N

N
N

HAL

open science

Algorithmic Aspects of Genome Rearrangements

Laurent Bulteau

» To cite this version:

Laurent Bulteau. Algorithmic Aspects of Genome Rearrangements. Data Structures and Algorithms

[cs.DS]. Université de Nantes, 2013. English. NNT: . tel-00906929

HAL Id: tel-00906929
https://theses.hal.science/tel-00906929
Submitted on 20 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00906929
https://hal.archives-ouvertes.fr

UNIVERSITE DE NANTES
FACULTE DES SCIENCES ET DES TECHNIQUES

ECOLE DOCTORALE SCIENCES & TECHNOLOGIES
DE L'INFORMATION ET MATHEMATIQUES — STIM

Année 2013

Ordre et désordre dans l'algorithmique du génome

Algorithmic Aspects of Genome Rearrangements

THESE DE DOCTORAT

Discipline : Informatique et applications
Spécialité : Informatique

Présentée
et soutenue publiquement par

Laurent BULTEAU
Le 11 juillet 2013, devant le jury ci-dessous

Président
Rapporteurs Rolf NIEDERMEIER, Professeur, Technische Universitét, Berlin
Dieter KRATSCH, Professeur des Universités, Université Paul Verlaine, Metz
Examinateurs Michel HABIB, Professeur des Universités, Université Paris Diderot — Paris 7
Cristina BAZGAN, Professeur des Universités, Université Paris Dauphine

Directeurs de these :

Guillaume FERTIN, Professeur des Universités, Université de Nantes
Irena RUSU, Professeur des Universités, Université de Nantes

Contents

List of Figures v
List of Algorithms vii
Synthése — French Abstract F.1
Remerciements e F.3
Introduction L F.5
1 Tri par transpositions F.11
1.1 Présentation du probléme 000 F.11

1.2 EBtatdelart F.12

1.3 Notre contributiono F.12

1.4 Méthode F.12
1.5 Conclusion i F.17

2 Tri par inversions préfixes L F.19
2.1 Présentation du probléme00 0L F.19

2.2 Etat de I'art o o F.20

2.3 Notre contribution F.20

2.4 Conclusion i F.22

3 Distances exemplaires Lo F.23
3.1 Présentation du probléme 000 F.23
3.2 Etat de l'art F.24
3.3 Distance d’'inversions F.24

3.4 Distance de DCJ F.25

3.5 Distances d’édition F.26

3.6 Conclusion o F.28

4 Plus petite partition commune, F.29
4.1 Présentation du problémeo F.29

4.2 Etat de l'art F.30

4.3 Notre contributiono F.30

4.4 Perspectives F.31

5 Extraction de bandes maximales F.33
5.1 Présentation des probléme MSR et CMSR F.33

5.2 Contrainte de gapo F.35

5.3 Résultats e F.35

6 Linéarisation avec distance de cassure minimale F.37

i CONTENTS

6.1 Présentation du problémeo F.37
6.2 Etatdelart F.39
6.3 Notre contribution 0L F.39
Conclusion et perspectives e F.41
Manuscript 1
Introduction 3
I Distances Between Permutations 9
1 Sorting by Transpositions 11
Introduction 12
1.1 Preliminaries 13
1.1.1 Transpositions and Breakpoints 13

1.1.2 Transposition Distance 14

1.2 3-Deletion and Transposition Operations 15
1.2.1 3DT-instances o 15

1.2.2 3DT-steps e 16

1.2.3 Equivalence with the Transposition Distance 17

1.2.4 Parallel with the Cycle Graph 21

1.3 3DT-collapsibility Is NP-Hard to Decide 22
1.3.1 Block Structure oo 22

1.3.2 BasicBlocks 28

1.3.3 Construction 37

1.34 The Main Result 38

1.4 Sorting by Transpositions Is NP-Hard 41
Conclusion e 45

2 Sorting by Prefix Reversals 47
Introduction 48
2.1 Notations 50
2.2 Low-level Gadgets 51
221 Docko 52

222 Lock 52

2.2.3 Hook e 53

224 Fork 54

2.3 High-level Gadgets 56
2.3.1 Literals 56

2.3.2 Variable o8

233 Clause e 60

2.4 Reduction from 3-SAT 64
2.4.1 Variable Assignment Lo 65

2.4.2 Going through Clauses 67

243 Beyond Clauses 69

Conclusion 71

CONTENTS

IT Distances Between Strings

3 Exemplar Distances

Introduction e
3.1 Signed Reversal and DCJ Distances
3.2 Edit Distances. e
Conclusion e

Minimum Common String Partition
Introduction
4.1 Fundamental Definitions and Algorithm Outline
4.1.1 Definitionso L
4.1.2 An Outline of the Algorithm
4.2 Splitting of Fragile Pieces 0000
4.3 Putting Frames Next to Fixed Pieces
4.4 Frame Rules for Repetitive Pieces
Conclusion e

III Dealing with Imprecise Genomic Data

5 Maximal Strip Recovery

Introductiono
5.1 Preliminaries
5.1.1 Notations and Definitions
5.1.2 Graph Theory Background
5.2 Hardness Results o
5.2.1 Hardness Increases with the Gap
5.2.2 1-gap-MSR Is NP-hard
5.2.3 od-gap-MSR Is APX-hard foro >2
5.2.4 §-gap-MSR-DU Is APX-hard, for All
5.3 Polynomial-Time Algorithms
5.3.1 Reduction to MAXIMUM WEIGHT INDEPENDENT SET
5.3.2 Approximation Algorithm for é-gap-MSR-d.
5.3.3 Approximation Algorithm for 1-gap-MSR-2.
5.3.4 Approximation Algorithm for 1-gap-CMSR-2.
5.3.5 Approximation Algorithm for 0-gap-MSR-DU
5.3.6 Approximation Algorithm for CMSR-~d and -gap-CMSR-d . .
5.4 Fixed-Parameter Tractable Algorithms
5.4.1 FPT Algorithm for 0-gap-MSR-d
5.4.2 FPT Algorithm for CMSR-d and J-gap-CMSR-~d
5.4.3 FPT Algorithm for 1-gap-CMSR-d

Conclusion

Minimum Breakpoint Linearization

Introduction
6.1 Defining a New Adjacency-Order Graph Gp;
6.2 Cutting All Conflict-Cycles in Gy Is Enough
6.3 Algorithms Based on SUBSET-FVS
6.4 An (m?+ 4m — 4)-approximation Algorithm

iii

73

75
76
78
80
83

85
86
87
87
89
91
97
105
112

CONTENTS

iv
6.4.1 Definitions 179
6.4.2 Algorithm 180
6.4.3 Approximation Ratio Analysis 181
Conclusion e e 186
Conclusion and Perspectives 187
191

Bibliography

List of Figures

O 00~ O Ot i W N+~

1.1

1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3

Graphes de comportement des blocs copy, and, or, et var F.15
Diagramme illustrant la constructionde I, F.16
Mlustration du probléme de TRI PAR INVERSIONS PREFIXES F.21
Scénario d’évolution pour le calcul d’une distance exemplaire F.25
Opérations possibles autorisées pour le tri par DCJ F.26
Réduction de (1,2)-Distance d’édition exemplaire F.27
Exemple de plus petite partition commune F.30
Exemple d’'instance de MBL L. F.38
Construction et utilisation du graphe d’ordre-adjacence F.39
Definition of transposition 13
Transposition distance from 7m = <O, 2,4,3,1, 5> toZs, 14
Example of 3DT-step oo 17
Example of 3DT-collapsible instance 18
Mlustration of the equivalence relation [~7 18
Mlustration of Lemma 1.7 19
3DT-instance and cycle graph o000 22
Effects of a 3DT-step on an [-block decomposition 27
Activation of a variable L. 28
Behavior graph of the block copy 29
Behavior graph of the blockand 30
Behavior graph of the blockor 32
Behavior graph of the blockvar 33
Abstract representations of the blocks copy, and, or, and var 34
Example of a 3DT-collapsible assembling of basic blocks 36
Schematic diagram of the construction of 1, 39
Applying Theorem 1.20 on Example 1.3. 42
[lustration of the SORTING BY PREFIX INVERSIONS problem 49
Examples of efficient flips o000 51
Compilation of all gadget properties 57
Mlustration of the behavior of the Variable gadget 59
Mlustration of the behavior of the Clause gadget 61
Sequence of head elements during the sorting of Sy 66
Evolution scenario for the computation of exemplar distances 7
Possible operations allowed for signed DCJ distance 78

Reduction of (1,2)-EXEMPLAR EDIT DISTANCE from VERTEX COVER 81

vi

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
2.3
5.4
)

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

LIST OF FIGURES

An instance of MCSP with a common string partition of size four . . 87
Example of alignment and constraint 89
Maximal extensions of solid pieces 99
[Hlustration of Frame Rules 100
Correctness proof of Frame Rule 3 (I) 102
Correctness proof of Frame Rule 3 (II) 104
Arep—reppath 105
An illustration of Fitting Rule 1 110
Overlapping prestrips of 7,, for an arc (u,v) € E° 128
Transformation of a black component B; into the sequence I; 132
Construction of a good partition and of a good labeling 135
Reduction from MIS to 0-gap-MSR-DU 137
Enumeration of the prestrips of V* matching a prestrip in O for all A 147
Example of instance of MBL 171
Construction of an adjacency-order graph 172
Possible types of paths in (W/UX, F). 175
Key steps of Algorithm 6.1 on the instance of MBL of Example 6.1 . 178
Comparing parameters |X|and k& L. 178
Example of conflict-cycle, shortcut, minimal conflict-cycle 179
A cycle satisfying the conditions of Lemma 6.9 181
Hlustration of Lemma 6.10 182
Path decomposition of C; and Cy and case study for Lemma 6.12 . . . 184

6.10 Tlustration of the proof of Lemma 6.13 185

List of Algorithms

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2

FPT algorithm for MCSP(z,y, k) (main loop) 90
Procedure split L 92
Procedure frameso 98
Reduction from d-gap-MSR-DU-d to d-Interva-MWIS 140
R(d, §)-approximation algorithm for §-gap-MSR-d 141
1.8-approximation algorithm for 1-gap-MSR-2 143
2.25-approximation algorithm for 0-gap-MSR-DU 150
(d + 1.5)-approximation for CMSR-d and §-gap-CMSR-~d 151
20Ud)p FPT algorithm for 6-gap-MSR-d 155
0(2.36" poly(nd)) FPT algorithm for §-gap-CMSR-d and CMSR-d . . 158
O(2¥ poly(nd)) FPT algorithm for 1-gap-CMSR-d 166
Reduction from MBL to AOG-SUBSET-FVS 177
(m? 4+ 4m — 4)-approximation for AOG-SUBSET-FVS 181

vii

Synthése
Abstract (French Section)

F.1

Remerciements

Introduction

La bioinformatique, domaine a l'intersection de la biologie et de 'informatique,
s’'intéresse a l'extraction et au traitement de l'information dans les données bi-
ologiques afin de mieux comprendre le vivant. D’une part, la biologie apporte des
données obtenues via des expériences et pose les questions pertinentes permettant de
mieux comprendre le sujet traité. D’autre part, 'informatique fournit des méthodes
formelles pour analyser les problémes et pour produire des solutions aussi précisé-
ment et efficacement que possible. Les bénéfices sont directs pour les biologistes qui
peuvent ainsi vérifier leurs hypothéses et faire des prédictions de fagon plus fiable
et rapide. Les bénéfices sont également importants pour les informaticiens, & qui
I’on présente des défis inédits. La variété des problémes contribue a 'exploration de
structures de données originales et & la découverte de nouvelles méthodes algorith-
miques, enrichissant ainsi le domaine des sciences informatiques avec une palette
agrandie d’approches possibles pour d’autres problémes.

L’utilisation de la bioinformatique devient encore plus incontournable lorsque les
données a analyser deviennent de plus en plus grandes. L’exemple le plus révélateur
est le séquengage ADN : il est maintenant possible de lire des séquences d’ADN
de chromosomes a trés haut débit (par exemple, le Beijing Genome Institute pro-
duit 10 téraoctets de séquences de nucléotides brutes quotidiennement [107]). Les
séquences ADN sont au coeur de la majorité des processus biochimiques. En re-
vanche, reconstruire parfaitement une séquence génomique reléve encore de 'utopie,
tout comme, a fortiori, comprendre toutes les fonctions biologiques intriquées qui
découlent de ces séquences. Un autre domaine important est l'analyse de réseaux
ou 'on cherche & identifier les interactions parfois complexes entre les différentes
molécules de la cellule (protéines, ARN, métabolites, etc). Les données d’entrée
prennent la forme d’un ensemble de réactions atomiques, telles que “la protéine A
peut transformer un métabolite B en un métabolite C” ou “les protéines A et B peu-
vent se combiner pour former une protéine C”. Le but est alors de comprendre les
processus a grande échelle, tels que les cycles cellulaires ou la synthése de protéines,
avec 'objectif in fine de produire des médicaments agissant avec précision dans ces
processus.

Dans cette thése, nous cherchons a apporter des réponses combinatoires a des
problémes provenant de la génomique comparative. Le point commun aux problémes
étudiés est la présence en entrée d’information génétique, généralement sous la forme
de séquences de génes ou plus généralement de marqueurs, provenant de deux espéces
différentes. Les deux espéces ont évolué naturellement depuis un ancétre commun, et
présentent maintenant un certain nombre de similarités : les objectifs des problémes
de génomique comparative sont de repérer ces similarités, de les mesurer, et de les
utiliser afin de recueillir de I'information biologique pertinente.

I'.6 SYNTHESE - FRENCH ABSTRACT

En fonction du modéle utilisé pour décrire les génomes et des questions bi-
ologiques posées, nous obtenons des problémes complexes et divers qui peuvent
étre étudiés a la lumiére des méthodes habituelles de complexité algorithmique.
Pour chaque probléme, nous cherchons a le résoudre par un algorithme de com-
plexité polynomiale ou, a défaut, a prouver qu’il est NP-difficile. Dans ce dernier
cas, des algorithmes efficaces peuvent étre recherchés dans deux directions : soit
parmi les algorithmes d’approximation (i.e. des algorithmes polynomiaux donnant
une solution sous-optimale, mais avec un ratio d’erreur borné), soit parmi les algo-
rithmes paramétrés (i.e. des algorithmes exacts dont la complexité, exponentielle,
reste néanmoins suffisamment faible pour de petites valeurs d’un paramétre cor-
rectement choisi).

Chaque chapitre du manuscrit est consacré a un probléme spécifique de génomique
comparative, ces chapitres sont organisés en trois parties en fonction des modéles
utilisés pour décrire les génomes d’entrée. La partie I se focalise sur des distances de
réarrangement utilisant le modéle le plus favorable, o chaque géne est unique dans
le génome. Dans la partie II nous explorons deux problémes ot les séquences d’entrée
peuvent avoir des duplications. Enfin, dans la partie III nous ouvrons notre étude
a des problémes ou les données sont soit incomplétes, soit erronées. La motivation
biologique et les résultats principaux de la génomique comparative sont présentés
dans cette introduction, et un état de I’art centré sur chaque probléme est présenté
dans le chapitre correspondant.

Connaissances utiles en biologie.

Alors que 'information génétique portée par ADN est copiée de cellule en cel-
lule et d’ancétre en descendant par des processus biochimiques répétitifs, un grand
nombre d’erreurs peuvent se produire : ce sont les étapes de ’évolution. Ces étapes
peuvent étre absolument sans conséquence, mais peuvent également mener a la “dé-
couverte” de nouvelles possibilités biologiques. ..ou & la mort de la cellule. De plus,
elles peuvent se produire aussi bien a petite échelle, affectant seulement quelques
nucléotides dans ’ADN, ou & plus grande échelle et provoquant la coupure, la réin-
sertion ou la duplication de grands segments d’ADN.

Une notion clé pour I'étude de 1’évolution génétique est celle de blocs de syn-
ténie, c’est-a-dire, de bandes d’ADN ayant des contenus similaires chez des espéces
différentes : nous considérons que de tels blocs étaient présents chez 'ancétre com-
mun a ces espéces, et ont été¢ conservés tout au long de I’évolution. Deux espéces
ayant des blocs de synténie petits et dispersés ont probablement évolué en tant qu’e-
spéces différentes pendant plus longtemps, ce qui implique qu’elles ont un ancétre
commun relativement vieux. De plus, si un bloc de synténie inhabituellement long
est présent chez un grand nombre d’espéces, on peut supposer que les génes qu’il
contient ont, d’une fagon ou d’une autre, des fonctions liées (les protéines codées in-
teragissent, un géne en régule un autre, etc.). La notion complémentaire au bloc de
synténie est celle de point de cassure. Formellement, en comparant deux génomes, il
y a un point de cassure entre deux génes consécutifs d’un génome si les méme génes
sont séparés dans 'autre génome, ce qui implique que de tels génes n’appartiennent
pas a un méme bloc de synténie. Le nombre de points de cassure est facilement cal-
culable — a condition que chaque géne soit présent exactement une fois dans chaque
génome et que les données soient sans erreur — et est considéré comme une premiére
mesure de dissimilarité entre deux génomes (la distance de cassure).

INTRODUCTION 7

Connaissances utiles en complexité algorithmique.

Nous considérons que le lecteur est déja familiarisé avec les notions de complexité
algorithmique telles que les algorithmes polynomiaux exacts et d’approximation, la
NP-difficulté et ’APX-difficulté. En quelques mots, on considére quun algorithme
est efficace si, pour résoudre un probléme dont les données ont une taille n, il a
besoin d’un temps borné par une fonction polynomiale en n. P est la classe des
problémes pouvant étre résolus de facon exacte par un tel algorithme efficace. Par
opposition, il est conjecturé qu’il n’existe pas de méthode de résolution efficace pour
les problémes NP-difficiles.

Une stratégie habituelle pour les problémes d’optimisation NP-difficiles est de
créer des algorithmes d’approximation, i.e. des algorithmes donnant une solution
faisable en temps polynomial, mais dont le score peut étre & un facteur » d’écart du
score optimal (r devant étre aussi proche de 1 que possible). L’APX-difficulté est la
preuve d’une borne inférieure sur la valeur de r; sans une telle borne, il est possible
d’envisager un schéma d’approximation en temps polynomial, i.e. un algorithme
d’approximation pouvant atteindre n’importe quel ratio d’approximation 1+ € pour
e > 0.

Une autre approche possible est de créer des algorithmes paramétrés (FPT, pour
fized parameter tractable), dont 'objectif est de résoudre de fagon exacte mais néan-
moins efficace certains problémes NP-difficiles. La premiére étape consiste a identifier
un paramétre (généralement noté k) qui résume le niveau de complexité du probléme
pour chaque instance spécifique. Ensuite, un algorithme FPT est un algorithme qui
nécessite un temps majoré par O(f(k)n?), ot d est un entier fixé et f peut étre
n’importe quelle fonction (en général une fonction exponentielle) n’ayant pas de
dépendance en n. De tels algorithmes requiérent un temps exponentiel dans les cas
“au pire” ol k peut étre arbitrairement grand, mais ils sont efficaces lorsque k est
borné a de faibles valeurs, ce qui devrait étre le cas pour la majorité des données
réelles.

Pour des informations plus détaillées sur les bases théoriques, les techniques et les
résultats classiques, nous renvoyons le lecteur a Garey & Johnson [73| pour la théorie
de la NP-difficulté, a Papadimitriou & Yannakakis [106] pour 'approximabilité, et
a Niedermeier [105] pour la complexité paramétrée.

Partie I — Distances entre permutations

Dans la premiére partie, nous considérons que les génomes peuvent étre modélisés
par des permutations, c¢’est-a-dire qu’il existe une correspondance parfaite entre les
génes de I'un et de l'autre génome, et seul I'ordre des génes différe. Plus précisé-
ment, nous considérons les permutations signées et non signées : les permutations
non signées sont les permutations habituelles sur U'intervalle [1; n], et, pour les per-
mutations signées, une information supplémentaire représentant I’orientation sur le
chromosome est associée a chaque géne, et est marquée avec un symbole + ou —. Ce
modéle peut manquer de généralité, mais il permet le calcul de nombreuses mesures
de distance, & commencer par la distance de cassure. D’autres exemples habituels
sont les intervalles communs et conserves [119, 84, 18], ou les distances de Hamming
et de Levenshtein |80, 99|. Dans les années 1990, avec notamment [95, 13|, furent
proposées les distances de réarrangement : on considére une opération d’évolution
naturelle et on recherche la plus petite séquence de telles opérations permettant
de transformer un génome en l'autre. Le scénario obtenu fournit des informations

'8 SYNTHESE - FRENCH ABSTRACT

précieuses sur I’évolution des deux espéces depuis leur ancétre commun.

Plusieurs opérations pertinentes d’un point de vue biologique peuvent étre con-
sidérées pour les distances de réarrangement. Les plus étudiées sont probablement les
inversions (une sous-séquence du chromosome est coupée et réinsérée au méme en-
droit dans la direction opposée), et les transpositions (une sous-séquence est coupée
et réinsérée a un autre endroit, avec la méme direction). Plus récemment, les opéra-
tions de DCJ (pour Double-Cut-and-Join) ont été introduites [122, 17] : les chro-
mosomes sont coupés a deux endroits, et les “bouts” générés peuvent étre recollés
de n’importe quelle maniére (cette opération requiert un modéle de génome plus
général, ou les permutations circulaires sont considérées). Enfin, d’autres opérations
possibles incluent les transinversions (transpositions avec en plus une inversion de
la séquence coupée), les échanges de blocs (deux sous-séquences échangent leurs po-
sitions), et les variantes préfixes de chacune de ces opérations (la séquence coupée
doit contenir une extrémité du chromosome).

Pour la distance d’inversions signée, ¢’est-a-dire la distance de réarrangement ot
les opérations considérées sont les inversions et ou les génomes sont modélisés par
des permutations signées, Bafna & Pevzner [14] ont produit un algorithme polyno-
mial qui a depuis été amélioré en un algorithme linéaire [10]. La distance de DCJ
signée et la distance d’échange de blocs bénéficient également d’algorithmes exacts
efficaces [122, 101]. Par contre, le calcul des distances d’inversions et de DCJ non
signées est NP-difficile [42, 43]. La complexité est donc ouverte pour deux opérations
importantes : les transpositions, dont ’apparente simplicité peut étre trompeuse, et
les inversions préfixes, pour lesquelles le probléme combinatoire avait été introduit
dés 1975 sous le nom de retournement de crépes [63|. Nous déterminons dans les
Chapitres 1 et 2 la complexité de ces deux problémes (TRI PAR TRANSPOSITIONS
et TRI PAR INVERSIONS PREFIXES) en prouvant qu’ils sont chacun NP-difficiles.

Partie IT — Distances entre chaines

Dans la seconde partie, nous levons la contrainte d’unicité et considérons des
modéles ot les génes peuvent avoir plusieurs copies dans chaque génome (un génome
n’est plus représenté par une permutation, mais par une séquence arbitraire, ou
chaine). En effet, des événements de duplication peuvent se produire et engendrer
des génes indistinguables. Si un géne a plusieurs copies chez deux espéces, deux
scénarios principaux sont possibles. Dans le premier, les duplications ont eu lieu
avant la spéciation, c’est-a-dire que 'ancétre commun possédait déja toutes les copies
du géne. Dans ce cas, il est intéressant de retrouver la correspondance des différentes
copies dans les deux espéces. Par exemple, si les deux génomes considérés sont
G = axbcxd et Gy = cxdaxb, il est probable que 'ancétre commun contenait a la
fois les sous-séquences axb et cxd, ainsi la premiére copie de x dans G| devrait étre
mise en correspondance avec la seconde dans G, et la seconde copie dans G avec la
premiére dans Go. Ce scénario est appelé le modele complet [25]. Le scénario opposé,
le modele exemplaire [113], correspond au cas ot toutes les duplications ont eu lieu
apres la spéciation, avec la conséquence que I’ancétre commun n’a contenu qu’un seul
exemplaire de chaque géne. Dans ce cas, on cherche a identifier parmi les multiples
copies d'un géne dans un génome donné, laquelle provient directement de I’ancétre
commun et lesquelles ont été obtenues, par la suite, par duplications. Evidemment,
tous les scénarios intermédiaires sont possibles entre ces deux scénarios extrémes, ol
certains génes apparaissaient en plusieurs copies chez I'ancétre commun et d’autres
non. Cette approche correspond au modéle intermédiaire [8].

INTRODUCTION .9

Pour chacun de ces modéles, les problémes récurrents consistent a déterminer une
mise en correspondance des copies optimisant une distance donnée. Malheureuse-
ment, quelque soit le modéle, les résultats de difficulté algorithmique sont om-
niprésents et trés peu d’approximations & ratio constant existent (voir par exem-
ple [24, 7]). Nous présentons, dans le Chapitre 3, plusieurs résultats d’inapproxima-
bilité pour des problémes sous le modéle exemplaire, afin de construire un panorama
exhaustif des résultats de difficulté pour ce modéle. Plus précisément, nous prouvons
que méme lorsque I’entrée est contrainte a 1) un premier génome sans duplications
et 2) un second génome ou les génes ont au plus deux occurrences, il est NP-difficile
d’approcher les distances de Hamming, de Levenshtein, d’inversions et de DCJ en-
dessous de ratios donnés.

Dans le Chapitre 4, nous considérons le probléme PLUS PETITE PARTITION COM-
MUNE (MCSP, pour MINIMUM COMMON STRING PARTITION). Vu comme un prob-
léme sur les chaines de caractéres, I’objectif est de découper deux chaines en un en-
semble minimal de facteurs communs. Il revient a calculer la distance de cassure sous
le modéle complet, avec la contrainte que chaque géne doit avoir le méme nombre
de copies dans les deux génomes. Malgré son apparente simplicité (il s’agit “seule-
ment” de retrouver de longs facteurs communs entre deux séquences), ce probléme
est APX-difficile et aucun algorithme d’approximation a ratio constant n’est connu.
Nous considérons ce probléme a la lumiére de la théorie de la complexité paramétrée,
ou le parameétre est la distance de cassure entre les deux chaines aprés la mise en cor-
respondance. Par rapport aux algorithmes FPT précédents |61, 89], qui nécessitaient
a la fois la distance de cassure et le nombre de duplications comme paramétres, nous
prouvons que la complexité algorithmique peut étre confinée au nombre de facteurs
dans le découpage, méme pour des chaines particuliérement répétitives.

Partie II1 — Traiter des données génomiques imprécises

Dans la troisiéme partie, nous considérons des modéles tenant compte d’une in-
formation imparfaite sur les séquences. En effet, chaque étape de construction des
séquences d’entrée, telle que le séquencement ADN, "annotation ou la reconstruc-
tion, peut produire des incertitudes ou méme générer des erreurs dans les séquences.
De fagon générale, toute information génomique devrait ainsi étre considérée avec
la possibilité d’erreurs et d’incomplétude. Cependant, bien que 'on souhaiterait
étre capable de traiter de telles données en résolvant n’importe quelle question de
génomique comparative, trés peu de problémes autorisent des modéles suffisamment
généraux. Heureusement, il est parfois possible d’inclure des phases de “nettoyage”
en tant que prétraitement, par exemple en supprimant des marqueurs probablement
erronés, avant d’exécuter d’autres algorithmes requérant des données correctes et
complétes.

Retirer des erreurs probables correspond exactement a 1’objectif du probléme
d’EXTRACTION DE BANDES MAXIMALES (MSR, pour MAXIMAL STRIP RECOV-
ERY). L4, nous considérons les génomes de deux espéces aussi semblables que possi-
bles. Ainsi, il est possible de supposer que la quasi-totalité des génes appartiennent
a des blocs de synténie plus grands et donc, il devrait étre possible, dans un génome
“nettoyé”, d’identifier des blocs de synténie couvrant tout le génome (ou chaque
bloc contient au moins deux génes). L’objectif du probléme MSR est de marquer
un nombre minimum de génes comme étant des erreurs jusqu’'a ce que les génomes
restants aient cette propriété d’étre “nettoyés”. Il existe plusieurs variantes de ce
probléme : on peut tout d’abord considérer plus de deux génomes en entrée afin

['.10 SYNTHESE - FRENCH ABSTRACT

de croiser plus d’informations (MSR-d, avec d > 3); on peut également autoriser
les génomes avec des duplications (MSR-DU). Nous proposons aussi la variante de
gap 0 (0-gap-MSR, avec § > 3) : deux éléments consécutifs d’un bloc synténique de
sortie ne devraient pas étre séparés (dans les génomes d’entrée) par plus de § génes
marqués comme étant des erreurs. Enfin, dans le but de créer des approximations
ou des algorithmes paramétrés, le probléme peut étre vu comme celui consistant a
garder un nombre maximum ¢ de génes (MSR), ou bien comme celui consistant a
retirer un nombre minimum & de génes (CMSR). Dans le Chapitre 5, nous étudions
en profondeur les variantes de MSR et de CMSR, en proposant des résultats de NP
et d’APX-difficulté, des algorithmes d’approximation et des algorithmes paramétrés.
Les principaux résultats de ce chapitre sont la NP-difficulté de 1-gap-MSR et, pour
CMSR-d et 6-gap-CMSR-d, un algorithme de (d + 1.5)-approximation et un algo-
rithmes FPT de complexité O*(2.36").

Dans le Chapitre 6, nous étudions le probléme de LINEARISATION AVEC DIS-
TANCE DE CASSURE MINIMALE (MBL, pour MINIMUM BREAKPOINT LINEARIZA-
TION) qui a pour but de déterminer une séquence de génes dans un chromosome
dont l'ordre des génes n’est que partiellement connu, en utilisant en référence le
génome d’une espéce proche. Formellement, étant donnés un ordre partiel et un or-
dre total sur le méme ensemble d’éléments (i.e., de génes), il s’agit de trouver une
linéarisation de l'ordre partiel minimisant la distance de cassure avec 'ordre total,
ol une linéarisation est un ordre total (ou permutation) compatible avec ordre par-
tiel. Dans notre approche, nous proposons la création d’une structure de graphe (le
graphe ordre-adjacences) qui permet de réduire MBL & un probléme plus général de
couverture de cycles déja étudié en théorie des graphes (SUBSET FEEDBACK VER-
TEX SET). Les résultats connus de la littérature pour ce dernier nous permettent
dans un premier temps d’obtenir deux algorithmes d’approximation et un algorithme
paramétré pour MBL (les approximations ayant des ratios non constants et incom-
parables). Enfin, en connaissant les méthodes de construction des ordres partiels
donnés en entrée, nous créons un troisiéme algorithme d’approximation spécifique a
notre probléme.

Définitions préliminaires

Nous présentons ici quelques définitions générales relatives aux séquences. Elles
seront, utilisées tout au long du manuscrit.

Pour la majeure partie des problémes, un génome d’entrée est représenté par une
séquence d’entiers, ou de marqueurs, notée S = <51, S9, ... ,sn>. Le iéme marqueur
de S est noté S[i] (ici, S[i] = s;). Etant donnés deux entiers a et b, I'intervalle [a ; 0]
est Uensemble {a,a+1,...,b} si a < b et 'ensemble vide si b < a. Une permutation
de taille n est une séquence de n éléments distincts sur [1; n], et 'Identité de taille
n, notée 7, est la permutation <1, 2,... ,n>. Par opposition aux permutations, une
chaine est une séquence qui peut contenir des éléments dupliqués.

Une sous-séquence S’ de S est une séquence <S[z’1], ce S[ih]> de marqueurs de S
provenant des positions i1 < i < ... < 1. Un facteur de S est une sous-séquence
d’éléments consécutifs (g1 = ix + 1 pour 1 < k < h). Un facteur de longueur
2 est appelé adjacence. Dans la comparaison de deux séquences génomiques, une
adjacence d’une séquence qui n’est pas une adjacence de I'autre est appelée point de
cassure, et la distance de cassure est le nombre de tels points de cassure.

Partie I — Chapitre 1

Tri1 par transpositions

L’objectif du probléme de tri par trans-
positions est de calculer le nombre minimum
de transpositions requises pour transformer un
génome (représenté par une permutation) en un
autre, oll une transposition est une opération

qui échange deux séquences consécutives dans
la permutation.

Dans ce chapitre, nous prouvons que ce prob-
léme, ainsi qu'un probléme de vérification de
borne inférieure, est NP-difficile.

1.1 Présentation du probléme

Avec les inversions, les transpositions sont une des opérations élémentaires les
plus courantes qui peuvent affecter un génome a grande échelle. Une transposition
consiste a échanger deux séquences consécutives de génes ou, de facon équivalente,
a déplacer une séquence de génes d’un point & un autre dans le génome. Ainsi, la
distance de transposition entre deux génomes est définie comme étant le nombre de
transpositions nécessaires pour transformer I'un en I'autre. Calculer cette distance
est un défi important de la génomique comparative, voir [108|, puisqu’elle fournit
un scénario d’évolution de parcimonie maximale entre les deux génomes étudiés.

Le probléme de TRI PAR TRANSPOSITIONS est le probléme qui consiste & calculer
cette distance entre deux génomes représentés par des permutations.

Les résultats de ce chapitre ont été présentés au colloque Segbio 2011 (Algorithmique,
combinatoire du texte et applications en bio-informatique, Rennes), & ICALP 2011 (38th
International Colloquium on Automata, Languages and Programming, Ziirich [33]), et ont
été publiés dans SIDMA en 2012 (SIAM Journal of Discrete Mathematics [35]).

1.2

1.3

1.4

.12 SYNTHESE - FRENCH ABSTRACT

Etat de art

Depuis sa présentation par Bafna et Pevzner [12, 14|, la complexité algorith-
mique de ce probléme n’a jamais été déterminée. Ainsi plusieurs études [14, 55,
77, 83, 64, 16, 67| visent a créer des algorithmes d’approximation ou des heuris-
tiques, I’algorithme le plus précis étant, a ce jour, une 1.375-approximation [64].
D’autres travaux |78, 55, 65, 96, 64, 16] visent a calculer des bornes sur la distance
de transposition d'une permutation. Des études ont également été menées sur des
variantes de ce probléme en considérant, par exemple, le tri par transpositions pré-
fixes [62, 97, 51] (dans lequel chaque transposition doit faire intervenir un préfixe
de la séquence) ou le tri par transpositions dans des chaines [56, 60, 116, 111]. 1l
est également possible de considérer des transpositions pondérées ou préfixe dans les
chaines [109, 27, 6, 51, 5]. Enfin, il est important de remarquer que le tri par échange
de blocs (i.e., par échanges de facteurs qui ne sont pas nécessairement consécutifs)
peut étre résolu en temps polynomial [54]. Nous référons le lecteur a 68, 3.1 - 3.2]
pour un état de 'art détaillé sur ce probléme et ses variantes.

Notre contribution

Dans ce chapitre, nous apportons une réponse a la question de la complexité
algorithmique du TRI PAR TRANSPOSITIONS en décrivant une réduction polynomiale
depuis le probléme SAT, et ainsi nous prouvons que ce probléme est NP-difficile.
Notre réduction est fondée sur I’étude des transpositions qui retirent trois points de
cassure. Un corollaire de notre réduction est la NP-difficulté du probléme suivant,
proposé dans [55| : étant donné une permutation 7, est-il possible de trier 7 en
utilisant exactement dy(7)/3 transpositions, ou dy(7) est la distance de cassure entre
7 et I'identité ?

Méthode

Nous présentons ici les grandes lignes de la réduction dont découle la NP-difficulté
du probléme de TRI PAR TRANSPOSITIONS. Dans le but de rester syntétique, elle
est exposée trés informellement.

La réduction se fait depuis le probléme de Satisfiabilité (SAT) en plusieurs étapes,
en utilisant deux structures intermédiaires : les 3D T-instances et les assemblages de
blocs de base.

3DT-instances

Comme il a été suggéré précédemment, nous nous focalisons sur le probléme
consistant & décider si oui ou non une permutation peut étre triée en d,(m)/3 trans-
positions, ou dy(7) est la distance de cassure entre 7 et l'identité. Il existe une
condition nécessaire pour qu’une transposition ait une distance de transposition
égale a dy(m)/3 : ses points de cassure doivent pouvoir étre regroupés en triplets
(<a, a’>,<b, b’>,<c,c’>) avec b = a+1,d =b+1etd = c+ 1. On dit alors que
la permutation est une 2-permutation. Ainsi, si ces trois cassures sont placées dans
cet ordre (ou toute permutation circulaire de cet ordre), il existe une transposition

1. TRI PAR TRANSPOSITIONS .13

retirant les trois cassures en une seule étape (en coupant la séquence précisément a
ces trois points). Dans le cas contraire, par exemple si elles apparaissent dans 1’ordre
<a, a’>, <c, c’>, <b, b’>, il n’existe pas de telle transposition.

Cette notion de triplets est formalisée par la notion de 3DT-instance : une 3DT-
instance est un ensemble de triplets d’éléments ol a chaque élément est associée
une position unique. Un triplet (a,b,c) est bien ordonné si les positions de a, b
et ¢ correspondent & un triplet de points de cassures pouvant étre retirés en une
transposition (i.e., a est avant b qui est avant ¢, ou b est avant ¢ qui est avant a, ou
encore ¢ est avant a qui est avant b). Parallélement & une transposition retirant trois
cassures, une 3DT-étape est I'opération consistant a retirer un triplet (a, b, c) bien
ordonné et, pour chaque position d’un élément restant, lui faire subir la transposition
correspondant aux positions de a, b et ¢. Une 3DT-instance est 3D T-réductible s’il
existe une série de 3DT-étapes la réduisant a la 3DT-instance triviale (i.e. ’ensemble
vide).

Le paralléle entre transpositions et 3DT-étapes permet de créer une relation
d’équivalence entre les 2-permutations et (certaines) 3DT-instances. Nous prou-
vons le résultat suivant (cf. Théoréme 1.9 page 20) : une permutation 7 peut étre
triée en dp(7)/3 transpositions si et seulement la 3DT-instance équivalente est 3DT-
réductible.

Dans la suite de la réduction, nous construisons une structure permettant de
prouver qu’il est NP-difficile de déterminer si une 3DT-instance est 3DT-réductible.
Nous prouverons dans un second temps que les structures ainsi construites sont
toutes équivalentes & des permutations.

Blocs de base

Afin de simuler le comportement d’une formule booléenne (puisque la réduc-
tion se fait depuis SAT), nous construisons une 3DT-instance comme étant une
concaténation (un assemblage) de blocs de base, chaque bloc ayant pour fonction
la simulation d’un élément logique (variable booléenne, conjonction, etc.). Afin de
transférer I'information entre les différents blocs, nous définissons des wvariables.

Variables. Une variable est une paire de triplets de la 3DT-instance notés (a, b, ¢)
et (z,y,z). lls sont répartis entre deux blocs : x, y et b dans le premier (le bloc
source), a, z et ¢ dans cet ordre dans le second (le bloc cible). De plus, ils ne sont a
priori pas bien ordonnés. La variable est activée si <x, b, y> devient un facteur du bloc
source : dans ce cas (z,y, z) devient bien ordonné, la transposition correspondante
déplace b du bloc source vers le bloc cible (a la place de z). Le triplet (a, b, ¢) devient
alors bien ordonné, il peut alors générer une 3DT-étape qui aura des conséquences
sur le bloc cible. Le but d’une variable est de simuler une expression booléenne : elle
ne doit pouvoir étre activée que si cette expression est vraie.

Blocs de base. Nous définissons quatre types de blocs de base. Dans cette syn-
thése, nous ne donnons pas la définition de chaque bloc sous forme de triplets, mais
sa caractérisation par le graphe de comportement, qui décrit sous quelles conditions
les variables dont ce bloc est la cible (les variables d’entrée) ou la source (les variables
de sortie) peuvent étre activées.

Le bloc copy a pour simple but de dédoubler une variable (il est nécessaire puisque
chaque variable ne peut avoir qu’une seule cible). Il dispose d’une variable d’entrée

['.14 SYNTHESE - FRENCH ABSTRACT

qui sert de déclencheur pour deux variables de sortie : si la variable d’entrée est
activée, alors chacune des deux variables de sortie peut étre activée et ce, dans
n’importe quel ordre. Voir Figure 1a.

Le bloc and permet de simuler une conjonction. Il a deux variables d’entrée et
une de sortie : il est nécessaire que les deux variables d’entrée aient été activées pour
pouvoir activer la variable de sortie. Voir Figure 1b.

De la méme fagon, le bloc or permet de simuler une disjonction. Il a deux variables
d’entrée et une de sortie. Il faut et il suffit qu’au moins une des deux variables
d’entrée soit activée pour pouvoir activer la variable de sortie. Voir Figure lc.

Enfin, le bloc var permet de simuler une variable booléenne x : il dispose de
deux variables de sortie représentant +z et —z. Sans condition sur I'entrée activée,
il est possible d’activer au plus une des deux variables, ce qui correspond au fait que
x est considérée soit comme étant vraie, soit comme étant fausse. Ce bloc dispose
également d’une variable d’entrée dont le role est décrit ci-dessous.

Double passage. La construction telle qu’elle a été décrite jusqu’a présent permet
de réaliser un assemblage de blocs de fagon & ce qu'une variable “objectif” (notée
A,) corresponde a I'expression booléenne ¢ considérée : A, peut étre activée si et
seulement si ¢ est satisfiable. En revanche, il faut que ’assemblage soit totalement
3DT-réductible dans le cas ol ¢ est satisfiable. Il est donc nécessaire que ’activation
de A, permette de déclencher des 3DT-étapes pour tous les triplets restants. Cela
revient a activer, dans un second passage, toutes les variables qui n’avaient pas été
activées lors du premier passage. Pour ce faire, il suffit d’activer toutes les variables
correspondant aux littéraux +x ou —x qui avaient été considérés comme faux dans
un premier temps, les autres variables pourront étre activées en cascade.

La variable Ay, ou plutot, des copies de la variable A, sont donc données en
entrée au bloc var : une fois cette entrée, il est possible d’activer la deuxiéme vari-
able de sortie (qui n’avait pas été activée lors du premier passage). Le graphe de
comportement du bloc var final est décrit Figure 1d.

Assemblage des blocs de base et réduction.

Etant donnée une formule ¢, on crée une 3DT-instance I4 comme un assemblage
utilisant un bloc var pour chaque variable booléenne, un bloc and ou or pour chaque
conjonction ou disjonction, des blocs copy pour les littéraux ayant plusieurs occur-
rences et pour la variable objectif A,. La définition détaillée de 4 n’est pas donnée
ici, mais un exemple illustratif est donné ci-dessous.

Exemple 1. Soit la formule booléenne ¢ suivante.

O =(x1VaaV-oxs) A (1 Vxe) A (g Vg V oxg)A
(mx1 Vg Vo) A(xsVoxy) A (0 V —xs Vo)

Note : la formule ¢ est satisfiable avec x1 = x3 = vrai et x9 = xr3 = faur.

La Figure 2 décrit les blocs utilisés dans l'assemblage de I, et les interactions
entre eux (quelles variables de sortie correspondent o quelles variables d’entrée).
L’ordre des blocs dans 14 n’a pas d’importance.

Grace a la construction précédente, on peut créer, & partir de n’importe quelle
formule ¢, une 3DT-instance qui est 3DT-réductible si et seulement si ¢ est satisfi-
able (Théoréme 1.19 page 38). Cela nous permet de conclure que le probléme con-
sistant & déterminer si une 3DT-instance est 3DT-réductible est donc NP-difficile.

1. TRI PAR TRANSPOSITIONS

| [A1, As] = copy(A4) |

}:
|
A
A
<A
N

\
/

>

Ao
Ay

~—~
S
~—

| A =or(Ay, 4,)|

K
|

T)

As Ay

(c)

I'.15

| A =and(4;, 4) |

FIGURE 1 - Représentation simplifiée des graphes de comportement des blocs copy,
and, or, et var. Un arc épais correspond a l'activation d’une variable d’entrée, un
arc double & une variable de sortie. Le bloc évolue a chaque activation de variable,
en commengant par sa définition originale et terminant au bloc vide (noté €) dans

lequel il ne reste aucun triplet.

['.16 SYNTHESE - FRENCH ABSTRACT

var var var var

X1 Xl X2 Xz X3 X3 X4 X4

Copy Copy Copy Copy Copy Copy Copy Copy
| [eopy| [copy] [copy] [eopy] |

A AR AR AR AR AR AT

X X2 Xt X2 XiX2 X;X2 X3X2 XIX? X;X? X;X2

.) ‘V’Q\
/
V12 V32 ‘/42 ‘/62

r, T, r3 r4 Ty T
\/ / /
o i~ W <[W,] We
Ay
[copv]— v [Py 5~ AL
3
A} A3 A3

L

FIGURE 2 - Diagramme illustrant la construction de I, pour la formule ¢ définie dans
I’Exemple 1. Un arc entre deux blocs représente une variable ayant pour source et
cible les blocs respectifs. Les variables pouvant étre activées lors du premier passage
(celles correspondant & des termes vrais dans 'affectation) sont représentées en gras.

1.5

1. TRI PAR TRANSPOSITIONS F.17

Malheureusement, il n’existe pas de garantie a priori que les 3DT-instances ainsi
construites possédent toutes une permutation équivalente.

Retour aux permutations Afin de compléter la démonstration, nous prouvons
dans la derniére partie (Théoréme 1.20 page 41) que toute 3DT-instance qui est
construite comme un assemblage de blocs de base a effectivement une permutation
équivalente.

Ce résultat permet donc de conclure la réduction, puisque pour toute formule
booléenne ¢ nous pouvons construire une permutation 74 dont la distance de trans-
position est dy(m,)/3 si et seulement si ¢ est satisfiable : le probléme de TRI PAR
TRANSPOSITIONS est NP-difficile (Théoréme 1.21 page 45).

Conclusion

Méme en connaissant la classe de complexité du probléme de TRI PAR TRANS-
POSITIONS, plusieurs questions restent ouvertes. Par exemple, ce probléme admet-il
un schéma d’approximation en temps polynomial 7 Notre réduction ne permet pas
de répondre a cette question puisqu’elle n’est pas linéaire : si la formule ¢ n’est pas
satisfiable, il peut étre remarqué que dy(my,) = dp(7,)/3 + 1.

D’autre part, existe-t-il des paramétres pertinents pour lesquels le probléme est
FPT? Un paramétre éventuel serait la taille des facteurs échangés dans chaque
transposition. Le probléme devient-il polynomial si ce paramétre est borné? En fait
la réponse est non si le parameétre est la taille du facteur le plus petit de chaque
transposition, puisque dans notre réduction, cette quantité est majorée par 6 pour
toutes les transpositions nécessaires au tri de 77,, indépendamment de la formule ¢.

Partie I — Chapitre 2

Tri par inversions préfixes

Le TRI PAR INVERSIONS PREFIXES (SBPR,

pour SORTING BY PREFIX REVERSALS) est un

t- = probléme plus connu sous le nom de retourne-
ment de crépes : il s’agit de réarranger une pile

de crépes de tailles différentes (i.e., une permu-

-1 tation) pour en faire une pile pyramidale, ou la

seule action possible est d’insérer une spatule
dans la pile et de retourner les crépes se trou-
vant au-dessus (i.e., d’effectuer une inversion
préfixe). Calculer un scénario optimal est un
probléme combinatoire vieux de plus de trente
ans.

Dans ce chapitre, nous prouvons que le prob-
léme de retournement de crépes est NP-difficile.

2.1 Présentation du probléme

Le probléme de retournement de crépes a été tout d’abord présenté dans [63]
sous la forme de I’énigme suivante.

Imaginez un serveur devant apporter une pile de crépes a des clients.
Malheureusement, le chef n’est pas particuliérement minutieux, et
les crépes ont toutes des tailles différentes. En chemin vers la table,
le serveur réarrange la pile (de fagon a mettre la plus petite en haut,
etc., jusqu’a la plus grande tout en bas) en saisissant, autant de fois
que nécessaire, plusieurs crépes du haut de la pile et en les retour-
nant. S’il y a n crépes, combien, au maximum, le serveur devra-t-il
effectuer de retournements (en fonction de n) pour réarranger la
pile?

Les résultats de ce chapitre ont fait I’objet d’une présentation invitée au colloque A&P 2012
(Algorithms and Permutations, Paris), et ont également été présentés a MFCS 2012
(37th International Symposium on Mathematical Foundations of Computer Science,
Bratislava [34]). Ils sont actuellement soumis pour publication & JCSS (Journal of Com-
puter and System Sciences, [37]).

2.2

2.3

[.20 SYNTHESE - FRENCH ABSTRACT

Puisque toutes les crépes ont des tailles différentes, une pile peut étre représentée
par une permutation (1 est la plus petite, 2 la suivante, etc., jusqu’a n la plus grande),
et un retournement consiste a effectuer une inversion d’un préfixe de taille arbitraire.
L’énigme présentée ci-dessus engendre deux problémes liés :

— Reéaliser un algorithme qui trie n’'importe quelle permutation avec un nombre

de retournements minimal (ce probléme d’optimisation est abrévié en SBPR,
pour SORTING BY PREFIX REVERSALS). Voir Figure 3.

— Calculer f(n), le nombre maximum de retournements requis pour trier une
permutation de taille n (ce nombre correspond au diamétre d’un graphe nommé
pancake network).

Gates et Papadimitriou [74] ont proposé la variante du probléme ou les crépes sont
bralées : chaque crépe a deux faces (I'une brilée, 'autre nom), et une contrainte est
ajoutée, imposant que toutes les crépes aient la face non brilée au-dessus a la fin
du tri. La borne sur le nombre de retournements nécessaires dans le cas briilé est
notée g(n).

Etat de Dart

De nombreuses études |50, 57, 59, 74, 86, 85, 98] ont pour but d’encadrer le plus
précisément possible les valeurs de f(n) et g(n), avec les résultats suivants :

— f(n) et g(n) sont connus exactement pour n < 19 et n < 17, respective-

ment [57].

— 15n/14 < f(n) < 18n/11 + O(1) [85, 50].

- [(83n+3)/2] < g(n) < 2n—6[57] (la borne supérieure est valide pour n > 16).

En ce qui concerne le probléme SBPR, des algorithmes de 2-approximation ont
été créés a la fois pour les variantes brilées et non brilées [59, 69]. De plus, Labarre
et Cibulka [98] ont caractérisé une sous-classe de permutations (les permutations
simples) pour lesquelles un tri optimal peut étre calculé en temps polynomial.

Le probléme de retournement de crépes a plusieurs applications. Par exemple,
le graphe pancake network a a la fois un faible degré et un faible diamétre par rap-
port au nombre de ses sommets. Il est ainsi intéressant pour des applications en
calcul paralléle [1, 110]. L’aspect algorithmique, i.e. le probléme de tri, correspond
exactement a la distance de réarrangement de génomes ou les opérations autorisées
sont les inversions préfixes (les variantes briilées/non briilées correspondent respec-
tivement aux modélisations des génomes en permutations signées/non signées). Par
conséquent, ce probléme a particuliérement éveillé I'intérét de la communauté de
génomique comparative, notamment a cause de ses similarités avec le probléeme de
TRI PAR RETOURNEMENTS (ou SORTING BY REVERSALS) [11], qui admet un algo-
rithme exact polynomial [81] pour la variante signée, et une 1.375-approximation [19]
pour la variante non signée (qui est APX-difficile [20]).

Notre contribution

Dans ce chapitre, nous prouvons que le probléme SBPR est NP-difficile (dans
sa variante non brilée, ou non signée), ce qui permet de clore une question restée
ouverte pendant plusieurs décennies. Nous prouvons en fait un résultat plus fort :
le nombre de cassures est connu pour étre une borne inférieure sur la distance par
inversions préfixes. Nous prouvons, comme pour le probléme de TRI PAR TRANSPO-

2. TRI PAR INVERSIONS PREFIXES .21

!

(a) Objectif : transformer une permutation (e.g., <6, 5,1,3,2,7, 4>) en l'identité Z1.

AN

N

(b) Un retournement de 5 éléments : (6,5,1,3,2,7,4) devient (2,3,1,5,6,7,4). La
limite du retournement est marquée avec un symbole de spatule.

-

(c) La séquence de 5 retournements nécessaires pour trier <6, 5,1,3,2,7, 4>. Elle est
optimale car le nombre de cassures de la permutation est 5. Elle est aussi, de fait,
la seule séquence de retournements optimale.

FI1GURE 3 — Illustration du probléme de TRI PAR INVERSIONS PREFIXES.

24

['.22 SYNTHESE - FRENCH ABSTRACT

SITIONS, que le probléme consistant a déterminer si cette borne est atteinte pour
une permutation donnée est lui-méme NP-difficile.

Les méthodes employées pour les deux preuves ont de nombreux points communs,
avec une réduction a un probléme de satisfiabilité. Nous construisons des séquences
par concaténation de gadgets, telles qu’il existe un chemin “efficace” (i.e. qui retire un
maximum de points de cassure a chaque opération) si et seulement si une formule est
satisfiable. La contrainte de “double passage” est également présente. En revanche,
la spécificité des inversions préfixes, notamment le fait qu’il n’existe a tout moment
que deux points de cassure au maximum qui peuvent étre retirés par une opération
efficace, font que les gadgets définis sont trés différents, et que l'ordre de passage
dans les gadgets est complétement contraint.

Conclusion

Comme pour le probléme de TRI PAR TRANSPOSITIONS, la NP-difficulté du
probléme de TRI PAR RETOURNEMENTS PREFIXES représente un résultat important
dans les problémes de réarrangement de génomes. La question de ’APX-difficulté
reste cependant ouverte, tout comme la complexité de la variante signée (ou brilée),
ou la question de I'existence d’algorithmes paramétrés pour ce probléme.

Partie II — Chapitre 3

Distances exemplaires

Le probléme de DISTANCE EXEMPLAIRE de-
mande, étant donnés deux génomes présentant
des duplications, d’extraire des exemplarisa-
tions de ces génomes (i.e. des sous-séquences
contenant exactement une copie de chaque
géne) minimisant une mesure de dissimilarité

= ~ choisie.

Dans ce chapitre, nous prouvons qu’il est
NP-difficile d’approximer le probléme de Dis-
TANCE EXEMPLAIRE pour deux distances de
réarrangement (tri par inversions et DCJ) et
pour les distances d’édition de Hamming et de
Levenshtein.

3.1 Présentation du probléme

Dans ce chapitre, un génome est représenté par une séquence signée d’entiers :
chaque entier représente un géne (ou plus généralement, un marqueur) d’une certaine
famille avec une certaine orientation. Etant donnés deux génomes, potentiellement
avec des doublons, le probléme de DISTANCE EXEMPLAIRE [113] consiste & retirer
toutes les copies sauf une de chaque marqueur dans chaque génome, tout en min-
imisant une distance objectif entre les deux génomes. On appelle les génomes réduits
des sous-séquences exemplaires des génomes d’origine. Cette approche revient a con-
sidérer que les duplications sont récentes dans I'histoire évolutive des deux espéces
considérées (elles ont eu lieu aprés la spéciation), ou alors que les données perme-
ttent de distinguer les copies provenant d’une duplication plus ancienne. Ainsi, un
seul exemplaire de chaque famille de génes provient de ’ancétre commun et doit étre
mis en correspondance avec un exemplaire de 1'autre espéce (un géne orthologue).

Les résultats de ce chapitre ont été obtenus en collaboration avec Mighui Jiang. Ils ont été
présentés & ISBRA 2012 (8th International Symposium on Bioinformatics Research and
Applications, Dallas [39]), et sont a paraitre dans TCBB (IEEE Transactions on Compu-
tational Biology and Bioinformatics [40]).

3.2

[.24 SYNTHESE - FRENCH ABSTRACT

Par exemple, les deux génomes ci-dessous

Gyi: (=4, +1, 42, +3, =5, +1, +2, +3, —6)
Go: (=1, =4, +1, +2, =5, +3, =2, —6, +3)

peuvent tous deux étre réduits a la méme séquence
G': (=4, +1, +2, =5, +3, —6)

en retirant des doublons, ils ont donc une distance exemplaire de zéro pour n’importe
quelle mesure de distance raisonnable. De fagon générale, le probléme de distance
exemplaire est en fait une famille de problémes dépendants du choix de la mesure
de distance (qui n’est pas unique). Nous renvoyons a la Figure 4 pour un exemple
de scénario ou la distance sous-jacente est la distance d’inversions signée.

Nous notons (s,?)-DISTANCE EXEMPLAIRE le probléme de calcul de distance
exemplaire sur deux génomes G; et G ol chaque géne apparait au plus s fois dans
G1 et au plus ¢ fois dans Gy. D’aprés [26, 94|, quelle que soit la distance utilisée
(a condition que ce soit une distance, i.e. elle doit valoir zéro pour deux séquences
identiques), le probléme (2,2)-EXEMPLAR DISTANCE n’admet pas d’approximation.
En effet, le simple fait de décider si oui ou non les deux séquences peuvent étre ré-
duites & la méme sous-séquence exemplaire est en soi un probléme NP-difficile. Dans
ce chapitre, nous portons nos recherches sur la variante non triviale la plus simple
du probléme de distance exemplaire : (1,2)-DISTANCE EXEMPLAIRE. Remarque :
nous utilisons le modéle monochromosomal (un génome est représenté par une seule
séquence) afin d’avoir, encore une fois, la définition du probléme la plus simple;
ainsi, les résultats de difficulté peuvent s’étendre au modéle multichromosomal.

Etat de ’art

Le probléme (1,¢)-DISTANCE EXEMPLAIRE a été étudié pour plusieurs distances
habituelles utilisées en génomique comparative. Angibaud et al. [7] ont prouvé que
pour les distances de cassure, d’intervalles communs et d’intervalles conservés, le
probléme (1,2)-DISTANCE EXEMPLAIRE est APX-difficile. Bonizzoni et al. [28] ont
démontré que des variantes du probléme de PLUS LONGUE SOUS-SEQUENCE COM-
MUNE sous le modéle exemplaire est également APX-difficile. Pour les mesures de
perturbation d’adjacence mazimale (MAD, pour Mazimum Adjacency Disruption)
et perturbation d’adjacence totale (SAD, pour Summed Adjacency Disruption), in-
troduites par Sankoff et Haque [114], calculer la distance exemplaire est APX-
difficile [24]. Plus précisément, (1,2)-DISTANCE MAD EXEMPLAIRE est NP-difficile
a approximer sous un facteur 2 —e pour tout € > 0, et (1,2)-DISTANCE SAD EXEM-
PLAIRE est NP-difficile & approximer sous un facteur 1.3606 [40]. Voir aussi [48, 46|
pour des résultats liés.

Distance d’inversions

Etant donnée une permutation signée m = <7r1, . ,7rn>, une inverston non signée
(,7) avec 1 <1 < j < n transforme 7 en <7T1, ey Tty Ty ey Ty T4, - - - ,7rn>, ol
le facteur 7, ...m; est inversé. Pour une permutation signée o = <01, . ,an>, une

inversion signée (i,7) avec 1 < i < j < n transforme o en la permutation signée

3.4

3. DISTANCES EXEMPLAIRES ['.25

(+1, 42, +3, +4, +5)

inversion / \duplications

(+1, —4, =3, =2, +5) (+1, +2, +3, =2, +4, +1, +5, —4)
Inversion l l Inversion
Gy = (44, =1, =3, =2, 45) Gy = (+1, +2, —4, +2, =3, +1, +5, —4)

~—- —_—

Distance d’inversions exemplaire = 3

FIGURE 4 — Au cours de I’évolution de deux espéces depuis la spéciation au niveau de
I’ancétre commun, des duplications ont lieu dans G5 et des inversions se produisent
a la fois dans GG; et (G5. Selon le principe de parcimonie, la distance exemplaire de 3
entre G; et G5 correspond au nombre d’inversions dans le scénario le plus probable
de I’histoire évolutive de ces deux espéces.

<01, ce oy Oi1y =0y, =04y Ojgl, - ,an>, ou le facteur <ai, e ,aj> est retourné
(voir Figure 5a). La distance d’inversions non signée (resp. distance d’inversions
signée) entre deux permutations non signées (resp. signées) est le nombre minimal
d’inversions non signées (resp. signées) requises pour transformer une permutation
en 'autre. Calculer la distance d’inversions non signée est APX-difficile [20], et la
distance d’inversions signée est quant a elle calculable en temps polynomial [82].
Le théoréme ci-dessous répond a la question posée par Blin et al. [24] sur I'ap-
proximabilité du probléme de distance exemplaire pour les inversions signées :

Theoréme 1. Voir Théoreme 3.1 page 77. 1l est NP-difficile d’approximer la (1,2)-
DISTANCE D'INVERSIONS SIGNEE EXEMPLAIRE sous un facteur 1237/1236 — € pour
tout € > 0.

Méthode

La preuve du Théoréme 1 se fait depuis le probléme de TRI PAR INVERSIONS
NON SIGNE.

La réduction est basée sur une idée simple : la difficulté du tri par inversions non
signé tient au fait qu’il est difficile de choisir “dans quelle sens” il faut lire chaque
gene, c’est-a-dire si un élément non signé m; devrait étre lu “4m;” ou “—m;”. Puisque
le probléme de distance exemplaire consiste justement a devoir choisir un élément
parmi deux, il suffit de remplacer m; dans l'instance de TRI PAR INVERSIONS NON
SIGNE par (+m;, —m;) dans Dinstance de (1,2)-DISTANCE D’INVERSIONS SIGNEE
EXEMPLAIRE. Le théoréme découle du fait que ces deux instances ont des solutions
optimales identiques pour leurs problémes respectifs, et de ’APX-difficulté du TRI
PAR INVERSIONS NON SIGNE.

Distance de DCJ

L’opération de DCJ (pour Double-Cut-And-Join) proposée par Yancopoulos et
al. [122] consiste a couper une permutation a deux positions, et a recoller les quatre
extrémités ainsi créées de n’importe quelle maniére. Ainsi, une opération de DCJ
peut correspondre soit & une inversion, soit a ’excision d’un facteur pour former

3.5

['.26 SYNTHESE - FRENCH ABSTRACT

(a) (+1, +2,43, +4, +5, +6) — (+1, +2, =5, —4, —3, +6)

(b) (+1, 42, +3, +4, +5, +6) — (+1, +2, +6) (+3, +4, +5)

() (+1, 42, +3) (+4, +5, +6) — (+1, +2, =5, —4, =6, +3)

FIGURE 5 — Les opérations autorisées pour le tri par DCJ signé sont (a) les inversions,
(b) les excisions, et (c) les insertions. Une permutation circulaire est notée avec des
parenthéses, c’est-a-dire que (+1 +2 +3) est égale a (+2 +3 +1) et & (=3 —2 —1).

une permutation circulaire, soit a l'insertion d’une permutation circulaire dans la
séquence principale, & n’importe quelle position (voir Figure 5). Le probléme con-
sistant a calculer la distance de DCJ entre deux permutations est polynomial dans
le cas signé [122], et NP-difficile dans le cas non signé [43]. Le théoréme ci-dessous
prouve I'inapproximabilité de la distance DCJ exemplaire :

Theoréme 2. Voir Théoreme 3.2 page 78. 1l est NP-difficile d’approximer la (1,2)-
DISTANCE DCJ EXEMPLAIRE sous un facteur 1237/1236 — € pour tout € > 0.

Méthode

La preuve du Théoréme 2 se fait depuis le probléme de TRI PAR DCJ NON
SIGNE, de la méme facon que pour le Théoréme 1.

En revanche, pour pouvoir conclure la démonstration nous étendons la preuve de
NP-difficulté [43] en preuve d’APX-difficulté en prouvant le résultat suivant : il est
NP-difficile d’approximer le probléme de TRI PAR DCJ NON SIGNE sous un facteur
1237/1236 — € pour tout € > 0.

Distances d’édition

Dans le dernier théoréme de ce chapitre, nous présentons le premier résultat d’i-
napproximabilité pour le probléme de distance exemplaire en utilisant une distance
d’édition classique :

Theoréme 3. Voir Théoréme 3.3 page 78. Le probléme (1,2)-DISTANCE D’EDITION
EXEMPLAIRE est APX-difficile lorsque le cotit d’une substitution est 1 et que le cotit
d’une insertion ou d’une suppression est au moins 1.

Les distances de Hamming et de Levenshtein sont chacune une distance d’édition
particuliére : pour la distance de Levenshtein, le coiit de chaque opération (substi-
tution, insertion, suppression) est 1; pour la distance de Hamming, le cout d’une
substitution est 1 et le colit d’une insertion ou d’une suppression est +o0o. Nous
avons donc les deux corollaires suivants.

Corollaire 4. Le probléme (1,2)-DISTANCE DE LEVENSHTEIN EXEMPLAIRE est
APX-difficile.

Corollaire 5. Le probléeme (1,2)-DISTANCE DE HAMMING EXEMPLAIRE est APX-
difficile.

3. DISTANCES EXEMPLAIRES .27

Gl - < €, 87 f7 Sa 9, 87 ha S7 7;7 Sa j7 -
G2 = <687€t7 S7 fsafu~, 87 98791)7 87 ht-,hu-, S7 it7 iva Sa ju-, jva -

/ ! !/ / ! ! I !/ I ! !/ !/
- S, s, 81, 8, 8%, S, t,th, 1, ts, S, u, uf, uh, us, S, v, vy, Uy, Uy, —
- S7 657 f"" gS! S’ 67 f'/ g? §7 6t7&7 Zt'/t’ 67 h7Z7 S7 fu? hUJ j7L7u7 f’ h7 j'/ S7 97}71/7)7 jv? U’ g7 Z? .77 -

)
)

- S, €sy €t fsa fua Ys5 Gu, ht7 huv U oy Jus Jv
/ / / / / / ! / / !/ / /
— S, s, 85, 84, th, th, th, ul, uh, us, v, vy, v§

FIGURE 6 — Exemple pour la réduction du probléme de couverture a (1,2)-
DISTANCE D’EDITION EXEMPLAIRE. Haut : un graphe cubique G avec une cou-
verture optimale {s,¢,v} et 'ensemble indépendant complémentaire {u}. Bas : Les
séquences GG1 et G5 créées a partir de GG, ot nous utilisons un symbole unique S pour
tous les séparateurs. Une sous-séquence exemplaire optimale de G4 est soulignée, et
les éléments alignés pour le calcul de la distance d’édition sont en gras.

Méthode

La réduction se fait depuis le probléme COUVERTURE DE SOMMETS MINIMALE
DANS UN GRAPHE CUBIQUE, ses grandes étapes sont présentées ci-dessous.

Construction. Soit G = (V| FE) un graphe cubique de n sommets et m arétes
(ainsi 3n = 2m). Nous construisons deux séquences G; et Gy. Pour chaque aréte
e = {u,v} € E, nous définissons trois marqueurs d’aréte e, e,, et e,. Pour chaque
sommet v € V, nous définissons un marqueur de sommet v et trois marqueurs
tampons v\, vy, v. Finalement, nous utilisons 2(m+7n)+2(m—1)+(n—1) marqueurs
supplémentaires servant de séparateurs. La construction est illustrée Figure 6 pour
le graphe complet Kj.

Nous définissons deux types de gadgets. Le premier, pour une aréte e = {u, v} :

2

us €0)-

e

Gh]
G2 {6

J= (e
J= (e

Et le second, pour un sommet v incident a trois arétes e, f, g :

Gl[v] = <U7 Ull,’U;,Ué>

G2[U] = <€vyfv;gvy v, €, fa g>

La séquence (G est obtenue comme étant la concaténation des Gile|, e € E,
séparés par des séparateurs courts (2 marqueurs), suivis d’un séparateur long (m+7n
marqueurs), suivi des Gy [v], v € V, séparés par des séparateurs courts (1 marqueur),
suivis d’un séparateur long et de tous les marqueurs e,, e, pour e € E. La séquence
(5 est construite de la méme fagon, avec une différence : les marqueurs finaux sont
les vy, v}, v pour v € V.

3.6

['.28 SYNTHESE - FRENCH ABSTRACT

Equivalence La preuve du Théoréme 3 découle de 1’équivalence suivante (voir
Lemme 3.8 page 81) : le graphe G a un ensemble de sommets couvrant de taille k si
et seulement si G5 a une sous-séquence exemplaire GG, ayant une distance d’édition
au plus m + 6n + k de Gy.

Nous détaillons ici I'implication directe : la sous-séquence exemplaire G, est
construite de la facon suivante a partir d’un ensemble couvrant X de taille k. Pour
toute aréte e = {u,v} avec u € X, e, est conservé dans Gs[u] et supprimé dans
Gsle], et e, est supprimé dans Gs[v] et conservé dans Gile|. Puis, pour chaque
sommet v, entre 0 et 4 marqueurs tampons sont supprimés dans Gs[v] afin qu’il
reste exactement 4 marqueurs dans cette sous-séquence. On constate alors que tous
les séparateurs sont alignés entre G et G, et ils ont un cout de zéro pour la distance
d’édition. Tous les autres marqueurs, a ’exception des marqueurs de sommet v pour
v ¢ X, ne sont pas alignés entre G et G, et ont un coit de une substitution pour
la distance d’édition. Les marqueurs v pour v ¢ X sont eux alignés et ont un cott
de zéro. La distance totale est donc m + 6n + k (les marqueurs non alignés sont les
m marqueurs e pour e € E, les 6n marqueurs ey, fu, gu, u}, uh, us pour u € V, et k
marqueurs u pour u € X).

Conclusion

Dans ce chapitre, nous avons étudié la complexité du calcul de sous-séquences
exemplaires optimisant plusieurs distances de similarités.

Notre choix de mesures de distances est basé sur deux considérations. D’une part,
pour avoir les résultats les plus généraux possibles, nous avons choisi d’explorer une
variété maximale de mesures de distances qui sont pertinentes pour des applica-
tions biologiques variées. Les distances d’éditions mesurent les différences locales,
alors que les distances d’inversions et de DCJ calculent des scénarios de réarrange-
ments globaux. D’autre part, d’'un point de vue de la complexité algorithmique, la
généralisation “exemplaire” de n’importe quelle mesure pour des séquences avec du-
plications ne peut qu’étre plus difficile que pour des séquences sans duplications. Afin
de savoir précisément ou apparait la difficulté du probléme de distance exemplaire,
nous nous sommes restreints aux mesures dont la version classique était simplement
calculable. Ainsi, pour deux séquences, les distances de Hamming et de Levenshtein
sont calculables respectivement en temps linéaire et quadratique. Des algorithmes
plus recherchés mais néanmoins polynomiaux permettent également de calculer les
distances d’inversion signées [82] et de DCJ [122].

Finalement, pour toutes les mesures de distance génomique envisagées, le prob-
léeme de (1,2)-DISTANCE EXEMPLAIRE est APX-difficile. Obtenir un algorithme
d’approximation ou paramétré pour I'une de ces distances reste un défi ouvert.

Partie 11 — Chapitre 4

Plus petite partition commune

Le probléme de PLUS PETITE PARTITION
COMMUNE (MCSP, pour MINIMUM COMMON
STRING PARTITION) a en entrée deux séquences
x et y et un entier k, et demande a partition-
ner ces deux séquences en utilisant un ensem-
ble commun d’au plus k facteurs, appelés blocs
(seul 'ordre des blocs pouvant étre différent
pour couvrir les deux séquences).

Dans ce chapitre, nous présentons un al-
gorithme paramétré par k pour le probléme
MCSP.

4.1 Présentation du probléme

Le probléme étudié¢ dans ce chapitre s’inscrit dans le cadre de la génomique
comparative sur les chaines, ot I'objectif est de déterminer le nombre d’opérations
d’un type donné permettant de transformer un génome en un autre. L’entrée con-
siste en une paire de chaines x et y. L’opération permettant de transformer z en y
consiste, de facon informelle, & découper x en un nombre minimal de morceaux,
de les réordonner et de les concaténer de fagon a obtenir exactement la chaine y.
Cette transformation se formalise grace & la notion de partition commune (CSP,
pour common string partition) : une partition P de deux chaines = et y en k blocs
T1To -+ T et y1yo - - - Yy est une partition commune s’il existe une bijection M en-
tre {x; | 1 <i<k}et{y |1 <i<k} telle que x; représente la méme chaine de
caractéres que M (z;) pour tout 1 < i < k (voir I'exemple Figure 7). Le nombre de
blocs k est appelé la taille de la partition commune P. Nous étudions le probléme
consistant a découvrir une CSP de taille minimum.

Les résultats de ce chapitre ont été obtenus en collaboration avec Christian Komusiewicz.
Ils ont été présentés aux Journées GTGC (2012, Lille), et ont été soumis & ESA 2013 (21st
FEuropean Symposium on Algorithms, Sophia Antipolis [41]).

4.2

4.3

[.30 SYNTHESE - FRENCH ABSTRACT

ababcd labadcbbaalbabablababa

ababalbabablabadcbbaalababcd

FI1GURE 7 — Une instance de MCSP avec une plus petite partition commune de taille
quatre.

Probléme PrLUs PETITE PARTITION COMMUNE (MCSP)

Entrée Deux chaines z et y de longueur n et un entier k
Question Existe-t-il une partition commune P de taille au plus k de z
et y?

Vu sous un autre angle, MCSP est un probléme d’association. Etant données les
deux séquences x et y, nous cherchons a calculer une bijection entre les marqueurs
de z et ceux de y, de sorte que (1) deux marqueurs associés représentent le méme
caractére et (2) il existe un maximum de paires de marqueurs consécutifs qui soient
associés a deux marqueurs eux-méme consécutifs. L’utilisation de MCSP comme un
prétraitement avant d’appliquer d’autres algorithmes donne une méthode optimale
(pour la distance de cassure) permettant de transformer des chaines en permutations.

Etat de art

MCSP a été originalement présenté indépendamment par Chen et al. [45] et
Swenson et al. [118]. MCSP est APX-difficile, méme dans le cas contraint ou chaque
caractére a au plus deux occurrences [75]. Damaschke [61] a initié 'étude de MCSP
dans le contexte des algorithmes paramétrés en prouvant que ce probléme est FPT
si 'on considére le paramétre combiné “taille de la partition k£ et nombre de répéti-
tions r dans les chaines d’entrée”. Par la suite, Jiang et al. [89] ont prouvé que MCSP
peut étre résolu en temps (d!)* - poly(n), ot d est le nombre maximum d’occurrences
d’un méme caractére dans les chaines d’entrée. MCSP peut également étre résolu en
temps 2" - poly(n) [70]. Enfin, Shapira and Storer [117] ont présenté une heuristique
gloutonne pour MCSP.

Notre contribution

Dans ce chapitre, nous répondons a une question ouverte |61, 70, 89| en montrant
que MCSP est FPT pour le seul paramétre k, i.e. nous présentons un algorithme
s’exécutant un temps f(k) - poly(n).

La méthode utilisée par notre algorithme est (en quelques lignes) la suivante.
Nous cherchons & maintenir — et faire croitre — un ensemble de facteurs des chaines
r et y qui ne contiennent aucun point de cassure. De tels facteurs sont appelés
morceaux solides, par opposition aux morceaur fragiles qu’ils encadrent. Nous util-
isons également une variable 5 représentant (& un ratio 2 prés) la taille du plus grand
bloc ne contenant pas encore de morceau solide. Initialement, les deux chaines z et
y sont considérées comme des morceaux fragiles, et S vaut au moins n/2k.

Dans un premier temps, nous découpons tous les morceaux fragiles en plus petits
morceaux dont la taille est de 'ordre de /3 : au moins un nouveau bloc contient
intégralement un ou plusieurs de ces morceaux. Nous explorons les cas ou chacun
de ces morceaux est solide ou fragile.

4.4

4. PLUS PETITE PARTITION COMMUNE .31

Dans un second temps, nous mettons a jour 3, et cherchons a réduire les morceaux
fragiles de fagon a ce que leur taille soit bornée par une fonction de § et de k.
L’application de plusieurs régles de réduction permet d’arriver a ce résultat.

Enfin, nous itérons ce processus (premier et second temps) jusqu’a ce que les
morceaux fragiles soient suffisamment petits, avec 5 < 4. Alors, le nombre de posi-
tions possibles pour les points de cassure est suffisamment faible pour pouvoir tester
tous les cas possibles, et ainsi obtenir une partition commune optimale.

Perspectives

Outre I"amélioration du temps d’exécution (qui est pour le moment de Iordre
de O*(kmkg)) qui pourrait se faire via le calcul d’'un noyau polynomial, nous avons
identifié¢ plusieurs pistes qui permettraient de tenir compte de données plus générales.
Nous cherchons donc a savoir si l'algorithme peut étre étendu de facon a tenir
compte :

A. de signes pour chaque marqueur ? Plus précisément, une direction est associée
a chaque marqueur, et les blocs peuvent étre retournés avant d’étre mis en
correspondance. Des variantes signées de MCSP ont été définies dans [45, 68,
118].

B. de trois séquences d’entrée ou plus?

C. de la possibilité qu'un nombre borné de marqueurs soient faux et aient besoin
d’étre retirés 7 Ces marqueurs pourraient se placer entre deux blocs consécutifs
(ils correspondent alors & des génes n’apparaissant dans aucun bloc de syn-
ténie) ou bien & l'intérieur d’'un méme bloc (ils sont alors dus a des erreurs
lors de la reconstruction du génome).

D. de la présence d’incertitudes dans le nombre de répétitions consécutives d’un
méme facteur 7 En effet, une difficulté majeure du probléme de reconstruction
est de déterminer avec exactitude le nombre de répétitions des chaines péri-
odiques. Les données d’entrée, au lieu d’étre de la forme “c a b a b a b a
c”, pourraient par exemple étre “c (a b){de 2 a4 4 copies} a ¢”.

Pour A. et B., nous conjecturons que 'algorithme pourrait étre assez simplement
adaptable, puisque notamment (pour A.) il est possible, étant donné un morceau
solide, de tester les cas ot le bloc contenant ce morceau doit étre retourné ou non.
Pour C. et D., les modifications sont nécessairement plus profondes et impliquent
de redéfinir des outils clé. Nous conjecturons cependant que la méthode générale
devrait permettre de résoudre ces problémes plus difficiles.

Partie 111 — Chapitre 5
Extraction de bandes maximales

Le probléme d’EXTRACTION DE BANDES
MAXIMALES (MSR, pour MAXIMAL STRIP RE-
COVERY) cherche & identifier des blocs de syn-
ténie dans des séquences génomiques pouvant
contenir des erreurs. Ainsi, un nombre minimal
d’éléments doivent étre supprimés afin de pou-
voir partitionner les séquences en bandes iden-

= <= tiques de longueur au moins 2.

Dans ce chapitre, nous étudions plusieurs
variantes de MSR, en particulier la variante 9-
gap ou au plus § éléments consécutifs peuvent
étre supprimés, et nous présentons dans chaque
cas des résultats de complexité algorithmique,
ainsi que des approximations ou des algorithmes
paramétrés.

5.1 Présentation des probléme MSR et CMSR

Une tache essentielle en génomique comparative consiste & décomposer deux ou
plusieurs génomes en blocs de synténie, c’est-a-dire a identifier des fragments de
chromosomes avec des contenus similaires. Les blocs de synténie représentent des
zones du génome n’ayant pas été affectées par les réarrangements de grande échelle,
tels que les transpositions ou les inversions, et ainsi peuvent servir de données d’en-
trée pour les problémes de réarrangements avancés. Ils donnent aussi des indices
importants sur le role de chaque géne, étant donné que des génes appartenant a un
méme bloc de synténie produisent fréquemment des protéines ayant des fonctionnal-
ités liées. Extraire les blocs de synténie des cartes génomiques est, cependant, une

Ce chapitre regroupe des résultats provenant de deux articles. Le premier a été présenté
a ISAAC 2009 (20th International Symposium on Algorithms and Computation, Hon-
olulu [31]), et a été publié dans JDA 2013 (Journal of Discrete Algorithms [36]). Le second,
créé en collaboration avec Minghui Jiang, a été présenté & CPM 2011 (22nd Annual Sym-
posium on Combinatorial Pattern Matching, Palermo [29]) et a été publié dans TCS 2012
(Theoretical Computer Science [30]).

['.34 SYNTHESE - FRENCH ABSTRACT

tache non triviale lorsque les données sont bruitées ou ambigués. Il faut alors re-
tirer les marqueurs erronés de facon a pouvoir proposer une décomposition claire en
blocs de synténie. Ceci motive le probléme d’EXTRACTION DE BANDES MAXIMALES
(MSR, pour MAXIMAL STRIP RECOVERY) [126] : retirer un ensemble de marqueurs
(génes) des cartes génomiques de facon a ce que les marqueurs restants puissent étre
partitionnés en bandes (blocs de synténie) ayant une taille totale maximale.

Les données génomiques prennent ici la forme de carte génomique, i.e. une
séquence signée. Une bande pour d > 2 cartes génomiques est un facteur commun a
chacune de ces cartes (potentiellement en ordre inverse avec les signes opposés). Le
probléme MSR sur d cartes, noté MSR-d (ou directement MSR pour d = 2) est le
probléme de maximisation suivant.

Probléme MSR-d

Entrée d cartes génomiques M;_4! contenant chacune n marqueurs
sans doublons
Sortie d sous-séquences M) , de M, 4 respectivement, chacune

contenant les mémes ¢ marqueurs, telles que les marqueurs
de M’ , peuvent étre partitionnés en bandes
Maximiser le nombre ¢ de marqueurs sélectionnés

Exemple 2. Soient les trois cartes génomiques ci-dessous.

My=((102) 3 (120 4) 5 (8, 9)(101 6 7 [11))
M,
Ms

((1)1 -7 -6 [2)@2K 3 X4)@oX 5 K11) (8 X 9))

(120 4)(1 X 5 X2) 3 (10811 6 (91 7 K-8))

Les trois sous-séquences de longueur { = 8 ci-dessous forment une solution opti-
male de MSR-3 sur (My, May, Ms). Ces sous-séquences peuvent étre partitionnées
par ['ensemble de bandes {<1, 2>, <12, 4>, <10, 11>, <8, 9>} Les sous-séquences corre-
spondant a chaque bande sont mises en valeur a la fois dans les cartes originales et
dans la solution.

Mi=((1X2)(12K4) (8 X9) 10M11))
ML= ((12) @128 4) (10511) (8 519))
Mi=((1204) (1 22) (10511) (-951-8))

Le probléeme de maximisation MSR-d a un probléme de minimisation complé-
mentaire, dénoté CMSR-d [120, 93], qui minimise le paramétre k = n—/ représentant
le nombre de marqueurs supprimés. Pour des cartes génomiques provenant d’espéces
suffisamment proches avec peu d’erreurs, le paramétre k est plus petit que ¢, rendant
ainsi les algorithmes FPT ou les approximations plus pertinents pour CMSR~d que
pour MSR-d.

La variante ci-dessous [47] a été proposée pour le cas plus général ot les doublons
sont autorisés dans les cartes génomiques :

1. Par simplicité, une liste de d cartes génomiques (My,..., My) est abréviée en M; 4 et

(M, MG) en MY

5.2

5.3

5. EXTRACTION DE BANDES MAXIMALES ['.35

Probléme MSR-DU-d

Entrée d cartes génomiques M 4 contenant chacune n marqueurs

Sortie d sous-séquences M , de M, 4 respectivement, chacune
contenant les mémes ¢ marqueurs, telles que les marqueurs
de M| , peuvent étre partitionnés en bandes

Maximiser le nombre ¢ de marqueurs sélectionnés

Contrainte de gap

Etant données d sous-séquences M’ de d cartes génomiques M _4, respec-
tivement, le gap entre deux marqueurs consécutifs a et b de M. est le nombre de
marqueurs apparaissant entre a et b dans M,, a et b exclus. Le gap d’une bande
s est le gap maximum entre deux marqueurs consécutifs de s sur toutes les cartes
M. Dans I'Exemple 2, la bande <1,2> dans la solution proposée a un gap de 2,
les marqueurs 1 et 2 étant séparés par les marqueurs 6 et 7 dans la carte M. Les
marqueurs retirés entre deux marqueurs consécutifs d’une bande correspondent au
bruit et aux ambiguités : il est donc improbable d’avoir un bloc de synténie ayant
un gap trés grand. Cela nous améne donc a définir la version contrainte ci-dessous :

Probléme 4-gap-MSR-d

Entrée d cartes génomiques M _4 contenant chacune n marqueurs
sans doublons
Sortie d sous-séquences ! 4 de My 4 respectivement, chacune

contenant les mémes ¢ marqueurs, telles que les marqueurs
de M} , peuvent étre partitionnés en bandes, et telles que
chaque bande a un gap d’au plus ¢

Maximiser le nombre ¢ de marqueurs sélectionnés

Dans ’Exemple 2, les bandes des sous-séquences (M7, M), MY%) ont un gap d’au

plus 2, elles forment donc une solution optimale de d-gap-MSR-3 pour 6 = 2. Pour
0 = 1, la solution optimale contient seulement 6 marqueurs répartis en 3 bandes :
{<2, 3>, <4, 5>, <6, 7>}, voir ci-dessous.

My=(1 (2)3)12(4) 5) 8 9 10 (6, 7) 11)
Mo=(1 (70.6)(2] 12 [3)(4] 10 [5) 11 &8 9)
Ms

(12 (401 F5)(20.3) 10 11 (61 -9 L7) -8)

Les variantes contraintes de MSR-DU-d et CMSR-d, dénotées respectivement o-
gap-MSR-DU-d et -gap-CMSR-d, peuvent étre définies de facon similaire. De méme
que pour MSR-d et CMSR-d, le paramétre pour d-gap-MSR-d est £, et le paramétre
pour d-gap-CMSR-d est k. Il n’y a pas de réduction directe de d-gap-MSR-d a MSR-
d ou vice versa : le gap est une contrainte supplémentaire & prendre en compte, mais
qui permet néanmoins de réduire le champ de recherche puisque moins de bandes
sont autorisées.

Résultats

Les résultats de complexité et les algorithmes existant pour les nombreuses vari-
antes de MSR sont présentés dans la Table 1. Les résultats les plus importants sont

F.36 SYNTHESE — FRENCH ABSTRACT
TABLE 1 — Résultats algorithmiques pour les variantes de MSR. La variable d
représente le nombre de cartes génomiques d’entrée (d = 2 pour MSR, MSR-DU et
CMSR). Pour chaque résultat, une référence est donnée a la section de ce manuscrit
et/ou a Particle le présentant. Il n’y a pas de colonne pour MSR-DU-d avec d > 3
par manque de résultats spécifiques a ce probléme.

contrainte Variante du probléme
degap | MSR MSR-da>3 | MSR-DU CMSR | CMSR-d a>3
Classe de complexité
0= P 5.3.1 P 5.3.1
6=1 NP-complet 5.2.2| APX-complet NP-complet 5.2.2
=2 APX-complet
6>3 5.2.3 et [93] 5.2.4 APX-complet
non W[1]-difficile (d > 4) et APX-complet [92, 93, 121] [93, 121]
Meilleur ratio d’approximation
0=0 P 5.3.1 2.25 535 P 5.3.1
0=1 1.8 5.3.3‘ 0.75d+4-0.75+¢ 2.778 534
6=2 1.5d + €
0=3 1.5d +0.75 + € 5.3.2 d+1.5
6>4 2d
non 5.3.1 et [47, 93] 2.667 [100] 5.3.6
Meilleur temps d’exécution d’un algorithme paramétré
0= P P
5= O(2'tdé? + ndf) O(2F poly(nd)) 5.4.3
=2 avec t = ((1+ 2d6) ?
§>3 5.4.1 O(2.36" poly(nd))
non ? (W[1]-difficile pour d > 4 [92]) Noyau linéaire [88] 5.4.2

les suivants.

Toutes les variantes sont au moins NP-difficiles (exceptées les variantes “triviales”
0-gap-MSR et 0-gap-CMSR). MSR-d est, de plus, W[1]-difficile pour d > 4 [93]. Une
2d-approximation est disponible pour MSR (avec ou sans contrainte de gap, avec ou
sans doublons). Nous proposons des algorithmes plus précis pour d-gap-MSR avec
des petites valeurs de 9, notamment une 1.8-approximation pour 1-gap-MSR. CMSR
(et 0-gap-CMSR-d) est également approximable, avec un ratio plus intéressant :
d + 1.5. Enfin, nous proposons un algorithme paramétré pour CMSR-d et d-gap-
CMSR-d de complexité O(2.36" poly(nd)).

Partie III — Chapitre 6

Linéarisation avec distance de
cassure minimale

Le probléeme NP-difficile de LINEARISATION

l AVEC DISTANCE DE CASSURE MINIMALE (MBL,

pour MINIMUM BREAKPOINT LINEARIZATION)

a pour objectif de reconstruire un génome

linéaire & partir de données partiellement or-

données, en utilisant en référence le génome

d’une espéce proche. Formellement, ['objectif

— est, étant donné un ordre partiel II, de créer

l une permutation compatible avec ’ordre partiel

et minimisant la distance de cassure & la per-
mutation identité de référence.

Dans ce chapitre, nous présentons trois al-

gorithmes d’approximation pour ce probleéme,
ainsi qu’un algorithme paramétré.

6.1 Présentation du probléme

Dans la majorité des algorithmes de génomique comparative, une connaissance
compléte de 'ordre des génes sur chaque chromosome des espéces étudiées est requise
(c’est le cas dans tous les problémes étudiés jusqu’a présent). Cependant, malgré des
avancées rapides en séquencage ADN, une connaissance compléte de 'ordre des génes
n’est acquise que pour un nombre limité d’espéces, alors que pour les autres espéces
Iinformation se présente plus souvent comme un ensemble de cartes génomiques
ou des incertitudes sur I'ordre précis des génes persistent. Ainsi, le probléme qui
consiste & inférer un ordre total a la fois compatible avec I'information partielle des
cartes génomiques et qui optimise une fonction objectif pertinente est une premiére
étape nécessaire pour pouvoir étudier les génomes d’'un maximum d’espéces. Durant
les derniéres années, une attention croissante a été portée sur ce probléme, dans

Les résultats de ce chapitre ont été présentés & TAMC 2010 (7th Annual Conference on
Theory and Applications of Models of Computation, Prague [32]), et sont & paraitre dans
TCS (Theoretical Computer Science, [38]).

['.38 SYNTHESE - FRENCH ABSTRACT

FIGURE 8 — Graphe orienté acyclique représentant 'ordre partiel IT de I'Exemple 3.

lequel la fonction objectif est une distance d’évolution mesurée par rapport a un
génome de référence (e.g. le nombre de réarrangements [125], d’inversions [124, 71],
de cassures [71, 23, 44], ou d’intervalles communs [23]).

Dans ce chapitre, nous nous focalisons sur le probléme de LINEARISATION AVEC
DISTANCE DE CASSURE MINIMALE (MBL, pour MINIMUM BREAKPOINT LINEARIZA-
TION), dont le but est de calculer une linéarisation d’un ordre partiel minimisant la
distance de cassure par rapport a un génome de référence.

Pour décrire le probléme MBL, nous représentons les données génomiques incom-
plétes par un ordre partiel I sur un ensemble donné de marqueurs 3 = [1; n]. Une
linéarisation de II est une permutation (i.e. un ordre total) = = (x[1],7[2],...,7[n])
sur X, telle que, pour toute paire de marqueurs 4, j, si @ <y j alors i <, j (de fagon
équivalente, si ¢ précéde j dans II, alors i précéde j dans 7). Dans ce cas, 7 est
dite compatible avec 1I. Une adjacence dans une permutation 7 est un facteur de
longueur 2. La distance de cassure dg(my,m2) entre deux permutations m; et m (du
méme ensemble X) est définie comme étant le nombre d’adjacences de m; qui ne sont
pas des adjacences de 5.

Le probléme de LINEARISATION AVEC DISTANCE DE CASSURE MINIMALE est
défini comme suit :

Probléme MBL

Entrée Un ordre partiel IT
Sortie Une linéarisation 7 de 11
Minimiser k = dg(m,Z,)

Exemple 3. Soit II lordre partiel défini par 1 <g 2 <p3;4<pgl<pgbetb <g3
(voir Figure 8). Cet ordre partiel engendre quatre linéarisations optimales pour le
probleme MBL, avec une distance de cassure de 3. Elles sont énumérées ci-dessous.
Les adjacences communes avec I, sont soulignées.

(4.1,5.6,2,3)
(4.1.2,5.6.3)
(641,23 5)
(4.6.1,2.3.5)

Il est intéressant de souligner qu’en pratique, 'ordre partiel est obtenu en com-
binant un nombre limité m de cartes génomiques [123, 125], ot une carte génomique
est une suite ordonnée de blocs By, Bs, ..., By, qui sont chacun un ensemble non
ordonné de marqueurs. Ces blocs induisent un ordre partiel II de la fagon suivante :
pour tout a € B; et b € Bj, a <p bssii < j. Ainsi, il n’est pas nécessaire que chaque
carte génomique contienne tous les marqueurs, et nous supposons que 1’assemblage
des cartes génomiques ne crée pas de conflits. L’ordre IT de ’Exemple 3 est induit,
par exemple, par les deux cartes ci-dessous.

14) — {1} — {2,5},
{2,6} — {3}.

6.2

6.3

6. LINEARISATION AVEC DISTANCE DE CASSURE MINIMALE ['.39

e
e 0
9 D
9
==

(a) Graphe Gp. Les arcs de II sont en vert, (b) Résultat de SUBSET-FVS sur Gy :

les arcs de conflit sont marqués d’un point. {<1, 2>, <3, 4>, <4, 5>} Les cycles du graphe
réduit ne contiennent pas d’arc de conflit.
Les adjacences conservées, <2,3> et <576>,
correspondent & la linéarisation optimale
(4,1,5,6,2,3).

=

050600

F1GURE 9 — Construction et utilisation du graphe d’ordre-adjacence G pour l'ordre
partiel II défini dans I’'Exemple 3.

Etat de Dart

Le probléme MBL, fondé sur le probléme de réarrangement de génome défini
par Zheng et Sankoff [125], a été étudi¢ indépendamment dans [23] et [71] (dans ce
dernier, le probléme est nommé PBD, et traite de deux ordres partiels plutdét qu’un
ordre partiel et un ordre total). Dans [23], Blin et al. prouvent que MBL est NP-
difficile et donnent deux algorithmes pour le résoudre : (i) une heuristique et (i) un
algorithme exact, et donc de complexité exponentielle, basé sur la programmation
dynamique. De plus, ce dernier est efficace plus particuliérement lorsque l'ordre
partiel d’entrée est construit a partir d’'un nombre m borné de cartes génomiques,
chacune ayant des blocs de taille bornée. Il est souligné dans [38] que la preuve de
NP-difficulté de |23] est, en fait, une preuve que MBL est APX-difficile.

Dans [71], Fu et Jiang proposent une preuve de NP-difficulté indépendante, et
présentent la définition d’'un graphe d’ordre-adjacence d’un ordre partiel permettant
de produire des algorithmes heuristiques ou d’approximation [44]. Cependant le
théoréme central dans |71] est faux (I’Exemple 3 est en fait un contre-exemple pour
ce théoréme [38]), ce qui nous pousse & définir une nouvelle structure permettant de
résoudre MBL.

Notre contribution

Dans ce chapitre, nous présentons une nouvelle définition de graphe d’ordre-
adjacence : cette construction permet de réduire MBL a une variante du probléme
de couverture de cycles, SUBSET-FVS. En utilisant des résultats connus pour ce

['.40 SYNTHESE - FRENCH ABSTRACT

probléme |66, 49|, nous déduisons deux algorithmes d’approximation et un algo-
rithme paramétré pour MBL. Enfin, nous créons aussi une O(m?)-approximation
pour les données obtenues en combinant m cartes génomiques.

Nous détaillons ci-dessous la construction de ce graphe G pour U'ordre partiel 11
de 'Exemple 3. Le graphe Gy (voir Figure 9a) a un sommet pour chaque marqueur,
et un sommet pour chaque adjacence de l'identité. Un arc double relie chaque adja-
cence aux deux marqueurs qu’elle contient. Enfin, les arcs de II sont reportés entre
les marqueurs correspondants. Les arcs de II allant d’un marqueur ¢ & un marqueur
J avec © < j sont appelés arcs de conflits. Nous prouvons que si un cycle contient
un arc de conflit, alors les adjacences utilisées par ce cycle ne peuvent pas étre réal-
isées simultanément dans une linéarisation de II. Ainsi, MBL peut étre réduit au
probléme consistant & retirer un minimum d’adjacences du graphe Gy pour que ce
graphe ne contienne plus aucun cycle utilisant un arc de conflit. Ce probléme cor-
respond & trouver un ensemble minimal de sommets couvrant les cycles “interdits”
d’un graphe (voir Figure 9b) : il a déja été étudié sous le nom de SUBSET-FVS.
Les résultats pour ce probléme [66, 49] nous permettent d’obtenir (en notant k la
distance de cassure optimale et X I’ensemble des arcs de conflits) :

— un algorithme FPT de temps 227" p0M),

— une O (log2 | X|)-approximation,

— une O (log(k)loglog(k))-approximation,

Enfin, nous proposons un algorithme d’approximation ad hoc, dont le ratio est de
m?44m—4. En revanche, la question de 'existence d'un algorithme d’approximation
a ratio constant reste ouverte.

Conclusion et perspectives

En suivant le plan de ce manuscrit, nous rappelons les résultats obtenus dans
chaque chapitre et présentons des axes possibles de recherche.

Les problémes de tri sur des permutations ne sont pas toujours simples

Comme nous 'avons vu dans les Chapitres 1 et 2, la comparaison de séquences
génomiques sous le modéle le plus simple (ot chaque géne est unique) n’est pas tou-
jours triviale. Et bien qu’il est possible d’y calculer plusieurs mesures de dissimilarité
telles que la distances de cassure, des distances d’édition, etc., et méme des distances
de réarrangement avec les inversions et le DCJ signés, nous avons prouvé que les
problémes de TRI PAR TRANSPOSITIONS et TRI PAR RETOURNEMENTS PREFIXES
sont NP-difficiles. Cependant, nous conjecturons que ces problémes devraient admet-
tre des algorithmes d’approximation plus précis que ceux existant (avec des ratios
1.375 pour le premier et 2 pour le second).

Un autre probléme de réarrangement, pour lequel la complexité est toujours
ouverte, est le probléme de tri par retournements préfixes sous le modéle signé.
La contrainte de signe réduit le nombre d’opérations efficaces et devrait faciliter la
recherche de telles opérations, de méme que pour le tri par inversions ou par DCJ.

Enfin, existe-t-il des algorithmes paramétrés, avec un paramétre pertinent d’un
point de vue biologique, pour ces problémes NP-difficiles ?

Comparer des séquences avec des duplications est encore plus complexe

Les problémes de comparaison deviennent immédiatement plus difficiles lorsque
les données contiennent des génes dupliqués. Une approche classique pour traiter
ces données consiste a rechercher un scénario de duplications permettant de faire la
distinction entre les différentes copies et ainsi retrouver un modéle de permutation
pour des applications ultérieures.

Dans le scénario exemplaire (voir Chapitre 3), nous considérons qu’'une seule
copie de chaque géne provient de 'ancétre commun, et que les autres copies sont dues
a des récentes duplications. Nous cherchons donc a identifier cette copie “originale”.
Cependant, pour toute fonction d’optimisation considérée, le calcul de la DISTANCE
EXEMPLAIRE est APX-difficile. Le modéle exemplaire est dominé par les problémes
ouverts, puisqu’aucune approximation a ratio constant ou algorithme FPT n’est
connu, quelque soit la distance de référence considérée.

Dans le modeéle complet, ol les copies de chaque géne proviennent de l'ancétre
commun et peuvent donc étre mis en bijection avec les copies de 'autre séquence,
les problémes sont également difficiles. En revanche, nous montrons que le probléme
MCSP (qui peut étre vu comme la distance de cassure sous le modéle complet) est

['.42 SYNTHESE - FRENCH ABSTRACT

FPT. Malheureusement, notamment a cause de sa complexité en O(k2'** poly(n)), il
n’est pas pertinent pour des applications pratiques. Existe-t-il un algorithme efficace
a la fois d’un point de vue théorique et pratique ? En effet, méme si ce probléme ne
tient pas compte des suppressions de génes, et impose que les chaines aient le méme
nombre d’occurrences de chaque lettre, il s’agit d’un probléme central lorsqu’il s’agit
de traiter des génomes avec duplications.

Corriger et compléter les données génomiques est essentiel

Un défi important de la génomique comparative est de tenir compte des erreurs
induites par les processus générant les données d’entrée. Un exemple représentatif
est 'assemblage de génome par séquencage a haut débit (NGS) : les données ainsi
générées contiennent habituellement des forts pourcentages d’erreur, compensés par
une forte redondance des lectures du génome. Mais les erreurs, les ambiguités et les
manques existent dans quasiment toutes les données génomiques. Idéalement, tous
les problémes de génomique comparative devraient tenir compte de ce fait. Cepen-
dant, a cause de la difficulté algorithmique que cela représente, le nettoyage des
données est généralement confié¢ & des heuristiques, utilisées en tache de prétraite-
ment.

Deux de ces taches sont présentées dans les Chapitres 5 et 6. Dans le Chapitre 5,
le probléme d’EXTRACTION DE BANDES MAXIMALES et ses variantes, cherche a
retirer les marqueurs de séquences génomiques d’espéces proches qui ne semblent
appartenir & aucun bloc de synténie. Nous présentons une palette d’algorithmes et
de résultats de difficulté, avec en particulier un algorithme paramétré efficace pour
ce probléme.

Enfin dans le Chapitre 6, nous nous focalisons sur le probléme consistant & in-
férer un ordre total sur les génes (une linéarisation) compatible avec des données
incomplétes (représentées par un ordre partiel). Les problémes traitant de génomes
partiellement ordonnés ont souvent pour but de retirer les conflits de facon & obtenir
une linéarisation. Dans le probléme MBL, nous cherchons a calculer une linéarisation
optimale & partir d’un ordre partiel sans conflits. L’optimalité est mesurée comme
étant la distance de cassure & un génome de référence. Nous proposons une méth-
ode de résolution basée sur la théorie des graphes, et plus particulierement sur le
probléme SUBSET-FVS, afin d’obtenir plusieurs algorithmes d’approximation et un
algorithme paramétré.

Plus de perspectives

La question centrale reste ouverte : est-ce que les méthodes traditionnelles de
comparative génomique peuvent s’étendre pour traiter des données bruitées ou in-
complétes 7 Par exemple, peut-on calculer une distance de DCJ sur des génomes
partiellement ordonnés? Une voie de réponse potentielle serait par le probléme de
PLUS PETITE PARTITION COMMUNE. En effet, 'algorithme que nous avons présenté
semble pouvoir étre adapté a des données ayant un nombre borné d’erreurs locales,
ou bien avec des incertitudes sur le nombre de répétitions dans les sous-chaines péri-
odiques. De nombreuses méthodes sont toujours a explorer — ou a inventer — afin de
produire des algorithmes & la fois précis et efficaces d’un point de vue théorique, et
qui considérent les nombreuses facettes des problémes biologiques.

En s’é¢tendant hors de la génomique comparative seule, une large gamme d’aspects
de la bioinformatique peuvent faire I’objet de recherches. De nombreux problémes

CONCLUSION ET PERSPECTIVES ['.43

peuvent, par exemple, étre modélisés par des graphes. Avec des données telles que

les réseaux métaboliques ou les interactions entre génes, on vise a extraire des sous-

graphes remarquables, & discerner des motifs, etc. La théorie de la paramétrisation,

profondément ancrée en théorie des graphes via par exemple les méthodes de calcul
noyau, r rtainement un r idé : roblémes.

de noyau, apporte certainement une approche idéale & de tels problémes

Manuscript
Manuscrit (partie anglaise)

Introduction

Bioinformatics is the field at the intersection of biology and computer science,
where one aims at extracting and processing information from biological data, in or-
der to obtain a better understanding of the living. From one side, biology contributes
with data gathered through experiments and poses the questions that should enable
to understand more about the subject at hand. From the other side, computer sci-
ence brings formal methods to analyze the problems and to produce solutions as
precisely and efficiently as possible. The benefits are obvious for biologists, who
can thus verify hypotheses and make predictions in more reliable and efficient ways.
They are also important for computer scientists, who are presented with unprece-
dented challenges. The variety of problems lead to the exploration of original data
structures and the design of new algorithmic methods, enriching the whole field of
computer science with an increased panel of possible approaches for other problems.

The use of bioinformatics becomes even more necessary when the data that needs
analyzing becomes larger and larger. The best-known example is DNA sequencing:
it is now possible to read DNA sequences off chromosomes at a very high rate
(e.g., the Beijing Genome Institute outputs 10 terabytes of raw nucleotide sequences
every day [107]). DNA sequences are at the core of the majority of biochemical
processes. However, it is still a utopian task to perfectly reconstruct a genome
sequence, let alone to understand all the intricate functions that originate from it.
Another important field is network analysis where one aims at understanding the
complex interactions between different molecules (proteins, RNA, metabolites, etc.)
in the cell. The input data consists of a set of possible reactions, such as “protein A
can transform metabolite B into metabolite C” or “proteins A and B can combine to
form protein C”. One aims at understanding large-scale processes, such as cell cycles
or protein synthesis, with the possible objective of designing a drug acting on one
specific process.

In this thesis, we study combinatorial responses to problems stemming from
comparative genomics. The common denominator of our problems is the presence
in input of genomic information, usually in the form of gene or marker sequences,
from two different species. As Nature would have it, both genomes have evolved
from a common ancestor and now display a number of similarities: the objectives
of comparative genomics problems are to pinpoint these similarities, measure them,
and use them in order to gather relevant biological information.

Depending on the modeling of the genomes and the biological question at hand,
we obtain many challenging combinatorial problems, which can be studied in the
usual computational complexity framework. For each problem, we try to provide a
polynomial-time algorithm or, failing that, to prove that the problem is NP-hard. In

4 INTRODUCTION

the latter case, efficient algorithms can be sought in two directions, either as approx-
imation algorithms (that is, polynomial-time algorithms giving a sub-optimal solu-
tion, but with a bounded error factor) or as parameterized algorithms (exponential-
time exact algorithms which are nevertheless efficient for small values of a relevant
parameter). We refer the reader to [68] for a detailed review dedicated to combina-
torial problems in comparative genomics.

The chapters of this manuscript are each devoted to specific comparative ge-
nomics problems; they are organized in three parts based on the models used for
input genomes. Part I is focused on rearrangement distances for the most favor-
able model, where each gene is unique within a genome. In Part II we explore two
problems where input sequences may present duplications. Finally in Part ITI we
extend our study to problems where input data is incomplete or corrupted. In this
Introduction we give general motivation and some comparative genomics literature
results, whereas in each chapter we present a more specific state of the art focused
on the respective problems.

Some biological background.

As the genetic information supported by DNA is copied again and again, from
cell to cell and from ancestor to descendant in repetitive biochemical processes, a
large number of errors may occur: they are the steps of evolution. These steps
sometimes have no effect at all, but they can also lead to the “discovery” of new
biological capabilities... or to the death of the cell. Moreover, they may occur
either at a small scale, affecting only a few nucleotides in the whole DNA, or at a
larger scale when whole strips of DNA are cut, reinserted or duplicated.

A key tool in the study of genetic evolution is the notion of synteny blocks, i.e.,
strips of DNA with similar content across different species: we assume that such
blocks belonged to the common ancestor of the species, and have remained unaf-
fected by evolution. Two species with scattered and small synteny blocks are more
likely to have evolved as different species for a long time, which means they have
a comparatively old common ancestor. Moreover, an unusually large synteny block
belonging to a large number of species is likely to contain genes somehow working
together, e.g. the proteins they code for have interacting roles, one gene regulates an-
other, etc. The counterpart of synteny blocks is the notion of breakpoints. Formally,
in the comparison of two genomes, there is a breakpoint between two consecutive
genes of one genome if these genes are separated in the other genome, which implies
they do not belong to the same synteny block. The number of breakpoints is easy
to compute — provided each gene appears exactly once in each genome and the data
is error-free — and can be considered as a first measure of dissimilarity between two
genomes.

Some difficulties arise in the presence of paralogs. (Genes are paralogs if they are
within the same genome and have similar sequences. (they are opposed to orthologs,
which are similar genes in the genomes of different species). Paralogs create an
ambiguity to discover synteny blocks, since two regions with similar contents may
not have evolved from the same region of the common ancestor. It is thus a task
of comparative genomics to distinguish, among all paralogs in two species, which
ones have evolved from a single gene of the common ancestor, and which ones have
undergone different evolution processes.

INTRODUCTION 5

Some computational complexity background.

We assume that the reader is already familiar with usual notions of compu-
tational complexity such as polynomial-time exact and approximation algorithms,
NP-hardness, and APX-hardness. In a nutshell, we consider that an algorithm is ef-
ficient if its required running time for an input of size n is bounded by a polynomial
on n. A problem in P can be solved exactly by such an efficient algorithm, while
NP-hard problems are unlikely to be solvable by exact polynomial-time algorithms.
A usual strategy for NP-hard optimization problems is to try to create approxi-
mation algorithms, that is, algorithms running in polynomial time, whose output
solution can be at some ratio r away from the optimal solution (where r should be
as close to 1 as possible). APX-hardness gives a lower bound on the approximation
ratio; without such bound, it is possible to create a polynomial-time approximation
scheme (PTAS), i.e. an approximation algorithm that can reach any approximation
ratio 1 + € for € > 0 but whose complexity increases as € decreases.

Another possible approach is the creation of fixed parameter tractable (FPT)
algorithms which aim at solving exactly yet efficiently NP-hard problems. The first
step consists in identifying a parameter of the instances, typically written k, which
summarizes the level of complexity of the problem for each particular instance.
Then, an FPT algorithm would run in time O(f(k)n?), where d is a fixed integer
and f is any function (usually an exponential) that does not depend on n. Such
algorithms are still exponential in the general case, but they are efficient when k
is bounded to small values, which should be the case for the majority of “real-life”
instances.

For more detailed theoretical background, classic techniques and results, we refer
the reader to Garey & Johnson’s founding textbook [73] for NP-completeness theory,
to Papadimitriou & Yannakakis [106| for approximability, and to Niedermeier [105]
for parameterized complexity.

Problems Studied in this Thesis

Part I — Distances Between Permutations

In the first part, we consider that genomes can be represented as permutations,
that is, the genes of both input sequences are matched one-to-one, and only the or-
der differs. In fact, we have either unsigned or signed permutations: unsigned ones
are habitual permutations over {1,2,...,n}, and for signed permutation each gene
comes with additional information representing its orientation on the chromosome,
written with a sign + or —. This model may lack some generality, but it allows for
the computation of many simple distance measures, starting with the breakpoint
distance. Other classic examples include the common and conserved intervals dis-
tances [119, 84, 18], or Hamming and Levenshtein distances [80, 99]. In the 1990s,
with e.g. [95, 13|, were introduced rearrangement distances: one considers a natural
evolution operation and searches the shortest sequence of such operations needed to
transform one genome into the other. The resulting scenario gives a precious insight
in the evolution history of the two species since their common ancestor.

Several biologically relevant operations can be considered. The most studied ones
are probably reversals (a subsequence of the chromosome is cut out and reinserted in
the opposite direction), and transpositions (a subsequence is cut out and reinserted
at a different place, in the same direction). More recently, the Double-Cut-and-Join

6 INTRODUCTION

(DCJ) operation has been introduced [122, 17|: the chromosome is cut at two posi-
tions, and the four created endpoints can be reattached in any way (this operation
requires a slightly more general model for genomes, where circular permutations
are considered). Finally, other possible operations include transreversals (similar to
transpositions, but the subsequence is reinserted in the opposite direction), block
interchanges (two subsequences exchange their positions), and prefix-constrained
variants of any of these operations (in each case, the subsequence must contain one
end of the chromosome).

For the signed reversal distance, i.e., the rearrangement distance such that the
only operations considered are reversals and the genomes are modeled as signed
permutations, Bafna & Pevzner [14] provided a polynomial-time algorithm, which
has now been improved into a linear-time algorithm [10]. The signed DCJ and the
block interchange distances also benefit from efficient exact algorithms [122, 101].
On the other hand, the unsigned reversal and unsigned DCJ distances are NP-hard
to compute [42, 43]. Two important operations remained: transpositions, of which
the apparent simplicity is misleading, and prefix reversals, for which same combi-
natorial problem had been raised in 1975 under the name of pancake flipping |63].
In Chapters 1 and 2, we settle the complexity of computing either the transposi-
tion or the unsigned prefix reversal distances (SORTING BY TRANSPOSITIONS and
SORTING BY PREFIX REVERSALS problems) by proving that both are NP-hard.

Part IT — Distances Between Strings

In the second part, we lift the unicity constraint and consider models where genes
can have several copies in each genome (they have several paralogs). Then, a genome
is no longer represented as a permutation, but rather as a general sequence or string).
Indeed, duplication events can occur within the genomes yielding indistinguishable
genes. If a gene appears in several copies within two species, two main scenarios
are possible. In the first, the duplications occurred before the speciation, i.e. the
common ancestor contained all the copies of the gene. In this case, it is of interest to
match the different copies across the two species. For example, if the two genomes
considered are GG; = axbcxrd and Gy = cxdaxb, it is likely that the common ancestor
contained both axb and cxd as substrings, and thus the first copy of x in GGy should
be matched to the second copy in G5, and the second copy in G should be matched
to the first copy in Gs. This scenario is called the Matching model |25]. The opposite
scenario, the Exemplar model [113], corresponds to the case where all duplications
have taken place after the speciation event, entailing that the common ancestor only
contains one exemplar of each gene. In this case, we aim at identifying, for each
gene in the given genomes, which copy originates from the common ancestor and
which copies have been created by duplications. Obviously, all intermediate cases
can also appear between these two extreme scenarios, where some genes have several
copies in the common ancestor and others have not, or one gene is duplicated in the
common ancestor and undergoes additional duplications after the speciation. This
approach corresponds to the Intermediate model [8].

For any of these models, the typical problems aim at computing a matching
optimizing a given distance. However, whatever the model or the distance chosen,
hardness results are ever-present and very few constant-ratio algorithms exist (see
e.g. [24, 7]). We present, in Chapter 3, several inapproximability results for problems
under the exemplar model, in order to have an exhaustive panorama of hardness
results for this model. More precisely, we prove that even when the input is re-

INTRODUCTION 7

stricted to 1) a first genome without duplications, and 2) a second genome where
the genes have at most two occurrences, the Hamming, Levenshtein, reversal and
DCJ distances are not approximable within given ratios.

In Chapter 4, we consider the MINIMUM COMMON STRING PARTITION prob-
lem (MCSP). Presented as a string processing problem, it aims at partitioning two
strings into a minimum-size common set of blocks. It corresponds to computing
the breakpoint distance under the matching model, with the constraint that each
gene must have the same number of copies in both genomes. Despite its apparent
simplicity (one “simply” has to recover a few common factors between two strings),
this problem is APX-hard and no constant-ratio approximation algorithm is known
for it. We approach this problem under the fixed-parameter tractability theory, and
provide a bounded search-tree FPT algorithm solving MCSP, where the parameter
is the number of blocks in an optimal solution. Comparing with previous FPT algo-
rithms [61, 89|, which need both the number of blocks and the number of repetitions
as a parameter, we prove that the intractability can be confined to the number of
blocks, even for highly repetitive strings.

Part III — Dealing with Imprecise Genomic Data

In the third part, we consider models where the knowledge of the gene sequence
is not perfect. Indeed, each step in the construction of input sequences, from DNA
sequencing to gene annotation and genome reconstruction, may rise uncertainties or
even introduce errors in the sequence. Generally speaking, all genomic data should
thus be considered with the possibilities of error and incompleteness. However,
although one would like to be able to deal with such data when solving any compar-
ative genomics problem, very few problems allow for general enough models. On the
other hand, it is sometimes possible to sanitize the data as a preprocessing stage,
by e.g. removing what are most likely errors, before running other algorithms which
require error-free and complete data. See e.g. the discussion in Sankoff et al. [115,
Section 5|.

Removing likely errors is precisely the goal of MAXIMAL STRIP RECOVERY
(MSR, [126]). For this problem, we consider the genomes of two species as closely
related as possible. There, one can assume that virtually all genes should belong to
larger synteny blocks, and, when dealing with “clean” data, it should be possible to
identify synteny blocks covering the whole genomes (each synteny block containing
at least two genes). The objective of MSR is to mark a minimum number of genes
as errors until the remaining genomes have this “clean” property. There are several
variants of this problem: one can consider in input more than two genomes (MSR-d,
where d > 3) or genomes with duplicated elements (MSR-DU). We also introduce
the d-gap variant (6 > 0): if despite the closeness constraint, a gene does not be-
long to any synteny block, then it can only appear between two different blocks,
not within one. Thus, the markers separating two consecutive elements of an out-
put synteny block should only correspond to actual errors, hence there should be
few of them. Hence, two consecutive elements of the output can only be separated
by at most 0 error-marked genes in the input genomes. Finally, for approximation
and fixed-parameter tractability point of views, one can consider either the prob-
lem of keeping a maximum number ¢ of genes (MSR) or the complement problem
of removing a minimum number k of genes (CMSR). In Chapter 5, we study ex-
tensively the variants of MSR and CMSR, by providing NP- and APX-hardness
results, approximation algorithms and fixed-parameter tractable algorithms. The

8 INTRODUCTION

main results in this chapter are the NP-hardness of 1-gap-MSR, and for CMSR-d
and §-gap-CMSR-d, a (d + 1.5)-approximation algorithm and an O*(2.36%) FPT
algorithm.

In Chapter 6, we study the MINIMUM BREAKPOINT LINEARIZATION (MBL,
[125, 23, 71]) problem which aims at recovering the sequence of genes in a chro-
mosome whose gene order is only partially known, using as a reference the genome
of a close species. Formally, given a partial order and a total order over a com-
mon set of elements, find a linearization of the partial order which minimizes the
breakpoint distance to the total order, where a linearization is a total order (or per-
mutation) that is compatible with the partial order. We propose the construction
of a graph structure (the adjacency-order graph) which allows to reduce the MBL
problem to a more general problem of graph theory: SUBSET FEEDBACK VERTEX
SET [66]. Literature results for this problem allow us to directly obtain an FPT and
two approximation algorithms for MBL (the approximation algorithms having non-
constant, incomparable ratios). Finally, using the knowledge of how input orders
are generated, we design a third approximation algorithm specific to our problem.

General Preliminaries

Notations

In the majority of the problems, an input genome is represented as a sequence of
integers, or markers, written S = <31, S, ... ,sn>. The ith marker of S is written S|i]
(here, S[i] = s;). Given integers a, b, the interval [a; b] is the set {a,a+1,...,b} if
a < b and the empty set if b < a. A permutation of size n is a sequence of n distinct
elements over [1; n], and the Identity of size n, written Z , is the permutation
<1, 2,... ,n>. By opposition to permutations, strings are sequence that can (and are
expected to) contain duplicated elements (duplicates).

A subsequence S" of S is a sequence (S[i1],...,S[ip]) of markers of S with in-
creasing indices i1 < 19 < ... < 4. A factor of S is a subsequence of consecutive
elements (ix41 =ix + 1 for 1 < k < h).

L-reduction

The APX-hardness results (presented in Chapters 3 and 5) rely on the notion of
L-reduction [106], defined below.

Given P an optimization problem, x an instance of P and y a feasible solution of
x, we write cp(z,y) for the cost of y and OPTp(z) for the optimal value of cp(x,y)
over all solutions y of z. Let P and Q be two optimization problems. An L-reduction
from P to Q is a pair of polynomial-time computable functions f and g such that:

— if z is an instance of P, then f(z) is an instance of OPTg,
if y is a solution of f(x) for some z, then g(y) is a solution of z,
there exists a positive constant « such that

OPTo(f(z)) < a- OPTp(z),
— there exists a positive constant S such that

[0PTp () — ep(w,9(y))| < B -[0PTo(f(x)) = ep(f(2),y)-

Given such an L-reduction from P to Q, if P is NP-hard to approximate within
1+ 9, then Q is NP-hard to approximate within 1+ §/(af).

Distances Between Permutations

Sorting by Transpositions

The objective of the SORTING BY TRANSPO-
SITIONS problem is to compute the minimum
number of transpositions needed to transform
one genome (represented as a permutation) into
another, where a transposition is the operation

that exchanges two consecutive sequences in the
permutation.

In this chapter, we prove that this problem,
and a related bound-checking problem, are NP-
hard.

The results in this chapter have been presented at the Algorithmique, combinatoire du texte
et applications en bio-informatique workshop (Seqgbio 2011, Rennes), at the 38th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP 2011, Ziirich [33]),
and have been published in SIAM Journal of Discrete Mathematics (SIDMA 2012 [35]).

11

12 CHAPTER 1. SORTING BY TRANSPOSITIONS

Introduction

Along with reversals, transpositions are one of the elementary large-scale opera-
tions that can affect a genome. A transposition consists in swapping two consecutive
factors of genes or, equivalently, in moving a factor from one place to another in the
genome. The transposition distance between two genomes is the minimum number
of such operations that are needed to transform one genome into the other. Com-
puting this distance is a challenge in comparative genomics, see for instance [108],
since it gives a maximum parsimony evolution scenario between the two studied
genomes.

The SORTING BY TRANSPOSITIONS problem is the problem of computing the
transposition distance between genomes represented by permutations: see |68] for
a detailed review on this problem and its variants. Since its introduction by Bafna
and Pevzner [12, 14], a number of studies [14, 55, 77, 83, 64, 16, 67] have aimed at
designing approximation algorithms or heuristics; the best known fixed-ratio algo-
rithm being a 1.375-approximation [64]. Other works [78, 55, 65, 96, 64, 16| aim
at computing bounds on the transposition distance of a permutation. Studies have
also been devoted to variants of this problem, by considering, for example, sorting
by prefix transpositions [62, 97, 51| (in which one of the transposed factors has to
be a prefix of the sequence), or sorting by transpositions in strings [56, 60, 116, 111]
(where multiple occurrences of each element are allowed in the sequences), possibly
using weighted or prefix transpositions [109, 27, 6, 51, 5]. Note also that sorting
a permutation by block-interchanges (i.e., exchanges of not necessarily consecutive
factors) is solvable in polynomial time [54]. Finally, one can consider the possibility
to bound the size of the factors transposed. The most drastic variant, authorizing
only 3-bounded transpositions (where at most three markers can be affected by each
transposition) has already received a particular attention [102, 90|. However, its
computational complexity is still open.

In this chapter, we address the long-standing issue of determining the complexity
class of the SORTING BY TRANSPOSITIONS problem, by giving a polynomial-time
reduction from SAT, thus proving the NP-hardness of this problem. Our reduction
is based on the study of transpositions that remove three breakpoints. A corollary
of our result is the NP-hardness of the following problem, introduced in [55]: given
a permutation m, is it possible to sort m using exactly dy(7)/3 transpositions, where
dp(m) is the number of breakpoints of 77 The first section provides some prelim-
inary definitions and results about the transposition distance and its relationship
with breakpoints. In the second section, we introduce an intermediate structure
used in our reduction, the 3DT-instance, and provide results giving some equiva-
lences between 3DT-instances and permutations. The third section is the core of
the reduction; it is devoted to the construction of “NP-hard” 3DT-instances, using
an intricate assembling of basic blocks. Finally, the fourth section concludes the
reduction by porting the previous construction to permutations, thus proving the
NP-hardness of the SORTING BY TRANSPOSITIONS problem.

1.1. PRELIMINARIES

(e

7T O Tl7j7k“

<7T07T1 e TG 1T .. T Ty

13

Th—1Tk . . .7Tn>

<7T07T1 ce T T

The—1 7Ti...7Tj_17Tk...7Tn>

Figure 1.1: Transposition 7; 5, with 0 <7 <j <k <n.

1.1 Preliminaries

1.1.1 Transpositions and Breakpoints

In this chapter, we are given a positive integer n, and we consider only permu-
tations of [0; n] such that 0 and n are fixed-points. Hence, Z denotes the identity

permutation over [0; n].

A transposition is an operation that exchanges two consecutive factors of a se-
quence. As we only work with permutations, it is defined as a permutation 7; ; s,
which, once composed with a permutation , realizes this operation (see Figure 1.1).
The transposition 7; ; ; is formally defined as follows.

Definition 1.1 (Transposition). Given three integers i, j, k such that 0 < i < j <
k < n, the transposition 7 over [0; n] is the following permutation (we write

q(j) =k+i—3j):

For any 0 < x < 1,
For any i < x < q(j),
For any q(j) < x < k,
Forany k <x <n,

Note that the inverse function of 7, ;; is also a transposition. More precisely, we

1
have Tiik

of a transposition:

= Tiq()k The following two properties directly follow from the definition

Property 1.1. Let 7 = 7, ;1 be a transposition, q(j) =k + i —j, and u,v € [0; n]
be two integers such that uw < v. Then:

7 (u)

(u) >
>T

T(v) & i<u<q(j)<v<k
) & i<u<j<v<k

Property 1.2. Let T be the transposition T = 7 j 1, and write q¢(j) = k+1i—j. For
all z € [1; n], the values of T(x — 1) and 77 (x — 1) are the following:

Vo ¢ {i,q(j). k}, T(x—-1) =

Vo ¢ {i,j, k}, Tz —-1) =
T(i—1) = 7(q(j) -1 77'(i—-1)
Tq()-1) = 7k)-1 717G -1)
Tk—=1) = 7(i)—1 1k —1)

T(x)—1

T Hz) -1
= () -1
= 7 Y4k) -1
= 771) -1

14 CHAPTER 1. SORTING BY TRANSPOSITIONS

™ = (0,2,4,3,1,5)
TOTias = (0,3,1,2,4,5)
7TO’7'17375O7'1’274 == <071 2 3 4 5>

Figure 1.2: The transposition distance from 7 = <0,2,4,3, 1,5> to Zs is 2: it is at
most 2 since mo Ty 350 T124 = L5, and it cannot be less than 2 since Property 1.4
applies with dy(7)/3 =5/3 > 1.

Definition 1.2 (Breakpoints). Let m be a permutation of [0; n]. If x € [1; n] is
an integer such that m(x — 1) = mw(x) — 1, then <x — 1,3:> is an adjacency of T,
otherwise it is a breakpoint. We write dy(m) for the number of breakpoints of .

The following property yields that the number of breakpoints of a permutation
can be reduced by at most 3 when a transposition is applied:

Property 1.3. Let ™ be a permutation and T = 7, ;5 be a transposition (with 0 <
i <j<k<mn). Then, for allx € [1; n] — {3, j,k},

<:c — 1,x> is an adjacency of m < <T’1(:c) — 1,7"1(x)> is an adjacency of o T.
Overall, we have dy(mo 1) > dy(m) — 3.
Proof. For all x € [1; n] — {4, j, k}, we have:

(x —1,2) is an adjacency of 7 < 7(z — 1) = 7(z) — 1

e n(r(r(z—1)) =x(r(r"(2))) - 1
& o T(T_l(x) - 1) =mo7(r *(z)) — 1 by Prop. 1.2

& <7’ - 1,7 x)> is an adjacency of mo 7.

1.1.2 Transposition Distance

The transposition distance of a permutation is the minimum number of transpo-
sitions needed to transform it into the identity. A formal definition is the following:

Definition 1.3 (Transposition distance). Let m be a permutation of [0; n]. The
transposition distance d,(7) from 7 to I, is the minimum value k for which there
exist k transpositions T, To, ..., Tk, Satisfying:

TOTRO...0oT90T =1,

The decision problem of computing the transposition distance is the following:

Problem SORTING BY TRANSPOSITIONS [12]

Input A permutation 7, an integer k
Question Is dy(m) < k?

The following property directly follows from Property 1.3, since for any n the
number of breakpoints of Z,, is 0.

Property 1.4. Let m be a permutation, then di(mw) > dy(m)/3.

Figure 1.2 gives an example of the computation of the transposition distance.

1.2

1.2.1

1.2. 3-DELETION AND TRANSPOSITION OPERATIONS 15

3-Deletion and Transposition Operations

In this section, we introduce 3DT-instances, which are the cornerstone of our
reduction from SAT to the SORTING BY TRANSPOSITIONS problem, since they are
used as an intermediate between instances of the two problems. We first define
3DT-instances and the possible operations that can be applied to them, then we
focus on the equivalence between these instances and permutations. Section 1.2.4
stands out of the flow of the reduction, and gives a way to match 3DT-instances
with the cycle graphs of 3-permutations. It should help the readers who are already
familiar with the notion of cycle graphs following the definitions introduced here.

3DT-instances

We introduce 3DT-instances as stand-alone mathematical objects, and give a
set of tools to handle them. The two main objectives are (1) to accurately reflect
the behavior of the breakpoints in a permutation 7 such that dy(7) = dp(7)/3 (this
aspect will be formalized in the following sections) and (2) to make 3DT-instances
easy to construct (they can be defined as a word whose letters can be partitioned
into triples).

Definition 1.4 (3DT-instance). A 3DT-instance I = (X, 7T,v) of span n is com-
posed of the following elements:
— X an alphabet;
- T = {(aj,bi,¢c;) | 1 < i <|T|}: a set of (ordered) triples of elements of 3,
partitioning X (i.e., all elements are pairwise distinct, and U@l{ai,bi,q} =
X);
— X = [1;n], an injection.
The domain of I is the image of 1, that is the set L = {y(0) | 0 € L}.
The word representation of I is the n-letter word uy usy ... u, over XU{+} (where
- & %), such that for all i € L, ¥(w;) =1, and fori € [1;n] — L, u; =«

Two examples of 3DT-instances are given in Example 1.1. Note that such in-
stances can be defined by their word representation and by their set of triples T
The word representation of the empty 3DT-instance (in which ¥ =) is a sequence
of n dot. We may also denote this instance by e.

Example 1.1. In this example, we define two 3D T-instances of span 6, I = (X, T, 1))
and I' = (3T ¢'):

I = Qay Cy b1 bg C1 Qo U)Zth T = {(al,b1701>, (CLQ,bQ,CQ)}
I = . b2 = Cy = Q9 with T/:{<a2,b2762)}

Here, I has an alphabet of size 6, ¥ = {ay, by, c1,a2,ba, 2}, hence 1 is a bijection
(V(ar) =1, P(c2) = 2, ¥(by) = 3, etc). The second instance, I', has an alphabet of
stze 3, Y = {CLQ, bQ,CQ}, with lp/(bg) = 2, w/(CQ) = 4, ¢/(CL2) = 0.

Property 1.5. Let [= (3, T,) be a 3DT-instance of span n with domain L. Then
S| = L] =37 < n.

1.2.2

16 CHAPTER 1. SORTING BY TRANSPOSITIONS

Proof. We have |X| = |L| since ¢ is an injection with image L. The triples of T
partition X so |X| = 3|7, and finally L C [1; n] so |L| < n. O

Definition 1.5. Let I = (X, T,v) be a 3DT-instance. The injection ¢ gives a total
order over ¥, written <y (or <, if there is no ambiguity), defined by

V01,02 € Z, 01 <] 09 & w(O'l) < w(0'2> (11)

Two elements o1 and oy of ¥ are called consecutive if there exists no element
x € X such that oy <; x <; 9. In this case, we write o1 <y o9 (or simply o1 < 03).

An equivalent definition is that o; < o9 if 01 09 is a subsequence of the word
representation of I. Also, o1 <0y if the word representation of I contains a factor of
the kind o7 +* 09 (where «* represents any sequence of [> 0 dots).

Using the triples in T', we define a successor function over the domain L:

Definition 1.6. Let [= (3, T,v) be a 3DT-instance with domain L. The function
succy » L — L is defined by:

V(a,b,c) € T, (a)— ¥(b)
¥(b) = ¥(c)
Y(c) = Y(a)

Function succy is a bijection, with no fixed-points, and such that succy o succy o
succy is the identity over L. In Example 1.1, we have:

(123456 (2 46
succ[—365214 an succ[/—462.

3DT-steps

We define 3D T-steps on 3D T-instances in order to reflect transpositions removing
three breakpoints on permutations. In both points of view, we apply a transposition
for which the bounds need to verify certain conditions (being a well-ordered triple
for 3DT-instances, or satisfying a correct pattern of values for permutations).

Definition 1.7. Let I = (X, T,v) be a 3DT-instance, and (a,b,c) be a triple of T.
Write i = min{¢(a),¥(b),¥(c)}, j = succr(i), and k = succr(j). The triple
(a,b,c) € T is well-ordered if we have i < j < k. In such a case, we write T[a, b, ¢,]
for the transposition T; j .

An equivalent definition is that (a, b, ¢) is well-ordered iff one of abe, bea, cab is
a subsequence of the word representation of I. In Example 1.1, (a1,b,¢;) is well-
ordered in I: indeed, we have ¢ = ¢(a1), j = ¥(b1), k = ¢¥(c1), and i < j < k. The
triple (ag, bs, c2) is also well-ordered in I’ (i = ¢/(by) < j = ¢¥'(c2) < k = ¢/(ag)),
but not in I: i = ¥(cy) < k = ¥(b2) < j = 9(ag). In this example, we have
T[al,bl,clﬂﬂ] = T1,35 and T[az,bQ,C%W] = T2,4,6-

Definition 1.8 (3DT-step). Let I = (X,T,v) be a 3DT-instance with (a,b,c) € T

a well-ordered triple. The 3DT-step of parameter (a,b,c) is the operation written

159, transforming I into the 3D T-instance I' = (X, T',4') such that:

1.2.3

1.2. 3-DELETION AND TRANSPOSITION OPERATIONS 17

e 0% a X b Y c| z

(a,b,¢)) v
AR Ao aAE

Figure 1.3: The 3DT-step “%% has two effects, here represented on the word
representation of a 3DT-instance: the triple (a, b, ¢) is deleted (and replaced by dots
in this word representation), and the factors X and Y are swapped.

- Y =% —{a,b,c}
- T =T —{(a,b,0)}
_y 2 Il
S0 7 H(Y(0)

A 3DT-step has two effects on a 3DT-instance, as represented in Figure 1.3.
The first is to remove a necessarily well-ordered triple from 7' (hence from X). The
second is, by applying a transposition to v, to shift the position of some of the
remaining elements. Note that a triple that is not well-ordered in I can become
well-ordered in I’, or vice-versa. In Example 1.1, I’ can be obtained from I via a
3DT-step: [{av,biyer) pr Moreover, I’ (a2.b2.¢2) - A more complex example is given
in Figure 1.4.

Note that a 3DT-step transforms the function succ; into succy = 7o succroT,
restricted to L', the domain of the new instance I’. Indeed, for all (a,b,c) € T', we
have

(with T = T[a, b, c,]).

'(b)
“H((b))
“H(sucer((a)))
“H(sucer(T(¥'(a))))

Yo sucer o 7) (¢ (a))

The computation is similar for ¢/(b) and ¢'(c).

succy (¢'(a)) = ¢
=T

=T

-

:(7-

Definition 1.9 (3DT-collapsibility). A 3DT-instance I = (X,T,1) is said to be
3DT-collapsible if there exists a sequence of 3D T-instances Iy, Iy_1, ..., Iy such that

I=1
Vie[l:k], 3abc)eT, L1229
]OZE

In Example 1.1, I and I’ are 3DT-collapsible, since [\%:brcn), 7 (@2:b2ca) oo Ay
other example is the 3DT-instance defined in Figure 1.4. Note that in the example
of Figure 1.4, there are in fact two distinct paths leading to the empty instance.

Equivalence with the Transposition Distance

Definition 1.10. Let I = (X,T,4) be a 8DT-instance of span n with domain L,
and m be a permutation of [0; n]. We say that I and 7 are equivalent, and we write

18 CHAPTER 1. SORTING BY TRANSPOSITIONS

a16a2b1db201f02

PN

(Cll,bl,Cl) (a2ab2702)
-dbg-eag-fCQ ale-clf-bld-
(d, €, f) (dv ¢, f)
--a2--b2--02 alnnblnnclnn
(a2, b2, c2) (a1,b1,c1)

Figure 1.4: Possible 3DT-steps from the instance [defined by the word
a; € ag by d by ¢1 f co and the set of triples T' = {(a1, b1, ¢1), (az, be, c2), (d, e, f)}.
We can see that there is a path from I to ¢, hence I is 3DT-collapsible. Note that
both (aq,b1,¢1) and (ag, ba, ¢o) are well-ordered in the initial instance, each one loses
this property after applying the 3DT-step associated to the other, and becomes
well-ordered again after applying the 3DT-step associated to (d, e, f).

I ~ 7, if:
7(0)=0,
Voe[l;n]—Lyn(v)=n(v—1)4+1,
Yv € L, 7(v) = 7(suce; H(v) — 1) + 1.

With such an equivalence I ~ 7, the two following properties hold:

— The breakpoints of 7 correspond to the elements of L (see Property 1.6).

— The triples of breakpoints that may be resolved immediately by a single
transposition correspond to the well-ordered triples of T' (see Figure 1.5 and
Lemma 1.8).

Property 1.6. Let [= (3, T,4) be a 3D T-instance of span n with domain L, and
7 be a permutation of [0; n], such that I ~ w. Then the number of breakpoints of
7 s dy(m) = |L| = 3|T.

Proof. Let v € [1; n]. By Definition 1.10, we have:

m(u) : eow()-1w@) - wk)=-1w(g) - w@)—1 w(k)

Figure 1.5: Tllustration of the equivalence I ~ 7 on three integers (i, 7, k) such that
J = succyr(i) and k = sucey(j). It can be checked that 7(v) = w(u — 1) + 1 for any

(u,v) € {(4,7), (4, k), (k,4)}.

1.2. 3-DELETION AND TRANSPOSITION OPERATIONS 19

I: a1 a2 as bz C3 bl bg C1 C2 T:{(al,bl761)‘1§2§3}
(a1,b1,c1) T: 06 4 8 7 2 15 3 9

T I: . b3 = Q9 as b2 C3 = C2 T’z{(ai,bi,ci)\QSiSS}
©”:01 5 6 4 8 7 2 3 9

Figure 1.6: Illustration of Lemma 1.7: since I ~ 7 and 7%= 17 then I’ ~ 7/ =
7o T, where 7 = 7lay, by, c1,).

If v ¢ L, then w(v) = (v — 1)+ 1, s0 (v —1,v) is an adjacency of .

If v € L, we write u = succ; ' (v), so w(v) = m(u—1)+1. Since succ; has no fixed-
point, we have u # v, which implies 7(u—1) # 7(v—1). Hence, 7(v) # 7(v—1)+1,
and <U — 1,v> is a breakpoint of 7.

Consequently the number of breakpoints of 7 is exactly |L|, and |L| = 3|T| by
Property 1.5. O]

With the following lemma, we show that the equivalence between a 3DT-instance
and a permutation is preserved after a 3DT-step, see Figure 1.6.

Lemma 1.7. Let [= (X, T,) be a 8D T-instance of span n, and 7 be a permutation
of [0; n], such that I ~ m. If there exists a 3DT-step AR for some well-ordered
triple (a,b,c) € T, then I' and ' = 7w o1, where T = 7[a, b, c, V|, are equivalent.

Proof. We write (i,j, k) for the indices such that 7 = 7,5 (by definition, ¢ =
min{¢(a), (), ¥ (c)}, j = succr(i), k = sucer(j)). Since (a, b, ¢) is well-ordered, we
have 1 < j < k.

We have I’ = (¥, T",¢'), with ¥ = ¥ — {a,b,¢}, T" = T — {(a,b,c)}, and
Y o — 7 ¢(0)). We write respectively L and L’ for the domains of I and I’
For all v' € [1; n], we have

v el < JoeX—{abc}, v=1"))
& 7(v) e L—{i,j,k}

We prove the 3 required properties (see Definition 1.10) sequentially:
- 7'(0) = x(r(0)) = =(0) = 0,
- Yo' € [l;n] =L, let v = 7(v). Since v' ¢ L', we have either v € {i, j, k},
or v ¢ L. In the first case, we write u = succ; ' (v) (then u € {i,j, k}). B
Property 1.2, 771 (u—1) is equal to 77 (succy(u))—1,s0 771 (u—1) = 771 (v)—1.
Hence,

(' —1)+

(r(r (v) D) +1
(u—=1) +
(v) by Def. 1.10, since v € L and v = succr(u)

(V)

In the second case, v ¢ L, we have

™
™
™
™

(v—l)—{—l— m(r(r 7 (v) = 1)) + 1
m(r(77 (v — 1))) + 1 by Prop. 1.2, since v ¢ {i, 5, k}

20 CHAPTER 1. SORTING BY TRANSPOSITIONS

=m(v—1)+1
= m(v) by Def. 1.10, since v ¢ L
=7'(v')

In both cases, we indeed have 7'(v' — 1) + 1 = #/(v').
— Let v’ be an element of L. We write v = 7(v'), u = succ; ' (v), and v/ = 771 (u).
Then v = 77 (succr(7(v))) = succp(v'). Moreover, v ¢ {i,7,k}, hence

w ¢ {i, g, k}.

W —1)+1=na(r(r"Hu) - 1)) +1
(r(77Hu — 1))) + 1 by Prop. 1.2, since u ¢ {i,7,k}
—r(u—1)+
= 7(v) by Def. 1.10, since v € L and u = succ; ' (v)
(r(r ' (v)))
')

503

]

Lemma 1.8. Let [= (X, T,) be a 8D T-instance of spann, and © a permutation of
[0; n], such that I ~ m. If there exists a transposition T = 7, ;1 such that dy(moT) =
dy(m) — 3, then T' contains a well-ordered triple (a,b,c) such that T = 7[a,b, c,)].

Proof. We write i’ = 771(4), j/ = 771(j), and ¥’ = 77!(k). Note also that i < j < k.

Let 7' = mor7. For all z € [1;n] — {i,7,k}, we have, by Property 1.3, that
(x —1,z) is an adjacency of 7 iff (77 (z) — 1,7 (x)) is an adjacency of «’. Hence,
since dy(7') = dp(m) — 3, we necessarily have that <z -1, i>, <j — 1,j> and <l<: -1, k>
are breakpoints of 7, and <i’ -1, i’>, <j’ — 1,j’> and <k’ -1, k’> are adjacencies of 7’
We have

(i) = w(7(i))

™

7'(i" = 1) + 1 since (¢’ — 1,4’) is an adjacency of 7’
=76 1) +1

(77 (k — 1)) + 1 by Prop. 1.2

m(k—1)+1

Since I ~ 7 and i # k, by Definition 1.10, we necessarily have i € L (where L is the
domain of I), and i = succ (k).

Using the same method with (j' — 1,5') and (k' — 1,k), we obtain j, k € L,
J = succr(i) and k = succr(j). Hence, T' contains one of the following three triples:
(W), v (), o7 (k). (7H(), v k), (@), or (W H(K), T (6), (). Writ-

ing (a, b, c) this triple, we indeed have 7, ;, = 7[a, b, ¢,] since i < j < k. O

Theorem 1.9. Let I = (X, T,v¢) be a 8DT-instance of span n with domain L,
and m be a permutation of [0; n], such that I ~ w. Then I is 3DT-collapsible iff

dy(m) = |T| = dy(m)/3.

Proof. We prove the theorem by induction on k = |T|. For k = 0, necessarily
I =¢and L =T = 0, and by Definition 1.10, # = Z, (7(0) = 0, and for all

1.2.4

1.2. 3-DELETION AND TRANSPOSITION OPERATIONS 21

v >0, m(v) = (v — 1) +1). In this case, I is trivially 3DT-collapsible, and
di(m) =0 =|T| = dy(m)/3.

Suppose now k = k' + 1, with £ > 0, and the theorem is true for £'. By
Property 1.6, we have d,(7m) = 3k, and by Property 1.4, di(7) > 3k/3 = k.

Assume first that I is 3DT-collapsible. Then there exist both a triple (a,b,c) € T
and a 3DT-instance I’ = (X', T", ') such that I'“".[" and I’ is 3DT-collapsible.
Since T" = T — {(a,b,c)}, the size of 7" is k — 1 = k’. By Lemma 1.7, we have
I' ~ 7" =mor, with 7 = 7[a, b, ¢, ¥]. Using the induction hypothesis, we know that
di(7') = k’. So the transposition distance from 7 = 7/ o 77! to the identity is at
most, hence exactly, k' + 1 = k.

Assume now that d;(r) = k. We can decompose 7 into 7 = 7/ o 771, where
T is a transposition and 7’ a permutation such that d;(7') = k — 1 = k’. Since 7
has 3k breakpoints (Property 1.6), and 7' = 7 o 7 has at most 3k — 3 breakpoints
(Property 1.4), T necessarily removes 3 breakpoints, and we can use Lemma 1.8:
there exists a 3DT-step I(“’—b’C)J’, where (a,b,c¢) € T is a well-ordered triple and
T = 7la,b,c,1]. We can now use Lemma 1.7, which yields I’ ~ 7’ = 7w o 7. Using
the induction hypothesis, we obtain that I’ is 3DT-collapsible, hence I is also 3DT-
collapsible. This concludes the proof of the theorem. O]

The previous theorem gives a way to reduce the problem of deciding if a 3DT-
instance is collapsible to the SORTING BY TRANSPOSITIONS problem. However, it
must be used carefully, since there exist 3DT-instances to which no permutation is
equivalent (for example, I = a; as by by ¢; ¢o admits no permutation 7 of [0; 6]
such that I ~).

Parallel with the Cycle Graph

This section gives another point of view for the definition of 3DT-instances, in
such a way that they (almost) match cycle graphs, as defined in [14]. Tt is given
as a side remark and will not be used in the rest of the reduction, hence it is not
described with an over-formal vocabulary, and we assume that the reader is already
familiar with cycle graphs. This correspondence is summarized in Figure 1.7.

A 3DT-instance behaves similarly to a cycle graph containing only 1- and 3-
cycles, that is, the cycle-graph of a so-called 3-permutation. Each o € ¥ corresponds
to a reality arc in a 3-cycle (a triple corresponds to a 3-cycle), and each other position
i € [1; n] such that u; = « corresponds to the reality arc of a l-cycle. The succy
function corresponds to taking the next reality arc in a cycle. A triple is well-ordered
if the corresponding cycle is oriented in the graph, and, for such triples, following
a 3DT-step corresponds to breaking the 3-cycle into three 1-cycles (which may also
change the orientation of some other cycles).

Given such a correspondence between a 3DT-instance I and the cycle graph G of
a permutation 7, we obtain that [is equivalent to m, and that [is 3DT-collapsible
iff there exists a sequence of transpositions each breaking a 3-cycle of G (i.e., iff
di(m) = dy(m)/3).

However, 3DT-instances are more general than cycle graphs: cycle graphs are
defined from the permutations they represent while on the other hand 3D T-instances
can be constructed without referring to a permutation, hence there is no cycle graph
corresponding to certain 3DT-instances (e.g., I = a; ag by by ¢ ¢3). Consequently,
we can focus exclusively on the way triples are ordered and how they overlap — this

22 CHAPTER 1. SORTING BY TRANSPOSITIONS

-_— -
- -~ <

O\ a1 J\/ b j\/ by \)\ as ,‘\/ Cc1 \)\ Co \6
0N, BN 2N A i /3 6
N N N 7 7 7
N N e e 7
(a1,b1, Cl)u 70,2,4
mTTImeITIe<IT T
7 e N ~N ~N

7 7 VAR N N

7 as ’ 77by N AN ca N
& J & e e
0~ 71 o5 P "3 6

Figure 1.7: The 3DT-instance ay by by as ¢ ¢ seen on the corresponding cycle graph,
i.e., the cycle graph of permutation <O, 5,2,1,4,3, 6>. The ordered triple (aq,b1,¢)
corresponds to the over-lined oriented 3-cycle, and following the 3DT-step removing
this triple corresponds to breaking the cycle into 1-cycles.

task alone is the most complex one, see Section 1.3. The main drawback is that we
need to verify, afterwards, that there indeed exist permutations which are equivalent
to the 3DT-instances we build (Section 1.4).

1.3 3DT-collapsibility Is NP-Hard to Decide

In this section, we define, for any boolean formula ¢, a corresponding 3DT-
instance I4. We also prove that I is 3DT-collapsible iff ¢ is satisfiable.

1.3.1 Block Structure

The construction of the 3DT-instance I, uses a decomposition into blocks, de-
fined below. Some triples will be included in a block, in order to define its behavior,
while others will be shared between two blocks, in order to pass information. The
former are unconstrained, so that we can design blocks with the behavior we need
(for example, blocks mimicking usual boolean functions), while the latter need to
follow several rules, so that the blocks can conveniently be arranged together.

Definition 1.11 (l-block decomposition). An I[-block decomposition B of a 3DT-
instance I of span n is an l-tuple of integers (s1,...,8;) such that s1 =0, s, < Spi1
forallh € [1;1—1], and s; < n. We write t,, = sp41 for h € [1;1—1], and t; = n.

Let I = (X,T,¢). For h € [1;1], the factor us,+1 us, 12 ...us, of the word
representation uy us . ..u, of I is called the full block B;, (it is a word over XU{:}).
The subsequence of B, where every occurrence of « is deleted is called the block Bj,.

For o € X, we write blockrg(c) = h if (o) € [sp+1; tn] (equivalently, if o
appears in the word By). A triple (a,b,c) € T is said to be internal if block; g(a) =
blocky g(b) = block; 5(c), and external otherwise.

If 7 is a transposition such that for all h € [1; 1], 7(sn) < 7(tn), we write 7[B]
for the l-block decomposition (7(s1),...,7(s))).

1.3. 3DT-COLLAPSIBILITY IS NP-HARD TO DECIDE 23

In the rest of this section, we mostly work with blocks instead of full blocks, since
we are only interested in the relative order of the elements, rather than their actual
position. Full blocks are only used in definitions, where we want to control the dots
in the word representation of the 3DT-instances we define. Note that, for 01,09 € X
such that block; g(o1) = blockr g(02) = h, the relation oy < o3 is equivalent to oy 09
1s a factor of By,

Property 1.10. Let B = (s1,...,8;) be an [-block decomposition of a 3D T-instance
of span n, and i,j, k € [1; n] be three integers such that (a) i < j < k and (b) Jhy
such that sp, < i <j <tp, or sp, < j <k <ty (or both). Then for all h € [1;1],
T (sn) < zgk(th) and the l-block decomposition Tl_jlk [B] is defined.

Proof. For any h € [1; 1], we show that we cannot have i < s, < j < t; < k.
Indeed, s, < j implies h < hg (since s, < j < tp, = Spos1), and j < ¢, implies
h > hg (since tp,—1 = sp, < j < tp). Hence s, < j < t, implies h = hg, but
1 < sp,tp, < k contradicts both conditions s, < ¢ and k < #5,: hence the relation
1 < s, <j <t <kisimpossible.

By Property 1.1, since s, < ¢, for all h € [1; 1], and i < s, < j < ¢, < k does

not hold, we have Tijj%k(sh) < T L (t), which is sufficient to define Tl_Jlk (B]. O

The above property yields that, if (a,b,c) is a well-ordered triple of a 3DT-
instance I = (X, T,v¢) (1 = 7la,b,¢,v]), and B is an I[-block decomposition of I,
then 77![B] is defined if (a, b, ¢) is an internal triple, or an external triple such that

one of the following equalities is satisfied: block; z(a) = blockr g(b), block; s(b) =
block; B() or blockyr g(c) = blocky s(a). In this case, the 3DT-step 1929 17 is written

(I,B)X9. (1" B'), where B' = 77[B] is an I-block decomposition of I".

Definition 1.12 (Variable). A variable A of a 3D T-instance I = (X,T,1) is a pair
of triples A = [(a,b,c), (x,y,2)] of T. It is valid in an [-block decomposition B if

(i) 3ho € [1; 1] such that blocky p(b) = block; s(x) = blocky s(y) = ho

(ii) 3hy € [1; 1], b1 # ho, such that blockr p(a) = block; (c) = block; g(2) = hy
(iii) if x <y, then we have r<b<y

(iv) a<z=<c

For such a valid variable A, the block By, containing {b,x,y} is called the source

of A (we write source(A) = hgy), and the block By, containing {a,c,z} is called
the target of A (we write target(A) = hy). For h € [1;1], the variables of which
By, is the source (resp. the target) are called the output (resp. the input) of By,.

The 3DT-step I'=Y3,[" is called the activation of A (it requires that (x,y,z) is
well-ordered).

Note that since a valid variable A = [(a, b c), (m y, z)] satisfies block; s(x) =
block; g(y), its activation can be written (I, B) =221’ B).

Example 1.2. Consider the 3DT-instance I with the 2-block decomposition B such
that:

I=dyexzbfdaf z€ec
with triples (a,b,c), (d,e, f), (d,€e,f), (z,y,z)
B =(0,6)

24 CHAPTER 1. SORTING BY TRANSPOSITIONS

This decomposition yields two blocks By = dyexb f and By = d a [’ z €' ¢, which
contain two internal triples (d,e, f) and (d', €, f') and two external triples forming
a variable A = [(a,b,c), (z,y,2)]. We give below a sequence of 3DT-steps leading to
the empty instance (for each step, the three deleted elements are in bold font, the
elements that are swapped by the corresponding transposition are underlined, vertical
bars give the limits of the blocks in the 2-block decomposition, and dot symbols are
omitted). Note that in this example, variable A is valid, and remains valid until its
activation.

I=|dyexbf|daf z€c|

+ (d,e f) Internal triple of By
Ii=|xby|daf z€c|

+ (z y_, z) Activation of A
L=|e|dafbec|

+ (a,b,0) - Internal triple of Bo
L=|elde f]

(e, Internal triple of Bs

Iy=|ele|=¢

Property 1.11. Let (I,B) be a 8D T-instance with an [-block decomposition, and A
be a variable of I that is valid in B. Write A = [(a,b,¢),(x,y,z)]. Then (z,y, z) is
well-ordered iff x < y; and (a,b, c) is not well-ordered.

Proof. Note that for all 0,0’ € X, block; (o) < block;p(c’) = o < o’. Write
I = (X, T,¢), hg = source(A) and hy; = target(A): we have hy # hy by condition
(ii) of Definition 1.12.

If hy < hy, then, with condition (iv) of Definition 1.12, b < a < ¢, and either
r <y <zory <z < z Hence, (a,b,c) is not well-ordered, and (z,y, z) is
well-ordered iff © < y.

Likewise, if hy < hg, we have a < ¢ < b, and 2z <z <y or z < y < x. Again,
(a, b, c) is not well-ordered, and (z,y, 2) is well-ordered iff x < y.]

Property 1.12. Let (I,B) be a 3DT-instance with an l-block decomposition, such
that the external triples of I = (X,T,1) can be partitioned into a set of valid vari-
ables A. Let (d,e, f) be a well-ordered triple of I, such that there exists a 3DT-step
([,B)M([’,B’), with I' = (3, T',4"). Then one of the following two cases is
true:

~ (d,e, f) is an internal triple. We write hy = block;g(d) = block;p(e) =
block; g(f). Then for all o € X', blockp g (o) = block; (o). Moreover if
01,09 € X with blockp g (01) = blockp g(02) # ho and oy <y 09, then oy <
0.

— There exists a variable A = |[(a,b,c),(z,y,2)] € A, such that (d,e, f) =
(z,y,2). Then blockp g (b) = target(A) and for all other o € X' — {b},
blockp g (o) = block; g(o). Moreover if 01,09 € X' — {b}, such that o1 < 02,
then o1 <p 03.

1.3. 3DT-COLLAPSIBILITY IS NP-HARD TO DECIDE 25

Proof. We write 7 for the transposition and i, 7, k for the three integers such that
T = Tijr = T|d,e, f, 9] (necessarily, 0 < i < j < k < n). We also write B =
(S0, 81, --.,8). The triple (d, e, f) is either internal or external in B.
If (d,e, f) is internal, with hy = blockr g(d) = blockr g(e) = block; s(f), we have
(see Figure 1.8a):
Shy <1<] <k <tp.

Hence for all h € [1;], either s, < i or k < s, and 77!(s,) = s;, by Defini-
tion 1.1. Moreover, for all o € X, we have

i<Y(o) <k = (o) € [sn +1; th]
and 7 (sp,) < i < T (o)) < k < 7 (ty,)
= blOCk]ﬁ(O’) = hy = blOC]i]]/ﬁ/(O’)

U(o) <iork <o) = 7 (¥(0)) =1U(o)

= blocky g (o) = block; 5(o)

Finally, if 01,00 € X' with blockp p(01) = blockp (02) # ho, then we have both
77 ah(01)) = ¥(01) and 771 (Y(09)) = Y(09). Hence o1 < 09 & 01 <11 09.

If (d, e, f) is external, then, since the set of external triples can be partitioned into
variables, there exists a variable A = [(a,b,¢), (z,y,2)] € A, such that (d,e, f) =
(a,b,c) or (d,e, f) = (x,y, z). Since (d, e, f) is well-ordered in I, we have, by Prop-
erty 1.11, (d,e, f) = (z,y,2) and = <; y, see Figure 1.8b. And since A is valid,
by condition (iv) of Definition 1.12, = <y b <; y. We write hy = source(A) and
hy = target(A), and we assume that hg < hy, which implies © <; y < z (the case
hy < hg with z <; x <; y is similar): thus, we have

i=vY(), J=v), k=1v(2), and sp, <i < j <ty <spy <k <ty
We define a set of indices U by
U={sn|he[l;:{} U {n} U{s(o)]oeX —{b}}.

We now show that for all uw € U, we have u < i or j < u. Indeed, if u = s, for
some h € [1; 1], then either h < hy and u < sp, < i, or hg < h and j < tp, < w.
Also, if u =n, then j < u. Finally, assume u = 9(0), with o € X — {b}. We then
have © <; 0 <7 y < 0 = b, since x <; b<; y. Hence either 0 <; x and u < ¥ (z) = 1,
ory <yoand Y(y) =7 < u.

By Property 1.1, if u,v € U are such that « < v, then 77! (u) < 77'(v). This
implies that elements of ¥'—{b} = X —{b, x,y, 2} do not change blocks after applying
771 on 1), and that the relative order of any two elements is preserved. Finally, for
b, we have x <; b < vy, hence

P <) <j<sp <k<t,.

Thus, by Property 1.1, 77 (sp,) < 771 (¥(b)) < 7 (tp,), and blocky z(b) = hy =
target(A). This completes the proof. O

Definition 1.13 (Valid context). A 3DT-instance with an l-block decomposition
(I,B) is a valid context if the set of external triples of I can be partitioned into
valid variables.

26 CHAPTER 1. SORTING BY TRANSPOSITIONS

With the following property, we ensure that a valid context remains almost valid
after applying a 3DT-step: the partition of the external triples into variables is
kept through this 3DT-step, but conditions (iii) and (iv) of Definition 1.12 are not
necessarily satisfied for all variables.

Property 1.13. Let (I, B) be a valid context and (I, B)““2.(1' B') be a 3DT-step.
Then the external triples of (I',B') can be partitioned into a set of variables, each
satisfying conditions (i) and (ii) of Definition 1.12.

Proof. Let I = (3, T,¢), I' = (X',T",¢'), A be the set of variables of I, and E
(resp. E') be the set of external triples of I (resp. I’). From Property 1.12, two
cases are possible.

First case: (d,e, f) ¢ E. Then for all o € ¥, blocky (o) = blockr g(c). Hence
E' = E, and (I’,B’) has the same set of variables as (I, 3), that is .A. The source
and target blocks of every variable remain unchanged, hence conditions (i) and (ii)
of Definition 1.12 are still satisfied for each A € A in B'.

Second case: (d,e, f) € E, and there exists a variable A = [(a, b, ¢), (x,y, 2)] in A
such that (d,e, f) = (x,y, z), by Property 1.12. Then blockp g /(b) = target(A) and
for all o € X' — {b}, blockp g (o) = blockr g(c). Hence blockp p/(b) = blockp p(a) =
blockp g (c), and E' = E — {(z,y, 2), (a,b,c)}: indeed, (x,y, z) is deleted in T” so
(x,y,2) ¢ E', (a,b,c) is internal in I’, and every other triple is untouched. Finally,
for every A" = [(a/,V,), (', ¥, 2")] € A— {A}, we have blockp g (o) = blockr (o)
for o € {a', V', 2’3/, 2'}, hence A satisfies conditions (i) and (ii) of Definition 1.12
in B'. O

Consider a block B in a valid context (I,B) (there exists h € [1; {] such that
B =By,), and (d,e, f) a triple of I such that (I, B)\2D,(I' B (we write B' = B}).
Then, following Property 1.12, four cases are possible:
— h ¢ {blockr(d),blockr (e),blockr g(f)}, hence B’ = B, since, by Prop-
erty 1.12, the relative order of the elements of B remains unchanged after
the 3DT-step e h,
— (d,e, f) is an internal triple of B. We write

(dvevf))

- JA = [(a,b,¢), (z,y, z)] such that h = source(A) and (d,e, f) = (z,y,2) (A is
an output of B), see Figure 1.9 (left). We write

JA = [(a,b,¢), (x,y, z)] such that h = target(A) and (d,e, f) = (z,y,2) (A is
an input of B), see Figure 1.9 (right). We write

A

A== |PB/|

The graph obtained from a block B by following exhaustively the possible arcs
as defined above (always assuming this block is in a valid context) is called the
behavior graph of B.

1.3. 3DT-COLLAPSIBILITY IS NP-HARD TO DECIDE 27

B;,
A
s i j ko th
4 L4 4
/- d e f
derh) X
N J
Y
By

(z,y,2)
_

/u /u
B}’Lo Bhl

(b)

Figure 1.8: Effects of a 3DT-step “2“7), on an I-block decomposition if (a) (d, e, f)
is an internal triple, or (b) there exists a variable A = [(a,b,¢), (x,y, z)] such that
(d,e, f) = (z,y,2). Both figures are in fact derived from Figure 1.3 in the context
of an [-block decomposition.

28 CHAPTER 1. SORTING BY TRANSPOSITIONS

source(A) target(A)
- - [Farevew] -
I |
(z,y,2) A A
__ u |
/ o [TaUbVew| -
|
(a,b,c) (a,b,c)
|
~
Figure 1.9: The activation of a variable A = [(a,b,¢), (z,y,)] is written with a

double arc in the behavior graph of the source block of A and with a thick arc in
the behavior graph of its target block. It can be followed by the 3DT-step M,
impacting only the target block of A. Dot symbols (+) are omitted. We denote by
R, S, T, U, V,W some factors of the source and target blocks of A: the consequence
of activating A is to allow U and V' to be swapped in target(A).

1.3.2 Basic Blocks

We now define four basic blocks: copy, and, or, and var. They are studied
independently in this section, before being assembled in Section 1.3.3. Each of these
blocks is defined by a word and a set of triples. We distinguish internal triples, for
which all three elements appear in a single block, from external triples, which are
part of an input/output variable, and for which only one or two elements appear
in the block. Note that each external triple is part of an input (resp. output)
variable, which itself must be an output (resp. input) of another block, the other
block containing the remaining elements of the triple.

We then draw the behavior graph of each of these blocks (Figures 1.10 to 1.13):
in each case, we assume that the block is in a valid context, and follow exhaustively
the 3DT-steps that can be applied to it. We then give another graph (Figures 1.14a
to 1.14d), obtained from the behavior graph by contracting all arcs corresponding
to 3DT-steps using internal triples, i.e., we assimilate every pair of nodes linked by
such an arc. Hence, only the arcs corresponding to the activation of an input/output
variable remain. From this second figure, we derive a property describing the behav-
ior of the block, in terms of activating input and output variables (always provided
this block is in a valid context). It must be kept in mind that for any variable,
the state of the source block determines whether it can be activated, whereas the
activation itself affects mostly the target block.

The Block copy

This block aims at duplicating a variable: any of the two output variables can
only be activated after the input variable has been activated.
Input variable: A = [(a,b,¢), (z,y, 2)].
Output variables: A; = [(aq,b1,¢1), (1, y1,21)] and As = [(ag, by, ¢2), (T2, Y2, 22)].

1.3. 3DT-COLLAPSIBILITY IS NP-HARD TO DECIDE 29

|aylezdy2x1 b16x2b2f|

A

aylebdy2x1b10x2b2f|

(a,b,c)

|dy2x1b1y1 6$2b2f|

/

Ay

/S @en

|362 b2 Y2 T1 b1 yl

(d.e. f) / \

N\, N
NS

Figure 1.10: Behavior graph of the block [A, As] = copy(A). A thick (resp. dou-

(x,y,2)

ble) arc corresponds to the 3DT-step ~222, for an input (resp. output) variable

[(a,b,¢), (z,y,2)].

Internal triple: (d, e, f).
Definition:

[Ay, Ag] = copy(A)| = ‘a y1 ez dys xy by € xg by f‘

Property 1.14. In a block [Ay, Ay] = copy(A) in a valid context, the possible orders
in which A, Ay and As can be activated are (A, Ay, As) and (A, Ay, Ay).

Proof. See Figures 1.10 and 1.14a. O]

The Block and

This block aims at simulating a conjunction: the output variable can only be
activated after both input variables have been activated.

30 CHAPTER 1. SORTING BY TRANSPOSITIONS

|alez1agclzgdy62xbf|
/7
A1 A2
/ N
|a,1€b]_CI,QClngyCQZbe”a,l€Zla261b2dy02$bf|

/\ /\

(a1,b1,c1) (az, bz, c2)
/ \ /
0,2622dy02$bf| |aleb1agclbd 2:Ebf| |alezldyclxbf|
AN VRN
Ao (a1,b1,c1) (az, b, c2) Ay
N S N/
|ageb2 yCmef| |aleb1dyclmbf|
AN /
(a2,b2,62) (alabhcl)
NS
dyexbd f
|
(d,e, f)
|
zby

A
Figure 1.11: Behavior graph of the block A = and(Ay, A,).

Input variables: A; = [(a1,b1, 1), (21,41, 21)] and As = [(ag, ba, ¢2), (T2, Y2, 22)].
Output variable: A = [(a,b,¢), (z,y, 2)].

Internal triple: (d,e, f).

Definition:

A=and(A;,As) = ‘a1621a20122dy021’bf‘

Property 1.15. In a block A = and(Ay, A) in a valid context, the possible orders
in which A, Ay and Ay can be activated are (A1, Ay, A) and (Ag, Ay, A).

Proof. See Figures 1.11 and 1.14b. O

The Block or

This block aims at simulating a disjunction: the output variable can be activated
as soon as any of the two input variables is activated.
Input variables: A; = [(a1,b1, 1), (21,41, 21)] and Ay = [(ag, ba, ¢2), (22, Y2, 22)].
Output variable: A = [(a, b, ¢), (z,vy, 2)].
Internal triples: (a/, b, ') and (d, e, f).

1.3. 3DT-COLLAPSIBILITY IS NP-HARD TO DECIDE 31

Definition:

A=or(A;,A) = |ayb ziaadyd zbfzncaedce

Property 1.16. In a block A = or(Ay, As) in a valid context, the possible orders in
which A, Ay and As can be activated are (A1, A, As), (A, A, A1), (A1, Ag, A) and
(Ag, Ay, A).

Proof. See Figures 1.12 and 1.14c. O]

The Block var

This block aims at simulating a boolean variable: in a first stage, only one of the
two output variables can be activated. The other needs the activation of the input
variable to be activated.

Input variable: A = [(a,b,¢), (z,y, z)].

Output variables: Ay = [(a1,b1,¢1), (21,1, 21)], A2 = [(ag, ba, ¢2), (T2, Y2, 22)].
Internal triples: (dy,eq, f1), (da, ez, f2), and (a’,¥',).

Definition:

[AhAZ] = var(A) = diyradyysera egay by fr d 20 cagby fo

Property 1.17. In a block [Ay, As) = var(A) in a valid context, the possible orders
in which A, Ay and As can be activated are (A1, A, As), (Aa, A, Ay), (A, Ay, As) and
(A7 A27 Al)

Proof. See Figures 1.13 and 1.14d. m

With such a block, if A is not activated first, one needs to make a choice between
activating A; or A;. Once A is activated, however, all the remaining output variables
are activable.

Assembling the Blocks copy, and, or, var.

Definition 1.14 (Assembling of basic blocks). An assembling of basic blocks (I, B)
s composed of a 3DT-instance I and an [-block decomposition B obtained by the
following process:
— Create a set of variables A.
— Define I = (X, T,) by its word representation, as a concatenation of | fac-
tors By By ... B and a set of triples T', where each B} is one of the blocks
[Ay, Ay = copy(A), A = and(Ay, As), A=or(A;, Ay) or [A1, Asy] = var(A),
with Ay, As, A € A (such that each X € A appears in the input of exactly one
block, and in the output of exactly one other block); and where T is the union
of the set of internal triples needed in each block, and the set of external triples

defined by the variables of A.

Example 1.3. We create a 3DT-instance I with a 2-block decomposition B such
that (I, B) is an assembling of basic blocks, defined as follows:
— I uses three variables, A = {X, X5, Y}
— the word representation of I is the concatenation of [X1, Xs] = var(Y) and
Y = or(Xl, Xg)

32 CHAPTER 1. SORTING BY TRANSPOSITIONS

|a1 v oz agdya’xbf220160’02|
~ N
Ay A,
/ \
|a1 b b agdya’xbszclec'CQ| |a1 v oz agdya’xbfbgclec'(:2|
\ /
/ Ay Ay \
(alvblacl) \ / (a27b2762)

|a1b'blagdya’xbfbgclec'(:g| \
|a2dya’xbf22b'ec'02| / \ |a1b'zlclec'dya'xbf|
~

N (a1,b1,c1) (az,b2,c2)

A2 Al
~ / N

(@, b,) asdya b fbbecd C2| |a1 b by ec'dya’xbf|(a/7b/’c/)
N e
(az,b2,c2) (a1,b1,c1)
O y'd

~

Vecddya zb
|a2dyexbsz cQ|((l/7b/70/) Y f| (a

N

/abac/)|a1 dy21 Clexbf|
As Al/
N yd

/bl/
(d,e, f) |a2dyexbf6202|(a’ ’C)|a1dyb1clea:bf|

(d,e, f)
N v
(az,ba, c2) (a1,b1,¢1)
N\ y'd
dyexb
as x by zg co (d,e, f) 4 /

(d’e’f) alxbyzlcl

\A2 0 ~
~ s e

N yd

(a2, b2, c2) (a1,b1,c1)
N V'

4 - 4
\ /
Ag\ /A1
4

N 7~

(a/27b2362) (alablacl)
e

Figure 1.12: Behavior graph of the block A = or(A;, As).

1.3. 3DT-COLLAPSIBILITY IS NP-HARD TO DECIDE 33

|dl?J1ad2?/261¢1'62901blflc'zb/6$2b2f2|
/ \

(dh@hfl) (d27627f2)
- N

|a’egx1blyladgygc’zb’cxgbgfg| A |d1y1ax1b1flc’zb’cxgbgygela’|
Al A2
Z A A N

|a’egad2ygc’zb/ca:2b2f2| |d1y1ax1b1flc’zb’cela’

|d1 yradeysera ea a1 by fi C/bb'0$2b2f2|

- ~
(d1,€17f1) (d27€2,f2)
A s ~ A
|a’62x1b1y1 adgygc’bb’cx2b2f2| |d1y1 azx by fi c’bb’cxgbgygela’|

/ | a,b,c | \

A A
(b0 (a.b¢) TUNG
a’egadgygc’bb’cx2b2f2| |d1y1am1b1flc’bb’cela’
|dlylbld2y2€1a/€2$1blflclm2b2f2|
- ~
(a,b,¢) (di,e1, f1) (da, ez, fa) (a,b,¢)
~ N\
|a/ eawibyys b daya w2 by fo| | diyn b @by i mabyyserd |
A / \A
1 2
/ (a/7blycl) (a/’b/7c/) \
|a'€2b'd2926'$252f2| |d1y1b’$1b1f10’€1a'|
(@) |d21/262361b12/1:r2b2f2| |d1y11‘2b2y2611‘1b1f1| (a',b,c)
Ay (da, e2, f2) (di,e1, f1) Ay

\ /

Z N
N s ~ ~
(da, e2, fa) Ay As (di,e1, f1)

~ y N P

T2 by y2~ '961 biyr
N e

A2\ /A1

Figure 1.13: Behavior graph of the block [A;, As] = var(A).

34 CHAPTER 1. SORTING BY TRANSPOSITIONS

| [A1, As] = copy(A) | |A = and(A;1, As) |

)

] =
| Ay Ag
A

< >

ALY
NS

>

<

Ay
Ap

)
@—s—{

E
Ay

—
s
Nl
—
=3
=

| A =or(Ay, 4,)| | [A1, 4] = var(4) |
N N\
Ay Ao Ay A

ol)

N

N h S < >
A2 Al A2 Al
NS

() (d)

Figure 1.14: Abstract representations of the blocks copy, and, or, and var, obtained
from each behavior graph (Figures 1.10, 1.11, 1.12, and 1.13) by contracting arcs
corresponding to internal triples, and keeping only the arcs corresponding to vari-
ables. We see, for each block, which output variables are activable, depending on
which variables have been activated.

1.3. 3DT-COLLAPSIBILITY IS NP-HARD TO DECIDE 35

With variables X1 = [(a1,b1,¢1), (T1,91,21)], Xo = [(az, b2, ¢2), (T2, Y2, 22)], ¥ =
[(a,b,¢),(x,y,2)], and the internal triples (di, e, f1), (ds, ez, f2), (', U,) for the
block var, and (a”",b",c"),(d,e, f) for the block or, the word representation of I is
the following (note that its 2-block decomposition, emphasized with the vertical bars,

is (0,18)):
I=|dyyradyysera eaxy by f1 d 2 cagby folar V' z1asdya” b f 2z c1ed

A possible sequence of 3DT-steps leading from I to € is given in Figure 1.15, hence
I is 3DT-collapsible.

Lemma 1.18. Let I' be a 3DT-instance with an [-block decomposition B', such
that (I',B') is obtained from an assembling of basic blocks (I,B) after any num-
ber of 8DT-steps, i.e., there exist k > 0 triples (d;,e;, fi), © € [1; k], such that
(I1,B) (di,en, 1) . (dis ek, fi) (I, 8).

Then (I',B') is a valid context. Moreover, if the set of variables of (I',B') is
empty, then I' is 3DT-collapsible.

Proof. Write A the set of variables used to define (I,58). We write I = (3, T,)
and I’ = (X', 7", ¢'). We prove that (I’,B’) is a valid context by induction on k
(the number of 3DT-steps between (I, B) and (I’,B")). We also prove that for each
h € [1; 1], B), appears as a node in the behavior graph of Bj,.

Suppose first that & = 0. We show that the set of external triples of (I,B) =
(I',B') can be partitioned into valid variables, namely into A. Indeed, from the
definition of each block, for each o € X, o is either part of an internal triple, or
appears in a variable A € A. Conversely, for each A = [(a,b,¢),(x,y,2)] € A, b,
x and y appear in the block having A for output, and a, ¢ and z appear in the
block having A for input. Hence (a, b, c) and (z,y, z) are indeed two external triples
of (I,B). Hence each variable satisfies conditions (i) and (ii) of Definition 1.12.
Conditions (iii) and (iv) can be checked in the definition of each block: we have, for
each output variable, y < x, and for each input variable, a < z < ¢. Finally, each
By, appears in its own behavior graph.

Suppose now that (', B’) is obtained from (7, B) after k 3DT-steps, k > 0. Then
there exists a 3DT-instance with an [-block decomposition (I”,B”) such that:

(I, B) (di,e1, f1) . (dr—1,€x—1, fu—1) (]// B//) (di, ek, fx) (I/ B/)

Consider h € [1; []. By induction hypothesis, since B}, is in a valid context (I”, B”),
then, depending on (d, e, fx), either B = B}, or there is an arc from B} to B} in
the behavior graph. Hence Bj is indeed a node in this graph. By Property 1.13,
we know that the set of external triples of (I’, B") can be partitioned into variables
satisfying conditions (i) and (ii) of Definition 1.12. Hence we need to prove that each
variable satisfies conditions (iii) and (iv): by inspecting each node of the behavior
graph, we verify that © <y = x<b<y (resp. a < z < ¢) for each output (resp.
input) variable A = [(a,b,¢), (z,y, z)] of the block. This concludes the induction
proof.

We finally need to consider the case where the set of variables of (I’, B) is empty.
Then for each h € [1; [] we either have B) = ¢, or B) = a; by, ¢, for some internal
triple (ap, by, cp) (in the case where By, is a block or). Then (I, B’) is indeed 3DT-
collapsible: simply follow in any order the 3DT-step Lanbrocn) g1 each remaining
triple (ap, by, cp).]

36 CHAPTER 1. SORTING BY TRANSPOSITIONS

I'=|diyiadyyse; ' eaxiby frd 20 caaby folar ' zyasdyad” xb f2oced s

4+ (dy, e, f1) Internal triple of B

Ly=|desxibiyradaysc 26 cagby fo|lai b zrasdya” b fzocied ¢y |

1 (z1,91,21) Activation of X;

Iy=|d esadyysd 20 caoby fo|ar V' byasdya” xbfzeied o

+ (a1,b1,¢1) Internal triple of Bsy
Is=l|d esadsysd 2 caaby fo|lasdya” zb f2b" ec” ¢
$ (@ v, ") Internal triple of B

I;=|d esadyys 20 cag by folasdyexb f zocs

+ (dye, f) Internal triple of Bsy
Is=|d esadoys d 20 cxoby fo|lasxby 2o o

1 (z,9,2)) Activation of YV
Is=l|d esadyy, b b casbsy fo]as zocs

+ (a,b,0) N Internal triple of B;

I, =]a’e_gb’dgyz C’$2b2f2|a22202|

$ @V,) Internal triple of By
I3 = |d2%62$252 fz\a22202|
4 (da, ez, f2) Internal triple of B;

I = ’wz@yzﬁzzcz \

+ (22,92, 22) Activation of X
I =|e|lazbyeca|

4+ (az,be,c2) Internal triple of Bs

Iy=|ele|=¢

Figure 1.15: 3DT-collapsibility of the assembling of basic blocks [X7, X5] = var(Y)
and Y = or(X1, X5) from Example 1.3. We use the same notations as in Example 1.2.

1.3.3

1.3. 3DT-COLLAPSIBILITY IS NP-HARD TO DECIDE 37

Construction

Let ¢ be a boolean formula over the boolean variables x4, ..., x,,, given in con-
junctive normal form: ¢ = Cy A Cy A ... A C,. Each clause C, (c € [1; 7]) is the
disjunction of a number of literals, z; or —z;, ¢ € [1; m]. We write ¢; (resp. ¢)
for the number of occurrences of the literal x; (resp. —z;) in ¢, i € [1; m]. We
also write k£(C.) the number of literals appearing in the clause C., ¢ € [1; v]. We
can assume that v > 2, that for each ¢ € [1; 7], we have k(C.) > 2, and that
for each i € [[1; m], ¢ > 2 and ¢ > 2. (Otherwise, we can always add clauses of
the form (z; V —x;) to ¢, or duplicate the literals appearing in the clauses C. such
that k£(C.) = 1.) In order to distinguish variables of an [-block decomposition from
x1,...,Tm, we always use the term boolean variable for the latter.

The 3DT-instance I, is defined as an assembling of basic blocks: we first define
a set of variables, then we list the blocks of which the word representation of I,
is the concatenation. It is necessary that each variable is part of the input (resp.
the output) of exactly one block. Note that the relative order of the blocks is of
no importance. We simply try, for readability reasons, to ensure that the source
of a variable appears before its target, whenever possible. We say that a variable
represents a term, i.e., a literal, clause or formula, if it can be activated iff this term
is true (for some fixed assignment of the boolean variables), or if ¢ is satisfied by
this assignment. We also say that a block defines a variable if it is the source block
of this variable.

The construction of I is done as follows (see Figure 1.16 for an example):
Create a set of variables:

— For each i € [[1; m], create ¢; + 1 variables representing z;: X; and Xf,

j € [1; ¢], and ¢ + 1 variables representing —z;: X; and)_(l-j, Jjel; al.

— For each ¢ € [1; 7], create a variable I'. representing the clause C..

— Create m + 1 variables, A, and Aé, i € [1; m], representing the formula ¢.
We will show that A, has a key role in the construction: it can be activated
only if ¢ is satisfiable, and, once activated, it allows every remaining variable
to be activated.

— We also use a number of intermediate variables, with names Ul-j, (_]Z-j, Vi W,
and Y.

Add blocks successively, starting with an empty 3DT-instance e:

— For each i € [1; m], add the following ¢; + @ — 1 blocks defining the variables

X;, X (Ge1; q]), and Xy, X7 (5 € [1; @]):

(X, X,] = var(Afﬁ)

(X}, U?] = copy(X;) P:Ql, @2] = copy(X;)

(X7, U] = copy(U}) (X7, U] = copy(U7)
[(XP72 U™ = copy (U) [(XF72, U8 = copy(Uf72)
X9 X5 = copy (U) X9, X5 = copy(UF)

— For each ¢ € [1; 7], let C. = A\ VAo V...V)\, with & = k(C..). Consider
p € [1; k]. There exist integers ¢, j such that), is the j-th occurrence of

38 CHAPTER 1. SORTING BY TRANSPOSITIONS
a literal x; or —z;, we respectively write L, = Xij or L, = X7, We add the
following k — 1 blocks defining I,

V2 = OI’(Ll, Lg)

C

V2 =or(V2 Ls)

C C

— Since ¢ = C1 ACy A...AC,, the formula variable A, is defined by the following
~v — 1 blocks:

W2 = and(Fl,Fg)
W3 = and(W27F3)

W7,1 = and(Ww,Q, FfY,l)
A, =and(W,_4,T,)

— The m copies Aé, o, A of Ay are defined with the following m — 1 blocks:

[Ag, Ya] = copy(Ay)
[A5, Ys] = copy(Y2)

[Aglin mel} = COPY(meQ)
(A1, AR = copy(Yin—1)

1.3.4 The Main Result

Theorem 1.19. Let ¢ be a boolean formula, and 14 the 3DT-instance defined in Sec-
tion 1.3.3. The construction of I, is polynomial in the size of ¢, and ¢ is satisfiable
iff 1y is 3DT-collapsible.

Proof. The polynomial-time complexity of the construction of Iy is trivial. We use
the same notations as in the construction, with B the block decomposition of /4. One
can easily check that each variable in (x), (%), (x%%), and (s*kx) has exactly one
source block and one target block. Then, by Lemma 1.18, we know that (1, B) is a
valid context, and remains so after any number of 3DT-steps, hence Properties 1.14,
1.15, 1.16, and 1.17 are satisfied by respectively each block copy, and, or and var, of
[¢.

Assume first that ¢ is satisfiable. Consider a truth assignment satisfying ¢:
let P be the set of indices ¢ € [1; m] such that z; is assigned to true. Starting from
14, we can follow a path of 3DT-steps that activates all the variables of I, in the
following order:

1.3. 3DT-COLLAPSIBILITY IS NP-HARD TO DECIDE

1 l l
var var var
X1 Xl X2 XZ X3 Xg X4 X4

c0py| 00py| |c0py| 00py copy |Copy| |copy| |copy

A A AR ARNARNARNARA

X X2 X! X? X:X2 XiX2 X2X2 XIX? X}X; X]X2

7=

V2 V? V2 Ve

Al Al

1 F4 I‘5 FG
iwmnd Wi ~[and |- Wi ~[and |- W ~

Figure 1.16: Schematic diagram of the blocks defining I, for ¢ = (z1 V 22 V =x3) A
(X1 V 2x) A(mxy VgV —xg) A (—xy Vag Vg A(zs V —zy) A(—zy V g Voxy). For
each variable, we draw an arc between its source and target block. Note that ¢ is
satisfiable (e.g., with the assignment z; = x5 = true and x5 = x4 = false). A set of
variables that can be activated before A, is in bold, they correspond to the terms

being true in ¢ for the assignment xz; = x3 = true and xy = x4 = false.

40 CHAPTER 1. SORTING BY TRANSPOSITIONS

— For i € [1;m], if i € P, activate X; in the corresponding block var in (x).
Then, with the blocks copy, activate successively all intermediate variables Uij
for j = 2 to ¢; — 1, and variables Xf for j € [1; q].

Otherwise, if i ¢ P, activate X;, all intermediate variables Uij for j = 2 to
G — 1, and the variables X7 for j € [1; @]

— For each c € [1; 7], let C. = Ay VA V...V A, with k = k(C..). Since C, is
true with the selected truth assignment, at least one literal A, , po € [1; k], is
true. If A\, is the j-th occurrence of a literal x; or —x;, then the corresponding
variable L, (L,, = X7 or L,, = X7) has been activated previously. Using the
blocks or in (#x), we activate successively each intermediate variable VP for
P =Dpo,--.,k—1, and finally we activate the variable T'..

— Since all variables T'., ¢ € [1; 7], have been activated, using the blocks and
in (xx), we activate each intermediate variable W, for ¢ = 2 to ¢ = y—1, and
the formula variable Ag.

— With the blocks copy in (x*xx), we activate successively all the intermediate
variables Y;, i € [2; m — 1] and the m copies Aj, ..., A7 of A,.

— For i € [1; m], since the variable Afb has been activated, we activate in the
block var of () the remaining variable X; or X;. We also activate all its copies
and corresponding intermediate variables U7 or U7 .

— For c € [1; 7], in (x), since all variables L, have been activated, we activate
the remaining intermediate variables V7.

— At this point, every variable has been activated. Using again Lemma 1.18, we
know that the resulting instance is 3DT-collapsible, and can be reduced down
to the empty 3DT-instance e.

Hence I is 3DT-collapsible.

Assume now that I, is 3DT-collapsible: we consider a sequence of 3DT-steps
reducing /4 to €. This sequence gives a total order on the set of variables: the order
in which they are activated. We write () for the set of variables activated before Ay,
and P C [1; m] for the set of indices ¢ such that X; € @ (see the variables in bold
in Figure 1.16). We show that the truth assignment defined by (z; = true < i € P)
satisfies the formula ¢.

— For each i € [1; m], Afz) cannot belong to (), using the property of the block

copy in (##xx) (each Aj can only be activated after Ay). Hence, with the block
var in (%), we have X; ¢ Q or X; ¢). Moreover, with the block copy, we have

Vi<j<gq, X/ €eQ=X€Q (a)
V1<j<a, XijEQiXiGQ?XﬁéQ (b)

— Since Ay is defined in a block Ay = and(W,_q,I';) in (s*x*), we necessarily
have W,_; € @ and I', €). Likewise, since W,_; is defined by W,_; =
and(W,_,T'y_1), we also have W,_, € Q and I',_; €). Applying this rea-
soning recursively, we have I'. € @ for each ¢ € [1; 7].

— For each ¢ € [1; 7], consider the clause C. = AV V...V A, with & = k(C.).
Using the property of the block or in (kx), there exists some py € [1; k]
such that the variable L,, is activated before I'.: hence L, € . If the
corresponding literal A, is the j-th occurrence of z; (respectively, —z;), then
Ly, = X} (resp., L,, = X7), thus by (a) (resp. (b)), X; € Q (resp., X; ¢ Q),
and consequently i € P (resp., ¢ ¢ P). In both cases, the literal A\, is true in
the truth assignment defined by (x; = true < i € P).

1.4

1.4. SORTING BY TRANSPOSITIONS IS NP-HARD 41

If I, is 3DT-collapsible, we have found a truth assignment such that at least one
literal is true in each clause of the formula ¢, and thus ¢ is satisfiable. n

Sorting by Transpositions Is NP-Hard

As noted previously, there is no guarantee that any 3DT-instance [has an equiv-
alent permutation m. However, with the following theorem, we show that such a
permutation can be found in the special case of assemblings of basic blocks, which
is the case we are interested in, in order to complete our reduction.

Theorem 1.20. Let I be a 3DT-instance of span n with B an l-block decomposition
such that (I,B) is an assembling of basic blocks. Then there exists a permutation
w1, computable in polynomial time in n, such that I ~ .

An example of the construction of 7; for the 3DT-instance defined in Example 1.3
is given in Figure 1.17.

The rough idea of the proof is as follows. Each block By, of B (corresponding to
positions [s, + 1; 3]) is assigned a unique interval of integers [p, + 1; gn]. Then
we create a permutation of [p, + 1; ¢5]], depending on the kind of the block, and 7;
is obtained as the concatenation of these permutations. However, external triples
(in variables) need a special treatment: when a variable is activated, exactly three
integers are moved from one block to another. Hence, for each variable, some integers
which should appear in the target block are originally present in the source block.
In other words, the part of 7y corresponding to each block has three extra integers
for each output variable, and three missing integers for each input variable. We keep
track of elements which are displaced with two functions, o and : for a variable A,
the three affected integers are a(A) + 1, a(A) + 2 and S(A) + 1.

Proof. Let A be the set of variables of the I-block decomposition B of I = (X, T, 1)).
Let n be the span of I, and L its domain. Note that L = [1; n]. For any h € [1; [],
we write ni(By) (resp. no(B,)) for the number of input (resp. output) variables of
By,. We also define two integers py, g, by:

p1 =20
Vhoe[1: 1], qn=pn+tn—sn+3(ni(Bn) —no(By))
Vhe[2;1], pn=qna

The permutation 7; will be defined such that p, and ¢, have the following property
for any h € [1; I]: 77(sn) = pn, and 77(t) = qp.

We also define two applications «, 5 over the set A of variables. The permutation
77 will be defined so that, for any variable A = [(a, b, ¢), (z,y, 2)], we have m;(¢(a) —
1) = a(A) and m;(¢(2) — 1) = B(A). In order to have this property, « and 3 are
defined as follows.

For each h € [1; {]:

— If By, is a block of the kind [A;, As] = copy(A), define

a(A) = pn, B(A) =pn+4.
— If By, is a block of the kind A = and(A;, As), define
a(Ay) = pn, B(A1) =pn+ 7, a(A2) = pn + 3, B(A2) =pn +9.

42 CHAPTER 1. SORTING BY TRANSPOSITIONS

Assembling of two basic blocs:

[Xl, XQ] = var(Y) Y = OI’(Xl, XQ)
Input variable (target of): Y Input variables (target of): Xi, Xo
Output variables (source of): X7, Xo Output variable (source of): Y
3120 t1=18 32218 t2=33
pp=0qg=p+18—-3=15 P2=15 ga=p2+15+3 =33
aY)=p+5=5 a(Xi1)=p2=15 a(Xy) =p2+3=18

BY)=p1+9=9 B(X1) =ps+ 13 =28 B(X2) =p2+ 16 =31

Definition of 7 over [s1 + 1; t1]:
u =0123456738 9101112131415161718...
mr(u) =017 532012114 4291613 9 8 2 11321915...

wlu): dlyladgygela’eleblflc’zb’c:L'QbeQ...
over [sg + 1; t2]:
u = ... 192021222324 2526 27 28 29 30 31 32 33
mr(u) = ... 22281824 7 272610 6 312130252333
P l(u) = oV masd yad x b f e e d e

Figure 1.17: Creation of a permutation 7; equivalent to the assembling of basic
blocks I = (X,T,v) of span 33 defined in Example 1.3, using the proof of Theo-
rem 1.20.

— If B, is a block of the kind A = or(A;, Ay), define
a(Ay) = pp, B(AL) =pn+ 13, a(As) = pr + 3, B(A2) = pn + 16.
— If By, is a block of the kind [A;, As] = var(A), define
a(A) =pn+5, B(A) =pr+9.

Note that for every A € A, a(A) and B(A) are defined once and only once,
depending on the kind of the block Biypger(a). As already noted, the permutation
77 is designed in such a way that the image by 7y of an interval [s, + 1; t;] is
essentially the interval [p, + 1; ¢,]. However, there are exceptions: namely, for
each variable A, the integers a(A) + 1,a(A) + 2, 5(A) + 1, which are included in
[[ptarget(A) +1) qmrget(A)]]7 are in the image of [[Ssource(A) +1) tsource(A)]] . This is for-
mally described as follows. For each h € [1; k] we define a set P, by:

Po=[pn+1;q] U U {a(@) +La(4) +2,6(4) + 13
A output of By,
- U {4 +1,0(4)+2,8(4) + 1}

A input of By,

We note that the sets {a(A)+1, a(A)+2, B(A)+1} are disjoint for different variables
A, and are each included in their respective interval [[pmrget(A+ 15 Garger A)]]. Hence
for any h € [1; 1], we have |P,| = qn — pr + 3no(By) — 3ni(By) = ti, — sp. Moreover,
the sets Py, h € [1; [], form a partition of the set [1; n].

We can now create the permutation 7;. The image of 0 is 0, and for each hg
from 1 to [, we define the restriction of 7; over s, + 1; t,] as a permutation of

1.4. SORTING BY TRANSPOSITIONS IS NP-HARD 43

P, with the constraint that 7;(t,) = qn,. Note that, if this condition is fulfilled,
then we can assume 7r(Sp,) = Ph,, since, if hg = 1, m7(s1) = 7;(0) = 0 = py, and if
ho > 1, m1(8he) = 7r(thy—1) = Qno—1 = Pho-

The definition of 7; over each interval [sp, + 1; tp,], where By, is one of the
blocks copy, and, or, var, is given in the following tables. We write s = sp, and
p = pr,- We give the line ¢~ !(u) as a reminder of the definition of each block. We
also add a column for u = s as a reminder of the fact that 7;(s) = p.

— If By, is a block of the kind [A;, As] = copy(A), we write oy, 1, ag, B for the

respective values of «(A;), B(A1), a(As), B(As).

u = s s+1 s+2 s+3 s+4 s+5 s+6 s+7 s+8 s+9
7r(u) p a1+2 p+8 p+4 p+3 as+2 p+7 Fi+1 ag+1 p+6
P (u)= a (1 e z d Yo T by c

u =s+10 s+11 s+12
mr(u) =f2+1 as+1 p+9
v (u)= a9 by f

— If By, is a block of the kind A = and(A;, As), we write «, 3 for the respective
values of a(A), 5(A).

= s s+1 s+2 s+3 s+4 s+5 s+6 s+7 s+8 s+9
p p+ld p+7 p4+3 p+13 p+9 p+6 a+2 p+12 p+11
)= e oz a a 2z d Yy o

U
T (u)
P (u
u =s+10 s+11 s+12
mr(u) =6+1 a+l p+15
v Hu)= 2z b f

— If By, is a block of the kind A = or(A;, Ay), we write «, 5 for the respective
values of a(A), 5(A).

v = s s+l s+2 s+3 s+4 s+5H s+6 s+7 s+8 549
mr(u)= p p+7 p+13 p+3 p+9 a+2 p+12 p+11 f+1 a+l
v Hu)= a 4 2 s d y a x b

v =s+10 s+11 s4+12 s+13 s+14 s+15
r(u) =p+16 p+6 p+15 p+10 p+8 p+18
1

v uw)= f 29 c e c Co

— If By, is a block of the kind [A, As] = var(A), we write aq, 1, ag, B2 for the
respective values of a(A;), B(A1), a(Asz), B(As).

u = 8 s+1 s+2 s+3 s+4 s+5 s+6 s+7 s+8 s+9
mr(u) = p 42 p+5 p+3 a+2 p+12 p+1 p+14 p+4 [i+1
Y Hu)= d; Y1 a ds Yo eq a € 1

u =s+10 s+11 s+12 s+13 s+14 s+15 s+16 s+17 s+18
mr(u) =a;+1 p+13 p+9 p+8 p+2 p+11 fo+1 as+1 p+15
v Hu)= b fi d z b c T by f2

44 CHAPTER 1. SORTING BY TRANSPOSITIONS

These definitions are obtained by applying the following rules, until 7;(u) is
defined for all w € sy, +1; t5,].

For all input variables of By, A = [(a, b, c) (x,y,2)],

=
T1(1(2)) = a(A) + (R1)
Tr((c)) = B(A) + (Ry)
For all output variables of By, A = [(a,b, c) (x,y,2)],
mr(¢(z)) = B(A) + (1%3)
Tr(¥(b) = a(A) +1 (R4)
Vu € [sp, + 15 th,] such that succy, Y(u) € [sn, +1; tn]
mr(u) = mr(suce;t(u) — 1) + 1 (Rs)

A simple case by case analysis shows that rules (R;) and (Ry) indeed apply
to every input variable, and rules (R3) and (R,) apply to every output variable.
Moreover the following properties are also satisfied:

Rule (R5) applies to every u € [sp,41; th] such that
u & {(b),v(c),Y(z),v(2) | A=|(a,b,c),(z,y,z)] is input/output of By, }.

71 defines a bijection from [sp, + 1; tp,] to Py, such that 7;(ts,) = qn, (P2)

(P1)

For all input variables of By, A = [(a,b,¢), (z,vy, 2)],
m1(¥(a) — 1) = a(A) (Ps)
m1(Y(z) — 1) = B(A) (P1)

For all output variables of By, A = [(a,b,c), (x,y, 2)],
Tr(Y(y) — 1) = a(A) +2 (F5)
m(¥(b) —1) = B(A) +1 (Ps)

Now that we have defined the permutation 77, we need to show that 7 is equiv-
alent to I. Following Definition 1.10, we have 7;(0) = 0. Then, L = [1; n], so let
us fix any u € [1; n], and verify that 7;(u) = 7(succ;'(u) — 1) + 1. Let h be the
integer such that u € [s;, + 1; 4]

First, consider the most general case, and assume that there is no variable A =
[(a,b,c),(x,y, z)] such that u € {¢(b),1(c),¥(x),1(z)}. Note that this case includes
u = 1(d), where d is part of some internal triple. Then, by Property (P;), we know
that Rule (Rs) applies to u, hence we directly have 7;(u) = 7;(suce; ' (u) — 1) + 1.

Suppose now that there exists some variable A = [(a, b, ¢), (z,y, z)] such that u €
{(b),¥(c),¥(x),1(z)}. Then Rules (R;) and (Ry), and Properties (Ps) and (Py)
apply in the target block of A. Also, Rules (R3) and (R,), and Properties (Ps)
and (Fg) apply in the source block of A. Combining all these equations, we have:

mr(9(0) = a(A) +1 = mr(¢(a) — 1) by (It5) and (P3)
mr((e)) = B(A) + 2 = mi(y(b) — 1) y (f2) and (Fs)
mr((x)) = B(A) +1 =m(P(z) 1) +1 by (R4) and (Py)
mi((2)) = a(A) +3 = m((y) — 1) y (R1) and (Fs)

1.4. SORTING BY TRANSPOSITIONS IS NP-HARD 45

For u = 9(b) (respectively, 1(c),(x),¥(z)), we have succ;'(u) = 1(a) (resp.
(b)), (2),1%(y)). Hence, in all four cases, we have m;(u) = 77(suce;*(u) — 1) + 1,
which completes the proof that 7; is equivalent to I.

[

With the previous theorem, we now have all the necessary ingredients to prove
the main result of this chapter.

Theorem 1.21. The SORTING BY TRANSPOSITIONS problem is NP-hard.

Proof. The reduction from SAT is as follows: given any instance ¢ of SAT, create
a 3DT-instance I, being an assembling of basic blocks, which is 3DT-collapsible iff
¢ is satisfiable (Theorem 1.19). Then create a 3-permutation 77, equivalent to [
(Theorem 1.20). The above two steps can be done in polynomial time. Finally, set
k = dy(m,)/3 =n/3. We then have:

¢ is satisfiable <« I, is 3DT-collapsible
& di(my,) =k (by Theorem 1.9, since 77, ~ I)
& di(my,) < k (by Property 1.4).

O

Corollary 1.22. The following decision problem from [55] is NP-hard: given a
permutation m of [0; n], is the equality di(m) = dy(7)/3 satisfied?

Conclusion

In this chapter, we have addressed a 15-year open question as we proved that
the SORTING BY TRANSPOSITIONS problem is NP-hard. However, a number of
questions remain open. For instance, does this problem admit a polynomial-time
approximation scheme? We note that the reduction we have provided does not
answer this question, since it is not a gap-preserving reduction. Indeed, in our
reduction, if a formula ¢ is not satisfiable, it can be seen that we have d;(m;,) =
db(md))/S—i— 1.

Also, do there exist some relevant parameters for which the problem is fixed pa-
rameter tractable? A parameter that comes to mind when dealing with the transpo-
sition distance is the length of the exchanged factors (i.e., the value max{j—i,k—j}
for a transposition 7; ;;). Does the problem become tractable if this parameter is
bounded? In fact, the answer to this question is negative if only the length of the
smallest factor, min{j — i,k — j}, is bounded: in our reduction, this parameter is
upper bounded by 6 for every transposition needed to sort 7, independently of the
formula ¢.

Sorting by Prefix Reversals

SORTING BY PREFIX REVERSALS (SBPR) is

H- = a problem better known under the name Pan-
cake Flipping: rearrange a stack of pancakes of

different sizes (that is, a permutation) into a

-1 pyramidal stack, when the only allowed opera-

tion is to insert a spatula anywhere in the stack

and to flip the pancakes above it (that is, to per-
form a prefix reversal). Computing the optimal
scenario has been an intriguing combinatorial
problem for the last three decades.

In this chapter, we show that the Pancake
Flipping problem is NP-hard.

The results in this chapter have been presented as an invited talk at the Algorithms and
Permutations workshop (A&P 2012, Paris), and at the 87th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2012, Bratislava [34]). They
are currently submitted for publication at the Journal of Computer and System Sciences
(JCSS [37]).

47

48 CHAPTER 2. SORTING BY PREFIX REVERSALS

Introduction

The pancake problem was stated in [63] as follows:

The chef in our place is sloppy, and when he prepares a stack of
pancakes they come out all different sizes. Therefore, when I deliver
them to a customer, on the way to the table I rearrange them (so
that the smallest winds up on top, and so on, down to the largest
at the bottom) by grabbing several from the top and flipping them
over, repeating this (varying the number I flip) as many times as
necessary. If there are n pancakes, what is the maximum number
of flips (as a function of n) that I will ever have to use to rearrange
them?

Stacks of pancakes are represented by permutations, and a flip consists in revers-
ing a prefix of any length. The previous puzzle yields two entangled problems:

— Designing an algorithm that sorts any permutation with a minimum number
of flips (this optimization problem is called SBPR, for SORTING BY PREFIX
REVERSALS). See Figure 2.1 for an example.

— Computing f(n), the maximum number of flips required to sort a permutation
of size n (the diameter of the so-called pancake network).

Gates and Papadimitriou [74] introduced the burnt variant of the problem: the
pancakes are two-sided, and an additional constraint requires the pancakes to end
with the unburnt side up. The diameter of the corresponding burnt pancake network
is denoted g(n). A number of studies [50, 57, 59, 74, 86, 85, 98] have aimed at
determining more precisely the values of f(n) and g(n), with the following results:

— f(n) and g(n) are known exactly for n < 19 and n < 17, respectively [57].

— 15n/14 < f(n) < 18n/11 4+ O(1) [85, 50.

- 1 (Bn+3)/2] < g(n) <2n—6 [57] (upper bound for n > 16).

Considering SBPR, 2-approximation algorithms have been designed both for the
burnt and unburnt variants [59, 69]. Moreover, Labarre and Cibulka [98] have char-
acterized a subclass of signed permutations, called simple permutations, that can be
sorted in polynomial time.

The pancake problems have various applications. For instance, the pancake
network, having both a small degree and diameter, is of interest in parallel comput-
ing [1, 110]. The algorithmic aspect, i.e. the sorting problem, corresponds exactly to
the rearrangement distance where allowed operations are prefix reversals, and burnt
and unburnt variants correspond respectively to signed and unsigned genome models.
This problem thus attracted attention from the comparative genomics community,
especially for its similarities with the now well-known SORTING BY REVERSALS [11]
problem, which admits a polynomial-time exact algorithm [81] for the signed case,
and a 1.375-approximation [19] for the APX-hard unsigned case [20].

In this chapter, we prove that the SBPR problem is NP-hard (in its unburnt, or
unsigned, variant), thus answering a question which has remained open for several
decades. We in fact prove a stronger result: it is known that the number of break-
points of a permutation (that is, the number of pairs of consecutive elements that
are not consecutive in the identity permutation) is a lower bound on the number of
flips necessary to sort a permutation. We show that deciding whether this bound is
tight is already NP-hard.

49

!

(a) Goal: transform a permutation (e.g., (6,5,1,3,2,7,4)) into the Identity Z.

AN

N

(b) A 5-element flip: (6,5,1,3,2,7,4) becomes (2,3,1,5,6,7,4). The flip limit is
marked with a spatula symbol.

-

(¢) The sequence of 5 flips required to sort <6,5, 1,3,2,7, 4>. It is optimal since
the breakpoint distance is 5. It is also, in fact, the only optimal sequence for this
permutation.

Figure 2.1: Ilustration of the SORTING BY PREFIX INVERSIONS problem.

2.1

50 CHAPTER 2. SORTING BY PREFIX REVERSALS

Notations

Let n be an integer. The input of SBPR consists of permutations of [1; n], we
construct such a permutation by concatenating duplication-free, unsigned sequences.
When there is no ambiguity, we use the same notation for a sequence and the set of
elements it contains. We use upper case for sets and sequences, and lower case for
elements.

Consider a sequence S of length n, S = <x1, Ty ouny mn> Element z; is said to
be the head element of S. Sequence S has a breakpoint at position r, 1 < r < n
if . ¢ {x,.1 — 1,241 + 1}, and a breakpoint at position n if z,, # n. We write
dp(S) for the number of breakpoints of S. Note that having z1 # 1 does not directly
count as a breakpoint, and that d,(S) < n for any sequence of length n. For any

p < q €N, we write ZF for the sequence <p, p+1,p+2 ..., q>; 7! is the identity.
Given a sequence of any length S = <x1, To, ..., xk>, we write *S for the sequence
obtained by reversing S: *S = <xk, The1y - - -, x1>. Given an integer p, we write

p+S= <p+x1,p+xg, ...,p+xk>.
The flip of length r is the operation that consists in reversing the r first elements
of the sequence. It transforms

S:<x1,x2,...,xr, xr+1,...,9cn>

. /
into S = <x,,, Tp 1y eeey Ty Tpgly «- -y :cn>

Note that the flip of length 1 does not modify .S, and the flip of length n transforms
S into *S. Moreover, since a flip of length r cannot add or remove breakpoints other
than in position r, we have the following easy property.

Property 2.1. Given a sequence S obtained from a sequence S by performing one

flip, we have dp(S") — dp(S) € {—1,0,1}.

A flip from S to S’ is said to be efficient if d,(S") = dp(S) — 1, and we reserve the
notation S — S’ for such flips. A sequence of size n, different from the identity, is a
deadlock if it yields no efficient flip, and we write S — L. By convention, we place a
specific separatorl in a sequence at the positions corresponding to possible efficient
flips: there are at most two of them, and at least one if the sequence is neither a
deadlock nor the identity. A path is a series of flips, it is efficient if each flip it
contains is efficient. A sequence S is efficiently sortable if there exists an efficient
path from S to the identity (equivalently, if it can be sorted in d,(S) flips). See for
example Figure 2.2.

Let S be a sequence different from the identity, and T be a set of sequences. We
write S = T if both following conditions are satisfied:

1. for each T € T, there exists an efficient path from S to T
2. for each efficient path from S to the identity, there exists a sequence 7' € T
such that the path goes through 7'

If T consists of a single element (T = {T'}), we may write S = T instead of
S = {T'}. Note that condition 1. is trivial if T = (), and condition 2. is trivial if
there is no efficient path from S to Z!. Given a sequence S, there can be several
different sets T such that S = T. However, two are especially relevant:

2.2

2.2. LOW-LEVEL GADGETS ol

(1,3,2,5,4)— L
(5,2,3,1]4]) — (4,1]3,2]5)—=(2,3]1,4,5) = (3,2,1]4,5) = (1,2, 3,4, 5)
N(1,4,8,2,5) > 1
(5,2,3,4,1]) = (1,4,3,2,5) = L

Figure 2.2: Examples of efficient flips. Sequence <5, 2,3, 1, 4> is efficiently sortable
(in four flips), but <5, 2, 3, 4, 1> is not.

Property 2.2. Given any sequence S # T},

S=1T' & S is efficiently sortable.
S= 0 < S isnot efficiently sortable.

Proof. For S = T: condition 1. is true iff there exists an efficient path from S to
the identity, that is S is efficiently sortable. Condition 2. is always true.

For S = (): condition 1. is always true. If there exists at least one efficient
path from S to Z!, then, since there exists no sequence T' € (), condition 2. cannot
be true. Hence Condition 2. is false when there exists an efficient path from S to
the identity and true otherwise, so it is equivalent to the fact that S is not efficiently
sortable. O]

The following property, yielding a certain transitivity of the = relation, is easily
deduced from the definition.

Property 2.3. If S —= {51,52, . ,Sk}, S1=Ti, S =T, ... and S, = Ty,
then S — T, UTyU...UT,.

In particular for £ =1, if S = 5; and S; = Ty, then S = T;.

Low-level Gadgets

The reduction from the satisfiability problem 3-SAT (Section 2.4) uses a number
of gadget sequences in order to simulate boolean variables and clauses with sub-
sequences. They are organized in two levels (where low-level gadgets are directly
defined by sequences of integers, and high-level gadgets are defined using a pattern
of low-level gadgets). For each gadget we define, we derive a property characterizing
the efficient paths that can be followed if some part of the gadget appears at the
head of a sequence.

We have not aimed at providing the smallest possible gadgets (the overall reduc-
tion for a formula containing [variables and k clauses creates a stack of 31/ 4+ 98k
elements with 16/ + 50k breakpoints), and we preferred straightforward proofs and
easy-to-combine gadgets over short sequences. A rough analysis shows that the final
stack size could easily be reduced to 22[+ 71k, with the same number of breakpoints.

2.2.1

2.2.2

52 CHAPTER 2. SORTING BY PREFIX REVERSALS

Dock

The dock gadget is the simplest we define. Its only goal is to store sequences of
the kind *ZP*" (with p < ¢) out of the head of the sequence, without “disturbing”
any other part.

Definition 2.1 (Dock Gadget). Given two integers p and q with p < q, the dock
for "It is the sequence Dock(p, q) = D, where

It has the following property:

Property 2.4. Let p and q be any integers with p < q, D = Dock(p, q), and X and
Y be any sequences. We have

(TP X, DY) = (X, TP,, Y)

Proof. An efficient path from <*I§+1, X, D, Y> to <X, Ié:;, Y> is given below.

(T X, DY) =(¢,¢—1,...,p+2,p+1, X, p—1,plqg+1,¢+2,Y)
= (pp—1,"X[p+1L,p+2, ..., q-1,¢q¢+1,¢+2,Y)
(X, p—1,pp+1,p+2,...,¢-1,¢q+1,¢+2,Y)
= (X, I}5,)
For each sequence in the path, we apply the only possible efficient flip, hence every

efficient path between (*ZP*!, X, D, Y') and Z. (if such a path exists) begins with
these two flips, and goes through <X, Ig;zl, Y>. O]

Lock

A lock gadget contains three parts: a sequence which is the lock itself, a key
element that “opens” the lock, and a test element that checks whether the lock is
open.

Definition 2.2 (Lock Gadget). For any integer p, Lock(p) is defined by Lock(p) =
(key, test, L), where

key = p+ 10 lest=p+7
L=p+(1,2,98,5,6,4,3, 11, 12)

Given a lock (key, test, L) = Lock(p), we write
L°=p+(1,2,3,4,6,5,8,9, 10, 11, 12).

Sequences L and L° represent the lock when it is closed and open, respectively.
If a sequence containing a closed lock has key for head element, then efficient flips
put the lock in open position. If it has test for head element, then it is a deadlock
iff the lock is closed.

2.2. LOW-LEVEL GADGETS 93

Property 2.5. Let p be any integer, (key, test, L) = Lock(p), and X and Y be any
sequences. We have

a. (key, X,L,Y)= (X, L°Y)

b. (test, X, L°,Y) = (X, IV'!},, Y)

c. (test, X,L,Y)— L
Proof. The possible efficient paths from (a.) (key, X, L, Y'), (b.) (test, X, L°,Y)
and (c.) <test, X, L, Y> are the following. Note that for readability reasons, the

proof is given for p = 0; it can obviously be extended to any value of p (each element
would then be increased by p).

a. (key, X, L,Y) =10, X, 1, 21 9,8, 5, 6, 4, 31 11,12, Y)
Sl/ \Sg (where sequences S; and S, are described below)
S1=(2,1,7X,10,9,8,5,6,4, 3,11, 12, V)
— 1
Sy =(3,4,6,5,8,9]2,1,%X,10, 11, 12, Y)
—(9,8,5,6,4,3,2,1,*X] 10, 11, 12, Y)
—(X,1,2,3,4,6,5,8,9,10, 11, 12, V)

= (X, L°Y)
b. (lest, X, L°,Y) = (7, X, 1,2,3,4,6,5/8,9,10, 11, 12, V)
53/ \54
S3=(4,3,2,1,*X,7,6,5,8,9,10, 11, 12, V)
— 1

Si=(5,6/4,321,%X,7,89,10, 11, 12, Y)
—(6,5,4,3,2,1,*X]7,8,9,10,11,12,Y)
—(X,1,2,3,4,5,6,7,8,9,10, 11,12, Y)
= (X, 1), Y)

c. (test, X, L,Y)=(7,X,1,2,9,8,5,6,4,3, 11,12, V)
— 1L

]

We use locks to emulate literals of a boolean formula: variables “hold the keys”,
and in a first time open the locks corresponding to true literals. Each clause holds
three test elements, corresponding to its three literals, and the clause is true if the
lock is open for at least one of the test elements.

2.2.3 Hook

A hook gadget contains four parts: two sequences used as delimiters, a take
element that takes the interval between the delimiters and places it in head, and
a pul element that does the reverse operation. Thus, the sequence between the
delimiters can be stored anywhere until it is called to the head by take, and then
can be stored back using put.

54 CHAPTER 2. SORTING BY PREFIX REVERSALS

Definition 2.3 (Hook Gadget). For any integer p, Hook(p) is defined by Hook(p) =
(take, put, G, H), where
take = p 4+ 10 put=p—+7
G=p+(3,4) H=p+(12,11,6,5,9,8, 2, 1).

Given a hook (take, put, G, H) = Hook(p), we write

G'=p+ (12,11, 6, 5, 4, 3) H =p+(10,9,8,2 1)
G"=p+(3,4,5,6,7) H"=p+ (12,11, 10, 9, 8, 2, 1).
Property 2.6. Let p be an integer, (take, put, G, H) = Hook(p), and X, Y and Z

be any sequences. We have
a. (take, X,G,Y, H, Z) = (Y, G',*X, H', Z)
b. (put, X, G, *Y, H' Z)=(Y,G", X, H", Z)
(G", X, H"Y) = (X, *T'},, V)
Proof. The possible efficient paths from each sequence are the following (for p = 0).

a. (take, X, G,Y, H, Z) = (10, X, 3,4, Y, 12, 11, 6, 5i9, 8,2,1, Z)
—(5,6,11,12,*Y[4,3,7X, 10,9, 8,2, 1, Z)
— (Y, 12,11, 6,5, 4, 3, "X, 10,9, 8, 2, 1, Z)
=Y, G "X, H', Z)
b. (put, X, G',*Y, H', Z) = (7, X, 12, 11] 6, 5, 4, 3, ¥, 10, 9, 8,2, 1, Z)
—(11,12,*X,7,6,5,4,3,*Y[10,9, 8,2, 1, Z)
—(Y,3,4,5,6,7, X,12,11,10,9,8,2,1, Z)
=(Y,G", X, H", Z)
c. (G, X,H" Y)=(34,5617 X,12, 11, 10,9, 81 2,1,Y)
—(8,9,10, 11, 12, *X| 7,6, 5,4, 3, 2,1, Y)
— (X, 12,11,10,9,8,7,6,5,4,3,2,1,Y)
= <X’ *1—1127 Y>

2.2.4 Fork

A fork gadget implements choices. It contains two parts delimiting a sequence X.
Any efficient path encountering a fork gadget follows one of two tracks, where ei-
ther X or *X appears at the head of the sequence at some point. Sequence X would
typically contain a series of triggers for various gadgets (key, take, etc.), so that X
and *X differ in the order in which the gadgets are triggered.

Definition 2.4 (Fork Gadget). For any integer p, Fork(p) is defined by Fork(p) =
(E, F), where

E=p+(11,8,7,3) F=p+(10,9,6,12,13,4, 5,15, 14, 2, 1).

2.2. LOW-LEVEL GADGETS 95

Given a fork (E, F) = Fork(p), we write

F' = p+(10,9,6,7,8, 11,12, 13, 14, 15,5, 4, 3, 2, 1)
F? = p+(3,7,8,11,10,9, 6,12, 13, 4, 5, 15, 14, 2, 1)

Property 2.7. Let p be an integer, (E, F) = Fork(p), and X, Y be any sequences.
We have

a. (E, X, FY)= {(X, F.Y), (*X, F,Y)}
b (FLY)= (T} Y)
. (FLY)= (T, V)

Proof. The possible efficient paths from (a.) <E, X, F, Y>, (b.) <F1, Y> and
(c.) (F?,Y) are the following (for p = 0).

a. (B, X,F,Y)=(11,8,7,3, X[10,9,6] 12,13, 4,5, 15, 14,2, 1,Y)

S/ \52
S1=(*X,3,7,8,11,10,9, 6, 12, 13,4, 5, 15, 14, 2, 1, V)
= ("X, F*,Y)

Sy =(6,9,10,*X, 3] 7,8, 11,12, 13, 4,5, 15, 14, 2, 1, Y)
— (3, X,10,9,6,7,8,11,12,13 4, 5, 15,14} 2, 1,)
53/ \54

Sy =(13,12,11,8,7,6,9, 10, *X, 3,4, 5, 15, 14, 2, 1, V)
— L

Si= (14,15, 5,4/ 13,12, 11, 8,7, 6, 9, 10, *X, 3,2, 1, Y)
— (4,5, 15,14, 13,12, 11, 8, 7,6, 9, 10, *X[3,2, 1, Y)
— (X, 10,9,6,7,8,11, 12, 13, 14, 15, 5,4, 3, 2, 1, V)
= (X, F.,Y)

b. (F',Y)=(10,9,6,7,811,12,13,14,15,5,4,3,2,1,Y)
— (8,7,6]9,10,11, 12, 13,14, 15,5, 4, 3, 2,1, V)
—(6,7,8,9,10, 11, 12, 13, 14, 15} 5, 4, 3, 2, 1, Y)
— (15, 14, 13, 12, 11, 10, 9, 8, 7,6, 5,4, 3,2, 1, Y)
= <*I115» Y>

c. (F*Y)=(3728 11,10,9,6, 12, 131 4,5, 15, 141 2,1,Y)
S < \S
5 6

Ss=(13,12,6,9,10,11,8,7,3,4,5,15,14, 2,1, Y)
— 1

2.3

2.3.1

56 CHAPTER 2. SORTING BY PREFIX REVERSALS

Se = (14, 15, 5, 4 13,12, 6,9, 10,11, 8,7, 3,2, 1, V)

<451514131269101187l321Y>
—(7,8,11,10, 9] 6, 12, 13,14, 15,5, 4, 3, 2, 1, V)
— (9,10, 11] 8,7, 6, 12, 13, 14, 15, 5, 4, 3,2, 1, Y)
— (11,10, 9, 8,7, 6] 12, 13, 14, 15, 5, 4,3, 2, 1, Y)
— (6,7, 8,9, 10, 11, 12, 13, 14, 151 54,3,2,1,Y)
— (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 Y>
- <*Ill57 Y>

High-level Gadgets

In this section, we define new gadgets based on the four level-1 gadgets. From
now on, each property proof uses exclusively properties from smaller gadgets. In
order to help the reader follow the ever-present references, we use the following
notations. Bold font is used to emphasize the “active” parts of the gadget currently
having an element at the head of the sequence. For each relation S = T, we
give the relevant reference below (e.g. S = T if it is obtained from Property 2.4).

Finally, a summary of all gadget propertles (elther level-1 or -2) is given in Figure 2.3.

Literals

The following gadget is used only once in the reduction. It contains the locks
corresponding to all literals of the formula.

Definition 2.5 (Literals Gadget). Let p and m be two integers, Literals(p,m) is
defined by

Literals(p,m) = (key,...,key,,, testy, ..., test,, \)
where Vi€ [1;m], (key,test;,L;) = Lock(p+12(i — 1))
A = (Li, Ly, ..., Lin)

Let O and I be two disjoint subsets of [1; m]. We use AY for the sequence

obtained from A by replacing L; by LS for all i € O and by 1511122; Yoforalliel.

Elements of O correspond to open locks in A?, while elements of I correspond
to open locks which have moreover been tested Note that A% = A, and that

1] _ gpt+l
A[[l m] I£+12m'

Property 2.8. Let p and m be two integers, (key,, ..., key,,, testy, ..., testy,, N) =
Literals(p,m), O and I be two disjoint subsets of [1; m], and X be any sequence.
We have

a. Vie[l;m]—-0—-1, <keyi, X, A?> — <X, A?U{i}>
b. VieO, (test;, X, A?) = (X, A 1}
c. Vie[l;m]-0, <testi, X, AIO> — 1

2.3. HIGH-LEVEL GADGETS 57

Dock gadget
(TE X, DY) = (X, T, Y)
Lock gadget
key, X, L,Y) = (X, L°, Y
2.5.a 1
(test, X, L°,Y) = (X, I, Y)
<test, X, L, Y> 25—; L
Hook gadget
take, X, G,Y, H, Z) = (Y, G',*X, H', Z
() (VG)
(put, X, G',*Y, H', Z) ﬁ (Y, G", X, H", Z)
(G". X, H".Y) = (X, "T}1},.)

Fork gadget

<X, Ft, Y>
<E, X, F, Y> = {<*X, F2, Y>
(FLY) = (T,)
(F2v) = (T)
Literals gadget A
Vi¢g OUI, (key;, X, AD) = (X, A?U{’}>
Vi€ O, (test;, X, A?) = (X, A?u_{%}>
Vi¢ O, (test;, X, A7) — L
Variable gadget

(0} <Xa V17 Y7 AIOUP>
<V7 X7 V7 Ya AI>2.?&> <X, V2, Y, AIOUN>
(V1 X, D, Y, A?) = (X, LTy, Y, AFVN)
(V2. X, DY, AD) = (X, T}3,. Y, A?°F)
Clause gadget
(X, 11, v, AD Y iffa e O
(7. X, T, Y, AQ) = § (X, T2 Y, A) iff b e O
Xy AL S iffceo
(T Y, A, 2, A9) == (Y, Ty, 7, A7)

(T2, A, Z, AD) = (Y. IVl Z. AT

1U{a,c}
(%Y. 8, 2.A9) 2 (V Bt 2A7(5)

Figure 2.3: Compilation of all gadget properties. As a general rule, X, Y, Z can
be any sequences, O and I any disjoint subsets of [1; m]. See respective definitions
and properties for specific constraints and notations.

2.3.2

38 CHAPTER 2. SORTING BY PREFIX REVERSALS

Proof. The proof follows from Property 2.5.
a. Leti€[1;m]—0O—1. Then AQ can be written AY = (A, L;, B). Hence

(key;, X, AY) = (key;, X, A, L;, B)
= (X, A, L}, B)
2.5.a

ou{i
= (X, A; . }>
b. Let i€ O. Then A? can be written AY = (A, L?, B). Hence

(test;, X, AY) = (test;, X, A, LY, B)

+12i—11
Q?g <X7 A, If?mf) B>

_ 0—{i}
- <X’ Alu{i}

c. Letie[l;m]—0.Ifie€ I, then test; € I;’ﬁif*“ C A?, and (test;, X, A?)
is not a valid sequence (it contains a duplicate). Otherwise, i € [1; m] —O —1I, and
A9 can be written AY = (A, L;, B). Hence

<t€8t¢, X, A?> = <t€8t1;, X, A, L,’, B> 2;>CJ_

Variable

In the following two sections, we assume that p, and m are two fixed integers,
and we define the gadget (key,, ..., key,,, testy, ..., test,, A) = Literals(py, m). Thus,
we can use elements key; and test; for i € [1; m], and sequences A9 for any disjoint
subsets O and I of [1; m].

We now define a gadget simulating a boolean variable x;. It holds two series of
key elements: the ones with indices in P (resp. N) open the locks corresponding to
literals of the form z; (resp. —z;). When the triggering element, v, is brought to the
head, a choice has to be made between P and NN, and the locks associated with the
chosen set (and only them) are opened.

Definition 2.6 (Variable Gadget). Let P,N be two disjoint subsets of [1; m]
(P ={p1.p2,...,ps}, N = {ni,na,...,ny}) and p be an integer, Variable(P, N, p)
1s defined by

Variable(P, N,p) = (v,V, D)

where (take,put, G, H) = Hook(p+2), (E,F) = Fork(p + 14),

m v = take
V. =(G,E, key,,, ..., key,,. put, key,,, key, ,, F, H)
D = Dock(p + 2,p + 29)

Given a variable gadget (v,V, D) = Variable(P, N, p), we write
vt = (G", key,,, ..., keyy,, F' H")
Vo= (G" key,, ..., key,, F?, H")

where G", H", F', F?, come from the definitions of Hook (Definition 2.3) and Fork
(Definition 2.4).

2.3. HIGH-LEVEL GADGETS 29

/—\ =

[
|

Sy =| key,,, - .- key, == key,, - keyn&

=

So ={keyy, -- - key,, ::V2:= key,, ... key,,

—____t\}____

N -~ ~ 7 ~ 7

Figure 2.4: Initially, a variable gadget contains mainly the sequence V. Property
2.9a proves that two paths are possible, leading to sequences containing either V!
or V2. Along the first (resp. second) path, the locks with indices in P (resp. N)
are opened. By Property 2.9b (resp. c¢), there exists a path transforming V' (resp.
V2) into the identity over [p + 1; p + 31], which opens the remaining locks.

The following property determines the possible behavior of a variable gadget. It
is illustrated in Figure 2.4.

Property 2.9. Let P, N be two disjoint subsets of [1; m], p be an integer, X
and Y be two sequences, O, I be two disjoint subsets of [1; m], and (v,V,D) =
Variable(P, N, p). For sub-property (a.) we require that (PUN)N(OUI) =0, for
(b.) that NN (OUI) =0, and for (c.) that PN (O UI) = 0 (these conditions
are in fact necessarily satisfied by construction since all sequences considered are
permutations). We have

a (WX, VY, A9) = {<X’ VY, A9, }

<X, V2, Y, AIOUN>
b. (VL X,D,Y,A?) = (X, 03, Y, A?Y)

c. (V,X,D,Y,A?) = (X, TV, Y, AQY)
Proof.

a. (v, X,V,Y, A7)
= (take, X, G, E, key,, ..., key,,. put, key,,, key, ,, F, H, Y, A9
= <E, keyy,, -, key, , put, key, , ..., keynq,, F G "X, HY, AIO>
= {S1, 52} (see below.)

S1 = (key,,, key,,, ..., key,, put, key,,,. ... key, . F' G, *X, H', Y, A9)
1 * Ou{p1}
ﬁ <keyp2, e keypq, put, key, , ..., keynq” F', G *X, H', Y, A9° >

2.8.a <pIU’t7 keynl7 R keynq/7 Fl) Gl7 *Xu H’? Y7 AIOUP>
= 1 OuP

2.6.b <X’ GH’ keynl’ BRI keynqn F-, H”, Y, AIU >

= (X, V1, Y, APYT)

60 CHAPTER 2. SORTING BY PREFIX REVERSALS

Sy = <k;eynq,7 keyn, o - key,, put, key,, key,, F? &' *X, HY, AIO>

OU{n /}
= <keynq,_1, oy ke, s put, key, s ..., ey, F? G "X, H Y, Ay >

2.8.a <pIUIt7 keypq7 Tt keypl’ F27 Gl7 *Xy H,a Y7 AIOUN>
= 2 OUN

2.6.b <X’ G, keypq, SRR keypl7 F°, H"Y, AIU >

= (X, V2 Y, APYY)

b. <V1’ X’ D’ Y’ A?> = <G”’ keym’ I keynqn F1> H”, X, D7 Ya AIO>
2.:6.c> <key"1’ keynw Tt keynqm F17 *If;iiu X, D; Y; AIO>
:> <keyn27 Tt keynqﬂ Fl’ *151?47 X7 D7 Y; A?U{n1}>

2.8.a

= (F',*I'7},, X, D, Y, A{"Y)

2.8.a
*7P+15 *p+3 OUN
ﬁ < I£+29> 1'54-14’ X, D, Y, A} >
+1 OUN
i <X7 i, Y, AT >

c. (V2 X, DY, A?)=(G" key,, ... key,, F>, H" X, D, Y, A7)
+3 (0}
= <keypq, keyy, 1s oo key,,, F?, *Ir X, D, Y, A?)
3 ou
— (key,, . - key,,, F* "IV, X, D, Y, A7)

= (F2 *I'7,, X, D, Y, AT

2.8.a
*P+15 *p+3 OUP
Soo < I a0 "Iyiis, X, D, Y, A7 >

1
ﬁ <X7 151317 }/7 AIOUP>

2.3.3 Clause

The following gadget simulates a 3-clause in a boolean formula. It holds the
test elements for three locks, corresponding to three literals. When the triggering
element, 7, is at the head of a sequence, three distinct efficient paths may be followed.
In each such path, one of the three locks is tested: in other words, any efficient path
leading to the identity requires one of the locks to be open.

Definition 2.7 (Clause Gadget). Let a,b,c € [1; m] be pairwise distinct integers

2.3. HIGH-LEVEL GADGETS 61

Figure 2.5: Initially, a clause gadget contains mainly the sequence I'. Property 2.10
proves that three paths may be possible, leading to sequences containing either I',
I'2 or I'3. Because of the fest elements, each path requires one lock to be open (either
a, b or ¢). By Property 2.11a (resp. b, c¢), there exists a path transforming I'" (resp.
['2, T'3) into the identity over [p + 1; p + 62], provided the remaining locks are open.

and p be an integer, Clause(a, b, c,p) is defined by

Clause(a,b,c,p) = (v,T', A)
where (Ey, Fy) = Fork(p + 2), (takey, put,, G1, H;) = Hook(p + 21),
(Ey, Fy) = Fork(p + 45), (takey, put,, Go, Hy) = Hook(p + 33),
iy = take;
I = <G1, Ey, takey, put,, test., F1, Ga, Es, test,, put,, testy, Fy, Ho, H1>
A = (Dock(p+2,p+ 17), Dock(p + 21,p + 60))

Given a clause gadget (v,I'; A) = Clause(a, b, ¢, p), we write

' = (G, test., ', Gy, testy, Fy, Hy, H')
I = (G, test., F\', Gy, test,, F5, Hy, HY)
I = (GY, takes, FT, Gy, Es, test,, put,y, testy, F>, Hy, HY')

The following two properties determine the possible behavior of a clause gadget.
They are illustrated in Figure 2.5. The main point is that, starting from a sequence
<7, X, IY, AIO>, there is one efficient path for each true literal in the clause (ie.
each literal with index in O).

Property 2.10. Let a,b,c € [1; m] be pairwise distinct integers, p be an integer,
(v,T,A) = Clause(a,b,c,p), X and Y be any sequences, and O, be two disjoint
subsets of [1; m]. We have

(7. X, I, Y, A7) =T,
where T is the set containing from 0 to 3 sequences, defined by:

(X, TLY, A N eT iff acO

IU{a}

(X, T2 Y, A) eT iff beO

(X, T3 Y, ALY eT iff ceo

62 CHAPTER 2. SORTING BY PREFIX REVERSALS

Proof.

(v, X, T, Y, A?)

= <takel, X, G, E1, takey, put,, test., Fy, Ga, Es, test,, puty, testy, Fy, Hy, Hq, Y, A?>
e <E1> takey, puty, test., Fy, Gy, Fy, test,, puty, testy, Iy, Hy, G|, "X, H{, Y, A?>
= {50, 55}

So = (takes, puty, test.,), G2, Es, testy, puty, testy, Fo, Hy, Gi, *X, H, Y, A7)
2?; <E27 testy, puty, testy, Fy, Gy, *Fll, test., puty, Hy, G|, *X, Hy, Y, AIO>
= {Sh SQ}

2.7.a

Si = (test,, puty, test,, Fy, Gy, *F\, test., put;, Hy, G, *X, H}, Y, A?>
ifae_fOthenSlQ?J_
.0.C

if a € O then
Sy = <put2, testy, Iy, G%, *F\, test,, put,, Hy, G}, *X, H, Y, A?U—{;{E}

1 1 O—
2._?75 <pUt1’ t@Stc, Fl’ ,2/’ teStb’ F27 Hg’ Gllv *X7 H{v Y, AIU{ES’}

ﬁ <X7 /1/, test,, F11’ /2/’ testy, F21, I_[g7 Hi’, Y, A?U}ii}
= (X, T Y, AL

1U{a}
Sy = (testy, puty, testy, Fy, Gb, *F\, test., put,, Hy, G}, *X, H;, Y, AD)
if b ¢ O then S, — L

.8.C

if b € O then

S2 28___5 <pUt27 teStm F227 G/27 *F117 t@StC, pUtla Hé’ Gll’ *X’ Hi’ Y’ AIOU_{ig}

! 2 o—1{b
ﬁ <pUt1’ teste, Fl’ ,2/’ testa, FQ’ Hg, G,17 *Xa Hi? Y, AIU{i}}

=1 <X, GY, test,, I, Gy, test,, F2, HY, H| Y, AIOU,{E;;}
— 2 O0—{b}
= (X, 1%, ¥, AT

Sy = (test,, puty, takes, FT, G, Es, test,, puty, test, F>, Hy, G, *X, H}, Y, AI0>
if c¢ O then S5 — L
2.8.¢c
if ¢ € O then
O—{c
S = (puty, takey, F, Go, Es, testy, puty, testy, Fo, Hy, G4, *X, H}, Y, AIU{{C}}>
= (X, GY, takes, FY, Ga, Es, testy, puty, testy, Fa, Hy, HY, Y, A9

IU{c}
Sl vagy

]

Property 2.11. Let a,b,c € [1; m] be pairwise distinct integers, p be an integer,
(v,T,A) = Clause(a,b,c,p), Y and Z be any sequences, and O,1 be two disjoint
subsets of [1; m]. We have

2.3. HIGH-LEVEL GADGETS 63

a. IfbceO, then (Y, A, Z A?) = (Y, 151612’ 7z A?J{%?é?
b, IfaceO. then (YA ZA9) — (V.0 Z AL (S)
c. IfabeO, then (%Y, A, Z AYY = (Y, Igié% 7. A?U—{i%z;}>
Proof.
a. ('Y, A, Z AD)
= (GY, test,, |, Gy, testy, Fy, Hy, H}', Y, Dy, Dy, Z, A])
— (test,, F\, G4, test,, F}, Y, *T07E. Y, Dy, Dy, Z, AD)
s (Fi Gy, testy, By, HY, VT Y, Dy, Dy, Z A
= (“Tpith. . test, L HY. TSV, Dy Do, A7)
= (GY, testy, Fy, HY, *I]?:;SZ, Y, 151119’ Dy, 7, AIOJ{{C?>
60 (testy, Iy, *Iﬁifé" *I£I§§, Y, Zgillg, Dy, 7, AIOL:{£§}>
= Fy, *Iﬁifé‘ : *Iﬁg; Y, 1511197 D, Z, A?J{&i}

— <*Ip+46 *Ip+34 *Ip+22 Y, 7Pt D,, 7, AO—{b,c}

270 p+60> “p+45> —p+337 p+19 1U{b,c}
; p+1 p+20 O—{b,c}

2.4. <Y’ Lpir9s Lprézs 2 AIU{b,c}

_ +1 O—{b,c}

=Y. Lies, Z, Al)

b. (%Y, A, Z A?)
= (GY, test., F\, Gy, test,, Fy, HY, H) Y, Dy, Dy, Z, A))
—> (test,, I}, G}, test,, Fy, Hy, *I? 135 Y, Dy, Dy, Z, A9)

2.6.c
O—
= (Fy, Gy, test, Fy, Hj, *IPR Y, Dy, Dy, Z, AIU{{;}

P 1U{c}
ﬁ <G,2,’ testa, F22> Hé,’ *III:’-—????? Y, 151_1197 D,, Z, AIOU_{E?

= ("TpLtr, Gy, testa, Fy, Hy, "T55, Y, D1, Dy, Z, ALy

§ 2 xp+34 +22 +1 0—{c}
2.6.c <teSta’ FQ’ I£+45’ *1117)—1-337 Y, Z£+197 D,, Z, AIU{C}

2 x7p+34 x7p+22 +1 O—{a,c}
YT (F3, "TVis: "Thiss, Yo Iylhg, Doy Z, A

I1U{a,c}
— *7P+46 *p+34 xp+22 +1 O—{a,c}
2.7.c < Ip+60’ Ip+45’ IP+33’ Y, I;?j+197 D, Z, AIU{a,c}
p+1 p+20 O—{a,c}
v Y, Tilio: Tiens 2, Milgaey)

Bk 2,400

c. (I’ Y, A, Z A?)
— <G’1', takey, F2, Gy, By, test,, puty, test,, Fy, Hy, H!' Y, Dy, Dy, Z, A?>
Son (takes, FY, Ga, Es, testy, puty, testy, Fo, Hy, *IV 3, Y, Dy, Ds, Z, A7)
= <E2, test,, puly, test,, Fy, Gb, *F2 H). *151325’ Y, Dy, D, Z, A?>
T {54, S5}

64 CHAPTER 2. SORTING BY PREFIX REVERSALS

Sy = (testq, puty, testy,, Fy, Gy, *F¢, Hy, *IV122 Y, Dy, D, Z, AQ)

— (puty, testy, Fy, Gy, *F?, H}, *I?12 Y, Dy, Dy, Z, A 19

2.8.b 0 la
— (F2, GY. test,, F}, H}.*T02.Y, Dy, Dy, 7, A0

2 22 o
e *1-5117, Gy, testy, Fy, Hy, "T7T5, Y, Da, Dy, Z, AIU{ES’}

22 1 O—{a
G, testy, Fy, HY, *15133, Y, Igjlg, D,, Z, AIU{E}}>

testb, F21’ *Ip+34 *IP'FQZ Y, Ip+l DQ, Z, AO—{a}>

2!

P N N N N N

[N
=

2.6.c p+457 Tp+33s p+19 Iu{a}
; 1 x7p+34 *7p+22 p+1 O—{a,b}
2.8.b Fy, Ip+457 Ip+337 Y, Zp+19= D,, Z, AIu{a,b}
*7P+46 *kp+34 *p+22 p+1 O—{a,b}
2 7b; I£+60’ III))+457 Ip+337 Yu Ip+197 D27 Z7 AIU{a,b}

I

O—{a,b
Yy 1—511197 Igigga Z7 A { }>

IU{a,b}
+1 O—{a,b}
III:-&-GQ’ Z> AIU{a,b}

[\

4.

I
=

Y

Ss = (testy, puty, testy, Fy, Gy, “F{, Hy, *I)13, Y, Dy, D, Z, A7)
2.8%10 <pIUIt27 teSta’ F22’ G,27 *F127 H;’ *151_3?327 Y7 D]_7 D27 Z) Aloui{fla]:}

— (F2, G, test,, FZ, Hy, *I'{22, Y, Dy, Dy, Z, A 1%

2.6.b 10{a)
e <*I£If7, Gy, testy, Fy, HY, *I;’J‘gg, Y, Dy, Dy, Z, AIOU—{;{S}
o (G testa, Y HY VTN Y, Tk, Do, Z, AD
= (testa, F}. *T)105 "Iy 55, Y, Ty, Doy Z, AT

5 b (Fy, *I,’iii’g‘, *I§I§§, Y, Z]’fillg, Ds, 7, AIOU}EZ;?}>

e <*I£Igg’ *Igiig’ *Igigg Y, Igillga D., Z, A?ui{fz?é?}

— (Y, Tlho, Toies, 2, Apisy)

= (Y, Igiéza Z, A?U_{g%l;}

2.4 Reduction from 3-SAT

Let ¢ be a boolean formula over [variables in conjunctive normal form, such that
each clause contains exactly three literals. We write k& for the number of clauses,
m = 3k the total number of literals, and {\;,...,\,,} for the set of literals. Let
n = 311 + 62k 4+ 12m (thus, n = 311 + 98k).

Definition 2.8 (Sequence Sy). We define the sequence S, as the permutation of

24.1

2.4. REDUCTION FROM 3-SAT 65

[1; n] obtained by:

(key, ..., key,,, testy, ..., test,, \) = Literals(31] 4+ 62k, m)
vie 11, P={jellim]|\=u}
Ni={jel;m] [} =~}
(vi, Vi, D;) = Variable(P;, N;,31(i — 1)),
Viell; k], (@i, b;, c;) = indices such that the i-th clause of ¢ is Ao, V Ao, V A,
(i, T, A;) = Clause(a;, bi, ¢, 311 + 62(i — 1))

S¢:<V1,...,Vl,’)/l,...,’}/k,xfl,...,‘/I,Fl,...,Fk,Dl,...,Dl,Al,...,Ak,A8>

Two things should be noted in this definition. First, elements key, and test; are
used in the clause and variable gadgets, although they are not explicitly stated in
the parameters (cf. Definitions 2.6 and 2.7). Second, one could assume that literals
are sorted in the formula (¢ = (A VA3V A3) A...), so that a; =3i — 2, b, =3i — 1
and ¢; = 37, but it is not necessary since these values are not used in the following.

We now aim at proving Theorem 2.18 (p. 70), which states that S, is efficiently
sortable if the formula ¢ is satisfiable. Several preliminary lemmas are necessary,
and the overall process is illustrated in Figure 2.6.

Variable Assignment

Definition 2.9 (Assignment). Let r € [0; []. An r-assignment is a partition P =
(T, F) of [1; r]. An l-assignment is called a full assignment. Using notations from
Definition 2.8, we define the sequence Sy[P] by:

Forallie[l;r], V=

€T el
S¢[P] :<1/T+1,...,I/l,’)/l,...,Vk,xfll,...,w,W+1,...,W,Fl,...,rk,
Dy,Dy Ay, A A

ViifieT
V2ifieF

Property 2.12. Let r € [0; I] withr <1, P = (T, F) be any r-assignment, P; =
(TU{r+1}F) and Py = (T, F U{r+1}). Then

Ss[P] == {Ss[P1], S[Pa]}

Proof. This is a direct application of Property 2.9.a on variable (v,y1, Viq1, Dry1),
using sequences:

X:<1/r+2,...,Vl,’yb...,fyk,Vl’,...,V;’>
Y:<‘/;“+27"'a‘/17]:‘17"'>Fk7Dl7"'7Dl7A17"'7Ak>

]

With the following lemma, we ensure that any sequence of efficient flips from S,
begins with a full assignment of the boolean variables, and every possible assignment
can be reached using only efficient flips.

66 CHAPTER 2. SORTING BY PREFIX REVERSALS

S¢: <V1,...,Vl,’}/1,...,")/k,‘/l,...7‘/2,F1,...,Fk,Dl,...,Dl,Al,...,Ak,A%>
)

©

Open remaining
locks in P1 @] N1
Dy—7
¥

i

Open locks in Py Open locks in Ny
V1'—>‘/1/:V11 V1'—>‘/1/:V12

|

©

Open remaining
locks in P, U N;
Dl — 7
¥

©

Test remaining
locks in {a,b1,c1}
Al — 7
¥

8

Open locks in P, Open locks in N
‘/ZH‘/Z/:‘/Zl ‘/ZH‘/Z/:‘/ZQ

%

Test lock a; Test lock by Test lock ¢

|

©

1

Test lock ag, Test lock by, Test lock ¢y, Tes? remaining
Iy =TI = 1"]1C Iy =T = I‘i I 1—\% locks in {ak7bk,0k}
Ak — 7
k k k J l
T

Figure 2.6: Description of an efficient sorting of Sy (Definition 2.8). Circular nodes
correspond to landmarks, that is, head elements or sequences especially relevant.
We start with the head element of Sy: 14. From each landmark, one, two or three
paths are possible before reaching the next landmark, each path having its own
effects, stated in rectangles, on the sequence. Possible effects are: transforming a
subsequence of S, (symbol —), opening a lock, testing a lock (such a path requires
the lock to be open); indices are removed from identity sequences (Z) for readability.
The top-left quarter, from v; to v, is studied in Section 2.4.1; the bottom-left
quarter, from 7 to 7y, is studied in Section 2.4.2; and the right half, from V' to I'},
is studied in Section 2.4.3.

2.4. REDUCTION FROM 3-SAT 67

Lemma 2.13.
Sy = {S4[P] | P full assignment}

Proof. We prove Sy = {S4[P] | P r-assignment} by induction for all r € [0; [],
and the lemma is deduced from the case r = [.

There is only one 0-assignment, which is Py = (0,0), and S, = S4[Py]. Consider
now any r < [. We use notations P; and P, from Property 2.12. Then any (r + 1)-
assignment can be written P; or P, where P is some r-assignment. We have

Sy = {S4[P] | P r-assignment} by induction hypothesis
Sy = {Ss[P1], S[Pa] | P r-assignment} by Property 2.12
= {Su[P'] | P" (r + 1)-assignment }

2.4.2 Going through Clauses

Now that each variable is assigned a boolean value, we need to verify with each
clause that this assignment satisfies the formula ¢. This is done by selecting, for each
clause, a literal which is true, and testing the corresponding lock. As in Definition
2.8, for any i € [1; k] we write (a;, b;, ¢;) for the indices such that the i-th clause of
O is Ag; V A, VA, (thus, a;,b;,¢; € [1; m]).

Definition 2.10 (Selection). Let t € [0; k] and P be a full assignment. A t-
selection o is a subset of [1; m] such that

—lo| =t

— for each i € [1; t], {a;, b;,c;itNo| =1

A t-selection o and a full assignment P = (T, F') are compatible, if, for every
i € o, literal \; is true according to assignment P (that is, \; = x; and j € T, or
Ni=—w;and j € F).

A k-selection is called a full selection. Given a t-selection o and a full assignment
P = (T, F) which are compatible, we define the sequence Sy[P, o] by:

ViifieT
Forallic[1:1], V/= 1225“,
Viifie F
Ilifa, €0
Forallie[1;t], T;=<T2ifb;co
F?Z.fCiEO'
i€T i€k
I=0¢
S¢[P’U]:<’7t+17"'77k7‘/1/a"'7 l/7F/17"'7F;7Ft+1a'--arka

Dl,...,Dl,A17...,Ak,A?>

We now aim at proving Lemma 2.16, which ensures that after the truth assign-
ment, every efficient path starting from S, needs to select a literal in each clause,
under the constraint that the selection is compatible with the assignment. We will
use the following two properties.

68 CHAPTER 2. SORTING BY PREFIX REVERSALS

Property 2.14. Let P be a full assignment and t € [0; k], t < k. Let o' be a
(t + 1)-selection compatible with P, then there exists a t-selection o compatible with
P such that o C o.

Proof. Tt is obtained by 0 = o' —{ay11, bi11, ci1}. Tt is trivially a t-selection included
in o, and it is compatible with P (all selected literals in ¢ are also selected in o,
and thus are true according to P). O

Property 2.15. Lett € [0; k], t <k, P be a full assignment, and o be a t-selection
compatible with P.

Sy[P,o] = {Sy[P,0'] | o’ (t + 1)-selection compatible with P;o C o'}
Note that the right-hand side can be the empty set, in which case Sg[P, o] = 0.

Proof. First note that there are 3 (t+1)-selections ¢’ such that o C ¢/, and they are
oy =oU{aw1}, 0 =0 U{biy1}, and o4 = 0 U {ct41}. Since o is compatible with
P, o} is compatible with P iff literal A,,,, is true in P (and similarly with couples
(05, Abyyr) and (0%, Ac,,,)). We now define sequences X and Y and sets I and O such
that Sy[P, 0] = (41, X, Tis1, Y, AD), that is:

X = <’Yt+2,-~-771<;,V1,7---, l’,Fll,...,FQ

Y = <Ft+27"'7FkaD1a"'7DZ7A17"'7AIC7>

O=JRUulJNi -0

€T el

=0
Using Property 2.10 on clause gadget (711, ['¢41, Asr1), we obtain:
Sg[P,0] =T
where T is defined by:

(X, DL, Y, AL e e T iff a0, €0

Tu{at41}
(X, T3, Y, ALY €T ff by €0
(X, 13, Vv, A e T iff e €0

Note that a;r1 ¢ o, hence a;.; € O iff Fi € T st. a1 € Py or Ji € F s.t.
a1 € N;. Equivalently, a,y; € O iff), ., is a positive occurrence of a variable
assigned True in P, or a negative occurrence of a variable assigned False in P.
Finally, a;+1 € O iff o] is compatible with P. Likewise, b;y1 € O iff o} is compatible
with P, and ¢;y1 € O iff 0} is compatible with P.

Se[P,ol] = (X, Thy, YV, AS Y e T iff o) is compatible with P

IU{aH_l}
SelP.ob) = (X, T3, Y, A) € T iff o} is compatible with P
SelP.ob] = (X, T3, YV, ARy € T iff o} is compatible with P

Thus T is indeed the set of sequences S,[P, 0’| where o’ is a (¢t + 1)-selection
which contains ¢ and is compatible with P: the property is proved. O

2.4. REDUCTION FROM 3-SAT 69

Lemma 2.16. Let P be a full assignment. Then
Ss[P] = {Ss[P, 0] | o full selection compatible with P}

Proof. The proof follows the same pattern as the one of Lemma 2.13, that is, we
prove

Ss[P] = {S4[P, 0] | o t-selection compatible with P}

by induction for all ¢t € [0; k], and the lemma is deduced from the case t = k.

There is only one 0O-selection, which is oy = (), it is compatible with P, and
Ss[P] = Ss[P, 00]. Consider now any ¢t < k. We have

Ss[P] = {Ss[P, 0] | o t-selection compatible with P} (by induction hypothesis)

Sy[P] = {Sy[P,0'] | o' (t + 1)-selection compatible with P and
o t-selection compatible with P, o C ¢’} by Property 2.15

= {S4[P,0’] | o' (t + 1)-selection compatible with P} by Property 2.14

2.4.3 Beyond Clauses

Lemma 2.17. Let P be a full assignment and o be a full selection, such that P and
o are compatible (provided such a pair exists for ¢). Then

S¢,[P,O’] — I}L

Proof. Write P = (T, F). Since o is a full selection, S,[P, o] can be written (see
Definition 2.10):

ViifieT
Foralli e [1;1], V/= 1?2.6
ViifieF
Ilifa, €0
Forallie [1; k], T;=<T%ifb;co
ife eo
O=JPulJNi—0
i€T i€l
I=0

Se[P.o]l =(V{,....V/,T,....T},D1,..., Dy, Aq, ..., Ap, AD)

We extend the definition of set O to O, for any r € [0; [], as follows:

O0,= |JmuNnyulJrulNi-0o

0<i<lr 1€T el

Note that Oy = O, and that O, = [1; m] — 0.

70

S¢[P,O‘] = <‘/1,, ey

CHAPTER 2. SORTING BY PREFIX REVERSALS

ST, DDy, o, Dy Ay Ay, AD0)

1 o
QWCW;,..., [T, T Ty, Dy Dy Ay, Ay, ADY)
’ ! ! 32 o
Qﬁcwg,. VT DTy, 265, Dy . Dy Ay, A, AD?)
/ / 1 32 311—30 o
Qﬁcm,...,rk,zm,zm,...,zw AL A AT

Finally, for the last part, we use a similar procedure, with the following sets, for

t e [0; k]:

Note that O) = Oy, I}, = I, O;, = 0, I;, = [1; m], and more importantly, for
i > t, assuming that a; € o (cases b; € o and ¢; € o are similar), then a; € I},
b; € O; and ¢; € O;. Hence we can successively apply Property 2.11 (either .a, .b
or .c) on each clause gadgets.

o\J U {ai,bi,ci}

0<i<t

OQZHl;m]]—<
[zZO'U U {ai,bi,ci}

0<i<t

OI
(Tho o T Do Axy e A AGP)

’ Il 31041 o]
ﬁ <]__‘2, e 7F1€71.31Z7I31l+627 A27 ey Ak, AI:{ >
’ /1 3l+1 7311463 05
1T (T4 T s Ty Lot oas D5 Ay AI;)
1 31141 311463 311+62k—61 , O,
ﬁ <ISIZ7131I+62’ I311+124v s 7131l+62k: ’Al,g >
_ 1 311+1 0
= <Z311> IBll+62k7 A[[l ; m1]>
_ /7l 310+1 311+62k+1
= <I3117 I31l+621c7 I31l+62k+12m
71
= _’[n

Theorem 2.18. For any boolean formula ¢ instance of 3-SAT,
Sy, = I} iff ¢ is satisfiable.
Proof. Assume first that Sy = Z!. By Lemma 2.13, since
Sy = {Sy[P] | P full assignment},

there exists a full assignment P = (T, F') such that some path from S, to the identity
uses Sg[P]. Note that Ss[P] = Z!. Now, by Lemma 2.16, since

Ss[P] = {S4[P, 0] | o full selection compatible with P},

2.4. REDUCTION FROM 3-SAT 71

there exists a full selection o, compatible with P, such that some path from S,[P]
to the identity uses Sy[P,o]. Consider the truth assignment x; := True < i € 7.
Then each clause of ¢ contains at least one literal that is true (the literal whose
index is in o), and thus ¢ is satisfiable.

Assume now that ¢ is satisfiable: consider any truth assignment making ¢ true,
write 7" the set of indices such that z; = True, and F' = [[1;] — T. Write also
o a set containing, for each clause of ¢, the index of one literal being true under
this assignment. Then o is a full selection, compatible with the full assignment P =
(T, F). By Lemmas 2.13, 2.16 and 2.17 respectively, there exist efficient paths Sy =
Su[P], Ss[P] = S4|P, o] and Sy[P,0] = Z,.. Thus sequence Sy is efficiently
sortable. O

Using Theorem 2.18, we can now prove the main result of this chapter.
Theorem 2.19. Sorting By Prefix Reversals is NP-hard.

Proof. By reduction from 3-SAT. Given any formula ¢, create S (see Definition 2.8,
the construction requires a linear time). By Theorem 2.18; the minimum number of
flips necessary to sort Sy is dy(Sys) iff ¢ is satisfiable. O

Corollary 2.20. Deciding, given a sequence S, whether S can be sorted in dy(S)
flips, is an NP-hard problem.

Conclusion

In this chapter, we have shown that the Pancake Flipping problem, i.e. the SORT-
ING BY PREFIX REVERSALS problem is NP-hard, thus answering a long-standing
open question. We have also provided a stronger result, namely, deciding whether
a permutation can be sorted with no more than one flip per breakpoint is also
NP-hard. However, the approximability of SBPR is still open: it can be seen that
sequence Sy can be sorted in d,(S,) + 2 flips, whatever the formula ¢, hence our
construction does not prove the APX-hardness of the problem.

Among related important problems, the last one having an open complexity is
now the burnt variant of the Pancake Flipping problem. An interesting insight into
this problem is given in a recent work from Labarre and Cibulka [98|, where the
authors characterize a subclass of permutations that can be sorted in polynomial
time, using the breakpoint graph [11|. Another development consists in trying to
improve the approximation ratio of 2 for the Pancake Flipping problem, both in its
burnt and unburnt versions.

Distances Between Strings

73

Exemplar Distances

The EXEMPLAR DISTANCE problem asks,

given two input genomes with duplicates, to ex-
tract exemplarizations of the genomes (i.e. sub-
sequences containing exactly one copy of each
gene) minimizing a given dissimilarity measure.
=4 =~ In this chapter, we prove that the EXEM-
PLAR DISTANCE problem is NP-hard to approxi-
mate for the rearrangement distances sorting by
reversal and sorting by DCJ, and for edit dis-

tances such as Hamming and Levenshtein dis-
tances.

The results in this chapter have been obtained through a joint work with Minghui Jiang.
They have been presented at the 8th International Symposium on Bioinformatics Research
and Applications (ISBRA 2012, Dallas [39]), and accepted for publication in IEEE Trans-
actions on Computational Biology and Bioinformatics (TCBB 2013 [40]).

I6)

76 CHAPTER 3. EXEMPLAR DISTANCES

Introduction

In this second part of the manuscript, we now consider comparative genomics
problems where genomes are represented no longer as permutations, but as strings.
In this case, several copies of the same gene may occur in the same chromosome,
and we no longer have the complete information about “which marker corresponds to
which”. The objective of a number of string-based comparative genomics problems
is to understand the separate evolution history of each copy of the genes since the
common ancestor of the species considered. With this understanding, it is possible
to obtain a one-to-one matching of the markers, enabling further and more complex
computations.

In this chapter, a genome is thus represented by a sequence of signed integers
(or markers): each integer represents a gene of a given gene family, and its sign
represents its orientation. Given two genomes possibly with duplicate genes, the
exemplar distance problem [113] is that of removing all but one copy of each gene
in each genome, so as to minimize the distance between the two reduced genomes
according to some measure. The reduced genomes are said to be exemplar subse-
quences of the original genomes. This approach amounts to considering that, in the
evolution history, duplications have taken place after the speciation of the genomes
(or more generally, that we are able to distinguish genes that have been duplicated
before the speciation). Hence, in each genome, only one copy of each gene may be
matched to an ortholog gene in the other genome.

For example, the following two sequences

Gi= (-4, +1, +2, 43, =5, +1, +2, +3, —6)
Go= (-1, =4, +1, 42, =5, +3, =2, =6, +3)

can both be reduced to the same exemplar subsequence by removing duplicates:
G'= (-4, +1, +2, =5, +3, —6)

They thus have exemplar distance zero for any reasonable distance measure. In
general, unless we are to decide simply whether two genomes can be reduced to the
same genome by removing duplicates, the exemplar distance problem is not a single
problem but a group of related problems because the choice of the distance measure
is not unique. We refer to Figure 3.1 for an example scenario where the underlying
distance measure is the signed reversal distance.

We denote by (s,t)-EXEMPLAR DISTANCE the exemplar distance problem on
two sequences (G; and Gy where each marker occurs at most s times in G; and
at most ¢t times in Gy (we say that G; and Gy have mazimal occurrences and t
respectively). It is known [26, 94| that for any reasonable distance measure, (2,2)-
EXEMPLAR DISTANCE does not admit any approximation. This is because to decide
simply whether two sequences with maximum occurrence 2 can be reduced to the
same subsequence by removing duplicates is already NP-hard. In this chapter, we
focus on the simplest non-trivial variant of the exemplar distance problem: (1,2)-
EXEMPLAR DISTANCE. Note that we use the monochromosomal model of genomes
in order to have the simplest definition of the problem: thus, our hardness results
can be extended to multichromosomal variants of the problems we consider.

7

Common ancestor <+1, +2, +3, +4, +5>
reversal / \duplications
(+1, —4, =3, =2, +5) (+1, +2, +3, =2, +4, +1, 45, —4)
reversal l l reversal
Current species G, = <+4, -1, =3, =2, +5> Gy = <+1., +2, —4, +2, —3, +1, +5, —4>

Exemplar reversal distance = 3

Figure 3.1: During the evolution of two different species with genomes G; and G,
from a common ancestor, duplications occur in G5, and reversals occur both in G
and G5. By the parsimony principle, the exemplar distance of 3 between G and G5
corresponds to the number of reversal events in the most likely evolution history of
the two species.

The problem (1,¢)-EXEMPLAR DISTANCE has been studied for several distance
measures commonly used in comparative genomics. Angibaud et al. [7| showed
that for breakpoint, common interval, and conserved interval distances, the (1,2)-
EXEMPLAR DISTANCE is APX-hard. Bonizzoni et al. [28] proved that variants of
LONGEST COMMON SUBSEQUENCE under exemplar models are also APX-hard. For
other measures such as maximum adjacency disruption (MAD) and summed adja-
cency disruption (SAD), (introduced by Sankoff and Haque [114]), computing the
exemplar distance is APX-hard [24]. More precisely, we proved in [40] that (1,2)-
EXEMPLAR MAD DISTANCE is NP-hard to approximate within 2 — € for any € > 0,
and (1,2)-EXEMPLAR SAD DISTANCE is NP-hard to approximate within 1.3606.
See also [48, 46| for related results.

For an unsigned permutation m = <7r1, e ,7rn>, an unsigned reversal (i,7) with
1 <1< 7 <nturns 7 into <771, e Tty Ty e Ty Ty e - ,7rn>, where the factor
m; ... m; is reversed. For a signed permutation o = <01, e ,an>, a signed reversal
(7,7) with 1 < ¢ < j < n turns io into <01, ey 01, =0y, =0y Oji1,- .- ,0n>,

where the factor o;...0; is reversed and negated (see Figure 3.2a). The unsigned
reversal distance (resp. signed reversal distance) between two unsigned (resp. signed)
permutations is the minimum number of unsigned (resp. signed) reversals required
to transform one to the other. Computing the unsigned reversal distance is APX-
hard [20], although the signed reversal distance can be computed in polynomial
time [82].

Our next theorem answers an open question of Blin et al. [24] on the inapprox-
imability of the exemplar reversal distance problem:

Theorem 3.1. (1,2)-EXEMPLAR SIGNED REVERSAL DISTANCE is NP-hard to ap-
prozimate within 1237/1236 — € for any € > 0.

The double-cut-and-join (DCJ) operation introduced by Yancopoulos et al. [122]
consists in cutting the genome in two positions, and joining the four ends in any
new way. Note that this operation requires a model more general than sequences
to model the genomes, in order to take into account possible circular chromosomes
(i.e. with circular permutations). In practice, a DCJ operation can correspond to a
reversal, to the excision of a factor into a circular permutation, or to the insertion of
a circular permutation back into the main sequence, at any position (see Figure 3.2).
The problem of computing the DCJ distance between two permutations is known

3.1

78 CHAPTER 3. EXEMPLAR DISTANCES

(a) (+1, +2,43, +4, +5, +6) — (+1, +2, =5, —4, —3, +6)

(b) (+1, 42, +3, +4, +5, +6) — (+1, +2, +6) (43, +4, +5)
(€) (+1, 42, +3) (+4, 45, 46) — (+1, +2, =5, —4, =6, +3)

Figure 3.2: The possible operations allowed for the signed DCJ distance are (a)
reversals, (b) excisions, and (c) insertions. We write circular permutations with
parentheses, i.e., (+1 +2 +3) is equal to (+2 +3 +1) and to (=3 —2 —1).

to be polynomial in the signed case [122], and is NP-hard in the unsigned case [43].
The following theorem shows the intractability of the exemplar DCJ problem:

Theorem 3.2. (1,2)-EXEMPLAR SIGNED DCJ DISTANCE is NP-hard to approzi-
mate within 1237/1236 — € for any € > 0.

In the last theorem of this chapter, we present the first inapproximability result
on the exemplar distance problem using the classic string edit distance measure:

Theorem 3.3. (1,2)-EXEMPLAR EDIT DISTANCE is APX-hard to compute when
the cost of a substitution is 1 and the cost of an insertion or a deletion is at least 1.

Note that both the Levenshtein distance and the Hamming distance are special
cases of the string edit distance: for Levenshtein distance, the cost of every opera-
tion (substitution, insertion, or deletion) is 1; for Hamming distance, the cost of a
substitution is 1 and the cost of an insertion or a deletion is +co. Thus we have the
following corollaries:

Corollary 3.4. (1,2)-EXEMPLAR LEVENSHTEIN DISTANCE is APX-hard.
Corollary 3.5. (1,2)-EXEMPLAR HAMMING DISTANCE is APX-hard.

Our choices of the specific distance measures are based on two considerations.
First, for a broader impact, we try to explore a wide variety of distance measures,
which are suitable for different requirements of various biological applications: edit
distances measure local differences, and reversal and DCJ distances compute global
rearrangement schemes. Second, in terms of computational complexity, the exem-
plar generalization of any measure for sequences with duplicates can only be harder
to compute than the basic version of the same measure for sequences without dupli-
cates. In order to obtain unambiguous results on the true difficulty of the exemplar
distance problem, we restrict ourselves to measures whose basic versions are easy
to compute. For example, given any two sequences, their Hamming distance can
be trivially computed in linear time, and their Levenshtein distance can be com-
puted in quadratic time by dynamic programming. Less straightforward but still
polynomial-time algorithms exist for signed reversal distance [82] and signed DCJ
distance [122].

Signed Reversal and DCJ Distances

In this section we prove Theorems 3.1 and 3.2. We first show that (1,2)-
EXEMPLAR SIGNED REVERSAL DISTANCE is APX-hard by a reduction from the

3.1. SIGNED REVERSAL AND DCJ DISTANCES 79

problem SORTING BY UNSIGNED REVERSALS |20], which asks for the minimum
number of unsigned reversals to transform a given unsigned permutation into the
identity permutation.

Let m = <7r1, . ,7rn> be an unsigned permutation of [1; n]. We construct two
sequences G = <+1, cee —|—n> and Gy = <—|—7r1, —M1,y e, +Tp, —7Tn>.

Lemma 3.6. 7 can be sorted into the identity permutation L, by at most k unsigned
reversals iff Go has an exemplar subsequence GY, with signed reversal distance at most
k from G;.

Proof. We say that a signed permutation o is a signed version of wif forall 1 < i < mn,
m; = |oi]. The lemma is based on two key observations. First, the permutation 7
can be sorted in k reversals iff there exists a signed version ¢ of 7 that can be sorted
in k (signed) reversals. Second, a signed permutation o is an exemplar subsequence
of Gy iff it is a signed version of 7, that is, for all 1 < < n, m; = |oy|.

The first observation is a classic result: given a sequence of reversals sorting ,
the signed version o of 7 is constructed by applying the same sequence in reversed
order from the signed identity permutation. And conversely, any sequence of signed
reversals sorting a signed version of 7, seen as a sequence of unsigned reversals,
transforms 7 into the identity. The second observation is obtained by construction
of GG5: any signed version of 7 can be seen as an exemplar subsequence of G5, and
all exemplar subsequences of Gy are signed versions of .

The lemma is directly deduced from these two equivalences:

7 can be sorted by at most k unsigned reversals

< 7 has a signed version o that can be sorted by at most k unsigned reversals

< (35 has an exemplar subsequence G, = o with signed reversal distance at most k
from (. L]

Since SORTING BY UNSIGNED REVERSALS is NP-hard to approximate within
1237/1236 — € for any € > 0 [20], (1,2)-EXEMPLAR SIGNED REVERSAL DISTANCE
is NP-hard to approximate within 1237/1236 — € for any € > 0 too.

We now prove Theorem 3.2 by a reduction from SORTING BY UNSIGNED DCJ
(see [43]). Given an unsigned permutation 7, compose the same sequences G; and
Go as before: G = <+1, .. .7+n> and Gy = <—{—7r1,—7r17...,+7rn,—7rn>. We have
the following lemma:

Lemma 3.7. m can be sorted into the identity permutation L, by at most k unsigned
DCJs iff Gy has an exemplar subsequence GYy with signed DCJ distance at most k
from G.

Proof. As in the proof of Lemma 3.6, this result is obtained from the following two

equivalences:

7 can be sorted by at most k unsigned DCJs

< 7 has a signed version ¢ that can be sorted by at most k£ unsigned DCJs

< (G5 has an exemplar subsequence G, = o with signed DCJ distance at most k
from (.]

The problem SORTING BY UNSIGNED DCJ has been proved to be NP-hard [43].
We note that it is in fact NP-hard to approximate within 1237/1236 — € for any
€ > 0 because, according to [43, Theorem 2|, SORTING BY UNSIGNED DC.J has the
same objective function as BREAKPOINT GRAPH DECOMPOSITION (formulated as

80 CHAPTER 3. EXEMPLAR DISTANCES

a minimization problem), and the latter is known to be NP-hard to approximate
within 1237/1236 —e for any € > 0 [20, Theorem 4]. It follows that (1, 2)-EXEMPLAR
SIGNED DC.J DISTANCE is also NP-hard to approximate within 1237/1236 — ¢ for
any € > 0.

3.2 Edit Distances

In this section we prove Theorem 3.3. For any edit distance where the cost of a
substitution is 1 and the cost of an insertion or a deletion is at least 1 (possibly +00),
we show that the problem (1,2)-EXEMPLAR EDIT DISTANCE is APX-hard by a
reduction from the problem MINIMUM VERTEX COVER IN CUBIC (GZRAPHS.

Let G = (V, E) be a graph of n vertices and m edges. It is cubic if all vertices
have degree three (hence 3n = 2m). A wertex cover of G is a subset X of V' such
that for each e = {u,v} € E, we have u € X or v € X.

Problem MINIMUM VERTEX COVER IN CUBIC (GRAPHS
Input A cubic graph G = (V, E)

Output A vertex cover X of G

Maximize The size of X

The reduction goes as follows. Given a cubic graph G = (V, E), we construct
two sequences (G; and G5 over an alphabet of

3m+4n+2(m+Tn) +2(m—1)+ (n—1)

distinct markers. For each edge e = {u,v} € E, we have three edge markers e, e,,
and e,. For each vertex v € V', we have a vertex marker v and 3 dummy markers v,
vh, v4. In addition, we have 2(m + Tn) + 2(m — 1) + (n — 1) markers for separators.
The construction is illustrated in Figure 3.3 for the complete graph K.

The two sequences G; and Gy are composed from m + n + 1 gadgets: an edge
gadget for each edge, a vertex gadget for each vertex, and a tail gadget. The m+n+1
gadgets are separated by m+n separators of total length 2(m+7n)+2(m—1)+(n—1):

— two long separators, each of length m + 7n: one between the last edge gadget

and the first vertex gadget, one between the last vertex gadget and the tail
gadget;

— m+n — 2 short separators: a length-2 separator between any two consecutive

edge gadgets, and a length-1 separator between any two consecutive vertex

gadgets.
For each edge e = {u, v}, the edge gadget for e is
Gile] = (e)
Gsle] = <eu, ev>

For each vertex v incident to edges e, f, g, the vertex gadget for v is
Gl[v] - <?}, UiaU;7Ué>
GQ[U] = <€U>fvagv> v, €, f7 g>

Let V' be the 3n markers v}, v}, vj for v € V. Let E’ be the 2m = 3n markers
e, and e, for e = {u,v} € E. The tail gadget is

Gl [tazl] = El

3.2. EDIT DISTANCES 81

Gl - < €, 87 f7 Sa g, 87 ha S7 7;7 Sa j7 -
G2 = <€S,€t, Sv f97f717 Sa sy Gu, S, htahu: S7 Z.t7 ’i1,, Sa ju,7 jm -

/ ! !/ / ! ! I !/ I ! !/ !/
s, 81, 8, 8%, S, t,th, 1, ts, S, u, uf, uh, us, S, v, vy, Uy, Uy, —
- S7 657 .]CS’ gS! S’ 67 f'/ g? §7 6t7&7 Zt'/ t’ 67 h7Z7 S7 fu? hUJ ‘77147 u7 f’ h7 j'/ S7 97}71/7)7 j?)? U’ g7 Z? .77 -

- S, Cs, €, fsa fua s, Gu, ht7 hu7 Uy Loy Juy Jo >
A Y Y Y) N B e e e |
— 8, &, sh, 5, 8, th, th, ul, ub, uf, vy, vh, vh)

Figure 3.3: Example for the reduction of MINIMUM VERTEX COVER IN CUBIC
GRAPHS to (1,2)-EXEMPLAR EDIT DISTANCE. Above: a cubic graph G with an
optimal vertex cover {s,¢,v} and the corresponding independent set {u}. Below:
the sequences G; and G4 created from G, we use a common symbol S for all sepa-
rators. An optimal exemplarization of (G5 is underlined, and matched elements in
this exemplarization are in bold font.

G2 [tCLZl] = V/
This completes the construction.

Lemma 3.8. G has a vertex cover of size at most k iff Go has an exemplar subse-
quence G, with edit distance at most m + 6n + k from Gj.

Proof. We first prove the direct implication. Let X be a vertex cover of G with
| X| < k. Create G} as follows. For each edge e = {u,v}, at least one vertex, say
u, is in X. Remove e, and retain e, in the edge gadget Gsle], and correspondingly
retain e, in the vertex gadget Gs[u] and remove e, in the vertex gadget Ga[v], then
remove e in Gy[u] and retain e in Ga[v]. We claim that the edit distance from G, to
G, is at most m + 6n + k.

It suffices to show that the Hamming distance of G; and GY, is at most m+6n-+k
since, for the edit distance that we consider, the cost of a substitution is 1. Observe
that in both G and G, each edge gadget has length 1, and each vertex gadget
has length 4. Thus all gadgets are aligned and all separators are matched. The
Hamming distance for each edge gadget is 1, so the total Hamming distance over
all edge gadgets is m. The Hamming distance for each vertex gadget is at most
4. Moreover, for each vertex v ¢ X (v incident to edges e, f,g), since the markers
€v, fv, g are removed (and the markers e, f, g are retained) in the vertex gadget, the
marker v is matched, which reduces the Hamming distance by 1. Thus the total
Hamming distance over all vertex gadgets is at most 4n — (n — | X|) = 3n + | X|.
Finally, since the Hamming distance for the tail gadget is 3n, the overall Hamming
distance between G; and G} is at most m + 6n + | X| < m + 6n + k.

We next prove the reverse implication. Let G be an exemplar subsequence
of Gy with edit distance at most m + 6n + k from G;. Compute an alignment
of Gy and G corresponding to the edit distance, then obtain the following three
sets Xp(GY), Xv(GY), and X(GY):

82 CHAPTER 3. EXEMPLAR DISTANCES

— The set Xg(G,) C E contains every edge e = {u,v} such that either Gj|e]
contains both e, and e,, or G[e] has an adjacent separator marker which is
unmatched.

— The set Xy (G%) C V contains every vertex v (v incident to edges e, f, g) such
that either G4[v] contains one of {e,, f,, g»}, or G [v] has an adjacent separator
marker (to its left) which is unmatched.

— The set X(GY) C V is the union of Xy (GY) and a set composed by arbitrarily
choosing one vertex from each edge in Xg(GY) (thus | X(GS)| < |Xv(GS)| +
RE(ENIE

We first show that the edit distance from G, to G is at least m + 6n + | X (G5)|.
If a long separator (with m + 7n markers) is completely unmatched, then the edit
distance is at least m + 7Tn > m + 6n + | X(G5)|. Hence we can assume that there
is at least one matched marker in each long separator. Consequently, the markers
e, ey, €y for all e € E and vy, v}, v4 for all v € V' are unmatched.

Consider an edge e = {u,v} € E. If e ¢ Xg(GY), then the edit distance for G [e]
is at least 1 since the marker e is unmatched. If e € Xg(GY), then consider the factor
of G1[e] containing the marker e and the at most two separator markers adjacent to
it (for the first edge gadget, there is only one separator marker adjacent to e, to its
right). The edit distance for this factor is at least 2: the marker e is unmatched,
and moreover either an adjacent separator marker is unmatched or an insertion is
required. The total edit distance over all edge gadgets is at least m + | Xg(GS)|.

Consider a vertex v € V incident to three edges e, f,g. If v ¢ X/ (GY), then
the edit distance for G;[v] is at least 3 since the markers v], v}, v5 are unmatched.
If v € Xy (GY), then consider the factor of G containing G[v] and the separator
to its left. The edit distance for this factor is at least 4: the markers v}, v}, v} are
unmatched, and moreover at least one insertion is required unless either the marker
v or the separator marker to its left is unmatched. The total edit distance over the
vertex gadgets is at least 3n + | Xy (GY)|.

Finally, the edit distance over the tail gadget is equal to the length of G[tail],
which is 3n. Hence the overall edit distance is at least

m+ | Xp(GY)| + 3n + | Xv(Gy)| +3n > m + 6n + | X(GY)|.
Since the edit distance from G, to G is at most m + 6n + k, it follows that
[X(Gy)| < k.

To complete the proof, we show that X (GY%) is a vertex cover of G. Consider any
edge e = {u,v}. If e € Xg(GY), then, by our choice of X(GY), either u € X(GY)
or v € X(G). Otherwise, if e ¢ Xp(G4), then in the edge gadget Gsle] = (ey, €,),
at least one marker is removed to obtain Gjle]. Assume that e, is removed: then
the second copy, in Galu], is retained, and v € Xy (G%) C X(G,). Likewise if e, is
removed, then v € X(GY%). In summary, X (GY%) contains a vertex from every edge
in E, hence it is a vertex cover of G. O

The problem MINIMUM VERTEX COVER IN CUBIC GRAPHS is APX-hard; see
e.g. [4]. For a cubic graph G of n vertices and m edges, where 3n = 2m, the minimum
size k* of a vertex cover is O(n). By Lemma 3.8, the exemplar edit distance of
the two sequences G; and G5 in the reduced instance is also ©(n). Thus by the
standard technique of L-reduction (see Page 8), it follows that (1,2)-EXEMPLAR
EDIT DISTANCE, when the cost of a substitution is 1 and the cost of an insertion or a

3.2. EDIT DISTANCES 83

deletion is at least 1, is APX-hard too. Then the APX-hardness of (1,2)-EXEMPLAR
LEVENSHTEIN DISTANCE and the APX-hardness of (1,2)-EXEMPLAR HAMMING
Di1sTANCE follow as special cases. Moreover, since the lengths of the two sequences
(1 and G in the reduced instance are both ©(m + n) as well, it follows that the
complementary maximization problem (1,2)-EXEMPLAR HAMMING SIMILARITY is
also APX-hard, if we define the Hamming similarity of two sequences of the same
length ¢ as ¢ minus their Hamming distance.

Conclusion

The problem (1,2)-EXEMPLAR DISTANCE has now been shown to be APX-hard
for a wide variety of distance measures, including breakpoints, conserved intervals,
common intervals, MAD, SAD, signed reversals and DCJs, Levenshtein distance,
Hamming distance, etc. On the other hand, it seems difficult to improve the constant
lower bound in any one of these APX-hardness results into a lower bound that grows
with the input size similar to the logarithmic lower bound for MINIMUM SET COVER.
This would indicate that constant-ratio approximation algorithms should exist: we
find it most intriguing that no such approximation is known for any one of these
measures. A possible explanation is that, through the exemplarization process, it is
hardly possible to keep track of any structure in the gene sequences.

Minimum Common String Partition

I The NP-hard MiNiMUM COMMON STRING
PARTITION problem has as input two strings x
and y and asks whether x and y can each be par-
titioned into at most k substrings, called blocks,
such that both partitions use exactly the same
l blocks in a different order.

In this chapter, we present a fixed-parameter
algorithm for k-MCSP using only parameter k.

The results in this chapter have been obtained through a joint work with Christian Ko-
musiewicz. They have been presented at the Journées GTGC workshop (2012, Lille), and
have been submitted to the 21st European Symposium on Algorithms (ESA 2013, Sophia
Antipolis)

85

86 CHAPTER 4. MINIMUM COMMON STRING PARTITION

Introduction

The problem we study in this chapter lies in the context of comparative genomics
on strings, where the objective is to determine how many operations of a certain
kind are necessary to transform one genome into another. The input consists of a
pair of strings « and y. The operation to transfer x into y is, informally, to cut x at a
minimum number of breakpoints and to reorder and concatenate the resulting factors
to obtain exactly y. This transformation is formalized by the notion of common
string partition (CSP): a partition P of two strings x and y into blocks xyx5 - - - xy,
and 119o - - - yg 18 a common string partition if there is a bijection M between {z; |
1 <i<k}and {y; | 1 <i < k} such that z; is the same string as M(x;) for
all 1 < i < k (see Figure 4.1 for an example). Herein, k is called the size of the
common string partition P. We study the problem of finding a minimum-size CSP:

Problem MINIMUM COMMON STRING PARTITION (MCSP)

Input Two strings « and y of length n, and an integer £
Question Is there a common string partition (CSP) P of size at most k
of x and y?

Another point of view for the problem is to see it as a matching problem. Given
the two sequences x and y, we aim at producing a bijection between markers of
both strings such that only markers representing the same letter are matched, and
that a maximum number of pairs of consecutive markers are matched to consecutive
markers. Using MCSP as a pretreatment before applying further algorithm, it gives
a way that is optimal (in some sense) to transform strings into duplication-free
permutations. Note that due to the fact that (1) each marker must be covered by
exactly one block and (2) the matched blocks must correspond precisely to the same
string, the strings z and y must use exactly the same multi-set of letters in order to
have at least one CSP (the strings must be balanced). Due to this strong constraint,
MCSP is mostly of theoretical interest, and any algorithm require adaptations before
being applied to raw data.

MCSP was introduced independently by Chen et al. [45] and Swenson et al. [118]
(who call the problem SEQUENCE COVER). MCSP is NP-hard and APX-hard even
when each letter occurs at most twice [75]. Damaschke [61] initiated the study of
MCSP in the context of parameterized algorithmics by showing that MCSP is fixed-
parameter tractable with respect to the combined parameter “partition size k£ and
repetition number r of the input strings”. Subsequently, Jiang et al. [89] showed
that MCSP can be solved in (d!)* - poly(n) time, where d is the maximum number of
occurrences of any letter in either input string. MCSP can be solved in 2" - poly(n)
time [70]. A greedy heuristic for MCSP was presented by Shapira and Storer [117].
In this chapter, we answer an open question |61, 70, 89| by showing that MCSP
is fixed-parameter tractable when parameterized only by k, that is, we present an
algorithm with running time f(k) - poly(n).

Basic Notation. A marker is an occurrence of a letter at a specific position in a
string; we denote the marker at position ¢ in a string = by z[i]. For all i, 1 <i <mn,
the markers z[i] and z[i + 1] are called consecutive. An adjacency is a pair of

4.1

4.1.1

4.1. FUNDAMENTAL DEFINITIONS AND ALGORITHM OUTLINE 87

consecutive markers. A factor is a set of consecutive markers, that is, a factor is a
set {x[i], z[i+1],...,z[j]} for some i < j. We write [a, b] to denote the factor whose
first marker is a and whose last marker is b. The length ||I]| of a factor I is the
number of markers it contains. Given two markers a and b in the same string z, we
write ab to denote the signed distance between a and b, that is, ab = |/[a,b]|| — 1 if a
appears before b in x, and ab = — ||[b, a]|| + 1, otherwise. Given two factors s and ¢,
we write s = t if they represent the same string of letters (if they have the same
contents) and s = ¢ if they are the same factor, that is, they start and end at the
same position in the same string. Similarly, for two markers a and b we write a = b
if their letters are the same, and a = b if the markers are identical. We say that a
string s has period 7 if s = pr'r, where i > 1, p is a (possibly empty) suffix of 7,
and 7 is a (possibly empty) prefix of 7. Without more precision, the period of a
string s refers to any of its shortest periods. We define offset operators > and <:
For each marker e and integer d, ¢ = e d is the marker such that ee’ = d, and
edad = e (—d).

Fundamental Definitions and Algorithm Outline

In this section, we first present the most fundamental definitions used by our
algorithm. We then draw a general outline of its main method.

Definitions

Let P = {z122...25;y1y2 ... ys; M} be a CSP of strings = and y. A breakpoint
of P is an adjacency in x (or y) that contains the last marker of some block z;
(y;) and the first marker of the next block x;,1 (y;41). We say that P matches two
blocks x; and y; if M(x;) = y;. Furthermore, we say that P matches two markers a
and b if @ and b are at the same position in matched blocks. By the definition of
a CSP, this implies a = b.

The algorithm works on subdivisions of both strings into shorter parts. These
subdivisions are formalized as follows.

Definition 4.1 (Splitting). A splitting of a string (or a factor) z is a list of factors
la1,b1], [a2,b2], ..., [am,bn], each of length at least two, called pieces such that
a1 = 2[1], aj41 = b; for all j < m, and b, = z[||z]|].

Informally, a splitting is a partition of the adjacencies of a string (or a factor)
such that each part contains only consecutive adjacencies.

The strategy of the algorithm is to infer more and more information about an
optimal CSP. To put it another way, it makes more and more restrictions on the
CSP that it tries to construct. To this end, the algorithm will annotate splittings
as follows: a piece is called fragile if it contains at least one breakpoint, and solid if

ababcdlabadcbbaalbabablababa

ababa lbabablabadcbbaalababcd

Figure 4.1: An instance of MCSP with a common string partition of size four.

88 CHAPTER 4. MINIMUM COMMON STRING PARTITION

it contains no breakpoint. To simplify the representation, the algorithm sometimes
merges consecutive pieces [a;, b;] and [a;y1,b;41] (Where b; = a;11) into one, that is,
it removes [a;, b;] and [a;41, b;11] from some splitting and adds the factor [a;, b;y1] to
this splitting.

To further restrict the CSP, the algorithm finds pairs of solid pieces in z and y
that are contained in blocks that are matched by the CSP. Accordingly, a pair of
solid pieces s in x and t in y is called matched in a CSP P if s is contained in a block
of P that is matched to a block that contains . Note that matched solid pieces may
correspond to different parts of their blocks. For example, one piece may contain
the first marker but not the last marker of its block in = and it can be matched to
a solid piece that contains the last but not the first marker of its block in y. Hence,
when looking at the two blocks containing the pieces, there can be a “shift” between
the matched pieces. We formalize this as follows, see Fig. 4.2 (left) for an example.

Definition 4.2 (Alignment). Let [a,b] be a piece of a splitting of x and [c,d] be a
piece of a splitting of y. The alignment of [a,b] and [c,d] of shift 0 is the pair of
reference markers a and ct> 9, where

~ (—ab) < < cd,

~ la,b] = [c>d,cp (ab+0)] and [c,d] = [a> (=5),ar> (cd — 0))].

Hence, an alignment fixes how the factor [a, b] is shifted with respect to [c,d] in
the matched blocks that contain the factors. That is, if [a, b] starts at position j in
its block, then [c, d] starts at position 7 —§. For matched solid pieces, an alignment
thus fixes which markers are matched to each other by the CSP. In particular, the
marker a is matched to c> 6 and ¢ is matched to a <. Note that the maximum
and minimum values allowed for § ensure that there is at least one marker in [a, b]
that is matched to a marker in [c, d| by a CSP corresponding to this alignment. The
algorithm will only consider such alignments between matched solid pieces. The
second condition verifies that all pairs of matched markers indeed correspond to
the same letter. Clearly, this restriction is fulfilled by every CSP that does not
put breakpoints in the solid pieces [a, b] and [c, d]. A pair of matched solid pieces is
called fized if it is associated with an alignment (equivalently, with a pair of reference
markers) and repetitive otherwise (the reason for choosing this term will be given
below). For a fixed solid piece s, we use s* as shorthand for the uniquely determined
reference marker of the alignment of s which is in the same string as s.

These restrictions on a possible CSP are summarized in the notion of constraints,
defined as follows, see Fig. 4.2 (right) for an example.

Definition 4.3 (Constraint). A constraint C is a tuple (S, F, M, Rg) such that:

— S is a set of solid pieces. Let S, (S,) denote the pieces of S from z (y).

— Fis a set of fragile pieces. Let F, (F,) denote the pieces of F' from x (y).

— The pieces of S, U F,, (S, U F,) form a splitting of x (y) in which solid and
fragile pieces alternate.

- M : 5, = S, is a matching, that is, a bijection between S, and S,. As
shorthand, we write s = M(s) if s € Sy and s’ = M~(s) if s € S,,.

— Rgs 1s a set of alignments that contains for each matched pair of solid pieces
at most one alignment.

Our algorithm will search for CSPs that satisfy such constraints.

Definition 4.4 (Satisfy). A CSP P satisfies the constraint C = (S, F, M, Rg) if:

4.1.2

4.1. FUNDAMENTAL DEFINITIONS AND ALGORITHM OUTLINE 89

S mmimmememememamae mecemememememam meemamememas

@ deldibcdleadb @lababecldalabaldchbalalbalbabablaba

rep
» abcldeadablcde ® abalakblababalblalbadcblbaalalbabcdl
€ g blcadae 9 abakalblababdalblalpadcDlbaaltalb
s

6=2

Figure 4.2: Left: Example of alignment between two pieces s and s’. Reference
markers are marked with a star, the shift is 2. Intervals having the same content as
the pieces according to this alignment are marked in gray. Note that there also exists
an alignment of shift —3, where the reference marker in y is the first occurrence of
a. Right: A constraint with three pairs of solid pieces illustrated by boxes. Two
of these pairs are fixed and one is repetitive (rep). Matched solid pieces are linked
with edges. The fragile pieces (red and dashed lines) contain the breakpoints (red
crosses) of a size-5 CSP satisfying the constraint.

All breakpoints of P are contained in fragile pieces.
Each fragile piece contains at least one breakpoint from P.
Matched solid pieces are contained in matched blocks in P.

If s is a fized solid piece, then markers s* and s are matched in P.

AN

If s is a repetitive solid piece, then s, s and the blocks containing them in P
all have the same shortest period.

Equivalent formulations of Conditions 1 and 2 are that (1) all solid pieces are
contained in blocks of P, and (2’) different solid pieces in the same string are in
different blocks. Given a CSP P that satisfies a constraint C, we call a block short,
or undiscovered by C, if it does not contain a solid piece (equivalently, if it is contained
in a fragile piece). The other blocks are called long or discovered by C.

Finally, we introduce the following notion that concerns reference markers and
fixed solid pieces.

Definition 4.5 (Equidistant). Let s and s’ be fized matched solid pieces in x and y.
Two markers a in x and b in y are equidistant from s if s*a = s'*b. Similarly, two
factors |a,b] in x and [c,d] in y are equidistant from s if a and ¢ are equidistant
from s and b and d are equidistant from s.

We will use this notation to talk about the “local environment” of the reference
markers in both strings. In particular, with this notation we can identify (sets of)
markers that are matched to each other if they are both in the same block as the
reference markers.

An Outline of the Algorithm

We now give a high-level description of the main idea of the algorithm; the
pseudo-code of the main algorithm loop is shown in Algorithm 4.1.1 For the dis-
cussion, assume that the instance is a yes-instance, that is, there exists a CSP P of
size k. Since we can check in polynomial time the size and correctness of any CSP
before outputting it, we can safely assume that the algorithm gives no output for

1. Parts of this algorithm, in particular the split procedure follow somewhat the approach of
Damaschke [61].

90 CHAPTER 4. MINIMUM COMMON STRING PARTITION

Algorithm 4.1 FPT algorithm for MCSP(z, y, k) (main loop).
O« {ieNJi<nATjeN:2 =4}
P C S 0, F « {[z[1], z[n]], [y[1], y[n]]}, M < 0, Rs « 0}
// initially only two fragile pieces

N —

3: for each II' C II with maxIl' > [n/2k| A |IT'| < k :
4: B+ maxIl'; TI' + I U {0} — {8} // 2-approz. length of longest block
a: repeat until g < 4 :
6: split // discover blocks of length at least 3
7: B+ maxIT'; II' + II' — {8} // update length of longest undiscovered blocks
8: frames /] reduce length of fragile pieces
9: branch into all cases to set breakpoints within fragile pieces
10: if the resulting string partition P is a size-k CSP : output P

no-instances; hence the focus on yes-instances. The algorithm gradually extends a
constraint that is satisfied by a solution P and outputs P eventually. Initially, the
constraint consists solely of two fragile pieces, one containing all of z and one all
of y. We assume that the input strings are not identical. Hence, every CSP has at
least one breakpoint and the initial constraint is thus satisfied by every size-k CSP.

The algorithm now aims at discovering the blocks of P successively, from the
longest to the shortest. Recall that a block is called discovered by a constraint C if
there is a solid piece in C that is contained in this block. To execute the strategy of
finding shorter and shorter blocks, the algorithm needs some knowledge about the
approximate (by a factor of 2) length of the longest undiscovered block in P. To this
end, the algorithm keeps and updates an integer variable § which has the following
central property: Whenever there is a size-k CSP satisfying the current constraint,
then there is in particular one size-k CSP P such that

1. the longest undiscovered block of P has length ¢ with 5 < ¢ < 2/, and
2. [is minimum among all integers satisfying Property 1.

Accordingly, we call a block S-critical if it has length ¢ with g < ¢ < 28. To
obtain [, we consider all subsets II' of the set II containing all powers of 2 that
are smaller than n. One of these sets will contain the “correct” approximate block
lengths. The central strategy is: Set to be the largest value in II'. Discover all
[-critical blocks. Then, there is a satisfying CSP such that all undiscovered blocks
are shorter than the current S. Thus update § by taking the next largest value
from IT". Then, again discover all S-critical blocks, update 3 again and so on.

First, note that there is at least one block of length at least [n/k] since P has
size k, so maxIl’ > [n/2k]. Furthermore, for any CSP of size k, |II'| < k. Hence,
the outer algorithm loop of Algorithm 4.1 is traversed once for the correct IT'. Note
furthermore, that the number of subsets of I is O(26") = O(n). Hence, there
are O(n) traversals of the outer loop of the main method.

Consider now the traversal for the correct set IT'. The inner loop of the algorithm
consists of two main steps. In the first step, called split, the algorithm discovers
the [-critical blocks. More precisely, it refines C by breaking fragile pieces into
shorter pieces (of length [/5/3]) and identifying those that are contained in -critical
blocks. It then produces a matching and, if this is possible without considering too
many options, aligns these blocks.

To be efficient split requires that the input fragile pieces are short enough
compared to # and k. Initially, this is not a problem, since the fragile pieces have

4.2

4.2. SPLITTING OF FRAGILE PIECES 91

length n, and 5 > n/2k. After split, however, we update §. Hence, between two
calls to split the fragile pieces have to be reduced in order to fit the undiscovered
blocks more “tightly”. This is the objective of frames, which uses a set of rules to
identify smaller factors containing all breakpoints of P. It thus shrinks the fragile
pieces of C so that they are sufficiently small for the next call to split.

The algorithm now continues with this process for smaller and smaller values
of 5. It stops in case § < 4, since it can then locate all breakpoints by applying a
brute-force branching. Note that in order to ensure that there is always a § < 4, we
add the value 0 to set IT' in Line 4 of the main method.

In the remainder of this work, we give the details for the procedures split and
frames. In Section 4.2, we describe the split procedure, and show its correct-
ness. We also show, using several properties of frames as a black box, our main
result. Then, in Sections 4.3 and 4.4, we fill in the blanks by proving the properties
of frames.

The algorithm is a branching algorithm that extends the constraint C in each
branch. In order to simplify the pseudo-code somewhat, we describe the algorithm
in such a way that the variables C and 3 are global variables. After a branching
statement in the pseudo-code, the algorithm continues in each branch with the
following line of the pseudo-code. If a branch is known to be unsuccessful, then the
algorithm returns immediately to the branching statement that created this branch
(or to the branching statement above, if the current branch is the last branch of
that statement). We denote this by the “abort branch” command; all modifications
within this branch are undone.

Splitting of Fragile Pieces

In this section, we describe the procedure split and show its correctness. The
pseudo-code of split is shown in Algorithm 4.2. At the beginning of split the
constraint contains a set of discovered blocks. Assume that all blocks of length at
least 23 are discovered by this constraint. The aim of split now is to perform a
branching into several cases such that in at least one of the created branches the
constraint C now additionally contains all S-critical blocks. Hence, in this branch all
blocks of length at least [are discovered. Procedure split starts by replacing each
former fragile piece by a splitting where all new pieces have length [3/3] except for
the rightmost new piece of each such splitting which can be shorter. We call such a
splitting a [3/3]-splitting. It then considers all branches where each piece is either
fragile or solid. In order to maintain the alternating condition, consecutive solid
(resp. fragile) pieces are merged into one solid (fragile) piece, Lines 7-9.

Next, split extends the matching and the set of alignments of the constraint. All
possible matchings are considered in separate branches (Lines 12-13). Then, split
performs an exhaustive branching over all alignments for a given pair of solid pieces,
but only if there are very few of them (Line 16). If there are too many (Line 17),
then it can be seen that the pieces are periodic with a short period length. Thus, the
blocks containing them might be periodic as well. If the blocks are not periodic, then
there are at most two alignments that the algorithm needs to consider: informally,
the period in the blocks can be “broken” either to the left or to the right of the pieces.
To specify these two possibilities more clearly, we introduce the following notation.
Let s = [a,b] be a factor in a string x such that s has period 7. Then, we denote

92 CHAPTER 4. MINIMUM COMMON STRING PARTITION

Algorithm 4.2 Procedure split. Global variables: C = (S, F, M, Rs) and (.

: N« 0 // the set of new pieces
: for each fragile piece f € F' :
F«+ F—{f} // old fragile pieces are removed
N + N U “[/3]-splitting of f” // update set of new pieces
for eachpe N : // make p either fragile or solid
branch into the case that either S <— SU {p} or F < FFU{p}
while 3 consecutive pieces p1,p2 s.t. {p1,p2} C S (or {p1,p2} C F) :
p < “merged factor of p; and py”
S« (SUp) = {p1,p2} (or F' « (FUp) — {p1,p2})
. if S| # |Sy| : abort branch // no bijection of solid pieces exists
. if |Fy| > k or |Fy| > k : abort branch // too many fragile pieces in x (ory)
: while 3 unmatched solid piece s € S, :
branch into the case that M (s) < t for each unmatched solid piece ¢ in S,
: for each new pair (s,t) of matched solid pieces :
15: i< “number of alignments with shift ¢ s.t. |0] < [5/3]”
16: if ¢ <6 : for each alignment branch into the case to add this alignment to Rg
170 else: branch into the cases to: // s and s’ are periodic
— align s and s’ such that lpear(s) and lpreax(s') are equidistant from s
— align s and s’ such that rpear(s) and rpeax(s’) are equidistant from s
— do not align s and &’

IS IS AR o

—_— = =

by lbreak(s) the rightmost marker in « such that [lpeax($), b] does not have period 7.
Similarly, let rpear(s) be the leftmost marker in = such that [a, rpreax(s)] does not
have period 7. If the blocks are periodic, there may be too many possible alignments,
and the alignment between the pieces will be fixed at a later point (when /3 becomes
smaller than the period). However, the algorithm will use the “knowledge” that the
blocks are periodic in the frames procedure.

We now show that split is correct if the input constraint can be satisfied and
that it discovers all S-critical blocks.

Lemma 4.1. Let C be the constraint at the beginning of split, and let P be a size-k
CSP satisfying C such that all blocks of length at least 25 of P are discovered by C.
Then, split creates at least one branch whose constraint C

— 18 satisfied by P, and

— all blocks of length at least B are discovered by C

Proof. Let B = {(x',y'),..., (2% y")} be the uniquely defined set of matched pairs
of undiscovered blocks in P that are S-critical.

Consider the following branching for Lines 5-6 for each piece p € N: If p is
contained in some block z° or ¢’ of B, then branch into the case that p is added
to S. Otherwise, branch into the case that p is added to F' (note that we may add
in F' some pieces that do not contain any breakpoint, but are contained in blocks
not in B).

Now consider the constraint obtained for the above branching after the merging
operations performed in Lines 7-9. We show that P satisfies Conditions 1 and 2
of this constraint. First, consider a breakpoint in P. This breakpoint is contained
in some fragile piece f of the input constraint since P satisfies this input con-
straint. Hence, it is contained in some new piece p of the splitting of this fragile
piece. Clearly, the piece p is added to F' in the considered branching. Moreover,
in case Lines 7-9 merge fragile pieces, the resulting piece is also fragile, hence p

4.2. SPLITTING OF FRAGILE PIECES 93

remains in a fragile piece. Consequently, all breakpoints of P are in fragile pieces
of F', and thus Condition 1 is satisfied by P.

Now consider a fragile piece f € F' after Lines 7-9 of the algorithm. We show
that f contains at least one breakpoint. Note that f is obtained after a (possibly
empty) series of merging operations. After the merging, f is between two solid
pieces. If f is also a fragile piece in the input constraint, then f contains a breakpoint
since P satisfies the input constraint. Otherwise, f is contained in a fragile piece of
the input constraint, and at least one of its neighbor pieces is a new solid piece s.
Since f (or all the smaller pieces that were merged to f) are added to F' by the
branching, they are not contained in the block that contains s. Hence, f contains
the breakpoint between the first (or last) marker of the block containing the new
solid piece and its predecessor (or successor). Thus, Condition 2 is also satisfied
by P.

Note that the above also implies that, for each z° of B, there is exactly one new
solid piece that is contained in z%. Similarly, for each y* of B, there is exactly one
new solid piece that is contained in y’. Note that in this branching, [S,| = |S,|
and furthermore, since P has size k, |F,| < k and |F,| < k. Hence, the algorithm
does not abort in Lines 10 and 11. We now consider the branching in which for
each pair (2%,9"), the two corresponding solid pieces are matched to each other.
Clearly, this branching fulfills Condition 3: the condition holds obviously for all
pieces contained in blocks of B. Furthermore, it holds for all old solid pieces since
for these, the matching M has not changed. Note that the function M also remains
a bijection: it is changed only for unmatched solid pieces, and the number of new
solid pieces in z and y is equal.

It remains to show that there is a branching in which Conditions 4 and 5 also hold.
Consider a pair of matched solid pieces s and s’, and the blocks 2, 4’ containing
them. We use the following technical claim in order to clarify the discussion; it will
be proven afterwards.

Fact. Tf there are more than six alignments of s and s’ whose shift have

an absolute value of at most [3/3], then

i. s and s are periodic with the same shortest period 7 (with ||| <
83

ii. if the blocks z* and y* do not have period m, then in P either lyeax ()
is matched to lprear(s'), OF Ihreak($) is matched t0 Tpear(s’) (or both).

Let a be the leftmost marker of s and @ be the marker matched to a in P. Then {a,a}
is an alignment for (s,s’) whose shift has an absolute value less than [5/3]: there
are at most [3/3] — 1 markers preceding either s or s’ that can belong to the same
block since the pieces of the [5/3]-splitting preceding s and s are fragile and thus
not contained in the same blocks. If the condition of Line 16 is satisfied, then there
is one branch where alignment {a,a} is added to Rg. Otherwise, by the fact above,
the following cases are possible. Either {a, a} is one of the alignments where ly,.eax ()
is matched to lprear(s’) OF Threak(s) is matched t0 rpeak(s’), in which cases {a,a} is
added to Rg in one of the branches. Otherwise, (s,s’) is not fixed, and s and s’ are
contained in blocks having the same shortest periods.

Altogether this shows the first claim of the lemma. The second claim can be seen
as follows. The blocks of length ¢ > 2/ are already discovered, and the corresponding
solid pieces remain in the constraint. It thus remains to consider the S-critical blocks.
We show that for each 2% there is at least one piece that is contained in x?. Consider
the marker a at position [3/3] in 2" and a piece s of the [(/3]-splitting that contains

94 CHAPTER 4. MINIMUM COMMON STRING PARTITION

this marker. Then s contains only markers from z* since s has length at most [3/3]
and z° has length at least 8 > 2[3/3] (for 8 > 4). Afterwards, s is only merged
with other pieces that are contained in z° (recall that in the considered branching
there is a fragile piece between all solid pieces from different blocks). Hence, the
second claim of the lemma also holds.

It remains to show the correctness of the claimed fact. We first need to prove
the following claim. Define the [8/3]-middle of a factor [u,v] as the length-[5/3]
factor centered in [u, v] (formally, the factor [a, 0] with & = u> | (wo —[5/3])/2] and
v =wv<[(uv— [B/3])/2]). Then s contains the [3/3]-middle of z* and s’ contains
the [3/3]-middle of y'.

The claim is shown for s = [a, b] (the proof for s is similar). Write x* = [u, v],
and [@, 0] the [3/3]-middle of z*. First note that since ’ has length at least 3, we
have wo > 3 — 1. We show that a is in the factor [u,d]:

u — [8/31)/2]
p—1-18/31)/2]
128/3] = 1)/2]
26/3 - 1.7)/2]
/3 —0.85]

B/3] = 2.

Since the piece with right endpoint a in the [/3/3]-splitting is fragile (it has not been
merged with s), it contains a breakpoint of P and hence a marker strictly to the
left of u. Moreover it has length at most [3/3], so ua < [$/3] — 2, which implies
that a is in the factor [u, @]. Similarly, b is in the factor [0, v], and [a, b] contains the
[5/3]-middle of z".

We can now turn to proving the two statements of the fact.

(i) Let s = [a,b], s = [d,V] and d1,0s,...,0,, be the shifts of the m > 7
alignments such that —[5/3] < §; < < ... <0, < [5/3]. Write i the index such
that ;.1 — 0; is minimal, and p = ;.1 — d;. We thus have

2[B/3]
m—1
<[B/31/2

Recall also that both s and s’ have length at least 2[3/3] — 1. Let ¢ be an integer
with p < ¢ < ab. Using the second condition in the definition of alignment, we have

Q)
I

(@0
L(
It
L(
18
[

VvV IV IV IV IV

IA

p

arqg=a>(0;+q) (since a>q € [a,b])
=a'> (01 +q— D)
= as(g—p) (since av(g—p) € [o,b])

Thus factors [a, b] and (symmetrically) [a’, V'] are both periodic with period length
p: the shortest periods of s and s’ have length at most [3/3]/2.

Since s and s' both contain the [/5/3]-middle of the matched blocks in which
they are contained, they have a common substring of length greater than twice their
shortest periods. They thus have the same shortest period.

(i) Recall that x' (y') is the block containing s (s') in P. Write [a, 0] ([¢/,?'])
the [(/3]-middle of x* (y*). Since [4,9] C s and ||[@,0]]] > ||7]|, we have that

4.2. SPLITTING OF FRAGILE PIECES 95

lhreax(s) is the rightmost marker in x and lpear($) is the leftmost marker in = such
that factors [lpreax(s), 0] and [, Ipreax(s)] do not have period m. We have the similar
property for lyeak(s’) (Tpreax(s’)) and o' (a').
Since ' contains [i,], then either x; has period 7, either it contains lpea(s)
OT Tpreak(S). Suppose that 2 contains lpea(s) (the case where x' contains rpyeqr(s)
is similar). Write I’ the marker in y* matched to lpear(s) by P. Then [I',0] =
[lbreak ($), 0] does not have period 7, and for all m’ € [I' > 1,7], [m/,?'] has period
m. Thus, I’ is the rightmost marker such that [I’,?'] does not have period 7, and
" = lpreax(s'): markers lyrear(s) and lpeax(s’) are matched in P.
]

The following trivial observation follows from the check in Line 11 of split. It
is useful for bounding the running time of split (in particular for later calls to
split).

Observation 4.2. After split has finished, the constraint contains at most 2k — 2
fragile pieces from each of x and y. The overall number of solid pieces is thus at
most 2k.

To obtain a fixed-parameter algorithm for parameter k, we now “shrink” the
fragile pieces between the solid pieces of the constraint. This will ensure that in
the next call to split, the number of new pieces created in the splitting will be
bounded by a function of k. Note that by Lemma 4.1, split has discovered all
pieces that have length at least §. Hence, we now update the value § denoting
the approximate length of the longest short blocks (by taking the largest remaining
value from IT). Then, frames uses this updated value of § to shrink the fragile
pieces. For the moment, we make some claims about frames; their proof is deferred
to the Sections 4.3 and 4.4. First, we claim that frames is correct, that is, there is
at least one good branching for yes-instances.

Lemma 4.3. If there exists a size-k CSP P satisfying C at the beginning of frames
such that the longest undiscovered block is (-critical, then frames creates at least
one branch such that the constraint in this branch is satisfied by a size-k CSP P’
whose longest undiscovered block has length at most 23 — 1.

Second, frames increases the exponential part of the running time by a factor
that depends only on k.

4k? | LO(k

Lemma 4.4. Ouverall, the calls to frames create (4k)) branches; all other

parts of the algorithm can be performed in poly(n) time.

Finally, to bound the number of branches in the subsequent call to split, and
for the case § < 4, we use the following lemma.

Lemma 4.5. When frames terminates, every fragile piece has length at most 12(k*+

k)kB.

Note that the above also holds before the first call of split. Using these lemmas,
we obtain our main result.

Theorem 4.6. The MINIMUM COMMON STRING PARTITION problem can be solved
in k2K poly(n) time; it is thus fized-parameter tractable with respect to the partition
size k.

96 CHAPTER 4. MINIMUM COMMON STRING PARTITION

Proof. For the correctness proof assume that the instance is a yes-instance (for a
no-instance the algorithm can always check the correctness and size of a CSP before
returning, thus it has empty output for no-instances). Then, assuming that the
input strings are not identical, there is a CSP P satisfying the initial constraint C
which demands only that there is at least one breakpoint in x and in .

We now show that there is a set II of powers of 2, all of which are smaller than n
such that the algorithm outputs, in at least one of its branches, a size-k CSP, in
case the main algorithm loop is traversed for this set II'.

Let 8 be the smallest integer such that there is a size-k CSP in which the longest
block is f-critical. Then, the largest integer of II" is 8. Now, if 8 < 4 the algorithm
directly finds all breakpoints by a brute-force branching. Otherwise, the procedure
split is called. By Lemma 4.1, this procedure creates at least one branch where the
constraint is satisfied by some size-k CSP P and all its blocks of length at least 3 are
discovered by C. Consider an arbitrary branch with this property. Now, let 8 denote
the smallest power of 2 such that there is a CSP satisfying the current constraint C
in which the longest blocks are -critical. This integer [is the second largest integer
of II". The algorithm now calls frames and by Lemma 4.3 obtains in at least one
branch a constraint such that there is a size-k CSP that satisfies the constraint in
this branch. Furthermore, also by Lemma 4.3 the longest undiscovered block in this
CSP has length at most 25 — 1. By the choice of 3, it follows that the longest
undiscovered block of this CSP is f[-critical. Now, the algorithm either finds all
breakpoints by brute-force (if 5 < 4) or again calls the procedure split to discover
all p-critical blocks. This whole procedure is repeated for smaller and smaller j3,
each time [is defined as the smallest power of two such that there is a size-k CSP
satisfying the current constraint C whose longest undiscovered block is [S-critical.
The set I’ contains exactly all integers obtained this way. Eventually, § < 4 and
the algorithm branches by brute-force into all cases to set the breakpoints without
violating the current constraint. Clearly, one of these cases is equivalent to a CSP
satisfying this constraint. The algorithm verifies that this is indeed a CSP and that
it has size at most k and correctly outputs the CSP. Hence, the algorithm is correct.

It remains to show the running time of the algorithm. First, the for-each-loop
in the main method is executed O(2!°6") = O(n) times. Second, by the restriction
on II', the repeat-loop in the main method is executed at most k times. To obtain
the claimed running time, we bound the number of branches created in each call
to split.

In each call to split the total length of the fragile pieces is less than (2k)12(k*+
kK)kB = 24(k* + k*)3: In the first call, 3 > n/2k, so the bound holds. In the
other cases, there are, by Observation 4.2 at most 2k — 2 fragile pieces in x and y.
Furthermore, in this case split is called after frames. Thus, by Lemma 4.5, each
fragile piece has length at most 12(k* + k)k3, and the overall bound follows.

The procedure splits the fragile pieces into new pieces of length at most [5/3]
(i.e. there is a distance [3/3] — 1 between the left endpoints of two consecutive
pieces of the same splitting). Since § > 4, we have [5/3] — 1 > (/6. Hence, this
creates less than 144(k* +k?®) new pieces of length [3/3] plus at most one additional
shorter piece at the end of each fragile piece. Hence, 145k* is an upper bound on
the number of new pieces. Branching for each piece into the case that it is solid or
fragile can be done in 2'45%" branches. The number of necessary branches for this
part of split can be reduced as follows: Since we merge series of consecutive pieces
in F or S, and since we do not need to consider branches with more than k& solid

4.3

4.3. PUTTING FRAMES NEXT TO FIXED PIECES 97

pieces, we can directly look for the first and last piece of each [S-critical block. This

creates O((li5kk4)) = O((lél(ig!)uz) branches in each call of split.

The matching requires up to k! branches, and the alignment at most 6. Since
145%k16% = o((4k)!), we can bound the number of branches in each call of split
by k%, The split procedure is called at most k times (by the restriction on II),
thus creating O((/{:wk)k) = O(k'®) branches throughout the algorithm. Finally,
the number of branches created in frames is (4k)%*" - k%) by Lemma 4.4, and the
number of branches created in the final brute-force can be bounded as follows. The
length of the fragile pieces is O(k*+ k3) and we need to guess at most 2k — 2 precise
breakpoint positions from this number. This can be done with £°*) branches.

Finally, note that all other steps of the algorithm can be clearly performed in
polynomial time. Altogether, the total running time of the algorithm thus is

O(k*n) - K% . k0K . (4k)* . kOF) . poly(n) = k*™* poly(n).

Putting Frames Next to Fixed Pieces

In this and the next section, we prove the two claimed lemmas concerning frames.
Informally, we show that, with the right constraint in the beginning, frames finds
a constraint C that is satisfied by a size-k CSP P whose longest undiscovered block
has length at most 23 — 1. Moreover, the length of each fragile piece is O(k?3)
in every constraint produced by frames. The pseudo code of frames is shown
in Algorithm 4.3.

The approach of frames is to use a set of reduction rules to put “frames” into
the fragile pieces, where a frame is a factor within the fragile piece that contains
all breakpoints that are contained in this piece. We call the actual shortest factor
containing all breakpoints of a fragile piece a “window”, defined as follows. Let P be
a size-k CSP satisfying C, and let f be a fragile piece in C. The window of f is the
factor [a, b] such that {a,a> 1} is the leftmost breakpoint of P in f and {b<1,b} is
the rightmost breakpoint of f. Since a frame is required to contain all breakpoints
of a fragile piece it can be seen as a “super”-approximation of the actual window. A
formal definition of frames is as follows.

Definition 4.6 (Frames). Let C be a constraint. A frame |a,b] for a fragile piece f
of C is a factor that is contained in f. A frame set for C is a set ® of frames
such that each fragile piece f contains at most one frame. A CSP P that satisfies C
satisfies a frame set ® for C if each breakpoint of P is contained in some frame of ®.

The approach to add the frames to the constraint can be summarized as follows:
first, we compute an upper bound w on the length of the windows that only depends
on § and k. The w = 20k + 1 is easily obtained since each window can contain
at most k£ undiscovered blocks of maximum length 25. Then, we apply a series of
frame rules that eventually place a frame in all fragile pieces (Lines 4-5). As we
will show, the frame length then depends on w (and thus on k and) and on the
maximum period length of the unfixed (repetitive) solid pieces. Since the frames
contain all breakpoints of P, it is possible to reduce fragile pieces until they “fit”

98 CHAPTER 4. MINIMUM COMMON STRING PARTITION

Algorithm 4.3 Procedure frames. Global variables: C, f3.

1w+ 2Bk +1 // upper bound on window length
2: repeat :

3: Compute the maximum extension of each solid piece,

the piece graph G[C, ® + ()], and the strips of each rep—rep path

4 while there is a frameless fragile piece : // place frames in fragile pieces
5: apply Frame Rules 1-6

6: for each fragile piece : apply Fitting Rule 1

7: new-align < False /] fix pieces with long periods

8: for each repetitive solid piece s (with period 7y) :

9: if all fragile pieces adjacent to s or s’ have length at most 6(k? + k) ||7s|| :
10: for each feasible alignment branch into the case to add this alignment to Rg
11: new-align «+ True

12: until new-align = False

their frames (Line 6). We now check whether there are some unfixed solid pieces
with a long period compared to w. If this is the case, then the number of “feasible”
alignments for these pieces is small, and we can thus branch how to align these pieces
(Lines 7-11). Formally, we call an alignment of s = [a,b] and s’ = [da',V/] feasible
for C if the factor equidistant to [a,b] ([a’,b']) from s does not intersect any other
solid piece than s’ (s) in C. Note that each satisfying CSP can only have feasible
alignments, otherwise there is at least one fragile piece without breakpoints.

Afterwards, we go back to applying the frame rules (we will obtain shorter frames
since the number of fixed pieces has increased). If this is not the case, that is, all
periods are short compared to w, then we show that the maximum frame length
depends only on w. Hence, in this case they are sufficiently short, and the frames
procedure has achieved its goal. The algorithm thus returns to the main method
where it calls split to find new solid pieces.

In this section, we describe the frame rules that place frames in fragile pieces
which are next to fixed pieces and some further simple frame rules. Before doing
so, we define two concepts that will be used by the frame rules: mazimum exten-
sions and the piece graph. Roughly speaking, maximum extensions are used locally
to bound the position of some breakpoints in the fragile pieces. The piece graph
provides a structural view of the relationship between pieces and is used to show
that one of the frame rules can always be applied in case there is a frameless fragile
piece.

Maximum extension of solid pieces. Let s be a solid piece in a constraint C.
The mazimum extension of s is the factor [lexi (), rexs(s)] containing s where re(s)
and ley (s) are defined as follows. If s is fixed, then let ¢ be the largest integer such
that [s*, s* > (] = [s"™*, " > (], and that no marker of [s*, s* > ¢] or [, s > /] is in
a solid piece other than s or s’. Then rey(s) = s> ¢ and re(s') = s* > 0. If s
is repetitive with shortest period 7, then let a be the leftmost marker in s and
define rey(s) as the rightmost marker such that the factor [a, rey(s)] has period 7y,
and that no marker in [a, e ()] is in a solid piece other than s. Marker loy(s) is
obtained symmetrically.

The following proposition is a straightforward consequence of the definition of
maximum extension.

4.3. PUTTING FRAMES NEXT TO FIXED PIECES 99

s t (v) T —
(@) b c dle £ g hXij jxk 1 [w*n _d . I l
>< (1‘)—_%_*
// \\ t
W Fbclde fghxilz ... zlghi Xk[Lmond | !
s’ t (v) c— |

Figure 4.3: Left: two pairs of fixed solid pieces (s, s’) and (¢,t"). Reference markers
are shown with an asterisk, maximum extensions are delimited with dashed lines,
and the breakpoints of some possible CSP are marked with red crosses. Right: a
simplified representation of the same pieces, where thick (resp. thin) lines are used
for solid (resp. fragile) pieces.

Proposition 4.7. Let s be a fized solid piece, and let [a,b] and [c,d] be two fac-
tors that are equidistant from s and such that [a,b] is contained in [lex(8), Text(S)]
and [c,d] is contained in [lext(s'), Yext(s')]. Then, [a,b] = [c,d].

Note that, as a special case, the above proposition includes single markers (that
is, length-one factors). The next proposition simply states formally that the maxi-
mum extensions of a solid piece contain the block which contains the solid piece.

Proposition 4.8. Let C be a constraint and s be a solid piece of C. Any CSP
that satisfies C has a block which contains s and is contained in [lext(S), rext ()]
Furthermore, let f be a fragile piece next to s. Then, the window in f contains at
least one marker of [lext(s), Text ()]

Proof. 1f s is fixed, then the block containing s cannot contain the marker loy(s)<1:
if this marker is contained in the block, it is matched to le(s") < 1. By definition
of lext(s), either loy(s) 91 #Z lexi(s') <1 or one of leyi(s) <1, lx(s’) <1 belongs to
a different solid piece t. In the first case, we do not obtain a CSP; in the second
case, there is at least one fragile piece without a breakpoint. Similarly, the block
containing s cannot contain rey(s) > 1.

Every repetitive solid piece s is contained in a block which is periodic with the
same shortest period 7 as s. By definition of lox() and re() for repetitive solid
pieces this block must thus be contained in [lext(s), Text(S)]-

Finally, consider a fragile piece f to the right (to the left) of s. The window
in f contains the last (first) marker of the block containing s. By the above it thus
contains at least one marker of [lexi (), Texs(S)]- O

The Piece Graph. Given a constraint C and a frame set ®, the piece graph
GIC, @] is the bipartite graph G = (Vs U Vp, E) constructed as follows.
— Vr contains one vertex vy for each frameless fragile piece f € F,
— Vs contains, for each repetitive solid piece s € S, a vertex v, and for each
fixed piece s € S,, two vertices l; and r, (for left and right).
— For a fixed solid piece s and a fragile piece f € F, G contains the edge {vy, [}
if the last marker of f is the first marker of s or of &, and the edge {vf, 75}
if the first marker of f is the last marker of s or of &'
— For an unfixed solid piece s, G contains the edge {vy,v,} if the first marker
of f is the last marker of either s or s’ or if the last marker of f is the first
marker of either s or s'.

100 CHAPTER 4. MINIMUM COMMON STRING PARTITION

Frame Rule 1. Frame Rule 2.
(=T === 1 S
(x) __{ﬁﬁf}_*
@ T — o |
-— 1 Y >k
U (y) ——E_T
Frame Rule 3. Frame Rule 4.
3w
51 (m==—v v 52

()

S1 So

Frame Rule 5. Frame Rule 6.
2w + |||
m

(z) X% H (z)

(rep) \\ I (rep)
() \ ' ()
51 Sg

Figure 4.4: Frame Rules 1-6 of frames. Frames are drawn as red boxes, the frame
created at each step is dashed. Possible breakpoint positions in P are shown as red
crosses.

Note that the vertices vs or [, and 7y are only defined for pieces s € S,, but they
represent both pieces s and s’. Observe furthermore that in case Vp # (), there are
fragile pieces in C that do not have a frame in ®. Moreover, note that in this case
the edge set of the piece graph is nonempty. Our aim will thus be to gradually apply
the frame rules until the piece graph is edge-less. Fach vertex is called fragile, fixed
or repetitive depending on the nature of the piece it represents. Note that most
vertices of the graph have degree at most 2, except for repetitive vertices which can
have degree up to 4. Vertices with smaller degree correspond initially to the four
pieces at the end of the sequences.

In order to deal seamlessly with pieces at the end of the input strings (where no
fragile piece is adjacent on one side), we introduce “phantom frames” as follows. If s
contains the first element of a string, i.e. z[1] or y[1], we say that s has the phantom
frame [z]0], z[1]] (resp. [y[0],y[1]]) to its left. Likewise, if s contains x[n| or y[n], it
has the phantom frame [z[n], x[n + 1]] (resp. [y[n], y[n + 1]]) to its right.

We now have collected the prerequisites to state Frame Rules 1 to 3 (Frame
Rules 4 to 6 use the notion of rep—rep path and strip, they are defined in Section 4.4).
A frame rule is an algorithm that receives as input a constraint C and a frame set ®
and updates both into a constraint C’ and a frame set ®’. A frame rule is correct
if the following holds. First, if there is a size-k CSP P satisfying C and ®, then
there is also a size-k CSP P’ satisfying C" and ®’. Second, the longest undiscovered
block in P’ is at most as long as the longest undiscovered block in P (this additional
restriction will be used to argue that the choice of 8 remains correct). Note that
wlog., we describe all rules so that they consider a frameless fragile piece in z but
they apply equally to fragile pieces in y. Finally, we state the additional frames of
all rules by defining a factor which contains the window, in order to ensure that
the frames are within the fragile pieces, we always intersect this factor with the
considered fragile piece f. The first rule puts frames into fragile pieces at the end
of the string.

4.3. PUTTING FRAMES NEXT TO FIXED PIECES 101

Frame Rule 1. If the piece graph contains a fragile degree-one vertex vy, then f
contains either x[1] or x[n]. If f contains x[1] add fN[z[1], z[1]>w] to ®, otherwise
add f N [z[n|<w,zn]] to .

Proof. Fragile pieces of x that do not contain the first or the last marker of = are
preceded and followed by a solid piece (since the splitting is alternating) and thus
the corresponding vertex in the piece graph has degree two. Hence, a fragile piece
in x corresponding to a degree-one vertex of the piece graph contains either the first
or the last marker of . Assume wlog. that f contains z[1]. The leftmost block of
P in x is necessarily a short block since it is contained in the fragile piece f. Hence,
marker z[1] belongs to the first undiscovered block of P. Since the window (which
contains all undiscovered blocks in f) has length at most w, it is contained in the
created frame [z[1], z[1] > w]. O

Frame Rule 2. If the piece graph contains a degree-one vertez ls (or r4, the rule is
symmetrical) with neighbor vy such that f is next to s, then: let [s™* <u, s <v] be the
(possibly phantom) frame to the left of s' iny; add the frame fN[s*<(u+w—1)), s*<w]
to ®.

Proof. Consider first the case where [s"* <u, s <v] is a phantom frame: in this case,
s <wvis y[l] and w = v + 1. Hence, y[1] is the first element of the block containing
s'. Since y[1] and s* <v are equidistant from s, s*<v is the first element of the block
containing s and the last element of the window in f. Since the window has length
at most w—1, it is contained in the frame [s*<(v+w), s*<v] = [s*<2(u+w—1)), s*<v].

Consider now the (regular) case where ¢’ has a fragile piece g to its left. By
the frame definition, all breakpoints of a satisfying CSP P that are in g are within
[<qu, s <v]. Hence, s <wv is in the same block as s’. Consequently, the right limit
of the window in f is to the left of s*<wv in f. Similarly, s <w is in a different block
than s” and thus there is a breakpoint to the right of s*<u in f. All other breakpoints
in f can have distance at most w from this breakpoint. Hence, all breakpoints in f
are contained in the created frame [s* < (u 4 w — 1), s* <. O

The above rules are relatively straightforward inferences of frame positions that
can be made because the piece graph has degree-one vertices. We now show some
more intricate rules that deal with the remaining cases. In particular, we show how
to deal with cycles in the piece graph. We first consider cycles without repetitive
solid pieces. Note that the following rule performs a branching. We thus extend
the correctness notion to hold if there is at least one branch in which the created
constraint and frame set can be satisfied.

Frame Rule 3. If the piece graph contains a simple cycle without repetitive vertices,
then create one branch for each edge {vs,us} of this cycle. In each branch, add to ®
the frame

— [N lext (8) Qw, lext (8) > (2w)] if us =I5 for some solid piece s, or

— [N [rext(8) < (2w), rext () > w] to f if us = rs for some solid piece s.

The following is a straightforward property of constraints and satisfying solutions
and used for showing the correctness of Frame Rule 3.

Proposition 4.9. Let s be a fized solid piece in a constraint C. If markers a and o
are equidistant from s, then for any integer i, a>1i and a’'>1 are equidistant from s.
Moreover, given a CSP P satisfying C, the first markers (the last markers) of the
blocks of P containing s and s’ are equidistant from s.

102 CHAPTER 4. MINIMUM COMMON STRING PARTITION

~

S1

(f1:m)

(f2:y)

(f3:2)

(fary)

(4
&
@ w ® @
Vb\l*_*lg M\l*_*lw
®
D
'oﬂ’k ff'-x-—'cj’k ﬁ.”'-x—

Figure 4.5: Tllustration for the first part of the correctness proof of Frame Rule 3.
If two fragile windows f;, f; with different parity have several breakpoints (here,
i =1 and j = 4), then we can shift the position of the leftmost breakpoint in each
fragile piece of the path to reduce the length of short blocks. The modifications
(breakpoints added or deleted) are shown as red circles.

Proof. The first part is directly obtained by definition:
s*(a>i) = s*a+1i=s"a +1i=s"(a>i).

For the second part, simply note that if s* is at position j in the block containing s,
then s™ is also at position j in §’. Hence, the first markers (and thus also the last
markers) of both blocks are equidistant from s.]

Proof. Let P8 be the set of CSPs that satisfy the constraint C and frame set ® and
additionally have a minimum total length of short blocks. We show that there is
a P € P which has all breakpoints in [lex(s) <w, lext(s) > (2w)] for some vertex [of
the cycle, thus showing correctness of the rule.

Since the piece graph G[C,®] is bipartite with partition Vs and Vg, the cy-
cle alternates between vertices of Vs and Vr. Moreover, all cycle vertices from
Vg are fixed, and alternate between left and right vertices (each fragile vertex of
the cycle is adjacent to a left vertex and to a right vertex). Hence there ex-
ist solid pieces sq,s9,...,s, and fragile pieces fi, fo,..., fo such that the cycle is
(Lsys Vs Tsys Vs o ooy bsy 1y Uf_y 5 Tsy, g,). For simplicity, we consider indices only mod-
ulo ¢ (that is, sy 1 = s1, fo = fe, etc.), and we assume that fragile pieces with odd
indices are in x and those with even indices are in y. Consider a CSP P € P such
that there is no s (rs) with an adjacent window contained in [loxt () <9w, lext (5)>(2w)]
([rext(s) < (2w), rext(s) > w]). We transform this CSP into one that fulfills this prop-
erty. We first prove that in P either all fragile pieces with odd or all fragile pieces
with even indices contain only one breakpoint. Assume towards a contradiction,
that there exist integers ¢ < j of different parity such that f; and f; both have
windows with at least two breakpoints and for each h with ¢« < h < j, f; contains
only one breakpoint. Assume wlog. that ¢ is odd and j is even. Hence, f; is in = to
the right of s;41 and f; is in y to the right of s;.

For all h, « < h < j, let a be the leftmost marker of the window in f;, and
b, = ap>1. For odd h, a, and ap.; are the rightmost markers of the blocks
containing sp4; and s, and thus equidistant from s,;. For even h < j, b, and
bny1 are the left endpoints of the blocks containing s, and s}, so they are
equidistant from s;,,1. By Proposition 4.9, for all i < h < j, [a, by and [ap11, bpyi]
are equidistant from s, ;. By definition of a;, the window in each f;, is contained

4.3. PUTTING FRAMES NEXT TO FIXED PIECES 103

in [ap, ap > w]. If one of these factors is not contained in the maximum extension of
an adjacent solid piece, say [ap, aj > w] is not contained in the maximum extension
of sp41, then loxi(sp41) is contained in [ay, ap>w]. Hence, the window is contained in
lext (Sht1) Qw, lexy (Spe1) > w], contradicting our assumption on P. In the following,
we thus assume that all factors [ay, aj, >w] are contained in the maximum extension
of adjacent solid pieces, which by Proposition 4.7 implies that they all have the same
content. In particular, this implies [a;, a; > w] = [a;, a; > w].

We now describe a modification of P that results in a new CSP which is not larger
than P, also satisfies the constraint and frame set but has smaller total length of
short blocks; the modification is illustrated in Figure 4.5. Let u 4+ 1 and v 4+ 1 be
the lengths of the leftmost short blocks in f; and f; respectively (assume wlog. that
u < v). These two short blocks are thus [b;, b; > u| and [bj, b; > v], and they are
matched in P to other short blocks [0}, b;>u] and [V}, b;>v]. Note that since f; is odd
and f; is even, [b;,b; > u| is in a different string than [b;, b; > v]. To create the new
solution P’ from P apply the following modifications. First, cut out u 4+ 1 markers
from the left of [0,V > v] (recall that u < v) which gives two new blocks [b}, b/, > u]
and [V} > (u+ 1),0;>v] if u < v and leaves the block [0, b > v] unmodified if u = v.
Now, match block [b},b; > u] to [, 0} > u] (vecall that these blocks are in different
strings). Now, shift the breakpoints of the fragile pieces of the cycle as follows. For
every odd h, i < h < j, cut out u+ 1 markers from the left of s) and s,. And for
every even h, i < h < j, add u + 1 markers to the right of the blocks containing
sp and s;. Finally, in case u < v, match the shortened block b; > (u + 1),b; > v to
the block b > (u + 1),b; > v created in the first step. Note that by the discussion
above, the pieces added to s, and s} for even h have the same content. Hence, all
matched blocks have equal content. Furthermore, since the block [b;, b; > u] is now
unmatched, its markers are free to be added to s;,1.

This new solution has at most as many blocks as P: we have created at most one
new breakpoint in [0}, b;>v] and removed a breakpoint in f; by adding exactly u+1
markers to the right of s;,1. For all other fragile pieces f,, the breakpoint has “only”
been shifted to the right. Furthermore, P’ satisfies the same constraint C as P: the
matching only changed between short blocks which are not constrained. Moreover,
the fragile pieces for which the breakpoints have been modified are either frameless
(if they are on the cycle) or the modification adds a breakpoint that is between two
breakpoints (in the modification of [b, b >v]) However,the total length of the short
blocks has been reduced by 2(u + 1), which contradicts the choice of P. We now
know that in P the short blocks of the cycle are either all in x or all in y. In the
following, we assume they are all in , that is, in fragile pieces f; with odd j. We
now consider the following two cases: either there is no short block, even in z, or

there is at least one.

First consider the case that there is no short block in the cycle, that is, all
the windows contain only one breakpoint [ap, by]. If all markers b, are within the
maximum extensions of both adjacent solid pieces, we create a new solution P’ from
P as follows: for every odd h, cut out b, and b,_; from the left end of the blocks
containing s, and s;, and for every even h, add b, and b,_; to the right end of
the blocks containing s) and s;,. The solution P’ satisfies the same constraints as
P, with the same total length of short blocks. Repeat this operation of shifting the
breakpoints to the right until for some i (wlog., assume i is even), b; is to the right of
Text(S;). Then, the rule is correct, since for some branch the edge (r,, vy,) is selected
and the frame [rey(8;) < 2w, Tex(8;) > w] which contains the only breakpoint of P in

104 CHAPTER 4. MINIMUM COMMON STRING PARTITION

~ p p
155-1 |
Sy . *
Vfoy o o (fe.1:2)
. * de1s epn d S
Sp . . .
* ap by <y 51
Vf, - . - (fe:y)
, 82 drey
S1
S
Ufy 2_ .al Abl .Cl PR (f1:)
* v d
- r dioe; S1
S2 .
~ x 0 b e S3
Vfy -_——— 2 v 2 2 -— (f2:y)
~ sy, & doeas
l83 s : .
’Ufs/ —— - - (X
r - T P ds Q_/ sh
54
~

Figure 4.6: Illustration for the correctness proof of the second part of Frame Rule 3.
Given a cycle with total length of short blocks p > 0 we construct factors [ay, by
and [by, cp,] as shown (delimited by blue dotted lines). All the breakpoints in factors
[an, bp] can be shifted to the corresponding [by, cp].

fi is added to .

It remains to show the case where there is at least one short block in the fragile
pieces of the cycle, that is, the total length p of the short blocks of the cycle is at
least one. Note that by the choice of w, p < w. We now show that the strings
around the windows are periodic with period length p, so that we can again shift all
the breakpoints of the fragile pieces to the right by steps of length p, until at least
one of them has distance at most p from the end of a maximum extension.

We first introduce some notations (see Figure 4.6 for an illustration): for each
h, let [dp, e] denote the window of fj,. Let by = ey, a3 = by <p, ¢; = by > p, and for
each h, 2 < h </, let ay, by, and ¢;, be the markers equidistant with a,_1, by_1, and
ch—1 from sy,

We first show that for every h with 2 < h </, we have

Ghbh = dh—lbh—l —1. (41)

For even values of h, dj,_; and dj, are equidistant from sy, so dpb, = dj_1b,_1. Since
fn is in string y, it contains only one breakpoint, and thus dye, = 1 and Equa-
tion (4.1) follows. For odd values of h, we have dj,_1e,_1 = 1, and e,_; and e, are
equidistant from s, thus epb, = e,_1b,_1, which also implies equation (4.1). Hence
the distance between window endpoint e, and the marker b, increases, compared to
the distance of e;_; and b,_1, by the length of the short blocks contained in the win-
dow of f,_1. This has two implications: first, in f,, we have e;b, = p and thus e, = ay
(by definition a; has distance p from by, and this distance is conserved through the
cycle). Second, for every j, the short blocks in f; are contained in [a;, b;], and the
window is contained in [a; < 1, b;].

First, consider the case where each factor [ap,cp] is contained in the maximal
extensions of both adjacent blocks. Thus, with Proposition 4.7, we have [ay, b,] =
[a1,b1] and [by, cp] = [b1, ¢1] for all h. We can now “close” the cycle: since e, and e,
are the left endpoints of the blocks containing s} and si, they are equidistant from
s1. Moreover, e, = a; and e; = by, so ay and by are equidistant from s;, which implies
that [as, b)) = [b1,c1]. This now implies that, for all h, [ay,by] = [bn, cn]. We now
create a solution P’ from P as follows: for odd values of h, cut out the p leftmost

4.4

4.4. FRAME RULES FOR REPETITIVE PIECES 105

S0, Siacdclabababab- gl (@)
vf/ ~ - : i S (
1 | : Hl reP)
Tsl § §I SIQ
%\ ,,; ...dlc;abab;|cabe~~_>'< (%)
! 51 ! '
v 52 ; | ¢ : |
f3 (P) ...picia b a bic ab e -k
~p T | I — ()
PN ! 2

Figure 4.7: Example of a rep—rep path joining repetitive vertices v, and v, (with
respective periods ab and ababc), and going through three fragile vertices and their
adjacent fixed vertices. The strip of each fragile piece is delimited by the green
dotted lines.

markers from each block containing s or s). For even values of h, add p markers to
the right of blocks containing s, or s}, for even values of h. Match every short block
that was matched to some [u,v] in some f, to [u> p,v > p| instead. The solution P’
is again a CSP satisfying the same constraints, with the same total length of short
blocks but with all the breakpoints in the cycle shifted to the right by p positions.
Repeat this operation until for some h the factor [ay,cp] is no longer contained in
the maximal extension of the block to its left. Then, [ay, c,] contains re(sy), and
factor [ap < 1,by] is contained in [rext(sp) < w, Text(sp) > (2w =]. As argued above,
the rule is correct if such a P € 3 exists. Note that the modifications made in the
proof do not increase the length of any short block. Hence, the second requirement

for correctness is also satisfied.
]

The rules presented so far deal with fixed solid pieces. In fact, if all solid pieces
are fixed, then these rules suffice to obtain frames in all fragile pieces. We deal with
the presence of repetitive solid pieces with the frame rules presented in the following
section.

Frame Rules for Repetitive Pieces

In the rules, we have to deal with cycles in the piece graph that contain some
repetitive vertices. We introduce the following concepts in order to analyze the struc-
ture of paths between repetitive vertices that contain fixed solid vertices. A rep—rep
path (vs, vy, u1,vy,, Ug, . .., Ue—1, vy, v;) is a simple path of the piece graph such that
the two endpoints v, and v; are repetitive vertices, and each u; is a fixed solid ver-
tex. Given a rep—rep path joining repetitive vertices v, v; and going through fragile
vertices vy, vy, ..., v, we define the strip of the path (see Figure 4.7) as a set of
factors {Iy,, Iy,,..., 1y} such that:

1. Consecutive factors Iy, Iy, , are equidistant from the solid piece represented
2. Each factor Iy, is contained in the maximum extensions of the two solid pieces
next to f;.
3. The length of Iy, is maximal under Conditions 1 and 2.
Proposition 4.10. All the strips in a rep—rep path have the same length and con-

tent. Fach factor of the strip is contained in its respective fragile piece. Moreover,
the strip of a rep—rep path s uniquely defined and computable in polynomial time.

106 CHAPTER 4. MINIMUM COMMON STRING PARTITION

Proof. The fact that strips have the same length and content is a direct consequence
of Proposition 4.7, which can be applied according to Conditions 1 and 2. Each strip
must be contained in its fragile piece since it is in the intersection of the maximum
extensions of the two adjacent solid pieces.

The second part of the claim can be seen by considering the following algorithm
to compute the strip. First, check whether the strip is nonempty. That is, try the
following for each marker a; in f;. Compute the marker as in f, that is equidistant
with a; from w;. Then, compute the marker a3 in f3 that is equidistant with as
from wus, and so on. If all a;’s are in the maximum extensions of both solid pieces
next to f;, then the strip is nonempty. Otherwise, the length of Iy is zero. Now,
assume the case that there was one a; for which the above procedure is successful,
that is, Iy, contains one or more markers. Then, set Iy, = {a;} for each i. Now try
to simultaneously expand all I,’s. That is, check whether one can add the marker
to the left of each Iy, without violating Condition 2 of the strip definition. If this is
the case, then add these markers to the Iy’s. If this is not the case, then continue
by adding markers to the right until this is also not possible anymore. The resulting
set of Iy,’s is the strip of the rep—rep-path. n

Proposition 4.11. Let P be any solution satisfying constraint C such that the total
length of all windows in P is p. In each fragile piece f of a rep—rep path of C,
writing Ir = [c,d], the window of f is contained in [c<p,d> p|.

Proof. We first introduce some notations: let fi, fa,..., f¢ be the fragile pieces of
the path, and, for every 1 < j </, let [a;, b;] denote the window of f;, Iy, = [c;,d}],
a; :%and B; :m

Hence we aim at showing that for all j, 8; < p, that is, b; is either to the left
or at at most p markers to the right of d;. The proof for the left bound, that is, to
show that a; is at most p markers to the left of ¢; is symmetrical.

By maximality of the strip length (Condition 3), the factors of the strip cannot
be extended to the right. Condition 2 is the one constraining the strip length, hence
there exists a fragile piece f;, in the path such that this condition is tight, that is,
dj, = Text(s), where s is the solid piece to the left of f;. Hence, a;, is not to the
right of d;,, and thus o, = d;,aj, = rext(s)a;, < 0.

Now for all j, 8; — «; = ||[a;,b;]|] — 1, that is, it is the length of the window
contained in f; minus one. Consequently, 5;, < |/[ajy,bj]||. Moreover, for every
1 < j </, either the first markers of the window of f; and f;;1 are matched and
thus equidistant to the piece represented by u; or the last markers of the window of f;
and f;41 are matched and thus equidistant to u,;. Hence, either o; = 41 or §; =
Bj+1. In the first case, ;41 increases, compared to §;, by at most ||[a;41,bj41]|| — 1.
Hence, §; < ;, + p for all j > jj. By symmetry, the same holds for all j < j,. O

The following rule serves as a “preparation” of our main rule that deals with
cycles containing repetitive vertices. It will ensure that if there is a cycle containing
repetitive vertices, then these repetitive vertices will have the same period.

Frame Rule 4. If the piece graph contains a rep—rep path between repetitive ver-
tices vs and vy with strip {Iy,, ..., Iy} such that the strip Iy = [u,v] in f is shorter
than the period 7y of s, then add the frame f N [u<w,v>w| to f.

Proof. By definition, w is at least the total length of the windows of P. By Proposi-
tion 4.11, the endpoints of the window of f thus have distance at most w from I;. [

4.4. FRAME RULES FOR REPETITIVE PIECES 107

Frame Rule 5. If Frame Rule / does not apply and the piece graph contains a
simple cycle with repetitive vertices, then do the following. Let ||| be the length of
the period of any repetitive solid piece in the cycle. Then, create one branch for each
edge {vs,us} of the cycle where us is a solid vertex for the solid piece s. In each
branch, add to ® the frame

— [0 [rext(s) < (||]| + w), rext(s) > w] if f is to the right of s, or

= [N Llext (8) Qw, lext (s) > (||]| +w)] if f is to the left of s.

Proof. First, all repetitive pieces of the path have the same period. Indeed, con-
sider any two consecutive repetitive pieces s and t of the cycle: they are linked by
a rep—rep path, in which we compute the strips. All strips in this path have equal
length S and also equal content (Proposition 4.10). Hence, the maximal extensions
of repetitive pieces s and t have a common substring of length S. Since Frame Rule 4
does not apply, we have ||m,]| < S and ||m|| < S. Thus, the maximum extensions
of s and t contain a common substring longer than their respective periods. Conse-
quently, their periods are equal, and thus all repetitive pieces of the cycle have the
same period 7.
Let s1,s9,...,5; denote the repetitive pieces crossed successively by the cycle
(again, we write s, = s1). For each i, 1 < i </, let ¥, 27, y7, 7 be the fragile
pieces to the left and right of s; in x and s} in y, respectively. For each rep—rep
path of the cycle from s; to s;,1, we say the path is positive if the first vertex after
S; 18 vz or v,e, and negative otherwise. In positive rep—rep paths, fragile pieces in x
are crossed from right to left (that is, the solid piece to the right of the fragile piece
is “seen” before the solid piece to its left), and fragile pieces in y are crossed from
left to right. Thus a positive path enters s;.; via either Vg, | OF Vya and likewise
a negative path enters s;; via either Ugs,, O Uyp .
First, consider the case that all windows are contained within the strip and that
both endpoints of the piece have distance at least ||7|| to the borders of the strip.
We show that in this case, we can shift all breakpoints in positive paths to the right
by |||l positions and all breakpoints in negative paths to the left by ||7|| positions.
This is done as follows:
— For each fixed vertex [s in a positive path, cut out ||7|| markers from the left
of the blocks containing s and s'.

— For each fixed vertex r, in a positive path, add ||7| markers from the right of
the blocks containing s and s’

— For each fixed vertex [in a negative path, add ||7| markers to the left of the
blocks containing s and s'.

— For each fixed vertex r, in a negative path, cut out ||7|| markers from the right
of the blocks containing s and s’.

— Replace each short block [a, b] in a fragile piece of a positive path by [a>||7]| , b>

[Ill].
— Replace each short block [a,b], in a fragile piece of a negative path by [a <
[l o<]lar]l].

— For a repetitive vertex v, such that the paths before and after v, enter and
leave vy, via the same side (either x7 and vy, or 2% and 47) either both paths
are positive or both paths are negative. Apply the same operation as if the
piece was fixed:

— If the path enters v, via x7 and leaves via y;, then cut out the ||| leftmost
markers of s and s’ if the path is positive or add the ||7|| markers to the left
of s and ¢ if the path is negative.

108 CHAPTER 4. MINIMUM COMMON STRING PARTITION

— If the path enters v, via 2% and leaves via 37, then cut out the ||7|| rightmost
markers of s and s if the path is negative or add the ||7|| markers to the
right of s and s’ if the path is positive.

— For a repetitive vertex v, such that the paths enter and leave the vertex via
the same string (either z7 and 2%, or yi and ¢) it holds that the paths have
the same orientation. Apply a similar operation as for a short block (assume
wlog. that the path enters and leaves via z):

— If vy, is between two positive paths then replace the block [a,b] of x con-
taining s; by [a> |7, b ||7]|]-

— If v, is between two negative paths then replace the block [a,b] of x con-
taining s; by [a < ||7||,b<||7]|].

— For all other repetitive vertices, the paths enter from one string and leave via
the other string and enter from one side and leave via the other side. Then
the paths have opposite orientations; assume wlog. that the entering path is
positive and the outgoing path is negative. Let [a,b] denote the block in z
containing s;, and let [@/, b'] denote the block in y containing s.

— If the cycle enters from y; and leaves via 2%, then replace [a, b] by [a, b<||7]|]
and [/, V] by [’ > |||, 0] (||| markers are cut out of both blocks).

— If the cycle enters from 277 and leaves via y3, then replace [a, b] by [a, b ||7]|]
and [/, V] by [@ < |||,] (||| markers are added to both blocks).

Thus, all the breakpoints in fragile pieces have been shifted to the right (in positive
paths) or to the left (in negative paths) by a period length ||7||. Hence, this modifi-
cation still gives a partition of both strings. This partition has the same size as the
original one. Furthermore, it is also a common string partition which can be seen as
follows. The set of strings represented by the short blocks of = and y remains exactly
the same since they were shifted by the period length. Hence, there is a matching
for the short blocks such that each short block is matched to one representing the
same string. For the long blocks, the old matching remains a valid matching: The
blocks containing fixed solid pieces have both been modified on the same side. Thus,
they are either shortened by ||| markers; in this case, the matched blocks clearly
represent equivalent strings. Or ||| markers have been added on one side. In this
case, the matched strings are also equivalent, since the windows have distance at
least ||7r|| to the borders of the strip. The blocks containing repetitive pieces have
either been moved by ||7r|| positions, shortened by ||| markers on the same side, |||
markers on the same side have been added, or they have been shortened or extended
on different sides. In the first three cases, the strings represented by the new blocks
remain equivalent for the same reasons as for the blocks containing fixed solid pieces.
It remains to show the case in which blocks have been modified on different sides.

First, consider the case in which [a, b] is replaced by [a, b<||7||] and [a’, V'] by [a'>
|||, ¥']. Since the blocks are periodic with period length ||7|| we have [a'>||7|| , 0] =
[a', 0 <]|7||]. In the old solution, this subfactor of [a/, b'] was matched with [a, b<||7|],
and thus [a' > ||7||, V] = [,V < ||7||]] = [a,b<||7]|]-

Now consider the case in which [a, 0] is replaced by [a, b> ||7||] and [/, V] by [a’ <
|||, ¥']. Since the blocks are periodic with period length ||7|| we have [d/,0] =
[a@' < |||l ,b" < ||7]]]. Since [a,b] = [a/,¥] this implies that the first ||[a, b]|| markers of
the new blocks are equivalent. Also because of the periodicity, we have [b, b ||7||] =
[b<||7|l,b]. Since [b< ||x|,b] = [0/ <||x]||,¥], this implies that also the last ||7||
markers of the new blocks are equivalent.

Altogether, the modification gives a CSP of the same size, in which the distance

4.4. FRAME RULES FOR REPETITIVE PIECES 109

between the window endpoints and the strip endpoints has decreased. The above
operation can be repeated until at least one breakpoint is at distance less than |||
from the border of a strip. In this case, all breakpoints of the corresponding path
are at distance at most w + ||7|| from the border of their corresponding strip (an
argument similar to the proof of Proposition 4.11 applies). In some fragile piece f,
the border of I; coincides with the maximum extension of an adjacent solid piece
s, thus, in f, the window is contained in either [lex¢(s) < (||7|| + w), lext(s) > w] or
[Fext (8) < w,Texi(s) > (||7|| + w)]. Since in one of the considered branches, the rule
adds the frame to this piece s and to the correct side of the strip factor it is correct.
Note that the modifications made in the proof do not increase the length of any
short block. Hence, the second requirement for correctness is also satisfied. O

The final case that needs to be considered is the one in which the piece graph
is acyclic but none of the other rules applies. Then, the piece graph contains a
repetitive degree-one vertex.

Frame Rule 6. If the piece graph contains an edge {vs, v} such that vy is repetitive
and has degree one, then assume wlog. that f is to the right of s in x, and do the
following. Let [a;,a,], [bi,], and [c;, ¢;] be the (possibly phantom) frames such that
la;, a,] is to the left of s' iny, that [b;,b,] is to the right of s' in y, and that [c;, c,]
is to the left of s in x. Add the frame fOV[f;, fr] to f, where fi = ¢;> (a.by+ 1) and
fr=c > (b, +w — 2).

Proof. The windows to the left and right of s’ in y are contained in [a;, a,] and
(b, b.] respectively, and the windows to the left of s in z is contained in [¢, ¢,
Consider the blocks containing s and s’, and let £ be their length. The two endpoints
of the block containing s’ are in [a; > 1,a,] and [b, b, < 1]. Hence £ > a,b; and
< (aqy>1)(b,<1) = ab, — 2.

The leftmost marker of the block containing s is contained in [¢; > 1, ¢,]. Thus,
the rightmost marker (the one in f) is necessarily in [¢; > (¢ + 1), ¢, > (¢)] which, by
the above upper and lower bounds on ¢, is contained in [¢;> (a,b; + 1), ¢, &> (a;b, — 2)].
This marker is the leftmost marker of the window of f which has length at most w.
Hence the frame [¢; > (a,b; + 1), ¢, > (a;b, + w — 2)] contains the window of f. The
rule is still correct if s or s’ corresponds to the end of a string, since the phantom
frames contain the leftmost or rightmost marker of the blocks containing s or s’. [

After exhaustively applying the frame rules, the parts of fragile pieces that are
outside of frames do not contain a breakpoint. Hence, we perform the following rule
which shrinks fragile pieces such that they fit their frame; at the same time, the
solid pieces are extended accordingly.

Fitting Rule 1. If there is a fragile piece f = |a,b] with frame [c,d| C [c,d] then
add |a,c| to the solid piece left of f, add [d,b] to the solid piece right of f, and
set f=lc,d.

We now show two important properties of instances for which none of the frame
rules applies. First, every fragile piece of these instances has a frame. Second, the
frame lengths are upper-bounded by a function of k, £, and the longest period of
any repetitive piece.

Lemma 4.12. Let C be a constraint with frame set ¢ such that none of the Frame
Rules 1-6 applies. Then, each fragile piece has a frame, and all frames have length

110 CHAPTER 4. MINIMUM COMMON STRING PARTITION

Fitting Rule 1.

o [| esssss
= J

U

Figure 4.8: An illustration of Fitting Rule 1.

at most (6k*w + 3kw + 3k max{w, ||x||}), where ||7|| denotes the length of the longest
period of all repetitive solid pieces.

Proof. First, we show that every fragile piece has a frame. If the piece graph contains
a cycle, then either Frame Rule 3, 4, or 5 applies. Otherwise, the piece graph
is acyclic, and thus it either contains a degree-one vertex and one of the other
Frame Rules applies, or all vertices have degree zero which means that all fragile
pieces have frames.

Next, we show the upper bound on the frame length. Let L be the length of
the longest frame created in this procedure, and let 7 be the longest period over all
repetitive pieces. We show that

L < 6k*w + 3kw + 3k max{w, ||7||} (4.2)

Let h be the number of frames created before Frame Rule 6 is first applied, 1 < h <
2k. Frame Rules 1, 3, 4 and 5 produce frames of length at most (max{w, ||7|}+2w).
Since each application of Frame Rule 2 increases the maximum frame length by w,
all frames have length at most (max{w, |||/} + (h+ 1)w) before the first application
of Frame Rule 6. Note that once Frame Rule 6 is applied for the first time, only
Frame Rules 2 and 6 can be applied. We introduce the following notations. A solid
vertex (fixed or repetitive) is closed if all its adjacent fragile pieces have frames, and
open otherwise. The weight of an open vertex is the total length of the frames in the
adjacent fragile pieces. Let W denote the sum of the weights of all open vertices.

Before the first application of Frame Rule 6, W < 3k[max{w, ||7||} + (h + 1)w]
(for each solid piece s € S, the weight of either v, or [and r, together is at most the
sum of the weights of three different frames). Afterwards, each time Frame Rule 2
or 6 is applied, an open vertex with some weight u is closed, and a frame of length
u + w is created in a fragile piece f which is adjacent to at most one open vertex.
Thus, the total weight of open vertices W is increased by at most u +w — u = w
with each application of Frame Rule 2 or 6. They are applied at most 2k — h times,
hence W is at most

W < 3k [max{w, ||7||} + (b + 1)w] + (2k — h)w
< 6k*w + 3kw + 3k max{w, ||7||}.

Since no frame of length more than W can be created, we have L < W, which proves
the second part of the claim. O

The bound given by the lemma above still contains the maximum period length 7
which means that it is too large to be useful for the split procedure. However, the
algorithm can now either find a repetitive piece which can be fixed with few options
(see Lemma 4.13) or the maximum period length is not too long.

4.4. FRAME RULES FOR REPETITIVE PIECES 111

Lemma 4.13. Let C be a constraint that contains a repetitive solid piece s with
period w, such thatl each fragile piece adjacent to s or s' has length at most 6(k* +
k) |7sll. Then, there are at most 12(k* + k) feasible alignments, and any CSP
satisfying C matches elements of s according to a feasible alignment.

Proof. The alignment corresponding to any CSP satisfying C is necessarily feasible,
since otherwise two distinct solid pieces would be contained in the same block.
Wlog., let ||s]| > ||s’||. Thus, in a satisfying CSP P, either the leftmost marker
of s is matched to a marker left of s’ (or to the leftmost marker of s'), either the
rightmost marker of s is matched to a marker right of s’. Consider the first case; by
Condition 2 of satisfying CSPs, the leftmost marker of s is matched to some marker
in the fragile piece to the left of s’. Note that since s and s’ have a shortest period
s, two different alignments are separated by a a multiple of ||7,|| markers. Hence,
there are at most 6(k* + k) different alignments in which the leftmost marker of s is
matched to some marker of the fragile piece to the left of s’. Similarly, there are at
most 6(k? + k) possible alignments in which the rightmost marker of s is matched
to a marker of the fragile piece to the left of s’ (for 3 = s/, it is possible that both
left and right endpoints of s are matched to markers of the fragile pieces to the left
and right of §’). Overall, the total number of alignments between s and s thus is at
most 12(k* + k). O

By guessing the alignments of the long periods we have finally achieved the goal
of frames: all frames are “short” enough to be split by split.

Lemma 4.5 (cf. Page 95). When frames terminates, every fragile piece has length
at most 12(k* + k)kg.

Proof. By Lemma 4.12, an instance in which no frame rule applies has frames of
length at most (6k%*w + 3kw + 3k max{w, ||7||}) where is the longest period among
all repetitive pieces. In case ||7|| > w, then for each repetitive piece s with period m,
there are at most 6(k*+k)-||7|| possibilities to align s. Hence, at least one repetitive
piece is fixed in the loop Lines 8-11, and new-align is set “Irue”, which means that
the outer loop in frames will be repeated. Otherwise, 7 < w and thus 6k%w + 3kw +
3k ||| < 6(k* + k)w < 12(k? + k)kS. O

The correctness of frames is simply a consequence of the correctness of all single
steps (always considering the correct branching in each branching step).

Lemma 4.3 (cf. Page 95). If there exists a size-k CSP P satisfying C at the
beginning of frames such that longest undiscovered block is (-critical, then frames
creates at least one branch such that the constraint in this branch is satisfied by a
size-k CSP P’ whose longest undiscovered block has length at most 25 — 1.

Proof. The correctness of all frame rules have already been proven. The correctness
of Fitting Rule 1 is trivial. Finally, the correctness of Lines 8-11 follows simply from
the fact that the alignment in one of the branches is the correct one (it considers
all feasible alignments). Since the correctness definition of the frame rules demands
that all undiscovered blocks are at most as long as before adding the frame, also the
size bound for the longest undiscovered block holds. O]

It thus remains to bound the running time of frames. In particular, we need to
show that the number of branches is bounded by a function of .

112 CHAPTER 4. MINIMUM COMMON STRING PARTITION

Lemma 4.4 (cf. Page 95). Overall, the calls to frames create (4k)*°-k°*) branches;
all other parts of the algorithm can be performed in poly(n) time.

Proof. First, note that the outer repeat-until loop of frames is repeated at most 2k
times over the course of all calls to frames: The procedure frames is called at
most k times from the main method. Each additional time the repeat-until loop is
repeated, there is a pair of repetitive solid pieces that becomes a pair of fixed solid
pieces at Line 10 of the previous pass of the repeat-until loop. This can happen at
most k times.

Second, note that the while loop of Lines 4-5 is iterated at most 2k times in
each repetition of the other repeat-until loop of frames: each rule creates exactly
one frame, and, by Observation 4.2 there are at most 2k — 2 fragile pieces.

Hence, there are at most 4k% times in which one of the frame rules at Line 5
creates branches and at most k times in which branches are created at Line 10.
The only frame rules that perform branchings are Frame Rules 3 and 5. In both
cases, the rule branches into at most 2k cases, since each cycle has at most 2k
solid vertices and thus at most 4k edges in the cycle under consideration. Hence,
the branchings performed by the frame rules increase the running time by a factor
of O((4k)**). Each of the at most k branchings in Line 10 is among at most (12k)2+
k choices (Lemma 4.13). Hence, these branchings increase the running time by a
factor of O((12k)%* - k¥). Hence, the overall increase due to the branching is by a
factor of (4k)*” . kO®); all other steps can be performed in polynomial time. O

Conclusion

We have presented the first fixed-parameter algorithm for MiNniMUM COMMON
STRING PARTITION (MCSP) parameterized by the partition size k. Clearly, an
improvement of the so far very impractical running time is desirable; the bottleneck
appears to be that some of the frame rules still have to branch. Furthermore, it
remains open whether MCSP admits a polynomial problem kernel for this parameter.

The main drawback of the MCSP problem is that instances can be too con-
strained for practical applications, in particular because of the constraint imposing
that both strings use exactly the same multi-set of markers. We list below four
possible extensions of the problem, more fit for practical applications, which might
be solvable using our framework.

Could the algorithm be extended so that ...

A. it admits signed strings? That is, each marker is annotated with one direction
and blocks can be reversed before matching. See the signed variant(s) of
MCSP [45, 68, 118].

B. it admits three or more input sequences?

C. it allows for a bounded number ¢ of erroneous markers which can be deleted?
These markers could appear either between consecutive blocks (they corre-

spond to genes which do not appear in synteny blocks) or even within one
block (they correspond to reconstruction errors).

4.4. FRAME RULES FOR REPETITIVE PIECES 113

D. it allows for uncertainties in the periodic parts of input sequences? Indeed,
one major difficulty in genome reconstruction is to know exactly the number of
consecutive repetitions of periodic factors. Thus, input data, instead of being
“cabababac” couldbe“c (a b){from 2 to 4 copies} a c”.

For A. and B., we conjecture that adapting the algorithm would be straight-
forward, with additional frame rules to take into account the new cases that may
appear. Note that for A., we can branch on the orientation of the block containing
each solid piece as soon as it is discovered. For B., the major difficulty would be to
extend Frame Rules 3 and 5 so that they apply to general connected components
instead of cycles.

For C. and D. the modifications go deeper and imply to reconsider key concepts
such as maximum extension (for C.) and splitting (for D.). But we conjecture that
our framework should allow to solve these harder problems.

A final problem, which we raise out of pure theoretical interest, is the bidimen-
sional extension of MCSP: given two images x and y of size n X m using the same
multi-set of pixel colors, is it possible to “partition” these images into k identical
rectangles? Tt is obviously harder than MCSP, but might also be fixed-parameter
tractable for parameter k.

Dealing with Imprecise
Genomic Data

115

Maximal Strip Recovery

The MAXIMAL STRIP RECOVERY (MSR)
problem aims at extracting synteny blocks in
genomes where the sequences may contain er-
rors. Formally, some elements must be deleted
in order to be able to partition the sequences
into common strips of length at least 2, with a

— <= maximal total length.

In this chapter, we study a number of vari-
ants of MSR, especially the d-gap variant where
at most § consecutive elements may be deleted,
presenting in each case computational complex-
ity results, and approximation or FPT algo-
rithms.

This chapter gathers results from two different articles. The first has been presented at
the 20th International Symposium on Algorithms and Computation (ISAAC 2009, Hon-
olulu [31]), and has been published in the ACM/IEEE Journal of Discrete Algorithms
(JDA 2013, [36]). The second, a joint work with Minghui Jiang, has been presented at the
22nd Annual Symposium on Combinatorial Pattern Matching (CPM 2011, Palermo [29])
and has been published in Theoretical Computer Science (TCS 2012 [30]).

117

118 CHAPTER 5. MAXIMAL STRIP RECOVERY

Introduction

An essential task in comparative genomics is to decompose two or more genomes
into synteny blocks that are segments of chromosomes with similar contents. Synteny
blocks represent units of the genomes that have not been disrupted by large-scale
rearrangements such as reversals and transpositions, and thus form the input for
genome rearrangement algorithms. They also give useful clues regarding the role of
each gene, since genes belonging to the same synteny block often produce proteins
with related functions. Extracting synteny blocks from genomic maps, however,
is a non-trivial task when the genomic maps contain noise and ambiguities, which
need to be removed before we can give a precise synteny block decomposition. This
motivates the MAXIMAL STRIP RECOVERY problem [126]: to delete a set of markers
(genes) from the genomic maps until the remaining markers can be partitioned into
a set of strips (synteny blocks) of maximum total length.

We introduce some definitions. A genome consists of one or more chromosomes;
each chromosome is a sequence of genes. Correspondingly, a genomic map consists of
one or more sequences of gene markers. Each marker is a signed integer representing
a gene: the absolute value of the integer represents the family of the gene; the sign
of the integer represents the orientation. A marker has duplicates if it is contained
more than once in some genomic map, possibly in different orientations. A strip of
d > 2 genomic maps is a sequence of at least two markers appearing consecutively
in each map, such that the order of the markers and the orientation of each marker
are either both preserved or both reversed. The reversed opposite of a sequence s =
(x1,...,2p) is —s = (—xp,...,—x1). The MAXIMAL STRIP RECOVERY problem
on d input maps is the following maximization problem MSR-d [47, 126] (or MSR,
when d = 2):

Problem MSR-d

Input d genomic maps M;_4' each containing the same n markers
without duplicates
Output d subsequences M/ , of M 4 respectively, each containing

the same ¢ markers, such that all the markers in M) , can
be partitioned into strips
Maximize the number /¢ of selected markers

Example 5.1. Consider the following three genomic maps.
Mi=((12) 3 (12004) 5 (8)19) (10K 6 7 J11))

My
Ms

((1)1 -7 -6 [2)@2K 3 X4)@oX 5 K11) (8 K 9))
(120 4)(1 0 5 82) 3 (10011 6 (91 7 K-8))

Then an optimal solution of MSR-3 on (My, My, Ms) consists of the three
subsequences of length ¢ = 8 below. They can be partitioned into the set of strips
{<1,2>, <12,4>, <107 11>, <8,9>}. The subsequences corresponding to each strip are
highlighted both wn the original maps and in the solution.

1. For convenience, we abbreviate the notation for a list of d genomic maps (My,..., My)

to My 4 and (Mf,...,M}) to M} ,

119

Mi=((102) @128 4)(859) (10N11))
ML= ((1]2) (128 4) (10811) (8 X 9))
My=((1204)(102) (10511) (-98-8))

The maximization problem MSR-d has a complement minimization problem
called CMSR-d [120, 93] that minimizes the parameter k¥ = n — ¢, the number
of deleted markers. For genomic maps of close species with few errors, £ can be

much smaller than ¢, thus FPT and approximation algorithms are sometimes more
relevant for CMSR than for MSR.

For the more general case where input maps can have duplicate elements (that is,
the genes belong to paralogy families), the following variant has been introduced [47]:

Problem MSR-DU-d

Input d genomic maps M _4 each containing n markers, possibly
with duplicates
Output d subsequences M’ , of M 4 respectively, each containing

the same ¢ markers, such that all the markers in M} , can
be partitioned into strips
Maximize the number ¢ of selected markers

Given d subsequences M7 , of d genomic maps M; 4, respectively, the gap
between two consecutive markers a and b of M is the number of markers appearing
between a and b in M;, a and b excluded. The gap of a strip s is the maximum gap
between any two consecutive markers of s in any map M. In Example 5.1, the strip
<172> in the given solution has gap 2, because markers 1 and 2 are separated by
markers 6 and 7 in M. The deleted markers between markers of a strip correspond
to noise and ambiguities, which occur infrequently. From a biological point of view,
a synteny block is a segment of chromosomes that remain undisrupted by genome
rearrangements during evolution. Hence, consecutive elements of a synteny block
can only be separated in a data set due to noise and ambiguities, and a strip having
a large gap is unlikely to correspond to a synteny block. This leads to the following
gap-constrained variant of MSR-d which we introduced formally in [31] and was
tested experimentally in [126]:

Problem 4-gap-MSR-d

Input d genomic maps M 4 each containing the same n markers
without duplicates
Output d subsequences M’ , of M; 4 respectively, each containing

the same ¢ markers, such that the markers in M’ , can be
partitioned into strips, and such that each strip has gap at
most &
Maximize the number ¢ of selected markers
In Example 5.1, the strips in the given subsequences (M, M}, M%) have gap at

most 2, hence they are an optimal solution of d-gap-MSR-3 for § = 2. For 6 = 1, the

optimal solution contains only 6 markers in 3 strips: {<2, 3>, <4, .5>, <6, 7>} They

are highlighted below.

120 CHAPTER 5. MAXIMAL STRIP RECOVERY

Mi=(1(2).3)12 (4 5) 8 9 10(6, 7) 11)
Mo=(1 (-70.6)(2] 12 [3)(4] 10 [5) 11 8 9)
Ms=(12 (47 1 [5)(2)3) 10 11 (6, -9 |7) -8)

No doubt that MSR-d (which can be written co-gap-MSR-d) is a more elegant
problem from a theoretical perspective, but §-gap-MSR-d could be more relevant in
biological applications, especially since it sometimes allows for more efficient algo-
rithms. The gap-constrained variants of MSR-DU-d and CMSR-d, denoted respec-
tively d-gap-MSR-DU-d and d-gap-CMSR-d, can be similarly defined. Similarly to
MSR-d and CMSR-d, the parameter for d-gap-MSR-d is ¢, and the parameter for
0-gap-CMSR-d is k. In most cases, 0 and d are assumed to be constants, although
our FPT algorithms in Section 5.4 do not depend on this assumption and can take
0 and d as parameters besides ¢ or k. There is no known direct reduction from
0-gap-MSR~d to MSR-d or vice versa. Although the gap constraint appears to be
an additional burden that the algorithm has to take care of, it also limits the set
of candidate strips and their intersection pattern, especially when ¢ is small, which
may make the problem easier to handle.

The earliest results on MSR are two heuristics [53, 126], the NP-hardness of
MSR-3 [47], and a 4-approximation algorithm for MSR. [47] (which can be extended
to a 2d-approximation for MSR-d and d-gap-MSR-d, see [93] and Section 5.3.1).
Parallel to our work, several hardness results have been obtained for the variants of
MAXIMAL STRIP RECOVERY [121, 93, 92|, and a variety of algorithms have been
developed, including approximation [127, 87, 100] and FPT algorithms [121, 127, 87|.
The tightest hardness results regarding these problems are summarized as follows.
MSR-d, CMSR~d and MSR-DU-d are APX-hard for any d > 2, even in the J-gap
variant, for § > 2 [93]; MSR-d is W[1]-hard for any d > 4 [92]. Finally, along some
very recent development [121, 127, 87, 100, 88| on the CMSR, problem parallel to
our work, Lin et al. [100] presented a 2.667-approximation algorithm for CMSR-2,
which is based on an interesting idea called local amortization with re-weighting.
From a parameterized point of view, Jiang et al. [87] presented an FPT algorithm
for CMSR-2 running in time O(3* poly(n)), and Jiang & Zhu [88] obtained a linear
kernel for CMSR-2 which leads (using the algorithm we presented in [29]) to an
algorithm running in time O(2.36%k? + n?).

In this chapter, we present a panel of new or improved FPT and approximation
algorithms for the many variants of MAXIMAL STRIP RECOVERY. The current
best results, including our contribution, are summarized in Table 5.1. The organi-
zation of the chapter is as follows. In Section 5.1, we introduce some prerequisites.
In Section 5.2, we present hardness results, with the NP-hardness of 1-gap-MSR
(and 1-gap-CMSR), and the APX-hardness of 2-gap-MSR and 0-gap-MSR-DU. We
then give polynomial-time algorithms in Section 5.3: first a reduction to MAXIMUM
WEIGHT INDEPENDENT SET in 5.3.1, which implies a general 2d approximation
for variants of MSR, and an exact algorithm for O-gap-MSR. Then, we give in
Sections 5.3.2 to 5.3.5 a panel of algorithms for d-gap constrained problems with
small values of 4, relying on existing work on claw-free graphs. Finally, we give in
Section 5.3.6 an approximation for d-gap-CMSR-~d and CMSR-d which is valid for
any values of § and d. In the final part of our study of MAXIMAL STRIP RECOVERY
we present three fixed-parameter tractable algorithms in order to solve exactly the
problems §-gap-MSR-d (Section 5.4.1), d-gap-CMSR-~d (Section 5.4.2) and 1-gap-

121

Table 5.1: Algorithmic results for variants of MSR. Variable d represents the number
of input genomic maps (d = 2 for MSR, MSR-DU and CMSR). A reference to the
relevant section of the chapter and/or article is given for each result. Note that we
omit MSR-DU-d with d > 3 due to the lack of results specific to this problem.

d-gap

constraint

0=0
0=1
0=2
0=3
0>4

no

Variant of the problem

MSR

MSR-da>3 | MSR-DU

CMSR

CMSR-

d d>3

Complexity class

P 5.3.1 P 5.3.1
NP-complete 5.2.2| APX-complete NP-complete 5.2.2
APX-complete
5.2.3 and [93] 5.2.4 APX-complete
WI[1]-hard (d > 4) and APX-complete [92, 93, 121] [93, 121]
Ratio of approximation algorithm
P 5.3.1 225 535 P 5.3.1
1.8 5.3.3‘ 0.75d+4-0.75+¢ 2.778 534
1.5d + ¢
1.5d +0.75 + € 5.3.2 d+1.5
2d
5.3.1 and [47, 93] 2.667 [100] 5.3.6
Running-time of FPT algorithm
P P
O(2'tds? + nd?) O(2F poly(nd)) 5.4.3
with ¢t = £(1 + %dé) ?
5.4.1 0(2.36% poly(nd))
? (W[1]-hard for d > 4 [92]) Linear kernel [88] 5.4.2

5.1.1

122 CHAPTER 5. MAXIMAL STRIP RECOVERY

CMSR-d (Section 5.4.3).

Preliminaries

Notations and Definitions

We assume wlog. that all markers in the first input map M have positive sign.
Unless explicitly noted, our uses of some standard terms such as solution and optimal
solution, our previous definitions of strip and gap, as well as other definitions that
we will introduce in this section — all these apply to some “current” set of genomic
maps M), implicit from context, which can be either the set of original maps M _4
given as input, or some set of reduced maps (subsequences obtained from M4 by
deleting some markers) during or after the execution of a recursive algorithm.

If a sequence of markers forms a strip in some maps M) ,, then these markers
are either all selected or all deleted in any optimal solution for these maps. This
is because any solution that includes only a subset of the markers in a strip can
be extended to a better solution to include all markers in that strip. Hence such
a maximal sequence of markers is treated as an atomic unit, and called a super-
marker, whose size is the number of markers it contains. Note that the size of a
super-marker is always at least 2. A marker that does not belong to any super-
marker is a single-marker. We use the term single-super-marker to refer to either a
single-marker or a super-marker. A common step in several of our algorithms is to
partition the markers in the current maps into single-super-markers. If the current
maps contain only super-markers, then we have a straightforward decomposition
into strips, without deleting any (other) marker.

Let z and y be two single-super-markers of some maps M) ;. We write S*(z,y)
for the set of markers appearing between z and y in map M, We say that y
follows = in map M. if one of <+:p, —l—y>, <—y, —:p> is a subsequence of M. For J-
gap constrained problems (d-gap-MSR-d and §-gap-CMSR-d), we add the constraint
that the number of markers appearing between = and y in the original maps is at
most 0 (z and y excluded). For multichromosomal genomes, that is, when a genomic
map consists of several sequences of gene markers (several chromosomes), we require
that and y belong to the same chromosome in M. We define the relation “y
precedes x” symmetrically.

We say that y is a candidate successor of x, and we write x < y, if y follows x
in all maps, and if there is no other 3’ such that for all 1 < i < d, ¢ follows z in
M’ and appears in S’(x,y). We define symmetrically the candidate predecessors,
hence y is a candidate successor of z iff x is a candidate predecessor of y. If y is a
candidate successor or predecessor of x, gap(z,y) is the set of all markers appearing
in S(x,y) for some 1 < i < d. In Example 5.1, we have 1 < 2, and gap(1,2) =
gap(2,1) = {5,6,7}.

A prestrip is a sequence o = <0'1,02, e ,ah> such that 0y < 09 < ... < 0 and
h > 2 (equivalently, a prestrip is a common subsequence that satisfies the “current”
d-gap constraint; we use the notation d-prestrip in case of ambiguities). For any
map M, we write idx(o, M) for the vector (i1, ...,4,) such that o = M]i;| for all
1 <k < h. The length |o| of ¢ is h. Two prestrips o and 7 are non-overlapping if,
in each M, one appears strictly before the other (there is no i such that an element
of idx(o, M;) is between the first and last elements of idx(7, M;)). The reversed

5.1.2

5.1. PRELIMINARIES 123

opposite of <c717 . ,0'h> is <—0h, —Oh1,.--, —01>. A sub-prestrip o’ of a prestrip o
is a prestrip such that ¢’ is a subsequence of o.

A set of prestrips S is said to be feasible if it contains pairwise non-overlapping
prestrips, and we write ||S|| for its total size: ||S|| = ", .q|o|. With this formalism,
we can see that the strips of any solution correspond to a feasible set of prestrips in
the input genomes, thus the objective of the MSR problem can be seen as finding a
feasible set S of prestrips such that ||S|| = ¢ is maximum.

We call peg marker, and we write X, a marker that cannot belong to any strip
of an optimal solution (its role is to affect the gap of other prestrips). A sequence
of h consecutive peg markers is written x”.

The following lemma gives some basic properties of the function gap:

Lemma 5.1. (a) Let u,v,w be three markers or single-super-markers. If u and v
are two candidate successors of w with u # v, then u € gap(w,v) and v € gap(w, u).
(b) Let u and v be two single-super-markers. If u < v or u > v, then gap(u,v) is
not empty.

Proof. (a) By definition of a candidate successor, there exists some i such that
v & S%(w,u), and some j such that u ¢ S’(w,v). Assume wlog. that w has positive
sign in M;. Then there exist sequences s,,, and s,, ,, using markers of St (w,u) and
S*(w,v) respectively, such that both w s, u and w s, , v appear in map M;. We
now compare |S*(w,u)| and |S*(w,v)|:

— if |SY(w,u)| = |S*(w,v)], then Sy, = Sy, and u = v (this case is impossible),
— if |SY(w,u)| < |S*(w,v)], then s, u is a prefix of s,,, and u € S*(w,v) C
gap(w, v),

— if |SY(w, u)| > |S"(w,v)|, then s, v is a prefix of s,, and v € S*(w,u) (this
case is impossible).
Likewise, using map M;, we have v € S/(w,u) C gap(w,u). This proves the first
property.
(b) Assume wlog. that u < v (the other case u > v is symmetric). If gap(u,v) =
0, then for all 4, S*(u,v) = (), and hence either (+u,+v) or (—v, —u) appears in
map M;. It follows that <u, v> could form a super-marker: a contradiction. O

Graph Theory Background

In this chapter, the majority of hardness results and polynomial-time algorithms
we present for the variants of MSR use reductions from/to restrictions of the MAX-
IMUM INDEPENDENT SET problem. We thus make use of a number of algorithms
and hardness results from the literature which we list below, after recalling some
definitions.

MAXIMUM INDEPENDENT SET

Given a graph G = (V) E), a set X C V is said to be independent if for every
edge (u,v) € E, u ¢ X or v ¢ X. The (optimization) problem of computing an
independent set of maximum cardinality is defined as follows.

Problem MAXIMUM INDEPENDENT SET (MIS)
Input A graph G = (V, E)

Output An independent set X of G
Maximize |X|

124 CHAPTER 5. MAXIMAL STRIP RECOVERY

The cardinality of a maximum independent set of G is written «(G). In the
decision formulation of MAXIMUM INDEPENDENT SET, one has to decide, given a
graph G and an integer k, whether o(G) > k.

Cubic Graphs

A graph G = (V| E) is cubic if every vertex u € V has degree exactly 3. For every
cubic graph, |E| = 2|[V|. We call 3-MIS the variant of MAXIMUM INDEPENDENT
SET restricted to cubic graphs, defined below.

Problem 3-MIS
Input A cubic graph G = (V, E)
Output An independent set X of G
Maximize |X|
The 3-MIS problem is APX-hard [3], and, more precisely, NP-hard to approxi-
mate within 95/94 [52].

Interval and d-Interval Graphs

A d-interval graph, for d > 1, is a graph G = (V| E), where every vertex in V' is
seen as a list of d disjoint intervals (I,...,I;) of R (also called a d-interval), and
such that two distinct d-intervals (I, ..., 1;) and (Jy,...,J;) form an edge in E iff
(UZ:1 I) N (UZ:1 Jn) # 0. For d = 1, such a graph is simply called an interval
graph.

Problem d-Interval-MWIS

Input A d-interval graph G = (V, F), a weight function w : V' — R
Output An independent set X of G

Maximize The total weight of X, >° _ w(x)

The problem 1-Interval-MWIS (known as Interval-MWIS) is polynomial [76]. On
the other hand, d-Interval-MWIS is APX-hard for d > 2, and a 2d-approximation is
known for it [15].

Claw-Free and k-Claw-Free Graphs

Given a graph G = (V, E), a k-claw (k > 3) is a subgraph of G of k + 1 vertices
U, vy, ..., U, such that (u,v;) € E for all 4, but (v;,v;) ¢ E for all 4, j. A k-claw-free
graph (or claw-free graph, for k = 3) is a graph that has no k-claw as subgraph. We
are interested in the following two variants of the MAXIMUM INDEPENDENT SET
problem.

Problem Claw-Free-MWIS
Input A claw-free graph G = (V, E), a weight function w : V' — R*

Output An independent set X of G
Maximize The total weight of X, > _ w(x)

Problem k-Claw-Free-MIS
Input A k-claw-free graph G = (V, E)
Output An independent set X of G
Maximize |X|
The problem Claw-Free-MWIS is in P [103], and, for k > 4, k-Claw-Free-MIS is
approximable within -1 + ¢ for any e > 0 [79].

5.2

5.2. HARDNESS RESULTS 125

Cubic, Planar, 2-Connected Graphs and 3-edge-colorings

A graph is planar if it can be embedded on the plan without having crossing
edges. It is 2-connected if it is connected, and cannot be disconnected by removing
less than two vertices. We consider the following decision problem focused on the
class of graphs which are at the same time cubic, planar and 2-connected.

Problem CP2C-MIS
Input A cubic, planar, 2-connected graph G = (V, E), an integer k
Question Is a(G) >k ?

The problem CP2C-MIS is NP-hard since MAXIMUM INDEPENDENT SET is the
complement of VERTEX COVER, and VERTEX COVER is known to be NP-hard on
this class of graphs [21].

This class is particularly related to the notion of 3-edge-coloring (also known as
Tait Coloring): a 3-edge-coloring of a cubic graph G = (V| E) is a partition of its
edges in three disjoint sets £ = E* U EP U E° such that if two edges e;,e5 € E
are incident to a common vertex, they belong to different sets (they have different
colors). Note that if a cubic graph with n vertices admits a 3-edge-coloring, then
each set contains n/2 edges.

Lemma 5.2. Every cubic planar 2-connected graph admits a 3-edge coloring, and
such a coloring can be computed in polynomial time.

Proof. This construction uses a well-known equivalence between the 4-coloring of
a planar graph and the 3-edge-coloring of a cubic graph [22]. Let G = (V,E)
be a cubic, planar, and 2-connected graph. The Four Color Theorem [9]| ensures
that its region graph admits a 4-coloring. We compute such a coloring, with colors
taken in the set {0,1, 2,3}, using e.g. the quadratic time algorithm from Robertson
et al. [112].

For every edge e € F, let ¢(e) be the pair of colors associated to its two adjacent
faces (since the graph is 2-connected, e is adjacent to two different faces which have
different colors). We deduce a 3-edge-coloring of G from the following formulas:

— If ¢(e) = {0,1} or ¢(e) = {2,3}, give to e the color A.

— If ¢(e) = {0,2} or ¢(e) = {1, 3}, give to e the color B.

— If ¢(e) = {0,3} or ¢(e) = {1,2}, give to e the color C.

If two edges e; and e, are incident to the same vertex, then, since this vertex has
degree 3, there are 3 faces fy, f1, fo (with 3 different colors) such that e; is adjacent
to fo and fi, and ey is adjacent to fy and fo. So ¢(e1) N@(es) has size 1, and e; and
es have different colors. This completes the proof of Lemma 5.2. m

Hardness Results

In this section we study the complexity of problems §-gap-MSR and J-gap-MSR-
DU. We first observe in Section 5.2.1 that these problems become more difficult
to solve when 0 grows. Then in Section 5.2.2 we focus on 1-gap-MSR and prove
that this problem is NP-hard. Finally, in Sections 5.2.3 and 5.2.4, we prove the
APX-hardness of §-gap-MSR. (for all § > 2) and §-gap-MSR-DU (for all § > 0)
respectively.

5.2.1

5.2.2

126 CHAPTER 5. MAXIMAL STRIP RECOVERY

Hardness Increases with the Gap

In this section, we show that the problems d-gap-MSR and é-gap-MSR-DU be-
come more and more difficult as 0 increases. However, this result does not allow us
to compare these problems to MSR and MSR-DU, for which the hardness results
are quite independent (see [91] for the APX-hardness of these problems).

Theorem 5.3. Let &' > 6 > 2 and d > 2 be integers. Then there exists an L-
reduction from 0-gap-MSR-d to 0'-gap-MSR-d, and from §-gap-MSR-DU-d to §'-
gap-MSR-DU-d.

Proof. Let M. 4 be an instance of d-gap-MSR-d (the proof is similar for §-gap-
MSR-DU-d). For any i € [1; d] and k > 0, we write

K (k) = (M;[6k + 1], M;[k + 2], ..., M;[dk + 6]).

We construct an instance of §’-gap-MSR-d with d genomic maps M) , defined as
follows:

M = (K2(0), <70 K2(1), x7 7%, ..)

We show that there is a one-to-one correspondence between the J-prestrips of
M4 and the ¢’-prestrips of M7 ,. Let o be a é-prestrip of M;_4, then it is also
a subsequence of each genomic map in of M7 ,. Moreover, let i € [1; d]] and a and
b be two consecutive markers of o, such that a appears in K?(k) for some k, then b
isin K¢(k), K¢(k—1) or K?(k+1). In the first case the gap between a and b is the
same in M as in M;, and otherwise the gap is increased by exactly ¢’ — §. Hence,
since the gap between a and b is at most § in M;, it is at most ¢’ in M. Overall,
o is a ¢'-prestrip in M7 .

Conversely, a §’-prestrip ¢’ in M} , corresponds to a J-prestrip in M; 4, and if
a,b are two consecutive elements in ¢’ with a gap strictly greater than § in M7
then they cannot appear in the same K?(k), and thus the gap between a and b is
reduced by at least &' — d. Hence o’ has gap at most § in M;_,.

This one-to-one correspondence is enough to prove that we have an L-reduction,
since it preserves the prestrip lengths and the overlapping relation. O

1-gap-MSR Is NP-hard

In this section, we prove the following theorem.
Theorem 5.4. 1-gap-MSR is NP-hard.

The proof uses a reduction from the NP-hard [21] restriction of MAXIMUM INDE-
PENDENT SET to the class of cubic, planar, and 2-connected graphs (CP2C-MIS,
see Section 5.1.2). We also use the notion of 3-edge-coloring presented in the same
section. Starting from any instance G of CP2C-MIS, we compute a 3-edge-coloring
(E*, E®, E°) of G by Lemma 5.2, and we construct two genomic maps as follows.

First, we assign a list of 4 distinct positive integers (or 4 “markers”) to each
vertex u € V: they are denoted y.', y2?, y2' and y.>. We also assign a list of

10 distinct integers) 2% to each edge (u,v) € E°, in such a way that no

uvr*t) uv

5.2. HARDNESS RESULTS 127

integer appears in two different lists. We construct the genomic maps M; o with
the following iterative procedure. Suppose we have arbitrarily ordered the vertices
in V. In that case:

1. For all (u,v) € E* such that u < v, add (y2' ,yv ,yu ,yv 2%, X) to M.

2. For all (u,v) € E® such that u < v, add <yu T TR e ><> to M.

3. For all (u,v) € E° such that u < v, add T'1(u,v) to My, Iy(u,v) to Mo,

where I'; and I'y are defined as:
Dy (u,v) = (b, 25 22 28 a3 27 2l x x,

uv? uU7 uv? Yuv? Yuv? Yuv? Yuv?

8

9 10
yu 7$uv7yu 7$uv’yv ’xuwyv 7X X>
_ 1 8 2 9 3 10 .4
FQ(“?”) - <xuvvxuv7xuv7muv7‘ruv7xuv? Lypy X5 X
6 7
yu 7':qu7yu 7xuv7y’u 7:'U/U/U7y’l} 7X7><>'

Property 5.5. Let G = (V, E) be an n-vertex cubic graph with a 3-edge-coloring,
and let Mo be the two genomic maps obtained by the construction defined above.
Then the optimal value of 1-gap-MSR over M5 equals 4n + 2a/(G).

Proof. In this proof, we use the following notations: for u € V, Y,* = <y31, y32> and
Ve = (y2, y2?). Wewrite Y = {Y,} |u € VIU{Y,? | u € V}, and Q for the set of all
1-prestrips of M 5. We also write £1(M; 2) the optimal value of 1-gap-MSR(M).

We first enumerate the prestrips of M, 5 appearing in 2

- For all (u,v) € E*, both Y and Y,* belong to 2. Moreover, Y,* and Y
overlap in M, (see step 1 of the construction).

- For all (u,v) € E®, both Y,? and Y;? belong to 2. Moreover, Y? and Y
overlap in M (see step 2 of the construction).

- For all (u U) S EC <xuv7 Luws uv? uv> <‘ruv7 21}7 u'u> and <xuv7 Loy L > be-
long to). We write 7,, the set containing those three prestrips and all their
sub-prestrips (see Figure 5.1a).

Because of the gap condition, which prevents prestrips from overlapping the peg
markers, there are no other prestrips in €.

For an edge (u,v) € E°, we name three feasible subsets of v,, (see Figure 5.1b):

7211; = {< Lyvs Ty < Lyvs Ty < Loy uv>}
VilL?; = {< Lyvs Ty < Lyvs Ty < Loy uv>}
72?; = {< Lyvs Ty < Loy uv>}

The first inequality we need to prove is the following:
El(MLQ) Z 4n + 2a<G)

Consider X a maximal independent set of G (|X| = a(G)). Construct a set of
prestrips S in the following way:

1. For all (u,v) € E*,if u ¢ X, then add Y* to S. Else, v ¢ X: add Y to S.
2. For all (u,v) € E®,if u ¢ X, then add Y,? to S. Else, v ¢ X: add Y,? to S.

3. For all (u,v) € E°, there are three possible cases:
~Ifu¢ X and v ¢ X, add 72 to S.
~Ifue Xandv ¢ X, add 70 to S.
~Ifu¢ X and v € X, add 72 to S.

128 CHAPTER 5. MAXIMAL STRIP RECOVERY

YuA<<5 ¢ \ / 677>>Y’UA

5,6,7
1,2 1,273 2,374 3,4)
(8,9,109

}/&3(@9 / \ 3, WYB
(a) All prestrips of 7,, of length 2 or 3, and prestrips of)

Y, (5, 6)—(6, 7\ v

(1, 2>\ /<3 4)
Yp (8,9 9,10 YR
(b) Induced subgraph with prestrips of the sets vo1

Yo and 759

Figure 5.1: Overlapping prestrips of 7, for an arc (u,v) € E°. We use z!, =i for
all 1 <17 <10, and edges are drawn between overlapping prestrips.

Before considering the overlaps in S, we compute its total size: starting from 0,
|S|| is increased by 2 for each edge in E* and in E® (steps 1 and 2), and it is
increased by either 6 or 4 for each edge in E°, depending on whether this edge is
incident to a vertex of X (step 3). As each vertex is incident to exactly one edge in
E°, we have the following formula:

[|S|| = 2|E*| + 2|E®| + 4] E°| + 2| X]|.

Since each class E*, E® and E° contains exactly n/2 edges, and | X| = a(G), we
have

1S]] = 4n + 2a(G).

We now prove that S is a feasible set of prestrips. First note that prestrips of
S NY are pairwise non-overlapping, since S never contains both Y* and Y,* (resp.
Y.} and Y,?) for (u,v) € E* (resp. (u,v) € EP).

If 01,00 € § =Y, then there exist (u,v) and (u/,v') such that oy € 74 and
oy € %w are prestrips of S (where (7, j) and (¢, j') are in {(0,0), (0,1), (1,0)}). They
also are non-overlapping: if (u,v) # (u/,v") then they appear in different sequences
I['y and I'y, and thus they cannot overlap. Otherwise, that is if (u,v) = (u/,v"), then
they appear in the same set 7 which is, by construction, a set of non-overlapping
prestrips.

Now suppose 01 € SNY (e.g. o1 =Y, for some vertex w, the case oy =Y} is
similar) and o, € % are overlapping prestrips of S. Then they can only overlap
in I'y(u,v), and w = u or w = v. In the case w = u, (resp. w = v), o9 necessarily
contains the element z5, (resp. z'), and thus 7.0 (resp. 7°1) has been selected. Tt
implies that u € X (resp. v € X): in both cases, w € X, which is a contradiction
since Y2 can only be selected if w ¢ X.

5.2. HARDNESS RESULTS 129

We conclude that prestrips in S are non-overlapping: consequently, S is a feasible
set and we have

€1<M1,2) > HSH =4n + 2a(G)
To prove the other inequality of Property 5.5, that is

2 gl(./\/llg) — 471’

a(G)

we consider S, a maximal feasible set of prestrips of M; 5. Then ||S|| = ¢;(M;).
We first enumerate and name the feasible subsets of v,, with total size at least 5,
for any (u,v) € E°. They are:

Name Subset, Overlaps with

7&2 {<$13w7‘r§v>7 <I15w7x?w ’ <x§w>x?w>} YuA7 YuB

711;) {éx?w? m?w? ',BZU>7 <x18w7 x?wi% YuA7 YuB’ Y;}A

’71111)) { I?w? .I?w>, <I18w7 x?w? ‘T'luv YuA7 YuB7 Y;JB
Voo AU T o) (00 Tl (T Tyo) § [S 6
Yy gng T T)s (T xi?;i% Y, YooYy
Vow T Tl)s (T T L0 VST R
Yoo AU T T Tl)y (B0 Ths i) b YA YR YYD

There is no feasible subset of v,, with total size 7 or more.
We construct a feasible set of prestrips S’ in the following way. Add all prestrips
of SNY to &'. Then, for all (u,v) € E°, three cases are possible:

Case 1. If ||S Ny < 4, add 42 to S'.
Case 2. If 8 M yu 18 Yo Viws Yo OF Vs add 7y, t0 S
Case 3. If SNy, is 70, le or 410 add 719 to S

Note that it is impossible to have overlapping prestrips in S after these steps: in

case 1, because 190 = (x1,,22,, 23, 2},) does not overlap with any prestrip except

in v,,. In case 2, the prestrips in 72! overlap with Y,* and Y,*, but it is also the
case of the sets 72l 4% and 41l: neither Y* nor Y2 belongs to S (and they do not
belong to §’). And in case 3, the prestrips in 7.0 overlap with Y* and Y.*, but it is
also the case for the sets 1% and !°: neither Y* nor Y,® belongs to S (nor &').

At this point, we have a set S’ which is feasible and that satisfies ||S’|| > [|S]|:
indeed, each time we do not directly include a subset of S, we include a set of
prestrips with greater or equal total size. Hence, ||S'|| = ¢1(M5).

We now create a first set of vertices X; C V from S’ with the following construc-
tion procedure. Start with X; = (), and for all (u,v) € E°:

~ I 8" Ny =%, do nothing.

~ IS Ny =7, add u to X;.

— If 8" Ny =70 add v to X;.

Two interesting remarks can be made about X;. The first one is about its

cardinality: since |[72]| = 4 and ||72}]| = [|7[%|] = 6, then
[S" M yuo|| — 4
[Xa| = Z 2 :
(u,v)EEC

The other remark is that, if u € Xy, then Y2 Y? ¢ S’: indeed, let v be the vertex
such that (u,v) € E° (the case (v,u) € E° is similar). Since u € X1, 7.2 C &": the
prestrips in 7.0 overlap Y,* and Y2, so none of them is in S’

5.2.3

130 CHAPTER 5. MAXIMAL STRIP RECOVERY

Note that X is not necessarily independent (we only know that for every edge
(u,v) € E° w and v cannot both be in X;). If an edge (u,v) € E* U E® is such
that u,v € X1, we call it a bad edge. We call n, the number of bad edges, and for
each bad edge we arbitrarily remove one of its end vertices from X;. The result is
an independent set X with cardinality

[X1 =X =7

By the previous remark about X;, we know that if (u,v) € E* is a bad edge,
then neither Y,* nor Y, belongs to §’. In any other case, at most one of ¥,* and Y,
belongs to &', since they overlap in M. And it can be seen that the same occurs
with edges of E®, thus the number of prestrips in S'NY is at most |E*|+ |E®| —n.

We have:

IST=Ms"0VI+ > 1S Nyl

(u,0)€EEC
=28 Y+ Y (1S Nl
(u,v)EEC
<2AIBM+IE* —m)+ > I8 Nyl
(u,v)€EC
Hence,
> S = S]] = 2(n —m)
(u,v)EEC
Finally,
a(G) = |X]
_ (5 15 0wl —4)
= — Ny
2
(u,v)EEC

S IS =2(n —my) — 4B

- 2

_ ISl —4n

B 2

_ gl(Mljg) — 4n
2

This last inequality achieves the proof of Property 5.5. n

Proof (of Theorem 5.4). The above property directly implies that our construction
(which can clearly be achieved in polynomial time) leads to a reduction from CP2C-
MIS to 1-gap-MSR, which proves Theorem 5.4. m

o-gap-MSR Is APX-hard for § > 2

The d-gap-MSR problem is known to be APX-hard, by extending the APX-
hardness proof for MSR (93], which uses a reduction from a variant of SAT. We
present here an alternative proof, using a reduction based on a graph approach,
which leads to a somewhat larger inapproximability lower bound: 1.0106382 instead
of 1.000625.

5.2. HARDNESS RESULTS 131

Theorem 5.6. d-gap-MSR is APX-hard for any 6 > 2. More precisely, it is NP-hard
to approximate within 95/94 ~ 1.0106382.

To prove this theorem, we present an L-reduction to 2-gap-MSR from the vari-
ant of MAXIMUM INDEPENDENT SET restricted to cubic graphs, (3-MIS, see Sec-
tion 5.1.2). Using Theorem 5.3, the APX-hardness is extended to §-gap-MSR for
any 6 > 2.

Given a cubic graph G = (V| FE), our reduction consists in constructing two
genomic maps M, o, having properties P1, P2 and P3 described below, where €
denotes the set of all d-prestrips of M o:

P1. There exists a bijection ® between V and €2

P2. Every prestrip in €2 has length 2

P3. Two prestrips o1 and oy of are overlapping iff (21(cy), @ '(0y)) € F

Let P, denote the path graph with k vertices.

Lemma 5.7. Given a cubic graph G = (V| E), one can compute in polynomial
time a partition of E into two classes E® and EY (for “Black” and “White” edges),
such that (1) each connected component of (V,E®) (called “black component”) is
isomorphic to a path graph , and (2) each connected component of (V, E") (called
“white component”) is isomorphic to a path graph Py for some k < 4.

Proof. Given a cubic graph G = (V, E), we can compute in polynomial time a
bipartition of the edges £ = E® U EY such that both (V| E®) and (V, EY) are linear
forests (i.e. acyclic graphs of maximum degree 2, see [2]). At this point every black
and white component is isomorphic to a path.

Suppose there exist 5 vertices a, b, ¢, d, e such that edges (a,b), (b, c), (¢,d), (d,e)
are white. We deduce that b, ¢ and d cannot belong to the same black component
(they are three different degree-1 vertices of (V, E®), and a path graph has only
2 vertices of degree 1). Then either b and ¢, or ¢ and d, are in different black
components. In the first case, we can switch the color of (b, ¢) from white to black,
and we can switch (¢, d) in the second case. The result is that (V, E®) and (V, EW)
are still linear forests, and we have strictly reduced the size of a white component.
We can apply this process until no white component is longer than P,: Lemma 5.7
is proved. O

The first step of the reduction from 3-MIS to 2-gap-MSR is to compute a parti-
tion of E into two classes E® and EV according to LLemma 5.7. We then construct
two genomic maps M, o, satisfying properties P1, P2 and P3. Moreover, incompat-
ibilities in M (resp. Ms) will correspond to black (resp. white) edges. We begin
by assigning a different pair of integers (x,,) to every vertex a € V(G); we write
®(a) = (zq,2,).

Then, for every black component B; of order k, let V(B;) = {as | 1 < h < k}
and let (ap,any1) € E® for 1 < h < k; we construct the following sequence (see
Figure 5.2):

/ / / / /
I, = <wa17 X, Tagy Tays s Taps Loy s LTanyprs Taps -+ Tags Loy s x,xak>
. . . . 3 3
The full genomic map M, is given by M; = <Il, X3, Iy, X ,>
For M, we use a similar construction, but we need to take the reversed opposite
of some subsequences to avoid creating undesired prestrips. For a white component

132 CHAPTER 5. MAXIMAL STRIP RECOVERY
azl\a2/agg\a4/a;5\a6

B(ar) Blas) Dlas) Blas) Blas) Blag)

/XI'/>

/ / / /
<Ia17 vaawIalv'ragaIagaIa47xa3axa57'ra4axa67xa5a ' Lag

Figure 5.2: Transformation of a black component B; (top) into the sequence I;
(bottom).

W; having 4 vertices, say a,b,c and d with (a,b), (b,¢c), (c,d) € EVY, we create the
following sequence:

/ / / /
Jj - <£Eaa X, Tp, Ly =Ty Xy —Tg, — L, X, _xd>-

If W, is of order three (resp. two), we remove the extra elements from J;, i.e.
we obtain J; = <:)3a7 X, Ty, Thy — XL, T, ><,—:1:C> (resp. J; = <93a, X, Ty, Th, ><,:)3§,>).
Finally, M, is created in the same way as Mi: My = <J1, X3, Jy, X3, .. >

Lemma 5.8. The set Q of the 2-prestrips of Mya is exactly {®(a) | a € V}.
Moreover, ®(a) and ®(b) overlap in My iff (a,b) € E®, and ®(a) and ®(b) overlap
in My iff (a,b) € EV.

Proof. Suppose, by contradiction, that a prestrip of €2 contains markers correspond-
ing to two different vertices u and v: then there exists o € €2 such that o = <01, 02>,
with oy € {z,, 2]} and o9 € {x,, 2] }.

First note that o1 and o5 appear with the same orientation, since every element
of M, is positive. Because of the gap condition, both elements must appear in
the same /; in M, and in the same J; in Mj. In J;, the markers with a positive
orientation come from the two prestrips associated to vertices (called a and b in the
construction) linked by a white edge. Similarly, the negative markers come from two
vertices ¢ and d with (¢,d) € EV. So, whatever the orientation of o in My, there
must be an edge (u,v) € EV, and consequently this edge does not belong to E®.

We look at the subsequences in I; with gap at most 2 which do not contain any
peg marker. Using the notations of the construction, they are of one of the following
kinds:

!
1. <xah, xah71>

2. <$a,,,, xah+1>

/
ap

!

4. <xah’ :L“ah+2>
! /

5' <xah7 xah+1>

6. (), Tap,s
If we write u = ap, then v can be none of a,_1, a, or apyq, since u # v and
(u,v) ¢ E®. Only possibilities 4. and 6. remain, that is a prestrip of the form
o= <x;,xv>. However this kind of prestrip does not appear in J;, thus we have
proved that each prestrip of M, is either of the kind <xu, x;> or <x;, xu> Moreover,

3. <xah,x

5.2.4

5.2. HARDNESS RESULTS 133

for any u € V, <x;, xu> is not a subsequence of My nor Ms, thus each prestrip of
Q can be written (2,],) = ®(u) with u € V.

Conversely, for every a € V, <:1:a,xg> is a subsequence of M; with gap 2, and
either <xa,$;> or <—xg,—xa> is a subsequence of My with gap 2. So ®(a) is a
2-prestrip of M o: it belongs to 2.

Finally, the second part of Lemma 5.8 is deduced from the construction of the

sequences M7 and M. O

The consequence of Lemma 5.8 is that M, satisfies the three properties P1,
P2 and P3 defined above. The reduction we have described is an L-reduction from
3-MIS to 2-gap-MSR (see Introduction, page 8), with coefficients « = 2 and § =
1/2. Indeed, ® transforms an independent set of cardinality %k into a feasible set
of prestrips of total size ¢ = 2k, and ®~! does the reverse operation. We conclude
that 2-gap-MSR and, by Theorem 5.3, -gap-MSR for ¢ > 2 is APX-hard. More
precisely, these problems are, like 3-MIS, NP-hard to approximate within 95/94.
Thus Theorem 5.6 is proved.

0-gap-MSR-DU Is APX-hard, for All ¢

In this section, we focus on the variant of MSR allowing duplicates in the in-
put sequences. The problem becomes much harder, even with a 0-gap constraint.
The 0-gap-MSR-DU shares similarities the MINIMUM COMMON STRING PARTI-
TION problem (MCSP, see Chapter 4). Both problems deal with two sequences with
duplicates, and aim at matching markers in order to reconstruct common strips.
However, they differ both in the input sequences and in the optimization function.
Indeed, each marker in an MCSP instance should have the same number of occur-
rences in both sequences, which is not necessary in MSR-DU. Moreover, in MCSP,
one wants to create a minimum number of strips, using length-1 strips if necessary
(and all elements are covered), while in MSR-DU the number of elements covered
by the strips (each strip having length at least 2) has to be maximized.

Theorem 5.9. §-gap-MSR-DU is APX-hard for any 6 > 0. More precisely, it
is NP-hard to approzimate within 8649/8648 ~ 1.000115 for 6 = 0,1, and within
95/94 ~ 1.0106382 for § > 2.

We note that we need to consider only 0-gap-MSR-DU since APX-hardness of
d-gap-MSR-DU directly follows from APX-hardness of 0-gap-MSR-DU (see Theo-
rem 5.3). Moreover, the inapproximability bound for 6 > 2 is directly deduced from
Theorem 5.6.

As in the previous section, we use an L-reduction from 3-MIS, the variant of
MAXIMUM INDEPENDENT SET restricted to cubic graphs.

This L-reduction is done in two steps. First, we transform the input graph such
that it admits a partition of its edges and a labeling of its vertices with good prop-
erties (see below for the corresponding definitions). Then, using this partition and
labeling, we can create an instance of 0-gap-MSR-DU which simulates the behav-
ior of 3-MIS. Finally, Lemma 5.16 gives the whole L-reduction from the APX-hard
problem 3-MIS [3] to 0-gap-MSR-DU, which achieves the proof of Theorem 5.9.

The first transformation of the reduction defines an oriented graph, for which we
use the following definitions. If G = (V, A) is a loopless oriented graph, a = (u,v) €
A corresponds to an arc from u to v, of which u is the source, and v the target. The

134 CHAPTER 5. MAXIMAL STRIP RECOVERY

degree of a vertex u € V is the number of arcs a € A of which u is the source or
the target. A subset X of V is independent if for all (u,v) € A, X does not contain
both u and v.

Definition 5.1 (Good partition). Let G = (V, A) be a loopless directed graph. We
say that A = A; U A, is a good partition of A if (i) AiNAy =0, (ii) for any
p € {1,2} and a,b € A,, a and b neither have the same source nor the same target,
and (iii) (V, Ay) contains no cycle.

Note that if A = A; U Ay is a good partition of G = (V, A), then every u € V
has degree at most two in (V, A;) and in (V) As) (using condition ii). Moreover,
with condition iii, if C' C V is a connected component in the underlying undirected
graph of (V) As), then we can write C' = {ug,uq,...,u;}, such that the vertices
Ug, U, - . ., uy, form a directed path: (u;,u;) € Ay & j =i+ 1.

Definition 5.2 (Good labeling). Let G = (V, A) be a loopless directed graph, ¥ a
set of labels, and ¢ : V — X x 3, where we write ¢(u) = (u',u?) the image of a
verter u.

Then ¢ is said to be a good labeling of G if

1. ut £ u? for allu eV,

2. (v, v?) # ¢(u) and (v?,vY) # ¢(u) for any u,v € V such that u # v,

3. u? =v! for (u,v) € A.

Lemma 5.10. Let G = (V, E) be an undirected graph with mazximum degree 3. Then
we can compute, in polynomial time, a directed graph G' = (V' A’), a good partition
A= AL U A, of G' and a good labeling ¢ of G’ with the following properties:

a. [V'| =|VI+2|E], |A] = 3|E]
b. the mazimum degree of G' is 3
a(G') > o(G) + |E|

d. If X' is an independent set of G', there exists an independent set X of G such
that | X| > |X'| — |E| (and X can be computed in polynomial time).

o

Proof. We first use Vizing’s theorem (see [104]) to obtain a 4-coloring of the edges
of (V, E), that is a partition F = F; U Fy U E3 U Ej, such that two edges appearing
in the same FE; are not incident.
To create ¢, we need a numbering of the vertices y : V- — {0,...,|V| — 1} and
a numbering of the edges z : £ — {0,...,|FE| — 1}. For each u € V, we choose
olu) = (2y(u), 2y(u) + 1).
For each e = {u,v} € E, we create two vertices u, and v., and three arcs a, b, c.
such that (see Figure 5.3a, and an example in Figure 5.3b):
— If e € E1 U Ey, then a. = (u,ue), be = (v,0), ¢ = (ue,ve). Moreover,
Blue) = (12, %) and B(u,) = (17, 2|V] + 2(e)).
—If e € E3U Ey, then a. = (ue,u), be = (Ve,v), ce = (Ve,ue). Moreover,
¢(Ue) = (Ulvul)a and ¢(Ue> = (2’V| + .Z'(@),Ul).
We add each arc a,, b, and ¢, to either A or A), according to the following rules:
— If e € Ey U E3, then ag, b, € A} and ¢, € Aj,.
— If e € By U Ey, then ag, b, € A, and ¢, € Al.
Thus we have created a graph G’ = (V' A") with the set of vertices V' = V U
{te,ve | € € E} and the set of arcs A’ = A} U A},

5.2. HARDNESS RESULTS 135

u: 01 Tu:01 .u:Ol *u:Ol
ael ae | Qe Qe |
Ue = 13 Vue:13 Ue = 20 &ue:QO
! A
Cel Ce Cel Ce
Vve:34 Ve : 34 | Ve : 42 Ve : 42
f A
be be | be b, |
v:23 Lv:23 v:23 Yo:23
BEEl BEEQ €EE3 €EE4

(a) Construction of vertices e, Ve, arcs ae, be, ce, and labeling for an
edge e = {u,v}, and for each case e € F, Es, E3 or E,. We assume
y(u) =0, y(v) =1 and z(e) = 0.

u:01
u
Ue:13 9 ug:80
eec Fy g€E3 // \\
Ve : 36 wg:04
Vo feB, W
——>e—>e< -

v:23 wvp:35 wp:d7T w:4d

(b) Example on the triangle graph, with y(u) =0, y(v) = 1, y(w) = 2 and
z(e) =0, z(f) =1, z(g) = 2.

Figure 5.3: Construction of a good partition and a good labeling ¢ for an undirected
graph of maximum degree 3. We write u : u'u® for ¢(u) = (u',u?); arcs of A} are
solid, those of A} are dashed.

We show that A" = A} U A} is a good partition of G'. (i) A7 N A, = 0 by
construction. (ii) Each vertex u, € V' — V' is adjacent to exactly one arc of A} and
one arc of A}. Each vertex v € V' is adjacent in G to at most one edge in E; (resp.
E,), thus it is the source in G’ of at most one arc in A} (resp. A)). And it is also
adjacent in G to at most one edge in E5 (resp. Ej), so it is the target in G’ of
at most one arc in A} (resp. Aj). (ili) There are no cycles in (V' A}), since each
connected component of this graph contains at most two arcs.

Moreover, ¢ is a good labeling of G’. First remark that for u,v € V, {u!,u?} N
{v!,v?} = (. Tt implies that condition 1. is true for all u € V', and that condition 2.
is true for all u € V' and v € V. For u, € V' =V and v, € V' =V, with e = {u, v}
and e’ = {u/,v'} # e, we have v/ ¢ {u,v} or v' ¢ {u,v}. It implies that one element
of ¢(ul,) does not appear in ¢(u.). Finally, condition 3. is verified by construction.

We now prove that G’, the good partition and the good labeling have the required
properties.

a. The cardinality conditions on V' and A" are satisfied by construction.

b. The degree of u € V in (V’, A’) is the same as in (V, E), thus it is at most 3.
And the degree of u, € V' — Vin (V/, A') is 2.

c. The independence number of the graph is increased by at least 1 each time

136 CHAPTER 5. MAXIMAL STRIP RECOVERY

we split an edge e into 3 arcs a,be,c. (we can add either u, or v, to any
independent set).

d. Let X’ be an independent set of G'. We create X in the following way: start
with X = X’. Then, consider each edge e = (u,v) of G. Several cases are
possible: if X’ contains both u and v, then it contains neither u, nor v., and
we remove u from X. Otherwise, X’ contains at most one element among
{te, v}, and we remove this element. We obtain a set X which is a subset of
V' (it does not contain any vertex u, or v.) and is independent in G (it cannot
contain both u and v for (u,v) € E). Finally, we have removed at most one
vertex per edge e € F, so |X| > |X'| — E.

]

Let G = (V, A) be a directed graph, with A = A; U Ay a good partition of A
(such that (V, Ay) is a degree-2 acyclic graph) and ¢ : V' — ¥ x ¥ a good labeling
of G. We give an arbitrary order over each set A;, A and V, and we construct
two genomic maps M, o with the following procedure (see for example the directed
graph in Figure 5.4a and the resulting maps in Figure 5.4b):
M1 — <>
For each u € V

My = (M, x, u?,ut)
For each (u,v) € Ay

My = (M, x, ut u?, v?)

For each u € V s.t. u has no incoming arc in A,

My + <M1, X, ul,u2>
For each u € V s.t. u has no outgoing arc in A;

My <./\/ll7 X, 1L17 u2>
MQ — <>
For each connected component {ug, uy,...,u} in (V, Ay)

/% such that ug,uq, ..., ug is a path in (V, Ay), with k >0 */

Mg — <M2, x,ué>

For i+ 0Otok

My (Mo, u?, u}, u?)

The resulting maps have the property that, for all u € V:

— there is exactly one occurrence of <u2, u1> in M1, and exactly two occurrences
of (u',u?) in M; (recall that, for (u,v) € Ay, u? = v'). Moreover, these three
subsequences are non-overlapping;

— there is exactly one occurrence of (u',u? u', u?) in My, and no other occur-
rence of (u',u?) or (u?,u').

Moreover, the strip (u?, u') does not intersect any occurrence of (v',v?) or (v?,v')
for v # u.

Definition 5.3. Let My be the maps constructed by the above procedure from a
graph G = (V, A), and let O be a solution of 0-gap-MSR-DU(M,5). We say that
u € V s selected i O if both occurrences of <u1,u2> appear in O; we say it is
unselected if only the strip (u* u') appears in O.

Lemma 5.11. All strips in a feasible solution have length 2. Moreover, each of the
strips is of one of the following kinds: (u*,u?®) or (u?®,u') foru e V.

5.2. HARDNESS RESULTS 137

34 45

23

12 35

(a) Directed graph G = (V,A) with a
good partition of A and a good labeling
of the vertices

Mi: x 21 xB2x 43 x54x15x53
x@23 x2B84 x@B45 x451
@82 xB3 xBF x51

Ms: x 28923 53 51 5@2@ 2
x B 4B 4 x 45145

(b) Maps created for the reduction

45
23 %51
\\ //1
\\ // /
-~ ~ /
V3 Ay

(¢) Maximum independent set corre-
sponding to a solution of 0-gap-MSR-
DU(M, 2)

Figure 5.4: Reduction from MIS to 0-gap-MSR-DU. In (a) and (c), each vertex of the
graph is marked with the two integers of the good labeling. In (b), the prestrips of
an optimal solution are highlighted. The prestrips corresponding to an independent
set of G are framed and reported in (c).

Proof. Since the peg markers x cannot be selected in map M, and a strip cannot
overlap them (the gap constraint is 6 = 0), all strips are either length-2 strips of the
kind (u',u?) or (u?,u'), or length-3 strips of the kind (u',u? v?), with (u,v) € 4;.
We show that strips of this last kind are in fact impossible. Indeed, we have v? # u!,
and three different non-peg markers are never consecutive in map Mo, except for
the sequences (u}, u?, u?,), where (u;, u;41) is an arc of A;. Hence if we have such a
length-3 strip, u' = u}, u* = u? =v' =u},,, and v* = u?, ;. Sou = u; and v = w4y,
which implies that the arc (u,v) appears both in A; and in A, a contradiction. [

Lemma 5.12. Given a feasible solution S of 0-gap-MSR-DU(M) of total size ¢,
we can create a feasible solution S’ of total size at least ¢ where each vertex u € V
15 either selected or unselected.

Proof. We start with &' = S. Remember that for all u, the strip (u?,u') only
intersects the occurrences of <u1, u2>, which already implies that a vertex u cannot

138 CHAPTER 5. MAXIMAL STRIP RECOVERY

be both selected and unselected. If 8" uses at most one strip among <u27 u1> and the
occurrences of (u', u?), then we can replace it by (u?, u') without creating conflicts,
and the vertex u becomes unselected. Otherwise, S’ uses two independent strips
among (u?,u') and the occurrences of (u',u*), hence it cannot use (u?,u'), and u
is selected. O

Lemma 5.13. If (u,v) € A, then u and v cannot be both selected in a feasible
solution.

Proof. Two cases are possible: (u,v) € A; and (u,v) € A;. In the first case,
one occurrence of (u',u?) intersects an occurrence of (v',v?) in map M (in the
sequence (x,u',u? v% x)). So both occurrences of (u',u?) and both occurrences
of (v',v?) cannot be all selected in the same solution. The situation is similar if
(u,v) € A,, since an occurrence of (u',u?) intersects an occurrence of (v',v?) in
the sequence (u',u?,u', u?,v? v, v?) of map M. O

Lemma 5.14. If X C V is an independent set of G = (V, A), then the set of strips
selecting every vertex uw € X and unselecting every u € V — X s a feasible solution
of 0-gap-MSR-DU(M).

Proof. We first create the feasible solution which keeps all the vertices u € V unse-
lected (this solution contains all strips <u2, u1>, which are pairwise non-overlapping).
For each u € X, we replace (u? u') by the two occurrences of (u',u*): these two
strips do not overlap any v, v' for v € V, nor any (v',v?) for v € X (this is because
there is no arc linking u and v). Thus we end with a feasible set of strips, and every
u € X is selected, while the other vertices are unselected. O

Lemma 5.15. There exists an independent set X of G of cardinality k if, and
only if, there exists a feasible solution S of 0-gap-MSR-DU (M) of total size
0 =2(|V| + k). Moreover, given such an S, the corresponding independent set X is
computable in polynomial time.

Proof. This is the corollary of the four previous lemmas: the “only if” part follows
directly Lemma 5.14. For the “if” part, we start with S a feasible solution of 0-gap-
MSR-DU (M, 3) of total size ¢. Using Lemma 5.12, we obtain a feasible solution
S’ of total size at least ¢, such that, if X; is the set of selected vertices in &’
and X5 the set of unselected vertices, then X; U X, is a partition of V. Then
|S’|| = 4] X1| + 2| X2, and X, is an independent set (by Lemma 5.13). Thus ¢ <
41X+ 2| X2 = 2(]V| + | X1]). Then we can remove vertices from X; until we reach
a set X such that ¢ = 2(|V| + | X]). O

Lemma 5.16. There exists an L-reduction from 3-MIS to 0-gap-MSR-DU.

Proof. We start with an instance G = (V, E) of 3-MIS (G is a cubic graph). Using
Lemma 5.10, we obtain a new directed graph G’ = (V', A’), a good partition A’ =
AJUA, of G'; and a good labeling ¢ of G'. Moreover, |V’| = |[V|+2|E], and a(G’) =
a(G) + |E|. Since G is a cubic graph, we have |E| = 3|V|/2 and |V| < 4a(G), thus
|V'| = 4]V| and a(G’) < Ta(G). Next we create an instance (M, o) of 0-gap-MSR-
DU from G’ = (V', A’) with the procedure described above. Let ¢y be the optimal
value of 0-gap-MSR-DU(M;3). Applying Lemma 5.15 on the optimal solution we
have,

to = 2(V']+a(G")

5.3

5.3.1

5.3. POLYNOMIAL-TIME ALGORITHMS 139

2(4|V] 4+ 7a(G))

<
< 46a(G).

Hence we have the first inequality of the L-reduction. We now consider S a fea-
sible solution of 0-gap-MSR-DU(M,). Using Lemma 5.15 we can construct an
independent set X’ of G’ such that:

ISI]=2(1V'| + [X7]),

and using Lemma 5.10, we can deduce from X’ an independent set X of G of
cardinality |X| > | X'| — |E|. Hence,
to— ISl = 2(V'[+ a(G) = V'] = [X])
= 2(a(@) + |E] - X))
2(a(G) + [E| = |X] - [E])
= 2(a(G) = [X]).

v

This proves the second inequality of the L-reduction from 3-MIS to 0-gap-MSR-DU.
Moreover, since 3-MIS is not approximable within 95/94 [52], 0-gap-MSR-DU is not
approximable within 1+ 1/(94 x 46 x 2) = 8649/8648. O

Polynomial-Time Algorithms

In this section we present polynomial-time algorithms for several variants of
MSR. Algorithms in Sections 5.3.1, 5.3.2, 5.3.3 and 5.3.5 rely on literature algo-
rithms — exact algorithms and approximations — for restrictions of the MAXIMUM
INDEPENDENT SET problem presented in Section 5.1.2.

Reduction to MAXIMUM WEIGHT INDEPENDENT SET

In this section we consider the variants of MAXIMUM WEIGHT INDEPENDENT
SET on the classes of interval and d-interval graphs. The following construction
follows the one used by Chen et al. [47] to design a 4-approximation algorithm for
MSR and MSR-DU and by Jiang [93]. We use this construction in order to extend
the algorithm to the d-gap variants of the problems using the approximation for d-
Interval- MWIS (Theorem 5.18), and to design an exact polynomial-time algorithm
for 0-gap-MSR using the exact algorithm for Interval-MWIS (Theorem 5.19).

Given d genomic maps M; 4 and a gap 6 € N U {oco}, we construct a set of
d-intervals in the following way. First, compute the set 2 of all prestrips of My 4
(possibly with the d-gap constraint). Then, to each prestrip o € €, assign the
intervals I, ... 1,4 of R described below, the d-interval I, = (1,1, ..., I, q), and the
weight w(I,) = |o|. We write respectively min(idx(o, M)) and max(idx(o, M)) the
indices of the first and last element of o in a map M, and L = max{|M;|+ 1|1 <
i < d}.

I,; =[iL + min(idx(o, M,)); iL + max(idx(c, M,))],

We denote Gs(M;._4) the weighted d-interval graph with vertex set {/, | o € Q}
and weight w. It has the following property:

140 CHAPTER 5. MAXIMAL STRIP RECOVERY

Algorithm 5.1 Reduction from §-gap-MSR-DU-d to d-Interval-MWIS.
Input: d genomic maps M; 4, 6 € NU {o0}

1: compute the weighted d-interval graph Gs(M;._4)
2: compute X, a 2d-approximation for d-Interval-MWIS(Gs(M;._ 4))
3: return the feasible set of prestrips S ={o | I, € X}

Property 5.17. Let S C Q and X = {I, | 0 € §}. The set X is an independent
set of Gs(My._q) with weight W iff S is feasible with total size W.

Proof. Given two integers ¢ and j and two prestrips o and 7, intervals I,; and I, ;
intersect iff ¢ = j and the subsequences of M; ¢ and 7 overlap. Thus we have the
following equivalence:

I, and I, intersect < o and 7 overlap.

Hence, a set of d-intervals X is independent iff S = {0 | I, € X} is feasible.
For the weight conservation, we have:

wX)=) w(l,) =) lol = ISl

I,eX ceS

]

Theorem 5.18. For any d > 2 and 6 € NU {oc}, there exists a factor-2d approzi-
mation algorithm for 0-gap-MSR-d and for 6-gap-MSR-DU-d.

Proof. We use the construction described above to create Algorithm 5.1. Prop-
erty 5.17 yields that the total size of S is the weight of X, and that J-gap-MSR-
d(M;_4) and d-Interval-MWIS(G5(M;._4)) have the same optimal values. Conse-
quently, S is a 2d-approximation for d-gap-MSR-d (when the input maps Mj 4
do not contain duplicates) and for d-gap-MSR-DU-d. We thus have proved Theo-
rem 5.18. O

Note that this approximation algorithm is particularly interesting when d has
high values, in which cases it has an almost tight ratio (compared to the asymptotic
lower bound of 2(d/logd) proved by Jiang [93]).

Theorem 5.19. There exists an exact polynomial-time algorithm for 0-gap-MSR-d
and 0-gap-CMSR-d.

Proof. We consider only the 0-gap-MSR-d problem, since the result extends trivially
to 0-gap-CMSR-d.

Let M4 be d genomic maps without duplicates (in fact, we only need to assume
that M has no duplicates). The graph Go(M;.__4) has the following property:

I, and I, intersect < I, NI 1 # 0.

Indeed, if two prestrips overlap in M; for some i, since they have gap zero, they
must have a common marker m appearing in M;. But since m can appear only
once in My, they also overlap in My. Thus I,; N I;; # 0 implies I,1 N L1 # 0,
which suffices to prove the claim. Using this property, we can see that Go(M;._4) is
isomorphic to the interval graph with vertex set {I! | o € Q}. Hence, the reduction
algorithm 5.1 can be used to obtain an optimal solution, by computing an optimal
solution X of Interval-MWIS(Go(M;._ 4)) instead of a 2d-approximation (line 2).
This completes the proof of Theorem 5.19. O

5.3. POLYNOMIAL-TIME ALGORITHMS 141

Algorithm 5.2 R(d,d)-approximation algorithm for §-gap-MSR-d.
Input: d genomic maps M4 without duplicates, 6 € N
1: Q9 < the set of all d-prestrips of length 2
2: E < the subset of €25 x 25 of overlapping prestrips
3: G « the (p + 1)-claw-free graph (Qs, E), with p=d - (1 + |2]) + (0 mod 2) by
Lemma 5.21
4: return a (p/2 + €)-approximation of a MAXIMUM INDEPENDENT SET of G

Since the proof uses only the fact that M; has no duplicates, we have in fact
proved that the following problem, which is more general than 0-gap-MSR, is also

in P:
Problem Generalization of 0-gap-MSR-d
Input d genomic maps M 4 each containing the same n markers,
where M cannot have duplicates
Output d subsequences M) , of M;_4 respectively, each containing

the same ¢ markers, such that the markers in M’ , can be
partitioned into strips, and such that each strip has gap 0
Maximize the number ¢ of selected markers

5.3.2 Approximation Algorithm for /-gap-MSR-d

In this section, we present an approximation algorithm for J-gap-MSR-d. The
approximation ratio being O(dd), instead of O(d), it is practical only for small values
of 9.

Theorem 5.20. Algorithm 5.2 computes an R(d, d)-approzimation for é-gap-MSR-

d, where RS - 2 (d <1+ EJ) + (6 mod 2)) +e

Note that the values of R(d,¢) for small ¢ are the following:

0.75d +0.754+¢ ford=1

B 1.5d + € for 6 =2
R(d,0) = 1.5d+0.754+€¢ ford=3
2.25d + € for 6 = 4.

Thus Algorithm 5.2 improves the 2d-approximation (see Section 5.3.1) for § < 3,
but will be improved by the 1.8-approximation in Section 5.3.3 for d =2 and § = 1.

Lemma 5.21. The size of any claw in the graph G created by Algorithm 5.2 is
upper-bounded by p = d(1 + ng) + (6 mod 2).

Proof. Suppose there is a ¢g-claw in G = (2, E). We denote by ¢ = <u,v> its
center, and by NN the set of ¢ neighbors of ¢ in this claw: the prestrip ¢ overlaps
with each n € N, but prestrips in N are pairwise non-overlapping. We partition
N into N = Ny U Ny U...U Ny as follows: if n € N shares a marker with ¢, then
n € Nn; otherwise, choose a map M; for which {u, v}US?(u,v) and {u’, v/ JUS (', v")
intersect, and add n to ;.

5.3.3

142 CHAPTER 5. MAXIMAL STRIP RECOVERY

First note that 0 < |Nn| < 2 : a prestrip in N either contains u or v, and non-
overlapping prestrips cannot both contain u or v. Now for 1 < i < d, we give an
upper bound on |N;|, depending on |N|. We can assume wlog. that u and v appear
in positive form in M;, and that N; consists of h prestrips <a:1,y1>, cee <xh,yh>
appearing in this order in M; (i.e., <x1,y1,x2,yg, .o, Th,Yn) is a subsequence of
Gi).

If |[Nn| = 2, then x; must appear after u and y, must appear before v in M;j:
otherwise <x1,y1> (respectively <:1:h,yh>) would overlap with some prestrip of Nn.
Since there can be at most ¢ markers between v and v, we have 2h < 4.

If |[Nn| = 1, suppose the prestrip in N contains u: then z; must appear after
u in M;. Also, z;, must appear before v, otherwise (zy, y),) would not overlap with
<u7v>. Hence we have 2h — 1 < 0.

Finally, if | Nn| = 0, then y; must appear after v and z;, before v, hence 2h—2 < 6.

To summarize, we have the following bounds on h = |V;|:

— If [N5| =0, then |N;| < 1+ [2].

— If [INs| =1, and ¢ is odd, then |N;| <1+ [2].

— If [Nn| =1, and 4 is even, then |N;| <[]

— If |[Nn| = 2, then |N;| < [2].

Summing over all N; and N, we have

0+d-(1+[$])
q = |N| < max{ 1+d- (3 mod 2) + |5])
24+d- 2]

=max{d,1+d-(d m d2),2}+d'L§J
=d+ (0 mod2)+d-|3]
=d-(1+|3)+ (Fmod2) =p.

as desired. O

We now bound the approximation ratio of Algorithm 5.2. If O is an optimal
solution of size ¢, there is a solution of size %é in €y: all prestrips in O can be
decomposed into smaller prestrips of length 2 or 3. If we remove the last element
of each length-3 prestrip of O, we obtain a feasible solution O’ of size at least %é,
included in €9, which moreover forms an independent set of G = (€, E). Using
the (p/2 + €)-approximation of MAXIMUM INDEPENDENT SET on (p + 1)-claw-free-
graphs given in [79], we obtain an independent set of G corresponding to a set of

prestrips of total length /2+ ?,)E This leads to an approximation ratio of %p + €,

where p = d(1+ |$]) + (6 mod 2).

Approximation Algorithm for 1-gap-MSR-2
In this section, we prove the following result.

Theorem 5.22. Algorithm 5.3 is a factor-1.8 approximation algorithm for 1-gap-
MSR-2.

Proof. Algorithm 5.3 works as follows. Given two genomic maps M, 2, compute the
set of all prestrips with length 2 or 3 (and gap at most 1). Longer prestrips are
ignored, since they can be split into smaller ones appearing in 2. Select a subset
V* C Q (according to some parameter \: see the selection process described below),

5.3. POLYNOMIAL-TIME ALGORITHMS 143

Algorithm 5.3 1.8-approximation algorithm for 1-gap-MSR-2.
Input: d genomic maps M 4 without duplicates

T+ {(0,1,2),(1,2,3), (2,3,4), (0,2), (1,2), (1,3), (2,3), (2, 4),
(5,6),(5,7),(6,7),(6,8),(7,8)}

2: (2 <= set of all 1-prestrips of M 5 of length 2 or 3

3: for A\<—1to 9 do

4: VA {o |0 €Q, mo(idx(o, My) —\) € T}

5: E* < {(01,09) | 01,09 overlapping prestrips of V*}

6: w(o) < |o| (for all o € V)

7. VP, < CLAW-FREE-MWIS of graph (VA E*) with weight w

8: end for

9: return max{||V},]|| 1 <A <9}

and create E*, the set of all overlapping pairs of prestrips of V*. The pair (V*, E*)
forms a graph which is claw-free (see Lemma 5.23). Tt is thus possible to compute,
in polynomial time, a maximum independent set for this graph (see Section 5.1.2),
which yields a feasible set of prestrips V7 ,.

The selection of V* among) is done as follows: given a prestrip o of M o, take
the values of idx(o, M) — A modulo 9. This is done by the arithmetic function 7o,
which takes the values of a list modulo 9: for example, if o has indices (30, 32, 33)
in My, and A = 5, then idx(o, My) — A = (25,27,28), and mg(idx(o, M) — \) =
(7,0,1). If the result of me(idx(o, M2) — A) belongs to some set (the vector T in
Algorithm 5.3), add o to V*. We only need to test the 9 different values of A to
obtain 9 different feasible sets of prestrips.

Finally, Lemma 5.30 proves that there exists some A for which the total size of the
corresponding V7 ; is at least 5/9" of a maximum feasible set of prestrips of M ».
Thus, Algorithm 5.3 is a polynomial-time algorithm giving a 1.8-approximation to
1-gap-MSR, and Theorem 5.22 is proved. O]

Lemma 5.23. For each), the graph (V*, E*) created by Algorithm 5.3 is claw-free.

Proof. Although it is not necessary for the algorithm, we assume here, wlog., that
M is the identity permutation <1, 2,..., |/\/l1|> This assumption simplifies some-
how the notations: idx(c, M) = o.

Consider a prestrip ¢ € V*. Since all elements of T have values included either
in {0,1,2,3,4} or in {5,6,7,8}, and by construction my(idx(c, M) —) € T, we
have

mo(idx (o, Ms) — X) C [0; 4]
or mo(idx(o, M) — X) C [5; §] .

Thanks to the gap condition, there exists some integer £ such that the indices

of o in My are all in one of the following size-5 or size-4 intervals:

idx(o, My) C [0+ 9k + A\; 44+ 9k +)]
or idx(o, My) C [54+ 9k + X; 8+ 9k + A]].

Let K*(o) be the size-5 or size-4 interval of M, containing o, such that:

KMo) = (Ms[0+ 9k + A, ..., Ma[4+ 9k + A])

144 CHAPTER 5. MAXIMAL STRIP RECOVERY

or KMNo) = (Ma[5+ 9k + A],..., M2[8 + 9k + \]).

The last notations we use are for edges of E*: for 0,7 € V?, if (0,7) € E*, we
write 0 — 7. If 0 and 7 have a common element, we say that they intersect, and
we write o — 7. Otherwise, they must overlap in M; or My (possibly both): we
write respectively o M TOro Mz T.

Before proving that (V*, E*) is claw-free, we first give a series of properties over
this graph.

Property 5.24. Let o, 7 be distinct prestrips of V*. If o and 7 overlap in M, for
some i € {1,2}, without intersecting each other, then they both have gap exactly 1

Proof. All the prestrips we consider have gap at most 1. If one of them (say o)
has gap 0, then it would contain two consecutive elements in M; which 7 overlaps:
consequently, 7 would have gap at least 2, a contradiction. O

Property 5.25. Let 0,7 be distinct prestrips of V. If o D rore M T, then
KX o) = KM7).

Proof. Both cases imply K*(o) N K*(7) # (). Moreover, the indices over My are
partitioned by the intervals [0+ 9% + A; 4 + 9k + A\ and [5 + 9k + \; 8 + 9k + A],
and this genomic map does not contain duplicates. Hence Property 5.25 follows. [

Property 5.26. Let 0,7 be distinct prestrips of V*. If K* (o) = K*7)(= K) and

|K| =5, then o O rore Mg

Proof. This property is deduced from the vector T' of Algorithm 5.3: every element
in 7" which is included in [0; 4] either contains 2, or is (1,3). If o and 7 do not
intersect, then, writing K = (K[0], K[1], K[2], K[3], K[4]), one of the two prestrips
contains K[2] and the other is (K[1], K[3]), in which case they overlap in M.

M
Consequently, o 2 orore 227 n

Property 5.27. Let 0,7, 7> be distinct prestrips of V. If o Mz 71 and either

2 M N Mo
o — Tyoro — Ty, thenTy — T orm — To.

Proof. Let K = K*(o). Using Property 5.25 both on (0,7,) and (o, 7), we have
K = K*r) and K = K*(13). If o, 7 and 75 do not intersect, they correspond to
3 disjoint subsets (each of cardinality 2 or 3) of K (which is of cardinality 4 or 5):
a contradiction. Since o and 71 do not intersect, either 7 R 7o, (in which case the
property is proved), or o =
If K has size 5, since K*(11) = K*(73), Property 5.26 applies directly on 7y, 5.
If K has size 4, then o, 7, and 75 have length 2. Since ¢ and 7; do not intersect,

and |K| = |o| + ||, every element of K appears either in o or 77. Now 7 is a
subsequence of K, and there is at least one element of 7 which does not appear in
0, s0 T and 7y intersect.]

Property 5.28. Let 0,7 be distinct prestrips of V>, with |o| = 2. If o M then
there exists = € {1,...,|M| — 2} such that 0 = (z,x+2), and T contains as
sub-prestrip <x —1l,z+ 1> or <36 +1,z+ 3>.

5.3. POLYNOMIAL-TIME ALGORITHMS 145

Proof. By Property 5.24, o has gap 1 in M, so there exists x such that ¢ =
<x,x+2>. The only two subsequences of size 2 overlapping <x,m+2> without
intersecting it are <x —1l,z+ 1> and <x +1l,z+ 3>: T must contain one of those as
sub-prestrip. O

Property 5.29. Let 0,71, 7 be distinct prestrips of V*. If o g 71 and o g Ty
then either 7 o To, or there exists x such that o = <x, x4+ 2,x+ 4>, one of {1, 72}
contains <x -1,z + 1>, and the other contains <x + 3,2+ 5>.

Proof. If || = 2 we can use Property 5.28 twice: there exists x such that o =
<x, T+ 2>, and both 7 and 7, contain x + 1, hence 7y o Ty.

Suppose now that 7y and 75 do not intersect, which implies |o| = 3. Since o
and 7 are overlapping in M, there exists an element x € ¢ appearing between
the first and the last elements of 7, that is, minm < x < max7;. With the same
arguments as previously, 7; contains <x -1,z + 1>. There also exists #’ € ¢ such
that 7 contains <9c’ — 1,2+ 1>.

We can assume wlog that 2’ > z. Since the three prestrips do not intersect,
2 ¢ {x,x+1,2+2}, and x, 2’ cannot be consecutive in o (otherwise the gap would
be at least 2). Hence there exists " such that r < 2” < 2’ and 0 = <x, x”, a:’>. Now
with the gap condition,

2 e{r+lz+2}n{a’ —2,2" — 1},
and with the non intersecting condition,
" ¢ {x+1,2" -1}
Only one possibility remains:
" =x+2=2"-2and o= (v,x+2,x+14).
This proves Property 5.29. O

We are now ready to prove Lemma 5.23: assume there exist four prestrips
0,71, T2, T3 forming a claw in (V* E*), that is

g — Ti, O — To, g — T3,

(11, 72) & B, (19,73) ¢ E*, (73,71) ¢ EM.

Let nq, be the number of prestrips in {71, 72, 73} overlapping ¢ in M; without
intersecting it.

If nyg, = 0, then for all j € {1,2,3}, either o i T; OI O Mz 7;. Hence we can
use Property 5.25 to show that K*(0) = K*(71) = K*(12) = K*(73). In that case,
71, T2 and 73 are 3 prestrips of length 2 or 3 included in a set of size 4 or 5, so two
of them must intersect, a contradiction.

The other trivial case is ny, = 3. Using Property 5.29, we deduce that o
can be written o = <x, r+ 2,0+ 4> and that each one of 7, 7, 73 contains either
<x -1,z + 1> or <£E + 3,z + 5>. Again two of them must intersect, a contradiction.

. My M
Now we consider ny, = 2: wlog, we can assume that ¢ — 7, 0 — 79, and

o L T3 OF O Mz 73. By Property 5.29, ¢ can be written o = <x,x+2,x+4>,
71 contains <x -1,z + 1>, and 7, contains <x+3,x+5>. Since o has length 3,

146 CHAPTER 5. MAXIMAL STRIP RECOVERY

by definition of the vector T', see Algorithm 5.3, ¢ has gap 0 in M,. Hence by

Property 5.24, the case o Mz 73 18 impossible, which implies o i 73. Moreover 73
does not overlap with 7 nor 7, so it contains neither x nor x + 4. Necessarily, the
common element between o and 73 is + 2. Since |73] > 2 and since it has gap 0 or
1, it must contain an element among {x,x 4+ 1,2 4+ 3,2 + 4} and thus overlap with
T1 Or T: a contradiction.

Now, consider the last possible case, that is ny, = 1 (wlog, assume that

s M 7). Property 5.27 applied to o, 75 and 73, eliminates the cases where o Mz Ty
or o Mz T3, since there can be no edge between 7, and 73. Hence we have o o Ty
and 0 - 73. With Property 5.25, there exists a length-4 or length-5 sequence K
such that K = K*(0) = K*N1y) = K*(73).

If |K| = 5, Property 5.26 applies with 75 and 73, and we conclude that 7 . T3

or Ty Mz T3, a contradiction.

Otherwise, |K| = 4. Since Algorithm 5.3 considers only length-2 prestrips in
size-4 intervals [5 + 9k + \; 8 + 9k + A], we have |o| = 2. With Property 5.28,
there exists an x such that o = <x,x + 2>, and 7, contains either <x -1,z + 1>
or <x+ 1,x+3> as sub-prestrip. We only consider the case where 71 contains
<:Jc -1,z + 1>, the other being similar. Let j € {2, 3}, since 7; intersects o without
overlapping with 71, 7; contains x + 2. Hence 75 and 73 have a common element,
x + 2, a contradiction.

Altogether, we have shown that the graph (V*, E*) cannot contain any claw,
and Lemma 5.23 is proved. O

Lemma 5.30. Let O be a mazimal feasible set of prestrips for 1-gap-MSR(M, 3).
Then Algorithm 5.3 provides a solution of total size at least 5||O|]/9.

Proof. The proof relies on the construction of nine feasible sets of prestrips, denoted
O',...,0% such that each prestrip in O* appears both in O (possibly as a sub-
prestrip) and in V*. We also require that

9
> 10N = 5[0]l.
A=1

First note that we can assume that each prestrip in O has length 2 or 3: a
prestrip cannot be shorter, and we can split longer ones. The approach is as follows:
we start with nine empty sets O, ..., 0% Then, for each prestrip ¢ € O, we
enumerate the values of A for which VV* contains o (or a sub-prestrip of o), we add o
to the corresponding sets O*, and we measure the increase of the sum S_5_, ||O|].
Examples are given in Figure 5.5.

For a prestrip o of length 2 (see Figure 5.5b), we can add o to O only if we
have mo(idx(o, My) — A) € T. If idx(o, M3) = (y,y + 1), then mo(idx(c, My) — A)
takes the values (0,1), (1,2), ..., (7,8), (8,0). Five of those nine pairs appear in the
vector T of Algorithm 5.3: (1,2), (2,3), (5,6), (6,7) and (7,8). So we add o to O*
for 5 different values of \: the total size 3.5_, ||| is increased by 10 = 5|o|.

The same goes for a prestrip of length 2 with indices (y,y +2): it appears in V?
for 5 different values of A, with indices (0, 2), (1, 3),(2,4), (5,7), (6,8). When added
to the corresponding O*, the total size is again increased by 10 = 5|

Now we consider a prestrip o of length 3 with indices (y,y + 1,y + 2). There
are three values of A for which my(idx(c, My) — A) € T (because (0,1,2), (1,2,3),

5.3. POLYNOMIAL-TIME ALGORITHMS

(a) Vector T defined in Algorithm 5.3

A mo(idz(o, Ma2) —) elle\fx?etiﬁ;gT
9 (0,1) 0
8 (1,2) (1,2)
7 (2,3) (2.3)
6 (3,4) 9
5 (4,5) g
4 (5,6) (5,6)
3 6,7) (6,7)
) (7.8) (7.8)
1 (8,0) I)) 8 0
(b) Enumeration for idx(c, M) = (y,y + 1). We assume wlog that mo(y) = 0.
A mo(ide(o, M2) —) elle\f;ﬁ?i;gT
9 (0,2,3) 3 (0,2)
8 (1,3,4) 4 (1,3)
P e >
o o -
5 (4,6,7) 4 (6,7)
o o
3 680 0) 63
2 (7,0,1) 0 1) (7 0
1 (8,1,2) © O @ (1,2)

(¢) Enumeration for idx(c, Ms) = (y,y + 2,y + 3). We assume wlog that mg(y) = 0.

147

Figure 5.5: Enumeration of the prestrips of V* matching a prestrip ¢ € O, for
A€ {l,...,9}. Note that V* contains all the prestrips whose indices taken modulo

9arein 7.

5.3.4

148 CHAPTER 5. MAXIMAL STRIP RECOVERY

(2,3,4) are in T): we add o to O* in those three cases. We now consider the two
sub-prestrips of o: o7 with indices (y,y + 1), and oy with indices (y + 1,y + 2).
Amongst the 6 remaining values of A for which my(idx(o, M) — A) ¢ T, there are
3 for which o is selected (corresponding to pairs (5,6), (6,7) and (7,8) in T'), and
one more for which only o5 is selected (corresponding to the pair (5,6) in 7). The
total size of 35_, ||[O*|] is increased by 3 x 3 +4 x 2 = 17, which is greater than
5|o| = 15.

We use similar arguments for other prestrips of length 3. If idx(o, M3) = (y,y +
2,y + 3) (see Figure 5.5¢), we use pairs (0,2), (1,3), (2,4), (5,7) and (6,8) of T for
o1, and (0,2), (5,6), (6,7) for o. The quantity >35_, ||O*[| is increased by 16.

If idx(o, M3) = (y,y + 1,y + 3), we use pairs (1,2), (2,3), (5,6), (6,7) and (7,8)
of T for oy, and (1,3), (2,4), (6,8) for oy. Again 22:1 [|O*|| is increased by 16.

Finally, if idx(o, Ms) = (y,y + 2,y + 4), we use pairs (0,2), (1,3), (2,4), (5,7)
and (6,8) of T for oy, and (0,2),(1,3), (5,7), (6,8) for oo. In that case, S5_, ||O|
is increased by 18.

For each strip o of O, we have succeeded in adding o, or sub-prestrips of o, in
several O* such that the total size is increased by at least 5|c|: we have 9 feasible
sets (since O is feasible) satisfying the condition:

9
> oM = 5llo]).
A=1

For each \ € {1,...,9}, the prestrips of O, being taken from a feasible set O,
are pairwise non-overlapping and form an independent set of (V*, E*). Thus we
have [[V7,4 = ||O*[], and

9
1
max{||Vinall [1 <A <9} > §ZHVFndH
A=1

Hence the solution returned by the algorithm is at least 5||O||/9. O

As a final remark, Algorithm 5.3 has been written to be as simple as possible with
this approximation ratio. However, it can be easily improved (even if the theoretical
ratio remains unchanged) by implementing — e.g., using heuristics — the following
two steps.

— Before computing the independent set, add a maximal number of prestrips to

the graph (V*, E*), with the constraint that the graph must remain claw-free.

— After computing the independent set, reinsert a maximal number of prestrips

from Q — V* to O, with the constraint that it must remain a feasible set.

Approximation Algorithm for 1-gap-CMSR-2

In this section, we give a method to transform approximation algorithms for
1-gap-MSR-d into approximation algorithms for 1-gap-CMSR-d, then apply this
method to obtain a 2.778-approximation algorithm for 1-gap-CMSR-2.

5.3.5

5.3. POLYNOMIAL-TIME ALGORITHMS 149

Note that this transformation requires the algorithm to select all super-markers.
This constraint is easily satisfied, since any solution of 1-gap-MSR-d can only be
increased by adding super-markers (this is guaranteed by the gap-1 constraint: a
super-marker can only make an existing selected prestrip grow, it cannot conflict
with it).

Proposition 5.31. If an algorithm A for 1-gap-MSR-d selects all super-markers
and selects at least 1/r times the mazimum number of single-markers selected in an
optimal solution, then A is a (1 + (1 — 1/r)2d)-approzimation for 1-gap-CMSR-d.

Proof. We denote by s the total number of single-markers in the input maps M4,
by s* the number of single-markers selected in an optimal solution, and by s4 the
number of single-markers selected by algorithm A. Then s4 > s*/r. Since A does
not delete any super-marker, the number k4 of markers deleted by A is equal to
s — s4. For 1-gap-CMSR-~d, no optimal solution deletes a super-marker (otherwise
the super-marker can be added back without breaking any strip since all strips have
gap at most 1), so the number k* of markers deleted by an optimal solution is
equal to s — s*. Since in any feasible solution, every selected single-marker must be
adjacent to a deleted single-marker in some map, it follows that s* < 2dk*. The
approximation ratio of A for 1-gap-CMSR-d is thus at most

ka _s—sa < (s* +k*) — (s*/r) 14 (1—1/r)s*

k* k* k* k*

Theorem 5.32. There exists a 2.778-approximation for 1-gap-CMSR-2.

<1+ (1-1/r)2d. O

Algorithm 5.3 is a 1.8-approximation algorithm for 1-gap-MSR-2 and can be
made to select all super-markers. With » =1.8 =9/5 and d = 2, we have 1 + (1 —
1/r)2d = 25/9 < 2.778. By the above proposition, this algorithm for 1-gap-MSR-2
finds a 2.778-approximation for 1-gap-CMSR-2.

Approximation Algorithm for 0-gap-MSR-DU

In this section, we prove the following result.

Theorem 5.33. Algorithm 5.4 is a factor-2.25 approrimation algorithm for 0-gap-
MSR-DU.

Proof. Algorithm 5.4 follows the same lines as Algorithm 5.3 does for 1-gap-MSR,
that is it computes an exact maximum weight independent set of a subgraph (V*, E*)
of the graph representing the possible strips and the overlapping relation. Due to the
possibility of having duplicates in the input genomes, the considered graph can be
significantly more complex, and thus Algorithm 5.4 uses a more selective condition
to create the set V*: the condition now bears on both idx(o, M;) and idx(o, Ms).
Lemma 5.34 proves that the subgraph (V*, E*) is indeed claw-free, which enables us
to use a polynomial-time algorithm to find a maximum weight independent set of it,
which corresponds to a feasible set of strips. The approximation ratio of 2.25 = 9/4
is given by Lemma 5.35. O

Lemma 5.34. For each \, the graph (V*, E*) created by Algorithm 5.4 is claw-free.

150 CHAPTER 5. MAXIMAL STRIP RECOVERY

Algorithm 5.4 2.25-approximation algorithm for 0-gap-MSR-DU.
Input: Two genomic maps M, o (possibly with duplicates)
1: T+ {(0,1,2),(0,1),(1,2)}
2:) < set of all strips of My of length 2 or 3
3: for Ay < 0to 2 do
4: for Ay < 0 to 2 do
5: A 30+ X
6: VX {o | o € Q, m3(idx(o, M) = A1) € T and m3(idx(0, My) — X3) € T'}

E* < {(01,09) | 01,09 intersecting strips of V*}
w(o) + |o| (for all ¢ € V)

9: V2, < MAXIMUM WEIGHT INDEPENDENT SET of (VA E*) with weight
w

10: end for

11: end for

12: return max{||Vy,|| |0 <\ <8}

Proof. Let A = 3\ + \o. For each o € V?, from the definition of 7', there exist two
integers k; = k(o) and kg = ko(0) such that:

idz(o, My)
idz(o, Ma)

3k1+ A1 3k + M + 2],

c I
Q [[3]€2+)\2; 3]€2+/\2+2H
Moreover, o contains the elements M;[3k; + Ay + 1] and My [3ky + Ao + 1].

If 0 and 7 are two intersecting strips of V*, then they can intersect in M, or
in My, which leads respectively to ki(7) = ki(0) and ko(7) = ko(0). Hence if o
has at least three neighbors in (V*, E}), then two of them, written 7, and 7, are
such that k(7)) = k1(m2) or ko(71) = ko(72). So 71 and 75 share a common element,
namely M;[3ki(m1) + A1 + 1] or My[3ka(71) + A2 + 1] respectively, and there is an
edge between them in (V*, E?). O

Lemma 5.35. If O is an optimal solution of 0-gap-MSR-DU(M,), Algorithm 5.4
provides a solution of total size at least 4||O|]/9.

Proof. We can assume, wlog, that all strips in O have length 2 or 3. We now create
nine sets of strips O, ..., 0% such that each strip in @* appears both in V* and in
O (possibly as a substrip), and such that

8
> loM = qjjo).
A=0

Let o be a strip of O, and 71,79 two integers in {0, 1,2} such that o starts at
position r; modulo 3 in M; and ry modulo 3 in M.

First suppose o has length 2. Then for \; € {r; — 1,7} modulo 3 and for A\, €
{ra—1,72} modulo 3, we have m3(idx(o, M) —\;) € T and m3(idx(o, M3)—Ag) € T,
thus we have o € V* for four different values of A. We add ¢ to the corresponding
sets O*, which increases the total size >25_, ||O*[| by 8 = 4]o].

Now suppose that o has length 3. For Ay = r; and Ay = o, m3(idx(0, M1)—\;) =
m3(idx (o, M3) — A1) = (0, 1,2), which is in T, thus we have ¢ € V*. Moreover for

3.6

5.3. POLYNOMIAL-TIME ALGORITHMS 151

Algorithm 5.5 (d + 1.5)-approximation for CMSR-d and 4-gap-CMSR-~d.

Input: d genomic maps M 4 without duplicates, § € NU {oo}
1: X < { triples of markers (z,z,y) | z < y and gap(z,y) = {z} }
2: partition the markers into single-super-markers
3: for all (z,z,y) € X do
4 if x, y and z are not deleted and y or z is a single-marker then
5 delete x
6: re-create all super-markers
7 end if
8: end for
9: delete all remaining single-markers
10: return the resulting genomic map

A € {ri —1,m} and Xy € {ry — 1,75}, the beginning of o, (o[1],5[2]), forms a
length-2 strip appearing in V*. And for \; € {ry,r; + 1} and Xy € {ry, 7o + 1}, the
end of o, (0[2], 0[3]), forms a length-2 strip appearing in V*. Then for one value of
A (namely 37, +15), we add the length-3 strip o to O* and for six other values of),
we add one of the length-2 strips (o[1],0[2]) or (5[2],0[3]) to O*. Thus the total
size S°3_, [|O*|] is increased by 3 + 6 x 2 = 15 > 4|o|.

Thus we indeed have

8

D IOMI =) dlol = 4]0,
A=0 oecO

Hence there exists some A such that [|[O*]] > 5[|O]|, and O* forms an indepen-

dent set of (V*, E*) since a set of strips or substrips of O is necessarily feasible.

Thus the size of the corresponding V}), is at least ||O?|| and Algorithm 5.4 gives a

solution of size at least 5||O||: it is indeed a ¥ = 2.25-approximation. O

Approximation Algorithm for CMSR-d and ¢-gap-CMSR-d

In this section, we present a (d + 1.5)-approximation algorithm for the two min-
imization problems CMSR-d and §-gap-CMSR-d.

Theorem 5.36. Algorithm 5.5 finds a (d + 1.5)-approximation for CMSR-d and
0-gap-CMSR-d for any d > 2 and § > 1.

Let k£ be the number of deleted markers in an optimal solution. Then the number
of single-markers in the input maps is at most (2d + 1)k because each single-marker
is either deleted or adjacent to a deleted marker. This immediately yields a (2d+1)-
approximation algorithm: simply delete all single-markers. The following is a tight
example for this algorithm.

Example 5.2. The optimal solution of CMSR-d over My _4 below is to delete the
single-marker x, instead of all 2d + 1 single-markers (for the naive algorithm,):

M= z4ya, - 23,3, Z2,Y2, 21, T, Y1
M2 < 21, Y1, 22, L) Y2, <3, Y3, T Zd, Yd
- < 21,1, 225 Y2, %3, L5 Y3, U Zds Yd

Mz =
Md:< 21, Y1, 22, Y2, 23, Y3, 24, Ty Yq >

152 CHAPTER 5. MAXIMAL STRIP RECOVERY

As we can see from the above example, after one single-marker is deleted, many
other single-markers may be merged into strips. Algorithm 5.5 first identifies (line 1)
all triples of markers (z,x,y) such that z and y can be merged into a strip <z,y>
after x is deleted. Such markers = are considered to be “cost-efficient” when z and/or
y is a single-marker, since they allow, if deleted, to merge at least one single-marker
into a super-marker. Thus the algorithm successively deletes (lines 2-8) those cost-
efficient single-markers (each time reducing the total number of single-markers by
at least 2), and finally removes (line 9) the remaining single-markers.

The approximation ratio analysis is non-trivial. We first give a number of defi-
nitions and easy remarks (inequalities (5.1) and (5.2)). We then bound on one hand
the number of cost-efficient single-markers which are deleted by the algorithm but
not by an optimal solution (|D — K| in (5.3)), and on the other hand the number
of single-markers which have been cost-efficient for the optimal solution but are not
deleted as such by the algorithm (| R;| in (5.4)). Finally, combining inequalities (5.1)
to (5.4), we obtain a lower bound on the approximation ratio.

Lemma 5.37. For each triple (z,x,y) in the set X in Algorithm 5.5, at least one
of the three markers x,y, z must be deleted in any feasible solution.

Proof. We prove the lemma by contradiction. Suppose that all three markers x,y, z
are selected in a solution. Assume wlog. that the sequence <z, x, y> appears in some
map. Then x must be in the same strip as one of z or y. Assume wlog. that <z, $>
is part of some strip. Then z < z. Recall that z < y. Thus x and y are both
candidate successors of z. By Lemma 5.1a, we have y € gap(z,x), thus y must be
deleted: a contradiction. O]

We next prove the approximation ratio of Algorithm 5.5. Let K be the set of
deleted markers in an optimal solution O; |K| = k. For each marker x ¢ K, we
define two sets I'yye.(x) and I'peq(x) as follows. If z is followed by a marker y
in a strip of O, Tguee(r) = gap(z,y); otherwise x is the last marker of its strip,
Dsucc(z) = 0. If z is preceded by a marker z in a strip of O, T'pea() = gap(z, x);
otherwise x is the first marker of its strip, I'pea(x) = 0. Then, for each marker
r ¢ K, define y(x) = |Fyuee(2)| + |Tprea(x)], and for each marker x € K, define
v(x) = 0. Intuitively, function v can be seen as the cost that the optimal solution
needed to pay to keep a single-marker into a strip. Note that if = is a single-marker
of the input maps, then vy(z) = 0 iff z € K.

First, we can see that each marker y € K is counted by ~ at most twice in each
map: at most once in some I'y,.cq(21), and at most once in some I'y,cc(22). Thus we
have the following inequality:

> Al < 2dk. (5.1)

x single-marker

Refer now to Algorithm 5.5. Let D be the set of markers deleted in line 5, let S
be the set of single-markers that are merged into super-markers in line 6, and let R
be the set of markers deleted in line 9. Let Ry ={r € R|~y(r) =1} and Ry = {r €
R | v(r) > 2}. Thus we have a partition of R given by R = (RNK)U Ry U Rs.

Each marker € D has a corresponding triple (z,z,y) € X, where z or y is
a single-marker. After z is deleted in line 5, z and y are merged into the same
super-marker in line 6. Thus we have the following inequality:

|D| < |S]. (5.2)

5.3. POLYNOMIAL-TIME ALGORITHMS 153

For each marker x € D — KC |, let ¢(z) be an arbitrary marker in the non-empty
set {z,xz,y} N K; see Lemma 5.37. Obviously ¢(z) # z, thus ¢(z) € K — D. We
show that at most two markers in D — IC can have the same image by ¢. Suppose
that ¢(x1) = ¢(x2) = ¢ for two different markers xq, 29 € D — K, where x; is deleted
before x5 in Algorithm 5.5. Then the marker ¢ is merged into a super-marker after
x1 is deleted, and again merged into a larger super-marker after z5 is deleted. Since
a marker has at most two neighbors in a super-marker, ¢ is necessarily a single-
marker before z; is deleted, so it belongs to S, indeed S N K. Moreover, after x,
is deleted and ¢ is merged into a larger super-marker, ¢ cannot be adjacent to any
other single-marker, say x3. Therefore

1D~ K| < |K—D|+[SNK]. (5.3)

Let u be a marker such that (u) = 1. Then by definition of v, u belongs to
some strip in the optimal solution, and it has a neighbor v = ¢ (u) in the same
strip such that gap(u,v) contains only one marker, say x. Note that u,v ¢ K and
x € K. We claim that if u is a single-marker at the beginning of the algorithm, then
either w € DU S or v € D. This claim is clearly true if one of u or v is deleted by
the algorithm in line 5. Otherwise, with (v, z,u) € X or (u,z,v) € X, either x is
not deleted because u is merged into a super-marker, or x is deleted: in both cases
u € S. This proves the claim. So for each v € Ry, we have v = ¢(u) € D, indeed
v € D — K. Note that there can be at most two markers u; and uy with the same
image v by v: the two neighbors of v in some strip in the optimal solution. Thus
we have |R;| < 2|D — K|. Moreover, if there are two markers u; and uy with the
same image v, then (v) > 2. Therefore

Ril< 3). (5.4)

veD—-K

Combining inequalities (5.1), (5.2), (5.3), and (5.4), the calculation in the fol-
lowing shows that the number of deleted markers, |D| + |R|, is at most (d + 1.5)k.
Thus Algorithm 5.5 indeed finds a (d + 1.5)-approximation for d-gap-CMSR-d and
CMSR-d.

2dk> Y ~(z) by (5.1)

x single-marker

Y @+ Y @+ S+ 3 @)

xeD-K rzeS-K Tz€R; T€R2
> Y (@) + 1S — K|+ |Ri| + 2| Ry
zeD-K
> 1S — K| + 2|Ri| +2|Ra| by (5.4).
Hence, |Ry| + 2|Ry| < 1S — K.

|D| + |R| = |D| + |Ri| + |Ra| + |[RN K|
< |D|+dk—3|S - K|+ |RNK]
:|D|+dk:—%(|S|—|SﬂIC|)+|RﬂIC|
< |D|+dk—3|D|+3|SNK|+|RNK| by (5.2)

5.4

5.4.1

154 CHAPTER 5. MAXIMAL STRIP RECOVERY

= Y(|D|+|SNK])+ |RNK|+ dk
=(|DNK|+|D—-K|+|SNK|) + |RNK]|+ dk

2

< H|IDNK|+ (K—-D|+|SNK|)+ [SNK|)+ |RNK|+dk by (5.3)
=LK+ (|ISNK|+ |RNK|) + dk

< sk +k+dk

= (d+32) k.

With the following two examples, we show that the approximation ratio of Al-
gorithm 5.5 cannot be better than d + 1 (Example 5.3). Moreover, no algorithm
deleting only single-markers can achieve an approximation ratio better than d (Ex-
ample 5.4).

Example 5.3. The optimal solution of CMSR-d over My 4 below is to delete the
two single-markers u and v, instead of all 2d+2 single-markers (for Algorithm 5.5):

Ml = Zd> Yds T %35 Y3, 22, Y2, %1, U, U, Y1
M2 - <1, Y1, <2, U, U, Y2, <3, Y3, T Zd, Yd

M3 = < 21,1, 22, Y2, <3, U, V, Ys, e Zd> Yd

Md - < 21, Y1, 22, Y2, <3, Y3, T Zd, U, Us Yd >

Example 5.4. The optimal solution of CMSR-d over My _4 below is to delete the
super-marker <u7”0>, instead of 2d single-markers z; and y;, 1 < i < d (for any
algorithm deleting only single-markers):

Ml = < Zds Yd, T <3, Y3, 22,Y2, 21, U, —U, Y1 >
M? = 21, Y1, 22, U, U, Y2, 23, Y3, e Zd> Yd
M3 = <1, Y1, 22, Y2, <3, U, V, Ys, T Zd, Yd
Md = < <15 Y1, 225 Y2, 23, Y3, T Zd, Uy U, Yd >

Compared to the approximation upper bound of 2d (Section 5.1) for the max-
imization problem MSR-d which almost matches — at least asymptotically — the
current best lower bound of §2(d/logd) [93|, our upper bound of d + 1.5 for the
two minimization problems CMSR-d and d-gap-CMSR-d is still far away from the
constant lower bound in [93]. It is an intriguing question whether CMSR-d and
0-gap-CMSR-d admit approximation algorithms with constant ratios independent
of d.

Fixed-Parameter Tractable Algorithms

FPT Algorithm for /-gap-MSR-d

In this section, we present the first FPT algorithm for d-gap-MSR-d with the
parameter ¢. Recall that without the gap constraint, MSR-d with the parameter ¢
is W[1]-hard for any d > 4. In sharp contrast to the W[1]-hardness of MSR~d, we
obtain a somewhat surprising result that d-gap-MSR-d is in FPT, where ¢ is the
parameter, and ¢ and d are constants. In fact, our FPT algorithm for -gap-MSR-d
works even if d and ¢ are not constants: d-gap-MSR-d is in FPT even with three
combined parameters d, § and /.

5.4. FIXED-PARAMETER TRACTABLE ALGORITHMS 155

Algorithm 5.6 20Uy FPT algorithm for §-gap-MSR-d.
Input: d genomic maps M4 without duplicates, 6 € N

—_

: {25 < the set of length-2 prestrips
for all marker v do
create a boolean variable z,
end for
for all <u,v> € () do
g1, --,gs < the markers in gap(u,v)
create a boolean formula f,, =z, AT, A 22g, A ... A 2Ty,

end for

Delete the variables that do not appear in any formula or appear only in negative

form in the formulas.

: Enumerate all possible assignments to the remaining variables to find an optimal
assignment that maximizes the number of variables appearing in positive form
in at least one satisfied formula. Delete all markers whose variables are not
assigned true values.

11: return the resulting genomic maps.

[y
jes)

Theorem 5.38. Algorithm 5.6 finds an optimal solution for d-gap-MSR-d for any
d>2and 6 > 1, in time O(2'td6* + nds), where t = ((1 + 3d0).

Our algorithm is based on a simple idea: create a boolean variable for each
marker (where true means the marker is selected in a solution, false that it is uns-
elected), then test all possible assignments to find an optimal solution. To reduce
the time complexity of this brute-force approach, we add a pruning step (line 9) to
delete certain variables whose markers cannot appear in any optimal solution. The
remaining variables form a “core” on which we can find an optimal solution in FPT
time.

The correctness of the algorithm is deduced from the fact that each marker
selected in a solution corresponds to a variable appearing in positive form in at least
one formula, thus all optimal solutions are kept during the pruning step (line 9),
and are discovered during the exhaustive enumeration (line 10).

Given an optimal solution, which selects ¢ markers, we call a marker active if
it appears within distance at most 0 from a selected marker in some map. Then
each map contains at most £0 + %5 unselected active markers: at most ¢ after each
selected marker, and at most § before the first marker of each strip (note that the
number of strips of this optimal solution is at most ¢/2). The total number of active
markers is at most ¢ + d(£5 + £6) = ((1 + 3d6).

The pruning step in line 9 depends on the crucial observation that a non-active
marker can never appear in positive form. Suppose for contradiction that a non-
active marker u appears in a prestrip with some marker v. Then u is at distance at
most 0 + 1 from v in each map. Since u, as a non-active marker, must be at distance
at least 0 4+ 1 from the selected markers in all maps, no selected markers can appear
between v and v in any map, thus we can extend the optimal solution by selecting
both u and v, a contradiction.

Note that in line 9 the variables appearing at least once in positive form are never
deleted, hence no formula becomes empty after deleting the variables that appear
only in negative form. After line 9, the number of remaining variables is at most
the number of active markers, which is at most t = ¢(1 + %dé). Correspondingly,

5.4.2

156 CHAPTER 5. MAXIMAL STRIP RECOVERY

the number of formulas is at most ¢(6 + 1), because any candidate pair consists of
an active marker and one of the § + 1 markers immediately following it in the first
map. Fach formula contains at most dd + 2 variables.

The time complexity of line 1 is O(ndd). In lines 2-8, the variables can be created
in time O(n), and the formulas can be created in time O(t(6+1)(dd +2)) = O(tdd?).
Similarly, line 9 can be executed in time O(n + tdé*). Finally, line 10 can be
executed in time O(2¢(6 + 1)(dd + 2)) = O(2'td#?), so the overall time complexity
is O(2'tdé* + ndf).

FPT Algorithm for CMSR-d and j-gap-CMSR-d

In this section, we design an FPT algorithm for CMSR-~d and é-gap-CMSR-d,
where the parameter is k, the number of deleted markers in the optimal solution.

Since super-markers are already strips in the input genomic maps, one may
naturally be tempted to come up with the following algorithm. First, find all super-
markers, and add them to the solution. Then, delete a subset of single-markers until
all markers in the resulting maps can be partitioned into strips. The correctness of
this algorithm for finding an exact solution, however, depends on the assumption
that in some optimal solution no super-marker needs to be deleted, which is false as
can be seen in the following counter-example:

My= (4, 1, 2, 3, 5 6 T)
My= (6, =3, =2, -1, 7, 4, 5)

Here <1,2,3> forms a super-marker, but the optimal solution deletes <1, 2,3> and
selects <4,5> and <6,7> instead. An easy generalization of this counter-example
shows that any super-marker of size strictly less than 2d is not guaranteed to be
always selected in some optimal solution. Note that on the other hand, longer super-
markers, of size at least 2d, are always selected in some optimal solution, see e.g. [87,
Lemma 1].

We observe that an FPT algorithm for CMSR-d and d-gap-CMSR-d can be easily
obtained using the bounded search tree method. In any feasible solution for the two
problems, a single-marker x must be either deleted or selected. If x is selected, then
at least one of its neighbors must be deleted. Since z has at most 2d neighbors
(at most two in each map), this leads to a very simple algorithm running in time
O((2d + 1)* poly(nd)). Parallel to our work, Jiang et al. [87] presented an FPT
algorithm running in time O(3* poly(nd)). We next describe a carefully tuned FPT
algorithm running in time O(2.36" poly(nd)). Jiang & Zhu [88] recently proposed a
kernelization for CMSR-2, that is, a set of reduction rules transforming any instance
with optimal value k£ into an instance of size at most 84k with equal optimal value.
This kernelization yields — using Algorithm 5.7 — an FPT algorithm running in time
O(2.365k? + n?).

For convenience, we consider the decision problem associated with CMSR-d and
0-gap-CMSR-d, for which the parameter k is part of the input.

Theorem 5.39. Algorithm 5.7 finds an exact solution for the decision problem asso-
ciated with 6-gap-CMSR-d, for any § € NU{oo} and d > 2, in time O(c* poly(nd)),
where ¢ < 2.36 is the unique real root of the equation 2¢=! +2¢73 = 1.

It is interesting to note that although the two problems MSR~d and é-gap-MSR-d
have very different complexities when parameterized by ¢, their complements CMSR-
d and J-gap-CMSR-d are both tractable when parameterized by k.

5.4. FIXED-PARAMETER TRACTABLE ALGORITHMS 157

We describe the intuition behind Algorithm 5.7. As already noted, we will explore
a bounded search tree as follows: in each node we consider a single-marker x, and
we explore the branches corresponding to the cases where z is deleted and where
it is selected in a strip with each possible candidate successor or predecessor. This
search tree has bounded depth (in each branch we delete at least one marker, and
we stop after deleting k& markers) and degree (each single-marker has at most 2d
candidate successors or predecessors). In order to improve the complexity of this
algorithm, we aim at (1) choosing x so that we may delete a maximum number of
markers in the subsequent recursive calls (thus reducing the depth of the subtree),
and (2) pointing out special cases where we may ignore some branches of the search
tree without losing an optimal solution (thus reducing the degree). For objective
(1) we choose x as the first single-marker in the first map, hence, the gap between
x and a candidate predecessor consists mostly of super-markers, thus increasing
the number of markers to be deleted in the corresponding branches. For objective
(2), we provide a number of technical lemmas (Lemma 5.40 to Lemma 5.43) which
allow us to reduce the degree of some “worst-case” nodes. In some situations, we
find a marker which is necessarily deleted. In others, we identify a good candidate
predecessor or successor, which we may select to generate a solution at least as good
as with any other candidate.

Some technical lemmas

The efficiency of Algorithm 5.7 is made possible by several optimizations jus-
tified by the following four lemmas. These lemmas are all based on very simple
observations. Note that although we consider the decision problem for simplicity,
Algorithm 5.7 can be adapted to directly return the actual solution, instead of “true”,
when the input instance indeed has a solution of size at most k. Recall that the
relation < in lines 16-17 is defined for markers in the original maps — it remains
unchanged through recursive calls, and can be precomputed.

Lemma 5.40. Let x be a single-marker and w a super-marker. If x is selected in an
optimal solution, and w is a candidate successor or predecessor of x with exactly one
marker in gap(x,w), then there is an optimal solution where the marker in gap(x,w)
18 deleted.

Proof. Assume that w is a candidate successor of x, the case where it is a candidate
predecessor being symmetric.

Let v be the single-marker such that gap(x,w) = {v}, i.e., in some map M;, one
of <+a:, +v, +w> or <—w, +v, —x> appears. In the case where no optimal solution
selects both x and v, the lemma is obviously true since in any solution where
is selected, v must be deleted. It remains to consider the cases where an optimal
solution O exists such that both x and v are selected. Since any strip of length
p > 4 can be split into two shorter strips of lengths 2 and (p — 2), we can assume
wlog. that all strips have lengths 2 or 3.

First case: z and v appear in the same strip. Then v is a candidate successor
of x and w is not selected in O, since by Lemma 5.1a, w € gap(z,v). Create O by
removing this strip from O, the total size decreases by at most 3. Then no marker in
{z,w}Ugap(x,w) is selected in O": we can add the strip <ac, w> to obtain a feasible
solution of size greater than or equal to that of O, since w is a super-marker, where
v is deleted.

158 CHAPTER 5. MAXIMAL STRIP RECOVERY

Algorithm 5.7 O(2.36" poly(nd)) FPT algorithm for 6-gap-CMSR-d and CMSR-d.
Input: d genomic maps M 4 without duplicates, parameters k € N, 6 € NU {oco}

1: return recurse(M;. 4, k, 0, false)

Function recurse(M;_q4, k, d, skip_step 2b): boolean

1: Partition the markers into single-super-markers.

2: x < the left-most single-marker in M; (if it exists)

3: if k <0 or (k=0 and z exists) then

4: return false

5: end if

6: if 2 does not exist then

T return true

8: end if

9: s < the first single-super-marker following = in M, (if it exists)

10: // 1: Assume x is deleted in the optimal solution

11: Create M) , by removing x from M;_,.

12: if recurse(M] ,. k — 1,6, false) then

13: return true

14: end if

15: // 2: Assume x is part of a strip in the optimal solution

16: Y < { single-super-marker y | z <y} // the set of candidate successors

17: Z < { super-marker z | z < x} // the set of candidate predecessors

18: if Jwy € YUZ a super-marker s.t. (z,wy) satisfies the conditions of Lemma 5.40
then

19: Create M’ , by removing the marker in gap(x,wp) from M _,.

20: return recurse(M) ., k — 1,6, false)

21: end if

22: if Js a single-marker s.t. (x, so) satisfies the conditions of Lemma 5.41 then
23: Create M/ , by removing sy from M;_4.

24: return recurse(M) ., k — 1,6, false)

25: end if

26: // 2.a: Assume x is not at the end of its strip

27: if Y # () then

28: if recurse_2a(Y,x, M. 4,k,0) then

29: return true
30: end if
31: end if

32: // 2.b: Assume x is at the end of its strip
33: if Z # () and skip_step_2b—false then
34: if recurse 2b(Z,x,s, My 4, k,9) then

35: return true
36: end if
37: end if

38: return false

5.4. FIXED-PARAMETER TRACTABLE ALGORITHMS 159

Algorithm 5.7, continued
Function recurse2a(Y, x, M;._4,k,0): boolean

—

: if Jdyg € Y s.t. yg satisfies the conditions of Lemma 5.42 then
if 0 € N and y, is a single-marker then
Replace yo by the unspecified marker [yo | Y].
end if
Yo < {wo}
else
Yo <Y
end if
for ally € Y; do

10: Create M} , by removing all markers in gap(z,y) from M; 4.
11: if recurse(M] 4 k — |gap(x,y)l, d, false) then

12: return true

13: end if

14: end for

15: return false
Function recurse 2b(Z, x, s, M1._4,k,): boolean
1: if dzy € Z s.t. z, satisfies the conditions of Lemma 5.43 then

2: Zo {Zo}

3: else

4: Zo+— Z

5: end if

6: for all z € Z, do

7 if z ends with an unspecified marker [yo | Y] and Jy; € Y s.t. y; < = then
8: Replace the unspecified marker [y | Y] by v;.

9: end if

10: Create M} , by removing all markers in gap(z, z) from M;_,4.

11: skip_next step 2b < s exists and s is a single-marker and s ¢ gap(z, z)

12: if recurse(M) ., k — |gap(z, 2)], 9, skip_next_step_2b) then
13: return true

14: end if

15: end for

16: return false

160 CHAPTER 5. MAXIMAL STRIP RECOVERY

Second case: x and v appear in different strips. Looking at map M;, we see that
v is at one end of its strip, and either (a) w is deleted or (b) w is in the same strip
as v, and v precedes w. In case (a) we delete v (plus a second marker if v is in a
length-2 strip), and add w at the end of the strip containing z: we again have an
optimal solution where v is deleted. We now show that case (b) is absurd: since w
is a candidate successor of both z and v, then x and v are candidate predecessors
of w. However, by Lemma 5.1a, x € gap(w, v), so this contradicts the fact that z is
selected and w, v are in the same strip. O]

Lemma 5.41. Let x be a single-marker and s a single-super-marker. If s appears in
gap(z,w) for each w that is a candidate successor or predecessor of x, then s itself
cannot be a candidate successor or predecessor of x, and any solution selecting x
deletes s.

Proof. First, if s was a candidate successor or predecessor of x, we would have
s € gap(x, s), which is impossible. Consider now the strip containing z in any feasible
solution. If x is at the end of this strip, it is preceded by a candidate predecessor z,
z # s, and all markers in gap(z, z), including s, are deleted. Otherwise z is followed
in its strip by a candidate successor y, and again s € gap(x,y) is deleted. O

Lemma 5.42. (In this lemma we assume there is no gap constraint.) Let x be a
single-marker and y a candidate successor of x such that all markers in gap(z,y)
are single-markers and candidate successors of x. If x is part of some strip in an
optimal solution, but not at the end of this strip, then there is an optimal solution
where <:U, y> s part of some strip.

Proof. Let yo be the single-super-marker following z in the strip of the optimal
solution, and y; be the successor of yq if it exists. If y = yy, then the lemma is
proved. Otherwise, yo € gap(z,y) (by Lemma 5.1a) and y, is a single-marker.

If y; does not exist, we can replace yo by y if we delete all markers in gap(z,y) —
{yo}. But since all these markers are candidate successors of z, they also appear in
gap(x, yo) and are already deleted, hence the total size of the solution is unchanged.

Assume now that y; exists, we prove that y; is a candidate successor of y. First
of all, z,y,y0,y1 appear in the same sequence of gene markers (in the same chro-
mosome) in each map. Moreover, x,y,y; appear in this order in all maps: y and
both appear after x, and y; cannot appear in any S*(x,y), otherwise y; € gap(z,y)
and y; would be a candidate successor of x (which is absurd, since yo € S7(z, 1)
for all j). Since there is no gap constraint, y; is a candidate successor of y. We can
replace yo by y if we delete all markers in I' = (gap(x,y) Ugap(y,v1)) — {vo}:

I = (U S*(z,y) U S"(y,yl)> —{yo}
= (USi(w,y1)> —{y. 0}

— (U Sz, o) uSi(yo,y1)> —{y}

= (gap(z, o) U gap(vo, v1)) — {v}-

Then all markers in I' are already deleted: we can replace yo by y without changing
the solution size.]

5.4. FIXED-PARAMETER TRACTABLE ALGORITHMS 161

Lemma 5.43. Let x be the first single-marker in M. Let z be a candidate prede-
cessor of x such that all markers in gap(z, z) are size-2 super-markers and candidate
predecessors of x. If x appears at the end of a strip in an optimal solution, then
there 1s an optimal solution where <z,x> s at the end of some strip.

Proof. Let zy be the single-super-marker preceding x in the strip of the optimal
solution, and z; be the one preceding zy. If 2 = 2, the lemma is proved. Otherwise,
2o € gap(x, z), hence it is a size-2 super-marker.

If z; exists, then it is also a super-marker, since x is the first single-marker in

', and we can split the strip between z; and zp: hence we can assume that the
strip containing z in the optimal solution is zyz.

We can replace 2z by z in zpx by deleting all markers in gap(z, z) —{z0}. Since all
these markers appear in gap(z, zp), they are already deleted in the optimal solution.
Moreover, |z| > 2 = |2], so replacing zy by z does not reduce the solution size. [

In addition to these four optimizations, we also use a “delayed commitment”
optimization which is the equivalent of Lemma 5.42 when we need to observe a gap
constraint. We consider the case where x is part, but not at the end, of some strip
in the optimal solution, and where y is a single-marker and a candidate successor
of x such that all markers in gap(z,y) are single-markers and candidate successors
of z. In this case we delete all markers in gap(z,y) to make <x, y> a strip, but keep
the possibility of replacing y by any marker y; € gap(x,y), should necessity arise.
We denote this unspecified marker by [y | gap(z,y)].

Correctness of Algorithm 5.7

To prove the correctness of Algorithm 5.7, we use the following lemma from [126].
We provide an easy proof for completeness.

Lemma 5.44. [126, Proposition 2| We can decompose the strips of any optimal
solution in such a way that (1) each strip contains at most 3 single-super-markers
and (2) each strip containing 3 single-super-markers starts and ends with a single-
marker.

Proof. Let s be a strip containing h single-super-markers: s = <51, S92y ..., sh>. If
h > 4, we can split s into two strips: <51,32> and <$3,s4, .. .,sh>. We apply this
until condition (1) is true. If A = 3 and s; (respectively s3) is a super-marker, then
we can split s into <sl> and <52, 53> (respectively <sl, 32> and <53>). We can do this
operation until condition (2) also becomes true. O

Let O be any optimal solution. Decompose the strips of O as in the above
lemma. We show by induction that the solution found by Algorithm 5.7 has the
same size as O. Lines 1-8 of function recurse deal with the trivial cases where £ < 0
or there are no more single-markers (in Mj or in any other map): in this case, a
solution exists iff £ > 0 and there are no more single-markers. We suppose now that
k > 1 and that there exists a left-most single-marker, x, in M;. Then exactly one
of the following three cases is true:

1: x is deleted in O,
2.a: There exists a single-super-marker y such that <x, y> is part of a strip in O,
2.b: There exists a super-marker z such that <z, x> is a strip in O.

162 CHAPTER 5. MAXIMAL STRIP RECOVERY

Note that in case 2.b, z cannot be a single-marker since it is to the left of = in
M. By our choice of z, case 2.a can be split into the following two subcases:

2.a.i: There exists a single-super-marker y such that <J}, y> is a strip in O,

2.a.ii: There exists a single-super-marker y and a single-marker ¢’ such that <£L’, Y, y’>
is a strip in O.

Refer to Algorithm 5.7. In case 1, a solution is found in lines 10-14 of the
function recurse. In case 2, i.e. in the case where x is part of an optimal solution,
if either Lemma 5.40 or Lemma 5.41 can be applied, then again a solution is found.
Otherwise, we are in case 2.a or 2.b.

Suppose we are in case 2.a. If y € Yy, then the function recurse 2a tests a branch
in which <x,y> becomes part of some strip. Otherwise, there exists some yy € Y
satisfying the conditions of Lemma 5.42. If there is no gap constraint, y is replaced
by o, which does not change the size of the solution. If there is a gap constraint, y
is replaced by the unspecified marker u = [y | Y], and we look further in case 2.a.i
or 2.a.ii.

In case 2.a.i, we can replace y by yo since gap(z,yo) has no more markers than
gap(z,y). In case 2.a.ii, we can replace y by any y; such that =z < y; < ¢/, since
gap(z,y) U {y} Ugap(y,y’) is the same set as gap(z,y1) U {y:} U gap(y1,y'). This
is what happens in case 2.b of a subsequent recursive call in which 3’ becomes the
left-most single-marker in M;.

Suppose we are in case 2.b. If z € Z,, then the function recurse 2b tests a
branch in which <z,x> becomes a strip. Otherwise, Lemma 5.43 can be applied,
which leaves the size of the optimal solution unchanged. In line 11 of recurse 2b, if
s becomes the left-most single-marker in M, in the next recursive call of recurse, it
cannot be at the end of a strip because x is already at the end of a strip.

This completes the correctness proof.

An example on the behavior of the unspecified markers

We run Algorithm 5.7 on the following three maps, with the gap constraint § = 3:

Ml = <1a 27 a, 4, 37 Ty b>
My =(1,3,2,a,4,b,7)
MS = <1a 47 37 27 xz, b7 a, T'>
In these maps, 1 has three candidate successors: 2, 3 and 4. Moreover, gap(1,2) =
{3,4}. Thus, in part (2.a) of Algorithm 5.7, only one branch is considered: 3 and 4

are deleted, and 2 is replaced by the unspecified marker [2 | 2, 3,4]. In the subsequent
recursive call, the three maps start with a size-2 super-marker.

My ={(1,12]2,3,4]),a,7,b)
My =((1,[22,3,4]),a,b,r)
My = <(1, [2]2,3,4]),x,b,a 7“>
The new first single-marker is a. In part (2.b), (1, [2 | 2,3,4]) is a candidate
2 |

(
predecessor of a with 2, and the set gap(a,[2 | 2,3,4]) is {x,b}. In this branch of
the search tree, we obtain

M1:M2:M3:<<126L)T>,

5.4. FIXED-PARAMETER TRACTABLE ALGORITHMS 163

where r is a candidate successor of a. Hence the algorithm finds the solution con-
sisting of the length-4 strip <1, 2,a, r>.

In another branch of the search tree, where a and r are deleted, we obtain the
following maps:

My =((1,[2]2,3,4]),b)
My =((1,[2]2,3,4]),b)
Mz =((1,[22,3,4]),z,b)

Here b is the left-most single-marker in My, and (1 [2 | 2,3,4]) is a candidate
predecessor of b with 3 and 4 (not with 2, since the gap between 2 and b in the
original maps is 4 > J). Hence part (2.a) of Algorithm 5.7 deletes the markers in
gap(b,[2 | 2,3,4]) = {z}, and replaces the unspecified marker [2 | 2,3,4], e.g. by 3.
Thus Algorithm 5.7 finds in another branch of the search tree the length-3 strip
(1,3,b).

Complexity analysis of Algorithm 5.7

Let T'(k) be the complexity of the function recurse of Algorithm 5.7 with pa-
rameters k and skip_step_2b=false, and Ty;,(k) the complexity of this function
with parameters k and skip step 2b=true (the complexity here being the number
of leaves in the search tree). The complexity of several parts of the algorithm de-
pends on whether the single-super-marker s defined at line 9 is a single-marker: so
we define a boolean variable s _single, which is true if s exists and is a single-marker,
and false otherwise. We now compute the complexity of each part of the algorithm.

Part 1: The complexity from line 10 to 14 is T'(k — 1).

Part 2 (lines 15 to 37): if one of the conditions from lines 18 and 22 is true, then
the complexity here is T'(k — 1). Otherwise, we need to analyze the complexity of
parts 2.a (lines 26 to 31) and 2.b (lines 32 to 37).

Part 2.a: We write r for the number of single-super-markers in Y, and »’ for
the minimum size of gap(z,y) for y € Y, and yo the single-super-marker reaching
this bound; then the complexity is at most rT'(k — r'). We now bound r and r':
first, by Lemma 5.1a, we already have ' > r — 1. We now prove by contradiction
that v > r — 1. Assume that 7" = r — 1, then the candidate successors of Y — {yo}
are the only markers appearing in gap(z, o), and they are all single-markers. Thus
yo satisfies the conditions of Lemma 5.42, and Yy = {yo}, r = 1 and ' = 0 (even
if yo is replaced by an unspecified marker in the meantime). This is absurd, since
r" = |gap(z,yo)| and gap(x,yo) is not empty by Lemma 5.1b. Thus ' > r and the
complexity of part 2.a is upper bounded by 'T'(k — ') with ' > 1.

Moreover, if s_single is false, then we show that we cannot have ' = 1. By
contradiction again, suppose ' = 1. The super-marker s exists (otherwise no marker
follows z in My, so Y = ()), and it appears in gap(z,y) for all y € Y — {s}, then we
necessarily have yo = s and |gap(z,yo)| = 1. This would mean that (z,yo) satisfies
the conditions of Lemma 5.40, a contradiction.

Thus the complexity of part 2.a is at most max{r'T(k — 1) | v’ > 1} if s_single
is true, and max{r'T'(k — ') | v’ > 2} otherwise.

Part 2.b: First note that all 2 € Z are super-markers. We denote by ¢ the number
of super-markers in Z, and by ¢’ the minimum size of gap(z, 2) for z € Z, (we write z
for the super-marker reaching this bound). By Lemma 5.1a, gap(x, zp) contains at
least ¢t —1 super-markers, thus ¢’ > 2(t—1). Moreover ¢’ # 0 (Lemma 5.1b) and ¢’ # 1

164 CHAPTER 5. MAXIMAL STRIP RECOVERY

(otherwise (z, zg) would satisfy the conditions of Lemma 5.40); and one cannot have
t'=2(t—1) fort > 2: if ' = 2(t—1), then 2 satisfies the conditions of Lemma 5.43,
so Zyp = {2} and t = 1.

Hence the complexity of part 2.b is at most max{7T(k — 2), max{tT'(k — 2t + 1) |
t > 2}}. This is the best bound we obtain when s_single is false, but it can be
improved when s_single is true.

Indeed, if s_single is true, we consider Z; the set of z € Zj such that s € gap(z, 2)
and Zy = Zy — Z;. We can see that Z5 is not empty: otherwise (z, s) would satisfy
the conditions of Lemma 5.41. Several cases are possible:

— t =1, then Zy = Z, contains only one super-marker zy, and the complexity is

Topip(k — 2).
— t > 2: For each z € 7, gap(z, z) contains at least (¢t — 1) super-markers from
Z —{z} and the single-marker s, so the complexity is T'(k —2(t — 1) — 1). For
S ZQ7 it is Tskip(k - Q(t — 1) — 1)
Overall, the complexity of part 2.b in the case where s_single is true is at most:

ax Tskip(k - 2)7
max{Tyip(k — ') + (t — V) max{T(k — t'), Toip(k —)} | £ > 2,8/ = 2t — 1}

We can now show by induction over k that T'(k) < ¢* and Ty,(k) < pc®, with
¢ = 2.3593 (c is the real positive solution of 1 = 2¢™! +2¢73) and pu = 2/c &~ 0.8477.
We apply the induction hypothesis on the upper bound obtained for the complexity
of each part.
— For part 1,
T(k—1) <,

— for part 2.a, with s_single = false,
max{r'T(k — ') | r' > 2} <272,
— for part 2.a, with s_single =true,
max{r'T(k—7") |r >1} <"1,
— for part 2.b, with s_ single = false,
max{7T (k — 2), max{tT(k — 2t + 1) | t > 2}} < &2,
— for part 2.b, with s_single = true,

max{T(k —t'), Tspip(k — ')} < & for all ¥
max{Taip(k —t') + (t = 1" |t > 2,8/ =2t — 1} < 2874 4 F3
max{ T, (k — 2), 2cF 4 4 Y < 20,

We sum up the bounds, first for the case where s_single =false (remember that
we need to count the complexity of part 2.b only for 7', not for T;,):

Taip(k)c ™ < c '+ max{c ! 2¢%} =2 = pu
Tk <t +max{ct 2c?+c 21 =0962...<1

Next for s_single =true:

Torip(k)e ™" < 't max{c e} =271 = p

5.4.3

5.4. FIXED-PARAMETER TRACTABLE ALGORITHMS 165

Tk <t +max{ct et +2c73) =1

Thus we have T'(k) < ¢ and Ty,(k) < pc®. This proves that the size of the
search tree is bounded by O(cF), and each recursive call is done in polynomial time
in n and d, so, altogether, the running time of Algorithm 5.7 is O(c* poly(dn)).

FPT Algorithm for 1-gap-CMSR-d

In this section we present an improvement of Algorithm 5.7 for the problem
1-gap-CMSR-d.

Theorem 5.45. Algorithm 5.8 finds an exact solution for the decision problem
associated with 1-gap-CMSR-d, for any d > 2, in time O(2* poly(nd)).

Note that, as for Algorithm 5.7, Algorithm 5.8 can be easily adapted to produce
a full solution instead of simply returning “true”, when the instance indeed has a
solution of the right size.

We first prove the following two lemmas.

Lemma 5.46. (This lemma uses the gap constraint § = 1.) Let x be a single-marker,
and z a super-marker candidate predecessor of x. Then if an optimal solution selects
x, it also deletes all markers in gap(z, z).

Proof. With the gap constraint, z is the only candidate predecessor of x, and it is
selected in the optimal solution (like all super-markers).

Take u € gap(z,z), then u cannot be in the same strip as x (it is neither a
candidate successor nor predecessor of x). Hence if u is selected in the optimal
solution, then it is in the same strip as z and all markers of gap(z,u), including x
(see Lemma 5.1a), are deleted: a contradiction. So all markers in gap(zx,z) are
deleted in the optimal solution. O

Lemma 5.47. (This lemma uses the gap constraint 6 = 1.) Let x be a single-marker
with two candidate successors a and b. If x appears in an optimal solution, but not
at the end of its strip, then there is an optimal solution where <x, c> s part of some
strip, with ¢ = choose(M. 4,a,b) (see Algorithm 5.8).

Proof. For simplicity, we assume wlog. that z has a positive sign in all maps.
Otherwise, if = has a negative sign in some map M;, we can replace this map by its
reversed opposite.

If 6 = 1 and z has two candidate successors a; and by, then in each map we
have the sequence <x, ai, bl> or <x, b1, a1>. Moreover, if both a; and b; have at least
one candidate successor (respectively as and by) with ag # by, then again only two
patterns are possible in all maps: <x, ai, by, as, b2> or <:p, b1, ay, b, a2>. We proceed
with this construction recursively, until we reach a pair (ay, by,) such that a;, and by,
do not have different candidate successors.

Assume that x is selected in a strip of an optimal solution, followed by h’ mark-
ers in this strip, with 1 < A’ < h. Then these markers are either <a1, e ,ah/> or
<b1, e ,bh/>, and we can replace one sequence by the other without creating over-
lapping strips, so there are optimal solutions selecting <a:,c> for ¢ = a; and for
c=b.

If b’ > h, let u be the h + 15t marker following z in the strip (and assume wlog
that the first h selected markers are <b1, o bh>). Then v is a candidate successor

166 CHAPTER 5. MAXIMAL STRIP RECOVERY

Algorithm 5.8 O(2* poly(nd)) FPT algorithm for 1-gap-CMSR~d.

Function 1-gap-CMSR(M;._4, k): boolean

1: if £ <0 then

2 return false

3: end if

4: Partition the markers into single-super-markers.
5: if there exists at least one single-marker in M; then
6 x 4— the left-most single-marker in M

7: else

8: return true

9: end if

10: // 1: Assume x is deleted in the optimal solution

11: Create M) , by removing x from M _,.

12: if 1-gap-CMSR(M ,, k — 1) then

13: return true

14: end if

15: /) 2: Assume x is selected in the optimal solution

16: if dzp < = then

17: Create M) , by removing all markers in gap(z, zp) from M;_4.
18: return 1-gap-CMSR(M| ,, k — |gap(z, 20)])

19: else if Ja > x then

20: if 30 > x s.t. b # a then

21: Yo < choose(M) ,, a,b)
22: else

23: Yo < a

24: end if

25: Create M} , by removing all markers in gap(z, yo) from M;_4.
26: return 1-gap-CMSR(M| . k — |gap(z,yo)|)

27: else

28: return false

29: end if

Function choose(M;._4,a,b): single-marker

1: if 9’ > a then
2: if 3 > band i/ # o then

3: if choose(M;. 4,d’,V')= a’ then
4: return a

5: else

6: return b

7: end if

8: else

9: return «

10: end if

11: else

12: return b

13: end if

5.4. FIXED-PARAMETER TRACTABLE ALGORITHMS 167

of by, and either a;, has no candidate successor, or it has only u. In the first case,
choose(ay, by,) = by, and choose(ay,b;) = by: this is the choice made in the optimal
solution. In the second case, choose(ai,b;) = aj, but in the strip of the optimal

solution, we can replace <x, bi,... ,bh,u> by <x, ai,y. .. ,ah,u> without creating in-
compatibilities, since we have gap(ay,u) = {b,} and gap(bs,u) = {an}. Thus there
is also an optimal solution selecting aq, ..., ap,u after x: this proves the lemma. [

We now turn to the proof of Theorem 5.45. Algorithm 5.8 is based on the
following observation. Let x be the left-most single-marker in M, and assume it
appears in an optimal solution, then there are two cases:

(1) x has a candidate predecessor zy (it is necessarily a super-marker). Then, by
Lemma 5.46, we can delete all markers between x and z, in all maps, regardless of
whether zg and x are in the same strip in the optimal solution. At least one such
marker must exist.

(2) x has no candidate predecessor, then it must be in the same strip as a
successor. With the gap constraint, z can have at most two successors. Using
Lemma 5.47, we can choose one of them (yo, in Algorithm 5.8).

This proves the correctness of the algorithm. Moreover, the complexity of the
1-gap-CMSR function with parameter k is at most O(2* poly(nd)): it is polyno-
mial except for at most two recursive calls, each with a parameter &' < k. Thus
Theorem 5.45 is proved.

Conclusion

In this chapter, we have extensively studied the variants of MAXIMAL STRIP
RECOVERY; it appears that this problem is intractable even for very constrained
parameters. However, we are able to provide a number of efficient algorithms, ei-
ther in the form of approximations or FPT algorithms, in order to come as close
as possible to the intractability bounds. We have given a more specific focus on
the d-gap variant which usually allows for more efficient algorithms (see the specific
algorithms for 1-gap-MSR and 1-gap-CMSR), while being relevant for biological ap-
plications. A key algorithm we have presented is the carefully-tuned FPT algorithm
for 6-gap-CMSR-d and CMSR-d.

In terms of approximability, there remain important gaps between the hardness
results and the precision of existing algorithms. For example, do 1-gap-MSR and /or
1-gap-CMSR admit polynomial time approximation schemes? Do CMSR-d and ¢-
gap-CMSR-d admit approximation algorithms with a ratio independent of d? We
know that the answer is no for MSR-d and J-gap-CMSR-d.

Another challenge is to design more efficient algorithms capable of processing
sequences with duplicates. For example, creating an efficient FPT algorithms for
(0-gap-) CMSR-DU would be an important positive result for the MAXIMAL STRIP
RECOVERY problem.

Minimum Breakpoint Linearization

l The NP-hard MINIMUM BREAKPOINT LIN-
EARIZATION problem aims at reconstructing a
linear genome from partially ordered data, using
the genome of a close species for reference. For-
mally, the objective is, given a partial order II,
to produce a permutation compatible with II

= that minimizes the breakpoint distance to a ref-

l erence permutation.

In this chapter, we present an approxima-
tion algorithm for this problem, and three algo-
rithms obtained from a reduction to SUBSET-

FVS.

The results in this chapter have been presented at the 7th Annual Conference on Theory
and Applications of Models of Computation (TAMC 2010, Prague [32]), and accepted for
publication in Theoretical Computer Science (TCS 2013 [38]).

169

170 CHAPTER 6. MINIMUM BREAKPOINT LINEARIZATION

Introduction

In a number of comparative genomics algorithms, a full knowledge of the order of
the genes on the chromosomes for the species under study is required: this is the case
for all the problems studied in the previous chapters. However, despite the rapid
advances in DNA sequencing, we have a perfect knowledge of the full gene sequence
only for a limited number of species, and for other species, we only have genetic
maps, where some uncertainties in the gene order may remain. Hence, the problem
of inferring a total order, compatible with the partial knowledge on these genetic
maps and optimizing a relevant objective function, is a first step to study nonetheless
all genomes. In the past few years, growing attention has been given to this problem,
in which the objective function is an evolutionary distance to a reference genome
(e.g. number of rearrangements [125], reversal [124, 71], breakpoint |71, 23, 44|, or
common intervals |23] distance).

In this chapter, we focus on the MINIMUM BREAKPOINT LINEARIZATION (MBL)
problem, which aims at finding a linearization of a partial order while minimizing
the breakpoint distance to a reference genome. An approach for solving MBL is the
construction of an adjacency-order graph proposed in [71] and used in [44] to design
a heuristic and an approximation algorithm (whose ratio depends on m, the number
of genetic maps used to construct the studied genome). However, the construc-
tion has a flaw which makes both above mentioned algorithms invalid on general
data [38]. Thus, we introduce in this chapter a new type of adjacency-order graphs,
and prove that it is effective to solve the MBL problem. This renewed approach
allows us to use general graph theory results [66, 49| to obtain new approximation
and fixed-parameter tractable algorithms for MBL. Moreover, we also achieve an
O(m?)-approximation, in the same spirit as was done in [44].

To describe the MBL problem, let a partial order IT over a given set X = [1; n]
of markers represent the incomplete genomic data at hand. A linearization of 11 is
a permutation (or a total order) m = (x[1],7[2],...,7[n]) on ¥, such that, for all
markers i, 7, if ¢ <p 7, then i <, j (alternatively, ¢ precedes j in 7). In that case,
is said to be compatible with II. An adjacency in the permutation 7 is a factor of
length 2. The breakpoint distance dg(m,m) between two permutations m and 7o
(over the same set X) is defined by the total number of adjacencies in m; which are
not adjacencies in 7. Finally, Z denotes the identity permutation of size n.

The MINIMUM BREAKPOINT LINEARIZATION problem is defined as follows:

Problem MBL
Input A partial order II

Output A linearization 7 of Il
Minimize k =dg(m,Z,)

Example 6.1. Consider the partial order 11 defined by 1 <p 2 < 3; 4 <g 1 <pg b
and 6 <p1 3 (see Figure 6.1). This partial order yields four linearizations which are
optimal solutions of MBL with dg(n,Z,) = 3. They are the following (common
adjacencies with T, are underlined):

(4,1,5.6,2.3)

171

Figure 6.1: Directed Acyclic Graph representing the partial order II of Example 6.1.

(41,2
(6
a

It is worth noting that the input partial order, in practice, is sometimes obtained
by combining a limited number m of genetic maps [123, 125]. A genetic map consists
of an ordered list of blocks By, Bs, ..., By, each of which is an unordered list of
markers, i.e. any two markers from the same block are incomparable. The blocks
By, Bs, ..., B, induce a partial order II as follows: for any a € B; and b € B,
a <p biff ©+ < j. Note that it is not required for all maps to contain all markers, and
we assume that combining two or more genetic maps never creates conflicts. The
instance II of Example 6.1 is induced by e.g. the following two maps.

—_
ot

.6, 3

Y
Y

—
[\

Y

, 3,

w
(@)
~ S ~——

6,

—_
[\

)

14 — {1} — {2,5},
{2,6} — {3}.

The MINIMUM BREAKPOINT LINEARIZATION problem, based on the genome
rearrangement problem defined by Zheng and Sankoff [125], was studied indepen-
dently in [23] and [71] (we note that in the latter, the problem is denoted as PBD,
and deals with two partial orders instead of one partial order and one total order).
In [23], Blin et al. prove that MBL is NP-hard and give two types of algorithms
for solving MBL: (i) a heuristic and (ii) an exact, thus exponential-time, algorithm
based on dynamic programming. Moreover, this last algorithm is efficient in the spe-
cific case where input genomes are created from a bounded number m of gene maps,
in which the blocks have a bounded size. It is noted in [38] that the NP-hardness
proof from [23] is actually an APX-hardness proof.

In [71], Fu and Jiang give an (independent) NP-hardness proof, and present the
construction of the adjacency-order graph Gy of a partial order II in order to obtain
heuristics and approximation algorithms [44]. However the main theorem in [71] is
false (Example 6.1 is actually a counter-example [38]), which leads us to defining a
new structure in order to solve MBL.

The chapter is organized as follows. Section 6.1 is devoted to the definition of a
new adjacency-order graph, which is used in Section 6.2 to show that solving MBL
may be reduced to solving a variant of the well-known FEEDBACK VERTEX SET
problem, namely, SUBSET-FVS [66]. Using literature algorithms for SUBSET-FV'S,
Section 6.3 presents three algorithms, two approximations and one fixed-parameter
tractable, for MBL. Finally, Section 6.4 presents an approximation algorithm which
is specific to partial orders created from genomic maps, and has a ratio depending
on the number m of those genomic maps.

172 CHAPTER 6. MINIMUM BREAKPOINT LINEARIZATION

g
e
e D
e

F D

N
= 50000
SIONONONCHONO),

(a) Original DAG TI

—~

b) Vertices of Gy (c) Arcs of G

Figure 6.2: Construction of an adjacency-order graph. The symmetric arcs in F' are
represented as double arrows. The arcs in X are marked with a large dot.

6.1 Defining a New Adjacency-Order Graph Gt

We present here the construction of a new structure to solve MBL whose main
property will lead us to several different algorithms. This new adjacency-order graph
G contains both the features of the partial order IT and of the identity permutation
Z,,. Some of the cycles in this graph will express the incompatibilities between the
order II and the permutation Z,. In order to count or to bound the breakpoint
distance between a linearization 7 of II and Z , one has to identify the vertices in
the adjacency-order graph needed to break all these conflict-cycles, and to count
or bound their number. The MBL problem thus becomes a graph theory problem,
which allows us either to use existing algorithms or to build up new graph-based
algorithms.

Adjacency-order graph. Let II = (X,D) be a directed acyclic graph (DAG)
representing a partial order over ¥ = [1; n] (see Figure 6.2a for the instance given
in Example 6.1), i.e. we write i <pj j iff there is a directed path from i to j in II. We
create a set W of vertices representing the adjacencies of the identity permutation
Z, by W = {(i,i+1) | 1 <i < n}. Finally, let V = SUW (Figure 6.2b). Note that,
in the following, we will not distinguish the vertices of ¥ and their corresponding
integers (this will always be clear from the context). Moreover, the natural order <
over the integers is also used as an order over 3. We now construct a set of arcs F'
(denoted by an arrow —) in the following way:

F = {(i,i+1) i1 <i<n} U {(i,i+1) =i+ 1|1 <i<n}
U {i—=@i+l)|1<i<n} U {i+1— (i,i+1)|1<i<n}

Each arc in F has one end in W and one end in ¥. We write E = DUF (Figure 6.2¢)
and we define the adjacency-order graph Gy of Il by Gy = (V, E).

In G, the arcs of D that go top-down (see Figure 6.2¢) intuitively show incom-
patibilities between the order in II and the order in Z . We call such an arc conflict-
arc, that is, an arc i — j € D such that ¢ > j, and we note X[Gp] (or only X, if there

6.1. DEFINING A NEW ADJACENCY-ORDER GRAPH Gy 173

is no ambiguity) the set containing all conflict-arcs: X |G| ={i - j € D |i > j}.
Now, every cycle containing a conflict-arc is called a conflict-cycle. In Theorem 6.3,
we prove that the adjacencies involved in conflict-cycles are incompatible, so that
we need to remove at least one adjacency from each of those cycles to obtain a
linearization of II. We also define a weight map w[Gp| on the vertices of Gy, which
associates 1 to each u € W, and oo to v € X.

Notations. An arc between u and v is written u — v, or u — g v if it belongs to
some subset E'. A path P is a (possibly empty) sequence of arcs written u £>*v, or
U E)E,v if P uses only arcs from E’. A non-empty path @ is written with a + sign:

u Sty A cycle is a non-empty path u Sty with v = u.

Given in G a path P = vy — v; — ... — vy, we use the following notations:
¢(P) = ¢ is the length of P, V(P) = {v, | 0 < h < ¢}, W(P) = V(P)NnW,
Y(P)=VP)nX%, E(P) ={vy = v | 0 < h < (}, F(P) = E(P)NF,
D(P)=E(P)ND, X(P)=E(P)NnX. A cycle C is said to be simple if all vertices
vy, are distinct (except vy = vy), which implies ¢(C) = |V (C)| = |E(C)].

First Properties. The following lemma gives a way to exhibit conflict-arcs in
some cycles of Gpp. It is used in Property 6.2 to give an insight on how conflict-
cycles can appear in the adjacency-order graph.

Lemma 6.1. Let C be a (not necessarily simple) cycle of Gy. Let ¢ € X, such
that there ezists a,b € X(C) with a < ¢ < b. Then at least one of the following
Propositions s true:

(1) C contains an arc uw —x v withv < c <u

(it) C contains both arcs c+1 —p (c,c+1) and (c,c+1) —p c

Proof. Define ¢t = {d | d > ¢} U{(d,d+1) | d > ¢} and ¢c& = {d | d < c} U
{(d,d+1) | d < ¢}. Then ¢t U {{c,c+1)} Uc™ is a partition of V. We show
that when proposition (i) is false, proposition (ii) is necessarily true. Assume that
proposition (i) is false. Since C contains vertices in both ¢*U{{c, c+1)} and ¢~ (resp.
b and a), it thus contains an arc u — v with u € ¢ U {{¢,c+1)} and v € ¢*. We
must have u — v € F, otherwise u — v € D implies © — v € X (since u > v), and
proposition (i) would be true, a contradiction. Necessarily u = <c, c—|—1> and v = ¢
(there is no arc in F' going out of ¢™ into ¢~). So C contains the arc {(c,c+1) — c.
Using the same argument, we can show that there is an arc v/ — v’ in C with «’ € ¢*
and v € {{c¢,c+1)} Uc™. Since v/ — v’ cannot be in X (since proposition (i) is
false) nor in D — X (these arcs go from ¢~ to ¢T), then it is in F', and we can only
have o' = c+ 1 and v/ = <c, c—|—1>. So C also uses the arc <c, c+1> —r ¢, and thus
proposition (ii) is true.

[

Property 6.2. Let C be a simple cycle with |D(C)| > 2. Then C is a conflict-cycle.

Proof. Let a = min(X(C)), b = max(X(C)), and v —p v and v’ —p V' two arcs
of D appearing in C. By contradiction, we suppose C is not a conflict-cycle (i.e., C
contains no arc of X). For each ¢ € ¥ with a < ¢ < b, we can use Lemma 6.1: only
proposition (ii) can be true for each ¢, and there is an arc of F' going out of ¢ + 1
and another going into ¢ appearing in cycle C. Since this cycle is simple, we have

6.2

174 CHAPTER 6. MINIMUM BREAKPOINT LINEARIZATION

u# c+1and v # ¢ for all @ < ¢ < b (and similarly, v’ # ¢+ 1 and V' # ¢). By
definition of a and b, u,u’,v,v’" cannot be out of the interval [a; b], so u = v’ = a
and v = v’ = b. This implies that the simple cycle C uses twice the same arc a —p b,
a contradiction.

]

Cutting All Conflict-Cycles in Gy Is Enough

Now that we have defined how to construct Gy starting from the input partial
order II, we turn to proving the main structural result of our paper: conflict-cycles
contain all the conflicts between the partial order II and the identity permutation Z,,
(see Theorem 6.3). More precisely, when appropriate adjacencies in Z,, (identified
as vertices in W) are removed, the remaining adjacency-order graph has no conflict-
cycle and this condition is necessary and sufficient to obtain a linearization of Il
that preserves all the remaining adjacencies in Z.

Theorem 6.3. Let 11 be a partial order, Gy = (V, E) its adjacency-order graph
(withV =X UW and E=DUF), and W CW. Then there exists a permutation
7 over X, compatible with 1, and containing every adjacency from W' iff Gu[W'UX]
has no conflict-cycle.

Proof. (=) Let 7 be a linearization of II containing every adjacency of W’. The
following lemma will allow us to conclude by contradiction.

Lemma 6.4. In this Lemma, we use the preconditions of Theorem 6.3 and the fact
that 7 is a linearization of 11 containing every adjacency of W'. Let P = vy —
vg — ... = vg be a path with vertices in W' U X such that (H1) the vertices v,
1 < i < 0 are pairwise distinct, (H2) { > 2, (H3) vi,v, € 3, and (H}) for any
1§72<€,U¢%U¢+1€F.

Let a = min(vy,ve) and b = max(vy,vy). Then the sequence <a, at+1l,a+2,..., b> is
a factor of w. Moreover, S(P) = [a; b] and W(P) = {(c,c+1) | a < ¢ < b}.

Proof. Using H4, we can consider only the bipartite graph (W’ U X, F)). With H3
we obtain that ¢ is odd, and vy;_; € ¥ (for any 1 <i < ”Tl) whereas vy; € W’ (for
any 1 <7< Z’Tl) Moreover, H2 implies that ¢ > 3. The proof is by induction on ¢:
For ¢ = 3, since vy —p vy and v; € 3, there are two possible cases: (i) vy =
<v1,v1+1> and (ii) vy = <v1—1,v1>.

(i) vy = <v1,vl+1>. Then v3 = v; + 1 (since vy —f v3 and vz # vy, due to H1).
In this case, a = v, b = a + 1 and <a, b> is a factor of 7 (indeed, it corresponds to
the adjacency ve which belongs to W”).

(i) vy = <v1—1,vl>. Likewise, v3 = v; — 1, a = v3, b = a + 1, and <a,b> is a
factor of .

Finally, in both cases we have X(P) = {vi,v3} = [a; b] and W(P) = {vs} =
{(a,a+1)}: the lemma is true for £ = 3.
For ¢ = V' + 2, /' > 3, by induction, the lemma is true for the path P’ = v; —
... — vp. Again, we need to consider two different cases (see Fig. 6.3a and 6.3b):
(i) v1 < v and (ii) v1 > vp.

(i) In this case, vy = <Ug/—1,Ug/>, and by H1, vy_; = vpryq = <Ugl,1}gl+1>, and
vy = Vpyg = vp + 1. If we write ¢’ = v; and O = vy, then by induction the sequence

6.2. CUTTING ALL CONFLICT-CYCLES IN Gy IS ENOUGH 175

T @2
/:b—l /@—b—1
> (v3) =a+1 a+1
®= o=
(a) (b)

Figure 6.3: Two types of paths are possible in (W' U X, F').

<a’, a+1,..., b’> is a factor of m. And the sequence <b’,b/—i—1> is also a factor of m,
since it corresponds to vertex vy € W’. So the full sequence <a’, a+1,...,0, b’+1>
is a factor of w. This proves the first part of the lemma, since a = v; = o' and
b = v =0 + 1. The second part is also true with X(P) = X(P’) U {b} and
W (P)=W(P")uU{(b-1,b)}.
(ii) This case is symmetric to the previous one, with a = a' — 1 = vy — 1, b =
b = vy and v, = a. We link together the sequences <a’—1, a’> and <a’, a+1,... ,b’>
to prove that (a’,a’+1,...,V) is a factor of 7. Moreover, £(P) = (P’) U {a} and
W(P) =W(P')U{{a,a+1)}.
L]

Proof of Theorem 6.3 (continued): We suppose, by contradiction, that there exists
in Gp[W'UX] acycle C =vyg — vy = vy = ... = vy = vy containing an arc from
X Wlog, assume that this arc is v9 —x v1, and that C is simple (otherwise, there
exists a simple sub-cycle of C that contains an arc from X). We distinguish two
cases, depending on whether vy —x vy is the only arc in D(C).

First case: vg — vy € X and for all 4, 1 <1 < ¥, v; = v;41 € F holds. In that
case, we can directly use Lemma 6.4. Indeed, the path v; — vo — ... — vy = vy
satisfies hypothesis H1 (by simplicity of C), H2 (otherwise there would be a loop
vo — v in X), H3 (since v, — v, € D) and H4 (this is assumed in this first case).
We also know, due to the fact that vg —x vy, that v; < v,. We can conclude that

<v1, vi+1,... ,Ug> is a factor of m, so v; <, v, = vy. This contradicts the fact that =
is compatible with II, since vy <1 v;.
Second case: Let ig = 0,141,...,1,_1,1, = £ be the increasing sequence of indices

such that Vi = V41 €D for all j such that 0 < 5 < h. Note that h > 2 and for all
J, we have v;; € 2. Let us prove that for all j < h, the relation v;; <; v;,,, holds.
The case where i, = i; + 1 is easy, since the arc v;; —p v, 1 implies v;, <q v,
(by construction of Grr) and thus v;; < v;;,,, since 7 is compatible with II. Now,
assume there are several arcs between v;; and v;,,,, i.e. ij41 = i; +m with m > 2.
We use Lemma 6.4 with the path P in F given by v;, 41 — vi,42 = ... = Vi 4m-
Path P satisfies the hypotheses H1, H2, H3 and H4 of the lemma, thus one of the
sequences <vij+1, Vi1t ,vi],+m> and <v¢j+m, Vijemt+1, ... ,'z)ij+1> is a factor of .
Note that v;; is a distinct vertex from Vij (since h > 2), and from other vertices in
the set X(P) as well (since each of them is the source of an arc from F' in C, whereas

6.3

176 CHAPTER 6. MINIMUM BREAKPOINT LINEARIZATION

v, is the source of an arc from D in C). Consequently, v;; cannot appear in either
of the factors <vi],+1, Vi1t ,vij+m> and <’Uij+m, Vij4mt1,. .. ,vij+1> of m. As vy,
precedes v;, 1 in II (and thus in), we have v;; <; vy for all i’ € [i; +1; i; +m],
and particularly, v, <; v;,,,.

In conclusion, we have v;; < v;,,, for all j < h and v;, = vy, a contradiction
since there can be no cycle in the relation <,. Hence, the subgraph Gp[W’ U X
does not contain any conflict-cycle.

(<) (constructive proof) We use the following method to construct a linearization
7 of II containing all adjacencies of W', where the subgraph G' = Gp[W' U X] is
assumed to contain no conflict-cycle. We denote by Vi, ... Vj the strongly connected
components of G’ ordered by topological order (i.e., if u,v € V;, there exists a path
from u to v ; moreover, if u € V; and v € V; and there exists a path v —*v in G/,
then i < j). We sort the elements of each set V; N3 in ascending order of integers,
and obtain a sequence p;. The concatenation <u1, fho, - . > gives m, a permutation of
Y. We now check that 7 contains every adjacency in W’ and is compatible with II.

Let <a,a+1> € W'. Vertices a and a + 1 are in the same strong connected
component V;, because of the arcs a <> <a, a—|—1> <> a+ 1. Those two elements are
obviously consecutive in the corresponding ;, and appear as an adjacency in 7. By
contradiction, assume now that there exist two distinct elements a,b € X such that
a <r band b <i a. We denote by ¢ and j the indices such that a € V; and b € V).

Since a <, b, we have i < j, and since b <y7 a, there exists a path b ﬂga in (X, D).
Therefore, in G’, we have ¢ > j. We thus deduce that ¢« = j, and therefore a and
b share the same strong connected component. This means that there also exists

a path P, from a to b in G'. Hence, we have a cycle b Dt P$+b7 which cannot
be a conflict-cycle, thus those paths do not use any arc from X. The latter is in
particular true along P, which implies b < a, since each arc v — v in D — X is
such that © < v. On the other hand, a appears before b in 7, and therefore in p;,
so a < b, a contradiction. Finally 7 is a feasible solution for MBL(II), with at least
|W’| common adjacencies with the identity permutation Z,.

Since all vertices in W — W’ count for unconserved adjacencies (and thus define
dg(m,Z,)), from Theorem 6.3 we directly get the following corollary.

Corollary 6.5. The value k of an optimal solution of MBL(II) is the minimum
number of vertices one needs to delete in W to remove all conflict-cycles from Gry.

Algorithms Based on SUBSET-FVS

The structural property of the adjacency-order graph presented in the previous
section (Theorem 6.3 and Corollary 6.5) entails a reduction of the problem MBL to
a generalization of the well studied FEEDBACK VERTEX SET (FVS) problem, where
only the conflict-cycles must be cut. This generalization, named SUBSET-FVS and
studied by Even et al. [66], is defined as follows:

Problem SuUBSET-FVS

Input A directed graph G = (V, E), aset Y C VUE, a weight map
w:V =R

Output A set V" C V such that, with V' =V — V" no cycle in G[V']
uses a vertex or an arc from Y

Minimize The weight of V"

6.3. ALGORITHMS BASED ON SUBSET-FVS 177

Algorithm 6.1 Reduction from MBL to AOG-SUBSET-FVS.
Input: A directed acyclic graph IT = (3, D)

1: Create Gyp = (V, E) the adjacency-order graph of II
W" <= AOG-SUBSET-FVS(Gy, X [Gul, w|Gnl) /* using e.g. [66, 49] */
W'« W —-Ww"
(V1, Vo, ..., V3) < SCC-sort (G (W' U)
for i <1 to h do

pi < sort(V;NY)

end for

T <M17M27---aﬂh>
return

In our approach, we are only interested in the restriction of SUBSET-FVS to
adjacency-order graphs, where Y is the set of conflict arcs and w is such that only
vertices in W can be deleted:

Problem AOG-SUBSET-FVS

Input An adjacency-order graph Gy, Y = X[Gpl, w = w|[Gy]
Output A set W” solution of SUBSET-FVS(Gyy, Y, w)
Minimize The weight of W”

We note that any algorithm for SUBSET-FVS is also valid for AOG-SUBSET-
FVS with the same approximation ratio and running time. Also, as the weights of all
vertices are either 1 or 0o, it is possible to use an algorithm for the unweighted variant
of SUBSET-FVS by replacing each vertex with infinite weight by |V'|+1 vertices with
the same incoming and outgoing arcs (the resulting graph has a quadratic number
of vertices and the same feedback vertex sets).

Two approximation algorithms are given in [66] for SUBSET-F'VS. The first one
achieves an approximation ratio of O(log® |Y'|), while the second algorithm achieves
a ratio of O (min(log(7*)loglog(7*),log(n)loglog(n))), where 7* is the value of the
optimal fractional solution for the corresponding linear programming problem (thus
7* is upper bounded by the optimal solution of SUBSET-FVS). Also, Chitnis et

al. [49] recently proposed an FPT algorithm for SUBSET-F'VS, where the param-

D700 exact algorithm for the

eter is |V’/|. More precisely, they designed a 9200’
unweighted version of SUBSET-FVS.

Algorithm 6.1 is a reduction of MBL to AOG-SUBSET-FVS which allows us to
use these algorithms (see Figure 6.4 for an example). We denote by SCC-sort ()
a function that decomposes a graph into its strongly connected components, and
then topological sorts these components. Also, let sort() be a function that sorts
a set of integers according to the increasing order of its elements. Algorithm 6.1 is
derived from the constructive proof of Theorem 6.3, and its correctness follows from

Theorem 6.3 itself.

Corollary 6.6. Depending on the algorithm used for AOG-SUBSET-FVS, Algo-
rithm 6.1 can be either
— an ezxponential-time exact algorithm (with running time O(2") by brute-force),
— an FPT algorithm with running time 220<k)n0(1),
—an O (log2 |X|)—appr0m'mati0n,
— an O (log(k) loglog(k))-approzimation,
where | X | is the number of conflict-arcs in I1 and k the optimal value of our problem.

178 CHAPTER 6. MINIMUM BREAKPOINT LINEARIZATION

9 3
s :

Vi (2) 2

@0 6
) M3

Vs (5) 5

@
@D
@

o¥o¥olo¥o
|

. G
Vs o M2 1
6 ! S
% @ M1 - 4
(a) Result of AOG-SUBSET-FVS: (b) SCC-sort yields four components Vi, Vs, V3
W' = {<1,2>, <3,4>, <4,5>} and Vy, and Algorithm 6.1 returns permutation

7™ =(4,1,5,6,2,3)

Figure 6.4: Key steps of Algorithm 6.1 on the instance of MBL of Example 6.1.

Note that the two approximation ratios are incomparable, since we may have
| X| &= nk or k =~ n|X|, as can be seen in Figures 6.5a and 6.5b.

6.4 An (m?+ 4m — 4)-approximation Algorithm

In this section, we assume that the partial order II is generated from m gene
maps. Recall that a gene map is a totally ordered sequence of blocks, each of which
is an unordered set of markers. We exploit this supplementary information to obtain
an (m? + 4m — 4)-approximation algorithm for AOG-SUBSET-FVS, and therefore
a new approximation algorithm, having the same ratio, for MBL. Before giving the
algorithm and analyzing its approximation ratio, we first introduce a few definitions

p+1 p+2 2p
H12

1 2 p
(a) With I;: [X|=p? >> k=1

Iy: 123—=...22p—-1)22=4—... > (2p)
(b) With Iy: |X| =1 << k=2p—1

Figure 6.5: Comparing | X| (number of conflict-arcs in II) with &k (the optimal break-
point distance to the identity).

6.4. AN (M? + 4M — 4)-APPROXIMATION ALGORITHM 179

Figure 6.6: Cycle C = 2 Bz Bx9 s a conflict-cycle (it contains 7 — 1 € X). The

length-1 path R forms a shortcut for C (with C"' = 2 Rl E>*2, C’ is a conflict-cycle,
and W(Q) = {(1,2)}). So C’ is the only minimal conflict-cycle.

6.4.1 Definitions

Shortcut and Minimal Conflict-Cycle

A path v g}ju in (3, D) is said to be a shortcut of a conflict-cycle C (see
Figure 6.6), if:
— u,v € X(C) (we write P and @ for the paths such that C = u Lty g>+u),
, P, R, . :
— cycle C' = u —Tv =} u is a conflict-cycle,
— W(Q) # 0 (using the shortcut removes at least one adjacency).
We say that a conflict-cycle is minimal if it has no shortcut. With the following

property, we ensure that removing minimal conflict-cycles is enough to remove all
conflict-cycles.

Property 6.7. If an adjacency-order graph contains a conflict-cycle, it also contains
a minimal conflict-cycle.

Proof. Take a non-minimal conflict-cycle C. If C is simple, we use the shortcut to
create a conflict-cycle C" with [W(C')| < [W(C)|. Otherwise, if C is not simple, there

exists a vertex u such that C = u SFu %*u, and one of P and @, say P, uses at
least one arc of X. Thus P is a conflict-cycle, with |[W (P)| < |[W(C)|, and [£(C")| <
[¢(C)|. In both cases, we create a conflict-cycle C" with either |[W(C")| < [W(C)], or
(W (C"| = |[W(C)| and [£(C")| < [€(C)|. Tf C’ is not a minimal conflict-cycle, we can
replace C by C’ and iterate this process: it necessarily ends (¢(C) and |W(C)| must
remain positive integers), and reaches a minimal conflict-cycle.

[]

Joints and Indices

In a cycle C, we call joint a vertex e € ¥ whose incident arcs in C belong to D(C)
and to F(C). Alternatively, there exist vertices e” and e’ such that either

i. both arcs e? —p e, e —p e’ appear in C, or

i. both arcs e’ —p e, e —p e appear in C.

Consequently, two types of joints are identified: a joint is of type (i.) (resp. (7i.))
if it marks the end of a subpath with arcs from D (resp. from F') and the beginning
of a subpath with arcs from F' (resp. from D). In both cases, e/ = <e, e—|—1> or

6.4.2

180 CHAPTER 6. MINIMUM BREAKPOINT LINEARIZATION

el = <e—1, e>. We say that e is a low joint if ef’ = <e, e+1> (intuitively, e is at the
bottom of a subpath with arcs from F', independently of its type). Given a vertex
w € W(C), we say that e is the low joint associated to w in C, if the cycle C uses
one of the paths w —}.e or e =5 w (e is either the first low joint after w in C, or the
last one before w).

Recall that II is created from gene maps, indexed from 1 to m. From these gene
maps, we can deduce two properties: (1) if there is an arc between u and v in II,
then u and v appear in consecutive blocks of the same gene map, and (2) if v and
v appear in the same gene map, but in different blocks, then there exists a path
u —Tv or v — w in II.

For each u € ¥, we denote I(u) C [1; m] the indices of the gene maps in which
u appears (u appears in at least one gene map, so I(u) # 0)). For each arc v —p v
of D, we denote n(u —p v) the index of a gene map in which u and v appear in
consecutive blocks. Then n(u —p v) € I(u) N I(v). Given a cycle C, we extend
the notation 7 to each of its joints e: n(e) = n(e? — e) if e is of type (i); and
n(e) = n(e — eP) otherwise.

We also extend [to paths: given a path P = ug — u; — ... — uy, we write

1Py = | I(u)

0<i<t
u;EX

Property 6.8. Let e — f be an arc of D, and let u € ¥ such that n(e — f) € I(u).
Then one of the paths e —*u or u —*f appears in the graph (3, D).

Proof. The three markers u, e and f appear in the same gene map with index
n(e — f). If u appears in a block strictly following e, then there exists a path e —*u
in I1, and thus in the graph (X, D). Else, since the block of e strictly precedes the
block of f, u also appears strictly before f in this gene map, so there exists a path
u —*f in II (and thus in the graph (3, D)).

m

Algorithm

Algorithm 6.2 is an (m? + 4m — 4)-approximation for AOG-SUBSET-FVS. Used
as a subroutine in Algorithm 6.1, it gives us an approximation of ratio (m?+4m —4)
for the MBL problem (see Corollary 6.16). The idea is that few conflict cycles can
traverse the same vertex without using the same joints (here, “few” represents a
function of the number of maps). It thus deletes all low joints of successive minimal
conflict-cycles, until no such cycle remains. The correctness is a trivial consequence
of Property 6.7.

The approximation ratio is thoroughly analyzed in the next section; this analysis
can be briefly summarized as follows. The first step is to bound the number of low
joints that can appear in some minimal conflict-cycle by O(m), see Lemma 6.11
for a more precise bound. Then, we show that for any adjacency w € W, at most
2m minimal conflict-cycles using w can appear during step 2 of Algorithm 6.2:
by Lemma 6.13, there cannot be more than two low joints, associated to w in
different cycles, appearing in the same gene map. Hence we can bound the number
of vertices deleted by Algorithm 6.2 for a given vertex w € W by O(m?). This is the
object of Theorem 6.15, which gives the precise value of the approximation ratio of
Algorithm 6.2: m? + 4m — 4.

6.4. AN (M? + 4M — 4)-APPROXIMATION ALGORITHM 181

Algorithm 6.2 (m? 4 4m — 4)-approximation for AOG-SUBSET-FVS.
Input: An adjacency-order graph Gy = (V, E), X[Gn|, w[Gn]
W ()
while there exists a minimal conflict-cycle C in
L < the set of low joints of C
W" « W"U{el" . e€ L}
return W”

—_

6.4.3 Approximation Ratio Analysis

Bounding the number of joints in a minimal conflict-cycle

The lemmas below study the possible values of n for different low joints of one
minimal conflict-cycle. They thus entail an upper bound on the number of such
joints.

Lemma 6.9. Let C be a minimal conflict-cycle where three vertices u,e, f € 3(C)
are such that (see Figure 6.7):
fC:ui+e—>Df§+u
— Fach of the paths P, and P, uses at least one vertex from W and at least one
arc from D.

Then n(e —p f) & I(u).

Proof. By contradiction, assume that n(e —p f) € I(u). Then, by Property 6.8,
there exists a path R in D connecting either e to u or w to f. In the first case, we write
P=PandQ=e¢—p f g*u, and in the second, P = P, and Q = u Pte 5p f,
so that there exists a cycle C' = u Lo By (resp., C' = f Bty i*f). Since C
is a minimal conflict-cycle then R cannot be a shortcut, and with W (Q) not being
empty, cycle C’ cannot be a conflict-cycle. Hence, no arc in D(C’) appears in X.
Let a = min(X(C’)) and b = max(3(C")). For all ¢ € [a; b— 1], we can apply
Lemma 6.1 on C’, where only proposition (ii) can be true. Hence, C’ contains every

u

IS

/A

W/ \W

/ \
Py / \\ P

) D\
/e N\

Figure 6.7: A cycle satisfying the conditions of Lemma 6.9 (black dotted lines rep-
resent paths).

182 CHAPTER 6. MINIMUM BREAKPOINT LINEARIZATION

D F
L —>e—————>e ———— e, D
/ el e
(G LD]
NP
———————— @ <<’ |
D

Figure 6.8: Illustration of Lemma 6.10, with A = 6. Here e, = e?, ¢, = ¢, f, = fP,
ft - t

arcc+1 —p <c, c—|—1>, <c, c—|—1> —r ¢ between b and a. Moreover, none of these arcs
can appear in R, so they all come from path P.

But P also contains at least one arc from D: let a’ —p &’ be such an arc. By
definition of a and b, we have (a/,0') € [a; b]. The path P is part of a simple
cycle, so it can enter and leave only once each vertex. This implies a’ ¢ [a +1; 0]
and b’ ¢ [a; b—1], so @ = a and b’ = b. Thus P contains every arc of the cycle
a —p b —}a, which contradicts the fact that C is simple.

O

Lemma 6.10. Let C be a minimal conflict-cycle, with A\ > 5 joints. Let e and f be
two non consecutive joints of C. Then n(e) # n(f).

Proof. We write e, e, fs, f; for the four vertices of ¥ such that {es, e} = {e, e},
{fs; fi} = {f, fP}, and C uses both arcs e, — ¢; and f, — f; (see Figure 6.8). We
write P and () for the paths such that:

C:es—>et£>*fs—>ftg>*es

Since e and f are not consecutive joints, both paths P and () use an arc from
F (and a vertex from W). Moreover, since there are at least five joints, one of P
and @ has a joint as an inner vertex. Wlog, let this path be P. Thus P uses an arc
from D.

We denote by @’ the path f, — f; 2)*65, which also contains an arc from D.

Hence the cycle C = f; g*es — e £>*fS satisfies the conditions of Lemma 6.9:
n(e) ¢ I(fs). This proves the lemma, since n(f) € I(f5).
O

Lemma 6.11. Let C be a minimal conflict-cycle with X joints. Let P be a path in
F between two consecutive joints in C, and P’ be the path P where both ends are
removed. Then A < 2(m — |I(P)|) + 4.

Proof. If A <4, the lemma is proved, so we can assume there are at least five joints.

Wlog, we assume that e, and e3 are the two consecutive joints linked by P. Let
u € XN(P'). Vertex u appears between joints e, and e3, so we can use Lemma 6.9
with u, e; and eP for all i ¢ [[1; 4]. Indeed, paths P, and P, contain respectively
u —hes —1es and e; —hes —1u, so they both use an arc from D, an arc from F,
and a vertex from W. Hence, for all i € [5; A], we have Yu € X(P’), n(e;) ¢ I(u),

so n(e;) ¢ I(P).

6.4. AN (M? + 4M — 4)-APPROXIMATION ALGORITHM 183

By Lemma 6.10, the cycle C cannot have more than two joints with the same
value of 7, since three joints cannot be pairwise consecutive when A > 5. Thus we
have A —4 < 2|[1; m] — I(P")| =2(m — |I(P))).

m

Bounding the number of cycles considered in Algorithm 6.2

We now aim at computing the number of cycles that Algorithm 6.2 can consider,
in particular the number of cycles traversing a single vertex w € W.

Lemma 6.12. Let w = <U,U—|—1> € W, Cy and Cy be two cycles being considered
during step 2 of Algorithm 6.2 (Cy being considered before Cy), such that w € W(Cy)N
W (Cs). Let a be the low joint associated to w in Cy and b be the one associated to
w in Cq. Then either

(1) n(a) # n(b), or

(2) n(a) = n(b), a is of type ii, and a® and b appear in the same block of the gene
map n(a).

Proof. Vertices a and b are low joints associated to w = <U,U—|—1>, so a < v and
b < v. Vertex af' = <a, a+1> is deleted when C; is being considered so it cannot
appear in C. Thus a < b, and consequently b appears in the path a —%w or
w —Fa. In Cy, we write P for the path linking w and b in F, and (), for the path
linking b and w in F'U D (see Figure 6.9a). Depending on the type of b, we have

i Co=w @3 pD —p b £>*w,0r

1w Cy=w B —p bP %*w.
In C;, we write P’ for the path linking b and @ in F, and @, for the path linking a”
and w in F'U D. Thus, depending on the type of a, we have

i Co=w %*GD —p a i*b i*w,or

1 Cy=w B i*a —p aP %*w.

Note that P can be followed in different ways in C; and Co. We do not distinguish
this case in the notations, since paths in F' can always be followed in both ways.

We suppose, by contradiction, that n(a) = n(b).
First case: a is a joint of type (i). We use Property 6.8 with b and a® — a:
there exists a path R in (X, D) from b to a or from a” to b (see Figure 6.9b). If
R =b —* a, we define C' = a Pisp i*a, then C’ is a conflict-cycle (this is due to
Lemma 6.1: C’ cannot contain a’ — a but visits the vertices @ and a + 1, hence it
contains an arc from X). Moreover, W(C") C W(Cy), hence C; cannot be a minimal
conflict-cycle. Similarly, if R = a? —* b, then C' = b S*w QD Bxp is a conflict-
cycle and C; is not a minimal conflict-cycle. Thus this first case is a contradiction
to the fact that n(a) = n(b).
Second case: a is a joint of type (ii). We distinguish three sub-cases 2.1, 2.2

and 2.3 where, respectively, the path b 5*aP exists in (X, D), the path a” Ko
exists in (3, D), and a” and b are incomparable in D (see Figure 6.9b).

91 R = b —*aP. We consider C' = b S+aP? By Bop, 1t (), contains an
arc from X, C’ is a conflict-cycle. Otherwise, the only marked arc in C; is
necessarily a —x a”, so a > a”. Hence the path R in D uses at least one
marked arc (since b > a > a®), so C' is again a conflict-cycle. In both cases,

it contradicts the fact that C; is a minimal conflict-cycle.

184 CHAPTER 6. MINIMUM BREAKPOINT LINEARIZATION

U g U gm=T—~ "
e \\\ \\\ A \\\ \\\ e \\\ ™
/ NN / N / N
/ \ \ / \ \ / \ \
/ \ o\ / \ A\ / N A\
; \\Qz \\ ; \\Q2 \\ / \\Qz \
I I I
\ \ \ \ \
| P \\@ P \ @& (P \ \\\Q1
! Ca \ \ ! Ca \ \ I Co \
| 1 |
\ AP \ AP \ AP \\
F \ \ F \ | F \
wb PRI wb PR wb o)
S b bul ~ob bPY o b pPy
¢ \‘).¥—$ |)7”—‘ |
Ve 7/ 7/ :\\\
/ ‘ / /
/ | / ~ / “
/ l / /
/ I I
RN I G
‘;\a F U } ‘;\a F U ‘;\aF u
I
D .
\\%a a i AN V(~Y AN wA'
a aP a a®
(a) Decomposition of C; and (b) First case (joint ais of type (c) Second case (joint a is of
Cs into arc and paths. i)

type %)
Figure 6.9: Path decomposition of C; and C; and case study for Lemma 6.12.

2.2 R =aP —*b. We consider C' = b 5*a — aP B+b. If o < a, then a — aP
is in X, so C' is a conflict-cycle. Otherwise, since C; is simple, a” > b > a, R

contains an arc from X, and C’ is also a conflict-cycle. Again, C; cannot be a
minimal conflict-cycle.

2.3 aP and b are incomparable in (3, D). Since they appear in the same gene
map with index n(a) = n(b), they appear in the same block of this map.

O
Lemma 6.13. Let w = <v,v+1> e W, Cy, Cy and Cs three cycles being considered
during step 2 of Algorithm 6.2 (in this order), such that w € W (C)NW (Co)NW (Cs).

Denote respectively by a, b and c the low joints associated to w in C1, Co and Cs.
Then we cannot have n(a) = n(b) = n(c).

Proof. Assume that n = n(a) = n(b) = n(c). Then we use Lemma 6.12 with (C;,Cs),
(C1,C3) and (Co,Cs) successively, thus (see Figure 6.10) :

— a” and b appear in the same block of gene map 7,
— a® and c appear in the same block of gene map 7,
— bP and c appear in the same block of gene map 7.

So, b and bP both come from the same block of gene map 7, which contradicts
n(b) = n (in the gene map n(b), b and b” appear in consecutive blocks).

m
Computing the Approximation Ratio

Lemma 6.14. Let w € W and let C be the set of all cycles considered during step 2

of Algorithm 6.2 going through w. Then the cardinality of the set of low joints in
cycles of C is upper bounded by m? + 4m — 4.

Proof. We write w = <U, U—|—1> € W,and C = {C,,...,C,} for the set of the ¢ cycles
considered, in this order, by Algorithm 6.2. In each cycle Cy,, 1 < h < ¢, w can

6.4. AN (M? + 4M — 4)-APPROXIMATION ALGORITHM 185

.
/ AN
/ N\,
/ N\ N
[A\
I AN
| A\
\ AN
\ WA
\
Vy N
\ ¢ cD\\\ \\
» ¢ \
/ |
|
I \
| |\
| A
\ b b1 |
) 3 |
/ |
| |
| |
\ |
\ |
\ |
—— ¢
a CLD

Figure 6.10: Illustration of the proof of Lemma 6.13. Vertices appearing in the same
block of the gene map 7n are marked in gray.

be associated to a low joint v;, and to the corresponding deleted vertex wy;, = v} =
<vh,vh—i—1>. We write P, for the path w, —%w or w —%wy, in Cp, and A, for the

number of joints of C,. Thus % is the number of low joints (and the number of
deleted vertices) in this cycle.

Since wy, is deleted while Cp, is being considered, for all A’ € [h+1; q], w, ¢
W (Cp), and vy, < vy < v. Indeed, for any u € [uy ; v], the vertex <u, u—i—1> belongs
to W(Cp), and vy, vy < v. Finally, the path P, uses each vy, b’ € [h+ 1; ¢].

Consider now the list (9(va41), 7(Vas2), - .-, n(vy)). Using Lemma 6.13, the same
value cannot appear more than twice in this list, so it contains at least [%w different
values. The first consequence is ¢ < 2m (with h = 0, all values are in a set of size
m). And since for all ' € [h+1; g, n(vw) € I(Py), we have [I(P,)] > [42].

Using Lemma 6.11 for all A, we obtain A\, < 2(m — |I(P,)]) +4. We can thus
bound the number of low joints in Cy:

By Lemma 6.10, we also have that, for m > 2, A\, < 2m. Let L,, be the number
of low joints in the cycles of C:

L, = Y &

A A
2, z
= =
VR VR
3 3
3 3
| |
rerSliars
i w‘ |
+ =
[N JR— |
N— _|_
[\]
N—

AN
/_\M
& 3
OML

R

|
N QL
JE— |

|

&)
~__

|

I

186 CHAPTER 6. MINIMUM BREAKPOINT LINEARIZATION

m—1

< (Z(m—i+2)+(m—i+1))—4
i=0

< 2m?P—m(m—1)+3m —4

< m?4+4m—4

thus L, < m? + 4m — 4, which proves Lemma 6.14.
]

Theorem 6.15. Algorithm 6.2 is an (m?+4m—4)-approzimation of AOG-SUBSET-
EVS, where m is the number of gene maps used to create the input graph.

Proof. Correctness of Algorithm 6.2 follows from Property 6.7: Algorithm 6.2 out-
puts a set W such that Gp[V — W"] does not contain any minimal conflict-cycle,
hence it does not contain any conflict-cycle (i.e., W’ contains at least one vertex
from each conflict-cycle). Let W° = {w{,... , w{} be an optimal solution of size k.
For each w?, i € [1; k], Algorithm 6.2 deletes at most m? + 4m — 4 adjacencies of
W (by Lemma 6.14). Since every cycle considered by the algorithm goes through
some w?, the total size of the output solution is at most k(m? + 4m — 4).

O

Corollary 6.16. Using Algorithm 6.2 as an approzimation for AOG-SUBSET-FVS
in Algorithm 6.1 yields an (m? + 4m — 4)-approzimation for the MBL problem.

Conclusion

In this chapter, we proposed a new graph structure to help solve MBL by rep-
resenting the conflicts between the given partial order II and the reference genome
Z,,. Furthermore, we characterized the cycles containing these conflicts, we showed
how the MBL problem reduces to solving the AOG-SUBSET-FVS problem in our
structure, and we proposed three approximation and an FPT algorithm. This al-
lows us to approach a given, practical instance of MBL from different viewpoints,
by choosing the appropriate algorithm depending on the data at hand (i.e., whether
the instance is created from few gene maps) and on the parameter evaluation (k
and | X]).

It would be interesting to know whether there exists a constant-ratio approxi-
mation algorithm for MBL (which would classify MBL as APX-complete). Another
challenge is to improve the running time of the FPT algorithm for MBI, either
by using the specific structure of our adjacency-order graphs in [49], or by design-
ing FPT algorithms based on new ideas, possibly with other parameters such as,
for example, the number m of gene maps that were used to construct the partial
order II.

Conclusion and Perspectives

Following the plan of the manuscript, we now summarize the results presented
in this work and draw the possible outlook we could follow for further research.

Sorting under the Permutation Model Is not Always Simple

As we have seen in Chapters 1 and 2, comparing genomic sequences even in the
simplest model (where all genes are unique) is not always a trivial task. Although it
is possible to compute many dissimilarity measures such as breakpoint and common
interval distances, maximum and summed adjacency disruptions, etc., and even
rearrangement distances with signed reversals or signed DCJs, we have proven that
the problems SORTING BY TRANSPOSITIONS and SORTING BY PREFIX REVERSALS
are NP-hard. Yet, some clues make us assume that these problems should admit
more precise approximation algorithms than the existing ones (with ratio 1.375 for
SBT and 2 for SBPR). Indeed, NP-hardness proofs we have provided do not yield a
lower bound on the approximation ratio, and the “NP-hard sequences” they entail
require a particularly large number of elements to simulate simple boolean formulas
(a formula with n literals is transformed into permutations of size approximately
30n for SBT and 40n for SBPR).

An interesting question, regarding the SORTING BY TRANSPOSITIONS problem,
is whether this problem is still NP-hard when the size of the exchanged blocks is
bounded. Notably the problem of sorting a permutation by 3-bounded transpositions
(transpositions involving at most three elements) has already received a particular
attention [102, 90].

Another intriguing open problem is to determine the complexity class of the sort-
ing by prefix reversals problem under the signed model (our approach based on the
breakpoint distance cannot be used as such to prove that this problem is NP-hard).
Indeed, having a sign constraint reduces the number of efficient operations, and
should help find a good sorting scenario more easily, as is the case for the problems
of sorting by reversals and by DCJ. However, the best polynomial algorithm is, to
date, a 2-approximation (as in the unsigned case). Can this problem be solved with
a better approximation, or even with an exact polynomial-time algorithm?

Finally, does there exist FPT algorithms with relevant parameters for these NP-
hard problems? Both breakpoint and rearrangement distances are trivial parame-
ters, but they are too high in practical cases to be of interest here.

187

188 CONCLUSION AND PERSPECTIVES

Comparing Sequences with Duplicates Is Even More Challenging

Comparison problems become far more difficult when input data consists of
strings instead of permutations. If some local string edition distances can still be
computed (e.g., Hamming and Levenshtein distances), the problems considering
large-scale evolutionary events (e.g., in a rearrangement distance) become immedi-
ately intractable. A possible approach consists in constructing a duplication scenario
that allows to match different copies across genomes, in order to be able to model
subsequent genomes with permutations.

In the exemplar model (see Chapter 3), we consider that only one copy of each
gene directly originates from the common ancestor (and that other copies are re-
cent, duplications), and try to identify this “original” copy. However, whatever the
optimization function we consider, computing an EXEMPLAR DISTANCE is APX-
hard. The exemplar model entails a field of open problems, since no constant-ratio
approximation or FPT algorithm is known for any of the many possible exemplar
distances.

The matching model, where each copy of a gene in a sequence has to be matched
to a unique copy in the other sequence, yields equally intractable problems. Yet,
we have presented in Chapter 4 an FPT algorithm that computes the breakpoint
distance under this model (better known as MINIMUM COMMON STRING PARTI-
TION, MCSP). This algorithm is firstly of theoretical interest since it has only one
parameter, the breakpoint distance (equivalently, the number of blocks in the op-
timal partition, k). On the other hand, with a complexity of O(k2"% poly(n)), it
is hardly relevant for practical implementation. Can a more efficient algorithm be
obtained with interesting running times, both from theoretical and practical points
of view? Also do there exist constant-ratio approximation algorithms for MCSP?
Indeed, even though the problem does not deal with gene deletion and thus requires
to have balanced strings in input, it is a central problem when one need to handle
genomes with duplications.

Correcting and Completing Genomic Data

A major challenge for comparative genomics is to take into account the error-
prone processes that generate the input of the problems considered. Omne repre-
sentative example is genome assembling from high-speed sequencing (NGS) data:
such data usually contains a high percentage of errors, balanced by an important
redundancy of the reads. But errors, ambiguities and holes exist in virtually all
genomic data. Ideally, all comparative genomics problems should take such a fact
into account. However, due to the increase in the combinatorial complexity this rep-
resents, data sanitizing is a realm dominated by heuristics and is usually deferred
as a pretreatment task.

Two such tasks are presented in Chapters 5 and 6. In Chapter 5, the MAXI-
MAL STRIP RECOVERY problem, and its variants, aim at extracting markers out of
genomic sequences of close species that do not seem to belong to synteny blocks.
We present a panel of algorithms and hardness results, which give a clear view of
the computational complexity of the problem. In particular, authorizing duplicated
genes yields — yet again — strongly intractable problems. On the other hand, with a
model based on permutations, it is possible to create efficient FPT or approximation
algorithms (see e.g. the O*(2.36" poly(n)) FPT algorithm or the 2.5-approximation).
They can get even more efficient when we bound the number of consecutive errors,

CONCLUSION AND PERSPECTIVES 189

with an O*(2¥) FPT algorithm and a 1.8-approximation for the 1-gap variant.

In Chapter 6, we finally focus on the problem of infering a total gene order
(a linearization) when only an incomplete precedence relation is known. Problems
dealing with partially ordered genomes usually aim at removing conflicts within the
input order, so that there ezxists a linearization, see e.g. scaffold reconstruction, and
the exact algorithm Opera |72]. In the MINIMUM BREAKPOINT LINEARIZATION
problem, we try to infer the optimal linearization from a conflict-free partial order.
Optimality here is measured as the breakpoint distance to a reference genome. We
propose a graph model for this problem, yielding a direct reduction to a known
variant of the FEEDBACK VERTEX SET problem and thus to several approximations
and to an FPT algorithm.

Further Perspectives

The most challenging question remains: can traditional comparative genomic
methods apply to noisy or incomplete data? As a random example, can we compute
a DCJ distance between partially ordered genomes? One possible outlook is via the
MINIMUM COMMON STRING PARTITION problem. Indeed, we have presented an
algorithm which, it seems, should allow for data with a bounded number of local
errors, or even with uncertainties in the number of repetitions in the periodic strings.
A large number of methods remain to be explored — or invented — in order to provide
algorithms, which are both precise and efficient from a theoretical point of view, and
which take into account all the facets of biological problems.

Extending the view out of solely comparative genomics, a variety of other aspects
of bioinformatics need to be investigated. An example is graph-based problems: data
such as metabolic networks or gene interactions are naturally modeled as graphs; and
one aims at extracting remarkable subgraphs, discerning patterns, etc. Graph-based
problems are a fertile ground for parameterized algorithms, since most methods like
kernelization, color-coding, etc. naturally apply to this data representation. Hence,
as a natural extension of this thesis, we propose to investigate such problems under
the light of fixed-parameter tractability theory.

Bibliography

]

2]

13l

4]
[5]

6]

|7l

18]

19]

[10]

[11]

[12]

S. B. Akers and B. Krishnamurthy. A group-theoretic model for symmetric
interconnection networks. IEEE Transactions on Computers, 38(4):555-566,
1989. Cited pp. F.20 and 48.

J. Akiyama and V. Chvatal. A short proof of the linear arboricity for cubic
graphs. The Bulletin of Liberal Arts € Sciences, Nippon Medical School, 2:1-3,
1982. Cited p. 131.

P. Alimonti and V. Kann. Hardness of approximating problems on cubic
graphs. In G. C. Bongiovanni, D. P. Bovet, and G. D. Battista, editors,
CIAC, volume 1203 of LNCS, pages 288-298. Springer, 1997. Cited pp. 124
and 133.

P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs.
Theoretical Computer Science, 237(1-2):123-134, 2000. Cited p. 82.

A. Amir, Y. Aumann, G. Benson, A. Levy, O. Lipsky, E. Porat, S. Skiena,
and U. Vishne. Pattern matching with address errors: Rearrangement dis-
tances. Journal of Computer and System Sciences, 75(6):359-370, 2009. Cited
pp. F.12 and 12.

A. Amir, Y. Aumann, P. Indyk, A. Levy, and E. Porat. Efficient computations
of /1 and /, rearrangement distances. In N. Ziviani and R. A. Baeza-Yates,
editors, SPIRE, volume 4726 of LNCS, pages 39-49. Springer, 2007. Cited
pp- F.12 and 12.

S. Angibaud, G. Fertin, I. Rusu, A. Thévenin, and S. Vialette. On the Ap-
proximability of Comparing Genomes with Duplicates. Journal of Graph Al-
gorithms and Applications, 13(1):19-53, 2009. Cited pp. F.9, F.24, 6, and 77.
S. Angibaud, G. Fertin, I. Rusu, and S. Vialette. A General Framework
for Computing Rearrangement Distances between Genomes with Duplicates.
Journal of Computational Biology, 14(4):379-393, 2007. Cited pp. F.8 and 6.
K. Appel and W. Haken. Every planar map is four colorable. Bulletin of the
American Mathematics Society, pages 82-711, 1976. Cited p. 125.

D. A. Bader, B. M. Moret, and M. Yan. A linear-time algorithm for computing
inversion distance between signed permutations with an experimental study.
Journal of Computational Biology, 8(5):483-491, 2001. Cited pp. F.8 and 6.

V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals.
In FOCS, pages 148-157. IEEE, 1993. Cited pp. F.20, 48, and 71.

V. Bafna and P. A. Pevzner. Sorting permutations by transpositions. In
Clarkson [58], pages 614-623. Cited pp. F.12, 12, and 14.

191

192
[13]
[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

26]

BIBLIOGRAPHY

V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals.
SIAM Journal on Computing, 25(2):272-289, 1996. Cited pp. F.7 and 5.

V. Bafna and P. A. Pevzner. Sorting by transpositions. SIAM Journal of
Discrete Mathematics, 11(2):224-240, 1998. Cited pp. F.8, F.12, 6, 12, and 21.

R. Bar-Yehuda, M. Halldérsson, J. Naor, H. Shachnai, and I. Shapira. Schedul-
ing split intervals. SIAM Journal on Computing, 36(1):1-15, 2006. Cited
p. 124.

M. Benoit-Gagné and S. Hamel. A new and faster method of sorting by
transpositions. In B. Ma and K. Zhang, editors, CPM, volume 4580 of LNCS,
pages 131-141. Springer, 2007. Cited pp. F.12 and 12.

A. Bergeron, J. Mixtacki, and J. Stoye. A unifying view of genome rearrange-
ments. In P. Bucher and B. M. E. Moret, editors, WABI, volume 4175 of
LNCS, pages 163-173. Springer, 2006. Cited pp. F.8 and 6.

A. Bergeron and J. Stoye. On the similarity of sets of permutations and
its applications to genome comparison. In T. Warnow and B. Zhu, editors,
COCOON, volume 2697 of LNCS, pages 68-79. Springer, 2003. Cited pp. F.7
and 5.

P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation algorithm
for sorting by reversals. In R. Mohring and R. Raman, editors, FSA, volume
2461 of LNCS, pages 200-210. Springer, 2002. Cited pp. F.20 and 48.

P. Berman and M. Karpinski. On some tighter inapproximability results (ex-
tended abstract). In J. Wiedermann, P. van Emde Boas, and M. Nielsen,
editors, ICALP, volume 1644 of LNCS, pages 200-209. Springer, 1999. Cited
pp. .20, F.25, 48, 77, 79, and 80.

T. C. Biedl, G. Kant, and M. Kaufmann. On triangulating planar graphs
under the four-connectivity constraint. Algorithmica, 19(4):427-446, 1997.
Cited pp. 125 and 126.

N. L. Biggs, E. K. Lloyd, and R. J. Wilson. Graph theory, 1756-1956. Oxford,
Clarendon Press, 1976. Cited p. 125.

G. Blin, E. Blais, D. Hermelin, P. Guillon, M. Blanchette, and N. El-Mabrouk.
Gene maps linearization using genomic rearrangement distances. Journal of
Computational Biology, 14(4):394-407, 2007. Cited pp. F.38, F.39, 8, 170,
and 171.

G. Blin, C. Chauve, G. Fertin, R. Rizzi, and S. Vialette. Comparing Genomes
with Duplications: a Computational Complexity Point of View. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 4(4):523-534,
2007. Cited pp. F.9, F.24, F.25, 6, and 77.

G. Blin, G. Fertin, and C. Chauve. The breakpoint distance for signed se-
quences. In Ist Conference on Algorithms and Computational Methods for
biochemical and Evolutionary Networks (CompBioNets’04), volume 3 of Texts
in Algorithms, pages 3-16, Recife, Brazil, 2004. King’s College London publi-
cations. Cited pp. F.8 and 6.

G. Blin, G. Fertin, F. Sikora, and S. Vialette. The Exemplar Breakpoint Dis-
tance for non-trivial genomes cannot be approximated. In S. Das and R. Ue-
hara, editors, WALCOM, volume 5431 of LNCS, pages 357-368. Springer,
2009. Cited pp. F.24 and 76.

BIBLIOGRAPHY 193

27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

37]

38

[39]

40]

D. Bongartz. Algorithmic Aspects of Some Combinatorial Problems in Bioin-
formatics. PhD thesis, RWTH Aachen University, Germany, 2006. Cited
pp- F.12 and 12.

P. Bonizzoni, G. D. Vedova, R. Dondi, G. Fertin, R. Rizzi, and S. Vialette.
Exemplar longest common subsequence. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 4(4):535-543, 2007. Cited pp. F.24
and 77.

L. Bulteau, G. Fertin, M. Jiang, and I. Rusu. Tractability and approximability
of maximal strip recovery. In R. Giancarlo and G. Manzini, editors, CPM,
volume 6661 of LNCS, pages 336-349. Springer, 2011. Cited pp. F.33, 117,
and 120.

L. Bulteau, G. Fertin, M. Jiang, and I. Rusu. Tractability and approximability
of maximal strip recovery. Theoretical Computer Science, 440-441:14-28, 2012.
Cited pp. F.33 and 117.

L. Bulteau, G. Fertin, and I. Rusu. Maximal strip recovery problem with gaps:
Hardness and approximation algorithms. In Y. Dong, D.-Z. Du, and O. H.
Ibarra, editors, ISAAC, volume 5878 of LNCS, pages 710-719. Springer, 2009.
Cited pp. F.33, 117, and 119.

L. Bulteau, G. Fertin, and I. Rusu. Revisiting the minimum breakpoint lin-
earization problem. In J. Kratochvil, A. Li, J. Fiala, and P. Kolman, editors,
TAMC, volume 6108 of LNCS, pages 163-174. Springer, 2010. Cited pp. F.37
and 169.

L. Bulteau, G. Fertin, and I. Rusu. Sorting by transpositions is difficult. In
L. Aceto, M. Henzinger, and J. Sgall, editors, ICALP (Part 1), volume 6755
of LNCS, pages 654-665. Springer, 2011. Cited pp. F.11 and 11.

L. Bulteau, G. Fertin, and I. Rusu. Pancake flipping is hard. In B. Rovan,
V. Sassone, and P. Widmayer, editors, MFCS, volume 7464 of LNCS, pages
247-258. Springer, 2012. Cited pp. F.19 and 47.

L. Bulteau, G. Fertin, and I. Rusu. Sorting by transpositions is difficult.
SIAM Journal of Discrete Mathematics, 26(3):1148-1180, 2012. Cited pp. F.11
and 11.

L. Bulteau, G. Fertin, and I. Rusu. Maximal strip recovery problem with gaps:

Hardness and approximation algorithms. Journal of Discrete Algorithms, 19:1—
22, 2013. Cited pp. F.33 and 117.

L. Bulteau, G. Fertin, and I. Rusu. Pancake flipping is hard. Journal of
Computer and System Sciences, 2013. Submitted. Cited pp. F.19 and 47.

L. Bulteau, G. Fertin, and I. Rusu. Revisiting the minimum break-
point linearization problem. Theoretical Computer Science, In Press, 2013.
d0i:10.1016/j.t¢s.2012.12.026. Cited pp. F.37, F.39, 169, 170, and 171.

L. Bulteau and M. Jiang. Inapproximability of (1, 2)-exemplar distance. In
L. G. Bleris, I. I. Mandoiu, R. Schwartz, and J. Wang, editors, ISBRA, volume
7292 of LNCS, pages 13-23. Springer, 2012. Cited pp. F.23 and 75.

L. Bulteau and M. Jiang. Inapproximability of (1,2)-exemplar distance.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
PrePrints, 2013. doi:10.1109/TCBB.2012.144. Cited pp. F.23, F.24, 75,
and 77.

194

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

BIBLIOGRAPHY

L. Bulteau and C. Komusiewicz. Minimum common string partition param-
eterized by partition size is fixed-parameter tractable. In Proceedings 21st
FEuropean Symposium on Algorithms, 2013. Submitted. Cited p. F.29.

A. Caprara. Sorting by reversals is difficult. In RECOMB, pages 75-83, 1997.
Cited pp. F.8 and 6.

X. Chen. On sorting permutations by double-cut-and-joins. In M. T. Thai and
S. Sahni, editors, COCOON, volume 6196 of LNCS, pages 439-448. Springer,
2010. Cited pp. F.8, F.26, 6, 78, and 79.

X. Chen and Y. Cui. An approximation algorithm for the minimum breakpoint
linearization problem. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 6(3):401-409, 2009. Cited pp. F.38, F.39, 170, and 171.

X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assign-
ment of orthologous genes via genome rearrangement. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 2(4):302-315, 2005. Cited
pp. F.30, F.31, 86, and 112.

Z. Chen, R. H. Fowler, B. Fu, and B. Zhu. On the inapproximability of
the exemplar conserved interval distance problem of genomes. Journal of
Combinatorial Optimization, 15(2):201-221, 2008. Cited pp. F.24 and 77.

Z. Chen, B. Fu, M. Jiang, and B. Zhu. On recovering syntenic blocks from
comparative maps. Journal of Combinatorial Optimization, 18(3):307-318,
2009. Cited pp. F.34, F.36, 118, 119, 120, 121, and 139.

Z. Chen, B. Fu, and B. Zhu. The approximability of the exemplar break-
point distance problem. In S.-W. Cheng and C. K. Poon, editors, AAIM, vol-
ume 4041 of LNCS, pages 291-302. Springer, 2006. Erratum in FAW-AATM
2012:368. Cited pp. F.24 and 77.

R. H. Chitnis, M. Cygan, M. T. Hajiaghayi, and D. Marx. Directed subset
feedback vertex set is fixed-parameter tractable. In A. Czumaj, K. Mehlhorn,
A. M. Pitts, and R. Wattenhofer, editors, ICALP (Part 1), volume 7391 of
LNCS, pages 230-241. Springer, 2012. Cited pp. F.40, 170, 177, and 186.

B. Chitturi, W. Fahle, Z. Meng, L. Morales, C. Shields, I. Sudborough, and
W. Voit. An (18/11)n upper bound for sorting by prefix reversals. Theoretical
Computer Science, 410(36):3372-3390, 2009. Cited pp. F.20 and 48.

B. Chitturi and I. H. Sudborough. Bounding prefix transposition distance for
strings and permutations. In HICSS, page 468. IEEE, 2008. Cited pp. F.12
and 12.

M. Chlebik and J. Chlebikova. Complexity of approximating bounded variants
of optimization problems. Theoretical Computer Science, 354(3):320 — 338,
2006. Cited pp. 124 and 139.

V. Choi, C. Zheng, Q. Zhu, and D. Sankoff. Algorithms for the extraction of
synteny blocks from comparative maps. In R. Giancarlo and S. Hannenhalli,
editors, WABI, volume 4645 of LNCS, pages 277-288. Springer, 2007. Cited
p. 120.

D. A. Christie. Sorting permutations by block-interchanges. Information Pro-
cessing Letters, 60(4):165-169, 1996. Cited pp. F.12 and 12.

D. A. Christie. Genome Rearrangement Problems. PhD thesis, University of
Glasgow, Scotland, 1998. Cited pp. F.12, 12, and 45.

BIBLIOGRAPHY 195

[56]

[57]

58]

[59]
[60]

[61]

62]

[63]

[64]

[65]

[66]

67]

68

[69]

[70]

71

D. A. Christie and R. W. Irving. Sorting strings by reversals and by transpo-
sitions. STIAM Journal of Discrete Mathematics, 14(2):193-206, 2001. Cited
pp- F.12 and 12.

J. Cibulka. On average and highest number of flips in pancake sorting. Theo-
retical Computer Science, 412(8-10):822-834, 2011. Cited pp. F.20 and 48.

K. L. Clarkson, editor. Proceedings of the Sizth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 22-24 January 1995. San Francisco, California.
ACM/STAM, 1995. Cited pp. 191 and 196.

D. Cohen and M. Blum. On the problem of sorting burnt pancakes. Discrete
Applied Mathematics, 61(2):105-120, 1995. Cited pp. F.20 and 48.

G. Cormode and S. Muthukrishnan. The string edit distance matching problem
with moves. In SODA, pages 667-676, 2002. Cited pp. F.12 and 12.

P. Damaschke. Minimum common string partition parameterized. In K. A.
Crandall and J. Lagergren, editors, WA BI, volume 5251 of LNC'S, pages 87-98.
Springer, 2008. Cited pp. F.9, F.30, 7, 86, and 89.

Z. Dias and J. Meidanis. Sorting by prefix transpositions. In A. H. F. Laen-
der and A. L. Oliveira, editors, SPIRFE, volume 2476 of LNCS, pages 65-76.
Springer, 2002. Cited pp. F.12 and 12.

H. Dweighter [pseudonym of J. E. Goodman|. American Mathematics Monthly,
82(1), 1975. Cited pp. F.8, F.19, 6, and 48.

I. Elias and T. Hartman. A 1.375-approximation algorithm for sorting
by transpositions. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 3(4):369-379, 2006. Cited pp. F.12 and 12.

H. Eriksson, K. Eriksson, J. Karlander, L. J. Svensson, and J. Wistlund.
Sorting a bridge hand. Discrete Mathematics, 241(1-3):289-300, 2001. Cited
pp. F.12 and 12.

G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feed-
back sets and multi-cuts in directed graphs. In E. Balas and J. Clausen, editors,
IPCO, volume 920 of LNCS, pages 14-28. Springer, 1995. Cited pp. F.40, 8§,
170, 171, 176, and 177.

J. Feng and D. Zhu. Faster algorithms for sorting by transpositions and sorting
by block interchanges. ACM Transactions on Algorithms, 3(3), 2007. Cited
pp- F.12 and 12.

G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combinatorics
of Genome Rearrangements. Computational Molecular Biology. MIT Press,
2009. Cited pp. F.12, F.31, 4, 12, and 112.

J. Fischer and S. Ginzinger. A 2-approximation algorithm for sorting by prefix
reversals. In G. S. Brodal and S. Leonardi, editors, FSA, volume 3669 of LNCS,
pages 415-425. Springer, 2005. Cited pp. F.20 and 48.

B. Fu, H. Jiang, B. Yang, and B. Zhu. Exponential and polynomial time
algorithms for the minimum common string partition problem. In W. Wang,
X. Zhu, and D.-Z. Du, editors, COCOA, volume 6831 of LNCS, pages 299-310.
Springer, 2011. Cited pp. F.30 and 86.

Z. Fu and T. Jiang. Computing the breakpoint distance between partially
ordered genomes. Journal of Bioinformatics and Computational Biology,
5(5):1087-1101, 2007. Cited pp. F.38, F.39, 8, 170, and 171.

196

[72]

73]

[74]

[75]

[76]

7]

78]

[79]
[80]

[81]

[82]

[83]

[84]

185]

[86]

87]

BIBLIOGRAPHY

S. Gao, W.-K. Sung, and N. Nagarajan. Opera: Reconstructing optimal ge-
nomic scaffolds with high-throughput paired-end sequences. Journal of Com-
putational Biology, 18(11):1681-1691, 2011. Cited p. 189.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979. Cited pp. F.7 and 5.

W. Gates and C. Papadimitriou. Bounds for sorting by prefix reversal. Discrete
Mathematics, 27(1):47-57, 1979. Cited pp. F.20 and 48.

A. Goldstein, P. Kolman, and J. Zheng. Minimum common string partition
problem: Hardness and approximations. The Electronic Journal of Combina-
torics, 12, 2005. Cited pp. F.30 and 86.

M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980. Cited p. 124.

Q.-P. Gu, S. Peng, and Q. M. Chen. Sorting permutations and its applications
in genome analysis. Lectures on Mathematics in the Life Science, 26:191-201,
1999. Cited pp. F.12 and 12.

S. A. Guyer, L. S. Heath, and J. P. Vergara. Subsequence and run heuristics
for sorting by transpositions. Technical report, Virginia State University, 1997.
Cited pp. F.12 and 12.

M. M. Halldérsson. Approximating discrete collections via local improvements.
In Clarkson [58], pages 160-169. Cited pp. 124 and 142.

R. W. Hamming. Error detecting and error correcting codes. Bell System
technical journal, 29(2):147-160, 1950. Cited pp. .7 and 5.

S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: polynomial
algorithm for sorting signed permutations by reversals. In STOC, pages 178~
189. ACM, 1995. Cited pp. F.20 and 48.

S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: poly-
nomial algorithm for sorting signed permutations by reversals. Journal of the
ACM, 46(1):1-27, 1999. Cited pp. F.25, F.28, 77, and 78.

T. Hartman and R. Shamir. A simpler and faster 1.5-approximation algorithm
for sorting by transpositions. Information and Computation, 204(2):275-290,
2006. Cited pp. F.12 and 12.

S. Heber and J. Stoye. Finding all common intervals of k£ permutations. In
A. Amir and G. M. Landau, editors, CPM, volume 2089 of LNCS, pages 207
218. Springer, 2001. Cited pp. F.7 and 5.

M. Heydari and 1. Sudborough. On the diameter of the pancake network.
Journal of Algorithms, 25(1):67-94, 1997. Cited pp. F.20 and 48.

M. H. Heydari and I. H. Sudborough. On sorting by prefix reversals and the
diameter of pancake networks. In F. Meyer auf der Heide, B. Monien, and
A. L. Rosenberg, editors, Heinz Nizdorf Symposium, volume 678 of LNCS,
pages 218-227. Springer, 1992. Cited pp. F.20 and 48.

H. Jiang, Z. Li, G. Lin, L. Wang, and B. Zhu. FExact and approximation
algorithms for the complementary maximal strip recovery problem. Journal
of Combinatorial Optimization, 23(4):493-506, 2012. Cited pp. 120 and 156.

BIBLIOGRAPHY 197

88

[89]

[90]

91

92|

193]

[94]

[95]

196]

197]

198

[99]

[100]

[101]

[102]

H. Jiang and B. Zhu. A linear kernel for the complementary maximal strip
recovery problem. In J. Kédrkkéinen and J. Stoye, editors, CPM, volume 7354
of Lecture Notes in Computer Science, pages 349-359. Springer, 2012. Cited
pp. F.36, 120, 121, and 156.

H. Jiang, B. Zhu, D. Zhu, and H. Zhu. Minimum common string partition
revisited. Journal of Combinatorial Optimization, 23:519-527, 2012. Cited
pp. F.9, F.30, 7, and 86.

H. Jiang, D. Zhu, and B. Zhu. A (1+€)-approximation algorithm for sorting
by short block-moves. Theoretical Computer Science, 439:1-8, 2012. Cited
pp- 12 and 187.

M. Jiang. Inapproximability of maximal strip recovery. In Y. Dong, D.-Z.
Du, and O. H. Ibarra, editors, ISAAC, volume 5878 of LNCS, pages 616—625.
Springer, 2009. Cited p. 126.

M. Jiang. On the parameterized complexity of some optimization problems re-
lated to multiple-interval graphs. Theoretical Computer Science, 411(49):4253~
4262, 2010. Cited pp. F.36, 120, and 121.

M. Jiang. Inapproximability of maximal strip recovery. Theoretical Computer
Science, 412(29):3759-3774, 2011. Cited pp. F.34, F.36, 119, 120, 121, 130,
139, 140, and 154.

M. Jiang. The zero exemplar distance problem. Journal of Computational
Biology, 18(9):1077-1086, 2011. Cited pp. F.24 and 76.

J. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting
by reversals, with application to genome rearrangement. Algorithmica, 13(1-
2):180-210, 1995. Cited pp. F.7 and 5.

A. Labarre. New bounds and tractable instances for the transposition dis-
tance. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics, 3(4):380-394, 2006. Cited pp. F.12 and 12.

A. Labarre. Edit distances and factorisations of even permutations. In
D. Halperin and K. Mehlhorn, editors, ESA, volume 5193 of LNCS, pages
635-646. Springer, 2008. Cited pp. F.12 and 12.

A. Labarre and J. Cibulka. Polynomial-time sortable stacks of burnt pancakes.
Theoretical Computer Science, 412(8-10):695-702, 2011. Cited pp. F.20, 48,
and 71.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. In Soviet physics doklady, volume 10, page 707, 1966. Cited pp. F.7
and 5.

G. Lin, R. Goebel, Z. Li, and .. Wang. An improved approximation algorithm
for the complementary maximal strip recovery problem. Journal of Computer
and System Sciences, 78(3):720 — 730, 2012. Cited pp. F.36, 120, and 121.

Y. C. Lin, C. L. Lu, H.-Y. Chang, and C. Y. Tang. An efficient algorithm
for sorting by block-interchanges and its application to the evolution of vibrio
species. Journal of Computational Biology, pages 102-112, 2005. Cited pp. F.8
and 6.

M. Mahajan, R. Rama, and S. Vijayakumar. On sorting by 3-bounded transpo-
sitions. Discrete Mathematics, 306(14):1569-1585, 2006. Cited pp. 12 and 187.

198
[103]
[104]

[105]

[106]

[107]

108

[109]

[110]

[111]

[112]

[113]

[114]

[115]

|116]

[117]

[118]

BIBLIOGRAPHY

G. J. Minty. On maximal independent sets of vertices in claw-free graphs.
Journal of Combinatorial Theory, Series B, 28(3):284-304, 1980. Cited p. 124.

J. Misra and D. Gries. A constructive proof of Vizing’s theorem. Information
Processing Letters, 41(3):131-133, 1992. Cited p. 134.

R. Niedermeier. Invitation to Fized-Parameter Algorithms. Number 31 in
Oxford Lecture Series in Mathematics and Its Applications. Oxford University
Press, 2006. Cited pp. F.7 and 5.

C. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43(3):425-440,
1991. Cited pp. F.7, 5, and 8.

G. Petsko. Rising in the east. Genome Biology, 11(1):102, 2010. Cited pp. F.5
and 3.

P. A. Pevzner and M. S. Waterman. Open combinatorial problems in compu-
tational molecular biology. In ISTCS, pages 158-173, 1995. Cited pp. F.11
and 12.

X.-Q. Qi. Combinatorial Algorithms of Genome Rearrangements in Bioinfor-
matics. PhD thesis, University of Shandong, China, 2006. Cited pp. F.12
and 12.

K. Qiu, H. Meijer, and S. Akl. Parallel routing and sorting on the pancake
network. In F. Dehne, F. Fiala, and W. W. Koczkodaj, editors, ICCI, volume
497 of LNCS, pages 360-371. Springer Berlin Heidelberg, 1991. Cited pp. F.20
and 48.

A. J. Radcliffe, A. D. Scott, and A. L. Wilmer. Reversals and transpositions
over finite alphabets. SIAM Journal of Discrete Mathematics, 19:224-244,
2005. Cited pp. F.12 and 12.

N. Robertson, D. P. Sanders, P. D. Seymour, and R. Thomas. Efficiently four-
coloring planar graphs. In G. L. Miller, editor, STOC, pages 571-575. ACM,
1996. Cited p. 125.

D. Sankoff. Genome rearrangement with gene families. Bioinformatics,
15(11):909-917, 1999. Cited pp. F.8, F.23, 6, and 76.

D. Sankoff and L. Haque. Power boosts for cluster tests. In A. McLysaght and
D. H. Huson, editors, Comparative Genomics, volume 3678 of LNCS, pages
121-130. Springer, 2005. Cited pp. F.24 and 77.

D. Sankoff, C. Zheng, A. Munoz, Z. Yang, Z. Adam, R. Warren, V. Choi,
and Q. Zhu. Issues in the reconstruction of gene order evolution. Journal of
Computer Science and Technology, 25(1):10-25, 2009. Cited p. 7.

D. Shapira and J. A. Storer. Edit distance with move operations. In A. Apos-
tolico and M. Takeda, editors, CPM, volume 2373 of LNCS, pages 85-98.
Springer, 2002. Cited pp. F.12 and 12.

D. Shapira and J. A. Storer. Edit distance with move operations. Journal of
Discrete Algorithms, 5(2):380-392, 2007. Cited pp. F.30 and 86.

K. M. Swenson, M. Marron, J. V. Earnest-DeYoung, and B. M. E. Moret.
Approximating the true evolutionary distance between two genomes. ACM
Journal of Experimental Algorithmics, 12, 2008. Cited pp. F.30, F.31, 86,
and 112.

BIBLIOGRAPHY 199

[119]

[120]

[121]

[122]

[123]

124]

[125]

[126]

[127]

T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals
of two permutations. Algorithmica, 26:2000, 2000. Cited pp. F.7 and 5.

L. Wang and B. Zhu. On the tractability of maximal strip recovery. In J. Chen
and S. B. Cooper, editors, TAMC, volume 5532 of LNCS, pages 400-409.
Springer, 2009. Cited pp. F.34 and 119.

L. Wang and B. Zhu. On the tractability of maximal strip recovery. Jour-
nal of Computational Biology, 17(7):907-914, 2010. Erratum in Journal of
Computational Biology, 18:129, 2011. Cited pp. F.36, 120, and 121.

S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic per-
mutations by translocation, inversion and block interchange. Bioinformatics,
21(16):3340-3346, 2005. Cited pp. F.8, F.25, F.26, F.28, 6, 77, and 78.

I. Yap, D. Schneider, J. Kleinberg, D. Matthews, S. Cartinhourb, and S. Mc-
Couch. A graph-theoretic approach to comparing and integrating genetic,
physical and sequence-based maps. Genetics, 165(4):2235-2247, 2003. Cited
pp- F.38 and 171.

C. Zheng, A. Lenert, and D. Sankoff. Reversal distance for partially ordered
genomes. In ISMB (Supplement of Bioinformatics), pages 502-508, 2005.
Cited pp. F.38 and 170.

C. Zheng and D. Sankoff. Genome rearrangements with partially ordered
chromosomes. In L. Wang, editor, COCOON, volume 3595 of LNCS, pages
52-62. Springer, 2005. Cited pp. F.38, F.39, 8, 170, and 171.

C. Zheng, Q. Zhu, and D. Sankoff. Removing noise and ambiguities from com-
parative maps in rearrangement analysis. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 4(4):515-522, 2007. Cited pp. F.34, 7,
118, 119, 120, and 161.

B. Zhu. Efficient exact and approximate algorithms for the complement of
maximal strip recovery. In B. Chen, editor, AAIM, volume 6124 of LNCS,
pages 325-333. Springer, 2010. Cited p. 120.

['universite

L u nantes
nam ..

POLE DE RECHERCHE ET D'ENSEIGNEMENT SUPERIEUR

L1

UNIVERSITE DE NANTES

T hese de Doctorat

Laurent Bulteau

Algorithmic Aspects of Genome Rearrangements

Ordre et désordre dans |'algorithmique du génome

Résumé

Dans cette thése, nous explorons la complexité
algorithmique de plusieurs problémes issus de la
génomique comparative, et nous apportons des solutions
a certains de ces problémes sous la forme d’algorithmes
d’'approximation ou paramétrés.

Le dénominateur commun aux problémes soulevés est la
mise en commun d'informations génomiques provenant
de plusieurs espéces dans le but de tirer des conclusions
pertinentes pour I'étude de ces espéces. Les problémes de
tri par transpositions et de tri par inversions préfixes
permettent de retrouver ['histoire évolutive des deux
espéces. Les problémes de distance exemplaire et de plus
petite partition commune ont pour but de comparer deux
génomes dans les cas algorithmiquement difficiles ou
chaque géne apparait avec plusieurs copies
indistinguables dans le génome. Enfin, les problémes
d’extraction de bandes et de linéarisation visent a préciser
ou corriger l'information génomique afin qu’elle soit plus
pertinente pour des traitements ultérieurs.

Les résultats principaux que nous présentons sont la
NP-difficulté des problémes de tri (par transpositions et
par inversions préfixes) dont la complexité est restée
longtemps une question ouverte; une étude compléte de
la complexité du calcul des distances exemplaires; un
algorithme paramétré pour le calcul de plus petite
partition commune (avec un unique paramétre étant la
taille de la partition); une étude a la fois large et
approfondie des problémes d’extraction de bandes et
enfin une nouvelle structure de données permettant de
résoudre plus efficacement le probléme de linéarisation.

Mots clés
Génomique comparative, Théorie de la complexité,
Algorithmes paramétrés, Approximabilité.

Abstract

In this thesis, we explore the combinatorial complexity of
several problems stemming from comparative genomics,
and we provide solutions for some of these problems in
the form of parameterized or approximation algorithms.

In the problems we consider, we bring together the
genomic information of several species and aim at
drawing relevant conclusions for the study of these
species. Sorting a genome either by transpositions or by
prefix reversals leads to the reconstruction of the
evolution history regarding the genomes of two species.
Exemplar distances and common partition aim at
comparing genomes in the algorithmically complex case
where duplicated genes are present. Finally, the strip
recovery and linearization problems aim at correcting or
completing genomic information so that it can be used
for further analysis.

The main results we expose are the NP-hardness of the
sorting problems (both by transpositions and by prefix
reversals), of which the computational complexity has
been a long-standing open question; an exhaustive study
of the computational complexity of exemplar distances; a
parameterized algorithm for the minimum common string
partition problem; a deep and wide study of strip recovery
problems; and finally a new graph structure allowing for a
more efficient solving of the linearization problem.

Key Words
Comparative genomics, Computational complexity,
Parameterized algorithms, Approximability.

	List of Figures
	List of Algorithms
	Synthèse – French Abstract
	Remerciements
	Introduction
	Tri par transpositions
	Présentation du problème
	État de l'art
	Notre contribution
	Méthode
	Conclusion

	Tri par inversions préfixes
	Présentation du problème
	État de l'art
	Notre contribution
	Conclusion

	Distances exemplaires
	Présentation du problème
	État de l'art
	Distance d'inversions
	Distance de DCJ
	Distances d'édition
	Conclusion

	Plus petite partition commune
	Présentation du problème
	État de l'art
	Notre contribution
	Perspectives

	Extraction de bandes maximales
	Présentation des problème MSR et CMSR
	Contrainte de gap
	Résultats

	Linéarisation avec distance de cassure minimale
	Présentation du problème
	État de l'art
	Notre contribution

	Conclusion et perspectives

	Manuscript
	Introduction

	I Distances Between Permutations
	Sorting by Transpositions
	Introduction
	Preliminaries
	Transpositions and Breakpoints
	Transposition Distance

	3-Deletion and Transposition Operations
	3DT-instances
	3DT-steps
	Equivalence with the Transposition Distance
	Parallel with the Cycle Graph

	3DT-collapsibility Is NP-Hard to Decide
	Block Structure
	Basic Blocks
	Construction
	The Main Result

	Sorting by Transpositions Is NP-Hard
	Conclusion

	Sorting by Prefix Reversals
	Introduction
	Notations
	Low-level Gadgets
	Dock
	Lock
	Hook
	Fork

	High-level Gadgets
	Literals
	Variable
	Clause

	Reduction from 3-SAT
	Variable Assignment
	Going through Clauses
	Beyond Clauses

	Conclusion

	II Distances Between Strings
	Exemplar Distances
	Introduction
	Signed Reversal and DCJ Distances
	Edit Distances
	Conclusion

	Minimum Common String Partition
	Introduction
	Fundamental Definitions and Algorithm Outline
	Definitions
	An Outline of the Algorithm

	Splitting of Fragile Pieces
	Putting Frames Next to Fixed Pieces
	Frame Rules for Repetitive Pieces
	Conclusion

	III Dealing with Imprecise Genomic Data
	Maximal Strip Recovery
	Introduction
	Preliminaries
	Notations and Definitions
	Graph Theory Background

	Hardness Results
	Hardness Increases with the Gap
	1-gap-MSR Is NP-hard
	delta-gap-MSR Is APX-hard for delta >= 2
	delta-gap-MSR-DU Is APX-hard, for All delta

	Polynomial-Time Algorithms
	Reduction to Maximum Weight Independent Set
	Approximation Algorithm for delta-gap-MSR-d
	Approximation Algorithm for 1-gap-MSR-2
	Approximation Algorithm for 1-gap-CMSR-2
	Approximation Algorithm for 0-gap-MSR-DU
	Approximation Algorithm for delta-gap-CMSR-d

	Fixed-Parameter Tractable Algorithms
	FPT Algorithm for delta-gap-MSR-d
	FPT Algorithm for CMSR-d and delta-gap-CMSR-d
	FPT Algorithm for 1-gap-CMSR-d

	Conclusion

	Minimum Breakpoint Linearization
	Introduction
	Defining a New Adjacency-Order Graph G_Pi
	Cutting All Conflict-Cycles in G_Pi Is Enough
	Algorithms Based on Subset-FVS
	An m²+4m-4-approximation Algorithm
	Definitions
	Algorithm
	Approximation Ratio Analysis

	Conclusion

	Conclusion and Perspectives
	Bibliography

