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Chapter 1

Introduction

In omnibus autem negotiis, prius,

quam aggrediare, adhibenda est

præparatio diligens.

Marcus Tullius Cicero

Logic, from greek λογος can be defined as the field that studies the principles and rules

of reasoning. By starting from axioms it gives tools for inferring the truthfulness or falsity

of statements. In the fields of computer science, it is widely used for different application

but all of them deal with properties of programs.

Computational Complexity is that kind of research field that focus on the minimal and

necessary quantity of resources (usually these are time and space) for solving a definite kind

of decidable problem. Talking about problems means talking about functions. Indeed, a

problem, in its decisional form, can be seen as a function. It has some well defined inputs

and it asks for an output of “yes” or “no”. There are infinite ways to implement such

function and compute the solution. We need an algorithm, so a finite procedure that

step-by-step computes basic operations, and we would like to find the best one. For every

problem we have many ways to compute the correct answer. There are intrinsic limits in

every problem, such that for every algorithm there is no way to compute the solution in

time or space less than a specific amount (respect to the size of inputs). Sometimes, these

limits are not known.
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In this thesis we investigate Implicit Computational Complexity applied to Probabilis-

tic complexity classes. ICC (Implicit Computational Complexity) is a research field that

tries to combine Computational Complexity with logic. By using the Curry–Howard corre-

spondence (proofs-as-programs correspondence and formulae-as-types correspondence) we

can easily talk about step of calculus in a program and verify properties by using the tools

of logic. We are mainly interested in complexity properties, such as the execution time.

We present programming languages and methodologies in order to capture the complexity

and expressive power of Probabilistic Polynomial Time Class.

All of these works find application in all of those systems where space and time re-

sources (memory and CPU time) are important; knowing a priori the space and time

needed to execute a given program is a precious information. While talking about “sys-

tems” we are not only consider critical systems or embedded systems having, in real terms,

time and space constrains; we are also considering usual systems like cellular phones or

tablet devices, that are general purpose systems (so that we can easily run new programs).

In general, it is a challenging task to find efficient algorithms for computationally

expensive problems. Nowadays, efficient solutions to computationally hard problems are

probabilistic rather than deterministic. A lot of problems are indeed solved with techniques

and methodologies built on statistical analysis and probability, e.g. algorithms based on

Monte Carlo and Las Vegas schemes are widely used not only in physics but also in other

fields. From this point of view, it appears interesting to study implicit characterisations

of probabilistic complexity classes in order to develop new programming languages able

to internalise bounds both on complexity and on error probability. These frameworks will

allow the development of statistical methods for static analysis of algorithms’ complexity.

All of these works are correlated with the problem of finding efficient algorithms for solving

problems.

There are many ways in computer science to focus on this problem and the logical

one is one of the most interesting. Indeed, logic is a formalism that allows you to work

more easily on complex systems because it gives a higher point of view. There are also

several approaches in ICC; they vary from recursion theory to proof theory and to model

theory. We followed the path dealing with recursion theory by using restrictions on usage

of recursion.
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1.1 Contributions

The main contribution produced in this thesis is the extension of ICC techniques to the

probabilistic complexity classes. We mainly focus on PP (which stands for Probabilis-

tic Polynomial Time) class, showing a syntactical characterisation of PP and a static

complexity analyser able to recognise if an imperative program computes in Probabilistic

Polynomial Time. We tried to go deeply and get characterisations of other probabilistic

polynomial classes, such as BPP, RP, ZPP, but it seems that a syntactical characteri-

sation of these “semantic classes” is really hard problem and would imply the solution of

some old open problems. We show parametric characterisation of these classes.

The first work, syntactical characterisation of PP, is mainly based on a work of M.

Hofmann [21]. His work presents a characterisation of the class P (polynomial time) by

semantical proof. We extend his work to the Probabilistic Polynomial Time class, giving

a syntactical and constructive proof and obtaining also subject reduction. The second

work, static analyser for Probabilistic Polynomial Time, is mainly based on a work of Neil

D.Jones and Lars Kristiansen [25]. We extend and adjust the analysis in order to achieve

soundness and completeness for PP. Moreover, our analysis runs in polynomial time and

it is quite efficiently. Some benchmarks are also presented in order to show that even if

in the worst case, of our static analyser, is bounded by a polynomial of degree five, the

average case seems to grow with a rate that is less than linear in the size of number of

variables used in the program.

1.2 Thesis outline

In this subsection we give an overview of the contents presented in each chapter. Basically,

the thesis is divided into two parts. The first one talks about ICC applied to a variation

of lambda calculus and the second part deals with imperative programming languages and

methodologies for inferring the running time of a program. In real terms, the thesis is so

subdivided:

Chapter 2 We give an introduction about Computational Complexity and stochastic

computations. We present the concept of the Probabilistic Turing Machine and we

show how it works.
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Chapter 3 We introduce the topic of Implicit Computational Complexity. We give an

overview of it and then we proceed by introducing fundamental papers such as [11],

[6], [21].

Chapter 4 One of the main original contribution is presented. We show how it is corre-

lated with the previously introduced papers and which are its main points.

Chapter 5 We present a new topic, about static analysers for time complexity inference.

We show how ICC is strictly correlated with this different topic. We focus on the

imperative paradigm and we present fundamental papers, such as [32] and [25], used

for developing our analysis.

Chapter 6 Second original contribution is proposed, showing its application to Proba-

bilistic Polynomial Time and presenting its performance with some benchmarks.

Chapter 7 Conclusions and future develops.



Chapter 2

Computational Complexity

Chance phenomena, considered

collectively and on a grand scale,

create non-random regularity.

Andrey Kolmogorov

Computer Science, as a science, is based, principally, on Computability Theory, a

research field that was born around 1930. Its main purpose is to understand what is

actually computable and what is not. It is for this reason that nowadays it is possible to

give a formal definition of the intuitive idea of computable function. Its discoveries let us

know the limits and the potentiality of Computer Science.

Computability Theory started to be developed without referring to a specific real

calculator. Initial works about λ-calculus [10] and Turing Machine [39] were published

few years before the construction of the first modern programmable calculating machine

(the famous “Z3” by Konrad Zuse in 1941).

Computational Complexity theory is a research branch that came from Computability

Theory. Its main purpose is to classify computational problems in sets, called computa-

tional sets. They are classified according to the “difficulty” to solve them. The measure of

difficulty is the quantity of resources time and space that is required for solving a particu-

lar kind of problem. The subjects of the analysis in Computational Complexity theory are

the so called “computational problems”. These are problems, mathematically formalised,

for which we are searching an algorithm to solve them.

Should be clear that not all the problems are considered by this research field. First we

need to separate the problems that are formalisable from the ones that cannot be. Then
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we need to separate the ones for which exists an algorithm (“decidable problem”) from

the others (“non decidable”).

An example of undecidable problem is the famous “halting problem”. The halting

problem is formalised in the following way. We have as input a program C and we would

like to know if the program terminates or not. There is no algorithm able to solve this

problem. The proof is quite easy and uses the technique of diagonalization.

Proof: We indicate with ↓ the property that a program terminates. On the contrary, the

symbol ↑ indicates that a program does not terminate. Suppose that there is an algorithm

f that on input C and i (the input of the program C) is telling “yes” (expressed by the

value 1) or “no” (expressed by the value 0) according on the termination of the program

C(i).

f(C, i) =







1 if C(i) ↓

0 if C(i) ↑

If so, we are also able to write down an algorithm g behaving in slight different way.

g(i) =







0 if f(i,i)=0

↑ otherwise

But what is the expected result of applying g with itself? g(g) terminates only if g(g)

does not terminates and viceversa. Here is the paradox. We can conclude that there is no

algorithm able to solve the halting problem. 2

Famous results in this field are the hierarchy theorems. First we need to introduce some

notions and some well known complexity classes and then we will be able to understand

the relation between then.

2.1 Turing Machines

In 1937, Alan Turing [39] presented a theoretical formalism for an automatic machine.

The so called “Turing Machine” (TM in the following) is a model machine that operates

over an, hypothetical, infinite tape. The tape is subdivided in cells where a symbol from
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a finite alphabet can be read or written. The machine has a head able to move along the

whole tape and able to read and write symbols. The behaviour of a TM is well determined

by a finite set of instructions. For every combination of symbol read and state machine,

the TM evolves in (possibly) new state, overwrites with new symbol the cell pointed out

by the head and could move the head left or right. This is called “transition function”.

Space and time consumption are defined, respectively, as the number of steps required

for a TM to reach a final state and as the number of cells written at least once during its

computation.

There are several kind of Turing Machine. The usual one works with one tape, but

an easy extension uses more tapes. The computational power does not change. There are

two particular Turing Machines interesting for the work presented in this thesis. The first

one is the Non Deterministic Turing Machine (NTM in the following) and the latter one

is the Probabilistic Turing Machine (PTM in the following).

We introduce briefly the NTM, while we leave the PTM for a better introduction

later. A Non Deterministic Turing Machine is a TM where the transition function works

differently. Instead of having a single output, the function can lead the machine to different

configurations. One can imagine as the NTM branches into many copies of itself, where

each of it computes a different transition. So, instead of having, as in a TM, one possible

computational path, the NTM has more computational paths: a tree. If any branch of the

tree stops in an accepting configuration, we say that a NTM accepts the input. Viceversa,

an NTM rejects the input is all of its paths lead to a rejecting configuration. Of course, a

NTM does not represent an implementable model machine, but it is useful for describing

and classifying particular problems.

We can easily define the following complexity sets:

• L is the class of problems that are solvable by a Turing Machine in logarithmic space.

• NL is the class of problems that are solvable by a non deterministic Turing Machine

in logarithmic space.

• P: is the class of problems solvable by a Turing Machine in polynomial time.

• NP: is the class of problems solvable by a non deterministic Turing Machine in

polynomial time.
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• PSPACE: is the class of problems that are solvable by a Turing Machine in poly-

nomial space.

• NPSPACE: is the class of problems that are solvable by a non deterministic Turing

Machine in polynomial space.

• EXP: is the class of problems that are solvable by a Turing Machine in exponential

time.

Is quite clear that from the previous definition, some inclusions between this classes

hold. Indeed, a TM can be seen as a particular case of a NTM. Moreover, if a Turing

Machine (deterministic or not) is working in polynomial time, it cannot use more than

polynomial space (modulo the number of the possible tapes).

PTIME ⊆EXP

PTIME ⊆NP

PTIME ⊆PSPACE

L ⊆PSPACE ⊆ NPSPACE

L ⊆ NL ⊆NPSPACE

Let a “proper complexity function” be a non decreasing function f : N → N such

that there exists a TM able to produce, on every input of length n, f(n) symbols in time

bounded by n+f(n) and space bounded by f(n). Given a function f : N→ N, TIME(f)

is the complexity class of all of those languages decidable by a TM in time bounded by

function f . Similar, given a function f , NTIME(f) is the complexity class of all of

those languages decidable by a NTM in time bounded by the function f . Clearly, we can

define the class of languages SPACE(f) and NSPACE(f) with the obvious meaning.

An important result in literature shows that is it possible to extend the releations between

complexity classes by proving the following two theorems:

Theorem 2.1 (Non Deterministic Time versus Deterministic Space ) Given a proper

complexity function f on input n, if a problem is solvable by a NTM in time f(n), then

can be solved by a TM in space f(n).

NTIME(f(n)) ⊆ SPACE(f(n))
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Theorem 2.2 (Non Deterministic Space versus Deterministic Time ) Given a proper

complexity function f on input n, if a problem is solvable by a NTM in space f(n), then

can be solved by a TM in time mlogn+f(n), where m > 1 is a constant.

NSPACE(f(n)) ⊆ TIME(mlogn+f(n))

From all the previous observations, we can easily create the well known hierarchy:

L ⊆ NL ⊆ PTIME ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP

In order to know if there are or not tight inclusions between these sets we need to

prove more theorems. These are called hierarchy theorems. What happens if we give

more computational time to a TM? is it able to compute more function? Consider the

following problem:

Definition 2.1 (Halting problem in fixed number of steps) Given a proper com-

plexity function f(n) ≥ n, define

Hf = {(M ;x)|M accepts x within f(|x|) steps }

Notice that the condition for being accepted in the language, requires the machine M

to halt before f(|x|) steps. If it requires more than these steps, the pair (M,x) is rejected.

The set Hf is so decidable.

We can prove the following properties:

Hf ∈TIME(f(n)3)

Hf /∈TIME(f(⌊
n

2
⌋))

We have all the ingredients to present the following main result. Knowing that Hf ∈

TIME(f(n)3) but not in TIME(f(⌊n2 ⌋)) we can put n = 2m + 1 and obtain that there

is a problem solvable in TIME(f(2m+ 1)3) that cannot be solvable in TIME(f(m))

Corollary 2.1 The class of problems solvable in polynomial time is strictly included in

the class of problem solvable in exponential time by a Turing Machine.

PTIME ⊂ EXP
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Proof: Clearly every polynomial p(n) is definitely minor than 2n. So we can have the

following chain

PTIME ⊆ TIME(2n) ⊂ TIME((22n+1)3) ⊆ EXP

2

Given a proper complexity function f , we can prove in similar way that SPACE(f(n)) ⊂

SPACE(f(n) log f(n)) and easily conclude with the following corollary.

Corollary 2.2 The class of problems solvable in logarithmic space is strictly included in

the class of problems solvable in polynomial space by a Turing Machine.

L ⊂ PSPACE

There is another well known theorem that we haven’t yet introduced. We have seen

the relation between PSPACE and NPSPACE. Clearly, PSPACE ⊆ NPSPACE.

Even if could seem counteractive, it is also true that NPSPACE ⊆ PSPACE. Every

problem in NPSPACE can be solved with a Turing Machine in quadratic space respect

to the one required by the non deterministic solution.

Theorem 2.3 For every proper complexity function f it holds that:

NPSPACE(f(n)) ⊆ PSPACE(f(n)2)

Proof: Let M be a NTM working on space f(n). The graph of all the possible configu-

rations G(M,x) has O(kf(|n|)) nodes. So, knowing if x is a positive instance for the given

problem or not is equal to solve a reachability problem on this kind of graph. It has been

proved in literature [35] that reachability problem belongs to L. It can be solved in space

(log n)2. So, we can solve our reachability problem by using savitch solution and get the

result in space O((log kf(|n|))
2
) that is O(f(|n|)2). 2

All of these results lead us to the final chain of relations:

L ⊆ NL ⊆ PTIME ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP

L ⊂ PSPACE

PTIME ⊂ EXP
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There are more complexity sets than these and for most of them is not well clear the

relation between each other. There is an online database containing quite all the classes

introduced in literature; it’s called “the complexity zoo”[1]. We are interested mainly on

probabilistic algorithms and their complexity classes and we are going to introduce them.

2.2 Stochastic Computations

Randomised computation is central to several areas of theoretical computer science, in-

cluding cryptography, analysis of computation dealing with uncertainty and incomplete

knowledge agent systems. In the context of computational complexity, there are some

complexity classes that deal with probabilistic computations. Some of them are nowadays

considered as very closely corresponding to the informal notion of feasibility. In partic-

ular, a complexity class called BPP, which stands for “Bound Probabilistic Polynomial

Time”, is consider the right candidate containing all the feasible problems. A solution to a

problem in BPP can be computed in polynomial time up to any given degree of precision:

BPP is the set of problems which can be solved by a probabilistic Turing machine working

in polynomial time with a probability of error bounded by a constant strictly smaller than

1/2.

2.2.1 Probabilistic Turing Machines

There are two ways to think about a Probabilistic Turing Machine. One definition says

that a Probabilistic Turing Machine is a particular deterministic Turing Machine working

on two tapes, where one tapes is a read-only-once tape with random 0, 1 values and the

other is the usual working tape. The other definition describes a Probabilistic Turing

Machine as a non deterministic Turing Machine with two transition functions. At each

steps, the machine according to a probability distribution decides which transition function

it has to apply.

In the following we will use the latter definition, because of its easy of use. Our

Probabilistic Turing Machines will use a fair tossing coin. It does not matter if the

Probabilistic Turing Machine works with 0/1 fair tossing coin or something else with

different probability distribution. It has been shown [17] that the expressiveness of a

Probabilistic Turing Machine does not change while changing the probability distribution.
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Formally, a Probabilistic Turing Machine is a tuple M = (Q, q0, F,Σ,⊔, δ), where Q

is the finite set of states of the machine; q0 is the initial state; F is the set of final states

of M ; Σ is the finite alphabet of the tape; ⊔ ∈ Σ is the symbol for empty string; δ ⊆

(Q×Σ)×(Q×Σ×{←, ↓,→}) is the transition function of M . For each pair (q, s) ∈ Q×Σ,

there are exactly two triples (r1, t1, d1) and (r2, t2, d2) such that ((q, s), (r1, t1, d1)) ∈ δ and

((q, s), (r1, t1, d1)) ∈ δ.

Definition 2.2 We say that a Probabilistic Turing Machine M on input x runs in time

p(|x|) if M(x), for every possible computational path, requires at most p(|x|) steps to

terminate.

Definition 2.3 We say that a Probabilistic Turing Machine M on input x runs in space

q(|x|) if M(x), for every possible computational path, requires at most q(|x|) worktape cells

during its execution.

While dealing with probability and random computation it is reasonable asking if the

PTM could answer in a wrong way. In a PTM running in time t the number of possible

outcomes is 2t. Thus, the probability for a PTM M to answer “yes” is exactly the fraction

of outcomes that return “yes”. So, we can define the probability error of a Probabilistic

Turing Machine.

Definition 2.4 Let M be a Probabilistic Turing Machine for a language L. Let E[x ∈ L]

the expected answer “yes” or “no” concerning x ∈ L: E[x ∈ L] returns “yes” iff x ∈ L. Let

ǫ1 ∈ [0, 1] representing a probability. We say that M on input x is working with probability

error ǫ if the fraction of computational paths of M(x) not leading to answer E[x ∈ L] is

less than ǫ, that is P (M(x) = ¬E[x ∈ L]) ≤ ǫ.

We can extend the notion of probability error to the whole machine, independently

from which computation it is performing. In this case we have to introduce the notions of

Two-sided error, One-Sided error, Zero-sided error.

Definition 2.5 (Two-sided error) Let M be a Probabilistic Turing Machine for a lan-

guage L. We say that M is working with probability error ǫ > 0 if for every string x we

have that P (M(x) = ¬E[x ∈ L]) ≤ ǫ.
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Notice that in the definition of Two-sided error we have defined a unique probability

error that hold both for false positive and false negative answers. However, many prob-

abilistic algorithms tend to give, in at least one side, the right answer. That means, as

example, that they could provide right answer when x ∈ L and in the other case they

could give false positive answer, according to a certain probability error. Moreover, some

probabilistic algorithm, such as the Random Quicksort, are able to return correct solutions

without error. This leads us to define the “One-sided error” and the “Zero-sided error”.

Definition 2.6 (One-sided error) Let M be a Probabilistic Turing Machine for a lan-

guage L. We say that M is working with one-sided error ǫ > 0 if one of the following

holds:

• if x ∈ L, P (M(x) = “no”) ≤ ǫ and if x /∈ L, P (M(x) = “yes”) = 0.

• if x ∈ L, P (M(x) = “no”) = 0 and if x /∈ L, P (M(x) = “yes”) =≤ ǫ.

Definition 2.7 (Zero-sided error) Let M a Probabilistic Turing Machine for a lan-

guage L. We say that M is working with zero-sided error is for every string in input x we

have that P (M(x) = ¬E[x ∈ L]) = 0. The machine cannot give wrong answer, even if it

is working with a random source.

Example 2.1 Let’s see some example on how a Probabilistic Turing Machine works.

Suppose we want to describe PTM that with probability 1/2 flips the bit read. The

transition relation δ would be the following one:

{(q0, 1), (q0, 1,→), (q0, 0,→)} ∈ δ

{(q0, 0), (q0, 0,→), (q0, 1,→)} ∈ δ

{(q0,⊔), (qf ,⊔, ↓), (qf ,⊔, ↓)} ∈ δ

{(qf ,⊔), (qf ,⊔, ↓), (qf ,⊔, ↓)} ∈ δ

The machine is working with ternary alphabet 0, 1,⊔ and the state qf represents the

final state. As can be easily checked, our PTM scans all the tape till the end and with

probability 1/2 flips the bits read.
2
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2.2.2 Probabilistic Polytime Hierarchy

Based on Probabilistic Turing Machine, we can define complexity classes. The most impor-

tant probabilistic polynomial classes are presented in Figure 2.1. Note that we emphasised

some sets with a dotted line. They represent semantic sets [33].

PP

NP

BPP

co−NP

RP co−RP

ZPP

P

Figure 2.1: Probability Polytime Hierarchy

• The outermost class is called PP, which stands for Probabilistic Polynomial Time. It

describes problems for which there is a random algorithm solving the problem with

probability greater than 1
2 . It is important to notice that no restriction is made about

“how much” is greater than 1
2 . Therefore, the probability error both for “yes” and

“no” answers is strictly less than 1
2 .

• co-NP is the complementary class of NP.

• RP is the set of problems for which exists a polytime Monte Carlo algorithm that

if the right answer is “no” then it answers without errors, otherwise it answers with

an error e < 1
2 [33]. Formally speaking, given a Probabilistic Turing Machine M for

the language L ∈ RP on all possible input x, x ∈ L ⇒ P (M(x) = “yes”) > 1
2 and

x /∈ L ⇒ P (M(x) = “yes”) = 0

• co-RP is the complementary class of RP. Given a Probabilistic Turing Machine M

for the language L ∈ co-RP on all possible inputs x, x ∈ L ⇒ P (M(x) = “yes”) = 1
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and x /∈ L ⇒ P (M(x) = “yes”) ≤ 1
2 .

• ZPP is the set of problems for which a Las Vegas algorithm exists, solving them in

polynomial time [33]. Indeed, it is recognised as the intersection set of RP with co-RP.

PRIME 1 was discovered to be in ZPP [2].

• BPP is the set of decision problems solvable by a probabilistic Turing machine in

polynomial time with an error e ≤ 1
3 for all possible answers. Formally speaking, given

a Probabilistic Turing Machine M for the language L ∈ BPP on all possible input x,

x ∈ L ⇒ P (M(x) = “yes”) > 2
3 and x /∈ L ⇒ P (M(x) = “yes”) < 1

3 .

Let’s focus not on the relations between probabilistic classes and the other well known

sets. The definitions of probabilistic polynomial classes that we have seen before give rise

to the following hierarchy.

PTIME ⊆ ZPP ⊆ RP ⊆ BPP ⊆ PP

PTIME ⊆ ZPP ⊆ CO−RP ⊆ BPP ⊆ PP

Nowadays, it is not known if there are strict inclusions between these classes. There

are a lot of conjectures about the equivalence of some classes. Some researchers believe

that BPP = PTIME, but no evidence has not yet been found. Moreover it has been

shown that there are a lot of consequences if some claim will be solved. It has been proved

[26] that if NP ⊆ BPP, then RP = NP.

2.3 Semantic Classes

Classes as RP, co-RP, ZPP are considered semantic classes, differently from syntactic

classes as PTIME or NP. Given a Turing Machine N defining a language l, it is not so

difficult to check if the language l belongs to these sets or not. This verification is not

easy if we are considering semantic classes.

Consider, as example, the class RP. Given a Turing Machine, it is not easy to check if

it characterises a language in RP. Indeed, for TM N to define a language l in RP it has

the property that on all inputs it outputs unanimously “no” or “yes” on majority. Most

non-deterministic TM behave differently in at least some inputs.

1The problem asks to distinguish prime numbers from composite numbers and of resolving the latter

in to their prime factors.
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One of the main problems with semantic classes is that there are no known complete

languages for them. The standard complete language for syntactic sets is the following:

{(M,x) : M ∈M and M(x) = “yes”}

whereM is a set of TM sufficient to define the class.

Note that PP is a syntactic and not a semantic class. Indeed, any non-deterministic

polynomially time bounded TM defines a language in this class. No other properties are

required to belong to PP, since the statement on the probability error is too weak (“accept

on majority”).



Chapter 3

Implicit Computational Complexity

Logic and mathematics seem to be the

only domains where self evidence

manages to rise above triviality

Willard van Orman Quine

3.1 Introduction

Implicit computational complexity (ICC) combines computational complexity, mathemat-

ical logic, and formal systems to give a machine independent account of complexity phe-

nomena.

The “machine independent characterisation has not to be confused with the so called

Structural Complexity. The main aim of Structural Complexity is the study of the relations

between various complexity classes and their global properties [20]. Structural Complexity

focuses on logical implications among certain unsolved problems, that have to do with

complexity classes, and explores the power of various resource bounded reductions and the

properties of the corresponding complete languages in order to understand the internal

logical structure of the classes. It gives independent characterisations of complexity sets

but the main aim is different.

In ICC the main purpose is to characterise the complexity classes so that it will be

possible to develop new languages able to internalise complexity bounds. The known

results go in the direction of creating new languages that have bounds in complexity, for

example as the bounds in polynomial time or log space.
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Many fields of mathematical logic influence this research field. We can include for

sure recursion theory, proof theory (by using the Curry-Howard isomorphism) and model

theory. This variety of fields reflects the variety of different approaches in ICC.

In literature we can find approaches that use Girard’s Linear Logic [18] and its sub-

systems, others that work directly on functions, by limiting primitive recursion, and others

that work by implementing these features in λ-calculus. A wide community of ICC works

on the first approach and has produced a lot of key works. We would like to recall few of

them that were able to characterise the class PTIME, such as Light Linear Logic of J.Y.

Girard [19], Soft Linear Logic of Y. Lafont[28] and Light Affine Linear Logic of A. Asperti

[4]. Concerning the limitation on recursion, there is a good survey from M.Hofmann [22].

ICC has been successfully applied to the characterisation of a variety of complexity

classes, especially in the sequential and parallel modes of computation (e.g., FP [6, 29],

PSPACE [30, 16], L [24], NC [9]). Its techniques, however, may be applied also to non-

standard paradigms, like quantum computation [13] and concurrency [12]. Among the

many characterisations of the class FP of functions computable in polynomial time, we

can find Hofmann’s safe linear recursion [21], a higher-order generalisation of Bellantoni

and Cook’s safe recursion [5] in which linearity plays a crucial role.

3.2 The Intrinsic Computational Difficulty of Functions

In 1965 Cobham published a paper called “The Intrinsic Computational Difficulty of

Functions” [11]. His main purpose was to understand how it was possible to restrict

the primitive recursion in order to capture only polynomial time computable function.

Recalling the definition of primitive recursion

f(0, y) = g(y) (3.1)

g(S(x), y) = h(y, f(x, y), y) (3.2)

we can easily check that if we are using unary encoding the number of recursion calls

needed to execute the recursion are exponentially correlated with the length of y. So,

Cobham defined “Recursion on notation”:

f(0, y) = g(y) (3.3)

f(x, y) = h(x, f(⌊x/2⌋, y), y) (3.4)
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This solution, unfortunately, does not solve the problem. Indeed, we are still able to

write down non polynomial functions. Consider the following example.

Define r(n, y) as:

r(0, y) = y (3.5)

r(x, y) = 4 · r(⌊x/2⌋, y) (3.6)

It is easy to check that

r(x, y) = (2|x|)2 − y

and hence,

|r(x, y)| = 2(|x|+ 1) + |y|

Now, if we define a function e in the following way

q(0) = 1 (3.7)

q(z) = r(q(⌊z/2⌋), 1), if z > 0 (3.8)

we obtain a function of super-polynomial growth. Indeed:

|q(z)| = |r(q(⌊z/2⌋), 1)| = 2(|q(⌊z/2⌋)|+ 1) + 1 ≥ 2|z|

The solution proposed by Cobham is to give a polynomial bound a priori on the

function that we could write with this system. In order to do that it is necessary to define

a basic function that could give us a polynomial bound. This function is the so called

“smash function” x#y = 2|x|·|y|.

The functions f of Cobham’s system can be defined starting from basic functions as:

S0(x) = 2x (3.9)

S1(x) = 2x+ 1 (3.10)

x#y = 2|x|·|y| (3.11)

and the “limited recursion on notation”:

f(x, 0) = g(y)

f(x,Siy) = hi(x, y, f(x, y))

f(x, y) ≤ r(x, y)



20 Chapter 3. Implicit Computational Complexity

where g, hi, r are previously defined functions of the system.

3.3 Safe recursion

We are going to present here a fundamental step concerning implicit characterisation of

class P by using functions and particularly kind of composition of functions. This work

is called “A new recursion-theoretic characterisation of the polytime functions” by S.

Bellantoni and S. Cook [6]. A very similar work was made at the same time by D. Leivan

“Stratified functional programs and computational complexity” [29] in 1993. Basic idea

is, more or less, the same. They both provide a way to restrict the functional recursion.

3.3.1 Class B

We define a class “B” of functions [6], working on binary strings. Each function in this

class has two kinds of inputs. The first one is the so called “normal” and the latter is called

“safe”. We are allowed to make recursion on values that are “normal” but not on the ones

that are “safe”. We can “promote” a variable “normal” to “safe” but not viceversa.

The class is defined as the smallest class containing the following functions

1. (Constant) 0 (the zero constant function).

2. (Projection) πn+m
i (x1, xn;xn+1, xn+m) = xi, where 1 ≤ i ≤ n+m.

3. (Successor) Si(; a) = 2a+ i, where i ∈ {0, 1}.

4. (Predecessor) p(; 0) = 0 and p(; ai) = a, where i ∈ {0, 1}.

5. (Conditional)

C(; a, b, c) =







b if a mod 2

c otherwise

and closed under

6. (Predicative Recursion on Notation) We define a new function f in the following

way

f(0, x; a) = g(x; a)

f(yi, x; a) = hi(y, x; a, f(y, x; a)) for yi 6= 0
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where i ∈ {0, 1} and where g and hi are functions in B .

7. (Safe Composition) We define a new function f in the following way:

f(x; a) = g(h(x; ); r(x; a))

where g, h, r are functions in B .

The functions that are polytime are exactly the ones in B that have no safe inputs.

Recall that the inputs on the left side (respect to the semicolons), are the “normal” ones,

the other are the “safe” ones. The term “safe” is used here to intend that is safe to

substitute larger values without compromise polynomiality of the function.

Let’s take a look at the definitions. First of all, let’s see how to promote variables from

normal to safe but not viceversa. Looking at rule for Safe Composition we can see that

we can shift a normal variable to the right side but it is not allowed to shift a safe variable

to the left side.

Predicative Recursion on Notation ensures that values computed stay on the right side.

This means that the depth of the subrecursions computed by hi cannot depend on values

recursively computed; it is a way to prevent possible complexity blowup.

Functions defined by rules 3, 4, 5 operate only on safe inputs. Of course, this is not

restrictive, since we can promote normal variables to safe position.

3.3.2 B contains PTIME

Bellantoni & Cook prove the inclusion of the function class B into the function class

PTIME by referring to Cobham characterisation FPTIME in [11]. Indeed it has been

proved in [34] and [38] that Cobham functions are all the polytime functions.

Lemma 3.1 Let f be any polytime function. There is a function f ′ in B and a monotone

polynomial pf such that f(a) = f ′(w; a), for all a and for all w.

Proof: By induction on the length of the derivation of f as a function in the Cobham

class.

• If f is constant, projection or successor function, then f is easily defined as the

corresponding constant, projection or successor of the class B and in this case pf is

0.
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• If f is a composition g(h(x)), then f ′ is defined as the safe composition in B .

f ′(w;x) = g′(w;h(w;x)). Knowing that functions h are in the Cobham class,

they have a bound in their values. Call them qh. So, for every hi ∈ h we have

hi(x) ≤ qhi
(x).

We define our polynomial bound pf (|x|) as pg(qh(|x|)) +
∑

j phj
(|x|).

It’s easy to check that property holds.

• If f is defined by recursion on notation, then we are in the following case:

f(x, 0) = g(y)

f(x,Siy) = hi(x, y, f(x, y))

f(x, y) ≤ r(x, y)

for some r(x, y) in Cobham class.

By induction hypothesis we get functions g′, h′1, h
′
2. In order to define function f ′

and having a more readable proof, we need to define some new functions. Notice also

that we cannot easily define f ′ by recursion on the variable x, since it would appear

on right side, in normal position; this is not allowed by definition of Predicative

Recursion on Notation. The new functions are the following ones:

P(0; b) = b

P(ai; b) = p(;P(a; b))

P′(a, b; ) = P(a; b)

Y(c, w; y) = P(P′(c, w; ); y)

PAR(; a) = C(; a, 0, 1)

I(c, w; y) = PAR(;Y(c, w; y))

∨(0; a) = PAR(; a)

∨(xi; a) = C(;∨(x; a),PAR(;P(xi; a)), 1)

As Bellantoni and Cook explained in [6], P(a; b) is a function that takes |a| prede-

cessors of b. Function Y(c, w; y) produces in output the in input y with |w| − |c|
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rightmost bits deleted. In this way, the output of the function Y, depending on

input c, may vary from the entire string y down to the basic string 0. Function

I(c, w; y) is needed in recursion in order to look into y and choose which function hi

should be applied. The last function, called ∨, simply implements the logical OR

between the rightmost |x| bits of input a.

We can now move on and finally define function f ′.

ĥ(w; i, a, b, c) = C(; i, h′0(w; a, b, c), h
′
1(w; a, b, c))

f̂(0, w;x, y) = 0

f̂(ci, w;x, y) = C(;∨(w;Y(cw; y)), g′(w;x), ĥ(w; I(c, w; y),Y(c, w; y), x, f̂(c, w;x, y)))

f ′(w;x, y) = f̂(w,w;x, y)

Knowing that f is in Cobham class, it has also a monotone polynomial bound qf

and for the same reason, also functions hi and g have monotone polynomials bound.

So, let qh = qh0
+ qh1

, we define pf as:

pf (|x|, |y|) = ph(|x|, |y|, qf (|x|, |y|)) + pg(|x|) + |y|+ 1

Next step is to prove by induction that f̂(u,w; y, x) = f(Y(u,w; y), x), by fixing y

and x. Formally, the induction will be made on the size of parameter u and we will

prove that for |w| − |y| ≤ |u| ≤ |w| we get f̂(u,w; y, x) = f(Y(u,w; y), x).

Notice that Y(w,w; y) computes y and so f ′(w;x, y) is by substitution equal to

f(y, x). Let’s see how the result varies by varying |w| (recall |w| − |y| ≤ |u| ≤ |w|).

The expression |w| − |y| gives a value greater or equal than 1 and so it is also the

value |u|. So, it exists a z and a j ∈ {0, 1} such that u = zj. It does not matter

which is the value j because its size does not change: Y(z1, w; y) = Y(zj, w; y).

Recall that |w| ≥ |Y(z1, w; y)| and so, the function ∨(w;Y(z1, w; y)) gives 0 if

Y(z1, w; y) computes to 0, otherwise it gives 1.

In the particularly case where |u| = |zj| = |w|−|y| we have that function Y(z1, w; y)

computes to 0 and so, by definition of f̂ we get f̂(zj, w; y) = g′(w;x); by induction

we get g(x) that is f(0, x) = f(Y(z1, w; y), x).
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So, in the last case, we have |zj| > |w| − |y| and we can assume f̂(z, w;x, y) =

f(Y(z, w; y)x). Now we use monotonicity of polynomials pf and phi
to get a prereq-

uisite for applying induction hypothesis.

|w| ≥ pf (|x|, |y|)

≥ phi
(|Y(z, w; y)|, |x|, qf (|Y(z, w; y)|, |x|))

≥ phi
(|Y(z, w; y)|, |x|, |f(Y(z, w; y), x)|)

We are therefore allowed to apply induction hypothesis on hi. So, we get:

h′i(w;Y(z, w; y), x, f̂(z, w;x, y)) = h′i(w;Y(z, w; y), x, f̂(Y(z, w; y)x))

= hi(Y(z, w; y), x, f̂(Y(z, w; y)x))

We are going to use this equality for the last equality. First recall that the condition

|w| − |y| < |zj| ≤ |w| implies that y is not zero and, moreover, also Y(z1, w; y) is

not 0. Knowing that Y(z1, w; y) is SI(z,w;y)Y(z, w; y) we can conclude and get:

f̂(zj, w;x, y) = h′I(z,w;y)(w;Y(z, w; y), x, f̂(z, w;x, y))

= h′I(z,w;y)(Y(z, w; y), x, f̂(Y(z, w; y)x)) = f(Y(zj, w; y), x)

that is exactly the sub-thesis we were proving.

• If f is the smash function x#y, then we can redefine it using recursion on notation.

Define g as

g(0, y) = y

g(xi) = g(x, y)0 where xi is not 0

(note that g(x, y)0 means the result of g(x, y) concatenated to 0) and f as

f(0, y) = 1
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f(xi, y) = g(y, f(x, y)) where xi is not 0

we can easily check that bounding polynomials are pf (|x|, |y|) = |x| · |y| + 1 and

pg(|x|, |y|) = |x| + |y|. We have brought it back to a case already analysed. So, we

can use the technique shown in presence of recursion on notation and we are done.

This concludes the proof. 2

We have proved that for any function f in Cobham’s class we are able to build a

function f ′ in class B, computing the same result, with an extra argument w satisfying a

particular inequality. In the following theorem we will get rid of this extra argument.

Theorem 3.1 Let f(x) be a polytime function, then f(x; ) is in B.

Proof: The proof is quite easy to understand, even if is a bit technical. By theorem 3.1

we can get polynomial pf and function f ′. We construct a bound-function q(x; ) in B such

that it satisfies all the hypothesis of the thesis of lemma 3.1, namely |q(x; )| ≥ pf (|x|) in

order to get f(x; ) = f ′(q(x; );x).

In order to get this bound-function we define a function that concatenates strings. We

define three functions: ⊕2, ⊕k, # in such way:

⊕2(0; y) = y

⊕2(xi; y) = Si(;⊕
2(x; y)), where xi 6= 0

⊕k(x1, . . . , xk−1;xk) = ⊕
2(x1;⊕

k−1(x2, . . . , xk−1;xk))

#(0; ) = 0

#(xi; ) = ⊕2(xi; #(x; )), where xi 6= 0

It can be checked that the size of #x is |x|(|x| + 1)/2. So, let n,m three constants

such that (
∑

j |xj |)
n + m ≥ pf (|x|), for any x. If we compose function #() with itself a

constant number of time, we could easily get a function q(x; ) such that |x;| ≥ (|x|)n + n.

Finally we create function g(x; ) defined as q(⊕k(x1, . . . , xk−1;xk); ) that is greater than

pf (x). So, we have found a desired value greater than the polynomial pf , as desired.

2
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3.3.3 B is in PTIME

We have proved that every polytime function can be expressed in B . We are now going

to prove that every function in B is polytime. In such way we will be able to conclude

that B characterises the polytime functions. Should be an expected result; indeed all the

basic functions are polytime and the recursion, the key problem, is a controlled recursion,

where we are allowed to apply such recursion only on specific terms, the normal ones.

Also this theorem is subdivided in two lemmas: one controlling the size of the output

and one controlling the number of required steps.

Lemma 3.2 Let f be a function in B. There is a monotone polynomial pf such that

|f(x; y)| ≤ pf (|x|) + maxi(|yi|), for all x, y.

Proof: By induction on the derivation of function f in class B .

• If f is a constant, projection, successor, predecessor or conditional function, then it

is easy to check that there is a polynomial bound ad is 1 +
∑

i |xi|.

• If f is defined as a Predicative Recursion on Notation we are in the following case:

f(0, x; y) = g(x; y)

f(zi, x; y) = hi(z, x; y, f(z, x; y)) for zi 6= 0

By applying induction hypothesis on g, h0, h1 we get

|f(0, x; y)| = pg(|x|) + max
i

(|yi|)

|f(zi, x; y)| = |ph(|z|, |x|)|+max(max
i

(|yi|), |f(z, x; y)|)

Where ph is defined as the sum of ph0
and ph1

.

First case is trivial, we focus on the latter one. We define our polynomial bound as

pf (|z|, |x|) = |z| · ph(|z|, |x|) + pg(|x|)

and we assume |f(z, x; y)| ≤ pf (|z|, |x|) + maxi(|yi|). We are going to use this

inequality in the second step of the following calculus.
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|f(zi, x; y)| = |ph(|z|, |x|)|+max(max
j

(|yj |), |f(z, x; y)|)

≤ |ph(|z|, |x|)|+max(max
j

(|yj |), pf (|z|, |x|) + max
j

(|yj |))

≤ |ph(|z|, |x|)|+ pf (|z|, |x|) + max
j

(|yj |)

≤ |ph(|z|, |x|)|+ |z| · ph(|z|, |x|) + pg(|x|) + max
j

(|yj |)

≤ |zi| · ph(|z|, |x|) + pg(|x|) + max
j

(|yj |)

≤ pf (|zi|, |x|) + max
j

(|yj |)

as desired.

• If f is defined as a Safe Composition, then we have f(x; y) = g(h(x; ), r(x; y)) and

so we get, by induction hypothesis applied to g, h, r:

|f(x; y)| = |g(h(x; ), r(x; y))|

≤ pg(|h(x; )|) + max
i

(|ri(x; y)|)

≤ pg(ph(x; )) + max
i

(|ri(x; y)|)

≤ pg(ph(x; )) + max
i

(pri(|x|) + max
j

(|y|))

≤ pg(ph(x; )) +
∑

i

(pri(|x|)) + max
j

(|y|)

So, f(x; y) is bounded by a polynomial where the safe argument appears alone only

inside a max operator, and normal argument appears in a sub-polynomial, as desired.

This concludes the proof 2

Finally we get the last theorem, proving that every function in B is computable in

polytime.

Theorem 3.2 Let f(x; y) be a function in B. Then f(x; y) is polytime.

Proof: By induction on the structure of function f .

• If f is constant, projection, successor, predecessor, conditional function, then it’s

trivial to check that these function can be computed in polytime.
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• If f is defined as safe composition, it’s easy to check because by using induction we

can observe that composition of polynomial time functions is still a polynomial time

function.

• If f is defined by Predicative Recursion on Notation, then notice that it could be

executed in polynomial time if the result is polynomially bounded and the number

of steps and base function are polytime. In our case, lemma 3.2 makes us sure to

get polynomial bounds. So, Predicative Recursion on Notation can be evaluated in

polytime.

This concludes the proof. 2

3.4 Safe linear recursion

Instead of introducing Safe Linear Recursion (in the following SLR) of Martin Hofmann

[21], we are going to present a slight different variation of it, where the proofs of soundness

and completeness are made with syntactical means.

In this new version of SLR some restrictions have to be made to SLR if one wants to be

able to prove polynomial time soundness easily and operationally. And what one obtains

at the end is indeed quite similar to (a variation of) Bellantoni, Niggl and Schwichtenberg

calculus RA [7, 36]. Actually, the main difference between this version and SLR deals with

linearity: keeping the size of reducts under control during normalisation is very difficult in

presence of higher-order duplication. For this reason, the two function spaces A→ B and

A ⊸ B of original SLR collapse to just one here, and arguments of a higher-order type

can never be duplicated. This constraint allows us to avoid an exponential blowup in the

size of terms and results in a reasonably simple system for which polytime soundness can

be proved explicitly, by studying the combinatorics of reduction. Another consequence

of the just described modification is subject reduction, which can be easily proved in our

system, contrarily to what happens in original SLR [21].

3.4.1 The Syntax and Basic Properties of SLR

SLR is a fairly standard Curry-style lambda calculus with constants for the natural num-

bers, branching and recursion. Its type system, on the other hand, is based on ideas
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coming from linear logic (some variables can appear at most once in terms) and on a

distinction between modal and non modal variables.

Let us introduce the category of types first:

Definition 3.1 (Types) The types of SLR are generated by the following grammar:

A ::= N | �A→ A | �A→ A.

Types different from N are denoted with metavariables like H or G. N is the only base

type.

There are two function spaces in SLR. Terms which can be typed with �A→ B are such

that the result (of type B) can be computed in constant time, independently on the size

of the argument (of type A). On the other hand, computing the result of functions in

�A→ B requires polynomial time in the size of their argument.

A notion of subtyping is used in SLR to capture the intuition above by stipulating that

the type �A→ B is a subtype of �A→ B. Subtyping is best formulated by introducing

aspects:

Definition 3.2 (Aspects) An aspect is either � or �: the first is the modal aspect,

while the second is the non modal one. Aspects are partially ordered by the binary relation

{(�,�), (�,�), (�,�)}, noted <:.

Subtyping rules are in Figure 3.1.

(S-Refl)
A <: A

A <: B B <: C (S-Trans)
A <: C

B <: A C <: D b <: a (S-Sub)
aA→ C <: bB → D

Figure 3.1: Subtyping rules.

SLR’s terms are those of an applied lambda calculus with primitive recursion and

branching, in the style of Gödel’s T:
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Definition 3.3 (Terms) Terms and constants are defined as follows:

t ::=x | c | ts | λx : aA.t | caseA t zero s even r odd q | recursionA t s r;

c ::=n | S0 | S1 | P.

Here, x ranges over a denumerable set of variables and n ranges over the natural numbers

seen as constants of base type. Every constant c has its naturally defined type, that we

indicate with type(c). As an example, type(n) = N for every n, while type(S0) = �N→ N.

The size |t| of any term t can be easily defined by induction on t:

|x| = 1;

|ts| = |t|+ |s|;

|λx : aA.t| = |t|+ 1;

|caseA t zero s even r odd q| = |t|+ |s|+ |r|+ |q|+ 1;

|recursionA t s r| = |t|+ |s|+ |r|+ 1;

|n| = ⌈log2(n)⌉;

|S0| = |S1| = |P| = 1.

A term is said to be explicit if it does not contain any instance of recursion. As usual,

terms are considered modulo α-conversion. Free (occurrences of) variables and capture-

avoiding substitution can be defined in a standard way.

Arguments are passed to functions following a mixed scheme in SLR: arguments of

base type are evaluated before being passed to functions, while arguments of a higher-

order type are passed to functions possibly unevaluated, in a call-by-name fashion. Let’s

first of all define the one-step reduction relation:

Definition 3.4 (Reduction) The one-step reduction relation → is a binary relation be-

tween terms and terms. It is defined by the axioms in Figure 3.2 and can be applied

everywhere, except as the second or third argument of a recursion. A term t is in normal

form if t cannot appear as the left-hand side of a pair in →. NF is the set of terms in

normal form.

In this case, a multistep reduction relation is be defined by simply taking the transitive

and reflective closure of →, since a term can reduce in multiple steps into just one term.
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caseA 0 zero t even s odd r → t;

caseA (S0n) zero t even s odd r → s;

caseA (S1n) zero t even s odd r → r;

recursionA 0 g f → g;

recursionA n g f → fn(recursionτ ⌊
n

2
⌋ g f);

S0n→ 2 · n;

S1n→ 2 · n+ 1;

P0→ 0;

Pn→ ⌊
n

2
⌋;

(λx : aN.t)n→ t[x/n];

(λx : aH.t)s→ t[x/s];

(λx : aA.t)sr → (λx : aA.tr)s;

Figure 3.2: One-step reduction rules.
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Definition 3.5 (Contexts) A context Γ is a finite set of assignments of types and as-

pects to variables, in the form x : aA. As usual, we require contexts not to contain

assignments of distinct types and aspects to the same variable. The union of two disjoint

contexts Γ and ∆ is denoted as Γ,∆. In doing so, we implicitly assume that the variables

in Γ and ∆ are pairwise distinct. The union Γ,∆ is sometimes denoted as Γ;∆. This way

we want to stress that all types appearing in Γ are base types. With the expression Γ <: a

we mean that any aspect b appearing in Γ is such that b <: a.

Typing rules are in Figure 3.3. Observe how rules with more than one premise are designed

x : aA ∈ Γ (T-Var-Aff)
Γ ⊢ x : A

Γ ⊢ t : A A <: B (T-Sub)
Γ ⊢ t : B

Γ, x : aA ⊢ t : B
(T-Arr-I)

Γ ⊢ λx : aA.t : aA→ B
(T-Const-Aff)

Γ ⊢ c : type(c)

Γ;∆1 ⊢ t : N

Γ;∆2 ⊢ s : A

Γ;∆3 ⊢ r : A

Γ;∆4 ⊢ q : A A is 2-free
(T-Case)

Γ;∆1,∆2,∆3,∆4 ⊢ caseA t zero s even r odd q : A

Γ1; ∆1 ⊢ t : N

Γ1,Γ2; ∆2 ⊢ s : A

Γ1,Γ2;⊢ r : �N→ �A→ A

Γ1; ∆1 <: �

A is �-free
(T-Rec)

Γ1,Γ2; ∆1,∆2 ⊢ recursionA t s r : A

Γ;∆1 ⊢ t : aA→ B Γ;∆2 ⊢ s : A Γ,∆2 <: a
(T-Arr-E)

Γ;∆1,∆2 ⊢ (ts) : B

Figure 3.3: Type rules

in such a way as to guarantee that whenever Γ ⊢ t : A can be derived and x : aH is in Γ,

then x can appear free at most once in t. If y : aN is in Γ, on the other hand, then y can

appear free in t an arbitrary number of times.

Definition 3.6 A first-order term of arity k is a closed, well typed term of type a1N →

a2N→ . . . akN→ N for some a1, . . . , ak.

Example 3.1 Let’s see some examples. Two terms that we are able to type in our system

and one that is not possible to type.
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As we will see in Chapter 3.4.5 we are able to type addition and multiplication.

Sometimes, however, it is more convenient to work in unary notation. Given a natural

number i, its unary encoding is simply the numeral that, written in binary notation, is

1i. Given a natural number i we will refer to its encoding i. The type in which unary

encoded natural numbers will be written, is just N, but for reason of clarity we will use

the symbol U instead.

Addition gives in output a number (recall that we are in unary notation) such that

the resulting length is the sum of the input lengths.

add ≡λx : �N.λy : �N.

recursionN x y (λx : �N.λy : �N.S1y) : �N→ �N→ N

We are also able to define multiplication. The operator is, as usual, defined by applying a

sequence of additions.

mult ≡λx : �N.λy : �N.

recursionN (Px) y (λx : �N.λz : �N.addyz) : �N→ �N→ N

Now that we have multiplication, why not insert it in a recursion and get an exponential?

As it will be clear from the next example, the restriction on the aspect of the iterated

function save us from having an exponential growth. Are we able to type the following

term?

λh : �N.recursionN h (11) (λx : �N.λy : �N.mult(y, y))

The answer is negative: the operator mult requires input of aspect �, while the iterator

function need to have type �N→ �N→ N.
2

3.4.2 Subject Reduction

The first property we are going to prove about SLR is preservation of types under reduction,

the so-called Subject Reduction Theorem. The proof of it is going to be very standard

and, as usual, amounts to proving substitution lemmas. Preliminary to that is a technical

lemma saying that weakening is derivable (since the type system is affine):

Lemma 3.3 (Weakening Lemma) If Γ ⊢ t : A, then Γ, x : bB ⊢ t : A whenever x does

not appear in Γ.
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Proof: By induction on the structure of the typing derivation for t.

• If last rule was (T-Var-Aff) or (T-Const-Aff), we are allowed to add whatever we

want in the context. This case is trivial.

• If last rule was (T-Sub) or (T-Arr-I), the thesis is proved by using induction hypoth-

esis on the premise.

• Suppose that the last rule was:

Γ;∆1 ⊢ u : N

Γ;∆2 ⊢ s : A

Γ;∆3 ⊢ r : A

Γ;∆4 ⊢ q : A A is 2-free
(T-Case)

Γ;∆1,∆2,∆3,∆4 ⊢ caseA u zero s even r odd q : A

If B ≡ N we can easily do it by applying induction hypothesis on every premises and

add x to Γ. Otherwise, we can do it by applying induction hypothesis on just one

premise and the thesis is proved.

• Suppose that the last rule was:

Γ1; ∆1 ⊢ q : N

Γ1,Γ2; ∆2 ⊢ s : A

Γ1,Γ2;⊢ r : �N→ �A→ A

Γ1; ∆1 <: �

A is �-free
(T-Rec)

Γ1,Γ2; ∆1,∆2 ⊢ recursionA q s r : A

Suppose that B ≡ N, we have the following cases:

• If b ≡ �, we can do it by applying induction hypothesis on all the premises and add

x in Γ1.

• If b ≡ � we apply induction hypothesis on Γ1,Γ2; ∆2 ⊢ s : A and on Γ1,Γ2;⊢ r :

�N→ �A→ A.

Otherwise we apply induction hypothesis on Γ1; ∆1 ⊢ q : N or on Γ1,Γ2; ∆2 ⊢ s : A

and we are done.

• Suppose that the last rule was:

Γ;∆1 ⊢ r : aA→ B Γ;∆2 ⊢ s : A Γ,∆2 <: a
(T-Arr-E)

Γ;∆1,∆2 ⊢ (rs) : B

If B ≡ N we have to apply induction hypothesis on all the premises. Otherwise we

apply induction hypothesis on just one premise and the thesis is proved.

This concludes the proof. 2

Two substitution lemmas are needed in SLR. The first one applies when the variable

to be substituted has a non-modal type:

Lemma 3.4 (�-Substitution Lemma) Let Γ;∆ ⊢ t : A. Then
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1. if Γ = x : �N,Θ, then Θ;∆ ⊢ t[x/n] : A for every n;

2. if ∆ = x : �H,Θ and Γ; Ξ ⊢ s : H, then Γ;Θ,Ξ ⊢ t[x/s] : A.

Proof: By induction on a type derivation of t.

• If the last rule is (T-Var-Aff) or (T-Arr-I) or (T-Sub) or (T-Const-Aff) the

proof is trivial.

• If the last rule is (T-Case). By applying induction hypothesis on the interested term

we can easily derive the thesis.

• If the last rule is (T-Rec), our derivation will have the following appearance:

Γ2; ∆4 ⊢ q : N

Γ2,Γ3; ∆5 ⊢ s : B

Γ2,Γ3;⊢ r : �N→ �B → B

Γ2; ∆4 <: �

B is �-free
(T-Rec)

Γ2,Γ3; ∆4,∆5 ⊢ recursionB q s r : B

By definition, x : �A cannot appear in Γ2; ∆4. If it appears in ∆5 we can simply apply

induction hypothesis and prove the thesis. We will focus on the most interesting case:

it appears in Γ3 and so A ≡ N. In that case, by the induction hypothesis applied to

(type derivations for) s and r, we obtain that:

Γ2,Γ4; ∆5 ⊢ s[x/n] : B

Γ2,Γ4; ⊢ r[x/n] : �N→ �B → B

where Γ3 ≡ Γ4, x : �N.

• If the last rule is (T-Arr-E),

Γ;∆4 ⊢ t : aC → B Γ;∆5 ⊢ s : C Γ,∆5 <: a
(T-Arr-E)

Γ,∆4,∆5 ⊢ (ts) : B

If x : A is in Γ then we apply induction hypothesis on both branches, otherwise it is

either in ∆4 or in ∆5 and we apply induction hypothesis on the corresponding branch.

We arrive to the thesis by applying (T-Arr-E) at the end.

This concludes the proof. 2

Notice how two distinct substitution statements are needed, depending on the type of

the substituted variable being a base or a higher-order type. Substituting a variable of a

modal type requires an additional hypothesis on the term being substituted:

Lemma 3.5 (�-Substitution Lemma) Let Γ;∆ ⊢ t : A. Then
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1. if Γ = x : �N,Θ, then Θ;∆ ⊢ t[x/n] : A for every n;

2. if ∆ = x : �H,Θ and Γ; Ξ ⊢ s : H where Γ,Ξ <: �, then Γ;Θ,Ξ ⊢ t[x/s] : A.

Proof: By induction on the derivation.

• If last rule is (T-Var-Aff) or (T-Arr-I) or (T-Sub) or (T-Const-Aff) the proof

is trivial.

• If last rule is (T-Case). By applying induction hypothesis on the interested term we

can easily derive the thesis.

• If last rule is (T-Rec), our derivation will have the following appearance:

Γ2; ∆4 ⊢ q : N

Γ2,Γ3; ∆5 ⊢ s : B

Γ2,Γ3;⊢ r : �N→ �B → B

Γ2; ∆4 <: �

B is �-free
(T-Rec)

Γ2,Γ3; ∆4,∆5 ⊢ recursionB q s r : B

By definition x : �A can appear in Γ1; ∆4. If so, by applying induction hypothesis we

can derive easily the proof. In the other cases, we can proceed as in Lemma 3.4. We

will focus on the most interesting case, where x : �A appears in Γ2 and so A ≡ N.

In that case, by the induction hypothesis applied to (type derivations for) s and r, we

obtain that:

Γ4,Γ3; ∆5 ⊢ s[x/n] : B

Γ4,Γ3; ⊢ r[x/n] : �N→ �B → B

where Γ2 ≡ Γ4, x : �N.

• If last rule is (T-Arr-E),

Γ;∆4 ⊢ t : aC → B Γ;∆5 ⊢ s : C Γ,∆5 <: a
(T-Arr-E)

Γ,∆4,∆5 ⊢ (ts) : B

If x : A is in Γ then we apply induction hypothesis on both branches, otherwise it is

either in ∆4 or in ∆5 and we apply induction hypothesis on the relative branch. We

prove our thesis by applying (T-Arr-E) at the end.

This concludes the proof. 2

Substitution lemmas are necessary ingredients when proving subject reduction. In partic-

ular, they allow to prove that types are preserved along beta reduction steps, the other

reduction steps being very easy. We get:
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Theorem 3.3 (Subject Reduction) Suppose that Γ ⊢ t : A. If t → t1, then it holds

that Γ ⊢ t1 : A.

Proof: By induction on the derivation for term t. We will check the last rule.

• If last rule is (T-Var-Aff) or (T-Const-Aff). The thesis is trivial.

• If last rule is (T-Sub). The thesis is trivial.

• If last rule is (T-Arr-I). The term cannot reduce since it is a value.

• If last rule is (T-Case).

Γ;∆1 ⊢ s : N

Γ;∆2 ⊢ r : A

Γ;∆3 ⊢ q : A

Γ;∆4 ⊢ u : A A is 2-free
(T-Case)

Γ;∆1,∆2,∆3,∆4 ⊢ caseA s zero r even q odd u : A

Our final term could reduce in two ways. Either we do β-reduction on s, r, q or u, or

we choose one of branches in the case. In all the cases, the proof is trivial.

• If last rule is (T-Rec).

ρ : Γ1; ∆1 ⊢ s : N

µ : Γ1,Γ2; ∆2 ⊢ r : A

ν : Γ1,Γ2;⊢ q : �N→ �A→ A

Γ1; ∆1 <: �

A is �-free
(T-Rec)

Γ1,Γ2; ∆1,∆2 ⊢ recursionA s r q : A

Our term could reduce in three ways. We could evaluate s (trivial), we could be in

the case where s ≡ 0 (trivial) and the other case is where we unroll the recursion (so,

where s is a value n ≥ 1). We are going to focus on this last option. The term rewrites

to qn(recursionτ ⌊
n
2 ⌋ r q). We could set up the following derivation.

π ≡

(T-Const-Aff)
Γ1; ∆1 ⊢ ⌊

n
2 ⌋ : N

ν : Γ1,Γ2;⊢ q : �N→ �A→ A µ : Γ1,Γ2; ∆2 ⊢ r : A
(T-Rec)

Γ1,Γ2; ∆1,∆2 ⊢ recursionτ ⌊
n
2 ⌋ r q : A

σ ≡ ν : ∅; Γ1,Γ2 ⊢ q : �N→ �A→ A
(T-Const-Aff)

∅; ∅ ⊢ n : N
(T-ARR-E)

∅; Γ1,Γ2 ⊢ qn : �A→ A

By gluing the two derivation with the rule (T-Arr-E) we obtain:

σ : Γ1,Γ2;⊢ qn : �A→ A

π : Γ1,Γ2; ∆1,∆2 ⊢ recursionτ ⌊
n
2 ⌋ r q : A

(T-Arr-E)
Γ1,Γ2,Γ3; ∆1,∆2 ⊢ qn(recursionτ ⌊

n
2 ⌋ r q) : A

Notice that in the derivation ν we put Γ1,Γ2 on the left side of “;” and also on the right

side. Recall the definition 3.5, about “;”. We would stress out that all the variable on

the left side have base type, as Γ1,Γ2 have. The two contexts could also be “shifted”

on the right side because no constrains has been set on the variables on the right side.



38 Chapter 3. Implicit Computational Complexity

• If last rule was (T-Sub) we have the following derivation:

Γ ⊢ s : A A <: B (T-Sub)
Γ ⊢ s : B

If s reduces to r we can apply induction hypothesis on the premises and having the

following derivation:
Γ ⊢ r : A A <: B (T-Sub)

Γ ⊢ r : B

• If last rule was (T-Arr-E), we could have different cases.

• Cases where on the left part of our application we have Si, P is trivial.

• Let’s focus on the case where on the left part we find a λ-abstraction. We will

consider the case only where we apply the substitution. The other case are trivial.

We could have two possibilities:

• First of all, we can be in the following situation:

Γ;∆1 ⊢ λx : �A.r : aC → B Γ;∆2 ⊢ s : C Γ,∆2 <: a
(T-Arr-E)

Γ,∆1,∆2 ⊢ (λx : �A.r)s : B

where C <: A and a <: �. We have that (λx : �A.r)s rewrites to r[x/s]. By

looking at rules in Figure 3.3 we can deduce that Γ;∆1 ⊢ λx : �A.r : aC → B

derives from Γ;x : �A,∆1 ⊢ r : D (with D <: B). For the reason that C <: A

we can apply (T-Sub) rule to Γ;∆2 ⊢ s : C and obtain Γ;∆2 ⊢ s : A By applying

Lemma 3.4, we get to

Γ,∆1,∆2 ⊢ r[x/s] : D

from which the thesis follows by applying (T-Sub).

• But we can even be in the following situation:

Γ;∆1 ⊢ λx : �A.r : �C → B Γ;∆2 ⊢ s : C Γ,∆2 <: �
(T-Arr-E)

Γ,∆1,∆2 ⊢ (λx : �A.r)s : B

where C <: A. We have that (λx : �A.r)s rewrites in r[x/s]. We behave as in

the previous point, by applying Lemma 3.5, and we are done.

• Another interesting case of application is where we perform a so-called “swap”.

(λx : aA.q)sr rewrites in (λx : aA.qr)s. From a typing derivation with conclusion

Γ,∆1,∆2,∆3 ⊢ (λx : aA.q)sr : C we can easily extract derivations for the following:

Γ;∆1, x : aA ⊢ q : bD → E

Γ;∆3 ⊢ r : B

Γ;∆2 ⊢ s : F
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where B <: D, E <: C and A <: F and Γ,∆3 <: b and Γ,∆2 <: a.

Γ,∆3 <: b

Γ;∆3 ⊢ r : B

Γ;∆1, x : aA ⊢ q : bD → E
(T-Arr-E)

Γ;∆1,∆3, x : aA ⊢ qr : E
(T-Arr-I)

Γ;∆1,∆3,⊢ λx : aA.qr : aA→ E
(T-Sub)

Γ;∆1,∆3,⊢ λx : aA.qr : aF → C

Γ,∆2 <: a

Γ;∆2 ⊢ s : F
(T-Arr-E)

Γ,∆1,∆2,∆3 ⊢ (λx : aA.qr)s : C

• All the other cases can be brought back to cases that we have considered.

This concludes the proof. 2

Example 3.2 In the following example we consider an example similar to one by Hof-

mann [21]. Let f be a variable of type �N→ N. The function h ≡ λg : �(�N→ N).λx :

�N.(f(gx)) gets type �(�N → N) → �N → N. Thus the function (λr : �(�N →

N).hr)S1 takes type �N→ N. Let’s now execute β reductions, by passing the argument

S1 to the function h and we obtain the following term: λx : �N.(f(S1x)) It’s easy to check

that the type has not changed. 2

3.4.3 Polytime Soundness

The most difficult (and interesting!) result about this new version of SLR is definitely

polytime soundness: every (instance of) a first-order term can be reduced to a numeral

in a polynomial number of steps by a deterministic Turing machine. Polytime soundness

can be proved, following [7], by showing that:

• Any explicit term of base type can be reduced to its normal form with very low time

complexity;

• Any term (non necessarily of base type) can be put in explicit form in polynomial time.

By gluing these two results together, we obtain what we need, namely an effective and effi-

cient procedure to compute the normal forms of terms. Formally, two notions of evaluation

for terms correspond to the two steps defined above:

• On the one hand, we need a ternary relation ⇓nf between closed terms of type N and

numerals. Intuitively, t ⇓
nf

n holds when t is explicit and rewrites to n. The inference

rules for ⇓nf are defined in Figure 3.4;

• On the other hand, we need a ternary relation ⇓rf between terms of non modal type

and terms. We can derive t ⇓
rf
s only if t can be transformed into s. The inference

rules for ⇓rf are in Figure 3.5.
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n ⇓
nf

n

t ⇓
nf

n

S0t ⇓nf 2 · n

t ⇓
nf

n

S1t ⇓nf 2 · n+ 1

t ⇓
nf

0

Pt ⇓
nf

0

t ⇓
nf

n n ≥ 1

Pt ⇓
nf
⌊n2 ⌋

t ⇓
nf

0 su ⇓
nf

n

(caseA t zero s even r odd q)u ⇓
nf

n

t ⇓
nf

2n ru ⇓
nf

m n ≥ 1

(caseA t zero s even r odd q)u ⇓
nf

m

t ⇓
nf

2n+ 1 qu ⇓
nf

m

(caseA t zero s even r odd q)u ⇓
nf

m

s ⇓
nf

n (t[x/n])r ⇓
nf

m

(λx : aN.t)sr ⇓
nf

m

(t[x/s])r ⇓
nf

n

(λx : aH.t)sr ⇓
nf

n

Figure 3.4: The relation ⇓nf : Inference Rules

c ⇓
rf
c

t ⇓
rf
v

S0t ⇓rf S0v

t ⇓
rf
v

S1t ⇓rf S1v

t ⇓
rf
v

Pt ⇓
rf
Pv

t ⇓
rf
v

s ⇓
rf
z

r ⇓
rf
a

q ⇓
rf
b ∀ui ∈ u, ui ⇓rf ci

(caseA t zero s even r odd q)u ⇓
rf
(caseA v zero z even a odd b)c

t ⇓
rf
v

v ⇓
nf

n

s ⇓
rf
z

∀qi ∈ q, qi ⇓rf bi r⌊ n
20
⌋ ⇓

rf
r0 . . . r⌊ n

2|n|−1 ⌋ ⇓rf r|n|−1

(recursionA t s r)q ⇓
rf
r0(. . . (r(|n|−1)z) . . .)b

s ⇓
rf
z

z ⇓
nf

n (t[x/n])r ⇓
rf
u

(λx : �N.t)sr ⇓
rf
u

s ⇓
rf
z

z ⇓
nf

n tr ⇓
rf
u

(λx : �N.t)sr ⇓
rf
(λx : �N.u)n

(t[x/s])r ⇓
rf
u

(λx : aH.t)sr ⇓
rf
u

t ⇓
rf
u

λx : aA.t ⇓
rf
λx : aA.u

tj ⇓rf sj

xt ⇓
rf
xs

Figure 3.5: The relation ⇓rf : Inference Rules
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Moreover, a third ternary relation ⇓ between closed terms of type N and numerals can

be defined by the rule below:
t ⇓

rf
s s ⇓

nf
n

t ⇓ n

A peculiarity of the just introduced relations with respect to similar ones is the following:

whenever a statement in the form t ⇓
nf

s is an immediate premise of another statement

r ⇓
nf

q, then t needs to be structurally smaller than r, provided all numerals are assumed

to have the same internal structure. A similar but weaker statement holds for ⇓rf . This

relies on the peculiarities of SLR, and in particular on the fact that variables of higher-

order types can appear free at most once in terms, and that terms of base types cannot

be passed to functions without having been completely evaluated. In other words, the

just described operational semantics is structural in a very strong sense, and this allows

to prove properties about it by induction on the structure of terms, as we will experience

in a moment.

We need to introduce a new definition of size, call it |t|w. It is a definition of size,

where all numerals have size equal to 1. Formally, it is defined in the following way:

|x|w = 1

|ts|w = |t|w + |s|w

|λx : aA.t|w = |t|w + 1

|caseA t zero s even r odd q|w = |t|w + |s|w + |r|w + |q|w + 1

|recursionA t s r|w = |t|w + |s|w + |r|w + 1

|n|w = 1

|S0|w = |S1|w = |P|w = 1

It’s now time to analyze how big derivations for ⇓nf and ⇓rf can be with respect to

the size of the underlying term. Let us start with ⇓nf and prove that, since it can only be

applied to explicit terms, the sizes of derivations must be very small:

Proposition 3.1 Suppose that ⊢ t : N, where t is explicit. Then for every π : t ⇓
nf

m it

holds that

1. |π| ≤ 2 · |t|;
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2. If s ∈ π, then |s| ≤ 2 · |t|2;

Proof: Given any term t, |t|w and |t|n are defined, respectively, as the size of t where

every numeral counts for 1 and the maximum size of the numerals that occur in t. On

the other hand, | · |n is defined as follows: |x|n = 0, |ts|n = max{|t|n, |s|n}, |λx : aA.t|n =

|t|n, |caseA t zero s even r odd q|n = max{|t|n, |s|n, |r|n, |q|n}, |recursionA t s r|n =

max{|t|n, |s|n, |r|n}, |n|n = ⌈log2(n)⌉, and |S0|n = |S1|n = |P|n = 0. Clearly, |t| ≤ |t|w · |t|n.

We prove the following strengthening of the statements above by induction on |t|w:

1. |π| ≤ |t|w;

2. If s ∈ π, then |s|w ≤ |t|w and |s|n ≤ |t|n + |t|w;

Some interesting cases:

• Suppose t is Sis. Depending on Si we could have two different derivations:

ρ : s ⇓
nf

n

S0s ⇓nf 2 · n

ρ : s ⇓
nf

n

S1s ⇓nf 2 · n+ 1

Suppose we are in the case where Si ≡ S0. Then, for every r ∈ π,

|π| = |ρ|+ 1 ≤ |s|w + 1 = |t|w;

|r|w ≤ |s|w ≤ |t|w

|r|n ≤ |s|n + |s|w + 1 = |s|n + |t|w

= |t|n + |t|w

The case where Si ≡ S1 is proved in the same way.

• Suppose t is Ps.
ρ : s ⇓

nf
0

Ps ⇓
nf

0

ρ : s ⇓
nf

n n ≥ 1

Ps ⇓
nf
⌊n2 ⌋

We focus on case where n > 1, the other case is similar. For every r ∈ π we have

|π| = |ρ|+ 1 ≤ |s|w + 1 = |t|w

|r|w ≤ |s|w ≤ |t|w

|r|n ≤ |s|n + |s|w + 1 = |s|n + |t|w

= |t|n + |t|w

• Suppose t is n.
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n ⇓
nf

n

By knowing |π| = 1, |n|w = 1 and |n|n = |n|, the proof is trivial.

• Suppose that t is (λy : aN.s)rq. All derivations π for t are in the following form:

ρ : r ⇓
nf

o µ : (s[y/o])q ⇓
nf

m

t ⇓
nf

m

Then, for every u ∈ π,

|π| ≤ |ρ|+ |µ|+ 1 ≤ |r|w + |s[y/o]q|w + 1

= |r|w + |sq|w + 1 ≤ |t|w;

|u|n ≤ max{|r|n + |r|w, |s[y/o]q|n + |s[y/o]q|w}

= max{|r|n + |r|w, |s[y/o]q|n + |sq|w}

= max{|r|n + |r|w,max{|sq|n, |o|}+ |sq|w}

= max{|r|n + |r|w, |sq|n + |sq|w, |o|+ |sq|w}

≤ max{|r|n + |r|w, |sq|n + |sq|w, |r|n + |r|w + |sq|w}

≤ max{|r|n, |sq|n}+ |r|w + |sq|w

≤ max{|r|n, |sq|n}+ |t|w

= |t|n + |t|w;

|u|w ≤ max{|r|w, |s[y/o]q|w, |t|w}

= max{|r|w, |sq|w, |t|w} ≤ |t|w.

If u ∈ π, then either u ∈ ρ or u ∈ µ or simply u = t. This, together with the induction

hypothesis, implies |u|w ≤ max{|r|w, |s[y/o]q|w, |t|w}. Notice that |sq|w = |s[y/o]q|n

holds because any occurrence of y in s counts for 1, but also o itself counts for 1 (see

the definition of | · |w above). More generally, duplication of numerals for a variable in

t does not make |t|w bigger.

• Suppose t is (λy : aH.)rq. Without loosing generality we can say that it derives from

the following derivation:
ρ : (s[y/r])q ⇓

nf
n

(λy : aH.s)rq ⇓
nf

n

For the reason that y has type H we can be sure that it appears at most once in s. So,

|s[y/r]| ≤ |sr| and, moreover, |s[y/r]q|w ≤ |srq|w and |s[y/r]q|n ≤ |srq|n. We have, for
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all u ∈ ρ:

|π| = |ρ|+ 1 ≤ |s[y/r]q|w + 1 ≤ |t|w

|u|w ≤ |s[y/r]q|w ≤ |srq|w ≤ |t|w

|u|n ≤ |s[y/r]q|n + |s[y/r]q|w ≤ |srq|n + |srq|w ≤ |t|n + |t|w

and this means that the same inequalities hold for every u ∈ π.

• Suppose t is caseA s zero r even q odd u. We could have three possible derivations:

ρ : s ⇓
nf

0 µ : rv ⇓
nf

n

(caseA s zero r even q odd u)v ⇓
nf

n

ρ : s ⇓
nf

2n µ : qv ⇓
nf

m n ≥ 1

(caseA s zero r even q odd u)v ⇓
nf

m

ρ : s ⇓
nf

2n+ 1 µ : uv ⇓
nf

m

(caseA s zero r even q odd u)v ⇓
nf

m

we will focus on the case where the value of s is odd. All the other cases are similar.

For all z ∈ π we have:

|π| ≤ |ρ|+ |µ|+ 1

≤ |s|w + |uv|w + 1 ≤ |t|w

|z|w ≤ |s|w + |r|w + |q|w + |uv|w ≤ |t|w

|z|n = max {|s|n + |s|w, |uv|n + |uv|w, |r|n, |q|n}

≤ max {|s|n, |uv|n, |r|n, |q|n}+ |s|w + |uv|w

≤ |t|w + |t|n

This concludes the proof. 2

As opposed to ⇓nf , ⇓rf unrolls instances of primitive recursion, and thus cannot have the

very simple combinatorial behavior of ⇓nf . Fortunately, however, everything stays under

control:

Proposition 3.2 Suppose that x1 : �N, . . . , xi : �N ⊢ t : A, where A is �-free type.

Then there are polynomials pt and qt such that for every n1, . . . , ni and for every π :

t[x/n] ⇓
rf
s it holds that:

1. |π| ≤ pt(
∑

i |ni|);

2. If s ∈ π, then |s| ≤ qt(
∑

i |ni|).
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Proof: The following strengthening of the result can be proved by induction on the

structure of a type derivation µ for t: if x1 : �N, . . . , xi : �N, y1 : �A1, . . . , yj : �Aj ⊢

t : A, where A is positively �-free and A1, . . . , Aj are negatively �-free. Then there are

polynomials pt and qt such that for every n1, . . . , ni and for every π : t[x/n] ⇓
rf
s it holds

that

1. |π| ≤ pt(
∑

i |ni|);

2. If s ∈ π, then |s| ≤ qt(
∑

i |ni|).

In defining positively and negatively �-free types, let us proceed by induction on types:

• N is both positively and negatively �-free;

• �A → B is not positively �-free, and is negatively �-free whenever A is positively

�-free and B is negatively �-free;

• C = �A → B is positively �-free if A is negatively and B is positively �-free. C is

negatively �-free if A is positively �-free and B is negatively �-free.

Please observe that if A is positively �-free and B <: A, then B is positively �-free.

Conversely, if A is negatively �-free and A <: B, then B is negatively �-free. This can be

easily proved by induction on the structure of A. We are ready to start the proof, now.

Let us consider some cases, depending on the shape of µ

• If the only typing rule in µ is (T-Const-Aff), then t ≡ c, pt(x) ≡ 1 and qt(x) ≡ 1.

The thesis is proved.

• If the last rule was (T-Var-Aff) then t ≡ x, pt(x) ≡ 1 and qt(x) ≡ x. The thesis is

proved

• If the last rule was (T-Arr-I) then t ≡ λx : �A.s. Notice that the aspect is � because

the type of our term has to be positively �-free. So, we have the following derivation:

ρ : s[x/n] ⇓
rf
v

λx : aA.s[x/n] ⇓
rf
λx : aA.v

If the type of t is positively �-free, then also the type of s is positively �-free. We can

apply induction hypothesis. Define pt and qt as:

pt(x) ≡ ps(x) + 1

qt(x) ≡ qs(x) + 1
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Indeed, we have:

|π| ≡ |ρ|+ 1

≤ ps(
∑

i

|ni|) + 1

• If last rule was (T-Sub) then we have a typing derivation that ends in the following

way:

Γ ⊢ t : A A <: B
Γ ⊢ t : B

we can apply induction hypothesis on t : A because if B is positively �-free, then also

A will be too. Define pt:B(x) ≡ pt:A(x) and qt:B(x) ≡ qt:A(x).

• If the last rule was (T-Case). Suppose t ≡ (caseA s zero r even q odd u). The

constraints on the typing rule (T-Case) ensure us that the induction hypothesis can

be applied to s, r, q, u. The definition of ⇓rf tells us that any derivation of t[x/n] must

have the following shape:

ρ : s[x/n] ⇓
rf
z

µ : r[x/n] ⇓
rf
a

ν : q[x/n] ⇓
rf
b

σ : u[x/n] ⇓
rf
c

t[x/n] ⇓
rf
(caseA z zero a even b odd c)

Let us now define pt and qt as follows:

pt(x) = ps(x) + pr(x) + pq(x) + pu(x) + 1

qt(x) = qs(x) + qr(x) + qq(x) + qu(x) + 1

We have:

|π| ≤ |ρ|+ |µ|+ |ν|+ |σ|+ 1

≤ ps(
∑

i

|ni|) + pr(
∑

i

|ni|) + pq(
∑

i

|ni|) + pu(
∑

i

|ni|) + 1

= pt(
∑

i

|ni|).

Similarly, if z ∈ π, it is easy to prove that |z| ≤ qz(
∑

i |ni|).

• If the last rule was (T-Rec). Suppose t ≡ (recursionA s r q). By looking at the typing

rule (figure 3.3) for (T-Rec) we are sure to be able to apply induction hypothesis on
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s, r, q. Definition of ⇓rf ensure also that any derivation for t[x/n] must have the following

shape:
ρ : s[x/n] ⇓

rf
z µ : z[x/n] ⇓

nf
n

ν : r[x/n] ⇓
rf
a

̺0 : qz[x, z/n, ⌊
n
20
⌋] ⇓0

rf
q0

. . .
̺|n|−1 : qz[x, z/n, ⌊

n
2|n|−1 ⌋] ⇓rf q|n|−1

(recursionA s r q)[x/n] ⇓
rf
q0(. . . (q(|n|−1)a) . . .)

Notice that we are able to apply ⇓
nf

on term z because, by definition, s has only free

variables of type �N (see figure 3.3). So, we are sure that z is a closed term of type

N and we are able to apply the ⇓
nf

algorithm.

Let define pt and qt as follows:

pt(x) ≡ ps(x) + 2 · qs(x) + pr(x) + 2 · qs(x)
2 · pq(x+ 2 · qs(x)

2) + 1

qt(x) ≡ qs(x) + qr(x) + 2 · qs(x)
2 + qq(x+ 2 · qs(x)

2)

Notice that |z| is bounded by qs(x). Notice that by applying theorem 3.1 on µ (z has

no free variables) we have that every v ∈ µ is s.t.v ≤ 2 · |z|2.

We have:

|π| ≤ |ρ|+ |µ|+ |ν|+
∑

i

(|̺i|) + 1

≤ ps(
∑

i

|ni|) + 2 · |z|+ pr(
∑

i

|ni|) + |n| · pqz(
∑

i

|ni|+ |n|) + 1

≤ ps(
∑

i

|ni|) + 2 · qs(
∑

i

|ni|) + pr(
∑

i

|ni|) +

+2 · qs(
∑

i

|ni|)
2 · pqz(

∑

i

|ni|+ 2 · qs(
∑

i

|ni|)
2) + 1

Similarly, for every z ∈ π:

|z| ≤ qs(
∑

i

|ni|) + 2 · qs(
∑

i

|ni|)
2 + qr(

∑

i

|ni|) + qqz(
∑

i

|ni|+ |n|)

≤ qs(
∑

i

|ni|) + 2 · qz(
∑

i

|ni|)
2 + qr(

∑

i

|ni|) + qqz(
∑

i

|ni|+ 2 · qs(
∑

i

|ni|)
2)
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• In the following cases the last rule is (T-Arr-E).

• t ≡ xs. In this case, obviously, the free variable x has type �Ai (1 ≤ i ≤ j). By

definition x is negatively �-free. This it means that every term in s has a type that

is positively �-free. By knowing that the type of x is negatively �-free, we conclude

that the type of our term t is �-free (because is both negatively and positively �-free

at the same time).

Definition of ⇓rf ensures us that the derivation will have the following shape:

ρi : sj [x/n] ⇓rf rj

xs[x/n] ⇓
rf
xr

We define pt and qt as:

pt(x) ≡
∑

j

psj (x) + 1

qt(x) ≡
∑

j

qsj (x) + 1

Indeed we have

|π| ≤
∑

j

|ρj |+ 1

≤
∑

j

{psj (
∑

i

|ni|)}+ 1

Similarly, if z ∈ π, it is easy to prove that |z| ≤ qz(
∑

i |ni|).

• If t ≡ S0s, then s have type N in the context Γ. The derivation π has the following

form
ρ : s[x/n] ⇓

rf
z

S0s[x/n] ⇓rf S0z

Define pt(x) = ps(x)+1 and qt(x) = qs(x)+1. One can easily check that, by induction

hypothesis

|π| ≤ |ρ|+ 1 ≤ ps(
∑

i

|ni|) + 1

= pt(
∑

i

|ni|).

Analogously, if r ∈ π then

|s| ≤ qs(
∑

i

|ni|) + 1 ≤ qt(
∑

i

|ni|).
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• If t ≡ S1s or t ≡ Ps, then we can proceed exactly as in the previous case.

• Cases where we have on the left side a case or a recursion with some arguments, is

trivial: can be brought back to cases that we have considered.

• If t is (λx : �N.s)rq, then we have the following derivation:

ρ : r[x/n] ⇓
rf
a

µ : a[x/n] ⇓
nf

n ν : (s[x/n])q[x/n] ⇓
rf
v

(λx : �N.s)rq[x/n] ⇓
rf
v

By hypothesis t is positively �-free and so also r (whose type is N) and sq are positively

�-free. So, we are sure that we are able to use induction hypothesis.

Let pt and qt be:

pt(x) ≡ pr(x) + 2 · qr(x) + psq(x+ 2 · qr(x)
2) + 1

qt(x) ≡ qsq(x+ 2 · qr(x)
2) + qr(x) + 2 · qr(x)

2 + 1

We have:

|π| ≡ |ρ|+ |µ|+ |ν|+ 1

≤ pr(
∑

i

|ni|) + 2 · |a|+ psq(
∑

i

|ni|+ |n|) + 1

≤ pr(
∑

i

|ni|) + 2 · qr(
∑

i

|ni|) + psq(
∑

i

|ni|+ 2 · qr(
∑

i

|ni|)
2) + 1

By construction, remember that s has no free variables of type �N. For theorem 3.1

(z has no free variables) we have v ∈ µ is s.t. |v| ≤ 2 · |a|2. By applying induction

hypothesis we have that every v ∈ ρ is s.t. |v| ≤ qr(
∑

i |ni|), every v ∈ ν is s.t.

|v| ≤ qsq(
∑

i

|ni|+ |n|)

≤ qsq(
∑

i

|ni|+ 2 · |a|2)

≤ qsq(
∑

i

|ni|+ 2 · qr(
∑

i

|ni|)
2)

We can prove the second point of our thesis by setting qt(
∑

i |ni|) as qsq(
∑

i |ni| + 2 ·

qr(
∑

i |ni|)
2) + qr(

∑

i |ni|) + 2 · qr(
∑

i |ni|)
2 + 1.

• If t is (λx : �N.s)rq, then we have the following derivation:
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ρ : r[x/n] ⇓
rf
a

µ : a[x/n] ⇓
nf

n ν : sq[x/n] ⇓
rf
u

(λx : �N.s)rq[x/n] ⇓
rf
(λx : �N.u)n

By hypothesis we have t that is positively �-free. So, also r and a (whose type is N)

and sq are positively �-free. We define pt and qt as:

pt(x) ≡ pr(x) + 2 · qr(x) + psq(x) + 1;

qt(x) ≡ qr(x) + 2 · qr(x)
2 + qsq(x) + 1.

We have:

|π| ≡ |ρ|+ |µ|+ |ν|+ 1

≤ pr(
∑

i

|ni|) + 2 · qr(
∑

i

|ni|) + psq(
∑

i

|ni|) + 1

Similarly, if z ∈ π, it is easy to prove that |z| ≤ qt(
∑

i |ni|).

• If t is (λx : aH.s)rq, then we have the following derivation:

ρ : (s[x/r])q[x/n] ⇓
rf
v

(λx : aH.s)rq[x/n] ⇓
rf
v

By hypothesis we have t that is positively �-free. So, also sq is positively �-free. r has

a higher-order type H and so we are sure that |(s[x/r])q| < |(λx : aH.s)rq|. Define pt

and qt as:

pt(x) ≡ p(s[x/r])q(x) + 1;

qt(x) ≡ q(s[x/r])q(x) + 1.

By applying induction hypothesis we have:

|π| ≡ |ρ|+ 1 ≤ p(s[x/r])q(
∑

i

|ni|) + 1

By using induction we are able also to prove the second point of our thesis.

This concludes the proof. 2

Following the definition of ⇓, it is quite easy to obtain, given a first order term t, of

arity k, a deterministic Turing machine that, when receiving on input (an encoding of)

n1 . . . nk, produces on output the expected value m. Indeed, ⇓rf and ⇓nf are designed in a

very algorithmic way. Moreover, the obtained Turing machine works in polynomial time,

due to propositions 3.1 and 3.2. Formally:
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Theorem 3.4 (Soundness) Suppose t is a first order term of arity k. Then there is

a deterministic Turing machine Mt running in polynomial time such that Mt on input

n1 . . . nk returns exactly the expected value m.

Proof: By propositions 3.1 and 3.2. 2

3.4.4 Polytime Completeness

In the previous section, we proved that the behavior of any SLR first-order term can

be somehow simulated by a deterministic polytime Turing machine. What about the

converse? In this section, we prove that any deterministic polynomial time Turing machine

(DTM in the following) can be encoded in SLR.

To facilitate the encoding, we extend our system with pairs and projections. All

the proofs in previous sections remain valid. Base types now comprise not only natural

numbers but also pairs of base types:

G := N | G×G.

Terms now contain a binary construct 〈·, ·〉 and two unary constructs π1(·) and π2(·), which

can be given a type by the rules below:

Γ;∆1 ⊢ t : G Γ;∆2 ⊢ s : F

Γ;∆1,∆2 ⊢ 〈t, s〉 : G× F

Γ ⊢ t : G× F
Γ ⊢ π1(t) : G

Γ ⊢ t : G× F
Γ ⊢ π2(t) : F

As syntactic sugar, we will use 〈t1 . . . , ti〉 (where i ≥ 1) for the term

〈t1, 〈t2, . . . 〈ti−1, ti〉 . . .〉〉.

For every n ≥ 1 and every 1 ≤ i ≤ n, we can easily build a term πn
i which extracts the

i-th component from tuples of n elements: this can be done by composing π1(·) and π2(·).

With a slight abuse on notation, we sometimes write πi for π
n
i .

3.4.5 Unary Natural Numbers and Polynomials

Natural numbers in SLR are represented in binary. In other words, the basic operations

allowed on them are S0, S1 and P, which correspond to appending a binary digit to the
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right of the number (seen as a binary string) or stripping the rightmost such digit. This

is even clearer if we consider the length |n| of a numeral n, which is only logarithmic in n.

For every numeral n, we can extract the unary encoding of its length:

encode ≡ λt : �N.recursionU t 0 (λx : �U.λy : �U.S1y) : �N→ U

Predecessor and successor functions are defined in our language, simply as P and S1.

We need to show how to express polynomials and in order to do this we will define the

operators add : �U→ �U→ U and mult : �U→ �U→ U. We define add as

add ≡λx : �U.λy : �U.

recursionU x y (λx : �U.λy : �U.S1y) : �U→ �U→ U

Similarly, we define mult as

mult ≡λx : �U.λy : �U.

recursionU (Px) y (λx : �U.λz : �U.addyz) : �U→ �U→ U

The following is quite easy:

Lemma 3.6 Every polynomial of one variable with natural coefficients can be encoded as

a term of type �U→ U.

Proof: Simply, turn add into a term of type �U → �U → U by way of subtyping and

then compose add and mult has much as needed to encode the polynomial at hand. 2

3.4.6 Finite Sets

Any finite, linearly ordered set F = (|F |,⊑F ) can be naturally encoded as an “initial

segment” of N: if |F | = {a0, . . . , ai} where ai ⊑F aj whenever i ≤ j, then ai is encoded

simply by the natural number whose binary representation is 10i. For reasons of clarity,

we will denote N as FF . We can do some case analysis on an element of FF by the

combinator

switchFA : �FF → �A→ . . .→ �A
︸ ︷︷ ︸

i times

→ �A→ A

where A is a �-free type and i is the cardinality of |F |. The term above can be defined

by induction on i:
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• If i = 0, then it is simply λx : �FF .λy : �A.y.

• If i ≥ 1, then it is the following:
λx : �FF .λy0 : �A. . . . λyi : �A.λz�A.

(caseA x zero(λh : �A.h)

even (λh : �A.switchEA(Px)y1 . . . yih)

odd (λh : �A.y0)
where E is the subset of F of those elements with positive indices.

3.4.7 Strings

Suppose Σ = {a0, . . . , ai} is a finite alphabet. Elements of Σ can be encoded following the

just described scheme, but how about strings in Σ∗? We can somehow proceed similarly:

the string aj1 . . . ajk can be encoded as the natural number

10j110j2 . . . 10jk .

Whenevery we want to emphasize that a natural number is used as a string, we write

SΣ instead of N. It is easy to build a term appendΣ : �(SΣ × FΣ) → SΣ which appends

the second argument to the first argument. Similarly, one can define a term tailΣ : �SΣ →

SΣ ×FΣ which strips off the rightmost character a from the argument string and returns

a together with the rest of the string; if the string is empty, a0 is returned, by convention.

We also define a function NtoSΣ : �N→ SΣ that takes a natural number and produce

in output an encoding of the corresponding string in Σ∗ (where i0 and i1 are the indices

of 0 and 1 in Σ):

NtoSΣ ≡ λx : �N.recursionSΣ
x ⊔

λx : �N.λy : �S.caseN x zero appendΣ〈y, 10
i0〉

even appendΣ〈y, 10
i1〉

odd appendΣ〈y, 10
i1〉 : �N→ S

Similarly, one can write a term StoNΣ : �SΣ → N.

3.4.8 Deterministic Turing Machines

Let M be a deterministic Turing machine M = (Q, q0, F,Σ,⊔, δ), where Q is the finite set

of states of the machine; q0 is the initial state; F is the set of final states of M ; Σ is the
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finite alphabet of the tape; ⊔ ∈ Σ is the symbol for empty string; δ ⊆ (Q×Σ)×(Q×Σ×{←

, ↓,→}) is the transition function of M . For each pair (q, s) ∈ Q×Σ, there is exactly one

triple (r1, t1, d1) such that ((q, s), (r1, t1, d1)) ∈ δ. Configurations of M can be encoded as

follows:

〈tleft , t, tright , s〉 : SΣ × FΣ × SΣ × FQ,

where tleft represents the left part of the main tape, t is the symbol read from the head

of M , tright the right part of the main tape; s is the state of our Turing Machine. Let the

type CM be a shortcut for SΣ × FΣ × SΣ × FQ.

Suppose that M on input x runs in time bounded by a polynomial p : N → N. Then

we can proceed as follows:

• encode the polynomial p by using function encode, add,mult, dec so that at the end we

will have a function p : �N→ U;

• write a term δ : �CM → CM which mimicks δ.

• write a term initM : �SΣ → CM which returns the initial configuration for M corre-

sponding to the input string.

The term of type �N→ N which has exactly the same behavior as M is the following:

λx : �N.StoNΣ(recursionCM
(p x) (initM (NtoSΣ(x))) (λy : �N.λz : �CM .δ z)).

We then get a faithful encoding of PPTM into RSLR, which will be useful in the forth-

coming section:

Theorem 3.5 Suppose M is a deterministic Turing machine running in polynomial time

such that for every ni returns mi. Then there is a first order term t such that for every

ni, tni evaluates to mi.

Definitions

We assume, without loss of generality that the right part of the tape is represented in

reverse order. The alphabet of the tapes is {0, 1}. We define the current state of the

machine as a numeral and we will use Q to refer to its type, even if Q ≡ N.

Every state qi is encoded by considering the binary representation of i. E.g. the state

q3 of our machine is encoded as the numeral 11.

We define Turing Machines configurations in the following way
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〈xleft, x, xright, Q〉 : S× B× S×Q

where xleft represents the left part of the main tape, x is the symbol that is read from

the head of our TM, xright the right part of the main tape; similarly y represents the value

read from the random tape. Q is the state of our Turing Machine. Let the type C be a

shortcut for S× B× S×Q.

Basic Functions

We define two functions that take a configuration and give out a new configuration with

the head of the first tape moved left or right.

shiftsx ≡ λx : �C.〈addString (π1x)(π2x),

vstring (π3x),

PP(π3x),

(π4x)〉 : �C→ C

shiftdx ≡ λx : �C.〈PP(π1x),

vstring (π1x),

addString (π3x)(π2x),

(π4x)〉 : �C→ C

Encoding input

The init function that creates the starting configuration so, will be the following one:

init ≡ λz : �N.(λx : �S.〈PPx, vstring x,⊔, q0〉(NtoSz)) : �N→ C

where q0 is the encoding of the init state of our Turing machine. Without loss of

generality we decide that the starting position of our heads is at the left of the tapes and

are set on the first element (from the right).
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We say that qerr is the encoding of one of (we don’t care which one) the halting states

of the machine.

Encoding the transition function

Our δ function will take a configuration and will produce in output a new configuration.

δ ≡ λx : �C.

switch
{0,...,3}
C BtoS(π2)

switch
{0,...,n}
C (π4x) // here the value of π2 is 0.

// Here is the case where π4 is q0; apply shiftdx or shiftsx or the identity

on the tapes, with the relative new state, according to the original δ

function.

. . . // here are the other cases.

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉 // default value

. . . // here are the other three cases.

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉 // default value

: �C→ C

Obviously, the definition of this function strictly depends on how is made the function

δ of our Turing machine. In the previous description of δ function we introduce some

comments in order to make more readable the function.

Example 3.3 Suppose that our deterministic Turing machine has a δ function such that

δ(qi, 1) gives (qj , 0,−1).

So, our δ will be encoded in this way:

δ ≡ λx : �C.

switch
{0,...,3}
C BtoS(π2)

. . . // three cases ahead

switch
{0,...,n}
C (π4x)

. . . // k cases ahead
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〈π1x, 1, π3x, qk〉

. . .

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉

2

Encoding the whole program

Finally we will encode a function result that takes a configuration and gives out 1 or 0 if

the configuration is in an accepting state.

result ≡λx : �C.ifN (π7x = qi)

then write 0 if qi is an accepting state, 1 otherwise

else consider all the other cases

default 0 : �C→ N

In the end we will encode our Turing machine in the following way:

M ≡ λx : �N.result (recursionC

(p(encode(x)))

(initx)

δ) : �N→ N
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Chapter 4

A Higher-Order Characterization of Probabilistic

Polynomial Time

In this chapter we are going to present the probabilistic extension of our SLR (presented in

the section 3.4) called RSLR. Probabilistic polynomial time computations, seen as oracle

computations, were showed to be amenable to implicit techniques since the early days of

ICC, by a relativization of Bellantoni and Cook’s safe recursion [5]. They were then studied

again in the context of formal systems for security, where probabilistic polynomial time

computation plays a major role [23, 40]. These two systems are built on Hofmann’s work

SLR [21], by adding a random choice operator to the calculus. The system in [23], however,

lacks higher-order recursion, and in both papers the characterization of the probabilistic

classes is obtained by semantic means. While this is fine for completeness, we think it

is not completely satisfactory for soundness — we know from the semantics that for any

term of a suitable type its normal form may be computed within the given bounds, but

no notion of evaluation is given for which computation time is guaranteed to be bounded.

4.1 Related Works

We discuss here in more details the relations of RSLR system to the previous work SLR

we already cited.

More than ten years ago, Mitchell, Mitchell, and Scedrov [23] introduced OSLR, a type

system that characterizes oracle polynomial time functionals. Even if inspired by SLR,

OSLR does not admit primitive recursion on higher-order types, but only on base types.

The main theorem shows that terms of type 2Nm → Nn → N define precisely the oracle
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polynomial time functionals, which constitute a class related but different from the ones

we are interested in here. Finally, inclusion in the polynomial time class is proved without

studying reduction from an operational viewpoint, but only via semantics: it is not clear

for which notion of evaluation, computation time is guaranteed to be bounded.

Recently, Zhang’s [40] introduced a further system (CSLR) which builds on OSLR and

allows higher-order recursion. The main interest of the paper are applications to the

verification of security protocols. It is stated that CSLR defines exactly those functions

that can be computed by probabilistic Turing machines in polynomial time, via a suitable

variation of Hofmann’s techniques as modified by Mitchell et al. This is again a purely

semantic proof, whose details are missing in [40].

Finally, both works are derived from Hofmann’s one, and as a consequence they

both have potential problems with subject reduction. Indeed, as Hofmann showed in

his work [21], subject reduction does not hold in SLR, and hence is problematic in both

OSLR and CSLR.

4.2 RSLR: An Informal Account

Many things are similar to the one presented in the previous section. We are using same

restrictions already presented in the section 3.4. By adding probabilities to reduction steps

we need to prove more theorems to insure confluence of possible terms in output.

We extend the grammar with a new constant called rand. Once evaluated, this new

constant gives 1 or 0 with the same probability 1
2 .

4.3 On the Difficulty of Probabilistic ICC

Differently from most well known complexity classes such as P, NP and L, the proba-

bilistic hierarchy contains so-called “semantic classes”, like BPP and ZPP. A semantic

class is a complexity class defined on top of a class of algorithms which cannot be easily

enumerated: a probabilistic polynomial time Turing machine does not necessarily solve a

problem in BPP nor in ZPP. For most semantic classes, including BPP and ZPP, the

existence of complete problems and the possibility to prove hierarchy theorems are both

open. Indeed, researchers in the area have proved the existence of such results for other

probabilistic classes, but not for those we are interested and given in [15].
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Now, having a “truly implicit” system I for a complexity class C means that we have

a way to enumerate a set of programs solving problems in C (for every problem there is at

least one program that solves it). The presence or absence of complete problems is deeply

linked with the possibility to have a real ICC system for these semantic classes. In our

case the “semantic information” in BPP and ZPP, that is the probability error, seems

to be an information that is impossible to capture with syntactical restrictions. We need

to execute the program in order to check if the error bound is correct or not.

4.4 The Syntax and Basic Properties of RSLR

Also RSLR is a fairly standard Curry-style lambda calculus. We have constants for the

natural numbers, branching and recursion. As SLR presented in 3.4, its type system takes

ideas from linear logic. Indeed, some variables can appear at most once in a term.

Definition 4.1 (Types) The types of RSLR are exactly the ones presented in definition

3.1. We still have N as the only base type and we still have arrow types. All of these

have the same meaning we have already explained.

In RSLR we have again the notion of subtyping as explained before. In such way we

are able to say that the type �A→ B is a subtype of �A→ B.

Definition 4.2 (Aspects) An aspect is either � or �: the first is the modal aspect,

while the second is the non modal one. Aspects are partially ordered by the binary relation

{(�,�), (�,�), (�,�)}, noted <:.

Defining subtyping, then, merely consists in generalizing <: to a partial order on types in

which only structurally identical types can be compared. Subtyping rules are in Figure 4.1.

Please observe that (S-Sub) is contravariant in the aspect a.

(S-Refl)
A <: A

A <: B B <: C (S-Trans)
A <: C

B <: A C <: D b <: a (S-Sub)
aA→ C <: bB → D

Figure 4.1: Subtyping rules.
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RSLR’s terms are those of an applied lambda calculus with primitive recursion and

branching, in the style of Gödel’s T:

Definition 4.3 (Terms) Terms and constants are defined as follows:

t ::=x | c | ts | λx : aA.t | caseA t zero s even r odd q | recursionA t s r;

c ::=n | S0 | S1 | P | rand.

Here, x ranges over a denumerable set of variables and n ranges over the natural num-

bers seen as constants of base type. Every constant c has its naturally defined type, that

we indicate with type(c). Formally, type(n) = N for every n, type(rand) = N, while

type(S0) = type(S1) = type(P) = �N→ N. The size |t| of any term t can be easily defined

by induction on t (where, by convention, we stipulate that log2(0) = 0):

|x| = 1;

|ts| = |t|+ |s|;

|λx : aA.t| = |t|+ 1;

|caseA t zero s even r odd q| = |t|+ |s|+ |r|+ |q|+ 1;

|recursionA t s r| = |t|+ |s|+ |r|+ 1;

|n| = ⌊log2(n)⌋+ 1;

|S0| = |S1| = |P| = |rand| = 1.

Notice that the size of n is exactly the length of the number n in binary representation.

Size of 5, as an example, is ⌊log2(5)⌋+ 1 = 3, while 0 only requires one binary digit to be

represented, and its size is thus 1. As usual, terms are considered modulo α-conversion.

Free (occurrences of) variables and capture-avoiding substitution can be defined in a stan-

dard way.

Definition 4.4 (Explicit term) A term is said to be explicit if it does not contain any

instance of recursion.

The main peculiarity of RSLR with respect to similar calculi is the presence of a constant

for random, binary choice, called rand, which evolves to either 0 or 1 with probability

1
2 . Although the calculus is in Curry-style, variables are explicitly assigned a type and an

aspect in abstractions. This is for technical reasons that will become apparent soon.
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Note 4.5 The presence of terms which can (probabilistically) evolve in different ways

makes it harder to define a confluent notion of reduction for RSLR. To see why, consider

a term like

t = (λx : �N.(t⊕xx))rand

where t⊕ is a term computing ⊕ on natural numbers seen as booleans (0 stands for “false”

and everything else stands for “true”):

t⊕ = λx : �N.case�N→N x zero s⊕ even r⊕ odd r⊕;

s⊕ = λy : �N.caseN y zero 0 even 1 odd 1;

r⊕ = λy : �N.caseN y zero 1 even 0 odd 0.

If we evaluate t in a call-by-value fashion, rand will be fired before being passed to t⊕ and,

as a consequence, the latter will be fed with two identical natural numbers, returning 0 with

probability 1. If, on the other hand, rand is passed unevaluated to t⊕, the four possible

combinations on the truth table for ⊕ will appear with equal probabilities and the outcome

will be 0 or 1 with probability 1
2 . In other words, we need to somehow restrict our notion

of reduction if we want it to be consistent, i.e. confluent.

For the just explained reasons, arguments are passed to functions following a mixed

scheme in RSLR: arguments of base type are evaluated before being passed to functions,

while arguments of an higher-order type are passed to functions possibly unevaluated, in a

call-by-name fashion.

In our system higher-order terms cannot be duplicated and this guarantees that if a

term duplicates then it has no rand inside. The counterexample no more longer works.

Let’s first of all define the one-step reduction relation:

Definition 4.6 (Reduction) The one-step reduction relation → is a binary relation be-

tween terms and sequences of terms. It is defined by the axioms in Figure 4.2 and can be

applied in any contexts, except in the second and third argument of a recursion. A term t

is in normal form if t cannot appear as the left-hand side of a pair in →. NF is the set

of terms in normal form.

Notice the little but significant difference between rules in figure 4.2 and rules of SLR

presented in figure 3.2. On the right side of the arrow now we can have more than one
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caseA 0 zero t even s odd r → t;

caseA (S0n) zero t even s odd r → s;

caseA (S1n) zero t even s odd r → r;

recursionA 0 g f → g;

recursionA n g f → fn(recursionτ ⌊
n

2
⌋ g f);

S0n→ 2 · n;

S1n→ 2 · n+ 1;

P0→ 0;

Pn→ ⌊
n

2
⌋;

(λx : aN.t)n→ t[x/n];

(λx : aH.t)s→ t[x/s];

(λx : aA.t)sr → (λx : aA.tr)s;

rand→ 0, 1;

Figure 4.2: One-step reduction rules.
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term. Informally, t→ s1, . . . , sn means that t can evolve in one-step to each of s1, . . . , sn

with the same probability 1
n . As a matter of fact, n can be either 1 or 2.

A multistep reduction relation will not be defined by simply taking the transitive and

reflective closure of →, since a term can reduce in multiple steps to many terms with

different probabilities. Multistep reduction puts in relation a term t to a probability

distribution on terms Dt such that Dt(s) > 0 only if s is a normal form to which t reduces.

Of course, if t is itself a normal form, Dt is well defined, since the only normal form to

which t reduces is t itself, so Dt(t) = 1. But what happens when t is not in normal form?

Is Dt a well-defined concept? Let us start by formally defining  :

Definition 4.7 (Multistep Reduction) The binary relation between terms and prob-

ability distributions is defined by the rules in Figure 4.3.

t→ t1, . . . , tn ti  Di

t 
∑n

i=1
1
nDi

t ∈ NF
t Dt

Figure 4.3: Multistep Reduction: Inference Rules

In Section 4.6, we will prove that for every t there is at most one D such that t  D .

We are finally able to present the type system. Preliminary to that is the definition of a

proper notion of a context.

Definition 4.8 (Contexts) A context Γ is a finite set of assignments of types and as-

pects to variables, i.e., of expressions in the form x : aA. As usual, we require contexts

not to contain assignments of distinct types and aspects to the same variable. The union

of two disjoint contexts Γ and ∆ is denoted as Γ,∆. In doing so, we implicitly assume

that the variables in Γ and ∆ are pairwise distinct. The expression Γ;∆ denotes the union

Γ,∆, but is only defined when all types appearing in Γ are base types. As an example, it is

perfectly legitimate to write x : aN; y : bN, while the following is an ill-defined expression:

x : a(bN→ N); y : cN,

the problem being the first assignment, which appears on the left of “;” but which assigns

the higher-order type bN→ N (and the aspect a) to x. This notation is particularly helpful
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when giving typing rules. With the expression Γ <: a we mean that any aspect b appearing

in Γ is such that b <: a.

Typing rules are in Figure 4.4. Observe how rules with more than one premise are designed

x : aA ∈ Γ (T-Var-Aff)
Γ ⊢ x : A

Γ ⊢ t : A A <: B (T-Sub)
Γ ⊢ t : B

Γ, x : aA ⊢ t : B
(T-Arr-I)

Γ ⊢ λx : aA.t : aA→ B
(T-Const-Aff)

Γ ⊢ c : type(c)

Γ;∆1 ⊢ t : N

Γ;∆2 ⊢ s : A

Γ;∆3 ⊢ r : A

Γ;∆4 ⊢ q : A A is 2-free
(T-Case)

Γ;∆1,∆2,∆3,∆4 ⊢ caseA t zero s even r odd q : A

Γ1; ∆1 ⊢ t : N

Γ1,Γ2; ∆2 ⊢ s : A

Γ1,Γ2;⊢ r : �N→ �A→ A

Γ1; ∆1 <: �

A is �-free
(T-Rec)

Γ1,Γ2; ∆1,∆2 ⊢ recursionA t s r : A

Γ;∆1 ⊢ t : aA→ B Γ;∆2 ⊢ s : A Γ,∆2 <: a
(T-Arr-E)

Γ;∆1,∆2 ⊢ (ts) : B

Figure 4.4: Type rules

in such a way as to guarantee that whenever Γ ⊢ t : A can be derived and x : aH is in Γ,

then x can appear free at most once in t. If y : aN is in Γ, on the other hand, then y can

appear free in t an arbitrary number of times.

Definition 4.9 A first-order term of arity k is a closed, well typed term of type a1N →

a2N→ . . . akN→ N for some a1, . . . , ak.

4.5 Subject Reduction

Also RSLR preserves the types under reduction. The so called Subject Reduction Theorem

still holds. We will not re-do all the proofs already done in section 3.4.2, we repropose

here the main statement.
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Theorem 4.1 (Subject Reduction) Suppose that Γ ⊢ t : A. If t → t1 . . . tj, then for

every i ∈ {1, . . . , j}, it holds that Γ ⊢ ti : A.

Proof: Proof of this theorem is similar to one of theorem 3.3, even if the definition of

reduction step is different. 2

4.6 Confluence

In view of the peculiar notion of reduction given in Definition 4.6, let us go back to the

counterexample to confluence given in the Introduction. The term t = (λx : �N.(t⊕xx))rand

cannot be reduced to t⊕ rand rand anymore, because only numerals can be passed to func-

tions as arguments of base types. The only possibility is reducing t to the sequence

(λx : �N.(t⊕xx))0, (λx : �N.(t⊕xx))1

Both terms in the sequence can be further reduced to 0. In other words, t {01}.

More generally, the phenomenon of non-convergence of final distributions can no longer

happen in RSLR. Technically, this is due to the impossibility of duplicating terms that

can evolve in a probabilistically nontrivial way, i.e., terms containing occurrences of rand.

In the above example and in similar cases we have to evaluate the argument before firing

the β-redex — it is therefore not possible to obtain two different distributions. RSLR can

also handle correctly the case where rand is within an argument t of higher-order type:

terms of higher-order type cannot be duplicated and so neither any occurrences of rand

inside them.

Confluence of our system is proved by first showing a kind of confluence for the single

step arrow; then we show the confluence for the multistep arrow. This allows us to certify

the confluence of our system.

Lemma 4.1 Let t be a well typed term in RSLR; if t → v and t → z (v and z distinct)

then exactly one of the following holds:

• ∃a s.t. v → a and z → a

• v → z

• z → v

Proof: By induction on the structure of the typing derivation for the term t.
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• If t is a constant or a variable, the theorem is easily proved. The premise is always

false, so the theorem is always valid. Remember that rand→ 0, 1.

• If last rule was T-Sub or T-Arr-I, by applying induction hypothesis the case is easily

proved.

• If last rule was T-Case. Our derivation will have the following shape:

Γ;∆1 ⊢ s : N

Γ;∆2 ⊢ r : A

Γ;∆3 ⊢ q : A

Γ;∆4 ⊢ u : A A is 2-free
(T-Case)

Γ;∆1,∆2,∆3,∆4 ⊢ caseA s zero r even q odd u : A

We could have reduced one of the following s, r, q, u terms or a combination of them.

In the first case we prove by applying induction hypothesis and in the latter case we

can easily find a s.t. v → a and z → a: is the term where we apply both reductions.

Last case is where from one part we reduce the case, selecting a branch and from the

other part we reduce one of the subterms. As can be easily seen, it is trivial to prove

this case; we can easily find a common confluent term.

• If last rule was T-Rec, our derivation will have the following shape:

Γ2; ∆4 ⊢ q : N

Γ2,Γ3; ∆5 ⊢ s : B

Γ2,Γ3;⊢ r : �N→ �B → B

Γ2; ∆4 <: �

B is �-free
(T-Rec)

Γ2,Γ3; ∆4,∆5 ⊢ recursionB q s r : B

By definition, we can have reduction only on q or, if q is a value, we can reduce the

recursion by unrolling it. In both cases the proof is trivial.

• If last rule was T-Arr-E. Our term could have different shapes but the only interesting

cases are the following ones. The other cases can be easily brought back to cases that

we have considered.

• Our derivation will end in the following way:

Γ;∆1 ⊢ λx : aA.r : bC → B Γ;∆2 ⊢ s : C Γ,∆2 <: b
(T-Arr-E)

Γ,∆1,∆2 ⊢ (λx : aA.r)s : B

where C <: A and b <: a. We have that (λx : aA.r)s rewrites in r[x/s]; if A ≡ N

then s is a value, otherwise we are able to make the substitution whenever we want.

If we reduce only on s or only on r we can easily prove our thesis by applying

induction hypothesis.

The interesting cases are when we perform the substitution on one hand and on the

other hand we make a reduction step on one of the two possible terms s or r.
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Suppose (λx : aA.r)s → r[x/s] and (λx : aA.r)s → (λx : aA.r)s′, where s → s′.

Let a be r[x/s′]. We have that (λx : aA.r)s′ → a and r[x/s] → a. Indeed if A

is N, s is a value (we are making substitutions) but no reduction could be made

on s, otherwise there is at least one occurrence of s in r[x/s] and by executing one

reduction step we are able to have a.

Suppose (λx : aA.r)s→ r[x/s] and (λx : aA.r)s→ (λx : aA.r′)s, where r → r′. As

we have shown in the previous case, we are able to find a confluent term for both

terms.

• The other interesting case is when we perform the so called “swap”. (λx : aA.q)sr

rewrites in (λx : aA.qr)s. If the reduction steps are made only on q or s or r by

applying induction hypothesis we have the thesis. In all the other cases, where we

perform one step on subterms and we perform, on the other hand, the swap, it’s

easy to find a confluent term a.

2

Lemma 4.2 Let t be a well typed term in RSLR; if t→ v1, v2 and t→ z then one of the

following statement is valid:

• ∃a1, a2 s.t. v1 → a1 and v2 → a2 and z → a1, a2

• ∀i.vi → z

• z → a1, a2

Proof: By induction on the structure of typing derivation for the term t.

• t cannot be a constant or a variable. Indeed if t is rand, rand reduces in 0, 1 and this

differs from our hypothesis.

• If last rule was T-Sub or T-Arr-I, the thesis is easily proved by applying induction

hypothesis.

• If last rule was T-Case, our derivation will have the following shape:

Γ;∆1 ⊢ s : N

Γ;∆2 ⊢ r : A

Γ;∆3 ⊢ q : A

Γ;∆4 ⊢ u : A A is 2-free
(T-Case)

Γ;∆1,∆2,∆3,∆4 ⊢ caseA s zero r even q odd u : A

If we perform the two reductions on the single subterms we could be in the following case

(all the other cases are similar). for example, if t rewrites in caseA s′ zero r even q odd u

and caseA s′′ zero r even q odd u and also t→ caseA s zero r even q odd u′.



70 Chapter 4. A Higher-Order Characterization of Probabilistic Polynomial Time

It is easy to check that if the two confluent terms are a1 = caseA s′ zero r even q odd u′

and a2 = caseA s′′ zero r even q odd u′ the thesis is valid.

Another possible case is where on one hand we perform a reduction by selecting a

branch and on the other case we make a reduction on one branch. As example, t→ q

and r → r1, r2. This case is trivial.

• If last rule was T-Rec, our derivation will have the following shape:

Γ2; ∆4 ⊢ q : N

Γ2,Γ3; ∆5 ⊢ s : B

Γ2,Γ3;⊢ r : �N→ �B → B

Γ2; ∆4 <: �

B is �-free
(T-Rec)

Γ2,Γ3; ∆4,∆5 ⊢ recursionB q s r : B

By definition, we can have reduction only on q. By applying induction hypothesis the

thesis is proved.

• If last rule was T-Arr-E. Our term could have different shapes but the only interesting

cases are the following ones. The other cases can be easily brought back to cases that

we have considered.

• Our derivation will end in the following way:

Γ;∆1 ⊢ λx : aA.r : bC → B Γ;∆2 ⊢ s : C Γ,∆2 <: b
(T-Arr-E)

Γ,∆1,∆2 ⊢ (λx : aA.r)s : B

where C <: A and b <: a. We have that (λx : aA.r)s rewrites in r[x/s]; if A ≡ N

then s is a value, otherwise we are able to make the substitution whenever we want.

If we reduce only on s or only on r we can easily prove our thesis by applying

induction hypothesis.

The interesting cases are when we perform the substitution on one hand and on the

other hand we make a reduction step on one of the two possible terms s or r.

Suppose (λx : aA.r)s → r[x/s] and (λx : aA.r)s → (λx : aA.r)s′, (λx : aA.r)s′′,

where s→ s′, s′′. Let a1 be r[x/s′] and a2 be r[x/s′′].

We have that (λx : aA.r)s′ → a1, (λx : aA.r)s′′ → a2 and r[x/s]→ a1, a2. Indeed if

A is N then s is a value (because we are making substitutions) and we cannot have

the reductions on s, otherwise there is at least one occurrence of s in r[x/s] and by

performing one reduction step on the subterm s we are able to have a1, a2.

Suppose (λx : aA.r)s → r[x/s] and (λx : aA.r)s → (λx : aA.r′)s, (λx : aA.r′′)s,

where r → r′, r′′. As we have shown in the previous case, we are able to find a

confluent term for both terms.
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• The other interesting case is when we perform the so called “swap”. (λx : aA.q)sr

rewrites in (λx : aA.qr)s. If the reduction steps are made only on q or s or r by

applying induction hypothesis we have the thesis. In all the other cases, where we

perform one step on subterms and we perform, on the other hand, the swap, it’s

easy to find a confluent term a.

2

Lemma 4.3 Let t be a well typed term in RSLR; if t → v1, v2 and t → z1, z2 (v1, v2 and

z1, z2 different) then ∃a1, a2, a3, a4 s.t. v1 → a1, a2 and v2 → a3, a4 and ∃i.zi → a1, a3 and

z1−i → a2, a4.

Proof: By induction on the structure of typing derivation for term t.

• If t is a variable or a constant the thesis is trivial.

• If last rule was (T-Sub) or (T-Arr-I) the thesis is trivial, by applying induction

hypothesis.

• If last rule was (T-Case) our derivation will have the following shape:

Γ;∆1 ⊢ s : N

Γ;∆2 ⊢ r : A

Γ;∆3 ⊢ q : A

Γ;∆4 ⊢ u : A A is 2-free
(T-Case)

Γ;∆1,∆2,∆3,∆4 ⊢ caseA s zero r even q odd u : A

Also this case is easy to prove. Indeed if the reduction steps are made only on single sub-

terms: s or r or q or u we can prove by using induction hypothesis. Otherwise we are in

the case where one reduction step is made on some subterm and the other is made con-

sidering a different subterm. Suppose s→ s′, s′′ and q → q′, q′′. We could have two pos-

sible reduction. One is t→ caseA s′ zero r even q odd u, caseA s′′ zero r even q odd u

and the other is t→ caseA s zero r even q′ odd u, caseA s zero r even q′′ odd u.

It is easy to find the common confluent terms: are the ones in which we have performed

both s→ s′, s′′ and q → q′, q′′.

• If last rule was (T-Rec) our derivation will have the following shape:

Γ2; ∆4 ⊢ q : N

Γ2,Γ3; ∆5 ⊢ s : B

Γ2,Γ3;⊢ r : �N→ �B → B

Γ2; ∆4 <: �

B is �-free
(T-Rec)

Γ2,Γ3; ∆4,∆5 ⊢ recursionB q s r : B

By definition, we can have reduction only on q. By applying induction hypothesis the

thesis is proved.
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• If last rule was (T-Arr-E). Our term could have different shapes but all of them

are trivial or can be easily brought back to cases that we have considered. Also the

case where we consider the so called “swap” and the usual application with a lambda

abstraction are not interesting in this lemma. Indeed, we cannot consider the “swap”

or the substitution case because the reduction relation gives only one term on the right

side of the arrow →.

2

It is not trivial to prove confluence for . For this purpose we will prove our statement

on a different definition of multistep arrow. This new definition is laxer than the standard

one. Being able to prove our theorems for this new definition, allows us to conclude that

these theorems hold also for  .

Definition 4.10 In order to prove the following statements we define a new multistep

reduction arrow ⇒ as in Figure 4.5. As usual, Gt is the distribution that associates to the

t→ t1, . . . , tn ti ⇒ Di

t⇒
∑n

i=1
1
nDi

t⇒ Gt

Figure 4.5: New Multistep Reduction: Inference Rules

term t probability 1. With this relation, distribution are functions D : Λ → [0, 1]. It is

easy to check that if t D then t⇒ D (but not vice-versa).

Definition 4.11 (Size of distribution derivation) We define the size of a derivation

t⇒ D , written |t⇒ D |, in an inductive way. If the last rule was the axiom, |t⇒ Gt| = 0;

otherwise, |t⇒
∑n

i=1
1
nDi| = maxi |ti ⇒ Di|+ 1.

Lemma 4.4 If t ⇒ D , be D ≡ {Mα1

1 , . . . ,Mαn
n }, and if for all i Mi ⇒ Ei then t ⇒

∑

i αiEi and |t⇒
∑

i αiEi| ≤ |t⇒ D |+maxi |Mi ⇒ Ei|.

Proof: By induction on the structure of the derivation for t⇒ D .

• If last rule was the axiom, then t⇒ Gt. Suppose t⇒ E . The thesis is easily proved.

• The derivation finishes with the following rule:

t→ t1, . . . , tn ti ⇒ Di

t⇒
∑n

i=1
1
nDi

Let’s analyze all the possible cases, depending on the value n.
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• If n ≡ 1.
t→ t1 t1 ⇒ D

t⇒ D

By using induction hypothesis on the premise, we prove our thesis.

• If n ≡ 2.
t→ t1, t2 t1 ⇒ D1 t2 ⇒ D2

t⇒ 1
2(D1 + D2)

Be D ≡ {Mα1

1 , . . . ,Mαn
n } and for all i Mi ⇒ Ei. By construction, we have some

elements that belong to D1, other to D2 and some element that belongs to both of

them. Without loosing generality, let’s say that elements M1, . . . ,Mm belongs to

D1 and elements Mo, . . . ,Mn, where 1 ≤ o ≤ m ≤ n.

So, we have that D1 ≡ {M
2α1

1 , . . . ,M
2αo−1

o−1 ,Mαo
o , . . . ,Mαm

m } and we have that D2 is

{Mαo
o , . . . ,Mαm

m ,M2αm
m+1, . . . ,M

2αn
n }.

By applying induction hypothesis on the two premises we have that t1 ⇒ P1

and t2 ⇒ P2, where P1 ≡
∑m−1

i=1 2αiEi +
∑o

i=m αiEi and P2 ≡
∑o

i=m αiEi +
∑n

i=o+1 2αiEi

So, we can derive that t⇒ 1
2(P1 + P2) that is our thesis.

Concerning the bound on the derivation, the induction hypothesis applied to the

premises gives us |t1 ⇒P1| ≤ |t1 ⇒ D1| + max0,...,m |Mi ⇒ Ei| and |t2 ⇒P2| ≤

|t2 ⇒ D2|+maxo,...,n |Mi ⇒ Ei|. We have:

|t⇒
∑

i

αiEi| ≡ max{P1,P2}+ 1

≤ max{|t1 ⇒ D1|+ max
0,...,m

|Mi ⇒ Ei|, |t2 ⇒ D2|+ max
o,...,n

|Mi ⇒ Ei|}+ 1

≤ max{|t1 ⇒ D1|, |t2 ⇒ D2|}+ 1 +max{max
o,...,n

|Mi ⇒ Ei|, max
0,...,m

|Mi ⇒ Ei|}

≤ |t⇒ D |+max
i
|Mi ⇒ Ei|

and the lemma is proved.

2

Theorem 4.2 (Multistep Confluence) Let t be a closed, typable, term. Then if t D

and t  E then D ≡ E . D ≡ E means that the two distributions are exactly the same

distributions.

Proof:



74 Chapter 4. A Higher-Order Characterization of Probabilistic Polynomial Time

We are going to prove the following strengthening of the thesis: Be t a closed term.

If t ⇒ D and t ⇒ E , be D ≡ {Mp1
1 , · · · ,Mpn

n } and E ≡ {N q1
1 , · · · , N qk

k } then there exist

L1, . . . ,Ln,J1, . . . ,Jk such that M1 ⇒ L1, · · · ,Mn ⇒ Ln and N1 ⇒ J1, · · · , Nk ⇒

Jk, maxi(|Mi ⇒ Li|) ≤ |t ⇒ E |, maxj(|Nj ⇒ Jj |) ≤ |t ⇒ D | and
∑

i(pi × Li) ≡
∑

j(qj ×Jj).

We are going to prove it by induction on the sum of the length of the two derivations

of t⇒ D and t⇒ E .

• If both derivations end with the axiom rule,we are in the following case:

t⇒ Gt1 t⇒ Gt2

we can associate to t the distribution Gt and the thesis is proved.

• If t is rand, it’s easy to check the validity of the thesis (independently from the structure

of the two derivations).

• If only one of the derivation consists of the axiom rule, we are in the following case:

t→ t1, . . . , tn ti ⇒ Di

t⇒
∑n

i=1
1
nDi

t⇒ Gt

If D ≡
∑n

i=1
1
nDi ≡ {M

p1
1 , · · · ,Mpn

n } and Gt ≡ {t
1}, then it’s easy to find the “conflu-

ent” distribution. For each Mi we associate the relative GMi and to t we associate D .

The thesis is proved.

• Otherwise we are in the case where the sum of the two lengths is more than 2 and so,

where the last rule, for both derivations, is not the axiom one.

t→ t1, . . . , tn ti ⇒ Di

t⇒
∑n

i=1
1
nDi

t→ s1, . . . , sm si ⇒ Ei

t⇒
∑m

i=1
1
mEi

• If t1, . . . , tn is equal to s1, . . . , sm (modulo sort) then by using induction hypothesis

we are done. Let’s consider the most interesting case, where the terms on the right

hand side of → are different.

• If n = m = 1. By lemma 4.1 we could have three possible configurations:

• t1 → s1. We have that t1 ⇒ D1 and t1 ⇒ E1. So the thesis is derived by

induction.

• s1 → t1. Same as before.
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• ∃r s.t. t1 → r and s1 → r. Be D ≡ {Mp1
1 , · · · ,Mpn

n } and E ≡ {N q1
1 , · · · , N qk

k }.

By using axiom rule, we can associate a distribution to r; let’s call it P, such

that r ⇒P. So, t1 ⇒ D1 and t1 ⇒P. By induction exist L1, . . . ,Ln,K such

that M1 ⇒ L1, · · · ,Mn ⇒ Ln and r ⇒ K , maxi(|Mi ⇒ Li|) ≤ |t ⇒ P| and

|r ⇒ K | ≤ |t⇒ D | and
∑

i(pi ×Li) ≡ K .

Similar we have that there exist J1, . . . ,Jk,H such that N1 ⇒J1, · · · , Nk ⇒

Jk and r ⇒ H , maxi(|Ni ⇒ Ji|) ≤ |t ⇒ P| and |r ⇒ H | ≤ |t ⇒ E | and
∑

i(qi ×Ji) ≡H .

Merging the two disambiguation, we obtain that |r ⇒ K | + |r ⇒ H | ≤ |t ⇒

D |+ |t⇒ E |. Be K ≡ {P γ1
1 , . . . , P γo

o } and H ≡ {Qδ1
1 , . . . , Q

δp
p }

We can apply induction hypothesis and obtain that exist Q1, . . . ,Qo,R1, . . . ,Rp

such that P1 ⇒ Q1, · · · , Pn ⇒ Qo and Q1 ⇒ R1, · · · , Qk ⇒ Rk, maxi(|Pi ⇒

Qi|) ≤ |r ⇒H | and maxj(|Qj ⇒ Rj |) ≤ |r ⇒ K | and
∑

i(γi ×Qi) ≡
∑

j(δj ×

Rj).

Notice that the cardinality of D and K may differ but for sure they have the

same terms with non zero probability. Similarly, E and H have the same terms

with non zero probability.

By using lemma 4.4 and using transitive property of equality we obtain that

t ⇒
∑

i piQi ≡
∑

i γiQi =
∑

j δjRj and t ⇒
∑

i qiRi ≡
∑

j δjRj . Moreover we

have:

max
i

(|Mi ⇒ Qi|) ≤ |r ⇒H | ≤ |t⇒ E |

max
i

(|Ni ⇒ Ri|) ≤ |r ⇒ K | ≤ |t⇒ D |

The thesis is proved.

• If n = 2 and m = 1. By lemma 4.2 we could have three possible configura-

tions:

• ∀i.ti → s1. If so, t1 ⇒ E and t2 ⇒ E (recall that m = 1, so s1 ⇒ E ). Be

D ≡ {Mα1

1 , . . . ,Mαn
n } and E ≡ {Nβ1

1 , . . . , Nβk
k }. By construction, we have some

elements that belong to D1, other to D2 and some element that belong to both

of them. Without loosing generality, let’s say that elements M1, . . . ,Mm belongs
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to D1 and elements Mo, . . . ,Mn, where 1 ≤ o ≤ m ≤ n.

So, we have that D1 ≡ {M
2α1

1 , . . . ,M
2αo−1

o−1 ,Mαo
o , . . . ,Mαm

m } and we have that

D2 is {Mαo
o , . . . ,Mαm

m ,M2αm
m+1, . . . ,M

2αn
n }.

By using induction we have that there exist L1, . . . ,Ln,J1, . . . ,Jk such that

M1 ⇒ L1, · · · ,Mn ⇒ Ln and N1 ⇒ J1, · · · , Nk ⇒ Jk, max0≤i≤m(|Mi ⇒

Li|) ≤ |t ⇒ E |, maxj(|Nj ⇒ Jj |) ≤ |t1 ⇒ D1|, maxo≤i≤n(|Mi ⇒ Li|) ≤ |t ⇒

E |, maxj(|Nj ⇒Jj |) ≤ |t2 ⇒ D2|,
∑m−1

i=1 2αiLi +
∑o

i=m αiL1 ≡
∑

j(βj ×Jj)

and
∑o

i=m αiLi +
∑n

i=o+1 2αiLi ≡
∑

j(βj ×Jj).

Merging all, we have that there exist L1, . . . ,Ln,J1, . . . ,Jk such that M1 ⇒

L1, . . . , Mn ⇒ Ln and N1 ⇒ J1, . . . , Nk ⇒ Jk, maxi(|Mi ⇒ Li|) ≤ |t ⇒ E |,

maxj(|Nj ⇒Jj |) ≤ |t⇒ D |,
∑

i(pi ×Li) ≡
∑

j(qj ×Jj).

• s→ t1, t2. We have that s⇒ 1
2(D1+D2) and s⇒ E . By applying the induction

hypothesis we prove our thesis. Notice that |s⇒ D | = |t⇒ D |.

• ∃a1, a2 s.t. t1 → a1 and t2 → a2 and s1 → a1, a2. Be D ≡ {Mα1

1 , . . . ,Mαn
n }

and E ≡ {Nβ1

1 , . . . , Nβk
k }. By construction, we have some elements that belong

to D1, other to D2 and some element that belong to both of them. Without

loosing generality, let’s say that elementsM1, . . . ,Mm belongs to D1 and elements

Mo, . . . ,Mn, where 1 ≤ o ≤ m ≤ n.

So, we have that D1 ≡ {M
2α1

1 , . . . ,M
2αo−1

o−1 ,Mαo
o , . . . ,Mαm

m } and we have that

D2 is {Mαo
o , . . . ,Mαm

m ,M2αm
m+1, . . . ,M

2αn
n }.

By using the axiom rule, we associate to every ai a distribution Pi s.t. ai ⇒Pi.

Be P1 ≡ {P
γ1
1 , . . . , P γo

o } and be P2 ≡ {Q
δ1
1 , . . . , Qδo

p }.

So, we have, for all i, ti ⇒ Di and ti ⇒Pi, s⇒ E and s⇒ 1
2(P1 + P2).

By applying induction hypothesis on all the three cases we have that there ex-

ist L1, . . . , Ln,J1, . . . ,Jk,K ,H ,Q,R such that M1 ⇒ L1, · · · ,Mn ⇒ Ln,

N1 ⇒J1, · · · , Nk ⇒Jk, and a1 ⇒ K and a2 ⇒H and a1 ⇒ Q and a2 ⇒ R

such that:

• max1≤i≤m(|Mi ⇒ Li|) ≤ |t1 ⇒P1|,

|a1 ⇒ K | ≤ |t1 ⇒ D1|,
∑m−1

i=1 2αiLi +
∑o

i=m αiLi ≡ K

• maxo≤i≤n(|Mi ⇒ Li|) ≤ |t2 ⇒P2|,

|a2 ⇒H | ≤ |t2 ⇒ D2|,
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∑o
i=m αiLi +

∑n
i=o+1 2αiLi ≡H

• maxi(|Ni ⇒Ji|) ≤ |s⇒
1
2(P1 + P2)|,

max{|a1 ⇒ Q|, |a2 ⇒ R|} ≤ |s⇒ E |
∑

i βiJi ≡
1
2(Q + R)

Notice that |a1 ⇒ Q|+|a1 ⇒ K | < |t⇒ D |+|t⇒ E |. Moreover, notice also that

the following inequality holds: |a2 ⇒ R|+|a2 ⇒H | < |t⇒ D |+|t⇒ E |. We are

allowed to apply, again, induction hypothesis and have a confluent distribution

for both cases. Lemma 4.4 then allows us to connect the first two main derivations

and by transitive property of equality we have the thesis.

• If n = 1 and m = 2. This case is similar to the previous one.

• If n = m = 2. By lemma 4.3 we have: ∃a1, a2, a3, a4 s.t. t1 → a1, a2 and t2 → a3, a4

and ∃i.si → a1, a3 and s1−i → a2, a4.

At each ai we associate, by using the axiom rule, the relative distribution Pi s.t.

a⇒Pi.

Without loosing generality, let’s say that elements M1, . . . ,Mm belongs to D1 and

elements Mo, . . . ,Mn to D2, where 1 ≤ o ≤ m ≤ n; N1, . . . ,Mp belongs to E1 and

elements Nq, . . . , Nk to E2, where 1 ≤ q ≤ p ≤ k.

So, we have that D1 ≡ {M
2α1

1 , . . . ,M
2αo−1

o−1 ,Mαo
o , . . . ,Mαm

m } and we have that D2

is {Mαo
o , . . . ,Mαm

m ,M2αm
m+1, . . . ,M

2αn
n } and E1 ≡ {N

2β1

1 , . . . , N
2βq−1

q−1 , N
βq
q , . . . , N

βp
p }

and E2 ≡ {N
βq
q , . . . , N

βp
p , N

2βp+1

q+1 , . . . , N2βk
k } (some elements may overlap).

This case is very similar to two previous ones. We have that t1 ⇒ D1 and t1 ⇒

1
2(P1+P2), t2 ⇒ D2 and t2 ⇒

1
2(P3+P4), s1 ⇒ E1 and s1 ⇒

1
2(P1+P3), s2 ⇒ E2

and s2 ⇒
1
2(P2 + P4). We can apply the induction hypothesis to the four cases

and have that there exist L1, . . . , Ln,J1, . . . ,Jk,K1,K2,K3,K4,H1,H2,H3,H4

such that M1 ⇒ L1, · · · ,Mn ⇒ Ln, N1 ⇒ J1, · · · , Nk ⇒ Jk, ai ⇒ Ki and

ai ⇒Hi such that:

• max1≤i≤m(|Mi ⇒ Li|) ≤ |t1 ⇒
1
2(P1 + P2)|,

max{|a1 ⇒ K1|, |a2 ⇒ K2|} ≤ |t1 ⇒ D1|,
∑m−1

i=1 2αiLi +
∑o

i=m αiLi ≡
1
2(K1 + K2)

• maxo≤i≤n(|Mi ⇒ Li|) ≤ |t2 ⇒
1
2(P3 + P4)|,

max{|a3 ⇒ K3|, |a4 ⇒ K4|} ≤ |t2 ⇒ D2|,
∑o

i=m αiLi +
∑n

i=o+1 2αiLi ≡
1
2(K3 + K4)
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• max1≤i≤p(|Ni ⇒Ji|) ≤ |s⇒
1
2(P1 + P3)|,

max{|a1 ⇒H1|, |a3 ⇒H3|} ≤ |s1 ⇒ E1|
∑q−1

i=1 2βiJi +
∑p

i=q βiJi ≡
1
2(H1 + H2)

• maxq≤i≤k(|Ni ⇒Ji|) ≤ |s⇒
1
2(P2 + P4)|,

max{|a2 ⇒H2|, |a4 ⇒H4|} ≤ |s2 ⇒ E2|
∑p

i=q βiJi +
∑k

i=p+1 2βiJi ≡
1
2(H2 + H4)

Now, notice that for all i, |ai ⇒ Ki| + |ai ⇒Hi| ≤ |t⇒ D | + |t⇒ E |. As we have

done in the previous cases, we are now able to apply the induction hypothesis on

the four cases. Then we use the lemma 4.4 and find confluent distributions. Sum

everything and we are able to prove our thesis.

This concludes the proof. 2

Example 4.1 Consider again the term

t = (λx : �N.(t⊕xx))rand

where t⊕ is a term computing ⊕ on natural numbers seen as booleans (0 stands for “false”

and everything else stands for “true”):

t⊕ = λx : �N.case�N→N x zero s⊕ even r⊕ odd r⊕;

s⊕ = λy : �N.caseN y zero 0 even 1 odd 1;

r⊕ = λy : �N.caseN y zero 1 even 0 odd 0.

In order to simplify reading, let us define:

• f ≡ (t⊕xx)

• g0 ≡ (case�N→N 0 zero s⊕ even r⊕ odd r⊕)

• g1 ≡ (case�N→N 1 zero s⊕ even r⊕ odd r⊕)

• h0 ≡ caseN 0 zero 0 even 1 odd 1

• h1 ≡ caseN 1 zero 1 even 0 odd 0

We can produce the following derivation tree:

π0 :

(λx : �N.f)0→ t⊕00

t⊕0 0→ g00

g00→ s⊕0

s⊕0→ h0

h0 → 0 0 {01}

h0  {01}

s⊕0 {01}

g00 {01}

(λx : �N.case�N→N x zero s⊕ even r⊕ odd r⊕)0 0 {01}

(λx : �N.f)0 {01}
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π1 :

(λx : �N.f)1→ t⊕11

t⊕1 1→ g11

g11→ r⊕1

r⊕1→ h1

h1 → 0 0 {01}

h1  {01}

r⊕1 {01}

g11 {01}

(λx : �N.case�N→N x zero s⊕ even r⊕ odd r⊕)1 1 {01}

(λx : �N.f)1 {01}

(λx : �N.f)rand→ (λx : �N.f)0, (λx : �N.f)1 π0 : (λx : �N.f)0 {01} π1 : (λx : �N.f)1 {01}

(λx : �N.(t⊕xx))rand {01}

2

4.7 Probabilistic Polytime Soundness

The most difficult (and interesting!) result about RSLR is definitely polytime soundness:

every (instance of) a first-order term can be reduced to a numeral in a polynomial number

of steps by a probabilistic Turing machine. Polytime soundness can be proved, follow-

ing [7], by showing that:

• Any explicit term of base type can be reduced to its normal form with very low time

complexity;

• Any term (non necessarily of base type) can be put in explicit form in polynomial time.

By gluing these two results together, we obtain what we need, namely an effective and effi-

cient procedure to compute the normal forms of terms. Formally, two notions of evaluation

for terms correspond to the two steps defined above:

• On the one hand, we need a ternary relation ⇓nf between closed terms of type N,

probabilities and numerals. Intuitively, t ⇓α
nf

n holds when t is explicit and rewrites to

n with probability α. The inference rules for ⇓nf are defined in Figure 4.6;

• On the other hand, we need a ternary relation ⇓rf between terms of non modal type,

probabilities and terms. We can derive t ⇓α
rf
s only if t can be transformed into s with

probability α consistently with the reduction relation. The inference rules for ⇓rf are

in Figure 4.7.

Moreover, a third ternary relation ⇓ between closed terms of type N, probabilities and

numerals can be defined by the rule below:

t ⇓α
rf
s s ⇓β

nf
n

t ⇓αβ n
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n ⇓1
nf

n rand ⇓
1/2
nf

0 rand ⇓
1/2
nf

1

t ⇓α
nf

n

S0t ⇓
α
nf

2 · n

t ⇓α
nf

n

S1t ⇓
α
nf

2 · n+ 1

t ⇓α
nf

0

Pt ⇓α
nf

0

t ⇓α
nf

n n ≥ 1

Pt ⇓α
nf
⌊n2 ⌋

t ⇓α
nf

0 su ⇓β
nf

n

(caseA t zero s even r odd q)u ⇓αβ
nf

n

t ⇓α
nf

2n ru ⇓β
nf

m n ≥ 1

(caseA t zero s even r odd q)u ⇓αβ
nf

m

t ⇓α
nf

2n+ 1 qu ⇓β
nf

m

(caseA t zero s even r odd q)u ⇓αβ
nf

m

s ⇓α
nf

n (t[x/n])r ⇓β
nf

m

(λx : aN.t)sr ⇓αβ
nf

m

(t[x/s])r ⇓β
nf

n

(λx : aH.t)sr ⇓β
nf

n

Figure 4.6: The relation ⇓nf : Inference Rules

A peculiarity of the just introduced relations with respect to similar ones is the following:

whenever a statement in the form t ⇓α
nf

s is an immediate premise of another statement

r ⇓β
nf

q, then t needs to be structurally smaller than r, provided all numerals are assumed

to have the same internal structure. A similar but weaker statement holds for ⇓rf . This

relies on the peculiarities of RSLR, and in particular on the fact that variables of higher-

order types can appear free at most once in terms, and that terms of base types cannot

be passed to functions without having been completely evaluated. In other words, the

just described operational semantics is structural in a very strong sense, and this allows

to prove properties about it by induction on the structure of terms, as we will experience

in a moment.

Before starting to study the combinatorial properties of ⇓rf and ⇓nf , it is necessary to

show that, at least, ⇓ is adequate as a way to evaluate lambda terms. In the following,

the size |π| of any derivation π (for any formal system) is simply the number of distinct

rule occurrences in π.

Theorem 4.3 (Adequacy) For every term t such that ⊢ t : N, the following two condi-

tions are equivalent:

1. There are j distinct derivations π1 : t ⇓
α1 n1, . . . , πj : t ⇓

αj nj such that
∑j

i=1 αi = 1;
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c ⇓1
rf
c

t ⇓α
rf
v

S0t ⇓
α
rf
S0v

t ⇓α
rf
v

S1t ⇓
α
rf
S1v

t ⇓α
rf
v

Pt ⇓α
rf
Pv

t ⇓α
rf
v

s ⇓β
rf
z

r ⇓γ
rf
a

q ⇓δ
rf
b ∀ui ∈ u, ui ⇓

ǫi
rf
ci

(caseA t zero s even r odd q)u ⇓
αβγδ

∏

i ǫi
rf

(caseA v zero z even a odd b)c

t ⇓α
rf
v

v ⇓β
nf

n

n > 0

∀qi ∈ q, qi ⇓
δi
rf
bi

s ⇓γ
rf
z

r⌊ n
20
⌋ ⇓γ0

rf
r0 . . . r⌊ n

2|n|−1 ⌋ ⇓
γ|n|−1

rf
r|n|−1

(recursionA t s r)q ⇓
αβγ(

∏

j γj)(
∏

i δi)

rf
r0(. . . (r(|n|−1)z) . . .)b

t ⇓α
rf
v

v ⇓β
nf

0

s ⇓γ
rf
z

∀qi ∈ q, qi ⇓
δi
rf
bi

(recursionA t s r)q ⇓
αβγ(

∏

i δi)
rf

zb

s ⇓α
rf
z

z ⇓γ
nf

n (t[x/n])r ⇓β
rf
u

(λx : �N.t)sr ⇓αγβ
rf

u

s ⇓α
rf
z

z ⇓γ
nf

n tr ⇓β
rf
u

(λx : �N.t)sr ⇓αγβ
rf

(λx : �N.u)n

(t[x/s])r ⇓β
rf
u

(λx : aH.t)sr ⇓β
rf
u

t ⇓β
rf
u

λx : aA.t ⇓β
rf
λx : aA.u

tj ⇓
αj

rf
sj

xt ⇓
∏

i αi

rf
xs

Figure 4.7: The relation ⇓rf : Inference Rules
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2. t D , where for every m, D(m) =
∑

ni=m αi.

Proof: Implication 1 ⇒ 2 can be proved by an induction on
∑j

k=1 |πk|. About the

converse, just observe that, some derivations like the ones required in Condition 1 need to

exist. This can be formally proved by induction on |t|w, where | · |w is defined as follows:

|x|w = 1, |ts|w = |t|w + |s|w, |λx : aA.t|w = |t|w + 1, |caseA t zero s even r odd q|w =

|t|w + |s|w + |r|w + |q|w + 1, |recursionA t s r|w = |t|w + |s|w + |r|w + 1, |n|w = 1, |S0|w =

|S1|w = |P|w = |rand|w = 1. Thanks to multistep confluence, we can conclude. 2

It’s now time to analyse how big derivations for ⇓nf and ⇓rf can be with respect to

the size of the underlying term. Let us start with ⇓nf and prove that, since it can only be

applied to explicit terms, the sizes of derivations must be very small:

Proposition 4.1 Suppose that ⊢ t : N, where t is explicit. Then for every π : t ⇓α
nf

m it

holds that

1. |π| ≤ 2 · |t|;

2. If s ∈ π, then |s| ≤ 2 · |t|2;

Proof: Given any term t, |t|w and |t|n are defined, respectively, as the size of t where every

numeral counts for 1 and the maximum size of the numerals that occur in t. For a formal

definition of |·|w, see the proof of Theorem 4.3. On the other hand, |·|n is defined as follows:

|x|n = 1, |ts|n = max{|t|n, |s|n}, |λx : aA.t|n = |t|n, |caseA t zero s even r odd q|n =

max{|t|n, |s|n, |r|n, |q|n}, |recursionA t s r|n = max{|t|n, |s|n, |r|n}, |n|n = ⌊log2(n + 2)⌋,

and |S0|n = |S1|n = |P|n = |rand|n = 1. It holds that |t| ≤ |t|w · |t|n. It can be proved by

structural induction on term t. We prove the following strengthening of the statements

above by induction on |t|w:

1. |π| ≤ |t|w;

2. If s ∈ π, then |s|w ≤ |t|w and |s|n ≤ |t|n + |t|w;

First we prove that the strengthening holds. From the first case of the strengthening

thesis we can deduce the first case of the main thesis. Notice indeed that |t| ≤ |t|w · |t|n.

Regarding the latter point, notice that |s| ≤ |s|w ·|s|n ≤ |t|w ·(|t|n+|t|w) ≤ |t|
2+|t| ≤ 2·|t|2.

Some interesting cases:

• Suppose t is rand. We could have two derivations:

rand ⇓
1/2
nf

0 rand ⇓
1/2
nf

1
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The thesis is easily proved.

• Suppose t is Sis. Depending on Si we could have two different derivations:

ρ : s ⇓α
nf

n

S0s ⇓
α
nf

2 · n

ρ : s ⇓α
nf

n

S1s ⇓
α
nf

2 · n+ 1

Suppose we are in the case where Si ≡ S0. Then, for every r ∈ π,

|π| = |ρ|+ 1 ≤ |s|w + 1 = |t|w;

|r|w ≤ |s|w ≤ |t|w

|r|n ≤ |s|n + |s|w + 1 = |s|n + |t|w

= |t|n + |t|w

The case where Si ≡ S1 is proved in the same way.

• Suppose t is Ps.

ρ : s ⇓α
nf

0

Ps ⇓α
nf

0

ρ : s ⇓α
nf

n n ≥ 1

Ps ⇓α
nf
⌊n2 ⌋

We focus on case where n > 1, the other case is similar. For every r ∈ π we have

|π| = |ρ|+ 1 ≤ |s|w + 1 = |t|w

|r|w ≤ |s|w ≤ |t|w

|r|n ≤ |s|n + |s|w + 1 = |s|n + |t|w

= |t|n + |t|w

• Suppose t is n.

n ⇓1
nf

n

By knowing |π| = 1, |n|w = 1 and |n|n = |n|, the proof is trivial.

• Suppose that t is (λy : aN.s)rq. All derivations π for t are in the following form:

ρ : r ⇓α
nf

o µ : (s[y/o])q ⇓β
nf

m

t ⇓αβ
nf

m
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Then, for every u ∈ π,

|π| ≤ |ρ|+ |µ|+ 1 ≤ |r|w + |s[y/o]q|w + 1

= |r|w + |sq|w + 1 ≤ |t|w;

|u|n ≤ max{|r|n + |r|w, |s[y/o]q|n + |s[y/o]q|w}

= max{|r|n + |r|w, |s[y/o]q|n + |sq|w}

= max{|r|n + |r|w,max{|sq|n, |o|}+ |sq|w}

= max{|r|n + |r|w, |sq|n + |sq|w, |o|+ |sq|w}

≤ max{|r|n + |r|w, |sq|n + |sq|w, |r|n + |r|w + |sq|w}

≤ max{|r|n, |sq|n}+ |r|w + |sq|w

≤ max{|r|n, |sq|n}+ |t|w

= |t|n + |t|w;

|u|w ≤ max{|r|w, |s[y/o]q|w, |t|w}

= max{|r|w, |sq|w, |t|w} ≤ |t|w.

If u ∈ π, then either u ∈ ρ or u ∈ µ or simply u = t. This, together with the induction

hypothesis, implies |u|w ≤ max{|r|w, |s[y/o]q|w, |t|w}. Notice that |sq|w = |s[y/o]q|n

holds because any occurrence of y in s counts for 1, but also o itself counts for 1 (see

the definition of | · |w above). More generally, duplication of numerals for a variable in

t does not make |t|w bigger.

• Suppose t is (λy : aH.s)rq. Without loosing generality we can say that it derives from

the following derivation:

ρ : (s[y/r])q ⇓β
nf

n

(λy : aH.s)rq ⇓β
nf

n

For the reason that y has type H we can be sure that it appears at most once in s. So,

|s[y/r]| ≤ |sr| and, moreover, |s[y/r]q|w ≤ |srq|w and |s[y/r]q|n ≤ |srq|n. We have, for

all u ∈ ρ:

|π| = |ρ|+ 1 ≤ |s[y/r]q|w + 1 ≤ |t|w

|u|w ≤ |s[y/r]q|w ≤ |srq|w ≤ |t|w

|u|n ≤ |s[y/r]q|n + |s[y/r]q|w ≤ |srq|n + |srq|w ≤ |t|n + |t|w

and this means that the same inequalities hold for every u ∈ π.
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• Suppose t is caseA s zero r even q odd u. We could have three possible derivations:

ρ : s ⇓α
nf

0 µ : rv ⇓β
nf

n

(caseA s zero r even q odd u)v ⇓αβ
nf

n

ρ : s ⇓α
nf

2n µ : qv ⇓β
nf

m n ≥ 1

(caseA s zero r even q odd u)v ⇓αβ
nf

m

ρ : s ⇓α
nf

2n+ 1 µ : uv ⇓β
nf

m

(caseA s zero r even q odd u)v ⇓αβ
nf

m

we will focus on the case where the value of s is odd. All the other cases are similar.

For all z ∈ π we have:

|π| ≤ |ρ|+ |µ|+ 1

≤ |s|w + |uv|w + 1 ≤ |t|w

|z|w ≤ |s|w + |r|w + |q|w + |uv|w ≤ |t|w

|z|n = max {|s|n + |s|w, |uv|n + |uv|w, |r|n, |q|n}

≤ max {|s|n, |uv|n, |r|n, |q|n}+ |s|w + |uv|w

≤ |t|w + |t|n

This concludes the proof. 2

As opposed to ⇓nf , ⇓rf unrolls instances of primitive recursion, and thus cannot have the

very simple combinatorial behaviour of ⇓nf . Fortunately, however, everything stays under

control:

Proposition 4.2 Suppose that x1 : �N, . . . , xi : �N ⊢ t : A, where A is �-free type.

Then there are polynomials pt and qt such that for every n1, . . . , ni and for every π :

t[x/n] ⇓α
rf
s it holds that:

1. |π| ≤ pt(
∑

i |ni|);

2. If s ∈ π, then |s| ≤ qt(
∑

i |ni|).

Proof: The following strengthening of the result can be proved by induction on the

structure of a type derivation µ for t: if x1 : �N, . . . , xi : �N, y1 : �A1, . . . , yj : �Aj ⊢

t : A, where A is positively �-free and A1, . . . , Aj are negatively �-free (formal definition

below). Then there are polynomials pt and qt such that for every n1, . . . , ni and for every

π : t[x/n] ⇓α
rf
s it holds that
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1. |π| ≤ pt(
∑

i |ni|);

2. If s ∈ π, then |s| ≤ qt(
∑

i |ni|).

In defining positively and negatively �-free types, let us proceed by induction on types:

• N is both positively and negatively �-free;

• �A → B is not positively �-free, and is negatively �-free whenever A is positively

�-free and B is negatively �-free;

• C = �A → B is positively �-free if A is negatively and B is positively �-free. C is

negatively �-free if A is positively �-free and B is negatively �-free.

Please observe that if A is positively �-free and B <: A, then B is positively �-free.

Conversely, if A is negatively �-free and A <: B, then B is negatively �-free. This can be

easily proved by induction on the structure of A. We are ready to start the proof, now.

Let us consider some cases, depending on the shape of µ

• If the only typing rule in µ is (T-Const-Aff), then t ≡ c, pt(x) ≡ 1 and qt(x) ≡ 1.

The thesis is proved.

• If the last rule was (T-Var-Aff) then t ≡ x, pt(x) ≡ 1 and qt(x) ≡ x. The thesis is

proved

• If the last rule was (T-Arr-I) then t ≡ λx : �A.s. Notice that the aspect is � because

the type of our term has to be positively �-free. So, we have the following derivation:

ρ : s[x/n] ⇓β
rf
v

λx : aA.s[x/n] ⇓β
rf
λx : aA.v

If the type of t is positively �-free, then also the type of s is positively �-free. We can

apply induction hypothesis. Define pt and qt as:

pt(x) ≡ ps(x) + 1

qt(x) ≡ qs(x) + 1

Indeed, we have:
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|π| ≡ |ρ|+ 1

≤ ps(
∑

i

|ni|) + 1

• If last rule was (T-Sub) then we have a typing derivation that ends in the following

way:

Γ ⊢ t : A A <: B
Γ ⊢ t : B

we can apply induction hypothesis on t : A because if B is positively �-free, then also

A will be too. Define pt:B(x) ≡ pt:A(x) and qt:B(x) ≡ qt:A(x).

• If the last rule was (T-Case). Suppose t ≡ (caseA s zero r even q odd u). The

constraints on the typing rule (T-Case) ensure us that the induction hypothesis can

be applied to s, r, q, u. The definition of ⇓rf tells us that any derivation of t[x/n] must

have the following shape:

ρ : s[x/n] ⇓α
rf
z

µ : r[x/n] ⇓β
rf
a

ν : q[x/n] ⇓γ
rf
b

σ : u[x/n] ⇓δ
rf
c

t[x/n] ⇓αβγδ
rf

(caseA z zero a even b odd c)

Let us now define pt and qt as follows:

pt(x) = ps(x) + pr(x) + pq(x) + pu(x) + 1

qt(x) = qs(x) + qr(x) + qq(x) + qu(x) + 1

We have:

|π| ≤ |ρ|+ |µ|+ |ν|+ |σ|+ 1

≤ ps(
∑

i

|ni|) + pr(
∑

i

|ni|) + pq(
∑

i

|ni|) + pu(
∑

i

|ni|) + 1

= pt(
∑

i

|ni|).

Similarly, if z ∈ π, it is easy to prove that |z| ≤ qz(
∑

i |ni|).

• If the last rule was (T-Rec). We consider the most interesting case, where the first

term computes to a value greater than 0. Suppose t ≡ (recursionA s r q). By looking

at the typing rule (figure 4.4) for (T-Rec) we are sure to be able to apply induction
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hypothesis on s, r, q. Definition of ⇓rf ensure also that any derivation for t[x/n] must

have the following shape:

ρ : s[x/n] ⇓α
rf
z µ : z[x/n] ⇓β

nf
n

ν : r[x/n] ⇓γ
rf
a

̺0 : qy[x, y/n, ⌊
n
20
⌋] ⇓γ0

rf
q0

. . .

̺|n|−1 : qy[x, y/n, ⌊
n

2|n|−1 ⌋] ⇓
γ|n|−1

rf
q|n|−1

(recursionA s r q)[x/n] ⇓
αβγ(

∏

j γj)

rf
q0(. . . (q(|n|−1)a) . . .)

Notice that we are able to apply ⇓
nf

on term z because, by definition, s has only free

variables of type �N (see figure 4.4). So, we are sure that z is a closed term of type

N and we are able to apply the ⇓
nf

algorithm.

Let define pt and qt as follows:

pt(x) ≡ ps(x) + 2 · qs(x) + pr(x) + 2 · qs(x)
2 · pq(x+ 2 · qs(x)

2) + 1

qt(x) ≡ qs(x) + qr(x) + 2 · qs(x)
2 + qq(x+ 2 · qs(x)

2)

Notice that |z| is bounded by qs(x). Notice that by applying theorem 4.1 on µ (z has

no free variables) we have that every v ∈ µ is s.t.v ≤ 2 · |z|2.

We have:

|π| ≤ |ρ|+ |µ|+ |ν|+
∑

i

(|̺i|) + 1

≤ ps(
∑

i

|ni|) + 2 · |z|+ pr(
∑

i

|ni|) + |n| · pqy(
∑

i

|ni|+ |n|) + 1

≤ ps(
∑

i

|ni|) + 2 · qs(
∑

i

|ni|) + pr(
∑

i

|ni|) +

+2 · qs(
∑

i

|ni|)
2 · pqy(

∑

i

|ni|+ 2 · qs(
∑

i

|ni|)
2) + 1
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Similarly, for every w ∈ π:

|w| ≤ qs(
∑

i

|ni|) + 2 · qs(
∑

i

|ni|)
2 + qr(

∑

i

|ni|) + qqy(
∑

i

|ni|+ |n|)

≤ qs(
∑

i

|ni|) + 2 · qz(
∑

i

|ni|)
2 + qr(

∑

i

|ni|) + qqy(
∑

i

|ni|+ 2 · qs(
∑

i

|ni|)
2)

• In the following cases the last rule is (T-Arr-E).

• t ≡ xs. In this case, obviously, the free variable x has type �Ai (1 ≤ i ≤ j). By

definition x is negatively �-free. This it means that every term in s has a type that

is positively �-free. By knowing that the type of x is negatively �-free, we conclude

that the type of our term t is �-free (because is both negatively and positively �-free

at the same time).

Definition of ⇓rf ensures us that the derivation will have the following shape:

ρi : sj [x/n] ⇓
αj

rf
rj

xs[x/n] ⇓
∏

i αi

rf
xr

We define pt and qt as:

pt(x) ≡
∑

j

psj (x) + 1

qt(x) ≡
∑

j

qsj (x) + 1

Indeed we have

|π| ≤
∑

j

|ρj |+ 1

≤
∑

j

{psj (
∑

i

|ni|)}+ 1

Similarly, if z ∈ π, it is easy to prove that |z| ≤ qz(
∑

i |ni|).

• If t ≡ S0s, then s have type N in the context Γ. The derivation π has the following

form

ρ : s[x/n] ⇓α
rf
z

S0s[x/n] ⇓
α
rf
S0z

Define pt(x) = ps(x)+1 and qt(x) = qs(x)+1. One can easily check that, by induction
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hypothesis

|π| ≤ |ρ|+ 1 ≤ ps(
∑

i

|ni|) + 1

= pt(
∑

i

|ni|).

Analogously, if r ∈ π then

|s| ≤ qs(
∑

i

|ni|) + 1 ≤ qt(
∑

i

|ni|).

• If t ≡ S1s or t ≡ Ps, then we can proceed exactly as in the previous case.

• Cases where we have on the left side a case or a recursion with some arguments, is

trivial: can be brought back to cases that we have considered.

• If t is (λx : �N.s)rq, then we have the following derivation:

ρ : r[x/n] ⇓α
rf
a

µ : a[x/n] ⇓γ
nf

n ν : (s[x/n])q[x/n] ⇓β
rf
v

(λx : �N.s)rq[x/n] ⇓αγβ
rf

v

By hypothesis t is positively �-free and so also r (whose type is N) and sq are positively

�-free. So, we are sure that we are able to use induction hypothesis.

Let pt and qt be:

pt(x) ≡ pr(x) + 2 · qr(x) + psq(x+ 2 · qr(x)
2) + 1

qt(x) ≡ qsq(x+ 2 · qr(x)
2) + qr(x) + 2 · qr(x)

2 + 1

We have:

|π| ≡ |ρ|+ |µ|+ |ν|+ 1

≤ pr(
∑

i

|ni|) + 2 · |a|+ psq(
∑

i

|ni|+ |n|) + 1

≤ pr(
∑

i

|ni|) + 2 · qr(
∑

i

|ni|) + psq(
∑

i

|ni|+ 2 · qr(
∑

i

|ni|)
2) + 1

By construction, remember that s has no free variables of type �N. For theorem 4.1

(z has no free variables) we have v ∈ µ is s.t. |v| ≤ 2 · |a|2. By applying induction
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hypothesis we have that every v ∈ ρ is s.t. |v| ≤ qr(
∑

i |ni|), every v ∈ ν is s.t.

|v| ≤ qsq(
∑

i

|ni|+ |n|)

≤ qsq(
∑

i

|ni|+ 2 · |a|2)

≤ qsq(
∑

i

|ni|+ 2 · qr(
∑

i

|ni|)
2)

We can prove the second point of our thesis by setting qt(
∑

i |ni|) as qsq(
∑

i |ni| + 2 ·

qr(
∑

i |ni|)
2) + qr(

∑

i |ni|) + 2 · qr(
∑

i |ni|)
2 + 1.

• If t is (λx : �N.s)rq, then we have the following derivation:

ρ : r[x/n] ⇓α
rf
a

µ : a[x/n] ⇓γ
nf

n ν : sq[x/n] ⇓β
rf
u

(λx : �N.s)rq[x/n] ⇓αγβ
rf

(λx : �N.u)n

By hypothesis we have t that is positively �-free. So, also r and a (whose type is N)

and sq are positively �-free. We define pt and qt as:

pt(x) ≡ pr(x) + 2 · qr(x) + psq(x) + 1;

qt(x) ≡ qr(x) + 2 · qr(x)
2 + qsq(x) + 1.

We have:

|π| ≡ |ρ|+ |µ|+ |ν|+ 1

≤ pr(
∑

i

|ni|) + 2 · qr(
∑

i

|ni|) + psq(
∑

i

|ni|) + 1

Similarly, if z ∈ π, it is easy to prove that |z| ≤ qt(
∑

i |ni|).

• If t is (λx : aH.s)rq, then we have the following derivation:

ρ : (s[x/r])q[x/n] ⇓β
rf
v

(λx : aH.s)rq[x/n] ⇓β
rf
v

By hypothesis we have t that is positively �-free. So, also sq is positively �-free. r has

an higher-order type H and so we are sure that |(s[x/r])q| < |(λx : aH.s)rq|. Define pt

and qt as:

pt(x) ≡ p(s[x/r])q(x) + 1;

qt(x) ≡ q(s[x/r])q(x) + 1.
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By applying induction hypothesis we have:

|π| ≡ |ρ|+ 1 ≤ p(s[x/r])q(
∑

i

|ni|) + 1

By using induction we are able also to prove the second point of our thesis.

This concludes the proof. 2

Following the definition of ⇓, it is quite easy to obtain, given a first order term t, of

arity k, a probabilistic Turing machine that, when receiving on input (an encoding of)

n1 . . . nk, produces on output m with probability equal to D(m), where D is the (unique!)

distribution such that t D . Indeed, ⇓rf and ⇓nf are designed in a very algorithmic way.

Moreover, the obtained Turing machine works in polynomial time, due to propositions 4.1

and 4.2. Formally:

Theorem 4.4 (Soundness) Suppose t is a first order term of arity k. Then there is

a probabilistic Turing machine Mt running in polynomial time such that Mt on input

n1 . . . nk returns m with probability exactly D(m), where D is a probability distribution

such that tn1 . . . nk  D .

Proof: By propositions 4.1 and 4.2. 2

4.8 Probabilistic Polytime Completeness

In this section, we prove that any probabilistic polynomial time Turing machine (PPTM

in the following) can be encoded in RSLR. The encoding works in similar way as the one

done in 3.4.4. We still need to extend types with pair of base types. Natural numbers,

strings, and everything need for the encoding are exactly the same described in 3.4.5 and

following sections.

4.9 Probabilistic Turing Machines

LetM be a probabilistic Turing machineM = (Q, q0, F,Σ,⊔, δ), where Q is the finite set of

states of the machine; q0 is the initial state; F is the set of final states of M ; Σ is the finite

alphabet of the tape; ⊔ ∈ Σ is the symbol for empty string; δ ⊆ (Q×Σ)×(Q×Σ×{←, ↓,→

}) is the transition function ofM . For each pair (q, s) ∈ Q×Σ, there are exactly two triples
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Example 4.2 Let’s see now an example about how the two machines ⇓rf and ⇓nf works. Suppose to have the following t term:

(λz : �N.λh : �N.recursionN z h (λx : �N.(λy : �N.case�N→N rand zero S1 even S1 odd S0)y))(10)(1110)

For simplify reading let define:

• Be g ≡ (case�N→N rand zero S1 even S1 odd S0).

• Be f ≡ λx : �N.λy : �N.(case�N→N rand zero S1 even S1 odd S0)y.

π :

S1 ⇓1rf S1

S0 ⇓0rf S0

rand ⇓1
rf
rand

S1 ⇓1rf S1 y ⇓1
rf
y

(case�N→N rand zero S1 even S1 odd S0)y ⇓1rf (case�N→N rand zero S1 even S1 odd S0)y

λy : �N.gy ⇓1
rf
λy : �N.gy

ρ0 :

1110 ⇓1
rf
1110

1110 ⇓1
nf

1110 π : λy : �N.gy ⇓1
rf
λy : �N.gy

f1110 ⇓1
rf
λy : �N.gy

ρ1 :

111 ⇓1
rf
111

111 ⇓1
nf

111 π : λy : �N.gy ⇓1
rf
λy : �N.gy

f111 ⇓1
rf
λy : �N.gy

ρ3 :

11 ⇓1
rf
11

11 ⇓1
nf

11 π : λy : �N.gy ⇓1
rf
λy : �N.gy

f11 ⇓1
rf
λy : �N.gy

ρ4 :

1 ⇓1
rf
1

1 ⇓1
nf

1 π : λy : �N.gy ⇓1
rf
λy : �N.gy

f1 ⇓1
rf
λy : �N.gy

1110 ⇓1
rf
1110

1110 ⇓1
nf

1110

ρ0 : f1110 ⇓1
rf
λy : �N.gy

ρ1 : f111 ⇓1
rf
λy : �N.gy

ρ3 : f11 ⇓1
rf
λy : �N.gy

ρ4 : f1 ⇓1
rf
λy : �N.gy

h ⇓1
rf
h

1110 ⇓1
rf
1110

1110 ⇓1
nf

1110

recursionN 1110h (λx : �N.λy : �N.(case�N→N rand zero S1 even S1 odd S0)y) ⇓1rf (λy : �N.gy)((λy : �N.gy)((λy : �N.gy)((λy : �N.gy)z)))

λh : �N.recursionN z h (λx : �N.λy : �N.(case�N→N rand zero S1 even S1 odd S0)y)(1110) ⇓1rf ((λy : �N.gy)((λy : �N.gy)((λy : �N.gy)((λy : �N.gy)z))))

10 ⇓1
nf

1

10 ⇓1
rf
1

λz : �N.λh : �N.recursionN z h (λx : �N.λy : �N.(case�N→N rand zero S1 even S1 odd S0)y)(10)(1110) ⇓1rf λz : �N.((λy : �N.gy)((λy : �N.gy)((λy : �N.gy)((λy : �N.gy)z))))(10)

Then, by applying the machine for ⇓nf we could obtain the following derivation tree. Recall that, for the reason we have rand inside our term, there will be more

than one possible derivation tree.

10 ⇓1
nf

10

rand ⇓
1/2
nf

1 S00 ⇓1nf 100

g(10) ⇓
1/2
nf

100

(λy : �N.gy)10 ⇓
1/2
nf

100

rand ⇓
1/2
nf

0 S1100 ⇓1nf 1001

g(100) ⇓
1/2
nf

1001

(λy : �N.gy)((λy : �N.gy)10) ⇓
1/4
nf

1001

rand ⇓
1/2
nf

0 S11001 ⇓1nf 1001

g(1001) ⇓
1/2
nf

10011

(λy : �N.gy)((λy : �N.gy)((λy : �N.gy)10)) ⇓
1/8
nf

10011

rand ⇓
1/2
nf

1 S010011 ⇓1nf 100110

g(10011) ⇓
1/2
nf

100110

(λy : �N.gy)((λy : �N.gy)((λy : �N.gy)((λy : �N.gy)10))) ⇓
1/16
nf

100110 10 ⇓1
nf

10

λz : �N.((λy : �N.gy)((λy : �N.gy)((λy : �N.gy)((λy : �N.gy)z))))(10) ⇓
1/16
nf

100110

2
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(r1, t1, d1) and (r2, t2, d2) such that ((q, s), (r1, t1, d1)) ∈ δ and ((q, s), (r1, t1, d1)) ∈ δ.

Configurations of M can be encoded as follows:

〈tleft , t, tright , s〉 : SΣ × FΣ × SΣ × FQ,

where tleft represents the left part of the main tape, t is the symbol read from the head

of M , tright the right part of the main tape; s is the state of our Turing Machine. Let the

type CM be a shortcut for SΣ × FΣ × SΣ × FQ.

Suppose that M on input x runs in time bounded by a polynomial p : N → N. Then

we can proceed as follows:

• encode the polynomial p by using function encode, add,mult, dec so that at the end we

will have a function p : �N→ U;

• write a term δ : �CM → CM which mimicks δ.

• write a term initM : �SΣ → CM which returns the initial configuration for M corre-

sponding to the input string.

The term of type �N→ N which has exactly the same behavior as M is the following:

λx : �N.StoNΣ(recursionCM
(p x) (initM (NtoSΣ(x))) (λy : �N.λz : �CM .δ z)).

The main difference with the encoding in 3.4.8 is the presence of rand operator in δ.

4.9.1 Encoding the transition function

Our δ function will take a configuration and will produce in output a new configuration.

δ ≡ λx : �C.ifC (rand = 0)

then // here the value of rand is 0

switch
{0,...,3}
C BtoS(π2)

switch
{0,...,n}
C (π4x) // here the value of π2 is 0.

// Here is the case where π4 is q0; apply shiftdx or shiftsx or the

identity on the tapes, with the relative new state, according to the

original δ function.

. . . // here are the other cases.

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉 // default value
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. . . // here are the other three cases.

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉 // default value

else // here the value of rand is 1

switch
{0,...,3}
C BtoS(π2)

switch
{0,...,n}
C (π4x) // here the value of π2 is 0.

// Here is the case where π4 is q0; apply shiftdx or shiftsx or the

identity on the tapes, with the relative new state, according to the

original δ function.

. . . // here are the other cases.

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉 // default value

. . . // here are the other three cases.

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉 // default value

default // default value

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉

: �C→ C

Obviously, the definition of this function strictly depends on how the function δ of our

Turing machine is made. We allow to flip a coin at each possible step. In the previous

description of δ function we introduce some comments in order to make more readable the

function.

We then get a faithful encoding of PPTM into RSLR, which will be useful in the

forthcoming section:

Theorem 4.5 Suppose M is a probabilistic Turing machine running in polynomial time

such that for every n, Dn is the distribution of possible results obtained by running M on

input n. Then there is a first order term t such that for every n, tn evaluates to Dn.

Example 4.3 Suppose that our probabilistic Turing machine has a δ relation such that

δ(qi, 1) is in relation between (qj , 0,−1) and (qk, 1, 0).

So, our δ will be encoded in this way:

δ ≡ λx : �C.ifC (rand = 0)
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then // here the value of rand is 0

switch
{0,...,3}
C BtoS(π2)

. . . // three cases ahead

switch
{0,...,n}
C (π4x)

. . . // k cases ahead

〈π1x, 1, π3x, qk〉

. . .

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉

else // here the value of rand is 1

switch
{0,...,3}
C BtoS(π2)

. . . // three cases ahead

switch
{0,...,n}
C (π4x)

. . . // i cases ahead

shiftsx 〈π1x, 0, π3x, qj〉

. . .

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉

default // default value

〈π1x, π2x, π3x, π4x, π5x, π6x, qerr〉

2

4.10 Relations with Complexity Classes

The last two sections established a precise correspondence between RSLR and probabilis-

tic polynomial time Turing machines. But how about probabilistic complexity classes,

like BPP or PP? They are defined on top of probabilistic Turing machines, imposing

constraints on the probability of error: in the case of PP, the error probability can be

anywhere near 1
2 , but not equal to it, while in BPP it can be non-negligibly smaller than

1
2 . There are two ways RSLR can be put in correspondence with the complexity classes

above, and these are explained in the following two sections.
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4.10.1 Leaving the Error Probability Explicit

Of course, one possibility consists in leaving bounds on the error probability explicit in

the very definition of what an RSLR term represents:

Definition 4.12 (Recognising a Language with Error ǫ) A first-order term t of ar-

ity 1 recognizes a language L ⊆ N with probability error less than ǫ if, and only if,

both:

• x ∈ L and tx D implies D(0) > 1− ǫ.

• x /∈ L and tx D implies
∑

s>0 D(s) > 1− ǫ.

So, 0 encodes an accepting state of tx and s > 0 encodes a reject state of tx. Theorem 4.4,

together with Theorem 4.5 allows us to conclude that:

Theorem 4.6 (12-Completeness for PP) The set of languages which can be recognized

with error ǫ in RSLR for some 0 < ǫ ≤ 1/2 equals PP.

But, interestingly, we can go beyond and capture a more interesting complexity class:

Theorem 4.7 (12-Completeness for BPP) The set of languages which can be recog-

nized with error ǫ in RSLR for some 0 < ǫ < 1/2 equals BPP.

Observe how ǫ can be even equal to 1
2 in Theorem 4.6, while it cannot in Theorem 4.7.

This is the main difference between PP and BPP: in the first class, the error probability

can very fast approach 1
2 when the size of the input grows, while in the second it cannot.

The notion of recognizing a language with an error ǫ allows to capture complexity

classes in RSLR, but it has an obvious drawback: the error probability remains explicit

and external to the system; in other words, RSLR does not characterize one complexity

class but many, depending on the allowed values for ǫ. Moreover, given an RSLR term t

and an error ǫ, determining whether t recognizes any function with error ǫ is not decidable.

As a consequence, theorems 4.6 and 4.7 do not suggest an enumeration of all languages in

either PP or BPP. This in contrast to what happens with other ICC systems, e.g. SLR, in

which all terms (of certain types) compute a function in FP (and, viceversa, all functions

in FP are computed this way). As we have already mentioned in the Introduction, this

discrepancy between FP and BPP has a name: the first is a syntactic class, while the

second is a semantic class (see [3]).
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4.10.2 Getting Rid of Error Probability

One may wonder whether a more implicit notion of representation can be somehow in-

troduced, and which complexity class corresponds to RSLR this way. One possibility is

taking representability by majority:

Definition 4.13 (Representability-by-Majority) Let t be a first-order term of arity

1. Then t is said to represent-by-majority a language L ⊆ N iff:

1. If n ∈ L and tn D , then D(0) ≥
∑

m>0 D(m);

2. If n /∈ L and tn D , then
∑

m>0 D(m) > D(0).

There is a striking difference between Definition 4.13 and Definition 4.12: the latter is

asymmetric, while the first is symmetric.

Please observe that any RSLR first order term t represents-by-majority a language,

namely the language defined from t by Definition 4.13. It is well known that PP can be

defined by majority itself [3], stipulating that the error probability should be at most 1
2

when handling strings in the language and strictly smaller than 1
2 when handling strings

not in the language. As a consequence:

Theorem 4.8 (Completeness-by-Majority for PP) The set of languages which can

be represented-by-majority in RSLR equals PP.

In other words, RSLR can indeed be considered as a tool to enumerate all functions in a

complexity class, namely PP. It comes with no surprise, since the latter is a syntactic

class.



Chapter 5

Static analyzer for complexity

In this Chapter we are going to “reverse” the main problem analysed by ICC; instead of

focusing on creating a programming language with computational complexity properties,

we focus on developing techniques sound and complete in order to determine if a program

computes in Probabilistic Polytime Time or not.

One of the crucial problems in program analysis is to understand how much time

it takes a program to complete its run. Having a bound on running time or on space

consumption is really useful, specially in fields of information technology working with

limited computing power. Solving this problem for every program is well known to be

undecidable. The best we can do is to create an analyser for a particular complexity class

able to say “yes”, “no”, or “don’t know”. Creating such an analyser can be quite easy: the

one saying every time “don’t know” is a static complexity analyser. The most important

thing is to create one that answers “don’t know” the minimum number of time as possible.

We try to combine this problem with techniques derived from Implicit Computational

Complexity (ICC). ICC systems usually work by restricting the constructions allowed

in a program. This de facto creates a small programming language whose programs

all share a given complexity property (such as computing in polynomial time). ICC

systems are normally extensionally complete: for each function computable within the

given complexity bound, there exists one program in the system computing this function.

They also aim at intentional completeness: each program computing within the bound

should be recognised by the system. Full intentional completeness, however, is undecidable

and ICC systems try to capture as many programs as possible (that is, answer “don’t

know” as little time as possible).
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Having an ICC system characterising a complexity class C is a good starting point for

developing a static complexity analyser.

There is a large literature on static analysers for complexity bounds. We develop an

analysis recalling methods from [25, 8, 27]. Comparatively to these approaches our system

works with a more concrete language of lists, where variables, constants and commands

are defined; we are also sound and complete with respect to the Probabilistic Polynomial

time complexity class (PP).

We introduce a probabilistic variation of the Loop language. Randomised computa-

tions are nowadays widely used and most of efficient algorithms are written using stochastic

information. There are several probabilistic complexity classes and BPP (which stands

for Bounded-error Probabilistic Polytime) is considered close to the informal notion of

feasibility. Our work would be a first step into the direction of being able to capture real

feasible programs solving problems in BPP (BPP ⊆ PP).

In the following we are going to present fundamental papers on which we based our

analysis. Notice also that we are no more interested in functional programming, as seen in

the previous chapters. We are going to apply and study ICC techniques over imperative

paradigm.

5.1 The complexity of loop programs

In 1967, Alber R.Meyer and Dennis M.Ritche published a paper called “The complexity

of loop programs” [32]. In this paper the authors ask themselves if (and how) it is possible

to determine an upper bound on the running time of a program. Of course theory says

that this cannot be done automatically for all programs, but for particularly categories of

interesting programs it can be done.

We are interested in the formalism presented by the authors. The class of programs

proposed is called “loop programs” and consists of imperative programs built by using

assignments and loop iteration.

Definition 5.1 A Loop program is a finite sequence of instructions for changing non-

negative integers stored in registers. Instructions are of five types:

• X1 = X2
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• X1 = X1 + 1

• X1 = 0

• loopX1

• end

where X1, X2 are names of some registers.

Formally, no semantics is defined but authors gives an intended meaning for each

operation. The first three operations have the same meaning that they have in every

imperative programming language. They are associations between a value of an expression

on the right side and a register location on the left side. The previous value stored in the

register is erased and a new value is associated. Notice that these are the only instructions

that write values in registers.

Every sequence of instructions between a loopX1 and an end is executed a number

of times equal to the value in the register X1. For every loopX1 instruction, there is a

matched end; otherwise, the program is not well formed. Notice also that if C is a list of

commands well formed, then the algorithm 1

Algorithm 1 Scratch of a program

loop (X1)

C

EndLoop

iterates the list of commands C exactly X1 number of times. Even if the commands

in C alter the value of X1, the number of iteration of the loop is not modified. So, every

loop program cannot loop indefinitely and always terminates.

Example 5.1 Consider the following program, where we modify the value in the register

X1 during a loop depending on X1 itself. The program terminates.

loop (X1)

X1 = X1 + 2

EndLoop
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If X1 is 0 before the loop, then the value does not change after the execution of the

program. If X1 has a value greater than 0, then the execution of the program triplicates

the value of X1. Indeed, if at the beginning X1 is 3, then at the end it has value 9.
2

Meyer and Ritche present a way to give a bounding time for execution of the program.

For our purpose these results are not important because the system is not working on

a specific complexity class such as P, L or other classes. The system presented above is

enough powerful; indeed, authors shows that there are a lot of possible functions repre-

sentable with this scheme: the group of Primitive Recursive Functions.

In the following we are going to use the rules and the paradigm presented in this

chapter.

5.2 Flow calculus of MWP-bounds

In 2009, Neil D.Jones and Lars Kristiansen [25] presented a method for certifying poly-

nomiality of running time of imperative loop programs [32]. Authors define two relations.

One is a semantic relation between a program C and a mwp-matrix A, written � C : A.

This relation says that if � C : A, then every value computed by the program C is bounded

by a polynomial in the size of inputs. The latter relation is ⊢ C : A, where C is a program

and A a mwp-matrix, holds if and only if there is a derivation, using the rules of the

MWP -system, where the radix is ⊢ C : A.

Let’s now define formally the syntax and operators in such system.

Definition 5.2 (Syntax) Expressions and commands are defined by the following gram-

mar:

X ∈ variable ::= X1 |X2 |X3 . . .

b ∈ boolean ::= e = e | e ≤ e

e ∈ expression ::= X | e+ e | e× e

C ∈ command ::= skip |X ::= e | loopX {C} |C;C | If b ThenC ElseC | While b {C}

where variable X, appearing as the one controlling the loop, cannot appear inside the

loop command C.
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The semantics associated to every expressions and commands is the standard one, the

one expected from its syntax. Variables are denoted as X1, X2, X3, . . . and at any point

of the program they hold a value, a natural number. The expressions are evaluated using

the standard way and no side effect could appear during the execution of the program.

In the following we define a relation between commands and variables and a relation

between expressions, variables and values.

Definition 5.3 Let C1 be a command whose variables are a subset of {X1, . . . , Xn}. The

command execution relation

||C1||(x1, . . . , xn  x′1, . . . , x
′
n)

holds if the command terminates and the variables X1, . . . , Xn having, respectively,

x1, . . . , xn as value, take values x′1, . . . , x
′
n after the execution of the command.

This relation is quite similar to semantic definition for commands. Indeed, given a

command C1, a state of the system (the set of all the variables and their values) there

is a relation between them and the output state, where each variable X1, . . . , Xn take

x′1, . . . , x
′
n.

Similarly we can define a analogue relation with expressions.

Definition 5.4 Let e1 be an expression working with variables X1, . . . , Xn having value,

respectively, x1, . . . , xn. The expression execution relation

||e1||(x1, . . . , xn  a)

holds if the evaluation of the expression e1 is a.

The reader could easily see that this definition is quite similar, as the previous one,

to the definition of evaluation of an arithmetic expression in the standard semantics for

imperative languages. Indeed, in a particular state, where variablesX1, . . . , Xn have value,

respectively, x1, . . . , xn, the result of the evaluation is a.

Let’s see some example in order to understand the meaning of these relations.

Example 5.2 Consider the following program

X1 ::= 1
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loopX2 {X1 ::= X1 +X1}

The number of iterations of the loop command depends on variable X2. At every cycle

the value of the variable X1 is doubled. It’s clear that this program requires exponential

time respect to the value of the variable X2.

We can easily say that:

||X1 ::= X1 +X1||(x1  x′1)

implies x′1 = 2 · x1, that is ok because is polynomially correlated, but

||loopX2 {X1 ::= X1 +X1}||(x1, x2  x′1, x
′
2)

implies x′1 = 2x2 · x1 that is exponentially correlated.

It is, therefore, important to keep track how flow’s value from variable to variable may

interfere with time computation. Should be clear that some particular patterns, as the

one above, where we duplicate a value at every cycle, should not be accepted. There are

a lot of patterns that should not be allowed and sometimes is not very easy to understand

which of them leads to exponential blowup in time and space usage. For this reason is

necessary to focus on the particular flows that occur between variables. 2

5.2.1 MWP flows

Authors describe three kinds of flows. They are called m-flows, which stands for “maxi-

mum”, w-flows, which stands for “weak” and p-flows, which stands for “polynomial”.

They define a mwp-bound an expression of the following form:

max (x+ p(y)) + q(z)

where x,y and z are disjoint sets of variables and p, q two polynomials built up from

positive constants and variables by applying just addition “+” and multiplication “·”.

Variables in x are the ones tagged with m-flows, the one in y are the ones tagged with

w-flows and finally the ones in z are the ones that express an p-flow.

Example 5.3 Here is an example on how this flow can be recognised. Consider the

following program:

loopX3 {X1 := X1 +X2}
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If ||loopX3 {X1 +X2}||(x1, x2, x3  x′1, x
′
2, x
′
3) holds, then we can derive some bounds

for each single variable’s value in output. The variables con be bound with the following

inequalities:

x′1 ≤ x1 + x2 · x3

x′2 ≤ x2

x′3 ≤ x3

The bounds given above could be written in few different ways. the polynomial bound

x1 + x2 · x3 could has been seen as the result of max{x1}+ (x2 · x3) or max{x2 · x3}+ x1.

The result does not change. 2

In order to resolve the problem of the example, we need to introduce the algebra on

which the type system is based. Type system will tell us exactly how to tag correctly

variables.

5.2.2 Algebra

Definition 5.5 (Scalars) A scalar is an element of Values = {0,m,w, p}. These ele-

ments are ordered as 0 < m < w < p.

We can, therefore, define the least upper bound between two elements of Values. As

usual, let a, b be elements of Values: the least upper bound, written as a + b, is defined

as a if a ≥ b, otherwise is b.

Product of two elements of Values, written as a× b is defined as a+ b if both elements

are different from 0, otherwise the result is 0. With these premises, it is easy to check that

(Values,+,×) is a semiring.

Definition 5.6 (Vectors) We use V ′, V ′′, V ′′′, . . . to denote column vectors over Values.

With V ′i we denote the i-th element of the vector.

The least upper bound between two vectors of the same size, denoted as V ′ ⊕ V ′′, is

a new vector defined as the least upper bound componentwise. Formally (V ′ ⊕ V ′′)i =

V ′i + V ′′i for every index i.

We can also define scalar product between a value a of Values and a vector V ′. It is

defined exactly as usual, that is, by multiplying every element of V ′ by a.
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Definition 5.7 (Matrices) We use A,B,C, . . . to denote squared matrices over Values.

With Ai,j we indicate the element in the i-th row and j-th column.

Least upper bound between two matrices of the same size is defined componentwise, as

is for the vectors. It is possible also to define a partial order over this algebra of matrices.

The usual symbols ≥,≤, >,< have their usual meaning and we could say that A ≥ B if

and only if the relation ≥ is satisfied componentwise.

There are particular matrices such as the zero matrix 0, the one filled with 0 and the

identity matrix I. Finally we can define product between matrices. As usual the product

is made with the row-column mode. A⊗B at position i, j has value
∑

k(Ai,k ×Bk,j).

Definition 5.8 (Closure Operator) Given a matrix A, an unary operator ∗ (called the

closure operator), we define the closure operator as the infinite sum:

I⊕A⊕A2 ⊕A3 ⊕A4 ⊕ . . .

The closure operator is well defined in every closed semiring and it is possible to prove

that A∗ = I⊕ (A⊗A∗).

Definition 5.9 (Substitution) Let A be a matrix and V ′ a column vector, we indicate

with A
k
←− V ′ the matrix obtained by substituting the k-th column of A with V ′. Formally,

we can define it in the following way. Let B = A
k
←− V ′:

Bi,j =







Ai,j if j 6= k

V ′i if i = k

5.2.3 Typing

The calculus MWP gives a set of rules for typing expressions and commands generated

by the grammar (definition 5.2) of the system. Expressions are typed with vectors and

commands are typed with matrices.

Definition 5.10 (Typing rules for expressions) Typing rules for expressions are pre-

sented in figure 5.1. Notice that there are several ways to type an expression: there is not

an unique assignment. Rule (E1) tells us that a variable can be labelled with value m but

rule (E2) assures that we can label it also with bigger value w. In general, rule (E2) tells
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us that we could label every variable appearing in an expression with value w. Finally,

rules (E3) and (E4) state how to type a sum between two expressions. Notice that these

two rules are quite similar.

(E1)
⊢ Xi : [0, . . . , 0

︸ ︷︷ ︸

i−1

,m, 0, . . .]T
(E2)

⊢ e : V ′ s.t. ∀Xi ∈ var(e1).V
′
i = w

⊢ e1 : V
′ ⊢ e2 : V

′′

(E3)
⊢ e1 + e2 : pV

′ + V ′′
⊢ e1 : V

′ ⊢ e2 : V
′′

(E4)
⊢ e1 + e2 : V

′ + pV ′′

Figure 5.1: MWP typing rules for expressions

A rule for typing the multiplication between expression is not presented in the original

paper, even if expressions multiplication appears in the grammar. Let’s see some examples,

in order to understand how typing rules work.

Example 5.4 [Typing an expression] We have seen from definition 5.10 how to type

expressions. In the following we will see that it is possible to type same expressions with

different types.

Consider the following expression (X1+X2)+(X3+X4). One possible typing derivation

is the following one:

⊢ X1 : [m, 0, 0, 0]T ⊢ X2 : [0,m, 0, 0]T

⊢ X1 +X2 : [p,m, 0, 0]T
⊢ X3 : [0, 0,m, 0]T ⊢ X4 : [0, 0, 0,m]T

⊢ X3 +X4 : [0, 0, p,m]T

⊢ (X1 +X2) + (X3 +X4) : [p, p, p,m]T

but is not the only one correct. We could type the same expression in these following

ways. One derivation could be:

(X1 +X2) + (X3 +X4) : [w,w,w,w]
T

and another one could be:

⊢ X1 +X2 : [w,w, 0, 0]
T

⊢ X3 : [0, 0,m, 0]T ⊢ X4 : [0, 0, 0,m]T

⊢ X3 +X4 : [0, 0,m, p]T

⊢ (X1 +X2) + (X3 +X4) : [w,w, p, p]
T
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All of these three derivations are strongly different but they are typing the same ex-

pression. Notice also that by the rule (E2), (E3), (E4) we can easily understand that at

most one variable can be typed with value m. Once one is labelled with m, all the other

are labelled with p. 2

We need now to introduce typing rules for commands. Every command is typed with

a matrix. As the vector, for expression, was conveying information about the relation

between the output value and variables appearing in the expression, each column of the

matrix represents a relation between the specific variable and all the other ones.

Definition 5.11 (Typing rules for commands) Typing rules for commands are shown

in figure 5.2. Notice the side condition for the rule (L) expressing that the matrix asso-

ciates to the command inside the loop does not have to present value greater than m on

the main diagonal. It is a reasonable condition. Indeed, the presence of a value, in the

main diagonal, greater than m could be a sign of a too-fast growth of some variable. The

matrix A⊞k represents an empty matrix where, for each column j we put a value p on row

k if ∃i such that A∗i,j = p. This operation creates a perturbed matrix of initial matrix A∗.

We put a value p in position k, j to keep track that final values depends also on value of

Xk.

Condition on the matrix associated to the command inside the while loop tells us that

the only thing we are allowed to do is a permutation of the variables’ values.

(S)
⊢ skip : I

⊢ e1 : V
′

(A)
Xi ::= e1 : I

i
←− V ′

⊢ C1 : A ⊢ C2 : B (C)
⊢ C1;C2 : A⊗B

⊢ C1 : A ⊢ C2 : B (I)
If b1 ThenC1 ElseC2 : A⊕B

⊢ C1 : A ∀i.A∗i,i = m
(L)

loopXk {C1} : A
∗ ⊕A⊞k

⊢ C1 : A ∀i.A∗i,i = m ∧ ∀ij.A∗i,j 6= p
(W)

⊢ While b1 {C1} : A
∗

Figure 5.2: MWP typing rules for commands
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5.2.4 Main Result

Authors provide a proof concerning polysize bound for variables’ value. Notice that this

does not mean that a well typed program terminates. The system does not give any bound

on while-loop iteration. Authors focus to computed values during the execution and not

after its termination.

Be an honest polynomial a polynomial build up from constants in N and variables by

applying the operators + (addition) and x (multiplication). Please, note that any honest

polynomial p is monotone in all its variables, i.e. we have p(x, y, z) ≤ p(x, y + 1, z) for all

x, y, z.

Theorem 5.1 (Polynomial bound size of values) ⊢ C1 : A implies � C1 : A.

The theorem says that if a command is typable in MWP -system, then every value

computed by C1 is bounded by a polynomial in the size of input. Let see the outline of

the proof.

Proof:[Outline] Proof of soundness is proved by following these steps. We are going

to avoid technical details and complete proof transcription that can be easily found in

[25].

• First the following lemma is proved. If ⊢ e1 : V ′ then � e1 : V ′. It is proved by

structural induction on the typing tree of e1. The thesis should not be so surprising

since expressions can be created by using variables, sum and multiplication.

• Then by structural induction on the command C1, they analyse all the cases .

• For the rule (S), (A) the proof is trivial, while for rules (C), (I) by using induction

hypothesis on the premises, they can create some correct MWP -bounds for the final

command.

• The most important case is of course the one concerning the loop command. This

particular thesis is proved by using a lemma, the following one.

• Let C1
0 = skip and C1

n+1 = C1
n;C1. Assume that � C1 : A and that A∗i,i = m

for all i. Then for any j ∈ {1, . . . ,m} there exists a fixed number o and an honest

polynomial p, q such that for any n we have:

||C1
n||(x1, . . . , xn  x′1, . . . , x

′
n)⇒ xk ≤ max (y, q(z)) + (n+ 1)op(h)
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where y = {xi|A
∗
i,j = m} and z = {xi|A

∗
i,j = w} and h = {xi|A

∗
i,j = p}. Moreover

neither the polynomial p nor the polynomial q depends on n or o and if the list h is

empty, then p(h) is 0.

Notice how the lemma is talking about the relation � and not about the relation ⊢.

However, it assumes � C1 : A but it adds also all the constraints needed by the typing

rule (L). In this way we can easily talk about the following thesis:

If � C1 : A and A∗i,i for all i, then � loopXk {C1} : A
∗ ⊕A⊞k

• A particular note has to be done for the while command. There is no upper bound on

the number of times the while command loops its body. Anyhow, the side condition

tells us that on the main diagonal there are just m flows and no p can appear inside

the matrix. This condition means that the values of the variables inside the body of

the while are iteration independent. All the datas are polynomially bounded even if

the while continues indefinitely.

2

5.2.5 Indeterminacy of the calculus

In [25] the authors made some final digression about the complexity of the system. What

follows are, so, the results concerned the complexity and proved by Kristiansen and Jones.

As should be clear from typing rules in figure 5.1 and 5.2, the calculus is not deterministic.

We can associate many different matrices to a single command. In this way, the number

of possible typing tree for each single command is very big. It has been proved by the

author that the problem of typing a command in MWP -system lays NP.

Theorem 5.2 (Complexity) The derivability problem is in NP.

Proof: Given a command C1 and a matrix A we have to decide whether ⊢ C1 : A holds

or not. Clearly, every single typing rule is PTIME decidable when the premises and the

conclusion are satisfied and exists a polynomial bound on the depth and total size of any

proof tree whose conclusion is ⊢ C1 : A. Rules are compositional and so we can re-create

the derivation tree by starting from the bottom and check whether the inference rules of

the calculus are satisfied or not. As we have seen in figure 5.1, there are non deterministic

choices about which rule we have to apply for expressions. This leads us to a blow-up on
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the number of possible derivation tree; it’s easy to notice that sometimes the number of

possible trees grows exponentially in the size of the depth. 2

In conclusion, the system presented in [25] checks whether the value of computed

variables is polynomially bound respect to the value in input. We could say that MWP -

system is sound for PSPACE, but this is not completely true seeing that it could type

also programs that runs indefinitely. No theorem of soundness respect to a complexity

class is presented in the paper.
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Chapter 6

Imperative Static Analyzer for Probabilistic

Polynomial Time

Our system is called iSAPP, which stands for Imperative Static Analyser for Probabilistic

Polynomial Time. It works on a prototype of imperative programming language based on

the Loop language [32]. The reader will immediately notice the lack of a While com-

mand (thus, the programs in our language are restricted to compute Primitive Recursive

functions even before we start our analyse). The main purpose of this paper is to present

a minimal probabilistic polytime certifier for imperative programming languages. iSAPP

can be extended with While, by putting constraints on the guard and on the body of

While.

Following ideas from [25, 8] we “type” commands with matrices and expressions with

vectors. The underlying idea is that these matrices express a series of polynomials bound-

ing the size of variables, with respect to their input size. The algebra on which these

matrices and vectors are based is a finite (more or less tropical) semi-ring.

iSAPP works on lists (or on stacks). Arithmetic is done using the size of lists. For

example, e + e actually stands for concat(e, e). Thus, we bound the size of the lists

handled by the program, even is these could represent larger numbers (e.g. using binary

lists for integers). Similarly, iterations are controlled by the size of the list. Thus, our

loop command is closer to a foreach (element in the list) than to a for (going up to the

value represented by the list).
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6.1 Syntax

The underlying system is based on lists of numbers. We denoted lists with 〈〉 (in this case

it is an empty list) and terms of lists with letters t, s, r. iSAPP works independently with

respect to list implementation.

Definition 6.1 Terms, constant and commands are defined as follows:

c ∈ Constant ::= 〈〉 | 〈t〉 | 〈ts〉 | . . .

X ∈ variable ::= X1 |X2 |X3 . . .

b ∈ boolean ::= e = e | e ≤ e | ¬b | b ∧ b | b ∨ b | true | false | rand | testzero{e}

e ∈ expression ::= c |X | concat(e, e) | tail(e) | head{e}

C ∈ command ::= skip |X ::= e | loopX {C} |C;C| If b ThenC ElseC

Focusing on expressions, the reader will notice that no sum or subtraction is defined.

While working on lists, concat(e, e) is the formal way to express e+ e and tail(e) stands

for e − 1. Indeed when needed (e.g. to simulate TMs), we use the length of the lists to

encode values. In the following we will use +,− instead of concat(, ), tail() where the

list-representation is not necessary.

Constants are so encoded in the following way: 0 is 〈〉, 1 is 〈t〉, 2 is 〈ts〉, 3 is 〈tsr〉 and

so on. testzero{e} tests whether e is a list starting with 0. Indeed, 0 may be part of

language of letters.

iSAPP proposes the command loop {}, instead of well known while or for com-

mands. The command loop is semantically quite similar to for command. Informally,

it is a controlled loop, where the number of iteration cannot be changed during loop

execution.

6.2 Algebra

Before going deeply in explaining our system, we need to present the algebra on which

it is based. iSAPP is based on a finite algebra of values. Set of possible values is

Values = {0, L,A,M} and these are ordered in the following way 0 < L < A < M . The

idea behind these elements is to express how the value of variables influences the result
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× 0 L A M

0 0 0 0 0

L 0 L A M

A 0 A A M

M 0 M M M

+ 0 L A M

0 0 L A M

L L A A M

A A A A M

M M M M M

∪ 0 L A M

0 0 L A M

L L L A M

A A A A M

M M M M M

Table 6.1: Multiplication, addition and union of values

of an expression. 0 expresses no-dependency between variable and result; L (stands for

“Linear”) expresses that the result linearly depends with coefficient 1 from this variable.

A (stands for “Additive”) expresses the idea of generic linear dependency. M (stands for

“Multiplicative”) expresses the idea of generic polynomial dependency.

We are using a slight different algebra respect to the one presented in [24]. This choice

has been made in order to get more expressive informations from a “certificate”. We pur

more emphasis on how much each variable appears during the exectution. In this way

we can (if exists) easily extract a polynomial bounding the time exectution and size of

variables.

Let’s see one example. Suppose we are working with six variables and we have the

following expression: X1 + 3X2 + 4X3 + 5X2
4X

3
5 . We associate 0 to variable X6, L to X1,

A to X2 and X3 and finally M to X4 and X5. This abstracts the polynomial by only

keeping the way its result depends on each variable.

We define sum, multiplication and union in our algebra as expressed in Table 6.1 and

we can easily check that (Values,+,×) is a semi-ring. The reader will immediately notice

that L + L gives A, while L ∪ L gives L. This is the only difference between the two

operations; The operator ∪ works as a maximum.

Over this semi-ring we create a module of matrices, where values are elements of

Values. We define a partial order ≤ between matrices of the same size as component wise

ordering. Particular matrices are 0, the one filled with all 0, and I, the identity matrix,

where elements of the main diagonal are L and all the others are 0.

Multiplication and addition between matrices work as usual1 and we define point-wise

union between matrices: (A ∪B)i,j = Ai,j ∪Bi,j . Notice that A ∪B ≤ A+B. As usual,

1That is: (A+B)i,j = Ai,j +Bi,j and (A×B)i,j =
∑

Ai,k ×Bk,j
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multiplication between a value and a matrix corresponds to multiplying every element of

the matrix by that value.

We can easily check associativity of matrix multiplication and distributivity with re-

spect to sum. We define power of matrices as usual: An is An−1 × A, where A0 is

I.

We can now move on and present some new operators and properties of matrices.

Given a column vector V of dimension n, a matrix A of dimension n × m an index i

(i ≤ m), we indicate with A
i
←− V a substitution of the i-th column of the matrix A with

the vector V .

Next, we need two closure operators. The “union closure” is the union of all powers

of the matrix: A∪ =
⋃

i≥0A
i. It is always defined because the set of possible matrices

is finite. The “multiplication closure” is the smallest fixed point in the chain of powers:

A∗ is An such that An ×A = An and n is the smallest integer verifying this property.

Multiplication closure is not always defined as the chain of powers can loop over different

values. Of course A∗ is contained in
⋃

i≥0A
i, but the union closure is always defined.

Indeed if A∗ exists, then clearly A∪ is defined. If A∗ is not defined because the chain

of powers loop, then A∪ is still defined because it contains also the union of all of these

chain of powers. So, the union exists.

Consider for example A =
[
0 0 L
L 0 0
0 L 0

]

. It is easy to check that A∗ is not defined while

A∪ =
[
L L L
L L L
L L L

]

.

All of these operators are implemented in a program that can be found in [37].

Finally, we’ll need a “merge down” operator. Its use is to propagate the influence of

some variables to some other and it is used to correctly detect the influence of variables

controlling loops onto variables modified within the loop (hence, we can also call it “loop

correction”). The last row and column of the matrix is treated differently because it will

be use to handle constants and not variables.

Merge down is applied independently on each column of the matrix, thus we will

describe the merge down of a column-vector. To understand the idea behind this, consider

a polynomial P over n − 1 variables, the dependency of the result to these variables can

be expressed as a n-large vector over our semi-ring (the last component being used for

constants). The idea of merge down is to find the dependency of iterating this polynomial
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Xk times (and putting the result into Xj each time (that is, iterating the assignment

Xj ::= P ).

• (V ↓k,j)n = Vn (V ↓k,j)j = Vj (V ↓k,j)i = Vi if Vj = 0

• (V ↓k,j)k =







M if ∃k < n, k 6= k such that Vk 6= 0

A otherwise and Vn 6= 0

Vk otherwise

• (V ↓k,j)i =







M if Vi 6= 0 and Vj 6= 0

Vi otherwise

The first cases say that the last line (corresponding to constant) and the j-th line

(“diagonal”) should not be modified ; similarly, if the j-th line (“diagonal”) is empty,

the vector should not be modified. The second case explains what happens to the line

controlling the merge down: it is replaced by a M (resp. A) if there is another variable

(resp. a constant) influencing the result. The last case “upgrades” any non-0 value to M

(if the j-th line is also non-0).

Let’s explain the cases with examples. Consider the polynomial X2 +X3. As stated

earlier, we can associate 0 to X1 and constants, and L to X2 and X3. This corresponds to

the vector V =

[
0
L
L
0

]

. Now, suppose we iterate X1 times the assignment X2 ::= X2 +X3.

The resulting effect is X2 ::= X2 +X3 ×X1. This polynomial can be associated with the

vector

[
M
L
M
0

]

which is exactly V ↓1,2. This shows why both the “merge down” and “other

cases” lines must be replaced by M .

Next, if we iterateX1 times the assignmentX3 ::= X3+2, then the result isX3 ::= X3+

2×X1. Similarly, we have

[
0
0
L
A

]↓1,3

=

[
A
0
L
A

]

.

Lastly, iterating Xj ::= P when X does not appear in P does not change the result,

thus if there is a 0 on the j-th line, we should not change the vector.

Note that the merge down will not correspond directly to iteration but to some cor-

rection applied after iteration. So the previous examples are only hints at why we need it

that way.

For matrices, A↓k is obtained by replacing each column Aj by Aj
↓k,j .
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6.3 Multipolynomials and abstraction

Following [31], we use multipolynomials to represents several bounds in one object. These

multipolynomials are abstracted as matrices.

First we need to introduce the concept of abstraction of polynomial. Abstraction gives

a vector representing the shape of our polynomial and how variables appear inside it.

Definition 6.2 (Abstraction of polynomial) Let p(X) a polynomial over n variables,

⌈p(X)⌉ is a column vector of size n+ 1 such that:

• If p(X) is a constant c, then ⌈p(X)⌉ is [0, . . . , 0, L]T

• Otherwise if p(X) is Xi, then ⌈p(X)⌉ is [0, . . . , 0
︸ ︷︷ ︸

i−1

, L, 0, . . . , 0]T.

• Otherwise if p(X) is αXi (for some constant α > 1), then ⌈p(X)⌉ is [0, . . . , 0
︸ ︷︷ ︸

i−1

, A, 0, . . . , 0]T.

• Otherwise if p(X) is q(X) + r(X), then ⌈p(X)⌉ is ⌈q(X)⌉+ ⌈r(X)⌉.

• Otherwise, p(X) is q(X) · r(X) (where none of the polynomials is a constant), then

⌈p(X)⌉ is M · ⌈q(X)⌉ ∪M · ⌈r(X)⌉.

Size of vectors is n + 1 because n cells are needed for keeping track of n different

variables and the last cell is the one associated to constants. We can now introduce

multipolynomials and their abstraction.

Definition 6.3 A multipolynomial is a tuple of polynomials. Formally P = (p1, . . . , pn),

where each pi is a polynomial.

Abstracting a multipolynomial naturally gives a matrix where each column is the

abstraction of one of the polynomials.

Definition 6.4 Let P = (p1, . . . , pn) be a multipolynomial, its abstraction ⌈P ⌉ is a matrix

where the i-th column is the vector ⌈pi⌉.

In the following, we use polynomials to bound size of single variables. Since handling

polynomials is too hard (i.e. undecidable), we only keep their abstraction. Similarly, we

use multipolynomials to bound the size of all the variables of a program at once. Again,

rather than handling the multipolynomials, we only work with their abstractions.
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Definition 6.5 (Extraction of set from polynomial) Given polynomials p, q, we de-

fine (p)� in the following way. (n)� is {n}; (X)� is {X}; (p+ q)� is (p)� ∪ (q)� ; (p · q)�

is {p · q}

Main purpose of the operator (p)� is to create a set representation of the polynomial,

erasing some duplication. The next operator implements the inverse operation, creating a

polynomial from a set of terms. Of course, these terms have to be positive polynomials.

Example 6.1 Let’s see how the extraction operator works. (X +X)� is {X}, while

(2X)� is exactly {X}. This is correct and it is deliberate. This operation is needed just

for capture the shape of a polynomial and it is strictly connected with the union between

values of our algebra. 2

Definition 6.6 (From set to polynomial) Be (·)↓ the operator such that (M)↓ is M

and (M1, . . . ,Mn)↓ is M1 + . . .+Mn.

Should be clear that if we combine both operator we obtain a new polynomial where

some equal terms are erased. This is exactly what we need in order to create a approxi-

mation of concept of union of matrices.

Definition 6.7 (Union of polynomial) We define the operator (p⊕q) over polynomials

in the following way. Be p the canonical form of the polynomial p. We have (p ⊕ q) =

( (p)� ∪ (q)� )↓

So, first we take the normal form of inputs, then we extract the set representing

the monomials. Union of sets will erase duplication of equal monomials. We recreate a

polynomial from the set and finally we calculate its canonical form. Let’s see some example.

Suppose we have these two polynomials: X1+2X2+3X2
4X5 and X1+3X2+3X2

4X5+X6.

Call them, respectively p and q. We have that (p⊕ q) is X1 + 5X2 + 3X2
4X5 +X6.

We can now introduce the composition and sum between abstractions of polynomials.

Definition 6.8 Given two multipolynomials P and Q over the same set of variables, we

define addition in the following way: (P +Q)i = Pi +Qi.

Definition 6.9 Given two multipolynomials P and Q over the same set of variables, we

define composition in the following way: (P ⊙Q)(X1, . . . , Xn) = Q(P1(X), . . . , Pn(X)).
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6.4 Semantics

The semantics of iSAPP is similar to the standard one of imperative programming lan-

guages. We use the following notation σ[n/x] to intend a function that on input x returns

n, otherwise it behaves as σ.

All the cases are defined in figure 6.1, 6.2, 6.3 where→α
c ,→a,→

α
b express, respectively,

semantics of commands, semantics of arithmetic expressions and semantics of boolean

expressions.

〈X,σ〉 →a σ(X) 〈l1, σ〉 →a l1

〈e1, σ〉 →a 〈t〉 〈e2, σ〉 →a 〈s〉

〈concat(e1, e2), σ〉 →a 〈ts〉

〈e1, σ〉 →a 〈ts〉

〈tail(e1), σ〉 →a 〈t〉

〈e1, σ〉 →a 〈〉

〈tail(e1), σ〉 →a 〈〉

〈e1, σ〉 →a 〈ts〉

〈head{e1}, σ〉 →a 〈s〉

〈e1, σ〉 →a 〈〉

〈head{e1}, σ〉 →a 〈〉

Figure 6.1: Semantics of arithmetic expressions

Semantics for boolean value is labelled with probability. As expected, most of boolean

operator have probability 1, while operator rand reduced to true or false with probability

1
2 . For this reason, also semantics of commands is labelled with a probability. It tells us

the probability to reach a particularly final state after having executed a command from

an initial state.

The most interesting semantics is the one for command loopXk {C}. Semantics tells

us that if the value of the variable controlling the loop is zero (a shortcut for empty list),

then the loop is not executed. Otherwise we execute the loop a number of times equal to

the length of the list representing the value inside the variable Xk. Of course, the final

probability associated to the loop is the product of all the probabilities associated to each

command C iteration.
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s is 0
testzero{〈ts〉} →1

b true

s is not 0
testzero{〈ts〉} →1

b false
testzero{〈〉} →1

b false

〈rand, σ〉 →
1

2

b true 〈rand, σ〉 →
1

2

b false

〈true, σ〉 →1
b true 〈false, σ〉 →1

b false

〈b1, σ〉 →
α
b true

〈¬b1, σ〉 →
α
b false

〈b1, σ〉 →
α
b false

〈¬b1, σ〉 →
α
b true

〈e1, σ〉 →a l1 〈e2, σ〉 →a l2

〈e1 = e2, σ〉 →
1
b true

if |l1| = |l2|

〈e1, σ〉 →a l1 〈e2, σ〉 →a l2

〈e1 = e2, σ〉 →
1
b false

if |l1| 6= |l2|

〈e1, σ〉 →a l1 〈e2, σ〉 →a l2

〈e1 ≤ e2, σ〉 →
1
b true

if |l1| ≤ |l2|

〈e1, σ〉 →a l1 〈e2, σ〉 →a l2

〈e1 ≤ e2, σ〉 →
1
b false

if |l1| > |l2|

〈b1, σ〉 →
α
b false 〈b2, σ〉 →

β
b false

〈b1 ∧ b2, σ〉 →
α+β−αβ
b false

〈b1, σ〉 →
α
b true 〈b2, σ〉 →

β
b true

〈b1 ∧ b2, σ〉 →
αβ
b true

〈b1, σ〉 →
α
b true 〈b2, σ〉 →

β
b false

〈b1 ∧ b2, σ〉 →
1−α−αβ
b false

〈b1, σ〉 →
α
b false 〈b2, σ〉 →

β
b true

〈b1 ∧ b2, σ〉 →
1−β−αβ
b false

〈b1, σ〉 →
α
b false 〈b2, σ〉 →

β
b false

〈b1 ∨ b2, σ〉 →
αβ
b false

〈b1, σ〉 →
α
b true 〈b2, σ〉 →

β
b true

〈b1 ∨ b2, σ〉 →
α+β−αβ
b true

〈b1, σ〉 →
α
b true 〈b2, σ〉 →

β
b false

〈b1 ∨ b2, σ〉 →
1−β−αβ
b true

〈b1, σ〉 →
α
b false 〈b2, σ〉 →

β
b true

〈b1 ∨ b2, σ〉 →
1−α−αβ
b true

Figure 6.2: Semantics of boolean expressions
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〈skip, σ〉 →1
c σ

〈e1, σ〉 →a n

〈x ::= e1, σ〉 →
1
c σ[n/x]

〈C1, σ1〉 →
α
c σ2 〈C2, σ2〉 →

β
c σ3

〈C1;C2, σ〉 →
αβ
c σ3

〈b1, σ〉 →
α
b true 〈C1, σ〉 →

β
c σ1

〈If b1 ThenC1 ElseC2, σ〉 →
αβ
c σ1

〈b1, σ〉 →
α
b false 〈C2, σ〉 →

β
c σ1

〈If b1 ThenC1 ElseC2, σ〉 →
αβ
c σ1

〈Xk, σ〉 →a 0

〈loopXk {C1}, σ〉 →
1
c σ

〈Xk, σ〉 →a l1

|l1| = n

n > 0

〈C1, σ〉 →
α1
c σ1

〈C1, σ1〉 →
α2
c σ2

. . .
〈C1, σn−1〉 →

αn
c σn

〈loopXk {C1}, σ〉 →
Παi
c σn

Figure 6.3: Semantics of commands

〈skip, σ〉 →D {σ
1}

〈e, σ〉 →a n

〈x ::= e, σ〉 →D {σ[n/x]
1}

〈C1, σ〉 →D D ∀σi ∈ D .〈C2, σi〉 →D Ei

〈C1;C2, σ〉 →D

⋃

i D(σi) · Ei

〈Xk, σ〉 →a 0

〈loopXk {C}, σ〉 →D {σ
1}

〈Xk, σ〉 →a l1

|l1| = n

n > 0 〈

n
︷ ︸︸ ︷

C;C; . . . ;C, σ〉 →D E

〈loopXk {C}, σ〉 →D E

〈b, σ〉 →α
b true 〈C1, σ〉 →D D 〈C2, σ〉 →D E

〈If b ThenC1 ElseC2, σ〉 →D (α · D) ∪ ((1− α) · E )

Figure 6.4: Distributions of output states
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6.5 Distributions

iSAPP is working on stochastic computations. In order to reach soundness and complete-

ness respect to PP, we need to define a semantics for distribution of final states. We need

to introduce some more definitions. Let D be a distribution of probabilities over states.

Formally, D is a function whose type is (variable → Values) → [0, 1]. Sometimes we

will use the following notation D = {σα1

1 , . . . , σαn
n } indicating that probability of σi is αi.

We say that a distribution D = {σα1

1 , . . . , σαn
n .} is normalised when

∑

i αi = 1. Seman-

tics for distribution of final states is shown in Figure 6.4 and we can easily check that rule

creates a normalised distribution in output. Unions of distributions and multiplication

between real number and a distribution have the natural meaning.

Here we can present our first result.

Theorem 6.1 A command C in a state σ1 reduce to another state σ2 with probability equal

to D(σ2), where D is the distribution of probabilities over states such that 〈C, σ1〉 →D D .

Proof is done by structural induction on derivation tree. It is quite easy to check that

this property holds, as the rules in Figure 6.4 are showing us exactly this statement. The

reader should also not be surprised by this property. Indeed, we are not considering just

one possible derivation from 〈C1, σ1〉 to σ2, but all the ones going from the first to the

latter.

6.6 Typing and certification

We presented all the ingredients of iSAPP and we are ready to introduce typing rules.

Typing rules, in figure 6.5, associate at every expression a column vector and at every

command a matrix.

These vectors (matrices) tell us about the behaviour of an expression (command). We

can think about them as a certificate. Certificates for expressions tell us about the bound

for the result of the expression, while certificates for commands tell us about the correlation

between input and output variables. Each column gives the bound of one output variable

while each row corresponds to one input variable. Last row and column handle constants.

Most rules are quite obvious. When sequencing two instructions, the actual bounds are

composed, and one can check that the abstraction of the composition of multipolynomials
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(Axiom-Var)
⊢ Xi : { 0, . . . , 0

︸ ︷︷ ︸

i−1 elements

, L, 0, . . . , 0}T
⊢ e1 : V ′

(Pop)
⊢ tail(e1) : V ′

⊢ e1 : V ′

(Top)
⊢ head{e1} : V ′

⊢ e1 : V ′ ⊢ e2 : V ′

(Add)
⊢ concat(e1, e2) : V ′ + V ′′

(Axiom-Const)
⊢ c : {0, . . . , 0, L}T

(Axiom-Skip)
⊢ skip : I

⊢ e1 : V ′

(Asgn)
⊢ Xi := e1 : I

i
←− V ′′

⊢ C1 : A ⊢ C2 : B
(Concat)

⊢ C1;C2 : A×B

⊢ C1 : A A ≤ B
(Subtyp)

⊢ C1 : B

b1 ∈ boolean ⊢ C1 : A ⊢ C2 : B
(IfThen)

⊢ If b1 ThenC1 ElseC2 : A ∪B

⊢ C1 : A ∀i, (A∪)i,i < A
(Loop)

⊢ loopXk {C1} : (A∪)↓k

Figure 6.5: Typing rules for expressions and commands

is indeed the product of the abstractions. When there is a test, taking the union of the

abstractions means taking the worst possible case between the two branches.

The most interesting type rule is the one concerning the (Loop) command. The right

premise acts as a guard: an A on the diagonal means that there is a variable X such

that iterating the loop a certain number of time results in X depending affinely of itself,

e.g. X = 2 × X. Obviously, iterating this loop may create an exponential, so we stop

the analysis immediately. Next, the union closure used as a certificate corresponds to a

worst case scenario. We can’t know if the loop will be executed 0, 1, 2, . . . times each

corresponding to certificates A0,A1,A2, . . . Thus we assume the worst and take the union

of these, that is the union closure. Finally, the loop correction (merge down) is here to

take into account the fact that the result will also depends on the size of the variable

controlling the loop.

6.7 Extra operators

We are going to show how to type multiplication and subtraction in iSAPP. The grammar

of our system does not provide multiplication and a real subtraction as basic operands.

While the subtraction is not a dangerous operation, multiplication can lead to exponential

blow up in size of variables if iterated. In the following we will focus on three possible

implementation of multiplication and subtraction.
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Even if we haven’t yet introduced the semantics of our system, the reader will un-

derstand immediately the associated semantics of these programs: it is the standard one.

Recall that the command loopXi {C} execute Xi times the command C.

Definition 6.10 (Multiplication between two variables) Suppose we have the fol-

lowing variables: X1, X2, X3 and we want to compute the expression X1 × X2. We will

use the variable X3 as the variable that will take the result. Here is the program.

X3 = 0

loopX2 {X3 = X3 +X1}

The command inside the loop is typed with A =

[
L 0 L 0
0 L 0 0
0 0 L 0
0 0 0 L

]

and so (A∪)↓2 =

[
L 0 M 0
0 L M 0
0 0 L 0
0 0 0 L

]

.

First command is typed with

[
L 0 0 0
0 L 0 0
0 0 0 0
0 0 L L

]

and so iSAPP types the whole program with

matrix

[
L 0 M 0
0 L M 0
0 0 0 0
0 0 L L

]

, that is a good bound for multiplication. The informal meaning of our

certificate tells us that the result on X3 is bounded by a multiplication between X1 and X2

plus some possible constant. Indeed, the certificate would have been the same if we would

have associate another constant to X3 instead of 0.

We have shown how to type multiplication in our system. The result obtained is

something that we were expecting. Let’s see another kind of multiplication, one between

a constant and a variable.

Definition 6.11 (Multiplication between constant and variable) Suppose we have

variable X1, X2 and we want to calculate n ·X1. We use the variable X2 as a temporary

variable. The following program calculates our multiplication.

X2 = 0

loopX1 {X2 = X2 + n}

The loop is typed as
[
L A 0
0 L 0
0 A L

]

and therefore the whole program is typed with
[
L A 0
0 0 0
0 A L

]

.

The result obtained tells us that the final value of X2 depends linearly from X1 and a

constant. This is what we were expecting; indeed, the final result is 0 + n ·X1. Let’s now

introduce the subtraction typing. We encode the subtraction as an iterated minus one

operation.
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Definition 6.12 (Subtraction) Suppose we have the following variables: X1, X2, X3

and we want to compute the expression X1 −X2. We use the variable X3 as the variable

that is keeping the result. Here is the program.

X3 = X1

loopX2 {X3 = X3 − 1}

It is easy to check that the loop is typed with:

[
L 0 0 0
0 L 0 0
0 0 L 0
0 0 0 L

]

and so, the typing for the

subtraction is, as expected,

[
L 0 L 0
0 L 0 0
0 0 0 0
0 0 0 L

] [
L 0 0 0
0 L 0 0
0 0 L 0
0 0 0 L

]

=

[
L 0 L 0
0 L 0 0
0 0 0 0
0 0 0 L

]

. Notice that the bound for a

real subtraction iSAPP is the original value.

6.8 Soundness

The language recognised by iSAPP is an imperative language where iteration is bounded

and arithmetical expressions are built only with addition and subtraction. These are

ingredients of a lot of well known ICC polytime systems. It is no surprise that every

program written with the language recognised by iSAPP runs in polytime.

First we will focus on multipolynomial properties in order to show that the behaviour

of these algebraic constructor is similar to the behaviour of matrices in our system. Fi-

nally we will link these things together to get polytime bound for iSAPP. Here are two

fundamental lemmas.

Lemma 6.1 Let p and q two positive multipolynomials, then it holds that ⌈(p⊕ q)⌉ =

⌈p⌉ ∪ ⌈q⌉.

Recalling definition in section 6.3, it is easy to check that property holds. The other

important operator with matrices in our system is the multiplication that corresponds to

concatenation of commands.

Lemma 6.2 Let Q a positive multipolynomial and let p a polynomial, both in canonical

form, then it holds that ⌈p(q1, . . . , qn)⌉ ≤ ⌈Q⌉ × ⌈p⌉.

Proof:by structural induction on the polynomial pk

• If p is Xi, then ⌈p(q1, . . . , qn)⌉ is ⌈qi⌉. property holds.
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• If p is c then ⌈p(q1, . . . , qn)⌉ is ⌈c⌉ that is less than ⌈Q⌉ × ⌈c⌉. Property holds.

• If p is αXi (α > 1) then ⌈p(q1, . . . , qn)⌉ is ⌈αqi⌉. property holds.

• If p is αXi · r(X) then ⌈p(q1, . . . , qn)⌉ is ⌈αqir(X)⌉. property holds.

• If p is r(X)+s(X), then ⌈r(q1, . . . , pn) + s(q1, . . . , pn)⌉ is ⌈r(q1, . . . , pn)⌉+⌈s(q1, . . . , pn)⌉

and by induction we get ⌈Q⌉ × ⌈r⌉+ ⌈Q⌉ × ⌈s⌉ that is ⌈Q⌉ × (⌈r⌉+ ⌈s⌉). Property

holds.

• If p is r(X) · s(X) then ⌈p(q1, . . . , qn)⌉ is ⌈r(q1, . . . , qn) · s(q1, . . . , qn)⌉ and by induc-

tion it easy to check that the property holds.

This concludes the proof. 2

Lemma 6.3 Let P and Q two positive multipolynomials in canonical form, then it holds

that ⌈P ⊙Q⌉ ≤ ⌈P ⌉ × ⌈Q⌉

Proof: Proof of this property could be a little bit tricky. we show how to proceed.

⌈P ⊙Q⌉i,j = ⌈qj(p1, . . . , pn)⌉i by definition of composition (6.1)

≤ {⌈P ⌉ × ⌈qj⌉}i by theorem 6.2 (6.2)

=
∑

k

⌈P ⌉i,k · ⌈qj⌉k by definition of matrix multiplication (6.3)

=
∑

k

⌈P ⌉i,k · ⌈Q⌉k,j by definition of multipolynomial (6.4)

= (⌈P ⌉ × ⌈Q⌉)i,j by definition of matrix multiplication (6.5)

2

Lemma 6.4 Let e be an expression on variables X1, . . . , Xn typed with V ′; Let σ be a

state function; Let 〈e, σ〉 reduce to a value a. Then there exists a polynomial p on input

σ(X1), . . . , σ(Xn) such that for every expression e appearing in π s.t. 〈e, σ〉 →a a we have

|e| ≤ p.

Proof: By structural induction on semantic derivation tree.

• If e is a variable or a constant the proof is trivial.
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• Otherwise, by induction on the premises we can easily conclude the thesis.

2

We get a polynomial bound for the size of an expression, and this is enough for having

polynomial bound on time execution. We can easily prove the following lemma:

Lemma 6.5 Let e be an expression well typed with V ′; Let σ be a state function and let

〈e, σ〉 reduce to a value a. We have that |π : 〈e, σ〉 →a a| is polynomially bounded respect

to the size of e.

We can easily prove the previous lemma by structural induction on the semantics

derivation tree. Having a polynomial bound for every expressions in our system is quite

easy because with just addition and a kind of subtraction there is no way to get an

exponential bound. However this lemmas are fundamental in order to prove polynomial

bound on size and time for commands in iSAPP.

We can now move on and investigating the polynomiality of command execution time

and expression size. The following theorem tell us that at each step of execution of a

program, size of variables are polynomially correlated with size of variables in input.

Theorem 6.2 Given a command C well typed in iSAPP with matrix A, such that

〈C, σ1〉 →
α
c σ2 we get that exists a multipolynomial P such that for all variables Xi we

have that |σ2(Xi)| ≤ Pi(|σ1(X1)|, . . . , |σ1(Xn)|) and ⌈P ⌉ is A.

Proof: By structural induction on typing tree.

• If last rule is (Axiom-Skip) or (Subtyp) the thesis is trivial.

• If last rule is (IfThen), by applying induction on hypothesis and by lemma 6.1 we

can easily conclude the thesis.

• If last rule is (Asgn) then by lemma 6.4 we are done.

• If last rule is (Concat), by applying induction on hypothesis and get two multi-

polynomials Q,R and by lemma 6.1 we can easily conclude the thesis.
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• Finally we are in the case where last rule is (Loop) and so A is (B∪)↓k, for some

matrix B and index k. The derivation tree for typing has the following shape

ρ :⊢ C1 : B ∀i, (B∪)i,i < A
(Loop)

⊢ loopXk {C1} : (B
∪)↓k

and the associate semantics is

µ : 〈Xk, σ〉 →a 0

〈loopXk {C1}, σ〉 →
1
c σ

µ : 〈Xk, σ〉 →a l1

|l1| = n

n > 0

ν1 : 〈C1, σ〉 →
α1
c σ1

ν2 : 〈C1, σ1〉 →
α2
c σ2

. . .
νn : 〈C1, σn−1〉 →

αn
c σn

〈loopXk {C1}, σ〉 →
Παi
c σn

Semantics of command loop {} tells us to compute first the value of the guard Xk;

suppose 〈Xk, σ〉 →a n, then we have to apply n times the command C1.

First rule of semantics of command (Loop) tells us that if the variable Xk reduces

to 0 the final state is not changed. In this particularly case, it is not so difficult to

create a multipolynomial such that its abstraction is (B∪)↓k. Whatever is, the thesis

is of course proved because values of variables are not changed.

Let’s focus on the second rule of semantics for (Loop), the case where the loop is

performed at least once. By induction on the premise we have a multipolynomial P

bound for command C1 such that its abstraction is B.

If P is a bound for C1, then P ⊙P is a bound for C1;C1 and (P ⊙P )⊙P is a bound

for C1;C1;C1 and so on. All of these are multipolynomial because we are composing

multipolynomials with multipolynomials.

By lemma 6.3 and knowing that ⌈P ⌉ is B we can easily deduce to have a multipoly-

nomial bound for every iteration of command C1. In particularly by lemma 6.1 we

can easily sum up everything and find out a multipolynomial Q such that ⌈Q⌉ is

B∪. This means that further iterations of sum of powers of P will not change the

abstraction of the result.

So, for every iteration of command C1 we have a multipolynomial bound whose

abstraction cannot be greater than B∪. We study the worst case, analysing the

matrix B∪.
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Side condition on (Loop) rule tells us to check elements on the main diagonal. Recall

that by definition of union closure, elements on the main diagonal are supposed to be

greater than 0. We required also to be less than A. Let’s analyse all the possibilities

of an element in position i, i:

– Value cannot be 0. If value is L it means that Qi bound for such column has

shape Xi + r(X), where Xi does not appear in r(X). It is easily to check

that concatenation of C1 cannot create exponential blow up because at most,

at every iteration, we copy the value (recall that Q is a bound for all the

iterations).

– If value is A could means that Qi bound for such column has shape αXi+r(X)

(for some α > 1), where Xi does not appear in r(X) and so there could be a

way to duplicate the value after some steps of iteration.

– Otherwise value is M and we cannot make assumptions. We might have expo-

nential bound.

The abstract bound B is still not a correct abstract bound for the loop because loop

iteration depends on some variable Xk. We need to adjust our bound in order to

keep track of the influence of variable Xk on loop iteration.

We take multipolynomial Q because we know that further iterations of the algorithm

explained before will not change ⌈Q⌉. Looking at i-th polynomial of multipolynomial

Q we could have three different cases. We behave in the following way:

– The polynomial has shape Xi+p(X). In this case we multiply the polynomial p

by Xk because this is the result of iteration. We substitute the i-th polynomial

with the canonical form of polynomial Xi + p(X) ·Xk.

– The polynomial has shapeXi+α, for some constant α. In this case we substitute

with Xi + α ·Xk.

– The polynomial has shape Xi. We leave as is.

In this way we generate a new multipolynomial, call it R. The reader should eas-

ily check that these new multipolynomial expresses a good bound of iterating Q a

number of times equal to Xk. Should also be quite easy to check that ⌈R⌉ is exactly
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(B∪)↓k. We are so allowed to type the loop with this new matrix and the thesis is

proved.

2

Polynomial bound on size of variables is not enough; we need to prove also polynomi-

ality of number of steps. In this case the number of steps is equal to size of the semantic

tree generated by the system. We can proceed and demonstrate the following theorem.

Theorem 6.3 Let C be a command well typed in iSAPP and σ1, σn state functions. If

π : 〈C1, σ0〉 →
α
c σn, then there is a polynomial p such that |π| is bounded by p(

∑

i |σ0(Xi)|).

Proof: By structural induction of command C.

• If C is skip, the proof is trivial.

• If C is Xi = e, then by lemma 6.5 we have the thesis.

• If C is C1;C2, then by induction we get polynomials q, r. th evaluation of C takes

q + r

• If C is If b1 ThenC1 ElseC2, then by induction we can easily get a polynomial bound.

• If C is loopXi {C1} we are in the following case:

µ : 〈Xk, σ0〉 →a l1

|l1| = n

n > 0

ν1 : 〈C1, σ0〉 →
α1
c σ1

ν2 : 〈C1, σ1〉 →
α2
c σ2

. . .
νn : 〈C1, σn−1〉 →

αn
c σn

〈loopXk {C1}, σ0〉 →
Παi
c σn

By lemma 6.5 we have polynomial bound for |µ|. Thanks to theorem 6.2 we get a

polynomial bound for n.

We have now to perform n iterations of C1. By induction we get polynomial ri

bound for each iteration. Formally, |νi| is bounded by ri(
∑

j |σi−1(Xj)|). We can

easily rewrite all the polynomials r in terms of size of variables in σ0 thanks to

theorem 6.2.

Therefore we can conclude that there exists a polynomial in size of
∑

i |σ0(Xi)|

bounding the size of derivation of this case.
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This concludes the proof. 2

Nothing has been said about probabilistic polynomial soundness. Theorems 6.2 and

6.3 tell us just about polytime soundness. Probabilistic part is now introduced. We will

prove probabilistic polynomial soundness following idea in [14], by using “representability

by majority”.

Definition 6.13 (Representability by majority) Let C be a program and let σ0 the

state function define as ∀X,σ0(X) = 0. Let σ0[X/n] define as ∀X,σ0(X) = n. Then C is

said to represent-by-majority a language L ⊆ N iff:

1. If n ∈ L and 〈C, σ0[X/n]〉 →D D , then D(σ0) ≥
∑

m>0 D(σm);

2. If n /∈ L and 〈C, σ0[X/n]〉 →D D , then
∑

m>0 D(σm) > D(σ0).

That is, if n ∈ L then starting with every variable set to n, the result is σ0 (every

variable to 0, “accepting state”) with a probability more than 0.5: the majority of the

executions “vote” that n ∈ L.

Observe that every command C in iSAPP represents by majority a language as defined

in 6.13. In literature [3] is well known that we can define PP by majority itself. We say

that the probability error should be at most 1
2 when we are considering string in the

language and strictly smaller than 1
2 when the string is not in the language. So we can

conclude that iSAPP is sound also respect to Probabilistic Polynomial Time.

6.9 Probabilistic Polynomial Completeness

There are several ways to demonstrate completeness with respect to some complexity class.

We show how to encode Probabilistic Turing Machines (PTM) solving a problem in PP.

Not all the possible PTMs are codable in the language recognised by iSAPP, but all

the ones with particularly shape. This lead us to reach extensional completeness and not

intentional completeness. For every problem in PP there is at least an algorithm solving

that problem that is recognised by iSAPP.

A Probabilistic Turing Machine can be seen as a non deterministic TM with one tape

where at each iteration is able to flip a coin and choose between two possible transition

functions to apply.
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The language recognised by iSAPP gives all the ingredients. In order to encode

Probabilistic Turing Machines we will proceed with the following steps:

• We encode the polynomial representing the number of steps performed by our PTM.

• We encode the input tape of the machine.

• We encode the transition function δ.

• We put all together and we have an encoding of a PTM running in polytime.

It should be quite obvious that we can encode polynomials in iSAPP. Grammar and

examples 6.10, 6.11, 6.12 give us all the tools for encoding polynomials. Next, we need to

encode the tape of our PTMs. We subdivide our tape in three sub-tapes. The left part

tapel, the head tapeh and the right part taper. taper is encoded right to left, while the

left part is encoded as usual left to right. If t represents the original binary input of our

PTM, we set tapel = 〈t〉, tapeh = 〈〉 and taper = 〈〉. Extra variable called Mstate keeps

track of the state of the machine.

The reader should notice that we are encoding the tape using list-representation of

our system. We are going to keep track of all tape information inside lists; we are no

more interested to see lists as encoding of natural numbers. In this part we are going to

use extra operators introduced in the grammar: testzero{e} and head{e}. Thanks to

these operators and their semantics we are able to break some dependencies that lead our

system to fail on encoding a PTM.

In the following we present the algorithm for moving the head to the right. Similar

algorithm can be written for moving the head to the left. It is really important to pay

attention on how we encode these operations. Recall that a PTM loops the δ function

and our system requires that the matrix certifying/typing the loop needs to have values

of the diagonal less than A. The trivial encoding will not be typable by iSAPP. Notice

also that the following procedure works because we are assuming that our Probabilistic

Turing Machine is working on binary alphabet.

Definition 6.14 (Move head to right) Moving head to right means to concatenate the

bit pointed by the head to the left part of the tape; therefore we need to retrieve the first

bit of the right part of the tape and associate it to the head. Procedure is presented as
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algorithm number 2. It is easy to check that iSAPP types the algorithm number 2 with

the matrix

[
L 0 0 0 0
L 0 0 0 0
0 0 L 0 0
0 0 0 L 0
0 L 0 0 L

]

, where the first column of the matrix represents dependencies for

variables tapel, the second represents tapeh, third is taper, forth is Mstate and finally

recall that last column is for constants.

Algorithm 2 Move head to right

tapel ::= concat(tapel, tapeh)

if testzero{head{taper}} then

tapeh ::= 〈0〉

else

if head{taper} = 〈〉 then

tapeh ::= 〈〉

else

tapeh ::= 〈1〉

end if

end if

taper ::= tail(taper)

The reader should focus on the second column. It tells us that variable tapeh depends

just from some constant. This is the key point: knowing that our PTM is working with

binary elements, we can just perform some nested If-Then-Else and retrieve the correct

value without showing explicitly the dependency between tapeh and taper.

We can now move on and show how to encode the procedure to move left the head of

the tape.

Definition 6.15 (Move head to left) Moving head to left means to concatenate the bit

pointed by the head to right part of the tape; therefore we need to retrieve the rightmost

bit of tape left and associate it to the head. Procedure is presented as algorithm 3; call it

MoveToLeft().

iSAPP types/certificates the procedure in 3 with the following matrix:

[
L 0 0 0 0
0 0 L 0 0
0 0 L 0 0
0 0 0 L 0
0 L 0 0 L

]

.

Reader should again focus on the second column. Exactely as for procedure in 2, here



Chapter 6. Imperative Static Analyzer for Probabilistic Polynomial Time 135

Algorithm 3 Move head to left

taper ::= concat(taper, tapeh)

if testzero{head{tapel}} then

tapeh ::= 〈0〉

else

if head{tapel} = 〈〉 then

tapeh ::= 〈〉

else

tapeh ::= 〈1〉

end if

end if

tapel ::= tail(tapel)

it tells us that variable tapeh depends just from some constants. Finally we need to

introduce the procedure that does anything.

Definition 6.16 (Not moving head) Our PTM could also not perform any movment

of the head. This means that no operation is executed. This is skip command, whose type

is the identity matrix I. Call this procedure Nop().

Moving head on the tape is not enough for having an encoding of transition function.

We need to show how to perform the coin flip, changing the state and writing on tape.

We introduce a new command, as a shorter notation for nested if-then-else. Program

shown in algorithm 5 is rewritten with shorter notation as the one in 4.

The reader should not be surprised. This is the standard definition of Switch com-

mand. We are now ready to show how to encode our δ function. Prototype of delta

function encoding is presented in algorithm 6.9. A PTMs is a finite state machine and we

suppose that the number of states is n.

In order to encode δ function we can proceed by nesting If-Then-Else commands,

checking rand value and variable containing the state value. The first command is an

If-Then-Else testing the value of rand. in both cases, then we will execute commands.

Then a Switch is performed on the state of the machine and finally an operation of reading
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Algorithm 4 Switch command

Switch (Xi)

Case c1 : C1

EndCase

Case c2 : C2

EndCase

Case c3 : C3

EndCase

Case . . . :

EndCase

Default: Cj

EndDefault

EndSwitch

Algorithm 5 Nested if-then-else

if Xi = c1 then

C1

else

if Xi = c2 then

C2

else

if Xi = c3 then

C3

else

. . .

else Cj

end if

end if

end if
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Algorithm 6 Prototype of encoded δ function

if rand then

Switch (Mstate)

Case 0 :

if testzero{head{tapeh}} then

// tapeh takes 〈0〉 or 〈1〉 or 〈〉

// MoveToLeft or MoveToRight or Nop

Mstate ::= c1

else

if head{tapeh} = 〈〉 then

// tapeh takes 〈0〉 or 〈1〉 or 〈〉

// MoveToLeft or MoveToRight or Nop

Mstate ::= c2

else

// tapeh takes 〈0〉 or 〈1〉 or 〈〉

// MoveToLeft or MoveToRight or Nop

Mstate ::= c3

end if

end if

EndCase

Case . . . :

EndCase

Case n− 1 :

if testzero{head{tapeh}} then

// tapeh takes 〈0〉 or 〈1〉 or 〈〉

// MoveToLeft or MoveToRight or Nop

Mstate ::= d1

else

if head{tapeh} = 〈〉 then

// tapeh takes 〈0〉 or 〈1〉 or 〈〉

// MoveToLeft or MoveToRight or Nop

Mstate ::= d2

else

// tapeh takes 〈0〉 or 〈1〉 or 〈〉

// MoveToLeft or MoveToRight or Nop

Mstate ::= d3

end if

end if

EndCase
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and moving the tape is performed. The algorithm presented in 6.9 has just the purpose

to show a scratch of how a delta function could be encoded. The reader can easily check

that there is an encoding of δ function typable in iSAPP such that iSAPP assigns the

matrix

[
L 0 0 0 0
L L L 0 0
0 0 L 0 0
0 0 0 L 0
0 L 0 L L

]

, whose union closure is A∪ =

[
L 0 0 0 0
A L A 0 0
0 0 L 0 0
0 0 0 L 0
A A A A L

]

. Indeed, once we have the

encoded δ function, we need to put it in a loop and iterate it a number of times equal to

the polynomial representing the number of steps required by our PTM. The union closure

of the matrix is correct with respect to the typing rules because the main diagonal is filled

with value L.

We have now all the ingredients to show our encoding of Probabilistic Turing Ma-

chines. Let Xk be the number of steps required to be performed for our PTM. We encode

everything as shown in algorithm number 7.

Algorithm 7 Encoding of a probabilistic Turing machine

Mstate ::= 0

tapel ::= 〈〉

tapeh ::= head{taper}

taper ::= tail(taper)

loop (Xk)

DeltaFunction

EndLoop

Let t be the list representing the input tape of our machine. The initial state σ0 of our

program would be the one where σ0(taper) is 〈t〉.

6.10 Benchmarks and polynomiality

One of the most interesting feature of iSAPP is that it is able to give or not a certificate

of polynomiality in polytime, with respect to the number of variables used. The key

problem lays on typing rule for iteration; it is not trivial to understand how much it costs

performing the union closure. Given a matrix A, we can start by calculating A2, then A3

and so on, till we reach a matrix An such that exists a Am = An where m < n.

Theorem 6.4 (Polytime) Given a squared matrix A of dimension n, A∪ can be com-

puted in 2n2 + n steps.
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Proof: The proof is a little bit tricky. Let see how to prove this property. First, we need

to see A as an adjacency matrix of a graph G, where every edge is labelled with L,A or

M . If Ai,j is 0, then there is no edge between node i and j.

Let’s define the weight of a path as the maximum edge encountered in the path. Notice

that if (A∪)i,j has some value a greater than 0, then it means that there is some An such

that (An)i,j is a. Graphically speaking it means that the sum of the weight of all path

whose length is n between nodes i and j is a.

Notice that if A defines a graph G, then A2 defines a graph where edged are connected

if and only if there is a path of length 2 between them in G; edged are labelled as the sum

of the weight of the paths between them.

Given a squared matrixA of dimension n, for every node i, j we proceed in the following

way:

• Knowing if there is a path between i and j can be done in n steps of iteration of

A. If all the matrices power of A till An (representing paths potentially passing

through all the nodes) have 0 in position (i, j), then there is no path between this

two nodes.

• Suppose that there is a path of weight M between i, j, if so, there should be an edge

labelled with M . Iterate A till An; if there is such path, then there is a Am (m ≤ n)

such that (Am)i,j is M .

• Suppose that there is a path of weight A between i, j, where one edge of this path

is A. For the same reason of the previous point, we can iterate n times and if there

is such path, we should have find it.

• Suppose that all the paths between i, j have weight L. It means that all the edges

encountered are labelled with L. For the reason that L + L is A we need to check

the presence of at least two path of same length inside the graph. In this case we

can proceed and create a graph G′ where vertex are labelled with V ×V × {0, 1}.

In G′ there is an edge between (k, k, e) and (k′, k′, e′) if and only if there are edges

(k, k′) and (k, k′) in G. If (k, k′) and (k, k′) are different edges then e′ is 1, otherwise

e′ is e. Third value is set to 1 if it encodes distinct paths.

So, we start to build the graph starting from vertex (i, i, 0) to reach (j, j, 1). If this

happens, then we have found two paths of same length. The algorithm takes O(V 4)
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Figure 6.6: Distributions of matrices of size 3 over number of steps

to be performed and the length of the path in G′ is at most 2|V |2. So, if we iterate

A till A2n2

, then there is a Am (m ≤ 2n2) such that (Am)i,j is A.

• If none of the previous cases occur, then, knowing that there is at least one path,

the worst case is L and (A∪)i,j is L.

Finally, we need to unify all the matrices found from the previous passages with the

identity matrix (that is A0).

Let’s sum up everything; Starting with A0 we iterate by calculating A1, A2, A3, . . . till

we reach A2n2+n. After that we can stop because we have enumerated all the possible

“interesting” matrix and union of all of them gives A∪.

2

Theorem 6.4 gives us theoretical bound that is clearly much more than what is really

needed. Here are exhaustive benchmarks for matrices of size 3 (figure 6.6) 4 (figure 6.7)

5 (figure 6.8). On the axis x is shown the number of steps required to calculate the union

closure and on the other axis there is the distribution among all the matrices of the same

size. The reader should notice that the avarage number of steps required is linear respect

to the size of the matrix.

Given a program C, iSAPP validates in polytime with respect to the size of the

program and the number of variables used. Formally:

Theorem 6.5 (Certificate in Polytime) Given a program C, iSAPP is able to find,

if exists or not, a matrix A such that ⊢ C : A in polytime respect to the number of variables

appearing in C.
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Figure 6.7: Distributions of matrices of size 4 over number of steps

Figure 6.8: Distributions of matrices of size 5 over number of steps
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Proof: This proof is quite trivial. Consider that the typing rule for loop command, by

theorem 6.4, can be calculated in polytime and all the other rules takes constant time or

quadratic/cubic (such as matrix multiplication) time respect to the number of variables

in the program. 2



Chapter 7

Conclusions

We have seen what are the difficulties that come out when Implicit Computational Com-

plexity meets Probabilistic Polynomial classes. We were able to give some answers to this

problem and we showed that some probabilistic classes have intrinsic semantic values that

seem impossible to capture with only syntactical restrictions.

In the first part of the thesis we presented an implicit characterisation of Probabilistic

Polynomial Time, a higher order system with subject reduction. We also investigate how

to characterise all subclasses of PP, such as RP or ZPP, but we were not able to give

a syntactical characterisation of them; instead, we give a parametric characterisation.

An interesting point is also the proof, a syntactical and constructive proof instead of a

semantic one. This lead the system to be able to show how reduction is performed step by

step in polynomial time. In the second part we focused more on the reverse problem, still

correlated with ICC. Instead of finding out a system sound and complete for a particular

class, we tried to build a static analyser for complexity able to say “no” when the program

doesn’t compute in probabilistic polynomial time. It is a hard job to understand how

variable’s value flows during the execution of a program. For this reason we decided to

focus more on the imperative paradigm in order to understand better and try to solve this

problem. We were able to create a complexity static analyser enough powerful to capture

for every function in PP at least one algorithm. Our system is so able to say “no” if the

program doesn’t run in probabilistic polynomial time but is not able to say the viceversa.

Our completeness respect to the class PP is extensional and not intentional. However, it is

well known that is not possible to get an intentional complete static analyser for a certain

complexity class, without loosing other aspects of the language recognized, because the
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problem is not decidable. We showed also that our method could be implementable and

really usable because of its performances.

The original contributions of this thesis could be summarise in the following points:

• Extension of ICC techniques to probabilistic classes.

• RSLR is sound and complete respect to Probabilistic Polynomial Time.

• RSLR allows recursion with higher order terms.

• RSLR has subject reduction and confluence of terms is proved.

• We give parametric characterisation of other probabilistic classes.

• iSAPP is sound and complete respect to Probabilistic Polynomial Time.

• Analysis is made over a concrete language and also takes account of constants.

• iSAPP works in polynomial time with a very low exponent in the worst case.

This thesis would characterise itself as one of the first step for Implicit Computational

Complexity over probabilistic classes. There are still open hard problem to investigate and

try to solve. There are a lot of theoretical aspects strongly connected with these topics

and we expect that in the future there will be wide attention to ICC and probabilistic

classes. Some problems such as syntactical characterisation of BPP and ZPP seem really

complex but, exactly for this reason, also very challenging.

Some readers could think that all of these problems have no practical meaning and

that, probably, are not so really interesting. Apart from the theoretical and foundational

interest, sometimes theoretical studies precede practical one. In this thesis we tried to

show one well known immediate practical aspect of this research branch, such as the static

complexity analysers. Other application could go in the direction of making proof in the

field of security and cryptography. Usually they have to deal with attackers working in

Probabilistic Polynomial Time. Our system RSLR could be used to describe easily this kind

of entities without focusing explicitly on complexity properties. These are automatically

given at no charge. No one knows which benefits could give this research path in the

future. The only way to know it is to follow it.
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“Computer science is not really about computers; and it’s not about computers in the

same sense that physics is not really about particle accelerators, and biology is not about

microscopes and Petri dishes and geometry isn’t really about using surveying

instruments. Now the reason that we think computer science is about computers is pretty

much the same reason that the Egyptians thought geometry was about surveying

instruments: when some field is just getting started and you don’t really understand it

very well, it’s very easy to confuse the essence of what you’re doing with the tools that

you use.” - Hal Abelson
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