
HAL Id: tel-00908155
https://theses.hal.science/tel-00908155v4
Submitted on 6 Jan 2014 (v4), last revised 20 Jan 2014 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed data management with the rule-based
language: Webdamlog

Émilien Antoine

To cite this version:
Émilien Antoine. Distributed data management with the rule-based language: Webdamlog. Databases
[cs.DB]. Université Paris Sud - Paris XI, 2013. English. �NNT : �. �tel-00908155v4�

https://theses.hal.science/tel-00908155v4
https://hal.archives-ouvertes.fr

Université Paris-Sud
École Doctorale d’informatique de Paris-Sud
Laboratoire Spécification et Vérification (LSV) – ENS de Cachan

Discipline : Informatique

Thèse de doctorat
Soutenue le 5 décembre 2013 par

Émilien Antoine

Gestion des données distribuées avec
le langage de règles: Webdamlog

Distributed data management with
the rule-based language: Webdamlog

Directeur de thèse : Serge Abiteboul D.R. Inria Saclay

Composition du jury :

Présidente du jury : Nicole Bidoit Prof. Univ. Paris-Sud
Rapporteurs : Christine Collet Prof. Grenoble INP

Pascal Molli Prof. Univ. Nantes
Examinateurs : Bogdan Cautis Prof. Univ. Paris-Sud

David Gross-Amblard Prof. Univ. Rennes 1

ii

Résumé

Notre but est de permettre à un utilisateur du Web d’organiser la gestion
de ses données distribuées en place, c’est à dire sans l’obliger à centraliser
ses données chez un unique hôte. Par conséquent, notre système diffère
de Facebook et des autres systèmes centralisés, et propose une alternative
permettant aux utilisateurs de lancer leurs propres pairs sur leurs machines
gérant localement leurs données personnelles et collaborant éventuellement
avec des services Web externes.

Dans ma thèse, je présente Webdamlog, un langage dérivé de datalog
pour la gestion de données et de connaissances distribuées. Le langage étend
datalog de plusieurs manières, principalement avec une nouvelle propriété la
délégation, autorisant les pairs à échanger non seulement des faits (les données)
mais aussi des règles (la connaissance). J’ai ensuite mené une étude utilisateur
pour démontrer l’utilisation du langage. Enfin je décris le moteur d’évaluation
de Webdamlog qui étend un moteur d’évaluation de datalog distribué nommé
Bud, en ajoutant le support de la délégation et d’autres innovations telles
que la possibilité d’avoir des variables pour les noms de pairs et des relations.
J’aborde de nouvelles techniques d’optimisation, notamment basées sur la
provenance des faits et des règles. Je présente des expérimentations qui
démontrent que le coût du support des nouvelles propriétés de Webdamlog
reste raisonnable même pour de gros volumes de données. Finalement, je
présente l’implémentation d’un pair Webdamlog qui fournit l’environnement
pour le moteur. En particulier, certains adaptateurs permettant aux pairs
Webdamlog d’échanger des données avec d’autres pairs sur Internet. Pour
illustrer l’utilisation de ces pairs, j’ai implémenté une application de partage
de photos dans un réseau social en Webdamlog.

Mots clefs Distribution ; Datalog ; Base de connaissances ; Pair à pair ;
Gestion de données du Web.

iii

iv

Abstract

Our goal is to enable a Web user to easily specify distributed data management
tasks in place, i.e. without centralizing the data to a single provider. Our
system is therefore not a replacement for Facebook, or any centralized system,
but an alternative that allows users to launch their own peers on their machines
processing their own local personal data, and possibly collaborating with Web
services.

We introduce Webdamlog, a datalog-style language for managing dis-
tributed data and knowledge. The language extends datalog in a number
of ways, notably with a novel feature, namely delegation, allowing peers
to exchange not only facts but also rules. We present a user study that
demonstrates the usability of the language. We describe a Webdamlog engine
that extends a distributed datalog engine, namely Bud, with the support
of delegation and of a number of other novelties of Webdamlog such as the
possibility to have variables denoting peers or relations. We mention novel
optimization techniques, notably one based on the provenance of facts and
rules. We exhibit experiments that demonstrate that the rich features of
Webdamlog can be supported at reasonable cost and that the engine scales to
large volumes of data. Finally, we discuss the implementation of a Webdamlog
peer system that provides an environment for the engine. In particular, a peer
supports wrappers to exchange Webdamlog data with non-Webdamlog peers.
We illustrate these peers by presenting a picture management application
that we used for demonstration purposes.

Keywords Distribution ; Datalog ; Knowledge Base ; Peer to Peer ; Web
Data Management.

v

vi

Contents

Acknowledgement ix

Résumé en Français xi

1 Introduction 1

2 State of the Art 3
2.1 Distributed Information Systems 3

2.1.1 Distributed systems . 3
2.1.2 Distributed databases 4
2.1.3 Data on the Web . 4
2.1.4 Peer-to-peer systems 5
2.1.5 Social networks . 6
2.1.6 Contribution . 7

2.2 Knowledge bases . 7
2.2.1 Processing knowledge 7
2.2.2 Datalog . 8
2.2.3 Distributed datalog . 10
2.2.4 Provenance and optimization 11
2.2.5 Contribution . 11

2.3 Webdam exchange . 12

3 Webdamlog language 15
3.1 Model of data . 17

3.1.1 Informal presentation 17
3.1.2 Formal definitions . 19

3.2 Key observations . 24
3.3 Expressive power . 27

3.3.1 Traces and simulations 28
3.3.2 Expressivity results . 28

3.4 Convergence of Webdamlog . 33

vii

viii CONTENTS

3.4.1 Positive Webdamlog . 33
3.4.2 Strongly-stratified Webdamlog 41

4 Webdamlog rule engine 53
4.1 Datalog inside . 53
4.2 Connection between Bud and Webdamlog 54

4.2.1 Webdamlog computation on Bud 54
4.2.2 Implementing Webdamlog rules 56

4.3 Optimization of the evaluation 60
4.4 Optimization for view maintenance 62

4.4.1 Provenance graphs . 62
4.4.2 Deletions . 65
4.4.3 Running the fixpoint 65

4.5 Performance evaluation . 66
4.5.1 Cost of delegation . 67
4.5.2 Cost of dynamism . 69

5 Architecture of a Webdamlog peer 79
5.1 Peer architecture . 80

5.1.1 Event-driven system 82
5.1.2 Module interactions . 84

5.2 Wrappers . 85
5.3 Demonstration . 88

5.3.1 Wepic application . 89
5.3.2 Demonstration Scenario 91
5.3.3 Access control . 94

6 User Study 97
6.1 Webdamlog tutorial . 97
6.2 Test . 100
6.3 Results . 103

7 Conclusion 105

Self references 107

External references 109

Acknowledgement

The very first person I would like to thank in these acknowledgments is my
advisor Serge Abiteboul. He leads me all along the long and winding road
that are the three years of a Ph.D. thesis. I claim that he is the best advisor
that a student could have, although he is the only Ph.D. advisor I have ever
had so my judgment may be biased. I have always been amazed to see him
implied in so many activities in scientific matters in the most prestigious
places as well as in other domains as writing and sculpture. In spite of his
busy schedule, I always had the opportunity to talk about my work when
needed and even have enjoyable gabbing at lunch. To summarize, I will quote
what Val Tannen once told me about Serge Abiteboul “In the neighborhood
of Serge, we are all the cool people of databases” and I totally agree that is
why thanks to him I meet so many interesting people I wish to thank. First I
wish to thank Julia Stoyanovich with whom I have worked and met in many
occasions during conferences or summer schools. Then I am grateful to all the
Webdam members I had the opportunity to meet. Especially Alban Galland
with whom I started to collaborate as a Ph.D. student and Pierre Bourhis
who are the two previous student of Serge; and also Jules Testard who worked
with me during its internship in Webdam. Once again thanks to all the people
in Webdam, it would be too long to make list them here so check yourself on
the Webdam website the list of participants. Moreover it has been a pleasure
to work with all the members of the LSV, the laboratory in which I spent
most of my time, but also the member of the current OAK team formerly
LEO in which I started my first year as a Ph.D. student. Eventually, let me
acknowledge the member of my jury: Christine Collet and Pascal Molli for
the relevant remarks and reviews of my thesis; Nicole Bidoit, Bogdan Cautis
and David Gross-Amblard who accepted to be my examiners. Thanks again
to David Gross-Amblard who have been my internship tutor before my thesis.
He allows me to meet Philippe Rigaux who is just like Serge another very
cool people of databases.

In addition to the people who collaborate with me, I would like to thank
co-workers. More precisely, the people who shared an office with me: Wojciech

ix

x ACKNOWLEDGEMENT

Kazana, Nadime Françis and Marie Van Den Bogaard, thanks for the nice
time and enjoyable discussions about nearly everything that could be turned
into a riddle. The other people of the fourth floor of the LSV, especially
Thomas Chatain for the enjoyable coffee breaks, Sandie Balaguer for the
gardening breaks on the balcony and Luc Segoufin and Cristina Sirangelo for
gathering people at noon and pleasant discussion at lunch.

To conclude, this thesis would not have been possible without my family
and above all my parents who had always been involved in several exciting
activities and who shared their interest with their children. From ornithology,
gardening, carpentry to jazz, science and politic all these matters always kept
my curiosity aroused. Also thanks to my brother who has traveled through all
the Americas and post the story of his journey that entertained me. Finally I
am grateful to many friends who helped me to escape from my Ph.D. thesis
from times to times: Sainte-Tempérance, Gaudy Whynot, Grolodie and all
the “Lorrains” and “Normands” I had the pleasure to meet in Paris ; and the
good old friends before my arrival in Paris Sab, Flo, Ninie, Émilie, Raph, JB.

Résumé en Français

Le volume d’informations présentes sur la toile1 s’accroît exponentiellement.
Les utilisateurs comme les compagnies partagent de plus en plus leurs données,
qui se trouvent distribuées sur les nombreuses machines qu’ils possèdent, ou via
des services Web où ils stockent leurs informations sur des machines externes.
En particulier, l’émergence de l’infonuagique2 et des réseaux sociaux permet
aux utilisateurs de partager encore plus de données personnelles. La multitude
de services spécialisés offrant chacun une expérience différente à l’utilisateur
complique énormément la gestion de ces informations et la collaboration des ces
services dépasse rapidement l’expertise humaine. Les informations manipulées
par les utilisateurs ont de nombreuses facettes : elles concernent des données
personnelles (photos, films, musique, mails), des données sociales (annotations,
recommandation, liens sociaux), la localisation des données (marque-pages),
les informations de contrôle d’accès (mots de passe, clés privées), les services
Web (moteur de recherche, archives), la sémantique (ontologies), la croyance
et la provenance. Les tâches exécutées par les utilisateurs sont très variées :
recherches par mots clefs, requêtes structurées, mise à jour, authentification,
fouille de données et extraction de connaissances. Dans cette thèse, nous
montrons que toute cette information devrait être modélisée comme un
problème de gestion d’une base de connaissance distribuée. Nous soutenons
aussi que datalog et ses extensions forment une base formelle sûre pour
représenter ces informations et ces tâches. Ce travail fait partie du projet
ERC Webdam [ERC13] sur les fondations de la gestion des données de la
toile. Le but de ce projet est de participer au développement de fondations
formelles unifiées pour la gestion de données distribuées, le manque actuel de
telles fondations ralentissant les progrès dans ce domaine.

Pour illustrer la problématique nous pouvons considérer Joe un utilisateur
typique de la toile. Joe possède un blog hébergé sur Wordpress.com sur
lequel il poste des critiques de films qu’il a visionné récemment. Joe possède
aussi un compte Facebook et Gmail pour communiquer avec ses amis, ainsi

1Web
2cloud computing

xi

xii RÉSUMÉ EN FRANÇAIS

qu’un compte Dropbox pour stocker une partie des données qu’il souhaite
partager. Joe aimerait automatiser une tâche qu’il effectue régulièrement
manuellement. Chaque fois qu’il poste une nouvelle critique sur son blog
Joe souhaiterait informer ses amis qu’un nouvel article est disponible et
mettre à leur disposition le fichier du film qu’il vient de regarder. Cette
tâche est possible à automatiser pour un programmeur en écrivant un script
adhoc. Cependant Joe n’étant pas programmeur il est obligé de s’authentifier
sur Wordpress.com, Facebook, Gmail et Dropbox pour y poster sa critique,
envoyer un message à tous ses amis et envoyer le fichier du film. Nous
proposons dans cette thèse un système permettant à Joe de continuer à
utiliser les services Web qu’il affectionne tout en spécifiant à son ordinateur
des tâches qu’il pourrait accomplir automatiquement.

Contributions

Les contributions de cette thèse sont les suivantes :

• Je présente Webdamlog, un nouveau langage à base de règles pour la
gestion de données distribuées qui combine dans un cadre formel les
règles déductives de datalog avec négation pour la définition des faits
intentionnels et les règles actives de datalog ¬¬ pour les mises à jour et
les communications. Le modèle met un accent fort sur la dynamique
et les interactions typiques du Web 2.0, principalement grâce à une
nouveauté du langage Webdamlog, la délégation de règles permettant
aux pairs de collaborer. Ce modèle est à la fois suffisamment puissant
pour spécifier des systèmes distribués complexes et suffisamment simple
pour permettre une étude formelle de la distribution, de la concurrence
et de l’expressivité dans un système de pairs autonomes.

• Je présente l’implémentation du moteur d’évaluation de programmes
Webdamlog qui étend le moteur datalog distribué avec mise à jour
nommé Bud de deux manières. D’abord le moteur Webdamlog ajoute
la possibilité d’évaluer des règles contenant des variables à la place des
noms de relations et de pairs dans les règles. Puis afin de supporter la
négation, Webdamlog permet aussi l’ajout et la suppression de règles
dynamiquement, c’est à dire pendant l’exécution du programme. Enfin,
je présente une technique d’optimisation basé sur la provenance pour la
suppression des faits et des règles.

• Je présente l’architecture d’un pair Webdamlog contenant un moteur

xiii

d’évaluation Webdamlog et plusieurs adaptateurs3 permettant au pair
d’interagir avec les pairs non-Webdamlog. Je détails l’architecture et
l’implémentation des lectures et mises à jour des faits et règles entre les
adaptateurs et le moteur Webdamlog. La gestion des accès concurrents
est basé sur le patron de conception4 Reactor pattern [FMS09].

Je pense que ces contributions forment une bonne base pour résoudre les
problèmes fréquemment rencontrés dans l’échange de données sur la toile, en
particulier pour l’échange de données personnelles dans les réseaux sociaux.

Résumé de l’état de l’art

Cette thèse aborde deux domaines importants de l’informatique, les systèmes
de données distribuées et l’inférence de connaissances.

Données distribuées Les systèmes distribués [ÖV99, AMR+11] sont des
logiciels qui servent à coordonner les actions de plusieurs ordinateurs à travers
l’envoi de messages. Ils sont caractérisés par les notions de consistance, de
fiabilité, de disponibilité, de passage à l’échelle et d’efficacité. Dans le cas
des bases de données, le système consiste en un ensemble de plusieurs bases
de données, logiquement liées, distribuées sur un réseau d’ordinateurs. La
distribution est transparente pour l’utilisateur : le résultat d’une requête
ne dépend pas à priori du pair sur lequel elle a été posée. Sur la toile,
la distribution est une composante de base de l’organisation du système.
Le développement du langage commun XML et d’autres standards facilite
l’expansion des échanges. Enfin, les systèmes pairs-à-pairs, structurés ou non,
représentent l’aboutissement d’importants efforts de recherche en matière de
distribution dans lesquels les nœuds ont des comportements extrêmement
variés et flexibles.

L’inférence La connaissance est utilisée pour décrire la sémantique des
données. La connaissance représentée dans des formats lisibles par l’humain
comme sur Wikipedia par exemple est difficile à traiter par ordinateurs. Des
systèmes d’intégration de la connaissance humaine en format interprétable par
des machines est un sujet de recherche présenté dans [SKW07, LIJ+13]. Dans
cette thèse, je m’intéresse surtout à la partie traitement des connaissances
en format machine. Les fondements de l’inférence de connaissances reposent
sur les bases de la logique mathématique, essentiellement des fragments de la

3wrappers
4design pattern

xiv RÉSUMÉ EN FRANÇAIS

logique du premier ordre. Je m’intéresserai particulièrement aux systèmes
déductifs de Hilbert. Ces systèmes sont basés sur des règles de Hilbert
dans lesquels une règle déduit un nouveau fait à partir d’une conjonction
de conditions sur un ensemble de faits déjà connus. Historiquement l’un
des premiers langages à base de règles est Prolog [CR93] qui repose sur un
algorithme d’évaluation nommé SLD [EK76]. Dans cette thèse je m’intéresse à
datalog, un langage plus restreint que Prolog et qui offre de bonnes propriétés
de terminaison. Datalog est un langage d’inférence particulièrement adapté
aux bases de données qui supporte nativement la récursion contrairement à
SQL le langage déclaratif habituellement utilisé dans les systèmes de gestion
de base de données.

Le langage Webdamlog que nous présentons dans la section suivante est
basé sur datalog avec négation [AHV95]. Principalement datalog muni de
son extension distribuée [Hul89, NCW93, Hel10, GW10]. Dans les travaux
précédent sur datalog, un programme positif est distribué sur plusieurs pairs
après une phase de compilation. Nous nous intéressons à un déploiement
beaucoup plus dynamique, et nous introduisons en particulier la notion de
délégation.

Le langage Webdamlog

La gestion d’information distribuée est un problème important, en particulier
sur la toile. Des langages basés sur datalog ont donc été proposé pour le
modéliser. Nous introduisons ici un nouveau modèle, dans lequel des pairs
autonomes échangent des messages et des règles (délégation). Nous étudions
en particulier les conséquences sur l’expressivité de la délégation. Nous
proposons aussi des restrictions du langage qui garantissent sa convergence.

Je présente un exemple où Alice souhaite gérer automatiquement l’organisation
de ses réunion et plus particulièrement une conférence téléphonique qu’elle a
noté dans son calendrier. Considérons un pair Alice-phone, avec la relation
calendar qui contient l’agenda personnel d’Alice sur son téléphone et la re-
lation confMembers correspondant à la liste des membres de la conférence
téléphonique. Voici des exemples de faits:

at Alice-phone:
calendar@Alice-phone(confTel, 06/12/2013, Paris, Alice-phone)
confMembers@Alice-phone(Bob, agenda, Bob-laptop)

La règle suivante ajoute les entrées relatives à la conférence téléphonique du
calendrier d’Alice dans ceux des autres membres de la conférence téléphonique:

xv

at Alice-phone:
$calendar@$peer(confTel, $date, $place, Alice-phone) :-

calendar@Alice-phone(confTel, $date, $place, Alice-phone),
confMembers@Alice-phone($name, $calendar, $peer)

Il faut noter que les pairs et le nom des messages sont traités comme des
données. La règle génère le nouveau fait suivant :

agenda@Bob-laptop(confTel, 05/12/2013, Paris, Alice-phone)

Le fait décrit un message envoyé d’Alice-phone à Bob-laptop. Ce fait exten-
sionnel est consommé par Bob-laptop lorsqu’il le lit. Comme dans les bases
de données déductives, le modèle distingue entre faits extensionnels et faits
intentionnels. Par exemple, la relation confMembers peut être intentionnelle
et définie ainsi :

at Alice-phone:
intentionnel confMembers@Alice-phone(string, relation, peer)

confMembers@Alice-phone($name, $relation, $peer) :-
contact@Alice-phone($name, $relation, $peer),
group@Alice-phone($name, confTel)

La sémantique du système est basée sur une sémantique locale, standard
et sur l’échange de faits et de règles. Intuitivement, un pair donné calcule
un nouvel état depuis son état courant en consommant ses faits locaux et
en déduisant à partir de ses faits et de la sémantique locale les faits qu’il
doit envoyer aux autres et à lui-même, ainsi que les règles qu’il doit déléguer
aux autres. Un exemple de délégation est le suivant. Considérons la règle
suivante:

at Bob-laptop:
confirm@$peer(confTel, $date, $place,Bob) :-

agenda@Bob-laptop(confTel, $date, $place, $peer),
checkAvailability@Bob-phone($date);

L’effet de la règle, étant donné le fait généré à l’intention de Bob-laptop, est
d’installer la règle suivante sur le smartphone de Bob :

at Bob-phone:
confirm@Alice-phone(confTel, 05/12/2013,Paris,Bob) :-

checkAvailability@Bob-phone(05/12/2013);

Lorsque le smartphone de Bob exécute cette règle, en supposant que confirm@Alice-
phone est extensionnel, si le fait

xvi RÉSUMÉ EN FRANÇAIS

checkAvailability@Bob-phone(05/12/2013)

est satisfait le message suivant est envoyé à Alice:

confirm@Alice-phone(confTel, 05/12/2013, Paris,Bob)

Si confirm@Alice-phone est intensionnel, c’est la règle suivante qui est envoyée:

at Alice-phone:
confirm@Alice-phone(confTel, 05/12/2013, Paris,Bob) :-

Cette règle dont le corps est vide est toujours satisfaite sans condition et
contrairement au fait précédent elle ne sera pas consommé par le pair Alice-
phone cependant elle sera désinstallé à l’initiative de Bob-phone.

Sans rentrer dans les détails formels, il est intéressant d’étudier l’impact
de la délégation sur l’expressivité du langage. En plus du langage général,
noté WL, on peut distinguer deux sous-langages. Le premier, SWL, restreint
la délégation aux vues. Le second, SWL, interdit complètement la délégation.
Enfin, nous considérons les variantes autorisant les étiquetages temporels,
notés WLt, VWLt et SWLt respectivement. Les différences d’expressivité
sont résumées sur la figure 1. Les inclusions sont strictes, à l’exception de
celle de VWLt dans VWLt qui reste indéterminée.

WLt

WL SWLt = V WLt

V WL

SWL

Figure 1: Expressivité des variantes de WL (les inclusions sont strictes quand
l’arc est en gras)

Un autre point d’intérêt est la convergence du langage en fonction de
l’ordre d’exécution des pairs. En règle générale, le résultat du calcul est à priori
différent pour deux ordres d’exécution différents. Néanmoins, on peut isoler
des cas monotones ou fortement stratifiés qui assurent la convergence, et ont
une sémantique comparable à celle du cas où on centraliserait naturellement
l’ensemble des faits et règles initiaux.

xvii

Le moteur de règles Webdamlog

Je considère la gestion de données distribuées sur la toile basée sur un réseau
pair à pair d’acteurs autonomes et hétérogènes. Pour permettre aux pairs
d’exprimer leurs propres tâches de gestion de connaissances tout en collaborant
ensemble pour les tâches de gestion distribuées, je propose une implémentation
d’un moteur d’évaluation du langage Webdamlog précédemment introduit.

Le moteur Webdamlog s’appuie sur un moteur d’évaluation de datalog
distribué nommé Bud [ACHM11]. Le système Bud supporte efficacement
les mises à jour et la distribution de datalog bien qu’il n’implémente pas
la négation. Bud implémente l’algorithme d’évaluation semi-naïve pour
l’inférence locale basée sur un système de déduction monotone positif de type
chaînage avant. Afin d’évaluer un programme Webdamlog trois modifications
majeurs au moteur ont été ajouté:

• Le support de règles contenant des variables à la place des noms de
pairs ou de relations dans les règles.

• Le support des délégations, soit la réception de règles en plus de la
réception de faits.

• L’ajout de règles pendant l’exécution du système.

De plus la sémantique particulière des relations extensionnelles de Webdamlog
qui par défaut ne sont pas permanentes impose la redéfinition des structures
de mise à jour de Bud.

J’introduis une série d’optimisations pour l’évaluation des programmes
Webdamlog. Premièrement une optimisation basé sur l’échange différentiel
pour les délégations. Deuxièmement je montre une technique d’optimisation
du type Query-Subquery [Vie86] pour les règles distribuées. Enfin je propose
un technique d’optimisation plus générale pour la gestion de la suppression
dans un programme datalog avec mise à jour. Cette technique basé sur
la provenance de la déduction en gardant le graphe de preuves des faits et
règles déduits, je propage la suppression par une mise à jour du graphe. La
technique d’évaluation standard recalcule l’ensemble des relations mises à
jours en relançant l’algorithme d’évaluation semi-naïve. Dans le contexte
extrêmement dynamique de Webdamlog ou les faits et les règles changent
rapidement, cette optimisation est cruciale afin d’obtenir des performances
raisonnables de la part du système. Je présente dans la section 4.5 une série
d’expérimentation permettant de valider mes optimisations à large échelle.

xviii RÉSUMÉ EN FRANÇAIS

L’architecture du pair Webdamlog

La gestion d’information sur Internet s’appuie sur une grande variété de sys-
tèmes spécialisés pour des tâches particulières. Dans l’exemple préalablement
introduit, Joe souhaite interagir avec de nombreux services Web distants.
Certains systèmes proposent des adaptateurs5 pour intégrer les données en un
unique point centralisé et ainsi permettre à Joe de gérer automatiquement ses
données via une unique interface. Je présente un pair Webdamlog qui muni
des adaptateurs nécessaires, permet de collaborer avec les différents services
tout en gérants les données en place, c’est à dire en conservant la distribution
des données auquel Joe est habitué. La nécessité de ne pas se reposer sur un
unique prestataire auquel il serait nécessaire de confier toutes ses données
personnelles me semble être la motivation majeur pour l’utilisation d’un
système tel que Webdamlog.

Dans ce chapitre je décris l’architecture et l’interaction d’un pair Web-
damlog avec les autres pairs non-Webdamlog. L’intégration d’adaptateurs
autour du moteur de déduction Webdamlog permettent de fourni des fonction-
nalités nécessaires tels qu’un interface graphique pour les interactions avec
l’utilisateur, une base de données pour le stockage persistent des données et
d’autre adaptateurs pour la communication par courriels6 ou avec un réseau
social comme Facebook.

Je définis un modèle général pour la gestion des évènements autre que
les faits et règles Webdamlog basé sur le patron de conception7 Reactor
pattern [FMS09]. Puis je présente l’interface de programmation8 pour les
adaptateurs d’un pair Webdamlog. Un exemple d’application réalisable grâce
au système Webdamlog a été présenté lors d’une démonstration [4] à SIGMOD
2013. J’ai implémenté un système de réseau social pour le partage de photos
lors d’une conférence. L’interface de base de cette application permet de
lister ses photos, ajouter des annotations, des notes et des commentaires. Les
participants étaient invités à lancer leur propre pair avec leurs propres photos.
Je leur montrais comment grâce à un petit nombre de règles Webdamlog,
l’application permet de découvrir les autres membres de la conférence et
distribuer ses photos avec ses amis. Lors de la démonstration je proposais
aux participants de modifier leur pair pour y ajouter des règles permettant de
modifier le comportement de l’application afin de réaliser automatiquement
des tâches personnalisées.

5wrappers
6emails
7design pattern
8Application Programming Interface (API)

xix

Étude utilisateur

Dans cette thèse, je mets en avant l’utilisation du langage Webdamlog, un
langage déclaratif qui permet d’abstraire les détails techniques de la distri-
bution de la connaissances pour permettre à l’utilisateur de se concentrer
sur la spécifications des tâches. Lors de cette étude, nous avons réuni un
échantillon d’utilisateurs informaticiens et non informaticiens et de divers
niveaux d’études pour tester leurs capacités à utiliser le langages Webdamlog.
Nous leur avons présenté un cours de 20 min visant à enseigner les bases
du langage, puis nous leur avons fait passer un test. Les exercices du test
visaient à évaluer le niveau de compréhension de petits programmes Webdam-
log puis leurs capacités à écrire eux même des règles permettant d’accomplir
automatiquement des tâches typiques qu’une application utilisant Webdamlog
permet d’accomplir.

Conclusion

La philosophie de Webdamlog est de permettre de redonner le contrôle de ses
données aux utilisateurs de la toile. Alors que le courant actuel nous pousse
à confier de plus en plus nos données à des sociétés tierces essentiellement
via l’infonuagique9, Webdamlog insiste sur la devise “Faites le vous même”10,
c’est à dire gérez vos propres données avec vos propres systèmes. Grâce au
concept de délégation, le langage Webdamlog permet l’automatisation de
tâches complexe de gestion de données distribuées, et en particulier celles qui
requièrent la collaboration de plusieurs systèmes hétérogènes. Contrairement
aux systèmes centralisées propriétaires, le code de la toile est ouvert11, à
l’instar de Webdamlog qui est basé sur le partage du code.

Webdamlog ouvre un grand nombre de directions de recherche. Pour
conclure cette thèse, je mentionne quelques directions qui selon moi sont les
plus importantes:

• Une étude utilisateur approfondie de l’utilisation de Webdamlog par les
utilisateurs courants de la toile, c’est à dire ceux n’ayant que peu de
connaissances de l’informatique. Il semble essentiel de comprendre les
possibilités et les limitations de notre approche.

• Il serait intéressant de développer de meilleurs interfaces pour simplifier

9cloud computing
10Do it yourself
11open-source

xx RÉSUMÉ EN FRANÇAIS

la conception d’application pour faciliter la prise en main par les futurs
développeurs.

• Le contrôle d’accès pour les programmes Webdamlog est une pierre
angulaire manquante dans notre système. Cette voie de recherche est la
plus importante des priorités qui permettrai le développement de réel
applications.

• Webdamlog encourage le partage de connaissances entre les pairs ou
à l’intérieur d’une communauté. Certainement que de tels échanges
seraient facilité par l’amélioration de Webdamlog avec les technologies
d’ontologies du Web sémantique.

• Finalement, nous avons montré comment améliorer les performances
en utilisant certaines techniques d’optimisation. Il faudrait investir
plus amplement dans ce domaine pour passer à l’échelle de la toile12,
essentiellement en terme de nombre de pair, de charge de traitement et
de taille des données.

12Web

Chapter 1

Introduction

Information management on the Internet relies on a wide variety of systems,
each specialized for a particular task. The personal data and favorite appli-
cations of a Web user are typically distributed across many heterogeneous
devices and systems, e.g., residing on a smartphone, laptop, tablet, TV box,
or managed by Facebook, Google, etc. Additional data and computational
resources are also available to the user from relatives, friends, colleagues,
possibly via social network systems. Because of the distribution and hetero-
geneity, the management of personal data and knowledge has become a major
challenge.

A Web user is regularly facing information management tasks that may be
extremely cumbersome to carry out manually. Yet, automating these tasks, for
example by writing scripts, is far beyond the skills of most Web users. Some
systems attempt to provide integrated services to support these needs. For
instance, Facebook provides a wrapper service to integrate Dropbox accounts
and blogs. However, such services are often limited in the functionality they
support. Also, by delegating such services to systems like Facebook, a user is
lead to entrust more and more of his data to a single company, at the cost of
losing ownership and control of his own data.

Our goal is to enable a Web user to easily specify distributed data man-
agement tasks in place, i.e. without centralizing the data to a single provider.
Our system is therefore not a replacement for Facebook, or any centralized
system, but an alternative that allows users to launch their own peers on their
machines with their own personal data, and to collaborate with Web services.

Towards this goal, we propose Webdamlog, an elegant language for man-
aging distributed data and knowledge. As a datalog-style language, its main
benefits are the familiar ones: a declarative approach alleviates the concep-
tual complexity on the user, while at the same time allowing for powerful
performance optimizations on the part of the system. Besides this language,

1

2 CHAPTER 1. INTRODUCTION

our contributions consist of the design and implementation of an engine
supporting Webdamlog, novel optimization techniques taylored to this setting,
and the development of an environment for the peers supporting Webdamlog.

Language Webdamlog is a datalog-style language that emphasizes coopera-
tion between autonomous peers communicating in an asynchronous manner.
The language extends datalog in a number of ways, supporting updates,
negation, distribution and importantly delegation, a novel feature allowing
peers to exchange not only facts but also rules. We present a limited user
study that demonstrates the usability of the language, i.e., that users can use
the language after a minimal amount of training.

Engine We designed and implemented a Webdamlog engine. The engine
extends a distributed datalog engine, namely Bud, with the support of
delegation and of a number of other novelties of Webdamlog such as the
possibility to have variables denoting peers or relations. To support very
dynamic environments where the knowledge of peers vary rapidly notably
by acquiring new rules from other peers via delegation, we introduce novel
techniques, notably one based on the provenance of facts and rules. We
present experiments that demonstrate that the rich features of Webdamlog
can be supported at reasonable cost and that the engine scales to large
volumes of data.

Peer A Webdamlog peer provides an environment for the engine. In partic-
ular, it supports wrappers to exchange Webdamlog knowledge with non-Web-
damlog peers. We illustrate these peers by presenting a picture management
application that we used for demonstration purposes. In this application,
users can communicate through a Web interface, between them by mail, with
Facebook, and store data in a database.

Organization The thesis is organized as follows. We first discuss the
state or the art in Chapter 2. In Chapter 3, we introduce the Webdamlog
language. We present the engine, the main optimization techniques, as well as
experiments, in Chapter 4. The peers and the picture management application
are covered in Chapter 5, and the user study in Chapter 6. We conclude with
Chapter 7.

Chapter 2

State of the Art

The two main aspects of this thesis are distributed information and inference.
We next give an overview of these two topics in the area of data manage-
ment. To conclude the section, we mention Webdam exchange, a system for
distributed data management that influenced the work presented here.

2.1 Distributed Information Systems

Distributed information systems are now a well developed area of computer
science, covered by a large number of reviews and books. e.g., [AMR+11,
ÖV99]. In the following discussion, we consider its most relevant aspects for
this thesis. We first present the general aspects of distributed systems, then
review successively databases, Web data and peer-to-peer distribution.

2.1.1 Distributed systems

[AMR+11] defines a distributed system as some software that serves to
coordinate the actions of several computers. This coordination is achieved by
exchanging messages, i.e., pieces of data conveying information. The system
relies on a network that connects the computers and handles the routing of
messages.

Distributed systems are characterized by the following desirable properties:

• Consistency [DHJ+07] denotes the ability of a distributed system to
give the same answer to a client regardless of the server it is connected
to.

• Reliability [Bir05] denotes the ability of a distributed system to experi-
ence no failure in any given time interval.

3

4 CHAPTER 2. STATE OF THE ART

• Availability [ÖV99] denotes the ability of a distributed system to be
operational at a given point in time.

• Partition tolerance denotes the ability of a distributed system to operate
despite arbitrary message loss or failure of part of the system.

• Scalability [MMSW07] denotes the ability of a distributed system to
continuously evolve in order to support a growing amount of tasks and
data. In general, one is interested by linear scalability, i.e., a growing of
the system resources proportional to that of the tasks and data.

• Efficiency denotes the ability of a distributed system to minimize the
response time (when the first item is delivered) and to maximize the
throughput (the number of items delivered by unit of time).

One is typically facing a trade-off between these properties. In particular,
the CAP theorem [GL02] states that a distributed system cannot provide
simultaneously consistency, availability and partition tolerance. This last
result is of particular importance for us, since we aim at providing some
precise results for our system, but also consistency guarantees.

2.1.2 Distributed databases

[ÖV99] defines a distributed database as a collection of multiple, logically
interrelated databases distributed over a computer network. A distributed
database management system (distributed DBMS) is then defined as the
software system that permits the management of the distributed database and
makes the distribution transparent to the users [LM75, SW85]. It provides
a shared structure among the data, and an access via a common interface.
Distributed DBMSs are intended to provide data independence, network
transparency, replication transparency and fragmentation transparency. Usu-
ally DBMSs improve reliability and availability by replicating components,
thereby eliminating single points of failure or bottleneck, while letting the
user ignore distribution issues.

[ÖV99] describes the architecture of a distributed DBMS by characterizing
the autonomy of local systems (tight integration, semi-autonomy and total
isolation), their distribution (no distribution, client-server or peer-to-peer)
and their heterogeneity (homogeneous or heterogeneous system).

2.1.3 Data on the Web

With the development of Internet [RFC74] and HTML [W3C13], the Web
[BLC90] rapidly became an essential way of data distribution. This position

2.1. DISTRIBUTED INFORMATION SYSTEMS 5

was further strengthened by the development of XML [W3C08a, AQM+97]
relaxing the rigid relational data structure, that highly eases exchange and
integration of heterogeneous data in a semi-structured way. The World
Wide Web Consortium, that is in charge of promoting and developing XML
usage, proposed a wide range of standards and the research community
has been particularly active on different topics including typing [W3C04b],
querying [W3C10, BKS02] or transforming XML [W3C99, AKSS09, ABM09].
There is now a large number of books surveying aspects of Web’s data. See,
e.g., [AMR+11].

As his founder Tim Berners-Lee foresaw, the Web is also developing a layer
of semantics on top of XML or HTML, using ontology languages such as RDF
[W3C04a] and OWL [W3C09] to facilitate data integration. More formal
analysis of these languages can be found in [AH08, AvH08]. Integration also
benefits of the large amount of work on mediation [HZ96]. See [AMR+11]
for a survey. This leads to the domain of knowledge bases centered around
the management of knowledge in machine-processable formats. That is the
topic of Section 2.2.

Finally, the development of Web services gave an infrastructure for distri-
buted Web data management. This infrastructure is based on XML standards
such as SOAP [W3C07a], WSDL [W3C07b] and UDDI [OAS04] which respec-
tively normalize the structure of data to exchange as objects ; describe the
methods provided for the previous objects ; and specify communication with
Web services. Other additional standards are used to express complex opera-
tions using multiple Web services such as service workflows [HNN09, NC03]
with BPEL [OAS07] and orchestration of services with WSCL [W3C02] to
thereby achieve collaboration of autonomous entities on the Web. Some
models such as ActiveXML [ABM08, ABCM04, ABMG10] aim at providing
a formal model for intensional data that is the data obtained by service calls
on the Web and distributed data intensive applications.

To summarize, the Web is now a standard way of sharing and managing
data. Our work, as part of the Webdam Project [ERC13], focuses on providing
better foundations for collaboration of autonomous peers. The Webdam system
relies on standard models and tools.

2.1.4 Peer-to-peer systems

A peer to peer (P2P) network (See, e.g., the surveys in [TS04, Wal03]) is a
large network of nodes, called peers, that are both clients and servers and that
are willing to cooperate in order to achieve a particular task. It is a particular
kind of distributed systems that assumes that the organization of the nodes
is loose and flexible. Indeed, the peers are highly autonomous, choosing when

6 CHAPTER 2. STATE OF THE ART

they participate to the network and how much resource (CPU, memory, ...)
they provide to the system. It is also often assumed they use an overlay
network, i.e., a graph of connections laid over a physical infrastructure, e.g.,
the Internet.

A general search technique on this kind of networks is flooding: a peer
disseminates its request to all its friends, that flood in turn their own friends.
One may also use other forms of gossiping, for example by choosing randomly
only a small number of friends to propagate the request. Such P2P networks
are called unstructured. There are more structured ways for searching for
information in the network (structured P2P networks), based on access struc-
tures such as distributed hash tables [Lit80, LNS96, KLL+97, DHJ+07] or
distributed search trees [LNS94, KW94, JOV05, CDG+08].

Since focus in this thesis is on a P2P system, the Webdam system can
be built on all these different distribution policies in a unified manner. The
goal is to facilitate the collaboration of autonomous peers towards solving
content management tasks. A number of works have argued for developing
a holistic approach to distributed content management, e.g. P2P Content
Warehouse [Abi03], Dataspaces [FHM05] and Data rings [AP07a]. Such
situations arise for instance in personal information management, that is
often given as an important motivating example [FHM05].

2.1.5 Social networks

Webdamlog was initially motivated by the idea of the management of per-
sonal data in social networks. Contrary to the most famous social networks
that are entirely centralized, we wanted to manage data in a peer to peer
way as motivated in [AP07b]. Switching from one authoritative server to a
collaborative set of untrusted peers [NCR08, KBC+00] raises issues about
privacy. Trust in peer-to-peer environments where one frequently encounters
unknown agents is addressed in [AD01, YHY07], anonymization in [CSWH01],
encryption and access control in [MS02, MS03, WL82] and [KGG+06] pro-
posed a distributed identity management with access control based on the
social network of users. In particular, it uses the standard Friend-Of-A-Friend
(FOAF) [BM10] representation of the social network. An access control
policy model based on the social network and trust has also been proposed
by [AVM07, AGP11]. Finally, [BSVD09, Dia] proposes an implementation of
a peer-to-peer social network based on a distributed hash table and addresses
privacy issues. Such approaches require that a particular program, prede-
termined for the application, is deployed identically on each peers. To the
best of our knowledge, there are few works about heterogeneous [Kol05] and
customizable peer [MZZ+08, RS09] in a collaborative environment that would

2.2. KNOWLEDGE BASES 7

behave differently according to the user needs. Recently works on dynamic
and adaptive programs based on rules have been achieved in particular for
ontology languages [Kif08, BAP+12].

2.1.6 Contribution

The focus of my thesis is on peer-to-peer architecture rather than client-
server communications usually used in centralized systems. We consider
very heterogeneous data and a total autonomy between the components
of the system. This is the main contribution of our Webdamlog system,
the collaboration of such autonomous peers managing their own data in
place. Hence the current Webdamlog system has been strongly influenced by
ActiveXML although the XML trees have been abandoned for traditional
relational data structures to simplify and to be able to focus on other issues,
notably inference.

In the next section we consider the topic of knowledge bases and inference
since the Webdam system is a distributed knowledge base system.

2.2 Knowledge bases

Knowledge can be used to describe the semantic of data. Two kinds of
knowledge formats can be considered:

• human-readable knowledge e.g. Wikipedia that is usually read and
updated manually by humans.

• knowledge in machine-readable format e.g. Yago [SKW07] on which
searches and updates can be automatically performed by machines.

Systems transforming one type of knowledge base in another, are presented
in [SKW07, LIJ+13] and integration of different knowledge bases in [AMR+11].
These problems will not be considered in this thesis and the focus is on
machine-readable knowledge.

2.2.1 Processing knowledge

Knowledge in machine-readable format typically relies on some mathematical
logic as its foundation and is processed by an inference system guided by
logical reasoning. The logic is usually a fragment of first order logic it that
serves as basis for query languages. The formalism of deductive systems
can be natural deduction, sequent calculus, tableaux method, resolution or

8 CHAPTER 2. STATE OF THE ART

Hilbert-style deductive systems which will be our focus in the following of
the thesis.

The programming languages implementing these formalisms are rule-
based languages. The concept of rules relies on the basic notion of conditional
branching or the “if ... then ...” construct. The then part is processed only
if the if part holds. Rule systems use a notion of predicates that holds or
not to represent the raw data. E.g. the fact that two people are friend may
be represented with a predicate friend as friend(Alice,Bob). Using variables,
represented by a dollar prefixed letter, a rule could be:

Rule: if friend($x,$y) then like($x,$y)

It represents some knowledge added to our data. A rule-based system that
understands this rule derives that all pairs of friend like each others. A
rule-based system is a particular implementation of the syntax and semantics
of rules which may be extended in a number of ways e.g. with existential
quantification, disjunction, negation and functions.

Historically, Prolog [CR93] is considered as one of the first and the most
expressive rule-based language ; however a main flaw is to not be declarative,
e.g. because of the cut operator and because the order of clauses matters
in the evaluation. It is based on SLD resolution, a top-down technique for
deductive system [EK76].

In Section 2.1.3, we mentioned that Web data are often described with
ontologies that are fragments of first order logic, on which deduction systems
apply [CGL09]. In the context of the Web, considering reasoning in a dis-
tributed manner is crucial as discussed in [ACG+06]. See [AMR+11, FHMV03]
for more details on ontology languages reasoning.

We discuss next the family of datalog languages.

2.2.2 Datalog

In datalog the previous rule is written:

like($x,$y) :- friend($x,$y)

with the left-hand side part of the operator “:-” called the head and the
right-hand side called the body. Following the “if ... then ...” structure, rules
are read: if body holds then head is derived. The datalog semantic imposes
that all variables in the head appear in the body. Basic datalog extends this
structure with:

conjunction of atoms in the body: like($x,$y) :- friend($x,$y), friend($y,$x)
both facts should be true to derive the head.

2.2. KNOWLEDGE BASES 9

disjunction that is the same fact can be derived from different conditions.
Datalog program allows multiple rules with the same head. For example,
the program:

like($x,$y) :- friend($x,$y)
like($x,$y) :- friend($y,$x)

means x likes y if x is a friend of y or y is a friend of x.

recursion by allowing the same predicate in the head and the body of
the same rule: friend($x,$y) :- friend($x,$z), friend($z,$y) is the classic
transitive closure which means that everybody is friends with the friends
of its friends.

A datalog programs P is a set of rules. A set of facts are gathered in an
extensional database noted I as instance. In brief, the semantics of a datalog
program is the minimal fixpoint reached when we cannot deduce any new facts
by applying P on I. These derived facts are called intensional. The union of
the extensional and intensional facts represent the whole facts considered to
be true ; everything else is false. This is the close-world assumption contrary
to some other rule-based languages such as OWL that makes an open-world
assumption.

Datalog is also often extended with negation, denoted datalog¬. Negation
and recursion together raise a number of issues. For instance,

• For I = {p} and P = {p :- ¬p}, there is no fixpoint

• For I = ∅ and P = {p :- ¬q; q :- ¬p}, there are two minimal fixpoints
{p} or {q}

This leads to defining different semantics for the negation e.g. stratified or
well-founded semantics.

Datalog also has a non-monotonic extension noted datalog¬¬ to specify
that negation can occur in the body and in the head of rules. This is a
convenient way to handle deletion of facts. The language datalog¬¬ is in the
spirit of active databases, and since it allows to use extensional predicates in
the head of the rules.

Datalog has been the subject of a large amount of works in the database
community ; see [AHV95]. Basically, datalog enhances the classical relational
calculus and algebra, that are at the foundation of SQL, with recursion.
Although recursion has been added in SQL3 [ISO99], datalog natively supports
recursion with an elegant syntax. The full description of the semantic, and

10 CHAPTER 2. STATE OF THE ART

evaluation of datalog following the bottom-up semi-naive algorithm is given
in [AHV95] along with the description of adding negation to datalog. And
discussions on datalog and first order logic expressivity are given in [AG94].

Alternatives to datalog-like languages for data management based on rules
have been proposed. For instance:

• F-logic [KLW95], an object oriented language for data and knowledge
representation.

• HiLog [CKW93], a higher-order programming language that uses func-
tions as values as in lambda calculus.

Both are implemented in the Flora system [YKZ03] using an alternative
inference system based on tabling-logic [YK00].

The next section focuses on distributed versions of datalog engines.

2.2.3 Distributed datalog

The Webdamlog language participates in the renewed interest in datalog, see
[Dat10]. In particular distributed datalog allows to use remote atoms in the
head of rules to communicate via the network. The elegant syntax of datalog
for recursion is essential when graph data are considered. This is the case for
instances in declarative networks as shown in [AKBC+12, LCG+06, ZFS+11,
ZST+10], in the implementation of the two-phase-commit protocol in [Int12],
or in sensor networks communications [GW10, AKGU12] that present an
original top-down evaluation algorithm for distributed datalog.

To our knowledge, the first attempts to distribute datalog on different
peers are [Hul89] and [NCW93]. The first distributes a positive datalog
program on different machines after a compilation phase. The second adapts
classical transformations of positive programs based on semi-joins to minimize
distribution cost. Perhaps the work closest to the Webdamlog language
is [AAHM05b] that adapts query-subquery optimization [Vie86] to a variant
of positive distributed datalog. We will also be interested in negation, in
particular by stratified negation [CH85], and by active rules in the style of
datalog¬¬ [AV91, AGM08, BCGR98].

The most interesting use of datalog-style rules for distributed data man-
agement came recently from the Berkeley and U. Penn database groups. They
used distributed versions of datalog to implement Web routers [LHSR05], DHT
[LCH+05] and Map-Reduce [ACC+10] rather efficiently. By demonstrating
what could be efficiently achieved with this approach, these works were essen-
tial motivations for our own. The most elaborate variant of distributed datalog
used in these works is presented in [LHSR05, LTZ+09, MHB+10, CCHM08]

2.2. KNOWLEDGE BASES 11

and formally specified in [NR09, PRS09, MAC+12]. In these papers, the
semantics is operational and based on a distribution of the program before
the execution. In view of issues with this model, a new model was recently
introduced in [Hel10], based on an explicit time constructor. The semantics of
negation together with the use of time in that model seems rather unnatural.
In particular, time is used as an abstract logical notion to control execution
steps and the future may have influence on the past. As a consequence, we
found it difficult to understand what applications are doing as well as to prove
results on their language. The development of Webdamlog reuses most of the
Bud [ACHM11] inference engine from Berkeley that has been proven to be
efficient.

2.2.4 Provenance and optimization

The need of a logic language for knowledge representation and especially
for access control on data is formalized in [Aba09] and implemented in
declarative systems as [BFG07, Bry05]. However inference systems bring
their own intrinsic security issues. As described in [FJ02], it is difficult to
control indirect data disclosure via inference. Access control in distributed
environment was a prime motivation in a previous model called Webdam
exchange discussed in 2.3. Access control will not be considered in this thesis.
It is left for future work.

In this thesis, we record provenance of knowledge to optimize deletion
and maintain efficiently Webdamlog program evaluation. However it has
been considered for different purpose: for access control [GKT07, KIT10],
for security policies [MFF+08] or to synchronize distributed data [GKIT10,
GKIT07]. See [BT07], for a general presentation and challenges around data
provenance. Maintaining provenance of knowledge from inference system
is considered in [ZFS+11, ZST+10]. Works around fine grained provenance
on workflows [ADD+11] as an optimization for deletion inspired us for our
system.

2.2.5 Contribution

Our main concern in designing Webdamlog has been to provide an elegant
and unified way to allow each peer to manage personal data according to
the preference of the user. We considered typical Web users that may have
distributed their data on several locations and services. The declarative
nature of our language Webdamlog, based on a distributed datalog allows to
alleviate the complexity of managing the distribution of the data. The most
striking novelty of Webdamlog is to allow the distribution of the knowledge

12 CHAPTER 2. STATE OF THE ART

via a new feature we developed for Webdamlog, namely the delegation of rules.
The declarative approach of Webdamlog also allows us to provide optimization
mechanisms for Webdamlog evaluation.

2.3 Webdam exchange

The work developed in this thesis is a continuation of the thesis of Alban
Galland [Gal11] that lead to designing the Webdam exchange model [AGP11]
and to the development of the Webdam exchange system [6] that we briefly
discuss next.

In a demonstration of a system called Webdam exchange [6], we addressed
the problem of access controls in peer to peer environment. The peers were
running standard Java application. The basics of the Webdam exchange
system were to be able to authenticate the peer who requests some data and
confront it to an access control list (ACL) to grant or refuse access. For each
relation, a list of reader, writer and owner where defined by the owner and
only these principals could perform these actions.

Model In social networks, users bring data to the network and are willing
to share with others, but also wish to control what portions of the data can
be viewed or updated by others. Users would also like to access and update
information if desired and entitled to. This is the setting of the Webdam
exchange model that aims to achieve access control of personal data in peer
to peer environment with the same level of security as in centralized systems.
It also leverages and accommodates a wide variety of authentication systems
already available on the Web.

For access control, three kinds of meta-data, namely access control list, se-
cret, and hint are kept for each fact. Using these meta-data, Webdam exchange
shows how to describe access control mechanisms based on authenticated
provenance for different security protocols such as asymmetric cryptographic
keys or HTTP access controlled by login/password. It also describes how to
exchange information between peers that are trusted or untrusted, in clear or
encrypted communications.

System The data model of the WebdamExchange system is a direct trans-
lation in XML of the WebdamExchange model. It uses Java XML Binding
(JAXB) technology to construct a direct equivalence between Java classes and
their XML representation, used for Web service communications, encryption
and serializations that fit the Web standards. The main contribution of the
Webdam exchange system, was the design of a modular architecture to keep

2.3. WEBDAM EXCHANGE 13

communication, encryption, security policy and storage system independent
of each other. Hence it allows to describe in the security policy, according to
meta-data statements, which kinds of communication, encryption or storage
to use.

At the dawn of Webdamlog Webdam exchange and Webdamlog are
both addressing the problem of personal data management in peer to peer
environments with a strong emphasis on access controls in Webdam exchange.
They both deal with the heterogeneity of personal user preferences to manage
its data.

Nevertheless there is a fundamental difference that comes from the fact
that Webdam exchange applications are hard coded in plain Java code contrary
to Webdamlog systems that relies on the declarative language Webdamlog to
describe their behavior. The main motivation for that is that typical users
don’t want to write complicated programs. In the following chapters, we will
describe how Webdamlog brings a powerful mechanism called delegation that
enhanced collaboration.

Also Webdam exchange data model strongly relies on trees and especially
nested structure to keep chains of provenance and authentication needed
to enforce provenance, while Webdamlog is based on relations. Both could
be combined as it would not be difficult to introduce trees in Webdamlog
language. However from a system viewpoint this would mean a very different
implementation.

14 CHAPTER 2. STATE OF THE ART

Chapter 3

Webdamlog language

The management of modern distributed information, notably on the Web, is
a challenging problem. Because of its complexity, there has recently been a
trend towards using high-level Datalog-style rules to specify such applications.
We introduce here a model for distributed computation where peers exchange
messages (i.e., logical facts) as well as rules. We consider peers as any kind
of system with computing capabilities and network connection to capture
the heterogeneity of the agents on the web e.g. a laptop, a smartphone, or a
computer cluster in a DHT. The model provides a new setting with a strong
emphasis on dynamicity and interactions (in a Web 2.0 style). Because the
model is powerful, it brings a clean basis for the specification of complex
distributed applications. Because it is simple, it gives a formal framework for
studying many facets of the problem such as distribution, concurrency, and
expressivity in the context of distributed autonomous peers.

As mentioned in the previous chapter, there has been renewed interest
in studying languages in the Datalog family for a broad range of appli-
cations from program analysis, to security and privacy protocols, natural
language processing, or multi-player games. For references, see [Hel10] and
the proceedings of the Datalog 2.0 workshop [Dat10]. Here, we are concerned
with using rule-based languages for the management of data in distributed
settings, as in Web applications [ABM04, ASV09, FMS09, ABGR10], net-
working [LCG+06, LMO+08, GW10] or distributed systems [LCG+09]. The
arguments in favor of using Datalog-style specifications for complex distributed
applications are the familiar ones. See, e.g., [Hel10].

We propose a new model for distributed data management that combines,
in a formal setting, deductive rules as in Datalog with negation [CH85] (to
specify intensional data) and active rules as in Datalog¬¬ [AV91] (for updates
and communications). There have already been a number of proposals for
combining active and deductive features in a rule-based language; see [LLM98,

15

16 CHAPTER 3. WEBDAMLOG LANGUAGE

Lud98, Hel10] and our discussion of related work. However, there is yet to
be a consensus on the most appropriate such language. We therefore believe
that there is a need to continue investigating new language features adapted
to modern data management and to formally study the properties of the
resulting new models.

The language we introduce, called Webdamlog is presented in [3], it is
tailored to facilitate the specification of data exchange between autonomous
peers, which is essential to the applications we have in mind. Towards that
goal, a new feature we introduce is delegation, that is, the possibility of
installing a rule at another peer. In its simplest form, delegation is essentially
a remote view. In its general form, it allows peers to exchange rules, i.e.,
knowledge beyond simple facts, and thereby provides the means for a peer to
delegate work to other peers, in Active XML style [ABM08]. We show using
examples that because of delegation, the model is particularly well suited
for distributed applications, providing support for reactions to changes in
evolving environments.

A key contribution of this chapter is a study of the impact of delegation
on expressivity. We show that view delegation (delegation in its simplest
form, allowing only the specification of views) strictly augments the power of
the language. We also prove that full delegation further increases it. These
results demonstrate the power of exchanging rules in addition to facts.

A message sent from peer p, received at peer q, that starts some task at
q, introduces a kind of synchronization between the two peers. Thus, time
implicitly plays an important role in the model. We show that when explicit
time is allowed (each peer having its local time), view delegation no longer
increases the expressive power of the language.

Because of their asynchronous nature, distributed applications in Webdam-
log are nondeterministic in general. To validate our semantics for deductive
rules, we study two kinds of systems that guarantee a form of convergence
(even in presence of certain updates). These are positive systems (positive
rules and persistence of extensional facts) and strongly-stratified systems
(allowing a particular kind of stratified negation [CH85] for restricted deductive
rules and fixed extensional facts). We also show that both types of systems
essentially behave like the corresponding centralized systems.

Organization The chapter is organized as follows. We introduce the model
in Section 3.1, first by means of examples and then formally. In the following
section, we discuss some key features of the model and illustrate them with
more examples. In Section 3.3, we compare the expressivity of different
variants of the language. In Section 3.4, we discuss the convergence of Webdam-

3.1. MODEL OF DATA 17

log systems and compare the semantics to the “centralized semantics”, for the
positive and strongly-stratified restrictions of the language. In Section 4.3, we
mention optimization techniques. The final section concludes with directions
for future work.

3.1 Model of data

In this section, we first illustrate the model with examples, then formalize
it. More examples and a discussion of key issues will be provided in the next
section.

3.1.1 Informal presentation

We introduce with a first example the main concepts of the model: the
notions of fact that captures both local tuples and messages between peers,
of extensional and intensional data, and of Webdamlog rule.

Consider a particular peer, namely Alice-phone, with the relation calendar
that gives the calendar entry that Alice entered from her phone and the
relation confMembers that gives the list of members of the conference call
and how to send them calendar invitation (on which servers, with which
messages). Examples of facts are:

at Alice-phone:
calendar@Alice-phone(conference, 06/12/2013, Paris, Alice-phone)
confMembers@Alice-phone(Bob, agenda, Bob-laptop)

The following rule, called [Send-Invitation] , is used to include conference
call entries from Alice’s agenda into the agendas of other members of the
conference call, and in particular into Bob’s agenda:

at Alice-phone:
$calendar@$peer(conference, $date, $place, Alice-phone) :-

calendar@Alice-phone(conference, $date, $place, Alice-phone),
confMembers@Alice-phone($name, $calendar, $peer)

Observe that peer and message names are treated as data. The two previous
facts represent pieces of local knowledge of Alice-phone. Now consider the
new fact generated by the rule:

agenda@Bob-laptop(conference, 06/12/2013, Paris, Alice-phone)

18 CHAPTER 3. WEBDAMLOG LANGUAGE

This fact describes a message that is sent from Alice-phone to Bob-laptop.
As in deductive databases, the model distinguishes between extensional

relations that are defined by a finite set of ground facts and intensional
relations that are defined by rules. So for instance, the relation confMembers
on Alice-phone may be intensional and defined as follows:

at Alice-phone:
intensional confmembers@Alice-phone(string, relation, peer)

confmembers@Alice-phone($name, $relation, $peer) :-
contact@Alice-phone($name, $relation, $peer),
group@Alice-phone($name, conf)

Observe that it is defined using extensional relations.
As usual, intensional knowledge is defined by rules such as the previous

one, that we call deductive rules. Other rules such as the [Send-Invitation]
rule, that we call active, produce extensional facts. Such an extensional fact
is received by the peer (e.g., Bob-laptop and Alice’s phone). During its next
phase of local processing, this peer will consume these facts and produce new
ones. By default, any fact that has been processed disappears. Facts can
be made persistent using persistence rules, illustrated next on the relation
calendar@Alice-phone:

at Alice-phone:
calendar@Alice-phone($name, $date, $place, $peer) :-

calendar@Alice-phone($name, $date, $place, $peer),
¬ del.calendar@Alice-phone($name, $date, $place, $peer)

The rules state that in this relation calendar a fact persists unless there is
explicitly a deletion message (e.g., del.calendar).

Delegation by example

In the model, the semantics of the global system is defined based on local
semantics and the exchange of messages and rules. Intuitively, a given peer
chooses how to move to another state based on its local state (a set of
personal facts and messages received from other peers) and its program. A
move consists in (1) consuming the local facts, (2) deriving new local facts,
which define the next state, (3) deriving nonlocal facts, i.e., messages sent to
other peers, and (4) modifying their programs via “delegations”.

The derivation of local facts and messages sent to other peers are both
standard and were illustrated in the previous example. The notion of delega-
tion is novel and is illustrated next. Consider the following rule, installed at
peer Bob-laptop:

3.1. MODEL OF DATA 19

at Bob-laptop:
confirm@$peer(conference, $date, $place, Bob) :-

calendar@Bob-laptop(conference, $date, $place, $peer),
checkAvailability@Bob-phone($date);

where calendar@Bob-laptop, checkAvailability@Bob-phone and confirm@Alice-
phone are all extensional. Its semantics is as follows. Suppose that calendar@
Bob-laptop(conference, 06/12/2013, Paris, Alice-phone) holds, then the effect
of this rule is to install at Bob-phone the following rule:

at Bob-phone:
confirm@Alice-phone(conference, 06/12/2013, Paris, Bob) :-

checkAvailability@Bob-phone(06/12/2013);

The action of installing a rule at some other peer is called delegation. When
Bob-phone runs, if checkAvailability@Bob-phone(06/12/2013) holds, it will
send the message confirm@Alice-phone(conference, 06/12/2013, Paris, Bob)
to Alice-phone.

Now suppose instead that confirm@Alice-phone is intensional. When
Bob-phone runs, if checkAvailability@Bob-phone(06/12/2013) holds, the effect
of this rule is to install at Alice-phone the following rule:

at Alice-phone:
confirm@Alice-phone(conference, 06/12/2013, Paris, Bob) :-

The intuition for the delegation from Bob-laptop to Bob-phone is that there
is some knowledge from Bob-phone that is needed in order to realize the
task specified by this particular rule. So, to perform that task, Bob-laptop
delegates the remainder of the rule to Bob-phone. The delegation from Bob-
phone to Alice-phone is somewhat different. Peer Bob-phone knows that
confirm@Alice-phone (an intensional fact) holds until some change occurs. As
Alice-phone may need this fact for his own computation, Bob-phone will pass
this information to Alice-phone in the form of a rule (since as a fact, it would
be consumed).

We next formalize the model illustrated by the previous example.

3.1.2 Formal definitions

Alphabets

We assume the existence of two infinite disjoint alphabets of sorted constants:
peer and relation. We also consider the alphabet of data that includes in

20 CHAPTER 3. WEBDAMLOG LANGUAGE

addition to peer and relation, infinitely many other constants of different
sorts (notably, integer, string, bitstream, etc.). It is because data includes peer
and relation that we may write facts such as those in the birthday relation.
Similarly we have corresponding alphabets of sorted variables. An identifier
starting by the symbol $ implicitly denotes a variable. A term is a variable
or a constant.

A schema is an expression (Π, E , I, σ) where Π is a (possibly infinite)
set of peer IDs; E and I are disjoint sets, respectively, of extensional and
intensional names of the form m@p for some relation name m and some peer
p; and the typing function σ defines for each m@p in E ∪ I the arity and sorts
of its components. Note that because I ∩E = ∅, no m is both intensional and
extensional in the same p. Considering Π to be infinite reflects the assumption
that the set of peers is dynamic and of unbounded size (we can discover or
create new peers) just like it is the case on the Web.

Facts and rules

Given a relation m@p, a (ground) (p-)fact is an expression m@p(u) where u
is a vector of data elements of the proper types, i.e., correct arity and correct
sort for each component. For a set K of facts and a peer p, K[p] is the set of
p-facts in K. The notion of fact is central to the model. It will be the basis
for both stored knowledge and communication. For instance, in the peer p,
if we derive the extensional fact r@p(1, 2), this is a fact p knows. On the
other hand, if we derive the extensional fact s@q(2, 3), this is a message that
p sends to q.

A (Webdamlog) rule is an expression of the form

Mn+1@Qn+1(Un+1) :- (¬)M1@Q1(U1)...(¬)Mn@Qn(Un)

where each Mi is a relation term, each Qi is a peer term and each U i is a
vector of data terms. We also allow in the body of the rules, atoms of the
form X = Y or X 6= Y where X, Y are terms.

We require a rule to be safe, i.e.,

1. For each i, if Qi is a peer variable, it must be previously bound, i.e., it
must appear in U j for some positive literal Mj@Qj(U j), j < i.

2. Each variable occurring in a literal ¬Mi@Qi(U i) must be previously
bound to a positive literal.

3. Each variable in the head must be positively bound in the body.

3.1. MODEL OF DATA 21

Remark 3.1 (Unguarded peer). Observe that we treat differently peer and
relation names. By (1), a peer variable has to be previously positively bound.
We insist on (1) so that we control explicitly to whom a peer sends a message
or delegates a rule.

Note also that because of (1), the ordering of literals is relevant. One
could define a variation of the language, namely peer-unguarded Webdamlog
by not imposing Constraint (1) and considering all orderings of the body
literals (with the negative ones seen implicitly after all the others).

We say that a rule is deductive if the head relation is intensional. Otherwise,
it is active. Rules live in peers. We say that a rule in a peer p is local if all
Qi in all body relations are from p. It is fully local if the head relation is also
from p. We will see that the following four classes of rules play different roles:

Local deduction Fully local deductive rules are used to derive intensional
facts locally.

Update Local active rules are used for sending messages, i.e., facts, that
modify the extensional databases of each peers that receive them.

View delegation The local but not fully local deductive rules provide some
form of view materialization. For instance, this rule results in providing
at q a view of some data from p:

at p : r@q(U) :- (¬)r1@p(U1), ...(¬)rn@p(Un)

General delegation The remaining rules allow a peer to install arbitrary
rules at other peers.

Peer and relation variables provide considerable flexibility for designing appli-
cations. However, observe that because of them, it may be unclear whether a
rule is (fully) local or not, deductive or active. Note that in a real system,
one can wait until a rule is (partially) instantiated at runtime to find what
its nature is, and decide what should be done with it.

The semantics of Webdamlog is based on autonomous local computations
of the peers. We consider this first, then look at the global semantics of
Webdamlog.

Local computation

A local computation happens at a particular peer. Based on its set of facts
and set of rules, the peer performs the following: (1) some local deduction of

22 CHAPTER 3. WEBDAMLOG LANGUAGE

intensional facts, (2) the derivation of extensional facts that either define its
next state or are sent as messages, and (3) the delegation of rules to other
peers.

(Local deduction) For local deduction, we want to rely on the semantics of
standard Datalog languages. However, because of possible relation variables,
Webdamlog rules are not strictly speaking proper Datalog¬ rules, since the
relation names of atoms may include variables. So, to specify local deduction,
we proceed as follows. We start by grounding the peer and relation variables
appearing in the rules. More precisely, for each rule

Mn+1@Qn+1(Un+1) :- (¬)M1@Q1(U1)...(¬)Mn@Q1(Un)

of peer p, we consider the set of rules obtained by instantiating relation
variables Mi with relation constants and peer variables Qi with peer constants.
To ensure finiteness, we only use constants from the active domain of the peer,
that is, that appear in some fact or rule in the peer state. We can now deal
with pairs m@p of relation and peer constants as normal relation symbols
in Datalog. Since for local deduction, we are only interested in fully local
deductive rules, we will remove rules with a relation m@q for q 6= p or an
extensional relation in the head. We must also remove rules that violate the
arity or sort constraints of σ. The remaining rules are all fully local deductive
rules which belong to standard Datalog.

Now, given a set I of facts and a set Pd of fully local deductive rules
(defined as in the previous paragraph), we denote by P ∗

d (I) the set of facts
inferred from I using Pd with a standard Datalog semantics. For instance, in
absence of negation, the semantics is, as in classical Datalog, the least model
containing I and satisfying Pd. When considering negation, one can use any
standard semantics of Datalog with negation, say well-founded [Prz90] or
stable [GL88]. For results in Section 3.4.2, we will use a variant of stratified
negation semantics [CH85]. So we assume the program is stratified with
respect to negation.

(Updates) Given a set K of facts and a set Pa of local active rules, the
set Pa(K) of active consequences is the set of extensional facts v(A) such
that for some rule A :- Θ of Pa and some valuation v, v(Θ) holds in K,
and v(A), v(Θ) obey the typing and sort constraints of σ. This is the set of
immediate consequences. Note that it does not necessarily contain all facts in
K.

Observe that for deductive rules, we typically use a fixpoint (based on
the particular semantics that is used), whereas for active rules, we use the
immediate consequence operator that is explicitly procedural.

3.1. MODEL OF DATA 23

(Delegation) Given a set K of facts and a set P of (active and deductive)
rules in some peer p, the delegation γpq(P, K) of peer p to q 6= p is defined as
follows.

If for some deductive rule M@Q(U) :- Θ in P , there exists a valuation
v such that vΘ holds in K, v(Q) = q, and the typing constraints in σ are
respected, then

vM@vQ(vU) :-

is in γpq(P, K).
If for some active or deductive rule

A :- Θ0, (¬)M@Q(U), Θ1

in P (where Θ0, Θ1 are sequences of possibly negated atoms), there exists a
valuation v satisfying σ such that vΘ0 contains only p-facts, vΘ0 holds in K,
and vQ = q(6= p), then

vA :- (¬)M@vQ(vU), vΘ1

is in γpq(P, K).
Nothing else appears in γpq(P, K).

Observe that we do not produce facts that are improperly typed. In
practice, a peer p may not have complete knowledge of the types of some
peer q’s relations. Then p may “derive” an improperly typed fact. This fact
will be sent and rejected by q. From a formal viewpoint, it is simply assumed
that the fact has not even been produced. Similarly, a peer may delegate an
improperly typed rule, but that rule will never produce any facts, and so can
safely be ignored.

We are now ready to specify the semantics of the Webdamlog language.

States and runs

A (Webdamlog) state of the schema (Π, E , I, σ) is a triple (I, Γ, Γ̃) where for
each p ∈ Π, I(p) is a finite set of extensional p-facts at p, Γ(p) is the finite set
of rules at p, and Γ̃(p, q) (p 6= q) is the set of rules that p delegated to q. For
p ∈ Π, the (p-)move from (I, Γ, Γ̃) to (I ′, Γ′, Γ̃′) (corresponding to the firing
of peer p) is defined as follows. Let Pp be Γ(p) ∪ (∪qΓ̃(q, p)), Ppd be the set
of fully local deductive rules in Pp and Ppa the set of local active rules in it.
Then the next state is defined as follows:

• (Local deduction) Let K = P ∗
pd(I(p)).

24 CHAPTER 3. WEBDAMLOG LANGUAGE

• (Updates) I ′(p) = Ppa(K)[p]; and
(external activation) I ′(q) = I(q) ∪ Ppa(K)[q] for each q 6= p.

• (Delegations) Γ̃′(p, q) = γpq(Pp, K) for each q 6= p; and
Γ̃′(p′, q′) = Γ̃(p′, q′) otherwise.

A (Webdamlog) system is a state (I, Γ, Γ̃) where Γ̃(p, q) = ∅. We will
speak of the system (I, Γ) (since Γ̃ is empty). A sequence of moves is fair if
each peer p is invoked infinitely many times. A run of a system (I, Γ) is a
fair sequence of moves starting from (I, Γ).

Observe that I(p) is finite for each peer and that it remains so during
a run, even if the number of peers is infinite. Note also that deletions are
implicit: a fact is deleted if it is not derived for the next state. We recall that
facts can be made persistent using persistence rules of the form

r@p(U) :- r@p(U), ¬del.r@p(U)

In the following, such a rule for relation r@p will be denoted persistent r@p.

Remark 3.2 (Fact and rules). It is important to observe a difference between
the semantics of facts and rules. Observe that, if we visit twice peer p in a
row, the fact-messages that p sends to q accumulate at q. On the other hand,
the new set of delegations replaces the previous such set. Moreover, when
we visit q, the messages of q are consumed whereas the delegations stay until
they are replaced. These subtle differences are important to capture different
facets of distributed computing, e.g., for capturing materialized views or for
providing the expected semantics to extensional / intensional data.

3.2 Key observations

In this section, we present examples that illustrate the interest of our model
for distributed data management, and make key observations about different
aspects of the model.

We first consider two serious criticisms that could be adressed to the
model, namely too much synchronization and too little local control. We
show how both issues can be resolved.

Too much synchronization

Observe that moves capture some form of asynchronicity and parallelism.
The peer that fires is randomly chosen and does (atomically) some processing.
However, there is still some form of synchronization, that may be undesired.

3.2. KEY OBSERVATIONS 25

When we process peer p, messages from p to some peer q are instantaneously
available in q. This is impossible to guarantee in practice. In a standard
manner, when a more precise modeling is desired, one can introduce a peer
acting as the network between p and q. Instead of going instantaneously
from p to q, the message goes instantaneously from p to networkpq, waits
there until networkpq is fired, then goes instantaneously to q, and similarly
for delegations. This captures more realistically what happens in practice,
and does not require changing the model.

Too little local control

In the model we have defined, nothing prevents a peer p from modifying
another peer q’s relations or accessing q’s data using delegation. In realistic
settings, one would want a peer to be able to hold private information, which
cannot be modified or accessed by another peer without its permission. This
can be easily accomplished by extending the model with local relations. These
relations can only appear in p’s own facts and rules (i.e., I(p) and Γ(p)), but
not in any rules delegated to p (in practice, this means p would simply ignore
any delegations using one of its private relations).

To illustrate, suppose that we want to control the access to a relation r@p
of peer p. We create for this purpose two local relations read@p($r, $q) and
write@p($r, $q) that store who can read/write in p’s relations. Note that the
read and write relations are local, i.e., only p can specify the access rights
in p. Relations r@p and del.r@p must also be local so that p control access
to them. To obtain relation r@p, a peer q sends a message get@p(r, q). The
following rule controls whether q will receive the data it requested:

at p: send@$q($r,$x) :- get@p($r,$q), read@p($r,$q),
$r@p($x)

Insertions in r@p (or deletions using del.r@p) are treated similarly. Access
control in Webdamlog is at the center of an on-going work in [1].

We next consider two subtleties of delegation.

Delegation and complexity

Consider the rule:

at p: m@q() :- m1@p($q,$x), m2@$q($x)

If there are 1000 distinct tuples (pi, 0) such that m1@p(pi, 0) holds, then
we have to install rules in 1000 distinct peers. So delegation is inherently
transforming data complexity into program complexity.

26 CHAPTER 3. WEBDAMLOG LANGUAGE

Peer life and delegation

It is very simple in the model to consider that peers are born, die or hibernate.
We simply have to insist that p can be fired (p-move) only if p is alive and
not hibernating. We can assume that messages and delegations to dead peers
are simply lost and that for hibernating ones, they are buffered somewhere
in the network. A subtlety is that (with this variant of the model), if a peer
dies without cleanly terminating, delegations from this peer are still valid. In
practice, the system may realize that a particular peer is no longer present
and terminate its delegations.

We conclude this section with three examples that illustrate different as-
pects of the language, communications, persistence services, and rule updates.

Multicasting

We can simulate channels, i.e., m-n communications with the following rules:

at q: persistent channelsubscribe@q
channel@$p($m,q,$s) :- channelsubscribe@q($p,$m),

$m@q($s)

The rules at peer q allows him to support channels. A peer p can subscribe
to receiving all the messages from the channel m hosted by q by sending:
channelsubscribe@q(p, m) to q. Then, whenever someone sends a message
m@q(s), p will receive channel@p(m, q, s).

Database server replication

The following rule allows a database server to replicate relations from many
peers:

intensional export@db(relation,peer)
at db: persistent tobeexported@db

export@db($r,$p,$x) :- tobeexported@db($r, $p),
$r@$p($x)

If a peer p wants his relation r@p to be stored at db, then p simply needs
to send db the message tobeexported@db(r, p). Now, export@db(r, p, $x) is a
copy of r@p($x).

3.3. EXPRESSIVE POWER 27

Rule updates and rule deployment

Observe that (to simplify) we assumed that the set of rules in a run is fixed,
i.e., Γ(p) is fixed for each p. It is straightforward to extend the model to
support addition or deletion of rules. Furthermore, one might want to be
able to control whether a particular rule is deployed on a particular peer. To
illustrate this point, consider the two rules:

at p: persistent server@p
f@$p($u) :- server@p($p), f1@$p($u1),...,fn@$p($un)

Sending the message server@p(q) results in installing

at q: f@q($u) :- f1@q($u1),...,fn@q($un)

Note that if we send the message del.server@p(q), the rule is removed.

3.3 Expressive power

In this section, we study the expressive power of Webdamlog and of different
languages that are obtained by allowing or restricting delegations. We also
consider the expressive power of timestamps. More precisely, we consider the
following languages for rules:

• WL (Webdamlog): the general language.

• VWL (views WL): the language obtained by restricting delegations to
only view delegations.

• SWL (simple WL): the language obtained by disallowing all kinds of
delegations.

At the core of view delegation, we find the maintenance of materialized
views. To maintain views, we will see that timestamps turn out to be useful.
More precisely, for time, we assume that each peer has a local predicate called
time (with time(t) specifying that the current move started at local time
t). The predicate < is used to compare timestamps. Note that each peer
has its separate clock, so the comparison of timestamps of distinct peers is
meaningless. To prevent time from being a source of nondeterminism, for
t1, t2 two times at different peers, we assume: t1 6< t2 and t2 6< t1 (the time
from two peers are incomparable). The languages obtained by extending the
previous languages with timestamps are denoted as follows: WLt, VWLt,
SWLt.

28 CHAPTER 3. WEBDAMLOG LANGUAGE

3.3.1 Traces and simulations

To formally compare the expressivity of the above languages, we need to
introduce the auxiliary notions of trace and simulation.

Let r = (I1, Γ1, Γ̃1), ...(In, Γn, Γ̃n), ... be a run. Let M be a set of predicates
and I a set of facts. Then ΠM(I) is the set of facts in I with predicates in
M . The M-trace of the run r for a set M of predicates is the subsequence of
πM(Ii1

), ..., πM(Iin
)... obtained by starting from πM(I1), ..., πM(In)... and re-

moving all repetitions, i.e., deleting the (k + 1)th element of the sequence if
it is identical to the kth, until the sequence does not contain two identical
consecutive elements. Given an initial state S and a set of predicates M , we
denote by M-trace(S) the set of M -traces of runs from S. In some sense, it is
what can be observed from S when only facts over M are visible.

Let α be a set of peers. An initial state S = (I, Γ) can be α-simulated by
an initial state S ′ = (I, Γ′) if Γ(p) = Γ′(p) for all p ∈ α and S and S ′ have the
same M -traces, where M is the set of relations of S. In other words, from
the point of view of what is visible from S, S ′ behaves exactly like S. The
set of peers α is meant to capture the part of the system (one or more peers)
that we want to keep strictly identical.

Now, we say that a language L can be simulated by a language L′, denoted
L ≺ L′, if there exists a translation τ from programs in L to programs in L′

such that for each initial state (I, Γ) (with programs in L) and for each α,
(I, τ(Γ)) α-simulates (I, Γ) where τ is defined by: for each peer p,

• if p ∈ α, τ(Γ(p)) = Γ(p).

• otherwise, τ(Γ(p)) = τ(Γ(p)).

Clearly, in the previous definition, the peers in α are not part of the
simulation, they behave exactly as originally. In some sense, they should not
even be aware that something has changed.

3.3.2 Expressivity results

The expressive power of the different languages are compared in Figure 3.1.
The containments are strict except for that of VWLt inside WLt where the
issue remains open.

Our first result states that view delegation cannot be simulated by simple
rules.

Theorem 3.3 (No views in SWL). VWL 6≺ SWL.

3.3. EXPRESSIVE POWER 29

WLt

WL SWLt = V WLt

V WL

SWL

Figure 3.1: Expressive power of the rule languages (the inclusion is strict
when the arc is in bold)

Proof. Intuitively, the difficulty is that the system may visit an arbitrary
number of times the same peer p before visiting another peer q. Then q sees
all the messages from p at the same time and ignores in which order they
were received.

Formally, consider a VWL system (I, Γ) consisting of three peers pα, p, q.
There are two facts that hold in the initial state: true@pα(), true@p().

The set of active rules Γ(pα) maintain the peer pα in a permanent flip-flop
between two modes:

at pα : r@p() :- true@pα()
false@pα() :- true@pα()
del.r@p() :- false@pα()
true@pα() :- false@pα()

Note that pα keeps inserting then deleting the same proposition in p, namely
r@p(). Peer p uses the following four rules:

at p : r@p() :- r@p(), ¬del.r@p()
true@p() :- false@p()
false@p() :- true@p()
s@q() :- r@p()

The first active rule maintains relation r@p. The next two active rules
maintain p in a flip-flop between two modes. The last rule is a view delegation
rule. It is because of this latter rule that the system is in VWL but not in
SWL.

Finally peer q has one active rule:

at q : true@q() :- s@q()

Suppose for a contradiction that there is a pα-simulation of this system in
SWL, via some program translation function τ . As the set of peers is finite

30 CHAPTER 3. WEBDAMLOG LANGUAGE

(namely 3), the initial state (I, τ(Γ)) is finite. Thus, it includes a finite set of
relation names and constants. This means that there is a finite number of
distinct messages that can be sent during a run of this system. Now let r1

be any run of (I, τ(Γ)) such that the initial segment of activated peers is as
follows: pα, then p, then pα, then p, etc., n times (for n to be fixed later in the
proof), and then q. Let I, I1, I2, ..., I2n−1, I2n, I ′ be the trace of r1. Because
of the two flip-flops, the trace has this size and it is clear from it which peer
has been activated at each step.

Consider a second run r2 which is defined like r1 except that this time we
visit pα and p, n + 1 times, then q. Let I, I2, I3..., I2n−1, I2n, I2n+1, I2n+2, I ′′

be the trace of r2.
Observe that while p and pα are being activated, q is simply accumulating

messages. Recall that the set of messages that q may accumulate is finite.
Thus we can choose n large enough so that I2n+2(q) = I2n(q). Suppose that
I ′(q) contains true@q. Then because the set of messages at q is the same in
the second run, I ′′(q) also contains true@q, a contradiction because the last
iteration in pα, p must have removed r@p. A similar contradiction occurs if
true@q is not produced. Thus such a simulation does not exist. ✷

Next we separate VWL and WL.

Theorem 3.4 (No general delegations in VWL).
WL 6≺ VWL.

Proof. (sketch) Intuitively, peer q will use a general delegation to ask peer p
to do something that is beyond the capability of the rules in p. This is not
trivial because p may perform very complex operations with arbitrarily many
complex rules. However, it turns out that there is a limit to what p can do.
To prove it, we use the fact that with formulas using a bounded number k of
variables, one cannot check whether a graph has a clique of size k + 1 (when
an ordering of the nodes is not available).

Formally, consider a WL system (I, Γ) that consists of three peers pα, p, q.
Intuitively, peer pα sends a sequence of updates to a graph that is originally
empty and is stored at p. To do that, pα has a persistent relation that stores
a sequence of updates. More precisely, pα has a set of tuples of the form:
upd@pα(i, o, a, b) where i in [0,m] for some m and there is a single tuple for
each i, o in { ins, del }, and a, b are data elements in a very large fixed set
Σ (the identifiers of the graph g.) Peer pα also has a persistent relation next
containing the tuples: [0, 1], ...[m − 1, m]. Finally, pα has the fact now@pα(0)
in its initial state. The program of pα consists of the following active rules:

at pα : g@p($x, $y) :- now@pα($i), upd@pα($i, ins, $x, $y)
del.g@p($x, $y) :- now@pα($i), upd@pα($i, del, $x, $y)

3.3. EXPRESSIVE POWER 31

now@pα($j) :- now@pα($i), next($i, $j)

Now p has the following active rule for maintaining the graph g :

at p : g@p($x, $y) :- g@p($x, $y), ¬del.g@p($x, $y)

Finally, peer q has a rule delegation to p:

at q : clique@q() :- ∧16i,j6ng@p($xi, $xj), $xi 6= $xj

which essentially requests p to send a message if there exists an n-clique in
g@p. Peer q also has a flip-flop rule:

at q : true@q() :- false@q()
false@q() :- true@q()

Originally true@q() holds.
Suppose for a contradiction that there is a pα-simulation of this system

in VWL. Consider the run of (I, Γ) beginning with a very long sequence
q(pα)∗p(pα)∗...p where each time p is called, the graph oscillates between
“there is a clique” and “there isn’t”. Note that the first time q is called, it
installs the delegation.

Let k be the number of variables and constants that appear in a rule in
τ(Γ(p)). As the rules in p have less than k symbols, they can only evaluate
formulas in FOk. Choose n > k, so that formulas in FOk cannot check for
the presence of an n-clique in a graph. Choose also the set of node identifiers
Σ large enough. (Recall that the translation for the rules of p is independent
from the program of q and pα.) So, it is not possible for p to evaluate whether
there is a clique. So q has to be called before each clique message to check
the existence of a clique. Note that it is possible to do so: p pretends it has
not been called and waits until q is called; then q sends a secret message to p
to tell p whether there is a clique.

This is “almost” a simulation except that q has a bounded memory that
depends essentially on Σ. Now consider a very long sequence of the WL
system that never calls q. If the sequence is long enough, its simulation in
VWL will visit twice the same state. Then by pumping, one can construct
an infinite run of the VWL simulating system such that the flip-flop of q is
never activated. This corresponds to a simulation of an unfair run of the WL
system, a contradiction. Thus there can be no VWL simulation of the above
WL system. ✷

We now consider timestamps. The next result compares the expressive
power of WL and WLt.

Theorem 3.5 (Timestamps). For a finite number of peers,

32 CHAPTER 3. WEBDAMLOG LANGUAGE

1. WL is in pspace;

2. SWLt over a single peer can simulate any arbitrary Turing machine;

3. Thus, SWLt 6≺ WL and (a fortiori) WLt 6≺ WL.

Proof. (sketch) For (1.), consider a fixed schema over a finite number of peers.
Let (I, Γ) be an initial instance of size n = |I| + |Γ|. Let (Ii, Γ, Γ̃i) be an
instance that is reached during the computation. Because the schema is fixed,
the number of facts that can be derived is bounded by a polynomial in n, and
each fact is also of bounded size. So, |Ii| can be bounded by a polynomial in
n. Similarly, the size of Γ̃i can be bounded by a polynomial in n, since a rule
that is delegated is essentially determined by an instantiation of an original
rule and a position in it. Thus we can represent (Ii, Γ, Γ̃i) in polynomial space
in n. Hence, WL is in pspace.

Now consider (2.). Let M be a Turing Machine. We can assume without
loss of generality that it is deterministic and that it has a tape that is infinite
only in one direction. The SWLt system that simulates it is as follows. Its
initial instance encodes the initial state of M . More precisely, it has a relation
input, with initial value

{ input(0,1,a1), input(1,2,a2), ... input(n−1,n,an) }

where a1a2...an is the input of M . It also has a relation tape that is originally
empty.

First, the SWLt system copies the input on its tape using the timestamps
t0, t1, t2... to identify tape cells. More precisely, it constructs,

{tape(t0,t1,a1,s0),tape(t1,t2,a2,⊥),...,tape(tn−1,tn,an,⊥)}

where s0 is the start state of M . Using rules from SWLt, it is straightforward
to simulate moves of M . The only subtlety is that at each step of the iteration,
the tape is augmented so that there is no risk of reaching its limit. The fact
that the cells are denoted with timestamps guarantees that no two cells will
have the same ID.

Now, given the encoding of a word w, one can simulate the computation
of TM on w. Thus (2), so (3). ✷

Note that the converse of (1) holds: any pspace query over an ordered
database can be computed in SWL (hence WL) with a single peer. This can
be shown by proving how to simulate in SWL with a single peer, the language
Datalog¬¬ that can express all pspace queries on ordered databases [AV91].

Next we see how to use timestamps to simulate view maintenance.

Theorem 3.6 (Views with timestamps). VWLt ≈ SWLt.

3.4. CONVERGENCE OF WEBDAMLOG 33

Proof. (sketch) We illustrate with an example the simulation of view delega-
tion by a program with timestamps.

Consider a VWL system with an extensional relation s@q and the deductive
rule at p: r@p(U) :- s@q(U) that specifies that r@p is a view of s@q. The
simulation of the view delegation in SWLt is as follows.

at q : persistent past@q
aux@p(U, $t) :- s@q(U), time@q($t)
past@q($t) :- time@q($t)
obsolete@p($t) :- past@q($t)

at p : intensional r@p
persistent aux@p, obsolete@p
r@p(U) :- aux@p(U, $t), ¬ obsolete@p($t)

Then the value of r@p is that of s@q when q was last visited, i.e., r@p is a
copy of s@q at the last visit of q.

The above simulation is straightforwardly generalized to arbitrary VWL
systems, from which we obtain the desired VWLt ≈ SWLt. ✷

It is still open whether WLt 6≺ VWLt.

3.4 Convergence of Webdamlog

Systems that converge to a unique state independently of the order of compu-
tation, i.e., some form of Church-Rosser property, are of particular interest.
In this section, we consider two kinds of such systems: the positive and the
strongly-stratified Webdamlog systems. Indeed, we show that such systems
continue to converge even in presence of insertions of facts or rules. Finally,
we show that for these two classes of systems, the distributed semantics can
be seen as mimicking the centralized semantics.

3.4.1 Positive Webdamlog

Clearly, negation may explain why a system does not converge. However, the
following example shows that even in absence of negation, convergence is not
guaranteed because the order of arrival of messages matters:

Example 3.7. Consider the rules:

at q: extensional r1@q, r2@q, r@q
persistent r@q
r@q() :- r1@q(), r2@q()

34 CHAPTER 3. WEBDAMLOG LANGUAGE

at q1: r1@q() :-
at q2: r2@q() :-

If we process the peers according to the order q1, q, q2, q, q1, . . ., then r@q
is never derived. If we consider instead the order q1, q2, q, q1, q2, q, . . ., then
r@q is derived and remains forever. The absence of convergence here is in
fact a desired feature of the model: the extensional relations model events, so
their arrival times matter.

On the other hand, note that, as we will see, if in the example r1@q and
r2@q were intensional, the system would converge.

We now introduce the restricted systems we study in this section. A
Webdamlog state or system is positive if the following holds:

1. Each of its rules is positive (no negation); and

2. Each extensional relation m@p is made persistent with a rule of the
form m@p(U) :- m@p(U).

We will see that because of these restrictions, the states in runs of positive
systems are monotonically increasing. For positive systems with a finite
number of peers, there are only finitely many possible states, so monotonicity
implies that runs converge after a finite number of steps. We will also show
convergence for positive systems with infinitely many peers, except that in
this case, we may converge only in the limit. This motivates the following
somewhat complex definition of convergence.

A run S0, S1, S2, . . . converges to a possibly infinite state S∗ = (I∗, Γ∗, Γ̃∗)
if for each finite S ′ ⊆ S∗, there exists kS′ such that for all k > kS′, S ′ ⊆ Sk

and if for each finite S ′ 6⊆ S∗, there is kS′ such as for all k > kS′, S ′ 6⊆ Sk.
We say a system S converges if all its runs converge to the same state.

The following theorem states the convergence of (possibly infinite) positive
systems.

Theorem 3.8 (Convergence). All positive Webdamlog systems converge.

Lemma 3.9. Suppose I1(p∗) ⊆ I2(p∗), Γ1(p∗) = Γ2(p∗) and Γ̃1(q, p∗) ⊆
Γ̃2(q, p∗)∀q 6= p∗. Let Pa,i (resp. Pd,i) be the set of local active (resp. fully

local deductive) rules in Γi(p∗) ∪ ∪q 6=p∗Γ̃i(q, p∗). Then if there is no negation
in the rules, we have Pa,1(K1) ⊆ Pa,2(K2) and

γ1(p∗, q)(Pa,1, K1) ⊆ γ2(p∗, q)(Pa,2, K2)∀q 6= p∗

where Ki = P ∗
d,i(Ii(p∗))).

3.4. CONVERGENCE OF WEBDAMLOG 35

Proof. (of Lemma 3.9) Since Γ1(p∗) = Γ2(p∗) and Γ̃1(q, p∗) ⊆ Γ̃2(q, p∗) for
all q 6= p∗, it follows that Pa,1 ⊆ Pa,2 and Pd,1 ⊆ Pd,2. Together with
I1(p∗) ⊆ I2(p∗), and in absence of negation, we obtain Pa,1(P ∗

d,1(I1(p∗))) ⊆
Pa,2(P ∗

d,2(I2(p∗))). Likewise, γp∗q(Pa,1, P ∗
d,1(I1(p∗))) ⊆ γp∗q(Pa,2, P ∗

d,2(I2(p∗))).
✷

Proof. (of Theorem 3.8) In fact, we will prove that the result is true for a
simple update I ′, Γ′, since the result is then easy to generalize. Consider a
positive Webdamlog system (I0, Γ0, Γ̃0). Let r = (I0, Γ0, Γ̃0)(I1, Γ1, Γ̃1)
(I2, Γ2, Γ̃2) . . . be a run for this system. It follows from the definition of moves
that Γi = Γj for all i, j > 0 and that delegated rules are sub-rules of these
sets so have no negation. So (Ii, Γi, Γ̃i) is positive for every i > 0. We show
by induction on i that Ii(p) ⊆ Ii+1(p) and Γ̃i(p, q) ⊆ Γ̃i+1(p, q) for all i and
all peers p, q, i.e., the states in the run increase monotonically. Using this
property, it is easy to show that r converges to the (possibly infinite) state
(I∗, Γ0, Γ̃∗) where I∗(p) = ∪iIi(p) and Γ̃∗(p, q) = ∪iΓ̃i(p, q). The base case
(i = 0) for our induction is straightforward. If the first move is a p∗-move,
then by the definition of move, we have I0(q) ⊆ I1(q) for all q 6= p∗. For peer
p∗, we use the fact that I0(p) contains only extensional p-facts and that Γ0(p)
contains persistence rules for all extensional relations of p. We thus obtain
I0(p∗) ⊆ I1(p∗). As for delegations, we have Γ̃0(p, q) = ∅ for all p, q (since
(I0, Γ0, Γ̃0) is initial), hence Γ̃0(p, q) ⊆ Γ̃1(p, q) for all peers p, q. Suppose next
that the claim holds for all i < k. Let p∗ be the peer whose move takes
(Ik, Γk, Γ̃k) to (Ik+1, Γk+1, Γ̃k+1). Using the same argument as in the base case,
we obtain Ik(p) ⊆ Ik+1(p) for all peers p. According to the definition of moves,
Γ̃k(p, q) = Γ̃k+1(p, q) whenever p 6= p∗. Thus, the only interesting case is when
p = p∗ and Γ̃k(p∗, q) 6= ∅. In this case, we must have visited peer p∗ previously.
Let j be such that the last p∗-move took (Ij, Γj, Γ̃j) to (Ij+1, Γj+1, Γ̃j+1). Since
our last visit to p∗ was at timepoint j, Γ̃j+1(p∗, q) = Γ̃k(p∗, q). By repeatedly
applying the IH, we obtain Ij(p) ⊆ Ik(p) and Γ̃j(p, q) ⊆ Γ̃k(p, q) for all
peers p, q. In particular, we have Ij(p∗) ⊆ Ik(p∗), Γj(p∗) = Γk(p∗), and
Γ̃j(p∗, q) ⊆ Γ̃k(p∗, q). Applying Lemma 3.9, we get Γ̃j+1(p∗, q) ⊆ Γ̃k+1(p∗, q),
which yields the desired Γ̃k(p∗, q) ⊆ Γ̃k+1(p∗, q), and completes our proof of
the monotonicity claim.

Now consider two runs r1 = (I0,1, Γ0,1, Γ̃0,1)(I1,1, Γ1,1, Γ̃1,1)(I2,1, Γ2,1, Γ̃2,1) . . .

and r2 = (I0,2, Γ0,2, Γ̃0,2)(I1,2, Γ1,2, Γ̃1,2) (I2,2, Γ2,2, Γ̃2,2) . . . for the system which
converge respectively to (I∗

1 , Γ∗
1, Γ̃∗

1) and (I∗
2 , Γ∗

2, Γ̃∗
2). We will prove by in-

duction on i > 0 that for every state (Ii,1, Γi,1, Γ̃i,1) of r1, there is j > 0
such that Ii,1(p) ⊆ Ij,2(p) and Γ̃i,1(p, q) ⊆ Γ̃j,2(p, q) for all peers p, q. This,
together with monotonicity property in the previous paragraph, yields the

36 CHAPTER 3. WEBDAMLOG LANGUAGE

desired (I∗
1 , Γ∗

1, Γ̃∗
1) = (I∗

2 , Γ∗
2, Γ̃∗

2). The base case (i = 0) is trivial since
(I0,1, Γ0,1, Γ̃0,1) = (I0,2, Γ0,2, Γ̃0,2) (as they are both runs for the same system).
For the induction step, suppose the claim holds for i 6 k, and consider
(Ik+1,1, Γk+1,1, Γ̃k+1,1). Let p∗ be the peer whose move takes (Ik,1, Γk,1, Γ̃k,1) to
(Ik+1,1, Γk+1,1, Γ̃k+1,1). By the IH, we can find j such that Ik,1(p) ⊆ Ij,2(p) and
Γ̃k,1(p, q) ⊆ Γ̃j,2(p, q) for all p, q. As r2 is a fair run, we can find l > j such as
(Il+1,2, Γl+1,2) results from a p∗-move. Since states are monotonically increas-
ing in r2, Ik,1(p) ⊆ Ij,2(p) ⊆ Il,2(p) and Γ̃k,1(p, q) ⊆ Γ̃j,2(p, q) ⊆ Γ̃l,2(p, q) for
all p, q. Using Lemma 3.9, Ik+1,1(p∗) ⊆ Il+1,2(p) and Γ̃k+1,1(p, q) ⊆ Γ̃l+1,2(p, q)
for all peers p, q. ✷

The previous theorem is still true if one allows the peers to insert facts
and rules. One can show that the system will reach a stable state that does
not depend on the points of insertion.

Theorem 3.10 (Updates). Given two positive Webdamlog systems (I,Γ)
and (I ′,Γ′), for any run of the system (I,Γ), if for a given step, I ′ is added
to the current set of facts and Γ′ to the current set of rules, then the modified
run converges to the convergence state of (I ∪ I ′,Γ ∪ Γ′).

Proof. Let (I0,1, Γ0,1, Γ̃0,1), (I1,1, Γ1,1, Γ̃1,1)... be a run of (I,Γ); k a point of in-
sertion; (Ik,1′ , Γk,1′ , Γ̃k,1′) the state (Ik,1 ∪I ′, Γk,1 ∪Γ′, Γ̃k,1); and r1 = (I0,1, Γ0,1,

Γ̃0,1), (I1,1, Γ1,1, Γ̃1,1)...(Ik−1,1, Γk−1,1, Γ̃k−1,1), (Ik,1′ , Γk,1′ , Γ̃k,1′), (Ik+1,1′ , Γk+1,1′ ,

Γ̃k+1,1′)... the modified run of the system. For ease of reference, we will denote
by (Ii,1′ , Γi,1′ , Γ̃i,1′) any state i > 0 of this run. We show (i) that there is a
run r2 = (I0,2, Γ0,2, Γ̃0,2), (I1,2, Γ1,2, Γ̃1,2)... of the system (I ∪ I ′,Γ ∪ Γ′) such
that for each i > 0, Ii,1′ ⊆ Ii,2, Γi,1′ ⊆ Γi,2 and Γ̃i,1′ ⊆ Γ̃i,2, and (ii) that there
is a run r3 = (I0,3, Γ0,3, Γ̃0,3), (I1,3, Γ1,3, Γ̃1,3)... of the system (I ∪ I ′,Γ ∪ Γ′)
such that for each i > 0, Ii,3 ⊆ Ii+k,1′ , Γi,3 ⊆ Γi+k,1′ and Γ̃i,3 ⊆ Γ̃i+k,1′ . This is
sufficient to prove the result since r2 and r3 are both runs of the same positive
system, and thus must converge (by Theorem 3.8) to the same state. Since
the states of r1 are sandwiched between those of r2 and r3, convergence of
both r2 and r3 to a single state implies convergence of r1 to this same state.

Let us consider the first assertion. We select a run of the system (I ∪ I ′,
Γ ∪ Γ′) with exactly the same sequence of peers as the modified run r1. For
i = 0, the desired inclusions clearly hold. Now suppose i > 0. Suppose
Ii−1,1′ ⊆ Ii−1,2, Γi−1,1′ ⊆ Γi−1,2 and Γ̃i−1,1′ ⊆ Γ̃i−1,2. Using Lemma 3.9, if
i 6= k, we have the desired inclusions for timepoint i. If i = k, we have,
using Lemma 3.9, Ik,1 ⊆ Ik,2, Γk,1 ⊆ Γk,2 and Γ̃k,1 ⊆ Γ̃k,2. Since I ′ ⊆ I0,2

and Γ′ ⊆ Γ0,2, and since the run of (I ′,Γ′) is monotonic (by Theorem 3.8),

3.4. CONVERGENCE OF WEBDAMLOG 37

I ′ ⊆ Ik,2 and Γ′ ⊆ Γk,2. Finally, since Ik,1′ = Ik,1 ∪ I ′, Γk,1′ = Γk,1 ∪ Γ′ and
Γ̃k,1′ = Γ̃k,1, we have the result for i = k.

Now consider the second assertion. We choose a run r3 of the system
(I ∪ I ′, Γ ∪ Γ′) with exactly the same sequence of peers as the sub-run r1

started from the timepoint k, i.e., if peer p moves at timepoint i + k in r1,
then it is p who moves at timepoint i in r3. It is clear that desired inclusions
hold for i = 0, since the runs of (I,Γ) are monotonic. Let i > 0. Suppose
Ii−1,3 ⊆ Ii+k−1,1′ , Γi−1,3 ⊆ Γi+k−1,1′ and Γ̃i−1,3 ⊆ Γ̃i+k−1,1′ . Using Lemma 3.9,
we obtain directly the desired inclusions for i. ✷

The previous theorem is straightforwardly extended to a series of updates.
However, as illustrated by the following example, a more liberal definition
of updates which also allows deletion of facts or rules in a system would
compromise convergence.

Example 3.11. Consider the system defined as follows:

at p: extensional@p, intensional r@p
r@q() :- r@p()
r@p() :- s@p()
s@p() :- s@p()
s@p().

at q: intensional r@q
r@p() :- r@q()

This system converges to a state where I∗(p) = {s@p()}, Γ̃∗(p, q) = {r@q():-},
Γ̃∗(q, p) = {r@p():-} Then removing the fact s@p() or the rule r@p():- s@p()
after the convergence will not change Γ̃ whereas Γ̃ would be empty were the
fact or the rule removed before beginning a run.

The previous example illustrates the difficulty of managing non-monotony.
If we remove a fact or a rule, we need to remove as well all facts or rules that
were deduced using this fact. This could be achieved using view maintenance
techniques. We leave this for future work.

To further ground our semantics, we show that for positive systems, our
semantics correspond to the standard centralized Datalog semantics.

Centralized semantics

In the positive case, we can compare with a “centralized” semantics, in which
all facts and rules are combined into a single Datalog program. Such a
comparison would not make sense in the general case since our semantics too
closely depends on the order in which peers fire.

38 CHAPTER 3. WEBDAMLOG LANGUAGE

We associate to a positive Webdamlog state (I, Γ) the set ∪p(I(p) ∪ Γ(p))
composed of the facts and rules of all peers. We can transform this set of
facts and rules into a standard Datalog program by first instantiating the
variable relations in the rules (as was done for local computation) and then
removing those rules that violate the typing constraints in σ. We denote by
c(I, Γ) the Datalog program thus obtained.

Figure 3.2: Link with centralized semantics

The following theorem (illustrated by Figure 3.2) demonstrates the equiv-
alence, for the class of positive systems, of our distributed semantics and the
traditional fixpoint semantics of Datalog. The result deals only with systems
with finitely many peers to avoid having to extend Datalog to infinitely many
relations.

Theorem 3.12. Let (I, Γ) be a positive system with a finite number of peers
that converges to (I∗, Γ∗, Γ̃∗), and let Mmin be the unique minimal model of
the Datalog program c(I, Γ). Then

Mmin = ∪pP ∗
p,d(I∗(p))

where Pp,d is the set of fully local deductive rules in Γ̃∗(p) ∪ ∪qΓ∗(q, p).

Proof. Let S0 = (I0, Γ0, Γ̃0) be a positive initial state with a finite number
of peers which converges to the (finite) state S∞ = (I∞, Γ∞, Γ̃∞). Let Mmin

be the unique minimal model of the Datalog program c(I0, Γ0). Given a run
(I0, Γ0, Γ̃0), (I1, Γ1, Γ̃1), (I2, Γ2, Γ̃2) . . ., we use Pp,d,i (resp. Pp,a,i) to refer to
the set of fully local deductive (resp. local active) rules in Γi(p) ∪ ∪qΓ̃i(q, p).
For ease of reference, we denote by Fi the set of facts ∪pP ∗

p,d,i(Ii(p)). Our aim
is to show that Mmin = F∞.

First direction: F∞ ⊆ Mmin

Consider the run r = (I0, Γ0, Γ̃0), (I1, Γ1, Γ̃1), (I2, Γ2, Γ̃2) Let pi be the peer
whose move takes the state (Ii, Γi, Γ̃i) to (Ii+1, Γi+1, Γ̃i+1). We will show by
induction on i that (a) P ∗

pi,d,i(Ii(pi)) ⊆ Mmin, (b) Ppi,a,i(P ∗
pi,d,i(Ii(pi))) ⊆ Mmin,

3.4. CONVERGENCE OF WEBDAMLOG 39

and (c) Mmin |= Γ̃i+1(pi, q) for all q 6= pi. Because of the monotonicity of
states in r (cf. proof of Theorem 3.8), it follows from (a) and our definition
of the sets Fi that F∞ ⊆ Mmin. Consider first the base case (i = 0). For (a),
we note that I0(p0) ∪ Γ0(p0) ⊆ c(I0, Γ0) and ∪qΓ̃0(q, p0) = ∅ (since (I0, Γ0) is
an initial state). We can thus deduce that P ∗

p0,d,0(I0(p0)) ⊆ Mmin. For (b),
we use (a) and the fact that Pp0,a,0 ⊆ Γ0(p0) (as there are no delegations in
the first time step). For (c), we first note that rules in Γ̃1(p0, q), are known
to be of one of two types. The first type of rules are of the form

vA :- vM@vQ(vU), vΘ1

where A :- Θ0, M@Q(U), Θ1 is a rule in Pp0,a,0 and v is a valuation such that
vΘ0 holds in P ∗

p0,d,0(I0(p0)) and vQ = q(6= p0). In this case, the fact that
P ∗

p0,d,0(I0(p0)) ⊆ Mmin ensures that vΘ0 holds in Mmin. Since we also have
Pp0,a,0 ⊆ c(I0, Γ0), all rules in Pp0,a,0 must holds in Mmin, which means the
partially instantiated rule vA :- vM@vQ(vU), vΘ1 must also be satisfied by
Mmin. All other rules in Γ̃1(q, p0) are of the form vA :- where A :- Θ is a
rule in Pp0,a,0 and v is a valuation such that vΘ holds in P ∗

p0,d,0(I0(p0)) and
vA = r@q(u) for some r ∈ I. Again, the fact that P ∗

p0,d,0(I0(p0)) ⊆ Mmin

means that vΘ holds in Mmin, and the fact that Pp0,a,0 ⊆ c(I0, Γ0) means that
vA :- must hold in the minimal model Mmin.

For the induction step, suppose our claim holds for i 6 k. Let j be such
that pj = pk+1 and pj′ 6= pk+1 for all j < j′ < k + 1, or 0 in the case where pj

has never been visited. Then it follows from our definition of moves and runs
that

Ik+1(pk+1) ⊆ Ij(p) ∪
⋃

j<l<k+1

Ppl,a,l(P ∗
pl,d,l(Il(pl)))

It follows then from part (b) of the IH applied to timepoints j, j + 1, . . . , k
that Ik+1(pk+1) ⊆ Mmin. Part (c) of the IH applied to the timepoints in which
a peer q 6= pk+1 was last visited gives us Mmin |= ∪qΓ̃k+1(q, pk+1). Together
with the fact that Γk+1(pk+1) = Γ0(pk+1) ⊆ c(I0, Γ0), we obtain

Mmin |= Ppk+1,a,k+1 ∪ Ppk+1,a,k+1

Parts (a) and (b) of our claim follow directly. Now for part (c), consider some
rule in Γ̃k+2(pk+1, q). First consider the case where the rule is of the form

vA :- vM@vQ(vU), vΘ1

where A :- Θ0, M@Q(U), Θ1 is a rule in Ppk+1,a,k+1 and v is a valuation
such that vΘ0 holds in P ∗

pk+1,d,k+1(Ik+1(pk+1)) and vQ = q(6= pk+1). We know
P ∗

pk+1,d,k+1(Ik+1(pk+1)) ⊆ Mmin from part (a), so vΘ0 must hold in Mmin. This

40 CHAPTER 3. WEBDAMLOG LANGUAGE

together with the fact (from above) that Mmin |= Ppk+1,a,k+1 means the par-
tially instantiated rule vA :- vM@vQ(vU), vΘ1 must also be satisfied by Mmin.
Suppose instead our rule is of the form vA :- where A :- Θ is a rule in Ppk+1,a,k+1

and v is a valuation such that vΘ holds in P ∗
pk+1,d,k+1(Ik+1(pk+1)) and vA =

r@q(u) for some r ∈ I. We again utilize the fact that P ∗
pk+1,d,k+1(Ik+1(pk+1)) ⊆

Mmin and Mmin |= Ppk+1,a,k+1, which give vΘ ⊆ Mmin and hence Mmin |=
vA :-.

Second direction: Mmin ⊆ F∞

We proceed by induction on the depth of proof trees for facts in Mmin.
The base case is when the proof tree of a fact r@p(u) ∈ Mmin has depth
0, i.e., it appears explicitly in c(I0, Γ0). There are two possibilities: either
r@p(u) ∈ I0(p) or the rule r@p(u) :- appears in some Γ0(q). In the former case,
monotonicity (cf. proof of Theorem 3.8) ensures that r@p(u) ∈ I∞(p) ⊆ F∞.
In the latter case, if r@p is extensional, then r@p(u) will be sent to p the
first time q is visited and will remain at p by monotonicity. If r@p is an
intensional relation name and q = p, then r@p(u):- belongs to Pp,d,∞. If
q 6= p, then r@p(u):- will be delegated to p every time q is visited, and
hence will belong to Γ̃∞(q, p), and hence to Pp,d,∞. In all cases, we obtain
r@p(u) ∈ ∪pP ∗

p,d,∞(I∞(p)) = F∞.
For the induction step, suppose that all facts in Mmin with proof trees of

depth at most k appear in F∞. Consider some fact r@p∗(u) with a proof tree
of depth k + 1. Then there must exist some rule

α = Mn+1@Qn+1(Un+1) :- M1@Q1(U1)...Mn@Qn(Un)

in ∪pΓ(p) and some valuation v such that

r@p∗(u) = vMn+1@vQn+1(vUn+1)

and for all 1 6 j 6 n, the fact

sj@qj(tj) = vMj@vQj(U j)

possesses a proof tree of depth at most k. Consider some run r = (I0, Γ0, Γ̃0),
(I1, Γ1, Γ̃1), (I2, Γ2, Γ̃2) . . . of (I0, Γ0). Applying the IH, we obtain sj@qj(tj) ∈
F∞ for all 1 6 j 6 n. It follows that we can find some index m such that
sj@qj(tj) ∈ Fm for all 1 6 j 6 n. Because all runs of (I0, Γ0) converge to
the same state, we can assume without loss of generality that it is a qj-move
which takes the state (Im+j−1, Γm+j−1, Γ̃m+j−1) in r to the state (Im+j, Γm+j,

Γ̃m+j), for all 1 6 j 6 n. We aim to show that r@p∗(u) ∈ Fm+n, hence
r@p∗(u) ∈ F∞. We first remark that for all peers p, the set P ∗

p,d,m(Im(p))

3.4. CONVERGENCE OF WEBDAMLOG 41

can only consist of p-facts. This is because I0(p) contains only p-facts (by
definition), only p-facts are added to Ii(p) (by definition of moves), and Pp,d,m

consists of only deductive rules in p, i.e., rules using intensional p-relations.
It follows then that sj@qj(tj) ∈ P ∗

qj ,d,m(Im(qj)) for all 1 6 j 6 n. The safety
condition implies that the term Q1 equals a peer constant q1. We can suppose
that at timepoint m, α ∈ Γm(q1).

Then it is q1’s move. If α is fully local deductive for q1, then p∗ and all of the
qj must be equal to q1. This means that sj@qj(tj) ∈ P ∗

q1,d,m(Im(q1)) for all j,
and so r@p∗(u) ∈ P ∗

q1,d,m(Im(q1)). Thus, r@p∗(u) ∈ Fm, and by monotonicity
of states, r@p∗(u) ∈ Fm+n. Next consider the more interesting case where α
is not a fully local deductive rule for q1. Let l be the maximal index such
that qj = q1 for all 1 6 j 6 l. Then we have sj@qj(tj) ∈ P ∗

q1,d,m(Im(q1))
for all 1 6 j 6 l. If l = n, then r@p∗(u) ∈ Im+1(p∗), and so again, by
monotony, r@p∗(u) ∈ Fm+n. If instead we have l < n, then delegation comes
into play. Specifically, let v′ be the minimal sub-valuation of v such that
v′Mj@v′Qj(v′Uj) = sj@qj(tj) for all 1 6 j 6 l. Note that by the safety
condition, Ql+1 must now be instantiated to ql. It follows that the rule α′

v′Mn+1@v′Qn+1(v′Un+1) :-
v′Ml@v′Ql(v′U l)...v′Mn@v′Qn(v′Un)

must belong to Γ̃m+1(q1, ql). By monotony, α′ ∈ Γ̃m+l−1(q1, ql), and sj@qj(tj)
∈ Fm+l−1 We can thus repeat the same procedure to ql when at timepoint
m + l − 1 it is its turn to move. We will either finish (in which case the fact
r@p∗(u) is derived and preserved) or continue via delegations to the next
peer, and so forth, until the final peer is treated and the fact r@p∗(u) has
been produced. We thus find the desired r@p∗(u) ∈ Fm+n. ✷

3.4.2 Strongly-stratified Webdamlog

With negation, convergence is not guaranteed in the general case as illustrated
by the following example.

Example 3.13. Consider the program that is stratified in the sense of Datalog
with stratified negation:

intensional s@p, r@p, r@q
at p: r@q() :- r@p()

r@p() :- ¬s@p()
at q: r@p() :- r@q()

s@p() :-

42 CHAPTER 3. WEBDAMLOG LANGUAGE

Any run of this system that begins with p converges to a state where p
delegates r@q():- to q and q delegates r@p():- and s@p():- to p. On the other
hand, runs that begin with q converge to a state where p delegates nothing
to q and q delegates s@p():- to p.

As already mentioned for the non-monotone updates in the previous
subsection, one may adapt methods of view maintenance to solve the problem.
We develop in this section an alternative in which syntactic restrictions prohibit
circles of wrong deductions, without having to deal with the complexity of view
maintenance in presence of belief revision. Note that most of the examples of
the paper belong to (or are easily adapted to) this restricted class.

A stratification σ′ is an assignment of numbers to relations, i.e., to pairs
r@p. If σ′(r@p) = i, we say that r@p is in the ith stratum. The stratification
is strong if for each i, all the relations in the ith stratum refer to the same
peer. Given a strong stratification σ′, an instantiated rule is σ′-stratified if all
relation names of positive body atoms appear in a stratum smaller or equal
to that of the head relation and all relation names of negative terms belong
to a strictly smaller stratum. Note that a stratification for Example 3.13
would not be strong because r@p and r@q have to be in the same stratum,
although they belong to different peers.

In our setting, we see a strong stratification σ′ of I as an extra component
of the system’s schema. The strong stratification works much like the typing
constraint σ in that it tells us whether a particular rule instantiation is
legal. Specifically, a peer is only allowed to use instantiated rules which are
σ′-stratified. Observe that our use of stratification is in the spirit of classical
Datalog with stratified negation, namely preventing cycling through negation.
However, the way stratification is enforced is somewhat different. In the
centralized context, one analyzes the program and checks for the existence
of a stratification. In the distributed case, this is not possible because no
one has access to the entire program. Also, the use of relation and peer
variables makes such a computation even less conceivable. So, instead, one
assumes that a stratification is imposed and the computation is such that it
prevents deriving facts with rule instantiations that would violate the strong
stratification.

There is a subtlety with strong stratification arising from general delegation.
Indeed, we will see that the result does not hold for WL. So the next result
deals simply with view delegation, i.e., the language VWL. One of the
advantages of VWL is that at the time a rule is delegated, it is possible to
check that it does not violate the strong stratification. We consider systems
with finitely many peers, where the extensional facts are constant and only
the intensional delegations vary. Formally, a Webdamlog system is said to be

3.4. CONVERGENCE OF WEBDAMLOG 43

strongly-stratified if for some strong stratification σ′:

1. its local computation is constrained by the stratification σ′.

2. Each extensional relation m@p is made persistent with a rule of the
form m@p(U) :- m@p(U) and these are the only active rules in the
system1. We say the system is purely intensional.

Observe that, by Condition (2), the set of extensional facts is constant
whereas it was increasing for positive systems. So Condition (2) here is more
restrictive than for positive systems. Thus, strictly speaking the two classes
are incomparable. Clearly, it would be interesting to consider classes that
would include both.

We are now ready to present our results, following the same logic as in
the previous section.

Theorem 3.14 (Convergence). All strongly-stratified VWL systems over a
finite number of peers converge.

Proof. Let us first remark that deductive rules in SWL can only be of two
types: fully local deductive or local deductive. This means that the only types
of rules that can be delegated to a peer p are fully instantiated body-less
rules of the form r@p(u) :- . The general idea of the proof is as follows. Given
a run, we will prove that for each stratum, there is a state after which the
stratum has converged. A similar argument will prove that the limit is the
same for each run.

Consider a σ′-stratified system (I0, Γ0) with rules in VWL and a finite
number of peers. Let r = (I0, Γ0,∅)(I1, Γ1, Γ̃1)(I2, Γ2, Γ̃2) . . . be a run of this
system. For simplicity, in what follows, we use Pp,d,i to refer to the set of fully
local deductive rules in Γi(p) ∪ ∪qΓ̃i(q, p).

First, we can show by induction that for all i > 0, every state (Ii, Γi, Γ̃i)
is intensional, Ii = I0, and Γi = Γ0. The base case i = 0 is immediate.
For the induction step, suppose we have the result for i < k and con-
sider state (Ik, Γk, Γ̃k) resulting from a p-move. From the IH, we know that
(Ik−1, Γk−1, Γ̃k−1) is intensional, and so the only active rules in Γk−1(p) and
∪qΓ̃k−1(q, p) are persistence rules for p’s extensional predicates. We also have
Γk = Γ0 from the definition of runs. In particular, this means that Γk(p)
contains persistence rules for each of p’s extensional predicates. This means
that p copies its extensional facts (Ik(p) = Ik−1(p)) and does not send any
extensional facts to other peers (Ik(q) = Ik−1(q) for q 6= p). We thus have

1Technically speaking, if we want to use variable or peer relations in the rule heads,
then we must forbid instantiations which yield extensional relations in the heads.

44 CHAPTER 3. WEBDAMLOG LANGUAGE

Ik = Ik−1 = I0. Finally, we note that (Ik−1, Γk−1, Γ̃k−1) contains no other
active rules besides persistence rules, which means that all delegations will
involve deductive rules.

Given the strong stratification σ′, let us prove that for each stratum i,
there is a timepoint ti > 0 such that after each t > t′, the restriction of Γ̃t

to rules with head in strata less or equal to i is the same as the one of Γ̃ti
.

Let us start with the first stratum, call it 0. Suppose that p∗ is the peer
associated with this stratum. Let t0 be the first occurrence of a p∗-move after
visiting all the other peers. Such a timepoint must exist since the number of
peers is finite (this is assumed in the statement of the theorem) and the run
is fair. We claim that t0 has the desired properties. Consider some timepoint
t > t0 in which it’s peer q’s turn to move and some delegation appearing in
Γ̃t+1(q, p∗). We remark that because we only have VWL rules, the delegation
must be of the form r@p∗(u):-. To produce this delegation, there must be a
rule in Γt(q) = Γ0(q) of the following form

Mn+1@Q(Un+1) :-

(¬)M1@q(U1), (¬)M2@q(U2), ...(¬)Mn@q(Un)

and some valuation v satisfying the typing σ and stratification σ′ such that:
vMn+1@vQ(vUn+1) = r@p∗(u), each positive body fact vMi@q(vU i) be-
longs to P ∗

q,d,t(It(q)), and each negated body fact ¬vMi@q(vU i) is such that
vMi@q(vU i) is not in P ∗

q,d,t(It(q)). We note however that because v satisfies
the strong stratification, we are at peer q 6= p, and the head relation r@p
is in the lowest stratum, all relations vMi@q must be extensional. As the
extensional facts of each peer are the same at each timepoint (see above),
it follows that this delegation is produced at each and every visit to q, and
in particular the very first visit to q, which occurs before t0. Thus, this
delegation already appears in Γ̃t0

(q, p∗). A very similar argument shows that
every delegation concerning stratum 0 which appears in Γ̃t0

(q, p∗) also appears
in Γ̃t(q, p∗) for all t > t0.

Now let us consider higher strata. Suppose our claim holds for strata up
to and including k. This means we can find a timepoint tk such that for all
t > tk, the restriction of Γ̃t to rules with head in strata less or equal to k is
the same as the one of Γ̃tk

. Again, we use p∗ to refer to the peer associated
with the stratum of interest (here k + 1). Set tk+1 equal to the timepoint after
tk in which we first visit p∗ after having visited all other peers at least once
since timepoint tk. Consider some timepoint t > t0 in which q moves and
produces some delegation in Γ̃t+1(q, p∗). Again, because we only have VWL
rules, we know this delegation must be of the form r@p∗(u):-. To produce it,

3.4. CONVERGENCE OF WEBDAMLOG 45

there must be a rule in Γt(q) = Γ0(q) of the following form

Mn+1@Q(Un+1) :-

(¬)M1@q(U1), (¬)M2@q(U2), ...(¬)Mn@q(Un)

and some valuation v satisfying the typing σ and stratification σ′ such that:
vMn+1@vQ(vUn+1) = r@p∗(u), each positive body fact vMi@q(vU i) be-
longs to P ∗

q,d,t(It(q)), and each negated body fact ¬vMi@q(vU i) is such that
vMi@q(vU i) is not in P ∗

q,d,t(It(q)). Because v satisfies the strong stratification,
we are at peer q 6= p, and the head relation r@p is in the lowest stratum, we
know all body facts vMi@q(vU i) must either be extensional or intensional
but in a lower stratum (6 k). We have already seen that extensional facts are
fixed throughout the run. Since t > tk+1 > tk, we know that all delegations for
strata less than or equal to k are fixed and equal to those found at timepoint
tk. It follows that this delegation is produced at each and every visit to q
following timepoint tk, and hence in the visit to q between timepoints tk and
tk+1. Thus, this delegation already appears in Γ̃tk+1

(q, p∗). We can similarly
show that all delegations stratum k + 1 delegations in Γ̃tk+1

(q, p∗) are also
found in Γ̃t(q, p∗) for all t > tk+1.

We now prove that all systems converge to the same limit. In fact, we can
straightforwardly extend the previous proof by adding to the claim that each
stratum k + 1 converges to the same value on all runs. In the base case, we
use the fact that the extensional facts are the same in all runs. This means
delegations for the first stratum will be the same for all runs. For later strata,
we use the fact that the delegations at level k + 1 are fully determined by the
delegations in previous strata. ✷

This result does not hold if we allow general delegation instead of view
delegation. This is because with general delegation, a peer p may delegate a
partially instantiated rule to q. As the relation and peer terms of the rule
may contain variables, peer p may not be able to decide whether the rule is
σ′-stratified, and neither will q (or later peers) as they do not know which
relations p used to launch the delegation. So enforcement of the stratification
is not straightforward. This is illustrated by the following example.

Example 3.15. Consider the following program:

intensional m@p, s@q, r@q
at p: m@p($x) :- m@p($x), r@q($x)

m@p($x) :- r@q($x), ¬s@q()
at p’: s@q() :-
at q: r@q(a) :-

46 CHAPTER 3. WEBDAMLOG LANGUAGE

Consider a run that starts by firing p, q, then p. Then the rule m@p(a):- is
delegated by q to p and will remain forever. Now, consider a run that starts
by firing p′. Then q will know s@q():-. from the beginning and will never
delegate m@p(a):-.

Convergence also holds for strongly-stratified VWL systems in the presence
of insertions as well as deletions.

Theorem 3.16 (Update). Let (I,Γ) be a VWL system with strong stratifica-
tion σ′ over a finite number of peers. Consider (I+,I−, Γ+,Γ−) where I+, I−

are sets of extensional facts and Γ+,Γ− are sets of deductive rules. For each
run of the system (I,Γ), if for some k a given state (Ik,Γk, Γ̃k) is replaced
by (Ik ∪ I+ \ I−, Γk ∪ Γ+ \ Γ−, Γ̃k), then the modified run converges to the
convergence state of the σ′-stratified system (I ∪ I+ \ I−, Γ ∪ Γ+ \ Γ−).

Proof. First, it is straightforward to show that (I ∪ I+ \ I−,Γ ∪ Γ+ \ Γ−)
respects the constraints of intensional states. Let us recall from the proof of
Theorem 3.14 that until the insertion point k, Ik = I and Γk = Γ. So at the
end of the timepoint k, the state is indeed (I ∪ I+ I−, Γ ∪ Γ+ \ Γ−, Γ̃k). Then
observe that the proof never used the fact that Γ̃ was initially empty, except
to prove that the initial state was intensional. So the proof applies as it is
and gives the desired result. ✷

This theorem can obviously be generalized to any sequence of updates.
The final theorem of this section shows that the set of facts computed by a
σ′-stratified system corresponds to the set of facts in the minimal model of a
centralized version of the system. As in the previous section, we associate a
σ′-stratified Webdamlog system (I, Γ) with the set ∪p(I(p) ∪ Γ(p)) composed
of the facts and rules of all peers. We then transform this set of facts and
rules into a standard Datalog program by instantiating the variable predicates
in the rules and removing rules which violate the typing constraints σ or
the strong stratification σ′. We use cs(I, Γ) to refer to the resulting Datalog
program.

Theorem 3.17 (Centralized). Let (I, Γ) be a σ′-stratified system with a finite
number of peers and rules in SWL, which converges to (I∗, Γ∗, Γ̃∗), and let
Mmin be the unique minimal model of the Datalog program cs(I, Γ). Then

Mmin = ∪pP ∗
p,d(I∗(p))

where P ∗
p,d is the set of fully local deductive rules in Γ̃∗(p) ∪ ∪qΓ∗(q, p).

Proof. Let S0 = (I0, Γ0, Γ̃0) be a strongly stratified VWL system (with strong
stratification σ′) which converges to the finite state S∞ = (I∞, Γ∞, Γ̃∞). As

3.4. CONVERGENCE OF WEBDAMLOG 47

the rules in the Datalog program cs(I0, Γ0) are stratified with respect to
σ′ (by construction), we can be sure that there is a unique minimal model
of cs(I0, Γ0). We use Mmin to denote this minimal model. Given a run
(I0, Γ0, Γ̃0), (I1, Γ1, Γ̃1), (I2, Γ2, Γ̃2) . . . of our system, we use Pp,d,i to refer to
the set of fully local deductive rules in Γi(p)∪∪qΓ̃i(q, p). For ease of reference,
we denote by Fi the set of facts ∪pP ∗

p,d,i(Ii(p)). Our aim is to show that
Mmin = F∞.

We first note that the desired equality holds if we consider only exten-
sional facts. This is because the only rules with extensional heads in Γ0 are
extensional persistence rules. Thus, the extensional facts in F∞ are precisely
the original extensional facts ∪pI0(p). The Datalog program cs(I0, Γ0) will
contain these extensional facts, and will not contain any rules to create new
extensional facts, so the extensional facts in Mmin will be exactly ∪pI0(p).

It thus remains to show the equality for intensional facts. The proof will
proceed by induction on the strata of facts. In what follows, we will use the
integers 0, 1, 2, . . . to label the strata, with 0 being the lowest stratum. Also,
given a set S of facts, we denote by S[i] the set of facts whose relations belong
to strata lower than or equal to i.

Base Case: Mmin[0] = F∞[0]

First direction (F∞[0] ⊆ Mmin[0]). Let us consider some intensional fact
r@p(u) from stratum 0 which belongs to F∞, and hence more precisely to
P ∗

p,d,∞(I∞(p)). We know that the set Pp,d,∞ consists of fully local deductive
rules from Γ∞(p) = Γ0(p) and delegated body-less rules ∪qΓ̃∞(q, p). Moreover,
we have seen in the proof of Theorem 3.14 that each body-less delegation
with head relation in stratum 0 from a peer q results from evaluating the
extensional q-facts present in the initial state using the instantiation of a local
rule in Γq which respects σ and σ′. As the extensional q-facts in Mmin are
precisely those found in the initial state, and all well-typed rules from Γ0(q)
respecting σ′ can be found in cs(I0, Γ0), it follows that the delegated rule is
entailed by Mmin. Thus, all (well-typed and properly stratified) instantiations
of rules in Pp,d,∞ with heads of stratum 0 are entailed by Mmin, and so are
all extensional facts in I∞(p). It follows that the fact r@p(u) must belong to
Mmin.

Second direction (Mmin[0] ⊆ F∞[0]). Consider some intensional fact r@p(u)
from stratum 0 which belongs to Mmin. The proof proceeds by induction on
the depth of the proof tree of r@p(u). The base case is when r@p(u) has
depth 0, i.e., it appears explicitly in cs(I0, Γ0). There are two possibilities:

48 CHAPTER 3. WEBDAMLOG LANGUAGE

either r@p(u) ∈ I0(p) or the rule r@p(u) :- appears in some Γ0(q). In the
former case, we know from the proof of Theorem 3.14 that I∞ = I0, so we
must have r@p(u) ∈ F∞. In the latter case, as we are in an intensional system,
the rule r@p(u) :- must be deductive. Either this rule appears in Γ0(p) (hence
Γ∞(p)) or it will be delegated to p by another peer q at every visit to q, and
thus will appear in Γ̃∞(q, p). In both cases, the rule must belong to Pp,d,i,
hence r@p(u) ∈ P ∗

p,d,i(Ii(p)) ⊆ F∞. Now suppose the proof tree of fact r@p(u)
has depth d + 1, and we already have the result for facts of stratum 0 with
proof trees of depth at most d. Let β be the rule in cs(I0, Γ0) which was used
for the last step of the proof of r@p(u). As (I0, Γ0) is an intensional VWL
system, it follows that all rules in (I0, Γ0) are of one of two types: persistence
rules for extensional predicates, or local deductive rules. Thus, the rule β
must be of the form

vMn+1@vQ(vUn+1) :-

(¬)vM1@q(vU1), (¬)vM2@q(vU2), ...(¬)vMn@q(vUn)

for some rule ρ

Mn+1@Q(Un+1) :-

(¬)M1@q(U1), (¬)M2@q(U2), ...(¬)Mn@q(Un)

in Γ0(q) and some valuation v which respects the typing constraints σ and
the strong stratification σ′, and is such that vMn+1@vQ = r@p. Note in
particular that this means that each of the (ground) relations vMj@q must
be extensional or belong to the same stratum (0) as r@p. If there are any
facts from the stratum 0 in the body, then they must use a relation with
peer p, and so we would have q = p (since only local deductive rules are
permitted). Otherwise, if q 6= p, then only extensional relations may be used
in the body. Also note that all atoms in the body which belong to stratum
0 must not be negated. We know that the rule β was used to derive the
fact r@p(u). This means that there must be a second valuation v′ such that
v′vMn+1@v′vQ(v′vUn+1) = r@p(u) and each literal (¬)vMi@q(v′vU i) is ei-
ther extensional and satisfied by the set of extensional facts or a positive atom
of stratum 0 which has a proof tree of depth at most k. As F∞ and Mmin agree
on all extensional facts, all extensional literals (¬)vMi@q(v′vU i) are satisfied
by P ∗

q,d,∞(I∞(q)). For the remaining body atoms, we use the IH to infer that
each atom vMi@q(v′vU i) of stratum 0 belongs to F∞, and more specifically to
P ∗

q,d,∞(I∞(q)). If q = p, then we can use the rule ρ in Γ∞(p) = Γ0(p) together
with the valuation v′′ = v′v and the facts vMi@p(v′vU i) ∈ P ∗

p,d,∞(I∞(p)) to
obtain r@p(u) ∈ P ∗

p,d,∞(I∞(p)). If q 6= p, then we know from above that each

3.4. CONVERGENCE OF WEBDAMLOG 49

vMi@q(v′vU i) must be an extensional fact and it must belong to P ∗
q,d,∞(I∞(q)).

It follows that q must delegate the rule r@p(u) :- to p. The fact that the run
has converged to (I∞, Γ∞, Γ̃∞) means that this delegation must appear in Γ̃∞).
It follows that r@p(u) :- belongs to Pp,d,i, hence r@p(u) ∈ P ∗

p,d,i(Ii(p)) ⊆ F∞.

Induction Step: show Mmin[k + 1] = F∞[k + 1] assuming Mmin[k] = F∞[k]

First direction (F∞[k + 1] ⊆ Mmin[k + 1]). We suppose that F∞[k] ⊆ Mmin[k].
Let us consider some intensional fact r@p(u) from stratum k+1 which belongs
to F∞, and hence to P ∗

p,d,∞(I∞(p)). We know that the set Pp,d,∞ consists of
fully local deductive rules from Γ∞(p) = Γ0(p) and delegated body-less rules
from ∪qΓ̃∞(q, p). As for the delegated rules, note that if s@p(w):- appears in
Γ̃∞(q, p), there must exist a rule in Γ∞(q) = Γ0(q) of the form

Mn+1@Q(Un+1) :-

(¬)M1@q(U1), (¬)M2@q(U2), ...(¬)Mn@q(Un)

and a valuation v satisfying the typing σ and strong stratification σ′ such that:
vMn+1@vQ(vUn+1) = s@p(w), each fact vMi@q(vU i) appearing positively in
the body belongs to P ∗

q,d,∞(I∞(q)) (and hence to F∞), and each negated fact
¬vMi@q(vU i) in the body does not appear in P ∗

q,d,∞(I∞(q)) (nor a fortiori
in F∞). Because v respects the strong stratification σ′, and q 6= p, we know
that every relation vMi@q is either extensional or must belong to a stratum
k or less. From the IH, we know that Mmin and F∞ agree on all intensional
facts appearing in strata up to and including k, and we have seen earlier in
the proof that the same is true for extensional facts. It follows that each
fact vMi@q(vU i) appearing positively in the body belongs to Mmin, and each
negated fact ¬vMi@q(vU i) in the body does not appear in Mmin. Moreover,
we know that the instantiated rule used to produce the delegation is entailed
by Mmin. Thus, we have that Mmin entails the delegation s@p(w):-. Thus,
all (well-typed and properly stratified) instantiations of rules in Pp,d,∞ whose
head relations are in strata at k + 1 are entailed by Mmin. Moreover, we
know that only (well-typed and stratified) instantiations of rules in Pp,d,∞

with head relations in stratum k + 1 or lower are used in the production of
r@p(u). Finally, we know that all extensional p-facts in I∞(p) = I0(p) belong
to Mmin. It follows that the fact r@p(u) belongs to Mmin.

Second direction (Mmin[k + 1] ⊆ F∞[k + 1]). Consider some intensional fact
r@p(u) ∈ Mmin from the stratum k + 1. As σ′ provides a stratification of
cs(I0, Γ0), it is possible to find a proof tree for r@p(u) whose leaves use only
(negations of) facts in Mmin belonging to strata 6 k. We will thus again

50 CHAPTER 3. WEBDAMLOG LANGUAGE

proceed by induction on the depth of such a proof tree. The base case is when
the proof tree for r@p(u) has depth 0, i.e., it appears explicitly in cs(I0, Γ0).
We can then proceed as in the base case for stratum 0. Suppose next that
we have already shown the result for intensional facts in Mmin belonging to
stratum k + 1 and having proof trees from facts in strata 6 k of depth at
most d. Consider r@p(u) ∈ Mmin from the stratum k + 1 with a proof tree of
depth d + 1. Let β be the rule in cs(I0, Γ0) which was used for the last step
of the proof. As we saw earlier, β must be of the form

vMn+1@vQ(vUn+1) :-

(¬)vM1@q(vU1), (¬)vM2@q(vU2), ...(¬)vMn@q(vUn)

for some rule ρ

Mn+1@Q(Un+1) :-

(¬)M1@q(U1), (¬)M2@q(U2), ...(¬)Mn@q(Un)

in Γ0(q) and some valuation v which respects the typing constraints σ and
the strong stratification σ′ and such that vMn+1@vQ = r@p. It follows that
each (ground) relation vMi@q is either extensional or an intensional relation
which belongs to a stratum lower than or equal to k + 1. We also know that
β was used to derive the fact r@p(u), which implies the existence of a second
valuation v′ such that v′vMn+1@v′vQ(v′vUn+1) = r@p(u) and each literal
(¬)vMi@q(v′vU i) is either (i) a (possibly negated) extensional fact which is
satisfied by Mmin, (ii) a (possibly negated) intensional fact from some stratum
6 k which holds in Mmin, or (iii) a non-negated intensional fact from stratum
k + 1 with a proof tree of depth at most k. We know from earlier in the
proof that F∞ and Mmin agree on extensional facts. This means that every
non-negated extensional fact vMi@q(v′vU i) belongs to F∞ (more precisely
P ∗

q,d,∞(I∞(q))) and every negated extensional fact ¬vMi@q(v′vU i) does not
belong to P ∗

q,d,∞(I∞(q)).
For intensional facts from lower strata (k or less), we use the induction

hypothesis (from the initial induction over strata) to obtain F∞[k] = Mmin[k].
From this we can deduce that an intensional fact vMi@q(v′vU i) of stratum
6 k which appears positively in the body of our rule must belong to F∞ (or
more specifically P ∗

q,d,∞(I∞(q))), and if it appears negatively in the rule, then
it will not belong to P ∗

q,d,∞(I∞(q)).
Finally, if we have a non-negated intensional fact vMi@q(v′vU i) from

stratum k + 1 with a proof tree of depth at most k, then using the (local)
IH, we obtain vMi@q(v′vU i) ∈ F∞, and hence vMi@q(v′vU i) ∈ P ∗

q,d,∞(I∞(q)).
If we are in the case where p = q, then we can use the rule ρ in Γ∞(p) =

3.4. CONVERGENCE OF WEBDAMLOG 51

Γ0(p) together with the valuation v′′ = v′v and the facts vMi@p(v′vU i) ∈
P ∗

p,d,∞(I∞(p)) to obtain r@p(u) ∈ P ∗
p,d,∞(I∞(p) ⊆ F∞). If q 6= p, then because

we respect the strong stratification, we know that each vMi@q(v′vU i) must
be either an extensional fact or an intensional fact from a stratum 6 k. In
both cases, we have shown above that vMi@q(v′vU i) belongs to P ∗

q,d,∞(I∞(q))
when vMi@q(v′vU i) appears positively in the rule, and vMi@q(v′vU i) does
not belong to P ∗

q,d,∞(I∞(q)) when it is appears negatively. Thus, the body of
the rule is satisfied by P ∗

q,d,∞(I∞(q)). It follows that q must delegate the rule
r@p(u) :- to p. The fact that the run has converged to (I∞, Γ∞, Γ̃∞) means
that this delegation must appear in Γ̃∞). It follows that r@p(u) :- belongs to
Pp,d,i, hence r@p(u) ∈ P ∗

p,d,i(Ii(p)) ⊆ F∞. ✷

52 CHAPTER 3. WEBDAMLOG LANGUAGE

Chapter 4

Webdamlog rule engine

In the present chapter, we consider the management of data and knowledge
(i.e., programs) over a network of autonomous peers using the deduction
supported by a Webdamlog rule engine. From a system viewpoint, the different
actors are autonomous and heterogeneous in the style of P2P [AP07a, FHM05].
However, we do not see the system we developed as an alternative for managing
information to existing centralized network services such as Facebook or Flickr.
Rather, we view the system as the means of seamlessly integrating distributed
knowledge residing in any of these services, as well as in a wide variety of
systems managing personal or social data. The system takes advantage of
a datalog engine to implement the Webdamlog language of Chapter 3, to
support the distribution of both data and knowledge (i.e., programs) over a
network of autonomous peers. The main contribution is our implementation
of an engine to process efficiently Webdamlog, introduced in [7] and shown in
a demonstration in [4]

Organization The chapter is organized as follows. In Section 4.1, we
motivate our choice for the datalog engine Bud. In Section 4.2, we explain
the implementation on top of Bud and slight departures from the model
previously introduced in Section 3.1. Then in Section 4.3, we show how to
apply known optimization techniques to Webdamlog. Also we introduce, in
Section 4.4, a novel optimization technique for highly-dynamic programs. In
the last section 4.5, we conclude with performance evaluation of the engine.

4.1 Datalog inside

Datalog evaluation has been intensively studied, and several open-source
implementations are available. We chose not to implement yet another

53

54 CHAPTER 4. WEBDAMLOG RULE ENGINE

datalog engine, but instead to extend an existing one. From the long list of
engines still supported, see [LFWK09] for benchmarking of some of them,
we hesitated between two open-source systems that are currently being
supported, namely, Bud [ACHM11] from Berkeley University and IRIS [oI]
from Innsbruck University.

• The IRIS system is implemented in Java and supports the main
strategies for efficient evaluation of standard local datalog such as
semi-naive evaluation [AHV95], Magic Sets [BMSU86] and Query Sub
Query [Vie86]. Also it support negation.

• The Bud system also implements the semi-naive evaluation however
it is implemented in the Ruby scripting language, which seemed less
promising from a performance viewpoint. Nevertheless Bud provides
technology for asynchronous communication between peers, hence it
supports distributed datalog evaluation. And above all it focuses on
non-monotonicity and provides efficient cache optimizations to sup-
port updates. That is an essential feature for Webdamlog extensional
relations.

We finally decided in favor of Bud, both because of its support for asynchronous
communication, and because its scalability has been demonstrated in real-
life scenarios such as reimplementing with comparable performance Internet
router and Hadoop File System as shown in [ACC+10, oUB]. In addition
Bud is a very active project at this time and a follow-up of multiple previous
successful prototypes such as P2 [LCH+05] from the Berkeley team. IRIS
seemed less active since 2011 although it supports negation that Bud does
not provide. We chose in favor of efficient distribution even if it meant giving
up negation.

4.2 Connection between Bud and Webdam-

log

4.2.1 Webdamlog computation on Bud

The Bud system supports a powerful datalog-like language introduced in
[ACHM11]. Indeed, Bud is a distributed datalog engine with updates and
asynchronous communications.

In the Webdamlog engine, a computation consists semantically of a se-
quence of stages, with each stage involving a single peer. Each stage of
a Webdamlog peer computation is in turn performed by a three-step Bud

4.2. CONNECTION BETWEEN BUD AND WEBDAMLOG 55

computation, described next. Note that we use the word stage for Webdamlog
and step for Bud:

. . .
Stage at peer p Stage at peer q

. . .
Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

The 3 steps of a Webdamlog stage are as follows:

1. Inputs are collected including input messages from other peers, clock
interrupts and host language calls.

2. Time is frozen; the union of the local store and of the batch of events
received since the last stage is computed, and a Bud program is run to
fixpoint.

3. Outputs are obtained as side effects of the program, including output
messages to other peers, updates to the local store, and host language
callbacks.

Observe that a fixpoint computation is performed at Step 2 by the local
datalog engine (namely the Bud engine). This computation is based on a
fixed program with no deletion over a fixed set of extensional relations and
rules. In Step 3, deletion messages may be produced, along with updates to
the set of rules and to the set of extensional relations (for different reasons,
which we will explain further). Note that all this occurs outside the datalog
fixpoint computation.

Relations appearing in the rules are implemented as Bud collections.
Collections are the data structure for relations in Bud as in-memory key-
values pairs. Bud distinguishes between three kinds of key-value sets:

1. A table collection stores a set of facts. A fact is deleted only when an
explicit delete order is received. Tables are used to support Webdamlog
extensional persistent relations. Remember that in the Webdamlog
language in Section 3.1, a persistent relation is obtained by adding this
rule:

r@p(U) :- r@p(U), ¬del.r@p(U) (4.1)

Hence, in the language, persistent or non-persistent relations differ only
by the presence or absence of this rule. However in the implementation,
these are completely different data structures. Thus a relation declared
as persistent cannot be mutated into a non-persistent.

In the implementation, due to the absence of support of negation in
the Bud engine, Rule 4.1 is not evaluated during a single step of Bud
computation but spans to two Webdamlog stages. This is a departure
from the pure Webdamlog syntax that is caused by the use of Bud.

56 CHAPTER 4. WEBDAMLOG RULE ENGINE

2. A scratch collection is used for storing results of intermediate com-
putations. We use scratch collections to implement Webdamlog local
intensional relations. The collections are emptied at Step 1 and receive
facts during fixpoint computation at Step 2.

3. A channel collection provides support for asynchronous communications.
It records facts that have to be sent to other peers. At Step 1, it contains
all the messages and rules received from other peers since the last stage
then it is emptied at Step 3. The channel mimics the behavior of
non-persistent extensional relations of Webdamlog since it consumes the
facts.

As in Webdamlog, facts in a peer are consumed by the engine at each
firing of the peer (each stage). To make facts persistent, they have to be
re-derived by the peer at each stage. This is captured in our implementation
by assuming that rules re-derive extensional facts implicitly, unless a deletion
message has been received.

We observe two subtleties that lead us to not fully adopt the original
semantics of Webdamlog:

1. Since communications are asynchronous, there is no guarantee in Web-
damlog as to when a fact written to a channel will be received by a
remote peer. This is a departure from the original semantics of Web-
damlog, which considered, for simplicity, that messages are transmitted
instantaneously. We depart from the original semantics because it
imposes some form of synchronization, that would drastically hinder
performance.

2. A subtlety is that rules with variables as relation or peer names are
not installed in one stage, they are processed in several stages to bound
variables one by one. For non-local rules, delegations are created
as stated in the model and sent to remote peers, however for local
rules a delegation is sent to itself at a future stage. This is a slight
departure from the original semantics of Webdamlog that we do not see
as important.

4.2.2 Implementing Webdamlog rules

We now describe how Webdamlog rules are implemented on top of Bud. We
Distinguish between 4 cases. This brings us to revisit the semantics of Web-
damlog (from Chapter 3) with a focus on implementation. As in Chapter 3,
whether a rule in a peer p is local (i.e., all relations occurring in the rule

4.2. CONNECTION BETWEEN BUD AND WEBDAMLOG 57

body are p-relations) plays an important role. We consider 4 different cases
of implementation for local-rules, depending on the type of the relation in the
head, namely (A-D). We consider one case for non-local rules, namely (E).
The last case (F) focuses on the use of variables for relation and peer names.
For the first 5 cases, we ignore such variables.

A-B-C. Simple local rules In these three cases, the relations in the body
are local, and depending on the type of the relations in the head, Webdamlog
rules can be directly supported by simple translation into Bud rules:

A fully local deductive with local intensional head. It is standard local
datalog evaluation.

B local updates with local extensional head. It is local active rules cor-
responding to datalog with updates. The non-monotonic extension of
datalog.

C remote updates with remote extensional head. This corresponds to
sending messages i.e. it is distributed datalog.

Note that, according to the semantic of Webdamlog, the behavior of these three
different kinds of rules are not the same hence we use a different translation
for each case. Let us consider a generic rule with relation h in the head and i
p-relations bi in the body. Bud provide three different operator to support
these rules ; namely “<=”, “<+” and “< ”:

Instantaneous h@p(X, Y) <= b1@p(X, Y), . . . During Step 2, the rule
are repeatedly evaluated i.e. facts derived during the current stage are
reused until a fixpoint is reached. This corresponds to the Case A and
intensional relations are materialized to fixpoint.

Deferred h@p(X, Y) <+ b1@p(X, Y), . . . The facts produced during Step 2
are inserted in the head collection for the next Webdamlog stage. Hence
this is the immediate consequence operator. The main difference with
the previous operator occurs especially when the rule is recursive. This
implements Case B. Remark that if the head relation is a scratch
collection, this operator will derive facts for the next stage that will
be deleted at Step 1 of next stage according to the behavior of scratch
collections. This operator has a counter part denoted with “<-” that
sends delete messages for the next stage. Both operators are meant to
deal with non-monotonicity that is why there effects occur outside the
fixpoint computation. Notice that in Bud deletion messages (sent by
“<-”) are processed before insertion messages (sent by “<+”).

58 CHAPTER 4. WEBDAMLOG RULE ENGINE

Asynchronous h@q(X, Y) <∼ b1@p(X, Y), . . . In Bud, this operator is
used to send facts to an external process: a terminal, a key-value store
or communication channel. In the Webdamlog engine, the head relation
will be a Bud channel collection connected to a remote peer. The facts
produced during Step 2 will be sent via networking protocols, namely
UDP in this implementation. A set of facts produced during Step 2 is
written on the communication channel at Step 3. Due to asynchronism
of network communication, Bud does not guarantee that two facts
written by p at a given stage, will be received together. However we
will see that Webdamlog engine will implement a mechanism to sends
indivisible packets of facts at each stage. This implements the Case C.

D. Local with non-local intensional head Although it uses distributed
datalog rules, Bud does not really support intensional relations. That is
why from an implementation viewpoint, this case is the more complex. We
illustrate it with an example. Consider an intensional relation s0@q defined
in the distributed setting by the following two rules:

[at p1] s0@q(X, Y) :- r1@p1(X, Y)
[at p2] s0@q(X, Y) :- r1@p2(X, Y)

Intuitively, the two rules specify a view relation s0@q at q that is the union of
two relations r1@p1 and r1@p2 from peers p1 and p2, respectively. Consider a
possible naive implementation that would consist in materializing relation s0

at q, and having p1 and p2 send update messages to q. Now suppose that a
tuple 〈0, 1〉 is in both r1@p1 and r1@p2. Then it is correctly in s0@q. Now
suppose that this tuple is deleted from r1@p1. Then a deletion message is
sent to q, resulting in wrongly deleting the fact from s0@q.

The problem arises because the tuple 〈0, 1〉 had originally two reasons to
be in s0, and only one of the reasons disappeared. To avoid this problem, one
could record the provenance of the fact 〈0, 1〉 in s0@q. In Section 4.4, we will
see a general approach to tracking provenance in our setting, and to using it
as basis for performance optimization. For now, the following Bud rules is
implemented at p1, p2 to correctly support the two rules:

[at p1] s0p1@q(X, Y):- r1@p1(X, Y)
[at p2] s0p2@q(X, Y):- r1@p2(X, Y)
[at s] s0@q(X, Y):- s0p1@q(X, Y)
[at s] s0@q(X, Y):- s0p2@q(X, Y)

Note that relations s0p1 and s0p2 may be either intensional, in which case
the view is computed on demand, or extensional, in which case the view is
materialized.

4.2. CONNECTION BETWEEN BUD AND WEBDAMLOG 59

E. Non-local rules We consider non-local rules with extensional head.
(Non-local rules with intensional head are treated similarly.) An example of
such a rule is:

[at p] r0@q(X0):- r1@q1(X1),. . . ,ri@qi(Xi),. . .

with q1= . . . = qi−1 = p, qi = q 6= p, and with each Xj denoting a tuple of
terms. If we consider atoms in the body from left to right, we can process
at p the rule until we reach ri@q(Xi). Peer p does not know how to evaluate
this atom, but it knows that the atom is in the realm of q. Therefore, peer
p rewrites the rule into two rules, as specified by the formal definition of
delegation in Webdamlog:

[at p] mid@q(Xmid) :- r1@p(X1),. . . ,ri−1@p(Xi−1)
[at q] r0@q(X0) :- mid@q(Xmid), ri@q(Xi),. . .

where mid identifies the message, and notably encodes, (i) the identifier of
the original rule, (ii) that the rule was delegated by p to q, and (iii) the
split position in the original rule. The tuple Xmid includes the variables that
are needed for the evaluation of the second part of the rule, or for the head.
Observe that the first rule (at p) is now local. If the second rule, installed at
q, is also local, no further rewriting is needed. Otherwise, a new rewriting
happens, again splitting the rule at q, delegating the second part of the rule
as appropriate, and so on.

Observe that an evolution of the state of p may result in installing new
rules at q, or in removing some delegations. Deletion of a delegation is simply
captured by updating the predicate guarding the rule. Insertion of a new
delegation modifies the program at q. Note that in Bud the program of a
peer is fixed, and so adding and removing delegations is a novel feature in
Webdamlog. Implementing this feature requires modifying the Bud program
of a peer. This happens during Step 1 of the Webdamlog stage.

F. Relation and peer variables Finally, we consider relation and peer
variables. In all cases presented so far, Webdamlog rules could be compiled
statically into Bud rules. This is no longer possible in this last case. To see
this, consider an atom in the body of a rule. Observe that, if the peer name
in this atom is a variable, then the system cannot tell before the variable is
instantiated whether the rule is local or not. Also, observe that, if the relation
name in this atom is a variable, then the system cannot know whether that
relation already exists or not. In general, we cannot compile a Webdamlog
rule into Bud until all peer and relation variables are instantiated.

To illustrate this situation more precisely, consider a rule of the form:

60 CHAPTER 4. WEBDAMLOG RULE ENGINE

Rule 1
r0@p(X0):- r1@p($X), . . . ,$X@p(Xi),. . . ,

where r0@p is extensional and $X is a variable. This particular rule is relatively
simple since, no matter how the variable is instantiated, the rule falls into the
simple case B. However, it is not a Bud rule because of the variable relation
name $X.

Recall that Webdamlog rules are evaluated from left to right, and a
constraint is that each relation and peer variable must be bound in a previous
atom. (This constraint is imposed by the language.) Therefore, when we
reach the atom $X@p(Xi), the variable $X has been instantiated.

To evaluate this rule, we use two Webdamlog stages of the peer. In the
first stage, we bind $X with values found by instantiating r1@p($X). Suppose
that we find two values for $X, say t1 and t2. We wait for the next stage to
introduce new rules (there are two new rules in this case). More precisely,
new rules are introduced during Step 1 of the Webdamlog computation of the
next stage. In the example, the following rules are added to the Bud program
at p:

Rule 2
r0@p(X0):- t1@p(Xi),. . . ,

r0@p(X0):- t2@p(Xi),. . . ,

Remark that it is a slight departure from the Webdamlog language men-
tioned in Section 4.2.1. Even if the rule 1 is local, variables force the rule 2 to
be evaluated in the next stage. Hence the effects of the rule 1 are postponed.
Indeed this can be seen as a peer installing a delegation to itself.

Observe that, even in the absence of delegation, having variable relation
and peer names allows the Webdamlog engine to produce new rules at run
time, possibly leading to the creation of new relations. This is a distinguishing
feature of our approach, and is novel to Webdamlog and to our implementation.

This example uses a relation name variable. Peer name variables are
treated similarly. Observe that having a peer name variable, and instantiating
it to thousands of peer names, allows us delegating a rule to thousands of
peers. This makes distributing computation very easy from the point of view
of the user, but also underscores the need for powerful security mechanisms.
The topic of access control is still being investigated ; see [1].

4.3 Optimization of the evaluation

To make the approach feasible, we rely intensively on some known optimization
techniques. We briefly mention them next and see how they fit in the Web-

4.3. OPTIMIZATION OF THE EVALUATION 61

damlog picture.

Differential technique

Consider a peer p who has the rule s@q(x, y) :- r@p(x, y) with s@q an
extensional relation. Suppose that r@p is a very large relation that changes
frequently. Each time we visit p, we have to send to q the current version of
r@p, say a set Kn of tuples. This is a clear waste of communication resources.
It is preferable to send the symmetric difference of r@p, i.e., send a set of
updates ∆ with the semantics that Kn = ∆(Kn−1), since q already knows
Kn−1. If s@q is intensional, we face a similar issue; it is preferable to send
the new set of delegation rules as ∆ rather than sending the entire set.

Seed-based delegation with the differentiation technique

Consider again the rule:

at p: m@q() :- m1@p($x), m2@p’($x)

Now suppose that m1@p(ai) holds for i = [1..1000]. We need to install 1000
rules. However, in this particular case, we can install a single rule at p′ and
send many facts:

at p’: m@q() :- seedr,1,p@p’($x), m2@p’($x)
at p’: seedr,1,p@p’(ai). (for each i)

Note that it now becomes natural to use a differential technique to maintain
delegation. In particular, if the delegation from p to q does not change,
there is no need to send anything. If it does, one needs only to send the
delta on seedr,1,p@p′. Observe that we have replaced the task of installing
and uninstalling delegation rules by that of sending insertion and deletion
messages in a persistent extensional (seed) relation that controls a rule.

Query-subquery and delegation

Consider the following example of a rule at Sue where photos@Sue is inten-
sional:

[at Sue]

photos@Sue($name,$pic) :- photos@Alice($name,$pic)

photos@Sue($name,$pic) :- photos@Bob($name,$pic)

62 CHAPTER 4. WEBDAMLOG RULE ENGINE

This rule says that to find the photos of Sue, one needs to ask the photos of
Alice and Bob. The formal semantics says that we install (upload) the rule at
Alice and Bob which will result in sending to Sue all the photos of Alice and
Bob. However, observe that this has no effect on the state since photos@Sue

is only intensional. This network traffic may therefore be considered a waste
of resources. An optimizer may decide not to prefetch the photos of Alice and
Bob to Sue’s peer. Now suppose that Sue asks for photos where she’s appear:

query@Sue($X) :- photos@Sue("Sue",$X)

where query is an extensional predicate. Now obtaining photos from Alice
and Bob changes the state. So the optimizer will install the rules:

[at Alice]

photos@Sue("Sue",$pic) :- photos@Alice("Sue",$pic)

[at Bob]

photos@Sue("Sue",$pic) :- photos@Bob("Sue",$pic)

Observe that the optimizer performed some form of resolution in the spirit
of query-subquery [Vie86, AAHM05a] or rewriting in the Magic Set style
[BMSU86] (see also [AHV95]). Indeed, the entire management of delegation
can be optimized using these techniques. Note that strictly speaking this may
change the semantics of applications: the derivation of some facts may take a
little longer than if all the delegations have been installed in advance.

4.4 Optimization for view maintenance

As already mentioned, we are concerned with a highly dynamic context where
peer states change, and where peers may come and go. This is a strong
departure from datalog-based systems such as Bud that assume the set of
peers and rules to be fixed. In this section, we discuss how incremental state
maintenance is performed efficiently in Webdamlog using a novel kind of a
provenance graph.

4.4.1 Provenance graphs

We use provenance graphs to record the derivations of Webdamlog facts and
rules, and to capture fine-grained dependencies between facts, rules, and
peers. We build on the formalism proposed in [GKT07], where each tuple
in the database is annotated with an element of a provenance semiring, and
annotations are propagated through query evaluation. Intuitively, semiring

4.4. OPTIMIZATION FOR VIEW MAINTENANCE 63

addition corresponds to alternative derivations of a tuple, while semiring mul-
tiplication corresponds to joint derivations. Provenance may be represented
in the form of a polynomial, or as a graph. We use graphs, because this
representation is typically more compact [ADD+11, GKIT10]. Provenance
graphs have typed labeled nodes that correspond to provenance tokens and
to semiring operations, namely, or-node and and-node.

Provenance graphs can be used for a number of purposes such as explaining
query results or system behavior, and for debugging. Our primary use of
provenance is to optimize performance of Webdamlog evaluation in presence
of deletions. We are also currently investigating the use of provenance graphs
for enforcing access control and for detecting access control violations.

Provenance graphs have already been considered for datalog evaluation in
[GKIT10, ZST+10]. The originality of our approach is as follows:

1. Provenance to optimize deletions via deletion propagation. Systems like
Orchestra [GKIT10] already use provenance information for distributed
datalog evaluation. However in their case, provenance information is cen-
tralized. Like ExSPAN [ZST+10], we maintain provenance information
in a distributed manner.

2. In our system, unlike in previous approaches, provenance tokens are
assigned to both facts and rules, since rules may be added or removed
dynamically. At a given stage, the graph allows identifying the actual
fixpoint program that should be run. (Recall that the program changes.)
Note that this comes as a complementary technique to optimizations
already performed by Bud, such as the semi-naive optimization, which
assumes that the fixpoint program is fixed.

3. Another distinguishing feature is our use of peer nodes. In a peer p,
a large number of rules and facts may come from another peer, say q.
This information is recorded, allowing us to react efficiently to q leaving
and re-joining the network.

We next illustrate by examples the notion of provenance graph used in
our system.

Example 1. Let rn@p be a relation that stores a set of relation names.
Consider the following rule that deploys a rule for each relation name in rn@p:

[R01 at p] $X@p(true) :- rn@p($X)

We will refer to this rule by its identifier R01. Suppose g1 and g2 are in rn@p.
Then R01 installs two new rules:

64 CHAPTER 4. WEBDAMLOG RULE ENGINE

[R01g1 at p] g1@p(true) :-
[R01g2 at p] g2@p(true) :-

By a slight abuse of notation, we use rule identifiers to denote the corre-
sponding provenance tokens. Figure 4.1 represents the provenance graph for
our example. (Ignore for now the part inside the dashed box).

Rectangular nodes represent the provenance of facts, oval nodes represent
the provenance of rules, and pentagons represent peer labels. Circular nodes
represent operations of the provenance semiring [GKT07]. The or-node
represents a disjunction, i.e., alternative ways of deriving the node to which
it is connected with an outgoing edge. On the other hand, the and-node
represents a conjunction: All its in-going edges are needed for the derivation.

rn@p(g1)

+

x x

+

+ ++

P

rn@p(g2)

+

x

+

x

+

Peer qPeer p

Figure 4.1: Provenance graph

Example 2. In Example 1, the provenance graph is fully stored at peer p.
Now consider another rule:

[R02 at p] $X@q(true) :- rn@p($X)

Its execution leads to installing at q the following two rules:

[R02g1 at q] g1@q(true) :-
[R02g2 at q] g2@q(true) :-

4.4. OPTIMIZATION FOR VIEW MAINTENANCE 65

Note that now these rules are outside of p (in q). They correspond to the
part of the graph in Figure 4.1 inside a dashed box.

Unlike provenance graph in systems such as ExSPAN [ZST+10] or Orches-
tra [GKIT10, ADD+11], rules are not labels of edges between nodes storing
facts. Instead the rules are recorded as the content of nodes of the graph.
Therefore, we can keep their provenance using the same representation as we
did for facts. This is necessary because Webdamlog rules may be added or
deleted at run time either by other rules with variables in peer and relation
name, or by delegation from remote peer.

4.4.2 Deletions

When a peer starts a new stage, it may have to process deletion requests
that came via the network channels. These deletions are performed just
before running the fixpoint. Provenance graphs turn out to be essential for
supporting these deletions, because they allow us deleting facts and rules that
have been invalidated by the deletions. To do this, when we delete a fact
or a rule, we remove its corresponding node from the provenance graph and
propagate the deletion throughout the graph. A node is deleted when it loses
its last proof of provenance.

4.4.3 Running the fixpoint

The Bud engine evaluates the fixpoint using the semi-naive algorithm [AHV95],
i.e., Bud saturates one stratum after another according to a stratification given
by the dependency graph. The dependency graph is a directed hyper-graph
with relations as node and an hyper-edge from relations qi to p if there is a
rule in which all qi relations appear in the body and p in the head. Since this
is classic material, we omit the details, but observe that as rules are added or
removed at run-time (as in Webdamlog), the program evolves between fixpoint
steps (but not within) and so does the dependency graph. The Webdamlog
engine pushes further the differentiation technique that serves as basis of
the semi-naive algorithm. Although in the Webdamlog semantic, facts are
consumed and possibly re-derived, it would be inefficient to recompute the
proof of existence of all the facts at each stage. Between two consecutive stage,
each relation keeps a cache of its previous content which could be invalidated
by Webdamlog if a newly installed rule creates a new dependency for this
relation. Note that to some extent, Bud is already performing this cache
invalidation propagation for facts adding that we adapt to fit Webdamlog
semantic. This incremental optimization across stages allows us to run the

66 CHAPTER 4. WEBDAMLOG RULE ENGINE

fixpoint computation only on the relations that may have changed since the
previous stage.

The deletion/reinsertion of a single piece of information may have tremen-
dous impact on a peer. Consider for instance peer p that has many rules and
facts, the existence of which depends on peer q. Now suppose that q is a
smartphone that is often disconnected and re-connected. Peer p must update
its knowledge base in response to a change in q’s connectivity status, and
such updates may be costly. We can use the provenance graph at p, marking
the node corresponding to q as switched off. As a consequence, a large portion
of the provenance graph becomes deactivated, and can be reactivated easily
when q reconnects.

This approach may be seen as a generalization of the differential idea used
in the semi-naive technique. The semi-naive technique defines the new state
Inew as Iold ∪ ∆, so only ∆ needs to be sent. Intuitively, the deletion of q
should be interpreted as “delete q and record as Iold,q all the information that
depends on q”. An insertion of q now also requests reinstalling Iold,q.

4.5 Performance evaluation

The goal of the experimental evaluation is to verify that Webdamlog programs
can be executed efficiently. We show here that rewriting and delegation can
be implemented efficiently.

In the experiments, we used synthetically generated data. All experiments
were conducted on up to 50 Amazon EC2 micro instances, with 2 Webdamlog
peers per instance. Micro-instances are virtual machines with two process
units, Intel(R) Xeon(R) CPU E5507 @2.27GHz with 613 MB of RAM, running
Ubuntu server 12.04 (64-bit). All experiments were executed 4 times with a
warm start. We report averages over 4 executions.

The examples are inspired by an implementation of the motivating exam-
ple described in Section 1, in which friends of Alice and Bob are making a
photo album for them as a wedding present. This example is representative
of a number of real tasks where many peers collaborate by sharing informa-
tion. The experiments are designed to capture the salient features of such
applications.

The only simplification for the purpose of the experiments is that we
assume, to simplify, that each friend keeps his photos on his peer. We
work with 3 designated peers representing Alice, Bob and Sue, and with a
varying number of peers representing friends of Alice and Bob. Peers alice
and bob each contain an extensional relation friends($name). The number of
facts in these relations allows controlling the degree of distribution. Each

4.5. PERFORMANCE EVALUATION 67

peer representing a friend of Alice or Bob contains two extensional relations:
photos($photoId) and features($photoId,$tag), storing, respectively, the ids of
photos and the tags describing the contents of the photos.

4.5.1 Cost of delegation

In this section, the focus is on measuring Webdamlog overhead in dealing
with delegations. Recall the Bud steps performed by each peer at each Web-
damlog stage, described in Section 4.2.1. We can break down each step into
Webdamlog-specific and Bud-specific tasks as follows:

1. Inputs are collected

(a) Bud reads the input from the network and populates its channels.

(b) Webdamlog parses the input in channels and updates the depen-
dency graph with new rules. The dependency graph is used to
control the rules that are used in the semi-naive evaluation (see
Section 4.4.3).

2. Time is frozen

(a) Bud invalidates each ∆ (used by the semi-naive evaluation) that
has to be reevaluated because it corresponds to a relation that
may have changed.

(b) Webdamlog invalidates ∆ according to program updates. More-
over, Webdamlog propagates deletions. (Recall that the semi-naive
evaluation deals only with tuple additions.)

(c) Bud performs semi-naive fixpoint evaluation for all invalidated
relations, taking the last ∆ for differentiation.

3. Outputs are obtained

(a) Webdamlog builds packets of rules and updates to send.

(b) Bud sends packets.

We report the running time of Webdamlog as the sum of Steps 1b, 2b
and 3a, and the running time of Bud as the sum of Steps 1a, 2a, 2c and
3b. All running times are expressed in percentage of the total running time,
which is measured in seconds. For each experiment, we will see that the
running time of Webdamlog-specific phases is reasonable compared to the
overall running time.

68 CHAPTER 4. WEBDAMLOG RULE ENGINE

For the experiments in this section, we use Webdamlog rules involving
only extensional relations, both in the head and in the body. We also support
rules with intentional relations in the head and in the body. But for such
rules, an essential optimization consists in deriving only the relevant data and
delegated rules. We intend to conduct experiments with such rules when our
system supports optimizations in the style of Magic Set.

Non-local rules

In the first experiment, we evaluate the running time of a non-local rule
with an extensional head. Rules of this kind lead to delegations. We use the
following rule:

[at alice]

join@sue($Z) :- rel1@alice($X,$Y), rel2@bob($Y,$Z)

This rule computes the join of two relations at distinct peers (rel1@alice and
rel2@bob), and then installs the result, projected on the last column, at the
third peer (join@sue). Relations rel1@alice and rel2@bob each contain 1 000
tuples that are pairs of integers, with values drawn uniformly at random from
the 1 to 100 range. In the next table, we report the total running time of the
program at each peer, as well as the break-down of the time into Bud and
Webdamlog.

Webdamlog Bud total
alice 10.8% 89.2% 0.10s
bob 4.0% 96.0% 0.87s
sue 0.7% 99.3% 0.02s

The portion of the overall time spent on Webdamlog computation on alice
is fairly high: 10.8%. This is because that peer’s work is essentially to delegate
the join to bob. Peer bob spends most of its time computing the join, a Bud
computation. Peer sue has little to do. As can be seen from these numbers,
the overhead of delegation is small.

Relation and peer variables

In the second experiment, we evaluate the execution time of a Webdamlog
program for the distributed computation of a union. The following rule uses
relation and peer variables and executes at peer sue:

[at sue]

union@sue($X) :- peers@sue($Y,$Z), $Y@$Z($X)

4.5. PERFORMANCE EVALUATION 69

The relation peers@sue contains 12 tuples corresponding to 3 peers (in-
cluding sue) with 4 relations per peer. Thus, the rule specifies a union of
12 relations. Each relation participating in the union contains 1 000 tuples,
each with a single integer column, and with values for the attribute drawn
independently at random between 1 and 10 000.

Webdamlog Bud total
sue 9.9% 90.1% 1.04s

remote1 1.1% 98.9% 0.04s
remote2 1.3% 98.7% 0.04s

Observe that sue does most of the work, both delegating rules and also
computing the union. The Webdamlog overhead is 9.9%, which is still reason-
able. The running time on remote peers is very small, and the Webdamlog
portion of the computation is negligible.

QSQ-style optimization

In this experiment, we measure the effectiveness of an optimization that can
be viewed as a distributed version of query subquery (QSQ) [Vie86], where
only the relevant data are communicated at query time. More precisely, we
consider the following view union2 on peer sue, defined as the union of two
relations.

[at sue]

union2@sue($name,$X) :- photos@alice($name,$X)

union2@sue($name,$X) :- photos@bob($name,$X)

Suppose we want to obtain the photos of Charlie, i.e. the tuples in union2 that
have the value “Charlie” for first attribute. We vary the number of facts in
photos@alice and photo@bob that match the query. We compare the cost of
materializing the entire view to answer the query to that of installing only
the necessary delegations computed at query time to compute the answer.

Results of this experiment are presented in Figure 4.2. We report the
waiting time at sue. As expected, QSQ-style optimization brings important
performance improvements (except when almost all facts are selected). This
shows its usefulness in such a distributed setting.

4.5.2 Cost of dynamism

This section evaluates the performance of the Webdamlog engine in dynamic
environments.

70 CHAPTER 4. WEBDAMLOG RULE ENGINE

20 40 60 80 100

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

% of matched facts

w
a

it
in

g
 t

im
e

 a
t

S
u

e
 (

s
e

c
)

QSQ evaluation

full materialization

Figure 4.2: Distributed QSQ optimization

4.5. PERFORMANCE EVALUATION 71

0 200 400 600 800 1000 1200 1400

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

of facts added

to
ta

l
ti
m

e
 o

n
 a

ll
p

e
e

rs
 (

s
e

c
)

with provenance

without provenance

Figure 4.3: Overhead of provenance tracking when adding facts

For addition of facts and rules, we benefit from semi-naive evaluation
in Bud and from efficient processing of rule addition in Webdamlog. For
deletion, we introduced in Section 4.4.1 provenance information in Webdamlog
computation. We next demonstrate that (i) provenance tracking can be
performed at a reasonable cost and (ii) it brings significant improvements
when deletions are considered.

Overhead of provenance

In the first experiment, we measure the overhead of this instrumentation. We
again use the rules defining allFriends@sue as the union of relations friends at
aliceFB and bobFB.

In Figure 4.3 (respectively 4.4), we report the time needed to maintain
that union after an update consisting of adding facts to (respectively removing
facts from) relations friends@aliceFB and friends@bobFB. We measure the
performance of the system as a varying number of facts is added/removed.

72 CHAPTER 4. WEBDAMLOG RULE ENGINE

0 200 400 600 800 1000 1200 1400

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

of facts deleted

to
ta

l
ti
m

e
 o

n
 a

ll
p

e
e

rs
 (

s
e

c
)

with provenance

without provenance

Figure 4.4: Overhead of provenance tracking when deleting facts

4.5. PERFORMANCE EVALUATION 73

We report the computing time for Webdamlog with and without provenance
tracking. We see that the overhead of the instrumentation is small.

Size of the provenance graph

We also measure the size of the provenance graph as the number of dependen-
cies increases. For that, we constructed an example with a large number of
facts (1 000 000 in total) so that we can considerably grow the dependencies
between facts (each fact will eventually have a very large number of proofs).

We use 10 peers (p1..p10), 100 relations on each of them (r1..r100 of arity 1)
with 1 000 facts in each relation (containing an integer between 1 to 10 000).
Each rule on peer i is of the form:

rj′@pk(X) :- rj@pi(X)

i.e., the rule has a unique relation in the body. (The way these rules are
selected is irrelevant.) We increase the number of rules on each peer from 1 to
100 000. (Each of the 100 relations of this peer is connected to 1 000 relations
of the 10 peers.) Thus, the total number of rules in the system varies from 10
to a million. At this extreme, the content of each relation is copied into each
relation in the system.

In Figure 4.5, we report the total size of the provenance graph. Observe
that the provenance graph is split equally across 10 peers, and so each peer
stores one tenth of the total size. We see here that the size of the provenance
graph grows linearly in the size of the program. Observe that, in this already
complex case, the size of the provenance graph is still reasonable (about 44MB
per peer), and is notably small enough to be kept in main memory.

Performance of deletion propagation

In this experiment, we demonstrate the performance gains brought by the
use of the provenance graph for deletion propagation. For this, we use a
more complex setting. We have 10 peers, each containing a source relation
(source@pi, for i from 1 to 10) with 1 000 facts in each. Then we have 6 layers
of 10 peers, each containing an intermediate relation (inter@pij, for i from
1 to 10, and j from 1 to 6). Finally, we have a unique target relation that
gathers all facts. Each fact in a source relation propagates to 3 relations in
the first layer. Each fact in layer j < 6 propagates to 3 relations in layer j + 1.
Each fact in layer 6 propagates to the target relation.

Figure 4.6 compares the time it takes to update the target relation (i)
by propagating deletions (propagation) and (ii) by fully recomputing the
peer states (recomputation). We vary the number of deleted facts between 5

74 CHAPTER 4. WEBDAMLOG RULE ENGINE

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
1

0
0

2
0

0
3

0
0

4
0

0

#of rules

to
ta

l
s
iz

e
 o

f
th

e
 p

ro
v
e

n
a

n
c
e

 g
ra

p
h

 (
M

B
)

provenance graph size

Figure 4.5: Size of the provenance graph compared to the size of the program

4.5. PERFORMANCE EVALUATION 75

0 2000 4000 6000 8000 10000

2
4

6
8

of facts deleted

to
ta

l
ti
m

e
 o

n
 a

ll
p

e
e

rs
 (

s
e

c
)

propagation

recomputation

Figure 4.6: Deletion propagation vs. recomputation

76 CHAPTER 4. WEBDAMLOG RULE ENGINE

and 1 000 facts for each relation source@pi. We observe that even in such a
case, with rather complex dependencies, deletion can be supported efficiently
thanks to the provenance graph.

Distribution and evolution

Finally, we measure the performance of our system for the following rule
using 100 Webdamlog peers on 50 Amazon micro-instances with two peer per
instance:

[rule at sue]

album@sue($photo,$peer) :-

allFriends@sue($peer),

photos@$peer($photo),

features@$peer($photo,alice),

features@$peer($photo,bob)

This rule delegates processing to multiple peers, with these peers deter-
mined by the content of the relation allFriends@sue. We measure the cost of
maintaining the photo album when between 5 and 100 sources are deleted.

This experiment shows the performance of Webdamlog under such updates.
We compare two strategies:

1. Our strategy that propagates changes using the provenance graph
without fixpoint computation.

2. A baseline strategy that recomputes the new set of rules, reinitializes
the peer with these rules, and restarts the Bud fixpoint computation
from scratch.

In Figure 4.7, we report two measurements for each strategy: (i) total time
and (ii) waiting time at sue, between the moment sue requests the update
and the end of the computation. We observe that, in terms of waiting time at
sue, deletion propagation significantly outperforms full recomputation when
no more than 60 peers are deleted. A similar trend holds for total time. If sue
decides to remove the majority of her friends, full recomputation performs
better, as expected.

4.5. PERFORMANCE EVALUATION 77

0 20 40 60 80 100

0
2

4
6

8

of peers deleted from allFriends@Sue

ti
m

e
 (

s
e

c
)

propagation total

recomputation total

propagation waiting

recomputation waiting

Figure 4.7: Webdamlog evaluation during program update

78 CHAPTER 4. WEBDAMLOG RULE ENGINE

Chapter 5

Architecture of a Webdamlog

peer

Information management on the Internet relies on a wide variety of systems,
each specialized for a particular task. A user’s data and favorite applications
are often distributed, making the management of personal data and knowledge
(i.e., programs) a major challenge. Consider Joe, a typical Web user who has
a blog on Wordpress.com, a Facebook account, a Dropbox account, and also
stores data on his smartphone and laptop. Joe is a movie fan and he wants
to post on his blog a review of the last movie he watched. He also wishes
to advertise his review to his Facebook friends and to include a link to his
Dropbox folder where the movie has been uploaded. This is a cumbersome
task to carry out manually, yet automating it, for example by writing a script,
is far beyond the skills of most Web users.

Some systems attempt to provide integrated services to support such needs.
For instance, Facebook provides a wrapper service to integrate Dropbox ac-
counts and blogs. However, such services are often limited in the functionality
they support. Also, by delegating such services to systems like Facebook, a
user needs to trust more and more of his information to one particular system.
Our goal is to enable the user to easily specify distributed data management
tasks in place (i.e., without centralizing his data to a single provider), while
allowing him to keep full control over his own data as presented in [2]. Our
system is not a replacement for Facebook, or any centralized system, but it
allows users to launch their customized peers on their machines with their
own personal data, and to collaborate using Web services. Our contribution
in designing an architecture around a Webdamlog rule engine is presented
in [1, 4, 5].

This chapter describe a Webdamlog peer that embeds the Webdamlog
engine and uses wrappers to other systems. The focus is on theses wrappers

79

80 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

Figure 5.1: Webdamlog peer architecture

that allow a Webdamlog peer to integrate data of non-Webdamlog peers.

Organization The chapter is organized as follows. We introduce the full
peer architecture around the Webdamlog engine in Section 5.1. Section 5.2
discusses the integration of non-Webdamlog peers using wrappers. Finally,
in Section 5.3, we present the demonstration of an example of application,
namely Wepic.

5.1 Peer architecture

In this section, we describe a particular implementation of a Webdamlog
peer. Figure 5.1 gives an overview of the connection between the Webdamlog

5.1. PEER ARCHITECTURE 81

engine and other modules of a full peer. The Webdamlog engine at the heart
of the system receives facts and rules from remote Webdamlog engines in
Webdamlog format. A set of wrappers bound to selected relations in the
Webdamlog engine can read/write in these relations. For instance, the user
has a user-friendly view of the Webdamlog knowledge via a Web interface. He
can trigger updates of the relations or rules. A wrapper called renderer is
needed to display content of the Webdamlog engine relations in HTML and
keep the display synchronized while the Webdamlog engine is modifying its
relations. Additional wrappers provide communication with non-Webdamlog
peers such as Facebook ; ability to send emails ; and persistent storage in
databases.

The Webdamlog peer consists of a set of programs, that are deployed and
linked to a Webdamlog engine. A short description of each of them is given
next and the corresponding wrappers are detailed in Section 5.2.

Web server The user interface is served by Thin, a lightweight HTTP
server. Contrary to usual thread-based Web server such as the popular
Apache that forks to create one thread for each requests, Thin is an event-
driven server. In the case of Web server, events are HTTP requests issued by
the user, that are enqueued and dispatched according to the availability of
resources. Event-driven mechanisms are at the core of Webdamlog peers and
are detailed in Section 5.1.1.

Persistent storage The current implementation supports three different
storage software. Gdbm a lightweight key-value store, SQLite 3 a light-weight
relational database and PostgreSQL a sophisticated relational database. For
the most common usage Gdbm and SQLite are the best choices since they are
fast and require no configuration. However the more complex PostgreSQL may
be useful, for instance to keep an history of the past stages of the Webdamlog
engine.

Contrary to the Webdamlog engine alone, a Webdamlog peer may receive
events from different sources at the same time e.g. the user can update a rela-
tion while the Webdamlog engine receives packets on its channels. Concurrency
issues are considered in Section 5.1.1.

The Webdamlog engine uses only relations as data structures, whereas
wrappers may manipulate other kinds of data: trees, large binary object, etc.
The specification of an API for designing wrappers integrating Webdamlog
relations safely is discussed in Section 5.1.2.

82 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

5.1.1 Event-driven system

As shown in Section 5.1, a Webdamlog peer receives events from remote
Webdamlog peers, users and wrappers. All these events happen concurrently.
But according to a Webdamlog stage split in Bud three steps described
in Section 4.2.1, it is required that during the firing of a Webdamlog stage,
messages are used at Step 1 following the Webdamlog language semantic ; no
updates occur at Step 2 until a fixpoint is reached ; and all messages must be
sent to each peers as single packet. Hence the architecture of a Webdamlog
peer must guarantee atomicity of Webdamlog engine stages.

The naive implementation of a Webdamlog peer would be to launch the
Webdamlog engine and all other wrappers as separated processes and use
inter-process communications and locks to guarantee a safe access to resources.
However in this case the fairness of access to resources would be left to the
operating system scheduler. This architecture leads to poor performances due
to the overhead of context switching and possibly deadlocks. For example, let
us consider a simple Webdamlog engine receiving successively many messages
from other Webdamlog engines and a Facebook wrapper, launched as two
different processes on the same peer. Suppose that the Facebook wrapper
starts a request that takes a long time to be processed. Each time the
Facebook thread is dispatched to the CPU by the scheduler, it will be blocked
until the request answer has been received, in which case a lot of time spent
waiting for IO events are wasted.

Therefore the Webdamlog peer adopts an efficient event handling service
following the reactor design pattern detailed in [Sch95]. The general idea is
to have only one process handling all events to dispatch according to resource
availability. As depicted in Figure 5.2, the reactor is the only process dealing
with input/output interruption.

The reactor runs an event loop listening for all events registered, e.g. in
Figure 5.2, HTTP requests, emails and UDP network packets. Each event
is associated to some code to execute that is called by the dispatcher if the
resource is available. For instance, the reactor may receive a Webdamlog
packet from a remote peer via an UDP port that is associated with the
Webdamlog engine. The reactor knows that to handle this event it should
dispatch the packet to the Webdamlog engine that will fire a new stage. The
way the dispatcher works is out of the scope of this thesis but it is fully
customizable for the Webdamlog peer instead of the multi-process solution
that lets the OS takes all the decision. Note that the fact that the reactor
is the only process handling input/output, does not imply that the system
is single threaded. For instance, long running tasks that are not updating
relations directly can be delegated to threads. E.g. the waiting time when

5.1. PEER ARCHITECTURE 83

Figure 5.2: Event handling in Webdamlog peer

84 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

Figure 5.3: Wrapper running in parallel with Webdamlog stage

the Facebook wrapper sends a requests is delegated to a thread.
This reactor design pattern gives a clear specification for the modules to

be used in a Webdamlog peer. Each module must specify event listeners and
the handlers i.e. the codes to be executed as callback methods invoked by
the reactor. In the Webdamlog peer implementation, a Ruby implementation
of the reactor pattern named Event-machine [Eve13] is used.

5.1.2 Module interactions

As shown in Figure 5.2, Webdamlog relations can be read/updated by different
wrappers as well as by the Webdamlog engine. The Webdamlog peer is designed
such that the Webdamlog engine does not directly interact with wrappers.
Webdamlog relations can be modified by wrappers but not during Webdamlog
stages. The concurrent accesses to the relations is supported thanks to the
reactor system.

Figure 5.3, gives a representation of the interface between a wrapper and
the Webdamlog engine. Two methods, namely read and write provide the
communications from the wrapper to the Webdamlog peer. The methods read

and write trigger the firing of a new Webdamlog stage via events scheduled
in the reactor. The others two, namely callback and translate, correspond
to the propagation of changes occurred in the engine as side-effects handled

5.2. WRAPPERS 85

by the wrapper.
In Figure 5.3, the Webdamlog engine is running a stage in 3 steps. When

running a stage, new packets may be emitted to remote peers and relation
updates may occur during Step 2.

Read The wrappers use the asynchronous read method of the Webdamlog
engine. This read method is a read order in the form of an event
scheduled in the reactor queue. It takes a list of relations to read at the
same stage as argument, and returns their content. When this event
is triggered, it forces the engine to fire a stage and return the actual
content of relations at the end of Step 2. This prevents the Webdamlog
engine from updating relations while reading. Note that a read order,
could be seen as sending an empty packet to the peer and returning
the projection of all the relations asked. However, if other packets
are pending on the channel, they will be processed, and the content
returned will be updated accordingly.

Write Wrapper sends a Webdamlog formatted packet on the regular UDP
port of the Webdamlog engine. It writes facts and rules and serializes
them to be processed as other packets.

Translate From the Webdamlog engine point of view, a wrapper may be seen
as a remote Webdamlog peer, therefore the wrapper may receive Web-
damlog packets of facts and rules. The wrapper simulates a Webdamlog
peer hence it accepts a limited type of facts and rules. The schema of
facts and rules accepted defines the API of the wrapper. Therefore the
translate method filters out non-conform Webdamlog facts and rules.
Then it invokes the Ruby code to execute in response to Webdamlog
packets.

Callback updates There must be as many callback methods as relations
that are bound with the wrapper. Each callback method takes as
arguments a list of facts. The callback method is invoked by the Webdam-
log engine as soon as changes occur in the relation. The callback methods
receive the delta of facts that defines the facts that are added/removed
at the current stage. These methods must be used to propagate internal
updates to the external program that the wrapper handles.

5.2 Wrappers

As shown in Figure 5.4, a wrapper in a Webdamlog peer is a code that provides
an interface between, one or several Webdamlog engine relations and, a non-

86 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

Webdamlog peer. Thus the Webdamlog peer speaks to the non-Webdamlog
peers using the Webdamlog relations bound to the wrapper. The interface
corresponds to event listeners as detailed in Section 5.1.1. The Webdam-
log peer implementation follows the Web standards and the programming
concepts of the Rails framework [Rai13].

The Ruby object must implement at least the four methods detailed in
Figure 5.3: read, write, translate and callback updates. The body of the
wrapper is an object-relational mapper (ORM) following the Active Model
interface detailed in [Act13]. Active model is now the standard API to build
custom ORM in Rails.

Storage wrapper At the end of each stage, the callback methods save the
content of relations bound to this wrapper into the linked database along
with the program. It also allows the Webdamlog peer to reload the relations
and the program to reboot the peer from a previous state that has been saved.
If the database provides some journaling mechanism, it also allows to restart
the peer from a previous state in case of crash. Note that this wrapper is
never triggering events to the Webdamlog peer, contrary to the next wrappers.
Implementation of this wrapper follows the Active Record pattern [Fow02], a
standard for ORM with persistent storage.

Translation wrappers These wrappers simulate a remote Webdamlog peer
synchronizing some relations that represent a particular view of the data
of the remote service. For example, the Facebook wrapper used in Sec-
tion 5.2 simulates a Facebook Webdamlog peer that represents the URL:
www.facebook.com. The Facebook wrapper provides facilities for authenti-
cation on Facebook. Once a given Webdamlog user has given his Facebook
credentials, the wrapper simulates a peer (say ÉmilienFB). According to the
features supported by the wrappers, it provides an abstract view of Émilien’s
Facebook data as a set a Webdamlog relations. E.g. in Section 5.3 the wrapper
provides two relations:

friends@ÉmilienFB($userID, $friendName)
pictures@ÉmilienFB($picID, $owner, $URL)

that are the representation in Webdamlog relations of the list of friends and the
list of pictures of Émilien’s account on Facebook. For Facebook, the wrapper
needs to send the http query with the right credential to retrieve the list of pic-
tures in JSON. Then it translates this JSON data into a Webdamlog collection.
Conversely it does the opposite to send pictures. Note that on the Webdamlog
peer Émilien, the relation friends@ÉmilienFB and pictures@ÉmilienFB receive
updates from Facebook during Step 1 of a Webdamlog stage and send updates

www.facebook.com

5.2. WRAPPERS 87

Figure 5.4: Wrapper architecture in a Webdamlog peer

88 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

to Facebook during Step 3. However during Step 2, the relations of ÉmilienFB
are processed as if there were local to Émilien therefore the rules containing
such atoms is delegated but processed as a if they were local. Remark that
the name ÉmilienFB uniquely identifies the peer as the Facebook account of
Émilien is generated by the given Facebook wrapper based on the Facebook
credential of Émilien. Hence another peer with the same Facebook wrapper
and the Facebook credential of Émilien would also process ÉmilienFB atoms
locally.

User interaction In the implementation, the GUI is rendered by a light
weight web server, namely Thin. The GUI wrapper translates Webdamlog
engine collections into HTML+JavaScript+JSON code. The user triggers the
JavaScript function that calls the Ruby methods of the wrapper to interact
with the Webdamlog engine. All the interactions that is reading or updating
facts or rules occurs outside a Webdamlog stage. This is guaranteed by the
event-machine described in Section 5.1.1. Therefore the updates of the user are
stacked up and processed the next time the Webdamlog engine fires together
with the messages received from remote peers. The GUI is built on the Rails
standard following the Model-View-Controller framework. Each Webdamlog
relation is represented by models i.e. Ruby objects implementing the Active
Model API. All requests from the user are RESTful actions processed by
controllers.

5.3 Demonstration

This demonstration [4] has been presented at SIGMOD 2013. The Wepic
application is a distributed picture manager. The Wepic application is
specified using simple rules written in Webdamlog described in Chapter 3 and
uses a Webdamlog engine described in Chapter 4.

A central issue in such a setting is the ease with which a casual user can
write Webdamlog rules. We conducted a user study described in Chapter 6,
showing that users are able to both understand and write simple Webdam-
log programs after a short tutorial as shown in Section 6.1. The Wepic
demonstration shows the simplicity of the Webdamlog programs need to
designed standard applications that handle personal data.

SIGMOD attendees could use Wepic to share, download, rate and annotate
pictures taken at the conference. Attendees could launch their own Wepic
peer and interact with the application via a Web GUI. They first inspected
the basic Webdamlog rules of the provided application and then were invited
to customize the application by modifying or adding rules.

5.3. DEMONSTRATION 89

5.3.1 Wepic application

Wepic behavior is driven by a small set of Webdamlog rules that we discuss
further. In addition, the application uses two standard wrappers, one for
Facebook, and one for email communications. The Webdamlog system also
provides a graphical user interface (GUI), which has been customized to
provide a user interface for Wepic. A Wepic peer can:

1. Upload a picture from a file or a URL;

2. View pictures provided by a particular attendee;

3. Transfer pictures:

(a) send them by email to the SIGMOD group on Facebook, or to
another Wepic peer,

(b) get pictures from another Wepic peer or from the SIGMOD group
on Facebook;

4. Annotate pictures with ratings, comments or name tags (names of
attendees appearing in the picture);

5. Select and rank photos based on their annotations.

The GUI is a particular kind of wrapper relying on an internal web server
as detailed in Section 5.2. In this case the wrapper produces web pages
in ERB [Rub], HTML [W3C13] and Javascript [Byn13]. The user event
triggered in the GUI are transformed into adding or deleting facts or rules in
the Webdamlog engine.

We now illustrate how some of these functionalities are implemented
with Webdamlog rules. To view pictures uploaded by a particular SIGMOD
attendee, we use a relation selectedAttendees that contains one fact for each
currently highlighted attendee (see right-hand side column in Figure 5.5
sigmod_peer is selected). We also use a derived relation pictures, that is the
view of all the pictures of a particular attendee. To obtain the pictures of all
selected attendees, we use the rule:

attendeePictures@Jules($id, $name, $owner, $data) :-
selectedAttendee@Jules($attendee),
pictures@$attendee($id, $name, $owner, $data)

Note that this rule uses delegation, a feature novel to Webdamlog, to retrieve
the contents of relation pictures of each attendee. The result of executing this
rule is shown in the frame named sigmod_peer’s pictures in the middle of
Figure 5.5.

90 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

Figure 5.5: A screenshot of the Wepic user interface.

To transfer pictures between peers, we assume that each attendee specifies
some preferred communication protocols in relation communicate, stating,
e.g., whether he prefers to receive pictures by email, by posting on Facebook,
or directly in his Wepic peer. The following rule is executed when Jules sends
some pictures to some attendees:

$protocol@$attendee($attendee, $name, $id, $owner) :-
selectedAttendee@Jules($attendee),
communicate@$attendee($protocol),
selectedPictures@Jules($name, $id, $owner)

Rules of this kind, and other rules implementing the basic functionality of
Wepic, are available in the Wepic application, for inspection and customization
through the user interface. An example of interface to customize these rules
is shown in Figure 5.6, the peer sigmod_peer has just received a delegation
asking to send all its contact to Julia. It also have installed three previous
delegation in its program.

5.3. DEMONSTRATION 91

Figure 5.6: The interface to a Webdamlog program running Wepic.

Delegation and access control By using delegation a user may write a
rule and ask another peer to process it remotely. Consider again the previous
rule:

attendeePictures@Jules($id, $name, $owner, $data) :-
selectedAttendee@Jules($attendee),
pictures@$attendee($id, $name, $owner, $data)

Suppose we have the facts:
selectedAttendee@Jules(“Émilien”)

The evaluation of the rule leads to delegating the following rule to Émilien:

attendeePictures@Jules($id, $name, $owner, $data) :-
pictures@Émilien($id, $name, $owner, $data)

This rule requires the peer Émilien to send all the facts in his relation
pictures to Jules. This is a simple case of delegation, which can be controlled
by inferring access from the specifications described above. However delegated
rules can be more complex, and general methods for effectively controlling
delegation are a topic of on-going investigation considered in Section 5.3.3.

5.3.2 Demonstration Scenario

We now describe the general proceedings of the demonstration. The goal is
to share pictures taken during the SIGMOD conference. Émilien and Jules are
attendees of the conference. They have used Wepic to install locally on their

92 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

Figure 5.7: The distribution of peers in the network.

laptops a collection of pictures. They demonstrate how to use Wepic with
the native functionalities described in Section 5.3.1 and how to customize the
application. User at the conference are also allowed to run their own Wepic
peer to explore the system. This scenario demonstrates the various aspects
of Webdamlog, notably distribution, delegation and control of delegation.

Setup In the beginning of the demo, the peers are distributed as shown in
Figure 5.7. Three peers are established: one on each of the laptops of Émilien
and Jules, connected via a local network, and a third, the SIGMOD peer,
hosted on the Webdam cloud. To simplify the presentation, it is assumed
that Émilien and Jules have the same bootstrap program so they organize
their data and behave similarly. They both store their personal photos in
pictures@Émilien and pictures@Jules on their respective Wepic peers. Both
have Facebook accounts and are members of the SigmodFB group, the official
Facebook group of the conference. Finally, both users are subscribed to the
SIGMOD peer, that stores the list of registered Wepic users.

5.3. DEMONSTRATION 93

Peer discovery To enter in the network, one peer should know at least
one other peer already linked with some others. In this particular application
Wepic, we setup the initial knowledge base of new peers with the public URL
of the SIGMOD peer. For example the Émilien peer is initialized with this
fact:

attendee@Émilien(“Émilien”, “81.205.87.245:60”)

and subscribes to the SIGMOD picture network by sending its address thanks
to the following rule included in the bootstrap program:

attendee@SIGMOD(“Émilien”, $URL) :- attendee@Émilien(“Émilien”, $URL)

In the SIGMOD peer, the program is setup with the following rule that
allows the SIGMOD peer to act as a Hub that broadcasts all the attendees
known by SIGMOD to all attendee peers:

attendee@$att($member, $URL) :- attendee@SIGMOD($att, _),
attendee@SIGMOD($member, $URL)

This simple strategy of peer discovery is part of the Wepic program but one
can write other strategies.

During the demonstration, attendees can also start their own peers with
their personal photos. Since it would be too long to install a Wepic peer on
the laptop or smartphone of an attendees, we propose an alternative solution.
The attendee can connect to the Web interface on the Webdam cloud to
launch their own dedicated peer with the same program as Émilien and Jules.
Then they can upload their photos and modify their program, as we do on
the laptop-based peers.

We start the demonstration by quickly going over the setup while attendees
are starting their new peer. They observe that their peer is automatically
receiving the list of attendees logged in. Then they can interact with Wepic
in the following ways.

Interaction via Facebook To illustrate the interaction between a Wepic
peer and other Web services, we use a Facebook wrapper. For instance, the
following rule is used by the SIGMOD peer to automatically publish, on the
Facebook group of SIGMOD, the pictures belonging to SIGMOD attendees
who have authorized this action:

pictures@SigmodFB($id, $name, $owner, $data) :-
pictures@SIGMOD($id, $name, $owner, $data),
authorized@$owner(“Facebook”, $id, $owner)

94 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

Conversely, the SIGMOD peer automatically retrieves the pictures with
their comments and tags from the Facebook group and publish them to
SIGMOD peer. Note that the system thus allows any Wepic user to see or
publish (via Wepic) pictures in SigmodFB even without having a Facebook
account. Likewise it allows any Webdamlog peer even if they don’t have a
Facebook wrapper to publish on Facebook. A user only needs to appropriately
populate his authorized relation to control Facebook publication. This is
typical case where delegation provides a functionality without the need to
install the wrapper by itself.

We explain the Webdamlog rules that implements these interactions to
audience members. And then we show that a photo uploaded by Émilien into
his local relation pictures@Émilien is instantly published to pictures@SIGMOD,
and then propagated to pictures@SigmodFB.

Customizing rules The main advantage of a peer-to-peer system such as
Webdamlog is the ability to customize a peer’s behavior. Therefore the most
novel trait of Wepic is that it lets the user customize existing rules and add
his own rules. For example, a user who is interested only in the pictures that
have a rating of 5 would customize the rule of the application as follows:

attendeePictures@Jules($id, $name, $owner, $data) :-
selectedAttendee@Jules($attendee),
pictures@($id, $name, $owner, $data),
rate@$owner($id, 5)

Redefining this rule changes the contents of the frame Attendee pictures
in Figure 5.5, which has been demonstrated. Then they are free to customize
the rule further, retrieving, e.g., only pictures that were taken by a certain
SIGMOD attendee, or in which only certain attendees appear using some
meta-data tags added by Facebook and retrieve at SIGMOD peer.

Illustration of the control of delegation To illustrate the control of
delegation, Émilien attempts to install a rule at Jules’ peer. We show that
the system requires the approval of Jules before installing the rule, and that
the program of Jules is changed once the approval is granted and the rule is
installed.

5.3.3 Access control

We briefly describe an important issue that is still not supported by Webdam-
log, namely access control, see ongoing-work [1].

5.3. DEMONSTRATION 95

Since many Webdamlog applications manage personal or social data,
access to sensitive information must be carefully controlled. Access control in
Webdamlog is particularly challenging because of the distributed nature of
computation and the ability of peers to delegate rules to other peers.

The demonstration of Wepic provides a simplified model for control of
delegation, in which each delegation sent by an untrusted peer is pending in a
queue until the user explicitly accepts it via the Web interface. A notification
of a pending delegation can be seen at the bootom of Figure 5.6, where Julia
is sending a rule to sigmod_peer. By default, all peers except the SIGMOD
peer are considered untrusted.

A complete access control model for Webdamlog is under investigation
see [1] and will not be discussed in this thesis. In that model, access to stored
or derived relations is controlled by a novel combination of both discretionary
methods (in which users have the power to grant rights to data they own) and
mandatory methods (in which access rights are derived according to system-
wide conventions). Users directly specify the accessibility of extensional
relations stored that they own. For derived relations (i.e. views), a user may
rely on a default access control policy that is derived automatically from
the provenance of the base relations. Alternatively, a user may override this
policy in order to grant access to views, effectively “declassifying” some data.
This flexible model subsumes the view-based access control of the standard
SQL authorization model.

96 CHAPTER 5. ARCHITECTURE OF A WEBDAMLOG PEER

Chapter 6

User Study

We conducted a limited user study to verify that the Webdamlog language can
be understood and written by non-programmers. We wanted to highlight how
some tasks that would be long and complex to write in standard programming
language (Java, Python, . . .), can be written in Webdamlog by regular users.
Clearly it would be interesting to perform more thorough user study in
particular to help design the user interface.

In this chapter, we present first the tutorial given to the user, then the
test. Finally, we present a comment of the results that were obtained.

6.1 Webdamlog tutorial

The original tutorial was a set of slides that is reformatted next. A teacher
explained the slides to the users in a brief 20 minute lesson.

Terminology

• A relation is a database table.

• A fact is an entry in a relation.

• A relation has a schema, describing attributes of each fact that belongs
to it.

• Relations reside at peers.

Examples:
birthdays@facebook : name, date︸ ︷︷ ︸

schema

birthdays︸ ︷︷ ︸
relation

@ facebook︸ ︷︷ ︸
peer

(”Ann”, ”6/15”︸ ︷︷ ︸
fact

)

97

98 CHAPTER 6. USER STUDY

Rules (I)

• Suppose that there is a relation photos@picasa, with schema:

photos@picasa: fileName, content

• Suppose that photos@picasa contains the facts:

photos@picasa(”image1.jpg”, ”....”)

photos@picasa(”image2.jpg”, ”....”)

• We can copy facts from photos@picasa into photos@myLaptop (with
the same schema) using the following rule:

photos@myLaptop(”image1.jpg”,

variable︷︸︸︷
$X):-

photos@picasa(”image1.jpg”, $X︸︷︷︸
variable

)

• Read: There is a fact (“image1.jpg”, $X) in photos at myLaptop if there
is a fact (“image1.jpg”, $X) in photos at picasa

Rules (II)

• Like relations, rules reside at peers

• Rules compute new facts and insert them into relations:

copy@myLaptop($X)︸ ︷︷ ︸
rulehead

:- original@myDesktop($X)︸ ︷︷ ︸
rulebody

• Rules can combine data from multiple relations and peers

friendsBirthdays@myLaptop($X, $Y):-friends@facebook($X),

birthdays@myPhone($X, $Y)

• Read: If $X is a friend (according to friends@facebook) and $Y is the
birthday of $X (according to birthdays@myPhone) then there is a fact
($X,$Y) in friendsBirthdays@myLaptop. We read the body of a rule
left-to-right

6.1. WEBDAMLOG TUTORIAL 99

Rules (III)

• Given the facts

songs@myLaptop(”Beatles”, ”Michele”, ”...”)

songs@myLaptop(”Queen”, ”Flash”, ”...”)

songs@yourLaptop(”Metallica”, ”One”, ”...”)

songs@yourLaptop(”Nirvana”, ”Dive”, ”...”)

• A program consists of several rules: Copy songs from myLaptop and
yourLaptop to hisLaptop

songs@hisLaptop($X, $Y, $Z):-songs@myLaptop($X, $Y, $Z)

songs@hisLaptop($X, $Y, $Z):-songs@yourLaptop($X, $Y, $Z)

All songs relations have the schema: < songs : artist, title, content >

Rule (IV)

• We can use variables to denote relations and peers

• Given the facts

contacts@myLaptop(”inbox”, ”annLaptop”, ”EN”)

contacts@myLaptop(”msg”, ”sueLaptop”, ”EN”)

contacts@myLaptop(”messages”, ”patLaptop”, ”FR”)

and relations with the following schemas

< contacts : targetRelation, targetPeer, language >

< inbox : message >

< msg : message >

< messages : message >

• Send the message: “Hello!” or “Bonjour!” to the contacts

$R@$P (”Hello!”):-contacts@myLaptop($R, $P, ”EN”)

$R@$P (”Bonjour!”):-contacts@myLaptop($R, $P, ”FR”)

100 CHAPTER 6. USER STUDY

Examples (I)

1. Copy the music from songs@pandora to songs@iPod
Answer: songs@iPod($X, $Y, $Z):-songs@pandora($X, $Y, $Z)
Schema < songs : artist, title, content >

2. Find students who studied CS or Math, given the facts:

roster@college(”John”, ”CS”)

roster@college(”John”, ”Math”)

roster@college(”Ann”, ”French”)

roster@college(”Sue”, ”Math”)

schemaroster : name, major

Answer:

CSorMath@college($X):-roster@college($X, ”CS”)

CSorMath@college($X):-roster@college($X, ”Math”)

Two fact are inserted into CSorMath@college by these rules.

Examples (II)

• Subscribe myLaptop to CNN news

• Answer: at peer CNN

news@$X(”cnn”, $Y):-subscribers@cnn($X), news@cnn($Y)

add a fact to subscribers@cnn(“myLaptop”)

• Example execution:

– 9:00am news@cnn(“US Olympic gold”)

– 9:01am news@myLaptop(“cnn”, ”US Olympic gold”)

– 9:15am news@cnn(“Higgs boson seen in action”)

– 9:16am news@myLaptop(“cnn”, ”US Olympic gold”)

– 9:16am news@myLaptop(“cnn”, “Higgs boson seen in action”)

6.2 Test

We now describe the user study test, that is reproduced literally, except for
formatting. For each questions, we also asked the time used to answer.

6.2. TEST 101

Problem 1 Consider the following relations and corresponding facts.

schema: songs(fileName,content) // the same at all peers

songs@lastFM("song1.mp3", "...")

songs@lastFM("song2.mp3", "...")

songs@lastFM("song3.mp3", "...")

songs@pandora("song4.mp3", "...")

songs@pandora("song5.mp3", "...")

Assume that songs relations at all peers have the same schema.

1. Write one or several rules that copy all songs from lastFM and Pandora

into relation songs at peer myLaptop.

2. Suppose now that relation peers@myLaptop contains names of peers on
which to look for music. You can assume that each peer stores songs in
a relation called songs, with the same schema as above. Write a Web-
damLog program that copies songs from all peers into songs@myLaptop.

3. Write a rule that copies songs from songs@myLaptop into the songs

relation on each peer whose name is listed in peers@myLaptop.

Problem 2 Consider the following relations and facts.

schema: friends(friendName) photos(fileName,content)

inPhoto(fileName, friendName)

friends@facebook("ann")

friends@facebook("sue")

friends@facebook("zoe")

photos@ann("sunset.jpg", "...")

photos@ann("vacation.jpg", "...")

photos@ann("party.jpg", "...")

photos@sue("image1.jpg","...")

photos@sue("image2.jpg","...")

102 CHAPTER 6. USER STUDY

inPhoto@ann("vacation.jpg", "jane")

inPhoto@ann("vacation.jpg", "ann")

inPhoto@ann("party.jpg", "jane")

inPhoto@ann("party.jpg", "zoe")

inPhoto@ann("party.jpg", "sue")

inPhoto@sue("image2.jpg", "sue")

inPhoto@sue("image2.jpg", "jane")

Assume that photos and inPhoto relations at all peers have the same
schema. Consider now the following WebdamLog rule.

photos@myLaptop($X,$Z) :- friends@facebook($Y),

photos@$Y($X,$Z), inPhoto@$Y($X,"jane")

1. Explain in words what this rule computes.

2. List the facts in that are in photos@myLaptop after the rule above is
executed.

3. List the facts that are in photos@myLaptop if the following rule is
executed instead:

photos@myLaptop($X,$Z) :- friends@facebook($Y),

photos@$Y($X,$Z), inPhoto@$Y($X,"jane"),

inPhoto@$Y($X,"sue")

Problem 3 Recall the example from the tutorial, in which we looked at
subscribing the peer myLaptop to CNN news. This example is reproduced
below.

schema: news@cnn(text) news@myLaptop(source, text)

subscribers@cnn(peer)

6.3. RESULTS 103

news@cnn("US Olympic gold")

news@cnn("Higgs boson seen in action")

subscribers@cnn("myLaptop")

[at cnn] news@$X("cnn", $Y) :- subscribers@cnn($X),

news@cnn($Y)

Suppose that you would now like to receive CNN news on peer myPhone,
and to store them in relation news, with the schema souce,text. Describe
at least 1 method for doing this. You may assume that you can add rules at
peers cnn, myLaptop and myPhone, and that you can insert facts into relations
on any of these peers.

6.3 Results

We argued in the introduction that Webdamlog can be used to declaratively
specify distributed tasks in a variety of applications, including personal data
management. The user study to demonstrated the usability of Webdamlog.

Participants. We recruited 27 participants for the user study in the US
and in France. We present a break-down of results by two groups.

Group 1 consisted of 16 participants with training in Computer Science.
Among them, 5 had basic database background, and 4 were familiar with
advanced database concepts, including datalog. The group had the following
break-down by highest completed education level: 2 highschool, 3 BS, 9 MS,
and 2 PhD.

Group 2 consisted of 11 participants with no CS training, and with the
following break-down by highest completed education level: 3 vocational
school, 6 BS, 2 MS.

Study design. All participants were given a brief tutorial, shown in Sec-
tion 6.1, in which basic features of Webdamlog were explained informally,
and demonstrated through examples. On average, getting familiar with the
Webdamlog language via the tutorial took 15-20 minutes for Group 1 and 25
minutes for Group 2. Following the tutorial, all participants were asked to
take a written test, shown in Section 6.2. The three problems were designed to
test the comprehension of different features of Webdamlog, including local and
non-local rules, rules with variable relation and peer names, and delegation.

104 CHAPTER 6. USER STUDY

In the tutorial and the test, we did not make an explicit distinction between
intensional and extensional relations, and we ignored recursion.

Results. The results of the study were very encouraging.
Group 1. On Problem 1, 3 participants received a score of 2.5 out of 3,

while 13 participants received a perfect score. All participants received a
perfect score on Problem 2. Problem 3 was open-ended, and all participants
gave at least one correct answer. 4 participants gave 3 correct answers, 4
gave 2 correct answers (2 of these also gave 1 incorrect answer each), and the
remaining 8 participants each gave 1 correct answer.

We also asked participants to record how long it took them to answer each
problem, in minutes. Problem 1 took between 2.5 and 6 minutes, Problem 2
between 2 and 9 minutes, and Problem 3 between 1 and 8 minutes. We did
not observe any correlation between the time it took to answer questions and
the participant background in data management or even datalog.

Group 2. On Problem 1, the average score was 2.3, with the following
break-down: 6 participants received a perfect score, 3 received 2 out of 3, 1
had a score of 1, and 2 were not able to solve the problem. On Problem 2,
10 participants received a perfect score and 1 got a score of 2 out of 3. On
Problem 3, 1 gave 5 good answers, 6 gave 3 good answers, 3 gave 2 good
answers, and 2 gave no correct answer. The same two participants failed to
answer Problems 1 and 3.

The test took longer for the participants without CS training. Problem 1
took between 6 and 8 minutes to solve in this group, Problem 2 took between
5 and 8 minutes, and Problem 3 took between 4 and 12 minutes.

In summary, all technical and the majority of non-technical participants
of our study were able to both understand and write Webdamlog programs
correctly, with a minimal amount of training. We observed a difference
between the technical and non-technical groups in terms of both correctness
and time to solution. Two members of the non-technical group were able to
understand Webdamlog programs but were not able to write programs on
their own. We believe that this issue will be alleviated once an appropriate
user interface becomes available.

Chapter 7

Conclusion

The philosophy of Webdamlog is to return the control of their data to the Web
users. When the trend is to entrust more and more data to third-party clouds,
Webdamlog insists on “Do it yourself”, i.e. manage your own data with your
own systems. With the concept of delegation, the Webdamlog language allows
the automation of complex data management tasks, and in particular, those
that require the collaboration of several systems. Contrary to proprietary
centralized systems, the code of Web is open-source, and Webdamlog is based
on sharing open code.

Clearly, Webdamlog opens a number of directions of research. To conclude
this thesis, we mention some that we believe are particularly important:

• In-depth user studies on the usability of Webdamlog by regular users (i.e.,
Web users with little computer science knowledge) would be essential
to understand the possibilities and limitations of the approach.

• It would be interesting to develop better interfaces to simplify the task
of designing Webdamlog applications by regular users.

• Access control for Webdamlog programs is a key missing feature towards
the full support of personal data management.

• Webdamlog encourages the sharing of knowledge between peers or within
communities. Clearly such exchanges and integration of data would be
facilitated by enhancing Webdamlog with ontology technology in the
style of semantic Web.

• Finally, we showed how to improve performance using optimization
techniques. More is certainly needed to be able to scale to the Web, in
terms for instance of number of peers, size of data, and of workload.

105

106 CHAPTER 7. CONCLUSION

Self references

Conferences

[1] Serge Abiteboul, Émilien Antoine, Gerome Miklau, Julia Stoyanovich,
and Vera Zaychik Moffitt. Introducing Access Control in Webdamlog. In
DBPL - Proceedings of the 14th International Symposium on Database
Programming Languages, Riva del Garda, Trento, Italie, 2013. hal.inria.

fr/hal-00850754.

[2] Serge Abiteboul, Émilien Antoine, and Julia Stoyanovich. Viewing the
Web as a Distributed Knowledge Base. In ICDE - Proceedings of the 28th
IEEE International Conference on Data Engineering, Washington DC,
United States, 2012. hal.inria.fr/hal-00703210.

[3] Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and Émilien An-
toine. A rule-based language for web data management. In PODS -
Proceedings of the 13th ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, Athens, Greece, 2011. hal.inria.fr/

inria-00582891.

Demonstrations

[4] Serge Abiteboul, Émilien Antoine, Gerome Miklau, Julia Stoyanovich, and
Jules Testard. Rule-Based Application Development using Webdamlog.
In SIGMOD - Proceedings of the 2013 ACM SIGMOD Special Interest
Group on Management Of Data, New York, United States, 2013. hal.

inria.fr/hal-00817791.

[5] Serge Abiteboul, Émilien Antoine, Gerome Miklau, Julia Stoyanovich, and
Jules Testard. Rule-Based Application Development using Webdamlog.
In BDA - La 29e édition des journées Bases de Données Avancées, Nantes,
France, 2013.

107

hal.inria.fr/hal-00850754
hal.inria.fr/hal-00850754
hal.inria.fr/hal-00703210
hal.inria.fr/inria-00582891
hal.inria.fr/inria-00582891
hal.inria.fr/hal-00817791
hal.inria.fr/hal-00817791

108 SELF REFERENCES

[6] Émilien Antoine, Alban Galland, Kristian Lyngbaek, Amélie Marian,
and Neoklis Polyzotis. Social networking on top of the webdamexchange
system. In ICDE - Proceeedings of the 28th IEEE International Conference
on Data Engineering, 2011. hal.inria.fr/inria-00536361.

Miscellaneous

[7] Serge Abiteboul, Émilien Antoine, and Julia Stoyanovich. The webdamlog
system managing distributed knowledge on the web. Technical report,
Inria, 2013. hal.inria.fr/hal-00813300.

hal.inria.fr/inria-00536361
hal.inria.fr/hal-00813300

External references

[AAH+11] Peter Alvaro, Tom J. Ameloot, Joseph M. Hellerstein, William
Marczak, and Jan Van den Bussche. A declarative semantics
for dedalus. Technical Report UCB/EECS-2011-120, EECS
Department, University of California, Berkeley, Nov 2011.

[AAHM05a] Serge Abiteboul, Zoe Abrams, Stefan Haar, and Tova Milo.
Diagnosis of asynchronous discrete event systems: datalog to
the rescue! In Chen Li, editor, Proceedings of the 24th Annual
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS’05), Baltimore, Maryland, USA,
États-Unis, 2005. ACM Press.

[AAHM05b] Serge Abiteboul, Zoë Abrams, Stefan Haar, and Tova Milo.
Diagnosis of asynchronous discrete event systems: datalog to
the rescue! In Proceedings of the twenty-fourth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems,
PODS ’05, New York, NY, USA, 2005. ACM.

[Aba09] Martín Abadi. Logic in Access Control (Tutorial Notes). In
Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri, editors,
Foundations of Security Analysis and Design V, volume 5705,
chapter 5. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[ABCM04] Serge Abiteboul, Omar Benjelloun, Bogdan Cautis, and Tova
Milo. Active XML, Security and Access Control. In SBBD,
volume 4, 2004.

[ABGR10] Serge Abiteboul, Meghyn Bienvenu, Alban Galland, and Marie-
Christine Rousset. Distributed datalog revisited. In Datalog 2.0
Workshop, 2010.

[Abi03] Serge Abiteboul. Managing an XML warehouse in a P2P context.
In CAiSE, 2003.

109

110 EXTERNAL REFERENCES

[Abi12] Serge Abiteboul. Sciences des données: De la logique du premier
ordre à la Toile. Leçons inaugurales du Collège de France. Fayard,
2012.

[ABM04] Serge Abiteboul, Omar Benjelloun, and Tova Milo. Positive
active XML. In Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems,
PODS ’04, New York, NY, USA, 2004. ACM.

[ABM08] Serge Abiteboul, Omar Benjelloun, and Tova Milo. The Active
XML project: an overview. The VLDB Journal, 17(5), August
2008.

[ABM09] Serge Abiteboul, Pierre Bourhis, and Bogdan Marinoiu. Efficient
maintenance techniques for views over active documents. In
EDBT ’09: Proceedings of the 12th International Conference
on Extending Database Technology, New York, NY, USA, 2009.
ACM.

[ABMG10] Serge Abiteboul, Pierre Bourhis, Bogdan Marinoiu, and Alban
Galland. Axart: enabling collaborative work with axml artifacts.
Proc. VLDB Endow., 3, September 2010.

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the
Web: from relations to semistructured data and XML. Morgan
Kaufmann Pub, 2000.

[ACC+10] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy,
Joseph M. Hellerstein, and Russell Sears. Boom analytics: ex-
ploring data-centric, declarative programming for the cloud. In
Proceedings of the 5th European conference on Computer systems,
EuroSys ’10, New York, NY, USA, 2010. ACM.

[ACG+06] Philippe Adjiman, Philippe Chatalic, Francois Goasdoué, Marie-
Christine Rousset, and Laurent Simon. Distributed reasoning
in a peer-to-peer setting: Application to the semantic web. J.
Artif. Intell. Res. (JAIR), 25, 2006.

[ACHM11] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R.
Marczak. Consistency analysis in bloom: a calm and collected
approach. In CIDR, 2011.

[Act13] Active-model github, 2013. https://github.com/rails/

rails/tree/master/activemodel/.

https://github.com/rails/rails/tree/master/activemodel/
https://github.com/rails/rails/tree/master/activemodel/

111

[AD01] Karl Aberer and Zoran Despotovic. Managing trust in a peer-2-
peer information system. In Proceedings of the tenth international
conference on Information and knowledge management, CIKM
’01, New York, NY, USA, 2001. ACM.

[ADD+11] Yael Amsterdamer, Susan B. Davidson, Daniel Deutch, Tova
Milo, Julia Stoyanovich, and Val Tannen. Putting lipstick on pig:
Enabling database-style workflow provenance. PVLDB, 5(4),
2011.

[AG94] Miklos Ajtai and Yuri Gurevich. Datalog vs first-order logic.
In Proceedings of the 30th IEEE symposium on Foundations of
computer science, Orlando, FL, USA, 1994. Academic Press,
Inc.

[AGM08] Serge Abiteboul, Ohad Greenshpan, and Tova Milo. Modeling
the mashup space. In WIDM ’08: Proceeding of the 10th ACM
workshop on Web information and data management, New York,
NY, USA, 2008. ACM.

[AGP11] Serge Abiteboul, Alban Galland, and Neoklis Polyzotis. A model
for web information management with access control. 14th
International Workshop on the Web and Databases, 2011.

[AH08] Dean Allemang and James A. Hendler. Semantic web for the
working ontologist: modeling in RDF, RDFS and OWL. Morgan
Kaufmann, 2008.

[AHV95] Serge Abiteboul, Rick Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[AKBC+12] Ahmad Ahmad-Kassem, Christophe Bobineau, Christine Collet,
Etienne Dublé, Stéphane Grumbach, Fuda Ma, Lourdes Martínez,
and Stéphane Ubéda. Ubiquest, a data-centric approach for
networking applications. In DATA, 2012.

[AKGU12] Ahmad Ahmad-Kassem, Stéphane Grumbach, and Stéphane
Ubéda. Messages with implicit destinations as mobile agents.
In Proceedings of the 2nd edition on Programming systems, lan-
guages and applications based on actors, agents, and decentralized
control abstractions, AGERE! ’12, New York, NY, USA, 2012.
ACM.

112 EXTERNAL REFERENCES

[AKSS09] Serge Abiteboul, Benny Kimelfeld, Yehoshua Sagiv, and Pierre
Senellart. On the expressiveness of probabilistic XML models.
The VLDB Journal, 18, October 2009.

[AMC+11] Peter Alvaro, William R. Marczak, Neil Conway, Joseph M.
Hellerstein, David Maier, and Russell Sears. Dedalus: datalog
in time and space. In Proceedings of the First international
conference on Datalog Reloaded, Datalog’10, Berlin, Heidelberg,
2011. Springer-Verlag.

[AMP05] Serge Abiteboul, Ioana Manolescu, and Nicoleta Preda. Con-
structing and Querying Peer-to-Peer Warehouses of XML Re-
sources. In Semantic Web and Databases. IEEE, 2005.

[AMP+08] Serge Abiteboul, Ioana Manolescu, Neoklis Polyzotis, Nicoleta
Preda, and Chong Sun. XML processing in DHT networks. In
ICDE ’08: Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, Washington, DC, USA, 2008.
IEEE Computer Society.

[AMR+11] Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-
Christine Rousset, and Pierre Senellart. Web Data Management.
Cambridge University Press, 2011. http://webdam.inria.fr/

textbook.

[AP07a] Serge Abiteboul and Neoklis Polyzotis. The data ring: Commu-
nity content sharing. In CIDR, 2007.

[AP07b] Serge Abiteboul and Neoklis Polyzotis. The data ring: Commu-
nity content sharing. In Conference on Innovative Data Systems
Research (CIDR), 2007.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom,
and Janet L. Wiener. The Lorel query language for semistruc-
tured data. International Journal on Digital Libraries, 1(1),
April 1997.

[ASV09] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Static anal-
ysis of active XML systems. ACM Trans. Database Syst., 34,
December 2009.

[AV91] Serge Abiteboul and Victor Vianu. Datalog extensions for
database queries and updates. Journal of Computer and System
Sciences, 43(1), August 1991.

http://webdam.inria.fr/textbook
http://webdam.inria.fr/textbook

113

[AvH08] Grigoris Antoniou and Frank van Harmelen. A Semantic Web
Primer, 2nd Edition (Cooperative Information Systems). The
MIT Press, 2 edition, 2008.

[AVM07] Bader Ali, Wilfred Villegas, and Muthucumaru Maheswaran. A
trust based approach for protecting user data in social networks.
In CASCON ’07: Proceedings of the 2007 conference of the center
for advanced studies on Collaborative research, New York, NY,
USA, 2007. ACM.

[BAP+12] Harold Boley, Tara Athan, Adrian Paschke, Said Tabet, Ben-
jamin Grosof, Nick Bassiliades, Guido Governatori, Frank Olken,
and David Hirtle. Schema specification of deliberation ruleml.
ruleml.org/spec/, April 2012.

[BCGR98] Elisa Bertino, Barbara Catania, Vincenzo Gervasi, and Alessan-
dra Raffaetà. Active-u-datalog: Integrating active rules in a
logical update language. In Burkhard Freitag, Hendrik Decker,
Michael Kifer, and Andrei Voronkov, editors, Transactions and
Change in Logic Databases, volume 1472 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 1998.

[BFG07] Moritz Becker, Cedric Fournet, and Andrew Gordon. Design and
Semantics of a Decentralized Authorization Language. In CSF
’07: Proceedings of the 20th IEEE Computer Security Founda-
tions Symposium, Washington, DC, USA, 2007. IEEE Computer
Society.

[Bir05] Kenneth P. Birman. Reliable Distributed Systems: Technologies,
Web Services, and Applications. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic
twig joins: optimal XML pattern matching. In SIGMOD ’02:
Proceedings of the 2002 ACM SIGMOD international conference
on Management of data, New York, NY, USA, 2002. ACM.

[BLC90] Tim Berners-Lee and Robert Cailliau. WorldWideWeb: Proposal
for a hypertexts project. http://www.w3.org/Proposal.html,
November 1990.

[BM10] Dan Brickley and Libby Miller. Foaf vocabulary specification
0.98. http://xmlns.com/foaf/spec/, August 2010.

http://www.w3.org/Proposal.html
http://xmlns.com/foaf/spec/

114 EXTERNAL REFERENCES

[BMSU86] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D.
Ullman. Magic sets and other strange ways to implement logic
programs (extended abstract). In Proceedings of the fifth ACM
SIGACT-SIGMOD symposium on Principles of database systems,
PODS ’86, New York, NY, USA, 1986. ACM.

[Bry05] Jery Bryans. Reasoning about XACML policies using CSP.
In SWS ’05: Proceedings of the 2005 workshop on Secure web
services, New York, NY, USA, 2005. ACM.

[BSVD09] Sonja Buchegger, Doris Schiöberg, Le H. Vu, and Anwitaman
Datta. PeerSoN: P2P social networking: early experiences and
insights. In SNS ’09: Proceedings of the Second ACM EuroSys
Workshop on Social Network Systems, New York, NY, USA, 2009.
ACM.

[BT07] Peter Buneman and Wang C. Tan. Provenance in databases. In
SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD interna-
tional conference on Management of data, New York, NY, USA,
2007. ACM.

[Byn13] Mathias Bynens. Javascript, aka. web ecmascript standard.
http://javascript.spec.whatwg.org/, June 2013.

[CCHM08] Tyson Condie, David Chu, Joseph M. Hellerstein, and Petros
Maniatis. Evita raced: metacompilation for declarative networks.
Proc. VLDB Endow., 1(1), 2008.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. Bigtable: A Distributed Storage
System for Structured Data. ACM Trans. Comput. Syst., 26(2),
June 2008.

[CGL09] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. Datalog±:
a unified approach to ontologies and integrity constraints. In
Proceedings of the 12th International Conference on Database
Theory, ICDT ’09, New York, NY, USA, 2009. ACM.

[CH85] Ashok K. Chandra and David Harel. Horn clause queries and
generalizations. The Journal of Logic Programming, 2(1), April
1985.

http://javascript.spec.whatwg.org/

115

[CKW93] Weidong Chen, Michael Kifer, and David S. Warren. Hilog: A
foundation for higher-order logic programming. JOURNAL OF
LOGIC PROGRAMMING, 15(3), 1993.

[CR93] Alain Colmerauer and Philippe Roussel. The birth of prolog. In
The second ACM SIGPLAN conference on History of program-
ming languages, HOPL-II, New York, NY, USA, 1993. ACM.

[CSWH01] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore
Hong. Freenet: A Distributed Anonymous Information Storage
and Retrieval System. In Hannes Federrath, editor, Designing
Privacy Enhancing Technologies, volume 2009 of Lecture Notes
in Computer Science, chapter 4. Springer Berlin / Heidelberg,
Berlin, Heidelberg, March 2001.

[Dat10] Datalog 2.0 workshop. http://www.datalog20.org/, 2010. Ox-
ford Univ.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-
nathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: amazon’s highly available key-value store. In Pro-
ceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles, volume 41 of SOSP ’07, New York, NY, USA,
2007. ACM.

[Dia] Diaspora. https://diasporafoundation.org/.

[EK76] M. H. Van Emden and R. A. Kowalski. The semantics of predicate
logic as a programming language. Journal of the ACM, 23, 1976.

[ERC13] ERC grant Webdam, 2009-2013. webdam.inria.fr.

[Eve13] Event-machine github, 2013. https://github.com/

eventmachine/eventmachine/.

[FHM05] Michael J. Franklin, Alon Y. Halevy, and David Maier. From
databases to dataspaces: a new abstraction for information
management. SIGMOD Record, 34(4), 2005.

[FHMV03] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y.
Vardi. Reasoning about knowledge. The MIT Press, 2003.

[FJ02] Csilla Farkas and Sushil Jajodia. The inference problem: a
survey. SIGKDD Explor. Newsl., 4, December 2002.

http://www.datalog20.org/
https://diasporafoundation.org/
webdam.inria.fr
https://github.com/eventmachine/eventmachine/
https://github.com/eventmachine/eventmachine/

116 EXTERNAL REFERENCES

[FMS09] John Field, Maria C. Marinescu, and Christian Stefansen. Reac-
tors: A data-oriented synchronous/asynchronous programming
model for distributed applications. Theor. Comput. Sci., 410,
February 2009.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

[Gal11] Alban Galland. Distributed data management with access control
: social Networks and Data of the Web. These, Université Paris
Sud - Paris XI, September 2011.

[GKIT07] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and
Val Tannen. Update exchange with mappings and provenance.
In Proceedings of the 33rd international conference on Very large
data bases, VLDB ’07. VLDB Endowment, 2007.

[GKIT10] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and
Val Tannen. Provenance in orchestra. IEEE Data Eng. Bull.,
33(3), 2010.

[GKT07] Todd J. Green, Grigoris Karvounarakis, and Val Tannen.
Provenance semirings. In Proceedings of the twenty-sixth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, PODS ’07, New York, NY, USA, 2007. ACM.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model
semantics for logic programming. In ICLP/SLP, 1988.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2), June 2002.

[GW10] Stéphane Grumbach and Fang Wang. Netlog, a rule-based
language for distributed programming. In PADL, 2010.

[Hel10] Joseph M. Hellerstein. The declarative imperative: experiences
and conjectures in distributed logic. SIGMOD Rec., 39(1), 2010.

[HNN09] Richard Hull, Nanjangud Narendra, and Anil Nigam. Facilitating
Workflow Interoperation Using Artifact-Centric Hubs. In Luciano
Baresi, Chi-Hung Chi, and Jun Suzuki, editors, Service-Oriented
Computing, volume 5900, chapter 1. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

117

[Hul89] G. Hulin. Parallel processing of recursive queries in distributed
architectures. In Proceedings of the 15th international conference
on Very large data bases, VLDB ’89, San Francisco, CA, USA,
1989. Morgan Kaufmann Publishers Inc.

[HZ96] Richard Hull and Gang Zhou. A framework for supporting data
integration using the materialized and virtual approaches. In
SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD interna-
tional conference on Management of data, New York, NY, USA,
1996. ACM.

[Int12] Matteo Interlandi. Knowlog: A declarative language for reason-
ing about knowledge in distributed systems. In ER, 2012.

[ISO99] ISO. Sql 3 specification. http://www.iso.org/, 1999.

[JOV05] H. V. Jagadish, Beng C. Ooi, and Quang H. Vu. BATON: a
balanced tree structure for peer-to-peer networks. In Proceedings
of the 31st international conference on Very large data bases,
VLDB ’05. VLDB Endowment, 2005.

[KBC+00] John Kubiatowicz, David Bindel, Yan Chen, Steven Czer-
winski, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi,
Sean Rhea, Hakim Weatherspoon, Chris Wells, and Ben Zhao.
OceanStore: an architecture for global-scale persistent storage.
In ASPLOS-IX: Proceedings of the ninth international confer-
ence on Architectural support for programming languages and
operating systems, volume 28, New York, NY, USA, December
2000. ACM.

[KGG+06] Sebastian Kruk, Sławomir Grzonkowski, Adam Gzella, Tomasz
Woroniecki, and Hee-Chul Choi. D-FOAF: Distributed Iden-
tity Management with Access Rights Delegation. In Riichiro
Mizoguchi, Zhongzhi Shi, and Fausto Giunchiglia, editors, The
Semantic Web – ASWC 2006, volume 4185 of Lecture Notes in
Computer Science, chapter 15. Springer Berlin Heidelberg, 2006.

[Kif08] Michael Kifer. Rule interchange format: The framework. In
Diego Calvanese and Georg Lausen, editors, Web Reasoning
and Rule Systems, volume 5341 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2008.

[KIT10] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Query-
ing data provenance. In Proceedings of the 2010 ACM SIGMOD

http://www.iso.org/

118 EXTERNAL REFERENCES

International Conference on Management of data, SIGMOD ’10,
New York, NY, USA, 2010. ACM.

[KLL+97] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy,
Matthew Levine, and Daniel Lewin. Consistent hashing and
random trees: distributed caching protocols for relieving hot
spots on the World Wide Web. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, STOC ’97,
New York, NY, USA, 1997. ACM.

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations
of object-oriented and frame-based languages. J. ACM, 42(4),
July 1995.

[Kol05] Phokion G. Kolaitis. Schema mappings, data exchange, and
metadata management. In PODS ’05: Proceedings of the twenty-
fourth ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, New York, NY, USA, 2005. ACM.

[KW94] Brigitte Kröll and Peter Widmayer. Distributing a search tree
among a growing number of processors. In Proceedings of the
1994 ACM SIGMOD international conference on Management
of data, SIGMOD ’94, New York, NY, USA, 1994. ACM.

[LCG+06] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E.
Gay, Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrish-
nan, Timothy Roscoe, and Ion Stoica. Declarative networking:
language, execution and optimization. In SIGMOD, 2006.

[LCG+09] Boon T. Loo, Tyson Condie, Minos Garofalakis, David E. Gay,
Joseph M. Hellerstein, Petros Maniatis, Raghu Ramakrishnan,
Timothy Roscoe, and Ion Stoica. Declarative networking. Com-
mun. ACM, 52(11), November 2009.

[LCH+05] Boon T. Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative
overlays. SIGOPS Oper. Syst. Rev., 39(5), October 2005.

[LFWK09] Senlin Liang, Paul Fodor, Hui Wan, and Michael Kifer. Open-
rulebench: an analysis of the performance of rule engines. In
WWW, 2009.

[LHSR05] Boon T. Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu
Ramakrishnan. Declarative routing: extensible routing with

119

declarative queries. SIGCOMM Comput. Commun. Rev., 35,
August 2005.

[LIJ+13] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris
Kontokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed
Morsey, Patrick van Kleef, Sören Auer, and Christian Bizer.
Dbpedia - a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web Journal, 2013. Under review.

[Lit80] Witold Litwin. Linear hashing: a new tool for file and table
addressing. In Proceedings of the sixth international conference
on Very Large Data Bases - Volume 6. VLDB Endowment, 1980.

[LLM98] Georg Lausen, Bertram Ludäscher, and Wolfgang May. On Ac-
tive Deductive Databases: The Statelog Approach. In Burkhard
Freitag, Hendrik Decker, Michael Kifer, and Andrei Voronkov,
editors, Transactions and Change in Logic Databases, volume
1472 of Lecture Notes in Computer Science. Birkhäuser Basel,
1998.

[LM75] K. Dan Levin and Howard L. Morgan. Optimizing distributed
data bases: a framework for research. In Proceedings of the
May 19-22, 1975, national computer conference and exposition,
AFIPS ’75, New York, NY, USA, 1975. ACM.

[LMO+08] Changbin Liu, Yun Mao, Mihai Oprea, Prithwish Basu, and
Boon T. Loo. A declarative perspective on adaptive manet
routing. In Proceedings of the ACM workshop on Programmable
routers for extensible services of tomorrow, PRESTO ’08, New
York, NY, USA, 2008. ACM.

[LNS94] Witold Litwin, Marie A. Neimat, and Donovan A. Schneider.
RP*: A Family of Order Preserving Scalable Distributed Data
Structures. In Proceedings of the 20th International Conference
on Very Large Data Bases, VLDB ’94, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

[LNS96] Witold Litwin, Marie A. Neimat, and Donovan A. Schneider. LH*
a scalable, distributed data structure. ACM Trans. Database

Syst., 21(4), December 1996.

[LTZ+09] Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou, Zachary G.
Ives, and Boon Thau Loo. Recursive computation of regions and
connectivity in networks. In ICDE, 2009.

120 EXTERNAL REFERENCES

[Lud98] Bertram Ludäscher. Integration of Active and Deductive Database
Rules, volume 45 of DISDBIS. Infix Verlag, St. Augustin, Ger-
many, 1998.

[MAC+12] William R. Marczak, Peter Alvaro, Neil Conway, Joseph M.
Hellerstein, and David Maier. Confluence analysis for distributed
programs: a model-theoretic approach. In Proceedings of the
Second international conference on Datalog in Academia and
Industry, Datalog 2.0’12, Berlin, Heidelberg, 2012. Springer-
Verlag.

[MFF+08] Luc Moreau, Juliana Freire, Joe Futrelle, Robert McGrath, Jim
Myers, and Patrick Paulson. The open provenance model: An
overview. In Juliana Freire, David Koop, and Luc Moreau, edi-
tors, Provenance and Annotation of Data and Processes, volume
5272 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2008. 10.1007/978-3-540-89965-5_31.

[MHB+10] William R. Marczak, Shan Shan Huang, Martin Bravenboer,
Micah Sherr, Boon Thau Loo, and Molham Aref. Secureblox:
customizable secure distributed data processing. In Proceed-
ings of the 2010 ACM SIGMOD International Conference on
Management of data, SIGMOD ’10, New York, NY, USA, 2010.
ACM.

[MMSW07] Maged Michael, Jose E. Moreira, Doron Shiloach, and Robert W.
Wisniewski. Scale-up x Scale-out: A Case Study using
Nutch/Lucene. In Parallel and Distributed Processing Sym-
posium, 2007. IPDPS 2007. IEEE International, 2007.

[MS02] Gerome Miklau and Dan Suciu. Cryptographically Enforced
Conditional Access for XML. In Fifth International Workshop
on the Web and Databases (WebDB, 2002.

[MS03] Gerome Miklau and Dan Suciu. Controlling access to published
data using cryptography. In VLDB ’2003: Proceedings of the
29th international conference on Very large data bases. VLDB
Endowment, 2003.

[MSM+12] Atsuyuki Morishima, Norihide Shinagawa, Tomomi Mitsuishi,
Hideto Aoki, and Shun Fukusumi. Cylog/crowd4u: a declarative
platform for complex data-centric crowdsourcing. Proc. VLDB
Endow., 5(12), August 2012.

121

[MZZ+08] William R. Marczak, David Zook, Wenchao Zhou, Molham Aref,
and Boon T. Loo. Declarative Reconfigurable Trust Management.
In Conference on Innovative Data Systems Research (CIDR),
2008.

[NC03] Anil Nigam and Nathan S. Caswell. Business artifacts: An
approach to operational specfication. In IBM Systems Journal,
vol. 42, no. 3, 2003.

[NCR08] G. H. Nguyen, P. Chatalic, and M. C. Rousset. A probabilistic
trust model for semantic peer to peer systems. In DaMaP
’08: Proceedings of the 2008 international workshop on Data
management in peer-to-peer systems, New York, NY, USA, 2008.
ACM.

[NCW93] Wolfgang Nejdl, Stefano Ceri, and Gio Wiederhold. Evaluating
recursive queries in distributed databases. IEEE Transactions
on Knowledge and Data Engineering, 5(1), February 1993.

[NR09] Juan Navarro and Andrey Rybalchenko. Operational Semantics
for Declarative Networking. In Andy Gill and Terrance Swift,
editors, Practical Aspects of Declarative Languages, volume 5418
of Lecture Notes in Computer Science, chapter 6. Springer Berlin
/ Heidelberg, Berlin, Heidelberg, 2009.

[OAS04] OASIS. Uddi version 3.0.2. http://uddi.org/pubs/uddi_v3.

htm, October 2004.

[OAS07] OASIS. Web services business process execution language
version 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/

wsbpel-v2.0-OS.html, April 2007.

[oI] University of Innsbruck. IRIS – integrated rule inference system.
http://iris-reasoner.org/.

[oUB] Bloom Team of UC Berkeley. BFS – Bloom Filesystem. https:

//github.com/bloom-lang/bud-sandbox/tree/master/bfs.

[ÖV99] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed
Database Systems. Prentice-Hall, 1999.

[PRS09] Juan A. Pérez, Andrey Rybalchenko, and Atul Singh. Cardi-
nality Abstraction for Declarative Networking Applications. In
CAV ’09: Proceedings of the 21st International Conference on

http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://iris-reasoner.org/
https://github.com/bloom-lang/bud-sandbox/tree/master/bfs
https://github.com/bloom-lang/bud-sandbox/tree/master/bfs

122 EXTERNAL REFERENCES

Computer Aided Verification, Berlin, Heidelberg, 2009. Springer-
Verlag.

[Prz90] Teodor C. Przymusinski. The well-founded semantics coincides
with the three-valued stable semantics. Fundam. Inform., 13(4),
1990.

[Rai13] Rails github, 2013. https://github.com/rails/rails/.

[RFC74] RFC675. Specification of internet transmission control program.
http://tools.ietf.org/html/rfc675, December 1974.

[RS09] Royi Ronen and Oded Shmueli. Evaluating very large datalog
queries on social networks. In EDBT ’09: Proceedings of the
12th International Conference on Extending Database Technology,
New York, NY, USA, 2009. ACM.

[Rub] Ruby community. ERB documentation standard. http://

ruby-doc.org/stdlib-2.0.0/libdoc/erb/rdoc/ERB.html.

[Sch95] Douglas C. Schmidt. Reactor: An object behavioral pattern for
concurrent event demultiplexing and dispatching, 1995.

[SKW07] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum.
Yago: a core of semantic knowledge. In Proceedings of the 16th
international conference on World Wide Web, WWW ’07, New
York, NY, USA, 2007. ACM.

[SW85] Domenico Sacca and Gio Wiederhold. Database partitioning
in a cluster of processors. ACM Trans. Database Syst., 10(1),
March 1985.

[TS04] Stephanos A. Theotokis and Diomidis Spinellis. A survey of
peer-to-peer content distribution technologies. ACM Comput.
Surv., 36(4), December 2004.

[Vie86] Laurent Vieille. Recursive axioms in deductive databases: The
query-subquery approach. In Proc. 1st Int. Conf. on Expert
Database Systems, 1986.

[W3C99] W3C. Xsl transformations (xslt) standard version 1.0. http:

//www.w3.org/TR/xslt, November 1999.

[W3C02] W3C. Web services conversation language (wscl) 1.0 standard.
http://www.w3.org/TR/wscl10/, March 2002.

https://github.com/rails/rails/
http://tools.ietf.org/html/rfc675
http://ruby-doc.org/stdlib-2.0.0/libdoc/erb/rdoc/ERB.html
http://ruby-doc.org/stdlib-2.0.0/libdoc/erb/rdoc/ERB.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/wscl10/

123

[W3C04a] W3C. Rdf primer standard. http://www.w3.org/TR/

rdf-primer/, February 2004.

[W3C04b] W3C. Xml schema part 0: Primer standard. http://www.w3.

org/TR/xmlschema-0/, October 2004.

[W3C07a] W3C. Soap version 1.2 part 1: Messaging framework (second edi-
tion) standard. http://www.w3.org/TR/soap12-part1/, April
2007.

[W3C07b] W3C. Web services description language (wsdl) standard version
2.0 part 1: Core language. http://www.w3.org/TR/wsdl20/,
June 2007.

[W3C08a] W3C. Extensible markup language (xml) 1.0 standard. http:

//www.w3.org/TR/REC-xml/, November 2008.

[W3C08b] W3C. Xml signature syntax and processing (second edition)
standard. http://www.w3.org/TR/xmldsig-core/, June 2008.

[W3C09] W3C. Owl 2 web ontology language document overview. http:

//www.w3.org/TR/owl2-overview/, October 2009.

[W3C10] W3C. Xquery 1.0: An xml query language (second edition)
standard. http://www.w3.org/TR/xquery/, December 2010.

[W3C13] W3C. Html 5.1 specification. http://www.w3.org/TR/html51/,
May 2013.

[Wal03] Dan Wallach. A Survey of Peer-to-Peer Security Issues. In
Mitsuhiro Okada, Benjamin Pierce, Andre Scedrov, Hideyuki
Tokuda, and Akinori Yonezawa, editors, Software Security —
Theories and Systems, volume 2609 of Lecture Notes in Com-
puter Science, chapter 4. Springer Berlin / Heidelberg, Berlin,
Heidelberg, June 2003.

[WL82] Paul F. Wilms and Bruce G. Lindsay. A database authorization
mechanism supporting individual and group authorization. In
Distributed data sharing systems: proceedings of the Second
International Seminar on Distributed Data Sharing Systems,
June 1982.

[YHY07] Xiaoxin Yin, Jiawei Han, and Philip S. Yu. Truth discovery
with multiple conflicting information providers on the web. In

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/html51/

124 EXTERNAL REFERENCES

KDD ’07: Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, New York,
NY, USA, 2007. ACM.

[YK00] Guizhen Yang and Michael Kifer. Flora: Implementing an
efficient dood system using a tabling logic engine. In In Inter-
national Conference on Computational Logic, volume 1861 of
LNCS, 2000.

[YKZ03] Guizhen Yang, Michael Kifer, and Chang Zhao. Flora-2: A
rule-based knowledge representation and inference infrastructure
for the semantic web. In In Second International Conference on
Ontologies, Databases and Applications of Semantics (ODBASE,
2003.

[ZFS+11] Wenchao Zhou, Qiong Fei, Shengzhi Sun, Tao Tao, Andreas
Haeberlen, Zachary Ives, Boon Thau Loo, and Micah Sherr.
Nettrails: a declarative platform for maintaining and querying
provenance in distributed systems. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of
data, SIGMOD ’11, New York, NY, USA, 2011. ACM.

[ZST+10] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau
Loo, and Yun Mao. Efficient querying and maintenance of
network provenance at internet-scale. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of
data, SIGMOD ’10, New York, NY, USA, 2010. ACM.

	Acknowledgement
	Résumé en Français
	1 Introduction
	2 State of the Art
	2.1 Distributed Information Systems
	2.1.1 Distributed systems
	2.1.2 Distributed databases
	2.1.3 Data on the Web
	2.1.4 Peer-to-peer systems
	2.1.5 Social networks
	2.1.6 Contribution

	2.2 Knowledge bases
	2.2.1 Processing knowledge
	2.2.2 Datalog
	2.2.3 Distributed datalog
	2.2.4 Provenance and optimization
	2.2.5 Contribution

	2.3 Webdam exchange

	3 Webdamlog language
	3.1 Model of data
	3.1.1 Informal presentation
	3.1.2 Formal definitions

	3.2 Key observations
	3.3 Expressive power
	3.3.1 Traces and simulations
	3.3.2 Expressivity results

	3.4 Convergence of Webdamlog
	3.4.1 Positive Webdamlog
	3.4.2 Strongly-stratified Webdamlog

	4 Webdamlog rule engine
	4.1 Datalog inside
	4.2 Connection between Bud and Webdamlog
	4.2.1 Webdamlog computation on Bud
	4.2.2 Implementing Webdamlog rules

	4.3 Optimization of the evaluation
	4.4 Optimization for view maintenance
	4.4.1 Provenance graphs
	4.4.2 Deletions
	4.4.3 Running the fixpoint

	4.5 Performance evaluation
	4.5.1 Cost of delegation
	4.5.2 Cost of dynamism

	5 Architecture of a Webdamlog peer
	5.1 Peer architecture
	5.1.1 Event-driven system
	5.1.2 Module interactions

	5.2 Wrappers
	5.3 Demonstration
	5.3.1 Wepic application
	5.3.2 Demonstration Scenario
	5.3.3 Access control

	6 User Study
	6.1 Webdamlog tutorial
	6.2 Test
	6.3 Results

	7 Conclusion
	Self references
	External references

