
HAL Id: tel-00908913
https://theses.hal.science/tel-00908913

Submitted on 25 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational Approaches to Analysis and Control of
Hybrid Systems

Antoine Girard

To cite this version:
Antoine Girard. Computational Approaches to Analysis and Control of Hybrid Systems. Optimization
and Control [math.OC]. Université de Grenoble, 2013. �tel-00908913�

https://theses.hal.science/tel-00908913
https://hal.archives-ouvertes.fr
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Résumé

Contexte Scientifique

Un système hybride est un système dynamique exhibant à la fois des comportements
de nature discrète et continue. Motivée par la multiplication de composants informa-
tiques embarqués “discrets” interagissant avec le monde physique “continu” (un domaine
d’application aujourd’hui dénommé systèmes cyber-physiques), la recherche sur les systèmes
hybrides s’est développée rapidement depuis les années 90 à l’intersection de l’informatique,
de l’automatique et des mathématiques appliquées. Chacune de ces disciplines a ap-
porté ses propres modèles et méthodes et leur confrontation et combinaison ont permis
à la communauté d’établir les fondations d’une théorie des systèmes hybrides. La notion
d’automate hybride [Hen96, LJS+03], qui constitue le modèle mathématique de systèmes
hybrides le plus couramment utilisé, combine équations différentielles et automates d’états
finis, et constitue un exemple typique de cette fertilisation croisée. Plus généralement,
la recherche sur les systèmes hybrides a permis le développement d’approches nouvelles
en informatique et en contrôle qui n’aurait pas été possible sans les interactions fortes
entre disciplines. Le domaine du contrôle symbolique [EFE06, Tab09] par exemple a em-
prunté à l’informatique des outils et des concepts tels que la vérification formelle, l’analyse
d’atteignabilité, l’abstraction ou la logique, et les a appliqués à la conception de systèmes
de commande. Dans le contrôle symbolique, les dynamiques continues sont abstraites sur
un ensemble fini de symboles, chaque symbole représentant une infinité d’états. Ces ap-
proches permettent de prendre en compte des spécifications qui sont souvent différentes
des propriétés traditionnelles en théorie du contrôle (e.g. stabilité, contrôlabilité, observ-
abilité...): de telles spécifications peuvent par exemple être données par des formules
logiques décrivant les comportements temporels acceptables du système. Néanmoins,
les approches fructueuses empruntent souvent autant à l’informatique qu’à l’automatique
ou aux mathématiques appliquées (utilisation de fonctions de Lyapunov, approximations
numériques...). Finalement, le contrôle symbolique accorde aussi une place importante
aux algorithmes et au développement de techniques computationnelles pour l’analyse et
le contrôle des systèmes dynamiques.

La plus grande partie de mon travail de recherche appartient au domaines des systèmes
hybrides et du contrôle symbolique, avec une attention particulière portée au développement
de techniques computationnelles. Une partie de mon travail porte également sur l’analyse
des systèmes dynamiques multi-agents. Ce mémoire présente les contributions principales
de mon travail de recherche depuis ma thèse en 2004. La présentation n’est pas exhaustive
mais s’attache à décrire les résultats que je considère comme étant les plus significatifs. Je
mets également en avant un certain nombre de résultats qui ont été obtenus en collabo-
ration avec des jeunes chercheurs, doctorants ou post-doctorants que j’ai supervisés. Une
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liste complète de mes publications peut être trouvée en annexe.

Contributions Principales

Ce mémoire est organisé en trois parties principales. La première partie introduit un cadre
d’approximation qui s’applique aux systèmes dynamiques continus, discrets et hybrides
(Chapitre 2); plusieurs applications de ce cadre sont présentées par la suite (Chapitres 3
et 4). La deuxième partie est consacrée à l’analyse d’atteignabilité (Chapitre 5), une
technique computationnelle très utile pour l’analyse et le contrôle des systèmes hybrides.
Enfin, la troisième partie porte sur les systèmes dynamiques multi-agents (Chapitre 6).
Nous décrivons ici brièvement chaque partie.

Simulation et bisimulation approchées

Les théories d’approximation sont fondamentales pour l’analyse et le contrôle de systèmes
dynamiques complexes. Pour des systèmes dynamiques continus, la notion d’approximation
est souvent caractérisée au travers de métriques mesurant la distance entre les comporte-
ment de deux systèmes (voir e.g. [ASG00]). Pour des systèmes discrets, où une notion
naturelle de distance entre les comportements n’est pas toujours disponible, la notion
d’approximation est généralement appréhendée par des relations d’ordre ou d’équivalence
telle que l’inclusion de langage, les relations de simulation ou de bisimulation [Mil89,
CGP00].

Un défi majeur de la théorie des systèmes hybrides est de proposer un cadre commun
pour l’approximation de dynamiques continus, discrètes et hybrides. Plusieurs travaux ont
par exemple étendu la notion de relations de simulation et bisimulation aux systèmes con-
tinus et hybrides [Pap03, vdS04, HTP05]. Dans [GP07b], nous avons introduit les notions
d’inclusion approchée de langage, de relations de simulation et bisimulation approchées et
nous avons défini une hiérarchie associée de métriques d’approximation pour des systèmes
(continus, discrets ou hybrides) observés sur des espaces métriques1. Intuitivement, ces
métriques mesurent la qualité d’approximation d’un système par un autre en se basant sur
la distance entre leurs comportements observés; les notions d’inclusion “exacte” de lan-
gage, de simulation et de bisimulation étant retrouvées lorsque les métriques s’annulent.
Une caractérisation fonctionnelle de la simulation et bisimulation approchées a été établie
en introduisant la notion de fonctions de simulation et bisimulation qui sont définies par
de inégalités variationnelles de type Lyapunov.

La bisimulation approchée s’est avérée être un outil puissant pour la synthèse de
contrôleur basée sur l’abstraction. Dans [Gir12], nous avons présenté des approches
pour la synthèse de contrôleurs de sûreté et d’atteignabilité utilisant des abstractions
approximativement bisimilaires. Etant donné un contrôleur pour l’abstraction, nous pou-
vons en déduire un contrôleur pour le système original en utilisant des procédures de
concrétisation spécifiques. La relation de bisimulation approchée entre le système et
son abstraction nous permet de garantir que le contrôleur est “correct par construc-
tion”, ce qui signifie que la spécification est vérifiée par le système original. De plus,
les performances du contrôleur maximal (pour la sûreté) et optimal (pour l’atteignabilité)
peuvent être approchées arbitrairement près en utilisant des abstractions suffisamment

1Cet article s’est vu attribué le George S. Axelby Outstanding Paper Award décerné par l’IEEE Control
System Society en 2009.
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précises. Ces approches peuvent être utilisées pour la synthèse de contrôleurs pour des
classes de systèmes dynamiques (continus ou hybrides) incrémentalement stables, pour
lesquelles nous avons démontré l’existence d’abstractions approximativement bisimilaires
de précision arbitraire [Gir07, PGT08, GPT10]. Comme ces abstractions sont symbol-
iques, cela nous permet de recourir aux techniques développées dans le domaine des
systèmes discrets pour contrôler des systèmes continus ou hybrides. Nous avons pro-
posé des techniques pour déduire la complexité des contrôleurs symboliques résultants,
en utilisant une quantification de l’état et une représentation efficace de la fonction de
contrôle [Gir13]. Nous avons aussi développé une approche pour réduire la complexité
algorithmique de la synthèse de contrôleur en utilisant des abstractions symboliques multi-
échelles [CGG11b, CGG11a]. Les algorithmes de synthèse exploitant les spécificités de ces
abstractions ont été implémentés dans l’outil CoSyMA [MGG13]: les abstractions sont
calculées à la volée durant la synthèse de contrôleurs et la dynamique aux échelles les plus
fines n’est explorée que lorsque cela est nécessaire. Les résultats expérimentaux montrent
une réduction significative du coût algorithmique de la synthèse de contrôleurs.

Nous avons exploré des applications de la simulation et bisimulation approchées en
dehors du domaine du contrôle symbolique mentionné précédemment. Par exemple, la
notion de fonction de simulation a été utilisée pour relier formellement les comportements
de deux systèmes continus afin de concevoir des contrôleurs hiérarchiques [GP09]. Nous
avons établi des caractérisations des relations de simulation et de bisimulation approchées
afin de calculer des approximations de systèmes continus ou hybrides [GP07a, GJP08].
Enfin, les fonctions d’auto-bisimulation (fonctions de bisimulation entre un système et
lui même) ont été utilisées dans des algorithmes de vérification qui peuvent déterminer
qu’une propriété est vérifiée par une infinité de trajectoires en ne simulant qu’un nombre
fini d’entre-elles [FGP06].

Les résultats mentionnés ci-dessus ont été développés durant mon séjour post-doctoral
à l’Université de Pennsylvanie puis dans le cadre des projets ANR VAL-AMS et VEDECY
et du projet SYMBAD du pôle MSTIC de l’Université Joseph Fourier. Une grande partie
de ces résultats a été développée en collaboration avec George J. Pappas (Université de
Pennsylvanie), Paulo Tabuada (UCLA), Giordano Pola (Université de L’Aquila) ou Gregor
Goessler (INRIA) pour ne citer que les collaborations les plus suivies. Enfin, le travail sur
les abstractions symboliques multi-échelles a été réalisé durant les séjours post-doctoraux
de Javier Càmara et Sebti Mouelhi à l’INRIA sous la co-supervision de Gregor Goessler
et moi-même.

Analyse d’atteignabilité

L’analyse d’atteignabilité est une problématique majeure de la recherche sur les systèmes
hybrides. Cette approche, inspirée par des idées de la vérification des systèmes discrets et
de la simulation numérique des systèmes continus, cherche à calculer (une approximation
de) l’ensemble des trajectoires d’un système, pour toutes valeurs admissibles des conditions
initiales et des paramètres, et sous toutes les perturbations. L’analyse d’atteignabilité per-
met donc de remplacer une infinité de simulations de trajectoires individuelles [Mal11].
De plus, les algorithmes pour l’analyse d’atteignabilité sont au coeur de plusieurs ap-
proches computationnelles pour résoudre des problèmes du domaine des systèmes hy-
brides tels que la synthèse de contrôleur, la vérification ou le calcul d’abstractions sym-
boliques [ABD+00, TMBO03, ADI06]. Pour que ces approches soient mathématiquement
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rigoureuses, il est souvent nécessaire de garantir des propriétés de l’approximation calculée.
Par exemple, il est souvent requis que l’approximation calculée contienne le véritable en-
semble atteignable. Ainsi, mes contributions à ce problème concernent principalement les
algorithmes pour calculer des sur-approximations de l’ensemble des états atteignables par
un système dynamique continu.

Pour des systèmes linéaires avec des valeurs d’entrées bornées, nous avons proposé des
schémas de discrétisation en temps nous permettant de calculer une sur-approximation de
l’ensemble des états atteignables sur un intervalle de temps borné [Gir05, LG10]. Cette ap-
proximation consiste en une union finie d’ensembles convexes compacts et peut être choisie
de précision arbitraire en réduisant le pas de temps. Nous avons développé plusieurs
implémentations de ces schémas d’approximation. Le premier est basé sur les zono-
topes [Gir05], une classe de polytopes avec des propriétés computationelles intéressantes.
Une amélioration déterminante de cette approche, basée sur l’introduction de séquences
d’ensembles auxiliaires, a été présentée dans [GLM06], ouvrant la voie au calcul d’approxi-
mations très précises y compris en grande dimension. Cette technique a été étendue pour
travailler avec des ensembles convexes compacts arbitraires en proposant une implémen-
tation basée sur les fonctions support [LG10]. L’adaptation de ces algorithmes pour
l’analyse d’atteignabilité des automates hybrides a été décrite dans [GL08, LG09]. De
manière remarquable, l’algorithme basé sur les fonctions support est aujourd’hui au coeur
de la plateforme de vérification des systèmes hybrides, SpaceEx [FLD+11], développée au
laboratoire Verimag.

Nous avons aussi travaillé sur l’analyse d’atteignabilité des systèmes non-linéaires.
Pour les systèmes dynamiques polynomiaux en temps discret, nous avons développé une
approche pour le calcul de sur-approximations polytopiques de l’ensemble atteignable
en utilisant des relaxations linéaires de problèmes d’optimisation polynomiale. Ces pro-
grammes linéaires sont obtenus grâce aux propriétés des polynômes de Bernstein [BTDG12].
Pour les systèmes non-linéaires généraux, l’analyse d’atteignabilité peut être attaquée
grâce au principe d’hybridation [ADG03, ADG07], qui consiste à approcher la dynamique
non-linéaire par une dynamique linéaire par morceaux où des perturbations bornées sont
ajoutées pour prendre en compte l’erreur d’approximation. L’ensemble atteignable de
l’automate hybride résultant, calculable par les approches mentionnées ci-dessus, fournit
un sur-approximation de l’ensemble atteignable du système non-linéaire original.

Une partie des travaux décrits sur l’analyse d’atteignabilité a été réalisée dans le
cadre du projet ANR VEDECY. Ces travaux sont le résultat d’une collaboration suivie
avec les chercheurs de Verimag, Thao Dang, Oded Maler et Goran Frehse. L’analyse
d’atteignabilité des systèmes linéaires a été amplement traitée dans le cadre de la thèse
de Colas Le Guernic sous la co-supervision d’Oded Maler et moi-même. L’analyse des
systèmes polynomiaux constitue une des applications considérée dans la thèse de Mo-
hamed Amin Ben Sassi sous la co-supervision de Guilaume James et moi-même.

Systèmes dynamiques multi-agents

Une problématique centrale dans les systèmes dynamiques multi-agents consiste en la
compréhension de l’émergence de comportements collectifs coordonnés à partir de sim-
ples règles d’interaction entre agents. Le problème le plus étudié dans ce domaine est
le problème du consensus où les agents cherchent à atteindre un accord de manière dis-
tribuée. Les algorithmes de consensus ont plusieurs applications dans des domaines aussi
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différents que le contrôle de flottes de véhicules en robotique [RBA07] ou la modélisation
de dynamiques d’opinions en sciences sociales [HK02].

Des conditions suffisantes pour la convergence vers le consensus sont typiquement
basées sur la topologie du réseau décrivant les interactions entre agents et sur la force de
ces interactions. Dans [MG13], nous avons établi un ensemble de conditions suffisantes
pour atteindre le consensus en temps continu. Celles-ci requièrent principalement que la
connectivité du graphe d’interaction soit persistante et que la divergence entre les poids
d’interactions réciproques ne soit pas trop rapide. Nous avons aussi établi une estimation
du taux de convergence vers le consensus et montré que notre résultat généralise plusieurs
conditions existantes dans la littérature, y compris celles établies récemment dans [HT12].

Nous avons aussi proposé et étudié un modèle de dynamique d’opinions qui peut ex-
pliquer la formation de communautés au sein d’un réseau d’agents [MG11]. Dans notre
modèle, les agents cherchent à atteindre le consensus avec un taux de convergence con-
traint. Cela peut être vu comme un processus de négociation où chaque agent exige, pour
poursuivre la négociation, que les autres approches suffisamment rapidement son opin-
ion. Dans ce cas, le consensus n’est peut être pas réalisé globalement mais uniquement
dans certains sous-groupes d’agents que nous appelons communautés. Nous avons établi
une caractérisation de ces communautés en terme de propriétés algébriques du graphe
d’interactions. De plus, nous avons pu vérifier expérimentalement, sur un certain nombre
de cas d’étude, que ces communautés cöıncident avec celles observées dans la réalité. Ainsi,
notre modèle fournit une solution naturellement distribuée au problème de détection de
communautés dans des réseaux complexes.

Les conditions suffisantes pour la convergence vers le consensus constituent la principale
contribution de la thèse de Samuel Martin sous la co-supervision de Guillaume James
et moi-même. Le modèle de dynamique d’opinions a été étudié en collaboration avec
Constantin Morarescu durant son séjour post-doctoral au Laboratoire Jean Kuntzmann
sous ma supervision, dans le cadre du projet CARESSE du pôle MSTIC de l’Université
Joseph Fourier.

Discussion

Une caractéristique de mon travail de recherche est l’utilisation de concepts et de tech-
niques se trouvant à l’interface de plusieurs disciplines. Ainsi, la première partie de ce
mémoire concerne les notions de simulation et bisimulation approchées qui sont des adap-
tations d’outils classiques en informatique. De manière à calculer des abstractions symbol-
iques pouvant servir à la synthèse de contrôleur, ces notions sont utilisées en combinaison
avec des techniques de Lyapunov, qui sont très répandues en automatique. Mon tra-
vail sur l’analyse d’atteignabilité utilise principalement des techniques des mathématiques
appliquées (approximations numériques, géométrie computationnelle, analyse convexe...),
cependant, toute l’approche a été inspirée par le domaine de l’informatique appelé “model
checking”. Enfin, le domaine entier des systèmes dynamiques multi-agents a été développé
à l’interface de la théorie des systèmes dynamiques et de la théorie des graphes. Il y a, à
mon avis, un potentiel énorme pour le développement d’approches innovantes à l’interface
des mathématiques appliquées, de l’automatique et de l’informatique.

Une autre caractéristique de mon travail est l’intérêt constant porté aux algorithmes et
au calcul. La plupart de mes contributions théoriques ont été motivées par le développement
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d’approches computationnelles pour l’analyse et le contrôle des systèmes hybrides. Ainsi,
mon travail sur les abstractions approximativement bisimilaires a été concrétisé dans l’outil
pour la synthèse de contrôleur CoSyMA; les algorithmes pour l’analyse d’atteignabilité
basés sur les fonctions support constituent le coeur de la plate-forme de vérification des
systèmes hybrides SpaceEx; mon travail sur la dynamique d’opinions a été motivé par
le développement d’algorithmes distribués efficaces pour la détection de communautés
dans des grand réseaux... Je suis convaincu qu’au regard de la complexité croissante
des systèmes dynamiques que l’on cherche à analyser ou contrôler, les techniques compu-
tationnelles, possiblement associées à des approches analytiques, deviendront des outils
indispensables.
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Chapter 1

Introduction

Hybrid systems are dynamical systems exhibiting both continuous and discrete behaviors.
Motivated by the multiplication of “discrete” embedded computing devices interacting
with the “continuous” physical world (an application domain that is today referred to as
cyber-physical systems), the research on hybrid systems has rapidly developed since the
nineties at the intersection of computer science, control theory and applied mathematics.
Each discipline has brought its own models and methods and their combination has al-
lowed the scientific community to build the foundations of a theory of hybrid systems. The
notion of hybrid automaton [Hen96, LJS+03], which is the most commonly used mathe-
matical model of hybrid systems, combines differential equations and finite state automata
and is a typical example of this cross-fertilization. More generally, hybrid systems research
has enabled the development of new approaches in computation and control that would
not have been possible without the tight interactions between disciplines. For instance,
the area of symbolic control [EFE06, Tab09] has borrowed from computer science tools
and concepts such as formal verification, reachability analysis, abstraction or logics, and
has used these in control systems design. In symbolic control, continuous behaviors are
abstracted over a finite set of symbols, each symbol representing infinitely many states.
These approaches allow one to address specifications that are often different from tra-
ditional properties in control theory (e.g. stability, controllability, observability...): such
specifications can for instance be given by some logic formula describing the acceptable
temporal behaviors of the system. Nevertheless, successful approaches often borrow as
much from computer science as they do from control theory and applied mathematics (use
of Lyapunov functions, numerical approximations...). Finally, symbolic control also gives
a predominant place to algorithms and to the development of computational techniques
for analysis and control of dynamical systems.

Most of my own research falls within these domains of hybrid systems and symbolic
control, with a focus on the development of computational techniques. I have also worked
on the analysis of multi-agent dynamical systems. This document presents the main con-
tributions of my research work since my Ph.D. in 2004. The presentation is not exhaustive
but focuses on the results that I consider as the most significant. I also highlight a cer-
tain number of results that have been obtained in collaboration with young researchers,
Ph.D. students and postdoctoral researchers, that I have supervised. A complete list a my
publications is given in appendix.
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1.1 Main Contributions

This document is organized in three main parts. The first part introduces an approx-
imation framework that applies to continuous, discrete and hybrid dynamical systems
(Chapter 2); several applications of this framework are then presented (Chapters 3 and 4).
The second part focuses on reachability analysis (Chapter 5), a valuable computational
technique for analysis and control of hybrid systems. Finally, the third part deals with
multi-agent dynamical systems (Chapter 6). In the following, we give a brief description
of each part.

1.1.1 Approximate simulation and bisimulation

Theories of approximation are fundamental for the analysis and control of complex dynam-
ical systems. For continuous dynamical systems, approximation is traditionally character-
ized through metrics measuring the distance between the behaviors of two systems (see
e.g. [ASG00]). For discrete systems, where a natural notion of distance between behaviors
may not exist, approximation is generally tackled through order or equivalence relation-
ships such as language inclusion, simulation and bisimulation relations [Mil89, CGP00].
A major challenge of hybrid system theory is to propose a common framework for ap-
proximation of continuous, discrete and hybrid dynamics. Several works have for in-
stance extended simulation and bisimulation relationships to continuous and hybrid sys-
tems [Pap03, vdS04, HTP05]. In [GP07b], we have introduced the notions of approximate
language inclusion, approximate simulation and bisimulation relations and defined an as-
sociated hierarchy of approximation metrics for (continuous, discrete or hybrid) systems
observed over metric spaces1. Intuitively, these metrics measure how well one system is
approximated by an other based on the distance between their observed behaviors; the
metrics being equal to zero coinciding with the notions of “exact” language inclusion,
simulation and bisimulation. We established a functional characterization of approximate
simulation and bisimulation using simulation and bisimulation functions that can be de-
fined by Lyapunov like inequalities.

Approximate bisimulation has shown to be a powerful tool for abstraction based con-
trol synthesis. In [Gir12], we have presented approaches for synthesizing controllers for
safety and reachability specifications using approximately bisimilar abstractions. Given a
controller for an abstraction, we can derive a controller for the original system using spe-
cific concretization procedures. The approximate bisimulation relationship between the
system and its abstraction allows us to ensure that this controller is “correct by design”
meaning that the specification is met by the original system. Moreover, the performances
of the maximal (for safety) or time-optimal (for reachability) controllers can be approached
arbitrarily close by using abstractions that are precise enough. These approaches can be
used to synthesize controllers for classes of incrementally stable (continuous or hybrid)
dynamical systems for which we have shown that approximately bisimilar abstractions of
arbitrary precision can be computed [Gir07, PGT08, GPT10]. Since these abstractions
are symbolic, it allows us to leverage techniques developed in the areas of discrete sys-
tems to control continuous or hybrid systems. We have proposed techniques for reducing
the complexity of the resulting symbolic controllers, using state quantization and an ef-

1This paper was awarded the George S. Axelby Outstanding Paper Award of the IEEE Control System
Society in 2009.
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ficient representation of the control map [Gir13]. We have also developed an approach
for reducing the algorithmic cost of controller synthesis by using multi-scale symbolic ab-
stractions [CGG11b, CGG11a]. Synthesis algorithms exploiting the specificities of these
abstractions have been implemented in the tool CoSyMA [MGG13]: the abstractions are
computed on the fly during controller synthesis and the dynamics at the finest scales are
explored only when necessary. Experimental results show a significant reduction of the
algorithmic cost of controller synthesis.

We have explored other applications of approximate simulation and bisimulation be-
sides the symbolic control approach mentioned above. For instance, the notion of simu-
lation function has been used to formally relate the behaviors of two continuous control
systems in order to design hierarchical controllers [GP09]. We established effective charac-
terizations of approximate simulation and bisimulation relations in order to compute ap-
proximations of continuous or hybrid systems [GP07a, GJP08]. Finally, auto-bisimulation
functions (bisimulation functions between a system and itself) have been used to design
verification algorithms that can check that a given property holds for an infinite number
of trajectories by only simulating a finite number of them [FGP06].

1.1.2 Reachability analysis

Reachability analysis has been a major issue in hybrid systems research. This approach, in-
spired by ideas from algorithmic verification of discrete systems and numerical simulation
of continuous systems, seeks to compute (an approximation of) the set of all trajecto-
ries of a system, for all admissible values of initial states and parameters, and under all
possible disturbances. A single successful reachability analysis can thus replace infinitely
many simulations of individual trajectories [Mal11]. In addition, algorithms for reacha-
bility analysis of continuous systems form the core of several computational approaches
to solve hybrid systems problems such as controller synthesis, verification or computa-
tion of symbolic abstractions [ABD+00, TMBO03, ADI06]. For these approaches to be
mathematically sound, we often need to guarantee some properties of the computed ap-
proximation. For instance, it is often necessary that the computed approximation includes
the true reachable set. Thus, my contributions to that domain deal primarily with algo-
rithms for computing over-approximations of the set of states that are reachable by a
continuous dynamical system.

For linear systems with bounded input values, we have proposed time-discretization
schemes allowing us to compute an over-approximation of the set of reachable states on
a bounded time interval [Gir05, LG10]. This approximation consists in a finite union of
compact convex sets and can be made arbitrarily accurate by reducing the time step. We
have developed several implementations of these approximation schemes. The first one is
based on zonotopes [Gir05], a class of polytopes with interesting computational features.
A determinant improvement of this approach, based on the introduction of auxiliary se-
quences of sets, was brought in [GLM06], opening the way to the computation of very
accurate approximations, even in high-dimensions. This technique has been extended to
work with arbitrary compact convex sets by proposing an implementation based on sup-
port functions [LG10]. The adaptation of these algorithms for reachability analysis of
hybrid automata has been described in [GL08, LG09]. It is noticeable that the support
function algorithm constitutes the core of the state of the art hybrid system verification
platform SpaceEx [FLD+11] developed at Verimag.
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We have also worked on reachability analysis of nonlinear systems. For discrete-
time polynomial systems, we have developed an approach for computing polytopic over-
approximations of the reachable set using relaxations of polynomial optimization prob-
lems given by linear programs obtained thanks to the properties of Bernstein polynomi-
als [BTDG12]. For general nonlinear systems, reachability analysis can tackled via the
hybridization principle [ADG03, ADG07], which consists in approximating a nonlinear dy-
namics by a piecewise linear dynamics where additional bounded disturbances are added
to account for the approximation error. The reachable set of the resulting hybrid automa-
ton, computable with approaches mentioned above, provides an over-approximation of the
reachable set of the original non-linear system.

1.1.3 Multi-agent dynamical systems

The central issue of multi-agent dynamical systems consists in understanding how coordi-
nated global behaviors can emerge from simple local interaction rules between agents. The
most studied problem in this area is the consensus problem where the agents seek to reach
an agreement in a distributed manner. Consensus algorithms have several applications as
different as multi-vehicle control in robotics [RBA07] or modeling of opinion dynamics in
social sciences [HK02]. Sufficient conditions for convergence to a consensus are typically
based on the topology of the network describing the interactions between agents and on the
strength of these interactions. In [MG13], we have established a set of sufficient conditions
for achieving consensus in continuous-time. These essentially states that the connectivity
in the interaction network should be persistent and that the divergence between recipro-
cal interactions weights should not be too fast. We have also provided an estimate of the
convergence rate to the consensus and shown that our result generalizes several conditions
existing in the literature, including those established recently in [HT12].

We have also proposed and studied a model of opinion dynamics that can explain
the formation of communities inside a network of agents [MG11]. In our model, agents
seek to reach a consensus no slower than a certain convergence rate. It can be seen as
a negotiation process where an agent expects that others move sufficiently fast towards
its opinion in order to keep negotiating. Then, consensus may not be achieved globally
but only in some subgroups of agents that we call communities. We have established a
characterization of these communities in terms of algebraic properties of the interaction
graph. Moreover, we could check experimentally, on a certain number of benchmarks, that
these communities coincides with those observed in reality. Hence, our model provides a
naturally distributed solution to the community detection problem in complex networks.

1.2 Research Supervision and Coordination

Since 2004, I have had the honor to supervise the work of several young researchers, Ph.D.
students and postdoctoral researchers. In the following, I give a very brief description of
these fruitful collaborations and give pointers to publications2 and to sections of this
document where those works are presented. I have also coordinated several research
projects which are listed at the end of the section.

2The publication numbers refer to the list of publications given in appendix



1.2. RESEARCH SUPERVISION AND COORDINATION 5

1.2.1 Ph.D. students

Colas Le Guernic (co-supervised with O. Maler), 2006-2009.
Thesis: Reachability analysis of hybrid systems with linear continuous dynamics.
Publications: J10, C27, C24, C23, C15, C10, CL2, CL1.
Current situation: Researcher, DGA-MI, Rennes.

This thesis deals with the development of accurate and scalable algorithms for reach-
ability analysis of a class of hybrid systems where the continuous dynamics is described
by linear differential equations. The main contributions of this thesis are a determinant
improvement of the algorithm for the computation of the reachable set of linear systems,
its implementations based on zonotopes and support functions and its extension to reach-
ability analysis of hybrid systems. Part of this work is presented in Section 5.1.

Samuel Martin (co-supervised with G. James), 2009-2012.
Thesis: Coordination and robustness of multi-agent dynamical systems.
Publications: J20, J14, C37, C33, C25.
Current situation: Assistant professor (Mâıtre de conférences), Université de Lorraine.

This thesis deals with the analysis of multi-agent dynamical systems. The main con-
tribution of this thesis is a fine analysis of the linear consensus in continuous-time which
enables to propose a set of sufficient conditions that are more general than those in the
literature. Another important contribution is the proposition of a measure for estimating
the robustness of multi-agent formations with respect to the flocking behavior. Part of
this work is presented in Section 6.1.

Mohamed Amin Ben Sassi (co-supervised with G. James), 2009-2013.
Thesis: Analysis and control of polynomial dynamical systems.
Publications: J18, J13, C43, C40.
Current situation: Postdoctoral researcher, Université de Grenoble.

This thesis deals with the development of algorithms for analysis and control of polyno-
mial dynamical systems using linear programming. New linear programming relaxations
of polynomial optimization problems are obtained either through the blossoming principle
or properties of the Bernstein polynomials. The main contributions are algorithms based
on these relaxations for reachability analysis, invariant computation and robust control of
polynomial systems. Part of this work is presented in Section 5.2.

Pierre-Olivier Lamare (co-supervised with C. Prieur), since 2012.
Thesis: Modeling, simulation and control of switched hyperbolic systems.
Publications: C46.

This thesis deals with switching control of hyperbolic partial differential equations.
Based on local measurements and using Lyapunov techniques, a set of stabilizing switching
control laws are derived. Issues such as existence of the closed loop solutions, numerical
simulation, computational techniques for controller synthesis and applications to control
of physical networks are also considered. This work in progress is not presented in this
document.
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Pierre-Jean Meyer (co-supervised with E. Witrant), since 2012.
Thesis: Hybrid control for green buildings.
Publications: C49.

The goal of this thesis is to apply the symbolic control approach in order to manage
energy in buildings. The thermal dynamics of a building is modeled by a hybrid system
with disturbances. Symbolic abstractions are computed using the monotonicity properties
of the model. Strategies for energy management are then synthesized using the symbolic
abstractions, based on several assumptions on the nature (adversarial or stochastic) of
disturbances. This work in progress is not presented in this document.

Ying Tang (co-supervised with C. Prieur), since 2012.
Thesis: Analysis of singularly perturbed hyperbolic systems.
Publications: C45, C47.

This thesis deals with the analysis of hyperbolic partial differential equations with
multiple time scales. Following a singular perturbation approach, we define the boundary-
layer and reduced systems. Using Lyapunov techniques, conditions are established showing
the validity of the approximation given by the reduced system. An application to a
Poiseuille flow is considered. This work in progress is not presented in this document.

1.2.2 Postdoctoral researchers

Gang Zheng , 2008.
Subject: Verification algorithms based on auto-bisimulation functions.
Publications: J17, C26.
Current situation: Researcher (Chargé de recherche), INRIA, Lille.

We have developed verification algorithms for dynamical systems with inputs that
can determine whether a given safety or bounded liveness property is satisfied by the
infinitely many trajectories of the system. The algorithm only needs to compute a finite
number of trajectories and an estimate of how robustly these satisfy the specified property.
Then, one can infer that the property is satisfied by all trajectories in neighborhoods that
are characterized by an auto-bisimulation function. Part of this work is presented in
Section 4.3.

Constantin Morarescu , 2009.
Subject: Consensus and community detection in networks.
Publications: J11, C31, C30, C29.
Current situation: Assistant professor (Mâıtre de conférences), Université de Lorraine.

We have proposed and studied a model of opinion dynamics with decaying confidence.
In this model, global consensus may not be achieved and subgroups of agents may only
agree locally, organizing themselves in communities. We have established an algebraic
characterization of these communities. Our model can serve as an elegant solution for a
distributed algorithm for detecting communities in large networks. This work is presented
in Section 6.2.



1.2. RESEARCH SUPERVISION AND COORDINATION 7

Javier Camara (co-supervised with G. Goessler), 2010.
Subject: Multi-scale symbolic abstractions of switched systems.
Publications: C34, C36.
Current situation: Postdoctoral researcher, Carnegie Mellon University, USA.

We have established the existence of multi-scale symbolic abstractions for a class of
incrementally stable systems. We have studied the use of these multi-scale symbolic ab-
stractions for controller synthesis. For safety specifications, we have proposed the notion of
maximal lazy safety controller and developed a multi-scale algorithm for its computation.
This work is presented in Section 3.3.

Sebti Mouelhi (co-supervised with G. Goessler), 2011-2012.
Subject: Multi-scale symbolic abstractions of switched systems.
Publications: C42.
Current situation: Research engineer, Safe River, Paris.

We have extended the algorithm for synthesizing the maximal lazy safety controller
in order to compute controllers for bounded-time reachability specifications. These algo-
rithms have been implemented in the tool CoSyMA. This work is presented in Section 3.3.

Euriell Le Corronc (co-supervised with G. Goessler), 2012-2013.
Subject : Grid-free symbolic abstractions of switched systems.
Publications: C48.
Current situation: Assistant professor (Mâıtre de Conférences), Université de Toulouse.

We have explored a new approach for computing approximately bisimilar symbolic
abstractions of incrementally stable systems. Contrarily to existing approaches that use
a discretization of the continuous state space as the set of symbolic states, we propose to
use input sequences of given length as symbolic states. A result showing the existence of
an approximate bisimulation relation has been established. This work in progress is not
presented in this document.

1.2.3 Research projects

Most of my research work has been carried out within funded research projects, most of
which I have coordinated. These projects are listed below.

VAL-AMS: High Confidence Validation of Analog and Mixed Signal Circuits.
Type: ANR-SETIN (2007-2009)
Partners: Verimag, Laboratoire Jean Kuntzmann, INRIA.
Personal role: Scientific responsible for LJK.

CARESSE: Contrôle et Analyse de Réseaux de Systèmes Dynamiques Évolutifs.
Type: UJF-MSTIC (2008-2009)
Partners: Laboratoire Jean Kuntzmann
Personal role: Principal investigator.
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VEDECY: Verification and Design of Cyber-Physical Systems.
Type: ANR-ARPEGE (2009-2012)
Partners : Laboratoire Jean Kuntzmann, Verimag, INRIA.
Personal role: Principal investigator.

SYMBAD: Symbolic Approaches to the Design of Cyber-Physical Systems.
Type: UJF-MSTIC (2012-2013)
Partners: Laboratoire Jean Kuntzmann, INRIA.
Personal role: Principal investigator.

COHYBA: Contrôle Hybride pour les Bâtiments Verts.
Type: CIBLE, Région Rhône Alpes (2012-2014)
Partners: Laboratoire Jean Kuntzmann, GIPSA Lab.
Personal role: Principal investigator.

COMPACS: Computation Aware Control Systems.
Type: ANR-Blanc (2013-2017)
Partners: Laboratoire Jean Kuntzmann, CRAN, Verimag.
Personal role: Principal investigator.
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Chapter 2

Approximation Framework for

Discrete and Continuous Systems

Résumé : Un défi essentiel du domaine des systèmes hybrides est de pouvoir
considérer des dynamiques continues et discrètes dans un cadre unique. Les
théories d’approximation des systèmes, qui sont fondamentales pour l’analyse
et la synthèse de systèmes complexes, ont été développées de manières indépen-
dantes pour les systèmes dynamiques discrets et continus. Dans ce chapitre,
nous présentons un cadre théorique d’approximation qui s’applique aux deux
types de systèmes. Ce cadre, introduit dans [GP07b], est fondé sur une hiérar-
chie de métriques d’approximation généralisant la hiérarchie usuelle des re-
lations d’inclusion de langage, simulation et bisimulation qui constituent les
outils usuels pour l’approximation des systèmes dynamiques discrets. Intu-
itivement, ces métriques mesurent la qualité de l’approximation d’un système
par un autre en considérant la distance entre leurs comportements observés.
Les relations traditionnelles sont capturées lorsque ces métriques sont mises à
0. Les notions centrales de notre approche sont les relations de simulation ou
de bisimulation approchée et leur caractérisation fonctionnelles appelées fonc-
tions de simulation et bisimulation et définies par inégalités de type Lyapunov.
En particulier, ces fonctions se montrent très utiles pour calculer des bornes
garanties de nos métriques d’approximation.

A major challenge in the area of hybrid systems is to think about continuous and
discrete dynamics in a unified systems theoretic foundation. In particular, theories of
system approximation, which are crucial for the application of analysis and synthesis
techniques to complex systems, have been developed independently on both sides. For
continuous systems, approximation is traditionally tackled through metrics, for instance
between transfer functions [ASG00] as in the established domain of model reduction. For
discrete systems, approximation is usually specified from the set theoretic point of view:
usual abstraction relationships such as language inclusion, simulation and bisimulation
relations [Mil89, CGP00] require inclusion or equality of the systems observed behav-
iors. In the past decade, these notions have been extended to continuous and hybrid
systems [Pap03, vdS04, HTP05] providing a basis for a common theory of system approx-
imation.

11
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The notions of language inclusion, simulation, and bisimulation for both discrete and
continuous systems are all “exact”, requiring outputs of two systems to match exactly.
As these exact relationships between discrete systems do not permit any error, there
are clear limitations in the amount of system compression or approximation that can be
achieved. Approximate relationships which do allow for the possibility of a quantifiable
error, certainly allows for more dramatic system compression. This has been the tradi-
tion for continuous systems, and it has also been argued [CB02, dAFS04] that in several
cases, quantitative notions for discrete or hybrid system approximation are not only better
candidates for complexity reduction but also provide more robust relationships between
systems.

In this chapter, we review a framework for system approximation that applies to both
discrete and continuous transition systems by providing quantitative generalizations of
language inclusion, simulation, and bisimulation. Our approximation framework has been
introduced in [GP07b] and applies equally to discrete and continuous systems. It is based
on a hierarchy of approximation metrics, which generalizes the usual relationship hierar-
chy of language inclusion, simulation and bisimulation. These metrics essentially quantify
how well a system is approximated by another based on the distance between their ob-
served behaviors. The traditional relationships are captured as the zero sections of these
approximation metrics. The central notions in this framework are that of approximate
simulation and bisimulation relations and their functional characterizations called simula-
tion and bisimulation functions and defined by Lyapunov-type inequalities. In particular,
these functions show to be very useful to compute guaranteed upper-bounds on the ap-
proximation metrics.

2.1 Hierarchy of Approximation Metrics

In this section, we introduce a theoretical approximation framework based on a hierarchy
of metrics generalizing the notions of language inclusion, simulation, and bisimulation.

2.1.1 Transition systems

We consider transition systems which enables us to model in a common framework discrete,
continuous and hybrid systems with either deterministic or non-deterministic dynamics
(see e.g. [AHLP00, Tab09]).

Definition 2.1 (Transition systems) A transition system T = (X,U,S, X0, Y,O) con-
sists of a set of states X; a set of inputs U ; a transition map S : X × U → 2X ; a set of
initial states X0 ⊆ X; a set of outputs Y ; and an output map O : X → Y .

T is metric if the sets of states X and outputs Y are equipped with metrics. If the
set of states X and inputs U are countable or finite, then T is said discrete or symbolic,
respectively. The transition map captures the dynamics of the system: x′ ∈ S(x, u) means
that the state of the system can evolve from x to x′ under the action of input u. Input
u ∈ U belongs to the set of enabled inputs at state x ∈ X, denoted Enab(x), if S(x, u) 6= ∅.
T is said to be deterministic if for all x ∈ X, for all u ∈ Enab(x), S(x, u) consists of a
unique element. State x ∈ X is said to be blocking if Enab(x) = ∅, otherwise it is said to
be non-blocking. T is said to be non-blocking if all states are non-blocking. It is sometimes
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necessary to require some additional technical assumptions on metric transition systems,
such as local compactness of the set of states X; continuity of the map O and of the
set-valued map S; compactness of the set of initial states X0 and of S(x, u) for all x ∈ X,
u ∈ U ; and open support of the set-valued map S(., u), for all u ∈ U . Metric transition
systems satisfying these assumptions are called regular.

A state trajectory is a sequence of states and inputs of the form σX = (x0, u0), (x1, u1),
. . . , (xN−1, uN−1), xN , where x0 ∈ X0 and for all i = 0, . . . , N − 1, xi+1 ∈ S(xi, ui); the
associated output trajectory is a sequence of outputs and inputs σY = (y0, u0), (y1, u1), . . . ,
(yN−1, uN−1), yN , where for all i = 0, . . . , N , yi = O(xi). l(σX) = l(σY ) = N is called
the length of σX and σY ; it is also possible to consider infinite sequences, in that case
l(σX) = l(σY ) = +∞. The set of output trajectories of T , denoted L(T ), is called the
observed behavior or the language of transition system T . A state x ∈ X is said to be
reachable if there exists a state trajectory σX = (x0, u0), (x1, u1), . . . , (xN−1, uN−1), xN

with xN = x.

Example 2.1 Let us show how transition systems can serve to describe the dynamics of
a continuous system given by

Σ :

{

ẋ(t) = f(x(t)), x(0) ∈ I, x(t) ∈ Rn,
y(t) = g(x(t)), y(t) ∈ Rp

Following [Pap03], we define the associated transition system T (Σ) = (X,U,S, X0, Y,O)
where the set of states is X = Rn; the inputs stand for the time U = R+; the set of
initial states is X0 = I; the set of outputs is Y = Rp; the output map is O = g; and
the transition relation is given by the flow of the differential equation: x′ ∈ S(x, t) if and
only if there exists a differentiable function x such that x(0) = x, x(t) = x′ and for all
s ∈ [0, t], ẋ(s) = f(x(s)). Let us assume that I is compact, g is continuous and f is
locally Lipschitz continuous, then we can show that T (Σ) is a deterministic, non-blocking,
regular metric transition system when the set of states and observations are equipped with
the Euclidean distance. We shall see other descriptions of continuous or hybrid dynamics
by means of transition systems in the following chapters.

2.1.2 Behavioral pseudo-metrics

We want to quantify the distance between the behaviors of two metric transition systems,
possibly of different nature (e.g. one can be continuous and the other one discrete or
symbolic). Let us consider two metric transition systems Tj = (Xj , U,Sj , X0

j , Y,Oj),

j ∈ {1, 2}, with common sets of inputs and outputs and let σj = (y0j , u
0
j ), (y

1
j , u

1
j ), . . . be

output trajectories of these systems. The set of outputs Y is equipped with a metric d.
The distance between the output trajectories σ1 and σ2 is defined as

d∞(σ1, σ2) =

{

sup
i≤l(σ1)

d(yi1, y
i
2) if l(σ1) = l(σ2) and ∀i = 0, . . . , l(σ1)− 1, ui1 = ui2;

+∞ otherwise.

Essentially, the distance between σ1 and σ2 is finite if they have the same length and the
same sequence of inputs; in that case the distance between the trajectories is the maximal
distance between the sequences of outputs.

We can now define metrics measuring the distance between the languages of T1 and
T2 and generalizing the notion of language inclusion:
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Definition 2.2 (Language metrics) The directed and undirected language metrics are
defined respectively as

d→L (T1, T2) = sup
σ1∈L(T1)

inf
σ2∈L(T2)

d∞(σ1, σ2)

dL(T1, T2) = max {d→L (T1, T2), d
→
L (T2, T1)} .

The meaning of the directed language metric is as follows: for any output trajectory of
the system T1, one can find an output trajectory of the system T2, with the same sequence
of inputs, such that the distance between the sequence of outputs of the two systems
remains bounded by d→L (T1, T2). In addition, if L(T1) ⊆ L(T2) then d→L (T1, T2) = 0. One
can show that the language metrics are actually directed and undirected pseudo-metrics1

on the set of metric transition systems.
The computation of d→L (T1, T2) and dL(T1, T2) is generally extremely difficult, particu-

larly for non-deterministic systems. Though, we can define a hierarchy of stronger metrics,
that are easier to compute and based on approximate versions of the notions of simulation
and bisimulation relations [Mil89, CGP00]. The notion of “exact” simulation relation has
been traditionally used in computer science as a mean of abstraction of transition systems.
Essentially, a simulation relation of T1 by T2 is a relation on the states of the systems that
describes how to select transitions of T2 in order to match the transitions of T1 and to
produce the same output sequence than T1. The notion of approximate simulation relation
is obtained by relaxing the equality of outputs: instead of requiring them to be identical,
we require that they remain within some specified distance.

Definition 2.3 (Approximate simulation) Let ε ≥ 0, a relation Rε ⊆ X1 × X2 is
called an approximate simulation relation of T1 by T2, of precision ε, if for all (x1, x2) ∈
Rε:

1. d (O1(x1),O2(x2)) ≤ ε,

2. ∀u ∈ U , ∀x′1 ∈ S1(x1, u), ∃x′2 ∈ S2(x2, u) such that (x′1, x
′
2) ∈ Rε.

T2 approximately simulates T1 with precision ε (denoted T1 �ε T2), if there exists Rε, an
approximate simulation relation of T1 by T2, of precision ε, such that for all x1 ∈ X0

1 ,
there exists x2 ∈ X0

2 such that (x1, x2) ∈ Rε.

For ε = 0, we recover the established definition of exact simulation relation (denoted
T1 � T2). Approximate bisimulation is defined in a similar way as the symmetric version
of approximate simulation:

Definition 2.4 (Approximate bisimulation) Let ε ≥ 0, a relation Rε ⊆ X1 × X2 is
called an approximate bisimulation relation between T1 and T2, of precision ε, if for all
(x1, x2) ∈ Rε:

1. d (O1(x1),O2(x2)) ≤ ε,

1A metric on a set E is a positive function d : E × E → R ∪ {+∞}, such that the three following
properties hold: for all e1 ∈ E, e2 ∈ E, e3 ∈ E, d(e1, e3) ≤ d(e1, e2) + d(e2, e3); for all e1 ∈ E, e2 ∈ E,
d(e1, e2) = 0 ⇐⇒ e1 = e2; for all e1 ∈ E, e2 ∈ E, d(e1, e2) = d(e2, e1). We say that (E, d) is a metric
space. If the second property is replaced by e1 = e2 =⇒ d(e1, e2) = 0 then d is called a pseudo-metric. If
the third property is dropped, then d is called a directed metric.
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2. ∀u ∈ U , ∀x′1 ∈ S1(x1, u), ∃x′2 ∈ S2(x2, u) such that (x′1, x
′
2) ∈ Rε.

3. ∀u ∈ U , ∀x′2 ∈ S2(x2, u), ∃x′1 ∈ S1(x1, u) such that (x′1, x
′
2) ∈ Rε.

T1 and T2 are approximately bisimilar with precision ε (denoted T1 ∼ε T2), if there exists
Rε, an approximate bisimulation relation between T1 and T2, of precision ε, such that for
all x1 ∈ X0

1 , there exists x2 ∈ X0
2 such that (x1, x2) ∈ Rε, and conversely.

Again, for ε = 0, we recover the notion of exact bisimulation relation (denoted T1 ∼
T2). Based on the notions of approximate simulation and bisimulations, we can define
metrics that intuitively measures how far two transition systems are from exact simulation
or bisimulation.

Definition 2.5 (Simulation and bisimulation metrics) The simulation and bisimu-
lation metrics are defined respectively by

d→S (T1, T2) = inf {ε| T1 �ε T2} ,

dB(T1, T2) = inf {ε| T1 ∼ε T2} .

One can show that the simulation and bisimulation metrics are respectively directed
and undirected pseudo-metrics over the set of metric transition systems. Interestingly, the
zero sections of these metrics capture the traditional system relationships.

Proposition 2.1 If T1 and T2 are regular metric transition systems then

T1 � T2 ⇐⇒ d→S (T1, T2) = 0,

T1 ∼ T2 ⇐⇒ dB(T1, T2) = 0.

The main result of the section is the following that establishes a hierarchy between
language, simulation and bisimulation metrics:

Theorem 2.1 (Hierarchy of approximation metrics) For all metric transitions sys-
tems T1 and T2 with the same sets of inputs and outputs, the following inequalities hold:

dB(T1, T2) ≥ dL(T1, T2)≥ ≥
d→S (T1, T2) ≥ d→L (T1, T2)

In addition, if T1 and T2 are deterministic, then

dB(T1, T2) = dL(T1, T2) and d→S (T1, T2) = d→L (T1, T2).

2.2 Simulation and Bisimulation Functions

In this section, we focus on the computation of the simulation and bisimulation metrics.
In the following, we assume that the metric transition systems T1 and T2 we consider
are regular. We present an approach enabling to compute guaranteed upper-bounds of
these metrics, based on the notion of simulation and bisimulation functions defined by
Lyapunov like inequalities. Essentially, a simulation function of T1 by T2 is a positive
function defined on X1×X2, bounding the distance between the outputs associated to the
couple (x1, x2) and non-increasing under the dynamics of the systems.
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Definition 2.6 (Simulation function) A function V : X1×X2 → R+∪{+∞} is called a
simulation function of T1 by T2 if its sub-level sets are closed, and for all (x1, x2) ∈ X1×X2:

V(x1, x2) ≥ max







d(O1(x1),O2(x2)), sup
u∈U

x′

1∈S1(x1,u)

inf
x′
2∈S2(x2,u)

V(x′1, x′2)







. (2.1)

The sub-level sets of a simulation function of T1 by T2 provide a convenient way to
define approximate simulation relations of T1 by T2.

Proposition 2.2 Let V be a simulation function of T1 by T2. Then, for all ε ≥ 0,

Rε = {(x1, x2) ∈ X1 ×X2| V(x1, x2) ≤ ε}

is an approximate simulation relation of T1 by T2, of precision ε.

Let us remark that, particularly, the zero set of a simulation function is an exact
simulation relation. As a consequence of the previous result, an over-approximation of the
simulation metric can be computed using a simulation function.

Proposition 2.3 Let V be a simulation function of T1 by T2. Then,

d→S (T1, T2) ≤ sup
x1∈X0

1

inf
x2∈X0

2

V(x1, x2).

Actually, it is possible to show that there exists a particular simulation function sat-
isfying a Bellman equation and for which the upper bound given in the previous theorem
is tight.

Theorem 2.2 (Minimal simulation function) There exists a simulation function of
T1 by T2, Vmin

S such that for all simulation functions of T1 by T2, V, for all (x1, x2) ∈
X1 ×X2, Vmin

S (x1, x2) ≤ V(x1, x2). This minimal simulation function is also the smallest
solution of the Bellman equation

Vmin
S (x1, x2) = max







d(O1(x1),O2(x2)), sup
u∈U

x′

1∈S1(x1,u)

inf
x′
2∈S2(x2,u)

Vmin
S (x′1, x

′
2)







. (2.2)

Then, the simulation metric can be computed by

d→S (T1, T2) = sup
x1∈X0

1

inf
x2∈X0

2

Vmin
S (x1, x2).

For symbolic transition systems, it is possible to solve the Bellman equation (2.2) and
to compute exactly the simulation metrics. However, this is not the case in general, and
in practice, we often use the characterization given by Lyapunov like inequalities (2.1) and
compute upper-bounds of the simulation metrics. Similarly, the bisimulation metric can be
computed or approximated using bisimulation functions, which are essentially symmetric
versions of the simulation functions:
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Definition 2.7 (Bisimulation function) A function V : X1 × X2 → R+ ∪ {+∞} is
called a bisimulation function between T1 and T2 if its sub-level sets are closed, and for all
(x1, x2) ∈ X1 ×X2:

V(x1, x2) ≥ max







d(O1(x1),O2(x2)), sup
u∈U

x′

1∈S1(x1,u)

inf
x′
2∈S2(x2,u)

V(x′1, x′2), (2.3)

sup
u∈U

x′

2∈S2(x2,u)

inf
x′
1∈S1(x1,u)

V(x′1, x′2)







.

Results similar to those of simulation functions hold for the case of bisimulation func-
tions. In particular, the sub-level sets of a bisimulation function is an approximate bisim-
ulation relation.

Proposition 2.4 Let V be a bisimulation function between T1 and T2. Then, for all ε ≥ 0,

Rε = {(x1, x2) ∈ X1 ×X2| V(x1, x2) ≤ ε}

is an approximate bisimulation relation between T1 and T2, of precision ε.

The zero set of a bisimulation function is an exact bisimulation relation. An over-
approximation of the bisimulation metric can be computed using a bisimulation function.

Proposition 2.5 Let V be a bisimulation function between T1 and T2. Then,

dB(T1, T2) ≤ max

{

sup
x1∈X0

1

inf
x2∈X0

2

V(x1, x2), sup
x2∈X0

2

inf
x1∈X0

1

V(x1, x2)
}

.

Also, there exists a particular bisimulation function allowing us to compute the exact
value of the bisimulation metric:

Theorem 2.3 (Minimal bisimulation function) There exists a bisimulation function
between T1 and T2, Vmin

B such that for all bisimulation functions between T1 and T2, V,
for all (x1, x2) ∈ X1 ×X2, Vmin

B (x1, x2) ≤ V(x1, x2). This minimal bisimulation function
is also the smallest solution of the Bellman equation

Vmin
B (x1, x2) = max







d(O1(x1),O2(x2)), sup
u∈U

x′

1∈S1(x1,u)

inf
x′
2∈S2(x2,u)

Vmin
B (x′1, x

′
2), (2.4)

sup
u∈U

x′

2∈S2(x2,u)

inf
x′
1∈S1(x1,u)

Vmin
B (x′1, x

′
2)







.

Then, the bisimulation metric can be computed by

dB(T1, T2) = max

{

sup
x1∈X0

1

inf
x2∈X0

2

Vmin
B (x1, x2), sup

x2∈X0
2

inf
x1∈X0

1

Vmin
B (x1, x2)

}

.
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0 0

11 1

2 23 3

Figure 2.1: These two transition systems generate the same sequences of outputs but are
only approximately bisimilar with precision 1.

Example 2.2 We first consider a simple example for discrete systems. Consider the two
symbolic transition systems represented in Figure 2.1, where the common set of outputs is
{1, 2, 3, 4}, the common set of inputs is a singleton and thus multiple outgoing transitions
from some of the states are manifestations of non-determinism. It is straightforward to
verify that both systems can generate the same sequences of outputs: 0, 1, 2, 2, 2, . . . and
0, 1, 3, 3, 3, . . . . Then, it follows that dL(T1, T2) = 0. The computation of the simulation
and bisimulation metrics is also possible by solving the Bellman equations (2.2) and (2.4).
Then, we obtain that d→S (T1, T2) = 1, d→S (T2, T1) = 0 and dB(T1, T2) = 1. Therefore,
T1 and T2 are language equivalent though they are not bisimilar but only approximately
bisimilar with precision 1.

Example 2.3 Before considering more involved applications of our approximation frame-
work, we present a simple example showing a procedure for the computation of bisimulation
functions for deterministic linear systems. For j ∈ {1, 2}, let

Σj :

{

ẋj(t) = Ajxj(t), xj(t) ∈ Rnj , xj(0) ∈ I0j ,

yj(t) = Cjxj(t), yj(t) ∈ Rp.

As in Example 2.1, we define associated transition systems T (Σj) = (Xj , U,Sj , X0
j , Y,Oj)

where the sets of states are Xj = Rnj ; the common set of inputs is U = R+ and repre-
sents time; the common set of outputs is Y = Rp; the sets of initial states are X0

j = I0j ;
the observation maps are given by Oj(xj) = Cjxj; and the transition maps are given by
x′j ∈ Sj(xj , t) if and only if x′j = etAjxj. The sets of states and outputs are equipped
with the usual Euclidean distance, making T (Σj) deterministic, non-blocking, regular met-
ric transition systems. We aim at computing the bisimulation metrics between T (Σ1)
and T (Σ2). For these simple systems, equation (2.4) can be shown to be equivalent to a
Hamilton Jacobi Bellman partial differential equation, which is generally hard to solve,
particularly for high dimensional systems. Therefore, we shall compute only an upper
bound of the bisimulation metrics using a bisimulation function. Restricting our attention
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to functions of the form

V(x1, x2) =
√

(x1, x2)⊤M(x1, x2),

equation (2.3) reduces to the following set of linear matrix inequalities:

M ≥ C⊤C and A⊤M +MA ≤ 0

where

C = [C1 − C2] and A =

[

A1 0
0 A2

]

.

The first inequality states that the bisimulation function bounds the distance between out-
puts while the second one ensures that the function decreases during the evolution of the
systems. This set of linear matrix inequalities can be efficiently solved using semi-definite
programming, even for high dimensional systems. Then, following Proposition 2.5, the
obtained bisimulation function can be used to compute an over-approximation of the bisim-
ulation metric. Let us remark that the linear matrix inequalities are always solvable if both
systems are stable. Hence, two stable linear systems are always approximately bisimilar,
and an upper-bound of the bisimulation metric can always be computed.

Discussion: The results presented in this chapter were developed in collaboration with
George J. Pappas during my postdoctoral stay at University of Pennsylvania. All proofs
can be found in the paper [GP07b].

Prior to our work, the use of approximation metrics instead of relationships had
been considered in the context of probabilistic transition systems [PHW03, vBMOW03,
DGJP04] where it is natural to consider approximations of the transition probabilities.
The earliest work on a notion of approximate bisimilarity for non-probabilistic transition
systems can be found in [YW00] where the notion of bisimulation index can be related to
that of precision in Definition 2.4. Our work is more related to that of [dAFS04] where the
notion of branching distance defined in that work is actually close to the notion of mini-
mal bisimulation function, satisfying equation (2.4), between a system and itself. Similar
ideas were also explored in [vB05, HMP05]. A construction equivalent to our approximate
simulation relations was also introduced in [Tab06] based on the use of set valued output
maps.

There has been several extensions of the approximation framework presented in this
section, essentially by relaxing the equality of inputs required in the definition of approx-
imate simulation and bisimulation. One approach consists in considering metrics on the
set of states and on the set of inputs [JDBP09, QFD11a]; another approach extends the
framework by defining the notion of alternating approximate (bi)simulation [PT09].
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Chapter 3

Controller Synthesis using

Approximate Bisimulation

Résumé : L’utilisation de systèmes symboliques ou discrets comme abstrac-
tions de la dynamique continue est devenue une approche commune pour le
contrôle des systèmes hybrides. Le bénéfice de cette approche est double :
d’abord en abstrayant la dynamique continue, la synthèse de contrôleur peut
être résolue par les méthodes algorithmiques existantes pour les systèmes dy-
namiques discrets. Ensuite, si l’on peut établir une relation formelle entre les
comportements du système original et de son abstraction, le contrôleur obtenu
est “correct par conception”. Ce chapitre traite de l’utilisation d’abstractions
approximativement bisimilaires pour la synthèse de contrôleurs pour des spécifi-
cations de sûreté ou d’atteignabilité. Dans la première partie, nous présentons
des approches spécifiques pour résoudre les deux classes de problèmes [Gir12].
Pour les contrôleurs obtenus nous fournissons des estimations de leur distance
au contrôleur maximal (pour la sûreté) ou optimal (pour l’atteignabilité). Dans
la deuxième partie, nous appliquons ces approches à la synthèse de contrôleurs
pour des systèmes dynamiques à commutation. Nous montrons que pour une
classe de systèmes incrémentalement stables, il est toujours possible de calculer
des abstractions symboliques approximativement bisimilaires dont la précision
peut être arbitrairement choisie [GPT10]. Nos approches nous permettent donc
de synthétiser, pour des systèmes dynamiques à commutation, des contrôleurs
pour la sûreté ou l’atteignabilité qui sont corrects par conception; de plus,
les contrôleurs maximaux et optimaux peuvent être approchés aussi prêt que
souhaité. Nous discutons également la réduction de la complexité des contrô-
leurs, en utilisant des techniques de quantification de l’état et une représentation
efficace de la loi de commande [Gir13]. Dans la dernière partie du chapitre,
nous présentons une approche pour réduire le coût algorithmique de la synthèse
de contrôleurs, basée sur des abstractions symboliques multi-échelles [CGG11b,
CGG11a]. Des algorithmes de synthèse qui exploitent les spécificités de ces ab-
stractions ont été implémentés dans l’outil CoSyMA [MGG13] : celles-ci sont
calculées à la volée et les échelles les plus fines de l’abstraction ne sont ex-
plorées que lorsque cela est nécessaire. Des résultats expérimentaux montrent
une amélioration significative de la complexité de la synthèse de contrôleurs.

21
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The use of symbolic or discrete models as abstractions of the continuous dynamics has
become a standard approach to hybrid systems design (see for instance [RO98, MR99,
HvS01, TP06, KB06, Rei09]). The benefit of this approach is double. Firstly, by abstract-
ing the continuous dynamics, controller synthesis problems can be efficiently solved using
techniques developed in the areas of supervisory control of discrete-event systems or algo-
rithmic game theory. Secondly, if the behaviors of the original system and of the discrete
abstraction are formally related by some (exact or approximate) behavioral relationship,
the synthesized controller can be shown to be “correct by design” and thus the need of
formal verification is reduced.

This chapter deals with the synthesis of controllers using approximately bisimilar ab-
stractions with an emphasis on safety and reachability problems. Safety problems consist
in synthesizing a controller that restricts the behaviors of a system so that its outputs
remain in some specified safe set. One is usually interested in designing a controller that
is as permissive as possible since this makes it possible, using modular approaches, to
ensure, a posteriori, secondary control objectives (see e.g. [RW87]). Reachability prob-
lems consist in synthesizing a controller that steers the observations of the system to some
target region while keeping them in a given safe set along the way. In addition, in order
to choose among the possible controllers, we try to minimize the time to reach the target.
Hence, we consider a time-optimal control problem.

In the first part of this chapter, we propose abstraction-based approaches to solve both
classes of problems. We start by synthesizing a controller for an approximately bisimilar
abstraction of our original system. Then, using specific concretization procedures, we
obtain a controller for our original system that is proved “correct by design”. For safety
problems, we provide estimates of the distance between the synthesized controller and the
maximal (i.e the most permissive) safety controller. For reachability problems, we provide
estimates of the distance between the performances of the synthesized controller and of
the time-optimal controller.

In the second part of this chapter, we apply these approaches to a class of switched sys-
tems. Switched systems constitute an important modeling paradigm faithfully describing
many engineering systems in which software interacts with the physical world. In the past
decades, there has been considerable progress on stability and stabilization of switched sys-
tems [Lib03, LA09]. Though, the synthesis of switching controllers for different objectives
such as safety or reachability still remains a challenging problem. Controller synthesis for
switched systems with safety or reachability specifications can for instance be tackled by
direct application of fixed-point computation or dynamic programming using guaranteed
over-approximations [ABD+00] or convergent approximations [MT00] of reachable sets. In
the first case, the synthesized controllers are correct by design but there is no guarantee
that the synthesis algorithm will terminate. In the second case, we can only prove that the
synthesized controllers are “correct in the limit” in the sense that correct controllers can be
approximated arbitrarily close. The approaches based on the use of symbolic abstractions
do not suffer from these drawbacks and can be applied provided we are able to compute
a suitable abstraction of the switched system. We show that for a class of incrementally
stable switched systems, it is always possible to compute approximately bisimilar symbolic
abstractions thus enabling the design of safety and reachability controllers that are correct
by design. Moreover, since any precision of approximation can be achieved the maximal
or time-optimal controller can be approached arbitrarily close. We also discuss techniques
that can help in synthesizing switching controllers of low complexity, using quantization
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of the state and an efficient representation of the control map.
In the last part of the chapter, we present an approach for reducing the algorithmic

complexity of switching controller synthesis by constructing multi-scale symbolic abstrac-
tions that are approximately bisimilar to a switched system. Synthesis algorithms ex-
ploiting the specificities of multi-scale abstractions have been implemented in the tool
CoSyMA [MGG13]: the abstractions are computed on the fly during controller synthe-
sis and the dynamics at the finest scales are explored only when necessary. We provide
experimental results that show significant improvements of the complexity of controller
synthesis using multi-scale abstractions.

3.1 Synthesis using Approximately Bisimilar Abstractions

In this section, we show how approximately bisimilar abstractions can be used for the
synthesis of safety and reachability controllers. We present our approaches introduced
in [Gir12] in the general framework of transition systems. We shall consider only static
(i.e. without memory) state-feedback controllers. However, we will just use the term
controller for brevity.

Definition 3.1 (Controller) A controller for transition system T = (X,U,S, X0, Y,O)
is a set-valued map C : X → 2U such that C(x) ⊆ Enab(x), for all x ∈ X. The dynamics
of the controlled system is described by the transition system T/C = (X,U,SC , X0, Y,O)
where the transition map is given by x′ ∈ SC(x, u) if and only if u ∈ C(x) and x′ ∈ S(x, u).

The support of C is the set Supp(C) = {x ∈ X| C(x) 6= ∅}. We would like to emphasize
the fact that a controller is a set-valued map, at a given state x it enables a set of admissible
inputs C(x) ⊆ U . A controller executes as follows: the state x of T is measured, an input
u ∈ C(x) is selected and actuated; then, the system takes a transition x′ ∈ S(x, u). The
blocking states of T/C are the elements of X \ Supp(C). For a subset X ′ ⊆ X, we denote
C(X ′) =

⋃

x∈X′ C(x). Given two approximately bisimilar transition systems, we show
in this section how one system can be used for the synthesis of safety or reachability
controllers for the other system.

3.1.1 Safety controllers

Problem formulation: Let T = (X,U,S, X0, Y,O) be a transition system, let Ys ⊆ Y
be a set of outputs associated with safe states. We consider the synthesis problem that
consists in determining a controller that keeps the output of the system inside the specified
safe set Ys.

Definition 3.2 (Safety controller) A controller C is a safety controller for T and spec-
ification Ys if for all x ∈ Supp(C):

1. O(x) ∈ Ys (safety);

2. ∀u ∈ C(x), S(x, u) ⊆ Supp(C) (deadend freedom).

It is easy to verify from the previous definition that for any initial state x0 ∈ Supp(C), the
controlled system T/C will never reach a blocking state (because of the deadend freedom
condition) and its output will remain in the safe set Ys forever (because of the safety
condition).
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There are in general several controllers that solve the safety problem. We are usually
interested in synthesizing a controller that enables as many actions as possible. This
notion of permissivity can be formalized by defining a partial order on controllers.

Definition 3.3 (Maximal safety controller) Let C1 and C2 be two controllers for tran-
sition system T , C1 is more permissive than C2, denoted C2 � C1, if for all x ∈ X,
C2(x) ⊆ C1(x). The controller C∗ for T is the maximal safety controller for specification
Ys, if C∗ is a safety controller for specification Ys, and for all safety controllers C for
specification Ys, C � C∗.

It is well known that the maximal safety controller exists, is unique and can be com-
puted using a fixed point algorithm (see e.g. [Mal02, Tab09]). This algorithm is guaranteed
to terminate in a finite number of steps for symbolic transition systems. For other sys-
tems, there is no guarantee that the algorithm will terminate. In this case, a synthesis
approach based on approximately bisimilar abstractions can help to compute effectively a
safety controller with, in addition, an estimation of the distance to maximality.

Abstraction based controller synthesis: Let Ti = (Xi, U,Si, X0
i , Y,Oi), i = 1, 2, be

metric transition systems such that T1 ∼ε T2. Let Rε ⊆ X1 ×X2 denote the approximate
bisimulation relation of precision ε between T1 and T2. For x1 ∈ X1, we denote Rε(x1) =
{x2 ∈ X2|(x1, x2) ∈ Rε}. Let T1 be the system that we want to control and T2 be an
approximately bisimilar abstraction of T1. We present an approach for synthesizing safety
controllers for a specification Ys.

Definition 3.4 Let Y ′ ⊆ Y and ϕ ≥ 0. The ϕ-contraction of Y ′ is the subset of Y defined
as follows

Cϕ(Y
′) =

{

y′ ∈ Y ′| ∀y ∈ Y, d(y, y′) ≤ ϕ =⇒ y ∈ Y ′} .

The ϕ-expansion of Y ′ is the subset of Y defined as follows

Eϕ(Y
′) =

{

y ∈ Y | ∃y′ ∈ Y ′, d(y, y′) ≤ ϕ
}

.

We start by synthesizing a safety controller for the abstraction T2 and the specification
Cε(Ys). This controller is denoted C2,ε. We shall not discuss further the synthesis of this
controller which can be done, if T2 is symbolic, using a fixed point algorithm. The second
step of our approach allows us to design a safety controller for system T1 and specification
Ys, obtained from the controller C2,ε using the following concretization procedure:

Theorem 3.1 (Correctness by design) Let C2,ε be a safety controller for T2 and spec-
ification Cε(Ys). Let C1 be the controller for T1 given by

∀x1 ∈ X1, C1(x1) = C2,ε(Rε(x1)). (3.1)

Then, C1 is a safety controller for specification Ys.

If we use the maximal safety controller for T2, it is desirable to have an estimate of
the distance between the controller given by the concretization equation (3.1) and the
maximal safety controller for T1. This is given by the following result:
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Theorem 3.2 (Maximality in the limit) Let C∗2,ε and C∗2,ε be the maximal safety con-
trollers for T2 and specifications Cε(Ys) and Eε(Ys) respectively. Let C1 and C1,2ε be the
controllers for T1 obtained by the concretization equation (3.1) from C∗2,ε and C∗2,ε respec-
tively. Let C∗1 , C∗1,2ε and C∗

1,2ε
be the maximal safety controllers for T1 and specifications

Ys, C2ε(Ys) and E2ε(Ys) respectively. Then,

C∗1,2ε � C1 � C∗1 � C1,2ε � C∗1,2ε.

Hence, by computing the controllers C1 and C1,2ε one is able to give a certified upper-
bound on the distance between the controller C1 we will use to control T1 and the maximal
safety controller C∗1 . Moreover, if the safety problem is robust, in the sense that C∗1,2ε and
C∗
1,2ε

approach C∗1 as ε goes to 0 (i.e. slightly different specifications result in only slightly

different maximal controllers); then C1 and C1,2ε also approach C∗1 as ε gets smaller and C∗1
can be approximated arbitrarily close.

3.1.2 Reachability controllers

We present a similar approach for the synthesis of reachability controllers.

Problem formulation: Let T = (X,U,S, X0, Y,O) be a transition system, let Ys ⊆ Y
be a set of outputs associated with safe states, let Yt ⊆ Ys be a set of outputs associated
with target states. We consider the synthesis problem that consists in determining a
controller steering the output of the system to Yt while keeping the output in Ys along the
way. In addition, in order to choose among the possible controllers, we try to minimize the
time to reach the target. Thus, we consider an optimal control problem. In this section,
we assume for simplicity, that T is non-blocking; it would actually be sufficient to assume
that all the states of T associated to outputs in Ys are non-blocking.

Definition 3.5 (Entry time) Let C be a controller for T such that for all x ∈ X, C(x) 6=
∅. The entry time of T/C from x0 ∈ X for reachability specification (Ys, Yt) is the smallest
N ∈ N such that for all state trajectories of the controlled system T/C, of length N and
starting from x0, (x0, u0), (x1, u1), . . . , (xN−1, uN−1), xN , there exists K ∈ {0, . . . , N} such
that

1. ∀k ∈ {0, . . . ,K}, O(xk) ∈ Ys;

2. O(xK) ∈ Yt.

The entry time is denoted by J(T/C, Ys, Yt, x0). If such a N ∈ N does not exist, then we
define J(T/C, Ys, Yt, x0) = +∞.

The condition that C(x) 6= ∅, for all x ∈ X, ensures that the controlled system T/C is
non-blocking. The states from which the controlled system T/C is guaranteed to reach Yt
without leaving Ys are the states with finite entry-time. We can now define the notion of
time-optimal controller:

Definition 3.6 (Time-optimal reachability controller) A controller C∗ for T is a
time-optimal reachability controller for specification (Ys, Yt) if for all controllers C, for
all x ∈ X, J(T/C∗, Ys, Yt, x) ≤ J(T/C, Ys, Yt, x). The time-optimal value function for
reachability specification (Ys, Yt) is defined as J∗(T, Ys, Yt, x) = J(T/C∗, Ys, Yt, x).
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Solving the time-optimal control problem consists in synthesizing a time-optimal con-
troller. It is well known that a time-optimal controller exists (but may be not unique) and
can be determined using the time-optimal value function (which is unique). The time-
optimal value function can be computed using dynamic programming [Ber00, Tab09]. The
dynamic programming algorithm is guaranteed to terminate in a finite number of steps
for symbolic transition systems. Here again, for other systems, there is no guarantee that
the algorithm will terminate and an abstraction-based approach is helpful to compute a
sub-optimal controller with an estimation of the distance to optimality.

Abstraction based controller synthesis: Let Ti = (Xi, U,Si, X0
i , Y,Oi), i = 1, 2, be

metric transition systems such that T1 ∼ε T2. Let Rε ⊆ X1 ×X2 denote the approximate
bisimulation relation of precision ε between T1 and T2. Let T1 be the system that we want
to control and T2 be an approximately bisimilar abstraction of T1.

We present an approach for synthesizing reachability controllers. We first synthesize
a controller C2,ε for the abstraction T2 and the reachability specification given by the
contracted safe set Cε(Ys) and target set Cε(Yt). If T2 is symbolic, this can be done using
dynamic programming. Then, we design a controller for T1 and reachability specification
(Ys, Yt) using the following concretization procedure:

Theorem 3.3 (Correctness by design) Let C2,ε be a controller for T2, let us define C1,
the controller for T1 given by

∀x1 ∈ X1, C1(x1) = C2,ε
(

arg min
x2∈Rε(x1)

J(T2/C2,ε, Cε(Ys), Cε(Yt), x2)

)

. (3.2)

Then, for all x1 ∈ X1:

J(T1/C1, Ys, Yt, x1) ≤ min
x2∈Rε(x1)

J(T2/C2,ε, Cε(Ys), Cε(Yt), x2). (3.3)

The previous theorem gives us a way by equation (3.2) to concretize a controller
for abstraction T2 into a controller for T1. Equation (3.3) provides guarantees on the
correctness and the performance of this controller. Particularly, let us remark that the
states of T1/C1 from which the control objective is achieved (i.e. the states with finite
entry-time) are those related through the approximate bisimulation relation Rε to states
of T2/C2,ε with finite entry-time.

In addition, if C2,ε is the time-optimal controller for T2 and reachability specification
(Cε(Ys), Cε(Yt)), the following result gives estimates of the distance to optimality for the
controller C1.

Theorem 3.4 (Optimality in the limit) Let C∗2,ε, C∗2,ε be time-optimal controllers for
T2 and specification (Cε(Ys), Cε(Yt)) and (Eε(Ys), Eε(Yt)) respectively. Let C1 be the con-
troller for T1 obtained from C∗2,ε by the concretization equation (3.2). Let C1,2ε be the
controller for T1 given by

∀x1 ∈ X1, C1,2ε(x1) = C∗2,ε
(

arg min
x2∈Rε(x1)

J(T2/C∗2,ε, Eε(Ys), Eε(Yt), x2)

)

.

Then, for all x1 ∈ X1,

J∗(T1, E2ε(Ys), E2ε(Yt), x1) ≤ J(T1/C1,2ε, E2ε(Ys), E2ε(Yt), x1) ≤
J∗(T1, Ys, Yt, x1) ≤ J(T1/C1, Ys, Yt, x1) ≤ J∗(T1, C2ε(Ys), C2ε(Yt), x1).
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By computing the controllers C1 and C1,2ε one is able to give a certified upper-bound
on the distance to optimality of the controller C1 we will use to control T1. Moreover, if the
reachability problem is robust (i.e. the time-optimal value function depends continuously
on the specification); then J∗(T1, Ys, Yt, x1) can be approximated arbitrarily close.

In the next section, we will use our approaches for computing safety and reachability
controllers for switched systems using approximately bisimilar symbolic abstractions.

3.2 Controllers for Switched Systems

In this section, we apply the previous results to the synthesis of controllers for a class of
incrementally stable switched systems for which it is possible to compute approximately
bisimilar abstractions.

3.2.1 Approximately bisimilar abstractions of switched systems

We describe an approach, presented in [GPT10], for computing symbolic abstractions of
switched systems of the following form:

Σ : ẋ(t) = fp(t)(x(t)), x(t) ∈ Rn, p(t) ∈ P

where P is a finite set of modes. The switching signals p : R+ → P are assumed to
be piecewise constant functions, continuous from the right and with a finite number of
discontinuities on every bounded interval. We use x(t, x,p) to denote the point reached
at time t ∈ R+ from the initial condition x under the switching signal p. We assume that
the vector fields fp are locally Lipschitz continuous and such that the trajectories of Σ are
defined on [0,+∞[. Necessary and sufficient conditions to be satisfied by fp can be found
in [AS99].

Given a parameter τ > 0, we define a transition system Tτ (Σ) that describes trajec-
tories of duration τ of Σ. This can be seen as a time sampling process. This is natural
when the switching in Σ is determined by a periodic controller of period τ . Formally,
Tτ (Σ) = (X,U,S, X0, Y,O) where the set of states is X = Rn; the set of inputs is the set
of modes U = P ; the transition map is given by

∀x ∈ Rn, ∀p ∈ P, x′ ∈ S(x, p) ⇐⇒ x′ = x(τ), where ẋ(t) = fp(x(t)), x(0) = x;

the set of initial states is X0 = Rn; the set of outputs is Y = Rn; and the observation
map O is the identity map over Rn. Tτ (Σ) is a non-blocking, deterministic, regular metric
transition systems when the set of observations Y = Rn is equipped with the Euclidean
distance.

The computation of a symbolic abstraction of Tτ (Σ) can be done by the following
approach. We start by approximating the set of states X = Rn by a lattice:

[Rn]η =

{

q ∈ Rn

∣

∣

∣

∣

qi = ki
2η√
n
, ki ∈ Z, i = 1, . . . , n

}

,

where qi is the i-th coordinate of q and η > 0 is a state space discretization parameter.
We associate a quantizer Qη : Rn → [Rn]η defined as follows q = Qη(x) if and only if

∀i = 1, . . . , n, qi − η√
n
≤ xi < qi +

η√
n
.
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Sa(q, p)

S(q, p)

Figure 3.1: Principle for the computation of a symbolic abstraction of a switched system.

By simple geometrical considerations, we can check that for all x ∈ Rn, ‖Qη(x) − x‖ ≤
η. We can then define the abstraction of Tτ (Σ) as the transition system Tτ,η(Σ) =
(Xa, U,Sa, X0

a , Y,Oa), where the set of states is Xa = [Rn]η; the set of labels remains
the same U = P ; the transition relation is essentially obtained by quantizing the transi-
tion relation of Tτ (Σ) (see Figure 3.1):

∀q ∈ [Rn]η, ∀p ∈ P, Sa(q, p) = Qη(S(q, p));

the set of initial states is X0
a = [Rn]η; the set of outputs remains the same Y = Rn; and

the observation map Oa is the inclusion map from [Rn]η to Rn. Note that the transition
system Tτ,η(Σ) is a non-blocking, deterministic, regular metric transition systems when
the set of observations Y = Rn is equipped with the Euclidean norm. It is discrete since
its sets of states and actions are respectively countable and finite. Moreover, if we restrict
the set of states to a compact subset of Rn, then it can be seen as symbolic.

The approximate bisimilarity of Tτ (Σ) and Tτ,η(Σ) is related to the notion of incre-
mental stability [Ang02]. Intuitively, a switched system is incrementally stable if the
distance between any two trajectories associated with the same switching signal p, but
with different initial states, converges asymptotically to 0:

Definition 3.7 (Incremental stability) The switched system Σ is said to be incremen-
tally globally uniformly asymptotically stable (δ-GUAS) if there exists a KL function1 β
such that for all t ∈ R+, for all x, y ∈ Rn, for all switching signals p ∈ P, the following
condition is satisfied:

‖x(t, x,p)− x(t, y,p)‖ ≤ β(‖x− y‖, t). (3.4)

1A continuous function γ : R+ → R+ is said to belong to class K∞ if it is strictly increasing, γ(0) = 0
and γ(r) → ∞ when r → ∞. A continuous function β : R+ × R+ → R+ is said to belong to class KL if
for all fixed s, the map r 7→ β(r, s) belongs to class K∞ and for all fixed r, the map s 7→ β(r, s) is strictly
decreasing and β(r, s) → 0 when s → ∞.
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Incremental stability is also similar to the notion of contraction presented in [LS98].
Incremental stability of a switched system can be proved using Lyapunov functions.

Definition 3.8 (Common δ-GUAS Lyapunov function) A smooth function V : Rn×
Rn → R+ is a common δ-GUAS Lyapunov function for Σ if there exist K∞ functions α,
α and κ > 0 such that for all x1, x2 ∈ Rn, for all p ∈ P :

α(‖x1 − x2‖) ≤ V(x1, x2) ≤ α(‖x1 − x2‖);
∂V
∂x1

(x1, x2) · fp(x1) + ∂V
∂x2

(x1, x2) · fp(x2) ≤ −κV(x1, x2).

The existence of a common δ-GUAS Lyapunov function ensures that the switched system
Σ is incrementally stable [GPT10]. We need to make the supplementary assumption on
the δ-GUAS Lyapunov function that there exists a K∞ function γ such that

∀x1, x2, x′1, x′2 ∈ Rn, |V(x1, x2)− V(x′1, x′2)| ≤ γ(‖x1 − x′1‖) + γ(‖x2 − x′2‖). (3.5)

This assumption is not restrictive provided V is smooth and we are interested in the
dynamics of Σ on a compact subset of Rn, which is often the case in practice. We can
now state the main result of the section which establishes the approximate bisimilarity of
Tτ (Σ) and Tτ,η(Σ) under the existence of a common δ-GUAS Lyapunov function.

Theorem 3.5 (Approximately bisimilar abstractions for switched systems) Let
us consider a switched system Σ, time and state sampling parameters τ, η > 0 and a de-
sired precision ε > 0. If there exists a common δ-GUAS Lyapunov function V for Σ such
that equation (3.5) holds and

η ≤ min
{

γ−1
(

(1− e−κτ )α(ε)
)

, α−1 (α(ε))
}

(3.6)

then
Rε = {(x, q) ∈ Rn × [Rn]η| V(x, q) ≤ α(ε)}

is an approximate bisimulation relation of precision ε between Tτ (Σ) and Tτ,η(Σ). More-
over, Tτ (Σ) ∼ε Tτ,η(Σ).

Let us remark that the δ-GUAS Lyapunov function V essentially plays the role of
bisimulation function here. It should be noted that given a time sampling parameter τ > 0
and a desired precision ε > 0, it is always possible to choose η > 0 such that equation
(3.6) holds. This essentially means that approximately bisimilar discrete abstractions of
arbitrary precision can be computed for Tτ (Σ). In order to evaluate the precision of the
symbolic abstraction, one needs to compute a common δ-GUAS Lyapunov function; if the
dynamics in each mode is affine then a quadratic Lyapunov function may be computed by
solving a set of linear matrix inequalities.

The symbolic abstractions can serve for switching controller synthesis using the ap-
proaches described in Theorems 3.1 and 3.3. For instance, for a safety property specified
by a compact subset Ys ⊆ Rn, we can use an approximately bisimilar symbolic abstraction
Tτ,η(Σ) of precision ε. We compute Kε : [Rn]η → 2P a safety controller for Tτ,η(Σ) and
specification Cε(Ys). Since there are only a finite number of elements of [Rn]η in Cε(Ys),
the computation is possible in a finite number of steps using a fixed point algorithm. Then,
Theorem 3.1 states that the controller given by

∀x ∈ Rn, C(x) =
⋃

q∈[Rn]η , V(x,q)≤α(ε)

Kε(q) (3.7)
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is a safety controller for Tτ (Σ) and specification Ys. Theorem 3.3 provides a similar
approach for the computation of reachability controllers.

Remark 3.1 Theorem 3.5 assumes the existence of a common δ-GUAS Lyapunov func-
tion. It is actually possible to relax this assumption by considering multiple δ-GUAS Lya-
punov functions (one for each mode) and by imposing a minimum dwell time (i.e. the time
between two consecutive switches must be greater than a given explicit lower bound). In
that case, we have shown in [GPT10] that approximately bisimilar abstraction of arbitrary
precision can be computed.

Application to a boost DC-DC converter: For illustration purpose, we apply our
approach to a boost DC-DC converter. It is a switched system with two modes, the two
dimensional dynamics associated with both modes are affine of the form ẋ(t) = Apx(t)+ b
for p = 1, 2 (see [GPT10] for numerical values). It can be shown that it has a common δ-
GUAS Lyapunov function and thus approximately bisimilar abstractions can be computed.

We first consider the problem of regulating the state of the DC-DC converter around
a desired nominal state. This can be done for instance by synthesizing a controller that
keeps the state of the switched system in a set centered around the nominal state. This
is a safety specification. In the following, we consider the specification given by the set
Ys = [1.1, 1.6] × [5.4, 5.9]. We use a time sampling parameter τ = 1 and choose to
work with a discrete abstraction that is approximately bisimilar to Tτ (Σ) with precision
ε = 0.05. We compute a safety controller for the switched system Tτ (Σ) by the approach
described in the previous section. There are a finite number of elements of [Rn]η in
Cε(Ys) (actually 169744) and the fixed point algorithm for the synthesis of the maximal
safety controller for the abstraction and specification Cε(Ys) terminates in 2 iterations.
The safety controller C for the switched system Tτ (Σ) and the specification Ys obtained
by the concretization equation (3.1) is shown on the left part of Figure 3.2 where we
have represented a trajectory of the system where the switching is controlled using a lazy
implementation of the controller C: when the controller has the choice between mode 1 and
2, it keeps the current mode active. We can check that the specification is effectively met.
We computed in a similar way the controller C2ε, shown on the right part of Figure 3.2,
which gives an upper bound of the maximal safety controller C∗ for switched system Tτ (Σ)
and specification Ys.

We now consider the problem of steering in minimal time the state of the DC-DC
converter in the desired region of operation while respecting some safety constraints. This
is a time-optimal control problem. We consider the specification given by the safe set
Ys = [0.65, 1.65] × [4.95, 5.95] and the target set Yt = [1.1, 1.6] × [5.4, 5.9]. This time, we
use a time sampling parameter τ = 0.5 and choose to work with a discrete abstraction
that is approximately bisimilar to Tτ (Σ) with precision ε = 0.1. We compute a suboptimal
reachability controller for the switched system Tτ (Σ) by the approach described in the
previous section. There are only a finite number of elements of [Rn]η in Cε(Ys) (actually
674041) and the dynamic programming algorithm for the synthesis of the time-optimal
controller for the abstraction and reachability specification (Cε(Ys), Cε(Yt)) terminates in
94 iterations. The resulting suboptimal controller C for the switched system Tτ (Σ) for the
reachability specification (Ys, Yt) is shown on the left part of Figure 3.3 where we have
also represented trajectories of the system where the switching is controlled using the
synthesized controller. We can check that the specification is effectively met. The entry
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Figure 3.2: Safety controller C for the system Tτ (Σ) and specification Ys with controlled
trajectory (left); Safety controller C2ε for the system Tτ (Σ) and specification E2ε(Ys)
(right); dark gray: mode 1, light gray: mode 2, medium gray: both modes are acceptable,
white: no action is allowed. The maximal safety controller C∗ for Tτ (Σ) and specification
Ys satisfies C � C∗ � C2ε.

Figure 3.3: Suboptimal controller C for the switched system Tτ (Σ) and reachability spec-
ification (Ys, Yt) and trajectories of the controlled switched system (left); Entry-time
J(Tτ (Σ)/C, Ys, Yt, x) for the controller C shown in Figure 3.3 (right).

time associated to C, J(Tτ (Σ)/C, Ys, Yt, x) shown on the right part of Figure 3.3, gives an
upper-bound of the time-optimal value function J∗(Tτ (Σ), Ys, Yt, x).

3.2.2 Synthesis of low complexity switching controllers

In this paragraph, we go one step further by pursuing the goal of synthesizing low com-
plexity controllers. We focus on safety controllers but a similar work can be done for
reachability controllers. Let us consider a switched system Σ and a safety specification
given by a compact set Ys ⊆ Rn. A safety controller C for Tτ (Σ) is given by (3.7). In
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general, for this controller, the union in (3.7) cannot be rigorously pre-computed for all
possible values of x but has to be computed online. Moreover, in practice the number
of elements to be considered in the union can be quite large (thousands in the previous
examples) which result in a significant execution time. This problem would be avoided
for controllers that can be written under the form C = K ◦ Qη where K : [Rn]η → 2P is
a discrete map with finite support and could thus be computed offline. It is possible to
synthesize such “quantized” controllers using the following approach presented in [Gir13].

Synthesis of quantized safety controllers: In order to synthesize quantized con-
trollers, we need to establish a new approximation result relating the transition systems
Tτ (Σ) and Tτ,η(Σ).

Proposition 3.1 Let us consider a switched system Σ, time and state sampling parame-
ters τ, η > 0 and a desired precision ε > 0. If there exists a common δ-GUAS Lyapunov
function V for Σ such that equation (3.5) holds and

ε ≥ η + α−1

(

2 + e−κτ

1− e−κτ
γ(η)

)

(3.8)

then

Rε = {(x, q) ∈ Rn × [Rn]η| V(Qη(x), q) ≤ α(ε− η)}
is an approximate bisimulation relation of precision ε between Tτ (Σ) and Tτ,η(Σ). More-
over, Tτ (Σ) ∼ε Tτ,η(Σ).

We would like to point out that for given τ > 0 and ε > 0, it is always possible to
find η > 0 such that equation (3.8) holds. Hence, it is possible for any time sampling
parameter τ > 0 to compute symbolic models for switched systems of arbitrary precision
ε > 0 by choosing a sufficiently small state sampling parameter η > 0.

We would like to emphasize the differences between Proposition 3.1 and the approxi-
mation result presented in Theorem 3.5. The main difference lies in the expression of the
approximate bisimulation relation: (x, q) ∈ Rε if V(x, q) ≤ α(ε) in Theorem 3.5, instead
of V(Qη(x), q) ≤ α(ε − η) in Proposition 3.1. This difference is fundamental in the sense
that it allows us to synthesize quantized controllers. It should also be noted that the rela-
tions to be satisfied by the abstraction parameters, τ , η and ε are different: for identical
precision and time sampling parameters Proposition 3.1 requires a finer state sampling
parameter than Theorem 3.5.

The approach presented in Theorem 3.1 with the approximate bisimulation relation
given in Proposition 3.1 leads to the following result:

Proposition 3.2 Let Kε : [Rn]η → 2P be a safety controller for Tτ,η(Σ) and specification
Cε(Ys). Let K : [Rn]η → 2P be given by

∀q ∈ [Rn]η, K(q) =
⋃

q′∈[Rn]η , V(q,q′)≤α(ε−η)

Kε(q
′). (3.9)

Then, the map C : Rn → 2P given by C = K ◦ Qη is a safety controller for Tτ (Σ) and
specification Ys.



3.2. CONTROLLERS FOR SWITCHED SYSTEMS 33

Proposition 3.2 gives an effective way to compute a quantized safety controller for
Tτ (Σ). It can be shown that, the support of the discrete map K is included in [Rn]η ∩ Ys.
Since Ys is compact, the support of the discrete map K is finite and therefore K can be
pre-computed offline. Then, for a state x ∈ Rn the computation of the inputs enabled by
C only requires quantizing the state x and evaluating K(Qη(x)).

Efficient representation of the control law: We now consider the problem of rep-
resenting the discrete map K efficiently in order to reduce the memory space needed for
the storage of the control law. To reduce the memory needed to store the control law, we
will not encode the (set-valued) map K but a determinization of K.

Definition 3.9 (Determinization) A determinization of the set-valued map K is a uni-
valued map Kd : [Rn]η ∩ Ys → P such that for all q ∈ Supp(K), Kd(q) ∈ K(q).

Let us remark that if q /∈ Supp(K), we do not impose any constraint on the value of
Kd(q). This will gives us more flexibility to reduce the complexity of our control law.

Proposition 3.3 Let the controller Cd : Rn → 2P for Tτ (Σ) be given by

∀x ∈ Rn, Cd(x) =
{

{Kd ◦Qη(x)} if Qη(x) ∈ Ys
∅ otherwise.

Then, for all state trajectories σX = (x0, u0), (x1, u1), . . . of the controlled system Tτ (Σ)/Cd
such that x0 ∈ Supp(C), we have O(xi) ∈ Ys for all i = 0, . . . , l(σX) and if l(σX) = N ∈ N,
xN is a non-blocking state of Tτ (Σ)/Cd.

The controlled transition system Tτ (Σ)/Cd is deterministic. It should be noted that the
controller Cd is generally not a safety controller for Tτ (Σ) and specification Ys in the sense
of Definition 3.2 because there might be states in Supp(Cd) for which the specification is
not met. However, the previous result shows that for an initial state x0 ∈ Supp(C), the
controlled system Tτ (Σ)/Cd will never reach a blocking state and its outputs will remain
forever in the safe set Ys.

We now consider the problem of choosing a determinization Kd of K and a represen-
tation which requires little memory for its storage. A natural representation for Kd would
be to use a lookup table with a very large number of entries. We propose a more efficient
representation inspired by algebraic decision diagrams (ADD’s [BFG+93]). The main idea
is to use a tree structure which exploits redundant information to represent the map in
a more compact way. Also in our case, when K(q) is empty or when it has more than 2
elements, we have some flexibility for the choice of Kd(q) which can be used to reduce the
size of the representation.

The proposed method for choosing Kd essentially works as follows: if there exists p ∈ P
such that for all q ∈ [Rn]η ∩ Ys, K(q) = ∅ or p ∈ K(q), we can choose Kd to be the map
with constant value p on [Rn]η ∩ Ys. If such an input value does not exists, then we can
split the set [Rn]η∩Ys into 2 subsets. The process can then be repeated iteratively: we try
to find a suitable constant value on each of the subsets and if this is not possible these sets
can be split further. Then, the resulting control law can be naturally represented using a
tree structure.
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Figure 3.4: A set valued map K : {1, 2, 3, 4}2 → 2P where P = {0, 1} and a determinization
given by colors (dark gray for 1, light gray for 0) and its representation using a tree
structure.

Example 3.1 In Figure 3.4, we show an example of representation using a tree structure
of a determinization of a set-valued map K : {1, 2, 3, 4}2 → 2P where P = {0, 1}. We
cannot find a suitable constant value on the whole set {1, 2, 3, 4}2. Thus, it is split into
two subsets {1, 2} × {1, 2, 3, 4} and {3, 4} × {1, 2, 3, 4}. For q ∈ {1, 2} × {1, 2, 3, 4} we can
choose Kd(q) = 0. On {3, 4}×{1, 2, 3, 4}, there is no suitable value. This set is split further
into the subsets {3, 4} × {1, 2} and {3, 4}2. For q ∈ {3, 4}2, we can choose Kd(q) = 1.
On {3, 4} × {1, 2}, there is no suitable value and this set has to be split futher... By
repeating this process, we obtain the determinization Kd represented by the tree structure
in Figure 3.4.

In practice, this process can lead to a very compact representation of the control law
as shown in the following example.

Application to a two-room building: For illustration purpose, we consider a simple
thermal model of a two-room building:

{

Ṫ1 = α21(T2 − T1) + αe1(Te − T1) + αf (Tf − T1)p

Ṫ2 = α12(T1 − T2) + αe2(Te − T2)

where T1 and T2 denote the temperature in each room, Te = 10 is the external temperature
and Tf stands for the temperature of a heating device which can be switched on (p = 1)
or off (p = 0). Numerical values of the parameters can be found in [Gir13]. This is a
switched system that admits a common δ-GUAS Lyapunov function and therefore our
approach can be applied.

We consider the problem of keeping the temperature in the rooms between 20 and 22
degrees Celsius. This is a safety property specified by the safe set Ys = [20, 22]2. We want
to use a periodic controller with a period of τ = 5 time units. For the synthesis of the
controller, we shall use an approximately bisimilar symbolic abstraction of Tτ (Σ) of pre-
cision ε = 0.25. We computed a safety controller Kε for the symbolic abstraction Tτ,η(Σ)
and the specification Contε(Ys). Then, we computed the map K given by equation (3.9),
which is shown in the left part of Figure 3.5. Then, according to Theorem 3.2, the con-
troller C = K ◦ Qη is a safety controller for Tτ (Σ) and specification Ys. For a practical
implementation of the controller, the storage of the map K represented by an array would
require about 1 million memory units (this is the number of elements in [R2]η ∩ Ys).



3.3. CONTROLLER SYNTHESIS USING MULTI-SCALE ABSTRACTIONS 35

T
1

T
2

20 20.2 20.4 20.6 20.8 21 21.2 21.4 21.6 21.8 22
20

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

T
1

T
2

20 20.2 20.4 20.6 20.8 21 21.2 21.4 21.6 21.8 22
20

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

Figure 3.5: Set-valued map K : [R2]η ∩ Ys → 2P (white: ∅, light gray: {1}, medium gray:
P , dark gray: {0}). The number of elements in [R2]η ∩ Ys is about 1 million. In blue, we
represented the partition used for the representation of Kd, a determinization of K; the
resulting tree structure has only 27 nodes (left). Determinization Kd of the map K (light
gray: 1, dark gray: 0). In blue, a trajectory of the switched system controlled using the
controller Cd = Kd ◦Qη (right).

We computed a determinization Kd of K following the approach described above. In
left part of Figure 3.5, we show the partition used for the representation of Kd, it is to be
noted that in each region all values of K are either ∅, {0}, P (which corresponds to value
0 for Kd) or ∅, {1}, P (which corresponds to value 1 for Kd). The map Kd is represented
in the right part of Figure 3.5 where we have also represented a trajectory of the switched
system controlled using the controller Cd = Kd ◦ Qη. For a practical implementation of
the controller, the storage of the map Kd represented by a tree structure only requires 27
memory units (this is the number of nodes in the tree). We can see with this example that
a lot of memory can be saved using an efficient representation and by determinizing the
controllers in such a way that their determinization can be represented more compactly.
Guarantees of safety for these controllers are still available by Proposition 3.3 which gives
insurance of “correctness by design”.

3.3 Controller Synthesis using Multi-Scale Abstractions

In the previous section, we have presented two approximation results (Theorem 3.5 and
Proposition 3.1) showing that approximately bisimilar abstractions of arbitrary precision
could be computed for a class of switched system. In both results, a relation must be
satisfied between the desired precision ε, the time sampling parameter τ and the state
sampling parameter η. In particular, the smaller τ or ε, the smaller η must be to satisfy
equations (3.6) or (3.8). In practice, for a small time sampling parameter τ , the ratio ε/η
can be very large and discrete abstractions with an acceptable precision may have a very
large number of states as in the examples presented in the previous section.

There are number of applications where the switching has to be fast though this fast
switching is generally necessary only on a restricted part of the state space. For instance,
for safety controllers, fast switching is needed only when approaching the unsafe set. In
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order to enable fast switching while dealing with abstractions with a reasonable number of
states, one may consider discrete abstractions enabling transitions of different durations.
For transitions of long duration, it is sufficient to consider abstract states on a coarse
lattice to meet the desired precision ε. As we consider transitions of shorter durations, it
becomes necessary to use finer lattices for the abstract state space. These finer lattices
are effectively used only on a restricted area of the state space, where the fast switching is
necessary. This allows us to keep the number of states in the abstraction at a reasonable
level. This results naturally in a notion of multi-scale abstraction introduced in [CGG11b]
and presented in this section.

3.3.1 Multi-scale abstractions for switched systems

To formalize the idea of multi-scale abstraction, we need to change the control paradigm
and use self-triggered controllers [VFM03, AT10], where the controller not only determines
the mode of the switched system but also the duration during which the mode is to
remain active. We assume that the controller can choose from a finite set of durations
ΘN

τ = {2−sτ | s = 0, . . . , N} that consists of dyadic fractions of a time sampling parameter
τ > 0 up to some scale parameter N ∈ N. The dynamics of the switched system is then
naturally described by the transition system TN

τ (Σ) = (X,U,S, X0, Y,O) where the set of
states is X = Rn; the set of inputs is U = P ×ΘN

τ ; the transition relation is given by

x′ ∈ S(x, (p, 2−sτ)) ⇐⇒ x′ = x(2−sτ), where ẋ(t) = fp(x(t)), x(0) = x;

the set of initial states is X0 = Rn; set of outputs is Y = Rn; the observation map O is the
identity map over Rn. TN

τ (Σ) is a non-blocking, deterministic, regular metric transition
system.

The computation of a symbolic abstraction of TN
τ (Σ) can then be done using the

following approach. We approximate the set of statesX = Rn by the sequence of embedded
lattices [Rn]2−sη, to which we associate quantizers Q2−sη : Rn → [Rn]2−sη, for s = 0, . . . , N .
Let us remark that we have [Rn]η ⊆ [Rn]2−1η ⊆ · · · ⊆ [Rn]2−Nη.

Then, we can define the abstraction of TN
τ (Σ) as the transition system TN

τ,η(Σ) =
(Xa, U,Sa, X0

a , Y,Oa), where the set of states is Xa = [Rn]2−Nη ; the set of actions remains

U = P ×ΘN
τ ; the transition relation is given by

∀q ∈ [Rn]2−Nη, ∀(p, 2−sτ) ∈ U, Sa(q, (p, 2−sτ)) = Q2−sη(S(q, (p, 2−sτ)));

the set of initial states X0
a = [Rn]η; the set of outputs remains the same Y = Rn; and the

observation map Oa is inclusion map from [Rn]2−Nη to Rn. The principle of approxima-

tion is illustrated on Figure 3.6. TN
τ,η(Σ) is a non-blocking, deterministic, regular metric

transition system. It is discrete and can be seen as symbolic if we restrict the set of states
to a compact subset of Rn.

It is fundamental to remark that the set of initial states is [Rn]η and that all the
transitions of duration 2−sτ end in states belonging to [Rn]2−sη. This means that all
trajectories start on the coarsest lattice and that the states on the finer lattices are only
accessible by transitions of shorter duration. If N = 0, we recover the “uniform” symbolic
abstraction Tτ,η(Σ) presented in Section 3.2.1. It can be shown that under the existence of
a common δ-GUAS Lyapunov function and equation (3.5), the transition systems TN

τ (Σ)
and TN

τ,η(Σ) are approximately bisimilar:
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S(q, (p, τ/2)) Sa(q, (p, τ/2))

Sa(q, (p, τ))

S(q, (p, τ))

Figure 3.6: Principle for the computation of a multi-scale symbolic abstraction of a
switched system. Large and small circles represent elements of [Rn]η and [Rn]η/2, re-
spectively.

Theorem 3.6 (Multi-scale abstractions for switched systems) Let us consider a
switched system Σ, time and state sampling parameters τ, η > 0, scale parameter N ∈ N,
and a desired precision ε > 0. Let us assume that there exists a common δ-GUAS Lya-
punov function V for Σ such that equation (3.5) holds and

η ≤ min

{

min
s=0...N

[

2sγ−1
(

(1− e−κ2−sτ )α(ε)
)]

, α−1 (α(ε))

}

(3.10)

then
Rε =

{

(x, q) ∈ Rn × [Rn]2−Nη| V(x, q) ≤ α(ε)
}

is an approximate bisimulation relation of precision ε between TN
τ (Σ) and TN

τ,η(Σ). More-

over, TN
τ (Σ) ∼ε T

N
τ,η(Σ).

Given a time sampling parameter τ > 0 and a scale parameter N ∈ N, for all desired
precisions ε > 0, there exists η > 0 such that equation (3.10) holds. This essentially
means that approximately bisimilar multi-scale abstractions of arbitrary precision can be
computed for TN

τ (Σ).

3.3.2 Controller synthesis for multi-scale abstractions

We illustrate the use of multi-scale abstractions for synthesizing safety controllers. The
main idea is to give the priority to transitions of longer durations so as to keep the state of
the abstraction as much as possible at the coarser scales. This motivates us to formalize
the notion of lazy safety controllers that always give priority to inputs associated with the
longest duration.

Let us consider the multi-scale abstraction TN
τ,η(Σ) = (Xa, U,Sa, X0

a , Y,Oa) and a safety
specification Ys ⊆ Y . Let K∗ be the maximal safety controller for transition system
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TN
τ,η(Σ) and specification Ys. A state q ∈ Xa is said to be controllable with respect to

a safety specifications Ys if q ∈ Supp(K∗). We denote the set of controllable states by
Cont(Ys) = Supp(K∗).

The lazy safety synthesis problem for multi-scale abstractions, introduced in [CGG11a],
consists in controlling TN

τ,η(Σ) so as to keep any trajectory starting from some initial state in
X0

a within the safe subset of states, while applying in each state a transition of the longest
possible duration for which safety can be guaranteed. For that purpose we define priority
relations on the set of inputs giving higher priority to transitions of longer duration: for
u, u′ ∈ L = P ×ΘN

τ with u = (p, θ), u′ = (p′, θ′), u ≺ u′ if θ < θ′ and u ∼= u′ if θ = θ′.

Definition 3.10 (Maximal lazy safety controller) A maximal lazy safety controller
for TN

τ,η(Σ) and specification Ys is a controller K such that all controllable states in X0
a are

in Supp(K), and for all states x ∈ Supp(K), x is reachable in TN
τ,η(Σ)/K and the following

conditions hold:

1. Oa(x) ∈ Ys (safety);

2. ∀u ∈ K(x), Sa(x, u) ⊆ Supp(K) (deadend freedom);

3. if u ∈ K(x), then for any u ≺ u′, Sa(x, u′) * Cont(Ys) (laziness);

4. if u ∈ K(x), then for any u ∼= u′, u′ ∈ K(x) if and only if Sa(x, u) ⊆ Cont(Ys)
(maximality).

It is clear from conditions 1) and 2) that K is a safety controller. The controller K
represents a trade-off between maximal permissiveness and efficiency, in the sense that it
contains the same initial states as the maximal safety controller; on the other hand, in
each state, the enabled transitions are those of maximal duration for which controllability
is preserved. Also, Supp(K) only contains the states that are reachable in TN

τ,η(Σ)/K. The
fact that K is safety controller for TN

τ,η(Σ) implies that it can be concretized in order to

control TN
τ (Σ) by following the approach presented in Theorem 3.1. The following result

shows that the problem of computing a maximal lazy safety controller is well-posed.

Theorem 3.7 (Existence and uniqueness) There exists a unique maximal lazy safety
controller.

An algorithm for computing the maximal lazy safety controller has been proposed
in [CGG11a] and implemented in the tool CoSyMA [MGG13]. It is a fixed point algorithm
based on a forward reachability analysis. Starting from the initial states, we explore the
trajectories of the system in a depth first search manner using the transitions with longest
duration. The transitions of shorter duration are only taken when no other transition
leads to a controllable state. In addition, the multi-scale abstraction is computed on the
fly so as to keep the number of states in the abstraction as low as possible. This algorithm
makes it possible to significantly reduce the algorithmic complexity of controller synthesis
as shown in the following.

Application to a boost DC-DC converter: We consider the boost DC-DC con-
verter already presented in the previous section. For the multiscale abstraction TN

τ,η(Σ),
we consider the safety specification given by Ys = [1.15, 1.55] × [5.45, 5.85]. We set the
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desired precision of abstractions to ε = 0.05. We consider both uniform and multi-scale
abstractions to compare the algorithmic complexity of controller synthesis. The uniform
abstraction Tτ,η(Σ) is computed according to the method described in the previous section
for time sampling parameters τ = 0.5. The state sampling parameter is chosen according
to equation (3.6), that is η = 3 × 10−4. We use the multi-scale abstraction TN

τ,η(Σ) for
τ = 32, η = 0.018 and N = 6 chosen according to Theorem 3.6. This corresponds to
transitions of possible duration Θτ = {32, 16, 8, 4, 2, 1, 0.5}.

Table 3.1 details the experimental results obtained using the tool CoSyMA for the
synthesis of the maximal lazy safety controller for the multi-scale abstraction TN

τ,η as well
as the maximal safety controllers for the uniform abstraction Tτ,η. We report the time
needed for the computation of the controller, the size of the abstractions, and the ratio
of controllable initial states (that is the ratio |Supp(K) ∩ X0

a |/|X0
a |). For the multi-scale

controller, we indicate the proportion of inputs associated with each duration. It is worth
emphasizing that there is a remarkable reduction in the overall time used to compute
the controller using multi-scale abstraction with respect to the use of the uniform one.

Uniform abstraction Tτ,η(Σ)
τ = 0.5, η = 0.0003, ε = 0.05

Time 9.2s
Size (103) 936
Cont. ratio 93%

Multi-scale abstraction TN
τ,η(Σ)

N = 6, τ = 32, η = 0.018, ε = 0.05
Time 0.6s
Size (103) 6
Durations 4 (33%), 2 (9%), 1 (50%), 0.5 (8%)
Cont. Ratio 92%

Table 3.1: Experimental results for the Boost DC-DC Converter
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Figure 3.7: The maximal lazy safety controller for TN
τ,η(Σ). Mode map (left) - dark gray

: mode 1, light gray : mode 2, medium grey : both modes are enabled; Duration map
(right) - light gray : 4, medium gray : 2, dark gray : 1, black : 0.5.
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Interestingly, this reduction in computation time and abstraction size does not affect the
performance of the multi-scale controller, which yields a ratio of controllable initial states
similar to the uniform counterpart. Figure 3.7 depicts the controller computed by our
algorithm for TN

τ,η(Σ).

Discussion: The results presented in this chapter were developed within the ANR
projects VAL-AMS and VEDECY and the UJF MSTIC project SYMBAD.

The results presented in Section 3.1 were published in [Gir12]. The main results
on the construction of approximately bisimilar symbolic abstractions, presented in Sec-
tion 3.2.1 were obtained in collaboration with Giordano Pola, University of L’Aquila, and
Paulo Tabuada, University of California at Los Angeles, and published in [GPT10]. The
techniques for the synthesis of low complexity switching controllers have been presented
in [Gir13]. The work on multiscale abstractions has been done in collaboration with Javier
Càmara and Sebti Mouelhi during their postdoctoral stay at INRIA Rhône-Alpes under
the co-supervision of Gregor Goessler and myself. The results presented in Section 3.3
have been published in [CGG11b, CGG11a, MGG13].

In Section 3.1, we have presented concretization procedures that are specific to safety
and reachability controllers. Actually, there exists a “natural” concretization procedure
described in [Tab09, Gir10] that can be applied to any type of controllers and that essen-
tially renders the two controlled systems approximately bisimilar. However, the controller
for the concrete system obtained via this concretization procedure is a dynamic state-
feedback controller (i.e. the controller has a memory) when it is known that for safety
or reachability, it is sufficient and optimal to consider static state-feedback controllers.
Controller synthesis using approximately bisimilar abstractions has also been considered
in [TI08, MT10]. In [TI08], the authors use approximately bisimilar abstractions to design
a suboptimal controller for a fixed bounded horizon optimal control problem. Our work is
more closely related to [MT10] where time-optimal control is considered as well but where
controllers are concretized through the natural procedure.

We would also like to mention the connections between the problems considered in
this chapter and some problems in viability theory [Aub01]. The notions of safety and
maximal safety controllers are clearly related to that of viability domains and kernels,
respectively. Hence, the approach described in this chapter offers an alternative to the
viability kernel algorithm [SP94] for computing the viability kernel of an incrementally
stable system. Similarly, the reachability problem studied in this chapter can be naturally
confronted to the notion of viable capture basin.

There has been a significant work on computing symbolic abstractions for various class
of systems using approximate simulation or bisimulation. The earliest results deal with lin-
ear systems and were proposed independently by Pola and Tabuada in [Tab06, PT07] and
myself [Gir07]. These results were then extended to switched systems [GPT10], nonlin-
ear systems with or without disturbances [PGT08, PT09], time delay systems [PPBT10],
networked control systems [BPB12] and stochastic systems [ZMM+13]. The concept of
approximately bisimilar multi-scale abstractions has also been explored in [TI09] where
the multi-scale feature is used for accommodating locally the precision of the abstraction
while the time sampling period remains constant. All these results require an assump-
tion related to incremental stability of the considered systems. Actually, we have shown
in [PGT08], for non-linear systems, that incremental stability is a necessary and sufficient
condition for approximate bisimilarity of the original system and abstractions defined us-



3.3. CONTROLLER SYNTHESIS USING MULTI-SCALE ABSTRACTIONS 41

ing a quantization of the continuous dynamics on a uniform lattice. A recent result makes
it possible to relax this assumption by considering the notion of alternating approximate
simulation relations [ZPJT12]. Let us remark that our techniques for controller synthe-
sis can be used with all the symbolic abstractions, mentioned above, possibly with some
adaptation of our results.
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Chapter 4

Other Applications of

Approximate Simulation

Résumé : Le cadre d’approximation présenté au Chapitre 2 a des applica-
tions au delà des techniques de synthèse de contrôleurs présentées dans le
chapitre précédent. Dans ce chapitre, nous décrivons brièvement, trois autres
applications des notions de simulation et bisimulation approchées. Dans la
première partie, nous montrons comment la notion de fonction de simula-
tion peut être utilisée pour relier formellement les comportements de deux
systèmes dynamiques continus afin de concevoir des systèmes hiérarchiques
de commande [GP09]. Dans la deuxième partie, nous présentons une car-
actérisation des relations de simulation approchée utile pour définir des ap-
proximations de systèmes hybrides [GJP08]. Dans la dernière partie, nous
montrons comment les fonctions d’auto-bisimulation (c’est à dire une fonction
de bisimulation entre un système et lui même) permettent de concevoir des
algorithmes de vérification qui ne nécessitent que le calcul d’un nombre fini de
trajectoires [FGP06]. Dans les trois cas, la notion de fonction de simulation ou
de bisimulation est légèrement adaptée au problème étudié, cependant à chaque
fois l’esprit du cadre d’approximation présenté dans le Chapitre 2 est préservé.

The approximation framework presented in Chapter 2 has applications besides the
controller synthesis techniques using approximately bisimilar symbolic abstractions, pre-
sented in the previous chapter. In this chapter, we briefly present three other applications
of approximate simulation or bisimulation. In the first part, we show how the notion of
simulation function can be used to relate two continuous control systems in order to de-
sign hierarchical controllers. In the second part, we present an effective characterization
of approximate simulation relations that is useful for defining approximations of hybrid
systems. In the last part, we show how auto-bisimulation functions (that are bisimulation
functions between a system and itself) allow us to propose verification algorithms that
require computing only a finite number of trajectories of the system.

In all cases, the notion of simulation or bisimulation function has been adapted to
the considered setting and slightly differs from the Definitions 2.6 and 2.7. However, the
philosophy remains the same: a simulation or bisimulation function is a function bounding
the distance between outputs and decreasing during the evolution of the systems.

43
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4.1 Hierarchical Control Design using Simulation Functions

Controlling complex systems in order to achieve sophisticated tasks constitutes a great
challenge of system engineering. Handling at once both complexities of the dynamics and
of the specification may lead to untractable problems and therefore a hierarchical approach
to controller synthesis is often highly desirable. A hierarchical control architecture has (at
least) two layers. The first layer consists of a precise (and complex) model of the plant that
need to be controlled and is usually referred to as the concrete system. The second layer
consists of a coarse (and simple) model of the plant that is used for control synthesis and
is referred to as the abstract system or abstraction. The main challenge of such approaches
is the refinement of control laws designed for the abstract system in order to control the
concrete system.

In this section, we present our results from [GP09] introducing a hierarchical control
framework based on the notion of approximate simulation. Given a complex system that
need to be controlled and a simpler abstraction, we show how the knowledge of a simulation
function allows us to synthesize hierarchical control laws. For the class of linear control
systems, we give an effective characterization of the simulation functions allowing us to
use algorithmic procedures for their computation.

4.1.1 Hierarchical control architecture

Let us consider the control systems given, for j ∈ {1, 2} by:

Σj :

{

ẋj(t) = fj(xj(t),uj(t)), xj(t) ∈ Rnj , uj(t) ∈ Rpj

yj(t) = gj(xj(t)), yj(t) ∈ Rk.

where uj : R+ → Rpj , xj : R+ → Rnj and yj : R+ → Rk are input, state and output
trajectories of Σj . We assume that the vector field fj is such that for any measurable
input trajectory uj , for any initial condition in Rnj , there exist unique state and output
trajectories (see e.g. [AS99] for necessary and sufficient conditions).

We refer to Σ1 as the concrete system, that is the (complex) system that we actually
want to control. Control is synthesized hierarchically, using the abstract system Σ2, giving
a simpler, though less precise, description of the dynamics of the system. Note that
systems Σ1 and Σ2 have the same output space, but may have different state and input
spaces. In particular, the fact that we have different input spaces differs from the work
presented in the two previous chapters. Since we have different input spaces, we cannot
ask for equality of inputs as previously.

The proposed hierarchical control approach allows us to refine inputs designed for the
abstract system Σ2 in order to control the concrete system Σ1. We adapt the definition
of simulation function given previously to the specific case of continuous control systems.
Essentially, a simulation function of Σ2 by Σ1 is a function bounding the distance between
the system outputs and such that for any input of Σ2, there exists an input of Σ1 (given
by an interface) that makes the function decrease.

Definition 4.1 (Simulation function and interface) Let V : Rn2 × Rn1 → R+ be a
smooth function and uV : Rp2 × Rn2 × Rn1 → Rp1 be a continuous function. V is a
simulation function of Σ2 by Σ1 and uV is an associated interface if there exists a K
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function1 γ such that for all (x2, x1) ∈ Rn2 × Rn1,

V(x2, x1) ≥ ‖g1(x1)− g2(x2)‖ (4.1)

and for all u2 ∈ Rp2, satisfying γ(‖u2‖) < V(x2, x1),

∂V(x2, x1)
∂x2

· f2(x2, u2) +
∂V(x2, x1)

∂x1
· f1(x1, uV(u2, x2, x1)) < 0 (4.2)

It is interesting to note that the notion of interface can be dropped if one adopts the for-
malism of alternating approximate simulation [PT09]. As previously stated, a simulation
function allows us to bound the distance between outputs of Σ2 and Σ1 when the input
of Σ1 is obtained from that of Σ2 through the interface:

Proposition 4.1 Let V be a simulation function of Σ2 by Σ1 and uV an associated inter-
face. Let u2 : I :→ Rp2 with 0 ∈ I ⊆ R+ be an input trajectory of Σ2, let x2 and y2 be
associated state and output trajectories of Σ2. Let x1 be a state trajectory of Σ1 satisfying
the differential equation

ẋ1(t) = f1 (x1(t), uV(u2(t),x2(t),x1(t)))

and let y1 be the associated output trajectory. Then, for all t ∈ I,

‖y2(t)− y1(t)‖ ≤ max {V(x2(0),x1(0)), γ(‖u2‖∞)} .

The control architecture, allowing us to refine the inputs of the abstract system through
the interface uV is shown on Figure 4.1. The applicability of our approach relies on our
capability of computing a simulation function and an associated interface. In the following
section, we give an effective characterization of simulation functions for linear control
systems allowing us to design algorithmic procedures for their computation.

4.1.2 Simulation functions for linear systems

In the following, we assume that the concrete and abstract systems are linear control
systems, for j ∈ {1, 2}:

Σj :

{

ẋj(t) = Ajxj(t) +Bjuj(t) xj(t) ∈ Rnj , uj(t) ∈ Rpj

yj(t) = Cjxj(t) yj(t) ∈ Rk (4.3)

We assume, without loss of generality, that Rank(B1) = p1 and Rank(C1) = k. We further
assume that the concrete system Σ1 is stabilizable. Then, there exists a p1 × n1 matrix
K such that the matrix A1 + B1K is Hurwitz. Then, there also exist a positive definite
symmetric matrix M and a strictly positive scalar number λ such that the following matrix
inequalities hold:

M ≥ CT
1 C1,

(A1 +B1K)TM +M(A1 +B1K) ≤ −2λM.

Let us remark that the stabilizing gain K and the matrix M can be computed jointly
using semidefinite programming. We now give an effective characterization of simulation
functions and of the associated interfaces.

1A function γ : R+ → R+ is a K function if it is continuous, strictly increasing and satisfies γ(0) = 0.
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Abstract system: Σ2

Concrete system: Σ1

Interface: uV

u2

x2

u1

x1

y2

y1

Figure 4.1: Hierarchical control system architecture.

Theorem 4.1 (Simulation functions for linear systems) Let us assume that there
exists an n1 × n2 matrix P and a p1 × n2 matrix Q such that the following linear matrix
equations hold:

PA2 = A1P +B1Q, (4.4)

C2 = C1P. (4.5)

Then, the function defined by

V(z, x) =
√

(Px2 − x1)TM(Px2 − x1)

is a simulation function of Σ2 by Σ1 and an associated interface is given by

uV(u2, x2, x1) = Ru2 +Qx2 +K(x1 − Px2).

where R is an arbitrary p1 × p2 matrix. The K function γ such that equation (4.2) holds
is given by

γ(ν) =
∥

∥

∥

√
M(B1R− PB2)

∥

∥

∥
ν/λ.

It is minimal for R = (BT
1 MB1)

−1BT
1 MPB2.

Choosing the matrix R in order to minimize the function γ is important as it allows us
to tighten the bound on the distance between output trajectories given by Proposition 4.1.
Let us remark that equations (4.4) and (4.5) imposes conditions on the matrices A2 and
C2 of the abstraction. Moreover, if we can choose the matrix Q to be zero then we can
guarantee that a uniformly bounded input u2 of Σ2 results in a uniformly bounded input u1

for Σ1. In general the abstraction is not given a priori and is part of the design parameters;
in [GP09], we proposed an approach for the computation of a suitable abstraction such
that these matrix equations are satisfied and our approach can be applied. In the following
example, we show an application of our hierarchical control framework.
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Figure 4.2: Output trajectory y1 (plain) of the concrete system Σ1 and output trajectory
y2 (dashed) of the abstract system Σ2 (left). Value of ‖y1(t)− y2(t)‖ for the trajectories
of Σ1 and Σ2 presented on the left part of the figure. We can see that it is bounded by
= 0.5 (horizontal line). The vertical lines correspond to the times at which the direction
of the trajectory of the abstract system Σ2 changes (right).

Example 4.1 We consider a second order model of a mobile robot in a plane:

Σ1 : ÿ1(t) = u1(t), y1(t) ∈ R2, u1(t) ∈ R2

where y1(t) is the position of the robot. We want to use for control design a first order
abstraction:

Σ2 : ẏ2(t) = u2(t), y2(t) ∈ R2, u2(t) ∈ R2.

These systems can be written under the form (4.3) with x1(t) = (y1(t), ẏ1(t)) and x2(t) =
y2(t). Applying the approach presented above, we designed a simulation function of Σ2 by
Σ1 given by

V(y2, y1, ẏ1) =
√

‖y2 − y1‖2 + 8890.1‖y2 − y1 − ẏ1‖2.

The proposed interface is

uV(u2, y2, y1, ẏ1) = u2 − 1.0006(y1 − y2)− 2.0005ẏ1.

The associated function γ is γ(ν) = ν. We consider the problem of driving the robot in
the environment shown in the left part of Figure 4.2. It consists of a corridor of width
1. At the end of the corridor, there is a room with an obstacle. The goal of the motion
planning problem consists in reaching a target which is a circle of diameter 1, behind the
obstacle. Since the abstract system Σ2 is fully actuated, it is easy to synthesize a path for
this system. This path is represented by the dashed line in left part of Figure 4.2. It is
clear that any trajectory remaining within distance 0.5 from this path satisfies the problem
specification. We assume that initially y1(0) = y2(0) and ẏ1(0) = 0. We use inputs
of norm 0.5 for the abstraction Σ2, then, from Proposition 4.1, we know that the ouput
trajectory y1, obtained by connecting the abstract system and the concrete system through
the interface, remains within distance 0.5 of y2, and thus satisfies the specification of the
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motion planning problem. The output trajectory y1 is represented by the full line in the
left part of Figure 4.2. It is clear that it satisfies the specification of the motion planning
problem. In the right part of Figure 4.2, we represented the evolution of ‖y1(t)−y2(t)‖, we
can check that it remains bounded by 0.5 which is expected from Proposition 4.1. Moreover,
we can see that this bound is tight.

4.2 Approximation of Hybrid Systems

Approximation techniques are crucial for the analysis or synthesis of complex hybrid sys-
tems. Most of the proposed approaches are based on the guaranteed over-approximation
of the dynamics of a given hybrid system using the notion of exact simulation and bisim-
ulation relations [HHWT98, PvdSB04, HTP05, ADG07, GM12]. However, for hybrid
systems, typically observed over the real numbers, approximation notions based on the
distance between behaviors is more natural than those based on behavior inclusion. In this
section, we present our work from [GJP08], applying the notion of approximate simulation
relations for approximation of hybrid systems. Using simulation functions, we develop a
characterization of approximate simulation relations which can be used for hybrid systems
approximation.

4.2.1 Hybrid systems as transition systems

In this section, we introduce the rather general class of hybrid systems with outputs that
we consider and define the transition systems describing their dynamics.

Definition 4.2 (Hybrid automaton) A hybrid automaton is a tuple Σ = (L, n, p, E,C,
I,G,R,X0) where

• L is a finite set of locations or modes.

• n ∈ N is the dimension of the continuous state space. The set of states of the hybrid
system is X = L× Rn.

• p ∈ N is the dimension of the continuous output space. The set of outputs of the
hybrid system is Y = L× Rp.

• E ⊆ L× L is the set of events or discrete transitions.

• C = {Cl| l ∈ L} defines the continuous dynamics for each location. For each l ∈ L,
Cl is a triple (fl, gl, Dl) where fl : Rn × Dl → Rn, gl : Rn → Rp are continuous
maps and Dl ⊆ Rml is a compact set of inputs which should be seen as disturbances
accounting for modeling uncertainties rather than control inputs. We assume that fl
is Lipschitz continuous and that for each x ∈ Rn, fl(x,Dl) is a compact convex set.
While the discrete part of the state is l, the continuous variables (i.e. the continuous
part x of the state and the continuous part y of the output) evolve according to

{

ẋ(t) = fl(x(t),d(t)), d(t) ∈ Dl

y(t) = gl(x(t)).

• I = {Il| l ∈ L} defines an invariant set for each location. For each l ∈ L, Il ⊆ Rn

constrains the value of the continuous part of the state while the discrete part is l.
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• G = {Ge| e ∈ E} defines the guard for each discrete transition. For each e = (l, l′) ∈
E, Ge ⊆ Il. The discrete transition e is enabled when the continuous part of the
state is in Ge.

• R = {Re| e ∈ E} defines the reset map for each discrete transition. For each
e = (l, l′) ∈ E, Re : Ge → 2Il′ has compact images. When the event e occurs, the
continuous part of the state is reset using the map Re.

• X0 ⊆ X is the set of initial states: X0 =
⋃

l∈L{l} × I0l , where I0l ⊆ Il are compact
sets.

The semantics of a hybrid system is well established and will become clear with the
definition of the transition system associated to Σ. In the spirit of [ACH+95], we describe
the dynamics of Σ by the nondeterministic transition system T (Σ) = (X,U,S, X0, Y,O)
where the set of states X, the set of outputs Y , and the set initial states X0 are the same
as in the hybrid system Σ. The set of inputs is U = R+ ∪ {τ} where the labels in R+

represent the durations labeling the continuous transitions while the symbol τ is used to
label discrete transitions occurring instantaneously. The ouput map is defined naturally
by O(l, x) = (l, gl(x)). The transition map S is given by:

1. continuous transitions : For t ∈ R+, (l, x′) ∈ S((l, x), t) if and only if there exists a
measurable function d and an absolutely continuous function x such that x(0) = x,
x(t) = x′ and for almost all s ∈ [0, t],

ẋ(s) = fl(x(s),d(s)), with d(s) ∈ Dl and x(s) ∈ Invl .

2. discrete transitions : (l′, x′) ∈ S((l, x), τ) if and only if (l, l′) = e ∈ E, x ∈ Ge and
x′ ∈ Re(x).

The transition system is metric when the set outputs Y of the hybrid system Σ is equipped
with the following metric d:

d ((l1, y1), (l2, y2)) =

{

‖y1 − y2‖, if l1 = l2
+∞, if l1 6= l2

where ‖.‖ is the usual Euclidean norm. In the following, we give a characterization of
approximate simulation relations, suitable for hybrid systems; showing that the approx-
imation framework presented in Chapter 2 can be applied in an effective way to hybrid
systems.

4.2.2 Approximate simulation relations for hybrid systems

Let Σi = (Li, ni, pi, Ei, Ci, Ii, Gi, Ri, X
0
i ), (i = 1, 2) be two hybrid systems with the same

sets of outputs (i.e. L1 = L2 = L and p1 = p2 = p). Let T (Σi) = (Xi, U,Si, Y,X0
i ),

(i = 1, 2) be the associated transition systems, they have the same sets of inputs U =
R+∪{τ} and outputs Y = L×Rp and therefore we can apply the approximation techniques
presented in Chapter 2. In the following, we focus on the approximation of the continuous
dynamics of hybrid systems, so we will assume that the discrete dynamics of both systems
are the same (i.e. E1 = E2 = E). In this section, we provide a characterization of
approximate simulation relations thus establishing sufficient conditions such that T (Σ2)
approximately simulates T (Σ1). It uses the notion of simulation function that we define,
in this context, as follows:
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Definition 4.3 (Simulation function) A smooth function Vl : Rn1,l × Rn2,l → R+ is a
simulation function of C1,l by C2,l if for all (x1, x2) ∈ Rn1 × Rn2, the following equations
hold

Vl(x1, x2) ≥ ‖g1,l(x1)− g2,l(x2)‖, (4.6)

sup
d1∈D1,l

inf
d2∈D2,l

(

∂Vl(x1, x2)
∂x1

f1,l(x1, d1) +
∂Vl(x1, x2)

∂x2
f2,l(x2, d2)

)

≤ 0. (4.7)

Let us assume that for each location l ∈ L, there exists a simulation function Vl of the
continuous dynamics C1,l by C2,l. We define the following sets which can be thought as
some kind of neighborhoods associated with the simulation functions. For all x1 ∈ Rn1 ,
β ≥ 0,

Nl(x1, β) = {x2 ∈ Rn2,l | Vl(x1, x2) ≤ β}.
Then, it is possible to give the following characterization of approximate simulation rela-
tions for hybrid automata.

Theorem 4.2 (Approximate simulation relations for hybrid automata) For all l ∈
L, let Vl be a simulation function of C1,l by C2,l. Let {βl| l ∈ L} be positive numbers such
that the following conditions hold:

(a) for all l ∈ L, Nl(I1,l, βl) ⊆ I2,l,

(b) for all e = (l, l′) ∈ E, Nl(G1,e, βl) ⊆ G2,e,

(c) for all e = (l, l′) ∈ E,

βl′ ≥ sup
x1 ∈ G1,e

Vl(x1, x2) ≤ βl

(

sup
x′
1∈R1,e(x1)

inf
x′
2∈R2,e(x2)

Vl′(x′1, x′2)
)

.

(d) for all l ∈ L,
βl ≥ sup

x1∈I01,l
inf

x2∈I02,l
Vl(x1, x2),

Let ε = max{βl| l ∈ L}. Then, the relation Rε ⊆ X1 ×X2 defined by

Rε = {(l1, x1, l2, x2)| l1 = l2 = l, Vl(x1, x2) ≤ βl}

is an approximate simulation relation of T (Σ1) by T (Σ2) of precision ε and T (Σ1) �ε

T (Σ2).

The existence of simulation functions and assumption (a) guarantees that T (Σ2) can
match the continuous transitions of T (Σ1). Assumptions (b) and (c) does the same for
discrete transitions while assumption (d) takes care of the initial states.

It is clear that the positive numbers {βl| l ∈ L} cannot be chosen independently as
they are linked by assumption (c) which can be interpreted as a condition of limitation of
the expansion of the approximation error propagating through reset maps. Thus, it is not
necessarily the case that there exist numbers such that assumptions of the theorem hold.
In [GJP08], we identified several classes of hybrid automata for which we can guarantee
their existence and define a procedure for their computation: acyclic hybrid automata,
hybrid automata with memoryless or contracting resets.
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Example 4.2 We illustrate our approximation framework for hybrid systems in the con-
text of a planar robot motion. Let us consider the hierarchical control architecture presented
in Example 4.1 for the second order model of a robot:

{

ÿ1(t) = v(t)− 1.0006(y1(t)−w(t))− 2.0005ẏ1(t)
ẇ(t) = v(t)

where y1(t) ∈ R2 denotes the position of the robot in a planar environment, w(t) ∈ R2

is the internal variable of the controller and v(t) ∈ R2 is the input of the hierarchical
controller. We assume that initially ẏ1(0) = 0 and w(0) = y1(0). The value of the input
v(t) ∈ {v1, . . . , v6} (with ‖v1‖ = · · · = ‖v6‖ = 0.2) is computed by a hybrid controller
shown in the left part of Figure 4.3. This results in a hybrid automaton with 6 locations
and 6-dimensional affine continuous dynamics. Let us remark that the reset maps of the
hybrid automaton are equal to the identity.

We have shown in Example 4.1 that the robot behaves approximately like the first order
system

ẏ2(t) = v(t).

l = 1
I1 : [0 ≤ (1, 0) y1 ≤ 3] ∧ [0 ≤ (0, 1) y1]
v = 0.2(1, 0)T

l = 3
I3 : [0 ≤ (1, 0) y1] ∧ [(0, 1) y1 ≤ 0]

v = 0.2(−1/
√
2,−1/

√
2)T

l = 2
I2 : [3 ≤ (1, 0) y1] ∧ [0 ≤ (0, 1) y1]

v = 0.2(1/
√
5,−2/

√
5)T

l = 4
I4 : [−3 ≤ (1, 0) y1 ≤ 0] ∧ [(0, 1) y1 ≤ 0]
v = 0.2(−1, 0)T

l = 5
I5 : [(1, 0) y1 ≤ −3] ∧ [(0, 1) y1 ≤ 0]

v = 0.2(−1/
√
5, 2/

√
5)T

l = 6
I6 : [(1, 0) y1 ≤ 0] ∧ [0 ≤ (0, 1) y1]

v = 0.2(1/
√
2, 1/

√
2)T

G2,3 : [(0, 1) y1 = 0]

G3,4 : [(1, 0) y1 = 0]

G4,5 : [(1, 0) y1 = −3]

G5,6 : [y1 = 0]

G6,1 : [(1, 0) y1 = 0]

G1,2 : [(1, 0) y1 = 3]

l = 1
I1 : [−0.2 ≤ (1, 0) y2 ≤ 3.2] ∧ [−0.2 ≤ (0, 1) y2]
ẏ2 = 0.2(1, 0)T

G1,2 : [2.8 ≤ (1, 0) y2 ≤ 3.2]

l = 2
I2 : [2.8 ≤ (1, 0) y2] ∧ [−0.2 ≤ (0, 1) y2]

ẏ2 = 0.2(1/
√
5,−2/

√
5)T

G2,3 : [−0.2 ≤ (0, 1) y2 ≤ 0.2]

l = 3
I3 : [−0.2 ≤ (1, 0) y2] ∧ [(0, 1) y2 ≤ 0.2]

ẏ2 = 0.2(−1/
√
2,−1/

√
2)T

G3,4 : [−0.2 ≤ (1, 0) y2 ≤ 0.2]

l = 4
I4 : [−3.2 ≤ (1, 0) y2 ≤ 0.2] ∧ [(0, 1) y2 ≤ 0.2]
ẏ2 = 0.2(−1, 0)T

G4,5 : [−3.2 ≤ (1, 0) y2 ≤ −2.8]

l = 5
I5 : [(1, 0) y2 ≤ −2.8] ∧ [(0, 1) y2 ≤ 0.2]

ẏ2 = 0.2(−1/
√
5, 2/

√
5)T

G5,6 : [−0.2 ≤ (0, 1) y2 ≤ 0.2]

l = 6
I6 : [(1, 0) y2 ≤ 0.2] ∧ [−0.2 ≤ (0, 1) y2]

ẏ2 = 0.2(1/
√
2, 1/

√
2)T

G6,1 : [−0.2 ≤ (1, 0) y2 ≤ 0.2]

Figure 4.3: Hybrid controller for the mobile robot with hierarchical control architecture
(left); Approximating hybrid automaton (right).
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Figure 4.4: Trajectory of the mobile robot and attractor set of the approximating hybrid
automaton. The dashed lines represent the guards of the original hybrid controller. The
dotted lines represent the guards of the approximating hybrid automaton.

Hence, we shall approximate the hybrid automaton described above by another hybrid au-
tomaton with 6 locations and 2-dimensional constant dynamics. We can check that the
function

V(w, y1, ẏ1, y2) = max
(

√

‖w − y1‖2 + 8890.1‖w − y1 − ẏ1‖2, 0.2
)

+ ‖w − y2‖

is a common simulation function for the continuous dynamics in each location. Then, it
is easy to verify that the assumptions (c) and (d) of Theorem 4.2 hold with β1 = · · · =
β6 = 0.2. We then choose the invariants and the guards so that assumptions (a) and (b)
hold as well. The resulting approximating hybrid automaton is shown in the right part of
Figure 4.3.

It is easy to show that this hybrid automaton has a global attractor represented as the
green region in Figure 4.4. Then, it follows that all the trajectories of the mobile robot will
asymptotically be at distance at most 0.2 of this attractor.

4.3 Verification using Trajectory Simulation

The verification problem consists in analyzing the behavior of a dynamical system Σ
against some specification: given a property Φ defined on trajectories (e.g. “a trajectory
reaches the set YF ”), we would like to be able to prove that it is satisfied by all trajecto-
ries of the system. For discrete systems, the problem has attracted a lot of attention in
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computer science, resulting in the success story of Model Checking [CGP00] with the asso-
ciated set of techniques widely used in the industry. Verification of continuous and hybrid
systems is in general much more challenging since these generally have an uncountable
number of trajectories. There has also been a lot of work on the subject using set-based
reachability computations, abstraction and deductive techniques (see [Alu11] for a recent
survey).

In the following, we briefly describe an approach presented in [FGP06] and based on
simulation of individual trajectories of a system together with the use of auto-bisimulation
function (that is bisimulation function between a system and itself). Let us consider the
following dynamical system:

Σ :

{

ẋ(t) = f(x(t)), x(t) ∈ Rn, x(0) ∈ X0

y(t) = g(x(t)), y(t) ∈ Rk.

Let be given a property Φ defined on the output trajectories y, formulated for instance in
some temporal logic; y |= Φ means that trajectory y satisfies property Φ. Let us assume
that we are given a measure ρ(y,Φ) estimating how robustly property Φ is satisfied by y′:

(

∀t ≥ 0, ‖y(t)− y′(t)‖ ≤ ρ(y,Φ)
)

=⇒ y′ |= Φ.

We refer the reader to [FGP06] for a precise definition of such a measure and algorithms
for its computation. The last ingredient of the verification approach is a bisimulation
function between Σ and itself:

Definition 4.4 (Auto-bisimulation function) Let V : Rn × Rn → R+ be a smooth
function, V is an auto-bisimulation function of Σ if for all (x1, x2) ∈ Rn × Rn,

V(x1, x2) ≥ ‖g(x2)− g(x1)‖

∂V(x1, x2)
∂x1

· f(x1) +
∂V(x1, x2)

∂x2
· f(x2) ≤ 0

Using robustness measures for property satisfaction and an auto-bisimulation function
makes it possible to verify that the property holds for an infinite number of trajectories
by simulating only one trajectory:

Proposition 4.2 Let x0 ∈ X0 be an initial condition of Σ and let y be the associated
output trajectory. Then, for all x′0 ∈ X0, with associated output trajectories y′

(

V(x0, x′0) ≤ ρ(y,Φ)
)

=⇒ y′ |= Φ

The previous result allows us to verify that the property Φ holds for all the trajectories
of Σ by computing only a finite number of them. Let {x01, . . . , x0n} ⊆ I0 be a finite subset
of initial conditions and {y1, . . . ,yn} the associated output trajectories of Σ such that for
all x0 ∈ I0, there exists x0i such that V(x0, x0i ) ≤ ρ(yi,Φ) then all the trajectories of Σ
satisfy Φ. An algorithm to construct iteratively the sample of initial states can be found
in [FGP06]. In the case we cannot cover the whole set of initial states, the algorithm
identifies a subset of initial states for which the property holds. An interesting feature
of the approach is that verification of properties that are robustly satisfied requires the
simulation of a little number of trajectories.



54 CHAPTER 4. OTHER APPLICATIONS OF APPROXIMATE SIMULATION

Discussion: The results presented in Section 4.1 have been developed in collaboration
with George J. Pappas, University of Pennsylvania. The proofs can be found in [GP09].
In collaboration with Georgios E. Fainekos, Arizona State University, and Hadas Kress
Gazit, Cornell University, we have used this hierarchical control architecture, in combi-
nation with discrete abstractions techniques, to solve control problems in robotics with
complex temporal logic specifications in [FGKGP09]. In collaboration with Alessandro
Colombo, Politecnico di Milano, we have extended the approach developed for hierarchical
control of linear systems to the class of differentially flat systems [CG13] (see also a similar
work in [FST13]). An approach with similar flavors has been proposed in [CL07a, CL07b]
for hierarchical stabilization and tracking control of linear systems. The hierarchical con-
trol methods presented in [Tab08, TI08], based on the use of discrete abstractions and
approximate simulation, are also similar in spirit to the one presented here in the sense
that some kind of interface is used to compute the inputs of the original model from those
of the abstraction.

The approximation techniques for hybrid systems presented in Section 4.2 have been
developed in collaboration with George J. Pappas and A. Agung Julius, Rensselaer Poly-
technic Institute. The proofs can be found in [GJP08]. These techniques have been
extended and used for verification of air-traffic coordination protocols [PVVD09] and
cruise-controller implementations [QFD11b]. Similar approximation techniques have been
developed for several classes of dynamical systems: linear systems with constrained in-
puts [GP07a], polynomial dynamical systems [GP05], stochastic hybrid systems for which
a notion of stochastic bisimulation function is needed [JP09]. These approaches have
been used for approximating the dynamics of complex biological [MIB+12], mechani-
cal [TAJP08], or multi-agent robotic systems [MEB08].

The results of Section 4.3 on verification using trajectory simulation, developed with
Georgios E. Fainekos and George J. Pappas have been published in [FGP06]. Similar
approaches have been developed for the verification of systems with inputs [GP06], of
hybrid systems [JFA+07] and of embedded control software [LKCK08]. These results were
later improved in [GZ12] within the ANR Project VAL-AMS in collaboration with Gang
Zheng during his postdoctoral stay at Laboratoire Jean Kuntzmann. The same kind of
ideas can be used for controller synthesis by defining control laws from a finite number of
trajectories [JA10].
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Chapter 5

Reachability Analysis of

Continuous Systems

Résumé : L’analyse d’atteignabilité est un sujet de recherche majeur dans le
domaine des systèmes hybrides. Cette approche cherche à calculer l’ensemble
des trajectoires d’un système dynamique, pour toutes les conditions initiales
et sous toutes les perturbations ou variations de paramètres admissibles. Une
analyse fructueuse par cette méthode permet de remplacer un nombre infini de
simulations individuelles et d’obtenir des informations précieuses sur les pro-
priétés du système considéré. En outre, les techniques de calcul d’ensembles
atteignables sont utiles pour la synthèse de contrôleurs, la vérification ou le cal-
cul d’abstractions symboliques. Dans ce chapitre, nous décrivons nos contribu-
tions à l’analyse d’atteignabilité des systèmes continus. Au-delà de l’intérêt
intrinsèque de ce problème, il s’agit également d’une brique essentielle de
toute méthode de calcul de l’ensemble des états atteignables d’un système hy-
bride. Nous considérons d’abord les systèmes linéaires en temps continu avec
entrées bornées. Pour cette classe de systèmes, nous proposons un schéma
d’approximation permettant de calculer une sur-approximation de l’ensemble
atteignable sur un intervalle de temps borné [LG10]. L’approximation est basée
sur une discrétisation du temps et est donnée par l’union d’un nombre fini
d’ensembles convexes. Elle peut être aussi précise que souhaitée en choisis-
sant un pas de temps suffisamment petit. Nous proposons ensuite plusieurs
implémentations de ce schéma d’approximation. La première est basée sur les
zonotopes, une classe de polytopes, présentant des propriétés algorithmiques
intéressantes [Gir05]. Nous décrivons une implémentation optimisée permet-
tant un calcul efficace d’une approximation de l’ensemble atteignable [GLM06].
Nous étendons ensuite notre approche à des ensembles convexes arbitraires
en proposant une implémentation basée sur l’utilisation des fonctions sup-
port [LG10]. Dans la deuxième partie de ce chapitre, nous considérons des
systèmes dynamiques polynomiaux en temps discret. Nous présentons une
approche pour calculer des sur-approximations polyédriques de l’ensemble at-
teignable en utilisant des relaxations de problèmes d’optimisation polynomiale
à l’aide de programmes linéaires obtenus grâce aux propriétés de la forme de
Bernstein des polynômes [BTDG12].

57
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Hybrid systems research explores models that combine discrete and continuous dynam-
ics, and attempts to extend specific analysis methods developed for each type of systems
toward methods that can analyze the behavior of a complete system, having both types
of dynamics. An approach that has emerged from this area consists of a combination
of ideas from algorithmic verification of discrete systems (Model Checking [CGP00]) and
numerical simulation of continuous systems. This approach seeks to compute (an ap-
proximation of) the set of all trajectories of the system, starting from all possible initial
conditions, and under all admissible disturbances and variations in parameter values. A
successful analysis according to this method can replace infinitely many individual sim-
ulations and give additional insight on the properties of the system under study. One
can view this approach as a compromise between analytical methods that give strong re-
sults but apply mostly to fairly simple systems, and simulation-based methods that can
be applied, in principle, to arbitrary classes of systems, but whose results cannot guar-
antee absolute confidence. Moreover, computational techniques for reachability analysis
have been shown to be powerful tools for several problems related to analysis and control
of hybrid systems such as controller synthesis, verification or computation of symbolic
abstractions [ABD+00, TMBO03, ADI06]. For these approaches to be mathematically
sound, we often need to guarantee some properties of the computed approximation. For
instance, it is often necessary that the computed approximation includes the true reach-
able set. Hence, most of the existing work seek to compute over-approximations of the
reachable set.

Computing reachable states for continuous or hybrid systems has become a major re-
search issue in hybrid systems. For hybrid systems in which the continuous dynamics is a
constant differential inclusion in each location, such as timed automata or “linear” hybrid
automata, the exact computation of the reachable states can be done with elementary
manipulation of polytopes [ACH+95, AMP95, HHWT97, Fre08]. For systems with linear
continuous dynamics, an approximation of the reachable states is generally computed by
a combination of numerical integration and geometrical algorithms on polytopes [GM99,
CK99, ABDM00, SK03, Gir05, GLM06, HK06, LG09, LG10, ASB10, FLD+11] or ellip-
soids [KV00, BT00, KV07]. Nonlinear continuous dynamics are much more difficult to
handle and computation of their reachable states can be done by solving a partial dif-
ferential equation [MT00], by extending the linear systems reachability analysis using
local linear approximations of the dynamics [ADG03, ASB08, DMT10] or by exploiting
properties of specific classes of nonlinear systems such as polynomial or monotone sys-
tems [Dan06, DS09, RMC10, BTDG12].

In this chapter, we review our contributions to reachability analysis of continuous sys-
tems. These techniques constitutes an essential ingredient of algorithms for computing
the set of reachable states of hybrid systems. We first consider continuous-time linear
systems with compact convex sets of inputs. For this class of systems, we propose an
approximation scheme that allows us to compute an over-approximation of the reachable
set on a bounded time interval. The approximation is based on time-discretization and
is given by the union of a finite number of convex sets. It can be made arbitrarily ac-
curate by choosing a time step small enough. We then propose several implementations
of this approximation scheme. The first one is based on zonotopes, a class of polytopes
with interesting computational properties. We propose an improved implementation that
allows us to compute efficiently an approximation of the reachable set. We then extend
our approach to arbitrary convex sets by proposing an implementation based on support
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functions. In the second part of the chapter, we consider discrete-time polynomial dynam-
ical systems and propose an approach to compute polytopic over-approximations of the
reachable set using linear programming relaxations of polynomial optimization problems
based on properties of the Bernstein form of polynomials.

5.1 Reachability Analysis of Linear Systems

We consider continuous-time linear systems of the form:

ẋ(t) = Ax(t) +Bu(t), x(t) ∈ Rn, u(t) ∈ U

where U ⊆ Rk is a compact convex set, A and B are matrices of compatible dimensions.
Given a subset X ⊆ Rn, we denote by Rs(X) ⊆ Rn the set of states reachable by the
system at time s from states in X:

Rs(X) = {x(s)| ẋ(t) = Ax(t) +Bu(t),u(t) ∈ U, ∀t ∈ [0, s] and x(0) ∈ X} .

Then, the reachable set on the time interval [s, s′] is defined as

R[s,s′](X) =
⋃

t∈[s,s′]
Rt(X).

Let X0 ⊆ Rn be a specified compact convex set of initial states. In the following, we are
interested in computing an over-approximation of the reachable set on the time interval
[0, T ] from the initial states X0, that is R[0,T ](X0).

Let V = BU ⊆ Rn, let ‖.‖ be a norm on Rn, ‖A‖ is the induced norm of the matrix
A. We shall denote

RX0 = max
x∈X0

‖x‖, DX0 = max
x,y∈X0

‖x− y‖, and RV = max
v∈V
‖v‖.

We define the following elementary operations on sets. Given a set Ω ⊆ Rn and a matrix
A, AΩ denotes the image of Ω by A. Given a real number λ, λΩ = (λI)Ω where I is the
identity matrix. Let Ω, Ω′ ⊆ Rn, Conv(Ω,Ω′) denotes the convex hull of Ω and Ω′ and
Ω⊕ Ω′ denotes the Minkowski sum of Ω and Ω′: Ω⊕ Ω′ = {x+ x′ : x ∈ Ω, x′ ∈ Ω′}. We
shall also consider two notions of approximation of sets based on two distances. Given Ω
and Ω′ two compact subsets of Rd, we define the distance between Ω and Ω′:

d(Ω,Ω′) = inf
x∈Ω

inf
x′∈Ω′

‖x− x′‖.

We also define the Hausdorff distance between Ω and Ω′:

dH(Ω,Ω′) = max

(

sup
x∈Ω

inf
x′∈Ω′

‖x− x′‖, sup
x′∈Ω′

inf
x∈Ω
‖x− x′‖

)

.

Let us remark that only the Hausdorff distance is a metric in the usual sense. Particularly,
dH(Ω,Ω′) = 0 if and only if Ω = Ω′ whereas d(Ω,Ω′) = 0 if and only if Ω∩Ω′ is not empty.
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5.1.1 Time-discretization scheme

In this section, we show how the reachable set can be over-approximated by the union
of convex sets [LG10]. Further, the Hausdorff distance between the reachable set and
its approximation can be made arbitrarily small. Our approach for approximating the
reachable set is based on a discretization of the time. Let τ = T/N be the time step (with
N ∈ N). Then, we have:

R[0,T ](X0) =
N−1
⋃

i=0

R[iτ,(i+1)τ ](X0).

In order to compute an over-approximation of R[0,T ](X0), we shall compute over-approxi-
mations of all the sets R[iτ,(i+1)τ ](X0). We consider the first element of the sequence,
R[0,τ ](X0):

Lemma 5.1 Let Ω0 ⊆ Rn be the convex set defined by:

Ω0 = Conv
(

X0, e
τAX0 ⊕ τV ⊕ ατB

)

(5.1)

where ατ = (eτ‖A‖ − 1− τ‖A‖)(RX0 +
RV
‖A‖) and B denotes the unit ball for the considered

norm. Then, R[0,τ ](X0) ⊆ Ω0 and

dH(Ω0,R[0,τ ](X0)) ≤
1

4
(eτ‖A‖ − 1)DX0 + 2ατ .

This lemma can be roughly understood as follows, eτAX0⊕ τV is an approximation of
the reachable set at time τ ; the convex hull of X0 and eτAX0⊕τV gives an approximation
of R[0,τ ](X0). The role of the bloating factor ατ is to ensure over-approximation. The
approximation error can be made arbitrarily small by choosing τ small enough. We now
consider the other elements of the sequence R[iτ,(i+1)τ ](X0). Let us remark that we have

R[(i+1)τ,(i+2)τ ](X0) = Rτ

(

R[iτ,(i+1)τ ](X0)
)

, i = 0, . . . , N − 2.

Given Ω ⊆ Rn, the following lemma provides us with an over-approximation of Rτ (Ω):

Lemma 5.2 Let Ω ⊆ Rn, let Ω′ ⊆ Rn be the set defined by:

Ω′ = eτAΩ⊕ τV ⊕ βτB

where βτ = (eτ‖A‖ − 1 − τ‖A‖) RV
‖A‖ and B denotes the unit ball for the considered norm.

Then, Rτ (Ω) ⊆ Ω′ and
dH(Ω′,Rτ (Ω)) ≤ 2βτ .

The set eτAΩ ⊕ τV is an approximation of the reachable set at time τ ; bloating this
set using the ball of radius βτ ensures over-approximation. Again, the approximation
error can be made arbitrarily small by choosing τ small enough. We shall now define the
sequence of convex sets Ωi over-approximating R[iτ,(i+1)τ ](X0) as follows. Ω0 is given by
equation (5.1) and

Ωi+1 = eτAΩi ⊕ τV ⊕ βτB, i = 0, . . . , N − 2. (5.2)
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Theorem 5.1 (Approximation of the reachable set) Let the sets Ωi be defined by
equations (5.1) and (5.2); then, for all i = 0, . . . , N − 1, R[iτ,(i+1)τ ](X0) ⊆ Ωi and

dH(Ωi,R[iτ,(i+1)τ ](X0)) ≤ τeT‖A‖
(‖A‖

4
DX0 + τ‖A‖2RX0 + eτ‖A‖RV

)

.

This theorem essentially states that the reachable set R[0,T ](X0) can be over-approxi-
mated by the union of convex sets Ω0 ∪ · · · ∪ ΩN−1. Further, the error bound for the
Hausdorff distance is in O(τ) and thus can be made arbitrarily small by choosing τ small
enough.

There are numerous approaches implementing time-discretization schemes of the pre-
vious type for computing approximations of the reachable set. These mainly differ by the
class of convex sets considered to represent the convex sets Ω0, . . . ,ΩN−1. These can be
general polytopes [GM99, CK99, ABDM00], ellipsoids [KV00, BT00] or rectangles [SK03].
Polytopes are closed under linear transformations and Minkowski sum, so they are suit-
able to implement the recurrence relation (5.2). However, for polytopes, Minkowski sum
is costly and the resulting polytope can be much more complex than the original poly-
topes. Thus, their use generally leads to precise but costly reachability computations and
is limited to systems of modest dimension. Ellipsoids and rectangles result in efficient im-
plementations, but these classes of convex sets are not closed under Minkowski sum and
thus additional approximations are needed to implement the recurrence relation (5.2).
In the following, we present implementations of the time-discretization scheme described
above based on representation of convex sets using zonotopes and support functions.

5.1.2 Approximation using zonotopes

Zonotopes: Zonotopes form a special class of convex polytopes. Traditionally, a zono-
tope is defined as the image of a cube under an affine projection [Zie95]. Equivalently, a
zonotope is a Minkowski sum of a finite set of line segments:

Definition 5.1 (Zonotope) A zonotope Z in Rn is a set such that:

Z =

{

x ∈ Rn| x = c+

i=p
∑

i=1

xigi, −1 ≤ xi ≤ 1

}

where c, g1, . . . , gp are vectors of Rn. We note Z = (c, 〈g1, . . . , gp〉).

g3

g2

g1

Figure 5.1: Example of a zonotope with three generators
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It is clear that a zonotope is a polytope. Parallelepipeds and hyperrectangles are
particular zonotopes. Note that a zonotope is always centrally symmetric. The point
c ∈ Rn is called the center of Z. The vectors g1, . . . , gp are called the generators of Z. In
Figure 5.1, we represented a planar zonotope with three generators. From a practical point
of view, Definition 5.1 gives a compact representation of the set. Practical applications of
zonotopes for rigorous approximation of dynamical systems have been shown in [Küh98,
Com03, ABC05]. In the following, we use zonotopes to over-approximate the reachable
set of a linear system. The use of zonotopes is motivated by two main properties:

Proposition 5.1 Let Z = (c, 〈g1, . . . , gp〉) and Z ′ = (c′, 〈g′1, . . . , g′q〉) be two zonotopes in
Rn, let A be a matrix with n columns, then

1. AZ is a zonotope: AZ = (Ac, 〈Ag1, . . . , Agp〉);

2. Z ⊕ Z ′ is a zonotope: Z ⊕ Z ′ = (c+ c′, 〈g1, . . . , gp, g′1, . . . , g′q〉).

Hence, zonotopes are closed under linear transformation and Minkowski sum and the
computation of these operations is very efficient. The image of a zonotope by a lin-
ear map can be computed in linear time with regard to the number of generators while
the Minkowski sum is computed in constant time by the concatenation of the lists of
generators. Linear transformation and Minkowski sum are the elementary operations of
the recurrence relation (5.2) which motivates the use of zonotopes for approximating the
reachable set of a linear system.

Reachability analysis using zonotopes: In this section, we present our results for
reachability analysis of linear systems using zonotopes [Gir05]. Let us assume that the set
of initial states X0 and inputs U of the linear system are specified by zonotopes. Then,
V = BU is a zonotope as well. Let ‖.‖ denote the infinity norm on Rn, then B is the unit
cube which is a zonotope. Hence, the set Wτ = τV ⊕ βτB is a zonotope as well. If Ω0

is a zonotope, then all the sets Ω1, . . . ,ΩN−1 defined by the recurrence relation (5.2) are
zonotopes. Unfortunately, the convex hull of two zonotopes is generally not a zonotope
and Ω0 defined by equation (5.1) is unlikely to be a zonotope. Hence, we shall initialize
the sequence with a zonotope Ω0 which contains Ω0. Let X0 = (c, 〈g1, . . . , gp〉), let us
define

Ω0 = ( c+eτAc
2 , 〈g1+eτAg1

2 , . . . ,
gp+eτAgp

2 , c−eτAc
2 , g1−eτAg1

2 , . . . ,
gp−eτAgp

2 〉)⊕ τV ⊕ ατB.
(5.3)

Then, Ω0 ⊆ Ω0. Let us consider Algorithm 1 which allows us to compute an over-
approximation of the reachable set. Moreover, the following result shows that the error
bound for the Hausdorff distance is in O(τ) and thus can be made arbitrarily small by
choosing τ small enough.

Proposition 5.2 Let Ω0, . . . ,ΩN−1 be computed by Algorithm 1; for all i = 0, . . . , N − 1,
R[iτ,(i+1)τ ](X0) ⊆ Ωi and

dH(Ωi,R[iτ,(i+1)τ ](X0)) ≤ τeT‖A‖
(‖A‖

2
RX0 + τ‖A‖2RX0 + 2RV

)

.
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Algorithm 1 Over-approximation of the reachable set by zonotopes.

Require: The matrix eτA, the zonotopes X0 and Wτ , and an integer N .
Ensure: Zonotopes Ωi for i in {0, . . . , N − 1} over-approximating the reachable set
R[0,T ](X0)

1: Let Ω0 defined by equation (5.3).
2: for i from 0 to N − 2 do
3: Ωi+1 ← eτAΩi ⊕Wτ

4: end for
5: return {Ω0, . . . ,ΩN−1}

At each iteration of the loop of Algorithm 1, the zonotope Ωi+1 is obtained by comput-
ing the image of Ωi by a linear map and by adding the zonotope Wτ . Consequently, the
number of generators of the zonotope Ωi is proportional to i. Then, the memory needed to
store the over-approximation of the set R[0,T ](X0) and the time needed for the computa-
tion are quadratic in the number of steps N . For large values of N the over-approximation
of R[0,T ](X0) can thus be quite expensive in memory and in time.

A solution to avoid this quadratic cost is to limit the number of generators of the
zonotopes Ωi. Let m ≥ n be the maximum number of generators allowed for the zonotopes
Ωi. If the number of generators of the zonotope eτAΩi⊕Wτ is m+m′ > m, then following
Algorithm 1, the zonotope Ωi+1 should have m+m′ generators which is greater than the
maximum number allowed. We propose a supplementary approximation step in order to
reduce the numbers of generators. It consists in taking m′ + n generators of eτAΩi ⊕Wτ ,
h1, . . . , hm′+n, and to replace them by n generators, such that the new zonotope Ωi+1

with m generators contains eτAΩi ⊕Wτ . Equivalently, we have to over-approximate the
zonotope (0, 〈h1, . . . , hm′+n〉) by a zonotope with n generators. It is easy to verify that
one can choose the product of intervals:

[

−
i=m′+n
∑

i=1

|hi,1| ,
i=m′+n
∑

i=1

|hi,1|
]

× · · · ×
[

−
i=m′+n
∑

i=1

|hi,n| ,
i=m′+n
∑

i=1

|hi,n|
]

which is a zonotope with n generators.
The choice of the m′ + n generators of eτAΩi ⊕ Wτ to be replaced is important

for the quality of the approximation. The best selection consists in taking the vectors
h1, . . . , hm′+n such that the over-approximation of the zonotope (0, < h1, . . . , hm′+n >) by
a product of intervals is as good as possible (products of intervals are zonotopes whose
generators have only one non zero component). Let eτAΩi ⊕Wτ = (c, 〈g1, . . . , gm+m′〉)
and let us assume that the generators have been sorted such that:

‖g1‖1 − ‖g1‖∞ ≤ ‖g2‖1 − ‖g2‖∞ ≤ · · · ≤ ‖gm+m′‖1 − ‖gm+m′‖∞.

We choose for i ∈ {1, . . . ,m′ + n}, hi = gi. These vectors are closed to vectors with only
one non zero component and therefore (0, < h1, . . . , hm′+n >) is well approximated by a
product of intervals.

Using this reduction step in Algorithm 1 allows us to compute an over-approximation
of the reachable setR[0,T ](X0) in linear time and space. However, we loose the convergence
with respect to the Haussdorf distance when the time step approaches zero. Even worse,
when the number of steps N is large, the numerous successive approximations caused
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by the reduction steps may propagate and result in a dramatic over-approximation error
(phenomenom known as the wrapping effect) rendering the reachability analysis useless.

Improved algorithmic scheme: In this section, we describe an improved algorithmic
scheme, developed in [GLM06], for computing the sequence of zonotopes Ω0, . . . ,ΩN−1 in
linear time and space. Let us remark that for i = 0, . . . , N − 2 the set Ωi+1 computed by
Algorithm 1 satisfies

Ωi+1 = (eτA)i+1Ω0 ⊕ (eτA)iWτ ⊕ · · · ⊕Wτ .

Then, let us define the auxiliary sequences:

Z0 = Ω0, Zi+1 = eτAZi,
W0 = Wτ , Wi+1 = eτAWi,
S0 = {0}, Si+1 = Si ⊕Wi.

(5.4)

Equivalently, we have

Xi+1 = (eτA)i+1Ω0, Wi+1 = (eτA)i+1Wτ and Si+1 = (eτA)iWτ ⊕ . . .⊕Wτ .

Therefore, Ωi+1 = Zi+1 ⊕ Si+1. Algorithm 2 implements the reachable set computation
based on the recurrence relations (5.4).

Algorithm 2 Efficient over-approximation of the reachable set by zonotopes.

Require: The matrix eτA, the zonotopes X0 and Wτ , and an integer N .
Ensure: Zonotopes Ωi for i in {0, . . . , N − 1} over-approximating the reachable set
R[0,T ](X0)

1: Let Ω0 defined by equation (5.3).
2: Z0 ← Ω0

3: W0 ←Wτ

4: S0 ← {0}
5: for i from 0 to N − 2 do
6: Zi+1 ← eτAZi

7: Wi+1 ← eτAWi

8: Si+1 ← Si ⊕Wi

9: Ωi+1 ← Zi+1 ⊕ Si+1

10: end for
11: return {Ω0, . . . ,ΩN−1}

The main advantage of this algorithm is that the linear transformations are applied to
the sets Zi andWi whose complexity does not increase at each iteration and this constitutes
a significant improvement over Algorithm 1. This major improvement results in a linear
time complexity for Algorithm 2, since Minkowski sums are computed in constant time for
zonotopes. Regarding the space complexity, since the Minkowski sum essentially consists
of a concatenation of lists, it is not necessary to store the sequence Si and Ωi since it can
be computed very easily from the sequences Zi and Wi. Therefore, the space complexity
of Algorithm 2 is linear in the number of steps N .

Algorithm 2 hence allows us to approximate the reachable set efficiently without ap-
proximations other than those implied by the use of the recurrence relation (5.2) and



5.1. REACHABILITY ANALYSIS OF LINEAR SYSTEMS 65

the approximation of the initial set Ω0 by equation (5.3). Let us remark that the sets
Ω0, . . . ,ΩN−1 computed by Algorithm 2 are exactly the same as those computed by Algo-
rithm 1. Therefore, the approximation result given by Proposition 5.2 remains valid and
the wrapping effect is avoided.

5.1.3 Approximation using support functions

In this section, we present a second implementation of the time-discretization scheme
presented in Section 5.1.1 that can handle arbitrary compact convex sets by using the
notion of support function. These results have been presented in [LG10].

Convex sets and support functions: The support function of a convex set is a clas-
sical tool of convex analysis. In the following, we shall use support functions as a repre-
sentation of arbitrary compact convex sets.

Definition 5.2 (Support function) Let Ω ⊆ Rn be a compact convex set; the support
function of Ω, denoted ρΩ, is defined as:

ρΩ : Rn → R
ℓ 7→ maxx∈Ω ℓ · x

The notion of support function is illustrated in Figure 5.2. It can be shown that the
support function of a compact convex set is a convex function.

It is to be noted that the set Ω is uniquely determined by its support function as the
following equality holds:

Ω =
⋂

ℓ∈Rn

{x ∈ Rn : ℓ · x ≤ ρΩ(ℓ)} (5.5)

which means that any convex set Ω is the intersection of the infinite set of halfspaces with
normal vector ℓ ∈ Rn and distance value ρΩ(ℓ).

ℓ1

ℓ2

ℓ4

F1 : ℓ1 · x = ρΩ(ℓ1)

F2 : ℓ2 · x = ρΩ(ℓ2)

F3 : ℓ3 · x = ρΩ(ℓ3)

F4 : ℓ4 · x = ρΩ(ℓ4)

Ω ℓ3

Figure 5.2: Illustration of the notion of support function of a convex set Ω.
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Proposition 5.3 For the following compact convex sets, the support function can be com-
puted.

• An ellipsoid: Ω =
{

x ∈ Rn| x⊤Q−1x ≤ 1
}

where Q is a positive definite symmetric
matrix. Then,

ρΩ(ℓ) =
√

ℓ⊤Qℓ.

• A zonotope: Ω = {α1g1 + · · ·+ αrgr| αj ∈ [−1, 1], j = 1, . . . , r} where the generators
g1, . . . , gr ∈ Rn. Then,

ρΩ(ℓ) =
r
∑

j=1

|gj · ℓ|.

• A polytope: Ω = {x ∈ Rn| Cx ≤ d} where C and d are a matrix and vector of com-
patible dimension. Then, computing ρΩ(ℓ) is equivalent to solving the linear program:

{

Maximize ℓ · x
Subject to Cx ≤ d

Further, more complex sets can be considered using operations on elementary convex sets.
The support function of sets defined using these operations can be computed using the
following properties.

Proposition 5.4 For all compact convex sets Ω, Ω′ ⊆ Rn, for all matrices A, all real
numbers λ, and all vectors ℓ ∈ Rn, we have:

ρAΩ(ℓ) = ρΩ(A
⊤ℓ)

ρλΩ(ℓ) = ρΩ(λℓ) = λρΩ(ℓ)

ρConv(Ω,Ω′)(ℓ) = max(ρΩ(ℓ), ρΩ′(ℓ))

ρΩ⊕Ω′(ℓ) = ρΩ(ℓ) + ρΩ′(ℓ).

ρΩ∩Ω′(ℓ) = inf
ω∈Rn

(ρΩ(ℓ− ω) + ρΩ′(ω)) ≤ min(ρΩ(ℓ), ρΩ′(ℓ)).

From equation (5.5), it is easy to see that polytopic over-approximations of an arbitrary
compact convex set can be obtained by “sampling” its support function.

Proposition 5.5 Let Ω be a compact convex set and ℓ1, . . . , ℓr ∈ Rn be arbitrarily chosen
vectors; let us define the following polytope:

Ω = {x ∈ Rn| ℓk · x ≤ ρΩ(ℓk), k = 1, . . . , r}.

Then, Ω ⊆ Ω. Moreover, we say that this over-approximation is tight as Ω touches the
faces F1, . . . , Fr of Ω:

d(Ω, Fk) = 0, k = 1, . . . , r.

An example of such polytopic over-approximation of a convex set can be seen in Figure 5.2.
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Reachability analysis using support functions: We now consider the computation
of the support functions of the approximate reachable sets Ω0 . . .ΩN−1 defined by the
time-discretization scheme presented in Section 5.1.1. For simplicity of the notations, let
us introduce the matrix Φτ and the set Wτ defined by

Φτ = eτA, Wτ = τV ⊕ βτB. (5.6)

Using Proposition 5.4, it follows that the support function of Wτ is given by

ρWτ (ℓ) = τρV (ℓ) + βτρB(ℓ) (5.7)

where ρB is the support function of the unit ball for the chosen norm. The following
proposition gives the expression of ρΩ0 . . . ρΩN−1

.

Proposition 5.6 Let Ω0 . . .ΩN−1 be the sets defined by equations (5.1) and (5.2). Then,
for all ℓ in Rn,

ρΩ0(ℓ) = max
(

ρX0(ℓ), ρX0(Φ
⊤
τ ℓ) + τρV (ℓ) + ατρB(ℓ)

)

(5.8)

and for i = 0, . . . , N − 1,

ρΩi(ℓ) = ρΩ0

(

(Φ⊤
τ )

iℓ
)

+
i−1
∑

j=0

ρWτ

(

(Φ⊤
τ )

jℓ
)

.

Hence, we showed that the reachable set of a linear system can be over-approximated
arbitrarily close by a union of compact convex sets with effectively computable support
functions. The representation of convex sets by their support function is not suitable for
some tasks, especially when an explicit representation is needed. From Proposition 5.5,
polytopic approximations of the sets Ω0, . . . ,ΩN−1 can be obtained by evaluating their
support functions in several directions. These sets provide with polytopic approximations
of the reachable sets:

Proposition 5.7 Let ρΩ0 , . . . , ρΩN−1
be the functions defined in Proposition 5.6. Let

ℓ1, . . . , ℓr ∈ Rn be arbitrarily chosen vectors; let us define the following polytope:

Ωi = {x ∈ Rn| ℓk · x ≤ ρΩi(ℓk), k = 1, . . . , r}, i = 0, . . . , N − 1.

Then, for all i = 0, . . . , N − 1, R[iτ,(i+1)τ ](X0) ⊆ Ωi. Let Fi,1, . . . , Fi,r denote the faces of

polytope Ωi, then

d(R[iτ ,(i+1)τ ](X0), Fi,k) ≤ τeT‖A‖
(‖A‖

4
DX0 + τ‖A‖2RX0 + eτ‖A‖RV

)

.

Proposition 5.7 states that by evaluating the functions ρΩ0 , . . . , ρΩN−1
, we can compute

a union of polytopes over-approximating the reachable set R[0,T ](X0). Moreover, the
distance between each face of the approximating polytope and the actual reachable set
can be made arbitrarily small. Let us remark that the polytopic over-approximation Ωi is
not computed from the previous polytope of the sequence but from the support function
of Ωi. As a consequence, the proposed algorithm is not subject to the wrapping effect.
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We now consider the problem of computing efficiently these polytopic over-approxima-
tions of the reachable set. We present an efficient algorithm that evaluates the support
functions ρΩ0 , . . . , ρΩN−1

in a given direction ℓ. It is based on the same observation as that
made for Algorithm 2. Let us introduce the following auxiliary sequences r0, . . . , rN−1 ∈
Rn and s0, . . . , sN−1 ∈ R:

r0 = ℓ, ri+1 = Φ⊤
τ ri,

s0 = 0, si+1 = sk + ρWτ (ri).

Equivalently, we have

ri = (Φ⊤
τ )

iℓ and si =
i−1
∑

j=0

ρWτ

(

(Φ⊤
τ )

jℓ
)

.

Therefore,

ρΩi(ℓ) = ρΩ0(ri) + si.

Algorithm 3 implements efficiently the evaluation of ρΩ0(ℓ), . . . , ρΩN−1
(ℓ). It performs, at

each of the N − 1 iterations, the product of a matrix with a vector and the evaluation of
the support functions ρΩ0 and ρWτ given by (5.8) and (5.7). The global time and space
complexity of Algorithm 3 is therefore linear in the number of steps N .

Algorithm 3 Evaluation of ρΩ0(ℓ), . . . , ρΩN−1
(ℓ).

Require: The matrix Φτ given by (5.6), the support functions ρΩ0 and ρWτ given by (5.8)
and (5.7), the vector ℓ and an integer N .

Ensure: ρi = ρΩi(ℓ) for i in {0, . . . , N − 1}
1: r0 ← ℓ
2: s0 ← 0
3: ρ0 ← ρΩ0(r0)
4: for i from 0 to N − 2 do
5: ri+1 ← Φ⊤

τ ri
6: si+1 ← si + ρWτ (ri)
7: ρi+1 ← ρΩ0(ri+1) + si+1

8: end for
9: return {ρ0, . . . , ρN−1}

5.1.4 Numerical examples

A five-dimensional linear system: As a first benchmark consider the five-dimensional
example taken from [Gir05]. Over-approximations of the reachable sets of this system have
been computed using Algorithm 1 with a reduction step to keep the number of generators
less than 100, Algorithms 2 and 3 where the facets of the approximating polytopes are
chosen aligned with the axes. The approximation obtained by Algorithm 2 is always
the most accurate because it exactly implements the recurrence relation (5.2). For short
time horizons, the over-approximations computed by Algorithm 1 are more accurate than
the ones computed by Algorithm 3. However, as we consider longer time horizons, the
errors introduced at each step of Algorithm 1 start propagating through the computations
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Figure 5.3: Reachable states of a five-dimensional linear system after 1000 iterations:
projections on coordinates x1 and x2 (left), x4 and x5 (right). In light gray: set computed
by Algorithm 1 with a reduction step to keep the number of generators smaller than
100. In dark gray: set computed by Algorithm 3 where the facets of the approximating
polytopes are chosen aligned with the axes. In black: set computed by Algorithm 2.

and the wrapping effect becomes too significant to actually say anything interesting about
the reachable states of the system. In comparison, the over-approximations obtained by
Algorithm 3 are tight and remain accurate even for long time horizons.

Figure 5.3 shows the over-approximations of the reachable sets obtained by the three
algorithms for a long time horizon (N = 1000). It is clear that Algorithms 2 and 3
have a much better precision than Algorithm 1, an obvious victim of the wrapping effect.
Algorithm 1 needs 2.16s and 6.88MB to compute the over-approximations, for the same
task Algorithms 2 and 3 need 0.07s and 1.47MB, 0.02s and 246KB, respectively.

Figure 5.4: Reachable values by uout(t) against time t.
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RLC model of a transmission line: We consider a second example consisting in a
verification problem for a transmission line borrowed from [HK06]. The goal is to check
that the transient behavior of a long transmission line is acceptable both in terms of
overshoot and of response time. The dynamics of the system is given by a single-input
single-output linear dynamical system with a state vector in dimension n = 81. Initially,
the system is supposed to be in an ε-neighborhood (with ε = 0.01) of the set of steady
states for an input value inside [−0.2; 0.2]. Then, at time t = 0, the input value is switched
to a value in [0.99; 1.01]. Figure 5.4 shows the reachable values of the output voltage for
a time horizon of 3ns, it was computed by Algorithm 3 in 0.10s using 0.234MB.

5.2 Reachability Analysis of Polynomial Systems

We now consider a disrete-time dynamical system of the following form:

xk+1 = f(xk), k ∈ N, xk ∈ Rn, x0 ∈ X0 (5.9)

where f : Rn → Rn is a polynomial map and X0 is a bounded polytope in Rn.
We are concerned with bounded-time reachability analysis of system (5.9) which con-

sists in computing the sequence Xk ⊆ Rn of reachable sets at time k of the system up to
some time K ∈ N. It should be noticed that even though the first element X0 is a poly-
tope, in general the other elements of the sequence are not. Actually, they are generally
not even convex. In the following, we present an approach [BTDG12] for computing over-
approximations of the sets Xk using bounded polytopes Xk. Such a sequence can clearly
be computed inductively by setting X0 = X0 and by ensuring that for all k = 0, . . . ,K−1,
f(Xk) ⊆ Xk+1.

Hence, we focus on the computation of a polytopic over-approximation Xk+1 of the
image of a bounded polytope Xk by the map f . We seek Xk+1 under the form

Xk+1 = {x ∈ Rn| Ak+1x ≤ bk+1}.

where the direction matrix Ak+1 ∈ Rm×n, the position vector bk+1 ∈ Rm and the in-
equality above is to be understood component-wise. Let us assume for the moment that
the direction matrix Ak+1 is given. Then, the computation of the set Xk+1 reduces to
determining value bk+1. Then, if for all i = 1, . . . ,m

−bk+1,i ≤ min
x∈Xk

−Ak+1,if(x) (5.10)

it follows that f(Xk) ⊆ Xk+1.
Let us remark that the computation of the minimal values in equation (5.10) involves

optimizing a generally non-convex multi-variable polynomial function on a bounded poly-
tope. This is a difficult problem in general; however the computation of a lower bound
for the minimal values is sufficient to obtain an over-approximation of f(Xk). Accurate
lower bounds can be computed by solving semi-definite programs obtained through sum
of squares or linear matrix inequalities relaxations [Par03, Las01]. However, since the
number of optimization problems to be solved can be quite large (one problem by facet
and by time step), one may be interested in obtaining less accurate but cheaper lower
bounds. For that purpose, a technique, based on linear programming, is presented in the
following section.
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5.2.1 Optimization of polynomials using linear programming

In the following, we consider the problem of computing a guaranteed lower bound of the
following optimization problem:

minimize ℓ · g(y)
over y ∈ [0, 1]n,
subject to Ay ≤ b.

(5.11)

where ℓ ∈ Rn, g : Rn → Rn is a polynomial map, A ∈ Rn×m and b ∈ Rm. It is clear that
the optimization problem in (5.10) can be written under the form (5.11) using a linear
change of variables.

Let y1, . . . , yn denote the components of y ∈ [0, 1]n and δ1, . . . , δn denote the degrees
of g in y1, . . . , yn. Let ∆ = (δ1, . . . , δn); for I = (i1, . . . , in) ∈ Nn, we write I ≤ ∆ if ij ≤ δj
for all j ∈ {1, . . . , n}. The main ingredient of our approach is the Bernstein expansion of
polynomials. The polynomial map g in its Bernstein form is given by:

g(y) =
∑

I≤∆

hIB∆,I(y) where hI ∈ Rn, ∀I ≤ ∆

and the Bernstein polynomials are defined for I ≤ ∆ as follows:

B∆,I(y) = βδ1,i1(y1) . . . βδn,in(yn)

with for j = 1, . . . n, ij = 0, . . . , δj : βδj ,ij (yj) =

(

δj
ij

)

y
ij
j (1− yj)

δj−ij .

For determining a linear programming relaxation of (5.11), the most useful properties
of the Bernstein polynomials are the following:

Proposition 5.8 The Bernstein polynomials satisfy the following properties:

1. For all y ∈ Rn,
∑

I≤∆B∆,I(y) = 1 and
∑

I≤∆
I
∆B∆,I(y) = y.

2. For all y ∈ [0, 1]n, 0 ≤ B∆,I(y) ≤ B∆,I(
I
∆)

where B∆,I(
I
∆) =

∏j=n
j=1

(

δj
ij

)

i
ij
j (δj−ij)

δj−ij

δ
δj
j

.

We can use the previous proposition to derive a linear programming relaxation of the
problem (5.11):

Proposition 5.9 Let p∗ be the optimal value of the linear program:

minimize
∑

I≤∆(ℓ · hI)zI
over zI ∈ R, I ≤ ∆,

subject to 0 ≤ zI ≤ B∆,I(
I
∆), I ≤ ∆,

∑

I≤∆ zI = 1,
∑

I≤∆(A
I
∆)zI ≤ b.

Then, p∗ ≤ p∗ where p∗ is the optimal value of problem (5.11).

Thus, we can see that the computation of Xk+1 can be done by computing guaranteed
lower bounds on the optimal values of minimization problems using linear programming.
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5.2.2 Choice of the direction matrices

Let the polytope Xk = {x ∈ Rn| Ak · x ≤ bk}, in the next iteration, we want to compute
a new direction matrix Ak+1 that reflects as much as possible the changes of the shape
of Xk under the polynomial f . For that purpose, we use a local linear approximation of
the dynamics of the polynomial dynamical system (5.9) given by the first order Taylor
expansion around an element x∗k of the last computed polytope Xk:

f(x) ≈ Lk(x) = f(x∗k) + J(x∗k)(x− x∗k)

where J is the Jacobian matrix of the function f . Let us denote Fk = J(x∗k) and hk =
f(x∗k) − J(x∗k)x

∗
k, then in a neighborhood of x∗k the nonlinear dynamics can be roughly

approximated by xk+1 = Fkxk + hk. Assuming that Fk is invertible, this gives xk =
F−1
k xk+1 − F−1

k hk. Transposing the constraints on xk given by Xk to xk+1, we obtain

AkF
−1
k xk+1 ≤ bk +AkF

−1
k hk

Then, it appears that a reasonable template for Xk+1 should be Ak+1 = AkF
−1
k . This

new template Ak+1 can then be used in next iteration for the computation of the polytope
Xk+1 using the method described in the previous section. Let us remark that this choice
implies that our reachability algorithm is exact if f is an affine map.

Example: We consider a discrete time version of the FitzHugh-Nagumo model which is
a polynomial dynamical system modelling the electrical activity of a neuron:

{

x1(k + 1) = x1(k) + h
(

(x1(k)− x1(k)3

3 − x2(k) + I
)

x2(k + 1) = x2(k) + h (0.08(x1(k) + 0.7− 0.8x2(k)))

where the model parameter I is equal to 7
8 and the time step h = 0.05. Figure 5.5 shows

two reachable set evolutions. The figure on the left was computed using static direction
matrices Ak = A0, for all k whereas the figure on the right was computed using dynamic
direction matrices as described above. The computation time is 1.16 seconds using static
direction matrices and 1.22 seconds using dynamic direction matrices. We can see from
the figure a significant precision improvement obtained by using dynamical templates, at
little additional cost.

Figure 5.5: Reachability sets for the FitzHugh-Nagumo neuron model using static (left)
and dynamic (right) direction matrices.
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Discussion: The results presented in Section 5.1 were published in [Gir05, GLM06,
LG10]. The time-discretization scheme was developed in collaboration with Colas Le
Guernic during his Ph.D. at Verimag under the co-supervision of Oded Maler and myself;
it is an improvement of an earlier scheme published in [Gir05]. The first implementation
using zonotopes is taken from [Gir05], the improved algorithmic scheme and the approach
based on support functions were developed in collaboration with Colas Le Guernic and
Oded Maler and presented in [GLM06, LG10]. The zonotope based approach has been
extended to handle linear systems with uncertain parameters [ASB07] and nonlinear sys-
tems using local linearizations [ASB08]. The approach using support functions has been
adapted to compute viability kernels of linear systems in [MKM+13]. Finally, let us re-
mark that zonotopes and support functions have recently been used as abstract domains
for static analysis of numerical programs [GGP09, SB13].

The extension of the algorithms of Section 5.1 for reachability analysis of hybrid au-
tomata has been described in [GL08] (see also [ASB10]) for the approximation based on
zonotopes and in [LG09] for the approximation based on support functions. The main
difficulty of the extension lies in the computation of the intersection of the continuous
reachable sets with the invariants and with the guards enabling the discrete transitions.
It is noticeable that the support function algorithm constitutes the core of the state of
the art hybrid system verification platform SpaceEx [FLD+11] developed in Verimag by a
team led by Goran Frehse.

The approach for polynomial systems presented in Section 5.2 was developed within
the ANR project VEDECY. The linear programming relaxations of polynomial optimiza-
tion problems were developed by Mohamed Amin Ben Sassi during his Ph.D. under the
co-supervision of Guillaume James and myself. The algorithm for reachability analysis
was presented in [BTDG12] and developed in collaboration with Romain Testylier and
Thao Dang from Verimag and improves the existing reachability algorithms based on the
Bernstein form [DS09]. Other applications of linear programming relaxations of polyno-
mial optimization were considered by Mohamed Amin Ben Sassi during his Ph.D. such as
the computation of polytopic invariants [BG12a] or synthesis of robust controllers [BG12b]
for continuous-time polynomial dynamical systems.

Reachability analysis of general nonlinear systems can be performed using the hy-
bridization principle, which consists in approximating a nonlinear dynamics by a piecewise
linear dynamics where additional bounded disturbances are added to account for the ap-
proximation error. Then, the reachable set of the resulting hybrid automaton, computable
with approaches mentioned above, provides an over-approximation of the reachable set of
the original non-linear system. In collaboration with Eugène Asarin from LIAFA and
Thao Dang, we have shown that the approximation error of the reachable set can be made
arbitrarily accurate on bounded time intervals and even on unbounded time intervals if
an attractor exists [ADG03, ADG07]. The hybridization principle has also been applied
to controller synthesis for nonlinear systems in collaboration with Samuel Martin while he
was a student at ENSIMAG [GM12].
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Part III

Multi-Agent Dynamical Systems
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Chapter 6

Consensus and Opinion Dynamics

Résumé : Les systèmes dynamiques multi-agents consistent en un ensemble
d’agents inter-agissant localement par des règles simples afin de réaliser un
comportement collectif cohérent. Ils trouvent des applications dans de nom-
breux domaines tels que la robotique, la conception des réseaux d’énergie ou en
sciences sociales. Le problème du consensus constitue un point central de la
théorie des systèmes multi-agents. On parle de consensus lorsque l’ensemble
des agents converge vers un même état. Le défi principal consiste à trouver des
conditions sur la structure des interactions locales entre agents qui garantissent
l’obtention d’un consensus. Nous présentons un résultat [MG13] pour le con-
sensus en temps continu qui propose des conditions suffisantes (connexité per-
sistante et divergence lente des poids d’interaction réciproques) pour le consen-
sus qui sont plus générales que celles disponibles aujourd’hui dans la littérature.
De plus, notre approche permet d’établir une estimation de la vitesse de con-
vergence vers le consensus. Nous présentons ensuite un modèle de dynamique
d’opinion permettant de reproduire la formation de communautés au sein d’un
réseau d’agents [MG11]. Dans le modèle considéré, les agents cherchent à
atteindre un consensus avec une contrainte sur la vitesse de convergence vers
celui-ci. Lorsque la vitesse prescrite ne peut être garantie, les interactions entre
agents ne s’accordant pas assez vite sont supprimées. Il résulte de ce modèle la
formation de sous-groupes d’agents (les communautés) au sein desquels un con-
sensus est atteint. Nous établissons une caractérisation de ces communautés
en terme de propriétés algébriques du graphe d’interactions et décrivons une
application de notre modèle à la détection de communautés dans des graphes.
Ainsi, notre modèle peut être utilisé comme algorithme décentralisé pour la
détection de communautés dans les réseaux.

Multi-agent dynamical systems consists of agents interacting according to simple local
rules in order to achieve some global coordinated behavior. These systems find numerous
applications such as multi-vehicle control in robotics [RBA07], design of smart distributed
energy networks [DCB13], modeling of opinion dynamics [HK02]... The capability of
reaching an agreement in a distributed manner is a central problem in multi-agent sys-
tems; consensus algorithms serve to emulate this process of agreement: agents locally
exchange information with their neighbors about their states (representing e.g. positions
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and velocities, power production, or opinions depending on the considered application)
and act in order to decrease the distance between these. A multi-agent system is said to
reach a consensus when the states of all agents converge asymptotically toward a common
value.

Sufficient conditions for convergence to a consensus are typically based on the topol-
ogy of the network (or graph) describing the interactions between neighbors and on the
strength of these interactions. Consensus algorithms have attracted a lot of attention in the
past decade. Notable convergence results include [JLM03, Mor05, RB05, BHOT05, HT12]
for the discrete time and [OSM04, Mor04, RB05, HT12, CZZ11a, CZZ11b] for the con-
tinuous time consensus algorithm. We can classify these results depending on whether or
not they require some notion of reciprocity in the interaction. In the following, we assume
some kind of reciprocity which allows us to consider weaker assumptions on the connectiv-
ity of the interaction graph. In the first part of this chapter, we present a set of sufficient
conditions for achieving consensus in continuous-time. These are the weakest conditions
available in the literature for continuous-time consensus with some reciprocity in the in-
teractions. In particular, they extend the very recent result from [HT12]. Moreover, our
result provides an explicit bound on the convergence rate to consensus which is missing
in [HT12]. Numerical examples are shown to illustrate the tightness of our conditions.

In the second part of the chapter, we present a model of opinion dynamics with de-
caying confidence. It is a discrete-time multi-agent system where the state of each agent
represents its opinion. At each time step, the agent receives the opinions of its neighbors
and then updates its opinion by taking a weighted average of its opinion and the opinions
of its neighbors that are within some confidence range of its own. The confidence ranges
are getting smaller at each time step: an agent gives repetitively confidence only to the
neighbors that approach sufficiently fast its own opinion. This can be seen as a model
for a negotiation process where an agent expects that its neighbors move significantly
towards its opinion at each negotiation round in order to keep negotiating. Our model
can be seen as an extension of the opinion dynamics with bounded confidence studied
in [HK02, BHT09]. In our model, global consensus may not be achieved and the agents
may only reach local agreement. We call communities the subsets of agents reaching a con-
sensus. We provide an algebraic characterization of these communities and we show that
our model provides a naturally distributed solution to the community detection problem
in graphs.

6.1 Sufficient Conditions for Consensus

The system we study consists of n agents interacting with each other according to a
continuous-time consensus protocol. Agents are labeled from 1 to n and V = {1, . . . , n}
denotes the label set of the agents. Agents adjust their states xi(t) ∈ R for i ∈ V according
to the following differential equation

ẋi(t) =

n
∑

j=1

aij(t)(xj(t)− xi(t)), i ∈ V (6.1)

where for all i, j ∈ V , the interaction weight aij represents the strength of the influence
of agent j on agent i and is a non-negative measurable function of time, summable on
bounded intervals of R+. We call a solution to equation (6.1), a trajectory of the system.
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We say that a trajectory reaches a consensus when limt→+∞ xi(t) exist and are the same,
for all i ∈ V . The common limit is called the consensus value. We define the group
diameter as

∆V (t) = max
i∈V

xi(t)−min
j∈V

xj(t).

It can be easily shown that maxi∈V xi(t) is non-increasing and that minj∈V xj(t) is non-
decreasing. Then, it is clear that the group diameter is non-increasing and that the
trajectory reaches a consensus if and only if limt→+∞∆V (t) = 0.

6.1.1 Persistent connectivity and slow divergence of reciprocal interac-

tion weights

In this section, we present a set of sufficient conditions for achieving consensus [MG13].
Our convergence result involves assumptions on the interaction weights. Let S be some
non-empty proper subset of V , we define the ratio between reciprocal interaction weights
from S to V \ S:

rS(t) =











∑
i∈S,j /∈S aij(t)∑
i∈S,j /∈S aji(t)

if the denominator is positive,

1 if numerator and denominator are equal to zero,
+∞ if the denominator is zero and the numerator is positive.

Then, we define the maximal ratio between reciprocal interaction weights as follows:

r(t) = max
S 6=∅,S(V

rS(t)

For manipulation purposes, we shall use the maximal value of r over all past times. Let

r(t) = sup
s∈[0,t]

r(s).

As defined, r is a non-decreasing function of time, and r(t) is always greater than 1. A
direct consequence of this definition is the following statement:

∀S 6= ∅, S ( V, ∀s ∈ [0, t],
1

r(t)

∑

i∈S,j /∈S
aij(s) ≤

∑

i∈S,j /∈S
aji(s) ≤ r(t)

∑

i∈S,j /∈S
aij(s).

Thus, whenever a subgroup S of agents influences the rest of the group via interaction
weights of sum a(s) > 0 at time s ≤ t, we know that S is influenced back via interaction

weights of sum no less than a(s)
r(t) .

In our convergence result, we shall make two assumptions on interaction weights. The
first one is concerned with the topology of the interactions and involves the notion of
strong connectivity. A graph, with V as set of vertices, is said to be strongly connected
when there is a directed path going from node i to node j for all distinct nodes i, j ∈ V .

Assumption 6.1 (Persistent Connectivity) The graph (V,E) is strongly connected
where

E =

{

(j, i) ∈ V × V |
∫ +∞

0
aij(s)ds = +∞

}

.
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This assumption allows us to define a sequence of time instants (tp)p∈N which implicitly

defines a rescaling of time according to the speed of growth of
∫ t
0 aij(s)ds for (j, i) ∈ E.

Let t0 = 0 and, for p ∈ N, let us define tp+1 as the last element of the intermediate

finite sequence (t0p, t
1
p, . . . , t

⌊n/2⌋
p ) where ⌊·⌋ is the floor function, t0p = tp and for q ∈

{0, . . . , ⌊n/2⌋}, tq+1
p is the smallest time t ≥ tqp such that

min
S(V,S 6=∅





∑

i∈S

∑

j∈V \S

∫ t

tqp

aij(s)ds



 = 1.

Such a t always exists because (V,E) is strongly connected and therefore for all non empty
set S ( V , there exists i ∈ S and j ∈ V \ S such that (j, i) ∈ E. Essentially, the sequence

(t0p, t
1
p, . . . , t

⌊n/2⌋
p ) defines time intervals [tqp, t

q+1
p ] over which the cumulated influence on

any subgroup of agents from the rest of the agents is no less than 1. Let us remark that
since we assume that the interaction weights aij are summable on bounded intervals of
R+, it follows that the sequence (tp)p∈N goes to infinity as p goes to +∞. We can now
state our main result that quantifies the contraction of the group diameter between time
tp and tp+1:

Proposition 6.1 (Group diameter contraction rate) If Assumption 6.1 (persistent
connectivity) holds, then for all p ∈ N,

∆V (tp+1) ≤
(

1− r(tp+1)
−⌊n/2⌋

(8n2)⌊n/2⌋

)

∆V (tp).

The main idea of the rather technical proof of this proposition is to show that the
interactions over intervals [tqp, t

q+1
p ] induce a chain of movements of the agents toward the

center of the group. These movements propagate toward agents having either smallest or
largest states in less than ⌊n/2⌋ such intervals and result in a contraction of the group
diameter between tp and tp+1.

It is clear from the previous proposition that the sequence (r(tp))p∈N plays a central
role in the fact that the consensus is reached or not. This is where the second assumption
regarding the interaction weights comes into play.

Assumption 6.2 (Slow divergence of reciprocal interaction weights) For all t ≥
0, r(t) is finite and the infinite sum

∑

p∈N r(tp)
−⌊n/2⌋ = +∞.

The assumption requires r(t) not to grow too fast. For instance, r(tp) = O(p2/n) (which
includes the case where r is bounded) satisfies Assumption 6.2, whereas r(tp) = p4/n

does not. Hence, the assumption enables the divergence of reciprocal interaction weights
provided this divergence is slow. Let us remark that the larger the number of agents, the
slower the divergence can be. We can now state the main result of the paper.

Theorem 6.1 If Assumptions 6.1 (persistent connectivity) and 6.2 (slow divergence of
reciprocal interaction weights) hold, then the trajectory of system (6.1) reaches a consensus.

The previous result provides the most general conditions available in the literature
for continuous-time consensus with some assumption of reciprocity. In particular, it ex-
tends the very recent result [HT12] where Assumption 6.2 is essentially replaced by the
assumption that r(t) is uniformly bounded by some constant K > 0. Moreover, thanks
to different proof techniques, we are able to provide an estimation of the convergence rate
by Proposition 6.1 which is missing in [HT12].
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Figure 6.1: Top: evolution of the diameter ∆V (t) for the system with 11 agents for the

sequences given by ρp = 1 (plain line), ρp = (1 + p)
1
5 (dashed line), ρp = (1 + p)

2
5 (dash

and dots). Bottom: evolution of the diameter ∆V (t) in logarithmic scale for the sequences

given by ρp = 1 (left), ρp = (1 + p)
1
5 (right).

Numerical example: We realized a numerical study to evaluate the tightness of As-
sumption 6.2. Let us consider a system with n = 2m + 1 agents with m ≥ 2 whose
dynamics is defined as follows:

• For t ∈ [(m+ 1)p+ i, (m+ 1)p+ i+ 1) with p ∈ N, i ∈ {0, . . . ,m− 2},























ẋi+1(t) = xi+2(t)− xi+1(t)
ẋi+2(t) = ρp(xi+1(t)− xi+2(t))
ẋn−1−i(t) = ρp(xn−i(t)− xn−1−i(t))
ẋn−i(t) = xn−1−i(t)− xn−i(t)
ẋj(t) = 0 if j /∈ {i+ 1, i+ 2, n− 1− i, n− i}
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• For t ∈ [(m+ 1)p+m− 1, (m+ 1)p+m) with p ∈ N,






ẋm(t) = xm+1(t)− xm(t)
ẋm+1(t) = ρp(xm(t)− xm+1(t))
ẋj(t) = 0 if j /∈ {m,m+ 1}

• For t ∈ [(m+ 1)p+m, (m+ 1)(p+ 1)) with p ∈ N,






ẋm+1(t) = ρp(xm+2(t)− xm+1(t))
ẋm+2(t) = (xm+1(t)− xm+2(t))
ẋj(t) = 0 if j /∈ {m+ 1,m+ 2}

This system satisfies the persistent connectivity Assumption 6.1. The sequence tp grows
linearly in p and we can also show that we have r(tp+1) = ρp, for p ∈ N. Then, Assump-
tion 6.2 holds if and only if

∑

p∈N ρp
−m = +∞.

In the following, we report the results of our numerical simulations of the system with
11 agents (i.e. m = 5). We simulated the system for three different sequences (ρp)p∈N:

ρp = 1, ρp = (1 + p)
1
5 , ρp = (1 + p)

2
5 . It should be noted that Assumption 6.2 holds for

the first two sequences but not for the third one. The results of the simulations are shown
in Figure 6.1 where we represented the evolution of the diameter ∆V (t) over time. The
simulations are consistent with the theory showing that the consensus is reached for the
first two sequences (the diameter goes to zero). Also, for the third sequence, we can observe
that the consensus is not reached. For the first two sequences, we also represented the
evolution of the diameter ∆V (t) in a logarithmic scale in order to estimate the convergence
rate. It appears clearly that for the first sequence the convergence rate is exponential. For
the second sequence, the convexity of the curve indicates that the convergence rate is
sub-exponential. These are consistent with the estimates given by Proposition 6.1. This
example makes us think that our conditions for consensus are actually quite tight.

6.2 Opinion Dynamics with Decaying Confidence:

Consensus in Communities

In this section we present a model of opinion dynamics with decaying confidence and its
application to community detection in graphs [MG11].

6.2.1 Model description

We consider a set of n agents, V = {1, . . . , n}. A relation E ⊆ V × V models the
interactions between the agents. We assume that the relation is symmetric and anti-
reflexive. V is the set of vertices and E is the set of edges of an undirected graph G =
(V,E), describing the network of agents. Each agent i ∈ V has an opinion modeled by a
real number xi(t) ∈ R. Initially, agent i has an opinion xi(0) = x0i independent from the
opinions of the other agents. Then, at every time step, the agents update their opinion
by taking a weighted average of its opinion and opinions of other agents:

xi(t+ 1) =
n
∑

j=1

pij(t)xj(t) (6.2)
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with the coefficients pij(t) satisfying

∀i, j ∈ V, (pij(t) 6= 0 ⇐⇒ j ∈ {i} ∪Ni(t)) (6.3)

where Ni(t) denotes the confidence neighborhood of agent i at time t:

Ni(t) =
{

j ∈ V | ((i, j) ∈ E) ∧
(

|xi(t)− xj(t)| ≤ Rρt
)}

(6.4)

with R > 0 and ρ ∈ (0, 1) are model parameters. We make the following assumption:

Assumption 6.3 For t ∈ N, the coefficients pij(t) satisfy

1. pij(t) ∈ [0, 1], for all i, j ∈ V .

2.
∑n

j=1 pij(t) = 1, for all i ∈ V .

This model can be interpreted in terms of opinion dynamics. At each time step t, agent
i ∈ V receives the opinions of its neighbors in the graph G. If the opinion of i differs from
the opinion of its neighbor j more than the threshold Rρt, then i does not give confidence
to j and does not take into account the opinion of j when updating its own opinion. The
parameter ρ characterizes the confidence decay of the agents. Agent i gives repetitively
confidence only to neighbors whose opinion converges sufficiently fast to its own opinion.
This model can be interpreted in terms of negotiations where agent i requires that, at each
negotiation round, the opinion of agent j moves significantly towards its own opinion in
order to keep negotiating with j.

Remark 6.1 We assume that ρ ∈ (0, 1), however, let us remark that for ρ = 1 (there
is no confidence decay), with a complete graph G (every agent talks with all the other
agents) and, for all i ∈ V , equal values of non-zero coefficients pij(t), our model would
coincide with Krause model of opinion dynamics with bounded confidence studied in [HK02,
BHT09].

Our first result states that the opinion of each agent converges to some limit value:

Proposition 6.2 Under Assumption 6.3, for all i ∈ V , the sequence (xi(t))t∈N is conver-
gent. We denote x∗i its limit. Furthermore, we have for all t ∈ N,

|xi(t)− x∗i | ≤
R

1− ρ
ρt.

Generally, the opinions of all the agents do not converge to a common value. Indeed,
agents may only succeed in agreeing locally organizing themselves in communities that we
formally define as follows:

Definition 6.1 Let i, j ∈ V , we say that agents i and j asymptotically agree, denoted
i ∼∗ j, if and only if x∗i = x∗j . ∼∗ is an equivalence relation over V , a community C ⊆ V
is an element of the quotient set C = V/ ∼∗.

Let us remark that the community structure is dependent on the initial distribution
of opinions. In the following, we shall provide an algebraic characterization of these
communities.



84 CHAPTER 6. CONSENSUS AND OPINION DYNAMICS

6.2.2 Algebraic characterization of communities

Let us define the set of interactions at time t, E(t) ⊆ V × V as

E(t) =
{

(i, j) ∈ E| |xi(t)− xj(t)| ≤ Rρt
}

.

Let us remark that (i, j) ∈ E(t) if and only if j ∈ Ni(t). The interaction graph at time t
is then G(t) = (V,E(t)). Let us also define the graph of communities GC = (V,EC) where:

EC = {(i, j) ∈ E| i ∼∗ j} .

We define the vectors of opinions and of initial opinions: x(t) = (x1(t), . . . , xn(t))
⊤ and

x0 = (x01, . . . , x
0
n)

⊤. The dynamics of the vector of opinions is then given by

x(t+ 1) = P (t)x(t)

where P (t) is the row stochastic matrix with entries pij(t). For a set of agents I ⊆ V , with
I = {v1, . . . , vk}, PI(t) is the matrix with entries pvivj (t). Let us remark that PI(t) is row
stochastic if and only if I ⊆ V is a subset of agents such that no agent in I is connected to
an agent in V \ I in the graph G(t). We make the following assumption on the matrices
P (t):

Assumption 6.4 The sequence of matrices P (t) satisfy the following conditions:

1. For all t ∈ N, P (t) is invertible.

2. For all t ∈ N, P (t) = P (G(t)).

Let us remark that the first assumption can be enforced, for instance, by choosing
pii(t) > 1/2 for all i ∈ V , for all t ∈ N, in that case P (t) is a strictly diagonally dominant
matrix and therefore it is invertible. The second assumption states that P (t) only depends
on the graph G(t), in particular this implies that since the set of subgraphs of G is finite,
P (t) can only take a finite number of values. This remark is fundamental for the proof of
the result presented in this section.

We now make a last assumption. From Proposition 6.2, we know that the opinion of
each agent converges to its limit value no slower than O(ρt). This is an upper bound, the
convergence to the limit value is actually often slightly faster. Let X0 ⊆ Rn be the subset
of vectors of initial opinions such that if x0 ∈ X0 then there exists ρ < ρ and M ≥ 0 such
that for all i ∈ V , for all t ∈ N,

|xi(t)− x∗i | ≤Mρt.

Let us remark that numerical experiments show that in practice x0 ∈ X0. This observation
motivates the following assumption:

Assumption 6.5 The vector of initial opinions x0 is an element of X0.

It should be noted that unlike Assumptions 6.3, 6.4, it is generally not possible to
check a priori whether Assumption 6.5 holds.

Let us consider a community C ∈ C. Then it is clear that, in the graph GC , no agent in
C is connected to an agent in V \C. Therefore, it follows that PC(GC) is a row stochastic
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matrix. Then, let λ1(PC(GC)), . . . , λ|C|(PC(GC)) denote the eigenvalues of PC(GC) with
λ1(PC(GC)) = 1 and

|λ1(PC(GC))| ≥ |λ2(PC(GC))| ≥ · · · ≥ |λ|C|(PC(GC))|.

The following theorem gives a characterization of the communities in terms of the eigen-
values λ2(PC(GC)) for C ∈ C.
Theorem 6.2 Under Assumptions 6.3 and 6.4, for almost all vectors of initial opinions
x0 ∈ X0, for all communities C ∈ C, such that |C| ≥ 2, |λ2(PC(GC))| < ρ.

A stronger version of Theorem 6.2 would state that the algebraic characterization of
communities holds for almost all x0 ∈ Rn. To prove this result, we need to establish that
Rn \X0 is a set of zero measure, at least for generic values of ρ. We were not able to prove
this result so far; however, experimental results tend to show that it holds in practice.
In the following, we use Theorem 6.2 to address the problem of community detection in
graphs.

6.2.3 Community detection in graphs via opinion dynamics

In the usual sense, communities in a graph are groups of vertices such that the concen-
tration of edges inside communities is high with respect to the concentration of edges
between communities. The community detection problem has attracted a lot of attention
in the recent years. Some formalizations of the community detection problem have been
proposed in terms of optimization of quality functions such as modularity ([NG04]).

The modularity of a partition measures how well the partition reflects the community
structure of a graph. More precisely, let G = (V,E) be an undirected graph, let P be
a partition of V . Essentially, the modularity Q(P) of the partition P is the proportion
of edges within the classes of the partition minus the expected proportion of such edges
(see [NG04] for more details). The higher the modularity, the better the partition reflects
the community structure of the graph. Thus, it is reasonable to formulate the community
detection problem as modularity maximization. However, [BDG+08] have shown that this
optimization problem is NP-complete. Therefore, approaches for community detection
rely mostly on heuristic methods. [New06] proposed a modularity optimization algorithm
based on spectral relaxations. [BGLL08] presented a hierarchical combinatorial approach
for modularity optimization. This algorithm which can be used for very large networks,
is currently the one that obtains the partitions with highest modularity.

In the following section, we propose an alternative formulation of the community de-
tection problem using a measure of connectivity of graphs given by the eigenvalues of their
normalized Laplacian matrix.

Problem formulation

Let G = (V,E) be an undirected graph with V = {1, . . . , n}, with n ≥ 2. For a vertex
i ∈ V , the degree di(G) of i is the number of neighbors of i in G. The normalized Laplacian
of the graph G is the matrix L(G) given by

Lij(G) =











1 if i = j and di(G) 6= 0,
−1√

di(G)dj(G)
if (i, j) ∈ E,

0 otherwise.
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Let us review some of the properties of the normalized Laplacian matrix. µ1(L(G)) = 0
is always an eigenvalue of L(G), it is simple if and only if G is connected. All other
eigenvalues are real and belong to the interval [0, 2]. The second smallest eigenvalue of the
normalized Laplacian matrix is denoted µ2(L(G)). It can serve as an algebraic measure
of the connectivity: µ2(L(G)) = 0 if the graph G has two distinct connected components,
µ2(L(G)) = n/(n−1) if the graph is the complete graph (for all i, j ∈ V , i 6= j, (i, j) ∈ E),
in the other cases µ2(L(G)) ∈ (0, 1].

Let P be a partition of the set of vertices V . For all I ∈ P, with |I| ≥ 2, letGI = (I, EI)
be the subgraph of G consisting of the set of vertices I and of the set of edges of G between
elements of I (i.e. EI = E ∩ (I × I)). Let L(GI) denote the normalized Laplacian matrix
of the graph GI . Let us define the following measure associated to the partition P

µ2(P) = min
I∈P,|I|≥2

µ2(L(GI)).

Essentially, µ2(P) measures the connectivity of the less connected component of GP . We
now propose a formulation of the community detection problem:

Problem 6.1 Given a graph G = (V,E) and a real number δ ∈ (0, 1], find a partition P
of V such that for all I ∈ P, such that |I| ≥ 2, µ2(L(GI)) > δ (i.e. µ2(P) > δ).

If µ2(L(G)) > δ, it is sufficient to choose the trivial partition P = {V }. If δ ≥
µ2(L(G)), then we want to find groups of vertices that are more densely connected together
than the global graph. This coincides with the notion of community. The larger δ the more
densely connected the communities. This makes it possible to search for communities at
different scales of the graph.

Let us remark that Problem 6.1 generally has several solutions. Actually, the trivial
partition P = {{1}, . . . , {n}} is always a solution. In the following, we show how non-
trivial solutions to Problem 6.1 can be obtained using a model of opinion dynamics with
decaying confidence. We evaluate the modularity of the partitions we obtain and com-
pare our results to those obtained using modularity optimization algorithms presented
in [New06, BGLL08].

Solution based on opinion dynamics

Let α ∈ (0, 1/2), we consider the model of opinion dynamics with decaying confidence
defined by:

xi(t+ 1) =

{

xi(t) +
α

∑
j∈Ni(t)

(xj(t)−xi(t))

|Ni(t)|
if Ni(t) 6= ∅

xi(t) if Ni(t) = ∅
(6.5)

where Ni(t) is given by equation (6.4). It is straightforward to check that this model is a
particular case of the model given by equations (6.2) and (6.3) and that Assumptions 6.3
and 6.4 hold. The following lemma relates the eigenvalues of PI(GP) to that of L(GI).

Lemma 6.1 Let P be a partition of V , I ∈ P such that |I| ≥ 2. Then, λ is an eigenvalue
of PI(GP) if and only if µ = (1− λ)/α is an eigenvalue of L(GI).

We now state the main result of the section which is a direct consequence of Theo-
rem 6.2 and Lemma 6.1:

Proposition 6.3 Let ρ = 1 − αδ, for almost all vectors of initial opinions x0 ∈ X0,
the set of communities C obtained by the opinion dynamics model (6.5) is a solution to
Problem 6.1.
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Example: books on American politics We propose to use our approach on an
example consisting of a network of 105 books on politics initially compiled by V. Krebs
(unpublished, see www.orgnet.com). In this network, each vertex represents a book on
American politics bought from Amazon.com. An edge between two vertices means that
these books are frequently purchased by the same buyer. The network is presented on the
top left part of Figure 6.2 where the shape of the vertices represent the political alignment
of the book (liberal, conservative, centrist).

δ |C| µ2(C) Q(C) Occurrences

0.1 2 0.134 0.457 980

0.15 3 0.182 0.499 898
0.15 3 0.187 0.494 102

0.2 4 0.269 0.523 678
0.2 4 0.266 0.512 218

Table 6.1: Properties of the partitions of the books network (1000 different vectors of
initial opinions for each value of parameter δ)

Figure 6.2: Graphs GC for the most frequently obtained partition of the books network
from top to bottom: initial graph, δ = 0.1, δ = 0.15, δ = 0.2. Shapes represent political
alignment of the books: circles are liberal, squares are conservative, triangles are centrist.
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We used our opinion dynamics model (6.5) to uncover the community structure of this
network. We chose 3 different values for δ. The parameters of the model are the same
than in the previous example: α = 0.1, R = 1 and ρ = 1− αδ. For each different value of
δ, the model was simulated for 1000 different vectors of initial opinions chosen randomly
in [0, 1]105. Simulations were performed as long as enabled by floating point arithmetics.
The experimental results are reported in Table 6.1.

Let us remark that the computed partitions are solutions to the Problem 6.1. Also, for
the same value of parameter δ, the modularity is very similar for all partitions. Actually,
all the partitions obtained for the same value of δ are almost the same. The partition
with maximal modularity is obtained for δ = 0.2, it is a partition in 4 communities
with modularity 0.523. As a comparison, algorithms in [New06] and [BGLL08] obtain
partitions in 4 communities with modularity 0.526 and 0.527, respectively. As we can see,
our partition has a modularity that is quite close from those obtained by these algorithms.

In Figure 6.2, we represented the graphs of communities GC that are the most fre-
quently obtained for the different values of δ. Let us remark that even though the infor-
mation on the political alignment of the books is not used by the algorithm, our approach
allows to uncover this information. Indeed, for δ = 0.1, we obtain 2 communities that are
essentially liberal and conservative. For δ = 0.2, we then obtain 4 communities: liberal,
conservative, centrist-liberal, centrist-conservative.

In this section, we have presented a model of opinion dynamics and we have shown that
it can be used for community detection in graphs. The main advantage of our community
detection algorithm with respect to existing ones is that it is distributed by nature. It can
be ran concurrently by agents willing to determine which community they belong to, the
agents do not need to know the global structure of the network.

Discussion: The results presented in the first part of the chapter have been developed
in collaboration with Samuel Martin when he was a Ph.D. student at Laboratoire Jean
Kuntzmann under the co-supervision of Guillaume James and myself. The proofs can be
found in [MG13]. Within the thesis of Samuel Martin, we also considered the application
of consensus protocols for controlling a group of vehicles. We have proposed a measure to
estimate the robustness of a formation. This measure allows us to establish a bound on the
velocity perturbation that can cause a disconnection of the interaction graph. The problem
was first considered in the context of deterministic [MG10] interactions and extended to
the stochastic case in collaboration with A. Jadbabaie and A. Fazeli from University of
Pennsylvania [MFJG12].

The results on opinion dynamics and community detection were developed within the
UJF MSTIC project CARESSE, in collaboration with Constantin Morarescu during his
postdoctoral stay at Laboratoire Jean Kuntzmann. Proofs and additional cases studies
can be found in the paper [MG11].



Chapter 7

Conclusion and Perspectives

This document presents the main contributions of my research work since 2004 within the
areas of hybrid and multi-agent systems.

One characteristic in my research work has been the use of concepts and techniques
that lie at the interface of several disciplines. The first part of this document deals with
approximate simulation and bisimulation which are adaptations of classical tools in com-
puter science. In order to compute symbolic abstractions that can serve for controller
synthesis, these notions have been used in combination with Lyapunov techniques, which
are widely developed in control theory. My work on reachability analysis mainly uses
techniques from applied mathematics (numerical approximations, computational geome-
try, convex analysis...) but the whole approach has been inspired by the area of computer
science called model checking. Finally, the whole field of multi-agent dynamical systems
has been developed at the interface of graph and dynamical systems theory. I hope this
document has succeeded in convincing the reader that there is a huge potential for the
development of innovative approaches at the interface of applied mathematics, control
theory and computer science.

Another characteristic of my work is the constant concern for algorithms and compu-
tation. Most of my theoretical contributions have been motivated by the development of
computational approaches to analysis and control of hybrid systems. For instance, my
work on approximately bisimilar abstractions has been concretized in the tool for con-
troller synthesis CoSyMA; algorithms for reachability analysis using support functions
constitutes the core of hybrid system verification platform SpaceEx developed at Verimag;
my work on opinion dynamics has been motivated by the development of efficient dis-
tributed algorithms for community detection in large networks... I strongly believe that
as we try to analyze and control dynamical systems of increasing complexity, computa-
tional techniques, possibly used in combination with analytical approaches, become an
indispensable tool.

The work presented in this document draws inspirations for future development. Sev-
eral problems that I plan to tackle are discussed below.

Advances in symbolic control

Input sequences as symbolic states: In Chapter 3, we have presented approaches
for computing approximately bisimilar symbolic models for a class of incrementally stable
switched systems. In these approaches, the computation of the symbolic models is based

89
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on the use of discrete (uniform or multi-scale) lattices approximating the state-space. This
discretization of the state-space clearly limits the application of our approach to dynamics
of modest dimension. Intuitively, systems that are incrementally stable are those that
have asymptotic forgetfulness, i.e. the effect of the initial condition on the current state
of the system vanishes progressively. Hence, an alternative approach to the computation
of symbolic models for incrementally stable switched systems consist in using finite mode
sequences as symbolic states representing the concrete states that are reached by the
switched system when the associated mode sequence is applied. This approach can be
related to [TP06], where symbolic models for linear systems with bounded memory are
computed by identifying symbolic states with bounded input sequences. In that case,
the resulting symbolic models are related to the original system by an exact bisimulation
relation. The fact that we do not explicitly discretize the state-space makes this approach
potentially more suitable than those presented in this document for higher dimensional
systems. Actually, it even opens the way to the computation of symbolic models for
infinite dimensional systems modeled by partial differential equations. For that purpose,
it will first be necessary to define and characterize the notion of incremental stability for
this class of system, which should be feasible building on our recent work on Lyapunov
stability of switched hyperbolic linear systems [PGW12].

Symbolic control of monotone systems - energy management in buildings:
Monotone control systems [AS03] constitutes an important class of dynamical systems
which have the property of preserving a partial order on the state-space. Similar to
incrementally stable systems, symbolic models for monotone control systems are easily
computable [MR02]. Most of the applications of monotone control systems are within the
field of systems biology. Though, models in several other fields of applications are nat-
urally monotone. For instance, this is the case for thermal dynamics in buildings where
models are also often incrementally stable. Based on this observation, we plan to design
symbolic control techniques for the purpose of energy management in buildings. The first
task to realize is to extend the techniques described in [MR02] in order to handle distur-
bances, the symbolic models will consists in discrete systems with some controllable and
uncontrollable inputs. Then, the controller synthesis problem can be tackled under several
angles: centralized or decentralized, robust or stochastic control (depending on the model
of disturbances).

Advances in reachability analysis

Reachability techniques for controller synthesis: Controller synthesis for hybrid
systems using reachability analysis tries to extend the control techniques originally devel-
oped for discrete event systems to the hybrid framework (see e.g. [ABD+00]). For safety
properties, it essentially consists in implementing a fixed point algorithm for computing
the maximal safety controller. In recent years, there have been spectacular progresses
realized in the area of reachability analysis of continuous and hybrid systems. However,
most of the attention has been devoted to verification problems rather than synthesis ones
(with the exception of [MKM+13]). Building on these state-of-the-art techniques, it is
time to revisit these problems and to develop scalable solutions. In my opinion, a problem
of particular interest is that of synthesis of guards and reset maps which consists in syn-
thesizing the switching conditions of a hybrid automaton, given the continuous dynamics
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and the set of discrete transitions.

Reachability techniques for computation and control co-design: I believe that a
promising application of hybrid systems reachability analysis is computation and control
co-design, a problem that emerges from research on cyber-physical systems. An approach
of particular interest is that of contract based system design [DLTT13]. In this approach,
control and software engineers agree on a contract which specifies requirements on the
implementation of a controller. Software engineers are responsible for the realization of
the implementation, control engineers are responsible for the controller being satisfac-
tory regardless of the implementation respecting these requirements. Hybrid automata
constitute the right level of abstraction for studying contract based system design. In
particular, given a contract, reachability analysis will allow us to compute all the possible
behaviors of the system equipped with any implementation of the controller meeting the
requirements. Also, the problem of designing a contract, in order to guarantee some level
of performance of the controlled systems can be formulated as a guard synthesis problems
for which we plan to develop new approaches. A related problem is event and self-triggered
control [HJT12] where the controller is not executed (nearly) periodically but only when
some triggering events occur. Most of existing approaches for the design of these events
are based on Lyapunov techniques. However, the problem of event generation can also be
viewed as a guards and reset maps synthesis problem of a particular hybrid automaton.
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bedded Software, Séoul, Corée du Sud, octobre 2006.

C15. Eugène Asarin, Thao Dang, Goran Frehse, Antoine Girard, Colas Le Guernic et
Oded Maler, Recent progress in continuous and hybrid reachability analysis. IEEE
International Symposium on Computer-Aided Control Systems Design, Munich,
Allemagne, octobre 2006.

C14. Georgios E. Fainekos, Antoine Girard et George J. Pappas, Temporal logic verifi-
cation using simulation. Formal Modelling and Analysis of Timed Systems, LNCS
4202, pp 171-186, Springer, Paris, France, septembre 2006.

C13. Antoine Girard, A. Agung Julius et George J. Pappas, Approximate simulation
relations for hybrid systems. 2nd IFAC Conference on Analysis and Design of Hybrid
Systems, pp 106-111, Alghero, Italie, juin 2006.

C12. A. Agung Julius, Antoine Girard et George J. Pappas, Approximate bisimulation for
a class of stochastic hybrid systems. American Control Conference, Portland, USA,
juin 2006.

C11. Antoine Girard et George J. Pappas, Verification using simulation. Hybrid Systems :
Computation and Control, LNCS 3927, pp 272-286, Springer, Santa-Barbara, USA,
mars 2006.

C10. Antoine Girard, Colas Le Guernic et Oded Maler, Efficient computation of reachable
sets of linear time-invariant systems with inputs. In Hybrid Systems: Computation
and Control, LNCS 3927, pp 257-271, Springer, Santa-Barbara, USA, mars 2006.

C9. Antoine Girard et George J. Pappas, Approximate bisimulations for constrained lin-
ear systems. 44th IEEE Conference on Decision and Control and European Control
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Résumé

Un système hybride est un système dynamique exhibant à la fois des comportements de
nature discrète et continue. Motivée par la multiplication de composants informatiques
embarqués “discrets” interagissant avec le monde physique “continu”, la recherche sur
les systèmes hybrides s’est développée rapidement depuis les années 90 à l’intersection de
l’informatique, de l’automatique et des mathématiques appliquées. Ce mémoire présente
nos contributions, théoriques ou méthodologiques, à ce domaine. Dans une première par-
tie, nous introduisons un cadre d’approximation qui s’applique aux systèmes dynamiques
continus, discrets et hybrides; des applications, notamment dans le domaine du contrôle
symbolique sont présentées. La deuxième partie est consacrée à l’analyse d’atteignabilité,
une technique computationnelle très utile pour l’analyse des systèmes hybrides. Enfin, la
troisième partie porte sur les systèmes dynamiques multi-agents.

Abstract

A hybrid system is a dynamical system exhibiting both continuous and discrete behaviors.
Motivated by the multiplication of “discrete” embedded computing devices interacting
with the “continuous” physical world, the research on hybrid systems has rapidly developed
since the nineties at the intersection of computer science, control theory and applied
mathematics. This thesis presents our theoretical and methodological contributions to this
field. In a first part, we introduce an approximation framework that applies to dynamical
systems that can be continuous, discrete or hybrid; applications, including some in the
field of symbolic control, are presented. The second part deals with reachability analysis,
a computational technique which is very useful for the analysis of hybrid systems. Finally,
the third part presents our contributions to multi-agent dynamical systems.
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