
HAL Id: tel-00908369
https://theses.hal.science/tel-00908369v1
Submitted on 22 Nov 2013 (v1), last revised 10 Dec 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compressive Sensing in diffusion MRI
Sylvain L. Merlet

To cite this version:
Sylvain L. Merlet. Compressive Sensing in diffusion MRI. Medical Imaging. Université Nice Sophia
Antipolis, 2013. English. �NNT : �. �tel-00908369v1�

https://theses.hal.science/tel-00908369v1
https://hal.archives-ouvertes.fr


PhD THESIS

prepared at

Inria Sophia Antipolis - Méditerranée

and presented at the

University of Nice-Sophia Antipolis

Graduate School of Information and Communication Sciences

A dissertation submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF SCIENCE

Specialized in Control, Signal and Image Processing

Compressive Sensing

in diffusion MRI

Sylvain MERLET

Advisor Dr. Rachid Deriche, Inria Sophia Antipolis-Méditerranée, France

Reviewers Dr. Christian Barillot, CNRS/Inria Rennes Bretagne-Atlantique, France

Pr. Ragini Verma, University of Pennsylvania, USA

Examiners Pr. Maxime Descoteaux, Université de Sherbooke, CA
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Abstract

This thesis is dedicated to the development of new acquisition and processing methods in

diffusion MRI (dMRI) to characterize the diffusion of water molecules in white matter fiber

bundles at the scale of a voxel. In particular, we focus our attention on the accurate recovery

of the Ensemble Average Propagator (EAP), which represents the full 3D displacement of

water molecule diffusion. Diffusion models such that the Diffusion Tensor or the Orientation

Distribution Function (ODF) are largely used in the dMRI community in order to quantify

water molecule diffusion. These models are partial EAP representations and have been

developed due to the small number of measurement required for their estimations. It is

thus of utmost importance to be able to accurately compute the EAP and order to acquire

a better understanding of the brain mechanisms and to improve the diagnosis of neurological

disorders. Estimating the full 3D EAP requires the acquisition of many diffusion images

sensitized to different orientations in the q-space, which render the estimation of the EAP

impossible in most of the clinical dMRI scanner. A surge of interest has been seen in

order to decrease this time for acquisition. Some works focus on the development of new

and efficient acquisition sequences. In this thesis, we use sparse coding techniques, and in

particular Compressive Sensing (CS) to accelerate the computation of the EAP. Multiple

aspects of the CS theory and its application to dMRI are presented in this thesis.

Keywords diffusion MRI; compressive sensing; sparse coding; dictionary learning; q-space

sampling; q-ball imaging; ensemble average propagator; diffusion spectrum imaging;
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Résumé (en français)

Cette thèse est consacrée à l’élaboration de nouvelles méthodes d’acquisition et de traite-

ment de données en IRM de diffusion (IRMd) afin de caractériser la diffusion des molécules

d’eau dans les fibres de matière blanche à l’échelle d’un voxel. Plus particulièrement,

nous travaillons sur un moyen de reconstruction précis de l’Ensemble Average Propa-

gator (EAP), qui représente la fonction de probabilité de diffusion des molécules d’eau.

Plusieurs modèles de diffusion tels que le tenseur de diffusion ou la fonction de distribu-

tion d’orientation sont très utilisés dans la communauté de l’IRMd afin de quantifier la

diffusion des molécules d’eau dans le cerveau. Ces modèles sont des représentations par-

tielles de l’EAP et ont été développés en raison du petit nombre de mesures nécessaires à

leurs estimations. Cependant, il est important de pouvoir reconstruire précisément l’EAP

afin d’acquérir une meilleure compréhension des mécanismes du cerveau et d’améliorer

le diagnostique des troubles neurologiques. Une estimation correcte de l’EAP nécessite

l’acquisition de nombreuses images de diffusion sensibilisées à des orientations différentes

dans le q-space. Ceci rend son estimation trop longue pour être utilisée dans la plupart

des scanners cliniques. Dans cette thèse, nous utilisons des techniques de reconstruction

parcimonieuses et en particulier la technique connue sous le nom de Compressive Sensing

(CS) afin d’accélérer le calcul de l’EAP. Les multiples aspects de la théorie du CS et de son

application à l’IRMd sont présentés dans cette thèse.

Keywords IRM de diffusion; acquisition compressée; reconstruction parcimonieuse; ap-

prentissage de dictionnaire; propagateur de diffusion;
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Je remercie également tous les membres de l’équipe-projet ATHENA avec qui j’ai passe
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Enfin, les dernières lignes de ces remerciements sont destinées à remercier Mélissa, toute
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18 CHAPTER 1. INTRODUCTION

1.1 Context

Magnetic Resonance Imaging (MRI) is a medical imaging technique and an application of

nuclear magnetic resonance (NMR) that allows one to reconstruct and visualize the internal

structure of biological tissues, non invasively. MRI scans measure the current induced in a

receiver coil from the magnetic field generated by the rotational movement of nuclei in the

body part under examination. Diffusion MRI (dMRI) is a specific MRI acquisition process,

which assesses the integrity of brain anatomical connectivity and is very useful for examining

and quantifying white matter (WM) microstructure and organization not available with

other imaging modalities. dMRI is also crucial for the diagnosis of neurological disorders.

dMRI determines the WM structure by exploiting the way the water molecules diffuse.

The first diffusion images were obtained in the mid-1980s by Le Bihan et al. [73, 74], Mer-

boldt et al. [83] , and was based on the pioneering work of [117], who introduced the pulsed

gradient spin-echo (PGSE) sequence. It allows the quantification of the water diffusion by

estimating the displacement of water particles from the phase change that occurs during the

acquisition process. This average displacement can be accurately described at the scale of

a voxel by the Ensemble Average Propagator (EAP), which represents the full 3D displace-

ment of water molecule diffusion. Using dMRI to infer the EAP requires the acquisition of

many diffusion images sensitized to different orientations in the sampling space. The num-

ber of diffusion weighted images (DWI) required depends on how the diffusion is modeled.

For instance, the well known Diffusion Tensor (DT) model [8, 10, 9, 32, 125, 31, 4, 75, 54, 98]

assumes the EAP is Gaussian and requires at least 6 DWIs plus an additional unweighted

image. However, the Gaussian assumption of Diffusion Tensor Imaging (DTI) over-simplifies

the diffusion of water molecules in the brain and, thus, has some limitations for voxels in

which there are more complicated internal structures. Therefore, it is of utmost importance

to develop techniques that go beyond the limitations of DTI. For this purpose, High An-

gular Resolution Diffusion Imaging (HARDI) has been proposed to measure the diffusion

of water molecules along more directions than DTI. Among HARDI techniques, there is

Q-Ball Imaging (QBI) [126, 130, 44, 1, 96], which estimates the Orientation Distribution

Function (ODF) from measurements taken at the same radii. However, the ODF only

captures angular information of the diffusion process. Another HARDI technique has been

proposed in [66], where the authors characterize the diffusion signal by a superposition of

Gaussians, resulting in a Wishart distribution. They show improvements over the classical

DTI technique and presents an estimation scheme for the fiber orientation and EAP.

This thesis is dedicated to the development of new acquisitions and processing methods

in order that the diffusion may be completely characterized. In particular, we focus our

attention on the accurate recovery of the EAP, which can be considered as a starting

point to estimate many diffusion features as the DT and the ODF. In Diffusion Spectrum

Imaging (DSI) [131, 130, 127], the EAP is obtained by directly taking the inverse Fourier

transform of the normalized signal measured in the q-space. It aims to reconstruct the

EAP in a numerical way without any prior knowledge. This results in estimating the EAP

in a very accurate fashion. However, DSI provides a discrete EAP and the estimation of

diffusion features requires numerical calculation, which can be long and computationally

expensive. Recently, multiple shells HARDI techniques were introduced to model the EAP

in a continuous and analytical manner [100, 5, 99, 34, 45, 135, 63]. These techniques aim to

catch both radial and angular information about the water diffusion process as DSI does,
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and they provide analytical formulae to extrapolate/interpolate the dMRI signal as well as

to estimate important diffusion features.

In this thesis we tackle the problem of estimating the EAP with a reduced number of

measurements. For this purpose, we consider sparse coding techniques, and in particular

Compressive Sensing (CS) [23, 46, 52, 22, 49] to accelerate the computation of common

water molecule diffusion models. The CS theory is thus the central point of this thesis. It

has already been used in numerous applications [6, 77, 17, 48, 25, 61, 133, 13, 118, 134]

and, in particular has been proved useful in recovering magnetic resonance (MR) images

by significantly undersampling their k-spaces [77, 60, 55, 30, 124]. Many research groups

have also handle the problem of estimating the dMRI signal via CS starting from the idea

of accelerating DSI [91, 82, 15] to a continuous and analytical modeling of the dMRI signal

from sparse basis or dictionary [96, 109, 36, 89, 122, 95]. An interest in dictionary learning

has also been seen in order to construct highly sparse representation of the dMRI signal

[15, 57, 136, 88]. This thesis contributes to these three topics, i.e., the acceleration of DSI

via CS in chapter 5, the continuous and analytical modeling of the dMRI signal via CS in

chapter 6 and sparse dictionary learning from dMRI data in chapter 7.

1.2 Organization of this manuscript

This manuscript is organized in two parts: a background part and a part containing the

contributions.

• The background part presents the context of this thesis, i.e an introduction to diffusion

MRI in chapter 3 and a description of Compressive Sensing (CS) in chapter 4.

• The contributions part consists in three chapters. Chapter 5 describes the method to

accelerate DSI via CS. Chapter 6 deals with the continuous and analytical modeling

of dMRI signals with respect to sparse and continuous orthonormal bases. Chapter

7 tackles the problem of sparse and parametric dictionary learning in diffusion MRI.

Sketch of the chapters in this thesis is presented Fig. 2.1.

1.2.1 Part 1: Background

Chapter 3 introduces the principles of Magnetic Resonance Imaging, with a particular

emphasis on diffusion MRI. This chapter provides the knowledge necessary to understand

the biological and physical bases of the diffusion MR signal. It also introduces mathematical

models that characterize the diffusion phenomenon, namely the Diffusion Tensor (DT),

the Orientation Distribution Function (ODF) and the full probability distribution of water

molecules diffusion also known as the Ensemble Average Propagator (EAP). We also present

state-of-the-art methods to estimate these models.

Chapter 4 introduces the sampling theory of Shannon and describes the Compressive

Sensing (CS) theory introduced by Candes and Donoho [23, 46]. The classical CS theory

was originally developed to recover discrete and finite-length signals under the assumption

that this signal admits a sparse representation with respect to an orthonormal basis. This

classical CS theory was found limited in two points. First, in many applications, the
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Figure 1.1: Sketch of the chapters in this thesis.

signal is likely to admit a sparse representation with respect to an arbitrary dictionary.

In addition, most of the natural phenomena are analog and not discrete. For these two

reasons, we present an extension of the classical CS framework from a discrete and finite

length signal reconstruction to the recovery of continuous signal representation with respect

to orthonormal bases or dictionaries. This chapter is the central point of this thesis and can

be used as a link between the different contributions presented in the subsequent chapters.

1.2.2 Part 2: Contributions

Chapter 5 presents an application of the classical CS theory to accelerate the technique

known as Diffusion Spectrum Imaging (DSI). DSI is able to accurately recover a discrete

EAP defined in a Cartesian grid at the expense of having to acquire a large number of

measurements. Compressive Sensing (CS) offers an efficient way to decrease this number

of measurements. This chapter covers two main topics of CS, namely the sparsity of the

dMRI signal and the q-space sampling protocol. The robustness and the efficiency of

several sampling protocols and sparse transforms are thoroughly compared to identify the

ingredients of an optimal CS reconstruction. Experiments on synthetic and human brain

data have been carried out, which demonstrate that approximately 64 measurements are

sufficient to recover significant information regarding the EAP and to accurately estimate

the orientation distribution function (ODF) and the diffusion kurtosis. We finally show that

an appropriate sparse transform and sampling protocol considerably improves the quality

of the CS reconstruction of the EAP, the ODF and the diffusion kurtosis. This contribution

has been submitted and is under revision in [93].

Chapter 6 studies the impact of the sparsity, the incoherence and the Restricted Isometry

Property (RIP) when the dMRI signal is modeled as a linear combination of an orthonormal

basis atoms. This provides a continuous representation of the dMRI signal and extends

the classical CS framework presented in chapter 5. This continuous framework allows

one to interpolate/extrapolate the dMRI signal at every q-space locations and renders the
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computation of some diffusion features such that the EAP and the ODF very fast thanks

to analytical and closed-form formulae. We show that an efficient use of the CS theory

enables the drastic reduction of the number of measurements commonly used in dMRI

acquisitions. Only 20-30 measurements, optimally spread on several b-value shells, are

shown to be necessary, which is less than previous attempts to recover the diffusion signal

using CS. This opens an attractive perspective to measure the diffusion signals in white

matter within a reduced acquisition time and shows that CS holds great promise and opens

new and exciting perspectives in diffusion MRI. This contribution has been published in

[95].

Chapter 7 introduces a new dictionary learning algorithm to design parametric and

sparse dictionaries from a set of diffusion MRI signals. This original framework provides

a way to obtain a faithful and continuous representation of the dMRI signal while highly

decreasing the number of measurements which is required with the orthonormal bases seen

in chapter 6. Analytical formulae are also provided to estimate the EAP and the ODF. The

properties and potentials of the technique are demonstrated using various simulations on

synthetic data and on human brain data acquired from 7-T and 3-T scanners. It is shown

that the technique can clearly recover the dMRI signal and its features with a much better

accuracy compared to state-of-the-art approaches, even with a small and reduced number

of measurements. In particular, we can accurately recover the ODF in regions of multiple

fiber crossing, which could open new perspectives for some dMRI applications such as fiber

tractography. This chapter can be considered as an extension of chapter 6 where the

orthonormal basis is replaced by an overcomplete and redundant dictionary learned from a

training data set. This contribution has been published in [88].

1.2.3 Appendix

The appendix presents the tools required for a complete understanding of the manuscript.

It describes mathematical tools that have to be well understood to handle the theory un-

derlying this thesis. In particular, we describe in Sec. 10.7 the mathematical framework

commonly used in dMRI to synthesize signals, namely the multi-Gaussian model.
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2.1 Contexte

L’imagerie par Résonance Magnétique (IRM) est une application médicale de la résonance

magnétique nucléaire (RMN) et permet de reconstruire et de visualiser la structure interne

des tissus biologiques de façon non invasive. L’IRM mesure le courant induit dans une

bobine à partir du champ magnétique généré par le mouvement de rotation de certains

noyaux atomiques possédant un spin nucléaire. L’IRM de diffusion (IRMd) est une modalité

d’acquisition d’IRM, qui évalue la connectivité cérébrale anatomique et est très utile pour

examiner et quantifier la microstructure et l’organisation des fibres de matière blanche

(MB). L’IRMd est également cruciale pour le diagnostic des troubles neurologiques.

L’IRMd détermine la structure de la MB, en exploitant la façon dont les molécules d’eau

se diffusent. Les premières images de diffusion ont été obtenus dans le milieu des années

80 par Le Bihan et al. [73, 74], Merboldt et al. [83] grâce au travail pionnier de [117], qui

a présenté une séquence d’acquisitions basée sur des gradients de très courte durée. Cette

découverte permet la quantification de la diffusion de l’eau en estimant le déplacement des

particules d’eau à partir du changement de phase qui se produit pendant l’acquisition. Ce

déplacement moyen peut être décrit avec précision à l’échelle d’un voxel par le propagateur

moyen de diffusion (PMD ou EAP), qui représente le déplacement en 3D de la diffusion des

molécules d’eau. Estimer le PMD nécessite l’acquisition de nombreuses images de diffusion

sensibilisées à des orientations différentes dans l’espace d’échantillonnage. Le nombre d’

images pondérés en diffusion (IPD ou DWI) requis dépend de la façon dont la diffusion

est modélisée. Par exemple, le tenseur de diffusion (TD) [8, 10, 9, 32, 125, 31, 4, 75, 54,

98] assume que le PMD est gaussien et nécessite au moins 6 IPDs ainsi qu’une image

supplémentaire non pondérée. Cependant, l’hypothèse gaussienne simplifie à l’excès la

diffusion des molécules d’eau dans le cerveau. Par conséquent, ce modèle possède quelques

limitations pour les voxels dans lesquels ils existent des structures internes plus complexes.

Il est donc primordial de développer des modèles qui vont au-delà des limites du tenseur

de diffusion. À cette fin, l’imagerie par haute résolution angulaire (HARDI) a été proposé

pour mesurer la diffusion de molécules d’eau dans plus de directions que DTI. Parmi les

techniques HARDI, nous pouvons citer le Q-Ball Imaging (QBI) [126, 130, 44, 1, 96] qui

estime la fonction de distribution des orientations (ODF) à partir de mesures prises à un

même rayon. Cependant, l’ODF ne capture que l’information angulaire.

Cette thèse est consacrée à l’élaboration de nouvelles techniques acquisitions et de traite-

ment des données en IRM de diffusion. En particulier, nous concentrons notre attention

sur la reconstruction exacte du propagateur de diffusion. Celui ci peut être considéré

comme un point de départ afin d’évaluer de nombreuses fonctionnalités de diffusion comme

le tenseur de diffusion et la fonction de distribution des orientations. Avec la technique

connue sous le nom de Diffusion Spectrum Imaging (DSI), le PMD est obtenu en prenant

directement la transformée de Fourier inverse du signal normalisé. Il vise à reconstruire

le PMD numériquement sans aucune connaissance préalable. Il en résulte une estimation

très précise du PMD. Cependant, le DSI fournit un PMD discret et l’estimation des car-

actéristiques de diffusion nécessite des calculs numériques, qui peut être long et coûteux en

ressources informatiques. Récemment, plusieurs techniques HARDI ont été introduites pour

modéliser le PMD de façon continu et d’une manière analytique [100, 5, 99, 34, 45, 135, 63].

Ces techniques visent à approximer l’aspect radial et angulaire du processus de diffusion

comme DSI. Elles fournissent également en plus des formules analytiques pour extrapoler
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/ interpoler le signal de diffusion et estimer des caractéristiques de diffusion importantes.

Dans cette thèse, nous abordons le problème de l’estimation du PMD avec un nombre

réduit de mesures. A cet effet, nous utilisons des techniques de codage parcimonieuses, et en

particulier la technique connue sous le nom de Compressive Sensing (CS) [23, 46, 52, 22, 49]

afin d’accélérer le calcul des modèles de diffusion. La théorie du CS est donc le point central

de cette thèse. Elle a déjà été utilisée dans de nombreuses applications [6, 77, 17, 48, 25,

61, 133, 13, 118, 134] et, en particulier, s’est révélée utile en IRM [77, 60, 55, 30, 124].

De nombreux groupes de recherche ont aussi traité le problème d’estimation du signal de

diffusion avec le CS à partir du DSI [91, 82, 15] ou pour modeliser de façon continu le signal

dans une base orthonormal ou un dictionnaire [96, 109, 36, 89, 122, 95]. Un intérêt pour

l’apprentissage de dictionnaire a également été vu afin de trouver des representations très

sparses du signal de diffusion [15, 57, 136, 88]. Cette thèse contribue à ces trois objectifs, à

savoir l’accélération du DSI via CS dans le chapter 5, la modélisation continue du signal

de diffusion via CS dans le chapter 6 et l’apprentissage de dictionnaire à partir de données

pondérées en diffusion dans le chapter 7.

2.2 Organisation du manuscrit

Ce manuscrit est composé de deux parties : une partie définissant le contexte et les outils

utilisés, et une partie présentant les contributions.

• La première partie présente le contexte de cette thèse, à savoir une introduction à

l’IRM de diffusion dans le chapitre 3 et une description du Compressive Sensing

dans le chapitre 4. Le

• La partie contributions se compose de trois chapitres. Le chapitre 5 décrit la méthode

pour accélérer le DSI via CS. Le chapitre 6 traite de la modélisation continue et des

signaux de diffusion dans des bases orthonormales. chapitre 7 aborde le problème

de l’apprentissage d’un dictionnaire paramétrique en IRM de diffusion.

Un plan de ces chapitres est presenté Fig. 2.1.

2.2.1 Partie 1: Background

Chapitre 3 présente les principes de l’imagerie par résonance magnétique (IRM), avec

un accent particulier sur l’IRM de diffusion. Ce chapitre fournit les connaissances de base

nécessaires à la compréhension de la biologie et de la physique de l’IRM de diffusion. Il

introduit également les modèles mathématiques qui caractérisent le phénomène de diffusion,

à savoir le tenseur de diffusion , la fonction de distribution d’orientation et la distribution de

probabilité de la diffusion des molécules d’eau également connu comme l’ Ensemble Average

Propagator (EAP). Nous présentons également l’état de l’art des méthodes d’estimation de

ces modèles.

Chapitre 4 introduit la théorie de l’échantillonnage de Shannon et décrit la théorie Com-

pressive Sensing (CS) introduite par Candes et Donoho [23, 46]. La théorie classique du

CS a été initialement développée pour reconstruire des signaux discrets et de longueur finie

sous l’hypothèse que le signal admet une représentation parcimonieuse dans une base or-

thonormale. Cette théorie classique du CS est limitée à deux points. Tout d’abord, dans
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Figure 2.1: Plan des chapitres de ce manuscrit.

de nombreuses applications, le signal est susceptible d’admettre une représentation parci-

monieuse dans un dictionnaire quelconque. En outre, la plupart des phénomènes naturels

sont analogiques et non discrets. Pour ces deux raisons, nous présentons une prolongation

du CS classique pour reconstruire des signaux continus modélisés dans des bases orthonor-

males et des dictionnaires. Ce chapitre est le point central de cette thèse et peut être utilisé

comme un lien entre les différentes contributions présentées dans les chapitres suivants.

2.2.2 Partie 2: Contributions

Chapitre 5 présente une application de la théorie classique du CS pour accélérer la

technique appelée Diffusion Spectrum Imaging (DSI). DSI est capable de reconstruire

précisément l’EAP discrétisé sur une grille cartésienne au détriment de l’acquisition d’un

grand nombre de mesures. CS offre un moyen efficace de réduire ce nombre de mesures.

Ce chapitre couvre deux thèmes principaux du CS, à savoir le choix d’une représentation

parcimonieuse et le choix d’un protocole d’échantillonnage. La robustesse et l’efficacité

de plusieurs protocoles d’échantillonnage et de plusieurs transformées parcimonieuses sont

soigneusement comparées.. Des expériences sur des données synthétiques et sur le cerveau

humain sont réalisées, et démontrent qu’environ 64 mesures sont suffisantes pour récupérer

l’information essentielle de l’EAP et permet d’estimer avec précision l’ODF et le kurtosis

de diffusion. Cette contribution a été soumise dans [93].

Chapitre 6 étudie l’impact de la parcimonie, de l’incohérence et de la propriété RIP

lorsque le signal est modélisé comme une combinaison linéaire d’atomes d’une base or-

thonormale. Cela donne une représentation continue du signal de diffusion et étend le

cadre du CS classique présentée dans le chapitre 5. Ce cadre continue permet d’interpoler

/ extrapoler le signal de diffusion dans tout le q-space et de rendre le calcul de certaines

caractéristiques de diffusion tels que l’EAP et la fonction de distribution des orientations

très rapide grâce à des formules analytiques. Nous montrons qu’une utilisation efficace

du CS permet de réduire considérablement le nombre de mesures couramment utilisées lors
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d’acquisitions en IRM de diffusion. Seulement 20-30 mesures réparties de façon optimale sur

plusieurs valeurs de b sont nécessaires. Cela ouvre des perspectives nouvelles afin d’acquérir

les signaux en IRM de diffusion. Cette contribution est publiée dans [95].

Chapitre 7 introduit un nouvel algorithme d’apprentissage de dictionnaire afin de con-

cevoir des dictionnaires paramétriques et parcimonieux à partir d’un ensemble de signaux

d’IRM de diffusion. Les dictionnaires appris fournissent une représentation fidèle et con-

tinu du signal de diffusion tout en diminuant fortement le nombre de mesures. Des formules

analytiques sont également fournies pour estimer l’EAP et la fonction de distribution des

orientations (ODF). En particulier, nous pouvons récupérer avec précision l’ODF dans les

régions de croisement de fibres multiples, ce qui pourrait ouvrir de nouvelles perspectives

pour une application telle que la tractographie de fibres. Ce chapitre peut être considéré

comme une extension du chapitre 6 où la base orthonormale est remplacée par un diction-

naire redondant appris à partir d’un ensemble de données de diffusion. Les propriétés et les

potentialités de la technique sont mises en évidence via diverses simulations sur des données

synthétiques et via des données acquises sur le cerveau humain. Il est démontré que la tech-

nique peut clairement récupérer le signal de diffusion et certaines de ses caractéristiques

avec une très bonne précision et un nombre réduit de mesures. En particulier, nous pouvons

récupérer avec précision l’ODF dans les régions de croisement de fibres multiples. Cette

contribution a été publiée dans [88].

2.2.3 Annexe

L’annexe présente les outils nécessaires à une compréhension complète du manuscrit. Il

décrit les outils mathématiques, qui doivent être bien compris pour gérer la théorie sous-

jacente à cette thèse. En particulier, nous décrivons dans la Sec. 10.7 le cadre mathématique

couramment utilisé en IRMd afin de synthétiser les signaux, à savoir le modèle multi-

gaussien.
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Diffusion Weighted MRI
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Overview

Diffusion MRI (dMRI) is a medical imaging technique that is part of the nuclear magnetic

resonance (NMR) applications. In dMRI, NMR provides a way to quantify the water

molecule diffusion in biological tissues. NMR was described by Bloch [16] and Purcel [107]

in 1946. NMR is based on the observation that magnetic nuclei, often referred to as spins,

align themselves to a strong and external magnetic field B0. After the application of this

magnetic field, the MRI scan start the excitation of the nuclei with a 90◦ radio frequency

(RF) pulse that tilts the spins to the plane whose normal is the direction of B0. Then the

spins start to precess around B0 with an angular frequency depending on the nuclei under

examination. The generated echo produced by the precession of all the nuclei induces a

current in a receiver coil and is used to produce the MR signal. However, since the magnetic

field is not homogeneous, the spins lose their phase coherence, which causes the MR signal

to decrease. In 1950, Hahn [59] proposed to reverse the dephasing by applying a 180◦ RF

pulse. In this sequence, the time between the excitation of the spins and the reception of the

echo by the MR coil is twice the time between the two RF pulses. The generated MR signal

is often called spin-echo MR signal. Hahn also observed that the reduction of the spin-echo

signal could be explained by the spin dephasing due to the translational diffusion of the

nuclei within an inhomogeneous magnetic field. In 1954, Carr and Purcell [24] proposed

a way to quantify the diffusion of nuclei. They modify the Hahn spin-echo sequence and

introduce a constant magnetic field gradient, in addition to B0. The spins that are at

different locations in this magnetic field gradient precess at different angular frequencies.

From this sequence, Carr and Purcell [24] developed a mathematical framework to quantify

the diffusion. In 1963, Stejskal and Tanner [117] introduced the pulsed gradient spin-echo

(PGSE) sequence, which replaced the constant magnetic field gradient of the Carr and

Purcell sequence by short duration gradient pulses. The PGSE sequence simplified the

31
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mathematical framework underlying the MR signal interpretation and is used in modern

MRI systems.

In this chapter, we describe the MR signal and image acquisition. The first section of

this chapter aims to understand the physics, which occurs during the measurement process.

We will cover the acquisition principles of basic MRI, namely the T1 and T2 weighted MRI.

Then, we will see a more specific MRI process: the diffusion MRI (dMRI). In the second

section, we present several ways to model the diffusion starting from scalar quantification

of the phenomenon to more complex model that enable the estimation of the 3D dMRI

signal.

3.1 Physics in Magnetic Resonnance Imaging

3.1.1 Basics understanding of nuclear magnetization

The human body is mostly made of water and the proportion of hydrogen nuclei contained

in the water gives relevant information regarding to the internal structure of a body part.

Magnetic Resonance Imaging (MRI) systems observe the hydrogen nuclei behavior in or-

der to reflect the water concentration. In this section, we explain the underlying physics

necessary to understand MRI acquisition.

Let us firstly explain what is a nucleus. As it is represented in the figure 3.1, a nucleus is

a magnetic dipole, also called a spin, which is defined by its rotating axis and the rotational

movement around this axis.

Figure 3.1: Dipole, often referred as a spin. The spin precesses around its rotating axis.

Without external magnetic field (see fig.3.2), every spin has a different direction and

the sum of all magnetic moments results in a cancellation of the overall magnetic field.

However, the dipole behaviors change when they are prone to an external magnetic field

(see fig.3.3). At this moment, every spin aligns with this magnetic field and start precessing

about the external field axis with an angular frequency known as the Larmor frequency.
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Figure 3.2: Magnetic dipoles, or spins,
with different directions.

Figure 3.3: Magnetic dipoles, or spins,
prone to an external magnetic field B0.
Every spin aligns with this magnetic
field.

Therefore, the MRI machine first applies a magnetic field B0 in order to align the spins.

Afterward, a radio frequency pulse, often referred as a RF pulse, is applied in order to tilt

the spins in the plan perpendicular to B0 (3.4 (a)). When the RF pulse frequency is the

same as the Larmor frequency of the spins, it tilts the latter in the plan perpendicular to

the magnetic field B0. The particles continue to precess about B0 at the frequency ν given

by the Larmor equation ν = γB0 where γ is the gyromagnetic ratio. We represent this

phenomenon in the Fig. 3.4 (b).

Figure 3.4: (a) The spin tilts in the plan perpendicular to B0. Then the spin continue to
precess about B0 (b).

After the RF pulse is applied, the spins begin to return to their stable states, i.e. aligned

to the main magnetic field B0. While the spins are returning to their stable states, they

continue to precess about B0 and a magnetic field is produced. The magnetic field during
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which the protons are returning to their stable states is characteristic of the biological tissue

under study and, thereby, enables the distinction between different structures.

To summarize, an RF pulse is used to destabilize the spins. Afterwards, while returning

to their stable states, they generate a magnetic field whose the intensity depends on a given

tissue.

The next sections describe more precisely the relevant information useful in three kind

of MR imaging: The T2 and T1 weighted MRI and the diffusion weighted MRI.

3.1.2 Image formation

In this section, we refer to the rotating magnetic field induced by the spins as the net

magnetization vector N.

As it is said in the previous section, there are three phases in the acquisition process:

1. An alignment phase: A magnetic field B0 is applied to align N with this field.

2. An excitation phase: A RF pulse is applied to tilt N away from B0.

3. A relaxation phase: N returns to its initial state, i.e., aligned with B0.

During the relaxation phase, the receiver coil of the MRI system is prone to the net

magnetization vector N and induces a current that will be interpreted to generate the final

image. N consists in two components: a longitudinal component NL and a transverse

component NT. The figure 3.5 illustrates the decomposition of N in these two components

at a moment during the relaxation phase.

Figure 3.5: The net magnetization N and its two components

During the relaxation phase, the longitudinal component increases and the transverse

component decreases. The T2 and T1 weighted MRI depend on the evolution of these two

components. In particular,
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• The T1-weighted MR imaging follows the evolution of NL. It is based on the

current induced in the coil from the restoration of the longitudinal component and is

completely characterized by the constant time T1. The constant time is the time for

|NL| to recover 63% of its original value.

• The T2-weighted MR imaging follows the evolution of NT. The constant time T2

is the time for |NT| to loose 63% of its value just after the RF pulse is applied. The

transverse component of the net magnetization vector depends on the phase coherence

between spins. As the magnetic field B0 is not perfectly homogeneous, the spins loose

their phase coherence making the transverse component decrease faster. An 180o RF

pulse is applied in order to eliminate spin dephasing. The process is referred to as a

T ∗
2 -weighted MR imaging.

The intensity of the current induced in the receiver coil depends on the values of the

constant time (T1 or T2). Since each tissue is characterized by a constant time, it is possible

to distinguish different biological tissues.

Spatial selection The net magnetisation vector N precesses about the main magnetic

field B0. The angular frequency of the precession (The Larmor frequency) depends of the

B0 value. In order to tilt N, a 90o RF pulse is applied at the Larmor frequency of the spins.

In other words, only the spins precessing at the pulse frequency are tilted. A way, to target

a specific part among the entire scanned tissue, is to expose the target to a magnetic field

that makes the spin to precess at the RF pulse frequency. As it is illustrated in figure 3.6,

three other gradients Gx, Gy and Gz are applied in order to enable spatial localisation in

MRI:

• A first magnetic field gradient Gz is applied to make the spins of an entire slice match

with the Larmor frequency of the RF pulse.

• Two other gradients Gx and Gy enable the excitation of the spins in the x-y plan

of the slice selected by Gz. As the application of these two gradients are not done

simultaneously in the entire slice, it involves a phase difference θxy between every

spin based on their locations. Finally, the signal acquired by the receiver coil is the

integration of all spins. It is given by:

s(t) =

∫

f(x, y) exp(2iπθxy)dxdy (3.1)

f(x, y) is the current value induced by the net magnetization at the x-y localization.

Therefore, s(t) is the Fourier transform of the selected slice image, referred to as a

k-space.

The MR image is thus obtained by applying an inverse Fourier transform to the corre-

sponding k-space. The figure 3.7 and 3.8 show a k-space and its inverse Fourier transform

(the MR image).
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Figure 3.6: (a) slice selection (b) excitation of the spins in the x-y plan

Figure 3.7: MRI image in its original
space

Figure 3.8: MRI image in the Fourier
space
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3.1.3 Adding diffusion weighted and the gradient echo pulse se-

quence

In the following, we call g the diffusion gradient which is the magnetic field applied by the

MRI scanner given by,

g = B0 + Gx + Gy + Gz. (3.2)

g is often referred as a bipolar gradient, which consists in two gradients (g+ and g−)

with the same magnitude but opposite directions.

T2-weighted MR images are characterized by the phase coherence between spins. Water

molecule diffusion is a factor that increase the incoherence between spins and reduce the

MR signal intensity. In this section we explain how to modify the MR acquisition to become

sensitive to diffusion.

After the excitation of the spins by a 90o RF pulse, a bipolar gradient is applied in the

direction of interest. The application of the first gradient g+ adds a positive phase to each

spin depending on their positions along the gradient direction (see Fig. 3.9 (a),(b)). The

second gradient g− is applied in the opposite direction and add the opposite phase to each

spin. After the application of g−, two cases are usually encountered:

• In the first case, there was no displacement between the application of g+ and g−
(Fig. 3.9 (c)). Hence, the spins return to their previous positions (fig 3.9 (e)) and are

completely in phase.

• In the second case, the spins have been displaced due to the Brownian motion (fig 3.9

(d)) and are subjected to a different field strength during the application of g−. The

spins do not return to their initial states and are not in phase anymore. As a result,

the transversal component of the net magnetization field NT decreases (fig 3.9 (f)).

Figure 3.9: Molecules diffusion after the application of a magnetic field.

The diffusion is thus characterized by a loss of coherence in the spin phases resulting in

a decrease of the transverse component of the net magnetization field.

The pulse gradient spin echo sequence Stejskal and Tanner [117] introduced in 1965

the pulse gradient spin echo (PGSE) sequence. This particular sequence apply short du-

ration diffusion gradients (Gx, Gy and Gz), so that the diffusion that occurs during the
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application of a gradient is negligible with respect to the diffusion that occurs between the

application of these gradients. For this reason, the PGSE is often referred as the narrow

pulse sequence. We describe the PGSE sequence in the schematic of Fig. 3.10

Figure 3.10: A schematic of the PGSE sequence. δ is the diffusion weighted gradient
duration and ∆ ≫ δ is the time between two gradient pulses. The intensity of the three
elementary diffusion gradients, respectively Gx, Gy and Gz , define the diffusion gradient
direction applied by the MRI system.

The PGSE sequence is also characterized by the echo time TE and the repetition time

TR, which respectively define the time between the first RF pulse and the maximum of the

received dMRI signal , and the delay between two similar RF pulses. Then the MR (f in

3.1) signal from the PGSE sequence is as follows,

f(x, y) = M0(1 − exp(−TR/T1) exp(−TE/T2) exp(−bD)) (3.3)

i.e. f is attenuated exponentially by the product of the diffusion coefficient D and a factor

b, which is a function of the diffusion weighted gradients. For the PGSE sequence, b is

defined as

b = γ2G2δ2
(

∆ − δ

3

)

, (3.4)

where G is the diffusion weighted gradient amplitude, i.e., G = |g| and M0 is the initial

spin density.

3.2 Modeling the diffusion MRI signal and its features

As it has been described in the previous section, diffusion MRI quantifies the water molecule

diffusion at the scale of a voxel thanks to the local phase variation of the spin that occurs

during diffusion.
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Modeling the water diffusion in a free medium is easily handled since the water molecules

have the same probability to displace a certain distance, which results in a scalar quantifi-

cation of the whole phenomenon. However, what happens if the diffusion is constrained

in certain directions? Modeling it becomes difficult since the water molecule diffusion is

different from one direction to another. Scalar quantification of diffusion at every direc-

tion is still possible but is not adapted for analysis. Then, recent works have been focused

on the development of more complex models that enable a better interpretation of the

phenomenon.

The first part of this section describes the free and constrained diffusion together with

a scalar analysis of the phenomenon. In particular, we introduce the Apparent Diffusion

Coefficient (ADC). The second part introduces the Ensemble Average Propagator (EAP),

which represents the full 3D displacement of water molecule diffusion. Then, we present a

couple of model that leads to interesting features related to the EAP, namely the Diffusion

Tensor (DT) and the Orientation Distribution Function (ODF).

3.2.1 Principles of diffusion and scalar quantification of the phe-

nomenon

Let us consider a water molecule with initial position R0 ∈ R3. After a time τ , it moves to

a position Rτ ∈ R3. We define the displacement vector R ∈ R3 as

R = R0 − Rτ . (3.5)

In this section, we introduce the mathematical formulation used to characterize the

distribution of water molecules displacement R starting by the simplest scenario, namely

the free diffusion, to more complex phenomena.

Free diffusion In a free environment, water molecules follow a random trajectory, re-

ferred to as a random walk. A random walk is a mathematical model consisting in a

sequence of random steps which are completely uncorrelated from one another. We show

in Fig. 3.11 a 2-dimensional random walk corresponding to one water molecule. Because

the molecule undergoes a random trajectory, it is impossible to predict its final location.

In addition, there is an uncountable number of water molecules which makes impossible to

follow each molecule independently.

Hence, instead of considering only one molecule, Einstein proposed in 1905 [51] to

observe the mean square displacement 〈RRT 〉 of the whole set of molecules. He found

that 〈RRT 〉 is proportional to the observation time τ , i.e.,

〈RRT 〉 = 6Dτ, (3.6)

where D is often called the diffusion constant. It means that each molecule has the same

probability of displacing a given distance. In a free medium, (3.6) describes an isotropic

diffusion where the water molecule distribution of squared displacement is characterized by

a Gaussian.
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Figure 3.11: 2-dimensional random walk of a water molecule. R0 is its initial position and
Rτ its position after a time τ .
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Constrained diffusion In biological tissues, such as the white matter, the water

molecules are constrained by their surrounding environment. In this case, they are con-

fined within such hindrance meaning that the diffusion has directionality (see Fig. 3.12 for

a 2-dimensional example). In addition, biological barriers have pores which make them

permeable. Then, in a direction where the diffusion is constrained the diffusion coefficient

D is lower than the value of D in a free diffusion scenario. In this case, D is referred as the

Apparent Diffusion Coefficient (ADC) [74], denoted by DADC in the following.

Figure 3.12: 2-dimensional random displacement of a water molecule constrained in a rect-
angle. R0 is its initial position and Rτ its position after a time τ .

The dMRI signal acquired by the MRI system with the PGSE sequence presented in

Sec. 3.1.3 directly depends on the mean squared displacement 〈RRT 〉 of the water molecule

in the applied diffusion gradient direction. The higher the 〈RRT 〉, the lower is the dMRI

signal in the considered direction. Thus, at a given diffusion time τ , we can infer the value

of the ADC in a particular direction, from the acquired signal.

Strictly speaking, the dMRI signal S for a diffusion weighted gradient g is attenuated

exponentially by the product of the ADC value DADC and a factor b which is a function of

the diffusion-weighted gradient described in Fig. 3.10, i.e.,

S(b) = S0 exp(−bDADC), (3.7)

where S0 is the signal in the absence of any gradients and is given by the constant part of

(3.3), i.e S0 = M0(1 − exp(−TR/T1) exp(−TE/T2).

One can estimate DADC by rearranging (3.7) and, then, compute a quantitative map of

the apparent diffusion coefficient [74], thus giving a scalar approximation of the diffusion

in a given direction. Fig. 3.13 illustrates an ADC map at a given direction corresponding

to an axial view of a brain.

3.2.2 Characterizing the 3D probability distribution of water

molecule diffusion

The ADC is a scalar quantification of the dMRI signal in a given diffusion direction and

is only true for Gaussian diffusion. This hypothesis excludes many phenomena such as
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Figure 3.13: ADC map at a given direction corresponding to an axial view of a brain.



3.2. MODELING THE DIFFUSION MRI SIGNAL AND ITS FEATURES 43

permeability and heterogeneity. In addition, this scalar analysis is not sufficient to interpret

the 3D diffusion phenomenon in its entirety. One may want to compute the probability

distribution of the water molecule diffusion in a voxel in order to characterize the full 3D

diffusion profile.

In this section, we present the general formalism to characterize the so-called Ensemble

Average Propagator (EAP), which is a full description of the water molecule diffusion. We

also present some techniques to approximate the EAP. Then, we introduce other models

of diffusion, which simplify the EAP formalism. In particular, we describe the Diffusion

Tensor (DT), which is the most common simplification of the EAP. We also present the

High Angular Resolution Imaging models, which tend to a more accurate approximation of

the EAP than the DT.

The Ensemble Average Propagator (EAP)

When the tissue’s microstructural features are not known a priori, a mathematical model

that does not take into account any hypothesis is appropriate. For this reason it would

be desirable to obtain the quantity P (Rτ |R0, τ), which gives the probability that a water

molecule displaces from R0 to Rτ after a time τ .

However, the voxel resolution in dMRI does not permit the inferring of P (Rτ |R0, τ) for

only one molecule. Instead, one may want to compute this quantity averaged on all the

molecules contained in a voxel, often referred as the Ensemble Average Propagator (EAP).

We define the EAP as

P (R, τ) =

∫

R0∈Ων

P (Rτ |R0, τ)ρ(R0)dR0, (3.8)

where ρ(R0) is the initial density of molecules in a voxel such that
∫

R0∈Ων
ρ(R0)dR0 = 1

and Ων is the domain where the voxel is defined. In the following, because the obervation

time τ is constant for every voxel, we denote the EAP as P (R).

Under the narrow pulse condition (see Sec. 3.1.3), i.e., when δ ≪ ∆, the normalized

dMRI signal E(q) = S(q)
S0

[18, 39, 117] is written as the Fourier transform of the Ensemble

Average Propagator (EAP) P (R),

E(q) =

∫

R∈R3

P (R) exp(−2πiq ·R)dR, (3.9)

where q represents the effective gradient direction given by q = γδg. The b-value introduced

in 3.4 is related to the effective gradient direction as b = (∆ − δ/3)‖q‖2. Note that in the

following, q and R may be decomposed as q = qu and R = Rr, where u and r are 3D unit

vectors.

Then, the EAP is the inverse Fourier transform of the dMRI signal,

P (R) =

∫

q∈R3

E(q) exp(2πiq ·R)dq. (3.10)

Estimating the Ensemble Average Propagator
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Figure 3.14: q-space sampling in a 8 × 8 × 8 Cartesian grid where only the samples
within the sphere centered in the grid are displayed.

• In Diffusion Spectrum Imaging (DSI) [131, 130, 127] the EAP P (R) is directly

obtained by taking the inverse Fourier transform of the normalized signal E(q) mea-

sured in the q-space on a cartesian grid.

In [130] the size of this grid is 11×11×11. They do not consider every q-space sample

on this grid and take only the samples comprised within the sphere of five lattice unit

radius, which correspond to 514 measurements. Considering the measurement at

b = 0, DSI as described in [130] requires 515 measurements. The cartesian grid is

not fixed and can take any dimension. We show in Fig. 3.14 a q-space sampling in a

8 × 8 × 8 Cartesian grid where we keep only the samples within the sphere centered

in the grid.

The inverse Fourier transform is performed via a inverse Fast Fourier Transform

(iFFT). In practice, we apply a 3-dimensional Hamming window on E(q) before

applying the iFFT. The Hamming window in 1 dimension is defined as,

w(n) = 0.5

(

1 − cos

(
2πn

N − 1

))

(3.11)

where N represents the width of the grid. The 3-dimensional Hamming window is

obtained by applying this 1-dimensional window in every dimension of the cartesian

grid.

The resulting EAP is evaluated on a discrete dual grid, and can be interpolated

to evaluate characteristics such as the orientation distribution function (ODF), the

mean square displacement (MSD) or the return to origin probability (RTO). This

method was applied successfully in brain imaging, for the reconstruction of complex

configurations of fibers, including fiber crossing [130].

DSI is known to be a greedy technique and researchers have recently started to work in

a way to accelerate it [91, 82, 70]. We have also addressed this problem and proposed
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in chapter 5 a method based on Compressive Sensing in order to accelerate the DSI

acquisition (A complete description of Compressive Sensing is given in chapter 4).

• Analytical and continuous modeling (ACM) of the EAP with multiple shell

acquisition. It consists in modeling the EAP with a linear combination of 3D contin-

uous functions from measurements acquired in a discrete range of b-values. We can

refer the ACM techniques as multiple shells HARDI methods. All the ACM tech-

niques start by fitting the dMRI signals and then use an analytical Fourier relation

to estimate the EAP. A large panel of bases (or dictionaries) were introduced for

this purpose. We can cite the Spherical Polar Fourier (SPF) [5, 34], the SPF dual

basis [89], the SHORE [99, 35] and the Solid Harmonic (SoH) [45] bases. These four

bases are described in chapter 6. We also present in chapter 6 an acceleration of

the ACM techniques using the Compressive Sensing framework. More recently the

Bessel Fourier Orientation Reconstruction (BFOR) [62] was proposed, whose solu-

tion is based on the estimation heat equation of the diffusion signal for each shell

acquisition and a generalization of the spherical ridgelets to a radial fitting [109].

• Generalized Diffusion Tensors Imaging (GDTI) [76] uses high-order tensor

(HOT) to estimate the radial and angular part of the 3D dMRI signal. Then the

authors propose an analytical formula to compute the EAP.

The Diffusion Tensor (DT)

Estimating the 3D EAP with the methods described above requires a large amount of data.

In addition, these methods are not often computationally efficient. Then, instead of trying

to compute a complete EAP, one may want to approximate it by a simpler model which

requires less measurements.

A common assumption is to consider that the water molecule diffusion has a Gaussian

behavior. Under this hypothesis, one model to characterize the diffusion is the diffusion

tensor (DT) [117, 8, 10]. The DT is a second order tensor, which can be represented by

a 3 × 3 symmetric and positive definite matrix D, i.e., RTDR > 0 whose components

characterize displacements in 3D, i.e.,

D =







Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz






. (3.12)

The three diagonal elements represent the diffusivity along the axes x, y and z and the

off diagonal elements represent the correlation between the displacement along these axes.

The DT is well represented by an ellipsoid with its main axis corresponding to the direction

where the diffusion is the largest. The surface of the ellipsoid represents the distance where

a molecule will diffuse after a given observation time τ . In particular, when the diffusion

is isotropic, i.e., only the diagonal elements of D are non zero and are equal, then this

surface becomes a sphere. We show in Fig. 3.15 some examples of diffusion tensors and

their corresponding ellipsoids.

The DT can be viewed as the covariance matrix of the three dimensional Gaussian

distribution of the water molecule diffusion. In this framework, we can characterize the
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Figure 3.15: Diffusion tensor (DT) matrices with the corresponding ellipsoids. (a) is a
isotropic DT. (b) and (c) are anisotropic DTs.

EAP as

P (R) =
1

√

(4πτ)3|D|
exp

(
RTD−1R

4τ

)

, (3.13)

We show in Fig. 3.16 (a) a tensorial field. Because of the ellipsoidal nature of the

diffusion tensor, we see on this figure that the DT can not resolve crossing fibers.

Estimating the Diffusion Tensor Basser [8, 10] introduced Diffusion Tensor Imaging

(DTI), which describes a framework to estimate the diffusion tensor D. It defines the

three dimensional Gaussian distribution of the water molecule diffusion. In [117, 8, 10],

the authors propose the following relation between the diffusion tensor and the normalized

diffusion signal E(q)

E(q) =
S(q)

S(0)
= exp (−4π2τqTDq) (3.14)

Since D is symmetric, the DT is completely defined by 6 components. D can be esti-

mated by means of a least square fitting [8, 10]. Other approaches have been developed

since the first work of [8, 10]. These include the weighted linear least squares approach [9]

that takes into account the effect of the log transform of the signal, the tensor estimation

with a positive constraint [32, 125, 31, 98], or riemanian based estimations [75, 4, 54].

Scalar measures derived from the Diffusion Tensor The ellipsoid is completely

defined by the eigenvectors e1, e2, e3 and eigenvalues λ1, λ2, λ3 of the corresponding tensor

matrix (see Fig. 3.17 for an illustration).

From this system of eigenvectors and eigenvalues, one can derive significant diffusion

parameters. These measures are commonly used in a clinical setting to localize white matter

lesions that do not show up on other forms of clinical MRI. Here is a list of important

parameters, which can be derived from the DT:

• The simplest DT quantity that one can compute is the trace of D, which comes to
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Figure 3.16: (a) is a tensorial field representing two crossing fibers. (b) is a field of ODF
representing two crossing fibers. The underlying dMRI signal comes from the HARDI
challenge at ISBI 2013 conference.

Figure 3.17: Ellipsoidal representation of a diffusion tensor. The diagonalisation of the
diffusion tensor matrix is written as D = V TD△V where D△ is a diagonal matrix whose
the diagonal elements are the eigenvalues

√
λi and V consists in the eigenvectors ei.
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sum its eigenvalues, i.e.,

trace(D) = Dxx +Dyy +Dzz = λ1 + λ2 + λ3. (3.15)

trace(D) can also be computed by taking the average of ADCs measured in three

orthogonal directions [101]. This quantity is independent of fiber orientation and has

been shown to be very helpful in detecting neurological disorders such as the acute

ischemic lesions [78].

• An important quantity, which account for the diffusion anisotropy is the fractional

anisotropy (FA) [104, 11]. The FA is the normalized variance of the eigenvalues

express as,

FA =

√

3

2

√

(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2
√

λ2
1 + λ2

2 + λ2
3

, (3.16)

where 〈λ〉 is the mean of the three eigenvalues. The FA takes values between 0 and

1. Larger the FA, more constrained the diffusion along an axis. Then, the FA gives

very valuable information regarding the diffusion anisotropy.

• The trace and the FA respectively characterize the mean diffusivity and the diffusion

anisotropy, but do not indicate the shape of the ellipsoid underlying the DT. Different

measures considering the tensor shape were introduced. One of them is the skewness,

Skew, of the three eigenvalues [7], i.e.,

Skew =
(λ1 − 〈λ〉)3 + (λ2 − 〈λ〉)3 + (λ3 − 〈λ〉)3

3
(3.17)

The skewness is positive for prolate tensors and negative for oblate tensors. One has

to be careful when computing Skew since this measure is highly sensitive to noise.

Alternatively the authors of [132] propose three indices. Each of them quantifies a

particular tensor shape : the sphericity Cs, the linearity Cl and the planarity Cp
defined as

Cs =
λ3

〈λ〉 (3.18)

Cl =
λ1 − λ2

3〈λ〉 (3.19)

Cp =
2(λ2 − λ3)

3〈λ〉 (3.20)

The Orientation Distribution Function (ODF)

The Gaussian assumption of the DT model is an over-simplification of the diffusion of water

molecules and, thus, has some limitations for voxels in which there are more complicated
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internal structures. In particular the DT can not resolve crossing fibers. Therefore, we

have to look at a more complex model to characterize the diffusion. Another model is

the Orientation Distribution Function (ODF), which is the probability density function

that a water molecule diffuses in a given direction. On can express the ODF Υ(r) as the

integration of the EAP over a solid angle [130], i.e.,

Υ(r) =

∫ ∞

0

P (R.r)R2dR. (3.21)

Some groups [126, 44] have also considered the ODF as the integration of the EAP over

its radius. However this definition of the ODF does not lead to a true probability density

function.

The ODF is an efficient model to describe the diffusion orientation in a voxel, and is

often associated to the tractography of the white matter bundles of fibers in order to infer

the fiber orientation. The Fig. 3.18 illustrates two examples of ODF.

Figure 3.18: ODF. On the left one fiber. On the right two crossing fibers

Fig. 3.16 (b) shows a field of ODF estimated with the data used for the DT estimation

in Fig. 3.16 (a). We observe that the ODF describes the crossing region well whereas the

DT is not able to resolve it.

Estimating the Orientation Distribution Function

• The ODF can be computed by integrating over a solid angle the EAP in a discrete

fashion as it is illustrated on Fig. 3.19. This is always the case, when the EAP is

inferred from the DSI technique where the measurements are acquired on a Cartesian

grid. Practical details regarding the ODF computation from a discrete EAP are given

in chapter 5.

• Q-ball imaging ([126, 130, 44, 1]) is part of the Single Shell HARDI methods. The

idea in QBI is to sample the q-space on a single sphere at a given b-value in several

directions instead of attempting to get the entire q-space. It means every diffusion

gradient has the same magnitude. This method has proven useful to significantly

reduce the number of measurements and the time for acquisition.

At first the Q-ball imaging was implemented via numerical method [126]. However,

the numerical approach was computationally intensive. Recent papers [44, 1, 96] have

proposed an analytical solution of the QBI problem, where the ODF is modeled as a

linear combination of spherical functions such that the modified spherical harmonic
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Figure 3.19: Integration of a discrete EAP over a solid angle. The red cone represents
the space where the measurements are integrated.

Figure 3.20: The spherical harmonic basis functions. Each line corresponds to orders
ℓ = 0, 2, 4. The parameter m ranges from −ℓ to ℓ.

(SH) basis, adapted to real, symmetric functions [44]. The SH functions are depicted

on Fig. 3.20, for a truncation degree L = 4.

The mathematical expression of the real and symmetric SH functions is

Yℓ,m(θ, φ) =







√

2(2ℓ+ 1)(ℓ−m)!

(ℓ+m)!
Pmℓ (cos θ) cos(mφ) for m < 0

√

(2ℓ+ 1)Pmℓ (cos θ) for m = 0

√

2(2ℓ+ 1)(ℓ−m)!

(ℓ+m)!
Pmℓ (cos θ) sin(mφ) for m > 0

where Pmℓ is an associated Legendre Polynomial.

When truncated up to order L, this SH basis has dimension J = (L+1) · (L+2)/2. To
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ease matrix representation, we introduce a single index j to designate the spherical

harmonic function Yj = Yℓ,m [44]. The correspondence is given by j ≡ j(l,m) =

(ℓ2 + ℓ+ 2)/2 +m.

The dMRI signal E(qu) acquired at a unique q-value q0 can be described as,

E(q0u) =

J∑

j=1

cjYj(u), (3.22)

where u is a unit vector defining the spherical coordinate (θ, φ), 0 ≤ θ ≤ π, 0 ≤ φ ≤
2π, with

u =







sin θ cosφ

sin θ sinφ

cos θ






. (3.23)

Then, from 3.22 one can express the ODF as a linear combination of SH,

Υ(r) =

J∑

j=1

c
′

jYj(u), (3.24)

where c
′

j are the SH coefficients.

When the ODF is defined as the radial integration of the EAP [126, 44], Descoteaux

et al. [44] expressed the SH coefficients as

c
′

j = 2πPl(0)cj (3.25)

where Pl is the Legendre polynomial.

Moreover, when the ODF is defined as the integration of the EAP over a solid angle

(see (3.21)), Aganj et al. [1] showed that it can be expressed as

c
′

j =







1

2
√
π

j = 1

− 1

8π
(−1)ℓ(j)/2

1 × 3 × · · · × (ℓ(j) + 1)

2 × 4 × · · · × (ℓ(j) − 2)
cj j > 1

Note that other spherical functions were used in the literature to estimate the ODF,

namely the spherical Ridgelets [96] or the spherical wavelets [123]. They were devel-

oped to sparsely represent the angular profile of the diffusion signal and are used in

sparse coding techniques.
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• In [3, 120, 121], the authors propose to estimate the fiber orientation distribution

called the fiber ODF (fODF). As in QBI, the estimation method requires samples

taken at a unique b-value. Then, the signal is deconvoluted with a Gaussian kernel

and Fourier-tranformed to get the fODF. The solution is analytical and enables to

model the ODF using the Spherical Harmonics. The fODF is able to resolve up to 30

degrees crossings consistently [121], which makes this model a promising resource to

estimate fiber orientation. A review of methods for reconstructing the fODF can be

found in [67].

• Another way to estimate the ODF is based on the ACM techniques presented above.

In this continuous framework, works propose analytical formulae to estimate the ODF

[99, 34, 45, 95], which come for free after having modeled the 3D dMRI signal. We

describe these formulae in chapter 6.

3.3 Conclusion

In this chapter, we presented different ways to characterize the diffusion of water molecules,

starting from the simplest scenario where the diffusion is isotropic to cases where the dif-

fusion is constrained by biological tissues.

We have seen that scalar quantification of the diffusion with the ADC coefficients is

not convenient for analysis. Other models have been presented in order to describe the

diffusion, namely the Diffusion Tensor (DT) and the Orientation Distribution Function

(ODF). However, the full 3D characterization of the diffusion is done via the computation

of the Ensemble Average Propagator (EAP), which is the probability distribution of water

molecule diffusion at the scale of a voxel.

The EAP estimation often requires a large amount of data. This thesis is focused on

how to decrease the number of measurements usually required to estimate the EAP. For

this purpose, we use sparse coding techniques, and in particular the Compressive Sensing

technique.



Chapter 4

Compressive Sensing and dMRI

Contents

4.1 Beyond the Shannon theory . . . . . . . . . . . . . . . . . . . . 54

4.1.1 The Shannon theorem . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 A surprising result . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 The discrete Compressive sensing theory . . . . . . . . . . . . 57

4.2.1 CS and Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 CS and incoherence . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 CS recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Generalization to a broader class of representations . . . . . 62

4.3.1 CS with overcomplete and redundant dictionary . . . . . . . . . 62

4.3.2 Toward extending CS to recover continuous signals . . . . . . . . 63

4.4 A state of the art of CS in dMRI . . . . . . . . . . . . . . . . . 65

4.4.1 CS to reconstruct the diffusion tensor . . . . . . . . . . . . . . . 67

4.4.2 CS to reconstruct the ODF . . . . . . . . . . . . . . . . . . . . . 67

4.4.3 CS to reconstruct the 3D diffusion signal and underlying features 68

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

53



54 CHAPTER 4. COMPRESSIVE SENSING AND DMRI

Overview

Most modern signal processing systems are digital, hence the development of the sampling

theory. Sampling consists in converting an analog signal into a digital or discrete signal. In

order to ensure perfect reconstruction of the analog signal from its samples, the Shannon

sampling theorem provides a sufficient condition for the sampling and recovery of a band-

limited signal. However, the sampling rate increases with the band-width of the signal

and the Shannon theorem does not consider infinite band signals. The CS theory was

introduced with the desire to sample wideband signals at a sampling rate far lower from

the Shannon rate. CS [23, 46, 52, 22, 49] has already been used in numerous applications

[6, 77, 17, 48, 25, 61, 133, 13, 118, 134] and, in particular has been proved useful in

recovering magnetic resonance (MR) images by significantly undersampling their k-spaces

[77, 60, 55, 30, 124]. At first, the technique was designed to recover discrete and finite-

length signals under the assumption that this signal admits a sparse representation with

respect to an orthonormal basis [23, 46]. The standard theory was found limited in many

applications where the signal is likely to admit a sparse representation with respect to an

arbitrary dictionary. For this purpose, the authors in [22] generalize the classical theory to

signals having sparse representations in overcomplete and redundant dictionaries. All these

works [23, 46, 22] on CS have focused on reconstructing discrete and finite-length vectors,

whereas most of the natural phenomena are analog. Then, [52, 49] extend the classical

CS framework to allow for analog sampling and, thus, include the case of continuous time

signals.

This part of the manuscript is organized as follows. Sec. 4.1 introduces the sampling

theory of Shannon and its limitations. Sec. 4.2 describes the classical CS theory. The

extension to the case of overcomplete and redundant dictionary, as well as continuous

signals recovery are presented in Sec. 4.3. State of the art of CS in dMRI is presented in

Sec. 4.4.

4.1 Beyond the Shannon theory

4.1.1 The Shannon theorem

Natural phenomena, such as diffusion in white matter bundles, are analog. In most of

modern computational systems, we do not directly process these analog signals. Instead,

we sample them, which means that we observe these analog signals at different instants.

Such a sampled signal is called a digital or discrete signal.

Converting analog signals to digital signals is done via a sampling procedure. Sampling

consists in representing an analog signal x(t) by its values x(kTs) with k ∈ Z, Ts = 1
Fs

is

the sampling period and Fs the sampling frequency, i.e.,

xs(k) = x(kTs) = x(t)
+∞∑

k=−∞
δ(t− kTs) (4.1)

Recovering x(t) from its sample values xs(k), requires the use of the Shannon sampling

theory. The Shannon sampling theorem [116], also called the Nyquist sampling theorem, is

a fundamental tool in digital signal processing, which allows one to recover a band limited

signal from correctly sampled measurements.



4.1. BEYOND THE SHANNON THEORY 55

Before defining the Shannon sampling theorem, let us see the effect of sampling in the

Fourier domain. Xs(f) the spectrum of xs(k) is defined as

Xs(f) = X(f) ∗ Fs
+∞∑

k=−∞
δ(f − kFs) = Fs

+∞∑

k=−∞
X(f − kFs), (4.2)

which means that Xs(f) is X(f) periodized with a sampling period equal to Fs. If x(t) is a

band limited signal with fmax the highest frequency contained in its spectrum X(f), then

the choice of the sampling frequency Fs is limited by the Shannon sampling theorem:

Definition 1. If a signal x(t) is band limited, the minimum sampling rate is twice the

highest frequency component of the signal.

Specifically, x(t) can be recovered by a sinus cardinal interpolation, which is equivalent

to applying a low pass filtering in the frequency domain. We call this minimum sampling

rate, the Shannon rate.

In the following we give an example of continuous signal reconstruction from equally

spaced samples. Let us consider a sum of two sines at frequencies f1 < f2, i.e.,

x(t) = 2 sin(2πf1t) + sin(2πf2t) ( (a) in Fig. 4.1). Ideally, when t is a continuous vari-

able, the magnitude of its Fourier transform |X(f)| is two pairs of dirac δ(f) at frequencies

[−f2,−f1, f1, f2], i.e., |X(f)| = δ(f − f1) + δ(f + f1) + 1
2δ(f − f2) + 1

2δ(f + f2) ( (b) in

Fig. 4.1).

We sample x(t) at two different frequencies Fs such that,

• Fs > 2f2, i.e., above the Shannon rate.

• Fs < 2f2, i.e., below the Shannon rate.

We get two digital signals x(kTs) = 2 sin(2πf1kTs) + sin(2πf2kTs) with Ts = 1
Fs

( (c)

and (d) in Fig. 4.1). Afterwards, we compute the discrete Fourier transform of the two

undersampled signals ( (e) and (f) in Fig. 4.1). The consequence of signal undersampling,

in the frequency domain, is the repetition of |X(f)| at frequencies kFs with k ∈ Z. In the

case where the Shannon recovery condition is respected ( (e) in Fig. 4.1), we can easily

isolate the original Fourier transform |X(f)| by applying a low pass filter and, then, recover

x(t) with an inverse Fourier transform ( (g) in Fig. 4.1). When the Shannon condition is

not respected ( (f) in Fig. 4.1), we observe that the repetition pattern |X(f + kFs)| cross

the original Fourier signal X(f). This phenomenon is called aliasing. Low pass filtering

is not sufficient to recover the original Fourier signal since we are not able to distinguish

X(f) from the aliased pattern |X(f + kFs)|.

4.1.2 A surprising result

We have just seen that the recovery of the original signal from equally spaced samples is

hopeless when the sampling condition of the Shannon theorem is not respected. However,

[77] observes that random sampling results in incoherent artefact instead of aliasing and

equally spaced patterns. We propose to illustrate this phenomenon by randomly sampling

the signal x(t) of the precedent section at a frequency Fs < f2, i.e., below the Shannon

rate. In Fig. 4.2 we show x(t) equally spaced sampled (a) and randomly spaced sampled

(b) , as well as their respective Fourier transforms (c) and (d) . We observe that random
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Figure 4.1: Illustration of the Shannon sampling theorem. (a) is a continuous signal
x(t) = 2 sin(2πf1t) + sin(2πf2t) and (b) its Fourier transform |X(f)|. (c) and (d) are
x(t) undersampled at two different sampling rates: one above the Shannon sampling rate
(c) and the other below the Shannon sampling rate (d). (e) and (f) are their respective
Fourier transforms. A low pass filtering and inverse Fourier transform are applied resulting
in (g) and (h).
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sampling causes leakage of the aliasing components in the Fourier domain (d). Artefacts

occur but, this time, it is spread all over the Fourier signal and looks like random noise

instead of equispaced patterns. Then, it is possible to recover the original signal by simply

retaining the Fourier values above a certain threshold. This straightforward example shows

that one can sample a signal below the Shannon rate and hope to recover it.

Figure 4.2: Two signals are undersampled at the same rate. (a) is equally spaced sampled
and (b) is randomly spaced sampled. (c) and (d) are their respective Fourier transforms.

4.2 The discrete Compressive sensing theory

In this section, we restrict our attention to the classical finite-dimensional CS framework,

i.e., we consider the reconstruction of a finite-length vector x, which corresponds to a signal

sampled at the Nyquist rate. We use this classical CS framework to accelerate the DSI

acquisition in chapter 5.

Mathematically, we consider the problem of recovering a signal x ∈ Rn from an obser-

vation vector y ∈ Rm as

y = Ax (4.3)

A ∈ Rm×n is the, so called, sensing matrix, which represents the sensing system.

CS aims to infer the coefficient vector x from m measurements such that m ≪ n.

Accordingly, the problem (4.3) is ill-posed, i.e., there is an infinite number of different x

such that y = Ax.
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CS asserts that one can recover x from fewer measurements than traditional methods.

In order to make possible the signal recovering, CS relies on several properties:

• The sparsity. Sparsity expresses the idea that a signal can be approximated with

just a few elements.

• The incoherence. It expresses the idea that the signal of interest must be spread

out in the acquisition domain.

• An ℓ1-minimization recovery combined with an sensing matrix respecting the RIP.

In this section, we present the theoretical aspect of the CS theory described in [46, 20,

21, 23, 47, 19].

4.2.1 CS and Sparsity

Definition of sparsity

Sparsity expresses the idea that a signal has a compact representation, i.e. one can exactly

approximate it with just a few elements. If the signal x has exactly k nonzeros elements,

i.e. ‖x‖0 = k, we say x is k-sparse. Let xk be the vector x with all but the largest k

components set to zero. If x is strictly k-sparse, then

‖x− xk‖ = 0. (4.4)

In practice, real-world signals are not strictly sparse. Instead, they may be approx-

imately sparse or compressible in the sense that they can be represented accurately by

k ≪ n coefficients, i.e.,

‖x− xk‖ = ǫ. (4.5)

ǫ quantify the compressibility of x. In other words, one can neglect a few number of

coefficients without much loss in terms of accuracy. In the restant of this manuscript, we

will name sparse signals both those that are strictly and approximately sparse.

The utilization of sparsity in CS relies on the fact that the number of freedom in high

dimensional signals is often small compare to their ambient dimensionality. If the signal

is not sparse, it may be sparsified in an appropriate transform domain. For instance, a

sinusoid is clearly not sparse, but its Fourier transform is extremely sparse (actually, the

sum of two delta functions) (see Sec. 4.1). Then this signal, having originally an infinite

bandwidth, can be in fact represented by only two elements, i.e, the sinuoid is exactly a

2-sparse signal in the Fourier domain. More generally, let consider an orthonormal basis

Ψ = [ψ1ψ2 · · ·ψn] with ψi ∈ Rn, i ∈ [1, n] (Ψ is a n × n orthonormal matrix), we can

express x as

x = Ψc =

n∑

i=1

ciψi, (4.6)

where ci = 〈x,ψi〉 are called the transform coefficients of x with respect to the orthonormal

basis Ψ. In the case where x is a linear combination of few basis functions ψi, we still refer to

x as being k-sparse, with the understanding that ‖c‖0 = k. The classical finite-dimensional
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CS framework considers that Ψ is a n×n orthonormal matrix, but we will see shortly that

Ψ can be extended to a broader class of representation. In particular, Ψ can be represented

by an over-complete and redundant dictionary (Sec. 4.3.1) or a more general orthonormal

basis matrix (Sec. 4.3.2). In the rest of this section, Ψ will be characterized as a n × n

orthonormal matrix.

Examples of application

Sparse approximation is at the heart of a wide range of signal processing applications

(compression, restorations, feature extraction, source separations etc...) where one wants

to reduce the dimensionality of a signal by approximating it as a linear combination of few

elements from a known basis, which leads to a sparse representation of this signal.

There has been a surge of interest in recent years with the development of fast sparse

transform exploiting the underlined sparse property of a signal. For instance, the JPEG

image compression standard performs a two-dimensional discrete cosine transform (DCT)

over each 8 by 8 pixels block of an image. In the mid 80’s fast discrete wavelet transform

(DWT) have been exploited in signal processing such as signal denoising for rejecting certain

type of noise. Since the introduction of the DWT, the wavelets have been largely used to

reduce the dimensionality of a wide range of signals. In particular, the DWT is performed in

the image compression standard JPEG2000 since it enables a highly sparse representation

of natural images. We show in Fig. 4.3 an image (a) together with its wavelet coefficients

(b). As it is shown in the histogram of these coefficients (c), the wavelet representation of

this natural image is sparse. The significant information is gathered in few coefficients.

Figure 4.3: (a) Natural image. (b) Wavelet coefficients of the image. The largest values are
in white color. (c) The histogram of the wavelet coefficients.

We estimate the original image by keeping 10% of the largest coefficients of its wavelet

coefficients, the others being replaced by zero values. Fig. 4.4(b) shows that the estimated

image is still a very good representation of the original one.

Sparsity is a key ingredient in CS recovery [46, 23]. Under certain conditions, CS

gives strong theoretical results to reconstruct sparse signals using non-linear reconstruction

methods.



60 CHAPTER 4. COMPRESSIVE SENSING AND DMRI

Figure 4.4: (a) Natural image and its estimation keeping only 10% of its wavelet coefficients
(b).

4.2.2 CS and incoherence

Definition of incoherence

Let us consider the orthonormal matrix Ā, which can be seen as a “non-undersampled”

version of the sensing matrix A in (4.3), i.e., A is obtained by extracting m rows from Ā.

[20] defines the coherence of Ā as

µ(Ā) =
√
n · max

1≤k,j≤n
|Āk,j |. (4.7)

The lower µ(Ā), the more incoherent Ā. The coherence parameter µ(Ā) can take values

between 1 and
√
n. The upper bound is easily derived using the fact that a component

value of a column vector cannot exceed the norm of this vector (equal to
√
n since Ā

is a orthonormal matrix). The lower bound is the special case where Ā is flat, i.e., all

column vector components have the same values Ā1j = ... = Ānj for j ∈ [1, n]. Hence,
√
∑n

i=1 Ā2
ij =

√

nĀ2
1j =

√
n , which comes to Ā1j = ... = Ānj = 1.

We can interpret µ(Ā) as how the energy of Ā is concentrated. The higher µ(Ā),

the more concentrated the energy of the columns of Ā. A high concentration results in

constraining the significant information on few rows. On the contrary, if the columns energy

is little concentrated, i.e., the columns values are nearly constant, then the information in

the signal is spread out in the observation domain.

For a particular application, the sensing matrix Ā can be decomposed as a product of

an orthonormal sparsity basis Ψ and an orthogonal measurement system Φ̄ ([20],[46]), i.e.

Ā = Φ̄Ψ. In this case, we can write µ as

µ(Φ̄,Ψ) =
√
n · max

1≤k,j≤n
〈Φk,Ψj〉 . (4.8)

where φk and ψj are the columns of Φ̄ and Ψ. This is sometime referred to as mutual

coherence [23].
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A small µ indicates a low coherence system, i.e. Φ̄ and Ψ are highly incoherent. It can

be interpreted as a rough characterization of the degree of similarity between Φ̄ and Ψ. A

example of maximally incoherent system is the pair Fourier basis and canonical basis.

4.2.3 CS recovery

Signal recovery via ℓ1 minimization

Given an observation vector y and signal x, which is known to be sparse, we search for

the sparsest solution such that y = Ax. Denoting ‖.‖ℓ0 as the ℓ0 pseudo-norm, which

is the number of non zero elements in a vector, it is natural to recover x by solving an

optimization problem of the form

min
x̃∈Rn

‖x̃‖ℓ0 subject to y = Ax̃. (4.9)

Nevertheless this problem, involving the ℓ0 norm, requires combinatorial optimization.

Fortunately, replacing the ℓ0 norm by the ℓ1 norm, which is the sum of absolute values of

every element in a vector, has been shown to find the solution of (4.9) equivalently if x is

sufficiently sparse [46]. It comes to solve this ℓ1 minimization problem

min
x̃∈Rn

‖x̃‖ℓ1 subject to y = Ax̃. (4.10)

This is often called LASSO [119]. Alternatively, the measurements might be contami-

nated with a certain amount of noise. In this case the data consistency constraint y = Ax

could be relax and instead defined as ‖y = Ax‖ℓ2 < ǫ. It comes to solve this relaxed version

of (4.10)

min
x̃∈Rn

‖x̃‖ℓ1 subject to ‖y = Ax‖ℓ2 < ǫ. (4.11)

Many algorithms exist to solve (4.11). We can cite the family of soft-thresholding

algorithm as ISTA and FISTA [12] or the coordinate descent method [14]. A more complete

list of convex solver is presented in [139].

Bound on the number of measurements

The following result asserts that when x is S-sparse, the recovery via ℓ1 minimization is

exact if the number of measurements is above a certain bound [20]. Indeed, select m

measurements uniformly at random, then the recovery is exact if

m ≥ C·µ(Ā)
2·S· logn, (4.12)

where C is a constant, S the signal sparsity, µ(Ā) the coherence of Ā and n the length of

the sparse signal x. Note that the bound is given up to a constant multiplier. This result

shows that smaller the coherence of the system, fewer measurements are required.

Stable recovery and the Restricted Isometry Property

Reference [21] established some results about the accuracy of the CS reconstruction of a

sparse signal x at the condition that the sensing matrix A obeys the RIP, with an isometry
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constant defined as :

Definition 2. For each integer S=1,2,..., we define the isometry constant δs of a matrix

A as the smallest number such that

(1 − δs)‖x‖ℓ2 ≤ ‖Ax‖ℓ2 ≤ (1 + δs)‖x‖ℓ2 (4.13)

holds for all S-sparse vectors, that is vectors that have at most S nonzero entries.

In particular, [21] proved, for δ2S <
√

2 − 1 and noiseless recovery, that the solution x∗

of (4.10) obeys :

‖x∗ − x‖ℓ2 ≤ C0S
−1/2‖xs − x‖ℓ1 , (4.14)

with C0 a constant and xS the best sparse approximation knowing exactly the locations

and amplitudes of the S-largest entries of x. Then, if x is exactly S-sparse, the solution is

exact. This bound is given for noiseless recovery.

When x is corrupted by noise, the error between x∗ (the solution of (4.11)) and x is

‖x∗ − x‖ℓ2 ≤ C0S
−1/2‖xS − x‖ℓ1 + C1ǫ, (4.15)

with C0 and C1 two constants and ǫ the noise level such that ‖z‖2 ≤ ǫ. [21] still assumes

that result in (4.15) holds for δ2s <
√

2− 1. (4.15) clearly demonstrates that if x is exactly

k-sparse than the accuracy of the solution only depends on the noise.

4.3 Generalization to a broader class of representations

4.3.1 CS with overcomplete and redundant dictionary

Before beginning this section, we introduce a more convenient formulation of the sensing

matrix A. We decompose it as a product of a dictionary D and a measurement system Φ

such that A = ΦD.

The discrete and finite length CS theory described in Sec. 4.2 and [46, 20, 21, 23]

holds when D (called Ψ in the precedent section) is an orthonormal matrix. A recent

work [22] was published to generalize this CS theory and to recover x which is sparse in a

redundant and overcomplete dictionary. The motivation of this work is to enlarge the scope

of applications of the CS theory where signals are not sparse in an orthonormal basis but

in overcomplete dictionaries. Our contribution in chapter 7 is based on this framework.

In this section we present the results regarding this generalization of the CS theory. In

particular, we focus our attention on the two main differences with the classical CS theory

presented in Sec. 4.2, namely

• The orthonormality of the dictionary D is no longer required.

• We use a RIP adapted to the dictionary D, called the D-RIP, instead of the RIP

described in definition 2.
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Is an orthogonal sparse system a necessary recovery condition?

In the previous section, we assume that the columns of the sparse basis are orthogonal. This

assumption leads to well established results regarding the accuracy and the robustness of the

CS recovery. If the columns of D are correlated then there would be no hope to reconstruct

a unique sparse vector c from measurements y = ΦDc. However, in many applications, we

may want to recover the signal x = Dc rather than the sparse vector c. Then [22] suggests

that the orthogonality is not necessary but, instead, prove that the solution of (4.11) is very

accurate provided that c has rapidly decreasing coefficients.

The D-RIP

Equivalently to the RIP, [22] gives a broader condition on the property of the measurement

matrix Φ called the D-RIP.

Definition 3. (D-RIP) Let Σs be the union of all subspaces spanned by all subsets of s

columns of D. We say that the measurement matrix Φ obeys the restricted isometry property

adapted to D (the D-RIP) with constant δs if

(1 − δs)‖v‖ℓ2 ≤ ‖Φv‖ℓ2 ≤ (1 + δs)‖v‖ℓ2 (4.16)

holds for all v ∈ Σs.

In particular, if the D-RIP is satisfied with δ2s < 0.08, then the solution x∗ of (4.11)

satisfies

‖x∗ − x‖ℓ2 ≤ C0s
−1/2‖(D∗x)s − D∗x‖ℓ1 + C1ǫ, (4.17)

where C0 and C1 are constants depending on δ2s. (4.17) demonstrates that we may be able

to recover a signal which is sparse with respect to an arbitrary dictionary. Note that the

classical CS framework described in Sec. 4.2 provides analogous bound on the accuracy of

the reconstruction with an isometry constant δ2s <
√

2 − 1, which is less constrained and

more easily satisfied than δ2s < 0.08.

4.3.2 Toward extending CS to recover continuous signals

We start by a reminder on precedent notations as to make easier the understanding of this

section. We called A ∈ Rm×n the sensing matrix and we try to recover a signal x ∈ Rn

from a measurement vector y ∈ Rm, such that y = Ax. In Sec. 4.2.2, we also introduced

Ā ∈ Rn×n, which is an “non-undersampled” version of A.

The framework introduced by [46, 23] and described in Sec. 4.2 is focused on the recov-

ery of discrete and finite length vectors and the generalization to the recovery of continuous

signal is challenging. Some works have handled the case of the extension of the CS theory

to a continuous signal reconstruction [52, 49], even though there is not a clearly defined un-

derlying theory. In dMRI, we find several works toward extending this notion of continuous

diffusion signal reconstruction via CS [36, 89, 97, 122]. These works are mainly experimen-

tal and show promising results regarding continuous signal recovery via CS. Although the
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application of this discrete theory to continuous signals is not clearly defined, we feel from

these works [36, 89, 97, 122] that the conditions inherent in the classical and discrete CS

theory can be applied to recover continuous signals. This extension to the continuous case

is made possible considering two important aspects of our continuous CS-dMRI framework:

• Ā is a matrix whose the columns form an orthonormal basis of R3.

• The signal of interest is band limited, which allows one to to sample it in a specific

range in the q-space.

A first step toward extending this theory in dMRI has been done in our recent work

[95] and is presented in chapter 6. In this continuous dMRI framework, we show from

very straightforward examples that some important conditions described in the classical CS

are still required to obtain accurate and robust reconstruction of continuous dMRI signals,

namely the sparsity, the incoherence and the RIP. In the following, we briefly describe

these notions in the continuous case and make a link with the discrete case. The complete

contribution, which has been published in [95], is presented in chapter 6.

Sparsity in continuous signals

We aim to reconstruct a continuous signal instead of a discret and finite length vector.

For this purpose, we model the diffusion signal as a linear combination of a small number

of continuous and orthonormal basis functions, leading to a continuous representation of

the signal. We take advantage of the low degree of freedom inherent in the dMRI signal

to decompose it into a sparse expansion of a finite dimensional orthonormal basis. Then,

we speak about structured sparsity, i.e. the sparsity operator is built under the signal

consideration so as to best fit it. We characterize the sparsity of a continuous signal by

the number of continuous functions required to accurately model it. Moreover, the fact

that the orthonormal basis is truncated is a very important point ensuring that the sparse

decomposition is finite. If the orthonormal basis is composed of an infinite number of

elements, it would not be clear how to define the sparse properties of these bases. In

[52] the formulation of the problem is more complicated since the sparse expansion has an

infinite length . Since we deal with truncated orthonormal bases, our study is focused on

the case where the sparse expansion is finite. We present results on the sparsity of the

dMRI signal with respect to different orthonormal bases in Sec. 6.3.2.

Incoherence of the sensing matrix

In the discrete CS theory, the coherence parameter µ in (4.7) is defined for a sensing matrix

Ā of finite size n × n. At first glance, it appears impossible to extend this notion of

incoherence to continuous functions defined on an infinite range of values, i.e., when the

number of lines in Ā is theoretically infinite. However, since the diffusion signal and the

basis functions used to model it are band limited, we are able to compute the coherence

parameter in an appropriate bandwidth. We further describe the coherence parameter

and compute it for several orthonormal bases in Sec. 6.3.1. Obviously, when dealing with

orthonormal bases, the maximal value of the coherence parameter µ is 1, but we cannot

define a lower bound for µ in general since is depends on the basis function itself. In [52],

they cleverly compute the largest spectral value of the sampled cross correlation between
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basis elements because they deal with not band limited signal. Again, the fact that the

signal is band limited facilitates the computation of the coherence and does not involve

such derivation.

CS recovery

Since the problem is discretized and the orthonormal basis is truncated, it leads to a finite-

dimensional convex problem, where one can use conventional algorithm to solve it and,

then find a sparse signal decomposition x with respect to continuous and orthonormal

basis functions. Globally, we operate in three steps. First, we acquire a finite number of

measurement in appropriate locations (We see in chapter 6 the best acquisition strategy).

This results in a discrete and finite length measurement vector y. We also discretize the

sensing matrix A according to the acquisition protocol. Afterward, we reformulate the

problem as a finite-dimensional problem and solve the problem (4.11). Finally, from this

sparse decomposition we can estimate the corresponding continuous signal. We will see in

chapter 6 that the RIP still provide useful information regarding the robustness of the

reconstruction. .

4.4 A state of the art of CS in dMRI

CS has brought an opportunity to reduce the amount of data usually required to recover

signals for applications in many fields ranging from radar imaging [6, 61], through astronomy

[17, 133] and communication [13] to medical imaging [77, 25, 118]. In particular the CS

technique was found successful to recover MR images from highly undersampled k-space

[77, 60, 55, 30, 124]. Diffusion MRI is no exception. Recently, there have been a high

interest in developing dMRI application using the CS technique [108, 91, 36, 97, 82, 89,

106, 112, 122, 15, 71, 15, 57, 81, 92, 136, 138, 69, 28, 95] (This list of papers is non

exhaustive).

Some are focused on the sparsity of the dMRI signal, others on the sampling protocol,

or even both these aspects. Zhu et al [138] present a method that takes advantage of

the joint sparsity between DW measurements sensitized to different diffusion gradients but

acquired at the the same spatial location. In the same idea, Mania et al [81] propose

to jointly undersample the k-space and the q-space in order to achieve high spatial and

angular resolution. Specifically, a different sampling strategy for undersampling the k-

space is involved for each diffusion direction. In our recent work [85], we investigate the

choice of q-space sampling when one wants to acquire the DW images on multiple b-values.

We can not compare all these works since these different approaches do not aim to

recover the same diffusion features. If one wants to estimate micro structure information,

such as the FA, MD, he would use CS to recover the diffusion tensor. Landman et al [71]

handled the CS-based recovery of the diffusion tensor. They characterize the dMRI signal

as a sparse combination of diffusion tensors and use the underlying theory described in

[9, 10] to get a diffusion tensor based propagator. In [138], the authors compute the FA and

the MD from an estimated diffusion tensor. When directional diffusion features is asked

then a CS-based estimation of the ODF is appropriate. For instance, [122, 97] focus on the

reconstruction of the dMRI signal acquired at a unique b-value, in which the single shell

measurements are modeled as a sparse and linear combination of spherical functions from
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an overcomplete and redundant dictionary. These two works provide analytical formulae

to estimate the ODF. In addition, a comparison study has been published [69] between a

DTI-based fiber tractography and a CS+HARDI-based tractography using the spherical

ridgelets of [96]. The comparison is performed at the same number of measurement, and

shows promising results concerning the use of CS-based ODF in fiber tractography.

Recently published works [91, 82] describe a CS-based method to accelerate the DSI

acquisitions and recover the EAP constrained on a cartesian grid of size 11 × 11 × 11.

This method is discrete and requires numerical computation to estimate features related to

dMRI. Still in the discrete framework, Paulsen et al [102] uses CS to recover a very high

resolution EAP on a cartesian grid of size 128 × 128 × 128, which comes to nearly 1576

times larger than the classical grid size used in DSI. From here, they manage to obtain an

acceleration factor of 32. However, even with this huge acceleration factor, this technique

still requires nearly 49 times more measurements than DSI does.

More recently, continuous formulations of the CS problem have emerged in order to

analytically estimate the 3D dMRI signal [36, 89, 95]. It allows one to interpolate and

extrapolate the observed data, to analytically estimate the EAP and several diffusion fea-

tures. Some of these works are described in the following. We published a paper regarding

the continuous recovery of dMRI signal via CS [95]. Chapter 6 presents this work.

It is worth noting that sparse dictionary learning techniques have recently become pop-

ular in dMRI. Some of these approaches are non-parametric and aim to learn a collection

of discrete atoms. For instance, [15, 57] learn dictionaries from DSI like acquisitions and

use it to either denoise full DSI data or to perform undersampled DSI acquisitions and

reconstructions. In particular, Gramfort et al [57] nicely exploit the symmetry of the signal

in order to assess free parameters of the dictionary learning problem. Other dictionary

learning approaches are parametric and provide continuous representations of the atom. A

work regarding parametric dictionary learning was published in [136], in which the dictio-

nary atoms are formed by a weighted combination of 3rd order B-splines. The work of [136]

appears promising in reconstructing the diffusion signals, and further enhancement could be

done regarding the development of analytical formulae to estimate other diffusion features.

More recently, we proposed in [86] to learn a dictionary where each atom is constrained to

be a parametric function. In [86], this parametric function is a combination of a radial part

and an angular part represented by the symmetric and real Spherical Harmonics (SH). The

radial part is a polynomial weighted by an exponential. However, this approach essentially

handles the learning of the radial part, i.e. the polynomial coefficients and a scale parame-

ter in the exponential. One of our recent contribution, which is presented in chapter 7 and

published in [28], propose a more complete model where the angular part is also learned.

In this section we propose to review a non exhaustive list of papers regarding CS recovery

in dMRI including also sparse reconstruction techniques which are closed in spirit to CS and

we try as best as we can to insert them within the different frameworks described in this

chapter. We chose these papers because they present similarities with our own contributions

regarding the application of CS in dMRI. These contributions are described in chapters

5, 6 and 7.
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4.4.1 CS to reconstruct the diffusion tensor

Resolution of crossing fibers with constrained compressed sensing using diffu-

sion tensor MRI [71]

Landman et al [71] use CS to fit a multi-tensor model to the observed data y. In this

setting, the sensing matrix A is a finite and large collection of tensor and x = [x0, ..., xN ]

(in Eq. 4.3) corresponds to the weighting coefficients in the multi-tensor model such as

y =
∑N

i xi exp−bgTkDigk + η. Then, each atom (or column) of A is defined by a tensor

model characterized by Di (Through Di we can change the FA, the orientation etc..) and

they constrain the weighting parameters vector x to be sparse. Moreover, they force x to

be positive which enforce the sparsity of the solution. This work is part of the overcomplete

and redundant dictionary since elements of A may be correlated. Furthermore, the dMRI

signal representation using A is parametric, thus, enables a continuous representation of a

given dMRI signal.

Here is listed the negative and positive aspects of the method:

+ Accurate estimation of the multi-tensor model without any prior knowledge regarding

the number of compartments.

+ Outperform the conventional DTI technique in estimating fiber crossing, with the same

number of samples (30 samples).

+ The positivity constraint enforce the sparsity of the solution.

- Finite basis with arbitrary chosen and fixed parameters.

- Sensitive to the parameter used to build the dictionary (Not robust to a variation of the

FA parameter for instance)

- The technique is limited to the estimation of the multi-tensor model

4.4.2 CS to reconstruct the ODF

Spatially regularized Compressed Sensing for High Angular Resolution Diffu-

sion Imaging [97]

Michailovich et al [97] model the attenuation signal y acquired for an unique b-value

(Single shell acquisition) and provide a framework to estimate the ODF. They repre-

sent the attenuation signal as a sparse linear combination of spherical ridgelet Ψi, i.e.

y(u) =
∑N

i xiΨi(u) + η. The sensing matrix A is, thus, an overcomplete dictionary com-

posed of a finite set of spherical ridgelet evaluated at the corresponding measurement posi-

tions. In addition to the sparse regularization, they propose to use a spatial regularization

between adjacent signals. They use a modified version of the Bregman algorithm to solve

this problem. Michailovich et al [97] also propose an analytical and continuous formula to

estimate the ODF.

Here is listed the negative and positive aspects of the method:

+ Low coherence between the Dirac sampling basis and the spherical ridgelets.

+ Multi-fibre analysis (via the ODF) with only 16-24 measurements (typical number of

measurements for DTI, for instance).



68 CHAPTER 4. COMPRESSIVE SENSING AND DMRI

+ Take into account the dependencies between spatially adjacent signals.

- Difficulty in setting the two free parameters in the reconstruction problem (for the sparse

regularization and the spatial regularization).

Probabilistic ODF Estimation from Reduced HARDI data with Sparse Regu-

larization [122]

In this work, Tristan-Vega et al [122] starts to consider an appropriate framework to sparsely

represent the ODF, named the Spherical Wavelet (SW). Then they derive a dual framework

to model the diffusion signal in the q-space. They solve the CS problem (in Eq. 4.11) using

a discrete set of this dual framework as columns of the sensing matrix A, which seems to

provide a sparse representation of the diffusion signal in the q-space. They also propose to

relax the ℓ1 regularization in Eq. 4.11 to an ℓ2 regularization (using a non negative least

square (NNLS) algorithm). This ℓ2 problem is resolved by mean of a closed form. However,

an NNLS algorithm is not sufficient to ensure that the solution of problem in 4.11 get closer

to the solution of ℓ2 approach. For this reason, and because the ODF is a probability law,

Tristan-Vega et al constrain the ODF to be positive in a discrete set of directions. The

minimum number of measurements to obtain reliable ODF is approximately 14-16, but all

these synthetic experiments are performed with a SNR equal to 40 and higher, thus making

this conclusion unfair. Because [122] provide a continuous representation of the ODF from

a sparse expansion with respect to an overcomplete and redundant dictionary, it enters

both CS categories.

Here is listed the negative and positive aspects of the method:

+ Original and efficient framework to sparsely represent the ODF.

+ Relaxation of the problem in Eq. 4.11 to a ℓ2 approach, making the reconstruction time

attractive.

+ Only 14-16 measurements are needed to obtain reliable ODF reconstruction.

- All the synthetic experiments are performed with a SNR equal to 40 and higher, which

roughly corresponds to a noiseless case.

4.4.3 CS to reconstruct the 3D diffusion signal and underlying

features

Accelerated Diffusion Spectrum imaging in the human Brain Using Compressed

Sensing [82]

Menzel et al [82] handle the case of reconstructing the EAP on a cartesian grid, which

offers an original way to accelerate the DSI acquisition. It is a direct extension to the work

of Lustig et al [77] with the difference that [82] apply the CS theory on 3D signals. [82]

randomly undersamples the diffusion signal following a Gaussian distribution and constrains

the gradient of the EAP to be sparse. Then, the measurement system Φ is the Fourier

matrix and the sparse system Ψ is characterized by a gradient transform. This formulation

(included the gradient transform) is also known as a total variation (TV) reconstruction.

This work mainly uses results from the classical and discrete CS theory, excepted that the

gradient transform is not orthonormal.
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Here is listed the negative and positive aspects of the method:

+ Original and efficient way to accelerate the DSI acquisition.

- The gradient transform is not sparse enough to represent the EAP and another sparse

representations should be used intead.

- Discrete approach, which leads to discrete computation of diffusion features.

- High b-values required for the acquisition.

Spherical Polar Fourier EAP and ODF reconstruction via Compressed Sensing

in diffusion MRI [89]

In this work [89], we describe a method to model the EAP in terms of the Spherical Po-

lar Fourier (SPF) basis using CS. It exploits the duality between the SPF basis and its

counterpart in the q-space, called the SPF dual (SPFd) basis, in order to sparsely rep-

resent the diffusion signal. Thus, the sensing matrix A is the orthonormal basis matrix

constructed from the SPFd orthonormal functions. In this approach, x contains the co-

efficients representing the diffusion signal with respect to the SPFd basis. This approach

enables a continuous modeling of the EAP at any radius (with respect to the SPF ba-

sis functions) and provides an analytical formula to estimate the ODF. In chapter 6 of

this thesis manuscript, we further describe this work while adding comparisons with other

orthonormal bases.

Here is listed the negative and positive aspects of the method:

+ Continuous modeling of the diffusion signal, EAP and ODF.

+ Low to medium b-values required for the acquisition (contrary to DSI).

- Multiple shells sampling is needed (sometime not well known from the community).

An over-complete dictionary based regularized reconstruction of a field of en-

semble average propagators [136]

Ye et al [136] published a work regarding parametric dictionary learning combined with a

spatial regularization. The sensing matrix A is an overcomplete and redundant dictionary,

in which the dictionary atoms are formed by a weighted combination of 3rd order B-splines.

It provides a continuous modeling of the diffusion signal. It proved that the method is

efficient on synthetic data simulated with 81 gradient directions at a single b-value. This

work appears promising in reconstructing the diffusion signals, and further enhancement

could be done regarding the development of analytical formulae to estimate other diffusion

features.

Here is listed the negative and positive aspects of the method:

+ Continuous modeling of the diffusion signal and the EAP.

+ A single shell sampling is sufficient to recover the diffusion signal.

+ Spatial regularization.

- An analytical formula to estimate the ODF lacks.
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Sparse DSI: Learning DSI structure for denoising and fast imaging [57]

Gramfort et al [57] learn dictionaries from DSI like acquisitions and use it to either denoise

full DSI data or to perform undersampled DSI acquisitions and reconstructions. In particu-

lar, they nicely exploit the symmetry of the signal in order to assess free parameters of the

dictionary learning problem. Each atom of A represents a particular structure of the DSI

signal in a cartesian grid. They manage to recover a full DSI signal from an undersampled

q-space of 40 measurements.

Here is listed the negative and positive aspects of the method:

+ They exploit the positivity and the summetry inherent to the diffusion signal

- Numerical computation of diffusion features is needed.

4.5 Summary

Figure 4.5: Contribution of CS in dMRI and related work.
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Overview

Diffusion Spectrum Imaging (DSI) enables one to accurately reconstruct the Ensemble

Average Propagator (EAP) at the expense of having to acquire a large number of measure-

ments. Compressive Sensing (CS) offers an efficient way to decrease the required number

of measurements. The purpose of this work is to describe a way of performing an accurate

and robust EAP reconstruction using the CS technique to accelerate the DSI acquisition.

Then, this work is part of the discrete and finite-dimensional CS framework described in

Sec. 4.2.

This study is focused on two key ingredients required for an accurate and robust CS-

recovery of a discrete EAP, i.e. the sparsity and the sampling protocol. Firstly, several

sparse representations of the EAP are studied. Then, a new and original sampling scheme

is proposed to obtain significant information from the q-space.

The robustness and the efficiency of several sampling protocols and sparse transforms

are thoroughly compared to identify the ingredients of an optimal CS reconstruction. Ex-

periments on synthetic and human brain data have been carried out, which demonstrate

that approximately 64 measurements are sufficient to recover significant information re-

garding the EAP and to accurately estimate the orientation distribution function (ODF)

and the kurtosis.

We conclude that an appropriate sparse transform and sampling protocol considerably

improves the quality of the CS reconstruction of the EAP, the ODF and the kurtosis.

5.1 Motivations

In Diffusion Spectrum Imaging (DSI) [130], we obtain the EAP P (R) by directly taking

the inverse Fourier transform of E(q). However, DSI requires the acquisition of many

diffusion weighted images (DWI) sensitized to different orientations in the sampling space,

to obtain a high-resolution EAP. In brief, while this technique has the advantage of being

a very good approximation of the water diffusion phenomenon, it is limited by the long

acquisition time due to the large number of required samples. Recent improvements have

been shown to decrease the scan time by at least a factor of three using fast acquisition

sequences and parallel imaging [115, 114]. Further improvements can be achieved using

signal processing techniques, in order to decrease the acquisition time. That is where the

Compressive Sensing (CS) technique comes in to accelerate DSI.

As described in chapter 4, CS aims to accurately reconstruct sparse signals from

undersampled measurements acquired below the Shannon-Nyquist rate. Many con-

tributions regarding the application of CS and related topic in dMRI have emerged

[108, 91, 36, 97, 82, 89, 112, 122, 128, 15, 72, 15, 57, 92, 86, 136, 95]. We give a re-

view of these papers in chapter 4. Some of these works consider modeling the signal in

orthonormal bases as in [36, 89, 95] or in overcomplete and redundant dictionaries as in

[108, 97, 122, 72, 15, 57, 86, 136]. The contribution of this chapter is confined on the ac-

celeration of DSI via the CS technique (CS-DSI). This problem has already been adressed

by [91, 82, 112, 15, 92] and consists in reconstructing a discrete EAP, which is sparse with

respect to a prespecified discrete transform. For instance, Menzel et al [82] solve the CS-

DSI problem by considering the gradient operation as sparse transform, also known as total

variation (TV) regularization. Bilgic et al [15] combine a TV regularization and a sparse
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constraint using the Haar based discrete wavelet transform (DWT). In [91], we take the

identity operator as sparse transform. However, these works were conducted independently

and there has not been an analysis and comparison of the differences between them, which

makes difficult the choice of an optimal sparse transform. Moreover, some improvements

can be made to enhance the accuracy and the robustness of the reconstruction. For in-

stance, the Haar wavelet (used in [15]) is not a good sparse representation of the EAP and

other wavelet bases appear more appropriate for this task [92]. The sampling protocol is,

as well, not deeply studied.

In this work, we describe how to accurately and efficiently reconstruct a discrete EAP

using the CS technique, and we show that a CS-based method using an adequate sparse

transform and sampling scheme accelerates DSI by significantly reducing the common num-

ber of measurements required in this technique. For this purpose, we highlight two impor-

tant points of the CS theory, i.e. the sparse representation of the propagator and the

sampling protocol. At first, we study and compare five sparse and discrete representa-

tions of the EAP, i.e. the DWT, the stationary wavelet transform (SWT), the dual tree

wavelet transform (DTWT), the gradient of the EAP (also known as total variation (TV)

regularization) and the identity (I), i.e. the canonical basis. Then, we propose a new and

original sampling scheme to use with our best sparse transform in order to obtain signifi-

cant information regarding the EAP. This work primarily handles the reconstruction of the

EAP, which is a radial and angular characterization of the diffusion phenomenon, and the

starting point to estimate many other diffusion features such as the orientation distribution

function (ODF) [127, 130, 42], its corresponding GFA, and the Kurtosis [65] as shown in

this chapter. Moreover other features could be derived from the EAP and a tractography

algorithm directly based on the EAP was recently developed [94], which make the EAP a

key tool for a good understanding of the diffusion phenomenon.

The chapter is structured as follows. At first, we briefly describe the CS technique. Then,

we present the five sparse representations described above. The last section is divided into

three parts: 1) we propose an efficient and robust sampling protocol; 2) we review the

capabilities of each of the sparse representations on the reconstruction of synthetic data; 3)

we validate the CS reconstruction on in vivo human brain data.

5.2 Method

The CS theory described in Sec. 4.2 is well established considering discrete signals [46, 20,

21, 23, 22] and is adapted to the reconstruction of a discrete EAP. In this application,

the sensing matrix is the product of a sparse system Ψ and an orthogonal measurement

system characterized by the Fourier basis. We saw that there are two important parameters

to obtain accurate and robust CS reconstructions: the sparse system Ψ, which has to be

incoherent with the measurement system, and the sampling protocol inherent in the RIP.

In the following section, we review five potential choices for Ψ. The choice of the sampling

scheme is discussed in the experimental section.

5.2.1 Sparse representation of the EAP

In this section, we present five candidates of EAP representation to be used in the CS

context. Two of them are part of the orthonormal basis framework, i.e. the canonical basis
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and the discrete wavelet transform (DWT). Two others are overcomplete and redundant

representations, namely the discrete stationary wavelet transform (SWT) and the real dual-

tree discrete wavelet transform (DTWT). Then, we propose to study the gradient operation

as a sparse transform, commonly known as a total variation constraint when combined with

the ℓ1 regularization.

The canonical basis

Because of the quasi-Gaussian nature of the EAP attenuation, we assume in [91] that the

EAP is sparse in its original domain and do not use any sparse transform, i.e. Ψ = I where

I represent the canonical basis. This assumption is true in certain cases. For example, when

the voxel configuration corresponds to diffusion in only one fiber direction, the EAP values

decay rapidly to zero in the direction orthogonal to the fiber. However, when diffusion occurs

in several fiber directions or in the gray matter and CSF areas where the EAP is isotropic,

the sparsity assumption is not correct anymore. In [91] we have still found experimentally

that solving (4.11) in this setting leads to qualitatively good EAP reconstructions. This

is explained by the fact that the pair canonical and Fourier bases provide a maximally

incoherent system. Then, the ℓ1 term in (4.11) plays a role of denoiser. Even if the sparsity

assumption is weak in the sense that the canonical basis does not always provide a sparse

EAP representation, we still call it Compressive Sensing since the coherence condition is

met.

The discrete wavelet transform (DWT)

The DWT is an extremely well established tool in the image processing community and is

used, for instance, in image compression because it provides highly sparse representation

of natural images. In dMRI, Bilgic et al [15] used a Haar-based DWT to solve the CS-DSI

problem, whereas the Haar wavelet was found to not provide a sparse EAP representation

[112, 92]. Based on the work of [112, 92], we consider a DWT based on the biorthogonal and

symmetric Cohen-Daubechies-Feauveau (CDF) wavelet. In particular, we use the CDF 9/7,

which has four vanishing moments. Moreover, the system built from the pair wavelet and

Fourier bases has a large incoherence as long as we select the measurements at random [23].

Several public and open-source libraries such as WaveLab 1 in MATLAB and PyWavelets
2 in Python propose efficient DWT implementations.

The discrete stationary wavelet transform (SWT)

The classical DWT is not a shift-invariant transform, which is a useful property to avoid

visual artifacts around the discontinuities of a signal [37]. The SWT overcomes this limita-

tion at the expense of providing more coefficients than the size of the signal itself, leading

to an overcomplete and redundant transform. The mother wavelet used for the SWT is still

the CDF 9/7.

1http://www-stat.stanford.edu/∼wavelab/Wavelab 850/index wavelab850.html
2http://www.pybytes.com/pywavelets/
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The real 3D dual-tree discrete wavelet transform (DTWT)

The DTWT is implemented using four separable 3D DWTs in parallel. Then, the subbands

of the four DWTs are combined appropriately [113]. This transform has the benefit of being

oriented, which is appreciated to sparsely represent 3D signals with directional properties

such as the EAP. However, because the DTWT is 4-times more expensive compared to the

DWT, it comes under the framework of redundant and overcomplete transforms.

The gradient transform

Setting Ψ as a gradient transform comes to replace the sparsity constraint by a total varia-

tion (TV) regularization [110]. Strictly speaking, this method is known as TV reconstruc-

tion. The TV reconstruction involves non linear optimization and the use of the conjugate

gradient algorithm to find the corresponding solution. [82] was the first to use the TV

regularization as a diffusion-domain constraint in the CS-DSI problem. Note that the TV

regularization was also applied in the spatial domain in combination with a sparse constraint

in the diffusion domain by [97].

5.2.2 Features used to characterize the EAP in this chapter

In addition to the EAP, we can compute the Orientation Distribution Function (ODF) as

defined in (3.21). Note that in our setting the maximal bound for the ODF integration is

limit to Rmax (the maximum radius of the EAP in the grid), since we only have a discrete

and finite EAP.

Another diffusion feature, which account for both the angular and radial information of

the diffusion phenomenon is the kurtosis. The kurtosis aims to quantify the non-Gaussianity

of a probability density function. The diffusion kurtosis K in the direction n is defined by

K(n) =
〈(R ·n)4〉
〈(R ·n)2〉2 − 3, (5.1)

with n is a 3D unit vector, R = Rr and 〈(R ·n)n〉 =
∫
P (R)(R ·n)nd3R the nth order

moment of P (R) about its mean value. In our experiments, we use the method described

in [64] to estimate K(n).

5.2.3 Synthetic data simulation

We validate the reconstruction on synthetic data (Sec. 5.3.1 and 5.3.2) using the data set

provided by the HARDI contest at ISBI 2012 3. The contest was organized with the aim of

providing a way for different groups to propose their own reconstruction algorithms and to

compare fairly their methods against each other on a common set of ground-truth data. In

this contest, the normalized diffusion signal E(q) is generated from the multi-tensor model

(see Sec. 10.7).

From this synthetic model, other ground-truth diffusion features have been derived

to estimate other diffusion features such as the orientation distribution function (ODF)

[127, 130, 42] and the diffusion Kurtosis [65]. Note that, for the synthetic experiments, we

3http://hardi.epfl.ch/
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consider the dMRI signals contained in the file Training IV, with 2-fibers crossing at equally

represented angles from 30◦ to 90◦ and different volume fractions, yielding 610 synthetic

signals.

Some experiments are performed in a noisy scenario where Rician noise is added. For

these experiments, the noisy signal is computed as Enoisy =
√

(E + ǫ1)2 + ǫ22, where ǫ1, ǫ2 ∼
N (0, σ) with σ = 1/SNR.

5.2.4 Real data acquisition

A standard DSI acquisition mimicking the original DSI protocol [130] was done on a 3 T

system (Philips Achieva X, Best, The Netherlands), equipped with a whole body gradient

(40 mT/m and 200 T/m/s) and a 8-channel head coil. Single-shot spin-echo EPI measure-

ments with isotropic 2 mm spatial resolution and 515 DW measurements were acquired

comprising q-space points of a cubic lattice within the sphere of five lattice units in radius.

TE/TR= 116 ms/14.9 s (including time for dynamic B0 stabilization), bandwidth in EPI

direction= 1101 Hz, 128x128 matrix, 60 axial slices with a parallel imaging (SENSE) factor

of 2, delta and Delta were 45.4 and 57.7 ms and maximal b-value of bmax = 6000 s/mm2.

We compute the SNR of the data as done in [45] and find a value of 38 at a b-value b = 0

s/mm2 and 6.5 at b = 6000 s/mm2. The SNR remains higher than 4-5, which is known to

be the critical limit under which the noise profile becomes Rician. Hence, in our data, we

make the coarse hypothesis that the noise nature is Gaussian.

5.2.5 Validation

We validate the reconstruction on two metrics derived from the EAP, i.e. the ODF [127,

130, 42] and the kurtosis [65]. From each estimated ODF, we assess the quality of the

angular information contained in the EAP by computing the difference in the number of

fiber compartments (DNC) and the angular error (AE) with respect to the known ground

truth. To compute the DNC and the AE, we extract the maxima on the estimated ODFs and

compare them to the ground truth maxima. Then, the DNC becomes the mean difference

between the number of maxima extracted on the estimated ODFs and the true number of

maxima, and the AE is computed between the maxima extracted on the estimated ODFs

and the respective maxima within the ground truth. Concerning the kurtosis, it contains

both radial and angular diffusion information. We validate the kurtosis by computing the

normalized mean square error (NMSE) between the ground truth kurtosis and the estimated

kurtosis evaluated on 100 directions generated using the static repulsion algorithm [68]. In

the experimental part on real data, we also validate the EAP itself by computing the NMSE

between the discrete EAP from the full DSI and the discrete EAP estimated via CS. The

NMSE between a signal x and its estimation xe is given by NMSE =
‖x−xe‖2

2

‖x‖2
2

.

5.3 Results

In this section, we first present and study the efficiency and the robustness of the sampling

protocol on synthetic data (Sec. 5.3.1). Then, we validate the reconstruction using various

metrics while considering both synthetic (Sec. 5.3.2) and real data (Sec. 5.3.3).
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5.3.1 Choice of sampling schemes

We saw in Sec. 4.2 that random sampling allows one to stably and accurately recover

the EAP from noisy measurements. Moreover, [82] shows the importance of the sampling

pattern to reconstruct oriented structures. In particular, [82] observes that a sampling

scheme (SC) performs well with samples randomly distributed according to a Gaussian

distribution with its mean being the center of the grid. This can be explained by the fact

that most of the signal energy is focused around its center. However, when considering 3D

signals of size 11× 11× 11 (common size in DSI), such random undersampling schemes do

not always ensure an homogeneous angular distribution of the samples. This is especially

a matter while dealing with directional signal as dMRI signal. For this purpose, we start

building our SC by generating N samples uniformly distributed on the sphere using the

static repulsion algorithm [68]. Then, for each sample, we draw a random radius between

the origin and the maximum radius of a sphere comprised in our acquisition grid. Finally,

we match each of those samples in our grid as a way to obtain N samples in our DSI grid.

This SC both ensures a homogeneous angular covering of the q-space and meets the CS

requirement concerning the random aspect of the sampling protocol inherent in the RIP

since it is radially random. We illustrate, in 2D, the way we build this SC in Fig. 5.1.

Figure 5.1: Sampling scheme construction in 2D. (left) We generate samples uniformly
distributed on the sphere using the static repulsion algorithm [68]. (middle) Considering
one sample, we draw it at a random distance d from the the origin and the maximum radius
of a sphere comprised in our acquisition grid. (right) We repeat until all the samples are
drawn. Note that, in the 3D case, we generate the sampling scheme on one hemisphere and
then symmetrize it.

In this section we compare 3 sampling schemes and show the importance of homogeneous

angular covering of the q-space :

• A uniform random sampling scheme (RU-SC), i.e. the samples are randomly dis-

tributed according to a uniform distribution.

• A Gaussian random sampling scheme (RG-SC), i.e. the samples are randomly dis-

tributed according to a Gaussian distribution with its mean corresponding to the

center of the grid. This sampling scheme was used in [82]

• A random sampling scheme ensuring a homogeneous angular covering of the q-space

(HA-SC) as described above.
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To have an overview of these three SCs, we show in Fig.5.2 what would be given when

dealing with 2D signals.

Figure 5.2: 2D sampling schemes corresponding to an uniform random sampling scheme
(RU-SC), a Gaussian random sampling scheme (RG-SC), a random sampling scheme en-
suring a homogeneous angular covering of the q-space (HA-SC). 2000 samples are used to
build these three sampling scheme.

We propose to study the efficiency and the robustness of these SCs. For this purpose,

we generate 100 instances of each of the three sampling schemes described above, i.e. the

RU-SC, the RG-SC and the HA-SC. Note that, because the dMRI signal is symmetric, we

generate each SC on a half hemisphere and then symmetrize it. Afterward, we compute the

corresponding diffusion signals from the data set provided by the HARDI contest at ISBI

2012. From these diffusion signals, we estimate the EAPs via an inverse Fourier transform,

and the ODFs via a radial integration of the EAPs. We then compute the variance and

the mean values of the DNC and AE over the 100 experiments and repeat the process with

a number of samples N = 32, 64, 96, 128, 160, 192. The results, shown in Fig. 5.3, give an

overview of the angular information obtained before applying a reconstruction method on

the signal.

Fig. 5.3 shows that the HA-SC leads to more accurate (lower mean values) and more

robust (lower variance values) results than the two others schemes. These results seem to

confirm that a higher degree of angular information is contained in the HA-SC. Fig. 5.3

also confirms the finding of [82] regarding that RG-SC is a better choice than RU-SC. In

conclusion, even if the CS theory is usually based on uniform random sampling, we observe

from these experiments and previous work [82] that random sampling protocols are more

appropriate when we control the distribution of points. In particular, the HA-SC appears

efficient and robust in recovering directional information, which is an important aspect in

fiber tractography and other applications. For this reason, the following experiments are

performed using the HA-SC. We validate, in Sec. 5.3.2, these preliminary results via a

comparison of these three SCs on the CS reconstruction of synthetic data (see Fig. 5.5).

5.3.2 Experiments on synthetic data

Choice of the sparse representation. In this section, we compare the CS reconstruc-

tion using the five sparse representations presented in section 5.2.1, i.e.
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Figure 5.3: Mean and variance (vertical bar) of the angular error (AE) and the difference
in the number of fiber compartments (DNC) when using an uniform random sampling
scheme (RU-SC), a Gaussian random sampling scheme (RG-SC), a random sampling scheme
ensuring a homogeneous angular covering of the q-space (HA-SC). These results are drawn
from 100 trials.

• A CS reconstruction without applying any sparse transform on the EAP, i.e. Ψ = I

(CS-I).

• A CS reconstruction while applying a discrete wavelet transform (DWT) on the EAP

(CS-DWT).

• A CS reconstruction while applying a stationary wavelet transform (SWT) on the

EAP (CS-SWT).

• A CS reconstruction while applying a dual tree wavelet transform (DTWT) on the

EAP (CS-DTWT).

• A total variation reconstruction (CS-TV)

We validate these five approaches on the reconstruction of synthetic data provided by the

HARDI contest at ISBI 2012. We add Rician noise with SNR=20 and SNR=10 to the data.

We generate several HA-SC and choose one given satisfactory results. We also compare

the CS approaches with the full DSI reconstruction, i.e. when 257 samples are used, and the

half sphere undersampled DSI presented in [70], i.e. with 102 samples (We call it DSI102 in

the following). From the reconstructed EAPs, we estimate both the ODFs and the kurtosis.

The resulting DNC, AE and kurtosis NMSE are shown in Fig. 5.4. Note that, to obtain the

ODFs, we do not integrate between 0 and and Rmax (the maximum radius of the EAP in

the grid). Instead, we integrate the EAPs between the range [Rmax × α,Rmax × β] with α,

β ∈ [0, 1] , because we had observed that well chosen bounds for the radial integration lead

to better results in terms of DNC and AE. The optimal values of α and β are presented in

Tab. 5.1. These values will be used for future ODF estimation.

Firstly, we observe that the bounds in Tab. 5.1 do not vary much for a given sparse

transform and SNR. Moreover, the values of α and β are lower at SNR=10, since the signal
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SNR=10 (α/β) CS-I CS-DWT CS-SWT CS-DTWT TV

32 samples 0.2/0.6 0.2/0.7 0.3/0.8 0.3/0.8 0.2/0.8

64 samples 0.2/0.6 0.2/0.7 0.3/0.8 0.3/0.7 0.3/0.8

96 samples 0.2/0.6 0.3/0.7 0.3/0.7 0.3/0.6 0.2/0.6

128 samples 0.2/0.6 0.2/0.7 0.3/0.7 0.3/0.6 0.2/0.6

160 samples 0.2/0.6 0.3/0.7 0.3/0.7 0.3/0.7 0.2/0.6

192 samples 0.2/0.6 0.3/0.7 0.2/0.7 0.2/0.6 0.2/0.6

SNR=20 (α/β) CS-I CS-DWT CS-SWT CS-DTWT TV

32 samples 0.3/0.8 0.2/1.0 0.3/0.9 0.3/0.8 0.3/0.8

64 samples 0.3/0.8 0.4/0.8 0.4/0.8 0.3/0.8 0.3/0.8

96 samples 0.3/0.8 0.3/0.8 0.4/0.8 0.4/0.8 0.3/0.8

128 samples 0.4/0.7 0.4/0.8 0.4/0.8 0.4/0.7 0.3/0.8

160 samples 0.4/0.7 0.4/0.8 0.4/0.8 0.3/0.8 0.3/0.8

192 samples 0.3/0.8 0.4/0.8 0.4/0.8 0.4/0.8 0.3/0.8

Table 5.1: Optimal α and β parameters (regarding the DNC and AE) to integrate the
EAP for a given number of samples and a CS reconstruction method. The signals are
contaminated by Rician noise at SNR=10 (top table) and SNR=20 (bottom table). For
DSI and DSI102, α = 0.2 and β = 0.7 for SNR=10 and α = 0.3 and β = 0.8 for SNR=20.

is likely to be more noisy when going away from the origin and, thus, provide erroneous

information (especially considering the r2 factor in the ODF computation, amplifying these

errors even more).

We first compare the CS-DWT and the CS-TV methods used in [15, 82]. Note that

we use the CDF 9/7 wavelet in the CS-DWT method instead of the Haar wavelet used in

[15] because experiments have shown that the Haar wavelet is not appropriate in sparsely

representing the EAP [112, 92]. In Fig. 5.4, we observe that the CS-DWT method gives

lower DNC values than the other methods. At SNR=10, the CS-TV method is not able

to provide correct directional information. We deduce, from this observation, that the

CS-TV method is too sensitive to noise. Regarding the angular error (AE), the CS-TV

method gives slightly more accurate directions, but we cannot rely on this information

since the number of maxima is not well approximated (high DNC values). The AE is, thus,

underestimated in voxels where the number of detected compartments is higher than the

true number of compartments. In terms of kurtosis NMSE, the CS-DWT globally leads

to a lower NMSE than the other methods considering both SNR=20 and SNR=10. We

conclude that the CS-DWT method remains robust to noise (even for a low SNR), and that

very good results are observed for this technique. The CS-TV method gives satisfactory

results in terms of DNC, AE and kurtosis at a SNR=20, but is not able to provide correct

directional information at a SNR=10.

The CS-I method gives satisfactory results even if no sparse transform is applied on the

EAP. This can be explained by the high incoherence between the real and Fourier space.

Note that in our work the CS-I method is not better than the CS-DWT method, whereas

the author in [15] observed that the application of a DWT leads to worse results compared
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Figure 5.4: Evolution of the DNC, AE and kurtosis NMSE in function of the number
of samples for the five reconstruction methods, i.e. CS-I (black curve), CS-DWT (blue
curve), CS-SWT (red curve), CS-DTWT (pink curve), TV (green curve). We also show the
results of the full DSI reconstruction (yellow curve), i.e. when 257 samples are used, and
the DSI102, i.e. when 102 samples are used according to [70] Rician noise is added with
SNR=10 (top) and SNR=20 (bottom).
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to the case where no transform is applied. This difference is due to the use of an appropriate

wavelet basis, i.e. the CDF 9/7 instead of the Haar wavelet basis. Indeed, Haar wavelet is

a step function that obviously cannot represent well signals other than piece-wise signals,

whereas the CDF 9/7 wavelet adequately describes the quasi-Gaussian attenuation of the

EAP [112, 92].

We also remark that the application of the two overcomplete and redundant wavelet

transforms does not improve the results, even if these two transforms benefit from a shift-

invariance property (the SWT) or an orientation property (the DTWT).

Regarding the five CS approaches, we conclude that the DWT based on the CDF 9/7

mother wavelet remains the most appropriate choice to reconstruct a discrete EAP using

the CS technique among the various transform investigated. We also observe that N ≈ 64

measurements and above lead to satisfactory results in terms of accuracy. We thus perform

the CS reconstruction on real data using the DWT as sparse transform.

We also compare the CS-DWT method with the full DSI reconstruction and the DSI102

reconstruction presented in [70]. Overall, it is not surprising to see that the DNC and the

AE obtained with the CS-DWT method come closer to the respective values obtained with

the full DSI when the number of measurement increases. As for the DSI102, we observe

that this method gives nearly the same results as the CS-DWT method with respect to the

same number of measurements (i.e. 102 measurements) at a SNR equal to 10. However,

the CS-DWT method outperforms the DSI102 when considering a SNR equal to 20 at the

same number of measurements.

Validation of the HA-SC. We also validate the results shown in Fig. 5.3 regarding

the choice of the HA-SC as our favorite sampling scheme. For this purpose, we repeat the

experiments performed in Sec. 5.3.1 but by replacing the inverse Fourier transform by the

CS-DWT reconstruction. It aims to demonstrate that the HA-SC is the most efficient and

robust sampling scheme when performing a CS reconstruction of the EAP. The mean and

the variance of the DNC and AE values are shown in Fig. 5.5, and confirms our finding

regarding the higher degree of angular information obtained with the HA-SC.

5.3.3 Experiments on real data

We estimate the EAPs from the human brain data described in Sec. 5.2.4 using the DSI

method with the full set of measurements (i.e. N = 257 measurements) and the CS-DWT

method with N = 128, 64, 32 measurements (Note that an additional DW image without

any diffusion sensitization is also acquired and used by all these methods). Then, for the

ODF estimation (in Fig. 5.6), we choose the integration parameters as α = 0.4 and β = 0.8.

Note that β could be higher due to the low level of noise. We also show on Fig. 5.7 an EAP

from a chosen voxel in the human brain data. We represent this EAP as two isosurfaces

respectively corresponding to radii 0.2 and 0.5 (with 1.0 the distance between the origin

and the side of the grid).

The ODFs computed from the EAPs with N = 128 and N = 64 measurements describe

well the underlying fiber structure shown by the ODFs estimated with the full DSI technique

(i.e. with N = 257 measurements). In the same way, we see in Fig. 5.7 that the main

shape of the EAP are well preserved with N = 128 and N = 64 measurements. With 64

measurements, we come closer to what is obtained using single shell HARDI techniques
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Figure 5.5: Mean and variance (vertical bar) of the angular error (AE) and the difference
in the number of fiber compartments (DNC) when using an uniform random sampling
scheme (RU-SC), a Gaussian random sampling scheme (RG-SC), a random sampling scheme
ensuring a homogeneous angular covering of the q-space (HA-SC) associated with a CS-
DWT reconstruction. These results are drawn from 100 trials.

[44, 1]. In addition, the whole EAP is recovered whereas single shell HARDI techniques

only estimate the ODF, which is a small part of the information provided by the EAP.

At N = 32, only single fiber structures are correctly estimated via the ODFs (see

Fig. 5.6). However, we can not rely on the ODFs corresponding to more complex con-

figurations, such that crossing fibers. Moreover, in Fig. 5.7 (right), the two isosurfaces of

the EAP do not correctly represent the information exhibited by the full DSI EAP (left of

Fig. 5.7)

We also show quantitative results comparing the EAPs estimated with the CS-DWT

method and the EAPs estimated with the classical DSI (i.e. with N = 257 measurements)

on the human brain data. For this purpose, we compute the NMSE between the CS-DWT

based EAPs with a number of measurementsN = 32, 48, 64, 80, 96, 112, 128, 144, 160 and the

DSI-based EAPs. Fig. 5.8 shows the resulting values. Based on this figure, we see that the

minimum number of measurements to get a reliable EAP reconstruction is approximately

64.

5.4 Discussion

CS offers an efficient way to accelerate the DSI acquisition, as has been demonstrated by

several recent papers [15, 82, 92, 112]. However, these works were conducted independently

and lack a thorough comparison. Moreover some improvements can be made to enhance

these preliminary results. In this chapter, we described a way of performing an accurate

and robust CS reconstruction of a discrete EAP. In particular, we studied two important

points, namely the choice of an efficient sparse representation of the EAP and the choice of

a robust sampling protocol.

Five EAP representations were considered in the CS reconstruction, i.e. the canonical

basis (CS-I method), the discrete wavelet transform (CS-DWT method), the discrete sta-
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Figure 5.6: ODFs estimated from a humain brain data, together with the extracted max-
ima, using the DSI method (top) and the CS-DWT method with a number of samples
N = 128, 64, 32. We compute the pair (DNC,AE) between the CS-DWT and the full DSI
estimation of the ODFs : (DNC=0.1555, AE=4.7364) forN = 128, (DNC=0.2, AE=6.3011)
for N = 64, (DNC=0.3111, AE=10.2349) for N = 32.
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Figure 5.7: EAP estimated from a voxel in humain brain data, using the DSI method and
the CS-DWT method with a number of samples N = 128, 64, 32.
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Figure 5.8: NMSE bewtween the CS-DWT based EAPs with a number of measurements
N=32, 48, 64, 80, 96, 112, 128, 144, 160 and the DSI-based EAPs.
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tionary wavelet transform (CS-DWT method), the real dual tree discrete wavelet transform

(CS-DTWT method), the gradient transform (CS-TV method). Furthermore, we studied

and compared three sampling protocols, i.e. an uniform random sampling scheme (RU-

SC), a Gaussian random sampling scheme (RG-SC) and a random sampling scheme, which

ensures a homogeneous angular covering of the q-space (HA-SC). We also compare the CS

approaches with the full DSI reconstruction with 257 samples, and a half sphere under-

sampled DSI with 102 samples All the EAP representations and sampling protocols were

studied and compared through synthetic and human brain data experiments.

From the results, one transform performs best: the DWT. The CS-DWT method leads

to accurate estimation of the EAP and some of its derived features, such as the ODF and

the kurtosis. However, one has to be careful regarding the mother wavelet used in the

DWT. In particular, our recent studies [112, 92], observed that the CDF 9-7 was the most

appropriate wavelet to sparsely represent the EAP. We also found a robust and efficient

sampling protocol exploiting the fact that the angular coverage of the q-space should be

homogeneous. From these studies, we finally found that the combination of the DWT

with the HA-SC was the best way to solve the CS-DSI problem with approximately 64

measurements.

We have seen that the orthonormal property of the DWT was found to be more im-

portant than the particular and attractive property of the SWT (shift invariance) and the

DTWT (directional property). Future works could be focused on an orthonormal and fast

transform, which allows additional properties such as shift-invariance or directionality. As

far as we know, there are no such transforms in the literature. Thus, at the moment,

the DWT remains the most appropriate choice of sparse transform for the CS-DSI prob-

lem. Moreover, the CS-DWT method leads to more accurate angular information than

the DSI102 reconstruction considering the same number of measurements, especially at a

SNR equal to 20.

5.5 Conclusion

We have described a way of performing an accurate and robust Compressive Sensing recov-

ery, which allows the reconstruction of a discrete EAP with approximately 64 measurements

and enables the acceleration of the DSI acquisition, without losing much information con-

cerning the diffusion phenomenon. Extensive experiments on synthetic and human brain

data demonstrate that both the directional information and the kurtosis are preserved, in

addition to the EAP.

In particular, we found an appropriate sparse transform (the CDF 9-7 based DWT) and

an efficient and robust sampling protocol, which ensures an homogeneous angular coverage

of the q-space.

This chapter was focused in the CS reconstruction of a discrete EAP from a diffusion

signal acquired in a Cartesian grid. The sampling protocol is fixed and require measure-

ments corresponding to large b-values. In the next chapter, we present a CS reconstruction

of a continuous and analytical signal which, among other advantages, allows more freedom

in the acquisition process.
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Overview

In this chapter, we exploit the ability of Compressive Sensing (CS) in recovering the whole

3D Diffusion MRI (dMRI) signal from a limited number of samples while efficiently recov-

ering important diffusion features such as the Ensemble Average Propagator (EAP) and

the Orientation Distribution Function (ODF). Contrary to the previous chapter, we recover

a continuous and analytical signal. Some attempts to estimate continuous diffusion signals

via CS have been done recently. However, this was mainly an experimental insight of CS

capabilities in dMRI and the CS theory has not been fully exploited. In this work, we also

propose to study the impact of the sparsity, the incoherence and the RIP property on the

reconstruction of diffusion signals. We show that an efficient use of the CS theory enables

the drastic reducing of the number of measurements commonly used in dMRI acquisitions.

Only 20-30 measurements, optimally spread among several b-value shells, are shown to be

necessary, which is less than previous attempts to recover the diffusion signal using CS.

This opens an attractive perspective for measuring the diffusion signals in white matter

within a reduced acquisition time and shows that CS holds great promise and opens new

and exciting perspectives in diffusion MRI (dMRI). This contribution has been published

in [95].

6.1 Motivations

Many measurements and a long acquisition time are necessary to obtain high-resolution

EAP. Therefore, it’s clear that there is a strong need for new techniques to estimate the

whole EAP with fewer measurements. In the previous chapter, we presented a method

to accelerate the DSI acquisition. In this chapter, we focus our attention on Analytical

and Continuous Modeling (ACM) of the EAP. We can also refer these methods as multiple

shells HARDI techniques. ACM methods have been used in [100, 5, 99, 34, 45, 135, 63].

They consist in acquiring the signal following multiple shells schemes and then, modeling it

with an adequate basis. These techniques aim to catch both radial and angular information

about the water diffusion process. However, an increase of the number of measurements is

expected over methods as DTI or QBI. An important problem is to accurately estimate the

diffusion signal and the underlying EAP with a small number of samples. A first answer

has been given while using suitable bases as the Spherical Polar Fourier (SPF) basis [5]

, the SPF dual (SPFdual) basis [89], the Solid Harmonic (SoH) basis [45] or the SHORE

basis [99]. We give a complementary solution by using a new acquisition and reconstruction

technique called Compressive Sensing (CS).

CS aims to accurately reconstruct signals from under sampled measurements (details

on the CS theory is given in chapter 4). We saw in chapter 4 that the application of

CS in diffusion MRI can be separated in several categories. In chapter 5, a discrete CS

based reconstruction has been used to accelerate the DSI technique. In this chapter, we

present a continuous CS recovering. Continuous CS recovering consists in modeling a

signal with a continuous framework from few measurements via a CS reconstruction. A

continuous signal modeling is advantageous because it is is not acquisition dependent and

enables data interpolation and extrapolation. Some works have been published toward this

[96, 109, 36, 89, 122]. In [96, 122], the authors work with measurements taken at same radii

and only estimate the ODF. [109] generalizes the single shell spherical ridgelets basis of [96]
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to a multiple shells framework for a sparse and continuous representation of the diffusion

signal. In [109], a total number of 64 measurements are used to estimate the diffusion signal

well. However, it does not provide any analytical formula to estimate diffusion features.

[36, 89] consider a CS reconstruction combined with a continuous representation of the

diffusion signal and available closed formulae to estimate the EAP and the ODF. [89] is

about CS recovering in SPFdual basis with 80 measurements and [36] is about CS recovering

in SPF basis from a minimum number of 60 measurements. These two papers give a first

experimental insight of CS capabilities in dMRI, where analytical formulae are available to

estimate the EAP and the ODF.

It is also worthwhile to note that very recent works started to handle the learning of

dictionaries from a training data set [137, 84, 58, 15]. These techniques lead to very sparse

representations of diffusion signals and are worth to be minutely investigated. The analysis

done in this chapter considers predefined sets of functions that form orthonormal bases

commonly used in the dMRI field. The question of dictionary learning is addressed in

chapter 7.

In this chapter, we investigate the Compressive Sensing technique in order to accu-

rately and continuously estimate the full 3D diffusion phenomenon as well as some of its

features with a very small number of samples. More precisely, we show that only 20/30

measurements are necessary to well estimate the diffusion signal. It is nearly three times

less than previous studies encountered in [89, 36, 109]. This significant improvement over

these previous works is due to a correct use and consideration of every point of the CS

theory. Then, we demonstrate that it is worth using CS recovery, when CS requirements

are fulfilled and we also demonstrate how to take advantage of this technique. Before start-

ing with the central point of this chapter, i.e. the CS technique, we describe, in the first

section, four bases used to model the diffusion signal. Our approach considers common and

continuous representations of the diffusion signal, which enable to obtain various diffusion

features such the EAP and the ODF (as in [89, 36]). Then, we give in the second part

(Sec. 6.3) a description of the CS properties, which complete Sec. 4.3.2. In Sec. 6.3.1 and

6.3.2 respectively, we study the incoherence and sparse properties of the bases described in

section 1. Sec. 6.3.3 describes the CS recovery. We also, handle in Sec. 6.3.3, the acquisi-

tion point by describing some theoretical tools to validate sampling protocols, i.e a partial

evaluation of the Restricted Isometry Property (RIP). These points are studied both in a

theoretical and experimental ways. In the last part, we present some experimental results

confronting CS recovery and state of the art recovery. In this experimental part, we begin

with synthetic data and focus our attention on several points : 1) the sampling protocol

(Sec. 6.4.1), where a powerful technique is described to build robust sampling schemes and

2) the quality of reconstruction on noisy synthetic data (Sec. 6.4.2). Especially in Sec. 6.4.2,

we demonstrate the efficiency of CS recovery in reconstructing the diffusion signal and the

ODF. These synthetic experiments also enable us to compare our CS-based EAP recovery

with the EAP obtained via the DSI technique. Then, we give in Sec. 6.4.3 and 6.4.4 some

results, respectively on real monkey brain data and phantom data.

From these experiments, we finally show that CS enables the accurate handling of the

whole diffusion process with a lesser number of samples than state-of-the-art methods (∼
20/30 measurements), while modeling the diffusion signal in one of the bases described in

the following.
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6.2 Bases for Diffusion Signal Modeling

In this section we describe four bases used to model the diffusion signal, known as

• The Spherical Polar Fourier (SPF) basis [5, 34]

• The SPF dual (SPFdual) basis [89] (6.6.1)

• The Solid Harmonic (SoH) basis, which is part of the DPI method [45]

• The SHORE basis [99, 35] (6.6.2)

We consider these bases because they are the most commonly used in dMRI for a

continuous modeling of the diffusion signal. Furthermore, closed formulae for some diffusion

features, such that the EAP and the ODF, have been analytically derived in [45, 34, 33, 35]

and (6.6.1, 6.6.2).

Our presentation is structured as follows : We first give the analytical formulation for

the bases functions (Sec. 6.2.1) and, then, give the closed formulae for the EAP and ODF

(Sec. 6.2.2).

Notations : Before exploring this topic any further, we need to set some notations. We

call E(q) = S(q)/S0 the normalized diffusion signal with S(q) the diffusion signal acquired

at q in the q-space and S0 the signal without any gradient applied. q is a 3D-vector, which

can be decomposed in q = qu ,where u is a 3D unit vector. P (R) is the EAP at the 3D

space location R = Rr, with r is a 3D unit vector.

6.2.1 Diffusion signal modeling

We represent E(qu) as a truncated linear combination of Φnℓm(qu) with n the radial order,

ℓ and m the angular order and degree,

E(qu) =

N∑

n=0

L∑

ℓ=0

ℓ∑

m=−ℓ
cnℓmΦnℓm(qu), (6.1)

where the cnℓm = 〈E,Φnℓm〉 are the transform coefficients.

Diffusion signal modeling in the SPF basis : The orthonormal Spherical Polar

Fourier basis was used by [5], in order to describe the diffusion signal E. [5] reports that

the SPF basis is appropriate for sparsely representing multiple configurations of the water

diffusion including isotropy and crossing fibers aspects as well as the multiple compartments

profile. [5] describes the SPF basis function Φ
(SPF)
nℓm (qu) as

Φ
(SPF)
nℓm (qu) =

[
2n!

ζ3/2Γ(n+ 3/2)

]1/2

exp(
−q2
2ζ

)L1/2
n (

q2

ζ
)Y mℓ (u), , (6.2)

where ζ is a scale factor, L
(1/2)
n is the generalized Laguerre polynomial L

(α)
n , of order n

with α = 1/2, and Y mℓ (u) is the Spherical Harmonic (SH) function of order ℓ and degree

m. Note that we use the real and symmetric version of the Spherical Harmonic basis, i.e.

we consider only the SH of even degree.

Diffusion signal modeling in the SPFdual basis : Here, the SPF basis is not used

to model the diffusion signal but the EAP. Then, [89] derives a dual basis to model E.
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This formulation was first used in a reconstruction in [89]. [89] expresses the SPFdual basis

function Φ
(SPFdual)
nℓm as

Φ
(SPFdual)
nℓm (qu) = 4(−1)ℓ/2

ζℓ/2+3/2πℓ+3/2qℓ

Γ(l + 3/2)
γ(ζ, q)Y mℓ (u), (6.3)

with γ(ζ, q) =

[

2ℓn!

ζ
3
2 Γ(n+ 3

2 )

] 1
2 n∑

k=0

(−1)k

k!

(n+ 1
2

n−k
)
2k

Γ

(
ℓ

2
+ k +

3

2

)

1F1

(
2k + l+ 3

2
, l +

3

2
,−2(πq)2ζ

)

,

where 1F1 is the confluent hypergeometric function and Γ the Gamma function. Note that

Φ
(SPFdual)
nℓm and Φ

(SPF)
nℓm (in (6.2)) are related by a Fourier transform.

Diffusion signal modeling in the SHORE basis : The SHORE basis has been

introduced by [99] but the basis was only orthogonal. [34] proposed a new formulation where

the basis functions have a l2 norm equal to one. This orthonormal basis is a generalization

of the SPF basis and Φ
(SHORE)
nℓm is expressed as,

Φ
(SHORE)
nℓm (qu) =
[

2(n− ℓ)!

ζ3/2Γ(n+ 3/2)

]1/2(
q2

ζ

)l/2

exp

(−q2
2ζ

)

L
l+1/2
n−ℓ

(
q2

ζ

)

Y mℓ (u). (6.4)

Note that, because the Laguerre polynomial order (n− ℓ in (6.4)) must be positive, the

angular order ℓ depends on the radial order n, such that n ≥ ℓ. Then, the angular order ℓ

is bounded by n.

Diffusion signal modeling in the SoH basis : [45] considers the total 3D solution

to the Laplace equation in spherical coordinates, i.e. the angular and radial part. It results

in the Solid Harmonic (SoH) basis. In this framework, the diffusion E is approximated by

two series of SH coefficients cℓm and dℓm, i.e. the radial order is fixed to 2. We have

E(qu) =
L∑

ℓ=0

ℓ∑

m=−ℓ

[
cℓm
ql+1

+ dℓmq
l

]

︸ ︷︷ ︸

radialpart

Y mℓ (u)

=

L∑

ℓ=0

ℓ∑

m=−ℓ
Φ

(SoH)
ℓm (qu). (6.5)

6.2.2 EAP and ODF modeling

As described in (3.9), the EAP P and the diffusion signal E are related by a Fourier

transform. Following this relation, we can obtain a closed formula to estimate P from E as

follows:



96CHAPTER 6. CONTINUOUS DIFFUSION SIGNAL ESTIMATION VIA COMPRESSIVE SENSING

P (Rr) =

N∑

n=0

L∑

ℓ=0

ℓ∑

m=−ℓ
cnℓmΨnℓm(Rr). (6.6)

where the cnℓm are the transform coefficients of E in (6.1), and the the Ψnℓm are the

functions given in Table 6.1.

Moreover, defining the ODF Υ as the integration of the EAP over a solid angle as given

by (3.21), we can also derive a closed formula for the ODF in terms of real and symmetric

Spherical Harmonic (SH) basis functions :

Υ(r) =

L∑

ℓ=0

ℓ∑

m=−ℓ
υℓmY

m
ℓ (r), (6.7)

where Y mℓ (u) is the SH function of order ℓ and degree m and the coefficients υℓm are those

given in Table 6.2

SPF Φ
(SPFdual)
nℓm (Rr) [34]

SPFdual Φ
(SPF)
nℓm (Rr) [89]

SoH 1
Z

[
(−1)l/2

R3/2

[
2lRl−1/2πl−1

(2l−1)!! − Jl−1/2(2πqmaxR)

q
l−1/2
max

]

clm + (−1)l/2q
l+3/2
max R−3/2Jl+3/2(2πqmaxR)dlm

]

Y mℓ (r) [45]

SHORE (−1)n−l/2
[

2(4π2ζ)3/2(n−ℓ)!
Γ(n+3/2)

]1/2 (
4π2ζR2

)l/2
exp

(
−2π2ζR2

)
L
l+1/2
n−ℓ

(
4π2ζR2

)
Y mℓ (r) [35]

Table 6.1: Ψnℓm(Rr) coefficients for the EAP closed formulae (see Eq 6.6). For SoH basis
: n!! = (n)(n − 2) · · · (4)(2), Jn(x) is the Bessel function of order n, Z a normalization
constant and qmax the maximum q-value used during the acquisition.

SPF 1√
4π
δ(l)δ(m) − 1

8π

∑N
n=1

∑n
i=1(−1)i

[

2n!

ζ
3
2 Γ(n+ 3

2
)

] 1
2 (n+ 1

2

n−i
)

2i

i! Pℓ(0)(−ℓ)(ℓ+ 1)cnℓm [33]

SPFdual
∑N

n=0 2ζ3/4(−1)ncnlm

[
Γ(n+ 3/2)

n!

]1/2

(6.6.1)

SoH (−1)l/2( 2lπl−1

(2l−1)!!

(
Rl+1

max

l+1

)

cℓm − (l−1)!!

2πql+1
max2l/2(l/2−1)!

cℓm + 1
2π

(l+1)!!
2l/2(l/2)!

dℓm) [45]

SHORE
∑N
n=0 cnℓm

(−1)n−l/2

2(4π2ζ)3/2

[
2(4π2ζ)3/2(n−l)!

Γ(n+3/2)

]1/2
Γ(ℓ/2+3/2)Γ(3/2+n)

Γ(l+3/2)(n−l)!
(

1
2

)−ℓ/2−3/2
2F1(−n+ l, l/2 + 3/2; l+ 3/2; 2) (6.6.

Table 6.2: υℓm coefficients for the ODF closed formulae (see (6.7)). For SPF basis: Pl
is the Legendre polynomial of order l. For SoH basis: 2F1 is the Gauss hypergeometric
function. For SoH basis : n!! = (n)(n − 2) · · · (4)(2), Jn(x) is the Bessel function of order
n, Z a normalization constant and qmax the maximum q-value used during the acquisition.
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6.3 CS properties

In this section, we emphasize the Sec. 4.3.2 and describe why some important conditions

described in the classical CS are still required to obtain accurate and robust reconstruction

of continuous dMRI signals, namely the sparsity, the incoherence and the RIP. We also

highlight theoretical and experimental comparisons between the bases introduced in Sec. 6.2.

We choose these four bases mainly because : 1- They are the most commonly used in the

dMRI field; 2- They enable a continuous representation of the diffusion signal; 3- They

provide analytical formulae for estimating the EAP and the ODF. Note that this work is

by no means a theoretical CS framework for continuous signal. We only show that some

results obtained in the classical and discrete CS theory can be extended to the reconstruction

of continuous signal.

We start by a reminder on previous notations to facilitate the understanding of this

section. We called A ∈ R
m×n the sensing matrix and we try to recover a signal x ∈ R

n from

a measurement vector y ∈ Rm, such that y = Ax. In Sec. 6.3.1, we also introduced Ā ∈
Rn×n, which is an “non-undersampled” version of A. In this chapter Ā is an orthonormal

basis matrix, i.e., a matrix whose columns form an orthonormal basis. Ā, y and x are

expressed as,

A =







a11 · · · a1n

...
. . .

...

am1 · · · amn







y =







y1
...

ym







x =







x1

...

xn







(6.8)

6.3.1 On the incoherence property of CS bases

Because x is S-sparse, we need A to admit a certain amount of incoherence to guarantee

its recovery. In this section, we focus our attention on this incoherence property.

In order to understand the importance of an incoherent system, let us see an example.

Suppose x ∈ Rn is S-sparse with S = 1. The non zero coefficients is the ℓth with ℓ ∈ [1, n].

Then












y1

·
·
·
yM












=












a11 · · · a1n

· ·
· ·
· ·

aM1 · · · aMn























0

·
xℓ

·
0












=












a1ℓxℓ

·
·
·

aMℓxℓ












. (6.9)

Suppose that akℓ = 1 with k ∈ [1,M ]. It means that µ(A) reaches its upper bound.

Because the column of A has an ℓ2 norm equal to 1, aiℓ = 0 for any i 6= k. Then












y1

·
yk

·
yM












=












0

·
akℓxℓ

·
0












=












0

·
xℓ

·
0












. (6.10)
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In this case, we are constrained to observe yk, otherwise x disappears.

Now, suppose µ(A) reaches its lower bound. It means A is a flat matrix with every

component equal to 1√
M

. Then







y1
...

yM







=
1√
M







xℓ
...

xℓ






. (6.11)

In this case, we can sample at any location and still have information about xl. The

information of x is spread out on the observation.

Due to the small number of measurements m, it is obvious that a low coherence is

crucial to recover x. We prefer the information to be spread out in the observable domain.

We cannot take the risk to see yΩ disappears because the measurements are not properly

localized (see case where µ reaches its upper bound above). Hence, µ(A) directly influences

the number of acquisitions.

Evaluation of incoherence. (4.7) comes to search for the maximum of all the CS

basis elements. Before going any further, we need to fix 1) the scale parameter ζ in the

SPF (see (6.2)), SPFdual (see (6.3)) and SHORE (see (6.4)) bases and 2) the bases orders

n, ℓ. First, the zeroth order radial function of these bases should have a Gaussian shape

dependent on the signal attenuation E(q) = exp(−4π2τq2D) with τ the time diffusion

constant characteristic of the acquisition process and D the mean diffusivity constant.

Considering the SPF and SHORE bases, we obtain the same zeroth order radial function,

K000(qu) =

[
2

ζ3/2Γ(3/2)

]1/2

exp

(−q2
2ζ

)

L
1/2
0

(
q2

ζ

)

= Const. exp

(−q2
2ζ

)

. (6.12)

Then, the scale parameter is given by setting exp
(

−q2
2ζ

)

= exp(−4π2τq2D), i.e ζ =
1

8π2τD . Now considering the SPFdual basis, we get the zeroth order radial function,

K000(qu) = 4
ζ3/2π3/2

Γ(3/2)

[

1

ζ
3
2 Γ(3

2 )

] 1
2

Γ

(
3

2

)

1F1

(
3

2
,
3

2
,−2(πq)2ζ

)

= Const.1F1

(
3

2
,
3

2
,−2(πq)2ζ

)

= Const. exp(−2(πq)2ζ). (6.13)

We get ζ = 2τD. Secondly, we fix each basis order in such way they enable to model

many diffusion profiles. Then, for SPF and SPF dual bases we set an angular order ℓ = 6

and a radial order n = 5, which give 140 atoms for each basis respectively. For the SoH

basis, we set an angular order ℓ = 6, which gives 56 atoms (the radial order is fixed and

equal to 2). For SHORE basis, the radial order is n = 6 and because ℓ is bounded by n,

this gives 72 atoms. On the whole, experiments show that we don’t need a higher angular

order to accurately model the angular diffusion profiles.

Now, we are able to measure the coherence µ (4.7) for each basis. You should note that
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this measure depends directly on the scale parameter ζ in (6.2) and (6.4). ζ itself depends

on the diffusion constant τ and the mean diffusivity constant D. We use common values

for these parameters: τ = 1/4π2 and D is in range [0.1 · 10−3, 2 · 10−3]. Recall that µ is

computed on orthonormal bases, so we need to numerically normalize the atom of the SoH

basis using the ℓ2 norm.

Figure 6.1: Coherence µ of the SPF, SPF dual, SoH and SHORE basis

Fig. 6.1 gives the evaluation of the coherence µ while choosing the CS matrix as the SPF,

SPFd, SoH and SHORE basis with the parameters described above. We see that SHORE

basis (red curve) and SPFdual basis (green curve) have the lowest coherence values (then

the highest incoherence). The coherence of the SPF basis (blue curve) is approximately

twice the coherence of the latter bases and the coherence of the SoH basis is constant

because it does not depend on D. For the following experiments (in Sec. 6.4), we fix ζ with

respect to both the mean diffusivity D (which is peculiar to a given diffusion signal) and

the diffusion constant τ (which is used during the acquisition).

6.3.2 On the sparsity of CS bases

As described in chapter 4, we characterize the sparsity of a continuous signal by the number

of continuous functions required to accurately model it. In this section, we evaluate the

sparsity of the CS bases introduced in Sec. 6.2.

Evaluation of the sparsity: In practice, we have an observation vector y ∈ RM
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(In our case the diffusion signal) and we look for its sparse representation x ∈ R
n, in a

given basis represented by an orthonormal basis matrix A ∈ RM×n, such that y = Ax.

Then, we define the sparsity of x as the number of basis atoms, associated with the largest

coefficient of x, which enables to correctly estimate the observation signal y. By correct

representation, we mean the normalized mean square error (NMSE) between the original

observation signal y and the estimated observation signal ỹ is less or equal to 1 · 10−2.

NMSE =
‖y − ỹ‖2

ℓ2

‖y‖2
ℓ2

(6.14)

Then, we progressively estimate ỹ with the atoms of the given basis associated with the

most important coefficients until we reach a NMSE of 1e−2. For this purpose, we need to get

the coefficients vector x such that y = Ax. The question in this section is not which basis or

which reconstruction method gives the best evaluation of the diffusion signal. We only want

to fairly compare the sparse properties of the four bases (SPF, SPFdual, SoH and SHORE).

To do that, we evaluate x in the least square sense by considering an overdetermined system,

i.e. the number of measurements M ≫ n. In this case, and only because the system is

overdetermined, we do not need any regularization (l1 or l2 regularization) for the evaluation

of x. It comes to compute x = (ATA)−1ATy, where A ∈ Rn×M represents one of the

four bases. We set M = 10000 measurements uniformly spread between bmin = 0 and

bmax = 10000 s ·mm−2 (beyond this value the signal is considered to be equal to zero).

Tab. 6.3 gives the average number of atoms necessary to correctly estimate Gaussian-

based diffusion signals (see 10.7) in the SPF, SPFdual, SoH and SHORE bases with the

order previously defined in section 6.3.1. The number of atoms is averaged for several

diffusion profiles (one fiber, 90◦-crossing fibers case and 60◦-crossing fibers). We have

repeated the experiments, while increasing the radial and angular order and similar results

were obtained.

SPF SPFdual SoH SHORE

Number of atoms 12.67 17 34.67 7.33

Table 6.3: Number of atoms necessary to correctly estimate Gaussian-based diffusion signal
in the SPF, SPFdual, SoH and SHORE bases. These results are averaged for several
diffusion profiles (one fiber, 90◦-crossing fibers case and 60◦-crossing fibers).

For SPF basis, approximately 12.67 atoms are necessary to correctly reconstruct a dif-

fusion signal with a NMSE less or equal to 1e−2. SPFdual basis is not as sparse as SPF

basis. However, it doesn’t mean that the quality of the diffusion signal modeled in the

SPFdual basis will be worse than the one modeled in SPF basis. The quality of the estima-

tion depends on other parameters (Recovery method, coherence of the basis). SoH is not

sparse according to our criteria. SHORE basis obviously gives the best sparse property in

modeling diffusion signal. Nearly half the number of coefficients are necessary as compared

to SPF basis. We have repeated the experiments, with a NMSE less or equal to 1e−2, which

lead to the same conclusion..
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6.3.3 CS recovery

In this section, we explain the importance of the Restricted Isometry Property (RIP) for

an accurate CS recovery and we propose a method to evaluate the sampling scheme via a

partial computation of the RIP.

The RIP sets a condition in order to well define the sensing matrix AΩ. In other

words, it allows us to evaluate the efficiency of our sampling scheme to obtain accurate

reconstruction (together with the condition that the signal of interest is sparse). The RIP

leads to the fact that all subsets of s columns taken from A are nearly orthogonals. In order

to clarify this point, we present an example for reconstructing a s-sparse signal with s = 2,

where the non-zero entries are the lth and kth. We have

Ax =












a0(0) · · · an(0)

· ·
· ·
· ·

a0(m) · · · an(m)























0

xl

0

xk

0












=












al(0)xl + ak(0)xk

·
·
·

al(m)xl + ak(m)xk












. (6.15)

If al and ak are orthogonals, i.e 〈al·ak〉 = 0, then al and ak are linearly independent,

i.e λlal + λkak 6= 0, ∀(λl, λk) ∈ R2. If 〈al·ak〉 6= 0, then it may be a sparse vector x such

that xlal+xkak = 0, i.e. x lies in the nullspace of AΩ. To avoid this, we want every subset

of columns of AΩ to be orthogonal. By generalizing this example, it is easy to understand

that larger are the groups of orthogonal columns in AΩ, lower the risk that x lies in the

nullspace of the sensing matrix AΩ Hence, the RIP property ensures that x lies away from

the nullspace of the sensing matrix.

Unfortunately, the columns of the sensing matrix are never truly orthogonal and it

would be very time consuming to evaluate the orthogonality of every subset of columns

taken from AΩ. Instead of doing that, we propose to compute what we call a partial

RIP (pRIP) distance. For this purpose, we randomly choose columns from AΩ. Let call

Aτr = {arand(2,n)} (n is the number of columns of AΩ) one subset of columns randomly

taken from AΩ. The number of column vectors in Aτr , i.e card(τr) = T , is also set as

random such that 1 < T ≤ n . Then, we define the quantity δτr = 1
T

∑

i,j⊂τr

i6=j

〈ai, aj〉, which

represents the mean of the dot product between every vector in Aτr . The pRIP distance

is given as pRIP (AΩ) = 1
R

R∑

r=0
δτr with R the number of subset to evaluate. It is easy to

see that the pRIP can take its value between 0 (when all the columns of AΩ are pairwise

orthogonal) and 1 (when all the columns of AΩ are identical). In practice and for our

experiments, we have found that the pRIP distance is well computed for R = 1000.

Formally, we can state the problem as follows: We look for the subset of samples Ω such

that,

Ω = argmin
Ω
pRIP (AΩ). (6.16)

We use this property to evaluate the efficiency and the robustness of our sampling scheme

and the underlying sensing matrix.
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6.4 Experimental results

The first part of the experiments are concerned with the reconstruction of synthetic data.

Synthetic data allows us to evaluate 1) a sampling protocol (Sec. 6.4.1) and 2) the robustness

to noise (Sec. 6.4.2). More specifically in Sec. 6.4.2, we present experiments on diffusion

signal and ODF reconstruction (Sec. 6.4.2 and Sec. 6.4.2), and compare the EAP based CS

recovery with the EAP computed via the DSI technique (Sec. 6.4.2). Then, we show results

on a monkey brain (Sec. 6.4.3) data and phantom data (Sec. 6.4.4). In all the experiments,

we set the scale parameter ζ and the bases order as in Sec. 6.3.1 , i.e. an angular order

ℓ = 6 and a radial order n = 5 for SPF and SPF dual bases, a radial order of n = 6 for

SHORE basis and an angular order of ℓ = 6 for SoH basis. ζ changes along with the mean

diffusivity constant D, peculiar to a given diffusion signal. For the synthetic experiments

we set D = 0.7e − 3 and ζ is respectively set to 700, 3.5462e− 5, 700 for SPF, SPFdual

and SHORE bases (For details on these values, see Sec. 6.3.1). For the experiments on the

monkey and phantom data, we will fix ζ with the mean diffusivity constant averaged on

voxels in the region of interest.

Before going any further, we give the notations and materials used in the experimental

part. We also describe the ℓ1 minimization problem (called ℓ1 recovery in the following),

which is used in CS recovery. Then, we describe the least square recovery with an ℓ2
regularization (called ℓ2 recovery in the following), which is used for comparison.

Notations :

We represent the normalized diffusion signal E(qu) as a truncated linear combination

of Φnℓm(qu) with n the radial order, ℓ and m the angular order and degree, i.e.

E(qu) =

N∑

n=0

L∑

ℓ=0

ℓ∑

m=−ℓ
cnℓmΦnℓm(qu), (6.17)

where the cnℓm = 〈E,Φnℓm〉 are the transform coefficients. We call nc the total number of

atoms.

Suppose nq is the number of measurements, E ∈ Rnq a vector representing the diffusion

signal, c ∈ Rnc the vector of transform coefficients cnℓm and Φ ∈ Rnq×nc the matrix

constructed with the atoms of the given basis as

Φ =







Φ000(q1u1) · · · ΦNLL(q1u1)
...

. . .
...

Φ000(qnqunq
) · · · ΦNLL(qnqunq

)






, (6.18)

We can write equation (6.17) as a linear system of overdetermined equations,

E = Φc. (6.19)

The aim is to recover c given the normalized diffusion signal E and the matrix Φ. Then,

the EAP and ODF can be analytically computed from c using the closed forms given in

Sec. 6.2.

ℓ1 recovery
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In order to find c, we solve the convex optimization problem, specified in (4.11), i.e.

with the above notations,

min
c∈Rnc

‖c‖ℓ1 subject to ‖E− Φc‖ℓ2 ≤ ǫ. (6.20)

For convenience, we replace the constraint with a penalty. It comes to solve

arg min
c∈Rnc

‖E− Φc‖ℓ2 + λ‖c‖ℓ1 , (6.21)

where the regularization parameter λ replaces the noise level ǫ in (6.20), in governing the

trade-off between the data consistency and its sparsity. We solve the problem by means of a

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [12, 139], an iterative algorithm

where each iteration involves a shrinkage step. We chose this algorithm because of its

efficiency, its speed and its convergence.

Appropriate choice of the regularization parameter λ is a critical issue in ℓ1 recovery.

The regularization parameter selection in (6.21) depends essentially on the level of noise, the

data sparsity and the number of measurements. Thus, we need a technique that adaptively

chooses λ , i.e. for each instance of diffusion signal contained in a whole data set. We use

cross validation to assess the reconstruction parameters [129]. In particular, we use a K-fold

Cross Validation, which consists of splitting the entire data set in K subsets. K− 1 subsets

are used to reconstruct the signal whereas the Kth left apart subset enables an estimation

of the regularization parameter λK via the evaluation of a cross validation distance. This

operation is repeated K times by considering the other subsets. Then, we keep an average

value, λ =
1

K

∑K
k=1 λk. This procedure is computationally extensive but experiments show

that it enables a close approximation of the optimal regularization parameter. To avoid a

drastic increase of the computational effort, we split our data set in 5 partitions, i.e. K = 5.

Our experiments showed that it is sufficient to well evaluate λ in (6.21). See [129] for details

regarding the use of cross validation in CS.

ℓ2 recovery

Least square recovery with an ℓ2 regularization is the common method used so far in

order to solve a system of overdetermined equations involving the bases in section (6.2).

The ℓ2 recovery problem that is to be solved is

arg min
c∈Rnc

‖E− Φc‖ℓ2 + λl‖L‖ℓ2 + λn‖N‖ℓ2, (6.22)

where N ∈ Rnq×nc and L ∈ Rnq×nc are two diagonal matrices such that diag(N) = n(n+1)

and diag(L) = l(l + 1). L is called the Laplace-Beltrami operator. These two matrices

penalize the high frequencies of the radial and angular part, respectively. λn and λl enable

to weight the high frequency penalization. The least square solution has a closed form given

by [5, 99],

c = (ΦTΦ + λlL
TL + λnN

TN)−1ΦE, (6.23)

For the SoH basis [45], there is only an angular regularization. Then, the least square

solution is given by,

c = (ΦTΦ + λlL
TL)−1ΦE. (6.24)
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To enable a fair comparison with the ℓ1 recovery, we apply a variant of cross valida-

tion, the Generalized Cross Validation (GCV) algorithm [40], to assess the regularization

parameters λl and λn. The GCV method is based on a K-fold cross validation where K is

the number of measurements. Fortunately, we have a closed form expression, which enables

the quick estimation of λl and λn. We simply take λl and λn as the minimum argument of

the GCV function, expressed as

GCV(λ;E) =
‖E− Êλ‖2

K − Tr(Sλ)
, (6.25)

which makes this method very efficient. The matrix Sλ = Φ(ΦTΦ + λΛ)−1ΦT is the

smoother matrix, and Êλ = SλE. Λ is either LTL or NTN depending on which regular-

ization parameter we want to assess (λl or λn). With the GCV method, it is possible to

adapt the regularization parameters to the data.

6.4.1 Sampling protocol

The quality of reconstruction is sensitive to the acquisition scheme [85, 26]. In particular,

the random sampling protocol usually used in CS recovery can miss information and does

not ensure good reconstruction in every case. Hence, in order to remove the variance of the

results due to the random aspect of the sampling scheme, it is necessary to find a robust

and efficient way to acquire DW-MRIs. For this purpose, we evaluate and compare several

sampling protocols. We begin by presenting some methods to distribute points on one or

several spheres. It follows a presentation of the sampling schemes to be evaluated. Then,

we give a first appreciation of the quality of each sampling scheme using the partial RIP

(pRIP) distance presented in Sec. 6.3.3. The pRIP distance evaluates the capabilities of

the sensing matrix Φ to give a robust and accurate reconstruction but doesn’t consider

the signal itself. Hence, we also evaluate experimentally each sampling scheme on the

reconstruction of synthetic diffusion data.

Jones algorithm

References [68, 41] give an algorithm to uniformly distribute N points qn ∈ R3 on a sphere

by considering each point as an antipodal pair of electrical charges. The method involves

the minimization of the electrostatic force of repulsion between each couple of charges. The

electrostatic repulsion between two points qi and qj is given by

E(qi, qj) =
1

‖qi + qj‖
+

1

‖qi − qj‖
(6.26)

For a set of N points, the energy to minimize becomes

JJ =
∑

i6=j
E(qi, qj) (6.27)

Reference [38] provides Camino, an Open-Source Diffusion-MRI Reconstruction and

Processing software. They include several sets of directions, from N=3 to 150 points,

computed by electrostatic energy minimization.
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Generalized Jones algorithm

This method is proposed by [29] as a generalization of [68] to multiple shells (MS) acquisi-

tion. It enables the distribution of N points qn ∈ R3 on K shells of radius rk. The points

from each shell have staggered directions and follow a near-optimal uniform distribution.

Another important point in this method is the possibility to balance the proportion αk of

samples between shells. We will take advantage of this feature in order to test out different

radial distributions.

Firstly, the method consists in minimizing the electrostatic repulsion between every

point for each shell independently, that is

E1 =
∑

k

rkαk
∑

i6=j s.t ‖qi‖=‖qj‖=rk

E(qi, qj) (6.28)

Then, in order to have staggered directions between shells, [29] introduces a new term

that minimizes the electrostatic repulsion of the N points projected on the unit sphere. It

comes to minimize

E2 =
∑

i6=j

1
∥
∥
∥

qi

‖qi‖ − qj

‖qj‖

∥
∥
∥

+
1

∥
∥
∥

qi

‖qi‖ +
qj

‖qj‖

∥
∥
∥

(6.29)

Finally, the energy to minimize is JGJ = (1−µ)E1 +µE2, where µ is a weighting factor.

4 sampling schemes

We perform our experiments on four MS sampling schemes. [85, 26] showed the advantage

of taking staggered directions between shells in order to well approximate the angular profile

of the diffusion process. Hence, each sampling scheme will be computed via the Generalized

Jones algorithm in order to obtain staggered directions between shells. Here we, evaluate

the impact of the radial distribution of the samples. Then, we test four sampling schemes

where the number of samples on each shell is proportional to qγ with γ = 1, 2, 3, 4.

Results on sampling protocol

We first provide a critical appreciation of the quality of each sampling scheme using the

partial RIP (pRIP) distance as described in Sec. 6.3.3. The pRIP distance roughly evaluates

the efficiency of a sampling scheme to obtain accurate reconstruction. We compute it with

N = 10 to 90 for each basis previously presented and for a sampling scheme following radial

distributions in qγ with γ = 1, 2, 3, 4. Overall, and for the SPF, SPFdual and SHORE bases,

we see that the pRIP distance is higher for the schemes whose the radial distribution follow

a law in q2 and q3 than those in q0 and q1. It means the schemes in q2 and q3 are more

sensitive to noise and lead to less accurate reconstruction. The schemes in q0 and q1 have

similar pRIP values for different number of samples N . Considering the SoH basis, the

isotropy distance does not vary a lot between sampling schemes. It is also quite stable

along N . It means all the sampling schemes have similar effect on the accuracy of the

reconstruction while using the SoH basis.

Now, we experimentally review the outcome of multiple shells (MS) sampling on the

reconstruction of synthetic data. The performance of each sampling scheme is determined

on diffusion signal reconstruction while the signal is generated from a multi-tensor model
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Figure 6.2: pRIP distance evaluated for the SPF, SPFdual, SoH and SHORE bases. We
considered four sampling schemes following radial distributions in qγ with γ = 1, 2, 3, 4 and
compute δ while taking N = 10 to 90 measurements.
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Figure 6.3: NMSE evaluated for the reconstruction of synthetic data using ℓ1 recovery
(plain lines) ℓ2 recovery (dash lines) for the SPF, SPFdual, SoH and SHORE bases. We
considered four sampling schemes following radial distributions in qγ with γ = 1, 2, 3, 4 and
compute δ while taking N = 5 to 90 measurements.
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(see 10.7) through three scenarios : One fiber, two 60◦-crossing fibers, two 90◦-crossing

fibers evaluated at b values, b = [1000, 2000, 3000]s ·mm−2. We evaluate the reconstruction

for a number of samples N = 5 to 90. The quality of the diffusion signal estimation Ẽ is

given by the normalized mean square error (NMSE) (see (6.14)), evaluated on sample at

b-value between 0 and 10000, i.e. different from the measurements used for the reconstruc-

tion. We average the NMSE obtained on 1000 independent trials and for each scenario.

Because this section aims to evaluate sampling schemes, and not the robustness to noise,

we generate a noise-free diffusion signal. The robustness to noise was already evaluated via

the computation of the isotropy distance. The results are given in Fig 6.3. In this figure,

we compare the ℓ1 and ℓ2 reconstruction methods. The curves corresponding to ℓ1 recovery

are in plain lines and the curves corresponding to ℓ2 recovery are in dash lines. We first

consider the SHORE, SPF and SPFdual bases. NMSE values for the schemes following a

radial distribution in q2 and q3 are in line with our previous results on the pRIP distance,

i.e. we get a higher NMSE for these schemes than the schemes in q0 and q1. Within the

schemes in q0 and q1, we see that the NMSE for the one in q1 remains lower than the

NMSE for the one in q0 while decreasing the number of samples N . These observations

remain valid for ℓ1 and ℓ2 recovery. Besides, [26] comes to the same conclusions regarding

ℓ2 recovery. Considering the SoH basis we have two remarks. First, the NMSE is quite the

same for each radial distribution either for ℓ2 recovery or ℓ1 recovery. Next we observe,

that ℓ2 recovery gives lower NMSE values than ℓ1 recovery using the SoH basis.

To summarize this section, we have seen that a sampling scheme stands out for both

ℓ1 recovery and ℓ2 recovery. This scheme uses the generalized Jones algorithm presented

in Sec. 6.4.1, where the samples follow a radial distribution in q1. The pRIP distance

evaluated for this scheme indicates that it is robust to noise and the experiments on synthetic

data show that it gives the lowest NMSE. Hence, we keep this scheme for the rest of the

experiments.

6.4.2 Synthetic and noisy reconstruction

This section presents experiments on the reconstruction of synthetic data. We describe

results from signal, ODF and EAP reconstructions, followed by a conclusion where we

highlight the important points of these experiments.

Diffusion signal recovery

We first present results on diffusion signal recovery. Based on the previous results in

Sec. 6.4.1, we choose a sampling scheme with a radial distribution following a law in q1.

Here, we perform experiments on diffusion signal recovery where the data is contaminated

with Rician noise. As previously, we compare the ℓ1 recovery and ℓ2 recovery. We keep the

NMSE criteria to evaluate the reconstruction of diffusion signal from a multi-tensor model

(10.7) through three scenarios : One fiber, two 60◦-crossing fibers, two 90◦-crossing fibers

at b values b = [1000, 2000, 3000]s ·mm−2. We evaluate the reconstruction for a number of

samples N = 5 to 90. We add Rician noise with SNR between 30 for data contaminated

with low noise level and 10 for very noisy data. The Rician noise is added to the normalized

diffusion signal E in the following way : Enoisy =
√

(E + ǫ1)2 + ǫ22 where ǫ1, ǫ2 ∼ N (0, σ)

with σ = 1
SNR . Again, all the results are obtained on 1000 independent trials. Then,
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Figure 6.4: NMSE for noisy and synthetic reconstruction with SNR=10 to SNR=30 (left
to right). Results for ℓ1 recovery is represented in plain line and results for ℓ2 recovery
is represented in dash line. We consider the SPF (in blue), SPFdual (in green) , SoH (in
black) and SHORE (in red) bases for the reconstruction.

we average the results of one fiber, two 60◦-crossing fibers, two 90◦-crossing fibers. The

resulting NMSE for ℓ1 recovery (plain line) and ℓ2 recovery (dash line) are presented in

Fig. 6.4.

As expected from the preliminary results in Sec. 6.3, SPF, SPFdual and SHORE based

reconstruction broadly give better results for ℓ1 recovery than ℓ2 recovery, and inversely for

the SoH basis. This is not surprising while looking at the sparsity level of SoH basis (see

Tab. 6.3 in Sec. 6.3.2). It gives the worst sparsity level with respect to the others bases.

More precisely, for ℓ2 recovery, we see a global increase of the NMSE below N ≈ 40/50

samples at any SNR, whereas the NMSE for ℓ1 recovery globally increases below N = 30

samples. For N = 50 and higher, the two methods lead to similar NMSE values. These

results show that SHORE, SPF and SPFdual bases are appropriate for CS recovery, and

enable to reconstruct diffusion signals as accurately as with ℓ2 recovery with a smaller

number of measurements. The SoH basis, however, does not enter in the CS framework

and the results show that it is preferable to use the ℓ2 recovery instead of the ℓ1 recovery

with the SoH basis.

Regarding the ℓ1 recovery, we give a comparison on the number of samples required to

correctly approximate the diffusion signal while considering the SPF, SPFdual and SHORE

bases. For the same NMSE, we see that SHORE based ℓ1 recovery needs less samples than

SPF and SPFdual based ℓ1 recovery, and that SPFdual based ℓ1 recovery needs less samples

than SPF based ℓ1 recovery at same NMSE (see Fig. 6.4). For instance, to obtain a NMSE

equal to 0.03 at SNR = 30, we need nearly 10, 16 and 18 measurements respectively

for SHORE, SPFdual and SPF based reconstructions. To summarize, SHORE based ℓ1
recovery gives the best signal estimation in terms of NMSE. This results was expected from

the studies regarding the coherence and sparsity of these bases in Sec. 6.3.2 and 6.3.1. To

quantify this result, we give the number of measurements required before a too large increase

of the NMSE. We notice that approximately 20/30 measurements are needed (depending

on the underlying SNR) for a SHORE based ℓ1 recovery. This leads to approximately three

times less number of measurements than in [89, 36, 109].
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Figure 6.5: Angular error (AE) and difference on the number of compartments (DNC) from
noisy and synthetic ODF reconstruction with SNR=10 to SNR=30 (left to right). Results
for ℓ1 recovery are represented in plain line and results for ℓ2 recovery are represented in
dash line. We consider the SPF (in green), SPFdual (in red) and SHORE (in blue) bases
for the reconstruction.

Orientation Distribution Function recovery

In this section, we describe results on the angular information provided by the Orientation

Distribution Function (ODF) estimated from the SPF, SPFdual and SHORE bases via the

closed form presented in Sec. 6.2.2. We set apart the SoH basis due to the bad results

concerning this basis in the previous section. We set up the experiments as in the previous

section on diffusion signal recovery, except for the number of samples used for the evaluation.

Here, we consider N = 10 to 90. We evaluate the angular information via two metrics : the

angular error (AE) between the directions of the extracted ODF maxima and the ground

truth directions, and the corresponding difference on the number of compartments (DNC)

i.e. the difference between the number of maxima detected and the true number of maxima.

These two metrics are computed for each trial (1000 trials in all) and, then, averaged. We

also compute the standard deviation of the AE. Note that the AE is computed between

the ground truth direction and the closest extracted ODF maxima until every maxima or

ground truth direction are scanned. Hence, the DNC metric shows its importance since it

gives information regarding the reliability of the AE. All the results are shown in Fig. 6.5.

Regarding the AE, we observe that the ℓ1 recovery gives globally more accurate esti-

mation of the directions than the ℓ2 recovery. One explanation comes from the underlying

property of the ℓ1 recovery, which provides sharper ODF estimation, while the ℓ2 constraint

is known to favor low frequency components and thus provides smoother ODF estimation.

We, now, consider the DNC values of Fig. 6.5 (bottom curves). We observe, when a

small number of samples is used, that the ℓ2 recovery gives a more accurate DNC estimation

than the ℓ1 recovery. This observation is especially true when the SPF and the SPFdual
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bases are used to model the signal. Moreover, this phenomenon is emphasized for a small

SNR. It may be due to the smoothing consequence of the ℓ2 constraint, which somehow acts

as a signal denoiser. However, this advantage of the ℓ2 recovery is hampered by the very bad

evaluation of the maxima directions extracted from the ODFs. For instance, at SNR=10

and below N = 30, the AE exceeds 15 degrees. Then, we can not rely on the ℓ2 recovery

for diffusion directions evaluation while considering a small number of measurements in the

reconstruction. To conclude on the DNC, only SHORE based ℓ1 recovery is able to provide

reliable ODF maxima, except for N = 10.

Overall, for a minimum of 20/30 measurements and above SNR = 20, SHORE based

ℓ1 recovery ensures reasonably low AE and DNC values, especially at SNR=30 where the

DNC is zero above N = 30 measurements. At SNR=10 and above N = 30 measurements,

we still have acceptable AE and DNC (AE < 15◦ and DNC < 0.5) with the SHORE based

ℓ1 recovery. Then, we conclude that 20/30 measurements required are enough to obtain

reliable and accurate diffusion directions from the estimated ODFs using the SHORE based

ℓ1 recovery (as concluded in Sec. 6.4.2). Finally, regarding the standard deviation of the

error, we observe, as expected, an increase of these values for decreasing SNRs.

Comparison with DSI

Here, we compare the EAP estimated via a SHORE based ℓ1 recovery and via the Diffusion

Spectrum Imaging (DSI) technique [130].

Figure 6.6: Comparison between the NMSE obtained for DSI reconstruction (red line) and
SHORE based ℓ1 recovery (blue curve).

We show quantitative results on the reconstruction of synthetic data, described in 10.7.
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Again, we consider three cases : one fiber, two fibers crossing at 90◦ and two fibers crossing

at 60◦. Then, we generate the normalized diffusion signal E on a 11 × 11 × 11 cartesian

grid (1331 samples). The ground truth EAP P is the inverse Fourier Transform (IFT)

of E. For DSI, we generate 514 DWIs in a cube plus an additional unweighted image.

The number of 514 corresponds to the number of samples comprised within the sphere of

five lattice unit radius. It is the common sampling protocol with the DSI technique. The

EAP is, then, obtained by applying an hamming window and an inverse Fourier Transform.

We choose the SHORE basis combined with ℓ1 recovery for comparison. In this case, we

reconstruct the diffusion signal for a number of samples N = 10 to 500. These samples are

spread on 3 shells at b values b = [1000, 2000, 3000] using the generalized Jones algorithm

where the radial distribution follow a law in q1. Then, we use the closed form in Tab. 6.1

to estimate the EAP P̃ . For all the experiments, we add a Rician noise to the signal

with SNR = 20. We evaluate the NMSE between P̃ and the ground truth EAP P on the

11×11×11 cartesian grid. For DSI this NMSE is fixed and equal to NMSEDSI = 0.025976.

For the SHORE based EAP reconstruction using the ℓ1 recovery, we show in Fig. 6.6 the

NMSE while taking N = 10 to 500 samples (blue curve). In the same figure, we plot a

horizontal line (red line) whose the ordinate value is NMSEDSI . We see in Fig. 6.6, that

180 measurements are necessary, with SHORE based ℓ1 reconstruction, to attain the NMSE

of DSI, which was obtained with 514 measurements plus an additional unweighted image.

Therefore, an acceleration factor of 515/180 ∼ 2.86 is observed. Besides this improvement,

our SHORE based ℓ1 reconstruction has the advantage to give a continuous modeling of

the EAP whereas the EAP based DSI reconstruction is dependent to the cartesian grid.

Conclusion on synthetic results

The conclusion to the noisy synthetic experiments is fourfold. First, these results show

that the SHORE, SPF and SPFdual bases are appropriate for ℓ1 recovery, and enables the

reconstruction of diffusion signals as accurately as with ℓ2 recovery with a smaller number

of measurements, whereas it is preferable to use an ℓ2 recovery with the SoH basis. Next,

we know that SHORE perfectly enter in the CS framework and is the most suitable basis to

use for diffusion signal reconstruction via ℓ1 recovery, where nearly 20/30 measurements are

necessary to well estimate the diffusion signal. Thus, considering the ODF experiments, we

see that the SHORE based ℓ1 recovery gives the best description of the angular information

of the underlying synthetic signals. Overall, it provides lower DNC and AE values than the

other reconstructions. In particular, we see that 30 measurements are sufficient to obtain

a reliable and accurate estimation of the diffusion directions. Finally, we have performed a

comparison with DSI and our experiments show that the association SHORE/ℓ1 recovery

enables us to attain the accuracy of DSI with less than half the number of samples used in

this high resolution acquisition technique (an acceleration factor of 2.86).

6.4.3 Real human brain data

We also performed experiments on a in-vivo human brain. We acquired the data over 3

shells and 67 directions uniformly distributed on the sphere (A total of 201 directions). We

used three b-values (500, 1000, and 2000 s ·mm−2), and an imaging matrix of 93×116×93

with isotropic voxels of 1.7 mm3. The large number of samples enables the subsampling

of the data and apply various sampling schemes. Based on our previous results, we take
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samples according to a radial distribution in q1. All the experiments in this part are

performed with 20 samples in both recovery methods (ℓ1 and ℓ2). The mean diffusivity

constant averaged on all the voxels contained in the region of interest is D = 0.00054. We

have τ = 0.0257, then ζ = 925.93 for SPF and SHORE bases , and ζ = 2.7357e− 05 (see

Sec. 6.3.1 for details about ζ computation). We reconstruct the diffusion signal and, then,

use the closed forms defined in Sec. 6.2 to compute the ODF. Fig. 6.7 shows the estimated

ODFs and their extracted maxima while using SPF, SPFdual and SHORE in both ℓ1 and

ℓ2 recovery methods. Regarding our previous experiments, we put aside the SoH basis. We

put the fractional anisotropy in background of the region of interest. We also compute a

ground truth by considering all the measurements. Because synthetic experiments show

that every combination of basis and recovery method gives similar results when considering

many measurements, we compute this near ground truth using the SHORE basis and the

ℓ2 recovery method.

First at all, we focus our attention on the advantages/disadvantages of ℓ1 over ℓ2 re-

covery. We see that the ODF reconstructed using ℓ1 recovery look sharper than in case

of ℓ2 recovery. This particularity is due to the nature of the ℓ1 minimization problem.

Indeed, the ℓ1 regularization equally penalizes the low frequency components and the high

frequency components, whereas the ℓ2 regularization penalizes more the high frequency

components. Hence, ℓ1 recovery improves the angular resolution and produces sharper dif-

fusion signal estimation than ℓ2 recovery, and the ODFs appearance directly results from

this phenomenon. This sharpening enables the extraction of more maxima. This was al-

ready observed from the synthetic experiments. With SPF and SPF dual bases, the CS

based ODFs give also some maxima with noisy peaks. ODFs estimated with SHORE basis

and ℓ1 recovery better agree the underlying structure and are not as perturbed as with SPF

and SPFdual bases. Then, SHORE basis better resolves the crossing area using ℓ1 recovery

and 20 measurements without catching as much noise.

In conclusion, SHORE appears to be the best basis, which especially gives good results

in case of ℓ1 recovery with only 20 samples. Overall, ℓ1 recovery gives sharper ODF than

ℓ2 recovery.

6.4.4 Phantom data

Here, we perform our experiments on a phantom data provided by LNAO, which was used

in a fiber cup contest in MICCAI 2009 [105, 53]. Diffusion-weighted data of the phantoms

were acquired at a spatial resolution of 3 mm3 isotropic and an imaging matrix of 64x64x3.

The data were obtained for three different b-values b=650/1500/2000 s ·mm−2 along a set

of 64 orientations, uniformly distributed over the sphere (A total of 192 directions).

In this experiment, we consider a crossing region and estimate the diffusion signal in

three bases : SPF, SPFdual and SHORE. Again, we put aside the SoH basis and take only

20 samples. The mean diffusivity constant averaged on the crossing region is D = 0.00081.

We have τ = 0.0253, then ζ = 617.28 for SPF and SHORE bases , and ζ = 4.1035e− 05 for

SPFdual basis (see Sec. 6.3.1 for details about ζ computation). Figure 6.8 shows the EAP

at radii 15µm and 20µm.

We analytically compute the EAP from the closed formula described in Sec. 6.2. Again,

the EAPs estimated with ℓ1 recovery are sharper that the EAPs estimated with ℓ2 recovery

Based on the known ground truth, we can say that our best estimation are again the one

based on the association ℓ1 recovery/SHORE basis, because its EAP estimation agrees more
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Figure 6.7: ODF and extracted maxima. The underlying diffusion signal is estimated via
ℓ2 recovery (left part) and ℓ1 recovery (right part). On the top is shown the ground truth of
the region of interest. The array below shows the estimated ODF and extracted maxima.
Three bases are used for the reconstruction : the Spherical Polar Fourier basis (Top line of
the array), the Spherical Polar Fourier dual basis (Second line of the array), the Spherical
Polar Fourier basis (Bottom line of the array).
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Figure 6.8: Estimated EAP at radii 15µm (green surface) and 20µm (blue surface). The
underlying diffusion signal is estimated via ℓ2 recovery (left part) and CS recovery (right
part). Three bases are used for the reconstruction : the Spherical Polar Fourier basis (top
line), the Spherical Polar Fourier dual basis (second line), the Spherical Polar Fourier dual
basis (bottom line).
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the underlying crossing area than the other estimations.

In figure 6.9, we compare estimated EAP modeled with SPF and SHORE bases for

different numbers of samples. For this purpose, we take a voxel in the phantom where

fibers are crossing. We set a ’pseudo’ ground truth (GT) as the reconstructed signal for

both bases using the whole set of acquisitions (N=300 samples). Then, we estimate the

EAP at radii 15µm (green surface) and 20µm (blue surface) and show it in Fig. 6.9 (first

column). Afterward, we repeat the experiment for N = 120 , N = 90, N = 60, N =

30 samples. Considering SHORE basis, we note that the estimated EAP is qualitatively

similar to the ’pseudo’ GT for both radii from N = 120 to N = 60. For a smaller N the

angular information at radius 15µm becomes too smooth to correctly estimate the diffusion

directions. For SPF basis, we remark that this phenomenon (the bad estimation of the

diffusion directions at a low radius ) appears at N = 90. Indeed, at radius 15µm the

diffusion directions given are staggered with the ground truth. On the whole, we see a

better angular resolution for higher radii.

This example shows the efficiency of SHORE basis to correctly model the signal (and

so the EAP) with less samples than needed with the SPF basis. These remarks hold for a

ℓ1 recovery scheme.

Figure 6.9: Estimated EAP at radii 15µm (green surface) and 20µm (blue surface) for
different number of samples, while the diffusion signal is modeled with SHORE and SPF
bases (respectively top and bottom lines). We used N = 300, N = 120, N = 90, N = 60,
N = 30 samples (from left to right) for the reconstruction.

6.5 Conclusion

We have proposed a new solution to characterize the complete water diffusion process in the

white matter, with a very small number of measurements (only 20/30 measurements). The

main contribution of this chapter is the investigation of Compressive Sensing to estimate

the whole 3D diffusion signal in diffusion MRI. We reviewed every point of CS both in a

theoretical and experimental ways for the dMRI purpose. We showed the importance of the

sparsity, the incoherence and the RIP in estimating the diffusion signal using an ℓ1 mini-

mization scheme. Moreover, in this approach, we considered only continuous frameworks,

which enable us to compute analytical solutions of the EAP and ODF. The EAP captures
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both radial and angular information and completely describes the diffusion process. The

ODF is the diffusion feature commonly used to perform tractography. Derivation of more

features seems conceivable in these frameworks.

Our extensive review of CS for modeling the diffusion signal using SPF, SPFdual, SoH

and SHORE bases leads to two important conclusions about : 1) the efficiency of a ℓ1
recovery compared to a ℓ2 recovery, 2) the conditions for an efficient CS recovery. At first,

why should we use a ℓ1 recovery rather than a ℓ2 recovery ? We showed, when the CS

requirements are fulfilled, that a ℓ1 recovery produces better diffusion signal estimation

than the ℓ2 recovery method does, with not more than 20/30 samples optimally spread.

Moreover, ODFs estimated from a ℓ1 recovery are sharper than with a ℓ2 recovery and, thus,

could be efficiently used for tractography. Nevertheless, we found that the CS technique

is quite constrained. Even if we can fully choose our samples to nearly respect the RIP

property, two other conditions depend directly on the signal to recover and the basis used for

modeling it. These conditions, the sparsity and the incoherence, are not fulfilled for every

case. For instance, the SoH basis is not theoretically appropriate for the CS technique.

Inversely, the theory pointed out the efficiency of SHORE basis in CS recovery, which was

confirmed by experimental results.

To conclude, we showed that the Compressive Sensing technique enables to accurately

estimate the diffusion signal along with the EAP and the ODF with only 20/30 samples.

However, the Compressive Sensing theory is not easy to handle and is more appropriate, in

some cases, than the commonly used ℓ2 recovery method. In this investigation, we also found

an adequate association which fulfills the CS requirements. High sparsity and incoherence

are given by SHORE basis and the RIP property is approximately satisfied with a robust

multiple shells sampling protocol, which is performed by the generalized Jones algorithm

by setting a number of samples by shells proportional to q1. Moreover, we get rid of the

problem of sensitivity towards the regularization parameter in ℓ1 recovery by using cross

validation.

To summarize, we showed that CS Diffusion MRI holds great promise for reconstructing

the full water diffusion process within a clinically feasible acquisition time. This opens new

and exciting perspectives in diffusion MRI.

The next chapter is close in spirit to this one, except that the sensing matrix is not an

orthonormal basis but an overcomplete and redundant dictionary learned from a training

data set.

6.6 Appendix

6.6.1 Proof of the analytical ODF solution when the signal is mod-

eled in SPF dual basis

In the SPF formalism, one can express the ODF as,
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Υ(r) =

∫ ∞

R=0

N∑

n=0

L∑

ℓ=0

ℓ∑

m=−ℓ
cnlmKn(R)Y mℓ (r)R2dR

=
L∑

ℓ=0

ℓ∑

m=−ℓ
Y mℓ ((r))

N∑

n=0

cnlm

∫ ∞

R=0

Kn(R)R2dR

︸ ︷︷ ︸

υℓm

.

with Kn(R) =

[
2n!

ζ3/2Γ(n+ 3/2)

]1/2

exp(
−R2

2ζ
)L1/2

n (
R2

ζ
). (6.30)

Using the formula
∫∞
0 exp(−sx)xαLαn(x)dx =

Γ(α+ n+ 1)(s− 1)n

n!sα+n+1
[111] and this sub-

stitution : R =
√
xζ and dR = 1

2

√
ζ
xdx, we get,

υℓm =

N∑

n=0

cnlm
ζ3/2

2

[
2n!

ζ3/2Γ(n+ 3
2 )

]1/2 Γ(3
2 + n)(− 1

2 )n

n!12
(3/2+n)

=
N∑

n=0

cnlm2(−1)nζ3/4

[
Γ(n+ 3

2 )

n!

]1/2

.

6.6.2 Proof of the analytical ODF solution when the signal is mod-

eled in SHORE basis

In the SHORE formalism, one can express the ODF as,

Υ(r) =

∫ ∞

R=0

N∑

n=0

L∑

ℓ=0

ℓ∑

m=−ℓ
cnlmKn(R)Y mℓ (r)R2dR

=

L∑

ℓ=0

ℓ∑

m=−ℓ
Y mℓ ((r))

N∑

n=0

cnlm

∫ ∞

R=0

Kn(R)R2dR

︸ ︷︷ ︸

υℓm

with Kn(R) = (−1)n−l/2
[
2(4π2ζ)3/2(n− ℓ)!

Γ(n+ 3/2)

]1/2
(
4π2ζR2

)l/2

exp
(
−2π2ζR2

)
L
l+1/2
n−l

(
4π2ζR2

)
(6.31)

Using the formula
∫∞
0 exp(−sx)xβLαn(x)dx = Γ(β+1)Γ(α+n+1)

n!Γ(α+1) s−β−1
2F1(−n, β + 1;α +

1, 1/s) [111] and this substitution : R =
√

x
4π2ζ and dR = 1

2

√
1

4π2ζxdx, we get,
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υℓm =

N∑

n=0

cnℓm
(−1)n−l/2

2(4π2ζ)3/2

[
2(4π2ζ)3/2(n− l)!

Γ(n+ 3/2)

]1/2

(6.32)

Γ(ℓ/2 + 3/2)Γ(3/2 + n)

Γ(l + 3/2)(n− l)!

(
1

2

)−ℓ/2−3/2

(6.33)

2F1(−n+ l, l/2 + 3/2; l+ 3/2; 2) (6.34)
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Overview

In this chapter, we first propose an original and efficient computational framework to model

continuous diffusion MRI (dMRI) signals and analytically recover important diffusion fea-

tures such as the Ensemble Average Propagator (EAP) and the Orientation Distribution

Function (ODF). Then, we develop an efficient parametric dictionary learning algorithm

and exploit the sparse property of a well-designed dictionary to recover the diffusion signal

and its features with a reduced number of measurements. The properties and potentials of

the technique are demonstrated using various simulations on synthetic data and on human

brain data acquired from 7-T and 3-T scanners. It is shown that the technique can clearly

recover the dMRI signal and its features with a much better accuracy compared to state-of-

the-art approaches, even with a small and reduced number of measurements. In particular,

we can accurately recover the ODF in regions of multiple fiber crossing, which could open

new perspectives for some dMRI applications such as fiber tractography. This chapter

can be seen as an extension of chapter 6 where the orthonormal basis is replaced by an

overcomplete and redundant dictionary learned from a training data set. This contribution

have been published in [88].

7.1 Motivations

So far, we have seen that sparse reconstruction approaches, in particular Compressive Sens-

ing (CS), were found to successfully reduce the number of acquisitions in dMRI . In chapter

5 we used CS to accelerate the DSI acquisition. In chapter 6, we combined CS with a

continuous modeling of the diffusion signal using orthonormal bases. In [97] and in [122],

the authors elegantly designed dictionaries for sparse modeling in dMRI. They provide an

overcomplete dictionary computed from a discretized version of predefined functions, i.e.

the Spherical Ridgelets in [97] (see [109] for the multiple shells version) and the Spherical

Wavelets in [122]. Learning a dictionary provides an alternative way to design sparse

dictionaries [15, 57, 86, 136].

Some approaches have been recently proposed in order to design dictionaries that enable

sparse representations (A good overview can be found in [2]). For instance, Bilgic et al [15]

and Gramfort et al [57] learn dictionaries from DSI like acquisitions and use it to either

denoise full DSI data or to perform undersampled DSI acquisitions and reconstructions. In

particular, the authors in [57] nicely exploit the symmetry of the signal in order to assess

free parameters of the dictionary learning problem. However, these two latter works lead

to non-parametric dictionaries, which does not provide continuous representations of the

diffusion signal nor allow the determination of analytical formulae for diffusion features.

The strength of the parametric dictionary learning approach, as the one we propose in

this article, lies in its ability to address these weaknesses. A work regarding parametric

dictionary learning was published in [136], in which the dictionary atoms are formed by

a weighted combination of 3rd order B-splines. It proved that the method is efficient on

synthetic data simulated with 81 gradient directions. The work of [136] appears promising

in reconstructing the diffusion signals, and further enhancement could be done regarding

the development of analytical formulae to estimate other diffusion features. This would

make this work a good resource in the context of dictionary learning. More recently, we

proposed in [86] to learn a dictionary where each atom is constrained to be a parametric
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function. In [86], this parametric function is a combination of a radial part and an angular

part represented by the symmetric and real Spherical Harmonics (SH) [44]. The radial part

is a polynomial weighted by an exponential. 50 measurements were sufficient to reconstruct

very good quality diffusion signals, ODFs and EAPs. However, this approach essentially

handles the learning of the radial part, i.e. the polynomial coefficients and a scale parameter

in the exponential, whereas we observed (see [87]) that the angular part could make the

dictionary much sparser if we adequately combine several SH functions instead of only one.

In this chapter, we present a method, which exploits the sparse property of a well

designed dictionary based on a computational dMRI framework, in order to recover the

diffusion signal with a reduced number of measurements. This framework enables a contin-

uous modeling of the diffusion signal and leads to analytical formulae to estimate important

diffusion features, namely the ODF and the EAP. To improve our previous work in [86],

we modify the parametric function, describing the atoms, to learn both the radial and the

angular part, which provide a very sparse representation of diffusion signals and further

reduce the number of measurements (15 measurements are found to be sufficient to start

recovering the EAP and some derived diffusion features whereas 50 measurements are used

in [86]). Furthermore, we extend the experimental part of [86] by learning and validating

our approach on the synthetic data proposed in the HARDI contest at ISBI 2012 1, and on

real data acquired from both 3T and 7T scanners. A preliminary work [87] regarding the

learning of both the radial part and the angular part of the diffusion signal was published

in the proceedings of the HARDI contest at ISBI 2012 and we obtained the best results

in our category. Our approach presented in this paper indicates an increase in terms of

reconstruction accuracy compared to the results presented in [87].

This chapter is structured as follows : we start by introducing the dMRI framework

together with the proposed dictionary, then we focus on the parametric dictionary learning

algorithm and finally we conclude with an experimental part illustrating the added-value

of our approach with promising results showing how our approach allows the accurate

reconstruction of the diffusion signal and some of its features. This experimental part is

completed by a comparison with state of the art approaches, and is performed on synthetic

and real data from 3T and 7T scanners.

7.2 A computational framework for the recovery of the

complete diffusion MRI process

In this section, we introduce a new dMRI framework for modeling the diffusion signal.

From this continuous representation, we derive analytical formulae that enable the estima-

tion of important diffusion features such as the Ensemble Average Propagator (EAP), the

Orientation Distribution Function (ODF). We give full derivations for these formulae in the

appendices.

7.2.1 Continuous diffusion modeling with a constrained dictionary

We propose to design an overcomplete dictionary Ψ = {Ψk}k=0,...,K , such that the diffusion

signal E is expressed as a truncated linear combination of K 3D atoms Ψk, i.e

1http://hardi.epfl.ch/
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E(qu) =

K∑

k=0

ckΨk(qu), (7.1)

where ck are the transform coefficients, q the norm of the effective gradient and u an unitary

vector.

In diffusion multiple shells imaging [5, 99, 45], previous works have proposed the mod-

eling of the diffusion signal in bases where each atom Ψk is a combination of a radial part

and an angular part. These works primarily handle the question of the radial part. For

instance, Descoteaux et al [45] describe the radial part of the atom as a combination of

two rational functions coming from the total solution of the Laplace equation, whereas the

authors in [99, 5] use polynomials weighted by an exponential. Merlet et al [86] increased

the sparsity of the representation in [99] by designing a dictionary where the polynomial

coefficients and the scale parameters in the exponentials are learned from a training data

set [86]. Although the radial attenuation of the diffusion signal is more or less well fitted

with these bases/dictionaries, the accurate and sparse estimation of the full diffusion signal

is still limited by the angular part described by the real and symmetric Spherical Harmonic

basis functions (SH). The SH have been proved useful in many settings but are not sparse

enough in modeling the directional features of the diffusion process [96]. However, our pre-

liminary work published in [87] shows that a well-chosen combination of SH could sparsely

represent the angular part. Therefore, we propose to model this angular part with such a

combination of SH. As for the radial part, we model it with a combination of exponential

functions weighted by a monomial in order to ensure the continuity of the function at zero

[27]. The complete description of each atom Ψk of the dictionary is given by :

Ψk(q) = Ψk(qu) =
1√
χk

I∑

i=0

αki exp
(
−νkiq2

)
J∑

j=0

βkijq
l(j)Yj(u)

=
1√
χk

I∑

i=0

J∑

j=0

γkij exp
(
−νkiq2

)
ql(j)Yj(u)

= Ψk(γk,νk, qu), (7.2)

with q the 3D effective gradient, u a unitary vector and q the norm of the effective gradient

such that q = qu. I and J are, respectively, the radial order and the angular order of the

dictionary. J also corresponds the total number of SH taken into account in the modeling

not to be confused with the maximal SH order L. Indeed, J is directly related to the

maximal SH order L as J = (L+ 1)(L+ 2)/2. Yj(u) is the SH of order l(j) = 0 for j = 1,

l(j) = 2 for j ∈ {2, ..., 6}, l(j) = 4 for j ∈ {7, ..., 15} ... . γk = {γkij}i=0...I,j=0...J

and νk = {νki}i=0...I are two vectors of parameters, which will be set during the learning

process. The term ql(j) ensures the continuity of Ψk at zero. χk is a constant, which ensures

the normalization of Ψk for the ℓ2 norm, i.e
√∫

R3 Ψ2
k(q)dq = 1, and is expressed as
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χk =

I∑

i′=0

I∑

i=0

J∑

j=0

γkijγki′j
2(νki + νki′ )ℓ(j)+3/2

Γ

(

ℓ(j) +
3

2

)

, (7.3)

with Γ the gamma function. We derive (7.3) in appendix 7.7.1.

If we consider the simple case where all the coefficients γkij and νkj are zero except γk00
and νk0, we get Ψk(qu) = 1√

χk

γk00

2
√
π

exp(−νk0q2). This mono-exponential representation of

the atom Ψk does not depend on the angular direction u and is, for instance, appropriate

to describe isotropic diffusion configuration.

Note that in [87] each atom is described by a combination of SHORE basis functions

[99] with a predefined scale parameter. The main advantage of the atom description in

(7.2) lies in the possibility of learning the scale parameters νki, which provides a sparser

signal estimation than in [87]. We see in the experimental part that this new framework

leads to an increase in terms of reconstruction accuracy compared to the results presented

in [87], which were already the best in their category.

7.2.2 Closed formulae for diffusion features

Using the dictionary, Ψ = {Ψk}k=0,...,K , proposed in the previous section to reconstruct

the diffusion signal (see (7.2)), we derive important and analytical closed formulae for

estimating the EAP and the ODF. We describe these formulae in the following.

The Ensemble Average Propagator

The EAP, denoted by P (Rr), represents the full 3D displacement probability function of

water molecules in every voxel and underlies the derivation of the ODF. It is the inverse

Fourier transform of the normalized diffusion signal, denoted byE(qu). If we decompose

(3.10) in two integrals we can express E(qu) as

P (Rr) =

∫ ∞

q=0

∫

u∈S2

E(qu) exp(+2πiqRu.r)duq2dq. (7.4)

q and R are, respectively, the norm of the effective gradient and the radius of the 3D

location in every voxel, u and r are unit vectors. From (7.1) and (7.4), we derive in 7.7.2

the following expression for the EAP :

P (Rr) =

K∑

k=0

ck√
χk

I∑

i=0

J∑

j=0

γkij(−1)l(j)/2
(
π

νki

)l(j)+3/2

Rl(j) exp

(−(πR)2

νki

)

Yj(r) (7.5)

If we consider the special case of the mono-exponential representation of the atom Ψk, we

get P (Rr) =
∑K

k=0
ck√
χk

γk00

2
√
π

(
π
νk0

)3/2

exp
(

−(πR)2

νk0

)

, i.e an isotropic propagator described

by an mono-exponential decay similar in every direction.
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Solid angle ODF

The ODF represents the full angular distribution of P (Rr). One relies on the ODF to

perform fiber tractography [43], then an accurate and fast computation of this diffusion

feature is very appreciated. From (3.21), we derive in 7.7.3 the following closed form for

the ODF :

Υ(r) =

K∑

k=0

ck√
χk

I∑

i=0

J∑

j=0

γkij(−1)l(j)/2
(
π

νki

)l(j)+1
(l(j) + 1)!!

2
(

2π2

vki

)l(j)/2+1
Yj(r) (7.6)

Considering the precedent example, the ODF is represented by a scalar, i.e. Υ(r) =
∑K

k=0
ck√
χk

γk00

8π3/2 , meaning that the ODF has the same value for every direction.

7.3 A parametric dictionary learning for sparse dMRI

Here, we introduce a parametric dictionary learning (PDL) method that enables a sparse

representation of any diffusion signal from continuous and parametric functions. There are

four advantages to consider a parametric approach for dictionary learning:

• A parametric dictionary is defined by a set of parameters (γk and νk in Sec. 7.2),

which gives a continuous representation of each atom and, thus, enables a contin-

uous modeling of the diffusion signal. This is suitable for data interpolation and

extrapolation.

• Analytical formulae can be derived to estimate important diffusion features as the

EAP and the ODF.

• PDL is acquisition independent, i.e. the sampling scheme used for learning the dic-

tionary does not have to be the same as the sampling scheme used for reconstructing

the signals.

• PDL enables one to reduce the dimensionality of the dictionary atoms.

These four advantages, together with the quality of the obtained results (see Sec. 7.4), makes

our parametric dictionary approach very attractive compared to non parametric methods

[15, 57].

Concerning the development of our algorithm, we started by considering the K-SVD

algorithm [2] as a model for our own method. Although the K-SVD method appears

powerful in designing sparse dictionaries, this technique as described in [2] designs only

non-parametric dictionaries, which do not present the advantages described above. Hence,

we developed our own algorithm, which overcomes the limitation of the K-SVD algorithm.

Our algorithm alternates between 2 steps: a sparse coding step and a dictionary update

step, where the vectors of parameters γk and νk (see Sec. 7.2) are estimated for every

atom dk of the dictionary, using the non linear Levenberg-Marquardt (LM) algorithm. The

section 7.3.1 presents our dictionary learning algorithm and the section 7.3.2 describes the

method we use to reconstruct any diffusion signal using the dictionary previously learned.
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7.3.1 Dictionary learning algorithm

Notation : Suppose the training data set consists of M observations {si}Mi=1 (i.e. M voxels).

For each observation si we have ms samples in the q-space, i.e. s1..M ∈ R
ms . We represent

{si}Mi=1 in matrix form S ∈ Rms×M where si is the ith column. The algorithm searches for

the dictionary D ∈ Rms×K , that enables the sparsest representation for every column of S.

The dictionary consists in K atoms {dk}Kk=1 with dk ∈ Rms a column of D. We constrain

dk to be an instance of the 3D function Ψk(γk,νk, qu) in (7.2). Here, we do not try to

directly estimate dk but the vectors of parameters γk and νk, that characterize the atom

dk. For each observation si, we define a coefficient vector ci ∈ RK , which forms the ith

column of the coefficient matrix C ∈ RK×M .

Problem statement: Given a training data set S, we search for the dictionary D that

gives the sparsest representation of this set (i.e. for each column si of S). Mathematically,

the problem is to find the dictionary D and the vectors ci in C by solving :

arg min
ci,D

{‖S− DC‖2
2} subject to ∀i‖ci‖1 ≤ ǫ (7.7)

with ǫ a small real defining the degree of sparsity of the dictionary. The minimization of the

first term in (7.7) enables the signal estimation DC to remain close to the training data set

S and the constraint imposes the sparsity of each signal representation ci with respect to

the dictionary D. The method to solve (7.7) is described in the following and a summary

of the algorithm is given in Alg. 1. This algorithm iteratively alternates between sparse

signal estimations (i.e. {ci}Mi=1) and updates of the dictionary (i.e. D) so to better fit the

training data set (i.e. S).

First step (Sparse signal estimation): In the first step, the estimation of the column

vector ci is performed separately for each signal si, i.e for each column of S. Sparse

estimation is achieved by solving the LASSO (Least Absolute Shrinkage and Selection

Operator) problem [119]. It consists in minimizing the following objective function

min
ci

‖si − Dci‖2
2 + λ‖ci‖1. (7.8)

λ is a constant that controls the degree of sparsity of the coefficients estimated. Note that

we relax the constraint in (7.7) by using a Lagrangian multiplier (λ). There exist numerous

iterative algorithms for efficiently solving such kind of constrained problems. These include

coordinate descent, least-angle regression (LARS) [50], fast iterative thresholding shrinkage

algorithm (FISTA) [12], etc. A number of these methods are available under the PythonTM

library Scikit-learn [103]. We use a PythonTM implementation [103] of coordinate descent

to solve (7.8).

Second step (Dictionary update): In the second step, we update the dictionary

D. For this purpose, we compute an absolute averaged coefficient vector ĉ ∈ Rnc , such

that ĉ = 1/M
∑

i |ci| (|.| denotes the absolute value of each vector component), and find

the atoms associated with the non zero values of ĉ. It gives a rough idea of which atoms

are used for modeling the signal and enables one to discard some unnecessary atoms and,

thus, to enforce sparsity. Then, in this set of atoms, we update one atom at a time, while

fixing all the others. This process is repeated for all the atoms associated with the non-zero
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coefficients of ĉ.

The in-update atom is denoted dk0 . To update this atom, we begin by decomposing the

error term in (7.7) as in [2], i.e.

‖S− DC‖2
ℓ2 =

∥
∥
∥
∥
∥
S−

K∑

k=1

dkc
r
k

∥
∥
∥
∥
∥

2

ℓ2

=

∥
∥
∥
∥
∥
∥



S −
∑

k 6=k0
dkc

r
k



− dk0c
r
k0

∥
∥
∥
∥
∥
∥

2

ℓ2

=
∥
∥Ek0 − dk0c

r
k0

∥
∥

2

ℓ2
, (7.9)

where crk is the kth row of C. The error matrix, denoted Ek0 , contains the error between

each observation si (the ith column of S) and its respective estimation with the dictionary

where the kth0 atom is removed. We could directly use the LM algorithm in order to fit

the atom dk0 to the error matrix Ek0 . However, because it takes into account all the

observations si, this dictionary update would not impose sparsity. Instead, we enforce the

sparsity by constraining the atom dk0 to fit only a subset of observations and not the

entire data set. For this purpose, we define the group of observations that use the atom

dk0 , i.e wk0 = {i, 1 ≤ i ≤ M, ci(k0) 6= 0}. In other words, they are the observations

whose coefficients, associated with the atom dk0 , are non zeros. Then, we compute the

error matrix Ewk0
∈ R

ms×card(wk0
). It corresponds to the estimation error between the

observation vector {si}i∈wk0
that forms the columns of Swk0

∈ Rms×card(wk0
) and the

signal estimated for the group of observation wk0 (The k0
th atom is still removed from

the dictionary), i.e S̃wk0
=
∑

k 6=k0 dkc
r
k(i), i ∈ wk0 . Mathematically speaking, we have

Ewk0
= Swk0

−∑k 6=k0 dkc
r
k(i), i ∈ wk0 . Finally, we estimate the vector of parameters γk

and νk by constraining dk0 to fit the error matrix Ewk0
. This part is performed via the non

linear Levenberg-Marquardt algorithm (LMA) . The atom update procedure is repeated for

every atom dk0 associated with the non zeros coefficients of ĉ.

The method is given in Algorithm 1 as a whole.

Convergence : The sparse coding step (7.8) is well known to be convex and the

coordinate descent algorithm allows one to converge to the unique solution specific to the

current dictionary D. The dictionary update step, where γk and νk are estimated using the

LMA may converges to a local minima, depending on the initial solutions. Then, (7.7) is

convex for c and converge for D, which do not ensure a convergence to a global minimum.

Nevertheless, in our experiments, a stationary point has been reached after few iterations

and the resulting dictionaries were proved very good experimentally.

Initialization : The problem in (7.7) admits local minima, and the solution may vary

depending on the initial parameters. We tried several ways to initialize the algorithm

among which random initialization and initialization from signals selected at random in

the training data set.. However, these kinds of initialization were not satisfactory since the

corresponding solutions were too different between several attempts to build the dictionary.

After many experiments, we finally selected each initial atom as a random combination

of several training signals. This gave us the best satisfactory results, with the smallest

sensitivity to the initialization.
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Algorithm 1 Semi-parametric dictionary learning

1. Initialize the dictionary by fixing its dimension K and the vectors of parameters γk

and νk for k = 1...K as random.
2. Sparse estimation of the observations {si}Mi=1. We use the coordinate descent algorithm
to solve for ci associated to each observation :

min
ci

‖si − Dci‖2
2 + λ‖ci‖1.

3. Updating the dictionary. Compute the absolute averaged coefficients vector ĉ =
1/M

∑

i |ci|. Repeat until all the atoms of the dictionary, with non zeros value in ĉ, have
been scanned :

• Let the current atom be the kth0 .

• Define the group of observation that use this atom : wk0 = {i, 1 ≤ i ≤M, ck0(i) 6=
0}.

• Compute the error matrix Ewk0
= Swk0

−∑k 6=k0 dkc
r
k(i), i ∈ wk0 . Swk0

contains
the observation si, i ∈ wk0 .

• Apply the Levenberg - Marquardt algorithm to estimate the vectors of parameters
γk0

and νk0
, which constrain dk0 to best fit Ewk0

• Update dk0 according to γk0
and νk0

.

4. Go back to the step 2 unless the overall error does not vary anymore

7.3.2 Signal estimation via the learned dictionary

The purpose of section 7.3.1 was to design a parametric dictionary D. Now, we are able

to recover any sparse representation c of the diffusion signal s using the dictionary D by

solving the LASSO problem :

min
c

‖s− Dc‖2
2 + λ‖c‖1. (7.10)

We use the same algorithm as in the learning step to solve (7.8), i.e. the coordinate descent

algorithm.

7.4 Experiments on synthetic data

We first train and validate our parametric dictionary on synthetic data. We assume the

normalized diffusion signal E(q) is generated from the multi-tensor described in Sec. 10.7

In the remainder of this section, we describe the steps required to correctly design

our parametric dictionary, i.e. the choice of the dictionary radial and angular orders and

the learning phase, then we validate the learned dictionary on synthetic data using the

analytical formulae we have just described.
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7.4.1 Which radial and angular order for the dictionary ?

We need to fix the angular and radial order, respectively denoted J and I in (7.2), for the

dictionary generation.

We begin by defining the dictionary angular order J , which is related to the SH order

L as J = (L + 1)(L + 2)/2. For this purpose, we generate synthetic ODFs corresponding

to two fibers crossing at different degrees : 0◦, 40◦, 60◦, 90◦. Then, we fit each ODF

with the Spherical Harmonic basis of order L = 0, 2, 4, 6, 8, 10, 12 using a least squares

fitting technique, and we compute the Normalized Mean Square Error (NMSE) between the

original synthetic ODFs (ψ) and the estimated ODFs in terms of SH (ψe), i.e. NMSE =
‖ψ−ψe‖2

2

‖ψ‖2
2

. The resulting NMSEs are shown in Fig. 7.1. Regarding this figure, we find that

a SH order of L = 8 is sufficient to correctly estimate an ODF (In particular for fibers

crossing at 40◦ or more). This leads to set the dictionary angular order to J = 45.

Figure 7.1: NMSE between the ground truth ODFs and the estimated ODFs in terms of
SH. The arrow indicates the SH order corresponding to a NMSE considered as sufficiently
close to zero.

The radial order is related to the number of fiber crossing in the voxel of interest.

We assume a maximum of three crossing fibers in each voxel. This is the case in the

region where the corticospinal, corpus callosum and superior longitudinal fasciculus fiber

bundles are crossing. Voxel with more than three fibers are considered as part of the

noisy background. Consequently, setting the radial order at three appears to be the best

choice and was found experimentally satisfactory. We show in Fig. 7.2 some examples of

radial attenuation in arbitrarily chosen directions simulated using a multi-Gaussian model

mimicking three crossing fibers (plain line). We fit each of these radial attenuation with

the radial part of the model in (7.2) and radial orders I = 1, 2, 3, using the Levenberg-

Marquardt algorithm (The angular order J is set to zero). Fig. 7.2 indicates that we need a

radial order I = 3 to accurately estimate radial attenuation characterized by three crossing

fibers.
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Figure 7.2: Examples of radial attenuation in arbitrarily chosen directions simulated using
a multi-Gaussian model mimicking three crossing fibers (plain line). We fit each of these
radial attenuation with the radial part of the model in (7.2) and radial orders I = 1, 2, 3,
using the Levenberg-Marquardt algorithm (The angular order J is set to zero).

7.4.2 Training phase

We train the dictionary on multi-Gaussian signals, used for the HARDI contest at ISBI

2012 2. The contest was organized with the aim of providing a way for different groups to

propose their own reconstruction algorithms and to fairly compare their methods against

the others on a common set of ground-truth data.

Our training data set Strain is composed of the first M = 5000 instances of diffusion

signal contained in the file TestingIV, in which the multi-Gaussian synthetic signals are

generated with parameters taken at random (number of fibers, fractional anisotropy related

to a fiber and crossing angle between these fibers). The dictionary angular and radial orders

are respectively set to J = 45 and I = 3 (see Sec. 7.4.1). We takems = 1000 q-space samples

for each instance of signal spread between bmin = 0 and bmax = 10000s/mm2.

One difficulty in dictionary learning is the choice of the regularization parameter λ in

(7.7). In order to assess λ, we use a cross validation (CV) procedure. For this purpose, we

consider another set of signals Sval, called the validation data set, and composed of 1000

signals, which have not been used for training, and we repeat the following procedure for a

range of λ,

1. Design a dictionary Dλ using Algorithm 1 with regularization parameter λ and the

training data set Strain.

2. Using Dλ, solve the LASSO problem for c (see (7.10) with Sval as entry, and compute

the validation error ǫval = ‖Sval − Dλc‖2
2/‖Sval‖2

2

We keep λ that minimizes ǫval. This procedure is repeated after adding Rician noise,

with SNR=10, 20 and 30, to the validation set. Rician noise is added in the following way

: Svalnoisy
=
√

(Sval + ǫ1)2 + ǫ22, where ǫ1, ǫ2 ∼ N (0, σ) with σ = 1/SNR. Validating λ on

noisy data enables one to prevent from overfitting.

We show in Fig. 7.3, ǫval for λ in the range [1 · 10−5, 1 · 10−4], in case of noisy and

noiseless validation data. We also show the training error (blue curve in Fig. 7.3), i.e.

ǫtrain = ‖Strain−Dλc‖2
2/‖Strain‖2

2 where c is the solution of the LASSO problem with Strain

as entry. We observe, in Fig. 7.3, four different λ (2.9 · 10−5, 4.4 ·10−5, 4.8 ·10−5, 5.8 · 10−5)

that minimize the validation error depending on the amount of noise we add to the validation

data set. Because the noiseless case is not observed in practice, we discard the corresponding

2http://hardi.epfl.ch/
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value of λ and consider the average value of (4.4 · 10−5, 4.8 · 10−5, 5.8 · 10−5), which gives

λ = 5 · 10−5. This value is used to generate a new dictionary.

Figure 7.3: Training and validation error (ǫtrain and ǫval) computed for λ in the range
[1 · 10−5, 1 · 10−4]. The blue curve represents the training error and the other curves rep-
resent the validation error in a noiseless case (purple curve), after adding Rician noise to
the validation data set with SNR=30 (green curve), SNR=20 (red curve), SNR=10 (black
curve). The arrows indicate the minimum of each curve corresponding to the validation
error.

We obtain a dictionary containing 659 atoms. Fig. 7.4 shows the first 200 ODFs of these

atoms. The atom ODFs are sorted in decreasing energy order from left to right and top

to bottom. We observe various shape ranging from single fiber structures to more complex

fiber configurations.

7.4.3 Validation

We validate the dictionary on the reconstruction of noisy multi-Gaussian signals, used for

the HARDI contest at ISBI 2012 3.

We consider 1000 signals, which have not been used for training the dictionary. Our

preliminary and promising results on parametric dictionary learning (PDL) were published

in the proceedings of this event [87]. At this stage, we obtained the best results in our cat-

egory. Here, we enrich these previous results with a comparison of three different sampling

schemes (displayed in Fig. 7.5) :

• A single shell sampling scheme with 64 measurements uniformly spread on one shell

at a b-value b = 3000 s ·mm−2 (Fig. 7.5a).

• A multiple shells sampling scheme with 15 measurements spread on 2 shells at b-values

b = 1500, 2500 s ·mm−2 (Fig. 7.5b).

• A multiple shells sampling scheme with 64 measurements spread on 2 shells at b-values

b = 1500, 2500 s ·mm−2 (Fig. 7.5c).

3http://hardi.epfl.ch/
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Figure 7.4: First 200 ODFs of the dictionary atoms. The atoms are sorted in decreasing
energy order from left to right and top to bottom.

Figure 7.5: Sampling schemes used for validation. (a) A single shell sampling scheme
with 64 measurements uniformly spread on one shell at a b-value b = 3000 s ·mm−2. (b)
A multiple shells sampling scheme with 15 measurements spread on 2 shells at b-values
b = 1500, 2500 s ·mm−2. (c) A multiple shells sampling scheme with 64 measurements
spread on 2 shells at b-values b = 1500, 2500 s ·mm−2.
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To obtain the single shell (SS) sampling scheme, we use the algorithm given in [68, 41] to

uniformly distribute points on a sphere. For the multiple shells (MS) sampling schemes, we

use the algorithm given in [26] by setting the parameters in such a way that the the number

of points on each shell is proportional to q1. These particular parameters have proven

efficient in [26, 85]. An important advantage of this algorithm is that the points from each

shell have staggered directions and follow a near-optimal uniform distribution. You can

generate and download sampling schemes for multiple Q-shell diffusion MRI with this web

application : http://www-sop.inria.fr/members/Emmanuel.Caruyer/q-space-sampling.php.

We perform the experiments with two metrics used in the contest, i.e. the weighted

difference in the number of fiber compartments (DNC) and the mean angular error (AE)

at each voxel. For these two metrics we extract the maxima on the estimated ODFs

and compare them to the ground truth maxima. Then, the DNC becomes the difference

between the number of maxima extracted on the estimated ODFsMe and the true number of

maxima Mgt, weighted by the true number of maxima at each voxel, i.e., DNC =
|Me−Mgt|

Mgt
.

The AE is the mean angular error between the maxima extracted on the estimated ODFs

and the respective maxima within the ground truth. We also enrich the results with a

comparison of two other features, which have not been used in the contest validation,

i.e. the diffusion signal and the Ensemble Average Propagator (EAP). To compare these

features, we compute the Normalized Mean Square Error (NMSE) between the ground truth

feature x and its estimation xe given by NMSE =
‖x−xe‖2

2

‖x‖2
2

. The DNC, AE and NMSE are,

then, averaged on all the voxels. We add Rician noise to the normalized diffusion signal in

the following way : Enoisy =
√

(E + ǫ1)2 + ǫ22, where ǫ1, ǫ2 ∼ N (0, σ) with σ = 1/SNR.

The three following sections present the results for the three proposed sampling schemes,

i.e. the SS sampling scheme with 64 measurements, the MS sampling scheme with 15

measurements, and the MS sampling scheme with 64 measurements. We also compare with

state of the art techniques such that QBI, using the solid angle ODF [1], and the SHORE

reconstruction using a sparse prior (ℓ1-SHORE) [99, 35, 90, 92, 86]. We show quantitative

results in Tab. 7.1, 7.2, 7.3 and 7.4, and qualitative results in Fig. 7.6, 7.7 and 7.8. In each

table, we write in blue letters the best score for a given SNR and metric.

Single shell sampling scheme with 64 measurements

Single shell sampling Angular error DNC

scheme with 64 measurements D-ODF SA-ODF D-ODF SA-ODF

SNR 30 4.9398 6.6509 0.2068 0.2329

SNR 20 5.6386 7.1436 0.2102 0.2524

SNR 10 8.2530 12.419 0.2500 0.5993

Table 7.1: Dictionary based ODF estimation (D-ODF) versus solid angle ODF via QBI
(SA-ODF) using a single shell sampling scheme with 64 measurements. We added rician
noise from SNR=10 to 30. Two metrics are shown : the angular error and the difference in
the number of compartments (DNC).

In these experiments, we first use the SS sampling scheme, i.e. 64 measurements uni-

formly spread on a shell at a b-value b = 3000 s ·mm−2, and we compare our dictionary
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Figure 7.6: Dictionary based ODF estimation (D-ODF,top) versus solid angle ODF via
QBI (SA-ODF,bottom). We added rician noise from SNR=10 to 30 (left to right). We also
show the maxima extracted from the ODFs. On the right, we show the ground ODFs and
their respective maxima.

based ODF estimation (D-ODF) to the solid angle ODF via QBI (SA-ODF) developed in

[1]. For the SA-ODF, we set a SH order equal to the one used for the dictionary construc-

tion, i.e. L = 8. We adjust the Laplace-Beltrami regularization parameter [44, 1] using

the generalized cross validation algorithm [40]. For our PDL approach, because we deal

with ℓ1 norm and not ℓ2 norm, we use a simple cross validation procedure [129] to find the

regularization parameter λ in (7.10).

Overall, in Fig. 7.6 the D-ODFs are sharper than the SA-ODFs. Furthermore, the SA-

ODFs appear more sensitive to noise than the ODFs based on our PDL estimation. Indeed,

we observe that the D-ODFs are very robust to noise, even at SNR=10 where they are still

correctly aligned with the underlying structure shown by the ground truth (On the right

of Fig. 7.6), whereas the maxima extracted from the SA-ODFs mostly give corrupted or

completely false fiber orientation estimation even for simple configuration as single fibers.

The quantitative results, in Tab. 7.1, confirms our previous remarks. In particular,

at SNR=10, the SA-ODFs are not able to provide proper diffusion directions. The DNC

mean value is higher than 0.5 meaning that, in average, more than half of the maxima in

each voxel are not detected. The results regarding our PDL approach give more accurate

diffusion directions at every SNR.

Besides the good directional information given by the ODFs estimated with our PDL

approach, we can also estimate the EAP and interpolate/extrapolate the diffusion signal

on the entire q-space, whereas QBI only estimates the ODFs. More results regarding the

estimation of the latter features are given in Tab. 7.4, and we will discuss these results in

Sec. 7.4.3.



136 CHAPTER 7. PARAMETRIC AND SPARSE DICTIONARY LEARNING

MS sampling scheme Angular error DNC

with 15 measurements Dictionary ℓ1-SHORE Dictionary ℓ1-SHORE

SNR 30 8.6066 14.670 0.2472 0.4010

SNR 20 9.7626 16.313 0.2540 0.4463

SNR 10 13.344 22.354 0.2734 0.4836

Signal NMSE EAP NMSE

Dictionary ℓ1-SHORE Dictionary ℓ1-SHORE

SNR 30 0.0104 0.0433 0.0176 0.1040

SNR 20 0.0170 0.0578 0.0251 0.1122

SNR 10 0.0343 0.1027 0.0422 0.1350

Table 7.2: Dictionary based reconstruction versus ℓ1-SHORE based reconstruction using
a multiple shells sampling scheme with 15 measurements. We added Rician noise from
SNR=10 to 30. Four metrics are shown : the angular error, the difference in the number
of compartments (DNC), the signal NMSE and the EAP NMSE.

Figure 7.7: Dictionary based ODF estimation (D-ODF, top) versus ℓ1-SHORE based ODF
estimation (SHORE-ODF, bottom). We added Rician noise from SNR=10 to 30 (left to
right). We also show the maxima extracted from the ODF. On the right, we show the
ground ODFs and their respective maxima.
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Multiple shells sampling scheme with 15 measurements

In these experiments, we compare a SHORE reconstruction using a sparse prior (ℓ1-SHORE)

to our dictionary reconstruction. The SHORE basis has been introduced by [99] and was

used in [90, 92, 86] in the context of sparse recovery. The ℓ1-SHORE method consists

in solving the LASSO problem (see (7.10)) using coordinate descent while replacing the

dictionary D by the SHORE basis [99]. In order to provide a fair comparison a SH order

of L = 8 is used for the generation of the SHORE basis. In both methods (ℓ1-SHORE and

our PDL approach) we use cross validation [129] to assess the regularization parameter λ

in (7.10). [99] and [35] respectively provide closed form formulae to estimate the ODF and

the EAP when the diffusion signal is modeled in the SHORE basis.

We see in Tab. 7.2 that our PDL approach outperforms the ℓ1-SHORE reconstruction

in terms of angular error, difference in the number of compartments (DNC), signal NMSE

and EAP NMSE.

Fig. 7.7 shows the ODFs estimated via our dictionary approach (D-ODF) and the ODFs

estimated via the ℓ1-SHORE method (SHORE-ODF). It qualitatively indicates an improve-

ment of the angular information given by the D-ODFs over the SHORE-ODFs.

Regarding the PDL approach proposed at the ISBI contest, we obtained an angular

error equal to 14.5◦ at SNR=10, equal to 11◦ at SNR=20, equal to 9.5◦ at SNR=30. The

results based on our new proposed framework, shown in Tab. 7.2, indicates an improvement

on the accuracy of the maxima estimation compared to the results obtained in the contest.

Note that the PDL approach proposed in the contest was already the best in its category.

In the following we show the impact of an increase of the number of samples while

keeping the two shells at b-values b = 1500, 2500 s ·mm−2.

Multiple shells sampling scheme with 64 measurements

MS sampling scheme Angular error DNC

with 64 measurements Dictionary ℓ1-SHORE Dictionary ℓ1-SHORE

SNR 30 5.6233 8.8950 0.2187 0.3106

SNR 20 6.3080 9.6641 0.2309 0.3401

SNR 10 8.3224 13.126 0.2511 0.3995

Signal NMSE EAP NMSE

Dictionary ℓ1-SHORE Dictionary ℓ1-SHORE

SNR 30 0.0035 0.0368 0.0066 0.0732

SNR 20 0.0054 0.0386 0.0104 0.0746

SNR 10 0.0144 0.0752 0.0222 0.0825

Table 7.3: Dictionary based reconstruction versus ℓ1-SHORE based reconstruction. We
added Rician noise from SNR=10 to 30. Four metrics are shown : the angular error, the
difference in the number of compartments (DNC), the signal NMSE and the EAP NMSE.

Now, we use the MS sampling scheme with 64 measurements and we compare once

again the ℓ1-SHORE method to our PDL approach. Our dictionary approach still outper-

forms the SHORE reconstruction in terms of angular error, DNC, signal NMSE and EAP
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Figure 7.8: Dictionary based ODF estimation (D-ODF, top) versus ℓ1-SHORE based ODF
estimation (SHORE-ODF, bottom) using a multiple shells sampling scheme with 64 mea-
surements. We added Rician noise from SNR=10 to 30 (left to right). We also show the
maxima extracted from the ODFs. On the right, we show the ground ODFs and their
respective maxima.

NMSE. Fig. 7.8 shows the ODFs estimated via our PDL approach (D-ODF) and the ODFs

estimated via the ℓ1-SHORE method (SHORE-ODF). We observe that the D-ODFs give a

very accurate estimation of the underlying fiber structure where the SHORE-ODFs fail to

provide coherent fiber direction estimation, especially at SNR=10. We confirm this by the

quantitative results shown in Tab. 7.3.

We also compare the results of our PDL approach using this MS sampling scheme

, i.e. 2 shells at b-values b = 1500, 2500 s ·mm−2 with 64 measurements, to our PDL

approach using the SS sampling scheme studied in Sec. 7.4.3, i.e. one shell at b-value

b = 3000 s ·mm−2 with 64 measurements. All the results are given in Tab. 7.4. Regarding

the directional results (angular error and DNC), we observe a slight advantage with the

SS sampling scheme. Moreover, if we want to reconstruct the full diffusion signal and the

EAP , we notice that a MS sampling scheme is more adequate. This is because the radial

information of the diffusion process is better considered when using 2 shells instead of only

one shell.

7.4.4 Discussion on experiments with synthetic data

We studied the choice of the free parameters in the learning process, i.e. the dictionary

angular and radial orders (in sec. 7.4.2), and λ in (7.7) (in Sec. 7.4.1). Our study led to

a very good estimation of the diffusion direction (via the computation of the ODF), the

diffusion signal and the EAP.

In particular, our PDL approach was shown to better estimate the diffusion directions

than the solid angle ODF via QBI does and to compute the diffusion signal and the EAP

in a more accurate way than a SHORE reconstruction (using a sparse prior) does.

Regarding the sampling scheme, we observe a slight advantage for the SS sampling
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Angular error DNC Signal NMSE EAP NMSE

MS-SC SS-SC MS-SC SS-SC MS-SC SS-SC MS-SC SS-SC

SNR 30 5.6233 4.9398 0.2187 0.2068 0.0035 0.0207 0.0066 0.0298

SNR 20 6.3080 5.6386 0.2309 0.2102 0.0054 0.0239 0.0104 0.0321

SNR 10 8.3224 8.2530 0.2511 0.2500 0.0144 0.0433 0.0222 0.0526

Table 7.4: Comparison between the multiple shells sampling scheme (MS-SC) with 64
measurements and the single shell sampling scheme (SS-SC) with 64 measurements, on
reconstruction using the PDL approach. Four metrics are shown: the angular error, the
difference in the number of compartments (DNC), the signal NMSE, the EAP NMSE. The
simulations are performed with Rician noise at SNR=10, 20 and 30.

scheme considering the directional features, but we found that the MS sampling at b-

values b = 1500, 2500 s ·mm−2 is more appropriate, because it enables one to deal with

the radial information in addition to the angular information. In Sec. 7.4.3 the dictionary

reconstruction combined with a multiple shells sampling scheme was proved to efficiently

approximate the diffusion signal, the EAP and the ODF.

Regarding the minimal number of measurements required before a large decrease of the

reconstruction accuracy, we also perform a last experiment on synthetic data, in which

we study the impact of the number of samples N on the error metrics presented in this

experiment part with synthetic data. For this purpose, we still consider the same set of

signals (different from the training data set) and add Rician noise with SNR = 20. We

use the MS sampling scheme with 2 shells at b-values b = 1500, 2500 s ·mm−2 and vary the

number of samples between N = 5 and N = 100. Fig. 7.9 shows the resulting values. In

this figure, we also plot a vertical line, which represents the number of samples N where

the metric errors show a large increase of their values (which means that the estimations

are not correct anymore). Overall, we define this bound to Nmin ≈ 15. In Fig. 7.9, we

also represent the variance of each metric error. We observe from the variance, that the

estimation of the diffusion signal and the EAP are robust to noise. However, the estimation

of the diffusion direction is more sensitive to noise when we reduce the number of samples.

In conclusion, these synthetic experiments show that our PDL approach can sparsely

model multi-fiber compartments signals with the assumption of mono-exponential signal

decay with b-value. In addition, it overcomes the preliminary PDL approach presented at

the HARDI contest at ISBI 2012, already ranked first in its category.

7.5 Experiments on real data

In this section, we propose to validate our parametric dictionary learning (PDL) method

on real data from human brains. For this purpose, we acquired three distinct sets of data :

• A first set of measurements coming from a 7T scanner, used both to learn the dictio-

nary and to validate it.

• A second set of measurements coming from a 3T scanner, used for the learning process.
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Figure 7.9: Evolution of the angular error, the DNC, the signal NMSE and the EAP NMSE
in function of the number of samples N . We added Rician noise with SNR=20.



7.5. EXPERIMENTS ON REAL DATA 141

• A third set of measurements coming from a 3T scanner, used to validate the dictionary

learned on the previous 3T scanner data.

7.5.1 Learning and reconstruction on a 7T scanner data

Training data was acquired on a 7T whole-body MR scanner (MAGNETOM, Siemens

Healthcare) equipped with Siemens-AC072 whole body gradient coils, and an 24 chan-

nel phased array coil (Nova Medical). 12 axial slices were acquired with a 2D sin-

gle shot DW-STEAM-EPI (TR/TE/∆/δ = 3000/58/120/15 ms) sequence giving 2 mm

isotropic resolution. The echo time (TE), diffusion time (∆), and gradient duration (δ)

were optimized to provide maximum SNR for a maximum b-factor. 8 different b-values

b=500/1000/2000/3000/4000/5000/6000/7000 s/mm2 are considered with 70 orientations

at each b-value, and an imaging matrix of 96x96x12. The measurement locations are dis-

tributed using the algorithm given in [26] by setting the parameters in such way that there

are a constant number of measurements per b-value. We use 11 slices as training data set,

in which only the voxels corresponding to a Fractional Anisotropy (FA) superior to 0.20

are taken into account. The FA is computed from the diffusion tensor estimated with the

whole set of measurements.

We validate the reconstruction, based on the previously learned dictionary, on the

twelfth slice. We compare the ODFs estimated via our PDL approach (D-ODF) to the

ODFs estimated with the ℓ1-SHORE method (SHORE-ODF) on three different sampling

schemes. The three sampling schemes consider measurements at b-values b=1000/2000

s/mm2, and we change the number of measurements as N=15, 30 and 60. To distribute

the samples between the two b-values, we use the algorithm given in [26] by setting the

parameters in such a way that the the number of samples on each shell is proportional to

q1 [26, 85].

We choose a region of interest and show the estimated ODFs (see Fig. 7.10) along with

the extracted maxima. This region contains several crossing configurations with different

degree of crossing, and thus is appropriate for ODF validation. In Fig. 7.10, the middle

corresponds to the D-ODFs and the bottom to the SHORE-ODFs. From the left to the

right, we see the results for N=15, 30 and 60 samples. We consider the ground truth as the

estimated signal using the ℓ1-SHORE method when all the measurements are taken into

account, i.e. 70x8 measurements. The corresponding ground truth ODF are shown at the

top of Fig. 7.10.

Overall, the SHORE-ODFs lead to more false maxima than the D-ODFs. For instance,

at N = 60 in the region A (in red), the SHORE-ODFs are not able to correctly resolve the

crossing fiber configuration (erroneous number of detected maxima). This phenomenon is

emphasized when the number of measurements decreases, whereas our dictionary estimation

still provides a coherent map of ODFs.

7.5.2 Learning and reconstruction on a 3T scanner data

We also train our dictionary on data from a 3T Verio (MAGNETOM, Siemens Healthcare)

scanner equipped with a 32-channel head coil. The data were acquired at a spatial resolution

of 2 mm3 isotropic, for 6 different b-values b=500/1000/2000/3000/5000/7000 s/mm2, 70

orientations at each b-value, and an imaging matrix of 128x128x60. The dictionary is
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Figure 7.10: ODFs estimated from a 7T scanner data via our PDL approach (D-ODF,
middle) and via the SHORE technique (SHORE-ODF, bottom). N=15, 30 and 60 samples
are considered (left to right). We show the ground truth ODF at the top.
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learned from all the measurements on the axial slices 25 to 35, for the voxels with FA ≥ 0.20.

The FA is computed from the diffusion tensor estimated with the whole set of measurements.

For the reconstruction, we use data from a 3T scanner (Philips Achieva) equipped

with a 8-channel SENSE coil. The data were acquired at a spatial resolution of 2 mm3

isotropic, for 6 different b-values b=500/1000/2000/4000/6000/8000 s/mm2, 70 orientations

at each b-value, and an imaging matrix of 128x128x60. We consider three sampling schemes

with N=15, 30 and 60 samples and distribute them proportionally to q1 on two b-values

b=1000/2000 s/mm2 [26, 85].

Figure 7.11: ODFs estimated from a 3T scanner data via our PDL approach (D-ODF,
middle) and via the SHORE technique (SHORE-ODF, bottom). N=15, 30 and 60 samples
are considered (left to right). We show the ground truth ODF at the top.

In Fig. 7.11, the top corresponds to the D-ODFs and the bottom to the SHORE-ODFs,

on a selected region of interest. From the left to the right, we see the results for N=15, 30

and 60 samples. We also consider the ground truth as the estimated signal using the ℓ1-

SHORE method when all the measurements are taken into account, i.e. 70x6 measurements.
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The corresponding ground truth ODFs are shown at the top of Fig. 7.11.

We obtain sharper ODFs estimation with our PDL approach on the selected region

of interest. Again, we see that our dictionary is still able to model the fiber crossing

configuration with only 15 samples, and provide less noisy ODFs than the ODFs estimated

with SHORE.

7.6 Conclusion

We have proposed an original and efficient computational framework to model continuous

diffusion MRI (dMRI) signal and to recover its important features such as the ODF and

the EAP with a reduced number of measurements. The idea, we implemented, has been to

use a parametric dictionary learning algorithm and to exploit the sparse property of a well

designed dictionary to recover the diffusion signal and its features. Numerous experimental

results have been carried out for validation on synthetic and human brain data acquired

from 7-T and 3-T scanners. We have shown that we can clearly recover the diffusion signals

and its features with a much better accuracy compared to state-of-the-art approaches and

can accurately recover ODF in regions of multiple fiber crossing, even with a small and re-

duced number of measurements. This opens new perspectives for some dMRI applications,

including for example tractography, where the improved characterization of the fiber orien-

tations is likely to greatly and quickly help tracking through regions with and/or without

crossing fibers

7.7 Appendix

7.7.1 Derivation of the normalization constant

We define a dictionary of M functions fm, from R3 to R. We want to normalize the atoms

of the dictionary, for the classical ℓ2 norm:

||fm||22 =

∫

R3

fm(q)2dq = 1. (7.11)

The functions fm are constructed from elementary functions g
(m)
i,j (in what follows, we drop

the index m for the sake of clarity):

fm =
I∑

i=1

J∑

j=1

gi,j(q), (7.12)

where

gi,j(q ·u) = γi,je
−νiq

2

qℓ(j)Yj(u). (7.13)
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The normalization in (7.11) rewrites as

1 =

∫

R3




∑

i,j

gi,j(q)





2

dq

=

I∑

i=1

J∑

j=1

I∑

i′=1

J∑

j′=1

γi,jγi′,j′

∫ ∞

0

e−νiq
2

e−νi′q
2

qℓ(j)qℓ(j
′)q2dq

∫

S2

Yj(u)Yj′ (u)d2u (7.14)

Provided that the spherical harmonics functions form an orthonormal basis, we have

∫

S2

Yj(u)Yj′ (u)d2u = δj,j′ . (7.15)

Therefore, the normality constraint rewrites as

1 =

N∑

i=1

I∑

j=1

I∑

i′=1

γi,jγi′,j

∫ ∞

0

e−(νi+νi′ )q
2

q2ℓ(j)+2dq. (7.16)

Let’s use the substitution x = (ui + ui′)q
2 in the above integral, we have

1 =

I∑

i=1

J∑

j=1

I∑

i′=1

γi,jγi′,j
2(νi + νi′)ℓ(j)+3/2

∫ ∞

0

e−xxℓ(j)+1/2dx (7.17)

=

I∑

i=1

J∑

j=1

I∑

i′=1

γi,jγi′,j
2(νi + νi′)ℓ(j)+3/2

Γ

(

ℓ(j) +
3

2

)

(7.18)

7.7.2 Derivation of the Ensemble Average Propagator

The EAP P (Rr) is defined as

P (Rr) =

∫ ∞

q=0

∫

u∈S2

E(qu) exp(+2πiqRu.r)duq2dq. (7.19)

We use the spherical plane wave expansion

exp(±2πiqRu.r) =
2π√
qR

∞∑

j=0

(±i)ℓ(j)Jℓ+1/2(2πqR)Yj(u)Yj(r), (7.20)

where Jℓ+1/2 is the standard bessel function of the first kind and order ℓ + 1/2. Then we

get



146 CHAPTER 7. PARAMETRIC AND SPARSE DICTIONARY LEARNING

P (Rr) =

∫ ∞

q=0

∫

u∈S2



q2
K∑

k=0

ck
1√
χk

I∑

i=0

J∑

j=0

γkij exp
(
−νkiq2

)
qℓ(j)Yj(u)








2π√
qR

∞∑

j′=0

(±i)ℓ(j
′

)jl(2πqR)Yj′ (u)Yj′ (r)



 dudq, (7.21)

We shorten this expression using the orthonormal property of the spherical harmonic

basis, i.e.
∫

u∈S2 Yj(u)Yj′ (u)du = δjj′ . Then formula (7.21) becomes

P (Rr) =

K∑

k=0

ck
2π√
Rχk

I∑

i=0

J∑

j=0

γkij(−1)ℓ(j)/2Yj(r)

∫ ∞

q=0

exp
(
−νkiq2

)
qℓ(j)+3/2Jℓ(j)+1/2(2πqR)dq

︸ ︷︷ ︸

Ikij(R)

, (7.22)

We use the formula from [111], i.e.
∫∞
q=0

xν+1 exp(−αx2)Jν(βx) = βν

(2α)ν+1 exp(−β
2

4α )

Ikij(R) =

∫ ∞

q=0

exp
(
−νkiq2

)
qℓ(j)+3/2Jℓ(j)+1/2(2πqR)dq (7.23)

=
(2πR)ℓ+1/2

(2νki)ℓ+3/2
exp

(−(2πR)2

4νki

)

(7.24)

Finally, we get a closed form for the propagator :

P (R · r) =

K∑

k=0

ck√
χk

I∑

i=0

J∑

j=0

γkij(−1)ℓ(j)/2
(
π

νki

)ℓ(j)+3/2

Rℓ(j) exp

(−(πR)2

νki

)

Yj(r) (7.25)

7.7.3 Derivation of the Orientation Distribution Function

The ODF is given by

Υ(r) =

∫ ∞

0

P (R · r)R2dR. (7.26)

We insert (7.5) in (7.26) and gather all the R-dependant terms within the integral to

get
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Υ(r) =

K∑

k=0

ck
(2π)3/2√

χk

I∑

i=0

J∑

j=0

γkij(−1)ℓ(j)/2
(
π

νki

)ℓ(j)+3/2

Yj(r)

∫ ∞

0

Rℓ(j)+2 exp

(−(πR)2

νki

)

dR

︸ ︷︷ ︸

I(νki,ℓ(j))

(7.27)

We use the formula from [111], i.e.
∫∞
0 x2n exp(−ρx2)dx = (2n−1)!!

2(2ρ)n

√
π
ρ . Then,

I(νki, ℓ(j)) =
(ℓ(j) + 1)!!

2
(

2π2

vki

)ℓ(j)/2+1

√
vki
π

(7.28)

And,

Υ(r) =

K∑

k=0

ck√
χk

I∑

i=0

J∑

j=0

γkij(−1)ℓ(j)/2
(
π

νki

)ℓ(j)+1
(ℓ(j) + 1)!!

2
(

2π2

vki

)ℓ(j)/2+1
Yj(r) (7.29)
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8.1 General conclusion

We have presented in this thesis several contributions related to the estimation of local

diffusion information from the dMRI signal in PGSE experiments. In particular, this work

is focused on the estimation of the Ensemble Average Propagator (EAP). The underlying

theories and methods used in this thesis are related to the field of sparse coding techniques

and in particular the Compressive Sensing (CS) theory. This work brings a new hope

to estimate the EAP with a reduced number of samples. Other diffusion features are also

studied to achieve the validation of the MR signal reconstruction. Finally, we have rendered

possible the estimation of the EAP and its features in common clinical MRI scanners.

8.1.1 Local diffusion estimation: discrete vs analytical and contin-

uous EAP representation

Regarding the estimation of local diffusion information, we have distinguished between two

EAP representations. In chapter 5, we use the CS technique to reconstruction an EAP

from DSI-like acquisition, i.e., the dMRI signal is acquired following a Cartesian sampling.

After the application of the Fast Fourier Transform (FFT), the resulting EAP is discrete and

is also defined on a Cartesian grid. A discrete representation causes expensive numerical

computations if one wants to accurately derive other diffusion features. In chapter 6 and

chapter 7, the EAP is characterized as a linear combination of continuous and parametric

functions. This leads to analytical formulae to perform useful computation of diffusion

features for free. In particular, the continuous frameworks seen in these two chapters

provide closed form formulae to estimate the Orientation Distribution Function (ODF) and

allows one to extrapolate/interpolate the dMRI signal. However, these analytical formulae

are not limited to the estimation of the ODF and other diffusion features can be analytically

computed.

8.1.2 The multiple aspects of the Compressive Sensing theory

The Compressive Sensing theory is the central point of this thesis. Since the introduction of

CS by Donoho and Candes [23, 46] a decade ago, many contributions have been presented

on this topic. At first, the CS theory was described to reconstruct discrete and finite-

length signals below the Shannon-Nyquist rate under the condition that the signal admits

a sparse representation with respect to an orthonormal basis. This classical theory is used

in chapter 5 to accelerate the DSI technique. However, most of real world applications are

outside the scope of this theory for two main reasons: 1-Real world signals are analog and

2-the signal to reconstruct may not be sparse in a orthonormal basis but in a overcomplete

and redundant dictionary. For these two reasons, chapter 6 and chapter 7 handle the

case of recovering analog signals. In particular, chapter 7 introduces a dictionary learning

algorithm based on a new continuous dMRI framework in order to design parametric and

overcomplete dictionaries from a training data set of dMRI signals.

8.2 Applications and Collaborations

This work was partially done in collaboration with the Sherbrooke Connectivity Imaging

Lab (SCIL) at the University of Sherbrooke (Canada). In particular we have been working
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together in the application of CS to accelerate the DSI technique. The result of this collab-

oration is described in chapter 5. Another work have been done with the SCIL regarding

a novel tractography algorithm based on the EAP [94]. During this PhD thesis, we have

also implemented some of the Athena project team algorithms in the dipy software [56].

8.2.1 Fiber tractography via the Ensemble Average Propagator

It’s well known that in diffusion MRI (dMRI), fibre crossing is an important problem for

most existing diffusion tensor imaging (DTI) based tractography algorithms. To overcome

these limitations, High Angular Resolution Diffusion Imaging (HARDI) based tractography

has been proposed with a particular emphasis on the the Orientation Distribution Function

(ODF). In our recent work [94], we advocate the use of the Ensemble Average Propagator

(EAP) instead of the ODF for tractography in dMRI and propose an original and efficient

EAP-based tractography algorithm that outperforms the classical ODF-based tractography,

in particular, in the regions that contain complex fibre crossing configurations. Various

experimental results including synthetic, phantom and real data illustrate the potential of

the approach and clearly show that our method is especially efficient in handling regions

where fiber bundles are crossing, and still handle well other fiber bundle configurations such

as U-shape and kissing fibers.

8.2.2 Software

All the models and techniques presented in this thesis have been implemented in Python and

are part of the project-team library called PyAthena. The dMRI signals representation with

respect to some of the orthonormal bases presented in chapter 6 were also implemented

in dipy, a novel software library for diffusion MR and tractography [56].
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9.1 Conclusion générale

Nous avons présenté dans cette thèse plusieurs contributions relatives à l’estimation

de l’information locale de diffusion. En particulier, nous nous sommes concentrés sur

l’estimation de l’EAP. Les théories sous-jacentes et les méthodes utilisées dans cette thèse

sont liées aux techniques de reconstruction parcimonieuse et plus précisement la technique

dite du Compressive Sensing (CS). Ce travail apporte un nouvel espoir pour estimer l’EAP

avec un nombre réduit d’échantillons. D’autres caractéristiques de diffusion sont également

étudiées pour réaliser la validation de la reconstruction du signal de diffusion. Enfin, nous

avons rendu possible l’estimation de l’EAP et de ses caractéristiques dérivées dans la plupart

des scanners IRM cliniques.

9.1.1 L’estimation de la diffusion locale: représentation discrète vs

représentation analytique et continue de l’EAP

En ce qui concerne l’estimation de l’information locale de diffusion , nous avons distingué

deux types de représentation de l’EAP. Dans le chapitre 5, nous utilisons la technique

du CS pour reconstruire l’EAP à partir d’acquisitions DSI, c’est-à-dire lorsque le signal

de diffusion est acquis sur une grille cartésienne. Après l’application de la transformée

de Fourier rapide, l’EAP qui en résulte est discret et est également défini sur une grille

cartésienne. Une représentation discrète engendre des calculs numériques coûteux si l’on

veut estimer avec précision d’autres caractéristiques de diffusion. Dans le chapitre 6 et le

chapter 7, l’EAP se caractérise par une combinaison linéaire de fonctions paramétriques

et continues. Cela conduit à des formules analytiques afin d’estimer d’importantes car-

actéristiques de diffusion comme la fonction de distribution des orientations et permettent

d’extrapoler/interpoler le signal de diffusion.

9.1.2 Les multiples aspects de la théorie du Compressive Sensing

La théorie du Compressive Sensing est le point central de cette thèse. Depuis l’introduction

du CS par Donoho et Candes [23, 46] il y a une dizaine d’années, de nombreuses con-

tributions ont été présentées à ce sujet. Dans un premier temps, la théorie du CS a été

décrite pour reconstruire des signaux discrets et de longueur finie échantillonnés à un taux en

dessous de celui de Shannon-Nyquist à la condition que le signal admette une représentation

parcimonieuse dans une base orthonormale. Cette théorie classique est utilisée dans le

chapitre 5 afin d’accélérer la technique de DSI. Cependant, la plupart des applications du

monde réel sont en dehors du champ d’application de cette théorie pour deux raisons prin-

cipales: les signaux du monde réel sont analogiques et le signal à reconstruire est rarement

parcimonieux dans une base orthonormale, mais plutôt dans un dictionnaire sur-complets

et redondant. Pour ces deux raisons, le chapitre 6 et le chapitre 7 étendent la théorie

classique du CS dans le cas des signaux analogiques. Le chapitre 7 introduit un algo-

rithme d’apprentissage de dictionnaire afin de concevoir des dictionnaires paramétriques et

surcomplets à partir d’un ensemble de données d’apprentissage de signaux de diffusion.
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9.2 Applications et collaborations

Ce travail a été partiellement réalisé en collaboration avec le laboratoire SCIL de l’Université

de Sherbrooke (Canada). Nous avons travaillé ensemble dans l’application du CS afin

d’accélérer la technique de DSI. Le résultat de cette collaboration est décrit dans le chapter

5. Un autre travail a été fait avec le CSIL sur un algorithme de tractographie basé sur l’EAP.

Au cours de cette thèse, nous avons également mis en œuvre une partie des algorithmes de

l’équipe-projet Athena dans le logiciel dipy [56].

9.2.1 Tractographie de fibres via l’EAP

Il est bien connu qu’en IRM de diffusion, le croisement de fibres est un problème important

que le tenseur de diffusion ne peut pas gérer. Pour surmonter ces limitations, l’imagerie à

haute résolution angulaire a été proposé pour effectuer des tractographies en se basant sur

la fonction de distribution des orientations. Dans notre récent travail [94], nous préconisons

l’utilisation de l’EAP au lieu de la fonction de distribution des orientations pour la trac-

tographie. Ainsi, nous proposons un algorithme de tractographie originale et efficace basé

sur l’EAP qui surpasse les algorithmes de tractography basés sur la fonction de distribu-

tion des orientations, en particulier dans les régions qui contiennent des configurations de

fibres complexes. Divers résultats expérimentaux illustrent le potentiel de cette méthode et

démontrent clairement que notre méthode est efficace pour gérer les régions où les faisceaux

de fibres se croisent, et encore bien d’autres configurations de faisceaux de fibres tels que le

U et les “baisers” de fibres.

9.2.2 Logiciel

Tous les modèles et techniques présentés dans cette thèse ont été implémentées en Python

et font partie de la bibliothèque de l’équipe-projet appelée PyAthena. Certaines bases

orthonormales qui ont été présentées dans le chapitre 6 ont été implémentées dans dipy,

une bibliothèque de logiciels d’IRM de diffusion et de tractographie [56].
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10.1 Fourier transform

The Fourier transform is a mathematical tool, which has found many applications in math-

ematical analysis, physics and engineering. It allows one to completely describe a signal in

terms of its frequencies.

The Fourier transform, also called spectrum, of a signal x(t) is

X(f) =

∫ +∞

−∞
x(t) exp(−2jπft)dt, (10.1)

where j is the imaginary unit, which is defined by its property j2 = −1.

The inversion formula is

x(t) =

∫ +∞

−∞
X(f) exp(2jπft)df. (10.2)

The Fourier transform has many properties. We give a non exhaustive list of them in

Tab. 10.1 and add Fourier transform of common functions.

x(t) X(f) Comments

scaling x(at) 1
|a|X(fa ) a is a non-zero real number

shift x(t − a) X(f) exp(−2jπfa) a is a real number

conjugate x∗(t) X∗(−f)

convolution x(t) ∗ h(t) X(f)H(f)

linearity ax(t) + bh(t) aX(f) + bH(f) a, b are complex numbers

Dirac comb
∑+∞

k=−∞ δ(t− kT ) F
∑+∞
k=−∞ δ(f − kF ) F = 1

T

sinusoid sin(2πf0t)
1
2 i(δ(f − f0) + δ(f + f0))

Table 10.1: Properties of Fourier Transform and Fourier transform of common functions

10.2 A world of wavelets

The Fourier transform efficiently describes periodic or stationary signals in terms of fre-

quency, but is not able to represent transient phenomenon. Wavelets are well localized and

can represent local transient structures and singularities. In the following, we describe the

main idea behind the wavelet transform. More information can be found in [80].

Let us consider the mother wavelet W ∈ L2(R). One can construct the dilated and

translated family [80]

{

Wj,n(t) =
1√
2j

W
(
t− 2jn

2j

)}

(j,n)∈Z2

, (10.3)

which forms an orthonormal basis of L2. (10.3) is called the wavelet basis.

The idea is to represent any function f as a combination of wavelet functions Wj,n,

f(t) =
∑

n,j∈Z2

〈f,Wj,n〉Wj,n(t) (10.4)
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From here, comes the concept of multiresolution analysis. Multiresolution analysis was

introduced to represent functions as successive approximations at resolution 2−j . To define

the multiresolution analysis, Mallat [79] introduced the dilated and translated family of the

scaling function S ∈ L2(R),

{

Sj,n(t) =
1√
2j

S
(
t− n

2j

)}

(j,n)∈Z2

, (10.5)

which forms an orthonormal basis of L2. This basis is the orthogonal complement of

the wavelet basis in (10.3).

Then from the wavelet and scaling bases, Mallat [79] characterizes the difference between

two approximations of f at a different resolution j as

∑

n∈Z2

〈f,Sj−1,n〉 Sj−1,n =
∑

n∈Z2

〈f,Sj,n〉 Sj,n +
∑

n∈Z2

〈f,Wj,n〉Wj,n (10.6)

The wavelet coefficients 〈f,Wj,n〉 characterizes the information between two successive

approximations. Roughly speaking, W models the details and S models the coarse compo-

nents.

For discrete signals f [n], n ∈ N, the multiresolution analysis is performed by a filtering

and downsampling procedure with a particular class of filters, called the conjugate mirror

filters. These filters characterize the wavelet functions (via a high pass filter h) and the

scaling function (via a low pass filter g). We obtain the wavelet coefficients of f [n] after

applying a fast Discrete Wavelet Transform (DWT), which is implemented by cascading

the filters h and g. Then, an inverse DWT (IDWT) ensures a perfect reconstruction, i.e.,

an error free reconstruction of f [n] from its wavelet coefficients.

The DWT is an extremely well established tool in the image processing community and

is used, for instance, in image compression because it provides highly sparse representation

of natural images.

10.3 Inner product space

An inner product space is a vector space V together with an inner product on it. The inner

product, noted 〈 · , · 〉, of two vectors (u,v) ∈ V produces a scalar α ∈ F with F is either

the set of complex number C or the set of real number R, i.e.,

〈 · , · 〉 : V × V → F (10.7)

The inner product is required to satisfy the following three axioms for all (u,v,w) ∈ V

and (α, β) ∈ F:

Linearity 〈αu + βv,w〉 = α〈u,v〉 + β〈v,w〉
Conjugate symmetry 〈u,v〉 = 〈v,u〉
Positivity 〈u,u〉 ≥ 0 for u 6= 0
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Examples of inner product space:

Real number space R 〈u, v〉 = uv

Euclidean space Rn
〈(x1, x2, ..., xn), (y1, y2, ..., yn)〉
= x1y1 + x2y2 + ...xnyn

Vector space of real functions defined on [a, b] 〈f, g〉 =
∫ b

a fgdx.

10.4 ℓp-norm in an n-dimensional Euclidean space

In the manuscript, we will often deal with discrete and finite length signals x =

(x1, x2, . . . , xn) in an n-dimensional Euclidean space, denoted by Rn. In this case, we

define the ℓp-norm as

‖x‖ℓp =







(
∑n

i=1 |xi|p)
1
p , p ∈ [1,∞)

max
i=1,2,...,n

|xi|, p = ∞

|supp(x)|, p = 0

(10.8)

Strictly speaking, the ℓ0-norm is not a “norm”. It is actually a quasi-norm.

The ℓp-norm (quasi-)norms have different properties. We show in Fig. 10.1, the unit

sphere induced by each of these norms in R
2.

Figure 10.1: Unit sphere in R2 for the ℓp-norm with p = 1, 2,∞.

10.5 Orthonormal basis

A subset of vectors (u1, · · · ,un) of a inner product space V forms an orthonormal basis if

• 〈ui,uj〉 =

{

0, i 6= j

1, i = j

• The set of vectors are linearly independent.



10.6. OVERCOMPLETE AND REDUNDANT DICTIONARY 163

10.6 Overcomplete and redundant dictionary

In contrast to an orthonormal basis, an overcomplete and redundant dictionary is a set of

vectors, which is by definition not linearly independent, i.e., we can write one vector as a

linear conbination of many vectors in the set.

For instance, let us consider these 3 vectors in the 3-dimensional Euclidean space,







0

0

1






,







0

2

−2






,







1

−2

1






,







4

2

3







v1 v2 v3 v4

. (10.9)

The four vectors together are linearly dependent because v1 can be written as a linear

combination of v2,v3,v4 such that

v1 =

(

−5

9

)

v2 +

(

−4

9

)

v3 +
1

9
v4. (10.10)

10.7 Analytical diffusion signal, EAP and ODF from

the multiple tensor model

We assume the normalized diffusion signal E(q) is generated from the multi-tensor model

for F fibers,

E(qu) =

F∑

f=1

pf exp(−4π2τq2uTDfu), (10.11)

where a fibre f is defined by a tensor matrix Df and weight pf . q denotes the norm of the

effective gradient and u is a unitary vector in Cartesian coordinate.

The analytical ground truth of the EAP for any radius R is then given by

P (Rr) =

F∑

f=1

pf
1

√

(4πτ)3|Df |
exp

(

−R2rTD−1
f r

4τ

)

, (10.12)

with r a unitary vector in Cartesian coordinate.

We can also derive an analytical and closed form expression for the ODF solid angle

[1, 123],

Υ(r) =

F∑

f=1

pf
1

4π|Df | 12 (rTD−1
f r)

3
2

, (10.13)
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