The research for this thesis has followed two main paths: the one of probability logics and the other of type systems and logical frameworks, bringing them together through interactive theorem proving. With the development of computer technology and the need to capture real-world dynamics, situations, and problems, reasoning under uncertainty has become one of the more important research topics of today, and one of the tools for formalizing this kind of knowledge are probability logics. Given that probability logics, serving as decision-making or decision-support systems, often form a basis for expert systems that nd their application in elds such as game theory or medicine, their correct functioning is of great importance, and formal verication of their properties would add an additional level of security to the design process. On the other hand, in the eld of logical frameworks and interactive theorem proving, attention has been directed towards a more natural way of encoding formal systems where derivation rules are subject to side conditions which are either rather dicult or impossible to encode naively, in the Edinburgh Logical Framework LF or any other type-theory based Logical Framework, due to their inherent limitations, or to the fact that the formal systems in question need to access the derivation context, or the structure of the derivation itself, or other structures and mechanisms not available at the object level.

The rst part of the thesis deals with the development and formal verication of probability logics. First, we introduce a Probability Logic with Conditional Operators -LPCP, its syntax, semantics, and a sound and strongly-complete axiomatic system, featuring an innitary inference rule. We prove the obtained formalism decidable, and extend it so as to represent evidence, making it the rst propositional axiomatization of reasoning about evidence.

Next, we show how to encode probability logics LP P Q 1 and LP P Q 2 in the Proof Assistant Coq.

Both of these logics extend classical logic with modal-like probability operators, and both feature an innitary inference rule. LP P Q 1 allows iterations of probability operators, while LP P Q 2 does not. We proceed to formally verify their key properties -soundness, strong completeness, and non-compactness. In this way, we formally justify the use of probabilistic SAT-solvers for the checking of consistency-related questions.

In the second part of the thesis, we present LF P -a Logical Framework with External Predicates, by introducing a mechanism for locking and unlocking types and terms into LF, allowing the use of external oracles. We prove that LF P satises all of the main meta-theoretical properties (strong normalization, conuence, subject reduction, decidability of type checking). We develop a corresponding canonical framework, allowing for easy proofs of encoding adequacy. We provide a number of encodings -the simple untyped λ-calculus with a Call-by-Value reduction strategy, the Design-by-Contract paradigm, a small imperative language with Hoare Logic, Modal Logics in Hilbert and Natural Deduction style, and Non-Commutative Linear Logic (encoded for the rst time in an LF-like framework), illustrating that in LF P we can encode side-conditions on the application of rules elegantly, and achieve a separation between derivation and computation, resulting in cleaner and more readable proofs.

We believe that the results presented in this thesis can serve as a foundation for fruitful future research. On the one hand, the obtained formal correctness proofs add an additional level of security when it comes to the construction of expert systems constructed using the veried logics, and pave way for further formal verication of other probability logics. On the other hand, there is room for further improvement, extensions, and deeper analysis of the LF P framework, as well as the building of a prototype interactive theorem prover based on LF P and discovering its place in the world of proof assistants.

rst co-tutelle doctoral studies between Serbia and France. At rst, reluctantly, I turned the oer down, but after a little soul searching, ultimately accepted. That turned out to be the best decision of my life. During the course of my studies, I have had the privilege of working together with some of the nest researchers in my eld of expertise and of experiencing rst-hand the magic that is science. It was a once-in-a-lifetime experience. However, as professionally fullling as I have found that to be, it has no choice but to stand eclipsed by the wonderful people that I have encountered in the process, lifelong friendships and connections that I have witnessed both form and dissolve, and the multi-cultural exchange of thoughts and ideas on anything and everything, through which I have grown immensely as a person. With the defense of my thesis, this beautiful chapter of my life arrives to a close, and the time comes for me to share my gratitude with the people who helped it to be the amazing journey that it truly was.

First of all, I would like to thank my three de facto advisers -professors Luigi Liquori, Zoran Ognjanovi¢, and Silvia Ghilezan. Thank you Luigi, for your optimism, enthusiasm, dedication, and your endless ow of ideas. Thank you Zoran, for your directions, insights, and meticulousness. Thank you Silvia, for your calmness, persistence, and unyielding support. Thank you all for gifting me with this incredible, life-changing experience. I am indebted to you forever.

In May and June 2011, I have had the opportunity of being a visiting researcher at the University of Udine, and the privilege of collaborating with professors Furio Honsell, Marina Lenisa, and Ivan Scagnetto, on what was then an idea o the top of our heads, but what has since evolved to be the keystone of my thesis. Your methodicalness, precision, and drive have helped me improve as a researcher, and understand and appreciate the growing world of typed λ-calculi ever more so. Thank you all so much for that.

I would also like to thank professor Pierre Lescanne and professor Hugo Herbelin, for doing me the honour of being rapporteurs for my thesis, as well as professor Zoran Markovi¢ and professor Jovanka Pantovi¢, for graciously accepting to be part of the jury.

Finally, my deepest gratitude goes to my family and to my friends, old and new alike. You have been a never-ending source of love and support, patience and wittiness, in good times and bad. I am so grateful for having you in my life. Thank you. Belgrade, Novi Sad, Udine, andSophia Antipolis, 2008-2013. Résumé La recherche eectuée dans cette thèse a suivi deux voies principales: celle des logiques probabilistes et celle des systemes de type et des ses cadres logiques corrélés. Ces deux voies se rassemblent dans la démonstration des théoremes interactifs. Avec le développement de la technologie informatique et la nécessité de comprendre les dynamiques du monde réel, leurs situations et les leurs problemes, le raisonnement incertain est devenu un des sujets contemporains de recherche les plus importants; parmi les outils pour formaliser ce type de connaissances, on peux trouver les logiques probabilistes. Ces logiques sont utilisées avec succes dans les systemes de (aide a la) décision et constituent la base logique pour l'application des systemes experts dans les domaines de la théorie des jeux ou de la médecine: le bon fonctionnement de tels systemes est essentiel: la vérication formelle des susdits systemes experts rajoute un niveau supplémentaire de sécurité dans le processus de leurs conception. De plus, dans le domaine de la conception des assistants a la preuve et des démonstrateurs des théoremes interactifs basées principalement sur le cadre logique d'Edinburgh LF, l'attention s'est dirigée naturellement vers le codage des systemes formels ou les regles de dérivation sont soumis a des conditions supplémentaires qui peuvent etre codiées naivement et de façon peu naturelle en raison de la limites de conception des cadres logiques, ou du fait que les systemes formels, dont ils sont a la base, ont besoin d'accéder au contexte de la dérivation logique, ou a la structure de la dérivation elle-meme, ou a d'autres structures et mécanismes non disponibles facilement au niveau de la preuve.

Dans la premiere partie de la thèse, on présente une logique probabiliste avec des operateurs conditionnels -LPCP -sa syntaxe, sa sémantique, son axiomatisation correcte et fortement complete comprenant une regle de déduction innitaire. On prouve que le formalisme obtenu est décidable, et on l'étend pour qu'il puisse représenter une preuve d'évidence, en créant ainsi la premiere axiomatisation propositionnelle du raisonnement basé sur l'évidence.

On codie les Logiques Probabilistes LP P Q 1 et LP P Q 2 dans l'assistant a la preuve Coq, et on vérie formellement leur propriétés principales: correction, complétude et non-compactness.

Les deux logiques étendent la logique classique avec des opérateurs de probabilité modale, et présentent une regle de déduction innitaire. LP P Q 1 permet des itérations des opérateurs de probabilité, lors que LP P Q 2 ne le permet pas. Ainsi, on a formellement justié l'utilisation des solveurs SAT probabilistes pour vérier les questions liées a la cohérence.

Dans la deuxieme partie de la thèse, on présente LF P , un cadre logique avec prédicats externes, en introduisant un mécanisme pour bloquer et débloquer les types et les termes dans LF, en permettant l'utilisation d'oracles qui peuvent etre appelés en dehors du cadre logique principale. On démontre que LF P satisfait tous les propriétés principales méta-théorétiques et on développe un cadre canonique correspondant, permettant de prouver facilement la propriété d'adéquation. On présente diverses encodages comme, par exemple, le λ-calcul non-typé avec une stratégie de réduction call-by-value, le paradigme de la programmation-par-contrats, un petit langage impératif avec la logique de Hoare, des logiques modales dans le styles de la déduction naturelle et de Hilbert, et la logique linéaire non-commutative (encodée pour la premiere fois dans un cadre logique à la LF), en montrant aussi qu'avec LF P on peut codier aisément des side-conditions dans l'application des regles de typage ainsi qu'on peut atteindre, si nécessaire, une séparation entre dérivation et calcul, en obtenant au nal des preuves plus claires et lisibles.

On pense que les résultats présentés dans cette thèse pourront servir de base pour de futures recherches fructueuses. D'une part, les preuves de correction ociels obtenus rajoutent un niveau supplémentaire de sécurité quand il s'agit de la conception de systemes experts utilisant les logiques vériées formellement, et ouvrent une voie a la vérication formelle a d'autres vi logiques probabilistes. D'autre part, des améliorations et des extensions sont possibles et envisageables comme une analyse plus profonde du cadre LF P , l'implémentation d'un prototype de démonstrateur interactif basé sur LF P et la découverte de sa place dans la pléthore des assistants a la preuve.

Rezime

Istraºivanje vezano za ovu doktorsku tezu je pratilo dva osnovna puta: jedan vezan za verovatnosne logike a drugi za tipske sisteme i logi£ka okruºenja, povezuju¢i ih kroz interaktivno dokazivanje teorema. Sa razvojem ra£unarske tehnologije i potrebe da se modeliraju dinamika, situacije i problemi stvarnog sveta, rezonovanje u odsustvu sigurnih informacija je postalo vaºan istraºi-va£ki problem dana²njice, a jedan od alata za formalizaciju ove vrste znanja su verovatnosne logike. Uzev²i u obzir da verovatnosne logike, u svojstvu sistema za odlu£ivanje ili za podr²ku odlu£ivanju, £esto sluºe kao osnova ekspertskih sistema koji nalaze primene u oblastima kao ²to su teorija igara i medicina, njihovo korektno funkcionisanje je od velikog zna£aja i formalna verikacija njihovih svojstava bi dodala dodatni nivo sigurnosti u proces dizajniranja ovakvih sistema. Sa druge strane, u oblasti logi£kih okruºenja i interaktivnog dokazivanja teorema, paºnja se pridaje tehnikama kojima bi se prirodnije mogli zapisati formalni sistemi u kojima su pravila izvodjenja ograni£ena uslovima koje je veoma te²ko ili nemogu¢e zapisati jednostavno, bilo u standardnom okruºenju LF ili u bilo kojem drugom okruºenju zasnovanom na teoriji tipova, usled njihovih inherentnih ograni£enja ili usled potrebe pristupa kontekstu ili strukturi izvodjenja, ili drugim mehanizmima koji nisu dostupni na objektnom nivou.

Prvi deo teze se bavi razvojem i formalnom verikacijom verovatnosnih logika. Predstavljena je verovatnosna logika sa operatorima uslovne verovatno¢e -LPCP, njena sintaksa, semantika, kao i saglasan i jako potpun aksiomatski sistem, koji sadrºi innitarno pravilo izvodjenja.

Pokazano je da je dobijeni formalizam odlu£iv. Prikazano je pro²irenje LPCP u okviru kojeg je mogu¢e reprezentovati svedo£enje, £ime je prvi put data iskazna aksiomatizacija svedo£enja.

Zatim, pokazano je kako se verovatnosne logike LP P Q 1 i LP P Q 2 mogu zapisati u interaktivnom dokaziva£u teorema Coq. Obe logike su dobijene pro²irivanjem klasi£ne logike verovatnosnim operatorima i obe sadrºe innitarno pravilo izvodjenja. LP P Q 1 dopu²ta iteracije verovatnosnih operatora, dok ih LP P Q 2 ne dopu²ta. Formalno je verikovano da su ove logike saglasne, jako potpune i nekompaktne. Na ovaj na£in, formalno je odobrena upotreba verovatnosnih SAT-re²ava£a za re²avanje problema vezanih za konzistentnost formula.

U drugom delu teze, predstavljeno je LF P -logi£ko okruºenje sa eksternim predikatima, dobijeno uvodjenjem mehanizama zaklju£avanja i otklju£avanja tipova u logi£ko okruºenje LF, time omogu¢avaju¢i kori²¢enje eksternih alata. Dokazano je da LF P zadovoljava sva vaºna metateoretska svojstva (jaka normalizacija, konuentnost, redukcija subjekta, odlu£ivost tipiziranja).

Razvijeno je odgovaraju¢e kanonsko okruºenje, pomo¢u kojeg se lako moºe pokazati adekvatnost zapisa. Prikazan je niz zapisa, uklju£uju¢i λ-ra£un bez tipova sa call-by-value strategijom redukcije, Design-by-Contract paradigmu, jednostavan imperativni programski jezik sa Horovom logikom, modalne logike (u stilu Hilberta, kao i preko prirodne dedukcije) i nekomutativnu linearnu logiku (prvi put zapisanu u okviru okruºenja à la LF). Time je pokazano da se u okviru LF P elegantno mogu zapisati dodatni uslovi pri primeni pravila izvodjenja, kao i da se moºe posti¢i razdvajanje izvodjenja i izra£unavanja, £ime se dobijaju jasniji i £itljiviji dokazi.

Verujemo da rezultati predstavljeni u ovoj tezi mogu posluºiti kao osnova za plodonosna dalja istraºivanja. Sa jedne strane, dobijeni formalni dokazi daju dodatni nivo sigurnosti pri konstrukciji ekspertskih sistema koji bi se zasnivali na verikovanim logikama, a takodje i olak²avaju verikaciju drugih verovatnosnih logika. Sa druge strane, svakako se moºe na¢i prostora za dalje unapredjenje, pro²irenje i dublju analizu logi£kog okruºenja LF P , kao i za prototipsku implementaciju interaktivnog dokaziva£a teorema zasnovanog na LF P i pronalaºenje njegovog mesta u paleti dana²njih interaktivnih dokaziva£a teorema. logics has not yet been approached in that context. In this thesis, probability logics have been treated from two perspectives -that of development, and that of verication. First, we present a new probability logic with conditional probability operators (LPCP), its syntax, semantics, a corresponding strongly-complete axiomatic system, and show how this logic can be used to represent evidence (Chapter 2). Next, we encode in Coq and provide a formal verication of the soundness, strong completeness and non-compactness for two rationally-valued probability logics, each with their own specicities (Chapter 3 and Chapter 4). The proofs for these two logics share a common outline, which can be adapted and re-used for proving properties of other probability and modal-like logics.

The Edinburgh Logical Framework or LF is one of the better-known logical frameworks today.

After being introduced in 1993, it has found widespread usage in theoretical and applied research.

It is one of the systems of Barendregt's λ-cube [Barendregt 1992], and constitutes the basis of several proof assistants. However, it does have its limitations. For instance, there are formal systems where derivation rules are subject to side conditions which are either rather dicult or impossible to encode naively, in LF or any other type-theory based Logical Framework, due to their inherent limitations, or to the fact that the formal systems in question need to access the derivation context, or the structure of the derivation itself, or other structures and mechanisms not available at the object level (modal and program logics, for one). Bearing this in mind, together with the idea of developing a framework in which pre-and post-conditions could be encoded naturally, we have developed LF P -an extension of LF with external predicates. These predicates act as locks in the ow of reduction, blocking it until a condition has been (possibly externally) veried to be true. In this way, not only can we encode the aforementioned systems with greater ease, but we also manage to, in a sense, separate derivation and computation, by outsourcing the latter to an external verier. We introduce LF P (Chapter 5) present its type system (Chapter 6) prove all of the important meta-theoretical properties (Chapter 7), construct an appropriate canonical framework LF C P (Chapter 8), and present a series of encodings illustrating the features and benets of LF P (Chapter 9).

Contributions of the Thesis. In a nutshell, the original contributions of this thesis are threefold:

1. A new probability logic with conditional probability operators (LPCP) with its corresponding strongly-complete axiomatic system, which can be used to represent evidence, 2. Formal verication of the soundness, strong completeness and non-compactness for two rationally-valued probability logics, in the proof assistant Coq, and 3. LF P -a Logical Framework with dependent types, extending the Edinburgh Logical Framework LF with calls to external oracles. The main novelty of this framework are locked types, which block the ow of reduction until a given condition holds, allowing substantially easier encodings of systems with side conditions and an elegant separation between derivation and computation.

Probability in Logic

In this section, we provide a historical overview of the development of probability logics, reecting on the ideas of the most important researchers in this eld. The following text was adapted, in the better part, from [Ognjanovi¢ 2009].

The rst one to consider incorporating the notions of probability and logic together was the famous German mathematician and philosopher Gottfried Wilhelm Leibnitz. As he searched for a universal basis for all sciences and sought to establish logic as a generalized mathematical calculus, he considered probability logic as a tool for estimation of uncertainty, and dened probability as a measure of knowledge. In a number of his essays [START_REF] Leibnitz | [END_REF], Leibnitz 1669, Leibnitz 1765], Leibnitz suggested that the tools which have been developed for analyzing games of chance should be directed towards the development of a new kind of logic addressing degrees of probability and that this logic could then facilitate rational decision-making on apparently conicting claims. He distinguished between two calculi. The rst one, forward calculus, was concerned with estimating the probability of an event if the probabilities of its conditions are known, whereas the second one, reverse calculus, dealt with estimations of probabilities of causes, once the probability of their consequence is known. Although most of Leibnitz's logical works were published long after his death (in the early 1900s), he did have a number of followers, the most important of whom, when it comes to probabilistic logic, were the brothers Jacobus and Johann Bernoulli, Thomas Bayes, Pierre Simon de Laplace, Bernard Bolzano, Augustus De Morgan, George Boole, John Venn, Charles S. Peirce, etc.

Jacobus Bernoulli was the rst who made advance along Leibnitz's ideas in his unnished work [Bernoulli 1713, Part IV, Chapter III]. By making use of Huygen's notion of expectation, i.e. the value of a gamble in games of chance, he oered a procedure for determining numerical degrees of certainty of conjectures produced by arguments. He used the word argument to represent statements, as well as the implication relation between premises and conclusions. He divided arguments into categories according to whether the premises and the argumentation from premises to conclusions are contingent or necessary. For example, if an argument were to exist contingently (i.e. it is true in cases when b > 0, and is not true in cases when c > 0) and implies a conclusion necessarily, then such an argument would establish b b+c as the certainty of the conclusion. Bernoulli also discussed the question of computing the degree of certainty when there was more than one argument for the same conclusion.

In [START_REF] Bayes | An Essay towards Solving a Problem in the Doctrine of Chances[END_REF]], T. Bayes rst presented a result involving conditional probability. In modern notation, he considered the problem of nding the conditional probability P (A|B) where A is the proposition P (E) ∈ [a, b], and B is the proposition an event E occurred p and did not occur q times in p + q independent trials. A. De Morgan devoted a chapter of [de [START_REF] De Morgan | Formal Logic[END_REF] to probability inference, oering a defense for the numerical probabilistic approach as a part of logic. Instead of giving a systematic treatment of the eld, he described several problems and tried to apply logical concepts to them. It is interesting that in his work, De Morgan made some mistakes, mostly due to his ignoring of (in)dependence of events.

The calculus presented by G. Boole in [START_REF] Boole | The Mathematical Analysis of Logic[END_REF][START_REF] Boole | An Investigation into the Laws of Thought, on which are founded the Mathematical Theories of Logic and Probabilities[END_REF]] led to a rapid development of mathematical logic. Boole sought to make his system the basis of a logical calculus as well as a more general method to be applied in probability theory. The most general problem (originally called the general problem in the theory of probability) Boole claimed that he could solve, concerned an arbitrary set of logical functions {f 1 (x 1 , . . . , x m), . . ., f k (x 1 , . . . , x m), F (x 1 , . . . , x m)} and the corresponding probabilities p 1 = P (f 1 (x 1 , . . . , x m)), . . ., p k = P (f k (x 1 , . . . , x m)), and asked for P (F (x 1 , . . . , x m)) in terms of p 1 , . . . , p k . He elaborated on the relation between the logic of classical connectives and the formal probability properties of compound events using the following assumptions. He restricted disjunctions to the exclusive ones, and believed that any compound proposition can be expressed in terms of, maybe ideal, simple and independent components. Thus, the probability of an or-compound is equal to the sum of the components, whereas the probability of an and-compound is equal to the product of the components. In such a way, it was possible to convert logical functions of events into a system of algebraic functions of the corresponding probabilities. Boole attempted to solve such systems using a procedure equivalent to Fourier-Motzkin elimination. His procedure, although not entirely successful, provided an important basis for probabilistic inferences. In [Hailperin 1984, Hailperin 1986] a rationale and a correction for the Boole's procedure were given using the linear programming approach.

In the 1870's, J. Venn developed the idea of extending the frequency of occurrence concept of probability to logic. Venn thought that probability logic is the logic of sequence of statements.

A single element sequence of this type attributes to the given proposition one of two values 0 or 1, whereas an innite sequence attributes any real number which lies in the interval [0,1]. Some of the traditional logicians were dissatised with the inclusion of the induction in the denition of the concept of probability, but the others continued to work in that direction.

During the rst half of the twentieth century, there were at least three directions in the development of theory of probability. The researchers who belonged to the rst one, Richard von Miss and Hans Reichenbach, for example, regarded probability as a relative frequency and derived rules of the theory from that interpretation. The second approach was characterized by the development of formal calculus of probability. Some of the corresponding authors were Georg Bohlmann [Bohlmann 1901], Sergei Natanovich Bernstein [Bernstein 1917], and Émil Borel [Borel 1924, Borel 1925]. These investigations culminated in A. N. Kolmogorov's axiomatization of probability [Kolmogorov 1933]. Finally, some of the researchers, like John M. Keynes [Keynes 1921], Hans Reichenbach [Reichenbach 1935, Reichenbach 1949], and Rudolf Carnap [START_REF] Carnap | Logical Foundations of Probability[END_REF][START_REF] Carnap | The Continuum of Inductive Methods[END_REF]] continued Boole's approach connecting probability and logic.

In spite of the works of these researchers, the main streams of development of logic and probability theory were almost separated during the second half of XX century. Namely, in the last quarter of the nineteenth century, independently of the algebraic approach, there was a development of mathematical logic inspired by the need of giving axiomatic foundations of mathematics. The main representative of that eort was Gottlob Frege. He tried to explain the fundamental logical relationships between the concepts and propositions of mathematics.

Truth-values, as special kinds of abstract values, were described by Frege according to whom every proposition is a name for truth or falsity. It is clear that, according to Frege, the truth values had a special status that had nothing to do with probabilities. That approach culminated with Kurt Gödel's proof of completeness for rst order logic [START_REF] Gödel | Über die Vollstandigkeit des Logikkalkulus[END_REF]]. Since those works, rst order logic played the central role in the logical community for many years, and only in the late 1970s a wider interest in probability logics reappeared.

The most important advancement in probability logic, after the works of Leibnitz and Boole, was made by H. Jerome Keisler. The purpose of his famous paper [Keisler 1977] was to introduce a model-theoretic approach into probability theory, using non-standard analysis.

Keisler introduced several probability quantiers, such as P x > r, with the intended meaning that the formula (P x > r)φ(x) holds if the set {x : φ(x)} has probability greater than r. A recursive axiomatization for these logics (the main of which is denoted by L AP) was given by D. Hoover [Hoover 1978], using admissible and countable fragments of innitary predicate logic (but without resorting to two standard quantiers -∀ and ∃). In the following years, Keisler and Hoover made very important contributions in the eld. They proved completeness theorems for various kinds of models (probability, graded, analytic, hypernite etc.) and many other modeltheoretical theorems. The development of probability model theory has engendered the need for the study of logics with greater expressive power than that of the logic L AP . The logic L AI , introduced in [Keisler 1985] as an equivalent of the logic L AP , allows the user to express many properties of random variables in an easier way. In this logic, the integral quantiers . . . dx are used in place of the quantiers P x > r.

The logic L AI is not rich enough to express probabilistic notions involving conditional expectations of random variables with respect to σ-algebras, such as martingales, Markov process, Brownian motion, stopping time, optional stochastic process, etc. These properties can be naturally expressed in a language with both integral quantiers and conditional expectation operators. The logics L AE and L Aad , introduced by Keisler in [Keisler 1985], are appropriate for the study of random variables and stochastic processes. The model theory of these logics has been developed further by Rodenhausen in [Rodenhausen 1982], Fajardo in [Fajardo 1985], Keisler in [Keisler 1986a, Keisler 1986b], Hoover in [Hoover 1987], and Ra²kovi¢ in [Ra²kovi¢ 1985[START_REF] Ra²kovi¢ | Completeness Theorem for Biprobability Models[END_REF][START_REF] Ra²kovi¢ | Completeness Theorem for Singular Biprobability Models[END_REF]].

Since the middle of the 1980s, the interest in probabilistic logics began to grow, mainly because of the development of many elds of application of reasoning about uncertain knowledge: economics, articial intelligence, computer science, medicine, philosophy, etc. Many researchers attempted to combine probability-based and logic-based approaches to knowledge representation. In a logical framework for modeling uncertainty, probabilities express degrees of belief.

For example, one can say that probability that Homer wrote the Iliad is at most one half , thus expressing one's disbelief into the truthfulness of that statement. The rst in line of those papers is [Nilsson 1986] (a revision of which can be found in [Nilsson 1993]) which resulted from the development of an expert system in medicine, where Nilsson tried to construct a logic with probabilistic operators as a well-founded framework for uncertain reasoning. Sentences of this logic provided information on probabilities, and he was able to express a probabilistic generalization of modus ponens as if α holds with probability s, and β follows from α with probability t, then the probability of β is r. In this way, Nillson gave a procedure for probabilistic entailment that, given probabilities of premises, could calculate bounds on probabilities of the derived sentences. Nillson's approach was semantic in nature and it motivated some authors to provide axiomatizations and decision procedures for the logic. In the same year, Gaifman published a paper [START_REF] Gaifman | A Theory of Higher-Order Probabilities[END_REF]] that studied higher-order probabilities and connections with modal logics.

In [Fagin 1990], Fagin, Halpern and Megiddo presented a propositional logic with real-valued probabilities in which higher level probabilities were not allowed (similar to LP P Q 2 , presented in Chapter 3). The language of that logic allowed basic probabilistic formulas of the form

n i=1 a i w(α i) ≥ s,
where a i and s are rational numbers, α i are classical propositional formulas, and w(α i) denotes the probability that α i holds. Probabilistic formulas are treated as boolean combinations of basic probabilistic formulas. A nitary axiomatic system for the logic was given, and since the compactness theorem does not hold for their logic, the authors were able to prove simple completeness only, using the tools of the theory of real closed elds. The papers [Fagin 1994, Halpern 1991], by the same authors, introduced a probabilistic extension of the modal logic of knowledge, which is similar to LP P Q 1 , presented in Chapter 4. First-order probability logics were discussed in [START_REF] Abadi | [END_REF], Halpern 1990]. It was shown that the set of valid formulas of the considered logic is not recursively enumerable, and thus, no nitary axiomatization is possible.

Finally, we will give mention to the probability logics that have been developed, over the last 20 years, by a group of researchers at the Mathematical Institute of the Serbian Academy of Sciences and Arts, led by Miodrag Ra²kovi¢, himself a student of H. Jerome Keisler. The approach taken there extends classical (propositional or rst order) calculus with operators that provide information on probability, whereas the truth values of the formulas can still only be either true or false. In this way, one is able to construct statements of the form P ≥s α with the intended meaning the probability that α holds is at least s.

These probability operators behave like modal operators and the corresponding semantics consist in special types of Kripke models (involving possible worlds) with the addition of probability measures dened on algebras of subsets of these worlds. One of the main proof-theoretical problems with the approach in question is providing an axiom system which would be strongly complete (every consistent set of formulas has a model, in contrast to the simple completeness every consistent formula has a model). This problem arises from the inherent non-compactness of such systems, namely the possibility to dene an inconsistent innite set of formulas, every nite subset of which is consistent (e.g. {¬P =0 α} ∪ {P < 1 n α | n ∈ N}). These logics include, but are not limited to the following ones:

• LP P 1 , a probability logic which is built atop classical propositional logic, with iterations of probability operators and real-valued probability functions [Ognjanovi¢ 1999a[START_REF] Ognjanovi¢ | [END_REF]] (a variant of this logic, with rationally-valued probability functions, has been formally veried in Chapter 4,

• LP P F r(n) 1
, similar to LP P 1 , but with probability functions restricted to have the range {0, 1 n , . . . , n-1 n , 1} [Ognjanovi¢ 1996, Ognjanovi¢ 1999a[START_REF] Ognjanovi¢ | [END_REF]],

• LP P LT L 1 , a probability logic similar to LP P 1 , but with discrete linear-time temporal logic LT L as the underlying logic [Ognjanovi¢ 1998, Ognjanovi¢ 1999a, Ognjanovi¢ 2006],

• LP P 2 and LP P F r(n) 2

, probability logics similar to LP P 1 and LP P F r(n) 1

, but without iterations of probability operators [Ognjanovi¢ 1999a[START_REF] Ognjanovi¢ | [END_REF][START_REF] Ra²kovi¢ | Classical Logic with some Probability Operators[END_REF]] (a variant of this logic, with rationally-valued probability functions, has been formally veried in Chapter 3,

• LP P 2, , a probability logic similar to LP P 2 , but allowing reasoning about qualitative probabilities [Ognjanovi¢ 2008],

• LP P I 2 , a probability logic similar to LP P 1 , but with propositional intuitionistic logic as the underlying logic [Markovi¢ 2003a, Markovi¢ 2003b, Markovi¢ 2004],

• LF OP 1 , LF OP F r(n) 1

, and LF OP 2 , rst-order counterparts of LP P 1 , LP P F r(n) 1

, and LP P 2 [START_REF] Ognjanovi¢ | [END_REF], Ra²kovi¢ 1999],

• L Qp , a probability logic with probabilities in the eld Q p of p-adic numbers

[Ili¢-Stepi¢ 2012],
• LF OCP and LF P OIC = , rst-order condidional probability logics without and with iterations [Milo²evi¢ 2012[START_REF] Milo²evi¢ | A First-order Conditional Probability Logic with Iterations[END_REF].

Briey on the relationship between probability and fuzzy logics. Another method for reasoning under uncertainty are fuzzy logics. Just as probability logics, fuzzy logics also fall into the category of weighted logics, i.e. logics in which more than two truth values can be assigned to formulas (usually values from the real unit interval [0, 1]). In this way, we can apply a ne granulation atop the classical bipolar concept of truth. The key dierence between fuzzy and probability logics, in the propositional case, is the mechanism through which the truth value of a formula is calculated once the truth values of its propositional letters are known. In probability logics, we use the principle of additivity, and have that the value of the formula ϕ(p 1 , . . . , p n)

is uniquely calculated based on the values of nite conjunctions of distinct propositional letters from the set {p 1 , . . . , p n }. There, every classical tautology has the maximal possible measure.

On the other hand, fuzzy logics make use of the principle of truth functionality, where each connective is assigned its corresponding truth function. t-norms are assigned to conjunctions, and the dual s-norms (or t-conorms) are assigned to disjunctions. The set of valid formulas in fuzzy logics is a proper subset of the set of classical tautologies.

1.2 A Word on λ-calculi λ-calculus is a formal system invented in the 1920s, whose aim was to describe the most basic properties of functional abstraction, application and substitution in a very general setting. 1

The history of λ-calculus can be divided into three main periods: the rst period comprised several years of intensive and very fruitful initial study in the 1920s and 1930s, and one of its most notable results is the rst proof that predicate logic is undecidable. Next ensued a second period of almost 30 years of relative stagnation, featuring specialized results such as completeness, cut-elimination and standardization theorems that found many uses later. Finally, in the late 1960s, came an increase of activity motivated by advances in higher-order function theory, newly-found connections with programming languages, and new technical discoveries.

The main contributions of the third period, from the 1960s onward, include constructions and analyses of models, development of polymorphic type systems, deep analyses of the reduction process, and many others.

With the aim of developing a foundation for logic which would be more natural than the type theory of Russell or the set theory of Zermello, Alonzo Church came to invent the rst λ-calculus in 1928 [START_REF] Church | A Set of Postulates for the Foundation of Logic[END_REF]]. This calculus featured abstraction λx[M] and application {F }(X), notation that has, over the years, evolved into the more familiar λx.M and (F X).

The system from [START_REF] Church | A Set of Postulates for the Foundation of Logic[END_REF]] was a type-free logic with unrestricted quantication, with the law of excluded middle excluded, and explicit formal rules of λ-conversion included. However, it also featured a contradiction which was discovered almost immediately upon publication. The system was revised a year later [START_REF] Church | A Set of Postulates for the Foundation of Logic (second paper)[END_REF]], and in the revised paper Church stated a hope that Gödel's (then) recent incompleteness theorems for the system of [START_REF] Russell | [END_REF] would not extend to his own revised system, and that a nitary proof of the consistency of this system might be found. In this revised paper, Church rst introduced the λ-terms representing positive integers, today known as the Church numerals.

In the subsequent works of Church, Kleene and Rosser, the developments on Church's 1933 logic and the underlying pure λ-calculus resulted in somewhat surprising discoveries: that the 1933 logic is, in fact, inconsistent, and that the pure λ-calculus could have a number of intriguing uses. Conuence of the λ-calculus was proven [Church and Rosser 1936], ensuring the consistency of the pure system, and λ-denable numerical functions were proven equivalent to both Herbrand-Gödel recursive functions [Kleene 1936, Church 1936] and Turing-computable 1 The historical account of the development of the λ-calculus presented in this section has mostly been adapted from [START_REF] Cardone | [END_REF]].

functions [Turing 1937], leading Church to his conjecture that λ-denability exactly captured the informal concept of eective calculability, today known as Church's Thesis.

Numerous advances and discoveries concerning λ-calculi have been made in the subsequent years and are still being made today, including the connection between λ-calculi, logics and programming languages. Many systems have been constructed on top of the pure λ-calculus, and to describe them all, or even representatively, would constitute a book-worthy eort. However, since this thesis relies on typed λ-calculi, we will take a moment to present them in more detail. A typed λ-calculus is essentially an extension of the pure λ-calculus with types. Here, types are usually objects of a syntactic nature which are assigned to lambda terms, following a set of rules which we refer to as a typing system. There are many such formalisms, and the exact nature of a type varies from one to the other. We will provide a brief overview of some of these systems, starting from the most basic example: the simply-typed λ-calculus. For more detailed information on this and many other λ-calculi with types, we kindly refer the reader to [Barendregt 2013].

1.2.1

The Simply-Typed Lambda Calculus

The simply-typed λ-calculus λ → is dened in the following way:

• We need to x a family of base types B. • Given B, the syntax of types is given by τ ::= b | τ → τ , where b ∈ B. Intuitively, we can understand the type σ → τ as the set of functions which require an input that is of type σ and produce an output that is of type τ . Some examples of valid types would be nat or nat → nat or (bool → nat) → bool.

• Another item we need to x is a family of term constants C, where each c ∈ C is assigned its base type b ∈ B. For instance, if there would be a type constant nat representing natural numbers, the appropriate term constants could be 0, 1, etc. Term constants form what we call a typing signature.

• Given C, the syntax of terms is given by M ::

= c | x | λx:τ.M | M M
, where c ∈ C -a term can either be a term constant, a variable, a λ-abstraction or an application.

However, we can a priori decide only the types for term constants, whereas the typing assignments for all of the other terms are handled by the rules of the typing system. We also need a typing context Γ, which contains variables and their respective types, such as, for instance x:σ, y:τ , etc. The rules of the typing system of λ → are the following:

1. If the variable x has type σ in the context Γ, then x is of type σ:

Γ, x:σ, Γ x : σ 2.
A constant term has its base type in any context:

c is a constant of type T Γ c : T 4. If, in a certain context, M is of type σ → τ and in that same context N is of type σ, then in that same context M N is of type τ : Γ M : σ → τ Γ N : σ Γ M N : τ
Using this system, we can arrive to certain conclusions. Let us assume, for instance, that we have base types σ, τ , and ρ. Then, with the context {x:σ}, we could derive:

1.

x:σ x:σ by rule 2.

2.

λx:σ.x : σ → σ from 1, by rule 3.

or, with the context {x:σ, y:τ }, we could derive:

1.

x:σ, y:σ x:σ by rule 2.

2.

x:σ λy:τ.x : τ → σ from 1, by rule 3.

3.

λx:σ.λy:τ.x : σ→(τ →σ) from 2, by rule 3.

or, with the context {x:σ→(τ →ρ), y:σ→τ, z:σ}, we could derive:

1.

x : σ→(τ →ρ), y : σ→τ, z:σ x : σ→(τ →ρ) by rule 2.

2.

x : σ→(τ →ρ), y : σ→τ, z:σ y : σ→τ by rule 2.

3.

x : σ→(τ →ρ), y : σ→τ, z:σ z:σ by rule 2.

4.

x : σ→(τ →ρ), y : σ→τ, z:σ xz : τ →ρ from 1 and 3, by rule 4.

5.

x : σ→(τ →ρ), y : σ→τ, z:σ yz : τ λx:σ→(τ →ρ).λy:σ→τ .λz:σ.xz (yz) : (σ→(τ →ρ))→((σ→τ)→(σ→ρ)) from 8, by rule 3.

The reader can notice that the types of the nal terms in the previous examples resemble tautologies from intuitionistic (as well as classical) propositional logic. As we will see later, this is not a coincidence.

β-reduction and Meta-theoretical Properties

Apart from the typing system, λ-calculi feature a reduction mechanism capturing the idea of function application. This mechanism is called β-reduction, is denoted by → β , and functions in the following manner:

(λx:σ.M) N → β M [N/x]
where M [N/x] denotes the term M in which every free occurrence of the variable x has been substituted with the term N . For instance, the term (λx:σ.x) M reduces to x[M/x] ≡ M , and we can see that λx:σ.x behaves as the identity function. Terms of the form (λx:σ.M) N are called β-redexes, and we say that a term M is in normal form if it contains no β-redexes.

If one were to view λ-calculi as idealized functional programming languages, one could think of β-reduction as a computational step. These steps can be performed in sequence and can either terminate, when one of the normal forms of the term is reached, or can be performed indenitely, depending on the term and calculus in question. Naturally, the preference would be for this sequence of reductions to terminate, and is expressed through the following property: Strong Normalization. A term calculus is strongly normalizing if every sequence of reductions of every term of the calculus eventually terminates to a normal form. A term calculus satisfying this property can be viewed as a programming language in which every program terminates, which is a very useful property, but renders the calculus Turing-incomplete, meaning that there are computable functions that cannot be dened within the calculus.

As there can be several β-redexes at a time within one term, a natural question one could ask is Does the order in which reductions are performed impact the nal result?. The property addressing this issue is:

Conuence. If, for a given term calculus, the answer to this question is No., then the calculus is conuent. Using the symbol → → β to denote the reexive and transitive closure of → β , conuence can be expressed more formally as follows:

If M → → β M and M → → β M , then there exists an M , such that M → → β M and M → → β M ,
for every term M of the λ-calculus in question. In conuent calculi, all reduction sequence can be made to meet at a common expression. However, this does not mean that they must meet at this expression. Also, conuence implies uniqueness of normal forms, meaning that if a term M reduces to a term M in normal form, then this normal form is unique. In other words, if there exists an M in normal form, such that M reduces to M , then M and M must be equal.

There are several more important properties that a λ-calculus would be desired to satisfy: Subject Reduction. This property states that typing is preserved under β-reduction of the subject, i.e. if Γ M : σ, and M → β M , then also Γ M : σ.

Decidability of Type Checking. In a given signature, and for a given context Γ, term M and type σ, it is decidable whether or not Γ M : σ is derivable.

Decidability of Type Inhabitation. In a given signature, and for a given context Γ and type σ, it is decidable whether or not there exists a term M , such that Γ M : σ is derivable.

The simply-typed λ-calculus satises all of these properties, with the decidability of type inhabitation being PSPACE-complete. However, it is fairly restrictive, as we can neither have full recursion nor construct more expressive types which we could think of, for instance, polymorphic types or types depending on other types or terms.

1.2.2

The Lambda Cube

Apart from the simply-typed λ-calculus, there are many other more complex formalisms relying on assigning types to λ-terms. Some of these include polymorphic types (terms depending on types), higher-order types (types depending on types), dependent types (types depending on terms), intersection types (terms with multiple types), etc. An elegant way to subsume some of these systems is Barendregt's λ-cube [Barendregt 1992], presented in Figure 1.1. How does the λ-cube actually work, and what is the mechanism which connects these eight λ-calculi? First, we select two constants, called sorts, and name them * and . In the literature and, perhaps, more informatively, they are often known as Type and Kind. If we let S = { * , }, and s, s 1 , s 2 ∈ S, we can express the eight systems via a set of general axioms and rules (Figure 1.2) and rules specic to each of the systems (Figure 1.3). Essentially, by instantiating the (s 1 , s 2) specic rule with elements of S and adding these instantiations to the general axioms and rules, we can arrive to each of these eight systems.

One very interesting thing which can be observed here is the apparent modularity of this segment of typed lambda calculi. Starting from the core rules, we can arrive to many dierent systems and levels of expressiveness, each of them important in its own right, by adding instances The (* , *) instantiation of (s 1 , s 2) gives us the simply-typed λ-calculus λ → , and places us in the bottom-left corner of the cube. From there, we can move in the following three directions:

1. Upward: by adding the (, *) rule, we arrive at the system λ2, which is also known as the second-order typed λ-calculus or Girard's System F [Girard 1972], where we can have terms with polymorphic types, such as Πα: * .(α → α), arriving at terms depending on types, which would not be possible in λ → . Also, since here we can derive Πα: * .(α → α) : * , we eectively bring impredicativity (self-referencing) back in the game whenever we introduce type polymorphism (the four systems on the top side of the cube).

2. Forward: by adding the (,) rule, we arrive at the system λω, where type constructors such as λα: * .α → α (types depending on types) can be formed and used to create new higher-order constructors and types, which cannot be used in λ → or λ2. The systems allowing higher-order constructions are on the back side of the cube.

3. Sideways: by adding the (* ,) rule, we arrive at the system λP , where we have dependent types, or types depending on terms. Here, we can, for instance, capture the notion of predicates, and have derivations such as A: * (A → *) : (meaning that A → * is the kind of predicates on A), which is not possible in any of the previous systems.

The remaining three systems (λ2P , λω and λC) are combinations of the four which we have presented here, with λC, which is also known as the Calculus of Constructions, being the most expressive one and combining all of the demonstrated features.

One may view typed λ-calculi as an interesting and amusing theoretical exercise. However, perhaps somewhat unexpectedly, they share a fundamental connection with mathematical logic and have very important applications in computer science. Typed lambda calculi are, in fact, in the foundations of programming languages, and form the base of typed functional programming languages such as Haskell and ML, as well as, albeit more indirectly, typed imperative programming languages. The Curry-Howard Correspondence

It was rst noticed, by Haskell Curry [START_REF] Curry | Functionality in Combinatory Logic[END_REF]], that the types of some of the combinators (K and S, for example) in the simply-typed λ-calculus could be seen as axiom schemata for intuitionistic implicational logic. Some twenty years later [Curry 1958], he concluded that Hilbertstyle deduction systems correspond, in some fragment, to the typed fragment of combinatory logic, while Howard [Howard 1980] was the rst to state that intuitionistic natural deduction can directly be interpreted as a typed variant of the λ-calculus. This observation is known as the Curry-Howard correspondence. Essentially, it tells us that two formalisms which we need not have expected to be similar -lambda calculi (as models of computation) and mathematical logics (as proof systems) -are structurally the same.

Through the Curry-Howard correspondence, we arrive at the important notion of propositions-as-types, meaning that propositions of a proof system correspond to types within a typed λ-calculus. In that case, if the proposition is provable in the proof system, the corresponding type will be inhabited in the λ-calculus, and the term inhabiting it can be seen as its proof. Even further, this term can be seen as an executable program.

The logics corresponding to the systems of the λ-cube and the relationships between them, in a format similar to the λ-cube (called the logic cube), are shown in Figure 1 An interactive theorem prover or a proof assistant is a software tool that allows the user to describe within it concepts such as mathematical theories or programming languages, formulate a certain problem or state certain properties with respect to that concept, and specify a solution or verify that that property holds. The proving process is guided by the user and assisted by the proof assistant, in the sense that the user provides the steps and the proof assistant veries that these steps are correct. The steps themselves mostly mimic pen-and-paper reasoning, and involve concepts such as proof by induction or contradiction, case analysis, application of already proven theorems, and many more. While parts of the proof within a proof assistant can be automated, it is the user who concentrates on the creative details and truly guides the proving process, separating clearly proof assistants from automated theorem provers, whose task is to autonomously construct the entire proof.

The proofs produced using automated and interactive theorem provers have a higher degree of certainty when compared to pen-and-paper proofs, because they rely on a trusted core -a collection of code on which the theorem prover is based, that is small enough to be manually veriable, that is declared correct, and upon which all of the subsequent inferences are made.

This higher degree of certainty is required in elds and contexts (such as medicine, aviation, robotics and security) where software faults could introduce a life-threatening risk.

Currently, there is a number of interactive theorem provers available to researchers, all essentially dened by their respective underlying formalisms. The Curry-Howard correspondence has paved way for the development of several of them, while the others rely on set theory and higher-order logic. Here is a non-exhaustive list of the most widely used proof assistants today:

• ACL2 -A Computational Logic for Applicative Common Lisp [Kaufmann 2000] is a software system consisting of a programming language, an extensible theory in a rstorder logic, and a mechanical (capable of working in both interactive and automatic modes) theorem prover, in the Boyer-Moore tradition [START_REF] Boyer | [END_REF]. It is designed to support automated reasoning in inductive logical theories, mostly for the purpose of software and hardware verication.

• Agda [The Agda development team 2013] is a proof assistant for developing constructive proofs as well as a functional programming language with dependent types. It is based on the idea of the Curry-Howard correspondence. It has a certain degree of support for tactics and proofs are dominantly written in functional programming style. The language has ordinary programming constructs such as data types, pattern matching, records, let expressions and modules, and a Haskell-like syntax.

• Coq [The Coq development team 2013, Bertot 2004] is based on an extension of λC known as the Calculus of Inductive Constructions [START_REF] Coquand | [END_REF], Paulin-Mohring 1996], and is, therefore, at the very top of the λ-cube when it comes to expressiveness. It allows the expression of mathematical assertions, is capable of mechanically checking proofs of these assertions, allows the use of various tactics for the nding of these formal proofs, and can extract a certied program from the constructive proof of its formal specication. It has been developed over the past two decades in the French National Institute for Research in Computer Science and Control (INRIA). Coq is written in a typed functional language called Objective CaML, an extension of the core Caml language with a fully-edged objectoriented layer, also developed in INRIA.

• HOL [START_REF][END_REF]] (Higher Order Logic) denotes a family of interactive theorem proving systems sharing similar (higher-order) logics and implementation strategies. Systems in this family are implemented as a library in some programming language. This library implements an abstract data type of proven theorems so that new objects of this type can only be created using the functions in the library which correspond to inference rules in higher-order logic. As long as these functions are correctly implemented, all theorems proven in the system must be valid. The latest system from this family is HOL4

[The Hol4 development team 2013].

• Isabelle [The Isabelle development team 2013] is an interactive theorem prover, successor of the HOL theorem prover. It is written in Standard ML, and is based on a small logical core guaranteeing logical correctness. Isabelle is generic: it provides a meta-logic (a weak type theory), which is used to encode object logics like First-order logic (FOL), Higherorder logic (HOL) or Zermelo-Fraenkel set theory (ZFC). Isabelle's main proof method is a higher-order version of resolution, based on higher-order unication. Though interactive, Isabelle also features ecient automatic reasoning tools, such as a term rewriting engine and a tableaux prover, as well as various decision procedures.

• PVS [The PVS development team 2013] is a mechanized environment for formal specication and verication. PVS consists of a specication language, a number of predened theories, a type checker, an interactive theorem prover that supports the use of several decision procedures and a symbolic model checker, various utilities including a code generator and a random tester, documentation, formalized libraries, and examples that illustrate dierent methods of using the system in several application areas. It is based on a kernel consisting of an extension of Church's type theory with dependent types, and is fundamentally a classical typed higher-order logic.

• Twelf [The Twelf development team 2013] is language used to specify, implement, and prove properties of deductive systems such as programming languages and logics. It features dependent types, relies on the Curry-Howard correspondence and is based on the λP calculus and the LF logical framework.

Let us now take a more detailed look into the inner workings of Coq, the proof assistant relevant for this thesis. Coq oers a variety of tools and mechanisms for encoding and verication:

• All the tools of λC. As the basis of Coq is the Calculus of Inductive Constructions, which subsumes λC, we have immediately at our disposal dependent types, polymorphism, and higher-order constructions. All of the objects in Coq have a type, and even types have their own types, which we call sorts. In Coq, there are two sorts: Type and Prop, the former applicable to data, and the latter for logical propositions.

• Inductive types. Using inductive types, i.e. by dening types through a case-by-case description of the type, with possibly making use of previously constructed terms of that type, it is possible to naturally encode notions such as natural numbers, integers, lists, binary trees, propositional formulas, and virtually any structure inductive in nature. For instance, we would encode natural numbers as Inductive nat : Type = 0 : nat | S : nat -> nat.

• Induction. As a mechanism for proving assertions over inductive types, structural induction is one of the built-in mechanisms of Coq. Furthermore, it is possible to dene a custom induction principle, which, of course, has to rst be proven correct.

• Proof tactics. There is a number of methods for proof simplication, or tactics, readily available. Some of these tactics involve simple manipulations on the syntactic and semantic levels of higher-order intuitionistic logic and equality (intros, apply or reflexivity), whereas others involve more complicated mechanisms (induction or inversion) or the use of computational tools (omega).

• Records. Coq also provides support for records, which are essentially collections of objects. Using records, we can, for instance, elegantly exploit dependent types to express side conditions of a certain type. We will illustrate this on the following example:

Record typeRestriction (U : Type) (W : U -> Prop) : Type := mkTypeRes {origU :> U; inW : W origU}.

where, starting from a given type U and its subset W we have constructed a new type typeRestriction U W which contains only the elements of U which are in W. There are three things we can notice about this denition: it is parametric over U and W, it features dependent types (since the type of W depends on the term U, and the type of the condition inW depends on the term origU), and it also features another of Coq's useful mechanisms, which is coercion, denoted by :>, which tells the system that objects of type typeRestriction U W can be treated, if necessary, as objects of type U.

• Innite objects. In addition to inductive types, Coq also oers co-inductive types, which allow reasoning about innite objects while still remaining in the nite connes of a computer. Some of the objects we can construct in this manner are streams, lazy lists and lazy binary trees, whereas one of the notions we can capture using co-inductive types is bisimilarity.

• Modules. • CoqIDE. Last, but not least, Coq comes with a graphical user interface called CoqIDE, which is highly interactive, giving the user an overview of the current proof code, the state of the current proof, and the options at his disposal.

So far, many important and fundamental theorems have already been proven in Coq, such as the denumerability of rational numbers, the non-denumerability of the continuum, Gödel's Incompleteness Theorem, the Cayley-Hamilton theorem. Stirling's formula, etc. However, as the most important ones we could single out the Four Color Theorem (stating that, given any separation of a plane into contiguous regions, producing a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color) [Gonthier 2004] or, more recently, the Feit-Thompson Theorem (stating that every nite group of odd order is solvable) [Gonthier 2012].

In conclusion, we present a very simple illustrative proof in Coq, showing that the well-known

formula (A → (B → C)) → ((A → B) → (A → C))
is indeed a tautology. The claim is stated as a Lemma, the name of which is example, and the syntax of the formulation is quite intuitive.

Parentheses are written mostly for the benet of the reader, as most of them are not needed, due to the built-in associativity of the intuitionistic implication. Prop is the sort for propositions.

Lemma example : forall

A B C : Prop, (A -> (B -> C)) -> ((A -> B) -> (A -> C)).
Proof. // The proof context is empty at this point, and our goal is stated in the format encountered after the name of the lemma. intros Habc Hab Ha. // We usually prove an implication of the form A -> B by assuming to have A as an assumption, and then attempting to prove B, given that assumption. Here, we have several implication which we can pull back into the context as assumptions -Habc : A -> (B -> C) is the first one, followed by Hab : A -> B, and Ha : A, leaving only C in the goal.

apply Habc. // Also, if we have to prove a goal C, and we have an assumption of the form A -> C, it would be sufficient to prove A. Here, given that we have an assumption A -> (B -> C), it would be sufficient to prove A and to prove B. This splits the goal in two -one for A, one for B.

assumption. // We already have A in the assumptions.

apply Hab. // Similarly as before, our goal is B, and we already have A -> B in the hypotheses. Therefore, to prove our goal, it would be sufficient to prove A.

assumption. // We already have A in the assumptions.

Qed. // All the goals have been proven.

1.4 Probability, λ-calculus, and Formal Verication

Several works on the treatment of probability in λ-calculi, as well as formal verication of algorithms and programs involving probability and/or randomness can be found in the literature.

In [Park 2006], the authors have presented a probabilistic language, called λ • , which uniformly supports all types of probability distributions -discrete, continuous, and even those not belonging to either group. Its mathematical basis are sampling functions, i.e. , mappings from the unit interval (0, 1] to probability domains. They have also described the implementation of λ • as an extension of Objective CAML and demonstrated its practicality with three applications in robotics, with experiments carried out with real robots.

In [START_REF] Hurd | Formal verication of probabilistic algorithms[END_REF], where the proof assistant of choice was HOL, the author starts with an extensive formalization of measure theory and probability spaces. Next, using that formalization, the author proceeds to dene the notion of a probabilistic program that terminates with probability 1, and shows, both in theory and by example, how probabilistic programs can be specied and formally veried in that setting.

In [START_REF] Hurd | Probabilistic guarded commands mechanized in HOL[END_REF]], the authors present a mechanization of the quantitative logic for the guarded command language pGCL [Morgan 1999], using the HOL theorem prover. pGCL is a language which allows for the expression of both probabilistic and demonic (arbitrary) choices, and it is suitable for reasoning about distributed random algorithms. The authors show that the mechanized theory supports the creation of an automatic proof tool which takes as input an annotated pGCL program and its partial-correctness specication, and derives from that a sucient set of verication conditions.

Finally, in [Audebaud 2009], the authors rely on [START_REF] Hurd | Formal verication of probabilistic algorithms[END_REF]] and [Park 2006] to be able to reason in a formal setting (the proof assistant Coq) about properties of randomized algorithms, namely the validity of general rules for estimating the probability that a randomized algorithm satises a specied property.

In this thesis, the formalization of the mathematics surrounding probability theory has been executed on a smaller scale than in [START_REF] Hurd | Formal verication of probabilistic algorithms[END_REF]], on a need-to-have basis (conned to nitely additive measures), while probabilistic programs are not addressed, and the emphasis in put on meta-theoretic properties of probability logics.

Part I Probability Logics LPCP is a probability logic with multiple conditional probability operators, based on classical logic. Here, we present its syntax and semantics, together with a corresponding strongly complete axiomatization. LPCP is the outcome of a research eort which has followed the lines of investigation presented in [START_REF] Maksimovi¢ | [END_REF], Ognjanovi¢ 2009, Fagin 1990, Lukasiewicz 2002, Ra²kovi¢ 2004, Ognjanovi¢ 2005] on the formal development of probability logics, in which probability-related statements can be expressed using probabilistic operators which specify bounds on probabilities of a propositional formulas. The work presented here originated from [START_REF] Maksimovi¢ | [END_REF]], which has been presented at the 13 th ESSLLI Student Session in Hamburg, in 2008, and which developed into a journal publication [START_REF] Doder | [END_REF]], published in the Publications de l'Institut Mathematique, in 2010.

As mentioned in the previous paragraph, in LPCP we have multiple conditional probability operators CP i , i ∈ I, where I denotes a nite non-empty set of indexes. These operators take as input two classical formulas α and β, and produce as output the conditional probability that α holds if β holds. One interpretation which could be given to these operators is that each of them represents an agent which has his own independent assessment of the conditional probability of an event. For instance, we would be able to formally write the statement The conditional probability of an event α given an event β viewed by agent i is at least the sum of conditional probabilities of α given γ viewed by agent j and twice γ given α viewed by agent k. as

CP i (α, β) CP j (α, γ) + 2 • CP k (γ, α).
We provide the syntax and semantics of LPCP, accompanied with a strongly complete axiomatization. We also prove that the developed logic is decidable, and show that it can be used to represent evidence, solving the problem of propositional axiomatization of reasoning about evidence, which has been presented in [Halpern 2006].

Before we examine the logic in detail, we will address a minor issue which is well-known in probability theory. In the classical Kolmogorovian sense, the conditional event α given β can be considered only in the case when P (β) > 0, and for such a conditional event, we calculate its probability in the following way:

P (α|β) = P (α ∧ β) • P (β) -1 . (2.1)
As the -1 operator is not total, since 0 does not have an inverse, this approach could introduce diculties into the formal construction of probabilistic formulas, and it would be better if P (α|β) were to be a well-dened term, regardless of the α, β, and the possible value of P (β).

We can reach an elegant solution to the situation by adopting the convention that -1 is a total operation, so that we can extend Kolmogorov's denition of conditional probability onto all of the events: P (α|β) = P (α ∧ β)P (β) -1 . In particular, if P (β) = 0, then P (α ∧ β) = 0, and

P (α|β) = P (α ∧ β)P (β) -1 = 0 • P (β) -1 = 0.
If we look closely at this last equation, we can observe that the actual value of 0 -1 is essentially irrelevant for the computation of P (α|β), and that in the case when P (β) = 0 the conditional probability dened as above does indeed behave correctly. For the sake of simplicity, we will take 0 -1 to be equal to 1.

The remainder of this chapter is organized as follows: in Section 2.1, the syntax of the logic LPCP is presented and the class of measurable probabilistic models is described. Section 2.2 contains the corresponding axiomatization and introduces the notion of deduction. A proof of the strong completeness theorem for LPCP is presented in Section 2.4, whereas the decidability of the logic is analyzed in Section 2.5. Representing evidence in LPCP is discussed in Section Section 2.7, and the concluding remarks are in Section 2.8.

Syntax and Semantics of LPCP

Let V ar = {p n | n < ω} be the set of propositional variables. The corresponding set of all propositional formulas over V ar will be denoted by F or C , and is dened as the smallest set which satises the following conditions:

1. it contains all of the propositional variables, i.e. V ar ⊂ F or C , 2. it is closed under the following rules of construction: if α and β are propositional formulas, then ¬α and α ∧ β are propositional formulas.

Here, we will take ¬ and ∧ to be the basic propositional connectives, and we dene the remaining connectives in the usual manner for classical propositional logic. Propositional formulas will be denoted by α, β and γ, possibly with indexes. Next, let I be a nite non-empty set of indexes.

Denition 1. The set T erm of all probabilistic terms is recursively dened as follows:

• T erm(0) = {s | s ∈ Q} ∪ {CP i (α, β) | α, β ∈ F or C , i ∈ I}. • T erm(n + 1) = {f, (f + g), (s • g), (-f) | f, g ∈ T erm(n), s ∈ Q}. • T erm = ∞ n=0 T erm(n).
Probabilistic terms will be denoted by f, g and h, possibly with indexes. To simplify our notation, we introduce the following convention: f + g will represent (f + g), f

+ g + h will represent ((f + g) + h). For n > 3, n i=1 f i will represent ((• • • ((f 1 + f 2) + f 3) + • • •) + f n).
Similarly, -f will represent (-f) and fg will represent (f + (-g)). The intended meaning behind probabilistic terms is for them to represent linear combinations of rationally-weighted conditional probabilities, in the sense that each term can be rewritten (using the axioms and inference rules from the next Section, which essentially correspond to the axioms of rational numbers) into an expression of the form

n i=1 s i • CP i (α i , β i) + s. (2.2)
Finally, if α and β are propositional formulas, and i ∈ I, then we will have the probabilistic term CP i (α, β) to be read as the conditional probability of α given β viewed by agent i. To further simplify the notation, we will be writing P i (α) instead of CP i (α,), where denotes an arbitrary tautology instance. Denition 2. A basic probabilistic formula is any formula of the form f 0. The set of all probabilistic formulas is dened as the smallest set which satises the following conditions:

1. it contains all of the basic propositional formulas, 2. it is closed under the following rules of construction: if f and g are propositional formulas, then ¬f and f ∧ g are propositional formulas.

As in the case of propositional formulas, illustrated above, here we also treat ¬ and ∧ as the primitive connectives, while all of the other connectives are introduced in the usual way, as in classical propositional logic. Probabilistic formulas will be denoted by φ, ψ and θ, possibly with indexes, while the set of all probabilistic formulas will be denoted by F or P . Furthermore, we dene the following abbreviations:

1. f 0 represents -f 0.

2. f > 0 represents ¬(f 0).

3. f < 0 represents ¬(f 0). 4. f = 0 represents f 0 ∧ f 0. 5. f = 0 represents ¬(f = 0). 6. f g represents f -g 0.
We dene f g, f > g, f < g, f = g and f = g in a similar way. By formula, we will be referring to either a propositional formula or a probabilistic formula. We do not allow for the mixing of propositional and probabilistic formulas, nor for the nesting of probability operators CP i . Therefore, it is not possible to have formulas of the form α ∧ CP i (β, γ) ≥ 0 or formulas such as CP i (CP j (α, β), γ) in LPCP. Formulas will be denoted by Φ, Ψ and Θ, possibly with indexes. The set of all of the formulas will be denoted by F or.

Next, we proceed to the semantics of LPCP. We dene the notion of a model as a special kind of Kripke model. Namely, a model M is any quadruple W, H, {µ i | i ∈ I}, v such that:

• W is a non-empty set. As usual, we will be referring to its elements as worlds.

• H is an algebra of sets over W .

• for each i ∈ I, µ i : H -→ [0, 1] is a nitely additive probability measure.

• v : F or C × W -→ {0, 1} is a truth assignment compatible with ¬ and ∧. That is, v(¬α, w) = 1 -v(α, w) and v(α ∧ β, w) = v(α, w) • v(β, w).
For a given model M , we will denote by

[α] M the set of all w ∈ W such that v(α, w) = 1. If the context is clear, we will write [α] instead of [α] M . We say that M is a measurable model if [α] ∈ H for all α ∈ F or C . Denition 3. Let M = W, H, {µ i | i ∈ I}
, v be any measurable model. We dene the satisability relation |= recursively as follows:

1. M |= α if v(α, w) = 1 for all w ∈ W . 2. M |= f 0 if f M 0
, where f M is recursively dened in the following way:

• s M = s.

• CP i (α, β) M = µ i ([α ∧ β]) • µ i ([β]) -1 , for any i ∈ I. • (f + g) M = f M + g M . • (s • g) M = s • g M . • (-f) M = -(f M). 3. M |= ¬φ if M |= φ. 4. M |= φ ∧ ψ if M |= φ and M |= ψ. A formula Φ is satisable if there exists a measurable model M = W, H, {µ i | i ∈ I}, v such that M |= Φ; Φ is valid if it is satised in every measurable model. We say that the set T of formulas is satisable if there is a measurable model M such that M |= Φ for all Φ ∈ T .
The reader can notice that the last two clauses of Denition 3 guarantee the validity of each tautology instance.

An Axiomatization of LPCP

In this section, we will introduce the axioms and inference rules for LPCP. The set of axioms of our axiomatic system, which we denote by AX LPCP , is divided into three groups: axioms for propositional reasoning, axioms for probabilistic reasoning, and arithmetical axioms.

Axioms for propositional reasoning: A1a. τ (p 1 , . . . , p n) -all tautologies instantiated with propositional formulas A1b. τ (Φ 1 , . . . , Φ n) -all tautologies instantiated with probabilistic formulas Axioms for probabilistic reasoning (i ∈ I):

A2. P i (α) 0.
Non-negativity of probability A3. P i () = 1.

Something true will always occur A4. P i (⊥) = 0.

Something false will never occur

A5. P i (α ↔ β) = 1 → P i (α) = P i (β).
Equivalent formulas are equally probable

A6. P i (α ∨ β) = P i (α) + P i (β) -P i (α ∧ β). The inclusionexclusion principle A7. P (β) = 0 → CP (α, β) = 0;

Disallowing division by zero

Capturing conditional probability:

A8. (P i (α ∧ β) ≥ r ∧ P i (β) ≤ s) → CP i (α, β) ≥ r • s -1 , s = 0. A9. (P i (α ∧ β) > r ∧ P i (β) ≤ s) → CP i (α, β) > r • s -1 , s = 0. A10. (P i (α ∧ β) ≥ r ∧ P i (β) < s) → CP i (α, β) > r • s -1 , s = 0. A11. (P i (α ∧ β) ≤ r ∧ P i (β) ≥ s) → CP i (α, β) ≤ r • s -1 , s = 0. A12. (P i (α ∧ β) < r ∧ P i (β) ≥ s) → CP i (α, β) < r • s -1 , s = 0. A13. (P i (α ∧ β) ≤ r ∧ P i (β) > s) → CP i (α, β) < r • s -1 , s = 0.
Arithmetical axioms: A14. r > s, whenever r > s.

Compatibility of > with > of Q A15. r s, whenever r s.

Compatibility of ≥ with ≥ of Q A16. s • r = sr. Compatibility of • with • of Q, part 1 A17. s + r = s + r. Compatibility of + with + of Q A18. f + g = g + f. Commutativity of + A19. (f + g) + h = f + (g + h). Associativity of + A20. f + 0 = f. 0 is the neutral for + A21. f -f = 0. Inverse terms for + A22. (r • f) + (s • f) = r + s • f. Distributivity of • with + A23. s • (f + g) = (s • f) + (s • g). Distributivity of + with • A24. r • (s • f) = r • s • f. Compatibility of • with • of Q, part 2 A25. 1 • f = f. Neutrality of 1 A26. f g ∨ g f. Totality of ≥ A27. (f g ∧ g h) → f h. Transitivity of ≥ A28. f g → f + h g + h. Compatibility of ≥ with + A29. (f g ∧ s > 0) → s • f s • g. Compatibility of ≥ with • A30. f = g → (φ(. . . , f, . . .) → φ(. . . , g, . . .

)). Contextual closure for terms

Inference rules: R1. From α and α → β infer β; from φ and φ → ψ infer ψ.

R2. From α infer P i (α) = 1, for all i ∈ I. R3. From the set of premises {φ → f -n -1 | n = 1, 2, 3, . . . } infer φ → f 0.
Let us briey comment on the axioms and inference rules. The axioms A2 through A6 provide the required properties of probability, the axioms A7 through A13 capture Equation 2.1, using the fact that Q is dense in R, while the axioms A14 through A30 provide the properties required for computation. As for the inference rules, R1 is modus ponens for classical and probabilistic formulas, R2 resembles necessitation, while the innitary rule R3 ensures that non-Archimedean probabilities are not permitted. Using the rule R3, we are able to syntactically deal with the inherent non-compactness 1 of LPCP and achieve strong completness. Also, we can see that there exist two levels of formulas -propositional and probabilistic, and that these levels are separate, in the sense that it is possible to cross from the propositional to the probabilistic level using the inference rule R2, but there is no mechanism to provide a crossing in the opposite direction. Denition 4 (Derivability). A formula Φ is derivable from a set of formulas T 2 (T Φ) if there is an at most countable sequence of formulas Φ 0 , Φ 1 , . . . , Φ, such that every Φ i is an axiom or a formula from the set T , or it is derived from the preceding formulas by an inference rule. Particularly, a formula Φ is a theorem (Φ) if it is deducible from the empty set of hypotheses.

1 In LPCP, it is possible to construct a set of formulas that is not satisable, but whose every nite subset is satisable. An example of this set is the set {φ

→ f > 0} ∪ {φ → f < -n -1 | n = 1, 2, 3, . . . }.
2 We refer to formulas in T as assumptions or hypotheses.

Denition 5 (Consistent and Inconsistent Sets). A set of formulas T is consistent if there is at least one formula from F or C and at least one formula from F or P that are not deducible from T . Otherwise, T is inconsistent.

Denition 6 (Maximally Consistent Sets). A consistent set T of sentences is said to be maximally consistent if for every α ∈ F or C , it holds that if T α then α ∈ T and (P i (α) = 1) ∈ T , for all i ∈ I, and for every φ ∈ F or P , either φ ∈ T or ¬φ ∈ T .

Denition 7 (Deductively Closed Sets

). A set T is deductively closed if for every Φ ∈ F or, if T Φ, then Φ ∈ T .
With the presented axioms and inference rules, one can notice that the length of the inference may be any successor ordinal lesser than the rst uncountable ordinal ω 1 , i.e. that we can have innite (countable) proofs in LPCP.

Soundness of LPCP

The rst meta-theoretical result we will prove about our logic will be the soundness theorem, which follows easily from the formulation of the axiom system and the inference rules.

Theorem 1 (Soundness). If Φ is a theorem of AX LPCP , then it is valid.

Proof. Essentially, we need to prove that the instances of all of the axioms of AX LPCP are valid, and that applications of the inference rules preserve validity. As the axiom schemes are checked to be valid in the usual manner, we will focus on the application of the inference rules:

R1. Let us assume that the classical formulas α and α → β are valid. This means that α and α → β ≡ ¬(α ∧ ¬β) are true in every world w ∈ W of every model M = W, H, {µ i |i ∈ I}, v . However, since we have that ¬(α ∧ ¬β) is true, then it must be that β is true, which concludes this part of the proof. The part for the modus ponens for probabilistic formulas is proven similarly.

R2. Let us assume that the classical formula α is valid. This means that α is true in every world w ∈ W of every model M = W, H, {µ i |i ∈ I}, v . Therefore, we have that [α] = W , meaning that we have that µ i ([α]) = µ i (W) = 1, for all i ∈ I. This, in turn, means that M |= P i (α) = 1, which concludes this part of the proof.

R3. Let us assume that the set of probabilistic formulas

{φ → f ≥ -n -1 | n = 1, 2, 3, . . .} is valid, i.e. that for every model M = W, H, {µ i |i ∈ I}, v , it holds that M |= {φ → f ≥ -n -1 | n = 1, 2, 3, . . .}. Now, if M |= φ, then M |= φ → f ≥ 0 immediately,
as the antecedent of the (classical) implication is false. Therefore, let us assume that M |= φ. Then, given the denition of implication via conjunction and negation, we have that M |= {f ≥ -n -1 | n = 1, 2, 3, . . .}, and we need to prove that M |= f ≥ 0. Given the denition of satisability, we have that {f M ≥ 1 n | n = 1, 2, 3, . . .}, and we need to prove that f M ≥ 0, which follows from the axiomatization of real numbers.

Strong Completeness of LPCP

In this section, we will prove that the proposed axiomatization is strongly complete with respect to the class of all measurable models. As is quite common, the rst step to take is to prove the Deduction Theorem.

Theorem 2 (Deduction theorem). Let T be an arbitrary set of formulas, and let Φ, Ψ ∈ F or C or Φ, Ψ ∈ F or P . Then, it holds that T Φ → Ψ i T ∪ {Φ} Ψ.

Proof. First, let us assume that T Φ → Ψ. From this, regardless of whether Φ and Ψ are classical or probabilistic, we have that T ∪{Φ} Φ → Ψ. However, we also have that T ∪{Φ} Φ. Therefore, using the appropriate modus ponens (inference rule R1), we obtain that T ∪ {Φ} Ψ.

Conversely, let T ∪ {Φ} Ψ. We proceed by structural induction on this inference with the goal of proving T Φ → Ψ. In case when the last applied rule was R1, the proof proceeds just as for classical logic. Next, let the last applied rule be the inference rule R2. In that case, we have that Ψ is of the form P i (α) = 1, for some i ∈ I, which was obtained from T ∪ {Φ} α. However, as the classical and probabilistic formulas are separate, the derivation of classical formulas does not depend on probabilistic formulas, and we have that T α. From there, using the inference rule R2, we obtain that T P i (α) = 1. From here, using the tautology φ 0 → (φ 1 → φ 0) and the axiom A1b, we obtain the desired T Φ → (P i (α) = 1).

Finally, let the last applied rule be R3. Then, Ψ is of the form φ → f 0 and we have, by the induction hypothesis, that T

Φ → (φ → f -n -1) for all n. Since the formula (φ 0 → (φ 1 → φ 2)) ↔ ((φ 0 ∧ φ 1) → φ 2) is a tautology, we also have that T (Φ ∧ φ) → f -n -1
, for all n, with the help of the axiom A1b. Now, by the inference rule R3, we have that T (Φ ∧ φ) → f 0, and by using the same tautology as above, that T Φ → Ψ. With this proof, the reader can appreciate why the `φ →' prex in needed in the rule R3 without it, we could not have used the tautology required for the crucial application of the rule R3.

We will use the result of the next technical lemma in the construction of a maximally consistent extension of a consistent set of formulas. Lemma 1. Let T be a consistent set of formulas. If T ∪ {φ → f 0} is inconsistent, then there exists a positive integer n such that T ∪ {φ → f < -n -1 } is consistent.

Proof. Let us assume the converse, i.e. that T ∪ {φ → f < -n -1 } is inconsistent for all positive integers n. Therefore, we have that, for all positive integers n, T ∪ {φ → f < -n -1 } ⊥. From this, using the Deduction Theorem, we have that

T φ → f -n -1 ,
for all positive integers n. Now, using the inference rule R3, we have that T φ → f 0, and so we have that T must be inconsistent, which is in contradiction with our original assumption, therefore completing our proof. Denition 8. Let T be a consistent set of formulas, and let us have an enumeration of probabilistic formulas, i.e. let F or P = {φ i | i ∈ ω} 3 . We dene a completion T * of T as follows:

1. T 0 = T ∪ {α ∈ F or C | T α} ∪ {P i (α) = 1 | T α, i ∈ I}. 2. If T i ∪ {φ i } is consistent, then T i+1 = T i ∪ {φ i }. 3. If T i ∪ {φ i } is inconsistent, then: (a) If φ i is of the form ψ → f 0, then T i+1 = T i ∪ {ψ → f < -n -1 }, where n is a positive integer such that T i+1 is consistent 4 . (b) Otherwise, T i+1 = T i .
3 This is possible, as probabilistic formulas are countable by construction. 4 The existence of such an n is provided by Lemma 1.

T

* = ∞ n=0 T n .
We can prove that each T i is consistent by construction. In the next theorem, we will prove that T * is maximally consistent and deductively closed. Theorem 3. Let T be a consistent set of formulas, and let T * be constructed as above. Then:

1. For each φ ∈ F or P , either φ ∈ T * or ¬φ ∈ T * . 2. T * is consistent, i.e. (a) There is a formula α ∈ F or C , such that α / ∈ T * . (b) There is a formula φ ∈ F or P , such that φ / ∈ T * . 3. T * is deductively closed, i.e. if T * Φ then Φ ∈ T * .
Proof.

1. Let us assume the opposite: let φ be a probabilistic formula such that both φ ∈ T * and ¬φ ∈ T * , or neither φ ∈ T * nor ¬φ ∈ T * . Without loss of generality, we can assume that, in the above enumeration, φ ≡ φ i and ¬φ ≡ φ j , and let k = max(i, j). Then, by construction, in the rst case, we have that T k+1 φ, and T k+1 ¬φ. However, then we also have that T k+1 φ ∧ ¬φ, i.e. that T k+1 is inconsistent, which is not possible. In the second case, by construction, we have that T k+1 ∪ {φ} ⊥, and that T k+1 ∪ {¬φ} ⊥.

From this, using the Deduction Theorem and the elimination of double negation, we again obtain that T k+1 φ, and T k+1 ¬φ, and from that, we have that T k+1 φ ∧ ¬φ, i.e. that T k+1 is inconsistent, which is still not possible, and we have our claim.

2. (a) Since there are no classical formulas added during the formation of T * , all of the classical formulas which are in T * are also in T 0 . Therefore, if it were to hold that all classical α are in T * , then all classical α would also have to be in T 0 , making it inconsistent by denition, which is not the case. Therefore, there must be a classical formula α, such that α / ∈ T .

(b) This is a direct consequence of item 1.

At this point, taking into consideration the manner in which T 0 is constructed, we have eectively proven that T * is maximally consistent.

3. We will proceed by structural induction on the derivation of T * Φ.

(a) Let Φ be an instance of an axiom. Then, if Φ ∈ F or C we have that Φ ∈ T 0 ⊆ T * . Otherwise, Φ ∈ F or P , and there is a non-negative integer i such that Φ ≡ φ i of the above enumeration. Then, since Φ, it must be that T i φ i and so Φ ∈ T i+1 ⊆ T * .

(b) Let T * Φ ≡ β be obtained from T * α and T * α → β by the inference rule R1. Then, by the construction of T * , we have that α → β ∈ T and α ∈ T , and from there, by the construction of T 0 , we have that β ∈ T 0 ⊆ T * .

(c) Let T * Φ ≡ φ be obtained from T * ψ and T * ψ → φ by the inference rule R1, and let ψ ≡ φ i , ψ ≡ φ j , and φ → ψ ≡ φ k in the above enumeration. Then, φ is a deductive consequence of each T l , where l max(i, k) + 1. Next, let ¬φ ≡ φ m . If φ m ∈ T m+1 , then ¬φ is a deductive consequence of each T n , where n m + 1. Therefore, for every n max(i, k, m) + 1, we would have that T n φ ∧ ¬φ, which is a contradiction with the consistency of T n . Thus, it must be that ¬φ ∈ T * . However, given item 1, it must then be that φ ∈ T * .

(d) Let T * Φ ≡ P i (α) = 1, for some i ∈ I be obtained from T * α by the inference rule R2. However, this means that T α and, by the construction of T 0 , we have that P i (α) = 1 ∈ T 0 ⊆ T * for all i ∈ I.

(e) Let T * Φ ≡ φ → f 0 be obtained from T * φ → f -n -1
, for all n ≥ 0. By the induction hypothesis, we then have that φ → f -n -1 ∈ T * , for all n ≥ 0. Next, let φ → f 0 = φ i in the above enumeration, and let us assume that φ i / ∈ T * . Then, T i ∪ {φ i } must be inconsistent, which means that, for some positive integer n, φ → f < -n -1 ∈ T i+1 , according to item 3a of Denition 8. Next, let φ → f ≥ -n -1 ≡ φ j in the above enumeration. Then, for all k ≥ max(i, j) + 1, we have that

T k φ → f < -n -1 and T k φ → f ≥ -n -1 ,
which is in contradiction with the consistency of T k . Therefore, it must be that Φ ∈ T , and we have our claim.

Next, for a given consistent set of formulas T and its completion to a maximally consistent set T * , we proceed to dene a canonical model M * = W, H, {µ i |i ∈ I}, v as follows:

1. W is the set of all functions w : F or C -→ {0, 1} with the following properties:

• w is compatible with ¬ and ∧.

•

w(α) = 1 for each α ∈ T * . 2. v : F or C × W -→ {0, 1} is dened by v(α, w) = 1 i w(α) = 1. 3. H = {[α] | α ∈ F or C }. 4. µ i : H -→ [0, 1] is dened by µ i ([α]) = sup{s ∈ [0, 1] ∩ Q | T * P i (α) s}, for all i ∈ I. Lemma 2. M * is a measurable model.
Proof. Here, we need to prove that H is an algebra of sets and that each µ i is indeed a nitely additive probability measure. Given the properties of the measure, we have that

[α]∩[β] = [α∧β], [α] ∪ [β] = [α ∨ β] and H \ [α] = [¬α]
, from which we obtain that H is an algebra of sets. Concerning the measures µ i , the non-negativity requirement (µ i ([α]) ≥ 0) is the consequence of axiom A2 and the denition of µ i , while the requirement that µ i (W) = 1 follows directly from the axiom A3, since W = []. Now, we will turn our attention to the proof of nite additivity.

Let µ i ([α]) = a, µ i ([β]) = b and µ i ([α ∧ β]) = c. What we would like to prove is that µ i ([α ∨ β]) = a + b -c. Since the set of rational numbers Q is dense in R, we can choose an increasing sequence a 0 < a 1 < a 2 < • • • and a decreasing sequence a 0 > a 1 > a 2 > • • • in Q such that lim a n = lim a n = a.
Using the denition of µ i and item 1 of Theorem 3, we obtain that T * P i (α) a n and that T * P i (φ) < a n , for all positive integers n. In the same way, we can also choose increasing sequences (b n) n∈ω and (c n) n∈ω , and decreasing sequences (b n) n∈ω and (c n) n∈ω in Q, such that lim b n = lim b n = b and lim c n = lim c n = c. For these sequences, we have that

T * P i (β) b n ∧ P i (β) < b n and T * P i (α ∧ β) c n ∧ P i (α ∧ β) < c n .
From here, using the arithmetical axioms, we have that

T * P i (α) + P i (β) -P i (α ∧ β) a n + b n -c n and T * P i (α) + P i (β) -P i (α ∧ β) < a n + b n -c n
for all positive integers n. Using the axioms A6 and A30, we obtain that T * P i (α ∨ β) a n + b n -c n and that T * P i (α ∨ β) < a n + b n -c n , for all n. Finally, from the fact that Proof. Let T be a consistent set of formulas. We can extend it to a maximally consistent set T * , and dene a canonical model M * , as above. We will now prove that M * |= Φ i Φ ∈ T * by induction on the complexity of the formulas. First, we prove that if M * |= Φ, then Φ ∈ T * :

µ i ([α ∨ β]) = sup{r ∈ Q | T * P i (α ∨ β) r} and lim a n + b n -c n = lim a n + b n -c n = a + b -c, we obtain that µ i ([α ∨ β]) = a + b -c.
1. As the base case, let M * |= α. By the completeness of classical propositional logic, we have that T * α, and α ∈ T * .

2. Let M * |= f 0, i.e. f M * ≥ 0. If f 0 / ∈ T * , from the construction of T * , there exists a positive integer n, such that f < -n -1 ∈ T * . But then, by the construction of M * , we would have that f M * < 0, which is a contradiction. Therefore, we have that f 0 ∈ T * . Here, it is important to notice that that

T * CP i (α, β) ≥ r implies that µ i ([α i ∧ β i])µ i ([β i]) -1 ≥ r. Indeed, if it were that µ i ([α i ∧ β i])µ i ([β i]) -1 < r, there would exist a, b ∈ Q, such that a > µ i ([α i ∧ β i]), b ≤ µ i ([β i]), and µ i ([α i ∧ β i])µ i ([β i]) -1 < a b < r.
Using the previously proven direction, we would have that T * P i (α ∧ β) < a and T * P i (β) ≥ b, and hence, by A12, that T * CP i (α, β) < a • b -1 , which would be a contradiction. Similarly, we can show that T

* CP i (α, β) ≤ r implies that µ i ([α i ∧ β i])µ i ([β i]) -1 ≤ r. As a consequence, we have that µ i ([α i]|[β i]) = sup{r ∈ Q | T * CP n i (α, β)
r}. Next, we proceed to prove the opposite direction: if Φ ∈ T * , then M * |= Φ:

1. As the base case, let Φ = α ∈ F or C . If α ∈ T * , i.e. T * α, then, by denition of M * , M * |= α.
2. Let us suppose that f 0 ∈ T * . Then, using the axioms A16A19, A22A25 and A30, we can prove that

T * f = s + m i=1 s i • CP n i (α i , β i) and T * s + m i=1 s i • CP n i (α i , β i) 0,
for some s, s i ∈ Q and some α i , β i ∈ F or C , n i ∈ I. This is not surprising, given the intended design of terms (cf. Equation 2.2). Moreover, given the axioms A7, A16, A20

and A30, we can eectively cancel out all of the subterms of f in which we have conditional probabilities CP i (α, β) with P i (β) = 0, and, therefore, may assume that

T * P n i (β i) > 0. Next, let a i = µ n i ([α i ∧ β i]) and b i = µ n i ([β i]). We need to prove that s + m i=1 s i • a i • b -1 i 0.
(2.3) Therefore, we can choose increasing sequences (c inc i,k) k∈ω and decreasing sequences (

c dec i,k) k∈ω in Q, such that lim c inc i,k = lim c dec i,k = a i b -1 i , for i ∈ {1, . . . , m}. Hence, we have that T * CP n i (α, β) c inc i,k ∧ CP n i (α, β) < c dec i,k , for i ∈ {1, . . . , m} and k ∈ ω.
Without loss of generality, we can assume that T * s i 0, for 1 i l, and T * s i < 0, for l < i m. Then, using the arithmetical axioms, we obtain that

T * s + l i=1 s i • c inc i,k + m i=l+1 s i • c dec i,k s + m i=1 s i • CP n i (α i , β i) and T * s + l i=1 s i • c dec i,k + m i=l+1 s i • c inc i,k s + m i=1 s i • CP n i (α i , β i)
for all k. Consequently, we have that

s + m i=1 s i • a i • b -1 i = sup{r ∈ Q | T * s + m i=1 s i • CP n i (α i , β i) r}. Now, Equation 2.3 follows from T * s + m i=1 s i • CP n i (α i , β i) 0.

Decidability of LPCP

Theorem 5. Satisability of probabilistic formulas is decidable.

Proof. Up to equivalence, every probabilistic formula is a nite disjunction of nite conjunctions of literals, where a literal is either a basic probabilistic formula, or a negation of a basic probabilistic formula. Thus, it would be sucient to show the decidability of the satisability problem for formulas of the form

i f i 0 ∧ j g j < 0.
(2.4) Suppose that p 1 , . . . , p n are all of the propositional letters appearing in Equation 2.4. Let A 1 , . . . , A 2 n be all of the formulas of the form

±p 1 ∧ • • • ∧ ±p n ,
where +p = p and -p = ¬p. We can see that A i are pairwise-disjoint and form a partition of . Furthermore, for each classical formula α appearing in Equation 2.4, there exists a unique set I α ⊆ {1, . . . ,

2 n } such that α ↔ i∈Iα A i
is a tautology. Now, given Equation 2.2, we can equivalently rewrite Equation 2.4 as

i i s ii CP n i k∈Iα ii A k , l∈I β ii A l r i ∧ j j s jj CP n j k∈Iα jj A k , l∈I β jj A l < r j .
Let the set {i 1 , . . . , i m } ⊆ I be the set of all of the dierent conditional probability operator indexes which appear in Equation 2.4, and let σ i (x (1,i 1) , . . . , x (2 n ,i 1) , . . . , x (1,im) , . . . , x (2 n ,im)), δ j (x (1,i 1) , . . . , x (2 n ,i 1) , . . . , x (1,im) , . . . , x (2 n ,im)) be the formulas

i s ii • k∈Iα ii ∩I β ii x (k,n i) • l∈I β ii x (l,n i) -1 r i and j s jj • k∈Iα jj ∩I β jj x (k,n j) • l∈I β jj x (l,n j) -1 < r j . Furthermore, let χ(x (1,i 1) , . . . , x (2 n ,i 1) , . . . , x (1,im) , . . . , x (2 n ,im)) be the formula h∈{1,...,m} x (1,i h) + • • • x (2 n ,i h) = 1 ∧ k,h x (k,i h) 0.
Then, we can notice that Equation 2.4 is satisable if and only if the sentence ∃x (1,i 1) . . . ∃x (2 n ,i 1) . . . ∃x (1,im)

. . . ∃x (2 n ,im) i σ i (x) ∧ j δ j (x) ∧ χ(x) (2.5)
is satised in the ordered eld of reals. Formally, the rst order language of elds does not contain -1 and -. However, both of these functions are easily denable. For instance, -1 can be dened by the following formula: ϕ(x, y) : (x = 0 → y = 1) ∧ (x = 0 → xy = 1), since the rst order sentence (∀x)(∃ 1 y)ϕ(x, y) is satised in every eld. In particular, the formula ψ(. . . , x -1 , . . .) holds if and only if the formula ψ(. . . , y, . . .) ∧ ϕ(x, y) holds. Therefore, Equation 2.5 can be seen as a rst-order formula belonging to the language of ordered elds L OF denitions by extensions, see [Shoeneld 1967]. Based on results presented in [START_REF] Marker | Model Theory: an Introduction[END_REF] we have that the satisability of sentences of L OF in the ordered eld of reals is decidable.

It should be noted here that our choice to extend the operation -1 so that 0 -1 = 1 does not aect the aforementioned reasoning, as the conditional probability of α given β is equal to 0 i the probability of α ∧ β is equal to 0, regardless of the value of the probability of β. Now, let us suppose that there is only one conditional probability operator, i.e. that there exists only one agent. It should be noted that this logic can be embedded into the logic described in [Fagin 1990], which has a PSPACE containment for the decision procedure. Also, the rewriting of formulas from our logic into that logic can be accomplished in linear time:

CP (α, β) is equivalent to ω(α∧β) ω(β) ,
which can be represented easily in [Fagin 1990]. Furthermore, the generalization of the logic from [Fagin 1990] to a multi-agent case is straightforward. Therefore, we conclude that our logic is also decidable in PSPACE.

An Interlude: Reasoning about Evidence

Imagine the following scenario: we have two coins, one of which is fair (with a head on one side and a tail on the other, with the probability of 50% for each of the outcomes), while the other one is extremely biased (e.g. with a probability of only 1% for the tail to appear on top). We also have the results of a series of tosses originating from one of the coins, but we do not know which. Furthermore, we have no information whatsoever regarding prior probability assigned to the choice of the coin, and we would like to make some sort of probabilistic inference as to which coin has actually been tossed only from the results of the tosses. Then, we can view these results as evidence in favor of or against one of the coins, and it is precisely this notion that we would like to model. The model should capture our intuition about the matter in question. For instance, if we were to have a series of 50 tosses with only three tails, we could induce that the coin in question is the biased one, while if we were to have a series of 50 tosses with 24 heads and 26 tails, we could induce that the coin in question is the fair one.

The topic of evidence has been discussed comprehensively in philosophical literature, namely philosophy of science and, more precisely, conrmation theory, where the main topic of discussion is the extent to which experimental evidence lends credence to various scientic theories [START_REF] Good | Probability and the Weighing of Evidence[END_REF], Popper 1959[START_REF] Carnap | Logical Foundations of Probability[END_REF], Milne 1996].

There are three things which a framework capturing evidence should incorporate: probabilistic outcomes (such as the outcome of the actual coin toss), non-probabilistic outcomes (such as the choice of the coin toss), and, mainly, the change in likelihood of a hypothesis caused by the previous probabilistic outcomes. While there were many research eorts which have successfully been able to capture the rst two requirements [Halpern 1993, de Alfaro 1997, He 1995], it was not until [Halpern 2006] that the third one was also realized.

Representing Evidence with LPCP

In [Halpern 2006], Halpern and Pucella have presented a rst-order logic for reasoning about evidence. It includes propositional formulas on hypotheses H, observations O, probabilities P 1 and P 2 of formulas before and after the observation, the evidence E(o, h) provided by the observation o for the hypothesis h, and quantication by real-valued variables. They have posed an open question whether it would be possible to axiomatize their logic without using quantication. Intuitively, the evidence function e represents the weight with which an observation leads to the fulllment of a hypothesis. Also, it was shown that evidence can be seen as a function which maps prior probability P 1 to posterior probability P 2 , using Dempster's Rule of Combination. For more details, we refer the reader to [Halpern 2006]. In this section, we will show how evidence can be represented using LPCP. We will introduce the following modications:

1. There is a nite number of propositional letters divided into two categories: V ar = H ∪ O, where H = {h 1 , . . . , h m } are used to denote hypotheses, O = {o 1 , . . . , o n } are used to denote observations, and H ∩ O = ∅.

2. There are only two conditional probability operators CP 1 and CP 2 , which will be interpreted as prior and posterior conditional probabilities, respectively;

3. there is an additional syntactic object E(o, h), where o ∈ O, h ∈ H.

4. The denition of T erm(0) is adjusted accordingly to:

T erm(0) = {s | s ∈ Q} ∪ {CP i (α, β) | α, β ∈ F or C , i ∈ I} ∪ {E(o, h)|o ∈ O, h ∈ H}.
e : ({[o]|o ∈ O} × [{[h]|h ∈ H}]) → [0, 1] by the formula e([o], [h]) = µ 1 ([o ∧ h]) • µ 1 ([h]) -1 m k=1 µ 1 ([o ∧ h k]) • µ 1 ([h k]) -1 , for o ∈ O, h ∈ H.
6. The denition of satisability is extended to include:

E(o, h) M = (CP 1 (o, h) M) • m k=1 CP 1 (o, h k) M -1
,

for o ∈ O, h ∈ H.
7. There are nine additional axioms:

A31. (m i=1 h i) ∧ (i =j (h i → ¬h j)). A32. (n i=1 o i) ∧ (i =j (o i → ¬o j)). A33. n i=1 (CP 1 (o i , h 1) + . . . + CP 1 (o i , h m) > 0). A34. (CP 1 (o i , h j) r ∧ CP 1 (o i , h 1) + . . . + CP 1 (o i , h m) s) → E(o i , h j) r • s -1 . A35. (CP 1 (o i , h j) r ∧ CP 1 (o i , h 1) + . . . + CP 1 (o i , h m) < s) → E(o i , h j) > r • s -1 . A36. (CP 1 (o i , h j) > r ∧ CP 1 (o i , h 1) + . . . + CP 1 (o i , h m) s) → E(o i , h j) > r • s -1 . A37. (CP 1 (o i , h j) r ∧ CP 1 (o i , h 1) + . . . + CP 1 (o i , h m) s) → E(o i , h j) r • s -1 . A38. (CP 1 (o i , h j) r ∧ CP 1 (o i , h 1) + . . . + CP 1 (o i , h m) > s) → E(o i , h j) < r • s -1 . A39. (CP 1 (o i , h j) < r ∧ CP 1 (o i , h 1) + . . . + CP 1 (o i , h m) s) → E(o i , h j) < r • s -1 ,
8. There is one additional inference rule:

R4. o i P 2 (h j) = CP 1 (h j |o i)
, i ∈ {1, . . . , n}, j ∈ {1, . . . , m}.

It can be shown, very similarly to the already laid-out proofs, that the logic with these modications in place is also strongly complete and decidable in PSPACE. In this way, we have solved the problem of propositional axiomatization of reasoning about evidence, which was presented in [Halpern 2006].

Summary

In this chapter, we have introduced a sound and strongly-complete axiomatic system for LPCPa probability logic with conditional probability operators CP i , i ∈ I, which allows for linear combinations and comparative statements. As it was noticed in [van der Hoek 1997], it is not possible to provide a nitary strongly complete axiomatization for such a system. In our case, the strong completeness was made possible by adding an innitary rule of inference.

The formalism which we have obtained is fairly expressive and allows for the representation of uncertain knowledge, where uncertainty is modeled by probability formulas. We have shown it to be decidable, and also that it can be extended in order to be used to represent evidence, making it the rst propositional axiomatization of reasoning about evidence. In this chapter, we introduce LP P Q 2 -a probability logic that extends classical logic with probabilistic operators of the form P ≥ rα, with the meaning that the probability that the classical formula α holds is at least r. This logic does not allow iterations of probability operators. We present its syntax and semantics, as well as a strongly complete axiomatic system. We formally prove its main meta-theoretical properties (soundness, strong and simple completeness, and non-compactness) using the proof assistant Coq.

3.1 Syntax of LP P Q 2

In the logic LP P Q 2 , there exist two types of formulas: classical and probabilistic. For the classical formulas, we require a denumerably innite set of propositional letters: φ = {p 0 , p 1 , . . .}, and two propositional connectives: ¬ c and → c . The set of all classical formulas F or C is then dened as the smallest set that satises the following conditions:

• it contains all of the propositional letters, and

• is closed under the following formation rules: if α, β ∈ F or C , then ¬ c α, α → c β ∈ F or C .
These are, in fact, formulas as they are commonly dened in classical propositional logic and, as we will see in more detail later on, classical propositional logic will serve us as a base logic underneath the probabilistic level. In the encoding of classical formulas (represented by the inductive type forC), the propositional letters are represented by Coq's built-in type for natural numbers nat, while the connectives ¬ c and → c are, respectively, represented by the constructors NegC : forC -> forC and ImpC : forC -> forC -> forC.

Next, let us denote by Q [0,1] the set of all rational numbers belonging to the unit interval.

For the probabilistic formulas, we require a denumerably innite set of probabilistic operators

P ≥s , s ∈ Q [0,1]
, and two propositional connectives: ¬ p and → p . A basic probabilistic formula is an expression of the form P ≥s α, where s ∈ Q [0,1] , and α ∈ F or C . The set of all probabilistic formulas F or P is then dened as the smallest set satisfying the following conditions:

• it contains all of the basic probabilistic formulas, and

• is closed under the following formation rules: if A, B ∈ F or P , then ¬ p A, A → p B ∈ F or P .

Here, the intended meaning of the probabilistic operators, using the example of P ≥s α, for s ∈ Q [0,1] , and a classical formula α, is that the probability that α holds is at least s. With this, we have constructed a new layer of formulas on top of classical logic, and within this layer we are able to assign probabilities to the classical formulas themselves. As we inspect the formation rules, we can notice that it is neither possible to combine classical and probabilistic formulas via a binary connective, nor is it possible to iterate the probabilistic operators. Therefore, in this logic, we cannot obtain formulas such as p 0 → P ≥ 1 2

p 1 or P ≥ 1 2 (P ≥ 1 3 p 0).
To be able to encode probabilistic formulas in Coq, we rst require a type which could play the role of a rational number from the unit interval. This has been accomplished using Record types, by imposing appropriate side conditions on the already present type Qc, the obtained record type is called Q01, and coerces to Qc. The probabilistic formulas are then represented by the inductive type forP, the connectives ¬ p and → p are, respectively, represented by its constructors NegP and ImpP (handled analogously to their classical counterparts), and, in particular, the constructor for probabilistic operators P ≥s is of the form:

| Pge : Q01 -> forC -> forP Hereinafter, when we are not addressing an encoding of a concept in Coq in detail, we will specify the label of the encoding in brackets, immediately following the theoretical explanation.

The remaining classical and probabilistic propositional connectives ∨ c (OrC), ∧ c (AndC), ↔ c (EquC), and ∨ p (OrP), ∧ p (AndP), ↔ p (EquP) are dened in the usual way, while, additionally, for the probabilistic operators, we introduce the following abbreviations:

(Plt) P <s α for ¬ p P ≥s α.

(Ple) P ≤s α for P ≥1-s ¬ c α. (Pgt) P >s α for ¬ p P ≤s α.

(Peq) P =s α for P ≥s α ∧ p P ≤s α. (Pne) P =s α for ¬ p P =s α.

(FalC) ⊥ c for ¬ c (α → c α). (FalP) ⊥ p for ¬ p (A → p A).

where we have that s ∈ Q [0,1] , α ∈ F or C , and A ∈ F or P . We should note that FalC and FalP are parameterized by α and A, respectively. The semantics for the logic LP P Q 2 is based on the possibleworld approach, akin to many modal and modal-like logics, bearing in mind that for us it is imperative to correctly capture the notion of probability expressed in the syntax. Denition 9.

An LP P Q 2 -model is a structure M = W, H, M, v , where
• W is a non-empty set of objects we will refer to as worlds.

• H is an algebra of subsets on W .

• µ is a nitely additive probability measure µ :

H → Q [0,1] .
• v is a valuation function v : W × φ → {true, f alse}, assigning truth-values to each propositional letter in each of the worlds. It is extended to all classical formulas as usual.

In this denition, we illustrate to what precisely the term rationally-valued in the title of the chapter and the description of the logic refers to, as the range of the measure, i.e. the set of values from which we are aiming to assign probabilities to classical formulas, is the set of all rational numbers belonging to the unit interval.

We will provide a little more detailed look into the encoding of the semantics and the representation of models in Coq. For representing sets, we have used Coq's Ensemble library, which treats sets of type U as functions from U to Prop, Coq's sort for propositions. First, a single world w ∈ W is represented by: Record ElemW (U : Type) (W : Ensemble U) : Type := mkElemW {origU :> U; inW : In _ W origU}.

In this manner, and with use of Coq's dependent types, we are able to capture the property of being a member of a subset within the type, which simplies dealing with worlds. Now, with

Algebra and MeasureQc being shorthand, respectively, for a set of sets of a given type U, and a function U → Qc, and AOS and FAM_Qc being predicates which check, respectively, that a given set of sets is indeed an algebra of subsets (i.e. that it is not empty and that it is closed under complement and union), and that a given function is indeed a probability measure on a given algebra of subsets (i.e. that it is non-negative, that the empty set measures 0, that the entire set measures 1, and that the measure itself is nitely additive), a model is represented by:

Record Therefore, apart from the four basic constituents, we have also embedded into the model the conditions which ensure that our set of worlds is not empty, that the set of worlds encompasses all of the elements of the appropriate ElemW type, and that the algebra of subsets and the measure meet their respective requirements. In this way, we ensure that we cannot construct a model which does not meet the required criteria. Moreover, the worlds are parameterized by a type U, allowing for dierent choices of sets representing worlds, depending on the proof scenario. Here, we make use of the Coq predicate inhabited Inductive inhabited (A : Type) : Prop := inhabits : A -> inhabited A that, if A is thought of as a type, states that there exists an element of type A. Also, note the use of the denition Full_set from the Ensembles library Inductive Full_set (U : Type) : Ensemble U := Full_intro : ∀x:U, Full_set U x.

that describes the set containing all elements of type U. Later on, we will also be using the Empty_set denition, also from the Ensembles library Inductive Empty_set (U : Type) : Ensemble U := .

that describes the empty set of elements of type U. Let us proceed, after this brief detour into formalization, with the theoretical development of the semantics. For a given LP P Q 2 -model M and a given formula α, we will denote the set of all of the worlds (worlds) in which α is true {w|v(w, α) = true} by [α] M . If the model in question is clear from the context, we will omit the subscript and write only [α] instead. Denition 10.

An LP P Q 2 -model M is measurable if [α] M ∈ H, for all α ∈ F or C .
We will onward focus on the class of all measurable models (Model_Meas), which we will denote by LP P Q

• if Φ ∈ F or C , M |= Φ i v(w, Φ) = true, for all w ∈ W .
Classical formulas are satised i they are true in all of the worlds.

• if Φ ∈ F or P , and is of the form

P ≥s α, M |= Φ i µ([α] M) ≥ s.
This is how we semantically capture the notion of probability: a probabilistic formula P ≥s α is satised i the set of worlds in which α holds has the measure at least equal to s.

• if Φ ∈ F or P , and is of the form ¬ p A, M |= Φ i M A.

• if Φ ∈ F or P , and is of the form A → p B, M |= Φ i M A or M |= B.
In Coq, we represent the satisability of one classical formula with the function modelsC, the satisability of one probabilistic formula with the function modelsP, the overall satisability of one formula with the function models, and the overall satisability of a set of formulas with the function modelsSet. It should be noted that the satisability of the negation and implication has been encoded using Coq's built-in connectives, which operate in an intuitionistic setting.

However, as we make use of theorems from Coq's Classical library throughout the proofs, we de facto have that they behave in a classical manner. Also, since we have delegated the evaluation of negation and implication to Coq, and didn't encode it explicitly, we can say that the encoding of LP P Q 2 presented here is a shallow encoding. Denition 12. A formula Φ is satisable if there exists an LP P Q

2 -measurable model M such that M |= Φ; Φ is valid (Valid) if M |= Φ, for all LP P Q 2 -measurable models M ; a set of formulas T is satisable (Satisfiable) if there exists an LP P Q 2 -measurable model M such that M |= Φ, for all Φ ∈ T .

A Complete Axiomatization

The set of valid formulas can be characterized by the axiom schemata presented in Figure 3.1, while the appropriate inference rules are presented in Figure 3.2. We denote this axiomatic system by Ax LP P Q

2

, and for each axiom schema we provide a brief description of its semantics.

The main task is, once again, to have a set of axiom schemata which would allow us to easily syntactically deal with the properties of probability and the measure function.

ACT. All instances of classical propositional tautologies for classical formulas.

APT. All instances of classical propositional tautologies for probabilistic formulas.

AP1. P ≥0 α.

The probability of a formula being true is non-negative.

AP2. P ≤r α → p P <s α, for s > r.

Compatibility of the probability with ≤ and <, standard property of the measure function.

AP3. P <r α → p P ≤r α.

Weakening of < into ≤, standard property of the measure function.

AP4.

P ≥r α → p (P ≥s β → p (P ≥1 ¬ c (α ∧ c β) → p P ≥r+s (α ∨ c β))), for r + s ≤ 1.
If the probability that α and β hold are, respectively, at least r and s, and if there are no worlds in which α and β both hold, then the probability that α ∨ β holds is at least r + s. This axiom schema eectively corresponds to the inclusion-exclusion principle for two sets, when their intersection is empty.

AP5. P ≤r α → p (P <s β → p P <r+s (α ∨ c β)), for r + s ≤ 1.

If the probability that α holds is at most r and the probability that β holds is less than s, then the probability that α∨β holds is less than r +s. Semantically, this is a consequence of the nite additivity of the measure function.

AP6. P ≥1 (α → c β) → p (P ≥r α → p P ≥r β).

If α → c β is true in all of the worlds, then the probability that α holds is at least equal to the probability that β holds. Probabilistic Necessitation: from α, infer P ≥1 α. Let us examine this axiomatic system in more detail. Clearly, in its current form it is not minimal, as all instances of the classical propositional tautologies are taken as axiom schemata, in contrast to, for example, taking three Hilbert-style axioms. Also, due to the axiom (ACT) and the modus ponens for classical formulas inference rule, we observe that classical logic is a sublogic of LP P Q 2 . We also notice that the process of proving consists of two parts (one of which may be empty): the rst part deals only with classical, while the second deals only with probabilistic formulas. The only means of switching from one part to the other is the probabilistic necessitation inference rule, lifting a classical formula into a probabilistic one, with no existing means of switching back from the probabilistic to the classical level. Hence, the logic LP P Q 2 is a conservative extension of classical logic. The domain enforcement rule serves for preserving strong completeness, given the inherent non-compactness of the system, and will be discussed in detail later in this chapter. Next, we introduce several standard syntactic notions: Denition 13. A formula Φ is derivable (Derivable) from a given set of formulas (premises)

Domain Enforcement

: from A → p P =r α, for all r ∈ Q [0,1] , infer A → ⊥ p .
T (denoted by T Φ) if there exists a nite sequence of formulas Φ 0 , . . . , Φ k , Φ, such that each Φ i is either in the set T , is an instance of one of the axiom schemata, or is obtained from the preceding formulas by using one of the inference rules. We call such a sequence a proof of Φ from T . A formula Φ is a theorem (denoted by Φ) if it is derivable from the empty set of formulas (isTheorem).

Equivalently, we could dene a proof of T Φ as a tree of formulas in whose root is the formula Φ, in whose leaves are formulas either from the set T or instances of axiom schemata, and where all of the non-leaves are obtained from previously existing nodes by one of the inference rules (proof_term).

In Coq, the axioms are encoded straightforwardly, as denitions, while the inference rules are embedded into the structure of the proofs, which we have encoded using the tree-structure approach. To illustrate, here we show the denition of axiom (AP3 Here, it is important to note that, for the domain enforcement rule, there are countably many premises required for its application. This countable collection of premises is handled in Coq as a function from natural numbers to proof terms proofs : nat -> proof_term), just as in [Honsell 1995]. This is further supported by introducing, as an axiom, a bijection between natural numbers and the Q [0,1] interval (f_nat_Q01 : nat -> Q01). The approach of adopting such a function as an axiom was taken due to the well-known fact that such a bijection exists, and a formal proof of its existence would be out of scope of this development.

Denition 14. A set of formulas T is consistent (Consistent) if there exists at least one classical formula α and at least one probabilistic formula A which are not derivable from it, and otherwise is inconsistent (Inconsistent_Alternate). Alternatively, a set of formulas

T is inconsistent if T ⊥ c or T ⊥ p (Inconsistent). A set of formulas T is maximally consistent (Max_Consistent)
if it is consistent and the following holds:

• for each α ∈ F or C : if T α, then α ∈ T and P ≥1 α ∈ T .

• for each A ∈ F or P : either A ∈ T or ¬ p A ∈ T .

Before proceeding to the actual proofs of the meta-theoretical properties of LP P Q 2 , we would like to note that all of the proofs laid out in this and the following chapter reect the proving process as done in Coq, but are presented in human-readable form. is proven in the standard manner. We show that all of the instances of the axiom schemata are valid formulas, and that the inference rules preserve validity. Here, we present the proof that the axiom schema AP 4 is valid, as well as the proofs that some of the inference rules preserve validity, while the remaining cases are handled similarly.

Lemma 3 (Validity of AP 4).

P ≥r α → p (P ≥s β → p (P ≥1 ¬ c (α ∧ c β) → p P ≥r+s (α ∨ c β))) is valid for all α, β ∈ F or C , r, s ∈ Q [0,
[α ∨ c β] = [α] ∪ [β].
Now, given the property of the measure that µ(1. If α is valid, and α → c β is valid, then β is also valid (vp_MPc).

[α] ∪ [β]) = µ([α]) + µ([β]) -µ([α] ∩ [β]) (FAM_Qc_union_split), we obtain that µ([α] ∪ [β]) ≥ r + s,
2. If A is valid, and A → p B is valid, then B is also valid (vp_MPp).

3. If α is valid, then P ≥1 α is also valid (vp_PN).

If

A → p P =r α is valid, for all r ∈ Q [0,1] , then A → p ⊥ p is also valid (vp_DE).
Proof.

Let us suppose that, for a given model

M = W, H, µ, v ∈ LP P Q 2,M eas , α, β ∈ F or C , we
have that:

M |= α and M |= α → c β.
From this, given the denition of the satisability relation and the denition of implication for classical formulas, it must also be that M |= β, which concludes our proof.

2. This case is handled analogously to the rst one.

3. Let us suppose that, for any given M = W, H, µ, v ∈ LP P Q 2,M eas , α ∈ F or C , we have that M |= α. From this, we have that [α] M = W , and by the denition of µ, we have that µ([α] M) = 1, which means, by the denition of the satisability relation, that M |= P ≥1 α, concluding our proof.

Let us suppose that, for any given

M = W, H, µ, v ∈ LP P Q 2,M eas , A ∈ F or P , α ∈ F or C .
we have that

M |= A → p P =r α, for all r ∈ Q [0,1] . (3.1)
Our goal is to prove that M |= A → p ⊥ p . If M A, the proof is immediate, given the denition of classical implication. Let us onward assume that M |= A. From this, Equation 3.1, and the denition of |=, we have that

µ([α]) = r, for all r ∈ Q [0,1] ,
which is a contradiction with the denition of µ. Therefore, the case in which M |= A is not possible, and we have our claim.

Therefore, we have eectively proven the soundness theorem:

Theorem 6 (Soundness of LP P The rst important meta-theoretical result on the road to proving strong completeness of

Q 2). If Φ is a theorem of Ax LP P Q 2 , then Φ is valid. Theorem LPP2_Q_Soundness : ∀ (Φ : FOR), isTheorem Φ → Valid Φ.
Ax LP P Q 2
is the Deduction Theorem. In order to prove it, we will need the following lemma:

Lemma 5. Derivations of classical formulas do not depend on probabilistic formulas (Der_clas_P_indep). If T is a set of formulas, T is a set of probabilistic formulas, and α ∈ F or C , then T ∪ T α implies T α.

Proof. By induction on the structure of the derivation of T ∪ T α.

Given the limitations of the syntax, we will have two Deduction Theorems, one for classical and one for probabilistic formulas. Here, we will state and prove only the one for probabilistic formulas, as the one for classical is proven just as in classical logic.

Theorem 7 (Deduction Theorem for Probabilistic Formulas). Let T be a set of formulas and A, B ∈ F or P . Then, the following holds:

T ∪ {A} B if and only if T A → p B.
Theorem LPP2_Q_Deduction_Theorem_Prob : ∀ (T : Ensemble FOR) (A B : forP), Derivable (Union FOR T (Singleton FOR (Prob A))) (Prob B) ↔ Derivable T (Prob (ImpP A B)).

Proof. The right-to-left implication is proven as in classical logic. We will prove the left-to-right implication by induction on the structure of the derivation of T ∪ {A} B. The cases in which B is obtained by using any of the axioms or the modus ponens for classical formulas inference rule are proven directly, by using the induction hypothesis, or as in classical logic.

Let T ∪ {A} B by the use of the probabilistic necessitation inference rule. In this case, B is of the form P ≥1 α, for some α ∈ F or C , and we have that T ∪ {A} α. From this, by Lemma 5, we have that T α. Now, using probabilistic necessitation, we obtain that T B, from which T A → p B immediately follows.

Let T ∪ {A} B by the use of the domain enforcement inference rule. In this case, B is of the form A → p ⊥ p , for some A ∈ F or P , and we have that, for all r ∈ Q [0,1] , T ∪ {A} A → p P =r α, for some α ∈ F or C . By the induction hypothesis, we have that for all r ∈ Q [0,1] , T A → p (A → p P =r α). However, since A → p (B → p C) ↔ (A ∧ p B) → p C is a tautology (where A, B, C ∈ F or P), we also have that for all r ∈ Q [0,1] , T (A ∧ p A) → p P =r α. From this, using the domain enforcement inference rule, we obtain that T (A ∧ p A) → p ⊥ p , and from that, using the abovementioned tautology again, we obtain that T A → p B. The next step is to prove that, in LP P Q 2 , a consistent set can always be extended to a maximally consistent set. For this, we will need the following auxiliary claims: Lemma 6. Derivability is not aected by adding theorems into the context, i.e. if T ∪ T Φ, and every formula in T is a theorem, then T Φ, where Φ ∈ F OR (Der_addThm). Consequently, consistency is not aected by adding theorems into the context (Consistency_addThm).

Proof. The rst part of the lemma is proven by induction on the structure of the derivation of T ∪ T Φ, while the second part follows directly from the rst one and the denition of consistency.

Lemma 7. For every consistent set of formulas T , and every probabilistic formula A, either

T ∪ {A} is consistent or T ∪ {¬ p A} is consistent (Consistency_xor).
Proof. Let us assume, instead, that both T ∪ {A} and T ∪ {¬ p A} are inconsistent. Then, it would have to be that T ∪ {A} ⊥ c or T ∪ {A} ⊥ p . However, by Lemma 5, if T ∪ {A} ⊥ c we would have that T ⊥ c as well, which is in contradiction with our assumption that T is consistent. Therefore, it must be that T ∪ {A} ⊥ p . Similarly, it must be that T ∪ {¬ p A} ⊥ p . By the Deduction Theorem, we then have that T A → ⊥ p , and T ¬ p A → ⊥ p . However, given that (A → p B) → p (¬ p A → p B) → p B is a tautology (where A, B ∈ F or P), we also have that T ⊥ p , which is in contradiction with our assumption that T is consistent, and concludes our proof.

Lemma 8. For all maximally consistent sets T , and for all probabilistic formulas A, B, the following holds:

1. Either A ∈ T or ¬ p A ∈ T (MCons_A_NegA_p).

A ∈ T if and only if T A (MCons_In_Der).

If

¬ p A ∈ T , then A / ∈ T (MCons_NegP). 4. If A ∧ p B ∈ T , then A ∈ T and B ∈ T (MCons_AndP). 5. If A ∨ p B ∈ T , then A ∈ T or B ∈ T (MCons_OrP).
Proof. The proof follows from the denition of maximal consistency and the axiomatic system, using several classical tautologies concerning the relationships between conjunction, disjunction and implication.

The next lemma provides us with an important insight into the connection between maximal consistency and classical formulas.

Lemma 9. Let T be a maximally consistent set. Then, for every α ∈ F or C , there exists a unique q(α) ∈ Q [0,1] , such that T P =q(α) α. (unique_existence_M)

Proof. We will split the proof into two parts. In the rst part, we will prove that, for a given α ∈ F or C , a q ∈ Q [0,1] satisfying the conditions of the Lemma exists, and in the second part, we will prove that such a q has to be unique. Let us assume that there is no q ∈ Q [0,1] , such that T P =q α. This means (using Lemma 8, item 1) that, for all q ∈ Q [0,1] , we have that T P =q α. However, using axiom AP1, the tautology P =q α → (P ≥0 α → P =q α), and the modus ponens for probabilistic formulas inference rule, we obtain that for all q ∈ Q [0,1] , it holds that T P ≥0 α → P =q α. From this, using the domain enforcement inference rule, we obtain that T P ≥0 α → ⊥ p . Finally, from this and (as P ≥0 α is an axiom) T P ≥0 α, and using the modus ponens for probabilistic formulas inference rule, we obtain that T ⊥ p , which is a contradition with the assumed consistency of T. Therefore, there exists a q ∈ Q [0,1] , such that T P =q α.

Next, let us assume that there are q 1 , q 2 ∈ Q [0,1] , such that T P =q 1 α and T P =q 2 α. If q 1 = q 2 , we have the desired claim. Next, let us suppose that q 1 < q 2 . Then, given that T P ≤q 1 α (from the denition of P =) and using the axiom AP2, we obtain that T P <q 2 α. However, from the denition of P = , we also have that T P ≥q 2 α, which gives us a contradiction. The case when q 1 > q 2 is handled analogously, and we nally obtain our claim.

Onward, we assume to have a consistent set of formulas T . If we denote the classical formulas in T by T Clas , and the probabilistic formulas in T by T P rob , we have that T = T Clas ∪ T P rob . We dene the set of classical consequences of T , denoted by CC(T) (ClasDCons), as

CC(T) = {α | α ∈ F or C , T α},
and its image through the P ≥1 operator (ExtendPge1) as

P N (T) = {P ≥1 α | α ∈ CC(T)}.
Next, we dene a primary extension of T , denoted by T 0 (makeT0), from which we will be constructing the maximally consistent extension of T , as:

T 0 = T ∪ CC(T) ∪ P N (T),
and prove that the following properties hold: Lemma 10. Let T be a consistent set of formulas, and T 0 its primary extension. Then:

1. For any classical formula α, if T 0 α then α ∈ T 0 (clas_in_T0).

2. For any probabilistic formula A, if T 0 A then T A (prob_in_T0).

3. T 0 is consistent (T0_cons).

Proof. The rst two parts are proven using induction on the structure of the derivation of T 0 α and T 0 A, respectively. As for the third part, let us assume that T 0 is inconsistent. Since T 0 is inconsistent, it must be that either T 0 ⊥ c or T 0 ⊥ p . Let rst T 0 ⊥ c . Given the rst part of this lemma, we then have that ⊥ c ∈ T 0 , meaning that either ⊥ c ∈ T or ⊥ c ∈ CC(T). However, in both of these cases we would have that T ⊥ c , which is in contradiction with the assumed consistency of T . Next, let T 0 ⊥ p . Given the second part of this lemma, we have that T ⊥ p , which is again in contradiction with the assumed consistency of T . Therefore, T 0 must be consistent.

The next lemma, similar in style to Lemma 9, provides another insight into the functioning of probabilistic operators and their compatibility with consistency: Lemma 11. For every consistent set of formulas T , a probabilistic formula A, and a classical formula α, if T ∪ {A} is consistent, then there exists a rational number p(α) ∈ Q

[0,1] such that T ∪ {A} ∪ {P =p(α) α} is consistent. (C_Peq_existence)
Proof. Let us assume, to the contrary, that for all r ∈ Q [0,1] , T ∪ {A} ∪ {P =r α} is inconsistent, i.e. that T ∪ {A} ∪ {P =r α} ⊥ p (T ∪ {A} ∪ {P =r α} ⊥ c is impossible, as then, given Lemma 5, T would be inconsistent). By applying the Deduction Theorem, we have that, for all r ∈ Q [0,1] , T ∪ {A} P =r α → ⊥ p . However, this is equivalent to having that, for all r ∈ Q [0,1] , T ∪ {A} P =r α, which is, in turn, equivalent (by applying the Deduction Theorem) to having that, for all r ∈ Q [0,1] , T A → p P =r α. However, then, by the domain enforcement inference rule, we have that T ⊥ p , which is a contradiction with the consistency of T .

Next, we will be needing to establish an enumeration of classical formulas α 0 , α 1 , α 2 , . . . (f_enum_c : nat -> forC), and an enumeration of probabilistic formulas A 0 , A 1 , A 2 , . . . (f_enum_p : nat -> forP). Again, as in the case of the countability of the Q [0,1] interval, we take the existence of these functions as axioms in Coq. We dene a sequence of sets T n (Tn_const), for n ≥ 1, as follows:

T n+1 = T n ∪ {A n } ∪ {P =p(αn) α n } if T n ∪ {A n } is consistent, T n ∪ {¬ p A n } ∪ {P =p(¬cαn) ¬ c α n } otherwise.
The proof of the following lemma is based of the previously proven lemmas:

Lemma 12. The following properties concerning the sequence T n hold:

1. For all n ≥ 0, T n ⊆ T n+1 (Tn_increasing).

2. For all n ≥ 0, T n is consistent (Tn_all_consistent).

3. For all classical formulas α, if α ∈ T n then α ∈ T 0 (Tn_clas_origin).

Next, we dene the maximally consistent extension T * of T , as

T * = ∞ i=1 T i .
Definition MC_Extension (T : Ensemble FOR) : Ensemble FOR := (fun A : FOR ⇒ ∃ k : nat, In FOR (Tn_const T k) A.)

As can be seen, this extension is naturally dened in Coq as a function in Prop, which is true only for the formulas that are contained in at least one of the extensions of T , which has been captured elegantly by the existential quantier. For T * dened in this way, we prove that the following statements hold:

Lemma 13 (Properties of T *).

1. For all A ∈ F or P , either A ∈ T * or ¬ p A ∈ T * (MCE_max).

⊥ p /

∈ T * (MCE_nFalP).

3. T ⊆ T * (T_in_MCE).

4. If T * α, then T 0 α, for α ∈ F or c (MCE_clas).

5. If T * A, then A ∈ T * , for A ∈ F or p (MCE_prob).

Proof.

1. Directly, by construction of T * .

2. By contradiction. If ⊥ p ∈ T * , then, by denition of T * , there exists an integer k, such that ⊥ p ∈ T k , which is a contradiction with the previously proven consistency of T k .

3. Directly, as T ⊆ T 0 , and T 0 ⊆ T * .

4. By induction on the structure of the derivation of T * α. First, if α ∈ T * , then, by denition of T * , there exists an integer k, such that α ∈ T k . Then, from Lemma 12, we obtain that α ∈ T 0 , from which T 0 α follows immediately. Next, if α is an instance of a tautology, it automatically follows that T 0 α. Finally, let us assume that T * α has been obtained from T * β and T * β → c α, using the modus ponens for classical formulas inference rule. By the induction hypothesis, we then have that T 0 β and that T 0 β → c α, from which we directly obtain T * → α using the modus ponens for classical formulas inference rule.

By induction on the structure of the derivation of T *

A. The cases where A is an instance of a tautology are proven directly, as well as the cases when A is an instance of any of the other axioms. Next, let us assume that T * A has been obtained from T * B and T * B → p A, using the modus ponens for probabilistic formulas inference rule. By the induction hypothesis, we then have that B ∈ T * and that B → p A ∈ T * . Let i, j, and k be the values assigned to B, B → p A, and A, respectively, in the enumeration of probabilistic formulas we have used to construct T * , and let m = max(i + 1, j + 1, k + 1). Then, it must hold that B, B → p A, and either A or ¬ p A are are in the set T m . However, if ¬ p A ∈ T m , then T m would be inconsistent, as both A and ¬ p A would be derivable from it. Therefore, it must be that A ∈ T m , and, consequently, that A ∈ T * . The case when A has been obtained using the probabilistic necessitation inference rule is handled perhaps surprisingly easily, as then, by construction, it holds that A ∈ T 0 . Finally, let T * A be obtained by using the domain enforcement inference rule. Then, A ≡ A → p ⊥ p , and we have that T * A → p P =r α, for all r ∈ Q [0,1] , and some α ∈ F or C , A ∈ F or P . By construction, we have that P =p(α) α ∈ T * , for some integer p(α). However, by the induction hypothesis, we have that A → p P =r α ∈ T * , for all r ∈ Q [0,1] , including r = p(α). Therefore, it must be that A / ∈ T * and ¬ p A ∈ T * , because we would be able to nd an inconsistent set in the sequence T n otherwise. Now, let i and j be the values assigned to ¬ p A and A → p ⊥ p in the enumeration of probabilistic formulas we have used to construct T * , and let m = max(i + 1, j + 1). Then, it must hold that ¬ p A and either A → p ⊥ p or ¬ p (A → p ⊥ p) are in the set T m . However, given the tautology ¬ p A → p (A → p B, if ¬ p (A → p ⊥ p) ∈ T m , then T m would be inconsistent, and we have our claim.

As a direct consequence of the previous Lemma, we obtain the main result of this subsection: Theorem 8. T * is a maximally consistent set of formulas.

The Canonical Model.

Now, we can turn to the construction of a canonical model M * for a given consistent set of formulas T . We proceed to dene each of the required model components:

Worlds. Let w be a valuation function mapping the set of propositional letters φ to {true, f alse} (nat -> Prop), and let us denote its standard extension to all classical formulas by w ext . The set of worlds W (Worlds) will be the set of all valuation functions, such that their standard extensions satisfy every classical formula which is a consequence of T :

W = {w | w : φ → {true, f alse}, {w ext (α) = 1 | α ∈ F or C , T α}}.
Algebra of Subsets. We will dene H (H) in the following way:

H = {[α] | α ∈ F or C },
where [α], as earlier, denotes the set of worlds from W in which a classical formula α is satised. It is easily proven that H, dened in this way, satises the requirements to be an algebra of subsets over W : it contains the empty set (H_empty_set_in_H), it is closed under complement (H_complement_in_H), and is closed under nite union (H_union_in_H).

Measure. The measure should map the algebra of subsets H into the rational unit interval

Q [0,1]
. Since the elements of H are essentially determined by classical formulas, we will dene µ as follows, using notation from Lemma 9:

µ([α]) = q(α), where T * P =q(α) α.

Lemma 9 states that a unique q(α) exists for each α ∈ F or C , ensuring that the measure is well-dened. The following claims needed to be proven with regard to the properties of µ, and have mostly consisted of untangling a number of technical details related to properties of sets and of rational numbers:

• If [β] ⊆ [α], then T α → c β (M_included_derivable) 1 . • Measure and negation: µ([α]) = 1 -µ([¬ c α]) (M_negation).
• Non-negativity: µ([α]) ≥ 0, for all α ∈ F or C (M_FAM_nonneg).

• Measure and the empty set: µ(∅) = 0 (M_FAM_empty_set).

• Measure and the full set: µ(W) = 1 (M_FAM_Full_set).

• Additivity: µ is nitely additive. (M_FAM_additive).

Valuation. The valuation function

v : W × φ → {true, f alse} (v) is dened naturally as v(w, p i) = w(p i).
In this way, we have obtained a model M * = W, H, µ, v (Const_Model_Simp), and the remaining claim that we need to prove is that it is measurable.

Lemma 14. M * is a measurable model (Construction_is_Measurable_Model).

Proof. We should prove that for α ∈ F or C , it holds that [α] M * ∈ H, which follows immediately, given the construction of H.

Strong Completeness.

With the canonical model in place, we need to prove several more auxiliary lemmas on the road to strong completeness. Let T be a consistent set of formulas, T * denote the maximally consistent extension of T , and M * denote the canonical model constructed from T * . Lemma 15. α ∈ T * if and only if M * |= α, for all α ∈ F or C (Cpt_iff_c).

Proof. Let M * |= α. We will prove that α ∈ T 0 , i.e. (by denition of T 0) that T α, which would be sucient for our claim. However, we obtain this immediately from the strong completeness of classical logic.

For the other direction, let α ∈ T * . By construction of T * , we have that T α. On the other hand, we need to prove that for all w ∈ W , v(w, α) = true. However, directly by construction of M * , we have that v(w, α) = w ext (α) = true, because the worlds of the canonical model are specically chosen so that all of the consequences of T are true in all of the worlds. Lemma 16. A ∈ T * if and only if M * |= A, for all A ∈ F or P (Cpt_iff_p).

Proof. By structural induction on A. First, let A = P ≥r α, and let P ≥r α ∈ T * . From Lemma 9 and item 2 of Lemma 8, we obtain that there exists a unique q(α) ∈ Q [0,1] , such that P =q(α) α ∈ T * , while, by Theorem 8, we obtain that q(α) ≤ r. Now, given the denition of µ in the canonical model and the denition of satisability, we directly obtain that M * |= P ≥r α. For the other direction, let M * |= P ≥r α. Then, by construction of the canonical model and the denition of satisability, we have that r is greater than or equal to the aforementioned q(α), obtained from Lemma 9. From here, since T * is maximally consistent, it has to be that T * P ≥r α.

Next, let A = ¬ p B. Using the induction hypothesis, our goal amounts to B / ∈ T * ↔ ¬ p B ∈ T * , which is easily obtained from item 1 of Lemma 13.

Finally, let A = A → p B . Using the induction hypothesis, our goal amounts to A /

∈ T * ∨ B ∈ T * ↔ (A → p B) ∈ T * . If A /
∈ T * or B ∈ T * , then, by using the tautologies ¬ p A → p (A → B) and B → p (A → p B), respectively, we obtain that T A → p B , and, by item 5 of Lemma 13, we obtain that A → p B ∈ T * . The other direction is proven easily using item 1 of Lemma 13.

From the previous two lemmas, we have Lemma 17. Φ ∈ T * if and only if M * |= Φ, for all Φ ∈ F or (Cpt_iff).

We also need the following claim: Lemma 18. Let T be a set of formulas and M = W, H, µ, v be a measurable model, and let us assume that M |= T . Then, it holds that for all Φ ∈ F or, if T Φ, then M |= Φ (Strong_Completeness_Consistent_T_rl).

Proof. By structural induction on the derivation of T Φ. The cases in which Φ ∈ T and in which Φ is an instance of an axiom or obtained by the modus ponens inference rules follow directly from the soundness of the system (Theorem 6) and the induction hypothesis (IH). Next, let T Φ be obtained by the probabilistic necessitation inference rule. Then, we have that Φ ≡ P ≥1 α, for some α ∈ F or C , and that T Φ was obtained from T α. By the IH, we have that M |= α, which means that α is true in every world, i.e. that [α] = W , i.e. that µ([α]) = 1. This, by denition of satisability, means that M |= P ≥1 α, and we have our claim. Finally, let T Φ be obtained by the domain enforcement inference rule. Then, we have that Φ ≡ A → p ⊥ p , and that T Φ was obtained from T A → p P =r α, for all r ∈ Q [0,1] , and some α ∈ F or C , A ∈ F or P . By the IH, we have that M |= A → p P =r α, for all r ∈ Q [0,1] . However, M |= A is not possible, since then we would have M |= ⊥ p as well, which cannot be, by denition of satisability and the measure. Therefore, it must be that M A, i.e. that M ¬ p A, from which, using classical propositional tautologies, we obtain the desired M |= A → p ⊥ p .

Finally, we can prove the main result of this chapter:

Theorem 9 (Strong Completeness of LP P Q 2). A set of formulas T is LP P Q 2 -consistent if and only if it is LP P Q 2,M eas -satisable (LPP2_Q_Strong_Completeness).
Theorem LPP2_Q_Strong_Completeness : ∀ T : Ensemble FOR, Consistent T <-> Satisfiable T.

Proof. First, let T be consistent. We show that M * |= T , i.e. that M * |= Φ, for every formula Φ ∈ T . By Lemma 17, this is true if and only if Φ ∈ T * . However, this is immediate, as every formula Φ which is in T is also, by construction, in T 0 , which, in turn, is a subset of T * . Next, let T be satisable. Then, there exists a model M = W, H, µ, v such that M |= Φ, for all Φ ∈ T . Then, by Lemma 18, we obtain that M models all formulas derivable from T . If T were to be inconsistent, then we would have that M |= ⊥ c or M |= ⊥ p , which is not possible by denition of satisability, and T must be consistent. Proof. Directly, given strong completeness of both classical logic and LP P Q

2 .

Now, we can proceed to the Simple Completeness Theorem:

Theorem 10 (Simple Completeness of LP P Q

.). If a formula Φ is LP P Q 2,M eas -valid, then it is a theorem of LP P Q 2 . (LPP2_Q_Simple_Completeness) 2
Theorem LPP2_Q_Simple_Completeness : ∀ Φ : FOR, Valid Φ -> isTheorem Φ.

Proof. We have two cases to consider. First, let Φ ≡ α be a classical formula.

Non-Compactness

Let us consider the set T = {P =0 α}∪{P < 1 n α| n ∈ N + }. Using the domain enforcement inference rule, we obtain that T is inconsistent (Cpc_Incons_T). By the strong completeness theorem, T is not satisable. However, every nite subset of T is consistent (Cpc_Finite_Sat_T), and, therefore, satisable. This gives us the non-compactness theorem for LP P Q 2 :

Theorem 11 (Non-compactness of LP P Q

2). There exists a set of LP P Q 2 -formulas which is unsatisable, but whose every nite subset is satisable.

Theorem LPP2_Q_NonCompactness : ∃ T : Ensemble FOR, (∀ T' : Ensemble FOR, Finite _ T' → Included _ T' T → Satisfiable T') ∧ ¬ Satisfiable T.

Concerning Decidability

By using a method similar to that shown for LPCP in Chapter 2, we can prove that the satisability of probabilistic formulas for LP P Q 2 is decidable, and that it is NP-complete. However, due to the perceived complexity of encoding the actual decision procedure as well as the required mathematical background in Coq, it was decided to keep the formal proof of decidability and, possibly, extraction of a certied probabilistic SAT-solver, as a future research goal.

• if α, β ∈ F or, then α → β ∈ F or.

Immediately we can see the main syntactic dierence between LP P Q 1 and LP P Q 2 : while in LP P Q 2 we have a separation of formulas into classical and probabilistic, in LP P Q 1 all formulas are treated equally. The intended meaning of the probabilistic operators, using the example of

P ≥s α, for s ∈ Q [0,1]
, and a formula α, is still that the probability that a formula α holds is at least s. As we inspect the formation rules, we can notice that it is now possible to iterate the probabilistic operators. Therefore, in this logic, we can use formulas such as P ≥ 1 2

(P ≥ 1 3 p 0),
expressing the statement that The probability that the probability of p 0 is at least 1/3, is at least 1/2. The remaining connectives ∨ (Or), ∧ (And), and ↔ (EquC) are dened in the usual way, while, additionally, for the probabilistic operators, we make use of the following abbreviations:

(Plt) P <s α for ¬P ≥s α. (Ple) P ≤s α for P ≥1-s ¬α.

(Pgt) P >s α for ¬P ≤s α. (Peq) P =s α for P ≥s α ∧ P ≤s α.

(Pne) P =s α for ¬P =s α. (Fal) ⊥ for ¬(α → α).

where we have that s ∈ Q [0,1] , and α ∈ F or.

Semantics of LP P Q 1

The semantics for the logic LP P Q 1 is based on the possibleworld approach, and is somewhat more complicated than that of LP P Q 2 , as a result of the simplication of the syntax and the removal of the distinction between classical and probabilistic formulas.

Denition 15. An LP P Q 1 -model is a structure M = W, P rob, v , where

• W is a non-empty set of objects we will refer to as worlds,

• P rob is a probability assignment which assigns to each w ∈ W a probability space P rob(w) = W (w), H(w), µ(w) , such that:

W (w) is a non-empty subset of W .
H(w) is an algebra of subsets on W (w).

µ(w) is a nitely additive probability measure µ :

H(w) → Q [0,1] .
• v is a valuation function v : W × φ → {true, f alse}, assigning truth-values to each propositional letter in each of the worlds. It is extended to all classical formulas as usual.

As we can see, this time each of the worlds is equipped with its own subset of worlds, algebra of subsets, and measure, in contrast to LP P Q 2 , where there was only one general measure on a single algebra of subsets. This change in approach is necessary because of the possibility of iterations of probability operators. Again, the range of the measures, i.e. the set of values from which we are assigning probabilities to formulas is the set of all rational numbers from the unit interval. We will provide a detailed look into the encoding of the semantics and the representation of models in Coq, with emphasis on the dierences from the previous chapter.

First of all, the worlds and the concepts of algebras of subsets and measures are encoded in the same manner as in LP P Q 2 , using record types (ElemW U W) capturing the property of an element being a member of a subset of W, a set of elements of type U, within the type. Probability spaces are encoded as follows:

A Complete Axiomatization

Interestingly, the set of valid formulas of LP P Q 1 can be characterized both with the same axiom schemata presented in Figure 3.1, and the inference rules as presented in Figure 3.2, with several purely syntactic modications and only one fundamental dierence. We denote this axiomatic system by Ax LP P Q 1 , and present it in APT. All instances of classical propositional tautologies.

AP1. P ≥0 α.

AP2. P ≤r α → P <s α, for s > r.

AP3. P <r α → P ≤r α.

AP4. P ≥r α → (P ≥s β → (P ≥1 ¬ c (α ∧ c β) → P ≥r+s (α ∨ c β))), for r + s ≤ 1.
AP5. P ≤r α → (P <s β → P <r+s (α ∨ c β)), for r + s ≤ 1.

AP6. P ≥1 (α → β) → (P ≥r α → P ≥r β). As we can see, the axioms have remained the same as for LP P Q 2 , with the doubled connectives ¬ c and ¬ p , and → c and → p replaced by the unique ¬ and →. The domain enforcement rule is once again present in order to preserve strong completeness, given the inherent non-compactness of the system. The standard syntactic notions are dened as follows: Denition 19. A formula Φ is derivable (Derivable) from a given set of formulas (premises) T (denoted by T Φ) if there exists a nite sequence of formulas Φ 0 , . . . , Φ k , Φ, such that each Φ i is either in the set T , is an instance of one of the axiom schemata, or is obtained from the preceding formulas by using one of the inference rules. We call such a sequence a proof of Φ from T . A formula Φ is a theorem (denoted by Φ) if it is derivable from the empty set of formulas (isTheorem).

Again, in Coq, we dene a proof of T Φ as a tree of formulas with Φ as the root, with formulas either from the set T or instances of axiom schemata as leaves, and where all of the non-leaves are obtained from previously existing nodes by one of the inference rules (proof_term).

Observation 1. Here, the reader might notice that in the Probabilistic Necessitation inference rule, technically, the notion of being a theorem has been used before it has been introduced, and its referencing may seem somewhat circular. This impreciseness is standard practice in pen-andpaper denitions of logics that require the side condition of being a theorem, and it has been kept here only so that the reader could make a clear comparison between the axiomatic systems of LP P Q 1 and LP P Q 2 . In order to be fully formally correct, the inference rules must be dened jointly with derivability, just as it was done in the Coq encoding.

55

Just as LP P Q 2 , LP P Q 1 also has an inference rule with a countable collection of premises, which has been handled analogously, by introducing a function from natural numbers to proof terms (proofs : nat -> proof_term), and we again make use of a bijection between natural numbers and the Q [0,1] interval (f_nat_Q01 : nat -> Q01).

Denition 20. A set of formulas T is consistent (Consistent) if there exists at least one formula α which are not derivable from it, and otherwise is inconsistent (Inconsistent_Alternate). Alternatively, a set of formulas T is inconsistent if T ⊥ (Inconsistent). A set of formulas T is maximally consistent (Max_Consistent) if it is consistent and for each formula, either it or its negation are in T (α ∈ T or ¬α ∈ T).

Key Properties of

Ax LP P Q 1 4.4.1 Soundness Soundness of Ax LP P Q 1 is proven just as that of Ax LP P Q 2 .
We show that all of the instances of the axiom schemata are valid formulas, and that the inference rules preserve validity. Here, we present the proof that the axiom schema AP 4 is valid, as well as the proofs that some of the inference rules preserve validity, while the remaining cases are handled similarly.

Lemma 20 (Validity of AP 4).

P ≥r α → (P ≥s β → (P ≥1 ¬(α ∧ β) → P ≥r+s (α ∨ β))) is valid for all α, β ∈ F or LP P Q 1 , r, s ∈ Q [0,1] , and r + s ≤ 1 (valid_AP04).
Proof. Let M = W, P rob, v be a measurable model, w ∈ W , and let us assume that M, w |= P ≥r α, M, w |= P ≥s β, and M, w |= P ≥1 ¬(α∧β), while our goal is to show that M, w |= P ≥r+s (α∨ β). From our assumptions, we have that 1. If α is valid, and α → β is valid, then β is also valid (vp_MP).

2. If α is valid, then P ≥1 α is also valid (vp_PN).

3. If β → P =r α is valid, for all r ∈ Q [0,1] , then β → ⊥ is also valid (vp_DE).
Proof.

1. Let us suppose that, for a given model M = W, P rob, v

∈ LP P Q 1,M eas , w ∈ W , α, β ∈ F or LP P Q 1 , we have that: M, w |= α and M, w |= α → β.
From this, given the denition of the satisability relation and the denition of implication, it must also be that M, w |= β, which concludes our proof.

Let us suppose that, for any given

M = W, P rob, v ∈ LP P Q 1,M eas , w ∈ W , α ∈ F or LP P Q 1 ,
we have that M, w |= α. From this, we have that [α] M,w = W , and by the denition of µ(w), we have that µ([α] M,w) = 1, which means, by the denition of the satisability relation, that M, w |= P ≥1 α, concluding our proof.

3. Let us suppose that, for any given M = W, P rob, v

∈ LP P Q 1,M eas , w ∈ W , α, β ∈ F or LP P Q 1 , we have that M, w |= β → P =r α, for all r ∈ Q [0,1] . (4.1)
Our goal is to prove that M, w |= β → ⊥. If M, w β, the proof is immediate. Let us onward assume that M, w |= A. From this, Equation 4.1, and the denition of |=, we have that

µ(w)([α]) = r, for all r ∈ Q [0,1] ,
which is a contradiction with the denition of µ(w). Therefore, the case in which M |= β is not possible, and we have our claim.

Therefore, we have proven the soundness theorem:

Theorem 12 (Soundness of LP P

Q 1). If Φ is a theorem of Ax LP P Q 1 , then Φ is valid. Theorem LPP1_Q_Soundness : ∀ (Φ : FOR), isTheorem Φ → Valid Φ.

Completeness

Since the syntax of LP P Q 1 is almost identical to the syntax of LP P Q 2 , the proofs of syntactic theorems for both logics follow the same path and are, in some cases, even identical. In the following subsections, we will only focus on proof segments which are dierent, while for the remaining segments and details, we refer the reader to Chapter 3.

The Deduction Theorem.

Just as in the previous chapter, the rst theorem we will be proving on the road to strong completeness is the Deduction Theorem. This time, we do not need two versions, as there exists only one type of formulas.

Theorem 13 (Deduction Theorem for LP P Q 1). Let T be a set of formulas and α, β

∈ F or LP P Q 1 .
Then, the following holds:

T ∪ {α} β if and only if T α → p β.

Theorem LPP1_Q_Deduction_Theorem : ∀ (T : Ensemble FOR) (A B : FOR), Derivable (Union FOR T (Singleton FOR A)) B ↔ Derivable T (Prob (Imp A B)).

Proof. The right-to-left implication is proven as in classical logic, while the left-to-right implication is proven by induction on the structure of the derivation of T ∪ {α} β, and is mostly identical to the proof of Theorem 7. Here, we will only present the case which is dierent, which is the case when T ∪ {β} β is obtained by the use of the probabilistic necessitation inference rule. In this case, β is of the form P ≥1 γ, for some γ ∈ F or LP P Q

1

, and we have that γ is a theorem. Therefore, we have that T γ. Now, using probabilistic necessitation, we obtain that T β, from which T α → β follows. 1 in Coq Again, this extension is naturally dened in Coq as a function in Prop, which is true only for the formulas contained in at least one of the extensions of T . For T * dened in this way, we prove that the following statements hold:

Lemma 27 (Properties of T *).

1. For all α ∈ F or

LP P Q 1 , either α ∈ T * or ¬α ∈ T * (MCE_maximal). 2. ⊥ / ∈ T * (MCE_no_Fal). 3. T ⊆ T * (T_in_MCE). 4. If T * α, then α ∈ T * , for α ∈ F or LP P Q 1 (MCE_in).
Proof.

1. Directly, by construction of T * .

2. By contradiction. If ⊥ ∈ T * , then, by denition of T * , there exists an integer k, such that ⊥ ∈ T k , which is a contradiction with the previously proven consistency of T k .

3. Directly, as T = T 0 , and T 0 ⊆ T * .

4. By induction on the derivation of T α. We will only show the case where A has been obtained using the probabilistic necessitation inference rule. Then, we have that α is of the form P ≥1 β, and that β is a theorem. Next, let k be the index of the formula β in the enumeration of formulas. Then, since β is a theorem, and given Lemma 22, we have that T n+1 = T n ∪ β, and we have our claim.

As a direct consequence of the previous Lemma, we obtain the main result of this subsection:

Theorem 14. T * is a maximally consistent set of formulas. 4.4.2.3 The Canonical Model.

Before we can proceed to the actual construction, we need several auxiliary lemmas:

Lemma 28. Let T be a maximally consistent set. Then, for every α ∈ F or

LP P Q 1 , there exists a unique q(α) ∈ Q [0,1] , such that T P =q(α) α. (unique_for_M)
Proof. Analogous to the proof of Lemma 9.

Lemma 29. A formula α is in all maximally consistent sets if and only if α is a theorem.

(in_all_MCons_thm)

Proof. The right-to-left direction follows directly from the denition of maximal consistency.

For the left-to-right direction, let us assume that for all maximally consistent sets T , it holds that α ∈ T . First, we will prove that T = {¬α} is inconsistent. Let us assume, to the contrary, that it is consistent, and let T * be its maximally consistent extension. Then, we would have that both ¬α ∈ T * (by construction) and α ∈ T * (by assumption), which is not possible, as then T * would not be consistent. Now, we have that {¬α} is inconsistent, i.e. that {¬α} ⊥.

Using the Deduction Theorem, we obtain that ∅ ¬α → ⊥ and from there, using classical propositional tautologies, we obtain that ∅ α.

Proof. By structural induction on the derivation of T α. The cases in which α ∈ T and in which α is an instance of an axiom or obtained by the modus ponens inference rule follow directly from the soundness of the system (Theorem 12) and the induction hypothesis (IH). Next, let T α be obtained by the probabilistic necessitation inference rule. This means that α = P ≥1 β, for some β ∈ F or LP P Q 1 , and that β is a theorem. However, by the Soundness theorem, β is then valid, i.e. M, w |= β for all w ∈ W . Therefore, we have that [β] M,w = W (w), from which we obtain that µ(w)([β] M,w) = 1, and, consequently, that M, w |= P ≥1 β, which is our claim. Finally, let T α be obtained by the domain enforcement inference rule. This means that α = β → ⊥, and that this was obtained from T β → P =r γ, for all r ∈ Q [0,1] , and some β, γ ∈ F or LP P Q

1

. By the IH, we have that M |= β → P =r γ, for all r ∈ Q [0,1] . However, M |= β is not possible, as by denition of satisability and the measure, it would have to be that M |= ⊥. Therefore, it must be that M β, from which we easily obtain the desired M |= β → ⊥.

Finally, we can prove the main result of this chapter:

Theorem 15 (Strong Completeness of LP P Q 1). A set of formulas T is LP P Q 1 -consistent if and only if it is LP P Q 1,M eas -satisable (LPP1_Q_Strong_Completeness).
Theorem LPP2_Q_Strong_Completeness : ∀ T : Ensemble FOR, Consistent T <-> Satisfiable T.

Proof. First, let T be consistent. We need to prove that it is satisable, i.e. that there exists an LP P Q 1,M eas -model M = W, P rob, v and a world w ∈ W , such that M, w |= α, for all formulas α ∈ T . We will choose the model to be the canonical model M * , while the corresponding world will be T * , which is possible as the worlds in M * are maximally consistent sets. We prove easily, by structural induction on α, that M * , T * |= α if and only if α ∈ T * . From there, we obtain that M, w |= α, for all α ∈ T , as T ⊆ T * .

Next, let T be satisable. Then, there exists a model M = W, P rob, v and a world w ∈ W such that M, w |= α, for all α ∈ T . Then, by Lemma 31, we obtain that M and w model all formulas derivable from T . If T were to be inconsistent, then we would have that M, w |= ⊥ which is not possible by denition of satisability, and T must be consistent.

Simple Completeness of

LP P Q 1 .
The Simple Completeness Theorem follows naturally from the Strong Completeness Theorem:

Theorem 16 (Simple Completeness of LP P Q

.). If a formula Φ is LP P Q 1,M eas -valid, then it is a theorem of LP P Q 1 . (LPP1_Q_Simple_Completeness) 1
Theorem LPP1_Q_Simple_Completeness :

∀ Φ : FOR, Valid Φ -> isTheorem Φ.
Proof. If α is LP P Q 1,M eas -valid, then ¬α is not satisable and by the Strong Completeness Theorem, {¬α} is inconsistent, i.e. {¬α} ⊥. From there, we easily obtain α from the Deduction Theorem and the elimination of double negation.

Non-Compactness

Let us consider the set T = {P =0 α}∪{P < 1 n α| n ∈ N + }. Using the domain enforcement inference rule, we obtain that T is inconsistent (Cpc_Incons_T). By the strong completeness theorem, T is not satisable. However, every nite subset of T is consistent (Cpc_Finite_Sat_T), and, therefore, satisable. This gives us the non-compactness theorem for LP P Q 1 :

a verication {has to be (lock), has been successfully (unlock)} carried out. In this manner, we combine the reliability of formal proof systems based on constructive type theory with the eciency of other computer tools, in the style of the Poincaré Principle [START_REF] Barendregt | [END_REF]].

In this thesis, we develop the meta-theory of LF P . Strong normalization and conuence are proven without any additional assumptions on predicates. For subject reduction, we require the predicates to be well-behaved, i.e. closed under weakening, permutation, substitution, and βL-reduction in the arguments. LF P is decidable, if the external predicates are decidable. We also provide a canonical presentation of LF P , in the style of [START_REF] Watkins | [END_REF][START_REF] Harper | Mechanizing Metatheory in a Logical Framework[END_REF], based on a suitable extension of the notion of βη-long normal form. This allows for simple proofs of adequacy of the encodings.

In particular, we encode in LF P the call-by-value λ-calculus and discuss a possible extension which supports the design-by-contract paradigm. We provide smooth encodings of side conditions in the rules of Modal Logics, both in Hilbert and Natural Deduction styles, cf.

[Avron 1998, Crary 2010]. We also encode sub-structural logics, namely non-commutative Linear Logic, cf. [START_REF] Polakow | [END_REF], Crary 2010]. We also illustrate how LF P can naturally support program correctness systems and Hoare-like logics. We also discuss how other systems can be embedded into LF P via locked types and provide pseudo-code for some of the used predicates.

As far as expressiveness is concerned, LF P is a stepping stone towards a general theory of shallow vs deep encodings, with our encodings being shallow by denition. Clearly, by Church's thesis, all external decidable predicates in LF P can be encoded, possibly with very deep encodings, in standard LF. It would be interesting to state in a precise categorical setting the relationship between such deep internal encodings and the encodings in LF P .

LF P can also be viewed as a neat methodology for separating the logical-deductive contents from, on one hand, the verication of structural and syntactical properties, which are often needlessly cumbersome but ultimately computable, or, on the other hand, from more general means of validation.

A Brief Detour into Philosophy

Since Euclid rst introduced the concept of rigorous proof and the axiomatic/deductive method, philosophers have been discussing the nature of mathematics, debating over whether it is essentially analytic or synthetic? Although we do not presume to give comments on such a fundamental philosophical issue, we do believe that the topics in this part of the thesis could be cast against that background, and we will, therefore, oer some comments in that direction.

Several possible, albeit partial modern readings of the synthetic vs. analytic opposition could be, in our view, those of deduction from axioms vs. computation according to rules, proof checking vs. verication, and proving inhabitability of judgements vs. denitional equality of types.

The mechanism of locking and unlocking types in the presence of external oracles, which we are introducing in LF P , eectively opens up the Logical Framework to alternate means of providing evidence for judgements. In standard LF, there are only two ways of providing this evidence, namely discovering types to be inhabited or postulating that types are inhabited by introducing appropriate constants. The locked/unlocked types of LF P open the door to an intermediate level, one provided by external means, such as computation engines or automated theorem proving tools. However, among these, one could also think of graphical tools based on neural networks, or even intuitive visual arguments, as were used in ancient times for giving the rst demonstrations of the Pythagoras' theorem, for instance. In a sense, LF P , by allowing formal accommodation of any alternative proof method to pure axiomatic deduction, vindicates all of the proof cultures which have been used pragmatically in the history of mathematics, and not only in the Western tradition.

One natural objection that can be raised against the LF P framework is: Alternative proof methods are not rigorous enough! We need to go through the pains of rigorous formalized proof checking in order to achieve the highest possible reliability of our certications!. While this point is, of course, true, several points do need to be made.

First of all, absolute certainty is a myth, as it cannot be achieved. The De Bruijn Principle [START_REF] Barendregt | [END_REF], de Bruijn 1968] is usually invoked in this respect. It amounts to the request that the core of the proof checker be small and veriable by hand. Alternate proof techniques certainly do not satisfy it in a strict sense. But alternate proof techniques, if properly recorded, are not useless and come at a somewhat intermediate level between rigorous encoding and blatant axioms. They can expedite verications, as in the case of the Poincaré's Principle [START_REF] Barendregt | [END_REF]], or Deduction Modulo [Dowek 2003], or make the proof more perspicuous and provide some intuition, as Schopenhauer advocated [Shopenhauer 2008]. On a lighter note, just recall the anecdote of a famous mathematician lecturing at a seminar, who, halfway through the proof, said: And this trivially holds! Just to say a few seconds later: But is it really trivial here? Hmm. . .. And after about ten minutes of silence triumphantly exclaimed: Yes, it is indeed trivial!. How do we encode such evidence? Should we just rule it out?

Anecdote aside, there is a far deeper reason, however, why a fundamentalist approach to certainty cannot be maintained that easily, and this has to do with the issue of adequacy.

Contrast, for a moment, the process of proving a computation correct with respect to carrying out its verication by directly executing it. Consider, for example, that 1 1 * 2 2 * 3 3 = 108. In the latter case, one would need to do some simple arithmetic, while in the former case, one would need to reify the rules for computing exponentials and products. Of course, using the autarkic approach explained in [START_REF] Barendregt | [END_REF]] or reasoning by reection as in [Chlipala 2013], one could internalize the needed arithmetics checking procedures (proving their correctness once and for all), while still preserving the de Bruijn principle and keeping proof terms small. However, our approach is more schematic, in the sense that it creates room for plugging-in any verier, without the need to specify which one and without the need to prove its soundness internally.

But what can truly guarantee that the formalization we have encoded is adequate, i.e. that it corresponds to our intended understanding of arithmetic? Enter the Münchhausen Trilemma in all its glory. The choices we have are:

• Innite regression, proofs requiring more proofs, which appears because of the necessity to go ever further back. However, this isn't practically feasible and by its very nature does not provide any foundation. Just ask Achilles how his dialogue with the Tortoise went, if he ever gets out of it, that is [START_REF] Carroll | What the Tortoise Said to Achilles[END_REF]]. Ok, how about then...

• A Logical Circle in the deduction, caused by the fact that one, in the need to found, falls back on statements which had already appeared before as requiring a foundation.

Hmmm... this feels like building something ready to collapse at any moment. Ok then, we really have no choice but to...

• Just do it. Break the search at a certain point and proclaim what the foundations are.

Enter axioms. This is principally feasible, but involves the concept of sucient reason, which tends to vary from person to person. Where do we stop the search and declare that something must hold?

The moral is that the issue of proving that formal statements, such as specications, encodings, and proof obligations, do indeed correspond to the intended meanings and pragmatic usages cannot ever be done completely internally to any system. Ultimately, we have to resort to some informal argument outside any possible De Bruijn Principle. And any such argument can, at best, increase our condence in the correctness of our proof of the arithmetical computation. If one looks for a denitive proof of adequacy, one is led into an innite regress. Fully internalized arguments can rely on the De Bruijn Principle, but even the simplest application takes us outside the system. Ultimately, we have no choice but to just do it.

One concluding comment. The traditional LF answer to the question What is a Logic? was: A signature in LF. In LF P , we can give the homologue answer, namely A signature in LF P , since external predicates can be read o the types occurring in the signatures themselves.

But, we can also use this very denition to answer a far more intriguing question:

What is a Proof Culture?.

Comparison with Related Work

The work presented in this part of the thesis relies on [Honsell 2013b, Honsell 2013a], and continues the research line of [Honsell 2007, Honsell 2008a], which present extensions of the original LF, where a notion of β-reduction modulo a predicate P is considered. The main idea of these works is that of stuck-reductions in terms and types in the setting of higher-order term rewriting systems, by Cirstea-Kirchner-Liquori [Cirstea 2001], later generalized to a framework of Pure Type Systems with Patterns [Barthe 2003]. This typing protocol was essential for the preservation of strong normalization of typable terms, as was proven in [Honsell 2007]. In [Honsell 2007, Honsell 2008a] the dependent function type is conditioned by a predicate, and we have a corresponding conditioned β-reduction, which res when the predicate holds on a term or judgement. In LF P , the predicates are external to the system and the verication of the validity of the predicate is part of the typing system. Standard β-reduction is recovered and combined with an unconditioned lock reduction. The move of having predicates as new type constructors rather than parameters of Π's and λ's allows LF P to be a mere language extension of standard LF. This simplies the meta-theory, and provides a more modular approach.

The approach adopted here generalizes and subsumes, in an abstract way, other approaches in the literature which combine internal and external derivations. In many cases, it can express and incorporate these approaches.

The relationship with the systems of [Cirstea 2001, Barthe 2003, Honsell 2007, Honsell 2008a], which combine derivation and computation, has been discussed above. Systems supporting the Poincaré Principle [START_REF] Barendregt | [END_REF]],

or Deduction Modulo [Dowek 2003], where derivation is separated from verication, can be directly incorporated in LF P . Similarly, we can abstractly subsume the system presented in [Blanqui 2008], which addresses a specic instance of our problem: how to outsource the computation of a decision procedure in Type Theory in a sound and principled way via an abstract conversion rule. One other system which has a very similar goal with respect to LF P is presented in [Cousineau 2007], where a framework named λΠ-calculus modulo is introduced, extending the original LF with computation rules. The latter are realized by means of rewrite rules empowering the traditional conversion rule of LF (i.e. the congruence relation ≡ β is replaced by ≡ βR , where R denotes the set of rewrite rules introduced into the system). The authors then successfully encode all functional Pure Type Systems (PTS) into the λΠ-calculus modulo, proving the conservativity of their embedding under the termination hypothesis. The main dierence between λΠ-calculus modulo and LF P lies in the fact that the latter features a simpler metatheory, because the reduction is closer to the standard β-reduction (at least in principle) and the external predicates are handled in a more controlled way by means of the lock/unlock mechanism. The direct consequence of this approach, from a practical point of view (when considering a possible implementation), is that we do not need to change the kernel of the original LF, but only extend it.

In [Virga 1999], an extension of the Edinburgh LF with an equational theory is proposed, opening the door to new ways of conversions among types within the framework. As a consequence, strong normalization and conuence properties remain valid only in a weaker form (namely, modulo the equivalence induced by the equational theory on types). In the second part of the work, Higher-order Term Rewriting Systems (HTRS) with dependent types are introduced and used to generate equational theories, much like those analyzed in the rst part. Of course, the rewriting rules of such an HTRS must adhere to some constraints, in order to guarantee the fundamental properties of the extended LF. For instance, it is forbidden to use a rewrite rule to rewrite the type of another rule, i.e. the rewriting must preserve well-typedness of expressions.

According to the author, the benet of the new system with respect to the original LF, is to overcome the inadequacies emerging when dealing with the encoding of object languages embodying notions of computations via equational rules. This work has served as a stepping stone to constraint-based extensions of the proof assistant Twelf, which are called constraint domains [START_REF] Pfenning | [END_REF]]. These extensions provide a way for users to work easily with objects (such as rational numbers), the explicit formalization of which in Twelf would otherwise be quite lengthy or inecient, but are still considered to be highly experimental.

The work presented here also has a bearing on proof irrelevance. In [Pfenning 1993], two terms inhabiting the same proof irrelevant type are set to be equal. However, when dealing with proof irrelevance in this way, a great amount of internal work is required, all of the relevant rules have to be explicitly specied in the signature, and the irrelevant terms need to be derived in the system anyway. With our approach, we move one step further, and do away completely with irrelevant terms in the system by delegating the task of building them to the external proof verier. We limit ourselves to the recording, through a locked type, that one such evidence, possibly established elsewhere, needs to be provided, making our approach more modular.

In the present work, predicates are dened on derivable judgements, and hence may, in particular, inspect the signature and the context, which normal LF cannot. The ability to inspect the signature and the context is reminiscent of [START_REF] Pientka | [END_REF][START_REF] Pientka | [END_REF], although in that approach the inspection was layered upon LF, whereas in LF P it is integrated in the system.

This integration is closer to the approach of [Licata 2009], but additional work is required in order to be able to compare their expressive powers precisely.

Another interesting framework, which adds a layer on top of LF is the Delphin system [START_REF] Poswolsky | [END_REF]], providing a functional programming language allowing the user to encode, manipulate, and reason over dependent higher-order datatypes. However, in this case as well, the focus is placed on the computational level inside the framework, rather than on the capability of delegating the verication of predicates to an external oracle.

LF with Side Conditions (LFSC), presented in [Stump 2009], is more reminiscent of our approach as it extends LF to allow side conditions to be expressed using a simple rst-order functional programming language. Indeed, the author aims at factoring the verications of (complicated) side-conditions out of the main proof. Such a task is delegated to the type checker, which runs the code associated with the side-condition, verifying that it yields the expected output. The proposed machinery is focused on providing improvements for solvers related to Satisability Modulo Theories (SMT).

Synopsis of the Upcoming Chapters.

In Chapter 6, we present the syntax of LF P , its typing system, and the notion of βL-reduction.

In Chapter 7, we prove the main meta-theoretical properties of the system, and discuss the expressive power of LF P . In Chapter 8, we present a canonical version of LF P , and discuss the correspondence with the full LF P framework. In Chapter 9, we show how to encode into LF P the call-by-value λ-calculus, a minimal functional language following the design-by-contract programming paradigm, Modal Logics in Hilbert and natural deduction style, non-commutative linear logic, a small imperative programming language featuring Hoare Logic, and provide several concluding comments on the benets of LF P . The pseudo-syntax of the LF P system is presented in Figure 6.1. We have ve syntactic categories: signatures, contexts, kinds, families or types, and objects. This pseudo-syntax is, essentially, that of LF (cf. [START_REF] Harper | A Framework for Dening Logics[END_REF]), with the removal of abstraction in families, and the addition of a lock constructor (L P N,σ [-]) on families and objects, and a corresponding lock destructor (U P N,σ [-]) on objects. The environment in which derivations occur is, as usual, described by the signature and the context, where the former keeps track of types or kinds assigned, respectively, to constant families and objects, while the latter keeps track of families assigned to variables. Both the lock and unlock constructors are parametrized over a unary logical predicate P, which is dened on derivable type judgements of the form Γ Σ N : σ. The entire LF P system is parameterized over a nite set of such predicates, and as these predicates are external by nature, they are not formalized explicitly (more comments are provided in Section 7.4).

However, these predicates are required to satisfy certain well-behavedness conditions, which will be presented in Chapter 7, in order to ensure subject reduction of the system. For the sake of notational completeness, the list of external predicates should also appear in the signature, but we will omit it so as to increase readability.

Notational conventions and auxiliary denitions. We will be using the following notation: M, N, . . . ∈ O denote objects, c, d, . . . denote object constants, x, y, z, . . . denote object variables, σ, τ, ρ, . . . ∈ F denote types, a, b, . . . denote constant types, K ∈ K denotes kinds, Γ ∈ C denotes contexts, Σ ∈ S denotes signatures, and P denotes predicates. We refer to L as the lock symbol, and to U as the unlock symbol. We will be using T to denote any term of the calculus (kind, family, or object), where, in some cases, the syntactic category to which T can belong will be clear from the context. We suppose that, in the context Γ, x:σ, the variable x does not occur free in Γ or in σ. We will be working modulo α-conversion and Barendregt's

Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, c:σ Signatures Γ ∈ C Γ ::= ∅ | Γ, x:σ Contexts K ∈ K K ::= Type | Πx:σ.K Kinds σ, τ, ρ ∈ F σ ::= a | Πx:σ.τ | σ N | L P N,σ [ρ] Families (Types) M, N ∈ O M ::= c | x | λx:σ.M | M N | L P N,σ [M] | U P N,σ [M]
Objects Figure 6.1: The pseudo-syntax of LF P 6.1 The LF P Type System

The type system for LF P , presented in detail below, proves judgements of the shape: ∅ sig (S•Empty) An empty signature is a valid signature.

Σ sig Σ is a valid signature Σ Γ Γ is a valid context in Σ Γ Σ K K is a
Σ sig Σ K a ∈ Dom(Σ) Σ, a:K sig

(S•C•Fam)
A valid signature Σ can be extended with a fresh family a, whose kind K is a kind in the empty context and signature Σ.

Σ sig Σ σ:Type c ∈ Dom(Σ) Σ, c:σ sig (S•C•Obj)
A valid signature Σ can be extended with a fresh object c, whose type σ has kind Type in the empty context and signature Σ. A valid context Γ in the signature Σ can be extended with a fresh variable x, whose type is of kind Type in Γ and Σ.

Σ Γ Γ Σ Type (K•Type) If Γ is a valid context in the signature Σ, then Type is a kind in Γ and Σ. Γ, x:σ Σ K Γ Σ Πx:σ.K (K•Prod)
If K is a kind in the context Γ, x:σ and signature Σ, then the dependent product Πx:σ.K is a kind in Γ and Σ.

Families. As for the families, we have chosen to omit the abstraction rule, as we have found little practical use of it, compounded with the fact that the proofs of the properties of the system would have been slightly more complicated in its presence. On the other hand, we have introduced a rule allowing for the creation of locked types.

Σ Γ a:K ∈ Σ Γ Σ a : K (F•Const)
If Γ is a valid context in the signature Σ, then any family a of kind K belonging to Σ also has kind K in Γ and Σ.

Γ, x:σ Σ τ : Type Γ Σ Πx:σ.τ :

Type (F•Prod) Γ Σ σ : Πx:τ.K Γ Σ N : τ σ N : K[N/x] (F•App)
If σ has kind Πx:τ.K in the context Γ and signature Σ, and N has type τ in Γ and Σ, then the application of N to σ has kind K, in which all occurrences of x have been substituted for N , in Γ and Σ.

Γ Σ ρ : Type Γ Σ N : σ Γ Σ L P N,σ [ρ] : Type (F•Lock)
If ρ has kind K in the context Γ and signature Σ, and N has type σ in Γ and Σ, then the type locking ρ with a predicate P on Γ Σ N : σ has kind Type in Γ and Σ.

Γ Σ σ : K Γ Σ K K= βL K Γ Σ σ : K (F•Conv)
If σ has kind K in the context Γ and signature Σ, and K is denitionally equal to K , which is a kind in Γ and Σ, then σ also has kind K in Γ and Σ.

Objects. As for the object rules, we take those of LF in their entirety, and add one more rule addressing construction of locked terms, and one more rule addressing the unlocking of such locked terms.

Σ Γ c:σ ∈ Σ Γ Σ c : σ (O•Const)
If Γ is a valid context in the signature Σ, then any object c of type σ belonging to Σ also has type σ in Γ and Σ.

In LF P , we consider only the terms obtained after a nite number of application of the typing rules of the system. In such terms, each symbol (such as a constant, a variable, a lock, or an unlock) can appear only a nite number of times. Also, we denote by Γ Σ α any typing judgement, be it Γ Σ T : T or Γ Σ T . In the two latter judgements, T will be referred to as the subject of that judgement.

6.2 βL-reduction and Denitional Equality in LF P

In LF P , we have two types of reduction. The rst is the standard β-reduction, while the second is a novel form of reduction, which we call L-reduction (lock-reduction). L-reduction, essentially, serves as a lock-releasing mechanism, erasing the U-L pair in a term of the form U P N,σ [L P N,σ [M]], thus eectively releasing M . Together, these two reductions combine into βL-reduction, denoted by → βL , and this combined reduction is the one which we take into account when considering the properties of LF P . The main one-step βL-reduction rules are presented in Figure 6.2. There, one can notice the new rule (L•O•Main), which is the reduction rule illustrating the desired behavior of the lock and unlock combined -the eective release of a lock by an unlock, i.e. the unlock destructor canceling out the lock constructor. This reduction rule, together with the (O•Unlock) and (O•Lock) typing rules, provides an elegant mechanism for locking and unlocking objects.

The reader can note that a similar reduction rule at the level of types is not required, as the application of the unlock destructor to a term automatically unlocks its type, as ensured by the

(O•Unlock) rule. (λx:σ.M) N → βL M [N/x] (β•O•Main) Standard β-reduction U P N,σ [L P N,σ [M]] → βL M (L•O•Main)
A lock dissolves in the presence of an unlock. Proposition 3. -U L maps derivable judgements of LF P into derivable judgements of LF.

(F•Π 1 •βL) τ → βL τ Πx:σ.τ → βL Πx:σ.τ (F•Π 2 •βL) σ → βL σ σ N → βL σ N (F•A 1 •βL) N → βL N σ N → βL σ N (F•A 2 •βL) N → βL N L P N,σ [ρ] → βL L P N ,σ [ρ] (F•L 1 •βL) σ → βL σ L P N,σ [ρ] → βL L P N,σ [ρ] (F•L 2 •βL) ρ → βL ρ L P N,σ [ρ] → βL L P N,σ [ρ] (F•L 3 •βL)
Proof. All three of these propositions are proven simultaneously, by induction on the structure of the derivation of the reduction, the structure of the derivation of the equivalence, and the structure of the derivation of the judgement. Here, we will present the relevant cases, while the remaining ones are handled similarly.

• For Proposition 1, let L P N,σ [ρ] → βL L P N ,σ [ρ] from N → βL N , using the rule (F•L 1 •βL). From the induction hypothesis (IH), we have that N -U L → → β N -U L , while the goal we are looking for is (λx f :σ -U L .ρ -U L) N -U L → → β (λx f :σ -U L .ρ -U L) N -U L , and this follows immediately from the IH, and the rules for closure under context for β-reduction in LF.

• For Proposition 1, let (λx:σ.M) N → βL M [N/x], using the rule (β•O•Main). Here, we have that the goal is (λx:σ

-U L .M -U L) N -U L → → βL M -U L [N -U L /x],
which is, in fact, an instance of the main one-step β-reduction in LF.

• For Proposition 1, let U P N,σ [L P N,σ [M]] → βL M , using the rule (L•O•Main). We have the goal (λx f :σ -U L .(λy f :σ -U L .M) N) N → → β M -U L , which we obtain by applying the main one-step β-reduction rule of LF, bearing in mind the nature of the choice of x f and y f .

• For Proposition 2, let us have that K= βL K , from K → βL K , using the rule (βL•Eq•Main).

From the IH for Proposition 1, we have that K -U L → → β K -U L in LF, from which we obtain that K -U L = β K -U L in LF.

• For Proposition 3, let us have that Γ Σ L P N,σ [ρ] : Type, from Γ Σ ρ : Type and Γ Σ N : σ, using the rule (F•Lock). From the IH, we have that Γ -U L Σ -U L ρ -U L : Type, and Γ -U L Σ -U L N -U L : σ -U L , while the goal is Γ -U L Σ -U L (λx f :σ -U L .ρ -U L) N -U L : Type. From the Subderivation property of LF, we have that Γ -U L Σ -U L σ -U L : Type, and, given that we can, without loss of generality, assume that x f / ∈ Dom(Γ -U L), we obtain, using the Weakening property of LF, that Γ -U L , x f : σ -U L Σ -U L ρ -U L : Type, and, from there, that Γ -U L Σ -U L λx f :σ -U L .ρ -U L : Πx f :σ -U L .Type. Now, by using the application formation rule of LF, we obtain that Γ -U L Σ -U L (λx f :σ -U L .ρ -U L) N -U L : Type[N -U L /x f]. However, this is our claim, as, since no substitutions can occur in Type, we have that Type[N -U L /x f] ≡ Type.

• For Proposition 3, let us have that Γ Σ σ : K , from Γ Σ σ : K, Γ Σ K, and K= βL K , using the rule (F•Conv). From the IHs, we have that

Γ -U L Σ -U L σ -U L : K -U L , Γ -U L Σ -U L K -U L
, and K= β K , from which we obtain our goal, Γ -U L Σ -U L σ -U L : K -U L , by using the LF conversion rule for families.

• For Proposition 3, let us have that Γ Σ L P N,σ [M] : L P N,σ [ρ], from Γ Σ M : ρ and Γ Σ N : σ, using the rule (O•Lock). From the IH, we have that Γ

-U L Σ -U L M -U L : ρ -U L and Γ -U L Σ -U L N -U L : σ -U L , while the goal is Γ -U L Σ -U L (λx f :σ -U L .M -U L) N -U L : (λy f :σ -U L .ρ -U L) N -U L .
First, as earlier, we can obtain that Γ -U L Σ -U L λx f :σ -U L .M -U L : Πx f :σ -U L .ρ -U L . Now, by using the application formation rule of LF, we obtain that Γ

-U L Σ -U L (λx f :σ -U L .M -U L) N -U L : ρ -U L [N -U L /x f]. How- ever, what we actually have is that Γ -U L Σ -U L (λx f :σ -U L .M -U L) N -U L : ρ -U L
, as, by the choice of x f , we have that ρ -U L [N/x f] ≡ ρ -U L . Also, in a similar manner as before, we can obtain that Γ -U L Σ -U L (λy f :σ -U L .ρ -U L) N -U L : Type. Now, as, by the choice of y f , we have that ρ -U L = β (λy f :σ -U L .ρ -U L) N -U L , we can use the LF conversion rule for objects to obtain our claim.

• For Proposition 3, let us have that Γ Σ U P N,σ [M] : ρ, from Γ Σ M : L P N,σ [ρ], Γ Σ N : σ, and P(Γ Σ N : σ), using the rule (O•Unlock). From the IH, we have that Γ -U L Σ -U L M -U L : (λx f :σ -U L .ρ -U L) N -U L and Γ -U L Σ -U L N -U L : σ -U L , while the goal which we would like to prove is Γ -U L Σ -U L (λy f :σ -U L .M -U L) N -U L : ρ -U L . Similarly to the previous item, we have that Γ -U L Σ -U L ρ -U L : Type and that (λx f :σ -U L .ρ -U L) N -U L = β ρ -U L , and we can use the LF conversion rule for objects to obtain that Γ -U L Σ -U L M -U L : ρ -U L . Finally, as we have that M -U L = β (λy f :σ -U L .M -U L) N -U L , we obtain the desired claim by using the Subject Reduction property of LF.

As a consequence of Proposition 3, we have that the function -U L maps well-typed terms of LF P into well-typed terms of LF. Next, we will denote the maximum number of β-reductions which can be executed in a given (either LFor LF P -) term T as max β (T). Now, we can notice that L-reductions cannot create entirely new β-redexes, but can only unlock potential β-redexes, i.e. expressions of the form U P N,σ [L P N,σ [λx:τ.M]] T , arriving at λx:τ.M T , which is a β-redex. Also, this resulting β-redex will be present in (U P N,σ [L P N,σ [λx:τ.M]] T) -U L . Therefore, we have that, for any LF P -term T , it holds that max β (T) ≤ max β (T -U L). As LF is strongly normalizing, we have that max β (T -U L) is nite, therefore forcing max β (T) into being nite, leading to the following proposition: Proposition 4. Only nitely many β-reductions can occur within the maximal reduction sequence of any LF P -term. There is no LF P -term T with an innite number of β-reductions in its maximal reduction sequence.

Next, we notice that any LF P -term has only nitely many L-redexes before any reductions take place, and that this number can only be increased through β-reductions, and only by a nite amount per β-reduction. However, if we were to have an LF P -term T which has an innite reduction sequence, then within this sequence, there would need to be innitely many L-reductions, since, due to Proposition 4, the number of β-reductions in this sequence has to be nite. On the other hand, with the number of β-reductions in the sequence being nite, it would not be possible to reach innitely many L-reductions, and such a term T cannot exist in LF P . Therefore, we have the Strong Normalization theorem:

Theorem 18 (Strong normalization of LF P).

1. If Γ Σ K, then K is βL-strongly normalizing. 2. if Γ Σ σ : K, then σ is βL-strongly normalizing. 3. if Γ Σ M : σ, then M is βL-strongly normalizing.

Conuence

Since βL-reduction is strongly normalizing, in order to prove the conuence of the system, by Newman's Lemma, it is sucient to show that the reduction on raw terms is locally conuent.

First, we need a substitution lemma, the proof of which is routine:

Lemma 32 (Substitution lemma for local conuence).

1. If N → βL N , then M [N/x] → → βL M [N /x]. 2. If M → βL M , then M [N/x] → → βL M [N/x].
Next, we proceed to prove local conuence:

Lemma 33 (Local conuence of LF P). βL-reduction is locally conuent, i.e. :

1. If K → βL K and K → βL K , then there exists a K , such that K → → βL K and K → → βL K .

2. If σ → βL σ and σ → βL σ , then there exists a σ , such that σ → → βL σ and σ → → βL σ .

3. If M → βL M and M → βL M , then there exists a M , such that M → → βL M and M → → βL M .

Proof. By simultaneous induction on the two derivations T → βL T and T → βL T . All the cases for T kind or family, as well as most of the cases for T object are proven directly using the induction hypotheses. Therefore, we will limit ourselves here to illustrating only the cases involving base reduction rules: 1. If Γ Σ σ : K, then Γ Σ K.

2. If Γ Σ M : σ, then Γ Σ σ : Type.

From this point on, we will assume that the second requirement for the well-behavedness of predicates, the closure under cut, holds as well. We prove the following propositions by induction on the structure of the derivation:

Proposition 9 (Transitivity). Proposition 10 (Unicity of types and kinds). If predicates are closed under signature/context weakening and permutation and under substitution, then:

1. If Γ Σ σ : K 1 and Γ Σ σ : K 2 , then Γ Σ K 1 = βL K 2 . 2. If Γ Σ M : σ 1 and Γ Σ M : σ 2 , then Γ Σ σ 1 = βL σ 2 .
Finally, for Subject Reduction, we require that the third requirements for the wellbehavedness of predicates, namely the closure under denitional equality, also holds:

Theorem 20 (Subject reduction of LF P). If predicates are well-behaved, then: Theorem 22 (Decidability of typing). If all of the predicates in LF C P are decidable, then all of the judgements of the system are decidable.

(O•Lock) Γ Σ N : σ Γ Σ σ : Type Γ Σ M : L P N,σ [ρ] Γ Σ L P N,σ [ρ] : Type P(Γ Σ N : σ) Γ Σ U P N,σ [M] : ρ (O•Unlock)
With these lemmas in theorems in place, we have all of the desired properties of LF C P . Now, we can focus on precisely specifying the relationships between LF C P and the original LF P system.

Theorem 23 (Soundness). For any predicate P of LF C P , we dene a corresponding predicate in LF P as follows: P(Γ Σ M : σ) holds if and only if Γ Σ M : σ is derivable in LF P and P(Γ Σ M ⇐ σ) holds in LF C P . Then, the following claims hold:

1. If Σ sig is derivable in LF C P , then Σ sig is derivable in LF P . 2. If Σ Γ is derivable in LF C P , then Σ Γ is derivable in LF P . 3. If Γ Σ K is derivable in LF C P , then Γ Σ K is derivable in LF P . 4. If Γ Σ α ⇒ K is derivable in LF C P , then Γ Σ α : K is derivable in LF P . 5. If Γ Σ σ Type is derivable in LF C P , then Γ Σ σ : Type is derivable in LF P . 6. If Γ Σ A ⇒ σ is derivable in LF C P , then Γ Σ A : σ is derivable in LF P . 7. If Γ Σ M ⇐ σ is derivable in LF C P , then Γ Σ M : σ is derivable in LF P .
Proof. By mutual induction on the structure of the derivation. The rst three items are proven directly, as the rules for signature, context, and kind formation are the same for the two systems, while for most of the rules the induction hypothesis is sucient. In fact, only the rules of LPCP which involve hereditary substitution are interesting. Therefore, let us focus on the rule (A•App).

Let us have α M ⇒ K[M/x] K σ , obtained from Γ Σ α ⇒ Πx:σ.K, and Γ Σ M ⇐ σ. By the induction hypothesis, we have that (in LF P) Γ Σ α : Πx:σ.K and Γ Σ M : σ. Using the rule (F•App) of LF P , we have that Γ Σ α M : τ [M/x], while the desired goal is Γ Σ α M : τ [M/x] K σ .

The idea here would be to apply the conversion rule (F•Conv), for which we need to prove that

Γ Σ τ [M/x] K σ and that τ [M/x]= βL τ [M/x] K σ .
However, the former we can easily obtain from Proposition 8 and the Subject Reduction property of LF P , while the latter is a direct consequence of the fact that hereditary substitution is designed to immediately calculate normal forms. The case in which the rule (F•App) is used is handled analogously.

Vice versa, all LF P judgements in η-long normal form (η-lnf) are derivable in LF C P . The denition of a judgement in η-lnf is based on the following extension of the standard η-rule to the lock constructor:

λx:σ.M x → η M L P N,σ [U P N,σ [M]] → η M.
Denition 23. An occurrence ξ of a constant or a variable in a term of an LF P judgement is fully applied and unlocked with respect to its type or kind

Π #» x 1 : #» σ 1 . #» L 1 [. . . Π #» x n : #» σ n . #» L n [α] . . .]
#» U n [(. . . (#» U 1 [ξ # » M 1]) . . .) # » M n], where # » M 1 , . . . , # » M n , #» U 1 , . . . , #»
U n have the same arities of the corresponding vectors of Π's and locks.

Denition 24 (Judgements in η-long normal form).

• A term T in a judgement is in η-lnf if T is in normal form and every constant and variable occurrence in T is fully applied and unlocked w.r.t. its classier in the judgement.

• A judgement is in η-lnf if all terms appearing in it are in η-lnf.

Finally, we can proceed to the main theorem of this chapter, which is the correspondence theorem between derivations of LF P in η-lnf, and derivations in LF C P .

Theorem 24 (Correspondence). Assume that all predicates in LF P are well-behaved. For any predicate P in LF P , we dene a corresponding predicate in LF C P with: P(Γ Σ M ⇐ σ) holds if Γ Σ M ⇐ σ is derivable in LF C P and P(Γ Σ M : σ) holds in LF P . Then, we have:

1. If Σ sig is in η-lnf and is LF P -derivable, then Σ sig is LF C P -derivable. 2. If Σ Γ is in η-lnf and is LF P -derivable, then Σ Γ is LF C P -derivable. 3. If Γ Σ K is in η-lnf, and is LF P -derivable, then Γ Σ K is LF C P -derivable. 4. If Γ Σ α : K is in η-lnf and is LF P -derivable, then Γ Σ α ⇒ K is LF C P -derivable. 5. If Γ Σ σ:Type is in η-lnf and is LF P -derivable, then Γ Σ σ Type is LF C P -derivable. 6. If Γ Σ A : α is in η-lnf and is LF P -derivable, then Γ Σ A ⇒ α is LF C P -derivable. 7. If Γ Σ M : σ is in η-lnf and is LF P -derivable, then Γ Σ M ⇐ σ is LF C P -derivable.
Proof. We prove all of the items by mutual induction on the complexity of the judgement, where the complexity of a judgement is given by the sum of symbols appearing in it, provided that the complexity of the symbols Type and ∅ is 1, the complexity of a constant/variable is 2, the complexity of the symbol U is greater than the complexity of L, and the complexity of the subject of the judgement is the sum of the complexities of its symbols plus the complexity of the normal form of the type of each of the subterms of the subject, derived in the given context and signature.

1. Directly, using the induction hypothesis.

2. Directly, using the induction hypothesis.

3. Directly, using the induction hypothesis.

4. If Γ Σ α : K is in η-lnf, we have that α = aN 1 . . . N n , K ≡ Type, and also that:

(a) a : Πx 1 :σ 1 . . . x n :σ n .Type ∈ Σ, with Πx 1 :σ 1 . . . x n :σ n .Type in η-lnf. This means that, for all 1 ≤ i ≤ n, we have that σ i is in η-lnf.

(b) Γ Σ N i : σ i is derivable in LF P , for 1 ≤ i ≤ n, where σ i is in η-lnf, and σ i = βL σ i [N 1 /x 1 , . . . , N i-1 /x i-1]. Now, from (a), we obtain that Γ Σ a ⇒ Πx 1 :σ 1 . . . x n :σ n .Type is derivable in LF C P .
Next, by applying the induction hypothesis to (b), we obtain that Γ Σ N i ⇐ σ i is derivable in CLF for all i. From this, by repeatedly applying the rule (A•App), we get that Γ Σ aN 1 . . . N n ⇒ T ype.

5. The cases when σ is an atomic family have already been covered above, while the remaining cases are proven directly, using the induction hypothesis.

(a) If

L P N,σ [M] ⇐ L P N,σ [ρ].
We should notice that, by the Correspondence Theorem above, any well-behaved predicate P in LF P induces a well-behaved predicate in LF C P . Finally, and most importantly, we should notice that not all LF P judgements have a corresponding η-lnf. Namely, the judgement x:L

P N,σ [ρ] Σ x : L P N,σ [ρ]
does not admit an η-expanded normal form when the predicate P does not hold on N , as the rule (O•Unlock) can be applied only when the predicate holds.

Summary

In this chapter, we have presented the Canonical LF P framework (LF C P), in which we make use of the notion of hereditary substitution to immediately compute the normal forms of LF P , rather than having a separate reduction mechanism. Also, we have extended the notion of η-long normal forms to include the newly introduced locked and unlocked terms and types, and we have proven two theorems concerning the relationship between LF P and LF C P , namely soundness and correspondence, with the former stating that all derivable judgements of LF C P are also derivable in LF P , and the latter stating that all derivable judgements of LF P that are in η-long normal form are also derivable in LF C P . This theorem will be of paramount importance for proving adequacy of the encodings we will be presenting in the next chapter. In this chapter, we illustrate how LF P can be used as a meta-language, by providing encodings for a number of crucial case studies. We place our focus on the formal systems in which derivation rules are subject to side conditions that are either rather dicult or impossible to encode naively, in a type theory-based LF, due to limitations of the latter or to the fact that these rules need to access the derivation context, or the structure of the derivation itself, or other structures and mechanisms which are simply not available at the object level. This is the case for sub-structural and program logics [Avron 1992, Avron 1998, Crary 2010].

We will start by providing an encoding of the well-known case of the untyped λ-calculus, with a call-by-value evaluation strategy. This allows us to illustrate yet another paradigm for dealing with free and bound variables appropriate for LF P . Next, we elaborate the expressiveness of the predicates, and provide several examples of predicates which will be used in the later sections.

Next, we add on top of the encoded untyped λ-calculus an extension, in order to model a sort of design-by-contract functional language, capturing pre-and post-conditions. Next, we discuss and provide encodings of modal logics, both in Hilbert and Natural Deduction style, and we give a sketch of how the non-commutative linear logic, introduced in [START_REF] Polakow | [END_REF]], could be encoded in LF P . The concluding example, in which we illustrate the encoding of a small imperative programming language logic and its Hoare logic in LF P , appears in Section 9.3.

As far as comparisons with alternate encodings in LF, we refer the reader to the general comments which have been made in Section 7.4. Finally, in the formulations of adequacy theorems, we will be using the notion of judgement in η-long normal form (η-lnf), which has been introduced in Denition 24.

The Untyped λ-calculus

Consider the well-known untyped λ-calculus: M, N, . . .

::= x | M N | λx.M,
with variables, application and abstraction. Our main goal here is to design a way of modeling free and bound variables that would both allow the formulation of well-behaved predicates over such variables, as well as preserve the benets of the full Higher-Order-Abstract-Syntax (HOAS) approach, i.e. delegating α-conversion and capture-avoiding substitution to the metalanguage.

nat : Type

The In Figure 9.1, we present the LF P signature for the untyped λ-calculus. We encode natural numbers in a standard way, and we will be using the natural numbers themselves as abbreviations for repeated applications of S to 0. We will be using an enumeration {x i } i∈N\{0} of the variables in the untyped λ-calculus, we will be modeling free variables of the object language as constants of the form (free n), for a suitable (encoding of a) natural number n, while we will be modeling bound variables using the standard HOAS approach. Next, we present the encoding function ε X , mapping the terms of the untyped λ-calculus into terms of LF P :

ε X (x i) = x i , if x i ∈ X (free i), if x i ∈ X , ε X (M N) = (app ε X (M) ε X (N)), ε X (λx i .M) = (lam λx i :term.ε X ∪{xi} (M)),
where, in the last clause, x i ∈ X . Therefore, the λ-term x n (in which the variable is free) will be encoded by means of the term Σ (free n):term. On the other hand, the λ-term λx n .x n (in which the variable is obviously bound) will be encoded by Σ (lam λx n :term.x n). However, when we open the abstraction λx n .M , considering the body M , we will encode the body M as x n :term Σ ε {xn} M . In this case, we will refer to x n as a bindable variable. These bindable variables must neither be confused with bound nor with free variables, and are modeled using variables of the metalanguage. By dening the encoding function in this way, we abide by the closure under substitution condition for external predicates, while still retaining the ability to handle open terms explicitly. Next, let us examine the adequacy of this encoding:

Theorem 25 (Adequacy of syntax). Let {x i } i∈N\{0} be an enumeration of the variables in the λ-calculus. Then, the encoding function ε X is a bijection between the λ-calculus terms with bindable variables in X and the terms M derivable in judgements Γ Σ λ M : term in η-lnf, where Γ = {x i : term | x i ∈ X }. Moreover, the encoding is compositional, i.e. for a term M , with bindable variables in X = {x 1 , . . . , x k }, and N 1 , . . . , N k , with bindable variables in Y, the following holds:

ε Y (M [N 1 , . . . , N k /x 1 , . . . , x k]) = ε X (M)[ε Y (N 1), . . . , ε Y (N k)/x 1 , . . . , x k].
Proof. As we are not using locked types in this example, the proof of adequacy is standard. The injectivity of ε X follows from the inspection of its denition, while the surjectivity follows by dening the decoding function δ X on terms in η-lnf:

δ X ((free i)) = x i (where x i ∈ X) δ X (x i) = x i (where x i ∈ X) δ X ((app M N)) = δ X (M) δ X (N) δ X (lam λx i :term.M) = λx.δ X ∪{x i } (M)
Given the characterization of η-lnfs, and the types of the constructors introduced in Σ λ , it is easy to see that δ X is total and well-dened. It is not possible to derive an η-lnf of type term containing a U-term, since no constructors in Σ λ use L-types. Finally, by induction on the structure of M , it is possible to check that δ X (ε X (M)) = M and that ε X is compositional.

9.1.1

A Closer Look at the Expressiveness of the Predicates

In this section, we will present some auxiliary functions and predicates on proof terms, the patterns of which frequently occur in the examples. The main archetype of these predicates is: given constants or variables only occur with some modality D in subterms satisfying the decidable property C, where the modalities can be, but are not limited to, any of the following phrases: at least once, only once,as the rightmost, does not occur, etc. C can refer to the syntactic form of the subterm or to that of its type, the latter being the main reason for allowing predicates in LF P to access the context. We will require the following elements, which represent pairs of terms of the untyped λ-calculus, as presented in the previous section:

pair : Type [_, _] : term -> term -> pair Further on, when we refer to free variables, we will in fact be referring to constants of the form (free i), as dened in the previous section.

Counting occurrences of free variables. For one, we can count occurrences of free variables in normal forms of terms.

A possible functional pseudo-code for count (Γ Σ [(free i), M] : pair), counting occurrences of the encoding of x i , (i > 0) in the normal form of M, could be the following:

count (Γ Σ [(free i), M] : pair) ⇒ let norm=NF(M) in match norm with | x => 0 | (free j) => if j=i then 1 else 0 | (app N N') => count (Γ Σ [(free i), N] : pair) + count (Γ Σ [(free i), N] : pair) | (lam N) => count (Γ Σ [(free i), (N (free 0
))] : pair) end where (free 0) is a hole ller when the recursive call crosses a lam binder, and NF(M) is a function calculating the normal form of the term M, possible due to the meta-properties of LF P .

Listing free variables. Next, we introduce the auxiliary function freeVar (Γ Σ M : term) returning as a result the list of free variables occurring in M in the order of their occurrence from left to right, without duplicates:

freeVar (Γ Σ M : term) ⇒ let norm=NF(M) in match norm with | x => nil | (free i) => if i=0 then nil else [(free i)] | (app N N') => merge (freeVar (Γ Σ N : term), freeVar (Γ Σ N : term)) | (lam N) => freeVar (Γ Σ (N (free 0)) : term) end
where merge (L,L') is the function merging two lists L and L' without duplicated elements. If we were to use append instead of merge in the application case in the denition of freeVar , we would obtain as a result the list of all the occurrences of free variables in M in their order of appearance from left to right, and we will refer to such a variant of freeVar as freeVarOcc .

Occurrence of a free variable. Whether a free variable occurs within a term or not is now easily veriable by using the function count , but also directly, in the following manner:

freeIn (Γ Σ [(free i), M] : pair) ⇒ let norm=NF(M) in match norm with | x => false | (free j) => j=i | (app N N') => freeIn (Γ Σ [(free i), N] : pair) ∨ freeIn (Γ Σ [(free i), N] : pair) | (lam N)
=> freeIn (Γ Σ [(free i), (N (free 0))] : pair) end where i > 0. As the truthfulness of the predicate does neither depend on the signature nor on the context, we conclude that it is closed under signature and context weakening and permutation.

As the terms of the untyped λ-calculus are encoded in such a way that they do not include any free variables of the object language or leave room for substitution, we conclude that the predicate is also closed under substitution and βL-reduction. Therefore, we have that freeIn is a well-behaved predicate in LF P . Here, we should note that we need to accommodate the possibility of M being a free variable of type term belonging to the object language, but that this does not eect the well-behavedness of the predicate.

Leftmost and rightmost free variables. As an example of the application of freeVarOcc, we dene the predicates leftmost (Γ Σ [(free i), M] : pair) and rightmost (Γ Σ [(free i), M] : pair), which hold if (free i) is the encoding of the leftmost (rightmost, respectively) free variable occurring in M:

leftmost (Γ Σ [(free i), M] : pair) ⇒ let L=freeVarOcc (Γ Σ M : term) in match L with | nil => false | [l, L'] => l=(free i) end rightmost (Γ Σ [(free i), M] : pair) ⇒ let L=reverse (freeVarOcc (Γ Σ M : term)) in match L with | nil => false | [l, L'] => l=(free i) end
where reverse (L) is the standard function reversing the order of the elements occurring in L.

In the same manner as for the predicate freeIn, we can conclude that leftmost and rightmost are well-behaved predicates in LF P . • The predicate ξ(Γ Σ <x,M,N> : triple) holds i x is a constant (i.e. a term of the shape (free i)), M and N are closed and x does not occur in M and N.

=> false end

We can easily verify that both of the predicates satisfy all of the four requirements for well-behavedness and that, thereby, their use in this encoding is allowed.

Theorem 26 (Adequacy of CBV reduction). Given an enumeration {x i } i∈N\{0} of the variables in the λ-calculus, there is a bijection between derivations of the judgement CBV M = N on terms with no bindable variables in the CBV λ-calculus and proof terms h, such that

Σ CBV h : (eq ε ∅ (M) ε ∅ (N)) is in η-lnf.
Proof. We dene an encoding function ε = ∅ by induction on derivations of the form CBV M = N (on terms with no bindable variables) as follows:

• if ∇ is the derivation CBV M = M then ε = ∅ (∇) = (refl ε ∅ (M)) : (eq ε ∅ (M) ε ∅ (M));
• if ∇ is the derivation with (symm) as last applied rule, then, by the induction hypothesis, there is a term h such that Σ CBV h : (eq ε ∅ (N) ε ∅ (M)). Hence, we have ε

= ∅ (∇) = (symm ε ∅ (M) ε ∅ (N) h) : (eq ε ∅ (M) ε ∅ (N));
• if ∇ is the derivation with (trans) as last applied rule, then, by the induction hypothesis, we have that there exist terms h and h' such that Σ CBV h : (eq ε ∅ (M) ε ∅ (N)), and also Σ CBV h : (eq ε ∅ (N) ε ∅ (P)). Hence, we will have that ε

= ∅ (∇) = (trans ε ∅ (M) ε ∅ (N) ε ∅ (P) h h) : (eq ε ∅ (M) ε ∅ (P));
• if ∇ is the derivation with (eq_app) as last applied rule, then, by the induction hypothesis, we have that there exist terms h and h' such that Σ CBV h : (eq ε ∅ (M) ε ∅ (N)) and Σ CBV h : (eq ε ∅ (M) ε ∅ (N)). Hence, we will have that ε

= ∅ (∇) = (eq_app ε ∅ (M) ε ∅ (N) ε ∅ (M) ε ∅ (N) h h) : (eq (app ε ∅ (M) ε ∅ (M)) (app ε ∅ (N) ε ∅ (N))); • if ∇ is the derivation v is a value CBV (λx i .M)v = M [v/x i] then we will have that ε = ∅ (∇) = U Val ε ∅ (v) [(betav (λx i :term.ε {x i } (M)) ε ∅ (v)) : (eq (app (lam λx i :term.ε {x i } (M)) ε ∅ (v)) ((λx i :term.ε {x i } (M))(ε ∅ (v))))] 1 ;
• if ∇ is the derivation with (ξ v) as the last applied rule, then, by the induction hypothesis, we have that there exists a term h, such that Σ CBV h : (eq ε ∅ (M) ε ∅ (N)) 2 . Given this, we have:

ε = ∅ (∇) = (U ξ T,triple [(xiv ε ∅ (x i) λx i :term.ε {x i } (M) λx i :term.ε {x i } (N))]h): (eq (lam λx i :term.ε {x i } (M)) (lam λx i :term.ε {x i } (N))), with T being ε ∅ (x i),(λx i :term.ε {x i } (M)), (λx i :term.ε {x i } (N)) .
The injectivity of ε = ∅ follows by the inspection of its denition, while the surjectivity follows by dening the decoding function δ = ∅ by induction on the derivations of the shape Σ CBV h : (eq M N) in η-long normal form. Since most of the cases are purely technical, we analyze the denition concerning the main rule (β v), as it involves an external predicate. So, if we derive from Σ CBV a proof term h in η-long normal form such as U Val N,term [betav M N] whose type is (eq (app (lam M) N) (M N)) (where M ≡ λx i :term.M , with M in η-lnf), then the predicate Val (Σ CBV N : term) must hold, and N is encoding the value δ ∅ (N). Hence, the decoding of h is the following derivation:

δ ∅ (N) is a value CBV δ ∅ (lam (λx i :term.M))δ ∅ (N) = δ ∅ ((λx i :term.M) N),
and since we have that δ ∅ ((lam (λx i :term.M))) = λx i .δ {x i } (M) (see proof of Theorem 25), and that λx

i .δ {x i } (M)δ ∅ (N) = δ {x i } (M)[δ ∅ (N)/x i] (β-reduction in CBV λ-calculus), and also that δ ∅ ((λx i :term.M) N) = δ ∅ (M [N/x i]) (β-reduction in LF P) and nally that δ {x i } (M)[δ ∅ (N)/x i] = δ ∅ (M [N/x i]
) (by induction on the structure of M), we are done. Therefore, we can verify by induction on η-long normal forms that δ = ∅ is well-dened and total. Similarly, we can prove δ = ∅ to be the inverse of ε = ∅ , making ε = ∅ a bijection.

We conclude this section by illustrating the expressive power of LF P , by encoding a restricted η-rule, which generalizes the one originally suggested in [Plotkin 1975 where the predicate η(Γ Σ M : (term -> term)) holds if and only if the outermost abstracted variable of M occurs in functional position among the head variables.

Capturing Design-by-Contract

In this section, we extend the untyped call-by-value λ-calculus of the previous example so as to accommodate a minimal functional language supporting the design-by-contract paradigm (see, e.g., [Meyer 1991]). More precisely, we will enrich the λ-calculus with the conditional expression cond(C,M), whose intended semantics is that of checking that the constraint C applied to M (denoted by C(M)) holds. As we will see, such expressions can be used to validate the entry input and the exit value on a function application. The general syntax of conditions C is omitted, 1 Notice the presence of the unlock operator in front of the LFP encoding: this is possible due to the fact that we know, by hypothesis (e.g., the premise of the applied derivation rule), that v is a value. Indeed, since values in the object language are either variables or abstractions and we are deriving things from the empty context, in this case v must be an abstraction λxi.N (otherwise it would be a free variable and the derivation context could not be empty). Thus, it will be encoded into a term of the form (lam λxi:term.ε {x i } (N)) and the predicate Val is dened to hold on such terms (see Denition 26), whence the predicate Val holds on CBV ε ∅ (v) : term.

2 Notice that the object variable xi occurring in M and N is represented by a constant ((free i), since the encoding function takes the empty set as the set of bindable variables. Instead, in the next line, the encoding function will take {xi} as the set of bindable variables, yielding an encoding of xi directly as the metavariable of the metalanguage of LFP . condv : ΠC:(term -> bool).ΠM:term.L Eval (C M),bool [(eq (cond C M) M)]

where the external predicate Eval is dened as follows:

• Eval (Γ Σ (C M):bool) holds i M is a value (i.e. an abstraction or a constant), C and M are closed and the evaluation of the condition C on the term M holds.

The expressive power of external predicates is fully exploited in the above example. Of course, we require that the external logical conditions C (corresponding to object-level expressions C) allow the Eval predicate to satisfy the requirements of Denition 21, i.e. that they induce a well-behaved βL-reduction. We conclude by illustrating how the expressiveness of predicates and locked types allows for a straightforward encoding of the design-by-contract predecessor function as follows (taking nat as the type of terms):

(lam λx:nat.(cond (λz:nat.(z ≥ 0) ((cond (λy:nat.(y > 0)) x) -1)))

Substructural Logics

Next, we turn our attention to substructural logics. In many formal systems, rules are subject to side conditions and structural constraints on the shape of assumptions or premises. Typical examples of this are the necessitation rule or the -introduction rules in Modal logics (see, e.g., [Avron 1992, Avron 1998, Crary 2010]). For the sake of readability, we will onward often use an inx notation for encoding binary logic operators.

9.2.1

Modal Logics in Hilbert style.

In this section, we show how LF P allows for smooth encodings of logical systems with rules of proof as well as rules of derivation. The former apply only to premises which do not depend on any assumption, such as necessitation, while the latter are the usual rules which apply to all premises, such as modus ponens. The idea is to use the appropriate locked types in rules of proof and standard types in the rules of derivation.

First, we will consider the classical Modal Logics K, KT , K4, KT 4 (S 4), KT 45 (S 5) in Hilbert style. All of these logics (K , KT , K4, KT 4 (S 4), KT 45 (S 5)) build upon the standard Hilbert axioms for classical logic (A1 -A3) by introducing the necessity () and possibility () operators, and all of them feature necessitation (the NEC rule in Figure 9.3) as a rule of proof, which can be applied only if φ is a theorem, i.e. if it does not depend on any assumptions. Therefore, our main task here would be to correctly and elegantly capture this rule of proof using the machinery of locked types.

The LF P signature corresponding to the modal logics presented in Figure 9.3 is shown in Figure 9.4. The encodings of the logical connectives and modality operators, as well as the modus ponens rule are standard. In order to capture the side-condition of the necessitation rule, we make use of the predicate Closed (Γ Σ m:True (φ)), which holds i all of the free variables that occur in m are of type o, and this is precisely what is needed to correctly encode the notion of the necessitation rule of proof, if o is the type of propositions. Indeed, if all of the free variables of a given proof term satisfy such a condition, it is clear, by inspection of the η-long normal forms, that there cannot be free variables of type True (. . .) in the proof term, i.e. that the encoded modal formula does not depend on any assumptions. As can be noticed, this example requires that predicates inspect the environment and be dened on typed judgements, as indeed is the case in LF P . Furthermore, we can show without diculties, and similarly to the previously examined predicates, that the above predicate is well-behaved, in the sense of Denition 21. Hence, we ensure a sound derivation in LF P of a proof of φ, by where M is a proof term, A is a formula, while Γ, ∆, and Ω are all sets of hypotheses, but with the following dierences: Γ is an unrestricted intuitionistic context (allowing weakening, permutation, and contraction), ∆ is a linear context (allowing only permutation), and Ω is an ordered context. To illustrate, we present, for instance, the rules for the ordered variables and the introduction/elimination rules for the ordered right implication → →: where the symbol denotes the context merge operator.

In this system, we have that ordered assumptions occur exactly once and in the order they were made. In order to encode the condition on the occurrence of z as the last variable in the ordered context in the introduction rule, it is sucient to make the observation that, in an LF-based logical framework, this information is fully recorded in the proof term. The last assumption made is the rightmost variable, while the rst is the leftmost. Therefore, we can, in LF P , introduce suitable predicates in order to enforce such constraints, without resorting to complicated encodings.

In the following, we present an encoding of this ordered fragment of NCLL into LF P . In order to give a shallow encoding, we do not represent explicitly the proof terms of the original system (see, e.g., [START_REF] Polakow | [END_REF]). The encodings of the rules (→ → I) and (→ → E) are: Notice that in the encodings of rules → → E , E and E we have not enforced any conditions on the free variables occurring in the terms, in order to avoid infringing the closure under substitution condition for well-behavedness of predicates. Indeed, the obvious requirements surface in the following adequacy theorem:

Theorem 31 (Adequacy). Let X = {P 1 , . . . , P n } be a set of atomic formulas (in the sense of [START_REF] Polakow | [END_REF]) occurring in formulas A 1 , . . . , A k , A. Then, there exists a bijection between derivations of the judgement (A 1 , . . . , A i-1); (A i , . . . , A j-1); (A j , . . . , A k) A in NCLL, and proof terms h such that Γ X , h 1 :(True ε X (A 1)), . . . , h k :(True ε X (A k)) h : (True ε X (A)) in ηlong normal form, where the variables h i , . . . , h j-1 occur in h only once, h j , . . . , h k occur in h only once and precisely in this order, and Γ X is the context P 1 : o, . . . , P n : o, representing the object-language atomic formulas P 1 , . . . , P n .

As far as we know, this is the rst example (see the discussion in, e.g. [Crary 2010]) of an encoding of non-commutative linear logic in an LF-like framework. Notice the peculiarity of this adequacy result, which is inevitable given the substructural nature of NCLL, but which is, nonetheless, perfectly compositional. The gist is the following: as far as theorems, i.e. proofs with no assumptions go, everything is standard; when assumptions, i.e. truly free, and not bindable variables are involved, an external requirement has to be externally checked. An alternate formulation of adequacy could be stated representing, as in the λ-calculus case, truly free variables by constants. Obviously, carrying out a deep embedding of the system, one could enforce the conditions on the variables occurring in the linear and ordered contexts by means of suitable locks at the level of the proof terms. 9.4 Probabilistic SAT-Checkers as Oracles for LF P In this section, we provide an outline of how, for instance, a probabilistic SAT-checker based on one of the logics presented in Part 1 of this thesis could be used as an external oracle in the LF P framework, as part of a larger system.

For the purposes of this illustration, we will take into account the probabilistic logic LP P Q where Q01 is the type of rational numbers from the unit interval, which can, for instance, be dened as pairs of natural numbers such that the rst is always greater than or equal to the second, and the second is necessarily greater than zero, and pp is the type of propositions.

One way in which we could use this logic as an oracle is by providing a predicate Consistent, which takes as an input a list4 of formulas f 1 , . . . f n of type FOR, and returns true if and only if each of the formulas from the list is closed, and the list itself, when treated as a set, is LP P Q 2,M eas - satisable 5 . This check would be external to LF P , and would be accomplished by an appropriate probability SAT-checker. Since LP P Q 2 is propositional, we do not have any binders to consider, and since we require the formulas in question to be closed, the predicate Consistent is indeed well-behaved. This predicate could then be used as part of a larger (possibly decision-support) system encoded in LF P , which would make use of its own elements as propositions.

L Satisfiable <f1,...,fn>,list [M] : L Satisfiable <f1,...,fn>,list [ρ]

Here, we can again see the advantages of LF P with respect to LF, as the encoding of a probabilistic SAT-checker in LF would have been a very dicult, if not an impossible task. 9.5 Several further comments on LF P Arguably, one might still wonder whether develop all of the meta-theory presented in this thesis it worth it. Why should one choose to outsource parts of the formalization and verication of an object system to an external tool, when one could simply take a monolithic stance, encoding and checking everything within his proof assistant of choice. While this is a completely legitimate strategy, there exist several drawbacks to be addressed.

Let us give another practical application of the Poincaré Principle. Let us take ourselves to the setting of a formalization of π-calculus (see, e.g., [Honsell 2001]), where we would like to prove rigorously that if a certain property P holds on a process P , then the same property also holds on the process (νx)P , under the condition that x ∈ f n(P). On paper, it is easy to conclude this, since we know that P ≡ (νx)P under the aforementioned freshness assumption. However, proof assistants force the user to spell out in full detail even trivial proofs like P ≡ (νx)P .

Therefore, if we were to formally prove the previous structural congruence statement, we would have to proceed by applying the basic axioms: P |0 ≡ P 0 is the identity w.r.t. parallel composition P |(νx)0 ≡ P (νx)0 ≡ 0 (νx)(P |0) ≡ P (νx)(P |Q) ≡ P |(νx)Q if x ∈ f n(P) (νx)P ≡ P 0 is the identity w.r.t. parallel composition Here, we illustrate only the main steps of the proof, using structural rules, transitivity and symmetry implicitly. Surely, this is rather tedious and does not require any particular skill to be carried out: it is a trivial verication -like checking, e.g. that 2 + 2 = 4 ([Poincaré 1902[START_REF] Barendregt | [END_REF]). Of course, one will do the proof once and then save it for future re-use.

However, at the level of the machinery behind the proof assistant, this implies larger proof terms, more memory consumption and, in general, a slowdown in the overall performance 6 . Thus, the opportunity of delegating such straightforward and trivial verications to an external (and possibly optimized) tool would be very helpful during complicated formal proof developments.

Furthermore, the user of the proof assistant would be free to concentrate only on the creative part of the entire proof and the framework itself would be free to avoid an explicit treatment of the uninteresting parts of the proof. Precisely this is an important aspect of the spirit behind the design of LF P : allowing the user to factorize apart consolidated proof knowledge, freeing himself and the framework of recording useless and trivial verications in full detail.

To illustrate this outsourcing further, in the case of the π-calculus, the reduction rule taking into account structural congruences between processes, namely

P ≡ P P -→ Q Q ≡ Q P -→ Q
can be easily encoded in LF P using locked types in the following manner:

L Struct P,P ,Q ,Q [(red P Q)]
where the red symbol serves to encode the reduction relation -→, and the external predicate Struct holds if and only if P ≡ P and Q ≡ Q. the well-behavedness condition concerning closure under signature and context weakening and permutation, but we would require the predicates to be well-behaved for all meta-theoretical results. Also, in certain cases, we might even wish to keep track of the external calls made during the derivation, and one way in which this could be accomplished is to employ a variation of LF P in which L-reductions do not re, thus preserving the U-L pairs within the term. More practical experimentations with LF P will provide more insights on these issues. Also, the machinery of derivations with locked types is similar to δ-rules à la Mitschke (cf. [Barendregt 2013]), when we view lock rules, at the object level, as δ-rules releasing their argument once the condition has been satised. This connection could be investigated further.

For instance, we could use the untyped object language of LF P to support the design-by-contract programming paradigm. Moreover, we believe that LF P can shed light on various concepts in need of better formal understanding, such as the topic shallow vs. deep encodings, propositionas-types for modal operators, and combinations of dierent validation tools.

Next, it would be interesting to study the possibility of embedding the Higher-order Term Rewriting Systems, as in [Virga 1999], as well as the constraint domains of Twelf in LF P as external predicates, since the constraints imposed on the rewriting rules seem closely related to our well-behavedness properties (see Denition 21). Indeed, just as in [Virga 1999], we have also used Newman's Lemma (see Chapter 7) to prove conuence of our system, and the issue of preserving well-typedness of expressions has also been our main concern throughout the development of the meta-theory of LF P .

On a dierent note, we believe that the LF P framework could also nd its usage in modeling dynamic and reactive systems, such as bio-inspired systems, where reactions of chemical processes take place only if certain additional structural or temporal conditions hold, as well as process algebras, where no assumptions can be made about messages exchanged through the communication channels. There, it could be the case that a redex, depending on the result of a communication, can remain stuck until a good message arrives from a given channel, ring in that case an appropriate reduction (a common situation in many protocols, where bad requests are ignored and good ones are served). Such dynamic (run-time) behavior could hardly be captured by a rigid type discipline, where bad terms and hypotheses are ruled out a priori ([Nanevski 2008]).

Last, but by no means least, building a prototype of LF P is under consideration and is expected to be carried out in the near future. Although there are several important questions to be answered, such as whether to build the prototype from scratch or attempt to modify the kernel of one of the currently existing proof assistants, or how to design an appropriate interface between the prototype and the external oracles, we believe that this development, when completed, would present an intriguing new take on the concept of proof assistants.

from 2 and 3 ,

 3 by rule 4. 6. x : σ→(τ →ρ), y : σ→τ, z:σ xz (yz) : ρ from 4 and 5, by rule 4. 7. x : σ→(τ →ρ), y : σ→τ λz:σ.xz (yz) : σ→ρ from 6, by rule 3. 8. x : σ→(τ →ρ) λy:σ→τ .λz:σ.xz (yz) : (σ→τ)→(σ→ρ)

Figure 1 . 1 :

 11 Figure 1.1: The λ-cube

Figure 1 . 2 :

 12 Figure 1.2: The general axioms and rules for the λ-cube

Figure 1 . 3 :

 13 Figure 1.3: The specic axioms and rules for the λ-cube

 Figure 1.4: The Logic Cube

 proposition has to hold for all A, B and C of sort Prop (boolean values -true and false). Hence, we can pull them into the context as A : Prop, B : Prop, and C : Prop, leaving us with the formula without the leading forall part as the goal.

 Now, we are ready to prove the main theorem: Theorem 4 (Strong Completeness). Every consistent set of formulas has a measurable model.

3 .

 3 Let M * |= ¬φ. Then, by denition of |=, we get that M * |= φ. By the induction hypothesis, we have that φ ∈ T * , and nally, by item 1 of Theorem 3, we have that ¬φ ∈ T * . 4. Finally, let M * |= φ ∧ ψ. Then, by denition of |=, we have that M * |= φ and M * |= ψ.By the induction hypothesis, we get that φ, ψ ∈ T * , and nally, by item 3 of Theorem 3, we have that φ ∧ ψ ∈ T * .

3 .

 3 Let ¬φ ∈ T * . Then, by item 1 of Theorem 3, we have that φ ∈ T * . Next, by the induction hypothesis, we have that M * |= φ, and nally, by the denition of satisability, we obtain that M * |= ¬φ.

4 .

 4 Finally, let Φ = φ ∧ ψ ∈ T * . Then, by item 3 of Theorem 3, we have that φ, ψ ∈ T * . Next, by the induction hypothesis, we have that M * |= φ and M * |= ψ, and nally, by the denition of satisability, we obtain that M * |= φ ∧ ψ.

Finally 2 (2 =

 22 , the set of all formulas F or LP P Q represented by the inductive type FOR) is dened as the union of all classical and probabilistic formulas:F or LP P Q F or C ∪ F or P .Inductive FOR : Type := | Clas : forC -> FOR | Prob : forP -> FOR.

37 3 . 2

 32 Semantics of LP P Q 2

 ElemW U W) -> nat -> Prop; MC_ElemWS_Cd : inhabited (ElemW U W); MC_Worlds_Cd : MC_Worlds = Full_set (ElemW U W); MC_Is_Model : (AOS U MC_Algebra) ∧ (FAM_Qc U MC_Measure MC_Algebra)}.

2 ,

 2 M eas . Measurable models are encoded in Coq by adding the measurability condition into the denition of Model_Simp. Denition 11. The satisability relation |=⊆ LP P Q 2,M eas × F or LP P Q 2 satises the following conditions, for every LP P Q 2 -measurable model M = W, H, M, v and every formula Φ:

Figure 3 . 1 :

 31 Figure 3.1: LP P Q 2 Axiom schemata

Figure 3 . 2 :

 32 Figure 3.2: LP P Q 2 Inference rules

), and the part of the proof structure corresponding to the use of the modus ponens for classical formulas inference rule: Definition AxAP07 (A : forC) (r s : Q01) (HCond : s > r) : FOR := Prob (ImpP (Ple r A) (Plt s A)). | dbyIRMPc : ∀ (T : Ensemble FOR) (A B : forC) (pA pAB : proof_term), derives T pA (Clas A) → derives T pAB (Clas (ImpC A B)) → derives T (dIRMPc pA pAB) (Clas B).

1]

 1 , and r + s ≤ 1 (valid_AP04).Proof. Let M = W, H, µ, v be a measurable model, and let us assume that M |= P ≥r α, M |= P ≥s β, and M |= P ≥1 ¬ c (α ∧ c β), while our goal is to show that M |= P ≥r+s (α ∨ c β). From our assumptions, we have that[α] ≥ r, [β] ≥ s, and [¬ c (α ∧ c β)] = 1 or, equivalently, given the properties of µ, that [α ∧ c β] = 0.Next, we will take a moment to prove that [α∧ c β] = [α] ∩ [β]. First, let w ∈ [α ∧ c β]. This means that v(w, α ∧ c β) = true, from which, given the truthtable of the connective ∧ c , we obtain that v(w, α) = true and v(w, β) = true. Therefore, we have that w ∈ [α] and w ∈ [β], and hence, that w ∈[α] ∩ [β]. For the other direction, let w ∈ [α] ∩ [β].Then, v(w, α) = true and v(w, β) = true. However, given the truthtable of the connective ∧ c , we also have that v(w, α ∧ c β) = true, i.e. that w ∈ [α ∧ c β]. In a similar way, we prove that

 and have our claim. Lemma 4 (Validity preservation of Ax LP P Q 2 inference rules). Let α, β ∈ F or C , A, B ∈ F or P .

 Theorem follows naturally from the Strong Completeness Theorem, with help from the following lemma: Lemma 19. If a set of classical formulas T is consistent in the sense of classical logic, then it is also LP P Q 2 -consistent (Cpt_ConsClas_Cons).

Figure 4 .

 4 1 and Figure 4.2.

Figure 4 . 1 :

 41 Figure 4.1: LP P Q 1 Axiom schemata

Figure 4 . 2 :

 42 Figure 4.2: LP P Q 1 Inference rules

 [α] M,w ≥ r, [β] M,w ≥ s, and [¬(α ∧ c β)] M,w = 1 or, equivalently, given the properties of µ(w), that [α ∧ β] M,w = 0. Just as in the previous chapter, it can be proven that [α ∧ c β] M,w = [α] M,w ∩ [β] M,w and [α ∨ c β] M,w = [α] M,w ∪ [β] M,w . Given the property of the measure that µ(w)([α] M,w ∪ [β] M,w) = µ(w)([α] M,w) + µ(w)([β] M,w)µ(w)([α] M,w ∩ [β] M,w) (FAM_Qc_union_split), we obtain that µ(w)([α] M,w ∪ [β] M,w) ≥ r + s, and have our claim. Lemma 21 (Validity preservation of Ax LP P Q 1 inference rules). Let α, β ∈ F or LP P Q 1 .

 LF P Type System . 73 6.2 βL-reduction and Denitional Equality in LF P 75 6.3 Several Comments on the LF P Typing System 76 6.4 Summary . 76

 An empty context is a valid context in any valid signature Σ.Σ Γ Γ Σ σ:Type x ∈ Dom(Γ) Σ Γ, x:σ (C•Var)

Figure 6 . 2 :

 62 Figure 6.2: Main one-step-βL-reduction rules in LF P

Figure 6 . 3 :

 63 Figure 6.3: βL-closure-under-context for families of LF P

1 . 2 .

 12 Let us have, by the base reduction rule (β•O•Main), that (λx:σ.M) N → βL M [N/x]. Let us also have that (λx:σ.M) N → βL (λx:σ .M) N , from σ → βL σ , by the appropriate closureunder-context reduction rules. In this case, we will show that the required conditions are met for M ≡ M [N/x]. Indeed, by the denition of the relation → → βL , we have that M [N/x] → → βL M [N/x], and also, by the reduction rule (β•O•Main), we have that (λx:σ .M) N → βL M [N/x], eectively having (λx:σ .M) N → → βL M [N/x]. Let us have, by the base reduction rule (β•O•Main), that (λx:σ.M) N → βL M [N/x]. Let us also have that (λx:σ.M) N → βL (λx:σ.M) N , from M → βL M , by the appropriate closure-under-context reduction rules. In this case, we will show that the required conditions are met for M ≡ M [N/x]. By the reduction rule (β•O•Main), we have that (λx:σ.M) N → βL M [N/x], from which we obtain (λx:σ.M) N → → βL M [N/x], while we obtain that M [N/x] → → βL M [N/x] from part 2 of Lemma 32. 3. Let us have, by the base reduction rule (β•O•Main)), that (λx:σ.M) N → βL M [N/x]. Let us also have that (λx:σ.M) N → βL (λx:σ.M) N , from N → βL N , by the appropriate closure-under-context reduction rule. In this case, we will show that the required conditions are met for M ≡ M [N /x]. By the reduction rule (β•O•Main), we have that (λx:σ.M) N → βL M [N /x], from which we obtain (λx:σ.M) N → → βL M [N/x], while we obtain that M [N/x] → → βL M [N /x] from part 1 of Lemma 32. 4. Let us have, by the base reduction rule (L•O•Main), that U P N,σ [L P N,σ [M]] → βL M , and let us also have that U P N,σ [L P N,σ [M]] → βL U P N ,σ [L P N,σ [M]], from N → βL N , by the appropriate closure-under-context reduction rule. In this case, we will show that the required conditions are met for M ≡ M . By the denition of → → βL , we have that M → → βL M , which leaves us with needing to show that U P N ,σ [L P N,σ [M]] → → βL M . This we obtain by the following sequence of reductions: from N → βL N , which we have as an induction hypothesis, using the appropriate closure-under-context reduction rules, we obtain that U P N ,σ [L P N,σ [M]] → βL U P N ,σ [L P N ,σ [M]], from which we nally obtain that U P N ,σ [L P N ,σ [M]] → βL M , by the reduction rule (L•O•Main), showing that U P N ,σ [L P N,σ [M]] → → βL M . The remaining subcases are handled very similarly. Having proven local conuence, nally, from Theorem 18, Lemma 33 and Newman's Lemma, we obtain the conuence theorem for LF P : Proposition 8 (Subderivation, part 2). If predicates are closed under signature/context weakening and permutation, then:

Figure 7 . 1 :

 71 Figure 7.1: An extension of LF P typing rules for Subject Reduction

Figure 9 . 1 :

 91 Figure 9.1: LF P signature Σ λ for the untyped λ-calculus

Val

], i.e. λx.xx = λx.xλy.xy eta : ΠM:(term -> term).L η M [(eq (lam M) (lam (λx:term.(M (lam λy:term.(app x y)))))))]

Γ

 ; •; z:A z:A (ovar) Γ; ∆; (Ω, z:A) M :B Γ; ∆; Ω λ > z:A.M :A → → B (→ → I) Γ; ∆ 1 ; Ω 1 M :A → → B Γ; ∆ 2 ; Ω 2 N :A Γ; (∆ 1 ∆ 2); (Ω 1 , Ω 2) M > N :B (→ → E)

 impRightIntro : ΠA,B:o.ΠM:(True A)->(True B).L Rightmost M,(True A)→(True B) [(True (impRight A B))], impRightElim : ΠA,B:o.(True (impRight A B)) -> (True A) -> (True B), where True : o -> Type is the truth judgement on formulas (represented by type o) and impRight : o -> o -> o represents the → → constructor of right ordered implications. Finally, the predicate Rightmost (Γ Σ M : (True A) -> (True B)) checks that M is an abstraction in normal form (i.e. M ≡ λz : (True A).M', with M' in normal form), and that the bound variable z occurs only once, and as the rightmost free one in M'.For what concerns the introduction/elimination rules for the left ordered implication , the encoding strategy is similar; indeed, the rules are the following:Γ; ∆; (z:A, Ω) M :B Γ; ∆; Ω λ < z:A.M :A B (I) Γ; ∆ 1 ; Ω 1 M :A B Γ; ∆ 2 ; Ω 2 N :A Γ; (∆ 1 ∆ 2); (Ω 1 , Ω 2) M < N :B (E)Therefore, we exploit the predicate Leftmost in the encoding of the introduction rule of : impLeftIntro : ΠA,B:o.ΠM:(True A)->(True B).L Leftmost M,(True A)→(True B) [(True (impLeft A B))], impLeftElim : ΠA,B:o.(True (impLeft A B)) -> (True A) -> (True B), where impLeft : o -> o -> o represents the constructor of left ordered implications. Finally, Leftmost (Γ Σ M : (True A) -> (True B)) checks that M is an abstraction in normal form (i.e. M ≡ λz : (True A).M', with M' in normal form), and that the bound variable z occurs only once, and as the leftmost free one in M'. The fragment of linear implications is, again, treated in a similar way, with a suitable predicate ensuring the correct introduction of the constructor for linear implication. The rules for the linear fragment of NCLL are the following: 1 ; Ω M :A B Γ; ∆ 2 ; • N :A Γ; (∆ 1 ∆ 2); Ω M ˆN :B (E) Hence, the encodings of the rules (I) and (E) are as follows: impLinearIntro : ΠA,B:o.ΠM:(True A)->(True B).L Linear M,(True A)→(True B) [(True (impLinear A B))], impLinearElim : ΠA,B:o.(True (impLinear A B)) -> (True A) -> (True B), where impLinear : o -> o -> o represents the constructor of linear implications. Finally, the predicate Linear (Γ Σ M:(True A)->(True B)) veries that M is an abstraction in normal form (i.e. M ≡ λz : (True A).M', with M' in normal form), and that the bound variable z occurs free only once in M'. Finally, the encoding of the intuitionistic fragment of NCLL is straightforward, since in this part there are no restrictions about the intuitionistic variables: (Γ 1 , x:A, Γ 2); •; • x:A (ivar) (Γ, x:A); ∆; Ω M :B Γ; ∆; Ω λx:A.M :A → B (→ I) Γ; ∆; Ω M :A → B Γ; •; • N :A Γ; ∆; Ω M N :B (→ E) The encodings of the introduction/elimination rules for the intuitionistic implication are : impIntro : ΠA,B:o.ΠM:(True A)->(True B). (True (imp A B)), impElim : ΠA,B:o.(True (imp A B)) -> (True A) -> (True B)

 3, where there exist two layers of formulas -classical and probabilistic, and the reasoning is essentially propositional. Encoding the formulas of this logic in LF P is natural and follows the Coq encoding practically to the letter:

 Moreover, one can easily incorporate other systems separating derivation and computation within LF P . For example, the ruleC A → B A ≡ C Bin Deduction Modulo can be represented as:⊇ ≡ : ΠA, B, C:o.Πx:True(A → B).Πy:True(C).L ≡ A,C [True(B)].However, the mechanism of locked/unlocked types in LF P is more general than the one provided by Deduction Modulo or the Poincaré principle. The latter can be viewed as extensions of the type Equality Rule to new denitional equalities, while LF P , on the other hand, allows one to reect into the proof objects themselves, as has been extensively shown in the examples.As a nal illustration, we could address formally the issue of reection in LF P . We can already grasp the gist of this philosophy through the following principle:Reflection : Πx:o. L isT rue x,o [(T rue x)].

 3. Petar Maksimovi¢. Formal Verication of Key Properties for Several Probability Logics in the Proof Assistant Coq. First National Conference on Probability Logics and their Applications, Book of Abstracts, p. 25, Belgrade, Serbia. 29-30 September, 2011. 4. Petar Maksimovi¢. Formal Verication of Key Properties for Several Probability Logics in the Proof Assistant Coq. TYPES 2013: Types for Proofs and Programs, Book of Abstracts, pp. 60-61, 19 th TYPES Meeting, April 22-26, 2013, Toulouse, France. 5. Furio Honsell, Marina Lenisa, Luigi Liquori, Petar Maksimovi¢, Ivan Scagnetto. LF P -A Logical Framework with External Predicates. In Proceedings of LFMTP 2012: The Seventh International Workshop on Logical Frameworks and Meta-languages, Theory and Practice, pp. 13-22, Copenhagen, Denmark, 08-09 September, 2012. 6. Furio Honsell, Marina Lenisa, Luigi Liquori, Petar Maksimovi¢, Ivan Scagnetto. An Open Logical Framework. Journal of Logic and Computation, 2013, to appear.

 Syntax and Semantics of LPCP . 22 2.2 An Axiomatization of LPCP . 24 2.3 Soundness of LPCP . 26 2.4 Strong Completeness of LPCP . 26 2.5 Decidability of LPCP . 31 2.6 An Interlude: Reasoning about Evidence 33 2.7 Representing Evidence with LPCP . 33 2.8 Summary . 34

	Chapter 2
	LPCP -A Probability Logic with
	Conditional Probability Operators
	Contents
	2.1

 5.The denition of a model is extended to be a sextuple W, H, {µ i |i ∈ I}, v, e , where we have

 . 35 3.2 Semantics of LP P Q 2 . 37 3.3 A Complete Axiomatization . 39 3.4 Key Properties of Ax LP P Q 2 . 41

	Chapter 3
	Formal Verication of Key Properties
	for LP P Q 2 -a Rationally-valued Probability Logic without Iterations -
	in the Proof Assistant Coq
	Contents
	3.1 Syntax of LP P Q 2

3.4.1 Soundness . 41 3.4.2 Completeness . 42 3.4.3 Non-Compactness . 49 3.4.4 Concerning Decidability . 49 3.5 Summary . 50

 If α is LP P Q 2,M eas - valid, then ¬ c α is not satisable, and by the Strong Completeness Theorem, {¬ c α} is inconsistent, i.e. {¬ c α} ⊥ c or {¬ c α} ⊥ p . If {¬ c α} ⊥ c , then we obtain α from the Deduction Theorem and the elimination of double negation. If {¬ c α} ⊥ p , and {¬ c α} ⊥ c , then we have that {¬ c α} is classically consistent and also, by the previous Lemma, also LP P Q

	2 -consistent,
	which is a contradiction.

Second, let Φ ≡ A be a probabilistic formula. As in the previous case, if A is LP P Q 2,M eas -valid, then ¬ p A is not satisable and by the Strong Completeness Theorem, {¬ p A} is inconsistent, i.e. {¬ p A} ⊥ c or {¬ p A} ⊥ p . If {¬ p A} ⊥ p , then we again obtain A from the Deduction Theorem and the elimination of double negation. On the other hand, if {¬ p A} ⊥ c , then since classical derivations do not depend on probabilistic formulas, it would be that ∅ ⊥ c , which is a contradiction with the consistency of ∅, guaranteed by the Strong Completeness Theorem.

 kind in Γ and Σ Γ Σ σ : K σ has kind K in Γ and Σ Γ Σ M : σ M has type σ in Γ and Σ Signatures, Contexts, Kinds. Signatures, contexts, and kinds of LF P are formed in the usual manner:

 If predicates are closed under signature/context weakening and permutation and under substitution, then: if Γ, x:σ, Γ Σ α, and Γ Σ N : σ, then Γ, Γ [N/x] Σ α[N/x]. that, contrary to what happens in traditional type systems, the following closure under expansion does not hold: Γ Σ M [N/x] : τ =⇒ Γ Σ (λx:σ.M)N : τ , for Γ Σ N : σ.

	Notice

 Σ N : σ, where N = βL N , σ= βL σ , and ρ= βL ρ . However, since M , N , σ, N , σ , and ρ are in η-lnf, they must also be in normal form, meaning that N ≡ N and σ ≡ σ , leaving us with Γ Σ L P N,σ [M] : L P N,σ[ρ] . By the induction hypothesis, we have Γ Σ N ⇐ σ. Using the rule (O•Conv) of LF P , we can now get Γ Σ M : ρ and from this, by the induction hypothesis, we get that Γ Σ M ⇐ ρ . Finally, we can use the rule (O•Lock) of LF C P to obtain the desired Γ Σ

Γ Σ c : α, this could have been obtained only through the rule (O•Const) of LF P , from Σ Γ and c : σ ∈ Γ. By the induction hypothesis, we get that Σ Γ in LF C P , and that c : σ ∈ Γ, from which, using the rule (O•Const) of LF C P , we obtain the desired Γ Σ c ⇒ σ.

Γ

 The Untyped λ-calculus . 97 Substructural Logics . 105 9.2.1 Modal Logics in Hilbert style. 105 9.2.2 Modal Logics in Natural Deduction Style. 107 9.2.3 Non-commutative Linear Logic . 109 9.3 Imp with Hoare Logic . 112 9.4 Probabilistic SAT-Checkers as Oracles for LF P 114 9.5 Several further comments on LF

			Chapter 9
			Encodings in LF P
	Contents		
	9.1 9.1.1	A Closer Look at the Expressiveness of the Predicates	99
	9.1.2	Adding a Call-by-Value Reduction Strategy 101
	9.1.3	Capturing Design-by-Contract	. 103
	9.2		

P . 114 9.6 Summary . 116

If, in a context where x has type σ, we have that M is of type τ , then, in the same context without x, λx:σ.M is of type σ → τ : Γ, x:σ M : τ Γ λx:σ.M : σ → τ

In the proof of this statement, we use strong completeness of classical logic as an axiom in Coq (LPP2_Q_Classical_Strong_Completeness_models_T).

Just as in the previous chapter, when we are not addressing an encoding of a concept in Coq in detail, we will be specifying the label of the encoding in brackets, immediately following the theoretical explanation.

If τ has kind Type in the context Γ, x:σ and signature Σ, then the dependent product Πx:σ.τ has kind Type in Γ and Σ.

Σ Γ x:σ ∈ Γ Γ Σ x : σ (O•Var)If Γ is a valid context in the signature Σ, then any variable x of type σ belonging to Γ also has type σ in Γ and Σ.Γ, x:σ Σ M : τ Γ Σ λx:σ.M : Πx:σ.τ (O•Abs)If M has type τ in the context Γ, x:σ and signature Σ, then the abstraction λx:σ.M has type Πx:σ.τ in Γ and Σ.Γ Σ M : Πx:σ.τ Γ Σ N : τ M N : τ [N/x] (O•App)If M has type Πx:σ.τ in the context Γ and signature Σ, and N has type σ in Γ and Σ, then the application of N to M has type τ , in which all occurrences of x have been substituted for N , in Γ and Σ.Γ Σ M : ρ Γ Σ N : σ Γ Σ L P N,σ [M] : L P N,σ [ρ] (O•Lock)If M has type ρ in the context Γ and signature Σ, and N has type σ in Γ and Σ, then M , locked with the predicate P on Γ Σ N : σ has type ρ, locked with the predicate P on Γ Σ N : σ, in Γ and Σ.P(Γ Σ N : σ) Γ Σ M : L P N,σ [ρ] Γ Σ N : σ Γ Σ U P N,σ [M] : ρ (O•Unlock)If M has type ρ, locked with the predicate P on Γ Σ N :σ in the context Γ and signature Σ, N has type σ in Γ and Σ, and P(Γ Σ N :σ) holds, then M , unlocked with P on Γ Σ N :σ has type ρ in Γ and Σ.Γ Σ M : σ Γ Σ σ : Type σ= βL σ Γ Σ M : σ (O•Conv)If M has type σ in the context Γ and signature Σ, and σ is denitionally equal to σ , which has kind Type in Γ and Σ, then M also has type σ in Γ and Σ.

Given a derivation D of the judgement Γ Σ α, and a subterm occurring in the subject of this judgement, there exists a derivation of a judgement having this subterm as a subject.From this point on, we will assume that the rst requirement for the well-behavedness of predicates, namely the closure under signature and context weakening and permutation, holds.With this, we prove the following propositions by induction on the structure of the derivation: Proposition 7 (Weakening and permutation). If predicates are closed under signature/context weakening and permutation, then:1. If Σ and Ω are valid signatures, and every declaration occurring in Σ also occurs in Ω, then Γ Σ α implies Γ Ω α.2. If Γ and ∆ are valid contexts w.r.t. the signature Σ, and every declaration occurring in Γ also occurs in ∆, then Γ Σ α implies ∆ Σ α.

If Γ Σ K, and K → βL K , then Γ Σ K .

If Γ Σ σ : K, and σ → βL σ , then Γ Σ σ : K.

If Γ Σ M : σ, and M → βL M , then Γ Σ M : σ.Proof. Here, we prove Subject Reduction of a slightly extended type system. We consider the type system in which the rules (F•Lock), (O•Lock), and (O•Unlock) all have an additional premise Γ Σ σ : Type, while the rule (O•Unlock) also has another additional premise Γ Σ L P N,σ [ρ] : Type, as shown in Figure7.1.Γ Σ ρ : Type Γ Σ N : σ Γ Σ σ : Type Γ Σ L P N,σ [ρ] : Type (F•Lock) Γ Σ M : ρ Γ Σ N : σ Γ Σ σ : Type Γ Σ L P N,σ [M] : L P N,σ [ρ]

If the atomic family α has kind Πx:τ.K 1 in the context Γ and signature Σ, and M is a canonical term of type σ in Γ and Σ, then the application of M to σ is an atomic family, and has kind K 1 , in which all occurrences of x have been hereditarily substituted for M , in Γ and Σ.Canonical Families. The remaining family constructors, for the dependent product and the locked types, as well as for the subsumption of atomic families, belong to the canonical families.Γ Σ α ⇒ Type Γ Σ α Type (F•Atom)If α is an atomic family of kind Type in the context Γ and signature Σ, then α is also a canonical family in Γ and Σ.Γ, x:σ Σ τ Type Γ Σ Πx:σ.τ Type (F•Prod)If τ is a canonical family in the context Γ, x:σ and signature Σ, then the dependent product Πx:σ.τ is also a canonical family in Γ and Σ.Γ Σ ρ Type Γ Σ N ⇐ σ Γ Σ L P N,σ [ρ] Type (F•Lock)If ρ is a canonical family in in the context Γ and signature Σ, and N is a canonical term of type σ in Γ and Σ, then the type L P N,σ [ρ], locking ρ with a predicate P on Γ Σ N ⇐ σ, is also a canonical family in Γ and Σ.Atomic Objects. The atomic objects comprise object constants and variables, as well as the application and unlock constructors.Σ Γ c:σ ∈ Σ Γ Σ c ⇒ σ (O•Const)If Γ is a valid context in the signature Σ, then any object c of type σ in Σ is an atomic term with type σ in Γ and Σ.Σ Γ x:σ ∈ Γ Γ Σ x ⇒ σ (O•Var)If Γ is a valid context in the signature Σ, then any variable x of type σ in Γ is an atomic term with type σ in Γ and Σ.

If A is an atomic term with type Πx:σ.τ 1 in the context Γ and signature Σ, and M is a canonical term of type σ in Γ and Σ, then the application of M to A has type τ 1 , in which all occurrences of x have been hereditarily substituted for M , in Γ and Σ.

If Γ L , x 0 :ρ 0 , Γ R Σ K then there exists K such that [M 0 /x 0] K ρ 0 K = K and Γ L , Γ R Σ K .

If Γ L , x 0 :ρ 0 , Γ R Σ σ Type, then there exists σ such that [M 0 /x 0] F ρ 0 σ = σ and Γ L , Γ R Σ σ Type.

If Γ L , x 0 :ρ 0 , Γ R Σ σ Type and Γ L , x 0 :ρ 0 , Γ R Σ M ⇐ σ, then there exist σ and M such that [M 0 /x 0] F ρ 0 σ = σ and [M 0 /x 0] O ρ 0 M = M and Γ L , Γ R Σ M ⇐ σ .

The two base cases ensure that the propositions themselves, as well as terms that do not have any free variables are considered closed (in the sense of the predicate Closed), while the remaining

Γ, φ φ (start) Γ, φ ψ Γ φ → ψ (→ -I) Γ φ → ψ Γ φ Γ ψ (→ -E) Γ, ¬φ ff Γ φ (ff -I) Γ ff Γ φ (ff -E) ∆ Γ Γ φ ∆ φ (-I • S 4) Γ 0 , ¬ Γ 1 φ Γ 0 , ¬ Γ 1 φ (-I • S 5) Γ φ Γ φ (-E)

Otherwise, the predicate P would not be well-behaved, in the sense of Denition 21.

The encoding of a list of formulas in LFP , can be accomplished in the usual way, by dening the constructors nil : list and cons : FOR -> list -> list, for instance.

Since we have the Strong Completeness Theorem for LP P Q 2 (Theorem 9), we can interchange at will the terms '`consistent and `'satisable.

As we already pointed out in the introduction, proof terms can be kept small, adopting a reection approach (see, e.g.,[Chlipala 2013]), but at the price of proving the correctness of the decision procedures internally.

Acknowledgments

Five years ago, I have had the good fortune to have been oered what then were one of the very

It is one of the outcomes of a pilot Ph.D. program in Information Technology, developed within the Tempus DEUKS (Doctoral School towards European Knowledge Society) Project JEP-41099-2006. The research for this thesis has been performed, over a period of three and a half years,

Summary

In this chapter, we have presented LP P Q 2 -a rationally-valued probability logic without iterations of probability operators. We have introduced a sound and strongly-complete axiomatic system for LP P Q 2 , and formally proven in Coq the main meta-theoretic properties of LP P Q 2 soundness, strong and simple completeness, and non-compactness. Similarly to LPCP, due to the inherent non-compactness of the system, an innitary inference rule had to be introduced into the system.

Chapter 4

Formal Verication of Key Properties for LP P Q 1 -a Rationally-valued Probability Logic with Iterations -in the Proof Assistant Coq In this chapter, we address the logic LP P Q 1 -a probability logic similar to LP P Q 2 , with the main dierence being that iterations of probability operators are allowed. We formally prove its main meta-theoretical properties in the proof assistant Coq, and discuss the dierences in syntax, semantics and proof technology between LP P Q 2 and LP P Q

4.1 Syntax of LP P Q 1

The syntax of LP P Q 1 is somewhat more uniform than that of LP P Q 2 , shown in the previous chapter. We also require a denumerably innite set of propositional letters: φ = {p 0 , p 1 , . . .} (nat), and two propositional connectives: ¬ (Neg : FOR -> FOR) 1 and → (Imp : FOR -> FOR -> FOR), where FOR denotes the type of LP P Q 1 formulas in Coq. Let us again denote by Q [0,1] (Q01) the set of all rational numbers from the unit interval, encoded in Coq just as for LP P Q 2 , and let us have a denumerably innite set of probabilistic operators P ≥s , s ∈ Q [0,1] (Pge : Q01 -> FOR -> FOR). Then, the set of all formulas F or LP P Q 1 (FOR) of LP P Q 1 is dened as the smallest set that satises the following conditions:

• it contains all of the propositional letters.

• if α ∈ F or, s ∈ Q [0,1] , then P ≥s α ∈ F or.

• if α, then ¬α ∈ F or.

Record ProbSpace (U : Type) (W : Ensemble U) : Type := mkPSpace {gWp : Ensemble (ElemW U W); gHp : Algebra (ElemW _ gWp); gMp : MeasureQc (ElemW _ gWp); PS_Nes_Cond : gWp <> Empty_set _; PS_Alg_Cond : AOS _ gHp; PS_Mea_Cond : FAM_Qc _ gMp gHp}.

In this manner, we capture all of the necessary conditions the non-emptiness of W (w), H(w) being an algebra of subsets over W (w), and µ(w) being a nitely additive measure on H(w) during the construction of a probability space. Models are then naturally encoded as:

Record Model_Simp (U : Type) (W : Ensemble U) : Type := mkMSimp {MC_Worlds : Ensemble (ElemW U W); MC_PSpace : (ElemW U W) -> (ProbSpace U W); MC_Valuation : (ElemW U W) -> nat -> Prop MC_ElemWS_Cd : inhabited (ElemW U W); MC_Worlds_Cd : MC_Worlds = Full_set (ElemW U W)}.

Therefore, apart from the three required elements, we have also embedded into the model the conditions which ensure that our set of worlds is not empty and that the set of worlds encompasses all of the elements of the appropriate ElemW type. Again, the worlds are parameterized by a type U, allowing for dierent choices of sets representing worlds, depending on the proof scenario. Next, we proceed to the denition of satisability: Denition 16. The satisability relation |= satises the following conditions, for every LP P Q 1 - model M = W, P rob, v , every world w ∈ W , and every formula Φ ∈ F or LP P Q 1 :

• if Φ ∈ φ, then M, w |= Φ i v(w)(Φ) = true.

Propositional letters are satised in a world i they are true in that world.

• if Φ is of the form ¬α, M, w |= Φ i M, w α.

• if Φ is of the form α → β, M, w |= Φ i M, w α or M, w |= β.

• if Φ is of the form P ≥s α, M, w |= Φ i µ(w) ([α] M,w) ≥ s, where [α] M,w denotes the set {u ∈ W (w)|M, w |= α}, i.e. the set of worlds in W (w) in which α holds. This is analogous to the capturing of probability for LP P Q 2 .

We will onward focus on the class of all measurable models (Model_Meas), which we will denote by LP P Q 1,M eas . Measurable models are dened as follows:

Denition 17.

and are encoded in Coq by adding the measurability condition into the denition of Model_Simp.

We represent satisability of a set of formulas with the function modelsSet. Again, we encode satisability of the classical negation and implication using Coq's built-in connectives, and make use of Coq's Classical library.

Denition 18. A formula Φ is satisable if there exists an LP P Q 1 -measurable model M = W, P rob, v and a world w ∈ W such that M, w |= Φ; Φ is valid (Valid) if M, w |= Φ, for all LP P Q 1 -measurable models M = W, P rob, v and all worlds w ∈ W in these models; a set of formulas T is satisable (Satisfiable) if there exists an LP P Q 1 -measurable model M = W, P rob, v and a world w ∈ W , such that M, w |= Φ, for all Φ ∈ T . The next step is to prove that we can always extend a consistent set of formulas to a maximally consistent set. We prove the following auxiliary claims, analogously to Lemma 6, Lemma 7, and Lemma 8: Lemma 22. Derivability is not aected by adding theorems into the context, i.e. if T ∪ T F , and every formula in T is a theorem, then T F , where F ∈ F OR (Der_addThm). Consequently, consistency is not aected by adding theorems into the context (Consistency_addThm).

Lemma 23. For every consistent set of formulas T , and every formula α, either T ∪ {α} is consistent or T ∪ {¬α} is consistent (Consistency_xor).

Lemma 24. For all maximally consistent sets T , and for all formulas α, β, the following holds:

The following lemma, analogous to Lemma 11 both in formulation and in proof, provides an insight into the compatibility of probabilistic operators with consistency:

Lemma 25. For every consistent set of formulas T , formulas α and β, if T ∪ {β} is consistent, then there exists a rational number p(α

Hereinafter, we will assume to have a consistent set of formulas T . We denote T 0 = T , establish an enumeration of formulas α 0 , α 1 , α 2 , . . . (f_enum : nat -> FOR), and dene a sequence of sets T n (Tn), for n ≥ 1, as follows:

The following lemma is proven using the previously proven lemmas:

Lemma 26. The following properties concerning the sequence T n hold:

1. For all n ≥ 0, T n ⊆ T n+1 (Tn_increasing).

2. For all n ≥ 0, T n is consistent (Tn_all_consistent).

Next, we dene the maximally consistent extension T * of T , as Worlds. The set of worlds W will be the set of all maximally consistent sets (CM_Worlds).

Definition MC_Extension (T : Ensemble

Valuation. The valuation function v : W × φ → {true, f alse} (v) is dened naturally as v(w, p i) = true if p i ∈ w, and otherwise f alse (CM_Valuation).

Probability Space. We will dene the probability spaces for each world w as follows:

• Subsets of Worlds. For each w ∈ W , we take W (w) = W (CMWp). This proves to be sucient, and there is no need for having dierent subsets for dierent worlds.

• Algebra of Subsets. We will dene H(w) (CMHp) in the following way:

It is easily proven that H(w), dened in this way, satises the requirements to be an algebra of subsets over W (w): it contains the empty set, it is closed under complement, and is closed under nite union. (CM_Alg_Cond)

• Measure. The measure should map the algebra of subsets H(w) into the rational unit interval Q [0,1] . Since the elements of H(w) are essentially determined by formulas, we will dene µ(w) (CMMp_to_Q01) as follows, using notation from Lemma 28:

, where T * P =q(α) α.

Lemma 28 states that a unique q(α) exists for each α ∈ F or LP P Q

1

, ensuring that the measure is well-dened. Just as in the case of LP P Q 2 , the following claims needed to be proven with regard to the properties of µ(w):

Measure and negation: µ(w)

Measure and the empty set: µ(∅) = 0 (CMMp_FAM_empty_set). Measure and the full set: µ(W) = 1 (CMMp_FAM_Full_set). Additivity: µ is nitely additive (CMMp_FAM_additive).

In this way, we have obtained a model M * = W, P rob, v (CMModel_Simp), and the remaining claim that we need to prove is that it is measurable.

Lemma 30. M * is a measurable model (CM_isMeas).

Proof. We should prove that for α ∈ F or LP P Q

1

, and all w ∈ W , it holds that [α] M * ,w ∈ H(w). However, this is true, as this was how H(w) was constructed in the rst place. 4.4.2.4 Strong Completeness. With the canonical model constructed, we require an additional lemma before we can tackle strong completeness: Lemma 31. Let T be a set of formulas, M = W, P rob, v be a measurable model, w ∈ W , and let us assume that M, w |= T . Then, it holds that for all α ∈ F or

Theorem 17 (Non-compactness of LP P Q 1). There exists a set of LP P Q 1 -formulas which is unsatisable, but whose every nite subset is satisable.

Theorem LPP1_Q_NonCompactness : ∃ T : Ensemble FOR, (∀ T' : Ensemble FOR, Finite _ T' → Included _ T' T → Satisfiable T') ∧ ¬ Satisfiable T.

Summary

In this chapter, we have presented LP P Q 1 -a rationally-valued probability logic with iterations of probability operators. We have introduced a sound and strongly-complete axiomatic system for LP P Q 1 , and formally proven in Coq the main meta-theoretic properties of LP P Q 1 soundness, strong and simple completeness, and non-compactness. Similarly to LPCP and LP P Q 2 , due to the inherent non-compactness of the system, an innitary inference rule had to be introduced into the system. We have examined the similarities and dierences between LP P Q 1 and LP P Q 2 and observed that due to the more uniform syntax, the proofs in LP P Q 1 are more elegant and somewhat more straightforward. Finally, the formalization of LP P Q 1 in Coq revealed an imprecision in the pen-and-paper denitions of the inference rules, and brought to light the need for the inference rules to be dened jointly with the notion of derivability.

Part The Edinburgh Logical Framework LF, presented in [START_REF] Harper | A Framework for Dening Logics[END_REF]], is a typing system featuring dependent types. It was rst introduced as a general meta-language for logics, as well as a specication language for generic proof-checking/proof-development environments. In this thesis, we consider an extension of LF with predicates, which is accomplished by dening locked type constructors, which resemble -modality constructors, for constructing types of the shape

, where P is predicate on typed judgements and the validity of which may be veried outside of the LF P framework, making it, in that sense, an external predicate.

Following the standard specication paradigm in Constructive Type Theory, we dene locked types using introduction, elimination, and equality rules. We introduce a lock constructor for building objects L P N,σ

The equality rule for locked types amounts to a new form of reduction we refer to as lockreduction (L-reduction), U P N,σ [L P N,σ [M]] → L M , which allows for the elimination of a lock, in the presence of an unlock. The L-reduction combines with standard β-reduction into βL-reduction.

LF P is parametric over a potentially unlimited 1 set of predicates P, which are dened on derivable typing judgements of the form Γ Σ N : σ. The syntax of LF P predicates is not specied, with the main idea being that their truth is to be veried via a call to an external validation tool ; one can view this externalization as an oracle call. Thus, LF P allows for the invocation of external modules which, in principle, can be executed elsewhere, and whose successful verication can be acknowledged in the system via L-reduction. Pragmatically, locked types allow for the factoring out of the complexity of derivations by delegating the {checking, verication, computation} of such predicates to an external proof engine or tool. The proof terms themselves do not contain explicit evidence for external predicates, but just record that 1 The predicates need to satisfy certain requirements so that Subject Reduction of LFP holds, cf. Denition 21.

the free variables of a term Fv(T) as follows:

the bound variables of a term Bv(T) as follows:

and, nally, substitution is dened as follows (here, we reiterate that x = y, and that we are working modulo Barendregt's variable condition): In the LF P typing system, the external predicates appear only as preconditions to the application of the rule (O•Unlock). In this way, we keep the predicates separate from βL-reduction, in the sense that their validity is not checked at reduction-time, but rather during the construction of the unlock destructors. In this way, we do not require any conditions to be placed on the predicates when proving the conuence of LF P , but only for Subject Reduction (see Section 7. 3).

An alternative approach would be to omit the unlock destructor from the object formation rules altogether, and delegate the checking of the validity of predicates to the reduction rules instead, via rules in the style of:

Another interesting alternative approach would be to make the βL-reduction typed, utilizing rules such as, for example:

In this way, βL-reduction would be fully incorporated into the typing system, as in [Honsell 2008b], making the proofs a little easier and a lot more uniform. However, this approach would also require us to introduce abstraction back not only into the families, but into kinds as well, which would be somewhat superuous, as we have not found any practical usage for them in LF P .

Summary

In this chapter, we have rst presented in detail the judgments and the typing system of LF P . Next, we have introduced and discussed the notion of L-reduction, a new type of reduction with which we achieve the desired behaviour of a lock, in the presence of an unlock, shown how this new reduction is combined with β-reduction, and introduced corresponding rules for closureunder-context, as well as the notion of denitional equality. Finally, we have provided several comments regarding possible alternative ideas on integrating the checking of the validity of an external predicate as a part of a Logical Framework. In this chapter, we present and prove the main properties of LF P . Without any additional assumptions concerning predicates, we are able to prove that the type system is strongly normalizing and conuent. The former follows from strong normalization of LF (see [START_REF] Harper | A Framework for Dening Logics[END_REF]]), while the latter follows from strong normalization and local conuence, using Newman's Lemma [Newman 1942]. The proof of Subject Reduction, however, is more complicated and does require certain conditions to be placed on the predicates. These conditions are summarized in the following denition of what we term to be well-behaved predicates :

Denition 21 (Well-behaved predicates). A nite set of predicates {P i } i∈I is well-behaved if each P in the set satises the following conditions:

Closure under signature and context weakening and permutation:

1. If Σ and Ω are valid signatures, Σ ⊆ Ω, and P(Γ Σ α) holds, then P(Γ Ω α) also holds.

2. If Γ and ∆ are valid contexts, Γ ⊆ ∆, and P(Γ Σ α) holds, then P(∆ Σ α) also holds.

Closure under substitution:

Closure under reduction:

1. If P(Γ Σ N : σ) holds, and N → βL N holds, then P(Γ Σ N : σ) also holds.

2. If P(Γ Σ N : σ) holds, and σ → βL σ holds, then P(Γ Σ N : σ) also holds.

Strong Normalization

In this section, we prove that LF P is strongly normalizing with respect to βL-reduction. For this, we rely on the strong normalization of LF, as proven in [START_REF] Harper | A Framework for Dening Logics[END_REF]]. First, we introduce the function -U L : LF P → LF, which maps LF P terms into LF terms by deleting the L and U symbols. The proof then proceeds by contradiction. We assume that there exists a term T with an innite βL-reduction sequence. Next, we prove that only a nite number of β-reductions can be performed within any given LF P term T . From this, we deduce that, in order for T to The proof proceeds by simultaneous induction on the derivation of Γ Σ M and M → βL M . Here we will show only the case in which the base reduction rule (β•O•Main) is used, and one of the cases for which the well-behavedness of predicates is a requirement, while the other cases are handled similarly, mostly by using the induction hypotheses. 2. We have that

Type, and P(Γ Σ N : σ), and that

Here, we obtain the required Γ Σ M : ρ directly, using the third item of Proposition 5.

We have that

Type, and P(Γ Σ N : σ), and that

, by the reduction rules for closure-under-context, from σ → βL σ . First, from the induction hypothesis we have that Γ Σ σ : Type, and we also have, from σ → β : σ , that σ= βL σ . From this, using Γ Σ N : σ, and the rule (O•Conv), we obtain that Γ Σ N : σ . Next, since Γ Σ L P N,σ [ρ] : Type could only have been obtained by the type system rule (F •Lock), from Γ Σ ρ : Type and Γ Σ N : σ, and since we have Γ Σ N : σ , we obtain that Γ Σ L P N,σ [ρ] : Type. From this, given σ= βL σ , we obtain that

, and since we already have that Γ Σ M :

Finally, by the well-behavedness requirements for the predicates, we have that P(Γ Σ N : σ) holds, and we can now use the type system rule (O•Unlock) to obtain the required Γ Σ U P N,σ [M] : ρ. Here, we can notice that there are steps in this proof (in which we obtain Γ Σ σ : Type, and Γ Σ L P N,σ [ρ] : Type), which could not have been made had the original system not been extended for this theorem. Now, we can prove straightforwardly that Γ Σ α in the extended system i Γ Σ α in the original LF P system (i.e. that the judgements that these two systems derive are the same), by induction on the length of the derivation. With this, given that we have proven Subject Reduction of the extended system, we have that Subject Reduction also holds in the original LF P system.

A Word on the Expressive Power of LF P

Various natural questions arise as to the expressive power of LF P . We outline the answers to some of them:

• LF P is decidable, if the predicates are decidable; this can be proven as usual.

• If a predicate is denable in LF, i.e. it can be encoded via the inhabitability of a suitable LF dependent type, then it is well-behaved in the sense of Denition 21.

• All well-behaved recursively enumerable predicates are LF-denable by Church's thesis.

Of course, the issue is then on how deep the encoding is. To give a more precise answer, we would need a more accurate denition of deep and shallow encodings, which we still lack. This part of the thesis can be seen as a stepping stone towards such a theory, with the approach taken here being shallow by denition, and the encodings via Church's thesis being potentially very, very deep. Consider e.g. the well-behaved predicate M, N are two dierent closed normal forms, which can be immediately expressed in LF P .

• One may wonder what is the relation between the LF encodings of, say, Modal Logics, discussed in [Avron 1998, Crary 2010], and the encodings which appear in this thesis (see Chapter 9). The former essentially correspond to the internal encoding of the predicates that are utilized in Chapter 9. In fact, one could express the mapping between the two signatures as a forgetful functor going from LF P judgements to LF judgements.

• Finally, we can say that, as far as decidable predicates, LF P is morally a conservative extension of LF. Of course, pragmatically, it is very dierent, in that it allows for the neat factoring-out of the true logical contents of derivations from the mere eective verication of other, e.g. syntactical or structural properties. A feature of this approach is that of making such a separation explicit.

• The main advantage of having externally veried predicates amounts to a smoother encoding (the signature is not cluttered by auxiliary notions and mechanisms needed to implement the predicate). This allows performance optimization, if the external system used to verify the predicate is an optimized tool specically designed for the issue at hand (e.g. analytic tableaux methods for propositional formulae).

Summary

In this chapter, we have shown that LF P satises all of the main desired meta-theoretic properties: strong normalization, conuence, subject reduction, and decidability. Strong normalization and conuence are proven without any additional assumptions on the nature of the external predicates. In order for subject reduction to hold, the predicates need to abide by certain well-behavedness conditions, while for the decidability of LF P , they also need to be decidable.

Chapter 8

The In this chapter, we present a canonical version of LF P , which we will be denoting by LF C P , and which has been executed in the style of [START_REF] Watkins | [END_REF]] and [START_REF] Harper | Mechanizing Metatheory in a Logical Framework[END_REF]]. Given that there exists another form of reduction (L-reduction) beside β-reduction, it was necessary to extend the standard η-rule with the clause L P N,σ [U P N,σ [M]] → η M , corresponding to the lock type constructor. The syntax of the LF C P system denes what the normal forms of LF P are, while the typing system captures all of the judgements that are in η-long normal form which are derivable in LF P . The main reason for the development of LF C P is that it will serve as the basis for proving the adequacy of the encodings which will be presented later, in Chapter 9.

As will be seen, contrary to standard LF, not all of the judgements derivable in LF P admit a corresponding η-long normal form. In fact, this is not the case when the predicates appearing in the LF P judgement are not satised in the given context. Nonetheless, although LF C P is not closed under full η-expansion, it is still powerful enough for one to be able to obtain all of the relevant adequacy results.

Syntax and Type System for LF C P

In LF C P , the families and objects have been divided into two categories: atomic and canonical, as shown in Figure 8.1.

The corresponding type system for LF C P , together with the rst three judgments of LF P (see Section 6.1), proves judgements of the shape:

σ is the type of the atomic term A in Γ and Σ

The type system itself is presented in detail below, with the note that the we have chosen to omit the formation rules and judgements related to signatures, contexts, and kinds, since they are the same in LF C P as they are in LF P .

Atomic Families. The atomic families contain constant types and the dependent application in types. The rule in charge of handling the application makes use of the notion of hereditary substitution, which computes the normal form resulting from the substitution of one normal form into another, and which will be presented later.

If Γ is a valid context in the signature Σ, then any family a of kind K belonging to Σ is an atomic family with kind K in Γ and Σ.

If M is an atomic term of type ρ, locked with the predicate P on Γ Σ N ⇐ σ in the context Γ and signature Σ, N is a canonical term of type σ in Γ and Σ, and P(Γ Σ N :σ) holds, then M , unlocked with P on Γ Σ N :σ is an atomic term of type ρ in Γ and Σ.

8.1. Syntax and Type System for

If Γ is a valid context in the signature Σ, then any atomic object c of type σ belonging to Σ is also a canonical object of type σ in Γ and Σ.

If M is a canonical term of type τ in the context Γ, x:σ and signature Σ, then the abstraction λx:σ.M is a canonical term of type Πx:σ.τ in Γ and Σ.

If M is a canonical term of type ρ in the context Γ and signature Σ, and N is a canonical term of type σ in Γ and Σ, then M , locked with the predicate P on Γ Σ N ⇐ σ is a canonical term of type ρ, locked with the predicate P on Γ Σ N ⇐ σ, in Γ and Σ.

In LF C P , the predicates are dened on judgements Γ Σ M ⇐ σ, while the type system makes use, in the rules (A•App) and (O•App), of the notion of hereditary substitution. The general form of the hereditary substitution judgement is T [M/x] m ρ = T , where M is the term substituted, x is the variable substituted for, T is the term substituted into, T is the result of the substitution, ρ is the simple type of M , and m is the syntactic category involved in the judgement (i.e. kinds, atomic/canonical families, atomic/canonical objects, contexts). The simple type ρ of M is obtained via the erasure function (Figure 8.2), which maps dependent into simple types, while the rules for the hereditary substitution judgement appear in Figure 8.

Substitution in Kinds

Type

Substitution in Canonical Objects

Substitution in Contexts Notice that, in the rule (O•Atom) of the type system, the syntactic restriction of the classier to α being atomic ensures that canonical forms are indeed η-long normal forms for a suitable notion of η-long normal form, which extends the standard one for locked types. To illustrate, the judgement x : Πz:a.a Σ x ⇐ Πz:a.a is not derivable, as Πz:a.a is not atomic, hence Σ λx:(Πz:a.a).x ⇐ Πx:(Πz:a.a).Πz:a.a is not derivable. However, Σ λx:(Πz:a.a).λy:a.xy ⇐ Πx:(Πz:a.a). Πz:a.a, where a is a family constant of kind Type, is derivable. Analogously, for locked types, the judgement x :

In Denition 24 below, we formalize the notion of η-expansion of a judgement, together with correspondence theorems between LF P and LF C P .

Properties of LF C P

We start by studying basic properties of hereditary substitution and the type system. The following four lemmas and two theorems are proven directly, by either inspecting the rules for hereditary substitution and the type system for LF C P , and/or performing induction on the appropriate derivation or the complexity of the judgement. As the details of the proofs are purely technical, we have chosen to omit them. But, rst of all, we provide a denition of well-behavedness for predicate, much like that present in LF P .

Lemma 36 (Uniqueness of substitution and synthesis).

Lemma 37 (Composition of hereditary substitution). Let us assume that x = x 0 and x = M 0 .

Then, we have that:

Theorem 21 (Transitivity). Let Σ sig, Σ Γ L , x 0 :ρ 0 , Γ R and Γ L Σ M 0 ⇐ ρ 0 , and let us assume that all of the predicates are well-behaved. Then (c) Let Γ Σ AM : α be derivable in LF P , and be in η-lnf. A, as an atomic object, is then of the form:

Here, we have that c (or x) is fully applied and unlocked with respect to its classier, and we also have that all N i , σ i , M i , # » M i , as well as M and α, are in η-lnf. Also, we have that the types of M i , # » M i , and M are in η-lnf, as they are recorded in the type of c (or x), which is part of the signature (or context), which is also in η-lnf. We will denote the type of M by σ, and the type of A by Πz:σ.τ . Then, by the induction hypothesis, we have that Γ Σ M ⇐ σ, and that Γ Σ A ⇐ Πz:σ.τ . From the latter, as it only could have been obtained through the rule (O•Atom), we have that Γ Σ A ⇒ Πz:σ.τ . Now, we have two cases to consider: i. α ≡ a, a constant atomic type, which is the trivial case, as a is immune to both hereditary and standard substitution. We immediately get that τ ≡ a, with which we can use the rule (O•App) of LF C P to obtain the desired Γ Σ AM ⇒ α. ii. α ≡ aM 1 . . . M n , a fully applied constant atomic type of arity n. Then, we have that τ ≡ aM 1 . . . M n . Due to the fact that M , and all M i , M i are in normal form (as they are in η-lnf), we have that τ

However, due to the normal forms, the ordinary and hereditary substitution here coincide, yielding τ [M/z] F σ = α. With this, using the rule (O•App), we obtain the desired Γ Σ AM ⇒ α. In the same manner as for the predicate freeIn, we obtain that closedTerm is also a wellbehaved predicate in LF P . 9. 1.2 Adding a Call-by-Value Reduction Strategy

Denition 25 (The call-by-value reduction strategy.). The call-by-value (CBV) evaluation strategy can be specied by the following rules:

Compatibility with abstraction where values are either variables (constants in our encoding) or functions.

As the rule (β v) has a side condition on its application, it will be necessary to make use of L-types in the encoding. We proceed as follows:

Denition 26 (LF P signature Σ CBV for λ-calculus CBV reduction). We extend the signature of Figure 9.1 with the following elements: triple : Type <_, _, _> : term -> (term -> term) -> (term -> term) -> triple eq : term -> term -> Type refl : ΠM:term.(eq M M) symm : ΠM:term.ΠN:term.(eq N M) -> (eq M N) trans : ΠM,N,P:term.(eq M N) -> (eq N P) -> (eq M P) eq_app : ΠM,N,M',N':term.(eq M N) -> (eq M' N') -> (eq (app M M') (app N N')) betav : ΠM:(term -> term).ΠN:term.L Val N [eq (app (lam M) N) (M N)] xiv : Πx:term.ΠM,N:(term -> term).L ξ

x,M,N [(eq (M x)(N x))->(eq (lam M)(lam N))]

where the predicates Val and ξ are dened as follows, and triple is the type of triples of terms with types term, term -> term and term -> term:

• The predicate Val (Γ Σ N : term) holds i either N is an abstraction or a constant (i.e. a term of the shape (free i)); M, N, . . .

The call-by-value (CBV) evaluation strategy can be then extended by adding to the rules of Denition 25 the following one:

Here, conditional expressions are rst-class values, i.e. they can be passed as arguments of a function. So far, we can encode pre-and post-conditions in our language as follows:

cond(Q, (M (cond(P, N))))

The key idea is that the above expression will reduce if and only if the argument N were to pass the pre-condition P (i.e. the input contract) and if the result of the application M N were to pass the post-condition Q (i.e. the output contract).

We build upon the previous case study, encoding free variables by means of constants (e.g., natural numbers) embedded into terms, while bindable and bound variables will be represented by metavariables of the metalanguage. In Figure 9.2, we provide an LF P signature for our language, extending that presented in Figure 9.1 (bool will represent the type of boolean values true and false, i.e. the result of evaluating a condition C on its argument M).

In order to make clear the role played by the types and constructors so far introduced, we fully specify the encoding function ε X , mapping terms of the source language into the corresponding terms of LF P , where X denotes a set of bindable variables. Given an enumeration {x i } i∈N\{0} of the variables in the source language, we have the following:

We now present the encoding of the CBV reduction of our source language encoded in LF P . All the rules stated in the previous case study about the untyped λ-calculus remain unchanged. There is only the need to account for the new reduction rule involving the new constructor cond.

Denition 27 (LF P signature Σ for design by contract λ-calculus CBV reduction).

We extend the signature of Denition 26 by adding the following constant: Next, we present a functional pseudo-code to illustrate the computability of the predicate Closed . The context of the typing judgement passed as argument to Closed is partitioned into two sub-contexts Γ and Γ , where the former contains all of the free variables occurring in the term M, and the latter the remaining variables (this partitioning is re-computed with each recursive call, and is denoted by an appropriate index). We make use of two auxiliary functions which are computable (given the metaproperties of LF P), namely:

• NF, which takes as argument a type and reduces it to its normal form;

• TypeInf, which takes as arguments the contexts Γ, Γ , the signature Σ and a term M and executes a procedure of type inference, returning as a result a type τ such that Γ, Γ Σ M : τ holds or undef in case of failure.

Closed (Γ, Γ

Terms with no free variables Closed (Γ, Adequacy theorems are rather straightforward to state and prove. As usual, we dene an encoding function ε X on formulas with free variables in X as follows, representing atomic formulas by means of LF P metavariables:

Then, we can prove, by structural induction on formulas, the following theorem:

Theorem 27 (Adequacy of syntax). The encoding function ε X is a bijection between the modal logic formulas with free variables in X and the terms φ derivable in judgements Γ Σ φ : o in η-lnf, where Γ = {x : o | x ∈ X }. Moreover, the encoding is compositional, i.e. for a formula φ, with free variables in X = {x 1 , . . . , x k }, and ψ 1 , . . . , ψ k , with free variables in Y, the following holds:

If we denote by φ 1 , . . . , φ n φ the derivation of the truth of a formula φ, depending on the assumptions φ 1 , . . . , φ n , in Hilbert-style modal logics, the adequacy of our encoding can be stated by the following theorem:

Theorem 28 (Adequacy of the truth system). There exists a bijection between derivations φ 1 , . . . , φ k φ in Hilbert-style modal logic and proof terms h such that Γ Σ h : (True ε X (φ 1 → . . . → φ k → φ)) in η-long normal form, where X = {x 1 , . . . , x n } is the set of propositional variables occurring in φ 1 , . . . , φ k , φ and Γ = {x : o | x ∈ X }.

9.2.2

Modal Logics in Natural Deduction Style.

In LF P , one can also accommodate the classical Modal Logics S 4 and S 5 in Natural Deduction style. In particular, there are several alternative formulations for S 4 and S 5 , e.g. as dened by Γ Prawitz, which have rules with rather elaborate restrictions on the shape of subformulae where assumptions occur. In Figure 9.6 we present the rules allowing the specication of S 4 and S 5 (à la Prawitz), as well as the modal logics N K, N KT , N K4, N KT 4, N KT 45. So as to illustrate the exibility of the system, the rule for introduction in S 4 ((-I•S 4)) allows cut-elimination.

The encodings in LF P of all of the aforementioned rules are presented in Figure 9.7. Again, the crucial role is played by three predicates, namely Closed , BoxedS4 and BoxedS5 .

As in the Hilbert-style encoding, Closed (Γ Σ m:True (φ)) holds if and only if all of the free variables occurring in m have type o. This is precisely what is needed to correctly encode the rule (-I), where the truth of the formula φ must not depend on any of the assumptions.

In the case of the modal logic S 4 , the intended meaning of BoxedS4 (Γ Σ m: True(φ)) is that all the occurrences of free variables of m occur in subterms whose type has the shape True(ψ) or is o, while in the case of the modal logic S 5 , the predicate BoxedS5 (Γ Σ m: True(φ)) holds if and only if all of the free variables of m have type of shape True(ψ), True(¬ ψ) or o. It is easy to check that these predicates are well-behaved. Again, the trick to ensure a sound derivation in LF P of a proof of φ is to lock appropriately the type True(φ) in the conclusion of the introduction rule BoxI, in Figure 9.7.

As for the adequacy of our encoding, we can state Theorems 29 and 30 below. As in the previous case, we rst dene an encoding function ε X on formulas with free variables in X as follows, representing atomic formulas by means of LF P metavariables:

Then, we can prove, by structural induction on formulas, the following theorem:

Theorem 29 (Adequacy of syntax for modal formulas in natural deduction style). The encoding function ε X is a bijection between the modal logic formulas with free variables in X and the terms φ derivable in judgements Γ Σ φ : o in η-lnf, where Γ = {x : o | x ∈ X }. Moreover, the encoding is compositional, i.e. for a formula φ, with free variables in X = {x 1 , . . . , x k }, and ψ 1 , . . . , ψ k , with free variables in Y, the following holds:

The adequacy of the truth system of modal logics in natural deduction style can be proved by structural induction on derivations of the judgement Γ φ:

Theorem 30 (Adequacy of modal logics in natural deduction style). Let X = {x 1 , . . . , x n } be a set of propositional variables occurring in formulas φ 1 , . . . , φ k , φ. There exists a bijection between derivations of the judgement {φ 1 , . . . , φ k } φ in modal logics in natural deduction style, and proof terms h such that Γ Σ h : (True ε X (φ)) in η-lnf, where Γ = {x 1 : o, . . . , x n : o, h 1 : (True ε X (φ 1)), . . . , h k : (True ε X (φ k))}.

9.2.3

Non-commutative Linear Logic

In this section, we outline an encoding in LF P of a substructural logic like the one presented in [START_REF] Polakow | [END_REF]]. There, the authors presented a natural deduction system for intuitionistic non-commutative linear logic (NCLL), via a judgement of the form: Other primitive notions of our object language are variables, both integer and identier, and expressions. Here, identiers denote locations. For the sake of simplicity, we assume that only integers (represented by the type int) as possible values for identiers. Importantly, we follow as closely as possible the HOAS encoding, originally proposed in [Avron 1992], in order to illustrate the features and possible advantages of using LF P with respect to LF. The main dierence with that approach is that here we encode concrete identiers by constants of type var, an int-like type, of course dierent from int itself, so as to avoid confusion with possible values of locations.

The syntax of variables and expressions is dened as follows:

Denition 28 (LF P signature Σ for Imp).

int : Type bool : Type var : Type bang : var -> int 0,1,-1 : int + : int -> int -> int = : int -> int -> bool and, imp : bool -> bool -> bool not : bool -> bool forall : (int -> bool) -> bool

Since variables of type int may be bound in expressions (by means of the forall constructor), we dene explicitly the encoding function ε exp X mapping expressions with bindable variables of type int in X of the source language Imp into the corresponding terms of LF P :

where x in (bang x) denotes the encoding of the concrete memory location (i.e. a constant of type var), representing the (free) source language identier x; the other case represents the bindable variable x rendered as a LF P metavariable of type int in HOAS style. The syntax of imperative programs is dened as follows:

Denition 29 (LF P signature Σ for Imp with command).

We extend the signature of Denition 28 as follows:

prog : where the predicate QF (Γ Σ e:bool) holds i the formula e is closed and quantier free, i.e. it does not contain the forall constructor. We can look at QF as a good formation predicate, ruling out bad programs with invalid boolean expressions by means of locked terms.

The encoding function ε prog X mapping programs with free variables in X of the source language Imp into the corresponding terms of LF P is dened as follows:

where (*) denotes that e is a quantier-free formula (we are assuming to encode legal programs). Now, given the predicate true: bool -> Type such that (true e) holds if and only if e is true, we can dene a judgment hoare as follows:

Denition 30 (LF P signature Σ for Hoare). where P set (Γ Σ x,e :args) holds if and only if e is closed 3 , and the location (i.e. constant) x does not occur in e.

Such requirements amount to formalizing that no assignment made to the location denoted by x aects the meaning or value of e (non-interference property). The intuitive idea here is that if e = ε exp X (E), p = ε prog X (P) and e = ε exp X (E), then (hoare e p e') holds if and only if the Hoare's triple {E}P {E } holds. The advantage with respect to previous encodings (see, e.g., [Avron 1992]), is that in LF P we can delegate to the external predicates QF and P set all the complicated and tedious checks concerning non-interference of variables and good formation clauses for guards in the conditional and looping statements. Thus, the use of lock types, which are subject to the verication of such conditions, allows us to legally derive Γ Σ m:(hoare e p e') only according to the Hoare semantics.

Summary

In this chapter, we have presented several important case studies of encodings in LF P , illustrating the potential and advantages of this framework with respect to standard LF. We have encoded the untyped λ-calculus with the call-by-value reduction strategy and shown how it can be further extended to incorporate design-by-contract. Next, we have presented encodings of various modal logics, as well as the rst encoding of non-commutative linear logic in an LF-type framework.

Lastly, we have shown how to encode a small imperative language featuring Hoare logic, and given an outline of how a probabilistic SAT-checker could be used as an external oracle of LF P .

All the while, we have been relying on locked types and external predicates to deal with the side conditions of the formal systems in question, thus obtaining an elegant separation between derivation and computation. The logic LPCPa probability logic with conditional probability operators CP i , i ∈ I, which allows for linear combinations and comparative statements on the probabilites of formulas, has been introduced in the second chapter, along with its syntax, semantics, and a sound and strongly-complete axiomatic system, featuring an innitary rule. The obtained formalism was shown to be fairly expressive and allows for the representation of uncertain knowledge, where uncertainty is modeled by probability formulas. It has also been shown to be decidable, with a PSPACE containment for the decision procedure, and was extended so as to represent evidence, making it the rst propositional axiomatization of reasoning about evidence.

In the third and fourth chapters, we have presented probability logics LP P Q 1 and LP P Q 2 , which allow for reasoning on the probability of events, together with their encodings in the proof assistant Coq. Each of these two logics has its own specicities. They both involve the extension of classical logic with modal-like probability operators P ≥r , for r ∈ Q [0,1] , and both are equipped with an innitary inference rule, in order to capture strong completeness. In LP P Q 2 , we have an explicit separation between classical and probabilistic formulas, resulting in a two-layered proof structure, with a probabilistic layer built atop classical logic. This prohibits the mixing of classical and probabilistic formulas and the iterations of probability operators.

LP P Q 1 , on the other hand, is more expressive, with no distinction between formulas, and allows iterations of probability operators. For each of these two logics, we have encoded their syntax, semantics, and axiom systems, and provided formal proofs of several important meta-theorems, notably soundness, strong and simple completeness, and non-compactness. In this way, we have formally justied the interchangeability of the syntactic and the semantic level for these logics, i.e. justied the use of probabilistic SAT-solvers for the checking of consistency-related questions.

Chapter 10. Concluding Remarks and Directions for Further Work

The LF P Framework In the second part of the thesis, in chapters ve through nine, we have presented a new Logical Framework with External Predicates, building on the well-known LF, by introducing a mechanism for locking and unlocking types and terms, allowing the use of external verication tools. We have proven that LF P satises the main meta-theoretic properties:

strong normalization, conuence, and, with certain well-behavedness conditions enforced, subject reduction. We have also developed a corresponding canonical framework -CLFP, allowing for easy proofs of the adequacy of encodings. We have provided a number of encodings, including the simple untyped λ-calculus with a call-by-value reduction strategy, the Design-by-Contract paradigm, a small imperative language with Hoare logic, as well as Modal Logics in Hilbert and Natural Deduction style, and Non-Commutative Linear Logic, illustrating that in LF P we can encode side-conditions on the application of rules elegantly, and achieve, when necessary, a separation between verication and computation, resulting in cleaner and more readable proofs.

Further Work

Development of Probability Logics. As far as further research is concerned with respect to the logic LPCP, a similar approach could be investigated with conditional probabilities in the style of de Finetti. One alternative approach would consider dealing with rst-order probabilistic formulas and has already been researched, as a continuation of the work presented in this chapter, in [Milo²evi¢ 2012], where the authors have extended the formulas of LPCP to rst-order formulas, provided an innitary axiom system, and proven its soundness and strong completeness with resepct to the considered class of rst-order Kripke-like models, and decidability, provided the underlying rst-order theory is decidable. Also, in [Doder 2012], the authors have presented a probabilistic temporal logic which can model reasoning about evidence.

Formal Verication of Probability Logics. In this segment, we can think of two main continuations. First, the ideas used in the Coq encodings of the already veried logics can be reused for logics which are their extensions or variations. For instance, an addition of a qualitative operator on probabilities can be handled easily. Also, once the Coq tools for handling real or non-standard analysis have reached the required level, it would be possible to extend the codomain of the measure to real numbers or the non-standard rational unit interval. Although the code is not re-usable per se, the making of appropriate modications and adjustments to the code would not require more than one week for a Coq user familiar with the proofs.

On the other hand, the next property of the already encoded logics which could be addressed formally is their decidability. Given a formal specication of the appropriate decision procedure in Coq, it would be possible to, for the rst time, obtain a certied probabilistic SAT-solver.

Of course, the attention here should also be directed at various optimizations of the decision process, in an eort to yield a robust and (relatively) fast code.

Prospects for LF P . There exist several directions that we could consider. First, one can notice that the LF P system presented in this thesis is a purely rst-order predicative type theory, corresponding to the vertex (1,0,0) of Barendregt's cube [Barendregt 1992]. One reasonable and worthwhile step further would be to try to extend it to the full impredicative higher-order Calculus of Constructions, which, given the meta-theoretic results presented in this thesis, and the manner in which they were proven, does not appear to be too dicult a task, while it would bring us a signicant additional degree of expressiveness to be explored.

Next, we could investigate alternative presentations of LF P , featuring, for instance, typed reductions, or removing the unlock destructors from the system altogether and delegating the checking of the validity of the predicates to L-reduction. In this way, we would not require