
HAL Id: tel-00908227
https://theses.hal.science/tel-00908227v2

Submitted on 6 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pursuit-evasion, decompositions and convexity on graphs
Ronan Pardo Soares

To cite this version:
Ronan Pardo Soares. Pursuit-evasion, decompositions and convexity on graphs. Other [cs.OH]. Uni-
versité Nice Sophia Antipolis; Universidade federal do Ceará, 2013. English. �NNT : 2013NICE4083�.
�tel-00908227v2�

https://theses.hal.science/tel-00908227v2
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE NICE -
SOPHIA-ANTIPOLIS

ÉCOLE DOCTORALE DES SCIENCES ET
TECHNOLOGIES DE L’INFORMATION ET

DE LA COMMUNICATION

UNIVERSIDADE FEDERAL DO
CEARÁ

PROGRAMA DE MESTRADO E
DOUTORADO EM CIÊNCIA DA

COMPUTAÇÃO

P H D T H E S I S
to obtain the title of

Docteur en Sciences
de l’Université de Nice - Sophia

Antipolis
Mention : Informatique

Doutor em Ciências
pela Universidade Federal do Ceará

Menção: Computação

Defended by

Ronan SOARES

Pursuit-Evasion, Decompositions and
Convexity on Graphs

COATI Project
(UNSA, CNRS, I3S, UMR 7271)

Advisors:
David COUDERT

Nicolas NISSE

ParGO
Departamento de Computação

Advisor:
Cláudia LINHARES SALES

Defended on November 8, 2013

Jury:

Reviewers:
Dimitrios M. Thilikos - Univ. of Athens (Athens, Greece)
Ioan Todinca - Univ. d’Orleans (Orleans, France)
Jayme L. Szwarcfiter - Univ. Federal do Rio de Janeiro (Rio de Janeiro, Brazil)
Examinators:
David Coudert - Univ. Nice Sophia-Antipolis (Sophia Antipolis, France)
David Ilcinkas - Univ. Bordeaux I (Bordeaux, France)
Nicolas Nisse - Univ. Nice Sophia-Antipolis (Sophia Antipolis, France)
Cláudia Linhares Sales - Univ. Federal do Ceará (Fortaleza, Brazil)
Rudini Meneses Sampaio - Univ. Federal do Ceará (Fortaleza, Brazil)
Dimitrios M. Thilikos - Univ. of Athens (Athens, Greece)
Ioan Todinca - Univ. d’Orleans (Orleans, France)





iii

Acknowledgements

First, I am extremely indebted to all my advisers David Coudert, Nicolas Nisse and
Cláudia Linhares Sales, for without their help, this work would not have been done. I
am also grateful for all their teachings and remarks which allowed me to become a better
researcher.

I dedicate this thesis to all my family, specially my parents, Alberto Melo Soares and
Miriam Carmen Pardo Soares. They provided me with every kind of support necessary
for my development and for that I am completely in their debt. I also dedicate this
thesis to fiancée Tássia Gabrielle Ponte Carneiro. I could never thank her enough for all
happiness that she brought into my life and for all the support and understanding she
dedicated to me.

I also give a special thanks to Patricia Lachaume who went beyond the call of duty
and aided me immensely with all my administrative problems and even personal ones.
I would like to give another special thanks to my dear friends Julio César Silva Araújo,
Ana Karolinna Maia de Oliveira and Leonardo Sampaio Rocha. Their assistance and
companionship greatly helped me feeling at home.

I could not mention everyone, but I also thank everyone from MASCOTTE/COATI
for providing a fantastic workplace. I hope they can always keep their joyous nature.

Sophia-Antipolis, France
October 17, 2013





v

Pursuit-Evasion Games, Graph Decompositions and Convexity in Graphs
Abstract:
This thesis focuses on the study of structural properties of graphs whose understanding

enables the design of efficient algorithms for solving optimization problems. We are
particularly interested in methods of decomposition, pursuit-evasion games and the notion
of convexity.

The Process game has been defined as a model for the routing reconfiguration prob-
lem in WDM networks. Often, such games where a team of searchers have to clear an
undirected graph are closely related to graph decompositions. In digraphs, we show that
the Process game is monotone and we define a new equivalent digraph decomposition.
Then, we further investigate graph decompositions. We propose a unified FPT-algorithm
to compute several graph width parameters. This algorithm turns to be the first FPT-
algorithm for the special and the q-branched tree-width of a graph.

We then study another pursuit-evasion game which models prefetching problems. We
introduce the more realistic online variant of the Surveillance game. We investigate the
gap between the classical Surveillance Game and its connected and online versions by
providing new bounds. We then define a general framework for studying pursuit-evasion
games, based on linear programming techniques. This method allows us to give first
approximation results for some of these games.

Finally, we study another parameter related to graph convexity and to the spreading
of infection in networks, namely the hull number. We provide several complexity results
depending on the graph structures making use of graph decompositions. Some of these
results answer open questions of the literature.

Keywords: Graph Searching, Pursuit-Evasion Games, Graph Decompositions, Cops
and Robber, Surveillance Game, Convexity, Hull Number.



vi

Jeux de Poursuite-Evasion, Décompositions et Convexité dans les Graphes
Résumé :
Cette thèse porte sur l’étude des propriétés structurelles de graphes dont la com-

préhension permet de concevoir des algorithmes efficaces pour résoudre des problèmes
d’optimisation. Nous nous intéressons plus particulièrement aux méthodes de décompo-
sition des graphes, aux jeux de poursuites et à la notion de convexité.

Le jeu de Processus a été défini comme un modèle de la reconfiguration de routage.
Souvent, ces jeux où une équipe de chercheurs doit effacer un graphe non orienté sont
reliés aux décompositions de graphes. Dans les digraphes, nous montrons que le jeu de
Processus est monotone et nous définissons une nouvelle décomposition de graphes que
lui est équivalente. Ensuite, nous étudions d’autres décompositions de graphes. Nous
proposons un algorithme FPT-unifiée pour calculer plusieurs paramètres de largeur de
graphes. En particulier, ceci est le premier FPT-algorithme pour la largeur arborescente
q-branché et spéciale d’un graphe.

Nous étudions ensuite un autre jeu qui modélise les problèmes de pré-chargement.
Nous introduisons la variante en ligne du jeu de surveillance. Nous étudions l’écart entre
le jeu de surveillance classique et ses versions connecté et en ligne, en fournissant de nou-
velles bornes. Nous définissons ensuite un cadre général pour l’étude des jeux poursuite-
évasion. Cette méthode nous permet de donner les premiers résultats d’approximation
pour certains de ces jeux.

Finalement, nous étudions un autre paramètre lié à la convexité des graphes et à la
propagation d’infection dans les réseaux, le nombre enveloppe. Nous fournissons plusieurs
résultats de complexité en fonction des structures des graphes et en utilisant des décom-
positions de graphes.

Mots clés : Gendarmes et Voleurs, Jeux de Évasion et Poursuite, Decomposition de
Graphes, Jeu de Surveillance, Convexité, Nombre enveloppe.



vii

Jogos de Perseguição-Evasão, Decomposições e Convexidade em Grafos
Resumo:
Esta tese é centrada no estudo de propriedades estruturais de grafos cujas compreen-

sões permitem a concepção de algoritmos eficientes para resolver problemas de otimização.
Estamos particularmente interessados em decomposições, em jogos de perseguição-evasão
e em convexidade.

O jogo de Processo foi definido como um modelo para a reconfiguração de roteamento
em redes WDM. Muitas vezes, jogos de perseguição-evasão, em que uma equipe de agentes
tem como objetivo limpar um grafo não direcionado, estão intimamente relacionados com
decomposições em grafos. No caso de grafos direcionados, mostramos que o jogo de
Processo é monotônico e definimos uma nova decomposição em grafos equivalente a tal
jogo. A partir de então, investigamos outras decomposições em grafos. Propomos um
algoritmo FPT para calcular vários parâmetros de largura em grafos. Em particular, este
é o primeiro algoritmo FPT para calcular a largura em árvore especial e a largura em
árvore q-ramificada de um grafo.

Em seguida, estudamos um outro jogo perseguição-evasão que modela problemas de
pré-obtenção. Nós introduzimos uma versão mais realista do jogo de Vigilância a versão
on-line. Estudamos a diferença entre o jogo de Vigilância clássico e suas versões conec-
tadas e on-line, fornecendo novos limites para essa diferença. Nós, então, definimos um
modelo geral para o estudo de jogos perseguição-evasão, com base em técnicas de progra-
mação linear. Este método permite-nos dar os primeiros resultados de aproximação para
alguns desses jogos.

Finalmente, estudamos outro parâmetro relacionado com a convexidade e a propa-
gação da infecção em redes, o “hull number”. Nós fornecemos vários resultados de com-
plexidade computacional, dependendo das propriedades estruturais do grafo de entrada
e usando decomposições em grafos. Alguns destes resultados respondem problemas em
aberto na literatura.

Palavras-chave: Procura em Grafos, Jogos de Perseguição-evasão, Decomposição
em Grafos, Jogo de Observação, Convexidade, “Hull Number”.





Contents

Contents ix

1 Introduction 1
1.1 Graph Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Pursuit-evasion Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Main Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Pursuit-Evasion Games and Graph Decompositions 11

2 Pursuit-Evasion Games and Decompositions 13
2.1 Graph Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Graph Searching Games and Decompositions . . . . . . . . . . . . . . . 19
2.3 Directed Graph Decompositions and Directed Graph Searching . . . . . 23
2.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Monotonicity of The Process Game 29
3.1 Process Game and Routing Reconfiguration . . . . . . . . . . . . . . . . 29
3.2 Recontamination Does Not Help to Process a Digraph . . . . . . . . . . 32
3.3 Process Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Graph Width Measures 43
4.1 Partition Functions and Partitioning Trees . . . . . . . . . . . . . . . . 44
4.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Describing Partitioning Trees in a Dynamic Manner . . . . . . . . . . . 53
4.4 Good Representatives of Partitioning Trees . . . . . . . . . . . . . . . . 59
4.5 Algorithm Using Characteristic . . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

II Turn-By-Turn Pursuit-Evasion Games 99

5 Turn-by-Turn Pursuit-Evasion Games 101

ix



x Contents

5.1 Cops and Robbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Eternal Dominating Sets and Vertex Cover . . . . . . . . . . . . . . . . 105
5.3 The Angel Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Surveillance Game 109
6.1 The Surveillance Game . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Cost of Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 Online Surveillance Number . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7 Fractional Turn-by-Turn Pursuit-Evasion Games 127
7.1 Description of a Turn-by-Turn Pursuit-Evasion Game . . . . . . . . . . 127
7.2 Algorithm to Compute a Winning Strategy for player C . . . . . . . . . 129
7.3 Semi-Fractional and Integral Games . . . . . . . . . . . . . . . . . . . . 133
7.4 Applications in Combinatorial Games . . . . . . . . . . . . . . . . . . . 135
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

IIIConvexity 143

8 Convexity in Graphs 145
8.1 Alignments - Types of Convexity . . . . . . . . . . . . . . . . . . . . . . 145
8.2 Algorithmic Aspect of Convexity . . . . . . . . . . . . . . . . . . . . . . 147
8.3 Structural Aspect of Convexity . . . . . . . . . . . . . . . . . . . . . . . 149
8.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9 On the Hull Number of Graphs 153
9.1 Terminology and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2 Bipartite Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.3 Complement of Bipartite Graphs . . . . . . . . . . . . . . . . . . . . . . 159
9.4 Graphs with few P4’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.5 {P5, K3}-Free Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9.6 Reduction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.7 Hull Number via Two Connected Components . . . . . . . . . . . . . . 174
9.8 Bounds For the Hull Number of Graphs . . . . . . . . . . . . . . . . . . 175
9.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10 Conclusion 179

Index 183

Bibliography 187



Chapter 1

Introduction

This thesis is dedicated to the study of structural properties of graphs and how they can
be used to aid the design of efficient algorithms for problems arising in telecommunication
networks. By structural properties, we mainly refer to properties that do not depend on
the representation of the graph. Unfortunately, there is no common formal definition
of a structural property of a graph. We can, however, illustrate this notion with some
examples: one simple example structural property is the exclusion of cycles. That is, the
family of graphs known as forests. Another important structural property is planarity,
which gave rise to the notion of graph with bounded genus. In other words, graph
structural properties are the ones that can be described by either excluding a pattern,
for example forbidding the graph to have some other graph as minor or as a subgraph,
or by enforcing the graph to have some underlying structure, for example be embeddable
into a given surface, have some bounded parameter, or being connected. Note that, the
properties of being embeddable into a given surface and excluding some other graphs as
minors are equivalent.

Since there are little hopes in finding polynomial time algorithms for hard problems
such as NP-complete or PSPACE-complete problems. One possible alternative to tackle
them is to study their hardness when the inputs are restricted to a certain class. That is,
in the case of problems in graph theory, sometimes it is possible to solve, efficiently, hard
problems for some graph classes. For example, while vertex colouring is NP-complete
when the input graph is arbitrary, it becomes trivial in the class of bipartite graphs. In
other words, knowing that the input graph does not have odd cycles, the problem of
computing a proper colouring with minimum number of colors becomes trivial. Another
example can be found in the travelling salesman problem, that is, while this problem is
APX-complete1 for general graphs, it has a polynomial time approximation scheme when
the graph is euclidean and planar.

We investigate problems arising in telecommunication networks by focusing on the
study of three wide and fundamental subjects in graph theory: graph decompositions,
pursuit-evasion games and graph convexity. Our general approach, mainly, is to examine
how graph structures may help understanding or solving problems in these subjects.

1Unless P = NP, there are no polynomial time approximation schemes for problems which are APX-complete.

1



2 Introduction

1.1 Graph Decompositions

Graph decompositions are closely related to graph structural properties. Informally, a
graph decomposition can be described as a family of subsets of vertices, or edges, of the
graph that are organized in a particular manner. For example, in the tree decomposition
[RS84], each subset in this family is a separator and the family is organized in a tree-
like manner. This decomposition allows us to prove properties or to run algorithms for
general graphs using techniques somewhat similar to the ones used for trees. We give
more details later in this section.

Another famous example of graph decomposition, the modular decomposition [Gal67],
is based on the fact that maximal modules2 of a graph can be organized into an hierar-
chical structure.

In general, the main purpose of graph decompositions is to split the graph into smaller
pieces while some properties, depending on the decomposition used, are preserved. This
can be of great help in order to apply techniques based on a divide and conquer paradigm.

One example of such technique is the dynamic programming method. This is a method
for solving problems, by recursively breaking the problem one wants to solve into smaller
sub-problems, solving each sub-problem and, then, combining up the solutions of these
sub-problems. The key ingredients in dynamic programming are the existence of an
efficient algorithm to combine the solutions for each of the sub-problems and a limit on
the amount of different sub-problems.

To illustrate such method we show how to use dynamic programming to compute the
maximum independent set3 of a tree in polynomial time.

Let T = (V, E) be a tree and r ∈ V be any vertex of T . We root T in r. A maximum
independent set of T either contains r, in which case it does not contain any children of
r, or it does not contain r, in which case it can be obtained from the union of maximum
independent sets for each subtree of T rooted on a child of r. The main idea is that we
can combine the solutions for the maximum independent sets of subtrees rooted in each
child of a given node i ∈ V to obtain a maximum independent set for the subtree rooted
at i. The reason that these solutions can be combined is mainly due to the fact that they
overlap only on a single vertex, the root of the subtree. Then, by combining the solutions
for the children of r we have the maximum independent set of T .

There are plenty of other problems that can be approached by using dynamic program-
ming “guided” by graph decompositions. For example, algorithms to solve the maximum
independent set problem, the maximum dominating set problem and minimum vertex
colouring problem were given in [AP89]. Without being extensive, there are also algo-
rithms to solve the tour merging problem [CS03], the call routing problem [ST94] and the
disjoint paths problem [RS95]. In fact, every graph property definable in monadic second-
order logic can be decided in linear time on graphs of bounded tree-width [Cou89]. Albeit
the algorithms are, mostly, polynomial in the size of the input graph, they are exponen-
tial in a parameter of the decomposition of the graph used by the algorithm, namely,
its width, which is, roughly speaking, the cardinality of the greatest subset of the family
defining the decomposition. In other words, these algorithms are polynomial for classes
of graphs which have a bounded width. Often, these algorithms are fixed parameter
tractable (FPT)4 where the parameter is the width of the graph. For example, outer-

2A set of vertices that has the same neighbourhood outside this set.
3An independent set S ⊆ V (G) of a graph G is such that, for any {x, y} ⊆ S, {x, y} /∈ E(G).
4An algorithm is FPT with parameter k, if its time complexity can be bounded by f(k) · nO(1), where n is



Pursuit-evasion Games 3

planar graphs have tree width equal two which is the minimum width among all their
the tree decompositions.

Since many of the algorithms that use graph decompositions have either to be given
the decomposition as input or to compute it, one of the main challenges on graph de-
compositions is computing a decomposition of a graph. Moreover, since the complexity
of these algorithms, sometimes, depends on the width of the decomposition, it is impor-
tant to compute a graph decomposition minimizing its width. Unfortunately, there are
several graph decompositions in which finding such good decomposition is NP-hard. For
example, finding a good tree decomposition [AP89], a good path decomposition [ACP87],
a good branch decomposition [ST94], or a good linear decomposition [Thi00] of a general
graph is NP-hard. On the other hand, a modular decomposition of any graph can be
found in linear time [TCH08].

Graph decompositions are not only important due to their relationship with dynamic
programming methods to solve problems, but also as tools to prove important structural
results in graph theory. As example, we can cite the crucial role of tree decompositions
in the proof of Wagner’s conjecture [RS04] as well the role of the modular decomposition
in the proof of the strong perfect graph theorem [CRST06]. Wagner’s conjecture stated
that the undirected graphs, partially ordered by the graph minor relationship, form a well
quasi-ordering. Planarity, for example, is a structural property and can be characterized
by a set of forbidden minors, which is also a consequence of the Wagner’s conjecture. It is
well known that graphs that are planar are exactly the ones that do not have neither K3,3,
the complete bipartite graph with three vertices in each partition, nor K5, the complete
graph with five vertices, as minors [Kur30].

Due to their importance, one of our goals is to investigate the complexity of computing
graph decompositions. In the literature, there are FPT-algorithms for computing tree,
path, branch, linear, carving or cut decompositions of a graph where the parameter is
the width of the decomposition. Most of these algorithms are based on the dynamic
programming method, but with some technical differences. More precisely, we aim at
investigating if it is possible to design an unified FPT-algorithm for computing all the
aforementioned decompositions, while also including other graph decompositions that
could benefit from such approach.

1.2 Pursuit-evasion Games

The second axis of our research, the pursuit-evasion games, is a collection of games played
by two players, such that one that takes the role of a pursuer while the other takes the
role of an evader. Pursuit-evasion games, often, have a close relationship with graph
decompositions, which will be explained later in this section. In all these games, each
player plays by moving, adding or removing tokens that are on vertices or edges of the
graph. While most of the games share a similar set of rules on how these tokens are
added, moved or removed and on how each of the players win the game, they can differ
significantly.

A classical pursuit-evasion game is the one known as the Helicopter Search, or Node
Search, defined in [ST93]. In this game, cops and a robber occupy vertices of the graph.
Both players, the cops and the robber, always know the other player’s position. While
the cops move by jumping from one vertex to the other in the graph, the robber moves by
following paths free of cops. The objective of the cops is to capture the robber, by moving

the size of the input and f(k) is an arbitrary function depending only on k.



4 Introduction

to its current position while, at the same time, blocking its escape. The robber wins the
game if it is able to avoid capture indefinitely. It is clear that n cops are sufficient to
capture a robber on any graph of order n. If n cops are available, they win by occupying
each vertex of the graph. For some graphs, this amount of cops can be rather excessive.
For example, on any tree two cops are enough to guarantee the capture of the robber.

Hence, one main interest in these games is, usually, to determine the minimum amount
of resources necessary to guarantee the victory for the pursuer, since it it usually trivial
for a pursuer with unlimited resources to win against the evader. For example, in the
case of the the Helicopter Search game, while n cops are able capture any robber in
any graph of order n, two cops cannot guarantee the capture of a clever robber in a
cycle. Unfortunately, answering computing the minimum amount of resources necessary
to ensure the victory of the pursuer is a NP-hard problem for several pursuit-evasion
games [KP86, MHG+81, Thi00, GR95, FGP12] or even PSPACE-hard [Mam13].

These games have a wide variety of applications. Without being exhaustive, we men-
tion some of them. One first example is the search for a deranged explorer in a maze of
caves [Par78]. This problem can be modelled as a pursuit-evasion game by considering
the maze of caves as a graph, the deranged explorer as the evader and the searchers
as the pursuers. This reasoning can also be used to model the problem of eliminating
a virus from a computer network [Als04], by considering the virus as the evader and
“anti-virus programs” as the pursuers. A graph decomposition that can helps solving
the problem of compact routing was designed with the help of a pursuit-evasion game
[KLNS12]. Finally, we can also cite the Process game, which models the problem of
routing reconfiguration in WDM networks [CPPS05], and the Surveillance game, which
models prefetching problems [FGJM+12]. In particular, the Surveillance game was in-
spired by the problem of prefetching web-pages from the world wide web, in order to
minimize the time a web-surfer waits for a web-page to be downloaded.

In addition to their applications, some pursuit-evasion games also have a close rela-
tionship with graph decompositions. For example, the minimum number of cops such
that the cops can always guarantee the capture of a visible robber in the Helicopter
Search game is equal to the tree-width of the graph plus one. This is mainly due to the
monotonicity of some pursuit-evasion games. A pursuer playing monotonously is forbid-
den to put a token on a vertex of the graph after it has removed all its tokens from this
vertex on a previous move. For example, in the Helicopter Search game, this means that
once a cop leaves a vertex, no other cop can occupy this vertex for the remainder of the
game. A pursuit-evasion game is said to be monotone if a pursuer playing in a monotone
way does not need more resources to win against the evader than a pursuer without this
constraint. For example, in the Helicopter Search game, k cops can capture the robber
on a graph if, and only if, k cops playing monotonously can capture the robber on the
same graph. Games that are monotone often have a close relationship with some graph
decompositions [ST93, SB91, KC85]. This is due to (1) the equivalence between mono-
tone strategies for the pursuer and the particular decomposition associated with the game
and (2) the fact that restricting the game to be played only with monotone strategies
does not increase the amount of resources necessary for the pursuer to win. In other
words, monotone strategies for the pursuer are simply a different manner to represent a
particular graph decomposition.

If, on the one hand, monotone games have often a close relationship with some partic-
ular graph decomposition, on the other hand, not all games are monotone. In particular,
some pursuit-evasion games in directed graphs are not monotone [Adl07, KO08], while



Convexity 5

other are [Bar06, YC07].
In either cases, monotone strategies in pursuit-evasion games in directed graphs are

often equivalent to some particular directed graph decomposition. One of the main
challenges is to design graph decompositions for directed graphs that are as powerful as
graph decompositions are to undirected graphs. Graph decompositions, to be considered
“good”, should have two main properties: (1) be algorithmically useful and (2) have nice
structural properties, such as being closed under taking subdigraphs and some form of arc
contractions [GHK+10]. Unfortunately, non-monotone pursuit-evasion games are often
associated with graph decompositions that are not closed under taking subdigraphs and
some form of arc contractions.

Moreover, monotonicity provides a simple certificate to show that a pursuit-evasion
problem is in NP, since a graph decomposition associated with the pursuit-evasion game
can be the certificate, if it has a polynomial size.

We aim at investigating the property of monotonicity in the Process game and its
relationship with directed graph decompositions. We are also interested in other pursuit-
evasion games related to problems in telecommunication networks such as the Surveillance
Game. In particular, we aim at investigating the relationship between the Surveillance
game and its connected version.

1.3 Convexity

In Euclidean spaces, a set S of points is convex if, for every a, b ∈ S, we have that all the
points that lie on a straight line between a and b also belong to S. For example, all simple
regular polygons are convex. Convexity allows us to describe infinite sets efficiently, or
in a compact manner. For example, take any convex set S and let S ′ be the set of its
vertices, then any point x in S can be described as a convex combination of points in S ′

and every convex combination of points in S ′ is a point in S. Hence, convex infinite sets
can be represented by its set of vertices which, hopefully, is not infinite. The last axis of
research studied in this thesis is the concept of convexity applied to graphs.

One classical example of the concept of convexity when applied to graphs is the
geodetic convexity, or the shortest paths convexity. A subset S of the vertices of a graph
is convex if all vertices in a shortest path between two elements of S also belong to S. A
hull set S of a graph G = (V, E) is a subset S of V such that the minimum convex set S ′

that contains S is V , that is, S ′ = V . The (geodetic) hull number of a graph G = (V, E)
is the minimum cardinality of a hull set of G.

The process to obtain a hull set of a graph can be seen as an iterative process as
follows. Start with any subset S of vertices of the graph. Until no more vertices can be
added to S, add to S the vertices of G that lie in any shortest path between any two
vertices of S. S is a hull set of G if, and only if, at the end of this process, S is the vertex
set of G.

One application related to graph convexities is the inference scheme in the normaliza-
tion process of databases [KN13]. If all functional dependencies, in a relational database,
are of the type AB → C and these functional dependencies can be modelled as a graph
where the vertex C is in the middle of a shortest path joining A to B, then every hull set
of this graph is a candidate key5 for this database.

5A candidate key in a database is a set of attributes that can uniquely define a tuple of a table. They play
an important role in the normalization process of a database.



6 Introduction

Another application related to graph convexities, namely the P3-convexity, is the
spread of infection on a network [CDD+10]. During the iterative process of obtaining a
hull set in the P3-convexity, instead of adding vertices to S based on any shortest path,
we only consider shortest paths of length 2. If we assume that the network is represented
by a graph, then, in the spread of infection on a network, a node in the network becomes
infected if at least two of its neighbours are infected. Therefore, the problem of knowing
the minimum number of nodes of a network that are necessary and sufficient to infect all
of its nodes is equivalent to computing the (P3)-hull number of the graph representing
this network.

While the problem of computing the (geodetic) hull number of a graph is NP-hard
[DGK+09], for some particular well structured graphs, this problem can easily be solved.
For example, there are algorithms to compute the hull number of a graph in polynomial
time if the graph is either a cograph, a split graph, an unity interval graph [DGK+09], a
distance hereditary graph or a chordal graph [KN13].

In this thesis, we aim at investigating how graph some structural properties of a graph
affect the hardness of computing its hull number and how these properties can be used to
obtain bounds for it. In particular, we investigate how some graph decompositions, such
as the modular decomposition, can be used to aid in the computation of the hull number
of some graphs.

1.4 Main Contributions and Outline

This thesis is divided in three parts. The first part, formed by Chapters 2, 3 and 4, studies
some pursuit-evasion games, known as graph searching games, and graph decompositions.
The second part of this thesis, formed by Chapters 5, 6 and 7, is dedicated to the study
of turn-by-turn pursuit-evasion games. Lastly, the third part, formed by Chapters 8 and
9, studies the concept of convexity on graphs.

In Chapter 2, we deepen the study of some pursuit-evasion games, known as graph
searching games, and graph decompositions, by formalizing these concepts and stating
some of the most important results in this area.

Chapter 3 is dedicated to the study of a pursuit-evasion game known as the Process
game. We first investigate the role of monotonicity in the Process game. We aim at
answering how useful backtracking is in the problem of routing reconfiguration in WDM
networks. We show that allowing recontamination does not help the searchers. In other
words, we show that the Process game is monotone.

We also design a decomposition of the graph, the Process Decomposition, that is equiv-
alent to monotone strategies for the Process game. Meaning that the problem of routing
reconfiguration can be restated as the problem of computing a Process Decomposition.
The results in Chapter 3 can be found in [NS13].

In Chapter 4, we proceed with the investigation of the problem of computing graph
decompositions. We propose an unified FPT-algorithm to compute several graph decom-
positions (such as, tree decomposition, path decomposition, branch decomposition, linear
decomposition, cut decomposition and carving decomposition). Moreover, this algorithm
is the first to compute the special tree decomposition and any q-branched version of the
aforementioned decompositions. This algorithm is based on the representation of these
decompositions with partitioning functions and a dynamic programming approach based
on an efficient representation of these partitioning functions.



Main Contributions and Outline 7

The second part of this thesis starts with Chapter 5. In this chapter, we properly
define turn-by-turn pursuit evasion games such as the cops and robbers game, the Angel
Problem, the Eternal Dominating Set and the Eternal Vertex Cover, while also giving a
brief survey about these games.

Then, in Chapter 6, we further investigate another pursuit-evasion game, related to
prefetching problems, the Surveillance Game. This is a turn-by-turn game, where the
pursuer plays by marking vertices of the graph and the evader plays by moving along at
most one edge during its turn. The objective of the evader is to reach any vertex devoid
of marks, while the pursuer wants to mark every vertex of the graph before the evader
reaches any unmarked vertex. We define the Online variant of the Surveillance game,
which models the problems of prefetching more realistically by imposing that the pursuer
discovers the graph as the game progresses.

We continue by investigating the relationships between the “classical” Surveillance
game, the Connected Surveillance game and the Online Surveillance game. More pre-
cisely, we aim at answering how big can be the gap between the number of marks per turn
necessary to guarantee a victory for the observer between these games. We show that,
unfortunately, the best online strategy is to mark neighbours of the evader’s position at
each step. For the connected variant, we improve known upper and lower bounds for this
gap. Results in Chapter 6 can be found in [GMN+13].

Then, in Chapter 7, we study general turn-by-turn pursuit-evasion games. We pro-
pose a framework to relax the constraint that tokens used by both players must be
integral. In other words, we allow both players to move and use parts of a token. Pursuit-
evasion games that can be described using this framework includes, but is not limited
to, several variants of the cops and robbers game, the Angel Problem game, the Eternal
Dominating Set game and the Surveillance game. We aim at analysing the behaviour of
such games when the integrality of the tokens for each player, or just for the pursuer, is
relaxed.

We provide an algorithm to decide whether the pursuer has a winning strategy against
the evader for any game that fit in this framework. This is achieved by considering the
game as a convex game and applying linear programming techniques. These fractional
games are also shown to give lower bounds to their integral versions. These lower bounds
also allows us to develop the first approximability results for the Surveillance Game and
the Angel Problem. Some results in Chapter 7 were presented in Algotel2013 [Soa13].

In the first chapter of the third part, Chapter 8, we give a brief survey on the concept
of convexity when applied to graphs.

Then, in Chapter 9 we study the computational complexity of computing the hull
number of a graph in an attempt to pinpoint where does the hardness of computing this
parameter lies. We start by answering an open question in [DGK+09] by showing that
computing the hull number of a bipartite graph is NP-hard. We proceed to consider this
question in other graph classes such as complement of bipartite graphs, (q, q− 4)-graphs
and {P5, K3}-free graphs. We propose polynomial algorithms to compute the hull number
of any graph belonging to these classes. These algorithms are, usually, based on graph
decompositions.

We also propose the first FPT-algorithm for computing the hull number of general
graphs, where the parameter is either their minimum vertex cover or their neighbourhood
diversity. Moreover, the techniques used to design this FPT-algorithm also allows us to
characterize the hull number of the lexicographic products of graphs based on the hull
number of its factors. The results in Chapter 9 are a compilation of the results found in



8 Introduction

[ACG+11a], [AMS+13] and [ACG+11b].
Finally, in Chapter 10, we review the most important results in this thesis, while

proposing directions for future work in these areas.

1.5 Basic Terminology

In this section, common definitions and notations of graph theory, necessary to properly
understand this thesis, are recalled. For more definitions, we refer the reader to [BM08].

An undirected graph G = (V, E) is defined by a non-empty set, V (or V (G)) of
elements called vertices, a set E (or E(G)) of edges and a function ρG : E → (V × V )
that attributes a non-ordered pair of vertices of G to each edge in E. To simplify the
notation, if e ∈ E and ρG(e) = (u, v), then we write e = (u, v) or e = uv, in the case that
there is no ambiguity. Two vertices u and v are adjacent or neighbours, if there exists an
edge uv in E. The extremities of an edge uv ∈ E are u and v. If u and v are extremities
of e, then e is incident to u and v. If uv ∈ E and u = v, we say that e is a loop. If there
are more than two edges with the same extremities, we say that they are multiple edges.
A graph G = (V, E) without loops or multiple edges and with finite V is called a simple
graph. In this case, the function ρG can be omitted from the description of the graph.

If the set of edges is formed by ordered pairs, we say that the graph is an oriented
graph, a directed graph or, simply, a digraph.

The degree, d(v), of a vertex v is the number of edges that are incident to v, each loop
being counted twice. The smallest (resp. biggest) degree of a vertex in G is denoted by
δ(G) (resp. ∆(G)). The neighbourhood of a vertex v in G = (V, E) is the set N(v) = {u |
(u, v) ∈ E}. If S is a subset of V , then N(S) =

⋃

v∈S N(v).
In a directed graph G = (V, E), the out-neighbourhood, N+(v), of a vertex v is given

by {u | (v, u) ∈ E} and the in-neighbourhood, N−(v), of v is given by {u | (u, v) ∈ E}.
The out-degree, d+(v), of a vertex v is given by d+(v) = |N+(v)|. Similarly, the in-degree,
d−(v), of v is given by |N−(v)|.

A digraph G = (V, E) is symmetric, if for every edge (u, v) ∈ E there is an edge
(v, u) ∈ E. The underlying graph of a directed graph G = (V, E) is the non-oriented
graph G′ = (V ′, E ′) such that V ′ = V and E ′ = {(u, v) | u 6= v and either (u, v) ∈ E(G)
or (v, u) ∈ E}.

Let G = (V, E) and G′ = (V ′, E ′) be two graphs. We say that G′ is a subgraph
G, if V ′ ⊆ V and E ′ ⊆ E. If G′ is a subgraph of G and V ′ = V , then we say that
G′ is a spanning subgraph of G. If V ∗ is a subset of V , then G[V ∗] = (V ∗, E∗), where
E∗ = {(u, v) | u, v ∈ V ∗ and (u, v) ∈ E}, is the subgraph of G induced by V ∗. Similarly,
if E∗ is a subset of E, then G[E∗] = (V ∗, E∗), where V ∗ = {v | (u, v) ∈ E∗}, is the
subgraph induced by the edges E∗.

A simple graph G = (V, E) is complete, if (u, v) ∈ E for all u, v ∈ V . For every n ≥ 1,
Kn denotes the complete graph with n vertices. A stable set, or independent set, is a
subset V ′ of V such that there are no edges in G[V ′].

A simple path P = (v1, e1, v2, e2, . . . , ep−1, vp), in a graph G = (V, E), is an alternated
sequence of vertices and edges of G with p ≥ 1 such that ei = (vi, vi+1), for all i ∈ [1, p−1],
and no vertices nor edges are repeated in P . The length of a path P is the number of its
edges. When G is a simple graph, P can be determined by its vertices. The extremities
of a path P are its first and last vertices and all its other vertices are called internal. A
cycle is defined in a similar manner to a path, with the exception that its extremities are



Basic Terminology 9

adjacent. We say that G contains a Pn (resp. Cn), if it contains a path (resp. cycle) of
length n (resp. n− 1) as subgraph.

In a graph G = (V, E), the distance, dist(u, v), between two vertices u and v is the
minimum length of a path between u and v, when there are no paths between u and v,
then dist(u, v) =∞. The diameter of a graph G = (V, E) is given by maxu,v∈V dist(u, v).
The girth of a graph G = (V, E) is the minimum length of a cycle in G.

Two vertices u and v of G are said to be connected, if there is a path between u and
v. A graph G is said to be connected, if all pairs of vertices are connected, that is, if
diam(G) <∞. A connected maximal subgraph of G is called a component of G.

To help the reader, more specific definitions will be given along the text as they
become necessary.





Part I

Pursuit-Evasion Games and Graph
Decompositions

11





Chapter 2

Pursuit-Evasion Games and

Decompositions

In this chapter, we present some of the most important results concerning graph decom-
positions and pursuit-evasion games on graphs.

We start by giving an overview on some graph decompositions, their applications
and the hardness of computing graph decompositions. Then, we explain the relationship
between some pursuit-evasion games, known as graph searching games, and graph de-
compositions. We finish this chapter by surveying motivations and hardness of problems
related directed graph decompositions and pursuit-evasion games on directed graphs.

2.1 Graph Decompositions

As seen in Chapter 1, graph decompositions is a subject that has several of both al-
gorithmic and theoretical applications. In this section, we give a brief survey on the
computational complexity of computing graph decompositions for general graphs.

Tree/Path Decomposition

One of the most famous graph decomposition, due to its role in the graph minors theory
developed by Robertson and Seymour [RS83, RS04] and its algorithmic applications, is
the tree decomposition.

A tree decomposition (T,X ) of a graph G = (V, E) is a tree T together with a family
X = (Xt)t∈V (T ) of subsets (or bags) of V , such that:

1.
⋃

t∈V (T ) Xt = V ,

2. for any edge e = {u, v} ∈ E, there is t ∈ V (T ) such that u, v ∈ Xt, and

3. for any v ∈ V , the vertices in S = {t | v ∈ Xt} induce a subtree of T .

The width of (T,X ) is the value of maxt∈V (T ){|Xt|} − 1 and the tree width, tw(G), of
a graph G is the minimum width among all its tree decompositions. Figure 2.1 shows an
example of a tree decomposition of a graph.

If T is restricted to be a path, we say that (T,X ) is a path decomposition of G, and
the path width, pw(G), of G is the minimum width among its path decompositions. One

13



14 Pursuit-Evasion Games and Decompositions

a b

c

d e

f

g

h
(a) Graph.

b
c e

a
c b

c
d e

b
e g

b
g f

g
e h

(b) Tree Decomposition.

Figure 2.1: An example of tree decomposition of a graph. Vertices of the tree and its corre-
sponding bag are represented by rectangles. Since each bag has size three, the width of this
decomposition is two.

simple remark is that tw(G) ≤ pw(G), for any graph G, since any path decomposition of
G is also a tree decomposition of G. On the other hand, in [Bod98], Bodlaender showed
that pw(G) ≤ tw(G)O(log n) for any graph G of order n.

One of the main reasons to study tree and path decompositions is that many problems
in graph theory which are NP-complete in general become tractable when restricted to
graphs with bounded tree width. Typically, these algorithms are based on a dynamic
programming approach guided by a given tree decomposition of the input graph with
running time that is polynomial in size of the graph and, at least, exponential in the tree
width of the given decomposition. Hence, if the family of graphs has tree width bounded
by a constant, then these algorithms run in polynomial time for any graph of this family.

Most of these algorithms follow a similar pattern. In the case of algorithms guided
by a tree decomposition, they are either given a tree decomposition (T,X ) of the graph
as input or start by building a tree decomposition of the graph. Then, after choosing
one vertex of the tree T as root, for each vertex v of the tree, let Tv be the subtree of T
induced by v and its children. These algorithms proceed to compute a table, for each v
in T , representing solutions to the subgraph induced by the vertices in any bag of V (Tv).
The solution of the problem, then, can be found by looking at the table of the root node.

By exploiting the fact that bags are separators of the input graph, the complexity of
computing such tables are, often, polynomial (or even linear) in the number of vertices
of the graph, but exponential on the width of the given tree decomposition or the tree
decomposition constructed.

Thus, most of these algorithms are FPT where the parameter is either the tree width
of the input graph, in the case the algorithm starts by computing the tree decomposition,
or the tree width given as input to the algorithm. There are several problems that can be
solved by this method such as the Hamiltonian circuit, the maximum independent set,
the minimum dominating set problem or minimum vertex colouring problem [AP89].

In fact, a well celebrate result of Courcelle states that all problems which can be
formulated in Monadic Second Order Logic (MSOL) can be solved in linear time on
graphs of bounded tree width [Cou89].

Thus, an important challenge consists in computing tree decompositions of graphs
that have small widths. Unfortunately, deciding if tw(G) ≤ k [ACP87] and if pw(G) ≤
k [OMK+79] are NP-complete problems.

If, on the one hand, the problem of deciding if tw(G) ≤ k or if pw(G) ≤ k is hard,
on the other hand, in their seminal work on graph minors [RS83, RS04], Robertson and



Graph Decompositions 15

Seymour give a non-constructive proof of the existence of a O(n2) decision algorithm for
the problems of deciding whether a graph belongs to some minor-closed class of graphs.
An immediate consequence of this is the existence of polynomial time algorithms for
deciding whether a graph has tree width or path width at most k, where k is a fixed
parameter.

Bodlaender and Kloks [Bod96] proposed a FPT-algorithm to compute a tree decom-
position or a path decomposition of a graph G with width tw(G) or pw(G) respectively.
This algorithm is based on a dynamic programming approach from a tree decomposition
of the input graph and runs in linear time on its number of vertices. However, its com-
plexity is a function more than exponential1 on the tree width of the input graph and
the width of the given tree decomposition. Due to this more than exponential function,
this algorithm is rather impractical even for very small values of k.

Therefore, great efforts have been made to design good approximation algorithms for
computing tree decompositions of small width [BGHK95, Klo94]. In particular, Feige et
al. proposes a polynomial time algorithm that constructs a tree decomposition of the
input graph with width O

(

tw(G)
√

log tw(G)
)

[FHL05].

Special and q-branched Tree Decompositions

One of the consequences of the aforementioned result of Courcelle [Cou89] is that there
are finite deterministic automatas for checking monadic second-order sentences on graphs.
However, these automatas have size hyper-exponential on the tree width of the graph.

Then, in an attempt to reduce the size of these automatas, the special tree decompo-
sition was introduced by Courcelle in [Cou10]. Special tree decompositions can be seen
roughly as a mid-ground between path decompositions and tree decompositions.

Formally, the special tree decomposition (T,X ) of a graph G = (V, E) is a rooted
directed tree2 T together with a family X = (Xt)t∈V (T ) of subsets (or bags) of V , such
that:

1.
⋃

t∈V (T ) Xt = V ,

2. for any edge e = {u, v} ∈ E, there is t ∈ V (T ) such that u, v ∈ Xt, and

3. for any v ∈ V , the vertices in S = {t | v ∈ Xt} induce a directed path in T .

The width of (T,X ) is the value of maxt∈V (T ){|Xt|} − 1 and the special tree width,
stw(G), of a graph G is the minimum width among all its special tree decompositions.
Figure 2.2 shows an example of a special tree decomposition of a graph.

A simple remark is that tw(G) ≤ stw(G) ≤ pw(G), since any path decomposition can
be transformed into a special tree decomposition with same width, and any special tree
decomposition can be transformed into a tree decomposition with the same width.

The problem of deciding if stw(G) ≤ k is NP-complete, since, for any co-bipartite
graph G, pw(G) = stw(G) = tw(G) [Mö96] and deciding if tw(G) ≤ k is NP-complete
[ACP87]. On the other hand, from the fact that the class of graphs with special tree
width at most an integer k is minor-closed, there exists a FPT algorithm to compute
stw(G) for any graph G, where the parameter is stw(G).

1A function f(x) is more than exponential in x, if f(x) 6= O(kx) for any integer k.
2A rooted directed tree T is a rooted tree such that every arc is directed from the root to the leaves of T .



16 Pursuit-Evasion Games and Decompositions

a b

c d

e f

g

h

i

jk
(a) Graph.

a b

c d

root

a
b e

e
b f

d
g h

c
i j

k
i j

(b) Special Tree Decomposition.

Figure 2.2: An example of a special tree decomposition of a graph. Vertices of the directed tree
and its corresponding set are represented by rectangles. Since the bag of the root has size four,
the width of this decomposition is three.

Another variant of the tree decomposition, the q-branched tree decomposition, was
introduced by Fomin et al. [FFN05]. This decomposition encompasses both path decom-
positions and tree decompositions as it will be latter explained in this section.

A node of a tree is said to be a branching node if it has degree at least three. A rooted
tree T , with root r, is said to be q-branched if there are at most q branching nodes in
each path between r and a leaf of T . A tree decomposition (T,X ) of a graph G is said
to be q-branched if T is q-branched. Then, the q-branched tree width twq(G) of a graph
G is the minimum width of all its q-branched tree decompositions.

The concept of q-branched tree decomposition encompasses both the concept of path
decomposition and tree decompositions. Path decomposition are exactly the 0-branched
tree decompositions, while tree decompositions are ∞-branched tree decompositions.
Therefore, tw0(G) = pw(G) and tw∞(G) = tw(G).

The hardness of deciding if a graph G has twq(G) ≤ k is at least the same of deciding
if a graph G has tw0(G) ≤ k or if tw∞(G) ≤ k, which are both NP-complete. However,
for fixed q ∈ N

∗, it is unknown if this problem is NP-complete.
Similarly to the other parameters mentioned thus far, the class of graphs with q-

branched tree width at most an integer k is minor-closed, hence there exists a FPT-
algorithm for each q ∈ Z ∪ {∞} for computing twq(G) where the parameter is twq(G).

Albeit, the existence of FPT-algorithms for the decision problems related to the special
tree width and the q-branched tree width is guaranteed, to the best of our knowledge
there are no known explicit algorithms for that purpose.

Branch/Linear Decomposition

The notion of branch width has a close relationship to the one of tree width, since the
branch width of a graph differs from its tree width by at most a multiplicative constant
factor [BT97]. From the algorithmic standpoint, a branch decomposition also reflects
some optimal tree structure arrangement of the graph it decomposes, hence it is possible
to have algorithmic applications analogous to those of the tree decomposition.

A branch decomposition of a graph G = (V, E) is a pair (T, σ), where T is a tree with
vertices of degree at most 3 and σ is a bijection from the set of leaves of T to E. The
width of an edge e in T is the number of vertices v in V such that there are leaves t1

and t2 in T which are in different components of T [E(T ) \ {e}] with σ(t1) and σ(t2) both



Graph Decompositions 17

incident with v. The width of (T, σ) is given by the maximum width over all edges of T .
Then, the branch width, bw(G), of a graph G is the minimum width over all its branch
decompositions. If |E(G)| ≤ 1, the branch width of G is zero by definition. Figure 2.3
show an example of a branch decomposition of a graph.

a

c
i

m

b

j

d k

e

l

f

g

h

(a) Graph

i j

c

k

e

f

g

h

a b

d l

m

(b) Branch Decomposition

Figure 2.3: A graph and its branch decomposition. The width of each edge in this branch
decomposition is two, hence the width of this decomposition is two.

In order to define linear width, let G = (V, E) be a graph with |E| = m. The linear
width, lw(G), of G is defined to be the least integer k ≥ 0 such that the edges of G can be
arranged in a linear ordering (e1, . . . , em) in such a way that for every i = 1, . . . , m − 1,
there are at most k vertices incident to edges that belong both to (e1, . . . , ei) and to
(ei+1, . . . , em).

Linear orders over the edges of a graph and branch decompositions have a relationship
that resembles the one between tree decompositions and path decompositions. A linear
order (e1, . . . , em) of the edges of a graph G = (V, E), with m = |E|, can be described
by a branch decomposition (T, σ) in the following manner. The tree T is obtained by
starting with a path P = (v1, . . . , vm) and then, for each i ∈ [1, m], we add a vertex v′

i

and an edge between vi and v′
i. Then, for each i ∈ [1, m], map v′

i to ei. Therefore, if
lw(G) ≥ 2 the linear width of a graph G is equal to the minimum width over all branch
decompositions (T, σ) of G such that T is a caterpillar3. Figure 2.4 shows an example of
a linear ordering over the edges of a graph represented by a branch decomposition.

As with tree decompositions, branch decompositions can be used as the basis of dy-
namic programming algorithms for many NP-hard optimization problems, one exam-
ple being the travelling salesman problem [CS03]. Sometimes, the branch decomposi-
tion might work even better than the tree decomposition in the development of FPT-
algorithms as argued in [FT06]. This happens because algorithms using the branch
decomposition to solve a particular problem might have a better complexity which is
partly based on the width of the branch decomposition than an algorithm, for this same
problem, based on the tree decomposition.

Therefore, it is important to efficiently construct branch and linear decompositions.
Unfortunately, the problems of deciding if bw(G) ≤ k [ST94] and lw(G) ≤ k [Thi00] are
NP-complete. However, for planar graphs, the branch width can be computed exactly in
polynomial time [ST94], this in contrast with the tree width for planar graphs whose the
complexity is an open problem.

Fortunately, since the classes of graphs with branch width or linear width at most
k, for any k, are minor closed, we also have that polynomial time algorithms exist for

3A caterpillar is a 1-branched tree



18 Pursuit-Evasion Games and Decompositions

a

c
i

m

b

j

d k

e

l

f

g

h

(a) Graph.

a b c d e f h j k l m

(b) Branch Decomposition.

Figure 2.4: The linear decomposition, defined by the ordering (a, b, c, d, e, f, g, i, j, k, l, m), of
the graph in sub-figure (a) is represented by the branch decomposition shown in sub-figure (b).

deciding whether a graph has branch width or linear width at most k, where k is a fixed
parameter. In fact, Bodlaender and Thilikos proposed linear time algorithms for deciding
if the branch width [BT97] and the linear width [BT04] of a graph is at most a constant
k. Moreover such algorithms successfully constructs a branch decomposition or a linear
ordering with width at most k, in case they exist. Techniques used in these algorithms are
based on the ones used in the algorithms for computing the tree and path decomposition
of Bodlaender and Kloks in [BK96].

Carving/Cut Decomposition

The concepts of carving and cut decompositions are analogous to the concepts of branch
and linear decompositions, when instead of mapping or ordering edges, we map or order
vertices of the graph.

Formally, a carving decomposition (T, σ) of a graph G = (V, E) is a pair (T, σ), where
T is a tree with vertices of degree at most 3 and σ is a bijection from the set of leaves
of T to V . The width of an edge e in T is the number of edges e′ in E such that there
are leaves t1 and t2 in T in different components of T [E(T ) \ {e}] with σ(t1) and σ(t2)
both incident to e′. The width of (T, σ) is given by the maximum width over all edges
of T . Then, the carving width, carw(G), of a graph G is the minimum width over all its
carving decompositions.

To formally define the cut width of a graph, let G = (V, E) be a graph with |V | = n.
The cut width cw(G) of G is defined to be the minimum integer k ≥ 0 such that the
vertices of G can be arranged in a linear ordering (v1, . . . , vn) in such a way that for
every i = 1, . . . , n− 1, there are at most k edges incident to vertices that belong both to
(v1, . . . , vi) and to (vi+1, . . . , vm).

Cut width and carving width share the same relationship as the linear width and the
branch width. That is, for every graph G such that cw(G) ≥ 2, each linear order on the
vertices of G can be represented by a carving decomposition (T, σ) of G, such that T is
a caterpillar.

The decision problems related to cut width, commonly known as the Minimum Cut
Linear Arrangement, and to the carving width are both NP-complete [MS88, ST94].
Fortunately, similarly to their counterparts, the classes of graphs with carving width or
cut width at most k are minor-closed, which guarantees the existence of an FPT-algorithm



Graph Searching Games and Decompositions 19

to decide if a graph has carving width or cut width at most k where k is the parameter.
In fact, Bodlaender et al. [BST00] proposed an FPT-algorithm, with parameter k, that
runs in linear time on the number of vertices of the input graph, to decide if the cut
width or the carving width of said graph is at most k.

Relations Between Graph Widths

In this section we already mentioned relationships between some graph widths. Now, we
further examine these relationships in Table 2.1.

Table 2.1: Table showing relationships among graph width parameters. These are true for any
simple graph G and any q ≥ 0.

Inequality Reference

tw(G) ≤ twq(G) (By definition)
tw(G) ≤ 3 bw(G)/2 [RS91]
tw(G) ≤ stw(G) [Cou10]
tw(G) ≤ 3 carw(G) [Thi00]
tw(G) ≤ pw(G) (By definition)
pw(G) ≤ O(tw(G) log |V (G)|) [Bod98]
pw(G) ≤ cw(G) [Thi00]
pw(G) ≤ lw(G) [BT04]

Since the tree width of a graph is at most its path width, Table 2.1 also indicates that
all the aforementioned widths are upper bounds for the tree width.

2.2 Graph Searching Games and Decompositions

In this section, we present some pursuit-evasion games known as graph searching games.
These games have a close relationship with graph decompositions as it will be explained
further.

One common characteristic among most graph searching games is that the game is
played simultaneously by the two players. Meaning that each player may make its moves
at any point during the game.

We start by exploring the Node Search game and its relationship with the tree and
path decompositions.

Node Search, Monotonicity and Graph Decompositions

The Node Search (or Helicopter Search), defined by Seymour and Thomas [ST93], is one
of the most famous graph searching games. This is mainly due to its close relationship
to the tree decomposition as it will be further explained in this section.

In the Node Search game, the two players are the cops and the robber. The cops are
tokens that stand at vertices of the graph while the robber is one token that also stands at
vertices of the graph. Cops move by “boarding an helicopter” and flying from one vertex
to another vertex of the graph. In other words, to move from one vertex to another vertex
of the graph, a cop must remove itself from the graph for an amount of time that is not
instantaneous. The robber can, at any time, move from its current position to another
if there is a path between its current position and its destination that does not contain
any cop. If the robber can move, its movement is considered instantaneous. The cops



20 Pursuit-Evasion Games and Decompositions

win, if a cop is able to land on the vertex the robber currently stands and the robber
cannot escape. In other words, the cops win the game, if they are able to capture the
robber. The robber wins, if it is able to avoid capture indefinitely. It is clear that n cops
are sufficient to capture a robber in any graph of order n by occupying each vertex of the
graph. Hence, the question is what is the minimum number of cops such that the cops
can always guarantee the capture of the robber.

There are two main versions of the Node Search, depending on whether the cops have
knowledge of the current position of the robber. In the visible Node Search the cops know
the position of the robber at all times, while in the invisible Node Search the cops do not
know the position of the robber, but when they capture it. Let nsv(G), the visible node
search number , and nsi(G), the invisible node search number , be the minimum number of
cops necessary to guarantee that the cops can always win against the robber in a graph
G in the visible and invisible Node Search respectively. The first relation between graph
searching games and graph decompositions is that, for any graph G, nsv(G) ≤ tw(G) + 1
and nsi(G) ≤ pw(G) + 1. The proofs for these inequalities are not very hard, since tree
and path decompositions offer a natural way of searching a graph for the robber as can
be seen in Figure 2.5.

A strategy for the cops is a sequence of movements, which may be based on the current
position of the robber if the cops have such knowledge, that describes where each cop
should move. A strategy is winning, if by following this strategy the cops are guaranteed
to win the game against the robber. As defined in Chapter 1, strategies for the cops
are monotone, if once a cop leaves a vertex, no other cop occupies this vertex for the
remainder of the game. Equivalently, a strategy is monotone, if the area reachable by the
fugitive never increases. One main characteristic of strategies designed by sequentially
occupying bags of a tree/path decomposition is that these strategies are monotone as seen
in Figure 2.5. Another main question in graph searching is if, by restricting the cops to
play with only monotone strategies, we increase the number of cops necessary to capture
the robber. If the answer is no, then we say that the graph searching game in question is
monotone. Normally, monotonicity plays a major role in proving that a graph searching
game is in NP, since a monotone strategy provides a certificate that can be checked in
polynomial time. Another reason for the importance of monotonicity is that monotone
games are, often, equivalent to some particular graph decomposition.

The invisible Node Search was first shown to be monotone in [KP86]. Moreover,
by combining this with the results in [Kin92, Mö90], we have that, for any graph G,
nsi(G) = pw(G) + 1. As consequence, we have that computing nsi(G) is as hard as
computing pw(G).

The visible Node Search is also monotone as it was shown by Seymour and Thomas
in [ST93]. In fact, they prove the monotonicity by showing a sequence of equivalences
that results in nsv(G) = tw(G) + 1 for any graph G, which also proves that the decision
problem associated with nsv(G) is NP-complete.

Other Searching Games and Graph Decompositions

There are several variants of graph searching games depending on conditions of capture,
restrictions on the behaviours of players, whether the position of the robber is known for
the cops, etc. These variants are mainly motivated by problems in practice or inspired
by theoretical studies in Graph Theory such as graph decompositions.

The first graph searching game, the Edge Search game, was introduced by Parsons



Graph Searching Games and Decompositions 21

a b

c

d e

f

g

h
(a) Graph.

b
c e

a
c b

c
d e

b
e g

b
g f

g
e h

(b) A tree decomposition.

a b

c

d e

f

g

h

c

c

c

r

(c) The cops are placed in b, c and e.
the robber moves to g

b
c e

a
c b

c
d e

b
e g

b
g f

g
e h

(d) The bag occupied by the cops is greyed out.

a b

c

d e

f

g

h

c

c

c

r

(e) The cop in c moves to g, The robber
moves to f

b
c e

a
c b

c
d e

b
e g

b
g f

g
e h

(f) When moving from c to g, the vertices b and
e separates the graph. Then, the robber must
move to either f or g.

a b

c

d e

f

g

h

c

c

c

(g) The cop in e moves to f, The robber
cannot flee from f and its captured

b
c e

a
c b

c
d e

b
e g

b
g f

g
e h

(h) When moving from e to f, the robber cannot
escape.

Figure 2.5: This scheme shows how a robber in the Node Search game can be captured with
the aid of a tree decomposition of the graph.

[Par78]. This game was motivated by the problem of finding a spelunker4 who is lost
and wandering unpredictably in a system of caves. The Edge Search game differs from
the Node Search game by three factors: the placement of the robber, the rules for the
movements of the cops and the condition of capture of the robber. The robber is able to

4A spelunker is someone who makes a hobby of exploring and studying caves.



22 Pursuit-Evasion Games and Decompositions

stand either in vertices or edges of the graph. The cops along with being able placed on
a vertex or removed from a vertex can also slide through an edge of the graph. That is if
e = (u, v) is an edge and there is a cop currently standing at u, then it can move through
edge e to v. The robber is captured, if cannot escape a cop landing or sliding through
the position it currently stands.

Let the invisible edge search number , esi(G), be the minimum number of cops neces-
sary to guarantee the capture of an invisible robber in the Edge Search game on a graph
G. One natural question that arises is if there is any relationship between the values
esi(G) and nsi(G).

An answer to this question is due to Bienstok and Seymour [SB91]. They showed
that, for any graph G, nsi(G) − 1 ≤ esi(G) ≤ nsi(G) + 1. Roughly, the reason behind
this is that the rule of sliding through an edge (u, v) can be interchanged by adding an
extra cop at v and then removing a cop from u. Examples showing that these inequalities
are tight and can be found in complete graphs. For any complete graph of order n ≥ 2,
nsi(G) = n and esi(G) = n− 1.

The first proof that invisible Edge Search is monotone is due to Lapaugh [LaP93].
Then, in [SB91], Bienstok and Seymour proposed a method that gives a succinct proof
for the monotonicity of the invisible Edge Search. In order to show the monotonicity of
the invisible Edge Search, they first introduced another variant of the graph searching
problem, the Mixed Search. Then, they showed that the invisible mixed search is mono-
tone, which implies the monotonicity of both the invisible Edge Search and the invisible
Node Search.

The Mixed Search differs from the Edge Search only in the capture conditions of the
robber. In the Mixed Search, the robber can be captured either if a cop lands on the
vertex where the robber currently stands, if there are cops in both endpoints of the edge
currently occupied by the robber, or if a cop slides through the edge currently occupied
by the robber and it can not escape. That is, the robber is captured in the Mixed Search
whenever it is captured in the Node Search game, in the Edge Search game, or if it
stands on a vertex while both its endpoints are occupied by cops. Let invisible mixed
search number , msi(G), be the minimum number of cops necessary to guarantee the
capture of an invisible robber in the Mixed Search game on a graph G.

Invisible mixed search has a close relationship with the invisible node search and the
invisible edge search. In [SB91], it was shown that msi(G) ≤ esi(G) ≤ msi(G) + 1 and
that msi(G) ≤ nsi(G) ≤ msi(G) + 1.

The edge search numbers and the mixed search numbers have a close relationship to
the path width and tree width, due to their correlation with the node search numbers.
However, there are graph decompositions which are, sometimes, more closely related with
these parameters.

In particular, for every graph G, the invisible mixed search number of G was shown
to be “equivalent” to the proper path width of G [TUK95]. A path decomposition (P,X )
of G is said to be proper if for every Xi, Xj, Xk in X none of which are subsets of the
other. Therefore, the proper path width ppw(G) of a graph G is the minimum width over
all proper path decompositions of G. Then, msi(G) = ppw(G) + 1 [TUK95].

In the case of the Edge Search, Makedon and Sudborough showed a relationship be-
tween the cut width of a graph and its invisible edge search number. In other words, they
showed that, for any graph G with maximum degree ∆, esi(G) ≤ cw(G) ≤ ⌊∆/2⌋(esi(G)−
1) + 1 [MS89]. This implies that for any graph G with maximum degree 3 we have that
esi(G) = cw(G).



Directed Graph Decompositions and Directed Graph Searching 23

The discussion up to now, implies that graph searching games are monotone in general.
Is it true that requiring the cops to play in a monotone manner does not increase the
number of cops for all graph searching games? The answer to this question is no for
both the connected visible Node Search [FN08] and the connected invisible Edge Search
[YDA09]. A connected graph searching game restricts the cops to play in such a way that
the subgraph not reachable by the robber is connected in every step of the game. While
the connected visible or invisible Node Search are not monotone, in [BFST03], it was
shown that the internal connected invisible Edge Search is monotone. An Edge Search
game is said to be internal, if cops cannot be removed from a vertex. That is, once a cop
first occupies any vertex it can only move to other vertices by “sliding” through edges of
the graph. A cop cannot move by “boarding an helicopter” and latter “descending” on
another vertex, it must move through the edges of the graph.

In [YDA09], Yang et al. investigated the cost of monotonicity in the connected invisible
Edge Search. They show that restricting the cops to play monotonously can increase the
number of cops by an arbitrary amount. Then, Fraigniaud and Nisse showed an infinite
family of graphs where restricting monotonicity on the connected visible Edge Search
increases the number of cops by one [FN08].

Often, one of the open questions regarding graph searching games that are not mono-
tone is if the associated decision problems are in NP. Since winning strategies that are
not monotone can take an arbitrary large, albeit finite, number of steps in order to cap-
ture the robber, these strategies cannot be used as a certificate to show that the graph
searching problem in question is in NP.

Due to their close relationship to graph decompositions, graph searching games can be
considered as another approach into designing powerful graph decompositions. However,
all decompositions and graph searching games presented up to this point are concerned
only with undirected graphs. Then, one natural question that arises is how can these
concepts be extended to directed graphs.

In the next section we explore the challenges associated with extending the notion of
graph decompositions and graph searching games to directed graphs.

2.3 Directed Graph Decompositions and Directed Graph
Searching

During the last few years, an important research effort has been done in order to design
graph decompositions for directed graphs that are as powerful as the path or the tree
decompositions are for undirected graphs. A graph decomposition, to be considered
powerful, should have two main properties: (1) be algorithmically useful and (2) have
nice structural properties such as being closed under taking subdigraphs and some form
of arc contractions [GHK+10]. Because graph searching games are equivalent to path
and tree decompositions in undirected graphs, several attempts have been done to define
such games in directed graphs [Bar06, HK08, BDH+12].

In this section we explore some well known directed graph decompositions and their
relationship with graph searching games in directed graphs.

Directed Tree Decomposition

One of the first directed graph decompositions, the directed tree decomposition, was in-
troduced by Johnson et al. in [JRST01].



24 Pursuit-Evasion Games and Decompositions

An arborescence T is a rooted directed tree. Therefore, there is a directed path from
the root of T to any leaf of T . For any r and r′ in V (T ), we say that r′ ≥ r if there exists
a directed walk in T with initial vertex r and terminal vertex r′ and we say that r′ > r
if r′ ≥ r and r′ 6= r. Similarly, for all e = (u, r) ∈ E(T ), we say that r′ ≥ e if r′ ≥ r.

Let D be a digraph and Z ⊆ V (D). We say that a set S ⊆ V (D) \ Z is Z-normal if
there is no directed walk in D \ Z with first an last vertex in S and with internal vertex
in D \ (Z∪S). That is, a set S is Z-normal if every path that leaves S must pass through
a vertex in Z.

A directed tree decomposition of a directed graph D = (V, E) is a triple (T,X ,W)
where T is an arborescence X = {Xe | e ∈ E(T )} andW = {Wv | v ∈ V (T )} are families
of subsets of vertices of V (D) such that:

• W is a partition of V (D) into non empty sets, and

• if e ∈ E(T ), then
⋃{Wv | v ∈ V (T ), r ≥ e} is Xe-normal.

The width of (T,X ,W) is maxv∈V (T ) |Wv ∪
⋃{Xe | e incident to v}|. Then, the directed

tree width, dtw(D), of a directed graph D is given by the minimum width over all its
directed tree decompositions.

Directed tree decompositions have a close relationship with tree decompositions. The
directed tree width of a digraph is equal to the tree width of its underlying graph
[JRST01].

The directed graph searching game associated with this decomposition is the Strongly
Connected Components (SCC) Search. In this game, the cops play as in the Node search
game for undirected graphs. In other words, each cop can be either placed on a vertex or
removed from a vertex of the graph. The robber, however, is restricted to move through
directed paths, but can only move if there is also a directed path from its intended
destination back to its current position that is free of cops.

By following the same reasoning for building Node Search strategies from tree de-
compositions, a directed tree decomposition (T,X ,W) can be used to build a winning
strategy to capture a visible robber in the SCC Search game using a number of cops
equal to the width of the directed tree decomposition. That is, cops are first placed
onto Wr ∪

⋃

e incident to r Xe, where r is the root of T . Then, let v be the vertex of T
such that there are cops on every vertex of Wv ∪

⋃

e incident to v Xe, the cops move from
Wv ∪

⋃

e incident to v Xe to Wv′ ∪ ⋃e′ incident to v′ Xe′ where v′ is the child of v such that the
robber is in a vertex of Wu≥v until the robber is captured.

Hence, the directed tree width of a graph upper bounds the number of necessary
cops to capture a visible robber in the SCC Search game. Albeit, strategies designed
in this manner might not be monotone, meaning that cops might reoccupy vertices of
the graph, they are “robber” monotone, meaning that the area reachable by the robber
never increases. In [JRST01], it was shown that enforcing “robber” monotonicity might
increase the number cops to capture a visible robber by a multiplicative factor of three.
While the previous result does not guarantee the “robber” monotonicity of the game, it
implies that the cost of requiring monotonicity is linear on the number of cops. It was
unknown whether the visible SCC Search was “robber” monotone until Adler showed, in
[Adl07], that this game is not monotone by providing an example where 4 cops have a
winning strategy, but 4 cops do not have a “robber” monotone winning strategy.



Directed Graph Decompositions and Directed Graph Searching 25

DAG Decomposition

The restriction that the robber have a returning path free of cops to move in the SCC
Search game is rather unnatural. For this reason, Berwanger et al. proposed the visible
Directed Node Search game which is the SCC Search where the robber does not have this
restriction [BDH+12]. In other words, in the visible Directed Node Search the robber can
move if it has a directed path free of cops to its intended destination. They also pro-
pose a graph decomposition, the DAG decomposition that is closely related to monotone
strategies in of the visible Directed Node Search.

In order to introduce the DAG decomposition we need to first state some definitions.
Let G be a directed graph and W, Y ⊆ V (G). We say that W guards Y if for all
(u, v) ∈ E(G) with u ∈ Y we have that v ∈ W ∪Y . If D = (V, E) is a DAG, then let �D

be the partial order over V obtained by the reflexive transitive closure of E. That is, if
there is a directed path from a vertex u to a vertex v in D then u �D v.

The DAG decomposition of a directed graph G is a pair (D,X ) where D is a DAG
and X = {Xv | v ∈ V (D)} is a family of subsets of V (G) such that:

• ⋃v∈V (D) Xv = V (G),

• for all vertices d, d′, d′′ ∈ V (D) such that d �D d′ �D d′′ we have that Xd ∩Xd′′ ⊆
Xd′ ,

• for all edges (d, d′) ∈ E(D) the set Xd ∩Xd′ guards
⋃

d′�Dd′′ Xd′′ , and

• for any source d ∈ V (D) we have that
⋃

d�Dd′ Xd′ is guarded by ∅.

The width of (D,X ) is maxd∈V (D) |Xd| and the DAG width, dagw(G), of G is the minimum
width over all DAG decompositions of G.

In [BDH+12], it was shown that monotone strategies for the cops in the visible Directed
Node Search game have a close relationship with DAG decompositions. Meaning that the
minimum number of cops to guarantee the capture of the robber in a monotone way in
this game is equal to the DAG width of the graph in which it is played. Similarly with the
visible SCC Search, the visible Directed Node Search is monotone [KO08]. The family of
graphs presented by Kreutzer and Ordyniak show that the cost of requiring monotonicity
is at least a multiplicative factor. However, unlike the visible SCC Search, a non trivial
upper bound on the cost of requiring monotonicity is still open.

From the fact that the robber is more powerful in the visible Directed Node Search
compared to the visible SCC Search, it is easy to see that the number of cops necessary
to guarantee the capture of the robber in the former is at least as big as in the latter.
Hence, the dtw(G) ≤ dagw(G) for any directed graph G. Then, a natural question is
how big can this gap be? In [BDH+12], Berwanger et al. proposed a family of graphs
such that the DAG width of any graph in this family can be arbitrarily large, while their
directed tree width is one. Moreover, they also show that if a directed graph G is such
that dagw(G) ≤ k then dtw(G) ≤ 3k + 1. Proving that having a small DAG width
implies in having a small directed tree width.

Kelly Decomposition

A robber in a graph searching game is said to be inert if it is only able to move immediately
before a cop moves to the vertex or through the edge it is currently occupying. In other
words, the robber is lazy, only moving when it is in immediate danger of being captured.



26 Pursuit-Evasion Games and Decompositions

In undirected graph searching games, the visible Node Search is equivalent to the inert
invisible Node Search [DKT97]. That is, the same number of cops are necessary to capture
a visible robber or an invisible and inert robber in the Node Search. In [HK08], Hunter
and Kreutzer proposed the inert invisible Directed Node Search, which follows the same
rules as the visible Directed Node Search with the exception that the robber is invisible
and inert. Then, a natural question that arises is the equivalence between the visible
Directed Node Search and inert invisible Directed Node Search in the same manner as the
one between visible Node Search and inert invisible Node Search.

In [HK08], it was shown that these two games are not equivalent. More precisely, for
all k ≥ 1, there are graphs where 4k cops are necessary to capture a robber in the visible
Directed Node Search, while only 3k cops are necessary to capture a robber in the inert
invisible Directed Node Search. This is true even if the cops are restricted to capture the
robber using a “robber” monotone strategy in the inert invisible Directed Node Search.

Dendris et al. also proposed a directed graph decomposition, the Kelly decomposition,
related with monotone strategies for the inert invisible Directed Node Search.

The Kelly decomposition of a directed graph G is a triple (D,X ,W) where D is a
DAG, X = {Xd | d ∈ V (D)} and W = {Wd | d ∈ V (D)} are a family of subsets of V (G)
such that:

• X partitions V (G),

• for all d ∈ V (D), Wd guards
⋃

d�Dd′ Xd′ , and

• for all d ∈ V (D) there is a linear order on its children d1, . . . , dp such that for all
1 ≤ i ≤ p, Wdi

⊆ Xd ∪Wd ∪
⋃

j<i(
⋃

dj�Du Xu). For all d ∈ V (D) such that d is a
source, there is a linear order on its children d1, . . . , dp such that for all 1 ≤ i ≤ p,
⋃

j<i(
⋃

dj�Du Xu).

The width of (D,X ,W) is maxd∈V (D) |Xd ∪Wd| and the Kelly width, kelly(G), of G is
the minimum width over all Kelly decompositions of G.

In the same manner as DAG decompositions of G can be used to design monotone
winning strategies for the cops in the visible Directed Node Search, Kelly decompositions
can be used to design monotone winning strategies for the cops in the inert invisible
Directed Node Search.

Motivated by the equivalence between the inert invisible robber and the visible robber
in the undirected Node search, we might wonder about the relationship between the Kelly
width and the DAG width of a directed graph. In [HK08], it was also shown that, for any
directed graph G, if kelly(G) = 1 or kelly(G) = 2, then kelly(G) = dagw(G). However,
from the fact that the SCC Search and inert invisible Directed Node Search are not
equivalent, we have that there are graphs such that kelly(G) = (3 dagw(G))/4. It is still
an open question whether DAG width and Kelly width can be bounded within a constant
factor of the other.

In the following, we study the relationship between the directed graph searching game
where the robber is still invisible but not inert any more with directed graph decompo-
sitions.

Directed Path Decomposition

The directed path decomposition, proposed by Barát in [Bar06], is closely related with the
invisible Directed Node Search.



Objectives 27

A directed path decomposition of a directed graph G is a sequence W = (W1, . . . , Wn)
of subset of vertices of V (G) such that:

• ⋃1≤i≤n Wi = V (G),

• if i ≤ j ≤ k then Wi ∩Wk ⊆ Wj, and

• for all (u, v) ∈ E(G) we have that there exists 1 ≤ i ≤ j ≤ n such that u ∈ Wi and
v ∈ Wj.

The width of a path decomposition is given by max1≤i≤n |Wi| − 1. Then, the directed
path width, dpw(G), of G is given by the minimum width over all its directed path
decompositions.

Unlike its visible version, the invisible Directed Node Search was “almost” shown to
be monotone in [Bar06]. To show this, Bárat used a similar method as the one used
by Bienstok and Seymour to show that the invisible Edge Search is monotone. That is,
he defined the invisible Directed Mixed Search and by showing the monotonicity of the
invisible Directed Mixed Search, Bárat was able to prove the monotonicity of the invisible
Directed Edge Search and that the cost of enforcing monotonicity of the invisible Directed
Node Search might be of one extra cop. Then, in [Hun06], Hunter improved this result
showing that the invisible Directed Node Search is, in fact, monotone. Moreover, this
means that the minimum number of cops to capture the robber in the invisible Directed
Node Search of a graph is equal to its directed path width plus one.

The directed path decomposition also has a relationship with the DAG decomposition
similar to the one of tree decompositions and path decompositions. That is, directed path
decompositions are DAG decompositions where the DAG is a directed path [BDH+12].
Hence, for any directed graph G, we have dagw(G) ≤ dpw(G). Moreover, this gap can
be arbitrarily large since, in [BDH+12], a family of graphs with DAG width two and
arbitrarily large directed path width was presented. The family presented is the family of
symmetric directed graphs such that their underlying graph are complete ternary trees.
This means that, for any graph G in this family dpw(G) ≤ O(dagw(G) log |V (G)|).
However, it is unknown if this is true for every graph.

2.4 Objectives

As was stated in the beginning of this section, directed graph decompositions were pro-
posed in an attempt to bring powerful results of graph decompositions from undirected
graphs to directed graphs. Since graph decompositions can often be seen as particular
pursuit-evasion games, namely graph searching games, we can approach the problem of
designing powerful directed graph decompositions by studying directed graph searching
games.

For these reasons, the next chapter is dedicated to the study of the monotonicity of
the Process game and the design of a directed graph decomposition related to this game.

Another goal is to investigate the problem of computing graph decompositions. In
Chapter 4, we propose a unified FPT-algorithm that can be used to compute any of the
aforementioned widths. This algorithm is based on the representation of these decompo-
sitions with partitioning trees and a dynamic programming approach based on an efficient
representation of these partitioning trees.

This is the first FPT-algorithm for the special tree width and q-branched tree width.
Moreover, the proposed algorithm is not restricted to compute only the widths of the



28 Pursuit-Evasion Games and Decompositions

aforementioned graph decompositions, it can compute any width measure of a set that
follows some restrictions further explained on Chapter 4.



Chapter 3

Monotonicity of The Process

Game

In this chapter we study the monotonicity property of a graph searching game, known
as the Process game, which is played on directed graphs. This graph searching game has
been defined in the context of the problem of routing reconfiguration in WDM networks
[CPPS05].

We start the next section, Section 3.1, by briefly explaining the relationship between
the routing reconfiguration problem and the Process game. Then, we proceed to show
some known relationships between the Process game and other graph parameters. Sec-
tion 3.2 is dedicated to the main result in this chapter, which states that the Process
game is monotone. We propose a new directed graph decomposition, the Process De-
composition, and show an equivalence between this decomposition and the Process game
in Section 3.3. Finally, in Section 3.4, we finish by proposing some future directions of
research in this area.

3.1 Process Game and Routing Reconfiguration

The Process game and the routing reconfiguration problem have a very close relationship
that is further explained in this section. We start this section by exploring this relation-
ship. Roughly, solving any instance of routing reconfiguration problem is equivalent to
solving the corresponding instance in the Process game.

In telecommunication networks such as wavelength division multiplexed (WDM) net-
works, due to the need of maintenance operations or simply a link failure, connections
that are using these links must be rerouted. However, it might not be a simple task to
reroute such connections, since other links on the network might be already at their full
capacity. The goal of the routing reconfiguration problem, defined by Jose and Somani
in [JS03], is to achieve such rerouting minimizing some criteria.

More formally, an instance of the routing reconfiguration problem, (N, C, I, F ), is
defined by a network N , a set of connections C, an initial routing I and a final routing
F . The network is represented by a directed graph N . The set of connections is given
by C ⊆ V (N) × V (N). An initial routing of these connections, I, is given by a set of
directed paths in N joining each pair (u, v) ∈ C, with the restriction that two different
paths do not share an arc of N . That is, these paths are arc-wise disjoint. The final

29



30 Monotonicity of The Process Game

routing, F , is represented in the same manner as the initial routing. That is, the final
routing, F is a set of arc-wise disjoint paths of N joining each pair (u, v) ∈ C.

Let P i
a be the path joining two vertices of a connection a ∈ C in its initial routing

I, and P f
a be the path joining two vertices of a connection a in its final routing F .

The objective of the routing reconfiguration problem is to change the routing of the
connections from the initial routing, I, to the final routing, F , while minimizing some
criteria. In order to do this, we are allowed to apply some operations, that are explained
below, on the current routing of the network. However two different connections, after
applying any of these operations, cannot share a same arc on the network. That is, the
paths defining the connections on the current routing are all arc-wise disjoint at any point
during the rerouting. In the following, we describe each of the allowed operations.

Interrupt: when applied to a connection a, the result of this operation is that a is
interrupted. That is we remove the path P i

a ∈ I joining the two nodes of a from the
current routing on the network.

Re-establish: when applied to an interrupted connection a, it re-established the con-
nection on its final routing. That is, we add the path P f

a ∈ F to the current routing
on the network.

Switch: when applied to a connection a, the connection a is switched, instantaneously,
from its initial routing to its final routing. That is, we remove the path P i

a ∈ I
joining the two nodes of a from the current routing on the network, whilst adding
the path P i

a ∈ F to the current routing.

Note that it is always possible to change from the initial routing to the final routing by
interrupting every connection and then re-establishing these connections in their final
routing.

There are several criteria that can be used to measure how “good” is a sequence of
operations used to change the initial routing of the network into the final routing. For
example, the total number of interruptions was studied in [CCM+11] and the maximum
number of simultaneous interruptions during the rerouting was studied in [CPPS05].

Inspired by the routing reconfiguration problem, Coudert et al. introduced the Process
game in [CPPS05]. In the Process game, a team of searchers aims at processing all nodes
of a digraph. A node is said safe if all its out-neighbours are either occupied or already
processed. Given a digraph D = (V, A) where initially all nodes are unoccupied and not
processed, a monotone process strategy is a sequence (s1, . . . , sn) of steps that results in
processing all nodes of D, where each step si is one of the following three moves.

M1: place a searcher (or agent) at node v ∈ V ;

M2: process a safe unoccupied node v ∈ V ;

M3: process a safe occupied vertex v ∈ V and remove the searcher from it.

Note that, once a vertex is processed, it never becomes “unprocessed” at a latter stage
of the game. Hence, if Xi is the set of vertices that are processed after step i, then
Xi ⊆ Xi+1 for all 1 ≤ i ≤ n− 1. For this reason, we say that this is a monotone process
strategy. The minimum number of searchers such that there exists a monotone process
strategy for D is the monotone process number , denoted by monpr(D).

The relationship between the Process game and the routing reconfiguration problem
is mainly due to the dependency digraph defined by [JS03]. The dependency digraph



Process Game and Routing Reconfiguration 31

D = (V, A) of an instance of the routing reconfiguration problem (N, C, I, F ) has one
vertex for each connection in the routing reconfiguration instance and there is an arc
e = (u, v) ∈ A, if the connection given by u in its final routing shares an arc in the
network with the connection given by v in its initial routing. That is, V = C and
E = {(u, v) | E(P f

u ) ∩ E(P i
v) 6= ∅}.

As observed in [CPPS05] a solution for the routing reconfiguration problem is equiva-
lent to a solution to the Process game played on its dependency digraph. Here we roughly
sketch how this is achieved. Consider an instance of the routing reconfiguration problem
(N, C, I, F ) and its dependency digraph D. Then, whenever a connection a ∈ C is in-
terrupted we use M1 in a ∈ V (D) and vice versa. That is, a ∈ C is interrupted if, and
only if, there is an agent on a ∈ V (D). Whenever a connection a ∈ C is re-established
we use M3 in a ∈ V (D) and vice versa. That is, a ∈ C is re-established if, and only if,
the agent on a ∈ V (D) is removed and a ∈ V (D) is processed. Finally, whenever a ∈ C
is switched we use M2 in a ∈ V (D) and vice versa. That is, a ∈ C is switched if, and
only if, a ∈ V (D) is processed without having an agent on it. Therefore, during a routing
reconfiguration or during the processing of D, a connection a ∈ C is on its final routing if,
and only if, the vertex a ∈ V (D) is processed. Consequently, the final routing is achieved
on the rerouting problem if, and only if, all vertices of D are processed. Moreover, a
connection a ∈ C is interrupted if, and only if, the vertex a ∈ V (D) is occupied by an
agent.

Therefore, any monotone strategy for the Process game gives a corresponding strategy
for the routing reconfiguration problem, in which the number of interrupted connections
in any step is given by the number of occupied vertices in the Process game.

An important result is that, for any directed graph D, there is an instance of the
reconfiguration problem such that D is its dependency digraph [CCM+11]. This means
that we can focus solely on the Process game in order to understand both problems.

Process Game and Other Parameters

While the process number of digraphs has been mainly studied for its applications in the
rerouting problem in WDM networks [CHM+09, Sol09, SP09], it is also related with some
other graph parameters.

In [CPPS05], Coudert et al. showed that pw(D̄) ≤ monpr(D) ≤ pw(D̄) + 1, for
any symmetric digraph1 D, where D̄ is the underlying graph of D. Moreover, the de-
cision problem associated with the process number is NP-complete in general, but the
process number can be computed in polynomial time in the class of (di)graphs D with
monpr(D) ≤ 2 [CS11] and in the class of trees [CHM12].

In [CCM+11], it was shown that the minimum feedback vertex set2 is an upper bound
for the process number of a directed graph. However, it is true that there are graphs with
process number two and arbitrarily large minimum feedback vertex set.

Note also that, in undirected graphs (seen as symmetric digraphs), the monotone
processing game is equivalent to the graph searching game, where a invisible robber is
captured if all the neighbours of its position are occupied, i.e., it is not required that a
cop occupies the same node as the robber only its neighbourhood. It is important to
notice that the Process game, when played on a symmetric digraph is not equivalent to
the invisible graph searching game. Given a symmetric directed graph D, the following

1A digraph D = (V, A) is symmetric if, for any (a, b) ∈ A, then (b, a) ∈ A.
2A feedback vertex set is a set of vertices such that the result of their exclusion from the graph is a DAG.



32 Monotonicity of The Process Game

inequation is true: nsi(D̄) − 1 ≤ monpr(D) ≤ nsi(D̄), where D̄ denotes the underlying
graph of D and nsi(D̄) denotes the minimum number of cops necessary to capture an
invisible robber in D̄. Moreover, these inequality are tight. Let Kn be the complete
directed graph with n vertices, then nsi(K̄n) = monpr(Kn) + 1 and, for every directed
graph D, let D′ be the directed graph obtained from D by adding a loop to every vertex
of D, then nsi(D̄′) = monpr(D′).

In the case that D is a directed graph that is not symmetric, the Process game is
equivalent to capturing a robber in the Node Search that moves in the opposite direction
of the arc and must always move with a monotone strategy, otherwise it also loses the
game. That is, if at any point the robber is captured it loses the game, while also losing if
it cannot move any more. For example, the robber loses on any DAG D even against zero
cops, since, at some point, the robber must move to a source of D being unable to move
afterwards. This equivalence is easy to see by considering processed and occupied vertices
in the Process game as vertices that are unreachable by the robber in the aforementioned
graph searching game. Let dnsi(D) be the number of cops necessary to capture the robber
in the invisible Directed Node Search of a directed graph D. Then, for any directed graph
D, we have that dnsi(D) − 1 ≤ monpr(D) ≤ dnsi(D). Again the same examples above
are sufficient to show that this inequality is tight in both sides.

Our Results

In order to study if the Process game is monotone when seen as the graph searching
game described above, we consider the more general variant of non necessarily monotone
processing game in this chapter.

That is, we allow processed nodes to become unprocessed. More precisely, a process
strategy for a digraph D is a sequence (s1, . . . , sn) of steps that results in processing all
nodes of D, where each step si consists of a move M1 or M2 or

M ′
3: process an occupied vertex v ∈ V and remove the searcher from it. If v was not safe

then recontamination occurs. That is, successively, all processed vertices (including
v) that have an unoccupied and unprocessed out-neighbour become unprocessed.

The minimum number of searchers such that there exists a process strategy for D is
the process number , denoted by pr(D).

In [CHM12], it was proved that pr(D) = monpr(D) for any symmetric digraph D. In
this chapter, we prove that the result holds for any digraph. Moreover, our monotonicity
result allows us to prove that pr(D) = pr(

←−
D) for any digraph D = (V, A), where

←−
D =

(V,
←−
A ) and

←−
A = {(a, b) | (b, a) ∈ A}.

Finally, we also propose a directed graph decomposition, the Process decomposition,
that is equivalent to the Process game.

3.2 Recontamination Does Not Help to Process a Digraph

In this section, we prove that the process number is monotone. In other words, monpr(D)
= pr(D) for any directed graph D. For this purpose, we use the techniques introduced
in [ST93] and adapted for directed graphs in [Bar06]. More precisely, we first define the
notion of a mixed processing game and show its monotonicity thanks to an intermediate
result dealing with crusades. Then, from any mixed process strategy we construct a
process strategy with the same number of agents in a way that monotonicity is preserved.



Recontamination Does Not Help to Process a Digraph 33

Preliminary Definitions

Throughout this section, we use the following notations. Let D = (V, A) be a digraph.
For any v ∈ V , let N−(v) denote the set of in-neighbours of v. The border of a set X ⊆ A,
denoted by δ(X), is the set of vertices that are the head of an arc in X and the tail of an
arc in A\X. For any X ⊆ A, Xc denotes A\X. First, we show that the border function
δ is submodular.

Lemma 1. For any digraph D and any X, Y ⊆ A(D):

|δ(X ∩ Y )|+ |δ(X ∪ Y )| ≤ |δ(X)|+ |δ(Y )|.

Proof. We show that every vertex counted in the left side of the equation is counted at
least the same amount of times in the right side of the equation. Let v ∈ δ(X ∪ Y ) ∪
δ(X ∩ Y ).

If v ∈ δ(X ∩ Y ), let e1 = (u, v) ∈ X ∩ Y and e2 = (v, w) ∈ Xc ∪ Y c. Therefore,
either (v, w) ∈ Xc and v ∈ δ(X), or (v, w) ∈ Y c and v ∈ δ(Y ). If v ∈ δ(X ∪ Y ), let
e1 = (u, v) ∈ X ∪ Y and e2 = (v, w) ∈ Xc ∩ Y c. Therefore, either (u, v) ∈ X and
v ∈ δ(X), or (u, v) ∈ Y and v ∈ δ(Y ).

Finally, let us assume that v ∈ δ(X ∪ Y ) ∩ δ(X ∩ Y ). Because v ∈ δ(X ∩ Y ), there
exists an edge e1 = (u, v) ∈ X ∩ Y and because v ∈ δ(X ∪ Y ), there exists an edge
e2 = (v, w) ∈ Xc ∩ Y c. Hence, v ∈ δ(X) ∩ δ(Y ).

Let D = (V, A) be a digraph in which no arcs are initially processed. A mixed process
strategy of D is a sequence (s1, . . . , sn) with the following actions that results in processing
all arcs in A.

R1 (Place): place a searcher at an unoccupied node v ∈ V ;

R2 (Remove): remove a searcher from node v ∈ V ; if there were unprocessed arcs with
tail v and v is now unoccupied, then recontamination occurs. That is, successively,
any processed arc (u, w) ∈ A becomes unprocessed, if there is w which is unoccupied
and an unprocessed arc (w, z).

R3 (Head): process an arc (u, v) ∈ A if v ∈ V is occupied;

R4 (Slide): slide the searcher at u along (u, v) ∈ A if u is occupied, v is not occupied
and all arcs e 6= (u, v) with tail u are already processed, this process the arc (u, v);

R5 (Extend): process an arc (u, v) ∈ A, if all arcs with tail v are already processed.

The number of searchers used by a mixed process strategy is the maximum number
of occupied vertices over all steps of the strategy. The mixed process number , denoted by
mpr(D), is the fewest number of searchers such that there exists a mixed process strategy
of D. Moreover, in the mixed Process game, we say that a vertex, v, is processed if all
edges with tail v are processed. A mixed process strategy is monotone if no recontam-
ination occurs, i.e., once an arc has been processed, it must remain processed until the
end of the strategy.

Next, we recall the definition of crusades used in [Bar06] and give these crusades an
appropriate border function to work with the mixed Process game.

A crusade in D = (V, A) is a sequence (X0, X1, . . . , Xn) of subsets of A such that
X0 = ∅, Xn = E, and |Xi \ Xi−1| ≤ 1, for 1 ≤ i ≤ n. The crusade has border k if
|δ(Xi)| ≤ k for 0 ≤ i ≤ n.



34 Monotonicity of The Process Game

A crusade is progressive if X0 ⊂ X1 ⊂ . . . ⊂ Xn. Hence, in a progressive crusade
(X0, X1, . . . , Xn), |Xi \Xi−1| = 1 for all i ≤ n.

Intuitively, the elements of a crusade represent the set of edges that are processed,
while the border represents the vertices that must be occupied by agents, in order to
avoid the processed edges becoming unprocessed.

Note that the notion of mixed strategy and crusade are different from the ones defined
in [Bar06], since the direction of the arcs and the border function are reversed in the
Process game.

Monotonicity

We are ready to show our main result which states that the Process game is monotone.
Roughly, we do this by showing that, from any mixed strategy with k searchers, we can

obtain a crusade with border k and that, from any crusade with border k, we can obtain
a progressive crusade with border k. Then, we show that the existence of a progressive
crusade with border k implies the existence of a monotone mixed process strategy with
k searchers. Finally, we show how to obtain a monotone process strategy for a directed

graph D from a monotone mixed process strategy of ~~D (the graph obtained by adding a
copy of every arc of D) that uses the same amount of agents.

Lemma 2. Let D be a digraph. If mpr(D) ≤ k, then D admits a crusade with border k.

Proof. Let S = (s1, . . . , sn) be a mixed process strategy of D = (V, A) that uses at most
k searchers. For any 0 < i ≤ n, let Ai be the set of processed arcs and Zi be the set of
occupied vertices after the step si. Moreover, let A0 = Z0 = ∅.

By definition of a mixed process strategy, at most one arc is processed in each step
si (one arc is processed if si corresponds to R3, R4 or R5), hence |Ai \ Ai−1| ≤ 1 for any
1 ≤ i ≤ n. After the last step sn of S, all the arcs of the graph must be processed, hence
An = A. This proves that C = (A0, . . . , An) is a crusade.

It remains to show that δ(Ai) ≤ k for every 0 ≤ i ≤ n. To do so, we prove by
induction that δ(Ai) ⊆ Zi for any 1 ≤ i ≤ n. It is clearly true for i = 0. Assume that
δ(Ai−1) ⊆ Zi−1 for some i, 0 ≤ i < n. We prove that δ(Ai) ⊆ Zi:

• If si is R1 (Place), then Ai = Ai−1 and thus δ(Ai) = δ(Ai−1) ⊆ Zi−1 ⊆ Zi.

• If si is R2 (Remove) at a vertex v, let u be a vertex of δ(Ai), hence there is an arc
e1 = (w1, u) ∈ Ai and an arc e2 = (u, w2) ∈ A \ Ai, therefore u ∈ Zi, otherwise e1

would also become unprocessed in step i making u /∈ δ(Xi), hence δ(Ai) ⊆ Zi.

• If si is R3 (Head), then Ai = Ai−1∪{(u, v)} and δ(Ai)\δ(Ai−1) ⊆ {v}. Since v must
be occupied, we have v ∈ Zi = Zi−1, by induction δ(Ai−1) ⊆ Zi−1, and therefore
δ(Ai) ⊆ Zi.

• If si is R4 (Slide) at an edge e = (u, v), then Ai = Ai−1 ∪ {(u, v)} and Zi =
(Zi−1 \ {u})∪{v}. Since all arcs with tail u are processed after this step, u /∈ δ(Ai).
Moreover, δ(Ai) \ δ(Ai−1) ⊆ {v}. Hence δ(Ai) ⊆ Zi.

• If si is R5 (Extend), then Ai = Ai−1 ∪ {(u, v)} and Zi = Zi−1. Since all arcs with
tail v must be already processed, δ(Ai) = δ(Ai−1) ⊆ Zi−1 = Zi.



Recontamination Does Not Help to Process a Digraph 35

Lemma 3. If there is a crusade of D = (V, A) with border k, then there is a progressive
crusade with border k.

Proof. Let C = (X0, . . . , Xn) be a crusade of D with border k such that:
∑n

i=0 |δ(Xi)|
is minimum, and subject to this,

∑n
i=0 |Xi| is minimum. We show that C is progressive.

Let 0 < i ≤ n, we show that Xi−1 ⊂ Xi:

• Assume first that |Xi \Xi−1| = 0, then Xi ⊆ Xi−1. Hence, (X0, . . . , Xi−1, Xi+1, . . . ,
Xn) is a crusade with border k, contradicting the minimality of

∑n
i=0 |Xi|. Thus,

|Xi \Xi−1| = 1.

• Then assume that |δ(Xi−1 ∪ Xi)| < |δ(Xi)|, hence (X0, . . . , Xi−1, Xi−1 ∪ Xi, Xi+1,
. . . , Xn) is a crusade with at most k searchers, contradicting the minimality of
∑n

i=0 |δ(Xi)|. Therefore |δ(Xi−1 ∪Xi)| ≥ |δ(Xi)|.

• By Lemma 1, |δ(Xi−1∩Xi)|+|δ(Xi−1∪Xi)| ≤ |δ(Xi−1)|+|δ(Xi)|. Hence, by previous
item, |δ(Xi−1∩Xi)| ≤ |δ(Xi−1)|. Therefore, (X0, . . . , Xi−2, Xi−1∩Xi, Xi, . . . , Xn) is
a crusade with at most k searchers. From the minimality of

∑n
i=0 |Xi| we have that

|Xi−1 ∩Xi| ≥ |Xi−1|, hence Xi−1 ⊂ Xi.

Lemma 4. If there is a progressive crusade of D = (V, A) with border k, then there is a
monotone mixed process strategy using at most k searchers.

Proof. Let C = (X0, . . . , Xn) be a progressive crusade of D using at most k searchers.
We build a a monotone mixed process strategy S = (s1, . . . , sn′) of D with the following
properties. For any 0 < i ≤ n′, let Ai be the set of processed arcs and let Zi be the set
of occupied vertices after step si. Let A0 = Z0 = ∅. There are 0 = j0 < j1 < j2 < · · · <
jn = n′ such that:

1. for any 0 ≤ i ≤ n, Aji
= Xi;

2. for any 0 < i ≤ n and for any ji−1 < ℓ < ji, Zℓ ⊆ δ(Xi) or Zℓ ⊆ δ(Xi−1), and
Zji

= δ(Xi).

Starting with S = ∅, the two above properties hold for i = 0. Let 0 < i ≤ n and let us
assume that (s1, . . . , sji−1

) is a sequence of actions that satisfies the two above properties
for any 0 ≤ j < i. We will build the next steps of the strategy until sji

. Let Xi \Xi−1 =
{ei}, where ei = (u, v). Note that δ(Xi) \ δ(Xi−1) ⊆ {v} and δ(Xi−1) \ δ(Xi) ⊆ {u, v}.
We have several cases to consider:

• let us first assume that v ∈ δ(Xi−1). Hence, v ∈ Zji−1
and there is a searcher at v

after step sji−1
. We define the step sji−1+1 to be R3 (Head) at ei, i.e., the arc ei is

processed.

– If moreover v /∈ δ(Xi) then we define the step sji−1+2 to be R2 at v, i.e., we
remove the searcher at v. Because v /∈ δ(Xi) and (u, v) is processed, there are
no unprocessed arcs with tail v and therefore, no recontamination occurs.

Let k = ji−1 + 3 if v /∈ δ(Xi) and k = ji−1 + 2 otherwise.



36 Monotonicity of The Process Game

– Finally, if u ∈ δ(Xi−1) \ δ(Xi), then we define the step sk to be R2 at u, i.e.,
we remove the searcher at u. Because u ∈ δ(Xi−1), there is an arc with head u
that was processed after step sji−1

. Because u /∈ δ(Xi) and (u, v) is processed,
there are now no unprocessed arcs with tail u and therefore, no recontamination
occurs.

Hence, ji−1 +1 ≤ ji ≤ ji−1 +3. Clearly, for any ji−1 +1 ≤ ℓ ≤ ji−1 +3, Zℓ ⊆ δ(Xi−1)
and δ(Xi) = Zji

in all cases. Moreover, in all cases, no recontamination occurs.
Therefore, Aji

= Xi.

• Now, let us assume that v /∈ δ(Xi−1). By induction, there was no searcher at v after
step sji−1

.

– First, let us consider the case when u ∈ δ(Xi−1):

∗ if v ∈ δ(Xi) and u ∈ δ(Xi): Let us define the step sji−1+1 to be R1 at v,
i.e., a searcher is placed at v, and the step sji

= sji−1+2 is defined as R3

(Head) at ei, i.e., the edge ei is processed. Clearly, Aji
= Aji−1

∪ {ei} and
Zji−1+1 = Zji

= Zji−1
∪ {v} = δ(Xi).

∗ if v ∈ δ(Xi) and u /∈ δ(Xi): in that case, the only arc in A\Xi−1 which has u
as tail is ei, otherwise u ∈ δ(Xi). Therefore we define the step sji−1+1 = sji

to be R4 through ei, i.e., the searcher at u slides to v processing ei. Note
that no recontamination occurs and Aji

= Aji−1
∪{ei} = Xi−1 ∪{ei} = Xi.

The induction hypothesis holds since Zji
= (Zji−1

\{u})∪{v} = (δ(Xi−1)\
{u}) ∪ {v} = δ(Xi).

∗ if v /∈ δ(Xi) then there are no arcs with tail v that are in A \Xi−1. Hence,
we can define the step sji−1+1 to be R5 (extend) at ei, i.e., ei is processed.
If moreover u /∈ δ(Xi), let sji

= sji−1+2 be defined as R2 at u, i.e., the
searcher at u is removed. Because u ∈ δ(Xi−1) \ δ(Xi) and (u, v) is now
processed, there are no unprocessed arcs with tail u and therefore, no re-
contamination occurs.
Hence, ji−1 + 1 ≤ ji ≤ ji−1 + 2 and the induction hypothesis holds in both
cases.

– Finally, consider the case when u /∈ δ(Xi−1). Note that, in that case, since
u /∈ δ(Xi−1) and u is a tail of ei ∈ Xi, then u /∈ δ(Xi).

∗ if v ∈ δ(Xi) then we define the step sji−1+1 to be R1 at v, i.e., a searcher
is placed at v, and sji

= sji−1+2 to be R3 (Head) at ei, i.e., ei is processed.
The induction hypothesis holds.

∗ if v /∈ δ(Xi), since ei ∈ Xi, then there are no arcs with tail v that are in
A \Xi−1. Hence we can define the step sji

= sji−1+1 as R5 (Extend) at ei,
i.e., ei is processed. The induction hypothesis holds.

Therefore, S = (s1, . . . , sjn
) satisfies the two properties, and S is a monotone mixed

process strategy using at most k searchers in D, since, for all 1 ≤ i ≤ jn, we have that
|Zi| ≤ k, for all 1 ≤ i < jn, Ai ⊆ Ai+1, and Ajn

= Xn = A.

In what follows, let mpr( ~~D) be the digraph obtained from any digraph D = (V, A) by
adding a copy of every arc of D.



Recontamination Does Not Help to Process a Digraph 37

Theorem 5. For any digraph D = (V, A):

monpr(D) ≤ mpr( ~~D) ≤ pr(D).

Proof. We first show that mpr( ~~D) ≤ pr(D).
Let Sp = (s1, . . . , sn) be a process strategy for D using k searchers. We define a mixed

process strategy Sm = (m1, . . . , mj) using at most k searchers for ~~D. Let Pi be the set
of processed vertices at step i ≤ n in Sp and let Mj be the set of vertices u such that, at
step mj in Sm, all arcs with u as tail are processed. Also, let Op

i (resp., Om
i ) be the set

of vertices occupied by a searcher at step si in Sp (resp., at step mi in Sm).
For any 0 < i ≤ n, we build a phase of Sm according to si. That is, depending on

the type of rule applied in si, we add a sequence of moves mji−1+1, mji−1+1, . . . , mji
in

Sm such that Pi ⊆ Mji
. Hence, at the last step all arcs are processed, since Pn = V . To

do this, assume that m1, . . . , mji−1
are already defined based on (s1, . . . , si−1) and that

Pi−1 ⊆ Mji−1
. Moreover, assume that Op

i−1 = Om
ji−1

. We define mji−1+1, mji−1+1, . . . , mji

depending on which rule is applied in si:

• If si is a place operation at vertex v (move M1), then let us define the step mji−1+1

to be R1 at vertex v, i.e., a searcher is placed at v. Then, let {e1, . . . , er} be the set
of arcs with head v. For any ℓ ∈ [2, r + 1], let us define the step mji−1+ℓ to be R3

(Head) at eℓ. That is, all arcs with head v are sequentially processed.

Hence, ji = ji−1 + r + 1. The claim holds since Pi = Pi−1 ⊆ Mji−1
⊆ Mji

, and
moreover, for any ji−1 < ℓ ≤ ji, Om

ℓ = Op
i = Op

i−1 ∪ {v}.
• If si consists in processing an unoccupied vertex v (move M2), then after step si−1

in Sp, all vertices that are in the out-neighbourhood of v are already processed.
Hence, by the construction of Sm, after step sji−1

in Sm, all arcs with tail v are
already processed. Moreover, because v /∈ Op

i−1 = Om
ji−1

then v is also unoccupied
at step ji−1 of Sm.

Hence, let {e1, . . . , er} be the set of arcs with head v. For any 1 ≤ ℓ ≤ r, let us
define mji−1+ℓ as R5 (Extend) at ei. That is, all arcs with head v are sequentially
processed.

In that case, ji = ji−1 + r. The claim holds, since, in particular, v ∈Mji−1
.

• Now consider the case when si consists in processing an occupied vertex v and
removing the searcher at v (move M ′

3). Let us define the step mji−1+1 = mji
to be

R2 at v, i.e., the searcher at v is removed. In the case of recontamination in Sm,
all vertices, v, in v ∈ Mji−1

\Mji
are tail of some arc e such that there is a path

from v avoiding agents and passing through e that reaches an unprocessed arc in ~~D.
Therefore, v also becomes unprocessed in Sp, i.e. v ∈ Pi−1 \ Pi. Hence, the claim
holds.

Therefore, Sm is a mixed process strategy for D using at most k searchers.

Now, let us show that monpr(D) ≤ mpr( ~~D). By Lemmas 2, 3 and 4, there exists a

monotone mixed process strategy using mpr( ~~D) searchers in ~~D. Let Sm = (m1, . . . , mn)
be such a strategy.

We first notice that if there is a step mi (1 ≤ i ≤ n) that applies a rule of type R4

(Slide) through an arc e1 = (u, v), then the second arc e2 = (u, v) must be processed and



38 Monotonicity of The Process Game

there must be no searcher at v. Hence it is possible to replace the step mi by the following:
first remove the agent from u, without re-contaminating any arc (since otherwise e2 would
have been re-contaminated before), place the agent at v and apply R3 (Head) operation
at e1. Therefore, we may assume that Sm never applies moves of type R4.

Another remark is that, if the step mi consists in processing an arc (u, v) such that
u is occupied and all arcs with u as tail are already processed, then we may assume
that the step mi+1 applies the rule R2 to u, i.e., the searcher at u is removed (and no
recontamination occurs). Indeed, after step mi, the searcher at u is not used to preserve
from recontamination because the strategy is monotone and all its outgoing arcs are
processed. Moreover, if this searcher was used to process one in-coming arc of u at a step
further, we can instead use the extend rule R5. Finally, by previous remark, this searcher
is never used to apply rule R4.

Let Mi be the set of unoccupied vertices u such that all arcs with tail u are already
processed after step mi.

We now define a monotone process strategy Sp = (s1, . . . , sn) for D that uses at most

mpr( ~~D) searchers. Let Pi be the set of processed vertices at step i ≤ n in Sp and let Mi be
the set of unoccupied vertices u such that all arcs with tail u are already processed after
step mi in Sm. Also, let Op

i , resp., Om
i , be the set of vertices occupied by a searcher at

step si in Sp, resp., at step mi in Sm. Assume that (s1, . . . , sji−1
) is already defined such

that Om
i−1 = Op

i−1, and Mi−1 ⊆ Pi−1 or (Mi−1 ⊆ Pi−1 ∪ {v} and mi consists in removing
a searcher from some node v). We define si depending on mi:

• Assume first that mi consists in placing a searcher at vertex v (R1). Then, let
si consist in placing a searcher at v (M1). The claim holds, since Mi ⊆ Mi and
Op

i = Op
i−1 ∪ {v} = Om

i−1 ∪ {v} = Om
i .

• If mi consists in removing a searcher from a vertex v (R2) then, since Sm is mono-
tone, recontamination does not happen. That is, there are no unoccupied directed
path from a process arc to an unprocessed one. Note that v is occupied since
Om

i−1 = Op
i−1. In that case, let si consists in processing v and removing the searcher

at v (M3), this is possible since all out-neighbours of v are either occupied or pro-
cessed in Sm.

The claim holds since Pji
= Pji−1

∪ {v} and Mi = Mi−1 ∪ {v}, and moreover,
Op

i = Op
i−1 \ {v} = Om

i−1 \ {v} = Om
i .

• If mi consists in processing an arc e = (u, v) ∈ A(D) (R3 or R5). Then, if e is the
only unprocessed arc with tail u before mi:

– If u is occupied by the remark above, the next step mi+1 consists in removing
the searcher at u. In that case, si consists in doing nothing and we have
Mi ⊆ Pi ∪ {u} and Om

i = Op
i .

– Else, let si consists in processing u (applying M2). Again, the properties hold.

If mi consists in processing an arc (u, v) ∈ A(D) that is not the last unprocessed out-

going arc of u (in particular, we may assume it is the case for all arcs in A( ~~D)\A(D)),
then si consists in doing nothing and the properties hold.

Therefore, Sp is a monotone process strategy for D using at most mpr( ~~D) searchers.



Process Decomposition 39

Since, for any digraph D, pr(D) ≤ monpr(D), we obtain the next corollary:

Corollary 1. recontamination does not help to process a digraph, i.e., for any digraph
D:

pr(D) = monpr(D).

Corollary 1 shows that the Process game is monotone. That is, allowing vertices to
become unprocessed does not help the agents to process the graph.

3.3 Process Decomposition

In this section we define a digraph decomposition that is equivalent to (monotone) process
strategies. This allows us to prove that the process number is invariant when reversing
all arcs of a digraph. Let D = (V, A) be a digraph.

A Process Decomposition of D is a sequence of pairs P = ((W1, X1), . . . , (Wt, Xt))
such that:

• for any 1 ≤ i ≤ t, Wi ⊆ V and Xi ⊆ V ;

• (X1, . . . , Xt) is a partition of V \ ⋃t
i=1 Wi;

• ∀i ≤ j ≤ k, Wi ∩Wk ⊆ Wj;

• Xi induces a Directed Acyclic Graph (DAG), for any 1 ≤ i ≤ t;

• ∀(u, v) ∈ A, ∃j ≤ i such that v ∈ Wj ∪Xj and u ∈ Wi ∪Xi.

The width of a Process Decomposition is given by max1≤i≤n |Wi|, and the process width,
denoted by prw(D), of a digraph D is given by the minimum width over all Process
Decompositions of D. A Scheme of a Process Decomposition can be found in Figure 3.1.

X1 X2 X3 X4 X5

W1 W2 W3 W4 W5

Figure 3.1: A scheme of the Process Decomposition. Sets Xi are disjoint with each inducing a
DAG in the original graph. The sets Wi behave in a similar manner as the bags in a directed
path decomposition.

A first result, shows that reversing the arcs of a digraph does not change its process
width. Let

←−
D be the digraph obtained by reversing the sense of the arcs of a digraph

D = (V, A).

Lemma 6. For any digraph D:

prw(D) = prw(
←−
D).



40 Monotonicity of The Process Game

Proof. Let P = ((W1, X1), . . . , (Wt, Xt)) be a Process Decomposition for D with width
w. Let

←−
P = ((Wt, Xt), . . . , (W1, X1)). Clearly, the first three properties of Process

Decomposition hold, and the width of
←−
P is w.

It remains to show that ∀(u, v) ∈ A(
←−
D), ∃i ≤ j such that u ∈ Wi∪Xi and v ∈ Wj∪Xj.

To do that, consider an edge (u, v) ∈ A(
←−
D), since P is a Process Decomposition of D and

(v, u) ∈ A(D), we have that for some j ≤ i, v ∈ Wj ∪Xj and u ∈ Wi ∪Xi, therefore
←−
P

is a Process Decomposition of
←−
D .

Theorem 7. For any digraph D:

pr(D) = prw(D).

Proof. We have that pr(D) = monpr(D), by Theorem 1. Hence, we only need to show
that monpr(D) = prw(D).

To show that prw(D) ≥ monpr(D) let P = ((W1, X1), . . . , (Wt, Xt)) be a Process
Decomposition of D with width w. We construct a monotone process strategy of D using
at most w searchers. For any 1 ≤ i ≤ t, we define the sequence of moves (Phase i)
from (Wi, Xi), such that, after this sequence, the vertices of Wi ∩Wi+1 are occupied by
searchers and the vertices in

⋃i
j=1(Wj ∪Xj) \Wi+1 have been processed.

At phase i+1, we first place searchers at the vertices of Wi+1\Wi. Then, in the inverse
of a topological ordering of the DAG induced by Xi+1, vertices of Xi+1 are processed. This
is possible because, for any vertex v in Xi+1, any out-neighbour u of v is in

⋃i+1
j=1 Xj ∪Wj

and so u is either already processed or occupied. Finally, searchers are removed from the
vertices in Wi+1 \ Wi+2 and these vertices are processed. Again, this is valid since all
out-neighbour of a vertex in Wi+1 \Wi+2 belongs to

⋃i+1
j=1 Xj ∪Wj (by the last property

of the decomposition).
Clearly, such a strategy is monotone and uses at most w searchers, hence monpr(D) ≤

prw(D).

Now, let us show that monpr(D) ≥ prw(D). Let S = (s1, . . . , st) be a monotone
process strategy of D using k searchers. We remark that if a searcher is removed from
a vertex v, this vertex is also processed during the same step. We construct a Process
Decomposition of D with width at most k. For any 1 ≤ i ≤ t, let (Wi, Xi) be defined as
follows. Let (W0, X0) = (∅, ∅):
M1: if si consists in placing a searcher at vertex v, then Wi = Wi−1 ∪ {v} and Xi = ∅;
M2: if si consists in processing an unoccupied vertex v, then Wi = Wi−1 and Xi = {v};
M3: if si consists in processing an occupied vertex v and removing the searcher at v, then

Wi = Wi−1 \ {v} and Xi = ∅.
It is easy to see that (X1, . . . , Xt) is a partition of V \ ⋃t

i=1 Wi since all vertices are
either occupied or processed (only once) without being occupied. Moreover, any Xi

being reduced to at most a singleton induces a DAG. By the rules of the monotone
process strategy, any vertex is occupied at most once (i.e., there are no two steps of S
that consist in placing a searcher at the same vertex), and so ∀i ≤ j ≤ k, Wi ∩Wk ⊆ Wj.

Finally, let (u, v) ∈ A and let i be the greatest integer such that u ∈ Wi ∪Xi and let
j be the smallest integer such that v ∈ Wj ∪ Xj. For purpose of contradiction, assume
that j > i. Then, u is processed at step si while its out-neighbour v is neither processed
nor occupied at step i, since j > i, a contradiction.

Clearly, maxi≤t |Wi| ≤ k.



Conclusion 41

Remark 1. By the proof of Theorem 7, for any digraph D, there is an optimal Process
Decomposition ((W1, X1), . . . , (Wt, Xt)) of D such that Xi has size at most one for any
i ≤ t.

Corollary 2. Given a digraph D = (V, A) and
←−
D , the graph obtained from D by reversing

all the arcs, then:

monpr(D) = monpr(
←−
D) = pr(D) = pr(

←−
D).

3.4 Conclusion

One of the main results in this chapter is the monotonicity of the Process game. One
consequence of this result is that, in the routing reconfiguration problem, allowing con-
nections also to be re-established back into their initial routing does not help reroute
the network. That is, the minimum number of maximum simultaneously interrupted
connections does not change by allowing this rule.

We also propose a directed graph decomposition, the Process Decomposition, that is
equivalent to the Process game. Since finding good strategies for the searchers in the
Process game is NP-hard in general, another focus could be to study the behaviour of the
Process game into specific classes of directed graphs. Because the Process Decomposition
gives us a global vision on how a strategy can process a graph, we expect it to be a major
building block in the construction of strategies for the Process game in specific classes of
graphs.

Another problem that arises with the introduction of the Process Decomposition is how
to compute such decomposition of a graph. Is there an FPT-algorithm for computing a
Process Decomposition of a digraph? Albeit this question will be left unanswered in this
thesis, in the next chapter, we explore the problem of computing graph decompositions
for undirected graphs.

Finally, both tree decompositions and path decompositions have the notion of a dual
structure, brambles and blockages respectively. For instance, the tree width of a undi-
rected graph G is equal to k− 1 if, and only if, G has no bramble greater3 than k [ST93].
The monotonicity of a game plays an important role in the relationship between the width
of a decomposition and its dual. Hence, it will be interesting to use our monotonicity
result to define a dual for the process number.

In addition, the visible variant of the processing game appears to be an interesting
candidate for providing a “tree like” decomposition for digraphs.

3Measured by the size of its hitting set.





Chapter 4

Graph Width Measures

In this chapter, we aim at investigating the problem of computing undirected graph
decompositions.

More precisely, this chapter aims at unifying and generalizing the FPT algorithms for
computing various decompositions of graphs. As a particular application, our algorithm
decides in linear time if the special tree width or the q-branched tree width is at most
k, for q ≥ 0 and k ≥ 1 fixed and, hence, being the first explicit algorithm capable of
computing these parameters.

We use the notions of partition function and partitioning-tree, defined in [AMNT09],
in order to generalize these algorithm. Given a finite set A, a partition function Φ for
A is a function from the set of partitions of A into the integers. A partitioning-tree of
A is a tree T together with a one-to-one mapping between A and the leaves of T . Note
that, every internal vertex v of T defines a partition of A where each part is composed by
the leaves of T in one component of T [V (T ) \ {v}]. The Φ-width of T is the maximum
Φ(P), for any partition P of A defined by the internal vertices of T , and the Φ-width
of A is the minimum Φ-width of its partitioning-trees. Partition functions are a unified
view for a large class of width parameters like tree width, path width, branch width,
etc. In [AMNT09] is given a simple sufficient property that a partition function for A
must satisfy to ensure that either A admits a partitioning tree of width at most k ≥ 1, or
there exists a k-bramble (a dual structure), unifying and generalizing the duality theorems
in [RS83, RS91, ST93, FT03].

We propose a simple set of sufficient properties and an algorithm such that, for any
k and q fixed parameters, and any partition function Φ satisfying these properties, our
algorithm decides in time O(|A|) if a finite set A has q-branched Φ-width at most k
(Theorem 11). Since tree width, path width, branch width, cut width, linear width,
and carving width can be defined in terms of Φ-width for some particular partition
functions Φ that satisfy our properties (Theorem 12), our algorithm unifies the works
in [Bod96, BT97, Thi00, BT04]. Our algorithm generalizes the previous algorithms since
it is not restricted to width-parameters of graphs, but works as well for any partition
function (not restricted to graphs) satisfying some simple properties. Moreover, we show
how the special tree width [Cou10] of a graph can be defined by a partition function that
satisfy our properties. This implies that our algorithm can also be used to decide, in
linear time, if the special tree width of a graph is not bigger than a constant k. Finally, it
provides the first explicit linear-time algorithm that decides if a graph G can be searched,

43



44 Graph Width Measures

in a non-deterministic way, by k searchers performing at most q queries, for any k ≥ 1,
q ≥ 0 fixed. Our decision algorithm can be turned into a constructive one by following
the ideas of Bodlaender and Kloks [Bod96].

In Section 4.1, we formally define the notions of partition functions and partitioning-
trees. Then, we present several width parameters of graphs in terms of partition functions
(most of these results have been proved in [AMNT09]). Section 4.2 is devoted to the for-
mal statement of our results. In Section 4.3, we show a method to describe all partitioning
trees of Φ-width not bigger than k of a set A. Section 4.4 is dedicated to show how parti-
tioning trees can be represented in an efficient manner. Then, in Section 4.5, we describe
an algorithm that follows the method in Section 4.3, but using the efficient representation
of partitioning trees of Section 4.4, to decide if a set A has Φ-width at most k, Φ being
a partition function and k a fixed integer. Then, in Section 4.6, we briefly discuss the
results in this chapter with some perspectives into future work.

4.1 Partition Functions and Partitioning Trees

In this section, we present the notions of partition function and partitioning tree of a set,
as defined in [AMNT09].

Let A be a finite set. A partition of A is a set of non-empty pairwise disjoint subsets
of A whose union equals A. Let Part(A) be the set of all partitions of A. Let P = (Ai)i≤r

and Q = (Bi)i≤p be two partitions of A. For any subset A′ ⊆ A, the restriction P ∩ A′

of P to A′ is the partition (Ai ∩ A′)i≤r of A′, with its empty parts removed. Q is a
subdivision of P if, for any j ≤ p, there exists i ≤ r with Bj ⊆ Ai.

Definition 1. A partition function ΦA for A is a function from Part(A) into the integers.
A partitioning function ΦA is monotone if, for any subdivision Q of a partition P of A,
ΦA(P) ≤ ΦA(Q).

For the purpose of generalization, we would like a partition function to be defined
independently from the set on which it is applied. In particular, we would like that a
partition function, for some set A, to induce some partition functions for any subset of
A.

From now on, A denotes a set of finite sets closed under taking subsets. In other
words, ∀X ∈ A and ∀Y ⊆ X we have Y ∈ A.

Definition 2. A (monotone) partition function Φ over A is a function that associates a
(monotone) partition function ΦA for A to any A ∈ A.

Most of the results of the chapter do not depend on the set A. When this is the case,
we simplify the notation of a partition function Φ by omitting the subscript.

Definition 3. A partition function Φ over A is closed under taking subsets if Φ associates
a partitioning function ΦA′ for any A′ ⊆ A ∈ A and, for any partition P of A, ΦA′(P ∩
A′) ≤ ΦA(P), where Φ(A) = ΦA.

In what follows, we define partitioning trees.

Definition 4. A partitioning tree (T, σ) of a set A is a tree T together with a one-to-one
mapping σ between the elements of A and the leaves of T .



Partition Functions and Partitioning Trees 45

If T is rooted in r ∈ V (T ), the partitioning tree is denoted by (T, r, σ). Any internal
(i.e. non leaf) vertex v ∈ V (T ) corresponds to a partition Tv of A, defined by the sets of
leaves of the connected components of T \v. Figure 4.1 shows an example of a partitioning
tree. Similarly, any edge e ∈ E(T ) defines a bi-partition Te of A. The ΦA width of (T, σ)
is the maximum ΦA(T ) where T is the partition defined by an internal vertex of T or an
edge of T .

Definition 5. Let Φ be a partition function over A. The Φ-width of a set A ∈ A is the
minimum ΦA width of its partitioning trees.

A branching node of tree T rooted in r ∈ V (T ) is either r or a vertex of T with at least
two children. A tree T is q-branched if there exists a root r ∈ V (T ) such that any path
from r to a leaf contains at most q ≥ 0 branching nodes. For instance, T is 0-branched
if and only if T is a path.

Definition 6. The corpse cp(T ) of a tree T rooted in r ∈ V (T ) denotes the tree rooted
in r obtained from T by removing all its leaves, but r if it is a leaf.

In Figure 4.1, a 2-branched partitioning tree (T, R, σ) of the elements a, b, . . . , k, l is
represented. The vertex V ∈ V (T ) defines the partition TV with parts {abfghijkl, c, de},
R ∈ V (T ) defines the partition TR = {abcde, fg, hijkl}, and the edge E ∈ E(T ) defines
the bi-partition TE = {ab, cdefghijkl}. The black vertices are the branching nodes of
cp(T ).

R

V

a

b

c

d e

f

g

h
i

jk

l

E

(a) tree

R

V

E

(b) corpse

Figure 4.1: A partitioning tree of {a, b, . . . , k, l} (a) and its corpse (b).



46 Graph Width Measures

Definition 7. A partitioning tree (T, σ) is q-branched if the corpse cp(T ) of T is q-
branched.

For instance, a partitioning tree (T, σ) is 0-branched if and only if T is a caterpillar1.
The q-branched Φ-width of A is the minimum ΦA width of its q-branched partitioning
trees.

Graph Decompositions and Partitioning Trees

The notions from Section 4.1 have been given for general sets. In the following, we recall
that partition functions and partitioning trees are generalization of several decompositions
of graphs and their related parameters [AMNT09]. We assume that the reader is familiar
the width measures of graphs of Chapter 2.

Throughout this section, E contains all possible edge-sets of every graph, i.e. for any
graph G = (V, E) we have E ∈ E and V contains all possible vertex-set of every graph,
i.e. for any graph G = (V, E) we have V ∈ V.

It is sometimes necessary, depending on the width measure, to restrict the shape of the
partitioning tree, to add some constraint to the mapping of the leaves of the partitioning
tree or to use a special partitioning function in order to express graph width measures
in terms of partitioning functions and partitioning trees. In what follows, we show which
restrictions are necessary to represent the special tree width, branch width, linear width,
cut width and carving width in terms of partitioning functions and partitioning trees.
We start by reproducing how the q-branched tree width of a graph can be represented
by partitioning functions as shown in [AMNT09].

Partition function and q-branched tree width

For any graph G = (V, E), let ∆ be the function that assigns, to any partition X =
{E1, . . . , Er} of E, the set of the vertices that are incident to edges in Ei and to edges in
Ej, with i 6= j.

Definition 8. Let E ∈ E . The function δE is the partition function for E that assigns
|∆(X )| to any partition X of Part(E). Let δ be the partition function over E that assigns
δE to every E ∈ E .

Lemma 8. [AMNT09] For any graph G = (V, E), the tree width tw(G) of G is at most
k ≥ 1 if, and only if, the δ width of E is at most k + 1.

Proof. In other words, we aim at proving that for any graph G = (V, E), the tree width
tw(G) of G is at most k if, and only if, there is a partitioning tree of E with δ width at
most k + 1. Let (T, σ) be a partitioning tree of E with δ width at most k + 1, then it is
easy to check that (cp(T ), (Xt)t∈V (cp(T ))), with Xt = ∆(Tt), is a tree decomposition of G
of width at most k. Conversely, let (T,X ) be a tree decomposition of G with width at
most k. Then, for any edge {x, y} ∈ E, let us choose an arbitrary bag Xt that contains
both x and y, add a leaf f adjacent to t in T , and let σ(f) = {x, y}. Finally, let S be the
minimal subtree spanning all such leaves. The resulting tree (S, σ) is a partitioning tree
of E with δ width at most k + 1.

A similar proof leads to:
1A caterpillar is a tree with a dominating path.



Partition Functions and Partitioning Trees 47

Lemma 9. [AMNT09] For any graph G = (V, E), the path width pw(G) of G is at most
k ≥ 1 if, and only if, there is a 0-branched partitioning tree (T, σ) of E with δ width at
most k.

More generally:

Lemma 10. For any graph G = (V, E) and any q ≥ 0, the q-branched tree width twq(G)
of G is at most k ≥ 1 if, and only if, there is a q-branched partitioning tree (T, σ) of E
with δ width at most k.

The special tree width can be represented with the following restriction over the
partitioning trees.

Special tree width: The special tree width of a graph can be expressed in terms of the
partition function δ, but with a restriction in the shape of the partitioning tree.
For any graph G = (V, E), instead of searching for the minimum δE width over all
partitioning trees of E, we restrict the partitioning trees to respect the following rule.
Let (T, σ) be a partitioning tree of E, for each vertex v in V , let T ′ be the minimum
subtree of (T, σ) spanning all the leaves of (T, σ) such that their corresponding edge
in E has v as one extremity. We have that T ′ is a caterpillar.

Other Widths and Partition Functions

The branch width and the linear width of a graph may be expressed in terms of the
following partition function:

Definition 9. Let maxδE be the partition function for E ∈ E which assigns maxi≤n δ(Ei,
E \ Ei) to any partition (E1, . . . , En) of E. Let maxδ be the partition function over E
that assigns maxδE to any E ∈ E .

Branch width [BT97]: By definition, the branch width of G, denoted by bw(G), is at
most k ≥ 1, if and only if there is a partitioning tree (T, σ) of E with maxδ width
at most k and such that the internal vertices of T have maximum degree at most
three.

Linear width [BT04]: The linear width of G, denoted by lw(G) is defined as the small-
est integer k such that E can be arranged in a linear ordering (e1, . . . , em) such that
for every i = 1, . . . , m− 1 there are at most k vertices both incident to an edge that
belongs to {e1, . . . , ei} and to an edge in {ei+1, . . . , em}. The linear width of G is at
most k ≥ 2 if and only if there is a partitioning tree (T, σ) of E with maxδ width
at most k, such that the internal vertices of T have maximum degree at most three,
and (T, σ) is 0-branched. This result easily follows from the trivial correspondence
between such a partitioning tree of E and an ordering of E, see Chapter 2. Note
that this does not hold for k = 1 (a 3 edges path is a counterexample).

The carving width of a graph may be expressed in terms of the following partition
function. For any partition X = {V1, . . . , Vr} of V ∈ V, let Edgeδ be the function that
assigns the cardinality of the set of the edges of the graph G = (V, E) that are incident
to vertices in Vi and Vj, with i 6= j.

Definition 10. Let maxEdgeδV be the partition function for V ∈ V that assigns maxi≤n

Edgeδ(Vi, V \ Vi) to any partition (V1, . . . , Vn) of V . Let maxEdgeδ be the partition
function over V that assigns maxEdgeδV to any V ∈ V.



48 Graph Width Measures

Carving width [ST94, Thi00]: By definition, the carving width of G, carw(G), is at
most k ≥ 1 if and only if there is a partitioning tree of V with maxEdgeδ width
at most k, and such that the internal vertices of T have maximum degree at most
three.

The cut width of G, denoted by cw(G), is defined as the smallest integer k such that
V can be arranged in a linear ordering (v1, . . . , vn) such that for every i = 1, . . . , n − 1
there are at most k edges both incident to a vertex that belongs to {v1, . . . , vi} and to a
vertex in {vi+1, . . . , vn}.

The partition function maxEdgeδ also may express the cut width of a graph G = (V, E)
when it is at least the maximum degree ∆ of G. Note that any 0-branched partitioning
tree with maximum degree at most 3 is such that its maxEdgeδ-width is at least ∆. On
the other hand, any 0-branched partitioning with maximum degree at most 3 of V can be
seen as a linear ordering over the vertices of G, which implies that the maxEdgeδ-width
of G is at least as big as cw(G). More precisely, the minimum maxEdgeδ width of the 0-
branched partitioning trees of V with maximum degree at most 3 equals max{cw(G), ∆}.
In general, to express the cut width of a graph, we need a more restrictive partition
function.

Definition 11. Let 3-maxEdgeδV be the partition function for V ∈ V that assigns the
function max{Edgeδ(V1, V \V1), Edgeδ(V2, V \V2)} to any partition (V1, V2, V3) of V , with
|V3| = 1. Let 3-maxEdgeδ be the partition function over V that assigns 3-maxEdgeδV to
any V ∈ V.

Cut width [Thi00]: The cut width of G is at most k ≥ 1, if and only if there is a
partitioning tree (T, σ) of V with 3-maxEdgeδ width at most k, and (T, σ) is 0-
branched. This result easily follows from the trivial correspondence between such a
partitioning tree of V and an ordering of V .

4.2 Main Results

In this section, we define properties of a partition function Φ that are sufficient for Φ
to admit a linear-time (in the size of the input set) algorithm that decides whether the
Φ-width of any set is at most k, k being a fixed integer.

More precisely, we start by giving a set of sufficient conditions for our theorem. Then,
we show that all aforementioned widths respect these conditions. This implies that the
algorithm in Section 4.5 can be used to compute all the aforementioned widths, thus this
algorithm generalizes the FPT-algorithms of [BK96, BT97, Thi00, BT04].

Sufficient Conditions For a Linear Time Algorithm

First, some definitions are made in this section in order to state the main theorem.
Since partitioning trees generalize the tree decomposition to any set (not only graphs),

it is natural to extend the notion of nice tree decomposition [Bod96] to any set.
A nice decomposition (D,X ) of a finite set A is a O(|A|)-node rooted tree D, together

with a family X = (Xt)t∈V (D) of subsets of A such that, ∪t∈V (D)Xt = A, for all a ∈ A the
set {t | a ∈ Xt} induces a subtree of D, and for any v ∈ V (D):

start node: v is a leaf, or



Main Results 49

introduce node: v has a unique child u, Xu ⊂ Xv and |Xv| = |Xu|+ 1, or

forget node: v has a unique child u, Xv ⊂ Xu and |Xu| = |Xv|+ 1, or

join node: v has exactly two children u and w, and Xv = Xu = Xw.

The width of a decomposition (T,X ) is the maxt∈V (T ) |Xt|. For any v ∈ V (D), let Dv

denote the subtree of D rooted in v, and Av = ∪t∈V (Dv)Xt.
Let Φ be a partition function. A nice decomposition (D,X ) of a set A is compatible

with Φ if:

1. there exists a function FΦ that associates an integer FΦ(x,P , e) to any integer x,
partition P of some subset of A and element e of A, such that, FΦ is strictly
increasing in its first coordinate, and, for any introduce node v ∈ V (D) with child
u, any partition P of Av,

ΦAv
(P) = FΦ(ΦAu

(P ∩ Au),P ∩Xv, Av \ Au).

2. there exists a function HΦ that associates an integer HΦ(x, y,P) to any pair of
integers x, y, and partition P of some subset of A, such that, HΦ is strictly increasing
in its first and second coordinates, and, for any join node v ∈ V (D) with children
u and w, any partition P of Av,

ΦAv
(P) = HΦ(ΦAu

(P ∩ Au), ΦAw
(P ∩ Aw),P ∩Xv).

3. FΦ and HΦ have time complexity that does not depend on the size of Av. That is,
they have constant time complexity with respect to the size of Av.

4. If v ∈ V (D) is an introduction node with u as children, then for every partition
P of Av such that P ∩Xv is a partition of Xv with only one part, then ΦAv

(P) =
ΦAu

(P ∩ Au).

If v ∈ V (D) is a join node with u and w as children, then for every partition
P of Av such that P ∩ Aw is a partition of Aw with only one part we have that
ΦAv

(P) = ΦAu
(P ∩ Au). Respectively, if P ∩ Au is a partition of Au with only one

part, then ΦAv
(P) = ΦAw

(P ∩ Aw).

Intuitively, the existence of FΦ and HΦ means that it is possible to quickly compute
the Φ-width of some partitions P without knowing explicitly P . By only knowing a
restriction of P and the Φ-width of some restriction of P , these restrictions being defined
by the decomposition (D,X ). Moreover, the last restriction over the function Φ means
that changes on the width of a partitioning tree resulted from adding elements to the
partitioning tree do not propagate long. They are contained to vertices of the partitioning
tree that partition Xv into at least two parts.

Main Theorem

This is the main theorem of this chapter:

Theorem 11. Let Φ be a monotone partition function that is closed under taking subsets.
Let k, k′ ≥ 1 and q ≥ 0 be three fixed integers (q may be ∞). There exists an algorithm
that solves the following problem in time linear in the size of the input set:



50 Graph Width Measures

input: a finite set A and a nice decomposition (D,X ), of width at most k′ for A, that is
compatible with Φ,

output: decide if the q-branched Φ-width of A is at most k.

Corollary 3. Let Φ be a monotone partition function that is closed under taking subsets.
Let k ≥ 1 and q ≥ 0 be 2 fixed integers (q may be ∞). Let A be a class of sets such that
there exists a linear-time algorithm for computing a nice decomposition of width O(k) for
any set A ∈ A, compatible with Φ, if it exists. There exists an algorithm that solves the
following problem in time linear in the size of the input set:

input: a finite set A,

output: decide if the q-branched Φ-width of A is at most k.

The proof of Theorem 11 is quite technical and most of the remaining part of this
chapter is devoted to it. In order to explain such proof in a more didactic manner, we
start with a simple algorithm to solve this problem, albeit not in linear time, and improve
such algorithm in the following sections until we have a linear time algorithm.

Tractability of Width Parameters of Graphs

This section is devoted to present an application of Theorem 11 in terms of the width
measures of graphs showed in Section 4.1.

Theorem 12. Let k and q be two fixed parameters. There exists an algorithm that solves
the following problem in time linear in the size of the input graph.

input: A graph G with maximum degree bounded by a function of q and k,

output: Decide if G has q-branched tree width, resp., branch width, linear width, carving
width, cut width or special tree width at most k.

Proof. In Section 4.1, we explained that several width parameters of graphs (q-branched
tree width, resp., branch width, linear width, carving width, cut width or special tree
width) can be defined in terms of partition functions. Therefore, the proof of Theorem 12
roughly consists in proving that the partition functions corresponding to these width
parameters satisfy conditions of Theorem 11.

Bodlaender designs a linear-time algorithm that decides if the tree width of a graph G
is at most k′ (k′ is a fixed parameter), and, if tw(G) ≤ k′ returns a tree decomposition of
width at most k′ [Bod96]. Moreover, a nice tree decomposition of G can be computed in
linear time from any tree decomposition of G, and without increasing its width [BK96].
Moreover, from Lemma 14, any nice tree decomposition of G can be turned into a nice
decomposition of E(G) with width at most dk′, where d is the maximum degree of G.

Note that from Lemmas 15, 16 and 17 we have that a nice decomposition is compat-
ible with partitioning functions for q-branched tree width, branch width, linear width,
carving width, cut width and special tree width. Therefore, in order to obtain a nice
decomposition of E(G), we can use the algorithm in [Bod96] and Lemma 14. Since, by
hypothesis, the maximum degree of G is bounded by a function of q and k, the width
of the nice decomposition obtained is bounded by a function of q and k. Therefore, the
hypothesis of Theorem 11 is satisfied for all the aforementioned widths, which proves
Theorem 12.



Main Results 51

First, the following lemma is straightforward and its proof is thus omitted.

Lemma 13. The partition functions δ, maxδ, Edgeδ and maxEdgeδ are monotone and
closed under taking subsets.

Next three lemmas show the compatibility of some nice decomposition with the par-
tition functions δ, maxδ and maxEdgeδ.

Definition 12. [BK96] A nice tree decomposition of a graph G = (V, E) is a tree
decomposition of G that is a nice decomposition of V .

Lemma 14. Any nice tree decomposition (T,Y) of a graph G = (V, E) with width k can
be turned into a nice decomposition (D,X ) of E. Moreover, if G has bounded maximum
degree d, the width of (D,X ) is at most d · k.

Proof. For any v ∈ V (T ), let Tv denote the subtree of T rooted in v, and Av = ∪t∈V (Tv)Yt,
and let Ev be the set of edges belonging to the subgraph induced by the vertices contained
in Av that are incident to a vertex in Yv. Any start node, resp., join node, Yt of (T,Y)
corresponds to a start node, resp., join node, Et of (D,X ). For any introduce node
Yt of (T,Y), let x ∈ V be the vertex such that Yt = Yt′ ∪ {x}, where t′ is the single
child of t in T . Let e1, . . . , er be the edges that are incident to x and to some vertex
in Yt′ . Then, Yt is modified into a path of introduce nodes E(G[Yt′ ]) ∪ {e1}, E(G[Yt′ ]) ∪
{e1, e2}, . . . , E(G[Yt′ ])∪{e1, e2, . . . , er} in (D,X ). Finally, any forget node Yt of (T,Y) is
modified into a path of forget nodes E(G[Yt′ ]) \ {e1}, E(G[Yt′ ]) \ {e1, e2}, . . . , E(G[Yt′ ]) \
{e1, e2, . . . , er} in (D,X ), where t′ is the unique child of t in T , and e1, . . . , er are the edges
that are incident to x = Yt′ \Yt and to no other vertex in Yt. The obtained decomposition
of E is a nice decomposition and its width (i.e. the maximum number of edges in each
bag) is at most the width of the tree decomposition (T,Y) times the maximum degree of
G.

Lemma 15. Let G be a graph with maximum degree deg. Given a nice tree decomposition
(T,Y) of G with width at most k′ ≥ 1, a nice decomposition (D,X ) of E, compatible with
the partition functions corresponding to tree width (resp., path width and special tree
width) and with maxt∈V (D) |Xt| ≤ k′ · deg can be computed in linear time.

Proof. Recall that the tree width, the path width and the special tree width of a graph
may be defined in terms of the partition function δ. First, let (D,X ) be the nice decom-
position of E, with width at most k′ ·deg, obtained from (T,Y) as indicated in Lemma 14.
We aim at proving that (D,X ) is compatible with δ. Let Fδ be defined as follows.

Definition 13. Let x be an integer, P be a partition of a subset E ′ of E and an edge
e ∈ E ′. Let Fδ(x,P , e) = x + |{v ∈ e | v ∈ ∆(P) \∆(P ∩ (E ′ \ {e}))}|.

That is, Fδ adds to x the number of vertices incident to e that contribute to the border
of the partition P because they are incident to e. Fδ is obviously strictly increasing in its
first coordinate. Moreover, F can be computed in constant time when |E ′| is bounded
by a constant.

For any v ∈ V (D), let Dv denote the subtree of D rooted in v, and Av = ∪t∈V (Dv)Xt.
Let v ∈ V (D) be an introduce node with child u, and let {e} = Xv \ Xu. Let P be

a partition of Av. We need to prove that δAv
(P) = Fδ(δAu

(P ∩ Au),P ∩Xv, e). In other
words, let us prove that δAv

(P) = δAu
(P ∩Au) + |{v ∈ e | v ∈ ∆(P ∩Xv) \∆((P ∩Xv)∩

(Xv \ {e}))}|.



52 Graph Width Measures

δAv
(P) is the number of vertices in the subgraph induced by the set of edges Av that

are incident to edges in different parts of P . This set of vertices can be divided into two
disjoint sets: (1) the set S1 of vertices that are incident to two edges f and h that are
different from e and that belong to different parts of P , and (2) the set S2 of vertices x
incident to e and such that all other edges (different from e) incident to x belong to the
same part of P that is not the part of e. S1 is exactly the set of vertices belonging to
∆Au

(P ∩ Au), therefore |S1| = δAu
(P ∩ Au).

By definition of (D,X ), because it has been built from a tree decomposition, any
edge of Au = Av \ {e} that has a common end with e belongs to Xv. Therefore, any
vertex in S2 belongs to ∆(P ∩ Xv). It is easy to conclude that |S2| = |{v ∈ e | v ∈
∆(P ∩Xv) \∆(P ∩Xv ∩ (Xv \ {e}))}|.

Therefore, the function Fδ satisfies the desired properties.

Definition 14. Let x and y be two integers, and let P be a partition of a subset E ′ of
E. Let Hδ(x, y,P) = x + y − δ(P).

Hδ is obviously strictly increasing in its first and second coordinates. Moreover, it can
be computed in constant time when |E ′| is bounded by a constant.

Let v ∈ V (D) be a join node with children u and w, and let P be a partition of Av,
we must prove that δAv

(P) = Hδ(δAu
(P ∩ Au), δAw

(P ∩ Aw),P ∩Xv). That is, we prove
that δAv

(P) = δAu
(P ∩ Au) + δAw

(P ∩ Aw)− δXv
(P ∩Xv).

First, note that ∆Au
(P∩Au)∪∆Aw

(P∩Aw) ⊆ ∆Av
(P). Moreover, by definition of the

nice decomposition (D,X ), an edge of Au \Xv and an edge of Aw \Xv cannot be incident.
Indeed, Xv has been built by taking all edges incident to a vertex in a bag Y of the tree
decomposition (T,Y). By the connectivity property of a tree decomposition, if a vertex
x would have been incident to an edge in Au \Aw and to an edge in Aw \Au, then x ∈ Y
which would have implied that both these edges belong to Xv = Au∩Aw, a contradiction.
Therefore, ∆Av

(P) ⊆ ∆Au
(P∩Au)∪∆Aw

(P∩Aw). To conclude showing that Hδ is correct,
it is sufficient to observe that ∆Au

(P ∩ Au) ∩∆Aw
(P ∩ Aw) = ∆Xv

(P ∩Xv).

Now, we need to show that if v is an introduction node with u as children then for
all partitions P of Av such that P ∩ Xv is a partition of Xv with only one part then
∆Av

(P) = ∆Au
(P ∩ Au).

Assume that v is an introduction node and that Av\Au = {a}. Let P be a partitioning
of Av such that P ∩Xv is a partition of Xv with only one part.

Since (D,X ) is a nice decomposition of E, we have that a is not adjacent to any edge in
Au\Xv. Assume that ∆Au

(P∩Au) < ∆Av
(P). This means that there is an extremity of a

that is incident to an edge of Au\Xv, a contradiction. Therefore, ∆Au
(P∩Au) = ∆Av

(P).

Finally, we need to show that if v is a join node of (D,X ) with children u and w, then
for all partitions P of Av such that P ∩ Au is a partition of Au with only one part then
∆Av

(P) = ∆Aw
(P ∩Aw) or ∆Av

(P) = ∆Au
(P ∩Au) in the case that P ∩Aw is a partition

of Aw with only one part.
W.l.o.g. assume that P ∩ Aw is a partition of Aw with only one part. Since, (D,X )

is a nice decomposition of E, we have that no edges in Au \ Aw share extremities with
edges in Aw \ Au. Moreover, (Au \ Aw) ∩ (Aw \ Au) = ∅ and Au ∩ Aw = Xv.

∆Av
(P) is the number of vertices of G such that they are extremities for edges in

different parts of P . Since, P ∩ Aw is a partition with only one part and the edges of
Aw \ Au do not share any extremities with edges in Au \ Aw. We have that ∆Av

(P) is
the number of vertices that are extremities of edges in different parts of P ∩Au. That is,
∆Av

(P) = ∆Au
(P ∩ Au).



Describing Partitioning Trees in a Dynamic Manner 53

The case where P ∩ Au is a partition of Au with only one part is similar and thus
omitted.

It is easy to see that the partition function Edgeδ behaves as the δ function but the
role of vertices and edges being reversed.

First note that any nice tree decomposition (T,Y) of G is a nice decomposition of
V . To prove that (T,Y) is compatible with the partition function Edgeδ, we follow the
above proof of Lemma 15.

Definition 15. FEdgeδ and HEdgeδ are defined as follows:

• Let x be an integer, P be a partition of a subset V ′ of V and a vertex v ∈ V ′. Then,

FEdgeδ(x,P , v) = x + |{e ∈ E | v ∈ e and e ∈ Edgeδ(P) \ Edgeδ(P ∩ (V ′ \ {v}))}|.

• Let x and y be two integers, and let P be a partition of a subset V ′ of V . Then,
HEdgeδ(x, y,P) = x + y − Edgeδ(P).

Therefore, the partition function Edgeδ is compatible with any nice tree decomposi-
tion. To prove the compatibility of the partition function maxEdgeδ with any nice tree
decomposition, we use the following claim.

Let f be any partition function and let maxf be the partition function that associates
maxi≤n f(Ai, A \ Ai) to any partition (A1, . . . , An) of A.

Claim 1. For any partition function f compatible with a nice decomposition of some set
A, the partition function maxf is also compatible.

Remark 2. Claim 1 also serves to show that the partition functions for branch width and
linear width are also compatible to a nice decomposition of the edges of a graph.

Because f is compatible with any nice decomposition of A, there exist two function
Ff and Hf that satisfy the properties defining the notion of compatibility. We must have:

fAv
(P) = Ff (fAu

(P ∩ Au),P ∩Xv, Av \ Au), and

fAv
(P) = Hf (fAu

(P ∩ Au), fAw
(P ∩ Aw),P ∩Xv).

The key point is that if P is a bipartition of some set A, then fA(P) = maxf A(P).
Therefore, when considering a bipartition, the functions Fmaxf and Hmaxf can be defined
similarly to Ff and Hf . The case that P is not a bipartition is more technical, hence we
postpone the proof of this claim until Section 4.5 after showing how the algorithm works.

Hence with Claim 1 the partition functions corresponding to the branch width and
linear width (carving width and cut width) are all compatible to nice decompositions of
E (V ) of a graph G = (V, E). This gives us the following lemmas:

Lemma 16. Any nice decomposition (D,X ) of G is a nice decomposition of E compatible
with the partition functions corresponding to branch width (resp., linear width).

Lemma 17. Any nice tree decomposition (T,Y) of G is a nice decomposition of V com-
patible with the partition functions corresponding to carving width (resp., cut width).

4.3 Describing Partitioning Trees in a Dynamic Manner

In this section, we show the basic idea used to compute all the aforementioned widths.



54 Graph Width Measures

Preliminary Definitions

Definition 16. Let (T, r, σ) be a rooted partitioning tree of a set A and A′ ⊆ A, then
the partitioning tree (T ′, r′, σ′) of (T, r, σ) restricted to A′ is the minimum subtree of T ′

spanning all the leaves corresponding to elements of A′. r′ is the vertex of T ′ that is
closest to r in T and the function σ′ is the restriction of σ to A′.

Let (D,X ) be a nice decomposition of a set A and Φ a partitioning function of A that
is compatible with (D,X ). Recall that for any v ∈ V (D), Dv denotes the subtree of D
rooted in v, and Av = ∪t∈V (Dv)Xt. In what follows, a full set of partitioning trees of a
vertex v ∈ V (D), denoted by FSPTk,q(v), is the set of all labelled q-branched partitioning
trees of Φ-width at most k of Av. If r is the root of (D,X ) then Ar = A, hence FSPTk,q(r)
is not empty if and only if the q-branched Φ-width of A is not bigger than k.

Definition 17. A labelled partitioning tree, ((T, r, σ), ℓ) is a partitioning tree (T, r, σ)
along with a label ℓ, a function from the edges or internal vertices of T to integers, the
label of a vertex (or edge) t of T is such that ℓ(t) = Φ(At), where At is the partition of
A defined by t.

The role of the label is to store the values of the partitioning function Φ for fast access
and update during the execution of the algorithm.

Main Idea

Let k and q be fixed integers. The main idea behind the algorithm in section Section 4.5
is to use dynamic programming to compute a full set of partitioning trees for A by using
a nice decomposition (D,X ) of A. In other words, to decide if the q-branched Φ-width
of A is not bigger than k. We start by computing a FSPTk,q(v) for all bags Xv where v
is a leaf of D. Then, for each vertex v ∈ V (D) such that for each child u of v we have
already computed the set FSPTk,q(u), we compute FSPTk,q(v). Once FSPTk,q(r), where
r ∈ V (D) is the root of D, is computed, then we can simply test if FSPTk,q(r) is empty
to decide whether the q-branched Φ-width of A is not bigger than k.

In this section we show how to compute FSPTk,q(v) for vertices of V (D), for the
moment, we do not focus on the complexity of this computation, rather we show the main
idea behind each procedure introduced on Section 4.5. The computation of FSPTk,q(v)
depends on the type of the node v. In the following subsections we show procedures for
each kind of node in the nice decomposition (D,X ) (starting node, introduce node, forget
node and join node).

We also state that it is possible that a full set of characteristics has infinite size,
hence it is necessary to design a method to “compress” this set reducing its cardinality
to something more manageable, i.e., a size given by a function bounded on k, the width
of the nice decomposition and q. In Section 4.4 we show how this can be achieved.

Then, in Section 4.5, we show how to use this compression to design a linear time
algorithm to decide if the Φ-width of a set A is not bigger than k, k being a fixed
parameter.

Procedure Starting Node

If v is a starting node, i.e. a leaf of D. Then, procedure Starting Node consists of
enumerating all q-branched partitioning trees for Av with Φ-width at most k.



Describing Partitioning Trees in a Dynamic Manner 55

That is, FSPTk,q(v) is the set of all possible labelled q-branched partitioning trees for
Av with Φ-width at most k.

Lemma 18. Let (D,X ) be a nice decomposition of a set A. The procedure Starting Node
computes a full set of q-branched partitioning trees of Φ-width not bigger than k for a
starting node v of D.

Procedure Introduce Node

Assume that v is an introduce node of D and that we aim at computing FSPTk,q(v).
Let u be the only child of v in D and {a} = Xv \ Xu. Let FSPTk,q(u) be the

full set of labelled q-branched partitioning trees of Au with width at most k. The set
FSPTk,q(v) is obtained from FSPTk,q(u) by applying the following procedure to every
labelled partitioning tree (Tu, ru, σu) in FSPTk,q(u) and to every possible execution of the
step “update Tu into Tv”.

Procedure Introduce Node. Starting with FSPTk,q(v) =, for all possible choices
of step “update Tu into Tv” and for all elements(Tu, ru, σu) ∈ FSPTk,q(u) do the following:

update Tu into Tv: To insert a corresponding vertex to a in ((Tu, ru, σu), ℓu), choose
some internal vertex vatt of V (Tu), add a leaf vleaf adjacent to vatt . Moreover, let
enew = {vatt , vleaf }, we then proceed to subdivide enew a finite number of times.
Then, set σv(vleaf ) = a. Let Pnew be the path joining vleaf to vatt . If ru = vatt then
rv is one of the vertices in V (Pnew) \ {vleaf }, otherwise rv = ru. Note that, at this
point, Tv is a partitioning tree of Av.

update of labels of new vertex(s) and edge(s): First, let Pnew be the path joining
vleaf to vatt . Then every internal vertex (or edge) p of Pnew receives label ℓv(p) =
ΦAv

({Au, {a}}).

update of labels of other vertex(s) and edge(s): For all e ∈ E(Tv) \ E(Pnew), let
Te be the partition of Xv defined by e. ℓv(e) ← FΦ(ℓu(e), Te, a). For all t ∈
(V (Tv) \ V (Pnew)) ∪ {vatt}, let Tt be the partition of Xv defined by t, then ℓv(t)←
FΦ(ℓu(t), Tt, a).

update of FSPTk,q(v): If ((Tv, rv, σv), ellv) is q-branched, for every internal vertex t ∈
V (Tv) we have ℓv(t) ≤ k and for every edge e ∈ E(Tv) we have ℓv(e) ≤ k then
FSPTk,q(v) ← FSPTk,q(v) ∪ {((Tv, rv, σv), ℓv)}, otherwise FSPTk,q(v) remains un-
changed.

Lemma 19. Let (D,X ) be a nice decomposition of a set A compatible with the monotone
partition function Φ and let v be an introduce node of D with a child u. The procedure
Introduce Node computes a full set of q-branched partitioning trees of Φ-width not bigger
than k from the set FSPTk,q(u) for the node v.

Proof. Let FSPTk,q(v) be the set computed by the procedure Introduce Node, we first
show that any element ((Tv, rv, σv), ℓv) ∈ FSPTk,q(v) is a q-branched partitioning tree
with Φ-width not bigger than k for Av.

Let FSPTk,q(u) be a full set of q-branched partitioning trees of Φ-width not big-
ger than k for the node u and let (Tu, ru, σu) be any element of FSPTk,q(u). Assume
that ((Tv, rv, σv), ℓv) is obtained through an execution of procedure Introduce Node on
(Tu, ru, σu).



56 Graph Width Measures

From the step “update Tu into Tv”, since (Tu, ru, σu) is a partitioning tree for Au and
Av \ Au = {a}, taking (Tu, ru, σu) adding a leaf vleaf to an internal vertex vatt of Tu and
mapping vleaf to a results in a partitioning tree for Av. Moreover, the subdivision of
{vatt , vleaf } does not change the fact that (Tv, rv, σv) is a partitioning tree for Av. Hence,
(Tv, rv, σv) is a partitioning tree for Av.

For any internal vertex (or edge) t of Tv let At be the partition of Av that it defines.
It remains to show that (Tv, rv, σv) is q-branched, has Φ-width not bigger than k and
that after the execution of the procedure Introduce Node all labels are correct. In other
words, for all internal vertices (or edges) t of Tv, we prove that ℓv(t) = ΦAv

(At).
In the step “update of FSPTk,q(v)”, ((Tv, rv, σv), ℓv) is only added to FSPTk,q(v) if

it is q-branched. Then, from the fact that there are only labelled partitioning trees in
FSPTk,q(u), we have that ℓu(t) = ΦAu

(At ∩Au) for any internal vertex (or edge) t of Tu.
Moreover, we have that Φ is compatible with the nice decomposition (D,X ). Therefore,
from the description of the Introduce Node procedure for every internal node t (or any
edge) of Tv that is not in Pnew ∪ {vatt}:

ℓv(t) = FΦ(ℓu(t), Tt, a) = FΦ(ΦAu
(At ∩ Au),At ∩Xv, a) = ΦAv

(At).

Furthermore, all edges and internal vertices of Pnew receive the label ΦAv
({Au, {a}})

from step “update of new vertex(s) and edge(s)”, hence lv(t) = ΦAv
({Au, {a}}), where t

is either an internal vertex of Pnew or an edge of Pnew. Lastly, again from the fact that Φ
is compatible with (D,X ) and from step “update of labels of other vertex(s) and edge(s):

ℓv(vatt) = FΦ(ℓu(vatt), Tvatt
, a) = FΦ(ΦAu

(Avatt
∩ Au),Avatt

∩Xv, a) = ΦAv
(Avatt

).

Hence, at step “update of FSPTk,q(v)”, ((Tv, rv, σv), ℓv) is a labelled partitioning tree
of Av. Therefore, the step “update of FSPTk,q(v)” guarantees that ((Tv, rv, σv), ℓv) is
only added to FSPTk,q(v) if it is a labelled q-branched partitioning tree with Φ-width
not bigger than k for Av. Thus, any element of FSPTk,q(v) is a labelled q-branched
partitioning tree with Φ-width not bigger than k for Av.

We now show that any labelled q-branched partitioning tree with width not bigger
than k for Av is in FSPTk,q(v). Let ((T ′

v, r′
v, σ′

v), ℓv) be any q-branched partitioning tree
with width not bigger than k for Av. Let (Tu, ru, σu) be (T ′

v, r′
v, σ′

v) restricted to Au. The
partitioning tree (Tu, ru, σu) is q-branched and its Φ-width is not bigger than k, since
we only remove branches when restricting a partitioning tree and Φ is monotone. Thus,
((Tu, ru, σu), ℓu) ∈ FSPTk,q(u).

Let vleaf be the vertex of T ′
v that corresponds to a. Since Tu is a subtree of T ′

v, let
vatt ∈ V (Tu) be the vertex that is closest to vleaf in T ′

v and Pnew be the path in T ′
v joining

vleaf to vatt . Since Au = Av\{a}, all internal vertices of Pnew have degree two in T ′
v. Hence,

T ′
v can be obtained from Tu in the step “update Tu into Tv” by attaching the vertex vleaf

to vatt and subdividing the edge enew an amount of times equal to |V (Pnew \ {vleaf , vatt})|.
Therefore, let ((Tv, rv, σv), ℓv) be the labelled q-branched partitioning tree obtained

from ((Tu, ru, σu), ℓu) with the Introduce Node procedure by adding a vertex vleaf mapping
a to vatt and subdividing {vatt , vleaf } an amount of times equal to |V (Pnew \ {vleaf , vatt})|.
In other words, Tv and T ′

v are isomorphic. Since the root of the tree does not change
with the Introduce Node procedure, r′

v = rv = ru. Moreover, σ′
v and σv are the same, i.e.

σ′
v = σv = σu ∪ (vatt , a). Therefore ((T ′

v, r′
v, σ′

v), ℓ′
v) = ((Tv, rv, σv), ℓv). Thus, for every

q-branched partitioning tree ((T ′
v, r′

v, σ′
v), ℓv) with width not bigger than k for Av there is

an execution of process Introduce Node such that ((T ′
v, r′

v, σ′
v), ℓv) ∈ FSPTk,q(v).



Describing Partitioning Trees in a Dynamic Manner 57

Procedure Forget Node

Let v be a forget node of D, u be its child and FSPTk,q(u) be a full set of labelled q-
branched partitioning trees of Au with width at most k. Then procedure Forget Node
consists of copying FSPTk,q(u). In other words, FSPTk,q(v) = FSPTk,q(u).

Lemma 20. Let (D,X ) be a nice decomposition of a set A compatible with the monotone
partition function Φ and let v be a forget node of D with a child u. The procedure Forget
Node computes a full set of q-branched partitioning trees of Φ-width not bigger than k for
a forget node v of D.

Since Av = Au we have that FSPTk,q(v) = FSPTk,q(u), therefore if v is a forget node
this procedure produces a full set of labelled q-branched partitioning trees of Au with
width at most k for the node v.

Procedure Join Node

Let v be a join node of D, u and w its children and FSPTk,q(u) a full set of labelled
q-branched partitioning trees of Au with width at most k and FSPTk,q(w) a full set of
labelled q-branched partitioning trees of Aw with width at most k.

Let ((Tu, ru, σu), ℓu) ∈ FSPTk,q(u) and ((Tw, rw, σw), ℓw) ∈ FSPTk,q(w). The goal is
to merge “compatible” partitioning trees. We recall that, by definition of a join node of
a nice decomposition, Xu = Xw = Xv. Hence, let (T r

u , rr
u, σr

u) be (Tu, ru, σu) restricted to
Xv, i.e. the minimum subtree of Tu spanning all the leaves corresponding to elements of
Xv (rr

u is the vertex of T r
u closest to ru in Tu), and (T r

w, rr
w, σr

w) be (Tw, rw, σw) restricted to
Xv. Then, we do the following procedure for every pair of elements of ((Tu, ru, σu), ℓu) ∈
FSPTk,q(u) and ((Tw, rw, σw), ℓw) ∈ FSPTk,q(w) such that T r

u and T r
w are isomorphic,

σr
u = σr

w and for every possible execution of step “Identifying Tu and Tw”.

Identifying Tu and Tw: Tv is obtained by identifying all correspondent vertices of T r
u

and T r
v . Then we remove from Tv the double edges resulting from the identification

process. The root of Tv is obtained arbitrarily choosing an internal vertex of Tv. The
mapping σv is obtained taking both mappings σu and σw, i.e. the leaves that are in
T r

u and T r
w keep their correpondence to the elements of A. Since Xu = Xw = Xv,

leaves that correspond to elements of Xv have the same mapping in σu and σw.
Leaves that belong to Au \Aw or Aw \Au are only mapped by σu or σw respectively.
Note that, at this point, (Tv, rv, σv) is a partitioning tree of Av.

Updating the labels: Let (T r
v , rr

v, σr
v) be (Tv, rv, σv) restricted to Xv. Let tv be a vertex

of T r
v and Ttv

be the partition of Xv defined by tv. Let tu and tw be the vertices of T r
u

and T r
w, respectively, used to create tv. Then, ℓv(tv) ← HΦ(ℓu(tu), ℓw(tw), Ttv

). Let
ev be an edge of T r

v and Tev
the partition of Xv defined by ev. Let eu and ew be its cor-

respondent edges in T r
u and T r

w respectively. Then, ℓv(ev)← HΦ(ℓu(eu), ℓw(ew), Tev
).

For all other vertex (or edge) t of Tv: ℓv(t) ← ℓu(t) if t is a vertex (or edge) of Tu

or ℓv(t)← ℓv(t) if t is a vertex (or edge) of Tw.

Updating FSPTk,q(v): If ((Tv, rv, σv), ℓv) is q-branched, for every internal vertex t ∈
V (Tv) we have ℓv(t) ≤ k and for every edge e ∈ E(Tv) we have ℓv(e) ≤ k then
FSPTk,q(v) ← FSPTk,q(v) ∪ {((Tv, rv, σv), ℓv)}, otherwise FSPTk,q(v) remains un-
changed.



58 Graph Width Measures

Lemma 21. Let (D,X ) be a nice decomposition of a set A compatible with the monotone
partition function Φ and let v be a join node of D with a child u and a child w. The
procedure Join Node computes a full set of q-branched partitioning trees of Φ-width not
bigger than k from the sets FSPTk,q(u) and FSPTk,q(w) for the node v.

Proof. Using the same scheme for the correctness of procedure Introduce Node, we first
prove that all elements of FSPTk,q(v) described by the procedure Join Node are in fact
labelled q-branched partitioning trees with width not bigger than k for Av.

Let ((Tu, ru, σu), ℓu) ∈ FSPTk,q(u) and ((Tw, rw, σw), ℓw) ∈ FSPTk,q(w), be such that
(Tu, ru, σu) restricted to Xu and (Tw, rw, σw) restricted to Xw satisfy the Join Node re-
strictions. In other words, let (T r

u , rr
u, σr

u) and (T r
w, rr

w, σr
w) be (Tu, ru, σu) and (Tw, rw, σw)

restricted to Xv respectively. Then, T r
u and T r

w are isomorphic and σr
u = σr

w.
The step “Identifying Tu and Tw” can be applied on ((Tu, ru, σu), ℓu) and ((Tw, rw, σw),

ℓw). Since Av = Au ∪ Aw, Xv = Xu = Xw and (Au \Xu) ∩ (Aw \Xw) = ∅, we have that
(Tv, rv, σv) obtained through step “Identifying Tu and Tw” is a partitioning tree of Av.

For any internal vertex (or edge) of Tv let Av be the partition of Av that it defines. It
remains to show that (Tv, rv, σv) is q-branched, has Φ-width not bigger than k and that
after the execution of the procedure Join Node all labels are correct. In other words, for
all internal vertices (or edges) t of Tv, we prove that ℓv(t) = ΦAv

(At).
In the step “update of FSPTk,q(v)”, ((Tv, rv, σv), ℓv) is only added to FSPTk,q(v) if

it is q-branched. Lastly, we have that Φ is compatible with the nice decomposition
(D,X ). Moreover, let At, for any internal vertex (or edge) t of Tv be the partition of Av

defined by t. Then, from the fact that ((Tu, ru, σu), ℓu) and ((Tw, rw, σw), ℓw) are labelled
partitioning trees, ℓu(tu) = ΦAu

(Atu
∩ Au) for any internal vertex (or edge) tu of Tu and

ℓw(tw) = ΦAw
(Atw

∩ Aw) for any internal vertex (or edge) tw of Tw. Therefore, from the
description of the Join Node procedure for every internal node (or any edge) of Tv:

ℓv(t) = HΦ(ℓu(t), ℓw(t), Tt) = HΦ(ΦAu
(At ∩ Au), ΦAw

(At ∩ Aw),At ∩Xv) = ΦAv
(At)

Hence, at step “update of FSPTk,q(v)”, ((Tv, rv, σv), ℓv) is a labelled partitioning tree
of Av. Therefore, the step “update of FSPTk,q(v)” guarantees that ((Tv, rv, σv), ℓv) is
only added to FSPTk,q(v) if it is a labelled q-branched partitioning tree with Φ-width
not bigger than k for Av.

We now show that any labelled q-branched partitioning tree with width not bigger
than k for Av is in FSPTk,q(v). Let ((T ′

v, r′
v, σ′

v), ℓv) be any q-branched partitioning tree
with width not bigger than k for Av.

Let (Tu, ru, σu) be (T ′
v, r′

v, σ′
v) restricted to Au and (Tw, rw, σw) be (T ′

v, r′
v, σ′

v) restricted
to Aw. The partitioning trees (Tu, ru, σu) and (Tw, rw, σw) are, by definition of restriction,
q-branched and their Φ-width is not bigger than k, thus ((Tu, ru, σu), ℓu) ∈ FSPTk,q(u)
and ((Tw, rw, σw), ℓw) ∈ FSPTk,q(w).

Let (T r
u , rr

u, σr
u) and (T r

w, rr
w, σr

w) be (Tu, ru, σu) and (Tw, rw, σw) restricted to Xv re-
spectively. Since Xu = Xw = Xv we have that (T r

u , rr
u, σr

u) and (T r
w, rr

w, σr
w) are such that

T r
u and T r

w are isomorphic and σr
u = σr

w. Therefore, the Join Node procedure is applied
to (Tu, ru, σu) and (Tw, rw, σw).

Therefore, let ((Tv, rv, σv), ℓv) be the labelled q-branched partitioning tree obtained
from ((Tu, ru, σu), ℓu) and ((Tw, rw, σw), ℓw) with the Join Node procedure. Clearly, from
the “Identifying Tu and Tv” step, Tv = T ′

v and σv = σ′
v. Since the procedure Join

Node chooses an arbitrary internal vertex as the root of the partitioning tree, there is an



Good Representatives of Partitioning Trees 59

execution of this step where rv is chosen as the root of Tv. Therefore, ((T ′
v, r′

v, σ′
v), ℓ′

v) =
((Tv, rv, σv), ℓv).

Remarks on Width Measures

Given a graph G = (V, E) and a nice decomposition (D,X ) of E or V . Then, with
FSPTk,q(r) where r is the root of (D,X ), it is possible to answer if the (tree, path,
branch, linear, cut, carving) width of G is less or equal than k. For that, we iterate among
all ((T, r, σ), ℓ) ∈ FSPTk,q(r) and search for one that obeys the “structural” restrictions
given by the desired width, for example, partitioning trees for the branch width are such
that every internal vertex has degree three, hence it is necessary to search FSPTk,q(r)
for a labelled partitioning tree that respects such restriction. In the case that there are
no labelled partitioning trees with the “structural” restrictions given, then the desired
width of G is bigger than k, otherwise we found a partitioning tree that proves that the
desired width of G is not bigger than k.

The following sections of the chapter address the fact that the number of elements
of FSPTk,q(v) is possibly infinite. In Section 4.4 we show how to store FSPTk,q(v) in
an efficient manner, by only storing “compressed” representatives for each “class” of
partitioning tree. Lastly, in Section 4.5, we show how to manipulate these compressed
representatives in order to design an algorithm for this problem. This manipulation is
a direct extension of the procedures Start Node, Introduce Node, Join Node and Forget
Node when applied to “compressed” representatives of FSPTk,q(v).

4.4 Good Representatives of Partitioning Trees

In this section we outline the ideas used in order to improve the space necessary to
store the q-branched partitioning trees of a node in the nice decomposition of A. In
other words, in this section, we reuse a method for “compressing” path decompositions
and tree decomposition in [BK96] this time applied to q-branched partitioning trees and
partitioning functions. A “compression” of the set FSPTk,q(v) for a node v of the nice
decomposition of A is such that the size of this compression is bounded by q, the Φ-width
and the width of the nice decomposition of A. Hence, it does not depend on the size of A.
Intuitively, this is achieved by keeping only “good” representatives, a.k.a. characteristics,
for each q-branched partitioning tree with Φ-width at most k of A.

labelled Paths

Let Φ be a monotone partition function. As stated in Section 4.3, any partitioning tree
(T, σ) can be viewed as a labelled graph, where any v ∈ V (T ) is labelled with Φ(Tv) and
any e ∈ E(T ) is labelled with Φ(Te). Because Φ is monotone, the label of an edge is not
bigger than the label of its endpoints. In this section, we detail operations over labelled
paths, that will serve as the basis of manipulating partitioning trees in the forthcoming
sections.

A labelled path P is a path (v0, v1, . . . , vn) where any vertex vi is labelled with an
integer ℓ(vi), and any edge ei = {vi−1, vi} with an integer ℓ(ei) such that the label of any
edge is less or equal to the label of any of its endpoints.

A vertex vi ∈ V (P ) or an edge {vi, vi+1} is smaller than vj ∈ V (P ) if i < j. Similarly
vi (resp., {vi, vi+1}) is smaller than {vj, vj+1} if i < j. We define max(P ) as the maximum
integer labeling an edge or a vertex of P . Similarly, we define min(P ).



60 Graph Width Measures

Let e = {u, v} be an edge in which we do a subdivision, let e1 = {u, x} and e2 = {x, v}
be the edges in the resulting path and x be the vertex created, then ℓ(e1) = ℓ(e2) = ℓ(x) =
ℓ(e), i.e. edges and the vertex resulting from the subdivision are labelled with ℓ(e). An
extension of a labelled path P is any path obtained by subdividing some edges of P an
arbitrary number of times. Let P ∗ be an extension of P . The originator of an edge
e∗ ∈ E(P ∗) is the edge e ∈ E(P ) such that e∗ is obtained in P ∗ by the subdivision of e.
Similarly, the originator of a vertex v∗ ∈ E(P ∗) is the correspondent vertex of P , if v∗ is
not the result of a subdivision, or is the edge e ∈ E(P ) that was subdivided to create v∗.

For any function F : N→ N, let F (P ) denote the path (v0, v1, . . . , vn) where any label
ℓ has been replaced by F (ℓ). If P = (v1, . . . , vn) and Q = (w1, . . . , wm) are two labelled
paths with a common end, vn = w1, and vertex disjoint otherwise, their concatenation
P ⊙Q is the labelled path (v1, . . . , vn = w1, w2, . . . , wm).

Contraction of a labelled path

In this section, we define an operation on labelled paths that will be widely used in the
next sections. This operation is used to compress the size of a q-branched partitioning
tree. For this purpose, we revisit the notion of typical sequence of a sequence of in-
tegers [BK96]. Roughly, the goal of the following operation is to contract some edges
and vertices of P that are not “necessary” to remember the variations of the sequence
(ℓ(v0), ℓ(e1), ℓ(v1), . . . , ℓ(en), ℓ(vn)).

First, let us recall the definition of the typical sequence of a sequence of integers
[BK96]. Let S = (si)i≤2n−1 be a sequence of integers. Its typical sequence τ(S) is
obtained by iterating the following operations while it is possible: (1) if there is i < |S|
such that si = si+1, remove si+1 from S, and (2) if there are i < j − 1 < |S|, and either,
for any i ≤ k ≤ j, si ≤ sk ≤ sj, or, for any i ≤ k ≤ j, si ≥ sk ≥ sj, remove sk from S for
any i < k < j. Note that the order in which the operations are executed is not relevant,
therefore τ(S) is uniquely defined.

The contraction Contr(P ) is the path obtained from P = (v0, . . . , vn) with same
ends by contracting some edges and vertices with the following operations until no more
vertices or edges can be removed from the path, let ei = {vi−1, vi}:

Operation 1: There exists 0 < i ≤ k ≤ n such that ∀i≤j≤kℓ(ei) ≤ ℓ(ej) ≤ ℓ(vk)
and ∀i≤j≤kℓ(ei) ≤ ℓ(vj) ≤ ℓ(vk), then P becomes (v0, . . . , vi−1, vk, . . . , vn) and
ℓ({vi−1, vk}) = ℓ(ei).

Operation 2: There exists 0 ≤ i < k ≤ n such that ∀i<j≤kℓ(vi) ≥ ℓ(ej) ≥ ℓ(ek) and
∀i≤j<kℓ(vi) ≥ ℓ(vj) ≥ ℓ(ek), then P becomes (v0, . . . , vi, vk, . . . , vn) and ℓ({vi, vk}) =
ℓ(ek).

It is important to note that any v ∈ V (Contr(P )) (resp. e ∈ E(Contr(P ))) represents
a unique v∗ ∈ V (P ) (resp. e∗ ∈ E(P )), i.e. the vertex (resp. edge) in V (P ) (resp.
E(P )) that originated v (resp. e) during the contraction operation. By this definition, if
x represents x∗ then ℓ(x) = ℓ(x∗).

Figure 4.2 represents two labelled paths P and Q. The vertices of Contr(P ) and
Contr(Q) are named as the vertices they represent in P and Q. We also illustrate an
extension P ∗ of P and an extension Q∗ of Q.

In the following, let e′
i be the edge {v′

i−1, v′
i}. The crucial property of Contr(P ) = (v0 =

v′
0, v′

1, . . . , v′
p−1, v′

p = vn) is that the sequence S ′ = (ℓ(e′
1), ℓ(v′

1), . . . , ℓ(e′
p−1), ℓ(v′

p−1), ℓ(e′
p))

is “almost” the typical sequence τ(S) of S = (ℓ(e1), ℓ(v1), . . . , ℓ(en)). More precisely,



Good Representatives of Partitioning Trees 61

P:
a b

3

c

1

d

1

e

1

f

5

g

5

h

2 1 1 0 0 4 3

Q:
a’ b’

2

c’

2

d’

6

e’

2 0 2 5
(a) paths P and Q

Contr(P ):
a b

3

f

5

h

2 0 3

Contr(Q) :
a’ b’

2

d’

6

e’

2 0 5
(b) contractions of P and Q

a b

3 1 1

c

1

d

1

e

1

f

5 4

g

5

h

2 1 1 1 1 0 0 4 4 3
(c) an extension of P

a’

2 2 2

b’

2 0

c’

2 2

d’

6 5

e’

2 2 2 2 0 0 2 2 5 5
(d) an extension of Q

(a,a’) b

5 3 3

(c,b’)

3

d

1

(e,c’)

3

f

7

d’

10

g

10

(h,e’)

4 3 3 3 1 0 2 6 9 8
(e) merging of P and Q with function +

Figure 4.2: labelled paths: contraction, extension and merging. The labels of first and last
vertex are omitted, since they do not change with any operation.

• if ℓ(e′
1) 6= ℓ(v′

1) and ℓ(e′
p) 6= ℓ(v′

p−1), then S ′ = τ(S);

• if ℓ(e′
1) = ℓ(v′

1) and ℓ(e′
p) 6= ℓ(v′

p−1), then S ′ = ℓ(e′
1) · τ(S);

• if ℓ(e′
1) 6= ℓ(v′

1) and ℓ(e′
p) = ℓ(v′

p−1), then S ′ = τ(S) · ℓ(e′
p);

• if ℓ(e′
1) = ℓ(v′

1) and ℓ(e′
p) = ℓ(v′

p−1), then S ′ = ℓ(e′
1) · τ(S) · ℓ(e′

p).

Lemma 22. Let P be a labelled path.
1. min(Contr(P )) = min(P ) and max(Contr(P )) = max(P ).
2. Given a labelled path P with max(P ) ≤ k, then the number of edges, or size, of
Contr(P ) is at most 2k + 3.

Proof. Assume that P = (v1, v2, . . . , vn). We recall that the labels of the edges are not
bigger than the labels of their endpoints. Note that, the contraction operations do not
change the labels of vertices or edges of P , they simply remove some vertices or edges of
P . Hence, min(Contr(P )) ≥ min(P ) and max(Contr(P )) ≤ max(P ).

Assume that there exists P ′ such that P ′ is obtained after one contraction operation
is applied to P and that max(P ′) < max(P ). W.l.o.g. assume that the contraction



62 Graph Width Measures

operation was applied between edge the edge ei = {vi−1, vi} and the vertex vj, j > i.
In other words, P ′ = (v1, . . . , vi−1, vj, . . . , vn). Since, max(P ′) < max(P ) we must have
removed a vertex with a big label, That is, there is vl ∈ V (P ), i ≤ l ≤ j, such that
ℓ(vl) > ℓ(vj). Therefore, by definition of a contraction operation, we are not allowed to
do a contraction operation between ei and vj. Hence, min(P ) = min(P ′).

Assume that there exists P ′ such that P ′ is obtained after one contraction operation
is applied to P and that min(P ′) > min(P ). W.l.o.g. assume that the contraction
operation was applied between edge the edge ei = {vi−1, vi} and the vertex vj, j > i.
In other words, P ′ = (v1, . . . , vi−1, vj, . . . , vn). Since, min(P ′) < min(P ) we must have
removed an edge with small label, That is, there is el ∈ E(P ), i + 1 ≤ l ≤ j, such that
ℓ(el) < ℓ(ei). Therefore, by definition of a contraction operation, we are not allowed to
do a contraction operation between ei and vj. Hence, min(P ) = min(P ′).

Let P = (v0, v1, . . . , vn), ei = {vi−1, vi} and S = (ℓ(e1), ℓ(v1), ℓ(e2), ℓ(v2), . . . , ℓ(vn)).
We have that the number of edges plus the number of vertices of Contr(P ) = (v′

0, v′
1, . . . ,

v′
p) is at most the size of τ(S) plus two, since it is possible that ℓ(e′

1) = ℓ(v′
1) and

ℓ(e′
p) = ℓ(v′

p−1), where e′
i = {v′

i−1, v′
i}.

Therefore, we have that the number of edges in Contr(P ) is not bigger than 2k + 3,
since the number of elements in τ(S) is not bigger than 2k + 1 [Bod96].

Lemma 23. Let P and Q be two labelled paths. Let P ∗ be any extension of P .
1. Contr(P ∗) = Contr(P ) = Contr(Contr(P )).
2. Let F : N→ N be any strictly increasing function. F (Contr(P )) = Contr(F (P )).
3. Contr(P ⊙Q) = Contr(Contr(P )⊙ Contr(Q)).

Proof. 1. From the definition of “Contr” we have Contr(P ) = Contr(Contr(P )).
Let P ′ be obtained from P by subdividing one edge e = {u, v} a k times resulting in

e1 = {u, t1}, e2 = {t1, t2}, e3 = {t2, t3}, . . . , ek = {tk−1, tk} and ek+1 = {tk, v}. Then,
for each 1 ≤ i ≤ k, the labels of ei and ti are given by ℓ(e) and ℓ(ek+1) = ℓ(e), i.e. P ′ is
the extension of P where e is subdivided k times. Then, a contraction operation can be
applied between e1 and v, ℓ(e1) ≤ ℓ(t1) = ℓ(e2) = ℓ(t2) = · · · = ℓ(tk) = ℓ(ek+1) ≤ ℓ(v).
The result of this contraction on path P ′ is P .

Then, by induction on the number of edges of P that were subdivided. Clearly, the
result holds if zero edges are subdivided. Let P ∗ be an extension of P that subdivides
at most i ≥ 0 different edges. The above reasoning shows that it is possible to contract
edges and vertices that are created through a subdivision of a single edge, i.e., if e =
{u, v} is subdivided a finite amount of times, then it is possible to apply a contraction
operation on the edge created by the subdivision that has u as endpoint and v. Let P ′ be
obtained from P ∗ by applying a contraction operation between v and e1. By induction
hypothesis, Contr(P ′) = Contr(P ), since Contr(P ∗) = Contr(P ′) we got the result. That
is, Contr(P ∗) = Contr(P ).

2. In what follows we abuse the notation of a path to include the set of edges of P ,
i.e. a path P = (v′

1, . . . , v′
r) becomes the path P = (v1, e2, v3, e4, . . . , er−1, v2r−1) where

v2i−1 = v′
i and ei = {vi−1, vi+1}.

Let P be equal to (v1, e2, v3, . . . , vi) and P f be the labelled path obtained through P
by applying F , that is, F (P ). We show that F (Contr(P )) = Contr(F (P )) by showing
that a contraction operation can be performed in P if and only if it can be performed in
F (P ).

W.l.o.g. assume that it is possible to do a contraction operation between the edge ei

and vertex vj, j > i, in P . Hence, for all ek and vk, i < k < j we have that ℓ(ei) ≤ ℓ(ek) ≤



Good Representatives of Partitioning Trees 63

ℓ(vj) and ℓ(ei) ≤ ℓ(vk) ≤ ℓ(vj). Since, F is strictly increasing, we have that for all ek

and vk, i < k < j, F (ℓ(ei)) ≤ F (ℓ(ek)) ≤ F (ℓ(vj)) and F (ℓ(ei)) ≤ F (ℓ(vk)) ≤ F (ℓ(vj)).
Therefore, in F (P ) it is possible to apply a contraction operation between ei and vj.

Similarly, assume that it is possible to do a contraction operation between the edge ei

and vertex vj, j > i, in F (P ). Hence, for all ek and vk, i < k < j we have that F (ℓ(ei)) ≤
F (ℓ(ek)) ≤ F (ℓ(vj)) and F (ℓ(ei)) ≤ F (ℓ(vk)) ≤ F (ℓ(vj)). Since, F is strictly increasing,
we have that for all ek and vk, i < k < j, ℓ(ei) ≤ ℓ(ek) ≤ ℓ(vj) and ℓ(ei) ≤ ℓ(vk) ≤ ℓ(vj).
Therefore, in P it is possible to apply a contraction operation between ei and vj.

Hence, the paths Contr(P ) = {vc
1, . . . , vc

n} and Contr(F (P )) = {vf
1 , . . . , vf

n} are com-
posed of the same sequence of vertices and edges. That is, for all 1 ≤ i ≤ n we have that
vc

i and vf
i represent the same vertex in P . Therefore, F (Contr(P )) = Contr(F (P )).

3. Comes directly from the fact that the order of contractions does not change the
path obtained by applying “Contr” to a path.

Let P = (v0, . . . , vn), a simple property of Contr(P ) is that: if vj is a vertex with a
representative in Contr(P ) we have that Contr(P ) = Contr((v0, . . . , vj))⊙Contr((vj, . . . ,
vn)).

A scheme of Lemma24 can be found in Figure 4.3.

P Contr(P )

P ′ P c

Contraction

Subdivide e∗
i Subdivide ec

i

Contraction

Figure 4.3: Scheme of Lemma 24.

Lemma 24. Let P = (v0, . . . , vn) be a labelled path and Contr(P ) = (vc
0, . . . , vc

p). Let
i ≤ p. Let P c = (vc

0, . . . , vc
i−1, x, vc

i , . . . , vc
p) be the extension of Contr(P ) obtained by

subdividing once the edge ec
i = {vc

i−1, vc
i} ∈ Contr(P ). Let e∗

i = {vj−1, vj} be an edge of
P represented by ec

i , and P ′ = (v0, . . . , vj−1, y, vj, . . . , vn) be the extension of P obtained
by subdividing once e∗

i . Let P c
1 = (vc

0, . . . , x), P c
2 = (x, . . . , vc

p), P1 = (v0, . . . , y) and
P2 = (y, . . . , vn). Then, Contr(P1) = Contr(P c

1 ) and Contr(P2) = Contr(P c
2 ).

Proof. Let va be the vertex of P1 represented by vc
i−1 in Contr(P ) and vb the ver-

tex of P2 represented by vc
i in Contr(P ). Therefore, from the definition of “Contr”,

Contr((v0, . . . , va)) = Contr((vc
0, . . . , vc

i−1)) and Contr((vb . . . , vn)) = Contr((vc
i , . . . , vc

p)).
Since ℓ({vj−1, y}) = ℓ({y, vj}) = ℓ({vc

i−1, x}) = ℓ({x, vc
i}) = ℓ({vc

i−1, vc
i}) = ℓ({vj−1,

vj}), we have that any contraction operation applied between va and {vj−1, vj} or between
{vj−1, vj} and vb in P can also be applied in P ′ between va and {vj−1, y} or, in the second
case, between {y, vj} and vb.

Therefore, Contr((va, . . . , y)) = Contr((vc
i−1, x)) and Contr((y, . . . , vb)) = Contr((x,

vc
i )). Then, from item 3 of Lemma 23 we have:

Contr(P1) = Contr(Contr((v0, . . . , va))⊙ Contr((va, . . . , y)))

= Contr(Contr((vc
0, . . . , vc

i−1))⊙ Contr((vc
i−1, x)))

= Contr(P c
1 )



64 Graph Width Measures

The proof for Contr(P2) = Contr(P c
2 ) is similar an thus omitted.

Merging of labelled paths

Now, we present an operation that merges two labelled paths P and Q with common
ends and vertex-disjoint otherwise. This operation is used to aid in the computation of
the full set of a join node in the algorithm. The assumption that the paths have common
ends is a reflection of how this operation is used by the algorithm of Section 4.5, but it
is not intrinsically necessary.

A merging M = (m1, . . . , mk) of two labelled paths P = (p1, . . . , pn) and Q =
(q1, . . . , qm) under a function F : N × N → N is a path obtained by constructing ex-
tensions P e = (pe

1, . . . , pe
k) and Qe = (qe

1, . . . , qe
k) of P and Q such that P e and Qe have

the same length, k ≤ nm. Then set ℓ({mi−1, mi}) = F (ℓ({pe
i−1, pe

i}), ℓ({qe
i−1, qe

i })), for all
2 ≤ i ≤ k, and ℓ(mi) = F (ℓ(pe

i ), ℓ(qe
i )), for all 1 ≤ i ≤ k. Note that, the maximum size

of the merging, k ≤ mn, is big enough to merge each edge on one path to each edge on
the other path.

Figure 4.2 represents a merging of P and Q using the function F : (x, y) → x + y.
When merging P and Q, we assume they have same ends, i.e. p1 = q1 and pn = pm.

Let P and Q be two labelled paths and M = (m1, . . . , mk) be a merging of P and Q
under a function F . Let P e = (pe

1, . . . , pe
k) and Qe = (qe

1, . . . , qe
k) be the extensions of P

and Q used to create M .
We say that a vertex mi ∈ V (M) matches pe

i ∈ V (P e) and qe
i ∈ V (Qe). Similarly, we

say that an edge {mi, mi+1} ∈ E(M) matches {pe
i , pe

i+1} ∈ E(P e) and {qe
i , qe

i+1} ∈ E(Qe).
Let m be a vertex or edge of M such that m matches pe and qe in P e and Qe respec-

tively, then Orig(m) is the pair (p, q) such that p ∈ V (P ) ∪ E(P ) is the originator, the
vertex or edge of P that originated pe, of pe and q ∈ V (Q)∪E(Q) is the originator of qe.

We now list some simple but useful properties of “Orig”:

• if e is an edge of M , then Orig(e) = (p, q) is such that p ∈ E(P ) and q ∈ E(Q);

• if v is a vertex of M and Orig(v) = (p, q) is such that p ∈ E(P ) and q ∈ E(Q)
then, let e be any edge of M with v as extremity, Orig(e) = (p, q). That is, if v
is obtained by merging two vertices that were obtained from the subdivision of an
edge, then the edges incident to v are also originated from the same edges;

• for every vertex p ∈ V (P ) (resp. q ∈ V (Q)) there is only one v ∈ V (M) such that
Orig(v) = (p, x) (resp. Orig(v) = (x, q)), where x is either a vertex or edge of Q
(resp. P ). That is, since vertices of P and Q cannot be subdivided, they can only
originate one vertex in M ;

• if M = (m1, . . . , mk), then Orig(m1) = (p1, q1) and Orig(mk) = (pn, qm) where p1

and pn are the extremities of P and q1 and qm the extremities of Q.

Let P and Q be two labelled paths and M a merging of P and Q under a function
F . Let P c (resp. Qc) be path obtained from P (resp. Q) after some, possibly zero,
contraction operations are applied to P (resp. Q). Let M c = (mc

1, . . . , mc
k) be a merging

of P c and Qc under the same function F .
Roughly, we say that a merging M of P and Q respects a merging M c of P c and Qc if

the vertices and edges in M c are obtained by matching “correspondent” vertices or edges
in P and Q. Figure 4.4 shows an example of paths P , Q, P c, Qc, a merging M c of P c

and Qc and a merging M of P and Q that respects M c.



Good Representatives of Partitioning Trees 65

For any vertex or edge mc of M c, if Orig(mc) = (pc, qc), then let pc ∈ V (P c) ∪ E(P c)
and qc ∈ V (Qc)∪E(Qc) be the representatives of p ∈ V (P )∪E(P ) and q ∈ V (Q)∪E(Q)
respectively. Formally, we say that M respects M c if the two following conditions are
met:

• for all vertices m ∈ V (M) with Orig(m) = (p, q) such that p has a representative
pc in P c, we have that there is a vertex mc ∈ V (M c) such that Orig(mc) = (pc, qc),
where qc is any vertex or edge of Qc;

• for all vertices m ∈ V (M) with Orig(m) = (p, q) such that q has a representative
qc in Qc, we have that there is a vertex mc ∈ V (M c) such that Orig(mc) = (pc, qc),
where pc is any vertex or edge of P c;

• for all vertices m ∈ V (M) with Orig(m) = (p, q) such that such that p has a
representative pc in P c and q has a representative qc in Qc, we have that there is a
vertex mc ∈ V (M c) such that Orig(mc) = (pc, qc);

• for all edges e ∈ E(M) with Orig(e) = (p, q) such that p has a representative pc in
P c, we have that there is an edge ec ∈ E(M c) such that Orig(ec) = (pc, qc), where
qc is any vertex or edge of Qc;

• for all edges e ∈ E(M) with Orig(e) = (p, q) such that q has a representative qc in
Qc, we have that there is an edge ec ∈ V (M c) such that Orig(ec) = (pc, qc), where
pc is any vertex or edge of P c;

• for all edges e ∈ E(M) with Orig(e) = (p, q) such that such that p has a represen-
tative pc in P c and q has a representative qc in Qc, we have that there is a an edge
ec ∈ V (M c) such that Orig(mc) = (pc, qc).

Lemma 25. Let F : N × N → N strictly increasing in both coordinates. Let P and
Q be labelled paths. Let Kp and Kq be subsets of vertices of P and Q respectively. Let
P c be obtained from P by applying some contraction operations, but without contracting
any vertex in Kp. Similarly, let Qc be obtained from Q by applying some contraction
operations, but without contracting any vertex in Kq.

Let M c be a merging of P c and Qc under F and M be a merging of P and Q under
F that respects M c.

Let r be the biggest integer such that M c = M c
1 ⊙ · · · ⊙M c

r , where, for all i < r, the
common end between M c

i and M c
i+1 is a vertex vc

i ∈ V (M c) such that Orig(vc
i ) = (pc

i , qc
i )

where either the vertex represented by pc
i is in Kp or the vertex represented by qc

i is in Kq.
Let M = M1 ⊙ · · · ⊙Mr, where, for all i < r, the common end between Mi and Mi+1

is a vertex vi ∈ V (M) such that Orig(v) = (pi, qi) where either pi ∈ Kp or qi ∈ Kq.
Then, for all 1 ≤ i ≤ r we have Contr(Mi) = Contr(M c

i ).

Proof. In order to prove that Contr(Mi) = Contr(M c
i ) for all 1 ≤ i ≤ r, we prove that

we can obtain M c
i from Mi with some contraction operations.

More precisely, let Mi = (m1, . . . , mh) and M c
i = (mc

1, . . . , mc
r′). Consider a vertex

mc ∈ V (M c
i ) and an edge ec ∈ E(M c

i ) such that mc is an extremity of ec. Let Orig(mc) =
(pc, qc) and let Orig(ec) = (p′c, q′c). Since M respects M c, there is m ∈ V (Mi) such that
Orig(m) = (p, q) with p and q being represented by pc and qc respectively and there is
e ∈ E(Mi) such that Orig(e) = (p′, q′) with p′ and q′ being represented by p′c and q′c

respectively. Choose m and e such that the amount of internal vertices on the subpath of



66 Graph Width Measures

P:
a b

3

c

1

d

1

e

1

f

2 1 1 0 0

Q:
a’ b’

2

c’

2

d’

6

e’

2 0 2 5
(a) paths P and Q

P c:
a b

3

f

2 0
Qc :

a’ b’

2

d’

6

e’

2 0 5
(b) P c and Qc

P ce:
a {a,b}

2

b

3

{e,f}

0

f

2 2 0 0

Qce :
a’ b’

2

{b’,c’}

0

d’

6

e’

2 0 0 5
(c) extensions of P c and Qc

a {a,b}

2

b

3

c

1

d

1

e

1

{e,f}

0

{e,f}

0

f

2 2 1 1 0 0 0 0
(d) extension of P

a b’

2

{b’,c’}

0

{b’,c’}

0

{b’,c’}

0

{b’,c’}

0

c’

2

d’

6

e’

2 0 0 0 0 0 2 5
(e) extension of Q

(a,a’) ({a,b},b’)

4

(b,{b’,c’})

3

({e,f},d’)

6

(f,e’)

4 2 0 5
(f) Mc: merging of P ce and Qce under function +

(a,a’)

({a,b},b’)

(b, {b’,c’})

(c,{b’c’})

(d,{b’,c’})

(e,{b’,c’})

({e,f},c’)

({e,f},d’)

(f,e’)

(g) M : merging of P and Q with function + respecting Mc

Figure 4.4: A representation of a merging of P and Q that respects the merging of its contrac-
tions. Only originators of vertices are shown to avoid overloading the figure. Note that, for each
originator of a vertex of M c there is a vertex of M that has the same originator. Moreover,
these originators appear in the same order in both paths M c and M .

M from m to the extremity of e that is closest to m is the biggest. That is, if e “appears”
after m in the path M , then m is the first vertex of M such that Orig(m) = (p, q) and e
is the last edge of M such that Orig(e) = (p′, q′).

We show that, in Mi, if m is not an extremity of e, then it is possible do a contraction
operation between m and e. In what follows assume that m is not an extremity of e in
M .

Since pc and p′c are the originators of mc and ec respectively, either they are the same,
meaning that mc and ec are originated from the subdivision of an edge of P c, or they
are different, meaning that mc originated from a vertex (or edge) of P c and ec originated



Good Representatives of Partitioning Trees 67

from an edge (or vertex) of P c. In the case that pc and p′c are different, since mc is an
extremity of ec in M c, it means that either pc is a vertex that is an extremity of p′c in
P c or that pc is an edge with p′c as extremity in P c. Hence, if pc 6= p′c, then, since pc

represents p and p′c represents p′, it is possible to contract all vertices and edges between
p and p′ in P .

With a similar reasoning we have that, if qc 6= q′c, then it is possible to contract all
vertices and edges between q and q′ in Q.

There are four cases to consider: pc 6= p′c and qc 6= q′c; pc = p′c and qc 6= q′c; pc 6= p′c

and qc = q′c; pc = p′c and qc = q′c.

1. pc 6= p′c and qc 6= q′c: then, in P (resp. in Q), it is possible to contract all vertices
between p and p′ (resp. q and q′). Then, from the fact that H is strictly increasing
in both coordinates, it is possible to contract all vertices between m and e in M .

Formally, w.l.o.g. assume that pc 6= p′c be such that ℓ(pc) ≥ ℓ(p′c) and that qc 6= q′c

be such that ℓ(qc) ≥ q′c. Then, in P , all vertices or edges xp between p and p′ are
such that ℓ(p′) ≤ ℓ(xp) ≤ ℓ(p) and, in Q, all vertices or edge xq between q and q′

are such that ℓ(q′) ≤ ℓ(xq) ≤ ℓ(q). Therefore, since H is strictly increasing in both
coordinates, H(ℓ(p′), ℓ(q′)) ≤ H(ℓ(xp), ℓ(xq)) ≤ H(ℓ(p), ℓ(q)) for all vertices or edges
xp and xq that are between p and p′ in P and between q and q′ in Q respectively.
Hence, in M , it is possible to contract all vertices between m and e.

2. pc = p′c and qc 6= q′c: then, in Q, it is possible to contract all vertices between q
and q′. Since pc = p′c, it means that p = p′, therefore the vertex m, the edge e an
all vertices or edge in between m and e are obtained from a subdivision of the same
edge p in P . Then, from the fact that H is strictly increasing in both coordinates
and the fact the first coordinate of H is the same when applying to all vertices and
edges on the path between m and e, it is possible to contract all vertices between
m and e in M .

Formally, w.l.o.g. assume that pc = p′c and that qc 6= q′c be such that ℓ(qc) ≥ q′c.
Then, in Q, all vertices or edge xq between q and q′ are such that ℓ(q′) ≤ ℓ(xq) ≤
ℓ(q). Therefore, since H is strictly increasing in both coordinates, H(ℓ(p′), ℓ(q′)) ≤
H(ℓ(p′), ℓ(xq)) ≤ H(ℓ(p′), ℓ(q)) for all vertices or edges xq that are between q and q′

in Q. Hence, in M , it is possible to contract all vertices between m and e.

3. pc 6= p′c and qc = q′c: this case is similar to the case (pc = p′c and qc 6= q′c) and thus
omitted.

4. pc = p′c and qc = q′c: this means that m, e and all vertices and edges of M between
m and e where obtained from the subdivision of an edge p in P and an edge q in
Q, hence they all have the same label which is given by H(ℓ(p), ℓ(q)). Therefore, it
is possible to do a contraction operation between m and e in M .

Then, let M ′
i be obtained from Mi by applying the above reasoning for each edge ec ∈

E(M c) and with both its extremities. The resulting path M ′
i is M c

i . Since Contr(M ′
i) =

Contr(M c
i ) and Contr(Mi) = Contr(M ′

i), we have the result.

Characteristics - Good Representatives

In this section we introduce the notion of “characteristic” of a partitioning tree. The idea
behind a characteristic is that, in order to compute a partitioning tree for a node v in



68 Graph Width Measures

the nice decomposition (D,X ), the “only” important information is given by elements of
Xv and the “structure” of the partitioning tree. Hence, it is possible to “forget” elements
of Av \Xv from the partitioning trees for v.

Restriction of a partitioning tree

Let (T ′, r′, σ′) be partitioning tree of a set A and ΦA a monotone partition function
over A. We assume that T ′ is not restricted to an edge, and r′ is not a leaf of T ′ to
avoid unnecessary simple cases. Therefore, the corpse cp(T ′) (T ′ without its leaves) can
be rooted in r′. Let B ⊆ A, the restriction Char((T ′, r′, σ′), B) of (T ′, r′, σ′) to B is
composed of the following structures:

• a rooted partitioning tree (T, r, σ) of B;

• an integer dist used to remember the number of branching nodes between r′ and r;

• a subset K of vertices of T used to remember the set of branching nodes and parents
of leaves; and

• labeling functions:

– ℓ : V (cp(T ))∪E(T )→ N used to remember the width of the partitioning tree;

– out : V (cp(T )) → N used to remember the number of branching nodes that
were “forgotten”;

– branch : V (cp(T )) → {0, 1} used to remember if the node in question is a
branching node;

– father : V (cp(T ))→ {0, 1} used to remember if the node in question is not yet
a branching node, but can become one if another child is added to it.

Char((T ′, r′, σ′), B) is computed as follows.
1. Let T be the smallest subtree spanning the leaves of T ′ that map elements of B. Let
r be the vertex of T that is closest to r′ in T ′. From now on, T is rooted in r. For any
leaf f of T , let σ(f) = σ′(f).
2. Let dist be the number of branching nodes on the path between r′ and r in cp(T ′) \ r.
If r 6= r′, then dist = 0.
3. Let K be the set of vertices of T that are either a leaf of T , or the parent of a leaf of
T , or a branching node of cp(T ′) in V (T ) (rooted in r′), or a branching node of (T, r).
The last condition seems redundant, but is necessary in case the root of the tree changes,
that is, in the case that r′ 6= r.
4. For any vertex v of V (cp(T )), branch(v) = 1 if v is a branching node of cp(T ′), and
branch(v) = 0 otherwise.

For all v ∈ V (T ), let Pv be the set of paths between v and a leaf in T ′ \ T all internal
vertices of which are different from r and in T ′ \ T .

Let out(v) be the maximum number of branching nodes that are internal to a path
in Pv.

Let father(v) = 1 if v has a child that is not a leaf in T ′, otherwise let father(v) = 0.
5. Any internal vertex v ∈ V (T ) (resp., any edge e ∈ E(T )): ℓ(v) = ΦA(Tv) (resp.,
ℓ(e) = ΦA(Te)). Where Tv (Te) denotes the partition of A defined by v (e) in T ′.
6. Then, in T , for any two vertices v, w in K such that no internal vertices of the path
P between v and w are in K, replace P by Contr(P ).



Good Representatives of Partitioning Trees 69

Remark 3. If q = ∞, we don’t need to take the variables dist, out, branch and father
into account. More precisely, the items 2, and 4 of the procedure Char can be removed
and K is the set of vertices of T that are either a leaf of T , the parent of a leaf of T , or
a branching node of (T, r).

We denote by C = Char((T, r, σ), B) the restriction of (T, r, σ) to B. Figure 4.5
illustrates the process Char when applied to a labelled partitioning tree of a set A.

5 5 5

3

3

22

2

R

3

2
5

3

2

a

b

c

d e

f

g

h
i

jk

l

(a) labelled partitioning tree

5 5 5

322

R∗

2

3

b

c

f
(b) before step 6

5

32

R∗

2

3

b

c

f
(c) characteristic after contraction of paths, labels other than ℓ are
omitted

Figure 4.5: Partitioning tree (T, R, σ) of {a, b, . . . , l} and an execution of Char((T, R, σ), B)
where B = {b, c, f}. Black nodes represent the branching nodes of T .

The key point for the understanding of the relationship between the partitioning tree
(T ′, r′, σ′) of A and its restriction ((T, r, σ), ℓ, K, dist, out, branch, father) to B is based
on the following. Any vertex of K represents a specific vertex of T ′ that is either a leaf of
T ′ that maps an element of B, or the parent of such a leaf in T ′, or a branching node of
cp(T ′) or a vertex of T ′ that defines a partition of B with at least three parts. Any path



70 Graph Width Measures

P between two vertices v, w in K such that no internal vertices of P between v and w
are in K, represents a path P (v, w) in T ′ the internal vertices of which have degree two
in T ′. Moreover, by definition of the operation P = Contr(P (v, w)), any vertex (resp.,
edge) of P represents a specific vertex (resp., edge) of T ′. Beside, by Lemma 22, the
maximum (minimum) label over the vertices and edges of T is the maximum (minimum)
label over the vertices and edges of T ′. In particular, if (T ′, r′, σ′) has Φ-width at most
k, then ℓ(v) ≤ k and ℓ(e) ≤ k for any v ∈ V (T ) and e ∈ E(T ).

Let the br-height of v, denoted by brheightT (v), in cp(T ) be the maximum number
of branching nodes in a path from v to a leaf of the subtree of cp(T ′) rooted in v, i.e. v
union the component of T ′ \v that does not contain r′. That is, brheightT (v) = 0 if v is a
leaf of T , otherwise brheightT (v) = max{out(v), maxu child of v{brheight(u)}}+branch(v).
Lemma 26 shows that if a partitioning tree is q-branched then the brheight of the root
of the restriction of this partitioning tree is not bigger than q.

Lemma 26. If (T ′, r′, σ′) is a q-branched partitioning tree for A, then Char((T ′, r′, σ′),
B) = ((T, r, σ), ℓ, K, dist, out, branch, father) is such that brheightT (r) + dist ≤ q

Proof. Let T ′′ be the subtree of T ′ obtained by taking the union of all paths P in T ′ such
that one extremity of P is r′ and P passes through r. Clearly T (before Step 6) is a
subtree of T ′′. Moreover, let r′′ = r′ and σ′′ be the restriction of σ′ over the leaves of T ′′.

Then, the labels dist, out and branch are sufficient to remember if (T ′′, r′′, σ′′) is q-
branched. By the definition of br-height, (T ′′, r′′, σ′′) is q-branched if and only if the
br-height of r′′ is at most q.

If v is a leaf of T , it is a leaf of T ′′, then brheightT (v) = 0. Otherwise, the br-height
of v ∈ V (T ) is given by max{out(v), height} + branch(v), where height is the maximum
of the br-height among the children of v.

In particular, if (T ′′, r′′, σ′′) is q branched, out(v) ≤ q for any v ∈ K. Finally, the
brheightT (r′′) = brheightT (r) + dist ≤ q, since (T ′′, r′′, σ′′) is q branched.

Characteristic of A restricted to B

Let ((T, r, σ), ℓ, K, dist, out, branch, father) be such that (T, r, σ) is a rooted partitioning
tree of B ⊆ A, ℓ : V (cp(T )) ∪ E(T ) → N, K ⊆ V (T ) that contains at least all leaves,
parents of leaves, the root and vertices with degree at least three of T , dist ∈ N, out :
V (cp(T )) → N, branch : V (cp(T )) → {0, 1}, father : V (cp(T )) → {0, 1} and for any
v, w ∈ K such that no internal vertices of the path P between v and w are in K,
P = Contr(Q) (i.e. P results from some contraction).

Definition 18. ((T, r, σ), ℓ, K, dist, out, branch, father) is a characteristic of A restricted
to B if it exists a partitioning tree (T ′, r′, σ′) of A, such that ((T, r, σ), ℓ, K, dist, out,
branch, father) = Char((T ′, r′, σ′), B). ((T, r, σ), ℓ, K, dist, out, branch, father) is a (k, q)-
characteristic of A restricted to B if, moreover, ℓ : V (cp(T )) ∪ E(T ) → [0, k], and
dist + brheightT (r) ≤ q.

Lemma 27. If it exists a q-branched partitioning tree (T ′, r′, σ′) of A with Φ-width at most
k, such that C = Char((T ′, r′, σ′), B), then C = ((T, r, σ), ℓ, K, dist, out, branch, father)
is a (k, q)-characteristic of A restricted to B

Proof. This is a direct consequence of Definition 18 and Lemma 26.

Definition 19. The size of a (k, q)-characteristic of A restricted to B, ((T, r, σ), ℓ, K, dist,
out, branch, father), is given by the expression |V (T )|+ |K|.



Good Representatives of Partitioning Trees 71

Lemma 28. If q <∞, then the number of (k, q)-characteristic of A restricted to B, with
|B| = b, is bounded by a function f(k, q, b) = O((60kqb)45kqb), otherwise the number of
(k,∞)-characteristic of A restricted to B is bounded by a function f(k, b) = O((15kb)45kb).

Moreover, if q < ∞, then the size of a (k, q)-characteristic of A restricted to B is
bounded by a function f ′(k, q, b) = O(kqb), otherwise the size of a (k,∞)-characteristic
of A restricted to B is bounded by a function f ′(k, b) = O(kb).

Proof. Let ((T, r, σ), ℓ, K, dist, out, branch, father) be a (k, q)-characteristic of A restricted
to B. T is a tree with b leaves.

If q <∞, i.e., q is bounded.
Since (T, rσ) is q-branched, for each leaf there are at most q branching nodes between

r and this leaf. Therefore, |K| ≤ bq + 2b + 1.
Any path between two vertices in K (that does not contain any other vertex in K)

has at most 2k + 2 internal vertices (Lemma 22). Hence, among all these paths there are
at most (bq + 2b)(2k + 2) vertices.

Let n = (bq + 2b)(2k + 3) + 1 ≤ 15kqb. The number of vertices in T is obtained by
taking all vertices in K and all vertices that lies on a path between two vertices of K
(that does not contain any other vertex in K). Thus, |V (T )| ≤ n.

We can bound the maximum number of non-isomorph trees on n vertices by nn−2

[Cay89]. Let T(n) =
∑n

i=1 nn−2. The value T(n) is the number of different trees that
can be the “base” of the characteristic. There are at most n vertices that can be the
root of the tree and at most b! (factorial) ways of mapping leaves of T to elements of
B. Moreover, for each of these trees we can assign values for all the other variables, i.e.,
branch, out, dist, father , ℓ.

We have that dist ≤ q and for any vertex v ∈ V (cp(T )) and edge e ∈ E(T ), ℓ(v) ≤ k,
ℓ(e) ≤ k, branch(v) ≤ 1, out(v) ≤ q and father(v) ≤ 1.

Then, the number of different characteristics is bounded by:

T(n)n(b!)q2nqn2nk2n−1 = 4nqn+1k2n−1(b!)nT(n).

Hence, the number of (k, q)-characteristic of A restricted to B is given by the function

f(k, q, |B|) = 4nqn+1k2n−1(b!)nT(n).

Since n = O(15kqb), qn+1 = O(q2n), b! = O(b2n) and T(n) = O(nn) with a coarse
analysis we have that f(k, q, b) = O((60kqb)45kqb).

To measure the size of one (k, q)-characteristic of A restricted to B, we can use the
function f ′(k, q, b) ≤ 2n, since |K| ≤ n.

If q = ∞, then |K| ≤ 3b. Let n′ = 3b(2k + 3) < 15kb and T′(n′) =
∑n

i=1 n′n′−2.
Using the same reasoning as for the proof of the case q < ∞, we have that the number
of (k,∞)-characteristic of A restricted to B is given by a function:

f(k, b) = k2n′−1(b!)T′(n′).

Since b! = O(bb) = O(bkb), n′ < 15kb and T′(n′) = O(n′n′

) with a coarse analysis we
have that f(k, b) = O((15kb)45kb)

To measure the size of one (k, q)-characteristic of A restricted to B, we can use the
function f ′(k, b) ≤ n′ + 3b, since |K| ≤ 3b.

Definition 20. A set F of (k, q)-characteristics of A restricted to B is full if for all q-
branched partitioning tree (T, r, σ) of A with Φ-width at most k, then Char((T, r, σ), B) ∈
F .



72 Graph Width Measures

4.5 Algorithm Using Characteristic

This section is devoted to the presentation of Procedures used in the decision algorithm
for the q-branched Φ-width of a set A. Notations are those defined in Sections 4.1, 4.2
for Theorem 11.

Let (D,X ) be a nice decomposition for A that is compatible with a monotone partition
function Φ, such that maxt∈V (D) |Xt| ≤ k′. Recall that for any v ∈ V (D), Dv denotes the
subtree of D rooted in v, and Av = ∪t∈V (Dv)Xt.

This section presents procedures that compute a full set FSCk,q(t) of (k, q)-charac-
teristics of At restricted to Xt, for any t ∈ V (T ). The algorithm proceeds by dynamic
programming from the leaves of D to its root.

Each procedure presented in this section takes as input a node v ∈ V (D) and, for each
u that is a child of v, the sets FSCk,q(u). The output of each procedure is FSCk,q(v).

Procedure StartNode

If v is a leaf, i.e. a start node of D, Av = Xv, and |Xv| ≤ k′. FSCk,q(v) consists of all
(k, q)-characteristics of Xv.

Procedure StartNode enumerates all (k, q)-characteristics of Av restricted to Xv.
Trivially, the following statement holds:

Lemma 29. Procedure StartNode computes a full set of (k, q)-characteristics of Av re-
stricted to Xv.

Next lemma shows that the complexity of procedure StartNode does not depend on
|A|.

Theorem 30. Procedure StartNode has constant time complexity. That is, if q <∞ then
procedure StartNode computes FSCk,q(v) in time O((60kqk′)46kqk′

), otherwise procedure
StartNode computes FSCk,q(v) in time O((15kk′)46kqk′

).

Proof. By Lemma 28, |FSCk,q(v)| is bounded by the function f(k, q, k′), if q <∞, or by
the function f(k, k′), if q =∞. Moreover, each element of FSCk,q(v) has a size bounded
by the function by the function f ′(k, q, k′), if q <∞, or by the function f ′(k, k′), if q =∞.

Therefore, the amount of memory needed to store FSCk,q(v) has size bounded by
f(k, q, k′) · f ′(k, q, k′) in the case that q <∞ or f(k, k′) · f ′(k, k′) in the case that q =∞.

Since f(k, q, k′) = O((60kqk′)45kqk′

) and f ′(k, q, k′) = O(kqk′) we have that the char-
acteristics in FSCk,q(v) can be enumerated in O((60kqk′)46kqk′

) in the case that q <∞.
Since f(k, k′) = O((15kk′)45kqk′

) and f ′(k, k′) = O(kk′) we have that the characteris-
tics in FSCk,q(v) can be enumerated in O((15kk′)46kk′

) in the case that q =∞.

Procedure IntroduceNode

Let v be an introduce node of D, u its child, and {a} = Xv \ Xu. Let FSCk,q(u) be
a full set of (k, q)-characteristics of Au restricted to Xu. For each characteristic Cu =
((Tu, ru, σu), ℓu, Ku, distu, outu, branchu, fatheru) ∈ FSCk,q(u), Procedure IntroduceNode
proceeds as follows, repeating the five steps below, for any possible execution of Step 1.
Roughly, it tries all possible ways to insert a into Cu obtaining Cv.

1. update of Tu into Tv:



Algorithm Using Characteristic 73

There are two ways of inserting a in Cu. Either choose an internal vertex vatt of
V (Tu), add a leaf vleaf adjacent to vatt (Case 1 ), or choose an edge f = {vtop, vbottom}
(with vtop closer to the root ru than vbottom), subdivide it into etop = {vtop, vatt} and
ebottom = {vatt , vbottom} and add a new leaf vleaf adjacent to the new node vatt (Case
2 ). In both cases, σv keeps the same mapping as σu for leaves that are not vleaf .
We set σv(vleaf ) = a. Note that, now, Tv is a partitioning tree of Xv.

2. update of labels of new vertex(ices) and edge(s):

In both cases of Step 1, enew = {vleaf , vatt} receives label ℓv(enew)← ΦAv
({Au, {a}}).

In Case 2 of Step 1, vatt is a new vertex, then ℓv(vatt) = ℓv(etop) = ℓv(ebottom) ←
ℓu(f), and outv(vatt) = branchv(vatt) ← 0. If vbottom is not a leaf of Tu, then
fatherv(vatt)← 1. Otherwise, fatherv(vatt)← 0.

3. update of labels of vertex(ices) and edge(s):

For each e ∈ E(Tv), e 6= enew, let Te be the partition of Xv defined by e. ℓv(e) ←
FΦ(ℓu(e), Te, a).

For each t ∈ V (cp(Tv)), let Tt be the partition of Xv defined by t. ℓv(t) ←
FΦ(ℓu(t), Tt, a).

distv ← distu and, for all internal vertex x of Tv, outv(x)← outu(x), branchv(x)←
branchu(x) and fatherv(x)← fatheru(x).

In Case 2 of Step 1, fatherv(vtop)← 1.

4. creation of a new branching node:

In Case 1 of Step 1, Kv ← Ku ∪ {vatt , vleaf }.
In Case 2 of Step 1, if vbottom is the only child of vtop in Tu and fatheru(vtop) = 0
(this implies that vtop belongs to Ku only because it is the parent of a single leaf),
then Kv ← (Ku ∪ {vatt , vleaf }) \ {vtop}. Otherwise, Kv ← Ku ∪ {vatt , vleaf }.
In Case 2 of Step 1, if vbottom is a leaf of Tu and fatheru(vtop) = 1, then

branchv(vtop)← 1.

5. contraction of paths:

∀x, y ∈ Kv and path P between x and y such that no internal vertices of P are in
Kv, P ← Contr(P ).

6. update of FSCk,q(v):

brheightT (rv) is computable thanks to outv and branchv as seen in Lemma 26. If
distv + brheightT (rv) ≤ q and ℓv(t) ≤ k for any internal vertex t ∈ V (Tv), and
ℓv(e) ≤ k for any edge e ∈ E(Tv), then FSCk,q(v)← FSCk,q(v) ∪ {Cv}.

The rest of this section is dedicated to show that procedure IntroduceNode computes
FSCk,q(v) in constant time. We start by showing that the Procedure IntroduceNode
computes a full set of (k, q)-characteristics of Av restricted to Xv, then we analyse its
complexity.

Lemma 31. Procedure IntroduceNode computes a full set of (k, q)-characteristics of Av

restricted to Xv.



74 Graph Width Measures

Since Φ is closed under taking subset, Av admits a q-branched partitioning tree with
Φ-width at most k only if Au does. Therefore, we can assume that FSCk,q(u) 6= ∅,
otherwise, Av does not admit a q-branched partitioning tree with Φ-width at most k, and
FSCk,q(v) = ∅. The proof of Lemma 31 is twofold. We first prove that the set FSCk,q(v)
returned by Procedure IntroduceNode is a set of characteristics of Av restricted to Xv in
Lemma 32, then we prove it is full in Lemma 33.

(T ◦
u , r◦

u, σ◦
u) (T ◦

v , r◦
v , σ◦

v)

Cv = CsCu

insertion of {a}

Char((T ◦
u , r◦

u, σ◦
u), Xu)

Introduce Node

Char((T ◦
v , r◦

v , σ◦
v), Xv)

Figure 4.6: Scheme of proof of Lemma 31.

To prove that the set FSCk,q(v) is a set of characteristics, we start from a partitioning
tree (T ◦

u , r◦
u, σ◦

u) of Au and its corresponding characteristic Cu. The insertion of a into Cu,
from the IntroduceNode, results in Cv. By inserting a into (T ◦

u , r◦
u, σ◦

u) mimicking the inser-
tion of a into Cu we obtain (T ◦

v , r◦
v, σ◦

v). Then, we show that Cv = Char((T ◦
v , r◦

v, σ◦
v), Xv).

A scheme can be found in Figure 4.6.

Lemma 32. For all Cv ∈ FSCk,q(v), we have that Cv is (k, q)-characteristic of Av

restricted to Xv.

Proof. We introduce some notation in order to prove the lemma.
Let Cu = ((Tu, ru, σu), ℓu, Ku, distu, outu, branchu, fatheru) ∈ FSCk,q(u) be a charac-

teristic used by procedure IntroduceNode to obtain Cv. That is, Cv = ((Tv, rv, σv), ℓv, Kv,
distv, outv, branchv, fatherv) ∈ FSCk,q(v) is an element of FSCk,q(v) constructed by ap-
plying the six steps of procedure IntroduceNode on Cu ∈ FSCk,q(u).

We assume that Cv is obtained from Cu with Case 2 of Step “update Tu into Tv” of
Procedure IntroduceNode. That is, Cv is obtained from Cu by adding vleaf as a neighbor
of vatt , where vatt result from the subdivision of f = {vtop, vbottom} ∈ E(Tu). Case 1 of
Step 1 can be proved in a similar way, thus we omit the proof here.

By definition Cu ∈ FSCk,q(u), hence it is a characteristic of a partitioning tree
(T ◦

u , r◦
u, σ◦

u) of Au restricted to Xu, i.e. Cu = Char((T ◦
u , r◦

u, σ◦
u), Xu). Since FSCk,q(u)

is a full set of (k, q)-characteristics, we have that (T ◦
u , r◦

u, σ◦
u) is a q-branched partitioning

tree for Au with Φ-width at most k.
Note that, by definition of Char((T ◦

u , r◦
u, σ◦

u), Xu) and the “Contr” operation, f repre-
sents an edge f ◦

u ∈ E(T ◦
u ).

Let (T ◦
v , r◦

v, σ◦
v) be obtained from (T ◦

u , r◦
u, σ◦

u) by subdividing the edge f ◦
u = {v◦

top,
v◦

bottom} one time, creating a vertex vatt , and adding vleaf as neighbor of vatt , make
σ◦

v(vleaf ) = a and r◦
v = r◦

u. By definition, (T ◦
v , r◦

v, σ◦
v) is a partitioning tree of Av.

Let Cs = ((Ts, rs, σs), ℓs, Ks, dists, outs, branchs, fathers) = Char((T ◦
v , r◦

v, σ◦
v), Xv), i.e.

Cs is the restriction of (T ◦
v , r◦

v, σ◦
v) to Xv.

We need to show that Cv = Cs.

In order to prove that Cv = Cs, we need to introduce some notation.
For all t ∈ V (cp(T ◦

v )), let A◦
t be the partition of Av defined by t. Similarly, for all

e ∈ E(T ◦
v ), let A◦

e be the partition of Av defined by e.



Algorithm Using Characteristic 75

Let T ′
v be the smallest subtree of T ◦

v the leaves of which map all elements of Xv, and
let r′

v be the vertex in T ′
v that is closest to r◦

v. Similarly, let T ′
u be the smallest subtree

of T ◦
u the leaves of which map all elements of Xu, and let r′

u be the vertex in T ′
u that is

closest to r◦
u. Note that, T ′

u and T ′
v are obtained in the first step of the procedure Char

when applied to (T ◦
u , r◦

u, σ◦
u) and (T ◦

v , r◦
v, σ◦

v) respectively.
For the remainder of this section, assume that V (T ◦

v ) = {1, . . . , n}, where vleaf = n and
vatt = n−1. Then, from the definition of T ◦

v , V (T ◦
u ) = V (T ◦

v )\{n−1, n}. Moreover, from
the Char procedure, V (Ts) ⊆ V (T ◦

v ) and V (Tu) ⊆ V (T ◦
u ) and, from the IntroduceNode

procedure V (Tv) ⊆ V (Tu) ∪ {vleaf , vatt}.

Claim 2. The sets Kv and Ks are the same, i.e. Kv = Ks.

By step 3 of the procedure Char, Ks is the set of vertices that are leaves in (T ′
v, r′

v),
parents of leaves, branching nodes of cp(T ◦

v ) in V (T ′
v), or branching nodes of (T ′

v, r′
v). T ◦

v

can be obtained from T ◦
u by subdividing f ◦

u and adding a new leaf vleaf adjacent to the
new vertex vatt and σ◦

v(vleaf ) = a, therefore T ′
v is obtained from T ′

u by subdividing f ◦
u and

adding a neighbor to the vertex created from the subdivision.
Ks \ {vtop} is composed by vertices that are leaves in (T ′

u, r′
u), or parents of leaves, or

branching nodes of cp(T ◦
u ) in V (T ′

u), or branching nodes of (T ′
u, r′

u), or vatt , or vleaf . In
other words, Ks \ {vtop} = (Ku ∪ {vatt , vleaf }) \ {vtop}.

There are 2 cases to consider: (1) vbottom is the unique child of vtop in Tu and
fatheru(vtop) = 0; or (2) otherwise.

Case (1): Kv = (Ku ∪ {vatt , vleaf }) \ {vtop}. Since vbottom is the unique child of vtop in
Tu and fatheru(vtop) = 0, vtop has only one child in T ′

u and it is not a branching
node of T ◦

u . From the construction of T ◦
v , the only child of vtop in T ′

v is vatt which
is not a leaf and vtop is not a branching node of T ◦

v . Hence, vtop /∈ Ks. Therefore,
Ks \ {vtop} = Ks = Kv.

Case (2): either vtop has more than one child in Tu or fatheru(vtop) = 1. Then, Kv =
Ku ∪ {vatt , vleaf }, from step “creation of a new branching node” of IntroduceNode.
There are some sub-cases to consider:

• If vtop has more than one child in Tu, then vtop is a branching node of (T ′
u, r′

u),
hence vtop ∈ Ku. From the construction of T ′

v, vtop is a branching node of
(T ′

v, r′
v), therefore vtop ∈ Ks. Then, since vtop ∈ Ku and Ks \ {vtop} = (Ku ∪

{vatt , vleaf }) \ {vtop} we have that Ks = Ku ∪ {vatt , vleaf } = Kv.

• If fatheru(vtop) = 1 and vbottom is a leaf of Tu, then v◦
top ∈ V (T ◦

u ) is the parent of
a leaf of T ◦

u , hence vtop ∈ Ku. From the construction of T ◦
v , vtop is a branching

node of cp(T ◦
v ), hence vtop ∈ Ks. Then, Ks = Ku ∪ {vatt , vleaf } = Kv.

• If fatheru(vtop) = 1 and vbottom is not a leaf of Tu. From the construction of T ◦
v ,

vtop is a branching node of T ◦
v if and only if vtop is a branching node of T ◦

u . Hence,
vtop ∈ Ku if and only if vtop ∈ Ks. Therefore, Ks = Ku ∪ {vatt , vleaf } = Kv.

In both cases, we have Kv = Ks.

Claim 3. Tv and Ts are isomorphic and the labels of correspondent vertices of Tv and Ts

are the same. That is, ℓv(tv) = ℓs(ts) for all internal vertex or edge tv of Tv that has a
corresponding vertex or edge ts in Ts.



76 Graph Width Measures

Recall that, from the Char procedure, Ts is obtained by contracting all paths of T ◦
v

that have endpoints in Ks and no internal vertex in Ks. On the other hand, Tv is
obtained by adding a vleaf adjacent to vatt in Tu and then contracting all paths of Tv that
have endpoints in Kv and no internal vertex in Kv. We want to show that the result
of the contractions in T ◦

v and the contractions in Tv are the same. That is, that after
contractions Tv and Ts are isomorph having the same labels on its vertices.

Let Pv(x, y) denote the labelled path between vertices x and y in Tv with labels ℓv

(resp. Ps(x, y) in Ts with labels ℓs). In order to show these two properties, we show that
for each pair of vertices x, y ∈ Kv = Ks (Claim 2) such that the path Pv(x, y) has no
vertex from Kv as internal vertex then Pv(x, y) = Ps(x, y). In other words, the paths
in Tv and Ts between two vertices of Kv = Ks have the same length and have the same
sequence of labels defined by the functions ℓv and ℓs respectively.

Let P ′
s(x, y) be the path between x and y in T ′

v. In other words, P ′
s(x, y) is the path

Ps(x, y) of Cs along with labels given by ℓs before Step 6 of Char((T ◦
v , r◦

v, σ◦
v), Xv).

There are some cases to consider: (1) Ps(x, y) = (vatt , vleaf ); (2) Ps(x, y) 6= (vatt , vleaf )
and vatt /∈ {x, y}; (3) Ps(x, y) 6= (vatt , vleaf ) and vatt ∈ {x, y}.

Case (1): If Ps(x, y) = {vatt , vleaf }, by Step “update labels of new vertex(s) and edge(s)”
of Procedure IntroduceNode ℓv({vatt , vleaf }) = ℓs({vatt , vleaf }). From the fact that Cs

is obtained through the Char procedure, we have that ℓs(vatt) = ΦAv
(A◦

v). From the
fact that Φ is compatible with (D,X ), we have that ΦAv

(A◦
v) = FΦ(ℓu(f),A◦

v∩Xv, a).
Finally, from the step “update of labels of vertices and edges” of procedure Intro-
duceNode we have that ℓv(vatt) = FΦ(ℓu(f),A◦

v∩Xv, a). Taking all these inequalities
we have that ℓs(vatt) = ΦAv

(A◦
v) = FΦ(ℓu(f),A◦

v ∩Xv, a) = ℓv(vatt).

Case (2): Now, let us assume that Ps(x, y) 6= {vatt , vleaf } and vatt /∈ {x, y}. Then,
Ps(x, y) represents a path P ◦

u in T ◦
u , and more precisely in T ′

u. Each t ∈ V (P ◦
u ) defines

a partition T ◦
t of Au such that ΦAu

(T ◦
t ) = ΦAv

(A◦
t )∩Au. Similarly, each e ∈ E(P ◦

u )
defines a partition T ◦

e of Au such that ΦAu
(T ◦

e ) = ΦAv
(A◦

e) ∩ Au. Moreover, the
labels in P ◦

u are given by the function ΦAu
applied to the partitions of Au defined

by the vertices (or edges) of P ◦
u .

When computing Char((T ◦
u , r◦

u, σ◦
u), Xu) to obtain Cu, P ◦

u is replaced by Contr(P ◦
u ).

Each internal vertex and edge of Contr(P ◦
u ) defines the same partition P of Xv

(where a is in the part correspondent to the component where edge f is), since
these vertices are not in Ku, hence they are not leaves, nor parent of leaves of Xu,
nor branching nodes of cp(T ◦

u ) and f ◦
u does not belong to P ◦

u .

To obtain Pv(x, y), procedure IntroduceNode modifies the labels of edges and vertices
of Contr(P ◦

u ) by applying the strictly increasing function FΦ,P : x → FΦ(x,P , a)
(Step “update of labels of vertex(s) and edge(s)” of Procedure IntroduceNode), then,
let FΦ,P(Contr(P ◦

u )) be the path obtained in this way, then it replaces FΦ,P(Contr
(P ◦

u )) by Contr(FΦ,P(Contr(P ◦
u ))). Hence, Contr(FΦ,P(Contr(P ◦

u ))) = Pv(x, y). By
Items 2 and 1 of Lemma 23,

Pv(x, y) = Contr(FΦ,P(Contr(P ◦
u ))) = Contr(Contr(FΦ,P(P ◦

u ))) = Contr(FΦ,P(P ◦
u )).

From the definition of T ◦
v and the fact that Φ is compatible with (D,X ), we have

that FΦ,P(P ◦
u ) = P ◦

v , hence, by Step 6 of Char((T ◦
v , r◦

v, σ◦
v), Xv), Contr(FΦ,P(P ◦

u )) =
Ps(x, y). Therefore, Pv(x, y) = Ps(x, y).



Algorithm Using Characteristic 77

Case (3): Let x and y be the vertices in Ku such that the path P ◦
u of T ◦

u between x
and y contains the edge f ◦

u . It remains to prove that Pv(x, vatt) = Ps(x, vatt) and
Pv(vatt , y) = Ps(vatt , y).

Let C ′
u be obtained from Cu by subdividing f resulting in new vertex vatt . Moreover,

let ℓ′
u(vatt) = ℓ′

u({vtop, vatt}) = ℓ′
u({vatt , vbottom}) = ℓu(f). From the procedure Intro-

duceNode Pv(x, vatt) is obtained from P ′
u(x, vatt) by applying the function F and then

a contraction and Pv(vatt , y) is obtained from P ′
u(vatt , y) by applying the function F

and then a contraction. That is, Pv(x, vatt) = Contr(FΦ,P(P ′
u(x, vatt))), where P is

the partition of P is the partition of Xv defined by vertices and edges in Pv(x, vatt).
Similarly, Pv(vatt , y) = Contr(FΦ,P ′(P ′

u(vatt , y))), where P ′ is the partition of Xv

defined by vertices and edges in Pv(vatt , y).

On the other hand, Ps(x, vatt) is obtained by applying a contraction on the path
from x to vatt in T ◦

v and Ps(vatt , y) is obtained by applying a contraction on the path
from vatt to y.

Let T ′′
u be the tree obtained from T ◦

u by subdividing f ◦
u resulting in new vertex vatt ,

i.e. T ′′
u is the tree T ◦

v without vleaf . Let P ′′
u (x, y) = P ′′

u (x, vatt) ⊙ P ′′
u (vatt , y) be the

path in T ′′
u between x and y. Then, P ◦

v (x, y) = P ◦
v (x, vatt) ⊙ P ◦

v (vatt , y) is the path
in T ◦

v corresponding to P ′′
u (x, y) in T ′′

u . That is, P ◦
v (x, y) has the same vertices as

P ′′
u (x, y) but with different labels.

Note that the partition of Xv defined by the vertices and edges in P ◦
v (x, vatt) is the

same as the one defined by Pv(x, vatt), that is, P . Similarly, the partition of Xv

defined by the vertices and edges in P ◦
v (vatt , y) is the same as the one defined by

Pv(vatt , y), that is, P ′. From the fact that the fact Φ is compatible with (D,X ),
we have that P ◦

v (x, vatt) = FΦ,P(P ′′
u (x, vatt)) and that P ◦

v (vatt , y) = FΦ,P ′(P ′′
u (vatt , y)).

Therefore, Ps(x, vatt) = Contr(P ◦
v (x, vatt)) = Contr(FΦ,P(P ′′

u (x, vatt))) and Ps(vatt , y)
= Contr(P ◦

v (vatt , y)) = Contr(FΦ,P ′(P ′′
u (vatt , y))).

Then, taking all these inequalities, we have that:

Pv(x, vatt) = Contr(FΦ,P(P ′
u(x, vatt))),

Pv(vatt , y) = Contr(FΦ,P ′(P ′
u(vatt , y))),

Ps(x, vatt) = Contr(FΦ,P(P ′′
u (x, vatt))) and

Ps(vatt , y) = Contr(FΦ,P ′(P ′′
u (vatt , y))).

Note that P ′
u(x, y) = Contr(P ′′

u (x, y)), then by Lemma 24:

Ps(x, vatt) = Contr(FΦ,P(P ′′
u (x, vatt))) = Contr(FΦ,P(P ′

u(x, vatt))) = Pv(x, vatt), and

Ps(vatt , y) = Contr(FΦ,P ′(P ′′
u (vatt , y))) = Contr(FΦ,P ′(P ′

u(vatt , y))) = Pv(vatt , y).

Since Kv = Ks (Claim 2, and, in all cases, for each x, y ∈ Ks, Pv(x, y) = Ps(x, y), we
have that Tv is isomorphic to Ts and that ℓv and ℓs are equivalent, that is, correspondent
vertices and edges in Tv and Ts have the same label.

Claim 4. (distv, outv, branchv, fatherv) = (dists, outs, branchs, fathers).

By procedure IntroduceNode, distv receives the value of distu, i.e. the number of
branching nodes in T ◦

u between r◦
u and r′

u. We have that distu is the number of branching
nodes in T ◦

v between r◦
v and r′

s, i.e. dists. Hence, distv = dists.



78 Graph Width Measures

Now, for every vertex t in cp(Tv), outv(t) is the maximum number of branching nodes
on a path between t and a leaf in Au \ Xu every internal vertices of which are different
from r◦

u and in T ′
u \ T ◦

u . It is also the maximum number of branching nodes on a path
between t and a leaf in Av \Xv = Au \Xu every internal vertices of which are different
from r◦

v and in T ′
s \ T ◦

v , i.e. outs(t).
For every vertex t in cp(Tv), branchv(t) = 1 if and only if branchu(t) = 1 or t is the

parent-end of f and fatheru(t) = 1 (Step “creation of a new branching node” of Procedure
IntroduceNode). That is, branchv(t) = 1 if and only if t is a branching node of cp(T ◦

v ),
i.e. branchv(t) = branchs(t).

Now, for every vertex t in cp(Tv)\{vtop}, fatherv(t) = fatheru(t) and fatherv(vtop) = 1.
In other words, fatherv(t) = 1 if and only if t is the parent of a non leaf node in T ◦

v . Since,
fatheru(t) = fathers(t) for every vertex t ∈ cp(Tu), fatherv(t) = fathers(t). Moreover,
fathers(vtop) = 1.

Claim 5. (T ◦
v , r◦

v, σ◦
v) is a q-branched partitioning tree for Av with Φ-width not bigger

than k.

Therefore, we proved that Cv = Char((T ◦
v , r◦

v, σ◦
v), Xv). By Step “update of FSCk,q(v)”

of Procedure IntroduceNode, we have that distv + brheightT (rv) ≤ q. Note that, since
(T ◦

u , r◦
u) is q-branched, for every path P in cp(T ◦

v ) from r◦
v to a leaf of cp(T ◦

v ) such that
P does not pass through r′

v we have that P has at most q branching nodes. Hence, by
Lemma 26 (T ◦

v , r◦
v, σ◦

v) is q-branched.
It remains to show that (T ◦

v , r◦
v, σ◦

v) has Φ width at most k. Consider any internal
vertex t of V (T ◦

v ) \ V (T ′
v). Let Pt be the partition of Av defined by t. Since t is not in

V (T ′
v) the partition of Xv it defines has only one part. That is, the partition Pt ∩ Xv

defined by t has at most one part. From the fact that Φ is compatible with (D,X ) we
have that ΦAv

(Pt) = ΦAv
(Pt) = ΦAu

(Pt ∩ Au). Then, from the fact that (T ◦
v , r◦

v, σ◦
v) has

Φ width at most k we have that ΦAv
(Pt) ≤ k.

Similarly, for any edge e of E(T ◦
v ) \E(T ′

v) we have that ΦAv
(Pe) ≤ k, where Pe is the

partition of Av defined by e.
From the definition of “Contr”, item 1 from Lemma 22 and the fact that ℓv(t) ≤ k for

any vertex t ∈ V (cp(Tv)), and ℓv(e) ≤ k for any edge e ∈ E(Tv), we have that (T ′
v, r′

v, σ′
v)

has Φ-width at most k. Hence, (T ◦
v , r◦

v, σ◦
v) has Φ-width at most k.

Therefore, (T ◦
v , r◦

v, σ◦
v) is a q-branched partitioning tree with Φ-width at most k. Thus,

Cv = Char((T ◦
v , r◦

v, σ◦
v), Xv) is a (k, q)-characteristic of (T ◦

v , r◦
v, σ◦

v) restricted to Xv.
This concludes the proof, that is FSCk,q(v) is a set of (k, q)-characteristics restricted

to Av.

To prove that the set FSCk,q(v) is full, we consider an arbitrary q-branched par-
titioning tree (T ◦

v , r◦
v, σ◦

v) with Φ-width not bigger than k of Av and show that there
is an execution of IntroduceNode on a characteristic Cu ∈ FSCk,q(u) such that Cv =
Char((T ◦

v , r◦
v, σ◦

v), Xv) and Cv ∈ FSCk,q(v).

Lemma 33. The set FSCk,q(v), computed through the procedure IntroduceNode, is full.

Proof. Let (T ◦
v , r◦

v, σ◦
v) be a q-branched partitioning tree of Av with Φ-width not bigger

than k. Let vleaf be the leaf of T ◦
v that maps {a} = Xv \Xu. Let vatt be the parent of vleaf .

Let (T ◦
u , r◦

u, σ◦
u) be the partitioning tree of Au such that (T ◦

v , r◦
v, σ◦

v) can be obtained from
(T ◦

u , r◦
u, σ◦

u) by inserting a vertex correspondent to a as a neighbor of vatt in T ◦
u . Therefore,

(T ◦
u , r◦

u, σ◦
u) is a q-branched partitioning tree for Au with Φ-width not bigger than k. Let

Cv be such that Cv = Char((T ◦
v , r◦

v, σ◦
v), Xv). It remains to show that Cv ∈ FSCk,q(v).



Algorithm Using Characteristic 79

From the induction hypothesis, there is Cu = Char((T ◦
u , r◦

u, σ◦
u), Xu) in FSCk,q(u).

Then, there are three cases to consider: (1) vatt ∈ Ku; (2) vatt /∈ Ku and vatt is represented
in Cu; (3) vatt /∈ Ku and vatt is not represented in Cu.

Cases (1) and (2): Then, vatt is a vertex of Tu, i.e. during the Step 6 of Char((T ◦
u , r◦

u,
σ◦

u), Xu) the vertex vatt does not suffer a contraction operation. Consider the execu-
tion of case 1 of procedure IntroduceNode on Cu, where vleaf is added as a neighbor
to vatt , to obtain Cv. In other words, Tv can be obtained from Tu by adding a vertex
vleaf as a neighbor of vatt . Hence, from the step “update of labels of vertices and
edges” of IntroduceNode procedure and the fact that Φ is compatible with (D,X ),
the labels ℓv of Cv obtained from the labels ℓu of Cu are such that for any internal
vertex (or edge) t in Tv:

ℓv(t) = FΦ(ℓu(t), Tt, a) = FΦ(ΦAu
(At ∩ Au),At ∩Xv, a) = ΦAv

(At)

Where Tt and At are the partitions of Xv and Av defined by t respectively. From the
Step “update of labels of new vertex(s) and edge(s)” of IntroduceNode procedure
ℓv({vatt , vleaf }) = ΦAv

({Au, {a}}).
We need to show that in step “update of FSCk,q(v)” we add Cv to FSCk,q(v).
Since (T ◦

v , r◦
v, σ◦

v) is q-branched and its Φ-width is not bigger than k and Cv =
Char((T ◦

v , r◦
v, σ◦

v), Xv), we have that brheight(rv) ≤ q and that, for all internal ver-
tices (or edges) t of Tv, ℓv(t) ≤ k (Lemma 27). Hence, during step “update of
FSCk,q(v)” we have that Cv is inserted into FSCk,q(v).

Case (3): The vertex vatt does not belong to Ku nor has a representative on Cu. This
means that vatt is contracted during the operation Char((T ◦

u , r◦
u, σ◦

u)). Let P ′
u(x, y)

be the path between x and y in T ′
u (the subtree of T ◦

u spanning leaves mapping
elements of Xu) such that vatt ∈ V (P ′

u(x, y)) and x, y ∈ Ku. In other words, in Step
6 of Char((T ◦

u , r◦
u, σ◦

u), Xu) to obtain Cu during the contraction of P ′
u(x, y) we have

that vatt is removed with a contraction operation. Let Pu(x, y) = Contr(P ′
u(x, y)),

i.e. the path in Cu resulting from the contraction of P ′
u(x, y). Thus, there are

vertices x′ and y′ in V (Pu(x, y)) such that vatt is an internal node of P ′
u(x′, y′) and

{x′, y′} is an edge of Pu(x, y). In other words, vatt is removed either by a contraction
between {x′, y′} and x′ or by a contraction between {x′, y′} and y′.

We want to show that Cv, obtained through an execution of case 2 of IntroduceNode
on Cu where the edge {x′, y′} is subdivided, is such that Cv = Char((T ◦

v , r◦
v, σ◦

v), Xv)
and Cv ∈ FSCk,q(v).

Consider the execution of procedure IntroduceNode on Cu by applying case 2 on
the edge {x′, y′}. In this execution of IntroduceNode, Tv is obtained from Tu by
subdividing {x′, y′} creating a vertex vatt and adding vleaf , mapping a, as a neighbor
of vatt .

Using the same argument as in “proof of cases (1) and (2)” we have that for any
internal vertex (or edge) t in Tv, ℓv(t) = ΦAv

(At) where At is the partition of Av

defined by t.

We need to show that in step “update of FSCk,q(v)” we add Cv to FSCk,q(v).
Since (T ◦

v , r◦
v, σ◦

v) is q-branched and its Φ-width is not bigger than k and Cv =
Char((T ◦

v , r◦
v, σ◦

v), Xv), we have that brheight(rv) ≤ q and that, for all internal ver-
tices (or edges) t of Tv, ℓv(t) ≤ k (Lemma 27). Hence, during step “update of
FSCk,q(v)” we have that Cv is inserted into FSCk,q(v).



80 Graph Width Measures

Since, in all these cases, we have that Cv ∈ FSCk,q(v), this shows that FSCk,q(v) is a full
set of (k, q)-characteristics for Av restricted to Xv.

Theorem 34. Procedure IntroduceNode computes a full set of (k, q)-characteristics of Av

restricted to Xv in time that does not depend on |A|. That is the complexity of procedure
IntroduceNode is bounded by a a function fi(k, q, k′) = O((60kqk′)45kqk′

(kqk′)4), if q <∞,
or a function f ′

i(k, k′) = O((15kk′)45kk′

(kk′)4) otherwise.

Proof. From Theorem 31, procedure IntroduceNode computes a full set of (k, q)-charac-
teristics of Av restricted to Xv. It remains to prove that this can be done time that does
not depend on |A|.

Assume that q < ∞, the case where q = ∞ is similar and thus omitted. From its
definition, FΦ can be computed in constant time. Therefore, for each element Cu =
((Tu, ru, σu), ℓu, Ku, distu, outu, branchu, fatheru) ∈ FSCk,q(u) steps 1 to 5 can be done in
O(|Tu|), for each possible execution of Step 1.

Contracting a path P can be done in O(|P |3), by taking all possible pairs of vertices
and edges and verifying if a contraction operation can be done between them. Hence,
step 5 can be executed in O(|Tu|3), for each possible execution of Step 1.

Lastly, step 6 can be executed in O(|Tu|), by traversing the tree Tu in a bottom up
order, for each possible execution of Step 1.

Since the size and the number of elements in FSCk,q(u) is bounded by f ′(k, q, k′) =
O(kqk′) and f(k, q, k′) = O((60kqk′)45kqk′

) respectively, if q <∞, or by f ′(k, k′) = O(kk′)
and f(k, k′) = O((15kk′)45kk′

) if q =∞ from Lemma 28, we get the result. That is, since
there are at most O(|Tu|) different executions for Step 1, the complexity of procedure
IntroduceNode is bounded by, if q <∞:

fi (k, q, k′) = O
(

f (k, q, k′) · f ′ (k, q, k′)4
)

= O((60kqk′)45kqk′

(kqk′)4).

In the case that q =∞ the complexity of procedure IntroduceNode is bounded by:

fi (k, k′) = O
(

f (k, k′) · f ′ (k, k′)4
)

= O((15kk′)45kk′

(kk′)4).

Procedure ForgetNode

Let v be a forget node of D, u be its child and FSCk,q(u) be a full set of (k, q)-
characteristics of Au restricted to Xu. For every characteristic Cu = ((Tu, ru, σu), ℓu,
Ku, distu, outu, branchu, fatheru) ∈ FSCk,q(u), Procedure ForgetNode proceeds as follows.
Roughly, it restricts Cu to Xv = Xu \ {a} obtaining Cv.

1. preparation:

Let vleaf be the leaf of Tu that maps a, let vatt be the vertex of Tu with degree at
least three that is closest to vleaf (if no such a vertex exists, Tu is a path and vatt is
set to the only other leaf of the path). Let P be the path between vleaf and vatt . Let
w be the neighbor of vatt in P . Let p be the number of vertices y ∈ V (Tu) \ {vatt}
with branchu(y) = 1 in the path between vatt and ru.

2. removing a from Tu:

Tv is obtained by removing V (P ) \ {vatt} and E(P ) from Tu.

If ru 6= vatt and ru belongs to the path P between vleaf and vatt :



Algorithm Using Characteristic 81

• rv ← vatt ,

• distv ← distu +p, and

• outv(vatt)← outu(vatt).

If ru = vatt or ru does not belong to P :

• rv ← ru,

• distv ← distu, and

• outv(vatt)← max{outu(vatt), brheightT (w)}.

In either case:

• branchv(vatt)← branchu(vatt), and

• fatherv(vatt)← fatheru(vatt).

For every vertex x ∈ cp(Tv) such that x 6= vatt :

• outv(x)← outu(x),

• branchv(x)← branchu(x), and

• fatherv(x)← fatheru(x).

3. updating Kv:

If vatt has degree two in Tv, and vatt is not the parent of a leaf neither the root in
Tv, and branchu(vatt) = 0, then Kv ← Ku \ V (P ).

Otherwise, Kv is obtained by removing V (P ) \ {vatt} from Ku.

4. contracting the paths:

∀x, y ∈ Kv and path P between x and y such that no internal vertices of P are in
Kv, P ← Contr(P ).

5. updating FSCk,q(v):

Add Cv to FSCk,q(v).

The rest of this section is dedicated to proving Lemma 35.
Since Av = Au, Av admits a q-branched partitioning tree with Φ-width at most k only

if Au does. Therefore, we can assume that FSCk,q(u) 6= ∅, otherwise, Av does not admit
a q-branched partitioning tree with Φ-width at most k, and FSCk,q(v) = ∅. A scheme of
the proof of Lemma 35 can be found in Figure 4.7

(T ◦
u , r◦

u)

Cu Cv = Cs

Characteristic restricted to Xv

Characteristic restricted to Xu

Forget Node

Figure 4.7: Scheme of proof of Lemma 35.



82 Graph Width Measures

Lemma 35. ForgetNode computes a full set of (k, q)-characteristics of Av restricted to
Xv.

Proof. Let (T ◦, r◦, σ◦) be any q-branched partitioning tree for Au with Φ-width at most
k. Since Av = Au, we have that (T ◦, r◦, σ◦) is a q-branched partitioning tree for Au

with Φ-width at most k if an only if it is also a q-branched partitioning tree for Av with
Φ-width at most k.

Since FSCk,q(u) is a full set of (k, q)-characteristics for Au restricted to Xu, we have
that there exists Cu ∈ FSCk,q(u) which is a (k, q)-characteristic of (T ◦, r◦, σ◦) restricted to
Xu. In other words, Cu = Char((T ◦, r◦, σ◦), Xu). Let Cv be obtained through procedure
ForgetNode when applied to Cu, by removing the path Pu(vleaf , vatt) from Tu, where vleaf

is the leaf of Tu mapping a.
We want to show that Cv = Char((T ◦, r◦, σ◦), Xv) and that Cv ∈ FSCk,q(v). Since

step “updating FSCk,q(v)” from procedure, we have that Cv ∈ FSCk,q(v). It remains to
show that Cv = Char((T ◦, r◦, σ◦), Xv).

In order to do that, let Cs = Char((T ◦, r◦, σ◦), Xv), we need to show that Cs = Cv.
Let Cs = ((Ts, rs, σs), ℓs, Ks, dists, outs, branchs, fathers) and let Cv = ((Tv, rv, σv), ℓv, Kv,
distv, outv, branchv, fatherv).

To prove that Cv = Cs, we must introduce some notation. Let T ′
u (resp. T ′

v) be the
minimum subtree of T ◦ that contains all leaves that maps elements of Xu (resp. Xv).

From the Char procedure, we have that Tu is a path if and only if T ′
u is a path. If T ′

u

is a path, then |Xu| = 2. This means that, |Xv| = 1 and, hence, T ′
v is a single vertex.

Then, from the procedure Char((T ◦, r◦, σ◦), Xv), we have that Cs is a characteristic of
Av restricted to Xv where Ts is a single vertex. On the other hand, from the step
“preparation” of procedure ForgetNode, if Tu is a path, we have that Tv is also a single
vertex. Hence, it is easy to see that when T ′

v is a single vertex Cv = Cs.
Therefore, assume that T ′

u is not a path and let vatt ∈ T ′
u be the vertex with degree

at least three that is closest to vleaf , the vertex mapping a.
For the remainder of this section, assume that V (T ◦) = {1, . . . , n}. From the Char

procedure, V (Ts) ⊆ V (T ◦) and V (Tu) ⊆ V (T ◦) and, from the ForgetNode procedure
V (Tv) ⊂ V (Tu).

Claim 6. The sets Kv and Ks are the same, i.e., Ks = Kv.

Let T ′
v be the minimum subtree of T ◦ that contains all leaves that maps elements of

Xv. Clearly, T ′
v is a subtree of T ′

u. Let r′
v be the vertex of T ′

v that is closest to r◦. From
the definition of Cs, Ks is the set of vertices of T ′

v that are either a leaf of T ′
v, or the parent

of a leaf of T ′
v, or a branching node of cp(T ◦) in V (T ′

v) (rooted in r◦), or a branching node
of (T ′

v, r′
v).

Since Cu = Char((T ◦, r◦, σ◦), Xu), Ku is the set of vertices that are either a leaf of
T ′

u, or the parent of a leaf of T ′
u, or a branching node of cp(T ◦) in V (T ′

u) (rooted in r◦),
or a branching node of (T ′

u, r′
u). Therefore, since T ′

v is a subtree of T ′
u and all leaves in

T ′
v are leaves in T ′

u we have that Ks ⊆ Ku. Moreover, T ′
v is the tree obtained from T ′

u

by removing the vertex vleaf and all internal vertices of P (vleaf , vatt), a path between vleaf

and vatt in T ′
u. Hence, Ks = Ku \V (P (vleaf , vatt)) or Ks = (Ku \V (P (vleaf , vatt))∪{vatt}).

There are two cases to consider:

Case (1): Assume that the vertex vatt does not belong to Ks. That is, Ks = Ku \
V (P (vleaf , vatt)). Then, vatt is not the parent of a leaf in T ′

v, nor a branching node
of cp(T ◦), nor a branching node of (T ′

v, r′
v). Since, vatt is not the parent of a leaf in



Algorithm Using Characteristic 83

T ′
v and it is not a branching node of (T ′

v, r′
v) it has degree two in T ′

v. Therefore, vatt

is not the parent of a leaf, different than vleaf , in T ′
u, the variable branchu(v) = 0,

and vatt has degree two in T ′
v. Consequently, by Step “updating Kv”, vatt /∈ Kv and

Kv = Ku \ V (Pu(vleaf , vatt)), where Pu(vleaf , vatt) is the path between vleaf and vatt

in Tu. Hence, Ks = Ku \ V (P (vleaf , vatt) = Ku \ V (Pu(vleaf , vatt)) = Kv.

Case (2): Assume that vatt ∈ Ks. That is, Ks = (Ku \ V (P (vleaf , vatt)) ∪ {vatt}). If vatt

belongs to Ks, then it is the parent of a leaf in T ′
v, or it is a branching node of cp(T ◦),

or it is a branching node of (T ′
v, r′

v). In all these cases, from the Step “updating
Kv”, vatt ∈ Kv and Kv = Ku \ V (Pu(vleaf , vatt)) ∪ {vatt}, where Pu(vleaf , vatt) is the
path between vleaf and vatt in Tu. Hence, Ks = Ku \ V (P (vleaf , vatt) ∪ {vatt} =
Ku \ V (Pu(vleaf , vatt)) ∪ {vatt} = Kv.

Hence, Ks = Kv.

Claim 7. rs = rv, distv = dists.

From the Char procedure, the root rs is the vertex of T ′
v that is closest to r◦ in T ◦

and the root ru is the vertex of T ′
u that is closest to r◦ in T ◦. Since, T ′

v is a subtree of T ′
u,

ru is a vertex on the path between r◦ and rs.
There are two cases to consider: (1) ru is not an internal node on the path between

vleaf and vatt , or (2) ru is an internal node on the path between vleaf and vatt .

Case (1): ru is not an internal node on the path between vleaf and vatt . Then, since
T ′

v is obtained from T ′
u by removing the internal vertices of P (vleaf , vatt) and the

vertex vleaf , we have that ru = rs. Moreover, since ru = rs we have dists = distu.
Therefore, from Step “removing a from Tu”, rv = ru = rs and distv = distu = dists.

Case (2): ru is an internal node on the path between vleaf and vatt , then rv = vatt .
The value distu is the number of branching nodes of cp(T ◦), excluding the root r◦,
between r◦ and ru.

From Char procedure, rs = vatt . The value dists is the number of branching nodes
of cp(T ◦), excluding the root r◦, between r◦ and rs.

Let p′ = dists− distu. p′ is the number of branching nodes of cp(T ◦), excluding the
root r◦, between ru and rs = vatt . That is, p′ is the number of branching nodes
of cp(T ◦) nodes in the path between ru and vatt . Since, from the Char procedure
to obtain Cu, every branching node x of cp(T ◦) receives label branchu(x) = 1,
we have that p′ is the number of nodes x in the path between ru and vatt such
that branchu(x) = 1. Therefore, p′ = p, where p is the value obtained in step
“preparation” of procedure ForgetNode. Therefore, from Step “removing a from
Tu”, distv = p + distu = p′ + distu = dists.

Claim 8. Tv and Ts are isomorphic and the labels of correspondent vertices of Tv and Ts

are the same. That is, ℓv(tv) = ℓs(ts) for all internal vertex or edge tv of Tv that has a
corresponding vertex or edge ts in Ts.

Let Pv(x, y) be a path of Cv such that x and y belongs to Kv and no other internal
nodes of Pv(x, y) belongs to Kv. Since Kv = Ks, let Ps(x, y) be the corresponding path
of Cs between x and y. Assume that the labels of Pv(x, y) and the labels of Ps(x, y) are
given by the functions ℓv and ℓs respectively.



84 Graph Width Measures

Since Kv ⊆ Ku, let Pu(x, y) be the corresponding path of Cu between x and y and let
P ◦(x, y) be the corresponding path in T ◦ between x and y.

We want to show that Pv(x, y) = Ps(x, y). That is, the paths Pv(x, y) and Ps(x, y)
have the same sequence of vertices and their labels, given by functions ℓv and ℓs, are the
same. There are two cases to consider, (1) vatt is not an internal node of Pu(x, y) or (2)
vatt is an internal node of Pu(x, y).

Case (1): Assume that vatt is not an internal node of Pu(x, y). From the Char procedure,
Ps(x, y) = Contr(P ◦(x, y)) and Pu(x, y) = Contr(P ◦(x, y)). From the Step “con-
tracting the paths” Pv(x, y) = Contr(Pu(x, y)). Then, from item 1 of Lemma 23 (i.e.,
for any path P , Contr(P ) = Contr(Contr(P ))) and Pv(x, y) = Contr(Pu(x, y)) =
Ps(x, y).

Case (2): Assume that vatt is an internal node of Pu(x, y). Consequently, Kv = Ks =
Ku \ {vatt}. From the Char procedure we have that Ps(x, y) = Contr(P ◦(x, y)) and
Pu(x, y) = Contr(P ◦(x, vatt)⊙P ◦(vatt , y)). Then, from Step “contracting the paths”
Pv(x, y) = Contr(Pu(x, y)). From item 3 of Lemma 23 (i.e., for any path P1 ⊙ P2

we have that Contr(P1 ⊙ P2) = Contr(Contr(P1)⊙ Contr(P2))) Pv(x, y) = Ps(x, y).

Therefore, for any pair of vertices x, y in Kv = Ks such that the path between x and
y has no vertices in Kv = Ks we have that Pv(x, y) = Ps(x, y). Hence, Ts is isomorphic
to Tv and the labels of correspondent vertices of Tv and Ts are the same.

Claim 9. σv = σs, branchv = branchs, outv = outs and fatherv = fathers.

It is easy to check that σv = σs, since Ts = Tv and σs can be obtained through σu by
removing the mapping of vleaf to a.

From Step “removing a from Tu” we have that branchv = branchu. Then, from the
induction hypothesis, branchu(x) = 1 if an only if x is a branching node of cp(T ◦) in T ′

u.
Since T ′

v is a subtree of T ′
u, branchu(x) = branchs(x) for all x ∈ V (T ′

v).
Recall that outu(x) is the maximum number of branching nodes of cp(T ◦) in T ′

u

between x and a leaf of T ◦ \T ′
u that does not have any internal node belonging to the set

of vertices of T ′
u and are not r′

u. Since T ′
v is obtained from T ′

u by removing the vertices of
V (P (vleaf , vatt)) \ {vatt}, for any x 6= vatt we have that outs(x) = outu(x).

There are two cases to consider to show that outv(vatt) = outs(vatt): (1) r′
u is an

internal node of P (vatt , vleaf ) in T ′
u or (2) r′

u is not an internal node of P (vatt , vleaf ) in T ′
u.

Case (1): If r′
u is an internal node of P (vatt , vleaf ), then outu(vatt) = outs(vatt). Then,

step “removing a from Tu” ensures that outv(vatt) = outu(vatt).

Case (2): If r′
u is not an internal node of P (vatt , vleaf ), then outs(vatt) is given by max{

outu(vatt), brheightT w} where w is the neighbor of vatt in P (vatt , vleaf ). Then, step
“removing a from Tu” ensures that outv(vatt) = max{outu(vatt), brheight(w)}.

In both cases, we have outv(vatt) = outs(vatt).
For any vertex x ∈ T ′

u, fathers(x) = 1 if and only if x has a non-leaf child in T ◦.
Hence, fathers(x) = fatheru(x). Therefore, from the Step “removing a from Tu” we have
fathers(x) = fatherv(x).

This proves that Cv = Cs. Hence, Cv = Char((T ◦, r◦, σ◦), Xv). Moreover, Cv ∈
FSCk,q(v) from step “updating FSCk,q(v)”.



Algorithm Using Characteristic 85

Therefore this proves the lemma. For any q-branched partitioning tree (T ◦, r◦, σ◦) of
Av with Φ-width at most k we have that Cv = Char((T ◦, r◦, σ◦), Xv) ∈ FSCk,q(V ).

In other words, FSCk,q(v) is a full set of (k, q)-characteristics of Av restricted to
Xv.

Theorem 36. Procedure ForgetNode computes a full set of (k, q)-characteristics of Av

restricted to Xv in time that does not depend on |A|. That is the complexity of procedure

ForgetNode is bounded by a a function ff (k, q, k′) = O
(

(kqk′)3(60kqk′)45kqk′
)

, if q <∞,

or a function f ′
f (k, k′) = O

(

(kk′)3(15kk′)45kqk′
)

otherwise.

Proof. From Theorem 35, procedure ForgetNode computes a full set of (k, q)-charac-
teristics of Av restricted to Xv. It remains to prove that this can be done time that does
not depend on |A|.

Assume that q <∞, the case where q =∞ is similar and thus omitted.
For each element Cu = ((Tu, ru, σu), ℓu, Ku, distu, outu, branchu, fatheru) ∈ FSCk,q(u)

steps 1 to 3 can be done in O(|Tu|).
Contracting a path P can be done in O(|P |3), by taking all possible pairs of vertices

and edges verifying if a contraction operation can be done between them. Hence, step 4
can be executed in O(|Tu|3).

Lastly, step 5 can be executed in O(1).
Since the size and the number of elements in FSCk,q(u) is bounded by f ′(k, q, k′) =

O(kqk′) and f(k, q, k′) = O((60kqk′)45kqk′

) respectively from Lemma 28, we get the result.
That is, the complexity of procedure ForgetNode is bounded by, if q <∞:

ff (k, q, k′) = O
(

f (k, q, k′) · f ′ (k, q, k′)3
)

= O
(

(kqk′)3(60kqk′)45kqk′
)

.

If q =∞ then the complexity of procedure ForgetNode is bounded by:

ff (k, k′) = O
(

f (k, k′) · f ′ (k, k′)3
)

= O
(

(kk′)3(15kk′)45kqk′
)

.

Procedure JoinNode

Let v be a join node of D, let u, w be its children, let FSCk,q(u) be a full set of character-
istics of Au restricted to Xu, and FSCk,q(w) a full set of characteristics of Aw restricted
to Xw.

Remark 4. Procedure JoinNode tries to merge the (k, q)-characteristics for Xu and Xw

that share a same structure, in contrast with the procedure Join Node from Section 4.3
that merges labelled partitioning trees for Au and Aw that are isomorphic.

The skeleton Sk(C) of C = ((T ′, r′, σ′), ℓ′, K ′, dist′, out ′, branch′, father ′) is the tree
obtained from T ′ by contracting all vertices that are not in K ′ (these vertices have
degree two, thus the notion of contraction is well defined). Therefore, V (Sk(C)) = K ′.
Two partitioning trees (T, r, σ) and (T ′, r′, σ′) are isomorphic if there is an one-to-one
function ϕ : V (T ) → V (T ′) preserving the edges, such that ϕ(r) = r′, and moreover,
σ′(ϕ(f)) = σ(f) for any leaf f of T .

The structure Struct(C) of a characteristic C is the partitioning tree obtained from
Sk(C) by contracting all its vertices with degree two, different from the root. That is, we
only keep branching nodes of T in Struct(C), while keeping the same root and the same
mapping over the leaves of the tree. For any characteristic Cu = ((Tu, ru, σu), ℓu, Ku, distu,



86 Graph Width Measures

outu, branchu, fatheru) ∈ FSCk,q(u) and Cw = ((Tw, rw, σw), ℓw, Kw, distw, outw, branchw,
fatherw) ∈ FSCk,q(w), with isomorphic structures and with distw = 0 (if both have
distance non-zero we do not do the procedure JoinNode with Cu and Cw, since the roots
ru and rv come from different branches of the partitioning tree), Procedure JoinNode
proceeds as follows, repeating the five steps below, for any possible execution of Step 2.
Roughly, it merges Cu and Cw to obtain Cv = ((Tv, rv, σv), ℓv, Kv, distv, outv, branchv,
fatherv).

1. identifying the structures:

To obtain Tv, we start by a copy of Tu and a copy of Tw.

Then, for any vertex t′ ∈ V (Struct(Cu)) = V (Struct(Cw)), let tu be the correspond-
ing vertex in Tu, and tw be the corresponding vertex in Tw.

In Tv, we identify tu with tw.

Note that ru and rw are identified, let rv be the resulting vertex.

Then, since distw = 0, we set distv ← distu.

2. merging the paths:

For any {x, y} ∈ E(Struct(Cu)), let x and y be vertices of Tu resulting of the
identification of xu with xw and yu with yw respectively.

Currently in Tv, there are two paths between x and y, a path Pu (initially a path
of Tu) and a path Pw (initially a path of Tw), these paths are vertex-disjoint except
for x and y. Since internal vertices of Pu and Pw do not belong to V (Struct(Cu) nor
to V (Struct(Cw), any internal vertex (resp., edge) of both these paths defines the
same partition P of Xv.

Then, we replace Pu and Pw in Tv with a merging of Pu and Pw using the function
F : (i, j)→ HΦ(i, j,P).

3. update of Kv:

Roughly, Kv is obtained by taking Ku ∪Kw and some other vertices.

Formally, starting from Kv = ∅.
For any vertex xv in Tv that results from the identification of xu ∈ V (Tu) and
xw ∈ V (Tw) we set Kv ← Kv ∪ {xv}. In other words, xu and xw are either leaves of
Tu and Tw or they are branching nodes of Tu and Tw, consequently they xv is either
a leaf or a branching node of Tv.

For any other vertex xv in V (Tv), assume that xv is obtained through the merging
o a path Pu of Tu and a path Pw of Pw, as described in the step “merging of paths”.
Let xu be the vertex of the extension of Pu used to generate xv and xw be the vertex
of the extension of Pw used to generate xv during the merging of Pu and Pw. Then,
if xu ∈ Ku or xw ∈ Kw, then we set Kv ← Kv ∪ {xv}.

4. update of labels:

For any xv ∈ V (cp(Tv)):

branchv(xv)← max{branchu(xu), branchw(xw)},
outv(xv)← max{outu(xu), outw(xw)},

fatherv(xv)← max{fatheru(xu), fatherw(xw)}.



Algorithm Using Characteristic 87

For every xv ∈ V (cp(Tv)), if branchu(xu) = branchw(xw) = 0 and fatheru(xu) =
fatherw(xw) = 1, then branchv(xv)← 1.

For every xv ∈ V (Tv) such that xv is a leaf, σv(xv)← σu(xu).

5. contracting the paths:

∀x, y ∈ Kv and path P between x and y such that no internal vertices of P are in
Kv, P ← Contr(P ).

6. update of FSCk,q(v):

brheightT (rv) is computable thanks to outv and branchv. If distv + brheightT (rv) ≤ q
and ℓv(t) ≤ k for any internal vertex t ∈ V (Tv), and ℓv(e) ≤ k for any edge
e ∈ E(Tv), then FSCk,q(v)← FSCk,q(v) ∪ {Cv}.

The rest of this section is dedicated to proving Lemma 37.

Lemma 37. JoinNode computes a full set of (k, q)-characteristics of Av restricted to Xv.

Proof. Since Av = Au ∪ Aw, Av admits a q-branched partitioning tree with Φ-width
at most k only if Au and Aw do. Therefore, we can assume that FSCk,q(u) 6= ∅ and
FSCk,q(w) 6= ∅, otherwise, Av does not admit a q-branched partitioning tree with Φ-
width at most k, and FSCk,q(v) = ∅.

To prove that the set FSCk,q(v) is a full set of characteristics, we take any q-branched
partitioning tree (T ◦

v , r◦
v, σ◦

v) of Av with Φ width at most k and show that after procedure
JoinNode finishes we have that Char((T ◦

v , r◦
v, σ◦

v), Xv) ∈ FSCk,q(v).
Roughly, we show that there is there is a particular execution of step 2 of procedure

JoinNode with two characteristics, Cu ∈ FSCk,q(u) and Cw ∈ FSCk,q(w), resulting in Cv

such that Cv = Char((T ◦
v , r◦

v, σ◦
v), Xv)). A scheme of the proof of Lemma 37 can be found

in Figure 4.8.

(T ◦
u , r◦

u, σ◦
u)

(T ◦
w, r◦

w, σ◦
w)

(T ◦
v , r◦

v , σ◦
v)

Cu

Cw

Cv = Cs

Char to Xu

Char to Xw

JoinNode“Split”

Char to Xv

Figure 4.8: Scheme of proof of Lemma 37.

Let (T ◦
v , r◦

v, σ◦
v) be any q-branched partitioning tree of Av with Φ width at most k. Let

Cs = Char((T ◦
v , r◦

v, σ◦
v), Xv). That is, Cs = ((Ts, rs, σs), ℓs, Ks, dists, outs, branchs, fathers)

is the (k, q)-characteristic of (T ◦
v , r◦

v, σ◦
v) restricted to Xv.

Let T ′
v be the smallest subtree of T ◦

v spanning all leaves of T ◦
v that map elements of

Xv. Let r′
v be the vertex of T ′

v that is closest to r◦
v in T ◦

v . That is, T ′
v and r′

v are the tree
and the vertex obtained with the first step of procedure Char((T ◦

v , r◦
v, σ◦

v), Xv).
Let T ◦

u (resp. T ◦
w) be the smallest subtree of T ◦

v spanning all leaves of T ◦
v that map

elements of Au (resp. Aw) and let r◦
u (resp. r◦

w) be the vertex of T ◦
u (resp. T ◦

w) that is
closest to r◦

v in T ◦
v .

Since (D,X ) is a nice decomposition of A we have that Au ∩ Aw = Xv. Therefore,
we have that V (T ◦

u ) ∩ V (T ◦
w) = V (T ′

v) and E(T ◦
u ) ∩ E(T ◦

w) = E(T ′
v). Moreover, since



88 Graph Width Measures

Av = Au ∪ Aw, we have that either (r◦
u = r◦

v and r◦
w = r′

v) or (r◦
w = r◦

v and r◦
u = r′

v).
W.l.o.g. assume that r◦

u = r◦
v and r◦

w = r′
v.

Then, (T ◦
u , r◦

u, σu), where σu is the restriction of σv over Au, is a q-branched partitioning
tree with Φ width at most k for Au and (T ◦

w, r◦
w, σw), where σw is the restriction of σv

over Aw, is a q-branched partitioning tree with Φ width at most k for Aw.
Let Cu = Char((T ◦

u , r◦
u, σu), Xu) and Cw = Char((T ◦

w, r◦
w, σw), Xw), such that Cu =

((Tu, ru, σu), ℓu, Ku, distu, outu, branchu, fatheru) and such that Cw = ((Tw, rw, σw), ℓw,
Kw, distw, outw, branchw, fatherw). Since (T ◦

u , r◦
u, σu) and (T ◦

w, r◦
w, σw) are q-branched and

with Φ width at most k, we have that Cu ∈ FSCk,q(u) and Cw ∈ FSCk,q(w). We want
to show that there is an execution of procedure JoinNode on Cu and Cw generating Cv

such that Cv = Cs.
In order to do that, we must first show that Struct(Cu) and Struct(Cw) are isomorph

and that either distu = 0 or distw = 0.

Claim 10. Procedure JoinNode can be applied to Cu and Cw. That is, Struct(Cu) and
Struct(Cw) are isomorph and either distu = 0 or distw = 0.

From the fact that Xv = Xu = Xw, we have that, in the first step of Char((T ◦
u , r◦

u, σu),
Xu) and Char((T ◦

w, r◦
w, σw), Xw) the smaller subtree of T ◦

u and T ◦
w spanning all vertices in

Xu = Xw = Xv is T ′
v.

Since r′
v = r◦

w, from step 2 of the procedure Char((T ◦
w, r◦

w, σw), Xw) we have that
distw = 0.

We need to show that Struct(Cu) and Struct(Cw) are isomorph. From the definition of
structure, Struct(Cu) is obtained from (Sk(Cu), ru, σu) by taking contracting all vertices
of degree two that are different from the root from Sk(Cu). On the other hand, Sk(Cu) is
the tree obtained from Tu by contracting all vertices that are not in Ku. Let Struct(Cu) =
(T r

u , ru, σu) and Struct(Cu) = (T r
w, rw, σw), where T r

u and T r
w are the trees obtained by

contracting all vertices of degree two different from the root (ru and rw respectively) from
Sk(Cu) and Sk(Cw) respectively.

Since, r′
v is the vertex of T ′

v that is closest to r◦
u = r◦

v in T ◦
u , we have that ru = r′

v.
Then, since r′

v = rw we have that ru = rw.
Note that leaves of T ′

v cannot be contracted, since they have degree one, in order to
obtain T r

u and T r
w. In other words, if x is a leaf of T ′

v we have that x ∈ T r
u and x ∈ T r

w.
Therefore, from the step one of Char procedure we have that, for any leaf x ∈ V (T ′

v),
σu(x) = σ◦

v(x) = σw(x).
Now we only need to show that the trees T r

u and T r
w are isomorph. In fact, we shall

show that T r
u = T r

w.
Note that, from the steps one and six of the Char procedure, Tu (resp. Tw) is obtained

from T ′
v by applying some contraction operations on vertices that are not in Ku (resp.

Kw), since they have degree two this is well defined. On the other hand, Sk(Cu) (resp.
Sk(Cw)) is the tree obtained from Tu by contracting all vertices with degree two that
are not in Ku (resp. Kw). Hence, Sk(Cu) (resp. Sk(Cw)) can be obtained from T ′

v by
contracting all vertices that are not in Ku (resp. Kw). Then, T r

u (resp. T r
v ) is obtained

from Sk(Cu) (resp. Sk(Cw)) by contracting all vertices of degree two which are different
from the root ru = r′

v (resp. rw = r′
v).

Since, both T r
u and T r

w are obtained from T ′
v by contracting some vertices with degree

two, we only need to show that the same vertices of T ′
v are contracted to obtain T r

u and
T r

v . That is, we only need to show that V (T r
u) = V (T r

v ). In order to do that consider the



Algorithm Using Characteristic 89

following cases for x ∈ V (T ′
v) \ {r′

v}: (1) x /∈ Ku ∪Kw, (2) x ∈ Ku \Kw, (3) x ∈ Kw \Ku

and (4) x ∈ Ku ∩Kw.

Case 1: If x /∈ Ku ∪Kw then x has degree two in T ′
v and it is contracted to obtain T r

u

and T r
w. Hence, x /∈ V (T r

u) and x /∈ V (T r
w).

Case 2: If x ∈ Ku \Kw, then x is not a leaf of T ′
v, is not the parent of a leaf in T ′

v, is not
a branching node of T ′

v and it is not a branching node of cp(T ◦
w), otherwise x would

be in Kw. Therefore, x has degree two in T ′
v. Since, x is not r′

v we have that x is
contracted in the process to obtain T r

u from Sk(Cu). In other words, x /∈ V (T r
u).

On the other hand, x /∈ Kw, hence x /∈ V (Sk(Cw)) and, consequently, x /∈ V (T r
w).

Case 3: This case is similar to Case 2 with the role of Ku and Kw reversed. If x ∈
Kw \ Ku, then x is not a leaf of T ′

v, is not the parent of a leaf in T ′
v, is not a

branching node of T ′
v and it is not a branching node of cp(T ◦

u ), otherwise x would
be in Ku. Therefore, x has degree two in T ′

v. Since, x is not r′
v we have that x is

contracted in the process to obtain T r
w from Sk(Cw). In other words, x /∈ V (T r

w).
On the other hand, x /∈ V (Sk(Cu)) and, consequently x /∈ V (T r

u).

Case 4: If x ∈ Ku ∩Kw, then x ∈ Sk(Cu) and x ∈ Sk(Cw). Moreover, either x is a leaf
of T ′

v, is the parent of a leaf in T ′
v, is a branching node of T ′

v, or is a branching node
of cp(T ◦

u ) and cp(T ◦
w).

If x is a leaf of T ′
v, then x has degree one in T ′

v and, hence, x ∈ V (T r
u) and x ∈ V (T r

w).

If x is not a leaf of T ′
v, then x has degree two in Sk(Cu) if an only if x has degree

two in Sk(Cw). This is due to the fact that, by contracting vertices of degree two
of a tree, we do not change the degrees of the remainder vertices.

This shows that V (T r
u) = V (T r

w). From the fact that T r
u and T r

w are both obtained from
T ′

v by contraction of vertices of degree two we get the result. That is, Struct(Cu) and
Struct(Cw) are isomorph.

Therefore, the there is an execution of procedure JoinNode were Cu is merged with
Cw. Let Cv = ((Tv, rv, σv), ℓv, Kv, distv, outv, branchv, fatherv) be the result of a particular
execution of procedure JoinNode on Cu and Cw, that will be explained latter in this proof.

We want to show that Cv = Cs.
How Cv is obtained.

We need to specify how procedure JoinNode merges the paths in Tu with the paths
in Tw. That is, we need to specify how step “merging the paths” proceeds to merge the
paths of Tu and Tw to obtain Tv. In order to do that, we first show how paths in T ◦

v with
labels given by the function Φ can be seen as mergings of the corresponding paths in T ◦

u

and T ◦
w.

Let {x, y} be any edge in E(Struct(Cu)) = E(Struct(Cw)). We have that, in T ′
v, all

the internal vertices and edges on the path P ′
v(x, y) between x and y define the same

partition T of Xv, since the vertices have degree two. Let P ◦
v (x, y), P ◦

u (x, y) and P ◦
w(x, y)

be the paths between x and y in T ◦
v , T ◦

u and T ◦
w respectively. Note that the internal

vertices and edges of these paths define the same partition T of Xv.
For any internal vertex or edge x′ of P ◦

v (x, y) let P(x′) be the partition of Av defined
by x′. Then, in T ◦

u and in T ◦
w, the vertex or edge x′ defines the partition P(x′) ∩ Au

of Au and P(x′) ∩ Aw of Aw respectively. Since Φ is compatible with (D,X ), we have
that there is a function HΦ such that for any partition P of Av it is true that ΦAv

(P) =



90 Graph Width Measures

HΦ(ΦAu
(P ∩Au), ΦAw

(P ∩Aw),P ∩Xv). Therefore, for any internal vertex or edge x′ of
P ◦

v (x, y) we have that ΦAv
(P(x′)) = HΦ(ΦAu

(P(x′) ∩ Au), ΦAw
(P(x′) ∩ Aw), T ). Hence,

the labelled path P ◦
v (x, y) with labels given by the function Φ can be obtained by the

merging of the path P ◦
u (x, y) and P ◦

w(x, y), both with labels given by Φ, under the function
F (i, j) = HΦ(i, j, T ). Since |V (P ◦

u (x, y))| = |V (P ◦
w(x, y))|, the extensions of P ◦

u (x, y) and
P ◦

w(x, y) used in the merging are simply P ◦
u (x, y) and P ◦

w(x, y) themselves. In other words,
we can merge the paths P ◦

u (x, y) and P ◦
w(x, y) under the function F to obtain the path

P ◦
v (x, y).

Let Pu(x, y) (resp. Pw(x, y)) be the path between x and y in Tu (resp. Tv). In step
“merging the paths” of procedure JoinNode, the path Pu(x, y) is merged with the path
Pw(x, y). From the Char procedure, we have that Pu(x, y) (resp. Pw(x, y)) is obtained
from P ◦

u (x, y) (resp. P ◦
w(x, y)) by applying some contraction operations. Then, let Pv(x, y)

be a merging of Pu(x, y) with Pw(x, y) under the function F such that P ◦
v (x, y) respects2

Pv(x, y). Roughly, this means that the vertices and edges of Pv(x, y), which is a merging
of Pu(x, y) and Pw(x, y) under the function F , have “equivalent” vertices in P ◦

v (x, y),
which is a merging of P ◦

u (x, y) and P ◦
w(x, y) under the same function F .

Since procedure JoinNode tries all possible ways of merging Pu(x, y) and Pw(x, y) for
all {x, y} ∈ E(Struct(Cu)), we have that there is an execution of procedure JoinNode
where for all {x, y} ∈ E(Struct(Cu)) the path Pv(x, y) obtained through the merging of
Pu(x, y) and Pw(x, y) under F is respected by P ◦

v (x, y).
Let Tv be the tree obtained by such execution of procedure JoinNode.

To show that Cv, obtained through this particular execution of procedure JoinNode,
is equal to Cs = Char((T ◦

v , r◦
v, σ◦

v), Xv), we start by showing that Tv is isomorph to Ts.

Claim 11. Tv and Ts are isomorphic and the labels of correspondent vertices of Tv and
Ts are the same. That is, ℓv(tv) = ℓs(ts) for all internal vertex or edge tv of Tv that has
a corresponding vertex or edge ts in Ts.

In the following consider that the labels of a tree are given by either the associated
function ℓ or by Φ if the tree has no associated function ℓ. That is, the labels of Tu, Tw,
Ts and Tv are given by ℓu, ℓw, ℓs and ℓv, while the labels of T ◦

v , T ′
v, T ◦

u and T ◦
w are given

by the function Φ.
Note that from the fact that Tv is obtained by merging paths Pu(x, y) and Pw(x, y)

for every edge {x, y} ∈ E(Struct(Cu)) we have that the tree obtained by contracting all
vertices of degree two in Tv is isomorph to the tree in Struct(Cu).

As explained above, for any edge {x, y} ∈ E(Struct(Cu)) to obtain Tv we first merge
the paths Pu(x, y) and Pw(x, y) obtaining Pv(x, y) and then we apply some contraction
operations on Pv(x, y) (step “contracting the paths”) obtaining P c

v (x, y). More precisely,
let (x1, . . . , xz) be the sequence of vertices in the path from x to y in the tree obtained
immediately after step “merging the paths” of procedure JoinNode that are in Kv. That
is, Pv(x, y) can be written as Pv(x, x1) ⊙ Pv(x, x2) ⊙ · · · ⊙ Pv(xz, y) where xi ∈ Kv, for
1 ≤ i ≤ z. Then, Pv(x, y) is replaced by Contr(Pv(x, x1)) ⊙ Contr(Pv(x1, x2)) ⊙ · · · ⊙
Contr(Pv(xz, y)). Let P c

v (x, y) = Contr(Pv(x, x1))⊙Contr(Pv(x, x2))⊙· · ·⊙Contr(Pv(xz,
y)). Hence, for each {x, y} ∈ E(Struct(Cu)) we have that P c

v (x, y) is the path in Tv

between x and y.
Note that, Ks = Ku ∪Kw. Since, the only case where x ∈ Ks and x /∈ Ku is when x

is not a leaf of T ′
v, nor the parent of a leaf of T ′

v, nor a branching node of cp(T ◦
u ), but it

2For the definition of “respect” see “Merging of labelled Paths” in Section 4.4.



Algorithm Using Characteristic 91

is a branching node of cp(T ◦
v ). Therefore, x is is a branching node of cp(T ◦

w) and, hence,
x ∈ Kw.

On the other hand, the path Ps(x, y) between x and y in Cs is obtained from P ◦
v (x, y)

by applying some contraction operations. That is, let (xs
1, . . . , xs

z) be the sequence of
vertices in the path from x to y in T ◦

v that are in Ks, then Ps(x, y) can be written as
Contr(P ◦

v (x, xs
1))⊙ Contr(P ◦

v (xs
1, xs

2))⊙ · · · ⊙ Contr(P ◦
v (xs

z, y)).
Then, this proof essentially follows from Lemma 25 when applied to P ◦

v (x, y) and
Pv(x, y). That is, we consider P ◦

v (x, y) as M where P and Q are P ◦
u (x, y) and P ◦

w(x, y),
respectively. Pv(x, y) takes the role as M c where P c and Qc are Pu(x, y) and Pw(x, y) re-
spectively. Finally, we set Kp as the set Ku and Kq as the set Kw. Then, Lemma 25 guar-
antees that Contr(Pv(x, x1)) = Contr(P ◦

v (x, xs
1)), Contr(Pv(xz, y)) = Contr(P ◦

v (xs
z, y))

and, for all 1 ≤ i ≤ z − 1, Contr(Pv(xi, xi+1)) = Contr(P ◦
v (xs

i , xs
i+1)). Therefore, since

Ps(x, y) = Contr(P ◦
v (x, xs

1))⊙ Contr(P ◦
v (xs

1, xs
2))⊙ · · · ⊙ Contr(P ◦

v (xs
z, y)) and P c

v (x, y) =
Contr(Pv(x, x1))⊙ Contr(Pv(x, x2))⊙ · · · ⊙ Contr(Pv(xz, y)), we get the result. That is,
P c

v (x, y) = Ps(x, y).
Therefore Tv and Ts are isomorph and for all internal vertices or edges tv of Tv with

a correspondent vertex or edge ts of Ts we have that ℓv(tv) = ℓs(ts).

Since Tv and Ts are isomorph, for every vertex xs ∈ Ts, let xv be its correspondent
in Tv. To make the rest of this proof easier to read, we abuse the notation to say that
xs = xv. We now prove that rv = rs and that Kv = Ks.

Claim 12. rv = rs and Kv = Ks.

From step “identifying the structures” we have that rv = ru. We have that ru = r′
v

from step one of the Char procedure to obtain Cu. Then, by the fact that rs = r′
v from

step one of the Char procedure to obtain Cs, we have that rs = rv.
Let xs be a vertex of Ts that is not the root of Ts. Since Tv is isomorph to Ts, set xv

be the corresponding vertex of xs in Tv. To show that Ks = Kv, there are a few cases
to consider: (1) xs is a leaf of T ′

v, (2) xs is a branching node of T ′
v, (3) xs is the parent

of a leaf in T ′
v, (4) xs is a branching node of cp(T ◦

v ), (5) otherwise. That is, cases (1) to
(4) are all the cases when xs ∈ Ks, while, in case (5), xs /∈ Ks. We want to show that
xs ∈ Ks if and only if xv ∈ Kv.

Case (1): If xs is a leaf of T ′
v, then xs has degree one in T ′

v. Therefore, xs is a vertex
of Struct(Cu) and Struct(Cw). Then, during step “identifying the structures” xv is
obtained through the identification of xs ∈ V (Struct(Cu)) and xs ∈ V (Struct(Cw)).
Hence, during step “update of Kv” we have that xv is put into Kv. That is, xv ∈ Kv.

Case (2): If xs is a branching node of T ′
v, then xs has degree at least three in T ′

v. There-
fore, xs is a vertex of Struct(Cu) and Struct(Cw). Then, during step “identifying
the structures” xv is obtained through the identification of xs ∈ V (Struct(Cu)) and
xs ∈ V (Struct(Cw)). Hence, during step “update of Kv” we have that xv is put into
Kv. That is, xv ∈ Kv.

Case (3): If xs is the parent of a leaf in T ′
v and its not a branching node of T ′

v, then xs has
degree two in T ′

v. Since xs has degree two in T ′
v we have that xs /∈ V (Struct(Cu)).

Therefore, xv obtained during step “merging the path”. That is, xv is obtained
through the merging of two vertices xu ∈ Tu and xw ∈ Tw.

Let {x, y} ∈ E(Struct(Cu)) be two vertices such that xs is an internal vertex on
the path P ◦

v (x, y) from x to y in T ◦
v . Then, xv is obtained through the merging



92 Graph Width Measures

Pu(x, y) and Pw(x, y). Let Pv(x, y) be the resulting path. Recall that P ◦
v (x, y) can

be written as a merging of the paths P ◦
u (x, y) and P ◦

w(x, y). From the construction
of Cv we have that Pv(x, y) is respected by P ◦

v (x, y).

Then, xs ∈ V (T ◦
v ) is the result of matching the vertex xu = xs ∈ T ◦

u with the vertex
xw = xs ∈ T ◦

w. On the other hand, since Pv(x, y) is respected by P ◦
v (x, y), we have

that xv is obtained through the merging of xu ∈ Tu and xw ∈ Tw.

From the Char procedure, since xs is the parent of a leaf in T ′
v, we have that xu ∈ Ku

and xw ∈ Kw. Then, since xu ∈ Ku and xw ∈ Kw, step “update of Kv” ensures that
xv ∈ Kv.

Case (4): If xs is a branching node of cp(T ◦
v ) and xs is not the parent of a leaf in T ′

v

and its not a branching node of T ′
v, then xs has degree two in T ′

v and xs has a non
leaf child in T ′

v. Since xs is a branching node of cp(T ◦
v ) and has degree two in T ′

v,
xs has at least one non leaf child in V (T ◦

v ) \ V (T ′
v). Let x′

s be this child. Therefore,
from the fact that V (T ◦

v ) = V (T ◦
u )∪ V (T ◦

w) we have that x′
s is either in V (T ◦

u ) or in
V (T ◦

w). W.l.o.g. assume that x′
s ∈ V (T ◦

u ), hence x′
s is a branching node of cp(T ◦

u ).
Consequently, from the Char procedure to obtain Cv, x′

s ∈ Ku. Note that, from
step “update of Kv” if xv is obtained by merging (or matching) a vertex xu and xw,
then xv ∈ Kv if either xu ∈ Ku or xw ∈ Kw. Then, the rest of this proof is similar
to Case (3) and thus omitted.

Case (5): If xs /∈ Ks, then xs has degree two in T ′
v, xs /∈ Ku and xs /∈ Kw. Hence,

following the same reasoning in Case (3), we have that xv is obtained through the
merging (or matching) of xu /∈ Ku and xw /∈ Kw. Therefore, from step “update of
Kv” we have that xv /∈ Kv.

Therefore, xv ∈ Kv if and only if xs ∈ Ks.

Considering the previous claims, we only need to prove the following claim in order
to show that Cv = Cs.

Claim 13. dists = distv.
For all leaves xs ∈ V (Ts) we have that σ(xv) = σ(xs).
For all vertices xs ∈ V (cp(Ts)) we have that:

outs(xs) = outv(xv);

branchs(xs) = branchv(xv);

fathers(xs) = fatherv(xv).

From step “identifying the structures” we have that distv = distu. Note that dists is
the number of branching nodes of T ◦

v between r◦
v and r′

v. On the other hand, distu is
the number of branching nodes of T ◦

u between r◦
u and r′

v. Since r◦
u = r◦

v and the path
P ◦

v (r◦
v, r′

v), the path between r◦
v and r′

v in T ◦
v , is equal to the path P ◦

u (r◦
u, r′

v), the path
between r◦

u and r′
v in T ◦

u , we get that distu = dists. Therefore, distv = dists.

Let xs be a leaf of Ts and xv be its corresponding vertex in Tv. Since xs is a
leaf of Ts, it is also a leaf in T ′

v. Note that, from the definition of (T ◦
v , r◦

v, σ◦
v) and

(T ◦
u , r◦

u, σ◦
u), we have that σ◦

v(xs) = σ◦
u(xs). On the one hand, we have that, from

the fact that Cs = Char((T ◦
v , r◦

v, σ◦
v), Xv), σs(xs) = σ◦

v(xs). On the other hand, from
the Cu = Char((T ◦

u , r◦
u, σ◦

u), Xu = Xv), we have that σu(xs) = σ◦
u(xs). Therefore,

σu(xs) = σs(xs). Note that, since xs is a leaf in T ′
v, xs ∈ V (Struct(Cu) = V (Struct(Cw))).



Algorithm Using Characteristic 93

Therefore, xv is obtained through the identification of xs = xu ∈ V (Struct(Cu) and
xs = xw ∈ V (Struct(Cw)). Then, during step “update of labels” of procedure JoinN-
ode, σv(xv) is set to be σu(xu = xs). Hence, we get the result. That is, for every leaf
xs ∈ V (Ts) we have that σ(xv) = σ(xs).

Let xs be a vertex of cp(Ts). That is, xs is an internal vertex of Ts. Let xv be its
correspondent vertex in Tv with xu and xw being the vertices of Tu and Tw used to create
xv. In other words, xv is obtained from the merging of xu and xw or from the identification
of xu with xw.

In Cs, outs(xs) is the maximum number of branching nodes in a path of T ◦
v between

xs and a leaf in V (T ◦
v ) \ V (T ′

v) with no internal vertices belonging to V (T ′
v). Then, let

P (xs, l) be any path of T ◦
v between xs and a leaf in V (T ◦

v )\V (T ′
v) such that the number of

branching nodes in this path is maximum and with no internal vertex of P (xs, l) belonging
to T ′

v. We have that V (P (xs, l)) \ {xs} is entirely contained in V (T ◦
v ) \ V (T ′

v).
Since T ◦

u and T ◦
w are subtrees of T ◦

v such that V (T ◦
u ) ∪ V (T ◦

w) = V (T ◦
v ), we have that

either l ∈ V (T ◦
u ) or l ∈ V (T ◦

v ), but not both since l /∈ V (T ′
v) = V (T ◦

u )∩V (T ◦
w). Therefore,

V (P (xs, l)) \ {xs} ⊆ V (T ◦
u ) \ V (T ′

v) or V (P (xs, l)) \ {xs} ⊆ V (T ◦
w) \ V (T ′

v). That is, if
l ∈ V (T ◦

u ), then P (xs, l) is a path of T ◦
u that starts in xs does not pass through any vertex

in T ′
v and ends in l, otherwise P (xs, l) is a path of T ◦

w that starts in xs does not pass
through any vertex in T ′

v and ends in l ∈ V (T ◦
w).

If l ∈ V (T ◦
u ), from the fact that Cu = Char((T ◦

u , r◦
u, σ◦

u), Xu = Xv), then outu(xu) =
outs(xs). If l ∈ V (T ◦

w), from the fact that Cw = Char((T ◦
w, r◦

w, σ◦
w), Xw = Xv), then

outw(xw) = outs(xs).
Moreover, for all leaves l ∈ V (T ◦

u ) \ V (T ′
v), the paths P (xs, l) in T ◦

u such that P (xs, l)
has no internal vertex in T ′

v are all paths in T ◦
v that do not pass through any vertex in

T ′
v. Hence, outu(xu) ≤ outs(xs).

Similarly, for all leaves l ∈ V (T ◦
u ) \ V (T ′

v), the paths P (xs, l) in T ◦
u such that P (xs, l)

has no internal vertex in T ′
v are all paths in T ◦

v that do not pass through any vertex in
T ′

v. Hence, outw(xw) ≤ outs(xs).
Therefore, from step “update of labels”, we have that outv(xv) = max{outu(xu),

outw(xw)} = outs(xs).

If branchs(xs) = 1, then xs is a branching node of cp(T ◦
v ). Therefore, either (1) xs is

a branching node in cp(T ◦
u ), (2) xs is a branching node in cp(T ◦

w), or (3) xs has exactly
one non leaf child in T ◦

u and exactly one non leaf child in T ◦
w.

Case 1: If xs is a branching node in cp(T ◦
u ), then xs ∈ Ks ∩ Ku. Hence, xs is not

contracted during Char((T ◦
u , r◦

u, σ◦
u), Xu) in order to obtain Tu, that is xu = xs ∈

V (Tu).

To obtain Tv we merge the paths in Tu and Tw in such a way that each path merged
is respected by the corresponding path in T ′

v. Hence, xv is obtained through the
merging of xu = xs and xw. Since, from Char((T ◦

u , r◦
u, σ◦

u), Xu), branchu(xu) = 1
and branchv(xv) = max{branchu(xu), branchw(xw)}. Since branchw(xw) ≤ 1, we
have that branchv(xv) = branchs(xs).

Case 2: Similar to case (1), by exchanging the roles of xu and xw, and thus omitted.

Case 3: If xs has exactly one non leaf child in T ◦
u and exactly one non leaf child in

T ◦
w. Therefore, by the Char procedure, we have that fatheru(xs = xu) = 1 and

fatherw(xs = xw) = 1. Then, we have that fatheru(xu) = 1 and fatherw(xw) =



94 Graph Width Measures

1. Hence, during step “update of labels”, branchv(xv) receives the value 1, since
branchu(xu) = branchw(xw) = 0 and fatheru(xu) = fatherw(xw) = 1.

If branchs(xs) = 0, then xs is not a branching node of cp(T ◦
v ). Hence, xs is neither

a branching node of cp(T ◦
u ) nor a branching node of cp(T ◦

w). Moreover, xs has no non
leaf children in T ◦

u and no non leaf children in T ◦
w. Therefore, branchu(xs = xu) =

branchw(xs = xw) = 0 and fatheru(xs = xu) = fatherw(xs = xw) = 0. Then, during step
“update of labels”, branchv(xv) = max{branchu(xu), branchw(xw)} = 0.

Hence, we get the result. That is, for all xs ∈ V (cp(Ts)), we have that branchv(xv) =
branchs(xs).

Now it remains to show that for all xs ∈ V (cp(Ts)) we have that fatherv(xv) =
fathers(xs).

This proof is similar to the proof that if branchs(xs) = branchv(xv) = 0, since
fathers(xs) = 0 implies that xs has no non leaf children in V (T ◦

v ) \ V (T ′
v). Hence, xs

has no non leaf children in V (T ◦
u ) \ V (T ′

v) nor in V (T ◦
w) \ V (T ′

v).
If fathers(xs) = 0, then xs is not a branching node of cp(T ◦

v ). Hence, xs is neither a
branching node of cp(T ◦

u ) nor a branching node of cp(T ◦
w). Moreover, xs has no non leaf

children in T ◦
u and no non leaf children in T ◦

w. Therefore, fatheru(xu) = fatherw(xw) = 0.
Then, during step “update of labels”, fatherv(xv) = max{fatheru(xu), fatherw(xw)} = 0.

If fathers(xs) = 1, then xs has either a non leaf child in V (T ◦
u ) \ V (T ′

v) or a non leaf
child in V (T ◦

w) \ V (T ′
v). Hence, fatheru(xu) = 1 or fatherw(xw) = 1. Then, during step

“update of labels”, fatherv(xv) = max{fatheru(xu), fatherw(xw)} = 1.
Hence, we get the result. That is, for all xs ∈ V (cp(Ts)), we have that fatherv(xv) =

fathers(xs).

This concludes the proof that Cv obtained through this execution of procedure Join-
Node on Cu ∈ FSCk,q(u) and Cw ∈ FSCk,q(w) is such that Cv = Cs = Char((T ◦

v , r◦
v, σ◦

v),
Xv).

It remains to show that Cv is put in FSCk,q(v) by procedure JoinNode. By Lemma 27,
Cv is a (k, q)-characteristic of Av restricted to Xv. Hence, brheight(rv) + distv ≤ q and
for all internal vertex or edge xv of Tv we have that ℓv(x) ≤ k. Consequently, during step
“update of FSCk,q(v)” we have that Cv ∈ FSCk,q(v). Therefore, FSCk,q(v) is a full set of
(k, q)-characteristics of Av restricted to Xv.

Theorem 38. Procedure JoinNode computes a full set of (k, q)-characteristics of Av

restricted to Xv in time that does not depend on |A|. That is the complexity of procedure
JoinNode is bounded by a function

fj(k, q, k′) = O

(

(60kqk′)45kqk′ · 2O

(√
kqk′·log(kqk′)

)

· (kqk′)kqk′

)

, if q <∞,

or by a function

f ′
j(k, k′) = O

(

(15kk′)45kk′ · 2O

(√
kk′·log(kk′)

)

· (kk′)kk′

)

, if q =∞.

Proof. From Theorem 37, procedure JoinNode computes a full set of (k, q)-characteristics
of Av restricted to Xv. It remains to prove that this can be done time that does not depend
on |A|.

Assume that q < ∞, the case where q = ∞ is similar and thus omitted. From the
fact that Φ is compatible with (D,X ), HΦ can be computed in constant time.



Algorithm Using Characteristic 95

For each pair of elements Cu = ((Tu, ru, σu), ℓu, Ku, distu, outu, branchu, fatheru) ∈
FSCk,q(u) and Cw = ((Tw, rw, σw), ℓw, Kw, distw, outw, branchw, fatherw) ∈ FSCk,q(w),

discovering if their structures are isomorph can be done in 2O(
√

|Tu| log |Tu|) [BL83].
Then, for each pair of characteristics such that their structures are isomorph, ru is

the vertex correspondent to rw and with distu = 0 we apply steps 1 to 6 of the JoinNode
procedure.

Step 1 has complexity bounded by O(|Tu|). Since the merging of two paths P and
Q has size limited to O(|P ||Q|) by definition of merging, one execution of Step 2 takes
at most O(|Tu||Tw|) time. Steps 3 and 4, for each execution of Step 2, takes O(|Tu||Tw|)
time.

Since contracting a path P can be done in O(|P |3), by taking all possible pairs of
vertices and edges verifying if a contraction operation can be done between them, Step
5 can be executed in O((|Tu||Tw|)3), for each execution of Step 2. Lastly, Step 6 can be
executed in O(|Tu||Tw|), for each execution of Step 2.

For any pair of paths P and Q merged during step 2 (merging the paths), let p =
max |P |, |Q|. Hence, there are at most O(pp) different ways of merging P and Q. That
is, for each edge of P there are at most |Q| edges in Q that is a possible match for P .
Therefore, we can upper bound the amount of different possible executions of Step 2 by
O(max{|Tu||Tu|, |Tw||Tw|}). Note that, since max{|Tu|, |Tw|} ≤ f ′(k, q, k′), we have that
O(max{|Tu||Tu|, |Tw||Tw|}) ≤ O(f ′(k, q, k′)f ′(k,q,k′)).

Since the size and the number of elements in FSCk,q(u) is bounded by f ′(k, q, k′) =
O(kqk′) and f(k, q, k′) = O((60kqk′)45kqk′

) respectively from Lemma 28, we get the result.
That is, complexity of procedure JoinNode is bounded by

fj(k, q, k′) = O

(

f (k, q, k′) · 2O

(√
f ′(k,q,k′)·log f ′(k,q,k′)

)

· f ′ (k, q, k′)f ′(k,q,k′)

)

,

fj(k, q, k′) = O

(

(60kqk′)45kqk′ · 2O

(√
kqk′·log(kqk′)

)

· (kqk′)kqk′

)

.

With a similar proof for the case that q =∞, we have:

f ′
j(k, k′) = O

(

f (k, k′) · 2O

(√
f ′(k,k′)·log f ′(k,k′)

)

· f ′ (k, k′)f ′(k,k′)

)

.

From Lemma 28, f ′(k, k′) = O(kk′) and f(k, k′) = O((15kk′)45kk′

), then

f ′
j(k, k′) = O

(

(15kk′)45kk′ · 2O

(√
kk′·log(kk′)

)

· (kk′)kk′

)

.

Remarks and Structural Properties

Having shown the algorithm we can, now, provide the proof of Claim 1 which is: “For any
partition function f compatible with a nice decomposition of some set A, the partition
function maxf is also compatible”.

Proof. Let (D,X ) be a nice decomposition of A with width not bigger than k′. Since f
is compatible with (D,X ) we have that there are functions Ff and Hf such that for any
partition P of A:



96 Graph Width Measures

fAv
(P) = Ff (fAu

(P ∩ Au),P ∩Xv, Av \ Au), and

fAv
(P) = Hf (fAu

(P ∩ Au), fAw
(P ∩ Aw),P ∩Xv).

To show that maxf is compatible with (D,X ) we have to show that there are function
Fmaxf and Hmaxf that play the same role as Ff and Hf .

Clearly, if A = {A1, A2} is a bipartition of A then maxf (A) = f(A), since {f({A1,
A2}) = f({A2, A1}). Hence, for any bipartition P of A, the function Fmaxf takes the
same value as Ff and the function Hmaxf takes the same value as Hf .

To show how to compute Fmaxf , during the processing of an introduce node v ∈ D with
child u with Av \Au = {a}, consider the step “update of labels of vertex(s) and edge(s)”
of procedure IntroduceNode when applied to a characteristic Cu = ((Tu, ru, σu), ℓu, Ku,
distu, outu, branchu, fatheru) ∈ FSCk,q(u) by subdividing an edge f = {vtop, vbottom}.

Let (T ◦
u , r◦

u, σ◦
u) be a partitioning tree of Au such that Cu = Char((Tu, ru, σu), Xu).

Let f ◦
u be the representative of fu in T ◦

u . Then, (T ◦
v , r◦

v, σ◦
v) is the partitioning tree for Av

obtained from (T ◦
u , r◦

u, σ◦
u) by subdividing the edge f ◦

u = {v◦
top, v◦

bottom} one time, creating
a vertex vatt , and adding vleaf as neighbour of vatt , make σ◦

v(vleaf ) = a and r◦
v = r◦

u.
For each edge e of Tv let Te (T ◦

e ) be the partition of Xv (Av) that it defines. Similarly,
for each vertex t of Tv let Tt (T ◦

t ) be the partition of Xv (Av) that it defines.
Since an edge of Tv defines a bipartition of Av, we can update the labels of edges in

Tv using Ff , i.e. we apply the instruction “ℓv(e)← Ff (ℓu(e), Te, a)” to edges of Tv. After
this instruction, ℓv(e) = Ff (ℓu(e), Te, a) = Fmaxf (ℓu(e), Te, a) = maxf (T ◦

e ) for all edges of
Tv.

For each internal vertex t of Tv, let Et be the set of edges incident to t in Tv and let E◦
t

be the set of edges incident to t in T ◦
v . Assume, by induction, that ℓu(t) = maxf (T ◦

t ∩Au).
From the fact that T ◦

v is a partitioning tree of Av, we have that T ◦
t = {A1, A2, . . . ,

A|E◦

t |} and, from the definition of maxf , we have maxf (T ◦
t ) = max|E◦

t |
i=1 f(Ai, Av \ Ai) =

maxe∈E◦

t
ℓv(e). Therefore, Fmaxf (maxf Au

(t), Tt, a) = Fmaxf (ℓu(t), Tt, a) and Fmaxf (ℓu(t), Tt,
a) = max{ℓu(t), maxe∈Et

ℓv(e)}. Since the degree of t in Tv is bounded by k′, Fmaxf can
be computed in constant time.

To show how to compute Hmaxf , consider the step “merging the paths” of procedure
JoinNode when applied to characteristics Cu = ((Tu, ru, σu), ℓu, Ku, distu, outu, branchu,
fatheru) ∈ FSCk,q(u) and Cw = ((Tw, rw, σw), ℓw, Kw, distw, outw, branchw, fatherw) ∈
FSCk,q(w) during the computation of a join node v ∈ D with children u and w. Let
(T ◦

v , r◦
v, σ◦

v) be the partitioning tree for Av obtained from the “merging” of (T ◦
u , r◦

u, σ◦
u),

a partitioning tree for Au with Cu = Char((T ◦
u , r◦

u, σ◦
u), Xu), and (T ◦

w, r◦
w, σ◦

w) with Cw =
Char((T ◦

w, r◦
w, σ◦

w), Xw), a partitioning tree for Aw.
For each edge e of Tv let Te (T ◦

e ) be the partition of Xv (Av) that it defines. Similarly,
for each vertex t of Tv let Tt (T ◦

t ) be the partition of Xv (Av) that it defines.
Assume by induction that for any edge e of Tu (Tw) we have ℓu(e) = maxf (T ◦

e ∩ Au)
(ℓw(e) = maxf (T ◦

e ∩Aw)) and that for any vertex t of Tu (Tw) we have ℓu(t) = maxf (T ◦
t ∩

Au) (ℓw(t) = maxf (T ◦
t ∩ Aw)).

Let Pu(x, y) be a path of Cu that is merged with a path Pw(x, y) of Cw obtaining
Pv(x, y). Let P ′

u(x, y) and P ′
w(x, y) be the extensions used in the merging. We set ℓv(e) =

Hf (ℓu(e), ℓv(e), Te) to any edge of Pv(x, y). From the fact that e defines a bipartition of
Av, we have ℓv(e) = maxf (T ◦

e ).



Algorithm Using Characteristic 97

For each internal vertex t of Pv(x, y), let Etu
(Etw

) be the set of edges incident to t in
Tu (Tw) and let E◦

tu
(E◦

tw
) be the set of edges incident to t in T ◦

u (T ◦
w).

Then, for each vertex t in Pv(x, y) we set ℓv(t) = Hmaxf (ℓu(t), ℓw(t), Tt) = max{ℓu(t),
ℓw(t), maxe∈Et

ℓv(e)}. From the induction hypothesis, max{ℓu(t), ℓw(t), maxe∈Et
ℓv(e)} =

max{maxe∈E◦

tu
maxf (Te ∩ Au), maxe∈E◦

tw
maxf (Te ∩ Aw), maxe∈Et

ℓv(e)} = maxf (T ◦
t ).

Since the degree of t in Tv is bounded by k′, Hmaxf can be computed in constant
time.

Lastly, we need to show how to take into account the “structural” properties of differ-
ent width. Hence, it is necessary to guarantee that characteristics belonging to FSCk,q(v)
of a node v in the nice decomposition correspond to partitioning trees that satisfy these
structural properties. For example, partitioning trees for the branch width are such that
every internal vertex has degree three, therefore for each node v of the nice decomposi-
tion FSCk,q(v) must contain only characteristics of partitioning trees for Av which have
every internal vertex with degree three. We show how to modify the algorithm to take
into account the structural properties for each width mentioned in Section 4.1. The pro-
cedure StartingNode is modified to compute only the characteristics that respects the
“structural” properties of the width being computed. We show which changes to Intro-
duceNode procedure and JoinNode procedure are necessary in order to achieve this. Let
G = (V, E) be a graph and (D,X ) a nice decomposition of A = E given to the algorithm
as input, in the case of carving width and cut width, (D,X ) is a nice decomposition of
A = V .

Tree width and Path width: no changes are made to the procedures.

Special tree width: in the IntroduceNode at after step “update of FSCk,q(v)”, let a =
(x, y) be the element of Av\Au mapped by vleaf and let X (Y ) be the set of all leaves
of Tv such that the edges of Av they map have x (y) as one of its endpoints. Then,
if the minimum spanning tree of Tv containing all vertices in X is not a caterpillar
then the algorithm does not put Cv into FSCk,q(v) or if the minimum spanning tree
of Tv containing all vertices in Y is not a caterpillar then the algorithm does not
put Cv into FSCk,q(v). Procedure JoinNode remains unchanged.

Branch width, Linear width, Carving width and Cut width: we do not allow the
Case 1 in the step “update of Tu into Tv” in the IntroduceNode procedure. That is,
we do not allow a leaf mapping a to be added as neighbour of an internal vertex
of Tu. In the JoinNode procedure during the step “merging the paths”, we do not
allow internal vertices of Pv, the result of merging Pu with Pw, to have a pair of
vertices as its originators. In other words, any vertex of Pu must be “merged” with
an edge of Pw and any vertex of Pw must be merged with an edge of Pu.

Time Complexity

The complexity of the algorithm to decide if a set A has q-branched Φ-width not bigger
than k is given by the amount of time needed to compute a full set of characteristics for
each node in the nice decomposition times the number of nodes in the nice decomposition.
Let (D,X ) be the nice decomposition of A given as input to the algorithm. From the
definition of a nice decomposition, we have that |V (D)| = O(|A|). Let k′ be equal to
maxX∈X |X|. Hence, from Theorems 34, 36 and 38 the algorithm has time complexity
bounded by

max{fi(k, q, k′), ff (k, q, k′), fj(k, q, k′)} ·O(|A|).



98 Graph Width Measures

Since the functions fi(k, q, k′), ff (k, q, k′) and fj(k, q, k′) do not depend on |A|, if k, q
and k′ are given constants the algorithm has complexity bounded by O(|A|). Therefore,
it is a linear time algorithm when k, q and k′ are fixed and it is a linear FPT-algorithm
where the parameters are k, q and k′.

4.6 Conclusion

In this chapter, we use a generalization of width parameters of graphs, the partition
functions and partitioning trees, to design a unified FPT algorithm to decide if the q-
branched tree width, special tree width, branch width, linear width, cut width and carving
width of graphs are not bigger than an integer k.

Unfortunately, the algorithm presented only solves the decision problem. That is, it
can be used to decide if the q-branched tree width, special tree width, branch width,
linear width and cut width of a graph is not bigger than an integer k, but it does not
compute the respective decomposition.

In [BK96], Bodlaender and Kloks propose an algorithm that decides if the tree width of
a graph is at most a given integer k and, if it is the case, it constructs a tree decomposition
with this width. This algorithm, which in part inspired our algorithm, also makes use
of the notion of “characteristic” of a tree decomposition and proceeds to compute these
“characteristics” by a dynamic programming approach from a given tree decomposition of
the graph. They also propose a second algorithm that constructs the tree decomposition
from “characteristics” computed through the first algorithm.

In a current work, our algorithm was made constructive by following the same tech-
niques used in their second algorithm, the one which constructs the tree decomposition
for the input graph.

The algorithm we proposed in this chapter can compute several graph width measures,
while not being restricted to only the aforementioned width measures. For example, since
the rank width of graphs can be defined in terms of partition functions and partitioning
trees [AMNT09], we wonder whether using this formalization, is it possible to design a
FPT-algorithm computing the rank width.

We finish this part of the thesis with one question: are there other parameters of
graphs that can be defined in terms of partition functions? We are specially interested in
answering this question for directed graph decompositions, such as the Process Decompo-
sition defined in Chapter 3 or the directed decompositions mentioned in Chapter 2 such
as the directed tree decomposition, the Kelly decomposition or DAG decomposition. An
answer to this question could be the first step into generalizing the results in this chapter
to directed graph decompositions.



Part II

Turn-By-Turn Pursuit-Evasion
Games

99





Chapter 5

Turn-by-Turn Pursuit-Evasion

Games

In this part of the thesis, we focus on turn-by-turn pursuit-evasion games. One major
difference between these games and the ones from the first part of the thesis is that the
two players play alternately. That is, first one player plays while the other waits, then
the other player plays while the first one waits.

In this chapter, we briefly survey some famous turn-by-turn pursuit-evasion games
such as the Cops and Robbers, the Eternal Dominating Set, the Eternal Vertex Cover
and the Angel Problem.

Along with the Surveillance game defined in the next chapter, these games can all be
described with the framework proposed in Chapter 7. As a consequence, the results of
Chapter 7 are valid for any of them.

5.1 Cops and Robbers

We start by describing the Cops and Robbers game due to its similarity with the Graph
Searching games of the first part of this thesis.

The Cops and Robbers game can be roughly described as the Node Search game where
both players play alternately, and the robber can move at most one single edge during
its turn instead any path free of cops. As with the Graph Searching games, the Cops and
Robbers game has several variations depending on the behaviours of the cops and of the
robber. In this section, we explore some variations of the Cops and Robbers game. We
start by defining the classical version of this game which was proposed by Nowakowski
and Winkler [NW83] and, independently, by Quilliot [Qui83].

The classical version of the Cops and Robbers game has two players, the cop and the
robber, playing on a graph. This is a turn-by-turn game with the first turn belonging to
the cop. The game starts with the cop choosing a vertex of the graph to occupy followed
by the robber who also chooses a vertex of the graph to occupy. Then, turn-by-turn,
each player can move along an edge of the graph. The cop wins if, at any point during
the game, it is able to occupy the same vertex as the robber. The robber wins if it can
evade the cop indefinitely.

Nowakowski, Winkler and Quilliot were interested in a characterization of cop-win
graphs, that is, graphs that the cop can win regardless of the moves of the robber. It is

101



102 Turn-by-Turn Pursuit-Evasion Games

easy to see that trees are cop-win graphs. Let T be any tree where the game is played. At
each step, let v be the vertex occupied by the cop. Then, the cop moves to the neighbour
of v that belongs to the same component of T [V (T ) \ {v}] which has a vertex occupied
by the robber. On the other hand, the cop cannot win against the robber in cycles of
size at least four, since the robber can always move in the opposite direction of the cop,
hence keeping its distance to the cop.

In the following, we reproduce the characterization of cop-win graphs given by Nowa-
kowski and Winkler. Given a graph G = (V, E), a vertex v ∈ V is irreducible if there is
v ∈ V , v 6= u ∈ V , such that N [v] ⊆ N [u]. In other words, the neighbourhood of u covers
the neighbourhood of v. A graph G is said to be dismantable if there is an ordering of
the vertices of G, (v1, . . . , vn), such that vi is irreducible in G[{vi, . . . , vn}]. In Figure 5.1,
we show an example of dismantable graph.

1

2

3

4

5

6

Figure 5.1: Example of a dismantable graph, with vertices numbered according to the ordering.

Theorem 39 ([NW83]). A finite graph is cop-win if and only if it is dismantable.

Nowakowski and Winkler also considered the problem of characterizing infinite graphs
that are cop-win, giving a full characterization of such graphs by extending the notion of
a dismantable graph to the infinite case. It seems unintuitive that a graph can be infinite
connected and still be cop-win. However, it is easy to see that every infinite graphs with
an universal vertex is cop-win. By occupying an universal vertex, the cop can ensure
that it can capture the robber in its next turn. Moreover, there are also graphs that are
cop-win, infinite and have no universal vertex. One example of such a graph can be seen
in Figure 5.2. This graph is obtained by taking a path of size i, for each i ∈ N, and joining
one of its extremities with a central vertex v. A simple strategy for the cop is to start
by placing itself at vertex v and then, at each step, moving towards the end of the path
where the robber lies. Since each path has a finite size, the cop can capture the robber
in a finite number of turns. In [AF84] the first polynomial time algorithm to decide if
a graph is cop-win was described. This algorithm, essentially, computes an ordering of
G that proves that G is dismantable. The complexity of this algorithm comes from a
theorem in [AF84] that states that a graph G is cop-win if, and only if, by sequentially
deleting (in any order) irreducible vertices, the result is a single vertex.

A Cops and Robbers game, where there is more than one cop trying to capture the
robber, was first proposed by Aigner and Frome [AF84]. The minimum number of cops
necessary to ensure the capture of the robber in a graph G is the cop number, denoted by
cn(G). Clearly, for any graph G, cn(G) is at most the minimum domination number of
G, since by placing one cop at each vertex of a dominating set the cops can capture the
robber in their next move. On the other hand, if a graph G has minimum degree k and
its girth is at least five, then cn(G) ≥ k [AF84]. One natural question about this game
is how big can be the cop number of a graph compared to the number of its vertices.
Meyniel, in a personal communication with Frankl [Fra87] in 1987, stated the following
conjecture:



Cops and Robbers 103

...

Figure 5.2: Example of cop-win graph that has no universal vertex.

Conjecture 1. For every graph G of order n, cn(G) = O(
√

n) and, for every n ∈ N
∗,

there is a graph G of order n such that cn(G) = Ω(
√

n).

This conjecture, arguably the most important open problem in the topic of Cops and
Robbers. For a long time the best known bound for the cop number of a graph with n
vertices, given by Frankl [Fra87], was O(n log log n

log n
). This bound was further improved by

Chinifooroshan [Chi08] to O( n
log n

). Currently, the best upper bound for the cop number
of a general graph G of order n was independently proved by Lu and Peng [LP12], Frieze
et al.[FKL12] and Scott and Sudakov [SS11].

Theorem 40 ([LP12, FKL12, SS11]). For a any graph G with n vertices:

cn(G) = O

(

n

2(1−o(1))
√

log2 n

)

Despite the improvement, this newer bound and Meyniel’s conjecture are still far from
each other. Some further evidence pointing towards the truthfulness of this conjecture is
due to Bollobás et al. [BKL13]. They prove that for sparse random graphs the cop-number
has order of magnitude n

1
2

+o(1) with high probability.
Another important question is, given a graph G of order n, how small can be cn(G)

compared to n. In other words, is it possible that, for every graph G with n vertices,
we have cn(G) = o(

√
n)? The answer to this question is no. There are graphs G of

order n with minimum degree k and girth at least 6 such that k >
√

2n/2 and cn(G) ≥
k >
√

2n/2. Then, from the fact that cn(G) ≥ k [AF84], we have that cn(G) = Ω(
√

n).
For more information about bounds and Meyniel’s conjecture for the Cops and Robbers
game, see [BB12].

Since a full characterization for graphs with cop number k > 1 is unknown, it is
interesting to study the complexity of computing the cop number of a graph. Let cns(G)
be the minimum number of cops that are necessary to ensure the capture of a robber that
can move through at most s edges during its turn, but it is unable to pass through a vertex
that is occupied by a cop. It was shown by Fomin et al. [FGK+10] that, for all s ≥ 1, it
is NP-hard to compute cns(G) for a general graph G. Moreover, for a fixed value k and
a general graph G of order n, deciding if cn(G) ≤ k, is W[2]-hard [FGK+10]. It means
that there are little chances of finding an algorithm with time complexity O(f(k)nO(1)),
where f(k) is a function depending only on the parameter k.

Another complexity result due to Goldstein and Reingold [GR95] is that, assuming the
initial positioning of the cops and the robber are given, that is, their positions are already



104 Turn-by-Turn Pursuit-Evasion Games

defined before the game starts, then computing cn(G) is EXPTIME-complete. A more
recent result due to Mamino [Mam13] shows that deciding if k cops can capture a robber
in a graph G is PSPACE-hard, even when both players can choose their starting positions.
That is, deciding if cn(G) ≤ k, for a general graph G and integer k, is PSPACE-complete.

Due to the hardness of computing cn(G) for a general graph G and the difficulty of
proving (or disproving) Meyniel’s conjecture, a natural step is to study the cop number
of graphs that share some property, that is, that belong to the same class. As mentioned
before, trees are examples of cop-win graphs and graphs with an induced cycle of size
at least four are not cop-win. In Table 5.1 we show some of the known results about
computing, or the value of, the cop number of some graph classes.

Table 5.1: Complexity of computing, or the value of, cn(G), when G is a graph of order
n belonging to the indicated class. In this table, cn≥s(G) denotes, for all s′ ≥ s, cns′(G)
and cn1,2(G) denotes both cn(G) and cn2(G). The line with random graphs denotes binomial
random graphs with probability p and the result essentially holds almost surely when pn > 1.

Graph Class Value/Difficulty Reference

Trees cn(G) = 1 [AF84]
Outerplanar cn(G) ≤ 2 [Cla02]
Planar cn(G) ≤ 3 [AF84]
Bounded Genus (g) cn(G) ≤ (3g/2) + 3 [Sch01]
Series Parallel cn(G) ≤ 2 [The08]
d-dimensional Grids cn(G) ≤ d [BPS10]
Geometric cn(G) ≤ 9 [BDFM12]

Random O(n
1
2

−o(1)) [BKL13]
Chordal polynomial time [Qui86]
Interval polynomial for cn≥1(G) [FGK+10]
Split NP-hard for cn≥2(G) [FGK+10]
Bounded Clique-width polynomial for cn1,2(G) [FGK+10]
k-Chordal (k ≥ 3) cn(G) ≤ k − 1 [KLNS12]

There are several variations of the Cops and Robbers games depending on the rules
of the game and rules of capture. As mentioned before, one variation of the game allows
the robber to move through more than one edge per turn.

In [HM06], a version of the game where cops must capture several robbers was studied.
If each robber can be captured as soon as a cop occupies its current vertex, then all
robbers can be captured with cn(G) cops. The cops simply need to capture each robber
sequentially, while ignoring the other robbers. Hence, in this version, robbers must be
captured simultaneously, that is, the cops only wins the game when all vertices that are
occupied by robbers are also occupied by cops. They reduced the problem of deciding if
k cops can capture l robbers in a directed graph D to the the problem of deciding if a
directed graph D∗, obtained from D, is cop-win. However D∗ might have an exponential
number of vertices compared to D.

In [CCNV11], it was introduced a version of the game where only one cop tries to
capture a robber on a graph with both moving at, possibly, different speeds. Let CW(s, s′)
be the set of graphs such that one cop moving at most s′ edges per turn can capture one
robber moving at most s edges per turn, regardless of the robbers moves. They show that
CW(2, 1) is exactly the class of dually chordal1 graphs. Moreover, for all s ≥ 3 and s′ ≥ 3,

1A graph G is dually chordal if, and only if, there is a spanning tree T of G, such that every maximal clique



Eternal Dominating Sets and Vertex Cover 105

they show that CW(s′, 1) = CW(s, 1). This essentially shows that if a cop can capture a
fast robber, then it can capture a faster robber. They also study a version of the game
where the robber is invisible to the cop, but it becomes visible to the cop periodically after
each k rounds. They tried to characterize cop-win graphs for this version of the Cops and
Robbers game for each value of k, by generalizing the dismantling order given in [NW83].
Unfortunately, this characterization is not tight. That is, every k-dismantable graph is
cop-win when the robber is visible every k rounds, but the contrary is not necessarily
true.

In [FGL12], Fomin et al. studied a version of the game where each cop has a fuel
constraint. The fuel is an integer determining the amount of edges a cop can move
through. The amount of fuel each cop has is the same at the beginning of the game.
When a cop runs out of fuel, it cannot move any more, but it can still capture the
robber, if the robber moves to the vertex it is occupying. They showed that deciding
if k cops can capture the robber in this version of the game is PSPACE-complete, if
the amount of fuel is at least two. The amount of fuel each cop has is just one of the
possible restrictions that can be attributed to the cops. Other possible restrictions are
the cost and the time of capture. The cost is the maximum amount of edges traversed
by all cops and the time is the maximum amount of rounds the game can last. Fomin
et al. studied the hardness of Cops and Robbers games, when cops are constrained to
capture the robber with a maximum cost or in a maximum amount of turns. Deciding
if k cops can capture a robber in a graph when constrained to a maximum fixed cost
s, is NP-complete [FGP12]. If the cost is part of the input, but is still bounded by a
polynomial on the size of the instance, this problem is PSPACE-complete [FGP12].

The first hardness result concerning the capture of a robber with constrained time
was due to Bonato et al. in [BGHK09]. They showed that it is NP-complete to decide if
k cops can capture a robber, when the maximum number of rounds is constrained to a
constant. If the time is part of the input, but is still restricted have a value bounded by
a polynomial on the size of the instance, this problem is PSPACE-complete [FGP12].

For more knowledge about Cops and Robbers games see the book “The Game of Cops
and Robbers on Graphs” from A. Bonato and R. Nowakowski [BN11].

5.2 Eternal Dominating Sets and Vertex Cover

In this section, we explore the Eternal Dominating Sets and Eternal Vertex Cover. In
these games, the pursuer wins by protecting vertices, in the case of Eternal Dominating
Sets, or edges, in the case of Eternal Vertex Cover, from an intrusion of the evader. The
evader, on the other hand, wants to enter the area protected by the pursuer while avoiding
its guards.

More precisely, in the pursuit-evasion game known as Eternal Domination, or Eternal
Security, we have two players, the army and the rioter, that play turn-by-turn on a
graph, G = (V, E), with the army playing in the first turn. The army starts by choosing
a dominating set, S1, of the graph and placing one guard at each vertex of this dominating
set. The rioter plays by choosing a single vertex, v1 /∈ S1, of the graph. Then, at each
subsequent round i > 1, the army must move one of the guards at a vertex ui in N [vi−1]
to vi−1 and the rioter chooses a new vertex vi. In other words, after the initial placement
of the guards, the rioter chooses a vertex v of G that is not occupied by a guard and the
army must put one of its guards stationed at a neighbour of v at the vertex v. For each

of G induces a subtree in T .



106 Turn-by-Turn Pursuit-Evasion Games

i > 1, let Si be the set of vertices occupied by guards after the move of the army during
round i, that is, Si = (Si−1 \ {ui}) ∪ {vi−1}. The rioter wins the game during round i, if
at the end of round i the set Si is not dominating, while the army wins if the rioter never
wins.

This game was first considered in [BCG+04]. Let σ1(G) be the minimum number of
guards that are necessary for the army to win regardless of the sequence chosen by the
rioter in the Eternal Domination game. Burger et al. show that σ1(G) is at least as big
as the independence number of G and that it is at most as big as the clique cover number
of G. There is a simple explanation for both of these results. Since the army must win
for any sequence chosen by the rioter, then the rioter simply keeps choosing vertices in
a maximum independent set of G. For the second one, let S = {C1, C2, . . . , Ck} be the
set of cliques that covers G. Then by placing one guard at a vertex of each Ci, we have
that this guard is able to “defend” against attacks on all vertices of this Ci. Burger et
al. also provide formulas for the value of σ1(G) when G is a path, a cycle, a complete
multipartite graph, hexagonal graph.

In [GHH05], Goddard et al. define a simple generalization of the game the m-Eternal
Domination. In the m-Eternal Domination, the army can move all its guards indepen-
dently along one edge of the graph with the restriction that at least one guard must be on
the vertex chosen by the rioter after the movement. Let σm(G) be the number of guards
necessary to guarantee the victory of the army in the m-Eternal Domination game. The
value of σm(G) when G is complete, bipartite complete, a path or a cycle can be found
in [GHH05]. They also show that the following holds for any graph G: σm(G) ≤ γ2(G)
and σm(G) ≤ β(G), where γ2(G) is the 2-domination number2 and β(G) is the indepen-
dence number of G. Note that in [GK08] it was shown that there are graphs such that
(

β(G)
2

)

≤ σ1(G), hence proving that the gap between σ1(G) and σm(G) can be high.

One question that remains open is the complexity of computing σ1(G) and σm(G) for
a general graph G.

Another game closely related to the m-Eternal Domination game is the m-Eternal
Vertex Cover game. This game plays similarly to the m-Eternal Domination. The dif-
ferences are as follows. The army, instead of choosing an initial dominating set, chooses
a vertex cover. The rioter, instead of choosing vertices of the graph, chooses an edge of
the graph, forcing the army to move one of its guards through the chosen edge during its
turn. The rioter wins the game, if at the end of some round the set of vertices occupied
by guards is not a covering of the edges. This game was first defined in [KM09]. Let
αm(G) be the minimum number of guards necessary for the army to win, regardless of
the sequence of edges chosen by the rioter, in the m-Eternal Vertex Cover game.

A result relating m-Eternal Vertex Cover and m-Eternal Domination can be found
in [KM11]. Klostermeyer and Mynhardt showed that αm(G) ≥ σm(G) for all G with
minimum degree at least two. In [FGG+10], the problem of computing αm(G) was shown
to be NP-hard.

Fomin et al. propose a 2-approximation algorithm with complexity O(
√

nm), where
n and m are the number of vertices and edges of the input graph respectively. It was also
proposed in [FGG+10] a FPT-algorithm to decide whether αm(G) ≤ k, with complexity
O(2O(k2) + nm) where the parameter is k.

2Given a graph G, a set S ⊆ V (G) is said to be k-dominating if, for all v ∈ V \ S, |N(v) ∩ S| ≥ k. The
k-domination number is the minimum cardinality of a k-dominating set in G.



The Angel Problem 107

5.3 The Angel Problem

The last pursuit-evasion game we approach, in this chapter, is the Angel problem.

In this game, the two players are the devil and the angel. Each player is associated
with an integer that defines its power . The game starts with the angel occupying a given
vertex of the graph. Then, they play turn-by-turn starting with the devil. The devil
plays by eating some vertices of the graph that are not occupied by the angel during
its turn. The maximum amount of vertices the devil can eat on its turn is given by its
power. During its turn, the angel plays by moving along edges of the graph and it must
move through at least one edge. Similarly, the maximum amount of edges the angel can
traverse on its turn is defined by its power. The angel wins the game if it is able to
perpetually avoid being on an eaten vertex at the end of its turn.

Conway proposed a first version of this problem in [Con98]. In this version, the game
is played on an infinite diagonal-grid3 with both the angel and the devil having power one
and. In other words, we can imagine the game being played on an infinite chessboard,
where the moves of the angel are the moves of the king and the devil can mark one square
of the chessboard at each turn. The objective is to know whether an angel with sufficient
power can survive indefinitely. One first result shows that an angel of power one loses
against any devil [Con98].

A first result of survivability for the angel was shown by Bollobás and Leader [BL06]
and, independently, by Kutz [Kut05]. They show that an angel with sufficient power wins
against a devil with power one in a tree-dimensional diagonal-grid. While Bollobás and
Leader proof is not optimal with regards to the power of the angel, their survivability
result also holds for a version of the Angel problem where the devil can eat more than
one vertex per turn, but it is restricted to eat vertices that are sufficiently far away from
the angel. On the other hand, Kutz’s proof shows that an angel with power 13 is always
able to survive against a devil with power one. Unfortunately, both results fail to hold
for the game when it is played in a two-dimensional diagonal-grid.

The question if an angel with sufficient power is able to survive against a devil
with power one in a diagonal grid remained open up to 2007, when, independently,
Máthé [Má07], Kloster [Klo07] and Bowditch [Bow07] showed that an angel of sufficient
power can survive. Máthé and Kloster show that an angel of power two can survive
against a devil of power one while Bowditch only shows that an angel of power four can
survive against a devil of power one. Máthé and Bowdith, prove that an angel of power
two can survive by showing that the angel can survive in a special variant of the game.
Unfortunately, it is not obvious how one can use the strategies for the angel in the vari-
ants of the game defined by Máthé and Bowdith to construct a winning strategy for the
angel in the original game. On the other hand, Kloster was able to construct a winning
strategy for the angel. This strategy is mainly based on the fact that, if the angel chooses
a direction and move as fast as possible in this direction, then a devil with power one
is not able to eat enough vertices in order to build a trap for the angel. Therefore, the
angel is able to evade such traps by updating its intended direction of movement.

More information about the Angel problem can be found in [Kut04].

3An infinite diagonal grid is obtained through an infinite grid by adding edges between all vertices of a same
face.



108 Turn-by-Turn Pursuit-Evasion Games

5.4 Objectives

In the next chapter, we aim at studying another turn-by-turn pursuit evasion game, the
Surveillance game. This game is played by two players: the observer and the surfer.
While the surfer plays like an angel with power one, the observer plays like the devil of
a power defined in the beginning of the game. The game, however, starts with the surfer
placed on an “eaten” vertex. The objective of the surfer is to leave the “eaten” area, while
the observer tries to avoid this happening. We aim at investigating the cost associated
with enforcing the observer to keep the area marked connected.

Turn-by-turn games presented in this chapter, along with the Surveillance game, all
share some similarities. Obviously these games are all played by two players in a turn-by-
turn manner. Moreover, both players play by moving tokens along the edges of the graph
or by adding/removing tokens on the vertices of the graph. In Chapter 7, we propose
a framework that can be used to describe all aforementioned turn-by-turn games. This
framework allows us to define fractional versions of these games. In other words, instead
of having a whole token on a vertex, for example a cop, we might have fractions of cops
spread through several vertices. The same being true for tokens that are controlled by
each of the players. That is, both players might move/add/remove, depending on the
game, fractions of tokens. We aim at investigating a method to decide, for any game
that can be described with this framework, if the player playing the role of pursuer has
a winning strategy. Then, we try to answer some natural questions that arise with this
framework such as what is the relationship between a fractional version of a turn-by-turn
game and its integral version.



Chapter 6

Surveillance Game

This chapter is dedicated to the study of yet another turn-by-turn pursuit-evasion game,
the Surveillance game. The Surveillance game is a two-player game which involves one
player moving a mobile agent, called surfer , along the edges of a graph, while a second
player, called observer , marks the vertices of the graph. The surfer wins if it manages
to reach an unmarked vertex. The observer wins otherwise, i.e., if it manages to mark
all nodes before the surfer “escapes”. This game was introduced by Fomin et al. in
[FGJM+12] in order to model the problem of prefetching web-pages.

In the connected Surveillance game, the vertices marked by the observer must induce
a connected component. One of the main goals of this chapter is to answer a question
regarding the cost of connectivity which was introduced in [FGJM+12]. That is, we are
interested to know how big can be the gap between the number of marks needed by the
observer in these two versions of the game.

This chapter is divided as follows. The definition of the Surveillance game along with
a brief overview on related results can be found in Section 6.1. Section 6.2 is dedicated
to answering how much is the cost of connectivity. Then, in Section 6.3, we introduce
another variant of this game, the Online Surveillance game, which is a restriction of
the connected variant where the observer discovers progressively the graph the game is
played. This online variant has to main motivations, the first one is that it has a closer
relationship with the prefetching web-pages problem and the second one is that it might
also help in understanding the cost of connectivity between the connected variant and
the “classical” one. In Section 6.4, we conclude this chapter with a discussion about the
results found in it.

6.1 The Surveillance Game

We start this section by formally defining the Surveillance game [FGJM+12]. Let G =
(V, E) be an undirected simple n-node graph, v0 ∈ V , and k ∈ N

∗. Initially, the surfer
stands at v0, which is marked, and all other nodes are not marked. Then, turn-by-turn,
the observer first marks k unmarked vertices and then the surfer may move to a neighbour
of its current position. Once a node has been marked, it remains marked until the end of
the game. The surfer wins if, at some step, it reaches an unmarked vertex, otherwise the
observer wins. Note that the game lasts at most n/k turns. When the game is played on
a directed graph, the surfer has to move following the direction of the arcs. A k-strategy

109



110 Surveillance Game

for the observer from v0, or simply a k-strategy from v0, is a function σ : V × 2V → 2V .
This function receives as input a vertex of the graph, representing the current position of
the surfer and a set of vertices M of G, representing the set of marked vertices, returning
a set M ′ of vertices of V \M , representing the set of vertices that the observer should
mark during its turn, such that |M ′| ≤ k. We emphasis that σ depends implicitly on the
graph G, i.e., it is based on the full knowledge of G. A k-strategy from v0 is winning,
if it allows the observer to win whatever be the sequence of moves of the surfer, when
it starts in v0. The surveillance number of a graph G with initial node v0, denoted by
sn(G, v0), is the smallest k such that there exists a winning k-strategy starting from v0.

Let us define some notations that are used in this chapter. Let ∆ be the maximum
degree of the nodes in G and, for any v ∈ V , let N(v) be the set of neighbors of v.
More generally, the neighborhood N(F ) of a set F ⊆ V is the subset of vertices of V \F
which have a neighbor in F . Moreover, we define the closed neighborhood of a set F as
N [F ] = N(F ) ∪ F .

As an example, let us consider the following basic strategy: let σB be the strategy
defined by σB(v, M) = N(v) \ M for any M ⊆ V , v0 ∈ M , and v ∈ M . Intuitively,
the basic strategy σB asks the observer to mark all unmarked neighbors of the current
position of the surfer. It is straightforward, and it was already shown in [FGJM+12],
that σB is a winning strategy for any v0 ∈ V and it easily implies that sn(G, v0) ≤
max{|N(v0)|, ∆− 1}.

Web-Page Prefetching, Connected and Online Variants

The Surveillance game has been introduced to model the web-page prefetching problem.
This problem can be stated as follows. A web-surfer is following the hyper-links in the
digraph of the web. The web-browser aims at downloading the web-pages before the web-
surfer accesses it. The number of web-pages that the browser may download before the
web-surfer accesses another web-page is limited, due to bandwidth constraints. Therefore,
designing efficient strategies for the Surveillance game would allow to preserve bandwidth
while, at the same time, avoiding the web-surfer to wait the download of the web-page
he wants to access.

By the nature of the web-page prefetching problem, in particular, because of the
huge size of the web digraph, it is not realistic to assume that a strategy may mark any
node of the network, even nodes that are “far” from the current position of the surfer.
For this reason, [FGJM+12] defines the connected variant of the Surveillance game. A
strategy σ is said connected if σ(v, M) ∪M induces a connected subgraph of G for any
M , v0 ∈ M ⊆ V (G). Note that the basic strategy σB is connected. The connected
surveillance number of a graph G with initial node v0, denoted by csn(G, v0), is the
smallest k such that there exists a winning connected k-strategy starting from v0. By
definition, csn(G, v0) ≥ sn(G, v0) for any graph G and v0 ∈ V (G). In [FGJM+12], it is
shown that there are graphs G and v0 ∈ V (G) such that csn(G, v0) = sn(G, v0) + 1. Only
the trivial upper bound csn(G, v0) ≤ ∆ sn(G, v0) is known, and a natural question is how
big the gap between csn(G, v0) and sn(G, v0) may be [FGJM+12]. This chapter provides
a partial answer to this question.

Still the connected Surveillance game seems unrealistic since the web-browser cannot
be asked to have the full knowledge of the web digraph. For this reason, we define
the Online Surveillance game. In this game, the observer discovers the graph while
marking its nodes. That is, initially, the observer only knows the starting node v0 and
its neighbors. After the observer has marked the subset M of nodes, it knows M and the



The Surveillance Game 111

vertices that have a neighbor in M . The next set of vertices to be marked depends only
on this knowledge and on the position of the surfer, i.e., the nodes at distance at least two
from M are unknown. In other words, an online strategy is based on the current position
of the surfer, the set of already marked nodes and on the subgraph H of the marked
nodes and their neighbors (a more formal definition is postponed to Section 6.3). By
definition, the set of nodes marked by such a strategy, at each step, must be known, i.e.,
adjacent to an already marked vertex. Therefore, an online strategy is also connected.
We are interested in the competitive ratio of winning online strategies. The competitive
ratio ρ(S) of a winning online strategy S is defined as ρ(S) = maxG,v0∈V (G)

S(G,v0)
sn(G,v0)

, where
S(G, v0) denotes the maximum number of vertices marked by S in G at each turn, when
the surfer starts in v0. Note that, because any online winning strategy S is connected,
csn(G, v0) ≤ ρ(S) sn(G, v0), for any graph G and v0 ∈ V (G).

Related Work

The Surveillance game has mainly been studied in the computational complexity point
of view. It is shown that the problem of computing the surveillance number is NP-hard
in split graphs [FGJM+12]. Moreover, deciding whether the surveillance number is at
most 2 is NP-hard in chordal graphs, and deciding whether the surveillance number is at
most 4 is PSPACE-complete. Polynomial-time algorithms that compute the surveillance
number in trees and interval graphs are proposed in [FGJM+12]. All previous results
also hold for the connected surveillance number. Finally, it is shown that, for any graph
G and v0 ∈ V (G), max

⌈

|N [S]|−1
|S|

⌉

≤ sn(G, v0) ≤ csn(G, v0), where the maximum is taken
over every subset S ⊆ V (G) inducing a connected subgraph with v0 ∈ S. Moreover, both
previous inequalities turn into an equality in the case of trees. In [FGJM+12], Fomin et
al. ask for an example where these inequalities are strict.

In the literature, there are mainly three types of approaches in order to solve the web-
page prefetching problem: server based hints prefetching [AEFP98, AZN99, Mog96], local
prefetching [WLZC12] and proxy based prefetching [FCLJ99]. In local prefetching, the
client has no aid from the server when deciding which documents to prefetch. In the server
based hints prefetching, the server can aid the client to decide which pages to prefetch.
Lastly, in the proxy based prefetching, a proxy that connects its clients with the server
decides which pages to prefetch. Moreover, some studies consider that the prefetching
mechanism has perfect knowledge of the web-surfer’s behavior [PM96, KLM97]. In these
studies, the objective is to minimize the waiting time of the web-surfer with a given
bandwidth, by designing good prediction strategies for which pages to prefetch.

In the context of prefetching web-pages, the Surveillance game is a model to study a
local prefetching scheme to guarantee that a web-surfer never has to wait a web-page to
be downloaded, whilst minimizing the bandwidth necessary to achieve such a goal. For
this, the web-surfer takes the role of the surfer, the browser takes the role of the observer
and the graph the game is played is the digraph of the web.

Our Results

In this chapter, we study both the connected and online variants of the Surveillance
game. First, we try to evaluate the gap between non-connected and connected surveillance
number of graphs. We give a new upper bound, independent from the maximum degree,
for the ratio csn / sn. More precisely, we show that, for any n-node graph G and any
v0 ∈ V (G), csn(G, v0) ≤

√

sn(G, v0) · n. Then, we describe a family of graphs G such



112 Surveillance Game

that csn(G, v0) = sn(G, v0)+2. Note that, contrary to the simple example that shows that
connected and not connected surveillance number may differ by one, a larger difference
seems much more difficult to obtain.

As mentioned, the online variant of the Surveillance game is a more constrained
version of the connected game. We prove that any online strategy has competitive ratio
at least Ω(∆). More formally, we describe a family of trees with constant surveillance
number such that, for any online winning strategy, there is a step when the strategy has
to mark at least ∆/4 vertices in order to win. Unfortunately, this shows that the best
(up to constant ratio) online strategy is the one that simply marks the out-neighborhood
of the current position of the surfer.

Unless otherwise stated, all graphs in this chapter are undirected simple and con-
nected. Note that, in undirected graphs, the out-neighborhood and in-neighborhood of a
vertex coincide.

6.2 Cost of Connectivity

In this section, we investigate the cost of enforcing connectivity. We prove the first non-
trivial upper bound for the ratio csn / sn. More precisely, we show that for any n-node
graph G, csn(G, v0) ≤

√

sn(G, v0) · n. Then, we improve the lower bound of [FGJM+12].
That is, we show a family of graphs where csn(G, v0) > sn(G, v0)+1. Finally, we disprove
a conjecture in [FGJM+12].

Upper Bound for the Cost of Connectivity

The next result is the first non-trivial upper bound (independent from the degree) of the
cost of the connectivity in the Surveillance game.

Theorem 41. Let G be any connected n-node graph and v0 ∈ V (G), then

csn(G, v0) ≤
√

sn(G, v0) · n.

Proof. sn(G, v0) = 1 if and only if G is a path with v0 as one of the extremities. In this
case, csn(G, v0) = sn(G, v0) and the result holds.

Assume that k = sn(G, v0) > 1 and that n ≥ 2. We describe a connected strategy σ
marking at most

√
kn nodes per turn. Let M0 = {v0} and let M t be the set of vertices

marked after t ≥ 1 turns. Assume moreover that M t induces a connected graph of G
containing v0. Finally, let vt be the vertex occupied by the surfer after turn t. The
set σ(vt, M t) of nodes marked by the observer at step t + 1 is defined as follows. If
|V (G) \M t| ≤

√
kn, then let σ(vt, M t) = V (G) \M t. Otherwise, let H ⊆ V (G) \M t be

such that |H| =
√

kn, H∪M t induces a connected subgraph and |H∩N(vt)| is maximum.
Then, σ(vt, M t) = H, i.e., the strategy marks

√
kn new nodes in a connected way and,

moreover, it marks as many unmarked nodes as possible among the neighbors of vt. In
particular, if |N(vt) \M t| ≤

√
kn, then all neighbors of vt are marked after turn t + 1.

By definition, σ is connected and marks at most
√

kn nodes per turn. We need to
show σ is winning.

For purpose of contradiction, let us assume that the surfer wins against σ by following
the path P = (v0, . . . , vt, vt+1). At its t + 1th turn, the surfer moves from a marked vertex
vt to an unmarked vertex vt+1.



Cost of Connectivity 113

Therefore, n > t
√

kn, otherwise the observer marking
√

kn nodes at each turn would
have already marked every vertex on the graph by the end of turn t. Moreover, by
definition of sigma, |N(vt) \M t| >

√
kn

Since, sn(G, v0) = k, let S be any k-winning (non necessarily connected) strategy for
the observer. Assume that the observer follows S against the surfer following P \ {vt+1}.
Since, S is winning, all vertices of N(vt) must be marked after turn t, otherwise the surfer
would win by moving to an unmarked neighbor of vt. Therefore, since S can mark at
most k vertices each turn, |N(vt)| ≤ kt.

Taking both inequalities, we have that
√

kn < |N(vt)| ≤ kt. Hence,
√

n < t
√

k. Since
n > t

√
kn and

√
n < t

√
k, we have that t2k < n < t2k, a contradiction.

Lower Bound for the Cost of Connectivity

This subsection is devoted to proving the following theorem.

Theorem 42. There exists a family of graphs G and v0 ∈ V (G) such that csn(G, v0) >
sn(G, v0) + 1.

We use the following result proved in [FGJM+12]. For any graph G = (V, E) and
any vertex v0 ∈ V , a k-strategy for G with initial vertex v0 is winning if and only if it
is winning against a surfer that is constrained to follow induced paths on G. In other
words, the walk of the surfer is constrained to be an induced path.

In this section, by adding a path P = (v1, · · · , vr) between two vertices u and v of G,
we mean that the induced path P is added as an induced subgraph of G and the edges
{u, v1} and {vr, v} are added.

Let x ≥ 4, α, β and γ be four strictly positive integers satisfying the following inequa-
tions.

max{β,
β

2
+ γ + 1} < α < min{β + γ + 1, 2γ + 2} (6.1)

β < 2γ + 2 (6.2)

α + β + 2γ + 12 ≤ 3x (6.3)
4
5

(α + β + γ) + 10 < x (6.4)

73 + β + 2γ ≤ 2α (6.5)

For instance, x = 250, α = 146, β = 73, γ = 73 are values that satisfy all the above
inequalities.

For proving the main theorem in this section we mainly rely in the family of graphs
built in the following the procedure described below.

Let G = (V, E) be a graph with 10 isolated vertices {v0, w0, w1, w2, w′
0, w′

1, w′
2, s0,

s1, s2}. Then, for all i ∈ {0, 1, 2} do the following:

1. 4x− 9 vertices of degree one are added and made adjacent to si;

2. 3x−2 vertices of degree one are added and made adjacent to wi, respectively 3x−2
neighbors of degree one are added to w′

i;

3. two disjoint paths Ai = (ai
1, . . . , ai

α) and A′i = (a′i
1 , . . . , a′i

α) are added between v0

and si;



114 Surveillance Game

4. a path Bi = (bi
1, . . . , bi

β) is added between v0 and wi, and a path B′i = (b′i
1 , . . . , b′i

β)
is added between v0 and w′

i;

5. for any j ∈ {i, i + 1 mod 3} a path Ci,j = (ci,j
1 , . . . , ci,j

γ ) is added between sj and
wi, and a path C ′i,j = (c′i,j

1 , . . . , c′i,j
γ ) is added between sj and w′

i;

6. for any 1 ≤ j ≤ α, 3x − 1 vertices of degree one are added and made adjacent to
ai

j, respectively 3x− 1 neighbors of degree one are added to a′i
j ;

7. for any 1 ≤ j ≤ β, 3x− 1 vertices of degree one are added and made adjacent to bi
j,

respectively 3x− 1 neighbors of degree one are added to b′i
j ;

8. for any 1 ≤ j ≤ γ, ℓ ∈ {i, i + 1 mod 3}, 3x−1 vertices of degree one are added and
made adjacent to ci,ℓ

j , respectively 3x− 1 neighbors of degree one are added to c′i,ℓ
j .

The shape of G is depicted in Figure 6.1. G has (30 + 18(α + β) + 36γ)x− 29 vertices.
For any i ∈ {0, 1, 2}, the node si has 4x−3 neighbors, v0 has 12 neighbors, and any other
non-leaf node has degree 3x + 1.

Claim 14. If max{β, β
2

+ γ + 1} < α < min{β + γ + 1, 2γ + 2} and β < 2γ + 2, the
unique (up to symmetries) minimum Steiner-tree for S = N [v0] ∪ {s0, s1, s2} in G has
15 + α + β + 2γ vertices and consists of the vertices of the paths A0, B1, C1,1, C1,2 and
the vertices in S ∪ {w1}.

Proof. The subgraph induced by the vertices of the paths A0, B1, C1,1, C1,2 and the
vertices in S ∪ {w1} is a subtree spanning S and with 15 + α + β + 2γ vertices. Let us
enumerate all the possible (up to symmetries) Steiner-trees for S. Consider the subgraph
induced by the vertices of:

• A0, A1, A2 and S. The number of vertices in this subgraph is 3α + 13.

• A0, A1, C1,1, C1,2 and S ∪ {w1}. The number of vertices in this subgraph is 2α +
2γ + 15.

• A0, A1, B1, C1,2 and S ∪ {w1}. The number of vertices in this subgraph is 2α + β +
γ + 14.

• A0, C0,0, C0,1, C2,0, C2,2 and S ∪ {w0, w2}. The number of vertices in this subgraph
is α + 4γ + 17.

• B0, B1, C0,0, C1,1, C1,2 and S ∪{w0, w1}. The number of vertices in this subgraph is
2β + 3γ + 16.

• B1, C1,1, C1,2, C2,2, C2,0 and S ∪ {w1, w2}. The number of vertices in this subgraph
is β + 4γ + 17.

If the subgraph induced by the vertices of the paths A0, B1, C1,1, C1,2 and the
vertices in S ∪ {w1}, is the unique (up to symmetries) minimum Steiner-tree for S =



Cost of Connectivity 115

N [v0] ∪ {s0, s1, s2} in G, then we get the following inequalities:

α >
β

2
+ γ + 1

α > β

α > γ + 1

β < 2γ + 2

α < β + γ + 1

α < 2γ + 2.

Thus max{β, β
2

+ γ + 1} < α < min{β + γ + 1, 2γ + 2} and β < 2γ + 2.

In Figure 6.1, the scheme of a minimum Steiner-tree for S = N [v0] ∪ {s0, s1, s2} is
depicted with dashed lines.

v0

s0

w0

s1

w1

s2

w2α

α α

β

β

β

γ

γ

γ γ

γ

γ

Figure 6.1: Graph Family Scheme. Here we show only one “layer” of the graph.

For any i ∈ {0, 1, 2}, let Ai = N [v0]∪N [Ai]∪N [si] (resp., A′
i = N [v0]∪N [A′i]∪N [si]).

Note that |Ai| = |A′
i| = (3α + 4)x + 9 and that the Ai and Aj, i 6= j, pairwise intersect

only in N [v0].
For any i ∈ {0, 1, 2}, let Bi = N [v0]∪N [Bi]∪N [wi]∪N [Ci,i]∪N [Ci,i+1 mod 3]∪N [si]∪

N [si+1 mod 3] and B′
i is defined similarly. |Bi| = |B′

i| = (3β+6γ+11)x+5. Finally, for any
i ∈ {0, 1, 2} and j ∈ {i, i + 1 mod 3}, let Bi,j = N [v0] ∪N [Bi] ∪N [wi] ∪N [Ci,j] ∪N [sj]
and B′

i,j = N [v0] ∪N [B′i] ∪N [w′
i] ∪N [C ′i,j] ∪N [sj].

Lemma 43. For any i ∈ {0, 1, 2} and j ∈ {i, i + 1 mod 3}, during its first step, any
winning (3x + y)-strategy for G must mark at least

• x + 8− y(α + 1) nodes in Ai (resp., in A′
i), and

• x + 8− y(β + γ + 2) nodes in Bi,j (resp., in B′
i,j), and

• 2x + 4− y(β + 2γ + 3) nodes in Bi (resp., in B′
i).

Proof. Let S be any winning (3x + y)-strategy and F be the set of nodes that S marks
during its first step.

Let M = F ∩ A0. The surfer goes to a0
1. We may assume that S had marked it

since the strategy fails otherwise. Now, the surfer first goes to s0 through A0 unless, at



116 Surveillance Game

some turn, its position has an unmarked neighbor. In the latter case, the surfer goes to
this unmarked node and wins. During these (α + 1) steps, the strategy S can mark at
most (α + 1)(3x + y) extra nodes in A0. Hence, in total, at most |M |+ (α + 1)(3x + y)
nodes have been marked in A0 when the surfer is at s0 and it is its turn. Because S is
a winning strategy, all nodes in A0 must have been marked since otherwise the surfer
would have won. Therefore, |M | + (α + 1)(3x + y) ≥ |A0 \ {v0}| = (3α + 4)x + 8 and
|M | ≥ x + 8− y(α + 1).

The proof is similar for Bi,j.
Now, let M = F ∩ B0 and let M ′ = F ∩ (N [v0] ∪ N [B0] ∪ N [w0]) ⊆ M . The surfer

goes to b0
1. We may assume that S had marked it since the strategy fails otherwise. Now,

the surfer first goes to w0 through B0 unless, at some turn, its position has an unmarked
neighbor. In the latter case, the surfer goes to this unmarked node and wins. At the
turn of the surfer when it is in w0, the strategy has marked |M |+ (β + 1)(3x + y) and all
nodes in N [v0] ∪N [B0] ∪N [w0] must have been marked. Therefore, at most |M |+ (β +
1)(3x + y)− (12 + 3(β + 1)x) = |M |+ y(β + 1)− 12 nodes of B′

0 \ (N [v0]∪N [B0]∪N [w0])
are marked. Hence, w.l.o.g., there are at most

⌊

|M |+y(β+1)−12
2

⌋

nodes that are marked in
(N [C0,0]∪N [s0])\N [w0]. The surfer now goes from w0 to s0. During these steps, at most
(γ + 1)(3x + y) new vertices are marked. Because S is a winning strategy, all nodes in
(N [C0,0] ∪N [s0]) \N [w0] must have been marked since otherwise the surfer would have
won. Therefore,

⌊

|M |+ y(β + 1)− 12
2

⌋

+ (γ + 1)(3x + y) ≥ |(N [C0,0] ∪N [s0]) \N [w0]|

≥ 3γx + 4x− 4.

Hence, |M | ≥ 2x + 4− y(β + 2γ + 3).

Lemma 44. sn(G, v0) = 3x.

Proof. First, let us show that sn(G, v0) ≤ 3x. For this purpose, consider the following
strategy. At the first step, the observer marks the 12 neighbors of v0 and, for any
i ∈ {0, 1, 2}, the observer marks x− 4 one-degree neighbors of si.

Note that, all nodes in N(v0) have exactly 3x unmarked neighbors and any vertex has
at most 3x + 1 unmarked neighbors. Now, the strategy simply consists in marking at
each step the neighbors of the current position of the surfer. Indeed, it is easy to prove by
induction on the number of steps that, each time that the surfer arrives at a new node,
this node is marked and has at most 3x unmarked neighbors.

Now, let us prove that sn(G, v0) > 3x−1. Let S be any (3x−1)-strategy and let F be
the set of nodes that S marks during its first step. Clearly, N(v0) ⊆ F since otherwise the
surfer wins after its first move. Moreover, because the sets Ai\N [v0] are pairwise disjoint,
there must be i ∈ {0, 1, 2}, such that |F ∩ (Ai \N [v0])| < x− 4. Hence, |F ∩Ai| < x + 8
for some i. However, by Lemma 43, any winning (3x − 1)-strategy must mark at least
x + 8 + α + 1 > x + 8 nodes in each Ai during the first step.

Lemma 45. csn(G, v0) > 3x + 1.

Proof. For purpose of contradiction, let us assume that there is a winning connected
3x+1-strategy. Let F be the set of vertices marked by this strategy during the first step.
Clearly, N(v0) ⊆ F and |F | ≤ 3x + 1.



Cost of Connectivity 117

For any 0 ≤ i ≤ 2, let fi = |F ∩ N [si]| and let fmin = mini fi. Without loss of
generality, fmin = f0. We first show that fmin > 3.

By Lemma 43, for any i ∈ {0, 1, 2}, |F ∩ (Ai \ N [v0])| ≥ x − 5 − α and, for any
i ∈ {0, 2}, |F ∩ (Bi,0 \N [v0])| ≥ x− 6− (β + γ) and |F ∩ (B′

i,0 \N [v0])| ≥ x− 6− (β + γ).
Therefore,

3x + 1 ≥ |F ∩ (A0 ∪ A′
0 ∪ A1 ∪ A2 ∪ B0,0 ∪ B2,0 ∪ B′

0,0 ∪ B′
2,0)|

≥ 12 + 4(x− 5− α) + 4(x− 6− (β + γ))− 5|F ∩N [s0]|
≥ 8x− 4(α + β + γ)− 32− 5fmin

Hence, 5fmin ≥ 5x− 4(α + β + γ)− 33, and fmin ≥ x− 4
5
(α + β + γ)− 7 > 3 by the

above inequality.
Therefore, by definition of fmin, |F ∩N [si]| ≥ 4 for any i ∈ {0, 1, 2}. By connectivity

of the strategy, si ∈ F ∩ N [si] for any i ∈ {0, 1, 2}. Hence, F must contain a subset
of vertices inducing a subtree spanning S = N [v0] ∪ {s0, s1, s2}. Let T be an inclusion-
minimal subset of F that induces a subtree spanning S. By Claim 14, |T | ≥ α+β+2γ+15.
Let T ′ = T \ (N [v0] ∪

⋃

0≤i≤2 N [si]). Then, |T ′| ≥ α + β + 2γ − 4. Moreover, because of
the symmetries, we may assume w.l.o.g., that T ′ ⊆ ⋃0≤i≤2(Ai ∪ Bi).

By Lemma 43 and because N(v0) ⊆ F , for any 0 ≤ i ≤ 2, |F ∩ (A′
i ∪ B′

i+1 mod 3)| ≥
x + 8− (α + 1) + 2x + 4− (β + 2γ + 3)− 12 = 3x− (α + β + 2γ)− 4. Hence, |T ′|+ |F ∩
(A′

i ∪ B′
i+1 mod 3)| ≥ 3x− 8. Let Wi = F \ (A′

i ∪ B′
i+1 mod 3 ∪ T ′). Since |F | ≤ 3x + 1, it

follows that |Wi| ≤ 9.
Let fmax = maxi fi and assume w.l.o.g. that fmax = f2. Since

∑

0≤i≤2 fi ≤ |F \T ′|, we
get that f0 + f1 ≤

⌊

2
3
(5 + 3x− (α + β + 2γ)

⌋

.

To conclude, |F ∩ B′
0| = |N(v0)| + f0 + f1 + |W0| ≤ 21 +

⌊

2
3
(5 + 3x− (α + β + 2γ)

⌋

.
On the other hand, Lemma 43 implies that |F ∩ B′

0| ≥ 2x + 1 − (β + 2γ). Therefore,
22 + 2

3
(5 + 3x− (α + β + 2γ) > 2x + 1− (β + 2γ) and it follows 73 > 2α− β − 2γ. This

contradicts the inequalities.

Lemmas 44 and 45 are sufficient to prove Theorem 42. More precisely, it shows that
there exist a family of graphs G and v0 ∈ V (G) such that csn(G, v0) ≥ sn(G, v0) + 2.
However, as shown in the next lemma, the family of graphs we described does not allow
to increase more the lower bound on the cost of connectivity.

Lemma 46. csn(G, v0) ≤ 3x + 2.

Proof. Consider the following strategy. At the first step, the observer marks the 12
neighbors of v0, all nodes of the paths A0, B1, C1,1 and C1,2, the vertices w1, s0, s1 and
s2 and finally Z = ⌊(3x−α−β− 2γ− 12)/3⌋ one-degree neighbors of each si. Note that
Z ≥ 0 by Equation 6.3.

Then, the strategy goes on as follows. Let i ∈ {0, 1, 2}. When the surfer arrives
at some node ai

j (resp., a′i
j ), 1 ≤ j ≤ α, the observer marks the at most 3x unmarked

neighbors of ai
j and marks at least 2 unmarked neighbors of si. When the surfer arrives

at some node bi
j (resp., b′i

j ), 1 ≤ j ≤ β, or at wi, the observer marks the at most 3x
unmarked neighbors of this node and marks at least 1 unmarked neighbor of si and
at least 1 unmarked neighbor of si+1 mod 3. When the surfer arrives at some node ci,ℓ

j

(resp., c′i,ℓ
j ), 1 ≤ j ≤ γ, ℓ ∈ {i, i + 1 mod 3}, the observer marks the at most 3x

unmarked neighbors of ci,ℓ
j and marks at least 2 unmarked neighbors of sℓ (if any) and, if



118 Surveillance Game

all neighbors of sℓ are already marked, the observer marks at least 2 unmarked neighbors
of sk where {k} = {i, i + 1 mod 3} \ {ℓ}. Finally, when the surfer arrives at si, the
observer marks 3x + 2 unmarked neighbors of it.

To prove the validity of this strategy, it is sufficient to show that the surfer will loose
for the following three different trajectories. This is sufficient, because the surfer is only
able to win when moving from s0, s1 or s2 to one of its neighbors; and because α < 2γ,
i.e., the amount of steps it takes for the surfer to move from si to sj, with j 6= i is bigger
than the amount of steps it takes it to move from v0 to sj. Meaning that, if the fugitive
wins it wins the first time it moves out of one of these three vertices.

First, let us assume that the surfer goes from v0 to si through Ai (i ∈ {0, 1, 2}).
Clearly, at each step before reaching si, all neighbors of the current position of the surfer
are marked. Now, when the surfer arrives at si, there are at least 2(α + 1) + Z neighbors
of si that are already marked. To show that the observer wins, it is sufficient to note that

|N(si)| − (2(α + 1) + Z) = 4x− 3− 2α− 2−
⌊

3x− α− β − 2γ − 12
3

⌋

≤ 3x− 2α− 5 +
α + β + 2γ + 12

3

≤ 3x− 1 +
β + 2γ − 5α

3
≤ 3x + 2

because 2α > β + 2γ + 1.

Second, let us assume that the surfer goes from v0 to si through Bi, wi and Ci,i

(i ∈ {0, 1, 2}). When the surfer arrives at si, there are at least β + 1 + 2γ + Z neighbors
of si that are already marked. To show that the observer wins, it is sufficient to note that

|N(si)| − (β + 1 + 2γ + Z) = 4x− 4− β − 2γ

−
⌊

3x− α− β − 2γ − 12
3

⌋

≤ 3x− β − 4− 2γ +
α + β + 2γ + 12

3

≤ 3x +
α− 2β − 4γ

3
≤ 3x + 2

because α < β + γ + 1.

Finally, let us assume that the surfer goes from si (all neighbors of which are already
marked) to si+1 mod 3 through Ci,i, wi and Ci,i+1 mod 3 (i ∈ {0, 1, 2}). When the surfer
arrives at si+1 mod 3, there are at least 4γ + 2 + Z neighbors of si+1 mod 3 that are already



Cost of Connectivity 119

marked. To show that the observer wins, it is sufficient to note that

|N(si+1 mod 3)| − (4γ + 2 + Z) = 4x− 3− 4γ − 2

−
⌊

3x− α− β − 2γ − 12
3

⌋

≤ 3x− 5γ − 4 +
α + β + 2γ + 12

3

≤ 3x− 1 +
α + β − 10γ

3
≤ 3x + 2

because β < α < 2γ + 1.

To conclude this section, we answer negatively a question asked in [FGJM+12]. It
is shown in [FGJM+12] that in the case of trees both following inequalities turn into
equalities. For any graph G and v0 ∈ V (G), max

⌈

|N [S]|−1
|S|

⌉

≤ sn(G, v0) ≤ csn(G, v0)
where the maximum is taken over every subset S ⊆ V (G) inducing a connected subgraph
with v0 ∈ S. Moreover, the authors of [FGJM+12] ask whether the first inequality may
be strict when the G is not restricted to be a tree.

First, let us notice that an equality might give new way to attack the question of the
cost of the connectivity. However, such an equality is unlikely to hold since it would imply
that the problem of computing the surveillance number of a graph is in co-NP while this
problem is known to be PSPACE-complete in DAGs [FGJM+12]. We actually show that
there are graphs where the inequality is strict.

Let us build a graph as follows. Starting from the vertex set V = {a, b, c, ab, ac, bc, s}
and E = {(s, a), (s, b), (s, c), (a, ab), (a, ac), (b, ab), (b, bc), (c, ac), (c, bc)}. Then, we add
11k−21−2x

6
leaves to each vertex ab, ac and bc, moreover, add 3 leaves to each vertex a, b

and c, and, finally, add x leaves to s. A scheme of this family can be found in Figure 6.2.

s

a

b c

ab ac

bc

11k−21−2x
6

11k−21−2x
6

11k−21−2x
6

x

Figure 6.2: Scheme of the graph family described in the proof of Theorem 47.

We moreover assume that k−5 ≡ 0 (mod 2), k−x−3 ≡ 0 (mod 3), 11k−21−2x ≡ 0
(mod 6), x ≤ k − 36 and k ≥ 34. For instance, k = 105 and x = 42 are possible values
for k and x.



120 Surveillance Game

Let G be the graph obtained by the above construction and where parameters satisfy
the above constraints.

Theorem 47. sn(G, s) = k and maxS⊆V (G)

⌈

|N [S]|−1
|S|

⌉

< k.

Proof. Throughout this proof, let M ⊆ V denote the set of (currently) marked vertices
in G.

We show a strategy for the surfer that wins against an observer that can mark at most
k − 1 vertices per turn. Let

Sa = (N [a] ∪N [ab] ∪N [ac]) \ {s, a, b, c},
Sb = (N [b] ∪N [ab] ∪N [bc]) \ {s, a, b, c}, and

Sc = (N [c] ∪N [bc] ∪N [ac]) \ {s, a, b, c}.

In the first step and after the observer has used its marks, the surfer chooses to move
to i where i = arg mini={a,b,c} |Si∩M |. Since the observer must mark the vertices in N(s)
(including a, b, c) we have that |Si ∩M | ≤ 2

3
(k − 1− x− 3). Without loss of generality

assume that i = a. In the second step, all neighbors of a must have been marked,
otherwise the surfer wins by moving to an unmarked leaf of a. Let Sab = N [ab]\{a, b, ab}
and Sac = N [ac] \ {a, c, ac}, therefore, after all marks are spent in the second step,

min
j={ab,ac}

|Sj ∩M | ≤ k − 1− 5 + 2
3
(k − 1− x− 3)
2

.

The surfer then chooses to move to arg mini={ab,ac} |Si ∩M |, w.l.o.g. assume that it is
the vertex ab. In the third step, the observer might use all its available marks onto the
leaves of ab, hence, after spending all the marks,

|Sab ∩M | ≤ k − 1 +
k − 1− 5 + 2

3
(k − 1− x− 3)
2

=
11k − 32− 2x

6

which is less than |Sab|, hence there is an unmarked leaf of ab that the surfer can reach.
We consider now a winning strategy for the observer that marks k vertices per step. At

the first step, the observer marks all vertices in N [s], with the remaining marks, k−x−3,
being spread evenly among vertices in the sets N [ab] \ {a, b, ab}, N [ac] \ {a, c, ac} and
N [bc] \ {b, c, bc}. Hence, there are at least

⌊

k−x−3
3

⌋

= k−x−3
3

vertices marked in each of
those sets. Without loss of generality assume that the surfer moves towards a. Then, the
observer marks the vertices in N(a) and, with the remaining marks, proceeds to distribute
them evenly among the vertices of the sets N(ab) and N(ac). When the surfer is about
to move there are at least

⌊

k−5
2

⌋

+ k−x−3
3

= k−5
2

+ k−x−3
3

vertices in (N(ab) \ {a, b}) ∩M

and in (N(ac) \ {a, c}) ∩M . Without loss of generality assume that the surfer moves
towards ab. Then the observer uses all its available marks on the unmarked vertices in
N(ab) \ {a, b}. Therefore, after all marks are spent, there are k + k−5

2
+ x−3

3
marked

vertices in N(ab) \ {a, b}. It remains to show that k + k−5
2

+ x−3
3
≥ 11k−21−2x

6
.

k +
k − 5

2
+

x− 3
3
≥ 6k

6
+

3k − 15
6

+
2x− 6

6
− 2 =

9k − 21 + 2x

6
− 2

9k − 21 + 2x

6
− 2 =

9k − 33 + 4x− 2x

6
≥ 11k − 21− 2x

6
.

Now we show that for all connected sets S such that s ∈ S we have that
⌈

|N [S]−1|
|S|

⌉

< k.



Online Surveillance Number 121

Claim 15. For all connected sets S such that s ∈ S, then

⌈

|N [S]− 1|
|S|

⌉

≤ k − 1.

First we prove that if S contains a vertex v ∈ V with degree 1, then
⌈

|N [S]−1|
|S|

⌉

≤
⌈

|N [S\{v}]−1|
|S\{v}|

⌉

. Since S contains s and induces a connected subgraph, then N(v) ⊂ S

because |N(v)| = 1. Thus N [S \ {v}] contains v and so N [S \ {v}] = N [S].
In the rest of the proof, we consider sets S that do not contain a node with degree 1.

Let Lab = N(ab) \ {a, b}, Lac = N(ac) \ {a, c}, and Lbc = N(bc) \ {b, c}. By the previous
assumption, if a node v ∈ Lab is such that v ∈ N [S], then all nodes in Lab are in N [S]. By
symmetry, we have a similar property for Lac and Lbc. Note that (N(s)\{a, b, c}) ⊂ N [S]
because s ∈ S by definition.

We have four different cases:

1. Consider S such that N [S] ∩ (Lab ∪ Lac ∪ Lbc) = ∅. We get that |S| ≥ 1 and
N [S] ≤ x + 16. Thus

⌈

|N [S]−1|
|S|

⌉

≤ x + 15 ≤ k − 1 because x ≤ k − 36.

2. Consider S such that N [S] ∩ (Lac ∪ Lbc) = ∅ and Lab ⊂ N [S]. We get that |S| ≥ 3
and N [S] ≤ x + 16 + 11k−21−2x

6
. Thus

⌈

|N [S]−1|
|S|

⌉

≤
⌈

11k+4x+69
18

⌉

≤ k − 1 because
x ≤ k − 36 and k ≥ 34. The case N [S] ∩ (Lab ∪ Lbc) = ∅ and Lac ⊂ N [S] is similar
and the case N [S] ∩ (Lab ∪ Lac) = ∅ and Lbc ⊂ N [S] is also similar.

3. Consider S such that N [S]∩Lbc = ∅ and Lab∪Lac ⊂ N [S]. We get that |S| ≥ 4 and
N [S] ≤ x + 16 + 11k−21−2x

3
. Thus

⌈

|N [S]−1|
|S|

⌉

≤
⌈

11k+x+24
12

⌉

≤ k−1 because x ≤ k−36
and k ≥ 34. The case N [S] ∩ Lac = ∅ and Lab ∪ Lbc ⊂ N [S] is similar and the case
N [S] ∩ Lab = ∅ and Lac ∪ Lbc ⊂ N [S] is also similar.

4. Consider S such that Lab ∪ Lac ∪ Lbc ⊂ N [S]. We get that |S| ≥ 6 and N [S] ≤
x + 16 + 11k−21−2x

2
. Thus

⌈

|N [S]−1|
|S|

⌉

≤
⌈

11k+9
12

⌉

≤ k − 1 because k ≥ 34.

This concludes the proof of Claim 15 and, therefore, the proof of Theorem 47 because
we have proved that sn(G, s) = k.

6.3 Online Surveillance Number

In this section, we study the online variant of the Surveillance game. This variant is
motivated by the web-page prefetching problem. In this variant, the observer does not
know a priori the graph in which it is playing. That is, initially, the observer only knows
v0, its degree and the identifiers of its neighbors. Then, when a new node is marked, the
observer discovers all its neighbors that are not yet marked. Note that the degree of a
node is not known before it is marked.

Another property of an online strategy that must be defined is if the observer must
use all its marks simultaneously or in sequence. Assume that the set M of nodes have
been marked and it is the turn of the observer. Either it first chooses the k nodes that
will be marked among the set N(M)\M , the unmarked neighbors of the nodes that were
already marked, and then the observer marks each of these k nodes and discover their
unknown neighbors simultaneously; or the observer first chooses one node x in N(M)\M ,
marks it and discovers its unmarked neighbors, then it chooses a new node to be marked



122 Surveillance Game

in N(M ∪ {x}) \ (M ∪ {x}) and so on until the observer finishes its turn after marking
k nodes. We choose to consider the second model because it is less restricted, i.e., the
observer has more power. Even in this case, our result is pessimistic since we show that
the basic strategy, which marks the neighborhood of the current position of the surfer at
each step, is the best one with respect to the competitive ratio.

Formal Definition of Online Strategy and Competitive Ratio

Now we are ready to formally define an online strategy. Let k ≥ 1, let G = (V, E) be a
graph, v0 ∈ V , and let G be the set of subgraphs of G.

Let M ⊆ V be a subset of nodes inducing a connected subgraph containing v0 in G.
Let GM ∈ G be the subgraph of G known by the observer when M is the set of marked
nodes. That is, GM = (M ∪ N(M), EM) where EM = {(u, v) ∈ E | u ∈ M}. For any
u, v ∈ N(M) \M , let us set u ∼M v if and only if N(u)∩M = N(v)∩M . Let XM be the
set of equivalent classes, called modules, of N(M)\M with respect to ∼M . The intuition
is that two nodes in the same module of XM are known by the observer but cannot be
distinguished. For instance, X{v0} = {N(v0)} because initially all neighbors of v0 look
the same to the observer.

A k-online strategy for the observer starting from v0 is a function σ : G × V × 2V ×
{1, . . . , k} → 2V such that, for any subset M ⊆ V of nodes inducing a connected subgraph
containing v0 in G, for any v ∈M , and for any 1 ≤ i ≤ k, we have that σ(GM , v, M, i) ∈
XM . This means that, if M is the set of nodes already marked and v is the position of
the surfer and it remains k − i + 1 nodes to be marked by the observer before the surfer
moves, then the observer will mark one node in σ(GM , v, M, i).

More precisely, we say that the observer follows the k-online strategy σ if the game
proceeds as follows. Let M = M0 be the set of marked nodes just after the surfer
has moved to v ∈ M . Initially, M0 = {v0} and v = v0. Then, the strategy proceeds
sequentially in k steps for i = 1 to k. First, the observer marks an arbitrary node
x1 ∈ σ(GM0 , v, M0, 1). Let M1 = M0∪{x1}. Sequentially, after having marked 1 < i < k
nodes at this turn, the observer marks one arbitrary node xi+1 ∈ σ(GM i , v, M i, i + 1)
and M i+1 = M i ∪ {xi+1}. When the observer has marked k nodes, that is after choosing
xk ∈ σ(GMk−1 , v, Mk−1, k), it is the turn of the surfer, then it may move to a node adjacent
to its current position and a new turn for the observer starts. Note that because we are
interested in the worst case for the observer, each marked node xi ∈ σ(GM i−1 , v, M i−1, i)
is chosen by an adversary.

The online surveillance number of a graph G with initial node v0, denoted by on(G, v0),
is the smallest k such that there exists a winning k-online strategy starting from v0. In
other words, there is a winning k-online strategy σ starting from v0 such that an observer
following σ wins whatever be the trajectory of the surfer and the choices done by the
adversary. Note that, since we consider the worst scenario for the observer, we may
assume that the surfer and the adversary have full knowledge of G.

Online Surveillance Number vs Surveillance Number

Theorem 48. There exists a infinite family of rooted trees such that, for any T with root
v0 ∈ V (T ) in this family, sn(T, v0) = 2 and on(T, v0) = Ω(∆) where ∆ is the maximum
degree of T .

Proof. We first define the family (Tk)k≥4 of rooted trees as follows.



Online Surveillance Number 123

v0

w0

v1 v2 vi−1

vi

wkw1

P

B

Q

Q+

h = 3k + 1

d =
2k

k

i = 2
k

S1 S2 Sk

d =
2k

k
d =

2k

k

w2

Figure 6.3: Tree Tk described in the proof of Theorem 48.

Let k ≥ 4 be a power of two and let i = 2k and d = 2k

k
.

Let us consider a path P = (v0, v1, . . . , vi−1) with i nodes Let B be a complete binary
tree of height h = 3k + 1 and rooted at some vertex vi, i.e., B has 2h+1 − 1 vertices. Let
w0 be any leaf of B. Finally, let Q = (w1, . . . , wk) be a path on k nodes. Note that, P ,
B and Q depend on k.

The tree Tk is obtained from P , B and Q by adding an edge between vi−1 and vi, an
edge between w0 and w1. Finally, for any 1 ≤ j ≤ k, let us add an independent set, Sj,
with d vertices and an edge between each vertex of Sj and wj (i.e., each node in Sj is a
leaf in the resulting tree Tk). Tk is then rooted in v0.

Let Q+ denote the union of vertices of Q and
⋃k

j=1 Sj. The maximum degree ∆ of Tk

is reached by any node wj, 1 ≤ j < k, and ∆ = d + 2 = 2k

k
+ 2.

We first show that sn(Tk, v0) = 2. Clearly, sn(Tk, v0) > 1. Let us consider the following
(offline) strategy for the observer. At each turn j ≤ i, the surfer marks the vertex vj and
one unmarked vertex of Q+ that is closest to the surfer. Note that the observer is allowed
to mark nodes in Q+ because, in an offline strategy, the observer knows the whole tree.
Just after turn i, the surfer must occupy a node of P ∪ {vi}. Moreover, it cannot have
reached an unmarked vertex so far since all nodes of P ∪ {vi} have been marked before
the surfer can access them.

For each turn j > i and while the surfer does not occupy a node in Q+ ∪ {w0}, the



124 Surveillance Game

observer marks the neighbours of the current position of the surfer if they are not already
marked. While the surfer remains on the nodes of B or P , this strategy clearly requires
to mark at most 2 nodes per turn since B is a binary tree.

Finally, if the surfer occupies a node in Q+ ∪{w0}, the observer marks two unmarked
nodes of Q+ that are closest to the surfer. It only remains to prove that the surfer
cannot reach an unmarked node in Q+. When the surfer reaches w0, this node must
be marked by the previous strategy. Moreover, by the strategy of the first i turns, the
i nodes of Q+ that are closest to w0 have been marked. Hence, for any 1 ≤ j ≤ k,
when the surfer reaches wj, at least the i + 2j nodes of Q+ that are closest to w0 are
marked. Since |⋃1≤p≤j N [wp] ∩ Q+| ≤ j(d + 1) + 1 and because i = dk, we get that
i + 2j = dk + 2j ≥ dj + j + 1 ≥ |⋃1≤p≤j N [wp] ∩ Q+| and therefore, the surfer never
reaches a node with an unmarked neighbour.

Hence, sn(Tk, v0) = 2.

Now it remains to show that on(Tk, v0) = Ω(∆). Let γ be any online strategy for Tk

and marking at most d
4

= 2k−2

k
nodes per turn. We show that γ fails.

For this purpose, we model the fact that the observer does not know the graph by
“building” the tree during the game. More precisely, each time the observer marks a node
v, then the adversary may add new nodes adjacent to v or decide that v is a leaf. Of
course, the adversary must satisfy the constraint that eventually the graph is Tk. Initially,
the observer only knows v0 that has one neighbour v1. Now, for any 1 ≤ j < i, when the
observer marks the node vj of P , then the adversary “adds” a new node vj+1 adjacent to
vj, i.e., the observer discovers its single unmarked neighbour vj+1. Now, let v be any node
of B. Recall that h is the height of B. When the observer marks v, there are three cases
to be considered: if v is at distance at most h− 1 from vi, then the adversary adds two
new nodes adjacent to v; if v is at distance h from vi and not all nodes of B have been
marked then the adversary decides that v is a leaf; finally, if all nodes of B have been
marked (v is the last marked node of B, i.e., B is a complete binary tree of height h), the
adversary decides that v = w0 and add one new neighbour w1 adjacent to it. Note that
we can ensure that the last node of B to be marked is at distance h of vi by connectivity
of any online strategy.

Now, let consider the following execution of the game. During the first i steps, the
surfer goes from v0 to vi. Just after the surfer arrives in vi, the observer has marked at
most (di)/4 nodes and all nodes of P ∪ {vi} must be marked since otherwise the surfer
would have won. Therefore, at most i(d/4 − 1) + 1 = 22k−2/k − 2k + 1 nodes of B are
marked when it is the turn of the surfer at vi. Since B has 2h+1 − 1 = 23k+2 − 1 nodes,
at least one node of B is not marked.

From vi, the surfer always goes toward w0. Note that the observer may guess this
strategy but it does not know where is w0 while all nodes of B have not been marked.

Then let 0 ≤ t ≤ h and let v′
t ∈ V (B) be the position of the surfer at step i + t and

Bt the subtree of B rooted at v′
t. Note that, at step i, v′

0 = vi and B0 = B. Let Bt
l and

Bt
r be the subtrees of B rooted at the children of v′

t. W.l.o.g., let us assume that the
number of marked nodes in Bt

l is at most the number of marked nodes in Bt
r, when it is

the turn of the surfer standing at v′
t. Then, the surfer moves to the root of Bt

l . That is,
v′

t+1 is the child of vt whose subtree contains the minimum number of marked nodes.
Let mt be the number of marks in the subtree of B rooted at v′

t when it is the turn
of the surfer at v′

t. Since, at beginning of step i there are at most 22k−2/k− 2k + 1 nodes
of B that are marked and k ≥ 4, m0 ≤ 22k−2/k − 2k + 1 ≤ 22k−2/k. Note that, for any



Conclusion 125

t > 0, mt ≤ (mt−1 − 1 + d
4
)/2 ≤ (mt−1 + d

4
)/2. Simply expanding this expression we get

that, for any t > 0,

mt ≤
m0

2t
+

2k

k

t+2
∑

j=3

2−j ≤ 22k−(t+2)

k
+

2k

k

t+2
∑

j=3

2−j.

Therefore, for any t ≥ 2k:

mt ≤
1
k

+
2k

k

t+2
∑

j=3

2−j ≤ 2k + 1
k

.

In particular, at step i + 2k (when it is the turn of the surfer), the surfer is at v′
2k

which is at distance k + 1 from w0. Hence, |B2k| ≥ 2k+1− 1 and at most 2k+1
k

< 2k+1− 1
of its nodes are marked. Hence, neither w0 nor any node in Q+ are marked.

From this step, the surfer directly goes to wk unless it meets an unmarked node,
in which case, it goes to it and wins. When the surfer is at wk and it is its turn, the
observer may have marked at most (2k + 2)d

4
≤ kd

2
+ d

2
≤ 2k−1 + 2k−1

k
nodes in Q+. Since

|Q+| = (d + 1)k = 2k + k and k ≥ 4, at least one neighbour of wk is not marked yet and
the surfer wins.

Theorem 48 implies that, for any online strategy S, ρ(S) = Ω(∆). Recall that the
basic strategy B, that marks all unmarked neighbours of the surfer at each step, is an
online strategy. B has trivially competitive ratio ρ(B) = O(∆). Hence, no online winning
strategy has better competitive ratio than the basic strategy up to a constant factor. In
other words:

Corollary 4. The best competitive ratio of online winning strategies is Θ(∆), where ∆
is the maximum degree.

As mentioned in the introduction, any online strategy is connected and therefore, for
any graph G and v0 ∈ V (G) we have that csn(G, v0) ≤ on(G, v0). Moreover, we recall
that, for any tree T and for any v0 ∈ V (T ), csn(T, v0) = sn(T, v0) [FGJM+12]. Hence,
the previous theorem shows that there might be an arbitrary gap between csn(G, v0) and
on(G, v0).

6.4 Conclusion

In this chapter, we studied the cost of connectivity of the Surveillance game. Despite
our results, the main question remains open. Can the difference or the ratio between
the connected surveillance number of a graph and its surveillance number be bounded by
some constant? While we were unable to prove such question, designing examples where
this is not true seems very challenging.

On the one hand, if the cost of connectivity is still open for the connected Surveillance
game, on the other hand, we successfully showed that this gap can be arbitrarily large
for the online variant even when compared to the connected variant. The family of trees
given in Section 6.3 implicitly shows that, in order to guarantee that the observer wins
the game every time, the best strategy is the basic one. While this is unfortunate since
the basic strategy might use a lot of marks compared to the best non-online strategy, it
is fortunate that the basic strategy can be computed in linear time.





Chapter 7

Fractional Turn-by-Turn

Pursuit-Evasion Games

In this chapter, we propose a framework that models several turn-by-turn pursuit-evasion
games. This framework, based on linear programming techniques, can be used to define
fractional versions of these games. In a fractional version of a pursuit-evasion game, we
allow players to play using fractions of tokens. For example, in the fractional version of
the Cops and Robbers game, both cops and robbers can be split into fractions. That is,
a vertex might be occupied by one third of a cop while another vertex might be occupied
by two thirds of a cop. We also propose an algorithm, that can be used with any game
fitting in this framework, to decide if the pursuer1 has a winning strategy.

7.1 Description of a Turn-by-Turn Pursuit-Evasion Game

In this section, we present a general game that two players, denoted by C (the pursuer)
and R (the evader), play on a directed graph G = (V, E) with n ∈ N nodes. Let
V = {1, . . . , n}.

In order to formally describe a fractional turn-by-turn pursuit-evasion game, or simply
combinatorial game, we need to introduce some notation. For any vector x ∈ R

n and for
any 1 ≤ i ≤ n, let xi be the ith coordinate of x, i.e., x = (x1, . . . , xn). The concatenation
of two vectors x, y ∈ R

n is denoted by (x, y) = (x1, . . . , xn, y1, . . . , yn) ∈ R
2n. The sum of

two vectors x, y ∈ R
n is denoted by x+y = (x1+y1, . . . , xn+yn) ∈ R

n. More generally, the
(Minkowski) sum of two subsets A, B ⊆ R

n is denoted by A+B = {a+ b | a ∈ A, b ∈ B}.
The game involves two players, C and R, that play alternatively on an n-node graph.

A configuration of the game is represented by a vector (c, r) ∈ R
2n
+ where c and r belong

to R
n
+. Intuitively, the ith coordinate of c (resp., of r) represents the amount of tokens

of player C (resp., of player R) on the node vi ∈ V (G), 1 ≤ i ≤ n. When it is its turn,
one player can perform a move, that is, it can modify the current configuration of the
game by following some rules described below. Given a configuration (c, r) ∈ R

2n
+ , player

C (resp., of player R) can only modify c (resp., r).
Before formally describing the game, we introduce some definitions. The moves of the

players will be defined by the following operators.

1The pursuer is the observer, cops, devil or guards in the games mentioned in Chapters 5 and 6.

127



128 Fractional Turn-by-Turn Pursuit-Evasion Games

• Let XC ⊆ R
n and XR ⊆ R

n be any two convex sets containing 0n and defined by a
polynomial (in n) number of constraints.

• Let ∆G be a set of stochastic matrices defining by G as follows:

∆G =











[αi,j]1≤i,j≤n

∣

∣

∣

∣

∣

∣

∣

∀1 ≤ i, j ≤ n, αi,j ≥ 0, and
∀j ≤ n,

∑

1≤i≤n αi,j = 1, and
if {i, j} /∈ E(G) then αi,j = 0











Note that ∆G is convex and contains the identity matrix.

To understand the intuition behind any matrix in ∆G, assume that a player has put
some tokens on the vertices of G and let x ∈ R

n be the vector representing these tokens,
i.e., xi is the amount of tokens on node vi ∈ V (G), 1 ≤ i ≤ n. Then, for any δ ∈ ∆G,
δx ∈ R

n represents the state after some tokens have have moved (depending on δ) along
edges of G. More precisely, for any 1 ≤ i, j ≤ n, δi,j represents the fraction of tokens
initially present in vj ∈ V (G) that moved along {vj, vi} ∈ E(G) to reach vi ∈ V (G).

On the other hand, the vectors in XC and XR will be used to add or remove tokens
from nodes of G. For any y ∈ XC (or y ∈ XR), x + y represents the new state after
some tokens have been added or removed to the configuration x. More precisely, for any
1 ≤ i, j ≤ n, yi is the variation of tokens on node vi (without considering the movement
of the tokens along edges incident to vi).

Now, let us define some particular configurations that will be used to precise a Frac-
tional game:

• let V ⊆ R
2n
+ be a non empty polytope with number of facets polynomial in n. V is

called the set of valid configurations;

• let I ⊆ V be any non empty set. I is the set of initial configurations;

• let WC ⊆ C be a polytope with number of facets polynomial in n. This is the set of
winning configurations for C;

• let WR = R
2n
+ \ V . This is the set of winning configurations for R.

• Let F ∈ N be the maximum number of turns the game is allowed to last.

• Finally, let Last ∈ {C,R} be the player that wins if the game lasts more than F
turns.

Note that ifWC∪WR is empty, then the game will always be won by player Last. Now,
we are ready to formally define the general game with parameters {V , I,WC,XC,XR, ∆G,
F, Last}. Note that this is a perfect information game.

1. Initially, C chooses any vector c0 ∈ R
n
+ such that there exists r ∈ R

n
+ with (c0, r) ∈ I.

Then, R chooses any vector r0 ∈ R
n
+ such that (c0, r0) ∈ I. (c0, r0) ∈ I is then the

initial configuration of the game.

• If (c0, r0) ∈ WC, then player C wins and the game is over.

• Else, if F = 0, then player Last wins and the game is over.

Otherwise, at each turn t ≥ 1, there are two steps:



Algorithm to Compute a Winning Strategy for player C 129

2. First, player C chooses δ ∈ ∆G and x ∈ XC such that y = (δct−1 + x, rt−1) ∈ V .
Then, player C moves to the configuration (ct, rt−1) = y.

• If (ct, rt−1) ∈ WC, then player C wins and the game is over after t turns.

3. Otherwise, R chooses δ ∈ ∆G and x ∈ XR such that y = (ct, δrt−1 + x) /∈ WC. Note
that, because In×n (identity matrix) is in ∆G and 0n ∈ XR, then there always exists
such y. Then, player R moves to the configuration (ct, rt) = y.

• if y /∈ V, i.e., if y ∈ WR, then player R wins and the game is over after t turns.

• else, if t ≥ F , then player Last wins and the game is over.

• Else, the next turn t + 1 starts (GOTO 2).

Note that the game is not symmetric in the sense that the role of both players cannot
be exchanged. In particular, the set of configurations WC in which C wants to enter
is convex, while the set of configurations WR wants to go is the complementary of the
convex set of the valid configurations for C. Moreover, only one player Last wins if it can
avoid this during a sufficient number F of turns.

A winning strategy for player C consists of a vector c0 and a function σ : R2n → XC×∆G

that allows player C to win whatever be the behaviour of player R. That is, player C
chooses c0 as initial vector, and then, at each turn t, it moves to (δct−1 + x, rt−1) where
(x, δ) = σ((ct−1, rt−1)). Following this process, player C must win in any execution of the
game.

In the next section, Section 7.2, we propose an algorithm to decide if the pursuer wins
for any game that can be described with this framework. In a semi-fractional game, only
the pursuer is allowed to use fractions of tokens, while the evader must use whole integral
tokens. We study the gap between semi-fractional and fractional games, in Section 7.3.
We show that for some games the resources used by the pursuer are the same in the
fractional or in the semi-fractional version. That is, given that the pursuer is playing in
a fractional manner, allowing the evader to play in a fractional manner does not help the
pursuer. Albeit the results in Section 7.3 are valid for any turn-by-turn pursuit-evasion
games mentioned up to this point, they are not valid for every possible game that can be
modelled with this framework. Then, in Section 7.4, we focus on some particular games
by presenting some results for the Cops and Robbers game, the Angel Problem and the
Surveillance game. Finally, in Section 7.5, we conclude this chapter with a discussion
about the results found in it.

7.2 Algorithm to Compute a Winning Strategy for player C
In this section, we describe an algorithm that given a game {V , I,WC,XC,XR, ∆G, F,
Last}, decides whether there is a winning strategy for player C.

Roughly, this is done by starting with a set C of configurations which are winning
for C in t turns, meaning that starting the game from any configuration in this set, the
game can always be won by C in at most t turns, and computing a set C ′ ⊇ C. This set
C ′ is such that any configuration in C ′ is winning for C in at most t + 1 turns. Then, we
iterate this process until we get a set C∗ such that any configuration in C∗ is winning for
C in at most F turns.

To formally state the algorithm, let us define the following sets.



130 Fractional Turn-by-Turn Pursuit-Evasion Games

• For any t ∈ N
∗, let Ct ⊆ V be the set of configurations such that, for any configu-

ration m ∈ Ct, there is a strategy with initial configuration m that allows player C
to win in at most t turns. That is, there is a winning strategy for C in the game
{V , Ct,WC,XC,XR, ∆G, t, Last}.

• Let R0 = WC and, for any t ∈ N
∗, let Rt ⊆ V be the set of configurations m such

that for every move of player R from m to m′ we have that m′ ∈ Ct. That is, even
when the first player to play is R, we have that C wins if the starting configuration
is one in Rt.

Starting from R0 = WC, our algorithm iteratively, for any 0 < t ≤ F , build Ct from
Rt−1 and Rt from Ct. Then, the desired strategy exists if and only if there is c0 ∈ R

n

such that for all r ∈ R
n with (c0, r) ∈ I then (c0, r) ∈ CF .

The remaining part of this section is devoted to the formal description of the algorithm
and its proof.

Lemma 49. For all t ∈ N:

Ct+1 = {(c, r) ∈ V | ∃x ∈ XC,∃δ ∈ ∆G, (δc + x, r) ∈ Rt}.

Proof. Let R = {(c, r) ∈ R
2n | ∃x ∈ XC, δ ∈ ∆G, (δc + x, r) ∈ Rt} ∩ V .

For any m = (c, r) ∈ R ⊆ V , we show that there is a strategy for C to win the game
in at most t + 1 turns starting from m. Indeed, by definition of R, there are x ∈ XC and
δ ∈ ∆G such that c′ = δc + x with (c′, r) ∈ Rt ⊆ V . Then, in configuration (c, r), player
C moves to (c′, r). Since (c′, r) ∈ Rt, for any move of player R, say it moves to (c′, r′),
then (c′, r′) ∈ Ct by definition of Rt. Finally, by definition of Ct, there is a strategy that
allows C to win in at most t turns starting from (c′, r′). Hence, R ⊆ Ct+1.

Reciprocally, let (c, r) ∈ Ct+1 ⊆ V . By definition, there is a strategy σ that allows C
to win in at most t + 1 turns starting from (c, r). Let (x, δ) = σ((c, r)) ∈ XC ×∆G and
c′ = δc + x. Since σ is winning, whatever be the move (c′, r′) of player R from (c′, r),
player C wins in at most t turns starting from (c′, r′). Hence, (c′, r) ∈ Rt. Therefore,
(c, r) ∈ R and Ct+1 ⊆ R.

In Lemma 50, we describe how a system of linear inequalities describing Ct+1 can be
obtained through a system of linear inequalities describing Rt. For that we first construct
an intermediate system of linear inequalities R that is equivalent to Ct+1 but which has
several auxiliary variables and, then, we proceed to eliminate those variables obtaining
the final set R′ = Ct+1. This process, however, is very costly blowing the complexity of
the algorithm. If, on the one hand, this elimination process seems rather unnecessary
since it does help describing Ct+1, on the other hand, with the auxiliary variables we are
unable to correctly construct Rt+1 from Ct+1 since one of the hypothesis of Lemma 52 is
that Rt+1 ⊆ R

2n
+ .

Lemma 50. Let t ≥ 0 and assume that Rt ⊆ R
2n
+ is a convex set described by ℓ linear

inequalities and 2n variables. Then, there is an algorithm that computes a set of

O





4

(

ℓ + O(max{p(n), n2})
4

)22n+n2






linear inequalities and 2n variables describing Ct+1, where p(n) is the maximum between
the sizes of the system of linear inequalities describing V and XC.



Algorithm to Compute a Winning Strategy for player C 131

Proof. Let us consider the following convex set R.

(c′, r) = (c′
1, . . . , c′

n, r1, . . . , rn) ∈ R
2n
+

Subject to
(c′, r) ∈ V (1)
ci = xi + ai,i +

∑

1≤j≤n,{i,j}∈E(G) ai,j ∀1 ≤ i ≤ n (2)
(c1, . . . , cn, r1, . . . , rn) ∈ Rt (3)
(x1, . . . , xn) ∈ XC (4)
c′

i = ai,i +
∑

1≤j≤n,{i,j}∈E(G) aj,i ∀1 ≤ i ≤ n (5.a)
ai,j ≥ 0 ∀1 ≤ i, j ≤ n (5.c)
aj,i = 0 ∀i 6= j ∈ [1, n]2, {j, i} /∈ E(G) (5.b)

V and XC are convex sets defined by polynomial (in n) number of linear inequalities.
Therefore, p(n) = O(nk) for some fixed k.

By hypothesis, Rt is a convex set defined by ℓ linear inequalities. Since there are
at most O(n2) linear equations (2) and (5) with O(n2) new variables, the above linear
program has a total of ℓ + O(max{p(n), n2}) linear inequalities and O(n2) variables.

Moreover, given the set of inequalities defining V , XC and Rt, the above set of in-
equalities can be computed in time O(ℓ + max{p(n), n2}). Note that if ℓ can be bounded
by a polynomial in n and t then R can be constructed in polynomial-time (in n and t).

Now, let us show that Ct+1 can be described by the above system of linear inequalities
by projecting R over the variables c′

1, . . . , cn and r1, . . . , rn. That is, (c′, r) belongs to R
projected into c′

1, . . . , cn and r1, . . . , rn if and only if (c′, r) ∈ Ct+1. Indeed,

(c′, r) belongs to R projected into c′
1, . . . , cn and r1, . . . , rn if and only if there exist

values of ci, xi and ai,j, for 1 ≤ i, j ≤ n, such that (c′, c, x, a, r) ∈ R.

⇔ (c′, r) ∈ V and there exist x = (x1, . . . , xn) ∈ XC and A = [ai,j]1≤i,j≤n ∈ R
+
n×n

such that (A1n + x, r) ∈ Rt, where 1n = (1, . . . , 1) ∈ R
n, and for all i ≤ n,

ai,i +
∑

1≤j≤n,{i,j}∈E(G) aj,i = ci and aj,i = 0 for any j 6= i, {j, i} /∈ E(G).

⇔ (c′, r) ∈ V and there exist x ∈ XC and δ = [αi,j]1≤i,j≤n = [ai,j

cj
]1≤i,j≤n ∈ ∆G such that

(δc′ + x, r) ∈ Rt.

⇔ (c′, r) ∈ Ct+1, by Lemma 49.

The set R, however, has several variables that are auxiliary. It is necessary to eliminate
the variables ci, xi and ai,j for all 1 ≤ i, j ≤ n. For this we successively use the the
Fourier–Motzkin elimination method [Sch98] on these variables. See Remark 5 for a brief
discussion on how this method works. Since there are 2n + n2 variables in total that we
want to eliminate, R′ obtained after eliminating all ci, xi and ai,j variables might have a
number of linear inequalities equal to

O





4

(

ℓ + O(max{p(n), n2})
4

)22n+n2




 .

However, since there are only 2n variables in R′ and that R′ is a projection of R into
c′

1, . . . , c′
n and r1, . . . , rn, we have that R′ = Ct+1.

Remark 5. For the sake of completeness we briefly illustrate the Fourier–Motzkin elimi-
nation method. Let Aℓ×nx ≤ b be a system of linear inequalities. Assume that we want



132 Fractional Turn-by-Turn Pursuit-Evasion Games

to eliminate the last variable of the vector x from this system. Let xn be this variable.
We first rewrite all inequalities such that ai,1 6= 0 in order to isolate xn. That is, every
inequality such that the coefficient xn is not 0 is rewritten as (Type 1) xn ≥ “something”
or (Type 2) xn ≤ “something”. Note that the coefficient of xn is 1. Then, there are two
cases to consider:

• There are only inequalities of the form xn ≥ “something” or there are only in-
equalities of the form xn ≤ “something”. In this case we simply remove all these
inequalities from Ax ≤ b.

• If there are both types of inequalities, then we combine each inequality of (Type
1) with each inequality of (Type 2). That is, for each pair of inequalities xn ≤
“somethingA” and xn ≥ “somethingB”, we add the inequality “somethingB” ≤
“somethingA” to Ax ≤ b. Then, we remove all inequalities such that the coefficient
of xn is non-zero.

This method guarantees that, after eliminating a variable, the result is a system of in-
equalities A′

ℓ′×n−1x
′ ≤ b′ such that A′x′ ≤ b′ has a solution if and only if Ax ≤ b has a

solution. Moreover, if x′ is a solution for A′
ℓ′×n−1x

′ ≤ b′ then there is x = (x1, . . . , xn)
with (x1, . . . , xn−1) = (x′

1, . . . , x′
n−1) such that x is a solution to Ax ≤ b. In other words,

we this process projects the set described by Ax ≤ b into its first n− 1 variables.
While we remove some inequalities, a single execution of this method, however, might

add ℓ2/4 new inequalities, where ℓ is the number of initial inequalities. Hence, in order
to eliminate d variables, we might add 4(ℓ/4)2d

inequalities.

The proof of next lemma is similar to the proof of Lemma 49, by exchanging the role
of ∀ and ∃ and the role of both players.

Lemma 51. Rt = {(c, r) ∈ R
2n | ∀x ∈ XR,∀δ ∈ ∆G, (c, δr + x) ∈ Ct} ∩ V.

Let x · y denote the scalar product of x and y, and let xT denote the transpose of x.

Lemma 52. Let t ≥ 0 and assume that Ct ⊆ R
2n
+ is a convex set described by ℓ linear

inequalities and 2n variables. Then, there is a polynomial-time algorithm in ℓ and n that
computes a set of at most ℓ linear inequalities and 2n variables describing Rt.

Proof. By the hypothesis, there exist A ∈ R
ℓ×2n and b = (b1, . . . , bℓ) ∈ R

ℓ such that
Ct = {m ∈ R

2n
+ | Am ≤ b}.

For any 1 ≤ i ≤ ℓ, let (zi,1, . . . , zi,n, ai,1, . . . , ai,n) be the ith row of A. Let Ai =
(ai,1, . . . , ai,n).

• Let b′
i = maxx∈XR

{Aix} and let Xi ∈ argmaxx∈XR
{Aix}. This is computable in

polynomial-time in n since XR is a convex set defined by a polynomial number of
constraints.

• For any u ∈ V (G), let ui ∈ argmaxv∈N(u){ai,v}. Let δi = [αv,u]1≤u,v,≤n such that, for
any 1 ≤ v, u ≤ n, αv,u = 1 if v = ui and αv,u = 0 otherwise. Clearly, δi ∈ ∆G.

Let us consider the following convex set R.

(c, r) = (c1, . . . , cn, r1, . . . , rn) ∈ R
2n
+

Subject to
(c, r) ∈ V
(zi,1, . . . , zi,n, Aiδi) · (c, r) ≤ bi − b′

i ,∀1 ≤ i ≤ ℓ



Semi-Fractional and Integral Games 133

Since V is a convex set defined by a size polynomial in n and Ct is a convex set
described ℓ linear inequalities, the above linear system has size polynomial in ℓ and n
and can be computed in polynomial-time (in ℓ and n).

It remains to show that:

Claim 16. R = Rt.

Let (c, r) ∈ Rt. By Lemma 51, (c, r) ∈ V and, for any δ ∈ ∆G and x ∈ XR,
(c, δr + x) ∈ Ct. Then, for any 1 ≤ i ≤ ℓ, (c, δir + Xi) ∈ Ct. In other words, A(c, δir +
Xi)T ≤ b. In particular, (zi,1, . . . , zi,n, Ai)·(c, δir+Xi) = (zi,1, . . . , zi,n, Aiδi)·(c, r)+AiXi =
(zi,1, . . . , zi,n, Aiδi) · (c, r) + b′

i ≤ bi. Hence, (c, r) ∈ R.
Let (c, r) ∈ R. Then, (c, r) ∈ V . Let δ = [α′

i,j]1≤i,j≤n ∈ ∆G and x ∈ XR. We show
that (c, δr + x) ∈ Ct. More precisely, we show that A · (c, δr + x) ≤ b. Let 1 ≤ i ≤ ℓ.
Then,

(zi,1, . . . , zi,n, Ai) · (c, δr + x) = (zi,1, . . . , zi,n)c + Aiδr + Aix.

Since Xi ∈ argmaxx∈XR
{Aix}, we have b′

i = AiXi ≥ Aix. Hence,

(zi,1, . . . , zi,n, Ai) · (c, δr + x) ≤ (zi,1, . . . , zi,n)c + Aiδr + b′
i.

Moreover, because (c, r) ∈ R, for any 1 ≤ i ≤ ℓ, (zi,1, . . . , zi,n, Aiδi) · (c, r) ≤ bi − b′
i.

Hence,
(zi,1, . . . , zi,n)c + Aiδir ≤ bi − b′

i.

To show that (zi,1, . . . , zi,n, Ai) · (c, δr + x) ≤ bi, it remains to prove that Aiδr ≤ Aiδir
On the one hand,

Aiδr =
∑

1≤j≤n

ai,j

∑

1≤k≤n

α′
j,krk =

∑

1≤k≤n

rk

∑

1≤j≤n

ai,jα
′
j,k.

Since, for any 1 ≤ k ≤ n,
∑

1≤j≤n α′
j,k = 1 and for all 1 ≤ j, k ≤ n, α′

j,k ≥ 0 and rk ≥ 0,
we get that Aiδr ≤ ∑1≤k≤n rk max1≤j≤n ai,j.

On the other hand,
Aiδir =

∑

1≤k≤n

rk

∑

1≤j≤n

ai,jδj,k.

Recall that, by definition, there is exactly one 1 ≤ j ≤ n such that δj,k = 1, and such that
ai,j = max1≤j′≤n ai,j′ , and δj,k = 0 for all the (n− 1) other values of j. Therefore, Aiδir =
∑

1≤k≤n rk max1≤j≤n ai,j. Thus, we got the result, i.e., for any 1 ≤ i ≤ ℓ, (zi,1, . . . , zi,n, Ai)·
(c, δr + x) ≤ bi.

Therefore, A(c, δr + x)T ≤ b and, by Lemma 51, (c, r) ∈ Rt. Hence, R = Rt.

Hence, by applying Lemma 50 and Lemma 52 successively, we are able to construct
CF from R0 =WC. However, this construction might take more than polynomial time.

7.3 Semi-Fractional and Integral Games

In this section, we define the semi-fractional and integral games related to the general
fractional game studied above. We then show that fractional games and semi-fractional
games are equivalent under a weak hypothesis. In particular, this implies that when the
game is related to an optimization problem, the fractional game provides a bound for the
integral game.



134 Fractional Turn-by-Turn Pursuit-Evasion Games

Let G = {V , I,WC,XC,XR, ∆G, F, Last} be a fractional game as defined in Section 7.1.
We defined the corresponding integral game as

Gint = {V , I ∩ N
2n,WC ∩ N

2n,XC ∩ N
n,XR ∩ N

n, ∆G ∩ Nn×n, F, Last},

where the rules of the game are exactly the same as before. That is, we restrict all
configurations and moves to be integral. In particular, this means that the sets of config-
urations are not convex any more (actually, the set of valid configuration C is still convex
but only configurations in C ∩ N

2n can be achieved) and that the algorithm of previous
section does not apply any more.

Let us also denote the corresponding semi-fractional game by

Gsf = {V , I ∩ (Rn × N
n),WC,XC,XR ∩ N

n, (∆C
G = ∆G, ∆R

G = ∆G ∩ Nn×n), F, Last}.

Note that we distinguished the two sets ∆C
G and ∆R

G . Indeed, the game proceeds as
before, but player R is constrained to move only on integral configurations. That is,
a move for player R is to choose δ ∈ ∆R

G = ∆G ∩ Nn×n and x ∈ XR ∩ N
n such that

m = (c, δr + x) /∈ WC and then to move from (c, r) to m. On the other hand, player C is
not constrained and its moves are still defined by δ ∈ ∆C

G = ∆G and x ∈ XC.
The next Lemma directly follows from the definition of the games.

Lemma 53. Let G be a fractional game.

• Player C has a winning strategy in G only if it has a winning strategy in Gsf .

• Player C has a winning strategy in Gint only if it has a winning strategy in Gsf .

Proof. Indeed, any winning strategy in G (resp., in Gint) is a winning strategy in Gsf .
Indeed, the possible moves and initial configurations of C in G are still possible in Gsf

while the moves (and initial configurations) of R are more constrained in Gsf . On the
other hand, the possible moves and initial configurations of C in Gint are still possible in
Gsf while the moves and initial configurations of R remains the same in Gint and Gsf .

We prove that under a small extra assumption, fractional and semi-fractional games
are equivalent. Intuitively, assume that C can win against any integral strategy of XR.
Now assume that XR can split each of its tokens into two half-tokens following two
distinct strategies. Then, C will also use half-tokens to win against the strategy of the
first half-tokens of XR, and the second half of the tokens of C will win against the strategy
followed by the remaining half-tokens of XR. By convexity of the moves of C, this is a valid
strategy. We propose here another proof, based on the algorithm defined in Section 7.2.

Theorem 54. If all the vertices of the polytopes XR, XC andWC have integral coordinates
and if I ⊆ R

n × N
n, then:

Player C has a winning strategy in G if and only if it has a winning strategy in Gsf .

Proof. By previous lemma, it is sufficient to prove that if C has a winning strategy in Gsf

then it has a winning strategy in G.
For any 1 ≤ t ≤ F , Ct is defined as in Section 7.2 as the set of configurations from

which C wins in at most t turns in the fractional game. Let Csf
t ⊆ Ct ∩ (Rn × N

n) be the
set of configurations from which C wins in at most t turns in the semi-fractional game.

Let Rsf
0 = WC ∩ (Rn × N

n) = R0 ∩ (Rn × N
n) and, for any any 1 ≤ t ≤ F , let Rt is

defined as in Section 7.2 as the set of configurations from which player R can only enter



Applications in Combinatorial Games 135

in Ct in the fractional game, i.e., in one (fractional) move. Let Rsf
t ⊆ V ∩ (Rn × N

n) be
the set of configurations from which player R can only enter in Csf

t in the semi-fractional
game, i.e., in one integral move.

Given X ⊆ R
2n, let CH(X) be the convex hull of X.

We prove by induction on t that, for any 1 ≤ t ≤ F , Ct = CH(Csf
t ) and Rt = CH(Rsf

t ).
Let t ≥ 0, and assume for purpose of induction that Rt = CH(Rsf

t ). This is true for
t = 0 by definition and because the vertices ofWC have integral coordinates. By a proof as
the one of Lemma 49, Csf

t+1 = {(c, r) ∈ V∩(Rn×Nn) | ∃x ∈ XC,∃δ ∈ ∆G, (δc+x, r) ∈ Rsf
t }.

Therefore, because Rt = CH(Rsf
t ) by induction, Csf

t+1 = {(c, r) ∈ V ∩ (Rn × N
n) | ∃x ∈

XC,∃δ ∈ ∆G, (δc + x, r) ∈ Rt} . And thus, CH(Csf
t+1) = Ct+1 by Lemma 49 and because

the vertices of XC and ∆G have integral coordinates.
Let t > 0, and assume for purpose of induction that Ct = CH(Csf

t ). This is true
for t = 1 by above paragraph. By the same proof as the one of Lemmas 49 and 51,
Rsf

t = {(c, r) ∈ V ∩ (Rn × N
n) | ∀x ∈ XR ∩ N

n,∀δ ∈ ∆R
G = ∆G ∩ Nn×n, (c, δr + x) ∈ Csf

t }.
Therefore, by induction, Rsf

t = {(c, r) ∈ V ∩ (Rn × N
n) | ∀x ∈ XR ∩ N

n,∀δ ∈ ∆R
G =

∆G ∩ Nn×n, (c, δr + x) ∈ Ct}.
The proof is then the similar as the one of Lemma 52. Recall that Ct = {x ∈ R

2n
+ |

Am ≤ b}, and Ai = (ai,1, . . . , ai,n) where (zi,1, . . . , zi,n, ai,1, . . . , ai,n) be the ith row of A,
for any 1 ≤ i ≤ ℓ.

Note first that, because the vertices of XR have integral coordinates, b′
i = maxx∈XR

{x ·
Ai} = maxx∈XR∩Nn{x ·Ai} and therefore, there is Xi ∈ N

n such that Xi ∈ argmaxx∈XR
{x ·

Ai}. Let also δi ∈ ∆G ∩ Nn×n as defined in the proof of Lemma 52.
By the same proof as the one of Lemma 52, it can be proved that Rsf

t is defined by

(c, r) = (c1, . . . , cn, r1, . . . , rn) ∈ R
n × N

n

Subject to
(c, r) ∈ V
(zi,1, . . . , zi,n, Aiδi) · (c, r) ≤ bi − b′

i ,∀1 ≤ i ≤ ℓ

Therefore, because Xi ∈ N
n (for any 1 ≤ i ≤ ℓ) and δi ∈ ∆G ∩ Nn×n, we get that

Rt = CH(Rsf
t ).

Hence, Ct = CH(Csf
t ). This is easy to conclude because I ⊆ R

n × N
n.

7.4 Applications in Combinatorial Games

In this section, we discuss how to model some of the turn-by-turn pursuit-evasion games
mentioned in this thesis with the framework given in Section 7.1. Moreover, based on
the fractional game we show how to construct strategies for the Angel Problem and the
Surveillance game that are winning with high probability and are at most a factor of
log n from the fractional strategy, where n is the order of the graph. On the other hand,
for the fractional Cops and Robbers game we show that 1 + ǫ, ǫ > 0, cops are enough to
capture the robber.

Cops and Robbers

The classical Cops and Robbers game fits our framework. Indeed, consider the Cops and
Robbers game played with k > 0 cops on a graph G = (V, E) of order n. This game can be
defined using the following sets: I = V = {(c, r) ∈ R

2n
+ |

∑

ri = 1,
∑

ci = k}, XR = XC =
{(0, . . . , 0)}, ∆C = ∆R = ∆G, Last = R and WC = {(c, r) ∈ V | ∀i ∈ V, ci ≥ ri}. While



136 Fractional Turn-by-Turn Pursuit-Evasion Games

we can limit F to be at most nk+1, since there are at most nk+1 possible configurations
for the integral game, we leave F undefined. That is, F =∞.

For an easier presentation, let us give an alternative definition of the semi-fractional
Cops and Robbers game. We consider the following game played with k cops. The cops
are tokens that can split themselves and move them along edges. The robber is one
un-splittable token that can move along edges.

First, the cops choose a position for themselves, i.e., they choose a vector C0 =
(c1, . . . , cn) ∈ R

n such that
∑

i≤n ci = k, where ci is the amount of cops at vertex i ∈ V .
Let I = {(c, r) ∈ R

n+1
+ | r ∈ V,

∑

ci = k}. Then, the robber chooses a vertex R0 ∈ V
such that (C0,R0) ∈ I. (C0,R0) is called the starting configuration of the game.

The game is played turn-by-turn. After turn t ≥ 0, let (Ct,Rt) be the current con-
figuration of the game. Then, for any i ≤ n, the cops can move any portion of ci on
any node j ∈ N(i), for any i ≤ n. Formally, the cops choose a left stochastic ma-
trix A = [αi,j]1≤i,j≤n ∈ [0, 1]n×n (i.e., for any j ≤ n,

∑

i≤n αi,j = 1) such that, for any
1 ≤ i, j ≤ n, if {i, j} /∈ E, then αi,j = 0. The new “cop-configuration” is Ct+1 = A · Ct

(intuitively, a proportion of αi,j cops are moved from vj to vi). Then, the robber may
move itself to an adjacent node, i.e., Rt+1 ∈ N [Rt].

The cops win the game if they eventually achieve (after their turn) a configuration
(c1, . . . , cn, j) such that cj ≥ 1. The robber wins otherwise.

Let fcn(G) be the smallest k such that the cops have a finite winning strategy, i.e.,
they can win in a finite number of steps whatever the robber does.

Let fcn∞(G) be the smallest k such that the cops have an infinite winning strategy,
i.e., there is a strategy for the cops, such that for any ǫ > 0 and whatever be the strategy
of the robber, the cops can achieve (after their turn) a configuration (c1, . . . , cn, j) such
that cj ≥ 1− ǫ.

The following results were obtained by Mazauric, Lamprou and Nisse in personal
communication.

Claim 17 (Mazauric et al.). For any graph G, 1 ≤ fcn∞(G) ≤ fcn(G) ≤ fractional
dominating number(G)

Proof. Clearly, from their definition, 1 ≤ fcn∞(G) ≤ fcn(G). To see that fcn(G) ≤
fractional dominating number(G), let S be a fractional dominating set of G. Assume
that V (G) = {1, . . . , n}. Then, let si be the amount of vertex vi that is on S. Hence,
for all v ∈ V ,

∑

i∈N [v] si = 1. Therefore, by placing si cops on each vertex i during its
positioning, we have that the robber can be captured by the cops in their next move.

Lemma 55 (Mazauric et al.). There are graphs G such that fcn(G) > 1

Proof. Consider any graph containing a cordless cycle with four nodes. Consider any
fractional strategy with one cop. The robber chooses first a node v such that N [v]
contains less than 1 cop. Then, there is a node, not in N [v], where there is at least
ǫ > 0 cops. During the next step and remaining on the cycle, the robber can maintain a
distance at least one between itself and a proportion ǫ′ > 0 cops of these ǫ cops.

Theorem 56 (Mazauric et al.). For any graph G, fcn∞(G) = 1, and for any β > 0,
fcn(G) ≤ 1 + β. Moreover, there is a finite winning strategy that allows the cops to
capture the robber in a linear number of turns.

Proof. If G = Kn, the result is trivial so let us assume that G has minimum degree
δ < n− 1. Let us define the following strategy. First, the k = x0 = 1 + β, in the case of



Applications in Combinatorial Games 137

fcn(G), or k = x0 = 1, in the case of fcn∞(G), cops places themselves uniformly at each
node (i.e., x0/n at each node). Then, the robber places itself at some node v. Then, δx0/n
cops at the neighbours of v goes to v. At this step, there are y1 = (1 + δ)x0/n cops at the
same node v as the robber. The remaining amount of the cops is x1 = x0−y1 = (1− 1+δ

n
)k.

By induction on t ≥ 0, assume that yt = k − xt cops occupy the same node v as
the robber and it is the turn of the robber. Moreover, the remaining amount of cops is
xt = (1 − 1+δ

n
)tk. Now, the robber moves to a node w adjacent to v. Then, the yt cops

on v move to w and there are two cases to consider:

1. if the xt remaining cops are not uniformly placed (i.e., xt/n at each node), they
move to achieve such a position. This can be done, in one step, by moving the cops
along a spanning tree of G rooted in w, where each vertex moves to its parent an
amount of cops that is proportional to the number of its descendants in the spanning
tree.

2. else, δxt/n cops at the neighbours of w goes to w. Moreover, before this move,
except the yt cops there are also xt/n cops at w. Therefore, after this step, there
are yt+1 = (1 + δ)xt/n + yt cops at the same node w as the robber.

Hence,

xt+1 = xt −
(1 + δ) xt

n
= xt

(

1− 1 + δ

n

)

= k

(

1− 1 + δ

n

)t+1

and
yt+1 = k − xt+1.

The result follows, essentially, from the fact that limt→∞ yt = 1 when β = 0 and that
there exists t > 0 such that yt ≥ 1 + β when β > 0.

Surveillance Game

The classical Surveillance game also fits our framework. Consider an observer that can
mark at most k vertices at each turn and assume that the game is played on a graph
G = (V, E) with V = {1, . . . , n} where the initial vertex is vertex 1. Then, the fractional
Surveillance game can be defined with the help of the following sets:

I = {(c1, . . . , cn, r1, . . . , rn) | c1 = 1, r1 = 1,∀i ∈ V (G) \ {1}, ci = 0, ri = 0} ,

V =
{

(c, r) ∈ R
2n
+ | ∀i ∈ V (G), ci ≥ r1,

∑

ri = 1
}

,

XC =

{

x ∈ R
n
+ |

n
∑

i=1

xi ≤ k

}

,

XR = {(0, . . . , 0)} ,

∆C = {In×n} ,

∆R = ∆G,

F =
⌈

n

k

⌉

,

Last = C,
WC =

{

(c, r) ∈ R
2n
+ | ∀i ∈ V (G), ci = 1

}

.

The set I guarantees that the only possible initial state is the one where the initial
vertex is completely marked and the surfer is entirely contained in it. The surfer does



138 Fractional Turn-by-Turn Pursuit-Evasion Games

not win the game until it is able to escape the marked area, hence V shows that the game
is not yet lost for the observer while the amount of marks on each vertex is at least the
amount of surfer on the same vertex. The sets XC and ∆C guarantees that the observer
may not move its marks along edges of the graph. While the sets XR and ∆R guarantees
that the surfer moves by sliding, or splitting and sliding, itself along edges of the graph.
Since at each step which is not the last the observer might mark at most k vertices, we
have that the observer, if it wins the game at all, wins the game in at most ⌈n/k⌉ rounds.
Finally, WC states that the observer only wins if it marks all vertices of the graph.

For the next theorem, let fsn(G, v) be the minimum k such that the observer has a
winning strategy in the fractional Surveillance game.

Theorem 57. If C, the observer, wins the fractional Surveillance game with k marks in
an n-node graph, then C wins the Surveillance game with high probability if it is allowed
to use O(k log n) marks.

In other words, if C wins the fractional Surveillance game against a surfer following
a random walk with k marks, then it has a high probability of winning against an integral
surfer following the same random walk with O(k log n) marks.

Proof. The proof of Theorem 57 closely follows that of the log n approximation for set
cover in [Vaz04].

Assume that C, the observer, and R, the surfer, play the integral Surveillance game
on a graph G, that fsn(G, v) ≤ k, that V = {1, . . . , n} and that the initial vertex is vertex
1. The initial state of the game is (c′, r′) such that: if i 6= 1 then c′

i = r′
i = 0 and if i = 1

then ci = ri = 1. Since, from Section 7.3, we have that the number of marks necessary
for the observer does not change by restricting the surfer to play in an integral manner,
assume, moreover, that the surfer moves in an integral manner. That is, in order to move,
the surfer chooses a matrix in δ ∈ ∆G ∩ N

n. Since the initial state of the game we have
the surfer entirely on vertex 1, this guarantees that the surfer remains integral during all
the game.

In the following we describe the strategy of the observer. Let (c, r) be the current
state of the game, which is (c′, r′) on the first turn of the observer. During each turn t
of the observer, let the vector xt ∈ XC be the the amount of marks used by the observer,
in the fractional Surveillance game, when the initial state is given by (c, v). That is,
xt = (x1, . . . , xn) is the amount of marks the observer would place on the vertices of G in
order to win against the surfer in the fractional Surveillance Game. Then, in the integral
game, the observer marks a vertex i if among O(log n) independent random tests with
probability xi at least one of them is a success.

We want to measure the probability that the observer loses, using this strategy, against
any strategy for the surfer in the integral game. Let At

i be the event that ri > ci at step
t of the game. In other words, At

i is the event that the observer has lost to the surfer
because of vertex i at step t.

Then, P (At
i) ≤ (x1

i )
c log n(x2

i )
c log n · · · (xt

i)
c log n. Since fsn(G, v) ≤ k we have that

∑t
i=1 xt

i = 1. Therefore, from a simple calculus manipulation, P (At
i) is minimum when

x1
i = x2

i = · · · = xt
i = 1/t. Hence, P (At

i) ≤ (1
t
)tc log n ≤ (1

e
)c log n, where e is the base of the

natural logarithm.
Then, the probability that the observer loses the game is given by P (

⋃F
t=1

⋃n
i=1 At

i).
Therefore, P (

⋃F
t=1

⋃n
i=1 At

i) ≤ n2(1
e
)c log n. Let c ≥ 3, then P (

⋃F
t=1

⋃n
i=1 At

i) ≤ 1
n
. Therefore,

the observer wins the game with high probability.



Applications in Combinatorial Games 139

Moreover, the expected cost of this strategy is given by fsn(G, v)c log n = O(k log n).

One question that remains open is how far can the gap between the fractional surveil-
lance number and the “integral” surveillance number be.

Angel problem

In its original definition, the Angel problem game is played on an infinite grid. While it
is possible to define vectors of infinite dimension in order to model configurations of this
game, the results in this chapter do not apply in the sense that the algorithms might
never finish. Hence, instead of considering the game as being played on an infinite grid
we focus on it being played in any finite graph. Then, since at each turn the devil is
allowed to mark, or “eat”, vertices of the graph, the whole graph will be marked at some
point in the game. This means that the angel is doomed to lose eventually. On the other
hand, if we give a reasonable limit on the number of turns the game is allowed to last,
then it does not seem obvious any more who wins.

Given a graph G, let ∆a
G be the set of matrices that can be obtained by multiplying

any a-tuple of matrices in ∆G and let N s(i) be the set of vertices of V (G) \ {i} that are
at distance at most s from i. For example, ∆2

G = {δ1δ2 | δ1 ∈ ∆G, δ2 ∈ ∆G}.
The Angel problem game where a devil that can mark, or “eat”, at most k vertices

and an angel that can move along at most s edges at each turn can be modelled with
the following sets, we assume that the game is played on a graph G = (V, E) with
V = {1, . . . , n} and that the initial vertex is vertex 1:

I = {(c1, . . . , cn, r1, . . . , rn) | c1 = 0, r1 = 1,∀i ∈ V (G) \ {1}, ci = 0, ri = 0},
V =

{

(c, r) ∈ R
2n
+ |

∑

ri = 1
}

,

XC =

{

x ∈ R
n
+ |

n
∑

i=1

xi ≤ k

}

,

XR = {(0, . . . , 0)},
∆C = {In×n},
∆R = ∆s

G,

F =?,

Last = R,

WC =







(c, r) ∈ R
2n
+ | ∀i ∈ V (G),

∑

j∈Ns(i)

cj ≥ ri







.

One of the main questions when modelling this game is how big should F , the maxi-
mum number of turns, be. Clearly, if F ≥ k/n, then the whole graph is marked at turn
F and the angel is doomed to lose. Therefore, we can assume that F is at most k/n.
A smaller value of F might make the game harder for the devil, since it has a smaller
amount of turns to “eat” the angel.

The proof of Theorem 58 is very similar with the proof of Theorem 57, since both
games have a similar set of rules. The main difference being how the evader, the angel
and the surfer, wins the game. The angel start in an unmarked area and tries to stay out
of it, while the surfer starts in a marked area and wants to leave it. Let fang(G, v) be the
minimum number of marks such that the devil has a winning strategy in the fractional
Angel problem game.



140 Fractional Turn-by-Turn Pursuit-Evasion Games

Theorem 58. If C, the devil, wins the fractional Angel problem game with k marks in
an n-node graph, then the devil wins the Angel problem game with high probability if it
is allowed to use O(k log n) marks.

In other words, if the devil wins the fractional Angel problem against an angel fol-
lowing a random walk with k marks, then it has a high probability of winning against an
integral angel following the same random walk with O(k log n) marks.

Proof. Assume that C, the devil, and R, the angel, play the integral Angel problem game
on a graph G, that fang(G, v) ≤ k, that V = {1, . . . , n} and that the initial vertex is
vertex 1. The initial state of the game is (c′, r′) such that: if i 6= 1 then c′

i = r′
i = 0

and if i = 1 then ci = 0 and ri = 1. Since, from Section 7.3, we have that the number
of marks necessary for the devil does not change by restricting the angel to play in an
integral manner, assume, moreover, that the angel moves in an integral manner. That is,
in order to move, the angel chooses a matrix in δ ∈ ∆s

G ∩ N
n. Since the initial state of

the game we have the angel entirely on vertex 1, this guarantees that the angel remains
integral during all the game.

In the following we describe the strategy of the devil. Let (c, r) be the current state of
the game, which is (c′, r′) on the first turn of the devil. During each turn t of the devil, let
the vector xt ∈ XC be the the amount of marks used by the devil, in the fractional Angel
problem, when the initial state is given by (c, v). That is, xt = (x1, . . . , xn) is the amount
of marks the devil would place on the vertices of G in order to win against the angel in
the fractional Angel problem. Then, in the integral game, the devil marks a vertex i if
among O(log n) independent random tests with probability xi at least one of them is a
success.

We want to measure the probability that the devil does not win at step t, using this
strategy, against any strategy for the angel in the integral game. Let At

i,j be the event
that, there is j ∈ Na(i) such that ri > cj at step t of the game. In other words, At

i,j is
the event that the devil does not win against the angel because of the amount of angel
at vertex i at step t.

Then, P (At
i,j) ≤

∑

j∈Na(i)(x1
j)

c log n(x2
j)

c log n · · · (xt
j)

c log n. Since fang(G, v) ≤ k we have
that

∑t
l=1 xl

j = 1. Therefore, from a simple calculus manipulation, P (At
i,j) is mini-

mum when for all j ∈ Na(i) we have x1
j = x2

j = · · · = xt
j = 1/t. Hence, P (At

i) ≤
∑

j∈Na(i)(
1
t
)tc log n ≤ n(1

t
)tc log n ≤ n(1

e
)c log n, where e is the base of the natural logarithm.

Then, the probability that the devil loses the game is given by P (
⋃F

t=1

⋃n
i=1 At

i,j).
Therefore, P (

⋃F
t=1

⋃n
i=1 At

i,j) ≤ n3(1
e
)c log n. Let c ≥ 4, then P (

⋃F
t=1

⋃n
i=1 At

i,j) ≤ 1
n
. There-

fore, the devil wins the game with high probability.
Moreover, the expected cost of this strategy is given by fang(G, v)c log n = O(k log n).

7.5 Conclusion

In this chapter, we studied a framework that models several turn-by-turn pursuit-evasion
games. This framework allows us to naturally define fractional versions of these games.
Moreover, we described an algorithm based on linear programming techniques that de-
cides if the pursuer has a winning strategy for any game that can be modelled by this
framework.



Conclusion 141

One disadvantage of our algorithm is that its complexity is more than exponential2.
However, from Lemma 50 and Lemma 52, the only obstacle to have a polynomial time
algorithm in t and n for deciding if player C has a winning strategy is the complex-
ity of projecting the system of linear inequalities R obtained in Lemma 50 into the 2n
variables representing the correspondent set Ci. Regrettably, the method we used, the
Fourier–Motzkin, for this projection, does not have a running time that is polynomial
on the number of linear inequalities of the input. We wonder if, with a finer analysis of
the process of projecting or with a different method for projecting, we might decrease
this complexity. In other words, the complexity of the decision problem associated with
fractional turn-by-turn games is still open.

Nevertheless, while, potentially, the number of constraints can grow more than expo-
nentially in the size of the input graph when computing projection of sets Ci (Lemma 50),
there seems to be several redundant constraints in this projection. For this reason, we
are interested in measuring the performance of this algorithm in practice.

One advantage of our algorithm is that the system of linear inequalities constructed
by it can be seen as linear relaxations of the “integral” versions of these games. Hence,
it is possible to solve “directly” the “integral” version by enforcing the variables to be
integrals.

Although the proof in this chapter are restrict to games where both players are allowed
to slide and add tokens, the results also hold for games in which:

• players can not slide tokens (∆G = {In×n});
• ∆G is different for each player (that is, one player may slide tokens along edges,

while the other may not);

• several types of tokens for each player, or several cops/several robbers;

• both players can move more than once in their turn (for example, both cops and
robbers with speed s > 1 in the Cops and Robbers game);

• tokens are on edges instead of vertices.

Despite of the fact that we were only able to prove some (non polynomial) approxima-
tion results for the Surveillance game and the Angel problem game, we think that such
approach to turn-by-turn pursuit-evasion games can lead to approximation algorithms
for other games compatible with this framework.

On the subject of Cops and Robbers, unfortunately, this approach does not seem to
be helpful, since for every graph, 1 + ǫ, ǫ > 0, cops are enough to capture the robber
in a linear number of steps. This is done by a strategy that uniformly spread the cops
over the vertices of the graph, ensuring that at least a small amount of cops is on the
same vertex as the robber and that this amount is able to follow it. One drawback of this
strategy is that it does not work for a robber of speed two. Since a robber of speed two
can move along two edges during its turn, a small amount of cops cannot “follow” the
robber. It might be interesting to investigate the fractional Cops and Robbers when the
robber has speed bigger than 1. We hope that this might lead to new insights into solving
the Meyniel’s conjecture (O(

√
n) cops can capture one robber in any n-node graph, see

Chapter 5) for the Cops and Robbers game when the robber has speed s .
We finish this part with the question whether this approach can be used for graph

searching games.
2A function f(x) is more than exponential in x, if f(x) 6= O(kx) for all k > 0.





Part III

Convexity

143





Chapter 8

Convexity in Graphs

In an effort to extend the concept of convexity, normally associated with Euclidean spaces,
Farber and Jamison proposed the following general definition of convexity [FJ86]. An
alignment over finite set X is a family C of subsets of X that is closed under intersection
and that contains both X and the empty set. The members of C are called the convex
sets of X. The pair (X, C) is then called an aligned space. For any S ⊆ X, the convex
hull of S is the smallest member of C containing S. For any S ∈ C, a hull set of S is a
set S ′ ⊆ S such that S is the convex hull of S ′.

The notion of convexity can be extended to graphs and more precisely to their set of
vertices, as a specific alignment over it. Since the notion of convexity on a graph depends
on the specific alignment over the set of vertices of the graph, there are several different
parameters corresponding to different possible alignments. In this chapter, we survey
some of the most important results concerning convexity in graphs. In Section 8.1, we
show how different alignments over the set of vertices of a graph translates to different
convexity measures. We focus on three types of convexity, the Geodesic Convexity, the
Monophonic Convexity and the P3 Convexity, which arguably translates the notion of a
“straight line” from Euclidean spaces in a more natural manner. Then, in Section 8.2,
we present some of the most important results concerning the hardness of computing
parameters associated with these convexities. Finally, in Section 8.2, we survey some
structural properties of these three types of convexities.

8.1 Alignments - Types of Convexity

In this section, we define the graph convexities that are explored in the rest of this chapter.
Through the rest of this section, unless otherwise stated, let G = (V, E) be any simple
and connected graph of order n.

Geodesic Convexity

We start by defining the Geodesic Convexity, which is related to shortest paths. Roughly,
the concept of a straight line is translated as a shortest path.

Let the closed interval, or geodesic, I[u, v] be the set of vertices of G that lie on a
shortest path between u ∈ V and v ∈ V . For any set S ⊆ V , let I[S] =

⋃

{u,v}⊆S I[u, v].
In the geodesic convexity [FJ86] a set of vertices S is convex if, for all {u, v} ⊆ S such

that w ∈ I[u, v], then w ∈ S. In other words, S is convex if, and only if, I[S] = S. Let

145



146 Convexity in Graphs

the geodetic number , geo(G), of G be the minimum integer k such that there exists S ⊆ V
with I[S] = V and |S| ≤ k. Simple examples of sets that are geodesically convex are the
empty set and V . The (geodetic) convexity number , congeo(G), of a graph G = (V, E),
defined in [CWZ02], is the maximum integer k such that there exists a convex set S ⊂ V
with |S| ≤ k. That is, k is the maximum cardinality of a convex set that is a proper
subset of V .

The geodetic convex hull, Ih[S], of a set S ⊆ V is the smallest S ′ such that S ⊆ S ′

and S ′ is convex. A geodetic hull set, or simply hull set, S ⊆ V is such that Ih[S] = V .
The geodetic hull number , or simply the hull number, hn(G), of G is the minimum k ≥ 0
such that there is a hull set S with |S| ≤ k. Figure 8.1 shows an example of a hull set of
a graph G.

ca

b

d

e

f

g

h

i

Figure 8.1: Vertices in black represent a hull set of the graph.

As stated in Chapter 1. Given a graph G and S ⊆ V (G), the process to obtain Ih[S]
can be seen as an iterative process in the following manner. Starting with S ′ = S we
repeat the following until no more vertices can be added to S ′. For every {x, y} ⊆ S ′,
we add to S ′ the vertices in I[x, y]. Then, when no more vertices can be added to S ′ we
have that Ih[S] = S ′. Moreover, S is a hull set of G if, and only if, S ′ = V (G). The hull
number of G is the minimum cardinality S such that S ′ = V (G), where S ′ is obtained
with this process when applied to S.

Monophonic Convexity

If induced paths are used in place of shortest paths in the definition of I[u, v], we get
the monophonic convexity. Formally, let the monophonic interval J [u, v] be the set of
vertices of G that lie on an induced path between u ∈ V and v ∈ V . For any set S ⊆ V ,
let J [S] =

⋃

{u,v}⊆S J [u, v].
In the monophonic convexity [FJ86] a set of vertices S is monophonic convex, or m-

convex, if, for all {u, v} ⊆ S such that w ∈ J [u, v], then w ∈ S. In other words, S is
m-convex if, and only if, J [S] = S. Simple examples of sets that are monophonic convex
are the empty set and V .

Let the monophonic number , mon(G), of G be the minimum integer k such that there
exists S ⊆ V with J [S] = V and |S| ≤ k. The m-convexity number , conmon(G), of G is
the maximum integer k such that there exists a m-convex set S ⊂ V with |S| ≤ k.

The monophonic convex hull, or simply the m-convex hull, Jh[S] of a set S ⊆ V is
the smallest S ′ such that S ⊆ S ′ and S ′ is m-convex. A monophonic hull set, or simply
m-hull set, S ⊆ V is such that Jh[S] = V . The monophonic hull number, or simply the
m-hull number, mn(G), of G is the minimum k ≥ 0 such that there is a m-hull set S with
|S| ≤ k. Figure 8.2 shows an example of a m-hull set of a graph G.



Algorithmic Aspect of Convexity 147

ca

b

d

e

f

g

h

i

Figure 8.2: Vertices in black represent a m-hull set of the graph.

P3 Convexity

The last convexity we define is the P3 Convexity. This convexity is related to paths of
length 2 in a similar way that the geodesic convexity is related to shortest paths.

Let the P3-interval, I3[u, v], between vertices u and v be defined as N [u] ∩ N [v] if
u 6= v, otherwise I3[u, v] = {u}. In other words, I3[u, v] is the set of vertices of G that
lie on any path of length exactly two between u ∈ V and v ∈ V . For any set S ⊆ V , let
I3[S] =

⋃

{u,v}⊆S I3[u, v].
In the P3 Convexity [CDS09] a set of vertices S is P3-convex if, for all {u, v} ⊆ S such

that w ∈ I3[u, v], then w ∈ S. In other words, S is convex if, and only if, I3[S] = S.
As with the other convexities, V and the empty set are examples of convex sets. Let
the P3-geodesic number , geo3(G), of G be the minimum integer k such that there exists
S ⊆ V with I3[S] = V and |S| ≤ k. The P3-convexity number , congeo3

(G), of G is the
maximum integer k such that there exists a P3-convex set S ⊂ V with |S| ≤ k.

The P3-convex hull I3h[S] of a set S ⊆ V is the smallest S ′ such that S ⊆ S ′ and S ′ is
P3-convex. A P3-hull set, S ⊆ V is such that I3h[S] = V . The P3-hull number , hn3(G),
of G is the minimum k ≥ 0 such that there is a P3-hull set S with |S| ≤ k. Figure 8.3
shows an example of a P3-hull set of a graph G.

ca

b

d

e

f

g

h

i

Figure 8.3: Vertices in black represent a P3-hull set of the graph.

8.2 Algorithmic Aspect of Convexity

In this section, we explore the hardness of decision problems related to the aforementioned
convexity parameters.

Geodesic Convexity

The difficulty of computing the geodetic number of a graph was first studied in [HLT93].
It was shown that deciding if the geodetic number of a graph is at most an integer k is



148 Convexity in Graphs

NP-complete.
In [DGK+09] Dourado et al. proved that deciding whether hn(G) ≤ k for an integer k

and a general graph G is NP-complete by a reduction from the 3-SAT problem. They also
proved that if G is a unit interval graph, a cograph or a split graph, then this problem
can be solved in time polynomial on the number of vertices of the graph.

In particular, the algorithm for computing the hull number of a cograph proposed
in [DGK+09] takes advantage of the fact that a modular decomposition of a cograph is
composed only of serial or parallel nodes. This is interesting because there are super-
classes of cographs that also have a “well behaved” modular decomposition such as P4-
sparse graphs for example. Hence, we expect that the problem of computing the hull
number on these classes of graphs to be solvable in polynomial time; something that will
be further explored on Chapter 9.

Recently, in [KN13], it was shown that there is a polynomial time algorithm to com-
pute hn(G) if G is a distance hereditary graph or a chordal graph. The algorithm proposed
for computing the hull number of a distance hereditary graph runs in linear time and it
is also able to compute the geodetic number of said graph. The main building block of
this algorithm is the fact that the split decomposition of distance hereditary graphs is
such that each of its blocks is either a clique or a star.

If techniques for computing the hull number can also be used to compute the geodetic
number of distance hereditary graphs, can the techniques to compute the hull number of
chordal graphs be used to help computing the geodetic number of chordal graphs? This
seems unlikely, since, in [DPRS10b], it was shown that deciding if geo(G) ≤ k, for a
integer k and a chordal graph G, is NP-complete.

For a general graph G and integer k, the problem of deciding if congeo(G) ≤ k is NP-
complete [Gim03]. Dourado et al. further improved this result in [DPRS12] by showing
that the result still holds even if G is a bipartite graph. A linear time algorithm to
compute congeo(G) for cographs G was proposed in [DPRS12].

Monophonic Convexity

If, on the one hand, the problem of computing the hull number of graphs is hard, on the
other hand, computing mn(G) for an arbitrary graph G = (V, E) can be done in time
O(|V |3|E|) [DPS10]. The algorithm proposed by Dourado et al. starts by computing a
clique decomposition tree [Tar85] of the graph. Then, the monophonic hull number of the
graph can be obtained by, roughly, counting the number of its simplicial vertices and the
number of “special” leaves of this decomposition.

Note that, for any distance hereditary graph G and for any {x, y} ⊆ V (G), J [u, v] =
I[u, v]. Hence, for any distance hereditary graph, we have that hn(G) = mn(G), mon(G)
= geo(G) and congeo(G) = conmon(G). Therefore, the previous algorithm to compute the
m-hull number of of distance hereditary graphs also computes their hull number. Another
consequence of this relation is that mon(G) and mn(G) can be computed in linear time
for distance hereditary graphs from the previous mentioned result in [KN13].

Dourado et al. showed in [DPS10] that the decision problems associated with the
monophonic number and the m-convexity number are NP-Complete for arbitrary graphs.

P3 Convexity

The problem of deciding if hn3(G) ≤ k is NP-complete for a general graph G and inte-
ger k [CDP+11]. A relationship resembling the one between monophonic convexity and



Structural Aspect of Convexity 149

Table 8.1: Table comparing complexity of problems associated with monophonic and geodesic
convexity on a graph G = (V, E) with |V | = n and |E| = m. The set S denotes any subset
of V . u and v are vertices of V . The “X” can correspond to either Geodetic, Monophonic or
P3-convexity depending on the column of the table.

Problem Geodetic Monophonic P3-Convexity

Is S convex? O(nm) [DGK+09] O(nm) [DPS10] O(n + m)1

Computing I[u, v] O(m) [DGK+09] NP-complete [DPS10] O(n)2

Convex Hull of S O(nm) [DGK+09] O(n2m) [DPS10] polynomial [DJR09]
X Convexity Number NP-complete [DPRS10b] NP-complete [DPS10] NP-complete [CDD+10]
X Number NP-complete [DPRS12] NP-complete [DPS10] NP-complete [JP89]
X Hull Number NP-complete [DGK+09] O(n3m) [DPS10] NP-complete [CDP+11]

geodesic convexity on distance hereditary graphs exists between the P3 convexity and
geodesic convexity. A simple consequence of a result in [SS13] is that the concepts of
P3 convexity and geodesic convexity coincide in graphs that are distance hereditary and
have an universal vertex. If G is a distance hereditary graph with an universal vertex,
then I3[u, v] = I[u, v] for any u, v ∈ V (G). Therefore, complexity results for distance
hereditary graphs with an universal vertex are valid for all the aforementioned convexi-
ties.

Deciding if geo3(G) ≤ k, for some integer k, in a general graph G is also NP-complete.
In order to see this, consider the following relationship with the 2-domination problem.
For any graph G = (V, E) and a set S ⊆ V , we have that S is a 2-dominating set1 of G
if and only if S is P3-convex and I3[S] = V . In other words, the complexity of deciding if
geo3(G) ≤ k for some integer k is the same as the complexity of deciding if there is a set
S such that |S| ≤ k and S is a 2-dominating set of V . The result follows from the fact
that the minimum 2-dominating set problem is NP-complete [JP89]. However, when G is
restricted to be a tree or a cograph, then computing geo3(G) can be done in polynomial
time [CDS09].

In [CDD+10], it was shown that it is NP-complete to decide for a split graph G and
integer k, if congeo3

(G) ≤ k. However, similarly to the P3-geodetic number, when G is
restricted to be a tree or a cograph, then computing congeo3

(G) can be done in polynomial
time [CDS09].

Table 8.1 summarizes some of the results presented in this section, by showing the
difficulty of problems related to geodesic, monophonic and P3 convexities on general
graphs.

8.3 Structural Aspect of Convexity

Since the problem of computing the aforementioned convexity parameters is often hard,
there is an interest in finding bounds for these parameters in order to better understand
them.

1Given a graph G, a set S ⊆ V (G) is k-dominating if, for every vertex v ∈ V (G) \ S, |N(v) ∩ S| ≥ k.
1A simple search for any vertex that is not on S, nor have two neighbours in S suffices.
2This can be done by taking N [u] ∩ N [v], since I3[u, v] = N [u] ∩ N [v].



150 Convexity in Graphs

Bounding the Convexity

Let diam(G) be the diameter,the length of the longest shortest path, of G. Several bounds
for the hull number of graphs were shown in [DPRS10a]. If G is a connected triangle-free
on n vertices such that δ(G) ≥ 3 and diam(G) ≥ 4, then hn(G) ≤ n−diam(G)+3

3
. If we

restrict G to be a connected cubic3 triangle-free graph on n vertices and diam(G) ≥
4, then hn(G) ≤ 2n−diam(G)+5

7
. For any connected graph G on n vertices such that

girth(G) ≥ 5 and δ(G) ≥ 2, then hn(G) ≤ 2 + n−diam(G)−1
⌈(girth(G)−1)/2⌉

.
The idea behind how these bounds can be obtained on a graph G is, roughly, the

following. Starting with S = S ′ = ∅. S is used to represent a hull set, while S ′ is used to
represent Ih[S]. Then, while S ′ 6= V (G) we do the following. If S ′ 6= I[S ′] we add to S ′

all vertices in I[S ′]. If S ′ = I[S ′], then all vertices that can be “generated” by vertices in
S are already in S ′, in other words, S ′ is convex. In this case, we need to choose another
vertex to put in S in hopes that Ih[S] = V (G). Then, we greedily choose the vertex of
V (G) \ S ′ which is farther away than any vertex in S ′ and add this vertex to both S and
S ′. If after its addition to S, |Ih[S] \S ′| ≥ k, this means that, by adding one vertex to S,
we are able to “generate” k other vertices. Moreover, if we are always able to “generate”
k other vertices when adding a vertex to S, then hn(G) ≤ n/k.

If G is a connected unit interval graph with s simplicial vertices, then geo(G) ≤
s + 2(diam(G)−1). If G is a triangle-free graph such that δ(G) ≥ 2, then geo(G) ≤ 2|M |
where M is a maximal matching of G. Furthermore, the geodetic number of chordal and
split graphs were fully characterized in [DPRS10b].

A first result related to the (geodetic) convexity number of a graph is due to Chartrand
et al.. It was shown in [CWZ02] that for any graph G of order n we have that congeo(G) =
n− 1 if and only if G has a simplicial vertex.

However, if G does not have a simplicial vertex, how small can the (geodetic) convexity
number be? This question was answered in [Kim04]. Kim showed that for every pair of
integers k and n with 2 ≤ k ≤ n− 1, there exists a connected triangle-free graph of order
n with congeo(G) = k. In [Kim04], Kim also proved a first upper bound for the (geodetic)
convexity number of k-regular graphs. If 3 ≥ k + 1 < n and G is a k-regular graph of
order n, then congeo(G) ≥ n

n−k
.

Products of Graphs and Convexity

In this section, we overview the known results related to convexity parameters of (lexico-
graphic, cartesian or strong) products of graphs. Understanding how convexity parame-
ters behave under a product operation might allows us to expand the convexity results
for some graph classes into results for graphs that are obtained through the product of
graphs in these classes.

In order to present these results, we first define each product operation. Let G and
H be two graphs.

The lexicographic product, G ⊙ H, of G and H is the graph whose vertex set is
V (G⊙H) = V (G)× V (H) and such that two vertices (g1, h1) and (g2, h2) are adjacent
if, and only if, either {g1, g2} ∈ E(G) or we have that both g1 = g2 and {h1, h2} ∈ E(G).
For a vertex g ∈ V (G), let its H-layer in G⊙H be the set H(g) = {(g, h) ∈ V (G⊙H) |
h ∈ V (H)}.

3A cubic graph is such that every vertex has degree three.



Structural Aspect of Convexity 151

The cartesian product, G×H, of G and H is the graph whose vertex set is V (G×H) =
V (G)× V (H) and such that two vertices (g1, h1) and (g2, h2) are adjacent if, and only if,
either g1 = g2 and {h1, h2} ∈ E(H); or h1 = h2 and {g1, g2} ∈ E(G).

Finally, the strong product, G ⊠ H, of G and H is the graph whose vertex set is
V (G ⊠ H) = V (G)× V (H) and such that two vertices (g1, h1) and (g2, h2) are adjacent
if, and only if, {g1, g2} ∈ E(G) or g1 = g2; and {h1, h2} ∈ E(H) or h1 = h2.

In [CJG02], it was proved that if G is a connected graph of order n and m ≥ 1, then
congeo(G ⊙ Km) = mn − 1 if, and only if, 1 ≤ n ≤ 2; or n ≥ 3 and G has a simplicial
vertex. Canoy Jr. and Garces also showed that the geodesic convexity number of the
cartesian product of two graphs can be fully characterized with the following theorem.

Theorem 59 ([CJG02]). If G and H are two connected graphs, then:

congeo(G×H) = max{|V (G)| congeo(H), |V (H)| congeo(G)}.

In [CCJ04], a full characterization of the hull number of cartesian products of graphs
was proposed.

Theorem 60 ([CCJ04]). If G and H are two connected graphs, then:

hn(G×H) = max{hn(G), hn(H)}.

Then, in [BKT08], a full characterization of the geodetic number of cartesian products
of graphs was given.

Theorem 61 ([BKT08]). If G and H are two connected graphs, then:

geo(G×H) = max{geo(G), geo(H)}.

Let G and H be graphs with at least two vertices and Y be any proper subset of the
vertices of the lexicographic product of G and H with the restriction that Y does not
induce a complete graph. In [ACKP12], Anand et al. showed a set of conditions that are
necessary and sufficient to decide if Y is (geodesic) convex or monophonic convex.

In [CHM+10], Cáceres et al. studied the geodetic number and hull number of strong
product of graphs. Let G and H be two graphs. A first result shows that if SG ⊆ V (G)
is a hull set of G and SH ⊆ V (H) a hull set of H then SG × SH is a hull set of G ⊠ H.
The same result is true if SG and SH are geodetic sets of G and H respectively, that is,
if I[SG] = V (G) and I[SH ] = V (H). Another result states that:

Theorem 62 ([CHM+10]). For any two graphs G and H we have that:

min{geo(G), geo(H)} ≤ geo(G ⊠ H) ≤ geo(G) geo(H).

Furthermore, both bounds are sharp.

Moreover, if G has no simplicial vertices then hn(G ⊠ H) ≤ hn(G). This last bound
is also sharp.

We refer to [BKT11] and [CMS05] for surveys on path convexities of graphs and
related concepts.



152 Convexity in Graphs

8.4 Objectives

In the next chapter, Chapter 9, we aim at further investigating the question of how hard
it is to compute the hull number of a graph even when we are restricted to specific classes
of graphs. As a product of this investigation, we show that the problem of computing
the hull number of an arbitrary graph is in FPT, by proposing several FPT-algorithms
for it.

In Chapter 9, we also investigate how some structural properties of graphs could
influence their Hull Number. As a result, we could provide new bounds for the hull
number of some graph classes and obtain the hull number of the lexicographic product
of two graphs based on the hull number of its factors. Although the main technique for
obtaining these bounds is not different from the one presented in this chapter, the bounds
we have found are not comparable with the ones presented in this chapter.



Chapter 9

On the Hull Number of Graphs

In this chapter, we mainly investigate the complexity of computing the hull number of
a graph. We try to understand where the difficulty of this problem lies. In order to do
that, we focus on some particular graph classes. We also propose FPT-algorithms for
computing the hull number of general graphs, where the parameter can be either the
number of its induced P4’s, its vertex cover number, or its neighbourhood diversity.

A first preliminary section, Section 9.1, recalls important results and definitions used
throughout this chapter. In Section 9.2, we answer an open question of Dourado et
al. [DGK+09] by showing that the decision problem associated with computing the hull
number of a bipartite graph is NP-complete. Then, in Section 9.3, we show a polynomial
time algorithm to compute the hull number in complement of bipartite graphs. Sec-
tion 9.4, we extend the algorithm to compute the hull number of cographs in [DGK+09]
to the superclass of (q, q − 4)-graphs. Section 9.5, is devoted to the study of the hull
number of {P5, K3}-free graphs. In Section 9.6, we show some rules that can be applied
to the graph in order to reduce its size while its hull number behaves in a controlled man-
ner. With the help of these rules we are able to construct a FPT-algorithm to compute
the hull number of a general graph where the fixed parameter can be either the neigh-
bourhood diversity or the vertex cover number. We also show how these rules can also be
employed to characterize the hull number of lexicographic product of graphs. Section 9.7,
is dedicated to the study of the behaviour of the hull number of a graph by means of
the hull number of its two connected components. This allows us to design a polynomial
time algorithm to compute the hull number of cacti graphs. Finally, in Section 9.8, we
prove tight upper bounds on the hull number some graphs.

9.1 Terminology and Tools

Otherwise stated, all graphs considered in this chapter are simple, undirected and con-
nected. Let G = (V, E) be a graph. A subgraph H of G is isometric if, for any
u, v ∈ V (H), the distance distH(u, v) between u and v in H equals distG(u, v).

In order to avoid unnecessary backtracking we recall definitions of geodesic convexity.
Given a connected graph G = (V, E), the closed interval I[u, v] of any two vertices

u, v ∈ V is the set of vertices that belong to some u-v geodesic of G, i.e., some shortest
(u, v)-path. For any S ⊆ V , let I[S] =

⋃

u,v∈S I[u, v]. A subset S ⊆ V is (geodesically)
convex if I[S] = S. Given a subset S ⊆ V , the convex hull Ih[S] of S is the smallest

153



154 On the Hull Number of Graphs

convex set that contains S.
We say that a vertex v is generated by a set of vertices S if v ∈ Ih[S]. Equivalently,

given a set S, let I0[S] = S and Ik[S] = I[Ik−1[S]], for k > 0. We say that v is generated
by S at step t ≥ 1, if v ∈ I t[S] and v /∈ I t−1[S]. Observe that the convex hull Ih[S] of S is
equal to I |V (G)|[S]. We say that S is a hull set of G if Ih[S] = V . The size of a minimum
hull set of G is the hull number of G, denoted by hn(G) [ES85].

The rest of this section is devoted to basic lemmas on hull sets. These lemmas will
serve as cornerstone of most of the results presented in this chapter.

Lemma 63 ([ES85]). For any hull set S of a graph G, S contains all simplicial vertices
of G.

Lemma 63 shows us that a simple lower bound for the hull number of a graph is the
number of its simplicial vertices. Simplicial vertices must be on every hull set, since their
neighbourhood is complete. It occurs because of, the shortest path between any two
vertices of the graph does not have any internal vertex that is simplicial.

Lemma 64 ([DGK+09]). Let G be a graph which is not complete. No hull set of G with
cardinality hn(G) contains a universal vertex.

Lemma 64 allows us to disconsider universal vertices when trying to build a hull set
a graph, unless it is complete. Since the only hull set of a complete graph is its set of
vertices, this lemma provides us an useful tool to disconsider unnecessary vertices.

Lemma 65 ([DGK+09]). Let G be a graph, H be an isometric subgraph of G and S be
any hull set of H. Then, the convex hull of S in G contains V (H).

Lemma 65 provides us a tool to understand the behaviour of convex hulls when con-
sidering some particular subgraphs. This, sometimes, allows us to combine hull sets for
subgraphs in order to obtain a hull set for the whole graph.

Lemma 66 ([DGK+09]). Let G be a graph and S a proper and non-empty subset of
V (G). If V (G) \ S is convex, then every hull set of G contains at least one vertex of S.

Lemma 66 can be seen as a generalization of Lemma 63, since for any simplicial vertex
v ∈ V (G) the set V (G) \ {v} is convex. The proof and usefulness of Lemma 66 is similar
to the one of Lemma 63. We choose to keep both lemmas in order to simplify some of
proofs found in this chapter.

9.2 Bipartite Graphs

In this section, we answer an open question of Dourado et al. [DGK+09] by showing that
the Hull Number Problem is NP-complete for the class of bipartite graphs. Since the Hull
Number Problem is in NP, as proved in [DGK+09], it only remains to prove the following
theorem:

Theorem 67. Computing the hull number of a bipartite graph G is NP-hard.

Proof. To prove this theorem, we adapt the proof presented in [DGK+09]. We reduce
the 3-SATisfiability Problem to the problem of computing the hull number of a bipartite
graph. Let us consider the following instance of 3-SAT. Given a formula in the conjunctive
normal form, let F = {C1, C2, . . . , Cm} be the set of its 3-clauses and X = {x1, x2, . . . , xn}



Bipartite Graphs 155

r

c8

c7

c6

c5

c4

c3

c2

c1

u

u′

v3
i v2

i
v1

i

b4
i b2

i

b1
i

b3
i

a4
i a2

i

a1
i

a3
i

a5
i

b5
i

y8
i

y1
i

y2
i

Figure 9.1: Subgraph of the bipartite instance G(F) containing the gadget of a variable xi that
appears positively in clauses C1 and C2, and negatively in C8. If xi appears positively in Cj ,
link a5

i to cj through yj
i . If it appears negatively, we use b5

i instead of a5
i .

the set of its boolean variables. We may assume that m = 2p, for a positive integer p ≥ 1,
since it is possible to add dummy variables and clauses without changing the satisfiability
of F and such that the size of the instance is at most twice the size of the initial instance.
Moreover, we also assume, without loss of generality, that each variable xi and its negation
appear at least once in F (otherwise the clauses where xi appears can always be satisfied).

Let us construct the bipartite graph G(F) as follows. First, let T be a full binary
tree of height p rooted in r with m = 2p leaves, and let L = {c1, c2, . . . , cm} be the set
of leaves of T . We then construct a graph H as follows. First, let us add a vertex u
that is adjacent to every vertex in L. Then, any edge {w, v} ∈ E(T ) with w the parent
of v is replaced by a path with 2h(v) edges, where h(v) is the distance between v and
any of its descendant leaves. Note that, in H, the distance between r and any leaf is
∑p−1

i=0 2i = 2p − 1 = m− 1. Moreover, it is easy to see that |V (H)| = O(m log m).
The following claims are proved in [DGK+09].

Claim 18. Let v, w ∈ V (T ) \ {r}. The closed interval of v, w in H contains the parents
of v in T if and only if v and w are siblings in T .

Claim 19. The set L is a minimal hull set of H.

Then, let H ′ be obtained by adding a one degree vertex u′ adjacent to u in H. Finally,
we build a graph G(F) from H ′ by adding, for any variable xi, i ≤ n, the gadget defined
as follows.

Let us start with a cycle {a1
i , a2

i , v1
i , b2

i , b1
i , b3

i , b4
i , v2

i , a4
i , a3

i } plus the edge {v2
i , v1

i }. Then,
add the vertex v3

i as common neighbour of v2
i and u. Add a neighbour b5

i (resp., a5
i )

adjacent to b3
i (resp., a3

i ) and a path of length 2h(r) − 3 = m− 3 edges between b5
i (resp.,



156 On the Hull Number of Graphs

a5
i ) and r. Let D be the set of internal vertices of all these 2n paths between a5

i (resp.,
b5

i ) and r, i ≤ n. Finally, for any clause Cj in which xi appears, if xi appears positively
(resp., negatively) in Cj then add a common neighbour yj

i between cj and a5
i (resp., b5

i ).
See an example of such a gadget in Figure 9.1. Note that |V (G(F))| = O(m(n + log m)).

Lemma 68. G(F) is a bipartite graph.

Proof. Let us present a proper 2-colouring c of G(F). Let c(r) = 1, and for each vertex
w in V (H), define c(w) as 1 if w is in an even distance from r, and 2 otherwise. Clearly,
c is a partial proper colouring of G(F) and moreover we have c(u) = 1 and c(cj) = 2, for
any j ∈ {1, . . . , m} (Indeed, any ci is at distance m− 1 (odd) of r in H). Let c(u′) = 2.
For every i ∈ {1, . . . , n} and for any j such that xi ∈ Cj, let c(yj

i ) = 1. For any i ≤ n,
for any x ∈ {b5

i , a5
i , v3

i , b4
i , a4

i , b1
i , v1

i , a1
i }, c(x) = 2.

Again, this partial colouring of G(F) is proper. One can easily verify that this colour-
ing can be extended to {a1

i , a2
i , v1

i , b2
i , b1

i , b3
i , b4

i , v2
i , a4

i , a3
i } for any i ≤ n. Moreover, since

c(r) = 1 and c(a5
i ) = 2 (c(b5

i ) = 2), for every i ∈ {1, . . . , n}, and since the path that we
add in G(F) between r and a5

i (b5
i ) is of odd length m− 3, one can completely extend c

in order to get a proper 2-colouring of G(F).

Claim 20. The set V (G(F)) \ {a1
i , a2

i , v1
i , b1

i , b2
i } is convex, for any i ∈ {1, . . . , n}.

Proof. Denote Wi = {a1
i , a2

i , v1
i , b1

i , b2
i }, for some i ∈ {1, . . . , n}, and W ′

i = {a3
i , b3

i , v2
i }. By

contradiction, suppose that there exists an (x, y)-shortest path containing a vertex of Wi,
for some x, y ∈ V (G(F)) \Wi. Observe that it implies that that there are x′, y′ ∈ W ′

i

such that I[x′, y′] contains a vertex of Wi, since W ′
i contains all the neighbours of Wi in

V (G(F)) \Wi. However, it is easy to verify that for any pair x, y ∈ W ′
i , I[x, y] contains

no vertex of Wi. This is a contradiction.

Lemma 69. hn(G(F)) ≥ n + 1.

Proof. Let S be any hull set of G(F). Clearly u′ ∈ S, because u′ is a simplicial vertex
of G(F) (Lemma 63). Furthermore, Claim 20 and Lemma 66 imply that S must contain
at least one vertex wi of the set {a1

i , a2
i , v1

i , b1
i , b2

i }, for every i ∈ {1, . . . , n}. Hence,
|S| ≥ n + 1.

The main part of the proof consists in showing:

Lemma 70. F is satisfiable if and only if hn(G(F)) = n + 1.

First, consider that F is satisfiable. Given an assignment A that turns F true, define
a set S as follows. For 1 ≤ i ≤ n, if xi is true in A add a1

i to S, otherwise add b1
i to

S. Finally, add u′ to S. Note that |S| = n + 1. We show that S is a hull set of G(F).
First note that a5

i , cj ∈ I[a1
i , u′], for every clause Cj containing the positive literal of xi.

Similarly, observe that b5
i , cj ∈ I[b1

i , u′], for every clause Cj containing the negative literal
of xi. Since A satisfies F , it follows L ⊆ Ih[S]. Therefore, H being an isometric subgraph
of G(F), Lemma 65 and Claim 20 imply that V (H) ⊆ Ih[S]. Furthermore, the shortest
paths between r and u have length m, which implies that all vertices a5

i , b5
i , yj

i (i ≤ n)
and all vertices in D are included in Ih[S]. It remains to observe that Ih[a5

i , b5
i , w, u′],

where w ∈ {a1
i , b1

i }, contains the variable subgraph of xi. Therefore we have that S is a
hull set of G(F).

We prove the sufficiency by contradiction. Suppose that G(F) contains a hull set S
with n + 1 vertices and that F is not satisfiable.



Bipartite Graphs 157

Recall that, by Lemma 63, u′ ∈ S. For any i ≤ n, let Wi as defined in Claim 20.
Recall also that there must be a vertex wi ∈ Wi ∩ S, for any i ≤ n. Since v1

i ∈ I[u′, a1
i ],

v1
i ∈ I[u′, b1

i ], a2
i ∈ I[u′, a1

i ] and b2
i ∈ I[u′, b1

i ], we can assume, without loss of generality,
that wi ∈ {a1

i , b1
i }, for every i ∈ {1, . . . , n} (indeed, if wi ∈ {v1

i , a2
i }, it can be replaced

by a1
i , and if wi = b2

i , it can be replaced by b1
i ). Therefore S defines the following truth

assignment A to F . If wi = a1
i set xi to true, otherwise set xi to false. As F is not

satisfiable, there exists at least one clause Cj not satisfied by A.
Using the hypothesis that F is not satisfiable, we complete the proof by showing that

there is a non empty set U such that V (G(F)) \ U is a convex set and U ∩ S = ∅. That
is, we show that Ih[S] ⊆ V (G(F)) \ U for some U 6= ∅, contradicting the fact that S is a
hull set.

For any clause Cj, let us define the subset Uj of vertices as follows. Let Pj be the
path in T between cj and r, let Xj be the p vertices in V (T ) \ V (Pj) that are adjacent
to some vertex in Pj. Then, Uj is the union of the vertices that are either in Pj or that
are internal vertices of the paths resulting of the subdivision of the edges {x, y} where
x, y ∈ Pj ∪Xj. Another way to build the set Uj is to start with the set of vertices in the
(unique) shortest path between cj and r in H and then add successively to this set, the
vertices of V (H) \ (V (T ) ∪ {u}) that are adjacent to some vertex of the current set.

Now, let U ′ =
⋃

j∈J Uj where J is the (non empty) set of clauses that are not satisfied
by A. Note that r ∈ U ′.

For any i ≤ n, let Zi be defined as follows. If wi = a1
i (xi assigned to true by A), then

Zi is the union of {bℓ
i | ℓ ≤ 5} with the set of the yk

i that are adjacent to b5
i . Otherwise,

wi = b1
i (xi assigned to false by A), then Zi is the union of {aℓ

i | ℓ ≤ 5} with the set of
the yk

i that are adjacent to a5
i .

Finally, let U = U ′∪ (
⋃

i≤n Zi)∪D. In Figure 9.1, U is depicted by the white vertices,
assuming that clause C2 is false and that xi is set to false by A. Observe that U ∩S = ∅.

It remains to prove that V (G(F)) \U is a convex set. Consider the partition {A1, A2,
A3} of V (G(F)) \ U where A1 = V (H) \ (U ∪ {u}), A2 = {u, u′} and A3 = V (G(F)) \
(U ∪ A1 ∪ A2). To prove that V (G(F)) \ U is convex, let w ∈ Ai and w′ ∈ Aj for some
i, j ∈ {1, 2, 3}. We show that I[w, w′] ∩ U = ∅ considering different cases according to
the values of i and j. Recall that V (H) \ {u} induces a tree T ′ rooted in r and that, if
a vertex of T ′ is in A1, then, by definition of U ′, all its descendants in T ′ are also in A1

(i.e., if v ∈ U ∩ V (T ′), then all ancestors of v in T ′ are in U). It is important to note
that, for any vertex v in A1, the shortest path in G(F) from v to any leaf ℓ of T ′ is the
path from v to ℓ in T ′ (in particular, such a shortest path does not pass through r and
any vertices in D).

• The case i = j = 2, i.e., m, m′ ∈ {u, u′}, is trivial;

• First, let us assume that w ∈ A1 = V (H) \ (U ∪ {u}) and w′ ∈ A2 = {u, u′}. If
w′ = u (resp., if w′ = u′) then Ih[w, w′] consists of the subtree of T ′ rooted in w
union u (resp., union u and u′). Hence, Ih[w, w′] ∩ U = ∅ because no descendants
of w in T ′ are in U .

• Second, let w, w′ ∈ A1. If one of them, say w, is an ancestor of the other in T ′,
then Ih[w, w′] consists of the path between them in T ′ (remember that r ∈ U so
w 6= r). Since no descendants of w in T ′ are in U , Ih[w, w′] ∩ U = ∅. Otherwise,
there are three cases: (1) either Ih[w, w′] consists of the path P between w and w′

in T ′, or (2) Ih[w, w′] consists of the union of the subtree R of T ′ rooted in w, the



158 On the Hull Number of Graphs

subtree R′ of T ′ rooted in w′ and u, or (3) Ih[w, w′] = R ∪ R′ ∪ P ∪ {u}. Again,
(R ∪R′ ∪ {u}) ∩ U = ∅ because no descendants of w and w′ in T ′ are in U . Hence,
it only remains to prove that when P ⊆ Ih[w, w′] then P ∩ U = ∅. It is easy to
check that P ⊆ Ih[w, w′] only in the following case: there exist x, y, z ∈ V (T ) such
that x is the parent of y and z in T , and w (resp., w′) is a vertex of the path
resulting from the subdivision of {x, y} (resp., {x, z}). In this case, it means that
all clause-vertices that are descendants of y and z are not in U . Therefore x /∈ U
and hence no descendants of x are in U . In particular, P ∩ U = ∅.

• Assume now that w ∈ A3. Let i ≤ n such that w belongs to the gadget Gi

corresponding to variable xi. Let us assume that wi = b1
i . The case wi = a1

i

can be handled in a similar way by symmetry. Then, by definition, U contains
{a1

i , . . . , a5
i } and the yj

i ’s adjacent to a5
i . With this setting, xi is set to false in the

assignment A. If there is a vertex yj
i adjacent to b5

i , let Cj be the other neighbour
of jj

i . By definition, it means that clause Cj contains the negation of variable xi.
Since xi is set to false, it means that clause Cj is satisfied and so Cj /∈ U .

Let x ∈ V (Gi) \ U . Then, any shortest path P from w to x either passes through
V (Gi) \ U or, there is yj

i adjacent to b5
i such that P passes through yj

i , Cj, u and v3
i

(the latter case may occur if a ∈ {yj
i , b5

i } and b = v3
i , or a = yj

i and b ∈ {v3
i , v2

i }
where {a, b} = {x, w}). Hence, such a path P avoids U , and the result holds if
x = w′ ∈ A3 ∩Gi.

Similarly, if x ∈ {u, u′}, then, any shortest path P from w to x either passes
through V (Gi) \ U or through yj

i , Cj, u with yj
i adjacent to b5

i . In particular, if
x = w′ ∈ {u, u′} = A2, then the result holds.

Now, let x = Cj′ be a leaf of T ′ that is not in U . Then, any shortest path P from
w to x either passes through u or through yj

i , Cj and, if j 6= j′, through u. In any
case, P avoids U . If w′ ∈ A3 \ Gi, any path between w and w′ passes through u
or through one or two leaves that are not in U . Finally, if w′ ∈ A1, let R be the
subtree of T ′ rooted in w′. Note, V (R) ⊆ Ih[w, w′]. Moreover, any shortest path
from w to w′ contains a leaf of R, i.e., a leaf not in U . By previous remarks, in all
these cases, the shortest paths between w and w′ avoid u, and Ih[w, w′] are disjoint
from U .

We conclude this section by showing one approximability result.
Let IG(G) be the incidence graph of G, obtained from G by subdividing each edge

once. That is, let us add one vertex suv, for each edge {u, v} ∈ E(G), and replace the
edge {u, v} by the edges {u, suv} and {suv, v}.

Proposition 1.
hn(IG(G)) ≤ hn(G) ≤ 2 hn(IG(G)).

Proof. Let IG(G) be the incidence graph of G. Observe that any hull set of G is a hull
set of IG(G), since for any shortest path, P = {v1, . . . , vk} in G there is a shortest path
P ′ = {v1, sv1v2 , v2, . . . , svk−1vk

, vk} in IG(G) (the edges were subdivided). Consequently,
hn(IG(G)) ≤ hn(G). However, given a hull set Sh of IG(G), one may find a hull set of
G by simply replacing each vertex of Sh that represents an edge of G by its neighbours
(vertices of G). Thus, hn(G) ≤ 2 hn(IG(G)).



Complement of Bipartite Graphs 159

Corollary 5. If there exists a k-approximation algorithm B to compute the hull number
of bipartite graphs, then B is a 2k-approximation algorithm for any graph.

9.3 Complement of Bipartite Graphs

A graph G = (V, E) is a complement of a bipartite graph if there is a partition V = A∪B
such that A and B are cliques. In this section, we give a polynomial-time algorithm to
compute a hull set of G with size hn(G). We start with some notation.

Given the partition (A, B) of V , we say that an edge {u, v} ∈ E is a crossing-edge
if u ∈ A and v ∈ B. Denote by S the set of simplicial vertices of G. Let SA = S ∩ A
and by SB = S ∩ B. Let U be the set of universal vertices of G. Note that, if G
is not a clique, U ∩ S = ∅. Let H be the graph obtained from G by removing the
vertices in S and U , and removing the edges intra-clique, i.e., V (H) = V \ (U ∪ S) and
E(H) = {{u, v} ∈ E | u ∈ A ∩ V (H) and v ∈ B ∩ V (H)}. Let C = {C1, . . . , Cr} (r ≥ 1)
denote the set of connected components Ci of H. Observe that, if G is neither one clique
nor the disjoint union of A and B, H is not empty and each connected component Ci

has at least two vertices, for every i ∈ {1, . . . , r}. Indeed, any vertex in A \ SA (resp., in
B \ SB) has a neighbour in B ∩ V (H) (resp. in A ∩ V (H)).

Theorem 71. Let G = (A∪B, E) be the complement of a bipartite n-node graph. There
is an algorithm that computes hn(G) and a hull set of this size in time O(n7).

Proof. We use the notations defined above. Recall that, by Lemma 63, S is contained in
any hull set of G. In particular, if G is a clique or G is the disjoint union of two cliques
A and B, then hn(G) = n. From now on, we assume it is not the case. By Lemma 64,
no vertices in U belong to any minimal hull set of G. Now, several cases have to be
considered.

Claim 21. If U = ∅, SA 6= ∅ and SB 6= ∅, then S is a minimum hull set of G and thus
hn(G) = |S|.

Proof. Since G has no universal vertex, a simplicial vertex in SA (in SB) has no neighbour
in B (resp., in A). Since G is not the disjoint union of two cliques, every vertex u ∈ A\SA

has a neighbour v ∈ B \ SB and vice-versa. Thus, {sa, u, v, sb} is a shortest (sa, sb)-path,
for any sa ∈ A and sb ∈ B, and then u, v ∈ Ih[S].

Hence, from now on, let us assume that U 6= ∅ or, w.l.o.g., SB = ∅.
Again, if there is some simplicial vertex in G, i.e., if SA 6= ∅, all the vertices of S

belong to any hull set of G and thus hn(G) ≥ |S|. In fact, for each connected component
of H, we prove that it is necessary to choose at least one of its vertices to be part of any
hull set of G.

Claim 22. If U 6= ∅ or SB = ∅ or SA = ∅, then hn(G) ≥ |S|+ r.

Proof. Again, all vertices of S belong to any hull set of G. We show that, for any
1 ≤ i ≤ r, V \Ci is a convex set. Thus, by Lemma 66, any hull set of G contains at least
one vertex of Ci for any i ≤ r.

It is sufficient to show that no pair u, v ∈ V (G) \ Ci can generate a vertex vi of Ci.
By contradiction, suppose that there exists a pair of vertices u, v ∈ V (G) \ Ci such that
there is a shortest (u, v)-path P containing a vertex vi of Ci. Consequently, u and v must
not be adjacent and we consider that u ∈ A and v ∈ B. If U = ∅, then, w.l.o.g., SB = ∅



160 On the Hull Number of Graphs

and v is not simplicial and has at least one neighbor in A. Hence, since U 6= ∅ or Sb = ∅,
u and v are at distance two. Consequently, P = {u, vi, v}. However, if vi ∈ A, v belongs
to Ci, because of the crossing edge {vi, v}, otherwise, u ∈ Ci. In both cases we reach a
contradiction.

Now, two cases remain to be considered. We recall that U 6= ∅ or SB = ∅.

1. If r ≥ 2, then hn(G) = |S|+ r, and we can build a minimum convex hull by taking
the vertices in S, one arbitrary vertex in A∩Ci for all i < r and one arbitrary vertex
in B ∩ Cr.

Let R = {v1, . . . , vr} such that vi ∈ Ci ∩ A for any i < r and vr ∈ Cr ∩B.

Claim 23. S ∪R is a hull set of G.

Proof. Since all vertices in U are generated by v1 and vr (that are not adjacent,
since they are in different components), it is sufficient to show that S ∪R generates
all the vertices in Ci, for any i ∈ {1, . . . , r}. Actually, we show that R generates all
the vertices in Ci.

By contradiction, suppose that there is a vertex z /∈ Ih[R]. Let i ≤ r such that
z ∈ Ci. Because Ci contains one vertex in R and is connected, we can choose z
and w ∈ Ci ∩ Ih[R] linked by a crossing edge. We will show that z ∈ Ih[R] (a
contradiction), hence, w.l.o.g., we may assume that z ∈ A. If i = r, then {v1, z, w}
is a shortest (v1, w)-path and z ∈ Ih[R].

Otherwise, recall that N(vr) ∩ A ∩ Cr 6= ∅ and, for any i < r, N(vi) ∩ B ∩ Ci 6= ∅
because vi is not simplicial for any i ≤ r. Let x ∈ N(vr) ∩ A ∩ Cr and yi ∈
N(vi) ∩ B ∩ Ci. Note that x ∈ Ih[R] because {v1, x, vr} is a shortest (vr, v1)-path,
and yi ∈ Ih[R] because {vi, yi, vr} is a shortest (vr, vi)-path. Hence, since {x, z, yi}
is a shortest (x, yi)-path, we have z ∈ Ih[R].

As |R| = r, we conclude by Claim 22 that hn(G) = |S|+ r.

2. If r = 1, then hn(G) ≤ |S| + 4, and any minimum convex hull contains at most 4
vertices not in S.

Again, S is included in any hull set of G by Lemma 63, and no vertices in U
belong to some hull set by Lemma 64. In this case, when H has just one connected
component C1 = C, one vertex of C may not suffice to generate this component, as
in the previous case. However, we prove that at most 4 vertices in C are needed.

a) If SA 6= ∅ and SB 6= ∅ (and thus U 6= ∅ because Claim 21 applies otherwise),
then hn(G) = |S|+ 1.
By Claim 22, we know that hn(G) ≥ |S| + 1. Let v be an arbitrary vertex of
C. We claim that S ∪ {v} is a minimum hull set of G. By contradiction, let
z /∈ Ih[S∪{v}]. Since C is a connected component of H, we may choose z such
that there is w ∈ N(z) ∩ C ∩ Ih[S ∪ {v}]. Moreover, we may assume w.l.o.g.
that z ∈ A, and thus w ∈ B. In that case, since SA 6= ∅, there is vA ∈ SA

and as {vA, w} /∈ E(G) (indeed, any vertex in N(vA) ∩ B must be universal
because vA is simplicial, which is not the case since w is not universal because
it belongs to C), z is generated by vA and w.



Graphs with few P4’s 161

b) If SA 6= ∅ and SB = ∅, then hn(G) ≤ |S| + 2. Let vA ∈ A ∩ C be such that
|N(vA)∩B∩C| is maximum. Since vA is not universal in G, there exists x ∈ B
such that {vA, x} /∈ E(G). Note that x ∈ C since x is not universal and SB = ∅.
Let R = {vA, x}. Observe that N(vA) ∩B ∩ C ⊆ Ih[R ∪ S] since {vA, x} /∈ E.
By contradiction, assume V (G) \ Ih[R ∪ S] 6= ∅. Let z ∈ V (G) \ Ih[R ∪ S].
First, suppose that z ∈ A. Since C is connected in H, we may assume that z
has a neighbour w ∈ Ih[R ∪ S] ∩ B ∩ C. As SA 6= ∅, there is v ∈ SA and as
{v, w} /∈ E(G) (because otherwise w would be universal in G and not in C), z
is generated by v and w. Now suppose that z ∈ B, and now it has a neighbour
w ∈ Ih[R∪S]∩A∩C. Observe that Ih[R∪S]∩B ⊆ N(w), otherwise z would
be in Ih[R ∪ S]. However, since N(vA) ∩ B ∩ C ⊂ (N(vA) ∩ B ∩ C) ∪ {x} ⊆
Ih[R ∪ S] ∩B, we get that N(vA) ∩B ∩ C ⊂ N(w) ∩B ∩ C, contradicting the
maximality of |N(vA) ∩B ∩ C|.

c) If SA = ∅ and SB = ∅, then hn(G) ≤ 4.
Let vA ∈ A∩C be such that |N(vA)∩B∩C| is maximum and vB ∈ B∩C be such
that |N(vB) ∩A ∩C| is maximum. Since vA is not universal in G and SB = ∅,
there exists y ∈ C∩B\N(va), and similarly there exists x ∈ C∩A\N(vB). Let
R = {vA, vB, x, y}. Observe that N(vA) ∩ B ⊆ Ih[R] and N(vB) ∩ A ⊆ Ih[R],
since {vA, y} /∈ E and vBx /∈ E.
By contradiction, assume V (G)\Ih[R] 6= ∅. Let z ∈ V (G)\Ih[R]. First, suppose
that z ∈ A. As in the previous case, since C is connected in H, we may assume
that z has a neighbour w ∈ Ih[R]∩B∩C. Observe that Ih[R]∩A∩C ⊆ N(w),
otherwise z would be in Ih[R]. However, since N(vB) ∩ A ∩ C ⊂ (N(vB) ∩
A ∩ C) ∪ {x} ⊆ Ih[R] ∩ A ∩ C, we get that N(vB) ∩ A ∩ C ⊂ N(w) ∩ A ∩ C,
contradicting the maximality of |N(vB) ∩ A ∩ C|.
Whenever z ∈ B, one can use the same arguments to reach a contradiction on
the maximality of |N(vA) ∩B ∩ C|.

Since |S| + 1 ≤ hn(G) ≤ |S| + 4, S is included in any hull set of G and no vertices
in U belong to some hull set, there exist a subset R of at most 4 vertices in C such that
S ∪ R is a minimum hull set of G. There are O(|V |4) subsets to be tested and, for each
one, its convex hull can be computed in O(|V ||E|) time [DGK+09]. This leads to the
announced result.

9.4 Graphs with few P4’s

As stated in Chapter 8, the hull number of a cograph can be computed in polynomial
time [DGK+09]. Since cographs are graphs that have no P4 as induced subgraph, in this
section we investigate the complexity of computing the hull number of a graph that has
“few” induced P4.

A graph G = (V, E) is a (q, q − 4)-graph, for a fixed q ≥ 4, if for any S ⊆ V ,
|S| ≤ q, then S induces at most q− 4 paths on 4 vertices. Observe that cographs are the
(4, 0)-graphs.

In this section, we generalize these results by proving that for any fixed q ≥ 4, comput-
ing the hull number of a (q, q− 4)-graph can be done in polynomial time. Our algorithm
runs in time O(2qn2) and is therefore a Fixed Parameter Tractable for any graph G,
where the number of induced P4’s of G is the parameter.



162 On the Hull Number of Graphs

Definitions and brief description of the algorithm

The algorithm that we present in this section uses the canonical decomposition of (q, q−4)-
graphs, called Primeval Decomposition. For a survey on Primeval Decomposition, the
reader is referred to [BO99]. In order to present this decomposition of (q, q − 4)-graphs,
we need the following definitions.

Let G1 and G2 be two graphs. G1 ∪ G2 denotes the disjoint union of G1 and G2.
G1 ⊕G2 denotes the join of G1 and G2, i.e., the graph obtained from G1 ∪G2 by adding
an edge between any two vertices v ∈ V (G1) and w ∈ V (G2). A spider G = (S, K, R, E)
is a graph with vertex set V = S ∪K ∪R and edge set E such that:

1. (S, K, R) is a partition of V and R may be empty;

2. the subgraph G[K ∪R] induced by K and R is the join K ⊕R, and K separates S
and R, i.e., any path from a vertex in S to a vertex in R contains a vertex in K;

3. S is a stable set, K is a clique, |S| = |K| ≥ 2, and there exists a bijection f : S → K
such that, either N(s)∩K = K−{f(s)} for all vertices s ∈ S, or N(s)∩K = {f(s)}
for all vertices s ∈ S. In the latter case or if |S| = |K| = 2, G is called thin, otherwise
G is thick.

A graph G = (S, K, R, E) is a pseudo-spider if it satisfies only the first two properties
of a spider. A graph G = (S, K, R, E) is a q-pseudo-spider if it is a pseudo-spider and,
moreover, |S ∪K| ≤ q. Note that q-pseudo-spiders and spiders are pseudo-spiders.

We now describe the decomposition of (q, q − 4)-graphs.

Theorem 72 ([BO99]). Let q ≥ 0 and let G be a (q, q − 4)-graph. Then, one of the
following holds:

1. G is a single vertex, or

2. G = G1 ∪G2 is the disjoint union of two (q, q − 4)-graphs G1 and G2, or

3. G = G1 ⊕G2 is the join of two (q, q − 4)-graphs G1 and G2, or

4. G is a spider (S, K, R, E) where G[R] is a (q, q − 4)-graph if R 6= ∅, or

5. G is a q-pseudo-spider (H2, H1, R, E) where G[R] is a (q, q − 4)-graph if R 6= ∅.

Theorem 72 leads to a tree-like structure T (G) (the primeval tree) which represents the
Primeval Decomposition of a (q, q− 4)-graph G. T (G) is a rooted binary tree where any
vertex v corresponds to an induced (q, q− 4)-subgraph Gv of G and the root corresponds
to G itself. Moreover, the vertices of subgraphs corresponding to the leaves of T (G) form
a partition of V (G), i.e., {V (Gℓ)}ℓ leaf of T (G) is a partition of V (G).

For any leaf ℓ of T (G), Gℓ is either a spider (S, K, ∅, E), or has at most q vertices.
Moreover, any internal vertex v has its label following one of the four cases in Theorem 72
corresponds to Gv. More precisely, let v be an internal vertex of T (G) and let u and w be
its two children. v is a parallel node if Gv = Gu∪Gw. v is a series node if Gv = Gu⊕Gw.
v is a spider node if u is a leaf with Gu is a spider (S, K, ∅, F ) and Gv is the spider
(S, K, R, E) where Gv[R] = Gw and Gv[S ∪K] = Gu. Finally, v is a small node if u is a
leaf with |V (Gu)| ≤ q and Gv is the q-pseudo-spider (S, K, R, E) where Gv[R] = Gw and
Gv[S ∪K] = Gu.

This tree can be obtained in linear-time [BO99].



Graphs with few P4’s 163

We compute hn(G) by a post-order traversal in T (G). More precisely, given v ∈
V (T (G)), let Hv be an optimal hull set of Gv and let H∗

v be an optimal hull set of G∗
v,

the graph obtained by adding a universal vertex to Gv. We show in the next subsection
that we can compute (Hℓ, H∗

ℓ ) for any leaf ℓ of T (G) in time O(2qn). Moreover, for any
internal vertex v of T (G), we show that we can compute (Hv, H∗

v ) in time O(2qn), using
the information that was computed for the children and grand children of v in T (G).

Theorem 73. Let q ≥ 0 and let G be a n-node (q, q − 4)-graph. An optimal hull set of
G can be computed in time O(2qn2).

Before going into the details of the algorithm in next subsection, we prove some useful
lemmas.

Lemma 74. Let G = (S, K, R, E) be a pseudo-spider with R neither empty nor a clique.
Then any minimum hull set of G contains a minimum hull set of the subgraph G[K ∪R].

Proof. Let H be a minimum hull set of G. Let HS = H ∩S and HR = H \HS. We prove
that HR is a minimum hull set of G[K ∪R].

Let H ′ be any minimum hull set of G[K ∪ R]. Note that H ′ ⊆ R because K is a set
of universal vertices in G[K ∪ R] and by Lemma 64. Moreover, By Lemma 65, because
G[K ∪ R] is an isometric subgraph of G, the convex hull of H ′ in G contains G[K ∪ R].
Hence, HS ∪H ′ is a hull set of G and hn(G) ≤ |HS|+ hn(G[K ∪R]).

Now it remains to prove that HR is a hull set of G[K ∪ R]. Clearly, if HR generate
all vertices of R in G[K ∪ R] then HR is a hull set of G[K ∪ R] since there are at least
two non adjacent vertices in R and any vertex in K is adjacent to all vertices in R. For
purpose of contradiction, assume HR does not generate R in G[K ∪R]. This means that
there is a vertex v ∈ R, that is generated in G by a vertex in S ∪ K, i.e., v ∈ R is an
internal vertex of a shortest path between s ∈ S ∪K and some other vertex, which is not
possible, since we have all the edges between K and R. Hence, hn(G[K ∪R]) ≤ |HR|.

Therefore, |HS|+ |HR| = hn(G) ≤ |HS|+ hn(G[K ∪R]) ≤ |HS|+ |HR|. So, hn(G[K ∪
R]) = |HR|, i.e., HR is a minimum hull set of G[K ∪R] contained in H.

The next lemma is straightforward by the use of isometry.

Lemma 75. Let G be a graph which is not complete and that has a universal vertex. Let
H be obtained from G by adding some new universal vertices. A set is a minimum hull
set of G if, and only if, it is a minimum hull set of H.

Dynamic programming and correctness

In this section, we detail the algorithm presented in the previous section and we prove
its correctness. Let v ∈ V (T (G)), which may therefore be either a leaf, a parallel node, a
series node, a spider node or a small node. For each of these five cases, we describe how
to compute (Hv, H∗

v ), in time O(2qn).
Let us first consider the case when v is a leaf of T (G).
If Gv is a singleton {w}, then Hv = V (Gv) = {w} and H∗

v = V (G∗
v). If Gv is a spider

(S, K, ∅, E) then Hv = S since S is a set of simplicial vertices (so it has to be included in
any hull set by Lemma 63) and it is sufficient to generate Gv. One may easily check that
if Gv is a thick spider, S is also a minimum hull set of G∗

v, i.e., S = H∗
v . However, in case

Gv is a thin spider, S does not suffice to generate G∗
v and in this case it is easy to see

that this is done by taking any extra vertex k ∈ K, in which case we have H∗
v = S ∪{k}.



164 On the Hull Number of Graphs

Finally, if Gv has at most q vertices, Hv and H∗
v can be computed in time O(2q) by an

exhaustive search.
Now, let v be an internal node of T (G) with children u and w.
If v is a parallel node, then Gv = Gu ∪Gw. Then, (Hv, H∗

v ) can be computed in time
O(1) from (Hu, H∗

u) and (Hw, H∗
w) thanks to Lemma 76.

Lemma 76 ([DGK+09]). Let Gv = Gu ∪Gw. Then (Hv, H∗
v ) = (Hu ∪Hw, H∗

u ∪H∗
w).

Proof. The fact that Hu∪Hw is an optimal hull set for Gv is trivial. The second part comes
from the fact that H∗

u (resp., H∗
w) is an isometric subgraph of H∗

v and from Lemma 65.

Now, we consider the case when v is a series node.

Lemma 77. If Gv = Gu⊕Gw, then (Hv, H∗
v ) can be computed from the sets (Hx, H∗

x) of
the children or grand children x of v in T (G), in time O(2qn).

Proof. If Gu and Gw are both complete, then the graph Gv is a clique and (Hv, H∗
v ) =

(V (Gv), V (G∗
v)).

If Gu and Gw are both not complete, let x, y be any two non adjacent vertices in Gu.
Then, we claim that Hv = H∗

v = {x, y}. Indeed, in Gv, x and y generate all vertices
in V (Gw) (resp., of G∗

w). In particular, two non adjacent vertices z, r ∈ V (Gw) are
generated. Symmetrically, z, r generate all vertices in V (Gu) (resp., in V (G∗

u)).
Without loss of generality, we suppose now that Gu is a complete graph and that

Gw is a non-complete (q, q − 4)-graph. First, observe that no vertex of Gu belongs to
any minimum hull set of Gv, since they are universal (Lemma 64). Note also that, by
Lemma 75 and since Gv is not a clique and has universal vertices, we can make Hv = H∗

v .
Hence, in what follows, we consider only the computation of Hv. Let us consider all
possible cases for w in T (G).

• w is a series node. Gw is the join of two graphs. We claim that Hv = Hw.

In this case, the graph Gw is an isometric subgraph of Gv. Thus, by Lemma 65,
any minimum hull set of Gw generates all vertices of V (Gw) in Gv. Finally, since
Gw has two non-adjacent vertices they generate all vertices of Gu in Gv.

• w is a parallel node. Gw is the disjoint union of two graphs. Let x and y be the
children of w in T (G). Then Gw = Gx ∪Gy. Let X = H∗

x if Gx is not a clique and
X = V (Gx), otherwise, let Y = H∗

y if Gy is not a clique and Y = V (Gy), otherwise.
We claim that Hv = X ∪ Y .

Clearly, if Gx (resp., Gy) is a clique, all its vertices are simplicial in Gv and then must
be contained in any hull set by Lemma 63. Moreover, recall that, by Lemma 64, no
vertex of Gu belongs to any minimum hull set of G.

Now, let z ∈ {x, y} such that Gz is not complete. It remains to show that it is
necessary and sufficient to also include any minimum hull set H∗

z of G∗
z, in any

minimum hull set of G.

The necessity can be easily proved by using Lemma 74 to every Gz that is not a
complete graph.

The sufficiency follows again from the fact that Gu is generated by two non adjacent
vertices of Gw and since, in all cases, X ∪ Y contains at least one vertex in Gx and
one vertex in Gy, all vertices in Gu will be generated.



Graphs with few P4’s 165

• w is a spider node and Gw is a thin spider (S, K, ∅, E ′). Then, Hv = S ∪ {k} = G∗
w

where k is any vertex in K.

All vertices in S are simplicial in Gv, hence any hull set of Gv must contain S by
Lemma 63. Now, in Gv, the vertices in S are at distance two and no shortest path
between two vertices in S passes through a vertex in K, since there is a join to a
complete graph. Therefore, S is not a hull set of Gv. However, since |S| ≥ 2, it is
easy to check that adding any vertex k ∈ K to S is sufficient to generate all vertices
in Gv. So S ∪ {k} is a minimum hull set of Gv.

Note that, in that way, Hv = S ∪ {k} = G∗
w.

• w is a spider node and Gw is a spider (S, K, R, E ′) that is either thick or R 6= ∅ and
R induces a (q, q − 4)-graph. Then, Hv = Hw.

If R = ∅, then Gw is thick. In this case, it is easy to check that the only minimum
hull set of Gw is S (because it consists of simplicial vertices) and it is also a minimum
hull set for Gv. Hence, Hv = Hw = S.

If R 6= ∅, then by Lemma 63 any minimum hull set of Gw contains S. Moreover,
by Lemma 74 any minimum hull set of Gw contains a minimum hull set of K ∪ R
which is composed by vertices of R.

By the same lemmas, a minimum hull set of Gw is a minimum hull set of Gv since,
by Lemma 64, no vertex of Gu belongs to any minimum hull set of Gv and Gu is
generated by non-adjacent vertices of Gw.

• w is a small node. Gw is a q-pseudo-spider (H2, H1, R, E ′) and R induces a (q, q−4)-
graph.

If R = ∅, Gv is the join of a clique Gu with a graph Gw that has at most q vertices.
No vertex of Gu belongs to any minimum hull set of Gv, since they are universal.
Thus, Hv can be computed in time O(2q) by testing all the possible subsets of
vertices of Gw.

Similarly, if R is a clique, all vertices in R are simplicial in Gv so they must belong
to any hull set of Gv. Moreover, no vertices in Gu belong to any minimum hull set
of Gv. So Hv can be computed in time O(2q) by testing all the possible subsets of
vertices of H1 ∪H2 and adding R to them.

In case R 6= ∅ nor a clique, two cases must be considered. By definition of the
decomposition, there exists a child r of w in T (G) such that V (Gr) = R.

– If G[H1] is a clique, then, Gv = (H2, H1 ∪ V (Gu), R, E) is a pseudo-spider
that satisfies the conditions in Lemma 74. Hence, any minimum hull set of
Gv contains a minimum hull set of P = G[H1 ∪ V (Gu) ∪ R]. Let Z be a
minimum hull set of Gv and let Z ′ = Z ∩ H2. By Lemma 74, we have |Z ′| ≤
hn(Gv)− hn(P ).

By Lemma 75, H∗
r is a minimum hull set of G[H1 ∪ V (Gu) ∪R]. Now, G[H1 ∪

V (Gu)∪R] is an isometric subgraph of Gv. Hence, by Lemma 65, H∗
r generates

all vertices of G[H1 ∪ V (Gu) ∪ R] in Gv. Therefore, H∗
r ∪ Z ′ will generate all

vertices of Gv. Since |H∗
r | = hn(P ), we get that |H∗

r ∪ Z ′| ≤ hn(Gv) and then
H∗

r ∪ Z ′ is a minimum hull set of Gv.



166 On the Hull Number of Graphs

So, we have shown that there exists a minimum hull set for Gv that can be
obtained from H∗

r by adding some vertices in H1 ∪ H2. Since |H1 ∪ H2| ≤ q,
such a subset of H1 ∪H2 can be found in time O(2q).

– In case G[H1] is not a clique, let x and y be two non adjacent vertices of H1.
We claim in this case that there exists a minimum hull set of Gv containing
at most one vertex of R. Let S be a minimum hull set of Gv containing at
least two vertices in R. Observe that S ′ = (S \ R) ∪ {x, y} is also a hull set
of Gv since x and y are sufficient to generate all vertices in R. Consequently,
|S ′| ≤ |S| and S ′ is minimum.
Since no hull set of Gv contains a vertex in V (Gu), there always exists a mini-
mum hull set of Gv that consists of only vertices in H1 ∪H2 plus at most one
vertex in R. Therefore an exhaustive search can be performed in time O(2qn).

Now, we consider the case when v is a spider node or a small node. That is Gv =
(S, K, R, E). If R 6= ∅, let r be the child of v such that V (Gr) = R.

Lemma 78. Let Gv = (S, K, R, E) be a spider such that R induces a (q, q − 4)-graph.
Then, Hv = H∗

v = S ∪ H∗
r if R 6= ∅ and R is not a clique, and Hv = H∗

v = S ∪ R,
otherwise.

Proof. Since all the vertices in S are simplicial vertices in Gv and in G∗
v, we apply

Lemma 63 to conclude that they are all contained in any hull set of Gv (resp., of G∗
v).

By the structure of a spider, every vertex of K (and the universal vertex in G∗
v) belongs

to a shortest path between two vertices in S and are therefore generated by them in any
minimum hull set of Gv (resp., of G∗

v). Consequently, if R = ∅, S is a minimum hull set
of Gv (resp., of G∗

v). If R is a clique, S ∪ R is the set of simplicial vertices of Gv (resp.,
of G∗

v) and also a minimum hull set of Gv (resp., of G∗
v).

Finally, if R 6= ∅ and R is not a clique, then Gv is a pseudo-spider satisfying the
conditions of Lemma 74. Similarly, G∗

v is a pseudo-spider (by including the universal
vertex in K). Then, by Lemma 74, any hull set of Gv (resp., of G∗

v) contains a minimum
hull set of G[K ∪ R] (resp., of G∗

v \ S. Moreover, any hull set contains all vertices in S
since they are simplicial. Hence, hn(Gv) = hn(G∗

v) = |S| + hn(G[K ∪ R]) (recall that,
by Lemma 75, hn(G[K ∪ R]) = hn(G∗

v \ S)). Finally, since G[K ∪ R]) is an isometric
subgraph of Gv, then H∗

r (which is a minimum hull set of G[K ∪ R] by Lemma 75)
generates G[K ∪R] in Gv (resp., in G∗

v).
Hence, S ∪H∗

r is a hull set of Gv and G∗
v. Moreover, it has size |S| + hn(G[K ∪ R]),

so it is optimal.

Lemma 79. Let Gv = (H2, H1, R, E) be a q-pseudo-spider such that R is a (q, q − 4)-
graph.

Then, Hv and H∗
v can be computed in time O(2qn).

Proof. All the arguments to prove this lemma are in the proof of Lemma 77. Moreover,
the following arguments hold both for Gv and G∗

v: they allow computation of both Hv

and H∗
v .

If R = ∅, Gv has at most q vertices, for a fixed positive integer q. Thus, its hull
number can be computed in O(2q)-time.



{P5, K3}-Free Graphs 167

Otherwise, if H1 is a clique, by Lemma 74, any minimum hull set of Gv contains a
minimum hull set of G[H1 ∪ R]. Moreover, by the same arguments as in Lemma 77, we
can show that there is an optimal hull set for Gv that can be obtained from H∗

r (minimum
hull set of G[H1 ∪R]) and some vertices in H2.

If H1 is not a clique, two non-adjacent vertices of H1 can generate R. Thus, we
conclude that there exists a minimum hull set of Gv containing at most one vertex of R.
Then, a minimum hull set of Gv can be found in O(2qn)-time, where n = |V (Gv)|.

9.5 {P5, K3}-Free Graphs

In this section, we present a linear-time algorithm to compute hn(G), for any P5-free
triangle-free graph G.

Recall that a dominating set S ⊆ V of a graph G is such that every vertex v ∈ V \ S
has a neighbour in S. Theorem 80 is one of the main building blocks in order to prove
the correctness of this algorithm.

Theorem 80 ([BT90]). G is P5-free if, and only if, for every induced subgraph H ⊆ G
either V (H) contains a dominating induced C5 or a dominating clique.

As a consequence, we have that:

Corollary 6. If G is a connected P5-free bipartite graph, then there exists a dominating
edge in G.

Theorem 81. The hull number of a P5-free bipartite graph G = (A ∪ B, E) can be
computed in linear time.

Proof. Assume that G has at least two vertices. By Corollary 6, G has at least one
dominating edge. Observe that the dominating edges of a bipartite graph can be found
in linear time by computing the degree of each vertex and then considering the sum of
the degrees of the endpoints of each edge. For a dominating edge, this sum is equal to
the number of vertices.

• Consider first the case in which G has at least two dominating edges. Let {u, v}, {x,
y} ∈ E(G) be such dominating edges. Consider that u, x ∈ A and v, y ∈ B.

u

x

v

y

Figure 9.2: Example of two dominating edges on a bipartite graph. Dominating edges are
represented by thick edges.

If x 6= u and v 6= y, then we claim that {u, x} is a minimum hull set of G. An
example of this case can be found in Figure 9.2. Indeed, since u and x are not



168 On the Hull Number of Graphs

adjacent and every vertex in B is a common neighbour of u and x, and then {u, x}
generate all the vertices in B, particularly v and y. Similarly, all the vertices of A
are in a shortest (v, y)-path. Thus, Ih({u, x}) = V (G). Therefore, {u, x} is a hull
set for G and hn(G) = 2.

Assume now, w.l.o.g., that u 6= x and v = y. An example of this case can be found
in Figure 9.3.

u

x

v = y

Figure 9.3: Example of two dominating edges on a bipartite graph that share one same endpoint.
Dominating edges are represented by thick edges.

Again, B ⊆ Ih({u, x}). Observe that, if there are simplicial vertices1 in V (G), they
must all belong to A, since u and x are not neighbours, but they are adjacent to
all vertices in B. In case |B| = 1, then all vertices in A are simplicial vertices, and
therefore A is the minimum hull set of G.

Then, consider now that |B| ≥ 2.

In case there is no simplicial vertex in A, {u, x} is a minimum hull set, since B ⊆
Ih({u, x}) and every vertex in A has at least two neighbours in B. In case there are
simplicial vertices in A, we claim that S ∪ {b} is a minimum hull set of G, where
S ⊂ A is the set of simplicial vertices of G and b is a vertex in B distinct from v.
Indeed, by Lemma 63, we know that S must be part of any hull set of G and observe
that Ih(S) = S ∪ {v} (the only neighbour of each simplicial vertex is exactly v).
Consequently, since |B| ≥ 2, at least one more vertex must be chosen to be part of
a minimum hull set of G. We claim that if we choose any arbitrary b ∈ B \ {v},
then S ∪ {b} is a minimum hull set of G. Indeed, let s ∈ S. Since {s, b} /∈ E and
{x, v}, {u, v} are dominating edges, x, u and v are generated by {s, b}. But then,
as B ⊆ Ih({u, x}), B is generated. Finally, every vertex in A is either simplicial, in
case it belongs to S, or is adjacent to two vertices in B and therefore is generated
by its neighbours.

• Consider now that G has only one dominating edge {u, v} and that, w.l.o.g., u ∈ A
and v ∈ B. Let H = G[V \ {u, v}]. An example of this case can be found in
Figure 9.4.

The proof of this case uses the same techniques of Theorem 71. That is, we decom-
pose G based on the connected components of some particular subgraph of G.

1Since G is bipartite, these vertices have degree one.



{P5, K3}-Free Graphs 169

u

x

v = y

Figure 9.4: Example of a bipartite graph with only one dominating edge. The dominating edge
is represented by a thick edges. Two connected component of H are represented by colored
edges.

We may assume H is not the empty graph, for otherwise G is just one edge. Let
C1, . . . , Ck, k ≥ 1, be the connected components of H. We claim that V \ Ci is a
convex set of G, for every i ∈ {1, . . . , k}.
Since Ci is a connected component in H, the only vertices in V \ Ci that may be
adjacent to a vertex in Ci are u and v. Suppose a shortest (s, t)-path P such that
s, t ∈ V \Ci and containing at least one vertex of Ci. It would pass through u and v.
But there is an edge between u and v, so there is a contradiction because P would
not be a shortest path. Therefore, V \ V (Ci) is convex.

Consequently, by Lemma 66, for each connected component Ci of H at least one
vertex of Ci must be chosen to be part of a minimum hull set of G (observe that
simplicial vertices are the particular case in which |Ci| = 1).

If k = 1, observe that G is not a complete bipartite graph, as we are assuming
there is exactly one dominating edge. Let w ∈ A and z ∈ B be two non-adjacent
vertices of C1 = H. In this case, we claim that {w, z} is a minimum hull set of G.
By contradiction, suppose that there exists a vertex p /∈ Ih({w, z}). First observe
that u and v belong to Ih({w, z}). Then, w.l.o.g., we may assume that p has a
neighbour q in Ih({w, z}) which is not in {u, v}, since C1 is a connected component
in H. However, since {u, v} is a dominating edge, either {q, p, u} or {q, p, v} is a
shortest path between two vertices of Ih[{w, z}] and p should belong to Ih[{w, z}],
a contradiction.

Now, suppose that k > 1. Let W = {w1, . . . , wk} ⊆ V (G) be such that W ∩A 6= ∅,
W ∩ B 6= ∅ and wi ∈ Ci, for every i ∈ {1, . . . , k}. We claim that W is a minimum
hull set of G. By Lemma 66, hn(G) ≥ k, so it suffices to show that Ih[W ] = V (G).
Observe that u and v belong to Ih(W ), since W ∩ A 6= ∅ and W ∩ B 6= ∅. Then,
by contradiction, suppose that there exists a vertex p /∈ Ih[W ] and let Cp be its
connected component in H. Again, we may assume that p has a neighbour q in
Ih[{w, z}] which belongs to Cp, since Cp is a connected component and Cp∩W 6= ∅.
However, since {u, v} is a dominating edge, either {q, p, u} or {q, p, v} is a shortest
path in G and p should belong to Ih[{w, z}], a contradiction. Therefore, |W | = k =
hn(G).

Finally, observe that all these cases can be checked in linear time and thus hn(G) can
be computed in linear time.



170 On the Hull Number of Graphs

For the next result, we mainly rely on the fact that the time complexity of finding
the convex hull of a set of vertices S ⊆ V (G) of a graph G is O(|S||E(G)|), as described
in [DGK+09].

Corollary 7. If G is a P5-free triangle-free graph, then hn(G) can be computed in
O(|V (G)|3|E(G)|).

Proof. By Theorem 80, G either has a dominating induced C5 or a dominating clique of
size at most two, since it is triangle-free.

In case it has a dominating C5 = v1, . . . , v5, we claim that {v1, v3, v5} is a hull set
of G. To prove this fact, first observe that Ih[{v1, v3, v5}] ⊇ V (C5). Moreover, since
G is connected, and it has no induced P5 and no triangle, we conclude that any vertex
w ∈ V (G) \ V (C5) has two non-adjacent neighbours in C5, and so w ∈ Ih[{v1, v3, v5}].
Thus, if G has a dominating C5, we can test if there is a minimum hull set of size two
in O(|V (G)|2|E(G)|). Otherwise, we have that hn(G) = 3 and {v1, v3, v5} is a minimum
hull set of G.

If G has a dominating clique of size one, then G must be a star since it is triangle-free.
Thus, hn(G) = |V (G)| − 1.

Finally, if G has a dominating edge {u, v}, we claim that G is bipartite. Since G is
triangle-free and {u, v} is a dominating edge, we have that N(u) and N(v) are stable sets
and that N(u) ∩ N(v) = ∅. Thus, G is bipartite and, by Theorem 81, we can compute
its hull number in linear time.

Considering all the cases, we have that either hn(G) ≤ 3 or hn(G) = |V (G)| − 1.
Therefore, we can test in time O(|V (G)|3|E(G)|), for each subset of V (G) with at most
3 vertices, if it is a hull set for G. If there is no set S ⊆ V (G) with |S| ≤ 3 such that S
is a hull set for G, then hn(G) = |V (G)| − 1.

9.6 Reduction Rules

In this section, we present three reduction rules to compute the hull number of a graph.
We need to introduce some definitions.

Given a graph G, we say that two vertices v and v′ are twins if N(v)\{v′} = N(v′)\{v}.
If v and v′ are adjacent, we call them true twins, otherwise we say that they are false
twins.

Let G be a graph and v and v′ be two of its vertices. The identification of v′ into v
is the operation that produces a graph G′ such that V (G′) = V (G) \ {v′} and E(G′) =
(E(G) \ {{v′, w} | w ∈ NG(v′)}) ∪ {{v, w} | {v′, w} ∈ E(G) and w 6= v}.

v

v′

a

b

Rule 1

v a

b

Figure 9.5: Twin vertices v and v′ have their neighbourhood represented by the elipse. Vertices
a and b are not adjacent. The vertex v′ is identified into v after application of Rule 1.



Reduction Rules 171

Lemma 82 (Rule 1). Let G be a graph and v and v′ be non-simplicial and twin vertices.
Let G′ be obtained from G by the identification of v′ into v. Then, hn(G) = hn(G′). A
scheme of this rule can be found in Figure 9.5.

Proof. Let u and w be two non-adjacent neighbours of v and thus also of v′ in G. In
order to show that hn(G) ≤ hn(G′), let S be a minimum hull set of G′. Since G′ is an
isometric subgraph of G, V (G) \ {v′} ⊆ Ih[S] by Lemma 65. Moreover, {v′} ⊆ IG[u, w],
hence S is a hull set of G.

To prove that hn(G) ≥ hn(G′), let S be a minimum hull set of G. We may assume that
S does not contain both v and v′, because if there exists a minimum hull set containing
both of them, then we can replace v and v′ by u and w obtaining a hull set of same size,
since v, v′ ∈ IG[u, w].

Suppose first that v, v′ /∈ S. Let {x, y} 6= {v, v′} and let P be a shortest (x, y)-path.
Observe that P cannot contain both v and v′. In case v′ (resp. v) is contained in P , then
one can replace it by v (resp. v′) and obtain another shortest path, as v and v′ have the
same neighbourhood. In particular, this implies that the minimum k such that v′ ∈ Ik

G[S]
is equal to the minimum k′ such that v ∈ Ik′

G′ [S], and therefore for i < k, I i
G′ [S] = I i

G[S].
It also implies that IG[v′, w] \ {v′} = IG′ [v, w] \ {v}, w /∈ {v, v′}, and therefore for i ≥ k
we have that I i

G′ [S] = I i
G[S] \ {v′}. As a consequence, S is a hull set of G′.

Finally, suppose that either v or v′ is in S. We may assume w.l.o.g. that v ∈ S. Then
we can use the same argument as in the last paragraph to show that for every 1 ≤ i ≤ n
its true that I i

G′ [S] = I i
G[S] \ {v′} and then again we have that S is a hull set of G′.

v

v′

v′′

K Rule 2

v

v′ K

Figure 9.6: False twin vertices v, v′ and v′′ have their neighbourhood represented by the ellipse.
The vertex v′′ is identified into v after application of Rule 2.

Lemma 83 (Rule 2). Let G be a graph and v, v′, v′′ be simplicial and pairwise false twin
vertices. Let G′ be obtained from G by the identification of v′′ into v. Then, hn(G) =
hn(G′) + 1. A scheme of this rule can be found in Figure 9.6.

Proof. In order to show that hn(G) ≤ hn(G′)+1, observe that G′ is an isometric subgraph
of G and that v′′ is simplicial. Consequently, any hull set S of G′ is such that Ih[S] =
V (G) \ {v′′}, hence S ∪ {v′′} is a hull set of G, by Lemmas 63 and 65.

To show that hn(G) ≥ hn(G′) + 1. Let S be a hull set for G and S ′ = S \ {v′′}.
Since v, v′ and v′′ are simplicial, we know that {v, v′, v′′} ⊆ S. Any shortest (v′′, u)-path,
with u ∈ V \ {v′, v′′} is still a shortest path if v′′ is replaced by v′, so I[v′′, u] \ {v′′} =
I[v′, u] \ {v′}. In the case of the shortest (v′′, v′)-path, replacing v′′ by v is still a shortest
path and I[v′′, v′] \ {v′′} = I[v, v′] \ {v}. Therefore Ih[S ′] = Ih[S] \ {v′′} and then S ′ is a
hull set of G′.



172 On the Hull Number of Graphs

Observe that we cannot simplify the statement of Lemma 83 to consider any pair
of simplicial false twin vertices instead of triples. As an example, consider the graph
obtained by removing an edge {u, v} from a complete graph with more than 3 vertices.

v

v′

K Rule 3

v

K

Figure 9.7: True twin vertices v and v′ have their neighbourhood represented by the ellipse.
The vertex v′ is identified into v after application of Rule 3.

Lemma 84 (Rule 3). Let G be a graph and v, v′ be simplicial and true twin vertices. Let
G′ be obtained from G by the identification of v′ into v. Then, hn(G) = hn(G′) + 1. A
scheme of this rule can be found in Figure 9.7.

Proof. In order to show that hn(G) ≤ hn(G′)+1, observe that G′ is an isometric subgraph
of G and that v′ is simplicial. Let S be a hull set of G′. Then S ∪ {v′} is a hull set of G,
by Lemmas 63 and 65.

Now, we show that hn(G) ≥ hn(G′) + 1. Let S be a hull set of G. Since v and v′

are simplicial, by Lemma 63 we know that v, v′ ∈ S. Observe that, for every w ∈ V (G′),
we have IG[v′, w] \ {v′} ⊆ IG′ [v, w]. Thus, S \ {v′} is a hull set of G′ and the result
follows.

FPT-algorithm for the Hull Number

The neighbourhood diversity of a graph G = (V, E) is k, if its vertex set can be partitioned
into k sets S1, . . . , Sk, such that any pair of vertices u, v ∈ Si are twins. This parameter
was proposed by Lampis [Lam12], motivated by the fact that a graph of bounded vertex
cover also has bounded neighbourhood diversity, and therefore the later parameter can
be used to obtain more general results.

To see that a graph of bounded vertex cover has bounded neighbourhood diversity,
let G be a graph that has a vertex cover S ⊆ V (G) of size k, and let I = V (G) \S. Since
S is a vertex cover, observe that I is an independent set. Therefore, vertices in I can
be partitioned in at most 2k sets (one for each possible subset of S), where each of these
sets contains twin vertices, i.e. vertices having the same neighbourhood in S. Moreover,
the vertices in S may be partitioned in k sets of singletons, what gives a partition of the
vertices of the graph into k + 2k sets of twin vertices. Then, the neighbourhood diversity
of the graph is at most k + 2k. Many problems have been shown to be FPT when the
parameter is the neighbourhood diversity [Gan12].

Now, we use the concept of neighbourhood diversity to obtain the following result:

Theorem 85. Let G be a graph whose neighbourhood diversity is at most k. Then, there
exists an FPT-algorithm that runs in O(4k poly(|V (G)|))-time, where poly(x) = O(xq)
for some constant q, to compute hn(G).



Reduction Rules 173

Proof. Lampis proved that a neighbourhood partition of G can be constructed in time
O(poly(|V (G)|)) [Lam12]. Observe that each part is either an independent set of false
twin vertices or a clique of true twin vertices. We now use Lemmas 82, 83 and 84 to
reduce each of these parts to at most two vertices.

First, in case there are parts of size greater than one consisting of non-simplicial
vertices, we reduce these parts to a single vertex by the identification of its vertices. This
procedure generates a graph G′ whose hull number is equal to hn(G), by Lemma 82.

Observe that if a vertex is simplicial, then its part is composed of simplicial vertices.
In the sequence, we reduce each part of size greater than two containing only independent
simplicial false twins to two vertices, by applying Lemma 83. If c identifications are done
in this procedure, then the hull number of the graph G′′ obtained after this procedure is
hn(G′′) = hn(G′)− c = hn(G)− c.

Then, we reduce all the parts composed of pairwise adjacent simplicial true twins to
one vertex, by applying Lemma 84. In the end of this procedure, we obtain a graph G′′′

such that hn(G′′′) = hn(G′′)−c′ = hn(G)−c−c′, where c′ is the number of identifications
that were made in this last procedure.

Observe that G′′′ has at most 2k vertices, since the neighbourhood partition is of size
at most k and each part is reduced to at most two vertices. Finally, we can enumerate
all the subsets of V (G′′′) (there are at most 22k of them) and test for each of these sets
whether it is a hull set. Hence, we obtain hn(G′′′) and therefore hn(G).

Another consequence of this proof is to provide a kernelization algorithm and where
G′′′ is a kernel of linear size.

As pointed in Chapter 1, a graph of bounded vertex cover size has also bounded
neighbourhood diversity, therefore the previous result also holds for this parameter, but
without a linear kernel.

Hull Number of Lexicographic Product of Graphs

The reduction rules can also be applied the lexicographic product of graphs. More pre-
cisely, we use Lemma 82 and Lemma 84 to characterize the hull number of lexicographic
product of two graphs. Let S(G) denote the set of simplicial vertices of G.

Observe that if G has a single vertex, then hn(G⊙H) = hn(H). Else, we have that:

Theorem 86. Let G be a connected graph, such that |V (G)| ≥ 2, and let H be an
arbitrary graph. Then,

hn(G⊙H) =







2, if H is not complete;

(|V (H)| − 1)|S(G)|+ hn(G), otherwise.

Proof. If H is not complete, since G is connected and it has at least two vertices, any two
non-adjacent vertices in the same H-layer suffice to generate all the vertices of G⊙H.

We consider now that H is a complete graph on k vertices. First, observe that all
the vertices in the same H-layer are all simplicial vertices or they are all non-simplicial
vertices. Moreover, a vertex is simplicial in G if, and only if, its corresponding H-layer
in G⊙H is composed of simplicial vertices.

First, we obtain from G ⊙H a graph F by reducing each H-layer composed of non-
simplicial vertices to a single vertex. By Lemma 82, hn(G ⊙ H) = hn(F ). Then, we
apply Lemma 84 to reduce each H-layer of simplicial vertices to a single vertex obtaining
a graph F ′. Observe that we have |V (H)||S(G)| simplicial vertices in G ⊙H and, thus,



174 On the Hull Number of Graphs

(|V (H)| − 1)|S(G)| identifications are done in this procedure. Finally, since all the H-
layers were reduced to a single vertex, observe that F ′ is isomorphic to G and we have that
hn(G⊙H) = hn(F ) = hn(F ′) + (|V (H)| − 1)|S(G)| = hn(G) + (|V (H)| − 1)|S(G)|.

9.7 Hull Number via Two Connected Components

In this section, we introduce the generalized hull number of a graph. Let G = (V, E) be
a graph and S ⊆ V . The generalized hull number , denoted by hn(G, S), is the minimum
size of a set U ⊆ V \ S such that U ∪ S is a hull set for G. We prove that to compute
the hull number of a graph, it is sufficient to compute the generalized hull number of its
2-connected components (or blocks). This extends a result in [ES85].

Theorem 87. Let G be a graph and G1, . . . , Gn be its 2-connected components. For any
i ≤ n, let Si ⊆ V (Gi) be the set of cut-vertices of G in Gi. Then,

hn(G) =
∑

i≤n

hn(Gi, Si).

Proof. Clearly, the result holds if n = 1, so we assume n > 1.
A block Gi is called a leaf-block if |Si| = 1. Note that, for any leaf-block Gi, G[V \

(V (Gi) \ Si)] is convex, so by Lemma 66, any hull set of G contains at least one vertex
in V (Gi) \ Si. Moreover, for any minimum hull set S of G, S ∩ (

⋃

i≤n Si) = ∅. To prove
this fact, it is sufficient to observe that, for any cut-vertex v, there exist two vertices u
and v in disjoint leaf-blocks such that v in a shortest (u, v)-path.

Claim 24. Let S be a hull set of G. Then S ′ = (S ∩ V (Gi)) ∪ Si is a hull set of Gi.

Claim 25. For purpose of contradiction, assume that Ih[S ′] = V (Gi)\X for some X 6= ∅.
Then, there is v ∈ X ∩ I[a, b] for some a ∈ V (G) \ V (Gi) and b ∈ V (G) \ X. Then,
there is a shortest (a, b)-path P containing v. Hence, there is u ∈ Si such that u is on the
subpath of P between a and v. Moreover, let w = b if b ∈ Gi, and else let w be a vertex
of Si on the subpath of P between v and b. Hence, v ∈ I[u, w] ⊆ Ih[S ′], a contradiction.

Let X be any minimum hull set of G. Since, X ∩ (
⋃

i≤n Si) = ∅, hence we can
partition X =

⋃

i≤n Xi such that Xi ⊆ V (Gi) \ Si and Xi ∩ Xj = ∅ for any i 6= j.
Moreover, by Claim 24, Xi ∪ Si is a hull set of Gi, i.e., |Xi| ≥ hn(Gi, Si). Hence,
hn(G) = |X| = ∑

i≤n |Xi| ≥
∑

i≤n hn(Gi, Si).
It remains to prove the reverse inequality. For any i ≤ n, let Xi ⊆ V (Gi)\Si such that

Xi ∪ Si is a hull set of Gi and |Xi| = hn(Gi, Si). We prove that S = ∪i≤nXi is a hull set
for G. Indeed, for any v ∈ Si, there are two leaf-blocks G1, G2 such that v is on a shortest
path between G1 and G2 or {v} = V (G1) ∩ V (G2). So, there exist x ∈ X1 and y ∈ X2

such that v is on a shortest (x, y)-path, i.e., v ∈ I[x, y] ⊆ Ih[S]. Hence,
⋃

i≤n Si ⊆ Ih[S]
and therefore, V =

⋃

i≤n Ih[Xi ∪ Si] ⊆ Ih[
⋃

i≤n(Xi ∪ Si)] ⊆ Ih[
⋃

i≤n(Xi)] = Ih[S].

A cactus G is a graph in which every pair of cycles have at most one common vertex.
This definition implies that each block of G is either a cycle or an edge. By using the
previous result, one may easily prove that:

Corollary 8. In the class of cactus graphs, the hull number can be computed in linear
time.



Bounds For the Hull Number of Graphs 175

9.8 Bounds For the Hull Number of Graphs

In this section, we use the same techniques as presented in [ES85] and in [DPRS10a] to
prove new bounds on the hull number of several graph classes. These techniques mainly
rely on a greedy algorithm for computing a hull set of a graph and that consists of the
following: given a connected graph G = (V, E) and its set S of simplicial vertices, we
start with H = S or H = {v} (v is any vertex of V ) if S = ∅, and C0 = Ih[H]. Then, at
each step i ≥ 1, if Ci−1 ⊂ V , the algorithm greedily chooses a subset Xi ⊆ V \Ci−1, add
Xi to H and set Ci = Ih[H]. Finally, if Ci = V , the algorithm returns H which is a hull
set of G.

Claim 26. If for every i ≥ 1, |Ci \ (Ci−1 ∪Xi)| ≥ c|Xi|, for some constant c > 0, then

|H| ≤ max{1, |S|}+

⌈

|V | −max{1, |S|}
1 + c

⌉

.

For the rest of this section, we follow the notation used to describe the algorithm in
the beginning of the section.

Claim 27. Let G be a connected graph. Then, before each step i ≥ 1 of the algorithm,
for any v ∈ V \Ci−1, N(v)∩Ci−1 induces a clique. Moreover, any connected components
induced by V \ Ci−1 has at least 2 vertices.

Proof. Let v ∈ V \ Ci−1 and assume v has two neighbours u and w in Ci−1 that are not
adjacent. Then, v ∈ I[u, w] ⊆ Ci−1 because Ci−1 is convex, a contradiction. Note that,
at any step i ≥ 1 of the algorithm, V \ Ci−1 contains no simplicial vertex. By previous
remark, if v has only neighbours in Ci−1, then v is simplicial, a contradiction.

Claim 28. If G is a connected C3-free graph, then, at every step i ≥ 1 of the algorithm,
a vertex in V \ Ci−1 has at most one neighbour in Ci−1.

Proof. Assume that v ∈ V \Ci−1 has two neighbours u, w ∈ Ci−1. {u, w} /∈ E because G
is triangle-free. This contradicts Claim 27.

Lemma 88. For any C3-free connected graph G and at step i ≥ 1 of the algorithm, either
Ci−1 = V or there exists Xi ⊂ V \ Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ |Xi|.

Proof. If there is v ∈ V \ Ci−1 at distance at least 2 from Ci−1, let Xi = {v} and the
result clearly holds. Otherwise, let v be any vertex in V \ Ci−1. By Claim 27, v has a
neighbour u in V \Ci−1. Moreover, because no vertices of V \Ci−1 are at distance at least
2 from Ci−1, v and u have some neighbours in Ci−1. Finally, u and v have no common
neighbours because G is triangle-free. Hence, by taking Xi = {v}, we have u ∈ Ci and
the result holds.

Recall that the girth of a graph is the length of its smallest cycle.

Lemma 89. Let G connected with girth at least 6. Before any step i ≥ 1 of the algorithm
when Ci−1 6= V , there exists Xi ⊂ V \ Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ 2|Xi|.

Proof. If there is v ∈ V \Ci−1 at distance at least 3 from Ci−1, let Xi = {v} and the result
clearly holds. Otherwise, let v be a vertex in V \Ci−1 at distance two from any vertex of
Ci−1. Let w ∈ V \Ci−1 be a neighbour of v that has a neighbour z ∈ Ci−1. Since v is not
simplicial, v has another neighbour u 6= w in V \Ci−1. If u is at distance two from Ci−1,



176 On the Hull Number of Graphs

let y ∈ V \ Ci−1 be a neighbour of u that has a neighbour x ∈ Ci−1. In this case, since
the girth of G is at least six, z 6= x and, there is a shortest (v, z)-path containing w and
a shortest (v, x)-path containing u and y. Consequently, by setting Xi = {v} we obtain
the desired result. The same happens in case u has a neighbour x ∈ Ci−1. One may
use again the hypothesis that the girth of G is at least six to conclude that, by setting
Xi = {v} we obtain that w, u ∈ Ci.

Finally, we claim that no vertex remains in V \ Ci−1. By contradiction, suppose that
it is the case and that there are in V \ Ci−1 and all these vertices have a neighbour in
Ci−1. Let v be a vertex in V \ Ci−1 that has a neighbour z in Ci−1. Again, v has a
neighbour u ∈ V \ Ci−1, since it is not simplicial. The vertex u must have a neighbour
x in Ci−1. Observe that x and z are at distance 3, since the girth of G is at least six.
Consequently, v and u are in a shortest (x, z)-path should not be in V \ Ci−1, that is a
contradiction.

Lemma 90. Let G be a connected graph. Before any step i ≥ 1 of the algorithm when
Ci−1 6= V , there exist Xi ⊂ V \ Ci−1 such that |Ci \ (Ci−1 ∪Xi)| ≥ 2|Xi|/3.

Moreover, if G is k-regular (k ≥ 1), there exist Xi ⊂ V \ Ci−1 such that |Ci \ (Ci−1 ∪
Xi)| ≥ |Xi|.

Proof. By Claim 27, all connected component of V \ Ci−1 contains at least one edge.

• If there is v ∈ V \ Ci−1 at distance at least 2 from Ci−1, let Xi = {v} and |Ci \
(Ci−1 ∪Xi)| ≥ |Xi|.

• Now, assume all vertices in V \Ci−1 are adjacent to some vertex in Ci−1. If there are
two adjacent vertices u and v in V \Ci−1 such that there is z ∈ Ci−1 ∩N(u) \N(v),
then let Xi = {v}. Therefore, u ∈ Ci and |Ci \ (Ci−1 ∪Xi)| ≥ |Xi|. So, the result
holds.

• Finally, assume that for any two adjacent vertices u and v in V \Ci−1, N(u)∩Ci−1 =
N(v) ∩ Ci−1 6= ∅.
We first prove that this case actually cannot occur if G is k-regular. Let v ∈ V \Ci−1.
By Claim 27, K = N(v)∩Ci−1 induces a clique. Moreover, for any u ∈ N(v)\Ci−1,
N(u) ∩ Ci−1 = K. Note that k = |K| + |N(v) \ Ci−1|. Let w ∈ K. Then,
A = (K ∪ N(v) ∪ {v}) \ {w} ⊆ N(w) and since |A| = k, we get that A = N(w).
Moreover, N [u] cannot induce a clique since V \Ci−1 contains no simplicial vertices,
i ≥ 1. Hence, there are x, y ∈ N(v) \ Ci−1 such that {x, y} /∈ E. Because G is k-
regular, there is z ∈ N(x)\(N(v)∪Ci−1). However, N(z)∩Ci−1 = N(x)∩Ci−1 = K.
Hence, z ∈ N(w) \ A, a contradiction.

Now, assume that G is a general graph. Let v be a vertex of minimum degree in
V \ Ci−1. Recall that, by Claim 27, N(v) ∩ Ci−1 induces a clique. Because any
neighbour u ∈ V \ Ci−1 of v has the same neighbourhood as v in Ci−1 and because
v is not simplicial, then there must be u, w ∈ N(v) \ Ci−1 such that {u, w} /∈ E.
Now, by minimality of the degree of v, there exists y ∈ N(u) \ (N(v) ∪ Ci−1) 6= ∅.
Similarly, there exists z ∈ N(w) \ (N(v) ∪ Ci−1) 6= ∅. Let us set Xi = {v, z, y}.
Hence, u, w ∈ Ci \ (Ci−1 ∪Xi) and the result holds.



Conclusion 177

Theorem 91. Let G be a connected n-node graph with s simplicial vertices. All bounds
below are tight:

hn(G) ≤ max{1, s}+

⌈

3(n−max{1, s})
5

⌉

;

If G is C3-free or k-regular (k ≥ 1), then

hn(G) ≤ max{1, s}+

⌈

n−max{1, s}
2

⌉

;

If G has girth at least 6, then

hn(G) ≤ max{1, s}+

⌈

1(n−max{1, s})
3

⌉

.

Proof. The first statement follows from Claim 26 and first statement in Lemma 90. The
second statement follows from Claim 26 and Lemma 88 (the case where G is C3-free) and
the second part of Lemma 90 (the case of regular graphs). The last statement follows
from Claim 26 and Lemma 89.

All bounds are reached in the case of complete graphs. In case with no simplicial
vertices: the first bound is reached by the graph obtained by taking several disjoint C5

and adding a universal vertex, the second bound is obtained for a C5, and the third one
is reached by a C7.

The first statement of the previous theorem improves another result in [ES85]:

Corollary 9. If G is a graph with no simplicial vertex, then

lim sup
|V (G)|→∞

hn(G)
|V (G)| =

3
5

.

It it important to remark that the second statement of Theorem 91 is closely related
to a bound of Everett and Seidman proved in Theorem 9 of [ES85]. However, the graphs
they consider do not have simplicial vertices and, consequently, they do not have vertices
of degree one, which is not a constraint for our result.

9.9 Conclusion

In this chapter, we simplified the reduction of Dourado et al. [DGK+09] to answer a
question they asked about the complexity of computing the hull number of bipartite
graphs. Then, we presented polynomial-time algorithms for computing the hull number
of co-bipartite graphs, (q, q − 4)-graphs, cactus graphs and {P5, K3}-free graphs.

In particular, the complexity of the algorithm proposed to compute the hull number
of any P5-free triangle-free graph is linear on the size of the input graph. However,
the computational complexity of determining the hull number of a P5-free graph is still
unknown. More generally, we propose the following open question: for a fixed k, what is
the computational complexity of determining hn(G), for a Pk-free graph G?

The algorithm presented in Section 9.4 is an FPT algorithm to compute the hull
number of any graph where the parameter is the number of its induced P4’s. Then, in
Section 9.6, we introduced three reduction rules that we use to construct an FPT algo-
rithm to compute the hull number of any graph, where the parameter is its neighbourhood



178 On the Hull Number of Graphs

diversity, and a characterization of the lexicographic product of any two graphs. How-
ever, the parameters of both of these algorithms do not seem to have a direct relationship
with the hull number. Hence, we also propose the following question: given a graph G,
is there an FPT algorithm to determine whether hn(G) ≤ k, for a fixed k?

Finally, in Section 9.8, we presented some upper bounds for the hull number of general
graphs and for some graph classes. Albeit the proofs for the bounds proposed in this
chapter use the same techniques as the ones in [DPRS10a], they are not comparable
between themselves.



Chapter 10

Conclusion

In this thesis, we studied three fundamental subjects in Graph Theory, namely, graph
decompositions, pursuit-evasion games and convexity. In this chapter, we reiterate some
important results of this thesis with a discussion about their shortcomings and perspec-
tives of future work.

In Chapter 3, the first result presented was the monotonicity of the Process game. This
property allowed us to design a directed graph decomposition, the Process decomposition,
that is “equivalent” to the Process game. We proved that, for every directed graph G,
if the directed path width of G is at most k, then there is a process decomposition
((W1, X1), . . . , (Wn, Xn)) of G with width k such that every bag Xi is a singleton. One
consequence of this result is that, (W1∪X1, . . . , Wn∪Xn) is a directed path decomposition
of G with width at most k + 1. By consequence, the Process decomposition has a close
relationship with the Directed Path Decomposition. This also means that, for every
directed graph G, we have that dpw(G) − 1 ≤ pw(G) ≤ dpw(G), once every path
decomposition is a Process decomposition where bags inducing DAGs are empty. The
DAG decompositions and the Directed path decomposition are related with the visible
Directed Node Search and the invisible Directed Node Search respectively. Since visible
Directed Node Search is not monotone, while invisible Directed Node Search is monotone,
we wonder if the Process game is still monotone when the robber is visible. If it is, it
could help us better understand what makes a directed graph searching game monotone.

In Chapter 4, we investigated the problem of computing several width measures of
graphs. We proposed an FPT-algorithm with parameter k to decide if a graph has width
at most k. This algorithm can be applied to several widths including the special tree width
and the q-branched tree width for which no previous explicit algorithm was known. Since
it can be used with any width, that can be represented in terms of partition functions
and partitioning trees satisfying some restrictions explained in this chapter, we wonder if
there are other width measures that can be computed by this algorithm. Furthermore, we
also wonder if we could extend these results for directed graph decomposition, by having
a common representation of different widths by some kind of directed partitioning tree.

The second part of this thesis focused on turn-by-turn pursuit-evasion games. In
Chapter 6, we studied the cost of requiring connectivity on the Surveillance game, that
is, we studied how big can be the difference between the connected surveillance number
and the surveillance number. In despite of the fact that we have improved a previous
result of Fomin et al. [FGJM+12], by showing that there are graphs where this difference

179



180 Conclusion

is of two, we were unable to construct any graph where this difference is at at least three.
This leads us to believe that their conjecture of this difference being at most a constant is
true. Moreover, we also showed the first upper bound, that is not trivial, for the cost of
connectivity. That is, we showed that, for any graph G, csn(G) ≤

√

|V (G)| sn(G), which
is still far from having a constant addictive factor.

In Chapter 6, we also defined the Online Surveillance game. In this game, the observer
discovers the graph, on which the game is played, little-by-little, in an attempt to bet-
ter model the web-page prefetching problem which originally motivated the Surveillance
game. We show that there, for any k ∈ N, there exists a tree Tk such that on(Tk) = O(∆)
while sn(Tk) = 2. This is unfortunate for two reasons. The first one being that the best
strategy for the observer, up to constant factors, is to simply mark the neighbourhood of
the current vertex occupied by the surfer. The second one is that the difference between
the Online surveillance number and the connected surveillance number might be arbitrar-
ily large, since, in trees, the connected surveillance number is equal to the surveillance
number. This implies that the Online Surveillance game is not a good candidate in order
to study the cost of enforcing connectivity.

In Chapter 7, we studied fractional turn-by-turn pursuit-evasion games. We defined a
framework for turn-by-turn pursuit-evasion games, in which tokens controlled by players
can be split into fractions, that can model several turn-by-turn pursuit-evasion games.
Based on this framework, we proposed an algorithm, that uses linear programming tech-
niques, which decides if there is a winning strategy for the pursuer for any game modelled
by this framework. On the bright side, several games such as the Cops and Robbers,
Surveillance game, Angels problem, Eternal Dominating Set and Eternal Vertex Cover
fit this framework and, thus, can be solved by our algorithm. However, the complexity
of the algorithm proposed is exponential on the size of the input graph due to a step
where we might create an exponential number of inequalities. Despite this, it seems that
the number of redundant inequalities created in this step is rather large, implying that
we might be able to construct a polynomial time algorithm with a closer analysis of how
these inequalities are created.

In Chapter 7, we also showed that a fractional game’s parameter is a lower bound
for the correspondent integral game’s parameter. Then, to answer how big can the gap
be between these two parameters, we focused on particular turn-by-turn pursuit-evasion
games. We showed that the number of fractional cops necessary to capture a fractional
robber, in a number of turns linear on the number of vertices, is 1+ǫ, ǫ > 0. However, such
strategy can only be applied if the robber has speed one, hence, it might be interesting
to investigate the fractional Cops and Robbers when the robber has speed bigger than 1
in hopes that this might leads us to new insights into solving the Meyniel’s conjecture for
a faster robber. We also proved that winning strategies for fractional Surveillance game
and for the fractional Angels problem game can be used to help the pursuer to win in the
integral versions of these games.

Finally, the third part of this thesis was dedicated to the study of the hardness of com-
puting the hull number in several graph classes. We first showed that the decision problem
associated with the hull number of a bipartite graph is NP-complete, successfully answer-
ing an open question in [DGK+09]. Additionally, we showed that there are polynomial
time algorithms for computing the hull number of a co-bipartite graph, (q, q − 4) graphs
and {P5, K3}-free graph. The main technique used in the algorithms for co-bipartite
graphs and for {P5, K3}-free graphs was to exclude some structure, either an edge or
some vertices, and then decompose the remaining graph into connected components. We



181

wonder if such approach might be useful when applied to other classes of graphs. On
the other hand, the algorithm for (q, q − 4)-graphs, which is a superclass of P4-sparse
graphs, was mainly based on a dynamic programming approach guided by a modular
decomposition of such graphs. Since all these algorithms use some kind of decomposition
of the graph, we wonder if there is a more suitable decomposition for computing the hull
number of graphs.

Another important result of Chapter 9 is an FPT-algorithm for computing the hull
number of general graphs, where the parameter can be either the neighbourhood diversity
or the minimum vertex cover number of the input graph. However, since these parameters
do not seem to have a direct relation with the hull number, it would be interesting to
have an FPT-algorithm for computing the hull number where the parameter is the hull
number itself.

Future Work. In this thesis, we proposed several algorithms for solving different prob-
lems in the subjects of pursuit-evasion games, graph decompositions and convexity. Al-
though the FPT-algorithm proposed for computing width measures of graphs might be
impractical even for small parameters, we are interested in measuring the performance of
the other algorithms proposed in this thesis in practice. We are also interested in investi-
gating the monotonicity of a visible fugitive in the Process game. However, it is unlikely
that this property holds, since the visible directed graph searching games studied in the
literature lack this property. Finally, we aim at investigating the complexity of fractional
turn-by-turn pursuit-evasion games.





Index

P3-Convexity Number, 147
P3-Geodesic Number, 147
P3-Interval, 147

Adjacent, 8
Alignment, 145
Angel, 107
Arborescense, 24

Bags, 13, 15
Basic Strategy, 110
Block

Leaf-Block, 174
Blocks, 174
Border, 33
Branching Node, 16

Cactus, 174
Cartesian Product, 151
Closed Interval, 145, 153
Complement of Bipartite Graph, 159
Complete Graph, 8
Component, 9
Configuration, 127
Connected, 9
Convex, 153
Convex Hull, 145, 146, 153

P3-Convex Hull, 147
Geodetic, 146
m-Convex Hull, 146
Monophonic, 146

Convex Set, 145
Convexity

P3-Convexity, 147
Geodesic Convexity, 145
Monophonic, 146
Monophonic Convexity, 146

Convexity Number, 146
Cop-Win, 101
Crossing-Edge, 159
Crusade, 33
Cycle, 8

DAG decomposition, 25
DAG Width, 25
Decomposition

q-Branched Tree Decomposition, 16
Branch Decomposition, 16
Cut Decomposition, 18
Path Decomposition, 13
Special Tree Decomposition, 15
Tree Decomposition, 13

Degree, 8
Dependency Digraph, 30
Devil, 107
Diameter, 9
Digraph, 8
Directed Graph, 8
Directed Path Decomposition, 26
Directed Path Width, 27
Directed Tree Decomposition, 23
Directed Tree Width, 24
Dismantable, 102
Dominating Set, 167

Edge, 8
Edge Search Number, 22
Extremities, 8

Game
Angel Problem, 107
Cops and Robbers, 101
Eternal Domination, 105
m-Eternal Domination, 106

183



184 Index

m-Eternal Vertex Cover, 106
Generalized Hull Number, 174
Generated Vertex, 154
Geodesic, 145, 153
Geodesically Convex, 153
Geodetic Number, 146
Geodetic Set, 151
Girth, 9, 175
Graph, 8
Guard, 25

H-Layer, 150
Helicopter Search, 19
Hull Number, 146, 154

P3-Hull Number, 147
Generalized Hull Number, 174
Geodetic, 146

Hull Set, 145, 146, 154
P3-Hull Set, 147
Geodetic, 146
m-Hull Set, 146
Monophonic, 146

Identification, 170
In-Degree, 8
In-Neighbourhood, 8
Incidence Graph, 158
Incident, 8
Independent Set, 8
Induced, 8
Initial Configurations, 128
Internal Vertex, 8
Irreducible Vertex, 102
Isometric Subgraph, 153

Kelly Decomposition, 26
Kelly Width, 26

Length, 8
Lexicographic Product, 150
Loop, 8

m-Convexity Number, 146
Meyniel’s Conjecture, 103
Mixed Process Number, 33
Mixed Process Strategy, 33
Mixed Search, 22
Mixed Search Number, 22
Module, 122
Monadic Second Order Logic, 14

Monophonic Interval, 146
Monophonic Number, 146
Monotone, 20, 33
Monotone Process Number, 30
Monotone Process Strategy, 30
Multiple Edges, 8

Neighbour, 8
Neighbourhood, 8
Neighbourhood Diversity, 153
neighbourhood Diversity, 172
Node Search, 19
Node Search Number

Invisible, 20
Visible, 20

Observer, 109
Online Strategy, 111, 122
Online Surveillance Game, 110
Online Surveillance Number, 122
Oriented Graph, 8
Out-Degree, 8
Out-Neighbourhood, 8

Parallel Node, 162
Path, 8

Extremities, 8
Path Width, 13
Power, 107
Primeval Decomposition, 162
Primeval Tree

Parallel Node, 162
Series Node, 162
Small Node, 162
Spider Node, 162

Priveval Tree, 162
Process a Node, 30
Process Decomposition, 39
Process Game, 30
Process Number, 32
Process Strategy, 32
Process Width, 39
Progressive Crusade, 34
Proper Path Width, 22
Pseudo-Spider, 162

Q-Pseudo-Spider, 162

Recontamination, 33
Routing Reconfiguration, 29



Index 185

Safe, 30
Series Node, 162
Simple Graph, 8
Small Node, 162
Spanning Subgraph, 8
Special Tree Width, 15
Spider, 162

Pseudo-Spider, 162
Q-Pseudo-Spider, 162
Thick, 162
Thin, 162

Spider Node, 162
Stable Set, 8
Strategy, 20

Winning Strategy, 20
Strong Product, 151
Subgraph, 8
Surfer, 109
Surveillance Game, 109
Symmetric Digraph, 8

Tree Width, 13
Twin Vertices, 170
Twins

False Twins, 170
True Twins, 170

Underlying Graph, 8

Valid Configurations, 128
Vertex, 8
visible Directed Node Search, 25

Width
Branch Width, 17
Carving Width, 18
Cut Width, 18
Linear Width, 17

Winning Configurations, 128

Z-Normal, 24





Bibliography

[ACG+11a] J. Araujo, V. Campos, F. Giroire, L. Sampaio, and R. Soares. On the hull
number of some graph classes. Electronic Notes in Discrete Mathematics,
38(0):49–55, 2011. 8

[ACG+11b] J. Araujo, V. Campos, F. Giroire, L. Sampaio, and R. Soares. On the hull
number of some graph classes. Electronic Notes in Discrete Mathematics,
38(0):49–55, 2011. 8

[ACKP12] B.S. Anand, M. Changat, S. Klavžar, and I. Peterin. Convex sets in lexico-
graphic products of graphs. Graphs and Combinatorics, 28(1):77–84, 2012.
151

[ACP87] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284,
1987. 3, 14, 15

[Adl07] I. Adler. Directed tree-width examples. Journal of Combinatorial Theory,
Series B, 97(5):718–725, 2007. 4, 24

[AEFP98] Y. Aumann, O. Etzioni, R. Feldman, and M. Perkowitz. Predicting event
sequences: Data mining for prefetching web-pages, 1998. 111

[AF84] M. Aigner and M. Fromme. A game of cops and robbers. Discrete Applied
Mathematics, 8:1–12, 1984. 102, 103, 104

[Als04] B. Alspach. Searching and sweeping graphs: a brief survey. Le Matematiche,
59(1-2), 2004. 4

[AMNT09] O. Amini, F. Mazoit, N. Nisse, and S. Thomassé. Submodular partition
functions. Discrete Mathematics, 309(20):6000–6008, 2009. 43, 44, 46, 47,
98

[AMS+13] J. Araujo, G. Morel, L. Sampaio, R. Soares, and V. Weber. Hull number:
p_5-free graphs and reduction rules. In LAGOS, 2013. 8

[AP89] S. Arnborg and A. Proskurowski. Linear time algorithms for np-hard prob-
lems restricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24,
1989. 2, 3, 14

187



188 Bibliography

[AZN99] D. Albrecht, I. Zukerman, and A. Nicholson. Pre-sending documents on the
www: a comparative study. In Proceedings of the 16th international joint
conference on Artificial intelligence - Volume 2, IJCAI’99, pages 1274–1279,
1999. 111

[Bar06] J. Barát. Directed path-width and monotonicity in digraph searching. Graphs
and Combinatorics, 22(2):161–172, 2006. 5, 23, 26, 27, 32, 33, 34

[BB12] W. Baird and A. Bonato. Meyniel’s conjecture on the cop number: A survey.
Journal of Combinatorics, 3(2):225–238, 2012. 103

[BCG+04] A. P. Burger, E. J. Cockayne, W. R. Ggündlingh, C. M. Mynhardt,
J. H. Van Vuuren, and W. Winterbach. Infinite order domination in
graphs. Journal of Combinatorial Mathematics and Combinatorial Com-
puting, 50:179–194, 2004. 106

[BDFM12] A. Beveridge, A. Dudek, A. Frieze, and T. Müller. Cops and robbers on
geometric graphs. Combinatorics, Probability and Computing, 21:816–834,
10 2012. 104

[BDH+12] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, and J. Obdržálek. The
dag-width of directed graphs. Journal of Combinatorial Theory, Series B,
102(4):900–923, 2012. 23, 25, 27

[BFST03] L. Barrière, P. Fraigniaud, N. Santoro, and D.M. Thilikos. Connected and
internal graph searching. In In 29th Workshop on Graph Theoretic Concepts
in Computer Science (WG), LNCS 2880, pages 34–45, 2003. 23

[BGHK95] H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximat-
ing treewidth, pathwidth, frontsize, and shortest elimination tree. Journal
of Algorithms, 18(2):238–255, 1995. 15

[BGHK09] A. Bonato, P. Golovach, G. Hahn, and J. Kratochvíl. The capture time of a
graph. Discrete Mathematics, 309(18):5588–5595, 2009. 105

[BK96] H.L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. Journal of Algorithms, 21(2):358–402,
1996. 18, 48, 50, 51, 59, 60, 98

[BKL13] B. Bollobás, G. Kun, and I. Leader. Cops and robbers in a random graph.
Journal of Combinatorial Theory, Series B, 103(2):226–236, 2013. 103, 104

[BKT08] B. Brešar, S. Klavžar, and A.H. Tepeh. On the geodetic number and related
metric sets in cartesian product graphs. Discrete Mathematics, 308(23):5555–
5561, 2008. 151

[BKT11] B. Brešar, M. Kovše, and A. Tepeh. Geodetic sets in graphs. In Structural
Analysis of Complex Networks, pages 197–218. Birkhäuser Boston, 2011. 151

[BL83] L. Babai and E.M. Luks. Canonical labeling of graphs. In Proceedings of the
fifteenth annual ACM symposium on Theory of computing, pages 171–183.
ACM, 1983. 95



Bibliography 189

[BL06] B. Bollobás and I. Leader. The angel and the devil in three dimensions.
Journal of Combinatorial Theory, Series A, 113(1):176–184, 2006. 107

[BM08] J.A. Bondy and U.S.R. Murty. Graph Theory. Graduate texts in mathemat-
ics. Springer, 2008. 8

[BN11] A. Bonato and R.J. Nowakowski. The game of cops and robbers on graphs.
Student mathematical library. American Mathematical Society, 2011. 105

[BO99] L. Babel and S. Olariu. On the p-connectedness of graphs - a survey. Discrete
Applied Mathematics, 95(1-3):11–33, 1999. 162

[Bod96] H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996. 15,
43, 44, 48, 50, 62

[Bod98] H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209(1–2):1–45, 1998. 14, 19

[Bow07] B.H. Bowditch. The angel game in the plane. Combinatorics, Probability
and Computing, 16(3):345–362, 2007. 107

[BPS10] S. Bhattacharya, G. Paul, and S. Sanyal. A cops and robber game in multi-
dimensional grids. Discrete Applied Mathematics, 158(16):1745–1751, 2010.
104

[BST00] H.L. Bodlaender, M.J. Serna, and D.M. Thilikos. Constructive linear time
algorithms for small cutwidth and carving-width. In Algorithms and Com-
putation, volume 1969 of Lecture Notes in Computer Science, pages 192–203.
Springer Berlin Heidelberg, 2000. 19

[BT90] G. Bacsó and Z. Tuza. Dominating cliques in p5-free graphs. Periodica
Mathematica Hungarica, 21(4):303–308, 1990. 167

[BT97] H.L. Bodlaender and D.M. Thilikos. Constructive linear time algorithms for
branchwidth. In Automata, Languages and Programming, volume 1256 of
Lecture Notes in Computer Science, pages 627–637. Springer Berlin Heidel-
berg, 1997. 16, 18, 43, 47, 48

[BT04] H.L. Bodlaender and D.M. Thilikos. Computing small search numbers in lin-
ear time. In Parameterized and Exact Computation, volume 3162 of Lecture
Notes in Computer Science, pages 37–48. Springer Berlin Heidelberg, 2004.
18, 19, 43, 47, 48

[Cay89] A. Cayley. A theorem on trees. Quarterly Journal of Mathematics, 23:376–
378, 1889. 71

[CCJ04] G.B. Cagaanan and S.R. Canoy Jr. On the hull sets and hull number of the
cartesian product of graphs. Discrete Mathematics, 287(1–3):141–144, 2004.
151

[CCM+11] N. Cohen, D. Coudert, D. Mazauric, N. Nepomuceno, and N. Nisse. Trade-
offs in process strategy games with application in the wdm reconfiguration
problem. Theoretical Computer Science, 412(35):4675–4687, 2011. 30, 31



190 Bibliography

[CCNV11] J. Chalopin, V. Chepoi, N. Nisse, and Y. Vaxès. Cop and robber games
when the robber can hide and ride. SIAM Journal on Discrete Mathematics,
25(1):333–359, 2011. 104

[CDD+10] C.C. Centeno, S. Dantas, M.C. Dourado, D. Rautenbach, and J.L. Szwarc-
fiter. Convex partitions of graphs induced by paths of order three. Discrete
Mathematics & Theoretical Computer Science, 12(5):175–184, 2010. 6, 149

[CDP+11] C.C. Centeno, M.C. Dourado, L.D. Penso, D. Rautenbach, and J.L. Szwar-
cfiter. Irreversible conversion of graphs. Theoretical Computer Science,
412(29):3693–3700, 2011. 148, 149

[CDS09] C.C. Centeno, M.C. Dourado, and J.L. Szwarcfiter. On the convexity of paths
of length two in undirected graphs. Electronic Notes in Discrete Mathemat-
ics, 32(0):11–18, 2009. 147, 149

[Chi08] E. Chiniforooshan. A better bound for the cop number of general graphs.
Journal of Graph Theory, 58(1):45–48, 2008. 103

[CHM+09] D. Coudert, F. Huc, D. Mazauric, N. Nisse, and J.-S. Sereni. Reconfiguration
of the routing in wdm networks with two classes of services. In Proceedings of
the 13th international conference on Optical Network Design and Modeling,
ONDM’09, pages 146–151, 2009. 31

[CHM+10] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, and M.L. Puertas. On
the geodetic and the hull numbers in strong product graphs. Computers &
Mathematics with Applications, 60(11):3020–3031, 2010. 151

[CHM12] D. Coudert, F. Huc, and D. Mazauric. A distributed algorithm for computing
the node search number in trees. Algorithmica, 63(1-2):158–190, 2012. 31,
32

[CJG02] S.R. Canoy Jr. and I.J.L. Garces. Convex sets under some graph operations.
Graphs and Combinatorics, 18(4):787–793, 2002. 151

[Cla02] N.E. Clarke. Constrained Cops and Robber. PhD thesis, Dalhousie Univer-
sity, 2002. 104

[CMS05] M. Changat, H.M. Mulder, and G. Sierksma. Convexities related to path
properties on graphs. Discrete Mathematics, 290(2–3):117–131, 2005. 151

[Con98] J.H. Conway. The angel problem. In R.J. Nowakowski, editor, Games of No
Chance, volume 29 of Mathematical Sciences Research Institute Publications,
pages 3–12. Cambridge University Press, 1998. 107

[Cou89] B. Courcelle. The monadic second-order logic of graphs : Definable sets of
finite graphs. In Graph-Theoretic Concepts in Computer Science, volume
344 of Lecture Notes in Computer Science, pages 30–53. Springer Berlin
Heidelberg, 1989. 2, 14, 15

[Cou10] B. Courcelle. Special tree-width and the verification of monadic second-order
graph properties. In FSTTCS, pages 13–29, 2010. 15, 19, 43



Bibliography 191

[CPPS05] D. Coudert, S. Perennes, Q-C. Pham, and J-S. Sereni. Rerouting requests
in wdm networks. In 7ème Rencontres Francophones sur les Aspects Algo-
rithmiques des Télécommunications (AlgoTel’05), pages 17–20, Presqu’île de
Giens, France, 2005. 4, 29, 30, 31

[CRST06] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong
perfect graph theorem. Annals of Mathematics, 164:51–229, 2006. 3

[CS03] W. Cook and P. Seymour. Tour merging via branch-decomposition. IN-
FORMS Journal on Computing, 15(3):233–248, 2003. 2, 17

[CS11] D. Coudert and J-S. Sereni. Characterization of graphs and digraphs with
small process number. Discrete Applied Mathematics, 159(11):1094–1109,
2011. 31

[CWZ02] G. Chartrand, C.E. Wall, and P. Zhang. The convexity number of a graph.
Graphs and Combinatorics, 18(2):209–217, 2002. 146, 150

[DGK+09] M.C. Dourado, J.G. Gimbel, J. Kratochvíl, F. Protti, and J.L. Szwarcfiter.
On the computation of the hull number of a graph. Discrete Mathematics,
309(18):5668–5674, 2009. 6, 7, 148, 149, 153, 154, 155, 161, 164, 170, 177,
180

[DJR09] P.A. Dreyer Jr. and F.S. Roberts. Irreversible -threshold processes: Graph-
theoretical threshold models of the spread of disease and of opinion. Discrete
Applied Mathematics, 157(7):1615–1627, 2009. 149

[DKT97] N.D. Dendris, L.M. Kirousis, and D.M. Thilikos. Fugitive-search games on
graphs and related parameters. Theoretical Computer Science, 172(1–2):233–
254, 1997. 26

[DPRS10a] M. Dourado, F. Protti, D. Rautenbach, and J. Szwarcfiter. On the hull
number of triangle-free graphs. SIAM Journal on Discrete Mathematics,
23(4):2163–2172, 2010. 150, 175, 178

[DPRS10b] M.C. Dourado, F. Protti, D. Rautenbach, and J.L. Szwarcfiter. Some re-
marks on the geodetic number of a graph. Discrete Mathematics, 310(4):832–
837, 2010. 148, 149, 150

[DPRS12] M.C. Dourado, F. Protti, D. Rautenbach, and J.L. Szwarcfiter. On the con-
vexity number of graphs. Graphs and Combinatorics, 28(3):333–345, 2012.
148, 149

[DPS10] M.C Dourado, F. Protti, and J.L. Szwarcfiter. Complexity results related to
monophonic convexity. Discrete Applied Mathematics, 158(12):1268–1274,
2010. 148, 149

[ES85] M.G. Everett and S.B. Seidman. The hull number of a graph. Discrete
Mathematics, 57(3):217–223, 1985. 154, 174, 175, 177

[FCLJ99] L. Fan, P. Cao, W. Lin, and Q. Jacobson. Web prefetching between low-
bandwidth clients and proxies: potential and performance. In Proceedings
of the 1999 ACM SIGMETRICS international conference on Measurement



192 Bibliography

and modeling of computer systems, SIGMETRICS ’99, pages 178–187, 1999.
111

[FFN05] F.V. Fomin, P. Fraigniaud, and N. Nisse. Nondeterministic graph searching:
From pathwidth to treewidth. In Mathematical Foundations of Computer
Science 2005, volume 3618 of Lecture Notes in Computer Science, pages
364–375. Springer Berlin Heidelberg, 2005. 16

[FGG+10] F.V. Fomin, S. Gaspers, P.A. Golovach, D. Kratsch, and S. Saurabh. Param-
eterized algorithm for eternal vertex cover. Information Processing Letters,
110(16):702–706, 2010. 106

[FGJM+12] F.V. Fomin, F. Giroire, A. Jean-Marie, D. Mazauric, and N. Nisse. To satisfy
impatient web surfers is hard. In Fun with Algorithms, volume 7288 of Lecture
Notes in Computer Science, pages 166–176. Springer Berlin Heidelberg, 2012.
4, 109, 110, 111, 112, 113, 119, 125, 179

[FGK+10] F.V. Fomin, P.A. Golovach, J. Kratochvíl, N. Nisse, and K. Suchan. Pursuing
a fast robber on a graph. Theoretical Computer Science, 411(7–9):1167–1181,
2010. 103, 104

[FGL12] F.V. Fomin, P.A. Golovach, and D. Lokshtanov. Cops and robber game
without recharging. Theory of Computing Systems, 50(4):611–620, 2012.
105

[FGP12] F.V. Fomin, P.A. Golovach, and P. Pralat. Cops and robber with constraints.
SIAM Journal on Discrete Mathematics, 26(2):571–590, 2012. 4, 105

[FHL05] U. Feige, M.T. Hajiaghayi, and J.R. Lee. Improved approximation algorithms
for minimum-weight vertex separators. In Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pages 563–572, 2005. 15

[FJ86] M. Farber and R.E. Jamison. Convexity in graphs and hypergraphs. SIAM
Journal on Algebraic and Discrete Methods, 7(3):433–444, 1986. 145, 146

[FKL12] A. Frieze, M. Krivelevich, and P. Loh. Variations on cops and robbers.
Journal of Graph Theory, 69(4):383–402, 2012. 103

[FN08] P. Fraigniaud and N. Nisse. Monotony properties of connected visible graph
searching. Information and Computation, 206(12):1383–1393, 2008. 23

[Fra87] P. Frankl. Cops and robbers in graphs with large girth and cayley graphs.
Discrete Applied Mathematics, 17(3):301–305, 1987. 102, 103

[FT03] F.V. Fomin and D.M. Thilikos. On the monotonicity of games generated by
symmetric submodular functions. Discrete Applied Mathematics, 131(2):323–
335, 2003. 43

[FT06] F. Fomin and D. Thilikos. Dominating sets in planar graphs: Branch-width
and exponential speed-up. SIAM Journal on Computing, 36(2):281–309,
2006. 17

[Gal67] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae
Scientiarum Hungarica, 18(1-2):25–66, 1967. 2



Bibliography 193

[Gan12] R. Ganian. Using neighborhood diversity to solve hard problems. CoRR,
abs/1201.3091, 2012. 172

[GHH05] W. Goddard, S.M. Hedetniemi, and S.T. Hedetniemi. Eternal security in
graphs. Journal of Combinatorial Mathematics and Combinatorial Comput-
ing, 52:169–180, 2005. 106

[GHK+10] R. Ganian, P. Hliněný, J. Kneis, D. Meister, J. Obdržálek, P. Rossmanith,
and S. Sikdar. Are there any good digraph width measures? In Parameterized
and Exact Computation, volume 6478 of Lecture Notes in Computer Science,
pages 135–146. Springer Berlin Heidelberg, 2010. 5, 23

[Gim03] J. Gimbel. Some remarks on the convexity number of a graph. Graphs and
Combinatorics, 19(3):357–361, 2003. 148

[GK08] J.L. Goldwasser and W.F. Klostermeyer. Tight bounds for eternal dominat-
ing sets in graphs. Discrete Mathematics, 308(12):2589–2593, 2008. 106

[GMN+13] F. Giroire, D. Mazauric, N. Nisse, S. Pérennes, and R. Soares. Connected
surveillance game. In Sirocco, 2013. 7

[GR95] A.S. Goldstein and E.M. Reingold. The complexity of pursuit on a graph.
Theoretical Computer Science, 143(1):93–112, 1995. 4, 103

[HK08] P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions, games,
and orderings. Theoretical Computer Science, 399(3):206–219, 2008. 23, 26

[HLT93] F. Harary, E. Loukakis, and C. Tsouros. The geodetic number of a graph.
Mathematical and Computer Modelling, 17(11):89–95, 1993. 147

[HM06] G. Hahn and G. MacGillivray. A note on k-cop, l-robber games on graphs.
Discrete Mathematics, 306(19–20):2492–2497, 2006. 104

[Hun06] Paul Hunter. Losing the +1 or directed path-width games are monotone,
2006. unpublished result. 27

[JP89] M.S. Jacobson and K. Peters. Complexity questions for n-domination and
related parameters. Congressus Numerantium, 68:7–22, 1989. 149

[JRST01] T. Johnson, N. Robertson, P.D. Seymour, and R. Thomas. Directed tree-
width. Journal of Combinatorial Theory, Series B, 82(1):138–154, 2001. 23,
24

[JS03] N. Jose and A.K. Somani. Connection rerouting/network reconfiguration. In
Design of Reliable Communication Networks, 2003. (DRCN 2003). Proceed-
ings. Fourth International Workshop on, pages 23–30, 2003. 29, 30

[KC85] L.M. Kirousis and Papadimitriou C.H. Interval graphs and searching. Dis-
crete Mathematics, 55(2):181–184, 1985. 4

[Kim04] B.K. Kim. A lower bound for the convexity number of some graphs. Journal
of Applied Mathematics and Computing, 14(1-2):185–191, 2004. 150

[Kin92] N.G. Kinnersley. The vertex separation number of a graph equals its path-
width. Information Processing Letters, 42(6):345–350, 1992. 20



194 Bibliography

[KLM97] T.M. Kroeger, D.D.E. Long, and J.C. Mogul. Exploring the bounds of web la-
tency reduction from caching and prefetching. In Proceedings of the USENIX
Symposium on Internet Technologies and Systems on USENIX Symposium
on Internet Technologies and Systems, USITS’97, pages 2–2, 1997. 111

[KLNS12] A. Kosowski, B. Li, N. Nisse, and K. Suchan. k-chordal graphs: From cops
and robber to compact routing via treewidth. In Automata, Languages, and
Programming, volume 7392 of Lecture Notes in Computer Science, pages
610–622. Springer Berlin Heidelberg, 2012. 4, 104

[Klo94] T. Kloks. Treewidth: Computations and Approximations. Lecture Notes in
Computer Science. Springer, 1994. 15

[Klo07] O. Kloster. A solution to the angel problem. Theoretical Computer Science,
389(1–2):152–161, 2007. 107

[KM09] W.F. Klostermeyer and C.M. Mynhardt. Edge protection in graphs. The
Australasian Journal of Combinatorics, 45:235–250, 2009. 106

[KM11] W.F. Klostermeyer and C.M. Mynhardt. Graphs with equal eternal vertex
cover and eternal domination numbers. Discrete Mathematics, 311(14):1371–
1379, 2011. 106

[KN13] M.M. Kanté and L. Nourine. Polynomial time algorithms for computing a
minimum hull set in distance-hereditary and chordal graphs. In SOFSEM
2013: Theory and Practice of Computer Science, volume 7741 of Lecture
Notes in Computer Science, pages 268–279. Springer Berlin Heidelberg, 2013.
5, 6, 148

[KO08] S. Kreutzer and S. Ordyniak. Digraph decompositions and monotonicity
in digraph searching. In Graph-Theoretic Concepts in Computer Science,
volume 5344 of Lecture Notes in Computer Science, pages 336–347. Springer
Berlin Heidelberg, 2008. 4, 25

[KP86] L.M. Kirousis and C.H. Papadimitriou. Searching and pebbling. Theoretical
Computer Science, 47(0):205–218, 1986. 4, 20

[Kur30] K. Kuratowski. Sur le probleme des courbes gauches en topologie. Funda-
menta Mathematicae, 15:271–283, 1930. 3

[Kut04] M. Kutz. The Angel Problem, Positional Games, and Digraph Roots. PhD
thesis, Freie Universität Berlin, 2004. 107

[Kut05] M. Kutz. Conway’s angel in three dimensions. Theoretical Computer Science,
349(3):443–451, 2005. 107

[Lam12] M. Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algo-
rithmica, 64:19–37, 2012. 172, 173

[LaP93] A.S. LaPaugh. Recontamination does not help to search a graph. Journal
of the ACM, 40(2):224–245, 1993. 22

[LP12] L. Lu and X. Peng. On meyniel’s conjecture of the cop number. Journal of
Graph Theory, 71(2):192–205, 2012. 103



Bibliography 195

[Mö90] R.H. Möhring. Graph problems related to gate matrix layout and pla folding.
In Computational Graph Theory, volume 7 of Computing Supplementum,
pages 17–51. Springer Vienna, 1990. 20

[Mö96] R.H. Möhring. Triangulating graphs without asteroidal triples. Discrete
Applied Mathematics, 64(3):281–287, 1996. 15

[Má07] A. Máthé. The angel of power 2 wins. Combinatorics, Probability and Com-
puting, 16(3):363–374, 2007. 107

[Mam13] M. Mamino. On the computational complexity of a game of cops and robbers.
Theoretical Computer Science, 477(0):48–56, 2013. 4, 104

[MHG+81] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, and C.H. Papadim-
itriou. The complexity of searching a graph. In Foundations of Computer
Science, 1981. SFCS ’81. 22nd Annual Symposium on, pages 376–385, 1981.
4

[Mog96] J.C. Mogul. Hinted caching in the web. In Proceedings of the 7th work-
shop on ACM SIGOPS European workshop: Systems support for worldwide
applications, EW 7, pages 103–108, 1996. 111

[MS88] B. Monien and I.H. Sudborough. Min cut is np-complete for edge weighted
trees. Theoretical Computer Science, 58(1–3):209–229, 1988. 18

[MS89] F. Makedon and I.H. Sudborough. On minimizing width in linear layouts.
Discrete Applied Mathematics, 23(3):243–265, 1989. 22

[NS13] N. Nisse and R. Soares. On the monotonicity of process number. In LAGOS,
2013. 6

[NW83] R. Nowakowski and P. Winkler. Vertex-to-vertex pursuit in a graph. Discrete
Mathematics, 43(2–3):235–239, 1983. 101, 102, 105

[OMK+79] T. Ohtsuki, H. Mori, E.S. Kuh, T. Kashiwabara, and T. Fujisawa. One-
dimensional logic gate assignment and interval graphs. Circuits and Systems,
IEEE Transactions on, 26(9):675–684, 1979. 14

[Par78] T.D. Parsons. Pursuit-evasion in a graph. In Theory and Applications
of Graphs, volume 642 of Lecture Notes in Mathematics, pages 426–441.
Springer Berlin Heidelberg, 1978. 4, 21

[PM96] V.N. Padmanabhan and J.C. Mogul. Using predictive prefetching to im-
prove world wide web latency. SIGCOMM Computer Communication Re-
view, 26(3):22–36, 1996. 111

[Qui83] A. Quilliot. Problèmes de jeux, de point Fixe, de connectivité de represésen-
tation sur des graphes, des ensembles ordonnés et des hypergraphes. PhD
thesis, Thèse d’Etat, Université de Paris IV, 1983. 101

[Qui86] A. Quilliot. Some results about pursuit games on metric spaces obtained
through graph theory techniques. European Journal of Combinatorics,
7(1):55–66, 1986. 104



196 Bibliography

[RS83] N. Robertson and P.D. Seymour. Graph minors. i. excluding a forest. Journal
of Combinatorial Theory, Series B, 35(1):39–61, 1983. 13, 14, 43

[RS84] N. Robertson and P.D. Seymour. Graph minors. iii. planar tree-width. Jour-
nal of Combinatorial Theory, Series B, 36(1):49–64, 1984. 2

[RS91] N. Robertson and P.D. Seymour. Graph minors. x. obstructions to tree-
decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190,
1991. 19, 43

[RS95] N. Robertson and P.D. Seymour. Graph minors .xiii. the disjoint paths
problem. Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995. 2

[RS04] N. Robertson and P. Seymour. Graph minors. xx. wagner’s conjecture. Jour-
nal of Combinatorial Theory, Series B, 92(2):325–357, 2004. 3, 13, 14

[SB91] P.D. Seymour and D. Bienstok. Monotonicity in graph searching. Journal
of Algorithms, 12:239–245, 1991. 4, 22

[Sch98] A. Schrijver. Theory of Linear and Integer Programming. Wiley Series in
Discrete Mathematics & Optimization. John Wiley & Sons, 1998. 131

[Sch01] B.S.W. Schröder. The copnumber of a graph is bounded by [3/2 genus(g)]
+ 3. In Categorical Perspectives, pages 243–263. Birkhäuser Boston, 2001.
104

[Soa13] R. Soares. Fractional combinatorial games on graphs. In 15èmes Rencon-
tres Francophones sur les Aspects Algorithmiques des Télécommunications
(AlgoTel), 2013. 7

[Sol09] F. Solano. Analyzing two conflicting objectives of the wdm lightpath recon-
figuration problem. In Proceedings of the Global Communications Conference
(GLOBECOM), pages 1–7, 2009. 31

[SP09] F. Solano and M. Pióro. A mixed-integer programing formulation for the
lightpath reconfiguration problem. In VIII Workshop on G/MPLS Networks
(WGN8), 2009. 31

[SS11] A. Scott and B. Sudakov. A bound for the cops and robbers problem. SIAM
Journal on Discrete Mathematics, 25(3):1438–1442, 2011. 103

[SS13] R.M. SAMPAIO and J.L. Szwarcfiter. The convexity of induced paths of
order three. In Proceedings of the Latin-American Algorithms, Graphs and
Optimization Symposium (LAGOS), pages 196–202, 2013. 149

[ST93] P.D. Seymour and R. Thomas. Graph searching and a min-max theorem for
tree-width. Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993.
3, 4, 19, 20, 32, 41, 43

[ST94] P.D. Seymour and R. Thomas. Call routing and the ratcatcher. Combina-
torica, 14(2):217–241, 1994. 2, 3, 17, 18, 48

[Tar85] R.E. Tarjan. Decomposition by clique separators. Discrete Mathematics,
55(2):221–232, 1985. 148



Bibliography 197

[TCH08] M. Tedder, D. Corneil, and C. Habib, M.and Paul. Simpler linear-time
modular decomposition via recursive factorizing permutations. In Automata,
Languages and Programming, volume 5125 of Lecture Notes in Computer
Science, pages 634–645. Springer Berlin Heidelberg, 2008. 3

[The08] D.O. Theis. The cops & robber game on series-parallel graphs.
arXiv:0712.2908v2, 2008. 104

[Thi00] D.M. Thilikos. Algorithms and obstructions for linear-width and related
search parameters. Discrete Applied Mathematics, 105(1–3):239–271, 2000.
3, 4, 17, 19, 43, 48

[TUK95] A. Takahashi, S. Ueno, and Y. Kajitani. Mixed searching and proper-path-
width. Theoretical Computer Science, 137(2):253–268, 1995. 22

[Vaz04] V.V. Vazirani. Approximation Algorithms. Springer, 2004. 138

[WLZC12] Z. Wang, F.X. Lin, L. Zhong, and M. Chishtie. How far can client-only solu-
tions go for mobile browser speed? In Proceedings of the 21st international
conference on World Wide Web, WWW ’12, pages 31–40, 2012. 111

[YC07] B. Yang and Y. Cao. Directed searching digraphs: Monotonicity and com-
plexity. In Theory and Applications of Models of Computation, volume 4484,
pages 136–147. Springer Berlin Heidelberg, 2007. 5

[YDA09] B. Yang, D. Dyer, and B. Alspach. Sweeping graphs with large clique number.
Discrete Mathematics, 309(18):5770–5780, 2009. 23


	Contents
	Introduction
	Graph Decompositions
	Pursuit-evasion Games
	Convexity
	Main Contributions and Outline
	Basic Terminology

	Pursuit-Evasion Games and Graph Decompositions
	Pursuit-Evasion Games and Decompositions
	Graph Decompositions
	Graph Searching Games and Decompositions
	Directed Graph Decompositions and Directed Graph Searching
	Objectives

	Monotonicity of The Process Game
	Process Game and Routing Reconfiguration
	Recontamination Does Not Help to Process a Digraph
	Process Decomposition
	Conclusion

	Graph Width Measures
	Partition Functions and Partitioning Trees
	Main Results
	Describing Partitioning Trees in a Dynamic Manner
	Good Representatives of Partitioning Trees
	Algorithm Using Characteristic
	Conclusion


	Turn-By-Turn Pursuit-Evasion Games
	Turn-by-Turn Pursuit-Evasion Games
	Cops and Robbers
	Eternal Dominating Sets and Vertex Cover
	The Angel Problem
	Objectives

	Surveillance Game
	The Surveillance Game
	Cost of Connectivity
	Online Surveillance Number
	Conclusion

	Fractional Turn-by-Turn Pursuit-Evasion Games
	Description of a Turn-by-Turn Pursuit-Evasion Game
	Algorithm to Compute a Winning Strategy for player Cop
	Semi-Fractional and Integral Games
	Applications in Combinatorial Games
	Conclusion


	Convexity
	Convexity in Graphs
	Alignments - Types of Convexity
	Algorithmic Aspect of Convexity
	Structural Aspect of Convexity
	Objectives

	On the Hull Number of Graphs
	Terminology and Tools
	Bipartite Graphs
	Complement of Bipartite Graphs
	Graphs with few P4's
	P5,K3-Free Graphs
	Reduction Rules
	Hull Number via Two Connected Components
	Bounds For the Hull Number of Graphs
	Conclusion

	Conclusion
	Index
	Bibliography


