
HAL Id: tel-00907854
https://theses.hal.science/tel-00907854v2
Submitted on 10 Dec 2013 (v2), last revised 13 Dec 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development and Verification of Probability Logics and
Logical Frameworks

Petar Maksimovic

To cite this version:
Petar Maksimovic. Development and Verification of Probability Logics and Logical Frameworks.
Logic in Computer Science [cs.LO]. Université Nice Sophia Antipolis, 2013. English. �NNT : �. �tel-
00907854v2�

https://theses.hal.science/tel-00907854v2
https://hal.archives-ouvertes.fr


 

UNIVERZITET U  
NOVOM SADU 

 

FAKULTET TEHNIČKIH NAUKA  
U NOVOM SADU 

UNIVERSITÉ DE NICE  
SOPHIA ANTIPOLIS 

ECOLE DOCTORALE DE SCIENCES ET 
TECHNOLOGIES DE L'INFORMATION  

ET DE LA COMMUNICATION 

 

 

PETAR MAKSIMOVIĆ 

 
DEVELOPMENT AND VERIFICATION OF 
PROBABILITY LOGICS AND LOGICAL 

FRAMEWORKS 

 
DOCTORAL DISSERTATION 

 
CO-TUTELLE DOCTORAL STUDIES BETWEEN 

THE UNIVERSITY OF NOVI SAD AND  

THE UNIVERSITY OF NICE SOPHIA ANTIPOLIS 

 
 

JURY: 

 

PRESIDENT: 

REVIEWERS: 

 

EXAMINERS: 

 

 

ADVISORS: 

 

INVITED: 

ZORAN MARKOVIĆ 

PIERRE LESCANNE 

HUGO HERBELIN 

FURIO HONSELL 

MARINA LENISA 

ZORAN OGNJANOVIĆ 

SILVIA GHILEZAN 

LUIGI LIQUORI 

JOVANKA PANTOVIĆ 

JOËLLE DESPEYROUX 

RESEARCH PROFESSOR, MATHEMATICAL INSTITUTE SANU 

PROFESSOR EMERITUS, ENS LYON 

RESEARCH DIRECTOR, INRIA, TEAM πρ2 

FULL PROFESSOR, UNIVERSITY OF UDINE 

ASSOCIATE PROFESSOR, UNIVERSITY OF UDINE 

RESEARCH PROFESSOR, MATHEMATICAL INSTITUTE SANU 

FULL PROFESSOR, UNIVERSITY OF NOVI SAD 

RESEARCH DIRECTOR, INRIA, TEAM LOGNET 

FULL PROFESSOR, UNIVERSITY OF NOVI SAD 

RESEARCHER, I3S, TEAM MDSC 

 
 

 
NOVI SAD/SOPHIA ANTIPOLIS, 2013. 



 



 
 
 
 
 
 

In loving memory of my father and of my grandfather. 
You will always live on in my heart. 

 
 
 

For my mother, who has stood by me through 
all these years with the strength and courage  
that I can only pray to have someday myself. 

 
 
 

Without you, none of this would have been possible. 



 



Acknowledgments

Five years ago, I have had the good fortune to have been o�ered what then were one of the very
�rst co-tutelle doctoral studies between Serbia and France. At �rst, reluctantly, I turned the
o�er down, but after a little soul searching, ultimately accepted. That turned out to be the best
decision of my life. During the course of my studies, I have had the privilege of working together
with some of the �nest researchers in my �eld of expertise and of experiencing �rst-hand the
magic that is science. It was a once-in-a-lifetime experience. However, as professionally ful�lling
as I have found that to be, it has no choice but to stand eclipsed by the wonderful people that
I have encountered in the process, lifelong friendships and connections that I have witnessed
both form and dissolve, and the multi-cultural exchange of thoughts and ideas on anything and
everything, through which I have grown immensely as a person. With the defense of my thesis,
this beautiful chapter of my life arrives to a close, and the time comes for me to share my
gratitude with the people who helped it to be the amazing journey that it truly was.

First of all, I would like to thank my three de facto advisers - professors Luigi Liquori, Zoran
Ognjanovi¢, and Silvia Ghilezan. Thank you Luigi, for your optimism, enthusiasm, dedication,
and your endless �ow of ideas. Thank you Zoran, for your directions, insights, and meticulous-
ness. Thank you Silvia, for your calmness, persistence, and unyielding support. Thank you all
for gifting me with this incredible, life-changing experience. I am indebted to you forever.

In May and June 2011, I have had the opportunity of being a visiting researcher at the
University of Udine, and the privilege of collaborating with professors Furio Honsell, Marina
Lenisa, and Ivan Scagnetto, on what was then an idea o� the top of our heads, but what has
since evolved to be the keystone of my thesis. Your methodicalness, precision, and drive have
helped me improve as a researcher, and understand and appreciate the growing world of typed
λ-calculi ever more so. Thank you all so much for that.

I would also like to thank professor Pierre Lescanne and professor Hugo Herbelin, for doing
me the honour of being rapporteurs for my thesis, as well as professor Zoran Markovi¢ and
professor Jovanka Pantovi¢, for graciously accepting to be part of the jury.

Finally, my deepest gratitude goes to my family and to my friends, old and new alike. You
have been a never-ending source of love and support, patience and wittiness, in good times and
bad. I am so grateful for having you in my life. Thank you.

Belgrade, Novi Sad, Udine, and Sophia Antipolis, 2008-2013.





Abstract

The research for this thesis has followed two main paths: the one of probability logics and the
other of type systems and logical frameworks, bringing them together through interactive theo-
rem proving. With the development of computer technology and the need to capture real-world
dynamics, situations, and problems, reasoning under uncertainty has become one of the more
important research topics of today, and one of the tools for formalizing this kind of knowledge are
probability logics. Given that probability logics, serving as decision-making or decision-support
systems, often form a basis for expert systems that �nd their application in �elds such as game
theory or medicine, their correct functioning is of great importance, and formal veri�cation of
their properties would add an additional level of security to the design process. On the other
hand, in the �eld of logical frameworks and interactive theorem proving, attention has been
directed towards a more natural way of encoding formal systems where derivation rules are sub-
ject to side conditions which are either rather di�cult or impossible to encode naively, in the
Edinburgh Logical Framework LF or any other type-theory based Logical Framework, due to
their inherent limitations, or to the fact that the formal systems in question need to access the
derivation context, or the structure of the derivation itself, or other structures and mechanisms
not available at the object level.

The �rst part of the thesis deals with the development and formal veri�cation of probability
logics. First, we introduce a Probability Logic with Conditional Operators - LPCP, its syntax,
semantics, and a sound and strongly-complete axiomatic system, featuring an in�nitary inference
rule. We prove the obtained formalism decidable, and extend it so as to represent evidence,
making it the �rst propositional axiomatization of reasoning about evidence.

Next, we show how to encode probability logics LPPQ
1 and LPPQ

2 in the Proof Assistant Coq.
Both of these logics extend classical logic with modal-like probability operators, and both feature
an in�nitary inference rule. LPPQ

1 allows iterations of probability operators, while LPPQ
2 does

not. We proceed to formally verify their key properties - soundness, strong completeness, and
non-compactness. In this way, we formally justify the use of probabilistic SAT-solvers for the
checking of consistency-related questions.

In the second part of the thesis, we present LFP - a Logical Framework with External Pred-
icates, by introducing a mechanism for locking and unlocking types and terms into LF, allowing
the use of external oracles. We prove that LFP satis�es all of the main meta-theoretical properties
(strong normalization, con�uence, subject reduction, decidability of type checking). We develop
a corresponding canonical framework, allowing for easy proofs of encoding adequacy. We provide
a number of encodings - the simple untyped λ-calculus with a Call-by-Value reduction strategy,
the Design-by-Contract paradigm, a small imperative language with Hoare Logic, Modal Logics
in Hilbert and Natural Deduction style, and Non-Commutative Linear Logic (encoded for the
�rst time in an LF-like framework), illustrating that in LFP we can encode side-conditions on
the application of rules elegantly, and achieve a separation between derivation and computation,
resulting in cleaner and more readable proofs.

We believe that the results presented in this thesis can serve as a foundation for fruitful
future research. On the one hand, the obtained formal correctness proofs add an additional
level of security when it comes to the construction of expert systems constructed using the
veri�ed logics, and pave way for further formal veri�cation of other probability logics. On the
other hand, there is room for further improvement, extensions, and deeper analysis of the LFP
framework, as well as the building of a prototype interactive theorem prover based on LFP and
discovering its place in the world of proof assistants.
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Context. This Ph.D. thesis has been accomplished in co-tutelle between the Faculty of Tech-
nical Sciences, University of Novi Sad, Serbia, and the University of Nice Sophia Antipolis,
France. It is one of the outcomes of a pilot Ph.D. program in Information Technology, de-
veloped within the Tempus DEUKS (Doctoral School towards European Knowledge Society)
Project JEP-41099-2006. The research for this thesis has been performed, over a period of three
and a half years, in the following institutions:

• Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
and the Faculty of Technical Sciences, University of Novi Sad, Serbia (under supervision
of Research Professor Zoran Ognjanovi¢ and Professor Silvia Ghilezan).

• INRIA Sophia Antipolis Méditerranée, France (under supervision of INRIA Research Di-
rector Luigi Liquori).

• Università di Udine, Italy (in collaboration with Professors Furio Honsell, Marina Lenisa,
and Ivan Scagnetto).

Motivation and Research Directions. The research for this thesis has followed two main
paths: the one of probability logics and the other of type systems and logical frameworks,
bringing them together through interactive theorem proving.

With the development of computer technology and the need to capture real-world dynamics,
situations, and problems, reasoning under uncertainty has become one of the more important
research topics of today. One instrument for formalizing this kind of reasoning are probability
logics. In their various forms, they constitute a framework for encoding probability-related state-
ments, and o�er a possibility and methodology for deducing conclusions from such statements, in
a manner analogous to that present in classical or intuitionistic logic, using axioms and inference
rules. Probability logics, serving as decision-making or decision-support systems, often form a
basis for expert systems that �nd their application in �elds such as game theory or medicine. As
such, their correct functioning is of great importance, and formal veri�cation of their properties
appears as a natural step for one to take. To the author's knowledge, the subject of probability
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logics has not yet been approached in that context. In this thesis, probability logics have been
treated from two perspectives - that of development, and that of veri�cation. First, we present
a new probability logic with conditional probability operators (LPCP), its syntax, semantics,
a corresponding strongly-complete axiomatic system, and show how this logic can be used to
represent evidence (Chapter 2). Next, we encode in Coq and provide a formal veri�cation of
the soundness, strong completeness and non-compactness for two rationally-valued probability
logics, each with their own speci�cities (Chapter 3 and Chapter 4). The proofs for these two
logics share a common outline, which can be adapted and re-used for proving properties of other
probability and modal-like logics.

The Edinburgh Logical Framework or LF is one of the better-known logical frameworks today.
After being introduced in 1993, it has found widespread usage in theoretical and applied research.
It is one of the systems of Barendregt's λ-cube [Barendregt 1992], and constitutes the basis of
several proof assistants. However, it does have its limitations. For instance, there are formal
systems where derivation rules are subject to side conditions which are either rather di�cult or
impossible to encode naively, in LF or any other type-theory based Logical Framework, due to
their inherent limitations, or to the fact that the formal systems in question need to access the
derivation context, or the structure of the derivation itself, or other structures and mechanisms
not available at the object level (modal and program logics, for one). Bearing this in mind,
together with the idea of developing a framework in which pre- and post-conditions could be
encoded naturally, we have developed LFP - an extension of LF with external predicates. These
predicates act as locks in the �ow of reduction, blocking it until a condition has been (possibly
externally) veri�ed to be true. In this way, not only can we encode the aforementioned systems
with greater ease, but we also manage to, in a sense, separate derivation and computation,
by �outsourcing� the latter to an external veri�er. We introduce LFP (Chapter 5) present its
type system (Chapter 6) prove all of the important meta-theoretical properties (Chapter 7),
construct an appropriate canonical framework LFCP (Chapter 8), and present a series of encodings
illustrating the features and bene�ts of LFP (Chapter 9).

Contributions of the Thesis. In a nutshell, the original contributions of this thesis are
threefold:

1. A new probability logic with conditional probability operators (LPCP) with its corre-
sponding strongly-complete axiomatic system, which can be used to represent evidence,

2. Formal veri�cation of the soundness, strong completeness and non-compactness for two
rationally-valued probability logics, in the proof assistant Coq, and

3. LFP - a Logical Framework with dependent types, extending the Edinburgh Logical Frame-
work LF with calls to external oracles. The main novelty of this framework are locked types,
which block the �ow of reduction until a given condition holds, allowing substantially eas-
ier encodings of systems with side conditions and an elegant separation between derivation
and computation.

Publications. This thesis relies on the following published conference and journal papers:

1. Petar Maksimovi¢, Dragan Doder, Bojan Marinkovi¢ and Aleksandar Perovi¢. A Logic
with a Conditional Probability Operator. In Kata Balogh, editor, Proceedings of the 13th

ESSLLI Student Session, pp. 105-114, 2008, Hamburg, Germany.

2. Dragan Doder, Bojan Marinkovi¢, Petar Maksimovi¢, Aleksandar Perovi¢. A Logic with
Conditional Probability Operators. Publication de l'Institut Mathématique, N.S. 87(101),
pp. 85-96, 2010.
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3. Petar Maksimovi¢. Formal Veri�cation of Key Properties for Several Probability Logics
in the Proof Assistant Coq. First National Conference on Probability Logics and their
Applications, Book of Abstracts, p. 25, Belgrade, Serbia. 29-30 September, 2011.

4. Petar Maksimovi¢. Probability Logics in Coq. TYPES 2013: Types for Proofs and Pro-
grams, Book of Abstracts, pp. 60-61, 19th TYPES Meeting, April 22-26, 2013, Toulouse,
France.
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1.1 Probability in Logic

In this section, we provide a historical overview of the development of probability logics, re�ecting
on the ideas of the most important researchers in this �eld. The following text was adapted, in
the better part, from [Ognjanovi¢ 2009].

The �rst one to consider incorporating the notions of probability and logic together was the
famous German mathematician and philosopher Gottfried Wilhelm Leibnitz. As he searched
for a universal basis for all sciences and sought to establish logic as a generalized mathematical
calculus, he considered probability logic as a tool for estimation of uncertainty, and de�ned
probability as a measure of knowledge. In a number of his essays [Leibnitz 1665, Leibnitz 1669,
Leibnitz 1765], Leibnitz suggested that the tools which have been developed for analyzing games
of chance should be directed towards the development of a new kind of logic addressing degrees
of probability and that this logic could then facilitate rational decision-making on apparently
con�icting claims. He distinguished between two calculi. The �rst one, forward calculus, was
concerned with estimating the probability of an event if the probabilities of its conditions are
known, whereas the second one, reverse calculus, dealt with estimations of probabilities of causes,
once the probability of their consequence is known. Although most of Leibnitz's logical works
were published long after his death (in the early 1900s), he did have a number of followers,
the most important of whom, when it comes to probabilistic logic, were the brothers Jacobus
and Johann Bernoulli, Thomas Bayes, Pierre Simon de Laplace, Bernard Bolzano, Augustus De
Morgan, George Boole, John Venn, Charles S. Peirce, etc.

Jacobus Bernoulli was the �rst who made advance along Leibnitz's ideas in his un�nished
work [Bernoulli 1713, Part IV, Chapter III]. By making use of Huygen's notion of expectation,
i.e. the value of a gamble in games of chance, he o�ered a procedure for determining numerical
degrees of certainty of conjectures produced by arguments. He used the word argument to
represent statements, as well as the implication relation between premises and conclusions. He
divided arguments into categories according to whether the premises and the argumentation
from premises to conclusions are contingent or necessary. For example, if an argument were to
exist contingently (i.e. it is true in cases when b > 0, and is not true in cases when c > 0) and
implies a conclusion necessarily, then such an argument would establish b

b+c as the certainty of
the conclusion. Bernoulli also discussed the question of computing the degree of certainty when
there was more than one argument for the same conclusion.

In [Bayes 1764], T. Bayes �rst presented a result involving conditional probability. In modern
notation, he considered the problem of �nding the conditional probability P (A|B) where A is
the proposition �P (E) ∈ [a, b]�, and B is the proposition �an event E occurred p and did not
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occur q times in p+ q independent trials�. A. De Morgan devoted a chapter of [de Morgan 1847]
to probability inference, o�ering a defense for the numerical probabilistic approach as a part of
logic. Instead of giving a systematic treatment of the �eld, he described several problems and
tried to apply logical concepts to them. It is interesting that in his work, De Morgan made some
mistakes, mostly due to his ignoring of (in)dependence of events.

The calculus presented by G. Boole in [Boole 1847, Boole 1854] led to a rapid development
of mathematical logic. Boole sought to make his system the basis of a logical calculus as well as
a more general method to be applied in probability theory. The most general problem (originally
called the �general problem in the theory of probability�) Boole claimed that he could solve, con-
cerned an arbitrary set of logical functions {f1(x1, . . . , xm), . . ., fk(x1, . . . , xm), F (x1, . . . , xm)}
and the corresponding probabilities p1 = P (f1(x1, . . . , xm)), . . ., pk = P (fk(x1, . . . , xm)), and
asked for P (F (x1, . . . , xm)) in terms of p1, . . . , pk. He elaborated on the relation between the
logic of classical connectives and the formal probability properties of compound events using
the following assumptions. He restricted disjunctions to the exclusive ones, and believed that
any compound proposition can be expressed in terms of, maybe ideal, simple and independent
components. Thus, the probability of an or-compound is equal to the sum of the components,
whereas the probability of an and-compound is equal to the product of the components. In such
a way, it was possible to convert logical functions of events into a system of algebraic functions of
the corresponding probabilities. Boole attempted to solve such systems using a procedure equiv-
alent to Fourier-Motzkin elimination. His procedure, although not entirely successful, provided
an important basis for probabilistic inferences. In [Hailperin 1984, Hailperin 1986] a rationale
and a correction for the Boole's procedure were given using the linear programming approach.

In the 1870's, J. Venn developed the idea of extending the frequency of occurrence concept of
probability to logic. Venn thought that probability logic is the logic of sequence of statements.
A single element sequence of this type attributes to the given proposition one of two values 0 or
1, whereas an in�nite sequence attributes any real number which lies in the interval [0, 1]. Some
of the traditional logicians were dissatis�ed with the inclusion of the induction in the de�nition
of the concept of probability, but the others continued to work in that direction.

During the �rst half of the twentieth century, there were at least three directions in the de-
velopment of theory of probability. The researchers who belonged to the �rst one, Richard
von Miss and Hans Reichenbach, for example, regarded probability as a relative frequency
and derived rules of the theory from that interpretation. The second approach was charac-
terized by the development of formal calculus of probability. Some of the corresponding authors
were Georg Bohlmann [Bohlmann 1901], Sergei Natanovich Bernstein [Bernstein 1917], and Émil
Borel [Borel 1924, Borel 1925]. These investigations culminated in A. N. Kolmogorov's axioma-
tization of probability [Kolmogorov 1933]. Finally, some of the researchers, like John M. Keynes
[Keynes 1921], Hans Reichenbach [Reichenbach 1935, Reichenbach 1949], and Rudolf Carnap
[Carnap 1950, Carnap 1952] continued Boole's approach connecting probability and logic.

In spite of the works of these researchers, the main streams of development of logic and
probability theory were almost separated during the second half of XX century. Namely, in
the last quarter of the nineteenth century, independently of the algebraic approach, there was
a development of mathematical logic inspired by the need of giving axiomatic foundations of
mathematics. The main representative of that e�ort was Gottlob Frege. He tried to explain
the fundamental logical relationships between the concepts and propositions of mathematics.
Truth-values, as special kinds of abstract values, were described by Frege according to whom
every proposition is a name for truth or falsity. It is clear that, according to Frege, the truth
values had a special status that had nothing to do with probabilities. That approach culminated
with Kurt Gödel's proof of completeness for �rst order logic [Gödel 1929]. Since those works,
�rst order logic played the central role in the logical community for many years, and only in the
late 1970s a wider interest in probability logics reappeared.
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The most important advancement in probability logic, after the works of Leibnitz and Boole,
was made by H. Jerome Keisler. The purpose of his famous paper [Keisler 1977] was to introduce
a model-theoretic approach into probability theory, using non-standard analysis.

Keisler introduced several probability quanti�ers, such as Px > r, with the intended meaning
that the formula (Px > r)φ(x) holds if the set {x : φ(x)} has probability greater than r. A
recursive axiomatization for these logics (the main of which is denoted by LAP ) was given by
D. Hoover [Hoover 1978], using admissible and countable fragments of in�nitary predicate logic
(but without resorting to two standard quanti�ers - ∀ and ∃). In the following years, Keisler and
Hoover made very important contributions in the �eld. They proved completeness theorems for
various kinds of models (probability, graded, analytic, hyper�nite etc.) and many other model-
theoretical theorems. The development of probability model theory has engendered the need
for the study of logics with greater expressive power than that of the logic LAP . The logic LAI ,
introduced in [Keisler 1985] as an equivalent of the logic LAP , allows the user to express many
properties of random variables in an easier way. In this logic, the integral quanti�ers

∫
. . . dx

are used in place of the quanti�ers Px > r.
The logic LAI is not rich enough to express probabilistic notions involving conditional ex-

pectations of random variables with respect to σ-algebras, such as martingales, Markov pro-
cess, Brownian motion, stopping time, optional stochastic process, etc. These properties can
be naturally expressed in a language with both integral quanti�ers and conditional expecta-
tion operators. The logics LAE and LAad, introduced by Keisler in [Keisler 1985], are ap-
propriate for the study of random variables and stochastic processes. The model theory of
these logics has been developed further by Rodenhausen in [Rodenhausen 1982], Fajardo in
[Fajardo 1985], Keisler in [Keisler 1986a, Keisler 1986b], Hoover in [Hoover 1987], and Ra²kovi¢
in [Ra²kovi¢ 1985, Ra²kovi¢ 1986, Ra²kovi¢ 1988].

Since the middle of the 1980s, the interest in probabilistic logics began to grow, mainly be-
cause of the development of many �elds of application of reasoning about uncertain knowledge:
economics, arti�cial intelligence, computer science, medicine, philosophy, etc. Many researchers
attempted to combine probability-based and logic-based approaches to knowledge representa-
tion. In a logical framework for modeling uncertainty, probabilities express degrees of belief.
For example, one can say that �probability that Homer wrote the Iliad is at most one half�,
thus expressing one's disbelief into the truthfulness of that statement. The �rst in line of those
papers is [Nilsson 1986] (a revision of which can be found in [Nilsson 1993]) which resulted from
the development of an expert system in medicine, where Nilsson tried to construct a logic with
probabilistic operators as a well-founded framework for uncertain reasoning. Sentences of this
logic provided information on probabilities, and he was able to express a probabilistic general-
ization of modus ponens as �if α holds with probability s, and β follows from α with probability
t, then the probability of β is r�. In this way, Nillson gave a procedure for probabilistic entail-
ment that, given probabilities of premises, could calculate bounds on probabilities of the derived
sentences. Nillson's approach was semantic in nature and it motivated some authors to provide
axiomatizations and decision procedures for the logic. In the same year, Gaifman published a
paper [Gaifman 1986] that studied higher-order probabilities and connections with modal logics.

In [Fagin 1990], Fagin, Halpern and Megiddo presented a propositional logic with real-valued
probabilities in which higher level probabilities were not allowed (similar to LPPQ

2 , presented
in Chapter 3). The language of that logic allowed basic probabilistic formulas of the form

n∑
i=1

aiw(αi) ≥ s,

where ai and s are rational numbers, αi are classical propositional formulas, and w(αi) denotes
the probability that αi holds. Probabilistic formulas are treated as boolean combinations of
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basic probabilistic formulas. A �nitary axiomatic system for the logic was given, and since
the compactness theorem does not hold for their logic, the authors were able to prove simple
completeness only, using the tools of the theory of real closed �elds. The papers [Fagin 1994,
Halpern 1991], by the same authors, introduced a probabilistic extension of the modal logic of
knowledge, which is similar to LPPQ

1 , presented in Chapter 4. First-order probability logics
were discussed in [Abadi 1994, Halpern 1990]. It was shown that the set of valid formulas of the
considered logic is not recursively enumerable, and thus, no �nitary axiomatization is possible.

Finally, we will give mention to the probability logics that have been developed, over the
last 20 years, by a group of researchers at the Mathematical Institute of the Serbian Academy
of Sciences and Arts, led by Miodrag Ra²kovi¢, himself a student of H. Jerome Keisler. The
approach taken there extends classical (propositional or �rst order) calculus with operators that
provide information on probability, whereas the truth values of the formulas can still only be
either true or false. In this way, one is able to construct statements of the form P≥sα with the
intended meaning �the probability that α holds is at least s�.

These probability operators behave like modal operators and the corresponding semantics
consist in special types of Kripke models (involving possible worlds) with the addition of proba-
bility measures de�ned on algebras of subsets of these worlds. One of the main proof-theoretical
problems with the approach in question is providing an axiom system which would be strongly
complete (�every consistent set of formulas has a model�, in contrast to the simple completeness
�every consistent formula has a model�). This problem arises from the inherent non-compactness
of such systems, namely the possibility to de�ne an inconsistent in�nite set of formulas, every
�nite subset of which is consistent (e.g. {¬P=0α} ∪ {P< 1

n
α |n ∈ N}). These logics include, but

are not limited to the following ones:

• LPP1, a probability logic which is built atop classical propositional logic, with itera-
tions of probability operators and real-valued probability functions [Ognjanovi¢ 1999a,
Ognjanovi¢ 2000] (a variant of this logic, with rationally-valued probability functions, has
been formally veri�ed in Chapter 4,

• LPPFr(n)
1 , similar to LPP1, but with probability functions restricted to have the range

{0, 1
n , . . . ,

n−1
n , 1} [Ognjanovi¢ 1996, Ognjanovi¢ 1999a, Ognjanovi¢ 2000],

• LPPLTL1 , a probability logic similar to LPP1, but with discrete linear-time temporal logic
LTL as the underlying logic [Ognjanovi¢ 1998, Ognjanovi¢ 1999a, Ognjanovi¢ 2006],

• LPP2 and LPP
Fr(n)
2 , probability logics similar to LPP1 and LPP

Fr(n)
1 , but without

iterations of probability operators [Ognjanovi¢ 1999a, Ognjanovi¢ 2000, Ra²kovi¢ 1993] (a
variant of this logic, with rationally-valued probability functions, has been formally veri�ed
in Chapter 3,

• LPP2,�, a probability logic similar to LPP2, but allowing reasoning about qualitative
probabilities [Ognjanovi¢ 2008],

• LPP I2 , a probability logic similar to LPP1, but with propositional intuitionistic logic as
the underlying logic [Markovi¢ 2003a, Markovi¢ 2003b, Markovi¢ 2004],

• LFOP1, LFOP
Fr(n)
1 , and LFOP2, �rst-order counterparts of LPP1, LPP

Fr(n)
1 , and LPP2

[Ognjanovi¢ 2000, Ra²kovi¢ 1999],

• LQp , a probability logic with probabilities in the �eldQp of p-adic numbers [Ili¢-Stepi¢ 2012],

• LFOCP and LFPOIC=, �rst-order condidional probability logics without and with iter-
ations [Milo²evi¢ 2012, Milo²evi¢ 2013].
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Brie�y on the relationship between probability and fuzzy logics. Another method for
reasoning under uncertainty are fuzzy logics. Just as probability logics, fuzzy logics also fall into
the category of weighted logics, i.e. logics in which more than two truth values can be assigned
to formulas (usually values from the real unit interval [0, 1]). In this way, we can apply a �ne
granulation atop the classical bipolar concept of truth. The key di�erence between fuzzy and
probability logics, in the propositional case, is the mechanism through which the truth value of a
formula is calculated once the truth values of its propositional letters are known. In probability
logics, we use the principle of additivity, and have that the value of the formula ϕ(p1, . . . , pn)
is uniquely calculated based on the values of �nite conjunctions of distinct propositional letters
from the set {p1, . . . , pn}. There, every classical tautology has the maximal possible measure.
On the other hand, fuzzy logics make use of the principle of truth functionality, where each
connective is assigned its corresponding truth function. t-norms are assigned to conjunctions,
and the dual s-norms (or t-conorms) are assigned to disjunctions. The set of valid formulas in
fuzzy logics is a proper subset of the set of classical tautologies.

1.2 A Word on λ-calculi

λ-calculus is a formal system invented in the 1920s, whose aim was to describe the most basic
properties of functional abstraction, application and substitution in a very general setting. 1

The history of λ-calculus can be divided into three main periods: the �rst period comprised
several years of intensive and very fruitful initial study in the 1920s and 1930s, and one of
its most notable results is the �rst proof that predicate logic is undecidable. Next ensued
a second period of almost 30 years of relative stagnation, featuring specialized results such as
completeness, cut-elimination and standardization theorems that found many uses later. Finally,
in the late 1960s, came an increase of activity motivated by advances in higher-order function
theory, newly-found connections with programming languages, and new technical discoveries.
The main contributions of the third period, from the 1960s onward, include constructions and
analyses of models, development of polymorphic type systems, deep analyses of the reduction
process, and many others.

With the aim of developing a foundation for logic which would be more natural than the
type theory of Russell or the set theory of Zermello, Alonzo Church came to invent the �rst
λ-calculus in 1928 [Church 1932]. This calculus featured abstraction λx[M ] and application
{F}(X), notation that has, over the years, evolved into the more familiar λx.M and (F X).
The system from [Church 1932] was a type-free logic with unrestricted quanti�cation, with the
law of excluded middle excluded, and explicit formal rules of λ-conversion included. However, it
also featured a contradiction which was discovered almost immediately upon publication. The
system was revised a year later [Church 1933], and in the revised paper Church stated a hope that
Gödel's (then) recent incompleteness theorems for the system of [Russell and Whitehead 1913]
would not extend to his own revised system, and that a �nitary proof of the consistency of this
system might be found. In this revised paper, Church �rst introduced the λ-terms representing
positive integers, today known as the Church numerals.

In the subsequent works of Church, Kleene and Rosser, the developments on Church's 1933
logic and the underlying pure λ-calculus resulted in somewhat surprising discoveries: that the
1933 logic is, in fact, inconsistent, and that the pure λ-calculus could have a number of in-
triguing uses. Con�uence of the λ-calculus was proven [Church and Rosser 1936], ensuring the
consistency of the pure system, and λ-de�nable numerical functions were proven equivalent to
both Herbrand-Gödel recursive functions [Kleene 1936, Church 1936] and Turing-computable

1The historical account of the development of the λ-calculus presented in this section has mostly been adapted
from [Cardone 2005].
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functions [Turing 1937], leading Church to his conjecture that λ-de�nability exactly captured
the informal concept of e�ective calculability, today known as Church's Thesis.

Numerous advances and discoveries concerning λ-calculi have been made in the subsequent
years and are still being made today, including the connection between λ-calculi, logics and
programming languages. Many systems have been constructed on top of the pure λ-calculus, and
to describe them all, or even representatively, would constitute a book-worthy e�ort. However,
since this thesis relies on typed λ-calculi, we will take a moment to present them in more detail.
A typed λ-calculus is essentially an extension of the pure λ-calculus with types. Here, types
are usually objects of a syntactic nature which are assigned to lambda terms, following a set
of rules which we refer to as a typing system. There are many such formalisms, and the exact
nature of a type varies from one to the other. We will provide a brief overview of some of
these systems, starting from the most basic example: the simply-typed λ-calculus. For more
detailed information on this and many other λ-calculi with types, we kindly refer the reader to
[Barendregt 2013].

1.2.1 The Simply-Typed Lambda Calculus

The simply-typed λ-calculus λ→ is de�ned in the following way:

• We need to �x a family of base types B. The types in B are sometimes also called type
constants or atomic types. Examples of base types could be nat or bool, and could, for
instance, serve to representing integers or boolean values in a programming language.

• Given B, the syntax of types is given by τ ::= b | τ → τ , where b ∈ B. Intuitively, we can
understand the type σ → τ as the set of functions which require an input that is of type
σ and produce an output that is of type τ . Some examples of valid types would be nat or
nat → nat or (bool → nat)→ bool.

• Another item we need to �x is a family of term constants C, where each c ∈ C is assigned
its base type b ∈ B. For instance, if there would be a type constant nat representing
natural numbers, the appropriate term constants could be 0, 1, etc. Term constants form
what we call a typing signature.

• Given C, the syntax of terms is given by M ::= c | x | λx:τ.M | MM , where c ∈ C - a
term can either be a term constant, a variable, a λ-abstraction or an application.

However, we can a priori decide only the types for term constants, whereas the typing
assignments for all of the other terms are handled by the rules of the typing system. We also
need a typing context Γ, which contains variables and their respective types, such as, for instance
x:σ, y:τ , etc. The rules of the typing system of λ→ are the following:

1. If the variable x has type σ in the context Γ, then x is of type σ:

Γ, x:σ,Γ′ ` x : σ

2. A constant term has its base type in any context:

c is a constant of type T
Γ ` c : T

3. If, in a context where x has type σ, we have thatM is of type τ , then, in the same context
without x, λx:σ.M is of type σ → τ :

Γ, x:σ `M : τ

Γ ` λx:σ.M : σ → τ
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4. If, in a certain context, M is of type σ → τ and in that same context N is of type σ, then
in that same context M N is of type τ :

Γ `M : σ → τ Γ ` N : σ
Γ `M N : τ

Using this system, we can arrive to certain conclusions. Let us assume, for instance, that we
have base types σ, τ , and ρ. Then, with the context {x:σ}, we could derive:

1. x:σ ` x:σ by rule 2.

2. ` λx:σ.x : σ → σ from 1, by rule 3.

or, with the context {x:σ, y:τ}, we could derive:

1. x:σ, y:σ ` x:σ by rule 2.

2. x:σ ` λy:τ.x : τ → σ from 1, by rule 3.

3. ` λx:σ.λy:τ.x : σ→(τ→σ) from 2, by rule 3.

or, with the context {x:σ→(τ→ρ), y:σ→τ, z:σ}, we could derive:

1. x : σ→(τ→ρ), y : σ→τ, z:σ ` x : σ→(τ→ρ) by rule 2.

2. x : σ→(τ→ρ), y : σ→τ, z:σ ` y : σ→τ by rule 2.

3. x : σ→(τ→ρ), y : σ→τ, z:σ ` z:σ by rule 2.

4. x : σ→(τ→ρ), y : σ→τ, z:σ ` xz : τ→ρ from 1 and 3, by rule 4.

5. x : σ→(τ→ρ), y : σ→τ, z:σ ` yz : τ from 2 and 3, by rule 4.

6. x : σ→(τ→ρ), y : σ→τ, z:σ ` xz (yz) : ρ from 4 and 5, by rule 4.

7. x : σ→(τ→ρ), y : σ→τ ` λz:σ.xz (yz) : σ→ρ from 6, by rule 3.

8. x : σ→(τ→ρ) ` λy:σ→τ .λz:σ.xz (yz) : (σ→τ)→(σ→ρ) from 7, by rule 3.

9. ` λx:σ→(τ→ρ).λy:σ→τ .λz:σ.xz (yz) : (σ→(τ→ρ))→((σ→τ)→(σ→ρ)) from 8, by rule 3.

The reader can notice that the types of the �nal terms in the previous examples resemble
tautologies from intuitionistic (as well as classical) propositional logic. As we will see later, this
is not a coincidence.

1.2.1.1 β-reduction and Meta-theoretical Properties

Apart from the typing system, λ-calculi feature a reduction mechanism capturing the idea of
function application. This mechanism is called β-reduction, is denoted by →β , and functions in
the following manner:

(λx:σ.M)N →β M [N/x]

where M [N/x] denotes the term M in which every free occurrence of the variable x has been
substituted with the term N . For instance, the term (λx:σ.x)M reduces to x[M/x] ≡ M , and
we can see that λx:σ.x behaves as the identity function. Terms of the form (λx:σ.M)N are
called β-redexes, and we say that a term M is in normal form if it contains no β-redexes.

If one were to view λ-calculi as idealized functional programming languages, one could think
of β-reduction as a computational step. These steps can be performed in sequence and can
either terminate, when one of the normal forms of the term is reached, or can be performed
inde�nitely, depending on the term and calculus in question. Naturally, the preference would be
for this sequence of reductions to terminate, and is expressed through the following property:
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Strong Normalization. A term calculus is strongly normalizing if every sequence of reductions
of every term of the calculus eventually terminates to a normal form. A term calculus satisfying
this property can be viewed as a programming language in which every program terminates,
which is a very useful property, but renders the calculus Turing-incomplete, meaning that there
are computable functions that cannot be de�ned within the calculus.

As there can be several β-redexes at a time within one term, a natural question one could
ask is �Does the order in which reductions are performed impact the �nal result?�. The property
addressing this issue is:

Con�uence. If, for a given term calculus, the answer to this question is �No.�, then the
calculus is con�uent. Using the symbol→→β to denote the re�exive and transitive closure of→β ,
con�uence can be expressed more formally as follows:

If M→→βM
′ and M→→βM

′′, then there exists an M ′′′, such that M ′→→βM
′′′ and M ′′→→βM

′′′,

for every term M of the λ-calculus in question. In con�uent calculi, all reduction sequence can
be made to meet at a common expression. However, this does not mean that they must meet at
this expression. Also, con�uence implies uniqueness of normal forms, meaning that if a term M
reduces to a term M ′ in normal form, then this normal form is unique. In other words, if there
exists an M ′′ in normal form, such that M reduces to M ′′, then M ′ and M ′′ must be equal.

There are several more important properties that a λ-calculus would be desired to satisfy:

Subject Reduction. This property states that typing is preserved under β-reduction of the
subject, i.e. if Γ `M : σ, and M →β M

′, then also Γ `M ′ : σ.

Decidability of Type Checking. In a given signature, and for a given context Γ, term M
and type σ, it is decidable whether or not Γ `M : σ is derivable.

Decidability of Type Inhabitation. In a given signature, and for a given context Γ and type
σ, it is decidable whether or not there exists a term M , such that Γ `M : σ is derivable.

The simply-typed λ-calculus satis�es all of these properties, with the decidability of type
inhabitation being PSPACE-complete. However, it is fairly restrictive, as we can neither have full
recursion nor construct more expressive types which we could think of, for instance, polymorphic
types or types depending on other types or terms.

1.2.2 The Lambda Cube

Apart from the simply-typed λ-calculus, there are many other more complex formalisms relying
on assigning types to λ-terms. Some of these include polymorphic types (terms depending on
types), higher-order types (types depending on types), dependent types (types depending on
terms), intersection types (terms with multiple types), etc. An elegant way to subsume some of
these systems is Barendregt's λ-cube [Barendregt 1992], presented in Figure 1.1.

How does the λ-cube actually work, and what is the mechanism which connects these eight
λ-calculi? First, we select two constants, called sorts, and name them ∗ and �. In the literature
and, perhaps, more informatively, they are often known as Type and Kind. If we let S = {∗,�},
and s, s1, s2 ∈ S, we can express the eight systems via a set of general axioms and rules (Figure
1.2) and rules speci�c to each of the systems (Figure 1.3). Essentially, by instantiating the
(s1, s2) speci�c rule with elements of S and adding these instantiations to the general axioms
and rules, we can arrive to each of these eight systems.

One very interesting thing which can be observed here is the apparent �modularity� of this
segment of typed lambda calculi. Starting from the core rules, we can arrive to many di�erent
systems and levels of expressiveness, each of them important in its own right, by adding instances
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Figure 1.1: The λ-cube

of one single rule schema, akin to simply plugging in an add-on module, which we can also
combine together. Let us examine it in more detail.

The (∗, ∗) instantiation of (s1, s2) gives us the simply-typed λ-calculus λ→, and places us in
the bottom-left corner of the cube. From there, we can move in the following three directions:

1. Upward: by adding the (�, ∗) rule, we arrive at the system λ2, which is also known as the
second-order typed λ-calculus or Girard's System F [Girard 1972], where we can have terms
with polymorphic types, such as Πα:∗.(α → α), arriving at terms depending on types,
which would not be possible in λ→. Also, since here we can derive ` Πα:∗.(α→ α) : ∗, we
e�ectively bring impredicativity (self-referencing) back in the game whenever we introduce
type polymorphism (the four systems on the top side of the cube).

2. Forward: by adding the (�,�) rule, we arrive at the system λω, where type constructors
such as λα:∗.α → α (types depending on types) can be formed and used to create new
higher-order constructors and types, which cannot be used in λ→ or λ2. The systems
allowing higher-order constructions are on the back side of the cube.

3. Sideways: by adding the (∗,�) rule, we arrive at the system λP , where we have dependent
types, or types depending on terms. Here, we can, for instance, capture the notion of
predicates, and have derivations such as A:∗ ` (A → ∗) : � (meaning that A → ∗ is the
kind of predicates on A), which is not possible in any of the previous systems.

The remaining three systems (λ2P , λω and λC) are combinations of the four which we have
presented here, with λC, which is also known as the Calculus of Constructions, being the most
expressive one and combining all of the demonstrated features.

One may view typed λ-calculi as an interesting and amusing theoretical exercise. However,
perhaps somewhat unexpectedly, they share a fundamental connection with mathematical logic
and have very important applications in computer science. Typed lambda calculi are, in fact,
in the foundations of programming languages, and form the base of typed functional program-
ming languages such as Haskell and ML, as well as, albeit more indirectly, typed imperative
programming languages.
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Figure 1.2: The general axioms and rules for the λ-cube

Figure 1.3: The speci�c axioms and rules for the λ-cube

1.2.3 The Curry-Howard Correspondence

It was �rst noticed, by Haskell Curry [Curry 1934], that the types of some of the combinators
(K and S, for example) in the simply-typed λ-calculus could be seen as axiom schemata for in-
tuitionistic implicational logic. Some twenty years later [Curry 1958], he concluded that Hilbert-
style deduction systems correspond, in some fragment, to the typed fragment of combinatory
logic, while Howard [Howard 1980] was the �rst to state that intuitionistic natural deduction
can directly be interpreted as a typed variant of the λ-calculus. This observation is known as
the Curry-Howard correspondence. Essentially, it tells us that two formalisms which we need
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not have expected to be similar - lambda calculi (as models of computation) and mathematical
logics (as proof systems) - are structurally the same.

Through the Curry-Howard correspondence, we arrive at the important notion of propositions-
as-types, meaning that propositions of a proof system correspond to types within a typed λ-
calculus. In that case, if the proposition is provable in the proof system, the corresponding type
will be inhabited in the λ-calculus, and the term inhabiting it can be seen as its proof. Even
further, this term can be seen as an executable program.

The logics corresponding to the systems of the λ-cube and the relationships between them,
in a format similar to the λ-cube (called the logic cube), are shown in Figure 1.4. All of the
logics of the logic cube are intuitionistic.

PROP Propositional logic (PPL) PROP2 Second-order PPL
PROPω Weakly higher-order PPL PROPω Higher-order PPL
PRED Predicate logic (PRL) PRED2 Second-order PRL

PREDω Weakly higher-order PRL PREDω Higher-order PRL

Figure 1.4: The Logic Cube

1.3 Interactive Theorem Proving and the Proof Assistant Coq

An interactive theorem prover or a proof assistant is a software tool that allows the user to
describe within it concepts such as mathematical theories or programming languages, formulate
a certain problem or state certain properties with respect to that concept, and specify a solution
or verify that that property holds. The proving process is guided by the user and assisted by
the proof assistant, in the sense that the user provides the steps and the proof assistant veri�es
that these steps are correct. The steps themselves mostly mimic pen-and-paper reasoning,
and involve concepts such as proof by induction or contradiction, case analysis, application of
already proven theorems, and many more. While parts of the proof within a proof assistant
can be automated, it is the user who concentrates on the creative details and truly guides the
proving process, separating clearly proof assistants from automated theorem provers, whose task
is to autonomously construct the entire proof.

The proofs produced using automated and interactive theorem provers have a higher degree
of certainty when compared to pen-and-paper proofs, because they rely on a trusted core - a
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collection of code on which the theorem prover is based, that is small enough to be manually
veri�able, that is declared correct, and upon which all of the subsequent inferences are made.
This higher degree of certainty is required in �elds and contexts (such as medicine, aviation,
robotics and security) where software faults could introduce a life-threatening risk.

Currently, there is a number of interactive theorem provers available to researchers, all
essentially de�ned by their respective underlying formalisms. The Curry-Howard correspondence
has paved way for the development of several of them, while the others rely on set theory and
higher-order logic. Here is a non-exhaustive list of the most widely used proof assistants today:

• ACL2 - A Computational Logic for Applicative Common Lisp [Kaufmann 2000]
is a software system consisting of a programming language, an extensible theory in a �rst-
order logic, and a mechanical (capable of working in both interactive and automatic modes)
theorem prover, in the Boyer-Moore tradition [Boyer 1995]. It is designed to support
automated reasoning in inductive logical theories, mostly for the purpose of software and
hardware veri�cation.

• Agda [The Agda development team 2013] is a proof assistant for developing constructive
proofs as well as a functional programming language with dependent types. It is based
on the idea of the Curry-Howard correspondence. It has a certain degree of support for
tactics and proofs are dominantly written in functional programming style. The language
has ordinary programming constructs such as data types, pattern matching, records, let
expressions and modules, and a Haskell-like syntax.

• Coq [The Coq development team 2013, Bertot 2004] is based on an extension of λC known
as the Calculus of Inductive Constructions [Coquand 1988, Paulin-Mohring 1996], and is,
therefore, at the very �top� of the λ-cube when it comes to expressiveness. It allows the
expression of mathematical assertions, is capable of mechanically checking proofs of these
assertions, allows the use of various tactics for the �nding of these formal proofs, and can
extract a certi�ed program from the constructive proof of its formal speci�cation. It has
been developed over the past two decades in the French National Institute for Research
in Computer Science and Control (INRIA). Coq is written in a typed functional language
called Objective CaML, an extension of the core Caml language with a fully-�edged object-
oriented layer, also developed in INRIA.

• HOL [Gordon 2013] (Higher Order Logic) denotes a family of interactive theorem proving
systems sharing similar (higher-order) logics and implementation strategies. Systems in
this family are implemented as a library in some programming language. This library
implements an abstract data type of proven theorems so that new objects of this type
can only be created using the functions in the library which correspond to inference rules
in higher-order logic. As long as these functions are correctly implemented, all theo-
rems proven in the system must be valid. The latest system from this family is HOL4
[The Hol4 development team 2013].

• Isabelle [The Isabelle development team 2013] is an interactive theorem prover, successor
of the HOL theorem prover. It is written in Standard ML, and is based on a small logical
core guaranteeing logical correctness. Isabelle is generic: it provides a meta-logic (a weak
type theory), which is used to encode object logics like First-order logic (FOL), Higher-
order logic (HOL) or Zermelo-Fraenkel set theory (ZFC). Isabelle's main proof method is a
higher-order version of resolution, based on higher-order uni�cation. Though interactive,
Isabelle also features e�cient automatic reasoning tools, such as a term rewriting engine
and a tableaux prover, as well as various decision procedures.
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• PVS [The PVS development team 2013] is a mechanized environment for formal speci�-
cation and veri�cation. PVS consists of a speci�cation language, a number of prede�ned
theories, a type checker, an interactive theorem prover that supports the use of several
decision procedures and a symbolic model checker, various utilities including a code gener-
ator and a random tester, documentation, formalized libraries, and examples that illustrate
di�erent methods of using the system in several application areas. It is based on a kernel
consisting of an extension of Church's type theory with dependent types, and is funda-
mentally a classical typed higher-order logic.

• Twelf [The Twelf development team 2013] is language used to specify, implement, and
prove properties of deductive systems such as programming languages and logics. It fea-
tures dependent types, relies on the Curry-Howard correspondence and is based on the λP
calculus and the LF logical framework.

Let us now take a more detailed look into the inner workings of Coq, the proof assistant
relevant for this thesis. Coq o�ers a variety of tools and mechanisms for encoding and veri�cation:

• All the tools of λC. As the basis of Coq is the Calculus of Inductive Constructions,
which subsumes λC, we have immediately at our disposal dependent types, polymorphism,
and higher-order constructions. All of the objects in Coq have a type, and even types have
their own types, which we call sorts. In Coq, there are two sorts: Type and Prop, the
former applicable to data, and the latter for logical propositions.

• Inductive types. Using inductive types, i.e. by de�ning types through a case-by-case
description of the type, with possibly making use of previously constructed terms of that
type, it is possible to naturally encode notions such as natural numbers, integers, lists,
binary trees, propositional formulas, and virtually any structure inductive in nature. For
instance, we would encode natural numbers as

Inductive nat : Type = 0 : nat | S : nat -> nat.

• Induction. As a mechanism for proving assertions over inductive types, structural in-
duction is one of the built-in mechanisms of Coq. Furthermore, it is possible to de�ne a
custom induction principle, which, of course, has to �rst be proven correct.

• Proof tactics. There is a number of methods for proof simpli�cation, or tactics, readily
available. Some of these tactics involve simple manipulations on the syntactic and semantic
levels of higher-order intuitionistic logic and equality (intros, apply or reflexivity),
whereas others involve more complicated mechanisms (induction or inversion) or the
use of computational tools (omega).

• Records. Coq also provides support for records, which are essentially collections of ob-
jects. Using records, we can, for instance, elegantly exploit dependent types to express
side conditions of a certain type. We will illustrate this on the following example:

Record typeRestriction (U : Type) (W : U -> Prop) : Type :=

mkTypeRes {origU :> U; inW : W origU}.

where, starting from a given type U and its subset W we have constructed a new type
typeRestriction U W which contains only the elements of U which are in W. There are
three things we can notice about this de�nition: it is parametric over U and W, it fea-
tures dependent types (since the type of W depends on the term U, and the type of the
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condition inW depends on the term origU), and it also features another of Coq's useful
mechanisms, which is coercion, denoted by :>, which tells the system that objects of type
typeRestriction U W can be treated, if necessary, as objects of type U.

• In�nite objects. In addition to inductive types, Coq also o�ers co-inductive types,
which allow reasoning about in�nite objects while still remaining in the �nite con�nes of
a computer. Some of the objects we can construct in this manner are streams, lazy lists
and lazy binary trees, whereas one of the notions we can capture using co-inductive types
is bisimilarity.

• Modules. Coq provides pre-formalized collections of facts, lemmas, and theorems regard-
ing various topics, such as set theory, number theory and linear algebra, all organized in
importable modules. The user can also de�ne his own modules, which can be compiled
and re-used across developments. As the underlying logic of Coq is intuitionistic, there
exists a module (Classical) which adds the double negation elimination axiom to the
axiom pool, making it possible to reason in classical terms.

• Program extraction. Coq has the possibility to extract certi�ed and e�cient functional
programs from either Coq functions or Coq proofs of speci�cations. The output language
of these programs can be Objective CaML, Haskell or Scheme. One of the most signi�cant,
and one of the currently most complex examples of program extraction is the CompCert
C certi�ed compiler of C-light (a large subset of the C language), intended for compilation
of life-critical and mission-critical software [Leroy 2009a] [Leroy 2009b].

• CoqIDE. Last, but not least, Coq comes with a graphical user interface called CoqIDE,
which is highly interactive, giving the user an overview of the current proof code, the state
of the current proof, and the options at his disposal.

So far, many important and fundamental theorems have already been proven in Coq, such
as the denumerability of rational numbers, the non-denumerability of the continuum, Gödel's
Incompleteness Theorem, the Cayley-Hamilton theorem. Stirling's formula, etc. However, as
the most important ones we could single out the Four Color Theorem (stating that, given any
separation of a plane into contiguous regions, producing a map, no more than four colors are
required to color the regions of the map so that no two adjacent regions have the same color)
[Gonthier 2004] or, more recently, the Feit-Thompson Theorem (stating that every �nite group
of odd order is solvable) [Gonthier 2012].

In conclusion, we present a very simple illustrative proof in Coq, showing that the well-known
formula (A → (B → C)) → ((A → B) → (A → C)) is indeed a tautology. The claim is stated
as a Lemma, the name of which is example, and the syntax of the formulation is quite intuitive.
Parentheses are written mostly for the bene�t of the reader, as most of them are not needed, due
to the built-in associativity of the intuitionistic implication. Prop is the sort for propositions.

Lemma example : forall A B C : Prop, (A -> (B -> C)) -> ((A -> B) -> (A -> C)).

Proof. // The proof context is empty at this point, and our goal is stated in the format

encountered after the name of the lemma.

intros A B C. // The proposition has to hold for all A, B and C of sort Prop (boolean values - true

and false). Hence, we can pull them into the context as A : Prop, B : Prop, and

C : Prop, leaving us with the formula without the leading forall part as the goal.

intros Habc Hab Ha. // We usually prove an implication of the form A -> B by assuming to have A as an

assumption, and then attempting to prove B, given that assumption. Here, we have

several implication which we can pull back into the context as assumptions -

Habc : A -> (B -> C) is the first one, followed by Hab : A -> B, and Ha : A,

leaving only C in the goal.
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apply Habc. // Also, if we have to prove a goal C, and we have an assumption of the form A -> C,

it would be sufficient to prove A. Here, given that we have an assumption

A -> (B -> C), it would be sufficient to prove A and to prove B. This splits the

goal in two - one for A, one for B.

assumption. // We already have A in the assumptions.

apply Hab. // Similarly as before, our goal is B, and we already have A -> B in the hypotheses.

Therefore, to prove our goal, it would be sufficient to prove A.

assumption. // We already have A in the assumptions.

Qed. // All the goals have been proven.

1.4 Probability, λ-calculus, and Formal Veri�cation

Several works on the treatment of probability in λ-calculi, as well as formal veri�cation of
algorithms and programs involving probability and/or randomness can be found in the literature.

In [Park 2006], the authors have presented a probabilistic language, called λ◦, which uni-
formly supports all types of probability distributions - discrete, continuous, and even those not
belonging to either group. Its mathematical basis are sampling functions, i.e. , mappings from
the unit interval (0, 1] to probability domains. They have also described the implementation of
λ◦ as an extension of Objective CAML and demonstrated its practicality with three applications
in robotics, with experiments carried out with real robots.

In [Hurd 2002], where the proof assistant of choice was HOL, the author starts with an exten-
sive formalization of measure theory and probability spaces. Next, using that formalization, the
author proceeds to de�ne the notion of a probabilistic program that terminates with probability
1, and shows, both in theory and by example, how probabilistic programs can be speci�ed and
formally veri�ed in that setting.

In [Hurd 2005], the authors present a mechanization of the quantitative logic for the guarded
command language pGCL [Morgan 1999], using the HOL theorem prover. pGCL is a language
which allows for the expression of both probabilistic and demonic (arbitrary) choices, and it is
suitable for reasoning about distributed random algorithms. The authors show that the mecha-
nized theory supports the creation of an automatic proof tool which takes as input an annotated
pGCL program and its partial-correctness speci�cation, and derives from that a su�cient set of
veri�cation conditions.

Finally, in [Audebaud 2009], the authors rely on [Hurd 2002] and [Park 2006] to be able to
reason in a formal setting (the proof assistant Coq) about properties of randomized algorithms,
namely the validity of general rules for estimating the probability that a randomized algorithm
satis�es a speci�ed property.

In this thesis, the formalization of the mathematics surrounding probability theory has been
executed on a smaller scale than in [Hurd 2002], on a need-to-have basis (con�ned to �nitely
additive measures), while probabilistic programs are not addressed, and the emphasis in put on
meta-theoretic properties of probability logics.
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LPCP is a probability logic with multiple conditional probability operators, based on classical
logic. Here, we present its syntax and semantics, together with a corresponding strongly com-
plete axiomatization. LPCP is the outcome of a research e�ort which has followed the lines of
investigation presented in [Maksimovi¢ 2008, Ognjanovi¢ 2009, Fagin 1990, Lukasiewicz 2002,
Ra²kovi¢ 2004, Ognjanovi¢ 2005] on the formal development of probability logics, in which
probability-related statements can be expressed using probabilistic operators which specify
bounds on probabilities of a propositional formulas. The work presented here originated from
[Maksimovi¢ 2008], which has been presented at the 13th ESSLLI Student Session in Hamburg,
in 2008, and which developed into a journal publication [Doder 2010], published in the Publica-
tions de l'Institut Mathematique, in 2010.

As mentioned in the previous paragraph, in LPCP we have multiple conditional probability
operators CPi, i ∈ I, where I denotes a �nite non-empty set of indexes. These operators take as
input two classical formulas α and β, and produce as output the conditional probability that α
holds if β holds. One interpretation which could be given to these operators is that each of them
represents an agent which has his own independent assessment of the conditional probability
of an event. For instance, we would be able to formally write the statement �The conditional
probability of an event α given an event β viewed by agent i is at least the sum of conditional
probabilities of α given γ viewed by agent j and twice γ given α viewed by agent k.� as

CPi(α, β) > CPj(α, γ) + 2 · CPk(γ, α).

We provide the syntax and semantics of LPCP, accompanied with a strongly complete ax-
iomatization. We also prove that the developed logic is decidable, and show that it can be used
to represent evidence, solving the problem of propositional axiomatization of reasoning about
evidence, which has been presented in [Halpern 2006].

Before we examine the logic in detail, we will address a minor issue which is well-known in
probability theory. In the classical Kolmogorovian sense, the conditional event �α given β� can
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be considered only in the case when P (β) > 0, and for such a conditional event, we calculate its
probability in the following way:

P (α|β) = P (α ∧ β) · P (β)−1. (2.1)

As the −1 operator is not total, since 0 does not have an inverse, this approach could introduce
di�culties into the formal construction of probabilistic formulas, and it would be better if P (α|β)
were to be a well-de�ned term, regardless of the α, β, and the possible value of P (β).

We can reach an elegant solution to the situation by adopting the convention that −1 is a
total operation, so that we can extend Kolmogorov's de�nition of conditional probability onto
all of the events: P (α|β) = P (α∧ β)P (β)−1. In particular, if P (β) = 0, then P (α∧ β) = 0, and

P (α|β) = P (α ∧ β)P (β)−1 = 0 · P (β)−1 = 0.

If we look closely at this last equation, we can observe that the actual value of 0−1 is
essentially irrelevant for the computation of P (α|β), and that in the case when P (β) = 0 the
conditional probability de�ned as above does indeed behave correctly. For the sake of simplicity,
we will take 0−1 to be equal to 1.

The remainder of this chapter is organized as follows: in Section 2.1, the syntax of the logic
LPCP is presented and the class of measurable probabilistic models is described. Section 2.2
contains the corresponding axiomatization and introduces the notion of deduction. A proof of
the strong completeness theorem for LPCP is presented in Section 2.4, whereas the decidability
of the logic is analyzed in Section 2.5. Representing evidence in LPCP is discussed in Section
Section 2.7, and the concluding remarks are in Section 2.8.

2.1 Syntax and Semantics of LPCP

Let V ar = {pn | n < ω} be the set of propositional variables. The corresponding set of all
propositional formulas over V ar will be denoted by ForC , and is de�ned as the smallest set
which satis�es the following conditions:

1. it contains all of the propositional variables, i.e. V ar ⊂ ForC ,

2. it is closed under the following rules of construction: if α and β are propositional formulas,
then ¬α and α ∧ β are propositional formulas.

Here, we will take ¬ and ∧ to be the basic propositional connectives, and we de�ne the remaining
connectives in the usual manner for classical propositional logic. Propositional formulas will be
denoted by α, β and γ, possibly with indexes. Next, let I be a �nite non-empty set of indexes.

De�nition 1. The set Term of all probabilistic terms is recursively de�ned as follows:

• Term(0) = {s | s ∈ Q} ∪ {CPi(α, β) | α, β ∈ ForC , i ∈ I}.

• Term(n+ 1) = {f, (f + g), (s · g), (−f) | f, g ∈ Term(n), s ∈ Q}.

• Term =
∞⋃
n=0

Term(n).

Probabilistic terms will be denoted by f, g and h, possibly with indexes. To simplify our
notation, we introduce the following convention: f + g will represent (f + g), f + g + h will
represent ((f + g) + h). For n > 3,

∑n
i=1 fi will represent ((· · · ((f1 + f2) + f3) + · · · ) + fn).

Similarly, −f will represent (−f) and f − g will represent (f + (−g)). The intended meaning
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behind probabilistic terms is for them to represent linear combinations of rationally-weighted
conditional probabilities, in the sense that each term can be rewritten (using the axioms and
inference rules from the next Section, which essentially correspond to the axioms of rational
numbers) into an expression of the form( n∑

i=1

si · CPi(αi, βi)
)

+ s. (2.2)

Finally, if α and β are propositional formulas, and i ∈ I, then we will have the probabilistic
term CPi(α, β) to be read as �the conditional probability of α given β viewed by agent i�. To
further simplify the notation, we will be writing Pi(α) instead of CPi(α,>), where > denotes
an arbitrary tautology instance.

De�nition 2. A basic probabilistic formula is any formula of the form f > 0. The set of all
probabilistic formulas is de�ned as the smallest set which satis�es the following conditions:

1. it contains all of the basic propositional formulas,

2. it is closed under the following rules of construction: if f and g are propositional formulas,
then ¬f and f ∧ g are propositional formulas.

As in the case of propositional formulas, illustrated above, here we also treat ¬ and ∧ as the
primitive connectives, while all of the other connectives are introduced in the usual way, as in
classical propositional logic. Probabilistic formulas will be denoted by φ, ψ and θ, possibly with
indexes, while the set of all probabilistic formulas will be denoted by ForP . Furthermore, we
de�ne the following abbreviations:

1. f 6 0 represents −f > 0.

2. f > 0 represents ¬(f 6 0).

3. f < 0 represents ¬(f > 0).

4. f = 0 represents f 6 0 ∧ f > 0.

5. f 6= 0 represents ¬(f = 0).

6. f > g represents f− g > 0.

We de�ne f 6 g, f > g, f < g, f = g and f 6= g in a similar way. By �formula�, we will be
referring to either a propositional formula or a probabilistic formula. We do not allow for the
mixing of propositional and probabilistic formulas, nor for the nesting of probability operators
CPi. Therefore, it is not possible to have formulas of the form α ∧ CPi(β, γ) ≥ 0 or formulas
such as CPi(CPj(α, β), γ) in LPCP. Formulas will be denoted by Φ,Ψ and Θ, possibly with
indexes. The set of all of the formulas will be denoted by For.

Next, we proceed to the semantics of LPCP. We de�ne the notion of a model as a special
kind of Kripke model. Namely, a model M is any quadruple 〈W,H, {µi | i ∈ I}, v〉 such that:

• W is a non-empty set. As usual, we will be referring to its elements as worlds.

• H is an algebra of sets over W .

• for each i ∈ I, µi : H −→ [0, 1] is a �nitely additive probability measure.

• v : ForC × W −→ {0, 1} is a truth assignment compatible with ¬ and ∧. That is,
v(¬α,w) = 1− v(α,w) and v(α ∧ β,w) = v(α,w) · v(β,w).
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For a given model M , we will denote by [α]M the set of all w ∈ W such that v(α,w) = 1. If
the context is clear, we will write [α] instead of [α]M . We say that M is a measurable model if
[α] ∈ H for all α ∈ ForC .

De�nition 3. Let M = 〈W,H, {µi | i ∈ I}, v〉 be any measurable model. We de�ne the satis�a-
bility relation |= recursively as follows:

1. M |= α if v(α,w) = 1 for all w ∈W .

2. M |= f > 0 if fM > 0, where fM is recursively de�ned in the following way:

• sM = s.

• CPi(α, β)M = µi([α ∧ β]) · µi([β])−1, for any i ∈ I.
• (f + g)M = fM + gM .

• (s · g)M = s · gM .

• (−f)M = −(fM ).

3. M |= ¬φ if M 6|= φ.

4. M |= φ ∧ ψ if M |= φ and M |= ψ.

A formula Φ is satis�able if there exists a measurable model M = 〈W,H, {µi | i ∈ I}, v〉
such that M |= Φ; Φ is valid if it is satis�ed in every measurable model. We say that the set
T of formulas is satis�able if there is a measurable model M such that M |= Φ for all Φ ∈ T .
The reader can notice that the last two clauses of De�nition 3 guarantee the validity of each
tautology instance.

2.2 An Axiomatization of LPCP

In this section, we will introduce the axioms and inference rules for LPCP. The set of axioms
of our axiomatic system, which we denote by AXLPCP, is divided into three groups: axioms for
propositional reasoning, axioms for probabilistic reasoning, and arithmetical axioms.

Axioms for propositional reasoning:

A1a. τ(p1, . . . , pn) - all tautologies instantiated with propositional formulas

A1b. τ(Φ1, . . . ,Φn) - all tautologies instantiated with probabilistic formulas

Axioms for probabilistic reasoning (i ∈ I):

A2. Pi(α) > 0. Non-negativity of probability
A3. Pi(>) = 1. Something true will always occur
A4. Pi(⊥) = 0. Something false will never occur
A5. Pi(α↔ β) = 1 → Pi(α) = Pi(β). Equivalent formulas are equally probable
A6. Pi(α ∨ β) = Pi(α) + Pi(β)− Pi(α ∧ β). The inclusion�exclusion principle
A7. P (β) = 0→ CP (α, β) = 0; Disallowing division by zero

Capturing conditional probability:
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A8. (Pi(α ∧ β) ≥ r ∧ Pi(β) ≤ s)→ CPi(α, β) ≥ r · s−1, s 6= 0.
A9. (Pi(α ∧ β) > r ∧ Pi(β) ≤ s)→ CPi(α, β) > r · s−1, s 6= 0.
A10. (Pi(α ∧ β) ≥ r ∧ Pi(β) < s)→ CPi(α, β) > r · s−1, s 6= 0.
A11. (Pi(α ∧ β) ≤ r ∧ Pi(β) ≥ s)→ CPi(α, β) ≤ r · s−1, s 6= 0.
A12. (Pi(α ∧ β) < r ∧ Pi(β) ≥ s)→ CPi(α, β) < r · s−1, s 6= 0.
A13. (Pi(α ∧ β) ≤ r ∧ Pi(β) > s)→ CPi(α, β) < r · s−1, s 6= 0.

Arithmetical axioms:

A14. r > s, whenever r > s. Compatibility of > with > of Q
A15. r > s, whenever r > s. Compatibility of ≥ with ≥ of Q
A16. s · r = sr. Compatibility of · with · of Q, part 1
A17. s+ r = s+ r. Compatibility of + with + of Q
A18. f + g = g + f. Commutativity of +
A19. (f + g) + h = f + (g + h). Associativity of +
A20. f + 0 = f. 0 is the neutral for +
A21. f− f = 0. Inverse terms for +
A22. (r · f) + (s · f) = r + s · f. Distributivity of · with +
A23. s · (f + g) = (s · f) + (s · g). Distributivity of + with ·
A24. r · (s · f) = r · s · f. Compatibility of · with · of Q, part 2
A25. 1 · f = f. Neutrality of 1
A26. f > g ∨ g > f. Totality of ≥
A27. (f > g ∧ g > h)→ f > h. Transitivity of ≥
A28. f > g → f + h > g + h. Compatibility of ≥ with +
A29. (f > g ∧ s > 0) → s · f > s · g. Compatibility of ≥ with ·
A30. f = g→ (φ(. . . , f, . . .)→ φ(. . . , g, . . .)). Contextual closure for terms

Inference rules:

R1. From α and α→ β infer β; from φ and φ→ ψ infer ψ.

R2. From α infer Pi(α) = 1, for all i ∈ I.

R3. From the set of premises {φ → f > −n−1 | n = 1, 2, 3, . . . } infer φ→ f > 0.

Let us brie�y comment on the axioms and inference rules. The axioms A2 through A6 provide
the required properties of probability, the axioms A7 through A13 capture Equation 2.1, using
the fact that Q is dense in R, while the axioms A14 through A30 provide the properties required
for computation. As for the inference rules, R1 is modus ponens for classical and probabilistic
formulas, R2 resembles necessitation, while the in�nitary rule R3 ensures that non-Archimedean
probabilities are not permitted. Using the rule R3, we are able to syntactically deal with the
inherent non-compactness1 of LPCP and achieve strong completness. Also, we can see that there
exist two levels of formulas - propositional and probabilistic, and that these levels are separate,
in the sense that it is possible to cross from the propositional to the probabilistic level using the
inference rule R2, but there is no mechanism to provide a crossing in the opposite direction.

De�nition 4 (Derivability). A formula Φ is derivable from a set of formulas T 2 (T ` Φ) if
there is an at most countable sequence of formulas Φ0,Φ1, . . . ,Φ, such that every Φi is an axiom
or a formula from the set T , or it is derived from the preceding formulas by an inference rule.
Particularly, a formula Φ is a theorem (` Φ) if it is deducible from the empty set of hypotheses.

1In LPCP, it is possible to construct a set of formulas that is not satis�able, but whose every �nite subset is
satis�able. An example of this set is the set {φ→ f > 0} ∪ {φ → f < −n−1 | n = 1, 2, 3, . . . }.

2We refer to formulas in T as assumptions or hypotheses.



26 Chapter 2. A Probability Logic with Conditional Probability Operators

De�nition 5 (Consistent and Inconsistent Sets). A set of formulas T is consistent if there is
at least one formula from ForC and at least one formula from ForP that are not deducible from
T . Otherwise, T is inconsistent.

De�nition 6 (Maximally Consistent Sets). A consistent set T of sentences is said to be maxi-
mally consistent if for every α ∈ ForC , it holds that if T ` α then α ∈ T and (Pi(α) = 1) ∈ T ,
for all i ∈ I, and for every φ ∈ ForP , either φ ∈ T or ¬φ ∈ T .

De�nition 7 (Deductively Closed Sets). A set T is deductively closed if for every Φ ∈ For, if
T ` Φ, then Φ ∈ T .

With the presented axioms and inference rules, one can notice that the length of the inference
may be any successor ordinal lesser than the �rst uncountable ordinal ω1, i.e. that we can have
in�nite (countable) proofs in LPCP.

2.3 Soundness of LPCP

The �rst meta-theoretical result we will prove about our logic will be the soundness theorem,
which follows easily from the formulation of the axiom system and the inference rules.

Theorem 1 (Soundness). If Φ is a theorem of AXLPCP, then it is valid.

Proof. Essentially, we need to prove that the instances of all of the axioms of AXLPCP are valid,
and that applications of the inference rules preserve validity. As the axiom schemes are checked
to be valid in the usual manner, we will focus on the application of the inference rules:

R1. Let us assume that the classical formulas α and α→ β are valid. This means that α and
α → β ≡ ¬(α ∧ ¬β) are true in every world w ∈ W of every model M = 〈W,H, {µi|i ∈
I}, v〉. However, since we have that ¬(α ∧ ¬β) is true, then it must be that β is true,
which concludes this part of the proof. The part for the modus ponens for probabilistic
formulas is proven similarly.

R2. Let us assume that the classical formula α is valid. This means that α is true in every
world w ∈W of every modelM = 〈W,H, {µi|i ∈ I}, v〉. Therefore, we have that [α] = W ,
meaning that we have that µi([α]) = µi(W ) = 1, for all i ∈ I. This, in turn, means that
M |= Pi(α) = 1, which concludes this part of the proof.

R3. Let us assume that the set of probabilistic formulas {φ → f ≥ −n−1 | n = 1, 2, 3, . . .}
is valid, i.e. that for every model M = 〈W,H, {µi|i ∈ I}, v〉, it holds that M |= {φ →
f ≥ −n−1 | n = 1, 2, 3, . . .}. Now, if M 6|= φ, then M |= φ → f ≥ 0 immediately,
as the antecedent of the (classical) implication is false. Therefore, let us assume that
M |= φ. Then, given the de�nition of implication via conjunction and negation, we have
that M |= {f ≥ −n−1 | n = 1, 2, 3, . . .}, and we need to prove that M |= f ≥ 0. Given the
de�nition of satis�ability, we have that {fM ≥ 1

n | n = 1, 2, 3, . . .}, and we need to prove
that fM ≥ 0, which follows from the axiomatization of real numbers.

2.4 Strong Completeness of LPCP

In this section, we will prove that the proposed axiomatization is strongly complete with respect
to the class of all measurable models. As is quite common, the �rst step to take is to prove the
Deduction Theorem.
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Theorem 2 (Deduction theorem). Let T be an arbitrary set of formulas, and let Φ,Ψ ∈ ForC
or Φ,Ψ ∈ ForP . Then, it holds that T ` Φ→ Ψ i� T ∪ {Φ} ` Ψ.

Proof. First, let us assume that T ` Φ → Ψ. From this, regardless of whether Φ and Ψ are
classical or probabilistic, we have that T∪{Φ} ` Φ→ Ψ. However, we also have that T∪{Φ} ` Φ.
Therefore, using the appropriate modus ponens (inference rule R1), we obtain that T ∪{Φ} ` Ψ.

Conversely, let T ∪ {Φ} ` Ψ. We proceed by structural induction on this inference with the
goal of proving T ` Φ→ Ψ. In case when the last applied rule was R1, the proof proceeds just as
for classical logic. Next, let the last applied rule be the inference rule R2. In that case, we have
that Ψ is of the form Pi(α) = 1, for some i ∈ I, which was obtained from T ∪{Φ} ` α. However,
as the classical and probabilistic formulas are separate, the derivation of classical formulas does
not depend on probabilistic formulas, and we have that T ` α. From there, using the inference
rule R2, we obtain that T ` Pi(α) = 1. From here, using the tautology φ0 → (φ1 → φ0) and
the axiom A1b, we obtain the desired T ` Φ→ (Pi(α) = 1).

Finally, let the last applied rule be R3. Then, Ψ is of the form φ → f > 0 and we have,
by the induction hypothesis, that T ` Φ → (φ → f > −n−1) for all n. Since the formula
(φ0 → (φ1 → φ2)) ↔ ((φ0 ∧ φ1) → φ2) is a tautology, we also have that T ` (Φ ∧ φ) → f >
−n−1, for all n, with the help of the axiom A1b. Now, by the inference rule R3, we have that
T ` (Φ ∧ φ) → f > 0, and by using the same tautology as above, that T ` Φ → Ψ. With this
proof, the reader can appreciate why the `φ →' �pre�x� in needed in the rule R3 � without it,
we could not have used the tautology required for the crucial application of the rule R3.

We will use the result of the next technical lemma in the construction of a maximally con-
sistent extension of a consistent set of formulas.

Lemma 1. Let T be a consistent set of formulas. If T ∪{φ→ f > 0} is inconsistent, then there
exists a positive integer n such that T ∪ {φ→ f < −n−1} is consistent.

Proof. Let us assume the converse, i.e. that T ∪ {φ→ f < −n−1} is inconsistent for all positive
integers n. Therefore, we have that, for all positive integers n, T ∪ {φ→ f < −n−1} ` ⊥. From
this, using the Deduction Theorem, we have that

T ` φ→ f > −n−1,

for all positive integers n. Now, using the inference rule R3, we have that T ` φ → f > 0, and
so we have that T must be inconsistent, which is in contradiction with our original assumption,
therefore completing our proof.

De�nition 8. Let T be a consistent set of formulas, and let us have an enumeration of proba-
bilistic formulas, i.e. let ForP = {φi | i ∈ ω}3. We de�ne a completion T ∗ of T as follows:

1. T0 = T ∪ {α ∈ ForC | T ` α} ∪ {Pi(α) = 1 | T ` α, i ∈ I}.

2. If Ti ∪ {φi} is consistent, then Ti+1 = Ti ∪ {φi}.

3. If Ti ∪ {φi} is inconsistent, then:

(a) If φi is of the form ψ → f > 0, then Ti+1 = Ti ∪ {ψ → f < −n−1}, where n is a
positive integer such that Ti+1 is consistent4.

(b) Otherwise, Ti+1 = Ti.

3This is possible, as probabilistic formulas are countable by construction.
4The existence of such an n is provided by Lemma 1.
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4. T ∗ =
⋃∞
n=0 Tn.

We can prove that each Ti is consistent by construction. In the next theorem, we will prove
that T ∗ is maximally consistent and deductively closed.

Theorem 3. Let T be a consistent set of formulas, and let T ∗ be constructed as above. Then:

1. For each φ ∈ ForP , either φ ∈ T ∗ or ¬φ ∈ T ∗.

2. T ∗ is consistent, i.e.

(a) There is a formula α ∈ ForC , such that α /∈ T ∗.
(b) There is a formula φ ∈ ForP , such that φ /∈ T ∗.

3. T ∗ is deductively closed, i.e. if T ∗ ` Φ then Φ ∈ T ∗.

Proof.

1. Let us assume the opposite: let φ be a probabilistic formula such that both φ ∈ T ∗ and
¬φ ∈ T ∗, or neither φ ∈ T ∗ nor ¬φ ∈ T ∗. Without loss of generality, we can assume
that, in the above enumeration, φ ≡ φi and ¬φ ≡ φj , and let k = max(i, j). Then, by
construction, in the �rst case, we have that Tk+1 ` φ, and Tk+1 ` ¬φ. However, then we
also have that Tk+1 ` φ ∧ ¬φ, i.e. that Tk+1 is inconsistent, which is not possible. In the
second case, by construction, we have that Tk+1 ∪ {φ} ` ⊥, and that Tk+1 ∪ {¬φ} ` ⊥.
From this, using the Deduction Theorem and the elimination of double negation, we again
obtain that Tk+1 ` φ, and Tk+1 ` ¬φ, and from that, we have that Tk+1 ` φ∧¬φ, i.e. that
Tk+1 is inconsistent, which is still not possible, and we have our claim.

2. (a) Since there are no classical formulas added during the formation of T ∗, all of the
classical formulas which are in T ∗ are also in T0. Therefore, if it were to hold that
all classical α are in T ∗, then all classical α would also have to be in T0, making it
inconsistent by de�nition, which is not the case. Therefore, there must be a classical
formula α, such that α /∈ T .

(b) This is a direct consequence of item 1.

At this point, taking into consideration the manner in which T0 is constructed, we have
e�ectively proven that T ∗ is maximally consistent.

3. We will proceed by structural induction on the derivation of T ∗ ` Φ.

(a) Let Φ be an instance of an axiom. Then, if Φ ∈ ForC we have that Φ ∈ T0 ⊆ T ∗.
Otherwise, Φ ∈ ForP , and there is a non-negative integer i such that Φ ≡ φi of the
above enumeration. Then, since ` Φ, it must be that Ti ` φi and so Φ ∈ Ti+1 ⊆ T ∗.

(b) Let T ∗ ` Φ ≡ β be obtained from T ∗ ` α and T ∗ ` α → β by the inference rule
R1. Then, by the construction of T ∗, we have that α→ β ∈ T and α ∈ T , and from
there, by the construction of T0, we have that β ∈ T0 ⊆ T ∗.

(c) Let T ∗ ` Φ ≡ φ be obtained from T ∗ ` ψ and T ∗ ` ψ → φ by the inference rule
R1, and let ψ ≡ φi, ψ ≡ φj , and φ → ψ ≡ φk in the above enumeration. Then, φ
is a deductive consequence of each Tl, where l > max(i, k) + 1. Next, let ¬φ ≡ φm.
If φm ∈ Tm+1, then ¬φ is a deductive consequence of each Tn, where n > m + 1.
Therefore, for every n > max(i, k,m) + 1, we would have that Tn ` φ ∧ ¬φ, which is
a contradiction with the consistency of Tn. Thus, it must be that ¬φ 6∈ T ∗. However,
given item 1, it must then be that φ ∈ T ∗.
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(d) Let T ∗ ` Φ ≡ Pi(α) = 1, for some i ∈ I be obtained from T ∗ ` α by the inference
rule R2. However, this means that T ` α and, by the construction of T0, we have
that Pi(α) = 1 ∈ T0 ⊆ T ∗ for all i ∈ I.

(e) Let T ∗ ` Φ ≡ φ → f > 0 be obtained from T ∗ ` φ → f > −n−1, for all n ≥ 0.
By the induction hypothesis, we then have that φ → f > −n−1 ∈ T ∗, for all n ≥ 0.
Next, let φ→ f > 0 = φi in the above enumeration, and let us assume that φi /∈ T ∗.
Then, Ti ∪ {φi} must be inconsistent, which means that, for some positive integer
n, φ → f < −n−1 ∈ Ti+1, according to item 3a of De�nition 8. Next, let φ → f ≥
−n−1 ≡ φj in the above enumeration. Then, for all k ≥ max(i, j) + 1, we have that
Tk ` φ → f < −n−1 and Tk ` φ → f ≥ −n−1, which is in contradiction with the
consistency of Tk. Therefore, it must be that Φ ∈ T , and we have our claim.

Next, for a given consistent set of formulas T and its completion to a maximally consistent
set T ∗, we proceed to de�ne a canonical model M∗ = 〈W,H, {µi|i ∈ I}, v〉 as follows:

1. W is the set of all functions w : ForC −→ {0, 1} with the following properties:

• w is compatible with ¬ and ∧.
• w(α) = 1 for each α ∈ T ∗.

2. v : ForC ×W −→ {0, 1} is de�ned by v(α,w) = 1 i� w(α) = 1.

3. H = {[α] | α ∈ ForC}.

4. µi : H −→ [0, 1] is de�ned by µi([α]) = sup{s ∈ [0, 1] ∩Q | T ∗ ` Pi(α) > s}, for all i ∈ I.

Lemma 2. M∗ is a measurable model.

Proof. Here, we need to prove that H is an algebra of sets and that each µi is indeed a �nitely
additive probability measure. Given the properties of the measure, we have that [α]∩[β] = [α∧β],
[α] ∪ [β] = [α ∨ β] and H \ [α] = [¬α], from which we obtain that H is an algebra of sets.
Concerning the measures µi, the non-negativity requirement (µi([α]) ≥ 0) is the consequence of
axiom A2 and the de�nition of µi, while the requirement that µi(W ) = 1 follows directly from
the axiom A3, since W = [>]. Now, we will turn our attention to the proof of �nite additivity.
Let µi([α]) = a, µi([β]) = b and µi([α ∧ β]) = c. What we would like to prove is that

µi([α ∨ β]) = a+ b− c.

Since the set of rational numbers Q is dense in R, we can choose an increasing sequence
a0 < a1 < a2 < · · · and a decreasing sequence a0 > a1 > a2 > · · · in Q such that lim an =
lim an = a. Using the de�nition of µi and item 1 of Theorem 3, we obtain that T ∗ ` Pi(α) > an
and that T ∗ ` Pi(φ) < an, for all positive integers n. In the same way, we can also choose
increasing sequences (bn)n∈ω and (cn)n∈ω, and decreasing sequences (bn)n∈ω and (cn)n∈ω in Q,
such that lim bn = lim bn = b and lim cn = lim cn = c. For these sequences, we have that
T ∗ ` Pi(β) > bn ∧ Pi(β) < bn and T ∗ ` Pi(α ∧ β) > cn ∧ Pi(α ∧ β) < cn. From here, using the
arithmetical axioms, we have that

T ∗ ` Pi(α) + Pi(β)− Pi(α ∧ β) > an + bn − cn

and
T ∗ ` Pi(α) + Pi(β)− Pi(α ∧ β) < an + bn − cn
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for all positive integers n. Using the axioms A6 and A30, we obtain that T ∗ ` Pi(α ∨ β) >
an + bn − cn and that T ∗ ` Pi(α ∨ β) < an + bn − cn, for all n. Finally, from the fact that

µi([α ∨ β]) = sup{r ∈ Q | T ∗ ` Pi(α ∨ β) > r}

and lim an + bn − cn = lim an + bn − cn = a+ b− c, we obtain that µi([α ∨ β]) = a+ b− c.

Now, we are ready to prove the main theorem:

Theorem 4 (Strong Completeness). Every consistent set of formulas has a measurable model.

Proof. Let T be a consistent set of formulas. We can extend it to a maximally consistent set
T ∗, and de�ne a canonical model M∗, as above. We will now prove that M∗ |= Φ i� Φ ∈ T ∗ by
induction on the complexity of the formulas. First, we prove that if M∗ |= Φ, then Φ ∈ T ∗:

1. As the base case, let M∗ |= α. By the completeness of classical propositional logic, we
have that T ∗ ` α, and α ∈ T ∗.

2. Let M∗ |= f > 0, i.e. fM
∗ ≥ 0. If f > 0 /∈ T ∗, from the construction of T ∗, there exists

a positive integer n, such that f < −n−1 ∈ T ∗. But then, by the construction of M∗, we
would have that fM

∗
< 0, which is a contradiction. Therefore, we have that f > 0 ∈ T ∗.

3. LetM∗ |= ¬φ. Then, by de�nition of |=, we get thatM∗ 6|= φ. By the induction hypothesis,
we have that φ 6∈ T ∗, and �nally, by item 1 of Theorem 3, we have that ¬φ ∈ T ∗.

4. Finally, let M∗ |= φ ∧ ψ. Then, by de�nition of |=, we have that M∗ |= φ and M∗ |= ψ.
By the induction hypothesis, we get that φ, ψ ∈ T ∗, and �nally, by item 3 of Theorem 3,
we have that φ ∧ ψ ∈ T ∗.

Here, it is important to notice that that T ∗ ` CPi(α, β) ≥ r implies that µi([αi∧βi])µi([βi])−1 ≥
r. Indeed, if it were that µi([αi ∧ βi])µi([βi])−1 < r, there would exist a, b ∈ Q, such that
a > µi([αi ∧ βi]), b ≤ µi([βi]), and µi([αi ∧ βi])µi([βi])−1 < a

b < r. Using the previously proven
direction, we would have that T ∗ ` Pi(α ∧ β) < a and T ∗ ` Pi(β) ≥ b, and hence, by A12,
that T ∗ ` CPi(α, β) < a · b−1, which would be a contradiction. Similarly, we can show that
T ∗ ` CPi(α, β) ≤ r implies that µi([αi ∧ βi])µi([βi])−1 ≤ r. As a consequence, we have that
µi([αi]|[βi]) = sup{r ∈ Q | T ∗ ` CPni(α, β) > r}. Next, we proceed to prove the opposite
direction: if Φ ∈ T ∗, then M∗ |= Φ:

1. As the base case, let Φ = α ∈ ForC . If α ∈ T ∗, i.e. T ∗ ` α, then, by de�nition of M∗,
M∗ |= α.

2. Let us suppose that f > 0 ∈ T ∗. Then, using the axioms A16�A19, A22�A25 and A30, we
can prove that

T ∗ ` f = s+
m∑
i=1

si · CPni(αi, βi) and T ∗ ` s+
m∑
i=1

si · CPni(αi, βi) > 0,

for some s, si ∈ Q and some αi, βi ∈ ForC , ni ∈ I. This is not surprising, given the
intended design of terms (cf. Equation 2.2). Moreover, given the axioms A7, A16, A20
and A30, we can e�ectively cancel out all of the subterms of f in which we have conditional
probabilities CPi(α, β) with Pi(β) = 0, and, therefore, may assume that T ∗ ` Pni(βi) > 0.

Next, let ai = µni([αi ∧ βi]) and bi = µni([βi]). We need to prove that

s+

m∑
i=1

si · ai · b−1
i > 0. (2.3)
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Therefore, we can choose increasing sequences (cinci,k )k∈ω and decreasing sequences (cdeci,k )k∈ω

in Q, such that lim cinci,k = lim cdeci,k = aib
−1
i , for i ∈ {1, . . . ,m}. Hence, we have that

T ∗ ` CPni(α, β) > cinci,k ∧ CPni(α, β) < cdeci,k , for i ∈ {1, . . . ,m} and k ∈ ω.

Without loss of generality, we can assume that T ∗ ` si > 0, for 1 6 i 6 l, and T ∗ ` si < 0,
for l < i 6 m. Then, using the arithmetical axioms, we obtain that

T ∗ ` s+
l∑

i=1

si · cinci,k +
m∑

i=l+1

si · cdeci,k 6 s+
m∑
i=1

si · CPni(αi, βi)

and

T ∗ ` s+

l∑
i=1

si · cdeci,k +

m∑
i=l+1

si · cinci,k > s+

m∑
i=1

si · CPni(αi, βi)

for all k. Consequently, we have that

s+

m∑
i=1

si · ai · b−1
i = sup{r ∈ Q | T ∗ ` s+

m∑
i=1

si · CPni(αi, βi) > r}.

Now, Equation 2.3 follows from T ∗ ` s+
m∑
i=1

si · CPni(αi, βi) > 0.

3. Let ¬φ ∈ T ∗. Then, by item 1 of Theorem 3, we have that φ 6∈ T ∗. Next, by the induction
hypothesis, we have that M∗ 6|= φ, and �nally, by the de�nition of satis�ability, we obtain
that M∗ |= ¬φ.

4. Finally, let Φ = φ ∧ ψ ∈ T ∗. Then, by item 3 of Theorem 3, we have that φ, ψ ∈ T ∗.
Next, by the induction hypothesis, we have that M∗ |= φ and M∗ |= ψ, and �nally, by the
de�nition of satis�ability, we obtain that M∗ |= φ ∧ ψ.

2.5 Decidability of LPCP

Theorem 5. Satis�ability of probabilistic formulas is decidable.

Proof. Up to equivalence, every probabilistic formula is a �nite disjunction of �nite conjunc-
tions of literals, where a literal is either a basic probabilistic formula, or a negation of a basic
probabilistic formula. Thus, it would be su�cient to show the decidability of the satis�ability
problem for formulas of the form ∧

i

fi > 0 ∧
∧
j

gj < 0. (2.4)

Suppose that p1, . . . , pn are all of the propositional letters appearing in Equation 2.4. Let
A1, . . . , A2n be all of the formulas of the form

±p1 ∧ · · · ∧ ±pn,

where +p = p and −p = ¬p. We can see that Ai are pairwise-disjoint and form a partition of
>. Furthermore, for each classical formula α appearing in Equation 2.4, there exists a unique
set Iα ⊆ {1, . . . , 2n} such that

α↔
∨
i∈Iα

Ai
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is a tautology. Now, given Equation 2.2, we can equivalently rewrite Equation 2.4 as∧
i

∑
i′

sii′CPni′

( ∨
k∈Iαii′

Ak,
∨

l∈Iβii′

Al

)
> ri ∧

∧
j

∑
j′

sjj′CPnj′

( ∨
k∈Iαjj′

Ak,
∨

l∈Iβjj′

Al

)
< rj .

Let the set {i1, . . . , im} ⊆ I be the set of all of the di�erent conditional probability operator
indexes which appear in Equation 2.4, and let σi(x(1,i1), . . . , x(2n,i1), . . . , x(1,im), . . . , x(2n,im)),
δj(x(1,i1), . . . , x(2n,i1), . . . , x(1,im), . . . , x(2n,im)) be the formulas

∑
i′

sii′ ·
( ∑
k∈Iαii′∩Iβii′

x(k,ni′ )

)
·
( ∑
l∈Iβii′

x(l,ni′ )

)−1

> ri

and ∑
j′

sjj′ ·
( ∑
k∈Iαjj′∩Iβjj′

x(k,nj′ )

)
·
( ∑
l∈Iβjj′

x(l,nj′ )

)−1

< rj .

Furthermore, let χ(x(1,i1), . . . , x(2n,i1), . . . , x(1,im), . . . , x(2n,im)) be the formula∧
h∈{1,...,m}

x(1,ih) + · · ·x(2n,ih) = 1 ∧
∧
k,h

x(k,ih) > 0.

Then, we can notice that Equation 2.4 is satis�able if and only if the sentence

∃x(1,i1) . . . ∃x(2n,i1) . . . ∃x(1,im) . . . ∃x(2n,im)

(∧
i

σi(x̄) ∧
∧
j

δj(x̄) ∧ χ(x̄)

)
(2.5)

is satis�ed in the ordered �eld of reals. Formally, the �rst order language of �elds does not
contain �−1� and �−�. However, both of these functions are easily de�nable. For instance, �−1�
can be de�ned by the following formula:

ϕ(x, y) : (x = 0→ y = 1) ∧ (x 6= 0→ xy = 1),

since the �rst order sentence (∀x)(∃1y)ϕ(x, y) is satis�ed in every �eld. In particular, the
formula ψ(. . . , x−1, . . .) holds if and only if the formula ψ(. . . , y, . . .)∧ϕ(x, y) holds. Therefore,
Equation 2.5 can be seen as a �rst-order formula belonging to the language of ordered �elds LOF
� de�nitions by extensions, see [Shoen�eld 1967]. Based on results presented in [Marker 2002],
we have that the satis�ability of sentences of LOF in the ordered �eld of reals is decidable.

It should be noted here that our choice to extend the operation −1 so that 0−1 = 1 does not
a�ect the aforementioned reasoning, as the conditional probability of α given β is equal to 0 i�
the probability of α ∧ β is equal to 0, regardless of the value of the probability of β.

Now, let us suppose that there is only one conditional probability operator, i.e. that there
exists only one agent. It should be noted that this logic can be embedded into the logic described
in [Fagin 1990], which has a PSPACE containment for the decision procedure. Also, the rewriting
of formulas from our logic into that logic can be accomplished in linear time:

CP (α, β) is equivalent to ω(α∧β)
ω(β) ,

which can be represented easily in [Fagin 1990]. Furthermore, the generalization of the logic
from [Fagin 1990] to a multi-agent case is straightforward. Therefore, we conclude that our logic
is also decidable in PSPACE.
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2.6 An Interlude: Reasoning about Evidence

Imagine the following scenario: we have two coins, one of which is fair (with a head on one side
and a tail on the other, with the probability of 50% for each of the outcomes), while the other
one is extremely biased (e.g. with a probability of only 1% for the tail to appear on top). We
also have the results of a series of tosses originating from one of the coins, but we do not know
which. Furthermore, we have no information whatsoever regarding prior probability assigned
to the choice of the coin, and we would like to make some sort of probabilistic inference as to
which coin has actually been tossed only from the results of the tosses. Then, we can view these
results as evidence in favor of or against one of the coins, and it is precisely this notion that we
would like to model. The model should capture our intuition about the matter in question. For
instance, if we were to have a series of 50 tosses with only three tails, we could induce that the
coin in question is the biased one, while if we were to have a series of 50 tosses with 24 heads
and 26 tails, we could induce that the coin in question is the fair one.

The topic of evidence has been discussed comprehensively in philosophical literature, namely
philosophy of science and, more precisely, con�rmation theory, where the main topic of discus-
sion is the extent to which experimental evidence lends credence to various scienti�c theories
[Good 1950, Popper 1959, Carnap 1962, Milne 1996].

There are three things which a framework capturing evidence should incorporate: probabilis-
tic outcomes (such as the outcome of the actual coin toss), non-probabilistic outcomes (such as
the choice of the coin toss), and, mainly, the change in likelihood of a hypothesis caused by the
previous probabilistic outcomes. While there were many research e�orts which have successfully
been able to capture the �rst two requirements [Halpern 1993, de Alfaro 1997, He 1995], it was
not until [Halpern 2006] that the third one was also realized.

2.7 Representing Evidence with LPCP

In [Halpern 2006], Halpern and Pucella have presented a �rst-order logic for reasoning about
evidence. It includes propositional formulas on hypotheses H, observations O, probabilities P1

and P2 of formulas before and after the observation, the evidence E(o, h) provided by the obser-
vation o for the hypothesis h, and quanti�cation by real-valued variables. They have posed an
open question whether it would be possible to axiomatize their logic without using quanti�ca-
tion. Intuitively, the evidence function e represents the �weight� with which an observation leads
to the ful�llment of a hypothesis. Also, it was shown that evidence can be seen as a function
which maps prior probability P1 to posterior probability P2, using Dempster's Rule of Combi-
nation. For more details, we refer the reader to [Halpern 2006]. In this section, we will show
how evidence can be represented using LPCP. We will introduce the following modi�cations:

1. There is a �nite number of propositional letters divided into two categories: V ar = H∪O,
where H = {h1, . . . , hm} are used to denote hypotheses, O = {o1, . . . , on} are used to
denote observations, and H ∩O = ∅.

2. There are only two conditional probability operators � CP1 and CP2, which will be inter-
preted as prior and posterior conditional probabilities, respectively;

3. there is an additional syntactic object � E(o, h), where o ∈ O, h ∈ H.

4. The de�nition of Term(0) is adjusted accordingly to:

Term(0) = {s | s ∈ Q} ∪ {CPi(α, β) | α, β ∈ ForC , i ∈ I} ∪ {E(o, h)|o ∈ O, h ∈ H}.
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5. The de�nition of a model is extended to be a sextuple 〈W,H, {µi|i ∈ I}, v, e〉, where we
have e : ({[o]|o ∈ O} × [{[h]|h ∈ H}])→ [0, 1] by the formula

e([o], [h]) =
µ1([o ∧ h]) · µ1([h])−1∑m

k=1 µ1([o ∧ hk]) · µ1([hk])−1
,

for o ∈ O, h ∈ H.

6. The de�nition of satis�ability is extended to include:

E(o, h)M = (CP1(o, h)M ) ·
( m∑
k=1

CP1(o, hk)
M

)−1

,

for o ∈ O, h ∈ H.

7. There are nine additional axioms:

A31. (
∨m
i=1 hi) ∧ (

∧
i 6=j(hi → ¬hj)).

A32. (
∨n
i=1 oi) ∧ (

∧
i 6=j(oi → ¬oj)).

A33.
∧n
i=1(CP1(oi, h1) + . . .+ CP1(oi, hm) > 0).

A34. (CP1(oi, hj) > r ∧ CP1(oi, h1) + . . .+ CP1(oi, hm) 6 s)→ E(oi, hj) > r · s−1.

A35. (CP1(oi, hj) > r ∧ CP1(oi, h1) + . . .+ CP1(oi, hm) < s)→ E(oi, hj) > r · s−1.

A36. (CP1(oi, hj) > r ∧ CP1(oi, h1) + . . .+ CP1(oi, hm) 6 s)→ E(oi, hj) > r · s−1.

A37. (CP1(oi, hj) 6 r ∧ CP1(oi, h1) + . . .+ CP1(oi, hm) > s)→ E(oi, hj) 6 r · s−1.

A38. (CP1(oi, hj) 6 r ∧ CP1(oi, h1) + . . .+ CP1(oi, hm) > s)→ E(oi, hj) < r · s−1.

A39. (CP1(oi, hj) < r ∧ CP1(oi, h1) + . . .+ CP1(oi, hm) > s)→ E(oi, hj) < r · s−1,

8. There is one additional inference rule:

R4.
oi

P2(hj) = CP1(hj |oi)
, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.

It can be shown, very similarly to the already laid-out proofs, that the logic with these
modi�cations in place is also strongly complete and decidable in PSPACE. In this way, we
have solved the problem of propositional axiomatization of reasoning about evidence, which was
presented in [Halpern 2006].

2.8 Summary

In this chapter, we have introduced a sound and strongly-complete axiomatic system for LPCP-
a probability logic with conditional probability operators CPi, i ∈ I, which allows for linear
combinations and comparative statements. As it was noticed in [van der Hoek 1997], it is not
possible to provide a �nitary strongly complete axiomatization for such a system. In our case,
the strong completeness was made possible by adding an in�nitary rule of inference.

The formalism which we have obtained is fairly expressive and allows for the representation
of uncertain knowledge, where uncertainty is modeled by probability formulas. We have shown
it to be decidable, and also that it can be extended in order to be used to represent evidence,
making it the �rst propositional axiomatization of reasoning about evidence.
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In this chapter, we introduce LPPQ
2 - a probability logic that extends classical logic with

probabilistic operators of the form P≥rα, with the meaning that the probability that the classical
formula α holds is at least r. This logic does not allow iterations of probability operators. We
present its syntax and semantics, as well as a strongly complete axiomatic system. We formally
prove its main meta-theoretical properties (soundness, strong and simple completeness, and
non-compactness) using the proof assistant Coq.

3.1 Syntax of LPPQ
2

In the logic LPPQ
2 , there exist two types of formulas: classical and probabilistic. For the classical

formulas, we require a denumerably in�nite set of propositional letters: φ = {p0, p1, . . .}, and
two propositional connectives: ¬c and→c. The set of all classical formulas ForC is then de�ned
as the smallest set that satis�es the following conditions:

• it contains all of the propositional letters, and

• is closed under the following formation rules: if α, β ∈ ForC , then ¬cα, α→c β ∈ ForC .

These are, in fact, formulas as they are commonly de�ned in classical propositional logic
and, as we will see in more detail later on, classical propositional logic will serve us as a base
logic underneath the probabilistic level. In the encoding of classical formulas (represented by the
inductive type forC), the propositional letters are represented by Coq's built-in type for natural
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numbers nat, while the connectives ¬c and→c are, respectively, represented by the constructors
NegC : forC -> forC and ImpC : forC -> forC -> forC.

Next, let us denote by Q[0,1] the set of all rational numbers belonging to the unit interval.
For the probabilistic formulas, we require a denumerably in�nite set of probabilistic operators
P≥s, s ∈ Q[0,1], and two propositional connectives: ¬p and →p. A basic probabilistic formula is
an expression of the form P≥sα, where s ∈ Q[0,1], and α ∈ ForC . The set of all probabilistic
formulas ForP is then de�ned as the smallest set satisfying the following conditions:

• it contains all of the basic probabilistic formulas, and

• is closed under the following formation rules: if A,B ∈ ForP , then ¬pA,A→p B ∈ ForP .

Here, the intended meaning of the probabilistic operators, using the example of P≥sα, for
s ∈ Q[0,1], and a classical formula α, is that the probability that α holds is at least s. With this,
we have constructed a new layer of formulas on top of classical logic, and within this layer we
are able to assign probabilities to the classical formulas themselves. As we inspect the formation
rules, we can notice that it is neither possible to combine classical and probabilistic formulas via
a binary connective, nor is it possible to iterate the probabilistic operators. Therefore, in this
logic, we cannot obtain formulas such as p0 → P≥ 1

2
p1 or P≥ 1

2
(P≥ 1

3
p0).

To be able to encode probabilistic formulas in Coq, we �rst require a type which could play the
role of a rational number from the unit interval. This has been accomplished using Record types,
by imposing appropriate side conditions on the already present type Qc, the obtained record type
is called Q01, and coerces to Qc. The probabilistic formulas are then represented by the inductive
type forP, the connectives ¬p and→p are, respectively, represented by its constructors NegP and
ImpP (handled analogously to their classical counterparts), and, in particular, the constructor
for probabilistic operators P≥s is of the form:

| Pge : Q01 -> forC -> forP

Finally, the set of all formulas For
LPPQ

2
(represented by the inductive type FOR) is de�ned

as the union of all classical and probabilistic formulas:

For
LPPQ

2
= ForC ∪ ForP .

Inductive FOR : Type :=

| Clas : forC -> FOR

| Prob : forP -> FOR.

Hereinafter, when we are not addressing an encoding of a concept in Coq in detail, we will
specify the label of the encoding in brackets, immediately following the theoretical explanation.
The remaining classical and probabilistic propositional connectives ∨c (OrC), ∧c (AndC), ↔c

(EquC), and ∨p (OrP), ∧p (AndP), ↔p (EquP) are de�ned in the usual way, while, additionally, for
the probabilistic operators, we introduce the following abbreviations:

(Plt) P<sα for ¬pP≥sα. (Ple) P≤sα for P≥1−s¬cα.
(Pgt) P>sα for ¬pP≤sα. (Peq) P=sα for P≥sα ∧p P≤sα.
(Pne) P 6=sα for ¬pP=sα. (FalC) ⊥c for ¬c(α→c α).
(FalP) ⊥p for ¬p(A→p A).

where we have that s ∈ Q[0,1], α ∈ ForC , and A ∈ ForP . We should note that FalC and FalP

are parameterized by α and A, respectively.
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3.2 Semantics of LPPQ
2

The semantics for the logic LPPQ
2 is based on the possible�world approach, akin to many modal

and modal-like logics, bearing in mind that for us it is imperative to correctly capture the notion
of probability expressed in the syntax.

De�nition 9. An LPPQ
2 -model is a structure M = 〈W,H,M, v〉, where

• W is a non-empty set of objects we will refer to as worlds.

• H is an algebra of subsets on W .

• µ is a �nitely additive probability measure µ : H → Q[0,1].

• v is a valuation function v : W × φ→ {true, false}, assigning truth-values to each propo-
sitional letter in each of the worlds. It is extended to all classical formulas as usual.

In this de�nition, we illustrate to what precisely the term �rationally-valued� in the title of
the chapter and the description of the logic refers to, as the range of the measure, i.e. the set
of values from which we are aiming to assign probabilities to classical formulas, is the set of all
rational numbers belonging to the unit interval.

We will provide a little more detailed look into the encoding of the semantics and the repre-
sentation of models in Coq. For representing sets, we have used Coq's Ensemble library, which
treats sets of type U as functions from U to Prop, Coq's sort for propositions. First, a single world
w ∈W is represented by:

Record ElemW (U : Type) (W : Ensemble U) : Type :=

mkElemW {origU :> U; inW : In _ W origU}.

In this manner, and with use of Coq's dependent types, we are able to capture the property
of being a member of a subset within the type, which simpli�es dealing with worlds. Now, with
Algebra and MeasureQc being shorthand, respectively, for a set of sets of a given type U, and a
function U → Qc, and AOS and FAM_Qc being predicates which check, respectively, that a given
set of sets is indeed an algebra of subsets (i.e. that it is not empty and that it is closed under
complement and union), and that a given function is indeed a probability measure on a given
algebra of subsets (i.e. that it is non-negative, that the empty set measures 0, that the entire
set measures 1, and that the measure itself is �nitely additive), a model is represented by:

Record Model_Simp (U : Type) (W : Ensemble U) : Type :=

mkMSimp {MC_Worlds : Ensemble (ElemW U W);

MC_Algebra : Algebra U (ElemW U W);

MC_Measure : MeasureQc U (ElemW U W);

MC_Valuation : (ElemW U W) -> nat -> Prop;

MC_ElemWS_Cd : inhabited (ElemW U W);

MC_Worlds_Cd : MC_Worlds = Full_set (ElemW U W);

MC_Is_Model : (AOS U MC_Algebra) ∧ (FAM_Qc U MC_Measure MC_Algebra)}.

Therefore, apart from the four basic constituents, we have also embedded into the model the
conditions which ensure that our set of worlds is not empty, that the set of worlds encompasses
all of the elements of the appropriate ElemW type, and that the algebra of subsets and the measure
meet their respective requirements. In this way, we ensure that we cannot construct a model
which does not meet the required criteria. Moreover, the worlds are parameterized by a type U,
allowing for di�erent choices of sets representing worlds, depending on the proof scenario. Here,
we make use of the Coq predicate inhabited
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Inductive inhabited (A : Type) : Prop := inhabits : A -> inhabited A

that, if A is thought of as a type, states that there exists an element of type A. Also, note the
use of the de�nition Full_set from the Ensembles library

Inductive Full_set (U : Type) : Ensemble U := Full_intro : ∀x:U, Full_set U x.

that describes the set containing all elements of type U. Later on, we will also be using the
Empty_set de�nition, also from the Ensembles library

Inductive Empty_set (U : Type) : Ensemble U := .

that describes the empty set of elements of type U. Let us proceed, after this brief detour into
formalization, with the theoretical development of the semantics. For a given LPPQ

2 -model M
and a given formula α, we will denote the set of all of the worlds (worlds) in which α is true
� {w|v(w,α) = true} by [α]M . If the model in question is clear from the context, we will omit
the subscript and write only [α] instead.

De�nition 10. An LPPQ
2 -model M is measurable if [α]M ∈ H, for all α ∈ ForC .

We will onward focus on the class of all measurable models (Model_Meas), which we will
denote by LPPQ

2,Meas. Measurable models are encoded in Coq by adding the measurability
condition into the de�nition of Model_Simp.

De�nition 11. The satis�ability relation |=⊆ LPPQ
2,Meas × For

LPPQ
2

satis�es the following

conditions, for every LPPQ
2 -measurable model M = 〈W,H,M, v〉 and every formula Φ:

• if Φ ∈ ForC , M |= Φ i� v(w,Φ) = true, for all w ∈W .

Classical formulas are satis�ed i� they are true in all of the worlds.

• if Φ ∈ ForP , and is of the form P≥sα, M |= Φ i� µ([α]M ) ≥ s.
This is how we semantically capture the notion of probability: a probabilistic formula
P≥sα is satis�ed i� the set of worlds in which α holds has the measure at least equal to s.

• if Φ ∈ ForP , and is of the form ¬pA, M |= Φ i� M 2 A.

• if Φ ∈ ForP , and is of the form A→p B, M |= Φ i� M 2 A or M |= B.

In Coq, we represent the satis�ability of one classical formula with the function modelsC, the
satis�ability of one probabilistic formula with the function modelsP, the overall satis�ability of
one formula with the function models, and the overall satis�ability of a set of formulas with the
function modelsSet. It should be noted that the satis�ability of the negation and implication
has been encoded using Coq's built-in connectives, which operate in an intuitionistic setting.
However, as we make use of theorems from Coq's Classical library throughout the proofs, we de
facto have that they behave in a classical manner. Also, since we have delegated the evaluation
of negation and implication to Coq, and didn't encode it explicitly, we can say that the encoding
of LPPQ

2 presented here is a shallow encoding.

De�nition 12. A formula Φ is satis�able if there exists an LPPQ
2 -measurable model M such

thatM |= Φ; Φ is valid (Valid) ifM |= Φ, for all LPPQ
2 -measurable modelsM ; a set of formulas

T is satis�able (Satisfiable) if there exists an LPPQ
2 -measurable model M such that M |= Φ,

for all Φ ∈ T .
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3.3 A Complete Axiomatization

The set of valid formulas can be characterized by the axiom schemata presented in Figure 3.1,
while the appropriate inference rules are presented in Figure 3.2. We denote this axiomatic
system by Ax

LPPQ
2
, and for each axiom schema we provide a brief description of its semantics.

The main task is, once again, to have a set of axiom schemata which would allow us to easily
syntactically deal with the properties of probability and the measure function.

ACT. All instances of classical propositional tautologies for classical formulas.

APT. All instances of classical propositional tautologies for probabilistic formulas.

AP1. P≥0α.
The probability of a formula being true is non-negative.

AP2. P≤rα→p P<sα, for s > r.
Compatibility of the probability with≤ and<, standard property of the measure function.

AP3. P<rα→p P≤rα.
Weakening of < into ≤, standard property of the measure function.

AP4. P≥rα→p (P≥sβ →p (P≥1¬c(α ∧c β)→p P≥r+s(α ∨c β))), for r + s ≤ 1.
If the probability that α and β hold are, respectively, at least r and s, and if there are
no worlds in which α and β both hold, then the probability that α ∨ β holds is at least
r + s. This axiom schema e�ectively corresponds to the inclusion-exclusion principle for
two sets, when their intersection is empty.

AP5. P≤rα→p (P<sβ →p P<r+s(α ∨c β)), for r + s ≤ 1.
If the probability that α holds is at most r and the probability that β holds is less than s,
then the probability that α∨β holds is less than r+s. Semantically, this is a consequence
of the �nite additivity of the measure function.

AP6. P≥1(α→c β)→p (P≥rα→p P≥rβ).
If α→c β is true in all of the worlds, then the probability that α holds is at least equal
to the probability that β holds.

Figure 3.1: LPPQ
2 Axiom schemata

Modus Ponens for classical formulas: from α and α→c β, infer β.

Modus Ponens for probabilistic formulas: from A and A→p B, infer B.

Probabilistic Necessitation: from α, infer P≥1α.

Domain Enforcement: from A→p P6=rα, for all r ∈ Q[0,1], infer A→ ⊥p.

Figure 3.2: LPPQ
2 Inference rules

Let us examine this axiomatic system in more detail. Clearly, in its current form it is not
minimal, as all instances of the classical propositional tautologies are taken as axiom schemata,
in contrast to, for example, taking three Hilbert-style axioms. Also, due to the axiom (ACT)
and the modus ponens for classical formulas inference rule, we observe that classical logic is
a sublogic of LPPQ

2 . We also notice that the process of proving consists of two parts (one
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of which may be empty): the �rst part deals only with classical, while the second deals only
with probabilistic formulas. The only means of switching from one part to the other is the
probabilistic necessitation inference rule, lifting a classical formula into a probabilistic one, with
no existing means of switching back from the probabilistic to the classical level. Hence, the logic
LPPQ

2 is a conservative extension of classical logic. The domain enforcement rule serves for
preserving strong completeness, given the inherent non-compactness of the system, and will be
discussed in detail later in this chapter. Next, we introduce several standard syntactic notions:

De�nition 13. A formula Φ is derivable (Derivable) from a given set of formulas (premises)
T (denoted by T ` Φ) if there exists a �nite sequence of formulas Φ0, . . . ,Φk,Φ, such that each
Φi is either in the set T , is an instance of one of the axiom schemata, or is obtained from the
preceding formulas by using one of the inference rules. We call such a sequence a proof of Φ
from T . A formula Φ is a theorem (denoted by ` Φ) if it is derivable from the empty set of
formulas (isTheorem).

Equivalently, we could de�ne a proof of T ` Φ as a tree of formulas in whose root is the
formula Φ, in whose leaves are formulas either from the set T or instances of axiom schemata, and
where all of the non-leaves are obtained from previously existing nodes by one of the inference
rules (proof_term).

In Coq, the axioms are encoded straightforwardly, as de�nitions, while the inference rules
are embedded into the structure of the proofs, which we have encoded using the tree-structure
approach. To illustrate, here we show the de�nition of axiom (AP3), and the part of the proof
structure corresponding to the use of the modus ponens for classical formulas inference rule:

Definition AxAP07 (A : forC) (r s : Q01) (HCond : s > r) : FOR :=

Prob (ImpP (Ple r A) (Plt s A)).

| dbyIRMPc : ∀ (T : Ensemble FOR) (A B : forC) (pA pAB : proof_term),

derives T pA (Clas A) → derives T pAB (Clas (ImpC A B)) →
derives T (dIRMPc pA pAB) (Clas B).

Here, it is important to note that, for the domain enforcement rule, there are countably
many premises required for its application. This countable collection of premises is handled in
Coq as a function from natural numbers to proof terms proofs : nat -> proof_term), just as
in [Honsell 1995]. This is further supported by introducing, as an axiom, a bijection between
natural numbers and the Q[0,1] interval (f_nat_Q01 : nat -> Q01). The approach of adopting
such a function as an axiom was taken due to the well-known fact that such a bijection exists,
and a formal proof of its existence would be out of scope of this development.

De�nition 14. A set of formulas T is consistent (Consistent) if there exists at least one classical
formula α and at least one probabilistic formula A which are not derivable from it, and otherwise
is inconsistent (Inconsistent_Alternate). Alternatively, a set of formulas T is inconsistent if
T ` ⊥c or T ` ⊥p (Inconsistent). A set of formulas T is maximally consistent (Max_Consistent)
if it is consistent and the following holds:

• for each α ∈ ForC : if T ` α, then α ∈ T and P≥1α ∈ T .

• for each A ∈ ForP : either A ∈ T or ¬pA ∈ T .

Before proceeding to the actual proofs of the meta-theoretical properties of LPPQ
2 , we would

like to note that all of the proofs laid out in this and the following chapter re�ect the proving
process as done in Coq, but are presented in human-readable form.
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3.4 Key Properties of AxLPPQ
2

3.4.1 Soundness

Soundness of Ax
LPPQ

2
is proven in the standard manner. We show that all of the instances of

the axiom schemata are valid formulas, and that the inference rules preserve validity. Here, we
present the proof that the axiom schema AP4 is valid, as well as the proofs that some of the
inference rules preserve validity, while the remaining cases are handled similarly.

Lemma 3 (Validity of AP4). P≥rα→p (P≥sβ →p (P≥1¬c(α ∧c β)→p P≥r+s(α ∨c β))) is valid
for all α, β ∈ ForC , r, s ∈ Q[0,1], and r + s ≤ 1 (valid_AP04).

Proof. Let M = 〈W,H, µ, v〉 be a measurable model, and let us assume that M |= P≥rα,
M |= P≥sβ, and M |= P≥1¬c(α∧c β), while our goal is to show that M |= P≥r+s(α∨c β). From
our assumptions, we have that [α] ≥ r, [β] ≥ s, and [¬c(α ∧c β)] = 1 or, equivalently, given the
properties of µ, that [α ∧c β] = 0.

Next, we will take a moment to prove that [α ∧c β] = [α] ∩ [β]. First, let w ∈ [α ∧c β].
This means that v(w,α ∧c β) = true, from which, given the truthtable of the connective ∧c, we
obtain that v(w,α) = true and v(w, β) = true. Therefore, we have that w ∈ [α] and w ∈ [β],
and hence, that w ∈ [α] ∩ [β]. For the other direction, let w ∈ [α] ∩ [β]. Then, v(w,α) = true
and v(w, β) = true. However, given the truthtable of the connective ∧c, we also have that
v(w,α ∧c β) = true, i.e. that w ∈ [α ∧c β]. In a similar way, we prove that [α ∨c β] = [α] ∪ [β].

Now, given the property of the measure that µ([α] ∪ [β]) = µ([α]) + µ([β]) − µ([α] ∩ [β])
(FAM_Qc_union_split), we obtain that µ([α] ∪ [β]) ≥ r + s, and have our claim.

Lemma 4 (Validity preservation of Ax
LPPQ

2
inference rules). Let α, β ∈ ForC , A,B ∈ ForP .

1. If α is valid, and α→c β is valid, then β is also valid (vp_MPc).

2. If A is valid, and A→p B is valid, then B is also valid (vp_MPp).

3. If α is valid, then P≥1α is also valid (vp_PN).

4. If A→p P 6=rα is valid, for all r ∈ Q[0,1], then A→p ⊥p is also valid (vp_DE).

Proof.

1. Let us suppose that, for a given model M = 〈W,H, µ, v〉 ∈ LPPQ
2,Meas, α, β ∈ ForC , we

have that:
M |= α and M |= α→c β.

From this, given the de�nition of the satis�ability relation and the de�nition of implication
for classical formulas, it must also be that M |= β, which concludes our proof.

2. This case is handled analogously to the �rst one.

3. Let us suppose that, for any given M = 〈W,H, µ, v〉 ∈ LPPQ
2,Meas, α ∈ ForC , we have

that M |= α. From this, we have that [α]M = W , and by the de�nition of µ, we have that
µ([α]M ) = 1, which means, by the de�nition of the satis�ability relation, that M |= P≥1α,
concluding our proof.

4. Let us suppose that, for any given M = 〈W,H, µ, v〉 ∈ LPPQ
2,Meas, A ∈ ForP , α ∈ ForC .

we have that
M |= A→p P 6=rα, for all r ∈ Q[0,1]. (3.1)
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Our goal is to prove that M |= A →p ⊥p. If M 2 A, the proof is immediate, given
the de�nition of classical implication. Let us onward assume that M |= A. From this,
Equation 3.1, and the de�nition of |=, we have that

µ([α]) 6= r, for all r ∈ Q[0,1],

which is a contradiction with the de�nition of µ. Therefore, the case in which M |= A is
not possible, and we have our claim.

Therefore, we have e�ectively proven the soundness theorem:

Theorem 6 (Soundness of LPPQ
2 ). If Φ is a theorem of Ax

LPPQ
2
, then Φ is valid.

Theorem LPP2_Q_Soundness : ∀ (Φ : FOR), isTheorem Φ → Valid Φ.

3.4.2 Completeness

3.4.2.1 The Deduction Theorem.

The �rst important meta-theoretical result on the road to proving strong completeness of
Ax

LPPQ
2
is the Deduction Theorem. In order to prove it, we will need the following lemma:

Lemma 5. Derivations of classical formulas do not depend on probabilistic formulas (Der_clas_P_indep).
If T is a set of formulas, T ′ is a set of probabilistic formulas, and α ∈ ForC , then

T ∪ T ′ ` α implies T ` α.

Proof. By induction on the structure of the derivation of T ∪ T ′ ` α.

Given the limitations of the syntax, we will have two Deduction Theorems, one for classical
and one for probabilistic formulas. Here, we will state and prove only the one for probabilistic
formulas, as the one for classical is proven just as in classical logic.

Theorem 7 (Deduction Theorem for Probabilistic Formulas). Let T be a set of formulas and
A,B ∈ ForP . Then, the following holds:

T ∪ {A} ` B if and only if T ` A→p B.

Theorem LPP2_Q_Deduction_Theorem_Prob : ∀ (T : Ensemble FOR) (A B : forP),

Derivable (Union FOR T (Singleton FOR (Prob A))) (Prob B) ↔
Derivable T (Prob (ImpP A B)).

Proof. The right-to-left implication is proven as in classical logic. We will prove the left-to-right
implication by induction on the structure of the derivation of T ∪ {A} ` B. The cases in which
B is obtained by using any of the axioms or the modus ponens for classical formulas inference
rule are proven directly, by using the induction hypothesis, or as in classical logic.

Let T ∪{A} ` B by the use of the probabilistic necessitation inference rule. In this case, B is
of the form P≥1α, for some α ∈ ForC , and we have that T ∪ {A} ` α. From this, by Lemma 5,
we have that T ` α. Now, using probabilistic necessitation, we obtain that T ` B, from which
T ` A→p B immediately follows.

Let T ∪ {A} ` B by the use of the domain enforcement inference rule. In this case, B is
of the form A′ →p ⊥p, for some A′ ∈ ForP , and we have that, for all r ∈ Q[0,1], T ∪ {A} `
A′ →p P 6=rα, for some α ∈ ForC . By the induction hypothesis, we have that for all r ∈ Q[0,1],
T ` A →p (A′ →p P 6=rα). However, since A →p (B →p C) ↔ (A ∧p B) →p C is a tautology
(where A,B,C ∈ ForP ), we also have that for all r ∈ Q[0,1], T ` (A∧pA′)→p P 6=rα. From this,
using the domain enforcement inference rule, we obtain that T ` (A ∧p A′) →p ⊥p, and from
that, using the abovementioned tautology again, we obtain that T ` A→p B.
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3.4.2.2 Maximally Consistent Extension.

The next step is to prove that, in LPPQ
2 , a consistent set can always be extended to a maximally

consistent set. For this, we will need the following auxiliary claims:

Lemma 6. Derivability is not a�ected by adding theorems into the context, i.e. if T ∪ T ′ ` Φ,
and every formula in T ′ is a theorem, then T ` Φ, where Φ ∈ FOR (Der_addThm). Consequently,
consistency is not a�ected by adding theorems into the context (Consistency_addThm).

Proof. The �rst part of the lemma is proven by induction on the structure of the derivation
of T ∪ T ′ ` Φ, while the second part follows directly from the �rst one and the de�nition of
consistency.

Lemma 7. For every consistent set of formulas T , and every probabilistic formula A, either
T ∪ {A} is consistent or T ∪ {¬pA} is consistent (Consistency_xor).

Proof. Let us assume, instead, that both T ∪ {A} and T ∪ {¬pA} are inconsistent. Then, it
would have to be that T ∪ {A} ` ⊥c or T ∪ {A} ` ⊥p. However, by Lemma 5, if T ∪ {A} ` ⊥c
we would have that T ` ⊥c as well, which is in contradiction with our assumption that T is
consistent. Therefore, it must be that T ∪{A} ` ⊥p. Similarly, it must be that T ∪{¬pA} ` ⊥p.
By the Deduction Theorem, we then have that T ` A → ⊥p, and T ` ¬pA → ⊥p. However,
given that (A→p B)→p (¬pA→p B)→p B is a tautology (where A,B ∈ ForP ), we also have
that T ` ⊥p, which is in contradiction with our assumption that T is consistent, and concludes
our proof.

Lemma 8. For all maximally consistent sets T , and for all probabilistic formulas A, B, the
following holds:

1. Either A ∈ T or ¬pA ∈ T (MCons_A_NegA_p).

2. A ∈ T if and only if T ` A (MCons_In_Der).

3. If ¬pA ∈ T , then A /∈ T (MCons_NegP).

4. If A ∧p B ∈ T , then A ∈ T and B ∈ T (MCons_AndP).

5. If A ∨p B ∈ T , then A ∈ T or B ∈ T (MCons_OrP).

Proof. The proof follows from the de�nition of maximal consistency and the axiomatic system,
using several classical tautologies concerning the relationships between conjunction, disjunction
and implication.

The next lemma provides us with an important insight into the connection between maximal
consistency and classical formulas.

Lemma 9. Let T be a maximally consistent set. Then, for every α ∈ ForC , there exists a
unique q(α) ∈ Q[0,1], such that T ` P=q(α)α. (unique_existence_M)

Proof. We will split the proof into two parts. In the �rst part, we will prove that, for a given
α ∈ ForC , a q ∈ Q[0,1] satisfying the conditions of the Lemma exists, and in the second part,
we will prove that such a q has to be unique.

Let us assume that there is no q ∈ Q[0,1], such that T ` P=qα. This means (using Lemma 8,
item 1) that, for all q ∈ Q[0,1], we have that T ` P 6=qα. However, using axiom AP1, the tautology
P 6=qα → (P≥0α → P 6=qα), and the modus ponens for probabilistic formulas inference rule, we
obtain that for all q ∈ Q[0,1], it holds that T ` P≥0α → P 6=qα. From this, using the domain
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enforcement inference rule, we obtain that T ` P≥0α→ ⊥p. Finally, from this and (as P≥0α is
an axiom) T ` P≥0α, and using the modus ponens for probabilistic formulas inference rule, we
obtain that T ` ⊥p, which is a contradition with the assumed consistency of T. Therefore, there
exists a q ∈ Q[0,1], such that T ` P=qα.

Next, let us assume that there are q1, q2 ∈ Q[0,1], such that T ` P=q1α and T ` P=q2α.
If q1 = q2, we have the desired claim. Next, let us suppose that q1 < q2. Then, given that
T ` P≤q1α (from the de�nition of P=) and using the axiom AP2, we obtain that T ` P<q2α.
However, from the de�nition of P=, we also have that T ` P≥q2α, which gives us a contradiction.
The case when q1 > q2 is handled analogously, and we �nally obtain our claim.

Onward, we assume to have a consistent set of formulas T . If we denote the classical formulas
in T by TClas, and the probabilistic formulas in T by TProb, we have that T = TClas∪TProb. We
de�ne the set of classical consequences of T , denoted by CC(T ) (ClasDCons), as

CC(T ) = {α | α ∈ ForC , T ` α},

and its image through the P≥1 operator (ExtendPge1) as

PN(T ) = {P≥1α | α ∈ CC(T )}.

Next, we de�ne a primary extension of T , denoted by T0 (makeT0), from which we will be
constructing the maximally consistent extension of T , as:

T0 = T ∪ CC(T ) ∪ PN(T ),

and prove that the following properties hold:

Lemma 10. Let T be a consistent set of formulas, and T0 its primary extension. Then:

1. For any classical formula α, if T0 ` α then α ∈ T0 (clas_in_T0).

2. For any probabilistic formula A, if T0 ` A then T ` A (prob_in_T0).

3. T0 is consistent (T0_cons).

Proof. The �rst two parts are proven using induction on the structure of the derivation of T0 ` α
and T0 ` A, respectively. As for the third part, let us assume that T0 is inconsistent. Since T0

is inconsistent, it must be that either T0 ` ⊥c or T0 ` ⊥p. Let �rst T0 ` ⊥c. Given the �rst
part of this lemma, we then have that ⊥c ∈ T0, meaning that either ⊥c ∈ T or ⊥c ∈ CC(T ).
However, in both of these cases we would have that T ` ⊥c, which is in contradiction with the
assumed consistency of T . Next, let T0 ` ⊥p. Given the second part of this lemma, we have
that T ` ⊥p, which is again in contradiction with the assumed consistency of T . Therefore, T0

must be consistent.

The next lemma, similar in style to Lemma 9, provides another insight into the functioning
of probabilistic operators and their compatibility with consistency:

Lemma 11. For every consistent set of formulas T , a probabilistic formula A, and a classical
formula α, if T ∪ {A} is consistent, then there exists a rational number p(α) ∈ Q[0,1] such that
T ∪ {A} ∪ {P=p(α)α} is consistent. (C_Peq_existence)

Proof. Let us assume, to the contrary, that for all r ∈ Q[0,1], T ∪ {A} ∪ {P=rα} is inconsistent,
i.e. that T ∪{A}∪{P=rα} ` ⊥p (T ∪{A}∪{P=rα} ` ⊥c is impossible, as then, given Lemma 5,
T would be inconsistent). By applying the Deduction Theorem, we have that, for all r ∈ Q[0,1],
T ∪ {A} ` P=rα→ ⊥p. However, this is equivalent to having that, for all r ∈ Q[0,1], T ∪ {A} `
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P 6=rα, which is, in turn, equivalent (by applying the Deduction Theorem) to having that, for all
r ∈ Q[0,1], T ` A→p P 6=rα. However, then, by the domain enforcement inference rule, we have
that T ` ⊥p, which is a contradiction with the consistency of T .

Next, we will be needing to establish an enumeration of classical formulas α0, α1, α2, . . .
(f_enum_c : nat -> forC), and an enumeration of probabilistic formulasA0, A1, A2, . . . (f_enum_p
: nat -> forP). Again, as in the case of the countability of the Q[0,1] interval, we take the ex-
istence of these functions as axioms in Coq. We de�ne a sequence of sets Tn (Tn_const), for
n ≥ 1, as follows:

Tn+1 =

{
Tn ∪ {An} ∪ {P=p(αn)αn} if Tn ∪ {An} is consistent,
Tn ∪ {¬pAn} ∪ {P=p(¬cαn)¬cαn} otherwise.

The proof of the following lemma is based of the previously proven lemmas:

Lemma 12. The following properties concerning the sequence Tn hold:

1. For all n ≥ 0, Tn ⊆ Tn+1 (Tn_increasing).

2. For all n ≥ 0, Tn is consistent (Tn_all_consistent).

3. For all classical formulas α, if α ∈ Tn then α ∈ T0 (Tn_clas_origin).

Next, we de�ne the maximally consistent extension T ∗ of T , as

T ∗ =

∞⋃
i=1

Ti.

Definition MC_Extension (T : Ensemble FOR) : Ensemble FOR :=

(fun A : FOR ⇒ ∃ k : nat, In FOR (Tn_const T k) A.)

As can be seen, this extension is naturally de�ned in Coq as a function in Prop, which is true
only for the formulas that are contained in at least one of the extensions of T , which has been
captured elegantly by the existential quanti�er. For T ∗ de�ned in this way, we prove that the
following statements hold:

Lemma 13 (Properties of T ∗).

1. For all A ∈ ForP , either A ∈ T ∗ or ¬pA ∈ T ∗ (MCE_max).

2. ⊥p /∈ T ∗ (MCE_nFalP).

3. T ⊆ T ∗ (T_in_MCE).

4. If T ∗ ` α, then T0 ` α, for α ∈ Forc (MCE_clas).

5. If T ∗ ` A, then A ∈ T ∗, for A ∈ Forp (MCE_prob).

Proof.

1. Directly, by construction of T ∗.

2. By contradiction. If ⊥p ∈ T ∗, then, by de�nition of T ∗, there exists an integer k, such
that ⊥p ∈ Tk, which is a contradiction with the previously proven consistency of Tk.

3. Directly, as T ⊆ T0, and T0 ⊆ T ∗.
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4. By induction on the structure of the derivation of T ∗ ` α. First, if α ∈ T ∗, then, by
de�nition of T ∗, there exists an integer k, such that α ∈ Tk. Then, from Lemma 12, we
obtain that α ∈ T0, from which T0 ` α follows immediately. Next, if α is an instance
of a tautology, it automatically follows that T0 ` α. Finally, let us assume that T ∗ ` α
has been obtained from T ∗ ` β and T ∗ ` β →c α, using the modus ponens for classical
formulas inference rule. By the induction hypothesis, we then have that T0 ` β and that
T0 ` β →c α, from which we directly obtain T ∗ → α using the modus ponens for classical
formulas inference rule.

5. By induction on the structure of the derivation of T ∗ ` A. The cases where A is an
instance of a tautology are proven directly, as well as the cases when A is an instance of
any of the other axioms. Next, let us assume that T ∗ ` A has been obtained from T ∗ ` B
and T ∗ ` B →p A, using the modus ponens for probabilistic formulas inference rule. By
the induction hypothesis, we then have that B ∈ T ∗ and that B →p A ∈ T ∗. Let i, j,
and k be the values assigned to B, B →p A, and A, respectively, in the enumeration of
probabilistic formulas we have used to construct T ∗, and let m = max(i+ 1, j + 1, k + 1).
Then, it must hold that B, B →p A, and either A or ¬pA are are in the set Tm. However,
if ¬pA ∈ Tm, then Tm would be inconsistent, as both A and ¬pA would be derivable from
it. Therefore, it must be that A ∈ Tm, and, consequently, that A ∈ T ∗. The case when A
has been obtained using the probabilistic necessitation inference rule is handled perhaps
surprisingly easily, as then, by construction, it holds that A ∈ T0. Finally, let T ∗ ` A
be obtained by using the domain enforcement inference rule. Then, A ≡ A′ →p ⊥p, and
we have that T ∗ ` A′ →p P 6=rα, for all r ∈ Q[0,1], and some α ∈ ForC , A′ ∈ ForP .
By construction, we have that P=p(α)α ∈ T ∗, for some integer p(α). However, by the
induction hypothesis, we have that A′ →p P 6=rα ∈ T ∗, for all r ∈ Q[0,1], including r = p(α).
Therefore, it must be that A′ /∈ T ∗ and ¬pA′ ∈ T ∗, because we would be able to �nd an
inconsistent set in the sequence Tn otherwise. Now, let i and j be the values assigned to
¬pA′ and A′ →p ⊥p in the enumeration of probabilistic formulas we have used to construct
T ∗, and let m = max(i + 1, j + 1). Then, it must hold that ¬pA′ and either A′ →p ⊥p
or ¬p(A′ →p ⊥p) are in the set Tm. However, given the tautology ¬pA →p (A →p B, if
¬p(A′ →p ⊥p) ∈ Tm, then Tm would be inconsistent, and we have our claim.

As a direct consequence of the previous Lemma, we obtain the main result of this subsection:

Theorem 8. T ∗ is a maximally consistent set of formulas.

3.4.2.3 The Canonical Model.

Now, we can turn to the construction of a canonical model M∗ for a given consistent set of
formulas T . We proceed to de�ne each of the required model components:

Worlds. Let w be a valuation function mapping the set of propositional letters φ to {true, false}
(nat -> Prop), and let us denote its standard extension to all classical formulas by wext. The
set of worlds W (Worlds) will be the set of all valuation functions, such that their standard
extensions satisfy every classical formula which is a consequence of T :

W = {w | w : φ→ {true, false}, {wext(α) = 1 | α ∈ ForC , T ` α}}.

Algebra of Subsets. We will de�ne H (H) in the following way:

H = {[α] | α ∈ ForC},
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where [α], as earlier, denotes the set of worlds fromW in which a classical formula α is satis�ed.
It is easily proven that H, de�ned in this way, satis�es the requirements to be an algebra of
subsets over W : it contains the empty set (H_empty_set_in_H), it is closed under complement
(H_complement_in_H), and is closed under �nite union (H_union_in_H).

Measure. The measure should map the algebra of subsets H into the rational unit interval
Q[0,1]. Since the elements of H are essentially determined by classical formulas, we will de�ne
µ as follows, using notation from Lemma 9:

µ([α]) = q(α), where T ∗ ` P=q(α)α.

Lemma 9 states that a unique q(α) exists for each α ∈ ForC , ensuring that the measure is
well-de�ned. The following claims needed to be proven with regard to the properties of µ, and
have mostly consisted of untangling a number of technical details related to properties of sets
and of rational numbers:

• If [β] ⊆ [α], then T ` α→c β (M_included_derivable)1.

• Measure and negation: µ([α]) = 1− µ([¬cα]) (M_negation).

• Non-negativity: µ([α]) ≥ 0, for all α ∈ ForC (M_FAM_nonneg).

• Measure and the empty set: µ(∅) = 0 (M_FAM_empty_set).

• Measure and the full set: µ(W ) = 1 (M_FAM_Full_set).

• Additivity: µ is �nitely additive. (M_FAM_additive).

Valuation. The valuation function v : W × φ → {true, false} (v) is de�ned naturally as
v(w, pi) = w(pi).

In this way, we have obtained a model M∗ = 〈W,H, µ, v〉 (Const_Model_Simp), and the
remaining claim that we need to prove is that it is measurable.

Lemma 14. M∗ is a measurable model (Construction_is_Measurable_Model).

Proof. We should prove that for α ∈ ForC , it holds that [α]M∗ ∈ H, which follows immediately,
given the construction of H.

3.4.2.4 Strong Completeness.

With the canonical model in place, we need to prove several more auxiliary lemmas on the
road to strong completeness. Let T be a consistent set of formulas, T ∗ denote the maximally
consistent extension of T , and M∗ denote the canonical model constructed from T ∗.

Lemma 15. α ∈ T ∗ if and only if M∗ |= α, for all α ∈ ForC (Cpt_iff_c).

Proof. LetM∗ |= α. We will prove that α ∈ T0, i.e. (by de�nition of T0) that T ` α, which would
be su�cient for our claim. However, we obtain this immediately from the strong completeness
of classical logic.

For the other direction, let α ∈ T ∗. By construction of T ∗, we have that T ` α. On the other
hand, we need to prove that for all w ∈ W , v(w,α) = true. However, directly by construction
of M∗, we have that v(w,α) = wext(α) = true, because the worlds of the canonical model are
speci�cally chosen so that all of the consequences of T are true in all of the worlds.

1In the proof of this statement, we use strong completeness of classical logic as an axiom in Coq
(LPP2_Q_Classical_Strong_Completeness_models_T).
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Lemma 16. A ∈ T ∗ if and only if M∗ |= A, for all A ∈ ForP (Cpt_iff_p).

Proof. By structural induction on A. First, let A = P≥rα, and let P≥rα ∈ T ∗. From Lemma 9
and item 2 of Lemma 8, we obtain that there exists a unique q(α) ∈ Q[0,1], such that P=q(α)α ∈
T ∗, while, by Theorem 8, we obtain that q(α) ≤ r. Now, given the de�nition of µ in the canonical
model and the de�nition of satis�ability, we directly obtain that M∗ |= P≥rα. For the other
direction, let M∗ |= P≥rα. Then, by construction of the canonical model and the de�nition of
satis�ability, we have that r is greater than or equal to the aforementioned q(α), obtained from
Lemma 9. From here, since T ∗ is maximally consistent, it has to be that T ∗ ` P≥rα.

Next, let A = ¬pB. Using the induction hypothesis, our goal amounts to B /∈ T ∗ ↔ ¬pB ∈
T ∗, which is easily obtained from item 1 of Lemma 13.

Finally, let A = A′ →p B
′. Using the induction hypothesis, our goal amounts to A′ /∈

T ∗ ∨ B′ ∈ T ∗ ↔ (A′ →p B
′) ∈ T ∗. If A′ /∈ T ∗ or B′ ∈ T ∗, then, by using the tautologies

¬pA →p (A → B) and B →p (A →p B), respectively, we obtain that T ` A′ →p B
′, and, by

item 5 of Lemma 13, we obtain that A′ →p B
′ ∈ T ∗. The other direction is proven easily using

item 1 of Lemma 13.

From the previous two lemmas, we have

Lemma 17. Φ ∈ T ∗ if and only if M∗ |= Φ, for all Φ ∈ For (Cpt_iff).
We also need the following claim:

Lemma 18. Let T be a set of formulas and M = 〈W,H, µ, v〉 be a measurable model, and
let us assume that M |= T . Then, it holds that for all Φ ∈ For, if T ` Φ, then M |= Φ
(Strong_Completeness_Consistent_T_rl).

Proof. By structural induction on the derivation of T ` Φ. The cases in which Φ ∈ T and
in which Φ is an instance of an axiom or obtained by the modus ponens inference rules follow
directly from the soundness of the system (Theorem 6) and the induction hypothesis (IH). Next,
let T ` Φ be obtained by the probabilistic necessitation inference rule. Then, we have that
Φ ≡ P≥1α, for some α ∈ ForC , and that T ` Φ was obtained from T ` α. By the IH, we have
that M |= α, which means that α is true in every world, i.e. that [α] = W , i.e. that µ([α]) = 1.
This, by de�nition of satis�ability, means that M |= P≥1α, and we have our claim. Finally, let
T ` Φ be obtained by the domain enforcement inference rule. Then, we have that Φ ≡ A→p ⊥p,
and that T ` Φ was obtained from T ` A →p P 6=rα, for all r ∈ Q[0,1], and some α ∈ ForC ,
A ∈ ForP . By the IH, we have that M |= A →p P 6=rα, for all r ∈ Q[0,1]. However, M |= A
is not possible, since then we would have M |= ⊥p as well, which cannot be, by de�nition of
satis�ability and the measure. Therefore, it must be that M 2 A, i.e. that M ` ¬pA, from
which, using classical propositional tautologies, we obtain the desired M |= A→p ⊥p.

Finally, we can prove the main result of this chapter:

Theorem 9 (Strong Completeness of LPPQ
2 ). A set of formulas T is LPPQ

2 -consistent if and
only if it is LPPQ

2,Meas-satis�able (LPP2_Q_Strong_Completeness).

Theorem LPP2_Q_Strong_Completeness : ∀ T : Ensemble FOR,

Consistent T <-> Satisfiable T.

Proof. First, let T be consistent. We show that M∗ |= T , i.e. that M∗ |= Φ, for every formula
Φ ∈ T . By Lemma 17, this is true if and only if Φ ∈ T ∗. However, this is immediate, as every
formula Φ which is in T is also, by construction, in T0, which, in turn, is a subset of T ∗.

Next, let T be satis�able. Then, there exists a model M = 〈W,H, µ, v〉 such that M |= Φ,
for all Φ ∈ T . Then, by Lemma 18, we obtain that M models all formulas derivable from T . If
T were to be inconsistent, then we would have that M |= ⊥c or M |= ⊥p, which is not possible
by de�nition of satis�ability, and T must be consistent.
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3.4.2.5 Simple Completeness of LPPQ
2 .

The Simple Completeness Theorem follows naturally from the Strong Completeness Theorem,
with help from the following lemma:

Lemma 19. If a set of classical formulas T is consistent in the sense of classical logic, then it
is also LPPQ

2 -consistent (Cpt_ConsClas_Cons).

Proof. Directly, given strong completeness of both classical logic and LPPQ
2 .

Now, we can proceed to the Simple Completeness Theorem:

Theorem 10 (Simple Completeness of LPPQ
2 .). If a formula Φ is LPPQ

2,Meas-valid, then it is

a theorem of LPPQ
2 . (LPP2_Q_Simple_Completeness)

Theorem LPP2_Q_Simple_Completeness : ∀ Φ : FOR, Valid Φ -> isTheorem Φ.

Proof. We have two cases to consider. First, let Φ ≡ α be a classical formula. If α is LPPQ
2,Meas-

valid, then ¬cα is not satis�able, and by the Strong Completeness Theorem, {¬cα} is inconsis-
tent, i.e. {¬cα} ` ⊥c or {¬cα} ` ⊥p. If {¬cα} ` ⊥c, then we obtain ` α from the Deduction
Theorem and the elimination of double negation. If {¬cα} ` ⊥p, and {¬cα} 0 ⊥c, then we have
that {¬cα} is classically consistent and also, by the previous Lemma, also LPPQ

2 -consistent,
which is a contradiction.

Second, let Φ ≡ A be a probabilistic formula. As in the previous case, if A is LPPQ
2,Meas-valid,

then ¬pA is not satis�able and by the Strong Completeness Theorem, {¬pA} is inconsistent,
i.e. {¬pA} ` ⊥c or {¬pA} ` ⊥p. If {¬pA} ` ⊥p, then we again obtain ` A from the Deduction
Theorem and the elimination of double negation. On the other hand, if {¬pA} ` ⊥c, then since
classical derivations do not depend on probabilistic formulas, it would be that ∅ ` ⊥c, which is
a contradiction with the consistency of ∅, guaranteed by the Strong Completeness Theorem.

3.4.3 Non-Compactness

Let us consider the set T = {P 6=0α}∪{P< 1
n
α| n ∈ N+}. Using the domain enforcement inference

rule, we obtain that T is inconsistent (Cpc_Incons_T). By the strong completeness theorem, T is
not satis�able. However, every �nite subset of T is consistent (Cpc_Finite_Sat_T), and, therefore,
satis�able. This gives us the non-compactness theorem for LPPQ

2 :

Theorem 11 (Non-compactness of LPPQ
2 ). There exists a set of LPPQ

2 -formulas which is
unsatis�able, but whose every �nite subset is satis�able.

Theorem LPP2_Q_NonCompactness : ∃ T : Ensemble FOR,

(∀ T' : Ensemble FOR, Finite _ T' → Included _ T' T → Satisfiable T') ∧
¬ Satisfiable T.

3.4.4 Concerning Decidability

By using a method similar to that shown for LPCP in Chapter 2, we can prove that the satis�a-
bility of probabilistic formulas for LPPQ

2 is decidable, and that it is NP-complete. However, due
to the perceived complexity of encoding the actual decision procedure as well as the required
mathematical background in Coq, it was decided to keep the formal proof of decidability and,
possibly, extraction of a certi�ed probabilistic SAT-solver, as a future research goal.
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3.5 Summary

In this chapter, we have presented LPPQ
2 - a rationally-valued probability logic without iterations

of probability operators. We have introduced a sound and strongly-complete axiomatic system
for LPPQ

2 , and formally proven in Coq the main meta-theoretic properties of LPPQ
2 � soundness,

strong and simple completeness, and non-compactness. Similarly to LPCP, due to the inherent
non-compactness of the system, an in�nitary inference rule had to be introduced into the system.
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In this chapter, we address the logic LPPQ
1 - a probability logic similar to LPPQ

2 , with the
main di�erence being that iterations of probability operators are allowed. We formally prove
its main meta-theoretical properties in the proof assistant Coq, and discuss the di�erences in
syntax, semantics and proof technology between LPPQ

2 and LPPQ
1 .

4.1 Syntax of LPPQ
1

The syntax of LPPQ
1 is somewhat more uniform than that of LPPQ

2 , shown in the previous
chapter. We also require a denumerably in�nite set of propositional letters: φ = {p0, p1, . . .}
(nat), and two propositional connectives: ¬ (Neg : FOR -> FOR)1 and → (Imp : FOR -> FOR ->

FOR), where FOR denotes the type of LPPQ
1 formulas in Coq. Let us again denote by Q[0,1] (Q01)

the set of all rational numbers from the unit interval, encoded in Coq just as for LPPQ
2 , and let

us have a denumerably in�nite set of probabilistic operators P≥s, s ∈ Q[0,1] (Pge : Q01 -> FOR

-> FOR). Then, the set of all formulas For
LPPQ

1
(FOR) of LPPQ

1 is de�ned as the smallest set

that satis�es the following conditions:

• it contains all of the propositional letters.

• if α ∈ For, s ∈ Q[0,1], then P≥sα ∈ For.
• if α, then ¬α ∈ For.

1Just as in the previous chapter, when we are not addressing an encoding of a concept in Coq in detail, we
will be specifying the label of the encoding in brackets, immediately following the theoretical explanation.



52 Chapter 4. Formal Veri�cation of the Probability Logic LPPQ
1 in Coq

• if α, β ∈ For, then α→ β ∈ For.

Immediately we can see the main syntactic di�erence between LPPQ
1 and LPPQ

2 : while in
LPPQ

2 we have a separation of formulas into classical and probabilistic, in LPPQ
1 all formulas

are treated equally. The intended meaning of the probabilistic operators, using the example of
P≥sα, for s ∈ Q[0,1], and a formula α, is still that the probability that a formula α holds is
at least s. As we inspect the formation rules, we can notice that it is now possible to iterate
the probabilistic operators. Therefore, in this logic, we can use formulas such as P≥ 1

2
(P≥ 1

3
p0),

expressing the statement that �The probability that the probability of p0 is at least 1/3, is at
least 1/2�. The remaining connectives ∨ (Or), ∧ (And), and↔ (EquC) are de�ned in the usual way,
while, additionally, for the probabilistic operators, we make use of the following abbreviations:

(Plt) P<sα for ¬P≥sα. (Ple) P≤sα for P≥1−s¬α.
(Pgt) P>sα for ¬P≤sα. (Peq) P=sα for P≥sα ∧ P≤sα.
(Pne) P 6=sα for ¬P=sα. (Fal) ⊥ for ¬(α→ α).

where we have that s ∈ Q[0,1], and α ∈ For.

4.2 Semantics of LPPQ
1

The semantics for the logic LPPQ
1 is based on the possible�world approach, and is somewhat

more complicated than that of LPPQ
2 , as a result of the simpli�cation of the syntax and the

removal of the distinction between classical and probabilistic formulas.

De�nition 15. An LPPQ
1 -model is a structure M = 〈W,Prob, v〉, where

• W is a non-empty set of objects we will refer to as worlds,

• Prob is a probability assignment which assigns to each w ∈W a probability space Prob(w) =
〈W (w), H(w), µ(w)〉, such that:

� W (w) is a non-empty subset of W .

� H(w) is an algebra of subsets on W (w).

� µ(w) is a �nitely additive probability measure µ : H(w)→ Q[0,1].

• v is a valuation function v : W × φ→ {true, false}, assigning truth-values to each propo-
sitional letter in each of the worlds. It is extended to all classical formulas as usual.

As we can see, this time each of the worlds is equipped with its own subset of worlds, algebra
of subsets, and measure, in contrast to LPPQ

2 , where there was only one �general� measure
on a single algebra of subsets. This change in approach is necessary because of the possibility
of iterations of probability operators. Again, the range of the measures, i.e. the set of values
from which we are assigning probabilities to formulas is the set of all rational numbers from
the unit interval. We will provide a detailed look into the encoding of the semantics and the
representation of models in Coq, with emphasis on the di�erences from the previous chapter.
First of all, the worlds and the concepts of algebras of subsets and measures are encoded in the
same manner as in LPPQ

2 , using record types (ElemW U W) capturing the property of an element
being a member of a subset of W, a set of elements of type U, within the type. Probability spaces
are encoded as follows:
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Record ProbSpace (U : Type) (W : Ensemble U) : Type :=

mkPSpace {gWp : Ensemble (ElemW U W);

gHp : Algebra (ElemW _ gWp);

gMp : MeasureQc (ElemW _ gWp);

PS_Nes_Cond : gWp <> Empty_set _;

PS_Alg_Cond : AOS _ gHp;

PS_Mea_Cond : FAM_Qc _ gMp gHp}.

In this manner, we capture all of the necessary conditions � the non-emptiness of W (w),
H(w) being an algebra of subsets over W (w), and µ(w) being a �nitely additive measure on
H(w) � during the construction of a probability space. Models are then naturally encoded as:

Record Model_Simp (U : Type) (W : Ensemble U) : Type :=

mkMSimp {MC_Worlds : Ensemble (ElemW U W);

MC_PSpace : (ElemW U W) -> (ProbSpace U W);

MC_Valuation : (ElemW U W) -> nat -> Prop

MC_ElemWS_Cd : inhabited (ElemW U W);

MC_Worlds_Cd : MC_Worlds = Full_set (ElemW U W)}.

Therefore, apart from the three required elements, we have also embedded into the model the
conditions which ensure that our set of worlds is not empty and that the set of worlds encom-
passes all of the elements of the appropriate ElemW type. Again, the worlds are parameterized
by a type U, allowing for di�erent choices of sets representing worlds, depending on the proof
scenario. Next, we proceed to the de�nition of satis�ability:

De�nition 16. The satis�ability relation |= satis�es the following conditions, for every LPPQ
1 -

model M = 〈W,Prob, v〉, every world w ∈W , and every formula Φ ∈ For
LPPQ

1
:

• if Φ ∈ φ, then M,w |= Φ i� v(w)(Φ) = true.
Propositional letters are satis�ed in a world i� they are true in that world.

• if Φ is of the form ¬α, M,w |= Φ i� M,w 2 α.

• if Φ is of the form α→ β, M,w |= Φ i� M,w 2 α or M,w |= β.

• if Φ is of the form P≥sα, M,w |= Φ i� µ(w)([α]M,w) ≥ s,
where [α]M,w denotes the set {u ∈ W (w)|M,w |= α}, i.e. the set of worlds in W (w) in
which α holds. This is analogous to the capturing of probability for LPPQ

2 .

We will onward focus on the class of all measurable models (Model_Meas), which we will
denote by LPPQ

1,Meas. Measurable models are de�ned as follows:

De�nition 17. An LPPQ
1 -model M is measurable if [Φ]M,w ∈ H(w), for all Φ ∈ For

LPPQ
1
.

and are encoded in Coq by adding the measurability condition into the de�nition of Model_Simp.
We represent satis�ability of a set of formulas with the function modelsSet. Again, we encode
satis�ability of the classical negation and implication using Coq's built-in connectives, and make
use of Coq's Classical library.

De�nition 18. A formula Φ is satis�able if there exists an LPPQ
1 -measurable model M =

〈W,Prob, v〉 and a world w ∈ W such that M,w |= Φ; Φ is valid (Valid) if M,w |= Φ, for
all LPPQ

1 -measurable models M = 〈W,Prob, v〉 and all worlds w ∈ W in these models; a
set of formulas T is satis�able (Satisfiable) if there exists an LPPQ

1 -measurable model M =
〈W,Prob, v〉 and a world w ∈W , such that M,w |= Φ, for all Φ ∈ T .
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4.3 A Complete Axiomatization

Interestingly, the set of valid formulas of LPPQ
1 can be characterized both with the same axiom

schemata presented in Figure 3.1, and the inference rules as presented in Figure 3.2, with several
purely syntactic modi�cations and only one fundamental di�erence. We denote this axiomatic
system by Ax

LPPQ
1
, and present it in Figure 4.1 and Figure 4.2.

APT. All instances of classical propositional tautologies.

AP1. P≥0α.

AP2. P≤rα→ P<sα, for s > r.

AP3. P<rα→ P≤rα.

AP4. P≥rα→ (P≥sβ → (P≥1¬c(α ∧c β)→ P≥r+s(α ∨c β))), for r + s ≤ 1.

AP5. P≤rα→ (P<sβ → P<r+s(α ∨c β)), for r + s ≤ 1.

AP6. P≥1(α→ β)→ (P≥rα→ P≥rβ).

Figure 4.1: LPPQ
1 Axiom schemata

Modus Ponens: from α and α→ β, infer β,

Probabilistic Necessitation: if α is a theorem, infer P≥1α,

Domain Enforcement: from β → P 6=rα, for all r ∈ Q[0,1], infer β → ⊥.

Figure 4.2: LPPQ
1 Inference rules

As we can see, the axioms have remained the same as for LPPQ
2 , with the doubled connectives

¬c and ¬p, and →c and →p replaced by the unique ¬ and →. The domain enforcement rule is
once again present in order to preserve strong completeness, given the inherent non-compactness
of the system. The standard syntactic notions are de�ned as follows:

De�nition 19. A formula Φ is derivable (Derivable) from a given set of formulas (premises)
T (denoted by T ` Φ) if there exists a �nite sequence of formulas Φ0, . . . ,Φk,Φ, such that each
Φi is either in the set T , is an instance of one of the axiom schemata, or is obtained from the
preceding formulas by using one of the inference rules. We call such a sequence a proof of Φ
from T . A formula Φ is a theorem (denoted by ` Φ) if it is derivable from the empty set of
formulas (isTheorem).

Again, in Coq, we de�ne a proof of T ` Φ as a tree of formulas with Φ as the root, with
formulas either from the set T or instances of axiom schemata as leaves, and where all of the
non-leaves are obtained from previously existing nodes by one of the inference rules (proof_term).

Observation 1. Here, the reader might notice that in the Probabilistic Necessitation inference
rule, technically, the notion of being a theorem has been used before it has been introduced, and
its referencing may seem somewhat circular. This impreciseness is standard practice in pen-and-
paper de�nitions of logics that require the side condition of �being a theorem�, and it has been
kept here only so that the reader could make a clear comparison between the axiomatic systems
of LPPQ

1 and LPPQ
2 . In order to be fully formally correct, the inference rules must be de�ned

jointly with derivability, just as it was done in the Coq encoding.



4.4. Key Properties of Ax
LPPQ

1
55

Just as LPPQ
2 , LPPQ

1 also has an inference rule with a countable collection of premises,
which has been handled analogously, by introducing a function from natural numbers to proof
terms (proofs : nat -> proof_term), and we again make use of a bijection between natural
numbers and the Q[0,1] interval (f_nat_Q01 : nat -> Q01).

De�nition 20. A set of formulas T is consistent (Consistent) if there exists at least one for-
mula α which are not derivable from it, and otherwise is inconsistent (Inconsistent_Alternate).
Alternatively, a set of formulas T is inconsistent if T ` ⊥ (Inconsistent). A set of formulas T
is maximally consistent (Max_Consistent) if it is consistent and for each formula, either it or its
negation are in T (α ∈ T or ¬α ∈ T ).

4.4 Key Properties of AxLPPQ
1

4.4.1 Soundness

Soundness of Ax
LPPQ

1
is proven just as that of Ax

LPPQ
2
. We show that all of the instances of

the axiom schemata are valid formulas, and that the inference rules preserve validity. Here, we
present the proof that the axiom schema AP4 is valid, as well as the proofs that some of the
inference rules preserve validity, while the remaining cases are handled similarly.

Lemma 20 (Validity of AP4). P≥rα→ (P≥sβ → (P≥1¬(α ∧ β)→ P≥r+s(α ∨ β))) is valid for
all α, β ∈ For

LPPQ
1
, r, s ∈ Q[0,1], and r + s ≤ 1 (valid_AP04).

Proof. Let M = 〈W,Prob, v〉 be a measurable model, w ∈ W , and let us assume that M,w |=
P≥rα,M,w |= P≥sβ, andM,w |= P≥1¬(α∧β), while our goal is to show thatM,w |= P≥r+s(α∨
β). From our assumptions, we have that [α]M,w ≥ r, [β]M,w ≥ s, and [¬(α ∧c β)]M,w = 1
or, equivalently, given the properties of µ(w), that [α ∧ β]M,w = 0. Just as in the previous
chapter, it can be proven that [α∧c β]M,w = [α]M,w ∩ [β]M,w and [α∨c β]M,w = [α]M,w ∪ [β]M,w.
Given the property of the measure that µ(w)([α]M,w∪ [β]M,w) = µ(w)([α]M,w)+µ(w)([β]M,w)−
µ(w)([α]M,w ∩ [β]M,w) (FAM_Qc_union_split), we obtain that µ(w)([α]M,w ∪ [β]M,w) ≥ r+ s, and
have our claim.

Lemma 21 (Validity preservation of Ax
LPPQ

1
inference rules). Let α, β ∈ For

LPPQ
1
.

1. If α is valid, and α→ β is valid, then β is also valid (vp_MP).

2. If α is valid, then P≥1α is also valid (vp_PN).

3. If β → P 6=rα is valid, for all r ∈ Q[0,1], then β → ⊥ is also valid (vp_DE).

Proof.

1. Let us suppose that, for a given model M = 〈W,Prob, v〉 ∈ LPPQ
1,Meas, w ∈ W , α, β ∈

For
LPPQ

1
, we have that:

M,w |= α and M,w |= α→ β.

From this, given the de�nition of the satis�ability relation and the de�nition of implication,
it must also be that M,w |= β, which concludes our proof.

2. Let us suppose that, for any givenM = 〈W,Prob, v〉 ∈ LPPQ
1,Meas, w ∈W , α ∈ For

LPPQ
1
,

we have that M,w |= α. From this, we have that [α]M,w = W , and by the de�nition
of µ(w), we have that µ([α]M,w) = 1, which means, by the de�nition of the satis�ability
relation, that M,w |= P≥1α, concluding our proof.
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3. Let us suppose that, for any given M = 〈W,Prob, v〉 ∈ LPPQ
1,Meas, w ∈ W , α, β ∈

For
LPPQ

1
, we have that

M,w |= β → P 6=rα, for all r ∈ Q[0,1]. (4.1)

Our goal is to prove that M,w |= β → ⊥. If M,w 2 β, the proof is immediate. Let us
onward assume that M,w |= A. From this, Equation 4.1, and the de�nition of |=, we have
that

µ(w)([α]) 6= r, for all r ∈ Q[0,1],

which is a contradiction with the de�nition of µ(w). Therefore, the case in which M |= β
is not possible, and we have our claim.

Therefore, we have proven the soundness theorem:

Theorem 12 (Soundness of LPPQ
1 ). If Φ is a theorem of Ax

LPPQ
1
, then Φ is valid.

Theorem LPP1_Q_Soundness : ∀ (Φ : FOR), isTheorem Φ → Valid Φ.

4.4.2 Completeness

Since the syntax of LPPQ
1 is almost identical to the syntax of LPPQ

2 , the proofs of syntactic
theorems for both logics follow the same path and are, in some cases, even identical. In the
following subsections, we will only focus on proof segments which are di�erent, while for the
remaining segments and details, we refer the reader to Chapter 3.

4.4.2.1 The Deduction Theorem.

Just as in the previous chapter, the �rst theorem we will be proving on the road to strong
completeness is the Deduction Theorem. This time, we do not need two versions, as there exists
only one type of formulas.

Theorem 13 (Deduction Theorem for LPPQ
1 ). Let T be a set of formulas and α, β ∈ For

LPPQ
1
.

Then, the following holds:

T ∪ {α} ` β if and only if T ` α→p β.

Theorem LPP1_Q_Deduction_Theorem : ∀ (T : Ensemble FOR) (A B : FOR),

Derivable (Union FOR T (Singleton FOR A)) B ↔ Derivable T (Prob (Imp A B)).

Proof. The right-to-left implication is proven as in classical logic, while the left-to-right impli-
cation is proven by induction on the structure of the derivation of T ∪ {α} ` β, and is mostly
identical to the proof of Theorem 7. Here, we will only present the case which is di�erent, which
is the case when T ∪ {β} ` β is obtained by the use of the probabilistic necessitation inference
rule. In this case, β is of the form P≥1γ, for some γ ∈ For

LPPQ
1
, and we have that γ is a theorem.

Therefore, we have that T ` γ. Now, using probabilistic necessitation, we obtain that T ` β,
from which T ` α→ β follows.
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4.4.2.2 Maximally Consistent Extension.

The next step is to prove that we can always extend a consistent set of formulas to a maximally
consistent set. We prove the following auxiliary claims, analogously to Lemma 6, Lemma 7, and
Lemma 8:

Lemma 22. Derivability is not a�ected by adding theorems into the context, i.e. if T ∪ T ′ ` F ,
and every formula in T ′ is a theorem, then T ` F , where F ∈ FOR (Der_addThm). Consequently,
consistency is not a�ected by adding theorems into the context (Consistency_addThm).

Lemma 23. For every consistent set of formulas T , and every formula α, either T ∪ {α} is
consistent or T ∪ {¬α} is consistent (Consistency_xor).

Lemma 24. For all maximally consistent sets T , and for all formulas α, β, the following holds:

1. Either α ∈ T or ¬α ∈ T (MCons_A_NegA).

2. α ∈ T if and only if T ` α (MCons_In_Der).

3. If ¬α ∈ T , then α /∈ T (MCons_Neg).

4. If α→ β ∈ T , then ¬α ∈ T or β ∈ T (MCons_Imp).

5. If α↔ β ∈ T , then α ∈ T if and only if β ∈ T (MCons_Equ).

6. If α ∧ β ∈ T , then α ∈ T and β ∈ T (MCons_And).

7. If α ∨ β ∈ T , then α ∈ T or β ∈ T (MCons_Or).

The following lemma, analogous to Lemma 11 both in formulation and in proof, provides an
insight into the compatibility of probabilistic operators with consistency:

Lemma 25. For every consistent set of formulas T , formulas α and β, if T ∪{β} is consistent,
then there exists a rational number p(α) ∈ Q[0,1] such that T ∪ {β} ∪ {P=p(α)α} is consistent.
(Peq_existence)

Hereinafter, we will assume to have a consistent set of formulas T . We denote T0 = T ,
establish an enumeration of formulas α0, α1, α2, . . . (f_enum : nat -> FOR), and de�ne a sequence
of sets Tn (Tn), for n ≥ 1, as follows:

Tn+1 =

{
Tn ∪ {αn} ∪ {P=p(αn)αn} if Tn ∪ {αn} is consistent,
Tn ∪ {¬αn} ∪ {P=p(¬αn)¬αn} otherwise.

The following lemma is proven using the previously proven lemmas:

Lemma 26. The following properties concerning the sequence Tn hold:

1. For all n ≥ 0, Tn ⊆ Tn+1 (Tn_increasing).

2. For all n ≥ 0, Tn is consistent (Tn_all_consistent).

Next, we de�ne the maximally consistent extension T ∗ of T , as

T ∗ =
∞⋃
i=1

Ti.

Definition MC_Extension (T : Ensemble FOR) : Ensemble FOR :=

(fun A : FOR ⇒ ∃ k : nat, In FOR (Tn T k) A.)
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Again, this extension is naturally de�ned in Coq as a function in Prop, which is true only
for the formulas contained in at least one of the extensions of T . For T ∗ de�ned in this way, we
prove that the following statements hold:

Lemma 27 (Properties of T ∗).

1. For all α ∈ For
LPPQ

1
, either α ∈ T ∗ or ¬α ∈ T ∗ (MCE_maximal).

2. ⊥ /∈ T ∗ (MCE_no_Fal).

3. T ⊆ T ∗ (T_in_MCE).

4. If T ∗ ` α, then α ∈ T ∗, for α ∈ For
LPPQ

1
(MCE_in).

Proof.

1. Directly, by construction of T ∗.

2. By contradiction. If ⊥ ∈ T ∗, then, by de�nition of T ∗, there exists an integer k, such that
⊥ ∈ Tk, which is a contradiction with the previously proven consistency of Tk.

3. Directly, as T = T0, and T0 ⊆ T ∗.

4. By induction on the derivation of T ` α. We will only show the case where A has been
obtained using the probabilistic necessitation inference rule. Then, we have that α is of
the form P≥1β, and that β is a theorem. Next, let k be the index of the formula β in the
enumeration of formulas. Then, since β is a theorem, and given Lemma 22, we have that
Tn+1 = Tn ∪ β, and we have our claim.

As a direct consequence of the previous Lemma, we obtain the main result of this subsection:

Theorem 14. T ∗ is a maximally consistent set of formulas.

4.4.2.3 The Canonical Model.

Before we can proceed to the actual construction, we need several auxiliary lemmas:

Lemma 28. Let T be a maximally consistent set. Then, for every α ∈ For
LPPQ

1
, there exists a

unique q(α) ∈ Q[0,1], such that T ` P=q(α)α. (unique_for_M)

Proof. Analogous to the proof of Lemma 9.

Lemma 29. A formula α is in all maximally consistent sets if and only if α is a theorem.
(in_all_MCons_thm)

Proof. The right-to-left direction follows directly from the de�nition of maximal consistency.
For the left-to-right direction, let us assume that for all maximally consistent sets T , it holds
that α ∈ T . First, we will prove that T ′ = {¬α} is inconsistent. Let us assume, to the contrary,
that it is consistent, and let T ′∗ be its maximally consistent extension. Then, we would have
that both ¬α ∈ T ′∗ (by construction) and α ∈ T ′∗ (by assumption), which is not possible, as
then T ′∗ would not be consistent. Now, we have that {¬α} is inconsistent, i.e. that {¬α} ` ⊥.
Using the Deduction Theorem, we obtain that ∅ ` ¬α → ⊥ and from there, using classical
propositional tautologies, we obtain that ∅ ` α.
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Now, we can construct a canonical model M∗ for a given consistent set of formulas T . Now,
we de�ne each of the required model components as follows:

Worlds. The set of worlds W will be the set of all maximally consistent sets (CM_Worlds).

Valuation. The valuation function v : W × φ → {true, false} (v) is de�ned naturally as
v(w, pi) = true if pi ∈ w, and otherwise false (CM_Valuation).

Probability Space. We will de�ne the probability spaces for each world w as follows:

• Subsets of Worlds. For each w ∈ W , we take W (w) = W (CMWp). This proves to be
su�cient, and there is no need for having di�erent subsets for di�erent worlds.

• Algebra of Subsets. We will de�ne H(w) (CMHp) in the following way:

H(w) = {[α] = {w ∈W : α ∈ w} | α ∈ For
LPPQ

1
}.

It is easily proven that H(w), de�ned in this way, satis�es the requirements to be an
algebra of subsets over W (w): it contains the empty set, it is closed under complement,
and is closed under �nite union. (CM_Alg_Cond)

• Measure. The measure should map the algebra of subsets H(w) into the rational unit
interval Q[0,1]. Since the elements of H(w) are essentially determined by formulas, we will
de�ne µ(w) (CMMp_to_Q01) as follows, using notation from Lemma 28:

µ(w)([α]) = q(α), where T ∗ ` P=q(α)α.

Lemma 28 states that a unique q(α) exists for each α ∈ For
LPPQ

1
, ensuring that the

measure is well-de�ned. Just as in the case of LPPQ
2 , the following claims needed to be

proven with regard to the properties of µ(w):

� Measure and negation: µ(w)([α]) = 1− µ(w)([¬α]) (CMMp_negation).

� Non-negativity: µ(w)([α]) ≥ 0, for all α ∈ For
LPPQ

1
(CMMp_FAM_nonneg).

� Measure and the empty set: µ(∅) = 0 (CMMp_FAM_empty_set).

� Measure and the full set: µ(W ) = 1 (CMMp_FAM_Full_set).

� Additivity: µ is �nitely additive (CMMp_FAM_additive).

In this way, we have obtained a modelM∗ = 〈W,Prob, v〉 (CMModel_Simp), and the remaining
claim that we need to prove is that it is measurable.

Lemma 30. M∗ is a measurable model (CM_isMeas).

Proof. We should prove that for α ∈ For
LPPQ

1
, and all w ∈ W , it holds that [α]M∗,w ∈ H(w).

However, this is true, as this was how H(w) was constructed in the �rst place.

4.4.2.4 Strong Completeness.

With the canonical model constructed, we require an additional lemma before we can tackle
strong completeness:

Lemma 31. Let T be a set of formulas, M = 〈W,Prob, v〉 be a measurable model, w ∈ W ,
and let us assume that M,w |= T . Then, it holds that for all α ∈ For

LPPQ
1
, if T ` α, then

M,w |= α.
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Proof. By structural induction on the derivation of T ` α. The cases in which α ∈ T and in
which α is an instance of an axiom or obtained by the modus ponens inference rule follow directly
from the soundness of the system (Theorem 12) and the induction hypothesis (IH). Next, let
T ` α be obtained by the probabilistic necessitation inference rule. This means that α = P≥1β,
for some β ∈ For

LPPQ
1
, and that β is a theorem. However, by the Soundness theorem, β is

then valid, i.e. M,w |= β for all w ∈ W . Therefore, we have that [β]M,w = W (w), from which
we obtain that µ(w)([β]M,w) = 1, and, consequently, that M,w |= P≥1β, which is our claim.
Finally, let T ` α be obtained by the domain enforcement inference rule. This means that
α = β → ⊥, and that this was obtained from T ` β → P 6=rγ, for all r ∈ Q[0,1], and some
β, γ ∈ For

LPPQ
1
. By the IH, we have thatM |= β → P 6=rγ, for all r ∈ Q[0,1]. However,M |= β is

not possible, as by de�nition of satis�ability and the measure, it would have to be that M |= ⊥.
Therefore, it must be that M 2 β, from which we easily obtain the desired M |= β → ⊥.

Finally, we can prove the main result of this chapter:

Theorem 15 (Strong Completeness of LPPQ
1 ). A set of formulas T is LPPQ

1 -consistent if and
only if it is LPPQ

1,Meas-satis�able (LPP1_Q_Strong_Completeness).

Theorem LPP2_Q_Strong_Completeness : ∀ T : Ensemble FOR,

Consistent T <-> Satisfiable T.

Proof. First, let T be consistent. We need to prove that it is satis�able, i.e. that there exists an
LPPQ

1,Meas-model M = 〈W,Prob, v〉 and a world w ∈ W , such that M,w |= α, for all formulas
α ∈ T . We will choose the model to be the canonical model M∗, while the corresponding world
will be T ∗, which is possible as the worlds inM∗ are maximally consistent sets. We prove easily,
by structural induction on α, that M∗, T ∗ |= α if and only if α ∈ T ∗. From there, we obtain
that M,w |= α, for all α ∈ T , as T ⊆ T ∗.

Next, let T be satis�able. Then, there exists a model M = 〈W,Prob, v〉 and a world w ∈W
such that M,w |= α, for all α ∈ T . Then, by Lemma 31, we obtain that M and w model all
formulas derivable from T . If T were to be inconsistent, then we would have that M,w |= ⊥
which is not possible by de�nition of satis�ability, and T must be consistent.

4.4.2.5 Simple Completeness of LPPQ
1 .

The Simple Completeness Theorem follows naturally from the Strong Completeness Theorem:

Theorem 16 (Simple Completeness of LPPQ
1 .). If a formula Φ is LPPQ

1,Meas-valid, then it is

a theorem of LPPQ
1 . (LPP1_Q_Simple_Completeness)

Theorem LPP1_Q_Simple_Completeness : ∀ Φ : FOR, Valid Φ -> isTheorem Φ.

Proof. If α is LPPQ
1,Meas-valid, then ¬α is not satis�able and by the Strong Completeness

Theorem, {¬α} is inconsistent, i.e. {¬α} ` ⊥. From there, we easily obtain ` α from the
Deduction Theorem and the elimination of double negation.

4.4.3 Non-Compactness

Let us consider the set T = {P 6=0α}∪{P< 1
n
α| n ∈ N+}. Using the domain enforcement inference

rule, we obtain that T is inconsistent (Cpc_Incons_T). By the strong completeness theorem, T is
not satis�able. However, every �nite subset of T is consistent (Cpc_Finite_Sat_T), and, therefore,
satis�able. This gives us the non-compactness theorem for LPPQ

1 :
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Theorem 17 (Non-compactness of LPPQ
1 ). There exists a set of LPPQ

1 -formulas which is
unsatis�able, but whose every �nite subset is satis�able.

Theorem LPP1_Q_NonCompactness : ∃ T : Ensemble FOR,

(∀ T' : Ensemble FOR, Finite _ T' → Included _ T' T → Satisfiable T') ∧
¬ Satisfiable T.

4.5 Summary

In this chapter, we have presented LPPQ
1 - a rationally-valued probability logic with iterations of

probability operators. We have introduced a sound and strongly-complete axiomatic system for
LPPQ

1 , and formally proven in Coq the main meta-theoretic properties of LPPQ
1 � soundness,

strong and simple completeness, and non-compactness. Similarly to LPCP and LPPQ
2 , due to

the inherent non-compactness of the system, an in�nitary inference rule had to be introduced
into the system. We have examined the similarities and di�erences between LPPQ

1 and LPPQ
2

and observed that due to the more uniform syntax, the proofs in LPPQ
1 are more elegant

and somewhat more straightforward. Finally, the formalization of LPPQ
1 in Coq revealed an

imprecision in the pen-and-paper de�nitions of the inference rules, and brought to light the need
for the inference rules to be de�ned jointly with the notion of derivability.
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The Edinburgh Logical Framework LF, presented in [Harper 1993], is a typing system fea-
turing dependent types. It was �rst introduced as a general meta-language for logics, as well
as a speci�cation language for generic proof-checking/proof-development environments. In this
thesis, we consider an extension of LF with predicates, which is accomplished by de�ning locked
type constructors, which resemble �-modality constructors, for constructing types of the shape
LPN,σ[ρ], where P is predicate on typed judgements and the validity of which may be veri�ed
outside of the LFP framework, making it, in that sense, an external predicate.

Following the standard speci�cation paradigm in Constructive Type Theory, we de�ne locked
types using introduction, elimination, and equality rules. We introduce a lock constructor for
building objects LPN,σ[M ] of type LPN,σ[ρ], via the introduction rule (O·Lock), presented below,

and a corresponding unlock destructor, UPN,σ[M ], and an elimination rule (O·Unlock) which
allows for the elimination of the locked type constructor, under the condition that a speci�c
predicate P is veri�ed, possibly externally, on an appropriate correct, i.e. derivable, judgement.

Γ `Σ M : ρ Γ `Σ N : σ

Γ `Σ LPN,σ[M ] : LPN,σ[ρ]
(O·Lock)

Γ `Σ M : LPN,σ[ρ] Γ `Σ N : σ P(Γ `Σ N : σ)

Γ `Σ UPN,σ[M ] : ρ
(O·Unlock)

The equality rule for locked types amounts to a new form of reduction we refer to as lock-
reduction (L-reduction), UPN,σ[LPN,σ[M ]]→L M , which allows for the elimination of a lock, in the
presence of an unlock. The L-reduction combines with standard β-reduction into βL-reduction.

LFP is parametric over a potentially unlimited1 set of predicates P, which are de�ned on
derivable typing judgements of the form Γ `Σ N : σ. The syntax of LFP predicates is not
speci�ed, with the main idea being that their truth is to be veri�ed via a call to an external
validation tool ; one can view this externalization as an oracle call. Thus, LFP allows for the
invocation of external �modules� which, in principle, can be executed elsewhere, and whose
successful veri�cation can be acknowledged in the system via L-reduction. Pragmatically, locked
types allow for the factoring out of the complexity of derivations by delegating the {checking,
veri�cation, computation} of such predicates to an external proof engine or tool. The proof
terms themselves do not contain explicit evidence for external predicates, but just record that

1The predicates need to satisfy certain requirements so that Subject Reduction of LFP holds, cf. De�nition 21.
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a veri�cation {has to be (lock), has been successfully (unlock)} carried out. In this manner,
we combine the reliability of formal proof systems based on constructive type theory with the
e�ciency of other computer tools, in the style of the Poincaré Principle [Barendregt 2002].

In this thesis, we develop the meta-theory of LFP . Strong normalization and con�uence are
proven without any additional assumptions on predicates. For subject reduction, we require
the predicates to be well-behaved, i.e. closed under weakening, permutation, substitution, and
βL-reduction in the arguments. LFP is decidable, if the external predicates are decidable. We
also provide a canonical presentation of LFP , in the style of [Watkins 2002, Harper 2007], based
on a suitable extension of the notion of βη-long normal form. This allows for simple proofs of
adequacy of the encodings.

In particular, we encode in LFP the call-by-value λ-calculus and discuss a possible exten-
sion which supports the design-by-contract paradigm. We provide smooth encodings of side
conditions in the rules of Modal Logics, both in Hilbert and Natural Deduction styles, cf.
[Avron 1998, Crary 2010]. We also encode sub-structural logics, namely non-commutative Lin-
ear Logic, cf. [Polakow 1999, Crary 2010]. We also illustrate how LFP can naturally support
program correctness systems and Hoare-like logics. We also discuss how other systems can be
embedded into LFP via locked types and provide pseudo-code for some of the used predicates.

As far as expressiveness is concerned, LFP is a stepping stone towards a general theory of
shallow vs deep encodings, with our encodings being shallow by de�nition. Clearly, by Church's
thesis, all external decidable predicates in LFP can be encoded, possibly with very deep en-
codings, in standard LF. It would be interesting to state in a precise categorical setting the
relationship between such deep internal encodings and the encodings in LFP .

LFP can also be viewed as a neat methodology for separating the logical-deductive contents
from, on one hand, the veri�cation of structural and syntactical properties, which are often
needlessly cumbersome but ultimately computable, or, on the other hand, from more general
means of validation.

5.1 A Brief Detour into Philosophy

Since Euclid �rst introduced the concept of rigorous proof and the axiomatic/deductive method,
philosophers have been discussing the nature of mathematics, debating over whether it is essen-
tially analytic or synthetic? Although we do not presume to give comments on such a funda-
mental philosophical issue, we do believe that the topics in this part of the thesis could be cast
against that background, and we will, therefore, o�er some comments in that direction.

Several possible, albeit partial modern readings of the synthetic vs. analytic opposition could
be, in our view, those of deduction from axioms vs. computation according to rules, proof checking
vs. veri�cation, and proving inhabitability of judgements vs. de�nitional equality of types.

The mechanism of locking and unlocking types in the presence of external oracles, which
we are introducing in LFP , e�ectively opens up the Logical Framework to alternate means of
providing evidence for judgements. In standard LF, there are only two ways of providing this
evidence, namely discovering types to be inhabited or postulating that types are inhabited
by introducing appropriate constants. The locked/unlocked types of LFP open the door to an
intermediate level, one provided by external means, such as computation engines or automated
theorem proving tools. However, among these, one could also think of graphical tools based on
neural networks, or even intuitive visual arguments, as were used in ancient times for giving
the �rst demonstrations of the Pythagoras' theorem, for instance. In a sense, LFP , by allowing
formal accommodation of any alternative proof method to pure axiomatic deduction, vindicates
all of the �proof cultures� which have been used pragmatically in the history of mathematics,
and not only in the Western tradition.
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One natural objection that can be raised against the LFP framework is: �Alternative proof
methods are not rigorous enough! We need to go through the pains of rigorous formalized proof
checking in order to achieve the highest possible reliability of our certi�cations!�. While this
point is, of course, true, several points do need to be made.

First of all, absolute certainty is a myth, as it cannot be achieved. The De Bruijn Principle
[Barendregt 2002, de Bruijn 1968] is usually invoked in this respect. It amounts to the request
that the core of the proof checker be small and veri�able by hand. Alternate proof techniques
certainly do not satisfy it in a strict sense. But alternate proof techniques, if properly recorded,
are not useless and come at a somewhat intermediate level between rigorous encoding and
blatant axioms. They can expedite veri�cations, as in the case of the Poincaré's Principle
[Barendregt 2002], or Deduction Modulo [Dowek 2003], or make the proof more perspicuous and
provide some intuition, as Schopenhauer advocated [Shopenhauer 2008]. On a lighter note, just
recall the anecdote of a famous mathematician lecturing at a seminar, who, halfway through the
proof, said: �And this trivially holds!� Just to say a few seconds later: �But is it really trivial
here? Hmm. . .�. And after about ten minutes of silence triumphantly exclaimed: �Yes, it is
indeed trivial!�. How do we encode such evidence? Should we just rule it out?

Anecdote aside, there is a far deeper reason, however, why a fundamentalist approach to
certainty cannot be maintained that easily, and this has to do with the issue of adequacy.
Contrast, for a moment, the process of proving a computation correct with respect to carrying
out its veri�cation by directly executing it. Consider, for example, that 11 ∗22 ∗33 = 108. In the
latter case, one would need to do some simple arithmetic, while in the former case, one would
need to reify the rules for computing exponentials and products. Of course, using the autarkic
approach explained in [Barendregt 2002] or reasoning by re�ection as in [Chlipala 2013], one
could internalize the needed arithmetics checking procedures (proving their correctness once and
for all), while still preserving the de Bruijn principle and keeping proof terms small. However,
our approach is more �schematic�, in the sense that it creates room for �plugging-in� any veri�er,
without the need to specify which one and without the need to prove its soundness internally.

But what can truly guarantee that the formalization we have encoded is adequate, i.e. that
it corresponds to our intended understanding of arithmetic? Enter the Münchhausen Trilemma
in all its glory. The choices we have are:

• In�nite regression, proofs requiring more proofs, which appears because of the necessity to
go ever further back. However, this isn't practically feasible and by its very nature does
not provide any foundation. Just ask Achilles how his dialogue with the Tortoise went, if
he ever gets out of it, that is [Carroll 1895]. Ok, how about then...

• A Logical Circle in the deduction, caused by the fact that one, in the need to found,
falls back on statements which had already appeared before as requiring a foundation.
Hmmm... this feels like building something ready to collapse at any moment. Ok then, we
really have no choice but to...

• �Just do it�. Break the search at a certain point and proclaim what the foundations are.
Enter axioms. This is principally feasible, but involves the concept of �su�cient reason�,
which tends to vary from person to person. Where do we stop the search and declare that
something must hold?

The moral is that the issue of proving that formal statements, such as speci�cations, en-
codings, and proof obligations, do indeed correspond to the intended meanings and pragmatic
usages cannot ever be done completely internally to any system. Ultimately, we have to resort
to some informal argument outside any possible De Bruijn Principle. And any such argument
can, at best, increase our con�dence in the correctness of our proof of the arithmetical compu-
tation. If one looks for a de�nitive proof of adequacy, one is led into an in�nite regress. Fully
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internalized arguments can rely on the De Bruijn Principle, but even the simplest application
takes us outside the system. Ultimately, we have no choice but to �just do it�.

One concluding comment. The traditional LF answer to the question �What is a Logic?�
was: �A signature in LF�. In LFP , we can give the homologue answer, namely �A signature in
LFP �, since external predicates can be read o� the types occurring in the signatures themselves.
But, we can also use this very de�nition to answer a far more intriguing question:

�What is a Proof Culture?�.

5.2 Comparison with Related Work

The work presented in this part of the thesis relies on [Honsell 2013b, Honsell 2013a], and con-
tinues the research line of [Honsell 2007, Honsell 2008a], which present extensions of the orig-
inal LF, where a notion of β-reduction modulo a predicate P is considered. The main idea of
these works is that of stuck-reductions in terms and types in the setting of higher-order term
rewriting systems, by Cirstea-Kirchner-Liquori [Cirstea 2001], later generalized to a framework
of Pure Type Systems with Patterns [Barthe 2003]. This typing protocol was essential for
the preservation of strong normalization of typable terms, as was proven in [Honsell 2007]. In
[Honsell 2007, Honsell 2008a] the dependent function type is conditioned by a predicate, and we
have a corresponding conditioned β-reduction, which �res when the predicate holds on a term or
judgement. In LFP , the predicates are external to the system and the veri�cation of the validity
of the predicate is part of the typing system. Standard β-reduction is recovered and combined
with an unconditioned lock reduction. The move of having predicates as new type constructors
rather than parameters of Π's and λ's allows LFP to be a mere language extension of standard
LF. This simpli�es the meta-theory, and provides a more modular approach.

The approach adopted here generalizes and subsumes, in an abstract way, other approaches in
the literature which combine internal and external derivations. In many cases, it can express and
incorporate these approaches. The relationship with the systems of [Cirstea 2001, Barthe 2003,
Honsell 2007, Honsell 2008a], which combine derivation and computation, has been discussed
above. Systems supporting the Poincaré Principle [Barendregt 2002], or Deduction Modulo
[Dowek 2003], where derivation is separated from veri�cation, can be directly incorporated in
LFP . Similarly, we can abstractly subsume the system presented in [Blanqui 2008], which ad-
dresses a speci�c instance of our problem: how to outsource the computation of a decision
procedure in Type Theory in a sound and principled way via an abstract conversion rule. One
other system which has a very similar goal with respect to LFP is presented in [Cousineau 2007],
where a framework named λΠ-calculus modulo is introduced, extending the original LF with
computation rules. The latter are realized by means of rewrite rules empowering the �traditional�
conversion rule of LF (i.e. the congruence relation ≡β is replaced by ≡βR, where R denotes the
set of rewrite rules introduced into the system). The authors then successfully encode all func-
tional Pure Type Systems (PTS) into the λΠ-calculus modulo, proving the conservativity of their
embedding under the termination hypothesis. The main di�erence between λΠ-calculus modulo
and LFP lies in the fact that the latter features a simpler metatheory, because the reduction is
closer to the standard β-reduction (at least in principle) and the external predicates are handled
in a more controlled way by means of the lock/unlock mechanism. The direct consequence of
this approach, from a practical point of view (when considering a possible implementation), is
that we do not need to change the kernel of the original LF, but only extend it.

In [Virga 1999], an extension of the Edinburgh LF with an equational theory is proposed,
opening the door to new ways of conversions among types within the framework. As a con-
sequence, strong normalization and con�uence properties remain valid only in a weaker form
(namely, modulo the equivalence induced by the equational theory on types). In the second part
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of the work, Higher-order Term Rewriting Systems (HTRS) with dependent types are introduced
and used to generate equational theories, much like those analyzed in the �rst part. Of course,
the rewriting rules of such an HTRS must adhere to some constraints, in order to guarantee the
fundamental properties of the extended LF. For instance, it is forbidden to use a rewrite rule to
rewrite the type of another rule, i.e. the rewriting must preserve well-typedness of expressions.
According to the author, the bene�t of the new system with respect to the original LF, is to
overcome the inadequacies emerging when dealing with the encoding of object languages em-
bodying notions of computations via equational rules. This work has served as a stepping stone
to constraint-based extensions of the proof assistant Twelf, which are called constraint domains
[Pfenning 2013]. These extensions provide a way for users to work easily with objects (such as
rational numbers), the explicit formalization of which in Twelf would otherwise be quite lengthy
or ine�cient, but are still considered to be highly experimental.

The work presented here also has a bearing on proof irrelevance. In [Pfenning 1993], two
terms inhabiting the same proof irrelevant type are set to be equal. However, when dealing with
proof irrelevance in this way, a great amount of internal work is required, all of the relevant rules
have to be explicitly speci�ed in the signature, and the irrelevant terms need to be derived in
the system anyway. With our approach, we move one step further, and do away completely with
irrelevant terms in the system by delegating the task of building them to the external proof
veri�er. We limit ourselves to the recording, through a locked type, that one such evidence,
possibly established elsewhere, needs to be provided, making our approach more modular.

In the present work, predicates are de�ned on derivable judgements, and hence may, in
particular, inspect the signature and the context, which normal LF cannot. The ability to
inspect the signature and the context is reminiscent of [Pientka 2008, Pientka 2010], although in
that approach the inspection was layered upon LF, whereas in LFP it is integrated in the system.
This integration is closer to the approach of [Licata 2009], but additional work is required in
order to be able to compare their expressive powers precisely.

Another interesting framework, which adds a layer on top of LF is the Delphin system
[Poswolsky 2009], providing a functional programming language allowing the user to encode,
manipulate, and reason over dependent higher-order datatypes. However, in this case as well,
the focus is placed on the computational level inside the framework, rather than on the capability
of delegating the veri�cation of predicates to an external oracle.

LF with Side Conditions (LFSC), presented in [Stump 2009], is more reminiscent of our
approach as �it extends LF to allow side conditions to be expressed using a simple �rst-order
functional programming language�. Indeed, the author aims at factoring the veri�cations of
(complicated) side-conditions out of the main proof. Such a task is delegated to the type
checker, which runs the code associated with the side-condition, verifying that it yields the
expected output. The proposed machinery is focused on providing improvements for solvers
related to Satis�ability Modulo Theories (SMT).

5.3 Synopsis of the Upcoming Chapters.

In Chapter 6, we present the syntax of LFP , its typing system, and the notion of βL-reduction.
In Chapter 7, we prove the main meta-theoretical properties of the system, and discuss the
expressive power of LFP . In Chapter 8, we present a canonical version of LFP , and discuss
the correspondence with the full LFP framework. In Chapter 9, we show how to encode into
LFP the call-by-value λ-calculus, a minimal functional language following the design-by-contract
programming paradigm, Modal Logics in Hilbert and natural deduction style, non-commutative
linear logic, a small imperative programming language featuring Hoare Logic, and provide several
concluding comments on the bene�ts of LFP .
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The pseudo-syntax of the LFP system is presented in Figure 6.1. We have �ve syntactic
categories: signatures, contexts, kinds, families or types, and objects. This pseudo-syntax is,
essentially, that of LF (cf. [Harper 1993]), with the removal of abstraction in families, and the
addition of a lock constructor (LPN,σ[−]) on families and objects, and a corresponding lock de-
structor (UPN,σ[−]) on objects. The environment in which derivations occur is, as usual, described
by the signature and the context, where the former keeps track of types or kinds assigned, re-
spectively, to constant families and objects, while the latter keeps track of families assigned to
variables. Both the lock and unlock constructors are parametrized over a unary logical predi-
cate P, which is de�ned on derivable type judgements of the form Γ `Σ N : σ. The entire LFP
system is parameterized over a �nite set of such predicates, and as these predicates are exter-
nal by nature, they are not formalized explicitly (more comments are provided in Section 7.4).
However, these predicates are required to satisfy certain well-behavedness conditions, which will
be presented in Chapter 7, in order to ensure subject reduction of the system. For the sake of
notational completeness, the list of external predicates should also appear in the signature, but
we will omit it so as to increase readability.

Notational conventions and auxiliary de�nitions. We will be using the following nota-
tion: M,N, . . . ∈ O denote objects, c, d, . . . denote object constants, x, y, z, . . . denote object
variables, σ, τ, ρ, . . . ∈ F denote types, a, b, . . . denote constant types, K ∈ K denotes kinds,
Γ ∈ C denotes contexts, Σ ∈ S denotes signatures, and P denotes predicates. We refer to L
as the lock symbol, and to U as the unlock symbol. We will be using T to denote any term of
the calculus (kind, family, or object), where, in some cases, the syntactic category to which T
can belong will be clear from the context. We suppose that, in the context Γ, x:σ, the variable
x does not occur free in Γ or in σ. We will be working modulo α-conversion and Barendregt's

Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, c:σ Signatures

Γ ∈ C Γ ::= ∅ | Γ, x:σ Contexts

K ∈ K K ::= Type | Πx:σ.K Kinds

σ, τ, ρ ∈ F σ ::= a | Πx:σ.τ | σN | LPN,σ[ρ] Families (Types)

M,N ∈ O M ::= c | x | λx:σ.M |M N | LPN,σ[M ] | UPN,σ[M ] Objects

Figure 6.1: The pseudo-syntax of LFP
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variable convention. All of the symbols can appear indexed. Next, we proceed to specify the
notions of the domain of a signature, the domain of a context, free and bound variables of a
term, as well as substitution, in the light of the newly introduced constructors and destructors.
The domain of a signature Dom(Σ) is de�ned as follows:

Dom(∅) = ∅
Dom(Σ, a:K) = Dom(Σ) ∪ {a}
Dom(Σ, c:σ) = Dom(Σ) ∪ {c}

the domain of a context Dom(Γ) as follows:

Dom(∅) = ∅
Dom(Γ, x:σ) = Dom(Γ) ∪ {x}

the free variables of a term Fv(T ) as follows:

Fv(Type) = Fv(a) = Fv(c) = ∅
Fv(x) = {x}

Fv(Πx:σ.T ) = (Fv(σ) ∪ Fv(T ))\{x}
Fv(λx:σ.T ) = (Fv(σ) ∪ Fv(T ))\{x}

Fv(T N) = Fv(T ) ∪ Fv(N)

Fv(LPN,σ[T ]) = Fv(N) ∪ Fv(σ) ∪ Fv(T )

Fv(UPN,σ[T ]) = Fv(N) ∪ Fv(σ) ∪ Fv(T )

the bound variables of a term Bv(T ) as follows:

Bv(Type) = Bv(a) = Bv(c) = Bv(x) = ∅
Bv(Πx:σ.T ) = Bv(σ) ∪ Bv(T ) ∪ {x}
Bv(λx:σ.T ) = Bv(σ) ∪ Bv(T ) ∪ {x}

Bv(T N) = Bv(T ) ∪ Bv(N)

Bv(LPN,σ[T ]) = Bv(N) ∪ Bv(σ) ∪ Bv(T )

Bv(UPN,σ[T ]) = Bv(N) ∪ Bv(σ) ∪ Bv(T )

and, �nally, substitution is de�ned as follows (here, we reiterate that x 6= y, and that we are
working modulo Barendregt's variable condition):

Type[M/x] = Type

a[M/x] = a

c[M/x] = c

x[M/x] = M

(Πy:σ.T )[M/x] = Πy:σ[M/x].T [M/x]

(λy:σ.T )[M/x] = λy:σ[M/x].T [M/x]

(T N)[M/x] = T [M/x]N [M/x]

(LPN,σ[T ])[M/x] = LPN [M/x],σ[M/x][T [M/x]]

(UPN,σ[T ])[M/x] = UPN [M/x],σ[M/x][T [M/x]]
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6.1 The LFP Type System

The type system for LFP , presented in detail below, proves judgements of the shape:

Σ sig Σ is a valid signature
`Σ Γ Γ is a valid context in Σ

Γ `Σ K K is a kind in Γ and Σ
Γ `Σ σ : K σ has kind K in Γ and Σ
Γ `Σ M : σ M has type σ in Γ and Σ

Signatures, Contexts, Kinds. Signatures, contexts, and kinds of LFP are formed in the
usual manner:

∅ sig (S·Empty) An empty signature is a valid signature.

Σ sig `Σ K a 6∈ Dom(Σ)

Σ, a:K sig
(S·C·Fam)

A valid signature Σ can be extended with a
fresh family a, whose kind K is a kind in the
empty context and signature Σ.

Σ sig `Σ σ:Type c 6∈ Dom(Σ)

Σ, c:σ sig
(S·C·Obj)

A valid signature Σ can be extended with a
fresh object c, whose type σ has kind Type in
the empty context and signature Σ.

Σ sig

`Σ ∅
(C·Empty)

An empty context is a valid context in any valid
signature Σ.

`Σ Γ Γ `Σ σ:Type x 6∈ Dom(Γ)

`Σ Γ, x:σ
(C·Var)

A valid context Γ in the signature Σ can be
extended with a fresh variable x, whose type is
of kind Type in Γ and Σ.

`Σ Γ

Γ `Σ Type
(K·Type)

If Γ is a valid context in the signature Σ, then
Type is a kind in Γ and Σ.

Γ, x:σ `Σ K

Γ `Σ Πx:σ.K
(K·Prod)

IfK is a kind in the context Γ, x:σ and signature
Σ, then the dependent product Πx:σ.K is a kind
in Γ and Σ.

Families. As for the families, we have chosen to omit the abstraction rule, as we have found
little practical use of it, compounded with the fact that the proofs of the properties of the
system would have been slightly more complicated in its presence. On the other hand, we have
introduced a rule allowing for the creation of locked types.

`Σ Γ a:K ∈ Σ

Γ `Σ a : K
(F·Const)

If Γ is a valid context in the signature Σ, then
any family a of kind K belonging to Σ also has
kind K in Γ and Σ.

Γ, x:σ `Σ τ : Type

Γ `Σ Πx:σ.τ : Type
(F·Prod)

If τ has kind Type in the context Γ, x:σ and signa-
ture Σ, then the dependent product Πx:σ.τ has
kind Type in Γ and Σ.
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Γ `Σ σ : Πx:τ.K Γ `Σ N : τ

σ N : K[N/x]
(F·App)

If σ has kind Πx:τ.K in the context Γ and signa-
ture Σ, and N has type τ in Γ and Σ, then the
application of N to σ has kind K, in which all
occurrences of x have been substituted for N , in
Γ and Σ.

Γ `Σ ρ : Type Γ `Σ N : σ

Γ `Σ LPN,σ[ρ] : Type
(F·Lock)

If ρ has kind K in the context Γ and signature
Σ, and N has type σ in Γ and Σ, then the type
locking ρ with a predicate P on Γ `Σ N : σ has
kind Type in Γ and Σ.

Γ `Σ σ : K Γ `Σ K ′ K=βLK
′

Γ `Σ σ : K ′
(F·Conv)

If σ has kind K in the context Γ and signature
Σ, and K is de�nitionally equal to K ′, which is
a kind in Γ and Σ, then σ also has kind K ′ in Γ
and Σ.

Objects. As for the object rules, we take those of LF in their entirety, and add one more rule
addressing construction of locked terms, and one more rule addressing the unlocking of such
locked terms.

`Σ Γ c:σ ∈ Σ

Γ `Σ c : σ
(O·Const)

If Γ is a valid context in the signature Σ,
then any object c of type σ belonging to Σ
also has type σ in Γ and Σ.

`Σ Γ x:σ ∈ Γ

Γ `Σ x : σ
(O·Var)

If Γ is a valid context in the signature Σ,
then any variable x of type σ belonging to
Γ also has type σ in Γ and Σ.

Γ, x:σ `Σ M : τ

Γ `Σ λx:σ.M : Πx:σ.τ
(O·Abs)

If M has type τ in the context Γ, x:σ and
signature Σ, then the abstraction λx:σ.M
has type Πx:σ.τ in Γ and Σ.

Γ `Σ M : Πx:σ.τ Γ `Σ N : τ

M N : τ [N/x]
(O·App)

If M has type Πx:σ.τ in the context Γ and
signature Σ, and N has type σ in Γ and Σ,
then the application of N to M has type
τ , in which all occurrences of x have been
substituted for N , in Γ and Σ.

Γ `Σ M : ρ Γ `Σ N : σ

Γ `Σ LPN,σ[M ] : LPN,σ[ρ]
(O·Lock)

If M has type ρ in the context Γ and sig-
nature Σ, and N has type σ in Γ and Σ,
then M , locked with the predicate P on
Γ `Σ N : σ has type ρ, locked with the
predicate P on Γ `Σ N : σ, in Γ and Σ.

P(Γ `Σ N : σ)
Γ `Σ M : LPN,σ[ρ]

Γ `Σ N : σ

Γ `Σ UPN,σ[M ] : ρ
(O·Unlock)

IfM has type ρ, locked with the predicate P
on Γ `Σ N :σ in the context Γ and signature
Σ, N has type σ in Γ and Σ, and P(Γ `Σ

N :σ) holds, then M , unlocked with P on
Γ `Σ N :σ has type ρ in Γ and Σ.

Γ `Σ M : σ Γ `Σ σ′ : Type σ=βLσ
′

Γ `Σ M : σ′
(O·Conv)

IfM has type σ in the context Γ and signa-
ture Σ, and σ is de�nitionally equal to σ′,
which has kind Type in Γ and Σ, then M
also has type σ′ in Γ and Σ.
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In LFP , we consider only the terms obtained after a �nite number of application of the
typing rules of the system. In such terms, each symbol (such as a constant, a variable, a lock,
or an unlock) can appear only a �nite number of times. Also, we denote by Γ `Σ α any typing
judgement, be it Γ `Σ T : T ′ or Γ `Σ T . In the two latter judgements, T will be referred to as
the subject of that judgement.

6.2 βL-reduction and De�nitional Equality in LFP

In LFP , we have two types of reduction. The �rst is the standard β-reduction, while the second is
a novel form of reduction, which we call L-reduction (�lock-reduction�). L-reduction, essentially,
serves as a lock-releasing mechanism, erasing the U-L pair in a term of the form UPN,σ[LPN,σ[M ]],
thus e�ectively releasingM . Together, these two reductions combine into βL-reduction, denoted
by→βL, and this combined reduction is the one which we take into account when considering the
properties of LFP . The main one-step βL-reduction rules are presented in Figure 6.2. There, one
can notice the new rule (L·O·Main), which is the reduction rule illustrating the desired behavior
of the lock and unlock combined - the e�ective release of a lock by an unlock, i.e. the unlock
destructor canceling out the lock constructor. This reduction rule, together with the (O·Unlock)
and (O·Lock) typing rules, provides an elegant mechanism for locking and unlocking objects.
The reader can note that a similar reduction rule at the level of types is not required, as the
application of the unlock destructor to a term automatically unlocks its type, as ensured by the
(O·Unlock) rule.

(λx:σ.M)N →βL M [N/x] (β·O·Main) Standard β-reduction

UPN,σ[LPN,σ[M ]]→βL M (L·O·Main)
A lock dissolves in the
presence of an unlock.

Figure 6.2: Main one-step-βL-reduction rules in LFP

σ →βL σ′

Πx:σ.τ →βL Πx:σ′.τ
(F·Π1·βL) τ →βL τ ′

Πx:σ.τ →βL Πx:σ.τ ′
(F·Π2·βL)

σ →βL σ′

σN →βL σ′N
(F·A1·βL) N →βL N ′

σN →βL σN ′
(F·A2·βL)

N →βL N ′

LPN,σ[ρ]→βL LPN ′,σ[ρ]
(F·L1·βL)

σ →βL σ′

LPN,σ[ρ]→βL LPN,σ′ [ρ]
(F·L2·βL)

ρ→βL ρ′

LPN,σ[ρ]→βL LPN,σ[ρ′]
(F·L3·βL)

Figure 6.3: βL-closure-under-context for families of LFP

The rules for one-step closure under context for families are presented in Figure 6.3, while the
corresponding rules for kinds and terms are handled analogously, and are omitted. Furthermore,
we will use the →→βL symbol to denote the re�exive and transitive closure of →βL. Finally, we
introduce βL-de�nitional equality in the standard way, as the re�exive, symmetric, and transitive
closure of βL-reduction on kinds, families, and objects, as illustrated in Figure 6.4.
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T →βL T ′

T=βLT
′

(βL·Eq·Main) T=βLT (βL·Eq·Refl)

T=βLT
′

T ′=βLT
(βL·Eq·Sym) T=βLT

′ T ′=βLT
′′

T=βLT
′′

(βL·Eq·Trans)

Figure 6.4: βL-de�nitional equality in LFP

6.3 Several Comments on the LFP Typing System

In the LFP typing system, the external predicates appear only as preconditions to the application
of the rule (O·Unlock). In this way, we keep the predicates separate from βL-reduction, in the
sense that their validity is not checked at reduction-time, but rather during the construction
of the unlock destructors. In this way, we do not require any conditions to be placed on the
predicates when proving the con�uence of LFP , but only for Subject Reduction (see Section 7.3).
An alternative approach would be to omit the unlock destructor from the object formation rules
altogether, and delegate the checking of the validity of predicates to the reduction rules instead,
via rules in the style of:

LPN,σ[ρ]→βL ρ, if P(Γ `Σ N : σ) (L·F·Main·Alt),

LPN,σ[M ]→βL M, if P(Γ `Σ N : σ) (L·O·Main·Alt).

Another interesting alternative approach would be to make the βL-reduction typed, utilizing
rules such as, for example:

Γ `Σ LPN,σ[M ] : LPN,σ[ρ] P(Γ `Σ N : σ)

Γ `Σ LPN,σ[M ]→βL M : LPN,σ[ρ]

In this way, βL-reduction would be fully incorporated into the typing system, as in [Honsell 2008b],
making the proofs a little easier and a lot more uniform. However, this approach would also
require us to introduce abstraction back not only into the families, but into kinds as well, which
would be somewhat super�uous, as we have not found any practical usage for them in LFP .

6.4 Summary

In this chapter, we have �rst presented in detail the judgments and the typing system of LFP .
Next, we have introduced and discussed the notion of L-reduction, a new type of reduction with
which we achieve the desired behaviour of a lock, in the presence of an unlock, shown how this
new reduction is combined with β-reduction, and introduced corresponding rules for closure-
under-context, as well as the notion of de�nitional equality. Finally, we have provided several
comments regarding possible alternative ideas on integrating the checking of the validity of an
external predicate as a part of a Logical Framework.



Chapter 7

Properties of LFP

Contents

7.1 Strong Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Con�uence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3 Subject Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.4 A Word on the Expressive Power of LFP . . . . . . . . . . . . . . . . . . 84

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

In this chapter, we present and prove the main properties of LFP . Without any additional
assumptions concerning predicates, we are able to prove that the type system is strongly nor-
malizing and con�uent. The former follows from strong normalization of LF (see [Harper 1993]),
while the latter follows from strong normalization and local con�uence, using Newman's Lemma
[Newman 1942]. The proof of Subject Reduction, however, is more complicated and does re-
quire certain conditions to be placed on the predicates. These conditions are summarized in the
following de�nition of what we term to be well-behaved predicates:

De�nition 21 (Well-behaved predicates). A �nite set of predicates {Pi}i∈I is well-behaved if
each P in the set satis�es the following conditions:

Closure under signature and context weakening and permutation:

1. If Σ and Ω are valid signatures, Σ ⊆ Ω, and P(Γ `Σ α) holds, then P(Γ `Ω α) also holds.

2. If Γ and ∆ are valid contexts, Γ ⊆ ∆, and P(Γ `Σ α) holds, then P(∆ `Σ α) also holds.

Closure under substitution: If P(Γ, x:σ′,Γ′ `Σ N : σ) holds, and Γ `Σ N ′ : σ′, then
P(Γ,Γ′[N ′/x] `Σ N [N ′/x] : σ[N ′/x]) also holds.

Closure under reduction:

1. If P(Γ `Σ N : σ) holds, and N →βL N ′ holds, then P(Γ `Σ N ′ : σ) also holds.

2. If P(Γ `Σ N : σ) holds, and σ →βL σ′ holds, then P(Γ `Σ N : σ′) also holds.

7.1 Strong Normalization

In this section, we prove that LFP is strongly normalizing with respect to βL-reduction. For
this, we rely on the strong normalization of LF, as proven in [Harper 1993]. First, we introduce
the function −UL : LFP → LF, which maps LFP terms into LF terms by deleting the L and U
symbols. The proof then proceeds by contradiction. We assume that there exists a term T with
an in�nite βL-reduction sequence. Next, we prove that only a �nite number of β-reductions
can be performed within any given LFP term T . From this, we deduce that, in order for T to
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have an in�nite βL-reduction sequence, it must have an in�nite L-sequence, which we show to
be impossible, obtaining the desired contradiction.

Therefore, let us begin with the de�nition of the function −UL : LFP → LF:

1. Type−UL = Type. a−UL = a. c−UL = c. x−UL = x.

2. (Πx:σ.T )−UL = Πx:σ−UL.T−UL.

3. (λx:σ.T )−UL = λx:σ−UL.T−UL.

4. (T M)−UL = T−ULM−UL.

5. (LPN,σ[T ])−UL = (λxf :σ−UL.T−UL)N−UL.

6. (UPN,σ[T ])−UL = (λxf :σ−UL.T−UL)N−UL.

where xf is a variable which does not have free occurrences in T . Its purpose is to preserve
the N and σ, which appear in the subscript of the L and U symbols, while still being able to
β-reduce to T in one step, which is in line with the main purpose of −UL, i.e. the deletion of
locks and unlocks from an LFP term. We can naturally extend −UL to signatures and contexts
of LFP , obtaining signatures and contexts of LF:

(∅)−UL = ∅
(Σ, a:K)−UL = Σ−UL, a−UL:K−UL

(Σ, c:σ)−UL = Σ−UL, c−UL:σ−UL

(∅)−UL = ∅
(Γ, x:σ)−UL = Γ−UL, x−UL:σ−UL

and then to judgements of LFP , obtaining judgements of LF:

(Σ sig)−UL = Σ−UL sig

(`Σ Γ)−UL = `Σ−UL Γ−UL

(Γ `Σ K)−UL = Γ−UL `Σ−UL K
−UL

(Γ `Σ σ : K)−UL = Γ−UL `Σ−UL σ
−UL : K−UL

(Γ `Σ M : σ)−UL = Γ−UL `Σ−UL M
−UL : σ−UL

With −UL de�ned in this way, we have the following three proposition:

Proposition 1 (Connecting →βL in LFP , →→β in LF, and −UL).

1. If K →βL K ′ in LFP , then K−UL→→βK ′−UL in LF.

2. If σ →βL σ′ in LFP , then σ−UL→→β σ′−UL in LF.

3. If M →βL M ′ in LFP , then M−UL→→βM ′−UL in LF.

Proposition 2 (Connecting =βL in LFP , =β in LF, and −UL).

1. If K=βLK
′ in LFP , then K−UL=βK

′−UL in LF.

2. If σ=βLσ
′ in LFP , then σ−UL=βσ

′−UL in LF.

3. If M=βLM
′ in LFP , then M−UL=βM

′−UL in LF.
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Proposition 3. −UL maps derivable judgements of LFP into derivable judgements of LF.

Proof. All three of these propositions are proven simultaneously, by induction on the structure
of the derivation of the reduction, the structure of the derivation of the equivalence, and the
structure of the derivation of the judgement. Here, we will present the relevant cases, while the
remaining ones are handled similarly.

• For Proposition 1, let LPN,σ[ρ] →βL LPN ′,σ[ρ] from N →βL N ′, using the rule (F·L1·βL).

From the induction hypothesis (IH), we have that N−UL→→β N ′−UL, while the goal we
are looking for is (λxf :σ−UL.ρ−UL)N−UL→→β(λxf :σ−UL.ρ−UL)N ′−UL, and this follows
immediately from the IH, and the rules for closure under context for β-reduction in LF.

• For Proposition 1, let (λx:σ.M)N →βL M [N/x], using the rule (β·O·Main). Here, we
have that the goal is (λx:σ−UL.M−UL)N−UL→→βLM−UL[N−UL/x], which is, in fact, an
instance of the main one-step β-reduction in LF.

• For Proposition 1, let UPN,σ[LPN,σ[M ]] →βL M , using the rule (L·O·Main). We have the

goal (λxf :σ−UL.(λyf :σ−UL.M)N)N→→βM−UL, which we obtain by applying the main
one-step β-reduction rule of LF, bearing in mind the nature of the choice of xf and yf .

• For Proposition 2, let us have that K=βLK
′, from K →βL K ′, using the rule (βL·Eq·Main).

From the IH for Proposition 1, we have that K−UL→→βK ′−UL in LF, from which we obtain
that K−UL=βK

′−UL in LF.

• For Proposition 3, let us have that Γ `Σ LPN,σ[ρ] : Type, from Γ `Σ ρ : Type and Γ `Σ N : σ,

using the rule (F·Lock). From the IH, we have that Γ−UL `Σ−UL ρ−UL : Type, and
Γ−UL `Σ−UL N−UL : σ−UL, while the goal is Γ−UL `Σ−UL (λxf :σ−UL.ρ−UL)N−UL :
Type. From the Subderivation property of LF, we have that Γ−UL `Σ−UL σ

−UL : Type,
and, given that we can, without loss of generality, assume that xf /∈ Dom(Γ−UL), we
obtain, using the Weakening property of LF, that Γ−UL, xf : σ−UL `Σ−UL ρ

−UL : Type,
and, from there, that Γ−UL `Σ−UL λxf :σ−UL.ρ−UL : Πxf :σ−UL.Type. Now, by using the
application formation rule of LF, we obtain that Γ−UL `Σ−UL (λxf :σ−UL.ρ−UL)N−UL :
Type[N−UL/xf ]. However, this is our claim, as, since no substitutions can occur in Type,
we have that Type[N−UL/xf ] ≡ Type.

• For Proposition 3, let us have that Γ `Σ σ : K ′, from Γ `Σ σ : K, Γ `Σ K, and
K=βLK

′, using the rule (F·Conv). From the IHs, we have that Γ−UL `Σ−UL σ
−UL : K−UL,

Γ−UL `Σ−UL K
′−UL, and K=βK

′, from which we obtain our goal, Γ−UL `Σ−UL σ
−UL :

K ′−UL, by using the LF conversion rule for families.

• For Proposition 3, let us have that Γ `Σ LPN,σ[M ] : LPN,σ[ρ], from Γ `Σ M : ρ and

Γ `Σ N : σ, using the rule (O·Lock). From the IH, we have that Γ−UL `Σ−UL M
−UL : ρ−UL

and Γ−UL `Σ−UL N
−UL : σ−UL, while the goal is Γ−UL `Σ−UL (λxf :σ−UL.M−UL)N−UL :

(λyf :σ−UL.ρ−UL)N−UL. First, as earlier, we can obtain that Γ−UL `Σ−UL λxf :σ−UL.M−UL :
Πxf :σ−UL.ρ−UL. Now, by using the application formation rule of LF, we obtain that
Γ−UL `Σ−UL (λxf :σ−UL.M−UL)N−UL : ρ−UL[N−UL/xf ]. However, what we actually
have is that Γ−UL `Σ−UL (λxf :σ−UL.M−UL)N−UL : ρ−UL, as, by the choice of xf , we
have that ρ−UL[N/xf ] ≡ ρ−UL. Also, in a similar manner as before, we can obtain that
Γ−UL `Σ−UL (λyf :σ−UL.ρ−UL)N−UL : Type. Now, as, by the choice of yf , we have that
ρ−UL=β(λyf :σ−UL.ρ−UL)N−UL, we can use the LF conversion rule for objects to obtain
our claim.
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• For Proposition 3, let us have that Γ `Σ UPN,σ[M ] : ρ, from Γ `Σ M : LPN,σ[ρ], Γ `Σ N : σ,

and P(Γ `Σ N : σ), using the rule (O·Unlock). From the IH, we have that Γ−UL `Σ−UL

M−UL : (λxf :σ−UL.ρ−UL)N−UL and Γ−UL `Σ−UL N
−UL : σ−UL, while the goal which we

would like to prove is Γ−UL `Σ−UL (λyf :σ−UL.M−UL)N−UL : ρ−UL. Similarly to the previ-
ous item, we have that Γ−UL `Σ−UL ρ

−UL : Type and that (λxf :σ−UL.ρ−UL)N−UL=βρ
−UL,

and we can use the LF conversion rule for objects to obtain that Γ−UL `Σ−UL M
−UL : ρ−UL.

Finally, as we have that M−UL=β(λyf :σ−UL.M−UL)N−UL, we obtain the desired claim
by using the Subject Reduction property of LF.

As a consequence of Proposition 3, we have that the function −UL maps well-typed terms of
LFP into well-typed terms of LF. Next, we will denote the maximum number of β-reductions
which can be executed in a given (either LF- or LFP -) term T as maxβ(T ). Now, we can
notice that L-reductions cannot create entirely new β-redexes, but can only �unlock� potential
β-redexes, i.e. expressions of the form UPN,σ[LPN,σ[λx:τ.M ]]T , arriving at λx:τ.M T , which is a

β-redex. Also, this resulting β-redex will be present in (UPN,σ[LPN,σ[λx:τ.M ]]T )−UL. Therefore,

we have that, for any LFP -term T , it holds that maxβ(T ) ≤ maxβ(T−UL). As LF is strongly
normalizing, we have that maxβ(T−UL) is �nite, therefore forcing maxβ(T ) into being �nite,
leading to the following proposition:

Proposition 4. Only �nitely many β-reductions can occur within the maximal reduction se-
quence of any LFP-term. There is no LFP-term T with an in�nite number of β-reductions in its
maximal reduction sequence.

Next, we notice that any LFP -term has only �nitely many L-redexes before any reductions
take place, and that this number can only be increased through β-reductions, and only by
a �nite amount per β-reduction. However, if we were to have an LFP -term T which has an
in�nite reduction sequence, then within this sequence, there would need to be in�nitely many
L-reductions, since, due to Proposition 4, the number of β-reductions in this sequence has to
be �nite. On the other hand, with the number of β-reductions in the sequence being �nite, it
would not be possible to reach in�nitely many L-reductions, and such a term T cannot exist in
LFP . Therefore, we have the Strong Normalization theorem:

Theorem 18 (Strong normalization of LFP).

1. If Γ `Σ K, then K is βL-strongly normalizing.

2. if Γ `Σ σ : K, then σ is βL-strongly normalizing.

3. if Γ `Σ M : σ, then M is βL-strongly normalizing.

7.2 Con�uence

Since βL-reduction is strongly normalizing, in order to prove the con�uence of the system, by
Newman's Lemma, it is su�cient to show that the reduction on �raw terms� is locally con�uent.
First, we need a substitution lemma, the proof of which is routine:

Lemma 32 (Substitution lemma for local con�uence).

1. If N →βL N ′, then M [N/x]→→βLM [N ′/x].

2. If M →βL M ′, then M [N/x]→→βLM ′[N/x].
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Next, we proceed to prove local con�uence:

Lemma 33 (Local con�uence of LFP). βL-reduction is locally con�uent, i.e. :

1. If K →βL K ′ and K →βL K ′′, then there exists a K ′′′, such that K ′→→βLK ′′′ and
K ′′→→βLK ′′.

2. If σ →βL σ′ and σ →βL σ′′, then there exists a σ′′′, such that σ′→→βL σ′′′ and σ′′→→βL σ′′′.

3. If M →βL M ′ and M →βL M ′′, then there exists a M ′′′, such that M ′→→βLM ′′′ and
M ′′→→βLM ′′′.

Proof. By simultaneous induction on the two derivations T →βL T ′ and T →βL T ′′. All the
cases for T kind or family, as well as most of the cases for T object are proven directly using
the induction hypotheses. Therefore, we will limit ourselves here to illustrating only the cases
involving base reduction rules:

1. Let us have, by the base reduction rule (β·O·Main), that (λx:σ.M)N →βL M [N/x]. Let us
also have that (λx:σ.M)N →βL (λx:σ′.M)N , from σ →βL σ′, by the appropriate closure-
under-context reduction rules. In this case, we will show that the required conditions
are met for M ′′′ ≡ M [N/x]. Indeed, by the de�nition of the relation →→βL, we have
that M [N/x]→→βLM [N/x], and also, by the reduction rule (β·O·Main), we have that
(λx:σ′.M)N →βL M [N/x], e�ectively having (λx:σ′.M)N→→βLM [N/x].

2. Let us have, by the base reduction rule (β·O·Main), that (λx:σ.M)N →βL M [N/x]. Let
us also have that (λx:σ.M)N →βL (λx:σ.M ′)N , from M →βL M ′, by the appropriate
closure-under-context reduction rules. In this case, we will show that the required con-
ditions are met for M ′′′ ≡ M ′[N/x]. By the reduction rule (β·O·Main), we have that
(λx:σ.M ′)N →βL M ′[N/x], from which we obtain (λx:σ.M ′)N→→βLM ′[N/x], while we
obtain that M [N/x]→→βLM ′[N/x] from part 2 of Lemma 32.

3. Let us have, by the base reduction rule (β·O·Main)), that (λx:σ.M)N →βL M [N/x]. Let
us also have that (λx:σ.M)N →βL (λx:σ.M)N ′, from N →βL N ′, by the appropriate
closure-under-context reduction rule. In this case, we will show that the required con-
ditions are met for M ′′′ ≡ M [N ′/x]. By the reduction rule (β·O·Main), we have that
(λx:σ.M)N ′ →βL M [N ′/x], from which we obtain (λx:σ.M)N ′→→βLM ′[N/x], while we
obtain that M [N/x]→→βLM [N ′/x] from part 1 of Lemma 32.

4. Let us have, by the base reduction rule (L·O·Main), that UPN,σ[LPN,σ[M ]] →βL M , and let

us also have that UPN,σ[LPN,σ[M ]]→βL UPN ′,σ[LPN,σ[M ]], from N →βL N ′, by the appropriate
closure-under-context reduction rule. In this case, we will show that the required conditions
are met for M ′′′ ≡ M . By the de�nition of →→βL, we have that M→→βLM , which leaves
us with needing to show that UPN ′,σ[LPN,σ[M ]]→→βLM . This we obtain by the following
sequence of reductions: from N →βL N ′, which we have as an induction hypothesis, using
the appropriate closure-under-context reduction rules, we obtain that UPN ′,σ[LPN,σ[M ]]→βL
UPN ′,σ[LPN ′,σ[M ]], from which we �nally obtain that UPN ′,σ[LPN ′,σ[M ]]→βL M , by the reduc-

tion rule (L·O·Main), showing that UPN ′,σ[LPN,σ[M ]]→→βLM . The remaining subcases are
handled very similarly.

Having proven local con�uence, �nally, from Theorem 18, Lemma 33 and Newman's Lemma,
we obtain the con�uence theorem for LFP :
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Theorem 19 (Con�uence of LFP). βL-reduction is con�uent, meaning that:

1. IfK→→βLK ′ andK→→βLK ′′, then there exists aK ′′′, such thatK ′→→βLK ′′′ andK ′′→→βLK ′′′.

2. If σ→→βL σ′ and σ→→βL σ′′, then there exists a σ′′′, such that σ′→→βL σ′′′ and σ′′→→βL σ′′′.

3. IfM→→βLM ′ andM→→βLM ′′, then there exists aM ′′′, such thatM ′→→βLM ′′′ andM ′′→→βLM ′′′.

7.3 Subject Reduction

We begin by proving several auxiliary lemmas and propositions:

Proposition 5 (Inversion properties).

1. If Πx:σ.T=βLT
′′, then T ′′ ≡ Πx:σ.′T ′, for some σ′, T ′, such that σ′=βLσ, and T ′=βLT .

2. If LPN,σ[ρ]=βLθ, then θ ≡ LPN ′,σ′ [ρ′], for some N ′, σ′, and ρ′, such that N ′=βLN , σ′=βLσ,
and ρ′=βLρ.

3. If Γ `Σ LPN,σ[M ] : LPN,σ[ρ], then Γ `Σ M : ρ.

4. If Γ `Σ λx:σ.M : Πx:σ.τ , then Γ, x:σ `Σ M : τ .

Proof. The �rst two items are proven directly, by inspection of the rules for βL-closure-under-
context for kinds and types, while the third item is proven by using the rule (F·Lock), and the
second item. The fourth property follows directly from the typing and conversion rules.

By induction on the structure of the derivation, independently of Proposition 5, we have:

Proposition 6 (Subderivation, part 1).

1. A derivation of `Σ ∅ has a subderivation of Σ sig.

2. A derivation of Σ, a:K sig has subderivations of Σ sig and `Σ K.

3. A derivation of Σ, f :σ sig has subderivations of Σ sig and `Σ σ:Type.

4. A derivation of `Σ Γ, x:σ has subderivations of Σ sig, `Σ Γ, and Γ `Σ σ:Type.

5. A derivation of Γ `Σ α has subderivations of Σ sig and `Σ Γ.

6. Given a derivation D of the judgement Γ `Σ α, and a subterm occurring in the subject of
this judgement, there exists a derivation of a judgement having this subterm as a subject.

From this point on, we will assume that the �rst requirement for the well-behavedness of
predicates, namely the closure under signature and context weakening and permutation, holds.
With this, we prove the following propositions by induction on the structure of the derivation:

Proposition 7 (Weakening and permutation). If predicates are closed under signature/context
weakening and permutation, then:

1. If Σ and Ω are valid signatures, and every declaration occurring in Σ also occurs in Ω,
then Γ `Σ α implies Γ `Ω α.

2. If Γ and ∆ are valid contexts w.r.t. the signature Σ, and every declaration occurring in Γ
also occurs in ∆, then Γ `Σ α implies ∆ `Σ α.
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Proposition 8 (Subderivation, part 2). If predicates are closed under signature/context weak-
ening and permutation, then:

1. If Γ `Σ σ : K, then Γ `Σ K.

2. If Γ `Σ M : σ, then Γ `Σ σ : Type.

From this point on, we will assume that the second requirement for the well-behavedness of
predicates, the closure under cut, holds as well. We prove the following propositions by induction
on the structure of the derivation:

Proposition 9 (Transitivity). If predicates are closed under signature/context weakening and
permutation and under substitution, then: if Γ, x:σ,Γ′ `Σ α, and Γ `Σ N : σ, then Γ,Γ′[N/x] `Σ

α[N/x].

Notice that, contrary to what happens in traditional type systems, the following closure
under expansion does not hold: Γ `Σ M [N/x] : τ =⇒ Γ `Σ (λx:σ.M)N : τ , for Γ `Σ N : σ.

Proposition 10 (Unicity of types and kinds). If predicates are closed under signature/context
weakening and permutation and under substitution, then:

1. If Γ `Σ σ : K1 and Γ `Σ σ : K2, then Γ `Σ K1=βLK2.

2. If Γ `Σ M : σ1 and Γ `Σ M : σ2, then Γ `Σ σ1=βLσ2.

Finally, for Subject Reduction, we require that the third requirements for the well-behavedness
of predicates, namely the closure under de�nitional equality, also holds:

Theorem 20 (Subject reduction of LFP). If predicates are well-behaved, then:

1. If Γ `Σ K, and K →βL K ′, then Γ `Σ K ′.

2. If Γ `Σ σ : K, and σ →βL σ′, then Γ `Σ σ′ : K.

3. If Γ `Σ M : σ, and M →βL M ′, then Γ `Σ M ′ : σ.

Proof. Here, we prove Subject Reduction of a slightly extended type system. We consider the
type system in which the rules (F·Lock), (O·Lock), and (O·Unlock) all have an additional premise
Γ `Σ σ : Type, while the rule (O·Unlock) also has another additional premise Γ `Σ LPN,σ[ρ] : Type,
as shown in Figure 7.1.

Γ `Σ ρ : Type Γ `Σ N : σ Γ `Σ σ : Type

Γ `Σ LPN,σ[ρ] : Type
(F·Lock)

Γ `Σ M : ρ Γ `Σ N : σ Γ `Σ σ : Type

Γ `Σ LPN,σ[M ] : LPN,σ[ρ]
(O·Lock)

Γ `Σ N : σ

Γ `Σ σ : Type

Γ `Σ M : LPN,σ[ρ]

Γ `Σ LPN,σ[ρ] : Type P(Γ `Σ N : σ)

Γ `Σ UPN,σ[M ] : ρ
(O·Unlock)

Figure 7.1: An extension of LFP typing rules for Subject Reduction
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The proof proceeds by simultaneous induction on the derivation of Γ `Σ M and M →βL M ′.
Here we will show only the case in which the base reduction rule (β·O·Main) is used, and one
of the cases for which the well-behavedness of predicates is a requirement, while the other cases
are handled similarly, mostly by using the induction hypotheses.

1. We have that Γ `Σ λx:σ.M N : τ [N/x], by the rule (O·App), from Γ `Σ λx:σ.M : Πx:σ.τ ,
and Γ `Σ N : σ, and that (λx:σ.M)N →βL M [N/x] by the rule (β·O·Main). From
Proposition 5, we get that Γ, x:σ `Σ M : τ , and from this and Γ `Σ N : σ, we obtain the
required Γ `Σ M [N/x] : τ [N/x], by an application of Proposition 9.

2. We have that Γ `Σ UPN,σ[LPN,σ[M ]] : ρ, by the rule (O·Unlock), from Γ `Σ LPN,σ[M ] :

LPN,σ[ρ], Γ `Σ N : σ, Γ `Σ σ : Type, and P(Γ `Σ N : σ), and that UPN,σ[LPN,σ[M ]] →βL M
by the rule (L·O·Main). Here, we obtain the required Γ `Σ M : ρ directly, using the third
item of Proposition 5.

3. We have that Γ `Σ UPN,σ[M ] : ρ, by the rule (O·Unlock), from Γ `Σ M : LPN,σ[ρ], Γ `Σ

LPN,σ[ρ] : Type, Γ `Σ N : σ, Γ `Σ σ : Type, and P(Γ `Σ N : σ), and that UPN,σ[M ] →βL
UPN,σ′ [M ], by the reduction rules for closure-under-context, from σ →βL σ′. First, from the
induction hypothesis we have that Γ `Σ σ′ : Type, and we also have, from σ →β: σ′, that
σ=βLσ

′. From this, using Γ `Σ N : σ, and the rule (O·Conv), we obtain that Γ `Σ N : σ′.
Next, since Γ `Σ LPN,σ[ρ] : Type could only have been obtained by the type system rule
(F ·Lock), from Γ `Σ ρ : Type and Γ `Σ N : σ, and since we have Γ `Σ N : σ′, we obtain
that Γ `Σ LPN,σ′ [ρ] : Type. From this, given σ=βLσ

′, we obtain that LPN,σ′ [ρ]→βL LPN,σ′ [ρ],

and since we already have that Γ `Σ M : LPN,σ[ρ], we can use the type system rule

(O·Conv) to obtain Γ `Σ M : LPN,σ′ [ρ]. Finally, by the well-behavedness requirements for
the predicates, we have that P(Γ `Σ N : σ′) holds, and we can now use the type system
rule (O·Unlock) to obtain the required Γ `Σ UPN,σ′ [M ] : ρ. Here, we can notice that there

are steps in this proof (in which we obtain Γ `Σ σ′ : Type, and Γ `Σ LPN,σ[ρ] : Type), which
could not have been made had the original system not been extended for this theorem.

Now, we can prove straightforwardly that Γ `Σ α in the extended system i� Γ `Σ α in
the original LFP system (i.e. that the judgements that these two systems derive are the same),
by induction on the length of the derivation. With this, given that we have proven Subject
Reduction of the extended system, we have that Subject Reduction also holds in the original
LFP system.

7.4 A Word on the Expressive Power of LFP

Various natural questions arise as to the expressive power of LFP . We outline the answers to
some of them:

• LFP is decidable, if the predicates are decidable; this can be proven as usual.

• If a predicate is de�nable in LF, i.e. it can be encoded via the inhabitability of a suitable
LF dependent type, then it is well-behaved in the sense of De�nition 21.

• All well-behaved recursively enumerable predicates are LF-de�nable by Church's thesis.
Of course, the issue is then on how �deep� the encoding is. To give a more precise answer,
we would need a more accurate de�nition of �deep� and �shallow� encodings, which we still
lack. This part of the thesis can be seen as a stepping stone towards such a theory, with
the approach taken here being �shallow� by de�nition, and the encodings via Church's
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thesis being potentially very, very deep. Consider e.g. the well-behaved predicate �M,N
are two di�erent closed normal forms�, which can be immediately expressed in LFP .

• One may wonder what is the relation between the LF encodings of, say, Modal Logics,
discussed in [Avron 1998, Crary 2010], and the encodings which appear in this thesis (see
Chapter 9). The former essentially correspond to the internal encoding of the predicates
that are utilized in Chapter 9. In fact, one could express the mapping between the two
signatures as a forgetful functor going from LFP judgements to LF judgements.

• Finally, we can say that, as far as decidable predicates, LFP is morally a conservative
extension of LF. Of course, pragmatically, it is very di�erent, in that it allows for the neat
factoring-out of the true logical contents of derivations from the mere e�ective veri�cation
of other, e.g. syntactical or structural properties. A feature of this approach is that of
making such a separation explicit.

• The main advantage of having externally veri�ed predicates amounts to a smoother en-
coding (the signature is not cluttered by auxiliary notions and mechanisms needed to
implement the predicate). This allows performance optimization, if the external system
used to verify the predicate is an optimized tool speci�cally designed for the issue at hand
(e.g. analytic tableaux methods for propositional formulæ).

7.5 Summary

In this chapter, we have shown that LFP satis�es all of the main desired meta-theoretic proper-
ties: strong normalization, con�uence, subject reduction, and decidability. Strong normalization
and con�uence are proven without any additional assumptions on the nature of the external
predicates. In order for subject reduction to hold, the predicates need to abide by certain
well-behavedness conditions, while for the decidability of LFP , they also need to be decidable.
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In this chapter, we present a canonical version of LFP , which we will be denoting by LFCP ,
and which has been executed in the style of [Watkins 2002] and [Harper 2007]. Given that
there exists another form of reduction (L-reduction) beside β-reduction, it was necessary to
extend the standard η-rule with the clause LPN,σ[UPN,σ[M ]] →η M , corresponding to the lock

type constructor. The syntax of the LFCP system de�nes what the normal forms of LFP are,
while the typing system captures all of the judgements that are in η-long normal form which
are derivable in LFP . The main reason for the development of LFCP is that it will serve as the
basis for proving the adequacy of the encodings which will be presented later, in Chapter 9.
As will be seen, contrary to standard LF, not all of the judgements derivable in LFP admit a
corresponding η-long normal form. In fact, this is not the case when the predicates appearing
in the LFP judgement are not satis�ed in the given context. Nonetheless, although LFCP is not
closed under full η-expansion, it is still powerful enough for one to be able to obtain all of the
relevant adequacy results.

8.1 Syntax and Type System for LFCP

In LFCP , the families and objects have been divided into two categories: atomic and canonical,
as shown in Figure 8.1.

α ∈ A α ::= a | αN Atomic Families

σ, τ, ρ ∈ F σ ::= α | Πx:σ.τ | LPN,σ[ρ] Canonical Families

A ∈ Ao A ::= c | x | AM | UPN,σ[A] Atomic Objects

M,N ∈ O M ::= A | λx:σ.M | LPN,σ[M ] Canonical Objects

Figure 8.1: Syntax of LFCP

The corresponding type system for LFCP , together with the �rst three judgments of LFP (see
Section 6.1), proves judgements of the shape:

Γ `Σ σ Type σ is a canonical family in Γ and Σ
Γ `Σ α⇒ K K is the kind of the atomic family α in Γ and Σ
Γ `Σ M ⇐ σ M is a canonical term of type σ in Γ and Σ
Γ `Σ A⇒ σ σ is the type of the atomic term A in Γ and Σ

The type system itself is presented in detail below, with the note that the we have chosen to
omit the formation rules and judgements related to signatures, contexts, and kinds, since they
are the same in LFCP as they are in LFP .
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Atomic Families. The atomic families contain constant types and the dependent application
in types. The rule in charge of handling the application makes use of the notion of hereditary
substitution, which computes the normal form resulting from the substitution of one normal
form into another, and which will be presented later.

`Σ Γ a:K ∈ Σ

Γ `Σ a⇒ K
(A·Const)

If Γ is a valid context in the signature Σ, then any family
a of kind K belonging to Σ is an atomic family with kind
K in Γ and Σ.

Γ `Σ α⇒ Πx:σ.K1

Γ `Σ M ⇐ σ
K1[M/x]Kσ = K

Γ `Σ αM ⇒ K
(A·App)

If the atomic family α has kind Πx:τ.K1 in the context Γ
and signature Σ, and M is a canonical term of type σ in Γ
and Σ, then the application ofM to σ is an atomic family,
and has kind K1, in which all occurrences of x have been
hereditarily substituted for M , in Γ and Σ.

Canonical Families. The remaining family constructors, for the dependent product and the
locked types, as well as for the subsumption of atomic families, belong to the canonical families.

Γ `Σ α⇒ Type

Γ `Σ α Type
(F·Atom)

If α is an atomic family of kind Type in the context
Γ and signature Σ, then α is also a canonical family
in Γ and Σ.

Γ, x:σ `Σ τ Type

Γ `Σ Πx:σ.τ Type
(F·Prod)

If τ is a canonical family in the context Γ, x:σ and
signature Σ, then the dependent product Πx:σ.τ is
also a canonical family in Γ and Σ.

Γ `Σ ρ Type Γ `Σ N ⇐ σ

Γ `Σ LPN,σ[ρ] Type
(F·Lock)

If ρ is a canonical family in in the context Γ and
signature Σ, and N is a canonical term of type σ
in Γ and Σ, then the type LPN,σ[ρ], locking ρ with
a predicate P on Γ `Σ N ⇐ σ, is also a canonical
family in Γ and Σ.

Atomic Objects. The atomic objects comprise object constants and variables, as well as the
application and unlock constructors.

`Σ Γ c:σ ∈ Σ

Γ `Σ c⇒ σ
(O·Const)

If Γ is a valid context in the signature Σ, then any object c
of type σ in Σ is an atomic term with type σ in Γ and Σ.

`Σ Γ x:σ ∈ Γ

Γ `Σ x⇒ σ
(O·Var)

If Γ is a valid context in the signature Σ, then any variable
x of type σ in Γ is an atomic term with type σ in Γ and Σ.

Γ `Σ A⇒ Πx:σ.τ1

Γ `Σ M ⇐ σ
τ1[M/x]Fσ = τ

AM ⇒ τ
(O·App)

If A is an atomic term with type Πx:σ.τ1 in the context Γ
and signature Σ, and M is a canonical term of type σ in Γ
and Σ, then the application ofM to A has type τ1, in which
all occurrences of x have been hereditarily substituted for
M , in Γ and Σ.

Γ `Σ A⇒ LPN,σ[ρ]

Γ `Σ N ⇐ σ
P(Γ `Σ N ⇐ σ)

Γ `Σ UPN,σ[A]⇒ ρ
(O·Unlock)

If M is an atomic term of type ρ, locked with the predicate
P on Γ `Σ N ⇐ σ in the context Γ and signature Σ, N is
a canonical term of type σ in Γ and Σ, and P(Γ `Σ N :σ)
holds, then M , unlocked with P on Γ `Σ N :σ is an atomic
term of type ρ in Γ and Σ.



8.1. Syntax and Type System for LFCP 89

(a)− = a

(α)− = ρ

(αM)− = ρ

(σ2)− = ρ2 (σ)− = ρ

(Πx:σ2.σ)− = ρ2 → ρ

(σ′)− = ρ′

(LPN,σ[σ′])− = LPN,σ[ρ′]

Figure 8.2: Erasure to simple types

Canonical Objects. Canonical objects, similarly to canonical families, comprise abstraction
and locking, as well as the subsumption of atomic objects.

Γ `Σ A⇒ α

Γ `Σ A⇐ α
(O·Atom)

If Γ is a valid context in the signature Σ, then any
atomic object c of type σ belonging to Σ is also a
canonical object of type σ in Γ and Σ.

Γ, x:σ `Σ M ⇐ τ

Γ `Σ λx:σ.M ⇐ Πx:σ.τ
(O·Abs)

IfM is a canonical term of type τ in the context Γ, x:σ
and signature Σ, then the abstraction λx:σ.M is a
canonical term of type Πx:σ.τ in Γ and Σ.

Γ `Σ M ⇐ ρ Γ `Σ N ⇐ σ

Γ `Σ LPN,σ[M ]⇐ LPN,σ[ρ]
(O·Lock)

If M is a canonical term of type ρ in the context Γ
and signature Σ, and N is a canonical term of type
σ in Γ and Σ, then M , locked with the predicate P
on Γ `Σ N ⇐ σ is a canonical term of type ρ, locked
with the predicate P on Γ `Σ N ⇐ σ, in Γ and Σ.

In LFCP , the predicates are de�ned on judgements Γ `Σ M ⇐ σ, while the type system makes
use, in the rules (A·App) and (O·App), of the notion of hereditary substitution. The general form
of the hereditary substitution judgement is T [M/x]mρ = T ′, where M is the term substituted, x
is the variable substituted for, T is the term substituted into, T ′ is the result of the substitution,
ρ is the simple type ofM , and m is the syntactic category involved in the judgement (i.e. kinds,
atomic/canonical families, atomic/canonical objects, contexts). The simple type ρ of M is
obtained via the erasure function (Figure 8.2), which maps dependent into simple types, while
the rules for the hereditary substitution judgement appear in Figure 8.3 and Figure 8.4.

Substitution in Kinds

Type[M0/x0]Kρ0
= Type

(S·K·Type)
σ[M0/x0]Fρ0

= σ′ K[M0/x0]Kρ0
= K ′

(Πx:σ.K)[M0/x0]Kρ0
= Πx:σ.′K ′

(S·K·Pi)

Substitution in Atomic Families

a[M0/x0]fρ0 = a
(S·F·Const)

α[M0/x0]fρ0 = α′ M [M0/x0]Oρ0
= M ′

(αM)[M0/x0]fρ0 = α′M ′
(S·F·App)

Substitution in Canonical Families

α[M0/x0]fρ0 = α′

α[M0/x0]Fρ0
= α′

(S·F·Atom)
σ1[M0/x0]Fρ0

= σ′1 σ2[M0/x0]Fρ0
= σ′2

(Πx:σ1.σ2)[M0/x0]Fρ0
= Πx:σ′1.σ

′
2

(S·F·Pi)

σ1[M0/x0]Fρ0
= σ′1 M1[M0/x0]Oρ0

= M ′1 σ2[M0/x0]Fρ0
= σ′2

LPM1,σ1
[σ2][M0/x0]Fρ0

= LPM ′1,σ′1 [σ′2]
(S·F·Lock)

Figure 8.3: Hereditary substitution, kinds and families
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Substitution in Atomic Objects

c[M0/x0]oρ0 = c
(S·O·Const)

x0[M0/x0]oρ0 = M0 : ρ0
(S·O·Var·H)

x 6= x0

x[M0/x0]oρ0 = x
(S·O·Var)

A1[M0/x0]oρ0 = λx:ρ2.M
′
1 : ρ2 → ρ M2[M0/x0]Oρ0 = M ′2 M ′1[M ′2/x]Oρ2 = M ′

(A1M2)[M0/x0]oρ0 = M ′ : ρ
(S·O·App·H)

A1[M0/x0]oρ0 = A′1 M2[M0/x0]Oρ0 = M ′2

(A1M2)[M0/x0]oρ0 = A′1M
′
2

(S·O·App)

σ[M0/x0]Fρ0 = σ′ M [M0/x0]Oρ0 = M ′ A[M0/x0]oρ0 = LPM ′,σ′ [M1] : LPM ′,σ′ [ρ]

UPM,σ[A][M0/x0]oρ0 = M1 : ρ
(S·O·Unlock·H)

σ[M0/x0]Fρ0 = σ′ M [M0/x0]Oρ0 = M ′ A[M0/x0]Oρ0 = A′

UPM,σ[A][M0/x0]oρ0 = UPM ′,σ′ [A′]
(S·O·Unlock)

Substitution in Canonical Objects

A[M0/x0]oρ0 = A′

A[M0/x0]Oρ0 = A′
(S·O·R)

A[M0/x0]oρ0 = M ′ : ρ

A[M0/x0]Oρ0 = M ′
(S·O·R·H)

M [M0/x0]Oρ0 = M ′

λx:σ.M [M0/x0]Oρ0 = λx:σ.M ′
(S·O·Abs)

σ1[M0/x0]Fρ0 = σ′1 M1[M0/x0]Oρ0 = M ′1 M2[M0/x0]Oρ0 = M ′2

LPM1,σ1
[M2][M0/x0]Oρ0 = LPM ′

1,σ
′
1
[M ′2]

(S·O·Lock)

Substitution in Contexts

·[M0/x0]Cρ0 = ·
(S·Ctxt·Empty)

x0 6= x x 6∈ Fv(M0) Γ[M0/x0]Cρ0 = Γ′ σ[M0/x0]Fρ0 = σ′

Γ, x:σ[M0/x0]Cρ0 = Γ′, x:σ′
(S·Ctxt·Term)

Figure 8.4: Hereditary substitution, objects and contexts

Notice that, in the rule (O·Atom) of the type system, the syntactic restriction of the classi�er
to α being atomic ensures that canonical forms are indeed η-long normal forms for a suitable
notion of η-long normal form, which extends the standard one for locked types. To illustrate,
the judgement x : Πz:a.a `Σ x ⇐ Πz:a.a is not derivable, as Πz:a.a is not atomic, hence
`Σ λx:(Πz:a.a).x ⇐ Πx:(Πz:a.a).Πz:a.a is not derivable. However, `Σ λx:(Πz:a.a).λy:a.xy ⇐
Πx:(Πz:a.a).Πz:a.a, where a is a family constant of kind Type, is derivable. Analogously, for
locked types, the judgement x : LPN,σ[ρ] `Σ x ⇐ LPN,σ[ρ] is not derivable, since LPN,σ[ρ] is not

atomic. As a consequence, `Σ λx:LPN,σ[ρ].x ⇐ Πx:LPN,σ[ρ].LPN,σ[ρ] is not derivable. However,

x:LPN,σ[ρ] `Σ LPN,σ[UPN,σ[x]] ⇐ LPN,σ[ρ] is derivable, if ρ is atomic and the predicate P holds

on Γ `Σ N ⇐ σ. Hence `Σ λx:LPN,σ[ρ].LPN,σ[UPN,σ[x]] ⇐ Πx:LPN,σ[ρ].LPN,σ[ρ] is derivable. In
De�nition 24 below, we formalize the notion of η-expansion of a judgement, together with
correspondence theorems between LFP and LFCP .
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8.2 Properties of LFCP

We start by studying basic properties of hereditary substitution and the type system. The
following four lemmas and two theorems are proven directly, by either inspecting the rules
for hereditary substitution and the type system for LFCP , and/or performing induction on the
appropriate derivation or the complexity of the judgement. As the details of the proofs are
purely technical, we have chosen to omit them. But, �rst of all, we provide a de�nition of
well-behavedness for predicate, much like that present in LFP .

De�nition 22 (Well-behaved LFCP -predicates). A �nite set of predicates {Pi}i∈I is well-behaved
in LFCP if each Pi is closed under signature and context weakening, permutation, and hereditary
substitution, in the sense of De�nition 21.

Lemma 34 (Decidability of hereditary substitution).

1. For any T in {K,A,F ,O, C}, and any M , x, and ρ, either there exists a T ′ such that
T [M/x]mρ = T ′ or there is no such T ′.

2. For any M , x, ρ, and A, either there exists an A′ such that A[M/x]oρ = A′, or there exist
M ′ and ρ′, such that A[M/x]oρ = M ′ : ρ′, or there are no such A′ or M ′.

Lemma 35 (Head substitution size). If A[M0/x0]oρ0
= M : ρ, then ρ is a subexpression of ρ0.

Lemma 36 (Uniqueness of substitution and synthesis).

1. It is not possible that A[M0/x0]oρ0
= A′ and A[M0/x0]oρ0

= M : ρ.

2. For any T , if T [M0/x0]mρ0
= T ′, and T [M0/x0]mρ0

= T ′′, then T ′ = T ′′.

3. If Γ `Σ α⇒ K, and Γ `Σ α⇒ K ′, then K = K ′.

4. If Γ `Σ A⇒ σ, and Γ `Σ A⇒ σ′, then σ = σ′.

Lemma 37 (Composition of hereditary substitution). Let us assume that x 6= x0 and x 6= M0.
Then, we have that:

1. If M2[M0/x0]Oρ0
= M ′2, T1[M2/x]mρ2

= T ′1, and T1[M0/x0]mρ0
= T ′′1 , then there exists a T ,

such that T ′1[M0/x0]mρ0
= T , and T ′′1 [M2/x]mρ2

= M ′ : ρ.

2. If M2[M0/x0]Oρ0
= M ′2, A1[M2/x]oρ2

= M : ρ, and A1[M0/x0]oρ0
= A, then there exists an

M ′, such that M [M0/x0]Oρ0
= M ′, and A[M2/x]oρ2

= M ′ : ρ.

3. If M2[M0/x0]Oρ0
= M ′2, A1[M2/x]oρ2

= A, and A1[M0/x0]oρ0
= M : ρ, then there exists an

M ′, such that A[M0/x0]oρ0
= M ′ : ρ, and M [M2/x]Oρ2

= M ′.

Theorem 21 (Transitivity). Let Σ sig, `Σ ΓL, x0:ρ0,ΓR and ΓL `Σ M0 ⇐ ρ0, and let us assume
that all of the predicates are well-behaved. Then

1. There exists Γ′R such that [M0/x0]Cρ0
= Γ′R and `Σ ΓL,Γ

′
R.

2. If ΓL, x0:ρ0,ΓR `Σ K then there exists K ′ such that [M0/x0]Kρ0
K = K ′ and ΓL,Γ

′
R `Σ K ′.

3. If ΓL, x0:ρ0,ΓR `Σ σ Type, then there exists σ′ such that [M0/x0]Fρ0
σ = σ′ and ΓL,Γ

′
R `Σ

σ′ Type.

4. If ΓL, x0:ρ0,ΓR `Σ σ Type and ΓL, x0:ρ0,ΓR `Σ M ⇐ σ, then there exist σ′ and M ′ such
that [M0/x0]Fρ0

σ = σ′ and [M0/x0]Oρ0
M = M ′ and ΓL,Γ

′
R `Σ M ′ ⇐ σ′.
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Theorem 22 (Decidability of typing). If all of the predicates in LFCP are decidable, then all of
the judgements of the system are decidable.

With these lemmas in theorems in place, we have all of the desired properties of LFCP . Now,
we can focus on precisely specifying the relationships between LFCP and the original LFP system.

Theorem 23 (Soundness). For any predicate P of LFCP , we de�ne a corresponding predicate
in LFP as follows: P(Γ `Σ M : σ) holds if and only if Γ `Σ M : σ is derivable in LFP and
P(Γ `Σ M ⇐ σ) holds in LFCP . Then, the following claims hold:

1. If Σ sig is derivable in LFCP , then Σ sig is derivable in LFP .

2. If `Σ Γ is derivable in LFCP , then `Σ Γ is derivable in LFP .

3. If Γ `Σ K is derivable in LFCP , then Γ `Σ K is derivable in LFP .

4. If Γ `Σ α⇒ K is derivable in LFCP , then Γ `Σ α : K is derivable in LFP .

5. If Γ `Σ σ Type is derivable in LFCP , then Γ `Σ σ : Type is derivable in LFP .

6. If Γ `Σ A⇒ σ is derivable in LFCP , then Γ `Σ A : σ is derivable in LFP .

7. If Γ `Σ M ⇐ σ is derivable in LFCP , then Γ `Σ M : σ is derivable in LFP .

Proof. By mutual induction on the structure of the derivation. The �rst three items are proven
directly, as the rules for signature, context, and kind formation are the same for the two systems,
while for most of the rules the induction hypothesis is su�cient. In fact, only the rules of LPCP
which involve hereditary substitution are interesting. Therefore, let us focus on the rule (A·App).
Let us have αM ⇒ K[M/x]Kσ , obtained from Γ `Σ α ⇒ Πx:σ.K, and Γ `Σ M ⇐ σ. By the
induction hypothesis, we have that (in LFP) Γ `Σ α : Πx:σ.K and Γ `Σ M : σ. Using the rule
(F·App) of LFP , we have that Γ `Σ αM : τ [M/x], while the desired goal is Γ `Σ αM : τ [M/x]Kσ .
The idea here would be to apply the conversion rule (F·Conv), for which we need to prove that
Γ `Σ τ [M/x]Kσ and that τ [M/x]=βLτ [M/x]Kσ . However, the former we can easily obtain from
Proposition 8 and the Subject Reduction property of LFP , while the latter is a direct consequence
of the fact that hereditary substitution is designed to immediately calculate normal forms. The
case in which the rule (F·App) is used is handled analogously.

Vice versa, all LFP judgements in η-long normal form (η-lnf) are derivable in LFCP . The
de�nition of a judgement in η-lnf is based on the following extension of the standard η-rule to
the lock constructor:

λx:σ.Mx→η M LPN,σ[UPN,σ[M ]]→η M.

De�nition 23. An occurrence ξ of a constant or a variable in a term of an LFP judgement is
fully applied and unlocked with respect to its type or kind Π #»x 1: #»σ 1.

#»L1[. . .Π #»xn: #»σ n.
#»Ln[α] . . .],

where
#»L1, . . . ,

#»Ln are vectors of locks, if ξ appears in contexts of the form
#»U n[(. . . (

#»U 1[ξ
# »

M1]) . . .)
# »

Mn],
where

# »

M1, . . . ,
# »

Mn,
#»U 1, . . . ,

#»U n have the same arities of the corresponding vectors of Π's and
locks.

De�nition 24 (Judgements in η-long normal form).

• A term T in a judgement is in η-lnf if T is in normal form and every constant and variable
occurrence in T is fully applied and unlocked w.r.t. its classi�er in the judgement.

• A judgement is in η-lnf if all terms appearing in it are in η-lnf.
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Finally, we can proceed to the main theorem of this chapter, which is the correspondence
theorem between derivations of LFP in η-lnf, and derivations in LFCP .

Theorem 24 (Correspondence). Assume that all predicates in LFP are well-behaved. For any
predicate P in LFP , we de�ne a corresponding predicate in LFCP with: P(Γ `Σ M ⇐ σ) holds if
Γ `Σ M ⇐ σ is derivable in LFCP and P(Γ `Σ M : σ) holds in LFP . Then, we have:

1. If Σ sig is in η-lnf and is LFP-derivable, then Σ sig is LFCP-derivable.

2. If `Σ Γ is in η-lnf and is LFP-derivable, then `Σ Γ is LFCP-derivable.

3. If Γ `Σ K is in η-lnf, and is LFP-derivable, then Γ `Σ K is LFCP-derivable.

4. If Γ `Σ α : K is in η-lnf and is LFP-derivable, then Γ `Σ α⇒ K is LFCP-derivable.

5. If Γ `Σ σ:Type is in η-lnf and is LFP-derivable, then Γ `Σ σ Type is LFCP-derivable.

6. If Γ `Σ A : α is in η-lnf and is LFP-derivable, then Γ `Σ A⇒ α is LFCP-derivable.

7. If Γ `Σ M : σ is in η-lnf and is LFP-derivable, then Γ `Σ M ⇐ σ is LFCP-derivable.

Proof. We prove all of the items by mutual induction on the complexity of the judgement, where
the complexity of a judgement is given by the sum of symbols appearing in it, provided that
the complexity of the symbols Type and ∅ is 1, the complexity of a constant/variable is 2, the
complexity of the symbol U is greater than the complexity of L, and the complexity of the
subject of the judgement is the sum of the complexities of its symbols plus the complexity of
the normal form of the type of each of the subterms of the subject, derived in the given context
and signature.

1. Directly, using the induction hypothesis.

2. Directly, using the induction hypothesis.

3. Directly, using the induction hypothesis.

4. If Γ `Σ α : K is in η-lnf, we have that α = aN1 . . . Nn, K ≡ Type, and also that:

(a) a : Πx1:σ1 . . . xn:σn.Type ∈ Σ, with Πx1:σ1 . . . xn:σn.Type in η-lnf. This means that,
for all 1 ≤ i ≤ n, we have that σi is in η-lnf.

(b) Γ `Σ Ni : σ′i is derivable in LFP , for 1 ≤ i ≤ n, where σ′i is in η-lnf, and σ′i =βL
σi[N1/x1, . . . , Ni−1/xi−1].

Now, from (a), we obtain that Γ `Σ a ⇒ Πx1:σ1 . . . xn:σn.Type is derivable in LFCP .
Next, by applying the induction hypothesis to (b), we obtain that Γ `Σ Ni ⇐ σ′i is
derivable in CLF for all i. From this, by repeatedly applying the rule (A·App), we get that
Γ `Σ aN1 . . . Nn ⇒ Type.

5. The cases when σ is an atomic family have already been covered above, while the remaining
cases are proven directly, using the induction hypothesis.

6. (a) If Γ `Σ c : α, this could have been obtained only through the rule (O·Const) of LFP ,
from `Σ Γ and c : σ ∈ Γ. By the induction hypothesis, we get that `Σ Γ in LFCP , and
that c : σ ∈ Γ, from which, using the rule (O·Const) of LFCP , we obtain the desired
Γ `Σ c⇒ σ.
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(b) If Γ `Σ x : σ, this could have been obtained only through the rule (O·Var) of LFP ,
from `Σ Γ and x : σ ∈ Γ. By the induction hypothesis, we get that `Σ Γ in LFCP ,
and that x : σ ∈ Γ, from which, using the rule (O·Var) of LFCP , we obtain the desired
Γ `Σ x⇒ σ.

(c) Let Γ `Σ AM : α be derivable in LFP , and be in η-lnf. A, as an atomic object, is
then of the form:

UP1
N1,σ1

[. . . [UPkNk,σk [c|x{M1 . . .Mn}]
#   »

Mk]
#         »

Mk−1 . . .]
#   »

M1.

Here, we have that c (or x) is fully applied and unlocked with respect to its classi�er,
and we also have that all Ni, σi, Mi,

#  »

Mi, as well as M and α, are in η-lnf. Also,
we have that the types of Mi,

#  »

Mi, and M are in η-lnf, as they are recorded in the
type of c (or x), which is part of the signature (or context), which is also in η-lnf.
We will denote the type of M by σ, and the type of A by Πz:σ.τ . Then, by the
induction hypothesis, we have that Γ `Σ M ⇐ σ, and that Γ `Σ A⇐ Πz:σ.τ . From
the latter, as it only could have been obtained through the rule (O·Atom), we have
that Γ `Σ A⇒ Πz:σ.τ . Now, we have two cases to consider:

i. α ≡ a, a constant atomic type, which is the trivial case, as a is immune to both
hereditary and standard substitution. We immediately get that τ ≡ a, with
which we can use the rule (O·App) of LFCP to obtain the desired Γ `Σ AM ⇒ α.

ii. α ≡ aM1 . . .Mn, a fully applied constant atomic type of arity n. Then, we have
that τ ≡ aM ′1 . . .M ′n. Due to the fact thatM , and allMi,M ′i are in normal form
(as they are in η-lnf), we have that τ [M/z] ≡ a[M/z]M ′1[M/z] . . .M ′n[M/z] ≡
aM1 . . .Mn ≡ α. However, due to the normal forms, the ordinary and hereditary
substitution here coincide, yielding τ [M/z]Fσ = α. With this, using the rule
(O·App), we obtain the desired Γ `Σ AM ⇒ α.

(d) Let us consider the case when Γ `Σ UPN,σ[A] : α′. By inspection of the typing rules
of LFP , we have that the original introduction rule for our initial judgement had
to have been Γ `Σ UPN,σ[A] : α, derived from Γ `Σ A : LPN,σ[α], Γ `Σ N : σ, and
P(Γ `Σ N : σ), where α=βLα

′. By the induction hypothesis, we have Γ `Σ N ⇐ σ.
Using the rule (O·Conv) of LFP , we can now get Γ `Σ A : LPN,σ[α′] and from this,

by the induction hypothesis, we get that Γ `Σ A⇐ LPN,σ[α′]. Since that would only

be possible through the rule (O·Atom), we have that Γ `Σ A ⇒ LPN,σ[α′] also holds.

Finally, given the properties of the predicate induced in LFCP by the predicate P in
LFP , as stated in the formulation of the theorem, we can use the rule (O·Unlock) of
LFCP to obtain the desired Γ `Σ UPN,σ[M ]⇒ α′.

7. (a) The cases when M is an atomic object have already been covered above.

(b) Let us consider the case when Γ `Σ λx:σ.M : θ. By inspection of the typing rules of
LFP , we have that θ ≡ Πx:σ′.τ ′, where the original introduction rule for our initial
judgement had to have been Γ `Σ λx:σ.M : Πx:σ.τ , derived from Γ, x:σ `Σ M : τ ,
where σ=βLσ

′, and τ=βLτ
′. However, since σ, M , σ′ and τ ′ are in η-lnf, they must

also be in normal form, meaning that σ ≡ σ′, leaving us with Γ `Σ λx:σ.M : Πx:σ.τ ′.
Using the rule (O·Conv) of LFP , we can now get Γ, x:σ `Σ M : τ ′, and from this, by
the induction hypothesis, we get that Γ, x:σ `Σ M ⇐ τ ′, from which, using the rule
(O·Abs) of LFCP , we obtain the desired Γ `Σ λx:σ.M ⇐ Πx:σ.τ ′.

(c) Let us consider the case when Γ `Σ LPN,σ[M ] : θ. By inspection of the typing rules of

LFP , we have that θ ≡ LPN ′,σ′ [ρ′], where the original introduction rule for our initial

judgement had to have been Γ `Σ LPN,σ[M ] : LPN,σ[ρ], derived from Γ `Σ M : ρ and
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Γ `Σ N : σ, where N=βLN
′, σ=βLσ

′, and ρ=βLρ
′. However, since M , N , σ, N ′, σ′,

and ρ′ are in η-lnf, they must also be in normal form, meaning that N ≡ N ′ and
σ ≡ σ′, leaving us with Γ `Σ LPN,σ[M ] : LPN,σ[ρ]′. By the induction hypothesis, we
have Γ `Σ N ⇐ σ. Using the rule (O·Conv) of LFP , we can now get Γ `Σ M : ρ′ and
from this, by the induction hypothesis, we get that Γ `Σ M ⇐ ρ′. Finally, we can
use the rule (O·Lock) of LFCP to obtain the desired Γ `Σ LPN,σ[M ]⇐ LPN,σ[ρ′].

We should notice that, by the Correspondence Theorem above, any well-behaved predicate P
in LFP induces a well-behaved predicate in LFCP . Finally, and most importantly, we should notice
that not all LFP judgements have a corresponding η-lnf. Namely, the judgement x:LPN,σ[ρ] `Σ

x : LPN,σ[ρ] does not admit an η-expanded normal form when the predicate P does not hold on
N , as the rule (O·Unlock) can be applied only when the predicate holds.

8.3 Summary

In this chapter, we have presented the Canonical LFP framework (LFCP), in which we make
use of the notion of hereditary substitution to immediately compute the normal forms of LFP ,
rather than having a separate reduction mechanism. Also, we have extended the notion of η-long
normal forms to include the newly introduced locked and unlocked terms and types, and we have
proven two theorems concerning the relationship between LFP and LFCP , namely soundness and
correspondence, with the former stating that all derivable judgements of LFCP are also derivable
in LFP , and the latter stating that all derivable judgements of LFP that are in η-long normal
form are also derivable in LFCP . This theorem will be of paramount importance for proving
adequacy of the encodings we will be presenting in the next chapter.
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In this chapter, we illustrate how LFP can be used as a meta-language, by providing encodings
for a number of crucial case studies. We place our focus on the formal systems in which derivation
rules are subject to side conditions that are either rather di�cult or impossible to encode naively,
in a type theory-based LF, due to limitations of the latter or to the fact that these rules need
to access the derivation context, or the structure of the derivation itself, or other structures and
mechanisms which are simply not available at the object level. This is the case for sub-structural
and program logics [Avron 1992, Avron 1998, Crary 2010].

We will start by providing an encoding of the well-known case of the untyped λ-calculus, with
a call-by-value evaluation strategy. This allows us to illustrate yet another paradigm for dealing
with free and bound variables appropriate for LFP . Next, we elaborate the expressiveness of the
predicates, and provide several examples of predicates which will be used in the later sections.
Next, we add on top of the encoded untyped λ-calculus an extension, in order to model a sort
of design-by-contract functional language, capturing pre- and post-conditions. Next, we discuss
and provide encodings of modal logics, both in Hilbert and Natural Deduction style, and we
give a sketch of how the non-commutative linear logic, introduced in [Polakow 1999], could
be encoded in LFP . The concluding example, in which we illustrate the encoding of a small
imperative programming language logic and its Hoare logic in LFP , appears in Section 9.3.

As far as comparisons with alternate encodings in LF, we refer the reader to the general
comments which have been made in Section 7.4. Finally, in the formulations of adequacy theo-
rems, we will be using the notion of judgement in η-long normal form (η-lnf), which has been
introduced in De�nition 24.

9.1 The Untyped λ-calculus

Consider the well-known untyped λ-calculus:

M,N, . . . ::= x | M N | λx.M,
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with variables, application and abstraction. Our main goal here is to design a way of modeling
free and bound variables that would both allow the formulation of well-behaved predicates over
such variables, as well as preserve the bene�ts of the full Higher-Order-Abstract-Syntax (HOAS)
approach, i.e. delegating α-conversion and capture-avoiding substitution to the metalanguage.

nat : Type The type of natural numbers
0 : nat Zero is a natural number
S : nat -> nat The successor function

free : nat -> term Modeling free variables
app : term -> term -> term Application
lam : (term -> term) -> term Abstraction

Figure 9.1: LFP signature Σλ for the untyped λ-calculus

In Figure 9.1, we present the LFP signature for the untyped λ-calculus. We encode natural
numbers in a standard way, and we will be using the natural numbers themselves as abbreviations
for repeated applications of S to 0. We will be using an enumeration {xi}i∈N\{0} of the variables
in the untyped λ-calculus, we will be modeling free variables of the object language as constants
of the form (free n), for a suitable (encoding of a) natural number n, while we will be modeling
bound variables using the standard HOAS approach. Next, we present the encoding function
εX , mapping the terms of the untyped λ-calculus into terms of LFP :

εX (xi) =

{
xi, if xi ∈ X
(free i), if xi 6∈ X

,

εX (MN) = (app εX (M) εX (N)),

εX (λxi.M) = (lam λxi:term.εX∪{xi}(M)),

where, in the last clause, xi 6∈ X . Therefore, the λ-term xn (in which the variable is free) will
be encoded by means of the term `Σ(free n):term. On the other hand, the λ-term λxn.xn (in
which the variable is obviously bound) will be encoded by `Σ (lam λxn:term.xn). However,
when we �open� the abstraction λxn.M , considering the body M , we will encode the body M
as xn:term `Σ ε{xn}M . In this case, we will refer to xn as a bindable variable. These �bindable�
variables must neither be confused with bound nor with free variables, and are modeled using
variables of the metalanguage. By de�ning the encoding function in this way, we abide by the
�closure under substitution� condition for external predicates, while still retaining the ability to
handle �open� terms explicitly. Next, let us examine the adequacy of this encoding:

Theorem 25 (Adequacy of syntax). Let {xi}i∈N\{0} be an enumeration of the variables in the
λ-calculus. Then, the encoding function εX is a bijection between the λ-calculus terms with
bindable variables in X and the terms M derivable in judgements Γ `Σλ M : term in η-lnf,
where Γ = {xi : term | xi ∈ X}. Moreover, the encoding is compositional, i.e. for a term M ,
with bindable variables in X = {x1, . . . , xk}, and N1, . . . , Nk, with bindable variables in Y, the
following holds:

εY(M [N1, . . . , Nk/x1, . . . , xk]) = εX (M)[εY(N1), . . . , εY(Nk)/x1, . . . , xk].

Proof. As we are not using locked types in this example, the proof of adequacy is standard. The
injectivity of εX follows from the inspection of its de�nition, while the surjectivity follows by
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de�ning the �decoding� function δX on terms in η-lnf:

δX ((free i)) = xi (where xi 6∈ X )
δX (xi) = xi (where xi ∈ X )

δX ((app M N)) = δX (M) δX (N)

δX (lam λxi:term.M) = λx.δX∪{xi}(M)

Given the characterization of η-lnfs, and the types of the constructors introduced in Σλ, it
is easy to see that δX is total and well-de�ned. It is not possible to derive an η-lnf of type
term containing a U-term, since no constructors in Σλ use L-types. Finally, by induction on the
structure of M , it is possible to check that δX (εX (M)) = M and that εX is compositional.

9.1.1 A Closer Look at the Expressiveness of the Predicates

In this section, we will present some auxiliary functions and predicates on proof terms, the
patterns of which frequently occur in the examples. The main archetype of these predicates
is: �given constants or variables only occur with some modality D in subterms satisfying the
decidable property C�, where the modalities can be, but are not limited to, any of the following
phrases: �at least once�, �only once�,�as the rightmost�, �does not occur�, etc. C can refer to the
syntactic form of the subterm or to that of its type, the latter being the main reason for allowing
predicates in LFP to access the context. We will require the following elements, which represent
pairs of terms of the untyped λ-calculus, as presented in the previous section:

pair : Type [_, _] : term -> term -> pair

Further on, when we refer to free variables, we will in fact be referring to constants of the form
(free i), as de�ned in the previous section.

Counting occurrences of free variables. For one, we can count occurrences of free variables
in normal forms of terms. A possible functional pseudo-code for count (Γ `Σ [(free i), M] : pair),
counting occurrences of the encoding of xi, (i > 0) in the normal form of M, could be the following:

count (Γ `Σ [(free i), M] : pair) ⇒
let norm=NF(M) in

match norm with

| x => 0

| (free j) => if j=i then 1 else 0

| (app N N') => count (Γ `Σ [(free i), N] : pair) + count (Γ `Σ [(free i), N′] : pair)
| (lam N) => count (Γ `Σ [(free i), (N (free 0))] : pair)

end

where (free 0) is a �hole �ller� when the recursive call crosses a lam binder, and NF(M) is a
function calculating the normal form of the term M, possible due to the meta-properties of LFP .

Listing free variables. Next, we introduce the auxiliary function freeVar (Γ `Σ M : term)
returning as a result the list of free variables occurring in M in the order of their occurrence from
left to right, without duplicates:

freeVar (Γ `Σ M : term) ⇒
let norm=NF(M) in

match norm with

| x => nil

| (free i) => if i=0 then nil else [(free i)]

| (app N N') => merge (freeVar (Γ `Σ N : term), freeVar (Γ `Σ N′ : term))
| (lam N) => freeVar (Γ `Σ (N (free 0)) : term)

end
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where merge (L,L') is the function merging two lists L and L' without duplicated elements. If
we were to use append instead of merge in the application case in the de�nition of freeVar , we
would obtain as a result the list of all the occurrences of free variables in M in their order of
appearance from left to right, and we will refer to such a variant of freeVar as freeVarOcc .

Occurrence of a free variable. Whether a free variable occurs within a term or not is now
easily veri�able by using the function count , but also directly, in the following manner:

freeIn (Γ `Σ [(free i), M] : pair) ⇒
let norm=NF(M) in

match norm with

| x => false

| (free j) => j=i

| (app N N') => freeIn (Γ `Σ [(free i), N] : pair) ∨ freeIn (Γ `Σ [(free i), N′] : pair)
| (lam N) => freeIn (Γ `Σ [(free i), (N (free 0))] : pair)

end

where i > 0. As the truthfulness of the predicate does neither depend on the signature nor on the
context, we conclude that it is closed under signature and context weakening and permutation.
As the terms of the untyped λ-calculus are encoded in such a way that they do not include
any free variables of the object language or leave room for substitution, we conclude that the
predicate is also closed under substitution and βL-reduction. Therefore, we have that freeIn

is a well-behaved predicate in LFP . Here, we should note that we need to accommodate the
possibility of M being a free variable of type term belonging to the object language, but that
this does not e�ect the well-behavedness of the predicate.

Leftmost and rightmost free variables. As an example of the application of freeVarOcc, we
de�ne the predicates leftmost (Γ `Σ [(free i), M] : pair) and rightmost (Γ `Σ [(free i), M] :
pair), which hold if (free i) is the encoding of the leftmost (rightmost, respectively) free
variable occurring in M:

leftmost (Γ `Σ [(free i), M] : pair) ⇒
let L=freeVarOcc (Γ `Σ M : term) in

match L with

| nil => false

| [l, L'] => l=(free i)

end

rightmost (Γ `Σ [(free i), M] : pair) ⇒
let L=reverse (freeVarOcc (Γ `Σ M : term)) in

match L with

| nil => false

| [l, L'] => l=(free i)

end

where reverse (L) is the standard function reversing the order of the elements occurring in L.
In the same manner as for the predicate freeIn, we can conclude that leftmost and rightmost

are well-behaved predicates in LFP .

Closedness of Terms. Using the function freeVar (or freeVarOcc), it is easy to inspect
whether a given term M is closed or not:

closedTerm (Γ `Σ M : term) ⇒ (freeVar (Γ `Σ M : term) = nil)

In the same manner as for the predicate freeIn, we obtain that closedTerm is also a well-
behaved predicate in LFP .
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9.1.2 Adding a Call-by-Value Reduction Strategy

De�nition 25 (The call-by-value reduction strategy.). The call-by-value (CBV) evaluation strat-
egy can be speci�ed by the following rules:

`CBV M = M (refl) Re�exivity

`CBV N = M

`CBV M = N
(symm) Symmetry

`CBV M = N `CBV N = P

`CBV M = P
(trans) Transitivity

`CBV M = N `CBV M ′ = N ′

`CBV MM ′ = NN ′
(app) Compatibility with application

v is a value
`CBV (λx.M)v = M [v/x]

(βv) Conditioned β-reduction

`CBV M = N

`CBV λx.M = λx.N
(ξv) Compatibility with abstraction

where values are either variables (constants in our encoding) or functions.

As the rule (βv) has a side condition on its application, it will be necessary to make use of
L-types in the encoding. We proceed as follows:

De�nition 26 (LFP signature ΣCBV for λ-calculus CBV reduction). We extend the signature
of Figure 9.1 with the following elements:

triple : Type

<_, _, _> : term -> (term -> term) -> (term -> term) -> triple

eq : term -> term -> Type

refl : ΠM:term.(eq M M)

symm : ΠM:term.ΠN:term.(eq N M) -> (eq M N)

trans : ΠM,N,P:term.(eq M N) -> (eq N P) -> (eq M P)

eq_app : ΠM,N,M',N':term.(eq M N) -> (eq M' N') -> (eq (app M M') (app N N'))

betav : ΠM:(term -> term).ΠN:term.LValN [eq (app (lam M) N) (M N)]

xiv : Πx:term.ΠM,N:(term -> term).Lξ〈x,M,N〉[(eq (M x)(N x))->(eq (lam M)(lam N))]

where the predicates Val and ξ are de�ned as follows, and triple is the type of triples of terms
with types term, term -> term and term -> term:

• The predicate Val (Γ `Σ N : term) holds i� either N is an abstraction or a constant (i.e. a
term of the shape (free i));

Val (Γ `Σ N : term) ⇒
let norm=NF(N) in

match norm with

| app M' N' => false

| _ => true

end
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• The predicate ξ(Γ `Σ<x,M,N> : triple) holds i� x is a constant (i.e. a term of the shape
(free i)), M and N are closed and x does not occur in M and N.

ξ(Γ `Σ<x,M,N> : triple) ⇒
let nX=NF(x), nM=NF(M), nN=NF(N) in

match nX with

| (free i) => closedTerm (nM) ∧ ¬freeIn (Γ `Σ [(free i), nM] : pair) ∧
closedTerm (nN) ∧ ¬freeIn (Γ `Σ [(free i), nN] : pair)

| _ => false

end

We can easily verify that both of the predicates satisfy all of the four requirements for
well-behavedness and that, thereby, their use in this encoding is allowed.

Theorem 26 (Adequacy of CBV reduction). Given an enumeration {xi}i∈N\{0} of the variables
in the λ-calculus, there is a bijection between derivations of the judgement `CBV M = N on
terms with no bindable variables in the CBV λ-calculus and proof terms h, such that `ΣCBV

h : (eq ε∅(M) ε∅(N)) is in η-lnf.

Proof. We de�ne an encoding function ε=
∅ by induction on derivations of the form `CBV M = N

(on terms with no bindable variables) as follows:

• if ∇ is the derivation
`CBV M = M

then ε=
∅ (∇) = (refl ε∅(M)) : (eq ε∅(M) ε∅(M));

• if ∇ is the derivation with (symm) as last applied rule, then, by the induction hypothesis,
there is a term h such that `ΣCBV h : (eq ε∅(N) ε∅(M)). Hence, we have ε=

∅ (∇) =
(symm ε∅(M) ε∅(N) h) : (eq ε∅(M) ε∅(N));

• if ∇ is the derivation with (trans) as last applied rule, then, by the induction hypothesis,
we have that there exist terms h and h' such that `ΣCBV h : (eq ε∅(M) ε∅(N)), and also
`ΣCBV h′ : (eq ε∅(N) ε∅(P )). Hence, we will have that ε=

∅ (∇) = (trans ε∅(M) ε∅(N)
ε∅(P ) h h′) : (eq ε∅(M) ε∅(P ));

• if ∇ is the derivation with (eq_app) as last applied rule, then, by the induction hypothesis,
we have that there exist terms h and h' such that `ΣCBV h : (eq ε∅(M) ε∅(N)) and
`ΣCBV h′ : (eq ε∅(M

′) ε∅(N
′)). Hence, we will have that ε=

∅ (∇) = (eq_app ε∅(M) ε∅(N)
ε∅(M

′) ε∅(N
′) h h′) : (eq (app ε∅(M) ε∅(M

′)) (app ε∅(N) ε∅(N
′)));

• if ∇ is the derivation
v is a value

`CBV (λxi.M)v = M [v/xi]

then we will have that ε=
∅ (∇) = UValε∅(v)[(betav (λxi:term.ε{xi}(M)) ε∅(v)) : (eq (app (lam

λxi:term.ε{xi}(M)) ε∅(v)) ((λxi:term.ε{xi}(M))(ε∅(v))))]1;

1Notice the presence of the unlock operator in front of the LFP encoding: this is possible due to the fact that
we know, by hypothesis (e.g., the premise of the applied derivation rule), that v is a value. Indeed, since values
in the object language are either variables or abstractions and we are deriving things from the empty context, in
this case v must be an abstraction λxi.N (otherwise it would be a free variable and the derivation context could
not be empty). Thus, it will be encoded into a term of the form (lam λxi:term.ε{xi}(N)) and the predicate Val
is de�ned to hold on such terms (see De�nition 26), whence the predicate Val holds on `CBV ε∅(v) : term.
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• if ∇ is the derivation with (ξv) as the last applied rule, then, by the induction hypothesis,
we have that there exists a term h, such that `ΣCBV h : (eq ε∅(M) ε∅(N))2. Given this, we
have: ε=

∅ (∇) = (UξT,triple[(xiv ε∅(xi) λxi:term.ε{xi}(M) λxi:term.ε{xi}(N))]h): (eq (lam
λxi:term.ε{xi}(M)) (lam λxi:term.ε{xi}(N))), with T being 〈ε∅(xi),(λxi:term.ε{xi}(M)),
(λxi:term.ε{xi}(N))〉.

The injectivity of ε=
∅ follows by the inspection of its de�nition, while the surjectivity follows

by de�ning the �decoding� function δ=
∅ by induction on the derivations of the shape `ΣCBV

h : (eq M N) in η-long normal form. Since most of the cases are purely technical, we analyze
the de�nition concerning the main rule (βv), as it involves an external predicate. So, if we
derive from ΣCBV a proof term h in η-long normal form such as UValN,term[betav M N] whose type
is (eq (app (lam M) N) (M N)) (where M ≡ λxi:term.M′, with M′ in η-lnf), then the predicate
Val (`ΣCBV N : term) must hold, and N is encoding the value δ∅(N). Hence, the decoding of h is
the following derivation:

δ∅(N) is a value

`CBV δ∅(lam (λxi:term.M
′))δ∅(N) = δ∅((λxi:term.M

′) N),

and since we have that δ∅((lam (λxi:term.M
′))) = λxi.δ{xi}(M

′) (see proof of Theorem 25), and
that λxi.δ{xi}(M

′)δ∅(N) = δ{xi}(M
′)[δ∅(N)/xi] (β-reduction in CBV λ-calculus), and also that

δ∅((λxi:term.M
′) N) = δ∅(M

′[N/xi]) (β-reduction in LFP) and �nally that δ{xi}(M
′)[δ∅(N)/xi] =

δ∅(M
′[N/xi]) (by induction on the structure of M′), we are done. Therefore, we can verify by

induction on η-long normal forms that δ=
∅ is well-de�ned and total. Similarly, we can prove δ=

∅
to be the inverse of ε=

∅ , making ε=
∅ a bijection.

We conclude this section by illustrating the expressive power of LFP , by encoding a restricted
η-rule, which generalizes the one originally suggested in [Plotkin 1975], i.e. λx.xx = λx.xλy.xy

eta : ΠM:(term -> term).LηM [(eq (lam M) (lam (λx:term.(M (lam λy:term.(app x y)))))))]

where the predicate η(Γ `Σ M : (term -> term)) holds if and only if the outermost abstracted
variable of M occurs in functional position among the head variables.

9.1.3 Capturing Design-by-Contract

In this section, we extend the untyped call-by-value λ-calculus of the previous example so as to
accommodate a minimal functional language supporting the design-by-contract paradigm (see,
e.g., [Meyer 1991]). More precisely, we will enrich the λ-calculus with the conditional expression
cond(C,M), whose intended semantics is that of checking that the constraint C applied to M
(denoted by C(M)) holds. As we will see, such expressions can be used to validate the entry
input and the exit value on a function application. The general syntax of conditions C is omitted,
and a typical example is given by predicates on natural number (in)equalities, as in the Hoare
Logic example in Section 9.3. Informally, C must be �something� which can be evaluated to true
or false, when applied to its argument. The syntax of expressions is de�ned as follows:

M,N, . . . ::= x | M N | λx.M | cond(C,M),

2Notice that the object variable xi occurring in M and N is represented by a constant ((free i), since the
encoding function takes the empty set as the set of bindable variables. Instead, in the next line, the encoding
function will take {xi} as the set of bindable variables, yielding an encoding of xi directly as the metavariable of
the metalanguage of LFP .
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nat : Type The type of natural numbers
0 : nat Zero is a natural number
S : nat -> nat The successor function

bool : Type The type of boolean values
free : nat -> term Modeling free variables
app : term -> term -> term Application
lam : (term -> term) -> term Abstraction

cond : (term -> bool) -> term -> term Condition

Figure 9.2: LFP signature Σ for the design-by-contract λ-calculus

The call-by-value (CBV) evaluation strategy can be then extended by adding to the rules of
De�nition 25 the following one:

C(v) holds and v is a value

`CBV cond(C, v) = v
(cond)

Here, conditional expressions are �rst-class values, i.e. they can be passed as arguments of
a function. So far, we can encode pre- and post-conditions in our language as follows:

cond(Q, (M (cond(P, N))))

The key idea is that the above expression will reduce if and only if the argument N were to
�pass� the pre-condition P (i.e. the input contract) and if the result of the application MN were
to �pass� the post-condition Q (i.e. the output contract).

We build upon the previous case study, encoding free variables by means of constants (e.g.,
natural numbers) embedded into terms, while bindable and bound variables will be represented
by metavariables of the metalanguage. In Figure 9.2, we provide an LFP signature for our
language, extending that presented in Figure 9.1 (bool will represent the type of boolean values
true and false, i.e. the result of evaluating a condition C on its argument M).

In order to make clear the role played by the types and constructors so far introduced, we fully
specify the encoding function εX , mapping terms of the source language into the corresponding
terms of LFP , where X denotes a set of bindable variables. Given an enumeration {xi}i∈N\{0}
of the variables in the source language, we have the following:

εX (xi) =

{
xi, if xi ∈ X
(free i), if xi 6∈ X

εX (MN) = (app εX (M) εX (N)),

εX (λxi.M) = (lam λxi:term.εX∪{xi}(M)),

εX (cond(C,M)) = (cond εX (C) εX (M)).

We now present the encoding of the CBV reduction of our source language encoded in LFP .
All the rules stated in the previous case study about the untyped λ-calculus remain unchanged.
There is only the need to account for the new reduction rule involving the new constructor cond.

De�nition 27 (LFP signature Σ for design by contract λ-calculus CBV reduction).
We extend the signature of De�nition 26 by adding the following constant:

condv : ΠC:(term -> bool).ΠM:term.LEval(C M),bool[(eq (cond C M) M)]

where the external predicate Eval is de�ned as follows:
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• Eval (Γ `Σ(C M):bool) holds i� M is a value (i.e. an abstraction or a constant), C and M

are closed and the evaluation of the condition C on the term M holds.

The expressive power of external predicates is fully exploited in the above example. Of course,
we require that the external logical conditions C (corresponding to object-level expressions C)
allow the Eval predicate to satisfy the requirements of De�nition 21, i.e. that they induce a
well-behaved βL-reduction. We conclude by illustrating how the expressiveness of predicates
and locked types allows for a straightforward encoding of the design-by-contract predecessor
function as follows (taking nat as the type of terms):

(lam λx:nat.(cond (λz:nat.(z ≥ 0) ((cond (λy:nat.(y > 0)) x) - 1)))

9.2 Substructural Logics

Next, we turn our attention to substructural logics. In many formal systems, rules are subject
to side conditions and structural constraints on the shape of assumptions or premises. Typical
examples of this are the necessitation rule or the �-introduction rules in Modal logics (see, e.g.,
[Avron 1992, Avron 1998, Crary 2010]). For the sake of readability, we will onward often use an
in�x notation for encoding binary logic operators.

9.2.1 Modal Logics in Hilbert style.

In this section, we show how LFP allows for smooth encodings of logical systems with �rules of
proof� as well as �rules of derivation�. The former apply only to premises which do not depend
on any assumption, such as necessitation, while the latter are the usual rules which apply to
all premises, such as modus ponens. The idea is to use the appropriate locked types in rules of
proof and standard types in the rules of derivation.

First, we will consider the classical Modal Logics K, KT , K4, KT4 (S4), KT45 (S5) in
Hilbert style. All of these logics (K, KT , K4, KT4 (S4), KT45 (S5)) build upon the standard
Hilbert axioms for classical logic (A1−A3) by introducing the necessity (�) and possibility (�)
operators, and all of them feature necessitation (the NEC rule in Figure 9.3) as a rule of proof,
which can be applied only if φ is a theorem, i.e. if it does not depend on any assumptions.
Therefore, our main task here would be to correctly and elegantly capture this rule of proof
using the machinery of locked types.

A1 : φ→ (ψ → φ)

A2 : (φ→ (ψ → ξ))→ (φ→ ψ)→ (φ→ ξ)

A3 : (¬φ→ ¬ψ)→ ((¬φ→ ψ)→ φ)

K : �(φ→ ψ)→ (�φ→ �ψ)

> : �φ→ φ

4 : �φ→ ��φ
5 : ♦φ→ �♦φ

MP :
φ φ→ ψ

ψ

NEC :
φ
�φ if φ is a theorem

C A1 +A2 +A3 +MP
K C +K +NEC
KT K + T
K4 K + 4
KT4 KT + 4
KT45 KT4 + 5

Figure 9.3: Hilbert style rules for Modal Logics
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o : Type

→ : o -> o -> o

¬ : o -> o

� : o -> o

♦ : o -> o

True : o -> Type

A1 : Πφ,ψ:o.True(φ→(ψ→φ))
A2 : Πφ,ψ,ξ:o.True(φ→(ψ→ξ))→(φ→ ψ)→(φ→ ξ))
A3 : Πφ,ψ:o.True((¬φ→ ¬ψ)→((¬φ→ ψ)→ φ))
K : Πφ,ψ:o.True(�(φ→ψ)→(�φ→�ψ))
T : Πφ:o.True(�φ→φ)
4 : Πφ:o.True(�φ→��φ)
5 : Πφ:o.True(♦φ→�♦φ)

MP : Πφ,ψ:o.True(φ) -> True(φ→ψ) -> True(ψ)
NEC : Πφ:o.Πm:True(φ).LClosedm [True(�φ)]

Figure 9.4: The signature Σ� for Modal Logics in Hilbert style

The LFP signature corresponding to the modal logics presented in Figure 9.3 is shown in
Figure 9.4. The encodings of the logical connectives and modality operators, as well as the
modus ponens rule are standard. In order to capture the side-condition of the necessitation
rule, we make use of the predicate Closed (Γ `Σ m:True (φ)), which holds i� �all of the free
variables that occur in m are of type o�, and this is precisely what is needed to correctly encode
the notion of the necessitation rule of proof, if o is the type of propositions. Indeed, if all of
the free variables of a given proof term satisfy such a condition, it is clear, by inspection of
the η-long normal forms, that there cannot be free variables of type True (. . . ) in the proof
term, i.e. that the encoded modal formula does not depend on any assumptions. As can be
noticed, this example requires that predicates inspect the environment and be de�ned on typed
judgements, as indeed is the case in LFP . Furthermore, we can show without di�culties, and
similarly to the previously examined predicates, that the above predicate is well-behaved, in
the sense of De�nition 21. Hence, we ensure a sound derivation in LFP of a proof of �φ, by
locking the type True(�φ) with an appropriate condition in the conclusion of the encoding of
the necessitation rule.

Next, we present a functional pseudo-code to illustrate the computability of the predicate
Closed . The context of the typing judgement passed as argument to Closed is partitioned
into two sub-contexts Γ and Γ′, where the former contains all of the free variables occurring in
the term M, and the latter the remaining variables (this partitioning is re-computed with each
recursive call, and is denoted by an appropriate index). We make use of two auxiliary functions
which are computable (given the metaproperties of LFP), namely:

• NF, which takes as argument a type and reduces it to its normal form;

• TypeInf, which takes as arguments the contexts Γ, Γ′, the signature Σ and a term M and
executes a procedure of type inference, returning as a result a type τ such that Γ,Γ′ `Σ M : τ
holds or undef in case of failure.

The two base cases ensure that the propositions themselves, as well as terms that do not have any
free variables are considered closed (in the sense of the predicate Closed ), while the remaining
cases (applications, abstractions, locked terms, and unlocked terms) recursively examine the
remaining possibilities, in a standard way.
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Closed (Γ,Γ′ `Σ M : o) ⇒ true Propositions

Closed (∅,Γ′ `Σ M : σ) ⇒ true Terms with no free variables

Closed (Γ,Γ′ `Σ MN : τ) ⇒ Applications

if (TypeInf(Γ,Γ′,Σ, M)=Πx:τ1.τ2)
then (Closed (ΓM,Γ

′
M `Σ M : Πx:τ1.τ2) ∧ Closed (ΓN,Γ

′
N `Σ N : τ1))

else false

Closed (Γ,Γ′ `Σ λx:σ.M : τ) ⇒ Abstractions

if (NF(τ)=Πx:σ′.σ′′)
then Closed (ΓM, x:σ′,Γ′M `Σ M : σ′′)
else false

Closed (Γ,Γ′ `Σ L PN,σ [M] : τ) ⇒ Locks

if (NF(τ)=L PN′,σ′ [ρ])
then (Closed (ΓM,Γ

′
M `Σ M : ρ) ∧ Closed (ΓN,Γ

′
N `Σ N : σ) ∧ Closed (Γσ,Γ

′
σ `Σ σ : Type))

else false

Closed (Γ,Γ′ `Σ U PN,σ [M] : τ) ⇒ Unlocks

if (TypeInf(Γ,Γ′,Σ, M)=L PN′,σ′ [τ ′])

then (Closed (ΓM,Γ
′
M `Σ M : L PN′,σ′ [τ ′]) ∧ Closed (ΓN,Γ

′
N `Σ N : σ) ∧ Closed (Γσ,Γ

′
σ `Σ σ : Type))

else false

Figure 9.5: Pseudo-code of the predicate Closed

Adequacy theorems are rather straightforward to state and prove. As usual, we de�ne
an encoding function εX on formulas with free variables in X as follows, representing atomic
formulas by means of LFP metavariables:

εX (x) = x, where x ∈ X ,
εX (¬φ) = ¬εX (φ),

εX (φ→ ψ) = εX (φ) → εX (ψ),

εX (�φ) = �εX (φ),

εX (♦φ) = ♦εX (φ).

Then, we can prove, by structural induction on formulas, the following theorem:

Theorem 27 (Adequacy of syntax). The encoding function εX is a bijection between the modal
logic formulas with free variables in X and the terms φ derivable in judgements Γ `Σ�

φ : o in
η-lnf, where Γ = {x : o | x ∈ X}. Moreover, the encoding is compositional, i.e. for a formula φ,
with free variables in X = {x1, . . . , xk}, and ψ1, . . . , ψk, with free variables in Y, the following
holds: εY(φ[ψ1, . . . , ψk/x1, . . . , xk]) = εX (φ)[εY(ψ1), . . . , εY(ψk)/x1, . . . , xk].

If we denote by φ1, . . . , φn ` φ the derivation of the truth of a formula φ, depending on the
assumptions φ1, . . . , φn, in Hilbert-style modal logics, the adequacy of our encoding can be
stated by the following theorem:

Theorem 28 (Adequacy of the truth system). There exists a bijection between derivations
φ1, . . . , φk ` φ in Hilbert-style modal logic and proof terms h such that Γ `Σ�

h : (True εX (φ1 →
. . . → φk → φ)) in η-long normal form, where X = {x1, . . . , xn} is the set of propositional
variables occurring in φ1, . . . , φk, φ and Γ = {x : o | x ∈ X}.

9.2.2 Modal Logics in Natural Deduction Style.

In LFP , one can also accommodate the classical Modal Logics S4 and S5 in Natural Deduction
style. In particular, there are several alternative formulations for S4 and S5, e.g. as de�ned by
Prawitz, which have rules with rather elaborate restrictions on the shape of subformulae where
assumptions occur. In Figure 9.6 we present the rules allowing the speci�cation of S4 and S5 (à
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Γ, φ ` φ (start)

Γ, φ ` ψ
Γ ` φ→ ψ

(→ −I)
Γ ` φ→ ψ Γ ` φ

Γ ` ψ (→ −E)

Γ,¬φ ` ff
Γ ` φ (ff − I)

Γ ` ff
Γ ` φ (ff − E)

∆ ` �Γ �Γ ` φ
∆ ` �φ (�− I · S4)

�Γ0,¬�Γ1 ` φ
�Γ0,¬�Γ1 ` �φ

(�− I · S5)

Γ ` �φ
Γ ` φ (�− E)

Γ ` �(φ→ ψ) Γ ` �φ
Γ ` �ψ (→� −E)

∅ ` φ
∅ ` �φ (�′ − I)

Γ ` �φ
Γ ` ��φ (�� − I)

Γ ` ♦φ
Γ ` �♦φ (�♦ − I)

NC start + (→ −I) + (→ −E) + (ff−I) + (ff−E)

S4 NC + (�− I · S4) + (�− E)
S5 NC + (�− I · S5) + (�− E)

NK NC + (→� −E) + (�′ − I)
NKT NK + (�− E)
NK4 NK + (�� − I)
NKT4 NKT + (�� − I)
NKT45 NKT4 + (�♦ − I)

Figure 9.6: Modal Logic rules in Natural Deduction style

la Prawitz), as well as the modal logics NK, NKT , NK4, NKT4, NKT45. So as to illustrate
the �exibility of the system, the rule for � introduction in S4 ((�-I·S4)) allows cut-elimination.

The encodings in LFP of all of the aforementioned rules are presented in Figure 9.7. Again,
the crucial role is played by three predicates, namely Closed , BoxedS4 and BoxedS5 .

o : Type

ff : o

¬ : o -> o

→ : o -> o -> o

� : o -> o

♦ : o -> o

True : o -> Type

impI : Πφ,ψ:o.(True(φ) -> True(ψ)) -> True(φ→ ψ)
impE : Πφ,ψ:o.True(φ→ ψ) -> True(φ) -> True(ψ)
ffI : Πφ:o.(True(¬φ) -> True(ff)) -> True(φ)
ffE : Πφ:o.True(ff) -> True(φ)

BoxIS4 : Πφ:o.Πm:True(φ).LBoxedS4m [True(�φ)]
BoxIS5 : Πφ:o.Πm:True(φ).LBoxedS5m [True(�φ)]

BoxE : Πφ:o.True(�φ) -> True(φ)
impBoxE : Πφ, ψ:o.True(�(φ→ ψ)) -> True(�φ) -> True(�ψ)

BoxI' : Πφ:o. Πm:True(φ).LClosedm [True(�φ)]
BoxBoxI : Πφ:o.True(�φ) -> True(��φ)

BoxDiamondI : Πφ:o.True(♦φ) -> True(�♦φ)

Figure 9.7: The signature ΣS for classic S4 Modal Logic in LFP
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As in the Hilbert-style encoding, Closed (Γ `Σ m:True (φ)) holds if and only if �all of the
free variables occurring in m have type o�. This is precisely what is needed to correctly encode
the rule (�′-I), where the truth of the formula φ must not depend on any of the assumptions.

In the case of the modal logic S4, the intended meaning of BoxedS4 (Γ `Σ m: True(φ)) is that
all the occurrences of free variables of m occur in subterms whose type has the shape True(�ψ)
or is o, while in the case of the modal logic S5, the predicate BoxedS5 (Γ `Σ m: True(φ)) holds
if and only if all of the free variables of m have type of shape True(�ψ), True(¬�ψ) or o. It
is easy to check that these predicates are well-behaved. Again, the �trick� to ensure a sound
derivation in LFP of a proof of �φ is to lock appropriately the type True(�φ) in the conclusion
of the introduction rule BoxI, in Figure 9.7.

As for the adequacy of our encoding, we can state Theorems 29 and 30 below. As in the
previous case, we �rst de�ne an encoding function εX on formulas with free variables in X as
follows, representing atomic formulas by means of LFP metavariables:

εX (x) = x, where x ∈ X ,
εX (ff) = ff,

εX (¬φ) = ¬εX (φ),

εX (φ→ ψ) = εX (φ) → εX (ψ),

εX (�φ) = �εX (φ),

εX (♦φ) = ♦εX (φ).

Then, we can prove, by structural induction on formulas, the following theorem:

Theorem 29 (Adequacy of syntax for modal formulas in natural deduction style). The encoding
function εX is a bijection between the modal logic formulas with free variables in X and the
terms φ derivable in judgements Γ `Σ φ : o in η-lnf, where Γ = {x : o | x ∈ X}. Moreover,
the encoding is compositional, i.e. for a formula φ, with free variables in X = {x1, . . . , xk},
and ψ1, . . . , ψk, with free variables in Y, the following holds: εY(φ[ψ1, . . . , ψk/x1, . . . , xk]) =
εX (φ)[εY(ψ1), . . . , εY(ψk)/x1, . . . , xk].

The adequacy of the truth system of modal logics in natural deduction style can be proved
by structural induction on derivations of the judgement Γ ` φ:

Theorem 30 (Adequacy of modal logics in natural deduction style). Let X = {x1, . . . , xn}
be a set of propositional variables occurring in formulas φ1, . . . , φk, φ. There exists a bijection
between derivations of the judgement {φ1, . . . , φk} ` φ in modal logics in natural deduction
style, and proof terms h such that Γ `Σ h : (True εX (φ)) in η-lnf, where Γ = {x1: o, . . . , xn : o,
h1 : (True εX (φ1)), . . . , hk : (True εX (φk))}.

9.2.3 Non-commutative Linear Logic

In this section, we outline an encoding in LFP of a substructural logic like the one presented
in [Polakow 1999]. There, the authors presented a natural deduction system for intuitionistic
non-commutative linear logic (NCLL), via a judgement of the form:

Γ; ∆; Ω `M : A,

where M is a proof term, A is a formula, while Γ, ∆, and Ω are all sets of hypotheses, but
with the following di�erences: Γ is an unrestricted intuitionistic context (allowing weakening,
permutation, and contraction), ∆ is a linear context (allowing only permutation), and Ω is an
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ordered context. To illustrate, we present, for instance, the rules for the ordered variables and
the introduction/elimination rules for the ordered right implication →→:

Γ; ·; z:A ` z:A (ovar)
Γ; ∆; (Ω, z:A) `M :B

Γ; ∆; Ω ` λ>z:A.M :A→→B
(→→ I)

Γ; ∆1; Ω1 `M :A→→B Γ; ∆2; Ω2 ` N :A

Γ; (∆1 on ∆2); (Ω1,Ω2) `M>N :B
(→→ E)

where the on symbol denotes the context merge operator.

In this system, we have that �ordered assumptions occur exactly once and in the order they
were made�. In order to encode the condition on the occurrence of z as the last variable in
the ordered context in the introduction rule, it is su�cient to make the observation that, in
an LF-based logical framework, this information is fully recorded in the proof term. The last
assumption made is the rightmost variable, while the �rst is the leftmost. Therefore, we can,
in LFP , introduce suitable predicates in order to enforce such constraints, without resorting to
complicated encodings.

In the following, we present an encoding of this ordered fragment of NCLL into LFP . In
order to give a shallow encoding, we do not represent explicitly the proof terms of the original
system (see, e.g., [Polakow 1999]). The encodings of the rules (→→ I) and (→→ E) are:

impRightIntro : ΠA,B:o.ΠM:(True A)->(True B).LRightmost

M,(True A)→(True B)[(True (impRight A B))],

impRightElim : ΠA,B:o.(True (impRight A B)) -> (True A) -> (True B),

where True : o -> Type is the truth judgement on formulas (represented by type o) and impRight
: o -> o -> o represents the →→ constructor of right ordered implications. Finally, the pred-
icate Rightmost (Γ `Σ M : (True A) -> (True B)) checks that M is an abstraction in normal
form (i.e. M ≡ λz : (True A).M', with M' in normal form), and that the bound variable z occurs
only once, and as the rightmost free one in M'.

For what concerns the introduction/elimination rules for the left ordered implication�, the
encoding strategy is similar; indeed, the rules are the following:

Γ; ∆; (z:A,Ω) `M :B

Γ; ∆; Ω ` λ<z:A.M :A� B
(� I)

Γ; ∆1; Ω1 `M :A� B Γ; ∆2; Ω2 ` N :A

Γ; (∆1 on ∆2); (Ω1,Ω2) `M<N :B
(� E)

Therefore, we exploit the predicate Leftmost in the encoding of the introduction rule of�:

impLeftIntro : ΠA,B:o.ΠM:(True A)->(True B).LLeftmost

M,(True A)→(True B)[(True (impLeft A B))],

impLeftElim : ΠA,B:o.(True (impLeft A B)) -> (True A) -> (True B),

where impLeft : o -> o -> o represents the � constructor of left ordered implications. Fi-
nally, Leftmost (Γ `Σ M : (True A) -> (True B)) checks that M is an abstraction in normal
form (i.e. M ≡ λz : (True A).M', with M' in normal form), and that the bound variable z occurs
only once, and as the leftmost free one in M'.

The fragment of linear implications is, again, treated in a similar way, with a suitable pred-
icate �ensuring� the correct introduction of the ( constructor for linear implication. The rules
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for the linear fragment of NCLL are the following:

Γ; y:A; · ` y:A
(lvar)

Γ; (∆, y:A); Ω `M :B

Γ; ∆; Ω ` λ̂y:A.M :A( B
(( I)

Γ; ∆1; Ω `M :A( B Γ; ∆2; · ` N :A

Γ; (∆1 on ∆2); Ω `M ˆN :B
(( E)

Hence, the encodings of the rules (( I) and (( E) are as follows:

impLinearIntro : ΠA,B:o.ΠM:(True A)->(True B).LLinearM,(True A)→(True B)[(True (impLinear A B))],
impLinearElim : ΠA,B:o.(True (impLinear A B)) -> (True A) -> (True B),

where impLinear : o -> o -> o represents the ( constructor of linear implications. Finally,
the predicate Linear (Γ `Σ M:(True A)->(True B)) veri�es that M is an abstraction in normal
form (i.e. M ≡ λz : (True A).M', with M' in normal form), and that the bound variable z occurs
free only once in M'.

Finally, the encoding of the intuitionistic fragment of NCLL is straightforward, since in this
part there are no restrictions about the intuitionistic variables:

(Γ1, x:A,Γ2); ·; · ` x:A
(ivar)

(Γ, x:A); ∆; Ω `M :B

Γ; ∆; Ω ` λx:A.M :A→ B
(→ I)

Γ; ∆; Ω `M :A→ B Γ; ·; · ` N :A

Γ; ∆; Ω `MN :B
(→ E)

The encodings of the introduction/elimination rules for the intuitionistic implication are :

impIntro : ΠA,B:o.ΠM:(True A)->(True B). (True (imp A B)),

impElim : ΠA,B:o.(True (imp A B)) -> (True A) -> (True B)

Notice that in the encodings of rules→→E ,� E and( E we have not enforced any conditions
on the free variables occurring in the terms, in order to avoid infringing the closure under
substitution condition for well-behavedness of predicates. Indeed, the obvious requirements
surface in the following adequacy theorem:

Theorem 31 (Adequacy). Let X = {P1, . . . , Pn} be a set of atomic formulas (in the sense
of [Polakow 1999]) occurring in formulas A1, . . . , Ak, A. Then, there exists a bijection between
derivations of the judgement (A1, . . . , Ai−1); (Ai, . . . , Aj−1); (Aj , . . . , Ak) ` A in NCLL, and
proof terms h such that ΓX , h1:(True εX (A1)), . . . , hk:(True εX (Ak)) ` h : (True εX (A)) in η-
long normal form, where the variables hi, . . . , hj−1 occur in h only once, hj , . . . , hk occur in h

only once and precisely in this order, and ΓX is the context P1 : o, . . . , Pn : o, representing the
object-language atomic formulas P1, . . . , Pn.

As far as we know, this is the �rst example (see the discussion in, e.g. [Crary 2010]) of an
encoding of non-commutative linear logic in an LF-like framework. Notice the peculiarity of
this adequacy result, which is inevitable given the substructural nature of NCLL, but which is,
nonetheless, perfectly compositional. The gist is the following: as far as theorems, i.e. proofs
with no assumptions go, everything is standard; when assumptions, i.e. truly free, and not bind-
able variables are involved, an external requirement has to be externally checked. An alternate
formulation of adequacy could be stated representing, as in the λ-calculus case, truly free vari-
ables by constants. Obviously, carrying out a deep embedding of the system, one could enforce
the conditions on the variables occurring in the linear and ordered contexts by means of suitable
locks at the level of the proof terms.
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9.3 Imp with Hoare Logic

In this subsection, we give an encoding of an imperative language called Imp, together with its
Hoare Logic. The syntax of programs in Imp is:

p ::= skip null
| x := expr assignment
| if cond then p else p condition
| p; p sequence
| while cond {p} while

Other primitive notions of our object language are variables, both integer and identi�er, and
expressions. Here, identi�ers denote locations. For the sake of simplicity, we assume that only
integers (represented by the type int) as possible values for identi�ers. Importantly, we follow as
closely as possible the HOAS encoding, originally proposed in [Avron 1992], in order to illustrate
the features and possible advantages of using LFP with respect to LF. The main di�erence with
that approach is that here we encode concrete identi�ers by constants of type var, an int-like
type, of course di�erent from int itself, so as to avoid confusion with possible values of locations.
The syntax of variables and expressions is de�ned as follows:

De�nition 28 (LFP signature Σ for Imp).

int : Type bool : Type var : Type

bang : var -> int 0,1,-1 : int + : int -> int -> int

= : int -> int -> bool and, imp : bool -> bool -> bool

not : bool -> bool forall : (int -> bool) -> bool

Since variables of type int may be bound in expressions (by means of the forall construc-
tor), we de�ne explicitly the encoding function εexpX mapping expressions with bindable variables
of type int in X of the source language Imp into the corresponding terms of LFP :

εexpX (0) = 0, εexpX (1) = 1, εexpX (−1) = -1

εexpX (x) =

{
x if x ∈ X
(bang x) if x 6∈ X

εexpX (n+m) = (+ εexpX (n) εexpX (m)), εexpX (n = m) = (= εexpX (n) εexpX (m))

εexpX (¬e) = (not εexpX (e)), εexpX (e ∧ e′) = (and εexpX (e) εexpX (e′))

εexpX (e ⊇ e′) = (imp εexpX (e) εexpX (e′)), εexpX (∀x.φ) = (forall λx:int.εexpX∪{x}(φ))

where x in (bang x) denotes the encoding of the concrete memory location (i.e. a constant of
type var), representing the (free) source language identi�er x; the other case represents the
bindable variable x rendered as a LFP metavariable of type int in HOAS style. The syntax of
imperative programs is de�ned as follows:

De�nition 29 (LFP signature Σ for Imp with command).
We extend the signature of De�nition 28 as follows:

prog : Type

Iskip : prog

Iseq : prog -> prog -> prog

Iset : var -> int -> prog

Iif : Πe:bool.prog -> prog -> LQFe,bool[prog]

Iwhile : Πe:bool.prog -> LQFe,bool[prog]
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where the predicate QF (Γ `Σ e:bool) holds i� the formula e is closed and quanti�er free, i.e. it
does not contain the forall constructor. We can look at QF as a �good formation� predicate,
ruling out bad programs with invalid boolean expressions by means of locked terms.

The encoding function εprogX mapping programs with free variables in X of the source language
Imp into the corresponding terms of LFP is de�ned as follows:

εprogX (skip) = Iskip

εprogX (x := e) = Iset x εexpX (e)

εprogX (p; p′) = Iseq εprogX (p) εprogX (p′)

εprogX (if e then p else p′) = UQF
εexpX (e),bool

[(Iif ε
exp
X (e) ε

prog
X (p) ε

prog
X (p′))] (*)

εprogX (while e {p}) = UQF
εexpX (e),bool

[(Iwhile ε
exp
X (e) ε

prog
X (p))] (*)

where (*) denotes that e is a quanti�er-free formula (we are assuming to encode legal programs).
Now, given the predicate true: bool -> Type such that (true e) holds if and only if e is
true, we can de�ne a judgment hoare as follows:

De�nition 30 (LFP signature Σ for Hoare).

args : Type

<_ , _> : var -> (int -> bool) -> args

hoare : bool -> prog -> bool -> Type

hoare_Iskip : Πe:bool.(hoare e Iskip e)

hoare_Iset : Πt:int.Πx:var.Πe:int->bool.LP set〈x,e〉[(hoare (e t) (Iset x t) (e (bang x))]

hoare_Iseq : Πe,e',e'':bool.Πp,p':prog.(hoare e p e') ->

(hoare e' p' e'') ->

(hoare e (Iseq p p') e'')

hoare_Iif : Πe,e',b:bool.Πp,p':prog.(hoare (b and e) p e') ->

(hoare ((not b) and e) p' e') ->

(hoare e UQFb,bool[(Iif b p p′)] e')

hoare_Iwhile : Πe,b:bool.Πp:prog.(hoare (e and b) p e) ->

(hoare e UQFb,bool[(Iwhile b p)] ((not b) and e))

hoare_Icons : Πe,e',f,f':bool.Πp:prog.(true (imp e' e)) ->

(hoare e p f) ->

(true (imp f f')) ->

(hoare e' p f'),

where P set(Γ `Σ 〈x,e〉:args) holds if and only if e is closed3, and the location (i.e. constant) x

does not occur in e.

Such requirements amount to formalizing that no assignment made to the location denoted
by x a�ects the �meaning� or value of e (non-interference property). The intuitive idea here is
that if e = εexpX (E), p = εprogX (P ) and e′ = εexpX (E′), then (hoare e p e') holds if and only
if the Hoare's triple {E}P{E′} holds. The advantage with respect to previous encodings (see,
e.g., [Avron 1992]), is that in LFP we can delegate to the external predicates QF and P set all
the complicated and tedious checks concerning non-interference of variables and good formation
clauses for guards in the conditional and looping statements. Thus, the use of lock types, which
are subject to the veri�cation of such conditions, allows us to legally derive Γ `Σ m:(hoare e p

e') only according to the Hoare semantics.

3Otherwise, the predicate P would not be well-behaved, in the sense of De�nition 21.
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9.4 Probabilistic SAT-Checkers as Oracles for LFP

In this section, we provide an outline of how, for instance, a probabilistic SAT-checker based on
one of the logics presented in Part 1 of this thesis could be used as an external oracle in the LFP
framework, as part of a larger system.

For the purposes of this illustration, we will take into account the probabilistic logic LPPQ
2 ,

presented in Chapter 3, where there exist two layers of formulas - classical and probabilistic, and
the reasoning is essentially propositional. Encoding the formulas of this logic in LFP is natural
and follows the Coq encoding practically to the letter:

pp : Type base : pp -> forC Pge : Q01 -> forC -> forP

forC : Type negC : forC -> forC negP : forP -> forP

forP : Type impC : forC -> forC -> forC impP : forP -> forP -> forP

FOR : Type Clas : forC -> FOR Prob : forP -> FOR

where Q01 is the type of rational numbers from the unit interval, which can, for instance, be
de�ned as pairs of natural numbers such that the �rst is always greater than or equal to the
second, and the second is necessarily greater than zero, and pp is the type of propositions.

One way in which we could use this logic as an oracle is by providing a predicate Consistent,
which takes as an input a list4 of formulas f1, . . . fn of type FOR, and returns true if and only if
each of the formulas from the list is closed, and the list itself, when treated as a set, is LPPQ

2,Meas-
satis�able5. This check would be external to LFP , and would be accomplished by an appropriate
probability SAT-checker. Since LPPQ

2 is propositional, we do not have any binders to consider,
and since we require the formulas in question to be closed, the predicate Consistent is indeed
well-behaved. This predicate could then be used as part of a larger (possibly decision-support)
system encoded in LFP , which would make use of its own elements as propositions.

LSatisfiable<f1,...,fn>,list[M ] : LSatisfiable<f1,...,fn>,list[ρ]

Here, we can again see the advantages of LFP with respect to LF, as the encoding of a
probabilistic SAT-checker in LF would have been a very di�cult, if not an impossible task.

9.5 Several further comments on LFP

Arguably, one might still wonder whether develop all of the meta-theory presented in this thesis
it worth it. Why should one choose to outsource parts of the formalization and veri�cation of an
object system to an external tool, when one could simply take a �monolithic� stance, encoding
and checking everything within his proof assistant of choice. While this is a completely legitimate
strategy, there exist several drawbacks to be addressed.

Let us give another practical application of the Poincaré Principle. Let us take ourselves to
the setting of a formalization of π-calculus (see, e.g., [Honsell 2001]), where we would like to
prove rigorously that if a certain property P holds on a process P , then the same property also
holds on the process (νx)P , under the condition that x 6∈ fn(P ). On paper, it is easy to conclude
this, since we know that P ≡ (νx)P under the aforementioned freshness assumption. However,
proof assistants force the user to spell out in full detail even trivial proofs like P ≡ (νx)P .

4The encoding of a list of formulas in LFP , can be accomplished in the usual way, by de�ning the constructors
nil : list and cons : FOR -> list -> list, for instance.

5Since we have the Strong Completeness Theorem for LPPQ
2 (Theorem 9), we can interchange at will the

terms '`consistent� and `'satis�able�.
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Therefore, if we were to formally prove the previous structural congruence statement, we would
have to proceed by applying the basic axioms:

P |0 ≡ P 0 is the identity w.r.t. parallel composition
P |(νx)0 ≡ P (νx)0 ≡ 0

(νx)(P |0) ≡ P (νx)(P |Q) ≡ P |(νx)Q if x 6∈ fn(P )
(νx)P ≡ P 0 is the identity w.r.t. parallel composition

Here, we illustrate only the main steps of the proof, using structural rules, transitivity and
symmetry implicitly. Surely, this is rather tedious and does not require any particular skill to
be carried out: it is a trivial veri�cation-like checking, e.g. that 2 + 2 = 4 ([Poincaré 1902,
Barendregt 2002]). Of course, one will do the proof once and then save it for future re-use.
However, at the level of the machinery behind the proof assistant, this implies larger proof
terms, more memory consumption and, in general, a slowdown in the overall performance6. Thus,
the opportunity of delegating such straightforward and trivial veri�cations to an external (and
possibly optimized) tool would be very helpful during complicated formal proof developments.
Furthermore, the user of the proof assistant would be free to concentrate only on the �creative�
part of the entire proof and the framework itself would be free to avoid an explicit treatment of
the �uninteresting� parts of the proof. Precisely this is an important aspect of the spirit behind
the design of LFP : allowing the user to factorize apart consolidated proof knowledge, freeing
himself and the framework of recording �useless� and trivial veri�cations in full detail.

To illustrate this outsourcing further, in the case of the π-calculus, the reduction rule taking
into account structural congruences between processes, namely

P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q
P −→ Q

can be easily encoded in LFP using locked types in the following manner:

LStruct〈P,P′,Q′,Q〉[(red P Q)]

where the red symbol serves to encode the reduction relation −→, and the external predicate
Struct holds if and only if P ≡ P ′ and Q′ ≡ Q.

Moreover, one can easily incorporate other systems separating derivation and computation
within LFP . For example, the rule

C A→ B A ≡ C
B

in Deduction Modulo can be represented as:

⊇≡: ΠA,B,C:o.Πx:True(A→ B).Πy:True(C).L≡〈A,C〉[True(B)].

However, the mechanism of locked/unlocked types in LFP is more general than the one
provided by Deduction Modulo or the Poincaré principle. The latter can be viewed as extensions
of the type Equality Rule to new de�nitional equalities, while LFP , on the other hand, allows
one to re�ect into the proof objects themselves, as has been extensively shown in the examples.
As a �nal illustration, we could address formally the issue of re�ection in LFP . We can already
grasp the gist of this philosophy through the following principle:

Reflection : Πx:o. LisTruex,o [(True x)].

6As we already pointed out in the introduction, proof terms can be kept small, adopting a re�ection approach
(see, e.g., [Chlipala 2013]), but at the price of proving the correctness of the decision procedures internally.
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9.6 Summary

In this chapter, we have presented several important case studies of encodings in LFP , illustrating
the potential and advantages of this framework with respect to standard LF. We have encoded
the untyped λ-calculus with the call-by-value reduction strategy and shown how it can be further
extended to incorporate design-by-contract. Next, we have presented encodings of various modal
logics, as well as the �rst encoding of non-commutative linear logic in an LF-type framework.
Lastly, we have shown how to encode a small imperative language featuring Hoare logic, and
given an outline of how a probabilistic SAT-checker could be used as an external oracle of LFP .
All the while, we have been relying on locked types and external predicates to deal with the
side conditions of the formal systems in question, thus obtaining an elegant separation between
derivation and computation.
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10.1 Concluding Remarks

In this thesis, we have documented the research e�orts belonging to two notable �elds of math-
ematics - mathematical logic and type theory - two �elds which are separate yet intertwined,
brought together by the Curry-Howard correspondence.

Probability Logics. Following an appropriate introduction into the matter, in the �rst part
of the thesis we have introduced one new probability logic with conditional operators - LPCP,
and formally veri�ed the key properties (soundness, strong and simple completeness, and non-
compactness) of another two - LPPQ

1 and LPPQ
2 .

The logic LPCP- a probability logic with conditional probability operators CPi, i ∈ I, which
allows for linear combinations and comparative statements on the probabilites of formulas, has
been introduced in the second chapter, along with its syntax, semantics, and a sound and
strongly-complete axiomatic system, featuring an in�nitary rule. The obtained formalism was
shown to be fairly expressive and allows for the representation of uncertain knowledge, where
uncertainty is modeled by probability formulas. It has also been shown to be decidable, with a
PSPACE containment for the decision procedure, and was extended so as to represent evidence,
making it the �rst propositional axiomatization of reasoning about evidence.

In the third and fourth chapters, we have presented probability logics LPPQ
1 and LPPQ

2 ,
which allow for reasoning on the probability of events, together with their encodings in the
proof assistant Coq. Each of these two logics has its own speci�cities. They both involve the
extension of classical logic with modal-like probability operators P≥r, for r ∈ Q[0,1], and both
are equipped with an in�nitary inference rule, in order to capture strong completeness. In
LPPQ

2 , we have an explicit separation between classical and probabilistic formulas, resulting in
a two-layered proof structure, with a probabilistic layer built atop classical logic. This prohibits
the mixing of classical and probabilistic formulas and the iterations of probability operators.
LPPQ

1 , on the other hand, is more expressive, with no distinction between formulas, and allows
iterations of probability operators. For each of these two logics, we have encoded their syntax,
semantics, and axiom systems, and provided formal proofs of several important meta-theorems,
notably soundness, strong and simple completeness, and non-compactness. In this way, we have
formally justi�ed the interchangeability of the syntactic and the semantic level for these logics,
i.e. justi�ed the use of probabilistic SAT-solvers for the checking of consistency-related questions.
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The LFP Framework In the second part of the thesis, in chapters �ve through nine, we
have presented a new Logical Framework with External Predicates, building on the well-known
LF, by introducing a mechanism for locking and unlocking types and terms, allowing the use of
external veri�cation tools. We have proven that LFP satis�es the main meta-theoretic properties:
strong normalization, con�uence, and, with certain well-behavedness conditions enforced, subject
reduction. We have also developed a corresponding canonical framework - CLFP, allowing for
easy proofs of the adequacy of encodings. We have provided a number of encodings, including
the simple untyped λ-calculus with a call-by-value reduction strategy, the Design-by-Contract
paradigm, a small imperative language with Hoare logic, as well as Modal Logics in Hilbert
and Natural Deduction style, and Non-Commutative Linear Logic, illustrating that in LFP we
can encode side-conditions on the application of rules elegantly, and achieve, when necessary, a
separation between veri�cation and computation, resulting in cleaner and more readable proofs.

10.2 Further Work

Development of Probability Logics. As far as further research is concerned with respect
to the logic LPCP, a similar approach could be investigated with conditional probabilities in the
style of de Finetti. One alternative approach would consider dealing with �rst-order probabilistic
formulas and has already been researched, as a continuation of the work presented in this
chapter, in [Milo²evi¢ 2012], where the authors have extended the formulas of LPCP to �rst-order
formulas, provided an in�nitary axiom system, and proven its soundness and strong completeness
with resepct to the considered class of �rst-order Kripke-like models, and decidability, provided
the underlying �rst-order theory is decidable. Also, in [Doder 2012], the authors have presented
a probabilistic temporal logic which can model reasoning about evidence.

Formal Veri�cation of Probability Logics. In this segment, we can think of two main
continuations. First, the ideas used in the Coq encodings of the already veri�ed logics can be re-
used for logics which are their extensions or variations. For instance, an addition of a qualitative
operator on probabilities can be handled easily. Also, once the Coq tools for handling real or
non-standard analysis have reached the required level, it would be possible to extend the co-
domain of the measure to real numbers or the non-standard rational unit interval. Although the
code is not re-usable per se, the making of appropriate modi�cations and adjustments to the
code would not require more than one week for a Coq user familiar with the proofs.

On the other hand, the next property of the already encoded logics which could be addressed
formally is their decidability. Given a formal speci�cation of the appropriate decision procedure
in Coq, it would be possible to, for the �rst time, obtain a certi�ed probabilistic SAT-solver.
Of course, the attention here should also be directed at various optimizations of the decision
process, in an e�ort to yield a robust and (relatively) fast code.

Prospects for LFP . There exist several directions that we could consider. First, one can
notice that the LFP system presented in this thesis is a purely �rst-order predicative type theory,
corresponding to the vertex (1,0,0) of Barendregt's cube [Barendregt 1992]. One reasonable and
worthwhile step further would be to try to extend it to the full impredicative higher-order
Calculus of Constructions, which, given the meta-theoretic results presented in this thesis, and
the manner in which they were proven, does not appear to be too di�cult a task, while it would
bring us a signi�cant additional degree of expressiveness to be explored.

Next, we could investigate alternative presentations of LFP , featuring, for instance, typed
reductions, or removing the unlock destructors from the system altogether and delegating the
checking of the validity of the predicates to L-reduction. In this way, we would not require



10.2. Further Work 121

the well-behavedness condition concerning closure under signature and context weakening and
permutation, but we would require the predicates to be well-behaved for all meta-theoretical
results. Also, in certain cases, we might even wish to keep track of the external calls made
during the derivation, and one way in which this could be accomplished is to employ a variation
of LFP in which L-reductions do not �re, thus preserving the U-L pairs within the term. More
practical experimentations with LFP will provide more insights on these issues.

Also, the machinery of derivations with locked types is similar to δ-rules à la Mitschke
(cf. [Barendregt 2013]), when we view lock rules, at the object level, as δ-rules releasing their
argument once the condition has been satis�ed. This connection could be investigated further.
For instance, we could use the untyped object language of LFP to support the design-by-contract
programming paradigm. Moreover, we believe that LFP can shed light on various concepts in
need of better formal understanding, such as the topic shallow vs. deep encodings, proposition-
as-types for modal operators, and combinations of di�erent validation tools.

Next, it would be interesting to study the possibility of �embedding� the Higher-order Term
Rewriting Systems, as in [Virga 1999], as well as the constraint domains of Twelf in LFP as
external predicates, since the constraints imposed on the rewriting rules seem closely related
to our well-behavedness properties (see De�nition 21). Indeed, just as in [Virga 1999], we have
also used Newman's Lemma (see Chapter 7) to prove con�uence of our system, and the issue
of preserving well-typedness of expressions has also been our main concern throughout the
development of the meta-theory of LFP .

On a di�erent note, we believe that the LFP framework could also �nd its usage in mod-
eling dynamic and reactive systems, such as bio-inspired systems, where reactions of chemical
processes take place only if certain additional structural or temporal conditions hold, as well as
process algebras, where no assumptions can be made about messages exchanged through the
communication channels. There, it could be the case that a redex, depending on the result of
a communication, can remain stuck until a �good� message arrives from a given channel, �ring
in that case an appropriate reduction (a common situation in many protocols, where �bad� re-
quests are ignored and �good ones� are served). Such dynamic (run-time) behavior could hardly
be captured by a rigid type discipline, where �bad� terms and hypotheses are ruled out a priori
([Nanevski 2008]).

Last, but by no means least, building a prototype of LFP is under consideration and is
expected to be carried out in the near future. Although there are several important questions
to be answered, such as whether to build the prototype from scratch or attempt to modify
the kernel of one of the currently existing proof assistants, or how to design an appropriate
interface between the prototype and the external oracles, we believe that this development,
when completed, would present an intriguing new take on the concept of proof assistants.
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