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Résumé

Dans cette thèse nous introduisons une approche nouvelle pour la reconstruc-

tion d’un front d’ondes en Optique Adaptative (OA), à partir des données de

gradients à basse résolution en provenance de l’analyseur de front d’ondes, et

en utilisant une approche non-linéaire issue du Formalisme Multiéchelles Mi-

crocanonique (FMM). Le FMM est issu de concepts établis en physique statis-

tique, il est naturellement approprié à l’étude des propriétés multiéchelles des

signaux naturels complexes, principalement grâce à l’estimation numérique

précise des exposants critiques localisés géométriquement, appelés exposants

de singularité. Ces exposants quantifient le degré de prédictabilité localement

en chaque point du domaine du signal, et ils renseignent sur la dynamique du

système associé. Nous montrons qu’une analyse multirésolution opérée sur

les exposants de singularité d’une phase turbulente haute résolution (obtenus

par modèle ou à partir des données) permet de propager, le long des échelles,

les gradients en basse résolution issus de l’analyseur du front d’ondes jusqu’à

une résolution plus élevée. Nous comparons nos résultats à ceux obtenus

par les approches linéaires, ce qui nous permet de proposer une approche

novatrice à la reconstruction de fronts d’onde en Optique Adaptative.
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Abstract

In this thesis, we introduce a new approach to wavefront phase reconstruc-

tion in Adaptive Optics (AO) from the low-resolution gradient measurements

provided by a wavefront sensor, using a non-linear approach derived from the

Microcanonical Multiscale Formalism (MMF). MMF comes from established

concepts in statistical physics, it is naturally suited to the study of multiscale

properties of complex natural signals, mainly due to the precise numerical

estimate of geometrically localized critical exponents, called the singularity

exponents. These exponents quantify the degree of predictability, locally,

at each point of the signal domain, and they provide information on the

dynamics of the associated system. We show that multiresolution analysis

carried out on the singularity exponents of a high-resolution turbulent phase

(obtained by model or from data) allows a propagation along the scales of

the gradients in low-resolution (obtained from the wavefront sensor), to a

higher resolution. We compare our results with those obtained by linear ap-

proaches, which allows us to offer an innovative approach to wavefront phase

reconstruction in Adaptive Optics.
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- Chapter 1 -

Introduction

The research performed in this thesis is about proposing a novel approach to

wavefront phase reconstruction in Adaptive Optics (AO). The primary goal is

to make use of advanced non-linear and multiscale analysis methods in signal

processing for reconstructing the phase, through appropriate multiresolution

analysis, using ideas coming from the novel framework of Microcanonical

Multiscale Formalism (MMF); we apply these ideas for estimating a turbu-

lent wavefront phase from the low-resolution sensor measurements of an AO

system (a particular case of the general problem known sometimes as «super-

resolution»1 in signal processing jargon [13, 56, 222, 25, 196]). The aim of

this research is to propose an alternative to the classical inverse problem

formulations used in AO, with the objective of improved performance and

comparison with existing techniques.

§ 1.1 Motivation of the research

Light emitted from distant spatial objects, before entering the Earth’s at-

mosphere, are planar wavefronts. The Earth’s atmosphere is a time-varying

1High-resolution gradients are generated from low-resolution gradients (correspond-

ing to low-resolution sensor measurements) and then the phase is estimated from these

high-resolution reconstructed gradients. We work with the complete set of low-resolution

gradient measurements and not selected measurement of the gradients.

1
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inhomogeneous medium. When a planar wavefront propagates through this

medium, refractive index variations of the air changes, to a considerable

extent, the phase associated to the wavefront. This gives rise to a turbu-

lent phase perturbation with the consequence of causing a limitation in the

optical resolution of ground-based astronomical devices : acquisitions are

«blurred» and there is a considerable loss in the spatial resolution of the

instrument, compared to its theoretical limit resolution power.

One of the most common technology employed for ground-based obser-

vation of astronomical objects, and to overcome the limitation of low spatial

resolution problems, is the Adaptive optics (AO). An AO system tries to elim-

inate the distortions in the wavefront phase, in real-time, with the help of a

deformable mirror (DM) and a well designed servo-loop. A wavefront sensor

(WFS) placed behind the mirror helps to measure these distortions, which is

then passed through the servo-loop, as command, to the DM. The DM then

tries to adjust its shape according to the shape of the incident wavefront to

reduce wavefront residual phase error. The process is repeated iteratively

to compensate the effects of atmospheric turbulence on the wavefront. The

first generation of AO system, also known as SCAO or Single-Conjugate

Adaptive Optics, was designed with a single DM and a single WFS. How-

ever, SCAO corrections are limited to a small field of view [158, 104] and

to overcome this limitation and to enhance the performance of ground-based

observations, several other AO concepts were introduced. For example in

Multi-Conjugate Adaptive Optics or MCAO systems [20, 48, 67], multiple

deformable mirrors and wavefront sensors are used to provide improved reso-

lution in a large field of view. Other techniques like Ground Layer Adaptive

Optics (GLAO) [160] and Extreme Adaptive Optics (XAO) [69] are also used

to enhance the performance of ground-based telescopes.

AO technology primarily finds its application in ground-based astronomy

and in defense applications [164]. However, the technology is getting increas-

ingly popular in opthalmology [40, 49]. The principle of AO technique was

first proposed by Horace W. Babcock [12] in 1953. However, it was not un-

til the 1990’s that the idea of AO was first demonstrated in astronomical

observations [171, 172]. Optical testing devices were the major source of in-

spiration for designing a WFS [170, 104]. The WFS records the wavefront
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distortions in the form of slope measurements (gradients of the phase) [164],

like the Shack-Hartmann (SH) WFS, or curvature measurements (Laplacian

of the phase) [163], like the curvature WFS. The primary objective of any

AO system is to estimate the wavefront phase values from the discrete mea-

surements (gradients or Laplacian of the phase) provided by a wavefront

sensor. The wavefront phase estimation is then classically formulated as an

inverse problem [170, 137]. The techniques generally used to estimate the

phase are: the maximum likelihood technique and the maximum a posteriori

technique. Both these techniques yield to the generalized least squares so-

lution, which is the solution classically used for estimating the phase under

real-time constraints [137].

§ 1.2 Objective of the research

In this thesis, we propose, explore and experiment a completely different ap-

proach for phase reconstruction in AO. The motion of the upper-layers in the

atmosphere, where the incoming wavefront are perturbated, are turbulent.

Turbulent flows, although extremely chaotic in nature (since they belong, at

high Reynolds number, to the field of Fully Developed Turbulence (FDT)),

can be adequately described by a well defined multiscale and multifractal

hierarchy. They are the place where multiplicative cascade phenomena are

observed for intensive variables, and coherent structures are related to the

transfer of energy between the scales [7, 64, 202, 185]. Consequently, a careful

examination of the multiscale structure of turbulence has the potential of op-

timal inference across the scales of a turbulent acquisition. In this work, we

examine the problem of cross-scale information inference through

the determination of a multiresolution analysis that suits best the

multiscale structure of turbulence. The methodology encompasses a

large class of problems in Complex Systems Science and can be applied to

propagate information across the scales for a wide variety of complex sig-

nals [124, 217]. We demonstrate that the MMF, set up for understanding

and evaluating the mechanisms that govern the evolution of complex dynam-

ical systems, can be successfully applied to the problem of turbulent phase
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reconstruction from low-resolution gradient measurements. Consequently, we

first focus on the determination of appropriate parameters, necessary to char-

acterize the multiscale features of a complex signal. In non-linear physics, it

is well known for instance in the study of ferromagnetism, that susceptibility,

spontaneous magnetism, critical isotherm and heat capacity all have power-

law behaviour in the vicinity of a critical point t = tc with values, called

critical exponents, which can be predicted by the mean-field approxima-

tion [23]. Systems with high order transitions commonly reflect a power-law

behaviour in their thermodynamical variables [202, 203]. This power-law be-

haviour of physical intensive variables around a critical point is known to be

a fingerprint of scale invariance [109]. Moreover, the critical exponents are

universal : close to the critical point, the details of the microscopic dynam-

ics of the system become irrelevant, the macroscopic characteristics of the

system are determined by these critical exponents, and systems having same

distributions of critical exponents share equivalent macroscopic characteris-

tics [154, 187, 203]. As a consequence of universality, critical exponents stand

for a suitable mean for analysing complex systems as a whole [154]. There has

been a considerable amount of work done by researchers in the past decades

to characterize the multiscale and multifractal organization of complex sys-

tems; the most well-known approaches are related to the characterization of

singularity spectra and the methods to compute them [7, 213]. These tech-

niques require a lot of realizations for the computation of singularity spectra,

and they determine the power-laws appearing in the limiting behaviour of

moments of variables, not the geometrically localized critical exponents [202].

In the MMF, critical exponents are determined at high numerical precision

at each point of the signal domain, using only one realization (or acquisi-

tion) and specific vectorial measures associated to predictability [32, 155].

Consequently, the MMF provides a suitable approach in the determination

of localized critical exponents, which we call singularity exponents in the

sequel; it is a formalism that has led to a sensible improvement in the design

of numerical techniques for the determination of multiscale characteristics of

natural complex signals.

Since turbulent signal possess a multiscale hierarchy which is closely re-

lated to the cascading properties observed in FDT, there must exist specific
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multiresolution analysis that allow optimal inference of physical intensive

variables across the scales of turbulent acquisition data. Similar and related

ideas have been pervasive in multiscale statistical inference these past few

years [191, 92, 58, 91]. This observation can be made precise through the

notion of optimal wavelet, introduced in other contexts such as econome-

try and oceanography [199, 198, 152, 156]. The proper determination of an

optimal wavelet, associated to turbulent wavefront acquisitions, would then

allow us to reconstruct, in an optimal way, a phase from its low-resolution

gradients with minimum error. Up to now, however, obtainig such a wavelet

at high numerical precision from acquired data turns out to be a very difficult

problem, and the attempts made so far produce only an approximation of

it, not sufficient enough to ensure optimal transport across the scales (high

numerical precision is a key element in any processing of turbulent signals).

In this thesis we observe experimentally that, instead of comput-

ing a multiresolution analysis associated to an optimal wavelet, one

is able to obtain a close to optimal inference across the scales by

applying classical multiresolution analysis on the singularity expo-

nents of a phase signal. In other words, a classical multiresolution

analysis performed, not on the signal itself, but on its singular-

ity exponents, allows an (close to) optimal inference of physical

variables across the scales.

The primary reason behind this idea is the following : once determined

at high numerical precision, the singularity exponents provide a much richer

framework for describing the multiscale hierarchy present in turbulence, and

they can be used to retrieve singularity spectra as well. Singularity exponents

encode the transitions present in the signal and, particularly, in the case

of well defined rigid objets, they contain the classical notion of edge pixel.

Indeed, one of the main feature among multiscale characteristics in a signal is

given by the classical notion of edge. Edge pixels form the most informative

subset of an image, well known at least in the case of well defined objects,

and one can reconstruct the object from the knowledge of its edges [125].

There are many algorithms for computing edges in digital signals, and these

algorithms produce appropriate edge pixels in the case of rigid or slightly

deformed objects. But, in the case of turbulent signals, and specifically
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in the situation of FDT, the notion of edge is not well-defined by classical

edge detectors. We however see that, in the case of complex natural signals

and specifically in the case of turbulence, singularity exponents provide a

more adapted notion of edge [125, 124, 100]. Consequently, since singularity

exponents are ideal candidates in describing the multiscale organization of a

turbulent signal, and since they turn out to be the adequate (and physically

substantiated, an aspect which is very important to us) generalization of

edge pixel, it is logical to expect that a multiresolution analysis performed

on the signal of singularity exponents, instead of the signal itself, ensures

proper inference across the scales. We will see, in the following chapters of

this thesis, the efficiency of this concept in the derivation of a new method for

reconstructing the wavefront phase for AO. However, because of the present

lack of a theoretical physics justification of the above-mentioned equivalence,

we need to carry out an important preliminary work, which will be achieved

in this thesis, for showing that singularity exponents are better candidates for

detecting edges in the case of turbulent data. This is achieved in two steps,

and presented in chapter 5 : first we prove that singularity exponents provide

a consistent notion of edge pixel across the scales, much more consistent

than the classical edge detectors in the case of turbulent data. Then we

prove that this new notion of edge outperforms the classical edge detectors,

in terms of reconstructibility of the whole signal (image in our case) from

given edge pixels, and is naturally robust to noise. Armed with the results of

chapter 5, we can be confident that a multiresolution analysis performed on

the singularity exponents will provide good inference across the scales. This

idea is then exploited in chapter 6 for providing a new method for phase

reconstruction in AO.

§ 1.3 Organization of the thesis

The thesis is organized as follows:

• In chapter 2, we recall the mathematical description of atmospheric

turbulence and its statistical descriptors. We talk about the effects of

turbulence on image formation in ground-based astronomy and the role
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of the descriptors in characterizing these effects. We also talk about the

various techniques used to simulate a turbulent phase, for experimental

purposes.

• In chapter 3, we discuss about the concepts of AO technique and its role

in reducing the wavefront phase distortions. We give a brief presenta-

tion of the principle components in an AO system and their functions.

The classical wavefront phase reconstruction techniques from the WFS

measurements are then discussed.

• In chapter 4, we introduce the MMF. We talk about the origin of this

formalism, and then discuss about its key parameters: the singular-

ity exponents and the singularity spectrum. The different methods of

estimating the singularity exponents are then explained.

• In Chapter 5, we introduce the concept of optimal inference across the

scales of a given signal. We emphasize on the idea that singularity

exponents of a signal are well-justified candidates for extracting infor-

mation, across scales, through a multiresolution analysis. We justify

this idea in section 5.2 and section 5.3.

In section 5.2, we discuss about the process of determining edges from

the singularity exponents. We show that the edges obtained from the

singularity exponents, for a given image, are much more consistent

across the scales compared to edges detected by classical edge detectors,

notably in the case of turbulence that interests us in this work. We

justify our approach using two scale-based representation of images: the

dyadic wavelet transform and the Lindeberg scale space representation.

In section 5.3, we prove the concept of edges (detected by singularity

analysis) as the most informative set, by its ability to give an accurate

reconstruction of the whole image compared to classical edges. In the

process, we re-examine image reconstruction from their edges [197, 203]

and show that it provides superior results, in terms of compact repre-

sentation [16, 17, 15], over the state-of-the-art surface reconstruction

techniques.
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• In chapter 6, we introduce our wavefront phase reconstruction tech-

nique, using MMF, associated to a multiresolution analysis on the

singularity exponents with an approximative version of the optimal

wavelet (related to the phase signal). We evaluate the quality of our re-

construction by comparing the power spectral density (PSD), the point

spread function (PSF) and the modulus of the optical transfer function

(OTF) of the reconstructed phase with that of the true phase. We also

compare the results of our reconstruction technique with classical least

squares reconstruction technique.

• Finally, we conclude in chapter 7.
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Atmospheric turbulence and wavefront

propagation

§ 2.1 Atmospheric turbulence

The Earth’s atmosphere is a turbulent environment. Solar energy heats up

the Earth’s surface, and the boundary layers of the atmosphere gets heated

giving rise to local unstable air masses that are always in motion (known as

convection current). The motion of the air masses results in the formation

of kinetic energy that creates turbulence. This energy causes the formation

of vortices, also known as turbulent eddies [192], with a characteristic size

ranging from hundreds of meters (outer scale of turbulence L0) to the order

of a few millimeters (internal scale turbulence l0). Energy is transmitted

successively from the higher size vortices to increasingly lower size vortices,

until they are no longer able to retain their distinct characteristics. The

area between these two characteristic sizes (or scales, i.e. L0 and l0), where

turbulence is fully developed, is called the inertial range. Knowledge of this

domain is important in describing the major reasons behind the degradation

of images in ground-based astronomy [65]. It is of primary importance to re-

call the statistical description of a turbulent wavefront used in optics in order

to understand the type of correction used in classical approaches for phase

reconstruction in AO, and also to underline the novelty of the reconstruction

9
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process undertaken in this thesis.

2.1.1 Variations in the refractive index

The starting point of getting insight into the properties of atmospheric tur-

bulence is to view the refractive index of the atmosphere as a random pro-

cess [6]. The atmospheric refractive index n, at a given point r in space, can

be expressed in terms of temperature and pressure variations as:

n(r) = k(λ)
P (r)

T (r)
(2.1)

where k(λ) is a coefficient that depends on the optical wavelength λ (for

λ = 0.5µm, k(λ) = 77.6 × 10−6) [93], P is the pressure in millibars, and

T is the temperature in Kelvins. A precise knowledge of the atmospheric

refractive index for all points r and at every moment of time is inaccessible [6].

This gives rise to the necessity of a statistical descriptor to best represent

the atmosphere [179].

2.1.1.1 Structure function of the refractive index variations

In astronomy and other physical sciences, the description of the random

variations, either in space or time, in the index of refraction, is making use

of the terminology set up in probability theory for second order stochastic

processes and is called in physics as the structure functions. The structure

function, Dn(r), of the index of refraction can be defined as the mean-square

difference of n(r) between two given points:

Dn(r1, r2) = 〈[n(r1)− n(r2)]
2〉 (2.2)

where r1 and r2 are the two given points in space and 〈·〉 is an ensemble

average. Assuming that the refractive index fluctuations maintain stationary

increments [6], the covariance function of any two random processes n(r1) and

n(r2) can be simplified to:

Bn(ρ) = 〈n1(r1)n1(r1 + ρ)〉 (2.3)

so that the covariance function Bn(ρ) becomes independent of the spatial

position and is only dependent on the distance between the two points of
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interest: ρ = r1 − r2 . The structure function is related to the covariance

function by [65]:

Dn(ρ) = 2[Bn(0)− Bn(ρ)] (2.4)

Following a dimensional analysis [145], it can be shown that the structure

function follows a 2/3 power-law and can be written as:

Dn(ρ) = C2
nρ

2/3 for l0 ≪ ρ≪ L0 (2.5)

where C2
n is the refractive index structure constant. The parameter C2

n is

expressed in m−2/3 units and is generally referred to as the strength of the

turbulence [6, 167].

2.1.1.2 Power spectral density of the refractive index variations

Another means of characterizing the statistical fluctuations of the refractive

index is to consider its power spectral density (PSD). The PSD can be ex-

pressed as the Fourier transform of the covariance function Bn(ρ) (refer to

equation (2.3)) and can be written as:

Φn(f) =

∫ ∞

−∞

Bn(ρ)e
−2πifρdρ (2.6)

where f represents the spatial frequency. The power spectrum of the refractive

index fluctuations can be expressed, in terms of C2
n, as:

Φn(f) = 0.033(2π)−2/3C2
n|f|−11/3 (2.7)

Equation (2.7) is generally referred to as the Kolmogorov power-law spectrum

and is only valid over the inertial range i.e. for 1/L0 ≪ |f| ≪ 1/l0.

The Kolmogorov power spectrum can be easily extended to other power

spectrum models in order to increase the valid range for the PSD. The most

common among them is the Von Karman power spectrum and can be ex-

pressed as :

Φn(f) = 0.033(2π)−2/3C2
n(|f|2 + f20)

−11/6exp

(
− |f|2

f2m

)
(2.8)

where fm = 5.92/l0 and f0 = 1/L0.
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2.1.1.3 Refractive index structure constant

The refractive index structure constant C2
n is a measure of the strength of

the optical turbulence [65]. It is usually expressed as a function of altitude

h. The precise characterization of the C2
n(h) profile above an astronomical

observatory is very important for the design of adaptive optics systems. The

integrated C2
n profile is defined as:

C2
n =

∫
C2
n(h)dh (2.9)

The C2
n is highly sensitive to changes in location, time and weather condi-

tions. Different instruments have been developed to determine experimen-

tally the C2
n(h) profile. The most common of them are the Meteorologi-

cal Balloons [11], Scintillation Detection and Ranging (SCIDAR) [80, 207],

Multi-Aperture Scintillation Sensor (MASS) [194] and Slope Detection and

Ranging (SLODAR) [214].

2.1.1.4 Fried parameter

Another essential parameter that can measure the effects of atmospheric

turbulence on the propagation of light waves and image formation in ground-

based observatory is the Fried parameter r0 [61]. It is defined as the diameter

that fixes the resolution limit of the telescope introduced by turbulence [65].

As a result, imaging from telescopes with aperture diameter smaller than

r0 results in reduced effect of atmospheric seeing1. Using telescopes with

aperture size more than r0 results in the opposite effect. The Fried parameter

at wavelength λ can be expressed [84] in terms of C2
n as:

r0 =

[
0.42

(2π
λ

)2 1

cos γ

∫ ∞

0

C2
n(h)dh

]− 3
5

(2.10)

with γ the zenith angle (angle of observation measured from the zenith).

1seeing refers to the blurring of spatial objects caused due to the high frequency fluc-

tuations in the refractive index of the Earth’s atmosphere.
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Phase shifted wavefront
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Lenslet Array

Figure 2.1: The effects of atmospheric turbulence on an incoming spatial

wavefront. The incoming planar wavefront from a distant spatial object, upon

entering the Earth’s atmosphere (a homogeneous medium), gets distorted re-

sulting in a phase degradation in the wavefront.

§ 2.2 Effects of turbulence on wavefront

phase

Turbulence in the Earth’s atmosphere results in refractive index variations

that interfere with the propagation of light. This leads to a distortion in the

planar wavefront from outer space trying to reach the ground giving rise to

a phase degradation in the wavefront. The resultant complex field arising

out of turbulence exhibits random fluctuations in its phase φ(r) and can be
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expressed mathematically, at the telescope pupil, as [162]:

Ψ0(r) = A(r)exp[iφ(r)] (2.11)

where A(r) is the amplitude of the resultant field. The phase φ(r) of the

wavefront, after traversing through the atmosphere, is a function of the re-

fractive index n(r, h) at altitude h [65] and can be expressed as:

φ(r) =
2π

λ

∫
n(r, h)dh (2.12)

where λ is the observing wavelength and integration is made along the optical

path.

It is now clear from the above discussions, that the magnitude of the effect

of turbulence is most noticeable in the phase φ(r) of the electromagnetic wave

reaching the ground. We will now characterize the phase statistically by its

structure function and power spectral density.

2.2.1 Structure function of the turbulent phase

The structure function of the phase φ(r), considered as a random process [193],

can be written as:

Dφ(ρ) = 〈[φ(r + ρ)− φ(r)]2〉 (2.13)

The equation can be further reduced [143], following the Kolmogorov-Obukhov

law of turbulence, as:

Dφ(ρ) = 6.88

(
|ρ|
r0

)5/3

(2.14)

where r0 is the Fried parameter (refer to section 2.1.1.4).

2.2.2 Power spectrum of the turbulent phase

Like the structure functions, we are also interested in calculating the power

spectrum of the turbulent phase. The power spectrum of a wavefront, fol-

lowing the law in equation (2.14), is commonly known as the Kolmogorov

power spectrum and can be written as [143]

Φ̃(f) = 0.023r
−5/3
0 |f|−11/3 (2.15)
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Kolmogorov’s PSD holds true only within a bandwidth proportional to the

inertial range i.e. 1/L0 ≪ |f| ≪ 1/l0. In this thesis, we use a Von Kar-

man power spectrum, which can overcome the limitations of the Kolmogorov

spectrum in terms of range. It takes into account two additional parameters

(the inner and the outer scale) and can be written as

Φ̃(f) = 0.023r
−5/3
0 (|f|2 + L−2

0 )−11/6 (2.16)

where L0 is the outer scale of turbulence. When L0 → ∞, equation (2.16)

approaches the Kolmogorov spectrum.

§ 2.3 Imaging through turbulence

After discussing the effects of turbulence on the degradation of a light wave,

we will now study how the formation of images in ground-based telescopes

are affected by this turbulence. We will focus in particular the problem of

imaging through turbulence and the definition of the point spread function,

which is the quantity that characterizes the damage suffered by the image of

the observed object [65].

2.3.1 The point spread function (PSF)

The PSF describes the response of an imaging system to a point source or

point object and characterizes atmospheric blurring effects that are spatially

invariant in the immediate field of view [42]. The resultant image is therefore

the PSF of the telescope + atmosphere optical system [167]. The PSF can

be broadly divided based on the effects of short-exposure and long-exposure

response of an imaging system towards a point source. The short-exposure

PSF can be defined by its dependence on the wavefront profile Ψ0(r), as [42,

47, 65]:

kse[ρ] = |F−1[Ψ0(r)P (r)]ρ|2 (2.17)

where F denotes the 2-D Fourier transform and P (r) denotes the pupil,

or aperture, function i.e. is 1 inside the pupil and 0 otherwise. The long-

exposure PSF can be considered as the ensemble average of the short-exposure
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PSFs [158]:

kle[ρ] = 〈kse[ρ]〉 (2.18)

The PSF is determined by the size and shape of the pupil and also the

phases across the pupil [47]. The goal of any AO system is to remove the

phase error φ from the incoming wavefronts (i.e. the effect of the atmosphere

optical system). If done exactly, the resulting PSF then has the form:

k[0] = |F−1{P (r)}|2 (2.19)

which is also known as the the diffraction-limited PSF of the telescope, and

the image formed in this case is known as the diffraction-limited image [18].

In an ideal case, for a perfect telescope, the image of a point source (star)

would be equal to an Airy pattern. A typical example of a diffraction lim-

ited PSF and the effect of turbulence on image formation in ground-based

telescopes is shown in table 2.1.

2.3.2 The optical transfer function (OTF)

The optical transfer function (OTF) of an imaging system is defined as the

Fourier transform of the PSF. Similar to the PSF, the long-exposure OTF

can be defined as the ensemble average of short-exposure OTF’s [193]:

Ole(f) = 〈Ose(f)〉 (2.20)

The long-exposure OTF is the result of the contribution of the telescope and

the atmospheric turbulence and can be expressed as [193, 65]:

Ole(f) = Oturb(f)Otel(f) (2.21)

For large telescopes with good optical quality the effect of Otel(f) is negligi-

ble [193], so the OTF becomes a function of the OTF of the atmosphere i.e.

Ole(f) ≈ Oturb(f). The atmospheric OTF can be expressed as a function of

the phase structure function Dφ(ρ) [162], as:

Oturb(f) =

[
− 1

2
Dφ(λf)

]
(2.22)
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Table 2.1: Effects of turbulence on image formation in ground-based as-

tronomy. Top row (from left to right): Simulated negative image of a point

source (star) in an ideal telescope without atmosphere (corresponds to an

Airy function), the X cut and Y cut of the image. Bottom row (from left

to right): Simulated negative image showing what a point source (star) would

look like through a ground-based telescope in presence of atmosphere (the

speckle formation of the image is due to the turbulence in the atmosphere),

the X cut and Y cut of the speckle image.

Point source X cut Y cut

Following the Kolmogorov model of turbulence, substitutingDφ(ρ) = 6.88
(
|ρ|
r0

)5/3

(refer to equation (2.14)), in the above equation, we get a final expression of

Oturb(f) as:

Oturb(f) =

[
− 3.44

(
λf

r0

)5/3]
(2.23)

The long-exposure OTF has the effect of averaging the high frequencies that

were present in the short-exposure OTFs [65]. It has a cut-off frequency of

f ≥ r0/λ, beyond which any high-frequency information is completely lost.

Partial recovery of this high frequency information is possible with the use of

Adaptive Optics as well as techniques like deconvolution [59, 139, 138, 94, 169]
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Table 2.2: Zernike Polynomials.

Mode(i) n m Polynomials Name

1 0 0 Z1 = 1 Piston

2 1 1 Z2 = 2κ cos θ x tilt

3 1 -1 Z3 = 2κ sin θ y tilt

4 2 0 Z4 =
√
3(2κ2 − 1) Defocus

5 2 -2 Z5 =
√
6κ2 sin 2θ x primary astigmatism

6 2 2 Z6 =
√
6κ2 cos 2θ y primary astigmatism

7 3 -1 Z7 =
√
8(3κ3 − 2κ) sin θ x primary coma

8 3 1 Z8 =
√
8(3κ3 − 2κ) cos θ y primary coma

9 3 -3 Z9 =
√
8κ3 sin 3θ x trefoil

10 3 3 Z10 =
√
8κ3 cos 3θ y trefoil

11 4 0 Z11 =
√
5(6κ4 − 6κ2 + 1) Primary spherical

and speckle interferometry [106].

§ 2.4 Modal decomposition of the phase

It is a common practice in AO design to represent the turbulent wavefront

phase, within the telescope aperture (or pupil), as the weighted sum of power

series terms, where each term helps in explaining the wavefront distortion due

to a particular aberration (or mode) [123]. Due to the circular nature of the

telescope pupil, it is convenient to expand the wavefront phase distortion in

terms of some basis functions that are orthogonal over a circular aperture.

The most commonly used basis functions are the Zernike polynomials [143]

and the Karhunen - Loëve (KL) functions. The Zernike polynomials are

preferred in AO due to their simplicity in analytical representation [164];

they form a set of basis functions (or modes) that are orthogonal over a

unitary circular aperture. This makes them ideal candidates for accurate

description of a distorted wavefront.
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The Zernike polynomials, named after the renowned physicist Frits Zernike,

are two dimensional polynomials that can be expressed in function of radial

order n and the azimuthal frequency m [167] as:

Zm
n (κ, θ) =

√
n+ 1Rm

n (κ)
√
2 cos(mθ) (2.24)

Z−m
n (κ, θ) =

√
n+ 1Rm

n (κ)
√
2 sin(mθ) (2.25)

for m 6= 0 and

Z0
n(κ, θ) =

√
n+ 1R0

n(κ) if m = 0 (2.26)

where (κ, θ) are the polar coordinates of the normalized position vector κ

(κ = r/R, where R is the desired screen radius). The function Rm
n (κ) is

defined as:

Rm
n (κ) =

(n−m)/2∑

s=0

(−1)s(n− s)!

s![(n+m)/2− s]![n−m)/2− s]!
κn−2s (2.27)

In 1976, Noll [143] proposed an ordering scheme (mapping of m and n in

terms of a single index i), by which the Zernike polynomials can be identified

in terms of optical aberration. The index i is a function of n and m and

is called the mode ordering number. Table 2.2 shows the ordering of the

modes for the first 11 polynomials. The Zernike polynomials form a normal,

orthogonal basis set [65] and can be expressed for any two polynomials Zi

and Zj, as:

∫ 2π

0

∫ 1

0

Zi(κ, θ)Zj(κ, θ)dκdθ =

{
0 if i 6= j

1 if i = j

A turbulent phase φ(r, θ) can be expressed in terms of polynomial expan-

sion over a circle of radius R as [143]:

φ(Rκ, θ) =
∞∑

i=1

ziZi(κ, θ) (2.28)

φ(r, θ) =
∞∑

i=1

ziZi(
r

R
, θ) (2.29)

where Zi(r) is the ith Zernike polynomial and zi is the corresponding Zernike

coefficient. The shapes of the first 28 polynomials of Zernike are illustrated

in Fig 2.3.
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Figure 2.2: Graphical representation of the first 28 Zernike Polynomials.

§ 2.5 Simulation of the turbulent phase

For experimental and validation purposes of the work done in high-resolution

imaging, it is important to do the numerical simulation of the phase after

propagation through atmospheric turbulence [65]. There are two main ap-

proaches in the generation of atmospheric phase screens [9]: modal techniques

(using basis functions like Zernike polynomials or KL modes) and sample

based techniques. The sample based techniques can be either Fourier trans-

form based [134, 108, 182] or covariance based [83]. However, for computing

reasons, the Fourier based methods are more commonly used.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: Zernike realization of a turbulent wavefront phase with the

addition of increasing number of polynomials. Realization of the phase with :

(a) all Zernike polynomials (b) piston only (i=1) (c) first 3 polynomials (d)

first 5 polynomials (e) first 9 polynomials (f) first 13 polynomials (g) first 28

polynomials (f) first 37 polynomials.

2.5.1 Zernike realization of the phase screen

As explained in section 2.4, an atmospheric phase screen can be represented

as a sum of all the Zernike polynomials in the wavefront as [165]:

φ(r, θ) =
∞∑

i=2

ziZi(
r

R
, θ) (2.30)

where zi is the coefficient associated with the ith Zernike polynomial. The

Zernike coefficients can be recovered from a given phase screen, using the

following equation [143]:

zi =
1

R2

∫
P(r/R)φ(r, θ)Zi(r/R, θ)d

2r (2.31)
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(a) (b) (c)

Figure 2.4: Fourier representation of a turbulent phase using: (a) Kol-

mogorov power spectrum (b) Von Karman power spectrum (c) PSD compar-

ison of (a) and (b).

where P(r/R) is the characteristic function of the unitary disk [167]. A

typical example of the realization of a phase screen with increasing number

of Zernike polynomials is shown Fig 2.3.

2.5.2 Fourier based representation of the phase screen

This method, proposed by B. McGlamery [134, 141] in 1976, is widely ac-

cepted due to its simplicity and speed. The analysis of atmospheric turbu-

lence is based on the assumption that atmospheric turbulence follows a Kol-

mogorov spectrum and has a phase whose frequency is uniformly, randomly

distributed over the interval −π to π [134, 108]. A phase can be statistically

described by means of its power spectrum (described in section 2.2.2). The

phase screen is obtained by the inverse Fourier transform of the product of an

complex array of Gaussian random numbers and the square root of the phase

spectrum [134, 44](Kolmogorov spectrum or the Von Karman spectrum). A

typical example of Fourier generated phase screen is shown in Fig 2.4.

Although simple and computationally efficient, this method suffers from

certain drawbacks. The model suffers from periodicity and the low frequency

components are not well represented in this technique [9]. Solutions, however,

exist to digitally enhance the low frequencies by the addition of subharmon-

ics [108, 182].
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§ 2.6 Conclusion

In this chapter, we have recalled the statistical descriptors of atmospheric

turbulence. The effects of turbulence creates a distortion in the planar wave-

front from outer space thereby resulting in a phase distortion in the wave-

front. The knowledge of the statistical descriptors then helps to measure

the effects of turbulence on the wavefront phase and also the blurring ef-

fects in ground-based image formation of astronomical objects. As a result,

astronomers are able to recover a distorted wavefront or restore a blurred

image, to a large-extent, given this statistical information of turbulence. It

is also possible to simulate a turbulent phase, with the a priori knowledge

of these descriptors, which is very important for experimental and validation

purposes in ground-based astronomy. In this matter, the Zernike polyno-

mials plays a useful role in representing an atmospherically distorted phase

screen. Numerous other methods also exist, that are well known for their

simplicity and speed: The Fourier based phase generation techniques using

the power spectrum descriptor knowledge of turbulence are, however, widely

preferred due to their simplicity and speed. In the next chapter, we will focus

on the principle of operation of an AO system and the techniques it employ

for estimating the distorted phase of a wavefront.
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- Chapter 3 -

Adaptive Optics and wavefront

reconstruction

Turbulence in the Earth’s atmosphere leads to a distortion in the planar

wavefront from outer space resulting in a phase error. This phase error is

responsible for the refractive blurring of images accounting to the loss in

spatial resolution power of ground-based telescopes. Adaptive Optics (AO)

is an opto-mechanical system that helps to remove this phase error, in real

time, introduced in the wavefront due to atmospheric turbulence. In AO

systems, an estimate of the phase error, or simply the phase, is obtained

from the gradient measurements of the wavefront collected by a wavefront

sensor. The correction estimate is then passed through a servo-control loop to

a deformable mirror which deforms itself to adapt to the incident wavefront

(on the telescope pupil) to correct and obtain an output plane wavefront.

The chapter is organized as follows: in section 3.1, we introduce the

principal components and their functions in the AO system, in section 3.2

we discuss about the classical wavefront phase reconstruction techniques in

AO, where in section 3.2.4, we talk about the inverse problem approach in

wavefront phase reconstruction. Conclusion follows in section 3.3.

25
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Figure 3.1: Schematic representation of an Adaptive Optics system (Cour-

tesy: J. Vallerga [204]).

§ 3.1 The Adaptive Optics system

An AO system is made up of three key elements [65, 164]. They are:

• the deformable mirror (DM) that changes its shape to fit to the

incident wavefront,

• the wavefront sensor (WFS) that measure the wavefront distortions

caused due to atmospheric turbulence,

• and the controller that generate the control signals to drive the DM

based on the measurements provided by the WFS.

A schematic representation of an AO system is shown in Fig 3.1. We will

summarize the operation of each of these elements in the following sections.

3.1.1 Deformable mirrors

The wavefront compensation in an AO system is physically performed by

the DMs [158]. Depending on the type of AO system, the number of DMs

can vary from one to many. For example, in SCAO and GLAO systems,

only one DM is used whereas in MCAO systems, two to three DMs are in-

corporated. The movement of the DM, or in other words the change in the
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shape of its surface is the result in the orientation of a continuous reflec-

tive facesheet which is deformed by a set of actuators glued to the back of

it. The actuators expand or contract in length with the application of volt-

age signals, thereby pushing or pulling the mirror to deform its shape. The

actuators are generally made of piezoelectric material (PZT) or Lead magne-

sium niobate (PMN). Many different technologies exist for the development

of the DMs, the most common among them are the Stacked array mirrors

(SAMs) [97, 161], Bimorph deformable mirrors [163], Micro deformable mir-

rors (or MEMS) [149, 220] and Voice coil deformable mirrors [8, 159]. A

complete review of different types of DM technologies can be found in [181].

Irrespective of the technology used for the DM, the correction principle is

always the same. When the perturbated wavefront arrives on the telescope

pupil, the reflective facesheet of the deformable mirror is deformed to fit to

the wavefront, and corrects the phase error introduced by the turbulence.

The whole procedure of wavefront compensation can be summarized as:

φres(r, θ) = φturb(r, θ)− φcor(r, θ) (3.1)

where φres(r, θ) is the residual phase (tends to zero with the AO correction)

and φcor(r, θ) corresponds to the phase obtained by the mirror deformation

(correction by AO).

3.1.2 Wavefront sensors

Wavefront sensors (WFS) are the measuring devices of an AO system that are

capable of recording the wavefront distortion in terms of slope measurements

or curvature measurements, depending on the type of WFS used. The Shack-

Hartmann (SH) WFS works on the principle of measuring the local slope of

the wavefront i.e. the spatial first derivatives (gradients) [164]. The curvature

WFS, proposed by F. Roddier [163], measures the second derivative of the

phase (Laplacian) of the incoming wavefront. The curvature WFS finds its

application generally with bimorph DMs in curvature SCAO systems [158].

The SH WFS, designed by J. F. Hartmann [85] in 1900 and later modified

by R. Shack [183] in 1960, is the most popular WFS used in AO systems. In

this thesis, the proposed wavefront phase estimation algorithm will be based

on the slope measurement technique of the SH sensor.
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3.1.2.1 Shack-Hartmann wavefront sensor

A Shack-Hartmann wavefront sensor is used to measure the slope of an in-

coming wavefront. In a SH sensor, an array of lenses (also called a lenslet

array) is placed in a conjugate pupil plane at the entrance of the telescope.

Each lenslet covers a small part of the aperture (or pupil), the area covered

is known as the sub-aperture area. A wavefront incident on the telescope

pupil, is sampled by these lenslets and an image of the source is formed on

a detector1, placed in the focal plane of the lenslet array. When the wave-

front is plane, each lenslet forms an image of the object (source) at its focus.

But, in general, due to turbulence when the wavefront gets distorted, each

lenslet sees a tilted version of the wavefront and the corresponding images

are shifted from their reference position [137, 173, 170]. This shift in posi-

tion is proportional to the mean slope of the wavefront and therefore can be

measured [170]. The centroids (xc, yc) of the displaced spot are proportional

to the gradient of φ(r) averaged over the sub-aperture area S [193, 65, 170],

and can be written as:

xc =
flλ

2πS

∫

S

∂φ

∂x
dxdy + nx (3.2)

yc =
flλ

2πS

∫

S

∂φ

∂y
dxdy + ny (3.3)

where λ is the central wavelength of the detector and fl is the focal length of

the lenslet. nx and ny takes into account any type of noise associated with

the WFS measurements. The principle of operation of SH WFS is shown in

Fig 3.2.

The measurement noise for SH type WFS is due to the contribution of

the photon noise and the detector noise. Every image formed on a detector is

a percentage of the amount of photons (generally 50-80% that are converted

to electrons) [193] received by a lenslet, and the noise associated with the

incoming flux of photons from the source is known as the photon noise. An

expression for the photon noise variance (σ2
ph) and detector noise variance

1The detector can be a four quadrant detector for each sub-aperture or a charged-

coupled device (CCD) [164].
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∆x

∆y

Lenslet

Array

Incoming

wavefront

CCD

Array

Reference position

(red circles)

Measured position

(black circles)

Part of the CCD Ar-

ray corresponding to

a single sub-aperture

Z

Y

X

Figure 3.2: Schematic representation of a Shack-Hartmann wavefront sen-

sor. An incident wavefront travelling along the Z-axis, after entering the

telescope pupil, is sampled by an array of lenses (called lenslet array), and

forms an image of the source on the CCD array. If the wavefront is plane,

each lenslet forms an image of the source at its focus (marked by red). If the

wavefront is distorted, the images are shifted from their reference position

(marked by black). This shift in position is proportional to the mean slope of

the wavefront and can be measured with equation( 3.2) and equation( 3.3).

(σ2
det) is given by [170]:

σ2
ph =

π2

2

1

nph

(
XT

XD

)2

(rad2) (3.4)

σ2
det =

π2

3

σ2
e−

n2
ph

(
X2
S

XD

)2

(rad2) (3.5)
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where nph is the number of photons received per sub-aperture, XT is the size

of the image formed on a sub-aperture, XD is the diffraction-limited size of

the image formed on a sub-aperture, X2
S is the total number of pixels used

in calculating the position of the image formed on a sub-aperture and σe− is

the rms value of electron noise per pixel and per sub-aperture.

3.1.3 The controller

The purpose of the controller, in an AO system, is to minimize the phase vari-

ance of the observed wavefront [166]. Given the measurements of the WFS,

the objective of the controller is to control the movement of the deformable

mirror to obtain the best possible correction phase φcorr (see equation (3.1)).

The WFS provides a vector of measurments M , corresponding to the sam-

pling of the wavefront by sub-apertures. From these M measurements, the

controller generates N corrected signals (corresponding to N corrected phase

values over the detector) of the wavefront [164, 166]. These signals are then

applied as high voltages (after passing through Digital-to-Analog converters)

to the actuators beneath the DM. The actuators then push or pull the DM

to update the shape of the mirror according to the wavefront.

The optimal correction of the wavefront phase by the controller depends

not only on the WFS measurements, but also on the different temporal as-

pects of the control loop [65], which must be taken into consideration. A

good source of information on the temporal aspects of the controller can be

found in [34, 46, 53, 122]. Some examples of AO correction of spatial images

are shown in Fig 3.3.

After discussing about the functioning of an AO system and its key el-

ements, we will now focus on the problem of wavefront reconstruction from

the measurements of the WFS.

§ 3.2 Wavefront reconstruction

The goal of any AO system is to reconstruct the wavefront phase values from

the discrete measurement of its gradients (slope measurements) or Laplacian

provided by the wavefront sensor. The problem of reconstruction can also be
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(a) (b)

(c) (d)

Figure 3.3: AO correction of astronomical images. Top row : H-band

image of Uranus and the moon Miranda (faint point at the bottom) captured

using ground-layer adaptive optics system (GLAS). (a) Uncorrected image.

(b) with AO correction. Image courtesy: Isaac Newton Group of Telescopes.

Bottom row : 20 × 20 arcsecond region near the center of the globular clus-

ter Omega Centauri. (c) without AO correction. (b) with MCAO correction.

Image courtesy: Enrico Marchetti.

viewed as a surface reconstruction approach from a given gradient field [164].

The slope measurements obtained from a SH sensor are a measure of the

wavefront phase difference in two directions: the x direction and the y di-

rection. Depending on the way of measurement of the wavefront shape in

the optical pupil, the phase reconstruction process can be viewed either as a
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φi,j φi+1,j

φi+1,j+1φi,j+1

φy,i,j

φx,i,j

Figure 3.4: Fried Geometry for the (i, j)th sub-aperture. A measurement

of the gradient of the phase is provided by a wavefront sensor at (xi, yj). The

phase values at the corners of the sub-aperture are then estimated.

zonal approach or a modal approach [186].

3.2.1 The Zonal approach

In the zonal approach, the wavefront phase φ is expressed as a discrete set of

points determined by each zone (or sub-aperture) of the mirror responding

to the incident wavefront on the telescope pupil and let Φ be a vector of this

discretized phase values that we are searching for. The relation between the

slope measurements of the wavefront sensor g and the unknown Φ can be

generalized into a linear equation of matrix framework [18, 164, 193] as:

g = ΓΦ + n (3.6)

where Γ is the discrete differential operator, also known as the interaction

matrix, and n ∼ N (0, σ2I) is the noise vector. It should be noted here that

the measurement g corresponds to a sampled version of the derivative of the

phase, which results in g being corrupted by an overlapping error. As a result,

a periodization is introduced in its spectrum in the Fourier domain [65].

Depending on the shape of the spectrum and the sampling rate, some error

will therefore remain in the low frequency components of the phase.
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Some well-known geometrical models exist that are able to express the

discrete measurements g (assumed to be centered within each sub-aperture)

in terms of the phase values at the four corners of a sub-aperture in the

wavefront sensor [62, 88] (i, j being the co-ordinates of the sub-aperture con-

sidered). According to Fried geometry [62] (see Fig 3.4), the phase gradients

at (xi, yj) can be expressed, in its two directions x and y as [164]:

φx,i,j ≈
1

2
[(φi+1,j+1 + φi+1,j)− (φi,j + φi,j+1)] (3.7)

φy,i,j ≈
1

2
[(φi+1,j+1 + φi,j+1)− (φi,j + φi+1,j)] (3.8)

where the grid spacing is assumed to be 1. If the unknown Φ is a vector of

N phase values (or N command signals applied to the actuators in the DM

through the controller) over a grid and the measurement vector g consists of

M elements, then the interaction matrix Γ is a N × M matrix and describes

the response of the WFS to each actuator [164, 166].

3.2.2 The Modal approach

In the modal approach, the wavefront phase is expressed in terms of polyno-

mial expansion of some basis functions Zi, also called modes (can be Zernike

or KL modes). The objective is then to calculate the coefficients of Zi

from which the phase can be reconstructed [164] using the equation (see

section 2.4):

φ(r, θ) =
∑

i

ziZi(κ, θ) (3.9)

where zi are the coefficients of Zi. Taking the derivatives on both sides of

the equation (3.9), we obtain a set of equations that can be expressed in the

matrix framework as:

s = cA (3.10)

where s is the array containing the slope measurements of the wavefront

sensor and A = {z2, z3, ..., zn} (first mode or piston mode removed). The

derivatives of the modes in the two directions are expressed as [164, 65]:

cxij =
f

S

∫

subap j

∂Zi
∂x

dxdy and cyij =
f

S

∫

subap j

∂Zi
∂y

dxdy (3.11)
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where f is the focal length of the lenslet array, i represents the mode number,

j the number of sub-apertures and S represents the area of the sub-aperture.

3.2.3 Least squares wavefront reconstruction

A general approach to estimate the phase is to minimize the least squares

error function given by:

argmin
Φ

‖ΓΦ− g‖22 (3.12)

The solution to this function can be, for the zonal approach, written as:

ΓTΓΦ = ΓTg (3.13)

and, for the modal approach, as:

cT cA = cT s (3.14)

where ΓT is the transpose of Γ. It should be noted that, the ground matrix

ΓTΓ (or cT c) should be well-conditioned [137, 65, 164] to verify the standard

solution of equation (3.13) (or equation (3.14)).

Equation (3.13) (or equation (3.14)) can also be viewed as a discrete

Poisson equation with Neumann boundary conditions [86, 144, 164]. So,

surface reconstruction techniques based on solving the Poisson equation can

also be used for reconstructing the phase. A general discussion on different

surface reconstruction methods can be found in section 5.3.1, Chapter 5.

3.2.4 Wavefront reconstruction as an inverse problem

The wavefront reconstruction can also be viewed as an inverse problem [137,

164], where one searches for the unknown Φ in the equation g = ΓΦ+ n. An

estimate the wavefront phase Φ̂ from the slope measurements can be written

as:

Φ̂ = Bg (3.15)

where B is known as the reconstruction matrix.

Most of the existing methods for solving the inverse problem can be

broadly classified into two types: the maximum likelihood (ML) technique

and the maximum a posteriori (MAP) technique [98, 164].
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3.2.4.1 Maximum likelihood method

The ML method tries to determine the unknown Φ such that it maximizes

the probability of producing the measurement vector g. In other words, it

tries to maximise the probability P(g|Φ̂) and we can write [137, 110]:

P(g|Φ̂) ∝ exp{−1

2
(ΓΦ̂− g)TC−1

n (ΓΦ̂− g)} (3.16)

where Cn is the covariance matrix of the noise n whose statistics are assumed

to be known. To find the maximum of equation (3.16), we take the derivative

of its logarithm and equate it to zero [164, 110]:

∂

∂Φ̂
ln(P(g|Φ̂)) = 0 (3.17)

The resulting solution is rearranged to give an estimate of the phase as [177]:

Φ̂ = (ΓTC−1
n Γ)−1ΓTC−1

n g (3.18)

and the reconstruction matrix has the form:

B = (ΓTC−1
n Γ)−1ΓTC−1

n (3.19)

Equation (3.18) is known as the maximum likelihood estimate of the phase

Φ. The invertibility of the matrix ΓTC−1
n Γ, should however be checked in all

circumstances. If M ≥ N there is generally no problem, but the matrix can

be ill-conditioned. But in general M < N . In this case the matrix Γ has

N -M null eigenvalues, and thus can not be directly invertible. The classical

solution consists in setting the eigenvalues associated to this subspace to 0.

In other words, the solution is projected into a subspace of dimension M . In

the case of Fourier transform (deconvolution, aperture synthesis) the solution

is commonly known as the Bracewell solution [36, 35].

If the statistics of the noise is not known, Cn is assumed to be equal to

I, where I is the identity matrix [110]. In this case, the maximum likelihood

solution of equation (3.18) reduces to the least squares solution.

3.2.4.2 Maximum a posteriori method

Unlike the ML method, which tries to estimate the unknown phase Φ without

any a priori knowledge of it, the MAP estimator works on the idea of includ-

ing any available information of Φ in the solution process. This corresponds
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to including a regularization criteria in the solution process of this ill-posed

inverse problem, where there are less data than unknowns. The separation

between ML and MAP can therefore be foreseen from this applied criterion.

The idea is, given the measured data g and some a priori information

of Φ, the MAP estimator tries to maximize the probability P(Φ̂|g). From

Bayes’ theorem we can say:

P(Φ̂|g) ∝ P(g|Φ̂) × P(Φ̂) (3.20)

where P(g|Φ̂) is the conditional a priori probability and P(Φ̂) is the prior

probability on Φ. We assume that Φ is Gaussianly distributed with a known

covariance matrix CΦ. We therefore have:

P(Φ̂|g) ∝ exp{−1

2
(ΓΦ̂− g)TC−1

n (ΓΦ̂− g)} × exp{−1

2
ΦTC−1

Φ Φ} (3.21)

The resulting solution is obtained by minimizing the logarithm of P(Φ̂|g) [164,

177, 63] and can be written as:

Φ̂ = (ΓTC−1
n Γ + C−1

Φ )−1ΓTC−1
n g (3.22)

3.2.4.3 Minimum variance wavefront reconstruction

The minimum variance wavefront reconstruction is generally preferred over

the least squares method as the latter is unstable for large scale AO systems.

The minimum variance estimator tries to minimize the statistical average of

the wavefront phase residual error ǫ and can be written as:

ǫ = 〈‖Φ̂− Φ‖2〉 = 〈‖Bg − Φ‖2〉 (3.23)

The main goal of the minimization procedure is to determine the recon-

struction matrix B such that ǫ is minimum [164]. The final solution leads

to [18, 65]:

B = (ΓTΓ + σ2C−1
Φ )−1ΓT (3.24)

and the estimated phase as:

Φ̂ = (ΓTΓ + σ2C−1
Φ )−1ΓTg (3.25)
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This solution is equivalent to the MAP solution of equation (3.22), when the

statistics of noise is not known and Cn is assumed to be equal to I. Noise

statistics are then assumed to be Gaussian, and the solution is equivalent to

the inversion with a Wiener filter.

There are many different approaches to solving equation (3.25) that has

been of major interest in recent years. A direct method using sparse matrix

technique has been proposed in [54]. Multigrid techniques and precondition

conjugate gradient methods [75, 74, 18] have, however, proven to be the most

computationally efficient approaches.

§ 3.3 Conclusion

In this chapter, we have presented a summary on the basic principle of oper-

ation of an AO system and the techniques employed in the wavefront phase

reconstruction from the slope measurements (or curvature measurements) of

a wavefront sensor. We have talked about the operation of the SH WFS,

which is the most widely used WFS in AO. The reconstruction principle is

based on solving the least squares inverse problems. Multigrid solvers and

precondition conjugate gradient solvers have proved to be the most com-

putationally efficient approaches to this problem. In the next chapter, we

introduce the framework of MMF (Microcanonical Multiscale Formalism)

based on which we formulate our phase reconstruction algorithm.
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- Chapter 4 -

The Microcanonical Multiscale

Formalism (MMF)

After having recalled in the previous chapter an overview of existing main

AO solution methods, we now turn to the necessary description of the for-

malism used in deriving a new approach to phase reconstruction through

inference across the scales. In this chapter, we delve into the formalism used

to achieve this goal: the MMF. The MMF is a specific microcanonical ap-

proach to multifractality. It allows the determination of the geometrical sets,

unattainable by linear filtering techniques, that describe the cascading prop-

erties of intensive variables and the localization on information content in

turbulent signals. These sets, which form the basis of multifractal or mul-

tiscale hierarchy in turbulence, are determined by the computation of sin-

gularity exponents in a microcanonical formulation. As inference across the

scales will be achieved in chapter 6 by a multiresolution analysis performed

on the signal of singularity exponents, this chapter gives the foundation of

the key relevant quantities used in our thesis. We also recall the more clas-

sical approaches to multifractality devised in physics (canonical setting) to

ease the understanding between the different introductions to this subject.

Most real-world signals are complex signals, usually difficult to describe

but possess a high degree of redundancy [197]. The underlying dynamics

of such systems are such that, at the macroscopic scale, intensive variables

display a power-law in the vicinity of a critical point [203], the corresponding

39
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exponent being called a critical exponent, or, as it is usual in the multifrac-

tal formalism, a singularity exponent. The distribution of the singularity

exponents define a universality class : if two different systems have identical

distribution of their singularity exponents, all the macroscopic quantitities

and correlation functions that can be derived from their generalized phase

space will be equivalent i.e., these systems will share common macroscopic

features. This implies the presence of a common macroscopic behaviour in-

dependant of the microscopic dynamics of each system [119] which is one of

the basic justifications for the science of complex systems. The knowledge of

localized singularity exponents allow the retrieval of classical characteristics

in the multifractal formalism, such as the singularity spectrum, as computed

through a Legendre transform in the canonical approach to multifractality.

But the knowledge of localized singularity exponents goes much further in

the characterization of the dynamics of a complex system. For example in the

case of FDT (Fully Developed Turbulence), the multiscale hierarchy, whose

singularity spectrum is a well known signature, can be computed from the

localized singularity exponents. In the canonical approach to multifractal-

ity, developed by researchers since many years, the characteristic shape of

the singularity spectrum is only an indicator of the presence of a multiscale

hierarchy. The effective computation of the singularity spectrum in a canon-

ical setting, for instance in relation with wavelet modulus maxima, reamains

a computationally demanding problem. This makes the MMF particularly

interesting, because this formalism allows a direct computation of the local-

ized singularity exponents, hence a direct access of the multiscale hierarchy

whose existence goes back to the work of G. Parisi and U. Frisch [147] and

Z. S. She and E. Leveque [185]. The same type of conclusion can be inferred

from multiscale analysis of most complex signals [201]. As a consequence, the

paradigm of understanding natural signals as acquisitions of complex systems

with unknown phase space is a useful one [32]. The properties of physical

cascading variables reflect the transfer of energy, or more generally informa-

tion, taking place from larger scales to smaller ones. The MMF proves to

be a suitable approach for the study of multiscale properties in real signals.

Recent developments in microcanonical framework for the computation of

singularity exponents and the derivation of singularity spectra have lead
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to a sensible improvement in the numerical techniques for the determination

of multiscale characteristics of real signals [154, 202]. Experimental anal-

ysis on different real-world signals, ranging from stock market time series

to atmospheric perturbated optical phase shows that these systems are not

only found to have multiscale behaviour, but their singularity spectra are

also coincident [154]. Consequently, the precise numerical computation of

geometrically localized singularity exponents in single acquisitions of com-

plex systems, without the averages taken on grand ensembles, unveils the

determination of their universality class [151].

Before getting into the theory of MMF, it is imperative to discuss the

concept of fractals. Fractal geometry constitutes an important part of this

formalism as they also exhibit scale-invariant phenomenon, although multi-

fractal systems are more flexible in describing the scale-invariant nature of

natural signals. A typical example of a fractal set is the von Koch curve

shown in Fig 4.1.

The chapter is organized as follows: In section 4.1, we introduce the

concept of fractals and fractal dimension, in section 4.2 we describe a mul-

tifractal system, where in section 4.2.2 we introduce the concept of MMF.

In section 4.3 we discuss ways of estimating the singularity exponents and

conclude in section 4.4.

§ 4.1 The concept of fractals

The term fractal was introduced by Mandelbrot [131] to describe objects that

exhibit an aspect of extreme irregularity and does not possess any length-

scale characteristics [7]; they have been used as a standard strategy to de-

scribe self-similar systems [154]. The degree of irregularity in fractal sets can

be realized with the help of their fractal dimension, proposed by Hausdorff in

1919. A fractal object is characterized by its fractal dimension and the fractal

dimension of a set can be calculated in many ways. The different methods of

computing it, however, may give different values of dimension for the same

set. The most accepted methods for calculating the fractal dimensions are

the Box-counting dimension and the Hausdorff dimension.
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Figure 4.1: The sequence of sets approaching the von Koch curve after

1, 2, 3 and 4 iterations.

4.1.1 Box-counting dimension

The Box-counting dimension is a way of determining the fractal dimension

of a given set. Let X be a non-empty, bounded subset of Rn and N(s) be

the least number of closed balls of diameter s required to cover X, then, by

definition, the Box-dimension of the set X is:

dimB(X) = lim
s→0

sup
logN(s)

log(1/s)
(4.1)

Due to its simplicity and convenience to estimate in practice [55], the Box-

counting dimension (also known as the Minkowski–Bouligand dimension) is

one of the most widely used fractal dimensions.

4.1.2 Hausdorff dimension

Another definition of the concept of dimension, called Hausdorff dimension,

is defined as follows: for a subset X of Rn and δ > 0, we consider a countable

collection of sets (Ui) required to cover X, then the δ-dimensional Hausdorff

measure Hδ(X) of X can be expressed as:

Hδ(X) = lim
s→0

inf
Ui

∑

i

diam(Ui)
δ (4.2)

The δ-dimensional Hausdorff measure of X is therefore estimated as the sum

of the diam(Ui)
δ, with the infimum taken over all the countable collections

(Ui), such that diam(Ui) < s [178]. The Hausdorff dimension of X, dimH(X)
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is then defined as:

dimH(X) = inf{δ | Hδ(X) = 0} (4.3)

The Hausdorff dimension for a fractal set, in practice, is however diffi-

cult to be estimated by computational methods [19, 55] and although it is

mathematically more satisfactory than the Box-dimension, in practical ap-

plications we prefer to use the latter. However, in MMF we estimate the

Hausdorff dimension as Box-counting dimension is not well defined.

§ 4.2 Description of a multifractal system

Similar to the fractals, a multifractal system is also a scale-free (scale invari-

ant) system i.e. the smaller regions exhibit the same statistical properties as

that of the whole system: they are statistically self-similar [154]. A multi-

fractal system is characterized by the distribution of Hausdorff dimensions

to describe its behaviour under changes of scale. The first attempt to exploit

the organizational behaviour of a multifractal system, and relate it with a

cascade process, was the Canonical Multiscale Formalism (CMF) [203].

4.2.1 Canonical approach to multifractals

According to Canonical Formulations (CMF), a signal s is multifractal if for

a given family of functions Γr we have:

〈|Γrs|p〉 = αpr
τp + o(rτp)(r → 0) (4.4)

where 〈· 〉 denotes the average over an ensemble of signals s belongs to (αp

depends on the functional Γr) [203]. However, in general, such averages are

inaccessible. Instead, the average for different points ~x within the same signal

domain, as the one of s, is calculated (ergodic assumption).

The existence of multiplicative cascade process was first justified by Kol-

mogorov in his theory on turbulence [64]. Under conditions of intense tur-

bulence (fully developed turbulence), energy is passed down from the large-

scales to the smaller ones by an injection process until the fluid attains a state
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of dynamic equilibrium where we can expect a balance in the amount of en-

ergy stored in each scale. Kolmogorov proposed that for two given scales

r and L, 0 < r < L, we can define the process of energy transfer by the

injection parameter ηr/L as:

Γrs
.
= ηr/LΓLs (4.5)

where ‘
.
=’means that both sides are equally distributed. According to Kol-

mogorov, the injection process ηr/L depends only on the ratio of the scales

and can be written as ηr/L = [r/L]ǫ. From this we can say that the p-order

moments have the following relationship

〈|Γrs|p〉 = [r/L]ǫp〈|ΓLs|p〉 = Apr
ǫp (4.6)

where Ap = 〈|ΓLs|p〉L−ǫp. Comparing the equation (4.4) and equation (4.6),

we can say that τp = ǫp, that is, the canonical exponents τp have a linear

relationship with p; a condition known as normal scaling [203] and the system

is monofractal. However, experiments show that in the case of fully developed

turbulence (FDT), the relationship between τp and p is not linear, rather it

is a convex curve, a condition known as anomalous scaling [202]. To apply

Kolmogorov’s decomposition in anomalous scaling, certain assumptions have

to be made:

• ηr/L has to be interpreted as a random variable, independent of L.

• The variable ηr/L has to be indefinitely divisible to ensure downward

process from scale L to r is verified directly or in several stages giving

rise to the cascade process.

It has been verified [64] that an injection mechanism as the one proposed by

Kolmogorov leads to the understanding of a underlying geometrical struc-

ture in a multiplicative cascade process, together with the knowledge of the

exponents τp, for infering information along the scales of the signal. This

description of self-similarity led researchers to propose tractable models for

the determination of the geometric multiscale hierarchy. The Microcanonical

Mulstiscale Formalism allows this determination by localized singularity ex-

ponents, contemplated in a microcanonical formulation and without ergodic

hypothesis.
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4.2.2 Microcanonical approach to multifractals (MMF)

In equation (4.4) the exponants τp are not geometrically localized, because

of the use of average over ensembles. The microcanonical approach (MMF)

proposes to overcome this limitation by introducing localized versions of the

exponents, while providing effective means to compute them without sta-

tionarity hypothesis. We will say that a signal s is multifractal in a micro-

canonical sense if, for at least one functional Γr depending on the scale r, it

is assumed that for any point ~x the following equation holds [202]:

Γrs(~x) = α(~x)rh(~x) + o(rh(~x)) (r → 0) (4.7)

The exponent h(~x), which is a function of the point ~x, is called the singularity

exponent or Local predictability exponent (LPE) at point ~x [202]. This is the

microcanonical approach to multifractal theory which says that a signal is

multifractal if every point in the signal is characterized by a local power-law

scaling behaviour. So, the two main quantities that define a multifractal sig-

nal are the singularity exponents and the collection of its fractal dimensions:

the singularity spectrum.

4.2.2.1 Singularity exponents

According to MMF, a signal s(~x) is multifractal if it is characterized by an

hierarchy of fractal components [154]. In fact, decomposing a multifractal

signal results in partitioning the signal domain into components Fh, which

are in general of fractal nature. In other words, each point ~x in the signal

is characterized by a singularity exponent h(~x) which is typical to one com-

ponent Fh. The fractal components are level sets of the function h(~x) [203]

and are defined as follows:

Fh = {~x : h(~x) = h} (4.8)

and the multifractal hierarchy is equivalently defined by the family Gh = {~x :

h(~x) ≤ h}, which is such that when h1 < h2,Gh1 ⊂ Gh2 . The knowledge

of the family Gh and Fh are equivalent, the multifractal hierarchy is usually

referred to the family Fh.
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(a) (b)

Figure 4.2: Singularity spectrum for the phase screen shown in Fig 2.3a.

(a) Reduced singularity spectra D(h) − d at the finest scale (resolution) r0.

(b) Reduced singularity spectra D(h)−d, with errorbars, at the finest possible

scale r0, twice the finest possible scale r1 and three times the finest scale r2.

In practice, the sets Fh are determined by the value of h(~x) not fixed,

but belonging to an interval defined by a threshold ∆h:

Fh = {~x : h(~x) ∈]h−∆h, h+∆h[} (4.9)

The central problem is to compute at best possible numerical precision the

value of h(~x) at point ~x since bad approximations of singularity exponents

lead to poor performances in signal processing applications.

4.2.2.2 Singularity spectrum

The singularity spectrum of a multifractal signal is the collection of all its

fractal dimensions, i.e. the different Hausdorff dimensions D(h) of the fractal

components Fh, represented as a function of h. The distribution of the

singularity exponents has a simple relation with the singularity spectrum

D(h) at a given scale r. The empirical histogram of the exponents (ρr(h))

at small scale r verifies [203, 99]:

ρr(h) ∝ rd−D(h) (4.10)
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where d is the dimension of the signal domain. Henceforth, we can obtain

D(h) from the log-log regression of equation (4.10) as:

d−D(h) = lim
r→0

log(ρr(h))

log r
(4.11)

with, as stated, r → 0. The process can however be numerically time consum-

ing. One important aspect of the singularity spectrum is that, the maximum

of the curve (obtained by the mapping of D(h) as a function of h and is

convex) corresponds to the fractal dimension of the support of the measure

and is strictly positive [7]. This implies that there exists a fractal component

Fh1 of maximal fractal dimension D(h1) = d, and we estimate the singularity

spectrum at the finest resolution scale r0 as [202, 203]:

D(h) = d− log(ρr0(h)/ρr0(h1))

log r0
(4.12)

where ρr0(h1) = max{ρr0(h)}.

4.2.3 Relation between canonical exponents τp and sin-

gularity spectrum D(h)

The canonical exponents τp can be computed from the Legendre transform

of the singularity spectrum D(h) by the simple relationship [147]:

τp = infh{hp+ d−D(h)} (4.13)

which is known as the Parisi-Frisch formula. One of the advantages of this

formula is that it can be inverted. By definition, the Legendre spectrum

Dl(h) corresponds to the Legendre transform of τp [202]:

Dl(h) = infh{hp+ d− τp} (4.14)

where d stands for the dimension of the signal domain as before. By con-

struction Dl(h) is convex, and if not, the Legendre spectrum will equal its

convex hull [202].

We will therefore summarize the MMF approach as follows: A signal s(~x)

is multifractal in the microcanonical sense if it satisfies the following three

conditions [203]:
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1. there exists at least a family of functionals {Γr}r such that equa-

tion (4.7) is verified for every point ~x in the signal.

2. at any scale r , equation (4.14) holds for the same curve Dl(h).

3. the singularity spectrum Dl(h) derived from equation (4.14) is a convex

function of h.

The singularity spectrum of an experimental phase screen is shown in Fig 4.2.

The same behaviour of the curve is observed for other phase screens also. The

convex shape of the singularity spectra is the characteristic of the presence

of a multiscale hierarchy in the signal defined by equation (4.8). The re-

sult shown in Fig 4.2 clearly indicates that the perturbated optical phase

has multiscale properties, which justifies the use of MMF in exploiting its

features.

We will now focus our attention on the computation of the singularity

exponents h(~x). From this part onwards, we will be adressing the applications

of MMF for the case of 2-D signals only, since the purpose of this thesis is

to validate the MMF model on image processing applications in Adaptive

Optics.

§ 4.3 Estimating the singularity exponents

Let I be a scalar image defined over a compact subset of R2 and ‖∇I‖ is the

norm of its gradient. We work with an additive normalization of I(~x) defined

as [197] I(~x)−〈I〉, where 〈I〉 is the average of luminance intensities over the

signal domain. We then define a measure µ through its density dµ(~x), so

that the measure of a ball Br(~x) of radius r centered around the point ~x

corresponds to summing the norm of the gradient over Br(~x):

µ(Br(~x)) =
∫

Br(~x)

d(~y)‖∇I‖(~y) (4.15)

A measure µ as the one defined above is a multifractal measure, in a micro-

canonical sense, if for any point ~x ∈ Ω the following equality holds [203]:

µ(Br(~x)) = α(~x)rh(~x) + o(rh(~x)) (r → 0) (4.16)
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where α(~x) is a signal-dependent amplitude prefactor and h(~x) is the sin-

gularity exponent at point ~x. The singularity exponents for experimental,

discretized data can be calculated using different methods [202, 155]. We

will discuss about the two methods that has been widely popular for their

simplicity and effectiveness.

4.3.1 Singularity analysis via log-log regression

A direct log-log regression of equation (4.16) gives an estimate of h(~x) as:

h(~x) = lim
r→0

log(µ(Br(~x))/α(~x))
log(r)

(4.17)

for a very small value of r, such that the term o(rh(~x)) of equation (4.16) is

diminished. One can choose α(~x) as the average of the norm of the gradi-

ents [202]. For multiple values of r, r = {r0, r1, · · · , rn}, equation (4.17) can

be written as:

log(µ(Br0(~x))) = log(α(~x)) + h(~x) log(r0)

log(µ(Br1(~x))) = log(α(~x)) + h(~x) log(r1)
... =

... +
...

log(µ(Brn(~x))) = log(α(~x)) + h(~x) log(rn)

(4.18)

and can be expressed in the matrix framework as:




log(µ(Br0(~x)))
log(µ(Br1(~x)))

...

log(µ(Brn(~x)))




︸ ︷︷ ︸
A

=




1 log(r0)

1 log(r1)
...

1 log(rn)




︸ ︷︷ ︸
B

×
[

log(α(~x))

h(~x)

]

︸ ︷︷ ︸
Y

(4.19)

Equation (4.17) can then be solved using the Least-square approach:

Y = (BTB)−1BTA (4.20)

with Y (2) = h(~x). This approach, however, doesn’t hold good for small

images and is a special case only for large images [202]. This method for

small images yields a coarse approximation of the exponents.
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(a) (b)

Figure 4.3: (a) Image of a simulated optical phase perturbated by atmo-

spheric turbulence. The image corresponds to a 128 × 128 pixels sub-image

extracted from an original 256 × 256 pixels image to avoid the pupil bound-

ary. (b) Image of the singularity exponents computed on the phase data using

β-Lorentzian wavelet.

4.3.2 Singularity analysis via wavelet projection

The standard technique used to overcome the problem in the log-log tech-

nique involves the use of wavelet projections as singularity analyzers. The

wavelet theory is a valuable tool in analysing the multiscale properties of a

signal. The choice of wavelet plays an important role in the determination of

h(~x), and it has been seen [201] that the wavelets β-Lorentzian and Gaussian

prove to be a good choice:

β − Lorentzian : ψ(~x) = ψβ(~x) =
1

(1 + |~x|2)β (4.21)

Gaussian : ψ(~x) = e
−|~x|2

2 (4.22)

It should be noted here that both types of wavelet are isotropic, i.e., they

do not privilege any particular direction [203]. The wavelet projection of the
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measure µ at scale r and point ~x is then defined as:

Tψµ(~x, r) =
∫

‖∇I‖(~y) 1
rd
ψ(
~x− ~y

r
)d~y (4.23)

where d is the dimension of the signal domain. Equation (4.16) can then be

re-written as:

Tψµ(~x, r) = αψ(~x)r
h(~x) + o(rh(~x)) (4.24)

and h(~x) is obtained by a linear regression of log(Tψµ(~x, r)) vs. log(r) as:

h(~x) = lim
r→0

log(τψµ(~x, r)/αψ(~x))

log(r)
(4.25)

where αψ(~x) is a constant depending on the choice of the wavelet and is

independent of the scale r. The singularity exponents of an optical phase

computed via wavelet projection is shown in Fig 4.3.

§ 4.4 Conclusion

In this chapter, we have introduced the concept of multifractal systems and

the Microcanonical Multiscale Formalism, which tries to explore the mul-

tiscale behaviour of complex systems and its underlying dynamics related

to the cascading behaviour in real-world signals [147, 64]. We have shown

the existence of multiscale features, in a perturbated optical phase signal,

through the multifractal analysis of its singularity spectrum. In the next

chapter, we will justify the use of singularity exponents as the right can-

didate for describing the multiscale behaviour of turbulent signals, like the

optical phase, and in the process on natural images as well. We will show that

the critical exponents (the singularity exponents as we name them) h(~x) give

access to a notion of transition in the case of turbulent data, in a way that

generalizes edge detection by classical operators in the case of non-turbulent

data. Edges convey the multiscale information of a signal, and we show that

edges detected by MMF are not only consistent along the scales of a signal,

but are also ideal candidates for reconstructing the signal.
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- Chapter 5 -

Critical exponents and inference across

the scales

Transmission of information across the scales of a complex signal has some in-

teresting potential, notably in the derivation of sub-pixel information, cross-

scale inference and data fusion. It follows the structure of complex signals

themselves, when they are considered as acquisitions of complex systems.

In this section, we contemplate the problem of cross-scale information infer-

ence through the determination of appropriate multiscale decomposition. We

demonstrate that microcanonical formulations, for understanding and evalu-

ating the mechanisms that govern the evolution of dynamical systems, lead

to accurate inference schemes across the scales in complex signals. Conse-

quently, we study the notion of optimal wavelet [152, 200, 45] for inferring

information across the scales. Such a wavelet is capable of extracting the

essential multiscale features of a signal, thereby allowing information extrac-

tion across scales with minimal error. For the case of wavefront phase recon-

struction in AO, a multiresolution analysis associated to an optimal wavelet

(related to the turbulent phase signal) would therefore allow a near lossless

extraction of details in the intermediate scales. Knowledge of the details with

high precision, would then allow us in reconstructing high-resolution gradi-

ents from its low-resolution version, and subsequently the phase using any

surface reconstruction algorithm. However, the accurate determination of an

optimal wavelet for real data is still a challenge, and the attempts made so

53
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far (we give an example of computing it on synthetic data in section 5.1.2)

produce only approximative versions of it, thereby limiting the probability

of maximum inference across scales. This leads us to define an alternative

approach by which maximum cross-scale information inference is possible.

As discussed in the previous chapter, the singularity exponents carry the

most relevant multiscale features of a signal. They give access to a notion

of transition in the case of turbulent data, in a way that generalizes edge

detection by classical operators in the case of non-turbulent data. Edges

convey the multiscale information of a signal, and it is seen that edges ob-

tained through singularity analysis are not only consistent along the scales

of a signal, but are also ideal candidates for reconstructing the signal (from

information contained in the edges [201, 125]). One possible way of an opti-

mal inference across the scales can therefore be achieved by a multiresolution

analysis on the signal of the singularity exponents. In order to justify this

approach we first validate, through experimental analysis, the potential of

the singularity exponents in encoding the most relevant multiscale features

of a signal. We do this in two steps:

• We first prove that singularity exponents provide a notion of edge, well-

adapted to the case of turbulent signals and coherent across the scales

of the signal (see section 5.2).

• We then show that, compared to edges detected by classical edge de-

tectors, better reconstruction of the signal is achieved from the edges

obtained through singularity analysis (see section 5.3).

The choice of a mother wavelet for multiresolution analysis on the signal of

singularity exponents also has some consequences on the optimality of cross-

scale inference and quality of reconstruction. In section 5.1.3, we investigate

the possibility of finding a “good” wavelet for the case of the turbulent phase

data.

The chapter is orgainzed as follows: In section 5.1, we introduce the

concept of optimal wavelets in realizing the optimal information inference

procedure from a given turbulent signal, we talk about appropriate function-

als to realize such processes, where in section 5.1.1, we introduce the concept
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of multiresolution analysis to perform the inference operation. We then intro-

duce the concept of edge detection using singularity exponents in section 5.2,

where edge consistency across the scales is addressed in section 5.2.2. Re-

constructing a signal from its edge representation is discussed in section 5.3

with results of the reconstruction in section 5.3.5. Finally, we conclude in

section 5.4.

§ 5.1 Optimal Inference across scales : Re-

alizing the microcanonical cascade

As discussed in the previous chapter, in MMF, a commonly used function Γr

for equation (4.7) is obtained through a measure µ defined by the norm of

the signal’s gradient in the following way:

Γr(~x) = µ(Br(~x)) =

∫

Br(~x)

‖∇s‖(~y)d~y (5.1)

where Br(~x) is a ball of radius r centered at pixel location ~x. We recall the

Kolmogorov theory on energy cascades (see section 4.2, chapter 4), where

two functionals Γr and ΓL, representing the same operation at scales r and

L respectively, 0 < r < L, are related by an energy transfer parameter ηr/L

and can be written as:

Γrs
.
= ηr/LΓLs (5.2)

The above equation, however, relate only the laws of the distribution and

would not imply any corresponding relation pointwise i.e. Γrs(~x) 6= ηr/LΓLs(~x).

However, one can formally define the variables of equation (5.2) as [217]:

θr/L(~x) =
Γr(~x)

ΓL(~x)
(5.3)

But in general, the variables θr/L(~x) defined by the above equation are such

that there is no independence between θr/L(~x) and ΓL(~x). The random vari-

ables Γr(~x) carry the multiscale properties of the signal, but it is impossible

to retrieve the cascading properties pointwise (called the microcanonical cas-

cade) from its definition.
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To tackle this problem, we make use of multiresolution analysis associated

to wavelet transform. We say that for a given wavelet Ψ, and the original

signal s, there is a multiscale operator which will be able to extract the infor-

mation pointwise from the cascading properties of the signal. This multiscale

operator can be defined as:

ΓΨµ(~x, r) =

∫
‖∇s‖(~y)Ψ(

~x− ~y

r
)d~y (5.4)

Exactly like in equation (5.3), we can now define a random process ζr/L(~x)

as:

ΓΨµ(~x, r) = ζr/L(~x)ΓΨµ(~x, L) (5.5)

Now, we can talk about a wavelet Ψ which, if determined, will make ζr/L(~x)

independent of ΓΨµ(~x, L). Such a wavelet is called an optimal wavelet: it

has the potential of unlocking the signal’s microcanonical cascading prop-

erties through simple wavelet multiresolution analysis. We can thus define

optimality of a wavelet as the degree of independence of ζr/L(~x) vs ΓΨµ(~x, L).

Before getting into the details of an optimal wavelet analysis, it is impor-

tant to realize the microcanonical cascade process of a turbulent signal. We

achieve this realization with the help of multiresolution analysis and wavelet

transform, which is discussed in the subsequent section.

5.1.1 Multiresolution Analysis & wavelet transform

In this section, we recall the notion of multiresolution analysis and its prac-

tical implementation with digital filters [128]. Multiresolution analysis is

mathematically formulated by the L2 sub-space decomposition associated to

wavelet projection. In order to realize the different sub-spaces, the wavelet

theory suggests the use of certain functions Φ and Ψ, also known as the scal-

ing function and the wavelet function respectively. Φ and Ψ forms the basis

for multiscale functions in multiresolution analysis. In order to minimize data

redundancy, so that the different sub-spaces convey new information of the

object, we make use of dyadic wavelet sequences [128] which are geometric

sequences of factor 2.
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V0 V1 V2 V0 W0W1

(a) (b)

V1 = V0 ⊕W0

V2 = V0 ⊕W0 ⊕W1

V0 ⊂ V1 ⊂ V2

Figure 5.1: Realization of sub-space by scaling and wavelet functions: (a)

Sub-space relationship of scaling functions. (b) Sub-space relationship of scal-

ing and wavelet functions.

5.1.1.1 Realizing the scaling function

The scaling function Φ can be realized as the scaled and shifted version of some

basis function. Φ is then defined in terms of two parameters: p which is the

scale parameter and q the shift parameter, where p, q ∈ Z and Φ(~x) ∈ L2(R),

as:

Φp,q(~x) = 2p/2Φ(2p~x− q) (5.6)

Let us take an example, where we define Φ(~x) as:

Φ(~x) =

{
0 if x ∈ [0, 1]

1 otherwise

This function is also known as the Haar function. When p = 0, q = 0,

Φ0,0(~x) = Φ(~x), when p = 1, q = 0, Φ1,0(~x) =
√
(2)Φ(2~x) i.e. the width of

Φ1,0(~x) is half of that of Φ0,0(~x). As a result Φ0,0(~x) cannot be used to ap-

proximate Φ1,0(~x). But, by scaling and shifting Φ1,0(~x) one can approximate

Φ0,0(~x) as:

Φ0,0(~x) =
1√
2
Φ1,0(~x) +

1√
2
Φ1,1(~x) (5.7)

Let us now define a sub-space V0 corresponding to p = 0 and covering the

width of Φ0,0(~x). Now, we increase the scale p by unity. The next sub-space

V1 is then realized by Φ1,q(~x). So, V1 forms a super-set of V0, since whatever
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can be measured by Φ0,0(~x), can also be measured by Φ1,0(~x). Similarly V2

is realized by Φ2,q(~x). We can say that the sub-space covered by the scaling

functions at lower scales is contained within the sub-space covered by those

at higher scales and is given by the relationship (see Fig 5.1(a)):

V−∞ ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V∞ (5.8)

The scaling functions of sub-space V0 can therefore be expressed as a weighted

summation of scaling functions of higher-order sub-spaces as:

Φ(~x) =
∑

n

hΦ(n)
√
2Φ(2~x− n) (5.9)

where hΦ(n) are the scaling function coefficients.

5.1.1.2 Realizing the wavelet function

Let us now consider the difference in sub-spaces (we will call them as detail

sub-spaces from here on) i.e. V1 − V0 = W0 which is also a sub-space. From

Fig 5.1(b), we can write:

V2 = V1 ⊕W1 = V0 ⊕W0 ⊕W1 (5.10)

So, we must develop functions that can cover the detail sub-space. Consid-

ering the Haar example of Φ(~x), if this function is applied over a signal, a

kind of averaging, i.e. low-pass filtering is done. For defining a function that

should cover the detail sub-space, we are essentially trying to cover the dif-

ference in the spaces covered by two low-pass filters i.e. a high pass filtering

operation. So the class of filters that can cover the detail sub-space has to be

a high-pass filter and the class of functions that are used to cover the detail

sub-space are given by:

Ψp,q(~x) = 2p/2Ψ(2p~x− q) (5.11)

Ψp,q(~x) ∈ L2(R) is known as the wavelet function or just the wavelet. Al-

though the functional forms of Φ and Ψ are the same, the scaling functions

and the wavelet functions differ by their spanning sub-spaces. Also, the

wavelet Ψ has the following properties [128]:
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• The shifted version of Ψp,q(~x) has to be orthogonal with each other.

• Ψp,q(~x) must be functions which should be oscillatory in nature i.e. it

should go to the positive as well as the negative.

• The area under these functions should be zero i.e. the area covered by

the positive part is nullified by the area covered by the negative part.

The relation between the scaling functions and the wavelets can be sum-

marized accordingly: let s(~x) be a function belonging to the V1 sub-space,

and not V0. A crude approximation of s(~x) is then provided by the scaling

functions of V0 and the wavelet functions of W0 provide the details. We can,

therefore, say that the scaling functions and the wavelet functions help to

analyze, respectively, a low-pass and a high-pass filtered version of s(~x). The

wavelet function can be expressed in terms of the scaling function as:

Ψ(~x) =
∑

n

hΨ(n)
√
2Φ(2~x− n) (5.12)

where hΨ(n) are the wavelet function coefficients.

5.1.1.3 Multiscale representation of a signal using wavelet trans-

form

Any signal s(~x) can be represented in a dyadic wavelet basis of mother wavelet

Ψ [128] as:

s(~x) =
∑

q

βp0,qΦp0,q(~x) +
∞∑

p=p0

∑

q

αp,qΨp,q(~x) (5.13)

where βp0,q and αp,q are the corresponding expansion coefficients. The first

term of the above equation, involving the scaling functions, provide approx-

imations of s(~x) at scale p0, while the second term having the wavelet func-

tions provide details of the approximation at scale p0 and higher. αp,q are

also known as the wavelet coefficients. The coefficients of equation (5.13) can

be obtained from the following equations:

βp0,q =

∫
Φp0,q(~x)s(~x)d~x (5.14)

αp,q =

∫
Ψp,q(~x)s(~x)d~x (5.15)
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Figure 5.2: Representation of the decomposition in multiresolution analysis.

«αj» is the approximation of the initial image «α0» at the resolution j. «α1
j»,

«α2
j» and «α3

j» are the horizontal, vertical and diagonal details respectively

at the resolution j.

This process of decomposing (or analyzing) the signal into aprroximation and

detail coefficients is known as the forward wavelet transform. The process of

decomposition can be repeated over different scales p to realize the different

sub-spaces necessary.

In the case of 2D signals, we have to apply the wavelet transform in two

directions: rows(n1) and columns(n2). Since, we are discretizing the signal

by the use of dyadic wavelets, we will express s(~x) as s(n1, n2) from now

on. The notations for the scale parameter and shift parameter are changed

to j and k1, k2 respectively. The decomposition process in images therefore

realizes the necessity of four filters that can be recursively applied along the

rows and columns to produce four coefficients (one approximation and three

details: horizontal, vertical and diagonal). The four filters can be defined as:

Φ(n1, n2) = Φ(n1)Φ(n2)

ΨH(n1, n2) = Φ(n1)Ψ(n2)

ΨV (n1, n2) = Ψ(n1)Φ(n2)

ΨD(n1, n2) = Ψ(n1)Ψ(n2)

(5.16)

Therefore, in a first level decomposition (scale j = 1), a low-pass filtering

along the rows and columns gives rise to the approximation coefficient α0
1 (we

write α0
1 instead of β0 for simplicity), a low-pass filtering along the rows and
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then a high-pass filtering along the columns gives rise to the horizontal detail

α1
1, a high-pass filtering along the rows followed by a low-pass filtering along

the columns results in the vertical detail α2
1 and finally high-pass filtering

in both the rows and columns of the image results in the diagonal details

α3
1. And in all cases, we have to do a decimation by a factor of 2 i.e. an

overall decimation by a factor of 4. Hence, the decomposition process using

multiresolution analysis gives rise to an approximation image fourth smaller

than the previous one. Since, images are generally rich in low-frequency

components, the decomposition process is repeated over the approximation

coefficient for further levels. The process can be viewed in Fig 5.2.

Reconstruction from the expansion coefficients finds each αj from αij+1,

where i represents the orientation (i = 0 represents the approximation of

the image α0
j at the resolution j, i = 1 represents the horizontal details

α1
j , i = 2 the vertical details α2

j , and r = 3 the diagonal details α3
j at the

dyadic scale 2j and at position 2jk1, 2
jk2). This process of reconstructing

(or synthesis) the signal from its coefficients is known as the inverse wavelet

transform. Generalizing α0
j as the approximation coefficient, equation (5.13)

can be simplified, in the discrete sense, as:

s(n1, n2) =
∑

i=0,1,2,3

∑

j

∑

k1,k2

αij,k1,k2Ψ
i
j,k1,k2

(n1, n2) (5.17)

where Ψ0
j,k1,k2

(n1, n2) represents the scaling function Φj0,k1,k2(n1,n2).

The 2D scaling and wavelet functions (generalized as Ψi
j,k1,k2

(n1, n2) in

equation (5.17)), used in the multiresolution decomposition and reconstruc-

tion of a signal, can be realized through separable, one-dimensional FIR

digital filters of impulse responses hΦ(−n) and hΨ(−n). The choice of the

filters depends on the choice of the scaling function and the wavelet. The

relation between hΦ and hΨ is given by:

hΨ(n) = (−1)nhΦ(1− n) (5.18)

These filters, which act as the high-pass and low-pass filters, are applied

along the rows and columns of an image to obtain the desired coefficients

αij,k1,k2 . The process is more elegantly expressed by Fig 6.2 and Fig 6.3, in

chapter 6.
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Notice that when obtaining the multiresolution decomposition of an image

the details at each resolution level refer to the same physical positions, but

after each iteration they are defined at a coarser scale [217, 157]. Therefore,

each parent coefficient αp = αij+1,k1/2,k2/2
, at the coarser scale, covers the same

spatial extent of four children coefficients αc = αij,k1,k2 at the finer scale.

5.1.2 Approximating the microcanonical cascade

The effective determination of an optimal wavelet for a given turbulent ac-

quisition is a very complicated and unsolved problem. The child-parent de-

pendancy valid for most wavelets, which are not too far from the optimal

case, can be described in terms of a particular model (see equation (5.5) for

explanation):

αc = η1αp + η2 (5.19)

with αc: ‘child’ wavelet coefficient, αp: ‘parent’ wavelet coefficient, η1,η2:

random variables independant of αc and αp and also independant of each

other. For an optimal wavelet the above equation takes the form αc = η1αp

with η1 independent of αp. We can therefore write for all scales j and position

k, the wavelet coefficients αj,k as:

αj,k = ηj,kαj−1,[k/2]

= ηj,kηj−1,[k/2]αj−2,[k/4]

= ηj,kηj−1,[k/2]ηj−2,[k/4]....α0,0

=
∏

j′,k

ηj′,[k/2j−j′ ]α0,0 (5.20)

for all orientation i.

The first ideas of finding an optimal wavelet for natural images were

explored in [199, 198]. Generalizing equation (5.17), a given signal s(~x) can

be expressed in the form of a wavelet series (set of signals) with the help of

its wavelet coefficients as:

s(~x) =
∑

j,k

αj,kψj,k(~x) (5.21)
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Comparing with equation (5.20), this gives us:

s(~x) =
∑

j,k

∏

j′,k

ηj′,[k/2j−j′ ]α0,0ψj,k(~x)

=
∑

j 6=0,k

∏

j′,k

ηj′,[k/2j−j′ ]α0,0ψj,k(~x) + α0,0ψ0,0(~x)

=
∑

j 6=0,k

αj,kψj,k(~x) + α0,0ψ0,0(~x) (5.22)

where ψj,k now forms the wavelet basis for the optimal wavelet. Now, the

expectation of the signal 〈s(~x)〉 = 0 as 〈α0,0〉 = 0 and 〈αj,k〉 = 0 due to

symmetry. However, if we consider σ0,0 to be the sign of α0,0, we can write

α0,0 = sign(α0,0)abs(α0,0) = σ0,0|α0,0|. We can then consider an ensemble

average of dynamically equivalent signals, say 〈sp(~x)〉 to get the expected

value for all these signals (p is the index of an ordering of the signals). Equa-

tion (5.22) can then be generalized to:

〈σp0,0|sp(~x)〉 =
∑

j 6=0,k

〈σ0,0〉〈αj,k〉ψj,k(~x) + 〈σ0,0α0,0〉ψ0,0(~x)

=
∑

j 6=0,k

〈σ0,0〉〈αj,k〉ψj,k(~x) + 〈σ0,0σ0,0|α0,0|〉ψ0,0(~x)

=
∑

j 6=0,k

〈σ0,0〉〈αj,k〉ψj,k(~x) + 〈|α0,0|〉ψ0,0(~x) (5.23)

where 〈·|·〉 denotes the standard Hermitian product on C2. σ0,0 is independent

of all the terms except α0,0. So the term 〈σ0,0〉〈αj,k〉ψj,k(~x) is zero due to

〈αj,k〉 = 0. Hence equation (5.23) reduces to:

〈σp0,0|sp(~x)〉 = 〈|α0,0|〉ψ0,0(~x) (5.24)

We don’t know the sign, so we try to estimate the sign of α0,0. Let ǫ0,0 be

the estimation, we then have:

〈ǫp0,0|sp(~x)〉 = 〈ǫ0,0σ0,0|α0,0|〉ψ0,0(~x) ∝ ψ0,0(~x) (5.25)

So, a correct estimate of 〈ǫp0,0|sp(~x)〉 will lead us to the optimal wavelet. The

product ǫ0,0σ0,0 in the above equation, can either be positive or negative. If

we have correct estimate of the sign, the product will be positive.
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Now, σ0,0 is the sign of α0,0 = sign of the projection of the signal s(~x)

on the wavelet ψ0,0(~x) = sign〈s(~x)|ψ0,0(~x)〉. Since we don’t know ψ0,0, we

try to make the projection of the signal on the element which has the most

dependancy with all the other elements (i.e. dominant presence of the term

〈|α0,0|〉ψ0,0(~x)). We will call this element as the most central element or

MCE. The principle of finding the MCE on a given realization of signals is

explained in algorithm 1.

Algorithm 1 Finding the MCE

Step 1: Subdivide a given image sp(~x) over small areas of equal sizes and

normalize individually every sub-image. Do this for all the realizations of p.

Step 2: We denote every sub-image as s
p
u,v(~x), where u, v gives the sub-image

position in p. Let N be the total number of sub-images.

Step 3: For every sub-image, find its correlation with all the other sub-images

(for all p) i.e., Cp,p′ = 〈spu,v(~x)|sp
′

u′,v′(~x)〉.
Step 4: Find the average of the correlation for every sub-image i.e., 1

N

∑

N

|Cp,p′ |.

Step 5: Find for which s
p
u,v(~x), the average correlation is maximum. Let it be

s
p∗
u∗,v∗(~x).

Step 6: We call sp∗u∗,v∗(~x) as the MCE.

Step 7: Repeat and check for different sizes of spu,v(~x), to get the best result.

After determining the MCE, we estimate the sign of every spu,v(~x), by ori-

enting it with the sign of the MCE. For ease of understanding, we fix the

sub-image size as the image size i.e. spu,v(~x) = sp(~x) which is the same as

repeating Algorithm 1, not with sub-images but with the image itself. In this

case, we assume that the MCE is a signal within the realization p, denoted

by sp∗(~x), and we estimate the sign as:

ǫp0,0 = σ(Cp,p∗) = σ(〈sp(~x)|sp∗(~x)〉)
= 〈σ0,0s(~x)|σ∗

0,0|α∗
0,0|〉ψ0,0(~x)

= |α∗
0,0|σ0,0σ∗

0,0〈s(~x)|ψ0,0(~x)〉 (5.26)

|α∗
0,0| being a constant, we are left with the projection of the signal on the

wavelet and its sign σ0,0σ
∗
0,0. If we have a correct estimate of the sign, we
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(a) (b) (c)

Figure 5.3: (a) Realization of 〈ǫ0,0|s(~x)〉, from equation (5.27), for the

Benzi model [24], at 48 × 48 pixels resolution. (b) X-cut of (a). (c) Y -cut

of (a).

can say 〈ǫp0,0|sp(~x)〉 ∝ 〈σp0,0|sp(~x)〉 i.e., we can have a field, for a particular

realization p, whose distribution will be close to the optimal wavelet (see

equation (5.25)). Considering this process repeated over all the realizations

and then summed, should magnify the presence of the wavelet in the resultant

image. The resultant image is therefore obtained accordingly:

〈ǫ0,0|s(~x)〉 =
∑

p

〈σ(Cp,p∗)|sp(~x)〉 =
∑

p

〈σ(〈sp(~x)|sp∗(~x)〉)|sp(~x)〉 (5.27)

We have tested this algorithm on Benzi model [24]. We recall the computa-

tion of multiaffine functions in Benzi model. A random field R(~x) is generated

by wavelet decomposition such that:

R(~x) =
+∞∑

j=−∞

+∞∑

k=−∞

αj,kψj,k(~x) (5.28)

with the wavelet family ψj,k(~x) = 2j/2ψ(2j~x − k). The coefficients αj,k are

generated such that:

α1,0 = ǫ1,0η1,0α0,0, α1,1 = ǫ1,1η1,1α0,0,

α2,0 = ǫ2,0η2,0α1,0, α2,1 = ǫ2,1η2,1α1,0,

α2,2 = ǫ2,2η2,2α1,1, α2,3 = ǫ2,3η2,3α1,1, (5.29)

and so on with ǫj,k = ±1 with equal probability; ηj,k are independent random
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variables having the same distribution P(η) given by:

P(η) = yδ(η − η0) + (1− y)δ(η − η1) (5.30)

where a typical realization of R(~x) in [24] is obtained for y = 0.125, η0 = 2−1/2

and η1 = 2−5/6. The wavelet ψ(~x) considered for the Benzi model is a

mexican-hat function obtained from differentiation of a Gaussian:

ψ(~x) =
d2

dr2
exp(− r2

2σ2
) with r2 = ‖~x‖2 (5.31)

For this particular model the optimal wavelet should correspond to ψ, which

is a mexican-hat function.

We compute over p = 1000 realizations of the Benzi data. The prelimi-

nary results are shown in Fig 5.3. It is clear from the results, that although

the essence of a mexican-hat function can be realized from the data (the X-

cut), it is still not close to the ground truth (the Y-cut does not correspond

to a mexican-hat function). The process is also computationally highly de-

manding. The failure of the approach, even for the case of synthetic data,

makes it obviously more challenging for the case of real world signals. This

leads us to define an alternative approach for optimal inference across the

scales of a signal. Nevertheless, a close approximation of an optimal wavelet

for a given turbulent signal will play a crucial role in the multiresolution

analysis process. In the next section, we concentrate on finding such an

approximative wavelet for turbulent phase signals.

5.1.3 Choice of wavelet

As discussed in section 5.1.2, the child-parent dependancy, for an optimal

wavelet, takes the form αc = η1αp. A log domain representation of it implies:

ln |αc| = ln |η1|+ ln |αp| (5.32)

Therefore, the local probability maxima in the conditional histogram of ln |αc|
in terms of ln |αp|, for an optimal wavelet, must be a straight line of slope

1 [157]. However, for a sub-optimal wavelet we will observe a deviation in

the linearity, a horizontal bend is observed on the left. This is obvious as

per equation (5.19), where the term η2 becomes dominant when the value of
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(a) Approximation (b) Diagonal details

(c) Horizontal details (d) Vertical details

Figure 5.4: Conditional histograms of the experimental phase data. The wavelet

used for this experiment is the order 3 Battle-Lemarié wavelet with 41 central coef-

ficients. The horizontal axis corresponds to ln |αp| and the vertical to ln |αc|. Top:

Approximation coefficients are shown in the left image, diagonal details (orthogo-

nal complements) are shown in the right image. Bottom: Horizontal details are

shown in the left image, vertical details on the right image (both correspond to the

orthogonal complements in multiresolution analysis).
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αp becomes smaller. We will therefore be interested in observing a linearity

in the conditional histograms (for different wavelet coefficients) for higher

values of αp. So, to test the optimality of a wavelet, we examine the con-

ditional expectation value E(ln |αc|| ln |αp|) for the different types of wavelet

coefficients. We have used 37 standard wavelets belonging to different fam-

ilies. They are: Haar, Daubechies (orders 2 to 20), Coiflet (orders 1 to 5),

Symlet (orders 4 to 10) and Battle-Lemarié (orders 1, 3, 5, 7 and 9). The

conditional histograms are plotted over a set of 1000 sub-images extracted

from the dataset of 1000 turbulent phase screens (data described in sec-

tion 6.1) provided by ONERA. Fig. 5.4 shows the linear/affine character for

the Battle-Lemarié wavelet of order 3; the functional dependancies for the

approximation as well as the orthogonal (horizontal, vertical and diagonal)

complements provide a qualitative estimation of the optimality of a wavelet

decomposition. The two parallel lines, seen for the higher values of αp in the

horizontal and vertical details, show some tendencies in the data revealing a

deviation from optimality.

Following the program announced previously in this thesis, we are now

in place for devising an alternative optimal multiresolution analysis since, as

we have seen, the computation of a high precision optimal wavelet from long

exposure turbulent phase data is not possible at this moment. We turn to-

wards one of the main results obtained in this thesis which shows that a very

good approximation of an optimal multiresolution analysis can be obtained

by considering a classical multiresolution analysis on the signal of singularity

exponents (computed on the phase data), instead of the phase itself. The pro-

found reason behind this idea lies in the ability of the singularity exponents

to encode efficiently the transitions in a turbulent signal. We will indeed see

that, in the case of turbulent data, classical edge detection algorithms fail

to produce the exact location of transition points, although they can work

satisfactorily for non-turbulent data.

As said before, our experimental validation is done in two steps. In sec-

tion 5.2, we show the potential of the singularity exponents in providing a

notion of edge, consistent along the scales of a turbulent signal. Then in

section 5.3, we prove that better signal reconstruction is achieved from edges

obtained through singularity analysis, than from edges obtained through clas-
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sical edge detectors. Since we are working with 2D signals, we will limit our

justification for the case of images only.

§ 5.2 Edge detection and critical exponents

As algorithms dedicated to the computation of edges in digital images started

to emerge [184, 223, 135, 121, 117, 120, 96, 133, 82, 190, 150, 37, 176, 142],

Torre and Poggio [195], while observing that most methods rely on the ill-

posed problem of differentiating digital images, proposed a general qualitative

description of edges: they noted that edges are naturally associated to the

concepts of compact representation [16, 17, 15], i.e. edges encode most infor-

mation of an image [50]. Similarly, other authors note that edges represent

an image’s independent features [22] (similar to the case of 3D modelling

where a 2D sketched curve is considered as the basic ingredient [111, 146]).

In [195] the authors focus on edge detection as the process of computing

derivatives, and, while attempting to do so in a well-posed form, they are

led naturally to the problem of prefiltering the image by a (e.g. Gaussian)

kernel, which transforms the input signal into a differentiable mapping in

the continuous domain, hence allowing the characterization of edges by dif-

ferential operators. An instance of this formalism is the zero-crossing of

second-order derivatives, as in [133, 87, 82, 37, 209, 90, 103], or [5] to cite

few, including a recent nonlinear derivative approach (called NLFS) [107].

This formal setting allowed the development of edge characteristics in the

framework of differential geometry, a perspective that has become pervasive

in image processing [57, 33]. The multiscale nature of edges was recognized

very early and it was noted that tracing edge properties across scales would

gain insight into the physical process behind image formation. Neurophysics

was demonstrating that, in the optical pathway, spatial filters of different

sizes operate at the same location [219]. This is related to the processing of

information in the early visual system [201], where cells tend to take advan-

tage of the statistical regularities of the input signal in order to get compact

representations out of redundancy [10, 205, 206].

The convolution of the input image signal by a Gaussian kernel intro-
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duces a scale parameter (the standard deviation of the Gaussian kernel)

corresponding to a simple linear scale-space associated to the heat equation.

This is often used as an argument for advocating multiscale properties of

Gaussian prefiltering [195, 215, 26, 41, 95]. In general, however, the mul-

tiscale properties of complex systems do not comply with such an extreme

simplification [109]. The advent of scale-space theory in Computer Vision

allowed more complex multiscale representations corresponding, among oth-

ers, to anisotropic diffusion schemes [114, 148, 113, 71], which can incorpo-

rate probabilistic models of both sensor noise and operators’ responses (to

better estimate the gradient’s magnitude threshold in case of noise [132]).

However the simple example of an image corresponding to the acquisition

of a turbulent fluid, like, for instance, a remotely sensed acquisition over

the oceans, contains coherent structures associated to the cascading proper-

ties of intensive variables in Fully Developped Turbulence (FDT) [217]. It

has an associated multiscale hierarchy consisting of sets having a multifrac-

tal nature [64] and, as such, cannot be contemplated within a differentiable

scale-space framework. Incidentally note that in [52] authors write that an

appropriate spatial scale depends upon the local structure of the edge, and

thus varies unpredictably over the image.

In a seminal paper, Mallat and Zhong [130] relate multiscale Canny edge

detection to the local maxima of a wavelet transform and study the comple-

tion of multiscale edges associated to the maxima of wavelet coefficients (mul-

tiscale edge detection [130, 128]). Local maxima of wavelet coefficients are

also used by other authors to form the basis of the Wavelet Transform Modu-

lus Maxima (WTMM) methodology [129], which can be used to relate edges

to a concept of transition as understood in statistical physics, but, in WTMM,

the use of structure functions and moments necessitate large amounts of data

for an accurate numerical computation, and, most importantly to our point

of view, contains implicitely ergodicity hypothesis which can be leveraged for

better numerical computations [202]. Moreover, these methods are sensitive

to multifractal noise. Note that, edge detection algorithms based on Markov

field formulations share also stationarity hypotheses. The use of wavelet

coefficients have been more recently extended to include better orientation

feature detection through the X-lets (i.e. curvelets etc.) [188] formulations.
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Edge-preserving image smoothing can also be formulated in Bayesian frame-

works [112] (and their neural network counterpart [189]) originating from

well known reference [72]. We will not review all the Markov formulations

in Computer Vision, but we note, for our purpose, that they basically detect

transitions in the stationary case, and that the problem of threshold selection

can be a difficult one. Edges can also be understood as alignment of Fourier

or wavelet phases across scales [136, 105, 211].

In this section, we present a new definition of edge, based on critical expo-

nents defined in statistical physics, consistent across the scales in acquisitions

of natural phenomena, such as high-resolution natural images or turbulent

acquisitions. Edges belong to the multiscale hierarchy of an underlying dy-

namics, they are understood from a statistical perspective well adapted to

fit the case of natural images. We show that recent developments around

the notion of transition in nonlinear physics, along with enhanced compu-

tational methods of its quantitative parameters (most notably singularity

exponents) [217], lead to a notion of edge whose consistency can be tested

across scales. We give specific attention to the case of turbulent images,

whose edges are not well defined in the classical context of edge detection,

and we show that in this context the new notions introduced in this article

work much better than the previous ones.

5.2.1 Edges, unpredictability and critical exponents

The distribution of critical exponents in a system determines its multiscale

properties which are accessible statistically. In particular, the classical no-

tion of gradient, which serves as the basic ingredient in most edge detection

algorithm, is not clearly defined in such context and one must find more ac-

curate statistical description of transitions across the scales. This allows us

to consider images, and most particularly natural images, as acquisitions of

complex systems with undetermined extented phase space, and to compute

inside the acquired data (images) the quantitites known to play a role in the

predictability properties of the system. The first step concerns the definition

of an appropriate multifractal measure.

As explained in section 4.3, chapter 4, we take the measure as the density
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(a) (b)

Figure 5.5: (a) Flowers - image imk01305 of van Hateren database. (b) vi-

sualization of the singularity exponents h(~x) computed via Lorentzian wavelet

over the image.

function dµ(~x) defined for a given image I over a ball Br(~x) of radius r

centered around the point ~x in the given image, as:

µ(Br(~x)) =
∫

Br(~x)

d(~y)‖∇I‖(~y) (5.33)

such that the measure µ holds true for the following equation:

µ(Br(~x)) = α(~x)rh(~x) + o(rh(~x)) (~r → 0) (5.34)

The exponent h(~x), which is a function of the point ~x, quantifies the mul-

tiscale behaviour of the measure µ [203]. The existence of a multifractal

measure implies a strong hierarchical organization, with multiscale charac-

teristics, in images. The multiple fractal character shows up when the image

is split into different singular components Fh (refer to equation (4.8), sec-

tion 4.2.2.1, chapter 4).

This family of sets Fh is naturally associated to the multiscale hierarchy

in a signal and in the case of natural images, there exists a distinguished

set of points, called the Most Singular Manifold (MSM), where the features

of the system are well recorded [203]. The MSM points are the singularity

components associated with the smallest possible value h∞ and can be inter-

preted as the most informative set, in the sense that the whole signal can be
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reconstructed from the information of the gradients restricted to the MSM.

We will denote this set by F∞ and it can be expressed as:

F∞ = {~x : h(~x) = h∞ = min(h(~x))} (5.35)

noting that in digital signals, the value of h∞ is thresholded and must corre-

spond to a (small) tolerance interval. In practical terms, we write:

F∞ = {~x : h(~x) ∈]h∞ −∆h, h∞ +∆h[} (5.36)

The MSM plays a fundamental role in the multiscale geometrical hierarchy

of natural images. Visual inspection of this set reveals a structure which is

characterized by the presence of ‘edges’ or contours in natural images [197].

The second step of the approach now concerns on the computation of

singularity exponents with high numerical precision.

5.2.1.1 Computation of the singularity exponents

As discussed in section 4.3, chapter 4, the singularity exponents can be ob-

tained by a log-log regression of equation (5.34) as:

h(~x) = lim
r→0

log(µ(Br(~x))/α(~x))
log(r)

(5.37)

A very fast but crude version of computing h(~x) is known as the Gradient

histogram method [202], which takes into account the multifractal measure

defined in equation (5.34), at a minimum resolution r0. The scale r0 is chosen

such that the whole image corresponds to size 1; in other words, if the image

is an array of discretize values of size m × n, one chooses r0 = 1/
√
m × n.

Approximating α(~x) as the average of the norm of the gradients, an estimate

of h(~x) is obtained as:

h̃(~x) ≡ log(‖∇I‖(~x)/〈‖∇I‖〉)
log r0

(5.38)

The method however fails to produce satisfactory results for natural images

and is highly sensitive to noise [202]. A better solution would consist in

performing the regression on wavelet projection of measures [203], discussed

in section 4.3.2, chapter 4. However, a wavelet projection of the measure
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(a) (b)

(c)

Figure 5.6: Edges corresponding to the MSM points for the image imk01305

of van Hateren database. (a) compact representation of MSM points corre-

sponding to 35 % pixel density. (b) MSM points corresponding to 25 % pixel

density. (c) MSM points corresponding to 15 % pixel density.

at various scales is costly in computation time and only serves to enhance

the resolution of less singular structures at the cost of coarsening the most

singular ones [202]. Since the objective is to recover the most singular struc-

tures, a better optimized and cost-effective way is to use a point estimation

of the singularity exponents. From the perspective of reconstructible sys-

tems, good evaluation algorithms come from the observation that the set of

most unpredictable points F∞ (see equation (5.35)) that provides a perfect
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reconstruction is such that [155]:

div (∇I|Fc
) = 0. (5.39)

where Fc is the complementary set of F∞. As a consequence, singularity ex-

ponents can be called Local Predictability Exponents, they encode predictabil-

ity information [31], like Lyapunov exponents, and are better evaluated in

digital signals by one of the following approximation [155, 153]:

h(~x) =
log(TΨµ(~x, r0)/〈TΨµ(·, r0)〉)

log r0
+ o

(
1

log r0

)
(5.40)

where TΨµ(~x, r0) is the wavelet projection of the measure µ at scale r0 and

point ~x (see section 4.3.2), 〈TΨµ(·, r0)〉 is the average value of the wavelet

projection over the measure and r0 is chosen to diminish the relative ampli-

tude of the correction term o
(

1
log r0

)
. The preferred wavelet of choice are

the wavelets from the family Ψβ(~x) = 1/(1 + |~x|2)β (for β = 1, 2, 3, 4), and

averaging the resulting coefficients.

Algorithm 2 Edge detection: Finding the MSM points

Step 1: Normalize an input image I as: I(~x)− 〈I〉.
Step 2: Compute the singularity exponents h(~x), at each point ~x on the image I,

from equation (5.40).

Step 3: Determine the value of the most singular exponent h∞ from the

distribution of the singularity exponents h(~x) by sorting them and determining

the appropriate quantile corresponding to the desired density.

Step 4: Define the density function δF∞ as: δF∞(~x) = 1 if h(~x) ≈ h∞; δF∞(~x) = 0

otherwise.

Step 5: δF∞(~x) is a binary mask that locates the MSM points.

The singularity exponents of an experimental image is shown in Fig 5.5.

Fig 5.6 shows the MSM points, with different densities, for an experimental

image (imk01305 of the van Hateren image database [206]). The procedure

for computing the MSM points, corresponding to the edge pixels of an image,

is presented in algorithm 2.
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Figure 5.7: This figure illustrates the complexity of edge detection in the

case of turbulent images. The edge pixels are marked red or blue according

to the sign of the scalar product between the normal to the set of edge and

the image gradient at that point. Top row (from left to right): an excerpt

from the sea surface temperature (SST) image (MODIS data) of the Agulhas

current below the coast of South Africa, set of edge pixels computed by MSM

corresponding to 25% of pixel density in the selected area. Bottom row

(from left to right): singularity exponents of the SST image, edges produced

by algorithm NLFS [107] which behaves the best among the classical edge

operators tested (see table 5.8). The coherent structures are not respected by

NLFS, showing the superiority of MSM.

5.2.1.2 Comments: The case of turbulent signals

Examination of the results for SST (turbulent phenomena) images are par-

ticularly interesting: an edge in a turbulent signal is poorly characterized by

a filter’s response to step functions, and the case of Fully Developed Turbu-

lence is paradigmatic for the existence of a multiscale hierarchy associated to

cascading dynamics of physical variables [64]. Tuning with the scale-space

parameter given by the kernel’s standard deviation modifies the input signal

incoherently w.r.t. to the real multiscale hierarchy present in the data. Uni-

versality classes are not well characterized by the transitions associated to

classical edge operators. We compare with the NLFS operator [107] due to its

superior performance over the other classical edge detectors and robustness

to noise.

NLFS is a non-linear approach to edge detection. The method aims at the

localization of edge pixels in a signal, according to the sign of the slope of the
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transition, with simultaneous noise cancellation. For this two filters are used:

one for detecting the positive-slope edge points and the other for detecting

the negative-slope edge points. The result are two signals containing positive

and negative variations. In the case of limited noise the disturbances are

detected, by these positive and negative variations of the signal, as peaks at

the same location and are thereby removed. In Fig 5.7, we show an extended

part of the SST data and illustrate the sensitivity of edge detection between

MSM and NLFS.

5.2.2 Edge consistency across the scales

Edges are primary features naturally associated to scale invariant properties

of natural images, specifically in the case of turbulent signals where symmetry

is restored only in statistical sense [201, 64]. As a consequence, the algorithms

used in computing edge features should be consistent across the scales: if

one has different acquisitions of a same phenomenon at different scales, the

resulting edge pixels computed by these algorithms must produce matching

edge pixels accross the scales. To check this, we set up an experiment where

a same signal at different resolution is generated and their outputs produced

by some classical edge detection algorithms are evaluated. To generate the

different resolutions, we use two methods. The first one consists in computing

a multiscale version of the signal by using a standard Haar discrete wavelet

transform [128]. The second one consists in using the well-known linear

scale-sace representation developed by Lindeberg et al [115, 116]. A linear

scale-space family L(., t) associated to an original signal f is obtained by

convolving f with a Gaussian kernel g such that:

L(., t) = g(., t) ∗ f (5.41)

where the Gaussian kernel is given by

g(x, t) =
1

2πt
e−(x2+y2)/2t (5.42)

and t > 0 is the scale parameter.

We take two images: the clock image from SIPI image database [3], which

is a standard rigid object, and an excerpt of the SST image. The SST im-

age corresponds to the acquisition of a turbulent phenomenon, for which the
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Table 5.1: Inconsistent behaviour of edges along the scales. Image used is

an excerpt from the sea surface temperature (SST) image. Different resolutions of

the SST image are the approximation coefficients resulting from a standard Haar

discrete wavelet transform. We show the results of the following edge detection

algorithms: MSM (proposed edge detection algorithm), Canny and multiscale Canny

(mC) edge detection [130]. D corresponds to the pixel density of the respective edges.

For edges computed using Canny edge detector, α specifies the lower sensitivity

threshold and σ is the standard deviation of the Gaussian filter.

Original MSM Canny mC

256 × 256 D = 16.24% D = 16.24% D = 16.98%

pixels α=0.1,σ=0.03

128 × 128 D = 17.45% D = 17.45% D = 17.96%

pixels α=0.13,σ=0.03

64 × 64 D = 16.89% D = 16.89% D = 17.91%

pixels α=0.15,σ=0.03

32 × 32 D = 18.55% D = 18.55% D = 19.04%

pixels α=0.16,σ=0.03
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Table 5.2: Inconsistent behaviour of edges along the scales. Image

used is the clock image from SIPI image database [3]. Different resolutions of

the clock image are formed by taking the approximation coefficients of Haar

discrete wavelet transform.

Original MSM Canny mC

256 × 256 D = 17.19% D = 17.19% D = 17.35%

pixels α=0.03, σ=0.03

128 × 128 D = 16.86% D = 16.86% D = 16.62%

pixels α=0.03, σ=0.03

64 × 64 D = 16.74% D = 16.74% D = 17.09%

pixels α=0.05, σ=0.03

32 × 32 D = 16.21% D = 16.21% D = 16.40%

pixels α=0.3, σ=0.03

existence of a multiscale hierarchy comes from the turbulence associated to

Navier-Stokes equations [64]. The results for the SST image are shown in

Table 5.1. In this table are diplayed (left column) the SST image at various
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Table 5.3: Evaluation of edge consistency across scales using Lin-

deberg [115] scale space representation. Row 1 (from left to right):

different resolutions of the clock image obtained by changing the scale param-

eter t (explained in section 5.2.2). Row 2: compact representation of MSM

points. Row 3: edges computed using Lindeberg edge detector.

t = 1.0 t = 4.0 t = 16.0 t = 64.0 t = 256.0

D = 16.53% D = 16.50% D = 7.58% D = 3.82% D = 3.23%

D = 16.53% D = 16.50% D = 7.58% D = 3.82% D = 3.23%

resolutions using the Haar discrete wavelet transform. Columns 2, 3 and 4

show the edge pixels produced by three different algorithms: the algorithm

called MSM, which is the proposed edge detection algorithm (explained in

subsection 5.2.1.1), classical Canny edge detector (column 3) and the Mallat-

Zhong edge detection technique [130], also known as multiscale Canny edge

detection (which is also related to the WTMM (Wavelet Transform Modulus

Maxima) [129] method). It is clear from these results that Canny edge pixels

are not consistent across the scales: first the boundary of the main coher-

ent structure (the temperature front depicted by the boundary between the

dark and light area) is not properly described by Canny edge pixels across

the scales. Second, it is difficult to match the corresponding edge pixels

across the scales. This can, however, be related to the fact that Canny edge



5.2. Edge detection and critical exponents 81

Table 5.4: Evaluation of edge consistency across scales using Lin-

deberg scale space representation. Row 1 (from left to right): different

resolutions of the SST image obtained by changing the scale parameter t.

Row 2: compact representation of MSM points (pixel density fixed at 16%).

Row 3: edges computed using Lindeberg edge detector.

t = 1.0 t = 4.0 t = 16.0 t = 64.0 t = 256.0

D = 16.53% D = 16.50% D = 7.58% D = 3.82% D = 3.23%

detector encodes all edges regardless of scale, and that is why we also use

multiscale Canny in our comparison. Considering the multiscale Canny edge

pixels, they behave more consistently compared to Canny edge pixels, but

they are still outperformed by MSM, the latter being specifically designed

to retain consistency across the scales. Note that in Table 5.1, MSM points

encode in a particularly efficient way the main boundary of the temperature

front across the scales. The same is reproduced in Table 5.2 on the clock

image, with similar results. In Table 5.3 and Table 5.4, we make a similar

comparison between the MSM points and the edges produced by the mul-

tiscale edge detection of Lindeberg [115]. Here again, we see that in both

cases, consistency across the scales is better achieved by MSM. In Table 5.4,

the density of the MSM points are kept around 16% precisely; but because
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Lindeberg edges take the zero-crossings of image intensity, further filtered by

a third order directional derivative, the number of candidate edge pixels are

automatically reduced with increased blurring, resulting in a limited density

across the scales. From these experiments we see that, specially in the case

of acquired turbulent phenomena, some classical edge detection algorithms,

even those based on linear scale-space theory, do not behave consistently

across the scales.

In this context, one might argue about a comparison with Elder-Zucker’s

algorithm [52]. Elder-Zucker’s algorithm on the detection of edges is inspired

by its own local scale control method that determines a unique scale, as a

function of filter scale σ, for local estimation at each point in an image [52,

51]. Therefore, a minimum reliable scale i.e., a filter with smallest standard

deviation σ that can be used reliably, is being determined for each point in

the gradient map and used locally to derive logical inferences from derivative

estimates of the signal (that are key to edge detection). The choice of σ and

the definition of reliability rest with the prior computation of a critical value

function that depends on some statistical parameters [50]. A good choice

of these statistical parameters are necessary for the proper functioning of

the algorithm; incorrect estimate may lead to reduced performances. The

performance of MSM, on the other hand, is independent of the choice of any

a priori inputs and is applied directly on different scale-based representation

of images (without doing any processing to enhance the performance of edge

detection) and verify its performance across scales. We are interested in

extracting the most singular components that are related to edges in an image

(by proper computation of singularity exponents on the image), irrespective

of the scale or the spatial representation of the image.

In this section, we have shown that critical exponents defined in statisti-

cal physics lead to a coherent definition of edges, consistent across the scales

in acquisitions of natural phenomena, such as high-resolution natural im-

ages or turbulent acquisitions. Edges belong to the multiscale hierarchy of

an underlying dynamics, they are understood from a statistical perspective

well adapted to fit the case of natural images. In the next section, we will

prove that this new definition edge outclass the performance of classical edge

detectors in terms of reconstructing an image from its edge representation.
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§ 5.3 Reconstructing an image from its edge

representation

Early methods dedicated to the reconstructability of signals from their edge

pixels lacked completeness in terms of compact representation and failed to

provide a near estimate of the original signal [50]. The first theoretical in-

stance of reconstructing a one-dimensional signal from its zero-crossing was

found in the Logan theorem [118]. Logan proved that for a signal which

is one-dimensional and strictly band-limited to a single octave, the time of

the zero-crossings can form a complete representation of the signal and are

sufficient candidates to reconstruct the signal. The findings of Logan were

used in [133] to further investigate the possibility of complete representation

of an image from the zero-crossings and gradient magnitudes of the image,

convolved with a Laplacian of Gaussian (LoG) filter, at multiple scales. The

proof of the theoretical completeness of the zero-crossing was further ex-

tended to the case of one-dimensional finite polynomial signal [218] and for

a restricted class of band-limited two-dimensional signals [43].

It was acknowledged, however, in [118] that “the problem of actually re-

covering functions from their zero-crossing appears to be difficult (to say the

least), under the most general conditions of uniqueness”. The completeness

of zero-crossings in representing an image feature and its ability to produce

stable reconstructions, in practice, was further argued in [89]. In [38] an al-

gorithm was introduced that computes an approximate reconstruction of an

image from information coded at the image edges. The edges were computed

in a manner quite similar to [133], but were further thresholded based on

outputs from gradient based filters [50]. The method however lacked com-

pleteness to a large extent and was reintroduced in [39] by modifying the edge

representation from a sub-sampled low-pass residual image [50]. In [221], it

was proposed that images are well represented by the partial information

confined to zero-crossings and a new reconstruction technique was proposed.

The results, although better than the previous techniques [38, 39], lacked

completion. A method based on minimizing equation error for stable recon-

struction of image, from the restriction of its gradient measure over edges,
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was proposed in [89]. A new contour based image reconstruction technique

was proposed in [76], by taking the edge as a Gaussian-blurred step discon-

tinuity and considering a number of parameters, like luminance, brightness,

contrast, blur and ‘contour width’ [50], in the process of calculating them.

In a seminal paper, Mallat and Zhong [130] described an algorithm to re-

construct images from their multiscale edges; the edges were detected by

applying local maxima on a wavelet transformed version of the image. While

this representation is far more compact in the case of 1-D signals, it misses

certain details and some defocused structures are not recovered [50] in the

case of images.

In [197], the authors have proposed a new technique of image reconstruc-

tion from their edges, based on the most informative fractal set contained

within an image. Inspired by the quality of the reconstruction achieved by

them, we have moved on to define an alternate approach to derive a similar

reconstruction formula as in [197, 203]. The derivation of the new approach,

tries to relate the concept of Poissonian diffusion to image reconstruction

from edges and has equivalent performance as that in [197, 203].

When an intensity image I(x, y) is considered as a mathematical sur-

face [208], edges can be detected as irregular distribution of intensity values

over this surface. The idea of constructing complete surface specifications

from the information contained in the zero-crossings was illustrated in [79].

In fact, a common surface reconstruction technique of regularization has been

exploited in an attempt to reconstruct from contour line information [140],

and in [175], a regularized fusion approach to the problem of reconstruction

from color edge maps was applied. In this context, one should mention about

3D modelling of objects from

In this section, we test the performance of different edge detection al-

gorithms through the framework of reconstructible systems. We show that

‘state-of-the-art’ surface reconstruction techniques, like fast Poisson solver [73],

M-estimator, regularization [4] and diffusion [212], can be successfully applied

to reconstruct images from their edge representation. In the process, we study

image reconstruction from edge pixel data that better suits turbulence.
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5.3.1 Framework of Reconstructible Systems

5.3.1.1 Problem Formulation

Let fx, fy denote a given non-integrable1 gradient field over a L × B rectan-

gular grid of image pixels. Given fx, fy, the goal is to obtain an image I, such

that ∇I is “as close as” possible to the vector field (fx, fy). Let Ix, Iy denote

the gradient field of I. Note that in our experiments fx, fy represents the den-

sity of the gradient measure corresponding to the MSM i.e., fx = IxδF∞ and

fy = IyδF∞ , where δF∞ stands for the standard density measure restricted to

the set F∞ i.e., δF∞ denotes the Dirac measures associated to the set F∞. A

common approach is to minimize the least squares error function such that:

argmin
I

∫ ∫
((Ix − fx)

2 + (Iy − fy)
2)dxdy (5.43)

The associated Euler-Lagrange equation gives the Poisson equation:

div(Ix, Iy) = div(fx, fy) (5.44)

where ‘div’ refers to the divergence operator and is defined as div(fx, fy) =
∂fx
∂x

+ ∂fy
∂y

. The aim of all the reconstruction algorithms is to find a solution

for (Ix, Iy) of equation (5.44) which minimizes the error function in equa-

tion (5.43).

5.3.1.2 Linear systems

In this section, we try to summarize some existing techniques for reconstruc-

tion from a given gradient field. Readers are referred to [73, 4, 148] for a

more detailed explanation of the algorithms.

Fast Poisson solver : A well known approach to solving the Poisson equa-

tion was proposed in [73]. The idea is to project the non-integrable gradient

field on to a set of integrable slopes using discrete cosine functions. The Pois-

son equation can be written as ∂2I
∂2x

+ ∂2I
∂2y

= f(x, y), where f(x, y) = div(fx, fy)

1In the sense that the differential form fxdx+ fydy is not supposed to be exact.
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is the divergence of the gradient field. An associated finite difference equation

reads:

Ij+1,l + Ij−1,l + Ij,l+1 + Ij,l−1 − 4Ij,l = fj,l (5.45)

where every coefficient can be expanded with the 2D discrete cosine transform

as:

Ij,l =
4

JL

J−1∑

m=0

L−1∑

n=0

Îm,ncos
πjm

J
cos

πln

L
(5.46)

Substituting the values of the expansion coefficients in equation (5.45), we

get the final solution as

Îm,n =
f̂m,n

2(cosπm
J

+ cosπn
L
− 2)

(5.47)

M-estimator : M-estimators is viewed as an iterative re-weighted least

square solution [4] and can be written as:

argmin
I

∫ ∫
(w(ǫk−1

x )(Ix − fx)
2 + w(ǫk−1

y )(Iy − fy)
2)dxdy (5.48)

where the weights at each iteration k depends on the residual at iteration k−1

i.e., |ǫkx| = |Ik−1
x −fx| and |ǫky| = |Ik−1

y −fy|. The weights wx = w(ǫk−1
x ), wy =

w(ǫk−1
y ) are calculated using Huber function [81]. Applying Euler-Lagrange

over equation (5.48) we get div(wxIx, wyIy) = div(wxfx, wyfy). I can then be

recovered by solving the linear equation LwI = fw, where fw = div(wxfx, wyfy)

and Lw is the sparse Laplacian matrix of size LB × LB.

Regularization : The L2 regularization can be written as [4]:

argmin
I

∫ ∫
((Ix − fx)

2 + (Iy − fy)
2 + α(φ(Ix) + φ(Iy)))dxdy (5.49)

where α is called the regularization parameter using function φ. Some com-

monly used variations of φ are φ(d) =
√
1 + d2 and φ(d) = log(1 + d2).

Applying Euler-Lagrange to equation (5.49) and after simplification, the so-

lution can be achieved by iterative minimization [4].
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Anisotropic diffusion : The anisotropic diffusion equation, commonly

defined as It = div(c(x, y, t)∇I), of [148] was generalized in [212] as It =

div(c∇I), where c is the diffusion tensor and can be defined as a 2 × 2 sym-

metric, positive-definite matrix at each pixel. A generalized Poisson equation

using c was proposed in [4] as

div(c

[
Ix

Iy

]
) = div(c

[
fx

fy

]
) (5.50)

Several methods have been proposed for obtaining the diffusion tensor c. The

method followed in [4] suggests an edge preserving diffusion tensor at each

pixel, by convolving component wise

[
f 2
x fx × fy

fx × fy f 2
y

]
with a Gaussian

kernel. The final solution is given by LcI = fc, where fc = div(c

[
fx

fy

]
) and

Lc is the Laplacian matrix.

5.3.2 Reconstruction from MSM (Rmsm)

In this section, we turn back to the propagator introduced in [197], and derive

a parallel propagator from the concept of Poisson equation applied to surface

reconstruction problems from non-integrable gradient fields. We consider

the gradient measure of the signal ∇I(~x) and integrate it over the set of

most unpredictable points F∞. A practical expression for the reconstruction

formula is given by [197]:

I(~x) =

∫
〈~g(~x− ~y)|∇∞I(~y)〉d~y = ~g ∗ ∇∞I(~x) (5.51)

where
∫
F∞

d~y means integration over the MSM, ~g represents the desired prop-

agator. The essential gradient of the signal ∇∞I(~x) is defined as the following

distribution:

∇∞I(~x) = ∇I(~x)δF∞(~x) (5.52)

where δF∞(~x) is the density of the gradient measure restricted to the MSM.

Accordingly, equation (5.51) can be expressed in the Fourier domain as:

Î(~ω) = 〈~̂g(~ω)|∇̂∞I(~ω)〉 (5.53)
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where ̂ represents the Fourier transform.

To derive an exact formulation for the reconstruction kernel ~̂g, we begin

with the idea presented in [197, 203], but follow the derivation presented in [4]

(in the case of differentiable fields), so that it relates in an interesting way

Poisson diffusion and the reconstruction from the MSM explained in [197,

203]. In that context, one seeks a smooth vector field ~f defined over the

whole image and which minimizes the L2 distance with the original gradient

∇I(~x) and can be expressed as

argmin
I

∫ ∫
(∇I(~x)− ~f(~x))2 d~x (5.54)

We then follow the derivation explained in [4] to get a version of the recon-

struction kernel ~̂g in the smooth case. Taking the Euler-Lagrange variational

formulation of equation (5.54) we get

div(∇I)(~x) = div(~f)(~x) (5.55)

Taking the Fourier transform of equation (5.55), we get as in [4]

Î(~ω) = −iωxf̂x(~ω) + ωyf̂y(~ω)

ω2
x + ω2

y

(5.56)

where the vector field ~f(~x), after Fourier transformation gives rise to a com-

plex vector field ~̂f = (f̂x(~ω), f̂y(~ω)). For ~ω0 = (ωx = 0, ωy = 0), Î( ~ω0) is

undefined, which corresponds to the mean of I (DC component). We set

a null value in this case. Comparing with equation (5.53), this suggest the

kernel as

~̂g(~ω) =
~ω

i‖~ω‖2 (5.57)

and we have the final expression of the reconstruction formula over the MSM

F∞ i.e., Rmsm, in the Fourier domain, as:

Î(~ω) =
〈~ω|∇̂∞I(~ω)〉

i‖~ω‖2 (5.58)

Fourier inversion of this formula gives the reconstruction of the image from

the restriction of the gradient field to the MSM. It should be noted that the
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Table 5.5: Images used for our experiments. Row 1 (from left to

right): Harrington weave, Hibiscus, Car, Lena, Turbulence degraded atmo-

spheric phase, imk01310, imk03324, imk04050. Row 2: Brick wall, House,

imk03322, Boat, Camille, Aerial view of a truck, Julia Roberts, Sea Surface

Temperature (SST) image of the Agulhas current below the coast of South

Africa. Image description is available in table 5.6.

MSM edge points are defined irrespective of any reconstruction formula. In

fact, δF∞ holds true for edges detected by any edge detector and can be in-

corporated likewise to create fx, fy and subsequently perform reconstruction.

The algorithmic formulation of Rmsm is presented in algorithm 3, below.

Algorithm 3 Reconstructing the signal from the MSM

Step 1: Calculate the singularity exponents h(~x) for every point ~x in the image.

Step 2: Determine h∞.

Step 3: Define the density function δF∞ as the mask relative to the set F∞.

Step 4: Calculate the field ∇∞I(~x) = ∇I(~x)δF∞(~x) i.e., the values of the gradient

over the MSM.

Step 5: Go to Fourier domain to obtain ∇̂∞I(~ω) = (∇̂∞Ix(~ω), ∇̂∞Iy(~ω)).

Step 6: Calculate the scalar product ~ω · ∇̂∞I(~ω) = ωx∇̂∞Ix(~ω) + ωy∇̂∞Iy(~ω).

Step 7: Calculate Î(~ω) = 〈~ω|∇̂∞I(~ω)〉
i‖~ω‖2

with ω2 = ω2
x + ω2

y .

Step 8: Do an inverse Fourier transform of Î(~ω) to obtain I(~x).

5.3.3 Computational complexity

Rmsm is essentially based on Fourier transform computation. We use fast

Fourier transform (FFT) where the computational complexity is N logN ,
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N being the total number of pixels in the image. We use FFT only once

in our operation and very fast implementations of FFT already exists e.g.

Fastest Fourier Transform in the West (FFTW). Poisson solver is using the

discrete cosine transform (DCT) instead of FFT. The other solvers are using

one or more linear systems (e.g. M-estimator is using 7 − 8 iterations) and

the complexity depends on the solvers used. Multigrid solvers are the fastest

solvers available till now, with the complexity o(N), but still their fastest

implementations are slow compared to the fastest implementations of FFT.

5.3.4 Choice of images

Images of different entities are chosen trying to cover a broad spectrum of

natural images starting from textures (Harrington weave) to an object (Brick

wall, House, Car), landscape (imk01310, imk03322, imk03324), aerial view

(Truck), face (Julia Roberts, Camille, Lena) and turbulent acquisitions of

signals (sea surface temperature, turbulence degraded atmospheric phase) as

is shown in table 5.5. These experimental images are chosen from standard

databases like SIPI image database [3], CMU image database [1] and the van

Hateren database [206]. The description of the images are given in table 5.6.

5.3.5 Results

In this section, we discuss about the experiments performed. We perform

three sets of experiment on different natural images (described in section 5.3.4).

Visual quality of the reconstructed images are evaluated based on the struc-

tural similarity index metric (SSIM) [210]. The SSIM measure between two

windows x and y of similar size N × N is:

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(5.59)

where µx, µy are the average of x and y; σ2
x, σ

2
y are the variance of x and y;

σxy the covariance of x and y; c1 and c2 are two normalizing parameters. We

also illustrate the pertinence of the framework of reconstructible systems for

evaluating an edge operator’s compact representation effectiveness using the

mean square error (MSE) and peak signal to noise ratio (PSNR, expressed
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Table 5.6: Description of the experimental images shown in ta-

ble 5.5.

Image Size Source

Harrington weave 1024 × 1024 pixels SIPI image database

Hibiscus 512 × 512 pixels SIPI image database

Car 260 × 320 pixels CMU image database

Lena 512 × 512 pixels SIPI image database

Phase 128 × 128 pixels French aerospace lab ONERA

imk01310 512 × 512 pixels van Hateren database

imk03324 512 × 512 pixels van Hateren database

imk04050 512 × 512 pixels van Hateren database

Brick wall 512 × 512 pixels SIPI image database

House 256 × 256 pixels SIPI image database

imk03322 512 × 512 pixels van Hateren database

Boat 512 × 512 pixels SIPI image database

Camille 256 × 256 pixels Internet download

Aerial view of a truck 512 × 512 pixels SIPI image database

Julia Roberts 256 × 256 pixels Internet download

Sea surface temperature 512 × 512 pixels MODIS acquisition of the Agulhas

(SST) image current below the coast of South Africa

in decibels dB) defined by:

MSE =
1

m × n

∑

i,j

|I(xi,j)− Ir(xi,j)|2 (5.60)

PSNR = 20.0× log10
max(I(~x))√

MSE
(5.61)

where Ir(x) represents the reconstructed image.

The three sets of experiments performed, are discussed elaborately with re-

sults in ‘Experiment 1’, ‘Experiment 2’ and ‘Experiment 3’ in the subsequent

sections. In Experiment 1, we test the quality of the edges obtained from

different edge detectors in terms of reconstructibility of the whole image from

its edges. In Experiment 2, we test the performance of Rmsm over classical
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surface reconstruction techniques in its ability to reconstruct the image from

edges. Finally, in Experiment 3 we test the best possible combination (edge

detector + reconstructor) that gives the best reconstruction results.

It should ne noted that we do not use any kind of denoising while testing

the performance of our reconstruction algorithm over noisy gradient data,

as we wanted to check the robustness of our algorithm in the presence of

noise. With the use of denoising the results may differ, but if we denoise

the gradients it will still be a non-integrable gradient field. This means

reconstructing from them will still introduce artifacts.
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Experiment 1

In this experiment we try to study the performance of our edge detection algo-

rithm over all the previous declined versions encountered in image processing

in terms of reconstructibility of the whole image from its edges. The clas-

sical edge algorithms tested are Matlab c© implementations. Reconstruction

is performed over edges, calculated from different edge detection algorithms,

using Rmsm. The pixel density of the edges calculated using different edge

detectors are kept within a close range (given the constraint imposed by the

Gaussian sigma), with the pixel density of MSM points kept lowest.

Discussion

Reconstruction results over edges obtained from different edge detectors are

shown in table 5.8. Performance of the reconstruction under different levels

of noise (SNR = 26 dB, 14 dB and 6 dB) is shown in Table 5.9. Visual quality

of the reconstructed images, shown in Table 5.8 and Table 5.9, are evaluated

based on SSIM [210]. SSIM’s for the reconstructed images show that MSM

outperforms the classical edge detectors in majority of the cases. Similar

conclusion is derived from the quantitative analysis of the results, using MSE

and PSNR metrics, as shown in Table 5.7 and Table 5.10. The performance of

NLFS is sometimes better in the noisy environment (as seen in Table 5.10),

due to the algorithm’s natural configuration to noise cancellation. MSM,

however, outperforms it in majority of the cases.

Tested classical edge detection algorithms are reviewed in this experi-

ment in the sense that they lack compact representation. It happens that

MSM points lead, for most images used in this experiment, the best quan-

titative results in terms of PSNR, SSIM and MSE. But MSM points are

defined irrespective of any reconstruction formula. Consequently, the eval-
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Table 5.7: Quantitative analysis: Evaluation of the reconstruction over different

edge detection algorithms, in terms of PSNR and MSE, correspnding to Table 5.8. D

represents the pixel density of the edges.

Image Params MSM NLFS Canny Lindeberg LoG Sobel Prewitt
[107] [115]

Weave D (%) 31.5 32.87 29.56 31.86 31.28 31.57 31.67

(1024 × 1024 MSE 0.1439 0.1977 0.6600 0.3955 0.2790 0.2148 0.2158

pixels) PSNR (dB) 17.38 16.01 10.76 13.99 14.51 15.64 15.62

Hibiscus D (%) 28.55 28.87 28.55 29.15 29.98 29.43 29.22

(512 × 512 MSE 0.0906 0.0944 0.4005 0.3139 0.2657 0.1690 0.1622

pixels) PSNR (dB) 22.43 21.92 16.04 17.04 17.76 19.72 19.80

Car D (%) 30.00 36.03 32.28 36.28 37.58 36.86 37.24

(260 × 320 MSE 0.0794 0.1321 0.7350 0.3972 0.4038 0.2150 0.2262

pixels) PSNR (dB) 25.59 23.37 15.84 18.68 18.53 21.26 21.04

Lena D (%) 32.00 32.93 28.80 32.20 32.36 30.13 30.26

(512 × 512 MSE 0.0563 0.0587 0.5898 0.3718 0.3775 0.2298 0.2305

pixels) PSNR (dB) 21.17 20.99 10.98 12.98 12.91 15.06 15.05

imk01310 D (%) 30 30.12 27.98 31.09 31.24 29.90 30.40

(512 × 512 MSE 0.0626 0.0923 1.1389 1.0744 0.9434 0.2150 0.1933

pixels) PSNR (dB) 29.43 27.74 16.88 17.08 17.65 24.07 24.53

imk03324 D (%) 30.00 30.14 32.48 35.43 36.46 36.06 36.82

(512 × 512 MSE 0.0854 0.1057 0.7808 0.3879 0.3168 0.1634 0.1705

pixels) PSNR (dB) 23.08 22.15 13.42 16.51 17.38 20.26 20.07

imk04050 D (%) 31.00 31.32 31.22 32.59 32.95 32.61 32.93

(512 × 512 MSE 0.0652 0.0974 0.4634 0.3554 0.2996 0.1358 0.1361

pixels) PSNR (dB) 25.79 24.05 17.23 19.17 22.60 20.50 22.59

Phase D (%) 25.00 27.27 24.63 23.62 29.15 25.91 25.42

(128 × 128 MSE 0.0184 0.0187 0.8025 1.3023 0.9307 0.1660 0.1745

pixels) PSNR (dB) 23.97 23.14 7.08 5.29 5.34 14.24 14.02

SST D (%) 25.00 30.73 21.62 22.64 23.95 23.80 24.01

(512 × 512 MSE 0.0114 0.0404 0.8105 0.8257 0.7545 0.2035 0.2011

pixels) PSNR (dB) 23.99 18.50 5.56 5.40 5.79 11.48 11.54

uation procedure based on the reconstruction formula is independent of the

definition of edge pixels. Indeed, if one suppose that a reconstructor is able

to generate the whole signal from its set K of edges, using a linear functional

G, then equation (5.51) must be valid, with F∞ replaced by K. Then as-

suming linearity, translational invariance and isotropy, one gets the following

reconstruction formula for testing the validity of the set K of edge pixels:

Î(~ω) =
〈~ω|∇̂I|K〉
i‖~ω‖2 (5.62)

In that sense, we can say that the reconstruction technique presented in this

section is universal.
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Table 5.8: Results of reconstruction over different edge detection algo-

rithms. Image description: Row 1: Harrington weave, Row 2: Hibiscus, Row

3: Car, Row 4: Lena, Row 5: imk01310, Row 6: imk03324, Row 7: imk04050,

Row 8: Phase, Row 9: SST.

Original MSM NLFS Canny LoG Sobel Prewitt

SSIM = 1 SSIM = 0.9881 SSIM = 0.9848 SSIM = 0.9464 SSIM = 0.9839 SSIM = 0.9837 SSIM = 0.9844

SSIM = 1 SSIM = 0.9899 SSIM = 0.9886 SSIM = 0.9683 SSIM = 0.9773 SSIM = 0.9862 SSIM = 0.9863

SSIM = 1 SSIM = 0.9921 SSIM = 0.9879 SSIM = 0.9347 SSIM = 0.9624 SSIM = 0.9805 SSIM = 0.9797

SSIM = 1 SSIM = 0.9938 SSIM = 0.9935 SSIM = 0.9424 SSIM = 0.9632 SSIM = 0.9771 SSIM = 0.9769

SSIM = 1 SSIM = 0.9927 SSIM = 0.9903 SSIM = 0.8989 SSIM = 0.93in77 SSIM = 0.9823 SSIM = 0.9848

SSIM = 1 SSIM = 0.9925 SSIM = 0.9931 SSIM = 0.9443 SSIM = 0.9773 SSIM = 0.9879 SSIM = 0.9873

SSIM = 1 SSIM = 0.9954 SSIM = 0.9924 SSIM = 0.9621 SSIM = 0.9784 SSIM = 0.9911 SSIM = 0.9913

SSIM = 1 SSIM=0.9986 SSIM=0.9983 SSIM=0.9293 SSIM=0.9326 SSIM=0.9886 SSIM=0.9878

SSIM = 1 SSIM=0.9988 SSIM=0.9957 SSIM=0.9182 SSIM=0.9202 SSIM=0.9665 SSIM=0.9881
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Table 5.9: Performance under noise: Reconstruction results on different edge

detection algorithms under different levels of Gaussian white noise.

Original MSM NLFS Canny LoG Sobel Prewitt

SSIM=0.9937 SSIM=0.9934 SSIM=0.9407 SSIM=0.9616 SSIM=0.9764 SSIM=0.9758

SSIM=0.9932 SSIM=0.9927 SSIM=0.9343 SSIM=0.9611 SSIM=0.9722 SSIM=0.9755

SSIM=0.9895 SSIM=0.9886 SSIM=0.9206 SSIM=0.9524 SSIM=0.9650 SSIM=0.9686

Table 5.10: Quantitative analysis (noisy environment): Evaluation of the

reconstruction over different edge detectors. The 1st, 2nd and 3rd row, for every image,

represents the performance under input SNR of 26 dB, 14 dB and 6 dB respectively.

Image MSM NLFS Canny LoG Sobel Prewitt

PSNR , MSE PSNR , MSE PSNR , MSE PSNR , MSE PSNR , MSE PSNR , MSE

16.89 , 0.1763 15.49 , 0.2384 10.37 , 0.7858 14.45 , 0.2964 15.60 , 0.2278 15.51 , 0.2356

Weave 16.68 , 0.2388 15.21 , 0.3301 10.05 , 0.8449 14.24 , 0.4103 15.48 , 0.3344 15.22 , 0.3245

14.51 , 0.5388 14.61 , 0.6217 9.75 , 1.0993 13.53 , 0.7520 13.98 , 0.6500 13.57 , 0.6169

22.18 , 0.0954 21.88 , 0.1078 16.01 , 0.4336 17.72 , 0.2755 19.69 , 0.1762 19.66 , 0.1728

Hibiscus 20.64 , 0.1553 20.24 , 0.1708 15.26 , 0.5146 16.93 , 0.3385 18.96 , 0.2590 18.29 , 0.2685

17.66 , 0.4300 16.07 , 0.4420 13.49 , 0.9930 14.20 , 0.8359 15.53 , 0.6033 16.24 , 0.6487

25.48 , 0.0837 22.87 , 0.1535 15.80 , 0.7351 18.52 , 0.4040 21.22 , 0.2260 20.99 , 0.2364

Car 23.69 , 0.1416 22.05 , 0.2189 15.72 , 0.7951 18.12 , 0.4612 20.81 , 0.2796 20.02 , 0.3071

19.41 , 0.3952 17.96 , 0.4794 15.40 , 1.0349 16.61 , 0.7574 18.39 , 0.9708 17.98 , 0.5778

29.23 , 0.0627 27.53 , 0.0951 16.82 , 1.1749 17.57 , 0.9494 23.83 , 0.2232 24.46 , 0.1938

imk01310 26.21 , 0.1247 25.23 , 0.1595 15.98 , 1.3719 17.45 , 0.9709 22.34 , 0.3155 22.16 , 0.2756

19.64 , 0.3872 18.75 , 0.4196 13.28 , 1.5785 14.23 , 1.3095 16.67 , 0.6838 17.99 , 0.6100

23.07 , 0.0921 21.98 , 0.1216 13.39 , 0.8802 17.34 , 0.3571 20.10 , 0.1932 19.43 , 0.2217

imk03324 22.16 , 0.1551 21.80 , 0.1568 13.13 , 0.8853 17.15 , 0.4636 19.52 , 0.2753 19.33 , 0.2911

18.82 , 0.4310 18.22 , 0.4578 12.10 , 0.9979 16.13 , 0.6700 18.13 , 0.5482 17.40 , 0.5882

25.53 , 0.0696 23.95 , 0.1005 17.21 , 0.4712 18.95 , 0.3149 22.49 , 0.1429 22.45 , 0.1422

imk04050 23.25 , 0.1317 21.80 , 0.1697 16.46 , 0.5960 18.05 , 0.3875 20.60 , 0.2379 19.74 , 0.2580

18.06 , 0.4295 17.66 , 0.4450 14.35 , 0.9353 15.36 , 0.7492 16.59 , 0.6069 16.07 , 0.6592

23.30 , 0.0230 22.77 , 0.0261 7.69 , 0.8889 6.55 , 1.0722 13.07 , 0.2603 12.63 , 0.2604

Phase 19.35 , 0.0884 19.02 , 0.0883 7.17 , 0.9437 6.00 , 1.2843 10.65 , 0.5678 10.97 , 0.5775

15.39 , 0.3784 15.87 , 0.3693 6.59 , 0.93in51 5.03 , 1.3440 9.80 , 1.1675 9.26 , 0.9469

23.47 , 0.0159 18.02 , 0.0427 5.22 , 0.8383 5.41 , 0.7707 10.11 , 0.3280 10.74 , 0.2852

SST 19.21 , 0.0822 17.85 , 0.0979 5.09 , 0.9554 4.96 , 0.8102 9.74 , 0.4179 10.53 , 0.3253

15.09 , 0.3686 15.03 , 0.3797 4.86 , 1.3826 4.14 , 0.9676 9.00 , 0.7962 9.76 , 0.7958
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Experiment 2

We take the edge representation of different natural images given by their

MSM points and reconstruct from them an approximation of the original

image, using equation (5.58). We compare our reconstruction with the re-

sults of the reconstruction, over the MSM points, obtained from standard

reconstruction techniques discussed in subsection 5.3.1.2. The pixel density

of the edges, for the experimental images, are kept the same (30%) while

performing reconstruction. The results are shown in Table 5.11. Table 5.12

shows the performance evaluation of the reconstructed images using PSNR

and MSE metrics and Table 5.13 shows the performance of the reconstruc-

tion under different levels of input SNR using the same metrics.

Discussion

Visual quality of the reconstruction in Table 5.11, evaluated using SSIM,

shows that Rmsm outperforms the classical reconstruction algorithms in ma-

jority of the cases. Quantitative analysis of the results, shown in Table 5.12

(without noise) and Table 5.13 (with noise) also shows the superiority of

Rmsm over other reconstruction algorithms.

The ability to reconstruct an image from its edge representation lies in

the efficiency of the edge detection algorithm as well as in the ability of the

reconstruction algorithm to estimate an accurate approximation of the orig-

inal image from the information coded in its edges. The efficiency of an edge

detector lies not only in extracting features of real information from an image,

but at the same time discarding redundant or perceptually irrelevant infor-

mation. The Rmsm permits a quantitative evaluation of the compactness



98 Chapter 5. Critical exponents and inference across the scales

Table 5.11: Performance of different reconstruction algorithms. Row

1: Brick wall Row 2: House Row 3: imk03322 Row 4: Aerial view of a truck

Row 5: Julia Roberts Row 6: SST image.

Original Rmsm Poisson solver Regularization M-estimators Diffusion

SSIM = 1 SSIM = 0.9922 SSIM = 0.9509 SSIM = 0.9182 SSIM = 0.9403 SSIM = 0.8895

SSIM = 1 SSIM = 0.9987 SSIM = 0.9954 SSIM = 0.9922 SSIM = 0.9951 SSIM = 0.9945

SSIM = 1 SSIM = 0.9986 SSIM = 0.9972 SSIM = 0.9964 SSIM = 0.9966 SSIM = 0.9962

SSIM = 1 SSIM = 0.9813 SSIM = 0.9519 SSIM = 0.9456 SSIM = 0.9530 SSIM = 0.9536

SSIM = 1 SSIM = 0.9901 SSIM = 0.9809 SSIM = 0.9707 SSIM = 0.9742 SSIM = 0.9783

SSIM = 1 SSIM = 0.9991 SSIM = 0.9989 SSIM = 0.9909 SSIM = 0.9990 SSIM = 0.9989

of a representation, leading to highly accurate approximation of an original

image from its edge pixels.
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Table 5.12: Quantitative analysis: Evaluation of the reconstruction algo-

rithms, correspnding to Table 5.11, in terms of PSNR (in dB) and MSE.

Image Rmsm Poisson solver Regularization M-estimators Diffusion

Brick wall PSNR 24.33 16.84 14.39 15.98 12.67

MSE 0.0909 0.5102 0.8975 0.6204 1.3284

House PSNR 24.90 20.77 19.09 20.48 20.62

MSE 0.0183 0.0478 0.0733 0.0543 0.0493

imk03322 PSNR 30.63 27.72 26.75 27.05 26.75

MSE 0.0170 0.0329 0.0409 0.0382 0.0415

Aerial PSNR 21.01 17.06 16.41 17.25 17.19

MSE 0.2209 0.4948 0.5682 0.4780 0.4661

Julia PSNR 18.31 15.47 13.64 14.33 14.79

MSE 0.0934 0.1805 0.2758 0.2364 0.2068

SST PSNR 25.10 24.82 16.25 24.61 24.58

MSE 0.0088 0.0110 0.0820 0.0114 0.0121

Table 5.13: Quantitative analysis for noisy environment: Evaluation of the

reconstruction algorithms, in terms of PSNR and MSE, under different levels of noise.

Image Algorithm SNR = 40 dB SNR = 20 dB SNR = 14 dB SNR = 6 dB

MSE, PSNR MSE, PSNR MSE, PSNR MSE, PSNR

Rmsm 0.0912, 24.26 0.0952, 23.98 0.1180, 23.28 0.2357, 21.46

Poisson solver 0.5119, 16.79 0.5187, 16.69 0.5264, 16.54 0.5952, 16.27

Brick wall Regularization 0.8978, 14.31 0.8992, 14.18 0.9556, 13.22 0.9891, 12.84

M-estimator 0.6213, 15.92 0.6343, 15.76 0.6408, 15.70 0.8261, 14.91

Diffusion 1.3296, 12.64 1.3342, 12.59 1.4321, 12.48 1.4565, 12.35

Rmsm 0.0183, 24.88 0.0269, 23.37 0.0475, 21.33 0.1723, 18.16

Poisson solver 0.0472, 21.20 0.0607, 19.88 0.0805, 19.41 0.2057, 16.87

House Regularization 0.0745, 18.91 0.0775, 18.88 0.0889, 18.26 0.2057, 16.92

M-estimator 0.0548, 20.32 0.0629, 19.68 0.0820, 19.50 0.2009, 17.68

Diffusion 0.0497, 20.40 0.0590, 20.15 0.1106, 18.34 0.4236, 14.34

Rmsm 0.0171, 30.59 0.0248, 28.69 0.0478, 25.60 0.1780, 20.93

Poisson solver 0.0331, 27.67 0.0425, 26.40 0.0687, 23.65 0.2023, 18.76

imk03322 Regularization 0.0411, 26.72 0.0452, 26.32 0.0674, 24.14 0.1918, 19.12

M-estimator 0.0386, 26.98 0.0449, 26.28 0.0638, 24.74 0.1972, 17.57

Diffusion 0.0419, 26.63 0.0557, 25.47 0.0871, 23.18 0.3066, 15.93

Rmsm 0.2210, 21.00 0.2311, 20.67 0.2577, 20.02 0.3862, 18.87

Poisson solver 0.4960, 17.03 0.4966, 16.61 0.5029, 16.52 0.6099, 14.71

Aerial Regularization 0.5684, 16.39 0.6011, 16.11 0.6607, 16.06 0.7021, 14.63

M-estimator 0.4783, 17.03 0.4854, 16.84 0.4993, 16.38 0.5889, 15.77

Diffusion 0.4669, 17.08 0.5046, 16.79 0.6174, 15.66 0.8075, 14.00

Rmsm 0.0936, 18.18 0.1343, 17.93 0.1699, 17.10 0.2412, 16.34

Poisson solver 0.1776, 15.37 0.2098, 15.11 0.2393, 14.98 0.4882, 13.76

Julia Regularization 0.2736, 13.54 0.2812, 13.11 0.3119, 12.43 0.3908, 11.94

M-estimator 0.2367, 14.26 0.2619, 13.99 0.3323, 13.98 0.4940, 13.51

Diffusion 0.2256, 14.38 0.3718, 13.54 0.3864, 12.92 0.7331, 12.65

Rmsm 0.0091, 25.08 0.0169, 23.23 0.0384, 21.42 0.1699, 17.54

Poisson solver 0.0112, 24.68 0.0182, 23.26 0.0386, 20.68 0.1874, 17.61

SST Regularization 0.0853, 16.09 0.0889, 15.30 0.1756, 14.05 0.1820, 12.39

M-estimator 0.0115, 24.55 0.0182, 23.14 0.0499, 20.13 0.1701, 17.40

Diffusion 0.0118, 24.49 0.0216, 22.38 0.0489, 20.37 0.3598, 14.21



100 Chapter 5. Critical exponents and inference across the scales

Experiment 3

In this experiment, we compare the performance of different reconstruction

algorithms over different edge detection techniques and in the process check

the best possible combination (edge detector + reconstructor) that gives the

best results in terms of reconstruction. We choose Rmsm and other recon-

structors, already discussed in this chapter, for reconstructing test images

from their edge pixels (obtained from different edge detection techniques).

The pixel density of the edges, calculated using different edge detectors, are

kept within a close range (between 25−35%), with the pixel density of MSM

points kept minimum. The classical edge algorithms tested are Matlab c© im-

plementations. Results are shown in table 5.14 and table 5.15.

Discussion

We have presented a quantitative analysis on the performance of different

reconstruction algorithms over different edge detectors and have compared

all possible combinations of them to verify the best performing duo (edge

detector + reconstructor). It happens that, in majority of the cases, the

combination of MSM and Rmsm gives the best possible results. Infact, in

table 5.14 we can see that the combination of the reconstructors with MSM

gives the best results (data underlined) compared to any other edge detec-

tor. For certain edge detectors, the combination with Poisson solver gives

better results: for example, Hibiscus (with Sobel edge detector) and Boat
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Table 5.14: Quantitative analysis of the performance of different re-

construction algorithms over different edge detectors: Data marked in blue

indicates the reconstructor that performs the best, over other reconstruction tech-

niques, for a particular edge detection algorithm. Data underlined indicates the

edge detection algorithm that gives the best result, in terms of reconstruction, over

all the other edge detectors, for a particular reconstructor.

Image Algorithm Rmsm Poisson solver Regularization M-estimator Diffusion

MSE, PSNR MSE, PSNR MSE, PSNR MSE, PSNR MSE, PSNR

MSM 0.0906, 22.08 0.1042, 21.96 0.1530, 20.37 0.1163, 21.42 0.1168, 21.43

NLFS 0.0944, 21.92 1.4791, 10.41 1.3846, 10.75 1.2795, 11.12 1.4393, 10.46

Hibiscus Canny 0.4005, 16.04 0.4889, 15.38 0.6270, 14.20 0.7614, 13.42 1.0162, 12.08

LoG 0.2657, 17.76 1.6979, 9.83 1.6545, 10.08 1.5900, 10.09 1.7405, 9.76

Sobel 0.1690, 17.72 0.1571, 20.19 0.2285, 18.56 0.1826, 19.52 0.5453, 14.79

Prewitt 0.1622, 19.80 0.1443, 20.49 0.2270, 18.45 0.1795, 19.61 0.5062, 15.13

MSM 0.0794, 25.59 0.1033, 24.45 0.1617, 22.50 0.1242, 23.65 0.1095, 24.19

NLFS 0.1321, 23.37 0.2330, 20.91 0.2547, 20.52 0.2931, 19.92 0.4530, 18.03

Car Canny 0.7350, 15.84 1.0848, 14.14 1.1642, 13.83 1.2375, 13.57 1.1917, 13.73

LoG 0.4038, 18.53 1.5238, 12.75 1.5087, 12.80 1.4763, 12.89 1.5260, 12.76

Sobel 0.2150, 21.26 0.7679, 15.73 0.8179, 15.46 0.4536, 18.02 0.6453, 16.49

Prewitt 0.2262, 21.04 0.9510, 14.80 0.9629, 14.75 0.5347, 17.30 0.7295, 15.95

MSM 0.0969, 18.71 0.1567, 16.62 0.1617, 22.50 0.1466, 16.91 0.1970, 15.63

NLFS 0.0997, 18.58 0.2271, 15.01 0.2547, 20.52 0.4923, 11.65 0.4648, 11.90

Boat Canny 0.9636, 8.72 0.7153, 10.01 1.1642, 13.83 0.9272, 8.88 0.93in67, 8.98

LoG 0.4145, 12.40 1.2415, 7.64 1.5087, 12.80 1.2606, 7.57 1.3018, 7.43

Sobel 0.3296, 13.39 0.7788, 9.66 0.8179, 15.46 0.8205, 9.44 0.4706, 11.85

Prewitt 0.3708, 12.88 0.7365, 9.90 0.9629, 14.75 0.7814, 9.65 0.5439, 11.22

MSM 0.0521, 15.60 0.0743, 14.06 0.0852, 13.47 0.0723, 14.18 0.0910, 13.18

NLFS 0.0529, 15.53 0.0792, 13.78 0.1412, 11.28 0.0834, 13.56 0.3865, 6.90

Camille Canny 0.3550, 7.26 0.3927, 6.82 0.4094, 6.64 0.4665, 6.07 0.5704, 5.19

LoG 0.2639, 8.56 0.8539, 5.09 0.8301, 5.15 0.7235, 5.41 0.8237, 5.16

Sobel 0.1114, 12.19 0.1808, 10.20 0.1771, 10.29 0.1432, 11.21 0.3831, 6.94

Prewitt 0.1133, 12.23 0.2888, 8.16 0.2388, 9.09 0.1541, 10.89 0.4681, 6.07

MSM 0.0854, 23.08 0.1456, 20.76 0.1848, 19.72 0.2604, 18.24 0.5899, 14.69

NLFS 0.0960, 22.57 0.1887, 19.63 0.2285, 18.80 0.3536, 17.35 1.1471, 11.79

imk03324 Canny 0.7808, 13.42 1.4146, 10.85 1.4535, 10.72 1.4446, 10.75 1.5041, 10.58

LoG 0.3168, 17.38 2.3025, 8.77 2.3019, 8.79 2.3256, 8.73 1.4650, 10.73

Sobel 0.1634, 20.26 1.3966, 10.94 1.4782, 10.69 1.4603, 10.75 1.5532, 10.48

Prewitt 0.1705, 20.07 1.4172, 10.88 1.4859, 10.67 1.4926, 10.65 1.4189, 10.87

(with Canny edge detector). However, they are always outperformed by the

combination of MSM and Rmsm.
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Table 5.15: Performance of different reconstructors over different edge

detectors. Each row indicates the performance of the reconstructors for a given

edge detection algorithm. Every column shows the edge detection algorithm that

gives the best result, in terms of reconstruction, for a particular reconstructor.

Rmsm Poisson solver Regularization M-estimator Diffusion
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§ 5.4 Conclusion

In this chapter, we have discussed about the ability of the singularity expo-

nents in capturing the important multiscale features of a signal. We have

justified this claim, experimentally, by a two step procedure. In the first

step, we have proved that edges obtained from singularity exponents better

represent the transitions within a turbulent signal and are much more consis-

tent across the scales of the signal. In the second step, we show that better

reconstruction of the signal is achieved from the edges obtained through sin-

gularity analysis of the signal. Indeed, if edges encode the most important

features of a signal, it should also be possible to reconstruct the signal from

its edge representation. This arguement is well justified in section 5.3.

Armed with the results of section 5.2 and section 5.3, and with an approx-

imative version of the optimal wavelet for a turbulent phase signal, we move

on to the next chapter of this thesis where we implement the idea of mul-

tiresolution analysis on the signal of the singularity exponents, for wavefront

phase reconstruction in AO.
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- Chapter 6 -

A multiscale approach to phase

reconstruction for AO

Turbulence in the different layers of the Earth’s atmosphere plays a fun-

damental role in limiting the resolution of ground-based instruments. These

turbulent layers perturbate to a great extent incoming light from outer space,

resulting in a phase distortion of the incoming planar wavefronts. AO is one

of the best known method to overcome this hurdle [66, 67, 68, 137, 164].

In most AO systems, the perturbated phase is acquired through a specific

WFS (wavefront sensor), in the form of slope measurement (or curvature

measurement) of the wavefront phase. The WFS measures the distortions

in the wavefront, which is then passed through a servo-loop to the DM (de-

formable mirror) which approximates its shape according to the shape of the

wavefront, to reduce the wavefront phase residual error. One of the most

commonly used wavefront sensor is the SH (Shack-Hartmann) sensor, which

measures the local slope (gradients) of the wavefront. The reconstruction

of the wavefront from the slope measurements of a SH sensor is generally

seen as an inverse problem and can be expressed in a matrix-algebra frame-

work [137, 164]. The commonly used techniques for estimating the phase

are [98, 164]:

• the ML (maximum likelihood)technique, and

• the MAP (maximum a posteriori) technique.

105
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The ML method yields to the generalized least squares solution [110, 164]

which is the solution classically used for estimating the phase under real-

time constraints.

In the case of long time exposures, the optical transfer function of the

imaging instrument is multplied by an atmospheric transfer function which is

expressed using classical correlation functions and related to the Kolmogorov

model of turbulence [164]. This suggests that an acquired image behaves like

a complex signal having multiscale properties [180]. Consequently, recent

advances in the framework of reconstructible systems for complex signals are

likely to apply to the case of an acquired perturbated optical phase, and, in

particular, other reconstruction techniques of the perturbated phase, based

on the cascading properties of fully developed turbulence can be taken into

consideration [203, 21]. The general organization of a multiscale structure in

complex signals has been related to the existence of cascade processes. The

MMF thereby proves to be a suitable approach for the study of multiscale

properties in real signals which generalize previous approaches [202].

This chapter focusses on the use of the MMF scheme for wavefront phase

reconstruction from the low-resolution slope measurement (gradients) of the

perturbated phase. We also check the reconstruction performance after

adding different proportions of Gaussian white noise to the gradients. Instead

of using the conventional method of least squares estimation (or deconvolu-

tion [70, 138, 60, 168, 169] for image restoration), we try to obtain the phase

from its low-resolution gradients by propagating the information of a turbu-

lent phase along the scales, from low-resolution to high-resolution, using the

multiresolution analysis and specific wavelet projections [126, 127, 157, 217].

We have shown, in the previous chapter, that the singularity exponents en-

code important multiscale features of the signal (well noticed in the MSM).

We do a multiresolution analysis on the complete set of singularity exponents

computed on a turbulent phase map (and not just the MSM), to infer in-

formation along the scales and then reconstruct with this information. This

work, for the case of wavefront phase reconstruction, is new in comparison

to classical reconstruction techniques in AO. Wavelets are used widely in

astronomical imaging, now with the development of X-lets (i.e. curvelets

etc.) [28, 27, 29, 30, 174, 188].



6.1. Description of data 107

The chapter is orgainzed as follows: In section 6.1, we describe the dataset

we have used for our experimental work. In section 6.2 we explain our wave-

front phase estimation algorithm. Results are shown in section 6.3. In sec-

tion 6.4, we compare our algorithm with the classical least squares technique.

Finally, we conclude in section 6.6.

§ 6.1 Description of data

The datasets used in our work are of simulated turbulent optical phase

provided by the French Aerospace Lab-ONERA. We have 1000 occurences

(slices) of turbulent phase and their associated PSF for our experimental

purpose, with the following imaging characteristics:

• diameter of the telescope: 8 m,

• seeing at 5 microns: 0.85 arcseconds,

• Fried parameter r0 at imaging wavelengths: 70 cm,

• wind speed: 12.5 m/s,

• acquisition frequency: 250 Hz.

The pupil is defined on 256 × 256 pixels. Data is generated in the FITS

format [2]. For the statistical purpose of our experiment we need a set of

appropriate sub-images. These sub-images must be as large as possible (for

statistical confidence) and clean (without missing pixels). In addition, due

to the requirements imposed by our wavelet analysis, we also require these

sub-images to be square sampled with the sampling size being a power of 2.

To avoid sub-reconstruction and Gibbs phenomena coming from the strong

transition associated to the pupil’s boundary, we take a sub-image made of

128 × 128 pixels centered in the middle of the pupil of the original phase

data. An example of the experimental phase and its associated PSF is shown

in Fig 6.1.

The low-resolution x and y components of the phase gradient are calcu-

lated as follows : From the given phase data, we compute the gradients of

the phase and produce an averaged gradient over a window of size 8 × 8

pixels, normalized by the size of the window (64 square pixels) thus resulting



108 Chapter 6. A multiscale approach to phase reconstruction for AO

(a) (b)

Figure 6.1: (a) Image of a simulated phase perturbated by atmospheric tur-

bulence (see section 6.1 for imaging characteristics). The image corresponds

to a 128 × 128 pixels sub-image extracted from an original 256 × 256 pixels

image to avoid the pupil’s boundary. (b) Point spread function (PSF) image

associated to the image of the perturbated phase.

in a 16 × 16 sub-image corresponding to the x and y slope measurement of

an SH WFS. For our experimental purpose, we have generated gradients of

size 32 × 32 pixels and 64 × 64 pixels by the same procedure, normalized by

their respective window size (i.e. 4 × 4 pixels and 2 × 2 pixels respectively).

§ 6.2 Reconstruction technique

From the results and discussions presented in chapter 5, we have shown that

even if we are not able to compute directly an optimal wavelet, we can rely

on the results which proves that the singularity exponents are candidates

that carry the multiscale information of a turbulent signal. We can therefore

replace a “real” optimal wavelet and its associated multiresolution analysis

by a classical multiresolution analysis but performed on the signal of the



6.2. Reconstruction technique 109

hΦ(−n) hΦ(−n)

hΦ(−n)hΨ(−n)

hΨ(−n)

hΨ(−n)

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

αj α0
j+1

α1
j+1

α2
j+1

α3
j+1

Rows Columns

Decomposition (repeat 4 times)

High-resolution

phase data

(128x128 pixels)

Singularity

exponents

Figure 6.2: Representation of the analysis process. We take as input a

high-resolution 128 × 128 pixels phase screen. We then compute the singu-

larity exponents of this high-resolution phase screen and do a multiresolution

analysis (MRA) over the exponents. The high-resolution phase screen can be

the true phase itself, an average instance of the true phase over time or any

random phase screen with Kolmogorov turbulence statistics. Here, αj is the

approximation of the initial image (i.e. the image of the singularity expo-

nents) at the resolution j. Level 1 MRA results in a coarser approximation

of αj i.e. α0
j+1 (size: 64 × 64 pixels) and the details α1

j+1, α
2
j+1 and α3

j+1.

The process is repeated four times to get an aprroximation of size 16 × 16

pixels.

singularity exponents. This is why we have a two step reconstruction process:

analysis consists in computing a multiresolution analysis on the signal of

singularity exponents, with a third order Battle Lemarié (B-L) wavelet, and

extract the details. Synthesis consists in using this details to obtain gradients

at higher resolution, from which the phase is estimated.

We therefore formulate the process of reconstructing the phase from its

gradient measurement accordingly. In the analysis part of the algorithm,

we try to extract the wavelet coefficients from the signal of the singularity

exponents (denoted by sh(n1, n2) of size N1 × N2 computed on the phase
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Figure 6.3: Representation of the synthesis process. Here the low-resolution

16 × 16 pixels approximation obtained from the analysis part are replaced

with the low-resolution 16 × 16 pixels gradient of the phase. Then with

the knowledge of the details at every level, the signal is reconstructed from

16 × 16 pixels to 32 × 32 pixels, then to 64 × 64 pixels (α0
j+1) and finally to

128 × 128 pixels i.e. αj. The process is repeated for both x and y gradients

to obtain a high-resolution estimate of the phase gradients at 128 × 128

pixels.

data) by a multiresolution analysis with an approximate optimal wavelet Ψ

(here B-L wavelet), following the equation:

αij,k1,k2 =
1√

N1 × N2

N1−1∑

n1=0

N2−1∑

n2=0

Ψi
j,k1,k2

(n1, n2)sh(n1, n2) (6.1)

for all orientations i, scale j and positions k1, k2 (see section 5.1.1.3 for de-

tails). Then with the knowledge of the wavelet coefficients at the intermediate

scales, we try to reconstruct the signal (high-resolution gradients in this case)

by:

s(n1, n2) =
∑

i=0,1,2,3

∑

j

∑

k1,k2

αij,k1,k2Ψ
i
j,k1,k2

(n1, n2) (6.2)

This is the second step of the approach and is known as the synthesis part of

the algorithm. The process of reconstruction can be summarized accordingly:
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• We first compute the third order B-L wavelet coefficients associated to

the signal of the singularity exponents computed on the perturbated

phase signal. Considering a given phase map as an approximation im-

age at scale j, we compute the singularity exponents of this phase map

using equation (5.40). We then consider the image corresponding to

the singularity exponents (we consider all the exponents over the phase

map without any thresholding) as the input image to the multiresolu-

tion analysis.

• A multiresolution analysis on the input image (i.e., the image of the

singularity exponents) gives rise to an approximation image (α0
j+1) and

the details i.e. the wavelet coefficients (α1
j+1, α

2
j+1 and α3

j+1 are the hor-

izontal, vertical and diagonal details respectively) for the next coarser

scale j + 1.

• Every level gives rise to an image fourth smaller than the previous

one. We repeat the operation 4 times to an approximation of size

16 × 16 pixels. We store the details of the exponents obtained in the

intermediate levels.

• This part of the operation is the called the analysis part (decomposi-

tion), and is explained in Fig 6.2.

• The next part of the operation is called the synthesis part (reconstruc-

tion), and is shown in Fig 6.3.

• We replace the resultant approximation image (a coarser approximation

of the singularity exponents, obtained from the analysis operation) with

the low-resolution x and y gradient measurements (16 × 16 pixels sub-

image, see section 6.1) of the phase data.

• For each component (x and y) of the phase gradient at low-resolution,

we back project the component (using equation (6.2)) to high-resolution

using the intermediate detail coefficients (i.e. details of the singualrity

exponents obtained from the analysis operation), to get a phase’s gra-

dient at higher spatial resolution of 128 × 128 pixels.



112 Chapter 6. A multiscale approach to phase reconstruction for AO

Table 6.1: Left to right : True phase, reconstruction of the phase using

signal of the singularity exponents as input to the multiresolution decompo-

sition, comparison of the PSD between the true phase and the reconstructed

phase, reconstruction of the phase using the true phase as input to the mul-

tiresolution decomposition.

True phase Reconstructed phase Log-power spectrum Reconstructed phase
(using exponents) (using image)

• The estimation of the phase from its high-resolution gradients is ob-

tained by solving the discrete Poisson equation with Neumann bound-

ary conditions. We use a fast Poisson solver for this purpose (see sec-

tion 5.3.1.2).

§ 6.3 Results

Results obtained show visual resemblance of the reconstructed signal with

the original one. Performance of reconstruction using the singularity expo-

nents and the image, as input to the analysis part of the algorithm, is shown

in table 6.1. The results clearly shows the necessity of using the signal of

the singularity exponents in the decomposition process. We also check the

performance of our reconstruction technique after adding different propor-

tions of Gaussian white noise to the gradients, results are shown in table 6.2.

Quantitative analysis is presented in table 6.3. We also compute the PSF

and the modulus of the OTF for the reconstructed phase, and compare them

with that of the true phase. The results are shown in table 6.4 and table 6.5.
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Table 6.2: Results of the reconstruction in a noisy environment. Top row

: Reconstructed phase under different levels of SNR. Bottom row : Com-

parison of the PSD between the true phase and the reconstructed phase under

different levels of SNR.

SNR = 40 dB SNR = 20 dB SNR = 14 dB SNR = 6 dB

Table 6.3: Evaluation of the phase reconstruction of table 6.2 in terms of

MSE and PSNR metrics.

Params No noise 40 dB 20 dB 14 dB 6 dB

MSE 0.1978 0.2216 0.2253 0.2406 0.3125

PSNR 31.18 30.68 30.16 29.32 28.19

(dB)

§ 6.4 Residual phase statistics

As discussed in section 3.1.1, chapter 3, the principle of AO correction is to

reduce the residual error in the equation:

∆φ(r, θ) = φturb(r, θ)− φcor(r, θ) (6.3)

where ∆φ(r, θ) is the residual phase (tends to zero with the AO correction)

and φcor(r, θ) corresponds to the phase obtained by the mirror deformation
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Table 6.4: Performance under noise - Point spread function (PSF).

The X cut and Y cut of the PSF are displayed. The y-axis corresponds to the

square of the normalized image plane irradience and the x-axis corresponds

to the angular distance in arseconds.
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Table 6.5: Performance under noise - Modulus of OTF (MTF). The

X cut and Y cut of the MTF are displayed with a logarithmic scale. The

y-axis corresponds to the logarithm of the MTF and the x-axis represents the

normalized frequency in D/λ units.
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(correction by AO). We set up an experiment, in which we compare the PSD

of ∆φ when φcor is obtained using our technique and the classical least squares

reconstruction technique (see section 3.2.4.3), which is the general solution

to the inverse problem solution methods [110]. Multigrid solvers and precon-

dition conjugate gradient solvers [75, 74, 18] are the most computationally

efficient approaches in this regard. For comparing the reconstruction quality

using our method and the least squares approach, we set-up the following

experiment:

• We generate the estimated phase φcor with our method (derived from

the framework of MMF) using the singularity exponents, computed on

three different high-resolution phase screen, as input to the decompo-

sition part of our algorithm (see section 6.2 and Fig 6.2).

• The three different high-resolution phase screens are: (a) the true

phase, (b) an average phase obtained from the 10 previous and 10 post

instances of the true phase and (c) a fixed FFT based phase screen

obtained by McGlammery method [134] (see section 2.5.2) using the

Kolmogorov power spectrum.

• For calculating the average phase instance of (b), we consider a total

of 960 phase instances from the original 1000 instances (start with the

21st phase screen and end on the 980th phase screen).

• Given the estimated phase (φcor) and true phase (φturb), we calculate

the residual phase ∆φ by equation (6.3).

• We calculate the residual phase for all 960 instances of the phase (N =

960), using our technique (for all the three different high-resolution

inputs) and the least squares technique.

• φcor is of size 128 × 128 pixels. Reconstruction is repeated for three

different size of the gradients: 64 × 64 pixels, 32 × 32 pixels and

16 × 16 pixels.

• The least squares reconstructed phases are oversampled to 128 × 128

pixels resolution from their respective gradient resolution using bicubic

interpolation.
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(a) (b)

Figure 6.4: (a) Image of a simulated turbulent phase screen generated by the

FFT based method [134] using a Kolmogorov power spectrum. (b) Singularity

exponents computed on the phase data.

• The average residual phase PSD, for all the 960 instances are then

calculated, as 1
N

N∑

i=1

|F(∆φ)|2, where F is the Fourier transform.

• We then plot the PSD against spatial frequency, for our technique and

least squares technique, and compare.

In table 6.6, we show the results of the residual phase PSD, with the

true phase as input high-resolution phase for our algorithm. Table 6.7 and

Table 6.8 shows the same results like table 6.6, but using an average phase

instance and a Kolmogorov phase screen (shown in Fig 6.4), respectively,

(instead of the true phase) as input high-resolution phase for our algorithm.

§ 6.5 Results and discussion

We have shown the quality of our reconstruction algorithm, in comparison

to least squares technique (commonly used in AO for phase estimation) in

section 6.4. We have used three types of high-resolution phase screen as

inputs, in the analysis part of our algorithm, and computed the singularity

exponents on them. We have first tested our approach using the true phase
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Table 6.6: Comparison of the residual phase statistics with classical opera-

tors under different levels of SNR. To estimate φcor using the MMF technique,

we use the singularity exponents computed over the true phase as input high-

resolution phase in the decomposition process of our algorithm.
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Table 6.7: Comparison of the residual phase statistics with classical operators

under different levels of SNR. To estimate φcor using the MMF technique, we use

the singularity exponents computed over the average phase instance (obtained by

averaging the 10 previous and 10 post instances of the true phase) as input high-

resolution phase in the decomposition process of our algorithm.
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Table 6.8: Comparison of the residual phase statistics with the least squares

operator under different levels of SNR. To estimate φcor using the MMF tech-

nique, we use the singularity exponents computed over a fixed FFT based

Kolmogorov phase screen (see Fig 6.4) as input high-resolution phase in the

decomposition process of our algorithm.
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as an input (which is the ideal case) to verify the potential of our algorithm

in estimating the phase. We then replaced the true phase with an average

instance of the true phase (obtained by averaging the 10 previous and 10 post

instances of the true phase) and with a fixed FFT based Kolmogorov phase

screen (see Fig 6.4), and performed reconstruction. For all the three differ-

ent high-resolution inputs, the results obtained shows superior performance

under different levels of SNR (see table 6.6, table 6.7 and table 6.8) when

compared with the classical least squares technique. It is seen that for the

case when reconstruction is made over gradients of size 16 × 16 pixels, our

method has reduced performance compared to least squares method. The

performance however improves considerably, in comparison with the least

squares method, as the level of SNR increases. It should be noted here that

we have tested the performance of our algorithm in the case of Gaussian noise

only. One important aspect will be to test the robustness of our algorithm

in the case of sensor noise (photon noise + measurement noise), which is our

future objective.

§ 6.6 Conclusion

In this chapter we have introduced a wavelet-based new method for the re-

construction of a high-resolution phase from its low-resolution gradients, by

propagating the information of a turbulent phase along the scales, from low-

resolution to high-resolution. We have proposed an alternate technique for

estimating the wavefront phase instead of using the conventional methods of

least squares solution [164]. The idea is the use of an optimal wavelet, which

provides a close approximation of the multiscale energy cascade through

wavelet decomposition. Since the deduction of an optimal wavelet remains

an unsolved problem, we determine the quality of reconstruction by a classi-

cal multiresolution analysis on the signal of the singularity exponents, which

we have proved in the previous chapter are the ideal candidates that retain

the multiscale features of a signal. The results clearly state the fact that

singularity exponents are the ideal candidates in capturing the turbulent in-

formation of the phase, and through the use of a proper wavelet (a third order
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B-L wavelet in our case) the turbulent features of the signal are extracted

along the scales, which is then used to reconstruct high-resolution gradients

from its low-resolution measurements. The phase is then estimated from the

high-resolution reconstructed gradients.
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Conclusion

In this thesis, we have presented a novel approach to wavefront phase recon-

struction in Adaptive Optics (AO) through the framework of MMF (Micro-

canonical Multiscale Formalism). We have presented a detailed explanation

of the MMF framework through its various applications on image processing

and have successfully applied this framework, together with the multiresolu-

tion analysis scheme associated to wavelet transform, in the wavefront phase

estimation problem for AO. The idea is the use of an optimal wavelet in mul-

tiresolution analysis, by which optimal inference along the scales of a signal

is possible. But, due to the lack of proper computation techniques, we are

limited to work only with an approximative version of the optimal wavelet.

This limitation has inspired us to define, in this thesis, an alternate technique

by which maximum inference along the scales is possible. We have shown

that singularity exponents, associated to a turbulent phase acquisition, are

ideal candidates for inferring information along the scales of a signal and

can be used in a multiresolution analysis approach (associated to a wavelet

transform) for reconstructing a turbulent phase from its low-resolution gra-

dients. The justification of this idea, which forms of the heart of this thesis,

has been done in two steps.

In the first step, we have studied the multiscale behaviour of a complex

signal, better understood from its complex arrangement of geometrical struc-

tures (that are related to the cascading properties of physical variables [203]).

123
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Transitions within these signals, can be well-defined by a subset of points that

are related to the concept of edges in natural images. This is a fundamental

topic as edges are usually considered as important multiscale features in a

signal (in our case images) and better characterization of edges in complex

signals can unfold its geometrical structure, which is our preliminary objec-

tive. From the concept of Statistical Physics, we see that systems with high

order transitions commonly reflect a power-law behaviour in their thermody-

namical variables [203, 202]. The exponents of this power-law, if determined

correctly, can give tremendous insight into the underlying dynamics of such

systems. The MMF provides a suitable approach in the determination of

these critical exponents, the so-called singularity exponents, that has lead to

a sensible improvement in the numerical techniques for the determination of

multiscale characteristics in real signals. In particular, the singularity expo-

nents give access to a subset of points, called the Most Singular Manifold (the

MSM) whose structure is related to edges or contours in natural images [197].

We see (in section 5.2, for the case of 2D signals) that this subset of points

are much better candidates for the characterization of transitions in complex

signals : they outperform the classical linear filtering approach of the state-

of-the-art edge detectors in terms of consistency across the scales. Edges

detected by singularity analysis are able to retain their structure across the

scales. The results of section 5.2, therefore helps us in concluding that the

singularity exponents are able to retain the important multiscale features of

a signal along the scales.

After studying this important property of the singularity exponents, we

move on to the second step of justification i.e., being able to reconstruct the

signal from the basic information of its multiscale structure contained in the

edges of the signal. Indeed, if edges encode the most important features of a

signal, it should also be possible to reconstruct the whole signal from its edge

representation. We therefore study the performance of reconstructible sys-

tems both with transitions associated to singularity exponents and the edge

pixels provided by standard edge detection techniques. Examples are chosen

among the most difficult natural signals: acquisition of turbulent phenomena

(perturbated optical phase and ocean dynamics acquired from space). The

results of section 5.3 clearly shows the superiority of the reconstruction, ob-
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tained from the MSM points than over edges from classical edge detectors.

By the application of different techniques for reconstructing an image from

its edges, we see that the overall assumption of better reconstruction from

MSM remains unchanged. The results allow us to draw another important

conclusion : the singularity exponents not only retain the multiscale features

of a signal, but it is also possible to reconstruct the signal from a subset of

its most informative points.

After validating the idea of using the singularity exponents for optimal in-

ference in multiresolution analysis, we demonstrate the potential of this idea,

in chapter 6, for wavefront phase reconstruction. We study a multiresolution

analysis scheme associated to the signal of singularity exponents through

the approximation of an optimal wavelet. Three types of phase screens are

used as high-resolution inputs to the multiresolution analysis part of our

algorithm. The primary objective was to first validate the performance of

our algorithm, for phase reconstruction, using the ground truth (i.e. the true

phase) as input to the analysis part of the algorithm. The results encouraged

the use of a non-perfect high resolution phase screen and verify the perfor-

mance of reconstruction. We therefore took two examples of a non-perfect

high-resolution phase as input to the analysis part: an average instance of

the true phase (obtained by averaging the 10 previous and 10 post instances

of the true phase) and a fixed Fourier series based atmospheric phase screen

with Kolmogorov power spectrum. The results obtained, when compared

with the classical least squares technique, clearly shows the potential of our

approach in wavefront phase estimation, specially in the case of noise, where

the performance of MMF is better than the least squares method.

§ 7.1 Future perspectives

The research reported in this thesis has opened a new direction to the problem

of wavefront phase reconstruction in AO. Simulations clearly suggest the

potential of this approach, as a new technique, superior or equal to classical

solutions (with marked superiority in the case of noise, at least for the type

of noise considered in this thesis).
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• The future goal is, therefore, to implement our reconstruction algo-

rithm in an AO system and see its performance in real-time. In fact,

the singularity exponents, which are the basic ingredients used in our

reconstruction technique, can be computed in real-time with minimum

utilization of resources.

• The reconstruction technique that we have proposed in this thesis is

general enough to suit the case of acquisitions of general complex sys-

tems. Therefore, the methodology is likely to be applicable to cases

that fits the problem.

All these future extensions to the present work, may further justify the

establishment of the MMF framework as a powerful tool in the analysis of

multiscale features in complex signals. In fact, the potential of MMF is now

being tested on many signal processing applications in a quite diverse set of

scientific disciplines ranging from stock market series [151], phytoplankton

distribution in ocean [157], ocean dynamics [217], satellite imaging [78, 77,

216], speech signal analysis [101, 100, 102], computer graphics [14] to natural

image processing [197, 201].
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§ 7.2 Publications

• Journal Publications

– S. K. Maji, H. Yahia and H. Badri: Reconstructing an image from

its edge representation, Digital Signal Processing, Elsevier,

23 (6): 1867-1876, 2013.

– S. K. Maji and H. Yahia: Edges, Transitions and Criticality, Pat-

tern Recognition, Elsevier, Accepted, 2013.

• Peer-reviewed conferences/proceedings

– S. K. Maji, O. Pont, H. Yahia and J. Sudre: Inferring Informa-

tion across Scales in Acquired Complex Signals, European Conf.

Complex Systems, Brussels, 2012.

– S. K. Maji, H. Yahia, O. Pont, J. Sudre, T. Fusco and V. Michau:

Towards Multiscale Reconstruction of Perturbated Phase from

Hartmann-Shack Acquisitions, IEEE AHS, Nuremberg, 2012.

– S. K. Maji, H. Yahia, O. Pont, T. Fusco, V. Michau and J. Su-

dre: A multiscale approach to phase reconstruction for Adaptive

Optics, IEEE ECMS, Liberec, Czech Republic, 2011.

• Working papers

– S. K. Maji, H. Yahia, T. Fusco and H. Badri: A multifractal

based wavefront phase estimation technique in ground based as-

tronomy, in preparation for IEEE Transactions on Aerospace

and Electronic Systems.

– H. Badri, H. Yahia, S. K. Maji and D. Aboutajdine: Edge-Based

Sparse Coding of Color Images, in preparation for IEEE ICIP

2014.
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