where ‖F1‖inf,0,0 is the number of doublets (j1, k1) such that

48CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

F1,(·),j1,k1 is not null, and ‖F2‖0,0,inf is the number of doublets (i2, j2) such that

F2,i2,j2,(·) is not null.

2.5 Experiments

In the experiments presented here (with some exceptions detailed in the subsec-

tions), we use Algorithm 6 to compute the tensor. Then, we use the tensor power

iteration with unit-norm row constraints described in Algorithm 3, and the ℓ1-

variant of Algorithm 5. The three first experiments use the simple similarity-

invariant potential presented in section 2.3.6. The smart selection of triangles is

not used in those experiments. As explained in section 2.4, we compute H using

the following formula: Hi,j,k = exp(−γ‖fi1,j1,k1 − fi2,j2,k2‖2). We set the param-

eter γ as follows: we compute all the ℓ2 distances between the tuples of image 1

and their nearest neighbors in image 2 as described in Algorithm 6, then we set γ

to the inverse of the average of all the squares of the computed distances. More

details are given in the following subsections.

Running time

Even though our tensor power iteration is slower than the probabilistic hypergraph

matching method proposed in [Zass and Shashua, 2008], since both methods have

to first computeH , their total running times are similar (on the order of one second

for 80 nodes).

2.5.1 Synthetic data

Following [Leordeanu and Hebert, 2005b; Zass and Shashua, 2008], we first use

synthetic data in order to quantitatively compare our algorithm to the state of the

art. We sample randomly and uniformly n = 25 points in the 2D plane. We create

a second set of points by perturbing the first one with Gaussian noise on their

positions. Then, we compare different algorithms to match those two sets. The

algorithm provides n matches. The accuracy of the algorithm is computed as the

number of good matches divided by n.

2.5. EXPERIMENTS 49

In order to have a fair comparison between our method and probabilistic hy-

pergraph matching [Zass and Shashua, 2008], we first compute the tensor as de-

scribed earlier. Then, we marginalize it as explained in [Zass and Shashua, 2008],

and we use the resulting vector with the algorithm they provide on line. We also

compare our result and [Zass and Shashua, 2008] to spectral matching [Leordeanu

and Hebert, 2005b] to show the improvement of using higher-order potentials.

First, we add Gaussian noise to the position of the second point set, apply

a global rotation, and add outliers. The results are shown in Figure 2.8 (top).

We can see that our method outperforms the other two. Our interpretation is that

when many outliers are added, the ambiguity of pairwise methods [Leordeanu and

Hebert, 2005b] increases, because many pairs become similar, whereas triplets are

less likely to become similar. Moreover, probabilistic hypergraph matching [Zass

and Shashua, 2008] reduces the high-order problem to a first-order one, so that it

is likely to match points which have the same neighborhoods. Such a method thus

becomes ambiguous when there are many outliers.

Second, we add Gaussian noise, rotation, and rescaling. Indeed, low-order

matching techniques, such as the spectral method, cannot handle those transfor-

mations (rotation and rescaling at the same time). In Figure 2.8 (bottom), we

can see that our method and the one of [Zass and Shashua, 2008] are indifferent

to those transformations, but the performance of [Leordeanu and Hebert, 2005b]

drops to 50% after a scaling of only 1.1 or 0.9, and quickly reaches chance level

at 1.2 or 0.8.

0 30 60 90 100
0

10

20

30

40

50

60

70

80

90

100

A
c
c
u
ra

c
y
 (

in
 %

)

Number of outliers

Tensor Matching (our work)

Spectral Method

Hypergraph Matching

−5 −4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

Scale effect 1.1
x

A
c
c
u
ra

c
y
 (

in
 %

)

Tensor Matching (this work)

Spectral Method

Hypergraph Matching

Figure 2.8: Left: Accuracy as a function of the number of added outliers. Right: Accu-

racy, as a function of the rescaling. (e.g., x = 2, correspond to a scaling of 1.12).

50CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

2.5.2 House dataset

The House dataset [CMU, 2005] is commonly used to test the performance of

matching algorithms. Some objects are taken from different viewpoints and n =

30 key points, which are present in every frame, are labeled. The scale is always

roughly the same, but the transformation is now perspective (although the exper-

iment has been designed such that it is almost orthographic). Since the ground

truth is provided, it is also easy to compute the accuracy of the algorithm. The

algorithm provides n matches, and the accuracy is the number of good matches

among them divided by n. In Figure 2.9, we can see that the low-order algo-

rithms cannot handle the fact that in perspective transforms, the relative positions

of points change in a complex way.

Figure 2.9: House data. Left: Correspondences found by the proposed method in the

house dataset. Right: Error Rate on this dataset depending on the base line angle, for

different methods.

2.5.3 Natural images

We take images from the Caltech-256 image database [Griffin et al., 2007b] which

depict objects on a clear background. We extract their silhouettes and subsample

points on them. We can then match images from the same class using our algo-

rithm; results are presented in Figure 2.10. Our tensor-based algorithm is able to

match objects with different visual appearances in the presence of strong defor-

mations.

2.5. EXPERIMENTS 51

Figure 2.10: Matching silhouettes from the Caltech-256 database.

2.5.4 3D object matching

We have also experimented with the 3D point descriptor described in Section 2.3.6.

We have downloaded some freely available 3D models [archive3d, 2008], have

manually extracted some points at key positions. After that, we execute our al-

gorithm with only our third-order potential (no local description of the shape).

Points are not always matched perfectly, but the results is almost always visually

good. Some results are shown in Figure 2.11.

For more completeness, we also use some 3D models from SHREC 2009

dataset [Pratikakis et al., 2009], randomly select 70 points on each of them, and

match them. The results can be seen on Figure 2.12. The two sets of experiments

have been performed with the same set of parameters.

52CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

Figure 2.11: Two pairs of 3D models matched by our algorithm.

Figure 2.12: Random points are selected on each of the two 3D models, and then

matched.

2.5.5 Potentials of different orders

As explained in Section 2.3.4, we can also simultaneously use potentials of dif-

ferent orders. We have chosen an example (Figure 2.13) which is both hard for

first-order matching based on SIFT-descriptors, and for tensor matching based on

triplets only. We have taken two pictures of the same person with changes in both

2.5. EXPERIMENTS 53

viewing angle and face expression. Since the face is deformable, local descriptors

tend to be unreliable. In addition, algorithms based on the assumption that the

transformation is parametric (such as RANSAC) are not applicable.

Figure 2.13: (Best seen in color.) Matching of two different pictures with a) SIFT only,

b) tensor matching only, c) combined, and d) combined with dummy nodes

In both pictures, we automatically extract around 300 interest points, and for

each of them compute its SIFT descriptor (using the implementation of [Vedaldi,

2008]). Then we match each interest point to the one with the closest descriptor in

the other image, when the match is unambiguous, as described in [Lowe, 2004b].

The result (Figure 2.13.a) is not satisfying. We believe that this is due to the non-

parametric deformation of the face, occlusion, relatively textureless images, and

ambiguities due to the symmetry.

We use also triplet information only, without SIFT descriptors. Here too, the

graph nodes are the SIFT interest points, and are automatically extracted. This

leads to ambiguity in the matching process: not all nodes in one image have sim-

ilar nodes in the other image. Moreover, matching with only scale- and rotation-

invariant features (see Section 2.3.6) is too ambiguous. So we use as triplet de-

scriptor the concatenation of the sines of the three angles and the image coordi-

54CHAPTER 2. A TENSORIAL FORMULATION FOR HYPER-GRAPH MATCHING

nates (x-y) of the three edges. This descriptor is only translation invariant but

can be robust to small scale or rotation changes. In Figure 2.13.b, one can see

that the resulting matching is globally good, but some details are wrong. Since

the descriptors are only based on geometry (and not on the image), the algorithm

matches the left (resp. right) part of face 1 to the left (resp. right) part of face 2.

However, since the face has turned in the second image, the corresponding parts

no longer keep their original geometric location, resulting in wrong matches.

As explained in section 2.3.4, we can also combine both cues. The algorithm

can use both image-based cues from the first-order potential and geometry-based

cues from the third-order potential. The result is very satisfying (Figure 2.13.c).

We also show in figure 2.13.d a result with dummy nodes which is slightly im-

proved.

2.6 Conclusion

In this chapter, we have proposed a tensor-based algorithm for high-order graph

matching in computer vision applications. We have reached state-of-the-art per-

formance with simple potentials that are invariant to rigid, affine or projective

image transformations. This work can be extended in a number of ways, for ex-

ample by considering more complex features based on three, four or even more

point or line features to be fully invariant to richer classes of transformations. It

would also be natural to follow the approach of [Caetano et al., 2007] and learn

potentials automatically from labeled or partially labeled data.

Chapter 3

Graph matching for image

categorization

3.1 Introduction

In this chapter, we address the problem of category-level image classification. The

method presented here models an image by a graph whose nodes correspond to

a dense set of regions, and edges reflect the underlying grid structure of the im-

age and act as springs to guarantee the geometric consistency of nearby regions

during matching (see Figure 3.1). A fast approximate algorithm for matching the

graphs associated with two images is presented. This algorithm is used to con-

struct a kernel appropriate for SVM-based image classification, and experiments

with standard categorization datasets demonstrate performance that matches or

exceeds the state of the art for methods using a single type of features.

3.1.1 Motivation and goals

As explained in the introduction chapter, the advantage of graph-matching meth-

ods is that they use the spatial relationship between visual features, on the contrary

of other methods, such as bag-of-words, which drop this important information.

On the downside, they require more computation time and are hard to optimize.

Although graph-matching methods have recorded some success in image catego-

rization (e.g. [Berg et al., 2005a]), they have been soon after outperformed by

55

56 CHAPTER 3. GRAPH MATCHING FOR IMAGE CATEGORIZATION

Figure 3.1: The leftmost picture in each row is matched to the rightmost one.

The second panel shows the deformation field (displacements) computed by our

matching procedure, and the third panel shows the leftmost image after it has been

deformed according to that field. Since the matching process is asymmetric, our

kernel is the average of the two matching scores (best seen in color).

simpler and faster methods such as spatial pyramids [Lazebnik et al., 2006a] (as

shown by [Kim and Grauman, 2010]). At the beginning of this work, we have

tried to look for the reasons behind the performance gap between graph-matching

approaches and the state of the art, and we have identified three main ones:

• The smaller number of visual features used in graph-matching methods.

Typically, [Berg et al., 2005a; Leordeanu and Hebert, 2005b] use around

one hundred features, while [Lazebnik et al., 2006a] use thousands of SIFT

features extracted on a dense grid.

• The use of a simpler learning machinery: [Berg et al., 2005a] uses the

nearest-neighbor approach with a short-listing approximation strategy, while

most bag-of-word approaches use non-linear SVMs.

• The heavier computation time requirement of graph matching. We believe

that this is a crucial point since it is the main problem behind the two pre-

vious points: the slowness of graph matching forces to use fewer visual

features and simpler machine learning techniques.

As a result of this analysis, our main challenge has been build a very fast algo-

rithm. Although still much slower than pyramid matching kernel, our method

3.2. PREVIOUS WORK 57

is fast enough to allow us to use more visual features and the SVM machinery.

Thanks to these points, this work shows better performance than spatial pyramids

in similar conditions [Boureau et al., 2010] (see Section 3.5).

3.1.2 Organization and contributions

As in the previous chapter, after this introduction, we first do a general review

of literature (Section 3.2.1), before describing an highly related work: [Caputo

and Jie, 2009; Wallraven et al., 2003] which uses a feature-matching technique to

build a kernel appropriate for SVM-based classification (Section 3.2.2).

Then, we present our three main contributions:

1. Generalizing [Caputo and Jie, 2009; Wallraven et al., 2003] to graphs, we pro-

pose in Section 3.3 to use the optimum value of the MRF associated with two

images as a (non positive definite) kernel, suitable for SVM classification.

2. We propose in Section 3.4 a novel extension of Ishikawa’s method [Ishikawa,

2003] for optimizing MRFs which is orders of magnitude faster than compet-

ing algorithms (e.g., [Kim and Grauman, 2010; Kolmogorov and Zabih, 2004;

Leordeanu and Hebert, 2005a]) for the grids with a few hundred nodes considered

in this chapter). In turn, this allows us to combine our kernel with SVMs in image

classification tasks.

3. We demonstrate in Section 3.5 through experiments with standard benchmarks (Cal-

tech 101, Caltech 256, and Scenes datasets) that our method matches and in some

cases exceeds the state of the art for methods using a single type of features.

This work as been made in collaboration with Armand Joulin. A previous

version appears in [Duchenne et al., 2011a].

3.2 Previous work

3.2.1 Review of literature

Early “appearance-based” approaches to image retrieval and object recognition,

such as color histograms, eigenfaces or appearance manifolds, used global image

descriptors to match images. Schmid and Mohr [Schmid and Mohr, 1997] pro-

58 CHAPTER 3. GRAPH MATCHING FOR IMAGE CATEGORIZATION

posed instead to formulate image retrieval as a correspondence problem where

local and semi-local image descriptors (jets and geometric configurations of im-

age neighbors) are used to match individual (or groups of) interest points, and

these correspondences vote for the corresponding images. A related technique

was proposed by Lowe [Lowe, 2004c] to detect particular object instances us-

ing correspondences established between SIFT images descriptors, which have

proven very effective for this task. Following Sivic and Zisserman [Sivic and Zis-

serman, 2003], many modern approaches to image retrieval use SIFT and SIFT-

like features, but abandon the correspondence formulation in favor of an approach

inspired by text retrieval, where features are quantized using k-means to form a

bag of features (or BOF)—that is, a histogram of quantized features. Pictures

similar to a query image are then retrieved by comparing the corresponding his-

tograms, a process that can be sped up by the use of inverted file systems and

various indexing schemes. As noted by Jegou et al. [Jegou et al., 2010], image re-

trieval methods based on bags of features can be seen as voting schemes between

local features where the Voronoi cells associated with the k-means clusters are

used to approximate the inter-feature distances. In turn, this suggests exploring

alternative approximation schemes that retain the efficiency of bags of features

in terms of memory and speed, yet afford a retrieval performance comparable to

that of correspondence-based methods ([Jegou et al., 2010] is an example among

many others of such a scheme).

This also suggests that explicit correspondences between features may pro-

vide a good measure of image similarity in image categorization tasks. Variants

of this approach can be found in quite different guises in the part-based con-

stellation model of [Fergus et al., 2006], the naive Bayes nearest-neighbor al-

gorithm of [Boiman et al., 2008], and the pyramid matching kernel of [Grauman

and Darrell, 2007]. Yet, although these techniques may give state-of-the-art re-

sults (e.g., [Boiman et al., 2008]), it is probably fair to say that methods using

bags of features and their variants [Boureau et al., 2010; Csurka et al., 2004; Dalal

and Triggs, 2005b; Felzenszwalb et al., 2008c; Lazebnik et al., 2006b; Yang et al.,

2010; Zhang et al., 2007b] to train sophisticated classifiers such as support vector

machines (SVMs) are dominant today in image classification and object detection

tasks. This may be due, in part, to the simplicity and efficiency of the BOF model,

3.2. PREVIOUS WORK 59

but one should keep in mind that, as in the image retrieval domain, BOF-based

approaches can be seen as approximations of their correspondence-based counter-

parts and, indeed, Caputo and Jie [Caputo and Jie, 2009] have shown that feature

correspondences can be used to construct an image comparison kernel [Wallraven

et al., 2003] that, although not positive definite, is appropriate for SVM-based

classification, and often outperforms BOFs on standard datasets such as Caltech

101 in terms of classification rates if not run time.

Bags of features discard all spatial information. There is always a trade-off

between viewpoint invariance and discriminative power, and retaining at least a

coarse approximation of an image layout makes sense for many object classes,

at least when they are observed from a limited range of viewpoints. Indeed, im-

age representations that enforce some degree of spatial consistency –such as HOG

models [Dalal and Triggs, 2005b], spatial pyramids [Lazebnik et al., 2006b], and

their variants, e.g. [Boureau et al., 2010; Yang et al., 2010]– typically perform

better in image classification tasks than pure bags of features. As noted in the

introduction, this suggests adding spatial constraints to correspondence-based ap-

proaches to object categorization. In this context, several authors [Berg et al.,

2005b; Felzenszwalb and Huttenlocher, 2005a; Fergus et al., 2005, 2006; Fischler

and Elschlager, 1973b; Kim and Grauman, 2010; Leordeanu and Hebert, 2005a;

Liu et al., 2008; Shekhovtsov et al., 2008] have proposed using graph-matching

techniques to minimize pairwise geometric distortions while establishing corre-

spondences between object parts, interest points, or small image regions. The

problem of matching two images is formulated as the optimization of an energy

akin to a first-order multi-label MRF, defined on the corresponding graphs, the la-

bels corresponding to node assignments or, equivalently, to a set of discrete two-

dimensional image translations. This optimization problem is unfortunately in-

tractable for general graphs [Boykov et al., 2001], prompting the use of restricted

graph structures (e.g., very small graphs [Fergus et al., 2006], trees [Felzenszwalb

and Huttenlocher, 2005a], stars [Fergus et al., 2005], or strings [Kim and Grau-

man, 2010]) and/or approximate optimization algorithms (e.g., greedy approaches [Fis-

chler and Elschlager, 1973b], spectral matching [Leordeanu and Hebert, 2005a],

alpha expansion [Boykov et al., 2001], or tree-reweighted message passing, aka

TRW-S [Kolmogorov, 2006; Wainwright et al., 2002]).

60 CHAPTER 3. GRAPH MATCHING FOR IMAGE CATEGORIZATION

3.2.2 Caputo’s method

In this section, we present the work of [Caputo and Jie, 2009; Wallraven et al.,

2003]. This method uses a feature-matching technique to build a kernel matrix

appropriate for SVM classification. Our method extends it by using graph match-

ing instead.

Let us denote the set of images (train and test) by I = {Ii}mi=1. Each image

contains a set of local features L = {Li}mi=1, with Li = {lj(Ii)}mi

j=1. Let us denote

Kl a mercer kernel that computes a similarity measure between local features.

When comparing two images, this technique matches each local feature of the

first image to its nearest neighbor in the second image (feature matching). Thus,

they define a global kernel KG:

KG(Ih, Ik) =
1

nh

nh
∑

i=1

max
j=1..nk

Kl(li(Ih), lj(Ik)).

Then, they symmetrize it, by defining KS:

KS(Ih, Ik) =
1

2
(KG(Ih, Ik) +KG(Ik, Ih)).

They show in there article that, for a given set of images, there always exist a

range of parameters for which KS is definite positive.

Finally, they use this kernel for standard one-versus-rest SVM classification.

3.3 Proposed approach

We propose in this paper to represent images by graphs whose nodes and edges

represent the regions associated with a coarse image grid (about 500 regions)

and their adjacency relationships. The regions are represented by the mid-level

sparse features proposed in [Boureau et al., 2010], and the unary potential used

in our MRF is used to select matching features, while the binary one encour-

ages nearby features in one image to match nearby features in the second one

while discouraging matching nearby features to cross each other (the matching

process is illustrated in Figure 3.1). The optimum MRF value is then used to

3.3. PROPOSED APPROACH 61

construct a (non positive definite) kernel for comparing images (Section 3.3.3).

We formulate the optimization of our MRF as a graph cuts problem, and pro-

pose as an alternative to alpha expansion [Boykov et al., 2001] an algorithm that

extends Ishikawa’s technique [Ishikawa, 2003] for optimizing one-dimensional

multi-label problems to our two-dimensional setting (Section 3.4). This algorithm

is particularly well suited to the grids of moderate size considered here: Our al-

gorithm yields an image matching method that is empirically much faster (by

several orders of magnitude) than alternatives based on alpha expansion [Boykov

et al., 2001], TRW-S [Felzenszwalb and Huttenlocher, 2006; Liu et al., 2008;

Shekhovtsov et al., 2008], or the approximate string matching algorithm of [Kim

and Grauman, 2010], for our grid size at least. Speed is particularly important in

kernel-based approaches to object categorization, since computing the kernel re-

quires comparing all pairs of images in the training set. In turn, speed issues often

force graph-matching techniques [Berg et al., 2005b; Kim and Grauman, 2010] to

rely on nearest-neighbor classification. In contrast, we use our kernel to train a

support vector machine, and demonstrate in Section 3.5 classification results that

match or exceed the state of the art for methods using a single type of features on

standard benchmarks (Caltech 101, Caltech 256, and Scenes datasets).

3.3.1 Image representation

An image is represented in this paper by a graph G whose nodes represent the N

image regions associated with a coarse image grid (Figure 3.2), and each node

is connected with its four neighbors. The nodes are indexed by their position

on the grid, defined as the corresponding couple of row and column indices. It

should thus be clear that, when we talk of the “position” of a node n, we mean

the couple dn = (xn, yn) formed by these indices. The corresponding “units” are

not pixels but the region extents in the x (horizontal) and y (vertical) directions.

For each node n in G, we also define the feature vector Fn associated with the

corresponding image region.

SIFT local image descriptors [Lowe, 2004c] are often used as low-level fea-

tures in object categorization tasks. In [Boureau et al., 2010], Boureau et al.

propose new features which lead in general to better classification performance

62 CHAPTER 3. GRAPH MATCHING FOR IMAGE CATEGORIZATION

Figure 3.2: We represent images by a grid-shaped graph. The actual number of

nodes is 18 by 24.

than SIFT. They are based on sparse coding and max pooling: Briefly, the im-

age is divided into overlapping regions of 32 × 32 pixels. In each region, four

128-dimensional SIFT descriptors are extracted and concatenated. The resulting

512-dimensional vector is decomposed as a sparse linear combination of atoms of

a learned dictionary. The vectors of the coefficients of this sparse decomposition

are used as local sparse features. These local sparse features are then summarized

over larger image regions by taking, for each dimension of the vector of coeffi-

cients, the maximum value over the region (max pooling) [Boureau et al., 2010].

We use the result of max pooling over our graph regions as image features in this

paper.

3.3. PROPOSED APPROACH 63

3.3.2 Matching two images

To match two images, we distort the graph G representing the first one to the

graph G ′ associated with the second one while enforcing spatial consistency across

adjacent nodes. Concretely, correspondences are defined in terms of displace-

ments within the graph grid: Given a node n in G, and some displacement dn, n is

matched to the node n′ in G ′ such that pn′ = pn+dn, and we maximize the energy

function

E→(d) =
∑

n∈V
Un(dn) +

∑

(m,n)∈E
Bm,n(dm, dn), (3.1)

where V and E respectively denote the set of nodes and edges of G, d is the vec-

tor formed by the displacements associated with all the elements of V , and Un

and Bm,n respectively denote unary and binary potentials that will be defined be-

low. Note that we fix a maximum displacement in each direction, K, leading

to a total of (2K + 1)2 possible displacements dn for each node n. The energy

function defined by Eq. (3.1) is thus a multi-label Markov random field (MRF)

where the labels are the displacements. Typically, we set K = 5, which leads to

(2 ∗ 5 + 1)2 = 121 possible displacements.

Unary potential

The unary potential is simply the correlation (dot product) between Fn and Fn′ .

This simple similarity measure brings several interesting properties:

• Robustness to outliers: In the worst case, completely different features have

a similarity score of zero, so they are not too heavily penalized.

• Likely zero-valued on non-similar descriptors: Our descriptors are sparse,

they have few non-zero values. In practice, visually different features have

few chances to have the same non-zero coefficients, and therefore their dot

product is likely to be equal to zero. This limits what we call the "similarity

noise", when two visually different features can have a sizable (but small)

similarity value. When they add up on the whole image, their values can

significantly change the global similarity measure, even though they are

64 CHAPTER 3. GRAPH MATCHING FOR IMAGE CATEGORIZATION

insignificant. In some case, they can overflow the really informative signal

coming from the measure between visually similar features.

Global normalization. In this work, at test time, we compare the similarity

values between training and test images. But we have noticed that some images

have almost systematically higher similarity measures with all test images. This

had a high negative impact on performances. That is why we have normalized the

descriptors of the images such that the similarity to themselves have a constant

value. We assume that when matching an image to itself, there is no deformation,

so the binary cost explained below is equal to zero. In this situation, normalizing

comes down to dividing the descriptors of an image by their ℓ2 norm. So, we

concatenate the descriptors of all the nodes in the image. We compute its ℓ2 norm,

and we divide all the descriptors by this value.

Binary potential.

The binary potential enforces spatial consistency and is decomposed into two

terms.

��

��

��

��

Figure 3.3: Our binary potential encourages two neighboring nodes to be matched

to nodes with the same relative position (a). It penalizes distortion of this relative

position (b). It highly penalizes inversions (e.g. when the left node is matched on

the right (c), or the top node is matched on the bottom (d)).

3.3. PROPOSED APPROACH 65

Binary potential I: stretching The first one acts as a spring. It penalizes stretch-

ing (see Figure 3.3.b):

um,n(dm, dn) = −λ‖dm − dn‖1, (3.2)

where λ is the positive spring constant. We use the ℓ1 distance to be robust to

sparse distortion differences.

Binary potential II: crossing We focus on categorizing objects (as opposed to

more general scenes) such that, for some range of viewpoints, shape variability

can be represented by image displacements varying smoothly over the image, and

object fragments typically cannot cross each other (see Figure 3.3.c-d). We thus

penalize crossing by adding a binary potential between nearby nodes such that:

vm,n(dm, dn) =































−µ[dxn − dxm]+ if xn = xm + 1

and yn = ym,

−µ[dyn − dym]+ if xn = xm

and yn = ym + 1,

0 otherwise,

where µ a positive constant and [z]+ = max(0, z) .

The overall binary potential is thus:

Bm,n(dm, dn) = um,n(dm, dn) + vm,n(dm, dn). (3.3)

3.3.3 A kernel for image comparison

The two graphs G and G ′ play asymmetric roles in the objective function E→(d).

One can define a second objective function E←(d) by reversing the roles of G
and G ′. Optimizing both functions allows us to define a kernel for measuring

the similarity of two images, whose value is 1
2
(maxd1 E→(d1) + maxd2 E←(d2)).

This kernel does not satisfy the positive definitiveness criterion (this is because of

the maximization of Eq. (3.1), see [Caputo and Jie, 2009] for the corresponding

argument in a related situation).

66 CHAPTER 3. GRAPH MATCHING FOR IMAGE CATEGORIZATION

The machine learning community has developed several simple techniques to

cope with this situation, and to obtain a definitive positive kernel out of a non pos-

itive one. [Wu et al., 2005] review and compare some of them, including thresh-

olding or soft thresholding of negative eigenvalues, and shifting of all eigenvalues.

We have simply chosen to threshold the negative eigenvalues to 0, in order to con-

struct a valid kernel matrix S. This matrix is then used to train a support vector

machine classifier (SVM) in a standard one-vs-all fashion.

3.4 Implementation

Maximizing Eq. (3.1) over all possible deformations is NP hard for general graphs

[Boykov et al., 2001]. Many algorithms have been developed for finding approxi-

mate solutions of this problem [Boykov et al., 2001; Ishikawa, 2003; Kolmogorov,

2006; Wainwright et al., 2002]. Alpha expansion [Boykov et al., 2001] is a greedy

algorithm with strong optimality properties. TRW-S [Kolmogorov, 2006; Wain-

wright et al., 2002] has even stronger optimality properties for very general en-

ergy functions, but it is also known to be slower than alpha expansion [Jung et al.,

2008]. Ishikawa’s method [Ishikawa, 2003] is a fast alternative that finds the

global maximum for a well-defined family of energy functions. Since our en-

ergy function defined in Eq. (3.1) possesses properties very close to those of this

family, we focus here on Ishikawa’s method, and propose extensions to handle

the specificities of our energy. Note that Ishikawa’s method is one of the rare

algorithms capable of solving exactly a multi-label MRF.

3.4.1 Ishikawa’s method

[Ishikawa, 2003] has proposed a min-cut/max-flow method for finding the global

maximum of a multi-label MRF whose binary potentials verify:

Bmn(λm, λn) = g(λm − λn), (3.4)

where g is a concave function and λm (resp. λn) is the label of the nodem (resp. n).

The set of labels has to be linearly ordered. The Ishikawa method relies on build-

3.4. IMPLEMENTATION 67

ing a graph with one node nλ for each pair of node n of G and label λ, see Fig-

ure 3.4 from details. A min-cut/max-flow algorithm is performed on this graph. If

it cuts the edge from nλ−1 to nλ, we assign the node n to the label λ. [Ishikawa,

2003] proves that this assignment is optimal.

Unfortunately, our set of labels is two-dimensional and there is no linear or-

dering of N2 which keeps the induced binary potential concave. A simple ar-

gument is that for any label dn = (dxn, dyn), its 4-neighbor labels dm (e.g.,

dm = (dxn + 1, dyn), dm = (dxn, dyn − 1)...) are equally distant to dn,i.e.

B(dn, dm) = cn < 0 for all its neighbors. Any concave function which has the

same value c for 3 different points is necessarily always below c. This contradicts

B(dn, dn) = 0.

Figure 3.4: A graph associated with Ishikawa’s method. On the horizontal axis

are the nodes n ∈ {1, . . . , 4} and on the vertical axis the labels (λj)1≤j≤4. Each

Ishikawa node corresponds to a node n and a label λj . The plain vertical ar-

rows represent the unary potentials Un(λj). The dashed vertical arrows represent

the infinite edges. The plain horizontal arrows correspond to the binary poten-

tials umn(λj, λj) while the dash-dot arrows correspond to the non-crossing binary

potentials vmn(λj, λj − 1).

68 CHAPTER 3. GRAPH MATCHING FOR IMAGE CATEGORIZATION

3.4.2 Proposed method: Curve expansion

We propose in this section a generalization of Ishikawa’s method capable of solv-

ing problems with two-dimensional labels.

Figure 3.5: Vertical curve expansion (left) and horizontal curve expansion (right)

with two nodes, blue (“b”) and red (“r”). The grid corresponds to all possible dis-

tortions d. The blue (red) squares represent the allowed d for the curve expansion

of the blue (red) node. The arrows explain the construction of Ishikawa graph:

The black arrows are the unary potentials Un(dn) and the green arrows (resp.

red) are the binary potentials Bmn(dm, dn) for vertical (resp. horizontal) moves,

i.e., dxt+1 = dxt (resp. dyt+1 = dyt). The infinite edges are omitted for clarity

(best seen in color).

Two-step curve expansion

The binary part of our MRF can readily be rewritten as:

B(d) =
∑

(m,n)∈E
gx(dxm − dxn) + gy(dym − dyn), (3.5)

where gx and gy are negative concave functions. For a fixed value of dx =

(dx1, . . . , dxN), the potentials inB(d) verify condition (3.4), and Ishikawa’s method

can be used to find the optimal distortion dy = (dy1, . . . , dyN) given dx. We thus

alternate between optimizing over dy given dx (“vertical move”) and optimizing

3.4. IMPLEMENTATION 69

over dx given dy (“horizontal move”). Figure 3.5 shows an example of a vertical

move (left) and a horizontal move for two nodes.

More precisely, we first initialize d by computing the following upper-bound

of E1→2:

max
d

∑

n∈V
Un(dn) +

∑

(m,n)∈E
gx(dxm − dxn).

Since dn = (dxn, dyn), this can be rewritten as:

max
dx

∑

n∈V
max
dyn

(Un(dxn, dyn)) +
∑

(m,n)∈E
gx(dxm − dxn),

which can be solved optimally using Ishikawa’s method. We then solve a sequence

of vertical and horizontal moves:

dyt+1 ← argmax
dy

∑

n∈V
Un(dx

t
n, dyn) +

∑

(m,n)∈E
gy(dym − dyn), (3.6)

dxt+1 ← argmax
dx

∑

n∈V
Un(dxn, dy

t
n) +

∑

(m,n)∈E
gx(dxm − dxn).

The local minimum obtained by this procedure is lower than 2
(√

Nl

)Nn
configu-

rations, where Nl is the number of labels. By comparison, the minimum obtained

by alpha expansion is only guaranteed to be lower than Nl2
Nn other configura-

tions [Boykov et al., 2001].

Multi-step curve expansion

The procedure proposed in the previous section only allows vertical and hori-

zontal moves. Let us now show how to extend it to allow more complicated

moves. Ishikawa’s method reaches the global minimum of functions verifying

condition (3.4). It can be extended to more general binary terms by replacing (3.4)

by:

∀λ, µ, B(λ, µ) +B(λ+ 1, µ+ 1) ≤ B(λ+ 1, µ) +B(λ, µ+ 1).

70 CHAPTER 3. GRAPH MATCHING FOR IMAGE CATEGORIZATION

Figure 3.6: An example of curve expansion move for two nodes, b and r. The

blue curve corresponds to the nodes (nλ
b)1≤λ≤Nl

obtained by applying the labels λ
to the node b. On the left, we show the arrows between nodes nλ and nλ+1 rep-

resenting the unary potential Uλ+1
n (infinite arrows in the opposite direction have

been omitted for clarity). The center (resp. right) panel represents binary potential

edges between nodes b and r with labels λb and λr corresponding to vertical (resp.

horizontal) displacements. A displacement which cannot be connected to the cor-

responding displacements of another node, is either connected to the source S or

the sink T (best seen in color).

This is a direct consequence of the proof in [Ishikawa, 2003]. With this condi-

tion, we can handle binary functions which do not only depend on pairwise label

differences. This allows us to use more complicated moves than horizontal or ver-

tical displacements. We thus propose the following algorithm: At each step t, we

consider an ordered list of Pt possible distortions Dt = [d̃1, d̃2, ..., d̃Pt
] . Given

nodes n with current distortion dtn, we update these distortions by solving the

following problem:

max
d̃t∈Dt

∑

n∈V
Un(d

t
n + d̃tn)− λ

∑

(m,n)∈E
‖dtn + d̃tm − (dtn + d̃tn)‖1,

where d̃t = (d̃t1, . . . , d̃
t
N). Then the updated distortion of node n is dt+1

n ←
dtn + d̃tn.

For example the vertical move, Eq. (3.6), consists of distortions d̃ of the

form (dx̃, dỹ) = (0, k) for k ∈ {−K, . . . ,K}. In practice, we construct a graph

inspired by the one constructed for Ishikawa’s method. An example is shown in

Figure 3.6 with two nodes (for proof details, see the supplementary material).

Note that the set of all possible distortions D can be different for each node,

which givesN differentDn’s. The only constraint is that all the (Dn)1≤n≤N should

3.5. EXPERIMENTS 71

be increasing (or decreasing) in y and increasing (or decreasing) in x.

3.5 Experiments

The proposed approach to graph matching has been implemented in C++. In this

section we compare its running time to competing algorithms, before presenting

image matching results and a comparative evaluation with the state of the art in

image classification tasks on standard benchmarks (Caltech 101, Caltech 256 and

Scenes).

3.5.1 Running time

Figure 3.7: Comparison between the running times of TRW-S (purple), alpha

expansion (black), 2-step (blue) and multi-step (red) curve expansions, for an in-

creasing number of nodes in the grid (best seen in color, running time in log scale).

We compare here the running times of our curve expansion algorithm to the

alpha expansion and TRW-S. For the alpha expansion, we use the C++ implemen-

tation of Boykov et al. [Boykov et al., 2001; Kolmogorov and Zabih, 2004]. For

72 CHAPTER 3. GRAPH MATCHING FOR IMAGE CATEGORIZATION

TRW-S, we use the C++ implementation of Kolmogorov [Kolmogorov, 2006].

For the multi-step curve expansion we use four different moves (horizontal, ver-

tical and diagonal moves). All experiments are performed on a single 2.4 gHz

processor with 4 gB of RAM. We take 100 random pairs of images from Cal-

tech 101 and run the four algorithms on increasing grid sizes. The results of our

comparison are shown in Figure 3.7. The 2-step and multi-step curve expansions

are much faster than the alpha expansion and TRW-S for grids with up to 1000

nodes or so. However, empirically, their complexity in the number of nodes is

higher than alpha expansion’s, which makes them slower for graphs with more

than 4000 nodes.

In terms of average minimization performance, 2-step curve expansion is sim-

ilar to alpha expansion, whereas the multi-step curve expansion with 4 moves,

and TRW-S improve the results by respectively, 2% and 5%. However, these im-

provements have empirically little influence on the overall process. Indeed, for

categorization, a coarse matching seems to be enough to obtain high categoriza-

tion performance. Thus, the real issue in this context is time and we prefer to use

the 2-step curve expansion which matches two images in less than 0.04 seconds

for 500 nodes.

Graph-matching based Method Number of nodes Matching time

[Berg et al., 2005b] 50 5s

[Leordeanu and Hebert, 2005a] 130 9s

[Kim and Grauman, 2010] 4800 10s

[Kim and Grauman, 2010] 500 1s

Alpha Expansion 500 1s

TRWS 500 10s

Ours 18× 24 500 0.04s

Table 3.1: Speed of several graph-matching algorithms.

As shown on Table 3.1, other methods have been developed for approxi-

mate graph matching [Berg et al., 2005b; Kim and Grauman, 2010; Leordeanu

and Hebert, 2005a], but their running time is prohibitive for our application.

Berg et al. [Berg et al., 2005b] match two graphs with 50 nodes in 5 seconds

and Leordeanu et al. [Leordeanu and Hebert, 2005a] match 130 points in 9 sec-

onds. Kim and Grauman [Kim and Grauman, 2010] propose a string matching

3.5. EXPERIMENTS 73

algorithm which takes around 10 seconds for 4800 nodes and around 1 second to

match 500 nodes.

3.5.2 Image matching

Figure 3.8: Additional examples of image matching on the Caltech 101 dataset.

The format of the figure is the same as that of Figure 3.1.

To illustrate image matching, we use a finer grid than in our actual image

classification experiments to show the level of localization accuracy that can be

achieved. We fix 30 × 40 grid with maximum allowed displacement K = 15. In

Figure 3.9, we show the influence of the parameter µ which penalizes the cross-

ing between matches. On the left panel of the figure, where crossings are not

penalized, some parts of the image are duplicated, whereas, when crossings are

forbidden (right panel), the deformed picture retains the original image structure

yet still matches well the model. For our categorization experiments, we choose a

value of this parameter in between (middle panel). Figure 3.8 shows some match-

ing results for images of the same category, similar to Figure 3.1.

74 CHAPTER 3. GRAPH MATCHING FOR IMAGE CATEGORIZATION

Figure 3.9: We match the top-left image to the top-right image with different value

of the crossing constant µ (on the bottom). From left to right, µ = 0, .5 and 1.5.

3.5.3 Image classification

We test our algorithm on the publicly available Caltech 101, Caltech 256, and

Scenes datasets. We fix λ = 0.1, µ = 0.5 and K = 5 for all our experiments

on all the databases. We have tried two grid sizes: 18 × 24, and 24 × 32, and

have consistently obtained better results (by 1 to 2%) using the coarser grid, so

only show the corresponding results in this section. Our algorithm is robust to the

choice of K (as long as K is at least 5). The value for λ and µ have been chosen

by looking at the resulting matching on a single pair of images. Obviously using

parameters adapted to each database and selected by cross-validation would have

lead to better performance. Since time is a major issue when dealing with large

databases, we use the 2-step curve expansion instead of the M-step version.

Caltech 101. Like others, we report results for two different training set sizes (15

or 30 images), and report the average performance over 20 random splits. Our

results are compared to those of other methods based on graph matching [Berg,

2005; Berg et al., 2005b; Kim and Grauman, 2010; Varma and Ray, 2007] in Ta-

ble 3.2, which shows that we obtain classification rates that are better by more

than 12%. We also compare our results to the state of art on Caltech 101 in Ta-

3.6. CONCLUSION 75

ble 3.3. Our algorithm outperforms all competing methods for 15 training exam-

ples, and is the third performer overall, behind Yang et al. [Yang et al., 2009a] and,

Todorovic and Ahuja [Todorovic and Ahuja, 2008] for 30 examples. Note that our

method is the top performer among algorithms using a single type of feature for

both 15 and 30 training examples.

Caltech 256. Our results are compared with the state of the art for this dataset

in Table 3.4. They are similar to those obtained by methods using a single fea-

ture [Boiman et al., 2008; Kim and Grauman, 2010], but not as good as those

using multiple features ([Boiman et al., 2008] with 5 descriptors,[Todorovic and

Ahuja, 2008]).

Scenes. A comparison with the state of the art on this dataset is given in Table 3.5.

Our method is the second top performer below Boureau et al. [Boureau et al.,

2010]. This result is expected since it is designed to recognize objects with a

fairly consistent spatial layout (at least for some range of viewpoints). In contrast,

scenes are composed of many different elements that move freely in space.

Caltech101 (%)

Graph-matching based Method 15 examples

GBDist [Varma and Ray, 2007] 45.2

BergMatching [Berg et al., 2005b] 48.0

GBVote [Berg, 2005] 52.0

Kim and Grauman [Kim and Grauman, 2010] 61.5

Ours 18× 24 75.3 ± 0.7

Table 3.2: Average recognition rates of methods based on graph matching for

Caltech 101 using 15 training examples. In this table as in the following ones, the

top performance is shown in bold.

3.6 Conclusion

We have presented a new approach to object categorization that formulates im-

age matching as an energy optimization problem defined over graphs associated

with a coarse image grid, presented an efficient algorithm for optimizing this en-

ergy function and constructing the corresponding image comparison kernel, and

demonstrated results that match or exceed the state of the art for methods using a

76 CHAPTER 3. GRAPH MATCHING FOR IMAGE CATEGORIZATION

Caltech101 (%)

Feature Method 15 examples 30 examples

NBNN (1 Desc) [Boiman et al., 2008] 65.0 ± 1.1 -

Single Boureau et al. [Boureau et al., 2010] 69.0 ± 1.2 75.7 ± 1.1

Ours 18× 24 75.3 ± 0.7 80.3 ± 0.8

Gu et al.[Gu et al., 2009] - 77.5

Gehler et al. [Gehler and Nowozin, 2009] - 77.7

Multiple NBNN (5 Desc)[Boiman et al., 2008] 72.8 ± 0.4 -

Todorovic et al.[Todorovic and Ahuja, 2008] 72.0 83.0

Yang et al. [Yang et al., 2009a] 73.3 84.3

Table 3.3: Average recognition rates of state-of-the-art methods for Caltech 101.

Caltech 256 (%)

Feature Method 30 examples

SPM+SVM [Griffin et al., 2007a] 34.1

Kim et al.[Kim and Grauman, 2010] 36.3

Single NBNN (1 desc) [Boiman et al., 2008] 37.0

Ours 18× 24 36.5± .9

Multiple NBNN (5 desc) [Boiman et al., 2008] 42.0

Todorovic et al. [Todorovic and Ahuja, 2008] 49.5

Table 3.4: Average recognition rates of state-of-the-art methods for the Caltech

256 database.

Scenes database (%)

Method 100 examples

Yang et al. [Yang et al., 2009b] 80.3 ± 0.9

Lazebnik et al. [Lazebnik et al., 2006b] 81.4 ± 0.5

Ours 18× 24 82.1 ± 1.1

Boureau et al. [Boureau et al., 2010] 84.3 ± 0.5

Table 3.5: Average recognition rates of state-of-the-art methods for the Scenes

database.

single type of features on standard benchmarks. Future interesting research direc-

tions are to combine this method with sliding windows to perform object detection

or to abandon sliding windows altogether in detection tasks, by matching bound-

ing boxes available in training images to test scenes containing instances of the

corresponding objects.

Chapter 4

Image alignment for object

detection.

4.1 Introduction

As in the previous chapter, we present here a novel method for comparing two

images despite nonrigid transformations. This time, however, we omit pairwise

terms in our objective function, which allows us to efficiently compute its global

optimum. The corresponding similarity measure is used in object detection tasks.

In the object detection task, the position of the object is unknown. This leads

to an increased difficulty, especially for graph-matching techniques. Indeed, the

number of possible matches grows with the size of the test image. The size of

the search space increases, making it harder and more time-consuming to find a

good local optimum. For this reason, in this work, we present a model easier to

optimize. This allows us to speed up the matching process and to be guaranteed

to get a global optimum.

The method proposed here can be used in two ways:

• It can measure the similarity (up to a deformation) between a given proto-

type and all the bounding boxes of the same size included in a larger test

image. This method can be seen as a "deformable" correlation. As shown

on Figure 4.1, we use it to find the part of a test image, which is the most

similar to a given template.

77

78 CHAPTER 4. IMAGE ALIGNMENT FOR OBJECT DETECTION.

Figure 4.1: We can use our similarity measure to find the part of a test image

(right), which is the most similar to a given template (left). The red rectangle is

the output bounding box.

• Given two images, it can find the two most similar bounding boxes (one

from each image). This can be used: (1) For the co-detection problem

(explained in Section 4.3). (2) Or for the partial matching problem. In-

deed images often contain background clutter that might induce error in the

matching. Our method can be used to match only two relevant bounding

boxes, one from each image (see Figure 4.2).

Figure 4.2: Often, only a part of each image represents the same object, the rest

is clutter. We can use our similarity measure to quickly find the most similar pair

of bounding boxes, one from each image.

4.1. INTRODUCTION 79

For a given sliding window, the method considers all possible parts of a fixed

size which are contained in it (see Figure 4.3). All those parts are allowed to

move around their anchor position (with a maximum distance). The method is

hierarchical such that a part can itself contained subparts. For visibility reason,

only the first row and the first column of parts are displayed in Figure 4.3.

������������	�
���
�	�	��

�������	������
������

�����������	�������

Figure 4.3: (best seen in color) Our method considers all the parts of a given size

included in the prototype. For a given position of the sliding window in the test

image, it finds the best position of each part, which can move around its anchor

position.

4.1.1 Motivation and goals

Most modern approaches to visual image interpretation and scene analysis are

composed of three main components: an image model, a measure of similarity

between instances of this model, and a classifier based on these. For example, the

pedestrian detector of [Dalal and Triggs, 2005a] uses HOG features as its image

model, their inner product as its similarity measure, and a linear SVM in sliding-

window mode to find people in images.

Constructing appropriate image models and similarity measures is thus funda-

mental. Ideally, the models should account for the wide variability in appearance

of common-day objects due to changes in viewpoint and illumination, and the

80 CHAPTER 4. IMAGE ALIGNMENT FOR OBJECT DETECTION.

variations in shape, color and texture inherent to each category. Likewise, the

similarity measure should be invariant to these factors, but capable of discriminat-

ing among different object classes.

This work proposes a step in this direction with a very simple, yet highly flex-

ible image model consisting of a hierarchy of rectangular regions allowed to shift

arbitrarily within some disparity range to maximize the average correlation of the

HOG cells they contain, which is in turn used as a similarity measure suitable for

discriminative classifiers such as support vector machines or logistic regression.

Our work is inspired by the deformable image templates of [Felzenszwalb et al.,

2010], but unlike these, (1) we use all possible parts of the model (with a given

size), instead of selecting a few of them, and (2) it allows direct image-to-image

comparison in addition to model-to-image comparison.

4.2 Proposed approach

In this work, we propose a very simple but flexible model with only two primi-

tive objects: fixed-size HOG cells [Dalal and Triggs, 2005a] sampled on a coarse

image grid, and variable-size rectangular image regions. In this setting, parts are

defined at a given resolution as all the rectangular image regions that fit within a

larger region, which itself may be a part of an even larger region, etc. In addi-

tion, parts are allowed to arbitrarily shift within some rectangular disparity area

during matching to maximize the mean similarity of the corresponding HOG cells

(Figure 4.4), which is used in turn as the similarity measure for the corresponding

image patterns. We show that a four-dimensional variant of integral images [Viola

and Jones, 2004] and fast streaming maximum filters [Lemire, 2006] can be used

to compute this similarity measure efficiently with a computational cost within a

small constant factor of the optimal one.

This chapter makes two main original contributions:

1. We propose a novel image similarity measure that allows for arbitrary deforma-

tions of the image pattern within some given disparity range and can be evaluated

very efficiently [Lemire, 2006], with a cost equal to a small constant times that of

correlation in a sliding-window mode.

2. Our similarity measure relies on a hierarchical notion of parts based on simple

4.2. PROPOSED APPROACH 81

Figure 4.4: A target image, a query image, and an overlay of the best match of the

deformed query and target images.

rectangular image primitives and HOG cells [Dalal and Triggs, 2005a], and does

not require manual part specification [Bourdev and Malik, 2009; Felzenszwalb

et al., 2010] or automated discovery [Felzenszwalb and Huttenlocher, 2005b;

Lazebnik et al., 2005; Kushal et al., 2007].

Preliminary experiments using the PASCAL VOC 2007 benchmark demon-

strate the promise of the proposed approach.

4.2.1 Image Model

The two primitive objects considered in this presentation are HOG cells [Dalal and

Triggs, 2005a] of fixed size, sampled on a coarse image grid, and rectangular im-

age regions of different sizes. We assume that the HOG cells have been properly

normalized so their similarity can be measured by the inner product of the corre-

sponding feature vectors. Note that we focus on HOG cells since they have proven

effective in various object detection tasks [Dalal and Triggs, 2005a; Felzenszwalb

et al., 2010], but any other local image descriptor sampled on a regular grid would

do.

We limit our attention for the time being to three types of such regions, namely

images, (bounding) boxes, and parts (Figure 4.5). As will be explained later,

our actual implementation uses a deeper hierarchy (four levels of image regions

besides the images themselves), but we stick with boxes and parts in this section

for the sake of clarity.

82 CHAPTER 4. IMAGE ALIGNMENT FOR OBJECT DETECTION.

Figure 4.5: Images, boxes, parts and cells.

Let us also assume for the time being that we only have two images, and

identify every HOG cell with its position (row plus column) in the corresponding

image. Likewise, we identify each rectangular image region with the position of

its lower left corner (Figure 4.6). Given cells c and c′ in the first and second

image, we define ι(c, c′) as the similarity of the corresponding image descriptors,

as measured by their dot products.

The similarity between parts respectively located in p and p′ in the two images

can now be defined as

µ(p,p′) =
∑

c∈P
ι(p+ c,p′ + c), (4.1)

where P is the range of cell locations corresponding to a part.

If we allow the second part to shift within some disparity range R, we obtain

a second similarity measure, namely

ν(p,p′) = max
d∈D

µ(p,p′ + d). (4.2)

Finally we can measure the similarity of two bounding boxes b and b′ as the

sum of the similarities of their parts, that is

τ(b, b′) =
∑

p∈B
ν(b+ p, b′ + p), (4.3)

where B is the range of part positions within a box.

The indexing of the various image regions is illustrated in Figure 4.6. Clearly,

4.2. PROPOSED APPROACH 83

Figure 4.6: An image box positioned in b with a part in position p relative to this

box (or absolute position b + p), and a shifted part in position d relative to the

first one (or absolute position b+ p+ d).

the definitions of Eqs. (4.1)–(4.3) are easily extended to deeper hierarchies of

image regions using a recursive notation. We abstain from this worthy exercise

here. The main point is that they involve a succession of alternating sum and

max operators computed over rectangular windows. As will be shown in the next

section, this is the key to very efficient similarity computations, whatever the depth

of the hierarchy may be.

Note that the function ν is not, in general, symmetric (and thus τ is not sym-

metric either), even when the range of possible negative shifts is the same as the

range of positive ones, which is the setting adopted in this paper.

Finally, this similarity measure can be used for two different problems:

• Given an imageA, an imageB and a box size s, we can find the most similar

pair of boxes (one from each image) of size s (see Figure 4.7):

[b∗A, b
∗
B] = arg max

bA,bB

τ(bA, bB)

• Given a template T (an image with the same size than a box) and a test

image I , we can find the box in I which is the most similar to T (see Figure

4.4):

b∗I = argmax
bI

τ(0, bI)

84 CHAPTER 4. IMAGE ALIGNMENT FOR OBJECT DETECTION.

Figure 4.7: Our method can find the most similar pair of bounding boxes (in red).

In the rest of the chapter, we denote by s the similarity function:

s(T, I) = max
bI

τ(0, bI), (4.4)

where τ is computed based on the features of the template T and the test

image I .

4.2.2 Efficient Similarity Computation

We show in this section how to compare efficiently a box b associated with some

image i with all the bounding boxes b′ associated with a second image i′. This

is useful at training time, when positive pairs of training examples are obtained

from two boxes b and b′ bounding different instances of the same object, and

many positive-negative pairs are obtained by comparing b to all bounding boxes

b′ not intersecting the object in the second image (or to a subset of these). This is

also useful at test time to avoid repeated computations in a sliding window mode.

Let us represent individual HOG descriptors by vectors of fixed dimension h,

and denote by q (resp. r) the number of HOG cells in an image (resp. a box),

with q ≥ r. We can compute and tabulate in a q × r matrix A the inner products

of all pairs of cells in the box b and the image i′ in 2hqr flops (for floating point

operations). Note that this can be implemented as the product of an r × h matrix

(HOG cells of the box) and the transpose of a q×hmatrix, which is very efficient

in MATLAB for example.

Let us assume for simplicity that there are r part placements in a bounding box,

4.2. PROPOSED APPROACH 85

Figure 4.8: Efficient computation of part similarity using modified integral im-

ages. Left: computing the similarity of two parts p and p′. Right: the integral

image is computing by summing up similarities along parallel diagonal lines. See

text for details.

and q such placements in an image.1 OnceA has been computed, the r× q matrix

of similarities B with entries ν(p,p′) can be calculated efficiently using a slight

modification of integral images [Viola and Jones, 2004]. Figure 4.8 illustrates the

process for one-dimensional boxes and images. It shows the matrix A and two

parts located in p and p′ respectively. The similarity score associated with these

parts is obtained by summing the scores along the diagonal line segment with unit

slope shown in the figure. Changing the values of p and p′ changes where the line

segment is located, but not its slope, and if follows that the similarities of any pair

of parts can be computed in constant time using 2D integral images summing up

similarities along diagonal lines. Two-dimensional boxes and images are easily

handled by using 4D integral images represented as multiple 2D ones, and it is

easily shown that the total cost of constructing the r × q matrix B is 6qr flops,

including 2qr flops for computing the integral images.

Let us ignore boundary effects (again, for simplicity) and assume that all parts

in b and i′ can be shifted anywhere in the range D. The r × q matrix C of shifted

part similarities τ(b, b′) can now be computed in a naive manner in qrs flops,

where s is the size of D. Using a fast streaming maximum filter [Lemire, 2006],

this can be improved to 6qr flops by computing the running maxima, first row per

row, and then vertically among rows. The total computation thus takes 6(h+1)qr

1There are slightly fewer placements in practice of course. This requires a bit of bookkeeping

but does not significantly change the cost estimates of this section.

86 CHAPTER 4. IMAGE ALIGNMENT FOR OBJECT DETECTION.

Figure 4.9: A one-dimensional illustration of (one-dimensional) hierarchical de-

formable part models with one to three layers.

floating point operations.

As mentioned in Section 4.2.1, deeper hierarchies involving several layers

of moving parts can easily be accommodated by a simple generalization of the

approach presented so far: Similarities between boxes and images can be com-

puted according to the same scheme, alternating sum and max operations over

two-dimensional arrays, and the overall cost remains a small constant time the

optimal qr cost (see Figure 4.9 for a one-dimensional example). We have imple-

mented a four-layer hierarchy in our experiments.

One interesting feature is that, like special pyramids, our method can compute

a similarity score based on matching, without actually computing the matching.

Indeed on Equation (4.2), we compute a max without keeping the argmax. So,

more work and computing time are needed to actually retrieve the matching parts,

especially when we use a deep hierarchy.

4.3 Proof of concept: automated object discovery

The co-segmentation problem is defined as follow: given several images contain-

ing a common object, the goal is to segment this common object in each image.

Most co-segmentation articles (e.g. [Joulin et al., 2012]) do not take full advantage

of the structure of the object in order to be robust to heavy deformations.

Similarly, in this section, we use our method to automatically detect the most

similar set of objects from a collection of images. We do not aim to do segmen-

tation but just to find a bounding box around the object. Since our similarity

4.3. PROOF OF CONCEPT: AUTOMATED OBJECT DISCOVERY 87

Figure 4.10: A proof-of-concept co-segmentation example on a subset of 20 im-

ages from the Caltech face dataset: The last image is used as a query, and the

bounding box minimizing the mean similarity to a subset of 19 random images in

the dataset is returned, along with the matching bounding boxes in these images.

Not that the faces are found reliably in all but one image, even if the bounding

boxes are a bit off due to uncompensated deformations.

measure keeps the structural information of the object, we believe that it is more

appropriate to call it "co-detection".

As a simple proof of concept (see Figure 4.10), we take some faces from the

Caltech face dataset2. For a given size of bounding box, we take one reference

image, and measure its similarity with others for all positions of the bounding box.

We set the reference bounding box where it maximizes the sum of the similarities

with other images. Then, we set the other bounding boxes where they maximize

their similarity to the reference bounding box.

We believe that this kind of method can also be used to automatically find

common parts of an object class. Those parts could afterward be used to perform

object detection.

2See http://www.vision.caltech.edu/html-files/archive.html.

88 CHAPTER 4. IMAGE ALIGNMENT FOR OBJECT DETECTION.

4.4 Learning a detector

We work in the classical setting of (linear) binary supervised classification and

recall here its original formulation as well as the primal version of [Chapelle,

2007]. We are given at training time n positive and negative examples xi in some

space X (i = 1, . . . , n) with labels yi in {−1,+1}. Let us consider some Hilbert

feature spaceH, and denote by h · h′ the inner product of two elements h and h′

of H. This allows us to define the features associated with points in X by some

mapping ϕ : X → H, and construct the energy function E : H → R defined by

E(w) =
n

∑

i=1

ℓ[yi,w · ϕ(xi)] +
λ

2
||w||2, (4.5)

where ℓ : R2 → R is some loss function (the hinge loss in the case of support

vector machines for example).3 The classifier is trained by minimizing E with

respect to w. Once trained, any new point x can be classified according to the

sign of the decision function f : H × X → R defined by f(w,x) = w · ϕ(x).
Now, let us define the kernel function κ : X × X → R

4.4.1 Latent SVMs

The latent SVM model of [Felzenszwalb et al., 2010] is learned by minimizing

with respect tow the objective function of Eq. (4.5) where, this time, the decision

function is defined as the maximum of linear terms over some latent variable d in

some space D, that is

f(w,x) = max
d∈D

w · ϕ(d,D) = w · ϕ[x,d(w,x)], (4.6)

where ϕ : X ×Z → H is a new feature function. Our model naturally fit withing

this framework, the latent variable d corresponding to part placements.

3An additional bias term may be added, but this does not change our setting.

4.4. LEARNING A DETECTOR 89

4.4.2 Hybrid method: Latent SVM and exemplar SVM

We have tried several methods to build an object detector based on our similarity

measure s. For instance, we have selected some positive exemplars {Ip}p∈P̃ , we

have described each sample I by a feature f = {s(Ip, I)}p∈P̃ which contains the

similarity measure of I with each of the selected positives, and then we have used

a linear SVM or an intersection-kernel SVM on top of those features. However,

the results have been disappointing.

In this section, we describe the most promising method so far to perform

category-level detection based on our similarity measure. We believe that many

of previous detection methods can be modified to benefit from our deformation

model.

We combine our similarity measure with a variant of the exemplar SVMmethod

[Malisiewicz et al., 2011] and the Latent SVM [Felzenszwalb et al., 2008a].

Like [Malisiewicz et al., 2011], we train one classifier per exemplar. We train

an SVM with this exemplar as positive and all the rest as negatives.

Since the function ι used in Eq. (4.1) is the dot product, if we fix the defor-

mation (the argmax d of Eq. (4.2)), our similarity measure s (Eq. 4.4) can be

expressed as a linear function of the descriptors of the template T . Therefore we

can define a function ϕ that computes the linear coefficients of this function for a

given deformation d, such that:

s(T, I) = max
d

< w, ϕ(I, d) >, (4.7)

where < , > is the dot product, and w is the descriptor of the template T .

In this equation the deformation d is a hidden latent variable. Similar to the

latent SVMs of [Felzenszwalb et al., 2008a], we train our (latent) expamplar-based

SVM by solving, for all positive examples p, the following problem:

90 CHAPTER 4. IMAGE ALIGNMENT FOR OBJECT DETECTION.

Tp = argmin
Tp

C

(

l(s(Tp, Ip), 1) +
∑

n∈N
l(s(Tp, In),−1)

)

+ Ω(T) (4.8)

= argmin
wp

C(l(max
d

< wp, ϕ(Ip, d) >, 1)

+
∑

n∈N
l(max

d
< wp, ϕ(In, d) >,−1)) + Ω(wp) (4.9)

= argmin
wp

C(l(< wp, ϕ(Ip, d(wp, Ip)) >, 1)

+
∑

n∈N
l(< wp, ϕ(In, d(wp, In)) >,−1)) + Ω(wp), (4.10)

where l is the hinge loss, Ω is the ℓ2 normalization on the HOG features, and

C is the SVM constant, P and N are the sets of positive and negative examplars,

the Tp’s are the templates learned for each positive exemplar, the wp’s are their

descriptors, and d(w, I) = argmaxd(w, ϕ(I, d)).

We use a very simple optimization scheme: we initialize the template with one

positive exemplar, and then we alternate between (1) computing (for each sample

I) ϕ(I, d(wp, I)) , (2) optimizing on wp (with libSVM [Chang and Lin, 2001]).

Some details:

• We compute the similarity measure with both the original image, and the

mirrored one. Then, we keep the one with the highest similarity. This allows

us to be invariant to that transformation.

• The positive exemplars Ip are images extracted from the positive training

bounding boxes plus a large margin. This improves robustness to mis-

positioned annotations. Our similarity measure finds out the sub image of

Ip which is the most similar to T .

• Each template is initialized with one positive exemplars. Except that, we do

not use the ones which are too small because their resolution is too small.

We resize the others at a constant area. Their aspect ratios are kept.

4.5. IMPLEMENTATION AND RESULTS 91

At test time, we have one template per positive exemplars. Given a test image,

for each template, we compute its similarity at all positions of the test image.

This is done quickly with the method explained in 4.2.2. To cope with the scale

issue, we compare the templates with several rescaled versions of the test image.

Then, we use a standard non-max suppression scheme (local-max finding), where

the detected bounding boxes have the same aspect ratio than the most similar

template.

4.5 Implementation and Results

We have implemented our method and conducted preliminary object detection

experiments using the well known PASCAL VOC 2007 benchmark. But unlike

[Malisiewicz et al., 2011] and [Felzenszwalb et al., 2010], we do not mine (yet)

for hard negative training samples.

In practice, our model may be too flexible, and sometimes have difficulties

learning appropriate negative weights: For example, if the learned model has

strong negative weights along some vertical line, our model will allow parts to

shift at test time to avoid this line. Thus, we add to piffies a rigid HOG model at

half the template resolution to avoid this problem (Figure 4.13). Empirically, on

the other hand, PIF templates appear to select more discriminative features than

their HOG counterparts for many object categories (Figure 4.11).

Our implementation uses a fixed template size of 100 9 × 9 HOG cells and a

varying aspect ratio. Comparing a template to a 350× 500 image takes 0.01s. At

test time (object detection), the classifier is run at 40 different scales. Figure 4.12

shows a few qualitative examples of successful detections on the PASCAL VOC

2007 object detection dataset.

Table 4.1 shows a preliminary quantitative comparison of our results with

those of [Malisiewicz et al., 2011] and [Felzenszwalb et al., 2010] on the same

dataset. The first three rows of the table show results of three variants of our

method obtained on 1000 images randomly picked from this benchmark’s test

set:4 Using a plain HOG (or equivalently, using our model with zero layer), using

4Lack of time has unfortunately prevented us from using the full test set. Complete results will

of course be included in the final version of our paper if it is accepted.

92 CHAPTER 4. IMAGE ALIGNMENT FOR OBJECT DETECTION.

Figure 4.11: Left: HOG descriptors of cars from the Pascal VOC 2007 dataset.

Right: The corresponding models learned by our method. In both cases we only

show the positive weights. Notice that discriminative parts such as frame, head-

lights, and wheels are emphasized.

4.5. IMPLEMENTATION AND RESULTS 93

Figure 4.12: Some qualitative detection results for the cow, person, aeroplane, and

train classes.

94 CHAPTER 4. IMAGE ALIGNMENT FOR OBJECT DETECTION.

two layers, and using a simple notion of context based on co-occurrence, and sim-

ilar to [Malisiewicz et al., 2011], to improve the results. The next four rows show,

for comparison, the results obtained by [Malisiewicz et al., 2011] and [Felzen-

szwalb et al., 2010] without and with contextual information. Note that the con-

textual model of [Felzenszwalb et al., 2010] is much more powerful than the one

used in [Malisiewicz et al., 2011] and our work, since it involves the co-occurrence

of multiple classes.

Several points are worth noting: First, within our common implementation, the

deformations afforded by our model clearly improve over the rigid HOG model

of [Dalal and Triggs, 2005a]. Second, contextual information also clearly im-

proves the overall performance. Comparing our results with [Malisiewicz et al.,

2011] and [Felzenszwalb et al., 2010] is a bit more difficult since we only use a

random subset of the data, which may bias things a bit. It should also be noted

that, as it stands, our method is not appropriate for small object detection since

it requires a high enough resolution (roughly 60 × 60 pixels) to account for our

hierarchy of parts. Overall, [Felzenszwalb et al., 2010] dominates the other two

methods in our experiments, which may be due to its more sophisticated use of as-

pect and contextual information. Both our methods and [Malisiewicz et al., 2011]

give comparable results (22.3% vs 22.7%) when using context, despite the fact

that, unlike [Felzenszwalb et al., 2010; Malisiewicz et al., 2011], we do not mine

for hard negative examples, which is known to improve results.

4.6 Conclusion

In this chapter, we have described a novel similarity measurement, which com-

bine several interesting advantages: speed, deformation of all possible parts, hi-

erarchy, partial matching. We have a fast implementation based on the integral

image method and the streaming maximum filters. We have combined it with ex-

emplar SVM in order to perform object detection. Our experiments are an initial

demonstration of the potential of our method. Further experiments are of course

needed to assess its full power. Our near future work will be to complete them, as

explained in the following chapter.

4.6. CONCLUSION 95

ae
ro
p
la
n
e

b
ik
e

b
ir
d

b
o
at

b
o
tt
le

b
u
s

ca
r

ca
t

ch
ai
r

co
w

ta
b
le

d
o
g

h
o
rs
e

m
o
to
rb
ik
e

p
er
so

n

p
la
n
t

sh
ee

p

so
fa

tr
ai
n

tv m
A
P

HOG 12.3 38.2 9.1 3.8 0.1 7.2 34.1 9.1 0.2 10.9 0.7 1.6 30.6 28.5 9.8 1.5 9.6 0.2 14.1 28.0 12.5

Ours 13.6 52.9 9.3 15.1 0.2 29.2 41.7 10.5 2.6 15.1 1.0 3.2 38.9 38.8 12.9 3.5 10.4 1.5 27.5 27.4 17.8

Ours CO 20.3 50.5 1.5 15.8 10.6 37.4 41.9 11.3 10.9 27.3 8.3 7.6 39.9 36.1 16.4 16.5 17.9 13.5 26.2 35.7 22.3

ESVM 20.4 40.7 9.3 10.0 10.3 31.0 40.1 9.6 10.4 14.7 2.3 9.7 38.4 32.0 19.2 9.6 16.7 11.0 29.1 31.5 19.8

ESVM CO 20.8 48.0 7.7 14.3 13.1 39.7 41.1 5.2 11.6 18.6 11.1 3.1 44.7 39.4 16.9 11.2 22.6 17.0 36.9 30.0 22.7

LDPM 28.7 55.1 0.6 14.5 26.5 39.7 50.2 16.3 16.5 16.6 24.5 5.0 45.2 38.3 36.2 9.0 17.4 22.8 34.1 38.4 26.7

LDPM CO 32.8 56.8 2.5 16.8 28.5 39.7 51.6 21.3 17.9 18.5 25.9 8.8 49.2 41.2 36.8 14.6 16.2 24.4 39.2 39.1 29.1

Table 4.1: A comparison on the PASCAL VOC 2007 object detection benchmark

of our implementation of Dalal and Triggs [Dalal and Triggs, 2005a] (HOG), the

proposed method without (Ours) and with (Ours CO) contextual information, and

the methods of Malisiewicz et al [Malisiewicz et al., 2011] (ESVM and ESVM

CO) and Felzenszwalb et al. [Felzenszwalb et al., 2010] (LDPM and LDPM CO),

again without and with contextual information. All results are given in average

precision percentage.

96 CHAPTER 4. IMAGE ALIGNMENT FOR OBJECT DETECTION.

Figure 4.13: Cow and motorbike models using our model contrasting high-

resolution, deformable template with low-resolution, rigid HOG templates. Top:

positive weights. Bottom: negative weights.

Chapter 5

Conclusion and perspectives

5.1 Contributions

In this thesis, we have presented several nonrigid alignment methods for visual

recognition. In chapter 2, we have shown a novel way to use graph-matching

for a richer set of objective functions that can handle relationship between more

than two nodes, and how to optimize it. In chapter 3, we have demonstrated that

the combination of a fast matching technique on dense features and an SVM can

achieve state-of-the-art results on object categorization. Finally, in chapter 4, we

have presented a fast non rigid alignment method to perform object detection, with

promising early results.

5.2 Future work

5.2.1 Detection experiments

Next on our agenda is to conduct a full assessment of our object detection frame-

work. In section 4.4.2, we have demonstrated that –within the exemplar SVM

framework– using our deformation-aware similarity measure increases the per-

formance compared to the standard "rigid" convolution. But our implementation

of exemplar-SVM with rigid templates does not perform as well as the one of

[Malisiewicz et al., 2011]. Therefore we will put effort into matching their results.

97

98 CHAPTER 5. CONCLUSION AND PERSPECTIVES

This will hopefully also automatically increase the performance of our deformable

model.

Moreover, in the exemplar-SVM framework, we have one template per posi-

tive exemplar. Since each of them needs to be compared to each test image, this

leads to a considerable slow-down of our method. Therefore, we will also imple-

ment a combination of our similarity measure with the aspects of the latent SVM

[Felzenszwalb et al., 2008a], using the deformation d as the latent variable. This

method clusters the positive samples into "aspects". Each cluster is used as the

positive training set for a template. This way, we would only have to compare

a few templates (one per aspect) with each test image, leading to a substantial

speed-up. Moreover, each template will use several positive exemplars for train-

ing, which could leads to a better generalization. However, the clustering is a

non-convex task, which needs a good initialization and a well-engineered imple-

mentation.

5.2.2 Aspects and full object model

This thesis mainly focuses on the design of efficient alignment method. But it

addresses only superficially the problem of constructing an object model. We have

used the exemplar SVM that separately deals with each positive exemplar. So, we

do not take advantage of the commonalities between them. On the other hand,

[Felzenszwalb et al., 2008a] clusters the exemplars into "aspects", such that each

template is learned on several similar positive exemplars. Like them, we believe

that a linear SVM can learn a concept only if it is trained on similar samples.

In their case, each training sample is either completely used for the training of

a concept, or not at all. However some objects may only partially match, such that

they cannot be clustered in the same group. For instance, many of [Felzenszwalb

et al., 2008a]’s aspects correspond to different viewpoints, and objects seen from

close viewpoints often have large common parts. Our alignment methods can

be used to find these commonalities. This would allow positive exemplars to be

used for the training of several aspects: all those who share a common part with

them. It would also allows aspects to share parts. We believe that our sub-window

similarity measure (Figure 4.2) can help to go further, and automatically find these

5.2. FUTURE WORK 99

common parts between positive exemplars.

5.2.3 Joint Alignment of multiple images

In this thesis, we have only worked on comparing two images. However, being

able to align many images simultaneously could lead to many interesting applica-

tions.

For instance, in our co-detection experiments (Section 4.3), we have presented

a proof-of-concept method to find out the common parts of many images (all

containing faces). But it works around the problem by computing the pair-wise

alignment to a reference image. If we could really align many images at the same

time, the method would be more robust, and we could discover commonalities

between images which are more complicated than faces.

Moreover, if we want to find the template T (with feature w of a given norm)

that has the best sum of similarity s with the positive exemplars Ip, we can do the

following derivation (using the notations of the section 4.4.2):

max
T

∑

p∈P
s(T, Ip) = max

‖w‖2=1

∑

p∈P
max
w

< w, ϕ(Ip, dp) > (5.1)

= max
d

max
‖w‖2=1

< w,
∑

p∈P
ϕ(Ip, dp) > (5.2)

= max
d
||
∑

p∈P
ϕ(Ip, dp)||2, (5.3)

where ϕ(I, d) is the set of linear coefficients of the function w → s(T, I)

when the deformation is fixed at d.

We can see in the last line of this calculus that the original problem is equiv-

alent to optimizing a new objective function on all deformations simultaneously.

Therefore it would be interesting to develop new algorithms that perform joint

alignment.

100 CHAPTER 5. CONCLUSION AND PERSPECTIVES

5.3 Other work

During this phD, we have also worked on action detection and localization [Duchenne

et al., 2009b]. It is not related to deformation, so we did not mention it during the

main chapters of this thesis. However, it is highly related to the previously men-

tioned points of part discovery and joint alignment.

The problem addressed in this article is as follow: Given videos with scripts,

we are able to use text processing techniques to localize some actions. However,

we obtain a very low temporal precision. So, we obtain many large temporal

windows containing a common action. The proposed algorithm uses a simple

discriminative clustering technique to find out the precise location of this action

in each window. Then, we show that this helps to train a more accurate action

detector.

An interesting direction for future work would be to combine this method

with a deformable model (both spatially and temporally). Indeed, the same type

of action can occur with different pace, different viewpoints, and different peo-

ple. Explicitly using deformation could help to cope with this high intra-class

variability.

Appendix A

Power iterations for unit norm rows

In this appendix, we consider the problem of maximizing a convex function on

V on a product of ℓ2-spheres in dimension N2, i.e., on the set C2. The follow-

ing proposition extends the result of Regalia and Kofidis [2000] from spheres to

products of spheres. We consider the general algorithm:

Input: Convex function f
Output: V = [vT1 ; . . . ; v

T
N1
] stationary point of f in C2.

initialize V randomly ;1

repeat2

V ← ∇f(V) ;3

V ← [1
‖v1‖2v

T
1 ; . . . ;

1
‖vN1

‖2v
T
N1
] ;4

until convergence ;5

Algorithm 7: Power iteration for maximizing a convex function f overX ∈
C2 .

Proposition A.0.1 If the function f is differentiable on R
N1×N2 and strictly con-

vex, Algorithm 5 is an ascent method and converges to a stationary point of f on

C2.

101

102 APPENDIX A. POWER ITERATIONS FOR UNIT NORM ROWS

Proof

We refer to the i1-th row of any matrix v as vi1 . Given v0 in C2, one iteration of

Algorithm 5 applied to v0 leads to the matrix v1 with i1-th row equal to v1i1 =

∇f(v0)i1/‖∇f(v0)i1‖2. Since f is strictly convex, for all w in R
N1×N2 , f(w) >

f(v0) +
∑

i1
∇f(v0)⊤i1(wi1 − v0i1), with equality if and only if w = v0. We thus

have:

f(v1) > f(v0) +
∑

i1
∇f(v0)⊤i1(v

1
i1
− v0i1)

> f(v0) +
∑

i1
∇f(v0)⊤i1(v

0
i1
− v0i1) = f(v0),

because for each i2, ∇f(v0)⊤i1v
1
i1
= ‖∇f(v0)i1‖2 > ∇f(v0)⊤i1v

0
i1
. We have equal-

ities above if and only if v1 = v0 and, for each i1, ∇f(v0)i1 is equal to a positive

constant times v0i1 . This shows that each iteration is increasing the cost function.

Since f is continuous and C2 is compact, if we denote by vt the sequence of it-

erations, the sequence f(vt) is non-decreasing and bounded, hence convergent.

Since having f(v0) = f(v1) implies v1 = v0, the sequence vt is also converging,

and its limit v∞ is such that for each i1, ∇f(v∞)i1 is equal to a positive constant

times v∞i1 , i.e., v
∞ is a stationary point of f on the product of spheres C2 [Absil

et al., 2008].

Bibliography

P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix

Manifolds. Princeton Univ. Press, 2008.

H. A. Almohamad and S. O. Duffuaa. A linear programming approach for the

weighted graph matching problem. IEEE PAMI, 15, 1993.

archive3d. http://archive3d.net/, 2008.

Nicholas Ayache and Olivier D. Faugeras. Hyper: A new approach for the recog-

nition and positioning of two-dimensional objects. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 8:44–54, 1986. ISSN 0162-8828.

D.H. Ballard and C.M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs,

NJ, 1982.

A. Berg. Shape Matching and Object Recognition. PhD thesis, UC Berkeley,

2005.

A. Berg, T. Berg, and J. Malik. Shape matching and object recognition using

low distortion correspondence. In Proc. IEEE Conf. Comp. Vision Patt. Recog.,

volume II, pages 435–439, 2005a.

Alexander C. Berg, Tamara L. Berg, and Jitendra Malik. Shape matching and

object recognition using low distortion correspondence. In CVPR, 2005b.

S. Birchfield. KLT: An implementation of the Kanade-Lucas-Tomasi feature

tracker, 1998. URL http://vision.stanford.edu/~birch/klt.

103

104 BIBLIOGRAPHY

O. Boiman, E. Schechtman, and M. Irani. In defense of nearest-neighbor based

image classification. In CVPR, 2008.

L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human

pose annotations. In Proc. Int. Conf. Comp. Vision, 2009.

Y-Lan Boureau, Francis Bach, Yann LeCun, and Jean Ponce. Learning mid-level

features for recognition. In CVPR, 2010.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimiza-

tion via graph cuts. PAMI, 23:1222–1239, 2001.

T. Caetano, L. Cheng, Q. V. Le, and A. J. Smola. Learning graph matching. In

ICCV, 2007.

B. Caputo and L. Jie. A performance evaluation of exact and approximate match

kernels for object recognition. ELCVIA, 8:15–26, 2009.

Robert L. Carroll. Vertebrate Paleontology and Evolution. W. H. Freeman and

Company, 1988.

Chih C. Chang and Chih J. Lin. LIBSVM: a library for support vector machines,

2001. http://www.csie.ntu.edu.tw/ ∼cjlin/libsvm.

O. Chapelle. Training a support vector machine in the primal. Neural Computa-

tion, 19(5), 2007.

CMU. http://vasc.ri.cmu.edu//idb/html/motion/house/index.html, 2005.

T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. In NIPS 19, 2007.

G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags of

keypoints. In ECCV Workshop on Statistical Learning in Computer Vision,

2004.

N. Dalal and B Triggs. Histogram of oriented gradients for human detection. In

Proc. IEEE Conf. Comp. Vision Patt. Recog., 2005a.

BIBLIOGRAPHY 105

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In

CVPR, 2005b.

O. Duchenne, A. Joulin, and J. Ponce. A graph-matching kernel for object cate-

gorization. In ICCV, 2011a.

Olivier Duchenne, Francis Bach, InSo Kweon, , and Jean Ponce. A tensor-based

algorithm for high-order graph matching. In CVPR, 2009a.

Olivier Duchenne, Ivan Laptev, Josef Sivic, Francis Bach, and Jean Ponce. Au-

tomatic annotation of human actions in video. In ICCV, pages 1491–1498,

2009b.

Olivier Duchenne, Francis Bach, InSo Kweon, , and Jean Ponce. A tensor-based

algorithm for high-order graph matching. 2011b.

O. D. Faugeras and M. Hebert. A 3-d recognition and positioning algorithm using

geometrical matching between primitive surfaces. In Proceedings of the Eighth

international joint conference on Artificial intelligence - Volume 2, IJCAI’83,

pages 996–1002. Morgan Kaufmann Publishers Inc., 1983.

P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition.

IJCV, 61:55–79, 2005a.

P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition.

Int. J. of Comp. Vision, 61(1):55–79, 2005b.

P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained,

multiscale, deformable part model. In Proc. IEEE Conf. Comp. Vision Patt.

Recog., 2008a.

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection

with discriminatively trained part based models. IEEE Trans. Patt. Anal. Mach.

Intell., 32(9), 2010.

Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively

trained, multiscale, deformable part model. In CVPR, 2008b.

106 BIBLIOGRAPHY

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation

for early vision. IJCV, 70:41–54, 2006.

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan.

Object detection with discriminatively trained part based models. In CVPR,

2008c.

R. Fergus, Fei-Fei L., P. Perona, and A. Zisserman. Learning object categories

from google’s image search. In Proc. Int. Conf. Comp. Vision, 2005.

R. Fergus, P. Perona, and A. Zisserman. Weakly supervised scale-invariant learn-

ing of models for visual recognition. IJCV, 71:273–303, 2006.

R. Fergus, P. Perona, and A. Zisserman. Weakly supervised scale-invariant learn-

ing of models for visual recognition. Int. J. of Comp. Vision, 71(3):273–303,

2007.

M. Fischler and R. Bolles. Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Comm.

of the ACM, 24(6):381–395, 1981.

M. A. Fischler and R. A. Elschlager. The Representation andMatching of Pictorial

Structures. IEEE Transactions on Computers, C-22:67–92, 1973a.

M.A. Fischler and R.A. Elschlager. The representation and matching of pictorial

structures. IEEE Transactions on Computers, C-22:67–92, 1973b.

G. Frobenius. Ueber matrizen aus nicht negativen elementen. Sitzungsber. Königl.

Preuss. Akad. Wiss., page 456–477, 1912.

Peter Gehler and Sebastian Nowozin. On feature combination for multiclass ob-

ject classication. In ICCV, 2009.

G. H. Golub and C. F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins

University Press, 1996.

K. Grauman and T. Darrell. Pyramid Match Hashing: Sub-Linear Time Indexing

Over Partial Correspondences. In CVPR, 2007.

BIBLIOGRAPHY 107

G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Techni-

cal report, Caltech, 2007a.

G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Tech-

nical Report 7694, California Institute of Technology, 2007b. URL http:

//authors.library.caltech.edu/7694.

W.E.L. Grimson and T. Lozano-Perez. Model-based recognition and localization

from sparse range or tactile data. International Journal of Robotics Research,

3(3):3–35, 1984.

W.E.L. Grimson and T. Lozano-Pérez. Localizing overlapping parts by searching

the interpretation tree. PAMI, 9(4):469–482, 1987.

C. Gu, J. Lim, P. Arbelaez, and J.Malik. Recognition using regions. In CVPR,

2009.

Daniel P. Huttenlocher and Shimon Ullman. Object recognition using alignment.

In ICCV, 1987a.

D.P. Huttenlocher and S. Ullman. Object recognition using alignment. In ICCV,

1987b.

Hiroshi Ishikawa. Exact optimization for markov random fields with convex pri-

ors. PAMI, 25:1333–1336, 2003.

H. Jegou, M. Douze, and C. Schmid. Improving bag-of-features for large scale

image search. IJCV, 87:313–336, 2010.

A. Joulin, F. Bach, and J. Ponce. Multi-class cosegmentation. In Proceedings of

the Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

Ho Yub Jung, Kyoung Mu Lee, and Sang Uk Lee. Toward global minimum

through combined local minima. In ECCV, 2008.

J. Kim and K. Grauman. Asymmetric region-to-image matching for comparing

images with generic object categories. In CVPR, 2010.

108 BIBLIOGRAPHY

P. Kohli, P. Mudigonda, and P. Torr. p3 and beyond: Solving energies with higher

order cliques. CVPR, 2007.

Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy

minimization. PAMI, 28:1568–1583, 2006.

Vladimir Kolmogorov and Ramin Zabih. What energy functions can be mini-

mized via graph cuts? PAMI, 26:147–159, 2004.

A. Kushal, C. Schmid, and J. Ponce. Flexible object models for category-level 3d

object recognition. In Proc. IEEE Conf. Comp. Vision Patt. Recog., 2007.

M. Lades, J.C. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburg, R.P.

Wurtz, and W. Konen. Distortion invariant object recognition in the dynamic

link architecture. Computers, IEEE Transactions on, 42(3):300 –311, mar 1993.

ISSN 0018-9340. doi: 10.1109/12.210173.

M. F. Land and R. D. Fernald. The Evolution of Eyes. Annual Review of Neuro-

science, 15(1):1–29, 1992.

L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank-

(r1,r2,. . .,rn) approximation of higher-order tensors. SIAM J. Matrix Anal.

Appl., 21(4):1324–1342, 2000. ISSN 0895-4798. doi: http://dx.doi.org/10.

1137/S0895479898346995.

S. Lazebnik, C. Schmid, and J. Ponce. A maximum entropy framework for part-

based texture and object recognition. In Proc. Int. Conf. Comp. Vision, volume I,

pages 832–838, 2005.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In CVPR, 2006a.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In CVPR, 2006b.

Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. A sparse texture represen-

tation using affine-invariant regions. In CVPR, pages 319–326, 2003.

BIBLIOGRAPHY 109

D. Lemire. Streaming maximum-minimum filter using no more than three com-

parisons per element. Nordic Journal of Computing, 13(4):328–339, 2006.

M. Leordeanu and M. Hebert. A spectral technique for for correspondance prob-

lems using pairwise constraints. In ICCV, 2005a.

M. Leordeanu and M. Hebert. A spectral technique for correspondence problems

using pairwise constraints. In ICCV, 2005b.

M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local appearance: Category

recognition from pairwise interactions of simple features. In CVPR, 2007.

Ce Liu, Jenny Yuen, Antonio Torralba, Josef Sivic, and William T. Freeman. Sift

flow: Dense correspondence across different scenes. In ECCV, 2008.

D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(4):

91–110, 2004a.

David G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-

national Journal of Computer Vision, 60:91–110, 2004b.

D.G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60:

91–110, 2004c.

J. Maciel and J. Costeira. A global solution to sparse correspondence problems.

PAMI, 25(2), 2003.

Tomasz Malisiewicz, Abhinav Gupta, and Alexei A. Efros. Ensemble of

exemplar-svms for object detection and beyond. In ICCV, 2011.

David M. Mount and Sunil Arya. http://www.cs.umd.edu/ mount/ann/, 2000.

R. Oliveira, R. Ferreira, and J. Costeira. Optimal multi-frame correspondence

with assignment tensors. In Proc. European Conf. Comp. Vision, 2006.

I. Pratikakis, M. Spagnuolo, T. Theoharis, R. Veltkamp (editors, A. Godil, H. Du-

tagaci, C. Akgül, A. Axenopoulos, B. Bustos, M. Chaouch, P. Daras, T. Fu-

ruya, S. Kreft, Z. Lian, T. Napoléon, A. Mademlis, R. Ohbuchi, P. L. Rosin,

110 BIBLIOGRAPHY

B. Sankur, T. Schreck, X. Sun, M. Tezuka, A. Verroust-blondet, M. Walter, and

Y. Yemez. Shrec’09 track: Generic shape retrieval, 2009.

P. Pritchett and A. Zisserman. Wide baseline stereo matching. In ICCV, 1998.

P. A. Regalia and E. Kofidis. The higher-order power method revisited: conver-

gence proofs and effective initialization. ICASSP, 2000.

Eleanor H. Rosch. Natural categories. Cognitive Psychology, 4(3):328–350, May

1973. ISSN 00100285. doi: 10.1016/0010-0285(73)90017-0.

C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. PAMI, 19

(5):530–535, 1997.

Alexander Shekhovtsov, Ivan Kovtun, and Vaclav Hlavac. Efficient MRF defor-

mation model for non-rigid image matching. CVIU, 112:91–99, 2008.

J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object

matching in videos. In Proc. Int. Conf. Comp. Vision, volume 2, pages 1470–

1477, 2003.

S. Todorovic and N. Ahuja. Learning subcategory relevances for category recog-

nition. In CVPR, 2008.

S. Umeyama. An eigendecomposition approach to weighted graph matching prob-

lems. PAMI, 10(5):695–703, 1988.

Wim Vanduffel, Roger B.H. Tootell, Aniek A. Schoups, and Guy A. Orban.

The organization of orientation selectivity throughout macaque visual cor-

tex. Cerebral Cortex, 12(6):647–662, 2002. doi: 10.1093/cercor/12.6.

647. URL http://cercor.oxfordjournals.org/content/12/

6/647.abstract.

M. Varma and D. Ray. Learning The Discriminative Power-Invariance Trade-Off.

In ICCV, 2007.

A. Vedaldi. A matlab implementation of sift, 2008. URL http://www.

vlfeat.org/~vedaldi/code/sift.html.

BIBLIOGRAPHY 111

P. Viola and M.J. Jones. Robust real-time face detection. Int. J. of Comp. Vision,

57(2):137–154, 2004.

Martin Wainwright, Tommi Jaakkola, and Alan Willsky. Exact map estimates by

(hyper)tree agreement. In NIPS, 2002.

C. Wallraven, B. Caputo, and A. Graf. Recognition with local features: the kernel

recipe. In ICCV, 2003.

GangWu, Edward Y. Chang, and Zhihua Zhang. An analysis of transformation on

non-positive semidefinite similarity matrix for kernel machines. In Proceedings

of the 22nd International Conference on Machine Learning, 2005.

J. Yang, Y. Li, Y. Tian, L. Duan, and W. Gao. Group-sensitive multiple kernel

learning for object categorization. In ICCV, 2009a.

J. Yang, K. Yu, and T. Huang. Efficient highly over-complete sparse coding using

a mixture model. In ECCV, 2010.

Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spatial pyramid

matching using sparse coding for image classification. In CVPR, 2009b.

A. L. Yuille. Deformable Templates for Face Recognition. Journal of Cognitive

Neuroscience, 3:59–70, 1991.

M. Zaslavskiy, F. Bach, and J.P. Vert. A path following algorithm for the graph

matching problem. IEEE Trans. Patt. Anal. Mach. Intell., 31(12):2227–2242,

December 2009.

R. Zass and A. Shashua. Probabilistic graph and hypergraph matching. CVPR,

2008.

H. Zhang, A.C. Berg, M. Maire, and J. Malik. SVM-KNN: Discriminative nearest

neighbor classification for visual category recognition. In CVPR, 2006.

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels

for classifcation of texture and object categories: An in-depth study. Int. J. of

Comp. Vision, 73(2):213–238, 2007a.

112 BIBLIOGRAPHY

Jianguo Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and

kernels for classification of texture and object categories: A comprehensive

study. IJCV, 73:213–238, 2007b.

Y. Zheng and D. Doermann. Robust point matching for nonrigid shapes by pre-

serving local neighborhood structures. PAMI, 28(4):643, 2006. ISSN 0162-

8828. doi: http://dx.doi.org/10.1109/TPAMI.2006.81.

