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σ ess (D φ * D φ ) Symmetric Excited States for a Mean-Field Model for a Nucleon
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Introduction et résultats principaux

Cette thèse est consacrée à l'étude mathématique de modèles issus de la mécanique quantique relativiste. Nous nous sommes concentrés sur des problèmes associés au confinement des quarks et des anti-quarks au sein des nucléons et à la cohésion des nucléons dans le noyau des atomes. Malgré le fait que les équations de la physique de ces particules fondamentales soient connues depuis maintenant plusieurs dizaines d'années, les mécanismes de confinements restent à l'heure actuelle incompris. Afin d'étudier ces problèmes, les physiciens ont alors introduit plusieurs modèles phénoménologiques dont certains ont permis d'obtenir des résultats théoriques correspondant très bien aux mesures expérimentales.

Ces dernières années, un intérêt croissant s'est porté sur l'étude mathématique de modèles relativistes, notamment ceux associés à l'interaction électromagnétique. En effet, dans de nombreux phénomènes quantiques, les effets relativistes ne peuvent pas être négligés. Ils sont par exemple responsables de la couleur jaune de l'or [PD79]. Cependant, les modèles issus de la physique des hadrons et des quarks ont été très peu étudiés. Tout en poursuivant le travail initié par Balabane, Cazenave et Vázquez [BCV90], nous avons tenté de donner une vision d'ensemble de certains modèles phénoménologiques en insistant sur les liens qu'ils entretiennent. Tous les modèles que nous avons étudiés sont non linéaires.

Cette thèse est divisée en trois parties indépendantes. La première partie est consacrée à deux applications de la méthode de tir pour l'étude des états excités dans le modèle du sac fractionnaire et un modèle de noyau atomique. Nous avons démontré l'existence d'une infinité de solutions des équations de ces modèles lorsque elles sont recherchées parmi les fonctions possédant certaines symétries. Dans ce cas, les équations sont écrites sous la forme d'un système d'équations différentielles ordinaires. La principale difficulté rencontrée dans le cas du modèle du sac fractionnaire est due à l'irrégularité de la non-linéarité. L'originalité de la preuve repose sur l'introduction d'une régularisation particulière permettant de conserver certaines propriétés qualitatives des solutions du problème original tout en obtenant l'existence et l'unicité locale des solutions du système d'EDO. Nous avons aussi appliqué le même type de régularisation pour le modèle de noyau. Dans ce cas, la difficulté majeure provient de la présence de quatre points d'équilibre hyperbolique pour le système hamiltonien associé au équations du problème. Nous avons donc cherché à contrôler le comportement des solutions au voisinage de ces quatre points via une régularisation hamiltonienne.

Dans la seconde partie, nous avons démontré des résultats d'existence d'états fondamentaux pour les modèles de soliton de Friedberg et Lee et d'approximation sac. Lorsque les fonctions d'onde sont supposées posséder certaines symétries, nous avons appliqué la méthode directe du calcul des variations et les résultats de compacité pour les ensembles de fonctions radiales dûs à Lions [Lio82]. Dans le cas général, nous avons obtenu des résultats d'existence grâce au principe de concentration compacité. Nous avons aussi démontré le lien entre les modèles de soliton de Friedberg et Lee et d'approximation sac en utilisant à la fois la Γ-convergence et le principe de concentration compacité.

La dernière partie est consacrée à l'étude du modèle du sac du MIT. En particulier, nous avons cherché à étudier le caractère auto-adjoint de l'opérateur de Dirac lorsque son domaine est un sous-ensemble de H 1 (Ω, C 4 ) où Ω est un ouvert borné de R 3 , formé de fonctions vérifiant certaines équations au bord de Ω. Ceci nous a permis d'exprimer le problème de l'état fondamental dans le modèle du sac du MIT comme un problème d'optimisation de forme.

Dans ce chapitre introductif, nous présentons le contexte physique et le cadre mathématique de la mécanique quantique permettant de comprendre les modèles considérés. Nous introduirons l'opérateur de Dirac en rappelant certaines de ses propriétés, notamment celles liées à sa structure supersymétrique. Nous détaillerons ensuite l'ensemble des modèles que nous avons étudié. Dans la section 1.4, nous présenterons la méthode de tir et les résultats que nous avons obtenus pour les modèles de sac fractionnaire et de noyau. La suite sera consacrée aux méthodes variationnelles notamment le principe de concentration compacité et la Γ-convergence ainsi qu'à leurs applications aux modèles du soliton de Friedberg et Lee et d'approximation sac. Nous terminerons ce chapitre introductif par une présentation de nos perspectives de recherche.

Mécanique quantique relativiste

La mécanique classique est une théorie extrêmement précise lorsqu'il s'agit d'étudier la plupart des phénomènes macroscopiques. Cependant, à l'échelle microscopique, elle n'est plus en mesure d'expliquer certains faits. En particulier, la seconde loi de Newton m → a = → F ne peut rendre compte de la dynamique d'une particule de masse nulle comme le photon, le neutrino ou le gluon. Le bon cadre pour décrire les particules microscopiques est celui de la mécanique quantique.

De même, lorsque les particules ont des vitesses proches de celle de la lumière, les effets relativistes ne sont plus négligeables 1 . Il est alors nécessaire d'étudier les interactions dans le cadre de la relativité restreinte d'Einstein. Il est intéressant de remarquer que la théorie classique de l'électromagnétisme de Maxwell a été la principale inspiration dans l'élaboration de la théorie de la relativité restreinte [Gri08].

En 1929, l'introduction de l'équation de Dirac a ouvert la voie de la mécanique quantique relativiste, ce qui a permis d'étudier les particules microscopiques ayant une vitesse proche de celle de la lumière. Cependant, cette théorie n'est pas exempte de contradictions et a été remplacée depuis par la théorie quantique des champs. Malgré tout, nous suivrons dans notre présentation de l'opérateur de Dirac l'approche de originale de P.M. Dirac basée sur la mécanique quantique, qui peut être vue comme une première étape vers la compréhension de la théorie quantique des champs [Tha91,Préface].

Notre présentation est essentiellement basée sur [Tha91, Chapitre 1], [Gri08, Chapitre 7] et [Sol07].

Particules élémentaires

Tout atome est constitué d'un noyau et d'électrons. Ce noyau est lui même composé de nucléons (comme les protons et les neutrons) qui sont à leur tour formés de trois quarks. Selon la théorie quantique des champs, les particules élémentaires (quarks, nucléons, électrons,. . .) interagissent via l'échange de bosons de jauge. Lorsque l'interaction est électromagnétique, les bosons de jauge sont les photons. Par exemple, l'électron et le proton d'un atome d'hydrogène s'attirent via l'échange de photons. Pour avoir une vision plus imagée de la situation dans laquelle deux électrons se repoussent en émettant et recevant des photons, nous pouvons penser à deux personnes qui se repoussent en se lançant des boules de neiges. Dans le cas général, les bosons de jauge peuvent être vus comme des messages que s'envoient deux particules ("Approche-toi, éloigne-toi,. . .") [Gri08]. L'interaction forte assure quant à elle, le confinement des quarks et des anti-quarks au sein des hadrons 2 via l'échange de gluons. La force responsable de la cohésion des nucléons dans le noyau des atomes, appelée force nucléaire ou force d'interaction forte entre nucléons, est une manifestation de l'interaction forte entre quarks et anti-quarks à l'échelle des nucléons. Les bosons de jauge associés sont les mésons. Les autres interactions fondamentales sont la gravitation et l'interaction faible dont les bosons de jauge sont respectivement le graviton et les bosons W et Z. Contrairement aux autres bosons de jauge, les gravitons n'ont jamais été mis en évidence expérimentalement.

En dehors d'un réacteur nucléaire, la plupart des phénomènes physiques observables à l'échelle macroscopique sont des manifestations de l'interaction électromagnétique et de la gravitation. La portée de ces deux forces est infinie. Par exemple, deux planètes sont toujours attirées l'une vers l'autre quelle que soit la distance qui les sépare. Les interactions faibles et fortes sont quant à elles, de courte portée : elles perdent toute influence à une certaine distance. Par exemple, deux quarks dans deux hadrons différents n'interagissent pas en échangeant des gluons. En effet, à basse énergie, les quarks et les gluons sont parfaitement confinés au sein des hadrons et sont inobservables de manière isolée. On parle de confinement de quarks ou confinement de couleur. La couleur est la charge associée à l'interaction forte comme la charge électrique est associée à l'interaction électromagnétique. La couleur a trois pôles appelés bleu, rouge et vert tandis que la charge électrique en a deux : + et -. Le principe de confinement de couleur s'énonce alors très simplement : toute particule observable a une couleur blanche. Par exemple, un proton est composé de trois quarks ayant chacun une des trois couleurs.

Les phénomènes physiques que nous étudions dans cette thèse sont exclusivement des manifestations de l'interaction forte à l'intérieur des hadrons et de l'interaction nucléaire au sein des noyaux.

La mécanique quantique

Nous posons maintenant le cadre mathématique dans lequel les équations de la physique quantique sont exprimées.

En mécanique quantique, un état pur d'un système physique est décrit à un temps t 0 par un élément normalisé ψ(t 0 ) d'un espace de Hilbert H. Deux vecteurs ψ 1 et ψ 2 de H représentent le même état si et seulement si ψ 1 = e iθ ψ 2 pour θ ∈ R. Si H est un espace de fonctions, les éléments ψ de H sont appelés fonctions d'onde. À toute quantité mesurable, appelée observable, est alors associé un opérateur A auto-adjoint de H et (ψ, Aψ) H est interprété comme l'espérance mathématique de la mesure de l'observable associé à l'opérateur A lorsque le système physique est dans l'état ψ. Ici, ( . , . ) H est le produit scalaire de H. Pour que ceci ait un sens, il faut que ψ appartienne au domaine D(A) ⊂ H de A. Nous remarquons de plus que ce scalaire est réel car A est auto-adjoint.

Il est crucial que les opérateurs représentant les observables soient auto-adjoints et non simplement symétriques et fermés. En effet, le théorème spectral [RS80, Théorème V.III.4] donnant une justification de la physique quantique et le théorème de Stone [RS80, Théorème V.III.7] relatif à la dynamique des systèmes quantiques ne sont vrais que dans le cas d'opérateurs auto-adjoints [RS80, Partie V.III.2].

L'opérateur (H, D(H)) associé à l'énergie du système est appelé Hamiltonien et la dynamique du système est alors déterminée par le système de Cauchy suivant :

i ∂ ∂t ψ(t) = Hψ(t), ψ(t 0 ) = ψ 0 ∈ D(H).

(1.1.1) 2. Les particules formées de quarks et d'antiquarks sont appelées hadrons. Les nucléons, les baryons et les mésons en font partie.

La première équation est l'équation de Schrödinger. Remarquons que les fonctions de la forme ψ(t, x) = e -iλt ϕ(x) où ϕ ∈ D(H) est un vecteur propre normalisé de H associé à la valeur propre λ, sont solutions de l'équation de Schrödinger (1.1.1). Ces solutions sont appelées états stationnaires car ψ(t, . ) représente à chaque instant t l'état quantique associé à ϕ.

En physique quantique non relativiste, on associe à l'énergie E d'une particule libre et à son moment p, les opérateurs suivants :

E -→ i ∂ ∂t , p -→ -i ∇ (1.1.2)
où est la constante de Planck et H est un espace de fonctions. Nous obtenons alors à partir de l'équation classique énergie-moment

E = p 2 2m (1.1.3) l'équation de Schrödinger i ∂ ∂t ψ = - 2 2m ∆ψ, ψ = ψ(t, x)
qui décrit le comportement d'une particule non relativiste libre, c'est-à-dire non soumise à l'influence d'une autre particule ou d'un champ extérieur. m est la masse de la particule, p 2 = |p| 2 et H est l'espace des fonctions L 2 (R 3 , C). Si la particule libre est dans l'état ϕ ∈ H 2 (R 3 , C), alors nous obtenons grâce à la formule de Green que

(ϕ, - 2 2m ∆ϕ) L 2 = 2 2m R 3 |∇ϕ| 2 dx.
Ceci correspond à l'espérance mathématique de la mesure de l'énergie cinétique de cette particule.

L'équation de Dirac

Lorsque la vitesse d'une particule est petite par rapport à la vitesse de la lumière c, ses propriétés sont étudiées dans le cadre de la mécanique quantique non relativiste. Dans le cas contraire, les phénomènes relativistes ne sont plus négligeables et la particule est alors étudiée grâce à la mécanique quantique relativiste.

Dans le cadre de la relativité restreinte d'Einstein, l'équation (1.1.3) n'est plus valide et doit être remplacée par l'équation relativiste énergie-moment

E = c 4 m 2 + c 2 p 2
(1.1.4) où c est la vitesse de la lumière. Remarquons que

E -mc 2 = p 2 d dp 2 c 4 m 2 + c 2 p 2 |p 2 =0 + o(p 2 ) = p 2 2m + o(p 2 ).
Ainsi, lorsque p 2 est petit par rapport à c 2 , l'expression (1.1.3) est une bonne approximation de E -mc 2 . Si nous appliquons directement à l' expression (1.1.4) la substitution (1.1.2), nous obtenons i ∂ ∂t ψ = -c 2 2 ∆ + m 2 c 4 ψ.

(1.1.5) L'opérateur √ -c 2 2 ∆ + m 2 c 4 peut être défini sur H 1 (R3 , C) grâce à la transformée de Fourier. Cependant, il n'est pas local et l'équation (1.1.5) entre en contradiction avec le principe de localité 3 . Dirac a donc cherché un autre opérateur en partant de l'équation suivante

E 2 = m 2 c 4 + p 2 c 2 .
La substitution (1.1.2) donne l'équation de Klein-Gordon -2 ∂ 2 ∂t 2 ψ = (-c 2 2 ∆ + m 2 c 4 )ψ (1.1.6) pour ψ ∈ L 2 (R 4 , C). Cependant, n'étant pas du premier ordre en temps, elle ne convient pas non plus pour décrire l'évolution d'un système quantique (voir l'équation (1.1.1)). Afin de résoudre ces problèmes, Dirac eut l'idée d'écrire E sous la forme

E = cα.p + βmc 2
et de chercher α = (α 1 , α 2 , α 3 ) et β tels que E vérifie l'équation (1.1.4). Pour ce faire, α i et β doivent satisfaire les équations suivantes   

α i α k + α k α i = 2δ ik 1, i, k = 1, 2, 3, α i β + βα i = 0, i = 1, 2, 3, β 2 = 1, (1.1.7) où δ ik = 1 si i = k, 0 sinon. 
Nous remarquons que les premières équations ne peuvent pas être vérifiées pour α i et β scalaires. Ces éléments sont donc à rechercher parmi les matrices carrées de taille n linéairement indépendantes telles que α 2 i = 1, β 2 = 1 et tr(α i ) = tr(β 2 α i ) = -tr(βα i β) = -tr(α i β 2 ) = -tr(α i ) = 0, pour tout i = 1, 2, 3. En particulier, les polynômes minimaux de ces matrices sont nécessairement scindés à racines simples. Les matrices sont diagonalisables de valeurs propres ±1. n est donc pair. Après avoir utilisé la substitution (1.1.2), nous obtenons l'équation

i ∂ ∂t ψ = H 0 ψ (1.1.8) où H 0 = -ic α.∇ + c 2 mβ.
Rappelons que nous cherchons un opérateur H 0 auto-adjoint. Pour ce faire, les matrices α i et β sont à chercher parmi les matrices hermitiennes pour tout i = 1, 2, 3. En dimension 2, il existe au plus 3 matrices hermitiennes linéairement indépendantes qui anti-commutent. Par exemple, les matrices de Pauli σ = (σ 1 , σ 2 , σ 3 ) σ 1 := 0 1 1 0 , σ 2 := 0 -i i 0 , σ 3 := 1 0 0 -1 anti-commutent et forment avec 1 2 une base de l'ensemble des matrices 2 × 2 hermitiennes. En dimension 4, les matrices

β = 1 2 0 0 -1 2
, α i = 0 σ i σ i 0 , pour i = 1, 2, 3, (1.1.9) sont hermitiennes, linéairement indépendantes et satisfont les équations (1.1.7). Ici, nous avons noté 1 n les matrices identités de C n . L'opérateur associé

H 0 = -ic α.∇ + c 2 mβ
est l'opérateur de Dirac libre dans la représentation de Pauli-Dirac. Nous obtenons alors en passant en coordonnées de Fourier le résultat suivant (voir [Tha91, Chapitre 1]).

Théorème 1.1.1. L'opérareur H 0 de L 2 (R 3 , C 4 ), de domaine H 1 (R 3 , C 4 ) est auto-adjoint. Son spectre est donné par σ(H 0 ) = σ ess (H 0 ) = (-∞, -c 2 m] ∪ [+c 2 m, +∞).

Remarque 1.1.2. L'opérateur H 0 est associé à l'énergie d'une particule relativiste de spin demi-entier. Ces particules dont font partie les quarks, les neutrons, les protons et les électrons sont appelées fermions. Les particules de spin entier dont font partie les photons, les gluons et tous les bosons de jauge sont appelés bosons.

L'équation (1.1.8) est parfois écrite sous la forme i 3 j=0 γ j ∂ ∂x j ψ -mψ = 0 où γ 0 = β et γ k = βα k pour k = 1, 2, 3. Nous utiliserons la représentation de Pauli-Dirac (1.1.9) excepté dans le chapitre 2 où nous suivrons les notations introduites par Balabane, Cazenave et Vázquez [BCV90] dans leur étude du problème de l'état fondamental.

Remarque 1.1.3. Dans le cas d'une particule de masse m nulle et de spin demi-entier (neutrino), nous avons seulement besoin de trois matrices linéairement indépendantes et hermitiennes. Les matrices de Pauli sont alors suffisantes. L'opérateur -ic σ.∇ de domaine H 1 (R 3 , C 2 ) sur L 2 (R 3 , C 2 ) est auto-adjoint. L'équation associée i ∂ ∂t ψ = -ic σ.∇ψ est l'équation de Weyl. Elle n'est pas invariante vis à vis des réflexions par rapport à un plan. C'est la raison pour laquelle Dirac l'a rejetée.

Dans la suite, nous nous placerons dans un système de coordonnées dans lequel c = = 1.

1.1.4 Quelques remarques sur le spectre négatif de l'opérateur de Dirac

Le spectre de l'opérateur de Dirac est interprété comme l'ensemble des énergies possibles d'une particule relativiste libre. Cependant, ce spectre n'est pas borné inférieurement. Ceci pose un problème important du point de vue physique. En effet, tous les systèmes ont tendance à évoluer vers des états d'énergies plus basses. Théoriquement, l'énergie d'une particule pourrait donc tendre vers -∞ en libérant une quantité infinie d'énergie. Ceci est bien sûr inobservable expérimentalement.

Confronté à ce problème, Dirac [Dir34] proposa une interprétation des états d'énergies négatives qui réconcilia sa théorie avec l'expérience, grâce au principe d'exclusion de Pauli4 . Il remarqua que si une particule relativiste ne peut avoir qu'une énergie positive, alors tous les états d'énergie négative doivent être occupés par d'autres particules virtuelles. L'ensemble de ces particules forme le vide relativiste et est appelé mer de Dirac. Selon Dirac, cette mer est parfaitement uniforme et n'exerce pas d'influence notable sur la plupart des systèmes étudiés. Cependant, si on applique une champ électromagnétique suffisamment fort, la mer de Dirac peut se polariser et une particule d'énergie négative peut passer à un état d'énergie positive. Le trou laissé dans la mer se comporte alors comme une vraie particule appelée antiparticule avec une énergie positive, une masse égale à celle de la particule qui s'est échappée de la mer et une charge opposée.

A cette époque, aucune particule de ce type n'avait encore été observée et ceci remettait profondément en cause la théorie de Dirac. Cependant, en 1931, Anderson fit la découverte du positron, l'antiparticule de l'électron. L'antiproton a été découvert en 1955 et l'antineutron en 1956. L'antiparticule du quark est appelée antiquark. La prédiction de la dualité particule/antiparticule est certainement l'un des plus grands succès de la théorie de Dirac. Les phénomènes de polarisation de la mer de Dirac ont été étudiés mathématiquement notamment par Hainzl, Lewin, Séré, Gravejat et Solovej (voir par exemple [HLS05a, HLS05b, HLS07, GLS09, GLS11]) et la création de paires électron-positron par Sabin [Sab11].

Du point de vue mathématique, le fait que le spectre de l'opérateur de Dirac soit non borné inférieurement est source de nombreuses difficultés tant théoriques que numériques [ELS08]. En effet, les fonctionnelles d'énergie des modèles relativistes sont fortement indéfinies, c'est-à-dire qu'elles ne sont ni minorées ni majorées et leurs points critiques ont un indice de Morse infini. D'autre part, donner une définition satisfaisante de l'état fondamental, c'est-à-dire de l'état de plus petite énergie, est souvent une tâche difficile (voir par exemple le problème de Dirac-Fock étudié par Esteban et Séré dans [ES01]).

Étude spectrale de l'opérateur de Dirac avec potentiel extérieur

Dans la partie précédente, nous avons introduit l'opérateur de Dirac libre. Il est associé à l'énergie cinétique d'une particule relativiste de spin demi-entier qui n'est soumise ni à un champ extérieur ni à l'influence d'une autre particule. Dans cette partie, nous étudions le spectre de l'opérateur de Dirac avec potentiel. Ceci correspond à l'ensemble des niveaux d'énergie qu'une particule relativiste soumise à un champ extérieur peut avoir. Les résultats de cette partie sont tirés de [Tha91, Chapitres 4 et 5] et [LT13].

L'opérateur de Dirac avec potentiel extérieur

En mécanique quantique, les champs extérieurs et les forces auxquels est soumise une particule, sont pris en compte en ajoutant à l'Hamiltonien libre (l'opérateur de Schrödinger ou de Dirac) un potentiel décrivant l'énergie d'interaction. L'opérateur de Dirac étant défini sur L 2 (R 3 , C 4 ), les potentiels sont choisis parmi les fonctions de la forme

V : x ∈ R 3 → V (x) ∈ C 4×4
où V (x) est une matrice hermitienne pour tout x. V agit comme un opérateur de multiplication sur L 2 (R 3 , C 4 ). L'opérateur H = H 0 +V est appelé opérateur de Dirac de potentiel V . Nous ne présenterons ici que des potentiels de deux types : Définition 1.2.1. Soit φ une fonction de R 3 dans R. Les potentiels de la forme φ1 4 , respectivement φβ sont appelés potentiels électriques, resp. scalaires. Nous rappelons que

β = 1 2 0 0 -1 2 .
Une étude exhaustive des potentiels considérés en mécanique quantique relativiste peut être trouvée dans [Tha91, Chapitre 4].

Remarque 1.2.2. Dans le cas de l'atome d'hydrogène, le potentiel correspondant au champ généré par le proton du noyau et auquel est soumis l'électron, est un potentiel électrique -g |x| 1 4 pour tout x ∈ R 3 et g > 0. Ce potentiel est dit Coulombien et la force fondamentale qui intervient est l'interaction électromagnétique. Dans le cas des hadrons en revanche, la force fondamentale assurant la cohésion des quarks est l'interaction forte et les potentiels sont souvent considérés scalaires [LP92, FL77a, FL77b, CJJ + 74, MS84]. La nature scalaire du potentiel de confinement n'est cependant pas encore établie [HT01].

Le lemme suivant étudie le spectre essentiel de l'opérateur de Dirac soumis à un potentiel sous certaines hypothèses d'intégrabilité sur V .

Lemme 1.2.3. Soit V ∈ L p (R 3 , C 4×4 ) avec 3 ≤ p < +∞ tel que V (x) soit hermitien pour presque tout x ∈ R 3 . Alors, l'opérateur H 0 + V est auto-adjoint sur L 2 (R 3 , C 4 ), de domaine H 1 (R 3 , C 4
). On a de plus que

σ ess (H 0 + V ) = σ(H 0 ) = (-∞, -m] ∪ [m, +∞).
Idée de la démonstration. La preuve de ce lemme est basée sur le théorème de Kato-Rellich [RS78a, Theorème X.12] et sur le critère de Weyl [RS80, Theorème VII.12]. 

Cas d'un potentiel à symétrie sphérique

Si le potentiel V est de la forme suivante

V (x) = φ sc (|x|)β + φ el (|x|)1 4
où φ sc et φ el sont des fonctions réelles, alors H = H 0 + V commute avec l'opérateur de spin-orbite, la troisième composante et le carré de l'opérateur de moment angulaire total. Il est donc naturel de chercher des fonctions propres de l'opérateur H qui soient également fonctions propres de ces trois opérateurs. En particulier, les vecteurs propres de H sont souvent cherchés parmi les fonctions de la forme suivante [Sol70, ELS08, MS84, Sal83]

ψ(x) =     v(r) 1 0 iu(r) cosθ sinθe iϕ     (1.2.1)
où u et v sont des fonctions de R + dans R et (r, θ, ϕ) sont les coordonnées sphériques de x ∈ R 3 . Ce sont des fonctions propres de l'opérateur de spin-orbite de valeur propre -1 et de la troisième composante de l'opérateur de moment angulaire total de valeur propre -1/2. Une étude complète de l'opérateur de Dirac avec potentiels à symétrie sphérique peut être trouvée dans [Tha91, Partie 4.6].

Remarque 1.2.5. Pour les physiciens, il est naturel de rechercher les solutions des problèmes d'états fondamentaux parmi les fonctions de la forme (1.2.1) même lorsque les équations sont non linéaires. Néanmoins, à notre connaissance, il n'a jamais été démontré que les solutions de ces problèmes sont nécessairement de cette forme.

Nous noterons L 2 sym (R 3 , C 4 ) l'espace de Hilbert réel formé des fonctions ψ de L 2 (R 3 , C 4 ) de la forme (1.2.1) et

H 1 sym (R 3 , C 4 ) := L 2 sym (R 3 , C 4 ) ∩ H 1 (R 3 , C 4 ).
Le théorème 1.1.1 et le lemme 1.2.3 restent vrais quand on remplace

L 2 (R 3 , C 4 ) H 1 (R 3 , C 4 ) par L 2 sym (R 3 , C 4 ) H 1 sym (R 3 , C 4 ).
Dans la suite, nous noterons E le domaine de l'opérateur de Dirac, quand aucune confusion n'est possible.

E sera donc soit H 1 (R 3 , C 4 ) soit H 1 sym (R 3 , C 4 ).
1.2.3 Spectre ponctuel de l'opérateur de Dirac Définition 1.2.6. Soit H = H 0 + V un opérateur de Dirac auto-adjoint avec potentiel de domaine E. Nous pouvons alors définir Ceci pose de sérieuses difficultés notamment pour définir l'état fondamental, c'est-à-dire l'état de la particule de plus petite énergie.

E + H = χ (0,+∞) (H)E et pour tout k ∈ N * ω k (H) := inf V ⊂E + H dim V =k sup ψ L 2 =1 ψ∈V (ψ,
L'objet de la partie suivante est de clarifier ces points dans le cas d'un opérateur de Dirac avec potentiel scalaire.

Supersymétrie de l'opérateur de Dirac

Dans cette partie, nous nous restreignons au cas d'un potentiel V scalaire i.e. de la forme φ1 4 . L'opérateur de Dirac est alors dit supersymétrique et son spectre est symétrique par rapport à 0. Une bonne introduction à la théorie des opérateurs de Dirac supersymétriques peut être trouvée dans [Tha91, Chapitre 5].

Définition 1.2.9. Soit τ une involution unitaire non triviale d'un espace de Hilbert H. Un opérateur auto-adjoint

Q de H de domaine D(Q) est une supercharge par rapport à τ si τ D(Q) ⊂ D(Q) et τ Q = -Qτ sur D(Q). Soient φ ∈ L p (R 3 , R) avec 3 ≤ p < +∞ et g > 0.
On pose :

T := 1 √ 2 I 2 iI 2 iI 2 I 2 , D φ := -iσ.∇ + i(m + gφ), D * φ := -iσ.∇ -i(m + gφ) et Q φ := T H φ T -1 = 0 D * φ D φ 0 où H φ := H 0 + gφβ. Alors, le lemme 1.2.3 assure que Q φ est une supercharge par rapport à β dont le domaine est D(Q φ ) = T D(H φ ).
Dans le lemme suivant, démontré dans la partie 4.2, nous étudions le noyau de l'opérateur de Dirac avec potentiel scalaire, c'est-à-dire l'ensemble des états d'énergie nulle.

Lemme 1.2.10. Le théorème suivant assure que le spectre de l'opérateur de Dirac avec potentiel scalaire est symétrique par rapport à 0 et donne une expression variationnelle simple des valeurs propres appartenant à l'intervalle (-m, m).

Supposons φ ∈ L p (R 3 , R) avec 3 ≤ p < +∞. Si le domaine de H φ est H 1 (R 3 , C 4 ), on a dim(ker(D φ * D φ )) = dim(ker(D φ D φ * )) = dim(ker(H φ ))/2 =: d ∈ N; si D(H φ ) = H 1 sym (R 3 , C 4 ),
Théorème 1.2.12. On définit les endomorphismes unitaires suivants :

S = D φ D φ * -1 D φ = D φ D φ * D φ -1 de ker(D φ ) ⊥ dans ker(D φ * ) ⊥ et sgn Q φ = 0 S * S 0 de ker(Q φ ) ⊥ .
La transformation de Foldy-Wouthuysen est donnée par

U F W := 1 √ 2 (1 + β(sgn Q φ )) sur ker(Q φ ) ⊥ 1 sur ker(Q φ ).
On a alors :

U F W Q φ U * F W = β|Q φ | = D φ * D φ 0 0 -D φ D φ où λ k + (H φ ) = λ k (D φ * D φ ) := inf V ⊂H 1 , dim V =k sup ω∈V, ω L 2 =1 D φ ω L 2 . (1.2.2)
Ce résultat est tiré de [Tha91, Théorème 5.5, Corollaire 5.6].

Remarque 1.2.13. L'équation (1.2.2) nous permet de résoudre tous les problèmes posés dans la remarque 1.2.8. En effet, la définition de λ k + (H φ ) ne dépend du champ scalaire φ qu'à travers D φ ω L 2 . Nous sommes donc en mesure d'étudier la continuité des valeurs propres de H φ comme fonctions de φ. Nous avons en particulier montré dans la partie 4.3 que

φ → λ k + (H φ ) est continue sur L 3 (R 3 , R) ∩ L 3+ε (R 3 , R) pour tout ε > 0 et tout k.
Remarque 1.2.14. Le fait que les potentiels considérés dans cette partie soient scalaires est crucial. Par exemple, le spectre de l'opérateur de Dirac avec potentiel électrique de Coulomb n'est pas symétrique par rapport à 0 (voir [Tha91, Partie 7.4] pour une étude complète du spectre discret de cet opérateur).

Les modèles étudiés

La chromodynamique quantique (QCD) est la théorie qui rend compte de la structure interne des hadrons tandis que la physique nucléaire étudie les phénomènes d'interactions des nucléons au sein du noyau.

Les équations de la QCD et de la physique nucléaire qui régissent ces interactions sont bien connues. Néanmoins, les physiciens ne parviennent pas à comprendre les mécanismes de confinements à partir de ces équations. Afin d'étudier les propriétés des hadrons et des noyaux, ils ont donc introduit des modèles phénoménologiques dans lesquels les quarks et les nucléons sont confinés.

Dans cette thèse, nous étudions certains de ces modèles. Parmi eux, le modèle du sac du MIT [CJJ + 74, CJJT74, Cho75, Joh75], le modèle d'approximation sac [CJJ + 74, Cho75] et le modèle σ -ω de Waleka [Wal74] ont été introduits en 1974, le modèle de soliton de Friedberg et Lee [FL77a,FL77b,LP92] en 1977 et le modèle du sac fractionnaire de Mathieu et Saly [MS84,Mat85] en 1984.

Quelques modèles phénoménologiques de hadrons

Les modèles du sac du MIT, d'approximation sac, de soliton de Friedberg et Lee et le modèle du sac fractionnaire de Mathieu et Saly ont été introduits afin d'étudier la structure interne des hadrons. Ce sont des modèles dits de sac de hadrons [HT01] dans lesquels l'énergie du hadron est donnée par la somme des énergies des quarks, des anti-quarks et du sac. Cette dernière est fonction du volume et de l'aire de sa surface du sac [HT01, Partie 5.1].

Le modèle du sac du MIT

Dans le modèle du sac du MIT, les fonctions d'onde des quarks sont parfaitement confinées dans une région de l'espace [CJJ + 74, CJJT74, Cho75, Joh75] appelée sac. Ce modèle a été beaucoup étudié par les physiciens et les résultats théoriques obtenus correspondent très bien aux mesures expérimentales [Cho75].

Nous introduisons pour le moment les équations dans un domaine Ω non vide, de classe C 2 et borné de R 3 . Ω modélise le sac qui contient un nombre N fixé de quarks et d'anti-quarks. Certaines fonctions d'onde associées aux quarks peuvent être égales sans que cela ne contredise le principe d'exclusion de Pauli. En effet, les quarks possèdent de nombreux degrés de liberté comme par exemple la couleur. Nous notons N 0 le nombre maximal possible de particules ayant la même fonction d'onde. Nous supposerons toujours que le nombre de ces particules est plus petit que N 0 . Dans le cas de l'état fondamental, nous suivrons les physiciens [CJJ + 74, CJJT74] et toutes les fonctions d'onde des quarks seront choisies égales.

Dans la suite, nous ne considérons que le problème de l'état fondamental. Les équations vérifiées par la fonction d'onde ψ des quarks sont alors :

   H 0 ψ = λψ sur Ω -iβ(α.n)ψ = ψ sur ∂Ω ψ L 2 (Ω) = 1, (1.3.1) avec ψ ∈ H 1 (Ω, C 4 ), λ ≥ 0 et n est la normale extérieure à ∂Ω.
En d'autres termes, nous cherchons une fonction propre associée à une valeur propre positive de l'opérateur

H Ω 0 de L 2 (Ω, C 4 ) de domaine D(H Ω 0 ) := {ψ ∈ H 1 (Ω, C 4 ), -iβ(α.n)ψ = ψ dans ∂Ω}, défini par H Ω 0 ψ = H 0 ψ pour tout ψ ∈ D(H Ω 0 ).
Nous appelons H Ω 0 l'opérateur de Dirac dans le sac. Lorsque Ω = B(0, R), les physiciens ont recherché ψ parmi les fonctions de la forme (1.2.1). Dans ce cas, la condition au bord de Ω est équivalente à

u = v sur ∂Ω. Remarque 1.3.1. La condition -iβ(α.n)ψ = ψ imposée au bord de Ω permet de démontrer que l'opérateur H Ω 0 est symétrique.
Dans le théorème suivant, nous donnons quelques propriétés de l'opérateur H Ω 0 .

Théorème 1.3.2. L'opérateur H Ω 0 est auto-adjoint. Son spectre est discret et symétrique par rapport à zéro :

σ(H Ω 0 ) = {±λ k (Ω) : k ∈ N\{0}}
où (λ k (Ω)) k>0 est une suite croissante et non bornée de réels strictement positifs définie par

λ k (Ω) = inf V ⊂H - dimV =k sup u∈V u L 2 (Ω) =1 m 2 + ∇u 2 L 2 (Ω) + ∂Ω (m + H Ω 2 )|u| 2 ds 1/2 (1.3.2)
où H Ω est la courbure moyenne signée de ∂Ω et

H ± := {u ∈ H 1 (Ω, C 2 ) : ±σ.nu = u sur ∂Ω}.
En outre, il est équivalent de chercher

λ ≥ 0 et ψ ∈ H 1 (Ω, C 4 ) satisfaisant les équations (1.3.1) que de chercher λ ≥ 0 et u ∈ H 1 (Ω, C 2 ) vérifiant        -∆u + m 2 u = λ 2 u, sur Ω u L 2 (Ω) = 1, sur Ω -σ.nu = u, sur ∂Ω σ.nDu = Du, sur ∂Ω (1.3.3) où D = -iσ.∇ + im.
Ce résultat est obtenu grâce à la théorie des opérateurs de Dirac supersymétriques. Nous en donnons la preuve dans la partie 5. 

(H dir 0 , D(H dir 0 )) de L 2 (Ω, C 2 ) défini par H dir 0 ψ = H 0 ψ pour ψ ∈ D(H dir 0 ) = H 1 0 (Ω,
) D(H Ω 0 ). Remarque 1.3.5. L'opérateur A = -∆ + m 2 de domaine D(A) = {u ∈ H -: Du ∈ H + } est une extension auto-adjointe de l'opérateur B = -∆ + m 2 de domaine D(B) = C ∞ 0 (Ω, C 2 ) différente de l'opérateur C = -∆ + m 2 de domaine D(C) = H 1 0 (Ω, C 2 ) ∩ H 2 (Ω, C 2 ).
Le problème de l'état fondamental est alors inf{N λ 1 (Ω) + b|Ω| : Ω est un ouvert non vide, régulier et borné de R 3 } (1.3.4) pour b > 0. La question de l'existence d'un domaine minimisant cette énergie est ouverte. Les physiciens [CJJ + 74, CJJT74] ont résolu le problème beaucoup plus simple de l'état fondamental lorsque les domaines Ω sont choisis parmi les boules de R 3 et les fonctions ψ sont supposées de la forme (1.2.1). Ce problème sera dit symétrique. Grâce à des considérations sur la conservation de l'énergie et des moments, les physiciens ont dérivé une condition d'optimalité du domaine vérifié par le couple (Ω, ψ) solution du problème (1.3.4) :

- ∂ ∂n ψ * βψ = 2b N sur ∂Ω (voir [Joh75, HT01]).
Comme les fonctions d'onde des quarks sont vecteurs propres de l'opérateur de Dirac libre à l'intérieur de Ω, les N quarks interagissent entre eux indirectement via le sac Ω. Ceci traduit le fait que théoriquement, les quarks ne se voient pas lorsqu'ils sont très proches. Ce phénomène est appelé liberté asymptotique.

Les physiciens ont fait ce choix dans la construction du modèle afin de traduire le phénomène dit de liberté asymptotique des quarks.

Le modèle du sac du MIT possède, du point de vue physique, un inconvénient majeur : ses équations ne sont pas dérivées à partir d'un Lagrangien simple. Afin de pallier ce problème, les physiciens ont introduit d'autres modèles approchant le modèle du sac du MIT comme le modèle du soliton de Friedberg et Lee [FL77a,FL77b] et le modèle du sac fractionnaire de Mathieu et Saly [MS84,Mat85]. Le modèle de l'approximation sac a quant à lui, été introduit dans le même article que le modèle du sac du MIT [CJJ + 74] afin de justifier les équations de ce dernier du point de vue physique.

Le modèle des solitons de Lee et Friedberg

Ce modèle a été introduit par Friedberg and Lee [FL77a,FL77b]. Nous considérons N ∈ N\{0} quarks et anti-quarks de valence dont les fonctions d'onde sont notées ψ 1 , . . . , ψ N . N vaut 2 dans le cas des mésons et 3 dans le cas des nucléons. Les quarks et les anti-quarks sont confinés par un champ scalaire phénoménologique φ modélisant le vide de la QCD.

Nous cherchons ici une solution (ψ 1 , . . . , ψ N , φ) du système d'équations suivant

   H 0 ψ i + gβφψ i = λ i ψ i ∀i = 1, . . . , N, ψ i L 2 = 1 ∀i = 1, . . . , N, -∆φ + U (φ) + N i=1 gψ * i βψ i = 0, (1.3.5) où g > 0, φ : R 3 → R et pout tout i ∈ {1, . . . , N }, ψ i : R 3 → C 4 . On note X * la matrice adjointe de X ∈ C 4 .
Les solutions de (1.3.5) sont appelées quasi-classiques [FL77a,FL77b].

Le potentiel gφβ associé à l'opérateur de Dirac dans ces équations est scalaire. Ce type de potentiel est souvent considéré en QCD [FL77a, FL77b, GW82, CJJ + 74] pour modéliser l'interaction forte entre les quarks. g est la constante de couplage entre les champs de quarks et le champ scalaire. λ i est une valeur propre de l'opérateur de Dirac H φ qui représente l'énergie du i-ème quark dans le champ scalaire φ. Comme nous l'avons remarqué dans la partie 1.1.4, λ i doit être positive pour que ψ i représente un état admissible du point de vue physique.

Les physiciens ont déjà étudié numériquement ce problème dans le cas de potentiel scalaire à symétrie sphérique. Nous avons vu dans la partie 1.2.2 que dans ce cas, on peut chercher les fonctions d'onde des quarks parmi les fonctions de la forme (1.2.1). Une fois ce choix fait,

ψ * βψ = v 2 -u 2
devient une fonction radiale, ce qui en retour génère un potentiel scalaire φ radial dans les équations (1.3.5). Lorsque φ est supposé à symétrie radiale et que ψ est de la forme (1.2.1), le problème sera dit symétrique. Lorsque aucune hypothèse n'est faite quant à la forme des fonctions d'onde, le problème sera dit non symétrique.

Les fonctions d'onde solutions des équations (1.3.5) ne sont pas parfaitement confinées dans une région de l'espace comme dans le cas du modèle du sac du MIT. En fait, elles sont localisées dans un sens plus faible : leur décroissance est exponentielle.

Nous supposerons que U : R → R est une fonction positive de classe

C 1 telle que U (0) = U (0) = 0 et |U (x)| ≤ C(|x| + |x| p ) pour x ∈ R avec 1 < p < 5, (H1) 
U (x) ≥ cx 2 pour tout x ∈ R, (H2) 
avec c et C strictement positives.

Remarque 1.3.6. Du point de vie physique, la présence de la constante c dans l'hypothèse (H2) signifie que la masse du champ scalaire φ est supérieure à 2c.

Le problème a en fait une structure variationnelle : on cherche un point critique de la fonctionnelle d'énergie suivante : Le problème de l'état fondamental : En physique quantique non relativiste, les fonctionnelles d'énergie sont minorées car l'opérateur de Schrödinger est borné inférieurement. L'état fondamental est donc naturellement défini comme l'état de plus petite énergie. En présence de l'opérateur de Dirac, les fonctionnelles d'énergie sont cette fois, fortement indéfinies. L'état fondamental doit alors être vu comme l'état de plus petite énergie positive. Ceci est justifié par l'interprétation physique des états d'énergies négatives (voir partie 1.1.4).

E(ψ 1 , . . . , ψ N , φ) = R 3 N i=1 (ψ i , H 0 ψ i ) + gφ(ψ i , βψ i ) + |∇φ| 2 2 + U (φ) dx (1.3.6) sur l'ensemble {(ψ 1 , . . . , ψ N , φ) ∈ H 1/2 (R 3 , C 4 ) N × H 1 (R 3 , R) : ψ i L 2 = 1}.
Pour le modèle de soliton de Friedberg et Lee, λ i représente l'énergie du i-ème quark dans le champ scalaire φ. Du point de vue mathématique, ψ i est un vecteur propre normalisé de H φ = H 0 + gφβ de valeur propre λ i . D'après le théorème 1.2.12, la plus petite valeur propre positive est donnée par

λ 1 + (H φ ) = inf{ D φ ω L 2 ; ω ∈ H 1 (R 3 , C 2 ), ω L 2 = 1} avec D φ = -iσ.∇ + i(m + gφ).
Dans la suite, nous avons supposé, comme les physiciens, que N 0 ≥ N . Dans ce cas, les N quarks peuvent avoir la même fonction d'onde ψ = ψ 1 = • • • = ψ N sans que cela ne contredise le principe d'exclusion de Pauli.

Le problème de l'état fondamental du modèle de soliton de Friedberg et Lee est alors donné par :

inf{E(φ) : φ ∈ H 1 (R 3 , R)}, (1.3.7) avec E(φ) := N λ 1 + (H φ ) + R 3 |∇φ| 2 2 + U (φ) dx.
Remarque 1.3.8. Si φ réalise cet infimum, alors il existe ψ ∈ H 1 (R 3 , C 4 ) tel que (ψ, . . . , ψ, φ) soit solution des deux premières équations de (1.3.5) avec Le problème des états excités : Comme les physiciens [SS84], nous définissons le problème des états excités du modèle du soliton de Friedberg et Lee pour

λ 1 = • • • = λ N = λ 1 + (H φ ). φ
1 ≤ k 1 ≤ • • • ≤ k N entiers par inf{E k 1 ,...,k N (φ) : φ ∈ H 1 (R 3 , R)}, (1.3.8) avec E k 1 ,...,k N (φ) := N i=1 λ k i + (H φ ) + R 3 |∇φ| 2 2 + U (φ) dx.
Remarque 1.3.9. Une fonction d'onde φ minimisant E k 1 ,...,k N est nécessairement associée à un état excité lorsque (k 1 , . . . , k N ) = (1, . . . , 1). Cependant, rien n'empêche l'existence d'un point critique φ de E dont l'énergie vérifie inf{E(φ) :

φ ∈ H 1 (R 3 , R)} < E(φ) < inf{E 1,...,1,2 (φ) : φ ∈ H 1 (R 3 , R)}.
φ est alors aussi associé à un état excité du système. Dans le cas symétrique, Saly, Horn, Goldflam and Wilets ont trouvé des solutions numériques du système (1.3.5) pour le problème de l'état fondamental [Sal83,HGW86] ainsi que pour le problème des états excités [SS84].

Le modèle approximation sac

Le modèle d'approximation sac a été introduit par Chodos, Jaffe, Johnson, Thorn and Weisskopf [CJJ + 74, CJJT74] dans le but de dériver les équations du modèle du sac du MIT à partir d'un Lagrangien.

Les modèles du soliton de Friedberg et Lee et d'approximation sac ont une structure très proche. En effet, le champ scalaire φ du modèle des solitons de Friedberg et Lee est remplacé par une fonction caractéristique χ Ω d'un ensemble à périmètre fini Ω qui modélise la région de l'espace dans laquelle les quarks sont encouragés à vivre.

Le Lagrangien du modèle d'approximation sac est donné par 

F(ψ 1 , . . . , ψ N , χ Ω ) = R 3 N i=1 (ψ i , H 0 ψ i ) -gχ Ω (ψ i , βψ i ) dx + aP (Ω) + b|Ω|, pour ψ 1 , . . . , ψ N dans H 1/2 (R 3 , C 4 ).
|∇χ Ω |(R 3 ) = P (Ω).
Les constantes a, b, m, g sont supposées strictement positives. L'objectif est de trouver des points critiques de F sur l'ensemble

{(ψ 1 , . . . , ψ N , χ Ω ) ∈ H 1/2 (R 3 , C 4 ) N × BV (R 3 , R) : ψ i L 2 = 1}
c'est-à-dire des points qui satisfont (voir [Giu84,HP05]) : Le problème de l'état fondamental : Le problème de l'état fondamental du modèle d'approximation sac est donné comme dans le cas précédent par :

   (H 0 -gχ Ω ) ψ i = λ i ψ i , ∀i = 1, . . . , N sur R 3 ψ i L 2 = 1, ∀i = 1, . . . , N aH Ω + b -N i=1 gψ * i βψ i = 0 H 2 -
inf{F(χ Ω ) : χ Ω ∈ BV (R 3 , R)}, (1.3.10) avec F(χ Ω ) := N λ 1 + (H -χ Ω ) + aP (Ω) + b|Ω|.
Le problème des états excités : Le problème des états excités est alors pour

1 ≤ k 1 ≤ • • • ≤ k N entiers inf{F k 1 ,...,k N (χ Ω ) : χ Ω ∈ BV (R 3 , R)}, (1.3.11) avec F k 1 ,...,k N (χ Ω ) := N i=1 λ k i + (H -χ Ω ) + aP (Ω) + b|Ω|.
Nous cherchons donc des formes optimales de problème de frontière libre.

Le modèle du sac fractionnaire

Mathieu et Saly [MS84,Mat85] ont cherché à introduire un modèle dont les solutions sont à support compact et qui possède une structure lagrangienne. L'équation du modèle est

{-iα.∇ + β(m + F (ψ * βψ))} ψ = λψ.
(1.3.12) où [Mer88] par des méthodes de tir (voir aussi l'article de revue [ELS08]). Balabane, Cazenave, Douady et Merle [BCDM88] ont démontré le résultat suivant lorsque λ ∈ (0, m), F est de classe C 1 (R, R), F (0) = 0, F est strictement croissante sur (0, +∞), F (x) > m+λ pour x assez grand,

F (x) = p|x| p-1 si |x| > 0, 0 si x = 0, ( 
→ R satisfaisant u + 2u r = (λ -m -F (u 2 -v 2 ))v, v = -(λ + m + F (u 2 -v 2 ))u (1.3.14) pour r > 0 et lim r→+∞ (u, v)(r) = (0, 0), u(0) = 0. ( 1 
F (F -1 (m -λ)) > 0 et F (x) ≤ 0 pour x ≤ 0.
Théorème 1.3.13. Il existe une suite strictement croissante (x n ) n de réels positifs telle que pour tout n,

1. la solution (u n , v n ) de (1.3.14) avec (u n , v n )(0) = (0, x n ) est globale, 2. u n et v n ont exactement n zéros dans (0, +∞), 3. (u n , v n ) converge exponentiellement vers (0, 0) lorsque r → +∞.
Remarque 1.3.14. La solution (u 0 , v 0 ) est considérée comme un état fondamental tandis que les autres solutions sont vues comme des états excités [BCDM88].

Les équations de type (1.3.12) ont aussi été étudiées par des méthodes variationnelles lorsque la non-linéarité F est régulière (voir [ELS08]).

Mathieu et Saly [MS84,Mat85] ont, quant à eux, mis en évidence numériquement l'existence de solutions du problème de Cauchy (1.3.16) lorsque F est définie par (1.3.13). Ils ont observé que l'état fondamental et les états excités sont à support compact. Balabane, Cazenave et Vásquez [BCV90] ont démontré rigoureusement l'existence d'un état fondamental, grâce à une méthode de tir, lorsque λ > m > 0, F : (0, +∞) → (0, +∞) est de classe C 1 , intégrable au voisinage de 0, positive, décroissante et telle qu'il existe a ∈ (0, +∞) vérifiant 

F (a 2 ) = λ -m et F (a 2 ) < 0 : Théorème 1.3.

Un modèle de noyau atomique

Nous avons, par la suite, étudié un modèle relativiste de physique nucléaire [Wal74], appelé modèle σ -ω dans une limite non relativiste propre à la physique nucléaire. Le modèle limite a été introduit pour la première fois par Esteban et Rota Nodari [EN12b] 

u = v(u 2 -av 2 + b), v = u(1 -v 2 ) (1.3.18)
où u, v : R + → R. Comme les solutions sont recherchées parmi les fonctions localisées, nous devons imposer de plus que lim r→+∞ (u, v)(r) = (0, 0), (u, v)(0) = (0, x) pour x ∈ R. Remarquons que, si (u, v) est une solution localisée alors (-u, -v) l'est aussi. Sans perte de généralité, nous pouvons donc chercher uniquement des solutions localisées du problème de Cauchy suivant :

(1.3.18), (u, v)(0) = (0, x), (1.3.19) pour x > 0.

Grâce à une méthode de tir [EN12b], Esteban et Rota Nodari ont montré qu'il existe une solution non triviale et localisée (u, v) de (1.3.18) telle que v ne change pas de signe si a -2b < 0. Cette solution peut être considérée comme l'état fondamental [EN12a]. Elles ont aussi prouvé que toute solution localisée de (1.3.18) vérifie v(0) ∈ (-1, 1) si a -2b < 0 et qu'aucune solution localisée non triviale n'existe dès que a -2b ≤ 0. Dans la suite, nous supposerons toujours que a -2b > 0. Esteban et Rota Nodari ont aussi prouvé l'existence d'un état fondamental, grâce au principe de concentration compacité [EN12a], lorsque l'on ne suppose plus que les solutions sont de la forme (1.2.1).

Dans cette thèse, nous avons poursuivi l'étude commencée par Esteban et Rota Nodari [EN12b] et nous nous sommes intéressés à l'existence d'états excités du problème (1.3.19) grâce à une méthode de tir.

1.4 La méthode de tir 1.4.1 Description de la méthode La méthode de tir permet de démontrer l'existence de solutions de certains problèmes d'équation différentielle ordinaire (EDO) lorsque les conditions aux bords de l'intervalle de définition ne conviennent pas pour appliquer du théorème de Cauchy-Lipschitz. Cette méthode est beaucoup utilisée pour obtenir des résultats numériques [SB02].

Nous commençons par présenter la méthode dans un cas simple [SB02]. Nous cherchons une solution x :

[a, b] → R de x = f (r, x, x ), x(a) = α, x(b) = β, (1.4.1)
où α, β ∈ R et f : R 3 → R est régulière. Le théorème de Cauchy-Lipschitz ne permet pas de trouver x.

Cependant, il assure l'existence et l'unicité de la solution du problème de Cauchy suivant :

x γ = f (r, x γ , x γ ), x γ (a) = α, x γ (a) = γ.
L'idée de la méthode de tir est alors de chercher γ tel que x γ (b) = β. Pour ce faire, nous pouvons considérer, par exemple, l'ensemble

A := {γ ∈ R : x γ (b) < β}.
C'est un ouvert de R par le théorème de Cauchy-Lipschitz. Si A est de plus non vide et borné, alors les points de sa frontière sont de bons candidats pour résoudre le problème (1.4.1). Dans cette thèse, nous cherchons des solutions

U : r ∈ R + → u(r) v(r) ∈ R 2 de problèmes de la forme U = g(r, U ) (1.4.2)
telles que

lim r→+∞ U (r) = (0, 0), U(0) = (0, x)
où x appartient à un intervalle ouvert J de R. Dans beaucoup de problèmes de ce type [BCV90, BDO03, BCDM88, EN12a], il existe une fonction continue H : R 2 → R telle que H(0, 0) = 0 et r → H • U x (r) soit décroissante pour toute solution U x = (u x,1 , v x,2 ) de 

U x = g(r, U x ), U x (0) = (0, x) (1.4.3) où x ∈ J. Remarque 1.
I k := {x ∈ J : lim r→+∞ U x (r) = (0, 0), v x,2 change k fois de signe sur R + }, A k := {x ∈ J : lim r→+∞ H • U x (r) < H(0, 0), v x,2 change k fois de signe sur R + }.
L'objectif est ici de montrer que I k est non vide pour tout k ∈ N. Ceci implique l'existence d'une infinité de solutions localisées de l'équation (1.4.2). Les éléments des ensembles A k sont associés à des solutions non localisées de (1.4.3) car U x ne tend pas vers (0, 0) (voir Figure 1.1).

v u H 0 FIGURE 1.1 -Solutions appartenant à A 0 et A 1 .
Nous cherchons donc à démontrer le lemme suivant :

Lemme 1.4.2. A 0 est non vide et pour tout k 1. A k est ouvert dans J, 2. il existe M < sup J tel que A k ∪ I k ⊂ (-∞, M), 3. si x ∈ I k , il existe ε > 0 tel que (x -ε, x + ε) ⊂ A k ∪ I k ∪ A k+1 , 4. si A k est non vide, on a sup A k ∈ I k-1 ∪ I k , 5. si I k est non vide, on a sup I k ∈ I k .
Nous obtenons alors par récurrence que I k est non vide pour tout k (voir pour plus de détails, les preuves des propositions 2.3.14 et 3.2.17).

Le modèle du sac fractionnaire

Dans cette partie, nous donnons le résultat principal que nous avons obtenu dans notre étude du modèle du sac fractionnaire dont nous rappelons les équations (1.3.14) pour la commodité du lecteur :

u + 2u r = (λ -m -F (u 2 -v 2 ))v, v = -(λ + m + F (u 2 -v 2 ))u.
Balabane, Cazenave, Douady et Merle [BCDM88] ont démontré l'existence d'un état fondamental, i.e. d'une solution (u, v) du problème de Cauchy (1.3.16) telle que u et v ne changent pas de signe. Pour obtenir des états excités, nous cherchons des solutions localisées (u, v) telles que u et v changent k ∈ N fois de signe. Nous verrons que dans ce cas, v 2 -u 2 change 2k fois de signe. Ceci complique l'étude mathématique du problème car

lim |v 2 -u 2 |→0 + F (v 2 -u 2 ) = +∞.
En particulier, il n'existe pas de solution régulière de

(1.3.14), u(R) = v(R) = x (1.4.4)
définie sur un voisinage de R > 0 pour x = 0. La définition de solution d'une équation différentielle ordinaire doit donc être affaiblie. Pour cela, nous suivons [CL55]. 

Définition 1.4.3. Soient 0 ≤ R < R . Une fonction ω ∈ C 0 (R,
réels R < R 1 < • • • < R n < R tels que ω est de classe C 1 sur (R, R )\{R 1 , . . . , R n } et satisfait les équations de (E) sur (R, R )\{R 1 , . . . , R n }.
Dans cette partie, nous ne considérons que des solutions de ce type et nous omettrons de préciser au sens large. Nous remarquons que la fonction identiquement nulle est solution du problème (1.3.14). Ainsi, nous pouvons étendre toute solution qui touche (0, 0) par (0, 0).

L'existence et l'unicité des solutions locales de (1.3.14) est un point fondamental dans la méthode de tir, notamment pour obtenir le point 1 du lemme 1.4.2. Néanmoins, les principaux théorèmes d'équations différentielles ordinaires [CL55] ne permettent pas de démontrer l'unicité des solutions locales du problème (1.4.4) et l'existence n'est pas triviale. La première idée venant à l'esprit pour surmonter cette difficulté est de régulariser F . Les solutions du problème obtenu sont alors régulières. Cependant, nous perdons dans ce cas, les propriétés qualitatives vérifiées par les solutions du problème (1.3.16). Nous avons ainsi introduit un autre problème régularisé afin d'obtenir l'existence et l'unicité des solutions locales et conserver certaines propriétés qualitatives. Le système d'équations que nous avons choisi, est hamiltonien au voisinage de l'ensemble {|u| = |v|}\{(0, 0)} :

u + ϕ(u, v) 2u r = (λ -m -F (u 2 -v 2 ))v, v = -(λ + m + F (u 2 -v 2 ))u.
(1.4.5) où ϕ : R 2 \{(0, 0)} → [0, 1] est régulière et nulle au voisinage de {|u| = |v|}. Ceci permet de démontrer l'existence et l'unicité des solutions locales du problème :

(1.4.5),

u(R) = v(R) = x. (1.4.6)
Néanmoins, les solutions du problème obtenu sont irrégulières et ne sont solutions de (1.4.6) qu'au sens large. Nous dirons dans la suite que les régularisations de ce type sont hamiltoniennes.

Une fois ce problème régularisé, nous sommes en mesure de démontrer le lemme 1.4.2 en suivant les idées de [BDO03]. Dans cet article, Balabane, Dolbeault et Ounaies ont montré l'existence d'une infinité de solutions à support compact d'une équation sous-linéaire elliptique. Cependant, dans leur cas, l'existence et l'unicité des solutions locales du problème de Cauchy sont toujours vérifiées dès que les solutions ne touchent pas (0, 0). La méthode de tir peut donc être appliquée sans régulariser le problème ni affaiblir la définition de solution. Dans notre cas, ces problèmes apparaissent dès que les solutions touchent l'ensemble {|u| = |v|}.

Nous énonçons maintenant le résultat principal de cette partie. Ce théorème dont la démonstration est donnée dans le chapitre 2 est le premier résultat rigoureux d'existence d'états excités dans le modèle du sac fractionnaire. L'originalité de notre preuve provient de l'utilisation de la méthode de tir pour un problème très irrégulier. Ce travail a fait l'objet d'une publication [LT12] dans Annales Henri Poincaré en 2012.

Un modèle de noyau atomique

Dans cette partie, nous donnons le résultat d'existence d'états symétriques excités pour un modèle de champ moyen du noyau atomique que nous avons obtenu grâce à une méthode de tir. Ce travail est le fruit d'une collaboration avec Simona Rota Nodari. Nous rappelons les équations (1.3.18) pour la commodité du lecteur :

u + 2 r u = v(u 2 -av 2 + b), v = u(1 -v 2 ).
Dans ce cas, les ensembles A k et I k introduits dans la partie 1.4.1, sont inclus dans J = (0, 1). Nous verrons aussi que dès que x ∈ (0, 1), les solutions (u x , v x ) ne croisent jamais l'ensemble ∂A de la figure 1.2. La principale difficulté est alors de démontrer le point 2 du lemme 1.4.2. En effet, la solution (u 1 , v 1 ) du problème de Cauchy (1.3.19) avec x = 1 n'est pas localisée. Pour surmonter ceci, nous avons étudié finement le comportement des solutions (u x , v x ) du problème de Cauchy (1.3.19) lorsque x tend vers 1. La présence de quatre points d'équilibre (± √ a -b, ±1) pour le système hamiltonien

u = v(u 2 -av 2 + b), v = u(1 -v 2 ), (1.4.7)
associé au système (1.3.18) rend cette étude particulièrement difficile. En particulier, la solution (u x , v x ) reste proche de (u 1 , v 1 ) lorsque x est proche de 1 par continuité du flot. Cependant, (u 1 , v 1 ) tend vers (-√ a -b, 1) lorsque r tend vers l'infini. Ainsi, (u x , v x ) reste longtemps proche de (-√ a -b, 1) si x est assez proche de 1. Il n'y a donc aucun espoir d'obtenir une estimation de la vitesse de rotation de (u x , v x ) autour de (0, 0) utilisée dans [BDO03] pour démontrer le point 2 du lemme 1.4.2.

Il est en fait crucial de bien contrôler le comportement des solutions au voisinage des points d'équilibre (± √ a -b, ±1). Pour ce faire, nous avons introduit un problème régularisé dont les équations sont hamiltoniennes au voisinage de ces points. Le comportement des solutions est alors connu et elles vérifient les mêmes propriétés qualitatives que les solutions du problème original.

Nous sommes alors en mesure d'énoncer le résultat principal de cette partie :

Système Hamiltonien

H ≤ 0 u v u = ± √ a -b -η 2 u = ± √ a -b -η ∂A √ a -b - √ a -b 1 -1 FIGURE 1.2 -Problème régularisé
Théorème 1.4.6. Supposons que a > 2b > 0. Il existe une suite croissante de réels (x k ) k de (0, 1) satisfaisant les propriétés suivantes. Pour tout k,

1. la solution (u x k , v x k ) du problème de Cauchy (1.3.19) où x = x k , est globale, 2. u x k et v x k ont exactement k zéros dans (0, +∞), 3. (u x k , v x k ) converge exponentiellement vers (0, 0) lorsque r tend vers +∞.
Ce théorème, dont la démonstration est donnée dans le chapitre 3, est le premier résultat rigoureux d'existence d'états excités pour ce modèle. Ce travail en collaboration avec S. Rota Nodari a fait l'objet d'un article [LTRN13] soumis pour publication.

Méthodes variationnelles

Nous avons étudié les modèles de soliton de Friedberg et Lee et d'approximation sac grâce à des méthodes variationnelles, notamment le principe de concentration compacité et la méthode de Γ-convergence. Ce travail a fait l'objet d'une publication [LT13] dans Calculus of variations and partial differential équations. L'intégralité de l'article est reprise dans le chapitre 4. Dans cette partie, nous présentons les principaux résultats obtenus.

Compacité et symétrie

Les fonctionnelles du modèle de soliton de Friedberg et Lee

φ → E k 1 ,...,k N (φ) = N i=1 λ k i + (H φ ) + R 3 |∇φ| 2 2 + U (φ) dx, pour 1 ≤ k 1 ≤ • • • ≤ k N sont semi-continues inférieurement dans L p (R 3 , R) pour 2 < p < 6 (voir remarque 1.2.13).
De plus, l'hypothèse (H2) sur U assure que toute suite minimisante est bornée uniformément dans H 1 (R 3 , R). La méthode directe du calcul des variations [Str08] assure donc que E k 1 ,...,k N admet un minimum dès qu'une suite minimisante est pré-compacte dans L p (R 3 , R), pour 2 < p < 6. Cependant, les injections de Sobolev

H 1 (R 3 , R) → L p (R 3 , R), pour 2 < p < 6,
ne sont pas compactes. Malgré tout, Strauss [Str77] a démontré que les restrictions à l'ensemble des fonctions radiales de ces injections

H 1 rad (R 3 , R) → L p (R 3 , R),
sont compactes pour 2 < p < 6. Ce résultat a ensuite été généralisé par Lions [Lio82] dans le cas des espaces de Sobolev généraux. Nous avons obtenu le résultat d'existence suivant pour le modèle de soliton de Friedberg et Lee dans le cas symétrique :

Théorème 1.5.1. Soient K ∈ N\{0} et m > 0 fixés. Supposons que U satisfasse les hypothèses (H1) et (H2). Il existe g 0 > 0 tel que si g > g 0 , alors, pour tout 1 ≤ k 1 ≤ • • • ≤ k N ≤ K, il existe une solution (ψ 1 , . . . , ψ N , φ) ∈ H 1/2 sym (R 3 , C 4 ) N × H 1 rad (R 3 , R) des équations (1.3.5) avec λ i = λ k i + (H φ ) ∈ (0, m) et φ est un minimum de E k 1 ,...,k N . g 0 dépend de N, m, K et U .
Remarque 1.5.2. Friedberg et Lee [FL77a] ont dérivé des conditions d'existence comparables aux nôtres. Ils ont aussi supposé que U est un polynôme positif de degré 4 avec deux minima en 0 et en -φ 0 < 0 tels que 0 = U (0) ≤ U (-φ 0 ).

Ce théorème est le premier résultat rigoureux d'existence d'états fondamentaux et excités dans le cas symétrique.

La même méthode s'applique pour le modèle d'approximation sac. En effet, nous avons démontré en suivant la preuve de Lions [Lio82], que l'injection

BV rad (R 3 , R) → L p (R 3 , R)
est compacte pour 1 < p < 3/2 (voir l'appendice 4.A du chapitre 4). Nous obtenons ainsi le théorème suivant :

Théorème 1.5.3. Soient K ∈ N\{0} et g ∈ (0, m). Il existe une constante δ > 0 telle que si a, b < δ, alors, pour tout 1 ≤ k 1 ≤ • • • ≤ k N ≤ K, il existe une solution (ψ 1 , . . . , ψ N , χ Ω ) ∈ H 1/2 sym (R 3 , C 4 ) N × BV rad (R 3 , R) des équations (1.3.9) avec λ i = λ k i + (H -χ Ω ) ∈ (0, m) et χ Ω est un minimum de F k 1 ,...,k N .

Le principe de concentration compacité

Dans cette partie, nous étudions le problème de l'état fondamental pour les modèles du soliton de Friedberg et Lee et de l'approximation sac dans le cas non symétrique. En effet, à notre connaissance, aucune preuve n'assure que les minima φ et χ Ω de E et F soient des fonctions radiales ou que les fonctions d'onde des quarks soient de la forme (1.2.1).

Les fonctionnelles E et F dont nous cherchons des minima sont invariantes par translation. Ceci implique que les suites minimisantes ne sont pas pré-compactes dans H 1 (R 3 , R) ou BV (R 3 , R). Il suffit pour s'en convaincre de considérer la suite φ n := φ( . -n(1, 0, 0)) formée des translatés d'une fonction φ fixée.

Ce type de situation apparaît lorsque le problème étudié est invariant sous l'action d'un groupe non compact. Dans notre cas, le groupe considéré est formé des translations de R 3 . Ce problème se rencontre aussi dans la preuve de l'existence d'une fonction extrémale pour les injections de Sobolev dans R n qui est invariant sous l'action des groupes des translations de R n et des changements d'échelle [Str08].

Afin de résoudre ce type de problème, P.L. Lions a introduit dans les années 80, le principe de concentrationcompacité [Lio84a,Lio84b,Lio85a,Lio85b]. Il permet d'obtenir, dans beaucoup de problèmes de minimisation sous contraintes, une condition nécessaire et suffisante à la pré-compacité de toute suite minimisante à action de groupe près. Cette condition s'énonce souvent sous la forme d'une inégalité stricte dite inégalité de concentrationcompacité.

Dans notre cas, les suites minimisantes des problèmes sont bornées dans

H 1 (R 3 , R) ou BV (R 3 , R).
Il est donc possible d'en extraire une sous-suite convergente dans L p loc (R 3 , R) pour certains p. Nous pouvons donc appliquer le principe de concentration compacité de Lions dans le cas localement compact [Lio84a,Lio84b].

Pour fixer les idées, nous présentons rapidement ce principe dans H 1 (R 3 , R) en suivant la présentation de Lewin [Lew10]. Dans ce cas, une suite bornée de H 1 (R 3 , R) peut avoir différents comportements :

1. Évanescence : elle tend vers 0 dans certains espaces L p . On parle d'évanescence [CLBM06]. Exemple :

φ n := n -3/2 φ(./n) pour φ ∈ H 1 (R 3 , R).
2. Pré-compacte à translation près. Exemple :

φ n := φ( . -nv) pour φ ∈ H 1 (R 3 , R) et v un vecteur de R 3 .
3. Dichotomie : elle se sépare en plusieurs parties. Exemple :

φ n := φ( . -nv) + ϕ( . + nv) pour φ, ϕ ∈ H 1 (R 3 , R) et v un vecteur de R 3 \{0}.
On parle dans ce cas de dichotomie.

Le principe de concentration compacité est largement appliqué en analyse non linéaire, notamment pour l'optimisation de forme [START_REF] Bucur | Uniform concentration-compactness for sobolev spaces on variable domains[END_REF]BG10], la minimisation sous contrainte en physique quantique [ELS08,CLBM06], mais aussi pour des résultats de minmax [ELS08].

Pour démonter que les suites minimisantes sont pré-compactes à translation près, nous commençons par écarter le cas de l'évanescence, grâce à la semi-continuité inférieure de E dans L 3 (R 3 , R), en supposant que

inf{E(φ) : φ ∈ H 1 (R 3 , R)} < N m où nous rappelons que E(φ) = N λ 1 + (H φ ) + R 3 |∇φ| 2 2 + U (φ)dx.
Nous démontrons ensuite qu'il n'y a pas dichotomie grâce à une inégalité de concentration compacité. L'originalité de la preuve repose sur le fait que les inégalités usuelles [Lio84a,Lio84b] ne sont pas vérifiées et il a donc été nécessaire d'en introduire de nouvelles pour surmonter ce problème. On pose :

E(φ 1 , φ 2 , t) = N tλ 1 + (H φ 1 ) 2 + (1 -t)λ 1 + (H φ 2 ) 2 + R 3 |∇φ 1 | 2 2 + U (φ 1 ) dx + R 3 |∇φ 2 | 2 2 + U (φ 2 ) dx, pour φ 1 , φ 2 ∈ H 1 (R 3 , R) et t ∈ [0, 1]; I(t) = inf{E(φ 1 , φ 2 , t) : φ 1 , φ 2 ∈ H 1 (R 3 , R)}.
La fonction I est concave et vérifie l'inégalité de concentration compacité large

I(t) ≥ I(1), pout tout t ∈ [0, 1].
Le théorème suivant est le résultat principal de cette partie.

Théorème 1.5.4. Soit m > 0. Supposons que U satisfasse les hypothèses (H1), (H2) et que

inf{E(φ) : φ ∈ H 1 (R 3 , R)} < N m. (1.5.1)
Alors, toutes les suites minimisantes de E sont pré-compactes à translation près et

I(t) > I(1), pout tout t ∈ (0, 1). Dans ce cas, il existe (ψ, φ) ∈ H 1/2 (R 3 , C 4 ) × H 1 (R 3 , R) tel que φ est un minimum de E et H 0 ψ + gβφψ = λψ ψ L 2 = 1 où λ = λ 1 + (H φ ) ∈ [0, m). Si 0 / ∈ σ(H φ ), alors φ vérifie -∆φ + U (φ) + N gψ * βψ = 0.
De plus, il existe g 0 > 0 tel que si g > g 0 , alors la condition (1.5.1) est vérifiée et g 0 ne dépend que de N, m et U .

Remarque 1.5.5. Le problème principal posé lorsque 0 ∈ σ(H φ ) est que φ → λ 1 + (H φ ) n'est pas nécessairement Gâteaux-différentiable. Nous obtenons cependant dans le corollaire 1.5.14 que 0 / ∈ σ(H φ ) sous certaines conditions sur les paramètres du problème. Nous verrons aussi que les paramètres les plus significatifs du point de vue physique vérifient ces conditions [FL77a,FL77b].

Nous avons aussi obtenu un résultat semblable pour le modèle de l'approximation sac.

Théorème 1.5.6. Soit g ∈ (0, m). Il existe une constante δ > 0 telle que, si :

a, b < δ, (H3) alors, il existe une solution (ψ, . . . , ψ, χ Ω ) ∈ H 1/2 (R 3 , C 4 ) N ×BV (R 3 , R) des équations (1.3.9) avec λ = λ i = λ 1 + (H -χ Ω ) ∈ (0, m) où χ Ω est un minimum de F.
Remarque 1.5.7. Dans ce cas, l'hypothèse g ∈ (0, m) assure que 0 / ∈ σ(H -χ Ω ).

La Γ-convergence et la théorie de la transition de phase

Les démonstrations des résultats d'existence de solutions des modèles de soliton de Friedberg et Lee et d'approximation sac reposent sur les mêmes idées appliquées dans le cadre H 1 ou BV . Les fonctionnelles d'énergie du modèle d'approximation sac peuvent en fait être obtenues comme Γ-limite de fonctionnelles d'énergie du modèle de soliton de Friedberg et Lee. Dans cette partie, nous rappelons la définition et les propriétés essentielles de la Γ-convergence. Nous présentons ensuite le modèle de transition de phase de Cahn-Hilliard et le résultat de Modica et Mortolla. Nous suivons pour cela les présentations d'Alberti [Alb00] et de Braides [Bra98]. Pour terminer, nous énonçons les résultats principaux que nous avons obtenus dans cette direction.

La Γ-convergence

Soient X un espace métrique, (F ε ) ε>0 une suite de fonctions de

X dans R ∪ {+∞} et (v ε ) ε>0 une suite de X telle que pour tout ε > 0 F ε (v ε ) = inf{F ε (v) : v ∈ X}.
Supposons que la suite (v ε ) ε>0 converge vers v dans X. Il est naturel de se demander si v est aussi le minimum d'un certain problème de minimisation. Une première méthode consiste à étudier directement (v ε ) ε>0 via par exemple, les équations d'Euler-Lagrange que les éléments de cette suite vérifient. De Giorgi et Franzoni [DGF75] ont introduit une autre méthode consistant à étudier plutôt la suite (F ε ) ε>0 .

Définition 1.5.8. La suite

(F ε ) ε>0 Γ-converge vers F : X → R ∪ {+∞} dans X si 1. pour tout x ∈ X et toute suite (x ε ) ε>0 qui tend vers x dans X, on a lim inf ε→0 F ε (x ε ) ≥ F (x),
2. pour tout x ∈ X, il existe une suite (x ε ) ε>0 qui tend vers x dans X telle que

lim sup ε→0 F ε (x ε ) ≤ F (x).
On dit que F est la Γ-limite de la suite (F ε ) ε>0 .

Cette définition de convergence de suites de fonctions trouve sa justification dans le point 1 de la proposition suivante.

Proposition 1.5.9. Supposons que la suite (F ε ) ε>0 Γ-converge vers F dans X. Alors 1. toute valeur d'adhérence de la suite de minima (v ε ) ε>0 est un minimum de F , 2. si G : X → R est continue, alors (F ε + G) ε>0 Γ-converge vers F + G dans X, 3. F est semi-continue inférieurement pour la topologie de X.

La Γ-convergence s'applique dans de nombreux domaines, notamment l'homogénéisation, le traitement d'image (voir par exemple [Bra98]) ou la théorie des transitions de phase entre fluides.

Le modèle de la transition de phase de Cahn-Hilliard et le théorème de Modica-Mortolla

Selon la théorie classique de la transition de phase, deux fluides incompressibles, non miscibles et non soumis à la gravité se répartissent dans une boîte de manière à minimiser l'aire de la surface qui les sépare.

La boîte est modélisée par un ouvert B de R 3 et les configurations possibles par des fonctions

f : B → {0, 1} dont les intégrales vérifient B f (x)dx = v avec 0 < v < |B| fixé. {f = 1}
, respectivement {f = 0} correspond au sous-ensemble de B occupé par le premier fluide resp. par le second. Nous notons

X = {f ∈ L 1 (B, R) : B f (x)dx = v}.
L'aire de l'interface est alors donnée par la variation totale de la fonction f

G(f ) := |∇f |(B) si f ∈ BV (B, {0, 1}) ∩ X, +∞ si f ∈ X\BV (B, {0, 1}).
Il est facile de montrer que G admet un minimum. Cahn et Hilliard [CH58] ont quant à eux, introduit un modèle alternatif dans lequel les fluides peuvent se mélanger un peu. Ainsi, la transition de phase est un phénomène continu. Les configurations admissibles sont alors données par les fonctions

f : B → [0, 1] d'intégrale v. f (x)
représente la densité moyenne du premier fluide au point x. Une configuration optimale est alors donnée par un minimum de 

G ε (f ) := B ε|∇f | 2 + V (f ) ε si f ∈ H 1 (B, [0, 1]) ∩ X, +∞ si f ∈ X\H 1 (B, [0, 1]) avec ε > 0 et V : R → R + régulière,
V (t)dt. G ε Γ-converge vers aG dans X lorsque ε tend vers 0. De plus, toute suite (f ε ) de minima de G ε est pré-compacte dans X.

Une application de la Γ-convergence aux modèles de hadrons

Le même type de résultat lie les énergies des modèles de soliton de Friedberg et Lee et d'approximation sac. En effet, les non-linéarités U considérées comme significatives du point de vue physique, sont des polynômes de degré 4 de la forme

x → W (x) + b|x| 2 avec b > 0 et W positif tel que {W = 0} = {-φ 0 , 0}. Pour simplifier les notations, nous supposerons φ 0 = 1. Goldflam et Wilets [GW82] ont étudié numériquement quelques limites du modèle de soliton de Friedberg et Lee. Ils ont observé que pour certains paramètres, les champs scalaires φ minima des énergies du modèle sont proches de fonctions indicatrices. Nous donnerons un sens plus précis à ceci dans le théorème 1.5.12 Considérons pour ε > 0 et b > 0 :

E ε (φ) = R 3 ε|∇φ| 2 + W (φ)/ε + b|φ| 2 dx si φ ∈ H 1 (R 3 , R) +∞ sinon et E 0 (φ) = aP (Ω) + b|Ω| si φ = -χ Ω ∈ BV (R 3 , R) +∞ sinon, où W : R → R + est de classe C 1 et vérifie W -1 ({0}) = {-1, 0}, (H1) et a = 2 0 -1
W (s)ds. La proposition suivante nous donne un premier résultat de Γ-convergence lorsque l'on ne considère que les énergies des champs scalaires.

Proposition 1.5.11. Supposons qu'il existe c et 2 < q tels que :

W (t) ≤ c(|t| 2 + |t| q ) ∀t. Alors, E ε Γ-converge vers E 0 dans L 2 ∩ L 3(q+2) 4
.

Cette proposition est une généralisation du théorème 1.5.10 de Modica et Mortolla dans un cadre non borné. Nous en donnons la preuve dans la partie 4.6.

Le résultat suivant établit le lien entre les modèles du soliton de Friedberg et Lee et d'approximation sac grâce à la Γ-convergence. Nous posons pour ε > 0 :

E ε (φ) = N λ 1 + (H φ ) + E ε (φ) si φ ∈ H 1 (R 3 , R) +∞ sinon et E 0 (φ) = N λ 1 + (H -χ Ω ) + E 0 (-χ Ω ) si φ = -χ Ω ∈ BV (R 3 , R) +∞ sinon.
La constante ε peut être obtenue dans les fonctionnelles d'énergies du modèle de soliton de Friedberg et Lee par changement d'échelle.

Théorème 1.5.12. Supposons les conditions de la proposition 1.5.11 vraies et g ∈ (0, m). Alors,

E ε Γ-converge vers E 0 dans L 2 ∩ L 3(q+2) 4
. Si nous supposons de plus qu'il existe c > 0, t 1 < -1 < t 2 < 0 tel que W satisfasse :

W (t) ≥ c|t| q pour tout t / ∈ (t 1 , t 2 ) et l c = inf{E 0 (φ) : φ = -χ Ω ∈ BV } < N m. (1.5.2) Alors, il existe ε 0 > 0 tel que pour tout 0 < ε < ε 0 , l ε s = inf{E ε (φ) : φ ∈ H 1 } < N m (1.5.3)
admet un minimum φ ε . Il existe une sous-suite telle que à translation près

   W • φ εn → W • (-χ Ω ) strictement dans BV φ εn → (-χ Ω ) fortement dans L p pour p ∈ [2, 3(q+2) 4 ] l εn s → l c où -χ Ω est un minimum de (1.5.2) et W : t → 2 t 0 W (s)ds.
Remarque 1.5.13. La difficulté principale vient du fait que les problèmes sont posés sur des domaines non bornés. En particulier, nous avons utilisé à la fois le principe de concentration compacité et la Γ-convergence pour obtenir la pré-compacité à translation près de la suite de minima .

Dans le corollaire suivant, nous donnons des conditions sur les paramètres du modèle pour que 0 ne soit pas dans le spectre de H φ lorsque φ est un minimum. Dans ce cas, φ vérifie la dernière équation du système (1.3.5). Nous rappelons que ce point pose problème dans le théorème 1.5.4 pour démontrer que les minima obtenus vérifient les équations d'Euler Lagrange.

Corollaire 1.5.14. Supposons les hypothèses du théorème 1.5.12 vraies. Alors, il existe

ε 0 > 0 et pour tout ε ∈ (0, ε 0 ), un minimum φ du problème (1.5.3), une fonction ψ ∈ H 1 (R 3 , C 4 ) satisfaisant    H 0 ψ + gβφψ = λψ p.p. dans R 3 ψ L 2 = 1 -ε∆φ + W (φ) ε + 2bφ + N gψ * βψ = 0, p.p. dans R 3 où λ = λ 1 + (H φ ) > 0.
1.6. QUELQUES PROBLÈMES OUVERTS Remarque 1.5.15. Les paramètres les plus significatifs du point de vue physique vérifient ce type de conditions [FL77a]. En fait, le potentiel de la forme de W et la restriction ε ∈ (0, ε 0 ) sont introduits de manière à forcer le champ φ à être presque une fonction caractéristique [FL77a,GW82]. Nous obtenons un résultat similaire au théorème 1.5.12 dans le cas symétrique pour les états excités. Soient

1 ≤ k 1 ≤ • • • ≤ k N ≤ K. Nous posons pour ε > 0 : E ε,k 1 ,...,k N (φ) = N i=1 λ k i + (H φ ) + E ε (φ) si φ ∈ H 1 rad (R 3 , R) +∞ sinon et E 0,k 1 ,...,k N (φ) = N i=1 λ k i + (H -χ Ω ) + E 0 (-χ Ω ) si φ = -χ Ω ∈ BV rad (R 3 , R) +∞ sinon.
Théorème 1.5.16. Supposons les conditions de la proposition 1.5.11 vraies et g ∈ (0, m).

Alors, E ε,k 1 ,...,k N Γ- converge vers E 0,k 1 ,...,k N in L 2 ∩ L 3(q+2) 4
. Supposons de plus qu'il existe c > 0, t 1 < -1 < t 2 < 0 tels que W vérifie :

W (t) ≥ c|t| q pour tout t / ∈ (t 1 , t 2 ) et inf{E 0,K,...,K (φ) : φ = -χ Ω ∈ BV rad } < N m. Alors, il existe ε 0 > 0 tel que pour tout 0 < ε < ε 0 , l ε s (k 1 , . . . , k N ) = inf{E ε,k 1 ,...,k N (φ) : φ ∈ H 1 rad } < N m (1.5.4)
admet un minimum φ ε . Il existe une sous-suite telle que

   W • φ εn → W • (-χ Ω ) strictement dans BV φ εn → (-χ Ω ) fortement dans L p pour p ∈ [2, 3(q+2) 4 ] l εn s (k 1 , . . . , k N ) → l c (k 1 , . . . , k N ) où -χ Ω est un minimum de : l c (k 1 , . . . , k N ) = inf{E 0,k 1 ,...,k N (φ) : φ = -χ Ω ∈ BV rad }.
(1.5.5)

Quelques problèmes ouverts

Au cours de cette thèse, nous nous sommes principalement intéressés aux modèles de sac de hadrons. Nous avons démontré l'existence de solutions pour certains d'entre eux et étudié différentes limites les liant les uns aux autres. Néanmoins, de nombreuses questions restent ouvertes. Dans cette partie, nous en présentons quelquesunes.

Le modèle du sac du MIT

La principale question restée ouverte à l'issue de cette thèse est celle de l'existence d'une forme optimale pour le problème de l'état fondamental du problème du sac du MIT (1.3.4) : inf{N λ 1 (Ω) + b|Ω| : Ω est un ouvert non vide, régulier et borné de R 3 }, où λ 1 (Ω) est la plus petite valeur propre positive de l'opérateur H Ω 0 . C'est un problème d'optimisation de forme. Selon les physiciens, la boule réalise le minimum de ce problème. Cependant, à notre connaissance, aucune preuve de ce fait n'a encore été donnée. Les méthodes de symétrisations utilisées dans les problèmes d'optimisation de la première valeur propre du laplacien avec condition au bord de type Dirichlet ou Robin ne fonctionnent pas ici.

Études des modèles dans certains cas limites

Les modèles d'approximation sac, de soliton de Résumé: Nous démontrons grâce à une méthode de tir, l'existence d'une infinité de solution de la forme ψ(x 0 , x) = e -iΩx 0 χ(x) d'une équation de Dirac non linéaire

i∂ x 0 ψ = H 0 ψ + βF (ψ * βψ)ψ où Ω > m > 0, χ est à support compact et F (x) = p|x| p-1 si |x| > 0 0 si x = 0 avec p ∈ (0, 1).
Existence of nodal solutions for Dirac equations with singular nonlinearities

Loïc Le Treust

Abstract

We prove, by a shooting method, the existence of infinitely many solutions of the form ψ(x 0 , x) = e -iΩx 0 χ(x) of the nonlinear Dirac equation

i 3 µ=0 γ µ ∂ µ ψ -mψ -F (ψψ)ψ = 0
where Ω > m > 0, χ is compactly supported and

F (x) = p|x| p-1 if |x| > 0 0 if x = 0
with p ∈ (0, 1), under some restrictions on the parameters p and Ω. We study also the behavior of the solutions as p tends to zero to establish the link between these equations and the M.I.T. bag model ones.

Introduction

We study, in this paper, a relativistic model proposed by Mathieu and Saly [MS84,Mat85] that accounts for the internal structure of hadrons, that is how strong interaction forces bind quarks together. Their model and the M.I.T. bag one (see [Joh75] and the references therein) have been introduced to approximate the quantum chromodynamics model and to get the confinement of the quarks.

We will look for localized solutions of the nonlinear Dirac equation:

i 3 µ=0 γ µ ∂ µ ψ -mψ -F (ψψ)ψ = 0. (2.1.1)
The notations are the followings:

m > 0, ψ : R 4 → C 4 , ∂ µ ψ = ∂ ∂x µ , 0 ≤ µ ≤ 3
, where we used Einstein's convention for summation over µ. We write ψψ = (γ 0 ψ, ψ) where (., .) is the usual scalar product and γ µ are the 4 × 4 Pauli-Dirac matrices [Tha91]:

γ 0 = I 0 0 -I and γ k = 0 σ k -σ k 0 for k = 1, 2, 3, with σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 , σ 3 = 1 0 0 -1 .
The function F : R → R is defined by

F (x) = p|x| p-1 if |x| > 0 0 if x = 0
with p ∈ (0, 1). The solutions are sought among stationary states

ψ(x 0 , x) = e -iΩx 0 χ(x) (2.1.2) where x = (x 1 , x 2 , x 3 ) ∈ R 3 , Ω > m and χ is solution of: i 3 k=1 γ k ∂ k χ + Ωγ 0 χ -mχ -F (χχ)χ = 0. (2.1.3)
Following [MS84, Mat85], we will search the solutions among functions of the form:

χ(x) =     v(r) 1 0 iu(r) cos θ sin θe iΦ     (2.1.4)
where (r, θ, Φ) are the spherical coordinates of x in R 3 and χ is localized, that is :

lim r→∞ (u, v) = 0.
Equation (2.1.3) then becomes a non-autonomous system of ordinary differential equations

u + 2u r = v(-F (v 2 -u 2 ) -(m -Ω)) v = u(-F (v 2 -u 2 ) -(m + Ω)).
(2.1.5) Following Mathieu and Saly [MS84,Mat85], we assume that u is zero at zero and we consider the following Cauchy problem for x ∈ R + :

(2.1.5) (u(0), v(0)) = (0, x).

(2.1.6)

We can choose x nonnegative without loss of generality thanks to the symmetry of the equations. For the sake of notation simplicity, we will not write the p dependence unless it is necessary. For instance, we write F , (u, v), (2.1.6),. . . instead of F p , (u p , v p ), (2.1.6) p , . . . Equation (2.1.1) has been introduced by Mathieu and Saly [MS84,Mat85] to model the confinement of the relativistic quarks. Their model is called the fractional bag model. They observed numerically that the solutions are compactly supported.

Balabane, Cazenave and Vazquez [BCV90] proved rigorously the existence of a ground state for a more general class of nonlinearities F by a shooting method. Moreover, they obtained a necessary and sufficient condition on F for the ground state solution to be compactly supported. The shooting method has already been used to get infinitely many solutions of a nonlinear Dirac equation in a regular setting by Balabane, Cazenave, Douady and Merle [BCDM88] (see also the references therein).

The main problems we have to face here occur on the set {|u| = |v|} because the nonlinearity F is singular at 0. Since, Balabane, Cazenave and Vazquez [BCV90] studied the ground state problem, the trajectories of the solutions they found do not cross this set. Nevertheless, in this paper, we have to consider solutions of this type to get infinitely many solutions.

Thus, we have to weaken the notion of solution since the Cauchy problem

(2.1.5) u(R) = v(R) = x (2.1.7)
has no regular solution defined in a neighborhood of R for R > 0 and x = 0.

Definition 2.1.1. Let 0 ≤ R < R . A function w ∈ C 0 (R, R
) is a solution of a system of ordinary differential equations (E) in the extended sense if there exist at most a finite number n of real number

R < R 1 < • • • < R n < R such that w is of class C 1 on (R, R )\{R 1 , . . . , R n } and satisfies the equations of system (E) on (R, R )\{R 1 , . . . , R n }.
From now on, we will consider solution of this type (see also [CL55]). Notice that the nonlinearity F allows the zero function to be solution of (2.1.1). Thanks to definition 2.1.1, we can thus extend by zero all the solutions which hit zero.

Since we want to use a shooting method, local existence and uniqueness are very important points. But, the main O.D.E. theorems [CL55] fail to show local uniqueness for problem (2.1.7) and existence is not a trivial point. To overcome this, we have to introduce a regularized problem whose solutions satisfy some key qualitative properties similar to the ones of the solutions of the original system of equations (2.1.5). The idea consists in introducing an approach system which is hamiltonian near the set {|u| = |v|} so that we get local existence and uniqueness. Nevertheless, the solutions of the regularized problem are singular and they are only solutions in the extended sense of definition 2.1.1.

Once this regularization is done, we can adapt to our framework the shooting method of Balabane, Dolbeault and Ounaies [BDO03] which established the existence of infinitely many compactly supported solutions for a sub-linear elliptic equation with any given number of nodes. The problems given by the lack of regularity of the nonlinearity in zero occur when the solutions of their system of equations hit zero. Here, these difficulties arise on the bigger set {|u| = |v|}. Indeed, our main contribution is to deal with the shooting method of [BDO03] in this singular framework.

Mathieu [Mat85] has already found numerical excited state solutions. But, in this paper, we provide the first rigorous proof of their existence under some restrictions on p and Ω. Mathieu and Saly [MS84] have also derived relations between these solutions and the M.I.T. bag model ones. Here, we prove rigorously that the ground state solutions of the fractional models converge to the ground state solution of the M.I.T. bag model as p tends to 0. Nevertheless, we also show that the limits of the sequence of the excited state solutions are not solutions of the M.I.T. bag model equations.

Let us now state our results:

Theorem 2.1.2. There are p ∈ (0, 1) and for every p ∈ (0, p), a constant Ω p > m such that if Ω > Ω p , there exists an unbounded increasing sequence (x k ) k∈N of initial data such that for any k ∈ N, the Cauchy problem (2.1.6) has a compactly supported solution which crosses the set {(u, 0)|u = 0} exactly k times.

The following theorem establishes the close link between the fractional model and the M.I.T. bag one.

Theorem 2.1.3. There is Ω > m and for Ω > Ω, for k ∈ N, a finite number of points R 1 , . . . , R l with l ≤ 2k +1,

(u 0 , v 0 ) ∈ C 1 (R + \{R 1 , . . . , R l }) ∩ L ∞ (R +
) and a decreasing sequence (p n ) converging to zero such that :

1. v 2 0 -u 2 0 is continuous on R + , positive on [0, R 1 ) and on exactly k intervals (R i , R i+1 ), 2. (u pn , v pn ) converges to (u 0 , v 0 ) uniformly on every compact interval of {|v 2 0 -u 2 0 | > 0}. 3. (u 0 , v 0 ) is a solution of the free Dirac equation on [0, R l ]\{R 1 , . . . , R l }: u + 2u r = v(Ω -m) v = -u(Ω + m), discontinuous in R 1 , . . . , R l . 4. (u 0 , v 0 ) ≡ 0 on [R l , ∞) and (v 2 0 -u 2 0 )(R i ) = 0
, where (u p , v p ) is the solution of (2.1.6) p found by Theorem 2.1.2 with k nodes.

Let us notice that (u 0 , v 0 ) is discontinuous at each bound of the k intervals of point 1. In the case k = 0, the solution (u 0 , v 0 ) is the ground state of the M.I.T. bag model as Mathieu and Saly derived in [MS84]. Nevertheless, the other nodal solutions that we get, are different from those derived by Mathieu in [Mat85] by lack of continuity.

In section 2.2, we define the hamiltonian regularization. We will prove that the qualitative properties we need do not depend on the regularization parameter and that the solutions of the regularized system of equations locally exist and are unique. In section 2.3, we prove the existence of compactly supported solutions to the regularized problem by the shooting method. We finish the proof of Theorem 2.1.2 in section 2.4. Finally, we study the relation between the fractional bag model and the M.I.T. bag one in section 2.5.

Notations and preliminary results

In this section, we fix p ∈ (0, 1/2) and Ω > m. Following [BCV90], we define the continuous functions:

H : R 2 → R and H ε : R 2 → R by H(u, v) = - 1 2 (v 2 -u 2 )|v 2 -u 2 | p-1 + Ω -m 2 v 2 + Ω + m 2 u 2
and

H ε (u, v) = H(u, v) -(Ω -ε)v 2 = -(v 2 -u 2 ) 1 2 |v 2 -u 2 | p-1 + Ω + m 2 + εv 2 for ε ∈ [0, m) and (u, v) ∈ R 2 .
These functions will be of constant use in this paper. In the following lemma, we study some of their properties.

Lemma 2.2.1. Let ε ∈ [0, m), we have that:

1. there exist two positive constants A and B such that:

H(u, v) ≥ A(u 2 + v 2 ) -B for all (u, v) ∈ R 2 , 2. the set H -1 (-∞, C) is bounded for C ∈ R, 3. H -1 ε ({0}) is a connected unbounded set in {|u| < |v|} ∪ {0}, such that H -1 ε ({0}) ∩ H -1 ({0}) = {0}, for every ε > 0, v u H 0 Figure 2.1: Energy levels 4. H -1 0 ({0}) = {|u| = |v|}, 5. there are two functions γ → C γ and γ → D γ defined for γ ∈ (0, +∞) such that for all (u, v) ∈ R 2 , γ > 0: H(u, v) ≥ γ ⇒ C γ H(u, v) ≥ u 2 u 2 + v 2 ≥ D γ γ → C γ is nonincreasing and lim γ→0 C γ = ∞,
6. there are θ ∈ (0, π/4) and v > 0 such that for every (u, v) which satisfy H(u, v) ≥ 0 and |u| ≤ tan(θ)|v|, then we have |v| ≥ v. For any θ ∈ (0, π/4), there are P ∈ (0, 1/2) and v > 0 such that this point remains true for all p ∈ (0, P ).

We define

E 0 = (Ω -m) 1 2(1-p) = sup{v|∃u : H(u, v) = 0}.
The proof is a straightforward calculation and is postponed in the appendix.

The regularized problem

F is so singular at zero that the main O.D.E. theorems [CL55] fail to show existence and local uniqueness for problem (2.1.7). To overcome this, we introduce a regularized problem.

Let E 1 be a positive constant that will be fixed later. We define for ε ∈ (0, m) the sets (figure 2.2):

R 1 ε = (u, v) ∈ R 2 : |v -u| ≤ E 1 , H ε (u, v) ≥ 0, H ε (v, u) ≥ 0 R 2 ε = (u, v) ∈ R 2 : |v -u| ≤ E 1 /2, H ε 2 (u, v) ≥ 0, H ε 2 (v, u) ≥ 0 .
Let us remark that by Lemma 2.2.1, we have

R 2 ε ⊂ R 1 ε ⊂ H -1 ((0, +∞)) ∪ {0} and ∩ ε>0 R 1 ε = {|u| = |v|}. Let ϕ ε : R 2 \{(0, 0)} → [0, 1] be a smooth function such that v u H 0 R 1 2 u 2 v 2 Figure 2.2: Regularization area ϕ ε ≡ 0 on R 2 ε 1 on (R 1 ε ) c and ϕ ε (u, v) = ϕ ε (|u|, |v|) = ϕ ε (|v|, |u|)
for any (u, v) in R 2 \{(0, 0)}. We will then study the following system of equations:

u + 2u r ϕ ε (u, v) = v(-F (v 2 -u 2 ) -(m -Ω)) v = u(-F (v 2 -u 2 ) -(m + Ω)).
(2.2.1)

Let us remark that there is no regular solution of the Cauchy problem:

(2.2.1)

u(R) = v(R) = x (2.2.2)
where R > 0 and x ∈ R * . Nevertheless, near the set {|u| = |v|} the system of equations is autonomous and hamiltonian. This will allow us to get existence and local uniqueness while keeping the qualitative properties of the solutions to problem (2.1.6) that we need for the shooting method.

Qualitative results

We assume in this part, that (u, v) is a solution in the extended sense of equations (2.2.1) defined on an interval I and ε > 0. As in [BCV90], we show, in the next lemma, that the function H(u, v) is nonincreasing.

Lemma 2.2.2. We have for r ∈ I:

d dr H(u, v)(r) = - 2u 2 ϕ(u, v) r (p|v 2 -u 2 | p-1 + (m + Ω)), so r → H(u, v) is nonincreasing.
Proof. We have for r ∈ I:

d dr H(u, v)(r) = -p(v v -u u)|v 2 -u 2 | p-1 + v v(Ω -m) + u u(Ω + m) = v (u + 2u r ϕ(u, v)) -u v = v 2u r ϕ(u, v) = - 2u 2 ϕ(u, v) r (p|v 2 -u 2 | p-1 + (m + Ω)).
In the next lemma, we study the speed of rotation of the trajectory of (u, v) around zero.

Lemma 2.2.3. Let θ(r) = r 0 d dr arctan( u v )(s)ds.
We have for r ∈ I:

θ(r) = pH(u, v) + (1 -p)(v 2 (Ω -m)) + u 2 (Ω + m)) -2uvϕ(u, v)/r u 2 + v 2 . If H(u, v)(r) ≥ 0, we get moreover θ(r) ≥ (1 -p)(Ω -m) -ϕ(u, v)/r.
Proof. We have for r ∈ I:

θ(r) = u v -v u u 2 + v 2 = -p(v 2 -u 2 )|v 2 -u 2 | p-1 + v 2 (Ω -m)) + u 2 (Ω + m) -2uvϕ(u, v)/r u 2 + v 2 = pH(u, v) + (1 -p)(v 2 (Ω -m)) + u 2 (Ω + m)) -2uvϕ(u, v)/r u 2 + v 2 .
If we assume moreover that H(u, v)(r) ≥ 0, we get

θ(r) ≥ (1 -p)(Ω -m)(v 2 + u 2 ) -2uvϕ(u, v)/r u 2 + v 2 ≥ (1 -p)(Ω -m) -ϕ(u, v)/r.

Existence and local uniqueness results

Let ε ∈ (0, m). We show, in the next lemma, that problem (2.2.2) has a unique local solution.

Lemma 2.2.4. Consider the initial value problem for r 1 ≥ 0, (u 1 , v 1 ) ∈ R 2 \{0}:

(2.2.1) (u, v)(r 1 ) = (u 1 , v 1 ), (2.2.3) such that u 1 = 0 if r 1 = 0.
Then, there exists a unique local solution.

Proof. The Cauchy-Lipschitz theorem shows this result provided that r 1 = 0 and |u 1 | = |v 1 |. The contraction mapping argument sketched in [BCV90] ensures the result for r 1 = 0. So the point is when |u 1 | = |v 1 |. In this case, the system (2.2.1) reduces itself into the autonomous hamiltonian system of equations:

u = v(-p|v 2 -u 2 | p-1 -(m -Ω)) v = u(-p|v 2 -u 2 | p-1 -(m + Ω)).
(2.2.4)

We assume:

u 1 = v 1 > 0.
We choose

(u 2 , v 2 ) ∈ H -1 (H(u 1 , v 1 )) ∩ {0 < u < v} ∩ R 2 ε . Then, the solution (u, v) to problem (2.2.4) (u(0), v(0)) = (u 2 , v 2 )
is well-defined, C 1 on a maximal interval [0, r 2 ), locally unique and

H(u(r), v(r)) = H(u 1 , v 1 )
for each r ∈ [0, r 2 ) by Lemma 2.2.2. Since the set

{(u, v), H(u, v) = H(u 1 , v 1 )} is compact and θ(r) = pH(u, v) + (1 -p)(v 2 (Ω -m)) + u 2 (Ω + m)) u 2 + v 2 ≥ (1 -p)(Ω -m) > 0 for r ∈ [0, r 2 ) by Lemma 2.2.3, we get that lim r→r 2 (u, v)(r) = (u 1 , v 1 ).
We define then (ũ, ṽ) by (ũ, ṽ)(r) = (u, v)(r -r 1 + r 2 )

for any r ∈ [r 1 -r 2 , r 1 ], it solves problem (2.2.3) on the interval [r 1 -r 2 , r 1 ].
We proved the existence and the local uniqueness on one side. The same argument works as well for the remaining cases. Now we will show the existence and the uniqueness of the maximal solution in the extended sense of the regularized problem.

Lemma 2.2.5. For each x > 0, there is a unique solution (u, v) of the problem

(2.2.1) (u(0), v(0)) = (0, x) (2.2.5) on an interval [0, R x ) with R x ∈ (0, +∞] such that (u(r), v(r)) = (0, 0), ∀ r ∈ [0, R x ),
and R x is maximal for this property. There is a positive constant C such that (u, v) satisfies Proof. Lemma 2.2.4 ensures the existence and the uniqueness of the maximal solution (u, v) of problem (2.2.5).

sup r∈[0,Rx) u 2 (r) + v 2 (r) ≤ C. Moreover, if R x < ∞, then we have lim r→Rx (u(r), v(r)) = (0, 0).
The function 

H(u, v) is non increasing in [0, R x )
(u, v)(r) = 0. Thus, if R x < ∞, we have lim r→Rx (u(r), v(r)) = (0, 0).

The shooting method

In this section, we fix p ∈ (0, 1/2). Once the existence and the local uniqueness are shown for the regularized problem, we can adapt the shooting method of Balabane, Dolbeault and Ounaies [BDO03] to our problem. In this section, we will denote by (u x , v x ) the maximal solution of problem (2.2.5) where x > 0, to insist on the dependence on x.

We define

N x (a, b) := #{r ∈ (a, b)|v x (r) = 0} ∈ [0, +∞]
for 0 ≤ a < b ≤ +∞ and for every γ ≥ 0,

ρ x (γ) := sup{r > 0 : H(u x , v x ) ≥ γ} ∈ [0, +∞] ∪ {-∞}.
We will write N x (b) instead of N x (0, b). The core of the shooting method will be the study of the following sets which are introduced in [BDO03]:

Definition 2.3.1. Let k ∈ N. We define A k := {x > 0| lim r→∞ H(u x , v x )(r) < 0, (u x , v x )(r) = (0, 0) ∀r ≥ 0, . . . N x (∞) = k} I k := {x > 0| lim r→ρx(0) (u x , v x )(r) = (0, 0), N x (ρ x (0)) = k}.
Remark 2.3.2. If there is R > 0 such that H(u x , v x )(R) < 0 then by Lemmas 2.2.2 and 2.2.5, we get that R x = +∞. So, the sets A k are well defined for any k. The key idea is that (u x , v x ) winds around the connected set {H = 0} and cross it at finite radius ρ x (0). We can have

lim r→Rx H(u x , v x )(r) < 0 and x belongs to ∪ k∈N A k or R x < ∞, lim r→Rx H(u x , v x )(r) = 0 and x belongs to ∪ k∈N I k .
The goal is to show that I k is not an empty set for any k.

Main results

In the next lemma, we give uniform estimations far enough from r = 0 and from the radius

inf{r > 0, |u x |(r) = |v x |(r)}.
Lemma 2.3.3. There exist p ∈ (0, 1/2) and for all 0 < q < p, a constant Ω q > m such that if Ω > Ω q , then there are r 0 > 0, α > 0 and Θ > 0 which satisfy:

1. r 0 > 1 (Ω-m)(1-p) , 2. v 2 (r) -u 2 (r) ≥ αx 2 for all r ∈ [0, r 0 ],
3. θ(r) ≥ Θ, whenever r ≥ r 0 and H(u, v)(r) ≥ 0, for any 0 < p ≤ q and 0 < x where (u, v) is the solution of problem (2.1.6) with initial condition (0, x) (p 0.0173622).

Remark 2.3.4. r 0 , Θ, α and Ω q may be chosen independent on p and x. This result is slightly finer than a result of Balabane, Cazenave and Vazquez [BCV90] but the proof is straightforward and based on their ideas. It is postponed in the appendix.

From now on, we fix p < p, Ω p < Ω and E 1 = E 2 0 α where E 1 is the constant in the regularization sets of subsection 2.2.1, E 0 comes from Lemma 2.2.1 and α from Lemma 2.3.3.

Remark 2.3.5. Lemma 2.3.3 remains true for the solutions of problem (2.2.5) thanks to these choices for E 1 and for the regularization.

We study now the winding number N x (a, b).

Lemma 2.3.6. Let us assume that r 0 < ρ x (0) and let r 0 ≤ a < b ≤ ρ x (0), then:

N x (a, b) ≥ Θ π (b -a)
where . is the floor function.

Proof. By Lemma 2.3.3, we get

θ x (b) -θ x (a) = b a θ x (s) ds ≥ Θ(b -a), so that N x (a, b) ≥ Θ π (b -a) .
Let γ > 0 be such that q := 2(1 -p)(Ω + m)C γ -1 > 0. Such a γ exists by Lemma 2.2.1. The following lemma gives estimates on the decay of H(u x , v x ).

Lemma 2.3.7. Let us assume that ρ x (γ) > 0, then we have for r ∈ (0, ρ x (γ)):

d dr r 2(Ω+m)Cγ H(u x , v x ) 1-p ≥ -2p(1 -p)C p γ ρ(γ) q |1 -2 sin 2 θ x | p-1 .
Proof. For the sake of notation simplicity, we remove here the x subscripts. By Lemma 2.2.2, we have for r ∈ (0, ρ(γ)):

d dr H(u, v) ≥ - 2u 2 r (p|v 2 -u 2 | p-1 + (m + Ω)) ≥ - 2C γ (Ω + m)H(u, v) r - 2pu 2 r(u 2 + v 2 ) 1-p v 2 -u 2 u 2 + v 2 p-1 ≥ - 2C γ (Ω + m)H(u, v) r - 2pu 2p r u 2 u 2 + v 2 1-p |1 -2 sin 2 θ| p-1 ≥ - 2C γ (Ω + m)H(u, v) r - 2pC p γ H(u, v) p |1 -2 sin 2 θ| p-1 r , so, d dr (r 2(Ω+m)Cγ H(u, v)) ≥ -2pC p γ H(u, v) p |1 -2 sin 2 θ| p-1 r 2(Ω+m)Cγ -1 ≥ -2pC p γ |1 -2 sin 2 θ| p-1 r q (r 2(Ω+m)Cγ H(u, v)) p ≥ -2pC p γ |1 -2 sin 2 θ| p-1 ρ(γ) q (r 2(Ω+m)Cγ H(u, v)) p .
Finally, we get

d dr r 2(Ω+m)Cγ H(u x , v x ) 1-p = (1 -p) d dr (r 2(Ω+m)Cγ H(u, v)) r 2(Ω+m)Cγ H(u, v)) p ≥ -2p(1 -p)C p γ |1 -2 sin 2 θ| p-1 ρ(γ) q .
The following proposition ensures that the number of times the solutions circle around the set {H = 0} tends to infinity when x tends to infinity.

Proposition 2.3.8. We have

lim x→∞ N x (r 0 , ρ x (γ)) = ∞. Proof. Lemma 2.3.3 ensures that v 2 x (r 0 ) -u 2 x (r 0 ) ≥ αx 2 and Lemma 2.2.1 gives lim x→+∞ H(u x , v x )(r 0 ) ≥ lim x→+∞ A(u 2 x (r 0 ) + v 2 x (r 0 )) -B ≥ lim x→+∞ Aαx 2 -B = +∞.
Then, there exists x 0 > 0 such that ρ x (0) > ρ x (γ) > r 0 for any x ≥ x 0 . By Lemma 2.3.7, we get

ρ x (γ) 2(Ω+m)Cγ γ 1-p -r 2(Ω+m)Cγ 0 H(u x , v x )(r 0 ) 1-p = ρx(γ) r 0 d dr r 2(Ω+m)Cγ H(u x , v x ) 1-p dr ≥ ρx(γ) r 0 -2p(1 -p)C p γ ρ x (γ) q |1 -2 sin 2 θ x (r)| p-1 dr.
Lemma 2.3.3 gives then that:

ρ x (γ) 2(Ω+m)Cγ γ 1-p -r 2(Ω+m)Cγ 0 H(u x , v x )(r 0 ) 1-p ≥ - 2p(1 -p)C p γ ρ x (γ) q Θ ρx(γ) r 0 |1 -2 sin 2 θ x (r)| p-1 θ x (r)dr ≥ - 2p(1 -p)C p γ ρ x (γ) q Θ θx(ρx(γ)) θx(r 0 ) |1 -2 sin 2 θ| p-1 dθ ≥ - 2p(1 -p)C p γ ρ x (γ) q Θ (N x (r 0 , ρ x (γ)) + 2) π 0 |1 -2 sin 2 θ| p-1 dθ.
Since p ∈ (0, 1), the integral π 0 |1 -2 sin 2 θ| p-1 dθ converges. Moreover, we have by Lemma 2.3.6 that π(N x (r 0 , ρ x (γ)) + 1) Θ + r 0 ≥ ρ x (γ).

We have already shown that lim x→+∞ H(u x , v x )(r 0 ) = +∞ so these inequalities ensure that lim x→+∞ N x (r 0 , ρ x (γ)) = +∞.

We have now to construct the trapping zone as in Proposition 3 of [BDO03]. Nevertheless, the zone we construct is more complicated (see Figure 2.4).

Proposition 2.3.9. For all k ∈ N, there exists σ > 0 such that if

N x (R) = k and u 2 x (R) + v 2 x (R) < σ 2 for some x and R positive, then x belongs to A k ∪ I k ∪ A k+1 .
Proof. For the sake of clarity, we remove here the x subscripts. The decay of the energy in Lemma 2.2.2 makes the result obvious if H(u, v)(R) ≤ 0. By symmetry, we can assume without loss of generality that

(u, v)(R) ∈ {u > 0} ∪ {H > 0} and x > E 0
where E 0 is defined in Lemma 2.2.1. Let (M 1 , M 2 ) be the unique point of

H -1 ({0}) ∩ {v > u > 0} ∩ {v 2 -u 2 = ( Ω -m p ) 1 p-1 }. It exists since ( Ω-m p ) 1 p-1 < E 2 0 (see Figure 2.4). Let v 1 > 0 such that (M 1 /2, v 1 ) is the unique point of ∂R 1 ε ∩ {v > u > 0}. We define K := H(M 1 /2, v 1 ) > 0.
The parameter σ is chosen such that:

0 < σ < min{ M 3 1 4M 2 ( π(k+2) Θ + r 0 ) , αE 2 0 } (2.3.1)
and

B(0, σ) ⊂ H -1 (-∞, K) ∩ {u < M 1 /2} where B(0, σ) is the euclidean ball of R 2 centered in 0 and of radius σ. Let D = {(u, v) : 0 < H(u, v) < K, 0 < u < M 1 } , (see Figure 2.4). We have that (u, v)(R) ∈ D.
If (u, v) exits D crossing the boundary at {H = 0}, we have the result. We now prove that this is the only possible way to exit D. Let us assume by contradiction that (u, v) do not cross the boundary of We have H(u, v)(R ) > 0 by assumption. Since x > E 0 , Lemma 2.3.3 ensures that

D at {H = 0}, v u B 0,Σ H 0 u 2 v 2
v 2 (r) + u 2 (r) ≥ v 2 (r) -u 2 (r) ≥ αx 2 ≥ αE 2 0 for any r ∈ [0, r 0 ]
. By inequality (2.3.1), we get that R > r 0 and the third point of Lemma 2.3.3 ensures that R < +∞. We have moreover

k = N (R) ≤ N (R ) ≤ k + 1, Lemma 2.3.6 ensures that k + 1 ≥ N (R ) ≥ N (r 0 , R ) ≥ Θ π (R -r 0 ) , so R ≤ π(k + 2) Θ + r 0 . (2.3.2)
We define now

R := sup{r ∈ (R, R )| |u| < M 1 /2}. It is well-defined and R ∈ (R, R ) because |u(R)| ≤ u 2 (R) + v 2 (R) < σ < M 1 /2 and u(R ) = M 1 .
By Lemma 2.2.2, we have that

0 < H(u, v)(r) ≤ H(u, v)(R) < K
and by Lemma 2.3.3 that u(r) ≥ 0 ≥ v(r)

for any r ∈ [R , R ].
By the construction of D, we have that

{(u, v) : M 1 /2 < |u| < M 1 , 0 < H(u, v) < K} ∩ R 1 ε = ∅
thanks to our choices of v 1 , K and the symmetries of ϕ ε . Thus, we get

ϕ ε (u, v)(r) = 1 for any r ∈ [R , R ]
. By Lemma 2.2.2, inequality (2.3.2) and the definitions of R and R , we obtain

H(u, v)(R ) -H(u, v)(R ) = - R R d dr (H(u, v)(r)) dr = R R 2u 2 r (p|u 2 -v 2 | p-1 + (m + Ω))dr ≥ M 2 1 2( π(k+2) Θ + r 0 ) R R (p|u 2 -v 2 | p-1 + (m + Ω))dr.
Then, we have

M 1 /2 = u(R ) -u(R ) = R R -v(p|u 2 -v 2 | p-1 + (m + Ω)) - 2u r dr ≤ M 2 R R (p|u 2 -v 2 | p-1 + (m + Ω))dr and 
H(u, v)(R ) ≤ H(u, v)(R ) - M 3 1 4M 2 ( π(k+2) Θ + r 0 ) ≤ H(u, v)(R) -σ ≤ 0.
This contradicts H(u, v)(R ) > 0.

We show in the next lemma that the solution can be controlled uniformly in some Sobolev norm.

Lemma 2.3.10. Let us assume that there are R > r 0 and y > 0 such that

H(u x , v x )(r) > 0 and u 2 x (r) + v 2 x (r) ≤ y
for any r ∈ [r 0 , R] where (u x , v x ) is the solution of problem (2.2.5) with x > 0. Then, for all s ∈ (1, 1 1-p ), there exists C > 0 such that for all r 0 < r 1 < r 2 < R :

u 2 x W 1,s (r 1 ,r 2 ) , v 2 x W 1,s (r 1 ,r 2 ) , u x v x W 1,s (r 1 ,r 2 ) ≤ C(N x (r 1 , r 2 ) + (r 2 -r 1 ) + 1),
C does not depend on ε and x.

Proof. For the sake of clarity, we remove here the x subscripts. We have:

du 2 dr = 2uv(-p|u 2 -v 2 | p-1 + (Ω -m)) - 2u 2 ϕ(u, v) r , so, for r 0 < r 1 < r 2 < R, r 2 r 1 du 2 dr s dr ≤ C r 2 r 1 uv (u 2 + v 2 ) 1-p s u 2 -v 2 u 2 + v 2 s(p-1) dr + (r 2 -r 1 ) ≤ C r 2 r 1 |1 -2 sin 2 θ(r)| s(p-1) dr + (r 2 -r 1 ) ≤ C r 2 r 1 1 Θ |1 -2 sin 2 θ(r)| s(p-1) θ (r)dr + (r 2 -r 1 )
by Lemma 2.3.3. Since s(p -1) > -1, the integral The same proof works as well for v 2 and uv.

We study in the following lemma, the dependance of the solutions on the initial conditions. This is a very important point in the shooting method and that is the reason why we introduced a regularized problem.

Lemma 2.3.11. Let (u, v) be a solution of (2.2.1) defined on an interval [r 1 , r 2 ] such that

(u, v)(r) = (0, 0) for all r ∈ [r 1 , r 2 ].
For all η > 0, there exists δ > 0, such that if (u, v) is also a solution of (2.2.1) with

(u, v)(r 1 ) -(u, v)(r 1 ) < δ, we have (u, v)(r) -(u, v)(r) < η for all r ∈ [r 1 , r 2 ] where . is the euclidian norm of R 2 .
The proof is the same as in [BDO03] and follows from Lemmas 2.2.4 and 2.3.10.

We will now study the behaviors at infinity.

Lemma 2.3.12. For all x > 0, we have:

1. either N x (R x ) < ∞, 2. or R x = +∞, N x (∞) = ∞, lim r→∞ H(u x , v x ) = 0 and (u x , v x ) = 0 on [0, ∞).
Proof. For the sake of notation simplicity, we remove here the x subscripts. We recall that R is the largest radius before the solution hits 0. We study now the different cases.

(a) We assume that R < ∞. By Lemma 2.2.5, we have

H(u, v)(r) ≥ 0
for all r ∈ (0, R). We have by Lemmas 2.2.1 and 2.2.3 that for any R ≥ r ≥ r 0 such that |u|(r) ≤ tan(θ)|v|(r) :

θ(r) = pH(u, v) + (1 -p)(v 2 (Ω -m)) + u 2 (Ω + m)) -2uvϕ(u, v)/r u 2 + v 2 ≤ pH(u, v) v 2 + (1 -p)(Ω + m) + 2|uv| r 0 (u 2 + v 2 ) ≤ pH(0, x) v 2 + (1 -p)(Ω + m) + 1 r 0 =: C.
Let us assume by contradiction that N (R) = +∞. We define the sequences (r ini n ) and (r f in k ) such that for all k:

0 = r ini 0 < r f in 0 < • • • < r ini k < r f in k < . . . and ∪ k∈N (r ini k , r f in k ) = {r ∈ (0, R) : |u|(r) < tan(θ)|v|(r)}.
These sequences are well-defined for all k and

lim k→+∞ r ini k = R because Lemma 2.3.3 ensures that θ (r) ≥ Θ.
Nevertheless, we have that for any k > 0

θ ≤ r f in k r ini k θ (r)dr ≤ C(r ini k -r f in k )
by Lemma 2.2.1. This is impossible so N (R) < +∞.

(b) Let us assume now that R = +∞ and that there exists r 1 ≥ 0 such that H(u, v)(r 1 ) ≤ 0 and (u, v)(r 1 ) = 0.

Lemma 2.2.2 ensures that H(u, v)(r) < 0 for all r > r 1 . (u, v) will not cross the set {v = 0} anymore and N (∞) < ∞.

(c) Let us assume next that R = +∞ and that there exists γ > 0 such that H(u, v) ≥ γ on (0, R). Let r 0 < r 1 < r 2 . We have by Lemmas 2.2.2 and 2.2.1:

H(u, v)(r 1 ) -H(u, v)(r 2 ) = - r 2 r 1 d dr H(u, v)(r)dr = r 2 r 1 2u 2 ϕ(u, v) r (p|u 2 -v 2 | p-1 + (Ω -m))dr ≥ 2(Ω -m) r 2 r 1 u 2 ϕ(u, v) r dr.
Let the sequences (r ini n ) and (r f in k ) be such that:

r 0 < r ini 0 < r f in 0 < • • • < r ini k < r f in k < . . . and ∪ k∈N (r ini k , r f in k ) = {r > 0 : (u, v)(r) ∈ {u > |v| > 0} ∩ (R 1 ε ) c }.
These sequences are well-defined because Lemma 2.3.3 ensures that θ (r) ≥ Θ for any r ≥ r 0 . We get by construction of these sequences and Lemma 2.2.1 that

ϕ(u, v)(r) = 1 and 2u 2 (r) ≥ u 2 (r) + v 2 (r) ≥ D γ for all r ∈ ∪ k∈N (r ini k , r f in k ) so, H(u, v)(r 1 ) -H(u, v)(r 2 ) ≥ D γ (Ω -m) Σ k∈A(r 1 ,r 2 ) r f in k r ini k dr r ≥ D γ (Ω -m) Σ k∈A(r 1 ,r 2 ) log r f in k r ini k where A(r 1 , r 2 ) := {k ∈ N : (r ini k , r f in k ) ⊂ (r 1 , r 2 )}.
Moreover, we have by Lemma 2.2.3 that for any r ≥ r 0 :

θ(r) ≤ pH(0, x) D γ + (1 -p)(Ω + m) + 1 r 0 =: c 1 so that r f in k r ini k θ (r)dr ≤ c 1 (r f in k -r ini k ).
The same argument gives c 2 > 0 such that

r ini k ≤ c 2 k.
Let us remark that if ε = 0, we would have

r f in k r ini k θ (r)dr = π/2.
In the regularized case, there exists a constant π/2 ≥ c 0 > 0 such that

c 0 ≤ r f in k r ini k θ (r)dr.
We get then:

log r f in k r ini k ≥ log 1 + c 0 c 1 r ini k ≥ log 1 + c 0 c 1 c 2 k .
Since the series Σ log 1 + c 0 c 1 c 2 k diverges, there are ε 0 > 0 and for all N ∈ N, M (N ) ∈ N such that

M (N ) > N and Σ N ≤k≤M (N ) log 1 + c 0 c 1 c 2 k ≥ ε 0 .
Then, we get that:

0 = lim N →+∞ H(u, v)(r ini N ) -H(u, v)(r f in M (N ) ) ≥ D γ (Ω -m) Σ k∈A(r ini N ,r f in M (N ) ) log 1 + c 0 c 1 c 2 k ≥ D γ (Ω -m) Σ N ≤k≤M (N ) log 1 + c 0 c 1 c 2 k ≥ D γ (Ω -m)ε 0 > 0.
We get the wanted contradiction.

(d) The remaining case is the one of the second point of the lemma.

Topological results

We are now able to give some topological properties of the A k and I k sets as in [BDO03].

Lemma 2.3.13. For all k ∈ N,

(i) A k is an open set, (ii) A k is bounded, (iii) I k is bounded, (iv) sup A k ∈ I k-1 ∪ I k , (v) sup I k ∈ I k , (vi) if x ∈ I k then there exists a neighborhood V of x such that V ⊂ A k ∪ I k ∪ A k+1 .
The proof is slightly different from the one of [BDO03] but follows essentially their ideas. We give it here for the sake of completeness. We proved the key lemmas of [BDO03], thus, we get the following result:

Proof. Let k ∈ N.
Proposition 2.3.14. For all ε ∈ (0, m), all k ∈ N, there exists a solution (u x , v x ) of (2.2.5) such that:

(i) R x < ∞, i.e. (u x , v x )(R x ) = 0, (ii) N x (0, R x ) = k.
The proof of this proposition can be found in [BDO03]. We give it here for the sake of completeness. Proof. The goal of the proof is to show that I k = ∅ for any k. We will show this by induction on k. Let us remark first that (0, E 0 ] ⊂ A 0 . Then, sup A 0 exists and belongs to I 0 by Lemma 2.3.13. Thus, sup I 0 exists and belongs to I 0 by point (v) of Lemma 2.3.13 and sup A 0 ≤ sup I 0 . Point (vi) ensures that there exists δ > 0 such that

(sup I 0 -δ, sup I 0 + δ) ⊂ A 0 ∪ I 0 ∪ A 1 .
Thus, we obtain that

(sup I 0 , sup I 0 + δ) ⊂ A 1 = ∅.
We assume now that there is k ∈ N\{0} and δ k-1 > 0 such that

(sup I k-1 , sup I k-1 + δ k-1 ) ⊂ A k = ∅.
Then, by Lemma 2.3.13, sup A k exists and belongs to

I k since sup A k-1 ≤ sup I k-1 < sup A k . We get also that sup A k ≤ sup I k ∈ I k .
Then, point (vi) ensures that there exists δ k > 0 such that

(sup I k -δ k , sup I k + δ k ) ⊂ A k ∪ I k ∪ A k+1 so, (sup I k , sup I k + δ k ) ⊂ A k+1 = ∅.
We proved by induction that A k and I k are not empty.

Proof of the existence of localized solutions to problem (2.1.3)

We give here the proof of theorem 2.1.2. Proof. Let us fix k ∈ N. We write here the ε superscripts to emphasize the dependence of the solutions on ε. Let (u ε xε , v ε xε ) be a solution of (2.2.5) such that N ε xε (R ε xε ) = k with ϕ ε defined in section 2.2.1. From now on, we will not write the subscript x ε anymore for the sake of notation simplicity. We have :

R ε = ρ ε (0) ≤ (k + 1)π Θ + r 0 = R (2.4.1) by Lemma 2.2.3. Let γ > 0 such that q := 2(1 -p)(Ω + m)C γ -1 > 0, either H(u ε , v ε )(r 0
) is smaller than γ or not. In that latter case, we have because of Lemma 2.3.7:

(R ε ) 2(Ω+m)Cγ γ 1-p -r 2(Ω+m)Cγ 0 H(u ε , v ε )(r 0 ) 1-p ≥ -2p(1 -p)C p γ (R ε ) q R ε r 0 |1 -2 sin 2 θ ε | p-1 dr.
This and inequality 2.4.1 give us an uniform bound on H(u ε , v ε )(r 0 ) which does not depends on ε. We extend now the functions u ε and v ε by zero on [R ε , R]. By Lemmas 2.2.1 and 2.2.2, we obtain a uniform bound on

(u ε , v ε ) in C 0 ([r 0 , R]). We get then that (u ε ) 2 , (v ε ) 2 and u ε v ε are bounded sequences of W 1,s ([r 0 , R]) by Lemma 2.3.10.
Up to the extraction, there exist a decreasing subsequence (ε n ) which tends to 0, U, V, W ∈ W 1,s ([r 0 , R]) such that:

U n := (u εn ) 2 -→ n→∞ U V n := (v εn ) 2 -→ n→∞ V W n := u εn v εn -→ n→∞ W, in C 0 ([r 0 , R]).
We can then construct a function (u, v) defined on [r 0 , R] which is a solution of the system of equations (2.1.5) taking care of the sign of W such that

u 2 = U , v 2 = V , u(r 0 ) > 0 and v(r 0 ) > 0. (u, v) satisfies (u, v)(R) = (0, 0).
It remains to study the problem on [0, r 0 ]. We define

F (x) = (u x , v x )(r 0 ), where (u x , v x ) is a solution of (2.1.6). F is a one-to-one continuous function from [E 0 , ∞) into F ([E 0 , ∞)
) where E 0 comes from Lemma 2.2.1. Let us remark that we have constructed the regularized systems so that

ϕ ε (u ε , v ε )(r) = 1 for all r ∈ [0, r 0 ]. We have that ((u ε , v ε )(r 0 )) is a bounded sequence and (v ε ) 2 (r 0 ) -(u ε ) 2 (r 0 ) ≥ αx 2 ε by Lemma 2.3.3, so (x ε ) is bounded.
Up to another extraction, we can assume that (x εn ) converges to x > 0. Since F is continuous, we get that (u x , v x )(r 0 ) = (u, v)(r 0 ). We have constructed a solution (u, v) of problem (2.1.6).

It just remains us to show that the function obtained still have his winding number N satisfying

N = N ε (R ε ) = k. Let c + ∈ H -1 (R - * ) ∩ {(u, v)|u < 0 < v} and δ > 0 such that B(c + , δ) ⊂ H -1 (R - * ) ∩ {(u, v)|u < 0 < v}.
We write c -= -c + . For every ε ≥ 0, we join (u ε , v ε )(r 0 ) and 0 to define the closed curve γ ε . We define also γ 0 from (u, v). Setting:

N (γ) = - 1 2iπ γ 1 z -c + + 1 z + c + ,
Lebesgue theorem shows that N (γ ε ) = k converge to N (γ 0 ). We extend now (u, v) by zero and we get the result of the theorem.

The M.I.T. bag model limit

Let k ∈ N. We denote by (u p , v p ) the solution of problem (2.1.6) given by Theorem 2.1.2 which crosses k times the set {v = 0}\{(0, 0)} and R p is the radius at which it hits 0. We give here the proof of Theorem 2.1.3. Proof. We fix η ∈ (0, p), Ω > Ω p-η and p ∈ (0, p -η). We have by Lemma 2.3.6:

R p ≤ (k + 1)π Θ + r 0 = R.
Lemma 2.3.3 ensures that R does not depend on p. We extend (u p , v p ) by zero on [R p , R]. We denote by H p the functions introduced in section 2.2 to insist on the dependence on p.

Lemma 2.5.1. There exist g ∈ C 0 ([r 0 , R]), (u 0 , v 0 ) ∈ C 0 ({|g| > 0}) and a decreasing sequence (p n ) which converges to zero such that:

(i) (v 2 pn -u 2 pn ) converges uniformly to g in C 0 ([r 0 , R]), ( 
ii) (u pn , v pn ) converges uniformly to (u 0 , v 0 ) on every compact interval of {|g| > 0}, v 2 0 -u 2 0 = g and (u pn , v pn ) is a bounded sequence of C 0 ([r 0 , R]), (iii) (u 0 , v 0 ) is a solution of the free Dirac equation

u + 2u r = v(Ω -m) v = -u(Ω + m) on {|g| > 0}.
Proof. Let γ > 0. The arguments of the proof of Theorem 2.1.2 ensure that the sequence (H p (u 2 p , v 2 p )) p is bounded on [r 0 , R] uniformly in p. We claim that (u p , v p ) p is bounded on [r 0 , R] uniformly in p too. Let us assume by contradiction that (u p , v p ) is not bounded. Up to a subsequence, there exists (r pn

) n ∈ [r 0 , R] N such that (u pn , v pn )(r pn ) =: (u n , v n ) satisfies (Ω + m)u 2 n + (Ω -m)v 2 n -→ n→∞ ∞, H pn (u n , v n ) ≤ C, for some constant C > 0, so that (v 2 n -u 2 n )|v 2 n -u 2 n | pn-1 -→ n→∞ ∞. v 2 n -u 2 n is then nonnegative for n big enough and v 2 n -u 2 n -→ n→∞ ∞, thus H pn (u n , v n ) = - 1 2 |v 2 n -u 2 n | pn + Ω -m 2 (v 2 n -u 2 n ) + Ωu 2 n -→ n→∞ ∞.
This is the wanted contradiction. Moreover, we have

d dr (v 2 p -u 2 p )(r) = 4 u 2 p r -Ωu p v p , so that v 2 p -u 2
p is equicontinuous and bounded on [r 0 , R]. Ascoli's theorem shows the first point. On every compact interval of {|g| > 0}, (u pn , v pn ) is also equicontinuous and bounded. Ascoli's theorem gives us the second one. The remaining is immediate.

Let R i p be the i-th radius at which (u p , v p ) crosses the set {|u| = |v|}, R i p the i-th radius at which (u p , v p ) crosses the set {uv = 0}, where i belongs to {1, . . . , 2k}. Up to extraction, there exist (R i 0 ) i , ( R i 0 ) i such that:

R i pn -→ n→∞ R i 0 and g(R i 0 ) = 0, R i pn -→ n→∞ R i 0 ,
and

r 0 ≤ R 1 0 ≤ R 1 0 ≤ R 2 0 ≤ • • • ≤ R 2k 0 . Lemma 2.5.2. For all i even, ∅ = (R i 0 , R i+1 0 ) ⊂ {g > 0} and ∅ = (r 0 , R 1 0 ) ⊂ {g > 0}.
Proof. We recall that

E p 0 = (Ω -m) 1 2(1-p) = sup{v|∃u; H p (u, v) = 0},
and

lim p→0 E p 0 =
√ Ω -m. Thus, we obtain for all i even,

(v 2 pn -u 2 pn )( R i pn ) ≥ (Ω -m)/2
for n big enough, so that

g( R i 0 ) ≥ (Ω -m)/2. This ensures that R i 0 < R i 0 < R i+1 0 . We claim that (R i 0 , R i+1 0 ) ⊂ {g > 0}. Let r + ∈ ( R i 0 , R i+1 0 ), we have θ pn (R i+1 pn ) -θ pn (r + ) ≥ Θ(R i+1 pn -r + ), θ pn (r + ) -θ pn ( R i 0 ) ≥ Θ(r + -R i 0 ), so lim sup n→+∞ θ pn (r + ) < lim n→+∞ θ pn (R i+1 pn ) (2.5.1) lim inf n→+∞ θ pn (r + ) > lim n→+∞ θ pn ( R i 0 ). (2.5.2)
We also have H pn (u pn , u pn )(r + ) ≥ 0 so that by point (6) of Lemma 2.2.1,

|v pn (r + )| ≥ C
for some positive content C. We have by Lemma 2.5.1 that (u pn , v pn ) is a bounded sequence of C 0 ([r 0 , R]), and

lim n→∞ v 2 pn (r + ) -u 2 pn (r + ) = g(r + ).
Assume by the contradiction that g(r + ) = 0, then, up to extraction, we have

lim n→∞ v 2 pn (r + ) = lim n→∞ u 2 pn (r + ) ≥ C 2
but, this is in contradiction with inequalities (2.5.1) and (2.5.2). Thus, we get that

( R i 0 , R i+1 0 ) ⊂ {g > 0}.
The same argument works as well for r -∈ (R i 0 , R i 0 ) and (r 0 , R 1 0 ). This gives us the lemma.

Remark 2.5.3. The limiting function is more complicated to tackle on the intervals (R i 0 , R i+1 0 ) when i is odd and different behaviors may occur when H pn (R i+1 pn ) ≥ 1/2 or 1/2 ≥ H pn (R i pn ) ≥ 0. Let us now consider the following mapping:

Γ : (-p/2, p/2) × ( √ Ω -m/2, ∞) → R 3 (p, x) -→ (p, u p,x (r 0 ), v p,x (r 0 )),
where (u p,x , v p,x ) is the solution of the problem (2.1.6) p with x as initial condition. Γ is an injective continuous map. We denote by (x n ) the sequence of initial conditions related with (u pn , v pn ). We get by Lemma 2.3.3 that

v 2 pn (r 0 ) ≥ v 2 pn (r 0 ) -u 2 pn (r 0 ) ≥ αx 2
n so that, the sequence (x n ) is bounded by Lemma 2.5.1. Up to extraction, we have

lim n→+∞ x n = x ∈ R + .
The continuity of Γ ensures, lim n→+∞ Γ(p n , x n ) = Γ(0, x)

and x satisfies (u 0,x , v 0,x )(r 0 ) = (u 0 , v 0 )(r 0 )
where (u 0 , v 0 ) comes from Lemma 2.5.1. (u pn , v pn ) converges to (u 0,x , v 0,x ) uniformly on [0, r 0 ]. Thus we get the theorem.

2.A Appendix

We give here the proof of Lemma 2.2.1. The proof of the first four points is given in [BCV90]. Proof. We have lim inf

u 2 +v 2 →+∞ H(u, v) u 2 + v 2 = Ω -m 2 
and this gives us the first two points. The fourth point is immediate. The proof of the third one is straightforward and can be found in [BCV90]. We will now prove the fifth point. We denote

C γ = sup{U > 0 | ∃v, H( √ U , v) = γ}/γ
for all γ > 0. We have by definition, for all (u, v) ∈ R 2 :

H(u, v) = γ ⇒ C γ H(u, v) ≥ u 2 .
Since H -1 ({γ}) is compact, there exists (u 0 , v 0 ) ∈ H -1 ({γ}) such that γC γ = u 2 0 . Thanks to the symmetries of H, we can assume that u 0 , v 0 ≥ 0. We denote now

E γ := sup{v : ∃u, H(u, v) = γ}.
By the implicit function theorem, there exists a regular function

u : v ∈ [0, E γ ) → u(v) ∈ R + such that: {(u, v) : u, v > 0, H(u, v) = γ} = {(u(v), v) : v ∈ (0, E γ )} and d dv u(v) = v[p|v 2 -u 2 | p-1 -(Ω -m)] u[p|v 2 -u 2 | p-1 + (Ω + m)] . v ∈ (0, E γ ) satisfies d dv u(v) > 0 if and only if |v 2 -u 2 | < Ω -m p 1 p-1
so that, the function v → u(v) has at most two local maxima in 0 and in v 1 defined by

v 2 1 -u(v 1 ) 2 = Ω -m p 1 p-1 . We get γ = H(u(0), 0) = 1 2 u(0) 2p + (Ω + m)u(0) 2 and γ = H(u(v 1 ), v 1 ) = - 1 -p 2 Ω -m p p p-1 + Ωu(v 1 ) 2 .
We define now

C 0 γ = u(0) 2 /γ = 2 1 u(0) 2(1-p) + Ω + m and C 1 γ = u(v 1 ) 2 /γ = 1 Ω   1 + (1 -p) Ω-m p p p-1 2γ    .
It is straightforward to see that γ → C 0 γ is a non-decreasing function whereas γ → C 1 γ is non-increasing and

C γ = max{C 0 γ , C 1 γ }.
We have that lim

γ→+∞ C 0 γ = 2 Ω + m so that defining C γ = max{C γ , 2 Ω + m },
we get that γ → C γ is a non-increasing function such that for every γ > 0, (u, v) ∈ H -1 ([γ, +∞)),

C H(u,v) H(u, v) ≥ C γ H(u, v) ≥ u 2 and lim γ→0 C γ = +∞.
Let us remark now that H -1 ((-∞, γ)) is a bounded open set for all γ > 0, so we can define:

D γ = sup{D > 0 : B(0, √ D) ⊂ H -1 ((-∞, γ))} ∈ (0, +∞)
where B(0, r) is the euclidean ball of R 2 of radius r. We immediately get that if (u, v) satisfies H(u, v) ≥ γ > 0 then (u, v) / ∈ B(0, D γ ) and this is the result. Let us now prove the last point. Just as in the proof of the previous point, we can define thanks to the implicit function theorem, a regular function

u : v ∈ (0, E 0 ) → u(v) ∈ R * + such that {(u, v) : H(u, v) = 0, 0 < u, v} = {(u(v), v) : u ∈ (0, E 0 )}.
This function is increasing on (0, v) for

v 2 = p Ω -m 1 1-p + 1 -p 2Ω p Ω -m p 1-p
and decreasing on (v, E 0 ). We define θ ∈ (0, π/4) by

tan(θ) = u(v) v .
Let us define now

Γ : v ∈ (0, E 0 ] → u(v) v ∈ [0, 1).
It is straightforward to see that the function Γ is decreasing from [v, E 0 ] in [0, θ], one-to-one and onto. For any α ∈ [0, θ], the function

v ∈ R * + → H(tan(α)v, v) is strictly convexe, lim v→+∞ H(tan(α)v, v) = +∞ and H(tan(α)v, v) ∼ v→0 - v 2p (1 -tan(α) 2 ) p 2 so that, there is a unique v α > 0 such that H(tan(α)v α , v α ) = 0. We have Γ(v α ) = tan(α) so v α ≥ v. We get also that if (u, v) satisfies H(u, v) ≥ 0 and |u| ≤ tan(θ)|v| then there is a unique α ∈ [0, θ] such that tan(α) = u v and v ≥ v α ≥ v. Since lim p→0 v 2 = 1 2Ω and lim p→0 v 2 -u(v) 2 = 0,
we can choose smaller constants for θ and v that do not depend on p.

We prove now Lemma 2.3.3. Proof. We denote by (u x , v x ) the solution of (2.1.6) p . We begin as in [BCV90].

Let r 0 > 1 Ω , R x = sup{r > 0|v x > |u x |} ∈ (0, +∞]
and S x = min(R x , r 0 ). For r ∈ (0, S x ), we have:

d dr (v 2 x -u 2 x ) = 2(v x v x -u x u x ) = 4( u 2 x r -Ωu x v x ) ≥ 4Ω(u 2 x -v 2 x ) -4(Ω -1 r 0 )u 2 x ≥ 4Ω(u 2 x -v 2 x ) -4(Ω -1 r 0 )x 2
because S x ≤ r 0 , R x . We get:

d dr (e 4Ωr (v 2 x -u 2 x )) + 4(Ω - 1 r 0 )
x 2 e 4Ωr ≥ 0 on (0, S x ).

and v 2 x -u 2 x ≥ x 2 e -4Ωr 0 (1 + (Ω -1 r 0 ) Ω ) - (Ω -1 r 0 ) Ω on [0, S x ).
We want to show that we can choose r 0 >

1 (1-p)(Ω-m) > 1 Ω . We define g : (m, ∞) × (0, 1) → R by g(Ω, p) = exp - 4Ω (Ω-m)(1-p) 1 + pΩ+(1-p)m Ω -pΩ+(1-p)m Ω , and f : p ∈ (0, 1) → e -4 1-p (1 + p) -p ∈ R.
On one hand, for p fixed, Ω → g(Ω, p) is increasing and

lim Ω→∞ g(Ω, p) = f (p), lim Ω→m g(Ω, p) = -1.
On the other hand, f is decreasing and

lim p→0 f (p) = e -4 > 0, lim p→1 f (p) = -1.
Thus, there exists a unique p ∈ (0, 1) such that ∀p ∈ (0, p), f (p) > f (p) = 0, and for p ∈ (0, p), a unique Ω p > m such that ∀Ω > Ω p , g(Ω, p) > g(Ω p , p) = 0.

Finally, for 0 < p < q < p, we have for all Ω > Ω q > m,

1 (Ω -m)(1 -p) < 1 (Ω -m)(1 -q)
=: r 0 α := g(Ω, q) > g(Ω q , q) = 0. Then, we get

v 2 x,p -u 2 x,p ≥ αx 2 for all r ∈ [0, S x ).
This ensures that S x = r 0 and that the first two points of Lemma 2.3.3 are true. The latter one is an easy consequence of Lemma 2.2.3.

Introduction

This article is concerned with the existence of excited states for a stationary relativistic mean-field model for atomic nuclei in the nuclear physics nonrelativistic limit. To our knowledge, this model was first studied by Esteban and Rota Nodari; in two recent papers [EN12a,EN12b], the authors showed the existence of so-called ground states (see [EN12a] for more details about the definition of ground states).

As the authors formally derived in [EN12b], the equations of the model are given, in the case of a single nucleon, by iσ • ∇χ + |χ| 2 ϕ -a|ϕ| 2 ϕ + bϕ = 0,

-iσ • ∇ϕ + 1 -|ϕ| 2 χ = 0, (3.1.1)
with a and b two positive parameters linked to the coupling constants and the nucleon's and mesons' masses. This system is the nuclear physics nonrelativistic limit of the σ-ω relativistic mean-field model ([Wal74, Wal04]) in the case of a single nucleon. We remind that σ is the vector of Pauli matrices (σ 1 , σ 2 , σ 3 ), and ϕ, χ : R 3 → C 2 .

As in [EN12b], we look for solutions of (3.1.1) in the particular form

ϕ(x) χ(x) =       g(r) 1 0 if (r) cos ϑ sin ϑe iφ       (3.1.2)
where f and g are real valued radial functions and (r, ϑ, φ) are the spherical coordinates of x. The system (3.1.1) then turns to a nonautonomous planar differential system which is

   f + 2 r f = g(f 2 -ag 2 + b) , g = f (1 -g 2 ) .
(3.1.3)

In order to avoid solutions with singularities at the origin, we impose f (0) = 0, and, since we are interested in finite energy solutions of (3.1.1), we seek solutions of (3.1.3) that are localized i.e. solutions which fulfill (f (r), g(r)) -→ (0, 0) as r -→ +∞ .

(3.1.4)

In [EN12b, Proposition 2.1], Esteban and Rota Nodari showed that there is no nontrivial solution of (3.1.3) such that (3.1.4) is satisfied unless a -2b > 0. Hence, in what follows, we assume a -2b > 0.

For every given x, there exists a local solution (f x , g x ) of

       f + 2 r f = g(f 2 -ag 2 + b) , g = f (1 -g 2 ) , f (0) = 0, g(0) = x. (3.1.5)
The problem is to find x, such that the corresponding solution is global (i.e. defined for all r ≥ 0), and satisfies (3.1.4).

In [EN12b, Proposition 2.1], Esteban and Rota Nodari proved that if (f x , g x ) is a solution of (3.1.5) satisfying (3.1.4) then g 2 x (r) < 1, for all r in [0, +∞). So, in particular, x = g x (0) must be chosen such that x 2 < 1. This creates additional difficulties to deal with.

Since the system of equations (3.1.3) is symmetric with respect to 0, we study the problem (3.1.5) with x ∈ [0, 1). Moreover, let us remark that if x = 0 then (f x , g x )(r) = (0, 0) for all r ≥ 0 is the unique solution of (3.1.5).

In [EN12b], the authors proved the existence of a global localized solution (f x , g x ) of (3.1.5) such that f x (r) < 0 < g x (r) for all r ∈ (0, +∞). In this paper, we generalize this results by showing the existence of global localized solutions with any given number of nodes. Our main result is the following. Theorem 3.1.1. Assume a > 2b > 0. There exists an increasing sequence {x k } k≥0 in (0, 1) with the following properties. For every k ≥ 0, 1. the solution (f x k , g x k ) of (3.1.5) is a global solution; 2. both f x k and g x k have exactly k zeros on (0, +∞);

3. (f x k , g x k ) converges exponentially to (0, 0) as r → +∞.
This theorem is the first result of existence of excited state solutions for the model studied in [EN12b,EN12a] for which Esteban and Rota Nodari proved the existence of a ground state solution.

Our theorem is similar to the result obtained by Balabane, Cazenave, Douady and Merle ([BCDM88]) for a nonlinear Dirac equation. Our proof is based on a shooting method inspired by the one used by Balabane, Dolbeault and Ounaies ([BDO03]).

In [BCDM88], the authors proved the existence of infinitely many stationary states for a nonlinear Dirac equation. More precisely, they showed the existence of a bounded increasing sequence of positive initial data {x k } k such that the associated solutions are global and each component has k nodes.

In [BDO03], thanks to some estimations on the energy decay and the rotation speed, the authors proved the existence of infinitely many solutions for a sublinear elliptic equation. As in [BCDM88], they showed the existence of an increasing sequence of initial data {x k } k such that the associated solutions are radial, compactly supported and have exactly k nodes.

As we remarked above, the first difficulty to deal with here is that, to obtain a localized solution, the initial condition x must be chosen in (0, 1). Moreover, we are looking for solutions such that each component has exactly k zeros on (0, +∞).

Usually in a shooting method, the localized solution with k nodes is obtained taking the solution whose initial data x is the supremum of a well-chosen open subset of {x : g x has k zeros}. Hence, the main difficulty of our shooting method is to prove that for any k ∈ N, there exists ε > 0 such that {x ∈ (0, 1) : g x has k zeros} ⊂ (0, 1 -ε).

To do this, we have to give some accurate estimations on the behavior of the solution when the initial condition x becomes close to 1. The presence of four rest points (± √ a -b, ±1) in the Hamiltonian system

f = g(f 2 -ag 2 + b) g = f (1 -g 2 ) ,
(3.1.6) associated with the system (3.1.3), makes this study difficult. Indeed, we would like to control the solutions (f x , g x ) thanks to the continuity of the flow comparing (f x , g x ) to (f 1 , g 1 ) whenever x is close enough to 1.

The problem is that (f 1 , g 1 ) tends to the rest point (-√ a -b, 1) of the system (3.1.6). Thus, (f x , g x ) stay in a neighborhood of (-√ a -b, 1) a very long time if x is sufficiently close to 1. Since (f 1 , g 1 ) does not wind around (0, 0), it is hopeless to get estimations on the speed of rotations of (f x , g x ) around (0, 0) as in [BDO03]. Hence, we introduce another strategy to prove that (f x , g x ) winds around (0, 0).

First of all, we prove that (f x , g x ) exits the neighborhoods of (-√ a -b, 1) at finite time, possibly very large. Next, we want to control the position of (f x , g x ) when this occurs. To do this, we introduce the so-called Hamiltonian regularization. More precisely, we replace the system (3.1.3) by the Hamiltonian ones (3.1.6) in a neighborhood of the points (± √ a -b, ±1) (see Figure 3.1). Then, we can use the qualitative properties of the solutions of the Hamiltonian system (3.1.6) to know the position of the solution when it exits the neighborhood of (-√ a -b, 1). Finally, we iterate the reasoning to prove that if x is sufficiently close to 1, then g x has more than k zeros.

The idea of the Hamiltonian regularization is inspired by the proof of Le Treust in [LT12]. In this paper, the author proved the existence of infinitely many compactly supported nodal solutions of a Dirac equation with singular nonlinearity. The main problem encountered is that the nonlinearity is singular and the main theorems of ODE fail to show local existence and uniqueness. To overcome this, Le Treust used a regularization by a Hamiltonian system whenever the problems occur. The advantage of such a regularization is that it gives a better control of the regularized solutions while keeping true some qualitative properties of the solutions of the non-autonomous system of equation.

In section 3.2, we introduce the regularized system and we prove the existence of nodal localized solutions of the regularized problem assuming some key lemmas. In the next section, we prove these lemmas. In section 3.4, we show that the localized nodal solutions of the original system (3.1.3) can be obtained as limits of nodal localized solutions of the regularized system. Finally, in the appendix, we give some useful properties of the Hamiltonian energy associated to the system. 

The regularized problem and the shooting method

Construction of the regularized problem

ϕ : (η, f, g) ∈ 0, √ a -b - a 2 × [- √ a -b, √ a -b] × R → ϕ η (f, g) ∈ [0, 1] be a smooth function on 0, √ a -b - a 2 × (- √ a -b, √ a -b) × R Hamiltonian System H ≤ 0 f g X 1 X 2 X 3 X 4 f = ± √ a -b -η 2 f = ± √ a -b -η ∂A √ a -b - √ a -b 1 -1 Figure 3.1: Regularized System such that for all (f, g) ∈ R 2 , all η ∈ 0, √ a -b -a 2 ϕ η (f, g) = ϕ η (|f |, |g|) = 0 if |f | ≥ √ a -b -η/2 1 if |f | ≤ √ a -b -η.
Consider the system of equations

   f + 2ϕ η (f, g) r f = g(f 2 -ag 2 + b), g = f (1 -g 2 ),
(3.2.1) and the Cauchy problem

       f + 2ϕ η (f, g) r f = g(f 2 -ag 2 + b), g = f (1 -g 2 ), f (0) = 0, g(0) = x. (3.2.2)
We denote by (f x,η , g x,η ) the solutions to problem (3.2.2).

Remark 3.2.1. When η > 0, in the neighborhood of the four points (± √ a -b, ±1), the system of equations (3.2.1) becomes the following autonomous one

f = g(f 2 -ag 2 + b), g = f (1 -g 2 ).
(3.1.6)

This system is a Hamiltonian system associated with the energy

H(f, g) = 1 2 f 2 (1 -g 2 ) + a 4 g 4 - b 2 g 2 . (3.2.3)
Remark 3.2.2. The behavior of the solutions of (3.1.6) is easier to understand than the one of the solutions of (3.1.3). This is actually the reason why we introduce such a Hamiltonian regularization in the neighborhood of the saddle points (± √ a -b, ±1) of H.

Properties of the regularized system

We fix η ∈ (0, √ a -b -a 2 ). We begin by studying the existence and the uniqueness of the solutions of (3.2.1).

Lemma 3.2.3. Let x ∈ R. For any a, b > 0, there is τ η > 0 and (f x,η , g x,η ) ∈ C 1 [0, τ η ], R 2 unique solution of (3.2.1) satisfying f x,η (0) = 0, g x,η (0) = x. Moreover, (f x,η , g x,η ) can be extended on a maximal interval [0, R x,η ) with either R x,η = +∞ or R x,η < +∞ and lim r→Rx,η |f x,η | + |g x,η | = +∞. Furthermore, (f x,η , g x,η ) depends continuously on x and η, uniformly on [0, R] for any R < R x,η .

Proof. As in [CV86], it is enough to write

f (r) = 1 r 2 r 0 s 2 g(s)(f 2 (s) -ag 2 (s) + b) + 2s(1 -ϕ η (f (s), g(s)))f (s) ds , g(r) = x + r 0 f (s)(1 -g 2 (s)) ds ,
and note that the right hand side of (3.2.1) is a Lipschitz continuous function of (f, g). The lemma follows from a classical contraction mapping argument.

Next, we define

A = {(f 0 , g 0 ) ∈ R 2 | 2f 2 0 -ag 2 0 -(a -2b) ≤ 0, g 2 0 ≤
1}, the set of admissible points. Remark 3.2.4. If g 2 0 ≤ 1, (f 0 , g 0 ) ∈ A if and only if H(f 0 , g 0 ) ≤ H(0, 1) = a-2b 4 (see Figure 3.1). A key property of the solutions of the system (3.2.1) is the behavior of the energy H along the trajectories of the solutions as stated in the following lemma.

Lemma 3.2.5. Let x ∈ R and a, b > 0. Then for any r ∈ [0, R x,η ) we have

d dr H(f x,η , g x,η )(r) = - 2ϕ η (f x,η , g x,η ) r f 2 x,η (1 -g 2 x,η ).
Remark 3.2.6. Let us remark that this property which is true for the non-regularized system (3.1.3) is also true for the regularized one thanks to our choice of regularization.

Proof. The proof is a straightforward calculation.

Next, we prove a result that ensures that for all x ∈ (0, 1) the solutions (f x,η , g x,η ) are global and live in A.

Lemma 3.2.7. Let a, b > 0 such that a -2b > 0 and let (f x,η , g x,η ) be the solution of (3.2.1) satisfying f x,η (0) = 0, g x,η (0) = x. If x 2 ≤ 1, then g 2 x,η (r) ≤ 1 and f 2 x,η (r) ≤ a -b for all r ∈ [0, R x,η ) and R x,η = +∞. Moreover, (f x,η , g x,η )(r) ∈ A, for all r ∈ [0, +∞) and if x 2 < 1, then (f x,η , g x,η )(r) ∈ Å for all r ∈ [0, +∞). Lemma 3.2.7 can be proved as in [EN12b] using the monotonicity properties of the energy. For the reader's convenience, we rewrite the proof here. Proof. First of all, we use the monotonicity of the function F (x) = a 4 x 4 -b 2 x 2 , the facts that F (x) ≤ 0 in -2b a , 2b a and 2b a < 1 to show that F (x) < F (1) for all x such that x 2 < 1.

Let g x,η (0) = x such that x 2 < 1 and suppose, by contradiction, that there exists r 0 such that g 2 x,η (r 0 ) = 1 and g 2

x,η (r) < 1 for all r ∈ [0, r 0 ). As a consequence of Lemma 3.2.5, the energy H(f x,η , g x,η )(r) is nonincreasing on [0, r 0 ), that means H(0, x) ≥ H(f x,η , g x,η )(r 0 ) , or equivalently, F (x) ≥ F (1).

The above inequality contradicts the properties of F . As a conclusion, g 2

x,η (r) < 1 for all r ∈ [0, R x,η ). Then, applying Lemma 3.2.5, we obtain that the energy is non-increasing. Thus,

H(f x,η , g x,η )(r) ≤ H(0, x) < a -2b 4 , ∀r ∈ [0, R x,η ) ,
and by the remark following the definition of the set A, (f x,η , g x,η )(r) ∈ Å and f 2 x,η (r) < a -b, for all r ∈ [0, R x,η ). In particular, R x,η = +∞. The case x = ±1 is straightforward.

Remark 3.2.8. As a consequence of Lemma 3.2.5 and Lemma 3.2.7, if x 2 ≤ 1, the energy H(f x,η , g x,η )(r) is non-increasing on [0, +∞).

Then, we state the following perturbation result. Lemma 3.2.9. Let ( f , g) ∈ A. Let (f, g) be the solution of (3.1.6) with initial data ( f , g). Let ( f n , gn ) ∈ A and ρ n be such that

lim n→+∞ ρ n = +∞ and lim n→+∞ ( f n , gn ) = ( f , g). Let (f n η , g n η ) be a solution of    (f n ) + 2ϕ η (f n , g n ) ρ n + r f n = g n ((f n ) 2 -a(g n ) 2 + b) (g n ) = f n (1 -(g n ) 2 ) such that f n (0) = f n , g n (0) = gn . Then 1. (f n η , g n η ) is defined on [0, +∞), 2. (f n η , g n η ) converges to (f, g) uniformly on bounded intervals.
The proof of this lemma is a straightforward modification of the proof of [EN12b, Lemma 3.2]. Next, we introduce the following definition to count the number of times that the solutions cross the set {g = 0}. Definition 3.2.10. We say that a continuous function g defined on an interval I changes sign at r 0 ∈ I if g(r 0 ) = 0 and there exists ε > 0 such that [r 0 -ε, r 0 + ε] ⊂ I, g(r 0 -ε)g(r 0 + ε) < 0 and g(r 0 -r)g(r 0 + r) ≤ 0 for all r ∈ (0, ε).

Remark 3.2.11. Let (f x,η , g x,η ) be a nontrivial solution of (3.2.2) with x ∈ (0, 1). Then, g x,η changes sign at 0 ≤ r 0 < +∞ if and only if g x,η vanishes at 0 ≤ r 0 < +∞.

Indeed, since (f x,η , g x,η ) is a nontrivial solution and r 0 < +∞, f x,η (r 0 ) = 0. Hence, g x,η (r 0 ) = f x,η (r 0 )(1g x,η (r 0 ) 2 ) = 0 and g x,η changes sign at r 0 .

Finally, we state the following lemma which gives us an important qualitative property of the solutions of the system (3.2.1). Lemma 3.2.12. Let x ∈ (0, 1). If (f x,η , g x,η ) is a solution of (3.2.2) such that g x,η changes sign a finite number of times and lim r→+∞ H(f x,η , g x,η )(r) ≥ 0, then, for all r ≥ 0,

|f x,η (r)| + |g x,η (r)| ≤ C exp(-K a,b r) (3.2.4) with K a,b = min b 2 , 2a-b 2a
and C a positive constant. In particular, we get lim

r→+∞ (f x,η , g x,η )(r) = (0, 0). (3.2.5)
Proof. First of all, we remark that if lim r→+∞ g x,η (r) = δ, then |δ| = 1. Moreover, if δ = 0 then (f x,η , g x,η ) tends either to (0, b a ) or to (0, -b a ) as r goes to +∞. Indeed, suppose by contradiction that δ = ±1, then

lim r→+∞ H(f x,η , g x,η )(r) = H(0, 1),
which contradicts the monotonicity of H (Lemma 3.2.5) since H(0, x) < H(0, 1) and x ∈ (0, 1). Hence, -1 < δ < 1. Next, suppose δ = 0 and let {r n } n be a sequence such that lim n→+∞ r n = +∞ and lim

n→+∞ f x,η (r n ) = k
for some k ∈ R. Let (u, v) be the solution of (3.1.6) with initial data (k, δ). It follows from Lemma 3.2.9 that

(f x,η (r n + •), g x,η (r n + •)) converges uniformly to (u, v) on bounded intervals. Since, lim n→+∞ g x,η (r n + r) = δ
for any r > 0, we have v(r) = δ ∈ (-1, 0) ∪ (0, 1) for any r ≥ 0. Hence, from the second equation of (3.1.6), we obtain u(r) = 0 for all r > 0. This means that (u, v) is an equilibrium point of (3.1.6), and, since δ ∈ (-1, 0) ∪ (0, 1), this implies k = 0 and δ = ± b a . As a conclusion, f x,η converges as r goes to +∞, lim r→+∞ (f x,η , g x,η )(r) = 0, ± b a and

lim r→+∞ H(f x,η , g x,η )(r) = H 0, b a < 0.
Next, we claim that, if g x,η changes sign a finite number of times and

lim r→+∞ H(f x,η , g x,η )(r) ≥ 0,
then there exists R < +∞ such that -or g x,η (r) > 0 and f x,η (r) < 0 for all r > R, -or g x,η (r) < 0 and f x,η (r) > 0 for all r > R. Indeed, by Remark 3.2.11, if g x,η changes sign a finite number of times, then g x,η vanishes a finite number of times and there exists R < +∞ such that g x,η (r) > 0 or g x,η (r) < 0 for all r > R. Thanks to the symmetries of the problem, we can suppose w.l.o.g. that g x,η (r) > 0 for all r > R.

Hence, it remains to prove that there exists R < R < +∞ such that f x,η (r) < 0 for all r > R. We proceed as follows : first we prove that we cannot have f x,η (r) > 0 for all r > R and second we show that f x,η vanishes at most once in [R, +∞).

Step 1. Suppose, by contradiction, that f x,η (r) > 0 for all r > R. This implies that g x,η (r) is increasing for all r > R and lim r→+∞ g x,η (r) = δ with 0 < δ ≤ 1.

Hence, as we proved above, we have lim

r→+∞ (f x,η , g x,η )(r) = 0, b a and lim r→+∞ H(f x,η , g x,η )(r) = H 0, b a < 0
which contradicts the fact that lim r→+∞ H(f x,η , g x,η )(r) ≥ 0 (see Remark 3.2.13 for an alternative proof).

As a consequence, there exists R < R < +∞ such that f x,η ( R) = 0. Let us remark moreover that for such a R, we have f x,η ( R) < 0.

Step 2. Suppose next, by contradiction, that there exist a positive constant R such that R < R < R < +∞, f x,η (R ) = 0 and f x,η (r) < 0 on ( R, R ). Since f x,η has to be nonnegative in a neighborhood of R , we can conclude that 0 < g x,η (R ) ≤ b a . Hence,

lim r→+∞ H(f x,η , g x,η )(r) ≤ H 0, g x,η (R ) < 0 which contradicts the fact that lim r→+∞ H(f x,η , g x,η )(r) ≥ 0.
As a conclusion, there exists R < +∞ such that g x,η (r) > 0 and f x,η (r) < 0 for all r > R. This implies that g x,η (r) is decreasing for all r > R and lim r→+∞ g x,η (r) = δ with 0 ≤ δ < 1. We claim that δ = 0. Indeed, suppose by contradiction, δ = 0. As above, we obtain lim

r→+∞ (f x,η , g x,η )(r) = 0, b a and lim r→+∞ H(f x,η , g x,η )(r) = H 0, b a < 0
which contradicts the fact that lim r→+∞ H(f x,η , g x,η )(r) ≥ 0 (see Remark 3.2.13 for an alternative proof).

Hence, lim r→+∞ g x,η (r) = 0 and g 2 x,η (r) ≤ b 2a for r large enough. Considering (3.2.1),

f x,η ≥ - 2ϕ η (f x,η , g x,η ) r f x,η + b 2 g x,η , g x,η ≤ 2a -b 2a f x,η .
Thus, for r large enough,

(g x,η -f x,η ) + K a,b (g x,η -f x,η ) ≤ 0, with K a,b = min b 2 , 2a-b 2a
. Integrating the above equation, we obtain

|f x,η (r)| + |g x,η (r)| ≤ C exp(-K a,b r)
for all r ≥ 0 with C > 0.

With exactly the same arguments, we treat the case g x,η (r) < 0 for all r > R.

Remark 3.2.13. The proof is very similar to the one of [EN12b,Lemma 3.4]. With the same arguments of [EN12b, Proof of Lemma 3.4], we can prove that if x ∈ (0, 1) and (f x,η , g x,η ) is a solution of (3.2.2) such that

lim r→+∞ (f x,η , g x,η )(r) = 0, ± b a ,
then f x,η has infinitely many zeros.

f g x 1 f g x 2 f g x 3 H ≤ 0 Figure 3.2: x 1 ∈ A 1 , x 2 ∈ I 1 , x 3 ∈ A2
This property is equivalent to the fact that (f x,η , g x,η ) cannot tend to 0, ± b a , while being in one of the half-planes {f > 0} or {f < 0}.

This remark allows us to prove in an alternative way that if g x,η (r) > 0 for all r > R, then f x,η has to vanish at least once in (R, +∞) without using the fact that lim r→+∞ H(f x,η , g x,η )(r) ≥ 0 (Step 1 of the proof of Lemma 3.2.12).

Moreover, it proves also that if g x,η (r) > 0 and f x,η (r) < 0 for all r > R, then lim r→+∞ (f x,η , g x,η )(r) = (0, 0) without using lim r→+∞ H(f x,η , g x,η )(r) ≥ 0 (end of the proof of Lemma 3.2.12).

The shooting method

Following [BDO03], we define I -1 = ∅ and, for k ∈ N and η ∈ (0, √ a -b -a 2 ) fixed,

A k = {x ∈ (0, 1) : lim r→+∞ H(f x,η , g x,η )(r) < 0, g x,η changes sign k times on R + }, I k = {x ∈ (0, 1) : lim r→+∞ (f x,η , g x,η )(r) = (0, 0), g x,η changes sign k times on R + } (see Figure 3.2).
Remark 3.2.14. By Lemma 3.2.7, we get that (f x,η , g x,η )(r) ∈ A for all r whenever x ∈ [0, 1]. Remark 3.2.8 ensures then that lim r→+∞ H(f x,η , g x,η )(r) exists for all x ∈ [0, 1].

Remark 3.2.15. We want to find non trivial localized solutions of equations (3.2.1) with a given number of nodes that is to say, x ∈ (0, 1) such that lim r→+∞ (f x,η , g x,η )(r) = (0, 0) and g x,η changes sign k times on R + . To do this, we show by a shooting method that

I k = ∅
for all k ∈ N and all η ∈ (0, √ a -b -a 2 ). The core of the shooting method is the following lemma which gives the main properties of the sets A k and I k . It is very similar to the properties stated in the proof of [BDO03, Theorem 1] except that the sets A k and I k are always bounded since they are included in (0, 1). The good equivalent property which is adapted to our case is given by point (ii) of the next lemma.

Lemma 3.2.16. For all k in N and all η ∈ (0,

√ a -b -a 2 ) we have (i) A k is an open set, (ii) there is ε ∈ (0, 1) such that A k ∪ I k ⊂ (0, 1 -ε), (iii) if x ∈ I k , there exists ε > 0 such that (x -ε, x + ε) ⊂ A k ∪ I k ∪ A k+1 (iv) if A k is not empty, we have sup A k ∈ I k-1 ∪ I k , (v) if I k is not empty, we have sup I k ∈ I k ,
The proof of this lemma is given in Section 3.3. We are now able to prove the following proposition. Proposition 3.2.17. There exists an increasing sequence {x k } k≥0 ⊂ (0, 1) such that x k ∈ I k for all k ∈ N.

The proof is essentially the same as in [BDO03]. We write it down here for sake of completeness. Proof. We prove by induction that for all k ∈ N,

A k = ∅, sup I k-1 < sup A k .
If this property is true for all k, then A k is not empty, sup A k ∈ I k by point (iv) of Lemma 3.2.16 and sup A k ≤ sup I k < sup A k+1 . Hence, if we choose x k = sup A k we get the proposition.

1. Let k = 0. We have that for all x ∈ (0, 2b a )

H(0, x) < 0.

Thus, Lemma 3.2.7 and remark 3.2.8 ensure that

(0, 2b a ) ⊂ A 0 and -∞ = sup I -1 < sup A 0 .
2. Let us assume now that for some k ∈ N, we have

A k = ∅, sup I k-1 < sup A k .
By point (iv) of Lemma 3.2.16, we get sup A k ∈ I k which implies I k = ∅ and sup A k ≤ sup I k . Since I k = ∅, by point (v), we obtain that sup I k ∈ I k and, since sup A k ≤ sup I k , point (iii) ensures that there is ε > 0 such that

(sup I k , sup I k + ε) ⊂ A k+1 .
As a conclusion, we have

A k+1 = ∅, sup I k < sup A k+1 .

Proof of Lemma 3.2.16

In this section, we fix η ∈ (0, √ a -b -a 2 ) and we prove Lemma 3.2.16.

Proof of point (ii) of Lemma 3.2.16

Remark 3.3.1. This proof is the most technical point of the paper and contains the main novelties of our work. The introduction of the Hamiltonian regularization of subsection 3.2.1 allow us to control the behavior of the solution in the neighborhood of the stationary points (± √ a -b, ±1) of the autonomous system of equations (3.1.6).

We show by induction that for all k, there is ε ∈ (0, 1) such that if x ∈ (1 -ε, 1) then g x,η has at least k + 1 changes of sign on R + . This implies

0≤i≤k A i ∪ I i ⊂ (0, 1 -ε)
and point (ii) follows.

Remark 3.3.2. The idea of the proof is that we can control the solutions (f x,η , g x,η ) thanks to the continuity of the flow on the parameter x (see Lemma 3.2.3) comparing (f x,η , g x,η ) to (f 1,η , g 1,η ) on an interval of the type [0, R] for R > 0. Moreover, (f 1,η , g 1,η ) tends to a stationary point (-√ a -b, 1) of the system (3.1.6). Thus, (f x,η , g x,η ) stay in a neighborhood of (-√ a -b, 1) a very long time if x is sufficiently close to 1. We also know thanks to Lemma 3.2.12 that (f x,η , g x,η ) exits this neighborhood at finite time, possibly very large. The problem is that we have to control the position of (f x,η , g x,η ) when this occurs. To do this, we replace the system (3.1.3) by the Hamiltonian ones (3.1.6) in this neighborhood. Then, we can use the conservation of the energy H along the trajectory of (f x,η , g x,η ) to know the position of (f x,η , g x,η ) when it exits the neighborhood of (-√ a -b, 1). After that, we can control the solutions (f x,η , g x,η ) thanks to the continuity of the flow comparing (f x,η , g x,η ) to a solution (f, g) of (3.1.6) that remains at all times on ∂A and tends to (-√ a -b, -1) at infinity. We get that if x is close enough to 1 then g x,η changes sign one time. We iterate this reasoning to obtain a solution for which g x,η changes sign more than k times on R + .

Step 1. Proof by induction

First of all, we take f 0 = √ a -b -η/2 > a 2 > a-2b 2 and we define

X 1 := -f 0 , 2f 2 0 -(a -2b) a
X 2 := (-f 0 , -1)

X 3 := f 0 , - 2f 2 0 -(a -2b) a X 4 := (f 0 , 1) .
The points X i are on ∂A, for i = 1, . . . , 4. Furthermore, remind that ϕ η (f, g) = 0 whenever |f | ≥ f 0 (see Figure 3.1).

Definition 3.3.3. Let k ∈ N and i ∈ {1, . . . , 4} be given. We denote by (H k i ) the following property: for all γ and R positive constants given, there exists ε > 0 such that for any x ∈ (1 -ε, 1), there exists a positive constant R > R which satisfies

(f x,η , g x,η )( R) ∈ B(X i , γ) ∩ A and such that g x,η change k times of sign in [0, R].
In the second step, we show that the properties (H 0 1 ) is true. Next, in the third step, we prove that for k ∈ N given we have

       (H k 1 ) ⇒ (H k+1 2 ), (H k 2 ) ⇒ (H k 3 ), (H k 3 ) ⇒ (H k+1 4 ), (H k 4 ) ⇒ (H k 1 ) so that (H k 1 ) ⇒ (H k+2 1 
).

As a consequence, we get by induction that the property (H 2k 1 ) is true for all k ∈ N. In particular, there is ε ∈ (0, 1) such that for all x ∈ (1 -ε, 1), g x,η changes at least 2k of sign on [0, +∞) so that

I i ∪ A i ⊂ (0, 1 -ε).
for all i ∈ {0, 1, . . . , 2k -1} and point (ii) of Lemma 3.2.16 is proved.

Step 2. Initialization: We prove that (H 0 1 ) is true. 1. Preliminary results. Let γ and R be positive constants given. First of all, remark that with the notation of Lemma 3.A.1,

X 1 = (-f 0 , G 2 (H(0, 1))).
By continuity of G 2 , there exists δ > 0 such that H(0, 1) -δ > E c and

(-f 0 , G 2 (E)) -X 1 < γ
for all E ∈ (H(0, 1) -δ, H(0, 1)) where . is the Euclidean norm of R 2 . So, we have to prove that there exists ε > 0 such that for any x ∈ (1 -ε, 1), there exists a positive constant R 1 > R which satisfies

H(0, 1) -δ < H(f x,η , g x,η )(R 1 ) < H(0, 1), f x,η (R 1 ) = -f 0 , g x,η (R 1 ) = G 2 (H(f x,η , g x,η )(R 1 )) and g x,η does not change sign in [0, R 1 ].
2. Control of the solutions of (3.2.2) in an interval [0, R] with R > 0. We denote (f, g) the solution of Cauchy problem (3.2.2) with x = 1. It is easy to see that

H(f, g)(r) = H(0, 1), g(r) = 1, f (r) > - √ a -b for all r ∈ [0, +∞) and lim r→+∞ (f, g)(r) = (- √ a -b, 1).
As a consequence, there exists R > R such that for all r ≥ R

(f, g)(r) ∈ A ∩ {(f, g) : |f | > f 0 }.
Next, since H is continuous on R 2 , there exists 0 < δ < 1 such that for any

(f , g) ∈ B((f, g)(R), δ ), we have |H(f , g) -H(0, 1)| < δ
where B((f, g)(R), δ ) is the Euclidean ball of R 2 centered in (f, g)(R) of radius δ . Moreover, if we choose δ sufficiently small, we can assume that |u| > f 0 for all

(u, v) ∈ B((f, g)(R), δ ).
Finally, by Lemma 3.2.3, there exists ε ∈ (0, 1) such that for all x ∈ (1 -ε, 1),

(f x,η , g x,η ) -(f, g) ∞,[0,R] ≤ δ where . ∞,[0,R] is the uniform norm of C([0, R], R 2 ) so that g x,η is positive in [0, R]. 3. Control of the solutions of (3.2.2) in A ∩ {(f, g) ∈ R 2 : |f | > f 0 }. We define R 1 := inf{r > R : |f x,η (r)| ≤ f 0 }.
By Lemma 3.A.2, we have that

H(f x,η , g x,η )(r) > 0, for all r ∈ [R, R 1 ). Moreover by Lemma 3.A.1, since (f x,η , g x,η )(r) ∈ A ∩ {(f, g) ∈ R 2 : |f | > f 0 }, g x,η (r) ≥ 2 a (f 2 0 + b) -1 for all r ∈ [R, R 1 )
. Hence, by Lemma 3.2.12, we get that R 1 is well-defined, R < R 1 < +∞ and g x,η does not change sign in [0, R 1 ]. Furthermore, f x,η (R 1 ) = -f 0 and, since (f x,η , g x,η ) is solution of the Hamiltonian system of equation (3.1.6) on [R, R 1 ], we obtain

H(f x,η , g x,η )(R 1 ) = H(f x,η , g x,η )(R) ∈ (H(0, 1) -δ, H(0, 1)).
Hence, it remains to show that g

x,η (R 1 ) = G 2 (H(f x,η , g x,η )(R 1 )). Let R := inf{r > 0 : |f x,η (r)| > f 0 }, then f x,η ( R) = -f 0 = f x,η (R 1 ). Moreover, in [ R, R 1 ], (f x,η , g x,η
) is solution of the Hamiltonian system (3.1.6); this implies

H(f x,η , g x,η )( R) = H(f x,η , g x,η )(R 1 ). Finally, g x,η is decreasing on [ R, R 1 ]; in particular g x,η (R 1 ) < g x,η ( R).
Hence, by Lemma 3.A.1, we deduce

g x,η ( R) = G 1 (H(f x,η , g x,η )(R 1 )), g x,η (R 1 ) = G 2 (H(f x,η , g x,η )(R 1 )).
Thanks to the remark we did in the preliminary results, we proved Step 2.

Step 3. Iteration: Let k ∈ N and suppose that property (H k 1 ) is true. We show that this implies property (H k+1

2

). The proof of this fact is similar to the one of Step 2 except that now (f, g) is a solution of autonomous system (3.1.6).

1. Preliminary results. Let γ and R be positive constants given. First of all, remark that with the notation of Lemma 3.A.1,

X 2 = (-f 0 , -G 1 (H(0, 1))).
By continuity of G 1 , there exists δ > 0 such that H(0, 1) -δ > E c and

(-f 0 , -G 1 (E)) -X 2 < γ
for all E ∈ (H(0, 1) -δ, H(0, 1)). So, we have to prove that there exists ε > 0 such that for any x ∈ (1 -ε, 1), there exists a positive constant R > R which satisfies

H(0, 1) -δ < H(f x,η , g x,η )(R ) < H(0, 1), f x,η (R ) = -f 0 , g x,η (R ) = -G 1 (H(f x,η , g x,η )(R )) and g x,η changes sign k + 1 times in [0, R ].
2. Control of the solutions of (3.2.2) when the solutions exit a neighborhood of X 1 . We denote by (f, g) the solution of the following autonomous system

(3.1.6) (f, g)(0) = X 1 .
It is clear that

H(f, g)(r) = H(0, 1), -1 < g(r) < 1, f (r) > - √ a -b for all r ∈ [0, +∞),
and

lim r→+∞ (f, g)(r) = (- √ a -b, -1).
Hence, there is R > 0 such that for all r ≥ R

(f, g)(r) ∈ A ∩ {(f, g) : |f | > f 0 }.
Next, since H is continuous on R 2 , there exists δ > 0 such that for any

( f , g) ∈ B((f, g)(R), δ ), we have |H( f , g) -H(0, 1)| < δ.
Moreover, if we choose δ > 0 sufficiently small, we can assume that |u| > f 0 for all

(u, v) ∈ B((f, g)(R), δ ).
By Lemma 3.2.9, there exist R > 0 and γ > 0 such that if ρ ≥ R and

( f , g) -X 1 < γ then (f f ,g,η , g f ,g,η )(• + ρ) -(f, g) ∞,[0,R] < δ .
Since by hypothesis, there are ε ∈ (0, 1) and for any x

∈ (1 -ε, 1) a constant R 1 > max(R, R) such that (f x,η , g x,η )(R 1 ) ∈ B(X 1 , γ) ∩ A
and g x,η changes sign exactly k times on [0, R 1 ], we get

(f x,η , g x,η )(• + R 1 ) -(f, g) ∞,[0,R] < δ .
In particular,

|(f x,η , g x,η )(R 1 + R) -(f, g)(R)| < δ
and g x,η changes sign exactly k + 1 times on [0, R 1 + R].

Control of the solutions of

(3.2.2) in A ∩ {(f, g) ∈ R 2 : |f | > f 0 }. Let R 2 := inf{r > R + R 1 : |f x,η (r)| < f 0 }.
With the same arguments used in the proof of property (H 0 1 ), we prove that

(f x,η , g x,η )(R 2 ) ∈ B(X 2 , γ) ∩ A
and g x,η changes sign exactly k + 1 times on [0, R 2 ]. We proved that

(H k 1 ) ⇒ (H k+1 2 ).
Thanks to the symmetry of the system, we also get

(H k 3 ) ⇒ (H k+1 4 
).

The proof of the remaining implications

(H k 2 ) ⇒ (H k 3 ) (H k 4 ) ⇒ (H k 1 )
uses the same ideas.

Proof of the remaining points of Lemma 3.2.16

In this part, we assume that η ∈ (0, √ a -b -a 2 ) is fixed. First of all, we remark that point (i) follows directly from Lemma 3.2.3. For the remaining points, we need the following preliminary lemma. Lemma 3.3.4. There exists c 0 > 0 universal constant such that if

(i) H(f x,η , g x,η )(R) < c 0 R (ii) g x,η (R) ∈ 0, 2b a and f x,η (R) < 0 or g x,η (R) ∈ -2b
a , 0 and f x,η (R) > 0, (iii) g x,η changes sign k times on [0, R];

for x ∈ (0, 1), R > 0, η ∈ (0, √ a -b -a 2 ) and k ∈ N, then x belongs to A k ∪ I k ∪ A k+1 . Proof. We define c 0 := 2b 9a(a -b) 80b 2 81a .
We can assume thanks to the symmetries of the system that

H(f x,η , g x,η )(R) < c 0 R , g x,η (R) ∈ - 2b a , 0 and f x,η (R) > 0
for some x ∈ (0, 1) and R > 0. First of all, we remark that if there exists R such that H(f x,η , g x,η )( R) ≤ 0, then

ϕ η (f x,η , g x,η )( R) = 1
by Lemma 3.A.2. Hence, by Lemma 3.2.5 and Remark 3.2.8, we deduce

H(f x,η , g x,η )(r) < 0 for all r > R. Since {(f, g) : g = 0} ∩ H -1 (-∞, 0) = ∅, g x,η
does not change sign anymore on ( R, +∞). Moreover, if g x,η has no changes of sign in (R, +∞) then either

lim r→+∞ H(f x,η , g x,η )(r) < 0,
and x ∈ A k or lim r→+∞ H(f x,η , g x,η )(r) ≥ 0,
and x ∈ I k by Lemma 3.2.12. We assume, by contradiction, that x / ∈ A k ∪ I k ∪ A k+1 then g x,η changes sign at least once in (R, +∞). Next, we denote

R := inf{r > R : f x,η (r) ≤ 0} ∈ (R, +∞].
Since g x,η is increasing for all r ∈ [R, R], g x,η changes sign at most once before (f x,η , g x,η ) exits {(f, g) : f > 0}. Moreover, we claim that R < R < +∞. Indeed, if R = +∞, g x,η changes sign k or k + 1 times on R + . Then, we have either lim r→+∞ H(f x,η , g x,η )(r) < 0,

and x ∈ A k ∪ A k+1 or lim r→+∞ H(f x,η , g x,η )(r) ≥ 0,
and x ∈ I k ∪I k+1 by Lemma 3.2.12. Moreover, if x ∈ I k+1 , Lemma 3.2.12 ensures that g x,η decays exponentially to 0 this contradicts the fact that g x,η is positive and increasing between

inf{r ≥ R : g x,η (r) ≥ 0} ∈ (R, R)
and R. Nevertheless, we assumed that x / ∈ A k ∪ I k ∪ A k+1 hence R < +∞. As a consequence, we get

f x,η (R) = 0 and, since x / ∈ A k+1 , H(f x,η , g x,η )(r) > 0.
for all r ≤ R. Moreover, we have

g x,η (R) > 2b a since H(0, x) ≤ 0 for all x ∈ [-2b a , 2b a ]. Next, we denote R := sup{r ∈ (R, R), g x,η (r) ≤ 1 3 2b a } and R := inf{r > R : g x,η (r) ≥ 2 3 2b a },
and we remark that this quantities are well-defined. For all r ∈ (R, R ), we get

d dr H(f x,η , g x,η )(r) = - 2 r f 2 x,η (1 -g 2 x,η ) = - 4 r H(f x,η , g x,η )(r) - a 4 g x,η (r) 4 + b 2 g 2 x,η (r) , and 
d dr r 4 H(f x,η , g x,η )(r) = r 3 g 2 x,η (r) ag 2 x,η (r) -2b ≤ 0 (3.3.1) since g 2 x,η (r) < 2b a for all r ∈ [R, R ]. Moreover, we have g x,η (r) ∈ 1 3 2b a , 2 3 
2b a for all r ∈ [R , R ] and

1 3 2b a = g x,η (R ) -g x,η (R ) = R R f x,η (s)(1 -g 2 x,η (s))ds (3.3.2) ≤ √ a -b (R -R ).
Integrating inequality (3.3.1), we have, thanks to inequality (3.3.2),

(R ) 4 H(f x,η , g x,η )(R ) -(R ) 4 H(f x,η , g x,η )(R ) ≤ -c 1 (R ) 4 -(R ) 4 (3.3.3) ≤ -c 1 (R -R )(R 3 + R 2 R + R R 2 + R 3 ) ≤ -4c 1 2b 9a(a -b) R 3 = -c 0 R 3 for c 1 = 20b 2 81a , since c 0 = 4c 1 2b 9a(a -b) = 2b 9a(a -b) 80b 2 81a
.

Then, we obtain by inequalities (3.3.1) and (3.3.3)

(R ) 4 H(f x,η , g x,η )(R ) ≤ -c 0 R 3 + (R ) 4 H(f x,η , g x,η )(R ) ≤ R 4 - c 0 R + H(f x,η , g x,η )(R) < 0.
This is impossible since

H(f x,η , g x,η )(R ) > 0.
Proof of point (iii) of Lemma 3.2.16

Lemma 3.3.5.

Let k ∈ N and η ∈ (0, √ a -b -a 2 ). If x ∈ I k then there is ε > 0 such that (x -ε, x + ε) ⊂ A k ∪ I k ∪ A k+1 .
Proof. By Lemma 3.2.12, there exists C, K > 0 such that

(|f x,η | + |g x,η |)(r) ≤ C exp(-Kr)
for all r and H(f x,η , g x,η ) converges exponentially to 0. We easily get that there is R such that the assumptions of Lemma 3.3.4 are fulfilled for x at R. Then, by Lemma 3.2.3, there is ε > 0 such that for all y ∈ (x -ε, x + ε), g y,η changes sign k times on [0, R],

H(f y,η , g y,η )(R) < c 0 R and f y,η (R) < 0, g y,η (R) ∈ (0, 2b a ) or f y,η (R) > 0, g y,η (R) ∈ (- 2b a , 0).
Thus, by Lemma 3.3.4, we have that

(x -ε, x + ε) ⊂ A k ∪ I k ∪ A k+1 . Proof of point (iv) of Lemma 3.2.16 Lemma 3.3.6. Let k ∈ N and η ∈ (0, √ a -b -a 2 ). If A k is non-empty, then sup A k ∈ I k ∪ I k-1 .
Proof. Thanks to points (i) and (ii) of Lemma 3.2.16,

x := sup A k ∈ (0, 1)\ ∪ n∈N A n .
Let {x i } ⊂ A k be such that lim

i→+∞ x i = x.
Suppose by contradiction that x / ∈ ∪ n∈N (I n ∪ A n ), then in particular

H(f x,η , g x,η )(r) > 0
for all r > 0. Moreover, Lemma 3.2.12 ensures that g x,η changes sign an infinite number of times.

Let R > 0 be such that g x,η changes sign more than

k + 1 times in [0, R] at 0 < r 1 < • • • < r k+1 .
Hence, there is ε > 0 such that for all j ∈ {1, . . . , k + 1}, all r ∈ (0, ε) we have

g x,η (r j -r)g x,η (r j + r) ≤ 0 and g x,η (r j -ε)g x,η (r j + ε) < 0.
Then, by Lemma 3.2.3, there is M > 0 such that if i ≥ M then g x i ,η (r j -ε)g x i ,η (r j + ε) < g x,η (r j -ε)g x,η (r j + ε)/2 < 0 for all j ∈ {1, . . . , k+1}. Thus, for all i ≥ M and all j ∈ {1, . . . , k+1}, there is a real number r i j ∈ (r j -ε, r j +ε) such that g x i ,η (r i j ) = 0. Then, we get g x i ,η (r i j ) = 0 so that g x j ,η changes sign more that k + 1 times at the points r i j . This is impossible because x i ∈ A k . Hence, we have that

sup A k ∈ I m
for some m ∈ N and by point (iii), we get the result.

Proof of point (v) of Lemma 3.2.16 Lemma 3.3.7. Let k ∈ N and η ∈ (0, √ a -b -a 2 ). If I k is non-empty, then sup I k ∈ I k .
Proof. The proof follows the same ideas as the one of Lemma 3.3.6. We get that sup I k ∈ I j for some j ∈ N and by point (iii), we get the result.

Proof of Theorem 3.1.1

We give now the proof of Theorem 3.1.1 by taking the limit when η tends to 0. Proof. Let us fix k ∈ N. For all η ∈ (0, √ a -b -a 2 ), there is x η ∈ (0, 1) such that lim r→+∞ (f xη,η , g xη,η )(r) = (0, 0), g xη,η has k changes of sign on (0, +∞) by Proposition 3.2.17. We also know that

H(f xη,η , g xη,η )(r) > 0 for all r ∈ R + . Since for all x ∈ (0, 2b a ) H(0, x) < 0,
we deduce that

{x η } η ⊂ 2b a , 1 .
Thus, there is a subsequence {η n } n such that

     lim n→+∞ η n = 0 lim n→+∞ x ηn = x 0 ∈ 2b a , 1 .
By Lemma 3.2.3, we get that for all R > 0, ε > 0, there exists N > 0 such that if n ≥ N then

(f x 0 ,0 , g x 0 ,0 ) -(f xη n ,ηn , g xη n ,ηn ) ∞,[0,R] ≤ ε
where . ∞,[0,R] is the uniform norm on the set C([0, R], R 2 ). Thus, (f x 0 ,0 , g x 0 ,0 ) is a solution of equations (3.1.3) such that (f x 0 ,0 , g x 0 ,0 )(0) = (0, x 0 ) H(f x 0 ,0 , g x 0 ,0 )(r) ≥ 0, for all r ∈ R + and Remark 3.2.8 ensures that x 0 ∈ 2b a , 1 .

To conclude, we have to show now that x 0 ∈ 2b a , 1 since (f 1,0 , g 1,0 ) is not a localized solution of (3.1.3). Assume, by contradiction, that x 0 = 1; then

H(f x 0 ,0 , g x 0 ,0 )(r) = H(0, 1)
for all r ≥ 0. We denote H 0 := H(0, 1)/2 > 0 and we define

R n := inf{r > 0 : H(f xη n ,ηn , g xη n ,ηn )(r) ≤ H 0 } ∈ (0, +∞).
We have

H(f xη n ,ηn , g xη n ,ηn )(R n ) = H 0 .
We claim that {R n } n tends to +∞. Indeed, if there is a subsequence also denoted {R n } n and a real number R > 0 such that R n ∈ [0, R] then, we get the following contradiction

H(0, 1) = lim n→+∞ H(f xη n ,ηn , g xη n ,ηn )(R) ≤ H 0 .
Next, since A is a compact set, there is (f 0 , g 0 ) ∈ A such that up to extraction,

lim n→+∞ (f xη n ,ηn , g xη n ,ηn )(R n ) = (f 0 , g 0 ) and H(f 0 , g 0 ) = H 0 .
We denote by T > 0 the period of the solution of the Hamiltonian system of equations (3.1.6) of energy equal to H 0 . Let us consider now the following Cauchy problem

     f + 2ϕη(f,g) r+ρ f = g(f 2 -ag 2 + b), g = f (1 -g 2 ), (f, g)(0) = X. (3.4.1)
Its solutions depend continuously on the parameters (X, ρ, η) on every interval [0, R] just as in Lemma 3.2.3. So,

(f xη n ,ηn , g xη n ,ηn )( . + R n ) tends uniformly on [0, (k+2)T 2 ] to a solution (f, g) of    f = g(f 2 -ag 2 + b), g = f (1 -g 2 ), (f, g)(0) = (f 0 , g 0 ).
Moreover, (f, g) is periodic of period T which implies that g has at least k + 1 changes of sign on 0, (k+2)T 2 i.e. there is ε > 0, and

0 < r 1 < • • • < r k+1 < (k+2)T 2 such that g(r i + r)g(r i -r) ≤ 0 for all r ∈ (0, ε) and g(r i + ε)g(r i -ε) < 0 for all i ∈ {1, . . . k + 1}.
Hence, there is N > 0 such that for all n > N and all i ∈ {1, . . . k + 1}, we get

g xη n ,ηn (R n + r i + ε)g xη n ,ηn (R n + r i -ε) < g(r i + ε)g(r i -ε)/2 < 0, which implies that there is r i n ∈ (r i -ε, r i + ε) such that g xη n ,ηn (R n + r i n ) = 0.
As a conclusion, since (f xη n ,ηn , g xη n ,ηn ) is a solution of (3.2.1), g xη n ,ηn ((R n + r i n )) = 0 and g xη n ,ηn has at least k + 1 changes of sign at the points r i n . This is impossible because g xη n ,ηn has exactly k changes of sign. As a consequence x 0 < 1.

Moreover, with the same arguments used above, we prove that g x 0 ,0 changes sign a finite number of times k 0 . Hence, Lemma 3.2.12 ensures that (f x 0 ,0 , g x 0 ,0 ) converge exponentially to (0, 0).

As a consequence, there is R > 0 such that g x 0 ,0 changes sign k 0 times in [0, R],

H(f x 0 ,0 , g x 0 ,0 )(R) < c 0 R and f x 0 ,0 (R) < 0, g x 0 ,0 (R) ∈ (0, 2b a ) or f x 0 ,0 (R) > 0, g x 0 ,0 (R) ∈ (- 2b a , 0).
Hence, there is ε ∈ (0, 1) such that for all x ∈ (x 0 -ε, x 0 + ε) and all η ∈ (0, ε), g x,η changes sign k 0 of times in [0, R],

H(f x,η , g x,η )(R) < c 0 R and f x,η (R) < 0, g x,η (R) ∈ (0, 2b a ) or f x,η (R) > 0, g x,η (R) ∈ (- 2b a , 0).
By applying Lemma 3.3.4, we get, for η ∈ (0, ε) fixed,

(x 0 -ε, x 0 + ε) ⊂ A k 0 ∪ I k 0 ∪ A k 0 +1 .
Remark that the set A k and I k depends on η, hence, it is important to fix η before writing such a property. By definition of {x ηn } n , there is N ∈ N such that for all n ≥ N

x ηn ∈ (x 0 -ε, x 0 + ε), η n ∈ (0, ε).
As a conclusion, for n ≥ N fixed x ηn ∈ I k 0 . This ensures that k = k 0 . Finally, by Remark 3.2.11, if g x 0 ,0 changes sign k times on (0, +∞) then g x 0 ,0 has k zeros on (0, +∞). To conclude, it remains to prove that f x 0 ,0 has k zeros on (0, +∞) as well.

Let {r 1 , . . . , r k } be the zeros of g x 0 ,0 on (0, +∞). First of all, we prove by induction that, for all i = 1 . . . , k, f x 0 ,0 has i -1 zeros on (0, r i ). This property is true for i = 1. Indeed, suppose by contradiction that f x 0 ,0 (r) = 0 for some r ∈ (0, r 1 ). Hence, using the first equation of (3.1.3), we get H(f x 0 ,0 , g x 0 ,0 )(r) < 0. That is impossible. Next, if the property holds true for i -1, then it holds true for i. Indeed, suppose that f x 0 ,0 has i -2 zeros on (0, r i-1 ); we prove that f x 0 ,0 has 1 zero on (r i-1 , r i ). By contradiction, if f x 0 ,0 does not change sing on (r i-1 , r i ), the second equation of (3.1.3) implies that g x 0 ,0 is monotone on (r i-1 , r i ). This contradicts the fact that g x 0 ,0 changes sign at r i-1 and r i . Hence, f x 0 ,0 has at least 1 zero at r ∈ (r i-1 , r i ). Now suppose that there exists r ∈ (r, r i ) such that f x 0 ,0 (r) = 0. One of the following situations arise: g(r) < 0 and f (r) > 0 on (r, r) or g(r) > 0 and f (r) < 0 on (r, r). Using again the first equation of (3.1.3), in both cases we get g 2 x 0 ,0 (r) ≤ b a which implies H(f x 0 ,0 , g x 0 ,0 )(r) < 0, a contradiction. Hence, for all i = 1 . . . , k, f x 0 ,0 has i -1 zeros on (0, r i ).

Finally, using the same arguments, we show that f x 0 ,0 has 1 zero on (r k , +∞) and we conclude that f x 0 ,0 has k zeros on (0, +∞).

3.A Appendix: Geometric properties of H.

We remind that

A = {(f 0 , g 0 ) ∈ R 2 | 2f 2 0 -ag 2 0 -(a -2b) ≤ 0, g 2 0 ≤ 1} is the set of admissible points. Let us remark that (f, g) ∈ R 2 satisfies H(f, g) = H(0, 1) = 1 4 (a -2b) if and only if 0 = H(f, g) -H(0, 1) = 1 2 f 2 (1 -g 2 ) + a 2 (g 4 -1) -b(g 2 -1) = (1 -g 2 ) 2 f 2 - a 2 (g 2 + 1) + b
i.e. if and only if g 2 = 1 or f 2 -a 2 (g 2 +1)+b = 0. Å is the connected component of {(f, g) : H(f, g) = H(0, 1)} which contains (0, 0). Thanks to the symmetries of H, we can restrict our study of A to the set {(f, g)

: f ≥ 0, g ≥ 0}. Lemma 3.A.1. Let f 0 ∈ a-2b 2 , √ a -b and E c = H f 0 , f 2 0 +b a
. Then there exist two monotone continuous functions

G 1 : [E c , H(0, 1)] → f 2 0 + b a , 1 
G 2 : [E c , H(0, 1)] → 2 a (f 2 0 + b) -1, f 2 0 + b a such that, for i = 1, 2 and for all E ∈ [E c , H(0, 1)], H(f 0 , G i (E)) = E, {(f 0 , G 1 (E)), (f 0 , G 2 (E))} = {(f 0 , g) ∈ A : g ≥ 0} ∩ H -1 ({E}),
and

G 1 (E) ≥ G 2 (E).
Proof. First of all, we observe that

A ∩ (R + ) 2 = {(f, g) ∈ [0, √ a -b] × [0, 1] : ag 2 ≥ 2f 2 -(a -2b)} = 0, a -2b 2 × [0, 1] ∪ (f, g) : f ∈ a -2b 2 , √ a -b , g ∈ 2f 2 -(a -2b) a , 1 
Next, let f 0 ∈ a-2b 2 ,
√ a -b fixed, and define the function

G : 2f 2 0 -(a -2b) a , 1 → R g → H(f 0 , g). Since G (g) = g(-b + ag 2 -f 2 0 ), we deduce that G is continuous, increasing in f 2 0 +b
a , 1 and decreasing in

2f 2 0 -(a-2b) a , f 2 0 +b a . Note that 2f 2 0 -(a -2b) a < f 2 0 + b a since f 0 < √ a -b. Moreover, we have G 2f 2 0 -(a -2b) a = G(1) = H(0, 1)
and we define

E c := G f 2 0 +b a = H f 0 , f 2 0 +b a
. As a consequence, G is a one-to-one function from

f 2 0 +b
a , 1 onto [E c , H(0, 1)] whose inverse is continuous and is denoted by G 1 . Therefore,

G 1 : [E c , H(0, 1)] → f 2 0 + b a , 1 E → G 1 (E) is a continuous function such that H(f 0 , G 1 (E)) = E.
Similarly, we denote by G 2 the inverse of the restriction of the function G to the set

2 a (f 2 0 + b) -1, f 2 0 +b a
. Hence,

G 2 : [E c , H(0, 1)] → 2 a (f 2 0 + b) -1, f 2 0 + b a E → G 2 (E) is a continuous function such that H(f 0 , G 2 (E)) = E. Moreover, G 1 (E) ≥ G 2 (E) for all E ∈ [E c , H(0, 1)]. Lemma 3.A.2. Let f 0 ∈ a 2 , √ a -b . If (f , g) ∈ A ∩ {(f, g) ∈ R 2 : |f | ≥ f 0 }, then H(f , g) > 0.
Proof. First of all, since f 0 > a 2 > a-2b 2 , we have for

(f , g) ∈ A ∩ {(f, g) ∈ R 2 : |f | ≥ f 0 } = {(f, g) ∈ [f 0 , √ a -b] × [-1, 1] : ag 2 ≥ 2f 2 -(a -2b)}, that 2b a < 2f 2 -(a -2b) a ≤ g 2 ≤ 1.
On the other hand, if g 2 ≤ 1 and H(f, g) ≤ 0, then g 2 ≤ 2b a . As a consequence, we get H(f , g) > 0.

Part II

Étude variationnelle de quelques modèles de hadrons

Chapter 4

A variational study of some hadron bag models

Ce chapitre reprend le texte intégral de l'article [LT13] paru en 2013 dans Calculus of Variations and Partial Differential equations.

Résumé: Nous démontrons dans cet article des résultats d'existence d'états fondamentaux et excités dans les modèles de solitons de Friedberg et Lee et d'approximation sac, grâce à la supersymétrie des opérateurs de Dirac, la méthode directe du calcul de variation et le principe de concentration compacité. Nous établissons, en outre, le lien entre ces deux modèles grâce à la γ-convergence et le principe de concentration compacité.

Introduction and main results

Quantum chromodynamics (QCD) is the theory of strong interaction and accounts for the internal structure of hadrons. At low-energy, the quarks are bound together to form baryons (protons, neutrons) and mesons. Nevertheless, the confinement mechanism has not yet been derived from the QCD equations. In order to study the hadronic properties, physicists introduced phenomenological models approximating the QCD equations in which the quarks are confined. Among them, the M.I.T. bag [CJJ + 74, CJJT74, Cho75, Joh75] and the bag approximation models [CJJ + 74, Cho75] have been set in 1974 and the soliton bag model [FL77a,FL77b,LP92] in 1977.

The solutions of the equations of the soliton bag and the bag approximation models are critical points of non-linear functionals involving the Dirac operator. The mathematical techniques used to solved most equations of this type are different from the ones used in a non-relativistic framework (see the review paper of Esteban, Lewin and Séré [ELS08]). Nevertheless, in our case, the supersymmetric properties of the Dirac operator with scalar potential [Tha91] allow us to transform a strongly indefinite variational problem into a minimization one and then to use the direct method in the calculus of variation [Str08]. Since the functionals associated with the ground state problems of the soliton bag and the bag approximation models without symmetries are invariant under translations, we show the existence of solutions thanks to the concentration compactness method under some restrictions on the parameters of the models. The originality of the proofs relies on the fact that the usual concentration compactness inequalities are not satisfied anymore and we have to introduce different inequalities 101 to overcome it. We also show the existence of ground and excited state solutions under some conditions on the parameters, when the wave functions are supposed to have some symmetries. These are the first rigorous proofs of existence for these two models. Actually, solving the bag approximation model is a shape optimization problem on finite perimeter sets of R 3 which is related to the soliton bag model thanks to the gradient theory of phase transitions [MM77a,MM77b,Mod87,Ste88,Bra98,Bra06]. Indeed, we show that the energy functionals of the bag approximation model are Γ-limits of sequences of soliton bag model energy functionals for the ground and excited state problems. We combine the Γ-convergence theory and the concentration compactness method to get the pre-compactness, up to translation, of the sequence of ground state solutions associated with the soliton bag energy functionals in the non-symmetric case. As in the existence results, we have to introduce concentration compactness inequalities different from the classical ones. Bucur [START_REF] Bucur | Uniform concentration-compactness for sobolev spaces on variable domains[END_REF], Bucur and Giacomini [BG10] have already studied shape optimization problems thanks to the concentration compactness method. But, to our knowledge, this is the first result using both the gradient theory of phase transition and the concentration compactness method. We also prove the pre-compactness of the sequences of excited state solutions associated with the soliton bag energy functionals in the symmetric case. Finally, we give a rigorous proof of the original derivation of the M.I.T. bag equations done by Chodos, Jaffe, Johnson, Thorn and Weisskopf [CJJ + 74] via a limit of bag approximation ground state solutions in the spherical case. These are the first proofs which rigorously establish the link between the soliton bag, the bag approximation and the M.I.T. bag models.

Let us now introduce the different models we study.

Some bag models

The soliton bag model

This model has been introduced by Friedberg and Lee [FL77a,FL77b] and is sometimes called the Friedberg-Lee model.

Here, we look for a solution (ψ 1 , . . . , ψ N , φ) of the following system of equations:

   H 0 ψ i + gβφψ i = λ i ψ i ∀i = 1, . . . , N, ψ i L 2 = 1 ∀i = 1, . . . , N, -∆φ + U (φ) + N i=1 gψ * i βψ i = 0, (4.1.1) 
where N ∈ N\{0}, g > 0, φ : R 3 → R and for all i ∈ {1, . . . , N },

ψ i : R 3 → C 4 . H 0 = -iα.∇ + βm = -iα k ∂ k + βm is the Dirac operator in the Pauli-Dirac representation (see [Tha91]) : α = (α 1 , α 2 , α 3 ), β = I 2 0 0 -I 2 , α k = 0 σ k σ k 0 , for k = 1, 2, 3, with σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 , σ 3 = 1 0 0 -1 ,
and m > 0; X * denotes the complex conjugate of X ∈ C 4 . We have used here Einstein's convention for the summation. Solutions of equations (4.1.1) are called quasi-classical [FL77a,FL77b]. The potentials of the Dirac operator H 0 of the form βφ are called scalar potentials. The fact that in our problems the potential of the Dirac operator is scalar is a key point in our study. Indeed, we will see below that the scalar potentials preserve the symmetry of the spectrum with respect to 0 that the Dirac operator has. Let us remark moreover that gβφ acts like a mass term [LP92] since

H 0 + gβφ = -iα.∇ + β(m + gφ).
This kind of potential is often considered in QCD [FL77a, FL77b, GW82, CJJ + 74] to model the strong interactions between quarks. From the physical point of view, φ is a phenomenological scalar field that models the QCD vacuum and can be viewed as a representation of the quantum excitations of the self-interacting gluon field [GW82].

ψ 1 , . . . , ψ N are the wave functions of the N valence quarks. N is fixed at 2 for mesons and 3 for baryons. g is the positive coupling constant between the quark and the scalar fields. λ i is an eigenvalue of the Dirac operator with scalar potential H 0 + gβφ and represents the energy of the i th -relativistic particle in the scalar field φ, so it has to be non negative for ψ i to be a physically admissible state (see chapter 1 of [Tha91] for a physical interpretation of the negative part of the spectrum of a Dirac operator). Some of the N particles can have the same wave function and this does not necessarily contradict Pauli's exclusion principle because quarks possess others quantum numbers such as color. Let us denote by N 0 the maximal number of particles possible with the same wave function ψ. We will always assume that the number of these particles is less than N 0 .

Physicists [Sal83,HGW86] have already studied numerically this problem for scalar potential with radial symmetry i.e. when φ is radial. In that case, the spin-orbit operator, the z-component of the angular momentum operator and the Dirac operator commute altogether. Hence, we will look for eigenfunctions of the Dirac operator with spherically symmetric potential that are also eigenfunctions of the spin-orbit operator and the z-component of the angular momentum operator. A particular ansatz is often chosen for the four-vector wave function [Sal83, HGW86, MS84, CJJ + 74]

ψ(x) =     v(r) 1 0 iu(r) cos θ sin θe iϕ     (4.1.2)
that is separable in the spherical coordinates (r, θ, ϕ) of x. This corresponds to an eigenfunction of the spin-orbit operator of eigenvalue -1 and of the z-component of the angular momentum operator of eigenvalue 1/2 (see [Tha91,Section 4.6] for complete study of the Dirac operator with spherically symmetric potential). Actually, it is commonly admitted by physicists that the ground state of many problem involving the Dirac operator has to be searched among those functions, but to our knowledge, no rigorous proof ensures it. Once this choice is made,

ψ * βψ = v 2 -u 2
becomes a radial function which in turn generates a radial potential φ in equations (4.1.1). The ansatz (4.1.2) is well-known in physics and has been used in particular by Soler [Sol70] to describe elementary fermions.

We denote by H 1/2 sym (R 3 , C 4 ) the set of the functions ψ of this type which belong to H 1/2 (R 3 , C 4 ) and

H 1 rad (R 3 , R) the radial functions of H 1 (R 3 , R).
The problem of finding a solution of (4.1.1) when we look for the scalar potentials among spherically symmetric functions and the quarks wave functions among functions of the form (4.1.2) will be called the symmetric problem. Whereas, when no assumption is done on the form of the solution, we will say that this is the non-symmetric problem.

Saly, Horn, Goldflam and Wilets have already found numerical ground [Sal83,HGW86] and excited state [SS84] solutions for the symmetric problem.

Throughout this paper, we will assume that U : R → R is a non-negative C 1 function such that U and its derivative U vanish at zero and

|U (x)| ≤ C(|x| + |x| p ) for x ∈ R with 1 < p < 5, (H1) 
U (x) ≥ cx 2 for all x ∈ R, (H2) 
for some positive constants c and C.

Remark 4.1.1. Physically, the presence of the constant c in hypothesis (H2) means that the scalar field φ has a mass whose value is at least 2c.

Our problem has indeed a variational structure: we look for a critical point of the C 1 energy functional:

E(ψ 1 , . . . , ψ N , φ) = R 3 N i=1 (ψ i , H 0 ψ i ) + gφ(ψ i , βψ i ) + |∇φ| 2 2 + U (φ) dx on the set {(ψ 1 , . . . , ψ N , φ) ∈ H 1/2 (R 3 , C 4 ) N × H 1 (R 3 , R) : ψ i L 2 = 1}
. λ i are the Lagrange multipliers associated with the . L 2 -constraints and ( . , . ) is the complex scalar product.

Remark 4.1.2. Condition (H1) is just a mathematical constraint for E to be well-defined and differentiable. This does not restrict the set of admissible potentials U considered by the physicists [FL77a].

The bag approximation

This model has been introduced by Chodos, Jaffe, Johnson, Thorn and Weisskopf [CJJ + 74, CJJT74] to derive the M.I.T. bag model as a limit case.

Here, the scalar field φ of the previous model is replaced by a characteristic function χ Ω but it still models the cavity where the quarks are encouraged to live.

The Lagrangian of the bag approximation is:

F(ψ 1 , . . . , ψ N , χ Ω ) = R 3 N i=1 (ψ i , H 0 ψ i ) -gχ Ω (ψ i , βψ i ) dx + aP (Ω) + b|Ω|,
for ψ 1 , . . . , ψ N in H 1/2 (R 3 , C 4 ). ψ 1 , . . . , ψ N still represent the quark wave functions. The characteristic function χ Ω of Ω belongs to {χ ω ∈ BV (R 3 , R)}. |Ω| denotes the area of Ω and P (Ω) its perimeter. We will write, in this paper, the variation of a function φ ∈ BV (R 3 , R) on a Borel set A by |∇φ|(A), so that:

|∇χ Ω |(R 3 ) = P (Ω).
The constants a, b, m, g are positive.

We look for critical points of F on the set

{(ψ 1 , . . . , ψ N , χ Ω ) ∈ H 1/2 (R 3 , C 4 ) N × BV (R 3 , R) : ψ i L 2 = 1}
that is to say, points that satisfy (see [Giu84,HP05]):

   (H 0 -gχ Ω ) ψ i = λ i ψ i , ∀i = 1, . . . , N on R 3 ψ i L 2 = 1, ∀i = 1, . . . , N aH Ω + b -N i=1 gψ * i βψ i = 0 H 2 -a.e. in ∂ * Ω (4.1.3)
where H Ω is the mean curvature of ∂ * Ω, and H 2 is the two-dimensional Hausdorff measure. Let us, for the moment, introduce the equations in a fixed non-empty bounded regular open set Ω of R 3 . In this paper, we will just consider the ground state problem, so that, we look for a single function ψ, solution of the following problem:

   H 0 ψ = λψ on Ω -iβ(α.n)ψ = ψ on ∂Ω ψ L 2 (Ω) = 1, (4.1.4)
where ψ ∈ H 1 (Ω, C 4 ), λ > m and n is the exterior normal to ∂Ω.

When Ω = B(0, R), we look for an eigenfunction ψ in H 1 sym (Ω, C 4 ) i.e. of the form (4.1.2). In that case, the boundary condition becomes:

u = v on ∂Ω.
The problem of finding a good Lagrangian formulation for these equations has been widely studied [Joh75,Joh78]. This has been a motivation for the physicists to introduce other phenomenological models like the soliton bag model of Friedberg and Lee [FL77a,FL77b] and the fractional bag model of Mathieu and Saly [MS84,Mat85]. Balabane, Cazenave and Vazquez [BCV90] already proved the existence of compactly supported ground state solutions for this latter model thanks to a shooting method.

Variational formulations

The main difficulty we have to face in the soliton bag and bag approximation models, is that the functionals considered are strongly indefinite: they are neither bounded from below nor from above and their critical points have an infinite Morse index. So, for now, we do not have any satisfactory formulations of the ground and excited state problems.

The key point to overcome this in all the models, relies on a fine study of the Dirac operator with scalar potential.

The soliton bag and bag approximation case Lemma 4.1.3. Let φ be in L p (R 3 , R), then H φ = H 0 + gβφ is a self-adjoint operator on L 2 (R 3 , C 4 ), with domain H 1 (R 3 , C 4 ) and form-domain H 1/2 (R 3 , C 4 ) whenever 3 ≤ p < +∞. It satisfies:

σ ess (H φ ) = σ ess (H 0 ) = (-∞, -m] ∪ [m, +∞).
The proof of this lemma is based on Kato-Rellich theorem and Weyl's criteria for essential spectrum and can be found in [Tha91,Chapter 4].

We denote by E the Hilbert space where we search for the quark functions and F the associated space for φ or χ Ω when no confusion is possible. E × F can be:

H 1/2 (R 3 , C 4 ) × H 1 (R 3 , R), H 1/2 sym (R 3 , C 4 ) × H 1 rad (R 3 , R), H 1/2 (R 3 , C 4 ) × {χ ω ∈ BV (R 3 , R)}, H 1/2 sym (R 3 , C 4 ) × {χ ω ∈ BV rad (R 3 , R)}.
We define E + φ = χ (0,+∞) (H φ )E where χ (0,+∞) is the characteristic function of (0, +∞), d := dim(ker(H φ )) and for k ∈ N\{0} :

λ k + (H φ ) :=          0 if k ≤ d 2 inf V ⊂E + φ dim V =k-d 2 sup ψ L 2 =1 ψ∈V (ψ, H φ ψ) if k > d 2 .
Remark 4.1.4. The symmetry of the spectrum with respect to 0 is actually true not only for the essential spectrum of Dirac operators with scalar potentials as in Lemma 4.1.3 but also for the whole spectrum. Moreover, we will see in Section 4.2 that d is pair so that the definition of λ k + (H φ ) make sense for all k. Then, we will get that

{±λ k + (H φ )} ∩ (-m, m)
are the eigenvalues of H φ in (-m, m) counted with multiplicity.

In this paper, the fact that the potentials are scalar is important. Indeed, the symmetry of the spectrum is not true anymore for the Dirac operator with an electric potential such as the Coulomb one [Tha91,Section 7.4]. This property is related to the supersymmetric operator theory which will be an essential tool in our study, for instance, to give a simpler expression for λ k + (H φ ). The well-defined minimization problems are then, for

1 ≤ k 1 ≤ • • • ≤ k N in the soliton bag model: inf N i=1 λ k i + (H φ ) + R 3 |∇φ| 2 2 + U (φ) dx : φ ∈ F (4.1.5)
and in the bag approximation:

inf N i=1 λ k i + (H -χ Ω ) + aP (Ω) + b|Ω| : χ Ω ∈ F . (4.1.6)
We get here a good formulation for the ground state problems when

k 1 = • • • = k N = 1.
The other cases are related to the exited states.

The M.I.T. bag case

Let Ω be the euclidean ball B(0, R) of R 3 with R > 0. Define

D(H 0 ) = {ψ ∈ H 1 sym (Ω, C 4 ) : -iβ(α.n)ψ = ψ on ∂Ω}.
We call (H 0 , D(H 0 )) the M.I.T. bag Dirac operator.

Proposition 4.1.5. The operator (H 0 , D(H 0 )) is self-adjoint and there is a nondecreasing sequence of eigenvalues (λ n ) n≥1 ⊂ (m, +∞) which tends to infinity such that:

σ(H 0 ) = {. . . , -λ 2 , -λ 1 } ∪ {λ 1 , λ 2 , . . .}.
We denote for each n, λ n M IT (Ω) := λ n . Remark 4.1.6. The main ideas of the proof of Proposition 4.1.5 will be given in the second section.

The variational formulation for the ground state is:

inf N λ 1 M IT (B(0, R)) + aP (B(0, R)) + b|B(0, R)| : R > 0 ,
where a, b > 0 and N ≤ N 0 .

Existence results

The soliton case

We get the following results:

Theorem 4.1.7. Let K ∈ N\{0} and m > 0 be fixed. Assume that U satisfies hypothesis (H1) and (H2). There is g 0 > 0 such that if the coupling constant g satisfies g > g 0 then, for any

1 ≤ k 1 ≤ • • • ≤ k N ≤ K, there exists a solution (ψ 1 , . . . , ψ N , φ) ∈ H 1/2 sym (R 3 , C 4 ) N × H 1 rad (R 3 , R)
of equations (4.1.1) with

λ i = λ k i + (H φ ) ∈ (0, m)
where φ is a minimum of problem (4.1.5). g 0 depends on N, m, K and U .

Let us make some comments: Remark 4.1.8. Friedberg and Lee [FL77a] derived some conditions on m, g and U comparable to ours for the model to have soliton solutions.

Remark 4.1.9. They also assumed U to be a non-negative polynomial of degree 4 with two minima at 0 and -φ 0 < 0 such that 0 = U (0) ≤ U (-φ 0 ). In many of their proofs, they considered condition (H2) true. Nevertheless, most of the numerical works were performed by Saly, Horn, Goldflam and Wilets [Sal83, SS84, HGW86] with U (-φ 0 ) = 0. Actually, the symmetry U (0) = U (-φ 0 ) seems not to prevent the scalar field to tend to -φ 0 at infinity and this leads to some mathematical complications in the minimization. However, c can be chosen as small as we want. This is the first rigorous proof of the existence of ground and excited states for wave functions of form (4.1.2). The symmetry of the functions leads to the compactness properties established by Strauss [Str77] and Lions [Lio82]. As we remark before, no result ensures that the ground state has to possess such a symmetry. So, in Theorem 4.1.10, we prove the existence of a ground state with no assumption made on the form of the quark wave function with the help of the concentration compactness method.

Theorem 4.1.10. Let m > 0 be fixed. Assume that U satisfies hypothesis (H1) and (H2). There is g 0 > 0 such that if the coupling constant g satisfies g > g 0 then, there exist

(ψ, φ) ∈ H 1/2 (R 3 , C 4 ) × H 1 (R 3 , R) such that φ is a minimum of problem (4.1.5) for k 1 = • • • = k N = 1 and H 0 ψ + gβφψ = λψ ψ L 2 = 1 where λ = λ 1 + (H φ ) ∈ [0, m). g 0 depends on N, m and U . If 0 / ∈ σ(H φ ), then φ satisfies -∆φ + U (φ) + N gψ * βψ = 0.
Remark 4.1.11. The main problem that occurs when 0 ∈ σ(H φ ) is that φ → λ 1 + (H φ ) is not necessarily Gâteaux differentiable. We will get in Corollary 4.1.20 that 0 / ∈ σ(H φ ) under some restrictions on the parameters of the model. From the physical point of view, the most relevant parameters satisfy the requirements of this corollary [FL77a,GW82].

The bag approximation

The same method adapted to the BV setting gives us similar results for the bag approximation model. Theorem 4.1.12. Let K ∈ N\{0}. Assume g ∈ (0, m). There is a constant δ > 0 such that if:

a, b < δ, (H3) 
then, for any

1 ≤ k 1 ≤ • • • ≤ k N ≤ K, there exists a solution (ψ 1 , . . . , ψ N , χ Ω ) ∈ H 1/2 sym (R 3 , C 4 ) N × BV rad (R 3 , R) of equations (4.1.3) with λ i = λ k i + (H -χ Ω ) ∈ (0, m) where χ Ω is a minimum of problem (4.1.6).
Theorem 4.1.13. Assume g ∈ (0, m). There is a constant δ > 0 such that if:

a, b < δ, (H3) 
then, there exists a solution (ψ, . . . , ψ, χ

Ω ) ∈ H 1/2 (R 3 , C 4 ) N × BV (R 3 , R) of equations (4.1.3) with λ = λ i = λ 1 + (H -χ Ω ) ∈ (0, m) where χ Ω is a minimum of problem (4.1.6) for k 1 = • • • = k N = 1.
Remark 4.1.14. In this case, the assumption g ∈ (0, m) ensures that 0 / ∈ σ(H -χ Ω ).

The bag approximation model as a Γ-limit of soliton bag models

The following results show the link between the soliton bag and the bag approximation models and are based on the Γ-convergence theory.

Let us consider first for ε > 0 and b > 0 the following functionals:

E ε (φ) = R 3 ε|∇φ| 2 + W (φ)/ε + b|φ| 2 dx if φ ∈ H 1 (R 3 , R) +∞ otherwise and E 0 (φ) = aP (Ω) + b|Ω| if φ = -χ Ω ∈ BV (R 3 , R) +∞ otherwise,
where W : R → R + is a C 1 function which satisfies W -1 ({0}) = {-1, 0}, (H1) and a = 2 0 -1 W (s)ds.

Proposition 4.1.15. Assume that there are positive constants c and 2 < q such that:

W (t) ≤ c(|t| 2 + |t| q ) ∀t.
Then,

E ε Γ-converges to E 0 in L 2 ∩ L 3(q+2) 4
.

This proposition is an adaptation of the result of Modica and Mortola [MM77a,MM77b] generalized by Modica [Mod87] (see also Sternberg [Ste88] or Braides [Bra98]) for the gradient theory of phase transitions in an unbounded setting. Its proof strongly uses the one of [Ste88].

Let us introduce for ε > 0:

E ε (φ) = N λ 1 + (H φ ) + E ε (φ) if φ ∈ H 1 (R 3 , R) +∞ otherwise and E 0 (φ) = N λ 1 + (H -χ Ω ) + E 0 (-χ Ω ) if φ = -χ Ω ∈ BV (R 3 , R) +∞ otherwise.
Theorem 4.1.16. Assume that the condition of Proposition 4.1.15 is true and that g ∈ (0, m). Then, E ε Γ-

converges to E 0 in L 2 ∩ L 3(q+2) 4
. Let us assume besides that there are c > 0, t 1 < -1 < t 2 < 0 such that W satisfies:

W (t) ≥ c|t| q for all t / ∈ (t 1 , t 2 ) and l c = inf{E 0 (φ) : φ = -χ Ω ∈ BV } < N m. (4.1.7)
Then, there is ε 0 > 0 such that for all 0 < ε < ε 0 , the problem

l ε s = inf{E ε (φ) : φ ∈ H 1 } < N m (4.1.8)
has a minimum φ ε . There is a subsequence such that, up to translation, we have:

   W • φ εn → W • (-χ Ω ) strictly in BV φ εn → (-χ Ω ) strongly in L p for p ∈ [2, 3(q+2) 4 ] l εn s → l c
where -χ Ω is a minimum of the problem (4.1.7) and W : t → 2 t 0 W (s)ds.

The constant ε in the functionals can be obtained by scale change in some soliton bag functional.

Remark 4.1.17. The physicists [FL77a] actually considered potentials U in the soliton bag model of the form

U : φ → W (φ) + b|φ| 2
satisfying the conditions of Theorem 4.1.16.

Remark 4.1.18. Goldflam and Wilets [GW82] studying the dependence of the numerical solutions on the parameters exhibit behaviors of the φ field similar to the ones of the Modica-Mortolla problem [MM77a,MM77b,Mod87,Ste88,Bra98]. Nevertheless, this is the first result which shows clearly the link between the two models we studied.

Remark 4.1.19. The main difficulty here is that the problems are set in an unbounded domain. We overcome this combining the Γ-convergence theory and the concentration compactness method.

In the next corollary, we give conditions on the parameters of the soliton bag model that ensure that 0 does not belong to σ(H φ ) where φ is a minimum of the ground state problem. Hence, φ satisfies the last equation of system (4.1.1).

Corollary 4.1.20. Assume the hypothesis of Theorem 4.1.16 true. Then, there are ε 0 > 0 and for all ε ∈ (0, ε 0 ) a minimizer φ of problem (4.1.8), a function ψ ∈ H 1 (R 3 , C 4 ) which satisfy

   H 0 ψ + gβφψ = λψ a.e. in R 3 ψ L 2 = 1 -ε∆φ + W (φ) ε + 2bφ + N gψ * βψ = 0, a.e. in R 3 where λ = λ 1 + (H φ ) > 0.
Remark 4.1.21. From the physical point of view, the most relevant parameters for the soliton bag model satisfy these requirements [FL77a]. Indeed, Friedberg and Lee considered a potential U composed of a two well potential W and a mass term. The two well potential and the restriction ε ∈ (0, ε 0 ) are introduced so as to force the scalar field φ to be almost a characteristic function [FL77a,GW82].

We get a result similar to the one of Theorem 4.1.16 in the symmetric case. Let 1 ≤ k 1 ≤ • • • ≤ k N ≤ K be integers. We define for ε > 0:

E ε,k 1 ,...,k N (φ) = N i=1 λ k i + (H φ ) + E ε (φ) if φ ∈ H 1 rad (R 3 , R) +∞ otherwise and E 0,k 1 ,...,k N (φ) = N i=1 λ k i + (H -χ Ω ) + E 0 (-χ Ω ) if φ = -χ Ω ∈ BV rad (R 3 , R) +∞ otherwise.
Theorem 4.1.22. Assume the condition of Proposition 4.1.15 true and that g ∈ (0, m). Then, E ε,k 1 ,...,k N Γ-

converges to E 0,k 1 ,...,k N in L 2 ∩ L 3(q+2) 4
. Let us assume besides that there are c > 0, t 1 < -1 < t 2 < 0 such that W satisfies:

W (t) ≥ c|t| q for all t / ∈ (t 1 , t 2 ) and inf{E 0,K,...,K (φ) : φ = -χ Ω ∈ BV rad } < N m.
Then, there is ε 0 > 0 such that for all 0 < ε < ε 0 , the problem

l ε s (k 1 , . . . , k N ) = inf{E ε,k 1 ,...,k N (φ) : φ ∈ H 1 rad } < N m (4.1.9)
has a minimum φ ε . There is a subsequence such that:

   W • φ εn → W • (-χ Ω ) strictly in BV φ εn → (-χ Ω ) strongly in L p for p ∈ [2, 3(q+2) 4 ] l εn s (k 1 , . . . , k N ) → l c (k 1 , . . . , k N )
where -χ Ω is a minimum of problem:

l c (k 1 , . . . , k N ) = inf{E 0,k 1 ,...,k N (φ) : φ = -χ Ω ∈ BV rad }.
(4.1.10)

4.1.5 The M.I.T. bag limit

We study in this paper the M.I.T. bag ground state problem in the spherical case, i.e. when the open set Ω is a ball and the wave function belongs to H 1 sym (Ω, C 4 ). Indeed, our main goal in this section is to give a rigorous proof of the original derivation of the M.I.T. bag equations done by Chodos, Jaffe, Johnson, Thorn and Weisskopf [CJJ + 74] via a limit of bag approximation ground state solutions in the spherical case.

We assume in this section that a, b ∈ R + and max{a, b} > 0.

Proposition 4.1.23. There is a minimizer R > 0 of inf N λ 1 M IT (B(0, R)) + aP (B(0, R)) + b|B(0, R)| : R > 0 .

Theorem 4.1.24. Let (M n ) n ⊂ (0, +∞) be an increasing sequence such that:

lim n→+∞ M n = +∞.
There are C 0 , n 0 > 0, and for n ≥ n 0 , a minimizer R n > 0 of

l n := inf N λ 1 + (H n B(0,R) ) + aP (B(0, R)) + b|B(0, R)| : R > 0 ≤ C 0 , a function ψ n ∈ H 1 sym (R 3 , C 4 ) satisfying: H n B(0,Rn) ψ n = λ 1 + (H n B(0,Rn) )ψ n ψ n L 2 = 1,
where

H n Ω = -iα.∇ + β(mχ Ω + M n χ Ω c
), such that, up to a subsequence:

   R n → R > 0, l n → inf N λ 1 M IT (B(0, r)) + aP (B(0, r)) + b|B(0, r)| : r > 0 , ψ n → ψχ B(0,R) in L 2 (R 3 ) and in L ∞ (B(0, R + ε) c ∪ B(0, R -ε))
for all 0 < ε < R/2. R comes from Proposition 4.1.23, the function ψ ∈ H 1 sym (B(0, R), C 4 ) satisfies:

   H 0 ψ = λ 1 M IT (B(0, R))ψ on B(0, R) -iβ(α.n)ψ = ψ on ∂B(0, R) ψ L 2 (B(0,R)) = 1.
Remark 4.1.25. Chodos, Jaffe, Johnson, Thorn and Weisskopf impose to the ground state cavity to be a ball, just as in Theorem 4.1.24. Nevertheless, if we want to remove this restriction, some difficulties occur. We will point out in our proof where the problems arise.

The key point of all this paper is the use of supersymmetry properties of the Dirac operator studied in the second section. We give in the third section, some auxiliary results related to the continuity of the eigenvalues of H φ in φ. We prove the existence theorems for the soliton bag and the bag approximation models in the symmetric case in the fourth section. In the fifth section, the pre-compactness, up to translation, of minimizing sequences for the existence Theorems 4.1.10 and 4.1.13 follows from the concentration-compactness method. Supersymmetry allows us to get rid of the problems occurring with the constraints on the sign of the eigenvalues λ of the operators H φ and gives the binding inequalities necessary in the concentration-compactness argument. The sixth section is related to the proofs of Proposition 4.1.15, Theorems 4.1.16 and 4.1.22, which are based on Γ-convergence and concentration compactness method. Finally, we give the first rigorous proof of the derivation of the M.I.T. bag equations in the last section.

Supersymmetry of the Dirac operator and spectral properties

The variational formulations (4.1.5) and (4.1.6) are not satisfactory because the definitions of the eigenvalues λ k + (H φ ) and λ k M IT (Ω) are not easy to handle for k > 0, Ω an open set of R 3 and φ ∈ L p for some p ≥ 3. Nevertheless, the supersymmetry theory for Dirac operators with scalar potentials will allow us to overcome these problems. We strongly use in this part the introduction to the theory of Thaller 

The Dirac operator with scalar potential on R 3

We begin by a study of Dirac operators on L 2 (R 3 , C 4 ) with a special type of potentials, the scalar ones. Let φ be in L p (R 3 , R) for some 3 ≤ p < +∞. We define:

T := 1 √ 2 I 2 iI 2 iI 2 I 2 , D φ := -iσ.∇ + i(m + gφ), D * φ := -iσ.∇ -i(m + gφ)
and

Q φ := T H φ T -1 = 0 D * φ D φ 0
where we recall that H φ = H 0 +gβφ. Then, by Lemma 4.1.3, Q φ is a supercharge with respect to the involution β whose domain is D(Q φ ) = T D(H φ ). It can be either H 1 (R 3 , C 4 ) in the non-symmetric case or H 1 sym (R 3 , C 2 ) 2 in the symmetric case where we denote by H 1 sym (R 3 , C 2 ) the subset of H 1 (R 3 , C 2 ) whose functions are of the form:

x → -v(r) + u(r)cosθ u(r)sinθe iϕ , in the spherical coordinates (r, θ, ϕ) of x.

Remark 4.2.2. The fact that the potential gβφ of H φ is scalar is a key point for Q φ to be a supercharge with respect to β.

D φ is a closed operator on L 2 (R 3 , C 2 ) with domain H 1 such that D * φ is its adjoint and vice versa. Let us remark moreover that:

Q 2 φ = D φ * D φ 0 0 D φ D φ * , is a self-adjoint operator on L 2 with domain D(Q 2 φ ) = {ψ ∈ H 1 : Q φ ψ ∈ H 1 },
which can be different from H 2 if φ is not regular enough.

In the following lemma, we show that under some conditions on φ, 0 is not in the spectrum of H φ .

Lemma 4.2.3. Assume that φ ∈ L p (R 3 , R) with 3 ≤ p < +∞ satisfies m + gφ ≥ 0, then

ker(Q φ ) = ker(Q φ 2 ) = ker(D φ * D φ ) ⊕ ker(D φ D φ * ) = {0}.
Proof. Let us assume that there exists ω ∈ H 1 (R 3 , C 2 ) such that -iσ.∇ω ± i(m + gφ)ω.

We get that

R 3 (m + gφ)|ω| 2 dx = ± R 3 (ω * σ.∇ω)dx = ± R 3 div(ω * σω)dx = 0,
hence, we have (m + gφ)|ω| 2 = 0 almost everywhere. Moreover, we have

0 = R 3 (m + gφ) 2 |ω| 2 dx = R 3 |σ.∇ω| 2 dx = R 3 |∇ω| 2 dx.
Thus, we have the result.

Remark 4.2.4. Let us remark that in the bag approximation case, if we assume that g ∈ (0, m) we get for any χ Ω ∈ BV (R 3 , R) that m + g(-χ Ω ) ≥ 0. So, we have that ker(H φ ) = {0}.

The same result is true for the soliton bag model in the symmetric case.

Lemma 4.2.5. Assume that φ ∈ L 3+ε rad for ε > 0. Then, every eigenvalue of H φ is simple and 0 / ∈ σ(H φ ).

and

-∂ 1 ṽ + i∂ 2 ṽ -∂ 3 ũ -(m + gφ)ũ = 0 -∂ 1 ũ -i∂ 2 ũ + ∂ 3 ṽ -(m + gφ)ṽ = 0 where ω = ũ ṽ := v -u . 
Hence, we get -σ.∇ω -(m + gφ)ω = 0

so 0 ∈ σ(D φ D φ * ). This ensures that dim(ker(D φ * D φ )) ≤ dim(ker(D φ D φ * ))
A similar argument gives us the inverse inequation and the result follows.

We are now able to write down the Foldy-Wouthuysen representation of our supercharge operator. This allows us to give simpler expressions for the eigenvalues.

Theorem 4.2.7. Define the unitary transformations :

S = ( D φ D φ * ) -1 D φ = D φ D φ * D φ -1 of ker(D φ ) ⊥ onto ker(D φ * ) ⊥ and sgn Q φ = 0 S * S 0 of ker(Q φ ) ⊥ .
We denote the Foldy-Wouthuysen transformation

U F W := 1 √ 2 (1 + β(sgn Q φ )) on ker(Q φ ) ⊥ 1 on ker(Q φ ).
Then, we have:

U F W Q φ U * F W = β|Q φ | = D φ * D φ 0 0 -D φ D φ * , and 
D φ * D φ = SD φ D φ * S * on ker(D φ ) ⊥
. Moreover, we have:

m 2 = inf σ ess (D φ * D φ ) and σ(H φ ) =   (-∞, -m] ∪ k≥1 ± λ k (D φ * D φ ) ∪ [m + ∞)   where λ k + (H φ ) = λ k (D φ * D φ ) := inf V ⊂H 1 , dim V =k sup ω∈V, ω L 2 =1 D φ ω L 2 .
The proof can be found in Thaller [Tha91, Theorem 5.5, Corollary 5.6] and we give here a sketch of proof for the reader's convenience. Sketch of Proof. On ker(Q φ ) ⊥ , we easily get that U -1

F W = U * F W = 1 √ 2 (1 -β(sgn Q φ )) and U F W Q φ U * F W = β(sgn Q φ )Q φ = β|Q φ |, since Q φ and sgn Q φ commute. sgn Q φ commutes with Q 2 φ too so, we get that D φ * D φ = SD φ * D φ S.
Remark 4.2.8. All the results of Theorem 4.2.7 are also true in the symmetric case if we replace the spaces

L 2 (R 3 , C 2 ), H 1 (R 3 , C 2 ), . . . involved with those denoted by L 2 sym (R 3 , C 2 ), H 1 sym (R 3 , C 2 ), .
. . composed of the functions of the form:

x → v(r) + u(r)cosθ u(r)sinθe iφ ,
where (r, θ, φ) are the spherical coordinates of x.

We give now conditions on the parameters of the soliton bag and the bag approximation models that ensures that the operator H φ associated with any minimizer φ of (4.1.5) or (4.1.6) has enough eigenvalues in [0, m) counted with multiplicity. The following lemmas are true both in the symmetric and in the general case. Lemma 4.2.9. Let k ∈ N\{0} and m > 0 be fixed. There exists g 0 > 0 such that for g > g 0 we have

0 < ls k := inf N λ k + (H φ ) + R 3 [ |∇φ| 2 2 + U (φ)]dx : φ ∈ F < N m.
g 0 depends on N, k, m and U .

Proof.

For 0 < R < R , 0 < ε, let φ R,R ∈ C ∞ 0 (R 3 , [-m/g, 0]) be a radial function such that ∇φ R,R L ∞ ≤ m + ε g(R -R) and φ R,R (x) = -m/g f or x ∈ B(0, R) 0 f or x ∈ R 3 \B(0, R ). Let ω R ∈ H 1 sym (R 3 , C 2 ) be such that supp(ω R ) ⊂ B(0, R) and ω R L 2 = 1
, where B(0, R) is the ball centered at 0 in R 3 of radius R. Then, we have:

D φ R,R ω R 2 L 2 = ∇ω R 2 L 2 .
Now, choosing for ω R , a normalized eigenfunction for the k th -eigenvalue C k R > 0 of the Dirichlet laplacian on B(0, R), we get:

D φ R,R ω R 2 L 2 = C k R = C k 1 R 2 .
Thus, the energy satisfies:

ls k ≤ N λ k (D φ R,R * D φ R,R ) + R 3 [ |∇φ R,R | 2 2 + U (φ R,R )]dx ≤ N C k 1 R + 4π(m + ε) 2 6g 2 R 2 + RR + R 2 R -R + 4π 3 sup r∈[-m/g,0]
U (r) R 3 .

For now, we fix R

= (1 + √ 3)R, the point which minimizes R → R 2 +RR +R 2 R -R
. If there exists R > 0 such that :

f (R) = N C k 1 R + 4m 2 (3 + 2 √ 3)π 6g 2 R + 4(1 + √ 3) 3 π 3 sup r∈[-m/g,0] U (r) R 3 < N m,
we immediately get the result. Let us fix R 0 > 0 such that

N C k 1 R 0 < N m.
By hypothesis (H1), U is continuous, U (0) = 0 and we have

lim g→+∞ sup r∈[-m/g,0] U (r) = 0. so that lim g→+∞ 4m 2 (3 + 2 √ 3)π 6g 2 R 0 + 4(1 + √ 3) 3 π 3 sup r∈[-m/g,0] U (r) R 3 0 = 0.
Thus, there is

g 0 > 0 such that if g > g 0 then inf R>0 f (R) < N m.
A similar result holds for the bag approximation case.

Lemma 4.2.10. Let k ∈ N\{0}. Assume that g ∈ (0, m). There is a constant δ > 0 such that if a, b < δ then,

0 < lc k = inf{N λ k + (H -χ Ω ) + aP (Ω) + b|Ω| : χ Ω ∈ F } < N m.
Proof. For 0 < R, we choose χ Ω = χ B(0,R) and ω k a normalized eigenfunction for the k th -eigenvalue C k R > 0 of the Dirichlet laplacian on B(0, R). We get:

0 < lc k ≤ N C k 1 R 2 + (m -g) 2 + a4πR 2 + b4/3πR 3 ,
and the result follows.

The M.I.T. bag Dirac operator

Just as in the previous case, the supersymmetry gives us a good frame to study the problem of the eigenvalues of the M.I.T. bag Dirac operator. We set Ω = B(0, R) with R > 0, 

D = -iσ.∇ + im, D(D) = {ω ∈ H 1 sym (Ω, C 2 ) : -σ.nω = ω on ∂Ω}, D * = -iσ.∇ -im, D(D * ) = {ω ∈ H 1 sym (Ω, C 2 ) : σ.nω = ω on ∂Ω}, Q = T H 0 T -1 = 0 D * D 0 and D(Q) = D(D) ⊕ D(D * ) = T D(H 0 ).
σ(H 0 ) = {. . . , -λ 2 , -λ 1 } ∪ {λ 1 , λ 2 , . . .},
D * is the adjoint of D and vice versa. We have for each n:

λ n M IT (Ω) = λ n = inf V ⊂D(D), dim V =k sup ω∈V, ω L 2 =1 Dω L 2 (Ω) .
Sketch of Proof. The proof uses the spectral theory of self-adjoint compact operators and the ideas of the proof of Theorem 4.2.7.

Auxiliary results

We study in this section, the dependance of the non-negative eigenvalue of H φ on the field φ. This is an important point in this paper that will allow us to prove lower semi-continuity properties for the functionals involved in problems (4.1.5) and (4.1.6). To prove Proposition 4.3.3 below, we will need the two following lemmas.

Lemma 4.3.1. Assume that (φ n ) converges to φ ∞ strongly in L 3 (R 3 , R). Then, we have:

D φn ω 2 L 2 converges to D φ∞ ω 2 L 2 locally uniformly in ω ∈ H 1 (R 3 , C 2 ) i.e., for every R > 0: sup{| D φn ω 2 L 2 -D φ∞ ω 2 L 2 | : ω ∈ H 1 (R 3 , C 2 ), ω H 1 ≤ R} → n→∞ 0.
Proof. We have

D φ ω 2 L 2 = ∇ω 2 L 2 + R 3 (m + gφ) 2 |ω| 2 dx -2gRe R 3 [ω * (σ.∇ω)φ]dx. (4.3.1)
By Hölder's inequality, we get:

R 3 [ω * (σ.∇ω)φ n ] -[ω * (σ.∇ω)φ ∞ ]dx ≤ ω * σ.∇ω L 3/2 φ n -φ ∞ L 3 ≤ ω L 6 ∇ω L 2 φ n -φ ∞ L 3 , R 3 |ω| 2 (φ n -φ ∞ )dx ≤ ω 2 L 3 φ n -φ ∞ L 3 , and R 3 |ω| 2 (φ 2 n -φ ∞ 2 )dx ≤ ω 2 L 6 φ n -φ ∞ L 3 ( φ n L 3 + φ ∞ L 3 ).
The result follows.

Lemma 4.3.2. Let ε > 0. The functional ω → D φ ω 2 L 2 is coercive on {ω ∈ H 1 (R 3 , C 2 ) : ω L 2 = 1}
locally uniformly in φ ∈ L 3 ∩ L 3+ε i.e., for every R > 0, there is a C > 0 such that

D φ ω 2 L 2 ≥ ∇ω 2 L 2 -C for ω ∈ {ω ∈ H 1 (R 3 , C 2 ) : ω L 2 = 1} and φ such that φ L 3 + φ L 3+ε ≤ R.
Proof. By equality (4.3.1) and Hölder's inequality, we have for ω

∈ {ω ∈ H 1 (R 3 , C 2 ) : ω L 2 = 1} that D φ ω 2 L 2 ≥ ∇ω 2 L 2 + m 2 -2g ω L p ∇ω L 2 φ L 3+ε -2gm ω L 2 ω L 6 φ L 3 ,
where p = 6+2ε 1+ε ∈ (2, 6). The Sobolev embedding H 1 → L 6 and the interpolation inequalities give us the result. then, up to a subsequence, there exist orthonormal families :

(ω 1 ∞ , . . . , ω k ∞ ) and for all n ∈ N, (ω 1 n , . . . , ω k n ) in L 2 (R 3 , C 2 ) such that: 1. ω i ∞ , ω i n ∈ H 1 (R 3 , C 2 ) for all n, 2. D φn ω i n 2 L 2 = λ i (D φn * D φn ) for all n, 3. D φ∞ ω i ∞ 2 L 2 = λ i (D φ∞ * D φ∞ ), 4. lim n→∞ λ i (D φn * D φn ) = λ i (D φ∞ * D φ∞ ), 5. lim n→∞ ω i n = ω i ∞ in H 1 , for all 1 ≤ i ≤ k.
This proposition is true in the symmetric case too. Proof. We will prove this by induction on k. Let k ≥ 1. Assume that inequality (4.3.2) is true for k. Then, if k > 1, we have that sup

n∈N λ k-1 (D φn * D φn ) ≤ sup n∈N λ k (D φn * D φn ) < m 2 .

The symmetric case 4.4.1 Pre-compactness results

The soliton bag

We show now the existence of a minimizer of problem (4.1.5).

Lemma 4.4.1.

Let 1 ≤ k 1 ≤ • • • ≤ k N ≤ K. Assume that: 0 < ls K = inf N λ K + (H φ ) + R 3 [ |∇φ| 2 2 + U (φ)]dx : φ ∈ H 1 rad < N m.
Then, there exists a minimizer φ ∈ H 1 rad of problem (4.1.5).

The pre-compactness of a minimizing sequence is obtained thanks to the compactness of the embeddings of H 1 rad (R 3 ) into L p (R 3 ) for all p ∈ (2, 6) proven by Strauss [Str77] and generalized by Lions [Lio82]. Proof. There exists a minimizing sequence (φ n ) ⊂ H 1 rad (R 3 , R) of problem (4.1.5) such that:

sup n∈N N λ K + (H φn ) + R 3 |∇φ n | 2 2 + U (φ n ) dx < N m,
so, by the non-negativeness of U and Theorem 4.2.7, for all i ∈ {1, . . . , N } :

sup n∈N λ k i (D φn * D φn ) < m 2 .
Because of (H2), (φ n ) is a bounded sequence of H 1 rad (R 3 , R). By the compactness properties of the radial Sobolev spaces due to Strauss [Str77] and Lions [Lio82], there exists φ ∞ ∈ H 1 rad (R 3 , R) such that, up to a subsequence, we have: φ n → φ ∞ weakly in H 1 , a.a, strongly in L p for 2 < p < 6. Thus, by Proposition 4.3.3, up to another subsequence, we have:

lim k→∞ λ i (D φn k * D φn k ) = λ i (D φ∞ * D φ∞ ), for all i ∈ {1, . . . , N } so, lim inf k→∞ N i=1 λ k i + (H φn k ) + R 3 |∇φn k | 2 2 + U (φ n k ) dx = N i=1 λ k i + (H φ∞ ) +lim inf k→∞ R 3 |∇φn k | 2 2 + U (φ n k ) dx ≥ N i=1 λ k i + (H φ∞ ) + R 3 |∇φ∞| 2 2 + U (φ ∞ ) dx.
This ensures that φ ∞ is a minimum of problem (4.1.5) and that (φ n k ) tends to φ ∞ strongly in H 1 .

Lemma 4.5.2. Let us assume that I(1) < N m, then every minimizing sequence (φ n ) of

I(1) = inf{N λ 1 + (H φ ) + R 3 |∇φ| 2 2 + U (φ) dx : φ ∈ H 1 (R 3 , R)}
converges in H 1 to a minimum of problem (4.1.5), up to translation and extraction.

Proof. Let (φ n ) be a minimizing sequence such that:

sup n∈N N λ 1 + (H φn ) + R 3 |∇φ n | 2 2 + U (φ n ) dx < N m.
(φ n ) is a bounded sequence in H 1 because of (H2) and

sup n∈N λ 1 (D φn * D φn ) < m 2 .
We will now apply the concentration compactness method to get the result. We follow the presentation of Lewin [Lew10] based on [Lie83] (see also [Lio84a,Str08]). Let us assume first that the sequence vanishes, then:

φ n → 0 strongly in L p for p ∈ (2, 6),
and Proposition 4.3.3 leads us to a contradiction. So, there exists a subsequence (n k ), a sequence (x n k ) ⊂ R 3 and φ 0 ∈ H 1 \{0} such that:

φ n k ( . -x n k ) φ 0 weakly in H 1 .
We define (ω n k ) a sequence of H 1 such that ω n k L 2 = 1 and

D φn k ω n k L 2 = λ 1 + (H φn k ).
Up to extraction, there is ω 0 ∈ H 1 such that:

ω n k ( . -x n k ) ω 0 weakly in H 1 .
Let (R k ) be an increasing sequence of R + such that lim k→∞ R k = ∞, then, up to a subsequence, there exists

(φ 1,k ), (φ 2,k ), (ω 1,k ), (ω 2,k ) ⊂ H 1 , such that: 1. ω n k -ω 1,k -ω 2,k H 1 → 0, φ n k -φ 1,k -φ 2,k H 1 → 0, 2. ω 1,k ( . -x n k ) → ω 0 φ 1,k ( . -x n k ) → φ 0 weakly in H 1 , strongly in L p for p ∈ [2, 6), 3. supp(φ 1,k ) ∪ supp(ω 1,k ) ⊂ B(x n k , R k ), supp(φ 2,k ) ∪ supp(ω 2,k ) ⊂ R 3 \B(x n k , 2R k ).
We get:

I(1) = lim inf k→+∞ N D φn k ω n k L 2 + R 3 |∇φ n k | 2 2 + U (φ n k ) dx ≥ lim inf k→+∞ N D φ 1,k ω 1,k 2 L 2 + D φ 2,k ω 2,k 2 L 2 1/2 • • • + R 3 |∇φ 1,k | 2 2 + U (φ 1,k ) dx + R 3 |∇φ 2,k | 2 2 + U (φ 2,k ) dx ≥ lim inf k→+∞ N ω 0 2 L 2 λ 1 + (H φ 0 ) 2 + (1 -ω 0 2 L 2 )λ 1 + (H φ 2,k ) 2 1/2 • • • + R 3 |∇φ 0 | 2 2 + U (φ 0 ) dx + R 3 |∇φ 2,k | 2 2 + U (φ 2,k ) dx ≥ I( ω 0 2 L 2 ).
Since φ 0 = 0, ω 0 has to be non zero. Assume now that ω 0 L 2 ∈ (0, 1). Lemma 4.5.1 ensures that :

I(t) = I(1), for all t ∈ [0, 1].
We must have:

lim k→+∞ λ 1 + (H φ 2,k ) = λ 1 + (H φ 0 ).
If not, assume for instance that there exists a another subsequence such that:

lim k→+∞ λ 1 + (H φ 2,k ) > λ 1 + (H φ 0 ), then , 
I(1) = lim inf k→+∞ E(φ 0 , φ 2,k , ω 0 2 L 2 ) > lim inf k→+∞ E(φ 0 , φ 2,k , 1) ≥ I(1).
This is impossible. The same argument leads to a contradiction with:

lim k→+∞ λ 1 + (H φ 2,k ) < λ 1 + (H φ 0 ).
Thus, we get:

I(1) = lim inf k→+∞ N λ 1 + (H φ 0 ) • • • + R 3 |∇φ 0 | 2 2 + U (φ 0 ) dx + R 3 |∇φ 2,k | 2 2 + U (φ 2,k ) dx and lim inf k→+∞ R 3 |∇φ 2,k | 2 2 + U (φ 2,k ) dx = 0.
By Proposition 4.3.3, we get the contradiction: Proof. We have:

m = lim k→+∞ λ 1 + (H φ 2,k ) = λ 1 + (H φ 0 ).
-∆φ + U (φ) + N g λ Re [ω * (-iD φ ω)] = 0, and 
(ψ, βψ) = U * F W ω 0 * T βT * U * F W ω 0 = 1 2 ω Sω * 0 -i i 0 ω Sω = 1 λ Re [ω * (-iD φ ω)] .
The next lemma shows that the minimizers of (4.1.6) also satisfy Euler-Lagrange equations.

Lemma 4.5.7. Assume that g ∈ (0, m). Let χ Ω ∈ BV (R 3 , R) and ω ∈ H 1 (R 3 , C 2 ) be such that ω L 2 = 1 and

J(1) = N D -χ Ω ω L 2 + aP (Ω) + b|Ω|, then, aH Ω + b -N gψ * βψ = 0, on ∂Ω where ψ = (U F W T ) * ω 0 is an normalized eigenvector of H -χ Ω associated with the smallest positive eigenvalue λ = D -χ Ω ω L 2 .
Sketch of Proof. We have:

aH + b - N g λ Re [ω * (-iD φ ω)] = 0, on ∂ * Ω.
The arguments of the proof of the previous lemma give the result.

This ends the proofs of theorems 4.1.10 and 4.1.13.

Gamma convergence results

We give here the proof of Proposition 4.1.15 based on [Mod87, Bra98, Bra06, Ste88]: Proof. Let (ε n ) be a decreasing sequence converging to 0 and (φ n ) be such that: 3(q+2) 4 ], lim n→+∞ E εn (φ n ) exists and is finite.

   lim n→+∞ φ n = φ in L p for all p ∈ [2,
Up to extraction, we can assume that (φ n ) tends to φ almost everywhere.

(φ n ) ⊂ H 1 is a bounded sequence in L 2 and lim inf n→+∞ R 3 W (φ n )dx = R 3 W (φ)dx = 0.
So, there exists a subset Ω of R 3 such that φ = -χ Ω and |Ω| = φ 2 L 2 < +∞. Moreover, we have for all n by Cauchy-Schwarz inequality:

R 3 ε n |∇φ n | 2 + W (φ n )/ε n dx ≥ R 3 2|∇φ n | W (φ n )dx = |∇(W • φ n )|(R 3 ),
where W(t) = 2 t 0 W (s)ds and |∇w|(A) denotes the variation of w ∈ L 1 on the Borel set A. Since, there is C > 0 such that:

W(t) ≤ C(|t| 2 + |t| q+2 2 ) ∀t, (W • φ n ) is bounded in BV, converges to W • φ in L p for all p ∈ [1, 3/2]
. Thus, we get:

W • φ = aχ Ω ∈ BV, φ = -χ Ω ∈ BV, lim inf n→+∞ |∇(W • φ n )|(R 3 ) ≥ |∇(W • φ)|(R 3 ) = aP (Ω), so, lim inf n→+∞ E εn (φ n ) ≥ E 0 (φ) and Γ -lim inf ε→0 E ε (φ) ≥ E 0 (φ).
It remains to construct recovering sequences. For R > 0 and every

Ω ⊂⊂ B(0, R) such that χ Ω ∈ BV, Sternberg [Ste88] constructs a sequence (φ ε ) ⊂ H 1 0 (B(0, R)) such that:      (φ ε ) converges to -χ Ω in L 1 (B(0, R)), φ ε L ∞ ≤ 1 for all ε > 0, lim sup ε→0 B(0,R) ε|∇φ ε | 2 + W (φ ε )/ε dx = aP ( Ω). thus, Γ -lim sup ε→0 E ε (-χ Ω) ≤ E 0 (-χ Ω).
For every χ Ω ∈ BV, we have

(χ Ω∩B(0,R) ) R>0 ⊂ BV tends to χ Ω in L p for all p ∈ [1, +∞), (|∇χ Ω∩B(0,R) |(R 3 )) tends to |∇χ Ω |(R 3 ), so, lim R→+∞ E 0 (-χ Ω∩B(0,R) ) = E 0 (-χ Ω ).
Since the Γ-limit-sup is lower semi-continuous, we obtain:

Γ -lim sup ε→0 E ε (-χ Ω ) ≤ lim inf R→+∞ Γ -lim sup ε→0 E ε (-χ Ω∩B(0,R) ) ≤ lim inf R→+∞ E 0 (-χ Ω∩B(0,R) ) ≤ E 0 (-χ Ω ).
The following lemmas are part of the proof of Theorem 4.1.16. We introduce for ε > 0:

Z ε = {φ ∈ L 2 (R 3 , R) ∩ L 3(q+2) 4 (R 3 , R) : R 3 W (φ) ε ≤ N m}, G ε (φ) = |∇W • φ|(R 3 ) + b φ 2 L 2 if φ ∈ Z ε , +∞ otherwise, and for t ∈ [0, 1], φ 1 ∈ {-χ Ω ∈ BV }, φ 2 ∈ Z ε , F ε (φ 1 , φ 2 , t) = N tλ 1 + (H φ 1 ) 2 + (1 -t)λ 1 + (H φ 2 ) 2 1/2 + E 0 (φ 1 ) + G ε (φ 2 ) J ε (t) = inf{F ε (φ 1 , φ 2 , t) : φ 1 ∈ {-χ Ω ∈ BV }, φ 2 ∈ Z ε }
Lemma 4.6.1. We have for all ε > 0, that J ε is concave, continuous and

0 ≤ J ε (t) ≤ N m (4.6.1)
for all t ∈ [0, 1]. There exists a concave function J 0 such that (J ε ) tends to J 0 pointwise in [0, 1] as ε tends to 0 and 0 ≤ J 0 (0) ≤ J 0 (t), for all t ∈ [0, 1].

Proof. The same argument as in Lemma 4.5.1 gives us inequality (4.6.1). J ε is concave and continuous as an infimum of concave and continuous functions. (J ε ) is a non-increasing sequence since (Z ε ) is non-decreasing sequence of sets. Hence, (J ε ) converges point-wise to a concave function J 0 in [0, 1] as ε tends to 0. The remaining follows immediately.

The core of the proof of Theorem 4.1.16 is given by the following lemma. We use here the concentration compactness method and the Γ-convergence theory.

Lemma 4.6.2. We have:

J 0 (0) = J 0 (1).

If J 0 (0) < N m and for all n, there is φ n ∈ Z εn such that:

lim n→+∞ N λ 1 + (H φn ) + G εn (φ n ) = J 0 (0),
where (ε n ) is a sequence which tends to 0, then, up to a subsequence, up to translation, W • φ n → W • (-χ Ω ) strictly in BV φ n → -χ Ω strongly in L p for p ∈ [2, 3(q+2) 4 ] where χ Ω ∈ BV.

Then, following the same notation of theorem 3.84 of [AFP00], we have that φ i,n belongs to BV (R 3 , R) for i ∈ {1, 2} and |(W • φ n ) -|ds.

|∇W • φ 1,n |(R 3 ) = |∇W • φ n | B(
Theorem 3.86 of [AFP00] ensures moreover that there exists a constant c > 0 such that for all w ∈ BV (A) :

∂B(0, 3 2 ) |w ± |ds ≤ c w L 1 (A) + |∇w|(A) ,
where A = B(0, 2)\B(0, 1). By a rescaling argument, we get that for all R > 1, for all w ∈ BV (A R ) :

∂B(0, 3R 2 ) |w ± |ds ≤ c w L 1 (A R ) /R + |∇w|(A R ) ≤ c w L 1 (A R ) + |∇w|(A R ) ,
where A R = B(0, 2R)\B(0, R).

We obtain thanks to equations (4.6.2):

J 0 (0) = lim +G εn (φ 1,n ) + G εn (φ 2,n )

≥ lim inf n→+∞ N ω 2 L 2 λ 1 + (H -χ Ω ) 2 + (1 -ω 2 L 2 )λ 1 + (H φ 2,n ) 2 1/2 +E 0 (-χ Ω ) + G εn (φ 2,n ) ≥ J 0 ( ω 2 L 2 ).
This imposes ω L 2 > 0, otherwise, J 0 (0) ≥ c + J 0 (0) with c > 0. If ω L 2 ∈ (0, 1), then we have by Lemma 4.6.1: J 0 (t) = J 0 (0), for all t ∈ [0, 1]. As in the proof of Lemma 4.5.2, we have:

lim n→+∞ λ 1 + (H φ 2,n ) = λ 1 + (H -χ Ω )
and we must have: lim inf n→+∞ G εn (φ 2,n ) = 0, so, we get the contradiction:

lim n→+∞ λ 1 + (H φ 2,n ) = m = λ 1 + (H -χ Ω ) < m.
Thus, we obtain that ω L 2 = 1 and lim inf n→+∞ G εn (φ 2,n ) = 0, so that, W • [φ n ( . -x n )] → W • (-χ Ω ) strictly in BV φ n ( . -x n ) → -χ Ω strongly in L p for p ∈ [2, 3(q+2) 4 ] and J 0 (0) = J 0 (1) = N λ 1 + (H -χ Ω ) + E 0 (-χ Ω ).

Let us write the proof of Theorem 4.1.16 which follows from Proposition 4.1.15 and the previous lemmas. Proof. The first part of the theorem follows from Proposition 4.3.3 and the fact that the Γ-convergence remains true if we add continuous functions.

We assume next that: J 0 (1) < N m.

Lemma 4.5.4 ensures that there exists -χ Ω ∈ BV such that:

N λ 1 + (H -χ Ω ) + E 0 (-χ Ω ) = J 0 (1).

By Proposition 4.1.15, there is a sequence (φ ε ) ⊂ H 1 such that:

   lim sup ε→0 E ε (φ ε ) ≤ E 0 (-χ Ω ), φ ε → -χ Ω , in L 2 ∩ L 3(q+2) 4
.

Thus, we get: lim sup ε→0 l ε s ≤ lim sup ε→0 N λ 1 + (H φε ) + E ε (φ ε ) ≤ J 0 (1) < N m.

There exists ε 0 > 0 such that for all 0 < ε < ε 0 , l ε s < N m, and by Lemma 4.5.2, there is φ ε ∈ H 1 such that:

E ε (φ ε ) = l ε s .
We have: Lemma 4.5.2 ensures that there exists ε 0 > 0 such that for all 0 < ε < ε 0 , problem (4.1.9) has a minimum φ ε ∈ BV rad . We get that (W • φ ε ) is bounded in BV and (φ ε ) in L 2 . So by Proposition 4.A.2, there exists a subsequence (ε n ) and φ = -χ Ω ∈ BV such that: W • φ n → W • φ strongly in L p for all p ∈ (1, 3/2) and a.a, φ n → φ strongly in L p for all p ∈ (2, 3(q+2) 4 ). By Proposition 4.3.3, we have

lim inf n→ E εn,k 1 ,...,k N (φ n ) ≥ N i=1 λ k i + (H φ ) +lim inf n→+∞ E εn (φ n ) ≥ E 0,k 1 ,...,k N (φ).
Thus, we get the conclusion of the theorem.

The M.I.T. bag limit

We give here the proofs of Theorem 4.1.24 and Proposition 4.1.23.

Lemma 4.7.1. Let χ Ω ∈ BV (R 3 , R) and 0 < m < M. We have for ω ∈ H 1 (R 3 , C 2 ):

σ.∇ω + (mχ

Ω + M χ Ω c )ω 2 L 2 (R 3 ) = σ.∇ω 2 L 2 (R 3 ) + m 2 ω 2 L 2 (Ω) + M 2 ω 2 L 2 (Ω c ) + (M -m) ∂Ω ω * (σ.n)ωdz
There is C > 0 such that:

C -σ.∇ω + (mχ Ω + M χ Ω c )ω 2 L 2 (R 3 ) ≥ 1 M ∇ω 2 L 2 (R 3 ) + ω 2 L 2 (Ω) + M ω 2 L 2 (Ω c ) + σ.∇ω 2 L 2 (Ω) ,
C depends neither on Ω nor on ω.

Proof. Let c 1 , c 2 > 0, we have:

-

c 1 σ.∇ω + c 2 ω 2 L 2 (Ω c ) = c 2 1 σ.∇ω 2 L 2 (Ω c ) + c 2 2 ω 2 L 2 (Ω c ) • • • -c 1 c 2 ∂Ω ω * (σ.n)ωdz.
So, we get:

2 -σ.∇ω + (mχ Ω + M χ Ω c )ω 2 L 2 (R 3 ) ≥ 2M m -m 2 M 2 ∇ω 2 L 2 (R 3 ) + m 2 ω 2 L 2 (Ω) + 2M m ω 2 L 2 (Ω c ) + σ.∇ω 2 L 2 (Ω) .
Lemma 4.7.2. For any C > 0, there exists a constant c 0 > 0 such that if ω belongs to H 1 sym (R 3 , C 2 ) and satisfies:

C ≥ 1 M ∇ω 2 L 2 (R 3 ) + M ω 2 L 2 (B(0,R) c ) + σ.∇ω 2 L 2 (B(0,R)) + ω 2 L 2 (B(0,R)) , for M > m and R > 0, then, ω L 3 (R 3 ) ≤ c 0 . c 0 does not depend on M, R or ω.

Proof. Let ω ∈ H 1 sym (R 3 , C 2 ), ω(x) = v(r) 1 0 + u(r) cos(θ) sin(θ)e iϕ where (r, θ, ϕ) are the spherical coordinates of x. We have: Let us remark that this inequality is wrong when the domain is an annulus and u(r) = 1/r 2 . Hence, we obtain: We are now able to give the proof of Theorem 4.1.24. Proof. Lemma 4.2.10 and the arguments of the proof of Theorem 4.1.12 ensure that there exist C 0 , n 0 > 0, for n ≥ n 0 , a radius R n > 0 minimizing inf N λ 1 + (H n B(0,R) ) + aP (B(0, R)) + b|B(0, R)| : R > 0 , on [R n , +∞), so,

B(0,R) |∇|ω| 2 |dx ≤ σ.
u n (R n ) v n (R n ) → 1.
We finally get that (u n , v n ) converges uniformly to a function (u, v) on where ω n is normalized by c n . We get:

σ.∇ω n + M n ω n 2 L 2 (B(0,R) c ) → 0 and the result follows.

Let us now prove Proposition 4.1.23. Proof. Let R be a fixed positive constant. We recall that λ 1 M IT (B(0, R)) = inf{ Dω L 2 (B(0,R)) : ω ∈ H 1 sym (B(0, R), C 2 ), ω L 2 (B(0,R)) = 1}.

Let ω ∈ H 1 sym (B(0, R), C 2 ). We get that: These are non-decreasing positive functions such that for all R > 0 and n:

Dω 2 L 2 (B(0,R)) = σ.
Q n (R) + K n (R) ≤ u n BV (R N ) ≤ C.
We get for all R:

Q n (R) → B(0,R) |u|dx =: Q(R),
and up to extraction, there exists K ∈ BV (0, +∞) such that:

K n (R) → K(R).
We denote l := lim R→+∞ K(R). There exists a subsequence (n k ) such that:

|Q n k (R k ) -Q(R k )| +|Q n k (R k ) -Q(R k )| + . . . +|K n k (R k ) -K(R k )| + |K n k (R k ) -K(R k )| ≤ 1/k.
We get:

B(0,R k ) |u n k |dx - R N |u|dx = |Q n k (R k ) -Q(∞)| ≤ 1/k + |x|>R k |u|dx,
and the theorem of the missing term in the Fatou lemma (see [LL01]) ensures that (u n k χ B(0,R k ) ) tends to u in L 1 . This remains true in L p for 1 ≤ p < 1 * by interpolation. Moreover, we have:

R k <|x|<R k |u n k |dx = Q n k (R k ) -Q n k (R k ) ≤ 1/k + |Q(R k ) -Q(R k )|, |∇u n k |({R k < |x| < R k }) = K n k (R k ) -K n k (R k ) ≤ 1/k + |K(R k ) -K(R k )|,
so that the second point is also true. 

A 1 :=   n 1 L 1 ∂ 1 u L 1 σ 1 u n 2 L 1 ∂ 2 u L 1 σ 2 u n 3 L 1 ∂ 3 u L 1 σ 3 u   , A 2 :=   n 1 L 2 ∂ 1 u L 2 σ 1 u n 2 L 2 ∂ 2 u L 2 σ 2 u n 3 L 2 ∂ 3 u L 2 σ 3 u   et B :=   n 1 n 1 n 1 n 2 n 2 n 2 n 3 n 3 n 3   .
Comme le déterminant de B est 1 par hypothèse, on a On a de plus v 1 (x) -σ 3 v 1 (-x) = v 1 (x) -v 1 (-x) = 0 pour tout x tel que x 3 = 0. Il existe donc une constante C > 0 telle que

Résultats de prolongement

| v 1 (x) -σ 3 v 1 (-x)| ≤ C|x 3 |
pour tout x ∈ R 3 . Soit η une fonction de C ∞ (R) telle que η(t) = 0 si t < 1/2, 1 si t > 1.

On note η k la fonction définie par η k (t) = η(kt) for k > 0. Alors, Le reste de la preuve reprend les mêmes arguments.

ψ k : x → η k (x 3 )( v 1 (x) -σ 3 v 1 (-x)) appartient à C ∞ 0 (R 3 + , C 2 ) et

Opérateur de Dirac supersymétrique

On a montré que (Q, D(Q)) est un opérateur de supercharge pour β. Le lemme suivant est un corollaire du théorème 5.13 de [Tha91]. De plus, on a

λ 2 k = inf V ⊂D(D + ) dimV =k sup u∈V u L 2 (Ω)=1 m 2 + ∇u 2 L 2 (Ω) + ∂Ω (m + H Ω 2 )|u| 2 ds.
Démonstration. Le lemme 5.2.1 assure que 0 / ∈ σ(D -D + ). Ainsi, l'opérateur D -D + est auto-adjoint et inversible. Son inverse est bornée de L 2 (Ω, C 2 ) dans D(D -D + ) ⊂ H 1 (Ω, C 2 ). On obtient le résultat grâce au théorème de Rellich sur les injections compactes de Sobolev et la théorie des opérateurs auto-adjoints compacts.
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  Remarque 1.2.4. Le Lemme 1.2.3 ne couvre pas le cas du potentiel de Coulomb qui est absent des modèles que nous étudions. Une étude complète de l'opérateur de Dirac-Coulomb peut être trouvée dans [Tha91, Chapitre 4, Théorèmes 4.2, 4.4 et Partie 7.4].

  Remarque 1.3.3. La courbure moyenne est définie par H Ω = div ∂Ω n dès que Ω est de classe C 2 [HP05, Définition 5.4.7]. Si Ω est une boule de rayon R > 0 alors H Ω = 2 R . Nous remarquons que parfois la courbure moyenne est définie comme H Ω 2 [AFP00, Remarque 7.33]. Remarque 1.3.4. La condition de Dirichlet est souvent inadéquate pour démontrer l'auto-adjonction d'opérateurs différentiels d'ordre 1. Par exemple, l'opérateur T = i d dx sur L 2 (0, 1) de domaine D(T ) = H 1 0 (0, 1) est fermé et symétrique mais n'est pas auto-adjoint. Il possède une infinité d'extensions auto-adjointes T α = i d dx pour tout α ∈ C, de domaine D(T α ) = {u ∈ H 1 (0, 1) : u(0) = αu(1)} (voir [RS80, Parties 8.2 et 10.1]). Dans notre cas, l'opérateur

  vérifiant la condition (H1) et telle que {V = 0} = {0, 1}. Un tel minimum existe. Le terme V /ε pénalise les situations dans lesquelles les fluides se mélangent beaucoup. Modica et Mortolla [Mod87, MM77b] ont démontré le théorème suivant faisant le lien entre la théorie classique et le modèle de Cahn-Hilliard (voir aussi [Ste88]). Théorème 1.5.10. Posons a = 2 1 0
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  (N (r 1 , r 2 ) + (r 2 -r 1 ) + 2).
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  The M.I.T. bag model The M.I.T. bag model is another model where the quark wave functions are perfectly confined in a bag [CJJ + 74, CJJT74, Cho75, Joh75]. It has been widely studied and has lead to results fitting the experiments [Cho75].

  [Tha91, Chapter 5]. Definition 4.2.1. Let τ be a non-trivial unitary involution on a Hilbert space H. A self-adjoint operator Q on H with domain D(Q) is a supercharge with respect to τ if τ D(Q) ⊂ D(Q) and τ Q = -Qτ on D(Q).

Proposition 4.3. 3 .

 3 Let ε > 0. Assume that a sequence (φ n ) converges to φ ∞ strongly in L 3 ∩ L 3+ε . If for k ≥ 1, sup n∈N λ k (D φn * D φn ) < m 2 , (4.3.2)

  and D φ ω L 2 > 0 then,-∆φ + U (φ) + N gψ * βψ = 0, where ψ = (U F W T ) * ω 0is an normalized eigenvector of H φ associated with the smallest positive eigenvalue λ = D φ ω L 2 .Remark 4.5.6. If D φ ω L 2 = 0 then φ satisfies an Euler-Lagrange inequation.

n→+∞ND 2 L 2

 22 φn( . -xn) ω n L 2 + G εn (φ n ) ≥ lim inf n→+∞ N D φ 1,n ( . -xn) ω 1 n (R 3 ) + D φ 2,n ( . -xn)

  φε ) + G ε (φ ε ), ≥ lim sup ε→0 J ε (0) = J 0 (1), and Lemma 4.6.2 concludes the proof. The proof of Corollary 4.1.20 follows immediately from Theorem 4.1.16 and Proposition 4.3.3. We write now the proof of Theorem 4.1.22. Proof. Just as in the proof of Theorem 4.1.16, the Γconvergence follows from Proposition 4.3.3 and lim sup ε→0 l ε s (k 1 , . . . , k N ) ≤ lim sup ε→0 l ε s (K, . . . , K) ≤ l c (K, . . . , K) < N m.

  ∇ω 2 L 2 (B(0,R)) = 4π R 0 |u (r)| 2 + 2|u(r)| 2 r 2 + |v (r)| 2 r 2 dr and σ.∇ω 2 L 2 (B(0,R)) = 4π R 0 u (r) + 2u(r) r 2 + |v (r)| 2 r 2 dr. )| 2 s 2 + 4|u(s)| 2 + 4u(s)u (s)s ds = R 0 |u (s)| 2 s 2 + 4|u(s)| 2 -2|u(s)| 2 ds + 2R|u(R)| 2 ≥ R 0 |u (s)| 2 s 2 + 2|u(s)| 2 dswe get: σ.∇ω 2 L 2 (B(0,R)) ≥ ∇ω 2 L 2 (B(0,R)) .

  ∇ω 2 L 2 (B(0,R)) + ω 2 L 2 (B(0,R)) ≤ C and B(0,R) c |∇|ω| 2 |dx ≤ 1 M ∇ω 2 L 2 (B(0,R) c ) + M ω 2 L 2 (B(0,R) c) ≤ C By Sobolev injection, we get the result.

[ 0 ,

 0 +∞)\(R -ε, R + ε)for any ε > 0 where u (r) + 2u(r)r = -(m -λ)v(r) v (r) = -(m + λ)u(r) on (0, R], u(r) = v(r) = 0 on (R, +∞) and u(R) = lim r→R - u(r) = lim r→R - v(r) = v(R).It remains to prove that λ = λ 1 M IT (B(0, R)). Let R > 0 be the radius of the ball B(0, R) that minimizes inf N λ 1 M IT (B(0, r)) + aP (B(0, r)) + b|B(0, r)| : r > 0 ,and ω ∈ H 1 sym (B(0, R), C 2 ) be an normalized function satisfyingλ 1 M IT (B(0, R)) = Dω L 2 and ω(x) = c cos(θ) -1 sin(θ)e iϕwhere (r, θ, ϕ) are the spherical coordinates of |x| = R. We set ω n (x) = c n    c cos(θ) -1 sin(θ)e iϕ exp(-M n (r -R)) for x ∈ B(0, R) c w(x) for x ∈ B(0, R)

  ∇ω 2 L 2 (B(0,R)) + m 2 + m ω 2 L 2 (∂B(0,R)) A scaling argument shows that R → λ 1 M IT (B(0, R)) is a convex decreasing function such that    lim R→+∞ λ 1 M IT (B(0, R)) = m, lim R→0 λ 1 M IT (B(0, R)) = +∞.We get that R → N λ 1 M IT (B(0, R)) + aP (B(0, R)) + b|B(0, R)| is a strictly convex and coercive function. Hence, the minimum exists and is unique.

  Proposition 4.B.3. Let (u n ) be a bounded sequence in BV (R N ), (R k ) and (R k ) be two sequences such that for all k, 0 < R k < R k andu n → u ∈ BV (R N ) in L 1 loc R k → +∞.Then, there exists a subsequence (u n k ) such that the following properties are true:1. (u n k χ B(0,R k ) ) tends to u in L p if 1 ≤ p < 1 * , 2. R k <|x|<R k |u n k |dx + |∇u n k |(B(0, R k )\B(0, R k )) tends to 0,where χ B(0,R k ) is the characteristic function of the ball B(0, R k ).Proof. Let us introduce two Levy's concentration functions:Q n (R) := B(0,R k )|u n |dx and K n (R) := |∇u n |(B(0, R k )).

2 I 2 iI 2 iI 2 I 2 .

 22 Dans ce chapitre, nous étudions l'opérateur de Dirac dans le sac (H Ω 0 , D(H Ω 0 )) introduit dans le modèle du sac du MIT [CJJ + 74, CJJT74, Cho75, Joh75]. Nous rappelons que H Ω 0 ψ = H 0 ψ pour tout ψ ∈ D(H Ω 0 ) où D(H Ω 0 ) = {ψ ∈ H 1 (Ω, C 4 ) : -iβ(α.n)ψ = ψ on ∂Ω}, H 0 l'opérateur de Dirac libre de masse m > 0 et Ω est un ouvert borné, non vide et de classe C 2 de R 3 . Nous démontrons les propriétés de cet opérateur grâce à la théorie des opérateurs de Dirac supersymétriques [Tha91, Chapitre 5] présentée dans le cas particulier des opérateurs de Dirac avec potentiel scalaire dans la partie 1.2.4. En particulier, nous obtenons que H Ω 0 est auto-adjoint et que son spectre est symétrique par rapport à 0. Nous donnons aussi une caractérisation de ses valeurs propres. 5.1 L'opérateur de Dirac dans le sac Définition 5.1.1. Soient (D ± , D(D ± )) et (Q, D(Q)) les opérateurs définis parD ± u := -iσ.∇u ± imu pour tout u ∈ D(D ± ) := {u ∈ H 1 (Ω, C 2 ) : σ.nu = ∓u sur ∂Ω} et Q := T H 0 T -1 = 0 D - D + 0 de domaine D(Q) = T D(H Ω 0 ) où T := 1 √ Remarque 5.1.2. On a H 1 0 (Ω, C 2 ) ⊂ D(D ± ), H 1 0 (Ω, C 4 ) ⊂ D(H Ω 0 ) ainsi, D ± et H Ω 0 sont des opérateurs densément définis sur L 2 (Ω, C 2 ).Si cela n'est pas nécessaire à la compréhension, nous ne préciserons pas l'ensemble Ω.Remarque 5.1.3. On aT (-iβ(α.n))T -1 = -i 3 k=1 (T βα k T * )n k = -σ.n 0 0 σ.n .Or, si -iβ(α.n)ψ = ψ sur ∂Ω, alors on aT (-iβ(α.n))T -1 (T ψ) = (T ψ) donc D(Q) = D(D + ) ⊕ D(D -).Le résultat suivant implique le théorème 1.3.2. Théorème 5.1.4. (D + , D(D + )) est l'adjoint de (D -, D(D -)) et vice et versa. (H Ω 0 , D(H Ω 0 )) et (Q, D(Q)) sont auto-adjoints sur L 2 (Ω, C 4 ) et unitairement équivalents à √ m 2 où D -D + = -∆ + m 2 est un opérateur auto-adjoint de L 2 (Ω, C 2 ) de domaine D(D -D + ) = {u ∈ D(D + ) : D + u ∈ D(D -)}.Le spectre de H Ω 0 est discret et il existe une suite (λ k ) k>0 croissante et non bornée de (0, +∞) telle queσ(H Ω 0 ) = {±λ k : k ∈ N\{0}} définie par λ k = inf V ⊂D(D + )H Ω est la courbure moyenne signée de ∂Ω.5.2 Preuve du théorème 5.1.45.2.1 Étude préliminaireDans les lemmes suivants, nous étudions les opérateurs D ± .Lemme 5.2.1. Pour tout u ∈ D(D ± ), on aD ± u 2 L 2 (Ω) = σ.∇u 2 L 2 (Ω) + m ∂Ω |u| 2 ds + m 2 u 2 L 2 (Ω) et l'application b ± : D(D ± ) 2 -→ C (w 1 , w 2 ) -→ (D ± w 1 , D ± w 2 ) L 2 (Ω)est un produit scalaire sur D(D ± ).Démonstration. Soit u ∈ D(D ± ). On aD ± u 2 L 2 (Ω) = σ.∇u 2 L 2 (Ω) + m 2 u 2 L 2 (Ω) ∓ m(σ∇u, u) L 2 (Ω) ∓ m(u, σ.∇u) L 2 (Ω) = σ.∇u 2 L 2 (Ω) + m 2 u 2 L 2 (Ω) ∓ m ∂Ω u | σ.nu ds = σ.∇u 2 L 2 (Ω) + m 2 u 2 L 2 (Ω) + m ∂Ω |u| 2 ds. ( , ) L 2 (Ω) est le produit scalaire de L 2 (Ω, C 2 ) et | est le produit scalaire canonique de C 2 . Lemme 5.2.2. Soit u ∈ D(D ± ). Alors, on a σ.∇u 2 L 2 (Ω) = ∇u 2 L 2 (Ω) u, v) L 2 (Ω) = (u, D -v) L 2 (Ω) pour tous u ∈ D(D + ) et v ∈ D(D -).Exemple. Si Ω est une boule de rayon R > 0, alors H Ω (x) = 2/R pour tout x ∈ ∂Ω.Démonstration. Soit u ∈ D(D ± ). On a pour tout x ∈ Ω |σ.∇u| 2 = |∇u| 2 + j =k σ j ∂ j u | σ k ∂ k u |∇u| 2 + i j,k,l ε jkl ∂ j u | σ l ∂ k ucar σ j σ k = iε jkl σ l où ε jkl est le symbole de Levi-Civita. On pose pour j ∈ {1, 2, 3}X j := i k,l ε jkl u | σ l ∂ k u alors, ∇.X = i j,k,l ε jkl ∂ j u | σ l ∂ k u + i j,k,l ε jkl u σ l ∂ 2 k,j u = i j,k,l ε jkl ∂ j u | σ l ∂ k u .Par la formule de Green, on a Ω ∇.X = i ∂Ω j,k,l ε jkl n j σ l u | ∂ k u où n = (n 1 , n 2 , n 3 ) est la normale extérieure à Ω. Soient n et n deux vecteurs de R 3 tels que (n, n , n ) soit une base orthonormée directe. Nous notons L 1 et L 2 les formes linéaires de C 2 définies par L 1 : u → u | e 1 , L 2 : u → u | e 2 , et nous définissons les matrices

ε

  jkl n j σ l u | ∂ k u = det(A 1 ) + det(A 2 ) = det(B A 1 ) + det(B A 2 ), or, B A 1 =   0 L 1 ∂ n u L 1 σ.n u 0 L 1 ∂ n u L 1 σ.n u 1 * *   et B A 2 =   0 L 2 ∂ n u L 2 σ.n u 0 L 2 ∂ n u L 2 σ.n u 1 u ∂ n u -σ.n u ∂ n u .Nous utilisons maintenant l'hypothèse σ.nu = ±u sur le bord de Ω. On aσ.n u ∂ n u = ± σ.n σ.nu ∂ n u = ± iσ.(n × n)u ∂ n u = ∓i σ.n u ∂ n u , σ.n u ∂ n u = ± σ.n σ.nu ∂ n u = ± iσ.(n × n)u ∂ n u = ±i σ.n u ∂ n u , donc, Ω ∇.X = ± ∂Ω σ.n u ∂ n u + σ.n u ∂ n u .En outre, on a sur ∂Ω∂ n u = ±∂ n σ.nu = ±(σ.∂ n n)u ± σ.n(∂ n u) donc σ.n u ∂ n u = ± σ.n u (σ.∂ n n)u ± u (σ.n )(σ.n)∂ n u = ± σ.n u (σ.∂ n n)u ∓ u (σ.n)(σ.n )∂ n u = ± σ.n u (σ.∂ n n)u -u (σ.n )∂ n u = ± 1 2 σ.n u (σ.∂ n n)u et σ.n u ∂ n u = ± 1 2 σ.n u (σ.∂ n n)u . u (σ.n )(σ.∂ n n)u + u (σ.n )(σ.∂ n n)u .Remarquons que pour x ∈ ∂Ω S x :T x ∂Ω -→ R 3 v -→ ∂ v n(x)est l'application de forme de la surface orientée ∂Ω. C'est un opérateur symétrique de T x ∂Ω donc diagonalisable dans une base orthonormée. À chaque point x ∈ ∂Ω, il existe une base orthonormée (n, n , n ) et deux réels λ , λ tels queS x n = λ n et S x n = λ n ainsi Ω ∇.X = -1 2 ∂Ω λ u (σ.n )(σ.n )u + λ u (σ.n )(σ.n On a enfin pour tous u ∈ D(D + ) et v ∈ D(D -) (D + u, v) L 2 (Ω) -(u, D -v) L 2 (Ω) = i ∂Ω u | σ.nv = -i ∂Ω u | v = i ∂Ω u | v = 0.Lemme 5.2.3. D(D ± ) muni de b ± est un espace de Hilbert et les opérateurs D ± sont fermés.Démonstration. On a montré dans le lemme 5.2.1 que b ± est un produit scalaire. Soit (u n ) une suite de Cauchy dans D(D ± ) pour b ± . D'après le lemme 5.2.1, pour tout ε > 0, il existe N > 0 tel quem 2 u p -u q 2 L 2 (Ω) + m ∂Ω |u p -u q | 2 ds + σ.∇(u p -u q ) 2 L 2 (Ω) < ε, pour tout p, q > N . Ainsi, on a ∂Ω H Ω |u p -u q | 2 ds ≤ H Ω L ∞ m ε,donc, d'après le lemme 5.2.2,∇u p -∇u q 2 L 2 (Ω) ≤ σ.∇u p -σ.∇u q 2 L 2 (Ω) + 1 2 ∂Ω |H Ω ||u p -u q | 2 ds ≤ (1 + H Ω L ∞ 2m )ε et (u n ) converge dans H 1 vers u ∈ H 1 (Ω, C 2 ).Ceci nous assure que u ∈ D(D ± ). Il reste à montrer que les opérateurs D ± sont fermés. Soient (u n ) une suite de D(D ± ) telle que u n → u dans L 2 , D ± u n → v dans L 2 . (u n ) est une suite de Cauchy pour b ± donc converge vers u ∈ D(D ± ) et v = D ± u.

3 + 3 +(

 33 Dans cette partie, nous préciserons l'ensemble Ω en indice. On muni l'ensembleD Ω := {ω ∈ L 2 (Ω, C 2 ), σ.∇ω ∈ L 2 (Ω, C 2 )} du produit scalaire b : (ω, ω ) ∈ D 2 Ω → (σ.∇ω, σ.∇ω ) L 2 (Ω) + m 2 (ω, ω ) L 2 (Ω) ∈ C.Lemme 5.2.4. D Ω est un espace de Hilbert réflexif et séparable. Si Ω vérifie la condition du segment, alors l'ensemble des restrictions à Ω des fonctions de C ∞ (R 3 , C 2 ) est dense dans D Ω . Démonstration. La preuve suit les idées de [AF03, Théorèmes (3.3), (3.4),(3.22)].Soit γ la forme sesquilinéaire et continue définie par :γ : D 2 Ω → C (ω, ω ) → (σ.∇ω, ω ) L 2 (Ω) + (ω, σ.∇ω ) L 2 (Ω) . On a γ(ω, ω ) = ∂Ω ω * σ.nω ds = -∂Ω ω * ω ds = ∂Ω (σ.nω) * ω ds = ∂Ω ω * ω ds = 0 pout tout ω ∈ D Ω (D + ), ω ∈ D Ω (D -). On définit D + Ω = {ω ∈ D Ω , γ(ω, ω ) = 0, ∀ω ∈ D Ω (D -)} D - Ω = {ω ∈ D Ω , γ(ω, ω ) = 0, ∀ω ∈ D Ω (D + )}. Remarque 5.2.5. On a D Ω (D + ) ⊂ D + Ω , D Ω (D -) ⊂ D - Ω .On souhaite montrer l'égalité de ces ensembles. Comme γ est continue sur D Ω × D Ω , D + Ω et D - Ω sont deux espaces de Hilbert réflexifs et séparables. Alors, on a par définition de D - Ω que R [u(x) * σ.∇( v 2 (x) -σ 3 v 2 (-x))] dx = R -σ.∇u(x)) * ( v 2 (x) -σ 3 v 2 (-x))dx.

3 + 3 +(

 33 .∇u(x)) * ψ k (x)dx = R 3 + u(x) * σ.∇ψ k (x)dx, = R η k (x 3 )u(x) * σ.∇( v 1 (x) -σ 3 v 1 (-x))dx + k R 3 + u(x) * (σ 3 η (kx 3 )( v 1 (x) -σ 3 v 1 (-x))dx. ) * (σ 3 η (kx 3 )( v 1 (x) -σ 3 v 1 (-x))dx ≤ k 0<x 3 <1/k |u(x)||η (kx 3 )||( v 1 (x) -σ 3 v 1 (-x)|dx, ≤ C 0<x 3 <1/k |u(x)|dx, ainsi, par le théorème de Lebesgue, on a R -σ.∇u(x)) * ( v 1 (x) -σ 3 v 1 (-x))dx = R 3 + u(x) * σ.∇( v 1 (x) -σ 3 v 1 (-x))dx, et R 3 u * σ.∇vdx = R 3 + (-σ.∇u(x)) * (v(x) -σ 3 v(-x))dx, = R 3 + (-σ.∇u(x)) * v(x)dx +R 3 -(σ 3 σ.∇u(x)) * v(x)dx.

  2.9. (D + , D(D + )) est l'adjoint de (D -, D(D -)) et vice et versa. On a donc que (Q, D(Q)) et (H Ω 0 , D(H Ω 0 )) sont auto-adjoints. Démonstration. On a déjà montré dans le lemme 5.2.2 que D(D + ) est inclus dans D(D * -). Soit u ∈ D(D * -), il existe h ∈ L 2 (Ω, C 2 ) tel que (u, D -v) L 2 (Ω) = (h, v) L 2 (Ω) pour tout v ∈ D(D -). On obtient que u ∈ D Ω car σ.∇u au sens des distributions est une fonction de L 2 . On a alors que u ∈ D + = D(D + ) d'après le lemme 5.2.8 donc D(D + ) = D(D * -).

β

  Lemme 5.2.10. (Q, D(Q)) est unitairement équivalent à β Q 2 m 2 où D -D + = -∆ + m 2 est un opérateur auto-adjoint de L 2 (Ω, C 2 ) de domaine D(D -D + ) = {u ∈ D(D + ) : D + u ∈ D(D -)}. On obtient alors le lemme suivant : Lemme 5.2.11. (D -D + , D(D -D + )) est un opérateur non borné inversible de L 2 (Ω, C 2 ). Son spectre est discret et il existe une suite (λ k ) croissante et non bornée de (0, +∞) telle que σ(D -D + ) = {λ 2 k : k ∈ N}.

  C 2 ) est symétrique et fermé. Mais, il n'est pas auto-adjoint. En effet, H Ω 0 est une extension auto-adjointe de H dir

0 telle que D(H dir 0

  Les λ i sont les multiplicateurs de Lagrange associés à la contrainte . L 2 . Ici, ( . , . ) est le produit scalaire sur C 4 . Cependant, cette fonctionnelle est fortement indéfinie, c'est-à-dire qu'elle n'est ni bornée inférieurement, ni supérieurement et que ses points critiques sont d'indice de Morse infini[ELS08]. Ceci pose de nombreux problèmes dans la recherche des points critiques.

	Remarque 1.3.7. La condition (H1) est une contrainte mathématique nécessaire pour que E soit bien définie et
	différentiable. Ceci ne restreint pas l'ensemble des potentiels U considérés par les physiciens [FL77a].

  ψ 1 , . . . , ψ N sont les fonctions d'onde des quarks. La fonction χ Ω appartient à {χ ω ∈ BV (R 3 , R)}. |Ω| est le volume de Ω et P (Ω) son périmètre. Nous noterons la variation d'une fonction φ ∈ BV (R 3 , R) sur une ensemble de Borel A par |∇φ|(A). Ainsi, on a

  Pour en trouver une solution, nous pouvons soit fixer la valeur propre λ et laisser la norme L 2 de ψ libre, soit chercher des solutions ψ normalisées. λ est alors un multiplicateur de Lagrange. Dans cette thèse, nous fixerons λ > m > 0 comme Mathieu et Saly[MS84, Mat85].

		1.3.13)
	pour p ∈ (0, 1) et λ > m > 0. ψ représente une fonction d'onde de quark et F modélise l'auto-interaction des
	quarks. ψ = 0 est un état d'énergie nulle dès que p > 0. Il représente le vide de la QCD. Formellement, les
	solutions de (1.3.12) sont les points critiques de	
	(ψ, H 0 ψ) -λ(ψ, ψ) + |(ψ, βψ)| p-1 (ψ, βψ) dx.
	R 3	
	Remarque 1.3.10. L'équation (1.3.12) est non linéaire. Remarque 1.3.11. Comme dans les modèles de soliton de Friedberg et Lee (1.3.5) et d'approximation sac (1.3.9),
	ψ est vecteur propre de l'opérateur de Dirac avec potentiel scalaire donné ici par βF (ψ * βψ).
	Remarque 1.3.12. L'irrégularité de la non-linéarité F
	lim = x→0	F (x) = +∞
	est responsable du mécanisme de confinement mais complique l'étude mathématique. En particulier, dans cette
	thèse, nous avons cherché à étudier ce problème avec des méthodes variationnelles (Théorème de minmax de
	type linking) en suivant Esteban et Séré [ES95], qui ont cependant échoué à cause du manque de régularité de F .
	Tout comme Mathieu et Saly [MS84, Mat85], nous cherchons des solutions localisées ψ de (1.3.12) de la
	forme (1.2.1), c'est-à-dire des fonctions u, v : R +	

  15. Il existe une solution (u, v) de (1.3.14) telle que u et v soient positives sur (0, +∞).

							De plus,
	(u, v) est à support compact si et seulement si			
	0	1	ds g(s)	< +∞ pour g(s) =	0	s	F (t)dt.
	Remarque 1.3.16. En particulier, si F est définie par (1.3.13), alors la solution est à support compact.
	Dans cette thèse, nous avons poursuivi l'étude commencée par Balabane, Cazenave et Vásquez [BCV90] et
	nous nous sommes intéressés à l'existence d'états excités pour le modèle du sac fractionnaire.

en 2012. Ce modèle rend compte des interactions d'un nucléon unique interagissant avec des mésons σ et ω.

  

	Le but est ici de trouver une solution non triviale et localisée
	φ χ	: R 3 → C 4
	du système d'équations suivant	
	iσ.∇χ + |χ| 2 φ -a|φ| 2 φ + bφ = 0, -iσ.∇φ + (1 -|φ| 2 )χ = 0.	(1.3.17)
	σ = (σ 1 , σ 2 , σ 3 ) sont les matrices de Pauli, a et b sont des constantes de couplages strictement positives.
	Esteban et Rota Nodari se sont d'abord intéressées au problème de l'état fondamental [EN12b] et ont cherché
	une solution des équations (1.3.17) parmi les fonctions de la forme (1.2.1). Dans ce cas, le système d'équations
	(1.3.17) devient	
	u + 2 r	

  R ) est une solution d'un système d'équations différentielles ordinaires (E) au sens large, s'il existe au plus un nombre fini n de nombres

  Friedberg et Lee et de sac fractionnaire ont été introduits afin d'approcher le modèle du sac du MIT. Dans cette thèse, nous sommes parvenus à démontrer le lien entre le modèle du soliton de Friedberg et Lee et le modèle d'approximation sac dans la partie 1.5.3. Nous avons de plus étudié les liens entre le modèle du sac du MIT et les modèles d'approximation sac et de sac fractionnaire dans le cas symétrique considéré par les physiciens, c'est-à-dire lorsque les fonctions d'onde des quarks sont cherchées parmi les fonctions de la forme (1.2.1) et que les domaines sont des boules. Nous avons aussi étudié la limite considérée par les physiciens dans le cas symétrique pour dériver les équations du modèle du sac du MIT à partir de celles du modèle d'approximation sac dans le théorème 4.1.24. Si l'on fixe le domaine Ω, cela revient à étudier le comportement des vecteurs propres associés à la plus petite valeur propre positive des opérateurs H 0 + M βχ Ω lorsque M tend vers +∞. Ce problème est bien connu dans le cas non relativiste : c'est le problème de la particule parfaitement confinée dans une boîte [GD95] mais il reste ouvert dans le cas relativiste. Nous avons démontré dans le théorème 2.1.3 que les états fondamentaux du modèle d'approximation du sac convergent vers un état fondamental du problème du sac du MIT lorsque p tend vers 0. Cependant, les limites des états excités sont discontinues et ne peuvent donc pas être des états excités du modèle du sac du MIT. La plupart des résultats obtenus le sont dans le cas symétrique considéré par les physiciens. Cependant une étude approfondie des liens entre ces modèles dans le cas général reste à faire. Ce chapitre reprend le texte intégral de l'article [LT12] paru dans Annales Henri Poincaré en 2012.

	Chapter 2
	Existence of nodal solutions for Dirac
	equations with singular nonlinearities
	Première partie
	Méthodes topologiques pour l'étude de
	modèles de la physique quantique relativiste

  Lemma 2.3.11 ensures that A k is open. By Proposition 2.3.8, I k and A k are bounded. We assume that x / ∈ ∪I n , then setting R > Θ(2+k) π + r 0 , we have H(u x , v x )(R) > 0 because of Lemma 2.3.12. Nevertheless, there exists y ∈ A k as close to x as we want such that H(u y , v y )(R) < 0 by Lemma 2.3.6. This contradicts the continuity of the flow of Lemma 2.3.11. So, x belongs to ∪ n∈N I n . Proposition 2.3.9 ensures then point (iv). The same arguments give point (v). Thanks to Proposition 2.3.9, we immediately get point (vi).

	Since ∪ n∈N	A n is open, we easily get that sup A k / ∈ ∪

n∈N

A n whenever sup A k is well-defined. Let us prove now that x := sup A k belongs to ∪ n∈N I n .

  The following result implies Proposition 4.1.5. Proposition 4.2.11. The operator (H 0 , D(H 0 )) is self-adjoint and there exists a non decreasing sequence of eigenvalues (λ n ) n≥1 ⊂ (m, +∞) which tends to infinity such that:

  |(W • φ n ) + |ds, |∇W • φ 2,n |(R 3 ) = |∇W • φ n | B(x n ,

	x n ,	3R n 2	) +	∂B(xn, 3Rn 2 )
		3R n 2	) c +	∂B(xn, 3Rn 2 )

Ce principe, énoncé par Einstein, stipule que deux particules éloignées ne peuvent pas interagir de manière simultanée. Dit autrement, les bosons de jauge ne peuvent pas voyager plus vite que la vitesse de la lumière.

Deux particules de spin demi-entier, appelées fermions, ne peuvent pas se trouver dans le même état quantique, c'est-à-dire avoir la même fonction d'onde et les mêmes nombres quantiques.
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Chapter 3

Symmetric Excited States for a Mean-Field Model for a Nucleon Ce chapitre reprend le texte intégral de l'article [LTRN13] soumis en 2012.

Résumé: Nous étudions un modèle relativiste de champ moyen pour le noyau dans une limite non relativiste propre à la physique nucléaire. Dans ce modèle phénoménologique, les nucléons n'interagissent qu'avec les mésons ω et σ. Nous démontrons grâce à une méthode de tir, l'existence d'une infinité de solutions.

Proof. Let λ ∈ σ p (H φ ), by a standard bootstrap argument, every associated eigenvector belongs to W 1,q for any q ≥ 2 and so to L ∞ . As we work with functions of the form:

) is a solution of the following system of equation:

and satisfies: u(r) = 1 r 2 ( r 0 s 2 v(s)(λ -m -gφ(s))ds), v(r) = v(0) -r 0 u(s)(λ + m + gφ(s))ds. By a contraction mapping argument [BCV90], the solution is uniquely determined by v(0). So the set of the eigenvectors of H φ of eigenvalue λ is of dimension 1.

It remains to prove that 0 does not belong to σ(H φ ). Let us assume by contradiction that there is ψ ∈ H 1 sym (R 3 , C 4 )\{0} such that H φ ψ = 0. Then, we get that Q φ T ψ = 0 and

where ω 1 , ω 2 ∈ H 1 sym (R 3 , C 2 )\{0}. Thus, we have

and 0 is not simple. This is impossible so 0 / ∈ σ(H φ ).

Let us give another lemma in the non-symmetric case which study the case where 0 ∈ σ(H φ ) and ensures that λ k + (H φ ) is well-defined for all k. Lemma 4.2.6. Assume that φ ∈ L p (R 3 , R) for 3 ≤ p < +∞. Then, we have dim(ker(D φ * D φ )) = dim(ker(D φ D φ * )) = dim(ker(H φ ))/2 =: d/2.

Proof. We have

We suppose that 0 ∈ σ(D φ * D φ ) then, there is

such that -σ.∇ω + (m + gφ)ω = 0.

We get

Assume that the proposition is true for k-1. We get by induction hypothesis, that there exist orthonormal families :

) such that the properties 1,. . . ,5 are true for all 1 ≤ i ≤ k -1. If k = 1, these families are chosen empty. By theorem 4.2.7 and inequality (4.3.2), there exist for all n, ω k

Let us denote by

Then, we have by point 5 of the induction hypothesis:

Thus, we obtain that :

Therefore, there exists ωk

so, by the same arguments, we get:

This gives us point 4 for all 1 ≤ i ≤ k. Moreover,

) is a minimizing sequence of :

By theorem 4.2.7, we get that

where

Thus, up to a subsequence,

) and (ω k n ) converge in H 1 and we get points 3 and 5 for all 1 ≤ i ≤ k.

The bag approximation

As in the previous part, we prove the existence of a minimizer of problem (4.1.6).

Lemma 4.4.2.

Assume that:

Then, there exists a minimizer χ Ω ∈ BV rad of problem (4.1.6).

The arguments are very similar to the ones of Lemma 4.4.1 and we give here only a sketch of proof to stress the differences. Sketch of Proof.

is lower semi-continuous for the topology of L 1 thanks to the lower semicontinuity of

in the topology of L 1 and Proposition 4.3.3. For the reader's convenience, we give in the appendix the proof of the compactness of some embeddings in the BV setting similar to the ones of Strauss [Str77] and Lions [Lio82]. The pre-compactness of a minimizing sequence follows then from Proposition 4.A.2.

Euler-Lagrange equations

We get in the last section the existence of a φ which minimizes (4.1.5) or (4.1.6) for given

Thus, H φ has at least k N eigenvalues in (0, m) associated with normalized eigenvectors (ψ 1 , . . . , ψ N ). It remains to shows that (ψ 1 , . . . , ψ N , φ) satisfies the Euler-Lagrange equations (4.1.1) or (4.1.3).

The functions ψ 1 , . . . , ψ N , φ obtained by minimization of (4.1.5) satisfy the Euler-Lagrange equations (4.1.1) of the soliton bag model. The same is true for the bag approximation.

Proof. We give the proof only in the soliton case. For the bag approximation, the proof follows with the same argument in the setting of set derivation (see [AFP00,Giu84,HP05] for more details). By Lemma 4.2.5, we get that 0 / ∈ σ(H φ ) and every eigenvalue is simple. Let λ(H φ ) ∈ (0, m) be an eigenvalue of H φ and φ ∈ H 1 rad , by Kato-Rellich theorem for the perturbation of the point spectra [RS78b, Theorem 12.8], we have two analytic functions in a neighborhood U of 0:

where for each t ∈ U, λ(H φ+tφ ) is a simple eigenvalue of H φ+tφ and ψ φ+tφ is an associated normalized eigenvector. Thus, we have, for each t ∈ U:

because ψ φ+tφ L 2 = 1 for all t ∈ U. This ensures that:

and we get Lemma 4.4.3.

This ends the proofs of Theorems 4.1.7 and 4.1.12 4.5 The non-symmetric case

Pre-compactness results

The soliton case

We will now focus on the existence of a ground state solution of equations (4.1.1) in the non-symmetric case. The concentration compactness method allows us to deal with the lack of compactness of H 1 (R 3 ) thanks to the so-called concentration-compactness inequality. Nevertheless, the classical one [Lio84a] is not valid yet. In the following, we will introduce a different concentration-compactness inequality to overcome this problem. We denote:

The following lemma is related to the concentration compactness inequality.

Lemma 4.5.1. I is concave, I(0) = I(1),

and the concentration-compactness inequality

Proof. I is concave as an infimum of concave functions. The remaining follows noticing that:

We can now prove the existence of a minimizer of (4.1.5) thanks to the concentration compactness method and Lemma 4.5.1.

Thus, we have ω

The result follows.

The bag approximation

We follow exactly the same ideas. Let us introduce some notations:

and the concentration-compactness inequality

Sketch of Proof. The proof is similar to the one of Lemma 4.5.1. Lemma 4.5.4. Let us assume that J(1) < N m, then for every minimizing sequence (χ Ωn ) of

converges strongly in BV to a minimum of (4.1.6) up to translation and extraction.

Sketch of Proof. The proof is similar to the one of the soliton case. For the reader's convenience, we give in the appendix the straightforward adaptation of the presentation of the concentration compactness method of Lewin [Lew10] to the BV setting.

Euler-Lagrange equations

As in the symmetric case, it remains to show that the minimizer satisfies the Euler-Lagrange equations.

Lemma 4.5.5.

Proof. If J 0 (0) = N m, then, J 0 (0) = J 0 (1) by Lemma 4.6.1. Thus, we can assume that J 0 (0) < N m. Let φ n ∈ Z εn be such that:

We can assume that:

As in the proof of 4.1.15, (φ n ) is uniformly bounded in L 2 and

By Sobolev embedding, (W • φ n ) is a bounded sequence of L 3/2 . Since there is a positive constant c > 0 such that:

and by the interpolation inequalities in L p for all p ∈ [2, 3(q+2) 4 ]. We get that

Let us assume now that this sequence vanishes. Then,

Thus, up to a subsequence, there exist

Since for all n, φ n belongs to Z εn , there exists χ Ω such that (φ n ( . -x n )) tends to -χ Ω almost everywhere, up to another subsequence and

For all n, there exists moreover ω n ∈ H 1 such that ω n L 2 = 1 and

By Lemma 4.3.2, (ω n ) is uniformly bounded in H 1 . Up to a subsequence, (ω n ) tends to ω ∈ H 1 in H 1 weakly. Let 0 < R k be a sequence such that (R k ) tends to +∞. Then, by concentration compactness, there exist:

such that, up to a subsequence,

(4.6.2)

We localize now the φ field. Let us define for all n

a function

satisfying:

where

(R n ) is bounded, so there exists a subsequence (n k ) and R ≥ 0 such that

We claim that R > 0. Indeed, there is for all n, a function ω n ∈ H 1 sym (R 3 , C 4 ) such that:

Lemmas 4.7.1 and 4.7.2 ensure that (ω n k ) is a bounded sequence in L 3 (R 3 ), such that:

so, R has to be positif.

We denote λ n := λ 1 + (H n B(0,R) ). (λ n ) is a bounded sequence of (m, +∞) so, up to a subsequence, we can assume that it converges to λ ∈ [m, +∞). (u n , v n ) satisfies

for r ∈ (0, R) and

We get:

So, u n and v n are spherical Bessel functions on (0, R n ), they have to be of the first kind to belong to L 2 . Thus,

Appendices 4.A A compactness result for bounded variation functions with symmetry

Whereas the embedding of

showed that the restrictions of these embeddings to radial functions are compact for p ∈ (2, 2N N -2 ). This result has been generalized by Lions [Lio82] to other Sobolev spaces.

The adaptation of the proofs of Lions to the BV setting is straightforward and is given here for the reader's convenience. We denote by BV rad (R N ) the subset of BV (R N ) of radial functions where N ∈ N\{0}. The following lemma gives a control of the decay at infinity of the radial BV functions. Lemma 4.A.1. Let N > 1, u ∈ BV rad (R N ), then we have:

Proof. For all u ∈ BV rad (R N ), there exists a sequence (u n ) ⊂ BV rad (R N ) ∩ D(R N ) such that u n converges strictly in BV and almost everywhere to u (see for instance [Bra98,AFP00]). So, we just have to show the lemma for u ∈ BV rad (R N ) ∩ D(R N ). We denote u(x) = u(r), and we have:

Sickel, Skrzypczak and Vybiral [SSV12] studied the properties of radial functions of Besov, Lizorkin-Triebel and BV spaces, generalizing the estimates of this type given by Lions and Strauss. The proof of these inequalities is the first step to get the compactness of the embedding of the following proposition. Proposition 4.A.2. Let N > 1 and denote 1 * = N/(N -1), then the restriction to BV rad (R N ) of the embedding

Proof. Let (u n ) be a bounded sequence in BV rad (R N ). Up to extraction, there exists a function u belonging to BV rad (R N ) such that (u n ) tends to u in L p loc for p ∈ (1, 1 * ). Moreover, for R > 0, we have:

by Lemma 4.A.1. The result follows immediately.

4.B The locally compact case of the concentration compactness method in the BV setting

A general version of the concentration compactness method can be found in the papers of Lions (see for instance [Lio84a]) or the book of Struwe [Str08]. Nevertheless, in this paper, we just need the concentration compactness in a simpler setting: we study bounded sequences of functions in BV, so that, the loss of compactness can just come from the action of the group of translations. Thus, for the reader's convenience, we give in this part, a straightforward adaptation to BV of the presentation of Lewin [Lew10] based on the papers of Lions [Lio84a] and Lieb [Lie83].

The concentraction compactness method has already been used in the BV setting, for instance, by Fusco [FMP07] for Sobolev inequalities in BV and by Bucur and Giacomini [BG10] for the isoperimetric inequality for the Robin eigenvalue problem. But, they both used the arguments of Lions and Struwe.

Let N > 2. We begin by defining the highest mass that the limit of translated subsequence can have.

Definition 4.B.1. Let (u n ) be a bounded sequence in BV (R N ), we denote:

The following lemma is related to the vanishing of a sequence.

Lemma 4.B.2. Let (u n ) be a bounded sequence in BV (R N ), we have equivalence between the following points:

where 1 * = N/(N -1).

Proof. Let us assume that (1) is true. Let R > 0 and (x n ) ⊂ R N be such that:

converges to 0 in L 1 loc and (2) follows. Let us assume (3). Let (x n k ) ⊂ R N be such that

loc and a.a.

We have:

for all p ∈ (1, 1 * ). We immediately get that u = 0. Let (2) be true. We denote

with 1/p = θ + (1 -θ)/p * . We choose p such that (1 -θ)p = 1, that is p = (N + 1)/N ∈ (1, 1 * ), and we get:

So (u n ) tends to 0 in L p and by interpolation inequality in L q for all 1 < q < 1 * .

When vanishing does not occur, the sequence can converge up to translation and extraction or split into two parts. Lions used the word dichotomy to describe this [Lio84a]. This situation is described in the following proposition.

Troisième partie

Le modèle du sac du MIT Le cas du demi-espace de R 3

Pour tout x ∈ R 3 , on écrit x = (x , x 3 ) avec x = (x 1 , x 2 ) ∈ R 2 . On note

On suppose que Ω = R 3 + .

Lemme 5.2.6. Il existe deux opérateurs de prolongement bornés T ± :

La preuve suit celle de [Bre83, Lemme 9.2].

Démonstration. Sans perte de généralité, nous n'étudions que le cas

On définit u sur R 3 par

Remarquons maintenant que

On a montré que σ.∇ u(x) = σ.∇u(x) pour x 3 > 0, -σ 3 σ.∇u(-x) pour x 3 < 0, au sens des distributions. Ainsi, u appartient à {v ∈ L 2 (R 3 , C 2 ) : σ.∇v ∈ L 2 (R 3 , C 2 )}.

En considérant une suite d'approximations de l'unité radiale, on peut montrer que l'ensemble des restrictions à R 3 + des fonctions de {v ∈ C ∞ 0 (R 3 , C 2 ) :

On pose alors

On a immédiatement

Lemme 5.2.7. Il existe deux opérateurs de prolongement bornés T ± :

Le cas d'un ouvert Ω borné et de classe C 2 de R 3 .

Soit v un vecteur unitaire de R. On note A v une rotation de R 3 telle que A v (e 3 ) = v et

Le lemme 5.2.7 reste vrai si on remplace Q par Q v . On pose alors

Nous sommes maintenant en mesure de démontrer le lemme suivant Lemme 5.2.8. Soit Ω est un ouvert borné, non vide et de classe C 2 de R 3 . Il existe deux opérateurs bornés de

Démonstration. Sans perte de généralité, nous n'étudions que le cas D + Ω . ∂Ω est un ensemble compact de R 3 et de classe C 2 . Il existe un recouvrement ouvert ∪ k j=1 U j de ∂Ω, des difféomorphismes de classe C 2 , un réel a > 0 et des vecteurs normalisés ν j de R 3 tels que

On sait grâce au théorème de partition de l'unité qu'il existe (θ j ) j=0,...,k des fonctions de classe C ∞ de R 3 dans [0, 1] telles que k j=0 θ i = 1, le support de θ j est inclus dans U j pour j ∈ {1, . . . , k} et celui de θ 0 est inclus dans R 3 \∂Ω. Pour u ∈ D + Ω , on introduit u j = θ j u. On appelle u 0 le prolongement à R 3 de u 0 par 0 et on obtient que

On cherche maintenant à prolonger u j pour j > 0. On commence par étendre la normale à U j . On définit P v la projection orthogonale sur {α ∈ R 3 : α

On cherche alors à construire une application

|ν j ∧n(x)| et ρ j (x) = µ j (x) ∧ ν j . Ainsi, (ν j , µ j (x), ρ j (x)) est une base orthonormée directe de R 3 . On note ϕ j (x) l'angle orienté entre ν j et n(x). µ j , ρ j et ϕ j sont de classe

On peut alors prolonger v j à Q v grâce au lemme 5.2.7. En appliquant la transformation inverse de celle que nous venons de construire, on obtient l'existence d'une fonction u j de H 1 0 (U j , C 2 ) qui prolonge u j et telle que

On définit le prolongement de

La preuve de densité des fonctions régulières est identique à celle des résultats de densité pour les espaces de Sobolev. Ceci achève la preuve du lemme.

Méthodes variationnelles et topologiques pour l'étude de modèles non linéaires issus de la mécanique quantique relativiste

Résumé : Cette thèse porte sur l'étude de modèles non linéaires issus de la mécanique quantique relativiste. Dans la première partie, nous démontrons à l'aide d'une méthode de tir l'existence d'une infinité de solutions d'équations de Dirac non linéaires provenant d'un modèle de hadrons et d'un modèle de la physique des noyaux.

Dans la seconde partie, nous prouvons par des méthodes variationnelles l'existence d'un état fondamental et d'états excités pour deux modèles de la physique des hadrons. Par la suite, nous étudions la transition de phase reliant les deux modèles grâce à la Γ-convergence.

La dernière partie est consacrée à l'étude d'un autre modèle de hadrons dans lequel les fonctions d'onde des quarks sont parfaitement localisées. Nous énonçons quelques résultats préliminaires que nous avons obtenus. Mots clés : Analyse non linéaire, physique mathématique, mécanique quantique relativiste, opérateur de Dirac, physique des noyaux, physique des hadrons, principe de concentration-compacité, transition de phase, méthode de tir, méthodes variationnelles.

Variational and topological methods for the study of nonlinear models from relativistic quantum mechanics.

Abstract : This thesis is devoted to the study of nonlinear models from relativistic quantum mechanics.

In the first part, we show thanks to a shooting method, the existence of infinitely many solutions of nonlinear Dirac equations of two models from the physics of hadrons and the physics of the nucleus.

In the second part, we prove thanks to variational methods the existence of a ground state and excited states for two models of the physics of hadrons. Next, we study the phase transition which links the models thanks to the Γ-convergence.

The last part is devoted to the study of another model from the physics of hadrons in which the wave functions are perfectly confined. We give some preliminary results. Keywords : Nonlinear analysis, mathematical physics, relativistic quantum mechanics, Dirac operator, physics of the nucleus, physics of the hadrons, concentration-compactness principle, phase transition, shooting method, variational methods.