
HAL Id: tel-00908544
https://theses.hal.science/tel-00908544v1

Submitted on 24 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Behavioral Application-dependent Superscalar Core
Modeling

Ricardo Andrés Velásquez Vélez

To cite this version:
Ricardo Andrés Velásquez Vélez. Behavioral Application-dependent Superscalar Core Modeling.
Hardware Architecture [cs.AR]. Université Rennes 1, 2013. English. �NNT : �. �tel-00908544�

https://theses.hal.science/tel-00908544v1
https://hal.archives-ouvertes.fr

ANNÉE 2013

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : INFORMATIQUE
École doctorale Matisse

présentée par

Ricardo Andrés V ELÁSQUEZ VÉLEZ

préparée à l’unité de recherche INRIA – Bretagne Atlantique
Institut National de Recherche en Informatique et Automatique

ISTIC

Behavioral
Application-
dependent
Superscalar
Core Modeling

Thèse soutenue à Rennes
le 19 April 2013

devant le jury composé de :

Smail N IAR
Professeur à l’Université de Valenciennes / Rapporteur
Lieven E ECKHOUT
Professeur à l’Université de Gent / Rapporteur
Frédéric P ÉTROT
Professeur à l’Institut Polytechnique de Grenoble /
Examinateur

Steven D ERRIEN
Professeur à l’université de Rennes 1 / Examinateur
André S EZNEC
Directeur de recherche à l’INRIA / Directeur de thèse
Pierre M ICHAUD
Chargée de recherche à l’INRIA / Co-directeur de thèse

Contents

1 Introduction 5
1.1 Context . 5
1.2 Research Questions . 7
1.3 Contributions . 7
1.4 Thesis Outline . 8

2 State of the Art 9
2.1 Introduction . 9
2.2 Computer architecture simulators . 10

2.2.1 Some simulator terminology . 11
2.2.2 Simulator architectures . 11

2.2.2.1 Integrated simulation 12
2.2.2.2 Functional-first . 13
2.2.2.3 Timing-first . 14
2.2.2.4 Timing-directed . 14

2.2.3 Improving simulators performance 15
2.2.4 Approximate simulators . 15

2.2.4.1 Analytical models . 15
2.2.4.2 Structural core models 16
2.2.4.3 Behavioral core models 17
2.2.4.4 Behavioral core models for multicore simulation 18

2.3 Simulation methodologies . 18
2.3.1 Workload design . 18

2.3.1.1 Single-program workloads 19
2.3.1.2 Multiprogram workloads 20

2.3.2 Sampling simulation . 21
2.3.2.1 Statistical sampling . 21
2.3.2.2 Representative Sampling 22

2.3.3 Statistical simulation . 23
2.4 Performance metrics . 24

2.4.1 Single-thread workloads . 24

1

2 Contents

2.4.2 Multi-thread workloads . 25
2.4.3 Multiprogram workloads . 25

2.4.3.1 Prevalent metrics . 25
2.4.3.2 Other metrics . 26

2.4.4 Average performance . 26

3 Behavioral Core Models 29
3.1 Introduction . 29
3.2 The limits of approximate microarchitecture modeling 31
3.3 The PDCM behavioral core model . 33

3.3.1 PDCM simulation flow . 34
3.3.2 Adapting PDCM for detailed OoO core 34

3.3.2.1 TLB misses and inter-request dependencies 35
3.3.2.2 Write-backs . 36
3.3.2.3 Branch miss predictions 36
3.3.2.4 Prefetching . 36
3.3.2.5 Delayed hits . 37

3.3.3 PDCM limitations . 38
3.4 BADCO: a new behavioral core model 38

3.4.1 The BADCO machine . 39
3.4.2 BADCO model building . 41

3.5 Experimental evaluation . 43
3.5.1 Metrics . 43
3.5.2 Quantitative accuracy . 45
3.5.3 Qualitative accuracy . 45
3.5.4 Simulation speed . 47

3.6 Modeling multicore architectures with BADCO 49
3.6.1 Experimental setup . 50
3.6.2 Experimental results . 51
3.6.3 Multicore simulation speed . 52

3.7 Summary . 54

4 Multiprogram Workload Design 55
4.1 Introduction . 55
4.2 The problem of multiprogram workload design 56
4.3 Random sampling . 57
4.4 Experimental evaluation . 59

4.4.1 Simulation setup . 59
4.5 Experimental results for random sampling 60

4.5.1 Random sampling model validation 60
4.5.2 Performance difference impacts the sample size 61
4.5.3 Different metrics may require different sample sizes 64

Contents 3

4.6 Alternative sampling methods . 64
4.6.1 Balanced random sampling . 64
4.6.2 Stratified random sampling . 65

4.6.2.1 Benchmark stratification 66
4.6.2.2 Workload stratification 67

4.6.3 Actual degree of confidence . 67
4.7 Practical guidelines in multiprogram workload selection 68

4.7.1 Simulation overhead: example . 69
4.8 Summary . 70

5 Conclusion 73

A Résumé en français 77
A.1 Introduction . 77
A.2 Contributions . 78
A.3 Modèles comportementaux . 79

A.3.1 Modèle comportemental PDCM 80
A.3.2 BADCO : un nouveau modèle comportemental 82
A.3.3 Évaluation expérimentale . 83

A.3.3.1 Précision simple cœur 83
A.3.3.2 Précision multi-cœur . 84
A.3.3.3 Vitesse de simulation 85

A.4 Sélection de charges de travail multiprogrammées 86
A.4.1 Méthodes d’échantillonnage . 87

A.4.1.1 Échantillonnage aléatoire simple 87
A.4.1.2 Échantillonnage aléatoire équilibré 87
A.4.1.3 Échantillonnage aléatoire stratifié 87

A.4.2 Évaluation expérimentale . 88
A.5 Conclusions . 89

Bibliography 99

List of Figures 101

List of Tables 103

4 Contents

Chapter 1

Introduction

Many engineering fields allow us to build prototypes that are identical to the target
design. They may cost more, but it is still feasible to build them. These prototypes
can be tested under normal and extreme conditions. Hence, it is possible to verify
that the design works properly and to define its physical limits. However, most other
engineering fields make extensive use of simulation. Simulation has brought significant
improvements to cars, airplanes, tires, computer systems, etc. If the target complexity
remains constant, like in the physical world for example, then the simulation perfor-
mance improves as computers get faster. This is not the case for computer systems
simulation, because computers’ complexity increases each new generation, and it in-
creases faster than computers’ performance. Moreover, the production of prototypes is
extremely expensive and time consuming.

In the beginning of the computer age, computer architects relied on intuition and
simple models to choose among different design points. Current processors are too
complex to trust intuition. Computer architects require proper performance evaluation
tools and methodologies to overcome processor complexity, and to make correct design
decisions. Simulators allow computer architects to verify their intuition, and to catch
issues that were not considered at all or incorrectly. Meanwhile, correct methodologies
give confidence and generality to research conclusions.

1.1 Context

In recent years, research in microarchitecture has shifted from single-core to multicore
processors. More specifically, the research focus has moved from core microarchitecture
to uncore microarchitecture. Cycle-accurate models for many-core processors featuring
hundreds or even thousands of cores are out of reach for simulating realistic workloads.
A large portion of the simulation time is spend in the cores, and it is this portion that
grows linear with every processor generation. Approximate simulation methodologies,
which trade off accuracy for simulation speed, are necessary for conducting certain

5

6 Introduction

research. In particular, they are needed for studying the impact of resource sharing
between cores, where the shared resources can be caches, on-chip network, memory
bus, power, temperature, etc.

Behavioral superscalar core modeling is a possible way to trade off accuracy for
simulation speed in situations where the focus of the study is not the core itself, but
what is outside the core, i.e., the uncore. In this modeling approach, a superscalar core
is viewed as a black box emitting requests to the uncore at certain times. One or more
behavioral core models can be connected to a cycle-accurate uncore model. Behavioral
core models are built from detailed simulations. Once the time to build the model is
amortized, important simulation speedups can be obtained. Moreover, behavioral core
models enable vendors to share core models of its processors in order that third parties
can work on specific design of the uncore.

Multicore processors also demand for more advanced and rigorous simulation method-
ologies. Many popular methodologies designed by computer architects for simulation of
single core architectures must be adapted or even rethought for simulation of multicore
architectures. For instance, sampled simulation and its different implementations have
been created to reduce the amount of simulation time required, while still providing
accurate simulation performance values for single thread programs. However, very few
works have focused on how sampled simulation can be applied to multiprogram exe-
cution. Furthermore, some of the problems associated with sampled simulation, such
as the cold start effect, have not been studied in the context of multicore architecture
simulation yet.

An important methodology problem that has not received enough attention is the
problem of selecting multiprogram workloads for the evaluation of multicore through-
put. The population of possible multiprogram workloads may be very large. Hence,
most studies use a relatively small sample of a few tens, or sometimes a few hundreds of
workloads. Assuming that all the benchmarks are equally important, we would like this
sample to be representative of the whole workload population. Yet, there is no standard
method in the computer architecture community for defining multiprogram workloads.
There are some common practices, but not really a common method. More important,
authors rarely demonstrate the representativeness of their workload samples. Indeed,
it is difficult to assess the representativeness of a workload sample without simulating
a much larger number of workloads, which is precisely what we want to avoid. Approx-
imate microarchitecture simulation methods that trade accuracy for simulation speed
offer a solution to this dilemma. We show in this thesis that approximate simulation
can help select representative multiprogram workloads for situations that require the
accuracy of cycle-accurate simulation.

Research Questions 7

1.2 Research Questions

Currently, many research studies are focused on multicore processors. The complex-
ity of multicore architectures impose a huge challenge to simulation techniques and
methodologies. Due to time cost, cycle accurate simulators are out of consideration for
tasks such as design space exploration, while approximate simulation exists as an op-
tion for faster simulation, but at the expense of accuracy. Moreover, common simulation
methodologies such as sampling, warming and workload design must be reviewed and
updated to target multicore experiments. The aim of this thesis is to provide computer
architects with new simulation tools and methodologies that allow for faster and more
rigorous evaluation of research ideas on multicore architectures. In particular, we first
tackle the problem of slow simulation speed with behavioral core models; and second
the problem of selecting multiprogram workloads.

Consequently, the main research questions of the thesis are:

• How, and at what cost, can behavioral core models model realistic superscalar
core architectures?

• How, and at what cost, can behavioral core models speed up multicore simulation?

• How can we select a representative sample of multiprogram workloads for perfor-
mance evaluation of multicore architectures?

1.3 Contributions

The main contributions of this thesis can be summarized as follows:

BADCO: a new method for defining behavioral core models We describe and
study a new method for defining behavioral models for modern superscalar cores. The
proposed Behavioral Application-Dependent Superscalar Core model, BADCO, predicts
the execution time of a thread running on a superscalar core with an average error of
less than 3.5% in most cases. We show that BADCO is qualitatively accurate, being
able to predict how performance changes when we change the uncore. The simulation
speedups we obtained are typically between one and two orders of magnitude.

Adapting PDCM to model realistic core architectures We study the PDCM
model, a previously proposed behavioral core model, evaluating its accuracy for model-
ing modern superscalar core architectures. We identify the approximations that reduce
PDCM’s accuracy for modeling realistic architectures. Then, we propose and implement
some modifications to the PDCM model core features such as branch miss prediction
and prefetch modules in level-1 caches. We reduce the average error from approximately
8% with the original PDCM, to roughly 4% with our improved PDCM model.

8 Introduction

Workload stratification: a new methodology for selecting multiprogram work-
loads We propose and compare different sampling methods for defining multiprogram
workloads for multicore architectures. We evaluate their effectiveness on a case study
that compares several multicore last-level cache replacement policies. We show that
random sampling, the simplest method, is robust enough to define a representative
sample of workloads, provided the sample is big enough. We propose a new method,
workload stratification, which is very effective at reducing the sample size in situations
where random sampling would require a large sample size. Workload stratification uses
approximate simulation for estimating the required sample size.

New analytical model for computing the degree of confidence of random
samples Confidence intervals are the most common method to compute the degree
of confidence of random samples. We propose an alternative method where the degree of
confidence is defined as the probability of drawing correct conclusions when comparing
two design points. This analytical method computes the degree of confidence as a
function of the sample size and the coefficient of variation. The method can be used
either to compute the confidence of a sample or the sample size provided that we can
measure the coefficient of variation. We show that an approximate simulator can help
in the estimation of the coefficient of variation.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. First, Chapter 2 presents the main
theory and techniques related to computer simulation. Chapter 3 presents, evaluates
and compares two behavioral core models in the context of single and multicore sim-
ulation. Then, Chapter 4 presents and compares different sampling methodologies for
selecting multiprogram workloads. Finally, Chapter 5 concludes this thesis by present-
ing a summary of contributions, and provides some directions for future work.

Chapter 2

State of the Art

2.1 Introduction

Many simulation tools and methodologies have been proposed to evaluate the perfor-
mance of computer systems accurately. In general, a rigorous performance evaluation for
an idea/design implies that a computer architect has to make four important decision:
choose the proper modeling/simulation technique, select an adequate baseline configu-
ration, define a representative workload sample, and select a meaningful performance
metric.

The modeling/simulation technique determines the balance between speed and ac-
curacy. In order to overcome the problem of slow simulation tools and huge design
space, computer architects use simulation techniques that increase the abstraction level
and thus sacrifice accuracy to get speedup. The main simulation techniques include:
detailed simulation, analytical modeling, approximate simulation, statistical simulation,
sampled simulation, etc. Note that some of these techniques are orthogonal and may
be combined.

In [24], Eeckhout makes a comparison between the scientific method, in figure 2.1(a),
and the computer system method, in figure 2.1(b). He notes that compared to the sci-
entific method, the computer method losses rigorousness with selection of the baseline
systems and the workload sample. The selection of the baseline system is generally arbi-
trary, and in most cases something similar happens with the workload sample selection.
Because conclusions may dependent on the baseline systems, the workload sample, or
both, the computer method does not guarantee the generality of the conclusions. There
is a strong need for making less subjective the task of workload selection. Rigorous
performance evaluation is crucial for correct design and for driving research in the right
direction.

In this chapter we present the state of the art of prevalent simulation tools and
methodologies in the field of computer architecture. The chapter is organized as fol-
lows: Section 2.2 presents a taxonomy of computer architecture simulators, and dis-

9

10 Chapter 2

Figure 2.1: Scientific method versus computer systems method.

cusses about common techniques to accelerate simulators; Then, Section 2.3 introduces
prevalent simulation methodologies; Finally, Section 2.4 describes the most popular
throughput metrics.

2.2 Computer architecture simulators

The target of computer simulators is to predict the behavior of computer systems. Gen-
erally what we want to predict is timing performance, but other interesting behaviors
are: power consumption, energy efficiency, temperature, reliability, yield, etc. Computer
architects and software developers use simulators to verify intuitions about changes or
new ideas in a computer’s micro/architecture (architects); and new software or software
optimizations (software developers).

We want a simulator to be fast, accurate, and easy to expand with new function-
alities. A fast simulator enables: wider exploration, deeper exploration, stronger confi-
dence and automation. For software development, slowdowns of 10 to 100 are tolerated
provided there is enough functionality. For computer architects, accuracy is the most
desirable characteristic. However, very often computer architects face the need to trade
off accuracy for speed. There are different levels of accuracy depending on the level
of abstraction used by the simulator. For example, cycle-accurate simulators exactly
match RTL cycle count for performance. It is difficult to quantify which is the minimum
level of accuracy tolerated. In general, we want enough accuracy to make comparison
and identify tendencies correctly.

Computer architecture simulators 11

2.2.1 Some simulator terminology

Functional-only simulators only execute the instructions in the target instruction
set architecture (ISA) and sometimes emulate some other computer peripherals such
as hard-disk, network, usb, etc. Functional-only simulators do not provide timing esti-
mates. Many functional-only simulators have evolved into virtual machines, and many
others have been extended with temporal models [66, 5, 6]. Functional-only simulators
have average slowdowns between 1.25x and 10x depending in the provided functionality
[2].

Application simulators or user-level simulators provide basic support for the OS and
system calls. Application simulators do not simulate what happens upon an operating
system call or interrupt. The most common approach is to ignore interrupts and emulate
the effect of system calls [3, 64]. Application simulators have sufficient functionality for
some workloads, e.g., SPEC CPU benchmarks spend little time executing system-level
code [24].

Full-system simulators give full support of the OS and the peripherals. A Full-
system simulator can simulate a whole computer system such that complete software
stacks can run on the simulator [24]. Software applications, being simulated in a full-
system simulator, have the illusion of running on real hardware. Well-known examples
of full-system simulator are SimOS [83], Virtutech’s SimICs [66], AMD’s SimNow [5],
etc.

Trace-driven simulators take program instructions and address traces, and feeds the
full benchmark trace into a detailed microarchitecture timing simulator [24]. Trace-
driven simulators separate functional simulation from timing simulation. The main
advantage is that the functional simulation is performed once and can be used to eval-
uate performance of many microarchitecture configurations. Some disadvantages of
trace-driven simulation include: need for storing the trace files; the impossibility of
modeling the effects along mispredicted paths; and impossibility to model the impact of
the microarchitecture on inter-thread ordering when simulating multi-thread workloads.

Execution-driven simulators combine functional with timing simulation. Execution-
driven simulators do not have the disadvantages of trace-driven simulators and are the
de-facto simulation approach [24]. The higher accuracy of execution-driven simulators
comes at the cost of increased development time and lower simulation speed.

2.2.2 Simulator architectures

The simulator architecture characterizes simulators based on their major internal in-
terfaces. These interfaces enable reuse and ease modifications and expansions. The

12 Chapter 2

selection of the architecture has an impact on the simulator’s speed; the ability to start
with a simple model and progressive increase level of detail (accuracy/refinability); the
capacity to simulate a wide range of targets (generality); and the amount of work re-
quired to write the simulator (effort).

Simulators are software programs characterized by successive state updates of the
physical components they model. The way those states are updated may change from
simulator to simulator, and depending on the abstraction level. For example, the up-
dates can be generated by an approximate model at memory transaction level, or by
an RTL model at register level. The number of state updates is correlated with the
accuracy and speed of the simulator. Many state updates means higher accuracy and
lower simulation speed. In general, computers architects prefer accuracy over speed and
system developers prefer speed over accuracy.

A common characteristic among different simulator’s architectures is to split the
work in two: functional model (FM) and timing model (TM). The functional model
models the instruction set architecture (ISA) and the peripherals; It can execute directly
the code or a trace of instructions. The timing model models the performance: number
of cycles, power/thermal, reliability, etc. The timing models are approximations to
the real counterparts, and the concept of accuracy of a timing simulation is needed to
measure the fidelity of these simulators with respect to existing systems.

There exists at least four widely used architectures for cycle-accurate simulators:
Integrated [92, 101], Functional-First [78, 2], Timing-First [67], and Timing-Directed
[74, 8, 64, 3].

2.2.2.1 Integrated simulation

Integrated simulators model the functionality and the timing together. Hence, there
is a single instance for each architectural/micro-architectural state. Such an instance
defines the logical and physical behavior. Data paths, timing, functionality must all be
correct. If the timing is broken, functionality likely will be broken too. As a consequence,
integrated simulators are self-verifying.

In general, integrated simulators require a lot of work and they are also difficult to
customize and parallelize. An integrated simulator requires an amount of work equiva-
lent to that of an RTL simulator. The accuracy will be also close to RTL simulators but
faster. Integration makes this kind of simulators difficult to customize and parallelize.
There is a lot of work to make integrated simulators modular [92, 101]. Parallelization
is possible in hardware, but then becomes an implementation.

Vachharajani et al. present Liberty Simulation Environment (LSE) [92]. More than
a simulator, LSE is a programming model specialized to develop integrated simulators.
The main target of LSE is to increase the re-usability of components. LSE abstracts
the timing control through stalls. There are two kinds of stall: semantic and structural.
Semantic stalls are related to the computation time of the components. Structural
stalls are the ones that traditionally occur due to limited resources. LSE automatizes

Computer architecture simulators 13

the generation of most structural stalls.
PTLsim [101] is a full-system simulator for x86-64 architectures. The level of com-

plexity is comparable to an RTL simulator. In order to increase performance and
re-usability, PTLsim’s source code provides two libraries: Super Standard Template
Library (SuperSTL) and Logic Standard Template Library (logicSTL). LogicSTL is an
internally developed add-on to SuperSTL which supports a variety of structures useful
for modeling sequential logic. Some of its primitives may look familiar to Verilog or
VHDL programmers [100].

2.2.2.2 Functional-first

In a functional-first simulator, the TM fetches instructions from a trace. The trace can
be generated on the fly (execution-driven) or it may be stored on disk and piped to the
TM (trace-driven). The trace is used to predict the temporal behavior of the target.
The TM may back-pressure the FM but otherwise doesn’t have any control over the
functional model.

Functional-first simulators enable the FM and TM to be developed and optimized
independently. There are no round-trip dependencies between both models and back-
pressure is the only communication between models. The FM just needs to generate a
trace. This job can be performed by a functional-only simulator, a binary instrumented
tool such as pin, or a trace-capable hardware.

In brief, functional-first simulators make easy to parallelize between FM and TM,
i.e., you may run FM and TM in different threads or even run the FM in a processor
and the TM in an FPGA. They are fast simulators and require less development effort.
On the other side, the accuracy, refinability, and generality are low. Functional-first
simulators incur two main inaccuracies: modeling of mispredicted paths and the diver-
gence in the ordering of memory accesses performed by the FM with respect to the TM
[13]. This situation is especially critical for multicore systems. Cotson [2] and FAST
[14] are examples of functional-first simulators.

COTSon is a multicore full-system simulator developed by AMD and HP [2]. COT-
Son uses SimNow [5] as functional simulator and supports timing models with different
levels of detail. The FM drives the simulation. COTSon uses dynamic sampling to
measure the performance through the TM. Hence, TMs just work for small intervals,
allowing the simulator to run faster. The IPC captured by the TMs is fed back to
the FM. The FM uses the IPCs to control the progress of the different threads. Ad-
ditionally to samples’ IPCs, COTSon also uses parameter fitting techniques to predict
performance between samples.

FAST is a full system simulator for x86 architectures, whose TM runs on an FPGA
[14]. FAST addresses one of the inaccuracies of functional-first simulators modeling the
mispredicted path. Hence, the TM on the FPGA informs the FM when a misprediction
occurs, then the FM provides the flow of instructions on the wrong-path. Once the TM
solves the branch and communicates this to the FM, the FM starts to feed the TM

14 Chapter 2

again with the correct path.

2.2.2.3 Timing-first

A timing-first simulator is generally an integrated simulator (full simulator) that runs
in parallel with a functional-only simulator or oracle. The functional-only simulator
provides the implementation of the instructions not available in the full simulator, and
allows verification by comparing values with the full simulator. The main advantage of
timing-first simulators is to remove the constraint of simulation exactness and complete-
ness. Hence, it is not necessary to implement all the instructions in the full simulator
from the beginning because the functional-only simulator can handle them. Timing-
first simulators can improve accuracy compared to functional-only simulators for the
instructions that are executed by the full simulator. Furthermore, timing-first simula-
tors can only deal with a ISA supported by the functional-only simulator. In summary,
timing-first simulators have low speed, high potential accuracy and refinability, medium
generality, and the development time depends on how accurate one wants to make the
simulator.

An example of timing-first simulator is GEMS [67]. GEMS uses SimICs [66] as func-
tional (full-system) simulator. SimICs avoids implementing rare but effort-consuming
instructions in the timing simulator. Timing modules interact with SimICs to deter-
mine when it should execute an instruction. GEMS also provide independent timing
models for the memory system (Ruby) and the superscalar core (Opal). This allows to
configure the simulation with different levels of detail. Ruby is a timing simulator of a
multiprocessor memory system that models: caches, cache controllers, system intercon-
nect, memory controllers, and banks of main memory. Opal also known as TFSim [69]
is a detailed TM that runs ahead of Simics’ functional simulation by fetching, decoding,
predicting branches, dynamically scheduling, executing instructions, and speculatively
accessing the memory hierarchy.

2.2.2.4 Timing-directed

Timing-directed simulators also split the work in functional modeling and time mod-
eling. However, compared to functional-first or timing-first simulators, the coupling
between the TM and the FM is higher. Every TM state has an equivalent FM state
that is called at the correct time and in the correct order. The architectural state lives
in the FM to simplify the TM. Execute-in-execute is a special case of timing-directed
simulators [74]. In an execute-in-execute simulator, an instruction is executed in the
FM when it is executed by the TM.

The FM in a timing-directed simulator is very target dependent, i.e., the FM is par-
titioned exactly like the TM and only supports what the target supports. On the other
side, the TM has no notion of values; instead, it gets the effective addresses from the
FM, which it uses to determine cache hits and misses, access the branch predictor, etc.

Computer architecture simulators 15

Implementing a timing-directed simulator requires a minimum level of accuracy because
neither TM nor FM can operate on its own. In summary, timing-directed simulators
are slow (TM is the main bottleneck) and require a lot of development effort. Timing-
directed simulators are difficult to parallelize across simulator boundaries. Moreover,
they exhibit good refinability and generality .

2.2.3 Improving simulators performance

The main problem of computer architecture simulation is the simulation speed. Accu-
rate simulators are slow. Industrial simulator, for example, may be from 10000 to 1
million times slower than native execution [24]. Besides, computer complexity grows
faster than its speed, thus simulators become relatively slower with each new proces-
sor generation. Multicore processors aggravate the problem. There is at least a linear
slowdown when simulating parallel cores on a sequential host. Moreover, the accuracy
becomes more important due to the complexity of the parallel interactions.

There are two approaches to improve performance: (1) reducing the amount of work,
either increasing efficiency or eliminating unnecessary work; (2) Exploit parallelism with
multicore/multiprocessor host, FPGAs, or a combination of both.

2.2.4 Approximate simulators

Several approximate microarchitecture simulation methods have been proposed [20,
11, 52, 72, 61, 84, 102] (the list is not exhaustive). In general, these methods trade
accuracy for simulation speed. They are usually advocated for design space exploration
and, more generally, for situations where the slowness of cycle-accurate simulators limits
their usefulness.

Trace-driven simulation is a classical way to implement approximate processor mod-
els. Trace-driven simulation does not model exactly (and very often ignores) the impact
of instructions fetched on mispredicted paths and it cannot simulate certain data mispec-
ulation effects. The primary goal of these approximations is not to speed up simulations
but to decrease the simulator development time. A trace-driven simulator can be more
or less detailed : the more detailed, the slower.

2.2.4.1 Analytical models

What we call in this work analytical model is a mathematical equation used to estimate
the performance of a microarchitecture as a function of microarchitectural parameters.
Naturally, analytical models are less accurate than cycle-accurate simulators. However,
they are of great interest because once a model is build, it gives very good simulation
performance, simply evaluating an equation; and also because they provide more fun-
damental insights, apparent from the formula. Three methods have been used to build
analytical models: statistical inference, neural networks and regression models.

16 Chapter 2

The main goal of linear regression is to understand the effect of microarchitectural
parameters and their interaction in the overall processor performance. Joseph et al.
[49] use linear regression to create analytical models that estimate the overall processor
performance. The selection of microarchitectural parameters involved in the model have
a direct effect on the accuracy and the number of cycle-accurate simulations required.
Insignificant parameters included in the model do not contribute to accuracy and in-
crease the model building time. Therefore, a relevant parameter not considered leads
to inaccurate models [24].

In several cases the assumption of linearity is too restrictive and the model requires
to deal with non linear behavior. A common approach is to perform a transformation
to the input and/or output variables and then use a linear regression method. Typical
transformations are square root, logarithm, power, etc. The transformation is applied
to the entire range of the variable. Hence, the transformation may work well in one
range and bad in another [24]. Spline functions offer a way to deal with non-linearity
without the drawbacks of variable transformations. A spline function is partitioned into
intervals, each interval having its own fitting polynomials. In [57], Lee and Brooks use
spline regression models to build multiprocessor performance models. Neural networks
are an alternative approach for handling non linearity [45, 22, 50]. The accuracy of
neural networks has been shown to be as good as spline-based regression models [58].
However, compared to neural networks, spline-based regression models provide more
insight. Whereas, neural networks ease the automation of the building process.

2.2.4.2 Structural core models

Structural models speed up superscalar processor simulation by modeling only “first
order" parameters, i.e., the parameters that are supposed to have the greatest perfor-
mance impact in general. Structural models can be more or less accurate depending
on how many parameters are modeled. Hence there is a tradeoff between accuracy and
simulation speedup.

Loh described a time-stamping method [63] that processes dynamic instructions one
by one instead of simulating cycle by cycle as in cycle-accurate performance models. A
form of time-stamping had already been implemented in the DirectRSIM multiprocessor
simulator [23, 90]. Loh’s time-stamping method uses scoreboards to model the impact
of certain limited resources (e.g., ALUs). The main approximation is that the execution
time for an instruction depends only on instructions preceding it in sequential order.
This assumption is generally not exact in modern processors.

Fields et al. used a dependence graph model of superscalar processor performance to
analyze quickly the microarchitecture performance bottlenecks [35]. Each node in the
graph represents a dynamic instruction in a particular state, e.g., the fact that the in-
struction is ready to execute. Directed edges between nodes represent dependences, e.g.,
the fact that an instruction cannot enter the reorder buffer (ROB) until the instruction
that is ROB-size instructions ahead is retired.

Computer architecture simulators 17

Karkhanis and Smith described a “first-order" performance model [53], which was
later refined [33, 12, 32]. Instructions are (quickly) processed one by one to obtain cer-
tain statistics, like the CPI (average number of cycles per instruction) in the absence of
miss events, the number of branch mispredictions, the number of non-overlapped long
data cache misses, and so on. Eventually, these statistics are combined in a simple
mathematical formula that gives an approximate global CPI. The model assumes that
limited resources, like the issue width, either are large enough to not impact perfor-
mance or are completely saturated (in a balanced microarchitecture, this assumption is
generally not true [75]). Nevertheless, this model provides interesting insights. Recently,
a method called interval simulation was introduced for building core models based on
the first-order performance model [39, 84]. Interval simulation permits building a core
model relatively quickly from scratch.

Another recently proposed structural core model, called In-N-Out, achieves simu-
lation speedup by simulating only first-order parameters, like interval simulation, but
also by storing in a trace some preprocessed microarchitecture-independent information
(e.g., longest dependence chains lengths), considering that the time to generate the
trace is paid only once and is amortized over several simulations [60].

2.2.4.3 Behavioral core models

Kanaujia et al. proposed a behavioral core model for accelerating the simulation of
multicore processors running homogeneous multi-programmed workloads [52] : one core
is simulated with a cycle-accurate model, and the others cores mimic the cycle-accurate
core approximately.

Li et al. used a behavioral core model to study multicores running heterogeneous
multi-programmed workloads [62]. Their behavioral model simulates not only perfor-
mance but also power consumption and temperature. The core model consists of a
trace of level-2 (L2) cache accesses annotated with access times and power values. This
per-application trace is generated from a cycle-accurate simulation of a given applica-
tion, in isolation and assuming a fixed L2 cache size. Then, this trace is used for fast
multicore simulations. The model is not accurate because the recorded access times
are different from the real ones. Therefore the authors do several multicore simulations
to refine the model progressively, the L2 access times for the next simulation being
corrected progressively based on statistics from the previous simulation. In the context
of their study, the authors found that 3 multicore simulations were enough to reach a
good accuracy.

The ASPEN behavioral core model was briefly described by Moses et al. [72]. This
model consists of a trace containing load and store misses annotated with timestamps
[72]. Based on the timestamps, they determine whether a memory access is blocking or
non-blocking.

Lee et al. proposed and studied several behavioral core models [15, 61]. These
models consist of a trace of L2 accesses annotated with some information, in particular

18 Chapter 2

timestamps, like in the ASPEN model. They studied different modeling options and
found that, for accuracy, it is important to consider memory-level parallelism. Their
most accurate model, Pairwise Dependent Cache Miss (PDCM), simulates the effect of
the reorder buffer and takes into account dependences between L2 accesses. We describe
in Section 3.3 our implementation of PDCM for the Zesto microarchitecture model.

2.2.4.4 Behavioral core models for multicore simulation

Behavioral core models can be used to investigate various questions concerning the exe-
cution of workloads consisting of multiple independent tasks [62, 102]. Once behavioral
models have been built for a set of independent tasks, they can be easily combined to
simulate a multicore running several tasks simultaneously. This is particularly interest-
ing for studying a large number of combinations, as the time spent building each model
is largely amortized.

Simulating accurately the behavior of parallel programs is more difficult. Trace-
driven simulation cannot simulate accurately the behavior of non-deterministic parallel
programs for which the sequence of instructions executed by a thread may be strongly
dependent on the timing of requests to the uncore [40]. Some previous studies have
shown that trace-driven simulation could reproduce somewhat accurately the behavior
of certain parallel programs [40, 39], and it may be possible to implement behavioral
core models for such programs [15, 82]. Nevertheless, behavioral core modeling may not
be the most appropriate simulation tool for studying the execution of parallel programs.

2.3 Simulation methodologies

2.3.1 Workload design

Workload design consists in selecting from the workload space (all existing applications),
a reduced set of workloads that is representative of the whole space. Workload design
plays an important role in the the computer system method. A poor workload design will
probably lead to a suboptimal architecture design, or to misleading conclusions. The
meaning of the term workload and its associated workload space can change according
to the object of study. In a single-core architecture, a workload is a single program
or benchmark; and the workload space is the set of all applications that may run in
a single-core architecture. However, for an study on a multicore or SMT architecture,
a workload is a set of n programs; and the workload space is the set of all possible
combinations of n programs that cant execute on the multicore/SMT architecture. In
this work, we define a multiprogram workload as the set of n independent programs that
run simultaneously in a multicore architecture with n cores.

Simulation methodologies 19

2.3.1.1 Single-program workloads

When designing a representative workload, the goal is to select the smallest set of
workloads that is representative of the workload space. The reference workload is the
set of benchmarks that the experimenter believes to be representative of the workload
space. In general, the reference workload space is still too big for practical simulation
experiments. Hence, a reduced but still representative workload is necessary.

The design of a reference workload is a difficult task. The full workload space is
huge and has different applications domains: general purpose, multimedia, scientific
computing, bio-informatics, medical applications, commercial applications (databases
and servers). As a consequence, it is possible to find several benchmark suits: SPEC-
CPU [44, 91], MediaBench [59], PARSEC [7], DaCapo [9], STAMP [71], etc. Not
all reference workloads are suited for every kind of study. Using the wrong reference
workloads leads to suboptimal designs.

Another complexity on the design of reference workloads is that the workload space
change on time. This is known as workload drift. Hence, we design future computer
systems using yesterday’s benchmarks.

The third challenges is that the process of including benchmarks in a benchmark
suite is subjective. Citron et al. [16] survey current practices in benchmark subsetting.
They found that a common practice is to do subsetting based on program language,
portability and simulation infrastructure. This practice leads to misleading performance
numbers.

There are two main methodologies to create a reduced but representative benchmark
suite: Principal components analysis (PCA) [27], and Placket and Burman design of
experiment (PBE) [99]. The target of these techniques is to reduce the amount of work
required for performance studies. Hence, the techniques want to discard redundant
benchmarks, i.e. benchmarks with similar behavior or that stress the same aspects
of the design. We also want to omit benchmarks that not provide any insight in the
context of the target design.

PCA is a well known statistical data analysis technique [48]. The objective of
this technique is to transform a large set of correlated variables into a smaller set of
uncorrelated variables. PCA presents a lower dimensional picture that yet captures the
essence of the full set, but that is easier to analyze and understand.

In [27, 26] Eeckhout et al. present a methodology to use PCA on the analysis
of workload behavior. With this methodology, workloads are characterized by a p-
dimensional space of p-important metrics: instruction mix, ILP, branch prediction, code
footprint, memory working set, memory access patterns, etc. Due to the complexity
of current systems, the number of p-variables is too large. Moreover, they may be
correlated making difficult to visualize and/or reason about the workload space. Hence,
PCA is used to transform the p-dimensional workload space into a q-dimensional space,
where q ≪ p. The main hypothesis is that benchmarks close in the q-space have similar
behavior. Then, Cluster Analysis [30] is used on the q-space to determine a reduced

20 Chapter 2

but representative workload set.

Yi et al. in [99] use a Placket and Burman experiment [80] to understand how
workload performance is affected by microarchitectural parameters. A PBE captures
the effect of every microarchitectural parameter without simulating all possible com-
binations of them. In particular, a PBE requires 2c cycle accurate simulations for c
microarchitectural parameters. The outcome of a PBE is a ranking of the most sig-
nificant microarchitecture performance bottlenecks. This ranking is a unique signature
for a benchmark. Hence, comparing the rankings across benchmarks allows to discern
how different benchmarks are. I.e., if for two benchmarks, the top N most significant
parameters are the same and have the same order, then one can conclude that the
benchmarks have similar behavior.

2.3.1.2 Multiprogram workloads

Only a few papers have explored the problem of defining representative multiprogram
workloads. The most obvious systematic method for defining multiprogram workloads
is random selection. The advantage of random workload selection is that it is simple and
less susceptible to bias. Indeed, if the author of a study has a very good understanding
of a problem, he/she can identify "important" workloads. However, the behavior of
modern superscalar processors is sometimes quite complex, and accurate simulators are
needed to capture unintuitive interactions. This is why research in computer architec-
ture is mostly based on simulation. Defining multiprogram workloads a priori, based
on one’s understanding of the studied problem, may inadvertently bias the conclusions
of the study. Though random selection of workloads is a simple and obvious method,
it is not clear how many workloads must be considered. Van Craeynest and Eeckhout
have shown in a recent study [20] that using only a few tens of random workloads, as
seen in some studies, does not permit evaluating accurately a throughput metric like
weighted speedup [89] or harmonic mean of speedups [65]. In their experiments, about
150 random 4-thread workloads are necessary to be able to compute throughput with
reasonable accuracy out of 29 individual SPEC CPU2006 benchmarks [91]. That is, ran-
dom selection requires a sample of workloads larger than what is used in most studies.
That may be a reason why most authors use a class-based selection method instead. In a
class-based selection method, the experimenter classify benchmarks into classes and de-
fine workloads from these classes. In the vast majority of cases, the classes are defined
"manually", based on the experimenters’ understanding of the problem under study.
Among the studies using class-based workload selection, very few are fully automatic.
In a recent study, Vandierendonck and Seznec use cluster analysis to define 4 classes
among the SPEC CPU2000 benchmarks [96]. Van Biesbrouck et al. [94] described a
fully automatic method to define workloads using microarchitecture-independent pro-
filing data. Instead of classifying benchmarks, they apply cluster analysis directly on
points representing workloads.

Simulation methodologies 21

2.3.2 Sampling simulation

Sampling is an established method for representing a data set using a fraction of the
data. In the simulation context, a sample is a contiguous interval of dynamic instruc-
tions during program execution. Because simulating a benchmark to completion is too
long, people generally simulate samples through the program’s execution. There are
two main approaches in sampling simulation: statistical sampling [42, 97] and represen-
tative sampling [41, 79]. Statistical sampling takes either random or periodic samples of
instructions without special consideration of the sample location. Representative sam-
pling carefully identifies phases in a program’s execution and then uses those phases
to select the sample location. In general, functional-only simulation is used to go from
one sample to the next. The functional-only simulation is much faster than the cycle-
accurate simulation mode.

2.3.2.1 Statistical sampling

Statistical sampling has a rigorous mathematical foundation in the field of inferential
statistics, which offers well-defined procedures to quantify and to ensure the quality
of sample derived estimates. Computer architecture researchers have proposed several
different sampling techniques to estimate a program’s behavior. Laha et al. in [56]
propose a simulation method based on statistical techniques. The main target of the
method was to reduce measurements in very large traces, and predict the mean miss
rate and miss rate distribution of cache memory systems. They compared the sampled
mean’s accuracy and examined the distribution of random sampling to show that it
matched that of the real trace and using just 7% of the information.

In [18], Thomas Conte uses statistical sampling of address traces to evaluate cache
systems improving the performance and trace size of traditional cache simulation. In
more recent work [19], Conte et al. provided a framework that took random samples
from the execution. They computed the samples’ statistical metrics such as standard
deviation, probabilistic error, and confidence bounds to predict the estimated results’
accuracy, and statistically analyzed the metric of interest such as instructions per cycle
[98]. Conte and colleagues specified two sources of error in their sampling technique:
non-sampling bias and sampling bias. Non-sampling bias or cold-start effect results from
improperly warming up the processor. Sampling bias, on the other hand, is fundamental
to the samples, since it quantifies how accurately the sample average represents the
overall average. Two major parameters influence this error, the number of samples and
the size of each sample in instructions [98].

The smaller the sample size, the faster the simulation. But this comes at the cost of
increased overhead and complexity because of the need for accurate sample warm-up.
To determine the amount of samples to take, the user determines a particular accuracy
level for estimating the metric of interest. The benchmark is then simulated and N
samples are collected, N being an initial value for the number of samples. Error and

22 Chapter 2

confidence bounds are computed for the samples, and, if they satisfy the accuracy limit,
we are done. Otherwise, more samples (> N) must be collected, and the error and
confidence bounds must be recomputed for each collected sample set until the accuracy
threshold is satisfied. The SMARTS [97] framework proposes an automated approach
for applying this sampling technique.

2.3.2.2 Representative Sampling

Representative sampling contrasts with statistical sampling in that it first analyzes
the program’s execution to identify and locate representative samples for each unique
behavior in the program’s execution. The main advantage of this approach is that
having fewer samples can reduce simulation time and also allows for a simpler simulation
infrastructure.

Representative sampling is based on the identification of phases through the exe-
cution of a program. A phase is a series of repeating patterns (loops and procedure
calls). The phase behavior benefits simulation, because only a single sample per phase
is required to have the general picture of the program execution. Sherwood et al. in
[86, 87] present SimPoints, an automatic technique for finding and exploiting the phase
behavior of programs independent of the micro/architecture. SimPoints is an infras-
tructure that chooses a small number of representative samples that, when simulated,
represent the program’s complete execution.

To accomplish this, SimPoints breaks a program’s execution into fixed-length inter-
vals of execution, for example, 100 million instructions. A basic-block vector (BBV) is
defined for each interval with the occurrences of each basic-block during the interval.
The basic assumption here is that the program behavior is related to the code it is
executing. Hence, the number of times that each basic block executes in a time interval
is a fingerprint of the program execution. Different intervals give different fingerprints.
SimPoints then compares two vectors by computing their distance (euclidean or man-
hatan) from each other. Vectors close to each other are grouped into the same phase,
or cluster, using the k-means algorithm from machine learning.

Only one interval is chosen from a cluster for detailed simulation because intervals
with similar code signatures have similar architectural metrics. Simulating each of the
representative samples together, one from each cluster, creates a complete and accurate
representation of the program’s execution in minutes.

SimPoints requires two runs, one functional run to collect BBVs, and one run for
the sampled performance simulation itself. Therefore, upon each software modification,
the full functional run must be done again, which is not practical. This issue has been
addressed with on-line SimPoints [41], which only requires a single run and finds clusters
of BBVs on the fly.

Simulation methodologies 23

2.3.3 Statistical simulation

The main purpose of statistical simulation is to reduce the amount of time expended
in cycle accurate simulation [98]. Carl et al. introduce statistical simulation as an
alternative to cycle accurate simulation and analytical models [10]. Statistical simulator
collects several statistical profiles from the program execution. Instruction mixes and
dependence relationships profiles are collected during functional-only simulation. Cache
miss rates and branch miss prediction profiles are collected with execution/trace-driven
simulation. Statistical profiles are used to generate a synthetic trace that has the same
characteristics, but is significantly shorter than the original program. Statistical profiles
are also used to generate statistical models of caches and predictors. Synthetic traces
typically contains 100,000 to 1,000,000 instructions [98]. Finally, the synthetic trace is
simulated with a very simple core model.

The simulation model required for statistical simulation is simpler because instruc-
tions are synthesized into a small number of types. Moreover, statistical models for
caches and predictors are also simpler than their detailed counterparts. Coupled with
the very short traces, the simulation times for this kind of simulator are several orders
of magnitude lower than cycle-accurate simulators.

The accuracy of statistical simulation have improved in recent research thanks to
the inclusion of additional levels of correlation among program characteristics. Eeck-
hout et al. in [25] improve the statistical modeling accuracy extending Carl’s work
with a memory dependence profile and guaranteeing the syntactical correctness of the
synthetic traces. Nussbaum et al. in [76] propose enhanced instruction models to gen-
erate synthetic traces. Hence, instead of a global instruction mix profile, Nussbaum et
al. propose new statistical profiles of instruction mixes correlated to the abstraction of
basic blocks. The proposed profiles are: basic block branch distance profile, basic block
size profile, and combinations of these two with a global mix profile. The most accurate
statistical simulation frameworks known to date include statistical flow graphs to model
paths of execution [28]; as well as accurate memory data flow models for delayed hits,
load forwarding and cache miss correlation [38].

Statistical simulation has been also proposed for simulation of symmetric multicore
architectures. Nussbaum et al. in [77] collect statistics about barrier distribution,
lock accesses and critical section mixes to extend statistical simulation to symmetric
multiprocessor systems. They reach speedups of two orders of magnitude with average
errors of 10%. Genbrugge et al. in [37] studied statistical simulation as a fast simulation
technique for chip multiprocessor running multiprogram workloads. For this purpose,
they collect additional statistical profiles of per-set cache accesses and LRU-Stacks.

Statistical simulation has several applications. The most obvious is uniprocessor
power and performance design. Experiments show that statistical simulation achieves
excellent relative accuracy, making it extremely useful for early design stage explo-
ration. Joshi et al. evaluate the efficacy of statistical simulation as a design space
exploration tool[51]. They apply a Plackett & Burman experiment [80] to measure the

24 Chapter 2

representativeness of synthetic traces with respect to real applications, and found that
the first 10 bottlenecks identified by the experiment are shared by both synthetic and
real applications. Given that a statistical profile reflects the key properties of the pro-
gram’s execution behavior, statistical simulation can accurately estimate performance
and power[98]. This, combined with the simulation performance make it a perfect tool
for design space exploration. Other applications of synthetic simulation include work-
load characterization, program analysis, and system-level exploration/design studies.

2.4 Performance metrics

Performance metrics are the foundation of experimental research and development for
evaluating new ideas or design features. In this section, we present the most rele-
vant metrics for computing performance of computer systems with single-thread, multi-
thread and multiprogram workloads.

2.4.1 Single-thread workloads

For single-thread workloads the performance metric is very well defined: the total exe-
cution time T . In fact, Patterson and Hennessy in [43] sustain that the only consistent
and reliable measure of performance is the execution time of real programs, and that
all proposed alternatives have eventually led to misleading claims or even mistakes in
computer design. Equation 2.1 presents the Iron Law of Performance:

T = N ∗ CPI ∗
1

f
(2.1)

where N is the number of instructions, CPI is the average number of cycles per instruc-
tion, and f is the frequency. The equation relates the three sources of performance:
Instructions Set Architecture (N), the microarchitecture (CPI), and the technology
(f). If N and f stay constant, then the CPI expresses the performance. The CPI
is a lower is better performance metric. Some studies present the performance with
CPI stacks, which show the number of cycles lost due to different characteristics of the
system, like the cache hierarchy or branch predictor, and lead to a better understanding
of each component’s effect on total system performance [11, 24].

Another important single-thread performance metric is the average number of in-
structions per cycle or IPC. Where the IPC is the inverse of the CPI, i.e. IPC = 1

CPI
.

Note also that the IPC is a higher is better metric. The IPC is very popular among com-
puter architects, because it better characterizes a single-thread benchmark’s behavior
than the total execution time [70]. Computer architects are usually more interested in
the benchmark’s behavior, which they hope is representative, than in computing exactly
the total execution time which generally depends on the program’s inputs.

Performance metrics 25

2.4.2 Multi-thread workloads

Performance metrics for multi-thread workloads are similar to single-thread, assuming
that no other program is running in parallel. Hence, the most reliable performance met-
ric is again the total execution time of the program. In the context of multi-thread work-
loads, the IPC is considered a not reliable measure of performance [24]. The number
of instructions can change from one run to the next due to spin-lock loop instructions,
which do not contribute to performance. Moreover, a higher IPC not necessarily mean
more performance, and the other way around. This effect is more pronounced with
an increasing number of processors or when applications spend a significant amount of
time in OS-mode [1].

The user-mode IPC (U-IPC) is used in [42] as an alternative to the IPC, where
only user-mode instructions are used to compute the IPC. This metric does not capture
the performance of the system code. Emer and Clarck in [29] exclude the VMSNull
process from the per-instructions statistics to address the spin-lock loop problem.

2.4.3 Multiprogram workloads

Simultaneous multi-threading processors and multicore processor have become main-
stream. This has created a need for performance metrics for multiprogram workloads.
A processor running a multiprogram workload executes multiple independent programs
concurrently. The independent co-executing programs affect each other’s performance
due to shared resources. As a result, the programs compete for resources in the last
level cache, interconnection network, off-chip bandwidth to memory, and the memory
itself. Several different metrics have been proposed for quantifying the throughput of
multicore processors. There is no clear consensus about which metric should be used.
Some studies even use several throughput metrics [70].

2.4.3.1 Prevalent metrics

Several throughput metrics based on the IPC are commonly used in SMT and mul-
tiprogram studies. However, the fact that the metrics are based on IPC limits their
applicability to single-thread benchmarks. The most frequently used ones are the IPC
throughput, the weighted speedup, and the harmonic mean of speedups.

IPC throughput. In this work, we define the IPC throughput (IPCT) as the
average of the IPCs of the co-executing programs. Equation 2.2 presents the IPCT
metric in terms of individual program IPCs.

IPCT =
1

n

n
∑

i=1

IPCi (2.2)

Where, IPCi is the IPC of the co-executing program i and n is the number of co-
executing programs. Alternatively, some authors define the IPCT as the sum of IPCi

26 Chapter 2

[24, 95]. Eeckhout in [24] sustain that the IPCT must not be used for multiprogram
due its lack of meaning in terms of user or system perspective.

Weighted speedup. Snavelly and Tullsen [89] propose the weighted speedup (WSU)
metric. The meaning of WSU relates to the number of jobs completed by unit of time
[24]. Equation 2.3 presents the WSU metric in terms of individual program IPCs.

WSU =
1

n

n
∑

i=1

IPCMP
i

IPCSP
i

(2.3)

Where, IPCMP
i is the IPC of the program i during multiprogram execution, and IPCSP

i

is the IPC of the program i executing in single-program mode. If WSU is less than 1/n,
then the co-execution of the programs take longer in the shared system than it will take
in a back-to-back execution. Note that WSU is a higher is better metric.

Harmonic mean. The harmonic mean of speedups (HSU) has been proposed as
a metric to balance fairness and throughput [65]. Equation 2.3 presents the HSU metric
in terms of individual program IPCs.

HSU =
n

∑n
i=1

IPCSP
i

IPCMP
i

(2.4)

Where, IPCMP
i is the IPC of the program i during multiprogram execution, and IPCSP

i

is the IPC of the program i executing in single-program mode. HSU is a higher is better
metric.

2.4.3.2 Other metrics

Additionally to the prevalent performance metrics, there are other metrics that have
been proposed to deal with fairness and consistency.

Performance metrics can be analyzed from three different point of view: system
perspective, user perspective and fairness. Eyerman and Eeckhout in [31] propose per-
formance metrics for both user and system perspective: system throughput and average
normalized turnaround time respectively. Vandierendonck and Seznec in [95] compare
different fairness metrics.

2.4.4 Average performance

In general, the performance of a computer system is not a single number. For instance,
when evaluating a single-core architecture one may have multiple benchmarks and at
the same time multiple performance values for different executions of each benchmark.
In the same way, evaluating the performance of multicore architectures requires eval-
uating multiple workload combinations. As a result, in order to compute the global

Performance metrics 27

performance of an architecture, it is necessary to do an average. The selection of the
proper mean has been a long time debate with two points of view: mathematics and
statistics. The maths perspective favoring arithmetic and harmonic means [88, 21, 47],
meanwhile the statistic point of view favoring the geometric mean [36, 68]. Others as
Hennessy and Patterson [43] have shown the strengths and weaknesses of each mean.

The mathematical perspective starts from understanding the physical meaning of
the performance metric, and then derives the average in a way that makes sense [24].
In this approach there are no assumptions about the distribution of the performance
values, neither about the chosen workloads.

The harmonic mean (H-mean) must be used when the metric of interest is a ratio
A/B and A is exactly the same for all benchmarks. For example, if the metric is IPC
and the simulation of all benchmarks correspond to a fixed number of instructions.
Equation 2.5 presents the definition of the H-mean.

H-mean =
n

∑n
i=1

1
PMi

(2.5)

where PMi is a performance metric.
The arithmetic mean must be used when the metric is a ratio A/B and B is weighted

equally among benchmarks. For example, if the metric is MIPS and all benchmarks
are simulated during the same amount of time. Equation 2.6 presents the definition of
A-mean.

A-mean =
1

n

n
∑

i=1

PMi (2.6)

The statistical perspective makes several assumptions to prove the suitability of the
geometric mean (G-mean). First, it assumes that benchmarks are selected randomly
from a broader workload space. And second, it assumes that the speedups follow a log-
normal distribution. This last assumption implies that some benchmarks experience
much larger speedups than others. Equation 2.7 presents the definition of the G-mean.

G-mean = n

√

√

√

√

n
∏

i=1

PMi (2.7)

An interesting property is that the G-mean allows computing average speedups between
two machines by dividing the average speedups for these to machines relative to some
reference machine.

We can summarize the prevalent throughput metrics (see section 2.4.3.1) and the
way to compute global performance as follows: The per-workload throughput for work-
load w is

t(w) = X-mean
k∈[1,K]

IPCwk

IPCref [bwk]
(2.8)

28 Chapter 2

where X-mean is the A-mean, H-mean or G-mean; IPCwk is the IPC of the thread
running on core k, bwk ∈ [1, B] is the benchmark on core k, and IPCref [b] is the IPC
for benchmark b running on a reference machine. The sample throughput is computed
from the W per-workload throughput numbers:

T = X-mean
w∈[1,W]

t(w) (2.9)

A metric equivalent to the IPCT can be obtained by setting X-mean to A-mean and
IPCref [b] to 1. WSU and HSU are obtained by setting X-mean to A-mean and H-mean
respectively; and for IPCref [b] we use the IPC for the benchmark running alone on the
reference machine (single-thread IPC).

Chapter 3

Behavioral Core Models

3.1 Introduction

Modern high-performance processors have a very complex behavior which reflects the
complexity of the microarchitecture and of the applications running on it. Models are
necessary to understand this behavior and take decisions.

Various sorts of models are used at different stages of the development of a proces-
sor, and for different purposes. For instance, analytical models are generally used for
gaining insight. Fast performance models are useful in research studies and, in early
development stages, for comparing various options. As we take decisions and restrict
the exploration to fewer points in the design space, models become more detailed. In
general, there is a tradeoff between accuracy and simplicity. A “heavy" model, e.g., a
RTL description, gives accurate performance numbers, but requires a lot of work and
is not appropriate for research and design space exploration. A “light" model, e.g., a
trace-driven performance simulator, can be used for research and exploration but pro-
vides approximate numbers. Moreover, it is possible to use different levels of detail for
different parts of the microarchitecture, depending on where we focus our attention.

In this study, what we call an application-dependent core model, or core model for
short, is an approximate model of a superscalar core (including the level-1 caches) that
can be connected to a detailed uncore model, where the uncore is everything that is not
in the superscalar core (memory hierarchy including the L2 cache and beyond, commu-
nication network between cores in a multicore chip, etc.) It must be emphasized that
a core model is not a complete processor model [49, 57, 62, 45]. A complete processor
model provides a global performance number, while a core model emits requests to the
uncore (e.g., level-1 cache miss requests) and receives responses to its requests from
the uncore. The request latency may impact the emission time of future requests. The
primary goal of a core model is to allow reasonably fast simulations for studies where
the focus is not on the core itself, in particular studies concerning the uncore.

Core models may be divided in two categories: structural models and behavioral

29

30 Chapter 3

models. Structural core models try to emulate the internal behavior of the core microar-
chitecture. Simulation speedups in this case come from not modeling all the internal
mechanisms but only the ones that are supposed to most impact performance.

Behavioral core models try to emulate the external behavior of the core, which is
mostly viewed as a black box. Unlike structural models, behavioral models are derived
from detailed simulations, which is a disadvantage in some cases. But in situations
where model building time can be amortized, behavioral core models are potentially
faster and more accurate than structural models. Yet, behavioral core models have
received little attention so far.

To the best of our knowledge, the work by Lee et al. is the only previous study
that has focused specifically on behavioral superscalar core modeling [61]. They found
that behavioral core models could bring important simulation speedups with a rea-
sonably good accuracy. However the detailed simulator that they used, SimpleScalar
sim-outorder [3], does not model precisely all the mechanisms of a modern superscalar
processor. We present in this chapter an evaluation of Lee et al.’s Pairwise Depen-
dent Cache Miss (PDCM) core modeling method using the Zesto detailed simulator,
a detailed model of a modern superscalar microarchitecture [64]. We implemented a
core model based on the PDCM approach with a reasonably good accuracy. Still, we
identified some opportunities to improve the accuracy.

This has led us to propose a new method for behavioral application-dependent su-
perscalar core modeling, BADCO, inspired by but different from PDCM. Unlike PDCM,
which uses a single detailed simulation to build the core model, BADCO uses two de-
tailed simulations. The first detailed simulation, identical to the one performed for
PDCM, provides timing information for µops when all level-1 (L1) miss requests have a
null latency. For the second information, we force a long latency on all L1 miss requests.
Unlike PDCM, which uses a structural approach to find the dependences between re-
quests, BADCO infers dependences from the timing information provided by the second
detailed simulation.

The accuracy of BADCO is on average better than that of PDCM on all the config-
urations we have tested. We have studied not only the ability of BADCO to predict raw
performance but also its ability to predict how performance changes when we change the
uncore. Our experiments demonstrate a good qualitative accuracy of BADCO, which
is important for design space exploration. The simulation speedups we obtained for
PDCM and BADCO are in the same ranges, typically between one and two orders of
magnitude.

This Chapter is organized as follows. Section 3.2 illustrates the limits of approximate
core modeling. Section 3.3 briefly describes PDCM and the extension we introduce into
the model to improve its accuracy for detailed superscalar cores. We introduce a new
behavioral core model, BADCO, in Section 3.4. Section 3.5 presents an experimental
evaluation of the accuracy and simulation speed of PDCM and BADCO. Finally, Section
3.6 evaluates BADCO’s accuracy and simulation speed for multiprogram workloads.

The limits of approximate microarchitecture modeling 31

3.2 The limits of approximate microarchitecture modeling

The curves on Figure 3.1 demonstrate the complex behavior of an out-of-order (OoO)
superscalar core. These curves, one for h264ref and one for libquantum, were obtained
with the Zesto simulator [64] and show the normalized execution time as a function
of the L1 miss latency, assuming that the miss latency is uniform and constant. One
would expect these curves to be monotonically increasing and convex.

Let us assume that the execution of a program by a superscalar processor can
be modeled as a graph, where nodes represents certain events and edges represent
dependences between events [34, 35]. Each edge is annotated with a latency. Let us
assume that requests to the uncore are a subset of the graph edges, and that all the
requests have the same latency X. We enumerate all the possible paths (i.e., dependence
chains) in the graph and denote Nk the number of requests on path k. The length of
path k is

Tk(X) = Lk +NkX

and the total execution time is the length of the longest path

T (X) = max
k

Tk(X) = Tp(X)(X)

where p(X) is the longest path. Np(X) is the slope of T (X) at X. Let us consider
X < Y . We have

Tp(Y)(X) ≤ T (X)

Tp(X)(Y) ≤ T (Y)

This implies (Np(Y) −Np(X))X ≤ (Np(Y) −Np(X))Y , which is possible only if Np(Y) ≥
Np(X). The slope of T (X) increases with X, hence T (X) is convex.

As the miss latency is increased, there should be more and more misses on the
critical path (the chain of dependent events that determines the overall execution time
[34]). The curve for h264ref is nearly convex, as are the curves for a majority of our
benchmarks. However, some benchmarks like libquantum have a clearly non-convex
curve. This shows that the critical path, though a convenient conceptual tool, does
not reflect completely what happens in a OoO microarchitecture. This illustrates the
inherent difficulty of defining approximate microarchitecture performance models. The
behavior of an OoO core depends on many mechanisms interacting in a complex way
and impacting performance. Such complex behavior is difficult to reproduce with a
simplified model, be it structural or behavioral. With this limitation in mind, the aim of
approximate microarchitecture modeling is to find a good trade-off between simulation
accuracy and simulation speed.

32 Chapter 3

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0 20 40 60 80 100

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Latency (cycles)

h264ref

zesto

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

 0 20 40 60 80 100

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Latency (cycles)

libquantum

zesto

Figure 3.1: Normalized execution time for h264ref and libquantum as a function of the L1
miss latency, assuming a constant and uniform miss latency, using the Zesto simulator.

The PDCM behavioral core model 33

Figure 3.2: Simulation flow for PDCM behavioral core model.

3.3 The PDCM behavioral core model

Lee et al. present in [61] three different behavioral models: isolated cache miss, inde-
pendent cache miss, and pairwise dependent cache miss. The models use traces of L2
accesses annotated with additional information to approximate the behavior of an OoO
core. The isolated cache miss model is a pessimistic approach, where all trace-items are
processed in a sequential way, that leads to an overestimation of the execution time.
The independent cache miss model uses the ROB to control the number of items that
can access memory. This model assumes total independence among trace-items. The
performance results highly underestimate the cycle count for benchmarks with many
dependencies between memory accesses. Finally, the pairwise dependent cache miss
model (PDCM) improves over the independent cache miss model by considering de-
pendencies between items. Lee et al. show that PDCM is accurate for an idealistic
OoO core with perfect branch prediction and no hardware prefetch. In this section, we
study the PDCM model and how it performs with a detailed OoO core model. We also
propose some improvements to increase PDCM’s accuracy.

34 Chapter 3

3.3.1 PDCM simulation flow

The simulation flow of PDCM behavioral core model has two phases: model building
and trace simulation. Figure 3.2 presents the simulation flow for PDCM. During the
model building phase, a per-application trace is generated from a detailed microarchi-
tecture simulator 1, assuming an ideal L2 cache, i.e., forcing an L2 cache hit on each
L1 cache miss. Each trace item represents an instruction with an L1 miss. The trace
item information contains (1) the request type (read, write, instruction, etc.); (2) the
instruction delta, i.e., the number of instructions between this L1 miss and the next L1
miss; (3) the time delta, i.e., the number of cycles elapsed between this L1 miss and
the next L1 miss; and (4) a data dependence, i.e., on which previous L1 miss this L1
miss depends, directly or indirectly. This data dependence is found by analyzing regis-
ter and memory dependences during trace generation, taking into account the indirect
dependences caused by delayed L1 hits 2.

During the trace-driven simulation, the time deltas and the dependences are used to
compute the issue time of each L1 miss. Dependences include both data dependences
and structural dependences induced by the limited reorder buffer (ROB). In particular,
the instruction deltas are used to simulate the effect of the limited ROB and determine
whether or not independent L1 misses can overlap.

3.3.2 Adapting PDCM for detailed OoO core

The original PDCM was tested with SimpleScalar sim-outorder microarchitecture model
assuming 100% correct branch predictions [61]. Zesto is more detailed than sim-
outorder, and we had to spend substantial effort adapting PDCM for Zesto in order
to improve the accuracy until similar level to that described in [61]. Figure 3.3 illus-
trates our efforts. The first bar (leftmost) shows the accuracy obtained with our initial
implementation of PDCM, based on what is explicitly described in the original PDCM
work, taking into account the limited MSHRs and assuming a perfect branch prediction.
The second bar shows the impact of having a realistic branch predictor and activating
hardware prefetchers: unsurprisingly, the accuracy degrades. Then we improved the
accuracy, keeping the general principles of the PDCM approach: we have introduced
in the model TLB misses (third bar), write backs (fourth bar), wrong-path L1 misses,
L1 prefetch requests (sixth bar), and more precise modeling of delayed hits (last bar).
The numbers shown for PDCM in the remaining of this chapter were obtained with our
optimized version. Here, we present a fully-detailed description of our improvements to
PDCM.

1Lee et al. used Simplescalar sim-outorder [3] for their experiments.
2If an L1 miss Y is data-dependent on a delayed L1 hit which is waiting for a cache line requested

by a previous L1 miss X, then Y is considered data-dependent on X [12].

The PDCM behavioral core model 35

 3

 4

 5

 6

 7

 8

initia
l

realistic
+tlb_misses

+write
_backs

+wrong_path

+prefetch

+delayed_hits

C
P

I e
rr

or
 (

%
)

Figure 3.3: Our efforts to adapt the PDCM method to the Zesto microarchitecture
model and decrease the average CPI error.

3.3.2.1 TLB misses and inter-request dependencies

The original PDCM considers only three types of L1 misses: instruction, load and
store misses. Computer systems that support virtual memory use translation lookahead
buffers (TLBs) to translate virtual addresses into physical addresses. TLBs are small
caches with the only function of helping in the translation of virtual addresses. Modern
processors include at least two TLBs: one for instructions and one for data. TLB
misses introduce an extra delay on memory accesses. Additionally, if a memory access
generates both TLB and L1 cache misses, then the TLB miss must be resolve before
the L1 miss start being processed. A similar dependency exists between instructions
misses and data misses. It occurs when the instruction misses during fetch, and later the
instruction itself generates a memory access that also misses. An extreme case happens
when the same instruction misses during fetch in both instruction TLB and instruction
L1 cache, and misses again in both data TLB and data L1 cache. In this case, the
latency of the four misses is serialized. In this context, a PDCM model must be able to
reproduce this behavior during trace simulation. Hence, we have extended trace items
to contain multiple requests, which may have sequential dependencies among them.
During trace simulation, we reproduce the dependencies between requests associated
with the same trace item.

36 Chapter 3

3.3.2.2 Write-backs

Another type of memory request not considered originally by PDCM are the write-backs
(WB). A WB occurs when a dirty cache-block is selected as victim to be replaced by
another incoming block. The evicted block is inserted into the WB-buffer and waits
there until it can be written to the next level in the memory hierarchy. A WB generally
does not have an immediate impact on the program performance, but it consumes
bandwidth and increases the latency of other L1 misses when the WB-buffer is full. To
include WBs in PDCM we must associate this type of memory request with trace items.
Hence, during trace generation we attribute a WB to the trace item whose L1 data miss
causes the cache-block eviction. During trace simulation WB are issued to the uncore
after the associated L1 data miss completes.

3.3.2.3 Branch miss predictions

Every modern superscalar core uses branch prediction to reduce the penalty that branch
instructions cause, when executed in long pipelines. If a branch misprediction occurs,
then the core must roll back to the mispredicted branch and flush all the instructions in
the wrong path. However, during the execution of the wrong path, the core may initiate
all kind of uncore requests 3. The impact on performance of wrong-path requests has
already been studied [73, 85]. Some mispredicted request behave as prefetch requests,
and bring blocks to the cache that will be used in the future, contributing in this way
to improve performance. However, wrong-path requests consume bandwidth through
the memory hierarchy, and they may pollute the caches. Besides, wrong-path requests
may also initiate additional WBs. An extra complexity is the fact that the number of
wrong-path requests may change if the outcome of a branch depends on a long latency
request.

Our experimental results show that omitting wrong-path requests lead to an un-
derestimation of the cycle count. In order to improve the accuracy, we must capture
and trace wrong-path requests. Hence, a mispredicted branch generates a trace item
to which all the requests on the wrong path are attributed. During trace simulation, a
mispredicted-branch item will stall the fetch of new items until it completes execution
and all the wrong-path requests have been issued to the uncore 4.

3.3.2.4 Prefetching

The purpose of a hardware prefetcher is to fetch cache blocks before they are needed
by the program. The prefetcher uses the stream of memory access/misses to predict
which blocks will be needed in the future. If the predicted block is not already present

3The only exception is L1 store miss, because store request are processed after the commit pipeline
stage

4The fetch stall models the pipeline flush on real architectures.

The PDCM behavioral core model 37

in cache, and the cache and bus are not too busy 5, then a prefetch request is issued
to the cache. Not all prefetch requests hide completely the latency of memory accesses.
Hence, it may happen that demand misses become delayed hits on a prefetch. Prefetch
requests account for an important percentage of the traffic through the memory hierar-
chy. Moreover, prefetch requests may pollute the cache, and they also initiate additional
WB requests.

Considering the effect of prefetch requests on a core model such as PDCM is complex.
On one side, a prefetch request depends on the stream of access/misses on a L1 cache.
On the other side, a prefetch request also depends on the performance of the uncore.
Furthermore, delayed hits pending on a prefetch requests impact performance. Ignoring
the impact of prefetch on performance request may lead to misestimate the cycle count.

Experimentally, we have observed that the total number of read requests (demand
misses + prefetch) to the uncore does not change significantly from one uncore config-
uration to another. What we have is an exchange of L1 misses for prefetch requests
and vice versa. During trace generation, we record all prefetch requests, and thus we
guarantee that during trace-driven simulation, PDCM issues a similar number of read
requests to the uncore. However, a request that for PDCM trace-driven simulation is
a prefetch may be a demand miss on a corresponding detailed simulation, or the other
way around. The impact on performance in any cases is different and thus a source of
inaccuracy.

During trace generation, prefetch requests are attributed to the instruction that
triggered the prefetch. In particular, we have configured Zesto to generate L1 prefetch
requests on a miss. Therefore, a prefetch request is attributed to the same item as the
L1 demand miss. During trace simulation, prefetch requests are issued to the uncore
simultaneously with demand misses. However, a trace item does not need to wait for
the prefetch request to return to be completed.

3.3.2.5 Delayed hits

A delayed hit is a memory reference to a cache block for which a request has already
been initiated by another instruction but has not yet completed, i.e., the requested
block is still on its way from memory [12]. Delayed hits were considered by Lee et al. in
the original PDCM model as an instrument to account for indirect dependences caused
by delayed L1 hits. The same problem has been addressed by Chen et al. in [12]. In the
context of a limited number of overlapping long latency data cache misses due to finite
MSHR resources, delayed hits have an additional impact on performance that must be
addressed. In particular, Zesto models the MSHR in such a way that each L1 cache
miss occupies an MSHR entry. As a result, delayed hits also occupy MSHR entries, and
thus they can limit the effective number of outstanding requests that can be processed

5The MSHR occupancy and the bus utilization, for example, can be monitored by the prefetch
controller to decide whether or not to issue prefetch requests.

38 Chapter 3

simultaneously. We have found this problem to be extremely important when modeling
the performance of benchmarks such as libquantum and hmmer.

One limitation of PDCM is that the trace is generated assuming an ideal L2 cache,
thus it does not capture all delayed hits that may be present when long latencies are
simulated. In order to overcome this problem, during trace generation, we search for
additional load or store instructions, that in the case of a long latency access, would
have been delayed hits. During trace simulation, the information about delayed hits is
used in conjunction with the number of requests already in flight and the total number
of MSHR entries to limit the number of outstanding requests.

3.3.3 PDCM limitations

It should be noted that PDCM is a behavioral model as the time deltas are obtained
from a detailed microarchitecture simulation. Because the time deltas correspond to an
ideal L2 cache, PDCM is very accurate when L2 misses are few. However, PDCM uses
a structural approach to model the impact of L2 misses: it is assumed that modeling
the effect of the ROB and data dependences is sufficient to reproduce accurately the
performance impact of L2 misses. Yet, core resources other than the ROB may impact
performance significantly, for instance the limited number of ALUs, L1 cache ports,
reservation stations, etc. Even considering an unlimited ROB, the time deltas between
consecutive and data-independent L1 misses may depend on the miss latency, e.g., be-
cause of resource conflicts happening differently (the miss latency may impact the order
in which instructions are executed and how many times instructions are rescheduled),
or because a mispredicted branch is data-dependent on an L1 miss. In this context,
Section 3.4 present a new behavioral core model that is inspired from the PDCM model
but tries to overcome its limitations.

3.4 BADCO: a new behavioral core model

The new behavioral model we propose, BADCO, is inspired from PDCM. However
BADCO uses a behavioral method to find dependences between requests to the un-
core, unlike in PDCM where an explicit data-dependence analysis is performed. Unlike
PDCM which uses a single detailed simulation to build the core model, BADCO uses
two detailed simulations.

For the first detailed simulation, we force the latency of each request to zero. This
simulation is identical to the one done for PDCM. From this first simulation, we obtain
a trace T0. Then we perform a second simulation by giving a long latency to each
request. We set the request latency to a value greater than or equal to L, where L is
typically greater than the greatest latency that may be experienced when using the core
model, e.g., L = 1000 cycles. We give to certain requests a latency greater than L: we
set the latencies so as to force the completion times of successive data requests to be

BADCO: a new behavioral core model 39

Figure 3.4: Simulation flow for BADCO model.

separated by L cycles or more. We obtain from this second simulation a trace TL. Both
T0 and TL contain some timing information for each retired µop.

A BADCO model is then built from the information contained in T0 and TL. The
information in TL is used to find (direct and indirect) dependences between requests.
Dependences include not only data dependences, but also branch mispredictions, lim-
ited resources (reservation stations, MSHRs, ...), etc. We do not perform any detailed
analysis of these dependences during trace generation. Instead, dependences are found
indirectly by analyzing the timing information in TL. We use the fact that, if a request
R2 is issued before a previous request R1 is completed, R2 does not depend on R1. If R2
depends only on R1, R2 is often issued a few cycles after R1 completes. That is basically
how we detect dependences. Forcing successive requests in TL to occur at intervals no
less than 1000 cycles is for disambiguation: R1 is the request whose completion time
is closest to the issue time of R2. Of course, this method is not 100% reliable, but it
works well in practice.

3.4.1 The BADCO machine

A BADCO machine is an abstract core that fetches and executes nodes. A node Ni

represents a certain number Si of retired µops (not necessarily contiguous in sequential
order). Si is the node size. The sum of all nodes sizes,

∑

i Si, is equal to the total

40 Chapter 3

Figure 3.5: Example of BADCO model building: Input traces T0 and TL containing
the same 12 dynamic µops in sequential order at the left, µop-by-µop processing of the
traces at the center, and the final BADCO model featuring 6 nodes at the right.

BADCO: a new behavioral core model 41

number of µops executed. As the BADCO machine works on nodes instead of µops,
the bigger the nodes, the greater the expected simulation speedup. The next section
explains how we build the nodes. A node Ni also has a certain latency in clock cycles,
called the node weight Wi.

Some nodes, called request nodes, carry one or several requests to the uncore. There
are three sorts of request nodes: I-nodes, L-nodes and S-nodes. An I-node may carry
three sorts of requests: IL1 miss, ITLB miss or instruction prefetch requests. An L-
node (or S-node) carries the requests attached to one load (or store) µop (DL1 miss,
DTLB miss, write-back, DL1 prefetch 6). An L-node or S-node can also be an I-node.
In the BADCO model, a node may be dependent on one older request node, called the
dependency node.

During the trace-driven simulation, the BADCO machine fetches nodes and inserts
them in the BADCO window in sequential order. I-nodes send their requests to the
uncore at fetch time. Node fetching imitates what the real core does 7. The BADCO
window emulates the real core reorder buffer (ROB). When the sum of nodes sizes inside
the window does not exceed the ROB size, the next node can be fetched. Otherwise
node fetching is stalled. Once in the window, nodes can start executing. An L-node may
send its requests as soon as its dependency node is completed. An L-node is considered
completed when all its requests are finished. Other nodes are considered completed
when their dependency node is completed. Nodes are retired from the window in the
order they were fetched. A node is ready for retirement when it is completed and it is
the oldest node in the window. The retirement of a node Ni from the window actually
happens exactly Wi cycles after the node is ready for retirement. After being retired
from the window, an S-node is sent to a post-retirement store queue, imitating what the
real core does with stores. The requests carried by an S-node are issued to the uncore
after retirement. The BADCO machine models the occupancy of the MSHRs inside the
core. It imitates, to the extent possible, how the real core manages the MSHR 8. In
particular, a request requiring an MSHR entry must wait until there is a free MSHR
entry before being sent to the uncore.

3.4.2 BADCO model building

The BADCO model building phase consists in grouping µops with the same dependen-
cies to form nodes, and in defining dependencies between nodes. Traces T0 and TL
provide the information for this process.

6We attach a DL1 miss request to the first µop (load or store) accessing that cache line. We attach
a DL1 prefetch to the µop triggering the prefetch. We attach a write-back request to the same µop to
which the request causing the write-back is attached.

7The Zesto model implements next-line prefetching for the instructions, but does not pipeline the
instruction misses. Node fetching mimics this behavior.

8For instance, the Zesto simulator allocates an MSHR entry for each delayed hit (i.e., hits on a
pending miss). Our BADCO machine does the same in our experiments. This is why we simulate an
unlimited MSHR for generating trace TL, so as to capture all potential delayed hits in the trace.

42 Chapter 3

Both traces T0 and TL in the left part of Figure 3.5 represent the same sequence of
dynamic µops in program order. The µops in T0 are annotated with their retirement
time “RT”. The µops in TL are annotated with their issue time “IT” and completion
time “CT”. Some µops carry one or several requests, they are called request µops9.
All other µops are called non-request µops. Figure 3.5 uses dark-gray/green circles for
request µops and light-gray/blue circles for non-request µops. A request µop and the
non-request µops following it until the next request µop form a run.

For each µop X, we define its dependency µop D(X) as follows: D(X) is the request
µop before X and closest to X whose CT is less than the IT of X. 10. For example, µop
H in Figure 3.5 has IT = 1016, the closest request µop with CT < 1016 is µop A with
CT = 1005, then D(H) = A.

We process traces T0 and TL simultaneously and µop by µop, in lockstep fashion.
For each µop, we determine if the µop starts a new node or if it is attributed to an
existing node. Every request µop X starting a run creates a new node Nj to which
it is attributed. The dependency node D(Nj) of Nj is the node to which D(X) has
been attributed. All subsequent µops attributed to the same node must have the same
dependency µop. In particular, all the µops in the run with the same dependency X are
attributed to node Nj. If a non-request µop cannot be attributed to any of the nodes
already created for that run, we create a new node for the µop.

Attributing a µop to a node Ni means incrementing the node size Si and adding to
the node weight Wi the difference between the retirement time of the µop in T0 and
that of the previous µop. By doing so, the sum of all nodes weights,

∑

i Wi, equals the
total execution time when all the requests to the uncore have a null latency.

The central part of Figure 3.5 presents step by step the building process of nodes.
Step 1 processes µop A; A is a request µop and starts the node N1 with W = 10, S = 1,
and D(N1) = 0. Step 2 processes µop B; B is a non-request µop with D(B) = 0, and as
consequence, it is attributed to N1 with D(N1) = 0. The properties of N1 are updated,
the size S is incremented, and 1 cycle is added to the weight W because RTB−RTA = 1.
In Step 3, we start a new node N2 for the non-request µop C with W = RTC−RTB = 0,
S = 1 and D(N2) = N1 (A attributed to N1). The µop C cannot be attributed to the
node N1 because all µops in N1 have a null dependency and C depends on A. Steps 5
and 6 attribute µops D and E to nodes N1 and N2 respectively. Step 6 processes the
request µop F and starts the processing of the second run of µops. We create a new
node N3 with W = RTF − RTE = 3, S = 1 and D(N3) = N1 (A attributed to N1).
Step 7 processes the non-request µop G; G starts a new node N4 because D(G) = 0 and
cannot be attributed to N3. Note that G cannot be attributed to N1 either because N1
belongs to the previous run. The building process continues in a similar fashion for the
subsequents µops. The right part of Figure 3.5 presents the final BADCO model.

9Each request to the uncore is attached to a single µop.
10D(X) is null or 0 when there is not request µop whose CT is less than the IT of X. This just

happen at the beginning of the trace.

Experimental evaluation 43

core type small medium big
decode/issue/commit 3/4/3 3/5/3 4/6/4
RS/LDQ/STQ/ROB 12/12/8/32 18/18/12/64 36/36/24/128
DL1/DTLB MSHRs 4/2 8/4 16/8

clock 3 GHz
IL1 cache 2 cycles, 32 kB, 4-way, 64-byte line, LRU, next-

line prefetcher
ITLB 2 cycles, 128-entry, 4-way, LRU, 4 kB page
DL1 cache 2 cycles, 32 kB, 8-way, 64-byte line, LRU, write-

back, IP-based stride + next line prefetchers
DTLB 2 cycles, 512-entry, 4-way, LRU, 4 kB page
Branch predictor TAGE 4 kB, BTAC 7.5 kB, indirect branch pre-

dictor 2 kB, RAS 16 entries

Table 3.1: Core configurations. The default configuration is the “big" core.

3.5 Experimental evaluation

The detailed simulator used for this experiment is Zesto [64]. Some of the characteris-
tics of the core and uncore configurations we consider are given in tables 3.1 and 3.2
respectively. We consider 3 different core configurations: “small”, “medium" and “big".
The L2, LLC and memory bus each can have a low or high value. This defines up to
8 different uncore configurations. For instance, the configuration denoted “010" has a
small L2, a big LLC, and a narrow memory bus. The “big" core is the default core
configuration. The default uncore configuration is “001". We will not present results
for configurations “100" and “101" since they are not realistic.

For generating traces T0 and TL, we skip the first 40 billions instructions of each
benchmark, and the trace represents the next 100 millions instructions (no cache warm-
ing was performed). We assume that simulations are reproducible, so that T0 and TL
represent exactly the same sequence of dynamic µops. We used SimpleScalar EIO trac-
ing feature [3], which is included in the Zesto simulation package. We present results
for the SPEC CPU2006 benchmarks that we are able to run with Zesto. We have also
included two SPEC CPU2000 benchmarks, vortex and crafty. We have chosen these two
benchmarks because they experience a relatively high number of instruction misses and
branch mispredictions, which is interesting for testing the models. All the benchmarks
were compiled with gcc-3.4 using the “-O3" optimization flag.

3.5.1 Metrics

The primary goal of behavioral core modeling is to allow fast simulations for studies
where the focus is not on the core itself, in particular studies concerning the uncore.

44 Chapter 3

low (“0") high (“1")

L2 size/latency 256 kB / 6 cycles 1 MB / 8 cycles

LLC size/latency 2 MB / 18 cycles 16 MB / 24 cycles

FSB width 2 bytes 8 bytes

DL1 write buffer 8 entries
L2 64-byte line, 8-way, LRU, write-back, 8-entry

write buffer, 16 MSHRs, IP-based stride + next
line prefetchers

LLC 64-byte line, 16-way, LRU, write-back, 8-entry
write buffer, 16 MSHRs, IP-based stride +
stream prefetchers

FSB clock 800 MHz
DRAM latency 200 cycles

Table 3.2: Uncore configurations. The L2, LLC and memory bus each can have a
low or high value, which defines up to 8 different configurations. For instance, the
configuration denoted “010" has a small L2, a big LLC and a narrow memory bus. The
default configuration is “001".

Ideally, a core model should strive for quantitative accuracy. That is, it should give
absolute performance numbers as close as possible to the performance numbers obtained
with detailed simulations. Nevertheless, perfect quantitative accuracy is difficult, if not
impossible to achieve in general with a simple model.

Yet, qualitative accuracy is often sufficient for many purposes. Qualitative accuracy
means that if we change a parameter in the uncore (i.e., memory latency), the model
will predict accurately the relative change of performance. Indeed, if we use behavioral
core modeling in a design space exploration for example, more important than being
accurate in the final cycle count is being able to estimate relative changes in performance
among the different configurations in the design space. Therefore we use several metrics
to evaluate the PDCM and BADCO core models. The CPI error for a benchmark is
defined as

CPI error =
CPIref − CPImodel

CPIref

where CPIref is the CPI (cycles per instruction) for the detailed simulator Zesto, and
CPImodel is the CPI for the behavioral core model (PDCM or BADCO). The CPI
error may be positive or negative. The smaller the absolute value of the CPI error, the
more quantitatively accurate the behavioral core model. The average CPI error is the
arithmetic mean of the absolute value of the CPI error on our benchmark set.

For a fixed core, we define the relative performance variation RPV of an uncore

Experimental evaluation 45

“small” “medium” “big”
PDCM 3.8% 4.0% 4.7%
BADCO 3.3% 2.4% 2.8%

Table 3.3: Average CPI error of PDCM and BADCO respect to Zesto.

xyz as

RPV =
CPI001 − CPIxyz

CPI001

where CPI001 is the CPI of the uncore configuration “001" and CPIxyz is the CPI of
uncore configuration xyz (see Table 3.2). The model variation error is defined as

Variation error = |RPVref −RPVmodel|

where RPVref is the RPV as measured with the detailed core model and RPVmodel is
the RPV obtained with the behavioral core model (PDCM or BADCO). The smaller
the variation error, the more qualitatively accurate the behavioral core model. When the
variation error is null, it means that the behavioral core model predicts for uncore xyz
the exact same performance variation relative to the reference uncore as the detailed
core model. The average variation error is the arithmetic mean of the variation error
on our benchmark set.

3.5.2 Quantitative accuracy

Figure 3.6 shows for each benchmark the CPI error of PDCM and BADCO for the
“small”, “medium” and “big” cores, with the uncore configuration “001”. The maximum
error is on libquantum, both for PDCM and BADCO and for the three core configu-
rations. This is consistent with the non-convex curve of libquantum shown in Section
3.2, indicating an inherent modeling difficulty. Table 3.3 gives the average CPI error of
PDCM and BADCO. BADCO is on average more accurate than PDCM for each of the
three core configurations.

3.5.3 Qualitative accuracy

Figure 3.7 shows the Relative Performance Variation (RPV) of Zesto, PDCM and
BADCO for the six uncore configurations “000”, “010”,“011”, “110” and “111” (see Table
3.2), assuming a “big” core. The baseline uncore is “001”.

Both PDCM and BADCO exhibit a reasonably good qualitative accuracy, i.e., they
predict approximately how performance changes when we change the uncore. Neither
PDCM nor BADCO are very good at predicting tiny performance changes (RPV of a few
percents), but they are relatively good at predicting important performance changes.
This makes PDCM and BADCO suitable for design space exploration, e.g., for selecting

46 Chapter 3

-20

 0

 20

cact
lesl

mcf
h264

omne
bwav

sjen
sopl

asta bzip libq hmme
zeus

perl vort craf
gcc namd

povr
grom

gobm
milc deal

calc

C
P

I e
rr

or
 (

%
)

PDCM
BADCO

(a) “big” core

-20

 0

 20

cact
lesl

mcf
h264

omne
bwav

sjen
sopl

asta bzip libq hmme
zeus

perl vort craf
gcc namd

povr
grom

gobm
milc deal

calc

C
P

I e
rr

or
 (

%
)

PDCM
BADCO

(b) “medium” core

-20

 0

 20

cact
lesl

mcf
h264

omne
bwav

sjen
sopl

asta bzip libq hmme
zeus

perl vort craf
gcc namd

povr
grom

gobm
milc deal

calc

C
P

I e
rr

or
 (

%
)

PDCM
BADCO

(c) “small” core

Figure 3.6: CPI error of PDCM and BADCO for the “small", “medium" and “big" cores,
with the uncore configuration “001".

Experimental evaluation 47

“000” “010” “011” “110” “111”
PDCM 4.6% 4.0% 1.3% 4.1% 1.2%
BADCO 2.6% 2.2% 0.7% 2.5% 0.8%

Table 3.4: Average variation error using as reference the configuration “001”.

Zesto PDCM BADCO
with Zesto uncore 0.17 2.91 2.52

core alone 0.19 13.04 8.82

Table 3.5: Single core simulation speed in MIPS

some “interesting” uncore configuration for which more detailed simulations will be done.
Table 3.4 gives the average variation error of PDCM and BADCO. BADCO is on average
more accurate than PDCM for each of the 5 uncore configurations.

3.5.4 Simulation speed

We did all the simulation speed measurements on the same machine, which features
an Intel Xeon W3550 (Nehalem microarchitecture, 8 MB L3 cache, 3.06 GHz) with
Turbo Boost disabled and 6 GB of memory. All the simulation input files, including the
traces for PDCM and BADCO, were stored on the local disk of that machine. Zesto,
PDCM and BADCO were compiled with gcc-4.1 using the “-O3" optimization flag. We
simulated the “big" core configuration and two different uncore configurations: one is
the Zesto uncore configuration “001", the other is a simplistic uncore forcing all requests
latencies to a null value. With the simplistic uncore, what we measure is essentially the
simulation time for the core alone. Figure 3.8 shows the simulation time in millions of
instructions simulated per second for Zesto, PDCM and BADCO.

The simulation speedup achieved with PDCM or BADCO, in comparison with Zesto,
is typically between one and two orders of magnitude. Benchmarks with the greatest
speedups are the ones with the fewest L1 misses. The Table 3.5 gives the harmonic
mean on our benchmarks of the simulation speed in millions of instructions simulated
per second (MIPS).

PDCM is generally faster than BADCO because a BADCO nodes represents about
50 µops on average (harmonic mean on our benchmarks), whereas a PDCM trace item
represents on average 90 µops. Hence PDCM works at a larger granularity.

The PDCM and BADCO models we have implemented can be connected to a de-
tailed uncore model. This means that the core does not know the request latency when
it sends a request to the uncore. Hence the core model inspects each clock cycle in case
an event occurs, which limits the simulation speedup.

48 Chapter 3

-120

-100

-80

-60

-40

-20

 0

cact
lesl

mcf
h264

omne
bwav

sjen
sopl

asta bzip libq hmme
zeus

perl vort craf
gcc namd

povr
grom

gobm
milc deal

calc

R
P

V
 (

%
)

Zesto
PDCM

BADCO

(a) uncore “000”

-120

-100

-80

-60

-40

-20

 0

cact
lesl

mcf
h264

omne
bwav

sjen
sopl

asta bzip libq hmme
zeus

perl vort craf
gcc namd

povr
grom

gobm
milc deal

calc

R
P

V
 (

%
)

Zesto
PDCM

BADCO

(b) uncore “010”

 0

 10

 20

 30

cact
lesl

mcf
h264

omne
bwav

sjen
sopl

asta bzip libq hmme
zeus

perl vort craf
gcc namd

povr
grom

gobm
milc deal

calc

R
P

V
 (

%
)

Zesto
PDCM

BADCO

(c) uncore “011”

-120

-100

-80

-60

-40

-20

 0

cact
lesl

mcf
h264

omne
bwav

sjen
sopl

asta bzip libq hmme
zeus

perl vort craf
gcc namd

povr
grom

gobm
milc deal

calc

R
P

V
 (

%
)

Zesto
PDCM

BADCO

(d) uncore “110”

 0

 10

 20

 30

cact
lesl

mcf
h264

omne
bwav

sjen
sopl

asta bzip libq hmme
zeus

perl vort craf
gcc namd

povr
grom

gobm
milc deal

calc

R
P

V
 (

%
)

Zesto
PDCM

BADCO

(e) uncore “111”

Figure 3.7: Relative performance variation (RPV) of Zesto, PDCM and BADCO for the
uncore configurations “000”, “010”,“011”, “110" and “111”, assuming a “big" core. The
baseline uncore is “001”.

Modeling multicore architectures with BADCO 49

 0.01

 0.1

 1

 10

 100

cact
lesl

mcf
h264

omne
bwav

sjen
sopl

asta bzip libq hmme
zeus

perl vort craf
gcc namd

povr
grom

gobm
milc deal

calc

M
IP

S

zesto
PDCM

BADCO

(a) core + Zesto uncore

 0.01

 0.1

 1

 10

 100

cact
lesl

mcf
h264

omne
bwav

sjen
sopl

asta bzip libq hmme
zeus

perl vort craf
gcc namd

povr
grom

gobm
milc deal

calc

M
IP

S

zesto
PDCM

BADCO

(b) core alone

Figure 3.8: Simulation speed in millions of instructions simulated per second (MIPS)
with and without considering the impact of the Zesto uncore (logarithmic scale).

3.6 Modeling multicore architectures with BADCO

In recent years, research in microarchitecture has shifted from single-core to multicore
processors. Cycle-accurate models for many-core processors featuring hundreds or even
thousands of cores are out of reach for the simulation of realistic workloads. Approxi-
mate simulation methodologies that trade accuracy for simulation speed are necessary
for conducting certain research, in particular for studying the impact of resource sharing
between cores, where the shared resource can be caches, on-chip network, memory bus,
power, temperature, etc.

Behavioral core models are one option to trade accuracy for simulation speed in
situations where the focus of the study is not the core itself but what is outside the
core, i.e., the uncore. In sections 3.3 and 3.4, we presented two behavioral core models:
PDCM, a previously proposed core model that we have extended to model detailed
superscalar processors; and BADCO, a new behavioral core model that is more accurate
than PDCM. Both core models enable fast simulation of multicore architectures when
the design target is the uncore. In this section we evaluate the speed and accuracy of
BADCO when simulating multiprogram workloads for processor configuration of 2, 4
and 8 cores.

Extending BADCO to execute multiprogram workloads is straightforward. Once
BADCO core models have been built for a set of single-thread benchmarks, the core
models can be easily combined to simulate a multi-core running several independent

50 Chapter 3

decode/issue/commit 4/6/4
RS/LDQ/STQ/ROB 36/36/24/128
DL1/DTLB MSHR entries 16/8
Clock 3 GHz
IL1 cache 2 cycles, 32 kB, 4-way, 64-byte line, LRU, next-line

prefetcher
ITLB 2 cycles, 128-entry, 4-way, LRU, 4 kB page
DL1 cache 2 cycles, 32 kB, 8-way, 64-byte line, LRU, write-back,

IP-based stride + next line prefetchers
DTLB 2 cycles, 512-entry, 4-way, LRU, 4 kB page
Branch predictor TAGE 4 kB, BTAC 7.5 kB, indirect branch predictor

2 kB, RAS 16 entries

Table 3.6: Core configuration.

threads simultaneously. We connect several BADCO machines, one per core, to a
detailed simulator of the uncore11. A BADCO machine communicates with the uncore
by sending requests and receiving the acknowledge of the completion of those requests.
BADCO machines send read and write requests to the uncore. A request indicates the
type of transaction and the virtual memory address. The uncore simulator informs the
BADCO machine when its requests have completed.

There is a round robin arbitration to decide which BADCO machine can access
the uncore. When the uncore receives a request, it translates the virtual address to a
physical address. If a page miss occurs, BADCO allocates a new physical page. Once
this is done, the uncore processes the request. The uncore notifies the BADCO machine
about the completion of one of its request through a call-back. A request completes
when it has fully completed the processing through the memory hierarchy.

Analogously to Zesto, BADCO does not model physical page conflicts. In both Zesto
and BADCO, main memory is assumed infinite. That means that every time that a
page miss occurs, BADCO allocates a new physical page. The assignation of physical
pages to virtual pages is made in a sequential fashion. During trace generation, BADCO
traces save the request’s virtual addresses to ease multicore simulation.

3.6.1 Experimental setup

Our experiments analyze the performance of multicore processors with 2, 4 and 8 iden-
tical cores. Table 3.6 presents a summary of cores characteristics. A case study with
five uncore design points is evaluated, each design point corresponding to a different
replacement policy in the shared last-level cache: LRU, RANDOM (RND), FIFO, DIP
and DRRIP. Table 3.7 gives the uncore characteristics.

We build 250 random workloads from 22 of the 29 SPEC CPU2006 benchmarks

11The uncore simulator was extracted from Zesto.

Modeling multicore architectures with BADCO 51

Number of cores 2 4 8

LLC size/latency 1MB/5cyc. 2MB/6cyc. 4MB/7cyc.

DL1 write buffer 8 entries
LLC 64-byte line, 16-way, write-back, 8-entry

write buffer, 16 MSHR entries, IP-based
stride + stream prefetchers

FSB clock 800 MHz
FSB width 8 bytes
DRAM latency 200 cycles

Table 3.7: Uncore configurations.

(the 22 benchmarks that we were able to simulate with Zesto). We perform detailed
simulation with Zesto and trace-simulation with BADCO for every design point and
every workload in the sample. Then, we compare BADCO’s accuracy in terms of CPI
error and speedup error using Zesto as reference. Finally, we measure the average
simulation speed of both BADCO and Zesto.

All the benchmarks were compiled with gcc-3.4 using the “-O3” optimization flag.
For generating BADCO traces, we skip the first 40 billions instructions of each bench-
mark, and the trace represents the next 100 millions instructions (no cache warming
is performed). We assume that simulations are reproducible, so that traces represent
exactly the same sequence of dynamic µops. We used SimpleScalar EIO tracing feature
[3], which is included in the Zesto simulation package.

During multiprogram execution, each core runs a separate threads. When a thread
has finished executing its 100 million instructions earlier than the other threads, it is
restarted. This is done as many times as necessary until all the threads in the workloads
have executed at least 100 million instructions. Performance is measured only for the
first 100 million committed instructions of each thread.

3.6.2 Experimental results

Figure 3.9 reports the measured and the estimated CPIs for Zesto and BADCO respec-
tively. Each dot in the graph represents the CPI performance of individual benchmarks
in the 250 workloads and the five design points. A perfect estimation would imply that
all the dots lie on the bisector. In this case, we observe that most of the points are over
the bisector. This indicates that BADCO tends to slightly underestimate the CPI.

Table 3.8 presents the average of the absolute CPI error for 2, 4 and 8 cores and each
design point. The global average of the absolute CPI error is 4.59%, 3.98% and 4.09%
for 2, 4 and 8 cores respectively. The maximum error is in all cases less than 25%.
Moreover, for approximate simulators, more important than predicting CPIs accurately
is predicting speedups accurately. We compared the speedups predicted by BADCO
and Zesto for replacement policies FIFO, RANDOM, DIP and DRRIP using LRU as

52 Chapter 3

rep. policy 2 cores 4 cores 8 cores

LRU 4.66 3.83 3.90
RANDOM 4.63 4.19 4.46
FIFO 4.79 4.10 4.33
DIP 4.54 4.01 3.99
DRRIP 4.35 3.75 3.77

Table 3.8: Average of absolute CPI error in percentage for 2, 4 and 8 cores.

rep. policy 2 cores 4 cores 8 cores

RANDOM/LRU 0.89 0.76 1.34
FIFO/LRU 0.56 0.65 1.01
DIP/LRU 0.49 0.54 1.63
DRRIP/LRU 0.67 0.52 1.77

Table 3.9: Average of absolute speedup error in percentage for 2, 4 and 8 cores and LRU
as reference.

reference. We found that, on average, the global speedup error is 0.66% 0.61% and
1.43% for 2, 4 and 8 cores respectively. Table 3.9 presents the individual speedup errors
for four design pairs that use LRU as reference. Results show that BADCO is notably
better in predicting speedups than raw CPIs.

3.6.3 Multicore simulation speed

Table 3.10 reports the simulator performance of Zesto and BADCO. BADCO is clearly
faster than the detailed simulator Zesto, with simulation speedups going from 15x to
68x when going from 1 to 8 cores. Zesto’s decreases faster than BADCO’s speed mainly
because of memory management. Zesto must manage a memory space for each applica-
tion. Such space reach typical sizes of 1GB or even more. When simulating many cores,
Zesto does not have any other option but paging in order to keep running. BADCO
does not have the same problem, and the decrease in simulation performance is mainly
because of more conflicts and work in the uncore simulation. These simulation times
do not include the time spent generating BADCO models. Nevertheless, a benchmark
can be integrated in many workload and many different simulations of the uncore and
thus the one time cost for build a BADCO model is rapidly compensated by BADCO’s
speedup. It should be noted that BADCO still uses a detailed uncore simulator whose
simulation speed may not be optimal and thus limiting the potential speedup that
BADCO can provide.

Modeling multicore architectures with BADCO 53

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

Z
es

to
 C

P
I

BADCO CPI

(a) 2 cores

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

Z
es

to
 C

P
I

BADCO CPI

(b) 4 cores

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

Z
es

to
 C

P
I

BADCO CPI

(c) 8 cores

Figure 3.9: CPI measured with Zesto on the vertical axis versus estimated CPI with
BADCO on the horizontal axis.

54 Chapter 3

Number of cores 1 2 4 8
MIPS - Zesto 0.170 0.096 0.049 0.017
MIPS - BADCO 2.52 2.41 1.89 1.19
Speedup 14.8 25.19 38.88 68.1

Table 3.10: BADCO average speedup for 1, 2, 4 and 8 cores.

3.7 Summary

We introduced BADCO, a new behavioral application-dependent model of superscalar
cores. A behavioral core model is like a black box emitting requests to the uncore at
certain times. A behavioral core model can be connected to a detailed uncore model
for studies where the focus is not the core itself, e.g., design space exploration of the
uncore or study of multiprogrammed workloads. We have extended PDCM, a previously
proposed core model, in order to model more accurately detailed superscalar processors.
We also propose BADCO, a new behavioral core model. A BADCO model is built from
two detailed simulations. Once the time to build the model is amortized, important
simulation speedups can be obtained. We have compared the accuracy of BADCO with
that of PDCM. From our experiments, we conclude that BADCO is on average more
accurate than PDCM, essentially because it is based on two detailed simulations instead
of a single one for PDCM. With BADCO, the average of the absolute CPI error is less
than 4% for all configurations and benchmarks we have tested. We have also evaluated
the accuracy of BADCO for simulating multiprogram workloads, the average of the
absolute CPI error is less than 5% for 2, 4 and 8 cores, and all evaluated configurations.
Moreover, we have demonstrated that BADCO offers a good qualitative accuracy, being
able to predict how performance varies when we change the uncore configuration in both
single and multicore execution. So far, the simulation speedups we have obtained with
BADCO are typically between one and two orders of magnitude compared with Zesto.

Chapter 4

Multiprogram Workload Design

4.1 Introduction

The performance of an application executing on a multicore processor can be strongly
impacted by applications running simultaneously on the other cores, mainly because of
resource sharing (last-level cache, memory bandwidth, chip power...). This impact is
not obvious, and quantifying it often requires detailed simulations.

The study of multicore performance on multiprogram workloads, i.e., sets of inde-
pendent threads running simultaneously, is still a very active research area. The most
widely used method for such study is to use a set of single thread benchmarks, to de-
fine a fixed set of multiprogram workloads from these benchmarks, to simulate these
workloads and to quantify performance with a throughput metric.

The population of possible benchmark combinations may be very large. Hence most
studies use a relatively small sample of a few tens, sometimes a few hundreds of work-
loads. In general, all the benchmarks in a suite are assumed to be equally important.
Therefore we would like the sample to be representative of the whole population of
possible workloads. Yet, there is no standard method in the computer architecture
community for defining multiprogram workloads. There are some common practices,
but not really a common method. More important, authors rarely demonstrate the
representativeness of their workload samples. Indeed, it is difficult to assess the repre-
sentativeness of a workload sample without simulating a larger number of workloads,
which is precisely what we want to avoid. Approximate microarchitecture simulation
methods that trade accuracy for simulation speed offer a way to solve this dilemma.

Approximate simulation is usually advocated for design-space exploration. We show
in this chapter that fast approximate simulation can also help select representative
multiprogram workloads in situations requiring detailed simulations (e.g., for estimating
power consumption).

We investigate several sampling methods, using as a case study a comparison of
several multicore last-level cache replacement policies. We performed simulations with

55

56 Chapter 4

Zesto, a detailed microarchitecture simulator [64], and with BADCO, a fast approximate
simulator presented in Chapter 3.

We show that, unless we know a priori that the microarchitecture being assessed sig-
nificantly outperforms (or underperforms) the baseline microarchitecture, it is not safe
to simulate only a few tens of random workloads, as frequently done in many studies.
Hence it is necessary to simulate a large workload sample, which is possible with a fast
approximate simulator. We propose a method for determining, from a representative
subset of all possible workloads, what should be the size of a random workload sample.
We propose an improved sampling method, balanced random sampling, that defines
workloads in such a way that all the benchmarks are equally weighted in the sample.
Sometimes, random sampling requires more than a few tens of workloads. We evaluate
an alternative method, benchmark stratification, that defines workloads by first defining
benchmark classes. However, this method is not significantly better than random sam-
pling. Finally, we propose a new method, workload stratification, that is very effective
at reducing the sample size when random sampling would require too large a sample.

This Chapter is organized as follows. Section 4.2 introduces the problem of multi-
program workload design. In Section 4.3, we propose a method for obtaining the size of
a representative workload sample under random sampling. Section 4.4 describes our ex-
perimental setup. We evaluate experimentally our random sampling method in Section
4.5. Then Section 4.6 introduces and evaluates experimentally three alternative sam-
pling methods. Section 4.7 gives a practical guideline. Finally, Section 4.8 summarizes
the main chapter’s contribution.

4.2 The problem of multiprogram workload design

Simulation objectives for a computer architect are generally to compare two or more
multicore microarchitectures under some criterion such as execution time, multiprogram
throughput, power consumption, fairness, etc. Generally one wants also to quantify the
differences between microarchitectures. In this study we consider the problem of evalu-
ating multiprogram throughput, i.e., the quantity of work done by the machine in a fixed
time when executing simultaneously several independent threads. The usual procedure
for evaluating multiprogram throughput is to take a set of benchmarks (e.g., the SPEC
CPU benchmarks) and define some combinations of threads executing concurrently, on
which the microarchitectures are evaluated.

We call workload a combination of K benchmarks, K being the number of logical
cores1. The number of workloads out of B benchmarks is generally very large. If the
cores are identical and interchangeable, and assuming that the same benchmark can
be replicated several times, there is a population of

(

B+K−1
K

)

possible workloads. Be-
cause detailed microarchitecture simulators are very slow, computer architects generally
consider a sample of W workloads where W is typically only a few tens. The microarchi-

1Physical cores may be SMT

Random sampling 57

tectures being compared are simulated on all W workloads. For each microarchitecture,
we obtain a total of W ×K IPC (instructions per cycle) values, denoted IPCwk, where
w ∈ [1,W] is the workload and k ∈ [1,K] is the core. The W ×K IPC values are then
reduced to a single throughput value via a throughput metric. The microarchitecture
whose throughput value on the W workloads is the highest is deemed to be the one
offering the highest throughput on the full workload population.

The workload sample is generally much smaller than the full population, but there
is no standard method for defining a representative sample, although there are some
common practices. Yet, the method used for selecting the sample may change the
conclusions of a study dramatically.

We did a survey of the papers published in three major computer architecture con-
ferences, ISCA, MICRO and HPCA, from 2007 to march 2012. We identified 75 papers
that have used fixed multiprogram workloads2. The vast majority of these 75 papers
use a small subset of all possible workloads, ranging from a few workloads to a few hun-
dreds. Many papers use a few tens of workloads and compute an average performance
on them. Of the 75 papers, only 9 use a completely random selection of workloads. The
66 other papers classify benchmarks into classes and define workloads from these classes.
In the vast majority of cases, the classes are defined "manually", based on the authors’
understanding of the problem under study. Then, some workload types are defined. For
instance, if there are two benchmark classes A and B and two identical cores, 3 types of
workloads may be defined: AA, BB and AB. Then a certain number of workloads are
defined for each workload type. The number of workloads and the method for defining
them is more or less arbitrary. The practices here are very diverse depending on the
author and on the problem studied. For instance, some authors choose to give more
weight to certain workload types, sometimes without any reason. Some authors select
benchmarks randomly under the constraint of the workload type. Some others choose
a single benchmark to be representative of its class.

4.3 Random sampling

As noted in Section 4.2, random sampling is not the most popular method in the
computer architecture community. Many authors prefer to work with a relatively small
sample that they try to define (more or less carefully) so that it is representative. Yet,
random sampling is a safe way to avoid biases, provided the sample is large enough.
Moreover, random sampling lends itself to analytical modeling. We present in the
remainder of this section a model for estimating the probability of drawing correct
conclusions under random workload selection.

For a fixed W , the sample throughput defined by formula (2.9) can be viewed as
a random variable, the sample space for that variable being all the possible subsets of

2We do not count the studies using a number of benchmarks small enough for allowing to simulate
all the possible workloads.

58 Chapter 4

W workloads out of a full population of N =
(

B+K−1
K

)

workloads. The problem of
comparing two microarchitectures X and Y can be stated as follows. We want to know
whether or not Y yields a greater throughput than X. Let TX and TY be the sample
throughput of microarchitectures X and Y respectively. TX and TY are two random
variables. For the IPCT and WSU metrics, we define random variable D:

D = TY − TX = A-mean
w∈[1,W]

d(w) (4.1)

where the random variable d(w) is defined as

d(w) = tY (w)− tX(w) (4.2)

In words, d(w) and D are respectively the per-workload and average throughput dif-
ference. If we have some information about the distribution of D, we may be able to
compute the probability that D is positive. Because the W workloads are chosen ran-
domly and independently from each other, the Central Limit Theorem (CLT) applies,
and D can be approximated by a normal distribution [17].

Let µ and σ2 be respectively the mean and variance of d(w). The mean of D is also
equal to µ and its variance is σ2/W , assuming W ≪ N . The degree of confidence
that Y is better than X is equal to the probability that D is positive:

Pr(D ≥ 0) =
1

2

[

1 + erf
(1

cv

√

W

2

)]

(4.3)

where erf(x) = 2√
π

∫ x

0 e−t2dt is the error function and cv = σ/µ is the coefficient of

variation of d(w).
For the HSU metric, a H-mean is used in formulas (2.8) and (2.9), and it is the

inverse of the HSU on which the CLT applies3. Thus for the HSU we define the random
variable D as

D =
1

TX
−

1

TY
= A-mean

w∈[1,W]
d(w) (4.4)

with the random variable d(w) defined as

d(w) =
1

tX(w)
−

1

tY (w)
(4.5)

that is, d(w) and D are respectively the per-workload and average reciprocal throughput
difference. The coefficient of variation cv of d(w) is used in equation (4.3).

3Our goal is not to discuss which throughput metric should be used or not. The CLT applies to
any throughput metric that can be expressed as a sum of per-workload terms. For instance, if one
prefers to quantify throughput as a geometric mean of speedups [70], i.e., if a geometric mean is used
in formulas (2.8) and (2.9), the CLT applies to the logarithm of throughput, which leads to define the
random variables D = log TY − log TX and d(w) = log ty(w)− log tx(w).

Experimental evaluation 59

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

conf

1
Cv

√

W
2F

Figure 4.1: Degree of confidence as a function of 1
cv

√

W
2 (equation (4.3).

Figure 4.1 shows the degree of confidence as a function of 1
cv

√

W
2 (equation (4.3)).

A degree of confidence close to zero means that it is very likely that Y is not better
than X. The degree of confidence becomes very close to 0 or 1 for

∣

∣

∣

∣

1

cv

√

W

2

∣

∣

∣

∣

= 2

Solving this equation for W , we obtain the required sample size:

W = 8c2v (4.6)

The only parameter needed in this model is the coefficient of variation cv, which is
estimated from experiments. We present an experimental validation of the model in
Section 4.5.1.

4.4 Experimental evaluation

4.4.1 Simulation setup

Our experiments analyze the performance of symmetric multicore with 2, 4 and 8 iden-
tical cores. Table 3.6 summarizes the cores characteristics. As a case study, we consider
five uncore microarchitectures, each uncore corresponding to a different shared last-level
cache replacement policy: LRU, RANDOM (RND), FIFO, DIP[81] and DRRIP [46].
Table 3.7 presents the uncore characteristics.

We build the workloads from 22 of the 29 SPEC CPU2006 benchmarks (the 22
benchmarks that we were able to simulate with Zesto). We simulate every uncore using
BADCO for the full population of workloads whenever possible (253 workloads for 2
cores, 12650 workloads for 4 cores), or for a large sample when the number of possible
combinations is huge (we consider 10000 workloads for 8 cores). We also perform Zesto

60 Chapter 4

simulations for 250 randomly selected workloads for 2, 4 and 8 cores, and for every
uncore. We compiled all the benchmarks with gcc-3.4 using the "-O3" optimization
flag. For generating BADCO traces, we skip the first 40 billion instructions of each
benchmark, and the trace represents the next 100 million instructions (no cache warming
is done). We assume that simulations are reproducible, so that traces represent exactly
the same sequence of dynamic µops. We used SimpleScalar EIO tracing feature [3],
which is included in the Zesto simulation package.

During multiprogram execution, each core runs a separate threads. When a thread
has finished executing its 100 million instructions earlier than the other threads, it is
restarted4. This is done as many times as necessary until all the threads in the workloads
have executed at least 100 million instructions. The IPC is measured only for the first
100 million committed instructions of each thread.

4.5 Experimental results for random sampling

4.5.1 Random sampling model validation

We experimentally validated formula (4.3) for the 10 pairs of replacement policies,
for the 3 metrics (IPCT, WSU and HSU) and for 2, 4, and 8 cores. We measured the
experimental degree of confidence that policy Y outperforms policy X for a given sample

4More rigorous multiprogram simulation methods could be used, such as the co-phase matrix method
[93]. The problem of defining representative benchmark combinations is orthogonal and concerns the
co-phase matrix method as well.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 100 1000

C
on

fid
en

ce

Sample Size

2-cores-model
2-cores-exp.

4-cores-model
4-cores-exp.

8-cores-model
8-cores-exp.

Figure 4.2: Confidence degree that “DRRIP outperforms DIP” as function of the sample
size. Experimental result vs. analytical model. Throughput metric WSU .

Experimental results for random sampling 61

size by generating 1000 random samples: the experimental degree of confidence is the
fraction of samples for which the sample throughput of Y is greater than that of X.
Figure 4.2 shows the result of this experimental validation for one pair of policies and
one metric: the model curve matches the experimental points quite well, even for small
samples. Although not shown, the other metrics and policy pairs exhibit similarly good
matching between the model and the experiment.

4.5.2 Performance difference impacts the sample size

Random workload selection requires knowing the appropriate sample size, i.e., the num-
ber of workloads that we must consider for drawing conclusions consistent with the full
workload population with a reasonably high probability. As explained in Section 4.3,
the coefficient of variation cv of the random variable d(w) is the only parameter needed
to decide the sample size.

Figure 4.3 shows the inverse of the coefficient of variation (1/cv = µ/σ) for each
pair of replacement policies, assuming a 4 core processor. The sign of 1/cv indicates
which policy in a pair performs best. The magnitude |1/cv | gives an indication of the
performance difference between the two policies.

When the performance difference between two policies is significant, |1/cv | is rela-
tively large. For instance, LRU significantly outperforms FIFO on all 3 metrics, and
cv ≈ 1. From formula (4.6), about 8 randomly chosen workloads are sufficient to com-
pare LRU and FIFO. In accordance with intuition, the larger the performance difference
between two microarchitectures the fewer workloads are necessary to identify the best
of the two.

However, when two policies have very close performance, such as LRU and DIP,
|1/cv | is much smaller than 1. In such situation, a reasonable conclusion is that the
two policies perform almost equally. However, we need a very large sample even for
drawing this conclusion. For instance, the value of |1/cv | for LRU vs. DIP is smaller
when computed on the full population than on the 250-workload sample. We cannot be
certain that the value of cv estimated on a sample is accurate unless we know a priori
that one microarchitecture significantly outperforms the other. Two microarchitectures
may have the same average performance on the full population of workloads, yet one
microarchitecture may seem to outperform the other on a sample. In other words, if we
have no a priori reason to believe that one microarchitecture significantly outperforms
the other, we must consider a workload sample as large as possible. A fast qualitatively-
accurate simulator such as BADCO allows to consider a large workload sample. If the
sample is large enough, we can use it to estimate the coefficient of variation cv. If cv is
greater than 10, we must conclude that the two policies perform equally on average.

62 Chapter 4

-1.2

-0.8

-0.4

 0

 0.4

 0.8

 1.2

LRU>RND

LRU>FIFO

LRU>DIP

LRU>DRRIP

RND>FIFO

RND>DIP

RND>DRRIP

FIFO>DIP

FIFO>DRRIP

DIP>DRRIP

1/
C

V

sim
Zesto sample

BADCO sample
BADCO popu.

(a) IPCT

-1.2

-0.8

-0.4

 0

 0.4

 0.8

 1.2

LRU>RND

LRU>FIFO

LRU>DIP

LRU>DRRIP

RND>FIFO

RND>DIP

RND>DRRIP

FIFO>DIP

FIFO>DRRIP

DIP>DRRIP

1/
C

V

sim
Zesto sample

BADCO sample
BADCO popu.

(b) WSU

-1.2

-0.8

-0.4

 0

 0.4

 0.8

 1.2

LRU>RND

LRU>FIFO

LRU>DIP

LRU>DRRIP

RND>FIFO

RND>DIP

RND>DRRIP

FIFO>DIP

FIFO>DRRIP

DIP>DRRIP

1/
C

V

sim
Zesto sample

BADCO sample
BADCO popu.

(c) HSU

Figure 4.3: Inverse of the coefficient of variation, 1/cv , assuming 4 cores processor. The
3 graphs corresponds to the 3 throughput metrics: IPCT, WSU and HSU. Each group
of 3 bars corresponds to a pair of replacement policies being compared. The first bar
gives 1/cv measured with the Zesto on a 250-workload sample. The second bar gives
1/cv measured with BADCO on the same 250-workload sample. The third bar gives
1/cv measured with BADCO on the full 12650-workload population.

Experimental results for random sampling 63

-1.6

-1.2

-0.8

-0.4

 0

 0.4

 0.8

 1.2

 1.6

LRU>RND

LRU>FIFO

LRU>DIP

LRU>DRRIP

RND>FIFO

RND>DIP

RND>DRRIP

FIFO>DIP

FIFO>DRRIP

DIP>DRRIP

1/
C

V

metric
IPCT
WSU
HSU

(a) 2 cores

-1.6

-1.2

-0.8

-0.4

 0

 0.4

 0.8

 1.2

 1.6

LRU>RND

LRU>FIFO

LRU>DIP

LRU>DRRIP

RND>FIFO

RND>DIP

RND>DRRIP

FIFO>DIP

FIFO>DRRIP

DIP>DRRIP

1/
C

V

metric
IPCT
WSU
HSU

(b) 4 cores

-1.6

-1.2

-0.8

-0.4

 0

 0.4

 0.8

 1.2

 1.6

LRU>RND

LRU>FIFO

LRU>DIP

LRU>DRRIP

RND>FIFO

RND>DIP

RND>DRRIP

FIFO>DIP

FIFO>DRRIP

DIP>DRRIP

1/
C

V

metric
IPCT
WSU
HSU

(c) 8 cores

Figure 4.4: Inverse of the coefficient of variation, 1/cv , measured with BADCO on
the full population of 12650 workloads. The 3 graphs corresponds to 2, 4 and 8 cores
configurations. Each group of 3 bars corresponds to a pair of replacement policies being
compared. The first bar gives 1/cv measured for metric IPCT. The second bar gives
1/cv measured for metric WSU. The third bar gives 1/cv measured for metric HSU.

64 Chapter 4

4.5.3 Different metrics may require different sample sizes

The physical meaning of a throughput metric depends on some assumptions regarding
benchmarks and what they represent. Different metrics rely on different assumptions
[70]. Computer architecture studies sometimes use several different throughput metrics
to show that the conclusions are robust. Figure 4.4 shows the inverse of the coefficient
of variation (1/cv) for different pairs of policies on 4 cores and for the 3 throughput
metrics. On this particular example, the sign of cv does not depend on the throughput
metric. That is, all 3 metrics rank replacement policies identically on a large enough
workload sample. However, the magnitude of |cv| is not the same for all metrics. It
means that some metrics permit using fewer workloads.

For example, when comparing RND and FIFO, |1/cv | ≈ 0.4 using the IPCT and
|1/cv | ≈ 0.5 using the HSU. It means that a random sample of 8c2v = 32 workloads is
sufficient with the HSU, but it would not be sufficient for the IPCT, which requires
a random sample of 8c2v = 50 workloads. If one wants to use simultaneously several
different throughput metrics on a fixed random workload sample, the required sample
size must be determined for each metric, and the selected sample must be large enough
for all metrics.

4.6 Alternative sampling methods

4.6.1 Balanced random sampling

If we consider the full population of workloads and count how many times a given
benchmark occurs overall, we find that all the benchmarks occur the same number of
times. This is consistent with the implicit assumption that all the benchmarks are
equally important.

Random sampling, that we have considered so far, assumes that all the workloads
have the same probability of being selected and that the same workload might be selected
multiple times (though unlikely in a small sample). However, there is no guarantee that
all the benchmarks occur exactly the same number of times in such random sample.

We propose another form of random sampling, Balanced Random Sampling. Bal-
anced random sampling guarantees that every benchmark has the same number of
occurrences in the whole sample. Hence, after picking a workload, all the workloads in
the population may not have the same probability of being selected.

We have no mathematical model for this kind of sampling. Instead we have drawn
10000 balanced random samples and have computed experimentally the degree of con-
fidence. Figure 4.5 shows the degree of confidence estimated with BADCO for several
different sampling methods, including random sampling and balanced random sampling
(the other methods are introduced afterwards).

Compared to simple random sampling, balanced random sampling is a more effective
method, providing higher confidence for a given sample size. Balanced random sampling

Alternative sampling methods 65

is also, on average, the second most effective sampling method. However, there are still
some situations such as the one in Figure 4.5a where the required sample size is very
large.

4.6.2 Stratified random sampling

The workload population is generally not homogeneous. For example, let us assume
that microarchitecture Y consistently outperforms microarchitecture X on 80% of the
workload population, while X consistently outperforms Y on the remaining 20%. The
knowledge of these subsets allows us to define a more representative sample. Instead of
taking a single sample of W random workloads, we could take 0.8×W samples randomly
from the first subset and 0.2×W workloads randomly from the second subset. This is a
well-known method in statistics, called stratified sampling [17]. The method generalizes
as follows.

The full population of N workloads is divided into L subsets S1, S2, ..., SL of N1, N2, ..., NL

workloads respectively. The subsets, called strata, are non overlapping, and each work-
load in the population belongs to one stratum, so we have

N1 +N2 + ...+NL = N

Once strata are defined, a random sample of Wh workloads is drawn independently from
each stratum Sh, h ∈ [1, L]. The total sample size W is

W = W1 +W2 + ...+WL

Global throughput is no longer computed with formula (2.9) but with a weighted arith-
metic mean (WA-mean) or a weighted harmonic mean (WH-mean) depending on the
throughput metric:

T = WX-mean
h∈[1,L]

X-mean
w∈Sh

t(w) (4.7)

where WX-mean stands for WA-mean or WH-mean and where the weight for stratum
Sh is Nh/N . If the strata are well defined, it is possible to divide a very heterogeneous
workload population into strata that are internally homogeneous, so that the coefficient
of variation of each stratum is small. As a result, a precise estimate of throughput for a
stratum can be obtained from a small sample in that stratum. There are many different
ways to define strata. Ideally, we would like to have the minimum number of strata with
minimum Wh that produce maximum precision. It is important to note that stratified
sampling requires to draw samples from each stratum. Hence W cannot be less than
the number of strata. In the remainder of section, we compare two different ways to
define strata: benchmark stratification and workload stratification.

66 Chapter 4

MPKI Classe Benchmarks

Low povray, gromacs, milc, calculix, namd, dealII, perl-
bench, gobmk, h264ref, hmmer, sjeng

Medium bzip2, gcc, astar, zeusmp, cactusADM
High libquantum, omentpp, leslie3d, bwaves, mcf, soplex

Table 4.1: Classification of SPEC benchmarks according to memory intensity: Low
(MPKI < 1), Medium (MPKI < 5), and High (MPKI ≥ 5).

4.6.2.1 Benchmark stratification

It is common in computer architecture studies to define multiprogram workloads by first
defining benchmark classes (cf. Section 4.2). The main assumption is that benchmarks
in the same class exhibit similar behavior. Benchmark classes by themselves do not
constitute strata but allow to build workload strata. We can construct strata according
to the number of occurrences of each benchmark class in a workload. For example, the
workloads composed of benchmarks all belonging to a given class constitute a stratum.
Assuming there are M benchmark classes C1, C2, ..., CM , we can represent a stratum
with an n-tuple (c1, c2, ..., cM) where ci is the number of occurrences of class Ci in a
workload, with the constraint

∑M
i=1 ci = K, the number of cores. That is, workloads

with the same number of occurrences per class belong to the same stratum. This method
defines L =

(

M+K−1
K

)

distinct strata. The size of a stratum is

Nh =

M
∏

i=1

(

bi + ci − 1

ci

)

where bi is the number of benchmarks in class Ci. Table 4.1 shows a classification of the
SPEC CPU2006 benchmarks according to the memory intensity measured in misses per
kilo-instruction (MPKI). For a 4 core processor, this classification generates 15 strata,
hence (clow, cmed, chigh) = (004, 013, 022, 031, 040, 103, 112, 121, 130, 202, 211, 220,
301, 310, 400). Using this stratification, we have drawn 10000 stratified samples and
have estimated experimentally the degree of confidence for policy pairs comparisons.
Figure 4.5 shows the degree of confidence with benchmark stratification. For almost all
sample sizes, benchmark stratification increases the degree of confidence to some extent,
but does not reduce dramatically the sample size required to reach a high degree of
confidence.

It should be noted that the benchmark stratification method described here is an
attempt to formalize some common practices that are diverse and not always explicit.
The studies we are aware of that define multiprogram workloads by first defining bench-
mark classes neither use stratified sampling nor formula (4.7). Note also that classifying
benchmarks according to the MPKI is probably not the best classification for studying

Alternative sampling methods 67

replacement policies. Nevertheless, the effectiveness of benchmark stratification strongly
depends on the authors’ intuition.

4.6.2.2 Workload stratification

Fast approximate simulators such as BADCO allow to estimate the throughput on
large samples of thousands of workloads. Once approximate throughput values have
been obtained for all workloads in the large sample, defining strata directly from these
values is straightforward. As we seek to compare two microarchitectures according to
a certain throughput metric, we can define strata based on the distribution of d(w) for
that pair of microarchitectures (see section 4.3). The proposed method is as follows:

1. Measure d(w) for every workload in the large sample.

2. Sort the workloads according to d(w).

3. Process the workloads in ascending order of d(w), putting workloads in the same
stratum

4. When the stratum has reached a minimum size WT and when the standard devi-
ation of the stratum exceeds a certain threshold TSD, create a new stratum and
repeat the previous step.

Parameters TSD and WT allow to control the number of strata. There is a tradeoff
between the number of strata and the gain in precision we can obtain from workload
stratification.

The degree of confidence obtained with workload stratification is shown in Figure 4.5
for a 4-core processor using the IPCT metric, TSD = 0.001 and WT = 50. It is very im-
portant to define strata separately and independently for each pair of microarchitectures
and for each metric. For the pair FIFO-RND and a sample as small as 10 workloads, the
degree of confidence with workload stratification is approximately 100% while simple
random sampling requires about 80 workloads to reach the same confidence. The pair
DIP-LRU requires 50 workloads with workload stratification while random sampling
requires 800 workloads to reach an equivalent confidence. The performance difference
of DRRIP vs. FIFO is large enough for all sampling methods to bring nearly 100% of
confidence with just 10 workloads.

4.6.3 Actual degree of confidence

The degrees of confidence presented in Figure 4.5 were estimated with BADCO in order
to isolate the error coming from workload sampling from the error due to approximate
simulation, i.e., as if BADCO were 100% accurate. However in practice the approximate
simulator is also a source of inaccuracy. Figure 4.6 shows the experimental degree of

68 Chapter 4

confidence for DIP vs. LRU for small sample sizes and for the different sampling meth-
ods. Here the degree of confidence is measured with Zesto, but workload stratification
is done with BADCO.

We did the experiment as follows. For 2 cores, we have simulated with Zesto the full
population of 253 workloads. For 4 cores and 8 cores, we have simulated 250 workloads.
For a given sample size and for each sampling method5, we take 100 samples, each
sample consisting of workloads that we have simulated with Zesto. We compute the
per-sample throughput metric (here, the IPCT) for each of the 100 samples and for DIP
and LRU. The experimental degree of confidence is the fraction of samples on which
DIP outperforms LRU.

The results in Figure 4.6 confirm that the degree of confidence of samples selected
with workload stratification outperform the degree of confidence of those selected with
random, balanced random and benchmark stratification sampling methods. However,
the degree of confidence measured with Zesto for workload stratification and 4 cores
seems to be less than the degree of confidence estimated with BADCO for 4 cores on
the pair LRU-DIP in Figure 4.5.

4.7 Practical guidelines in multiprogram workload selec-

tion

The method we propose relies on qualitatively accurate approximate simulation. It is
not intended for design space exploration, but for studying incremental modifications
of a microarchitecture, i.e., for comparing a baseline microarchitecture and a new mi-
croarchitecture. Moreover it is most useful when it is not obvious a priori whether the
new microarchitecture outperforms the baseline. Detailed microarchitecture simulation
is used to obtain information that the approximate simulator does not provide, such
as power consumption (e.g., to find if the extra hardware complexity is worth the per-
formance gain). In this situation, the two machines differ only in some parts of the
microarchitecture that the approximate simulator should model precisely. The parts of
the microarchitecture that are identical in both machines can be abstracted for simu-
lation speed. For example, if one wants to compare two branch predictors for an SMT
core, the approximate simulator should model the branch predictors precisely, but the
other core mechanisms can be approximated.

Developing an ad-hoc approximate simulator requires some effort. Approximate
simulators are commonly used in the industry for design space exploration, hence for
some studies it may be sufficient to reuse and modify an already available approximate
simulator. Publicly available approximate simulators include Sniper [11], recently de-

5We did not apply balanced random sampling for 4 cores and 8 cores because the method we used for
automatically defining a balanced sample works with the full workload population. In real situations
this would not be a problem because detailed simulations are normally done after the workload sample
is defined.

Practical guidelines in multiprogram workload selection 69

veloped at the University of Ghent, which can be used for various studies, e.g., uncore
studies or branch prediction studies. If one wants to compare different uncore microar-
chitectures, an approximate simulation method such as BADCO is also possible. It
took us roughly one person-month of work to implement the BADCO core models for
this study.

Once we have a fast approximate simulator, we simulate a large workload sample
for the two microarchitectures (balanced random sampling should be used so that all
the benchmarks have the same weight, cf. Section 4.6.1). The required size for such
sample does not depend on the full population size but on the actual coefficient of
variation cv (formula (4.6)). However, the actual cv cannot be estimated with certainty
from a workload sample. Nevertheless, the larger the sample, the more likely it is
representative. For instance if cv < 10, i.e., if the two microarchitectures are not
equivalent throughput-wise, 800 random workloads are sufficient.

Then, assuming the large sample is representative of the full population, we estimate
the coefficient of variation cv on this sample. If cv is greater than 10, we declare that the
two machines offer the same average throughput. If cv is less than 2, random sampling
may be sufficient, as a few tens of workloads ensures a high confidence (cf. formula (4.6)).
Nevertheless, for such small sample, balanced random sampling should be preferred over
random sampling. It is when cv is in the [2, 10] range that we recommend using workload
stratification. However, one must keep in mind that the workload sample thus defined
is valid only for a pair of microarchitectures and for a throughput metric.

4.7.1 Simulation overhead: example

As an example, let us consider the top graph of Figure 4.5 (DIP vs. LRU) and the
speedup numbers provided in Table 3.10, and let us assume that we simulate 100 million
instructions per thread, i.e., 400 million instructions per workload. With balanced
random sampling, 30 workloads yields a confidence of 75% and necessitate roughly
30×(400/0.049)/3600 cpu*hours of Zesto simulation for each replacement policy, that is,
136 cpu*hours in total. To reach a confidence of 90% under balanced random sampling,
we need 120 workloads, which requires 2 × 120 × (400/0.049)/3600 ≈ 544 cpu*hours.
of Zesto simulation. That is, to increase the degree of confidence from 75% to 90%, we
need 300% extra simulation. With workload stratification, 30 workloads are sufficient
to obtain 99% of confidence, which takes 136 cpu*hours of Zesto simulation. In order to
identify 30 "good" workloads, we first generate a BADCO model for each benchmark,
which takes 22 × 2 × (100/0.17)/3600 = 7 cpu*hours (22 benchmarks, 2 traces per
benchmark, 100 million instructions, Zesto single-core simulation speed). Then we
simulate 800 random workloads with BADCO for each policy (notice on this example
that 600 random workloads are sufficient to reach 99% of confidence). This takes 2 ×
800 × (400/1.89)/3600 = 94 cpu*hours. Increasing the degree of confidence from 75%
to 99% requires (7 + 94)/136 ≈ 74% extra simulation with workload stratification. On
this example, workload stratification yields more confidence than random sampling for

70 Chapter 4

a simulation overhead that is 4 times smaller.

4.8 Summary

The multiprogram workloads used in computer architecture studies are often defined
without any clear method and with no guarantee that the chosen sample is representa-
tive of the workload population. Indeed, it is difficult to assess the representativeness of
a workload sample without simulating a much larger number of workloads, which is pre-
cisely what we want to avoid by using sampling. We propose to solve this dilemma with
approximate simulations that trade accuracy for simulation speed. Approximate simu-
lation is generally used for design-space exploration. We have shown in this study that
approximate simulation can also help selecting multiprogram workloads in situations
requiring detailed microarchitecture simulations.

We have investigated several methods for defining multiprogram workloads. As a
case study, we compared several multicore last-level cache replacement policies. We have
shown that, unless we know a priori that the microarchitecture under study significantly
outperforms (or underperforms) the baseline, it is not safe to simulate only a few tens
of randomly chosen workloads. An approximate yet qualitatively accurate simulator,
because it runs faster, allows to consider a much large number of workloads. We have
proposed a method for defining, from a large workload sample, a smaller sample to
simulate with a detailed simulator.

We have considered in this study the problem of defining workload samples that tell if
a microarchitecture outperforms another, consistently with the full workload population.
To our knowledge, the problem of defining workload samples that provide accurate
speedups with high probability is still open.

Summary 71

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50 60 80 100 120 140 160 180 200 300 400 500 600 700 800

C
on

fid
en

ce

Sample Size

random bal-random bench-strata workload-strata

(a) DIP > LRU

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50 60 80 100 120 140 160 180 200 300 400 500 600 700 800

C
on

fid
en

ce

Sample Size

random bal-random bench-strata workload-strata

(b) DRRIP > LRU

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50 60 80 100 120 140 160 180 200 300 400 500 600 700 800

C
on

fid
en

ce

Sample Size

random bal-random bench-strata workload-strata

(c) DRRIP > DIP

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50 60 80 100 120 140 160 180 200 300 400 500 600 700 800

C
on

fid
en

ce

Sample Size

random bal-random bench-strata workload-strata

(d) FIFO > RND

Figure 4.5: Alternative sampling methods. Confidence degree as function of the sam-
ple size for (a) DIP > LRU , (b) DRRIP > LRU , (c) DRRIP > DIP , and (c)
FIFO > RND. Throughput metric IPCT for 4 core configuration. Each group of 4
bars corresponds to samples size. The first bar gives the model computed confidence
for simple random sampling. The second bar gives the experimental confidence for
balanced random sampling. The third bar gives the experimental confidence for bench-
mark stratification. The fourth bar present the experimental confidence for workload
stratification

72 Chapter 4

 0.4

 0.6

 0.8

 1

10 20 30 40 50

co
nf

id
en

ce

random
bench-strata

wkld-strata
bal-random

(a) 2 cores

 0.4

 0.6

 0.8

 1

10 20 30 40 50

co
nf

id
en

ce

random bench-strata wkld-strata

(b) 4 cores

 0.4

 0.6

 0.8

 1

10 20 30 40 50

co
nf

id
en

ce

random bench-strata wkld-strata

(c) 8 cores

Figure 4.6: Experimental degree of confidence measured with Zesto as a function of the
sample size for DIP > LRU , 4 sampling methods (simple random sampling, balanced
random sampling, benchmark stratification and workload stratification), using the IPCT
metric.

Chapter 5

Conclusion

In this thesis, we have shown that among all simulation tools available to a computer ar-
chitect, behavioral core modeling is a competitive option for multicore studies where the
research focus is in the uncore microarchitecture and considering independent tasks. We
demonstrated that behavioral core models can bring speedups between one and two or-
ders of magnitude with average CPI errors of less than 5%. We have also demonstrated
that behavioral core models can help in the selection of multiprogram workloads. This
thesis makes contributions in the context of fast simulation tools for multicore systems,
and in the context of methodologies for the evaluation of multicore research ideas.

Contributions

In the context of fast simulation tools for multicore processors, we have proposed behav-
ioral core models as an alternative simulation tool when the research target is specifically
the uncore. We showed that a behavioral core model such as PDCM, a previously pro-
posed model, can model a superscalar core with an average error of less than 5%. We
achieved this accuracy by modeling the impact of wrong-path requests, prefetch re-
quests, delayed hits, etc. These additional requests were not considered in the original
PDCM model. We also proposed BADCO, a new behavioral application-dependent
superscalar core model. BADCO exhibits an average error of less than 3.5% for single
core processors and all the evaluated configurations. We achieved this level of accuracy
in BADCO by considering an extra detailed simulation that helps to expose additional
dependencies and requests that have an effect upon long latency misses. We have
also evaluated the accuracy of BADCO for simulating multiprogram workloads, and
we obtained average errors of less than 5% for 2, 4, and 8 cores in all the evaluated
configurations. We also demonstrated that BADCO predicts correctly the changes in
performance in both single and multicore execution. Finally, using Zesto as reference,
we have obtained average speedups between one and two orders of magnitude. In par-
ticular, we have observed an increase of the speedup with the number of cores, passing

73

74 Conclusion

from 14.8x to 68.1x for simulations with 1 and 8 cores respectively.
In the context of new methodologies for multicore systems, we studied the problem of

selecting workload samples for multicore architectures. We established the difficulty of
assessing the representativeness of a workload sample without simulating a much larger
number of workloads. We tackled this problem using approximate simulation. We
have shown in this thesis that approximate simulation can help to select multiprogram
workloads in situations requiring detailed microarchitecture simulations.

We proposed an alternative method that estimates the degree of confidence of a
random sample as the probability of drawing correct conclusions when comparing two
microarchitectures. The method can be used either to compute the confidence of a
sample or the required sample size provided that we can estimate the coefficient of vari-
ation. We also showed that an approximate simulator can help estimate the coefficient
of variation.

We proposed and compared different sampling methods for defining multiprogram
workloads. We evaluated their effectiveness on a case study that compares several
multicore last-level cache replacement policies. We showed that random sampling, the
simplest method, is robust enough to define a representative sample of workloads, pro-
vided the sample is big enough. We proposed a new method, workload stratification,
which is very effective at reducing the sample size in situations where random sampling
would require a large sample. Workload stratification uses approximate simulation for
defining the sample.

Open problems and perspectives

There are a number of perspectives for further exploiting the advantages of core mod-
eling. In particular, there is potential in BADCO models for simulating multi-thread
applications, heterogeneous multicore architectures, and as a power/energy estimation
tool. With respect to multiprogram workload selection, there are some questions that
deserve further study. For instance, Can we define the degree of confidence of a sample
in some other alternative ways? Can cluster analysis help define strata in workload strat-
ification? How can we take into account the effect of program phases on the selection
of representative multiprogram workloads?

Behavioral core models

In this thesis, we have presented BADCO models for simulating single-core applica-
tions and multiprogram workloads. However, we did not explore the possibility of
using BADCO for simulating multi-thread workloads. Trace-driven simulation cannot
simulate accurately the behavior of non-deterministic parallel programs for which the
sequence of instructions executed by a thread may be strongly dependent on the timing
of requests to the uncore [40]. However, some previous studies have shown that trace-
driven simulation could reproduce somewhat accurately the behavior of certain parallel

Conclusion 75

programs [40, 39], and it may be possible to implement behavioral core models for such
programs [15, 82].

Heterogeneous chip multiprocessors [54, 4, 55] present unique opportunities for im-
proving system throughput, reducing processor power, and mitigating Amdahl’s law.
On-chip heterogeneity allows the processor to better match execution resources to each
application’s needs. BADCO models can be a effective tool for studying heterogeneous
chip multiprocessors. One may build BADCO models for different microarchitectures
and then combine them in all kinds of ways for exploring the huge space of options that
heterogeneous chip multiprocessors bring.

So far we have used behavioral core models and specifically BADCO models to
evaluate performance. A possibility not explored is the use of BADCO models for
power/energy consumption estimation. In the same way as trace T0 abstracts the
dynamic execution of instructions in a superscalar pipeline, it might be possible to
abstract the dynamic power consumption of a superscalar core. This is a topic for
future work.

Multiprogram workload selection

One important insights that we have obtained is the need for defining analytical methods
to asses the representativeness of random samples. The method of confidence intervals
is the most common for computing the degree of confidence of random samples. But
confidence intervals do not consider relative comparisons between microarchitectures. In
this thesis, we have proposed an alternative method for defining the degree of confidence.
The method responds to the question: how large must be a sample for comparing two
microarchitectures and obtaining the correct conclusion about which one is best. The
method guarantees that the sample is large enough for comparing correctly the relative
performance, but it does not guarantee anything about the measured speedup. If the
goal is to obtain a close estimation of the speedup, a new method for defining the
sample’s degree of confidence must be found. Our method is also restrictive in the sense
that the relative comparison is limited to two microarchitectures. If the goal is to rank
the global performance of several microarchitectures with our method, then we must do
pairwise comparison among all microarchitectures. It may be possible to define a new
method that considers multiple microarchitectures simultaneously.

We have also introduced workload stratification, a sampling method alternative to
random sampling. We have demonstrated that workload stratification is more effective at
defining representative multiprogram workloads. To be effective, workload stratification
must define groups of workloads that have similar behavior. In particular, in this thesis
we build strata from the difference in performance between two microarchitectures on
every workload. In Section 4.6.2.2, we proposed a very simple algorithm to cluster the
workload differences. We believe that more advanced clustering algorithms may increase
the effectiveness of workload stratification.

In this thesis we did not consider the benchmark’s phase behavior. Some methods

76 Conclusion

such as the co-phase matrix [93] have been proposed to deal with phase behavior. The
problem of defining representative multiprogram workloads is orthogonal and concerns
the co-phase matrix method as well. However, further studies combining our workload
stratification method and the co-phase matrix method are needed.

Annexe A

Résumé en français

A.1 Introduction

Au début de l’ère informatique, les architectes d’ordinateurs s’appuyaient sur l’intui-
tion et des modèles analytiques simples pour choisir entre les variantes d’une conception.
Actuellement, les processeurs sont trop complexes pour s’appuyer sur l’intuition. Les
architectes d’ordinateurs ont besoin d’outils et de méthodologies appropriés pour l’éva-
luation des performances, qui permettent de maitriser la complexité du processeur et
de prendre des décisions de conception appropriées.

Ces dernières années, la recherche en microarchitecture a changé sa focalisation sur
les processeurs simple cœur pour maintenant se concentrer sur les processeurs multi-
cœurs. Plus précisément l’effort de recherche est passé de la microarchitecture du cœur
à la microarchitecture de la hiérarchie mémoire. Les modèles précis au cycle près pour
processeurs multi-cœurs avec des centaines ou même des milliers de cœurs ne sont
pas pratiques pour simuler des charges multitâches réelles du fait de la lenteur de la
simulation. Un grand pourcentage du temps de simulation est consacré à la simulation
des différents cœurs, et ce pourcentage augmente linéairement avec chaque génération
de processeur. Les modèles approximatifs sacrifient de la précision pour une vitesse de
simulation accrue, et sont la seule option pour certains types de recherche. En particulier,
ces modèles sont très utiles pour étudier l’impact du partage des ressources entre les
cœurs, où les ressources partagées peuvent être : les caches, le réseau sur puce, le bus
mémoire, la puissance, la température, etc.

La modélisation comportementale de cœur superscalaire est un moyen d’échanger
de la précision contre de la vitesse de simulation dans les situations où l’objet de l’étude
n’est pas dans le cœur, mais ce qui se trouve à l’extérieur du cœur, et notamment la hié-
rarchie mémoire. Cette méthode considère un coeur superscalaire comme une boite noire
émettant des requêtes vers le reste du processeur à des instants déterminés. Ces instants
de requêtes dépendent non seulement de la configuration de la hiérarchie mémoire mais
aussi des interférences sur les ressources partagées dues à l’activité des autres coeurs.

77

78 Résumé en français

Ainsi, les modèles comportementaux essayent d’imiter la manière dont les instants de
requêtes changent. Un ou plusieurs modèles comportementaux peuvent être connectés
à un modèle de hiérarchie mémoire précis au cycle près. Ces modèles comportementaux
sont construits à partir de simulations détaillées.

En plus d’outils de simulation rapide, les processeurs multi-cœurs exigent également
des méthodes de simulation plus rigoureuses. Il existe plusieurs méthodes couramment
utilisées pour simuler les architectures simple cœur. De telles méthodes doivent être
adaptées ou même repensées pour la simulation des architectures multi-cœurs. Un pro-
blème méthodologique qui n’a pas reçu une attention suffisante est le problème de la
sélection des charges de travail multiprogrammées pour l’évaluation de performance
des architectures multi-cœurs. La population de toutes les charges multiprogrammées
possibles est immense. Par conséquent, la plupart des études ont utilisé un échantillon
relativement petit de quelques dizaines voire quelques centaines de charges multipro-
grammées. En supposant que toutes les charges multiprogrammées sont également im-
portantes, nous voulons que l’échantillon soit représentatif de la population. Toutefois,
aucune méthode standard n’existe dans la communauté pour définir les charges mul-
tiprogrammées. Bien qu’il existe des pratiques communes, il n’y a pas vraiment de
méthode commune.

A.2 Contributions

Les principales contributions de cette thèse sont les suivantes :

Adaptation de PDCM pour la modélisation des architectures simple-cœur
réalistes Nous étudions le modèle PDCM, un modèle comportemental proposé pré-
cédemment, et nous évaluons sa capacité à modéliser avec précision une architecture
superscalaire moderne. Nous avons d’abord identifié les principales sources d’impréci-
sion de PDCM. Ensuite, nous avons proposé et mis en œuvre certaines modifications du
modèle PDCM pour modeliser certaines caractéristiques importantes du cœur comme
la prédiction de branchements et le préchargement des caches de premier niveau. De
cette manière, l’erreur moyenne de 8% avec la version originale PDCM est réduite à
4% avec notre version améliorée de PDCM.

BADCO : une nouvelle méthode pour définir des modèles comportementaux
Nous décrivons et étudions une nouvelle méthode pour définir des modèles comporte-
mentaux pour les cœurs superscalaires modernes. Le modèle comportemental proposé,
BADCO (pour son sigle en anglais), prédit le temps d’exécution d’un programme séquen-
tiel avec une erreur moyenne de moins de 3,5%. Nous montrons également que BADCO
est plus précis que PDCM d’un point de vue qualitatif, étant capable de prédire les
changements de performance quand nous changeons la configuration de la hiérarchie

Modèles comportementaux 79

mémoire. Les gains en vitesse de simulation par rapport à la simulation détaillée sont
typiquement entre un et deux ordres de grandeur.

Un nouveau modèle analytique pour calculer le degré de confiance d’un
échantillon de charges multiprogrammées Les intervalles de confiance sont la
méthode la plus courante pour calculer le degré de confiance d’un échantillon aléatoire.
Nous proposons une nouvelle méthode où le degré de confiance d’un échantillon de
charges multiprogrammées est défini comme la probabilité d’atteindre des conclusions
correctes quand on compare deux microarchitectures sur cet échantillon. Ce modèle
analytique calcule le degré de confiance en fonction de la taille de l’échantillon et du
coefficient de variation d’une variable aléatoire définie sur toute la population de charges
multiprogrammées. La méthode peut être utilisée à la fois pour calculer le degré de
confiance d’un échantillon ou pour calculer la taille d’un échantillon représentatif, en
supposant que nous avons une estimation du coefficient de variation. Nous montrons
qu’un simulateur approximatif peut aider à estimer le coefficient de variation.

Stratification des charges de travail : une nouvelle méthode pour sélectionner
des charges multiprogrammées

Nous proposons et comparons différentes méthodes d’échantillonnage pour définir des
charges multiprogrammées pour l’étude d’une architecture multi-cœur. Nous évaluons
l’efficacité de ces techniques dans une étude de cas qui compare cinq politiques de
remplacement du cache partagé sur des architectures à 2, 4 et 8 cœurs. Nous montrons
que l’échantillonnage aléatoire, la méthode la plus simple, est suffisamment robuste pour
définir un échantillon représentatif, pourvu que l’échantillon soit suffisamment grand.
Nous proposons également une nouvelle méthode d’échantillonnage, la stratification des
charges de travail, qui permet de définir un échantillon représentatif relativement petit
dans les situations où l’échantillonnage aléatoire nécessiterait un très grand échantillon.
La stratification des charges de travail utilise la simulation approximative pour définir
un échantillon représentatif.

A.3 Modèles comportementaux

Au cours de la mise au point d’un processeur, il est possible d’utiliser divers types
de modèles dans diverses étapes du procédé et à des fins différentes. Par exemple, les
modèles analytiques sont utiles pour comprendre un problème. Pendant ce temps, les
modèles de performance rapides sont utiles dans les premiers stades du développement
pour comparer des options de conception.

Un modèle de coeur est un modèle approximatif de la microarchitecture superscalaire
d’un cœur. Un modèle de coeur peut également être connecté à un modèle détaillé de
la hiérarchie mémoire. Ainsi, la communication entre les deux modèles se fait à travers
des requêtes générées par le coeur et exécutées par la hiérarchie mémoire. L’objectif

80 Résumé en français

principal d’un modèle de coeur est de fournir aux concepteurs un outil de simulation
rapide pour les études où l’objet de la recherche n’est pas le cœur lui-même mais la
hiérarchie mémoire.

Il existe deux variantes principales de modèle de coeur : les modèles structurels
et les modèles comportementaux. Les modèles structurels essayent de reproduire le
comportement interne de la microarchitecture du cœur. L’augmentation de la vitesse
de simulation est obtenue en ne simulant que les mécanismes qui ont le plus d’impact
sur les performances. Les modèles comportementaux essayent d’imiter le comportement
externe du cœur, qui est considéré avant tout comme une boîte noire émettant des
requêtes vers la hiérarchie mémoire. Contrairement aux modèles structurels, les modèles
comportementaux sont dérivés de simulation détaillées, ce qui peut être un inconvénient
dans certains cas. Toutefois, dans les situations où le temps de construction du modèle
peut être amorti, les modèles comportementaux sont potentiellement plus rapides que
les modèles structurels à niveau de précision égal.

A.3.1 Modèle comportemental PDCM

Lee et al. ont présenté dans [61] trois modèles comportementaux différents : le défaut
de cache isolé, le défaut de cache indépendant, et le défaut de cache dépendant (PDCM
pour son sigle en anglais). Ces modèles utilisent une trace des accès au cache L2 (cache de
deuxième niveau), qui sont annotés avec des informations complémentaires permettant
de reproduire le comportement d’un coeur superscalaire à exécution dans le désordre.
Parmi les trois modèles proposés par Lee et al., PDCM est le plus précis. Pour ce
faire, PDCM utilise la taille du ROB (fenêtre d’instructions) pour contrôler le nombre
d’éléments qui sont traités simultanément. PDCM considère également les dépendances
entre requêtes, de sorte que deux requêtes dépendantes soient exécutées l’une après
l’autre. Lee et al. ont montré que PDCM est suffisamment précis pour modéliser des
cœurs idéaux ayant un prédicteur de branchements parfait et ne prenant pas en compte
le préchargement des caches de premier niveau.

L’implémentation initiale de PDCM était basée sur le modèle de microarchitecture
sim-outorder fourni avec l’environnement de simulation SimpleScalar. Dans cette thèse,
nous évaluons PDCM avec un modèle de microarchitecture plus détaillé, Zesto. Notam-
ment, nous avons évalué l’effet des branchements mal prédits et du préchargement dans
les caches de premier niveau sur la précision de PDCM.

En améliorant la version initiale de PDCM, nous avons réussi à obtenir un niveau de
précision similaire à celui obtenu par Lee et al. sur sim-outorder. La figure A.1 illustre
nos efforts. La première barre à gauche montre la précision obtenue avec PDCM dans
notre mise en œuvre initiale, qui est basée sur ce qui est explicitement décrit par Lee
et al. dans [61]. Cette mise en œuvre prend en compte le nombre limité de MSHRs
(requêtes en cours) et suppose une prédiction de branchements parfaite. La deuxième
barre montre l’impact que la prédiction de branchement réelle et le préchargement
dans les caches de premier niveau ont sur la précision de PDCM. Comme attendu, la

Modèles comportementaux 81

 3

 4

 5

 6

 7

 8

initia
l

realistic
+tlb_misses

+write
_backs

+wrong_path

+prefetch

+delayed_hits

C
P

I e
rr

or
 (

%
)

Figure A.1 – Nous efforts pour améliorer la précision du modèle PDCM.

précision de PDCM est dégradée. À partir de ce point nous avons commencé à améliorer
la précision de PDCM tout en gardant les principes généraux de PDCM : la troisième
barre inclut l’effet des défauts de TLB, la barre suivante considère l’effet des write-
backs, la cinquième considère les requêtes sur les mauvais chemins des branchements
mal prédits, la sixième prend en compte les requêtes de préchargement dans les caches de
premier niveau, et enfin la dernière barre montre l’effet d’une modélisation plus précise
des delayed hits (accès aux lignes de cache pour lesquelles un défaut de cache est déjà
en cours).

De cette manière, l’erreur moyenne de 8% avec la version originale PDCM est réduite
à 4% avec notre version améliorée de PDCM. Les nombres indiqués pour PDCM dans
le reste de ce résumé concernent la version optimisée de PDCM.

PDCM est un modèle comportemental car il utilise une simulation détaillée pour
estimer les temps d’exécution des instructions dans le pipeline. Parce que ces temps
sont obtenus pour un cache L2 idéal, PDCM est généralement très précis lorsqu’il y a
peu de défauts de cache L2.

Cependant, PDCM utilise une approche structurelle pour modéliser l’impact des
défauts de cache L2 : PDCM suppose que modéliser le ROB et les dépendances de
données est suffisant pour reproduire avec précision l’impact sur la performance des
défauts de cache L2. Mais d’autres paramètres de la microarchitecture ont un impact
sur la performance, telles que le nombre limité d’ALUs, le nombre de ports sur le cache
de données de premier niveau, le nombre de MSHRs, la taille des tampons de micro-
opérations, etc.

82 Résumé en français

A.3.2 BADCO : un nouveau modèle comportemental

Considérant les limites de PDCM, nous proposons un nouveau modèle comportemental
appelé BADCO par ses initiales en anglais. Contrairement à PDCM, qui analyse les
dépendances explicitement au cours de la génération de la trace, BADCO utilise une
approche comportementale pour trouver les dépendances entre requêtes. BADCO utilise
deux simulations détaillées pour construire le modèle de coeur, contrairement à PDCM
qui n’en utilise qu’une seule.

Au cours de la première simulation détaillée, la latence de toutes les requêtes au
cache L2 est forcée à zéro. De cette première simulation, nous obtenons une trace T0.
Ensuite, nous procédons à une deuxième simulation détaillée où nous attribuons une
longue latence L à toutes les requêtes au cache L2. L est généralement supérieure à
la latence réelle maximum d’une requête dans des conditions normales d’utilisation du
modèle, par exemple L = 1000 cycles. De cette deuxième simulation, nous obtenons une
trace TL. Les traces T0 et TL contiennent des informations temporelles pour chaque
µop (micro-opération) retirée du ROB.

L’étape suivante, après l’obtention des traces T0 et TL, est de construire un modèle
BADCO à partir de l’information contenue dans ces traces. La construction du modèle
consiste à regrouper en nœuds les µops dépendant d’une même requête et à définir des
dépendances entre nœuds. Les dépendances comprennent non seulement les dépendances
de données, mais aussi les dépendances résultant des ressources d’exécution limitées,
des branchements mal prédits, etc. Au lieu d’effectuer une analyse détaillée de ces
dépendances lors de la génération de trace, nous trouvons les dépendances indirectement
en analysant l’information temporelle dans la trace TL.

Les traces T0 et TL sont traitées simultanément, µop par µop, de façon séquentielle.
Chaque µop est supposée dépendante d’une seule requête. Cette dépendance (détermi-
née à partir de la trace TL) et le fait que la µop porte ou non une requête déterminent
si la µop commence un nouveau nœud ou si au contraire elle est attribuée à un nœud
précédemment créé. Un nœud Ni représente un nombre Si (taille du nœud) de µops.
La somme de la taille de tous les nœuds,

∑

i Si, est égale au nombre total de µops
exécutées. Un nœud a aussi un poids de wi cycles. Ce poids représente la somme des
temps d’exécution des µops constituant le noeud lorsque les requêtes ont toutes une
latence nulle (information provenant de la trace T0).

Une fois qu’un modèle BADCO est créé, il peut être réutilisé plusieurs fois, par
exemple pour analyser les performances de différentes configurations de la hiérarchie
mémoire, ou pour évaluer la performance d’un multi-coeur sur diverses combinaisons de
benchmarks.

Un modèle BADCO est traité par ce que nous appelons une machine BADCO. Une
machine BADCO est une machine asbtraite qui exécute des nœuds. Plus les noeuds
comportent de µops, plus la vitesse de simulation de la machine BADCO est grande.

La machine BADCO distingue trois types de nœuds : nœud I, nœud L et nœud S. Un
nœud I peut porter trois types de requêtes : défaut de cache IL1 (cache d’instructions

Modèles comportementaux 83

de premier niveau), défaut d’ITLB (cache de traduction d’adresse pour les instructions)
et requête de préchargement du cache IL1. Un nœud L (ou nœud S) peut porter les
requêtes liées à une µop load (ou store) : défaut de cache DL1 (cache de données de
premier niveau), défaut de DTLB (cache de traduction d’adresse pour les données),
requêtes de write-backs et requêtes de préchargement du cache DL1.

Durant la simulation du modèle, la machine BADCO charge les nœuds et les insère
séquentiellement dans sa fenêtre. Les nœuds I émettent leurs requêtes vers la hiérarchie
mémoire au moment du chargement, imitant le comportement du coeur réel. La fenêtre
de la machine BADCO simule l’effet de la fenêtre d’instructions (ROB) du cœur réel.
Ainsi, lorsque la somme de la taille des nœuds à l’intérieur de la fenêtre ne dépasse pas
la taille du ROB, le nœud suivant peut être chargé. Sinon, le chargement du nœud est
suspendu jusqu’à que la fenêtre de la machine BADCO dispose de l’espace suffisant pour
insérer le nœud. Une fois dans la fenêtre, les nœuds peuvent être exécutés. Un nœud L
émet ses requêtes à la hiérarchie mémoire lorsque le nœud dont il dépend a terminé son
exécution. Un nœud L est considéré comme exécuté quand toutes les requêtes qu’il porte
ont été traitées par la hiérarchie mémoire. Les autres types de nœuds sont considérés
comme exécutés lorsque le nœud dont ils dépendent est lui-même exécuté. Les nœuds
sont retirés de la fenêtre dans l’ordre dans lequel ils ont été insérés. Un nœud Ni est prêt
à être retiré quand il est le nœud le plus ancien dans la fenêtre et qu’il a terminé son
exécution. Le noeud est prêt à être retiré au temps t mais il est effectivement retiré wi

cycles après, c’est-à-dire au temps t+wi. Une fois retirés de la fenêtre, les nœuds S sont
envoyés dans une file post-retrait, imitant ce que fait un coeur réel. Les requêtes portées
par un nœud S sont émises vers la hiérarchie mémoire à partir de la file post-retrait.

La machine BADCO modélise l’occupation des MSHRs associés aux caches de pre-
mier niveau. Ainsi, avant qu’une requête soit envoyée à la hiérarchie mémoire, la ma-
chine BADCO vérifie qu’il existe au moins une entrée MSHR libre. Dans le cas contraire,
l’émission de la requête est différée en attendant qu’une entrée MSHR se libère.

A.3.3 Évaluation expérimentale

A.3.3.1 Précision simple cœur

Nous avons expérimentalement évalué et comparé la précision des modèles compor-
tementaux : PDCM (version optimisée) et BADCO. L’évaluation est également faite
qualitativement et quantitativement. Pour l’évaluation quantitative, nous avons utilisé
trois configurations de cœur différentes : “petit”, “moyen” et “gros” (voir le tableau 3.1).
La configuration de la hiérarchie mémoire est la même pour les trois configurations de
coeur. La figure A.2 montre l’erreur CPI de BADCO et PDCM sur 22 des 29 bench-
marks SPEC CPU2006 et pour la configuration “gros” coeur. L’erreur CPI est calculée
en utilisant comme référence le simulateur détaillé Zesto.

Parallèlement, le tableau A.1 présente l’erreur CPI moyenne de BADCO et PDCM
pour les trois configurations de cœur. Les résultats montrent que BADCO est quanti-

84 Résumé en français

-20

 0

 20

cact
lesl

mcf
h264

omne
bwav

sjen
sopl

asta bzip libq hmme
zeus

perl vort craf
gcc namd

povr
grom

gobm
milc deal

calc

C
P

I e
rr

or
 (

%
)

PDCM
BADCO

Figure A.2 – Erreur CPI de PDCM et BADCO par la configuration “gros”.

“petit” “moyen” “gros”
PDCM 3.8% 4.0% 4.7%
BADCO 3.3% 2.4% 2.8%

Table A.1 – Erreur CPI moyenne de PDCM et BADCO sur Zesto.

tativement plus précis que PDCM dans toutes les configurations de cœur évaluées.
Pour évaluer qualitativement les performances de BADCO et PDCM, nous définis-

sons six configurations différentes de la hiérarchie mémoire, dans lesquelles nous faisons
varier la taille des mémoires cache (L2 et LLC) et la bande passante vers la mémoire
principale (voir le tableau 3.2). Parmi les six configurations, nous choisissons comme
référence la configuration “001” et nous calculons la variation relative de performance
(VRP) pour BADCO, PDCM et Zesto. Nous définission ensuite l’erreur qualitative
comme |V RPmodele − V RPzesto|. Le tableau A.2 montre l’erreur qualitative moyenne
pour cinq configurations de la hiérarchie mémoire. Les résultats montrent que BADCO
est également qualitativement plus précis que PDCM.

A.3.3.2 Précision multi-cœur

Utiliser BADCO pour évaluer la performance des architectures multi-cœurs avec des
charges de travail multiprogrammées est très simple. La première étape consiste à créer
un modèle BADCO pour chaque benchmark. Une fois cela fait, les modèles de cœur
peuvent être facilement combinés pour simuler un processeur multi-cœur exécutant des
programmes indépendants. L’étape suivante consiste à simuler une machine BADCO

“000” “010” “011” “110” “111”
PDCM 4.6% 4.0% 1.3% 4.1% 1.2%
BADCO 2.6% 2.2% 0.7% 2.5% 0.8%

Table A.2 – Erreur qualitative moyenne de PDCM et BADCO sur la configuration
“001”.

Modèles comportementaux 85

pol. rempl. 2 cœurs 4 cœurs 8 cœurs

LRU 4.66 % 3.83 % 3.90 %
RANDOM 4.63 % 4.19 % 4.46 %
FIFO 4.79 % 4.10 % 4.33 %
DIP 4.54 % 4.01 % 3.99 %
DRRIP 4.35 % 3.75 % 3.77 %

Table A.3 – Erreur CPI moyenne absolue pour 2, 4 et 8 cœurs.

pol. rempl. 2 cœurs 4 cœurs 8 cœurs

RANDOM/LRU 0.89 % 0.76 % 1.34 %
FIFO/LRU 0.56 % 0.65 % 1.01 %
DIP/LRU 0.49 % 0.54 % 1.63 %
DRRIP/LRU 0.67 % 0.52 % 1.77 %

Table A.4 – Erreur de speedup moyenne absolue pour 2, 4 et 8 cœurs.

pour chaque cœur dans le processeur et de connecter les machines BADCO à un si-
mulateur détaillé de la hiérarchie mémoire. Ainsi, chaque machine BADCO traite un
unique modèle BADCO. Les machines BADCO envoyent des requêtes à la hiérarchie
mémoire, qui informe en retour les machines BADCO lorsque les requêtes sont exécu-
tées. Nous utilisons un arbitrage round-robin pour décider quelles machines BADCO
accèdent à la hiérarchie mémoire à chaque cycle de simulation.

Afin d’évaluer l’exactitude de BADCO pour simuler des processeurs multi-cœurs (2,
4 et 8 cœurs), nous avons utilisé une étude de cas qui compare la performance de cinq
politiques de remplacement du cache partagé : LRU, RANDOM (RND), FIFO, DIP
et DRRIP. Les tableaux 3.6 et 3.7 décrivent en détail la configuration des cœurs et de
la hiérarchie mémoire respectivement. Le tableau A.3 présente l’erreur CPI moyenne
absolue pour chaque politique de remplacement. Parallèlement, le tableau A.4 montre
l’erreur de speedup moyenne absolue en utilisant LRU comme configuration de référence.
Les résultats montrent que BADCO est capable de quantifier finement les changements
de performance et qu’il est raisonnablement précis pour estimer la performance brute.

A.3.3.3 Vitesse de simulation

La figure A.3 compare la vitesse de simulation de Zesto, PDCM et BADCO en millions
d’instructions simulées par seconde (MIPS) pour chacun des 22 benchmarks évalués
(SPEC CPU2006). L’accélération par rapport à Zesto varie entre un et deux ordres de
grandeur. Cependant, PDCM est légèrement plus rapide que BADCO. Cela est princi-
palement dû à la plus grande granularité de PDCM (90 µops en moyenne par élément
de trace) par rapport à BADCO (50 uops en moyenne par nœud).

Le tableau A.5 compare la vitesse moyenne de simulation de BADCO et Zesto pour
des processeurs de 1, 2, 4 et 8 cœurs. Le tableau A.5 donne également l’accélération

86 Résumé en français

 0.01

 0.1

 1

 10

 100

cact
lesl

mcf
h264

omne
bwav

sjen
sopl

asta bzip libq hmme
zeus

perl vort craf
gcc namd

povr
grom

gobm
milc deal

calc

M
IP

S

zesto
PDCM

BADCO

Figure A.3 – Vitesse de simulation en MIPS pour Zesto, PDCM et BADCO.

Number of cores 1 2 4 8
MIPS - Zesto 0.170 0.096 0.049 0.017
MIPS - BADCO 2.52 2.41 1.89 1.19
Speedup 14.8 25.19 38.88 68.1

Table A.5 – Vitesse de simulation moyenne de BADCO et Zesto pour des processeurs
de 1, 2, 4 et 8 cœurs.

relative de BADCO par rapport à Zesto. Les résultats montrent que la vitesse de simu-
lation diminue lorsque le nombre de cœurs augmente. Une des causes de la réduction
de la vitesse de simulation est l’augmentation de l’empreinte mémoire du simulateur.
Cependant, parce que la vitesse de simulation diminue plus rapidement pour Zesto que
pour BADCO, l’accélération relative de BADCO par rapport à Zesto augmente avec le
nombre de cœurs simulés.

A.4 Sélection de charges de travail multiprogrammées

Pour évaluer les performances d’une architecture multi-cœur sur des charges multipro-
grammées, une procédure habituelle consiste à prendre des benchmarks séquentiels et
à simuler des combinaisons de ces benchmarks. La micro-architecture est évaluée sur
de telles combinaisons de benchmarks. Nous appelons charge de travail multiprogram-
mées une combinaison de K benchmarks, où K est le nombre de cœurs logiques. La
population totale des charges de travail multiprogrammées qui peuvent être obtenus à
partir de B benchmarks est donnée par

(

B+K−1
K

)

. La population est dans la plupart
des cas trop grande pour être évaluée complètement. Pour cette raison, les architectes
de microprocesseurs choisissent en général un échantillon de W charges de travail, où
W vaut typiquement quelques dizaines. L’échantillon de charges de travail est généra-
lement beaucoup plus petit que la population totale. Cependant il n’existe pas dans la
communauté de la microarchitecture de méthode standard pour définir un échantillon
représentatif. Or la méthode utilisée pour sélectionner l’échantillon peut avoir un impact
important sur les résultats d’une étude.

Sélection de charges de travail multiprogrammées 87

Nous avons effectué une enquête sur les articles publiés dans les trois principales
conférences en architecture des ordinateurs, ISCA, MICRO et HPCA, de 2007 jusqu’à
Mars 2012. L’enquête a cherché à établir quelles sont les pratiques utilisées pour sélec-
tionner des charges de travail multiprogrammées. Nous avons constaté que sur 75 articles
concernés, seulement 9 d’entre eux utilisent un échantillonnage aléatoire pour sélection-
ner les charges de travail. Les 66 autres articles définissent des classes de benchmarks,
puis ils définissent des charges de travail à partir de ces classes. Dans la plupart des cas,
les classes sont définies manuellement par les auteurs en fonction de leur compréhension
du problème étudié. Le nombre de charges de travail et la méthode de sélection sont
dans la plupart des cas arbitraires.

Dans cette thèse, nous évaluons l’efficacité de méthodes d’échantillonnage différentes
pour produire des échantillons représentatifs.

A.4.1 Méthodes d’échantillonnage

A.4.1.1 Échantillonnage aléatoire simple

L’échantillonnage aléatoire simple exige que toutes les charges de travail aient la même
probabilité d’être sélectionnées. Comme nous l’avons indiqué précédemment, ce type
d’échantillonnage n’est pas le plus utilisé pour définir des charges de travail. La plupart
des auteurs préfèrent utiliser un petit échantillon, qu’ils cherchent à définir de manière
à ce qu’il soit représentatif. L’échantillonnage aléatoire est un moyen sûr d’éviter tout
biais, pourvu que l’échantillon soit suffisamment grand. En outre, l’échantillonnage aléa-
toire simple peut être modélisé analytiquement afin d’estimer le degré de confiance de
l’échantillon ou pour déterminer la taille d’un échantillon représentatif. Cette thèse pré-
sente un modèle analytique pour estimer la probabilité de juger correctement laquelle
de deux microarchitectures est la meilleure.

A.4.1.2 Échantillonnage aléatoire équilibré

Si nous considérons la population de charges de travail et si nous comptons le nombre
d’occurrences de chaque benchmark, nous constatons que tous les benchmarks ont le
même poids. Ceci est cohérent avec l’hypothèse implicite que tous les benchmarks sont
également importants. L’échantillonnage aléatoire équilibré garantit que tous les bench-
marks ont le même nombre d’occurrences dans l’échantillon. Ainsi, après avoir sélec-
tionné une première charge de travail, les autres charges de travail n’ont plus la même
probabilité d’être sélectionnées. Cela rend difficile la modélisation analytique de ce type
d’échantillonnage.

A.4.1.3 Échantillonnage aléatoire stratifié

L’échantillonnage aléatoire stratifié exploite le fait que la population des charges de
travail est généralement hétérogène. Le but de cette méthode d’échantillonnage est de

88 Résumé en français

diviser la population en strates ayant des caractéristiques plus homogènes que la popu-
lation globale, et de prendre dans chaque strate un échantillon aléatoire. Par exemple,
supposons qu’une microarchitecture Y soit plus performante qu’une microarchitecture
X sur 80% de la population, tandis que X est plus performante que Y sur les 20% res-
tant. La connaissance de ces sous-ensembles (strates) permet de définir un échantillon
représentatif avec moins de charges de travail.

Il y a différentes façons de définir les strates, et de cela dépend l’efficacité de la
méthode d’échantillonnage aléatoire stratifié. Dans cette thèse, nous analysons deux
stratégies pour définir des strates : stratification des benchmarks et stratification des
charges de travail.

Stratification des benchmarks. Diviser les benchmarks en classes afin de définir
des charges de travail multiprogrammées est une pratique courante dans les études en
microarchitecture. L’hypothèse principale est que les benchmarks d’une même classe
ont un comportement similaire. Les classes des benchmarks à elles seules ne constituent
pas des strates, mais il est possible de construire des strates à partir du nombre d’occur-
rences de chaque classe dans les charges de travail. Par exemple, les charges de travail
composées de benchmarks appartenant tous à une classe donnée forment une strate.

Le méthode de stratification des benchmarks consiste à créer des strates à partir
des classes de benchmarks définies par le chercheur ou l’ingénieur, puis à sélectionner
pour chaque strate un échantillon aléatoire d’une ou plusieurs charges de travail. Il est
important de noter que la méthode de stratification des benchmarks décrite dans cette
thèse est une tentative de formalisation de pratiques qui sont diverses et pas toujours
explicites.

Stratification des charges de travail. La méthode de stratification des charges de
travail utilise des simulations approximatives rapides afin d’évaluer un grand échantillon
comportant des milliers de charges de travail. Une fois que les charges de travail de ce
grand échantillon ont été simulées, il est possible d’utiliser des algorithmes de clustering
pour définir des strates. Parce que notre objectif est de définir des échantillons représen-
tatifs permettant de bien évaluer laquelle de deux microarchitectures est la meilleure,
la stratification des charges de travail est faite à partir de la distribution sur les charges
de travail des différences de performance entre les deux microarchitectures. Une fois les
charges de travail divisées en strates, nous prenons dans chaque strate un échantillon
aléatoire d’une ou plusieurs charges de travail.

A.4.2 Évaluation expérimentale

La figure A.4 compare l’efficacité des méthodes d’échantillonnage étudiées. Nous avons
utilisé une étude de cas qui compare la performance de cinq politiques de remplacement
du cache partagé : LRU, RANDOM (RND), FIFO, DIP et DRRIP. En particulier,
la figure A.4 montre les résultats pour un processeur à quatre cœurs et en utilisant

Conclusions 89

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50 60 80 100 120 140 160 180 200 300 400 500 600 700 800

C
on

fid
en

ce

Sample Size

random bal-random bench-strata workload-strata

(a) DIP > LRU

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 30 40 50 60 80 100 120 140 160 180 200 300 400 500 600 700 800

C
on

fid
en

ce

Sample Size

random bal-random bench-strata workload-strata

(b) FIFO > RND

Figure A.4 – Efficacité des méthodes d’échantillonnage. Confiance en fonction de la
taille de l’échantillon par DIP > LRU et FIFO > RND.

l’IPCT comme métrique de performance. Chaque groupe de quatre barres correspond à
une certaine taille d’échantillon. La première barre montre la confiance théorique pour
l’échantillonnage aléatoire simple (random). La deuxième barre montre la confiance ex-
périmentale pour l’échantillonnage aléatoire équilibré (bal-random). La troisième barre
montre la confiance expérimentale pour l’échantillonnage aléatoire stratifié par bench-
mark (bench-strata). Enfin, la dernière barre montre la confiance expérimentale pour
l’échantillonnage aléatoire stratifié par charge de travail (workload-strata).

Les résultats obtenus indiquent que, parmi les méthodes d’échantillonnage étudiées,
la méthode de stratification par charge de travail est la plus effective pour définir des
charges de travail multiprogrammées. La seconde méthode la plus effective est l’échan-
tillonnage aléatoire équilibré. On peut noter que lorsque la différence de performance
est très petite, comme entre DIP et LRU, toutes les méthodes d’échantillonage néces-
sitent un grand échantillon, à l’exception de la méthode de stratification des charges de
travail.

A.5 Conclusions

Dans cette thèse, nous avons montré que, parmi tous les outils de simulation à la dis-
position d’un architecte de microprocesseurs, les modèles comportementaux sont inté-
ressants pour étudier la hiérarchie mémoire des processeur multi-coeurs. Nous avons
démontré que l’utilisation de modèles comportementaux permet d’accélérer les simula-

90 Résumé en français

tions d’un facteur entre un et deux ordres de grandeur. Dans cette thèse, nous avons
évalué et comparé deux modèles comportementaux : PDCM et BADCO. Nous avons
montré que notre version optimisée de PDCM peut modéliser un cœur superscalaire avec
des erreurs moyennes de moins de 5%. Dans cette thèse, nous avons proposé BADCO,
un nouveau modèle comportemental qui présente une plus grande précision que PDCM,
avec des erreurs moyennes de moins de 3,5% pour les microarchitectures à un seul cœur,
et des erreurs de moins de 5% pour les microarchitectures multi-cœurs étudiées.

Dans le domaine des nouvelles méthodologies de simulation pour systèmes multi-
cœurs, nous avons abordé le problème de la sélection des charges de travail multipro-
grammées pour évaluer la performance des microarchitectures multi-cœurs. Dans ce tra-
vail, nous avons souligné la difficulté d’évaluer la représentativité d’un échantillon sans
simuler un plus grand nombre de charges de travail. Nous avons abordé ce problème
en utilisant la simulation approximative avec des modèles comportementaux. Grâce à
leur excellente combinaison de vitesse et de précision, les modèles comportementaux
permettent d’évaluer la performance d’une microarchitecture sur un grand échantillon
de plusieurs milliers de charges de travail.

Nous avons proposé une méthode alternative qui définit le degré de confiance d’un
échantillon aléatoire comme la probabilité d’obtenir une conclusion correcte lorsqu’on
compare deux microarchitectures afin de d’eterminer laquelle est la meilleure. Dans ce
travail, nous avons également comparé différentes méthodes d’échantillonnage En par-
ticulier, nous avons proposé la méthode de stratification des charges de travail, qui
s’avère être très efficace dans la réduction de la taille de l’échantillon dans les situa-
tions où l’échantillonnage aléatoire nécessite un grand échantillon. La stratification des
charges de travail utilise la simulation approximative rapide pour définir des échantillons
représentatifs.

D’autres questions intéressantes se posent pour de futurs travaux. En particulier,
nous pensons que les modèles de type BADCO peuvent être étendus pour simuler cer-
taines applications parallèles, pour simuler des systèmes hétérogènes multi-cœurs, et
pour estimer la consommation d’énergie.

En ce qui concerne la sélection des charges de travail multiprogrammées, cette étude
soulève plusieurs questions qui nécessitent une analyse plus approfondie. Il est nécessaire
d’étudier les moyens pour définir la confiance dans un échantillon, par exemple pour
obtenir des échantillons qui garantissent que le speedup est dans une certaine marge
d’erreur. Ainsi, la question se pose : quelle est la manière la plus appropriée pour
mesurer la représentativité d’un échantillon ? D’autres questions restent ouverte : existe-
t-il d’autres algorithmes de stratification qui permettraient d’augmenter l’efficacité de la
méthode de stratification des charges de travail ? Et comment prendre en compte l’effet
des phases d’exécution des programmes dans la sélection d’un échantillon représentatif ?

Bibliography

[1] A. Alameldeen and D. Wood, “Ipc considered harmful for multiprocessor work-
loads,” Micro, IEEE, vol. 26, no. 4, pp. 8–17, 2006.

[2] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega, “COTSon:
infrastructure for full system simulation,” ACM SIGOPS Operating Systems Re-
view, vol. 43, no. 1, pp. 52–61, 2009.

[3] T. Austin, E. Larson, and D. Ernst, “SimpleScalar : an infrastructure for com-
puter system modeling,” IEEE Computer, vol. 35, no. 2, pp. 59–67, Feb. 2002,
http://www.simplescalar.com.

[4] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The impact of performance
asymmetry in emerging multicore architectures,” in ACM SIGARCH Computer
Architecture News, vol. 33, no. 2. IEEE Computer Society, 2005, pp. 506–517.

[5] B. Barnes and J. Slice, “Simnow: A fast and functionally accurate amd x86-64 sys-
tem simulator,” in Tutorial at the IEEE International Workload Characterization
Symposium, 2005.

[6] F. Bellard, “Qemu, a fast and portable dynamic translator.” USENIX, 2005.

[7] C. Bienia, S. Kumar, J. Singh, and K. Li, “The parsec benchmark suite: Charac-
terization and architectural implications,” in Proceedings of the 17th international
conference on Parallel architectures and compilation techniques. ACM, 2008, pp.
72–81.

[8] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt, “The M5
simulator: Modeling networked systems,” Micro, IEEE, vol. 26, no. 4, pp. 52–60,
2006.

[9] S. Blackburn, R. Garner, C. Hoffmann, A. Khang, K. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Guyer et al., “The dacapo bench-
marks: Java benchmarking development and analysis,” in ACM SIGPLAN No-
tices, vol. 41, no. 10. ACM, 2006, pp. 169–190.

91

92 Bibliography

[10] R. Carl and J. Smith, “Modeling superscalar processors via statistical simulation,”
in Workshop on Performance Analysis and Its Impact on Design, 1998.

[11] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: exploring the level of
abstraction for scalable and accurate parallel multi-core simulation,” in Proc. of
Supercomputing 2011, 2011.

[12] X. E. Chen and T. M. Aamodt, “Hybrid analytical modeling of pending cache
hits, data prefetching, and MSHRs,” in Proc. of the 41st Int. Symp. on Microar-
chitecture, 2008.

[13] D. Chiou, H. Angepat, N. Patil, and D. Sunwoo, “Accurate functional-first multi-
core simulators,” Computer Architecture Letters, vol. 8, no. 2, pp. 64–67, 2009.

[14] D. Chiou, D. Sunwoo, J. Kim, N. Patil, W. Reinhart, D. Johnson, J. Keefe, and
H. Angepat, “Fpga-accelerated simulation technologies (fast): Fast, full-system,
cycle-accurate simulators,” in Proceedings of the 40th Annual IEEE/ACM inter-
national Symposium on Microarchitecture. IEEE Computer Society, 2007, pp.
249–261.

[15] S. Cho, S. Demetriades, S. Evans, L. Jin, H. Lee, K. Lee, and M. Moeng, “TPTS:
A novel framework for very fast manycore processor architecture simulation,” in
Parallel Processing, 2008. ICPP’08. 37th International Conference on. IEEE,
2008, pp. 446–453.

[16] D. Citron, “Misspeculation: partial and misleading use of spec cpu2000 in com-
puter architecture conferences,” in ACM SIGARCH Computer Architecture News,
vol. 31, no. 2. ACM, 2003, pp. 52–61.

[17] W. G. Cochran, Sampling Techniques, 3rd Edition, 2nd ed. John Wiley, 1977.

[18] T. M. Conte et al., “Systematic computer architecture prototyping,” Ph.D. dis-
sertation, University of Illinois at Urbana-Champaign, 1992.

[19] T. Conte, M. Hirsch, and W. Hwu, “Combining trace sampling with single
pass methods for efficient cache simulation,” Computers, IEEE Transactions on,
vol. 47, no. 6, pp. 714–720, 1998.

[20] K. V. Craeynest and L. Eeckhout, “The multi-program performance model : de-
bunking current practice in multi-core simulation,” in Proc. of the IEEE Interna-
tional Symposium on Workload Characterization, 2011.

[21] H. Cragon, Computer architecture and implementation. Cambridge University
Press, 2000.

Bibliography 93

[22] C. Dubach, T. Jones, and M. O’Boyle, “Microarchitectural design space explo-
ration using an architecture-centric approach,” in Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer
Society, 2007, pp. 262–271.

[23] M. Durbhakula, V. S. Pai, and S. Adve, “Improving the accuracy vs. speed tradeoff
for simulating shared-memory multiprocessors with ILP processors,” in Proc. of
the 5th Int. Symp. on High-Performance Computer Architecture, 1999.

[24] L. Eeckhout, “Computer architecture performance evaluation methods,” Synthesis
Lectures on Computer Architecture, vol. 5, no. 1, pp. 1–145, 2010.

[25] L. Eeckhout, K. De Bosschere, and H. Neefs, “Performance analysis through syn-
thetic trace generation,” in Performance Analysis of Systems and Software, 2000.
ISPASS. 2000 IEEE International Symposium on. IEEE, 2000, pp. 1–6.

[26] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Designing computer ar-
chitecture research workloads,” Computer, vol. 36, no. 2, pp. 65–71, 2003.

[27] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Quantifying the impact of
input data sets on program behavior and its applications,” Journal of Instruction-
Level Parallelism, vol. 5, no. 1, pp. 1–33, 2003.

[28] L. Eeckhout, R. H. Bell Jr, B. Stougie, K. De Bosschere, and L. K. John, “Control
flow modeling in statistical simulation for accurate and efficient processor design
studies,” in Computer Architecture, 2004. Proceedings. 31st Annual International
Symposium on. IEEE, 2004, pp. 350–361.

[29] J. Emer and D. Clark, “A characterization of processor performance in the vax-
11/780,” in ACM SIGARCH Computer Architecture News, vol. 12, no. 3. ACM,
1984, pp. 301–310.

[30] B. Everitt, S. Landau, M. Leese, and D. Stahl, Cluster analysis. John Wiley &
Sons, Ltd, 2011.

[31] S. Eyerman and L. Eeckhout, “System-level performance metrics for multiprogram
workloads,” IEEE Micro, May 2008.

[32] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. Smith, “A mechanistic perfor-
mance model for superscalar out-of-order processors,” ACM Transactions on Com-
puter Systems (TOCS), vol. 27, no. 2, p. 3, 2009.

[33] S. Eyerman, J. E. Smith, and L. Eeckhout, “Characterizing the branch mispre-
diction penalty,” in Proc. of the Int. Symp. on Performance Analysis of Systems
and Software, 2011.

94 Bibliography

[34] B. Fields, S. Rubin, and R. Bodik, “Focusing processor policies via critical-path
prediction,” in Proc. of the 28th Int. Symp. on Computer Architecture, 2001.

[35] B. A. Fields, R. Bodik, M. D. Hill, and C. J. Newburn, “Using interaction costs
for microarchitectural bottleneck analysis,” in Proc. of the 36th Int. Symp. on
Microarchitecture, 2003.

[36] P. J. Fleming and J. J. Wallace, “How not to lie with statistics : the correct way
to summarize benchmark results,” Communications of the ACM, vol. 29, no. 3,
pp. 218–221, Mar. 1986.

[37] D. Genbrugge and L. Eeckhout, “Statistical simulation of chip multiprocessors
running multi-program workloads,” in Computer Design, 2007. ICCD 2007. 25th
International Conference on. IEEE, 2007, pp. 464–471.

[38] D. Genbrugge, L. Eeckhout, and K. De Bosschere, “Accurate memory data flow
modeling in statistical simulation,” in Proceedings of the 20th annual international
conference on Supercomputing. ACM, 2006, pp. 87–96.

[39] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval simulation: Raising the
level of abstraction in architectural simulation,” in High Performance Computer
Architecture (HPCA), 2010 IEEE 16th International Symposium on. IEEE, 2010,
pp. 1–12.

[40] S. R. Goldschmidt and J. L. Hennessy, “The accuracy of trace-driven simulations
of multiprocessors,” in Proc. of the ACM SIGMETRICS Conf. on Measurement
and Modeling of Computer Systems, 1993.

[41] R. Gupta, B. Calder, J. Lau, and C. Pereira, “Dynamic phase analysis for cycle-
close trace generation,” in Hardware/Software Codesign and System Synthesis,
2005. CODES+ ISSS’05. Third IEEE/ACM/IFIP International Conference on.
IEEE, 2005, pp. 321–326.

[42] N. Hardavellas, S. Somogyi, T. Wenisch, R. Wunderlich, S. Chen, J. Kim, B. Fal-
safi, J. Hoe, and A. Nowatzyk, “Simflex: A fast, accurate, flexible full-system
simulation framework for performance evaluation of server architecture,” ACM
SIGMETRICS Performance Evaluation Review, vol. 31, no. 4, pp. 31–34, 2004.

[43] J. Hennessy and D. Patterson, Computer architecture: a quantitative approach.
Morgan Kaufmann, 2011.

[44] J. Henning, “Spec cpu2000: Measuring cpu performance in the new millennium,”
Computer, vol. 33, no. 7, pp. 28–35, 2000.

[45] E. Ïpek, S. McKee, R. Caruana, B. de Supinski, and M. Schulz, Efficiently ex-
ploring architectural design spaces via predictive modeling. ACM, 2006, vol. 40,
no. 5.

Bibliography 95

[46] A. Jaleel, K. Theobald, S. C. Steely Jr., and J. Emer, “High Performance Cache
Replacement Using Re-Reference Interval Prediction (RRIP),” in Proc. of the 37th
Annual International Symposium on Computer Architecture, 2010.

[47] L. K. John, “More on finding a single number to indicate overall performance of a
benchmark suite,” ACM SIGARCH Computer Architecture News, vol. 32, no. 1,
Mar. 2004.

[48] R. Johnson and D. Wichern, Applied multivariate statistical analysis. Prentice
hall Englewood Cliffs, NJ, 1992, vol. 4.

[49] P. Joseph, K. Vaswani, and M. Thazhuthaveetil, “Construction and use of lin-
ear regression models for processor performance analysis,” in High-Performance
Computer Architecture, 2006. The Twelfth International Symposium on. IEEE,
2006, pp. 99–108.

[50] ——, “A predictive performance model for superscalar processors,” in Proceedings
of the 39th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2006, pp. 161–170.

[51] A. Joshi, J. Yi, R. Bell Jr, L. Eeckhout, L. John, and D. Lilja, “Evaluating the ef-
ficacy of statistical simulation for design space exploration,” in Performance Anal-
ysis of Systems and Software, 2006 IEEE International Symposium on. IEEE,
2006, pp. 70–79.

[52] S. Kanaujia, I. E. Papazian, J. Chamberlain, and J. Baxter, “FastMP : a multi-core
simulation methodology,” in Workshop on Modeling, Benchmarking and Simula-
tion, 2006.

[53] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor model,” in
Proc. of the 31st Int. Symp. on Computer Architecture, 2004.

[54] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-isa heterogeneous multi-core architectures: The potential for processor
power reduction,” in Microarchitecture, 2003. MICRO-36. Proceedings. 36th An-
nual IEEE/ACM International Symposium on. IEEE, 2003, pp. 81–92.

[55] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Heterogeneous
chip multiprocessors,” Computer, vol. 38, no. 11, pp. 32–38, 2005.

[56] S. Laha, J. H. Patel, and R. K. Iyer, “Accurate low-cost methods for performance
evaluation of cache memory systems,” Computers, IEEE Transactions on, vol. 37,
no. 11, pp. 1325–1336, 1988.

[57] B. Lee and D. Brooks, “Accurate and efficient regression modeling for microarchi-
tectural performance and power prediction,” in ACM SIGOPS Operating Systems
Review, vol. 40, no. 5. ACM, 2006, pp. 185–194.

96 Bibliography

[58] B. Lee, D. Brooks, B. de Supinski, M. Schulz, K. Singh, and S. McKee, “Methods
of inference and learning for performance modeling of parallel applications,” in
Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice of
parallel programming. ACM, 2007, pp. 249–258.

[59] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a tool for evalu-
ating and synthesizing multimedia and communicatons systems,” in Proceedings
of the 30th annual ACM/IEEE international symposium on Microarchitecture.
IEEE Computer Society, 1997, pp. 330–335.

[60] K. Lee and S. Cho, “In-N-Out : reproducing out-of-order superscalar proces-
sor behavior from reduced in-order traces,” in Proc. of the IEEE Int. Symp. on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2011.

[61] K. Lee, S. Evans, and S. Cho, “Accurately approximating superscalar processor
performance from traces,” in Proc. of the Int. Symp. on Performance Analysis of
Systems and Software, 2009.

[62] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “CMP design space explo-
ration subject to physical constraints,” in High-Performance Computer Architec-
ture, 2006. The Twelfth International Symposium on. IEEE, 2006, pp. 17–28.

[63] G. Loh, “A time-stamping algorithm for efficient performance estimation of super-
scalar processors,” in Proc. of the ACM SIGMETRICS Int. Conf. on Measurement
and Modeling of Computer Systems, 2001.

[64] G. Loh, S. Subramaniam, and Y. Xie, “Zesto : a cycle-level simulator for highly
detailed microarchitecture exploration,” in Proc. of the Int. Symp. on Performance
Analysis of Systems and Software, 2009.

[65] K. Luo, J. Gummaraju, and M. Franklin, “Balancing throughput and fairness in
SMT processors,” in Proc. of the IEEE International Symposium on Performance
Analysis of Systems and Software, 2001.

[66] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-
berg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system simulation
platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[67] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen, K. Moore,
M. Hill, and D. Wood, “Multifacet’s general execution-driven multiprocessor sim-
ulator (GEMS) toolset,” ACM SIGARCH Computer Architecture News, vol. 33,
no. 4, pp. 92–99, 2005.

[68] J. R. Mashey, “War of the benchmark means : time for a truce,” ACM SIGARCH
Computer Architecture News, vol. 32, no. 4, Sep. 2004.

Bibliography 97

[69] C. J. Mauer, M. D. Hill, and D. A. Wood, “Full-system timing-first simulation,”
in Proc. of the ACM SIGMETRICS Int. Conf. on Measurement and Modeling of
Computer Systems, 2002.

[70] P. Michaud, “Demystifying multicore throughput metrics,” Aug. 2012.

[71] C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp: Stanford trans-
actional applications for multi-processing,” in Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on. IEEE, 2008, pp. 35–46.

[72] J. Moses, R. Illikkal, R. Iyer, R. Huggahalli, and D. Newell, “ASPEN: towards
effective simulation of threads & engines in evolving platforms,” in Modeling, Anal-
ysis, and Simulation of Computer and Telecommunications Systems, 2004.(MAS-
COTS 2004). Proceedings. The IEEE Computer Society’s 12th Annual Interna-
tional Symposium on. IEEE, 2004, pp. 51–58.

[73] O. Mutlu, H. Kim, D. Armstrong, and Y. Patt, “Understanding the effects of
wrong-path memory references on processor performance,” in Proceedings of the
3rd workshop on Memory performance issues: in conjunction with the 31st inter-
national symposium on computer architecture. ACM, 2004, pp. 56–64.

[74] D. Nellans, V. Kadaru, and E. Brunvand, “ASIM-An asynchronous architectural
level simulator,” in Proceedings of GLSVLSI. Citeseer, 2004.

[75] D. B. Noonburg and J. P. Shen, “Theoretical modeling of superscalar processor
performance,” in Proc. of the 27th Int. Symp. on Microarchitecture, 1994.

[76] S. Nussbaum and J. Smith, “Modeling superscalar processors via statistical simu-
lation,” in Parallel Architectures and Compilation Techniques, 2001. Proceedings.
2001 International Conference on. IEEE, 2001, pp. 15–24.

[77] ——, “Statistical simulation of symmetric multiprocessor systems,” in Simulation
Symposium, 2002. Proceedings. 35th Annual. IEEE, 2002, pp. 89–97.

[78] P. Ortego and P. Sack, “SESC: SuperESCalar simulator,” in 17 th Euro micro
conference on real time systems (ECRTS’05), 2004, pp. 1–4.

[79] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder, “Using
simpoint for accurate and efficient simulation,” in ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 31, no. 1. ACM, 2003, pp. 318–319.

[80] R. Plackett and J. Burman, “The design of optimum multifactorial experiments,”
Biometrika, pp. 305–325, 1946.

[81] M. Qureshi, A. Jaleel, Y. Patt, S. C. Steely Jr., and J. Emer, “Adaptive insertion
policies for high performance caching,” in Proc. of the 34th Annual International
Symposium on Computer Architecture, 2007.

98 Bibliography

[82] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and M. Valero, “Trace-
driven simulation of multithreaded applications,” in Performance Analysis of Sys-
tems and Software (ISPASS), 2011 IEEE International Symposium on. IEEE,
2011, pp. 87–96.

[83] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta, “Complete computer system
simulation: The simos approach,” Parallel & Distributed Technology: Systems &
Applications, IEEE, vol. 3, no. 4, pp. 34–43, 1995.

[84] F. Ryckbosch, S. Polfliet, and L. Eeckhout, “Fast, accurate, and validated full-
system software simulation on x86 hardware,” IEEE Micro, vol. 30, no. 6, pp.
46–56, Nov. 2010.

[85] R. Sendag, A. Yilmazer, J. Yi, and A. Uht, “Quantifying and reducing the effects
of wrong-path memory references in cache-coherent multiprocessor systems,” in
Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th Inter-
national. IEEE, 2006, pp. 10–pp.

[86] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically character-
izing large scale program behavior,” in Proc. of the 10th Int. Conf. on Architectural
Support for Programming Languages and Operating Systems, 2002.

[87] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,” ACM
SIGARCH Computer Architecture News, vol. 31, no. 2, pp. 336–349, 2003.

[88] J. E. Smith, “Characterizing computer performance with a single number,” Com-
munications of the ACM, vol. 31, no. 10, pp. 1202–1206, Oct. 1988.

[89] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for simultaneous multi-
threading processor,” in Proc. of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2000.

[90] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A. Wood, “Analytic
evaluation of shared-memory systems with ILP processors,” in Proc. of the 25th
Int. Symp. on Computer Architecture, 1998.

[91] C. Spradling, “Spec cpu2006 benchmark tools,” ACM SIGARCH Computer Ar-
chitecture News, vol. 35, no. 1, pp. 130–134, 2007.

[92] M. Vachharajani, N. Vachharajani, D. Penry, J. Blome, and D. August, “The
liberty simulation environment, version 1.0,” ACM SIGMETRICS Performance
Evaluation Review, vol. 31, no. 4, pp. 19–24, 2004.

[93] M. Van Biesbrouck, L. Eeckhout, and B. Calder, “Considering all starting points
for simultaneous multithreading simulation,” in Proc. of the Int. Symp. on Per-
formance Analysis of Systems and Software, 2006.

Bibliography 99

[94] ——, “Representative multiprogram workloads for multithreaded processor simu-
lation,” in Proc. of the IEEE International Symposium on Workload Characteri-
zation, 2007.

[95] H. Vandierendonck and A. Seznec, “Fairness metrics for multi-threaded proces-
sors,” IEEE Computer Architecture Letters, vol. 10, no. 1, Jan. 2011.

[96] ——, “Managing SMT Resource Usage through Speculative Instruction Window
Weighting,” ACM Transactions on Architecture and Code Optimization, vol. 8,
no. 3, Oct. 2011.

[97] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe, “SMARTS: Accelerating mi-
croarchitecture simulation via rigorous statistical sampling,” in Computer Archi-
tecture, 2003. Proceedings. 30th Annual International Symposium on. IEEE,
2003, pp. 84–95.

[98] J. Yi, L. Eeckhout, D. Lilja, B. Calder, L. John, and J. Smith, “The future of
simulation: A field of dreams,” Computer, vol. 39, no. 11, pp. 22–29, 2006.

[99] J. Yi, D. Lilja, and D. Hawkins, “A statistically rigorous approach for improv-
ing simulation methodology,” in High-Performance Computer Architecture, 2003.
HPCA-9 2003. Proceedings. The Ninth International Symposium on. IEEE, 2003,
pp. 281–291.

[100] M. Yourst, “Ptlsim users guide and reference: The anatomy of an x86-64 out of
order microprocessor,” Technical report, SUNY Binghamton, Tech. Rep.

[101] ——, “PTLsim: A cycle accurate full system x86-64 microarchitectural simula-
tor,” in Performance Analysis of Systems & Software, 2007. ISPASS 2007. IEEE
International Symposium on. IEEE, 2007, pp. 23–34.

[102] L. Zhao, R. Iyer, J. Moses, R. Illikkal, S. Makineni, and D. Newell, “Exploring
large-scale CMP architectures using ManySim,” IEEE Micro, vol. 27, no. 4, pp.
21–33, Jul. 2007.

100 Bibliography

List of Figures

2.1 Scientific method versus computer systems method. 10

3.1 Normalized execution time for h264ref and libquantum 32
3.2 Simulation flow for PDCM behavioral core model. 33
3.3 Adapting PDCM for detailed OoO core 35
3.4 Simulation flow for BADCO model. 39
3.5 Example of BADCO model building . 40
3.6 CPI error: PDCM vs. BADCO . 46
3.7 Relative performance variation: PDCM vs. BADCO 48
3.8 BADCO simulation speed . 49
3.9 CPI measured with Zesto vs. estimated CPI with BADCO 53

4.1 Degree of confidence as a function of 1
cv

√

W
2 59

4.2 Confidence that “DRRIP outperforms DIP” 60
4.3 Inv. coef. of variation for 4 cores, IPCT vs. WSU vs. HSU 62
4.4 Inv. coef. of variation measured with BADCO for 2, 4 and 8 cores . . . 63
4.5 Confidence of sampling methods as function of sample size. 71
4.6 Experimental degree of confidence measured with Zesto. 72

A.1 Nous efforts pour améliorer la précision du modèle PDCM. 81
A.2 Erreur CPI de PDCM et BADCO par la configuration “gros”. 84
A.3 Vitesse de simulation en MIPS pour Zesto, PDCM et BADCO. 86
A.4 Efficacité des méthodes d’échantillonnage. Confiance en fonction de la

taille de l’échantillon par DIP > LRU et FIFO > RND. 89

101

102 List of Figures

List of Tables

3.1 Core configuration – single core experiment 43
3.2 Uncore configuration – single core experiment 44
3.3 Average CPI error of PDCM and BADCO respect to Zesto. 45
3.4 Average variation error using as reference the configuration “001”. 47
3.5 Single core simulation speed. 47
3.6 Core configuration – multicore experiment. 50
3.7 Uncore configurations – multicore experiment. 51
3.8 Average of absolute CPI error in percentage. 52
3.9 Average of absolute speedup error in percentage. 52
3.10 BADCO average speedup for 1, 2, 4 and 8 cores. 54

4.1 Classification of SPEC benchmarks by memory intensity 66

A.1 Erreur CPI moyenne de PDCM et BADCO sur Zesto. 84
A.2 Erreur qualitative moyenne de PDCM et BADCO sur la configuration

“001”. 84
A.3 Erreur CPI moyenne absolue pour 2, 4 et 8 cœurs. 85
A.4 Erreur de speedup moyenne absolue pour 2, 4 et 8 cœurs. 85
A.5 Vitesse de simulation moyenne de BADCO et Zesto pour des processeurs

de 1, 2, 4 et 8 cœurs. 86

103

Résumé

Ces dernières années, l’effort de recherche est passé de la microarchitecture du cœur à
la microarchitecture de la hiérarchie mémoire. Les modèles précis au cycle près pour
processeurs multi-cœurs avec des centaines de cœurs ne sont pas pratiques pour simuler
des charges multitâches réelles du fait de la lenteur de la simulation. Un grand pour-
centage du temps de simulation est consacré à la simulation des différents cœurs, et ce
pourcentage augmente linéairement avec chaque génération de processeur. Les modèles
approximatifs sacrifient de la précision pour une vitesse de simulation accrue, et sont
la seule option pour certains types de recherche. Les processeurs multi-cœurs exigent
également des méthodes de simulation plus rigoureuses. Il existe plusieurs méthodes
couramment utilisées pour simuler les architectures simple cœur. De telles méthodes
doivent être adaptées ou même repensées pour la simulation des architectures multi-
cœurs.

Dans cette thèse, nous avons montré que les modèles comportementaux sont inté-
ressants pour étudier la hiérarchie mémoire des processeurs multi-coeurs. Nous avons
démontré que l’utilisation de modèles comportementaux permet d’accélérer les simu-
lations d’un facteur entre un et deux ordres de grandeur avec des erreurs moyennes
de moins de 5%. Nous avons démontré également que des modèles comportementaux
peuvent aider dans le problème de la sélection des charges de travail multiprogrammées
pour évaluer la performance des microarchitectures multi-cœurs.

Abstract

In recent years, the research focus has moved from core microarchitecture to uncore
microarchitecture. Cycle-accurate models for many-core processors featuring hundreds
or even thousands of cores are out of reach for simulating realistic workloads. A large
portion of the simulation time is spend in the cores, and it is this portion that grows
linear with every processor generation. Approximate simulation methodologies, which
trade off accuracy for simulation speed, are necessary for conducting certain research.
Multicore processors also demand for more advanced and rigorous simulation method-
ologies. Many popular methodologies designed by computer architects for simulation of
single core architectures must be adapted or even rethought for simulation of multicore
architectures.

In this thesis, we have shown that behavioral core modeling is a competitive option
for multicore studies where the research focus is in the uncore microarchitecture and
considering independent tasks. We demonstrated that behavioral core models can bring
speedups between one and two orders of magnitude with average CPI errors of less than
5%. We have also demonstrated that behavioral core models can help in the problem
of selecting multiprogram workloads for the evaluation of multicore throughput.

	Introduction
	Context
	Research Questions
	Contributions
	Thesis Outline

	State of the Art
	Introduction
	Computer architecture simulators
	Some simulator terminology
	Simulator architectures
	Integrated simulation
	Functional-first
	Timing-first
	Timing-directed

	Improving simulators performance
	Approximate simulators
	Analytical models
	Structural core models
	Behavioral core models
	Behavioral core models for multicore simulation

	Simulation methodologies
	Workload design
	Single-program workloads
	Multiprogram workloads

	Sampling simulation
	Statistical sampling
	Representative Sampling

	Statistical simulation

	Performance metrics
	Single-thread workloads
	Multi-thread workloads
	Multiprogram workloads
	Prevalent metrics
	Other metrics

	Average performance

	Behavioral Core Models
	Introduction
	The limits of approximate microarchitecture modeling
	The PDCM behavioral core model
	PDCM simulation flow
	Adapting PDCM for detailed OoO core
	TLB misses and inter-request dependencies
	Write-backs
	Branch miss predictions
	Prefetching
	Delayed hits

	PDCM limitations

	BADCO: a new behavioral core model
	The BADCO machine
	BADCO model building

	Experimental evaluation
	Metrics
	Quantitative accuracy
	Qualitative accuracy
	Simulation speed

	Modeling multicore architectures with BADCO
	Experimental setup
	Experimental results
	Multicore simulation speed

	Summary

	Multiprogram Workload Design
	Introduction
	The problem of multiprogram workload design
	Random sampling
	Experimental evaluation
	Simulation setup

	Experimental results for random sampling
	Random sampling model validation
	Performance difference impacts the sample size
	Different metrics may require different sample sizes

	Alternative sampling methods
	Balanced random sampling
	Stratified random sampling
	Benchmark stratification
	Workload stratification

	Actual degree of confidence

	Practical guidelines in multiprogram workload selection
	Simulation overhead: example

	Summary

	Conclusion
	Résumé en français
	Introduction
	Contributions
	Modèles comportementaux
	Modèle comportemental PDCM
	BADCO: un nouveau modèle comportemental
	Évaluation expérimentale
	Précision simple cœur
	Précision multi-cœur
	Vitesse de simulation

	Sélection de charges de travail multiprogrammées
	Méthodes d'échantillonnage
	Échantillonnage aléatoire simple
	Échantillonnage aléatoire équilibré
	Échantillonnage aléatoire stratifié

	Évaluation expérimentale

	Conclusions

	Bibliography
	List of Figures
	List of Tables

