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Résumé en Français 

L'ère du multi-cœur est arrivée. Les fournisseurs continuent d'ajouter des cœurs 

aux puces et avec davantage de cœurs, les consommateurs sont persuadés de 

transformer leurs ordinateurs en plateformes. Cependant, très peu d'applications 

sont optimisées pour les systèmes multi-cœurs. Il reste difficile de développer 

efficacement et de façon rentable des applications parallèles. Ces dernières années, 

de plus en plus de chercheurs dans le domaine de la HPS ont commencé à utiliser 

les GPU (Graphics Processing Unit, unité de traitement graphique) pour accélérer 

les applications parallèles. Une GPU est composée de nombreux cœurs plus petits 

et plus simples que les processeurs de CPU multi-cœurs des ordinateurs de bureau. 

Il n'est pas difficile d'adapter une application en série à une plateforme GPU. Bien 

que peu d'efforts soient nécessaires pour adapter de manière fonctionnelle les 

applications aux GPU, les programmeurs doivent encore passer beaucoup de 

temps à optimiser leurs applications pour de meilleures performances. 

Afin de mieux comprendre le résultat des performances et de mieux optimiser 

les applications de GPU, la communauté GPGPU travaille sur plusieurs 

thématiques intéressantes. Des modèles de performance analytique sont créés pour 

aider les développeurs à comprendre le résultat de performance et localiser le 

goulot d'étranglement. Certains outils de réglage automatique sont conçus pour 

transformer le modèle d'accès aux données, l'agencement du code, ou explorer 

automatiquement l'espace de conception. Quelques simulateurs pour applications 

de GPU sont également lancés. La difficulté évidente pour l'analyse de 

performance des applications de GPGPU réside dans le fait que l'architecture sous-

jacente de la GPU est très peu documentée. La plupart des approches développées 

jusqu'à présent n'étant pas assez bonnes pour une optimisation efficace des 

applications du monde réel, et l'architecture des GPU évoluant très rapidement, la 

communauté a encore besoin de perfectionner les modèles et de développer de 

nouvelles approches qui permettront aux développeurs de mieux optimiser les 

applications de GPU. 

Dans ce travail de thèse, nous avons principalement travaillé sur deux aspects 

de l'analyse de performance des GPU. En premier lieu, nous avons étudié 

comment mieux estimer les performances des GPU à travers une approche 

analytique. Nous souhaitons élaborer une approche suffisamment simple pour être 

utilisée par les développeurs, et permettant de mieux visualiser les résultats de 

performance. En second lieu, nous tentons d'élaborer une approche permettant 

d'estimer la limite de performance supérieure d'une application dans certaines 

architectures de GPU, et d'orienter l'optimisation des performances. 
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Ce résumé est organisé de la manière suivante : la section 2 présente de 

simples modèles de flux de données d'application de la QCD sur réseau dans des 

architectures GPGPU GT200 et Cell B.E. La section 3 présente notre travail sur 

l'estimation de performance à l'aide d'une approche analytique, qui a fait partie du 

séminaire de travail Rapido 2012. La section 4 présente notre travail sur l'analyse 

de la limite de performance supérieure des applications de GPU ; il fera partie du 

CGO 2013. La section 5 conclut cette thèse et fournit des orientations pour le 

futur. 

1 Modèle de flux de données de QCD sur réseau sur Cell 
B.E. et GPGPU 

La chromodynamique quantique (QCD pour Quantum chromodynamics) est la 

théorie physique des interactions entre les éléments fondamentaux de la matière, et 

la QCD sur réseau est une approche numérique systématique pour l'étude de la 

théorie de la QCD. L'objectif de cette partie du travail de thèse est de fournir des 

modèles de performance analytique de l'algorithme de QCD sur réseau sur 

architecture multi-cœur. Deux architectures, les processeurs GPGPU GT200 et 

CELL B.E., sont étudiées et les abstractions matérielles sont proposées. 

2.1 Comparaison de deux modèles analytiques 

La Figure 1 offre une comparaison des deux modèles présentés. Les principales 

différences entre les deux plateformes de mise en œuvre de la QCD sur réseau sont 

les différences de hiérarchie de mémoire et de modèle d'interconnexion des 

différentes unités de processeurs, qui auront une influence sur le modèle d'accès à 

la mémoire. Le modèle d'accès à la mémoire est la clé des exigences en termes de 

flux de données, et donc, la clé de la performance. 

2.2 Routine de QCD sur réseau Hopping_Matrix 

Hopping_Matrix est la routine la plus longue de l'algorithme de QCD sur réseau : 

elle occupe environ 90 % du temps d'exécution total. Les structures de données 

d'entrée de la routine Hopping_Matrix incluent le champ de spineur, le champ de 

jauge, 
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Figure 1 : comparaison des modèles analytiques de Cell et GPU 

le résultat est le champ de spineur obtenu. Les données temporaires correspondent 

au champ du demi-spineur intermédiaire. 

2.3 Analyse de performance 

Notre méthodologie consiste à obtenir la performance potentielle sur la base de 

l'analyse du flux de données. Avec des modèles de processeurs et l'application, les 

modèles d'accès à la mémoire sont résumés, ce qui permet ensuite de générer les 

informations relatives au flux de données. Il est ensuite possible d'estimer les 

exigences des données en termes de bande passante sur la base des informations 

relatives au flux de données. En identifiant le composant du goulot d'étranglement, 

la performance potentielle de l'application est calculée par l'intermédiaire de la 

bande passante maximale du composant. 

En utilisant les modèles analytiques présentés, on catégorise les modèles 

d'accès à la mémoire comme indiqué dans le Tableau 1. 

Dans une mise en œuvre, tous les modèles peuvent ne pas être appliqués 

simultanément, en raison des contraintes de ressources du processeur. Pour 

différentes mises en œuvre, de nombreuses combinaisons de ces modèles sont 

donc applicables. Pour obtenir des performances optimales sur une architecture 

spécifique, il est possible de sélectionner la meilleure combinaison en fonction des 

caractéristiques de l'architecture. 

Pour un processeur Cell B.E., la base locale peut contenir les données de 

champ d'un sous-réseau avec suffisamment de sites d'espace-temps. Les modèles 

P2 et P3 pourraient donc être appliqués. Le SPE pouvant émettre directement des 

opérations I/O, les données de champ du demi-spineur de limite peuvent être 

directement transférées sans être réécrites dans la mémoire principale. Le modèle 

P4 est donc réalisable. Différents SPE pouvant communiquer directement à travers 

l'EIB, le modèle P5 est également réalisable. La combinaison optimale pour le 

processeur Cell est (01111). Avec la combinaison de modèle (01111), la 

performance de pointe potentielle pour  

  

SIMD SIMD SIMT SIMT 

I/O 

Mémoire 
principale 

Mémoire 
graphique I/O 

LS LS RF RF Partage Partage 
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P1 Reconstitution du champ de jauge dans le processeur 

P 2 
Partage total des données du champ de jauge entre les sites 

d'espace-temps voisins 

P 3 
Les données de champ du demi-spineur intermédiaire sont 

contenues dans la mémoire rapide locale, sans nécessiter de 

réécriture dans la mémoire principale 

P 4 
Les données de champ du demi-spineur de limite inter 

processeurs sont stockées dans la mémoire rapide locale, sans 

nécessiter de réécriture dans la mémoire principale 

P 5 
Les données de champ du demi-spineur de limite inter-cœurs 

sont stockées dans la mémoire rapide locale, sans nécessiter de 

réécriture dans la mémoire principale 

Tableau 1 : modèle d'accès à la mémoire 

DSlash est d'environ 35 GFlops (34 % de la performance de pointe théorique de 

Cell, avec 102,4 GFlops). 

Pour la GPU GT200, il est impossible de stocker l'ensemble des données de 

champ de demi-spineur intermédiaire. La GPU n'étant pas capable d'émettre 

directement les opérations I/O, le modèle P4 est impossible. Il n'y a pas de 

communication directe entre cœurs dans le GPU. P5 est donc également 

irréalisable. Chaque GPU ayant une grande puissance de calcul, il est envisageable 

de reconstruire les données de champ de jauge à l'intérieur du processeur. La 

combinaison de modèle possible pourrait donc être (10000). Avec la combinaison 

de modèle (10000), si l'on tient uniquement compte d'un nœud de GPU simple, la 

performance potentielle est de 75,6 GFlops, soit environ 65 % de la performance 

de pointe théorique en double précision. 

2 Estimation de performance des applications de GPU à 
travers l'utilisation d'une méthode analytique 

L'objectif de la deuxième partie de ce travail de thèse est de fournir une approche 

analytique permettant de mieux comprendre les résultats de performance des GPU. 

Nous avons développé un modèle de temporisation pour la GPU NVIDIA GT200 

et construit l'outil TEG (Timing Estimation tool for GPU) sur la base de ce 

modèle. TEG prend pour éléments de départ le code assembleur de noyau CUDA 

et le suivi des instructions. Le code binaire du noyau CUDA est désassemblé à 

l'aide de l'outil cuobjdump fourni par NVIDIA. Le suivi des instructions est obtenu 

grâce au simulateur Barra. Ensuite, TEG modélise l'exécution du noyau sur la 

GPU et collecte les informations de temporisation. Les cas évalués montrent que 

TEG peut obtenir une approximation de performance très proche. En comparaison 

avec le 
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approximation. En comparaison avec le nombre réel de cycles d'exécution, TEG 

présente généralement un taux d'erreur inférieur à 10 %. 

3.1 Paramètres du modèle 

Pour utiliser le modèle analytique dans TEG, il faut définir des paramètres du 

modèle. Cette section présente certains des principaux paramètres. 

La latence d'exécution d'une instruction de chaîne désigne les cycles au cours 

desquels l'instruction est active dans l'unité fonctionnelle correspondante. Après la 

latence d'exécution, une instruction de chaîne émise est marquée comme terminée. 

La latence d'émission de la même chaîne d'une instruction correspond aux 

cycles au cours desquels le moteur d'émission doit attendre avant d'émettre une 

autre instruction, après avoir émis une instruction de chaîne. Elle est calculée à 

l'aide du débit d'instruction. 

La latence d'émission de la même chaîne correspond aux cycles au cours 

desquels le moteur d'émission doit attendre avant d'émettre une autre instruction 

issue de la même chaîne, après avoir émis une instruction de chaîne. Cette latence 

peut également être mesurée à l'aide de la fonction d'horloge() ; elle est 

généralement plus longue que la latence d'émission de plusieurs chaînes.  

3.2 Évaluation 

 

Figure 2 : analyse des erreurs de TEG 

Nous évaluons TEG à l'aide de plusieurs repères selon différentes 

configurations et comparons les temps d'exécution mesurés et estimés du noyau. 

Le résultat est présenté dans la Figure 2. Le nom est défini ainsi : NomDeNoyau-

NombreDeChaînes. BS, MatA, MatB, QdA, QdB, Qf correspondent respectivement 

à Blackscholes, multiplication naïve de matrice, multiplication de matrice sans 

conflit de banque de mémoire partagée, noyau  

   

Analyse des erreurs d'estimation de performance à l'aide de TEG 

mesurés 
prévus 

cy
cl

es
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QCD sur réseau en double précision avec accès mémoire non coalescé, noyau 

QCD sur réseau en double précision avec accès mémoire coalescé, et noyau QCD 

sur réseau en simple précision. NombreDeChaînes est le nombre de chaînes 

concomitantes attribuées à chaque SM. Ici, la même charge est attribuée à toutes 

les chaînes. Le résultat indique que TEG présente une bonne approximation et 

qu'il peut également déceler le comportement de mise à l'échelle des 

performances. Le taux moyen d'erreur absolue relative est de 5,09 % et le taux 

maximum d'erreur absolue relative est de 11,94 %. 

3 Analyse de la limite de performance supérieure et 
optimisation de SGEMM sur les GPU Fermi et Kepler 

Pour comprendre les résultats de performance des GPU, il existe de nombreux 

travaux traitant de la façon de prévoir/prédire la performance des applications 

CUDA à travers des méthodes analytiques. Toutefois, les modèles de performance 

des GPU reposent tous sur un certain niveau de mise en œuvre de l'application 

(code C++, code PTX, code assembleur...) et ne répondent pas à la question de la 

qualité de la version optimisée actuelle, et de l'utilité d'un éventuel effort 

d'optimisation supplémentaire. Différente des modèles de performance des GPU 

existants, notre approche ne prévoit pas la performance possible en fonction de 

certaines mises en œuvre, mais la limite de performance supérieure qu'une 

application ne peut dépasser. 

4.1 Approche d'analyse générale pour la performance de pointe potentielle 

L'approche d'analyse générale peut être la même pour toutes les applications, mais 

le processus d'analyse détaillée peut varier d'une application à l'autre. 

En premier lieu, nous devons analyser les types d'instructions et le pourcentage 

d'une routine. En second lieu, nous devons trouver quels paramètres critiques ont 

un impact sur le pourcentage de mélange des instructions. Troisièmement, nous 

analysons de quelle manière le débit d'instruction varie en fonction de la 

modification de ces paramètres critiques. Quatrièmement, nous pouvons utiliser le 

débit d'instructions et la combinaison optimale des paramètres critiques pour 

estimer la limite de performance supérieure. Avec cette approche, nous pouvons 

non seulement obtenir une estimation de la limite de performance supérieure, 

connaître l'écart de performance restant et déterminer l'effort d'optimisation, mais 

aussi comprendre quels paramètres sont essentiels à la performance et comment 

répartir notre effort d'optimisation. 
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4.2 Analyse de la performance de pointe potentielle pour SGEMM 

Pour SGEMM, tous les noyaux SGEMM correctement mis en œuvre utilisent la 

mémoire partagée de la GPU pour diminuer la pression exercée sur la mémoire 

globale. Les données sont d'abord chargées depuis la mémoire globale vers la 

mémoire partagée, puis les threads d'un même bloc peuvent partager les données 

chargées dans la mémoire partagée. Pour les GPU Fermi (GF110) et Kepler 

(GK104), des instructions arithmétiques telles que FFMA ne peuvent pas accepter 

d'opérandes en provenance de la mémoire partagée. Les instructions LDS étant 

nécessaires au chargement des données initial depuis la mémoire partagée vers les 

registres, la plupart des instructions exécutées en SGEMM sont des instructions 

FFMA et LDS. 

4.2.1 Utilisation d'instructions de chargement plus étendues 

Pour obtenir de meilleures performances, il est essentiel de réduire au minimum le 

pourcentage d'instructions auxiliaires. Par instructions auxiliaires, nous entendons 

les instructions non mathématiques, et notamment les instructions LDS. Le code 

assembleur pour CUDA sm_20 (GPU GF110 Fermi) et sm_30 (GPU GK104 

Kepler) fournit des instructions LDS.64 et LDS.128 similaires aux instructions 

SIMD pour le chargement de données 64 et 68 bits à partir de la mémoire 

partagée. L'utilisation d'instructions de chargement plus étendues peut réduire le 

nombre total d'instructions LDS. Cependant, la performance globale n'est pas 

toujours améliorée par l'utilisation de telles instructions. 

4.3 Facteurs de mise en blocs du registre et de la mémoire partagée 

Une taille de mise en blocs du registre plus importante peut entraîner une plus 

forte réutilisation du registre pour un même thread, et un pourcentage plus élevé 

d'instructions FFMA. Toutefois, la taille de mise en blocs du registre est limitée 

par la ressource de registre sur le SM et la contrainte du jeu d'instructions. Avec un 

facteur de mise en blocs du registre BR, TB * B
2

R est la taille de la sous-matrice C 

par bloc (chaque bloc a des threads TB) et !B ∗ !
2
R *L est la taille d'une sous-

matrice pour A ou B (L est le pas). Pour un transfert des données et un calcul 

simultanés, des registres supplémentaires sont nécessaires afin d'acheminer les 

données de la mémoire globale vers la mémoire partagée, puisqu'aucun transfert 

direct n'est assuré entre les deux espaces de mémoire. Le pas L doit être choisi de 

manière à ce que chaque thread charge la même quantité de données (équation 1). 

!B*BR*L)%TB = 0 

Si l'on considère que les données sont préalablement acheminées depuis la 

mémoire globale et que quelques registres stockent les adresses des matrices dans 

la mémoire globale et la mémoire partagée, (Radr), la contrainte globale stricte pour 

le facteur de mise en blocs du registre peut être décrite à travers l'équation 2. 
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B2
R + 

!∗ !B∗!R∗!

!B
 + BR + 1 +Radr ≤ RT ≤ RMax (2) 

La mémoire partagée étant attribuée en granularité par blocs, pour les blocs 

actifs Blk , Blk * 2 * !B*BR*L est nécessaire pour le stockage des données pré-

acheminées de la mémoire globale (équation 3). Le facteur de mise en blocs de 

mémoire peut être défini ainsi : BSh = !B ∗ !
2
R. Avec le facteur de mise en blocs 

de mémoire BSh, la performance limitée par la bande passante de la mémoire 

globale peut être estimée approximativement à l'aide de l'équation 4. 

Blk * 2 * !B*BR*L ≤ ShSM (3) 

!MemBound

#!"#$%"&'(_!"#$%&$'!
 = 

!∗!!ℎ2

!∗!!ℎ∗!
 (4) 

4.4 Performance de pointe potentielle pour SGEMM 

Le facteur d'instruction FI est le ratio d'instructions FFMA dans la boucle 

principale SGEMM (on ne tient compte ici que des instructions FFMA et LDS.X). 

Il dépend du choix de l'instruction LDS.X et du facteur de mise en blocs du 

registre BR. Par exemple, si LDS.64 est utilisé avec un facteur de mise en blocs du 

registre de 6, FI = 0,5. 

Le facteur de débit FT est fonction du facteur de mise en blocs du registre 

(BR), du nombre de threads actifs (TSM), du débit des SPs (#SP_TP), des unités 

LD/ST (#LDS.TP) et des unités de répartition (#Émission.TP)) (équation 5). 

Ft = f (BR, #Émission_TP, #SP_TP, #LDS_TP, TSM)  (5) 

Avec le facteur de mise en blocs du registre BR, le facteur d'instruction FI et le 

facteur de débit FT, la performance limitée par le débit de traitement des SM est 

estimée selon l'équation 6 et la performance globale selon l'équation 7. 

PLimitée par SM = 
!
2
R

!
2
R +!R*2*FI

 *FT * Pthéorique (6) 

Ppotentielle = min(PLimitée par mémoire, PLimitée par SM) (7) 

L'analyse précédente nous permet d'estimer la limite de performance 

supérieure de SGEMM sur les GPU Fermi et Kepler. Par exemple, sur les GPU 

Fermi, en raison de la limite stricte de 63 registres (RMax) par thread, en tenant 

compte de l'acheminement préalable et de l'utilisation de la condition stricte de 

l'équation 2, le facteur maximal de mise en blocs n'est que de 6. Selon les 

équations 4, 6 et 7, la performance est limitée par le débit de traitement des SM, et 

la pointe potentielle est égale à environ 82,5 % (
6
2

6
2
 +6*2*0.5

 * 
30.8

32  

) de la performance 

de pointe théorique pour SGEMM. La principale limite est due à la nature du jeu 

d'instructions Fermi et au débit d'émission limité des ordonnanceurs. 
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4 Conclusion 

Ce travail nous a permis d'apporter deux contributions. 

La première est le développement d'une méthode analytique pour prédire la 

performance des applications CUDA à l'aide du code assembleur de cuobjdump 

pour les GPU de génération GT200. Nous avons également développé un outil 

d'estimation temporelle (TEG) pour évaluer le temps d'exécution du noyau de 

GPU. TEG utilise le résultat d'un outil désassembleur NVIDIA, cuobjdump. 

cuobjdump peut traiter le fichier binaire de CUDA et générer des codes 

assembleurs. TEG n'exécute pas les codes, mais utilise uniquement des 

informations telles que le type d'instruction, les opérandes, etc. Avec le suivi des 

instructions et d'autres résultats nécessaires d'un simulateur fonctionnel, TEG peut 

fournir une estimation temporelle approximative des cycles. Cela permet aux 

programmeurs de mieux comprendre les goulots d'étranglement de la performance 

et le degré de pénalité qu'ils peuvent entraîner. Il suffit alors de supprimer les 

effets des goulots d'étranglement dans TEG, et d'estimer à nouveau la performance 

pour effectuer une comparaison. 

La deuxième contribution principale apportée par cette thèse est une approche 

pour l'estimation de la limite supérieure de performance des applications de GPU 

basée sur l'analyse des algorithmes et une analyse comparative au niveau du code 

assembleur. Il existe de nombreux travaux sur la façon d'optimiser des applications 

de GPU spécifiques, et de nombreuses études relatives aux outils de réglage. Le 

problème est que nous ne savons pas avec certitude si le niveau de performance 

obtenue est proche de la meilleure performance potentielle qu'il est possible 

d'obtenir. Avec la limite de performance supérieure d'une application, nous 

connaissons l'espace d'optimisation restant et nous pouvons déterminer l'effort 

d'optimisation à fournir. L'analyse nous permet également de comprendre quels 

paramètres sont critiques pour la performance. En exemple, nous avons analysé la 

performance de pointe potentielle de SGEMM (Single-precision General Matrix 

Multiply) sur les GPU Fermi (GF110) et Kepler (GK104). Nous avons tenté de 

répondre à la question « quel est l'espace d'optimisation restant pour SGEMM, et 

pourquoi ? ». D'après notre analyse, la nature du jeu d'instruction Fermi (Kepler) 

et le débit d'émission limité des ordonnanceurs sont les principaux facteurs de 

limitation de SGEMM pour approcher la performance de pointe théorique. La 

limite supérieure de performance de pointe estimée de SGEMM représente 

environ 82.5 % de la performance de pointe théorique sur les GPU Fermi 

GTX580, et 57,6 % sur les GPU Kepler GTX680. Guidés par cette analyse et en 

utilisant le langage assembleur natif, en moyenne, nos mises en œuvre SGEMM 

ont obtenu des performances supérieures d'environ 5 % que CUBLAS dans CUDA 

4.1 SDK pour les grandes matrices sur GTX580. La performance obtenue 

représente environ 90 % de la limite de performance supérieure de SGEMM sur 

GTX580. 
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Introduction

This thesis work is done in the context of the ANR PetaQCD project which amis at understand-

ing how the recent programmable hardware accelerators such as the now abandoned Cell B.E.

[41] and the high-end GPUs could be used to achieve the very high level of performance re-

quired by QCD (Quantum chromodynamics) simulations. QCD (Quantum chromodynamics)

is the physical theory for strong interactions between fundamental constituents of matter and

lattice QCD is a systematic numerical approach to study the QCD theory.

The era of multi-core has come. Vendors keep putting more and more computing cores on

die and consumers are persuaded to upgrade their personal computers to platforms with more

cores. However, the research and development in parallel software remain slower than the ar-

chitecture evolution. For example, nowadays, it is common to have a 4-core or 6-core desktop

CPU, but very few applications are optimized for the multi-core system. There are several rea-

sons. First, developers normally start to learn serial programming and parallel programming is

not the natural way that programmers think of problems. Second, there are a lot of serial legacy

codes and many softwares are built on top of these legacy serial components. Third, parallel

programming introduces more difficulties like task partition, synchronization, consistency than

serial programming. Fourth, the programming models may be different for various parallel

architectures. How to efficiently and effectively build parallel applications remains a difficult

task.

In recent years, more and more HPC researchers begin to pay attention to the potential

of GPUs (Graphics Processing Unit) to accelerate parallel applications since GPU can pro-

vide enormous computing power and memory bandwidth. GPU has become a good candi-

date architecture for both computation bound and memory bound HPC (High-Performance

Computing) applications. GPU is composed of many smaller and simpler cores than desk-

top multi-core CPU processors. The GPU processor is more power efficient since it uses

very simple control logic and utilizes a large pool of threads to saturate math instruction

pipeline and hide the memory access latency. Today, many applications have already been

ported to the GPU platform with programming interfaces like CUDA [2] or OpenCL [77]

[99, 78, 38, 47, 89, 60, 102, 58, 66, 28, 97, 14, 79]. It is not difficult to port a serial applica-

tion onto the GPU platform. Normally, we can have some speedup after simply parallelizing

the original code and executing the application on GPU. Though little efforts are needed to

functionally port applications on GPU, programmers still have to spend lot of time to optimize

their applications to achieve good performance. Unlike the serial programming, programming

GPU applications requires more knowledge of the underlying hardware features. There are

many performance degradation factors on GPU. For example, proper data access pattern needs

19
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to be designed to group the global memory requests from the same group of threads and avoid

conflicts to access the shared memory. Normally, to develop real world applications, most

programmers have to exhaustively explore a very large design space to find a good parameter

combination and rely on their programming experience [80]. This process requires a lot of

expert experience on performance optimization and the GPU architecture. The learning curve

is very long. How to efficiently design a GPU application with very good performance is still

a challenge.

To better understand the performance results and better optimize the GPU applications,

the GPGPU community is working on several interesting topics. Some analytical performance

models are developed to help developers to understand the performance result and locate the

performance bottlenecks [61, 40, 85, 101, 26]. Some automatic tuning tools are designed to

transform the data access pattern and the code layout to search the design space automatically

[27, 100, 31, 62]. A few simulators for GPU applications are introduced too [83, 29, 11, 24].

The obvious difficulty for GPGPU application performance analysis is that the underlying ar-

chitecture of GPU processors has very few documentations and sometimes, the vendors inten-

tionally hide some architecture details [54]. Researchers have to develop performance models

or automatic tuning tools without fully understanding the GPU hardware characteristics. Since

most of the approaches developed so far are not mature enough to efficiently optimize real

world applications and the GPU architecture is evolving very quickly, the community still

needs to refine existing performance models and develop new approaches to help developers to

better optimize GPU applications.

In this thesis work, we have mainly worked on two topics of GPU performance analysis.

First, we studied how to better estimate the GPU performance with an analytical approach.

Apparently it is not realistic to build detailed simulators to help developers to optimize per-

formance and the existing statistics profilers cannot provide enough information. So we want

to design an approach which is simple enough for developers to use and can provide more in-

sight into the performance results. Second, although we can project the possible performance

from certain implementations like many other performance estimation approaches, we still

do not answer the question of how good the current optimized version is and whether further

optimization effort is worthwhile or not. So we try to design an approach to estimate the perfor-

mance upper bound of an application on certain GPU architectures and guide the performance

optimization.

Contributions

There are two main contributions of this work.

As first contribution of this work, we have developed an analytical method to predict CUDA

application’s performance using assembly code from cuobjdump for GT200 generation GPU.

Also we have developed a timing estimation tool (TEG) to estimate GPU kernel execution

time. TEG takes the output of a NVIDIA disassembler tool cuobjdump [2]. cuobjdump can

process the CUDA binary file and generate assembly codes. TEG does not execute the codes,

but only uses the information such as instruction type, operands, etc. With the instruction trace

and some other necessary output of a functional simulator, TEG can give the timing estimation
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in cycle-approximate level. Thus it allows programmers to better understand the performance

bottlenecks and how much penalty the bottlenecks can introduce. We just need to simply

remove the bottlenecks’ effects from TEG, and estimate the performance again to compare.

The second main contribution of this thesis is an approach to estimate GPU applications’

performance upper bound based on application analysis and assembly code level benchmark-

ing. There exist many works about how to optimizie specific GPU applications and also a lot of

study on automatic tuning tools. But the problem is that there is no estimation of the distance

between the obtained performance and the best potential performance we can achieve. With the

performance upperbound of an application, we know how much optimization space is left and

can decide the optimization effort. Also with the analysis we can understand which parameters

are critical to the performance. As an example, we analyzed the potential peak performance of

SGEMM (Single-precision General Matrix Multiply) on Fermi (GF110) and Kepler (GK104)

GPUs. We tried to answer the question of how much optimization space is left for SGEMM

and why. According to our analysis, the nature of Fermi (Kepler) instruction set and the limited

issuing throughput of the schedulers are the main limitation factors for SGEMM to approach

the theoretical peak performance. The estimated upper bound peak performance of SGEMM

is around 82.5% of the theoretical peak performance on GTX580 Fermi GPU and 57.6% on

GTX680 Kepler GPU. Guided by this analysis and using the native assembly language, on

average, our SGEMM implementations achieve about 5% better performance than CUBLAS

in CUDA 4.1 SDK for large matrices on GTX580. The achieved performance is around 90%

of the estimated upper bound performance of SGEMM on GTX580. On GTX680, the best

performance we have achieved is around 77.3% of the estimated performance upper bound.

Organization of the document

This thesis is organized as follows: Chapter 1 gives an introduction to GPU architectures and

CUDA programming model, and the state of art on GPU performance modeling and analysis.

Chapter 2 introduces simple data-flow models of lattice QCD application on GPGPU and the

Cell B.E. architectures. Chapter 3 introduces our work on performance estimation using an

analytical approach, which appeared in Rapido ’12 workshop [53]. In Chapter 4, our work on

GPU applications’ performance upper bound analysis is presented, which is going to appear in

CGO ’13 [54].
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Chapter 1

Performance Analysis of GPU

applications

1.1 GPU Architecture and CUDA Programming Model

1.1.1 GPU Processor

Throughput-oriented GPU (Graphics Processing Unit) processor represents a major trend in the

recent advance on architecture for parallel computing acceleration [57]. As the most obvious

feature, GPU processor includes a very large number of fairly simple cores instead of few

complex cores like conventional general purpose desktop multicore CPUs. For instance, the

newly announced Kepler GPU K20X (November 2012) has 2688 SPs (Streaming Processor)

[76]. Thus GPU processor can provide an enormous computing throughput with a relatively

low clock. Again, the new K20X GPU has a theoretical single precision performance of 3.95

Tera FLOPS (FLoating point Operations Per Second) with a core clock of only 732MHz.

Unlike traditional graphics API, programming interfaces like CUDA [2, 68] and OpenCL

[77] have been introduced to reduce the programming difficulty. These programming interfaces

normally are a simple extention for C/C++. Thus to port on GPU, it is fairly easy comparing to

platforms like Cell B.E. processor [41] or FGPA. Although the performance may not be very

good, normally developers can construct a GPU-parallelized version based on the original serial

code without a lot of programming effort. Thus, more and more developers are considering

moving their serial application to GPU platform.

However, most of the time, it is easy to get some speedup porting the serial code on GPU,

but a lot of efforts are needed to fully utilize the GPU hardware potential and achieve a very

good performance. The code needs to be carefully designed to avoid the performance degrada-

tion factors on GPU, like shared memory bank conflict, uncoalesced global memory accessing

and so on [2]. Also, there are many design variations like the computing task partition, the

data layout, CUDA parameters, etc. These variations compose a large design space for the

developers to explore. How to efficiently design a GPU application with a good performance

remains a challenge.

The GPU programming model is similar to the single-program multiple-data (SPMD) pro-

gramming model. Unlike single-instruction multiple-data (SIMD) model, the SPMD model

23
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does not require all execution lanes execute the exact same instruction. In implementation,

mechanism like thread masks are used to disable certain lanes which is not on the current

execution path. Thus the GPU programming is more flexible than a SIMD machine.

1.1.2 Comparison of Recent Generations of NVIDIA GPUs

In our research, we used NVIDIA GPUs as target hardware platform. We have worked on three

generations of NVIDIA GPUs, including GT200 GPU (GT200) [73], Fermi GPU (GF100) [74]

and Kepler GPU (GK104) [75]. The most recent Nvidia GPU at the time of this thesis is K20X

Kepler GPU (GK110), which is announced in November 2012.
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Figure 1.1: Block Diagram of GT200 GPU

GPU can be simply considered as a cluster of independent SMs (Streaming Multiproces-

sor). Figure 1.1 illustrates the block diagram of GT200. GT200 GPU is composed of 10 TPCs

(Thread ProcessingCluster), each of which includes 3 SMs. SMs in one TPC share the same

memory pipeline. Each SM further includes scheduler, 8 SPs (Streaming Processor), 1 DPU

(Double Precision Unit) and 2 SFUs (Special Function Unit). SP executes single precision

floating point, integer arithmetic and logic instructions. The SPs inside one SM, which is the

basic computing component, are similar to a lane of SIMD engines and they share the mem-

ory resource of the SM like the registers and shared memory. DPU executes double precision

floating point instructions. And SFU handles special mathematical functions, as well as single

precision floating point multiplication instructions. If we consider SP as one core, then one

GPU processor is comprised of 240 cores.

For Geforce GTX 280 model, with 1296MHz shader clock, the single precision peak

performance can reach around 933GFlops. GT280 has 8 64-bit wide GDDR3 memory con-

trollers. With 2214MHz memory clock on GTX 280, the memory bandwidth can reach around
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140GB/s. Besides, within each TPC there is a 24KB L1 texture cache and 256KB L2 Texture

cache is shared among TPCs.
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Figure 1.2: Block Diagram of Fermi GPU

Figure 1.2 is the block diagram of Fermi GPU. Fermi GPU has 4 GPCs (Graphics Pro-

cessing Clusters) and in all 16 SMs. The number of SPs per SM increase to 32. The most

significant difference is that Fermi GPU provides real L1 and L2 cache hierarchy. Local writes

are written back to L1 when register resource is not sufficient. Global stores bypass L1 cache

since multiple L1 caches are not coherent for global data. L2 cache is designed to reduce the

penalty of some irregular global memory accesses.

As an example, Geforce GTX 580 has a shader clock of 1544 MHz and the theoretical

single precision peak performance of 1581 GFlops. The memory controllers are upgraded to

GDDR5 and a bandwidth of 192.4 GB/s.

The Kepler GPU’s high level architecture is very close to Fermi GPU. The main difference

is the scheduling functional units, which cannot be shown on the block diagram level.

A comparison of the three generations of NVIDIA GPUs is illustrated in Table 1.1. From

GT200 to Kepler GPU, the number of SPs increases dramatically, from 240 (GTX280, 65nm)

to 1536 (GTX680, 28nm) [75, 74]. Each SM in Fermi GPU consists of 32 SPs instead of

8 SPs on GT200 GPU. On Kepler GPU, each SM (SMX) includes 192 SPs. For GTX280,

each SM has 16KB shared memory and 16K 32bit registers. In GTX580, shared memory per

SM increases to 48KB and the 32bit register number is 32K. GTX680 has the same amount

of shared memory with GTX580 and the register number increases to 64K. However, if we

consider the memory resource (registers and shared memory) per SP, the on-die storage per SP

actually decreases. The global memory bandwidth actually does not change a lot. Previous

generations have two clock domains in the SM, the core clock for the scheduler and the shader

clock for the SPs. The shader clock is roughly twice the speed of the core clock. On Kepler

(GK104) GPU, shader clock no longer exists, the functional units with SMs run at the same
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GT200 Fermi Kepler

(GTX280) (GTX580) (GTX680)

Core Clock (MHz) 602 772 1006

Shader Clock (MHz) 1296 1544 1006

Global Memory Bandwidth(GB/s) 141.7 192.4 192.26

Warp Scheduler per SM 1 2 4

Dispatch Unit per SM 1 2 8

Thread Instruction issuing throughput 16 32 128?

per shader cycle per SM

SP per SM 8 32 192

SP Thread Instruction processing throughput 8 32 192?

per shader cycle per SM (FMAD/FFMA)

LD/ST (Load/Store) Unit per SM unknown 16 32

Shared Memory Instruction processing throughput unknown 16 32

per shader cycle per SM (LDS)

Shared Memory per SM 16KB 48KB 48KB

32bit Registers per SM 16K 32K 64K

Theoretical Peak Performance (GFLOPS) 933 1581 3090

Table 1.1: Architecture Evolution

core clock. However, to compare the different generations more easily, we still use the term

shader clock on Kepler GPU and the shader clock is the same as the core clock. In the rest of

this thesis, all throughput data is calculated with the shader clock.

1.1.3 CUDA Programming Model

The Compute Unified Device Architecture (CUDA) [2, 50] is widely accepted as a program-

ming model for NVIDIA GPUs. It is a C-like programming interface with a few extensions

to the standard C/C++. A typical CUDA program normally creates thousands of threads to

hide memory access latency and math instruction pipeline latency since the threads are very

light weight. One of the most important characteristics of GPU architecture is that the mem-

ory operation latency could be hidden by concurrently executing multiple memory requests or

executing other instructions during the waiting period. The threads are grouped into 1D to 3D

blocks or cooperative thread arrasy (CTAs) [57], and further into 1D or 2D grids. The warp
is the basic execution and scheduling unit of a SM, and is composed of 32 threads within one

block on current NVIDIA GPUs.

All threads have access to global memory space or device memory. Accessing global mem-

ory generally takes hundreds of cycles. The memory accesses by a warp of 32 threads could be

combined into fewer memory transactions and referred to as coalesced global memory access.

Threads within one block can share data in shared memory and synchronize with a barrier syn-

chronization operation. The shared memory has very low latency comparing to global memory.
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Efficiently utilizing shared memory can significantly reduce the global memory pressure and

reduce average memory access latency. The shared memory is organized in banks. Bank con-

flict could happen if multiple threads in a warp access the same bank.

Each thread has its own local memory and register resource. Each block is assigned to

one SM at execution time and one SM can execute multiple blocks concurrently. The shared

memory and register resource consumed by one block has the same lifetime as the block. On

the SM, since the memory resource like register file and shared memory is limited, only a

limited set of threads can run concurrently (active threads).
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Figure 1.3: CUDA Execution Model on NVIDIA GPUs

Figure 1.3 presents a simplified CUDA execution model. The scheduler uses a score board

to select one ready instruction from one of the active warps and then issue the instruction to

the corresponding functional unit. There is no penalty to issue instruction other current warp.

With this light weight context switching mechanism, some latency can be hidden. However,

programmers still need to provide enough number of threads which can be executed concur-

rently to get good occupancy [2].

On one hand, the increased SPs per SM require more active threads to hide latency. On the

other hand, the register and shared memory limit the number of active threads. For the same

application, the active threads that one SP supports actually decreases because of the reduced

memory resource per SP from Fermi GPU to Kepler GPU. More instruction level parallelism

within one thread needs to be explored.

A CUDA program is composed of host code running on the host CPU, and device code

running on the GPU processor. The compiler first split the source code into host code and

device code. The device code is first compiled into the intermediate PTX (Parallel Thread

eXecution) code [71], and then compiled into native GPU binary code by the assembler ptxas.

The device binary and device binary code are combined into the final executable file. The

compiling stages are illustrated in Figure 1.4. NVIDIA provides the disassembler Cuobjdump
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Figure 1.4: Compiling Stages of CUDA Programms

which can convert GPU binary code into human-readable assembly codes [2].

1.2 Performance Prediction of GPU Applications Using Simula-

tion Approach

There are already several simulators for graphics architectures [83, 29, 11, 24]. The Qsilver

[83] and ATTILLA [29] simulators are not designed for general purpose computing on GPUs

and focus on the graphics features. The Barra simulator [24] is a functional simulator and does

not provide timing information. The GPGPU-Sim [34, 11] is a cycle-accurate simulator for

CUDA applications executing on NVIDIA GPUs and omits hardware not exposed to CUDA.

The following part of this section briefly introduces the approach of GPGPU-Sim simulator.

1.2.1 Baseline Architecture

The GPGPU-Sim simulates a GPU running CUDA applications. Some hardware features of

the baseline architecture are collected from NVIDIA pattern files. The simulated GPU consists

of a cluster of shader cores, which is similar to SMs in NVIDIA GPUs. The shader cores are

connected by an interconnection network with memory controllers.

Inside a shader core, a SIMD in-order pipeline is modeled. The SIMD width depends on

the architecture that is to be modeled. The pipeline has six logical stages, including instruction

fetch, decode, execute, memory1, memory2 and write back. Thread scheduling inside a shader

core does not have overhead. Different warps are selected to execute in a round robin sequence.

The warp encountering a long latency operation is taken out of the scheduling pool until the

operation is served.

Memory requests to different memory space are also modeled. For off-chip access, or ac-

cess to global memory, the request goes through an interconnection network which connects the

shader cores and the memory controllers. The nodes of shader cores and memory controllers

have a 2D mesh layout.
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1.2.2 Simulation Flow
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Figure 1.5: Simulation of CUDA Application with GPGPU-Sim

GPGPU-Sim simulates the PTX instruction set. The Figure 1.5 illustrates the simulation

flow of GPGPU-Sim. Different from a normal CUDA application compiling and execution,

the host binary is linked with custom CUDA library, which invokes the simulation for each

device kernel call. The device code is first compiled into PTX code by nvcc. The PTX code

serves as the simulation input. The assembler ptxas provides the register usage information

to GPGPU-Sim since the register allocation happens when PTX code is compiled into device

binary. Then GPGPU-Sim utilizes this information to limit the number of concurrent threads.

PTX is a pseudo instruction set and the PTX code does not execute on the actual device. To

improve the simulation accuracy and also reduce maintaining effort, a super set of PTX called

PTXPlus is designed. PTXPlus has the similar syntax as PTX and can be converted from the

assembly code, which can be get from the NVIDIA dis-assembler.

1.2.3 Accuracy

The intention of GPGPU-Sim is not to accurately model any particular commercial GPU but

to provide a foundation for architecture researchers. The even though the baseline models can

be configured according to one specific GPU model, the modeled architecture is only similar

to the actual GPU architecture. In the latest manual of GPGPU-Sim [90], the authors provided

a comparison between the simulated execution time with the calibrated GPGPU-Sim, and the

actual execution time on the GT200 GPU and Fermi GPU. In terms of IPC (Instructions per

Clock), for the Rodinia benchmark suite [19] and using the native hardware instruction set

(PTXPlus), GPGPU-Sim obtains IPC correlation of 98.3% and 97.3% respectively. However,

the average absolute errors are 35% and 62%.
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Figure 1.6: Correlation Versus GT200 & Fermi Architectures (Stolen from GPGPU-Sim Man-

ual)

1.2.4 Limitations

The main limitation for simulation approach is that since vendors disclose very few hardware

details, it is very difficult to build an accurate simulator for an existing GPU model. And it

is very unlikely to build an accurate simulator for the new GPU generation. The baseline ar-

chitecture model may differ very much from the real hardware characteristics. The accuracy

of the simulator cannot be guaranteed without enough hardware details. It is not safe to draw

the same conclusion on a real architecture with the result obtained on the simulation baseline

architecture. Thus, it is better to use the simulator to explore different architecture configu-

rations. For researchers and developers who study how to improve application performance

on existing architectures, the simulator may not be a very good choice. Second, even with an

accurate simulator, it is very unlikely for a common developer to use it to understand the per-

formance results and make further optimizations because running a simulation would require a

lot of time and long learning curve of the tool.

1.3 Performance Projection/Prediction of GPU Applications Using

Analytical Performance Models

For superscalar processors, there is already a rich body of work that proposes analytical models

for performance analysis [69, 64, 63, 48, 19, 45, 87, 3, 33]. However, since the general comput-

ing on GPU processors is still a fairly new research area, the models and approaches proposed

to understand GPU performance results still need a lot of refinement. There exist some inter-

esting works about how to project/predict CUDA applications’ performance using analytical

or simulation methods. Meng et al. proposed a GPU performance projection framework based
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on code skeletons [61]. Bahsork et al. proposed an analytical performance-prediction moel

based on work flow graph (WFG), which is similar to the control flow graph [9]. Hong et al.

introduced the MWP-CWP model to predict CUDA application performance using PTX code

[40]. Recently, Sim et al. extended the MWP-CWP model and utilize the assembly code of

CUDA kernel to predict performance [85]. The quantitative GPU performance model proposed

by Zhang et al. is also based on the native assembly code [101]. Kim et al. proposed a tool to

analyze CUDA applications’ memory access patterns [49]. Since very little information about

the underlying GPU architecture is disclosed, it becomes very unlikely to build accurate simu-

lators for each new GPU generation. Beside general performance models for GPUs, there also

exist some works of model-driven performance optimization for specific kernels[20, 62, 30].

To optimize a GPU application, some general guidelines are provided. Normally devel-

opers needs to vary many parameter combinations to find the optimal solution. However, to

thoroughly understand the GPU architecture and the performance result of CUDA applications

remains difficult for developers. Tools like NVIDIA Visual Profiler [72] can provide stat data

from the GPU hardware counter, such as the number of coalesced global memory access, the

number of uncoalesced global memory access and the number of shared memory bank conflict.

Normally programmers rely on this kind of tool to optimize their cuda applications. For exam-

ple, if many global memory accesses are coalesced, the global memory access pattern might

need to be carefully redesigned. However, the information that the profiler provides very few

insights into the performance result.

Although simulation approach for certain architectures is available [35], it is not realistic

for developers to use simulators to optimize applications since it is very time consuming. What

developers need the most is a tool or an approach that does not require a long learning curve

and still provides much insight into the performance result. The analytical approach fits this

requirement. Generally, analytical GPU performance model does not need all the hardware

details but only a set of parameters that could be obtained through benchmarking or public ma-

terials. Apparently, analytical approach cannot compete with the simulation approach for ac-

curacy. Luckily, the performance prediction results of existing analytical performance models

[61, 40, 85, 101, 26] show that we can have still very good approximation of GPU performance.

The rest of this section includes several recent analytical performance models for GPU and

a brief summary.

1.3.1 MWP-CWP Model

In 2009, Hong et Kim [40] introduced the first analytical model for GPU processors to help

to understand the GPU architecture or the MWP-CWP model. The key idea of their model is

to estimate the number of parallel memory requests (memory warp parallelism or MWP. Ac-

cording to their reported result, the performance prediction result with their GPU performance

model has a geometric mean of absolute error of 5.4% comparing to the micro-benchmarks and

13.3% comparing to some actual GPU applications.

The authors claimed that memory instructions’ latency actually dominates the execution

time of an application. In the paper, two main concepts are introduced to represent the degree

of warp level parallelism. One is memory warp parallelism or MWP, which stands for the

maximum number of warps that can access the memory in parallel during the period from the
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cycle when one warp issues a memory request till the time when the memory requests from the

same warp are serviced. This period is called one memory warp waiting period. The other is

computation warp parallelism or CWP, which represents how much computation could be run

in parallel by other warps while current warp is waiting for memory request to return the data.

When CWP is greater than MWP, it means that the computation latency is hidden by the

memory waiting latency and the execution time is dominated by the memory transactions.

The execution time can be calculated as 1.1. The Comp p is the execution cycles of one

computation period.

Exec cycles = Mem cycles ∗ N

MWP
+ Comp p ∗MWP (1.1)

Actually, if we compare the two parts of the Exec cycles, the Comp p ∗MWP part is a

small number comparing to the memory waiting period. The other part Mem cycles ∗ N
MWP

can be simply interpreted as the sum of N warps’ memory accessing latency parallelized by

NWP channels. Thus we can simplify the conclusion as when CWP is greater than MPW

or there is not enough memory accessing parallelism, the execution time is dominated by the

global memory access latency and can be calculated as the memory accessing time of one

warp multiplies the number of active warps and then divided by the degrees of memory access

parallelism.

When MWP is greater than CWP, it means that the global memory access latency is hidden

by the computation latency and the execution time is dominated by the computation periods.

The total execution time can be calculated as 1.2.

Exec cycles = Mem p+ Comp cycles ∗N (1.2)

Similarly, if we compare the two parts of the Exec cycles in this case, the Mem p part

is relatively a small value when each warp has many computation periods. The other part

Comp cycles ∗ N can be interpreted as the sum of N warps’ computation demand since the

computation part of all N active warps cannot be parallelized. So we can draw a simpler con-

clusion as when MWP is greater than CPW or there is enough memory accessing parallelism,

the execution time is dominated by the computation latency and can be calculated as the com-

putation time of one warp times the number of active warps.

1.3.1.1 Limitations

The MWP-CWP model is the first analytical model introduced for GPU performance mod-

eling and becomes the footstone of many later GPU performance models. It provides some

interesting insight to understand the GPU performance result.

However, the model is too coarse grain since it simply separate an execution of an appli-

cation into computation period plus the memory access period. The computation period is the

instruction issue latency multiplies the number of instructions. The memory access period is a

sum of all the memory access latency. Firstly, the model is too optimistic about the instruction

level parallelism to calculate the computation period. Secondly, the model assumes memory

transactions from one warp are serialized, which is not true. The performance model essentially
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uses the ratio of computation time to the memory access latency to define whether the execu-

tion time is dominated by the memory access latency or the computation latency. The analysis

takes an application as a whole entity. However, for many applications, the execution may have

difference characteristics in different parts. For example, in some parts, the application may

mainly load data from global memory and in other parts, it may mainly do the computation.

The model for uncoalesced global memory access is too rough. In the model, the unco-

alesced global memory accesses are modeled as a series of continuous memory transactions.

However, the changed pressure on memory bandwidth is not considered. Plus, the shared mem-

ory is not specially treated in the model. To effectively utilize shared memory is essential to

achieve good performance on GPU. The model takes the shared memory access instruction as a

common computation instruction. The behavior of shared memory access is very complicated.

In one shared memory access instruction, if multiple threads within one warp access the same

bank, it may introduce bank conflict. The bank conflict normally has a significant impact on

ther performance. The new memory hierarchy like unified cache is not considered in the model

either.

The model uses the PTX code of an application as the model input. Since the PTX code

needs to be compiled into the native machine code to execute on the GPU hardware, it intro-

duces some inaccuracy.

1.3.2 Extended MWP-CWP Model

Recently, Sim et al. [85] proposed a performance analysis framework for GPGPU applications

based on the MWP-CWP model. This extended model includes several main improvements

over the original MWP-CWP model. First, instruction level parallelism is not assumed to be

always enough and the memory level parallelism is not considered to be always one. Second,

it introduces the cache modeling and the modeling of the shared memory bank conflict. Third,

the MWP-CWP model only utilizes information from PTX code. The extended model uses the

compiled binary information.

The extended model requires a variety of information including the hardware counters

from an actual execution. To get these information, a front end data collector was designed.

The collector the CUDA visual profiler, an instruction analyzer based on Ocelot [36], a static

assembly analysis tool. After the execution, the visual profiler provides stat information like

number of coalesced global memory requests, the DRAM reads/writes, and cache hits/misses.

The instruction analyzer mainly collect loop information to decide how many times each each

loop is executed. The static analysis tool is used to obtain ILP (instruction level parallelism)

and MLP (memory level parallelism) information from binary level. ILP or MLP obtained by

the static analysis tool represents the intra-warp instruction or memory level parallelism.

The total execution time Texec is a function of the computation cost Tcomp, the memory

access cost Tmem and the overlapped cost Toverlap, and defined as Equation 1.3. Tcomp repre-

sents the time to execute computation instructions (including the memory instruction issuing

time). Tmem is the amount of time of memory transactions. Toverlap represents the amount of

memory access cost that can be hidden by multithreading.

Texec = Tcomp + Tmem − Toverlap (1.3)
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Tcomp includes a parallelizable part Wparallel and a serializable part Wserial. The serial-

izable part Wserial represents the overhead due to sources like synchronization, SFU resource

contention, control flow divergence and shared memory bank conflicts. The parallelizable part

Wparallel accounts for the number of instructions executed and degree of parallelism.

Tmem is a function of the number of the memory requests, memory request latency and the

degree of memory level parallelism.

Toverlap represents the time that Tcomp and Tmem can overlap. If all the memory access la-

tency can be hidden, Toverlap equals to Tmem. If none of the memory access can be overlapped

with computation, Toverlap is 0.

1.3.2.1 Limitations

The main improvements of the extended MWP-CWP model over the original MWP-CWP

model include firstly, runtime information like the number of shared memory bank conflict

and DRAM hits/misses is collected using Visual Profiler. Thus the shared memory bank con-

flict effect and the cache effect are introduced in the model. Secondly, the assembly code is

served as the model input. Thus the instruction level parallelism can be correctly collected.

However, the model requires an actual execution of the program to collect the runtime

information, which makes performance prediction less meaningful. The bandwidth effects of

uncoalesced global memory accesses and shared memory bank conflict are still not included

the model. The bad memory access is only considered to have a longer latency. The modeling

of the shared memory access is still too simple since only bank conflict behavior is considered

in the serial overhead Wserial. Even though the memory level parallelism and instruction level

parallelism are calculated using the assembly code, since the two metrics is for the whole

application, the model is still too coarse grain to catch the possibly varied behavior of different

program sections.

1.3.3 A Quantitative Performance Analysis Model

In 2011, Zhang et Owens proposed a quantitative GPU performance model for GPU archi-

tectures [101]. The model is built on a microbenchmark-based approach. The author claims

that with this model, programmers can identify the performance bottlenecks and their causes

and also predict the potential benefits if the bottlenecks could be eliminated by optimization

techniques.

The general idea of their proposition is to model the GPU processor as three major com-

ponents: the instruction pipeline, the shared memory, and the global memory and to model the

execution of an GPU application as instructions being served to different components based

on the instruction type. With the assumption that non-bottleneck components is covered by

the bottleneck component, the application bottleneck is identified by the component with the

longest execution time.

As in Figure 1.7, the Barra simulator [24] is used to get the application runtime information,

such as how many times each instruction is executed. Then this information is used to generate

the number of dynamic instructions of each type, the number of shared memory transactions

and the number of global memory transactions. Since Barra simulator does not provide bank
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Figure 1.7: Performance Modeling Workflow Proposed by Zhang et Owens

conflict information, the authors wrote automated programs to get the effective shared memory

transactions and global memory transactions. A suite of benchmarks are used to build the

throughput model for 3 components. The execution time of each component is calculated by the

load and the throughput of the component. By comparing the execution time, the performance

bottleneck component is identified.

The instruction pipeline component is modeled to execute non-memory instructions. All

instructions are classified by the number of functional units that can run the corresponding

instruction. The peak throughput of one kind of instruction TI is calculated as Equation 1.4.

TI =
#numberFunctionalUnits ∗#frequency ∗#numberSM

#warpSize
(1.4)

The theoretical peak throughput of the shared memory is calculated using the number of

SPs and the processor frequency. For different number of active warps, a set of benchmarks

are used to measure the throughput. To collect the bank conflicts information, an automated

program was developed to get the effective number of shared memory transactions with the

bank-conflict degree of each shared memory access.

Since all the SMs share the global memory and 3 SMs share a single memory pipeline on

GT200 generation GPUs, the global memory is not modeled independently as the instruction

pipeline and shared memory. The authors claimed that the global memory bandwidth is sensi-

tive by three parameters, the number of blocks, threads per block and memory transactions per

thread. A set of benchmarks varying these three parameters are developed to catch the global

memory behavior.
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1.3.3.1 Limitations

Zhang et Owen’s quantitative GPU performance model is throughput-oriented. The GPU is

essentially considered to be 3 major components and each component is modeled with only

throughput information based on a set of benchmarks. The input of the model comes from the

functional simulator Barra and is composed of 3 different kinds of loads on each component.

The execution time of each component is calculated separately and the bottleneck component

is the one with the longest execution time.

There are several limitation of this quantitative performance model. First, the model simply

divides the GPU processor into 3 separate components. The execution time of each component

is separately calculated. However, in the real execution of a GPU application, the math instruc-

tions and the memory instructions have complex dependence and the execution of different

components have impact on each other. Second, in the model, there is no ILP (instruction level

parallelism) and MLP (memory level parallelism) information. Apparently, the throughput de-

pends on the ILP and MLP. If the application to be modeled has different ILP or MLP with

the benchmarks, the performance prediction would not be accurate. Third, the component is

modeled only with throughput information and no latency information is included in the model.

And also, to model the global memory behavior, in the benchmarks, the 3 major parameters in-

clude the number of blocks, threads in a block and number of memory transactions per thread.

We believe that the percentage of the memory instructions should also be considered in the

benchmarks to get the proper bandwidth parameter.

1.3.4 GPU Performance Projection from CPU Code Skeletons

There exist several tools which can produce GPU code from an annotated legacy code or code

template [95, 56, 13, 92, 51, 91]. The most recent work is proposed in 2011 by Meng et al.

[61]. Meng et al. proposed a GPU performance projection framework, GROPHECY, based on

annotated code skeletons. The authors claim that this framework can estimate the performance

benefit of GPU applications without actual programming or hardware. The framework allows

developers to estimate achievable performance from CPU code skeleton. The automatically

transformed code layouts are used to depict structures of the corresponding GPU code and then

to project performance for a given GPU architecture. The measured performance of manually

tuned codes and the codes generated by GROPHECY have a difference of 17% in geometric

mean.

A code skeleton is an abstraction of the CPU code structure and serves as the input for

code transformation. After construction, the skeleton can be transformed into different code

layouts to mimic GPU optimizations. The transformed code can be significantly different from

the original CPU code. The code skeleton’s expression include data parallellism, task, data
accesses, computation instructions, branch instructions, for loops, streaming loops and

macros.

The GPU performance projection framework includes three major steps to estimate the op-

timized performance. The first step is to abstract the CPU legacy code and form the annotated

CPU code skeleton with the skeleton’s expression. The user just needs to extract the paral-

lelism, computation intensity and data accesses from the legacy code with the annotations. So
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the user does not necessarily have the GPU knowledge. In the second step, the framework

automatically explores the GPU design space by transforming the code skeleton, spatially and

temporally. Each transformed code layout corresponds to a GPU implementation. In the last

step, each transformed code layout is used to characterize one GPU implementation. The syn-

thesized characteristics are served as inputs to an GPU performance model to estimate the

corresponding implementation’s performance. The performance model used in the last step is

similar to the MWP-CWP model [40].

1.3.4.1 Limitations

Essentially, this proposition is using the MWP-CWP model to predict GPU performance. Un-

like the proposition of Hong et al. [40], the code skeleton method does not generate the real

GPU code, but only use the characteristics collected from the transformed code layout, which

corresponds to an GPU implementation. This solution only adds inaccuracy to the performance

prediction results. And like the original MWP-CWP model, instruction level parallelsim is not

modeled.

The most obvious limitation of this proposition is that the user need to develop an annotated

code skeleton for each legacy code separately. Although the user does not necessarily need

the knowledge of GPU programming, the user has to be familiar with the annotation system

and extract all the parallelism from the legacy codes. Otherwise the transformation results

may not be the optimal. Although the annotation system reduces some programming efforts

than programming interfaces like CUDA, it still may take a significant amount of time to well

annotate the legacy code.

Like many other automatic code transformation tools, the GROPHECY tool cannot modify

algorithms, or the data structures, which, in many cases, are essential to achieve good perfor-

mance on parallel architectures. Apparently, GROCHECY cannot explore all the design space.

It can only provides a good solution based on the annotated code version and the transform

options the tool can provide.

1.3.5 Summary for Analytical Approaches

In this section, several important analytical performance models for GPUs are briefly intro-

duced. Comparing with the simulation approach, the analytical approach is much easier to

construct and use. Normally the analytical approach only utilizes a set of hardware parameters

that are either provided by vendors or able to be collected from benchmarks. For simulation ap-

proach, to construct the tool is much harder since it requires a lot more hardware details which

are difficult to acquire. Also, it does not require a lot of learning effort and still can provide

much information. The analytical approach is easier for programmers to grasp and takes much

fewer time to run.

Actually, the simulation approach and analytical approach is not that different. Apparently,

the more hardware parameters are introduced in the models and the more underlying imple-

mentations are used, the more accurate the analytical models should be. A clear trend is that

many recent analytical performance models are trying to utilize the machine code directly and

before analytical models normally use algorithm level, C/C++ level or PTX level information.



38 chapter1

Using machine codes directly can mimic the GPU execution more closely. Of course, using

more underlying details would introduce more complex models, which would be closer to the

simulation approach. There is not a clear boundary between analytical approach and simulation

approach. Naturally, if we need more accuracy, we use more detailed model and more lower

level application implementation.

However, the analytical methods alone cannot get functional information for instruction

execution. For example, information like the instruction execution path, the thread masks,

or shared memory bank conflict can only be fed in by users or other tools, like simulators

or hardware counters. In many cases, programmers want to utilize analytical approaches to

understand the penalty of some performance degradation factors. Some analytical tools can

provide such information, but only when they are told where and how many these performance

degradation events occur.

Generally speaking, from an end user’s point of view, we would like the analytical perfor-

mance models to have the following features. First, an analytical model should be able to be

constructed by parameters obtainable. Second, a model should be able to predict the perfor-

mance of certain implementation with enough accuracy. Third, a model should be able to break

down the execution time so that the performance penalties could be quantified.

To satisfy these requirements, we believe that a good performance analysis/prediction tool

should be a combination of a functional simulator + an analytical timing tool. To understand

the underlying execution status of a GPU application, the input of the analytical model should

be the machine code. The functional simulator could be from third party and provides the

functional output of the implementation like the shared memory bank conflict events. With

these information, we can obtain the exact execution trace, instruction level parallelism and

the performance events. The analytical timing tool only consider the timing information and

can be developed by parameters from benchmarks. In Chapter 3, we introduce our preliminary

implementation of such timing tool.

1.4 Performance Optimization Space Exploration for CUDA Ap-

plications

The analytical models can provide some insights into the performance result and the ultimate

goal is learn how to achieve better performance of course. Researchers and developers are

interested in the outcome of different optimization combinations on GPUs. A very rich body

of works study how to optimize specific kernels on GPUs [99, 78, 38, 47, 89, 60, 102, 58,

66, 28, 97, 14, 79]. Similar works are still fast growing. On one hand, this trend shows that

many researchers are studying how to accelerate their applications using GPUs and GPU ac-

celeration is effective. On the other hand, it also shows that GPU optimization is still very

difficult and needs a lot of application-specific considerations, or at least the existing general

auto-tuning methods are not effective enough. Some auto-tuning frameworks for GPU appli-

cations are also introduced [70, 46, 37, 25, 27, 100, 31, 62]. Most of the existing auto-tuning

frameworks are application-specific, which means that such a framework defines a set of design

variables or optimization options and automatically search the best design option in the design

space constructed by the defined parameters. Apparently, the developers have to be familiar
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with an application and the GPU architectures to build a good auto-tuning tool for the applica-

tion. Some GPU compiler frameworks are also introduced to help automatically improve the

performance [95, 12, 98].

The roofline model [94] is well known for estimating the optimization effects and the idea

behind roofline model is actually the base of most auto-tuning frameworks. The recent work by

Sim et al. [85], that we have briefly described in the last section, studied the effects of different

optimization techniques on GPU using the similar approach as the roofline model. Ryoo et al.

summarized some optimization categories and introduced how to better search the optimization

space by calculating the efficiency and utilization metrices [80].

Since how to explore the design space is not a main focus of this thesis, we only summarize

a few basic ideas proposed.

1.4.1 Program Optimization Space Pruning

Ryoo et al. summarized some optimization categories and introduced how to better search the

optimization space by calculating the efficiency and utilization metrics [80]. The search space

is pruned with a Pareto-optimal curve generated by the metrics. According to the authors, the

exploration space can be reduced up to 98% of the who design space without missing the best

configuration. To use the metrics, the global memory bandwidth cannot be the bottleneck for

the performance.

The efficiency metric of a kernel indicates the overall instructions need to be executed as in

Equation 1.5. Instr is the number of instructions need to be executed per thread and Threads
represents the total number of threads. In a nutshell, the fewer overall instructions need to be

executed, the higher efficiency the optimization configuration achieves.

Efficiency =
1

Instr ∗ Threads (1.5)

The utilization metric represents the utilization of the compute resources on GPU consid-

ering the existence of blocking events and can be calculated as in Equation 1.6. Regions is

the instruction intervals determined by blocking instructions. So Instr
Regions indicates the average

number of instructions within a non-blocking code region in a warp. WTB is the number of

warps in a block and BSM is the active blocks per SM. The utilization metric actually stands

for the work available to other warps when a warp is stalled by blocking events.

Utilization =
Instr

Regions
[
WTB − 1

2
+ (BSM − 1) ∗WTB] (1.6)

For an implementation of a specific kernel with a given input size, we can calculate the

efficiency and the utilization metrics. It is straight forward that the configuration with both

high efficiency and utilization should achieve good performance. If we plot the metrics of

optimization configurations and each axis stands for one metric, the configurations in the upper

right corner of the graph should have good performance. The authors choose the configurations

that have no superior in efficiency or utilization metric and construct the Pareto-optimal subset.

For the benchmarks evaluated, the Pareto-optimal subset contains the best configurations. So

we can search only the configurations in the Pareto-optimal subset instead of exhaustively

searching the whole design space.
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1.4.2 Roofline Model

Williams et al. proposed the roofline model to provide insights into the performance opti-

mization choices [94]. The model essentially utilize the operational intensity to represent an

application’s characteristic. The operational intensity is a term meaning the operations per byte

of DRAM traffic. The memory traffic considered in the operational intensity only refers to the

traffic between the cache hierarchy and the main memory.

The roofline model visualize the relationship between the floating-point performance, oper-

ational intensity (Operational Intensity) and the memory performance in a 2D graph. The

x-axis represents the operational intensity. The y-axis stands for the floating-point intensity.

The peak floating-point peak performance (Ppeak) and the peak memory bandwidth (Bpeak) are

from the hardware specifications or benchmarks. The achievable upper bound (Pupper bound)

of a kernel is calculated as Equation 1.7.

Pupper bound = min(Ppeak, Bpeak ∗Operational Intensity) (1.7)

The for a given architecture, roofline model defines two upper-bound limits. One is bounded

by the peak floating-point performance and the other is bounded by the peak memory band-

width. In a graph, the two limits are two straight lines, and intersect at a ridge point with the

peak arithmetic performance and peak memory bandwidth. The two limit lines actually form

a roofline shape figure. If the ridge point is far to the right, it means that on the architecture,

only kernels with very high computational intensity can achieve the maximum floating-point

performance. If the ridge point is far to the left, it means that most kernels can potentially

reach the peak floating-point performance. For a given kernel, from a point on the x-axis with

the kernel’s operational intensity, we can draw a vertical line and the intersect point of this line

with the roofline is the upper-bound performance of the kernel.

To address the effects of different optimizations, the roofline model adds more ’ceilings’ to

the graph. Each ceiling corresponds to one optimization. Higher ceilings imply lower optimiza-

tions, which means that to break a ceiling, one needs to break all the ceilings below. The gap

between ceilings apparently represents the potential optimization reward and suggest whether

the optimization is worth the effort. The lower ceilings normally represent the optimizations

likely to be realized by the compilers or relatively easy to implement for programmers.

1.4.3 Summary

For parallel programs, the design space is much larger than serial programs since there are more

hardware and software variables. Although normally there are some optimization experience

for each parallel architecture, which normally is the first thing developers need to get familiar

with before actual optimization, the design options are still way too many to explore. The

proposition by Ryoo et al. can prune the search space by calculating the efficiency and the

utilization metrics. Given a set of optimization options and configurations, the proposition

can help to narrow the search space into a smaller set. Then developers only need to test the

configurations within the set.

However, essentially, the proposition considers operations over throughput. The efficiency

is simply the number of operations (instructions) needed to finish the kernel. The utilization
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is the number of operations (instructions) could be continually executed when one warp is

blocked. For GPU architectures, different kinds of instructions have various throughput. Us-

ing only the number of operations as the metric is not precise. Also, the proposition misses

the important instruction behaviors like instruction level parallelism, shared memory conflicts

or uncoalesced global memory accesses. These behaviors are essential to performance opti-

mizations on GPUs. Apparently, the two metrics are not enough to catch all the performance

behaviors on GPUs.

The roofline model defines an performance upper bound for applications and also visualize

the potential gain of different optimizations. By comparing the gaps between different ceilings,

programmers have an estimation of whether the optimization is worthwhile and how much

gap is between the current implementation with the peak performance. However, from section

1.4.2, we can see that the upper bound drawn by the roofline model is too optimistic. The upper-

bound point reaches either the peak floating-point performance or the peak memory bandwidth,

which is apparently too loose estimation. In the many-core era, local fast memory optimization

is critical to achieve good performance. However, the roofline model does not account for

features like caches, local stores or prefetching. The operational intensity may change with

different optimization options to the memory accesses. Using the operational intensity to define

an application or a kernel is not accurate. In the model, different optimizations are studied

separately. However, in the real-world performance optimization, it is difficult to quantify the

effect of a certain optimizations. Different optimizations normally have complex impact on

each other. Finally, only bandwidth parameters are considered and no latency information is

introduced in the model.

We believe that performance upper-bound analysis is very important in the multi-core era.

Although it is easier than simulation approaches, it can still provide interesting insight into the

critical system or application parameters. For example, Amdahl’s law is probably the most

well-known example of such upper-bound analysis [6]. The Amdahl’s law itself is not difficult

to understand that the performance gain of a parallel program is bounded by its serial part. But

it can give much insight even today [39, 7, 82]. Both the proposition by Ryoo et al. and the

roofline model provide some kind of upper bound estimation. The proposition by Ryoo et al.

and the lower ceilings of the roofline model define local upper bounds. The global upper-bound

estimation of the roofline model is too coarse grain. Normally, existing GPU performance tun-

ing frameworks, either automatically or manually, reply on certain level of an application’s

implementation. The framework first define a few optimization options, apply a few combi-

nations of these defined optimizations, and then check the performance directly or use some

metrics to decide whether the configuration is good or not. The ideas are close to the roofline

model. Existing analytical approaches do not answer the question of how good the current

optimized version is comparing to an achievable peak performance. In the work of Chapter 4,

we try to estimate a tight performance upper bound that an application cannot exceed on GPUs.

Different from existing approaches which start from a base version and apply optimizations on

top of the base version, we try to tackle the problem from up to bottom. We first assume an

optimistic situation on GPUs (no shared memory bank conflict, global memory accesses are

all coalesced, all the auxiliary operations like address calculations are neglected, etc.). Then

we try to predict a performance upper bound when mapping an application on the GPU based

on the constraints introduced by the architecture, the instruction set and the application itself,
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or the constraints that we are not able to eliminate using optimization techniques. With a tight

performance upper bound of an application, we have an evaluation on how much optimization

space is left and can decide the optimization effort. Also, with the analysis, we can understand

which parameters are critical to the performance and have more insights into the performance

result. Hence, with these knowledge, it would be easier for the community to move to the new

architecture.



Chapter 2

Data-flow Models of Lattice QCD on

Cell B.E. and GPGPU

2.1 Introduction

The study presented in this chapter was done at the beginning of the thesis. The IBM Cell B.E.

was then canceled by IBM without any successor. As the thesis was funded through the ANR

PetaQCD project, a QCD code base was used for this study.

Lattice QCD simulation is one of the challenging problems for high performance comput-

ing community. Because of the extreme computing power needed for the simulation, many

supercomputers [21] have been built and highly optimized software tools have been developed.

While many of previous generations were relying on special purpose systems [18, 16], current

trend is to use off-the-shelf processors due to increasing cost of chip development.

The goal of this part of the thesis work is to provide analytical performance models of

Lattice QCD algorithm on multi-core architecture. The Hopping Matrix computation kernel

constitutes about 90% of the computation of the application. Therefore our modelization fo-

cuses on this kernel. The models are used to locate critical hardware and software hotspots.

The ultimate goal is to understand the application’s behavior on different architectures, to find a

new modeling methodology to explore the potential performance of multi multi-core machine,

and then to guide the performance optimization and hardware design. First, two multi-core

architectures, GPGPU and CELL B.E. processor , are studied and the hardware abstractions

are proposed; second, the analytical data-flow models for the computation and communica-

tion requirements of the Hopping Matrix kernel are developed, and the potential performance

of the critical kernel on the two architectures is estimated. The data-flow model proposed in

this chapter is a preliminary one. In the second part of the thesis work, an approach mixing

analytical model and simulation-like method is developed to estimate the performance more

precisely.

The rest of this chapter includes four parts; Section 2.2 is the analytical models of two

hardware platforms of current interest for the consortium, 2.3 is the analysis of the Lattice

QCD Hopping Matrix routine, Section 2.4 is the preliminary performance analysis based on

these models, and the last section is the summary.

43
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2.2 Analytical Data-flow Models for Cell B.E. and GPGPU

The architectures that we have studied include GPGPU and Cell Broad Band Engine proces-

sor, which have grasped the attention of the lattice QCD community in recent years. The fu-

ture candidates include x86 multi-core processor and Blue Gene/P. Previous work of the com-

munity mainly focuses on optimization of Lattice QCD kernel, on either Cell B.E. processor

[43, 42, 86, 65, 10], GPGPU [44, 32, 22, 23, 84, 4], Blue Gene/P [93] and other architectures.

Very few works provide analytical insights to the problem [15, 17]. The goal of our model is

not to provide accurate performance prediction, but to provide an analytical insight for system

designers to choose underlying architecture and for software developers to find system bottle-

neck. The performance evaluation is used in an early system design stage when there may be

several algorithms and several hardware architectures to choose. We try to provide uniform and

concise models for lattice QCD on different multi-core architectures since it would be difficult

to distinguish the key differences if the model for each architecture is too detailed. And we

try to find the similarities of different platforms first and then locate the key differences, which

may affect the lattice QCD performance.

Lattice QCD is apparently a data-centric or memory bound application, and operations on

huge amount of data are very much alike. All these operations are mostly arithmetic operations

and branch effects can be neglected. So we developed data-flow models for the application on

different architectures. Our focus is to research the data flow between different functional units

inside multi-core processor and estimate data bandwidth requirement on the interconnections.

Here we consider the data as one kind of the data flow. The idea is very straightforward. By

examining the throughput of different units, we can estimate the system performance and locate

performance bottleneck.

The rest of this section illustrates our data-flow-oriented architecture abstraction for Cell

B.E. processor and NVIDIA GPUs (GT200 and Fermi).

2.2.1 Cell Processor Analytical Model

As depicted in Figure 2.1, the Cell BE Processor is a heterogeneous processor with one Pow-

erPC Processor Element (PPE) and eight Synergistic Processor Elements (SPEs). The PPE

with 64-bit PowerPC Architecture core runs the operating system and controls the execution

of all the SPEs. The eight SPEs are in-order single-instruction multiple-data (SIMD) proces-

sor elements optimized for compute-intensive work. Each SPE has 256KB local memory for

instructions and data, and a register file of 128 128-bit registers. Each SPE has two instruction

pipelines and can issue up to two instructions each cycle. The peak instruction throughput

is 4 single-precision or 2 double precision fused multiply-add operations per SPE per cycle,

or 204.8 GFlops single precision or 102.4 GFlops double precision peak performance of the

whole processor at 3.2GHz(the computing power of the PPE is neglected).

All these processor elements, main memory interface and I/O interface are connected by

the element interconnect bus (EIB). The EIB transfers data between processor elements, the

main memory and the IO interface. At 3.2GHz it could offer a theoretical peak bandwidth up

to 204.8 GB/s. Data transactions between the SPEs local memory and the main memory are

via DMA operations. The DMA operation supports aligned transfer size of 1, 2, 4, 8, and 16
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Figure 2.1: Cell B.E. Block Diagram

bytes and multiple of 16 bytes and can move up to 16KB at a time. With the double-buffer

techniques, the DMA transfer latency could be covered by the application execution. The

memory interface is XDR memory controller for Cell on QS20 Cell blade or DDR memory

controller for Cell on QS22 Cell blade, which can provide up to 25.6 GB/s memory bandwidth.

The data flow is defined as the data movement between different functional units of the

processor. This is how we decide the basic building blocks of the processor’s analytical data-

flow model. The abstraction of Cell B.E. processor with data flow is illustrated in Figure 2.2.

R1 to R4 are data paths and F1 to F5 stand for data flows. Basically, the modeled Cell processor

is separated into SPEs, main memory, the I/O interface and the EIB.

Data processing or the instruction execution inside the SPE corresponds to flow F1. There

are different patterns of distributing workloads on SPEs inside Cell processor, either in serial

pattern or in parallel pattern. In either way, different SPEs can communicate through local

store. Data can be directly transferred from one SPE’s local store to another SPE’s local store,

corresponding to flow F4.

Field data is loaded from main memory, through EIB to local store and final result needs

to be written back to main memory since the data is too large to fit into local store. That corre-

sponds to flow F2. Fourth, since the scale of the Lattice QCD problem is very large, we need

thousands of processors to cooperate. And because of the nearest neighbor communication

nature of the Lattice QCD algorithm, there is much traffic between Cell processors. Because

SPE can issue I/O operations directly, the communication can go directly from local store to

local store on another Cell processor. However, dedicated communication hardware is needed

as interface [10]. Another option would be store the data back to main memory first and then

send the data through I/O interface. However, the last option will increase the pressure on main
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memory bandwidth, which is considered as one of the bottlenecks of the system. These two

options correspond to flow F3 and flow F5.

A summary of the data-flow legends are listed in Table 2.1.

Figure 2.3: Analytical Model of SPE with Data Flow

As we can see from Figure 2.2, we partition the Cell processor according to the basic units

responsible for data movement, that is the SPE, main memory, I/O interface and EIB.

If we look more closely on what is happening inside the SPE, we can further break the SPE

down to smaller parts illustrated in Figure 2.3. The new parameters include the flow F6, which

means the data load and store between register file and local store.

From the analysis above and the goal to derive the data flow information, we can see the

main factors that can influence the data flow include how different units are connected, the

behavior of the application, how much private and share resources present at each core, and of
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Data Flow & Control Flow

F1 Data processing of each SPE

F2 Data traffic between SPE’s local store and main memory

F3 Data traffic between different Cell processors, direct communication between local stores

F4 Data traffic between local stores inside one Cell processor

F5 Data traffic between different Cell processors, communication through main memory

F6 Registers load from and store to local store

F7 Fetch data from and write back to register file

F8 Fetch instruction from local store

F9 Instruction control flow

Bandwidth

B1 Data processing throughput

B2 Bandwidth between local store and EIB

B3 Main memory bandwidth

B4 Bandwidth to I/O device

B5 Bandwidth between register file and local store

Table 2.1: Legends of Cell Data-flow Model

course the bandwidth or throughput of interconnections or units.

2.2.2 GPU Analytical Model

GT200 GPU is composed of 10 TPCs (Thread Processing Cluster), each of which includes 3

SMs (Streaming Multiprocessor). Each SM further includes 8 SPs (Streaming Processor) and

2 SFUs (Special Function Unit).

The analytical model of GT200 GPU is illustrated in Figure 2.4. Since 3 SMs inside one

TPC share the same front end and memory pipeline, we consider TPC as the basic processor

core.

As in Figure 2.4, the basic building blocks include each TPC, the graphic memory, the

main memory, and I/O interface. Each TPC is connected to graphic memory through GDDR3

memory controller, which is neglected in the model. Both graphic memory and I/O device are

connected to the main memory. The resource we consider carefully here includes the share

memory and the register file in the TPC.

Figure 2.5 is the detailed model of each TPC. Different from SIMD engine of Cell proces-

sor, GPU’s computation scheme is so called SIMT (Single Instruction Multi Thread).

The analytical models for GT200 and Fermi are similar. First, data is processed inside each

processor core (TPC or SM), corresponding to flow F1. Second, since the SIMT nature of GPU

and resource like register file is specific to each thread, it is difficult to communicate inside one

GPU. Threads within one block can exchange information through share memory and threads

belonging to different blocks can only communicate through graphic memory. Because the

basic block in our model is each processing core, thread architecture is invisible. So there is no
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explicit inside communication. Communication between threads inside one GPU is treated as

accesses to share memory or graphic memory. Third, we assume that graphic memory is large

enough to hold field data and intermediate results. On each iteration, field data is loaded from

graphic memory and final result needs to be written back to main memory, corresponding to

flow F2. So the data traffic to main memory is only related to inter-GPU communication since

GPU cannot issue I/O operations directly. Data needs to be transferred to main memory first

and then go to I/O interface. This corresponds to flow F3.

2.2.3 Comparison of Two Analytical Models

Figure 2.6 is the comparison of the two models presented. After some simplifications, we try

to make the models easy to understand and compare.

Some key differences regarding the Cell and GPU analytical models and their characteris-

tics are presented below. First, GPU has more memory controllers and can provide more mem-

ory bandwidth. As we know, Cell processor’s memory interface can provide 25.6GB/s peak

bandwidth while GPU usually can provide more than 100GB/s peak bandwidth. For some high-

end GPUs, the bandwidth can reach more than 170 GB/s. Second, to single computing core,

we need to carefully consider the amount of share memory and register file of GPU platform

because of the SIMT programming model of GPU. Different threads of the same block can

only communicate through the shared memory. On the other hand we need enough threads to

get good occupancy. But more threads will lead to reduced per-thread resource, especially the

register resource. Third, SIMD core can transfer data through fast memory (local store) while

SIMT core has to communicate through the graphic memory, which increases the pressure on

bandwidth to main memory.

To sum up the above research, we believe the key differences between the two platforms for
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Figure 2.5: Analytical Model of TPC with Data Flow

Data Flow & Control Flow

F1 Data processing of each processor core (TPC or SM)

F2 Data traffic between processor core and graphic memory

F3 Data traffic between graphic memory and main memory

F4 Registers load from and store to local store

F5 Fetch data from and write back to register file

F6 Instruction control flow

Bandwidth

B1 Data processing throughput

B2 Bandwidth between each SM and graphic memory

B3 Bandwidth between graphic memory and main memory

B4 Bandwidth between main memory and I/O interface

B5 Bandwidth between register file and share memory

Table 2.2: Legends of GPU Data-flow Model

the Lattice QCD implementations are the differences of memory hierarchy and interconnection

pattern of different processor units, which will influence the memory access pattern. The access

pattern is the key to data flow requirement and ultimately the key to the performance.

2.3 Analysis of the Lattice-QCD Hopping Matrix Routine

In this section, we try to derive the data flow requirement based on the architecture analytical

model and the algorithm essence. First, we analyze the flow F1 and F2, and their requirement

on B1 and B3. In the further research, more detailed analysis will be given. This section

includes three parts, the first part is the Lattice QCD Hopping Matrix analysis, since Hop-

ping Matrix is the most time-consuming routine in Lattice QCD algorithm and it consumes

around 90% of the whole execution time.
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The input data structures of Hopping Matrix routine include the spinor field, the gauge

field, the output is the result spinor field. The temporary data is the intermediate half spinor

field. The main function of Hopping Matrix is the Dirac operator, which is illustrated in the

Equation 2.1.

D(x, y) =
4

∑

µ=1

[U+
µ (x+ µ, y)(1− γµ)δ(x+ µ, y) + U †

µ(x− µ, y)(1 + γµ)δ(x− µ, y)] (2.1)

A 3x4 complex matrix represents the full spinor residing on each space-time site. The

gauge field data residing on each link connecting neighbor sites is represented by 3x3 complex

matrix. The half spinor is represented as 3x2 complex matrix, which is the temporary data

generated on each of 8 space-time directions for one full spinor.

According to expression of Dirac operator, we can divide the operations into the following

steps. First, the input full spinor is converted to intermediate half spinor. This step corresponds

to the multiplication of 1 − γµ or 1 − γµ. The conversion can be treated as the addition of

complex matrix elements. This yields 12 real number additions. At this step, huge amount of

intermediate data is generated. The main design choice of this step is whether the generated

data should be stored in the fast memory or has to be stored back into the main memory which

typically has much longer latency than local fast memory.

Second, the half spinor field matrix multiplies corresponding gauge field matrix on each

of the 8 space-time directions. This corresponds to the multiplication of U+
µ (x + µ, y) or

U †
µ(x − µ, y). In other words, the operation equals to the multiplication of a 3x2 complex

matrix and a 3x3 complex matrix. This operation needs 18 complex number multiplications

and 12 complex number additions. That equals to 72 real number multiplications and 60 real

number additions.

Third, 8 directions’ temporary results are accumulated to the final spinor field. The opera-

tion is only simple matrix addition. This operation needs 24 real number additions. In all, there
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are 1320 real number operations in the three steps, which corresponds to data flow F1 in the

data-flow models.

The pseudo code of Hopping Matrix routine is illustrated in Listing 2.1.

//Loop 1
/∗∗∗∗∗∗∗∗∗∗∗ 4 p o s i t i v e d i r e c t i o n s ∗∗∗∗∗∗∗∗∗∗∗/
H a l f S p i n o r P o s i t v i e <− F u l l S p i n o r

T e m p P o s i t v i e = H a l f S p i n o r P o s i t v i e ∗ U P o s i t i v e

/∗∗∗∗∗∗∗∗∗∗∗ 4 nega t i v e d i r e c t i o n s ∗∗∗∗∗∗∗∗∗∗∗/
H a l f S p i n o r N e g a t i v e <− F u l l S p i n o r

S y n c h r o n i z a t i o n ( ) ;

//Loop 2
/∗∗∗∗∗∗∗∗∗∗ 4 p o s i t i v e d i r e c t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗/
F u l l S p i n o r += T e m p P o s i t v i e

/∗∗∗∗∗∗∗∗∗∗ 4 nega t i v e d i r e c t i o n s ∗∗∗∗∗∗∗∗∗∗∗∗/
Temp Negat ive = H a l f S p i n o r N e g a t i v e ∗ U Nega t ive

F u l l S p i n o r += Temp Negat ive

While (ADDR B < LOOP END)

Listing 2.1: Hopping Matrix Pseudo Code

To get further performance analysis result in the following sections, a few assumptions are

made. First, there is enough parallelism in the Lattice QCD Hopping Matrix routine (Matrix

operations can be easily parallelized and dependence only exists between nearest neighbors).

So arithmetic pipeline could be always full and there would be almost no penalty from branch

mis-prediction. Second, when parameters of L and T (L and T represent the space-time dimen-

sion of the lattice) are very large, the main data structures (Field data) must be reloaded from

main memory on each iteration, because the cache will always be not large enough to hold this

data structure. Third, all the data can be perfectly pre-fetched into cache or in other words,

the bandwidth between processor and main memory could be fully utilized. Computation and

communication can be perfectly parallelized (Need careful programming). These assumptions

mean that we neglect the cache influence and focus on the bandwidth analysis.

2.4 Performance Analysis

In this section, we build a simple data-flow model to analyze the potential performance of the

Hopping Matrix routine based on the hardware abstraction and the analysis of the routine. The

detailed performance analysis is essentially based on different memory access patterns.
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2.4.1 Memory Access Patterns Analysis

As described before, our methodology is to derive the potential performance based on the data

flow analysis. With models of the processors and the application, the memory access patterns

are summarized and then the data flow information can be generated. Then we can estimate the

data bandwidth requirement based on the data flow information. By identifying the bottleneck

component, the potential performance of the application is calculated using the component’s

peak bandwidth .

Using the analytical models presented, we categorize the memory access patterns as in

Table 2.3.

P1 Reconstruct the gauge field in processor

P2 Fully share gauge field data between neighbor space-time sites

P3
Intermediate half spinor field data is hold in local fast memory, without the

need to be written back to main memory

P4
Inter-processor boundary half spinor field data is stored in local fast mem-

ory, without the need to be written back to main memory

P5
Inter-core boundary half spinor field data is stored in local fast memory,

without the need to be written back to main memory

Table 2.3: Memory Access Pattern

Pattern P1 is about whether we can reduce gauge field data access in main memory. The

gauge field matrix is element of the SU(3) group. We can use fewer real numbers to parameter-

ize the matrix. In practice, we may use only 12 real numbers or 8 real numbers instead of using

9 complex numbers (depend on the implementation). Using 8 real numbers, we can reduce the

gauge field access by 10/18. However, with this method, extra computing power is needed.

This pattern is applicable only when there is much computing power left in the processor.

Pattern P2 is also about whether we can reduce gauge field data access. The gauge field

matrices on the same link used by two neighbor space-time sites have a simple relation. If

we only store one copy in the fast memory and can process the two neighbors at the same life

cycle of the gauge field data, the access of gauge field data could be reduced by half. Whether

this pattern can be applied depends on the programming model (SIMD or SIMT) and shared

memory size.

Pattern P3 is about the intermediate half spinor field data. Since for each space-time site,

8 copies of half spinor field data are generated. If the local fast memory is not large enough

to hold them, they need to be written back to the main memory before further processing.

Apparently, whether this pattern can be applied depends on the shared fast memory size and

how to share data within one processor core.

Pattern P4 is about the data exchanged by different processor nodes. Inter-processor

boundary half spinor field data is generated on the boundary of each processor’s sub lattice

and needs to be sent to logical adjacent processor nodes. Inter-processor boundary half spinor

field data’s size is not negligible. Whether it needs to be written first to main memory depends

on the memory hierarchy (how processor cores are connected to the I/O ports) and communi-
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cation hardware. The parameter α represents the ratio of inter-processor boundary half spinor

field data to whole half spinor field data.

Pattern P5 is about the data exchanged by different processor cores. Normally different

cores inside a processor node need to exchange boundary half field data. Whether this part of

data can be stored in local fast memory and directly communicated also depends on the memory

hierarchy. The parameter β is introduced to represent the fraction of inter-core boundary half

spinor field data.

In an implementation, all the patterns may not be applied at the same time because of the

processor resource constraints. So for different implementations, many combinations of these

patterns could be applied. To get best performance on a specific architecture, we could select

the best combination regarding the architecture features. In the following part, the requirements

of those patterns are carefully studied.

The spinor field data needs to loaded and written back to main memory each at least once.

The spinor field matrix is a 3x4 complex matrix occupying 192 bytes. 384 bytes data traffic per

space-time site is added to the data flow F2. This corresponds to pressure on main memory

bandwidth and memory controller bandwidth per processor core.

The gauge field matrix is a 3x3 complex matrix, which occupies 144 bytes. Per space-time

site, 1152 bytes are needed for 8 directions. As input data, the gauge field needs to be loaded

once on each iteration. If the processor core has much spare computing power, pattern P1
could be applied. Pattern P2 could be applied only if enough neighbor sites are processed at

the same time in one processor core, there is enough local fast memory to store the gauge field

and all gauge field data is visible to all threads.

The half spinor field is generated for neighbor sites. So the data may need to be sent to

other thread, processor core or processor nodes. Each matrix needs 96 bytes. All 8 directions’

data occupies 768 bytes per site. For example, if there are multiple threads per processor core

and they can communicate only through share memory inside processor core, the size of the

share memory becomes the dominant factor. If the share memory is not large enough, the

half spinor field data needs to be written first to main memory. In this case, pattern P3 is not

applicable. Considering pattern P4, suppose that the local fast memory is large enough to hold

the inter-processor boundary half spinor field data, whether pattern P4 is applicable depends

on the interconnection between processor nodes. If there exists a data path connecting fast

memory of different nodes, the transfer does not need to go through the main memory. It is

similar for pattern P5. Whether pattern P5 can be applied also depends on the local resource.

It also depends on how different processor cores communicate. If different cores can directly

communicate through fast memory and local fast memory is large enough, then pattern P5 is

applicable.

According to different pattern configurations, data flows can be determined. Then band-

width pressure on different interconnections could be calculated. For example, the main mem-

ory accesses, memory accesses from processor core to other parts, and I/O interface accesses.

Three parameters are introduced here for further analysis as in Equations 2.2, 2.3, and 2.4.

RA/M =
#Arithmetic Operations

#Main Memory Accesses
(2.2)
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(00000) 0.43 (00001) 1320
3072−1536β (00010) 1320

3072−1536α (00011) 1320
3072−1536(α+β)

(00100) 1320
1536+1536(α+β) (00101) 1320

1536+1536β (00110) 1320
1536+1536α (00111) 0.86

(01000) 0.53 (01001) 1320
2496−1536β (01010) 1320

2496−1536α (01011) 1320
2496−1536(α+β)

(01100) 1320
960+1536(α+β) (01101) 1320

960+1536β (01110) 1320
960+1536α (01111) 1.375

(10000) 0.54 (10001) 1320
2432−1536β (10010) 1320

2432−1536α (10011) 1320
2432−1536(α+β)

(10100) 1320
896+1536(α+β) (10101) 1320

896+1536β (10110) 1320
896+1536α (10111) 1.47

(11000) 0.6 (11001) 1320
2176−1536β (11010) 1320

2176−1536α (11011) 1320
2176−1536(α+β)

(11100) 1320
640+1536(α+β) (11101) 1320

640+1536β (11110) 1320
640+1536α (11111) 2.06

Table 2.4: Memory Access Pattern Combination (P1 P2 P3 P4 P5) & Relative Demands on

Arithmetic Operations and Main Memory Access (RA/M )

RA/C =
#Arithmetic Operations

#Accesses from Processor Core to Other Parts
(2.3)

RA/IO =
#Arithmetic Operations

#I/O Data Accesses
(2.4)

Table 2.4 includes all the combinations of above five patterns (in the order of P1 P2 P3
P4 P5) and the corresponding RA/M . RA/C and RA/IO can be given in the similar way.

The calculation is like the following. Take the pattern combination (01111) for instance.

On each iteration, the spinor field data needs to be loaded once at the beginning and written

back once in the end. That yields memory traffic of 384 Bytes. The gauge field needs to be

read only once and because of pattern P2 the traffic is cut in half. That equals to the data traffic

of 576 Bytes. Because of pattern P3, P4 and P5, there is no need to write back any half-field

data information the data traffic to main memory per site is 960 Bytes. So RA/M=1.375.

Since α and β are related to problem size and data distribution configuration, we need to

make an instantiation, and we use the same instantiation in the following analysis. α = 0.125.

With the above analysis, we can further analyze the potential peak performance of Hop-

ping Matrix on the two architectures based on how to apply the combinations of these patterns.

2.4.1.1 Cell Performance Analysis

Each processor core (SPE) on Cell runs a single thread. The local resource, which is visible

to the thread, includes the local store of 256 KB and the register file of 2 KB. According to

the previous analysis, apparently, the local store can hold the field data of a sub lattice with

enough space-time sites. So pattern P2 and P3 could be applied. Since SPE can issue I/O

operations directly, then boundary half spinor field data can be directly transferred without

being written back to main memory. So the pattern P4 is feasible. Because different SPE can

directly communicate through EIB, pattern P5 is also feasible. The optimal combination of

Cell processor is (01111).
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With the pattern combination (01111), RA/M = 1.375, RA/C = 1320
1536(α+β) , and RA/IO =

1320
1536α = 6.875. Clearly we have P = B3 ∗ RA/M = 35.2 GFlops. So the potential peak

performance for DSlash is around 35GFlops (34% of theoretical peak performance of Cell,

102.4GFlops). Since it is not possible to fully utilize the gauge field data between neighbors,

the potential peak will be lower.

2.4.2 GPU Performance Analysis

On each processor core (SM), there reside hundreds of threads. Each thread’s registers are

private and invisible to other threads. The local resource on each SM that could be explicitly

controlled by programmer includes the registers and the shared memory. The shared memory

is visible to all threads and can be used to communication and store the global data. Each SM

has 32K registers and 48KB or 16KB shared memory. So the maximum local storage amount

is 176KB. For GT200 GPU, to hide arithmetic latency, at least 192 threads per SM are needed

and to hide memory latency, usually more than 256 threads are needed. We lack the same

information for Fermi GPU by far. Using 256 threads, the resource per thread is about 700

Bytes. With this amount, to store all the intermediate half spinor field data is not possible.

Because GPU cannot issue I/O operations directly, pattern P4 is not possible. There’s no

direct-communication between cores inside GPU. So P5 is also not feasible. Since there is a

lot of computation power per GPU, we can consider reconstructing the gauge field data inside

the processor. So the possible pattern combination could be (10000).

With the pattern combination (10000), we have RA/M = 0.54, RA/C = 0.54, and RA/IO =
1320
1536α = 6.875. However, different GPU models have quite different configuration and com-

puting power. Taking GeForce GTX280 for instance, it has around 140GB/s memory band-

width. And suppose the PCIE bus can provide 8 GB/s bandwidth (20% overhead because of

encoding). In double precision, we have P = B3 ∗ RA/IO ∗ 80% = 44 GFlops, 6.5% of the

theoretical peak performance. If only consider single GPU node, the potential performance is

P = B2 ∗ RA/M = 75.6 GFlops, about 65% of the theoretical double precision peak perfor-

mance.

2.5 Summary

In this Chapter, we present simple data-flow models for lattice-QCD Hopping Matrix routine

on Cell B.E. and GPU processors. First we analyze the data paths of the two architectures and

the computation and data accessing requirements of the Hopping Matrix. Then we categorize

5 memory-access patterns of the routine. The data flow informations is generated based the

memory-access patterns. Thus we can identify the bottleneck functional unit and derive the

potential performance. The following is some observations while developing the models and

analyzing the performance. From the analysis above, the main factors that can influence the

data flow include how different functional units are connected, the behavior of the application

itself, how much private and share resources present at each core, and of course the bandwidth

or throughput of interconnections and functional units.
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First, the Lattice QCD application is highly memory bound. The most effective optimiza-

tion method is to reduce the pressure to the main-memory data path. And we should choose

architecture with large bandwidth to main memory and on which it is easy to hide memory la-

tency. Second, in many cases, there are many accesses to main memory that cannot be reduced

because of the large problem scale and local resources constraints. Third, large and fast local

storage is needed to store intermediate data and it seems that software-control cache is a better

option since we can carefully program the data movement between main memory and fast local

storage.



Chapter 3

Performance Estimation of GPU

Applications Using an Analytical

Method

This chapter presents a study that was presented at the RAPIDO 2012 workshop [53].

3.1 Introduction

The computation power of modern GPU has been increasing dramatically. Nowadays many

applications have been ported to GPU architecture with interfaces like CUDA [2] or OpenCL

[77]. These programming interfaces lower the entry barrier for GPU application development.

However, since these programming interfaces are high level abstractions and few GPU hard-

ware details are disclosed, programmers have little insights into GPU performance result. Gen-

erally, programmers have to develop their own experience for GPU application optimization.

Although profiling tools such as CUDA Visual Profiler [2] are provided, much efforts are still

needed to achieve a good performance and in many cases a large design space needs to be

explored.

In last chapter of this thesis, we present simple data-flow models for lattice QCD appli-

cations on Cell and GPU architectures. The models can provide some rough insights into the

performance bottleneck. However, the analysis is too coarse grain. The fine-grain application

behavior cannot be analyzed with that approach. Since GPU platform is likely to be the candi-

date for the lattice QCD project, the rest of the thesis work focuses on the performance analysis

of applications on GPGPUs. The intention of the second part of this thesis work is to provide

an analytical approach, that helps to get more insights into GPU performance results.

We developed a timing model for NVIDIA GT200 GPU and constructed the tool TEG

(Timing Estimation tool for GPU) based on the model. TEG takes the CUDA kernel assem-

bly code and instruction trace as input. The CUDA kernel binary code is disassembled using

tool cuobjdump provided by NVIDIA [2]. The instruction trace is obtained by Barra simu-

lator [24]. Then TEG models the kernel execution on GPU and collects timing information.

TEG does not execute the instructions directly but only utilizes the dependence and latency

57
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information. With the timing model and the assembly code as input, TEG can estimate GPU

cycle-approximate performance. The output of TEG includes the total execution cycles, load

on function units, etc. Evaluation cases show that TEG can get very close performance ap-

proximation. Comparing with the real execution cycle number, normally TEG has a error rate

less than 10%. Especially, TEG has good approximation for applications with very few ac-

tive warps on SM. Thus we could better understand GPU’s performance result and quantify

bottlenecks’ performance effects. Present profiling tools can only provide programmers with

bottleneck statistics, like number of shared memory bank conflict, etc. TEG allows program-

mers to understand how much performance one bottleneck can impair and forsee the benefit of

eliminating the bottleneck.

Several works using analytical methods to analyze GPU performance are presented [40, 9,

49, 101, 61, 85], which are briefly introduced in the first chapter. The main difference between

our approach and these works includes that first, in our study, we use the binary code instead of

PTX code as input because resource allocation happens at the compiling stage from PTX code

to binary code and binary code is the native code running on GPU hardware. Second, we use

instruction trace instead of instruction statistics as the tool input, and provide workload infor-

mation on different function units of GPU. Different from cycle-accurate simulators, we chose

a limited set of hardware model parameters, which could be obtained through benchmarks. We

assume that we may still have very limited knowledge of the underlying hardware details for

future GPGPU architectures.

This chapter is organized as follows: In Section 3.2 we present our timing model for GPU.

Section 3.3 demonstrates TEG’s workflow. In Section 3.4 we evaluate TEG with two cases.

In Section 3.5 we use TEG to analyze GPU performance scaling behavior with a case study.

Section 3.6 concludes this part of study and presents future direction.

3.2 Model Setup

In this section, we present an analytical performance model for GT200 GPU and the key pa-

rameters. Then we discuss some performance effects that TEG can demonstrate.

3.2.1 GPU Analytical Model

Our model for GT200 GPU is illustrated in Figure 3.1. In our model, each SM is taken as

one processor core and the detail instruction pipeline stages and detail memory transaction

behavior are not modeled. SM is fed with warp instructions. Inside one SM, there are issue

engine, shared memory, register file and functional units like SP, DPU, SFU and LD/ST unit. 8

SPs are considered as one functional unit. Global memory load/store instructions are issued to

LD/ST unit.

We define 32 instructions of threads in the same warp as warp instruction. An unmasked

warp instruction launches 32 operations. Functional units has two properties, issue rate and

bandwidth or throughput. Issue rate decides how many cycles one functional units can accept a

new warp instruction, and bandwidth or throughput denotes how many warp instructions can be

in flight. Every 2 cycles, the issue engine selects one ready warp instruction from active warps

and issues the instruction to the ready functional units according to instruction type. A warp
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Figure 3.1: GPU Analytical Model

instruction can be be issued when all the source operands are ready. GPU uses a scoreboard

mechanism to select the warp with a ready warp instruction. In our model, different scoreboard

policies are implemented. For each warp, since instructions are issued in program order, if one

instruction’s source operands are not ready, all the successive instructions have to wait.

Every three SMs share the same memory pipeline in one TPC, and thus share 1/10 of

peak global memory bandwidth. 8 channels connect the device memory chips with the GPU

processor and each channel bandwidth cannot exceed 1/8 of peak global memory bandwidth.

We do not model the on-die routing of memory requests, since the hardware details have not

been disclosed.

Warp instruction has 3 kinds of latency properties (section 3.2.2.1). The latency informa-

tion decides a warp instruction’s life cycle. When there is performance degradation factor,

such as the access pattern of one warp instruction leads to shared memory bank conflict, we

just simply use the warp instruction’s “degraded” latency information. Of course, we also uses

the instruction’s dependence, operator and operand type information in our model.

3.2.2 Model Parameters

To use the analytical model in TEG, we need to define some model parameters. In this sec-

tion, some major parameters are introduced. Much work has been done to understand GPU

architecture through benchmarking [96]. Some results and ideas are borrowed from this work.
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3.2.2.1 Instruction Latency

Execution latency

Execution latency of a warp instruction is defined as the cycles that the instruction is active

in the corresponding functional unit. After the execution latency, one issued warp instruction

is marked as finished. The typical technique to measure instruction execution latency is to

use the clock() function. The clock() function returns the value of a per-TPC counter. To

measure instruction execution latency, we can just put dependent instructions between two

clock() function calls. An extra 28 cycles is introduced because of the clock() function itself

[96].

t 0 = c l o c k ( ) ;

r1 = r1 + r3 ;

r1 = r1 + r3 ;

. . .

r 1 = r1 + r3 ;

t 1 = c l o c k ( ) ;

While (ADDR B < LOOP END)

Listing 3.1: CUDA Code Example

The typical technique to measure instruction latency is to use the clock() function. The

clock() function returns the value of a per-TPC counter. To measure instruction execution la-

tency, we can just put dependent instructions between two clock() function calls. For example,

the CUDA code in Listing 3.1 is translated into PTX code in Listing 3.2.

mov . u32 %r6 , %c l o c k ;

add . f32 %f4 , %f4 , %f3 ;

add . f32 %f4 , %f4 , %f3 ;

. . .

add . f32 %f4 , %f4 , %f3 ;

mov . u32 %r7 , %c l o c k ;

Listing 3.2: PTX Code Example

S2R R3 , SR1 ;

SHL R3 , R3 , 0x1 ;

FADD32 R4 , R4 , R2 ;

FADD32 R4 , R4 , R2 ;

. . .

FADD32 R4 , R4 , R2 ;

S2R R4 , SR1 ;

SHL R4 , R4 , 0x1 ;

Listing 3.3: Assembly Code Example
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The assembly code after compiling PTX code to binary code is in Listing 3.3. S2R instruc-

tion move the clock register to a general purpose register. A dependent shift operation after

S2R suggests that the clock counter is incremented at half of the shader clock frequency. An

extra 28 cycles is introduced because of the dependence between SHL and S2R (24 cycles),

and the issue latency of SHL (4 cycles).

For 21 FADD32 instructions between the two clock measurements, the measured cycles

are 514. So the execution latency of FADD32 is

(514− 28− 8)/20 ≈ 24.

8 cycles are the issue latency of FADD32 in one warp (Please refer to 3.2.2.2 for more details).

Multiple-warp issue latency

Same-warp issue latency of one instruction is the cycles that the issue engine needs to wait

to issue another instruction after issuing one warp instruction. It is calculated using instruction

throughput. For example, the throughput for integer add instruction is 8 ops/clock. So the issue

latency is 32/8 = 4 cycles. In fact, the issue engine can issue a new instruction every 2 cycles.

But if the next chosen warp instruction is also an integer add or other instructions that needs to

be issued to SP, it looks like the issue engine has to wait 4 cycles to issue another instruction,

since SP can only be issued with one new instruction every 4 cycles.

Same-warp issue latency

Same-warp issue latency is the cycles that the issue engine needs to wait to issue another

instruction from the same warp after issuing one warp instruction. This latency can also be

measured using the clock() function and is generally longer than multiple-warp issue latency.

Thus it is not possible to achieve peak performance with only one active warp on SM even if

most nearby instructions in one warp are independent. For example, float MAD instruction’s

multiple-warp issue latency is 4. If we execute only one warp, then the measured issue latency

is 8. For a global memory load instruction GLD.U32, the same-warp issue latency is around

60 cycles while its multiple-warp issue latency is a much smaller value and we use 4 cycles in

TEG.

Similar results are obtained for other arithmetic instructions and memory instructions,

which suggests that a warp is occupied to issue one warp instruction while the issue engine

can continue to issue instructions from other warps and the occupied period is normally longer

than the waiting time of the issue engine to issue a new instruction from another warp. So we

can redefine the same-warp issue latency as the cycles that one warp becomes inactive after

issuing one warp instruction. During this period, the issue engine cannot issue instruction from

this warp.

Some arithmetic instructions’ execution latency and issue latency are listed in Table 3.1.

For Execution latency and Multiple-warp issue latency, the data is borrowed from the work

from Wong et al. [96]. Since float MUL operation can be issued into both SP and SFU. The

instruction has higher throughput and shorter issue latency. In the table we only present the

latency for 16 bit integer MUL and MAD, since 32-bit integer MUL and MAD operations are
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Instruction Type Execution Latency Issue Latency (multiple warps) Issue Latency (same warp)

(cycles) (cycles) (cycles)

Integer ADD 24 4 8

Integer MUL (16bit) 24 4 8

Integer MAD (16bit) 24 4 8

Float ADD 24 4 8

Float MUL 24 2 8

Float MAD 24 4 8

Double ADD 48 32 32

Double MUL 48 32 32

Double FMA 48 32 32

Table 3.1: Arithmetic Instruction Latency

translated into the native 16-bit integer instructions and a few other instructions. In each SM,

there is only one DPU which can processes double precision arithmetic instructions. Thus, the

issue latency is much longer for double precision arithmetic instructions.

3.2.2.2 Performance Scaling on One SM

In the previous section, the issue latency is calculated assuming several warps are running

concurrently. For example, float MAD instruction’s issue latency for multiple warps is 4. But

if we run only one warp, then the measured issue latency is 8. And for a global memory load

instruction GLD.U32, the issue latency in the same warp is around 60 cycles while the issue

latency for multiple warps is a much smaller value and we use 4 cycles in TEG. Similar results

are obtained for other arithmetic instructions and memory instructions, which suggests that a

warp is occupied to issue one instruction while the scheduler can continue to issue instructions

from other warps and the occupied period is normally longer than the waiting time of the

scheduler to issue a new instruction from another warp. Thus it is not possible to achieve peak

performance with only one active warp on SM even if most nearby instructions in one warp are

independent.

After one warp instruction is issued, the scheduler can switch to another warp to execute

another instruction without much waiting. However, if the scheduler still issue instructions

from the same warp, the longer issue latency is needed. This undocumented behavior may

affect performance when there are very few active warps on SM.

3.2.2.3 Masked instruction

All 32 threads within a warp execute the same warp instruction at a time. When threads of a

warp diverge due to a data-dependent branch, they may have different execution path. GPU

executes each path in a serial manner. Thus, the warp instruction is masked by a condition de-

pendent on thread index. For masked arithmetic instructions, we find that all behavior remains

similar as the un masked behavior. That is to say, all the issue latency and execution latency
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are the same as those of unmasked arithmetic instructions. For memory operations, since less

data needs to be transfered, the latency is shorter and less memory bandwidth is occupied.

3.2.2.4 Memory Access

We consider the memory access separately from the other instructions because of 3 reasons.

First, other functional units belong to one SM only, but each 3 SMs within one TPC share

the same memory pipeline and all SMs share the same 8 global memory channels. Second,

the scheduler needs to wait around 60 cycles after issuing one global memory instruction to

issue another instruction in the same warp, but it can issue another instruction very quickly if

it switches to another warp (Refer to Section 3.2.2.2). Third, memory access has much more

complex behavior. For shared memory access, there might be bank conflicts (Section 3.2.3.3),

and then all memory accesses of one half-warp are serialized. For global memory access, there

might be coalesced and uncoalesced accesses (Section 3.2.3.4).

The typical shared memory latency is about 38 cycles and the global memory latency with-

out TLB miss is about 436 to 443 cycles [96].

Let Cmem represent the maximum number of concurrent memory transactions per TPC and

it is calculated as Equation 3.1 and 3.2.

NTPC ∗NWarp ∗ ele size ∗ Cmem

mem latency ∗ 1
Clk

= Bpeak (3.1)

Cmem =
Bpeak ∗mem latency

NTPC ∗NWarp ∗ ele size ∗ Clk
(3.2)

NTPC , NWarp, ele size, mem latency, Clk, and Bpeak represent the number of TPCs,

the number of threads per warp, the accessed data type size, the global memory latency, proces-

sor clock frequency, and the peak global memory bandwidth respectively. For double precision

memory transactions, Cmem ≈ 18. Thus the number of unfinished double precision memory

transactions through the memory pipeline of a TPC cannot exceed 18.

3.2.3 Performance Effects

3.2.3.1 Branch Divergence

Masked instructions (Section 3.2.2.3) are warp instructions with a warp size mask. Each bit

of the mask indicates whether the corresponding thread is active to execute the instruction.

Threads of the same warp may have different execution path. Since SM has to finish each path

in serial and then rejoin, extra execution time is introduced.

3.2.3.2 Instruction Dependence and Memory Access Latency

One of the motivations or advantages of GPU processor is that it can hide latency due to in-

struction dependence or memory access by forking large number of threads. However, when

there are very few active warps, it is possible that at some point, all warps are occupied in issu-

ing instructions. The scheduler is available but none of the active warps can be released. Thus
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the latency cannot be perfectly hidden and may become an important factor to performance

degradation.

3.2.3.3 Bank Conflicts in Shared Memory

The shared memory is divided in 16 memory modules, or banks, with the bank width of 4

bytes. The bank is interleaved so that successive 4 bytes words in shared memory space are in

successive banks. Threads in a half-warp should access different banks to achieve maximum

shared memory bandwidth. Otherwise the access is serialized [79], except all threads in a

half-warp read the same shared memory address.

For example, the float ADD instruction

FADD32 R2, g[A1+0xb], R2;
has a operand g[A1+0xb] located in shared memory. The execution latency is around 74 cycles

without bank conflict. If all threads within a half-warp access the same bank, the execution

latency becomes about 266 cycles.

3.2.3.4 Uncoalesced Memory Access in Global Memory

The global memory of GPU has very high access latency comparing to shared memory latency.

For global memory accesses of a half-warp, if certain conditions are satisfied, the memory

transactions an be coalesced into one or two transactions. The required conditions depend

on GPU hardware and CUDA compute capabilities. The general guideline is that threads of

one half-warp should access adjacent memory elements. If the coalesced conditions cannot be

met, more memory transactions are needed, introducing much performance loss. For example,

if every thread loads 4 bytes from global memory, in the worst case, to serve each thread in

the half-warp, 16 separate 32-byte transactions are issued. Thus 87.5% of the global memory

bandwidth is wasted.

3.2.3.5 Chanel Skew in Global Memory

The global memory of GT200 GPU is divided into 8 partitions. The global memory thus can

be accessed through 8 channels. The channel width is 256Btyes (32*8B) [79]. Similar as ac-

cessing to shared memory, concurrent accesses to global memory should be distributed evenly

among all the partitions to achieve high global memory bandwidth. Load imbalance on the

memory channels may significantly impair performance. If the application’s memory access

pattern has significant imbalance over different channels, much performance degradation will

be introduced.

3.3 Workflow of TEG

Based on our timing model of GPU, we have developed the GPU timing estimation tool TEG.

The workflow of TEG is illustrated in Figure 3.2. The CUDA source code is first compiled

into binary code with NVIDIA compiler collection. The binary code includes the native kernel

code that runs on GPU device. Second, the binary code is disassembled using tool cuobjdump
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Figure 3.2: Workflow of TEG

provided by NVIDIA [2]. Third, TEG analyzes the generated assembly code and obtains in-

formation such as instruction type, and operands’ type, etc.

We need the actual instruction traces in many cases. The instruction trace can be obtained

with detailed GPU simulators, such as Barra[24] or GPGPU-Sim[11]. In our study, the instruc-

tion trace is provided by Barra simulator.

So after the third step, the assembly code information and instruction trace are served to

issue engine model (see Figure 3.2). The issue engine model issues all the warp instructions

to corresponding functional units model according to the instruction trace and our GPU tim-

ing model. At this stage, all runtime timing information can be collected by our information

collector.

We can vary the configuration of TEG, such as the active warp number on SM to observe

how performance scales from one warp to multiple concurrent warps. We can also compare

the performance with or without one bottleneck by choosing whether or not to apply the bot-

tleneck’s effects in TEG. Thus we can quantify how much performance gain we may get by

eliminating the bottleneck and programmers can decide whether it is worth the optimization

efforts.
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Figure 3.3: Erro analysis of TEG

3.4 Evaluation

We evaluate TEG with several benchmarks with different configurations and compare the mea-

sured and estimated kernel execution times. The result is shown in Figure 3.3. The name

is defined as KernelName WarpNumber. BS, MatA, MatB, QdA, QdB, Qf stand for

Blackscholes, naive matrix multiplication, matrix multiplication without shared memory bank

conflict, double precision Lattice QCD kernel with uncoalesced memory access, double preci-

sion LatticeQCD kernel with coalesced memory access, single precision Lattice QCD kernel

respectively. The WarpNumber is the number of concurrent warps assigned to each SM. Here

we assign the same amount of workload to each warp. The result shows that TEG has good

approximation and it also can catch the performance scaling behavior. The average of absolute

relative error is 5.09% and the maximum absolute relative error is 11.94%.

To study how much performance loss due to one performance degradation factor, with

TEG, we just need to change the tool configuration. For example, one application has shared

memory conflicts and we would like to know how much performance is impaired by this fac-

tor. Within TEG, we just set that all shared memory accesses are conflict-free. Thus we can

estimate the performance without shared memory bank conflict and decide whether it is worth

the optimization efforts. We do not have to implement each version of codes to compare.

3.4.1 Dense Matrix Multiplication

We choose one example of dense matrix multiplication in CUDA SDK and to demonstrate the

function of TEG, we change C = AB into C = ABT .
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WarpNum 1 2 4 8 16

Measured (cycles) 55605 55803 71465 107668 186958

Predicted (cycles) 52590 52878 64578 109364 200538

Error -5.73% -5.53% -10.66% 1.55% 6.77%

Table 3.2: C = ABT with Bank Conflict

C(i, j) =
∑

k

A(i, k) ∗B(j, k)

In the implementation, the three matrices A, B and C, are partitioned into 16x16 sub-matrix.

The computation for a C sub-matrix is assigned to a CUDA block. A block is composed of 256

(16x16) threads and each thread computes one element in the C sub-matrix. In the CUDA

kernel, at each step, a block of threads load the A and B sub-matrices first into shared memory.

After a barrier synchronization of the block, each thread loads A(i, k) and B(j, k) from shared

memory, and accumulates the multiplication result to C(i, j).
However, since a half-warp of threads, load B(j, k), B(j + 1, k), . . . , B(j + 15, k), for a

shared memory allocation like B[16][16], all the 16 elements will reside in the same bank and

there would be bank conflicts in the shared memory.
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Figure 3.4: C = ABT with Bank Conflict

In the following experiment, we assign each warp with the same amount of workload and

run 1 to 16 warps concurrently on one SM. We use clock() function to measure the execution

time on device of one block, since the barrier synchronization is only applicable within one

block. And for multiple blocks’ total execution time, we use the measured host time to calculate

the device execution time. For example, when there are 30 blocks, each SM can be assigned

one block and when there are 60 blocks, each SM has two blocks to execute. Then we compare

the host time for the two configurations and calculate the cycles for 2 blocks (16 warps) to

finish on the SM.
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WarpNum 1 2 4 8 16

Measured (cycles) 17511 17291 18330 23228 33227

Predicted (cycles) 16746 17528 19510 23630 34896

Error -4.57% 1.35% 6.05% 1.70% 4.78%

Table 3.3: C = ABT Modified

The measured and predicted execution time of 1 to 16 concurrent warps on one SM is

illustrated in Table 3.2. Then we normalize the execution time with the workload and show the

speed up from 1 to 16 active warps on each SM in Figure 3.4.
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Figure 3.5: C = ABT Modified

For GPU performance optimization, programmers often come to the question that how

much performance loss due to one performance degradation factor. With TEG, it is fairly

easy to answer the question. We just need to change the configuration. In this case, in the

tool, we just assume all shared memory accesses are conflict-free. Thus we can estimate the

performance without shared memory bank conflict, which is illustrated in Figure 3.5 and Table

3.6.

We then modified the CUDA code to eliminate bank conflicts and compare the result with

TEG’s output. The comparison shows very good approximation.

3.4.2 Lattice QCD

We select one kernel in Hopping Matrix routine [43] as our example. The input of the Hop-

ping Matrix kernel include the spinor field, the gauge field, the output is the result spinor field.

The spinor field resides on the 4D space-time site and is represented by a 3x4 complex matrix

data structure. The gauge field on the link connecting neighbor sites is implemented as a 3x3

complex matrix. The half spinor filed is represented by a 3x2 complex matrix, which is the

temporary data generated on each of 8 space-time directions for one full spinor.
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WarpNum 1 2 4

Measured (cycles) 51053 68383 122430

Predicted (cycles) 46034 66674 110162

Error -10.90% -2.56% -11.14%

Table 3.4: Hopping Matrix kernel with Uncoalesced Accesses

WarpNum 1 2 4

Measured (cycles) 37926 47038 73100

Predicted (cycles) 36202 45204 68104

Error -4.76% -4.06% -7.34%

Table 3.5: Hopping Matrix kernel with Coalesced Accesses

The functionality of the kernel is not important to our discussion. Instead, the memory

layout is of interest. In the first version of our implementation, all the data is organized in

array of structures. This is typical data layout for conventional processors to obtain good cache

hit rate. However, GPU has much more concurrent threads. Normally different threads are

assigned with different data structures. So the accesses of the threads in a warp have a long

stride of the size of the data structure. Thus, accesses to global memory cannot be coalesced.

The predicted and measured execution results are illustrated in Table 3.4 and Figure 3.6. Since

each thread occupies much register resource, the active warp number is limited.
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Figure 3.6: Hopping Matrix kernel with Uncoalesced Accesses

If we reorganize the data layout into structure of arrays, the memory accesses of threads in

a warp would be adjacent. Thus they can be coalesced. The result is shown in Table 3.5 and

Figure 3.7. This case also shows that TEG can easily demonstrate the performance loss due to

performance bottlenecks, such as uncoalesced memory accesses.
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Figure 3.7: Hopping Matrix kernel with Coalesced Accesses

WarpNum 1 2 4 8 16

Measured 17511 17291 18330 23228 33227

Cycles

Predicted 16784 16868 18474 20852 34688

Cycles

Error -4.33% -2.51% 0.78% -11.39% 4.21%

Table 3.6: C = ABT Modified

3.5 Performance Scaling Analysis

In Section 3.4, we have shown that TEG has good approximation for GPU execution time

estimation. And to study how much performance loss due to one performance degradation

factor. Furthermore, we believe it is useful to understand the detail execution state of GPU’s

different function units, especially how performance scales when active warps increase on one

SM.

We still use one example of dense matrix multiplication in CUDA SDK to demonstrate

our study. Here we only use the version without shared memory bank conflict. The measured

running cycles and estimated results are presented in Table 3.6.

From the result (Table 3.6), the performance scales almost perfectly from one warp to two

concurrent warps since workload doubles and execution time almost remains the same, and

scales very well until 8 warps. From 8 warps to 16 warps, the performance still gains from

more concurrent threads, but not as well as before. We want to understand what factors devote

to the execution time and how the performance scales like this.

Figure 3.8 presents how the PCs (program counter) change through the execution and the

warp numbers are 1 and 8. The execution could be easily identified as 3 stages. At the first

stage, each thread computes the addresses of its assigned data elements, according the thread

and block index. The second stage is the main loop, 10 iterations in this case. A block of
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Figure 3.8: PC Trace

threads load the A and B sub-matrices into shared memory and accumulate the multiplication

result. The ’flat’ part is loading data from global memory to shared memory. The last stage is

the address computation for the target data element C(i, j) and the store back.

We have some interesting observation here. First, the time of index and address calcu-

lation is non eligible comparing to the matrix multiplication. Second, the fraction of ad-

dress calculation increases when concurrent warps increase. Third, the curves of different

warps are very close because in each iteration there is a barrier synchronization and also be-

cause we use a very simple score board policy to choose the next warp with ready instruction,

next wc = (current wc + 1)%WARP NUM . Fourth, the fraction of global memory ac-

cesses decreases when warps increase.

To understand these performance behavior, we further improve TEG to collect workload

information of different function units. Workload here refers to the warp instructions executing

concurrently in the function units. For example, SP can be issued in one warp instruction every

4 cycles. If all instructions issued to SP has an execution latency of 24 cycles, the maximum

number of instructions executing in parallel is 6. Instructions with operands in shared memory

have longer execution latency than instructions with all register operands. Thus the instructions

executing in parallel could be more.

Figure 3.9 shows the workload for SP when there is only one warp. Apparently, the work-

load of SP is far from saturation. We suppose that for issuing each new warp instruction, SP is

active for 4 cycles. The active percentage for SP is the fraction when SP is active during the ex-
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Figure 3.9: SP Load(1 warp)
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Figure 3.10: SP Load (2 warps)

 0

 2

 4

 6

 8

 10

 12

 14

 0  500  1000  1500  2000  2500  3000  3500  4000

S
P

 L
o
a
d

Execution cycles

Figure 3.11: SP Load (6 warps)

ecution. And then active percentage of SP is 11% in this case. When there are two concurrent

warps, the workload is illustrated in figure 3.10 and the active percentage is 22%. Similarly,

for concurrent warp number of 4, 8, and 16, the active percentage of SP is 40%, 71.7%, and

86.2% respectively.
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Figure 3.12: SP Load (8 warps)

As in Figure 3.10, for index calculation, the workload is already around 6. Since index

calculation is mainly integer operations with register operands, it almost reaches the best per-

formance when warp number is 2. Increasing warps cannot introduce much gain for index

calculation.
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Figure 3.13: SP Load (16 warps)

Figure 3.11, 3.12 and Figure 3.13 present the workload for SP when there are 6, 8 and 16

concurrent warps. Comparing the results, we can find that for matrix multiplication, the peak

workload is around 13. When the warp number is 6, the workload is about 9 12, already close

to the saturation of SP.

The analysis of the workload on LD/ST unit is simpler. Figure 3.14 and Figure 3.15 illus-

trate the workload on LD/ST unit when there are 1 and 16 warps. As we can see, the workload

with 16 warps is almost 16 times of the workload with 1 warp. In this application, the data is

loaded first into shared memory, so the pressure on memory bandwidth is not heavy.

With the previous analysis, we can explain the performance scaling result. When the active

warp number is 1, all function units are not saturated and the SP starts to be saturated at the

index calculation part with 2 active warps. Thus, the scaling from 1 to 2 warps is almost perfect.

From 2 to 4 active warps the performance scales very well but not as perfect as from 1 to 2
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Figure 3.14: LD/ST Unit Load (1 Warp)
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Figure 3.15: LD/ST Unit Load (16 Warps)

warps. The SP starts to be saturated at the matrix multiplication accumulation segment when

there are 6 active warps. Also because this code segment devotes to a large portion of total

execution time, the scaling from 4 to 8 warps is even worse. Increasing warps from 8 to 16

benefits very little in the matrix multiplication accumulation code segment. However since the

memory is not full, there is still some performance gain.

3.6 Summary

In this Chapter, we use our GPU timing estimation tool TEG to analyze detailed performance

scaling behavior on GPU. With the timing model and the assembly code as input, in coarse

grain, TEG can estimate applications’ cycle-approximate performance on GPU and has an

acceptable error rate. Especially, TEG has good approximation for applications with very few

active warps on SM. In fine grain, we can use TEG to break down the GPU execution time and

gain more insight into GPU’s performance behavior. Current profiling tools can only provide

statistics information for one kernel while with TEG, it is easy to get how much performance

one bottleneck can impair and foresee the benefit of removing this bottleneck.

The main limitation is that TEG cannot handle the situation when there is a high memory
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traffic and a lot of memory contention occurs. We lack the knowledge of detailed on-die mem-

ory controller organization and the analysis is far too complicated for our analysis method.

Adding cache impact, e.g. for Fermi architecture, could be considered as an extension of TEG.
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Chapter 4

Performance Upper Bound Analysis

and Optimization of SGEMM on

Fermi and Kepler GPUs

This Chapter presents a study that is going to be presented at CGO 2013 [54].

4.1 Introduction

There are many studies about optimizing specific kernels on GPU processors [99, 78, 38, 47,

89, 60, 102, 58, 66, 28, 97, 14, 79]. However, since the architecture is changing with each

generation, we may need to repeat the optimization work again very soon. Unfortunately,

no practical performance upper bound evaluation is available to the developers. In practice,

developers apply several optimization techniques based on the analysis to the algorithm or

serial code, and their expert experience. Then developers may modify the optimizations with

feedback provided by tools like NVIDIA Visual Profiler [72]. However, they can not be sure

how far the obtained performance is from the best achievable performance. In this chapter, we

present an approach to project performance upper bound using algorithm analysis and assembly

code level benchmarking.

As described in Chapter 1, there exist many works about how to project/predict CUDA

applications’ performance using analytical or simulation methods to understand GPU perfor-

mance results [61, 40, 85, 101, 26]. However existing GPU performance models all rely on

certain level of an application’s implementation (C++ code, PTX code, assembly code. . . ) and

do not answer the question of how good the current optimized version is and whether further

optimization effort is worthwhile or not. Different from existing GPU performance models,

our approach does not project the possible performance from certain implementations, but the

performance upper bound that an application cannot exceed.

Researchers are also interested in the outcome of different optimization combinations on

GPUs. The roofline model [94] is well known for estimating the optimization effects. Many

automatic or manual optimization frameworks have the similar ideas as the roofline model.

However, the chosen optimizations normally rely on the initial code version and different opti-

77
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mizations are likely to have complex impacts on each other. Our approach tackles the problem

from the opposite angle as the roofline method. We first assume an optimistic situation on

GPUs (no shared memory bank conflict, global memory accesses are all coalesced, all the

auxiliary operations like address calculations are neglected, etc.). Then we try to predict a

performance upper bound when mapping an application on the GPU based on the constraints

introduced by the architecture, the instruction set and the application itself, or the constraints

that we are not able to eliminate using optimization techniques. With a tight performance upper

bound of an application, we have an evaluation on how much optimization space is left and can

decide the optimization effort. Also, with the analysis, we can understand which parameters

are critical to the performance and have more insights into the performance result. Hence, with

these knowledge, it would be easier for the community to move to the new architecture.

As an example, we analyze the potential peak performance of SGEMM (Single-precision

General Matrix Multiply) on Fermi (GF110) and Kepler (GK104) GPUs. GEMM 1 operation

is essential for Level 3 BLAS (Basic Linear Algebra Subprograms) [1] routines and generally

represents the practical best performance of a computer system. If we compare the perfor-

mance of SGEMM from CUBLAS with the theoretical peak performance, on Fermi, it achieves

around 70% and on Kepler, only around 42% of the theoretical peak performance. The initial

intention of this research is to understand this huge performance gap with the theoretical peak

performance.

There are already some articles about optimizing GEMM kernels on Fermi GPU [67] [88],

and an auto-tuning framework has also been presented [52]. In this research, the focus is to

answer the question of how much optimization space is left for SGEMM and why. We also

show that the analysis can help optimization efforts since it uncovers critical parameters. Only

single precision SGEMM is evaluated, since we could only access the GTX580 Fermi and the

GTX680 Kepler Geforce cards, which have much poorer double precision performance than

Tesla products. It is not really worth the effort to study the DGEMM performance on Geforce

GPU.

Depending on whether to apply transpose operation on input matrix A or B, there are 4

variations for GEMM kernel. Guided by this analysis and using the native assembly language,

our four SGEMM kernel variations achieved about 11% (NN), 4.5% (TN), 3% (NT) and 9%

(TT) better performance than CUBLAS in CUDA 4.1 SDK for large matrices on GTX580

Fermi Card (N stands for “normal”, T stands for “transpose”). The achieved performance

is around 90% of the estimated upper-bound performance of GTX580. On GTX680 Kepler

GPU, the best performance we achieved (NT) is around 1375GFLOPS, around 77.3% of the

estimated performance upper bound.

In November 2012, NVIDIA has announced the new Tesla K20X Kepler GPU (GK110)

and the documented SGEMM efficiency is around 73% of the theoretical peak performance

[76]. The K20X Kepler GPU (GK110) architecture is different from the GTX680 (GK104)

and uses a different instruction set (each thread can utilize maximum 255 registers on the new

architecture while the limit is 63 on GTX680 GPU). With a Tesla GPU card, it should not be

difficult to extend the analysis to SGEMM and DGEMM on the Tesla GPU using our approach.

1GEMM performs the matrix-matrix operation C := alpha ∗ op(A) ∗ op(B) + beta ∗ C. alpha and beta are

scalars, and A, B and C are matrices. op(X) is op(X) = X or op(X) = XT .
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This chapter is organized as follows: Section 4.2 introduces our assembly level bench-

marking approach. Section 4.3 presents our analysis for performance upper bound of SGEMM

on Fermi and Kepler GPUs. In Section 4.4 assembly code level optimization methods and

performance result of SGEMM are presented. Section 4.5 is the summary of this chapter.

4.2 CUDA Programming with Native Assembly Code

A typical CUDA [2] program normally creates thousands of threads to hide memory access

latency or math pipeline latency. The warp is the basic execution and scheduling unit of a SM,

and is composed of 32 threads. We define a warp instruction as the same instruction shared

by all threads in the same warp, and a thread instruction as the instruction executed by one

thread. So a warp instruction launches 32 operations or consists of 32 thread instructions.
On the SM, only a limited set of threads can run concurrently (active threads). On one hand, the

increased SPs require more active threads to hide latency. On the other hand, the register and

the shared memory resource limits the number of active threads. For the same application, the

active threads that one SP supports actually decreases because of the reduced memory resource

per SP from Fermi GPU to Kepler GPU. More instruction level parallelism within one thread

needs to be explored (Section 4.3.3).

For Fermi (and Kepler GK104) instruction set, there is a hard limit of maximum 63 registers

per thread (for GT200 generation the limit is 127 registers per thread) since in the instruction

encoding, only 6 bits are left for one register. To reduce the effects of register spilling, Fermi

GPU introduces L1 cache. Local writes are written back to L1. Global stores bypass L1 cache

since multiple L1 caches are not coherent for global data. L2 cache is also introduced in Fermi

and reduces the penalty of some irregular global memory accesses.

For performing this study, we had to develop some software components and reverse en-

gineer many characteristics of the hardware. We used GPU assembly code directly with an

assembly tool Asfermi[8]. Asfermi was first developed to work on Fermi GPU. We patched

Asfermi to support Kepler GPU (GK104) and managed to use native assembly language di-

rectly in the CUDA runtime source code. On Kepler GPU, new scheduling information is

embedded in the CUDA binary file. We studied the scheduling information and found some

patterns (Section 4.2.2). However, NVIDIA does not disclose the encoding of the control in-

formation and our decryption is still not enough. According to our benchmarks, we found that

the instruction throughput is related to register indices on Kepler GPU (Section 4.2.3). We

studied the register bank conflict problem in some math instructions and proposed a solution

for SGEMM.

4.2.1 Using Native Assembly Code in CUDA Runtime API Source Code

Programming in assembly code on NVIDIA GPUs is not publicly supported by the company.

However, our analysis is requiring such programming. With an assembly tool for Fermi GPU

called Asfermi [8] and a little hacking into the CUDA programming compiling stages, we

manage to use hand-tuned GPU assembly code in CUDA projects using CUDA runtime APIs .

There are several advantages of using assembly code or native machine code directly in-

stead of using high level languages like C++. First, we can carefully control the register alloca-
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tion since the register resource per thread is very limited and sometimes the compiler may spill

many registers for programs utilizing much register resource per thread like SGEMM. Second,

the instruction order can be carefully designed to better prefetch data from global memory and

mix different instruction types to get better throughput. Third, SIMD-like instructions (LDS.64

or LDS.128) could be used intentionally to reduce the instruction number. Also, we can con-

trol the exact behavior of the machine code. For example, the compiler might choose to use

wider load instructions (LDS.64 or LDS.128) based on the data alignment in shared memory.

However, using wide load instructions does not always benefit the performance (Section 4.3.1).

A CUDA program is composed of host code running on the host CPU, and device code

running on the GPU processor. The device code written in C/C++ is first compiled into PTX

code, and then compiled into native GPU binary code. The binary file (cubin file) is an ELF

format file which contains the native machine code. Asfermi can translate the assembly code

into binary and generate CUDA binary file (.cubin file). The assembly code which Asfermi

uses is similar to the output of NVIDIA’s disassembler cuobjdump. Also, according to public

materials, CUDA binary file cannot be directly used in a project built with CUDA runtime

API. The CUDA binary (.cubin) file can only be used with the CUDA driver API. However, in

our SGEMM implementation, we found that loading the .cubin file using the driver API may

degrade the performance. Besides, many projects are programmed with CUDA runtime API.

This restricts the usage of the code written in assembly language.

We manage to integrate our CUDA binary file into a CUDA runtime project. In a CUDA

runtime API project, we keep all the intermediate files generated by nvcc (NVIDIA Compiler

Collection). Then we replace the CUDA binary file with the one that is generated by Asfermi

and rebuild the project. The PTX file should be removed in the compiling process. Otherwise,

the GPU may utilize the PTX information embedded in the fat binary file other than the CUDA

binary file that Asfermi generates.

1. Add “-v -keep” to nvcc options, so that all the intermediate files are saved and we can

have all the compiling steps.

2. Write one .cu files, eg. kernel.cu, which has one dummy kernel function with the same

device function name as your CUDA binary code.

3. Add kernel.cu into the project.

4. Build the project and collect all the compiling command line.

5. Replace the compiled kernel.cubin with the one generated by Asfermi. Regenerate the

kernel.fatbin.c file.

6. Regenerate the kernel.cu.cpp and then kernel.cu.o according to the original command

line information.

7. Rebuild the whole project.



CUDA Programming with Native Assembly Code 81

4.2.2 Kepler GPU Binary File Format

Asfermi was first developed to work for Fermi GPU. We patched Asfermi to support CUDA

sm 30 (GK104 Kepler GPU). However, although the CUDA program can still run correctly

on Kepler GPU, the performance is very poor. The reason is that new control information is

embedded into the CUDA binary file to help processor scheduling. According to the GTX680

white paper [75], the scheduling functions on Kepler GPU have been redesigned to save energy

and space. Because the math pipeline latencies are deterministic, the compiler does more work

during compiling stages and put the scheduling information along with the actual instructions

in the CUDA binary file.

According to our study of the output of NVIDIA disassembler cuobjdump, this informa-

tion (we call it control notation) is placed before each group of 7 instructions. It is similar to the

explicit-dependence lookahead used in Tera computer system [5]. Because Kepler GPU uses

64bit wide instruction, the control notation appears at addresses of 0x0, 0x40, etc. The control

notation has the format of 0xXXXXXXX7 0x2XXXXXXX. 0x7 and 0x2 are identifiers and

the rest of the notation is separated into 7 fields and associated with each following instruction.

Unfortunately, NVIDIA does not disclose the encoding of the control notation. So far, we do

not know how to generate the control notation exactly as the nvcc compiler. In our implementa-

tion of SGEMM on Kepler GPU, as a compromise, we use the same control notation for same

kind of instructions and try to find the best combination of those notations for major instruction

types. However, our decryption of the notations is still not enough.

4.2.3 Math Instruction Throughput on Kepler GPU

Understanding and modeling the behavior of math instructions on Kepler GPU is a major dif-

ficulty. We use two approaches to test the throughput of math instructions. First, a kernel is

written in C++ code and compiled into binary with control notations embedded by nvcc. Sec-

ond, a kernel is written in assembly code directly and the controlling notations are embedded

with our parsing tool. Each thread executes the same 8192 math instructions. Each block has

1024 threads without synchronization and 40960 blocks are spawned to keep the GPU busy.

Instruction FFMA performs single precision fused multiply-add operation (FFMA RA,
RB, RC, RD performs the operation RA := RB ∗ RC + RD). With the first approach, the

instruction throughput of FFMA R9, R8, R9, R5 is measured as 129.2 operations per shader

cycle 2. With the second approach and the control notation of 0x25, the throughput is 132.0

operations per shader cycle (The actual shader clock cannot be obtained during execution. All

throughput data is calculated by boost clock of 1058MHz[75]).

Some math instructions’ throughput is illustrated in Table 4.1 measured with the second

approach. In these cases, the scheduling function units on one SM can only issue about max-

imum 132 thread instructions per shader cycle, which is much lower than the SP’s processing

throughput (192 thread instructions per shader cycle). If some of the three source registers are

the same (like FFMA RA, RB, RB, RA), with some carefully designed code structures, the

FFMA throughput can approach around 178 thread instructions per shader cycle. However,

2The actual implementation is not 8192 FFMA R9, R8, R9, R5 instructions per thread but 4 independent FFMA

instructions like FFMA R9, R8, R9, R5 unrolled by 2048 times.
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FADD R0, R1, R0 128.7 FADD R0, R1, R2 132.0

FADD R0, R1, R3 66.2

FMUL R0, R1, R0 129.0 FMUL R0, R1, R2 132.0

FMUL R0, R1, R3 66.2

FFMA R0, R1, R4, R0 129.0 FFMA R0, R1, R4, R5 132.0

FFMA R0, R1, R3, R5 66.2

FFMA R0, R1, R3, R9 44.2

IADD R0, R1, R0 128.7 IADD R0, R1, R2 132.4

IADD R0, R1, R3 66.2

IMUL R0, R1, R0 33.2 IMUL R0, R1, R2 33.2

IMUL R0, R1, R3 33.2

IMAD R0, R1, R4, R0 33.2 IMAD R0, R1, R4, R5 33.1

IMAD R0, R1, R3, R5 33.2

IMAD R0, R1, R3, R9 26.5

Table 4.1: Examples of Math Instruction Throughput on Kepler GPU with Various Operand

Register Indices

considering ’useful’ FFMA’s throughput, that is (FFMA RA, RB, RC, RA), the maximum sin-

gle precision performance for many applications like SGEMM on GTX680 GPU (GK104) can-

not exceed around 68.75% (132/192) of the claimed performance (3090GFlops) by NVIDIA.

Our benchmark result also shows that the instruction throughput is related to register in-

dices. According to some other experiments, we speculate that the registers reside on four

banks. Take the instruction FFMA RA, RB, RC, RD for instance, if there are two different

source registers on the same bank, the throughput drops by 50%, and if all three source regis-

ters RB, RC, RD are different registers on the same bank, the throughput is around 33.3% of

the best case. We name the four banks as even 0 (Rindex%8 < 4 && Rindex%2 == 0), even 1

(Rindex%8 ≥ 4 && Rindex%2 == 0), odd 0 (Rindex%8 < 4 && Rindex%2 == 1), and odd

1(Rindex%8 ≥ 4 && Rindex%2 == 1). Since we implement SGEMM with assembly code

directly, the register indices have to be carefully chosen to make sure there is no bank conflict.

The detailed optimization is illustrated in section 4.4.4.

4.3 Analysis of Potential Peak Performance of SGEMM

The general analysis approach can be similar for all applications while the detailed analysis

process may differ from application to application. Our method is applicable for applications

which use a few major instruction types and a simple execution path. Many high-performance

computing kernels have this characteristic, especially linear algebra routines. Our analysis re-

quires characteristics of the architecture such as register file size, maximum number of registers

per thread, shared memory size, instruction throughput for different instruction mix, etc. Those

characteristics need to be collected on the real hardware and are independent of the effective

application.
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Parameters Definition Value

1 Blk Active block number per SM Implementation

2 TB Active thread number per block Implementation

3 TSM Active thread number per SM Implementation

4 RT Registers allocated for each thread Implementation

5 RSM Register resource per SM Hardware

6 ShSM Shared memory per SM Hardware

7 BSh Blocking factor at shared memory level Implementation

8 BR Blocking factor at register level Implementation

9 #GlobalMem bandwidth Theoretical Global memory bandwidth Hardware

10 RMax Maximum register number per thread Hardware

11 Rindex Registers allocated for indices and addresses Implementation

12 L Stride of loading A, B sub matrices into shared memory Implementation

13 Ptheoretical Theoretical peak performance Hardware

14 FT Throughput effect of mixing FFMA and LDS.X instructions Hardware

15 FI Instruction factor by using LDS.X instructions Implementation

16 #SP TP SP Thread Instruction processing throughput Hardware

17 #LDS TP LD/ST Unit Shared Memory Thread Instruction throughput Hardware

18 #Issue TP LD/Dispatch Unit Thread Instruction issue throughput Hardware

Table 4.2: Architecture and Algorithm Parameters

First, we should analyze the instruction types and percentage of a routine. Second, we

should find the critical parameters which affect the different instructions’ mixing percentage.

Third, we analyze how the instruction throughput changes when we vary these critical param-

eters. Fourth, we can use the instruction throughput with critical parameters’ optimal combi-

nation to estimate the performance upper bound. With this approach, not only we can have

the performance upper bound estimation, know how much performance gap is left and de-

cide the optimization effort, but we can also understand what parameters are essential to the

performance and how to distribute our optimization effort.

For SGEMM performance upper bound analysis , the parameters we define are listed in

Table 4.2.

For SGEMM, all well-implemented SGEMM kernels actually utilize shared memory on

the GPU to reduce the global memory pressure as illustrated in Figure 4.1. First, data is loaded

from global memory to shared memory and then threads within one block can share the loaded

data in the shared memory. One possible implementation is illustrated in Listing 4.1.

For Fermi (GF110) and Kepler (GK104) GPUs, arithmetic instructions like FFMA cannot

take operands from the shared memory. Since LDS instructions are needed to load data first

from shared memory into registers, most of the instructions executed in SGEMM are FFMA

and LDS instructions. For instance, in our SGEMM implementation with 1024x1024 matrix

size, 80.5% of instructions executed are FFMA instructions and 13.4% are LDS.64 instruc-

tions. So essentially, in our analysis, we define a few key parameters and study the instruction

throughput mixing FFMA and LDS.X instructions while varying these parameters.

The rest of this section is our analysis of SGEMM’s performance upper bound. We show

that the analysis can give good insights about how to optimize a specific kernel (SGEMM) and

help us to understand the performance result.
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Figure 4.1: SGEMM Implementation

DO {
// Ca l cu l a t e the addres se s to load data from g l o b a l memory
A d d r e s s C a l c u l a t i o n ( ) ;

// Pre f e t ch A & B from g l o b a l memory
Prefe tch A Globa lMem ( ) ;

Pre fe tch B Globa lMem ( ) ;

//Loading p r e f e c t c h ed A & B from shared memory
LDS A SharedMem ( ) ;

LDS B SharedMem ( ) ;

//Mu l t i p l y A & B elements and accumulate on C
FFMA C A B ( ) ;

// Synchronize b e f o r e s t o r i n g the p r e f e c t h ed data
s y n c t h r e a d s ( ) ;

// Store the p r e f e t c h ed data in t o shared memory
S T S P r e f e t c h e d A ( ) ;

S T S P r e f e t c h e d B ( ) ;

// Synchronize
s y n c t h r e a d s ( ) ;

}
//Loop Ending Condit ion
While (ADDR B < LOOP END)

Listing 4.1: GEMM Main Loop Pseudocode
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4.3.1 Using Wider Load Instructions

To achieve better performance, it is essential to minimize auxiliary instructions’ percentage.

By auxiliary instructions, we mean non-math instructions, especially LDS instruction. The

assembly code for CUDA sm 20 (GF110 Fermi GPU) and sm 30 (GK104 Kepler GPU) pro-

vides SIMD-like LDS.64 and LDS.128 instructions to load 64bit and 128bit data from the

shared memory. Using wider load instructions can reduce the total number of LDS instruc-

tions. To use these two instructions, the start address in shared memory should be 64bit and

128bit aligned. Also, the indices of registers need to be 2 and 4 aligned respectively. With the

native assembly language, it is possible for us to carefully design the data layout and register

allocation to satisfy these requirements.

According to our benchmarks, on Fermi GPU, the peak throughput for LDS instruction

is 16 32bit-operations per shader clock per SM. Using LDS.64 instructions does not increase

the data throughput and the LDS.128 instruction normally leads to 2-way shared memory bank

conflict on Fermi GPU. LDS.128 has the throughput of only 2 thread instructions per shader cy-

cle on one SM. In other words, the LD/ST units need 16 shader cycles to process one LDS.128

warp instruction. On Kepler GPU, the throughput for LDS operation is measured as 33.1 64bit

operations per shader clock per SM. Using the 32bit LDS operation actually decreases the

data throughput in half comparing with using LDS.64 instructions and properly used LDS.128

instruction does not introduce penalty.
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Figure 4.2: Thread Instruction Throughput Mixing FFMA and LDS.X

Figure 4.2 illustrates the instruction throughput of mixing FFMA and LDS.X instructions.

While gradually increasing the ratio of FFMA instructions to LDS instructions, the overall in-

struction throughput approaches the FFMA’s peak processing throughput. The instruction ratio

of FFMA to LDS.X depends on the algorithm parameters such as register blocking size. Ap-
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parently, the overall performance does not always benefit from using wider load instructions.

However, the compiler might choose to use the wider load instructions based on the data align-

ment in the shared memory. With the native assembly language, it is possible for us to carefully

design the data layout and use the best instruction type.

4.3.2 Register Blocking

As in Table 1.1, the scheduler of GT200 GPU can issue one warp instruction per shader cycle

and since there are 8 SPs per SM, SPs need 4 shader cycles to process one warp instruction.

Apparently, as the issuing throughput is higher than the SP’s processing throughput, math

instructions executed in SPs cannot fully utilize the scheduler’s issuing throughput. So the

scheduler has some ’free cycles’ to issue other type of instructions. NVIDIA introduces the

concept of dual-issue which means that the scheduler can use the ’free cycles’ to issue other

instructions to corresponding functional units, like SFUs (Special Functional Unit). The the-

oretical peak performance for math instructions is calculated as the sum of SPs’ and SFUs’

performance.

On Fermi GPUs, SM are redesigned with 2 warp schedulers and 32 SPs. Each warp sched-

uler, equipped with one dispatch unit, issues instructions to 16 SPs. With an issue rate of one

warp instruction per shader cycle, the schedulers’ ability could be fully utilized by 32 SPs. The

theoretical peak performance for math instructions comes from the SPs’ performance. The

percentage of other instructions becomes an issue when there are many auxiliary instructions:

there are fewer cycles left for schedulers to issue useful instructions like FFMA.
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For Fermi and Kepler GPUs, according to the output of the disassembler cuobjdump, data

from shared memory cannot be used as operands of arithmetic instructions like FFMA. The

instruction LDS is needed to first load data from shared memory to register before the math

instructions operate on the data. In the worst case, without any register reuse, 2 LDS instruc-

tions are needed to fetch data for 1 FFMA instruction in the SGEMM main loop. In that case,

only 1/3 of the instructions are floating point operations. Blocking is a well-known technique

to better utilize memory hierarchy for scientific programs [55, 59]. To increase the percent-

age of math instructions, register blocking is needed. We illustrate the percentage of FFMA

instructions varying register blocking factors in Figure 4.3.

If 6-register blocking is used (which is the case of our SGEMM implementation on Fermi

GPU), the FFMA/LDS.X ratios are 3:1, 6:1, and 12:1 if shared memory accesses are imple-

mented with LDS, LDS.64 and LDS.128 respectively. The percentage of FFMA instructions

is 75%, 85.7% and 92.3%. On Fermi GPU, the overall instruction throughputs for one SM

in these cases are 31.3, 30.4 and 24.5 thread instructions per shader clock. Because using

LDS.128 instruction may lead to extra penalties, even if all the accesses to shared memory are

implemented with LDS.128, in the best case we can only achieve around 71% (24.532 ∗ 92.3%)

of SMs’ single precision floating point performance. Also, in many cases, a lot of padding in

shared memory has to be used to get proper data alignment. Apparently, it is not worth the

programming effort to mix FFMA with LDS.128 for SGEMM on the Fermi GPU.

The new Kepler GPU (GTX680) has 192 SPs on the redesigned SM or SMX. Each SMX

has 4 warp schedulers, each of which has 2 dispatch units. Shader cycle and core cycle are

the same. Similar as on Fermi GPU, data has to be loaded first into registers and then can be

fed into FFMA instructions. We also face the problem of increasing the percentage of FFMA

instructions in the program. Register blocking is necessary.

4.3.3 Active Threads on SM

Normally, the more active threads one SM executes, the higher performance the GPU can

achieve. Since register and shared memory resource is limited per SM, only a limited set of

warps can be executed concurrently (TSM ).

RT ≤ RMax (4.1)

TSM ∗RT ≤ RSM (4.2)

The registers that each thread can utilize (RT ) is less than or equal to 63 on Fermi and

Kepler GPUs (RMax). Furthermore, the register budget of the active warps cannot exceed the

SM’s register amount (RSM ) (Equation 4.2).
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Figure 4.4: Instruction Throughput Mixing FFMA and LDS.64 with Ratio of 6:1

Figure 4.4 illustrates the instruction throughput mixing FFMA and LDS.64 instructions

with ratio 6:1 under different number of active threads on one SM. We tested two cases. In the

first case ( ’independent’ in Figure 4.4), 6 FFMA and 1 LDS.64 instructions are all independent.

In the second case ( ’dependent’ in Figure 4.4), 6 FFMA instructions are dependent on one

LDS.64 instruction. The second case is closer to the actual implementation of SGEMM. On

Fermi GPU, with 512 active threads, the instruction throughput of the second case is already

close to the best situation. On Kepler GPU, however, with fewer than 1024 active threads, the

Kepler GPU is very sensitive to the dependences between instructions.

In our analysis, the L1 and L2 cache do not devote to the peak performance. L1 cache is

not coherent for different SMs and just reduces the latency of accessing some local data. For

L2 cache, since the executing sequence of different C sub matrices cannot be controlled by

software and if we consider that after some cycles, the blocks executing on different SMs are

computing C sub matrices from random positions, there will be little chance for different SMs

getting a hit in L2 cache.

4.3.4 Register and Shared Memory Blocking Factors

Larger register blocking size can introduce more register reuse within one thread and higher

percentage of FFMA instructions. However, the register blocking size is limited by the register

resource on the SM and the instruction set constraint. With a register blocking factor BR, if

we only consider the registers needed for blocking, we can describe the resource constraint as

Equation 4.3.
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B2
R +BR + 1 < RT ≤ RMax (4.3)

This loose condition for register blocking factor BR can be used to roughly estimate
BR. B2

R is the register set needed to hold C sub-matrix per thread, BR is one colum-
n/row of A or B sub-matrix. For instance, with maximum 63 registers per thread,
BR ≤ 7.

As depicted in Figure 4.1, TB ∗ B2
R is the size of the C sub-matrix per block (each

block has TB threads) and
√

TB ∗B2
R ∗L is the size of a sub-matrix for A or B (L is the

stride). To overlap the data transfer and the computation, extra registers are needed
to fetch data from global memory to shared memory since no direct data transfer is
provided between the two memory space. The stride L needs to be chosen such that
each thread loads the same amount of data (Equation 4.4).

(
√

TB ∗BR ∗ L)%TB = 0 (4.4)

Considering data prefetching from global memory and a few registers to store the
addresses of matrices in global memory and shared memory (Raddr), the overall strict
constraint for register blocking factor can be described as Equation 4.5.

B2
R +

2 ∗
√
TB ∗BR ∗ L
TB

+BR + 1 +Raddr ≤ RT ≤ RMax (4.5)

Since shared memory is allocated in block granularity, for Blk active blocks, Blk ∗
2 ∗

√
TB ∗ BR ∗ L is needed to store prefetched global memory data (Equation 4.6).

The shared memory blocking factor can be defined in Equation 4.7. With the shared
memory blocking factor BSh, the performance bounded by global memory bandwidth
can be roughly estimated using Equation 4.8.

Blk ∗ 2 ∗
√

TB ∗BR ∗ L ≤ ShSM (4.6)

BSh =
√

TB ∗B2
R (4.7)

PMemBound

#GlobalMem bandwidth
=

2 ∗BSh
2

2 ∗BSh ∗ 4
(4.8)

4.3.5 Potential Peak Performance of SGEMM

The instruction factor FI is the ratio of FFMA instructions in the SGEMM main loop
(We only consider FFMA and LDS.X instructions here). It depends on the choice of
LDS.X instruction and register blocking factor BR (Figure 4.3). For instance, if LDS.64
is used with register blocking factor 6, FI = 0.5.

The throughput factor FT is a function of register blocking factor (BR), number
of active threads (TSM ), throughput of SPs (#SP TP ), LD/ST units (#LDS TP ) and
dispatch units (#Issue TP )) (Equation 4.9). The function f for Fermi and Kepler
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GPUs is illustrated in Figure 4.2 and in Figure 4.4 (only shows LDS.64) and obtained
through benchmarks varying these parameters.

FT = f(BR,#Issue TP,#SP TP,#LDS TP, TSM ) (4.9)

With the register blocking factor BR, the instruction factor FI and the throughput
factor FT , the performance bounded by SMs’ processing throughput is estimated as
Equation 4.10 and the overall performance is as Equation 4.11.

PSMBound =
B2

R

B2
R +BR ∗ 2 ∗ FI

∗ FT ∗ Ptheoretical (4.10)

Ppotential = min(PMemBound, PSMBound) (4.11)

With the previous analysis, we can estimate the performance upper bound of
SGEMM on Fermi and Kepler GPUs. On the Fermi GPU for instance, because of
the hard limit of 63 registers (RMax) per thread, considering prefetching and using the
strict condition of Equation 4.5, the maximum blocking factor is only 6. The detailed
register allocation is illustrated in Section 4.4.2. With the register blocking factor of 6,
the register resource per SM can support up to 512 threads. Using Equation 4.4, we
choose 256 threads per block.

To easily program the data prefetching, according to Equation 4.4, L could be 8, 16,
24, . . . . Considering the condition in Equation 4.5, we choose L as 16. With a 6-register
blocking factor, mixing LDS or LDS.64 with FFMA instructions, the throughput can
achieve close to 32 thread instructions per shader clock per SM. Using a LDS.64 instruc-
tion can increase the FFMA instruction percentage to 85.7% from 75% (using LDS).
Though LDS.128 instruction can provide higher percentage of FFMA instructions, the
instruction processing throughput is too low.

According to Equations 4.8, 4.10 and 4.11, the performance is bounded by SMs’
processing throughput, and the potential peak is about 82.5% ( 62

62+6∗2∗0.5 ∗
30.8
32 ) of the

theoretical peak performance for SGEMM. The main limitation comes from the nature
of the Fermi instruction set and the limited issue throughput of schedulers.

It is similar to estimate the performance upper bound of SGEMM on Kepler GPU
as Fermi GPU. The Kepler GPU (GK104) instruction set is very close to that of Fermi
GPU. It means that the limit of 63 registers per thread still exists. Thus, 6-register
blocking is also applicable. And the register resource can support 1024 active threads
per SM (64K 32bit registers per SM). We can choose either 256 or 1024 threads per
block. Similarly, if we use LDS.64 instructions, the FFMA instruction percentage is
85.7%. If we use LDS.128 instructions (need padding or data layout transform), the
FFMA instruction percentage is 92.3%.

Similarly, according to Equations 4.8, 4.10 and 4.11, the performance is bounded by
SM’s processing throughput, and the potential peak is about 54.6% ( 62

62+6∗2∗0.5 ∗
122.4
192 )

of the theoretical peak performance for SGEMM using LDS.64 instructions. Using
LDS.128 instructions, the potential peak is about 57.6% ( 62

62+6∗2∗0.25 ∗ 119.9
192 ) of the

theoretical peak. The main limitation factors are still the nature of instruction set and
the limited issue throughput of schedulers.
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4.4 Assembly Code Level Optimization

The estimated performance upper bound is a limit that an actual implementation can-
not exceed. It can be a little optimistic since we only consider the major performance
degradation factors. Besides the considered parameters, there might be other aspects
which can limit the performance. The ’real’ upper bound or the best possible perfor-
mance is between the estimated upper bound and the achieved performance.

Depending on whether to apply transpose operation on input matrix A or B, there
are 4 variations for GEMM kernel. Figure 4.5 illustrates the performance of four
SGEMM variations from CUBLAS and our implementation (ASM) with 2400x2400
and 4800x4800 matrices. On GTX580 GPU, we achieve around 74.2% of the theo-
retical peak performance, i.e., about 90% of the estimated performance upper bound,
which we think is good enough. In our analysis, we only study the two main instruction
types. There are other auxiliary instructions which do not devote to the GFLOPS. And
also, we do not consider the effect of barriers which will harm the performance too.
We show that the ’real’ upper bound is within this 10% and future optimization is
unlikely to achieve a lot of speedup. On Kepler GPU, although we cannot provide the
optimal controlling information as discussed in section 4.2.2, we achieve around 77.3%
of the estimated upper bound. Similar to Fermi GPU, there are some factors we do not
consider in our analysis. The larger gap between our achieved performance might be
due to our very limited knowledge of the undisclosed scheduling information of Kepler
GPU, which is critical to performance or to some hidden characteristics that we are not
able to discover due to limited documentation. Figure 4.6 illustrates the performance
comparison on Fermi GPU between our implementation (assembly), CUBLAS from
CUDA 4.1 and MAGMA library [67]. Figure 4.7 is the performance comparison on
Kepler GPU between our implementation (assembly), CUBLAS from CUDA 4.2 and
MAGMA library.

The rest of the section briefly describes our optimizations on assembly code level of
SGEMM.

4.4.1 Optimization of Memory Accesses

Assembly code level optimization of memory accesses is similar to high level language
optimization. Global memory requests from the threads within a warp could be grouped
(coalesced) into one or more memory transactions depending on the compute capability
of the device and the memory accessing pattern. To access global memory efficiently,
generally it is better to let threads in a warp access continuous data elements in global
memory to get coalescing. Considering the majority of instructions in the SGEMM
main loop are FFMA and LDS, and it is critical to reduce the number of LDS instruc-
tions (using LDS.64 or LDS.128), sub-matrices in shared memory should be grouped
such that each thread accesses continuous BR data elements. Also, proper padding
needs to be applied to reduce shared memory access conflicts and satisfy the alignment
restriction of the LDS instruction.
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Figure 4.6: SGEMM NN Performance on GTX580

4.4.2 Register Spilling Elimination

The register resource is 32K 32-bit registers per SM for the Fermi GPU and each thread
can use a maximum of 63 registers. The register R1 is normally occupied as stack
pointer. According to our analysis, the number of per-thread registers with prefetching

is at least B2
R + 2∗

√
TB∗BR∗L
TB

+BR + 1 +Rindex. With the register blocking factor of 6
for Fermi GPU, the register allocation of our implementation is as the following. Note
that we use 32bit addressing to save address registers.

1. B2
R, 36 registers to save intermediate result for C matrix.

2. 2∗
√
TB∗BR∗L
TB

, 12 registers to prefecth A and B from global memory.
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Figure 4.7: SGEMM NN Performance on GTX680

3. BR +2, 6 registers to load A from shared memory and 2 registers to load B from
shared memory during the main loop. Using 2 registers for B is because LDS.64
instruction is used.

4. 2 registers. Track of A, B in global memory during the prefetching.
5. 1 register to store the loop end condition.
6. 2 registers. Track of A, B in shared memory during the prefetching.
7. 2 registers. Track of A, B in shared memory in the main loop.

In all, 63 registers are used. Since we do not need thread stack, R1 is used to store
the loop end condition in our code. Therefore, we are able to fully eliminate the register
spilling.

4.4.3 Instruction Reordering

Generally, we try to interleave different instruction types to get better balance be-
tween functional units within one SM and better instruction throughput. We apply the
following simple reordering optimizations:

1. In the main loop, between the 2 barriers are all shared memory accesses. By
moving address calculation from start of the loop to mix with the shared memory
accesses, we can achieve better performance.

2. Interleaving prefetching from global memory with FFMA and LDS instructions
can benefit performance.

4.4.4 Register Allocation for Kepler GPU

As we describe in Section 4.2.3, to get the best throughput, the 3 source registers of
FFMA instructions should reside on 3 different banks if they are different. In our
current implementation, 6-register blocking is used. 6 registers are used to load A from
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the shared memory and 2 registers to load B from the shared memory in the main
loop. 36 different registers (R26∼R61) hold the C sub-matrix. In this implementation,
register spilling is eliminated.

As in Figure 4.8, around 30% of the FFMA instructions in the MAGMA [67]
SGEMM binary for the Kepler GPU (nvcc generated) have the 2-way register bank
conflict and 1% of the FFMA instructions have the 3-way register bank conflict. In our
first version of SGEMM NN on GTX680, which achieves around 1100GFLOPS, 68.8%
of the FFMA instructions have the 2-way register bank conflict, and 10.6% of the 3-way
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conflict. After applying the optimization, the modified version, which achieve around
1300GFLOPS, has only 1.2% of the 2-way FFMA register bank conflict and the 3-way
conflict is fully removed.

Our optimization is depicted in Figure 4.9. In the SGEMM main loop, at each
stage, one column from matrix A and one row from matrix B are processed. To use the
register blocking and the LDS.64 instructions, at least 6 and 2 different registers are
needed for column A and row B. Of course, there are many possible implementations,
here we describe one possibility. We select registers from E0 and O0 for column A.
Row B uses registers from E1 and O1. Then we use the first table in Figure 4.9 as
the constraints of register allocation. In the final mapping stage, we make sure that 36
registers of C sub-matrix have 9 registers on each bank and had our register allocation
as the second table, which does not have any register bank conflict to compute the 36
elements from the C sub-matrix.

4.4.5 Opportunity for Automatic Tools

Our study emphasizes that for Fermi and Kepler GPUs, it is essential to study the
impact of algorithm parameters on instruction throughput to get insight into the per-
formance result. The main optimization opportunity comes from the allocation of
registers. For example, the four SGEMM variations of MAGMA library compiled with
nvcc spill at least 10 registers (40 Bytes) on the Kepler GPU. When the active thread
number is 512, at least 20KB L1 cache is needed to make sure that the spilled data stays
in the L1 cache. However, since normally the unified 64KB shared memory/L1 cache is
configured as 48KB shared memory and 16KB L1 cache, some data will be spilled out
of L1 cache. As the active threads increase, more data is spilled out of L1 cache and
the performance will be harmed. We already show that with careful design, register
spilling could be eliminated. We also show that around 30% of FFMA instructions in
the nvcc-generated SGEMM binary from MAGMA library have register bank conflict.
We propos a simple solution in Section 4.4.4. It is possible for optimizers to detect the
loop structure and remove the conflicts with proper register allocation.

An automatic tuning tool normally needs to explore a large design , and evaluate
the performance of many configurations [52, 61, 80, 81]. It may take a significant
amount of time. Normally, the automatic tuning tool is application-dependent and each
includes several efficient optimizations for the specific application. To build the tool
relies on the developers’ understanding of the application and optimization experience.
With the proposed analysis approach, we can better understand which parameters are
critical to the performance. The estimated upper bound actually corresponds to a set
of parameters and optimization options. This knowledge can help an automatic tool to
explore the design space in a relatively small region. And of course by comparing the
performance of an automatic tool’s output code and the estimated performance upper
bound, we can judge whether the optimized version is good enough.

In our analysis, to study the instruction throughput mixing FFMA and LDS.X in-
structions, we manually write some benchmarks varying several key parameters such
as instruction type choice (LDS.X), the mixing ratio, the blocking factor, the instruc-
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tions’ dependence, active threads and study these parameters’ impact on the instruc-
tion throughput. For many applications with few major instruction types, a similar
approach can be used to estimate the performance upper bound. The difference would
be the chosen instruction types and their mixing pattern (mixing ratio, dependence,
etc.). Systematic and automatic development of a set of microbenchmarks to help to
estimate the performance upper bound of other applications is possible. A family of
assembly level microbenchmarks could be defined and evaluated in order to provide a
small database of performance references that could be used by the auto-tuning tool,
and also the developer to transform the code for performance. Generally, the assem-
bly level microbenchmarks can also help to understand the difference between different
GPU architectures. For example, the benchmarks illustrated in Figure 4.4 show the
increasing need for active threads on Kepler GPU. Assembly level benchmarking re-
quires an assembly tool chain which is missing from the official support. We manage
to make it work on Fermi GPU. But on Kepler, there are some issues like the hidden
scheduling information, which we cannot fully decrypt.

4.5 Summary

In this work, we have proposed an approach to analyze GPU applications’ performance
upper bound. Different from existing works on GPU performance models, our ap-
proach relies on application analysis and assembly level benchmarking. Essentially, in
our analysis, we have studied the instruction throughput mixing FFMA and LDS.X
instructions. We manually wrote some benchmarks varying several key parameters
such as instruction type choice (LDS.X), the mixing ratio, the blocking factor, the
instructions’ dependence, active threads and studied these parameters’ impact on the
instruction throughput. For many applications with few major instruction types, we
can use the similar approach. The difference would be the chosen instruction types and
their mixing pattern (mixing ratio, dependence, etc.). Systematic and automatic devel-
opment of a set of microbenchmarks to help to estimate the performance upper bound
of other applications is possible. For an automatic tool, it is much easier to set up and
evaluate a set of microbenchmarks using assembly code with a few instruction types
than to automatically and safely transform the application’s high level code. Gener-
ally, the assembly level microbenchmarks can also help to understand the difference of
different GPU architectures. For example, the benchmarks illustrated in Figure show
the increasing need of active threads on Kepler GPU.

As an example, we analyze the potential peak performance of SGEMM on Fermi
and Kepler GPUs. We show that the nature of the Fermi (Kepler) instruction set and
the limited issue throughput of schedulers are the main limitation factors for SGEMM
to approach the theoretical peak performance. The general guideline is to reduce the
auxiliary instructions and increase the FFMA instruction’s percentage. Proper register
allocation, shared memory data layout and memory access pattern need to be carefully
designed to minimize the impact of memory accesses on performance. We also show
that our analysis can help to decide some critical algorithm parameters and show how
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much optimization space exists. Guided by the analysis, we further optimize the four
SGEMM kernel variations and achieve better performance on Fermi GPU (around 5%
on average for large matrices) than highly optimized routine provided by NVIDIA.
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Conclusion

In recent years, general computing on GPU processors has become an interesting re-
search topic. Like many other dedicated parallel architectures, current compilers fail to
generate efficient parallelized machine code directly from legacy serial code. These ar-
chitectures normally have different programming models and dedicated device APIs to
launch tasks. Developers have to familiarize themselves with these programming models
and device APIs through a fairly long learning curve. Although many automatic tuning
tools have been developed to generate optimized codes for specific architectures and
tasks, the existing approaches are still not efficient and general enough. Even expert
developers need to spend much time on optimization to achieve good performance.

In the serial programming era, for architecture researchers, the general focus is
how to build a more powerful processor. For developers, the underlying architecture
is transparent. Developers only need to focus on the algorithm-level optimization.
The bridge between the high level serial code and the hardware is well maintained by
compilers. In the many-core or parallel-programming era, architects need to consider
how to assign on-die resource for different cores and power becomes an important
design factor. Developers need to learn more architectural characteristics to make full
use of the hardware potential. For developers and performance-tuning researchers, the
boundary between software design and hardware is becoming vague.

The ultimate solutions for the problems we face today might include, first, intel-
ligent parallel compilers, which can generate very efficient parallelized code based on
the architecture details, make the underlying hardware transparent to developers and
things go back to the way in the serial programming era; second, intelligent processors,
which can efficiently execute serial code in a parallel pattern, make the compilers’ and
developers’ work much easier; third, without very intelligent compilers and processors,
programmers and performance-tuning researchers develop a systematic and analytical
way of performance optimization on new architectures. The second possibility is just a
wild guess and the first solution seems to be more likely to happen in the not so long
future. In our opinion, the third approach is the most possible solution.

For each of the new parallel architectures, normally three questions are raised.
Q1: Why does an implementation achieve a certain performance?
Q2: How we can improve the performance?
Q3: What is supposed to be the upper-bound performance which an application cannot
exceed on a certain architecture?

Basically, in our work, we follows this train of thought.
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To answer the first question, researchers generally rely on analytical or simulation
methods. Simulators are powerful tools to evaluate new hardware design options and
more useful for architecture researchers. The analysis approach is much easier to de-
velop and requires less knowledge of the real hardware details which is difficult to get
for commercial processors today. Apparently, the more hardware details we introduce
in the analytical models, the more accurate the models should be. For example, in
Chapter 2, we introduce simple data-flow models of lattice QCD application on Cell
B.E. and GPU processors. Essentially, we utilize the computation and computation
ratio and only have a evaluation of the rough performance estimation. To get more de-
tails of an implementation, we have developed an analytical method to predict CUDA
application’s performance using assembly code for GT200 generation GPU. We use a
timing estimation tool (TEG) to estimate GPU kernel execution time. TEG can give
the timing estimation in cycle-approximate level. Thus it allows programmers to better
understand the performance results.

To answer the second question, developers normally rely on their expert experience
and event statistics collected from hardware counters. Also, there are many literatures
about optimization experiences on certain architectures. For a specific applications, be-
sides these approaches, we have utilized TEG to estimate how much penalty different
performance penalties can introduce. Using TEG, the performance penalties are asso-
ciated with instructions’ execution latency and throughput. So we can simply estimate
the penalties’ effects from TEG by changing the instruction latency and throughput
information.

There are fewer studies on the third question. The conventional way of thinking of
performance optimization problem is from bottom to top, which means that researchers
study how much performance gain we can get by applying certain optimization com-
binations. As we have argued before, different optimization options normally have
strong interactions. It is difficult to separate the effects of different options. With this
approach, we can only get a performance evaluation of a set of predefined optimiza-
tions. Apparently, we do not have the confidence to find all the best optimizations for
each application. So, instead of looking at this problem from bottom to top, we try to
start from an optimistic situation which the achievable performance cannot exceed. We
have developed an approach to estimate GPU applications’ performance upper bound
based on application analysis and assembly code level benchmarking. With the perfor-
mance upperbound of an application, we know how much optimization space is left and
can decide the optimization effort. Also with the analysis we can understand which
parameters are critical to the performance.

There is no doubt that in the near future, the hardware accelerators would likely
to have many more cores on one processor die. The processor’s structure might be one
super-scalar monster core, which is very complicated and designed for serial computing,
plus many small and simple cores. The processor could also be composed of a sea of
simple cores, like the GPU processor today. Either way, we can speculate that the
parallel part of an application is processed by the sea of smaller cores. So it would
be difficult to use simulation tools to study the performance result. The analytical
approach should be the choice for programmers and performance-tuning researchers to
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answer the three basic questions for future architectures before very smart compilers
appear. We believe that for each new architectures, a set of systematic tools or models
should be developed to understand the achieved performance, the main performance
penalties of an implementation and the performance upper bound of an application on
the architecture.

This work is supported by French National Research Agency (ANR) through COS-
INUS program (project PETAQCD No ANR-08-COSI-010).
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Abstract

This thesis work is funded by the ANR PetaQCD project. We have mainly worked
on two topics of GPU performance analysis. We have designed an approach which is
simple enough for developers to use and can provide more insight into the performance
results. And we have designed an approach to estimate the performance upper bound
of an application on GPUs and guide the performance optimization.

First part of the thesis work was presented at Rapido ’12 workshop. We have de-
veloped an analytical method and a timing estimation tool (TEG) to predict CUDA
application’s performance for GT200 generation GPU. TEG passes GPU kernels’ as-
sembly code and collects information including instruction type, operands, etc. Then
TEG can predict GPU applications’ performance in cycle-approximate level with the
instruction trace and other information collected from Barra simulator. TEG also
allows to quantify some performance bottlenecks’ penalties.

The second main part of this thesis is going to be presented at CGO ’13 confer-
ence. We developed an approach to estimate GPU applications’ performance upper
bound based on application analysis and assembly code level benchmarking. With the
performance upperbound of an application, we know how much optimization space is
left and can decide the optimization effort. Also with the analysis we can understand
which parameters are critical to the performance. As an example, we analyzed the
potential peak performance of SGEMM (Single-precision General Matrix Multiply) on
Fermi (GF110) and Kepler (GK104) GPUs. Guided by this analysis and using the
native assembly language, on average, our SGEMM implementations achieve about 5%
better performance than CUBLAS in CUDA 4.1 SDK for large matrices on GTX580.
The achieved performance is around 90% of the estimated upper bound performance
of SGEMM on GTX580.
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