A. , D. H. And-koren, and I. , An analytical model of high performance superscalar-based multiprocessors, Proceedings of Conference on Parallel Architectures and Compilation Technology (PACT, pp.194-203, 1995.

A. , A. Pelissier, C. Gamari, B. And-lee, and F. , Multi-mass solvers for lattice qcd on gpus, J. Comput. Phys, vol.231, issue.4, pp.1866-1878, 2012.

A. , R. Callahan, D. Cummings, D. Koblenz, B. Porterfield et al., The tera computer system, Proceedings of the 4th international conference on Supercomputing ICS '90, 1990.

A. , K. Bodik, R. Demmel, J. Keaveny, T. Keutzer et al., A view of the parallel computing landscape, Commun. ACM, vol.52, pp.10-56, 2009.

B. , S. S. Delahaye, M. Patel, S. J. Gropp, W. D. And-hwu et al., An adaptive performance modeling tool for gpu architectures, Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming PPoPP '10, ACM, pp.105-114, 2010.

S. Sch¨afer, A. Schick, H. Schifano, F. Simma, H. Solbrig et al., QPACE ? a QCD parallel computer based on Cell processors, 2009.

B. , A. Yuan, G. Fung, W. Wong, H. And-aamodt et al., Analyzing cuda workloads using a detailed gpu simulator. In Performance Analysis of Systems and Software, IEEE International Symposium on, pp.163-174, 2009.

M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev et al., A compiler framework for optimization of affine loop nests for gpgpus, Proceedings of the 22nd annual international conference on Supercomputing , ICS '08, pp.225-234, 2008.
DOI : 10.1145/1375527.1375562

M. M. Baskaran, J. Ramanujam, and P. And-sadayappan, Automatic C-to-CUDA Code Generation for Affine Programs, Proceedings of the 19th joint European conference on Theory and Practice of Software, international conference on Compiler Construction CC'10, pp.244-263, 2010.
DOI : 10.1007/978-3-642-11970-5_14

B. , N. And-garland, and M. , Implementing sparse matrix-vector multiplication on throughput-oriented processors, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis SC '09, pp.1-1811, 2009.

B. , F. Schifano, S. F. Tripiccione, R. Bodin, F. Boucaud et al., Computing for lqcd: apenext, Computing in Science and Engineering, vol.8, pp.18-29, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00025982

B. , G. Pietracaprina, A. Pucci, G. Schifano, F. And-tripiccione et al., The potential of on-chip multiprocessing for qcd machines, High Performance Computing HiPC 2005, pp.386-397, 2005.

P. A. Boyle, Hardware and software status of QCDOC, Nuclear Physics B - Proceedings Supplements, vol.129, issue.130, pp.838-843, 2004.
DOI : 10.1016/S0920-5632(03)02729-4

C. , X. E. And-aamodt, and T. M. , A first-order fine-grained multithreaded throughput model, HPCA, pp.329-340, 2009.

C. , J. W. Singh, A. And-vuduc, and R. W. , Model-driven autotuning of sparse matrix-vector multiply on gpus, Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming PPoPP '10, ACM, pp.115-126, 2010.

C. , M. A. Babich, R. Barros, K. Brower, R. C. And-rebbi et al., Solving lattice QCD systems of equations using mixed precision solvers on GPUs, Computer Physics Communications, vol.181, pp.1517-1528, 2010.

C. , S. Daumas, M. Defour, D. And-parello, and D. , Barra: A parallel functional simulator for gpgpu, Modeling 2010 IEEE International Symposium on (aug. 2010), pp.351-360

C. , X. Chen, Y. Zhang, C. And-mei, and H. , Auto-tuning dense matrix multiplication for gpgpu with cache, Parallel and Distributed Systems (ICPADS), 2010 IEEE 16th International Conference on (dec. 2010), pp.237-242

C. , Z. Liang, Y. Rupnow, K. And, C. et al., An accurate gpu performance model for effective control flow divergence optimization, Parallel Distributed Processing Symposium (IPDPS), pp.2012-2038, 2012.

D. , A. And-owens, and J. , Toward techniques for auto-tuning gpu algorithms, Applied Parallel and Scientific Computing, pp.110-119, 2012.

D. Veronese, L. And-krohling, and R. , Differential evolution algorithm on the GPU with C-CUDA, IEEE Congress on Evolutionary Computation, pp.1-7, 2010.
DOI : 10.1109/CEC.2010.5586219

D. Barrio, V. Gonzalez, C. Roca, J. Fernandez, A. And-e et al., Attila: a cycle-level execution-driven simulator for modern gpu architectures. In Performance Analysis of Systems and Software, IEEE International Symposium on, pp.231-241, 2006.

D. , P. And-xue, and J. , Model-driven tile size selection for doacross loops on gpus, Proceedings of the 17th international conference on Parallel processing -Volume Part II Euro-Par'11, pp.401-412, 2011.

D. , Y. Baghsorkhi, S. S. Lloyd, B. And-govindaraju, and N. K. , Autotuning of fast fourier transform on graphics processors, PPOPP, pp.257-266, 2011.

E. , G. Fodor, Z. Hoelbling, C. Katz, S. Nogradi et al., Lattice QCD as a video game, Computer Physics Communications, vol.177, pp.631-639, 2007.

E. , S. Eeckhout, L. Karkhanis, T. And, S. et al., A mechanistic performance model for superscalar out-of-order processors, ACM Trans. Comput. Syst, vol.27, issue.3, pp.1-3, 2009.

F. , W. W. Sham, I. Yuan, G. And-aamodt, and T. M. , Dynamic warp formation and scheduling for efficient gpu control flow, Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture MICRO 40, pp.407-420, 2007.

G. , P. And-wang, and L. , Auto-tuning cuda parameters for sparse matrix-vector multiplication on gpus, Computational and Information Sciences (ICCIS), 2010 International Conference on (dec. 2010), pp.1154-1157

H. , I. And-nedevschi, and S. , Gpu optimization of the sgm stereo algorithm, Intelligent Computer Communication and Processing 2010 IEEE International Conference on (aug. 2010), pp.197-202

H. , M. And-marty, and M. , Amdahl's law in the multicore era, Computer, vol.41, issue.7, pp.33-38, 2008.

H. , S. And-kim, and H. , An analytical model for a gpu architecture with memorylevel and thread-level parallelism awareness, Proceedings of the 36th annual international symposium on Computer architecture ISCA '09, ACM, pp.152-163, 2009.

I. , K. Z. And, and F. Bodin, Implementing wilson-dirac operator on the cell broadband engine, ICS '08: Proceedings of the 22nd annual international conference on Supercomputing, pp.4-14, 2008.

I. , K. Z. And, and F. Bodin, Efficient simdization and data management of the lattice qcd computation on the cell broadband engine, Sci. Program, vol.17, pp.1-2, 2009.

I. , K. Z. Bodin, F. And-p-`-ene, and O. , Fine-grained parallelization of lattice qcd kernel routine on gpus, J. Parallel Distrib. Comput, vol.68, pp.10-1350, 2008.

J. , P. J. Vaswani, K. And-thazhuthaveetil, and M. J. , A predictive performance model for superscalar processors, MICRO, pp.161-170, 2006.

K. , S. Chan, C. Oliker, L. Shalf, J. And-williams et al., An auto-tuning framework for parallel multicore stencil computations, Parallel Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pp.1-12, 2010.

K. , P. Svoboda, D. And-zemcik, and P. , Gpu optimization of convolution for large 3-d real images In Advanced Concepts for Intelligent Vision Systems, Lecture Notes in Computer Science, vol.7517, pp.59-71, 2012.

K. , T. S. And, S. , and J. E. , A first-order superscalar processor model, Proceedings of the 31st annual international symposium on Computer architecture ISCA '04, p.338, 2004.

K. , Y. And-shrivastava, and A. , Cumapz: a tool to analyze memory access patterns in cuda, Design Automation Conference (DAC), 2011 48th ACM, pp.128-133, 2011.

K. Kl¨ockner, A. Pinto, N. Lee, Y. Catanzaro, B. C. Ivanov et al., Pycuda: Gpu run-time code generation for high-performance computing, p.3456, 2009.

K. , J. Tomov, S. And-dongarra, and J. , Autotuning gemm kernels for the fermi gpu. Parallel and Distributed Systems, IEEE Transactions on PP, vol.1, p.99, 2012.

L. , J. And-seznec, and A. , Break down gpu execution time with an analytical method, Proceedings of the 2012 Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools RAPIDO '12, ACM, pp.33-39

L. , J. And-seznec, and A. , Performance upper bound analysis and optimization of sgemm on fermi and kepler gpus, Proceedings of the 2013 International Symposium on Code Generation and Optimization CGO '13, 2013.

L. , M. D. Rothberg, E. E. And-wolf, and M. E. , The cache performance and optimizations of blocked algorithms, SIGPLAN Not, vol.26, issue.4, pp.63-74, 1991.

L. , S. And-eigenmann, and R. , Openmpc: Extended openmp programming and tuning for gpus, Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis SC '10, pp.1-11, 2010.

L. , E. Nickolls, J. Oberman, S. And-montrym, and J. , Nvidia tesla: A unified graphics and computing architecture, IEEE Micro, vol.28, issue.2, pp.39-55, 2008.

L. , Y. And-hu, and J. , Gpu-based parallelization for fast circuit optimization, ACM Trans. Des. Autom. Electron. Syst, vol.16, issue.24, pp.1-2414, 2011.

M. , A. C. And-coffman, J. , and E. G. , Organizing matrices and matrix operations for paged memory systems, Commun. ACM, vol.12, issue.3, pp.153-165, 1969.

M. , C. Gu, X. Choi, D. Majumdar, A. Zheng et al., Gpu-based ultrafast imrt plan optimization, Physics in Medicine and Biology, vol.54, issue.21, p.6565, 2009.

M. , J. Morozov, V. A. Kumaran, K. Vishwanath, V. And-uram et al., Gpu performance projection from cpu code skeletons, Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pp.141-1411, 2011.

M. , J. And-skadron, and K. , Performance modeling and automatic ghost zone optimization for iterative stencil loops on gpus, Proceedings of the 23rd international conference on Supercomputing ICS '09, ACM, pp.256-265, 2009.

M. , P. And-seznec, and A. , Data-flow prescheduling for large instruction windows in out-of-order processors, Proceedings of the 7th International Symposium on High-Performance Computer Architecture HPCA '01, p.27, 2001.

M. , P. Seznec, A. And, J. , and S. , Exploring instruction-fetch bandwidth requirement in wide-issue superscalar processors, IN PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL ARCHITEC- TURES AND COMPILATION TECHNIQUES, pp.2-10, 1999.
URL : https://hal.archives-ouvertes.fr/inria-00077111

M. , S. And-atsushi, and N. , Development of qcd-code on a cell machine, PoS LATTICE, p.40, 2007.

M. , L. Nashed, Y. S. And-cagnoni, and S. , Gpu-based asynchronous particle swarm optimization, Proceedings of the 13th annual conference on Genetic and evolutionary computation, pp.1555-1562, 2011.

N. , R. Tomov, S. And-dongarra, and J. , An improved magma gemm for fermi graphics processing units, Int. J. High Perform. Comput. Appl, vol.24, issue.4, pp.511-515, 2010.

N. , J. Buck, I. Garland, M. And-skadron, and K. , Scalable parallel programming with cuda, pp.40-53, 2008.

N. , D. B. And, and J. P. Shen, Theoretical modeling of superscalar processor performance, Proceedings of the 27th annual international symposium on Microarchitecture MICRO 27, pp.52-62, 1994.

N. , A. And-matsuoka, and S. , Auto-tuning 3-d fft library for cuda gpus, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis SC '09, pp.1-30, 2009.

N. Tesla and K. Gpu, Accelerators Application Performance Technical Brief. http://www.nvidia.com/docs/IO/122874/ K20-and-K20X-application-performance-technical-brief.pdf, 2012.

R. , F. Kamienkowski, J. E. Sigman, M. And-slezak, and D. F. Cudaica, Gpu optimization of infomax-ica eeg analysis, Intell. Neuroscience, vol.2, pp.1-2, 2012.

R. , G. And-micikevicius, and P. , Optimizing matrix transpose in cuda

R. , S. Rodrigues, C. I. Stone, S. S. Baghsorkhi, S. S. Ueng et al., Program optimization space pruning for a multithreaded gpu, Proceedings of the 6th annual IEEE/ACM international symposium on Code generation and optimization CGO '08, pp.195-204, 2008.

S. , D. And-kaeli, and D. , Exploring the multiple-gpu design space, Parallel Distributed Processing, pp.1-12, 2009.

S. , J. W. Luebke, D. And-skadron, and K. , A flexible simulation framework for graphics architectures, Proceedings of the ACM SIGGRAPH/EU- ROGRAPHICS conference on Graphics hardware HWWS '04, ACM, pp.85-94, 2004.

S. , G. Kindratenko, V. And-gottlieb, and S. , Cell processor implementation of a MILC lattice QCD application. ArXiv e-prints, 2009.

S. , J. Dasgupta, A. Kim, H. And-vuduc, and R. , A performance analysis framework for identifying potential benefits in gpgpu applications, Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming PPoPP '12, ACM, pp.11-22

S. , J. Hill, J. And-trew, and A. , Performance of a Lattice Quantum Chromodynamics kernel on the Cell processor, Computer Physics Communications, vol.179, pp.642-646, 2008.

T. , T. M. And-wills, and S. , An instruction throughput model of superscalar processors, IEEE Trans. Comput, vol.57, issue.3, pp.389-403, 2008.

T. , G. Li, L. Triechle, S. Phillips, E. Bao et al., Fast implementation of dgemm on fermi gpu, Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pp.351-3511, 2011.

T. , B. And-miao, and L. , Real-time rendering for 3d game terrain with gpu optimization, Computer Modeling and Simulation, 2010. ICCMS '10. Second International Conference on, pp.198-201, 2010.

T. M. Aamodt and W. W. , Gpgpu-sim 3.x manual

U. , S. Lathara, M. Baghsorkhi, S. S. And-hwu, and W. W. , Languages and compilers for parallel computing, CUDA-Lite: Reducing GPU Programming Complexity, pp.1-15, 2008.

D. Unat, X. Cai, and S. B. And-baden, Mint, Proceedings of the international conference on Supercomputing, ICS '11, pp.214-224, 2011.
DOI : 10.1145/1995896.1995932

V. , P. Bhanot, G. Blumrich, M. Chen, D. Gara et al., The bluegene/l supercomputer and quantum chromodynamics, SC '06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, p.50, 2006.

W. , S. Waterman, A. And-patterson, and D. , Roofline: an insightful visual performance model for multicore architectures, Commun. ACM, vol.52, issue.4, pp.65-76, 2009.

W. , H. Papadopoulou, M. Sadooghi-alvandi, M. And-moshovos, and A. , Demystifying gpu microarchitecture through microbenchmarking, IS- PASS'10, pp.235-246, 2010.

Y. , D. Cao, H. Dong, X. Zhang, B. And-zhang et al., Optimizing algorithm of sparse linear systems on gpu, Chinagrid Conference (ChinaGrid), 2011 Sixth Annual (aug. 2011), pp.174-179

Y. , Y. Xiang, P. Kong, J. And-zhou, and H. , A gpgpu compiler for memory optimization and parallelism management, Proceedings of the 2010 ACM SIG- PLAN conference on Programming language design and implementation PLDI '10, ACM, pp.86-97, 2010.

Z. , Y. Cohen, J. And-owens, and J. , Fast tridiagonal solvers on the gpu, SIGPLAN Not, vol.45, issue.5, pp.127-136, 2010.

Z. , Y. And-mueller, and F. , Auto-generation and auto-tuning of 3d stencil codes on gpu clusters, Proceedings of the Tenth International Symposium on Code Generation and Optimization CGO '12, ACM, pp.155-164

Z. , Y. And-owens, and J. D. , A quantitative performance analysis model for gpu architectures, Proceedings of the 17th IEEE International Symposium on High-Performance Computer Architecture (HPCA 17), 2011.

Z. , Y. And-tan, and Y. , Gpu-based parallel particle swarm optimization CEC '09, Evolutionary Computation, pp.1493-1500, 2009.

C. Simulation and G. Application, 29 1.6 Correlation Versus GT200 & Fermi Architectures (Stolen from GPGPU-Sim Manual), p.30

O. .. Zhang, Performance Modeling Workflow Proposed by, p.35

.. Sp-load, 16 warps), p.73