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1
Introduction

1.1 Background

The rapid increase in the digital image collections gives more and more information

to people. At the mean time, the difficulty for an efficient use of this information is also

growing, unless we can browse, search and retrieve it easily: that brings image retrieval

technology. The purpose of image retrieval is to provide users with an easy access to

images of interest. Image retrieval has become an active research domain since 1970s [1].

Two different angles could be found in this domain: text-based and content-based.

Text-based is the way to index images with text keywords, which was a major direction

of early work on image retrieval, and comprehensive reviews are presented in [2,3]. A pop-

ular framework of text-based image retrieval is to first annotate images by manual effort:

captions or embedded text, and then keyword or full text searching can be used to perform

retrieval. Text-based technique is an accurate and effective method for finding annotated

images. These images are organized by category, such as animals, natural scenes, people

and so on. All indexing entries of image are done by human indexers who indicate the

important objects in an image. Since automatically generating descriptive texts for a wide

range of images is impossible, there are three major difficulties for text-based technologies:

1) huge amount of labor required in manual image annotation with “information explo-

sion”; 2) different people may annotate differently the same image contents, this results

from the rich content in the image and the subjectivity of manual annotation and may lead

to unrecoverable mismatches in later retrieval processes; 3) annotations could be written

in different languages.

To overcome these three difficulties, content-based image retrieval (CBIR) has been

presented in the early 1990s: a new framework of image retrieval is proposed, in which
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images could be indexed by their own visual contents. This research field is a diverse field,

in which researchers from various disciplines, such as computer science, electrical engineer-

ing, mathematics, information sciences, physics, business, humanities, biology, medicine

propose various approaches [4]. With these various researches and various approaches,

CBIR can be applied in very diverse fields, including but not limited to:

• web search [5–7]

• mobile application [8, 9]

• arts and museums [10,11]

• medical imaging [12,13]

• geoscience [14,15]

• business (trademark) [16–19]

• intelligent transportation [20]

• criminal prevention [21,22]

With this variety of applications, the core or the key problem of CBIR is the same:

in order to find images that are visually similar to a given query, it should have both a

proper representation of the images by compacting visual features and a measure that can

determine how similar or dissimilar the different images are from the query. Comprehensive

reviews could be found in [1,23–27]. The general diagram of CBIR is shown in Figure 1.1.

Figure 1.1: Diagram of Content-based image retrieval

Feature extraction is the basis of CBIR, which is a process of transferring the input

image into the set of features (also named feature vectors). Feature vector is a reduced

representation of input image. If feature vectors are chosen appropriately, they could pro-

vide enough information of the input image in order to perform the retrieval task by this

reduced representation instead of the original input image. There are two main categories

of feature vectors used for image retrieval [28]: intensity-based (color and texture) and
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geometry-based (shape). The representation of feature vectors is called feature descriptor.

A feature descriptor can be either global or local. A global descriptor uses the visual

features of the whole image, whereas a local descriptor uses the visual features of regions

or objects. To obtain local visual descriptors, an image is often firstly divided into parts.

Using a partition is the simplest way, which cuts the image into tiles of equal size and

shape, but a simple partition does not generate perceptually meaningful regions. A bet-

ter method is to divide the image into homogenous regions according to some criterion

using region segmentation algorithms that have been extensively investigated in computer

vision. A more complex way of dividing an image is to perform a complete object segmen-

tation to obtain semantically meaningful objects (like ball, car, horse). However, people

tend to use high-level concepts to describe images, but features extracted by current com-

puter vision technologies are mostly low-level features (shape, color or texture). Generally

speaking, low-level features do not have a direct link to the high-level concepts. To reduce

this semantic gap, some off-line and on-line processing are needed: supervised learning,

unsupervised learning, a powerful and user-friendly intelligent query interface, relevance

feedback technology and so on. Comprehensive reviews on reducing semantic gap can be

found in [25].

Once the feature extraction is done, “how to use them for measuring the similarity

between images” should be considered. The technologies can be divided into region-based

similarity, global similarity, or a combination of both [26]. In each method, if features are

treated as vectors, different kinds of distance in Euclidean or geodesic space are used; oth-

erwise, if they are treated as non-vector representation, probabilistic density, for example,

information divergence measures are often used.

1.2 Overview of the thesis

This thesis focuses on intensity-based image retrieval. Although semantic gap between

low-level features and high-level concepts is still a key problem in CBIR, for some appli-

cations, visual similarity may in fact be more critical than semantic similarity [26]. The

extraction of color and texture features is still a difficult problem and the performance of

existing approaches cannot meet requirements, especially when applied on different kinds

of databases. Recent reviews on color and texture retrieval can be found in [29–31].

Feature extraction is the most important step in CBIR. The scope of the thesis is
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trying to find better approaches that can extract color and texture features directly from

transform domains and use the combination of both to perform retrieval task. Correspond-

ing work is meaningful as majority of images are stored in compressed format and most

of compression technologies adopt different kinds of transforms to achieve compression.

Traditional approaches of indexing compressed images is to decode the images to the pixel

domain firstly and to adopt the approaches of image retrieval in which features are ex-

tracted from pixel domain or other kinds of transform domain to extract features instead

of extracting features from transforms adopted for compression. For example, perform re-

trieval task on JPEG images by extracting features from wavelet transform domain, or on

JPEG2000 images by constructing features descriptors from Dual-tree Complex Wavelet

Transform coefficients. In our approaches, features are constructed directly in the trans-

form domain which is the same as that is used for compression. This framework preserves

advantages of reduced time consuming and low computational load.

1.3 Road map

The contents of the thesis are structured as follows: the fundamental concepts of

CBIR and some theories used in our approaches are introduced in Chapter 2. Approaches

in Discrete Cosine Transform domain aiming on JPEG compressed images are presented

in Chapter 3 in which one improved method based on an existing approach and two new

approaches are proposed. Approaches in Discrete Wavelet domains targeted for JPEG2000

compressed images are detailed in Chapter 4, in which two new approaches are proposed.

Finally, conclusion and perspective is given in Chapter 5.



2
Fundamental concepts

In this chapter, the fundamental concepts concerning our approaches for CBIR in

transform domain are presented:

• Applied transforms: Discrete Cosine Transform (DCT), Discrete Wavelet Transform

(DWT): from the coefficients of these two transforms, feature vectors are constructed.

• Feature descriptor: histogram is chosen as feature descriptor of images; data clus-

tering (K-means algorithm) and sparse representation that are used for generating

histograms

• Similarity measurements concerning measure the similarity between histograms

• Performance evaluation for CBIR.

2.1 Discrete Cosine Transform

In the last decades, Discrete Cosine Transform (DCT) has been widely adopted by

video and image coding standards, for example, JPEG, MPEG and etc. Generally, images

are decomposed into blocks and on which transform is performed. The transform converts

spatial variations into frequency variations and the original block can be reconstructed by

applying the inverse DCT. The advantage of doing this is that many of the coefficients,

usually the higher frequency components can be strongly quantized and even truncated to

zero. This will lead to compression efficiency in the coding stage.

In the set of coefficients belonging to a block, each coefficient is independent of each

other. It is possible to obtain a reconstruction of the block of pixels while using only

some parts of the coefficients. So these coefficients correspond to kind of synthesis of the

contents of the block and can be used as features. Moreover, for the coefficients belonging

to the kept part of coefficients used for reconstruction, their values can be simplified by
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quantization. So these coefficients correspond to kind of synthesis of the contents of the

block and can be used as features.

2.1.1 One-Dimensional DCT

The general definition for a one-dimensional DCT of a length N data is

C(u) = α(u)
N−1
∑

x=0

f(x) cos[
π(2x + 1)u

2N
] (2.1)

for u = 0, 1, 2, . . . , N − 1. And the inverse transformation is defined as:

f(x) =
N−1
∑

u=0

α(u)C(u) cos[
π(2x + 1)u

2N
] (2.2)

with α(u) defined as:

α(u) =

⎧

⎪

⎨

⎪

⎩

√

1
N for u = 0

√

2
N for u �= 0

(2.3)

It is clear from Equation 2.1 that for u = 0,

C(u = 0) =

√

1
N

N−1
∑

x=0

f(x) (2.4)

Thus the first transform coefficient is the average value of the sample sequence. In liter-

ature, this value is referred to as the DC coefficient. All other transform coefficients are

called the AC coefficients.

Let’s fix N = 8, and rewrite Equation 2.1 in the form of matrix product, we can get:

C = BF (2.5)

where C = [C(0), C(1), . . . , C(7)]T , F = [f(0), f(1), . . . , f(7)]T , and

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B0

B1

. . .

B7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α(0) α(0) · · · α(0)

α(1) cos[ π
16 ] α(1) cos[3π

16 ] · · · α(1) cos[15π
16 ]

...
...

. . .
...

α(7) cos[7π
16 ] α(7) cos[21π

16 ] · · · α(7) cos[135π
16 ]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.6)

Each row of B can be seen as a basis function Bu(x), x = (0, 1, . . . , 7), and the figures
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of these functions are shown in Figure 2.1. As we can see, the top-left waveform (u = 0)

is simply a constant, whereas other waveforms (u = 1, 2, . . . , 7) show the behavior at

progressively higher frequencies [32]. These waveforms are called cosine basis function,

which are orthogonal and independent [33]. In accordance with our previous description,

DC coefficient C(0) is the average value of F.

1 2 3 4 5 6 7 8
0

0.2

0.4
u=0

1 2 3 4 5 6 7 8
−0.5

0

0.5
u=1

1 2 3 4 5 6 7 8
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0

0.5
u=2

1 2 3 4 5 6 7 8
−0.5

0

0.5
u=3
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0

0.5
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0

0.5
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0

0.5
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−0.5

0

0.5
u=7

Figure 2.1: Basis functions of 1-D DCT (N=8)

2.1.2 Two-Dimensional DCT

Images are seen as two-dimensional (2-D) discrete signals, so one-dimensional DCT

should be extended to a two-dimensional space when it is applied on images. The 2-D

DCT for a N × M block is given by:

C(u, v) = α(u)α(v)
N−1
∑

x=0

M−1
∑

y=0

f(x, y) cos[
π(2x + 1)u

2N
] cos[

π(2y + 1)v
2M

] (2.7)
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for u = 0, 1, 2, . . . , N − 1, v = 0, 1, 2, . . . , M − 1, and the inverse transform is defined as:

f(x, y) =
N−1
∑

u=0

M−1
∑

v=0

α(u)α(v)C(u, v) cos[
π(2x + 1)u

2N
] cos[

π(2y + 1)v
2M

] (2.8)

for x = 0, 1, 2, . . . , N − 1, y = 0, 1, 2, . . . , M − 1, and α(o), o ∈ {u, v} is defined as:

α(o) =

⎧

⎪

⎨

⎪

⎩

√

1
N for o = 0

√

2
N for o �= 0

(2.9)

In Equation 2.7,

B(u, v) = α(u)α(v) cos[
π(2x + 1)u

2N
] cos[

π(2y + 1)v
2M

] (2.10)

are the basis functions of 2-D DCT. These basis functions can be generated by multiplying

the horizontally oriented set of cosine basis functions with vertically oriented set of cosine

basis functions:

B(u, v) = BuBT
v (2.11)

With these basis functions, the inverse transform of DCT (Equation 2.8) can be rewrit-

ten as:

f(x, y) =
N−1
∑

u=0

M−1
∑

v=0

C(u, v)B(u, v) (2.12)

From this equation, explanations on why some coefficients could be used to construct

descriptor of the image can be found: we can see that image f(x, y) can be seen as a

weighted sum of basis functions B(u, v), with the C(u, v) as weights. That’s to say each

coefficient gives the weight of a kind of structural patterns corresponding to a basis function

used on reconstructing the contents of the pixels blocks. This opens the interest of DCT

coefficients for image retrieval.

The basis functions for N = M = 8 are shown in Figure 2.2. For purpose of illustration,

it is plotted as a grey scale image: the smaller the value is, the darker it is plotted; the larger

the value is, the lighter it is plotted. It can be noted that the basis functions of 2-D DCT

exhibit a progressive increase in frequency both in the vertical and horizontal direction:

horizontal frequencies increase from left to right, and vertical frequencies increase from top

to bottom. Similar with 1-D DCT, DC coefficient at the upper left is the average value of

the block and the AC coefficients contain the progressive increase frequency information

both in the vertical and horizontal direction. From aforementioned analysis, coefficients
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Figure 2.2: Basis functions of two dimensional DCT (N=M=8)

C(0, v), v = (1, 2, . . . , 7) will reflect the horizontal information of the image, coefficients

C(u, 0), u = (1, 2, . . . , 7) will reflect the vertical information and coefficients C(u, v), u =

v = (1, 2, . . . , 7) will reflect the diagonal information.

In Figure 2.3(a), the original image of “Saturn” is shown, and in Figure 2.3(b), the

coefficients of DCT applied on the whole images are plotted. As the “Saturn” image has

“stronger” information in diagonal direction than in horizontal and vertical directions,

there is strong energies in diagonal direction than in horizontal and vertical directions.

Figure 2.3(c) and Figure 2.3(d) give the comparison of coefficients between 4 × 4 and 8× 8

block DCT applied on image.

The 4 × 4 block DCT transform are not used in JPEG compression standard because

their efficiency is lower than the one with 8 × 8 block, but it can be observed that the

coefficients of 4 × 4 block DCT give more perceptual information than that of 8 × 8 block

DCT. And our objective is to extract descriptors of the image contents in the compressed

domain, so we finally choose the coefficients of 4 × 4 block DCT to construct the fea-

ture vectors in the approaches aimed on DCT transformed images. We will show that
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(a) Saturn (b) DCT of Saturn

(c) 4 × 4 block DCT of Saturn (d) 8 × 8 block DCT of Saturn

Figure 2.3: DCT of Saturn

coefficients of 4 × 4 block DCT can be extracted directly from coefficients of 8 × 8 DCT

block.

2.1.3 From 8 × 8 DCT to 4 × 4 DCT

As our proposals are based on the coefficients of 4 × 4 block DCT, but 8 × 8 block is

adopted in JPEG compression standard, we will propose the way of extracting 4 × 4 block

DCT coefficients directly from 8 × 8 block DCT coefficients in this section, inspired from

the proposal for converting 8 × 8 DCT to 4 × 4 Integer-transform [34].

The problem is defined as having an 8×8 DCT block D transformed from image block

d, it could be converted to four 4 × 4 blocks Dij that satisfies:

Dij = T4dijT T
4 (2.13)

where T4 is 4-point DCT matrix, dij are four sub-blocks of d in size of 4 × 4 in the order
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of left to right and up to bottom, i, j = {1, 2}.

As every 4 × 4 image block can be derived from 8 × 8 image block through a pair of

matrix multiplication:

dij = eideT
j (2.14)

where e1 and e2 are 4 × 8 matrices that are defined as the upper and lower half of an 8 × 8

identity matrix respectively.

And the image block d can be reconstructed using 8 × 8 inverse DCT:

d = T T
8 DT8 (2.15)

where T8 is 8-point 1-D DCT matrix.

So substituting Equation 2.15 into Equation 2.14 and then into Equation 2.13, we

could get:

Dij = T4eiT
T
8 DT8eT

j T T
4 (2.16)

let

Ei = T4eiT
T
8 (2.17)

we have

Dij = EiDET
j (2.18)

According to definition of 1-D DCT described in Equation 2.1, the N -point 1-D DCT

matrix TN is defined as:

t1j =

√

1
N

j = (1, 2, . . . , N)

tij =

√

2
N

cos
((2j − 1)(i − 1)

2N

)

i = (2, . . . , N), j = (1, 2, . . . , N) (2.19)

They could be written in the matrix form:

T4 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0.5 0.5 0.5 0.5

0.4904 0.4157 0.2778 0.0975

0.4619 0.1913 −0.1913 −0.4619

0.4157 −0.0975 −0.4904 −0.2778

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(2.20)
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T8 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536

0.4904 0.4157 0.2778 0.0975 −0.0975 −0.2778 −0.4157 −0.4904

0.4619 0.1913 −0.1913 −0.4619 −0.4619 −0.1913 0.1913 0.4619

0.4157 −0.0975 −0.4904 −0.2778 0.2778 0.4904 0.0975 −0.4157

0.3536 −0.3536 −0.3536 0.3536 0.3536 −0.3536 −0.3536 0.3536

0.2778 −0.4904 0.0975 0.4157 −0.4157 −0.0975 0.4904 −0.2778

0.1913 −0.4619 0.4619 −0.1913 −0.1913 0.4619 −0.4619 0.1913

0.0975 −0.2778 0.4157 −0.4904 0.4904 −0.4157 0.2778 −0.0975

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.21)

So

E1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0.7071 0.6407 0 −0.2250 0 0.1503 0 −0.1274

0.4531 0.5 0.2079 0 −0.0373 0 0.0114 0

0 0.2079 0.5 0.3955 0 −0.1762 0 0.1389

−0.1591 0 0.3955 0.5 0.2566 0 −0.0488 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(2.22)

E2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0.7071 −0.6407 0 0.2250 0 −0.1503 0 0.1274

0.4531 −0.3266 −0.2079 0.3266 −0.0373 −0.1353 −0.0114 0.1353

0 0.2079 −0.5000 0.3955 0 −0.1762 0 0.1389

−0.1591 0.3266 −0.3955 0.1353 0.2566 −0.3266 0.0488 0.1353

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(2.23)

As the number of non-zero entries in E1 and E2 are smaller than that of in T8 and

T T
8 , the complexity for calculating Equation 2.18 is lower than calculating Equation 2.15

and this complexity could be further reduced by factorization of DCT transformation

matrix [34]. From this point of view, our proposals have lower complexities than the

methods that retrieve JPEG images in pixel domain or the methods that retrieve JPEG

images in wavelet domain or other transform domains: for executing those methods, they

should use Equation 2.15 to decompress images firstly to get the datas for constructing

feature vector and for executing our proposals, we can get the datas for constructing

feature vectors by Equation 2.18.

In next section, the transform used in JPEG2000 will be introduced and analyzed in

the aspect of feature representation.

2.2 Discrete Wavelet Transform

Wavelets in a certain sense ideally embody the idea of locality by resorting to localized

bases, which are organized according to different scales or resolutions [35] [36]. The wavelet

coefficients of a generic piecewise smooth image are mostly negligible except for those along
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important visual cues such as jumps or edges. Thus wavelets are efficient tools for adaptive

image analysis and data compression [37].

Wavelet transform decomposes images into component waves of varying spatial exten-

sions, called wavelets. These wavelets are localized variations of detail in an image. They

can be used for a wide variety of fundamental signal processing tasks, such as compres-

sion, removing noise, or extracting features from images. The heart of wavelet analysis is

multiresolution analysis that is the decomposition of a image into subimages of different

resolution levels. [38].

With different wavelets, different kinds of wavelet transforms can be defined. In this

section, we start from Haar wavelet, which is the simplest type of wavelet and it is related

to Haar transform which serves as a prototype for all other wavelet transforms. Moreover

Haar transform coefficients expresses direct link between coefficients and pixels. It uses

simple coefficients for performing local analysis. Knowing well the Haar transform in

details will make it easy to understand more complicated wavelet transforms.

Here we address the wavelet transform with discrete signals, which is defined as follows:

f = (f1, f2, . . . , fN ) (2.24)

where N is a positive integer referred as the length of f .

The scalar product of two discrete signals f = (f1, f2, . . . , fN ) and g = (g1, g2, . . . , gN )

is defined as:

f · g = f1g1 + f2g2 + · · · + fNgN (2.25)

2.2.1 Haar wavelets

The Haar transform can decompose a discrete signal into two subsignals of half length.

One subsignal is a running average or trend and the other one is a running difference or

fluctuation.

The first trend a1 = (a1, a2, · · · , aN/2), for the signal f is computed by taking a running

average in the following way.

am =
f2m−1 + f2m√

2
(2.26)

for m = 1, 2, 3, · · · , N/2.
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The first fluctuation d1 = (d1, d2, · · · , dN/2) is defined as:

dm =
f2m−1 − f2m√

2
(2.27)

for m = 1, 2, 3, · · · , N/2.

The Haar wavelet transform can be performed on several levels, with the previous

definitions first trend and first fluctuation, the first level of Haar wavelet transform is

defined as a mapping H1:

f
H1−→ (a1 | d1) (2.28)

which maps a discrete signal f to its first trend a1 and its first fluctuation d1.

If the 1-level Haar wavelets are defined as

W1
1 = ( 1√

2
−1√

2
0 0 . . . . . . . . . . . . 0)

W1
2 = (0 0 1√

2
−1√

2
0 . . . . . . . . . 0)

W1
3 = (0 0 0 0 1√

2
−1√

2
0 . . . 0)

...

W1
N/2 = (0 0 . . . . . . . . . . . . . . . 1√

2
−1√

2
)

(2.29)

and 1-level Haar scaling signals are defined as

V1
1 = ( 1√

2
1√
2

0 0 . . . . . . . . . . . . 0)

V1
2 = (0 0 1√

2
1√
2

0 . . . . . . . . . 0)

V1
3 = (0 0 0 0 1√

2
1√
2

0 . . . 0)
...

V1
N/2 = (0 0 . . . . . . . . . . . . . . . 1√

2
1√
2
)

(2.30)

Then the fluctuation subsignals d1 = (d1, d2, · · · , dN/2) could be defined as scalar

products with the 1-level Haar wavelets:

dm = f · W1
m (2.31)

for m = 1, 2, . . . , N/2.

And the first trend subsignals a1 = (a1, a2, · · · , aN/2) could be expressed as scalar
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products with 1-level Haar scaling signals:

am = f · V1
m (2.32)

for m = 1, 2, . . . , N/2.

The ideas discussed above could extend to every level. The 2-level scaling and wavelets

are defined as follows:

V1
1 = ( 1√

2
1√
2

1√
2

1√
2

0 0 . . . . . . . . . . . . 0)

V1
2 = (0 0 0 0 1√

2
1√
2

1√
2

1√
2

0 . . . 0)
...

V1
N/4 = (0 0 . . . . . . . . . . . . . . . 1√

2
1√
2

1√
2

1√
2
)

(2.33)

W1
1 = ( 1√

2
1√
2

−1√
2

−1√
2

0 0 . . . . . . . . . . . . 0)

W1
2 = (0 0 0 0 1√

2
1√
2

−1√
2

−1√
2

0 . . . 0)
...

W1
N/4 = (0 0 . . . . . . . . . . . . . . . 1√

2
1√
2

−1√
2

−1√
2
)

(2.34)

So the 2-level trend and fluctuation are defined as follows:

a2 = (f · V2
1, f · V2

2, . . . , f · V2
N/4) (2.35)

d2 = (f · W2
1, f · W2

2, . . . , f · W2
N/4) (2.36)

and so on for following levels.

With different definitions of scaling signals and wavelets, several wavelet transform can

be got, for example, Cohen-Daubechies-Feauveau 9/7 (CDF 9/7) wavelet [39].

2.2.2 CDF 9/7 Wavelets

CDF 9/7 is an important biorthogonal wavelet transform defined in the same way

as the Haar wavelet transform by computing running averages and difference via scalar

products with scaling signals and wavelets. It is called biorthogonal for two reasons: (1) the

CDF 9/7 wavelet transform is not energy preserving (2) one set of basis signals is used for

calculating transform values while a second set of basis signals is used for multiresolution
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analysis of a signal, and these two bases are related by biorthogonality conditions.

The scaling coefficients and wavelet coefficients used in CDF 9/7 wavelet transforms

are defined as:

α1 = 0.0378284554956993 β1 = 0.0645388826835489

α2 = −0.0238494650131592 β2 = −0.0406894176455255

α3 = −0.110624404085811 β3 = −0.418092272881996

α4 = 0.377402855512633 β4 = 0.788485616984644

α5 = 0.852698678836979 β5 = −0.418092272881996

α6 = 0.377402855512633 β6 = −0.0406894176455255

α7 = −0.110624404085811 β7 = 0.0645388826835489

α8 = −0.0238494650131592

α9 = 0.0378284554956993 (2.37)

Using these numbers, the typical scaling signals are:

V1
k = (0, . . . , 0, α1, α2, α3, α4, α5, α6, α7, α8, α9, 0, . . . , 0) (2.38)

with V1
k+1 a translation by two time-units of V1

k.

Likewise, the typical analysis wavelet is

W1
k = (0, . . . , 0, β1, β2, β3, β4, β5, β6, β7, 0, . . . , 0) (2.39)

with W1
k+1 a translation by two time-units of W1

k.

A major strength of the CDF 9/7 system is that whenever the values of a signal

are closely approximated by either a constant sequence, a linear sequence, a quadratic

sequence , or a cubic sequence, over the support of a CDF 9/7 analyzing wavelet, then

the fluctuation value produced by the scalar product of that wavelet with the signal will

closely approximate 0. Furthermore, the trend values at any given level are often close

matches of an analog signal, this property makes the interpretation of trend values easily,

especially in image processing [40].
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2.2.3 Two-dimensional wavelets

Until now we have talked about wavelet on one-dimensional signals, so we will provide

a basic summary of two-dimensional wavelet transform for image application.

A discrete image f is an array of M rows and N columns of real numbers:

f =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f1,1 f2,1 · · · fN,1

f1,2 f2,2 · · · fN,2

...
...

. . .
...

f1,M f2,M · · · fN,M

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.40)

It is often helpful to view an image in one of two other ways. First, as a single column

consisting of M signals having length N

f =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f1

f2

...

fM

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.41)

with the rows being the signals:

fm = (f1,m, f2,m, . . . , fN,m) (2.42)

where m = 1, . . . , M .

Second, as a single row consisting of N signals of length M, written as columns,

f = (f1, f2, . . . , fN ) (2.43)

with the columns being the signals

fn =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

fn,1

fn,2

...

fn,M

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.44)

n = 1, . . . , N .

A 2-D wavelet transform of an image f on 1-level can be defined, using any of the 1-D
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wavelet transforms, by performing the following two steps.

Step 1. Perform a 1-level, 1-D wavelet transform, on each row of f , thereby producing

a new image.

Step 2. On the image obtained from step 1, perform the same 1-D wavelet transform

on each of its columns.

It is not difficult to show that Steps 1 and 2 could be done in reverse order and the

result would be the same. A 1-level wavelet transform of an image f can be symbolized as

follow:

f �→

⎛

⎜

⎝

a1 h1

v1 d1

⎞

⎟

⎠
(2.45)

where the subimages h1, d1, a1 and v1 have M/2 rows and N/2 columns.

The subimage a1 is created by computing trends along rows of f followed by computing

trends along columns; so it is an average, lower resolution version of the image f . The h1

subimages is created by computing trends along rows of the image f followed by computing

fluctuations along columns. Consequently, wherever there are horizontal edges in an image,

the fluctuations along columns are able to detect these edges. The subimage v1 is similar

to h1, except that the roles of horizontal and vertical are reversed. The subimage d1 tends

to emphasize diagonal features, because it is created from fluctuations along both rows and

columns. For example, in Figure 2.4(a), we show the original image “cameraman”, and in

Figure 2.4(b) its 1-level CDF 9/7 transform. The a1 subimage appears in the higher left

quadrant of CDF 9/7 transform and it is clearly a lower resolution version of the original

cameraman image. The h1 subimage appears in the higher right quadrant in which the

horizontal edges can be seen clearly. The subimage v1 is shown in the lower left quadrant

in which horizontal edges of cameraman is suppressed and vertical edges are emphasized.

The subimage d1 appears in the lower right quadrant of the image in which the diagonal

details are emphasized.

It should be noted that the basic principles discussed previously for 1-D wavelet analysis

still apply here in the 2-D setting. For example, the fact that fluctuation values are

generally much smaller than trend values is still true. In fact, in order to make the values

for h1, d1 and v1 visible, they are displayed on a logarithmic intensity scale, while the

values for the trend subimages a1 are displayed using an ordinary, linear scale.

As in 1-D, a K-level transform is defined by performing a 1-level transform on the

previous trend aK−1 while the fluctuations subimages of all levels hk, dk and vk, k =
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(a) Cameraman (b) 1-level

(c) 2-level (d) 3-level

Figure 2.4: 2-D wavelet transform of cameraman

(1, 2, . . . , K) remain unchanged. For example, a 2-level wavelet transform is executed by

computing a 1-level transform of the trend subimage a1 as follows:

a1 �→

⎛

⎜

⎝

a2 h2

v2 d2

⎞

⎟

⎠
(2.46)

where the subimages h2, d2, a2 and v2 have M/4 rows and N/4 columns.

In image processing, K-level wavelet transform is often expressed in the form as shown

in Figure 2.5 (in the example of 2-levels transform). In Figure 2.4(c), 2-level CDF 9/7

wavelet transform of “cameraman” is shown and Figure 2.4(d) shows its 3-level CDF 9/7

wavelet transform.
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Figure 2.5: 2-levels of wavelet transform of an image

2.3 Histogram

Histogram is chosen as the feature descriptor of images in our proposals, so in this

section, some fundamentals will be introduced.

From the point of view of statistics, a histogram is a function {hi} that counts the

number of occurrence of a given element in a given set represented by bins. Thus, if we

let k be the total number of occurrence of elements and N be the total number of bins,

the histogram {hi} meets the following property:

k =
N

∑

i=1

hi (2.47)

From the point of view of feature representation, a histogram {hi} is a mapping between

a set of d-dimensional vectors and a set of non-negative real values. By this mapping,

these vectors are typically represented by bins, indexed by i, which corresponds to fixed

partitions of vectors. The associated reals are a measure of the mass of the vectors that

fall into the corresponding partitions. For instance, in a grey-level histogram, d = 1, the

set of possible grey values is split into N intervals, and hi is the number of pixels in an

image that have a grey value in the interval indexed by i.

Features like color and texture usually vary significantly because of inherent object

variations and different illumination. Therefore it is reasonable to describe an image

by a feature distribution instead of individual feature vectors. Histograms are used for

approximating probability distributions, which have been successfully used for CBIR in

the past. Two different categories can be found for modeling probability densities [41]:

• Parametric methods, in which a pre-determined statistical model is assumed, and

the model itself contains several parameters which are optimized by fitting the model

to histogram.

• Non-parametric methods, in which no specific model is pre-determined and the form
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of density is determined entirely by the data. The drawback of these methods is

that the representation of the model, histogram bins, for instance, could become

very large.

Generally speaking, we do not have a priori knowledge about the image content in

image retrieval. So, we choose non-parametric histogram based method for image retrieval

in this thesis. The main advantage of histogram is that it can be generated easily and

quickly. Furthermore, as a global descriptor of the image, it could be insensitive to rotation

of objects in images. In contrast, the main disadvantage of histogram is that it could be

a bad representation if bins or the number of bins are chosen inappropriately.

In following two sections, two theories used for generating histograms will be presented:

data clustering that could be used to find appropriate partitions of vectors and sparse

representation that could be used to calculate the values of bins.

2.4 Data clustering

Data clustering is a common technique for statistical data analysis, which is used in

many fields, including machine learning, data mining, pattern recognition, image process-

ing and bio-informatics. The goal of data clustering, also known as cluster analysis, is to

discover the natural groups of a set of objects. These objects could be numbers, vectors

or patterns and many others. More precisely, data clustering groups objects into clusters

such that the similarities between objects of the same group are high while the similarities

between objects of different groups are low.

Clustering algorithms can be broadly divided into two groups: hierarchical and par-

titional [42]. Hierarchical algorithms find successive clusters using previously established

clusters, which can be either in agglomerative mode (beginning with each data point as

a separate cluster and merging the most similar pair of clusters successively to form a

cluster hierarchy) or in top-down mode (beginning with all the data points in one cluster

and recursively dividing it into smaller clusters). Different from hierarchical clustering

algorithms, partitional clustering algorithms find all the clusters simultaneously as a par-

tition of the data and do not impose a hierarchical structure. Figure 2.6 gives examples

of these two groups (duplicate from [43]). Figure 2.6(a) gives an example of a hierarchical

algorithms performed in same data sets, in which “X” indicates the center of clusters.

Figure 2.6(b) shows the procedure of agglomerative clustering algorithms.
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(a) Partitional (b) Hierarchical

Figure 2.6: Examples of the classic clustering algorithms

The most popular and the simplest partitional algorithm is K-means. Even though K-

means has been proposed for over 50 years, it is still one of the most widely used algorithms

for clustering, especially in pattern recognition and image processing. The main reasons

for its popularity may due to its easy implementation, simplicity and efficiency. We will

introduce this algorithm which is also adopted in our proposals for color texture retrieval

in wavelet domain.

2.4.1 K-means algorithm

Let X = {xi}, i = 1, 2, . . . , N be the set of N d-dimensional vectors to be clustered

into a set of K clusters C = {ck}, k = 1, 2, . . . , K. (K must be decided in priority.) The

goal of K-means algorithm is to find a partition such that the squared error between the

center of each cluster and the objects in the cluster is minimized:

E =
K

∑

k=1

∑

xi∈ck

|xi − Dk|2 (2.48)

where Dk is the center of cluster ck. Minimizing this objective function is an NP-hard

problem [44]. Thus K-means can only converge to a local minimum. K-means starts with

a random partition with K centers of clusters and assign objects to clusters so as to reduce

the squared error. Since the squared error always decreases with an increase in the number

of clusters K (with E = 0 when K = N), it can be minimized only for a fixed number of
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clusters. The main steps of K-means algorithm are as follows:

1. Assume a random partition with K centers.

2. Assign each object to the closest center.

3. Update the center of each cluster.

4. Repeat steps 2 and 3 until stability: no object move between groups.

Figure 2.7 shows a demonstration of K-means algorithm on a data set with four clusters.

(a) Input Data (b) Random selection of 4 centers

(c) Iteration 2 (d) Final clustering after iteration x

Figure 2.7: Demonstration of K-means algorithm

The K-means algorithm requires three initiated parameters: number of clusters K, clus-

ter initialization, and distance metric. The most critical and the most difficult problem is

to determine K. Although no perfect mathematical criterion exists, numerous approaches
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for determining K by objective criterions have been presented [45–47]. Besides these ob-

jective criterions, “how to decide which value of K leads to the most meaningful clusters”

is also an unsolved problem. However, the choice of the appropriate approach is out of

the scope of this thesis: the simple choice is to find the best K empirically.

In the aspect of distance metric, K-means typically uses the Euclidean space for com-

puting the distance between objects and cluster centers, which brings on spherical or

ball-shaped clusters in data set. In this thesis, L2 distance is chosen for measuring the

similarity between objects and cluster centers.

As K-means only converges to local minima, different initializations can lead to different

final clustering, and K-means is used to generate the partitions of the feature vectors and

these partitions are used to generate the histogram used as feature descriptor for image

retrieval in our approaches in wavelet domain, so different partitions will lead to different

histograms, and finally lead to different performance when image retrieval is performed.

For objective comparison between our approaches with other methods, image retrieval

should be performed, for a given K, with different random chosen initial partitions, and

the average performance is measured.

2.5 Sparse representation

Sparse representation models data vectors with a linear combination of a small number

of basis elements. Often, elements are chosen from a so called over-complete dictionary,

which is a collection of elements such that the number of elements exceeds the dimension

of the elements. This theory has been used in machine learning, neuroscience, signal

processing, pattern recognition and achieved state-of-the-art results [48]. In this thesis, it

will be used for generating the histogram and the related fundamentals will be introduced

in this section.

2.5.1 Definition

In the point of view of matrix factorization, for a given data matrix X ∈ R
J×N , we

want to find a basis matrix (dictionary) D ∈ R
J×K and a coefficient matrix C ∈ R

K×N

that can represent the original data matrix X ∈ R
J×N :

X ≈ DC (2.49)
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where the columns of X are vectors to be represented and columns of D are basis vectors

and rows of C consist of the coefficients by which a vector can be represented with a linear

combination of basis vectors, J represents the dimension of the vector, K represents the

number of vectors in the dictionary, N indicates the number of vectors in the data matrix.

This problem can be expressed as looking for D and C that can minimize the recon-

struction error :

arg min
D,C

‖X − DC‖F

where ‖ ∗ ‖F represents the error function.

Different constrains imposed on basis matrix D and the coefficient matrix C will lead

to different methods of representations. In Vector Quantization (VQ), each row of C is

constrained to be a unary vector, with one element equal to one and the other elements

equal to zero. In other words, every vector is approximated by a single basis vector. In

Principle Components Analysis (PCA), it constrains the columns of D to be orthogonal

and the rows of C to be orthogonal to each other, which allows a distributed representation

in which each vector is approximated by a linear combination of all the basis vectors. And

the constraints of Non-negative Matrix Factorization (NMF) [49] are the non-negativity

on both D and C:

arg min
D,C

‖X − DC‖F (2.50)

s.t. D 
 0, C 
 0.

These non-negativity constraints permit the combination of multiple basis vectors to

represent a vector. But only additive combinations are allowed, because the elements of D

and C are all positive. Another most useful properties of NMF is that it usually produces

a sparse representation, which means that the number of non-zeros elements in each row

of C is much less than the dimension of the row. However, this sparseness cannot be

controlled. To solve this problem, Equation 2.50 can be extended to Lasso problem [50]

with positive constraints, which provides a sparse solution:

arg min
D,C

‖X − DC‖ℓ2
+ λ‖C‖ℓ1

(2.51)

s.t. D 
 0, C 
 0.
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Parameter λ controls trade-off between accuracy and sparseness. When λ = 0, this

equation is equivalent to NMF.

In this context, given a training data matrix XT, we can find a dictionary DT by

different dictionary learning methods [51]. And then given a test data matrix X, the

vector x in the test data matrix can be represented by a linear combination of a few

basis vectors from the dictionary DT and the coefficients in each row of C can be seen as

the weight parameters of basis vectors. This step is solved by the LARS algorithm [52]

provided by the toolbox SPAMS [53].

2.5.2 Sparse representation based histogram

The sparse representation based histogram of data matrix X is proposed to be defined

as:

hj =
N

∑

i=1

Cij (2.52)

where Ci ∈ R
K×1 is the row of C and hj indicates the value of the j-th bin of the

histogram, j = {1, 2, . . . , K}. In this way, the values of bins represent the total weight of

corresponding basis vectors in the sparse representation of data matrix.

For easy understanding, considering there are 9 vectors X1, X2, . . . , X9 in a vector

space that are divided into 5 partitions. These 5 partitions are represented by 5 cluster

centers D1, D2, . . . , D5 as shown in Figure 2.8. According to the classical definition of

histogram, in which the value of bins is the number of vectors that fall into corresponding

partitions of vectors, the histogram of these vectors is shown in Figure 2.9(a). In other

words, if we see the centers of partitions as basis vectors, target vector is represented only

by one basis vector.

Let’s consider the sparse representation of these 9 vectors X = [X1 X2 · · · X9] with 5
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Figure 2.8: Vectors in a vector space

cluster centers as basis vectors D = [D1 D2 · · · D5]. And assuming C:
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(2.53)

So according to Equation 2.52, the sparse representation based histogram of these vectors

is got and as shown in Figure 2.9(b):

H = {hj} = {1.9 0.7 1.3 1.15 1.9} (2.54)

Different from classical histogram, in sparse representation based histogram, one vector

is represented not only by one basis vector but by a few basis vectors. This will provide

more information about the relations between one vector and other vectors in the vector

space. It means that every vector is sparsely represented by basis vectors with different
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(a) Classical histogram (b) Sparse representation based histogram

Figure 2.9: Comparison of two histograms

weight, as shown in follows:

X1 ≈ 0.5D1 + 0.2D2 (2.55)

X2 ≈ 0.6D1 + 0.1D5

X3 ≈ 0.7D1 + 0.05D4 + 0.1D5

X4 ≈ 0.1D1 + 0.5D2

X5 ≈ 0.4D3 + 0.3D4

X6 ≈ 0.9D3

X7 ≈ 0.7D4 + 0.1D5

X8 ≈ 0.1D4 + 0.8D5

X9 ≈ 0.8D5

2.6 Similarity measurement

The similarity between two images can be measured by the distances between feature

descriptors of images. A similarity measure assigns a lower distance or a higher score to

the most similar images. As we choose histogram as feature descriptors, in this section,

we detail the similarity measurement between two histograms HQ and HD.

Reviews of similarity measurement can be found in [41,54]. In general, similarity mea-

surements between histograms could be classified into two groups: bin-to-bin approaches

and cross-bin approaches. The bin-to-bin similarity measurements compare contents of
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corresponding histogram bins, that is, they compare HQ(i) and HD(i) for i, but not

HQ(i) and HD(j) for i �= j. The cross-bin measures also compare non-corresponding

bins. Cross-bin distances make use of the ground distance concept defined as the distance

between the representative features for bin i and bin j.

Some terms used in this section need to be defined firstly.

Metric space: A space R
N is a metric space if for any of its two elements x and y,

there exists a distance d(x, y), that satisfies the following prosperities:

• d(x, y) ≥ 0 (non-negativity)

• d(x, y) = 0 if and only if x = y (identity)

• d(x, y) = d(y, x) (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Partial Matching: Similarity is partially obtained when the number of bins of one

histogram is smaller than that of the other. The similarity is measured only with respect

to the most similar part of the larger histogram.

2.6.1 Bin-to-bin similarity measurements

This category of measurements compare the corresponding bins of two histograms HQ

and HD (both have N bins). The similarity between two histograms is a combination of

these bin-to-bin comparisons.

Minkowski-form distance

The well known Minkowski-form distances are defined by:

dLp(HQ, HD) =
(

N
∑

i=1

|HQ(i) − HD(i)|p
)1/p

(2.56)

When p = 1, 2 or ∞, these distances are also referred as Manhattan distance, Euclidean

distance or Chebyshev distance respectively. These three are most common used in image

retrieval.

Histogram intersection

Histogram intersection [55] is defined as:

d∩(HQ, HD) =
N

∑

i=1

min(HQ(i), HD(i)) (2.57)
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It assigns a higher score when two histograms are more similar. And it is attractive because

of its ability to handle partial matches and low complexity as only minimum and addition

operations are required.

Chi-squared distance

The χ2 distance is defined as:

dχ2(HQ, HD) =
N

∑

i=1

(

HQ(i) − HD(i)
)2

HQ(i) + HD(j)
(2.58)

Note that χ2 distance does not have the triangle inequality prosperity.

Kullback-Leibler divergence distance

The Kullback-Leibler (K-L) divergence distance [56] is defined as:

dKL(HQ, HD) =
N

∑

i=1

HQ(i) log
HQ(i)
HD(i)

(2.59)

From the point of view of information theory, the K-L divergence distance measures how

inefficient on average it would be to code one histogram using the other as the code-book.

However, the Kullback-Leibler divergence is not symmetric and is numerically unstable.

To overcome these problems, Jeffrey Divergence distance is proposed.

Jeffrey divergence distance

The Jeffrey divergence (JD) distance is defined as:

dJD(HQ, HD) =
N

∑

i=1

(

HQ(i) log
HQ(i)
HD(i)

+ HD(i) log
HD(i)
HQ(i)

)

(2.60)

Conclusion of bin-to-bin similarity measurement

These similarity measurements are appropriate in different areas. For example, the

Kullback-Leibler divergence is justified by information theory and the χ2 distance by

statistics. The advantage is that they are easy to compute with low complexity. The

drawback is that they only consider the corresponding bins and neglect the information

across bins. Moreover, they are sensitive to the choice of bins.
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2.6.2 Cross-bin similarity measurements

All previous measures perform the comparison by considering the differences between

corresponding histogram bins only. As the traditional histogram has discontinuities at the

bin boundaries, a small shift in the feature value can result in an assignment to neighboring

bins instead of the original one, for example, H1 and H2, as shown in Figure 2.10. Of course

it would be desirable to consider these two histograms closer to each other than to H3. The

similarities observed from the previous measurements would find no similarity between H1

and H2 neither between H1 and H3. So to compare these histograms, other distances

should be presented.

Figure 2.10: Illustration of histograms giving the motivation of ground distance measures

Quadratic-form distance

Considering similarity between bins, quadratic-form (QF) distance [57] is defined as:

dQF (HQ, HD) =
√

(HQ − HD) · A · (HQ − HD)T (2.61)
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where A = [aij ] is a similarity matrix, and aij denotes ground distance between bins HQ(i)

and HD(j). Common selections for A are

aij = 1 − dij

dmax
(2.62)

or

aij = exp
(

− β
( dij

dmax

)2
)

(2.63)

where β is a positive constant, with dij being the Euclidean distance between bins HQ(i)

and HD(j), dmax being maximum of dij .

Earth movers distance

The Earth movers distance (EMD) [58] compares histogram matching with a trans-

portation problem, whose purpose is to minimize the cost of shipping goods from one

location to another so that the needs of each arrival area are met and every transportation

operates within its limited capacity. Given two histograms, one can be seen as the hill of

earth and the other as holes in the ground. Then the EMD measures the least amount of

work needed to fill the holes with earth from hills. These are represented by the ground

distance matrix D = [dmn] where dmn is the ground distance between bin m and bin n. In

general, ground distance can be any distance and will be chosen according to the problem

at hand [59]. A flow F = [fij] need to be found, with fij the flow between bin i and bin

j, which can minimize the overall work:

N
∑

i=1

N
∑

j=1

dijfij (2.64)

where fij is subject to the following constraints:

1. Earth is moved only in one direction:

fij ≥ 0 ∀i, j (2.65)

2. Earth can not be moved more than available:

N
∑

j=1

fij ≤ HQ(i) ∀i (2.66)
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3. Earth can not be moved more than required:

N
∑

i=1

fij ≤ HD(j) ∀j (2.67)

4. The total flow equals the minimum amount of earth available in HQ or earth required

in HD:
N

∑

i=1

N
∑

j=1

fij = min
(

N
∑

i=1

HQ(i),
N

∑

j=1

HD(j)
)

(2.68)

The EMD is then defined as the resulting work normalized by the total flow:

dEMD(HQ, HD) =

∑N
i=1

∑N
j=1 dijfij

∑N
i=1

∑N
j=1 fij

(2.69)

Note that EMD also supports partial matches, similar as histogram intersection. EMD

is even more suitable for histogram comparison than the quadratic form as it does not only

consider ground distance but also pays attention to what bins have already been used in

the comparison. However, computational complexity is rather high [41].

2.6.3 Conclusion on similarity measurements

Table 2.1 which is partially taken from [54] provides the comparison of main properties

of similarity measurements aforementioned. ‘Y/N’ means that the property occurs only in

special case. From this table, we can conclude that all the measurements are symmetric

except K-L divergence distance; only Lp distance holds triangle inequality, furthermore,

histogram intersection and EMD could solve the problem of partial matching. From the

point of view of computing load , bin-to-bin measurements have lower complexity than

cross-bin measurements.

Table 2.1: Properties of different similarity measurements

Properties Lp
⋂

Chi-Squared KL JD QF EMD
Symmetry Yes No Yes No Yes Yes Yes
Triangle inequality Yes Y/N No No No Y/N Y/N
Partial matching No Yes No No No No Yes
Complexity Low Low Low Low Low High High

Generally speaking, triangle inequality and partial matching are not obligatory in color

texture retrieval, but symmetry and lower complexity are always preferred. From above
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considerations, we will choose bin-to-bin measurements, in particular, L1 distance and

χ2 distance as similarity measurement adopted in the proposals presented in following

chapters.

2.7 Performance evaluation

To evaluate and compare the performance of different CBIR algorithms, an objective

performance evaluation is necessary. Providing a clear and broadly understood perfor-

mance evaluation allows researchers to more fully understand the strengths and limitations

of their algorithms and to compare their results with other algorithms objectively. In this

section, we introduce some common performance evaluation measurements.

2.7.1 Precision and recall

The most common evaluation measurement used in CBIR is precision and recall pair.

For each query image, system returns a ranked list of images. Each image in the list is

determined as either relevant or not to the query. Then the performance can be evaluated

by precision and recall. Precision indicates the retrieval accuracy and is defined as the

ratio of the number of relevant retrieved images over the number of total retrieved images.

Recall indicates the ability of retrieving relevant images from the database. It is defined

as the ratio of the number of relevant retrieved images over the total number of relevant

images in the database:

Precision =
♯(relevant retrieved images)

♯(retrieved images)

Recall =
♯(relevant retrieved images)

♯(relevant images in database)
(2.70)

♯(α) denotes cardinality of set α.

In practice, if we assume q is the number of relevant retrieved images , s is the number

of non-relevant retrieved images , t is the number of relevant images not retrieved in a
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database, then precision and recall pair could be expressed as:

Precision =
q

q + s

Recall =
q

q + t

(2.71)

so 0 ≤ Recall ≤ 1, 0 ≤ Precision ≤ 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall

P
re

c
is

io
n

Precision Recall Graph

Figure 2.11: Precision Recall Graph

The precision normally decreases while recall increases. This is because in the process

of trying to retrieve all images relevant to a query, certain non-relevant images are also

retrieved. Thus traditional using of precision and recall pair usually presented as “Precision

vs Recall graph” to demonstrate the performance of a system. One example is shown in

Figure 2.11. In this graph, the line with “o” (blue one) has a better performance than

the one with “+” (red one) as when these two have the same level of recall (ability of

retrieving relevant images from database), the blue one has a higher precision (retrieval

accuracy).

2.7.2 Average retrieval rate

Average retrieval rate (ARR) [60] is often used in the literatures about texture re-

trieval. For a given query image, the retrieved images are ordered according to increasing

dissimilarity with the given query, with the top retrieved image being most similar to the

query. The retrieval rate (RR) for this query is defined as the percentage of the number of
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correct retrieved images over the total number of relevant images in the database in the

top K retrieved images:

RR =
♯(relevant retrieved images)

♯(relevant images in database)
(2.72)

ARR is defined as the mean value of the set of retrieval rate in top K retrieved images

for each query. Obviously, ARR is related to the number of retrieved images. So it

is possible to construct receiver operating characteristic (ROC) curves by plotting ARR

against K. This allows to study the retrieval performance as the number of retrieved

images inscrease. So with ARR, we have two ways to compare the performances of different

approaches. One way is to compare ARRs with a given K: the higher the better. And

the other way is to compare the ROC curves of ARR: a ROC curve of an approach lying

above the ROC curve of another approach demonstrates the increase of performance, as

shown in Figure 2.12: approach 2 outperforms approach 1.
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Figure 2.12: ARR according to the number of top K retrieved images

2.7.3 Average of normalized modified retrieval rank

The average of normalized modified retrieval rank (ANMRR) is a performance eval-

uation used by MPEG-7 to evaluate the performance of a retrieval system [61]. This

evaluation combines the precision and recall pair to obtain a single objective value, in

which queries and sets of ground truth images are chosen manually. For each query a set

of ground truth images are most relevant images to the query and the relevant images in
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ground truth set are not ordered in any way. A good algorithm is expected to retrieve all

ground truth images for a given query image.

Assume NG(Q) is the number of relevant images in ground truth set for a given query Q

and M is the maximum number of relevant images in ground truth set for all Q queries,

it means that:

M = max(NG(Q1), NG(Q2), . . . , NG(QQ)) (2.73)

Then for a given query Q, each relevant image k is assigned a rank value rank(k) that

is equivalent to its rank in the retrieved relevant images if it is in the first K(Q) =

min[4 × NG(Q), 2 × M ] query results; or a rank value K(Q) + 1 if it is not. The average

rank AV R(Q) for query Q is computed as:

AV R(Q) =
NG(Q)

∑

k=1

rank(k)
NG(Q)

(2.74)

The modified retrieval rank MRR(q) is computed as:

MRR(Q) = AV R(Q) − 0.5 − 0.5 × NG(Q) (2.75)

MRR(Q) takes value 0 when all the relevant images are within the first K(Q) retrieved

results.

Then the normalized modified retrieval rank NMRR(Q) is computed as:

NMRR(Q) =
MRR(Q)

K(Q) + 0.5 − 0.5 × NG(Q)
(2.76)

The NMRR is in the range of [0, 1] and smaller values represent a better retrieval perfor-

mance. For example, suppose that for a query Q, the relevant images in ground truth set

are I1, I2, . . . , I10, so NG(Q) = 10. The ideal result is that the top 10 retrievals are these

relevant images I1, I2, . . . , I10, then their retrieval ranks are rank(I1) = 1, rank(I2) =

2, . . . , rank(I10) = 10 respectively. So NMRR for this query Q is 0.

ANMRR is defined as the average NMRR over a set of queries:

ANMRR =
1
N

N
∑

Q=1

NMRR(Q) (2.77)

where NQ is the number of query images.
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2.7.4 Equal error rate

Equal Error Rate (EER) [62] is often used to evaluate the performance of face recog-

nition algorithm. When recognition is performed, similarity between images must be

observed. Images are considered as similar if the distance between their features descrip-

tors is under a given threshold. So considering a query image belonging to class A, two

things could occur: on one hand, it could be recognized rightly; on the other hand, it could

be falsely rejected from class A, then the ratio of how many images of class A are in this

situation is called False Rejected Rate (FRR). In contrast, considering a query image out

of class A, when it is compared with the images of class A, it could be rejected rightly or

it could be falsely accepted as class A, then the ratio of how many images of other class

are in this situation is defined as False Accept Rate (FAR). These two rates will change

when the threshold change. When FRR and FAR take equal values, an equal error rate

(EER) is got. The lower the EER is, the better is the performance of system, as the total

error rate is the sum of FAR and FRR. One example of EER is shown in Figure 2.13.
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Figure 2.13: Equal Error Rate

2.7.5 Choice of performance evaluation

In this thesis, we will choose precision and recall pair because of their classic and ARR

in color texture retrieval experiments and EER in face recognition experiments because

they are commonly used in other literatures to evaluate the performance of approaches

and compare them with other reported methods, including state-of-the-art methods.
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2.8 Conclusion

In this chapter, some fundamental concepts concerned with our approaches for CBIR

have been introduced.

First, we have introduced the two commonly used transforms: DCT and DWT, which

are used to transfer the images to transform domain. The properties of transform coef-

ficients are analyzed, from which we give theoretical bases for generating feature vectors

directly from transform coefficients. Furthermore, the method for extracting 4 × 4 block

DCT coefficients directly from 8 × 8 block DCT coefficients is proposed.

Histogram of feature vectors is chosen as the descriptor for image retrieval. So the

concepts of histogram have been presented.

Furthermore, K-means and sparse representation used for generating histograms have

been introduced. And sparse representation based histogram is proposed. Different from

classical histogram, sparse representation based histogram provides more information on

the relations between a vector and its related basis vectors.

Once the descriptor of images is ready, it should be considered how to measure the

similarity between them . So we have presented the common used similarity measurements

in CBIR, from which two kinds of distances: Manhattan distance and chi-squared distance

are chosen for our approaches because of their lower computing load.

Finally, the performance evaluation for CBIR especially for face recognition and texture

retrieval have been presented, from which precision and recall pair, ARR and EER are

chosen as they are widely used by other researches in this field.

All aforementioned concepts allow constructing the base of image retrieval in transform

domain, including feature extraction, feature representation, similarity measurement and

performance evaluation. In the following chapters, approaches of CBIR in DCT domain

and DWT domain are proposed.
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3
Image descriptors in DCT domain

3.1 Introduction

Image retrieval in transform domain has widely been studied since majority of the

images are stored in compressed format and most of compression technologies adopt dif-

ferent kinds of transforms to achieve compression. Compared to traditional approaches of

indexing compressed images which need to decode the images to the pixel domain first,

the approaches working directly in transform domain lead to low computational load and

storage requirements.

As a transform adopted in JPEG compression standard, DCT has demonstrated to

be a powerful tool to extract proper features from images. In this chapter, supplement

to some improvements compared to an existing approach for face recognition using block

DCT transform, two novel approaches are proposed, which are also extended for texture

retrieval. Finally, with the proposal of color features, new approaches are applied in color

texture image retrieval by combination of color and texture features.

The rest of the chapter is organized as follows: related works are introduced firstly,

followed by the improvements given in Section 3.3. Then a novel approach for face recog-

nition and texture retrieval on gray-scale images is presented in Section 3.4. A proposal for

color texture image retrieval by combination of color and texture features is then presented

in Section 3.5.

3.2 Related works

This section is divided into two parts: first, we give the general description of related

works on face recognition and image retrieval in DCT domain and then detail an existing
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approach based on the histogram of DCT blocks on which we make improvements, and

this also gives us the basic framework of our two proposals.

3.2.1 Face recognition and image retrieval in DCT domain

Numerous researches on face recognition and image retrieval use the DCT to extract

features from images.

In the context of face recognition, Hafed has proposed an approach that computes the

DCT on the entire normalized image and retained low-to-mid frequency DCT coefficients as

feature vectors [63]. Ramasubramanian has presented an approach based on a combination

of DCT, principal component analysis (PCA) and the characteristics of the Human Visual

System, in which only low-frequency coefficients are selected for feature vectors and PCA

is employed to select a basis set of features called cosine-faces [64]. Another selection

of DCT coefficients based on a data-dependent approach, discrimination power analysis,

which is used to find coefficients that have the strong ability to discriminate various classes

has been published in [65].

Since block DCT transform is widely used in image and video compression, in order to

establish a direct link with compressed images, many researcher have presented approaches

for face recognition based on block transform. For example, Shneier has proposed to use the

average value of DCT coefficients in each 8×8 block as feature vectors [66], and Nefian has

selected coefficients from each DCT block to train Hidden Markov Model (HMM) for face

recognition [67]. Eickeler has used the first fifteen coefficients of 8 × 8 DCT block to train

2-D HMM for face recognition [68]. Zhong has constructed the feature descriptors based on

the histogram of DCT blocks and these descriptors are used to do face recognition [69,70].

In the context of image retrieval, color and texture are two important features that

are used in CBIR. In [71], the statistical information of DCT coefficients has been used as

texture features. As DCT has the high capability of energy compaction, in [72], the upper

left DCT coefficients transformed from the entier image are chosen to form the feature

vector of an image and these selected coefficients are categorized into 4 groups: one is DC

coefficients and other three includes the coefficients which have vertical, horizontal and

diagonal information.

A combined use of color and texture would provide better performance than using color

or texture alone. In general, from this previous consideration, those approaches could be

divided into two groups: jointly and separately [29].
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Under the jointly aspect, in [73], images were firstly converted to YCbCr color space

and then transformed by 8 × 8 block DCT. Feature vector consisted of the first 36 coeffi-

cients of each block from Y channel IY and DC coefficient of each block from Cb channel

ICb and Cr channel ICb.

Another aspect of analyzing color images is to process color and texture separately,

that means to transform the color image into luminance and chrominance components and

then, extract color feature and texture feature separately. For example, in [74], images are

converted to YCbCr color space and then each component is transformed by 8 × 8 block

DCT. The values of DC coefficients of IY , ICb and ICr in each block are used directly

as color feature and the mean value and standard deviation of energies of AC coefficients

in each block from Y channel are used as texture feature. In [75], DC coefficients from

each 8 × 8 block are grouped to a DC image, the color histogram of this image obtained

by summing up the number of pixels with similar values in HSV color space is used as

the color feature. And the variance and expectation of first 9 AC coefficients of each

block are used as texture feature. In [76] [77], features were also extracted from 8 × 8

block DCT transform in YCbCr color space. DC coefficients of each block are extracted

from IY , ICb and ICr in order to form a 3D vector which is treated as color feature and the

AC coefficients of each block inside each diagonal line of zig-zag scan constructed texture

feature. In [78], the average values of all 4 × 4 sub blocks in a 8 × 8 block from each

component in YCbCr color space are used as color feature and the mean and standard

deviation of the sum of 6 groupes of selected coefficients in one 8 × 8 block are used as

texture feature.

3.2.2 Image retrieval based on histogram of DCT blocks

In [70] and [79], authors have proposed to use the histogram of quantized DCT blocks

for image retrieval, which is the basic framework of our approaches. Images are firstly

decomposed by 4 × 4 block DCT. As a same scene taken at different luminance level will

lead to different DCT blocks, to normalize the luminance, preprocessing steps are done

before extracting feature vectors. This is done by rescalling the DCT coefficients according

to the average luminance level, which is calculated based on the DC coefficients of the DCT

blocks.

Assume there are N DCT blocks in an image i, and the DC value for each block is

denoted by DCj(i), 1 ≤ j ≤ N . From these DC values, we can calculate the mean DC
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value for this image:

DCmean(i) =
1
N

N
∑

j=1

DCj(i) (3.1)

Then the average luminance DCallmean of all images in database is calculated:

DCallmean =
1

M

M
∑

i=1

DCmean(i) (3.2)

where M denotes the total number of images in the database.

Then the ratio of luminance rescalling for image i is calculated as:

Ri =
DCallmean

DCmean(i)
(3.3)

And finally all the DCT coefficients of image i are normalized, with respect to Ri, by

rescalling them:

DCTi = DCTi × Ri (3.4)

where DCTi is the DCT coefficients of image i.

After this normalization, the DCT coefficients are quantized by a quantization param-

eter QP:

DCTi =
DCTi

QP
(3.5)

In this approach, a DCT block without DC coefficient will be defined as AC-Pattern.

So after preprocessing, AC coefficients from each 4x4 DCT block which are ordered with

left-to-right and top-to-bottom way are used to construct AC-Patterns as illustrated in

Figure 3.1 (Duplicated from [79]). The zero value at the end of the AC-Pattern are skipped

which can reduce the size of vector. From now we named this method of constructing AC-

Pattern as Linear scan.

DC-Pattern is defined as the directions that have largest differences between DC value

of current block and DC values of neighboring blocks. The process of forming DC-Pattern

is shown in Figure 3.2 (Duplicated from [70]). Eight differences between DC coefficient of

the current block and its 8 neighbors are calculated. The ninth difference is the difference

between current DC value and the mean of all the nine neighboring DC values. The

absolute value of these differences are ordered in descending order and the first γ direction-

values with largest differences are taken to form DC-Pattern. Here γ is a parameter which

can be adjusted for a better retrieval performance.
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Figure 3.1: Forming AC-Pattern

Histogram of patterns defined as the occurrence of patterns in image is adopted as

feature descriptors used for image retrieval.

Based on experiments, it appears that only a restricted part of patterns exists with

high occurrence and a large number of patterns appears rarely, so the histograms of most

frequent patterns (AC-Pattern and DC-Pattern) are used for image retrieval in which

Manhattan distance is used to measure the similarity.

Dimension of patterns or descriptors affect the computational load and two aspects

could be improved in this method: the first one is the dimension of AC-Pattern. Although

the zero values at the end of the AC-Pattern are skipped, the max dimension of AC-

Pattern is still 15 and this can be reduced; the second one is the method for histogram

generation, which aims to reduce the number of bins of the histogram.

3.3 Improvements on linear scan method

In this section, we detail the improvements on Linear scan method for constructing

AC-Patterns. A general description is introduced firstly, and then improvements on AC-

Pattern construction and histogram generation are given. Finally, the experimental results

of improved approach are compared with Linear scan method.

3.3.1 General Description

As we told in the previous section, we mainly focus on improving AC-Pattern con-

struction and histogram generation. Concerning AC-Pattern construction, we propose to

use a new way to construct AC-Patterns in order to reduce their dimensions. In the step
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=γ

Figure 3.2: DC-Pattern construction

of histogram generation, we merge adjacent patterns. We named this improved approach

for AC-Pattern construction and histogram generation as Zigzag-Pattern.

The flowchart of image retrieval process is shown as Figure 3.3. 4 × 4 block DCT

transform is used as in Linear scan. So for each block we get 1 DC coefficient and 15 AC

coefficients. AC-Pattern is referred as layout of an arrangement of AC coefficients in one

DCT block, therefore, the total number of AC coefficients in a DCT block is 15, but the

number of coefficients that are used to construct the AC-Pattern can be adjusted. Time

consuming and performance can change because of this adjustment. The descriptors are

constructed from histograms of AC-Patterns (HAC)and histograms of DC-Patterns (HDC).

Manhattan distance is used to measure the similarity between descriptors of query and

images in the database.

3.3.2 Preprocessing

To reduce the impact of luminance variation, preprocessing steps as detailed in Sec-

tion 3.2.2 need to be done before generating AC-Patterns and DC-Patterns.

As QP defines the sensitivity for the observation of coefficients values, from Equa-

tion 3.5, we can observe that high QP truncates coefficients leading to zero values, which
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Figure 3.3: Flowchart of image retrieval

means if QP is rather high, only a small number of different AC-Patterns will be left, even

all the coefficients could be zero. This will decrease the performance of image retrieval

obviously. In contrast, if this value is low, the total number of different AC-Patterns will

be very high, that will make the processing histogram generation more time-consuming

and complicated. So there will be a trade-off value of quantization parameter between

performance and time efficiency.

3.3.3 Construction of AC-Pattern histogram

There are two methods of scanning for arranging the coefficients in AC-Pattern. The

first way is a row-by-row manner, as used in Linear scan method. In this way, AC coef-

ficients are ordered from left-to-right and top-to-bottom. The second way is zigzag scan

as defined in JPEG standard, which we propose to use. For most images, most of the

signal energy lies at low frequencies coefficients and these appear in the upper left corner

of the DCT. Using zigzag scan, the coefficients are in the order of increasing frequency. So

comparing with linear scan, zigzag scan gains more advantages in using coefficients that

have higher energies in the condition of limited number of coefficients used. These two

methods are shown in Figure 3.4.
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Figure 3.4: Linear and zigzag scan

The number of coefficients (Nc) used in the AC-Pattern should be considered further.

When this value is large, more high-frequency coefficients are included in the AC-Patterns.

It means that the retrieval performance will be more sensitive simultaneously to thin

details with high frequency contents and also to the noise. Furthermore, the total number

of different AC-Patterns will also be larger and that will lead to more time-consuming in

image retrieval. When this value is small, the total number of different AC-Patterns will

be small too. Although it leads to less time-consuming, it will decrease the performance

of the retrieval too. We will have to find an optimal value of Nc for best performance of

retrieval and less time-consuming.

Since observed AC-Patterns are numerous, we have the objective of reducing their

number. As differences between patterns can be weak, issued from small differences be-

tween their coefficients, patterns can be considered quite similar and we will call them

adjacent patterns, which will be merged by observing distances between coefficients in

AC-Patterns, as shown in Figure 3.5.

Adjacent patterns will correspond to blocks whose frequency contents are close in one

or serval frequencies. AC-Pattern i and j are said to be adjacent patterns if:

|Ci(1) − Cj(1)| ≤ T h or |Ci(2) − Cj(2)| ≤ T h or · · · or |Ci(m) − Cj(m)| ≤ T h (3.6)
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where Ci(k) and Cj(k) (1 ≤ k ≤ m), represent AC coefficients in AC-Patterns i and j, T h

is the threshold, m indicates the number of coefficients in AC-Pattern. When two patterns

meet this requirement, they will be merged. In our proposal, T h = 1. So we tolerate a

difference of 1 on each coefficient value inside the pattern.

Figure 3.5: Merging adjacent patterns in histogram

Furthermore, there is one special AC-Pattern in which all the AC-coefficients are zero

and this AC-Pattern mainly corresponds to uniform blocks of image. We exclude this

pattern from HAC . To find and merge the adjacent patterns, the histogram of AC-Pattern

of the database is generated and the bins are arranged in adjacent order first and then the

adjacent patterns that should be merged are found. Finally, with these adjacent patterns,

histogram of each image is generated. Let ACbins to indicates the total number of bins

after merging adjacent patterns. Example of histograms before and after merging adjacent

patterns is shown in Figure 3.6.

3.3.4 Construction of DC-Pattern histogram

Differently from previous AC-Patterns that describe the local feature information inside

each block, DC-Patterns integrate more global features by using gradients between each

block and its neighbors. Details can be found in Section 3.2.2. Let DCbins be the number

of most frequent DC-Patterns chosen.

3.3.5 Application to face recognition

As our improvements focus on the construction of AC-Patterns, to evaluate these

improvements in face recognition, we do two classes of experiments: face recognition by

using AC-Patterns alone and by using AC-Patterns and DC-Patterns together. For AC-
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(a) Histogram of original AC-Pattern

(b) Histogram of AC-Pattern after merging

Figure 3.6: Histogram of AC-Pattern

Patterns alone, the descriptor is defined as:

H = HAC (3.7)

For AC-Patterns and DC-Patterns together, the descriptor is defined as the concate-

nation of HAC and HDC :

H = [(1 − α) × HAC α × HDC ] (3.8)

where α is a weight parameter that controls the impact of AC-Patterns histogram and

DC-Patterns histogram.

To measure the similarity between two descriptors, Manhattan distance is used:

Dis(Q, Ii) =
K

∑

j=1

|HQ(j) − HIi
(j)| (3.9)



3.3. Improvements on linear scan method

where K indicates the dimension of the descriptors and HQ and HIi
are the descriptors of

query and ith image in the database.

3.3.6 Performance analysis

To evaluate the performance of the proposed improvements, GTF [80] and ORL [81]

databases, two commonly used databases for face recognition, are adopted.

The GTF was created in 1999 at the Center for Signal and Image Processing of Georgia

Institute of Technology. It contains 15 images of 50 people. The images show frontal

and/or tilted faces with different facial expressions, lighting conditions and scales. The

images are at the resolution 640 × 640 pixels in which the size of face is 150 × 150 pixels.

Each image is manually labeled to determine the position of the face in the image. The

information is also used to crop faces manually from images in our experiments.

The ORL was created between 1992 and 1994 at AT&T Laboratories Cambridge. It

contains 10 different face images of 40 different persons. For some persons, the images were

taken at different times, at varying the lighting, with different facial expressions (open /

closed eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images

were taken with a dark homogeneous background with the subjects in an upright, frontal

position (with tolerance for some side movement).

As Linear scan was initially verified on these two databases, to demonstrate the con-

tribution of our proposal, we implement Linear scan and our improved approach, Zigzag-

Pattern on these two databases too. Face images cropped from GTF and ORL databases

have small sizes of about 120 × 90 pixels, as shown in Figure 3.7 and Figure 3.8. EER

introduced in Section 2.7.4 is used to evaluate the performance.

Results on GTF database

In our experiments, like in [70], we select the first 11 images of each person as training

database and remaining 4 images as query images for recognition. Therefore, the total

number of images in the training database is 550 (11 × 50) and that of query images is

200 (4 × 50).

We first use descriptor of AC-Pattern alone for image retrieval. We should empha-

size that for different parameters QPAC (quantization parameter for AC coefficients) and

ACbins, different performance will be observed. Here we only compare the best perfor-

mance of each method. Figure 3.9(a) shows the curve of comparison when Nc changes.
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Figure 3.7: 15 different faces of one person in GTF

Figure 3.8: 10 different faces of one person in ORL

As we can see, Zigzag-Pattern outperforms Linear scan and details of the comparison are

listed in Table 3.1. The Zigzag-Pattern can get 20% enhancement comparing with Linear

scan.

Before using the descriptor of AC-Pattern and DC-Pattern together, the parameter

of descriptor of DC-Pattern should be set. After numerous experiments, when γ =

4, QPDC = 26 and DCbins = 400, the best performance can be got and the lowest

EER is 0.152 when face recognition is only executed by DC-Pattern.

Finally, we use the descriptor of the AC-Patterns and DC-Patterns together to do

face recognition. For both methods, we tested different sets of descriptor parameters of

AC-Pattern to find the ones that can assure the best performance while the parameters

descriptor of DC-Pattern are the same. The weight parameter α is changed to see the global

comparison of the performance, as shown in Figure 3.9(b) and the details of comparison

are listed in Table 3.1. As they indicate, Zigzag-Pattern with DC-Pattern outperforms
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Figure 3.9: Results on GTF

Linear scan with DC-Pattern: 25% improvement can be observed.

Results on ORL database

For tests, like in [70], we use first 6 images of every person as training database and

remaining 4 images as query images for recognition. Therefore, the total number of images

in the training database is 240 and that of query images is 160.

We do similar experiments as we did on GTF database. Figure 3.10(a) shows the curve

of comparison when Nc changes. As we can see, Zigzag-Pattern outperforms Linear scan:

38% improvement can be got.

The global comparison of the performance of face recognition by concatenation of

the AC-Pattern and DC-Pattern histogram is shown in Figure 3.10(b) and the details of
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Table 3.1: Comparison between different descriptors on GTF

Descriptor Linear scan Zigzag-
Pattern

Linear scan Zigzag-
Pattern

+DC-Pattern +DC-Pattern
Parameters Nc=13,

QPAC=40,
ACbins=80

Nc=7,
QPAC=10,
ACbins=50

Nc=13,
QPAC=40,
ACbins=80,
γ=4,
QPDC=26,
DCbins=400

Nc=7,
QPAC=10,
ACbins=50,
γ=4,
QPDC=26,
DCbins=400

EER 0.1379 0.111 0.1157 0.087

comparison are listed in Table 3.2. As shown in the table, Zigzag-Pattern with DC-Pattern

outperforms Linear scan with DC-Pattern: 17% uplift can be observed.

Table 3.2: Comparison between different descriptors on ORL

Descriptor Linear scan Zigzag-
Pattern

Linear scan Zigzag-
Pattern

+DC-Pattern +DC-Pattern
Parameters Nc=6,

QPAC=30,
ACbins=80

Nc=4,
QPAC=30,
ACbins=100

Nc=15,
QPAC=30,
ACbins=400,
γ=3,
QPDC=70,
DCbins=250

Nc=4,
QPAC=30,
ACbins=250,
γ=3,
QPDC=70,
DCbins=250

EER 0.122 0.075 0.0607 0.05

Conclusion

We can conclude, from above experimental results, that our proposal of Zigzag-Pattern

improves the performance both on GTF and ORL database. Furthermore, fewer AC

coefficients and fewer number of bins of histogram are used. This means that the dimension

of feature vector and feature descriptor of Zigzag-Pattern is smaller than that of Linear

scan.

3.4 Proposal for face recognition and texture retrieval

In this section, we propose a new and simple but effective approach that can apply

both on face database and texture database. A general description is given firstly. And
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Figure 3.10: Results on ORL

then details of approach are described, followed by the experimental results.

3.4.1 General Description

Images are firstly transformed by 4 × 4 block DCT transform and luminance normal-

ization and quantization presented in Section 3.2.2 are then executed on DCT coefficients.

For each block, 9 AC coefficients are selected to construct feature vectors, named Sum-

Pattern. Finally, the concatenation of Sum-Pattern histogram HSum and DC-Pattern

histogram HDC (see Section 3.2.2) is used for face recognition and texture retrieval.
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3.4.2 Sum-Pattern and its histogram

As we know, the wide use of DCT in image compression and image retrieval comes from

its capability to compact the energy. It means that much of the energy lies in low frequency

coefficients, so that high frequency could be discarded. In other words, only a reduced

part of DCT coefficients can efficiently represents the image contents. Furthermore, the

DC coefficient indicates the average energy of the block and some AC coefficients contain

directional information (See details in Section 2.1).

Inspired from mentioned above, we select 9 AC coefficients in each block to construct

Sum-Pattern. 9 coefficients are categorized into 3 directional groups: horizontal, vertical

and diagonal. The sums of 2 or 3 coefficients in each group form Sum-Pattern. We use

parameter NcSum to indicate the number of coefficients that are used in each group. The

process of this construction is shown in Figure 3.11.

Figure 3.11: Sum-Pattern Construction
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Like for previous proposal, we generate the histogram of Sum-Pattern as image de-

scriptor. A disadvantage of the histogram method is that it requires a large number of

histogram bins, typically several hundreds, to capture information of feature vector accu-

rately. Thus it leads to complexity in both storage of image features and retrieval timing.

To overcome this drawback, in section 3.3, we proposed to merge adjacent patterns. But

in this section, we do it in another way: we adopt two improvements.

From the original histogram of Sum-Patterns, shown in Figure 3.12(a), we can make

two observations: the first one is that the first Sum-Pattern inside the histogram is very

dominant, similar with the one in HAC as described in Section 3.3.3. This Sum-Pattern

mainly corresponds to uniform blocks of image and we will not consider this pattern

in the Sum-Pattern histogram. The second one is that there is only a part of Sum-

Patterns that appears with large number of occurrences and at the opposite, a large

number of Sum-Patterns that appears rarely. So in consideration of time-consuming and

efficiency, we select the Sum-Patterns which have large number of occurrences to construct

the histogram. We use parameter Sumbins to represent the number of Sum-Patterns

that are selected. For constructing the Sum-Pattern histogram of an image, we calculate

the occurrence of these Sum-Patterns in this image, and then we get the Sum-Pattern

histogram HSum, as shown in Figure 3.12(b).

3.4.3 DC-Pattern and its histogram

Same DC-Pattern histogram as presented in Section 3.3.4 is also used in this proposal.

Let DCbins be the number of DC-Patterns retained. More details of DC-Pattern can be

found in Section 3.2.2.

3.4.4 Similarity measurement

We use the concatenation of Sum-Pattern and DC-Pattern histogram as feature de-

scriptor for image retrieval. In this context, the descriptors are defined as follows:

H = [(1 − α) × HSum α × HDC ] (3.10)

α is a weight parameter that controls the impact of Sum-Pattern histogram and DC-

Pattern histogram.

Beside Manhattan distance, Chi-Squared distance (χ2 distance) which is widely used
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(a) Histogram of original Sum-Patterns

(b) Histogram of selected Sum-Patterns

Figure 3.12: Histogram of Sum-Patterns

for measuring the similarity between histograms is also used as similarity measurement.

The definition of Manhattan distance can be found in Equation 3.9 and χ2 distance is

defined as follows:

Dis(Q, Ii) =
K

∑

j=1

(HQ(j) − HIi
(j))2

HQ(j) + HIi
(j)

(3.11)

in which HQ and HIi
are feature descriptors of the query image Q and that of ith image

in the database, K indicates the dimension of the descriptors.

3.4.5 Experimental Results

The objective of the experimental section covers three important issues: first, we eval-

uate the contribution of Sum-Pattern. Second, we extend the application of proposal from

face recognition to texture retrieval. Third, we compare the texture retrieval performance
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with previous research work, including Linear scan, Zigzag-Pattern and state-of-the-art

methods in wavelet domain presented in [82–84].
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Figure 3.13: Global comparison of different methods

Face Recognition

Same experiments on GTF and ORL database described in Section 3.3 are executed

to demonstrate the contribution of Sum-Pattern. The descriptors of feature vectors con-

structed from AC coefficients are firstly used alone for face recognition. For Sum-Pattern

method, we tested different distances: Manhattan distance and Chi-Squared distance. And

also, different NcSum are tested. Table 3.3 gives the details of comparison. From this

table, we can conclude that Sum-Pattern with χ2 distance outperforms on ORL database

and Zigzag-Pattern outperforms on GTF database. When NcSum = 2, EERs are lower
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than that of when NcSum = 3 no matter Manhattan distance or Chi-Squared distance

is used in ORL database, while EERs are same level in GTF database. Furthermore, χ2

distance outperforms Manhattan distance in this task: it can always assure lower EERs.

Table 3.3: Comparison of different feature descriptors of AC coefficients

ORL GTF
Methods Parameters EER Parameters EER
Linear scan
(Manhattan
distance)

Nc=6,
QPAC=30,
ACbins=80

0.122 Nc=13,
QPAC=40,
ACbins=80

0.1389

Zigzag-Pattern
(Manhattan
distance)

Nc=4,
QPAC=30,
ACbins=100

0.075 Nc=7,
QPAC=10,
ACbins=50

0.111

Sum-Pattern
(Manhattan
distance)

NcSum=2,
QPAC=30,
Sumbins=110

0.0766 NcSum=2,
QPAC=10,
Sumbins=160

0.1515

Sum-Pattern
(Chi-Squared
distance)

NcSum=2,
QPAC=30,
Sumbins=50

0.0515 NcSum=2,
QPAC=30,
Sumbins=40

0.1490

Sum-Pattern
(Manhattan
distance)

NcSum=3,
QPAC=30,
Sumbins=80

0.0813 NcSum=3,
QPAC=10,
Sumbins=150

0.1530

Sum-Pattern
(Chi-Squared
distance)

NcSum=3,
QPAC=30,
Sumbins=50

0.0560 NcSum=3,
QPAC=30,
Sumbins=70

0.1447

And then, the concatenation of Sum-Pattern histogram and DC-Pattern histogram

is evaluated. We change the weight parameter α to see the global comparison of the

performance, as shown in Figure 3.13. Table 3.4 gives the details of the comparison. From

these comparisons, we can see that, Sum-Pattern combined with DC-Pattern outperforms

AC-Pattern combined with DC-Pattern on ORL database: improvement increase by 38%.

On GTF database, it gets the similar performance as Linear scan combined with DC-

Pattern but has a lower performance than Zigzag-Pattern combined with DC-Pattern.

However, the dimension of Sum-Pattern is 3, while that of AC-Pattern in Linear scan is

much larger than 3: 15 maximal.

Texture retrieval

As we want to extend our proposal to a wider application field, we also evaluate

our proposal in the context of texture retrieval. Vision Texture database (VisTex) [85]

is chosen for evaluation. The whole VisTex texture database has 167 natural textured
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Table 3.4: Comparison of EER on ORL and GTF

ORL GTF
Methods Parameters EER Parameters EER
Linear scan
+DC-Pattern
(Manhattan
distance)

Nc=6,
QPAC=30,
ACbins=80

0.0607 Nc=13,
QPAC=40,
ACbins=80

0.1157

Zigzag-Pattern
+DC-Pattern
(Manhattan
distance)

Nc=4,
QPAC=30,
ACbins=100

0.05 Nc=7,
QPAC=10,
ACbins=50

0.087

Sum-Pattern
+DC-Pattern
(Manhattan
distance)

NcSum=2,
QPAC=30,
Sumbins=110

0.0437 NcSum=2,
QPAC=10,
Sumbins=140

0.1129

Sum-Pattern
+DC-Pattern
(Manhattan
distance)

NcSum=3,
QPAC=30,
Sumbins=80

0.0523 NcSum=3,
QPAC=10,
Sumbins=140

0.1130

Sum-Pattern
+DC-Pattern
(Chi-Squared
distance)

NcSum=2,
QPAC=30,
Sumbins=70

0.0375 NcSum=2,
QPAC=30,
Sumbins=40

0.1119

Sum-Pattern
+DC-Pattern
(Chi-Squared
distance)

NcSum=3,
QPAC=30,
Sumbins=80

0.382 NcSum=3,
QPAC=10,
Sumbins=140

0.1145

images. To compare with the other approaches, we evaluate our proposal on a classical

selection of 40 textures which have already been extensively used in texture image retrieval

literature [82–84]. We named this selection as Small VisTex. This selection is displayed

in Figure 3.14.

In the experiments, the 512 × 512 color version of the textures are divided into 16

non-overlapping subimages (128 × 128) and converted to gray scale images, thus creating

a database of 640 images belonging to 40 texture-classes, each class includes 16 different

samples. In the process of retrieval, each image is used once as query image. The relevant

images for each query consist of all the subimages from the same original texture. Like

in other literatures, we use the average retrieval rate (ARR) to evaluate the performance.

For comparison purpose, we retrieve 16 images for each query. Every subimage in the

database is used as query once for retrieval and finally ARR is calculated.

Table 3.5 provides a detailed comparison of ARR for 3 wavelet-based approaches re-
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Figure 3.14: Selected textures from VisTex database

ported in [82–84] belonging to the state-of-the-art and Sum-Patter with DC-Pattern, where

the highest ARR is marked bold. In [82], images are decomposed by Discrete Wavelet

Transform (DWT), coefficients in each subband are modeled by a Generalized Gaussian

Density (GGD). Similarity is measured by computing KL-distances between model param-

eters. In [83], images are decomposed by Rotated Complex Wavelet Filters (RCWF) and

DT-CWT, and feature vectors are formed by the energy and standard deviation of each

subband; similarity is measured by Canberra distance. In [84], images are decomposed by

Dual-Tree Complex Wavelet Transform (DT-CWT), and each detail subband coefficients

are modeled by Gamma distribution; similarity is measured by KL-distance. It can be ob-

served that the combination of Sum-Pattern and DC-Pattern adopting either Manhattan

distance or χ2 distance as similarity measurement outperforms referred methods .

Table 3.5: Comparison of ARR on Small VisTex

Sum-Pattern +DC-Pattern
Method DWT [82] DT-CWT [84] RCWF [83] Manhattan Chi-Squared
ARR(%) 76.30 81.73 82.34 83.78 84.71
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Conclusion on experiments

From above experiments as well on face database as on texture database, we can get

two conclusions: first, Sum-Pattern improves the performance of face recognition on ORL

database, and could get similar performance on GTF database, but with the advantage

of smaller dimension of feature vector. Second, Sum-Pattern with DC-Pattern works

well in the application of texture retrieval, especially adopting χ2 distance as similarity

measurement. It outperforms state-of-the-art methods in wavelet domain.

3.5 Proposal for color texture retrieval

Based on the previous works described in Section 3.3 and Section 3.4, a new approach

using the combination of texture feature and color feature for color texture image retrieval

is proposed in this section.

3.5.1 General Descriptions

To take color into consideration, we make the choice of YCbCr color space which is

classically adopted in JPEG standard. In this color space, there are three components:

one is luminance component IY , and the other two are chroma components ICb and ICr.

Then each component is decomposed into 4x4 blocks which are transformed by DCT. So

for each DCT block we get 1 DC coefficient and 15 AC coefficients . Furthermore, same

preprocessing steps as described in section 3.3.2 are applied to the DCT coefficients of

luminance component IY to eliminate the effect of luminance variation. And then the

DCT coefficients are quantized with a quantization coefficient QP after normalization.

DY , DCb and DCr represent the DCT coefficients after normalization and quantization

from each component. As the IY component can be seen as a gray-level copy of the original

color image, and as the texture feature is considered as mainly appearing in the luminance

component of the image, then the texture feature is extracted from this component: 9

AC coefficients of every block in DY are selected to construct Texture-Pattern. As the

DC coefficient in each block reflects the average value of each block, Color-Pattern is

constructed by DC coefficients from each component, DY , DCb and DCr. Finally, we

use the histogram of Texture-Pattern HT and histogram of Color-Pattern HC as feature

descriptors for image retrieval. The block diagram of the proposed approach is shown in

Figure 3.15.
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Figure 3.15: Block diagram of proposal

3.5.2 Texture-Pattern construction

Texture-Pattern is obtained from the AC coefficients of DY . 9 coefficients out of all 15

AC coefficients are selected in each block and categorized into 3 groups: horizontal (Group

H), vertical (Group V) and diagonal (Group D), according to the directional information

they represented, as shown in Figure 3.16. For each group, the sum of the coefficients is

calculated firstly and then the squared-differences between each coefficient and the sum of

this group are calculated. Finally, the sums of these squared-differences of each group are

used to construct Texture-Patterns.

3.5.3 Color-Pattern construction

The DC coefficient reflects the average value of each block, DC coefficients in DY can

represent the average luminance of each DCT block and DC coefficients in DCb and DCr

can be seen as the average chrominance of each block: these three together can represent

luminance and chroma information of each block. We will call this as color information.

From the above observation, the Color-Pattern is constructed by the DC coefficients
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Figure 3.16: Texture-Pattern:
(a) Three groups of AC coefficients extracted from DCT block (b) Sums of each group

(c) Sums of squared-differences (d) Texture-Pattern

from the 3 components of each block in the image. The procedure of forming Color-Pattern

is shown in Figure 3.17.

Figure 3.17: Color-Pattern
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3.5.4 Histogram generation

The original histogram of Texture-Pattern is shown in Figure 3.18(a). We will have

the same considerations on this histogram as those we had in Section 3.4.2: we select those

of Texture-Patterns which have higher frequency of occurrence to construct the descrip-

tor HT . We will use parameter T bins to represent the number of bins that are selected

in the histogram of Texture-Patterns; the first Texture-Pattern inside the histogram that

corresponds to uniform blocks of image will not be considered as a representative pattern

in the Texture-Pattern histogram.

So the histogram of Texture-Patterns that will be used to image retrieval is as shown

in Figure 3.18(b). This histogram is obtained by selecting the first 350 (T bins = 350)

highest frequencies of occurrence Texture-Patterns from the histogram of Figure 3.18(a).

(a) Histogram of original Texture-Pattern

(b) Histogram of selected Texture-Pattern

Figure 3.18: Histogram of Texture-Patterns

Finally, we get HT from Texture-Pattern and HC from Color-Pattern as the feature

descriptors which are used for image retrieval.
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3.5.5 Similarity measurement

As we stated in Section 3.4, χ2 distance (see Equation 3.11) is more suitable for measure

the similarity between histograms, we choose χ2 distance as the similarity measurement

in this approach.

Since we have two kinds of feature descriptors, the texture descriptor HT and the

color descriptor HC , we will have two sets of distances that will be fused to measure the

similarity of images. However, each feature descriptor has its own physical meaning, and

their values range differently, so before fusing their distances, they should be normalized.

This can be done through the following ways: given a query image, by calculating distances

of texture descriptors and that of color descriptors between this query and all images in

the database. Thus two sets of distances {DisT (i)} and {DisC(i)} are obtained, where

i = 1, · · · , N . N is the number of images in the database. DisT (i) is the distance between

texture descriptor of query image Q and ith image in the database, and DisC(i) is the

distance between color descriptors of query image Q and ith image in the database. Thus

the distance normalization can be implemented as:

DisN
T (Q, Ii) =

DisT (i) − min{DisT (i)}
max{DisT (i)} − min{DisT (i)}

DisN
C (Q, Ii) =

DisC(i) − min{DisC(i)}
max{DisC(i)} − min{DisC(i)} (3.12)

where DisN
T (Q, Ii) and DisN

C (Q, Ii) are the normalized distances between texture and color

descriptors of query image Q and ith images in the database respectively. Both type of

distances now range from 0 to 1.

The global distance that is used to evaluate the similarity between the query and

images in the database is then given by:

DisG(Q, Ii) = (1 − β) × DisN
T (Q, Ii) + β × DisN

C (Q, Ii) (3.13)

where β ∈ {0, 1} is a weight parameter that can control the impact of color feature and

texture feature in the procedure of image retrieval.

3.5.6 Experimental results

As Texture-Pattern is also constructed from AC coefficients of each DCT block, the

experiments are divided into two main parts: the first one is to evaluate the contribution
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of Texture-Pattern. So we execute face recognition on three face databases and texture

retrieval on one texture database by Texture-Pattern and compare with the results of

Linear scan, Zigzag-Pattern and Sum-Pattern. The second one is to evaluate the per-

formance of color texture retrieval by combination of proposed texture feature and color

feature. Experiments are implemented on two data sets of texture images and the results

are compared with previous works and state-of-the-art methods.

Evaluation of Texture-Pattern

In this part, we perform experiments on face databases firstly. As ORL and GTF

are relatively small database, to further evaluate our proposal, we also implement it on

FERET database [86].

The FERET [86] database is a large collection of facial images. This database was

created between 1993 and 1996 at George Mason University, which contains 1564 groups

of images for a total of 14126 images that includes 1199 individuals and 365 duplicate

groups of images. A duplicate group is a second set of images of a person already in the

database and was usually taken on a different day. These images are divided into several

sets. Here two sets of frontal view faces fa and fb were selected to evaluate the proposed

method: fb is used as query images for retrieval from the fa. The position data of the

eyes, nose and mouth for each image are also provided with the database. Depending on

whether this information is used, the experiments can be divided into two types: fully

automatic and partially automatic [86]. Our experiments are of the second type, that

means, faces are extracted from the images based on the position data. And then, faces

are cropped to extract the region of interest to remove background and hairs. Finally,

they are scaled to 150 × 130 pixels. Figure 3.19 shows the examples of original images and

faces used in the experiments.

Three different methods in previous sections are compared with Texture-Pattern: Lin-

ear scan, Zigzag-Pattern, and Sum-Pattern. The comparison of experimental results is

shown in Table 3.6. As described before, different parameters could lead to different per-

formance, only the best results are listed in the table. From this table, we can see that,

Texture-Pattern outperforms referred methods both on ORL and FERET database. But

on GTF database, it ranks 2nd after Zigzag-Pattern.

Texture retrieval is then executed on a classical selection of 40 textures from VisTex [85]

as described in Section 3.4 named Small VisTex. Table 3.7 provides the comparison of
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(a) Original images on FERET

(b) Cropped Faces

Figure 3.19: FERET database

ARR on VisTex database and Figure 3.20 provides the comparison in the form of Precision-

Recall pair. Similar with the comparison on faces database, the four different methods

are compared. From this table and this figure, we can conclude that: Texture-Pattern

still outperforms in the experiments of texture retrieval by feature descriptors constructed

from AC coefficients.

Furthermore, if the concatenation of feature descriptors constructed from AC coef-

ficients (AC-Pattern histogram, Zigzag-Pattern histogram, Sum-Pattern histogram and

Table 3.6: EER obtained for different feature vectors from AC coefficients

Methods of constructing features
from AC coefficients

ORL GTF FERET

Linear scan 0.0949 0.1389 0.0511
Zigzag-Pattern 0.0750 0.111 0.0546
Sum-Pattern 0.515 0.1447 0.0496

Texture-Pattern 0.0479 0.1219 0.0496
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Figure 3.20: Comparison of different feature vectors of AC coefficients on Small VisTex

Table 3.7: ARR obtained on Small VisTex (Gray texture)

Method Linear scan Zigzag-Pattern Sum-Pattern Texture-Pattern
ARR(%) 73.90 77.01 78.06 79.43

Texture-Pattern histogram) and DC-Pattern histogram described in Section 3.3.4 is used

to do texture retrieval, better performance can be observed. Table 3.8 and Figure 3.21

provide the details of comparison from the point of view of ARR and Precision-Recall

pairs. In the table, “DT-CWT+RCWF” indicates the method proposed in [83], in which

dual-tree complex wavelet transform (DT-CWT) and dual-tree rotated complex wavelet

filters (DT-RCWF) are used to decompose the images and the energies and standard

deviations of each subband are used as the feature descriptors. “DT-CWT” represents

the method presented in [84], in which Dual-tree complex wavelet transform (DT-CWT)

is used to decompose images and Gaussian Mixture Models (GMM) are used to model

the magnitudes of detail subband coefficients. From the table, it can be observed that

Texture-Pattern with DC-Pattern outperforms other methods, including state-of-the-art

methods in wavelet domain [83,84].
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Figure 3.21: Comparison of Precision and Recall on Small VisTex

Table 3.8: Comparison of ARR on Small VisTex (Gray texture)

Method DT-CWT
DT-CWT
+RCWF

Linear scan
Zigzag
Pattern

Sum-Pattern Texture-Pattern

ARR(%) 81.73 82.34 82.09 82.59 84.71 85.20

Color texture retrieval by using both color and texture features

We perform experiments of image retrieval on color VisTex texture database. To

compare with the other approaches, we evaluate our proposal on two sets of VisTex: one

is Small VisTex used in our previous experiments of texture retrieval. And the other is

the whole collection of VisTex, that means the selection of 167 classes of texture.

We also should emphasize that for different β in Equation 3.13, various ARR can be got

because of different impact of color and texture feature in the process of retrieval. All the

results presented below are the ARR when β = 0.35. This value is found experimentally

to assure the best ARR that we can get.

Table 3.9 presents the comparative experimental results on the data set of 40 texture

classes with referred methods. In [87], images are decomposed by complex wavelet trans-

form, coefficients in each subband are modeled by Gaussian Copula with Gamma (GCG)

and statistics and marginal parameters of each band form feature vectors. In [88], coeffi-

cients in each subband are modeled by Student-t distribution and Rao geodesic distance



Chapter 3. Image descriptors in DCT domain

is used to measure the similarity. These two approaches are considered as state-of-the art

approaches. The comparison shows that our proposal performs better.

Table 3.9: ARR on Small VisTex (color version)

Method GCG [87] Student-t [88] Texture-Pattern+Color-Pattern
ARR(%) 85.83 89.65 90.16

Table 3.10 presents the retrieval performance on the whole VisTex database. In [89],

Gabor filters are used to extract features from R,G,B components, and in [90], authors

proposed Chromatic Statistical Landscape Features (CSLF) to represent the color texture.

From this table, we can see that as many classes of texture in VisTex are not homogeneous,

the retrieval rate is much lower than that of 40 classes. But our proposal still outperforms

referred methods.

Table 3.10: ARR on the whole VisTex (color version)

Method Gabor [89] CSLF [90] Texture-Pattern+Color-Pattern
ARR(%) 52.0 56.2 58.09

3.6 Conclusion

In this chapter, we have made a comprehensive study of image retrieval based on the

histogram of patterns constructed from coefficients of block DCT.

First, we introduced the general principle of image retrieval using the histogram of

patterns constructed from DCT blocks after detailing related works.

Secondly, an improved method Zigzag-Pattern was proposed. Two aspects of improve-

ment have been presented: 1) zigzag is adopted as the way of arranging coefficients in

AC-Pattern; 2) adjacent patterns are defined and merged to reduce the number of bins of

the histograms used for retrieval. Experimental results show that these two improvements

can enhance the performance in ORL and GTF databases compared with the original

approach.

Then with the consideration of the capability of DCT for compacting energy, a new

proposal for face recognition and texture retrieval is presented. This proposal has two con-

tributions: 1) Sum-Pattern, a new kind of feature vector constructed from AC coefficients,
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is proposed. With this feature vector, only a 3-D vector could represent the information

of AC coefficients efficiently for face recognition or texture retrieval. 2) a selection of most

frequent patterns is used to construct the histograms which are used for face recognition

or texture retrieval. This process could reduce the dimension of feature descriptors. And

we have also evaluated the extensibility of our proposal by applying it on two different

kinds of database: face database, which has structural contents, and texture database,

which has both structural and unstructured contents.

Finally, a new approach for color texture retrieval is proposed. This proposal has

two contributions: 1) it uses the statistical information of coefficients which represent

directional features to construct Texture-Pattern. Compared with AC-Pattern, Zigzag-

Pattern and Sum-Pattern, this feature vector is more powerful both on face recognition and

texture retrieval. 2) it proposes the method of constructing Color-Pattern. Experimental

results show that color texture retrieval with combination of Texture-Pattern and Color-

Pattern could get better performance than referred methods, including several state-of-

the-art approaches in wavelet domain.

In the next chapter, we will change the core of our tools and two methods of color

texture retrieval in wavelet domain will be presented.
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4
Image descriptors in Wavelet domain

4.1 Introduction

Discrete Wavelet Transform (DWT) is also a powerful tool to extract features from

images. So in this chapter, two approaches for color texture image retrieval in wavelet

domain are proposed. For retrieval efficiency, the combination of texture feature and color

feature is used. As we said in Section 3.2, there are two categories of extracting color

and texture features: separately and jointly [29]. Separately means that color images

are transformed into luminance and chrominance components and then color and texture

feature are extracted separately. Our first proposed method can be classified as this kind.

Our second method is in the context of jointly, which means that features are jointly

extracted from different spectral bands of color image.

This chapter is organized as follows: related works in wavelet domain are introduced

firstly, followed by the proposal for color texture retrieval based on data clustering (K-

means) in Section 4.4. Then a sparse representation based approach is presented in Sec-

tion 4.5. Experimental results of these two approaches are analyzed in Section 4.6.

4.2 Related works

Wavelet has been widely applied for texture retrieval. A popular concept is the frame-

work of probabilistic image retrieval. To the best of our knowledge, this idea is first

introduced by Vasconcelos and Lippman in [91–93], which is proposed initially in DCT

domain, followed by Do and Vetterli in [82] and Kwitt and Uhl in [84] who extended this

framework to wavelet domain. In the probabilistic framework, each image is represented

by statistical model and image similarity is measured by a function of these models. For
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example, in [82], DWT is used to decompose images and the detail subband coefficients is

modeled by Generalized Gaussian Distributions (GGD). A closed-form solution of the KL-

divergence between GGDs is used to measure the similarity between two images. In [84],

Dual-tree complex wavelet transform (DT-CWT) is used to decompose images and then

Rayleigh, Weibull, Gamma and Gaussian Mixture Models (GMM) are used to model the

magnitudes of detail subband coefficients. As for similarity measure, KL-divergence is used

again. All afore-mentioned approaches are in the context of gray-level texture retrieval;

color texture retrieval in the probabilistic framework has also appeared these years. In [94],

wavelet coefficients are modeled by Multivariate Generalized Gaussian (MGG) jointly in

each color components of texture and geodesic distance is used for similarity measure.

In [87], images are decomposed by complex wavelet transform, coefficients in each sub-

band are modeled by Gaussian Copula with Gamma (GCG) and statistics and marginal

parameters of each band form feature vectors. A state-of-the-art method of color tex-

ture retrieval is presented in [88], in which Laplace and student-t distribution are used to

model the color cue and spatial dependencies of wavelet coefficients and geodesic distance

is used again for similarity measure. Another state-of-the-art approach is presented in [95],

in which wavelet coefficients are modeled by several distributions, but Gaussian Copula

with Weibull distribution (GCWD) outperforms. These four approaches will be used as

references for our retrieval experiments.

Different with the framework of probabilistic image retrieval, image can be represented

by different kinds of features that are extracted from wavelet coefficients by signal pro-

cessing techniques and by calculating the distance between features, similarity can be got.

To the best of our knowledge, the first try in this context in wavelet domain is presented

by Chen in [96]. In that approach, “unichrome” features and “opponent” features com-

puted from DWT coefficients are jointly used for image retrieval. In [97], Tian and Mei

proposed the circular region energy of coefficients in low frequency bands as color feature

and synthesize energy of coefficients in high frequency bands as texture feature. Linear

combination of these two feature is applied for image retrieval. In [98], Liapis and Tziritas

presented a method in which color feature is represented by 2-D histogram of CIE Lab

chromaticity coordinates and texture features are extracted using Discrete Wavelet Frames

(DWF) analysis. In [99], Young and etc. proposed using the autocorrelogram of wavelets

coefficients extracted from Hue and Saturation components as color feature, and using the

first and second moments of the BDIP (block difference of inverse probabilities) and BVLC
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(block variation of local correlation coefficients) for each subband of Value component as

texture feature.

Most of the presented works didn’t consider the situation of retrieving compressed

format images, especially JPEG 2000 images. For example, if two state-of-the-art methods

are applied on JPEG 2000 images, images should be de-compressed entirely firstly, and

then transformed by dual-tree complex wavelet transform: this is time consuming! So we

propose to extract features directly from DWT. If our proposals are used to retrieve JPEG

2000 images, only partial-decompression is needed: it means that the compressed images

are only decoded into wavelet coefficients and then these coefficients are used for retrieval.

Furthermore, most of approaches using the wavelet coefficients to construct feature

vectors often focus on the features of subband of wavelet: mean value, energy, stand

deviation of each subband are often used as feature vector or the distribution of coefficients

in each subband are represented by statistical models. In the following proposals, we will

present simple ways to construct feature vectors directly from the coefficients.

4.3 Wavelet decomposition

Color images are firstly converted to YCbCr, whose components are IY , ICb and ICr.

And then, each component is decomposed by N -level Discrete Wavelet Transform (DWT).

Results are represented by W mn
S , where S ∈ {Y, Cb, Cr} denotes the components and m ∈

{LL, HL, LH, HH} denotes the subband orientation and n = {1, 2, . . . , N} the wavelet

decomposition level. In our approach, we choose CDF 9/7 wavelets that is also used in

JPEG2000. Subbands can be classified into two categories: approximation subband W LLN
S

and detail subbands W HLn
S , W LHn

S and W HHn
S , as shown in Figure 4.1. In this figure, we

demonstrate the decomposition level N = 2 as example.

4.4 Descriptor of color texture generated by K-means

This section details our first new approach using the combination of texture and color

features for color texture image retrieval in wavelet domain based on data cluster (K-

means).
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Figure 4.1: Wavelet decomposition

4.4.1 Multiresolution texture-vectors and color-vector

As the IY component can be seen as a gray-level copy of the original color image, and

as the texture feature is considered as mainly appearing in the luminance component of

the image, the multiresolution texture-vectors are constructed from wavelet coefficients in

detail subbands of Y channel in both decomposition levels, that’s to say W HLn
Y , W LHn

Y and

W HHn
Y , where n = {1, 2, . . . , N}, as marked blue in Figure 4.2. On the other hand, color-

vector is constructed from the coefficients of approximation subbands of each component,

that’s to say W LLN
Y , W LLN

Cb and W LLN
Cr , as marked yellow in Figure 4.2.

We will have N kinds of texture-vectors when images are decomposed by N levels.

They are constructed by the coefficients at the same position from detail subbands of each

decomposition level in Y component. We use N = 2 as examples again. In this situation,

two levels of resolution can be got, respectively high and low and the texture-vectors

are referred as: Hi Resolution texture-vector (T V1) and Low Resolution texture-vector

(T V2). T V1 contains three coefficients from three subbands W HL1
Y ,W LH1

Y and W HH1
Y

respectively in first decomposition level. T V2 is constructed in the same way, but in second

decomposition level from three different subbands W HL2
Y ,W LH2

Y and W HH2
Y respectively.

Thus each texture-vector contains vertical, horizontal and diagonal information. Color-

vector (CV ) is built in the similar way. Each color-vector includes three coefficients at the

same position from the lowest-frequency subbands of Y, Cb and Cr components, W LL2
Y ,

W LL2
Cb and W LL2

Cr respectively. Figure 4.2 graphically shows the process and the definition
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of texture-vectors and color-vector are listed as follows:

CV = [W LLN
Y (xC , yC), W LLN

Cb (xC , yC), W LLN
Cr (xC , yC)]

T Vn = [W HLn
Y (xn, yn), W LHn

Y (xn, yn), W HHn
Y (xn, yn)] (4.1)

where (xn, yn), n = {1, 2, . . . , N} and (xC , yC) indicate the coordinates of the coefficients

in each subband. These 3-dimension vectors are used to construct feature descriptors.

By this way, only 50% wavelet coefficients are used for constructing feature vector when

N = 1 and this number decreases to 37.5% when N = 2, and 33.4% when N = 5.

Figure 4.2: Mapping coefficients into vectors (N=2)

4.4.2 Descriptor construction

We use the histogram of these vectors as the descriptor of the image. With the ob-

jective of reducing dimensions of descriptors, before generating the histogram, K-means

algorithm [100] is used to divide the color-vector space and texture-vector space into parti-

tions that are represented by the cluster centers issued from K-means. And the histogram

of vectors is defined as the number of vectors that fall into these partitions. As we detailed

in Section 2.4.1, determining a meaningful and appropriate K by objective criterions is

still an unsolved problem; the number of clusters K for different kinds of vectors that

assure best retrieval performance are found experimentally: for texture-vectors they are

all clustered into 400 centers respectively (K1 = 400, K2 = 400, . . . , KN = 400), and for

color-vectors, KC = 2000. Therefore each histogram of texture-vectors HT V n has 400 bins

respectively. The histogram of color-vectors HCV has 2000 bins.
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4.4.3 Similarity measurement

As mentioned in previous chapter, χ2 distance is more suitable for measuring the

similarity between histograms, so in this approach, it is also chosen. The definition of this

distance is reminded as follows:

Dis(Q, Ii) =
K

∑

j=1

(HQ(j) − HIi
(j))2

HQ(j) + HIi
(j)

(4.2)

in which HQ and HIi
are feature descriptors of the query image Q and that of ith image

in the database, K indicates the dimension of the descriptors.

Since we have two kinds of feature descriptors: texture descriptor HT V and color

descriptor HCV , we will have two sets of distances, and the fusion of both sets of distances

is used to determine the similarity of images. However, each feature descriptor has its own

physical meanings, and its ranges of values are totally different, so before using the fusing

distances of different descriptors, they should be normalized.

Distances are normalized through the ways described in Section 3.5.5.

Let DisN
T V (Q, Ii) and DisN

CV (Q, Ii) be the normalized distances of texture and color

descriptors respectively, in which:

DisN
T V (Q, Ii) = DisN

T V 1(Q, Ii) + DisN
T V 2(Q, Ii) + · · · + DisN

T V N (Q, Ii) (4.3)

where DisNT n(Q, Ii) are the normalized distances of HT V n, n = {1, 2, . . . , N}. The global

distance used to evaluate the similarity between the query and images in the database is

then given by:

DisG(Q, Ii) = α × DisN
CV (Q, Ii) + (1 − α) × DisN

T V (Q, Ii) (4.4)

where (0 ≤ α ≤ 1) is a weight parameter that controls the impact of color feature and

texture feature in the procedure of image retrieval.

4.5 Descriptor of color texture generated by sparse repre-

sentation

In this section, sparse representation is introduced into color texture retrieval by

proposing a new framework for this application field, in which images are represented
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by sparse representation based histogram. Comparing with classical histogram of vectors,

in which feature vector is only projected into one partition of vectors, sparse representa-

tion based histogram projects feature vector into many partitions of vectors with different

weights. In other words, one feature vector will be represented by a few basis vectors

instead of one basis vector and this will let the histogram to be a more accurate repre-

sentation of the images. Details of sparse representation based histogram can be found in

Section 2.5.

Two key problems should be considered for applying sparse representation based his-

togram: feature vectors and dictionary. So multiresolution feature vector and dictionary

in wavelet domain are proposed.

4.5.1 Multiresolution feature vectors

Color images are decomposed as described in Section 4.3. The approximation sub-

band W LLN
S , S ∈ {Y, Cb, Cr} is a sub-sampled version of the original image. The detail

subbands W HLn
S , W HLn

S and W HHn
S , S ∈ {Y, Cb, Cr} mostly represent the information

of local discontinuities of horizontal, vertical and diagonal directions in the image, that’s

to say the directional information of the image. The feature vectors constructed by the

coefficients from each subband are also categorized into two kinds: approximation vector

A and detail vector T . A is constructed from W LLN
S whose elements are the coefficients

at the same location in each color component. Tn are constructed from nine detail sub-

bands at the same decomposition level in each color component whose elements are the

coefficients at the same location in each of the horizontal, vertical and diagonal subbands.

Figure 4.3 graphically shows this procedure when N = 2, and the definitions of feature

vectors are as follow:

A = [W LLN
Y (xa, ya), W LLN

Cb (xa, ya), W LLN
Cr (xa, ya)]

T n = [W HLn
Y (xn, yn), W LHn

Y (xn, yn), W HHn
Y (xn, yn),

W HLn
Cb (xn, yn), W LHn

Cb (xn, yn), W HHn
Cb (xn, yn),

W HLn
Cr (xn, yn), W LHn

Cr (xn, yn), W HHn
Cr (xn, yn)] (4.5)

where n = {1, 2, . . . , N} and (xa, ya) and (xn, yn) indicate the coordinates of the coefficients

in approximation subband and detail subband respectively. For N decomposition levels,
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we have one set of A and N sets of T n.

Figure 4.3: Mapping coefficients into multiresolution vectors (N=2)

4.5.2 Dictionaries

As we have N + 1 kinds of feature vectors, N + 1 dictionaries should be constructed

for sparse representation, which are generated from the corresponding feature vectors of

the training images. Random selection of a quarter of images from image database is

chosen as training set. There are many methods presented for dictionary learning, but in

this work we are not concerned with finding the best possible method. So the simplest

choice is using widely used unsupervised learning method: K-means. From giving training

set, feature vectors are generated as we described before, and the cluster centers of these

training vectors resulted from K-means are used as the dictionary. So we get DA and DT n

respectively, where n = {1, 2, . . . , N}, DA ∈ R
3×KA and DT n ∈ R

9×KT n (KA and KT n

indicate the number of cluster centers). In the step of performance evaluation, KA and

KT n are fixed to 400 and 1500 respectively, which were found experimentally.

4.5.3 Similarity measurement

With N +1 kinds of feature vectors and N +1 dictionaries, N +1 sparse representation

based histograms (HA, HT 1, . . . , HT N ) can be got for one image. We always chose χ2

distance to measure the similarity between the histogram of query HQ and the histogram

of ith image from the database HIi
. The fused distances of each histogram is used to

measure the similarity of the image.

Since each histogram are constructed from different feature vectors, values of distances
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range differently. Before using fusion of the distances of different histograms, they should

be normalized. Distances can be normalized through the ways described in Section 3.5.5.

The global distance used to evaluate the similarity between the query and images in

the database is then given by:

DisG(Q, Ii) = β × DisN
A (Q, Ii) + (1 − β) × DisN

T (Q, Ii) (4.6)

where(0 ≤ β ≤ 1) is a weight parameter that controls the impact of different histograms in

the procedure of image retrieval. And DisN
A (Q, Di) and DisN

T (Q, Di) are the normalized

distances of HA and HT n respectively, and

DisN
T (Q, Ii) = DisN

T 1(Q, Ii) + DisN
T 2(Q, Ii) + · · · + DisN

T N (Q, Ii) (4.7)

where DisN
T n(Q, Ii), n = {1, 2, . . . , N} are the normalized distances of HT n.

4.6 Experimental results

The contents of experiments are listed as: 1) Showing the effect of decomposition level

N . 2) Analyzing the experiments and showing some failed retrieval results. 3) Comparing

with state-of-the-art methods.

We will evaluate our method on VisTex texture database [85] firstly, similar as the

experiments in the Section 3.5.6. For comparison purpose, we evaluate our proposal on

two data sets: one is on the classical selection of 40 classes of textures that are used by

many literatures about texture retrieval and we have named it ‘Small VisTex’. And the

other one is on the whole collection of VisTex, that means the selection of 167 classes of

texture.

In the retrieval experiments, for all data sets, each subimage in the database is used

once as a query. ARR and Precision-Recall are used to evaluate the performance. The

relevant images for each query consists of all the subimages from the same original texture.

We should also emphasize that for different α in Equation 4.4 (controlling the impact

of color-vector and texture-vector) and β in Equation 4.6 (controlling the impact of prox-

imation vector and detail vector), various ARR can be got because of different impacts of

color feature and texture feature or different impacts of approximation feature and detail

feature in the process of retrieval. To avoid over-optimization of this parameter for differ-
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ent data sets, all the results presented below are the ARR for α = 0.35 in Equation 4.4

and β = 0.15 in Equation 4.6: they assure good ARRs that we can experimentally get in

all database, but not only optimization for best ARR in one database.
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Figure 4.4: ARR according to the number of top matches considered on Small VisTex
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4.6.1 Effect of decomposition level

The number of decomposition levels used in DWT affects the retrieval performance of

the proposed methods. In order to observe this effect, retrieval are performed for different

decomposition levels N = {1, 2, 3, 4, 5} and ARR is computed according to different num-

ber of similar images retrieved. The ROCs on Small VisTex and whole VisTex are shown

in Figure 4.4 and Figure 4.5 respectively.

Table 4.1 shows the numerical comparison between both methods on these two databases.

We can conclude that the global performance of sparse method is better than K-means

method as the mean value of ARR on different decomposition level of sparse method is

higher than that of K-means method while operating with less decomposition levels, K-

means method outperforms. This conclusion is affirmed again from the point of view of

Precision-Recall pair, as shown in Figure 4.6 and Figure 4.7.

Table 4.1: Comparison of ARR of different decomposition levels [%]
Numbers of Top matches Decomposition Level Small VisTex Whole VisTex

K-means Sparse K-means Sparse
N=1 91.37 89.24 67.33 67.99

Top 16 N=2 91.86 91.46 67.43 69.98
N=3 91.13 92.41 65.26 69.5
N=4 87.87 92.38 59.94 69.08
N=5 80.12 90.75 51.88 66.53

Average ARR 88.44 91.25 62.37 68.61

N=1 98 97.02 88 86.76
Top 60 N=2 97.02 97.37 86.88 87.62

N=3 96.17 97.48 84.88 87.87
N=4 95.62 97.76 81.15 88.53
N=5 94.14 97.82 74.8 87.78

Average ARR 96.19 97.49 83.14 87.71

Table 4.2 provides detailed retrieval rate of every texture class on Small VisTex in case

of top 16 similar images are retrieved. From this table, we can see that from the point

of view of ARR, K-means method is almost invariant to the decomposition levels when

N ≤ 3, and then the performance decreases rapidly when N ≥ 3. The reason is mainly

because when N increases, the amount of coefficients that are used for constructing feature

vectors decreases as we said in Section 4.4.1; while sparse method reaches the highest value

when N = 3, but the variance between ARR of different decomposition levels is small.

Thus decomposition level N = 3 gives satisfying results for both methods when the size

of images is 128 × 128.
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Table 4.2: ARR of each class on Small VisTex (Top 16 Matches)[%]

K-means Sparse
Texture N=1 N=2 N=3 N=4 N=5 N=1 N=2 N=3 N=4 N=5

bark.0000 54,30 55.86 58.98 56.64 53.52 86.72 86.72 71.09 87.11 87.11
bark.0006 74.22 76.95 80.86 80.86 69. 14 75.78 75. 78 95.70 89.45 90.23
bark.0008 61.33 64.06 62.50 59.38 46.48 71.09 76.56 73.83 82.81 80.08
bark.0009 65.23 61.72 55.08 41.41 36.72 60.94 65.63 81.25 75.00 67.58
brick.0001 100.00 100.00 100.00 99.61 93.75 100.00 100.00 100.00 100.00 100.00
brick.0004 100.00 100.00 100.00 99.22 89.06 96.09 98.05 98.44 96.48 91.02
brick.0005 97.27 97.66 94.53 80.47 61.33 98.05 98.83 98.44 94.92 88.67
buildings.0009 100.00 100.00 97.66 95.31 90.63 100.00 100.00 100.00 100.00 100.00
fabric.0000 100.00 100.00 100.00 99.22 97.66 83.20 83.20 84.77 88.28 88.67
fabric.0004 76.95 74.61 74.61 78.52 76.17 55.47 64.45 60.94 71.09 74.22

fabric.0007 98.05 98.44 96.88 96.48 92.58 100.00 100.00 100.00 100.00 99.22
fabric.0009 99.61 100.00 100.00 97.66 86.72 98.83 99.22 98.44 93.75 87.11
fabric.0011 99.61 100.00 100.00 99.22 89.84 100.00 100.00 99.22 100.00 97.66
fabric.0014 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
fabric.0015 100.00 100.00 99.61 94.14 83.59 99.61 99.61 98.83 100.00 100.00
fabric.0017 98.44 97.27 94.53 93.75 86.33 99.61 97.66 97.27 92.58 92.58
fabric.0018 87.89 90.63 98.44 96.88 96.09 80.08 99.22 99.22 96.48 92.58
flowers.0005 100.00 100.00 100.00 99.61 91.02 100.00 100.00 100.00 99.22 98.44
food.0000 100.00 100.00 100.00 100.00 97.66 100.00 100.00 100.00 100.00 99.22
food.0005 93.36 91.02 88.67 83.20 78.13 99.61 100.00 100.00 100.00 100.00
food.0008 100.00 100.00 99.22 89.06 67.19 100.00 100.00 100.00 100.00 100.00
grass.0001 93.75 96.48 91.02 91.80 81.64 72.66 79.69 71.48 81.25 77.73
leaves.0008 94.92 93.36 84.77 75.78 63.28 97.66 99.61 98.83 96.09 94.14
leaves.0010 99.22 97.66 98.44 92.19 76.56 99.22 100.00 100.00 100.00 100.00
leaves.0011 100.00 100.00 98.83 93.36 81.25 100.00 100.00 100.00 99.61 95.70
leaves.0012 58.98 74.22 85.94 83.98 66.80 50.00 50.00 49.61 50.00 50.00

leaves.0016 94.53 96.48 91.80 78.52 65.23 88.67 95.31 87.11 91.80 82.42
metal.0000 100.00 99.22 100.00 99.61 94.53 96.88 98.83 91.80 95.31 91.02
metal.0002 100.00 100.00 100.00 100.00 96.88 100.00 100.00 100.00 99.61 97.27
misc.0002 100.00 100.00 100.00 100.00 99.61 100.00 100.00 100.00 100.00 100.00
sand.0000 100.00 100.00 100.00 99.61 96.88 100.00 100.00 100.00 99.61 98.05
stone.0001 96.88 92.97 83.98 72.66 60.55 95.31 95.70 96.88 94.53 92.97
stone.0004 71.48 82.42 91.41 93.36 92.97 60.94 84.77 90.23 88.67 78.13
terrain.0010 90.23 80.86 70.70 65.63 59.77 75.39 78.91 96.88 94.14 96.09
tile.0001 83.20 74.61 69.14 63.67 59.77 77.73 74.61 71.09 73.44 77.34
tile.0004 100.00 100.00 100.00 93.36 79.30 100.00 100.00 100.00 99.61 98.83
tile.0007 77.73 93.75 98.83 94.53 89.45 73.05 79.30 98.83 88.67 87.89
water.0005 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
wood.0001 91.02 84.77 78.91 71.09 56.64 77.34 76.95 86.33 75.78 78.13
wood.0002 96.48 99.22 100.00 100.00 100.00 99.61 100.00 100.00 100.00 100.00
ARR 91.37 91.86 91.13 87.74 80.12 89.24 91.46 92.41 92.38 90.75
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Figure 4.5: ARR according to the number of top matches considered on Whole VisTex

4.6.2 Examples of failed retrieval

Although ARR of both methods are rather high (around 90%). there are also some

classes of textures get very low retrieval rate (around 50%). In K-means method, they

are ‘Bark.0000’ and ‘Bark.0009’, and in sparse method, ‘Fabric.0009’ and ‘Leaves.0012’,
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Figure 4.6: The Precision-recall pair on Small VisTex

as marked bold in the Table 4.2. Here we present and analyse some failed examples of

retrieval when one subimage of these texture are used as query. Figure 4.8 shows the

results of retrieved images when the query image is one of the subimage of ‘Bark.0000’
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Figure 4.7: The Precision-recall pair on Whole VisTex

and of ‘Bark.0009’ for K-means method at the decomposition level N = 3. And Figure 4.9

shows the results of retrieved images when the query image is one of the subimage of

‘Fabric.0004’ and of ‘Leaves.0012’ for sparse method at the decomposition level N = 3.

The wrong retrieved images are marked in red.
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(a) Results for one subimage of ‘Bark.0000’ (b) Results for one subimage of ‘Bark.0009’

Figure 4.8: Retrieved images of top 16 matches by K-means method

(a) Results for one subimage of ‘Fabric.0004’ (b) Results for one subimage of ‘Leaves.0012’

Figure 4.9: Retrieved images of top 16 matches by sparse method

From these four images, we can indicate that, although the failed retrieved images

are not good results according to the principle of performance evaluation, they are really

visually similar to the query image or have the similar directional information with the

query image.

4.6.3 Comparison with state-of-the-art

Finally for a more general evaluation, we give the comparison between our proposals

and referred methods including state-of-the-art methods. Besides Small VisTex and whole
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VisTex, two new databases are also chosen for comparison with state-of-the-art methods:

ALOT [101] and STex [102].

ALOT is a color image collection of 250 textures, in which every texture is recorded

under varied viewing angle, illumination angle, and illumination color. Some examples

of textures of this database is shown in Figure 4.10. For comparison purpose, only the

textures captured under c1l1 condition are selected, which means that images are captured

by camera 1 under illumination condition 1. More details can be found in [101]. In the

experiments, the 384 × 256 color version of texture are divided into 16 non-overlapping

subimages (96 × 64), thus creating a database of 4000 images belonging to 250 classes.

Figure 4.10: Examples of textures from ALOT database

STex is a large collection of 476 color texture image that have been captured around

Salzburg, Austria. Some examples of textures of this database is shown in Figure 4.11. In

the experiments, the 512×512 color version of texture are divided into 16 non-overlapping

subimages (128 × 128), thus creating a database of 7616 images belonging to 476 classes.

As we said before, decomposition level N has the effect on the retrieval performance,

and some methods reported their results with given decomposition levels, but others do
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Figure 4.11: Examples of textures from STex database

not. So for objective comparison, N is set to 3 when compare with methods presented

in [87, 94, 95], and set to 2 when [88] is compared. For those that we didn’t know the

decomposition levels or non-wavelet methods, the best ARRs are compared.

Table 4.3 and table 4.4 present the comparative experimental results on small VisTex.

We repeat the principles of referred methods. ‘MGG’ is a method presented in [94],

in which wavelet coefficients are modeled by Multivariate Generalized Gaussian (MGG)

jointly in each color components of texture and geodesic distance is used for similarity

measure. ‘GCG’ represents the method introduced in [87], in which images are decomposed

by complex wavelet transform, coefficients in each subband are modeled by Gaussian

Copula with Gamma (GCG) distribution and statistics and marginal parameters of each

band form feature vectors. And L1 distance is used to measure the similarity. ‘Student-t’

is seen as one state-of-the-art method presented in [88], in which student-t distribution are

used to model the color cue and spatial dependencies of wavelet coefficients and geodesic

distance is used again for similarity measure. ‘GCWD’ is another state-of-the-art approach

presented in [95], in which wavelet coefficients are modeled by several distributions, but
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Gaussian Copula with Weibull distribution (GCWD) outperforms. It can be observed that

sparse method outperforms referred methods including state-of-the-art methods while K-

means method has a better performance than almost all referred methods except ‘MGG’

method.

Table 4.3: ARR on Small VisTex (N=3)
Method MGG [94] GCG [87] GCWD [95] K-means Sparse
ARR(%) 91.2 85.83 89.5 91.13 92.41

Table 4.4: ARR on Small VisTex (N=2)
Method Student-t [88] K-means Sparse
ARR(%) 89.65 91.86 91.46

Table 4.5 presents the retrieval performance on the whole VisTex, ALOT and STex

database. We note that Sparse method still outperforms in these three large databases and

with obviously improvements in ALOT and STex, while K-means method outperforms in

ALOT but only give same level of performance with referred methods in STex and ranks

in the third position in whole VisTex.

Table 4.5: ARR on whole VisTex, ALOT and STex (N=3)[%]
MGG [94] GCWD [95] K-means Sparse

VisTex 69.3 63.8 67.43 69.98

ALOT 49.3 54.1 59.69 58.08
STex 71.3 70.6 69.85 78.07

4.6.4 Conclusion of experiments

From above experiments, we can get two conclusions as follows: 1) Decomposition

level N should be chosen appropriately according to the method. 2) Compared with state-

of-the-art methods, K-means method can not always get the better performance while

sparse method always outperforms. In consideration of less amount of wavelet coefficients

used in K-means method, it is not a bad choice for color texture retrieval. However, as

it is pointed out in [95], computing the similarity between histograms is less expensive in

terms of arithmetic operations than computing any of similarity measure that used in the

framework of probabilistic image retrieval.
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4.7 Conclusion

In this chapter, we have detailed two proposals for color texture retrieval in wavelet

domain.

The first proposal is in the context of extracting color and texture features separately:

color features are extracted by the coefficients of approximation subband of DWT in

luminance and chrominance components of images and texture features are constructed

by the coefficients of detail subbands of DWT in luminance components . This proposal

brings one contribution: with the proposed multiresolution texture-vectors and color-

vector, only at most 50% wavelet coefficients need to be processed for constructing feature

vectors.

The second proposal is in the context of extracting color and texture features jointly:

multiresolution features are extracted jointly both from luminance and chrominance com-

ponents of color texture. The main contribution of this proposal is introducing sparse

representation into color texture retrieval by proposing sparse representation based his-

togram. This contribution leads to two advantages: 1) The sparse representation based

histogram is more accurate as feature descriptor which leads to higher accuracy in the

color texture retrieval. 2) This approach for color texture retrieval has less expense in

computing load than the framework of probabilistic color texture image retrieval in the

aspect of computing the similarity between feature descriptors.

Experimental results, got on four data sets: classical selection of 40 textures of VisTex,

the whole VisTex, ALOT and STex, confirmed the contributions of our two proposals by

comparing with state-of-the-art approaches in wavelet domain.
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Conclusion and perspective

This thesis has introduced, analyzed and studied CBIR in transform domain. This

work mainly focus on image descriptor extracted from DCT and DWT that are widely

used for compressing images and videos.

The background and some fundamental concepts related to CBIR and our proposals

have been firstly introduced. In general, there are two categories of features used for

image retrieval: intensity-based (color and texture) and geometry-based (shape). We have

focused on intensity-based one. We have analyzed the properties of coefficients of DCT

and DWT and have shown the possibilities to construct feature vectors directly from

transformation coefficients. Then the construction of histogram was introduced. K-means

and sparse representation used for constructing histograms were also presented. We have

proposed a new kind of histogram: sparse representation based histogram, in which one

target vector is represented by a few basis vectors instead of by one basis vector in the

classical histogram. This leads to a more accuracy representation of target vectors. And

then the similarity measurement, especially the distances between histograms have been

introduced. Finally, the evaluation methods for CBIR performances have been presented

and chosen.

We have proposed one improved approach and two new approaches in DCT domain.

The improved approach is based on a method in which the histogram of AC-Patterns

and that of DC-Patterns are used as feature descriptor. AC-Pattern consists of the AC

coefficients extracted from one DCT block. Two aspects of improvements were proposed:

zigzag scan used for arranging coefficients in AC-Pattern and merging adjacent patterns.

Considering the properties of DCT coefficients, two kinds of feature vectors were proposed:

Sum-Pattern and Texture-Pattern. Both feature vectors are 3-D vectors that could repre-
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sent the directional information of DCT block efficiently and can be applied both on face

recognition and texture retrieval. Finally, Color-Pattern was proposed and used in con-

junction with Texture-Pattern for color texture retrieval. Experimental results on widely

used face database (ORL, GTF and FERET) and popular texture database (VisTex) have

demonstrated the efficiency of our approaches.

We have proposed two approaches for color texture retrieval in wavelet domain. The

first one operates in the context of constructing color and texture features separately:

color features are extracted by the coefficients of approximation subband of DWT and

texture features are constructed by the coefficients of detail subbands of DWT in luminance

components. The main advantage of this proposal is that it only requires at most 50%

wavelet coefficients to be processed. The second approach is in the context of using the

color-texture features jointly. This contribution leads to two advantages: one is that one

feature vector will be represented by a few basis vectors instead of one basis vector in

sparse representation based histogram. This will let the histogram to be more accurate

for representing the images; another one is that this approach is much less expensive

in computing load in the aspect of computing the similarity between feature descriptors.

Experiments have been executed on four widely used color texture database: Small VisTex,

whole VisTex, ALOT and STex. The effect of decomposition level and failed retrieval

examples were also analyzed. Furthermore, comparison with several state-of-the-art has

also been done with success. All these results confirmed the contribution of these two

proposals.

Future perspective works will focus on following aspects:

1. Extending the sparse representation based histogram to DCT domain. To do this,

two problems should be solved: on one hand, appropriate feature vectors should be

constructed; on the other hand, corresponding dictionaries should be found.

2. Verifying the capability of multiresolution feature vectors in DWT domain for re-

trieving multiresolution images. In the experiments of evaluation, images in the

database are supposed to have the same resolution. As multiresolution feature vec-

tors have been defined, it should be interesting to see the performance of retrieval

when the images in the database have different resolutions.

3. Finding a more compact dictionary. In current approaches, one kind of feature

vectors needs to one corresponding dictionary. But the ideal compact dictionary

satisfies two conditions: the size of dictionary should be the smaller the better and



the number of dictionaries also should be smaller. So the best choice is to build only

one dictionary with reasonable size that could be suitable for constructing histograms

of all kinds of multiresolution feature vectors.

4. Integrating more features in the approach based on sparse representation based

histogram. Only global texture and color features are considered in proposed ap-

proaches, but other kinds of features could be also used separately or jointly: shape

features or local features.



Chapter 5. Conclusion and perspective



A
Appendix : Résumé étendu en français

Chapitre 1 : Introduction

L’accroissement des bases de données d’images numériques augmente la quantité d’in-

formation disponible pour les utilisateurs. La difficulté d’utiliser efficacement ces infor-

mations s’accroît également. La recherche d’images s’utilise pour parcourir, rechercher et

récupérer facilement les données. L’objectif de la recherche d’images est de fournir un accès

facile à l’image dans les bases des données. Deux méthodes existent dans ce domaine : la

premiere basée sur le texte et la seconde basée sur le contenu.

La méthode basée sur le texte utilisant l’indexation par les mots-clés du texte est la

méthode de recherche d’images la plus courante. La technique basée sur le texte est pré-

cise et efficace pour trouver les images annotées. Cependant, trois difficultés principales

surviennent. Premièrierement, l’explosion de la quantité d’informations nécessite des an-

notations manuelles laborieuses. Deuxièmement, la richesse du contenu des images et la

subjectivité de l’annotation manuelle peuvent conduire à des annotations différentes sur

une même image et induire à une inadéquation irréversible dans les processus de recherche.

Enfin, les annotations doivent être faites des langues différentes, accroissant ainsi la diffi-

culté de recherche.

Pour résoudre ces trois problèmes, la méthode de recherche d’images par le contenu

(CBIR) est proposée depuis le début des années 1990. Elle est basée sur un nouveau mode

de recherche d’images, dans lequel les images sont indexées par leurs propres contenus

visuels. Le but principal du CBIR est d’obtenir les images qui sont visuellement similaires

à la requête présentée. Le schéma général de CBIR est illustré sur la Figure A.1.

Son principe est l’extraction de caractéristiques, un processus de transfert de l’image
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Figure A.1 – La recherche d’images par le contenu

d’entrée à ensemble des caractéristiques (également nommé vecteurs caractéristiques). Il

existe deux types principaux de vecteurs caractéristiques en recherche d’images : le premier

basé sur l’intensité (couleur et texture), le deuxième sur la géométrie (forme). La représen-

tation des vecteurs caractéristiques est aussi appelée descripteur des caractéristiques. Un

descripteur peut être global ou local. Un descripteur global utilise des caractéristiques vi-

suelles de l’image entière alors qu’un descripteur local utilise des caractéristiques visuelles

limitées à un voisinage local.

Une fois l’extraction de caractéristiques terminée, la distinction des images similaires

doit être prise en compte. Les technologies peuvent se diviser en la similarité basée région,

la similarité globale, ou la combinaison des deux.

Cette thèse se concentre sur la recherche d’images basée sur l’intensité. Même si le

concept pour distinguer l’écart sémantique des caractéristiques entre bas niveau et haut

niveau est encore un problème dans un système CBIR, la similarité visuelle peut être plus

critique que la similarité sémantique pour certaines applications. L’extraction de carac-

téristiques de couleur et de texture est toujours un problème et les approches existantes ne

suffisent pas pour le résoudre, surtout lorsqu’elle est appliquée sur différents types de base

de données. Notre idée est d’essayer de trouver une approche qui peut extraire directement

les caractéristiques de couleur et de texture à partir des domaines transformés et d’utiliser

leur combinaisons pour effectuer la recherche d’image. Ce travail est motivé par le fait que

la majorité des images sont stockées dans un format compressé et que les technologies de

compression utilisant différents types de transformations.

Ce résumé français introduit les contenus principaux de la thèse. Il s’articule comme

suit : les concepts fondamentaux du CBIR ainsi que les théories utilisées dans les approches

proposées sont introduits dans le chapitre 2. L’approche dans le domaine de la transfor-
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mée en cosinus discrète (Discrete Cosine Transform, DCT) pour images compressées avec

JPEG est présentée au chapitre 3, dans ce chapitre on améliore les méthodes existantes et

on propose deux nouvelles approches. Enfin le chapitre 4 détaille les approches dans le do-

maine de la transformée en ondelettes discrète (Discrete Wavelet Transform, DWT) pour

JPEG2000 où deux méthodes sont également proposées. La conclusion et les perspectives

sont présentées dans le chapitre 5.
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Chapitre 2 : Concepts fondamentaux

Ce chapitre introduit les concepts fondamentaux concernant le CBIR dans le contexte

des domaines transformés. Les transformées DCT et DWT sont d’abord introduites. À

partir des coefficients de ces deux transformations, des vecteurs caractéristiques sont con-

struits. Puis deux approches sont utilisés pour la création d’histogrammes : le regroupe-

ment des données et la représentation parcimonieuse sont aussi introduits. Enfin, la mesure

de similarité entre les histogrammes et l’évaluation de la performance pour le CBIR sont

détaillées.

2.1 La transformée en cosinus discrète

La DCT 2-D pour un bloc de taille N × M est donnée par :

C(u, v) = α(u)α(v)
N−1
∑

x=0

M−1
∑

y=0

f(x, y) cos[
π(2x + 1)u

2N
] cos[

π(2y + 1)v
2M

] (A.1)

pour u = 0, 1, 2, . . . , N − 1, v = 0, 1, 2, . . . , M − 1, et la transformation inverse est définie

comme :

f(x, y) =
N−1
∑

u=0

M−1
∑

v=0

α(u)α(v)C(u, v) cos[
π(2x + 1)u

2N
] cos[

π(2y + 1)v
2M

] (A.2)

pour x = 0, 1, 2, . . . , N − 1, y = 0, 1, 2, . . . , M − 1. Et α(o), o ∈ {u, v} est définie comme :

α(o) =

⎧

⎪

⎨

⎪

⎩

√

1
N for o = 0

√

2
N for o �= 0

(A.3)

Dans Equation A.2,

B(u, v) = α(u)α(v) cos[
π(2x + 1)u

2N
] cos[

π(2y + 1)v
2M

] (A.4)

sont les images de base de la DCT 2-D. Avec ces images de base, la transformation DCT

inverse peut être réécrite comme :

f(x, y) =
N−1
∑

u=0

M−1
∑

v=0

C(u, v)B(u, v) (A.5)
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Dans cette équation, l’image f(x, y) peut être traitée comme la somme pondéré des images

de base B(u, v), avec C(u, v) représentant le poids. Les images de base pour N = M = 8

sont présentées sur la Figure A.2. Pour l’illustration, chacune est représentée comme une

image en niveaux de gris : plus la valeur de ses points est petite, plus le pixel est sombre ;

plus la valeur est grande, plus le pixel est clair. Nous pouvons noter que les différentes

images de base présentent une augmentation progressive de la fréquence dans le sens ver-

tical et horizontal. Le coefficient DC en haut à gauche est la valeur moyenne du bloc de

pixels et les coefficients AC peuvent être considérés comme la description progressive de

fréquences dans le sens vertical et horizontal. Considérant l’explication ci-dessus, les coeffi-

cients C(0, v), v = (1, 2, . . . , 7) représentent les informations des structures horizontales de

l’image, et les coefficients C(u, 0), u = (1, 2, . . . , 7) représentent les informations des struc-

tures verticales, les coefficients C(u, v), u = v = (1, 2, . . . , 7) représentent les informations

diagonales.

Nos travaux s’appuient sur les coefficients des blocs DCT 4 × 4 parce qu’ils donnent

des informations plus perceptuelles que celles des blocs 8 × 8 DCT. Une méthode efficace

d’extraction de blocs 4 × 4 à partir des blocs DCT 8 × 8 est proposée.

2.2 La transformée en ondelettes discrète

Une ondelette est définie comme :

f
H1−→ (a1 | d1) (A.6)

qui donne d’un signal discret f la moyenne a1 et les détails d1, où a1 = (a1, a2, · · · , aN/2),

d1 = (d1, d2, · · · , dN/2), avec

dm = f · W1
m (A.7)

am = f · V1
m (A.8)

où m = 1, 2, . . . , N/2, V1
m et W1

m sont respectivement le signal d’échelle et le sig-

nal d’ondelettes. Avec différentes définitions des signaux d’échelle et d’ondelettes, dif-

férentes transformées en ondelettes peuvent être obtenues. Parmi eux, l’ondelette Cohen-

Daubechies-Feauveau 9/7 (CDF 9/7) est largement utilisée.
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Figure A.2 – Fonction de base de DCT 2-D (N=M=8)

Une transformée en ondelettes 2-D d’une image f au niveau 1 peut être obtenue par

une transformation en ondelettes 1-D de niveau 1, sur chaque ligne de f pour produire une

nouvelle image, puis une transformée en ondelettes 1-D effectuée sur chacune des colonnes

de cette image. Le niveau 1 d’une décomposition en ondelettes d’une image f peut être

symbolisé comme suit :

f �→

⎛

⎜

⎝

a1 h1

v1 d1

⎞

⎟

⎠
(A.9)

où les sous-images h1, d1, a1 et v1 ont M/2 lignes et N/2 colonnes.

La sous-image a1 est créée par les moyennes calculées le long des lignes de f puis le

calcul des le moyennes le long des colonnes. Il s’agit donc d’une version basse résolution

de l’image f . La sous-image h1 est créée par les évolutions calculées le long des lignes de

l’image f puis par le calcul des variations le long des colonnes. Par conséquent, les variations

le long d’une colonne sont capables de détecter les contours horizontaux dans l’image. La

sous-image v1 est similaire à la sous-image h1, sauf que les rôles des variations horizontales
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et verticales sont inversés. La sous-image d1 exprime les fluctuations des caractéristiques

en diagonale, car elle est construite à partir des variations le long des lignes et des colonnes.

2.3 Histogramme

L’histogramme est choisi comme le descripteur caractéristique des images dans nos

méthodes. En représentation de caractéristiques, un histogramme {hi} est la transforma-

tion d’un ensemble de vecteurs de dimension d à un ensemble de valeurs non négatives

réelles. Suite à ce transformation, ces vecteurs sont représentés par des classes, indexées i,

ce qui correspond à des partitions fixes des vecteurs. Les valeurs réelles associées sont une

mesure de la masse des vecteurs qui tombent dans les partitions correspondantes.

2.4 Partitionnement de données

Le partitionnement de données regroupe des objets de sorte que les similarités entre

objets d’un même groupe soient élevées, tandis que les similarités entre objets de groupes

différents restent faibles. Le plus populaire et le plus simple des algorithmes de parti-

tionnement de données est l’algorithme K-means. L’algorithme K-means nécessite trois

paramètres a priori : le nombre de partitions K, les centres initiaux des partitions, et la

distance métrique.

2.5 Représentation parcimonieuse

La représentation parcimonieuse est une représentation modélisant les données par une

combinaison linéaire d’un petit nombre d’éléments de données. Les éléments sont souvent

choisis à partir d’un dictionnaire sur-complète qui est une collection d’éléments dont le

nombre est supérieur à la dimension des éléments.

La représentation parcimonieuse peut être écrite comme le problème du "Lasso" avec

des contraintes positives :

arg min
D,C

‖X − DC‖ℓ2
+ λ‖C‖ℓ1

(A.10)

s.t. D 
 0, C 
 0.

où X est la matrice de données dont les colonnes sont des vecteurs caractéristiques, D est

la matrice de base et les colonnes de D sont des vecteurs de base, C est la matrice de
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coefficients par laquelle un vecteur peut être représenté par une combinaison linéaire avec

les vecteurs de base, λ contrôle le compromis entre l’exactitude et la parcimonie.

Dans ce contexte, un vecteur x dans la matrice de données X peut être représenté par

un nombre réduit de vecteurs de base. Ensuite, l’histogramme basé sur la représentation

parcimonieuse des données de la matrice X est défini comme :

hj =
N

∑

i=1

Cij (A.11)

où Cij est un coefficient de C et hj indique la valeur du jème coefficient de l’histogramme.

De cette façon, les valeurs des coefficients hj représentent le poids total de vecteurs de

base dans la représentation parcimonieuse de la matrice de données.

2.6 Mesure de similarité

La similarité entre deux images est mesurée par la distance entre les descripteurs de

caractéristiques des images. Les images similaires ont alors une distance plus faible entre

descripteurs ou un score de similarité plus élevé.

Les mesures de similarité entre les histogrammes se classent en deux catégories : la

mesure de similarité coefficient à coefficient et la mesure de similarité croisée entre coef-

ficients. Pour les deux, la distance L1 et la distance χ2 sont choisies dans nos approches.

Ces deux distances sont définies par :

dL1
(HQ, HD) =

N
∑

i=1

|HQ(i) − HD(i)| (A.12)

dχ2(HQ, HD) =
N

∑

i=1

(

HQ(i) − HD(i)
)2

HQ(i) + HD(j)
(A.13)

où HQ et HD sont les histogrammes respectifs de l’image requête et de l’image dans la

base de données.

2.7 Evaluation des performances

Pour évaluer et comparer les algorithmes de CBIR, une évaluation de leurs perfor-

mances est nécessaire.

a) La mesure d’évaluation le plus couramment utilisé pour le CBIR inclut la précision

et le rappel. La précision indique l’exactitude de la recherche se définit comme le rapport
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du nombre d’images pertinentes récupérées sur le nombre total des images extraites. Le

rappel indique la capacité de récupération des images pertinentes à partir de la base de

données. Il se définit comme le rapport du nombre d’images pertinentes récupérées sur le

nombre total d’images pertinentes dans la base de données :

Precision =
q

q + s

Rappel =
q

q + t

(A.14)

où q est le nombre d’images pertinentes récupérées, s le nombre d’images récupérées non-

pertinentes, t le nombre d’images pertinentes non-récupérées de la base de données.

b) Le taux de moyen récupération (Average Retrieval Rate, ARR) est souvent utilisé

dans la littérature pour la recherche de texture. Le taux de récupération (Retrieval Rate,

RR) pour une requête se définit comme le percentage du nombre d’images pertinentes

récupérées sur le nombre total d’images pertinentes dans la base de données, observées

dans les K premières images extraites :

RR = rappel =
q

q + t
(A.15)

ARR se définit comme la valeur moyenne de l’ensemble des taux de récupération des

K premières images trouvées a chaque requête. Évidemment, ARR est lié au nombre

d’images récupérées. Ainsi, il est alors possible de construire la courbe de fonctionnement

caractéristique de récepteur (Receiver Operating Characteristic, ROC) en traçant ARR

suivant K.

c) Le taux d’égale erreur (Equal Error Rate, EER) est souvent utilisé pour évaluer la

performance de la reconnaissance des visages. Lorsque la reconnaissance est effectuée, la

similarité entre les images doit être observée. Les images sont considérées comme similaires

si la distance entre leurs descripteurs caractéristiques est inférieure à un seuil donné. Si

l’on considère une image requête appartenant à la classe A, deux événements peuvent se

produire : d’une part, elle peut être reconnue à juste titre, d’autre part, elle peut être

rejetée à tort de la classe A. Dans cette dernière situation un ratio est défini et appelé

taux de faux rejet (False Rejected Rate, FRR). En revanche, lors de l’examen d’une image



Résumé étendu en français

requête n’appartenant pas à la classe A, si on la compare avec les images de la classe A,

elle peut être rejetée à juste titre, ou elle peut être accepté à tort dans la classe A. Alors

dans cette dernière situation un ratio est défini comme le taux de fausses acceptations

(False Accept Rate, FAR). Ces deux taux varient en fonction du seuil. Lorsque FRR et

FAR prennent des valeurs égales, un EER est obtenu. Quand cette valeur EER est faible,

la performance du système est jugée bonne, car le taux d’erreur totale correspond à la

somme des FAR et FRR.

2.8 Conclusion

Dans ce chapitre, quelques concepts fondamentaux utilisés dans nos approches en CBIR

sont introduits.

Tout d’abord, nous avons introduit deux transformations couramment utilisées : la

DCT et la DWT. Les propriétés des coefficients de ces transformations sont analysées puis

les bases théoriques sont introduites pour générer des vecteurs caractéristiques à partir de

ces coefficients.

L’histogramme des vecteurs caractéristique est choisi comme le descripteur d’images.

Ainsi, les concepts d’histogramme sont présentés.

En outre, l’algorithm K-means et les représentations parcimonieuses utilisés pour générer

des histogrammes sont introduit. L’histogramme basé sur la représentation parcimonieuse

est utilisé. Étant différent de l’histogramme classique, cet histogramme fournit plus d’in-

formations sur la relation entre un vecteur et les vecteurs de base connexes.

Après la construction des descripteurs d’images, la mesure de similarité doit être con-

sidérée ; ainsi, nous avons présenté les mesures de similarité communément utilisées pour le

CBIR, à partir desquelles deux types de distances, la distance de Manhattan et la distance

de χ2 sont choisies pour nos approches car correspondant à une faible charge de calcul.

Enfin, l’évaluation de performance en CBIR, en particulier pour la reconnaissance de

visage et la recherche de texture, est présentée, en s’appuyant sur la précision et le rappel

avec ARR et EER car largement utilisés dans ce domaine.



Résumé étendu en français

Chapitre 3 : Descripteurs d’images dans le domaine DCT

Dans ce chapitre, après avoir présenté les travaux connexes, une approche améliorée et

deux nouvelles approches sont proposées. Nous nommons ces trois approches respective-

ment : Zigzag-Pattern, Sum-Pattern et Texture-Pattern.

Les images sont d’abord décomposées en bloc DCT 4 × 4. Du fait que la même scène

prise à différent niveaux de luminance conduira à différents blocs DCT, des étapes de

prétraitement pour normaliser la luminance sont donc effectuées avant l’extraction de

vecteurs caractéristiques. Elles sont réalisées par une mise à l’échelle des coefficients DCT

en fonction du niveau de luminance moyen des coefficients DC des blocs DCT.

DC-Pattern est défini pour un ensemble de directions ayant les plus grandes différences

entre la valeur du bloc courant et les valeurs des DC des blocs voisins. Huit différences

entre le coefficient DC du bloc courant et celui de ses 8 voisins sont calculées. La neuvième

est la différence entre la valeur DC du bloc courant et la moyenne de toutes les valeurs DC

des neuf voisins (lui-même inclus). Les valeurs absolues de ces différences sont rangées par

ordre décroissant et les γ premières directions avec les plus grandes différences forment le

DC-Pattern. Ici γ est un paramètre qui peut être réglé pour obtenir un meilleur résultat

de recherche. Le processus de construction du DC-Pattern est montré dans la Figure A.3.

=γ

Figure A.3 – DC-Pattern construction

Un bloc DCT sans coefficient DC définit un AC-Pattern. Il existe deux méthodes
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de balayage pour organiser les coefficients de l’AC-Pattern. La première façon consiste à

balayer ligne par ligne, elle est aussi appelée balayage linéaire. Les coefficients AC sont

classés de gauche à droite et de haut en bas. La seconde méthode est le balayage en zigzag

que nous proposons d’utiliser. Ces deux méthodes sont représentées sur la Figure A.4.

Figure A.4 – Balayage linéaire et zigzag

Comme les AC-Patterns des blocs observés sont nombreux, nous souhaitons en réduire

le nombre. Aussi des motifs adjacents sont définis et fusionnés. Des AC-Patterns i et j

sont dits adjacents si :

|Ci(1) − Cj(1)| ≤ T h or |Ci(2) − Cj(2)| ≤ T h or · · · or |Ci(m) − Cj(m)| ≤ T h (A.16)

où Ci(k) Cj(k) (1 ≤ k ≤ m, m indique le nombre de coefficients AC-Pattern) représentent

les coefficients AC dans AC-Pattern. T h est le seuil. Dans notre méthode, T h = 1. Nous

avons nommé Zigzag-Pattern cette approche de la construction d’AC-Patterns et de la

production d’histogramme.

Dans le chapitre 1, il est rappelé que le coefficient DC indique l’énergie moyenne du

bloc et que certains coefficients AC contiennent les informations directionnelles. Inspiré de

cela, nous proposons deux types de vecteurs caractéristiques à partir de coefficients AC :

Sum-Pattern et Texture-Pattern.
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Nous sélectionnons 9 coefficients AC dans chaque bloc pour construire le Sum-Pattern.

Ces 9 coefficients sont classés en 3 groupes : horizontal, vertical et diagonal. Les sommes de

2 ou 3 coefficients dans chaque groupe forment le Sum-Pattern. Le procédé de construction

de cette structure est représenté sur la Figure A.5.

Figure A.5 – Sum-Pattern construction

Texture-Pattern est basé sur Sum-Pattern. 9 coefficients sont également classés en 3

groupes. Pour chaque groupe, la somme des coefficients est tout d’abord calculée et ensuite

les différences au carré entre chaque coefficient et la somme de ce groupe sont calculées.

Enfin, les sommes de ces différences au carré de chaque groupe sont utilisées pour construire

le Texture-Pattern. Cette structure est représentée sur la Figure A.6.

Pour la recherche de texture couleur, Color-Pattern est construit par les coefficients

DC des 3 composantes de chaque bloc dans l’image couleur en supposant qu’ils sont dans

l’espace couleur YCbCr. La construction du Color-Pattern est illustrée à la Figure A.7.

L’histogramme de ces vecteurs de caractéristiques proposés est choisi comme le de-

scripteur des images pour la reconnaissance faciale et de la recherche de la texture. La

distance de Manhattan et la distance χ2 sont choisies pour la mesure de similarité.

Ces approches sont appliquées dans la reconnaissance des visages et la recherche de

texture (en version monochrome ou en version couleur) et conduisent à trois contributions :
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Figure A.6 – Texture-Pattern :
(a) Trois groupes de coefficients AC extraits d’un bloc DCT (b) Sommes de chaque

groupe (c) Sommes de différences au carré (d) Texture-Pattern

Figure A.7 – Color-Pattern

1. Les quatre nouveaux types de vecteurs de caractéristiques proposés : Zigzag-Pattern,

Sum-Pattern, Texture-Pattern et Color-Pattern. Grâce à la capacité de DCT pour

le compactage de l’énergie, et comme certains coefficients AC représentent la struc-

ture directionnelle de l’image, seulement quelques coefficients sont suffisants pour la

construction de la caractéristique.

2. La fusion des motifs adjacents avec une sélection des motifs les plus fréquents pour



Résumé étendu en français

réduire la dimension des descripteurs de caractéristiques.

3. L’application de ces nouveaux types de vecteurs de caractéristiques a deux problé-

matiques : la reconnaissance de visage avec les contenus structurels ; et la recherche

de texture, avec les contenus structurels et non structurées.

Les résultats expérimentaux obtenus sur les trois bases de données du visage (ORL,

GTF et FERET) et deux bases de données de texture (Small VisTex et VisTex entier)

confirment l’efficacité de ces propositions.
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Chapitre 4 : Descripteurs d’images dans le domaine des on-

delettes

La transformée en ondelettes discrète est un outil pour extraire les caractéristiques des

images. Dans ce chapitre, deux approches pour la recherche d’images de texture couleur

dans le domaine des ondelettes sont proposés. Les ondelettes ont été largement appliquées

pour la recherche de texture, ainsi un bref résumé des travaux connexes est d’abord présenté

avant ces deux approches.

Dans nos deux méthodes, les images en couleur sont d’abord converties dans l’es-

pace couleur YCbCr, dont les composantes sont IY , ICb et ICr. Puis, chaque composant

est décomposée par DWT à N -niveau. Les résultats sont représentés par W mn
S , où S ∈

{Y, Cb, Cr} désigne les composantes et m ∈ {LL, HL, LH, HH} les orientations de sous-

bande, avec n = {1, 2, . . . , N} le niveau de décomposition. Dans notre approche, nous

choisissons les ondelettes CDF 9/7.

4.1 Descripteur de texture couleur généré par K-means

Notre approche va s’appuyer sur une caractéristique intégrant texture et couleur qui va

inclure deux vecteurs : vecteur texture et vecteur couleur. Les vecteurs texture multiréso-

lution comprennent des coefficients ayant la même position spatiale dans les sous-bandes

de détail de chaque niveau de décomposition sur le composante Y. D’autre part, le vecteur

couleur est construit à partir des coefficients à la même position dans les sous-bandes

d’approximation des composantes Y, Cb et Cr. La Figure A.8 montre le processus (N = 2,

par exemple) et la définition du vecteur texture et du vecteur couleur qui sont répertoriés

comme suit :

CV = [W LLN
Y (xC , yC), W LLN

Cb (xC , yC), W LLN
Cr (xC , yC)]

T Vn = [W HLn
Y (xn, yn), W LHn

Y (xn, yn), W HHn
Y (xn, yn)] (A.17)

où (xn, yn), n = {1, 2, . . . , N} et (xC , yC) indiquent les coordonnées du coefficient dans

chaque sous-bande.

L’histogramme de ces vecteurs est choisi comme le descripteur de l’image. L’algorithme

K-means est utilisé pour partitionner l’espace du vecteur couleur et du vecteur texture en

partitions représentées par les centres de classe générés par K-means.
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Figure A.8 – Projection des coefficients en vecteurs (N=2)

4.2 Descripteur de textures couleur généré par la représentation parci-

monieuse

Deux problèmes principaux doivent être pris en compte pour l’application de l’his-

togramme basé sur la représentation parcimonieuse : le vecteur des caractéristiques et le

dictionnaire, c’est pourquoi des vecteurs des caractéristiques multirésolution et un dictio-

nnaire en ondelettes sont proposés.

Les vecteurs de caractéristiques construits à partir des coefficients de chaque sous-bande

sont classés en deux types : un vecteur d’approximation A et un vecteur de détail T . A

est construit à partir de W LLN
S dont les coefficients sont à la même position pour chaque

composante de couleur. T est construit à partir de trois sous-bandes de détails à chaque

niveau de décomposition et dont les éléments sont les coefficients au même emplacement

dans chacune des sous-bandes horizontales, verticales et diagonales et cela au même niveau

de décomposition. La Figure A.9 illustre cette procédure lorsque N = 2, les définitions des

vecteurs caractéristiques sont les suivantes :

A = CV = [W LLN
Y (xa, ya), W LLN

Cb (xa, ya), W LLN
Cr (xa, ya)]

T n = [W HLn
Y (xn, yn), W LHn

Y (xn, yn), W HHn
Y (xn, yn),

W HLn
Cb (xn, yn), W LHn

Cb (xn, yn), W HHn
Cb (xn, yn),

W HLn
Cr (xn, yn), W LHn

Cr (xn, yn), W HHn
Cr (xn, yn)] (A.18)

L’algorithme K-means est appliqué pour générer le dictionnaire à partir de l’ensemble
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Figure A.9 – Projection des coefficients en vecteurs multiresolution (N=2)

d’apprentissage : l’ensemble des centres des partitionnement des vecteurs d’apprentissage

résultant des K-means sont utilisés comme dictionnaire.

4.3 Mesure de similarité et évaluation des performances

Nous avons choisi la distance de χ2 pour mesurer la similarité entre l’histogramme de la

requête et l’histogramme de une image de la base de données. Pour évaluer la performance

de chaque approach, des expériences sont mises en oeuvre sur quatre bases de données :

Small VisTex, VisTex ensemble, ALOT et STex. Comparée avec l’état de l’art, la méth-

ode basée sur K-means n’obtient pas toujours les meilleures performances tandis que la

méthode basée sur la représentation parcimonieuse surpasse toujours. Mais cependant la

méthode basée sur K-means ne reste pas un mauvais choix pour la recherche de texture

couleur si l’on tient compte du nombre réduit de coefficients d’ondelettes utilisé.

4.4 Conclusion

Deux approaches pour la recherche de texture couleur dans le domaine d’ondelettes

sont donc présentés. Ces propositions conduisent à quatre contributions :

1. La proposition de vecteurs texture multirésolution et de vecteur couleur traitant

seulement 50% au maximum des coefficients pour la construction de vecteurs de

caractéristiques.

2. La dimension des descripteurs de caractéristiques est réduite avec l’utilisation de

l’algorithme K-means pour diviser l’espace des vecteurs des caractéristiques en par-

titions.
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3. Une nouvelle approche pour la description de texture couleur basée sur la représen-

tation parcimonieuse est proposée. Ce descripteur est plus précis, conduisant à de

meilleures performances dans la recherche de texture couleur.

4. Cette approche de description de textures couleur est beaucoup moins coûteuse que

celle de la recherche probabiliste de texture couleur concernant les aspects de calcul

de la similarité entre les descripteurs.



Résumé étendu en français

Chapitre 5 : Conclusion et perspectives

Dans cette thèse, nous avons introduit, analysé et étudié l’analyse d’images pour une

recherche d’images basée contenu dans le domaine transformé. Ce travail se concentre prin-

cipalement sur les algorithmes basés DCT et DWT, largement utilisées dans la compression

des images et des vidéos.

Le contexte et quelques concepts fondamentaux liés au CBIR et à nos propositions

ont tout d’abord été introduit. En général, deux types de fonctions sont utilisés pour la

recherche d’images : l’un basé sur l’intensité (couleur et texture) et l’autre sur la géométrie

(forme). Nous nous sommes concentrés sur l’intensité.

Ensuite, nous avons proposé une approche améliorée d’une approche existante et deux

nouvelles approches dans le domaine DCT. Cette approche améliorée est basée sur une

méthode dans laquelle l’histogramme de l’AC-Pattern et celui du DC-Pattern sont utilisés

comme descripteur de caractéristique. Deux améliorations ont été apportées : le balayage

en zigzag est utilisé pour organiser les coefficients d’AC-Pattern et des motifs adjacents

sont définis et fusionnés. Compte-tenu des caractéristiques des coefficients DCT, deux types

de vecteurs caractéristiques sont alors proposés : Sum-Pattern and Texture-Pattern. Les

deux vecteurs des caractéristiques sont des vecteurs 3-D qui représentent les informations

directionnelles du bloc DCT et peuvent être appliqués à la fois dans la reconnaissance

des visages et la recherche de textures. Enfin, Color-Pattern est proposé et utilisé en

conjonction avec Texture-Pattern pour la recherche de textures couleur. Les résultats ex-

périmentaux obtenus des échantillons communément adoptés dans les bases d’images de

visages, ORL, GTF, FERET, ainsi que la base de données de texture standard, VisTex,

ont démontré la l’apport de nos approches.

Enfin, nous avons proposé deux approches pour la recherche de texture couleur dans

le domaine des ondelettes. La première est dans le contexte de la construction séparée de

caractéristiques de couleur et de texture : les caractéristiques de couleur sont extraites

par les coefficients de la sous-bande d’approximation de DWT, celles des textures sont

construites avec les coefficients des sous-bandes DWT dans la composante de luminance

des textures. L’avantage principal de cette proposition est qu’elle ne nécessite le traitement

que de 50% des coefficients d’ondelettes. La seconde approche se situe dans le contexte

de l’utilisation conjointe de la couleur et de la texture. Les avantages ont deux aspects :

le premier est qu’un vecteur de caractéristiques sera représenté par un certain nombre
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de vecteurs de base dans l’histogramme permettant ainsi une représentation plus précise

qu’un unique vecteur ; le second est que l’observation de la similarité entre les descripteurs

est beaucoup moins coûteuse en calculs. Les expériences ont été exécutées sur quatre bases

des données de texture couleur : Small VisTex, VisTex ensemble, ALOT et STex. Tous ces

résultats ont confirmé les contributions de ces deux propositions.

Les perspectives de travaux futurs pourront se concentres sur des aspects suivants :

1. Extension de l’histogramme basé sur la représentation parcimonieuse au domaine

DCT.

2. Vérification de la capacité des vecteurs des caractéristiques multirésolution dans le

domaine DWT pour l’extraction des images multiresolution.

3. Recherche d’un dictionnaire plus compact.

4. Intégration de plus de caractéristiques dans le cadre de l’histogramme basé sur

représentation parcimonieuse.
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