
HAL Id: tel-00908155
https://theses.hal.science/tel-00908155v1
Submitted on 22 Nov 2013 (v1), last revised 20 Jan 2014 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed data management with the rule-based
language: Webdamlog

Émilien Antoine

To cite this version:
Émilien Antoine. Distributed data management with the rule-based language: Webdamlog. Databases
[cs.DB]. Université Paris Sud - Paris XI, 2013. English. �NNT : �. �tel-00908155v1�

https://theses.hal.science/tel-00908155v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS-SUD

ÉCOLE DOCTORALE D’INFORMATIQUE DE PARIS-SUD
LABORATOIRE SPÉCIFICATION ET VÉRIFICATION (LSV) – ENS DE CACHAN

DISCIPLINE : INFORMATIQUE

THÈSE DE DOCTORAT

Soutenue le 5 décembre 2013 par

Émilien ANTOINE

Gestion des données distribuées avec
le langage de règles: Webdamlog

Distributed data management with
the rule-based language: Webdamlog

Directeur de thèse : Serge ABITEBOUL D.R. Inria Saclay

Composition du jury :

Présidente du jury : Nicole BIDOIT Prof. Univ. Paris-Sud
Rapporteurs : Christine COLLET Prof. Grenoble INP

Pascal MOLLI Prof. Univ. Nantes
Examinateurs : Bogdan CAUTIS Prof. Univ. Paris-Sud

David GROSS-AMBLARD Prof. Univ. Rennes 1

ii

Résumé

Notre but est de permettre à un utilisateur du Web d’organiser la gestion de ses
données distribuées en place, c’est à dire sans l’obliger à centraliser ses données
chez un unique hôte. Par conséquent, notre système diffère de Facebook et des
autres systèmes centralisés, et propose une alternative permettant aux utilisa-
teurs de lancer leurs propres pairs sur leurs machines gérant localement leurs
données personnelles et collaborant éventuellement avec des services Web ex-
ternes.

Dans ma thèse, je présente Webdamlog, un langage dérivé de datalog pour
la gestion de données et de connaissances distribuées. Le langage étend data-
log de plusieurs manières, principalement avec une nouvelle propriété la délé-

gation, autorisant les pairs à échanger non seulement des faits (les données)
mais aussi des règles (la connaissance). J’ai mené une étude utilisateur pour
démontrer l’utilisation du langage. Je décris le moteur d’évaluation de Web-

damlog qui étend un moteur d’évaluation de datalog distribué nommé Bud,
avec le support de la délégation et d’autres innovations telles que la possibil-
ité d’avoir des variables pour les noms de pairs et des relations. J’aborde de
nouvelles techniques d’optimisation, notamment basées sur la provenance des
faits et des règles. Je présente des expérimentations qui démontrent que le coût
du support des nouvelles propriétés de Webdamlog reste raisonnable même
pour de gros volumes de données. Finalement, je présente l’implémentation
d’un pair Webdamlog qui fourni l’environnement pour le moteur. En parti-
culier, certains adaptateurs permettant aux pairs Webdamlog d’échanger des
données avec d’autres pairs sur Internet. Pour illustrer l’utilisation de ces pairs,
j’ai implémenté une application de partage de photo dans un réseau social en
Webdamlog.

Mots clefs Distribution ; Datalog ; Base de connaissances ; Pair à pair ; Gestion
de données du Web.

iii

iv

Abstract

Our goal is to enable a Web user to easily specify distributed data management
tasks in place, i.e. without centralizing the data to a single provider. Our sys-
tem is therefore not a replacement for Facebook, or any centralized system, but
an alternative that allows users to launch their own peers on their machines
processing their own local personal data, and possibly collaborating with Web
services.

We introduce Webdamlog, a datalog-style language for managing distributed
data and knowledge. The language extends datalog in a number of ways, no-
tably with a novel feature, namely delegation, allowing peers to exchange not
only facts but also rules. We present a user study that demonstrates the usabil-
ity of the language. We describe a Webdamlog engine that extends a distributed
datalog engine, namely Bud, with the support of delegation and of a number
of other novelties of Webdamlog such as the possibility to have variables de-
noting peers or relations. We mention novel optimization techniques, notably
one based on the provenance of facts and rules. We exhibit experiments that
demonstrate that the rich features of Webdamlog can be supported at reason-
able cost and that the engine scales to large volumes of data. Finally, we discuss
the implementation of a Webdamlog peer system that provides an environment
for the engine. In particular, a peer supports wrappers to exchange Webdamlog

data with non-Webdamlog peers. We illustrate these peers by presenting a pic-
ture management application that we used for demonstration purposes.

Keywords Distribution ; Datalog ; Knowledge Base ; Peer to Peer ; Web Data
Management.

v

vi

Contents

Acknowledgement ix

Résumé en Français xi

1 Introduction 1

2 State of the Art 3
2.1 Distributed Information Systems . 3

2.1.1 Distributed systems . 3
2.1.2 Distributed databases . 4
2.1.3 Data on the Web . 4
2.1.4 Peer-to-peer systems . 5
2.1.5 Social networks . 6
2.1.6 Contribution . 7

2.2 Knowledge bases . 7
2.2.1 Processing knowledge . 7
2.2.2 Datalog . 8
2.2.3 Distributed datalog . 10
2.2.4 Provenance and optimization 11
2.2.5 Contribution . 11

2.3 Webdam exchange . 11

3 Webdamlog language 15
3.1 Model of data . 17

3.1.1 Informal presentation . 17
3.1.2 Formal definitions . 19

3.2 Key observations . 24
3.3 Expressive power . 27

3.3.1 Traces and simulations . 27
3.3.2 Expressivity results . 28

3.4 Convergence of Webdamlog . 33
3.4.1 Positive Webdamlog . 33

vii

viii CONTENTS

3.4.2 Strongly-stratified Webdamlog 41

4 Webdamlog rule engine 51
4.1 Datalog inside . 51
4.2 Connection between Bud and Webdamlog 52

4.2.1 Webdamlog computation on Bud 52
4.2.2 Implementing Webdamlog rules 54

4.3 Optimization of the evaluation . 58
4.4 Optimization for view maintenance 60

4.4.1 Provenance graphs . 60
4.4.2 Deletions . 63
4.4.3 Running the fixpoint . 63

4.5 Performance evaluation . 64
4.5.1 Cost of delegation . 64
4.5.2 Cost of dynamism . 68

5 Architecture of a Webdamlog peer 75
5.1 Peer architecture . 76

5.1.1 Event-driven system . 77
5.1.2 Module interactions . 80

5.2 Wrappers . 81
5.3 Demonstration . 84

5.3.1 Wepic application . 84
5.3.2 Demonstration Scenario . 87
5.3.3 Access control . 91

6 User Study 93
6.1 Webdamlog tutorial . 93
6.2 Test . 96
6.3 Results . 99

7 Conclusion 101

Self references 103

External references 105

Acknowledgement

[TODO]: acknowledgement

ix

x ACKNOWLEDGEMENT

Résumé en Français

[TODO]: reread all this section and complete todos

Le volume d’informations présentes sur le Web s’accroît exponentiellement.
Les utilisateurs comme les compagnies partagent de plus en plus leurs don-
nées, qui se trouvent distribuées sur les nombreuses machines qu’ils possè-
dent, ou via des services Web ils stockent leurs infromations sur des machines
externes. En particulier, l’émergence de l’infonuagique1 et des réseaux soci-
aux permet aux utilisateurs de partager encore plus de données personels. La
multitude de services spécialisés offrant chacun une expérience différente à
l’utilisateur complique énormément la gestion de ces informations et la col-
laboration des ces services dépassent rapidement l’expertise humaine. Les in-
formations manipulées par les utilisateurs ont de nombreuses facettes : elles
concernent des données personnelles (photos, films, musique, mails), des don-
nées sociales (annotations, recommandation, liens sociaux), la localisation des
données (marque-pages), les informations de contrôle d’accès (mots de passe,
clés privées), les services Web (moteur de recherche, archives), la sémantique
(ontologies), la croyance et la provenance. Les tâches exécutées par les utilisa-
teurs sont très variées : recherches par mots clef, requêtes structurées, mise-à-
jour, authentification, fouille de données et extraction de connaissances. Dans
cette thèse, nous montrons que toute cette information devrait être modélisée
comme un problème de gestion d’une base de connaissance distribuée. Nous
soutenons aussi que datalog et ses extensions est une base formelle sûre pour
représenter ces informations et ces tâches. Ce travail fait partie du projet ERC
Webdam [ERC13] sur les fondations de la gestion des données du Web. Le
but de ce projet est de participer au développement de fondations formelles
unifiées pour la gestion de données distribuées, le manque actuel de telles fon-
dations ralentissant les progrès dans ce domaine.

[TODO]: exemple

1cloud computing

xi

xii RÉSUMÉ EN FRANÇAIS

Contributions

Les contributions de cette thèse sont les suivantes :

• Je présente Webdamlog, un nouveau langage à base de règles pour la ges-
tion de données distribuées qui combine dans un cadre formel les rè-
gles déductives de datalog avec négation pour la définition des faits in-
tentionnels et les règles actives de datalog ¬¬ pour les mises-à-jour et
les communications. Le modèle met un accent fort sur la dynamique et
les interactions typiques du Web 2.0, principalement grâce à une nou-
veauté du langage Webdamlog, la délégation de règles permettant aux
pairs de collaborer. Ce modèle est à la fois suffisamment puissant pour
spécifier des systèmes distribués complexes et suffisamment simple pour
permettre une étude formelle de la distribution, de la concurrence et de
l’expressivité dans un système de pairs autonomes.

• Je présente l’implémentation du moteur d’évaluation de programmes Web-

damlog qui étend le moteur datalog distribuée avec mise à jour nommé
Bud, de deux manières. D’abord le moteur Webdamlog ajoute la possi-
bilité d’évaluer des règles contenant des variables à la place des noms de
relations et de pairs dans les règles. Puis afin de supporter la négation,
Webdamlog permet aussi l’ajout et la suppressions de règles dynamique-
ment, c’est à dire pendant l’exécution du programme. Enfin, je présente
une technique optimisation de la suppression des faits et des règles basé
sur la provenance.

• Je présente l’architecture d’un pair Webdamlog contenant un moteur d’évaluation
Webdamlog et plusieurs adaptateurs2 permettant au pair d’interagir avec
les pairs non-Webdamlog. Je détails l’architecture et l’implémentation
des lectures et mises-à-jour des faits et règles entre les adaptateurs et le
moteurs Webdamlog. La gestion des accès concurrents est basé sur le
patron de conception3 Reactor pattern [FMS09].

Je pense que ces contributions forment une bonne base pour résoudre les
problèmes fréquemment rencontrés dans l’échange de données sur le Web, en
particulier pour l’échange de données personnels dans les réseaux sociaux.

2wrappers
3design pattern

xiii

Résumé de l’état de l’art

Cette thèse aborde deux domaines importants de l’informatique, les systèmes
de données distribués et l’inférence de données. Les systèmes distribués [ÖV99,
AMR+11] sont des logiciels qui servent à coordonner les actions de plusieurs or-
dinateurs, à travers l’envoi de messages. Ils sont caractérisés par les notions de
consistance, de fiabilité, de disponibilité, de passage à l’échelle et d’efficacité.
Dans le cas des bases de données, le système consiste en un ensemble de plusieurs
bases de données, logiquement liées, distribuées sur un réseau d’ordinateur.
La distribution est transparente pour l’utilisateur : le résultat d’une requête ne
dépend pas a priori du pair sur lequel elle a été posée. Sur le Web, la distribution
est une composante de base de l’organisation du système. Le développement
d’un langage commun, XML, et des autres standards, a facilité l’expansion des
échanges. Enfin, les systèmes pairs-à-pairs, structurés ou non, représentent
l’aboutissement d’importants efforts de recherche en matière de distribution
dans lesquels les nœuds ont des comportements extrêmement variés et flexi-
bles.

[TODO]: inférence
Le langage que nous présentons dans la section suivante est basé sur data-

log [AHV95]. Des versions distribuées de datalog ont déjà été proposées [Hul89,
NCW93, Hel10, GW10]. En général, un programme positif est distribué sur
plusieurs pairs après une phase de compilation. Nous nous intéressons à un
déploiement beaucoup plus dynamique, et nous introduisons en particulier la
notion de délégation.

Le langage Webdamlog

La gestion d’information distribuée est un problème important, en particulier
sur le Web. Des langages datalog ont donc été proposés pour le modéliser.
Nous introduisons ici un nouveau modèle, dans lequel des pairs autonomes
échanges des messages et des règles (délégation). Nous étudions en particulier
les conséquences sur l’expressivité de la délégation. Nous proposons aussi des
restrictions du langage qui garantissent sa convergence.

Considérons un pair Alice-phone, avec la relation calendar qui contient l’agenda
personnel d’Alice sur son téléphone et la relation confMembers correspondant
à la liste des membres de la conférence téléphonique. Voici des exemples de
faits :

at Alice-phone:

calendar@Alice-phone(conference, 06/12/2013, Paris, Alice-phone)
confMembers@Alice-phone(Bob, agenda, Bob-laptop)

xiv RÉSUMÉ EN FRANÇAIS

La règle suivante ajoute les entrées relatives à l’escalade du calendrier d’Alice
dans ceux des autres membres de Roc14 :

at Alice-iPhone:

$calendar@$peer(rockclimbing, $date, $place, Alice-phone) :-
calendar@Alice-phone(rockclimbing, $date, $place, Alice-phone),
confmembers@Alice-phone($name, $calendar, $peer)

Il faut noter que les pairs et le nom des messages sont traités comme des don-
nées. La règle génère le nouveau fait suivant :

agenda@Bob-laptop(rockclimbing, 06/12/2011, Fontainebleau,
Alice-phone)

Le fait décrit un message envoyé d’Alice-phone à Bob-laptop. Ce fait exten-
sionnel est consommé par Bob-laptop lorsqu’il le lit. Comme dans les bases
de données déductives, le modèle distingue entre faits extensionnels et faits in-
tentionnels. Par exemple, la relation Roc14members peut être intensionnelle et
définie ainsi :

at Alice-phone:

intensional confmembers@Alice-phone(string, relation, peer)
confmembers@Alice-phone($name, $relation, $peer) :-

contact@Alice-phone($name, $relation, $peer),
group@Alice-phone($name, conf)

La sémantique du système est basée sur une sémantique locale, standard et sur
l’échange de faits et de règles. Intuitivement, un pair donné calcul un nouvel
état depuis son état courant en consommant ses faits locaux et en déduisant
à partir de ces faits et de la sémantique locale les faits qu’il doit envoyer aux
autres et à lui-même, ainsi que les règles qu’il doit déléguer aux autres. Un
exemple de délégation est le suivant. Considérons la règle suivante :

at Bob-laptop:

confirm@$peer(rockclimbing, $date, $place,Bob) :-
calendar@Bob-laptop(rockclimbing, $date, $place, $peer),
checkAvailability@Bob-phone($date);

L’effet de la règle, étant donné le fait généré à l’intention de Bob-laptop, est
d’installer la règle suivante sur l’iPhone de Bob :

at Bob-phone:

confirm@Alice-phone(rockclimbing, 06/12/2011,Fontainebleau,Bob) :-
checkAvailability@Bob-phone(06/12/2011);

xv

Lorsque l’iPhone de Bob exécute cette règle, en supposant que confirm@Alice-

iPhone est extensionnel, il envoie le message suivant à Alice si checkAvailabil-

ity@

Bob-phone(06/12/2011):

confirm@Alice-phone(rockclimbing, 06/12/2011, Fontainebleau, Bob)

Si confirm@Alice-iPhone est intensionnel, c’est la règle suivante qui est envoyée

at Alice-phone:

confirm@Alice-phone(rockclimbing, 06/12/2011,Fontainebleau,Bob) :-

Sans rentrer dans les détails formels, il est intéressant d’étudier l’impact de
la délégation sur l’expressivité du langage. En plus du langage général, note
WL, on peut distinguer deux sous-langages. Le premier, SWL, restreint la délé-
gation aux vues. Le second, SWL, interdit complètement la délégation. Enfin, il
est intéressant de considérer les variantes autorisant les étiquetages temporels,
notés WLt , VWLt et SWLt respectivement. Les différences d’expressivité sont
résumées sur la figure 1. Les inclusions sont strictes, à l’exception de celle de
VWLt dans VWLt qui reste indéterminée.

W Lt

W L SW Lt = V W Lt

V W L

SW L

Figure 1: Expressivité des variantes de WL (les inclusions sont strictes quand
l’arc est en gras)

Un autre point d’intérêt est la convergence du langage en fonction de l’ordre
d’exécution des pairs. En règle générale, le résultat du calcul est a priori dif-
férent pour deux ordres d’exécution différents. Néanmoins, on peut isoler des
cas monotones ou fortement stratifiés qui assurent la convergence, et ont une
sémantique comparable à celle du cas où on centraliserait naturellement l’ensemble
des règles et faits initiaux.

Le moteur de règles Webdamlog

[TODO]: bla

xvi RÉSUMÉ EN FRANÇAIS

L’architecture du pair Webdamlog

[TODO]: bla

Conclusion

[TODO]: bla

Chapter 1

Introduction

Information management on the Internet relies on a wide variety of systems,
each specialized for a particular task. The personal data and favorite applica-

tions of a Web user are typically distributed across many heterogeneous devices
and systems, e.g., residing on a smartphone, laptop, tablet, TV box, or managed
by Facebook, Google, etc. Additional data and computational resources are also
available to the user from relatives, friends, colleagues, possibly via social net-
work systems. Because of the distribution and heterogeneity, the management
of personal data and knowledge has become a major challenge.

A Web user is regularly facing information management tasks that may be
extremely cumbersome to carry out manually. Yet, automating these tasks, for
example by writing scripts, is far beyond the skills of most Web users. Some
systems attempt to provide integrated services to support these needs. For in-
stance, Facebook provides a wrapper service to integrate Dropbox accounts
and blogs. However, such services are often limited in the functionality they
support. Also, by delegating such services to systems like Facebook, a user is
lead to entrust more and more of his data to a single company, at the cost of
losing ownership and control of his own data.

Our goal is to enable a Web user to easily specify distributed data manage-
ment tasks in place, i.e. without centralizing the data to a single provider. Our
system is therefore not a replacement for Facebook, or any centralized system,
but an alternative that allows users to launch their own peers on their machines
with their own personal data, and to collaborate with Web services.

Towards this goal, we propose Webdamlog, an elegant language for man-
aging distributed data and knowledge. As a datalog-style language, its main
benefits are the familiar ones: a declarative approach alleviates the conceptual
complexity on the user, while at the same time allowing for powerful perfor-
mance optimizations on the part of the system. Besides this language, our con-
tributions consist of the design and implementation of an engine supporting

1

2 CHAPTER 1. INTRODUCTION

Webdamlog, novel optimization techniques taylored to this setting, and the de-
velopment of an environment for the peers supporting Webdamlog.

Language Webdamlog is a datalog-style language that emphasizes coopera-
tion between autonomous peers communicating in an asynchronous manner.
The language extends datalog in a number of ways, supporting updates, nega-
tion, distribution and importantly delegation, a novel feature allowing peers to
exchange not only facts but also rules. We present a limited user study that
demonstrates the usability of the language, i.e., that users can use the language
after a minimal amount of training.

Engine We designed and implemented a Webdamlog engine. The engine ex-
tends a distributed datalog engine, namely Bud, with the support of delegation
and of a number of other novelties of Webdamlog such as the possibility to have
variables denoting peers or relations. To support very dynamic environments
where the knowledge of peers vary rapidly notably by acquiring new rules from
other peers via delegation, we introduce novel techniques, notably one based
on the provenance of facts and rules. We present experiments that demonstrate
that the rich features of Webdamlog can be supported at reasonable cost and
that the engine scales to large volumes of data.

Peer A Webdamlog peer provides an environment for the engine. In partic-
ular, it supports wrappers to exchange Webdamlog knowledge with non-Web-

damlog peers. We illustrate these peers by presenting a picture management
application that we used for demonstration purposes. In this application, users
can communicate through a Web interface, between them by mail, with Face-
book, and store data in a database.

Organization The thesis is organized as follows. We first discuss the state or
the art in Chapter 2. In Chapter 3, we introduce the Webdamlog language. We
present the engine, the main optimization techniques, as well as experiments,
in Chapter 4. The peers and the picture management application are covered
in Chapter 5, and the user study in Chapter 6. We conclude with Chapter 7.

Chapter 2

State of the Art

The two main aspects of this thesis are distributed information and inference.
We next give an overview of these two topics in the area of data management. To
conclude the section, we mention Webdam exchange, a system for distributed
data management that influenced the work presented here.

2.1 Distributed Information Systems

Distributed information systems are now a well developed area of computer
science, covered by a large number of reviews and books. e.g., [AMR+11, ÖV99].
In the following discussion, we consider its most relevant aspects for this thesis.
We first present the general aspects of distributed systems, then review succes-
sively databases, Web data and peer-to-peer distribution.

2.1.1 Distributed systems

[AMR+11] defines a distributed system as some software that serves to coor-
dinate the actions of several computers. This coordination is achieved by ex-
changing messages, i.e., pieces of data conveying information. The system re-
lies on a network that connects the computers and handles the routing of mes-
sages.

Distributed systems are characterized by the following desirable properties:

• Consistency [DHJ+07] denotes the ability of a distributed system to give
the same answer to a client regardless of the server it is connected to.

• Reliability [Bir05] denotes the ability of a distributed system to experi-
ence no failure in any given time interval.

3

4 CHAPTER 2. STATE OF THE ART

• Availability [ÖV99] denotes the ability of a distributed system to be oper-
ational at a given point in time.

• Partition tolerance denotes the ability of a distributed system to operate
despite arbitrary message loss or failure of part of the system.

• Scalability [MMSW07] denotes the ability of a distributed system to con-
tinuously evolve in order to support a growing amount of tasks and data.
In general, one is interested by linear scalability, i.e., a growing of the sys-
tem resources proportional to that of the tasks and data.

• Efficiency denotes the ability of a distributed system to minimize the re-
sponse time (when the first item is delivered) and to maximize the through-
put (the number of items delivered by unit of time).

One is typically facing a trade-off between these properties. In particular, the
CAP theorem [GL02] states that a distributed system cannot provide simulta-
neously consistency, availability and partition tolerance. This last result is of
particular importance for us, since we aim at providing some precise results for
our system, but also consistency guarantees.

2.1.2 Distributed databases

[ÖV99] defines a distributed database as a collection of multiple, logically inter-
related databases distributed over a computer network. A distributed database
management system (distributed DBMS) is then defined as the software system
that permits the management of the distributed database and makes the distri-
bution transparent to the users [LM75, SW85]. It provides a shared structure
among the data, and an access via a common interface. Distributed DBMSs
are intended to provide data independence, network transparency, replication
transparency and fragmentation transparency. Usually DBMSs improve reli-
ability and availability by replicating components, thereby eliminating single
points of failure or bottleneck, while letting the user ignore distribution issues.

[ÖV99] describes the architecture of a distributed DBMS by characterizing
the autonomy of local systems (tight integration, semi-autonomy and total iso-
lation), their distribution (no distribution, client-server or peer-to-peer) and
their heterogeneity (homogeneous or heterogeneous system).

2.1.3 Data on the Web

With the development of Internet [RFC74] and HTML [W3C13], the Web [BLC90]
rapidly became an essential way of data distribution. This position was further

2.1. DISTRIBUTED INFORMATION SYSTEMS 5

strengthened by the development of XML [W3C08a, AQM+97] relaxing the rigid
relational data structure, that highly eases exchange and integration of hetero-
geneous data in a semi-structured way. The World Wide Web Consortium, that
is in charge of promoting and developing XML usage, proposed a wide range of
standards and the research community has been particularly active on different
topics including typing [W3C04b], querying [W3C10, BKS02] or transforming
XML [W3C99, AKSS09, ABM09]. There is now a large number of books survey-
ing aspects of Web’s data. See, e.g., [AMR+11].

As his founder Tim Berners-Lee foresaw, the Web is also developing a layer
of semantics on top of XML or HTML, using ontology languages such as RDF
[W3C04a] and OWL [W3C09] to facilitate data integration. More formal analysis
of these languages can be found in [AH08, AvH08]. Integration also benefits of
the large amount of work on mediation [HZ96]. See [AMR+11] for a survey.
This leads to the domain of knowledge bases centered around the management
of knowledge in machine-processable formats. That is the topic of Section 2.2.

Finally, the development of Web services gave an infrastructure for distri-
buted Web data management. This infrastructure is based on XML standards
such as SOAP [W3C07a], WSDL [W3C07b] and UDDI [OAS04] which respec-
tively normalize the structure of data to exchange as objects ; describe the meth-
ods provided for the previous objects ; and specify communication with Web
services. Other additional standards are used to express complex operations
using multiple Web services such as service workflows [HNN09, NC03] with
BPEL [OAS07] and orchestration of services with WSCL [W3C02] to thereby achi-
eve collaboration of autonomous entities on the Web. Some models such as
ActiveXML [ABM08, ABCM04, ABMG10] aim at providing a formal model for
intensional data that is the data obtained by service calls on the Web and dis-
tributed data intensive applications.

To summarize, the Web is now a standard way of sharing and managing data.
Our work, as part of the Webdam Project [ERC13], focuses on providing better
foundations for collaboration of autonomous peers. The Webdam system relies
on standard models and tools.

2.1.4 Peer-to-peer systems

A peer to peer (P2P) network (See, e.g., the surveys in [TS04, Wal03]) is a large
network of nodes, called peers, that are both clients and servers and that are
willing to cooperate in order to achieve a particular task. It is a particular kind
of distributed systems that assumes that the organization of the nodes is loose
and flexible. Indeed, the peers are highly autonomous, choosing when they
participate to the network and how much resource (CPU, memory, ...) they
provide to the system. It is also often assumed they use an overlay network, i.e.,

6 CHAPTER 2. STATE OF THE ART

a graph of connections laid over a physical infrastructure, e.g., the Internet.

A general search technique on this kind of networks is flooding: a peer dis-
seminates its request to all its friends, that flood in turn their own friends. One
may also use other forms of gossiping, for example by choosing randomly only
a small number of friends to propagate the request. Such P2P networks are
called unstructured. There are more structured ways for searching for informa-
tion in the network (structured P2P networks), based on access structures such
as distributed hash tables [Lit80, LNS96, KLL+97, DHJ+07] or distributed search
trees [LNS94, KW94, JOV05, CDG+08].

Since focus in this thesis is on a P2P system, the Webdam system can be
built on all these different distribution policies in a unified manner. The goal
is to facilitate the collaboration of autonomous peers towards solving content
management tasks. A number of works have argued for developing a holistic ap-
proach to distributed content management, e.g. P2P Content Warehouse [Abi03],
Dataspaces [FHM05] and Data rings [AP07a]. Such situations arise for instance
in personal information management, that is often given as an important moti-
vating example [FHM05].

2.1.5 Social networks

Webdamlog was initially motivated by the idea of the management of personal
data in social networks. Contrary to the most famous social networks that are
entirely centralized, we wanted to manage data in a peer to peer way as moti-
vated in [AP07b]. Switching from one authoritative server to a collaborative set
of untrusted peers [NCR08, KBC+00] raises issues about privacy. Trust in peer-
to-peer environments where one frequently encounters unknown agents is ad-
dressed in [AD01, YHY07], anonymization in [CSWH01], encryption and access
control in [MS02, MS03, WL82] and [KGG+06] proposed a distributed identity
management with access control based on the social network of users. In partic-
ular, it uses the standard Friend-Of-A-Friend (FOAF) [BM10] representation of
the social network. An access control policy model based on the social network
and trust has also been proposed by [AVM07, AGP11]. Finally, [BSVD09, Dia]
proposes an implementation of a peer-to-peer social network based on a dis-
tributed hash table and addresses privacy issues. Such approaches require that
a particular program, predetermined for the application, is deployed identically
on each peers. To the best of our knowledge, there are few works about hetero-
geneous [Kol05] and customizable peer [MZZ+08, RS09] in a collaborative en-
vironment that would behave differently according to the user needs. Recently
works on dynamic and adaptive programs based on rules have been achieved
in particular for ontology languages [Kif08, BAP+12].

2.2. KNOWLEDGE BASES 7

2.1.6 Contribution

The focus of my thesis is on peer-to-peer architecture rather than client-server
communications usually used in centralized systems. We consider very hetero-
geneous data and a total autonomy between the components of the system.
This is the main contribution of our Webdamlog system, the collaboration of
such autonomous peers managing their own data in place. Hence the current
Webdamlog system has been strongly influenced by ActiveXML although the
XML trees have been abandoned for traditional relational data structures to
simplify and to be able to focus on other issues, notably inference.

In the next section we consider the topic of knowledge bases and inference
since the Webdam system is a distributed knowledge base system.

2.2 Knowledge bases

Knowledge can be used to describe the semantic of data. Two kinds of knowl-
edge formats can be considered:

• human-readable knowledge e.g. Wikipedia that is usually read and up-
dated manually by humans.

• knowledge in machine-readable format e.g. Yago [SKW07] on which searches
and updates can be automatically performed by machines.

Systems transforming one type of knowledge base in another, are presented
in [SKW07, LIJ+13] and integration of different knowledge bases in [AMR+11].
These problems will not be considered in this thesis and the focus is on machine-
readable knowledge.

2.2.1 Processing knowledge

Knowledge in machine-readable format typically relies on some mathematical
logic as its foundation and is processed by an inference system guided by log-
ical reasoning. The logic is usually a fragment of first order logic it that serves
as basis for query languages. The formalism of deductive systems can be nat-
ural deduction, sequent calculus, tableaux method, resolution or Hilbert-style
deductive systems which will be our focus in the following of the thesis.

The programming languages implementing these formalisms are rule-based
languages. The concept of rules relies on the basic notion of conditional branch-
ing or the “if ... then ...” construct. The then part is processed only if the if part
holds. Rule systems use a notion of predicates that holds or not to represent
the raw data. E.g. the fact that two people are friend may be represented with

8 CHAPTER 2. STATE OF THE ART

a predicate friend as friend(Alice,Bob). Using variables, represented by a dollar
prefixed letter, a rule could be:

Rule: if friend($x,$y) then like($x,$y)

It represents some knowledge added to our data. A rule-based system that
understands this rule derives that all pairs of friend like each others. A rule-
based system is a particular implementation of the syntax and semantics of
rules which may be extended in a number of ways e.g. with existential quantifi-
cation, disjunction, negation and functions.

Historically, Prolog [CR93] is considered as one of the first and the most
expressive rule-based language ; however a main flaw is to not be declarative,
e.g. because of the cut operator and because the order of clauses matters in the
evaluation. It is based on SLD resolution, a top-down technique for deductive
system [EK76].

In Section 2.1.3, we mentioned that Web data are often described with on-
tologies that are fragments of first order logic, on which deduction systems ap-
ply [CGL09]. In the context of the Web, considering reasoning in a distributed
manner is crucial as discussed in [ACG+06]. See [AMR+11, FHMV03] for more
details on ontology languages reasoning.

We discuss next the family of datalog languages.

2.2.2 Datalog

In datalog the previous rule is written:

like($x,$y) :- friend($x,$y)

with the left-hand side part of the operator “:-” called the head and the right-
hand side called the body. Following the “if ... then ...” structure, rules are
read: if body holds then head is derived. The datalog semantic imposes that all
variables in the head appear in the body. Basic datalog extends this structure
with:

conjunction of atoms in the body: like($x,$y) :- friend($x,$y), friend($y,$x)
both facts should be true to derive the head.

disjunction that is the same fact can be derived from different conditions. Dat-
alog program allows multiple rules with the same head. For example, the
program:

like($x,$y) :- friend($x,$y)
like($x,$y) :- friend($y,$x)

2.2. KNOWLEDGE BASES 9

means x likes y if x is a friend of y or y is a friend of x.

recursion by allowing the same predicate in the head and the body of the same
rule: friend($x,$y) :- friend($x,$z), friend($z,$y) is the classic transitive
closure which means that everybody is friends with the friends of its friends.

A datalog programs P is a set of rules. A set of facts are gathered in an exten-
sional database noted I as instance. In brief, the semantics of a datalog pro-
gram is the minimal fixpoint reached when we cannot deduce any new facts
by applying P on I . These derived facts are called intensional. The union of
the extensional and intensional facts represent the whole facts considered to
be true ; everything else is false. This is the close-world assumption contrary
to some other rule-based languages such as OWL that makes an open-world
assumption.

Datalog is also often extended with negation, denoted datalog¬. Negation
and recursion together raise a number of issues. For instance,

• For I = {p} and P = {p :- ¬p}, there is no fixpoint

• For I =∅ and P = {p :- ¬q ; q :- ¬p}, there are two minimal fixpoints {p}
or {q}

This leads to defining different semantics for the negation e.g. stratified or well-
founded semantics.

Datalog also has a non-monotonic extension noted datalog¬¬ to specify
that negation can occur in the body and in the head of rules. This is a con-
venient way to handle deletion of facts. The language datalog¬¬ is in the spirit
of active databases, and since it allows to use extensional predicates in the head
of the rules.

Datalog has been the subject of a large amount of works in the database
community ; see [AHV95]. Basically, datalog enhances the classical relational
calculus and algebra, that are at the foundation of SQL, with recursion. Al-
though recursion has been added in SQL3 [ISO99], datalog natively supports
recursion with an elegant syntax. The full description of the semantic, and
evaluation of datalog following the bottom-up semi-naive algorithm is given
in [AHV95] along with the description of adding negation to datalog. And dis-
cussions on datalog and first order logic expressivity are given in [AG94].

Alternatives to datalog-like languages for data management based on rules
have been proposed. For instance:

• F-logic [KLW95], an object oriented language for data and knowledge rep-
resentation.

10 CHAPTER 2. STATE OF THE ART

• HiLog [CKW93], a higher-order programming language that uses func-
tions as values as in lambda calculus.

Both are implemented in the Flora system [YKZ03] using an alternative infer-
ence system based on tabling-logic [YK00].

The next section focuses on distributed versions of datalog engines.

2.2.3 Distributed datalog

The Webdamlog language participates in the renewed interest in datalog, see
[Dat10]. In particular distributed datalog allows to use remote atoms in the
head of rules to communicate via the network. The elegant syntax of data-
log for recursion is essential when graph data are considered. This is the case
for instances in declarative networks as shown in [AKBC+12, LCG+06, ZFS+11,
ZST+10], in the implementation of the two-phase-commit protocol in [Int12],
or in sensor networks communications [GW10, AKGU12] that present an origi-
nal top-down evaluation algorithm for distributed datalog.

To our knowledge, the first attempts to distribute datalog on different peers
are [Hul89] and [NCW93]. The first distributes a positive datalog program on
different machines after a compilation phase. The second adapts classical trans-
formations of positive programs based on semi-joins to minimize distribution
cost. Perhaps the work closest to the Webdamlog language is [AAHM05b] that
adapts query-subquery optimization [Vie86] to a variant of positive distributed
datalog. We will also be interested in negation, in particular by stratified nega-
tion [CH85], and by active rules in the style of datalog¬¬ [AV91, AGM08, BCGR98].

The most interesting use of datalog-style rules for distributed data manage-
ment came recently from the Berkeley and U. Penn database groups. They
used distributed versions of datalog to implement Web routers [LHSR05], DHT
[LCH+05] and Map-Reduce [ACC+10] rather efficiently. By demonstrating what
could be efficiently achieved with this approach, these works were essential mo-
tivations for our own. The most elaborate variant of distributed datalog used in
these works is presented in [LHSR05, LTZ+09, MHB+10, CCHM08] and formally
specified in [NR09, PRS09, MAC+12]. In these papers, the semantics is oper-
ational and based on a distribution of the program before the execution. In
view of issues with this model, a new model was recently introduced in [Hel10],
based on an explicit time constructor. The semantics of negation together with
the use of time in that model seems rather unnatural. In particular, time is
used as an abstract logical notion to control execution steps and the future may
have influence on the past. As a consequence, we found it difficult to under-
stand what applications are doing as well as to prove results on their language.
The development of Webdamlog reuses most of the Bud [ACHM11] inference

2.3. WEBDAM EXCHANGE 11

engine from Berkeley that has been proven to be efficient.

2.2.4 Provenance and optimization

The need of a logic language for knowledge representation and especially for
access control on data is formalized in [Aba09] and implemented in declarative
systems as [BFG07, Bry05]. However inference systems bring their own intrinsic
security issues. As described in [FJ02], it is difficult to control indirect data dis-
closure via inference. Access control in distributed environment was a prime
motivation in a previous model called Webdam exchange discussed in 2.3. Ac-
cess control will not be considered in this thesis. It is left for future work.

In this thesis, we record provenance of knowledge to optimize deletion and
maintain efficiently Webdamlog program evaluation. However it has been con-
sidered for different purpose: for access control [GKT07, KIT10], for security
policies [MFF+08] or to synchronize distributed data [GKIT10, GKIT07]. See
[BT07], for a general presentation and challenges around data provenance. Main-
taining provenance of knowledge from inference system is considered in [ZFS+11,
ZST+10]. Works around fine grained provenance on workflows [ADD+11] as an
optimization for deletion inspired us for our system.

2.2.5 Contribution

Our main concern in designing Webdamlog has been to provide an elegant and
unified way to allow each peer to manage personal data according to the pref-
erence of the user. We considered typical Web users that may have distributed
their data on several locations and services. The declarative nature of our lan-
guage Webdamlog, based on a distributed datalog allows to alleviate the com-
plexity of managing the distribution of the data. The most striking novelty of
Webdamlog is to allow the distribution of the knowledge via a new feature we
developed for Webdamlog, namely the delegation of rules. The declarative ap-
proach of Webdamlog also allows us to provide optimization mechanisms for
Webdamlog evaluation.

2.3 Webdam exchange

The work developed in this thesis is a continuation of the thesis of Alban Gal-
land [Gal11] that lead to designing the Webdam exchange model [AGP11] and
to the development of the Webdam exchange system [6] that we briefly discuss
next.

12 CHAPTER 2. STATE OF THE ART

In a demonstration of a system called Webdam exchange [6], we addressed
the problem of access controls in peer to peer environment. The peers were
running standard Java application. The basics of the Webdam exchange system
were to be able to authenticate the peer who requests some data and confront
it to an access control list (ACL) to grant or refuse access. For each relation,
a list of reader, writer and owner where defined by the owner and only these
principals could perform these actions.

Model In social networks, users bring data to the network and are willing to
share with others, but also wish to control what portions of the data can be
viewed or updated by others. Users would also like to access and update infor-
mation if desired and entitled to. This is the setting of the Webdam exchange

model that aims to achieve access control of personal data in peer to peer envi-
ronment with the same level of security as in centralized systems. It also lever-
ages and accommodates a wide variety of authentication systems already avail-
able on the Web.

For access control, three kinds of meta-data, namely access control list, se-
cret, and hint are kept for each fact. Using these meta-data, Webdam exchange

shows how to describe access control mechanisms based on authenticated prove-
nance for different security protocols such as asymmetric cryptographic keys or
HTTP access controlled by login/password. It also describes how to exchange
information between peers that are trusted or untrusted, in clear or encrypted
communications.

System The data model of the WebdamExchange system is a direct translation
in XML of the WebdamExchange model. It uses Java XML Binding (JAXB) tech-
nology to construct a direct equivalence between Java classes and their XML
representation, used for Web service communications, encryption and serial-
izations that fit the Web standards. The main contribution of the Webdam ex-

change system, was the design of a modular architecture to keep communica-
tion, encryption, security policy and storage system independent of each other.
Hence it allows to describe in the security policy, according to meta-data state-
ments, which kinds of communication, encryption or storage to use.

At the dawn of Webdamlog Webdam exchange and Webdamlog are both ad-
dressing the problem of personal data management in peer to peer environ-
ments with a strong emphasis on access controls in Webdam exchange. They
both deal with the heterogeneity of personal user preferences to manage its
data.

2.3. WEBDAM EXCHANGE 13

Nevertheless there is a fundamental difference that comes from the fact that
Webdam exchange applications are hard coded in plain Java code contrary to
Webdamlog systems that relies on the declarative language Webdamlog to de-
scribe their behavior. The main motivation for that is that typical users don’t
want to write complicated programs. In the following chapters, we will de-
scribe how Webdamlog brings a powerful mechanism called delegation that
enhanced collaboration.

Also Webdam exchange data model strongly relies on trees and especially
nested structure to keep chains of provenance and authentication needed to
enforce provenance, while Webdamlog is based on relations. Both could be
combined as it would not be difficult to introduce trees in Webdamlog language.
However from a system viewpoint this would mean a very different implemen-
tation.

14 CHAPTER 2. STATE OF THE ART

Chapter 3

Webdamlog language

The management of modern distributed information, notably on the Web, is
a challenging problem. Because of its complexity, there has recently been a
trend towards using high-level Datalog-style rules to specify such applications.
We introduce here a model for distributed computation where peers exchange
messages (i.e., logical facts) as well as rules. We consider peers as any kind of
system with computing capabilities and network connection to capture the het-
erogeneity of the agents on the web e.g. a laptop, a smartphone, or a computer
cluster in a DHT. The model provides a new setting with a strong emphasis on
dynamicity and interactions (in a Web 2.0 style). Because the model is powerful,
it brings a clean basis for the specification of complex distributed applications.
Because it is simple, it gives a formal framework for studying many facets of the
problem such as distribution, concurrency, and expressivity in the context of
distributed autonomous peers.

As mentioned in the previous chapter, there has been renewed interest in
studying languages in the Datalog family for a broad range of applications from
program analysis, to security and privacy protocols, natural language process-
ing, or multi-player games. For references, see [Hel10] and the proceedings
of the Datalog 2.0 workshop [Dat10]. Here, we are concerned with using rule-
based languages for the management of data in distributed settings, as in Web
applications [ABM04, ASV09, FMS09, ABGR10], networking [LCG+06, LMO+08,
GW10] or distributed systems [LCG+09]. The arguments in favor of using Datalog-
style specifications for complex distributed applications are the familiar ones.
See, e.g., [Hel10].

We propose a new model for distributed data management that combines,
in a formal setting, deductive rules as in Datalog with negation [CH85] (to spec-
ify intensional data) and active rules as in Datalog¬¬ [AV91] (for updates and
communications). There have already been a number of proposals for combin-
ing active and deductive features in a rule-based language; see [LLM98, Lud98,

15

16 CHAPTER 3. WEBDAMLOG LANGUAGE

Hel10] and our discussion of related work. However, there is yet to be a consen-
sus on the most appropriate such language. We therefore believe that there is a
need to continue investigating new language features adapted to modern data
management and to formally study the properties of the resulting new models.

The language we introduce, called Webdamlog is presented in [3], it is tai-
lored to facilitate the specification of data exchange between autonomous peers,
which is essential to the applications we have in mind. Towards that goal, a new
feature we introduce is delegation, that is, the possibility of installing a rule at
another peer. In its simplest form, delegation is essentially a remote view. In its
general form, it allows peers to exchange rules, i.e., knowledge beyond simple
facts, and thereby provides the means for a peer to delegate work to other peers,
in Active XML style [ABM08]. We show using examples that because of delega-
tion, the model is particularly well suited for distributed applications, providing
support for reactions to changes in evolving environments.

A key contribution of this chapter is a study of the impact of delegation on
expressivity. We show that view delegation (delegation in its simplest form, al-
lowing only the specification of views) strictly augments the power of the lan-
guage. We also prove that full delegation further increases it. These results
demonstrate the power of exchanging rules in addition to facts.

A message sent from peer p, received at peer q , that starts some task at q ,
introduces a kind of synchronization between the two peers. Thus, time im-
plicitly plays an important role in the model. We show that when explicit time
is allowed (each peer having its local time), view delegation no longer increases
the expressive power of the language.

Because of their asynchronous nature, distributed applications in Webdam-

log are nondeterministic in general. To validate our semantics for deductive
rules, we study two kinds of systems that guarantee a form of convergence
(even in presence of certain updates). These are positive systems (positive rules
and persistence of extensional facts) and strongly-stratified systems (allowing a
particular kind of stratified negation [CH85] for restricted deductive rules and
fixed extensional facts). We also show that both types of systems essentially
behave like the corresponding centralized systems.

Organization The chapter is organized as follows. We introduce the model in
Section 3.1, first by means of examples and then formally. In the following sec-
tion, we discuss some key features of the model and illustrate them with more
examples. In Section 3.3, we compare the expressivity of different variants of
the language. In Section 3.4, we discuss the convergence of Webdamlog sys-
tems and compare the semantics to the “centralized semantics”, for the positive
and strongly-stratified restrictions of the language. In Section 4.3, we mention

3.1. MODEL OF DATA 17

optimization techniques. The final section concludes with directions for future
work.

3.1 Model of data

In this section, we first illustrate the model with examples, then formalize it.
More examples and a discussion of key issues will be provided in the next sec-
tion.

3.1.1 Informal presentation

We introduce with a first example the main concepts of the model: the notions
of fact that captures both local tuples and messages between peers, of exten-

sional and intensional data, and of Webdamlog rule.
Consider a particular peer, namely Alice-phone, with the relation calendar

that gives the calendar entry that Alice entered from her phone and the relation
confMembers that gives the list of members of the conference call and how to
send them calendar invitation (on which servers, with which messages). Exam-
ples of facts are:

at Alice-phone:

calendar@Alice-phone(conference, 06/12/2013, Paris, Alice-phone)
confMembers@Alice-phone(Bob, agenda, Bob-laptop)

The following rule, called [Send-Invitation] , is used to include conference call
entries from Alice’s agenda into the agendas of other members of the confer-
ence call, and in particular into Bob’s agenda:

at Alice-phone:

$calendar@$peer(conference, $date, $place, Alice-phone) :-
calendar@Alice-phone(conference, $date, $place, Alice-phone),
confMembers@Alice-phone($name, $calendar, $peer)

Observe that peer and message names are treated as data. The two previous
facts represent pieces of local knowledge of Alice-phone. Now consider the new
fact generated by the rule:

agenda@Bob-laptop(conference, 06/12/2013, Paris, Alice-phone)

18 CHAPTER 3. WEBDAMLOG LANGUAGE

This fact describes a message that is sent from Alice-phone to Bob-laptop.
As in deductive databases, the model distinguishes between extensional re-

lations that are defined by a finite set of ground facts and intensional relations
that are defined by rules. So for instance, the relation confMembers on Alice-
phone may be intensional and defined as follows:

at Alice-phone:

intensional confmembers@Alice-phone(string, relation, peer)
confmembers@Alice-phone($name, $relation, $peer) :-

contact@Alice-phone($name, $relation, $peer),
group@Alice-phone($name, conf)

Observe that it is defined using extensional relations.
As usual, intensional knowledge is defined by rules such as the previous one,

that we call deductive rules. Other rules such as the [Send-Invitation] rule, that
we call active, produce extensional facts. Such an extensional fact is received by
the peer (e.g., Bob-laptop and Alice’s phone). During its next phase of local pro-
cessing, this peer will consume these facts and produce new ones. By default,
any fact that has been processed disappears. Facts can be made persistent us-
ing persistence rules, illustrated next on the relation calendar@Alice-phone:

at Alice-phone:

calendar@Alice-phone($name, $date, $place, $peer) :-
calendar@Alice-phone($name, $date, $place, $peer),
¬ del.calendar@Alice-phone($name, $date, $place, $peer)

The rules state that in this relation calendar a fact persists unless there is explic-
itly a deletion message (e.g., del.calendar).

Delegation by example

In the model, the semantics of the global system is defined based on local se-
mantics and the exchange of messages and rules. Intuitively, a given peer chooses
how to move to another state based on its local state (a set of personal facts and
messages received from other peers) and its program. A move consists in (1)
consuming the local facts, (2) deriving new local facts, which define the next
state, (3) deriving nonlocal facts, i.e., messages sent to other peers, and (4) mod-
ifying their programs via “delegations”.

The derivation of local facts and messages sent to other peers are both stan-
dard and were illustrated in the previous example. The notion of delegation
is novel and is illustrated next. Consider the following rule, installed at peer
Bob-laptop:

3.1. MODEL OF DATA 19

at Bob-laptop:

confirm@$peer(conference, $date, $place, Bob) :-
calendar@Bob-laptop(conference, $date, $place, $peer),
checkAvailability@Bob-phone($date);

where calendar@Bob-laptop, checkAvailability@Bob-phone and confirm@Alice-

phone are all extensional. Its semantics is as follows. Suppose that calendar@

Bob-laptop(conference, 06/12/2013, Paris, Alice-phone) holds, then the effect of
this rule is to install at Bob-phone the following rule:

at Bob-phone:

confirm@Alice-phone(conference, 06/12/2013, Paris, Bob) :-
checkAvailability@Bob-phone(06/12/2013);

The action of installing a rule at some other peer is called delegation. When
Bob-phone runs, if checkAvailability@Bob-phone(06/12/2013) holds, it will send
the message confirm@Alice-phone(conference, 06/12/2013, Paris, Bob) to Alice-

phone.
Now suppose instead that confirm@Alice-phone is intensional. When Bob-

phone runs, if checkAvailability@Bob-phone(06/12/2013) holds, the effect of this
rule is to install at Alice-phone the following rule:

at Alice-phone:

confirm@Alice-phone(conference, 06/12/2013, Paris, Bob) :-

The intuition for the delegation from Bob-laptop to Bob-phone is that there is
some knowledge from Bob-phone that is needed in order to realize the task
specified by this particular rule. So, to perform that task, Bob-laptop delegates
the remainder of the rule to Bob-phone. The delegation from Bob-phone to
Alice-phone is somewhat different. Peer Bob-phone knows that confirm@Alice-

phone (an intensional fact) holds until some change occurs. As Alice-phone

may need this fact for his own computation, Bob-phone will pass this informa-
tion to Alice-phone in the form of a rule (since as a fact, it would be consumed).

We next formalize the model illustrated by the previous example.

3.1.2 Formal definitions

Alphabets

We assume the existence of two infinite disjoint alphabets of sorted constants:
peer and relation. We also consider the alphabet of data that includes in ad-
dition to peer and relation, infinitely many other constants of different sorts

20 CHAPTER 3. WEBDAMLOG LANGUAGE

(notably, integer, string, bitstream, etc.). It is because data includes peer and
relation that we may write facts such as those in the birthday relation. Similarly
we have corresponding alphabets of sorted variables. An identifier starting by
the symbol $ implicitly denotes a variable. A term is a variable or a constant.

A schema is an expression (Π, E , I , σ) where Π is a (possibly infinite) set of
peer IDs; E and I are disjoint sets, respectively, of extensional and intensional

names of the form m@p for some relation name m and some peer p; and the
typing functionσdefines for each m@p in E∪I the arity and sorts of its compo-
nents. Note that because I ∩E =∅, no m is both intensional and extensional
in the same p. Considering Π to be infinite reflects the assumption that the
set of peers is dynamic and of unbounded size (we can discover or create new
peers) just like it is the case on the Web.

Facts and rules

Given a relation m@p, a (ground) (p-)fact is an expression m@p(u) where u is
a vector of data elements of the proper types, i.e., correct arity and correct sort
for each component. For a set K of facts and a peer p, K [p] is the set of p-facts
in K . The notion of fact is central to the model. It will be the basis for both
stored knowledge and communication. For instance, in the peer p, if we derive
the extensional fact r @p(1,2), this is a fact p knows. On the other hand, if we
derive the extensional fact s@q(2,3), this is a message that p sends to q .

A (Webdamlog) rule is an expression of the form

Mn+1@Qn+1(U n+1) :- (¬)M1@Q1(U 1)...(¬)Mn@Qn(U n)

where each Mi is a relation term, each Qi is a peer term and each U i is a vector
of data terms. We also allow in the body of the rules, atoms of the form X = Y

or X ̸= Y where X ,Y are terms.
We require a rule to be safe, i.e.,

1. For each i , if Qi is a peer variable, it must be previously bound, i.e., it
must appear in U j for some positive literal M j @Q j (U j), j < i .

2. Each variable occurring in a literal¬Mi @Qi (U i) must be previously bound
to a positive literal.

3. Each variable in the head must be positively bound in the body.

Remark 3.1 (Unguarded peer). Observe that we treat differently peer and rela-
tion names. By (1), a peer variable has to be previously positively bound. We
insist on (1) so that we control explicitly to whom a peer sends a message or
delegates a rule.

3.1. MODEL OF DATA 21

Note also that because of (1), the ordering of literals is relevant. One could
define a variation of the language, namely peer-unguarded Webdamlog by not
imposing Constraint (1) and considering all orderings of the body literals (with
the negative ones seen implicitly after all the others).

We say that a rule is deductive if the head relation is intensional. Otherwise,
it is active. Rules live in peers. We say that a rule in a peer p is local if all Qi in
all body relations are from p. It is fully local if the head relation is also from p.
We will see that the following four classes of rules play different roles:

Local deduction Fully local deductive rules are used to derive intensional facts
locally.

Update Local active rules are used for sending messages, i.e., facts, that modify
the extensional databases of each peers that receive them.

View delegation The local but not fully local deductive rules provide some form
of view materialization. For instance, this rule results in providing at q a
view of some data from p:

at p : r @q(U) :- (¬)r1@p(U1), ...(¬)rn@p(Un)

General delegation The remaining rules allow a peer to install arbitrary rules
at other peers.

Peer and relation variables provide considerable flexibility for designing appli-
cations. However, observe that because of them, it may be unclear whether a
rule is (fully) local or not, deductive or active. Note that in a real system, one
can wait until a rule is (partially) instantiated at runtime to find what its nature
is, and decide what should be done with it.

The semantics of Webdamlog is based on autonomous local computations
of the peers. We consider this first, then look at the global semantics of Web-

damlog.

Local computation

A local computation happens at a particular peer. Based on its set of facts and
set of rules, the peer performs the following: (1) some local deduction of in-
tensional facts, (2) the derivation of extensional facts that either define its next
state or are sent as messages, and (3) the delegation of rules to other peers.

(Local deduction) For local deduction, we want to rely on the semantics of
standard Datalog languages. However, because of possible relation variables,

22 CHAPTER 3. WEBDAMLOG LANGUAGE

Webdamlog rules are not strictly speaking proper Datalog¬ rules, since the re-
lation names of atoms may include variables. So, to specify local deduction,
we proceed as follows. We start by grounding the peer and relation variables
appearing in the rules. More precisely, for each rule

Mn+1@Qn+1(U n+1) :- (¬)M1@Q1(U 1)...(¬)Mn@Q1(U n)

of peer p, we consider the set of rules obtained by instantiating relation vari-
ables Mi with relation constants and peer variables Qi with peer constants. To
ensure finiteness, we only use constants from the active domain of the peer,
that is, that appear in some fact or rule in the peer state. We can now deal with
pairs m@p of relation and peer constants as normal relation symbols in Dat-
alog. Since for local deduction, we are only interested in fully local deductive
rules, we will remove rules with a relation m@q for q ̸= p or an extensional
relation in the head. We must also remove rules that violate the arity or sort
constraints of σ. The remaining rules are all fully local deductive rules which
belong to standard Datalog.

Now, given a set I of facts and a set Pd of fully local deductive rules (defined
as in the previous paragraph), we denote by P∗

d
(I) the set of facts inferred from

I using Pd with a standard Datalog semantics. For instance, in absence of nega-
tion, the semantics is, as in classical Datalog, the least model containing I and
satisfying Pd . When considering negation, one can use any standard semantics
of Datalog with negation, say well-founded [Prz90] or stable [GL88]. For results
in Section 3.4.2, we will use a variant of stratified negation semantics [CH85].
So we assume the program is stratified with respect to negation.

(Updates) Given a set K of facts and a set Pa of local active rules, the set
Pa(K) of active consequences is the set of extensional facts v(A) such that for
some rule A :- Θ of Pa and some valuation v , v(Θ) holds in K , and v(A), v(Θ)
obey the typing and sort constraints of σ. This is the set of immediate conse-

quences. Note that it does not necessarily contain all facts in K .
Observe that for deductive rules, we typically use a fixpoint (based on the

particular semantics that is used), whereas for active rules, we use the immedi-
ate consequence operator that is explicitly procedural.

(Delegation) Given a set K of facts and a set P of (active and deductive) rules
in some peer p, the delegation γpq (P,K) of peer p to q ̸= p is defined as follows.

If for some deductive rule M@Q(U) :- Θ in P , there exists a valuation v such
that vΘ holds in K , v(Q) = q , and the typing constraints in σ are respected, then

v M@vQ(vU) :-

is in γpq (P,K).

3.1. MODEL OF DATA 23

If for some active or deductive rule

A :- Θ0, (¬)M@Q(U),Θ1

in P (where Θ0,Θ1 are sequences of possibly negated atoms), there exists a val-
uation v satisfying σ such that vΘ0 contains only p-facts, vΘ0 holds in K , and
vQ = q(̸= p), then

v A :- (¬)M@vQ(vU), vΘ1

is in γpq (P,K).
Nothing else appears in γpq (P,K).

Observe that we do not produce facts that are improperly typed. In practice,
a peer p may not have complete knowledge of the types of some peer q’s rela-
tions. Then p may “derive” an improperly typed fact. This fact will be sent and
rejected by q . From a formal viewpoint, it is simply assumed that the fact has
not even been produced. Similarly, a peer may delegate an improperly typed
rule, but that rule will never produce any facts, and so can safely be ignored.

We are now ready to specify the semantics of the Webdamlog language.

States and runs

A (Webdamlog) state of the schema (Π, E , I , σ) is a triple (I ,Γ, Γ̃) where for
each p ∈Π, I (p) is a finite set of extensional p-facts at p, Γ(p) is the finite set of
rules at p, and Γ̃(p, q) (p ̸= q) is the set of rules that p delegated to q . For p ∈Π,
the (p-)move from (I ,Γ, Γ̃) to (I ′,Γ′, Γ̃′) (corresponding to the firing of peer p)
is defined as follows. Let Pp be Γ(p)∪ (∪q Γ̃(q, p)), Ppd be the set of fully local
deductive rules in Pp and Ppa the set of local active rules in it. Then the next
state is defined as follows:

• (Local deduction) Let K = P∗
pd

(I (p)).

• (Updates) I ′(p) = Ppa(K)[p]; and
(external activation) I ′(q) = I (q)∪Ppa(K)[q] for each q ̸= p.

• (Delegations) Γ̃′(p, q) = γpq (Pp ,K) for each q ̸= p; and
Γ̃′(p ′, q ′) = Γ̃(p ′, q ′) otherwise.

A (Webdamlog) system is a state (I ,Γ, Γ̃) where Γ̃(p, q) =∅. We will speak of
the system (I ,Γ) (since Γ̃ is empty). A sequence of moves is fair if each peer p

is invoked infinitely many times. A run of a system (I ,Γ) is a fair sequence of
moves starting from (I ,Γ).

24 CHAPTER 3. WEBDAMLOG LANGUAGE

Observe that I (p) is finite for each peer and that it remains so during a run,
even if the number of peers is infinite. Note also that deletions are implicit: a
fact is deleted if it is not derived for the next state. We recall that facts can be
made persistent using persistence rules of the form

r @p(U) :- r @p(U),¬del .r @p(U)

In the following, such a rule for relation r @p will be denoted persistent r@p.

Remark 3.2 (Fact and rules). It is important to observe a difference between
the semantics of facts and rules. Observe that, if we visit twice peer p in a row,
the fact-messages that p sends to q accumulate at q . On the other hand, the
new set of delegations replaces the previous such set. Moreover, when we visit
q , the messages of q are consumed whereas the delegations stay until they are
replaced. These subtle differences are important to capture different facets of
distributed computing, e.g., for capturing materialized views or for providing
the expected semantics to extensional / intensional data.

3.2 Key observations

In this section, we present examples that illustrate the interest of our model
for distributed data management, and make key observations about different
aspects of the model.

We first consider two serious criticisms that could be adressed to the model,
namely too much synchronization and too little local control. We show how
both issues can be resolved.

Too much synchronization

Observe that moves capture some form of asynchronicity and parallelism. The
peer that fires is randomly chosen and does (atomically) some processing. How-
ever, there is still some form of synchronization, that may be undesired. When
we process peer p, messages from p to some peer q are instantaneously avail-
able in q . This is impossible to guarantee in practice. In a standard manner,
when a more precise modeling is desired, one can introduce a peer acting as
the network between p and q . Instead of going instantaneously from p to q ,
the message goes instantaneously from p to networkpq , waits there until net-

workpq is fired, then goes instantaneously to q , and similarly for delegations.
This captures more realistically what happens in practice, and does not require
changing the model.

3.2. KEY OBSERVATIONS 25

Too little local control

In the model we have defined, nothing prevents a peer p from modifying an-
other peer q’s relations or accessing q ’s data using delegation. In realistic set-
tings, one would want a peer to be able to hold private information, which can-
not be modified or accessed by another peer without its permission. This can
be easily accomplished by extending the model with local relations. These re-
lations can only appear in p’s own facts and rules (i.e., I (p) and Γ(p)), but not
in any rules delegated to p (in practice, this means p would simply ignore any
delegations using one of its private relations).

To illustrate, suppose that we want to control the access to a relation r @p

of peer p. We create for this purpose two local relations r ead@p($r,$q) and
wr i te@p($r,$q) that store who can read/write in p’s relations. Note that the
r ead and wr i te relations are local, i.e., only p can specify the access rights
in p. Relations r @p and del .r @p must also be local so that p control access
to them. To obtain relation r @p, a peer q sends a message g et@p(r, q). The
following rule controls whether q will receive the data it requested:

at p: send@$q($r,$x) :- get@p($r,$q), read@p($r,$q),
$r@p($x)

Insertions in r @p (or deletions using del .r @p) are treated similarly. Access
control in Webdamlog is at the center of an on-going work in [1].

We next consider two subtleties of delegation.

Delegation and complexity

Consider the rule:

at p: m@q() :- m1@p($q,$x), m2@$q($x)

If there are 1000 distinct tuples (pi ,0) such that m1@p(pi ,0) holds, then we
have to install rules in 1000 distinct peers. So delegation is inherently trans-
forming data complexity into program complexity.

Peer life and delegation

It is very simple in the model to consider that peers are born, die or hibernate.
We simply have to insist that p can be fired (p-move) only if p is alive and not
hibernating. We can assume that messages and delegations to dead peers are
simply lost and that for hibernating ones, they are buffered somewhere in the
network. A subtlety is that (with this variant of the model), if a peer dies without

26 CHAPTER 3. WEBDAMLOG LANGUAGE

cleanly terminating, delegations from this peer are still valid. In practice, the
system may realize that a particular peer is no longer present and terminate its
delegations.

We conclude this section with three examples that illustrate different as-
pects of the language, communications, persistence services, and rule updates.

Multicasting

We can simulate channels, i.e., m-n communications with the following rules:

at q: persistent channelsubscribe@q
channel@$p($m,q,$s) :- channelsubscribe@q($p,$m),

$m@q($s)

The rules at peer q allows him to support channels. A peer p can subscribe to re-
ceiving all the messages from the channel m hosted by q by sending:
channel subscr i be@q(p,m) to q . Then, whenever someone sends a message
m@q(s), p will receive channel@p(m, q, s).

Database server replication

The following rule allows a database server to replicate relations from many
peers:

intensional export@db(relation,peer)
at db: persistent tobeexported@db

export@db($r,$p,$x) :- tobeexported@db($r, $p),
$r@$p($x)

If a peer p wants his relation r @p to be stored at db, then p simply needs to
send db the message tobeexpor ted@db(r, p). Now, expor t@db(r, p,$x) is a
copy of r @p($x).

Rule updates and rule deployment

Observe that (to simplify) we assumed that the set of rules in a run is fixed, i.e.,
Γ(p) is fixed for each p. It is straightforward to extend the model to support
addition or deletion of rules. Furthermore, one might want to be able to con-
trol whether a particular rule is deployed on a particular peer. To illustrate this
point, consider the two rules:

at p: persistent server@p
f@$p($u) :- server@p($p), f1@$p($u1),...,fn@$p($un)

3.3. EXPRESSIVE POWER 27

Sending the message ser ver @p(q) results in installing

at q: f@q($u) :- f1@q($u1),...,fn@q($un)

Note that if we send the message del .ser ver @p(q), the rule is removed.

3.3 Expressive power

In this section, we study the expressive power of Webdamlog and of different
languages that are obtained by allowing or restricting delegations. We also con-
sider the expressive power of timestamps. More precisely, we consider the fol-
lowing languages for rules:

• WL (Webdamlog): the general language.

• VWL (views WL): the language obtained by restricting delegations to only
view delegations.

• SWL (simple WL): the language obtained by disallowing all kinds of dele-
gations.

At the core of view delegation, we find the maintenance of materialized
views. To maintain views, we will see that timestamps turn out to be useful.
More precisely, for time, we assume that each peer has a local predicate called
time (with time(t) specifying that the current move started at local time t). The
predicate < is used to compare timestamps. Note that each peer has its sep-
arate clock, so the comparison of timestamps of distinct peers is meaningless.
To prevent time from being a source of nondeterminism, for t1, t2 two times
at different peers, we assume: t1 ̸< t2 and t2 ̸< t1 (the time from two peers are
incomparable). The languages obtained by extending the previous languages
with timestamps are denoted as follows: WLt , VWLt , SWLt .

3.3.1 Traces and simulations

To formally compare the expressivity of the above languages, we need to intro-
duce the auxiliary notions of trace and simulation.

Let r = (I1,Γ1, Γ̃1), ...(In ,Γn , Γ̃n), ... be a run. Let M be a set of predicates and
I a set of facts. Then ΠM (I) is the set of facts in I with predicates in M . The M-

trace of the run r for a set M of predicates is the subsequence of
πM (Ii1), ...,πM (Iin)... obtained by starting from πM (I1), ...,πM (In)... and remov-
ing all repetitions, i.e., deleting the (k + 1)th element of the sequence if it is

28 CHAPTER 3. WEBDAMLOG LANGUAGE

identical to the kth, until the sequence does not contain two identical consec-
utive elements. Given an initial state S and a set of predicates M , we denote by
M-trace(S) the set of M-traces of runs from S. In some sense, it is what can be
observed from S when only facts over M are visible.

Let α be a set of peers. An initial state S = (I ,Γ) can be α-simulated by an
initial state S′ = (I ,Γ′) if Γ(p) = Γ

′(p) for all p ∈ α and S and S′ have the same
M-traces, where M is the set of relations of S. In other words, from the point
of view of what is visible from S, S′ behaves exactly like S. The set of peers α

is meant to capture the part of the system (one or more peers) that we want to
keep strictly identical.

Now, we say that a language L can be simulated by a language L′, denoted
L ≺ L′, if there exists a translation τ from programs in L to programs in L′ such
that for each initial state (I ,Γ) (with programs in L) and for each α, (I ,τ(Γ)) α-
simulates (I ,Γ) where τ is defined by: for each peer p,

• if p ∈α, τ(Γ(p)) = Γ(p).

• otherwise, τ(Γ(p)) = τ(Γ(p)).

Clearly, in the previous definition, the peers in α are not part of the simula-
tion, they behave exactly as originally. In some sense, they should not even be
aware that something has changed.

3.3.2 Expressivity results

The expressive power of the different languages are compared in Figure 3.1. The
containments are strict except for that of VWLt inside WLt where the issue re-
mains open.

W Lt

W L SW Lt = V W Lt

V W L

SW L

Figure 3.1: Expressive power of the rule languages (the inclusion is strict when
the arc is in bold)

Our first result states that view delegation cannot be simulated by simple
rules.

3.3. EXPRESSIVE POWER 29

Theorem 3.3 (No views in SWL). VWL ̸≺ SWL.

Proof. Intuitively, the difficulty is that the system may visit an arbitrary num-
ber of times the same peer p before visiting another peer q . Then q sees all
the messages from p at the same time and ignores in which order they were
received.

Formally, consider a VWL system (I ,Γ) consisting of three peers pα, p, q .
There are two facts that hold in the initial state: true@pα(), true@p().

The set of active rules Γ(pα) maintain the peer pα in a permanent flip-flop
between two modes:

at pα : r @p() :- tr ue@pα()
f al se@pα() :- tr ue@pα()
del .r @p() :- f al se@pα()
tr ue@pα() :- f al se@pα()

Note that pα keeps inserting then deleting the same proposition in p, namely
r @p(). Peer p uses the following four rules:

at p : r @p() :- r @p(),¬del .r @p()
tr ue@p() :- f al se@p()
f al se@p() :- tr ue@p()
s@q() :- r @p()

The first active rule maintains relation r @p. The next two active rules maintain
p in a flip-flop between two modes. The last rule is a view delegation rule. It is
because of this latter rule that the system is in VWL but not in SWL.

Finally peer q has one active rule:

at q : tr ue@q() :- s@q()

Suppose for a contradiction that there is a pα-simulation of this system
in SWL, via some program translation function τ. As the set of peers is finite
(namely 3), the initial state (I ,τ(Γ)) is finite. Thus, it includes a finite set of rela-
tion names and constants. This means that there is a finite number of distinct
messages that can be sent during a run of this system. Now let r1 be any run of
(I ,τ(Γ)) such that the initial segment of activated peers is as follows: pα, then p,
then pα, then p, etc., n times (for n to be fixed later in the proof), and then q .
Let I , I1, I2, ..., I2n−1, I2n , I ′ be the trace of r1. Because of the two flip-flops, the
trace has this size and it is clear from it which peer has been activated at each
step.

Consider a second run r2 which is defined like r1 except that this time we
visit pα and p, n +1 times, then q . Let I , I2, I3..., I2n−1, I2n , I2n+1, I2n+2, I ′′ be the
trace of r2.

30 CHAPTER 3. WEBDAMLOG LANGUAGE

Observe that while p and pα are being activated, q is simply accumulating
messages. Recall that the set of messages that q may accumulate is finite. Thus
we can choose n large enough so that I2n+2(q) = I2n(q). Suppose that I ′(q) con-
tains tr ue@q . Then because the set of messages at q is the same in the second
run, I ′′(q) also contains tr ue@q , a contradiction because the last iteration in
pα, p must have removed r @p. A similar contradiction occurs if tr ue@q is not
produced. Thus such a simulation does not exist. ✷

Next we separate VWL and WL.

Theorem 3.4 (No general delegations in VWL).
WL ̸≺ VWL.

Proof. (sketch) Intuitively, peer q will use a general delegation to ask peer p to
do something that is beyond the capability of the rules in p. This is not trivial
because p may perform very complex operations with arbitrarily many com-
plex rules. However, it turns out that there is a limit to what p can do. To prove
it, we use the fact that with formulas using a bounded number k of variables,
one cannot check whether a graph has a clique of size k +1 (when an ordering
of the nodes is not available).

Formally, consider a WL system (I ,Γ) that consists of three peers pα, p, q . In-
tuitively, peer pα sends a sequence of updates to a graph that is originally empty
and is stored at p. To do that, pα has a persistent relation that stores a sequence
of updates. More precisely, pα has a set of tuples of the form: upd@pα(i ,o, a,b)
where i in [0,m] for some m and there is a single tuple for each i , o in { ins,
del }, and a,b are data elements in a very large fixed set Σ (the identifiers of
the graph g .) Peer pα also has a persistent relation next containing the tuples:
[0,1], ...[m − 1,m]. Finally, pα has the fact now@pα(0) in its initial state. The
program of pα consists of the following active rules:

at pα : g @p($x,$y) :- now@pα($i),upd@pα($i , i ns,$x,$y)
del .g @p($x,$y) :- now@pα($i),upd@pα($i ,del ,$x,$y)
now@pα($ j) :- now@pα($i),next ($i ,$ j)

Now p has the following active rule for maintaining the graph g :

at p : g @p($x,$y) :- g @p($x,$y),¬del .g @p($x,$y)

Finally, peer q has a rule delegation to p:

at q : clique@q() :- ∧1⩽i , j⩽n g @p($xi ,$x j),$xi ̸= $x j

which essentially requests p to send a message if there exists an n-clique in
g @p. Peer q also has a flip-flop rule:

3.3. EXPRESSIVE POWER 31

at q : tr ue@q() :- f al se@q()
f al se@q() :- tr ue@q()

Originally tr ue@q() holds.
Suppose for a contradiction that there is a pα-simulation of this system in

VWL. Consider the run of (I ,Γ) beginning with a very long sequence
q(pα)∗p(pα)∗...p where each time p is called, the graph oscillates between “there
is a clique” and “there isn’t”. Note that the first time q is called, it installs the del-
egation.

Let k be the number of variables and constants that appear in a rule in
τ(Γ(p)). As the rules in p have less than k symbols, they can only evaluate for-
mulas in FOk . Choose n > k, so that formulas in FOk cannot check for the pres-
ence of an n-clique in a graph. Choose also the set of mode identifiers Σ large
enough. (Recall that the translation for the rules of p is independent from the
program of q and pα.) So, it is not possible for p to evaluate whether there is a
clique. So q has to be called before each clique message to check the existence
of a clique. Note that it is possible to do so: p pretends it has not been called
and waits until q is called; then q sends a secret message to p to tell p whether
there is a clique.

This is “almost” a simulation except that q has a bounded memory that de-
pends essentially on Σ. Now consider a very long sequence of the WL system
that never calls q . If the sequence is long enough, its simulation in VWL will
visit twice the same state. Then by pumping, one can construct an infinite run
of the VWL simulating system such that the flip-flop of q is never activated. This
corresponds to a simulation of an unfair run of the WL system, a contradiction.
Thus there can be no VWL simulation of the above WL system. ✷

We now consider timestamps. The next result compares the expressive power
of WL and WLt .

Theorem 3.5 (Timestamps). For a finite number of peers,

1. WL is in PSPACE;

2. SWLt over a single peer can simulate any arbitrary Turing machine;

3. Thus, SWLt ̸≺ WL and (a fortiori) WLt ̸≺ WL.

Proof. (sketch) For (1.), consider a fixed schema over a finite number of peers.
Let (I ,Γ) be an initial instance of size n = |I | + |Γ|. Let (Ii ,Γ, Γ̃i) be an instance
that is reached during the computation. Because the schema is fixed, the num-
ber of facts that can be derived is bounded by a polynomial in n, and each fact
is also of bounded size. So, |Ii | can be bounded by a polynomial in n. Similarly,
the size of Γ̃i can be bounded by a polynomial in n, since a rule that is delegated

32 CHAPTER 3. WEBDAMLOG LANGUAGE

is essentially determined by an instantiation of an original rule and a position
in it. Thus we can represent (Ii ,Γ, Γ̃i) in polynomial space in n. Hence, WL is in
PSPACE.

Now consider (2.). Let M be a Turing Machine. We can assume without
loss of generality that it is deterministic and that it has a tape that is infinite
only in one direction. The SWLt system that simulates it is as follows. Its initial
instance encodes the initial state of M . More precisely, it has a relation input,
with initial value

{ input(0,1,a1), input(1,2,a2), ... input(n−1,n,an) }

where a1a2...an is the input of M . It also has a relation tape that is originally
empty.

First, the SWLt system copies the input on its tape using the timestamps
t0, t1, t2... to identify tape cells. More precisely, it constructs,

{tape(t0,t1,a1,s0),tape(t1,t2,a2,⊥),...,tape(tn−1,tn ,an ,⊥)}

where s0 is the start state of M . Using rules from SWLt , it is straightforward to
simulate moves of M . The only subtlety is that at each step of the iteration, the
tape is augmented so that there is no risk of reaching its limit. The fact that the
cells are denoted with timestamps guarantees that no two cells will have the
same ID.

Now, given the encoding of a word w , one can simulate the computation of
TM on w . Thus (2), so (3). ✷

Note that the converse of (1) holds: any PSPACE query over an ordered database
can be computed in SWL (hence WL) with a single peer. This can be shown by
proving how to simulate in SWL with a single peer, the language Datalog¬¬ that
can express all PSPACE queries on ordered databases [AV91].

Next we see how to use timestamps to simulate view maintenance.

Theorem 3.6 (Views with timestamps). VWLt ≈ SWLt .

Proof. (sketch) We illustrate with an example the simulation of view delegation
by a program with timestamps.

Consider a VWL system with an extensional relation s@q and the deductive
rule at p: r @p(U) :- s@q(U) that specifies that r @p is a view of s@q . The simu-
lation of the view delegation in SWLt is as follows.

at q : persistent past@q

aux@p(U ,$t) :- s@q(U), t i me@q($t)
past@q($t) :- t i me@q($t)
obsolete@p($t) :- past@q($t)

3.4. CONVERGENCE OF WEBDAMLOG 33

at p : intensional r @p

persistent aux@p, obsolete@p

r @p(U) :- aux@p(U ,$t), ¬ obsolete@p($t)

Then the value of r @p is that of s@q when q was last visited, i.e., r @p is a copy
of s@q at the last visit of q .

The above simulation is straightforwardly generalized to arbitrary VWL sys-
tems, from which we obtain the desired VWLt ≈ SWLt . ✷

It is still open whether WLt ̸≺ VWLt .

3.4 Convergence of Webdamlog

Systems that converge to a unique state independently of the order of com-
putation, i.e., some form of Church-Rosser property, are of particular interest.
In this section, we consider two kinds of such systems: the positive and the
strongly-stratified Webdamlog systems. Indeed, we show that such systems
continue to converge even in presence of insertions of facts or rules. Finally,
we show that for these two classes of systems, the distributed semantics can be
seen as mimicking the centralized semantics.

3.4.1 Positive Webdamlog

Clearly, negation may explain why a system does not converge. However, the
following example shows that even in absence of negation, convergence is not
guaranteed because the order of arrival of messages matters:

Example 3.7. Consider the rules:

at q: extensional r1@q, r2@q, r@q
persistent r@q
r@q() :- r1@q(), r2@q()

at q1: r1@q() :-
at q2: r2@q() :-

If we process the peers according to the order q1, q, q2, q, q1, . . ., then r @q is
never derived. If we consider instead the order q1, q2, q, q1, q2, q, . . ., then r @q

is derived and remains forever. The absence of convergence here is in fact a
desired feature of the model: the extensional relations model events, so their
arrival times matter.

On the other hand, note that, as we will see, if in the example r 1@q and
r 2@q were intensional, the system would converge.

34 CHAPTER 3. WEBDAMLOG LANGUAGE

We now introduce the restricted systems we study in this section. A Web-

damlog state or system is positive if the following holds:

1. Each of its rules is positive (no negation); and

2. Each extensional relation m@p is made persistent with a rule of the form
m@p(U) :- m@p(U).

We will see that because of these restrictions, the states in runs of positive
systems are monotonically increasing. For positive systems with a finite num-
ber of peers, there are only finitely many possible states, so monotonicity im-
plies that runs converge after a finite number of steps. We will also show conver-
gence for positive systems with infinitely many peers, except that in this case,
we may converge only in the limit. This motivates the following somewhat com-
plex definition of convergence.

A run S0,S1,S2, . . . converges to a possibly infinite state S∗ = (I∗,Γ∗, Γ̃∗) if for
each finite S′ ⊆ S∗, there exists kS′ such that for all k > kS′ , S′ ⊆ Sk and if for
each finite S′ ̸⊆ S∗, there is kS′ such as for all k > kS′ , S′ ̸⊆ Sk . We say a system S

converges if all its runs converge to the same state.
The following theorem states the convergence of (possibly infinite) positive

systems.

Theorem 3.8 (Convergence). All positive Webdamlog systems converge.

Lemma 3.9. Suppose I1(p∗) ⊆ I2(p∗), Γ1(p∗) = Γ2(p∗) and Γ̃1(q, p∗) ⊆ Γ̃2(q, p∗)∀q ̸=

p∗. Let Pa,i (resp. Pd ,i) be the set of local active (resp. fully local deductive) rules

in Γi (p∗)∪∪q ̸=p∗Γ̃i (q, p∗). Then if there is no negation in the rules, we have

Pa,1(K1) ⊆ Pa,2(K2) and

γ1(p∗, q)(Pa,1,K1) ⊆ γ2(p∗, q)(Pa,2,K2)∀q ̸= p∗

where Ki = P∗
d ,i (Ii (p∗))).

Proof. (of Lemma 3.9) Since Γ1(p∗) = Γ2(p∗) and Γ̃1(q, p∗) ⊆ Γ̃2(q, p∗) for all
q ̸= p∗, it follows that Pa,1 ⊆ Pa,2 and Pd ,1 ⊆ Pd ,2. Together with I1(p∗) ⊆ I2(p∗),
and in absence of negation, we obtain Pa,1(P∗

d ,1(I1(p∗))) ⊆ Pa,2(P∗
d ,2(I2(p∗))).

Likewise, γp∗q (Pa,1,P∗
d ,1(I1(p∗))) ⊆ γp∗q (Pa,2,P∗

d ,2(I2(p∗))). ✷

Proof. (of Theorem 3.8) In fact, we will prove that the result is true for a sim-
ple update I ′,Γ′, since the result is then easy to generalize. Consider a positive
Webdamlog system (I0,Γ0, Γ̃0). Let r = (I0,Γ0, Γ̃0)(I1,Γ1, Γ̃1)
(I2,Γ2, Γ̃2) . . . be a run for this system. It follows from the definition of moves
that Γi = Γ j for all i , j ⩾ 0 and that delegated rules are sub-rules of these sets

3.4. CONVERGENCE OF WEBDAMLOG 35

so have no negation. So (Ii ,Γi , Γ̃i) is positive for every i ⩾ 0. We show by in-
duction on i that Ii (p) ⊆ Ii+1(p) and Γ̃i (p, q) ⊆ Γ̃i+1(p, q) for all i and all peers
p, q , i.e., the states in the run increase monotonically. Using this property, it is
easy to show that r converges to the (possibly infinite) state (I∗,Γ0, Γ̃∗) where
I∗(p) = ∪i Ii (p) and Γ̃

∗(p, q) = ∪i Γ̃i (p, q). The base case (i = 0) for our induc-
tion is straightforward. If the first move is a p∗-move, then by the definition
of move, we have I0(q) ⊆ I1(q) for all q ̸= p∗. For peer p∗, we use the fact
that I0(p) contains only extensional p-facts and that Γ0(p) contains persistence
rules for all extensional relations of p. We thus obtain I0(p∗) ⊆ I1(p∗). As for
delegations, we have Γ̃0(p, q) =∅ for all p, q (since (I0,Γ0, Γ̃0) is initial), hence
Γ̃0(p, q) ⊆ Γ̃1(p, q) for all peers p, q . Suppose next that the claim holds for all i <

k. Let p∗ be the peer whose move takes (Ik ,Γk , Γ̃k) to (Ik+1,Γk+1, Γ̃k+1). Using
the same argument as in the base case, we obtain Ik (p) ⊆ Ik+1(p) for all peers
p. According to the definition of moves, Γ̃k (p, q) = Γ̃k+1(p, q) whenever p ̸= p∗.
Thus, the only interesting case is when p = p∗ and Γ̃k (p∗, q) ̸=∅. In this case,
we must have visited peer p∗ previously. Let j be such that the last p∗-move
took (I j ,Γ j , Γ̃ j) to (I j+1,Γ j+1, Γ̃ j+1). Since our last visit to p∗ was at timepoint
j , Γ̃ j+1(p∗, q) = Γ̃k (p∗, q). By repeatedly applying the IH, we obtain I j (p) ⊆
Ik (p) and Γ̃ j (p, q) ⊆ Γ̃k (p, q) for all peers p, q . In particular, we have I j (p∗) ⊆
Ik (p∗), Γ j (p∗) = Γk (p∗), and Γ̃ j (p∗, q) ⊆ Γ̃k (p∗, q). Applying Lemma 3.9, we get
Γ̃ j+1(p∗, q) ⊆ Γ̃k+1(p∗, q), which yields the desired Γ̃k (p∗, q) ⊆ Γ̃k+1(p∗, q), and
completes our proof of the monotonicity claim.

Now consider two runs r1 = (I0,1,Γ0,1, Γ̃0,1)(I1,1,Γ1,1, Γ̃1,1)(I2,1,Γ2,1, Γ̃2,1) . . . and
r2 = (I0,2,Γ0,2, Γ̃0,2)(I1,2,Γ1,2, Γ̃1,2) (I2,2,Γ2,2, Γ̃2,2) . . . for the system which converge
respectively to (I∗1 ,Γ∗

1 , Γ̃∗
1) and (I∗2 ,Γ∗

2 , Γ̃∗
2). We will prove by induction on i ⩾ 0

that for every state (Ii ,1,Γi ,1, Γ̃i ,1) of r1, there is j ⩾ 0 such that Ii ,1(p) ⊆ I j ,2(p)
and Γ̃i ,1(p, q) ⊆ Γ̃ j ,2(p, q) for all peers p, q . This, together with monotonicity
property in the previous paragraph, yields the desired (I∗1 ,Γ∗

1 , Γ̃∗
1) = (I∗2 ,Γ∗

2 , Γ̃∗
2).

The base case (i = 0) is trivial since (I0,1,Γ0,1, Γ̃0,1) = (I0,2,Γ0,2, Γ̃0,2) (as they are
both runs for the same system). For the induction step, suppose the claim
holds for i ⩽ k, and consider (Ik+1,1,Γk+1,1, Γ̃k+1,1). Let p∗ be the peer whose
move takes (Ik,1,Γk,1, Γ̃k,1) to (Ik+1,1,Γk+1,1, Γ̃k+1,1). By the IH, we can find j

such that Ik,1(p) ⊆ I j ,2(p) and Γ̃k,1(p, q) ⊆ Γ̃ j ,2(p, q) for all p, q . As r2 is a fair run,
we can find l ⩾ j such as (Il+1,2,Γl+1,2) results from a p∗-move. Since states
are monotonically increasing in r2, Ik,1(p) ⊆ I j ,2(p) ⊆ Il ,2(p) and Γ̃k,1(p, q) ⊆
Γ̃ j ,2(p, q) ⊆ Γ̃l ,2(p, q) for all p, q . Using Lemma 3.9, Ik+1,1(p∗) ⊆ Il+1,2(p) and
Γ̃k+1,1(p, q) ⊆ Γ̃l+1,2(p, q) for all peers p, q . ✷

The previous theorem is still true if one allows the peers to insert facts and
rules. One can show that the system will reach a stable state that does not de-
pend on the points of insertion.

36 CHAPTER 3. WEBDAMLOG LANGUAGE

Theorem 3.10 (Updates). Given two positive Webdamlog systems (I ,Γ) and (I ′,Γ′),

for any run of the system (I ,Γ), if for a given step, I ′ is added to the current set of

facts and Γ
′ to the current set of rules, then the modified run converges to the

convergence state of (I ∪ I ′,Γ∪Γ
′).

Proof. Let (I0,1,Γ0,1, Γ̃0,1), (I1,1,Γ1,1, Γ̃1,1)... be a run of (I ,Γ); k a point of inser-
tion; (Ik,1′ ,Γk,1′ , Γ̃k,1′) the state (Ik,1 ∪ I ′,Γk,1 ∪Γ

′, Γ̃k,1); and r1 = (I0,1,Γ0,1,
Γ̃0,1), (I1,1,Γ1,1, Γ̃1,1)...(Ik−1,1,Γk−1,1, Γ̃k−1,1), (Ik,1′ ,Γk,1′ , Γ̃k,1′), (Ik+1,1′ ,Γk+1,1′ ,
Γ̃k+1,1′)... the modified run of the system. For ease of reference, we will de-
note by (Ii ,1′ ,Γi ,1′ , Γ̃i ,1′) any state i ⩾ 0 of this run. We show (i) that there is a
run r2 = (I0,2,Γ0,2, Γ̃0,2), (I1,2,Γ1,2, Γ̃1,2)... of the system (I ∪ I ′,Γ∪Γ

′) such that
for each i ⩾ 0, Ii ,1′ ⊆ Ii ,2, Γi ,1′ ⊆ Γi ,2 and Γ̃i ,1′ ⊆ Γ̃i ,2, and (ii) that there is a run
r3 = (I0,3,Γ0,3, Γ̃0,3), (I1,3,Γ1,3, Γ̃1,3)... of the system (I∪I ′,Γ∪Γ

′) such that for each
i ⩾ 0, Ii ,3 ⊆ Ii+k,1′ , Γi ,3 ⊆ Γi+k,1′ and Γ̃i ,3 ⊆ Γ̃i+k,1′ . This is sufficient to prove the
result since r2 and r3 are both runs of the same positive system, and thus must
converge (by Theorem 3.8) to the same state. Since the states of r1 are sand-
wiched between those of r2 and r3, convergence of both r2 and r3 to a single
state implies convergence of r1 to this same state.

Let us consider the first assertion. We select a run of the system (I ∪ I ′, Γ∪

Γ
′) with exactly the same sequence of peers as the modified run r1. For i =

0, the desired inclusions clearly hold. Now suppose i > 0. Suppose Ii−1,1′ ⊆

Ii−1,2, Γi−1,1′ ⊆ Γi−1,2 and Γ̃i−1,1′ ⊆ Γ̃i−1,2. Using Lemma 3.9, if i ̸= k, we have the
desired inclusions for timepoint i . If i = k, we have, using Lemma 3.9, Ik,1 ⊆

Ik,2, Γk,1 ⊆ Γk,2 and Γ̃k,1 ⊆ Γ̃k,2. Since I ′ ⊆ I0,2 and Γ
′ ⊆ Γ0,2, and since the run

of (I ′,Γ′) is monotonic (by Theorem 3.8), I ′ ⊆ Ik,2 and Γ
′ ⊆ Γk,2. Finally, since

Ik,1′ = Ik,1 ∪ I ′, Γk,1′ = Γk,1 ∪Γ
′ and Γ̃k,1′ = Γ̃k,1, we have the result for i = k.

Now consider the second assertion. We choose a run r3 of the system (I ∪ I ′,
Γ∪Γ

′) with exactly the same sequence of peers as the sub-run r1 started from
the timepoint k, i.e., if peer p moves at timepoint i +k in r1, then it is p who
moves at timepoint i in r3. It is clear that desired inclusions hold for i = 0, since
the runs of (I ,Γ) are monotonic. Let i > 0. Suppose Ii−1,3 ⊆ Ii+k−1,1′ , Γi−1,3 ⊆

Γi+k−1,1′ and Γ̃i−1,3 ⊆ Γ̃i+k−1,1′ . Using Lemma 3.9, we obtain directly the desired
inclusions for i . ✷

The previous theorem is straightforwardly extended to a series of updates.
However, as illustrated by the following example, a more liberal definition of up-
dates which also allows deletion of facts or rules in a system would compromise
convergence.

Example 3.11. Consider the system defined as follows:

at p: extensional@p, intensional r@p
r@q() :- r@p()

3.4. CONVERGENCE OF WEBDAMLOG 37

r@p() :- s@p()
s@p() :- s@p()
s@p().

at q: intensional r@q
r@p() :- r@q()

This system converges to a state where I∗(p) = {s@p()}, Γ̃∗(p, q) = {r @q():-},
Γ̃
∗(q, p) = {r @p():-} Then removing the fact s@p() or the rule r @p():- s@p() af-

ter the convergence will not change Γ̃ whereas Γ̃ would be empty were the fact
or the rule removed before beginning a run.

The previous example illustrates the difficulty of managing non-monotony.
If we remove a fact or a rule, we need to remove as well all facts or rules that
were deduced using this fact. This could be achieved using view maintenance
techniques. We leave this for future work.

To further ground our semantics, we show that for positive systems, our se-
mantics correspond to the standard centralized Datalog semantics.

Centralized semantics

In the positive case, we can compare with a “centralized” semantics, in which
all facts and rules are combined into a single Datalog program. Such a compar-
ison would not make sense in the general case since our semantics too closely
depends on the order in which peers fire.

We associate to a positive Webdamlog state (I ,Γ) the set∪p (I (p)∪Γ(p)) com-
posed of the facts and rules of all peers. We can transform this set of facts and
rules into a standard Datalog program by first instantiating the variable rela-
tions in the rules (as was done for local computation) and then removing those
rules that violate the typing constraints in σ. We denote by c(I ,Γ) the Datalog
program thus obtained.

Figure 3.2: Link with centralized semantics

The following theorem (illustrated by Figure 3.2) demonstrates the equiv-
alence, for the class of positive systems, of our distributed semantics and the

38 CHAPTER 3. WEBDAMLOG LANGUAGE

traditional fixpoint semantics of Datalog. The result deals only with systems
with finitely many peers to avoid having to extend Datalog to infinitely many
relations.

Theorem 3.12. Let (I ,Γ) be a positive system with a finite number of peers that

converges to (I∗,Γ∗, Γ̃∗), and let Mmi n be the unique minimal model of the Dat-

alog program c(I ,Γ). Then

Mmi n =∪p P∗
p,d (I∗(p))

where Pp,d is the set of fully local deductive rules in Γ̃
∗(p)∪∪qΓ

∗(q, p).

Proof. Let S0 = (I0,Γ0, Γ̃0) be a positive initial state with a finite number of peers
which converges to the (finite) state S∞ = (I∞,Γ∞, Γ̃∞). Let Mmi n be the unique
minimal model of the Datalog program c(I0,Γ0). Given a run (I0,Γ0, Γ̃0), (I1,Γ1, Γ̃1),
(I2,Γ2, Γ̃2) . . ., we use Pp,d ,i (resp. Pp,a,i) to refer to the set of fully local deductive
(resp. local active) rules in Γi (p)∪∪q Γ̃i (q, p). For ease of reference, we denote
by Fi the set of facts ∪p P∗

p,d ,i (Ii (p)). Our aim is to show that Mmi n = F∞.

First direction: F∞ ⊆ Mmi n

Consider the run r = (I0,Γ0, Γ̃0), (I1,Γ1, Γ̃1), (I2,Γ2, Γ̃2) Let pi be the peer whose
move takes the state (Ii ,Γi , Γ̃i) to (Ii+1,Γi+1, Γ̃i+1). We will show by induction
on i that (a) P∗

pi ,d ,i (Ii (pi)) ⊆ Mmi n , (b) Ppi ,a,i (P∗
pi ,d ,i (Ii (pi))) ⊆ Mmi n , and (c)

Mmi n |= Γ̃i+1(pi , q) for all q ̸= pi . Because of the monotonicity of states in r

(cf. proof of Theorem 3.8), it follows from (a) and our definition of the sets
Fi that F∞ ⊆ Mmi n . Consider first the base case (i = 0). For (a), we note that
I0(p0)∪Γ0(p0) ⊆ c(I0,Γ0) and ∪q Γ̃0(q, p0) =∅ (since (I0,Γ0) is an initial state).
We can thus deduce that P∗

p0,d ,0(I0(p0)) ⊆ Mmi n . For (b), we use (a) and the fact
that Pp0,a,0 ⊆ Γ0(p0) (as there are no delegations in the first time step). For (c),
we first note that rules in Γ̃1(p0, q), are known to be of one of two types. The
first type of rules are of the form

v A :- v M@vQ(vU), vΘ1

where A :- Θ0, M@Q(U),Θ1 is a rule in Pp0,a,0 and v is a valuation such that vΘ0

holds in P∗
p0,d ,0(I0(p0)) and vQ = q(̸= p0). In this case, the fact that P∗

p0,d ,0(I0(p0)) ⊆
Mmi n ensures that vΘ0 holds in Mmi n . Since we also have Pp0,a,0 ⊆ c(I0,Γ0),
all rules in Pp0,a,0 must holds in Mmi n , which means the partially instantiated

rule v A :- v M@vQ(vU), vΘ1 must also be satisfied by Mmi n . All other rules in
Γ̃1(q, p0) are of the form v A :- where A :- Θ is a rule in Pp0,a,0 and v is a valuation
such that vΘ holds in P∗

p0,d ,0(I0(p0)) and v A = r @q(u) for some r ∈ I . Again,

the fact that P∗
p0,d ,0(I0(p0)) ⊆ Mmi n means that vΘ holds in Mmi n , and the fact

that Pp0,a,0 ⊆ c(I0,Γ0) means that v A :- must hold in the minimal model Mmi n .

3.4. CONVERGENCE OF WEBDAMLOG 39

For the induction step, suppose our claim holds for i ⩽ k. Let j be such
that p j = pk+1 and p j ′ ̸= pk+1 for all j < j ′ < k +1, or 0 in the case where p j has
never been visited. Then it follows from our definition of moves and runs that

Ik+1(pk+1) ⊆ I j (p) ∪
∪

j<l<k+1
Ppl ,a,l (P∗

pl ,d ,l (Il (pl)))

It follows then from part (b) of the IH applied to timepoints j , j + 1, . . . ,k that
Ik+1(pk+1) ⊆ Mmi n . Part (c) of the IH applied to the timepoints in which a peer
q ̸= pk+1 was last visited gives us Mmi n |= ∪q Γ̃k+1(q, pk+1). Together with the
fact that Γk+1(pk+1) = Γ0(pk+1) ⊆ c(I0,Γ0), we obtain

Mmi n |= Ppk+1,a,k+1 ∪Ppk+1,a,k+1

Parts (a) and (b) of our claim follow directly. Now for part (c), consider some
rule in Γ̃k+2(pk+1, q). First consider the case where the rule is of the form

v A :- v M@vQ(vU), vΘ1

where A :- Θ0, M@Q(U),Θ1 is a rule in Ppk+1,a,k+1 and v is a valuation such that
vΘ0 holds in P∗

pk+1,d ,k+1(Ik+1(pk+1)) and vQ = q(̸= pk+1). We know

P∗
pk+1,d ,k+1(Ik+1(pk+1)) ⊆ Mmi n from part (a), so vΘ0 must hold in Mmi n . This

together with the fact (from above) that Mmi n |= Ppk+1,a,k+1 means the partially

instantiated rule v A :- v M@vQ(vU), vΘ1 must also be satisfied by Mmi n . Sup-
pose instead our rule is of the form v A :- where A :- Θ is a rule in Ppk+1,a,k+1 and
v is a valuation such that vΘ holds in P∗

pk+1,d ,k+1(Ik+1(pk+1)) and v A = r @q(u)

for some r ∈ I . We again utilize the fact that P∗
pk+1,d ,k+1(Ik+1(pk+1)) ⊆ Mmi n

and Mmi n |= Ppk+1,a,k+1, which give vΘ⊆ Mmi n and hence Mmi n |= v A :-.

Second direction: Mmi n ⊆ F∞

We proceed by induction on the depth of proof trees for facts in Mmi n . The
base case is when the proof tree of a fact r @p(u) ∈ Mmi n has depth 0, i.e., it
appears explicitly in c(I0,Γ0). There are two possibilities: either r @p(u) ∈ I0(p)
or the rule r @p(u) :- appears in some Γ0(q). In the former case, monotonicity
(cf. proof of Theorem 3.8) ensures that r @p(u) ∈ I∞(p) ⊆ F∞. In the latter case,
if r @p is extensional, then r @p(u) will be sent to p the first time q is visited
and will remain at p by monotonicity. If r @p is an intensional relation name
and q = p, then r @p(u):- belongs to Pp,d ,∞. If q ̸= p, then r @p(u):- will be
delegated to p every time q is visited, and hence will belong to Γ̃∞(q, p), and
hence to Pp,d ,∞. In all cases, we obtain r @p(u) ∈∪p P∗

p,d ,∞(I∞(p)) = F∞.
For the induction step, suppose that all facts in Mmi n with proof trees of

depth at most k appear in F∞. Consider some fact r @p∗(u) with a proof tree of

40 CHAPTER 3. WEBDAMLOG LANGUAGE

depth k +1. Then there must exist some rule

α= Mn+1@Qn+1(U n+1) :- M1@Q1(U 1)...Mn@Qn(U n)

in ∪pΓ(p) and some valuation v such that

r @p∗(u) = v Mn+1@vQn+1(vU n+1)

and for all 1⩽ j ⩽ n, the fact

s j @q j (t j) = v M j @vQ j (U j)

possesses a proof tree of depth at most k. Consider some run r = (I0,Γ0, Γ̃0),
(I1,Γ1, Γ̃1), (I2,Γ2, Γ̃2) . . . of (I0,Γ0). Applying the IH, we obtain s j @q j (t j) ∈ F∞ for
all 1⩽ j ⩽ n. It follows that we can find some index m such that s j @q j (t j) ∈ Fm

for all 1 ⩽ j ⩽ n. Because all runs of (I0,Γ0) converge to the same state, we
can assume without loss of generality that it is a q j -move which takes the state
(Im+ j−1,Γm+ j−1, Γ̃m+ j−1) in r to the state (Im+ j ,Γm+ j ,
Γ̃m+ j), for all 1⩽ j ⩽ n. We aim to show that r @p∗(u) ∈ Fm+n , hence r @p∗(u) ∈
F∞. We first remark that for all peers p, the set P∗

p,d ,m(Im(p)) can only consist
of p-facts. This is because I0(p) contains only p-facts (by definition), only p-
facts are added to Ii (p) (by definition of moves), and Pp,d ,m consists of only
deductive rules in p, i.e., rules using intensional p-relations. It follows then
that s j @q j (t j) ∈ P∗

q j ,d ,m(Im(q j)) for all 1 ⩽ j ⩽ n. The safety condition implies

that the term Q1 equals a peer constant q1. We can suppose that at timepoint
m, α ∈ Γm(q1).

Then it is q1’s move. If α is fully local deductive for q1, then p∗ and all of
the q j must be equal to q1. This means that s j @q j (t j) ∈ P∗

q1,d ,m(Im(q1)) for all j ,
and so r @p∗(u) ∈ P∗

q1,d ,m(Im(q1)). Thus, r @p∗(u) ∈ Fm , and by monotonicity of
states, r @p∗(u) ∈ Fm+n . Next consider the more interesting case where α is not
a fully local deductive rule for q1. Let l be the maximal index such that q j = q1

for all 1 ⩽ j ⩽ l . Then we have s j @q j (t j) ∈ P∗
q1,d ,m(Im(q1)) for all 1 ⩽ j ⩽ l . If

l = n, then r @p∗(u) ∈ Im+1(p∗), and so again, by monotony, r @p∗(u) ∈ Fm+n .
If instead we have l < n, then delegation comes into play. Specifically, let v ′ be
the minimal sub-valuation of v such that v ′M j @v ′Q j (v ′U j) = s j @q j (t j) for all
1 ⩽ j ⩽ l . Note that by the safety condition, Ql+1 must now be instantiated to
ql . It follows that the rule α′

v ′Mn+1@v ′Qn+1(v ′U n+1) :-
v ′Ml @v ′Ql (v ′U l)...v ′Mn@v ′Qn(v ′U n)

must belong to Γ̃m+1(q1, ql). By monotony, α′ ∈ Γ̃m+l−1(q1, ql), and s j @q j (t j)
∈ Fm+l−1 We can thus repeat the same procedure to ql when at timepoint m +

3.4. CONVERGENCE OF WEBDAMLOG 41

l −1 it is its turn to move. We will either finish (in which case the fact r @p∗(u)
is derived and preserved) or continue via delegations to the next peer, and so
forth, until the final peer is treated and the fact r @p∗(u) has been produced.
We thus find the desired r @p∗(u) ∈ Fm+n . ✷

3.4.2 Strongly-stratified Webdamlog

With negation, convergence is not guaranteed in the general case as illustrated
by the following example.

Example 3.13. Consider the program that is stratified in the sense of Datalog
with stratified negation:

intensional s@p, r@p, r@q
at p: r@q() :- r@p()

r@p() :- ¬s@p()
at q: r@p() :- r@q()

s@p() :-

Any run of this system that begins with p converges to a state where p delegates
r @q():- to q and q delegates r @p():- and s@p():- to p. On the other hand, runs
that begin with q converge to a state where p delegates nothing to q and q

delegates s@p():- to p.

As already mentioned for the non-monotone updates in the previous sub-
section, one may adapt methods of view maintenance to solve the problem. We
develop in this section an alternative in which syntactic restrictions prohibit
circles of wrong deductions, without having to deal with the complexity of view
maintenance in presence of belief revision. Note that most of the examples of
the paper belong to (or are easily adapted to) this restricted class.

A stratificationσ′ is an assignment of numbers to relations, i.e., to pairs r @p.
If σ′(r @p) = i , we say that r @p is in the i th stratum. The stratification is strong

if for each i , all the relations in the i th stratum refer to the same peer. Given a
strong stratification σ′, an instantiated rule is σ′-stratified if all relation names
of positive body atoms appear in a stratum smaller or equal to that of the head
relation and all relation names of negative terms belong to a strictly smaller
stratum. Note that a stratification for Example 3.13 would not be strong be-
cause r @p and r @q have to be in the same stratum, although they belong to
different peers.

In our setting, we see a strong stratificationσ′ of I as an extra component of
the system’s schema. The strong stratification works much like the typing con-
straint σ in that it tells us whether a particular rule instantiation is legal. Specif-
ically, a peer is only allowed to use instantiated rules which are σ′-stratified.

42 CHAPTER 3. WEBDAMLOG LANGUAGE

Observe that our use of stratification is in the spirit of classical Datalog with
stratified negation, namely preventing cycling through negation. However, the
way stratification is enforced is somewhat different. In the centralized context,
one analyzes the program and checks for the existence of a stratification. In
the distributed case, this is not possible because no one has access to the entire
program. Also, the use of relation and peer variables makes such a computation
even less conceivable. So, instead, one assumes that a stratification is imposed
and the computation is such that it prevents deriving facts with rule instantia-
tions that would violate the strong stratification.

There is a subtlety with strong stratification arising from general delegation.
Indeed, we will see that the result does not hold for WL. So the next result deals
simply with view delegation, i.e., the language VWL. One of the advantages of
VWL is that at the time a rule is delegated, it is possible to check that it does not
violate the strong stratification. We consider systems with finitely many peers,
where the extensional facts are constant and only the intensional delegations
vary. Formally, a Webdamlog system is said to be strongly-stratified if for some
strong stratification σ′:

1. its local computation is constrained by the stratification σ′.

2. Each extensional relation m@p is made persistent with a rule of the form
m@p(U) :- m@p(U) and these are the only active rules in the system1. We
say the system is purely intensional.

Observe that, by Condition (2), the set of extensional facts is constant whereas
it was increasing for positive systems. So Condition (2) here is more restrictive
than for positive systems. Thus, strictly speaking the two classes are incompa-
rable. Clearly, it would be interesting to consider classes that would include
both.

We are now ready to present our results, following the same logic as in the
previous section.

Theorem 3.14 (Convergence). All strongly-stratified VWL systems over a finite

number of peers converge.

Proof. Let us first remark that deductive rules in SWL can only be of two types:
fully local deductive or local deductive. This means that the only types of rules
that can be delegated to a peer p are fully instantiated body-less rules of the
form r @p(u) :- . The general idea of the proof is as follows. Given a run, we
will prove that for each stratum, there is a state after which the stratum has

1Technically speaking, if we want to use variable or peer relations in the rule heads, then we
must forbid instantiations which yield extensional relations in the heads.

3.4. CONVERGENCE OF WEBDAMLOG 43

converged. A similar argument will prove that the limit is the same for each
run.

Consider a σ′-stratified system (I0,Γ0) with rules in VWL and a finite num-
ber of peers. Let r = (I0,Γ0,∅)(I1,Γ1, Γ̃1)(I2,Γ2, Γ̃2) . . . be a run of this system. For
simplicity, in what follows, we use Pp,d ,i to refer to the set of fully local deduc-
tive rules in Γi (p)∪∪q Γ̃i (q, p).

First, we can show by induction that for all i ⩾ 0, every state (Ii ,Γi , Γ̃i) is
intensional, Ii = I0, and Γi = Γ0. The base case i = 0 is immediate. For the in-
duction step, suppose we have the result for i < k and consider state (Ik ,Γk , Γ̃k)
resulting from a p-move. From the IH, we know that (Ik−1,Γk−1, Γ̃k−1) is in-
tensional, and so the only active rules in Γk−1(p) and ∪q Γ̃k−1(q, p) are persis-
tence rules for p’s extensional predicates. We also have Γk = Γ0 from the defi-
nition of runs. In particular, this means that Γk (p) contains persistence rules
for each of p’s extensional predicates. This means that p copies its extensional
facts (Ik (p) = Ik−1(p)) and does not send any extensional facts to other peers
(Ik (q) = Ik−1(q) for q ̸= p). We thus have Ik = Ik−1 = I0. Finally, we note that
(Ik−1,Γk−1, Γ̃k−1) contains no other active rules besides persistence rules, which
means that all delegations will involve deductive rules.

Given the strong stratification σ′, let us prove that for each stratum i , there
is a timepoint ti ⩾ 0 such that after each t ⩾ t ′, the restriction of Γ̃t to rules with
head in strata less or equal to i is the same as the one of Γ̃ti

. Let us start with the
first stratum, call it 0. Suppose that p∗ is the peer associated with this stratum.
Let t0 be the first occurrence of a p∗-move after visiting all the other peers. Such
a timepoint must exist since the number of peers is finite (this is assumed in the
statement of the theorem) and the run is fair. We claim that t0 has the desired
properties. Consider some timepoint t ⩾ t0 in which it’s peer q ’s turn to move
and some delegation appearing in Γ̃t+1(q, p∗). We remark that because we only
have VWL rules, the delegation must be of the form r @p∗(u):-. To produce this
delegation, there must be a rule in Γt (q) = Γ0(q) of the following form

Mn+1@Q(U n+1) :-

(¬)M1@q(U 1), (¬)M2@q(U 2), ...(¬)Mn@q(U n)

and some valuation v satisfying the typing σ and stratification σ′ such that:
v Mn+1@vQ(vU n+1) = r @p∗(u), each positive body fact v Mi @q(vU i) belongs
to P∗

q,d ,t (It (q)), and each negated body fact ¬v Mi @q(vU i) is such that

v Mi @q(vU i) is not in P∗
q,d ,t (It (q)). We note however that because v satisfies

the strong stratification, we are at peer q ̸= p, and the head relation r @p is in
the lowest stratum, all relations v Mi @q must be extensional. As the extensional
facts of each peer are the same at each timepoint (see above), it follows that this
delegation is produced at each and every visit to q , and in particular the very

44 CHAPTER 3. WEBDAMLOG LANGUAGE

first visit to q , which occurs before t0. Thus, this delegation already appears
in Γ̃t0 (q, p∗). A very similar argument shows that every delegation concerning
stratum 0 which appears in Γ̃t0 (q, p∗) also appears in Γ̃t (q, p∗) for all t ⩾ t0.

Now let us consider higher strata. Suppose our claim holds for strata up
to and including k. This means we can find a timepoint tk such that for all
t ⩾ tk , the restriction of Γ̃t to rules with head in strata less or equal to k is the
same as the one of Γ̃tk

. Again, we use p∗ to refer to the peer associated with
the stratum of interest (here k + 1). Set tk+1 equal to the timepoint after tk in
which we first visit p∗ after having visited all other peers at least once since
timepoint tk . Consider some timepoint t ⩾ t0 in which q moves and produces
some delegation in Γ̃t+1(q, p∗). Again, because we only have VWL rules, we
know this delegation must be of the form r @p∗(u):-. To produce it, there must
be a rule in Γt (q) = Γ0(q) of the following form

Mn+1@Q(U n+1) :-

(¬)M1@q(U 1), (¬)M2@q(U 2), ...(¬)Mn@q(U n)

and some valuation v satisfying the typing σ and stratification σ′ such that:
v Mn+1@vQ(vU n+1) = r @p∗(u), each positive body fact v Mi @q(vU i) belongs
to P∗

q,d ,t (It (q)), and each negated body fact ¬v Mi @q(vU i) is such that

v Mi @q(vU i) is not in P∗
q,d ,t (It (q)). Because v satisfies the strong stratification,

we are at peer q ̸= p, and the head relation r @p is in the lowest stratum, we
know all body facts v Mi @q(vU i) must either be extensional or intensional but
in a lower stratum (⩽ k). We have already seen that extensional facts are fixed
throughout the run. Since t ⩾ tk+1 > tk , we know that all delegations for strata
less than or equal to k are fixed and equal to those found at timepoint tk . It
follows that this delegation is produced at each and every visit to q following
timepoint tk , and hence in the visit to q between timepoints tk and tk+1. Thus,
this delegation already appears in Γ̃tk+1 (q, p∗). We can similarly show that all
delegations stratum k +1 delegations in Γ̃tk+1 (q, p∗) are also found in Γ̃t (q, p∗)
for all t ⩾ tk+1.

We now prove that all systems converge to the same limit. In fact, we can
straightforwardly extend the previous proof by adding to the claim that each
stratum k +1 converges to the same value on all runs. In the base case, we use
the fact that the extensional facts are the same in all runs. This means delega-
tions for the first stratum will be the same for all runs. For later strata, we use
the fact that the delegations at level k+1 are fully determined by the delegations
in previous strata. ✷

This result does not hold if we allow general delegation instead of view del-
egation. This is because with general delegation, a peer p may delegate a par-

3.4. CONVERGENCE OF WEBDAMLOG 45

tially instantiated rule to q . As the relation and peer terms of the rule may con-
tain variables, peer p may not be able to decide whether the rule is σ′-stratified,
and neither will q (or later peers) as they do not know which relations p used
to launch the delegation. So enforcement of the stratification is not straightfor-
ward. This is illustrated by the following example.

Example 3.15. Consider the following program:

intensional m@p, s@q, r@q
at p: m@p($x) :- m@p($x), r@q($x)

m@p($x) :- r@q($x), ¬s@q()
at p’: s@q() :-
at q: r@q(a) :-

Consider a run that starts by firing p, q , then p. Then the rule m@p(a):- is
delegated by q to p and will remain forever. Now, consider a run that starts by
firing p ′. Then q will know s@q():-. from the beginning and will never delegate
m@p(a):-.

Convergence also holds for strongly-stratified VWL systems in the presence
of insertions as well as deletions.

Theorem 3.16 (Update). Let (I ,Γ) be a VWL system with strong stratification

σ′ over a finite number of peers. Consider (I+,I−, Γ+,Γ−) where I+, I− are sets

of extensional facts and Γ
+,Γ− are sets of deductive rules. For each run of the

system (I ,Γ), if for some k a given state (Ik ,Γk , Γ̃k) is replaced by (Ik ∪ I+ \ I−,

Γk ∪Γ
+ \Γ−, Γ̃k), then the modified run converges to the convergence state of the

σ′-stratified system (I ∪ I+ \ I−, Γ∪Γ
+ \Γ−).

Proof. First, it is straightforward to show that (I ∪I+\I−,Γ∪Γ
+\Γ−) respects the

constraints of intensional states. Let us recall from the proof of Theorem 3.14
that until the insertion point k, Ik = I and Γk = Γ. So at the end of the timepoint
k, the state is indeed (I ∪ I+ I−, Γ∪Γ

+ \Γ−, Γ̃k). Then observe that the proof
never used the fact that Γ̃ was initially empty, except to prove that the initial
state was intensional. So the proof applies as it is and gives the desired result.
✷

This theorem can obviously be generalized to any sequence of updates. The
final theorem of this section shows that the set of facts computed by aσ′-stratified
system corresponds to the set of facts in the minimal model of a centralized ver-
sion of the system. As in the previous section, we associate a σ′-stratified Web-

damlog system (I ,Γ) with the set ∪p (I (p) ∪Γ(p)) composed of the facts and
rules of all peers. We then transform this set of facts and rules into a standard

46 CHAPTER 3. WEBDAMLOG LANGUAGE

Datalog program by instantiating the variable predicates in the rules and re-
moving rules which violate the typing constraints σ or the strong stratification
σ′. We use cs(I ,Γ) to refer to the resulting Datalog program.

Theorem 3.17 (Centralized). Let (I ,Γ) be aσ′-stratified system with a finite num-

ber of peers and rules in SWL, which converges to (I∗,Γ∗, Γ̃∗), and let Mmi n be the

unique minimal model of the Datalog program cs(I ,Γ). Then

Mmi n =∪p P∗
p,d (I∗(p))

where P∗
p,d is the set of fully local deductive rules in Γ̃

∗(p)∪∪qΓ
∗(q, p).

Proof. Let S0 = (I0,Γ0, Γ̃0) be a strongly stratified VWL system (with strong strati-
fication σ′) which converges to the finite state S∞ = (I∞,Γ∞, Γ̃∞). As the rules in
the Datalog program cs(I0,Γ0) are stratified with respect to σ′ (by construction),
we can be sure that there is a unique minimal model of cs(I0,Γ0). We use Mmi n

to denote this minimal model. Given a run (I0,Γ0, Γ̃0), (I1,Γ1, Γ̃1), (I2,Γ2, Γ̃2) . . .
of our system, we use Pp,d ,i to refer to the set of fully local deductive rules
in Γi (p) ∪∪q Γ̃i (q, p). For ease of reference, we denote by Fi the set of facts
∪p P∗

p,d ,i (Ii (p)). Our aim is to show that Mmi n = F∞.
We first note that the desired equality holds if we consider only extensional

facts. This is because the only rules with extensional heads in Γ0 are extensional
persistence rules. Thus, the extensional facts in F∞ are precisely the original
extensional facts ∪p I0(p). The Datalog program cs(I0,Γ0) will contain these ex-
tensional facts, and will not contain any rules to create new extensional facts,
so the extensional facts in Mmi n will be exactly ∪p I0(p).

It thus remains to show the equality for intensional facts. The proof will pro-
ceed by induction on the strata of facts. In what follows, we will use the integers
0,1,2, . . . to label the strata, with 0 being the lowest stratum. Also, given a set S

of facts, we denote by S[i] the set of facts whose relations belong to strata lower
than or equal to i .

Base Case: Mmi n[0] = F∞[0]

First direction (F∞[0] ⊆ Mmi n[0]). Let us consider some intensional fact r @p(u)
from stratum 0 which belongs to F∞, and hence more precisely to P∗

p,d ,∞(I∞(p)).
We know that the set Pp,d ,∞ consists of fully local deductive rules from Γ∞(p) =
Γ0(p) and delegated body-less rules ∪q Γ̃∞(q, p). Moreover, we have seen in the
proof of Theorem 3.14 that each body-less delegation with head relation in stra-
tum 0 from a peer q results from evaluating the extensional q-facts present in
the initial state using the instantiation of a local rule in Γq which respects σ and
σ′. As the extensional q-facts in Mmi n are precisely those found in the initial

3.4. CONVERGENCE OF WEBDAMLOG 47

state, and all well-typed rules from Γ0(q) respecting σ′ can be found in cs(I0,Γ0),
it follows that the delegated rule is entailed by Mmi n . Thus, all (well-typed and
properly stratified) instantiations of rules in Pp,d ,∞ with heads of stratum 0 are
entailed by Mmi n , and so are all extensional facts in I∞(p). It follows that the
fact r @p(u) must belong to Mmi n .

Second direction (Mmi n[0] ⊆ F∞[0]). Consider some intensional fact r @p(u)
from stratum 0 which belongs to Mmi n . The proof proceeds by induction on the
depth of the proof tree of r @p(u). The base case is when r @p(u) has depth 0,
i.e., it appears explicitly in cs(I0,Γ0). There are two possibilities: either r @p(u) ∈
I0(p) or the rule r @p(u) :- appears in some Γ0(q). In the former case, we know
from the proof of Theorem 3.14 that I∞ = I0, so we must have r @p(u) ∈ F∞. In
the latter case, as we are in an intensional system, the rule r @p(u) :- must be
deductive. Either this rule appears in Γ0(p) (hence Γ∞(p)) or it will be delegated
to p by another peer q at every visit to q , and thus will appear in Γ̃∞(q, p). In
both cases, the rule must belong to Pp,d ,i , hence r @p(u) ∈ P∗

p,d ,i (Ii (p)) ⊆ F∞.

Now suppose the proof tree of fact r @p(u) has depth d+1, and we already have
the result for facts of stratum 0 with proof trees of depth at most d . Let β be
the rule in cs(I0,Γ0) which was used for the last step of the proof of r @p(u). As
(I0,Γ0) is an intensional VWL system, it follows that all rules in (I0,Γ0) are of one
of two types: persistence rules for extensional predicates, or local deductive
rules. Thus, the rule β must be of the form

v Mn+1@vQ(vU n+1) :-

(¬)v M1@q(vU 1), (¬)v M2@q(vU 2), ...(¬)v Mn@q(vU n)

for some rule ρ

Mn+1@Q(U n+1) :-

(¬)M1@q(U 1), (¬)M2@q(U 2), ...(¬)Mn@q(U n)

in Γ0(q) and some valuation v which respects the typing constraints σ and the
strong stratification σ′, and is such that v Mn+1@vQ = r @p. Note in particular
that this means that each of the (ground) relations v M j @q must be extensional
or belong to the same stratum (0) as r @p. If there are any facts from the stratum
0 in the body, then they must use a relation with peer p, and so we would have
q = p (since only local deductive rules are permitted). Otherwise, if q ̸= p, then
only extensional relations may be used in the body. Also note that all atoms
in the body which belong to stratum 0 must not be negated. We know that
the rule β was used to derive the fact r @p(u). This means that there must be
a second valuation v ′ such that v ′v Mn+1@v ′vQ(v ′vU n+1) = r @p(u) and each

48 CHAPTER 3. WEBDAMLOG LANGUAGE

literal (¬)v Mi @q(v ′vU i) is either extensional and satisfied by the set of exten-
sional facts or a positive atom of stratum 0 which has a proof tree of depth at
most k. As F∞ and Mmi n agree on all extensional facts, all extensional liter-
als (¬)v Mi @q(v ′vU i) are satisfied by P∗

q,d ,∞(I∞(q)). For the remaining body

atoms, we use the IH to infer that each atom v Mi @q(v ′vU i) of stratum 0 be-
longs to F∞, and more specifically to P∗

q,d ,∞(I∞(q)). If q = p, then we can

use the rule ρ in Γ∞(p) = Γ0(p) together with the valuation v ′′ = v ′v and the
facts v Mi @p(v ′vU i) ∈ P∗

p,d ,∞(I∞(p)) to obtain r @p(u) ∈ P∗
p,d ,∞(I∞(p)). If q ̸= p,

then we know from above that each v Mi @q(v ′vU i) must be an extensional fact
and it must belong to P∗

q,d ,∞(I∞(q)). It follows that q must delegate the rule

r @p(u) :- to p. The fact that the run has converged to (I∞,Γ∞, Γ̃∞) means that
this delegation must appear in Γ̃∞). It follows that r @p(u) :- belongs to Pp,d ,i ,
hence r @p(u) ∈ P∗

p,d ,i (Ii (p)) ⊆ F∞.

Induction Step: show Mmi n[k +1] = F∞[k +1] assuming Mmi n[k] = F∞[k]

First direction (F∞[k + 1] ⊆ Mmi n[k + 1]). We suppose that F∞[k] ⊆ Mmi n[k].
Let us consider some intensional fact r @p(u) from stratum k+1 which belongs
to F∞, and hence to P∗

p,d ,∞(I∞(p)). We know that the set Pp,d ,∞ consists of
fully local deductive rules from Γ∞(p) = Γ0(p) and delegated body-less rules
from ∪q Γ̃∞(q, p). As for the delegated rules, note that if s@p(w):- appears in
Γ̃∞(q, p), there must exist a rule in Γ∞(q) = Γ0(q) of the form

Mn+1@Q(U n+1) :-

(¬)M1@q(U 1), (¬)M2@q(U 2), ...(¬)Mn@q(U n)

and a valuation v satisfying the typing σ and strong stratification σ′ such that:
v Mn+1@vQ(vU n+1) = s@p(w), each fact v Mi @q(vU i) appearing positively in
the body belongs to P∗

q,d ,∞(I∞(q)) (and hence to F∞), and each negated fact

¬v Mi @q(vU i) in the body does not appear in P∗
q,d ,∞(I∞(q)) (nor a fortiori in

F∞). Because v respects the strong stratification σ′, and q ̸= p, we know that ev-
ery relation v Mi @q is either extensional or must belong to a stratum k or less.
From the IH, we know that Mmi n and F∞ agree on all intensional facts appear-
ing in strata up to and including k, and we have seen earlier in the proof that the
same is true for extensional facts. It follows that each fact v Mi @q(vU i) appear-
ing positively in the body belongs to Mmi n , and each negated fact¬v Mi @q(vU i)
in the body does not appear in Mmi n . Moreover, we know that the instantiated
rule used to produce the delegation is entailed by Mmi n . Thus, we have that
Mmi n entails the delegation s@p(w):-. Thus, all (well-typed and properly strat-
ified) instantiations of rules in Pp,d ,∞ whose head relations are in strata at k +1

3.4. CONVERGENCE OF WEBDAMLOG 49

are entailed by Mmi n . Moreover, we know that only (well-typed and stratified)
instantiations of rules in Pp,d ,∞ with head relations in stratum k + 1 or lower
are used in the production of r @p(u). Finally, we know that all extensional p-
facts in I∞(p) = I0(p) belong to Mmi n . It follows that the fact r @p(u) belongs to
Mmi n .

Second direction (Mmi n[k + 1] ⊆ F∞[k + 1]). Consider some intensional fact
r @p(u) ∈ Mmi n from the stratum k+1. Asσ′ provides a stratification of cs(I0,Γ0),
it is possible to find a proof tree for r @p(u) whose leaves use only (negations
of) facts in Mmi n belonging to strata ⩽ k. We will thus again proceed by induc-
tion on the depth of such a proof tree. The base case is when the proof tree for
r @p(u) has depth 0, i.e., it appears explicitly in cs(I0,Γ0). We can then proceed
as in the base case for stratum 0. Suppose next that we have already shown the
result for intensional facts in Mmi n belonging to stratum k+1 and having proof
trees from facts in strata ⩽ k of depth at most d . Consider r @p(u) ∈ Mmi n from
the stratum k +1 with a proof tree of depth d +1. Let β be the rule in cs(I0,Γ0)
which was used for the last step of the proof. As we saw earlier, β must be of the
form

v Mn+1@vQ(vU n+1) :-

(¬)v M1@q(vU 1), (¬)v M2@q(vU 2), ...(¬)v Mn@q(vU n)

for some rule ρ

Mn+1@Q(U n+1) :-

(¬)M1@q(U 1), (¬)M2@q(U 2), ...(¬)Mn@q(U n)

in Γ0(q) and some valuation v which respects the typing constraints σ and
the strong stratification σ′ and such that v Mn+1@vQ = r @p. It follows that
each (ground) relation v Mi @q is either extensional or an intensional relation
which belongs to a stratum lower than or equal to k + 1. We also know that
β was used to derive the fact r @p(u), which implies the existence of a sec-
ond valuation v ′ such that v ′v Mn+1@v ′vQ(v ′vU n+1) = r @p(u) and each literal
(¬)v Mi @q(v ′vU i) is either (i) a (possibly negated) extensional fact which is sat-
isfied by Mmi n , (ii) a (possibly negated) intensional fact from some stratum ⩽ k

which holds in Mmi n , or (iii) a non-negated intensional fact from stratum k +1
with a proof tree of depth at most k. We know from earlier in the proof that F∞

and Mmi n agree on extensional facts. This means that every non-negated exten-
sional fact v Mi @q(v ′vU i) belongs to F∞ (more precisely P∗

q,d ,∞(I∞(q))) and ev-

ery negated extensional fact ¬v Mi @q(v ′vU i) does not belong to P∗
q,d ,∞(I∞(q)).

For intensional facts from lower strata (k or less), we use the induction hy-
pothesis (from the initial induction over strata) to obtain F∞[k] = Mmi n[k]. From

50 CHAPTER 3. WEBDAMLOG LANGUAGE

this we can deduce that an intensional fact v Mi @q(v ′vU i) of stratum⩽ k which
appears positively in the body of our rule must belong to F∞ (or more specifi-
cally P∗

q,d ,∞(I∞(q))), and if it appears negatively in the rule, then it will not be-

long to P∗
q,d ,∞(I∞(q)).

Finally, if we have a non-negated intensional fact v Mi @q(v ′vU i) from stra-
tum k +1 with a proof tree of depth at most k, then using the (local) IH, we ob-
tain v Mi @q(v ′vU i) ∈ F∞, and hence v Mi @q(v ′vU i) ∈ P∗

q,d ,∞(I∞(q)). If we are
in the case where p = q , then we can use the rule ρ in Γ∞(p) = Γ0(p) together
with the valuation v ′′ = v ′v and the facts v Mi @p(v ′vU i) ∈ P∗

p,d ,∞(I∞(p)) to ob-

tain r @p(u) ∈ P∗
p,d ,∞(I∞(p) ⊆ F∞). If q ̸= p, then because we respect the strong

stratification, we know that each v Mi @q(v ′vU i) must be either an extensional
fact or an intensional fact from a stratum ⩽ k. In both cases, we have shown
above that v Mi @q(v ′vU i) belongs to P∗

q,d ,∞(I∞(q)) when v Mi @q(v ′vU i) ap-

pears positively in the rule, and v Mi @q(v ′vU i) does not belong to P∗
q,d ,∞(I∞(q))

when it is appears negatively. Thus, the body of the rule is satisfied by P∗
q,d ,∞(I∞(q)).

It follows that q must delegate the rule r @p(u) :- to p. The fact that the run has
converged to (I∞,Γ∞, Γ̃∞) means that this delegation must appear in Γ̃∞). It
follows that r @p(u) :- belongs to Pp,d ,i , hence r @p(u) ∈ P∗

p,d ,i (Ii (p)) ⊆ F∞. ✷

Chapter 4

Webdamlog rule engine

In the present chapter, we consider the management of data and knowledge
(i.e., programs) over a network of autonomous peers using the deduction sup-
ported by a Webdamlog rule engine. From a system viewpoint, the different
actors are autonomous and heterogeneous in the style of P2P [AP07a, FHM05].
However, we do not see the system we developed as an alternative for manag-
ing information to existing centralized network services such as Facebook or
Flickr. Rather, we view the system as the means of seamlessly integrating dis-
tributed knowledge residing in any of these services, as well as in a wide variety
of systems managing personal or social data. The system takes advantage of a
datalog engine to implement the Webdamlog language of Chapter 3, to support
the distribution of both data and knowledge (i.e., programs) over a network of
autonomous peers. The main contribution is our implementation of an engine
to process efficiently Webdamlog, introduced in [7] and shown in a demonstra-
tion in [4]

Organization The chapter is organized as follows. In Section 4.1, we motivate
our choice for the datalog engine Bud. In Section 4.2, we explain the imple-
mentation on top of Bud and slight departures from the model previously in-
troduced in Section 3.1. Then in Section 4.3, we show how to apply known opti-
mization techniques to Webdamlog. Also we introduce, in Section 4.4, a novel
optimization technique for highly-dynamic programs. In the last section 4.5,
we conclude with performance evaluation of the engine.

4.1 Datalog inside

Datalog evaluation has been intensively studied, and several open-source im-
plementations are available. We chose not to implement yet another datalog

51

52 CHAPTER 4. WEBDAMLOG RULE ENGINE

engine, but instead to extend an existing one. From the long list of engines
still supported, see [LFWK09] for benchmarking of some of them, we hesitated
between two open-source systems that are currently being supported, namely,
Bud [ACHM11] from Berkeley University and IRIS [oIa] from Innsbruck Univer-
sity.

• The IRIS system is implemented in Java and supports the main strategies
for efficient evaluation of standard local datalog such as semi-naive eval-
uation [AHV95], Magic Sets [BMSU86] and Query Sub Query [Vie86]. Also
it support negation.

• The Bud system also implements the semi-naive evaluation however it is
implemented in the Ruby scripting language, which seemed less promis-
ing from a performance viewpoint. Nevertheless Bud provides technol-
ogy for asynchronous communication between peers, hence it supports
distributed datalog evaluation. And above all it focuses on non-mono-
tonicity and provides efficient cache optimizations to support updates.
That is an essential feature for Webdamlog extensional relations.

We finally decided in favor of Bud, both because of its support for asynchronous
communication, and because its scalability has been demonstrated in real-life
scenarios such as reimplementing with comparable performance Internet router
and Hadoop File System as shown in [ACC+10, oIb]. In addition Bud is a very
active project at this time and a follow-up of multiple previous successful pro-
totypes such as P2 [LCH+05] from the Berkeley team. IRIS seemed less active
since 2011 although it supports negation that Bud does not provide. We chose
in favor of efficient distribution even if it meant giving up negation.

4.2 Connection between Bud and Webdamlog

4.2.1 Webdamlog computation on Bud

The Bud system supports a powerful datalog-like language introduced in [ACHM11].
Indeed, Bud is a distributed datalog engine with updates and asynchronous
communications.

In the Webdamlog engine, a computation consists semantically of a sequence
of stages, with each stage involving a single peer. Each stage of a Webdamlog

peer computation is in turn performed by a three-step Bud computation, de-
scribed next. Note that we use the word stage for Webdamlog and step for Bud:

. . .
Stage at peer p Stage at peer q

. . .
Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

4.2. CONNECTION BETWEEN BUD AND WEBDAMLOG 53

The 3 steps of a Webdamlog stage are as follows:

1. Inputs are collected including input messages from other peers, clock in-
terrupts and host language calls.

2. Time is frozen; the union of the local store and of the batch of events
received since the last stage is computed, and a Bud program is run to
fixpoint.

3. Outputs are obtained as side effects of the program, including output
messages to other peers, updates to the local store, and host language
callbacks.

Observe that a fixpoint computation is performed at Step 2 by the local dat-
alog engine (namely the Bud engine). This computation is based on a fixed
program with no deletion over a fixed set of extensional relations and rules. In
Step 3, deletion messages may be produced, along with updates to the set of
rules and to the set of extensional relations (for different reasons, which we will
explain further). Note that all this occurs outside the datalog fixpoint computa-
tion.

Relations appearing in the rules are implemented as Bud collections. Collec-
tions are the data structure for relations in Bud as in-memory key-values pairs.
Bud distinguishes between three kinds of key-value sets:

1. A table collection stores a set of facts. A fact is deleted only when an
explicit delete order is received. Tables are used to support Webdamlog

extensional persistent relations. Remember that in the Webdamlog lan-
guage in Section 3.1, a persistent relation is obtained by adding this rule:

r @p(U) :- r @p(U),¬del .r @p(U) (4.1)

Hence, in the language, persistent or non-persistent relations differ only
by the presence or absence of this rule. However in the implementation,
these are completely different data structures. Thus a relation declared
as persistent cannot be mutated into a non-persistent.

In the implementation, due to the absence of support of negation in the
Bud engine, Rule 4.1 is not evaluated during a single step of Bud compu-
tation but spans to two Webdamlog stages. This is a departure from the
pure Webdamlog syntax that is caused by the use of Bud.

2. A scratch collection is used for storing results of intermediate computa-
tions. We use scratch collections to implement Webdamlog local inten-
sional relations. The collections are emptied at Step 1 and receive facts
during fixpoint computation at Step 2.

54 CHAPTER 4. WEBDAMLOG RULE ENGINE

3. A channel collection provides support for asynchronous communications.
It records facts that have to be sent to other peers. At Step 1, it con-
tains all the messages and rules received from other peers since the last
stage then it is emptied at Step 3. The channel mimics the behavior of
non-persistent extensional relations of Webdamlog since it consumes the
facts.

As in Webdamlog, facts in a peer are consumed by the engine at each firing
of the peer (each stage). To make facts persistent, they have to be re-derived
by the peer at each stage. This is captured in our implementation by assuming
that rules re-derive extensional facts implicitly, unless a deletion message has
been received.

We observe two subtleties that lead us to not fully adopt the original seman-
tics of Webdamlog:

1. Since communications are asynchronous, there is no guarantee in Web-

damlog as to when a fact written to a channel will be received by a re-
mote peer. This is a departure from the original semantics of Webdamlog,
which considered, for simplicity, that messages are transmitted instanta-
neously. We depart from the original semantics because it imposes some
form of synchronization, that would drastically hinder performance.

2. A subtlety is that rules with variables as relation or peer names are not
installed in one stage, they are processed in several stages to bound vari-
ables one by one. For non-local rules, delegations are created as stated in
the model and sent to remote peers, however for local rules a delegation
is sent to itself at a future stage. This is a slight departure from the original
semantics of Webdamlog that we do not see as important.

4.2.2 Implementing Webdamlog rules

We now describe how Webdamlog rules are implemented on top of Bud. We
Distinguish between 4 cases. This brings us to revisit the semantics of Web-

damlog (from Chapter 3) with a focus on implementation. As in Chapter 3,
whether a rule in a peer p is local (i.e., all relations occurring in the rule body
are p-relations) plays an important role. We consider 4 different cases of im-
plementation for local-rules, depending on the type of the relation in the head,
namely (A-D). We consider one case for non-local rules, namely (E). The last
case (F) focuses on the use of variables for relation and peer names. For the
first 5 cases, we ignore such variables.

4.2. CONNECTION BETWEEN BUD AND WEBDAMLOG 55

A-B-C. Simple local rules In these three cases, the relations in the body are
local, and depending on the type of the relations in the head, Webdamlog rules
can be directly supported by simple translation into Bud rules:

A fully local deductive with local intensional head. It is standard local datalog
evaluation.

B local updates with local extensional head. It is local active rules correspond-
ing to datalog with updates. The non-monotonic extension of datalog.

C remote updates with remote extensional head. This corresponds to sending
messages i.e. it is distributed datalog.

Note that, according to the semantic of Webdamlog, the behavior of these three
different kinds of rules are not the same hence we use a different translation for
each case. Let us consider a generic rule with relation h in the head and i p-
relations bi in the body. Bud provide three different operator to support these
rules ; namely “<=”, “<+” and “< ”:

Instantaneous h@p(X,Y) <= b1@p(X,Y), . . . During Step 2, the rule are re-
peatedly evaluated i.e. facts derived during the current stage are reused
until a fixpoint is reached. This corresponds to the Case A and intensional
relations are materialized to fixpoint.

Deferred h@p(X,Y) <+ b1@p(X,Y), . . . The facts produced during Step 2 are
inserted in the head collection for the next Webdamlog stage. Hence this
is the immediate consequence operator. The main difference with the
previous operator occurs especially when the rule is recursive. This im-
plements Case B. Remark that if the head relation is a scratch collection,
this operator will derive facts for the next stage that will be deleted at
Step 1 of next stage according to the behavior of scratch collections. This
operator has a counter part denoted with “<-” that sends delete messages
for the next stage. Both operators are meant to deal with non-monoto-
nicity that is why there effects occur outside the fixpoint computation.
Notice that in Bud deletion messages (sent by “<-”) are processed before
insertion messages (sent by “<+”).

Asynchronous h@q(X,Y) <∼ b1@p(X,Y), . . . In Bud, this operator is used to
send facts to an external process: a terminal, a key-value store or commu-
nication channel. In the Webdamlog engine, the head relation will be a
Bud channel collection connected to a remote peer. The facts produced
during Step 2 will be sent via networking protocols, namely UDP in this
implementation. A set of facts produced during Step 2 is written on the

56 CHAPTER 4. WEBDAMLOG RULE ENGINE

communication channel at Step 3. Due to asynchronism of network com-
munication, Bud does not guarantee that two facts written by p at a given
stage, will be received together. However we will see that Webdamlog en-
gine will implement a mechanism to sends indivisible packets of facts at
each stage. This implements the Case C.

D. Local with non-local intensional head Although it uses distributed data-
log rules, Bud does not really support intensional relations. That is why from an
implementation viewpoint, this case is the more complex. We illustrate it with
an example. Consider an intensional relation s0@q defined in the distributed
setting by the following two rules:

[at p1] s0@q(X,Y) :- r1@p1(X,Y)
[at p2] s0@q(X,Y) :- r1@p2(X,Y)

Intuitively, the two rules specify a view relation s0@q at q that is the union of
two relations r1@p1 and r1@p2 from peers p1 and p2, respectively. Consider a
possible naive implementation that would consist in materializing relation s0

at q, and having p1 and p2 send update messages to q. Now suppose that a tuple
〈0,1〉 is in both r1@p1 and r1@p2. Then it is correctly in s0@q. Now suppose that
this tuple is deleted from r1@p1. Then a deletion message is sent to q, resulting
in wrongly deleting the fact from s0@q.

The problem arises because the tuple 〈0,1〉 had originally two reasons to
be in s0, and only one of the reasons disappeared. To avoid this problem, one
could record the provenance of the fact 〈0,1〉 in s0@q. In Section 4.4, we will
see a general approach to tracking provenance in our setting, and to using it as
basis for performance optimization. For now, the following Bud rules is imple-
mented at p1, p2 to correctly support the two rules:

[at p1] s0p1@q(X,Y):- r1@p1(X,Y)
[at p2] s0p2@q(X,Y):- r1@p2(X,Y)
[at s] s0@q(X,Y):- s0p1@q(X,Y)
[at s] s0@q(X,Y):- s0p2@q(X,Y)

Note that relations s0p1 and s0p2 may be either intensional, in which case
the view is computed on demand, or extensional, in which case the view is ma-
terialized.

E. Non-local rules We consider non-local rules with extensional head. (Non-
local rules with intensional head are treated similarly.) An example of such a
rule is:

[at p] r0@q(X0):- r1@q1(X1),. . . ,ri@qi(Xi),. . .

4.2. CONNECTION BETWEEN BUD AND WEBDAMLOG 57

with q1= . . . = qi−1 = p, qi = q ̸= p, and with each Xj denoting a tuple of terms. If
we consider atoms in the body from left to right, we can process at p the rule
until we reach ri@q(Xi). Peer p does not know how to evaluate this atom, but it
knows that the atom is in the realm of q. Therefore, peer p rewrites the rule into
two rules, as specified by the formal definition of delegation in Webdamlog:

[at p] mid@q(Xmid) :- r1@p(X1),. . . ,ri−1@p(Xi−1)

[at q] r0@q(X0) :- mid@q(Xmid), ri@q(Xi),. . .

where mid identifies the message, and notably encodes, (i) the identifier of the
original rule, (ii) that the rule was delegated by p to q, and (iii) the split position
in the original rule. The tupleXmid includes the variables that are needed for the
evaluation of the second part of the rule, or for the head. Observe that the first
rule (at p) is now local. If the second rule, installed at q, is also local, no further
rewriting is needed. Otherwise, a new rewriting happens, again splitting the
rule at q, delegating the second part of the rule as appropriate, and so on.

Observe that an evolution of the state of p may result in installing new rules
at q, or in removing some delegations. Deletion of a delegation is simply cap-
tured by updating the predicate guarding the rule. Insertion of a new delega-
tion modifies the program at q. Note that in Bud the program of a peer is fixed,
and so adding and removing delegations is a novel feature in Webdamlog. Im-
plementing this feature requires modifying the Bud program of a peer. This
happens during Step 1 of the Webdamlog stage.

F. Relation and peer variables Finally, we consider relation and peer variables.
In all cases presented so far, Webdamlog rules could be compiled statically into
Bud rules. This is no longer possible in this last case. To see this, consider an
atom in the body of a rule. Observe that, if the peer name in this atom is a
variable, then the system cannot tell before the variable is instantiated whether
the rule is local or not. Also, observe that, if the relation name in this atom is
a variable, then the system cannot know whether that relation already exists or
not. In general, we cannot compile a Webdamlog rule into Bud until all peer
and relation variables are instantiated.

To illustrate this situation more precisely, consider a rule of the form:

Rule 1

r0@p(X0):- r1@p($X), . . . ,$X@p(Xi),. . . ,

where r0@p is extensional and $X is a variable. This particular rule is relatively
simple since, no matter how the variable is instantiated, the rule falls into the
simple case B. However, it is not a Bud rule because of the variable relation
name $X.

58 CHAPTER 4. WEBDAMLOG RULE ENGINE

Recall that Webdamlog rules are evaluated from left to right, and a con-
straint is that each relation and peer variable must be bound in a previous atom.
(This constraint is imposed by the language.) Therefore, when we reach the
atom $X@p(Xi), the variable $X has been instantiated.

To evaluate this rule, we use two Webdamlog stages of the peer. In the first
stage, we bind $X with values found by instantiating r1@p($X). Suppose that
we find two values for $X, say t1 and t2. We wait for the next stage to introduce
new rules (there are two new rules in this case). More precisely, new rules are
introduced during Step 1 of the Webdamlog computation of the next stage. In
the example, the following rules are added to the Bud program at p:

Rule 2

r0@p(X0):- t1@p(Xi),. . . ,

r0@p(X0):- t2@p(Xi),. . . ,

Remark that it is a slight departure from the Webdamlog language men-
tioned in Section 4.2.1. Even if the rule 1 is local, variables force the rule 2 to
be evaluated in the next stage. Hence the effects of the rule 1 are postponed.
Indeed this can be seen as a peer installing a delegation to itself.

Observe that, even in the absence of delegation, having variable relation
and peer names allows the Webdamlog engine to produce new rules at run time,
possibly leading to the creation of new relations. This is a distinguishing feature
of our approach, and is novel to Webdamlog and to our implementation.

This example uses a relation name variable. Peer name variables are treated
similarly. Observe that having a peer name variable, and instantiating it to thou-
sands of peer names, allows us delegating a rule to thousands of peers. This
makes distributing computation very easy from the point of view of the user,
but also underscores the need for powerful security mechanisms. The topic of
access control is still being investigated ; see [1].

4.3 Optimization of the evaluation

To make the approach feasible, we rely intensively on some known optimiza-
tion techniques. We briefly mention them next and see how they fit in the Web-

damlog picture.

Differential technique

Consider a peer p who has the rule s@q(x, y) :- r @p(x, y) with s@q an exten-
sional relation. Suppose that r @p is a very large relation that changes frequently.
Each time we visit p, we have to send to q the current version of r @p, say a set

4.3. OPTIMIZATION OF THE EVALUATION 59

Kn of tuples. This is a clear waste of communication resources. It is preferable
to send the symmetric difference of r @p, i.e., send a set of updates ∆ with the
semantics that Kn =∆(Kn−1), since q already knows Kn−1. If s@q is intensional,
we face a similar issue; it is preferable to send the new set of delegation rules as
∆ rather than sending the entire set.

Seed-based delegation with the differentiation technique

Consider again the rule:

at p: m@q() :- m1@p($x), m2@p’($x)

Now suppose that m1@p(ai) holds for i = [1..1000]. We need to install 1000
rules. However, in this particular case, we can install a single rule at p ′ and
send many facts:

at p’: m@q() :- seedr,1,p @p’($x), m2@p’($x)
at p’: seedr,1,p @p’(ai). (for each i)

Note that it now becomes natural to use a differential technique to maintain
delegation. In particular, if the delegation from p to q does not change, there
is no need to send anything. If it does, one needs only to send the delta on
seedr,1,p @p ′. Observe that we have replaced the task of installing and unin-
stalling delegation rules by that of sending insertion and deletion messages in
a persistent extensional (seed) relation that controls a rule.

Query-subquery and delegation

Consider the following example of a rule at Sue where photos@Sue is inten-
sional:

[at Sue]

photos@Sue($name,$pic) :- photos@Alice($name,$pic)

photos@Sue($name,$pic) :- photos@Bob($name,$pic)

This rule says that to find the photos of Sue, one needs to ask the photos of
Alice and Bob. The formal semantics says that we install (upload) the rule at
Alice and Bob which will result in sending to Sue all the photos of Alice and
Bob. However, observe that this has no effect on the state since photos@Sue

is only intensional. This network traffic may therefore be considered a waste of
resources. An optimizer may decide not to prefetch the photos of Alice and Bob
to Sue’s peer. Now suppose that Sue asks for photos where she’s appear:

query@Sue($X) :- photos@Sue("Sue",$X)

60 CHAPTER 4. WEBDAMLOG RULE ENGINE

where query is an extensional predicate. Now obtaining photos from Alice and
Bob changes the state. So the optimizer will install the rules:

[at Alice]

photos@Sue("Sue",$pic) :- photos@Alice("Sue",$pic)

[at Bob]

photos@Sue("Sue",$pic) :- photos@Bob("Sue",$pic)

Observe that the optimizer performed some form of resolution in the spirit
of query-subquery [Vie86, AAHM05a] or rewriting in the Magic Set style [BMSU86]
(see also [AHV95]). Indeed, the entire management of delegation can be opti-
mized using these techniques. Note that strictly speaking this may change the
semantics of applications: the derivation of some facts may take a little longer
than if all the delegations have been installed in advance.

4.4 Optimization for view maintenance

As already mentioned, we are concerned with a highly dynamic context where
peer states change, and where peers may come and go. This is a strong de-
parture from datalog-based systems such as Bud that assume the set of peers
and rules to be fixed. In this section, we discuss how incremental state mainte-
nance is performed efficiently in Webdamlog using a novel kind of a provenance

graph.

4.4.1 Provenance graphs

We use provenance graphs to record the derivations of Webdamlog facts and
rules, and to capture fine-grained dependencies between facts, rules, and peers.
We build on the formalism proposed in [GKT07], where each tuple in the database
is annotated with an element of a provenance semiring, and annotations are
propagated through query evaluation. Intuitively, semiring addition corresponds
to alternative derivations of a tuple, while semiring multiplication corresponds
to joint derivations. Provenance may be represented in the form of a polyno-
mial, or as a graph. We use graphs, because this representation is typically more
compact [ADD+11, GKIT10]. Provenance graphs have typed labeled nodes that
correspond to provenance tokens and to semiring operations, namely, or-node

and and-node.
Provenance graphs can be used for a number of purposes such as explain-

ing query results or system behavior, and for debugging. Our primary use of
provenance is to optimize performance of Webdamlog evaluation in presence

4.4. OPTIMIZATION FOR VIEW MAINTENANCE 61

of deletions. We are also currently investigating the use of provenance graphs
for enforcing access control and for detecting access control violations.

Provenance graphs have already been considered for datalog evaluation in
[GKIT10, ZST+10]. The originality of our approach is as follows:

1. Provenance to optimize deletions via deletion propagation. Systems like
Orchestra [GKIT10] already use provenance information for distributed
datalog evaluation. However in their case, provenance information is cen-
tralized. Like ExSPAN [ZST+10], we maintain provenance information in
a distributed manner.

2. In our system, unlike in previous approaches, provenance tokens are as-
signed to both facts and rules, since rules may be added or removed dy-
namically. At a given stage, the graph allows identifying the actual fix-
point program that should be run. (Recall that the program changes.)
Note that this comes as a complementary technique to optimizations al-
ready performed by Bud, such as the semi-naive optimization, which as-
sumes that the fixpoint program is fixed.

3. Another distinguishing feature is our use of peer nodes. In a peer p, a
large number of rules and facts may come from another peer, say q. This
information is recorded, allowing us to react efficiently to q leaving and
re-joining the network.

We next illustrate by examples the notion of provenance graph used in our
system.

Example 1. Let rn@p be a relation that stores a set of relation names. Consider
the following rule that deploys a rule for each relation name in rn@p:

[R01 at p] $X@p(true) :- rn@p($X)

We will refer to this rule by its identifier R01. Suppose g1 and g2 are in rn@p.
Then R01 installs two new rules:

[R01g1 at p] g1@p(true) :-
[R01g2 at p] g2@p(true) :-

By a slight abuse of notation, we use rule identifiers to denote the corre-
sponding provenance tokens. Figure 4.1 represents the provenance graph for
our example. (Ignore for now the part inside the dashed box).

Rectangular nodes represent the provenance of facts, oval nodes represent
the provenance of rules, and pentagons represent peer labels. Circular nodes

62 CHAPTER 4. WEBDAMLOG RULE ENGINE

represent operations of the provenance semiring [GKT07]. The or-node repre-
sents a disjunction, i.e., alternative ways of deriving the node to which it is con-
nected with an outgoing edge. On the other hand, the and-node represents a
conjunction: All its in-going edges are needed for the derivation.

rn@p(g1)

+

x x

+

+ ++

P

rn@p(g2)

+

x

+

x

+

Peer qPeer p

Figure 4.1: Provenance graph

Example 2. In Example 1, the provenance graph is fully stored at peer p. Now
consider another rule:

[R02 at p] $X@q(true) :- rn@p($X)

Its execution leads to installing at q the following two rules:

[R02g1 at q] g1@q(true) :-
[R02g2 at q] g2@q(true) :-

Note that now these rules are outside of p (in q). They correspond to the part of
the graph in Figure 4.1 inside a dashed box.

Unlike provenance graph in systems such as ExSPAN [ZST+10] or Orches-
tra [GKIT10, ADD+11], rules are not labels of edges between nodes storing facts.
Instead the rules are recorded as the content of nodes of the graph. Therefore,
we can keep their provenance using the same representation as we did for facts.
This is necessary because Webdamlog rules may be added or deleted at run

4.4. OPTIMIZATION FOR VIEW MAINTENANCE 63

time either by other rules with variables in peer and relation name, or by dele-
gation from remote peer.

4.4.2 Deletions

When a peer starts a new stage, it may have to process deletion requests that
came via the network channels. These deletions are performed just before run-
ning the fixpoint. Provenance graphs turn out to be essential for supporting
these deletions, because they allow us deleting facts and rules that have been
invalidated by the deletions. To do this, when we delete a fact or a rule, we
remove its corresponding node from the provenance graph and propagate the
deletion throughout the graph. A node is deleted when it loses its last proof of
provenance.

4.4.3 Running the fixpoint

The Bud engine evaluates the fixpoint using the semi-naive algorithm [AHV95],
i.e., Bud saturates one stratum after another according to a stratification given
by the dependency graph. The dependency graph is a directed hyper-graph with
relations as node and an hyper-edge from relations qi to p if there is a rule in
which all qi relations appear in the body and p in the head. Since this is classic
material, we omit the details, but observe that as rules are added or removed at
run-time (as in Webdamlog), the program evolves between fixpoint steps (but
not within) and so does the dependency graph. The Webdamlog engine pushes
further the differentiation technique that serves as basis of the semi-naive al-
gorithm. Although in the Webdamlog semantic, facts are consumed and pos-
sibly re-derived, it would be inefficient to recompute the proof of existence of
all the facts at each stage. Between two consecutive stage, each relation keeps
a cache of its previous content which could be invalidated by Webdamlog if a
newly installed rule creates a new dependency for this relation. Note that to
some extent, Bud is already performing this cache invalidation propagation for
facts adding that we adapt to fit Webdamlog semantic. This incremental opti-
mization across stages allows us to run the fixpoint computation only on the
relations that may have changed since the previous stage.

The deletion/reinsertion of a single piece of information may have tremen-
dous impact on a peer. Consider for instance peer p that has many rules and
facts, the existence of which depends on peer q. Now suppose that q is a smart-
phone that is often disconnected and re-connected. Peer p must update its
knowledge base in response to a change in q’s connectivity status, and such up-
dates may be costly. We can use the provenance graph at p, marking the node
corresponding to q as switched off. As a consequence, a large portion of the

64 CHAPTER 4. WEBDAMLOG RULE ENGINE

provenance graph becomes deactivated, and can be reactivated easily when q

reconnects.
This approach may be seen as a generalization of the differential idea used

in the semi-naive technique. The semi-naive technique defines the new state
Inew as Iold ∪∆, so only ∆ needs to be sent. Intuitively, the deletion of q should
be interpreted as “delete q and record as Iol d ,q all the information that depends
on q”. An insertion of q now also requests reinstalling Iol d ,q .

4.5 Performance evaluation

The goal of the experimental evaluation is to verify that Webdamlog programs
can be executed efficiently. We show here that rewriting and delegation can be
implemented efficiently.

In the experiments, we used synthetically generated data. All experiments
were conducted on up to 50 Amazon EC2 micro instances, with 2 Webdam-

log peers per instance. Micro-instances are virtual machines with two process
units, Intel(R) Xeon(R) CPU E5507 @2.27GHz with 613 MB of RAM, running
Ubuntu server 12.04 (64-bit). All experiments were executed 4 times with a
warm start. We report averages over 4 executions.

The examples are inspired by an implementation of the motivating example
described in Section 1, in which friends of Alice and Bob are making a photo al-
bum for them as a wedding present. This example is representative of a number
of real tasks where many peers collaborate by sharing information. The experi-
ments are designed to capture the salient features of such applications.

The only simplification for the purpose of the experiments is that we as-
sume, to simplify, that each friend keeps his photos on his peer. We work with
3 designated peers representing Alice, Bob and Sue, and with a varying num-
ber of peers representing friends of Alice and Bob. Peers alice and bob each
contain an extensional relation friends($name). The number of facts in these re-
lations allows controlling the degree of distribution. Each peer representing a
friend of Alice or Bob contains two extensional relations: photos($photoId) and
features($photoId,$tag), storing, respectively, the ids of photos and the tags de-
scribing the contents of the photos.

4.5.1 Cost of delegation

In this section, the focus is on measuring Webdamlog overhead in dealing with
delegations. Recall the Bud steps performed by each peer at each Webdamlog

stage, described in Section 4.2.1. We can break down each step into Webdam-

log-specific and Bud-specific tasks as follows:

4.5. PERFORMANCE EVALUATION 65

1. Inputs are collected

(a) Bud reads the input from the network and populates its channels.

(b) Webdamlog parses the input in channels and updates the depen-
dency graph with new rules. The dependency graph is used to con-
trol the rules that are used in the semi-naive evaluation (see Sec-
tion 4.4.3).

2. Time is frozen

(a) Bud invalidates each ∆ (used by the semi-naive evaluation) that has
to be reevaluated because it corresponds to a relation that may have
changed.

(b) Webdamlog invalidates ∆ according to program updates. Moreover,
Webdamlog propagates deletions. (Recall that the semi-naive evalu-
ation deals only with tuple additions.)

(c) Bud performs semi-naive fixpoint evaluation for all invalidated re-
lations, taking the last ∆ for differentiation.

3. Outputs are obtained

(a) Webdamlog builds packets of rules and updates to send.

(b) Bud sends packets.

We report the running time of Webdamlog as the sum of Steps 1b, 2b and 3a,
and the running time of Bud as the sum of Steps 1a, 2a, 2c and 3b. All running
times are expressed in percentage of the total running time, which is measured
in seconds. For each experiment, we will see that the running time of Webdam-

log-specific phases is reasonable compared to the overall running time.
For the experiments in this section, we use Webdamlog rules involving only

extensional relations, both in the head and in the body. We also support rules
with intentional relations in the head and in the body. But for such rules, an
essential optimization consists in deriving only the relevant data and delegated

rules. We intend to conduct experiments with such rules when our system sup-
ports optimizations in the style of Magic Set.

Non-local rules

In the first experiment, we evaluate the running time of a non-local rule with an
extensional head. Rules of this kind lead to delegations. We use the following
rule:

66 CHAPTER 4. WEBDAMLOG RULE ENGINE

[at alice]

join@sue($Z) :- rel1@alice($X,$Y), rel2@bob($Y,$Z)

This rule computes the join of two relations at distinct peers (rel1@alice and
rel2@bob), and then installs the result, projected on the last column, at the third
peer (join@sue). Relations rel1@alice and rel2@bob each contain 1 000 tuples
that are pairs of integers, with values drawn uniformly at random from the 1 to
100 range. In the next table, we report the total running time of the program at
each peer, as well as the break-down of the time into Bud and Webdamlog.

Webdamlog Bud total
alice 10.8% 89.2% 0.10s
bob 4.0% 96.0% 0.87s
sue 0.7% 99.3% 0.02s

The portion of the overall time spent on Webdamlog computation on alice

is fairly high: 10.8%. This is because that peer’s work is essentially to delegate
the join to bob. Peer bob spends most of its time computing the join, a Bud

computation. Peer sue has little to do. As can be seen from these numbers, the
overhead of delegation is small.

Relation and peer variables

In the second experiment, we evaluate the execution time of a Webdamlog pro-
gram for the distributed computation of a union. The following rule uses rela-
tion and peer variables and executes at peer sue:

[at sue]

union@sue($X) :- peers@sue($Y,$Z), $Y@$Z($X)

The relation peers@sue contains 12 tuples corresponding to 3 peers (includ-
ing sue) with 4 relations per peer. Thus, the rule specifies a union of 12 relations.
Each relation participating in the union contains 1 000 tuples, each with a sin-
gle integer column, and with values for the attribute drawn independently at
random between 1 and 10 000.

Webdamlog Bud total
sue 9.9% 90.1% 1.04s

remote1 1.1% 98.9% 0.04s
remote2 1.3% 98.7% 0.04s

Observe that sue does most of the work, both delegating rules and also com-
puting the union. The Webdamlog overhead is 9.9%, which is still reasonable.
The running time on remote peers is very small, and the Webdamlog portion of
the computation is negligible.

4.5. PERFORMANCE EVALUATION 67

20 40 60 80 100

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

% of matched facts

w
ai

tin
g

tim
e

at
 S

ue
 (

se
c)

QSQ evaluation
full materialization

Figure 4.2: Distributed QSQ optimization

QSQ-style optimization

In this experiment, we measure the effectiveness of an optimization that can
be viewed as a distributed version of query subquery (QSQ) [Vie86], where only
the relevant data are communicated at query time. More precisely, we consider
the following view union2 on peer sue, defined as the union of two relations.

[at sue]

union2@sue($name,$X) :- photos@alice($name,$X)

union2@sue($name,$X) :- photos@bob($name,$X)

Suppose we want to obtain the photos of Charlie, i.e. the tuples in union2 that
have the value “Charlie” for first attribute. We vary the number of facts in
photos@alice and photo@bob that match the query. We compare the cost of
materializing the entire view to answer the query to that of installing only the
necessary delegations computed at query time to compute the answer.

68 CHAPTER 4. WEBDAMLOG RULE ENGINE

Results of this experiment are presented in Figure 4.2. We report the wait-
ing time at sue. As expected, QSQ-style optimization brings important perfor-
mance improvements (except when almost all facts are selected). This shows
its usefulness in such a distributed setting.

4.5.2 Cost of dynamism

This section evaluates the performance of the Webdamlog engine in dynamic
environments.

For addition of facts and rules, we benefit from semi-naive evaluation in
Bud and from efficient processing of rule addition in Webdamlog. For deletion,
we introduced in Section 4.4.1 provenance information in Webdamlog compu-
tation. We next demonstrate that (i) provenance tracking can be performed at a
reasonable cost and (ii) it brings significant improvements when deletions are
considered.

Overhead of provenance

In the first experiment, we measure the overhead of this instrumentation. We
again use the rules defining allFriends@sue as the union of relations friends at
aliceFB and bobFB.

In Figure 4.3 (respectively 4.4), we report the time needed to maintain that
union after an update consisting of adding facts to (respectively removing facts
from) relations friends@aliceFB and friends@bobFB. We measure the perfor-
mance of the system as a varying number of facts is added/removed. We report
the computing time for Webdamlog with and without provenance tracking. We
see that the overhead of the instrumentation is small.

Size of the provenance graph

We also measure the size of the provenance graph as the number of dependen-
cies increases. For that, we constructed an example with a large number of facts
(1 000 000 in total) so that we can considerably grow the dependencies between
facts (each fact will eventually have a very large number of proofs).

We use 10 peers (p1..p10), 100 relations on each of them (r1..r100 of arity 1)
with 1 000 facts in each relation (containing an integer between 1 to 10 000).
Each rule on peer i is of the form:

rj′@pk(X) :- rj@pi(X)

i.e., the rule has a unique relation in the body. (The way these rules are selected
is irrelevant.) We increase the number of rules on each peer from 1 to 100 000.

4.5. PERFORMANCE EVALUATION 69

0 200 400 600 800 1000 1200 1400

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

of facts added

to
ta

l t
im

e
on

 a
ll

pe
er

s
(s

ec
)

with provenance
without provenance

Figure 4.3: Overhead of provenance tracking when adding facts

70 CHAPTER 4. WEBDAMLOG RULE ENGINE

0 200 400 600 800 1000 1200 1400

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

of facts deleted

to
ta

l t
im

e
on

 a
ll

pe
er

s
(s

ec
)

with provenance
without provenance

Figure 4.4: Overhead of provenance tracking when deleting facts

4.5. PERFORMANCE EVALUATION 71

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
10

0
20

0
30

0
40

0

#of rules

to
ta

l s
iz

e
of

 th
e

pr
ov

en
an

ce
 g

ra
ph

 (
M

B
)

provenance graph size

Figure 4.5: Size of the provenance graph compared to the size of the program

(Each of the 100 relations of this peer is connected to 1 000 relations of the 10
peers.) Thus, the total number of rules in the system varies from 10 to a million.
At this extreme, the content of each relation is copied into each relation in the
system.

In Figure 4.5, we report the total size of the provenance graph. Observe that
the provenance graph is split equally across 10 peers, and so each peer stores
one tenth of the total size. We see here that the size of the provenance graph
grows linearly in the size of the program. Observe that, in this already complex
case, the size of the provenance graph is still reasonable (about 44MB per peer),
and is notably small enough to be kept in main memory.

Performance of deletion propagation

In this experiment, we demonstrate the performance gains brought by the use
of the provenance graph for deletion propagation. For this, we use a more com-
plex setting. We have 10 peers, each containing a source relation (source@pi, for

72 CHAPTER 4. WEBDAMLOG RULE ENGINE

0 2000 4000 6000 8000 10000

2
4

6
8

of facts deleted

to
ta

l t
im

e
on

 a
ll

pe
er

s
(s

ec
)

propagation
recomputation

Figure 4.6: Deletion propagation vs. recomputation

i from 1 to 10) with 1 000 facts in each. Then we have 6 layers of 10 peers, each
containing an intermediate relation (inter@pij, for i from 1 to 10, and j from 1
to 6). Finally, we have a unique target relation that gathers all facts. Each fact
in a source relation propagates to 3 relations in the first layer. Each fact in layer
j < 6 propagates to 3 relations in layer j +1. Each fact in layer 6 propagates to
the target relation.

Figure 4.6 compares the time it takes to update the target relation (i) by prop-
agating deletions (propagation) and (ii) by fully recomputing the peer states
(recomputation). We vary the number of deleted facts between 5 and 1 000
facts for each relation source@pi. We observe that even in such a case, with
rather complex dependencies, deletion can be supported efficiently thanks to
the provenance graph.

4.5. PERFORMANCE EVALUATION 73

Distribution and evolution

Finally, we measure the performance of our system for the following rule us-
ing 100 Webdamlog peers on 50 Amazon micro-instances with two peer per
instance:

[rule at sue]

album@sue($photo,$peer) :-

allFriends@sue($peer),

photos@$peer($photo),

features@$peer($photo,alice),

features@$peer($photo,bob)

This rule delegates processing to multiple peers, with these peers deter-
mined by the content of the relation allFriends@sue. We measure the cost of
maintaining the photo album when between 5 and 100 sources are deleted.

This experiment shows the performance of Webdamlog under such updates.
We compare two strategies:

1. Our strategy that propagates changes using the provenance graph with-
out fixpoint computation.

2. A baseline strategy that recomputes the new set of rules, reinitializes the
peer with these rules, and restarts the Bud fixpoint computation from
scratch.

In Figure 4.7, we report two measurements for each strategy: (i) total time
and (ii) waiting time at sue, between the moment sue requests the update and
the end of the computation. We observe that, in terms of waiting time at sue,
deletion propagation significantly outperforms full recomputation when no more
than 60 peers are deleted. A similar trend holds for total time. If sue decides to
remove the majority of her friends, full recomputation performs better, as ex-
pected.

74 CHAPTER 4. WEBDAMLOG RULE ENGINE

0 20 40 60 80 100

0
2

4
6

8

of peers deleted from allFriends@Sue

tim
e

(s
ec

)

propagation total
recomputation total
propagation waiting
recomputation waiting

Figure 4.7: Webdamlog evaluation during program update

Chapter 5

Architecture of a Webdamlog peer

Information management on the Internet relies on a wide variety of systems,
each specialized for a particular task. A user’s data and favorite applications
are often distributed, making the management of personal data and knowledge
(i.e., programs) a major challenge. Consider Joe, a typical Web user who has
a blog on Wordpress.com, a Facebook account, a Dropbox account, and also
stores data on his smartphone and laptop. Joe is a movie fan and he wants
to post on his blog a review of the last movie he watched. He also wishes to
advertise his review to his Facebook friends and to include a link to his Dropbox
folder where the movie has been uploaded. This is a cumbersome task to carry
out manually, yet automating it, for example by writing a script, is far beyond
the skills of most Web users.

Some systems attempt to provide integrated services to support such needs.
For instance, Facebook provides a wrapper service to integrate Dropbox ac-
counts and blogs. However, such services are often limited in the functionality
they support. Also, by delegating such services to systems like Facebook, a user
needs to trust more and more of his information to one particular system. Our
goal is to enable the user to easily specify distributed data management tasks
in place (i.e., without centralizing his data to a single provider), while allowing
him to keep full control over his own data as presented in [2]. Our system is
not a replacement for Facebook, or any centralized system, but it allows users
to launch their customized peers on their machines with their own personal
data, and to collaborate using Web services. Our contribution in designing an
architecture around a Webdamlog rule engine is presented in [1, 4, 5].

This chapter describe a Webdamlog peer that embeds the Webdamlog en-
gine and uses wrappers to other systems. The focus is on theses wrappers that
allow a Webdamlog peer to integrate data of non-Webdamlog peers.

75

76 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

Figure 5.1: Webdamlog peer architecture

Organization The chapter is organized as follows. We introduce the full peer
architecture around the Webdamlog engine in Section 5.1. Section 5.2 discusses
the integration of non-Webdamlog peers using wrappers. Finally, in Section 5.3,
we present the demonstration of an example of application, namely Wepic.

5.1 Peer architecture

In this section, we describe a particular implementation of a Webdamlog peer.
Figure 5.1 gives an overview of the connection between the Webdamlog engine
and other modules of a full peer. The Webdamlog engine at the heart of the
system receives facts and rules from remote Webdamlog engines in Webdamlog

format. A set of wrappers bound to selected relations in the Webdamlog engine

5.1. PEER ARCHITECTURE 77

can read/write in these relations. For instance, the user has a user-friendly view
of the Webdamlog knowledge via a Web interface. He can trigger updates of the
relations or rules. A wrapper called renderer is needed to display content of the
Webdamlog engine relations in HTML and keep the display synchronized while
the Webdamlog engine is modifying its relations. Additional wrappers provide
communication with non-Webdamlog peers such as Facebook ; ability to send
emails ; and persistent storage in databases.

The Webdamlog peer consists of a set of programs, that are deployed and
linked to a Webdamlog engine. A short description of each of them is given
next and the corresponding wrappers are detailed in Section 5.2.

Web server The user interface is served by Thin, a lightweight HTTP server.
Contrary to usual thread-based Web server such as the popular Apache that
forks to create one thread for each requests, Thin is an event-driven server.
In the case of Web server, events are HTTP requests issued by the user, that
are enqueued and dispatched according to the availability of resources. Event-
driven mechanisms are at the core of Webdamlog peers and are detailed in Sec-
tion 5.1.1.

Persistent storage The current implementation supports three different stor-
age software. Gdbm a lightweight key-value store, SQLite 3 a light-weight re-
lational database and PostgreSQL a sophisticated relational database. For the
most common usage Gdbm and SQLite are the best choices since they are fast
and require no configuration. However the more complex PostgreSQL may be
useful, for instance to keep an history of the past stages of the Webdamlog en-
gine.

Contrary to the Webdamlog engine alone, a Webdamlog peer may receive
events from different sources at the same time e.g. the user can update a re-
lation while the Webdamlog engine receives packets on its channels. Concur-
rency issues are considered in Section 5.1.1.

The Webdamlog engine uses only relations as data structures, whereas wrap-
pers may manipulate other kinds of data: trees, large binary object, etc. The
specification of an API for designing wrappers integrating Webdamlog relations
safely is discussed in Section 5.1.2.

5.1.1 Event-driven system

As shown in Section 5.1, a Webdamlog peer receives events from remote Web-

damlog peers, users and wrappers. All these events happen concurrently. But

78 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

according to a Webdamlog stage split in Bud three steps described in Section 4.2.1,
it is required that during the firing of a Webdamlog stage, messages are used at
Step 1 following the Webdamlog language semantic ; no updates occur at Step 2
until a fixpoint is reached ; and all messages must be sent to each peers as single
packet. Hence the architecture of a Webdamlog peer must guarantee atomicity
of Webdamlog engine stages.

The naive implementation of a Webdamlog peer would be to launch the
Webdamlog engine and all other wrappers as separated processes and use inter-
process communications and locks to guarantee a safe access to resources. How-
ever in this case the fairness of access to resources would be left to the operating
system scheduler. This architecture leads to poor performances due to the over-
head of context switching and possibly deadlocks. For example, let us consider
a simple Webdamlog engine receiving successively many messages from other
Webdamlog engines and a Facebook wrapper, launched as two different pro-
cesses on the same peer. Suppose that the Facebook wrapper starts a request
that takes a long time to be processed. Each time the Facebook thread is dis-
patched to the CPU by the scheduler, it will be blocked until the request answer
has been received, in which case a lot of time spent waiting for IO events are
wasted.

Therefore the Webdamlog peer adopts an efficient event handling service
following the reactor design pattern detailed in [Sch95]. The general idea is to
have only one process handling all events to dispatch according to resource
availability. As depicted in Figure 5.2, the reactor is the only process dealing
with input/output interruption.

The reactor runs an event loop listening for all events registered, e.g. in
Figure 5.2, HTTP requests, emails and UDP network packets. Each event is as-
sociated to some code to execute that is called by the dispatcher if the resource
is available. For instance, the reactor may receive a Webdamlog packet from
a remote peer via an UDP port that is associated with the Webdamlog engine.
The reactor knows that to handle this event it should dispatch the packet to the
Webdamlog engine that will fire a new stage. The way the dispatcher works is
out of the scope of this thesis but it is fully customizable for the Webdamlog

peer instead of the multi-process solution that lets the OS takes all the decision.
Note that the fact that the reactor is the only process handling input/output,
does not imply that the system is single threaded. For instance, long running
tasks that are not updating relations directly can be delegated to threads. E.g.
the waiting time when the Facebook wrapper sends a requests is delegated to a
thread.

This reactor design pattern gives a clear specification for the modules to
be used in a Webdamlog peer. Each module must specify event listeners and
the handlers i.e. the codes to be executed as callback methods invoked by the

5.1. PEER ARCHITECTURE 79

Figure 5.2: Event handling in Webdamlog peer

80 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

Figure 5.3: Wrapper running in parallel with Webdamlog stage

reactor. In the Webdamlog peer implementation, a Ruby implementation of the
reactor pattern named Event-machine [Eve13] is used.

5.1.2 Module interactions

As shown in Figure 5.2, Webdamlog relations can be read/updated by differ-
ent wrappers as well as by the Webdamlog engine. The Webdamlog peer is de-
signed such that the Webdamlog engine does not directly interact with wrap-
pers. Webdamlog relations can be modified by wrappers but not during Web-

damlog stages. The concurrent accesses to the relations is supported thanks to
the reactor system.

Figure 5.3, gives a representation of the interface between a wrapper and the
Webdamlog engine. Two methods, namely read and write provide the com-
munications from the wrapper to the Webdamlog peer. The methods read and
write trigger the firing of a new Webdamlog stage via events scheduled in the
reactor. The others two, namely callback and translate, correspond to the
propagation of changes occurred in the engine as side-effects handled by the
wrapper.

In Figure 5.3, the Webdamlog engine is running a stage in 3 steps. When run-
ning a stage, new packets may be emitted to remote peers and relation updates
may occur during Step 2.

5.2. WRAPPERS 81

Read The wrappers use the asynchronous read method of the Webdamlog en-
gine. This read method is a read order in the form of an event scheduled
in the reactor queue. It takes a list of relations to read at the same stage
as argument, and returns their content. When this event is triggered, it
forces the engine to fire a stage and return the actual content of relations
at the end of Step 2. This prevents the Webdamlog engine from updating
relations while reading. Note that a read order, could be seen as sending
an empty packet to the peer and returning the projection of all the rela-
tions asked. However, if other packets are pending on the channel, they
will be processed, and the content returned will be updated accordingly.

Write Wrapper sends a Webdamlog formatted packet on the regular UDP port
of the Webdamlog engine. It writes facts and rules and serializes them to
be processed as other packets.

Translate From the Webdamlog engine point of view, a wrapper may be seen
as a remote Webdamlog peer, therefore the wrapper may receive Web-

damlog packets of facts and rules. The wrapper simulates a Webdamlog

peer hence it accepts a limited type of facts and rules. The schema of facts
and rules accepted defines the API of the wrapper. Therefore the translate
method filters out non-conform Webdamlog facts and rules. Then it in-
vokes the Ruby code to execute in response to Webdamlog packets.

Callback updates There must be as many callback methods as relations that
are bound with the wrapper. Each callback method takes as arguments a
list of facts. The callback method is invoked by the Webdamlog engine as
soon as changes occur in the relation. The callback methods receive the
delta of facts that defines the facts that are added/removed at the current
stage. These methods must be used to propagate internal updates to the
external program that the wrapper handles.

5.2 Wrappers

As shown in Figure 5.4, a wrapper in a Webdamlog peer is a code that provides
an interface between, one or several Webdamlog engine relations and, a non-
Webdamlog peer. Thus the Webdamlog peer speaks to the non-Webdamlog

peers using the Webdamlog relations bound to the wrapper. The interface cor-
responds to event listeners as detailed in Section 5.1.1. The Webdamlog peer
implementation follows the Web standards and the programming concepts of
the Rails framework [Rai13].

82 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

The Ruby object must implement at least the four methods detailed in Fig-
ure 5.3: read, write, translate and callback updates. The body of the wrapper
is an object-relational mapper (ORM) following the Active Model interface de-
tailed in [Act13]. Active model is now the standard API to build custom ORM in
Rails.

Storage wrapper At the end of each stage, the callback methods save the con-
tent of relations bound to this wrapper into the linked database along with the
program. It also allows the Webdamlog peer to reload the relations and the
program to reboot the peer from a previous state that has been saved. If the
database provides some journaling mechanism, it also allows to restart the peer
from a previous state in case of crash. Note that this wrapper is never triggering
events to the Webdamlog peer, contrary to the next wrappers. Implementation
of this wrapper follows the Active Record pattern [Fow02], a standard for ORM
with persistent storage.

Translation wrappers These wrappers simulate a remote Webdamlog peer
synchronizing some relations that represent a particular view of the data of the
remote service. For example, the Facebook wrapper used in Section 5.2 simu-
lates a Facebook Webdamlog peer that represents the URL: www.facebook.com.
The Facebook wrapper provides facilities for authentication on Facebook. Once
a given Webdamlog user has given his Facebook credentials, the wrapper sim-
ulates a peer (say ÉmilienFB). According to the features supported by the wrap-
pers, it provides an abstract view of Émilien’s Facebook data as a set a Webdam-

log relations. E.g. in Section 5.3 the wrapper provides two relations:
friends@ÉmilienFB($userID,$friendName)
pictures@ÉmilienFB($picID,$owner,$URL)

that are the representation in Webdamlog relations of the list of friends and
the list of pictures of Émilien’s account on Facebook. For Facebook, the wrap-
per needs to send the http query with the right credential to retrieve the list of
pictures in JSON. Then it translates this JSON data into a Webdamlog collec-
tion. Conversely it does the opposite to send pictures. Note that on the Web-

damlog peer Émilien, the relation friends@ÉmilienFB and pictures@ÉmilienFB
receive updates from Facebook during Step 1 of a Webdamlog stage and send
updates to Facebook during Step 3. However during Step 2, the relations of
ÉmilienFB are processed as if there were local to Émilien therefore the rules con-
taining such atoms is delegated but processed as a if they were local. Remark
that the name ÉmilienFB uniquely identifies the peer as the Facebook account
of Émilien is generated by the given Facebook wrapper based on the Facebook
credential ofÉmilien. Hence another peer with the same Facebook wrapper and

www.facebook.com

5.2. WRAPPERS 83

Figure 5.4: Wrapper architecture in a Webdamlog peer

84 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

the Facebook credential of Émilien would also process ÉmilienFB atoms locally.

User interaction In the implementation, the GUI is rendered by a light weight
web server, namely Thin. The GUI wrapper translates Webdamlog engine col-
lections into HTML+JavaScript+JSON code. The user triggers the JavaScript
function that calls the Ruby methods of the wrapper to interact with the Web-

damlog engine. All the interactions that is reading or updating facts or rules
occurs outside a Webdamlog stage. This is guaranteed by the event-machine
described in Section 5.1.1. Therefore the updates of the user are stacked up
and processed the next time the Webdamlog engine fires together with the mes-
sages received from remote peers. The GUI is built on the Rails standard follow-
ing the Model-View-Controller framework. Each Webdamlog relation is repre-
sented by models i.e. Ruby objects implementing the Active Model API. All re-
quests from the user are RESTful actions processed by controllers.

5.3 Demonstration

This demonstration [4] has been presented at SIGMOD 2013. The Wepic ap-
plication is a distributed picture manager. The Wepic application is specified
using simple rules written in Webdamlog described in Chapter 3 and uses a
Webdamlog engine described in Chapter 4.

A central issue in such a setting is the ease with which a casual user can write
Webdamlog rules. We conducted a user study described in Chapter 6, showing
that users are able to both understand and write simple Webdamlog programs
after a short tutorial as shown in Section 6.1. The Wepic demonstration shows
the simplicity of the Webdamlog programs need to designed standard applica-
tions that handle personal data.

SIGMOD attendees could use Wepic to share, download, rate and annotate
pictures taken at the conference. Attendees could launch their own Wepic peer
and interact with the application via a Web GUI. They first inspected the ba-
sic Webdamlog rules of the provided application and then were invited to cus-
tomize the application by modifying or adding rules.

5.3.1 Wepic application

Wepic behavior is driven by a small set of Webdamlog rules that we discuss fur-
ther. In addition, the application uses two standard wrappers, one for Face-
book, and one for email communications. The Webdamlog system also pro-
vides a graphical user interface (GUI), which has been customized to provide a
user interface for Wepic. A Wepic peer can:

5.3. DEMONSTRATION 85

1. Upload a picture from a file or a URL;

2. View pictures provided by a particular attendee;

3. Transfer pictures:

(a) send them by email to the SIGMOD group on Facebook, or to an-
other Wepic peer,

(b) get pictures from another Wepic peer or from the SIGMOD group on
Facebook;

4. Annotate pictures with ratings, comments or name tags (names of atten-
dees appearing in the picture);

5. Select and rank photos based on their annotations.

Figure 5.5: A screenshot of the Wepic user interface.

86 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

The GUI is a particular kind of wrapper relying on an internal web server
as detailed in Section 5.2. In this case the wrapper produces web pages in
ERB [Rub], HTML [W3C13] and Javascript [Byn13]. The user event triggered in
the GUI are transformed into adding or deleting facts or rules in the Webdamlog

engine.
We now illustrate how some of these functionalities are implemented with

Webdamlog rules. To view pictures uploaded by a particular SIGMOD attendee,
we use a relation selectedAttendees that contains one fact for each currently
highlighted attendee (see right-hand side column in Figure 5.5). We also use
a derived relation pictures, that is the view of all the pictures of a particular at-
tendee. To obtain the pictures of all selected attendees, we use the rule:

attendeePictures@Jules($id,$name,$owner,$data) :-
selectedAttendee@Jules($attendee),
pictures@$attendee($id,$name,$owner,$data)

Note that this rule uses delegation, a feature novel to Webdamlog, to retrieve
the contents of relation pictures of each attendee. The result of executing this
rule is shown in the Attendee pictures frame at the bottom of Figure 5.5.

To transfer pictures between peers, we assume that each attendee specifies
some preferred communication protocols in relation communicate, stating, e.g.,
whether he prefers to receive pictures by email, by posting on Facebook, or di-
rectly in his Wepic peer. The following rule is executed when Jules sends some
pictures to some attendees:

$protocol@$attendee($attendee,$name,$id,$owner) :-
selectedAttendee@Jules($attendee),
communicate@$attendee($protocol),
selectedPictures@Jules($name,$id,$owner)

Rules of this kind, and other rules implementing the basic functionality of
Wepic, are available in the Wepic application, for inspection and customization
through the user interface, see Figure 5.6.

Delegation and access control By using delegation a user may write a rule
and ask another peer to process it remotely. Consider again the previous rule:

attendeePictures@Jules($id,$name,$owner,$data) :-
selectedAttendee@Jules($attendee),
pictures@$attendee($id,$name,$owner,$data)

Suppose we have the facts:
selectedAttendee@Jules(“Émilien”)

The evaluation of the rule leads to delegating the following rule to Émilien:

5.3. DEMONSTRATION 87

Figure 5.6: The interface to a Webdamlog program running Wepic.

attendeePictures@Jules($id,$name,$owner,$data) :-
pictures@Émilien($id,$name,$owner,$data)

This rule requires the peerÉmilien to send all the facts in his relation pictures
to Jules. This is a simple case of delegation, which can be controlled by inferring

access from the specifications described above. However delegated rules can be
more complex, and general methods for effectively controlling delegation are a
topic of on-going investigation considered in Section 5.3.3.

5.3.2 Demonstration Scenario

We now describe the general proceedings of the demonstration. The goal is
to share pictures taken during the SIGMOD conference. Émilien and Jules are
attendees of the conference. They have used Wepic to install locally on their
laptops a collection of pictures. They demonstrate how to use Wepic with the
native functionalities described in Section 5.3.1 and how to customize the ap-
plication. User at the conference are also allowed to run their own Wepic peer
to explore the system. This scenario demonstrates the various aspects of Web-

damlog, notably distribution, delegation and control of delegation.

Setup In the beginning of the demo, the peers are distributed as shown in
Figure 5.7. Three peers are established: one on each of the laptops of Émilien

88 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

Figure 5.7: The distribution of peers in the network.

5.3. DEMONSTRATION 89

and Jules, connected via a local network, and a third, the SIGMOD peer, hosted
on the Webdam cloud. To simplify the presentation, it is assumed that Émilien
and Jules have the same bootstrap program so they organize their data and be-
have similarly. They both store their personal photos in pictures@Émilien and
pictures@Jules on their respective Wepic peers. Both have Facebook accounts
and are members of the SigmodFB group, the official Facebook group of the
conference. Finally, both users are subscribed to the SIGMOD peer, that stores
the list of registered Wepic users.

Peer discovery To enter in the network, one peer should know at least one
other peer already linked with some others. In this particular application Wepic,
we setup the initial knowledge base of new peers with the public URL of the
SIGMOD peer. For example the Émilien peer is initialized with this fact:

attendee@Émilien(“Émilien”,“81.205.87.245:60”)

and subscribes to the SIGMOD picture network by sending its address thanks
to the following rule included in the bootstrap program:

attendee@SIGMOD(“Émilien”,$URL) :- attendee@Émilien(“Émilien”,$URL)

In the SIGMOD peer, the program is setup with the following rule that allows
the SIGMOD peer to act as a Hub that broadcasts all the attendees known by
SIGMOD to all attendee peers:

attendee@$att($member,$URL) :- attendee@SIGMOD($att,_),
attendee@SIGMOD($member,$URL)

This simple strategy of peer discovery is part of the Wepic program but one can
write other strategies.

During the demonstration, attendees can also start their own peers with
their personal photos. Since it would be too long to install a Wepic peer on the
laptop or smartphone of an attendees, we propose an alternative solution. The
attendee can connect to the Web interface on the Webdam cloud to launch their
own dedicated peer with the same program as Émilien and Jules. Then they can
upload their photos and modify their program, as we do on the laptop-based
peers.

We start the demonstration by quickly going over the setup while attendees
are starting their new peer. They observe that their peer is automatically receiv-
ing the list of attendees logged in. Then they can interact with Wepic in the
following ways.

90 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

Interaction via Facebook To illustrate the interaction between a Wepic peer
and other Web services, we use a Facebook wrapper. For instance, the follow-
ing rule is used by the SIGMOD peer to automatically publish, on the Facebook
group of SIGMOD, the pictures belonging to SIGMOD attendees who have au-
thorized this action:

pictures@SigmodFB($id,$name,$owner,$data) :-
pictures@SIGMOD($id,$name,$owner,$data),
authorized@$owner(“Facebook”,$id,$owner)

Conversely, the SIGMOD peer automatically retrieves the pictures with their
comments and tags from the Facebook group and publish them to SIGMOD
peer. Note that the system thus allows any Wepic user to see or publish (via
Wepic) pictures in SigmodFB even without having a Facebook account. Like-
wise it allows any Webdamlog peer even if they don’t have a Facebook wrap-
per to publish on Facebook. A user only needs to appropriately populate his
authorized relation to control Facebook publication. This is typical case where
delegation provides a functionality without the need to install the wrapper by
itself.

We explain the Webdamlog rules that implements these interactions to au-
dience members. And then we show that a photo uploaded by Émilien into his
local relation pictures@Émilien is instantly published to pictures@SIGMOD, and
then propagated to pictures@SigmodFB.

Customizing rules The main advantage of a peer-to-peer system such as Web-

damlog is the ability to customize a peer’s behavior. Therefore the most novel
trait of Wepic is that it lets the user customize existing rules and add his own
rules. For example, a user who is interested only in the pictures that have a
rating of 5 would customize the rule of the application as follows:

attendeePictures@Jules($id,$name,$owner,$data) :-
selectedAttendee@Jules($attendee),
pictures@($id,$name,$owner,$data),
rate@$owner($id,5)

Redefining this rule changes the contents of the frame Attendee pictures in
Figure 5.5, which has been demonstrated. Then they are free to customize the
rule further, retrieving, e.g., only pictures that were taken by a certain SIGMOD
attendee, or in which only certain attendees appear using some meta-data tags
added by Facebook and retrieve at SIGMOD peer.

5.3. DEMONSTRATION 91

Illustration of the control of delegation To illustrate the control of delegation,
Émilien attempts to install a rule at Jules’ peer. We show that the system requires
the approval of Jules before installing the rule, and that the program of Jules is
changed once the approval is granted and the rule is installed.

5.3.3 Access control

We briefly describe an important issue that is still not supported by Webdamlog,
namely access control, see ongoing-work [1].

Since many Webdamlog applications manage personal or social data, ac-
cess to sensitive information must be carefully controlled. Access control in
Webdamlog is particularly challenging because of the distributed nature of com-
putation and the ability of peers to delegate rules to other peers.

The demonstration of Wepic provides a simplified model for control of del-
egation, in which each delegation sent by an untrusted peer is pending in a
queue until the user explicitly accepts it via the Web interface. A notification of
a pending delegation can be seen at the top of Figure 5.6, where Julia is send-
ing a rule to Jules. By default, all peers except the SIGMOD peer are considered
untrusted.

A complete access control model for Webdamlog is under investigation see [1]
and will not be discussed in this thesis. In that model, access to stored or de-
rived relations is controlled by a novel combination of both discretionary meth-
ods (in which users have the power to grant rights to data they own) and manda-
tory methods (in which access rights are derived according to system-wide con-
ventions). Users directly specify the accessibility of extensional relations stored
that they own. For derived relations (i.e. views), a user may rely on a default
access control policy that is derived automatically from the provenance of the
base relations. Alternatively, a user may override this policy in order to grant
access to views, effectively “declassifying” some data. This flexible model sub-
sumes the view-based access control of the standard SQL authorization model.

92 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

Chapter 6

User Study

We conducted a limited user study to verify that the Webdamlog language can
be understood and written by non-programmers. We wanted to highlight how
some tasks that would be long and complex to write in standard programming
language (Java, Python, . . .), can be written in Webdamlog by regular users.
Clearly it would be interesting to perform more thorough user study in particu-
lar to help design the user interface.

In this chapter, we present first the tutorial given to the user, then the test.
Finally, we present a comment of the results that were obtained.

6.1 Webdamlog tutorial

The original tutorial was a set of slides that is reformatted next. A teacher ex-
plained the slides to the users in a brief 20 minute lesson.

Terminology

• A relation is a database table.

• A fact is an entry in a relation.

• A relation has a schema, describing attributes of each fact that belongs to
it.

• Relations reside at peers.

Examples:
bi r thd ay s@ f acebook : name,d ate︸ ︷︷ ︸

schema

bi r thd ay s︸ ︷︷ ︸
r el ati on

@ f acebook︸ ︷︷ ︸
peer

("Ann","6/15"︸ ︷︷ ︸
f act

)

93

94 CHAPTER 6. USER STUDY

Rules (I)

• Suppose that there is a relation photos@picasa, with schema:

photos@picasa: fileName, content

• Suppose that photos@picasa contains the facts:

photos@pi casa("i mag e1. j pg ","....")

photos@pi casa("i mag e2. j pg ","....")

• We can copy facts from photos@picasa into photos@myLaptop (with the
same schema) using the following rule:

photos@myLaptop("i mag e1. j pg ",

var i abl e︷︸︸︷
$X):-

photos@pi casa("i mag e1. j pg ", $X︸︷︷︸
var i able

)

• Read: There is a fact (“image1.jpg”, $X) in photos at myLaptop if there is
a fact (“image1.jpg”, $X) in photos at picasa

Rules (II)

• Like relations, rules reside at peers

• Rules compute new facts and insert them into relations:

copy@myLaptop($X)︸ ︷︷ ︸
r ul ehead

:-or i g i nal @myDesktop($X)︸ ︷︷ ︸
r ulebod y

• Rules can combine data from multiple relations and peers

f r i end sBi r thd ay s@myLaptop($X ,$Y):- f r i end s@ f acebook($X),

bi r thd ay s@myPhone($X ,$Y)

• Read: If $X is a friend (according to friends@facebook) and $Y is the birth-
day of $X (according to birthdays@myPhone) then there is a fact ($X,$Y)
in friendsBirthdays@myLaptop. We read the body of a rule left-to-right

6.1. WEBDAMLOG TUTORIAL 95

Rules (III)

• Given the facts

song s@myLaptop("Beatl es","Mi chele","...")

song s@myLaptop("Queen","F l ash","...")

song s@your Laptop("Met al l i ca","One","...")

song s@your Laptop("Ni r vana","Di ve","...")

• A program consists of several rules: Copy songs from myLaptop and yourLap-
top to hisLaptop

song s@hi sLaptop($X ,$Y ,$Z):-song s@myLaptop($X ,$Y ,$Z)

song s@hi sLaptop($X ,$Y ,$Z):-song s@your Laptop($X ,$Y ,$Z)

All songs relations have the schema: < song s : artist, title,content >

Rule (IV)

• We can use variables to denote relations and peers

• Given the facts

cont act s@myLaptop("i nbox","annLaptop","E N ")

cont act s@myLaptop("msg ","sueLaptop","E N ")

cont act s@myLaptop("messag es","patLaptop","F R")

and relations with the following schemas

< cont act s : targetRelation,targetPeer, language >

< i nbox : message >

< msg : message >

< messag es : message >

• Send the message: “Hello!” or “Bonjour!” to the contacts

$R@$P ("Hel lo!"):-cont act s@myLaptop($R,$P,"E N ")

$R@$P ("Bon j our !"):-cont act s@myLaptop($R,$P,"F R")

96 CHAPTER 6. USER STUDY

Examples (I)

1. Copy the music from songs@pandora to songs@iPod
Answer: song s@i Pod($X ,$Y ,$Z):-song s@pandor a($X ,$Y ,$Z)
Schema < song s : artist, title,content >

2. Find students who studied CS or Math, given the facts:

r oster @col leg e("John","C S")

r oster @col leg e("John","M ath")

r oster @col leg e("Ann","F r ench")

r oster @col leg e("Sue","M ath")

schemar oster : name,ma j or

Answer:

C Sor M ath@col leg e($X):-r oster @col l eg e($X ,"C S")

C Sor M ath@col leg e($X):-r oster @col l eg e($X ,"M ath")

Two fact are inserted into CSorMath@college by these rules.

Examples (II)

• Subscribe myLaptop to CNN news

• Answer: at peer CNN

new s@$X ("cnn",$Y):-subscr i ber s@cnn($X),new s@cnn($Y)

add a fact to subscribers@cnn(“myLaptop”)

• Example execution:

– 9:00am news@cnn(“US Olympic gold”)

– 9:01am news@myLaptop(“cnn”, ”US Olympic gold”)

– 9:15am news@cnn(“Higgs boson seen in action”)

– 9:16am news@myLaptop(“cnn”, ”US Olympic gold”)

– 9:16am news@myLaptop(“cnn”, “Higgs boson seen in action”)

6.2 Test

We now describe the user study test, that is reproduced literally, except for for-
matting. For each questions, we also asked the time used to answer.

6.2. TEST 97

Problem 1 Consider the following relations and corresponding facts.

schema: songs(fileName,content) // the same at all peers

songs@lastFM("song1.mp3", "...")

songs@lastFM("song2.mp3", "...")

songs@lastFM("song3.mp3", "...")

songs@pandora("song4.mp3", "...")

songs@pandora("song5.mp3", "...")

Assume that songs relations at all peers have the same schema.

1. Write one or several rules that copy all songs from lastFM and Pandora

into relation songs at peer myLaptop.

2. Suppose now that relation peers@myLaptop contains names of peers on
which to look for music. You can assume that each peer stores songs in
a relation called songs, with the same schema as above. Write a Web-
damLog program that copies songs from all peers into songs@myLaptop.

3. Write a rule that copies songs from songs@myLaptop into the songs rela-
tion on each peer whose name is listed in peers@myLaptop.

Problem 2 Consider the following relations and facts.

schema: friends(friendName) photos(fileName,content)

inPhoto(fileName, friendName)

friends@facebook("ann")

friends@facebook("sue")

friends@facebook("zoe")

photos@ann("sunset.jpg", "...")

photos@ann("vacation.jpg", "...")

photos@ann("party.jpg", "...")

photos@sue("image1.jpg","...")

photos@sue("image2.jpg","...")

98 CHAPTER 6. USER STUDY

inPhoto@ann("vacation.jpg", "jane")

inPhoto@ann("vacation.jpg", "ann")

inPhoto@ann("party.jpg", "jane")

inPhoto@ann("party.jpg", "zoe")

inPhoto@ann("party.jpg", "sue")

inPhoto@sue("image2.jpg", "sue")

inPhoto@sue("image2.jpg", "jane")

Assume that photos and inPhoto relations at all peers have the same schema.
Consider now the following WebdamLog rule.

photos@myLaptop($X,$Z) :- friends@facebook($Y),

photos@$Y($X,$Z), inPhoto@$Y($X,"jane")

1. Explain in words what this rule computes.

2. List the facts in that are in photos@myLaptop after the rule above is exe-
cuted.

3. List the facts that are in photos@myLaptop if the following rule is exe-
cuted instead:

photos@myLaptop($X,$Z) :- friends@facebook($Y),

photos@$Y($X,$Z), inPhoto@$Y($X,"jane"),

inPhoto@$Y($X,"sue")

Problem 3 Recall the example from the tutorial, in which we looked at sub-
scribing the peer myLaptop to CNN news. This example is reproduced below.

schema: news@cnn(text) news@myLaptop(source, text)

subscribers@cnn(peer)

6.3. RESULTS 99

news@cnn("US Olympic gold")

news@cnn("Higgs boson seen in action")

subscribers@cnn("myLaptop")

[at cnn] news@$X("cnn", $Y) :- subscribers@cnn($X),

news@cnn($Y)

Suppose that you would now like to receive CNN news on peer myPhone,
and to store them in relation news, with the schema souce,text. Describe at
least 1 method for doing this. You may assume that you can add rules at peers
cnn, myLaptop and myPhone, and that you can insert facts into relations on any
of these peers.

6.3 Results

We argued in the introduction that Webdamlog can be used to declaratively
specify distributed tasks in a variety of applications, including personal data
management. The user study to demonstrated the usability of Webdamlog.

Participants. We recruited 27 participants for the user study in the US and in
France. We present a break-down of results by two groups.

Group 1 consisted of 16 participants with training in Computer Science. Among
them, 5 had basic database background, and 4 were familiar with advanced
database concepts, including datalog. The group had the following break-down
by highest completed education level: 2 highschool, 3 BS, 9 MS, and 2 PhD.

Group 2 consisted of 11 participants with no CS training, and with the fol-
lowing break-down by highest completed education level: 3 vocational school,
6 BS, 2 MS.

Study design. All participants were given a brief tutorial, shown in Section 6.1,
in which basic features of Webdamlog were explained informally, and demon-
strated through examples. On average, getting familiar with the Webdamlog

language via the tutorial took 15-20 minutes for Group 1 and 25 minutes for
Group 2. Following the tutorial, all participants were asked to take a written
test, shown in Section 6.2. The three problems were designed to test the com-
prehension of different features of Webdamlog, including local and non-local
rules, rules with variable relation and peer names, and delegation. In the tuto-

100 CHAPTER 6. USER STUDY

rial and the test, we did not make an explicit distinction between intensional
and extensional relations, and we ignored recursion.

Results. The results of the study were very encouraging.
Group 1. On Problem 1, 3 participants received a score of 2.5 out of 3, while

13 participants received a perfect score. All participants received a perfect score
on Problem 2. Problem 3 was open-ended, and all participants gave at least one
correct answer. 4 participants gave 3 correct answers, 4 gave 2 correct answers
(2 of these also gave 1 incorrect answer each), and the remaining 8 participants
each gave 1 correct answer.

We also asked participants to record how long it took them to answer each
problem, in minutes. Problem 1 took between 2.5 and 6 minutes, Problem 2
between 2 and 9 minutes, and Problem 3 between 1 and 8 minutes. We did not
observe any correlation between the time it took to answer questions and the
participant background in data management or even datalog.

Group 2. On Problem 1, the average score was 2.3, with the following break-
down: 6 participants received a perfect score, 3 received 2 out of 3, 1 had a score
of 1, and 2 were not able to solve the problem. On Problem 2, 10 participants
received a perfect score and 1 got a score of 2 out of 3. On Problem 3, 1 gave
5 good answers, 6 gave 3 good answers, 3 gave 2 good answers, and 2 gave no
correct answer. The same two participants failed to answer Problems 1 and 3.

The test took longer for the participants without CS training. Problem 1 took
between 6 and 8 minutes to solve in this group, Problem 2 took between 5 and
8 minutes, and Problem 3 took between 4 and 12 minutes.

In summary, all technical and the majority of non-technical participants of
our study were able to both understand and write Webdamlog programs cor-
rectly, with a minimal amount of training. We observed a difference between
the technical and non-technical groups in terms of both correctness and time
to solution. Two members of the non-technical group were able to understand
Webdamlog programs but were not able to write programs on their own. We
believe that this issue will be alleviated once an appropriate user interface be-
comes available.

Chapter 7

Conclusion

The philosophy of Webdamlog is to return the control of their data to the Web
users. When the trend is to entrust more and more data to third-party clouds,
Webdamlog insists on “Do it yourself”, i.e. manage your own data with your
own systems. With the concept of delegation, the Webdamlog language allows
the automation of complex data management tasks, and in particular, those
that require the collaboration of several systems. Contrary to proprietary cen-
tralized systems, the code of Web is opensource, and Webdamlog is based on
sharing open code.

Clearly, Webdamlog opens a number of directions of research. To conclude
this thesis, we mention some that we believe are particularly important:

• In-depth user studies on the usability of Webdamlog by regular users (i.e.,
Web users with little computer science knowledge) would be essential to
understand the possibilities and limitations of the approach.

• It would be interesting to develop better interfaces to simplify the task of
designing Webdamlog applications by regular users.

• Access control for Webdamlog programs is a key missing feature towards
the full support of personal data management.

• Webdamlog encourages the sharing of data between peers or within com-
munities. Clearly such exchanges and integration of data would be facil-
itated by enhancing Webdamlog with ontology technology in the style of
semantic Web.

• Finally, we showed how to improve performance using optimization tech-
niques. More is certainly needed to be able to scale to the Web, in terms
for instance of number of peers, size of data, and of workload.

101

102 CHAPTER 7. CONCLUSION

Self references

Conferences

[1] Serge Abiteboul, Émilien Antoine, Gerome Miklau, Julia Stoyanovich, and
Vera Zaychik Moffitt. Introducing Access Control in Webdamlog. In DBPL

- Proceedings of the 14th International Symposium on Database Program-

ming Languages, Riva del Garda, Trento, Italie, 2013. hal.inria.fr/

hal-00850754.

[2] Serge Abiteboul, Émilien Antoine, and Julia Stoyanovich. Viewing the Web
as a Distributed Knowledge Base. In ICDE - Proceedings of the 28th IEEE In-

ternational Conference on Data Engineering, Washington DC, United States,
2012. hal.inria.fr/hal-00703210.

[3] Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and Émilien Antoine.
A rule-based language for web data management. In PODS - Proceed-

ings of the 13th ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, Athens, Greece, 2011. hal.inria.fr/inria-00582891.

Demonstrations

[4] Serge Abiteboul, Émilien Antoine, Gerome Miklau, Julia Stoyanovich, and
Jules Testard. Rule-Based Application Development using Webdamlog. In
SIGMOD - Proceedings of the 2013 ACM SIGMOD Special Interest Group

on Management Of Data, New York, United States, 2013. hal.inria.fr/

hal-00817791.

[5] Serge Abiteboul, Émilien Antoine, Gerome Miklau, Julia Stoyanovich, and
Jules Testard. Rule-Based Application Development using Webdamlog.
In BDA - La 29e édition des journées Bases de Données Avancées, Nantes,
France, 2013.

103

hal.inria.fr/hal-00850754
hal.inria.fr/hal-00850754
hal.inria.fr/hal-00703210
hal.inria.fr/inria-00582891
hal.inria.fr/hal-00817791
hal.inria.fr/hal-00817791

104 SELF REFERENCES

[6] Émilien Antoine, Alban Galland, Kristian Lyngbaek, Amélie Marian, and
Neoklis Polyzotis. Social networking on top of the webdamexchange sys-
tem. In ICDE - Proceeedings of the 28th IEEE International Conference on

Data Engineering, 2011. hal.inria.fr/inria-00536361.

Miscellaneous

[7] Serge Abiteboul, Émilien Antoine, and Julia Stoyanovich. The webdamlog
system managing distributed knowledge on the web. Technical report, In-
ria, 2013. hal.inria.fr/hal-00813300.

hal.inria.fr/inria-00536361
hal.inria.fr/hal-00813300

External references

[AAH+11] Peter Alvaro, Tom J. Ameloot, Joseph M. Hellerstein, William Mar-
czak, and Jan Van den Bussche. A declarative semantics for dedalus.
Technical Report UCB/EECS-2011-120, EECS Department, Univer-
sity of California, Berkeley, Nov 2011.

[AAHM05a] Serge Abiteboul, Zoe Abrams, Stefan Haar, and Tova Milo. Di-
agnosis of asynchronous discrete event systems: datalog to the
rescue! In Chen Li, editor, Proceedings of the 24th Annual ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems (PODS’05), Baltimore, Maryland, USA, États-Unis, 2005.
ACM Press.

[AAHM05b] Serge Abiteboul, Zoë Abrams, Stefan Haar, and Tova Milo. Diagno-
sis of asynchronous discrete event systems: datalog to the rescue!
In Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems, PODS ’05, New York,
NY, USA, 2005. ACM.

[Aba09] Martín Abadi. Logic in Access Control (Tutorial Notes). In Alessan-
dro Aldini, Gilles Barthe, and Roberto Gorrieri, editors, Founda-

tions of Security Analysis and Design V, volume 5705, chapter 5.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[ABCM04] Serge Abiteboul, Omar Benjelloun, Bogdan Cautis, and Tova Milo.
Active XML, Security and Access Control. In SBBD, volume 4, 2004.

[ABGR10] Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and Marie-
Christine Rousset. Distributed datalog revisited. In Datalog 2.0

Workshop, 2010.

[Abi03] Serge Abiteboul. Managing an XML warehouse in a P2P context. In
CAiSE, 2003.

105

106 EXTERNAL REFERENCES

[Abi12] Serge Abiteboul. Sciences des données: De la logique du premier

ordre à la Toile. Leçons inaugurales du Collège de France. Fayard,
2012.

[ABM04] Serge Abiteboul, Omar Benjelloun, and Tova Milo. Positive active
XML. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, PODS ’04,
New York, NY, USA, 2004. ACM.

[ABM08] Serge Abiteboul, Omar Benjelloun, and Tova Milo. The Active XML
project: an overview. The VLDB Journal, 17(5), August 2008.

[ABM09] Serge Abiteboul, Pierre Bourhis, and Bogdan Marinoiu. Efficient
maintenance techniques for views over active documents. In EDBT

’09: Proceedings of the 12th International Conference on Extending

Database Technology, New York, NY, USA, 2009. ACM.

[ABMG10] Serge Abiteboul, Pierre Bourhis, Bogdan Marinoiu, and Alban Gal-
land. Axart: enabling collaborative work with axml artifacts. Proc.

VLDB Endow., 3, September 2010.

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web:

from relations to semistructured data and XML. Morgan Kaufmann
Pub, 2000.

[ACC+10] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy,
Joseph M. Hellerstein, and Russell Sears. Boom analytics: exploring
data-centric, declarative programming for the cloud. In Proceed-

ings of the 5th European conference on Computer systems, EuroSys
’10, New York, NY, USA, 2010. ACM.

[ACG+06] Philippe Adjiman, Philippe Chatalic, Francois Goasdoué, Marie-
Christine Rousset, and Laurent Simon. Distributed reasoning in
a peer-to-peer setting: Application to the semantic web. J. Artif.

Intell. Res. (JAIR), 25, 2006.

[ACHM11] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
CIDR, 2011.

[Act13] Active-model github, 2013. https://github.com/rails/rails/
tree/master/activemodel/.

https://github.com/rails/rails/tree/master/activemodel/
https://github.com/rails/rails/tree/master/activemodel/

107

[AD01] Karl Aberer and Zoran Despotovic. Managing trust in a peer-2-
peer information system. In Proceedings of the tenth international

conference on Information and knowledge management, CIKM ’01,
New York, NY, USA, 2001. ACM.

[ADD+11] Yael Amsterdamer, Susan B. Davidson, Daniel Deutch, Tova Milo,
Julia Stoyanovich, and Val Tannen. Putting lipstick on pig: Enabling
database-style workflow provenance. PVLDB, 5(4), 2011.

[AG94] Miklos Ajtai and Yuri Gurevich. Datalog vs first-order logic. In Pro-

ceedings of the 30th IEEE symposium on Foundations of computer

science, Orlando, FL, USA, 1994. Academic Press, Inc.

[AGM08] Serge Abiteboul, Ohad Greenshpan, and Tova Milo. Modeling the
mashup space. In WIDM ’08: Proceeding of the 10th ACM workshop

on Web information and data management, New York, NY, USA,
2008. ACM.

[AGP11] Serge Abiteboul, Alban Galland, and Neoklis Polyzotis. A model for
web information management with access control. 14th Interna-
tional Workshop on the Web and Databases, 2011.

[AH08] Dean Allemang and James A. Hendler. Semantic web for the work-

ing ontologist: modeling in RDF, RDFS and OWL. Morgan Kauf-
mann, 2008.

[AHV95] Serge Abiteboul, Rick Hull, and Victor Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[AKBC+12] Ahmad Ahmad-Kassem, Christophe Bobineau, Christine Collet,
Etienne Dublé, Stéphane Grumbach, Fuda Ma, Lourdes Martínez,
and Stéphane Ubéda. Ubiquest, a data-centric approach for net-
working applications. In DATA, 2012.

[AKGU12] Ahmad Ahmad-Kassem, Stéphane Grumbach, and Stéphane
Ubéda. Messages with implicit destinations as mobile agents. In
Proceedings of the 2nd edition on Programming systems, languages

and applications based on actors, agents, and decentralized control

abstractions, AGERE! ’12, New York, NY, USA, 2012. ACM.

[AKSS09] Serge Abiteboul, Benny Kimelfeld, Yehoshua Sagiv, and Pierre
Senellart. On the expressiveness of probabilistic XML models. The

VLDB Journal, 18, October 2009.

108 EXTERNAL REFERENCES

[AMC+11] Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Heller-
stein, David Maier, and Russell Sears. Dedalus: datalog in time
and space. In Proceedings of the First international conference on

Datalog Reloaded, Datalog’10, Berlin, Heidelberg, 2011. Springer-
Verlag.

[AMP05] Serge Abiteboul, Ioana Manolescu, and Nicoleta Preda. Construct-
ing and Querying Peer-to-Peer Warehouses of XML Resources. In
Semantic Web and Databases. IEEE, 2005.

[AMP+08] Serge Abiteboul, Ioana Manolescu, Neoklis Polyzotis, Nicoleta
Preda, and Chong Sun. XML processing in DHT networks. In ICDE

’08: Proceedings of the 2008 IEEE 24th International Conference on

Data Engineering, Washington, DC, USA, 2008. IEEE Computer So-
ciety.

[AMR+11] Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-
Christine Rousset, and Pierre Senellart. Web Data Management.
Cambridge University Press, 2011. http://webdam.inria.fr/

textbook.

[AP07a] Serge Abiteboul and Neoklis Polyzotis. The data ring: Community
content sharing. In CIDR, 2007.

[AP07b] Serge Abiteboul and Neoklis Polyzotis. The data ring: Commu-
nity content sharing. In Conference on Innovative Data Systems Re-

search (CIDR), 2007.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom,
and Janet L. Wiener. The Lorel query language for semistructured
data. International Journal on Digital Libraries, 1(1), April 1997.

[ASV09] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Static analysis
of active XML systems. ACM Trans. Database Syst., 34, December
2009.

[AV91] Serge Abiteboul and Victor Vianu. Datalog extensions for database
queries and updates. Journal of Computer and System Sciences,
43(1), August 1991.

[AvH08] Grigoris Antoniou and Frank van Harmelen. A Semantic Web

Primer, 2nd Edition (Cooperative Information Systems). The MIT
Press, 2 edition, 2008.

http://webdam.inria.fr/textbook
http://webdam.inria.fr/textbook

109

[AVM07] Bader Ali, Wilfred Villegas, and Muthucumaru Maheswaran. A trust
based approach for protecting user data in social networks. In CAS-

CON ’07: Proceedings of the 2007 conference of the center for ad-

vanced studies on Collaborative research, New York, NY, USA, 2007.
ACM.

[BAP+12] Harold Boley, Tara Athan, Adrian Paschke, Said Tabet, Ben-
jamin Grosof, Nick Bassiliades, Guido Governatori, Frank Olken,
and David Hirtle. Schema specification of deliberation ruleml.
ruleml.org/spec/, April 2012.

[BCGR98] Elisa Bertino, Barbara Catania, Vincenzo Gervasi, and Alessandra
Raffaetà. Active-u-datalog: Integrating active rules in a logical
update language. In Burkhard Freitag, Hendrik Decker, Michael
Kifer, and Andrei Voronkov, editors, Transactions and Change in

Logic Databases, volume 1472 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1998.

[BFG07] Moritz Becker, Cedric Fournet, and Andrew Gordon. Design and
Semantics of a Decentralized Authorization Language. In CSF ’07:

Proceedings of the 20th IEEE Computer Security Foundations Sym-

posium, Washington, DC, USA, 2007. IEEE Computer Society.

[Bir05] Kenneth P. Birman. Reliable Distributed Systems: Technologies, Web

Services, and Applications. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2005.

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig
joins: optimal XML pattern matching. In SIGMOD ’02: Proceedings

of the 2002 ACM SIGMOD international conference on Management

of data, New York, NY, USA, 2002. ACM.

[BLC90] Tim Berners-Lee and Robert Cailliau. WorldWideWeb: Proposal
for a hypertexts project. http://www.w3.org/Proposal.html,
November 1990.

[BM10] Dan Brickley and Libby Miller. Foaf vocabulary specification 0.98.
http://xmlns.com/foaf/spec/, August 2010.

[BMSU86] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D.
Ullman. Magic sets and other strange ways to implement logic pro-
grams (extended abstract). In Proceedings of the fifth ACM SIGACT-

SIGMOD symposium on Principles of database systems, PODS ’86,
New York, NY, USA, 1986. ACM.

http://www.w3.org/Proposal.html
http://xmlns.com/foaf/spec/

110 EXTERNAL REFERENCES

[Bry05] Jery Bryans. Reasoning about XACML policies using CSP. In SWS

’05: Proceedings of the 2005 workshop on Secure web services, New
York, NY, USA, 2005. ACM.

[BSVD09] Sonja Buchegger, Doris Schiöberg, Le H. Vu, and Anwitaman Datta.
PeerSoN: P2P social networking: early experiences and insights. In
SNS ’09: Proceedings of the Second ACM EuroSys Workshop on Social

Network Systems, New York, NY, USA, 2009. ACM.

[BT07] Peter Buneman and Wang C. Tan. Provenance in databases. In
SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, New York, NY, USA, 2007. ACM.

[Byn13] Mathias Bynens. Javascript, aka. web ecmascript standard. http:

//javascript.spec.whatwg.org/, June 2013.

[CCHM08] Tyson Condie, David Chu, Joseph M. Hellerstein, and Petros Mani-
atis. Evita raced: metacompilation for declarative networks. Proc.

VLDB Endow., 1(1), 2008.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A Distributed Storage System for Struc-
tured Data. ACM Trans. Comput. Syst., 26(2), June 2008.

[CGL09] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. Datalog±: a
unified approach to ontologies and integrity constraints. In Pro-

ceedings of the 12th International Conference on Database Theory,
ICDT ’09, New York, NY, USA, 2009. ACM.

[CH85] Ashok K. Chandra and David Harel. Horn clause queries and gen-
eralizations. The Journal of Logic Programming, 2(1), April 1985.

[CKW93] Weidong Chen, Michael Kifer, and David S. Warren. Hilog: A foun-
dation for higher-order logic programming. JOURNAL OF LOGIC

PROGRAMMING, 15(3), 1993.

[CR93] Alain Colmerauer and Philippe Roussel. The birth of prolog. In
The second ACM SIGPLAN conference on History of programming

languages, HOPL-II, New York, NY, USA, 1993. ACM.

[CSWH01] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore Hong.
Freenet: A Distributed Anonymous Information Storage and Re-
trieval System. In Hannes Federrath, editor, Designing Privacy En-

hancing Technologies, volume 2009 of Lecture Notes in Computer

http://javascript.spec.whatwg.org/
http://javascript.spec.whatwg.org/

111

Science, chapter 4. Springer Berlin / Heidelberg, Berlin, Heidelberg,
March 2001.

[Dat10] Datalog 2.0 workshop. http://www.datalog20.org/, 2010. Ox-
ford Univ.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:
amazon’s highly available key-value store. In Proceedings of twenty-

first ACM SIGOPS symposium on Operating systems principles, vol-
ume 41 of SOSP ’07, New York, NY, USA, 2007. ACM.

[Dia] Diaspora. https://diasporafoundation.org/.

[EK76] M. H. Van Emden and R. A. Kowalski. The semantics of predicate
logic as a programming language. Journal of the ACM, 23, 1976.

[ERC13] ERC grant Webdam, 2009-2013. webdam.inria.fr.

[Eve13] Event-machine github, 2013. https://github.com/

eventmachine/eventmachine/.

[FHM05] Michael J. Franklin, Alon Y. Halevy, and David Maier. From
databases to dataspaces: a new abstraction for information man-
agement. SIGMOD Record, 34(4), 2005.

[FHMV03] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning about knowledge. The MIT Press, 2003.

[FJ02] Csilla Farkas and Sushil Jajodia. The inference problem: a survey.
SIGKDD Explor. Newsl., 4, December 2002.

[FMS09] John Field, Maria C. Marinescu, and Christian Stefansen. Reactors:
A data-oriented synchronous/asynchronous programming model
for distributed applications. Theor. Comput. Sci., 410, February
2009.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[Gal11] Alban Galland. Distributed data management with access control :

social Networks and Data of the Web. These, Université Paris Sud -
Paris XI, September 2011.

http://www.datalog20.org/
https://diasporafoundation.org/
webdam.inria.fr
https://github.com/eventmachine/eventmachine/
https://github.com/eventmachine/eventmachine/

112 EXTERNAL REFERENCES

[GKIT07] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tan-
nen. Update exchange with mappings and provenance. In Proceed-

ings of the 33rd international conference on Very large data bases,
VLDB ’07. VLDB Endowment, 2007.

[GKIT10] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tan-
nen. Provenance in orchestra. IEEE Data Eng. Bull., 33(3), 2010.

[GKT07] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Prove-
nance semirings. In Proceedings of the twenty-sixth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems,
PODS ’07, New York, NY, USA, 2007. ACM.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model seman-
tics for logic programming. In ICLP/SLP, 1988.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services. SIGACT

News, 33(2), June 2002.

[GW10] Stéphane Grumbach and Fang Wang. Netlog, a rule-based lan-
guage for distributed programming. In PADL, 2010.

[Hel10] Joseph M. Hellerstein. The declarative imperative: experiences and
conjectures in distributed logic. SIGMOD Rec., 39(1), 2010.

[HNN09] Richard Hull, Nanjangud Narendra, and Anil Nigam. Facilitating
Workflow Interoperation Using Artifact-Centric Hubs. In Luciano
Baresi, Chi-Hung Chi, and Jun Suzuki, editors, Service-Oriented

Computing, volume 5900, chapter 1. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[Hul89] G. Hulin. Parallel processing of recursive queries in distributed ar-
chitectures. In Proceedings of the 15th international conference on

Very large data bases, VLDB ’89, San Francisco, CA, USA, 1989. Mor-
gan Kaufmann Publishers Inc.

[HZ96] Richard Hull and Gang Zhou. A framework for supporting data inte-
gration using the materialized and virtual approaches. In SIGMOD

’96: Proceedings of the 1996 ACM SIGMOD international conference

on Management of data, New York, NY, USA, 1996. ACM.

[Int12] Matteo Interlandi. Knowlog: A declarative language for reasoning
about knowledge in distributed systems. In ER, 2012.

113

[ISO99] ISO. Sql 3 specification. http://www.iso.org/, 1999.

[JOV05] H. V. Jagadish, Beng C. Ooi, and Quang H. Vu. BATON: a balanced
tree structure for peer-to-peer networks. In Proceedings of the 31st

international conference on Very large data bases, VLDB ’05. VLDB
Endowment, 2005.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,
Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea,
Hakim Weatherspoon, Chris Wells, and Ben Zhao. OceanStore: an
architecture for global-scale persistent storage. In ASPLOS-IX: Pro-

ceedings of the ninth international conference on Architectural sup-

port for programming languages and operating systems, volume 28,
New York, NY, USA, December 2000. ACM.

[KGG+06] Sebastian Kruk, Sławomir Grzonkowski, Adam Gzella, Tomasz
Woroniecki, and Hee-Chul Choi. D-FOAF: Distributed Identity
Management with Access Rights Delegation. In Riichiro Mizoguchi,
Zhongzhi Shi, and Fausto Giunchiglia, editors, The Semantic Web

– ASWC 2006, volume 4185 of Lecture Notes in Computer Science,
chapter 15. Springer Berlin Heidelberg, 2006.

[Kif08] Michael Kifer. Rule interchange format: The framework. In Diego
Calvanese and Georg Lausen, editors, Web Reasoning and Rule Sys-

tems, volume 5341 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2008.

[KIT10] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Querying
data provenance. In Proceedings of the 2010 ACM SIGMOD Interna-

tional Conference on Management of data, SIGMOD ’10, New York,
NY, USA, 2010. ACM.

[KLL+97] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy,
Matthew Levine, and Daniel Lewin. Consistent hashing and ran-
dom trees: distributed caching protocols for relieving hot spots on
the World Wide Web. In Proceedings of the twenty-ninth annual

ACM symposium on Theory of computing, STOC ’97, New York, NY,
USA, 1997. ACM.

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations
of object-oriented and frame-based languages. J. ACM, 42(4), July
1995.

http://www.iso.org/

114 EXTERNAL REFERENCES

[Kol05] Phokion G. Kolaitis. Schema mappings, data exchange, and
metadata management. In PODS ’05: Proceedings of the twenty-

fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems, New York, NY, USA, 2005. ACM.

[KW94] Brigitte Kröll and Peter Widmayer. Distributing a search tree
among a growing number of processors. In Proceedings of the 1994

ACM SIGMOD international conference on Management of data,
SIGMOD ’94, New York, NY, USA, 1994. ACM.

[LCG+06] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Tim-
othy Roscoe, and Ion Stoica. Declarative networking: language, ex-
ecution and optimization. In SIGMOD, 2006.

[LCG+09] Boon T. Loo, Tyson Condie, Minos Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Tim-
othy Roscoe, and Ion Stoica. Declarative networking. Commun.

ACM, 52(11), November 2009.

[LCH+05] Boon T. Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis,
Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. SIGOPS Oper. Syst. Rev., 39(5), October 2005.

[LFWK09] Senlin Liang, Paul Fodor, Hui Wan, and Michael Kifer. Open-
rulebench: an analysis of the performance of rule engines. In
WWW, 2009.

[LHSR05] Boon T. Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakr-
ishnan. Declarative routing: extensible routing with declarative
queries. SIGCOMM Comput. Commun. Rev., 35, August 2005.

[LIJ+13] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris
Kontokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed
Morsey, Patrick van Kleef, Sören Auer, and Christian Bizer. Db-
pedia - a large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web Journal, 2013. Under review.

[Lit80] Witold Litwin. Linear hashing: a new tool for file and table address-
ing. In Proceedings of the sixth international conference on Very

Large Data Bases - Volume 6. VLDB Endowment, 1980.

115

[LLM98] Georg Lausen, Bertram Ludäscher, and Wolfgang May. On Active
Deductive Databases: The Statelog Approach. In Burkhard Fre-
itag, Hendrik Decker, Michael Kifer, and Andrei Voronkov, editors,
Transactions and Change in Logic Databases, volume 1472 of Lec-

ture Notes in Computer Science. Birkhäuser Basel, 1998.

[LM75] K. Dan Levin and Howard L. Morgan. Optimizing distributed data
bases: a framework for research. In Proceedings of the May 19-22,

1975, national computer conference and exposition, AFIPS ’75, New
York, NY, USA, 1975. ACM.

[LMO+08] Changbin Liu, Yun Mao, Mihai Oprea, Prithwish Basu, and Boon T.
Loo. A declarative perspective on adaptive manet routing. In Pro-

ceedings of the ACM workshop on Programmable routers for exten-

sible services of tomorrow, PRESTO ’08, New York, NY, USA, 2008.
ACM.

[LNS94] Witold Litwin, Marie A. Neimat, and Donovan A. Schneider. RP*: A
Family of Order Preserving Scalable Distributed Data Structures. In
Proceedings of the 20th International Conference on Very Large Data

Bases, VLDB ’94, San Francisco, CA, USA, 1994. Morgan Kaufmann
Publishers Inc.

[LNS96] Witold Litwin, Marie A. Neimat, and Donovan A. Schneider. LH*
a scalable, distributed data structure. ACM Trans. Database Syst.,
21(4), December 1996.

[LTZ+09] Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou, Zachary G. Ives,
and Boon Thau Loo. Recursive computation of regions and connec-
tivity in networks. In ICDE, 2009.

[Lud98] Bertram Ludäscher. Integration of Active and Deductive Database

Rules, volume 45 of DISDBIS. Infix Verlag, St. Augustin, Germany,
1998.

[MAC+12] William R. Marczak, Peter Alvaro, Neil Conway, Joseph M. Heller-
stein, and David Maier. Confluence analysis for distributed pro-
grams: a model-theoretic approach. In Proceedings of the Second

international conference on Datalog in Academia and Industry, Dat-
alog 2.0’12, Berlin, Heidelberg, 2012. Springer-Verlag.

[MFF+08] Luc Moreau, Juliana Freire, Joe Futrelle, Robert McGrath, Jim My-
ers, and Patrick Paulson. The open provenance model: An overview.

116 EXTERNAL REFERENCES

In Juliana Freire, David Koop, and Luc Moreau, editors, Prove-

nance and Annotation of Data and Processes, volume 5272 of Lec-

ture Notes in Computer Science. Springer Berlin / Heidelberg, 2008.
10.1007/978-3-540-89965-5_31.

[MHB+10] William R. Marczak, Shan Shan Huang, Martin Bravenboer, Micah
Sherr, Boon Thau Loo, and Molham Aref. Secureblox: customiz-
able secure distributed data processing. In Proceedings of the 2010

ACM SIGMOD International Conference on Management of data,
SIGMOD ’10, New York, NY, USA, 2010. ACM.

[MMSW07] Maged Michael, Jose E. Moreira, Doron Shiloach, and Robert W.
Wisniewski. Scale-up x Scale-out: A Case Study using
Nutch/Lucene. In Parallel and Distributed Processing Symposium,

2007. IPDPS 2007. IEEE International, 2007.

[MS02] Gerome Miklau and Dan Suciu. Cryptographically Enforced Condi-
tional Access for XML. In Fifth International Workshop on the Web

and Databases (WebDB, 2002.

[MS03] Gerome Miklau and Dan Suciu. Controlling access to published
data using cryptography. In VLDB ’2003: Proceedings of the 29th in-

ternational conference on Very large data bases. VLDB Endowment,
2003.

[MSM+12] Atsuyuki Morishima, Norihide Shinagawa, Tomomi Mitsuishi,
Hideto Aoki, and Shun Fukusumi. Cylog/crowd4u: a declarative
platform for complex data-centric crowdsourcing. Proc. VLDB En-

dow., 5(12), August 2012.

[MZZ+08] William R. Marczak, David Zook, Wenchao Zhou, Molham Aref,
and Boon T. Loo. Declarative Reconfigurable Trust Management.
In Conference on Innovative Data Systems Research (CIDR), 2008.

[NC03] Anil Nigam and Nathan S. Caswell. Business artifacts: An approach
to operational specfication. In IBM Systems Journal, vol. 42, no. 3,
2003.

[NCR08] G. H. Nguyen, P. Chatalic, and M. C. Rousset. A probabilistic trust
model for semantic peer to peer systems. In DaMaP ’08: Proceed-

ings of the 2008 international workshop on Data management in

peer-to-peer systems, New York, NY, USA, 2008. ACM.

117

[NCW93] Wolfgang Nejdl, Stefano Ceri, and Gio Wiederhold. Evaluating
recursive queries in distributed databases. IEEE Transactions on

Knowledge and Data Engineering, 5(1), February 1993.

[NR09] Juan Navarro and Andrey Rybalchenko. Operational Semantics for
Declarative Networking. In Andy Gill and Terrance Swift, editors,
Practical Aspects of Declarative Languages, volume 5418 of Lecture

Notes in Computer Science, chapter 6. Springer Berlin / Heidelberg,
Berlin, Heidelberg, 2009.

[OAS04] OASIS. Uddi version 3.0.2. http://uddi.org/pubs/uddi_v3.htm,
October 2004.

[OAS07] OASIS. Web services business process execution language
version 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/

wsbpel-v2.0-OS.html, April 2007.

[oIa] University of Innsbruck. Iris - integrated rule inference system.
http://iris-reasoner.org/.

[oIb] University of Innsbruck. Iris - integrated rule inference sys-
tem. https://github.com/bloom-lang/bud-sandbox/tree/

master/bfs.

[ÖV99] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed

Database Systems. Prentice-Hall, 1999.

[PRS09] Juan A. Pérez, Andrey Rybalchenko, and Atul Singh. Cardinality Ab-
straction for Declarative Networking Applications. In CAV ’09: Pro-

ceedings of the 21st International Conference on Computer Aided

Verification, Berlin, Heidelberg, 2009. Springer-Verlag.

[Prz90] Teodor C. Przymusinski. The well-founded semantics coincides
with the three-valued stable semantics. Fundam. Inform., 13(4),
1990.

[Rai13] Rails github, 2013. https://github.com/rails/rails/.

[RFC74] RFC675. Specification of internet transmission control program.
http://tools.ietf.org/html/rfc675, December 1974.

[RS09] Royi Ronen and Oded Shmueli. Evaluating very large datalog
queries on social networks. In EDBT ’09: Proceedings of the 12th

International Conference on Extending Database Technology, New
York, NY, USA, 2009. ACM.

http://uddi.org/pubs/uddi_v3.htm
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://iris-reasoner.org/
https://github.com/bloom-lang/bud-sandbox/tree/master/bfs
https://github.com/bloom-lang/bud-sandbox/tree/master/bfs
https://github.com/rails/rails/
http://tools.ietf.org/html/rfc675

118 EXTERNAL REFERENCES

[Rub] Ruby community. ERB documentation standard. http://

ruby-doc.org/stdlib-2.0.0/libdoc/erb/rdoc/ERB.html.

[Sch95] Douglas C. Schmidt. Reactor: An object behavioral pattern for con-
current event demultiplexing and dispatching, 1995.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago:
a core of semantic knowledge. In Proceedings of the 16th inter-

national conference on World Wide Web, WWW ’07, New York, NY,
USA, 2007. ACM.

[SW85] Domenico Sacca and Gio Wiederhold. Database partitioning in
a cluster of processors. ACM Trans. Database Syst., 10(1), March
1985.

[TS04] Stephanos A. Theotokis and Diomidis Spinellis. A survey of peer-to-
peer content distribution technologies. ACM Comput. Surv., 36(4),
December 2004.

[Vie86] Laurent Vieille. Recursive axioms in deductive databases: The
query-subquery approach. In Proc. 1st Int. Conf. on Expert

Database Systems, 1986.

[W3C99] W3C. Xsl transformations (xslt) standard version 1.0. http://www.
w3.org/TR/xslt, November 1999.

[W3C02] W3C. Web services conversation language (wscl) 1.0 standard.
http://www.w3.org/TR/wscl10/, March 2002.

[W3C04a] W3C. Rdf primer standard. http://www.w3.org/TR/

rdf-primer/, February 2004.

[W3C04b] W3C. Xml schema part 0: Primer standard. http://www.w3.org/
TR/xmlschema-0/, October 2004.

[W3C07a] W3C. Soap version 1.2 part 1: Messaging framework (second edi-
tion) standard. http://www.w3.org/TR/soap12-part1/, April
2007.

[W3C07b] W3C. Web services description language (wsdl) standard version
2.0 part 1: Core language. http://www.w3.org/TR/wsdl20/, June
2007.

[W3C08a] W3C. Extensible markup language (xml) 1.0 standard. http://www.
w3.org/TR/REC-xml/, November 2008.

http://ruby-doc.org/stdlib-2.0.0/libdoc/erb/rdoc/ERB.html
http://ruby-doc.org/stdlib-2.0.0/libdoc/erb/rdoc/ERB.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/wscl10/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

119

[W3C08b] W3C. Xml signature syntax and processing (second edition) stan-
dard. http://www.w3.org/TR/xmldsig-core/, June 2008.

[W3C09] W3C. Owl 2 web ontology language document overview. http:

//www.w3.org/TR/owl2-overview/, October 2009.

[W3C10] W3C. Xquery 1.0: An xml query language (second edition) standard.
http://www.w3.org/TR/xquery/, December 2010.

[W3C13] W3C. Html 5.1 specification. http://www.w3.org/TR/html51/,
May 2013.

[Wal03] Dan Wallach. A Survey of Peer-to-Peer Security Issues. In Mit-
suhiro Okada, Benjamin Pierce, Andre Scedrov, Hideyuki Tokuda,
and Akinori Yonezawa, editors, Software Security — Theories and

Systems, volume 2609 of Lecture Notes in Computer Science, chap-
ter 4. Springer Berlin / Heidelberg, Berlin, Heidelberg, June 2003.

[WL82] Paul F. Wilms and Bruce G. Lindsay. A database authorization
mechanism supporting individual and group authorization. In Dis-

tributed data sharing systems: proceedings of the Second Interna-

tional Seminar on Distributed Data Sharing Systems, June 1982.

[YHY07] Xiaoxin Yin, Jiawei Han, and Philip S. Yu. Truth discovery with mul-
tiple conflicting information providers on the web. In KDD ’07:

Proceedings of the 13th ACM SIGKDD international conference on

Knowledge discovery and data mining, New York, NY, USA, 2007.
ACM.

[YK00] Guizhen Yang and Michael Kifer. Flora: Implementing an efficient
dood system using a tabling logic engine. In In International Con-

ference on Computational Logic, volume 1861 of LNCS, 2000.

[YKZ03] Guizhen Yang, Michael Kifer, and Chang Zhao. Flora-2: A rule-
based knowledge representation and inference infrastructure for
the semantic web. In In Second International Conference on On-

tologies, Databases and Applications of Semantics (ODBASE, 2003.

[ZFS+11] Wenchao Zhou, Qiong Fei, Shengzhi Sun, Tao Tao, Andreas Hae-
berlen, Zachary Ives, Boon Thau Loo, and Micah Sherr. Nettrails: a
declarative platform for maintaining and querying provenance in
distributed systems. In Proceedings of the 2011 ACM SIGMOD In-

ternational Conference on Management of data, SIGMOD ’11, New
York, NY, USA, 2011. ACM.

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/html51/

120 EXTERNAL REFERENCES

[ZST+10] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau
Loo, and Yun Mao. Efficient querying and maintenance of network
provenance at internet-scale. In Proceedings of the 2010 ACM SIG-

MOD International Conference on Management of data, SIGMOD
’10, New York, NY, USA, 2010. ACM.

	Acknowledgement
	Résumé en Français
	1 Introduction
	2 State of the Art
	2.1 Distributed Information Systems
	2.1.1 Distributed systems
	2.1.2 Distributed databases
	2.1.3 Data on the Web
	2.1.4 Peer-to-peer systems
	2.1.5 Social networks
	2.1.6 Contribution

	2.2 Knowledge bases
	2.2.1 Processing knowledge
	2.2.2 Datalog
	2.2.3 Distributed datalog
	2.2.4 Provenance and optimization
	2.2.5 Contribution

	2.3 Webdam exchange

	3 Webdamlog language
	3.1 Model of data
	3.1.1 Informal presentation
	3.1.2 Formal definitions

	3.2 Key observations
	3.3 Expressive power
	3.3.1 Traces and simulations
	3.3.2 Expressivity results

	3.4 Convergence of Webdamlog
	3.4.1 Positive Webdamlog
	3.4.2 Strongly-stratified Webdamlog

	4 Webdamlog rule engine
	4.1 Datalog inside
	4.2 Connection between Bud and Webdamlog
	4.2.1 Webdamlog computation on Bud
	4.2.2 Implementing Webdamlog rules

	4.3 Optimization of the evaluation
	4.4 Optimization for view maintenance
	4.4.1 Provenance graphs
	4.4.2 Deletions
	4.4.3 Running the fixpoint

	4.5 Performance evaluation
	4.5.1 Cost of delegation
	4.5.2 Cost of dynamism

	5 Architecture of a Webdamlog peer
	5.1 Peer architecture
	5.1.1 Event-driven system
	5.1.2 Module interactions

	5.2 Wrappers
	5.3 Demonstration
	5.3.1 Wepic application
	5.3.2 Demonstration Scenario
	5.3.3 Access control

	6 User Study
	6.1 Webdamlog tutorial
	6.2 Test
	6.3 Results

	7 Conclusion
	Self references
	External references

