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Résumé

Considérons une variété regulière analytique M sur R ou C, un faisceau d'idéaux I défini sur M , un diviseur à croisement normaux simples E et une distribution singulière involutive θ tangent à E. L'objectif principal de ce travail est d'obtenir une résolution des singularités du faisceau d'idéaux I qui préserve certaines "bonnes" propriétés de la distribution singulière θ. Ce problème est naturel dans le contexte où on doit étudier "l'interaction" d'une variété et d'un feuilletage.

Pour être plus explicite, considérons un éclatement admissible

σ : (M ′ , E ′ ) -→ (M, E).
Il existe plusieurs notions de transformée de la distribution singulière θ par l'éclatement σ.

On travaillera avec une transformée algébriquement bien adaptée, qu'on appelle transformée analytique stricte et qu'on note θ ′ . On peut désormais écrire l'éclatement de la façon suivante:

σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E)
Dans ce contexte, on cherche une "bonne" résolution de I, i.e., une suite d'éclatements admissible σ = (σ r , ..., σ 1 ) :

(M r , θ r , E r ) • • • (M 1 , θ 1 , E 1 ) (M, θ, E) σ r σ 2 σ 1
telle que

• Le faisceau d'idéaux I.O Mr est principal et son support est contenu dans E r ;

• La distribution singulière θ r a les mêmes "bonnes" propriétés que θ.

La bonne propriété considérée dans ce travail s'appelle R-monomialité: elle est l'une des plus simples propriétés qu'on peut exiger d'une distribution singulière, après la régularité.

On remarque que cette propriété est liée à l'existence d'intégrales premières monomiales pour la distribution singulière θ et, donc, est aussi reliée au problème de la monomilisation des applications et de résolution "quasi-lisse" des familles d'idéaux.

Dans la première partie, on introduit la notion de centre θ-admissible, qui est bien adaptée à la distribution singulière. On donne une (bonne) description géométrique de ces centres pour une distribution singulière quelconque et on démontre que les éclatements avec de tels centres préservent la propriété de R-monomialité.

Dans la deuxième partie, on démontre l'existence d'une résolution des singularités de l'idéal I en utilisant seulement des éclatements dont les centres sont θ-admissibles:

• Le premier résultat donne une résolution globale si le faisceau d'idéaux I est invariant par la distribution singulière θ (et aucune hypothèse sur la distribution singulière θ n'est demandée);

• Le deuxième résultat donne une résolution globale si la distribution singulière θ est de dimension 1 (et aucune hypothèse sur le faisceau d'idéaux I n'est demandée);

• Le troisième résultat donne une uniformisation locale si la distribution singulière θ est de dimension 2 (et aucune hypothèse sur le faisceau d'idéaux I n'est demandée).

Dans la troisième partie, on présente deux utilisations des résultats précédents. La première application concerne la résolution des singularités en famille analytique, soit pour une famille d'idéaux, soit pour une famille de champs de vecteurs. Pour la deuxième, on applique les résultats ´à un problème de système dynamique, motivé par une question de Mattei.

Avant de finir, on remarque que d'autres applications sont aussi possibles. En particulier, nous pensons que les outils développés dans cette thèse seront utiles pour traiter l'équi-résolution de Zariski et la monomialisation des applications analytiques.

Abstract

Let M be an analytic manifold over R or C, I a coherent and everywhere non-zero ideal sheaf over M , E a reduced SNC divisor and θ an involutive singular distribution everywhere tangent to E. The main objective of this work is to obtain a resolution of singularities for the ideal sheaf I that preserves some "good" properties of the singular distribution θ. This problem arises naturally when we study the "interaction" between a variety and a foliation.

More precisely, let:

σ : (M ′ , E ′ ) -→ (M, E).
be an admissible blowing-up. There exists several notions of transforms for a singular distribution θ. We work with an "algebraically well-adapted" one called adapted strict analytic transform, denoted by θ ′ . The blowing-up can now be written as:

σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E)
In this context, we search a "good" resolution of I, i.e. a sequence of admissible blowings-up σ = (σ r , ..., σ 1 ):

(M r , θ r , E r ) • • • (M 1 , θ 1 , E 1 ) (M, θ, E) σ r σ 2 σ 1
such that

• The ideal sheaf I.O Mr is principal and its support is contained in E r ;

• The singular distribution θ r have the same "good" properties of θ.

vi

The "good" property we are mainly interested is called R-monomiallity: it is one of the simplest properties after regularity. We remark that this property is related to the existence of monomial first integrals for the singular distribution θ and, thus, is also related with the monomialisation of analytic maps and the "quasi-smooth" resolution of a family of ideal sheaves.

In a first part, we introduce the notion of θ-admissible center, which, intuitively speaking, is "well-adapted" to the leafs of the foliation associated to the singular distribution θ (the analog to require that a center has SNC with a divisor). We give a (good) geometrical description of these centers for general involutive singular distributions and prove that blowings-up with such centers preserve the R-monomiality property.

In a second part, we prove the existence of a resolution of singularities for the ideal sheaf I by blowings-up with θ-admissible centers in the following cases:

• In the first result, we give a global resolution if the ideal sheaf I is invariant by the singular distribution θ (and no extra hypotheses on the singular distribution θ);

• In the second result, we give a global resolution if the singular distribution θ is one dimensional (and no extra hypotheses on the ideal sheaf I);

• In the third result, we give a local uniformization if the singular distribution θ is two dimensional (and no extra hypotheses on the ideal sheaf I).

In a third part, we present two applications of these results. The first application deals with a resolution for analytic families, either for a family of ideal sheaves or vector fields.

The second applications deals with a dynamical system problem, motivated by a question of Mattei.

To conclude, we remark that other applications seem possible. In particular, we believe that the tools developed in this thesis may be useful for dealing with the Zariski equiresolution and the monomialisation of analytic maps.

Chapter 1 Introduction

Historical overview and motivation

The interest in resolution of singularities dates back to 1860, when the problem of "resolving" an algebraic curve C over the complex plane was brought to the attention of the mathematical community (see [Ha]). By "resolving" an algebraic curve, we mean some kind of process where the input is a singular curve C and the output is a regular curve C ′ . This process is motivated by the desire to give a local description of the curve C in the vicinity of its singularities.

Since then, many different resolution processes for an algebraic curve were proposed.

We refer to Kollar's book [Ko] for a nice exposition of different methods. But the problem was destinated to have a much wider generality: it naturally motivated the same problem for surfaces and for general varieties. The resolution of algebraic varieties was obtained in 1964 by Hironaka (see the original article [Hi]; see section 3.6 below), and is a landmark on the subject. We refer to an article of Hauser [Ha] for a more complete historical overview.

A connected field of interest is the resolution of foliations. Here the goal is to give a local description of the leaves of a foliation in the vicinity of a singularity. The first result on the subject dates back to Bendixson in 1902, where he states that a resolution of a foliation by curves on the plane is possible (see [Ben]). A complete proof of this result was firstly given by Seidenberg in 1968 (see [Se]). The extension of this result for dimension three ambient spaces is much more recent: in 2004, Cano proves the result for codimension one foliations (see [Ca]); in 2007, Panazzolo proves the result for foliations by curves (see [P2]). No general result is known for arbitrary dimensions.

In applications, sometimes we are lead to combine both subjects. For example, suppose that we have an ambient space containing a variety and a foliation, but the object of study is the "interaction" between them (see chapter 8 for an example of this kind of problem). In this case, either the resolution of the variety or the resolution of the foliation should take into account the other object. Since we still do not have a general result of resolution for foliations, we may try to resolve the variety in a way that does not make the foliation "worse". This leads to the (informal) formulation of the main problem of this thesis:

Problem: Can we obtain a resolution of singularities for a variety that preserves good conditions of an ambient foliation?

We give a rigorous formulation of this problem at the end of the next section. This problem is not only natural, but also establishes a bridge between algebraic/analyticgeometry and dynamical system. Our ambition is that not only the results of this work, but also the techniques here developed, will be of interest to everyone that works with the interaction between varieties and foliations.

The main problem

A foliated manifold is a triple (M, θ, E) where:

• M is a smooth analytic manifold of dimension n over a field K, where the field K is either R or C;

• E is an ordered collection E = (E (1) , ..., E (l) ), where each E (i) is a smooth divisor on M such that i E (i) is a reduced divisor with simple normal crossings;

• θ is an involutive singular distribution defined over M and everywhere tangent to E.

We recall the basic notions of singular distributions (we follow closely [BB]). Let Der M denote the sheaf of analytic vector fields over M , i.e. the sheaf of analytic sections of T M . A singular distribution is a coherent sub-sheaf θ of Der M . A singular distribution is involutive if for each point p in M , the stalk θ p := θ.O p is closed under the Lie bracket operation. All singular distributions of this thesis are involutive unless stated otherwise.

Consider the quotient sheaf Q = Der M /θ. The singular set of θ is defined by the closed analytic subset S(θ) = {p ∈ M : Q p is not a free O p module}. A singular distribution θ is called regular if S(θ) = ∅. On M \ S(θ) there exists a unique analytic subbundle L of T M | M \S(θ) such that θ is the sheaf of analytic sections of L. We assume that the dimension of the K vector space L p is the same for all p ∈ M \ S (this always holds if M is connected). It will be called the leaf dimension of θ and denoted by d. In this case θ is called an involutive d-singular distribution and (M, θ, E) a d-foliated manifold.

Given a point p in M , a coherent set of generators of θ p is a set {X 1 , ..., X dp } of d p ≥ d vector fields germs with representatives defined in a neighborhood U p of p such that {X 1 , ..., X dp }.O q generates θ q for every q ∈ U p .

We recall that a blowing-up σ : (M ′ , E ′ ) -→ (M, E) is admissible if the center C is a closed and regular submanifold of M that has simple normal crossings with E (see section 3.1 or pages 137-138 of [Ko] for details).

We introduce a natural transform of θ under admissible blowing-up called adapted analytic strict transform. It is an involutive singular distribution θ ′ , everywhere tangent to E ′ , obtained as a suitable extension of the pull-back of θ from M \ C to M ′ \ σ -1 (C). The precise definition is given in section 3.2: we stress that, in general, it is neither the strict nor the total transform of θ (see section 3.2). We denote an admissible blowing-up by:

σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E)
A foliated ideal sheaf is a quadruple (M, θ, I, E) where:

• (M, θ, E) is a foliated manifold;

• I is a coherent and everywhere non-zero ideal sheaf of M .

The support of I is the subset:

V (I) := {p ∈ M ; I.O p ⊂ m p }
where m p is the maximal ideal of the structural ring O p .

An ideal sheaf I is invariant by a singular distribution θ if θ[I] ⊂ I, where θ is regarded as a set of derivations taking action over I. An analytic sub-manifold N is invariant by a singular distribution θ if the reduced ideal sheaf I N that generates N (i.e. V (I N ) = N ) is invariant by θ (see section 2.4 for details).

We say that an admissible blowing-up σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) is of order one on (M, θ, I, E) if the center C is contained in the variety V (I) (see section 3.3 or definition 3.65 of [Ko] for details). In this case, the controlled transform of the ideal sheaf I is the coherent and everywhere non-zero ideal sheaf I c := O(-F )(I.O M ′ ), where F stands for the exceptional divisor of the blowing-up (see section 3.3 or subsection 3.58 of [Ko] for details).

Finally, an admissible blowing-up of order one of the foliated ideal sheaf is the mapping:

σ : (M ′ , θ ′ , I ′ , E ′ ) -→ (M, θ, I, E)
where the ideal sheaf I ′ is the controlled transform of I.

A resolution of a foliated ideal sheaf (M, θ, I, E) (see section 3.5 for details) is a sequence of admissible blowing-ups of order one:

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M, θ, I, E) σ r σ 2 σ 1
such that I r = O Mr . In particular, I.O Mr is the ideal sheaf of a SNC divisor on M r with support contained in E r .

Our main objective is to find a resolution algorithm that preserves as much as possible "good" properties that the singular distribution θ might possess. For example, one could ask if, assuming that the singular distribution θ is regular (i.e. S(θ) = ∅), there exists a resolution of the foliated ideal sheaf (M, θ, I, E) such that the singular distribution θ r is regular. Unfortunately, it is easy to get examples of foliated ideal sheaves whose resolution necessarily breaks the regularity of a regular distribution:

Example 1.2.1. Let (M, θ, I, E) = (C 2 , ∂ ∂x , (x, y), ∅): the only possible strategy for a resolution is to blow up the origin, which breaks the regularity of the distribution.

The next best thing is a (locally) monomial singular distribution: given a ring R such that Z ⊂ R ⊂ K, a d-singular distribution θ is R-monomial at p ∈ M if there exists a local coordinate system x = (x 1 , ..., x n ) and a coherent set of generators {X 1 , ..., X d } of θ p such that:

• Either X i = ∂ ∂x i , or;

• X i = n j=1 α i,j x j ∂ ∂x j with α i,j ∈ R.

A singular distribution is R-monomial if it is R-monomial at every point p ∈ M (see section 2.2 for details).

The main problem of this work can now be enunciated rigorously:

Problem: Given a foliated ideal sheaf (M, θ, I, E) such that the singular distribution θ is R-monomial, is there a resolution of (M, θ, I, E):

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M, θ, I, E) σ r σ 2 σ 1
such that the singular distribution θ r is also R-monomial?

In this thesis we prove the following:

• If the ideal sheaf I is invariant by the singular distribution θ (i.e. θ[I] ⊂ I), then there exists a resolution that preserves regularity and R-monomiality (see Theorem 5.1.1);

• If the leaf dimension of the singular distribution θ is one, then there exists a resolution that preserves R-monomiality (see Theorem 5.3.1);

• If the leaf dimension of the singular distribution θ is two, then there exists a local uniformization that preserves R-monomiality (see Theorem 6.1.1).

We are more precise in the formulation of these results in section 1.4.

Example

We give a simple example in order to illustrate the difficulty of the problem. We work over the Z-monomial foliated ideal sheaf (M, θ, I, E) = (C 3 , θ, I, ∅), where θ is a Z-monomial singular distribution generated by the regular vector field X = ∂ ∂z + z ∂ ∂x and I is an ideal generated by (x, y).

On one hand if we consider the admissible blowing-up of order one σ : (M ′ , θ ′ , I ′ , E ′ ) -→ (M, θ, I, E) with center C = V (x, y) we obtain a resolution of I. On the other hand, the transform of the singular distribution θ (in this case, the adapted analytic strict transform and the strict transform coincide) restricted to the x-chart is generated by the vector field:

X ′ = x ∂ ∂z + z(x ∂ ∂x -y ∂ ∂y )
which is not Z-monomial (indeed the linear part is nilpotent). So, this naive attempt breaks Z-monomiality. Intuitively, this happens because the center C is tangent to the orbit of the vector field X at the origin. E) be the admissible blowing-up of order one with center C = V (x, y, z). The only interesting chart is the z-chart, where we obtain:

So, let σ : (M ′ , θ ′ , I ′ , E ′ ) -→ (M, θ, I,
I * = (x ′ z ′ , y ′ z ′ ) X * = 1 z ′ (z ′ ∂ ∂z ′ -x ′ ∂ ∂x ′ -y ′ ∂ ∂y ′ ) + ∂ ∂x ′ I ′ = (x ′ , y ′ ) X ′ = z ′ ∂ ∂z ′ + (z ′ -x ′ ) ∂ ∂x ′ -y ′ ∂ ∂y ′
where I * and X * stand for the pull-back of the ideal sheaf and the vector field respectively.

We claim that θ ′ is Z-monomial. Indeed, if we consider the change of coordinates:

( x, y, z) = (2x ′ -z ′ , y ′ , z ′ )
we obtain that the vector field X * in these new coordinates is given by:

X ′ = z ∂ ∂ z -x ∂ ∂ x -y ∂ ∂ y Now, let σ : (M ′′ , θ ′′ , I ′′ , E ′′ ) -→ (M ′ , θ ′ , I ′ , E ′ ) be the admissible blowing-up of order one with center C ′ = V (x ′ , y ′ ).
Once again, we obtain a resolution of I ′ that breaks Zmonomiality. Indeed, the transform of the singular distribution θ ′ restricted to the x ′ -chart is generated by the vector field:

X ′′ = x ′′ z ′′ ∂ ∂z ′′ + (z ′′ -x ′′ )x ′′ ∂ ∂x ′′ -z ′′ y ′′ ∂ ∂y ′′
which is not Z-monomial (indeed the linear part is nilpotent). So, this naive attempt breaks Z-monomiality. Intuitively, this happens because the vector field X ′ is singular in the origin and transverse to the center C everywhere else.

So, let σ : (M ′′ , θ ′′ , I ′′ , E ′′ ) -→ (M ′ , θ ′ , I ′ , E ′ ) be the admissible blowing-up of order one with center C ′ = V (x ′ , y ′ , z ′ ).
The only interesting chart is the z ′ -chart, where we obtain:

I ′′ = (x ′′ , y ′′ ) X ′′ = z ′′ ∂ ∂z ′′ + (1 -2x ′′ ) ∂ ∂x ′′ -2y ′′ ∂ ∂y ′′
We leave to the reader the verification that X ′′ is Z-monomial.

We finally claim that a third blowing-up with center

C ′′ = V (x ′′ , y ′′ ) gives a resolu- tion of I ′′ such that θ ′′′ is Z-monomial.
The crucial intuitive reason is that the vector field X ′′ is everywhere transverse to the center C ′′ . We leave the details to the interested reader.

Ideas and results

In Chapter 2 we define some tools to study the interaction between a singular distribution (or a foliation) and an ideal sheaves (or varieties). It is well-known that a good strategy to do so when the singular distribution is regular are Fitting ideals (see definition in [Te]). In section 2.3 we introduce a notion of k-generalized Fitting ideals, which coincides with the definition of Fitting ideals when the singular distribution θ is regular.

This tool allows us to tackle one of the first difficulties of the main problem: how to control the transforms of a singular distribution θ under blowing-up. We deal with this difficulty restricting the possible centers of blowing-up to θ-admissible centers (see section 4.1 for the precise definition).

Intuitively, a center C is θ-admissible at a point p in C if there exists a local decomposition θ p = θ tr + θ inv (as O p -modules) of the singular distribution θ p into two singular distributions {θ tr , θ inv } such that:

• The singular distribution θ tr is totally transversal to C, i.e. no vector of T p C is contained in the subspace of T p M generated by θ tr ;

• The singular distribution θ inv is everywhere tangent to C, i.e. C is invariant by θ inv .

Later, we formalize this intuitive interpretation (see Proposition 4.4.1). An admissible blowing-up with a θ-admissible center is called a θ-admissible blowing-up. This notion is defined for arbitrary singular distributions, but is particularly important for R-monomial singular distributions because of the following result:

Theorem 1.4.1. Let (M, θ, E) be a R-monomial d-foliated manifold and:

σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) a θ-admissible blowing-up. Then θ ′ is R-monomial.
This is proved in chapter 4, Theorem 4.1.1.

Nevertheless, the definition of θ-admissible center seems to have a much wider range of application. We believe that this kind of blowing-ups could preserve other interesting conditions of a singular distribution θ (actually, it may even be a necessary condition). For example, if θ has leaf dimension one and has only canonical singularities (see I.1.2 of [Mc] for the definition), then θ ′ has only canonical singularities if, and only if, the blowing-up is θ-admissible (this follows from fact I.2.8 of [Mc] and Proposition 4.4.1 below). More generally, it seems that a similar statement holds for an arbitrary d-foliated manifold.

Based on Theorem 1.4.1, the next step is to look for a resolution of a foliated ideal sheaf (M, θ, I, E) with only θ-admissible blowings-up. To achieve this goal, we introduce a new invariant called the tg-order (abbreviation for tangency order) attached to each point p in M and denoted by ν p (θ, I) (see section 2.5 for the precise definition). This invariant gives a measure of the order of tangency between an ideal sheaf I and a singular distribution θ, even if one of the objects is singular.

The idea behind the invariant is a notion of tangency chain of ideal sheaves (see section 2.5 for the precise definition). This "chain" can be seen as a sequence of ideal sheaves (I n ), where the n-ideal sheaf I n contains all the analytic informations about order n tangency points between the ideal sheaf I and the singular distribution θ. This chain gives a well-known stratification of the variety V (I) into locally closed sub-varieties where θ is n-tangent to V (I). But the fact that the information is analytic and not only geometric is crucial.

This invariant allows us to prove the two main results of this work, which give a θ-admissible resolution if:

• Either the ideal sheaf I is θ-invariant, or;

• The singular distribution θ has leaf dimension equal to one.

In order to be precise, we define the notion of local foliated ideal sheaves as quintuples (M, M 0 , θ, I, E):

• (M, θ, I, E) is a foliated ideal sheaf; • M 0 is an open relatively compact subset of M .
A resolution of a local foliated ideal sheaf (M, M 0 , θ, I, E) is a resolution of the foliated ideal sheaf (M 0 , I 0 , θ 0 , E 0 ) := (M 0 , I.O M 0 , θ.O M 0 , E ∩ M 0 ). With this notation, we present the main Theorems of this work in their simplest forms:

Theorem 1.4.2. Let (M, M 0 , θ, I, E) be a local d-foliated ideal sheaf and suppose that I 0 is θ 0 -invariant. There exists a resolution of (M, M 0 , θ, I, E):

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1 such that: i ) σ = (σ r , ..., σ 1 ) is a sequence of θ-admissible blowings-up; ii ) The composition σ = σ 1 • ... • σ r is an isomorphism over M 0 \ V (I 0 ); iii ) If θ 0 is R-monomial, then so is θ r ; iv ) If θ 0 is regular, then so is θ r .
Theorem 1.4.3. Let (M, M 0 , θ, I, E) be a local foliated ideal sheaf and suppose that θ has leaf dimension equal to 1. There exists a resolution of (M, M 0 , θ, I, E):

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1 such that: i ) σ = (σ r , ..., σ 1 ) is a sequence of θ-admissible blowings-up; ii ) The composition σ = σ 1 • ... • σ 1 is an isomorphism over M 0 \ V (I 0 ); iii ) If θ 0 is R-monomial, then so is θ r .
In fact Theorems 1.4.2 and 1.4.3 are corollaries of the more general Theorems 5.1.1 and 5.3.1, where we also prove the functoriality of the resolution for a certain kind of morphisms called chain-preserving smooth morphisms (see section 2.6 for the definition).

The study of a θ-admissible resolution when the singular distribution θ has leaf dimension bigger then one has some extra difficulties that we describe in section 5.7.

Nevertheless, we can present a slightly weaker result for a singular distribution with leaf dimension equals to two. A local uniformization of a foliated ideal sheaf (M, θ, I, E) at a point p of M is a finite collection of pairs {τ α : M α -→ M, θ α } where:

• τ α : M α -→ M is a proper analytic morphisms; • θ α is a singular distributions M α .
such that:

• The union of the images τ α (M α ) is an open neighborhood of p.

• For each morphism τ α : M α -→ M there exists a sequence of admissible local blowingsup of order one:

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M, θ, I, E) τ r,α τ 2,α τ 1,α
such that I r = O Mr , θ α = θ r and the morphism τ α is the composition of this local blowings-up:

τ α = τ 1,α • ... • τ r,α .
where a local blowing-up is the composition of a blowing-up with a injective local isomorphism (see section 3.4 for the precise definition on local blowings-up and section 3.5 for more details about local uniformizations). A local uniformization is θ-admissible if all local blowings-up are θ-admissible.

Accepting this weaker "resolution", we are able to obtain the following result:

Theorem 1.4.4. Let (M, θ, I, E) be a 2-foliated ideal sheaf and p a point of M . Then, there exists a θ-admissible local uniformization of (M, θ, I, E) at p. In particular, if θ is

R-monomial, then θ α is R-monomial for every α.
This is proved in chapter 6, Theorem 6.1.1.

Applications and Open problems

1.5.1 Application 1: Resolution in Families -Chapter 7

Resolution of singularities in families (or simultaneous resolution of singularities) is a natural problem which has been considered by several authors. For instance, we could mention the following two motivations:

• ZP) The Zarisky search for a good notion of "equiresolution" (see [START_REF] Zariski | Some open questions in the theory of singularities[END_REF][START_REF] Encinas | On algorithmic equiresolution and stratification of Hilbert schemes[END_REF][START_REF] Villamayor | On equiresolution and a question of Zariski[END_REF] for some results on the subject);

• RP) The study of bifurcations of vector fields and the 16 o Hilbert problem (see [R] for more details on the subject).

We start by being more precise about ZP . Following the results in [ENV], we can change focus from an "equiresolution" to a resolution of a smooth family of ideal sheaves. In this work, we define smooth family of ideal sheaves to be a quadruple (B, Λ, π, I) where:

• The ambient space B and the parameter space Λ are two smooth analytic manifolds;

• The morphism π : B -→ Λ is smooth;

• The ideal sheaf I is coherent and everywhere non-zero over B.

Given λ ∈ Λ, the set π -1 (λ) is a regular sub-manifold of B called fiber. A point λ 0 ∈ Λ is called an exceptional value of a smooth family of ideal sheaves (B, Λ, π, I) if the fiber

π -1 (λ 0 ) is contained in V (I).
Strictly saying, we would like to find a family of resolutions with respect to π, i.e. a resolution σ = (σ r , ..., σ 1 ) of (B, I, ∅) such that π • σ is smooth, where σ = σ 1 • ... • σ r . This would give the notion of equiresolution desired by Zariski (but we remark that we have fixed a family structure already).

Since this is not always possible (see example 1.2.1), one may try to find a weaker notion of resolution for a family of ideal sheaves. We work with a new one called uniform resolution in families of ideal sheaves (see section 7.1 for the definition) which was first introduced (in a different context) in [DR]. As a first step to obtain an uniform resolution, we present the following result on elimination of exceptional values:

Theorem 1.5.2. Let (B, Λ, π, I) be a smooth family of ideal sheaves such that all fibers are connected. Then, there exists a smooth family of ideal sheaves (B ′ , Λ ′ , π ′ , I ′ ) and two proper analytic maps σ : B ′ -→ B and τ : Λ ′ -→ Λ such that:

i ) The smooth family of ideal sheaves

(B ′ , Λ ′ , π ′ , I ′ ) has no exceptional value;
ii ) The following diagram:

B ′ Λ ′ B Λ σ π ′ π τ commutes;
iii ) For any relatively compact open subset B 0 of B, there exists a sequence of admissible blowings-up of order one for (B 0 , I 0 , E 0 ) = (B 0 , I.O B 0 , ∅):

(B r , I r , E r ) • • • (B 1 , I 1 , E 1 ) (B 0 , I 0 , E 0 ) σ r σ 2 σ 1 such that σ| σ -1 B 0 = σ 1 • ... • σ r and I ′ .O Br = I r ;
iv ) For any relatively compact open subset Λ 0 of Λ, there exists a sequence of admissible blowings-up by (Λ 0 , E 0 ) = (Λ 0 , ∅):

(Λ r , E r ) • • • (Λ 1 , E 1 ) (Λ 0 , E 0 ) τ r τ 2 τ 1 such that τ | τ -1 Λ 0 = τ 1 • ... • τ r .
This is proved in section 7.1 Theorem 7.1.1.

Remark 1.5.3. To make the statements of the Theorem more clear, suppose that the analytic manifolds B and Λ are compact. In this case, σ is the composition of a sequence of blowingups σ = (σ r , ..., σ 1 ) and τ is the composition of a sequence of blowing-ups τ = (τ r , ..., τ 1 ) that commutes at each step, i.e. the following diagram:

B r • • • B 1 B Λ r • • • Λ 1 Λ π r σ r τ r σ 2 σ 1 τ 2 τ 1 π 1 π commutes, where B r = B ′ , Λ ′ = Λ r and the morphisms π i : B i -→ Λ i are all smooth.
Now, we are more precise about RP. A smooth family of foliations by curves is given by a quadruple (B, Λ, π, X ) where:

• The ambient space B and the parameter space Λ are two smooth analytic manifolds;

• The morphism π : B -→ Λ is smooth;

• The singular distribution X is:

• Everywhere non-zero over B and dπ(X ) ≡ 0;

• At each point p in B, there exists a vector field X p that generates the singular distribution X p .

We recall that the set S(X ) := V (X [O B ]) is the singular set of the vector field X . A point

λ 0 ∈ Λ is called an exceptional value of a smooth family of vector field (B, Λ, π, X ) if the fiber π -1 (λ 0 ) is contained in S(X ).
Finding a general resolution of vector fields is a very difficult problem, yet to be solved. Nevertheless, based on the Bendixson-Seidenberg result for planar vector fields, one could hope to find a resolution when dimΛ = dimB -2. In this case, we say that the family of foliations by curves is planar. This problem is an essential step in the so-called Roussarie's program (see [DR]) to prove the existential part of the 16 th Hilbert problem and has been solved in some cases. In particular, we mention the following:

• Denkowska and Roussarie [DR]: The authors propose a different meaning of "resolving families of foliation by curves". Their idea is to change focus from a family to the foliation associated to it. It is worth remarking that this idea motivated this thesis;

• Panazzolo [P1]: The author presents a resolution (in the sense of Denkowska and Roussarie) of a smooth family of foliation by curves (B, Λ, π, X ) when the restriction of the linear part of X to the leafs are non-zero;

• Trifonov [Tr]: The author presents a reduction of a smooth family of foliation by curves (B, Λ, π, X ) into another smooth family of vector field (B ′ , Λ ′ , π ′ , X ′ ) where no "persistent" singularity exists. It is worth remarking that (B ′ , Λ ′ , π ′ , X ′ ) may still be complicated since singular perturbations phenomenas are persistent through this reduction. Nevertheless, this is the best known reduction that preserves smoothness.

In this work, we prove a generalization of Proposition IV.3 of [DR], concerning elimination of exceptional values. This can be seen as a first step to find the resolution proposed in [DR]:

Theorem 1.5.4. Let (B, Λ, π, X ) be a smooth family of foliations by curves such that all fibers are connected. Then, there exists a smooth family of foliations by curves

(B ′ , Λ ′ , π ′ , X ′ )
and two proper analytic maps σ : B ′ -→ B and τ : Λ

′ -→ Λ such that: i ) (B ′ , Λ ′ , π ′ , X ′ ) has no exceptional value;
ii ) The following diagram:

B ′ Λ ′ B Λ σ π ′ π τ commutes;
iii ) For any relatively compact open subset B 0 of B, there exists a sequence of admissible blowings-up by (B 0 , X 0 , E 0 ) = (B 0 , X .O B 0 , ∅):

(B r , X r , E r ) • • • (B 1 , X 1 , E 1 ) (B 0 , X 0 , E 0 ) σ r σ 2 σ 1
where

X i = σ * i X i-1 .O(-F i ), such that σ| σ -1 B 0 = σ 1 • ... • σ r and X ′ .O Br = X r ;
iv ) For any relatively compact open subset Λ 0 of Λ, there exists a sequence of admissible blowings-up by (Λ 0 , E 0 ) = (Λ 0 , ∅):

(Λ r , E r ) • • • (Λ 1 , E 1 ) (Λ 0 , E 0 ) τ r τ 2 τ 1 such that τ | τ -1 Λ 0 = τ 1 • ... • τ r .
This is proved in Section 7.1, Theorem 7.3.1.

1.5.5 Application 2: Generalized Flow-Box and a problem proposed by Mattei -Chapter 8

Mattei's Problem

The problem proposed by Mattei concerns the action of an specific algebraic Lie Group action. Consider a general Lie group G acting on an analytic manifold M :

A : G × M -→ M (g, m) → g(m)
and an analytic sub-variety N of M . We say that the triple (M, N, A) satisfies the G-FB T ) For all point q in U p , and for all g in V , the point g(q) is contained in N if, and only if, g(q) = q.

It is clear that such a property is not always satisfied. So, Mattei suggests to introduce an extra hypothesis: For every point p of N , let L p be the analytic sub-variety of M given by the orbit of G through p. We say that the triple (M, N, A) is geometrically quasi-transverse if:

H ) The tangent space of N and L p at p have trivial intersection.

Geometric intuition leads one to ask the following natural question (see figure 1.1):

• General Problem: If the triple (M, N, A) is geometrically quasi-transverse, does it satisfy the G -F B property?

The original problem of Mattei deals with a more specific case where A : G × M → M is an algebraic group action. More precisely:

• M is the space of the k-jets of 1-form germs in (C 2 , 0), singular at the origin;

• The group G is the product G 1 ×G 2 , where G 1 is the group of the k-jets germs of unities u of (C 2 , 0), and G 2 is the group of k-jets of bi-holomorphic germs F : (C 2 , 0) → (C 2 , 0);

• Given a point j k (ω) of M and (u, F ) of G, the action (u, F ) * (j k (ω)) is given by j k (u(F * ω)) (where j k is the function that maps an analytic germ to its k-jet).

And then, the question can finally be formulated as follows:

• Mattei Problem: Suppose M , G and A are as above and let N ⊂ M be an analytic regular sub-variety (not necessarily algebraic) such that the triple (M, N, A) is geometric quasi-transverse. Does the triple (M, N, A) satisfy the G -F B property?

The original motivation of this question is to prove that the semi-universal equisingular unfolding of one-forms constructed by Mattei is actually universal (see Theorem 3.2.1 of [Ma]).

In this work, we are going to give a positive answer to the general question under additional hypotheses, and a counter-example for dimM = 4 (see section 8.5.3 and notice that the vector field is complete). Nevertheless, we stress that the Mattei problem is still open.

Figure 1.1: In the left, the phase space of Example 1. In the right the phase space of Example 2.

Generalized Flow-Box problem

In order to deal with the above problem, we change focus from the Lie group to the Lie algebra and we reformulate the problem in a dynamical system language. To simplify the discussion, we presently consider a one-dimensional Lie algebra. The general case is studied in chapter 8.

Let M be an analytic manifold, N a regular sub-manifold of M and X an analytic vector field over M . We say that the triple (M, N, X) satisfies the G-FB property (Generalized Flow-Box) if: for each point p of N , there exists a pair (U p , δ p ), where U p is an open neighborhood of p and δ p > 0 is a positive real number, such that the orbit γ q (t) of the vector field X passing through the point q of (N ∩ U p ) \ Sing(X) does not intersect N for 0 < t < δ p . In section 8.3 we give a more general definition, in the context of a fixed Sub-Riemannian metric on M .

The problem is, given a triple (M, N, X), to establish a local criterium depending on the sub-variety N and the vector field X which guarantees that the G -F B property holds. We give two preliminary examples to motivate: 1, left). A simple calculation shows that the G -F B property is not satisfied at the origin. This happens because there is a tangent point between the vector field and the variety. Example 2: Consider (M, N, X) = (R 2 , V (y), y ∂ ∂xx ∂ ∂y ) (see figure 1.1, right). Notice that the G -F B property is satisfied even at the origin, which is singular. For example, figure 1.2 shows the case of δ = π 4 .

Example 1: Consider (M, N, X) = (R 2 , V (y), ∂ ∂x + x ∂ ∂y ) (see figure 1.
So, one may conjecture that the difficulty of the problem lies in the tangency points between the variety N and the vector field X (just as for the group actions).

We say that a triple (M, N, X) is geometrically quasi-transverse if, at each point p in N :

dim K T p N + dim K X(p) = dim K (T p N + X(p))
where X(p) is the subspace of T p M generated by X. In section 8.1 we give a more general definition, and Lemma 8.1.2 provides the link between these two definitions. In other words, geometrically quasi-transverse triples (M, N, X) don't have points of tangency between the variety and the vector field. Following the intuition of these examples, we may ask the following question:

Question: Does geometrical quasi-transversality implies G-FB?

We answer this question with two results:

Theorem 1.5.6. If (M, N, X) is geometrically quasi-transverse and one of the following conditions is satisfied:

• The dimension of N is one;

• The codimension of N is one;

• (M, N, X) is algebraically quasi-transverse (see definition in section 8.1).

Then, the G -F B property holds.

Remark 1.5.7. In particular if the dimension of M is smaller or equal to 3, then geometrical quasi-transversality always implies G-FB.

The next result shows that the additional condition of algebraic quasi-transversality cannot be dropped for dimM ≥ 4:

Theorem 1.5.8. For dimM ≥ 4, there exists a geometrical quasi-transverse triple (M, N, X)

that does not satisfy the G -F B property.

These Theorems are a reinterpretation of the results contained in section 8.5.

Further applications and Open Problems

We start presenting two objects of research where the techniques here developed could be useful:

• Monomialization of maps: An analytic map Φ : M -→ N is monomial if at every point p in M , there exists a system of coordinates (x) = (x 1 , ..., x m ) over O p and (y) = (y 1 , ..., y n ) of O Φ(p) such that:

Φ(x) = (Φ 1 (x), ..., Φ n (x)) = ( n j=1
x q 1,j j , ...,

n j=1 x q 1,j j )
where the exponents q i,j are natural numbers such that the matrix:

    q 1,1 ... q 1,n . . . . . . . . . q n-d,1 ... q n-d,n    
is of maximal rank. The problem is the following: given an analytic map Φ : M -→ N such that dΦ is generically of maximal rank then, up to a sequence of blowings-up in M and N , can we assume that the map Φ : M -→ N is monomial?

In other words, can we find two analytic proper morphisms σ : M ′ -→ M and τ : N ′ -→ N , which are compositions of blowings-up, and a monomial analytic map

Φ ′ : M ′ -→ N ′ such that the following diagram: M ′ N ′ M N σ Φ ′ Φ τ commutes?
This problem is stated by King in [Ki]. The best results, up to our knowledge, are given by:

• Cutkosky in a series of papers [START_REF] Cutkosky | Local monomialization and factorization of morphisms[END_REF][START_REF] Cutkosky | Steven Dale Local monomialization of transcendental extensions[END_REF][START_REF] Cutkosky | Steven Dale Monomialization of morphisms from 3-folds to surfaces[END_REF], where he (mainly) proves two results: the monomializtion of mapping exists along a valuation (a local uniformization result) and a global monomialization of maps exists if dimM = 3 and dimN = 2;

• Dan Abramovich, Jan Denef and Kalle Karu in [ADK], where they prove that a monomialization process by "modifications", instead of blowings-up, always exists.

We stress that these results are stated in the algebraic category and for a more general class of fields of characteristic zero.

A possible strategy for tackling the problem is to find a resolution of all Fitting ideals related to the map Φ : M -→ N . This does not seem to be possible, at least for the notion of resolution we gave in this work (it seems that, in general, Fitting ideals can not be monomialized). Nevertheless, we remark that Fitting ideals are related with singular distributions, and this might be a key idea for applying the present work to the problem of monomialization of maps.

• Equiresolution: In this part we allow ourself to be less precise. We follow the ideas from [V2, V3], even though we work in the analytic category. We refer to these two articles for details. An idealistic ideal is a triple (M, I, E) where:

• M is a smooth analytic manifold of dimension n over a field K, where the field K is either R or C;

• I is a coherent and everywhere non-zero ideal sheaf over M ;

• E is an ordered collection E = (E (1) , ..., E (l) ), where each E (i) is a smooth divisor on M such that i E (i) is a reduced divisor with simple normal crossings.

Consider a smooth subvariety N of V (I) and fix a point p in N . We say that the idealistic triple (M, I, E) is equiresolvable along N locally at p if there exists a triple

(U, π : U → Y, σ : U ′ → U )
, where:

• U is an open neighborhood of p;

• The morphism π : U -→ Y is smooth;

• The morphism σ : (U ′ , E ′ ) -→ (U, E) is the composition of admissible blowingsup that gives a resolution of (U,

I.O U , E ∩ U ).
such that:

• The morphism π • σ : U ′ -→ Y is smooth;
• For each point q in Y , the morphism σ restricted to the fiber U (q) = π -1 ({q}) over q: σ q : U ′ (q) -→ U (q) is the composition of blowings-up that resolve (U (q), I.O U (q) , E ∩ U (q));

• For any subset {E (i 1 ) , ..., E (is) } ⊂ E ′ , if we define:

F (i 1 , ..., i s ) = E (i 1 ) ∩ ... ∩ E (is)
Then either F (i 1 , ..., i s ) is empty or the induced morphism F (i 1 , ..., i s ) -→ Y is also smooth.

In [V3] the author answers an old question of Zariski about the equiresolution for the case of hypersurfaces. In particular, it gives a characterization of equiresolvable parameter spaces based on a purely geometrical notion called "equisingularity" (see [V3] for details).

In [ENV], the authors shift the focus from equiresolutions to resolution of families. Once fixed a family of idealistic ideals, they describe the necessary conditions that a resolution algorithm needs to verify, so that an equiresolution may be obtained.

They finish giving a stratification of the parameter space into locally closed subsets over which equiresolution may be obtained.

We believe that using the ideas of this thesis, one could look for a principalization of ideal sheaves satisfying the condition (AE) of [ENV] (at least for some cases).

This belief is motivated by the intuitive interpretation of the condition (AE) of the same article: the centers of the resolution sequence should "spread evenly" over the parameter space N . In the context of this work, consider a foliated ideal sheaf (M, θ, I, E) such that dπ(θ) = Der N . If there exists a resolution of (M, θ, I, E) by θ-invariant centers (which is a particular kind of θ-admissible centers -see Theorem 5.1.1 and Proposition 5.4.1 for results in this direction), then there exists a equiresolution of the family.

And now, we present four open problems that seem to be natural follow-ups of this thesis:

• The general resolution of foliated spaces: The main problem of this work still does not have a complete solution. Can we obtain a global resolution that preserves R-monomiality for a general d-singular distribution? If not, can we at least get a local uniformization?

• Blowing-up foliations: The "informal" problem presented in section 1.1 have different possible interpretations. In general:

• What kind of property of a singular distribution θ can be preserved through a resolution of an ideal sheaf?

Since we already have good results when using θ-admissible blowing-ups, we are lead to consider the properties that a θ-admissible blowing-up might preserve. For example:

• Does θ-admissible blowing-up preserves canonicity? And log-canonicity?

• Is the property of being θ-admissible necessary to preserve R-monomiality?

• Marked ideals: A foliated marked ideal sheaf is a quintuple (M, θ, I, s, E) where:

• (M, θ, I, E) is a foliated ideal sheaf;
• s is a positive integer.

The support of the (I, s) is the subset:

V (I, s) = {p ∈ M ; I.O p ⊂ m s p }
where m p is the maximal ideal of the structural ideal O p .

An admissible blowing-up σ :

(M ′ , θ ′ , E ′ ) -→ (M, θ, E) is of order s by (M, θ, I, s, E)
if the center C is contained in the variety V (I, s).

There exists a natural transform of I over admissible blowing-ups of order s called s-controlled transform. It is the coherent and everywhere non-zero ideal sheaf I c,s defined as I c,s = O(-sF )(I.O M ′ ), where F stands for the exceptional divisor of the blowing-up. We denote an admissible blowing-up of order s by:

σ : (M ′ , θ ′ , I ′ , s, E ′ ) -→ (M, θ, I, s, E)
where the ideal sheaf I ′ is the s-controlled transform of I.

A resolution of a foliated marked ideal sheaf (M, θ, I, s, E) is a sequence of admissible blowing-ups of order s:

(M r , θ r , I r , s, E r ) • • • (M 1 , θ 1 , I 1 , s, E 1 ) (M 0 , θ 0 , I 0 , s, E 0 ) σ r σ 2 σ 1 such that V (I r , s) = ∅.
In this case, we can formulate an analogous version of the main problem of this work for marked ideals:

Open Problem -Marked ideals: Given a foliated marked ideal sheaf (M, θ, I, s, E) such that the singular distribution θ is R-monomial, is there a resolution of (M, θ, I, s, E):

(M r , θ r , I r , s, E r ) • • • (M 1 , θ 1 , I 1 , s, E 1 ) (M 0 , θ 0 , I 0 , s, E 0 ) σ r σ 2 σ 1
such that the singular distribution θ r is also R-monomial? Chapter 2

Relations between Foliations and Varieties

Main Objects

We stress that all objects of this work are analytic. We start with a list of the main objects of this work:

A manifold with divisor is a pair (M, E):

• M is a smooth analytic manifold of dimension n over K (where K is R or C);

• E is an ordered collection E = (E (1) , ..., E (l) ), where each E (i) is a smooth divisor on M such that i E (i) is a reduced divisor with simple normal crossings.

A foliated manifold is a triple (M, θ, E):

• (M, E) is an analytic manifold with divisor;

• θ is an involutive singular distribution defined over M and everywhere tangent to E.

A foliated ideal sheaf is a quadruple (M, θ, I, E):

• (M, θ, E) is a foliated manifold;

• I is a coherent and everywhere non-zero ideal sheaf over M .

A local foliated manifold is a quadruple (M, M 0 , θ, E):

• (M, θ, E) is a foliated manifold;

• M 0 is an open relatively compact subset of M .

We recall the basic notions of singular distributions (we follow closely [BB]). Let Der M denote the sheaf of analytic vector fields over M , i.e. the sheaf of analytic sections of such that θ is the sheaf of analytic sections of L. We assume that the dimension of the K vector space L p is the same for all points p in M \ S (this always holds if M is connected). It will be called the leaf dimension of θ and denoted by d. In this case θ is called an involutive d-singular distribution and (M, θ, E) a d-foliated manifold.

T M . A
A coherent set of generators of θ p is a set {X 1 , ..., X dp } of d p ≥ d vector fields germs with representatives defined in a neighborhood U p of p such that {X 1 , ..., X dp }.O q generates θ q for every q ∈ U p .

According to the Stefan-Sussmann Theorem (see [St, Su]) an involutive singular distribution θ is integrable, i.e. for all point p in M , there exists an immersed locally closed submanifold (N, φ) passing through p such that:

• D q φ(T q N ) = L φ(q) for all q ∈ N where L q ⊂ T M q is the linear subspace generated by θ q . The maximal connected submanifolds with respect to this property are called leaves and denoted by L. The partition of M into leaves is called the singular foliation generated by θ (not necessarily saturated).

A singular foliation should be seen as a geometrical counterpart of a singular distribution, just as a variety is a geometrical counterpart of an ideal sheaf. We remark that two different singular distributions may generate the same singular foliation. We say that θ is a full involutive singular distribution if, for every involutive singular distribution ω that generates the same singular foliation as θ, the singular distribution ω is a sub-sheaf of θ.

The R-monomial singular distribution

Given a ring R such that Z ⊂ R ⊂ K and a point p in M , we say that a d-singular distribution θ is R-monomial at p if there exists a local coordinate system x = (x 1 , ..., x n ) and a coherent set of generators {X 1 , ..., X d } of θ p such that:

• Either X i = ∂ ∂x i , or; • X i = n j=1 α i,j x j ∂ ∂x j with α i,j ∈ R.
In this case, we say that x = (x 1 , ..., x n ) is a R-monomial coordinate system and {X 1 , ...,

X d } is a R-monomial basis of θ p . A singular distribution is R-monomial if it is R-monomial in all points. A foliated manifold (M, θ, E) (respectively a foliated ideal sheaf (M, θ, I, E)) is R-monomial if θ is R-monomial. Lemma 2.2.1. The R-monomiality is an open condition i.e. if θ is R-monomial at p in M ,
then there exists an open neighborhood U of p such that θ is R-monomial at every point q in U .

Examples:

• Any regular distribution is a Z-monomial singular distribution;

• We say that a d-singular distribution θ is R-monomially integrable at p if there exists a local coordinate system x = (x 1 , ..., x n ) and nd monomial functions λ i = n j=1 x q i,j j

for 1 ≤ i ≤ nd with exponents q i,j ∈ R such that:

• Each λ i is a first integral for all vector fields contained in θ p , and;

• The matrix:

(q i,j ) :=     q 1,1 ... q 1,n . . . . . . . . . q n-d,1 ... q n-d,n     is of maximal rank.
Lemma 2.2.2. Given a singular distribution θ:

I ) If it is full and R-monomially integrable, then it is R-monomial; II ) If it is R-monomial, then it is R-monomially integrable.
In particular, we say that θ p is meromorphically (respectively Darboux ) monomially

integrable if R = Z (respectively R = R).
Now, we prove the above Lemmas:

Proof. (Lemma 2.2.1): Let θ be a R-monomial d-singular distribution over p ∈ M . There exists an open set U ⊂ M containing p, a R-monomial coordinate system x = (x 1 , ..., x n )
defined over U and a R-monomial basis {X 1 , ..., X d } such that X i is defined over U for all i ≤ d. We claim that θ is R-monomial at every point q ∈ U .

Fix q ∈ U . There exists ξ = (ξ 1 , ..., ξ n ) ∈ K n such that q = ξ in the coordinate sys-

tem x = (x 1 , ..., x n ).
First, suppose that all vector fields:

X i = n j=1 α i,j x j ∂ ∂x j
are singular at p. Without loss of generality, suppose that ξ = (ξ 1 , ..., ξ t , 0, ..., 0), where ξ i = 0 for all i ≤ t. Consider the matrix:

A =     α 1,1 ... α 1,t . . . . . . . . . α d,1 ... α d,t    
and let s be its rank. Without loss of generality, we assume that:

A =   D B 0 0  
where D is a s × s-diagonal matrix, B is a s × (ds)-matrix and both matrices have only elements in R. This implies that:

• X i = α i,i x i ∂ ∂x i + n j=s α i,j x j ∂ ∂x j with α i,i = 0 for all i ≤ s; • X i = n j=t+1 α i,j x j ∂ ∂x j for all i > s.
and all α i,j ∈ R. Now, taking the change of coordinates (y 1 , ...,

y n ) = (x 1 -ξ 1 , ..., x n -ξ n )
we obtain:

• X i = α i,i (y i + ξ i ) ∂ ∂y i + t j=s α i,j (y j + ξ j ) ∂ ∂y j + n j=t+1 α i,j y j ∂
∂y j for all i ≤ s;

• X i = n j=t+1 α i,j y j ∂ ∂y j for all i > s.
And q = (0, ..., 0) at this coordinate system. We proceed with three coordinate changes:

• First change: let y i = ξ i (-1 + exp(α i,i ȳi )
) for all i ≤ s and y i = ȳi otherwise. One can easily check that this is bi-analytic in an open neighborhood of the origin and that:

∂ ∂ ȳi = α i,i (y i + ξ i ) ∂ ∂y i
for all i < s. This implies that:

• For i ≤ s, we have that X i = ∂ ∂ ȳi + t j=s α i,j (ȳ j + ξ j ) ∂ ∂ ȳj + n j=t+1 α i,j ȳj ∂ ∂ ȳj ; • For i > s, we have that X i = n j=t+1 α i,j ȳj ∂ ∂ ȳj .
In what follows, we drop the bars;

• Second change: let

y i = -ξ i + (ȳ i + ξ i ) exp( s j=1 α j,i ȳj ) if s < i ≤ t and ȳi = y i otherwise.
One can easily check that this is bi-analytic in an open neighborhood of the origin and that:

∂ ∂ ȳi = ∂ ∂y i + t j=s α i,j (y j + ξ j ) ∂ ∂y j
for all i < s. This implies that:

• For i ≤ s, we have that X i = ∂ ∂ ȳi + n j=t+1 α i,j ȳ ∂ ∂ ȳj ;
• For i > s, we have that

X i = n j=t+1 α i,j ȳj ∂ ∂y j .
In what follows, we drop the bars again;

• Third change: let y i = ȳi exp( s j=1 α j,i ȳj ) if i > t and ȳi = y i otherwise. One can easily check that this is bi-analytic in an open neighborhood of the origin and that:

∂ ∂ ȳi = ∂ ∂y i + n j=t+1 α i,j y j ∂ ∂y j for all i < s and ȳi ∂ ∂ ȳi = y 1 ∂ ∂y i for i > t.
This implies that:

• For i ≤ s, we have that X i = ∂ ∂ ȳi ;
• For i > s, we have that

X i = n j=t+1 α i,j ȳj ∂ ∂y j .
which forms a R-monomial basis. Now, suppose that for i ≤ r, the vector field X i is non-singular at p. Without loss of generality, X i = ∂ ∂x i and X j (x i ) ≡ 0 whenever i ≤ r and j > r. In particular, when we make the translation (y 1 , ..., y n ) = (x 1ξ 1 , ..., x nξ n ), we have that X i = ∂ ∂y i for i ≤ r.

Consider the quotient O U /(x 1 , ..., x r ). It is another regular ring with a R-monomial singular distribution { Xr+1 , ..., Xt } that is all singular over the origin. Using the first part of the proof, there exists a change of coordinates in O q /(x 1 , ..., x r ) that turns { Xr+1 , ..., Xt } into a R-monomial basis. Moreover, this coordinate change is invariant by the first r-coordinates. Taking the equivalent change in O q , we conclude the Lemma.

Proof. (Lemma 2.2.2) I ) Consider a vector field X = n i=1 a i x i ∂ ∂x i locally defined in p. Since θ p is full and R-monomially integrable, we have that X ∈ θ p if, and only if, it satisfies the following system of equations:

       X(λ 1 ) = 0 . . . X(λ n-d ) = 0 ⇔        n i=1 a i q 1,i = 0 . . . n i=1 a i q n-d,i = 0
Since the matrix of the exponents (q i,j ) is of maximal rank, the solutions of this system forms a subspace L ⊂ K n of dimension d. Take a generator set (A 1 , ..., A d ) of L, where

A k = (a k,1 , ..., a k,n ) ∈ R n
, and consider the associated vector fields

X k = n i=1 a k,i x i ∂ ∂x i . Clearly X k is contained in θ p .
Apart from a Gram-Schmidt process and a change in the coordinate systems, we can assume that:

X k = a k,k x k ∂ ∂x k + n i=d+1 a k,i x i ∂ ∂x i where a k,k = 0, for all k ≤ d. If a k,i = 0 for all d + 1 ≤ i ≤ n, then instead of X k = α k,k x k ∂ ∂x k , consider the vector field X k = ∂ ∂x k . After this process, we claim that {X 1 , ..., X d } generates θ p . Indeed, let X = n i=1 α i (x) ∂
∂x i be an arbitrary vector field locally defined in p such that:

       X(λ 1 ) = 0 . . . X(λ n-d ) = 0 ⇔        n i=1 α i (x) x i q 1,i = 0 . . . n i=1 α i (x)
x i q n-d,i = 0 This implies that, either α i (x)

x i is analytic or q j,i = 0 for all 1 ≤ j ≤ nd. We remark that, by construction, if q j,i = 0 for all 1 ≤ j ≤ nd, then ∂ ∂x i ∈ {X 1 , ..., X d }. So, without loss of generality, we assume that ᾱi (x) := α i (x)

x i is analytic for all i, which implies that X = n i=1 ᾱi (x)x i ∂ ∂x i . Thus, clearly X must be a O p -linear combination of {X 1 , ..., X d }.
II ) Take a coherent set of generators {X 1 , ..., X d } of θ p such that:

• Either X i = ∂ ∂x i and we set a i,i = 1, a i,j = 0 otherwise, or;

• X i = n j=1 α i,j x j ∂ ∂x j with α i,j ∈ R.
and consider an arbitrary monomial λ = n k=1 x q k k . This monomial is a first integral of θ p if, and only if, it satisfies the following system of equations:

       X 1 (λ) = 0 . . . X d (λ) = 0 ⇔        n i=1 a 1,i q i = 0 . . . n i=1 a d,i q i = 0
Since the matrix (a i,j ) is of maximal rank, the solutions of this system is a subspace

L ⊂ K n of dimension n -d. So, take a generator set (Q 1 , ..., Q n-d ) of L,
where

Q k = (q k,1 , ..., q k,n ) ∈ R n
, and consider the associated monomial

λ k = n i=1 x q k,i
i . By construction, λ k are the searched first integrals.

Generalized k-Fitting Opperation

Let (M, θ, E) be a foliated manifold. The generalized k-Fitting operation (for k ≤ d) is a mapping Γ θ,k that associates to each coherent ideal sheaf I over M the ideal sheaf Γ θ,k (I) whose stalk at each point p in M is given by:

Γ θ,k (I).O p =< {det[X i (f j )] i,j≤k ; X i ∈ θ p , f j ∈ I.O p } >
where < S > stands for the ideal generated by the subset S ⊂ O p . The operation Γ θ,1 will play an important role in this work and, for simplifying the notation, we denote it by θ

[I]. Remark 2.3.1. If I is a coherent ideal sheaf, then Γ θ,k (I) is also coherent for every k ≤ d.
This follows from the coherence of the singular distribution θ.

Remark 2.3.2. In this work, we mainly use the ideal sheaf < Γ θ,k (I) + I >. In particular, we notice that if θ = Der M then the ideal sheaf < Γ θ,k (I) + I > coincides with the usual k-Fitting ideal sheaf (see [Te]).

Remark 2.3.3. If θ = Der M , the generalized 1-Fitting ideal sheaf coincides with the derivative ideal (see chapter 3.7 of [Ko] for details on derivative ideal sheaves).

Lemma 2.3.4. A d-singular distribution θ is regular at a point p in M if, and only if,

< Γ θ,d (m p ) + m p >= O M ,
where m p stands for the maximal ideal of the structural ideal O p .

Proof. First suppose that θ is a regular distribution in a point p of M . In this case, there exists a coordinate system x = (x 1 , ...., x n ) of O p and a coherent set of generators {X 1 , ..., X d } of θ p which, by the flow-box Theorem, can be assumed to be equal to { ∂ ∂x 1 , ..., ∂ ∂x d }. Now, it is clear that the determinant of the matrix:

X 1 (x 1 ) ... X 1 (x d ) . . . . . . . . . X d (x 1 ) ... X d (x d ) is one. Thus, Γ θ,d (m p ).O p is equal to O p , which implies that < Γ θ,d (m p ) + m p > is equal to O M . Now, suppose that < Γ θ,d (m p ) + m p > is equal to O M . This implies that Γ θ,d (m p ).O p is equal to O p .
So, there exists a coherent set of generators {X 1 , ..., X dp } of θ p and a collection of functions {f 1 , ..., f d } ⊂ m p such that the determinant of the matrix:

X 1 (f 1 ) ... X 1 (f d ) . . . . . . . . . X d (f 1 ) ... X d (f d )
is an unity of O p . In particular, this implies that the vector fields {X 1 , ..., X d } are regular and generates linearly independent vectors of T p M . Since the leaf-dimension of θ is d, we conclude that d p may be taken equal to d and the singular distribution θ is regular.

Given a coherent ideal sheaf I, we say that:

• I is invariant by θ or θ-invariant if θ[I] ⊂ I; • I is totally transverse to θ or θ-totally transverse if Γ θ,d (I) = O M .
The θ-differential closure of I is the smallest θ-invariant ideal sheaf I # containing I.

Remark 2.3.5. The existence of the θ-differential closure I # is a consequence of the Zorn Lemma.

Geometric invariance

Consider (M, θ, E) a foliated manifold and I a coherent ideal sheaf. We say that I is

geometrically invariant by θ if every leaf of θ that intersects V (I) is totally contained in V (I).
This definition corresponds to the geometrical intuition of what invariance by a foliation means. But it does not corresponds to the notion of θ-invariance that we have defined:

Example: Consider (M, θ, E) = (K 2 , ∂ ∂x , ∅) and I = (yx, y 2 ). Notice that I is not invariant by θ, since θ[I] = (y). But I is geometrically invariant by θ because V (I) = {y = 0} is a leaf of θ.
The following result gives the relation between these two notions of invariance: Lemma 2.4.1. Let θ be an involutive d-singular distribution and I a coherent ideal sheaf.

• I) If I is an ideal sheaf θ-invariant, then I is geometrically invariant by θ;

• II) If I is a reduced ideal sheaf geometrically invariant by θ, then I is θ-invariant. Now, consider N a sub-variety of M . We denote by I N the reduced ideal sheaf over M such that V (I N ) = N . We say that:

• N is invariant by θ if I N is invariant by θ; • N is geometrically invariant by θ if I N is geometrically invariant by θ.
Remark 2.4.2. Since I N is a reduced ideal sheaf, by Lemma 2.4.1, the two definitions always coincide for sub-varieties.

Now we prove the Lemma of this section:

Proof. (Lemma 2.4.1): We start supposing that θ is a 1-singular distribution. Take a point p in V (I) and let L be the leaf of θ through p (recall that L is a sub-manifold of M ).

• I): If L is zero dimensional then it is clear that L ⊂ V (I), so we assume that L is one dimensional. In this case, for each point q in L ∩ V (I), the singular distrbution θ q is generated by a regular vector field X q and, by Lemma 4.2.4, there exists a system of generators {f 1 , ..., f s } of I.O q such that X q (f i ) ≡ 0. This implies the existence of an open neighborhood U q of q and a local coordinate system (x, y) = (x, y 1 , ..., y n-1 ) over U q , such that X q = ∂ ∂x and I = (f 1 (y), ..., f r (y)). Thus (L ∩ U q ) ∩ V (I) = L ∩ U q , and, since the choice of q in L was arbitrary,

L ∩ V (I) is an open subset of L. Furthermore, since L is locally closed and V (I) is closed, L ∩ V (I) is a closed subset of L. Thus L ⊂ V (I). • II): We claim that V (I) ⊂ V (θ[I]
). The claim implies the result because:

θ[I] ⊂ θ[I] ⊂ √ I = I
So, take p ∈ V (I) and let L be the leaf of θ passing through p. If L is zero dimensional, then all vector fields germs of θ p are singular and it is clear that p ∈ V (θ[I]), so we assume that L is one dimensional. In this case θ p is generated by a regular vector

field X p . Consider f ∈ I.O p : by hypotheses f | L ≡ 0, which implies that X p (f )| L = X p (f | L ) ≡ 0. Since the choice of f ∈ I.O p is arbitrarily, p ∈ V (θ[I]).
Now, we prove the result for θ an involutive d-singular distribution. Take a point p in V (I) and let L be the leaf of θ through p and {X 1 , ..., X dp } be a set of coherent generators of θ in a small neighborhood U p of p.

• I): For a sufficiently small neighborhood U p of p, every point q in U p ∩ L is the image

of the flow (F l X 1 t 1 • ... • F l X dp t dp )(p) = q for some (t 1 , ..., t dp ) ∈ K dp , where F l X t (p)
is the flow of the vector field X at time t and with initial point p (see Lemma 3.24 of [Mi]).

Since X i (I.O Up ) ⊂ I.O Up by hypotheses, by the first part of the proof F l X i t (p) ∈ V (I) for any t. A recursive use of this argument implies that q ∈ V (I). Thus, V (I) ∩ L is open in L. Furthermore, since L is locally closed and V (I) is closed, L ∩ V (I) is a closed subset of L. Thus L ⊂ V (I);
• II): Take any vector field X in θ p and let γ be the orbit of X at p. Since L ⊂ V (I), it is clear that γ ⊂ V (I) and, by the first part of the proof, X(I.O p ) ⊂ I.O p . Since the choice of the point and vector field is arbitrarily, we conclude that θ[I] ⊂ I.

Chain of Ideal sheaves

A chain of ideal sheaves consists of a sequence (I i ) i∈N such that:

• I i is an ideal sheaf over O M ; • I i ⊂ I j if i ≤ j.
The length of a chain of ideal sheaves at a point p of M is the minimal number ν p ∈ N such that I i .O p = I νp .O p for all i ≥ ν p . We distinguish two cases:

• if I νp .O p = O p ,
then the chain is said to be of type 1 at p;

• if I νp .O p = O p ,
then the chain is said to be of type 2 at p. Given a chain of ideal sheaf (I n ), it is not difficult to see that the functions:

ν : M -→ N , type : M -→ {1, 2} p → ν p p → type p = type of (I n ) at p
are upper semi-continuous. So, given a subset U of M , the definition of length and type naturally extends to U as follows:

• The length of (I n ) at U is ν U := sup{ν p ; p ∈ U }; • The type of (I n ) at U is type U := sup{type p ; p ∈ U }. Notice that ν U may be infinity. Nevertheless, if U is a relatively compact open subset of M , ν U is necessarily finite.
Given a foliated ideal sheaf (M, θ, I, E), the tangency chain of the pair (θ, I) is defined as the following chain of ideal sheaves:

T g(θ, I) = {H(θ, I, i); i ∈ N}
where the ideal sheaves H(θ, I, i) are given by;

   H(θ, I, 0) := I H(θ, I, i + 1) := H(θ, I, i) + θ[H(θ, I, i)]
At each p ∈ M , the length of this chain is called the tangent order (or shortly, the tg-order ) at p, and is denoted by ν p (θ, I). The type of the chain is denoted by type p (θ, I).

Remark 2.5.1. Suppose that θ is generated by a regular vector field X and let γ p be the orbit of X passing through a point p of V (I). In this simple case, we can interpret these invariants as follow:

• If the orbit γ p is contained in the variety V (I), then the type of (θ, I) at p is two;

• If the orbit γ p is not contained in V (I), then the type of (θ, I) at p is one. Furthermore, the tg-order of (θ, I) is equal to the order of tangency between the orbit γ p and the variety V (I) at p.

In other words, the type identifies the presence of invariant leaves and the tg-order measures the order of tangency between the a leaves and the variety V (I).

Smooth morphism and Chain-preserving smooth morphism

A morphism φ : M -→ N between regular analytic manifold is smooth if, and only if, it is a local submersion. In particular, a projection is smooth.

Remark 2.6.1. In the algebraic category, a morphism φ : X -→ Y between two schemes is said to be smooth if:

• it is locally of finite type;

• it is flat;

• for every geometric point ȳ -→ Y the fiber X ȳ = X × Y ȳ is regular.

Given two foliated ideal sheaves (M, θ, I, E M ) and (N, ω, J , E N ), a morphism φ : M -→

N is smooth with respect to (M, θ, I, E M ) and (N, ω, J , E N ) if:

• The morphism φ : M -→ N is smooth;

• The set φ -1 (E N ) is equal to E M ;
• The ideal sheaf J .O M is equal to I.

In this case, we abuse notation and denote the morphism as:

φ : (M, θ, I, E M ) -→ (N, ω, J , E N )
Notice that this definition is independent of the singular distributions θ and ω. We say that a smooth morphism φ : (M, θ,

I, E M ) -→ (N, ω, J , E N ) is chain-preserving if: T g(ω, J ).O M = T g(θ, I) i.e H(ω, J , i), O M = H(θ, I, i) for all i ∈ N.
Remark 2.6.2. A morphism may be chain preserving even if θ and ω are very "different". This notion depends on the interaction between the singular distributions and the ideal sheaves. This implies, for example, that outside the support of the ideal sheaves, the singular distributions don't need to satisfy any relation.

We will further say that a smooth morphism φ : (M, θ,

I, E M ) -→ (N, ω, J , E N ) is
k-chain-preserving if the morphism is chain preserving and θ and ω have leaf dimension equal to k.

Whenever we work with local foliated ideal sheaf, a morphism φ : (M, M 0 , θ,

I, E M ) -→ (N, N 0 , ω, J , E N ) satisfies a property P if: φ| M 0 : (M 0 , θ.O M 0 , I.O M 0 , E M ∩ M 0 ) -→ (N 0 , ω.O N 0 , J .O N 0 , E N ∩ N 0 )
satisfies property P , where P may be: smoothness, chain-preserving smoothness and kchain-preserving smoothness.

Chapter 3

Blowings-up

Admissible blowings-up

Let σ : M ′ -→ M be a blowing-up with center C, F be the exceptional divisor of the blowing-up and S a subset of M :

• The total transform of S is S * = σ * S = σ -1 S;
• The strict transform of S is S s := σ s S = σ -1 (S \ C) (where S stands for the topological closure of S).

Given (M, E) an analytic manifold with divisor, a blowing-up σ : M ′ -→ M is said to be admissible by (M, E) if:

• The center C is a closed and regular sub-manifold of M ;

• The center C has SNC with E.

If σ : M ′ -→ M is an admissible blowing-up, there is a natural structure of analytic manifold with divisor in M ′ given by the pair (M ′ , E ′ ), where E ′ = ((E (1) ) s , ..., (E (l) ) s , F ). We denote this blowing-up by:

σ : (M ′ , E ′ ) -→ (M, E)
A sequence σ of admissible blowings-up is a sequence (σ r , ..., σ 1 ) such that:

(M r , E r ) • • • (M 1 , E 1 ) (M 0 , E 0 ) σ r σ 2 σ 1 where σ i : (M i , E i ) -→ (M i-1 , E i-1
) is an admissible blowing-up for (M i-1 , E i-1 ) and

E i = E ′ i-1 .
We establish the following notations:

• The exceptional divisor of σ i is denoted by F i ; 

• σ := σ 1 • ... • σ r ; • [iσ] := σ i+1 • ... • σ r ; • [σi] := σ 1 • ... • σ i .
ζ -1 (ω) U = {X ∈ Der U ; ζ(X) ∈ ω U }
Since the blowing-up σ : M ′ -→ M is a morphism, it gives rise to a mapping on the structural sheaves σ * : O M -→ O M ′ . Abusing notation, this morphism also gives rise to an application:

σ * : Der M -→ BlDer M ′
which, given an open subset U of M , associates to a vector field X of Der U the element

σ * (X) = ( 1 f ⊗ f X * ), where the principal ideal (f ) is equal to O(F ).O σ -1 (U ) and X * is the pull-back of the derivation (i.e. X * (σ * f ) = σ * X(f )).
The necessity to consider meromorphic functions is illustrated by the following example:

Example: M = C 2 , X = ∂
∂x and let V (x, y) be the center of blowing-up. Then:

• In the x-chart X * = 1 x (x ∂ ∂x -y ∂ ∂y ); • In the y-chart X * = 1 y ∂ ∂x .
In particular, even though θ is analytic, we cannot guarantee that σ * θ is analytic.

Remark 3.2.1. The blowing-up of an analytic vector field has at most poles of order one (as in the previous example). This implies that σ * : Der M -→ BlDer M ′ is well-defined.

The image σ * (θ) is a coherent sub-sheaf of the sheaf of O M ′ -modules BlDer M ′ . We remark that θ * is also a morphism of Lie-algebras.

We now define two possible transforms of θ:

• The total transform of θ is given by θ * := σ * (θ);

• The analytic strict transform of θ is given by θ a := ζ -1 (θ * ).

Whenever ζ -1 σ * θ is isomorphic to σ * θ, we will abuse notation and write θ * = ζ -1 (θ * ).

We claim that the analytic strict transform is an involutive d-singular distributions (not necessarily tangent to E ′ ). The following Lemma proves the claim:

Lemma 3.2.2. The sub-sheaf θ a is an involutive d-singular distribution. Moreover, consider a point q of M ′ and let p = σ(q) and {X 1 , ..., X dp } be a coherent set of generators of θ p . Then θ a q has a coherent set of generators {Y i , Z j , W k } with i = 1, ..., r, j = 1, ..., s (r + s = d p ) and k = 1, ..., t, where:

• Y i = (O(F )X * i ).O q whenever X * i .O q is not analytic; • Z j = X * j .
O q whenever X * j .O q is analytic;

• W k = O(-F ) γ i,k Y i for some Γ θ,k ∈ O r U such that W k / ∈< Y i , Z j >.
Consider the involutive n-singular distribution Der M ′ (-logF ) of Der M ′ composed by all the derivations leaving the exceptional divisor F invariant. The adapted analytic strict transform of θ is defined as θ a,ad = θ a ∩ Der M ′ (-logF ). It follows from Oka's Theorem that θ a,ad is an involutive d-singular distribution. Now, we prove the result stated on this subsection:

Proof. (Lemma 3.2.2)

• Coherence: If q is a point outside the exceptional divisor F , the result is clear because σ is a local isomorphism and, thus, ζ : θ a q -→ θ * q is a local isomorphism. So, consider the point q contained in F and let p = σ(q). If {X 1 , ..., X dp } is a coherent set of generators of θ p , then it is clear that:

θ * q =< σ * (ζ(X 1 )), ..., σ * (ζ(X dp )) > .O q =< ( 1 f ⊗ f X * 1 ), ..., ( 1 f ⊗ f X * dp )) > .O q
Take U a sufficiently small neighborhood of q and (x, y) = (x, y 1 , ..., y n-1 ) a coordinate

system such that f = x and θ a U =< ( 1 x ⊗xX * 1 ), ..., ( 1 x ⊗xX * dp ) > .O U . Notice that when- ever X * i .O U is an analytic vector field: ( 1 x ⊗ xX * i .O U ) = (1 ⊗ X * i .O U ). Reorganizing the set of generators, we can suppose that σ * U =< ( 1 x ⊗Y 1 ), ..., ( 1 x ⊗Y r ), (1⊗Z 1 ), ..., (1⊗Z s ) > where r + s = d p , Y i = xX * i .O U (such that Y ζ (0, y) ≡ 0) and Z i = X * i .O U .
Let R be the sub-module of relations of

{Y i | x=0 }, i.e. the r-tuples (f 1 , ..., f r ) ∈ O r U such that ( r i=1 f i Y i )| x=0 ≡ 0. It is easy to see that this is the same sub-module of relations of {Y ζ (x)| x=0 , Y ζ (y j )| x=0 } i≤r,
j≤n-1 . Thus, by the Oka's Theorem (see Theorem 6.4.1 of [Ho]), R is finitely generated: R = (F 1 , ..., F t ) where F i = (f 1,i , ..., f r,i ).

In particular, for every j ≤ t, f i,j Y i is divisible by x. So, for each F j , we have that:

r i=1 ( f i,j x ⊗ Y i ) = ( 1 x ⊗ r i=1 f i,j Y i ) =: (1 ⊗ W j )
We claim that {Y i , Z j , W k } i≤r,j≤s,k≤t generates θ a U , which implies the coherence. Indeed, consider X ∈ θ a U : we only need to check that

ζ(X) ∈ {ζ(Y i ), ζ(Z j ), ζ(W k )} i≤r,j≤s,k≤t . We know there exists α ∈ O r U and β ∈ O s U such that: ζ(X) = (1 ⊗ X) = α i ( 1 x ⊗ Y i ) + β j (1 ⊗ Z j )
Now, α i = x α ζ (x, y) + ᾱζ (y) and thus:

ζ(X) = α i (x, y)(1 ⊗ Y i ) + β j (1 ⊗ Z j ) + ᾱi (y)( 1 x ⊗ Y i )
It is clear that ᾱi (y)Y i is divisible by x. This implies that (ᾱ i ) ⊂ R. So, there exists

γ ∈ O t U such that (ᾱ) = γ k F k .
This finally implies that:

ζ(X) = α ζ (x, y)(1 ⊗ Y i ) + β j (1 ⊗ Z j ) + γ k (1 ⊗ W k )
• Involutiviness: For any point q of M ′ , consider vector fields X and Y contained in

θ a q . Then the elements ζ(X) and ζ(Y ) are contained in θ * q . Since θ * q is closed under Lie brackets, necessarily [ζ(X), ζ(Y )] ∈ θ *
q and since the Lie bracket of two analytic derivations is still an analytic derivation, we deduce that [X, Y ] ∈ θ a q .

• Leaf dimension: Since the blowing-up σ : M ′ -→ M and the morphism ζ : θ a -→ θ * are local isomorphisms in an open and dense set, θ a has also leaf dimension d.

Transforms of foliated manifolds and foliated ideal sheaves

Given (M, θ, E) a foliated manifold and σ : (M ′ , E ′ ) -→ (M, E) an admissible blowing-up, there is a natural structure of foliated manifold associated to (M

′ , E ′ ) given by (M ′ , θ ′ , E ′ )
where θ ′ is the adapted analytic strict transform of θ. We denote the blowing-up by:

σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E)
A sequence σ of admissible blowings-up gives rise to a sequence:

(M r , θ r , E r ) • • • (M 1 , θ 1 , E 1 ) (M 0 , θ 0 , E 0 ) σ r σ 2 σ 1
where

σ i : (M i , θ i , E i ) -→ (M i-1 , θ i-1 , E i-1
) is an admissible blowing-up and

θ i = θ ′ i-1 .
Given an admissible blowing-up σ :

(M ′ , θ ′ , E ′ ) -→ (M, θ, E), let F be the excep-
tional divisor of the blowing-up and consider a coherent everywhere non-zero ideal sheaf I over M . We define two transforms of I:

• The total transform of I is

I * := σ * I = I.O M ′ ;
• The strict transform of I is

I s := ∪ i∈N (σ * I : O(iF )), where O(iF ) is the ideal sheaf O(F ) i .
Furthermore, if C ⊂ V (I), then we also define:

• The controlled transform of I is I c := I * .O(-F ).
The following Lemma gives a crucial algebraic relation between the interactions of θ and I under blowing-up based on the k-generalized Fitting opperations:

Lemma 3.3.1. Let σ : (M ′ , θ ′ , E ′ ) → (M, θ, E
) be an admissible blowing-up over a foliated ideal sheaf (M, θ, I, E). Then:

• [Γ θ,s (I)] * ⊂ Γ θ * ,s (I * ); • [Γ θ,s (I) + I] * = Γ θ * ,s (I * ) + I * .
for all s ≤ d.

Remark 3.3.2. In the above Lemma, if θ * is a meromorphic singular distribution, there is a natural way to extend the definition of the operation Γ θ * ,s to the sheaf of meromorphic functions over M .

Proof. Notice that, since σ * :

Der M → BlDer M ′ is a morphism, it is clear that: [Γ θ,s (I)] * ⊂ Γ θ * ,s (I * )
And, in particular [Γ θ,s (I) + I] * ⊂ Γ θ * ,s (I * ) + I * . To prove the other inclusion, fix a point q of M ′ , let p = σ(q) and consider a coherent set of generators {g 1 , ..., g t } of Γ θ * ,s (I * ).O q . For simplicity, we assume that s = 1 (the other cases follows from analogous reasons). We can chose the generators g i 's of the following form:

g i = j X * i,j ( k a i,j,k f * i,j,k )
where X i,j are vector fields of θ p , a i,j,k are functions in O q and f i,j,k are functions in I.O p . This clearly implies that g i is contained in the ideal ([Γ 1,θ (I)] * + I * ).O q , which proves the other inclusion. This finally gives the desired result.

Given (M, θ, I, E) a foliated ideal sheaf, we say that an admissible blowing-up σ :

(M ′ , θ ′ , E ′ ) -→ (M, θ, E
) is of order one for (M, θ, I, E) if C ⊂ V (I). In this case, there is a natural structure of foliated ideal sheaf associated to (M

′ , θ ′ , E ′ ) given by (M ′ , θ ′ , I ′ , E ′ ),
where I ′ is the controlled transform of I. We denote the blowing-up by:

σ : (M ′ , θ ′ , I ′ , E ′ ) -→ (M, θ, I, E)
A sequence σ of admissible blowings-up of order one is a sequence (σ r , ..., σ 1 ) of admissible blowings-up such that:

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1
where

σ i : (M i , θ o , I i , E i ) -→ (M i-1 , θ i-1 , I i-1 , E i-1
) is an admissible blowing-up of order one for (M i-1 , θ i-1 , I i-1 , E i-1 ) and

I i = I ′ i-1 .

Local blowings-up

Following (section 2.4 of) [START_REF] Bierstone | Uniformization of analytic spaces[END_REF], a local blowing-up is a morphism τ : M ′ -→ M that is equal to the composition of a blowing-up σ : M ′ -→ M and an injective local isomorphism π : M -→ M , i.e τ = π • σ. Furthermore: E) is an admissible blowing-up of order one, we say that τ : A sequence τ of admissible local blowings-up of order one is a sequence (τ r , ..., τ 1 ) such that:

• If the blowing-up σ : (M ′ , E ′ ) -→ ( M , E) is admissible, we say that τ : (M ′ , E ′ ) -→ (M, E) is an admissible local blowing-up, where E = π -1 (E); • If the blowing-up σ : (M ′ , θ ′ , I ′ , E ′ ) -→ ( M , θ, I,
(M ′ , θ ′ , I ′ , E ′ ) -→ (M, θ, I, E) is
(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M 0 , θ 0 , I 0 , E 0 ) τ r τ 2 τ 1
where

τ i : (M i , θ i , I i , E i ) -→ (M i-1 , θ i-1 , I i-1 , E i-1
) is an admissible local blowing-up of order one.

Resolution and local uniformization of an ideal sheaf

A resolution of a foliated ideal sheaf (M, θ, I, E) is a sequence σ = (σ 1 , ..., σ r ) of admissible blowings-up of order one:

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M, θ, I, E) σ r σ 2 σ 1 such that I r = O Mr . In particular, I.O Mr is the ideal sheaf of a SNC divisor on M r contained in E r . A resolution of a local foliated ideal sheaf (M, M 0 , θ, I, E) is a resolution of (M 0 , θ.O M 0 , I.O M 0 , E ∩ M 0 ). A weak-resolution of a foliated ideal sheaf (M, θ, I, E) is a
proper and analytic morphism:

σ : M ′ -→ M
such that, for every relatively compact open subset M 0 of M , there exist a resolution of (M, M 0 , θ, I, E):

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1 such that σ| σ -1 M 0 = σ 1 • ... • σ r .
A "good" resolution will also respect a functorial property. More precisely, following [Ko] (see definition 3.31), we look for a functor R that has:

• input: The category whose objects are foliated ideal sheaves (M, θ, I, E M ) and whose morphisms are smooth morphisms;

• output: The category whose objects are admissible blowing-up sequences:

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M, θ, I, E) σ r σ 2 σ 1
with specified admissible centers C i and whose morphisms are given by the Cartesian product.

The functor R is said to be a resolution functor if for all (M, θ, I, E M ), it associates a resolution of (M, θ, I, E M ) that commutes with smooth morphisms. One can define in the same manner the notion of resolution functor for local ideal sheaves with divisor and for weak-resolution functors.

Remark 3.5.1. For such a functor to be well defined, we will accept blowings-up with empty centers (isomorphisms).

Following (the ennunciate of Theorem 1.1 of) [START_REF] Bierstone | Uniformization of analytic spaces[END_REF], a local uniformization of a foliated

ideal sheaf (M, θ, I, E) at a point p of M is a finite collection of pairs {τ α : M α -→ M, θ α }
where:

• τ α : M α -→ M is a proper analytic morphism; • θ α is a singular distribution over M α .
such that:

• The union of the images τ α (M α ) is an open neighborhood of p.

• For each morphism τ α : M α -→ M there exists a sequence of admissible local blowingsup of order one:

(M r , θ r,α , I r , E r ) • • • (M 1 , θ r,α , I 1 , E 1 ) (M, θ, I, E) τ r,α τ 2,α τ 1,α
such that I r = O Mr , θ α = θ r,α and the morphism τ α is the composition of this local blowings-up:

τ α = τ 1,α • ... • τ r,α .
To simplify notation, we abuse notation and denote a local uniformization {τ α : M α -→ M, θ α } simply as {τ α : (M α , θ α ) -→ (M, θ)}.

The Hironaka's Theorem

Let us state the version of Hironaka's Theorem that we are going to use:

Theorem 3.6.1. (Hironaka): Let (M, M 0 , θ, I, E) be a local foliated ideal sheaf. Then there exists a resolution of (M, M 0 , θ, I, E):

R(M, M 0 , θ, I, E) : (M r , θ r , I r , E r ) • • • (M 0 , θ 0 , I 0 , E 0 ) σ r σ 1
such that:

• The composition σ = σ 1 • ... • σ r is an isomorphism over M 0 \ V (I 0 );
• R is a resolution functor that commutes with smooth morphisms.

Remark 3.6.2. The above Theorem is an interpretation of Theorem 1.3 of [START_REF] Bierstone | Functoriality in resolution of singularities[END_REF] or Theorems 2.0.3 and 6.0.6 of [W] in the following sense:

• Neither of the Theorems need the notion of singular distribution;

• Theorem 1.3 of [START_REF] Bierstone | Functoriality in resolution of singularities[END_REF] is enunciated in algebraic category. But the paragraph before Theorem 1.1 of [BM2] justifies the analytic statement;

• In [START_REF] Bierstone | Functoriality in resolution of singularities[END_REF] and [W], the authors work with marked ideal sheaves. We specialize their result to marked ideal sheaves with weight one. The reader may verify that the definition of Support and (weak) transform give rise to the interpretations formulated in this work;

• In order to stress the functorial property of the resolution, we follow Kollor's presentation (see [Ko]).

Remark 3.6.3. The functorial property implies an intuitive sense of "unicity". For example, let C i be the centers of R(M, M 0 , θ, I, E) and N a compact analytic manifold. Then

C i × N are the centers of R(M × N, M 0 × N, ω, I.O M ×N , E × N ) for any singular distribution ω.
An important consequence of the functoriality is the following global version of Theorem 3.6.1:

Theorem 3.6.4. Let (M, θ, I, E) be a foliated ideal sheaf. Then there exists a proper analytic morphism:

RG(M, θ, I, E) = σ : M -→ M
such that:

• for every M 0 ⊂ M relatively compact open set, σ| σ -1 M 0 is the composition of the sequence of blowings-up R(M, M 0 , θ, I, E) given on Theorem 3.6.1;

• σ is an isomorphism over M 0 \ V (I);

• RG(M, θ, I, E) is a weak-resolution functor that commutes with smooth morphisms.

The proof of Theorem 3.6.4 follows the same steps of Theorem 13.3 of [START_REF] Bierstone | Canonical resolution in characteristic zero by blowing up the maximum strata of a local invariant[END_REF]. We present the proof because the idea will be useful for us.

Proof. (Theorem 3.6.4): Let (U i ) i∈N be an open cover of M by relatively compact subsets

U i of M such that U i ⊂ U i+1 .
Theorem 3.6.1 guarantees the existence of a resolution

σ i = (σ i,1 , ..., σ i,r i ) for each (M, U i , θ, I, E). Consider the morphism, σ i := σ i,1 • ... • σ i,r i .
The inclusion ǫ i : U i -→ U i+1 is a smooth morphism and, by the functoriality of Theorem 3.6.1, there exists a smooth morphism δ i :

U ′ i -→ U ′ i+1
such that the following diagram:

U ′ i U ′ i+1 U i U i+1 σ i δ i ǫ i σ i+1
commutes. It is clear that M is isomorphic to the direct limit of the U i , i.e. the disjoint union ⊔U i identified by the morphisms ǫ i . Let M ′ be the direct limit of U ′ i (identified by the morphisms δ i ) and σ : M

′ -→ M be the direct limit of σ. By construction, σ| U ′ i coincides with σ i .

The functorial statement follows from the functoriality of each σ i .

Chapter 4

The θ-admissible blowing-up • C is a regular closed sub-variety;

• C has SNC with E;

• There exists 0 ≤ d 0 ≤ d such that the k-generalized Fitting-ideal Γ θ,k (I C ) is equal to the structural ideal O M for all k ≤ d 0 and is contained in the ideal sheaf I C otherwise.

We give a geometrical interpretation of θ-admissible centers in Remark 4.3.2.

Examples:

• If C is an admissible and θ-invariant center, it is θ-admissible;

• If C is an admissible and θ-totally transverse center, it is θ-admissible;

• Let (M, θ, E) = (C 3 , { ∂ ∂x , ∂ ∂y }, ∅) and C = {x = 0}. Then C is a θ-admissible center, but it is neither invariant nor totally transverse. Indeed, Γ θ,1 (I C ) = O M and Γ θ,2 (I C ) ⊂ I C . • Let (M, θ, E) = (C 3 , { ∂ ∂x , ∂ ∂y }, ∅) and C = {x 2 -z = 0}. Then C is not a θ-admissible center. Indeed, Γ θ,1 (I C ) = (x, z). An admissible blowing-up σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) is θ-admissible if the center C is θ-admissible.
We emphasize two particular cases of θ-admissible blowings-up:

• An admissible blowing-up σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) is θ-invariant if the center C is θ-invariant (i.e θ[I C ] ⊂ I C ); • An admissible blowing-up σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) is θ-totally transverse if the center C is totally transverse to θ (i.e Γ θ,d (I C = O M ).
A sequence σ = (σ 1 , ..., σ r ) of θ-admissible blowings-up is a sequence of admissible blowingsup: 

(M r , θ r , E r ) • • • (M 1 , θ 1 , E 1 ) (M 0 , θ 0 , E 0 ) σ r σ 2 σ 1 such that σ i : (M i+1 , θ i+1 , E i+1 ) -→ (M i , θ i , E i ) is a θ i -
σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) a θ-admissible blowing-up. Then θ ′ is R-monomial.
The proof is divided in three parts. The two first subsections prove the existence of a "good" coordinate systems. The proof of the Theorem is given in subsection 4.4. An important corollary of the proof of this Theorem is the following:

Corollary 4.1.2. Let (M, θ, E) be a d-foliated manifold such that θ is regular and:

σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) a θ-invariant blowing-up. Then, θ ′ is regular.
Which is proved in the end of this chapter.

Local coordinates for a θ-invariant center

The main result of this subsection is the following:

Proposition 4.2.1. Let (M, θ, E) be a R-monomial d-foliated manifold and C an invariant θ-admissible center. Then, at each point p ∈ C, there exists a R-monomial coordinate system

x = (x 1 , ..., x n ) such that I C .O p = (x 1 , ..., x t ).
In what follows, C is always a θ-invariant admissible center and, given a point p of M , we denote by I C the ideal I C .O p when there is no risk of confusion on the point p.

The fundamental step for proving proposition 4.2.1 is the following result:

Lemma 4.2.2. Let (M, θ, E) be a R-monomial d-foliated manifold and I a θ-invariant regular coherent ideal sheaf. Given a point p of M and a R-monomial coordinate system x = (x 1 , ..., x n ) with a R-monomial basis {X 1 , ..., X d }, there exists a set of generators {f 1 , ..., f t } of I := I.O p such that:

• X i (f j ) ≡ 0 if X i is regular; • X i (f j ) = K i,j f j for some K i,j ∈ R, if X i is singular.
Let us see how this result proves proposition 4.2.1:

Proof. (Proposition 4.2.1) Take p ∈ C. Our proof is by induction on the pair (d, n), where d is the leaf dimension of θ p and n is the dimension of the ring O p .

Notice that for d = 0 or n = 1 the result is trivial (if n = 1, the support of the ideal is a point). By induction, suppose that for all (d ′ , n ′ ) < (d, n), where < is the lexicografical order, there is always a R-monomial coordinate system x = (x 1 , ..., x n ′ ) such that I C = (x 1 , ..., x t ). We prove it to (d, n).

Fix a R-monomial coordinate system x = (x 1 , ..., x n ) and {X 1 , ..., X d } a R-monomial basis. By lemma 4.2.2, there exists a set of generators {f 1 , ..., f t } of the ideal I C such that:

• X i (f j ) ≡ 0 if X i is regular; • X i (f j ) = K i,j f j for some K i,j ∈ R, if X i is singular.
We have two cases to consider:

• Case I: Without loss of generality, suppose X 1 = ∂ ∂x 1 and that X j (x 1 ) = 0 for all j = 1. Since X 1 (f i ) ≡ 0 for all i, the set of generators is independent of x 1 .

Let U p be an open neighborhood of p such that the coordinate system x = (x 1 , ..., x n ) is well defined over U p and the vector fields X i have representatives over U p . Consider the quotient:

Π : O Up -→ O Up /(x 1 )
The image of the distribution θ by Π is a R-monomial involutive (d -1)-singular distribution θ given by the image of X i , for i > 1. We denote the image of the coordinate system x = (x 1 , ..., x n ) by Π as x = (x 2 , ..., xn ). By induction, there exists a change of coordinates over O Up /(x 1 ) such that ĪC = (x 2 , ..., xt ). Doing the equivalent change of coordinates in O Up , since the change is invariant by x 1 , we get I C = (x 2 , ..., x t ).

• Case II: All vector fields of the R-monomial basis {X 1 , ..., X d } are singular:

X i = n j=1 α i,j x j ∂ ∂x j
Since I C is regular, we can suppose that f 1 is regular and, without loss of generality, that ∂ ∂x 1 f 1 (p) = 0. Take the change of coordinates x1 = f 1 and xi = x i otherwise. In the new coordinates, we get:

X i = n j=2 α i,j xj ∂ ∂ xj + K 1,i x1 ∂ ∂ x1 because X i (f 1 ) = K 1,i f 1 for K 1,j ∈ R. Notice that {X 1 , ..., X d } is also a R-monomial
basis at this coordinate system. We drop the bars of this coordinate system in order to have simpler notation.

Let U p be an open neighborhood of p such that the coordinate system x = (x 1 , ..., x n ) is well defined over U p and the vector fields X i have representatives over U p . Consider the quotient:

Π : O Up -→ O Up /(x 1 )
Notice that O Up /(x 1 ) is an analytic manifold of dimension n -1. The image of the distribution θ by Π is a R-monomial involutive singular distribution θ given by the image of all X i . Furthermore, θ satisfies one of the following conditions:

• Either θ is a R-monomial singular distribution of dimension d, or;

• θ is a R-monomial singular distribution of dimension d -1 and we can assume

X 1 = x 1 ∂ ∂x 1 .
Either way, by induction, there exists a R-monomial coordinate system x = (x 2 , ..., xn )

at O Up /(x 1 ) such that ĪC = (x 2 , ..., xt+1 ). Doing the equivalent change of coordinates in O p , since the change is invariant by x 1 , we deduce the result.

In order to prove Lemma 4.2.2, we will need some preliminary definitions:

• Let O p denote the completion of O p and fix a coordinate system x = (x 1 , ..., x n ). We introduce the topology of simple convergence in O p , defined by a countably many semi norms:

f = a α x α -→ |a α | Thus f i -→ f means that the coefficients of x α in f i converges to the coefficient of x α in f ;
• Fixed a coordinate system x = (x 1 , ..., x n ), and given α = (α 1 , ..., α n ) ∈ N n , let δ α be the derivation ∂ α 1 ∂x 1 ... ∂ αn ∂xn . Given two functions f, g ∈ O p we say that g is contained in the Taylor expansion of f at p if, for all α, either δ α g(p) = δ α f (p) or δ α g(p) = 0.

We also recall the following result (see section 6.3 and Theorems 6.3.4 and 6.3.5 of [Ho]):

Proposition 4.2.3. Let I be an ideal of O p and (f n ) n∈N ⊂ I be a sequence of analytic function germs which converges simply to an analytic function germ f . Then, f ∈ I.

We start the proof of Lemma 4.2.2 supposing that the distribution θ has leaf dimension 1. In the next Lemma, the coordinate system (x, y) = (x, y 1 , ..., y n-1 ) is fixed: Lemma 4.2.4. In the notation of Lemma 4.2.2, if θ p has leaf dimension 1 and θ p =< ∂ ∂x >, then there exists a set of generators (h 1 , ..., h t ) of I such that X(h i ) ≡ 0. Moreover, if (f 1 , ..., f r ) is any set of generators of I, we can choose (h 1 , ..., h t ) such that each h j is contained in the Taylor expansion of a f i at p.

Proof. Take (f 1 , ..., f r ) any set of generators of I and let f := f 1 . Consider its Taylor expansion in x:

f = ∞ i=0 h i (y)x i Since I is invariant by X, we have that (f ) # ⊂ I (we recall that (f ) # is the θ-differential closure of the ideal (f )). We claim that (h i (y)) i∈N = (f ) # .
Indeed, let us prove that h 0 (y) ∈ (f ) # (the proof for the other coefficients is analogous). We set g 0 = f and define recursively the expressions:

g i+1 := g i -xX(g i ) 1 i
It is easy to see that:

g i = h 0 (y) + ∞ j=i β i,j h j (y)x j
for some β i,j ∈ K. It is clear that the sequence (g n ) n is contained in I and converges simply to h 0 (y). By Proposition 4.2.3, this implies that h 0 (y) ∈ (f ) # ⊂ I. Repeating the process for every i ∈ N, we conclude that h i (y) ∈ I for all i. Thus (h i (y)) i∈N ⊂ (f ) # .

Using again Proposition 4.2.3, it is clear that the ideal generated by (h i (y)) i∈N contains (f ) # . Moreover, since the structural ring is noetherian, we have that (h i (y)) i≤N = (f ) # for some N ∈ N. Doing this for all the generators of I, we get the desired result.

In the next Lemma, the R-monomial coordinate system x = (x 1 , ..., x n ) is fixed:

Lemma 4.2.5. In the notation of Proposition 4.2.2, if θ p has leaf dimension 1 and θ p =< X > where X is a singular R-monomial vector field, then there exists a set of generators

(h 1 , ..., h t ) of I such that X(h i ) = K i h i , for K i ∈ R. Moreover, if (f 1 , ..., f r ) is any set
of generators of I, we can choose (h 1 , ..., h t ) such that each h j is contained in the Taylor expansion of a f i at p.

Proof. Let (f 1 , ..., f r ) be a set of generators of I and set f = f 1 . Since the coordinate system is R-monomial we have that

X = n i=1 K i x i ∂ ∂x i for K i ∈ R.
Taking any monomial

x α = x α 1 1 ...x αn n we get: X(x α ) = n i=1 K i α i x α = K α x α For some K α ∈ R (because α i ∈ Z and K i ∈ R). Since the number of different monomials is countable, there exists a countable set R ′ ⊂ R such that K α ∈ R ′ , for all α ∈ Z n . This
allow us to rewrite the Taylor expansion of f = f 1 in the following form:

f (x) = i∈N h i (x) with h i (x) such that Xh i (x) = K i h i (x), K i ∈ R ′ and K i = K j whenever i = j. Moreover,
since there exists a representative of f convergent in a open neighborhood of p (thus absolutely convergent), h i (x) ∈ O p . We claim that (h i (x)) i∈N = (f ) # . Indeed, we show that h 0 ∈ (f ) # (the others are analogous). Define g 0 = f and:

g 1 := 1 K 0 -K 1 (K 1 f -X(f )) = 1 K 0 -K 1 [ i∈N K i h i (x)-K 1 i∈N K i h i (x)] = h 0 + i≥2 β i,1 h i ∈ (f ) # where β i,1 = K i -K 1 K 0 -K 1 .
We define recursively:

g n = 1 K 0 -K n (K n g n-1 -X(g n-1 )) = h 0 + i≥n+1 β i,n h i ∈ (f ) #
for non-zero constants β i,n . It is clear that (g n ) ⊂ I converges simply to h 0 (x). By the proposition 4.2.3, this implies that h 0 (x) ∈ (f ) # . Repeating the process for every i ∈ N, we conclude that (h i (y)) ⊂ (f ) # for all i.

• I C .O p is totally transverse to {Y i };

• I C .O p is invariant by {Z j };

• There exists a coordinate system x = (x 1 , ..., x n ) of O p such that:

I C .O p = (x 1 , ..., x t ), Y i = ∂ ∂x i and Z j (x i ) = 0 for i = 1, ..., r;
• If θ is R-monomial, then there exists a R-monomial coordinate system x = (x 1 , ..., x n )

such that {Y i , Z j } is a R-monomial basis. Moreover, this coordinate system can be chosen so that

I C .O p = (x 1 , ..., x t ), Y i = ∂ ∂x i and Z j (x i ) = 0 for i = 1, ..., r.
In what follows, C is always a θ-admissible center and, given a point p of M , we denote by I C the ideal I C .O p when there is no risk of confusion on the point p.

Proof. (Proposition 4.3.1): We prove this Proposition for θ a R-monomial singular distribution. In the general case, we only have to prove the first three statements, and it is not necessary to be careful with coordinate changes. There exists a maximal integer d 0 > 0 such that Γ θ,d 0 (I C ) = O M . This implies that there exists (f 1 , ..., f d 0 ) ⊂ I C such that the determinant of the matrix:

A = X 1 (f 1 ) ... X 1 (f d 0 ) . . . . . . . . . X d 0 (f 1 ) ... X d 0 (f d 0 )
is an unity of O p . Without loss of generality, we assume that

X i = ∂ ∂x i for i ≤ d 0 and X j (x i ) = 0 for i ≤ d 0 and j > d 0 .
The next step is a change of coordinate system and R-monomial basis that diagonalizes the matrix A in O p . But we need to be careful with this process, so to not destroy the R-monomial structure.

Without loss of generality, we assume that X i (f i ) is an unity for i ≤ d 0 . Consider the change of coordinates x1 = f 1 and xi = x i otherwise. After the change we get:

X 1 = U ∂ ∂ x1 X i (x 1 ) = g i (x) for some unit U of O p . Notice that X 1 is equivalent to ∂ ∂ x1 and that {X 1 , X i -g i U X 1 } is a R-monomial basis of this new coordinate system.
Repeating this process for all the others f i , with i ≤ d 0 we can assume that

x = (x 1 , ..., x n ) is a R-monomial coordinate system of O p such that f i = x i and X i = ∂ ∂x i for i ≤ d 0 . Let Y i := X i for i ≤ d 0 and Z j := X j+d 0 for j ≤ d p -d 0 . It is clear that {Y i } is totally transverse to I C and that {Y i , Z j } is a R-monomial basis. Let us prove that I C is invariant by {Z j }: Since I C is θ-admissible, we conclude that Γ d 0 +1 (I C ) ⊂ I C . In particular, taking Z = h j Z j a O p -linear combination of the {Z j }, we get: det Y 1 (f 1 ) ... Y 1 (f d 0 ) Y 1 (g) . . . . . . . . . . . . Y d 0 (f 1 ) ... Y d 0 (f d 0 ) Y d 0 (g) Z(f 1 ) ... Z(f d 0 ) Z(g) ∈ I C -→ det Id Y i (g) 0 Z(g) ∈ I C
So Z(g) ∈ I C for every g ∈ I C and we conclude that I C is invariant by {Z j }.

In this coordinate system, we have that I C = (x 1 , ..., x d 0 , h 1 , ..., h s ) where h i does not depend on (x 1 , ..., x d 0 ).

Let U p be an open neighborhood of p such that the coordinate system x = (x 1 , ..., x n ) is well defined over U p and the vector fields X i have representatives over U p . Consider the map:

Π : O Up -→ O Up /(x 1 , ..., x d 0 )
We denote the image of the coordinate system x = (x 1 , ..., x n ) under Π by x = (x d 0 +1 , ..., xn ).

At this coordinate system the image ĪC of I C is generated by ( h1 , ..., hs ), and the image θ of the singular distribution θ is generated by { Zj }. This implies that ĪC is invariant by θ and, by Proposition 4.2.1, there exists a change of coordinates such that ĪC = (x d 0 +1 , ..., xt ) and { Zj } is a R-monomial basis of θ. Since neither Z j nor h i depends on (x 1 , ..., x d 0 ), using the equivalent change of coordinates in O p we get I C = (x 1 , ..., x t ) and {Y i , Z j } a R-monomial basis such that Z j (x i ) = 0 for i < d 0 .

Remark 4.3.2. If a center C is θ-admissible, for each point p in C, there exists two singular distributions germs θ inv and θ tr such that:

• The singular distribution θ p is generated by {θ inv , θ tr };

• The ideal I C is invariant by θ inv ;

• The ideal I C is totally transverse by θ tr .

Proof of Theorem 4.1.1

We present a Proposition that trivially implies Theorem 4.1.1:

Proposition 4.4.1. Let (M, θ, E) be a d-foliated manifold, C a θ-admissible center and σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) the blowing-up with center C. For a point q in the exceptional divisor F , let p = σ(q). Then there exists a coherent set of generators {Y i , Z j } of θ p with i = 1, ..., r and j = 1, ..., s (the same of Proposition 4.3.1) such that:

• The singular distribution θ ′ .O q is generated by {O(F )Y * i , Z * j }.O q .
• If the singular distribution θ is R-monomial, so is θ ′ .

Proof. In the notation of the enunciate, consider the coordinate system x = (x 1 , ..., x n ) of O p and the coherent set of generators {Y i , Z j } of θ p given by Proposition 4.3.1. In this case, we have that I C := I C .O p = (x 1 , ..., x t ) is totally transverse to {Y i } and invariant by {Z j }.

Consider a vector field X contained in θ p :

X = A i ∂ ∂x i
such that I C is invariant by X. This implies that (A i ) i≤t ⊂ I C . After the blowing-up, without loss of generality, we can assume that q is the origin of the x 1 chart:

(x 1 , y 2 , ..., y t , x t+1 , ..., x n ) = (x 1 , x 1 x 2 , ..., x 1 x t , x t+1 , ..., x n )

In this chart, we get:

X * = A * 1 ∂ ∂x 1 + t i=2 1 x 1 (A * i -A * 1 y i ) ∂ ∂y i + n i=t+1 A * i ∂ ∂x i Since (A i ) i≤t ⊂ I C , the function 1 x 1 A * i is analytic for i ≤ t.
Thus, X * is analytic. In particular, this implies that Z * j are all analytic.

In the other hand, the expressions of the blowing-up of the Y i are given by the following expressions:

• If t = r, we can always assume that q is the origin of the x 1 chart:

Y * 1 = ∂ ∂x 1 * = 1 x 1 (x 1 ∂ ∂x 1 -m i=t y i ∂ ∂y i ) Y * i = ∂ ∂x i * = 1 x 1 ∂ ∂y i (4.1)
• If t > r, then:

• The point q can be assumed to be the origin of the x 1 chart and the transform expressions are the same as in (4.1);

• The point q can be assumed to be the origin of the x t chart:

Y * i = ∂ ∂x i * = 1 xt ∂ ∂y i (4.2)
for all i ≤ r.

Thus, they are all meromorphic and we must multiply by O(F ) exactly one time to get analytic vector fields. Furthermore, we claim that {O(F ).Y * i , Z * j }.O q is contained in Der Oq (-logF ). Indeed:

• It is clear by the expressions (4.1) and (4.2) that O(F )Y * i .O q leaves F = {x 1 = 0} invariant.

• Consider a vector field X contained in θ p such that I C is invariant by X. Then:

[X * (O(F )) + O(F )].O q = [X * (I * C ) + I * C ].O q = (X(I C ) + I C ) * .O q = I * C .O q = O(F ).O q Thus Z * j .O q is contained in Der Oq (-logF ).
By Lemma 3.2.2, the singular distribution θ a .O q is generated by {O(F ).Y * i , Z * j , W k }.O q where W k is a combination of Y * i .O q that is analytic and not generated by {O(F ).Y * i , Z * j }.O q . We have two cases to consider: i ) If t = r, then there exists a linear combination that generates

W 1 = ∂ ∂x 1 . But remark that W 1 is not contained in Der Oq (-logF ) and O(F )Y * 1 .O q = x 1 ∂ ∂x 1 is the minimal multiple of W 1 contained in Der Oq (-logF ). Thus: θ ′ .O q is generated by {O(F ).Y * i , Z * j }.O q ;
ii ) If t > r, then it is clear by the expressions (4.1) and (4.2) that there is no possible

W k . This implies that θ ′ .O q is generated by {O(F ).Y * i , Z * j }.O q .
Furthermore, if the θ is R-monomial, we can write Z j in one of the following forms:

Z j = n i=1 α i,j x i ∂ ∂x i Z j = ∂ ∂x k j
with α i,j ∈ R and k j > t. Without loss of generality, we assume that q is in the x 1 -chart so to get:

Z * j = t i=j (α i,j -α 1,j )y i ∂ ∂y 1 + n i=t+1 α i,j x i ∂ ∂x i Z * j = ∂ ∂x k j
which are R-monomial at the origin. Moreover, using the expressions (4.1) and (4.2), it is clear that {O(F )Y * i , Z * j } is a R-monomial basis at the origin. Now, the the same proof of Lemma 2.2.1 is enough to show that θ ′ is also R-monomial at q.

And we are finally ready to prove corollary 4. i ) σ = (σ r , ..., σ 1 ) is a sequence of invariant blowings-up (in particular, a sequence of θ-admissible blowings-up);

ii

) The composition σ = σ 1 • ... • σ r is an isomorphism over M 0 \ V (I 0 ); iii ) If θ 0 is R-monomial, then so is θ r ; iv ) If θ 0 is regular, then so is θ r ; v )
R inv is a resolution functor that commutes with chain-preserving smooth morphisms.

This functoriality property allows us to prove a global result just as in the Hironaka's Theorem:

Theorem 5.1.2. Let (M, θ, I, E) be a d-foliated ideal sheaf. Suppose that I is invariant by θ. Then there exists a proper analytic morphism:

RG inv (M, θ, I, E) = σ : ( M , θ) -→ (M, θ)
such that: i ) for every M 0 ⊂ M a relatively compact open set of M , σ| σ -1 M 0 is the composition of the sequence of blowings-up R inv (M, M 0 , θ, I, E) given on Theorem 5.1.1; E) is a weak-resolution functor that commutes with chain-preserving smooth morphisms.

ii ) If θ is R-monomial, so is θ; iii ) If θ is regular, so is θ; iv ) σ is an isomorphism over M \ V (I); v ) RG inv (M, θ, I,
The proof follows, mutatis mutandis, the same proof of Theorem 3.6.4.

Proof of Theorem 5.1.1

By the Hironaka's Theorem 3.6.1, there exists a resolution σ = (σ 1 , ..., σ r ) of (M, M 0 , θ, I, E):

R(M, M 0 , θ, I, E) : (M r , θ r , I r , E r ) • • • (M 0 , θ 0 , I 0 , E 0 ) σ r σ 1
where

σ i : (M i , θ i , I i , E i ) -→ (M i-1 , θ i-1 , I i-1 , E i-1 ) has center C i . Claim: The admissible sequence of blowings-up σ = (σ 1 , ..., σ r ) is θ-invariant.
Proof. Suppose by induction that the centers C i are θ i-1 -invariant for i < k. We need to verify that C k is also θ k-1 -invariant (including for k = 1).

First, notice that I k-1 is invariant by θ k-1 . This follows from the induction hypotheses and a recursive use of the following lemma:

Lemma 5.2.1. Consider an admissible blowing-up of order one σ :

(M ′ , θ ′ , I ′ , E ′ ) -→ (M, θ, I, E) with a center C invariant by θ. Then I ′ is invariant by θ ′ .
This Lemma is proved in the end of this section. We continue with the proof of the Claim: Since C k is regular, by Lemma 2.4.1, we only need to verify that C k is geometrically invariant by θ k-1 . We divide in two cases:

• First case: θ k-1 has leaf dimension one. Let L be a connected leaf of θ k-1 with non-empty intersection with C k . We need to verify that L ⊂ C k , which is clear if L is zero-dimensional. So, assume that the leaf L is one-dimensional and take a point p in

C k ∩ L.
Locally, the singular distribution θ k-1 .O p is generated by a unique non-singular vector field germ X p with a representative in an open neighborhood U p of p. By the flow-box Theorem there exists a coordinate system (x, y) = (x, y 1 , ..., y n-1 ) in U p such that X p = ∂ ∂x .

Furthermore, without loss of generality, U p = V × W where V is a domain of K n-1 and W a domain of K such that:

Proof. (Proof of Lemma 5.2.1): Since C is a regular sub-manifold geometrically invariant by θ, by Lemma 2.4.1 it is also invariant by θ. Furthermore, by Lemma 3.3.1 we have that:

θ[I C ] ⊂ I C -→ θ * [O(F )] ⊂ O(F )
Moreover, σ is a θ-admissible blowing-up and, by Proposition 4.4.1, θ ′ = θ * . Thus, again by Lemma 3.3.1:

θ ′ [I ′ ] + I ′ = θ * [I * .O(-F )] + I ′ ⊂ θ * [I * ]O(-F ) + I * θ * [O(-F )] + I ′ = I ′

A resolution Theorem subordinated to a 1-foliation

In this section we consider foliated ideal sheaves (M, θ, I, E) such that θ has leaf dimension one. In this case, our main result is the following:

Theorem 5.3.1. Let (M, M 0 , θ, I, E) be a local 1-foliated ideal sheaf. Then, there exists a resolution of (M, M 0 , θ, I, E):

R 1 (M, M 0 , θ, I, E) : (M r , θ r , I r , E r ) • • • (M 0 , θ 0 , I 0 , E 0 ) σ r σ 1
such that:

i ) σ = (σ r , ..., σ 1 ) is a sequence of θ-admissible blowings-up;

ii

) The composition σ = σ 1 • ... • σ 1 is an isomorphism over M 0 \ V (I 0 ); iii ) If θ 0 is R-monomial, then so is θ r ; iv ) R 1 is a resolution functor that commutes with 1-chain-preserving smooth morphisms. v ) If ω is a d-involutive distribution such that I is ω-invariant and {ω, θ} is an in- volutive d + 1-singular distribution, the sequence of blowings-up R 1 (M, M 0 , θ, I, E) is ω-invariant;
Remark 5.3.2. The functorial property [v] of Theorem 5.3.1 will be used in the proof of Proposition 6.2.4 below.

The functorial property [iv] of Theorem 5.3.1 allows us to prove a global result just as in the Hironaka's Theorem:

Theorem 5.3.3. Let (M, θ, I, E) be a 1-foliated ideal sheaf. Then there exists a proper analytic morphism:

RG 1 (M, θ, I, E) = σ : ( M , θ) -→ (M, θ) such that: i ) for every M 0 ⊂ M relatively compact open set of M , σ| σ -1 M 0 is the composition of the sequence of blowings-up R 1 (M, M 0 , θ, I, E) given on Theorem 5.3.1; ii ) If θ is R-monomial, so is θ; iii ) σ is an isomorphism over M \ V (I); iv ) RG 1 (M, θ, I, E
) is a weak-resolution functor that commutes with 1-chain-preserving smooth morphisms.

The proof follows, mutatis mutandis, the same proof of Theorem 3.6.4.

Proof of Theorem 5.3.1

Let us start giving the intuitive idea of the proof. Given a local 1-foliated ideal sheaf (M, M 0 , θ, I, E) the main invariant we consider is the pair:

(ν, t) := (ν M 0 (θ, I), type M 0 (θ, I))
where we recall that the tg-order ν M 0 (θ, I) stands for the length of the tangency chain T g(θ, I) over M 0 and the type M 0 (θ, I) stands for the type of this chain at M 0 (see section 2.5).

The proof of the Theorem relies on two steps:

• First step: (ν, 2) -→ (ν, 1);

• Second step: (ν, 1) -→ (ν -1, 2).
which shows that this invariant drops. The following Propositions formalize the above steps:

Proposition 5.4.1. Let (M, M 0 , θ, I, E) be a local d-foliated ideal sheaf and suppose that type M 0 (θ, I) = 2. Then, there exists a sequence of θ-invariant admissible blowings-up of order one:

S 1 (M, M 0 , θ, I, E) : (M r , θ r , I r , E r ) • • • (M 0 , θ 0 , I 0 , E 0 ) σ r σ 1 such that: i ) ν Mr (θ r , I r ) ≤ ν M 0 (θ, I) and type Mr (θ r , I r ) = 1;
ii ) If ω is a d ′ -involutive distribution such that I is ω-invariant and {ω, θ} generates an involutive d + d ′ -singular distribution, the sequence of blowings-up is ω-invariant;

iii ) If φ : (M, M 0 , θ, I, E M ) -→ (N, N 0 , ω, J , E N ) is a chain-preserving smooth morphism, then there exists a chain-preserving smooth morphism ψ : (M r , θ r , I r , E M,r ) -→ (N r , ω r , J r , E N,r ).

Proposition 5.4.2. Let (M, M 0 , θ, I, E) be a local 1-foliated ideal sheaf and suppose that type M 0 (θ, I) = 1. Then, there exists a sequence of θ-admissible blowings-up of order one:

S 2 (M, M 0 , θ, I, E) : (M r , θ r , I r , E r ) • • • (M 0 , θ 0 , I 0 , E 0 ) σ r σ 1 such that: i ) ν Mr (θ r , I r ) < ν M 0 (θ, I);
ii ) If ω is a d-involutive distribution such that I is ω-invariant and {ω, θ} generates an involutive d + 1-singular distribution, the sequence of blowings-up is ω-invariant;

iii ) If φ : (M, M 0 , θ, I, E M ) -→ (N, N 0 , ω, J , E N ) is a 1-chain-preserving smooth morphism, then there exists a 1-chain-preserving smooth morphism ψ :

(M r , θ r , I r , E M,r ) -→ (N r , ω r , J r , E N,r ).

These two Propositions will be proved in the next two sections. For now, we assume them so to prove Theorem 5. In particular, if N 1 and N 2 are two relatively open subsets of M such that N 1 ⊂ N 2 , then (ν(N 1 ), t(N 1 )) ≤ (ν N 2 (θ, I), type N 2 (θ, I)) (where the order is lexicographically).

Fix N a relatively compact open subset of M such that M 0 ⊂ N . We claim that there exists

M 0 ⊂ N 0 ⊂ N a relatively compact open subset N 0 that satisfies M 0 ⊂ N 0 ⊂ N 0 ⊂ N and
a sequence of θ-admissible blowings-up:

(N r , θ r , E r ) • • • (N 1 , θ 1 , E 1 ) (N 0 , θ 0 , E 0 ) σ r σ 2 σ 1
such that (ν(N r ), t(N r )) < (ν(N ), t(N )).

We prove the claim: Take any relatively compact open subset N 0 satisfying

M 0 ⊂ N 0 ⊂ N 0 ⊂ N . If (ν(N 0 ), t(N 0 )) < (ν(N ), t(N )
), the claim is obvious, so assume that (ν(N 0 ), t(N 0 )) = (ν(N ), t(N )). By Propositions 5.4.1 or 5.4.2 applied to (N, N 0 , θ, I, E), there exists a sequence of θ-admissible blowings-up:

(N r , θ r , E r ) • • • (N 1 , θ 1 , E 1 ) (N 0 , θ 0 , E 0 ) σ r σ 2 σ 1 such that (ν(N r ), t(N r )) < (ν(N 0 ), t(N 0 )) = (ν(N ), t(N ))
, which proves the claim.

As a mater of fact, the recursive use of this claim will prove the Theorem: since the pair (ν, t) is bounded below by (0, 1) one cannot recursively apply the claim an infinite number of times. Once the process stops, we restrict all blowings-up to M 0 and its transforms, which is well-defined because of the functoriality statements of Propositions 

(M r , θ r , (Cl(I)) r , E r ) • • • (M 1 , θ 1 , (Cl(I)) 1 , E 1 ) (M 0 , θ 0 , (Cl(I)) 0 , E 0 ) σ r σ 2 σ 1
Claim 1: The sequence of blowings-up σ is θ-admissible of order one for (M, M 0 , θ, I, E).

Furthermore:

(Cl(I)) j = Cl(I j ) for all j ≤ r.

The main step for proving the claim is the following Lemma: E) be an invariant θ-admissible blowingup of order one for (M, θ, Cl(I), E). Then:

Lemma 5.5.1. Let σ : (M ′ , θ ′ , I ′ , E ′ ) -→ (M, θ, I,
H(θ ′ , I ′ , i) = H(θ, I, i) ′ = H(θ, I, i) * O(-F )
for every i ≤ ν. In particular: (Cl(I)) ′ = Cl(I ′ ).

Which we prove in the end of this section. We now proceed with the proof of the Claim 1:

So, by part [iv] of Theorem 5.1.1, the resolution σ = (σ 1 , ..., σ r ) is also ω-invariant, because the identity is a chain-preserving smooth morphism between (M, M 0 , θ, Cl(I), E)

and (M, M 0 , {θ, ω}, Cl(I), E). This proves the functorial statement [ii] of the Proposition.

We now prove the functorial statement [iii] of the Proposition:

Let φ : (M, M 0 , θ, I, E M ) -→ (N, N 0 , ω, J , E N ) be a chain-preserving smooth morphism. Let σ = (σ 1 , ..., σ r ) and τ = (τ 1 , ..., τ r ) be the sequences of blowings-up given in the Proposition (the length of the sequence may be chosen to be the same because of the functoriality of Theorem 5.1.1). Furthermore, for any ideal sheaf K over N i-1 , because of the functoriality of Theorem 5.1.1, we deduce that:

(σ i ) * (K.O M i-1 ) = (τ * i K).O M i
In particular, if F M,i is the exceptional divisor of the blowing-up

σ i : M i -→ M i-1 and F N,i
is the exceptional divisor of the blowing-up τ i : N i -→ N i-1 , we have that:

O(-F N,i ).O M i = O(-F M,i )
Claim 3: The following equality holds:

H(J i , ω i , j).O M i = H(I i , θ i , j)
for i ≤ r and j ∈ N.

Proof. Suppose by induction that H(ω i , J i , j).O M i = H(θ i , I i , j) for i < k and any j ∈ N.

Then:

H(ω k , J k , j).O M k = (O(-F N,k )τ * k H(ω k-1 , J k-1 , j)).O M k = = O(-F M,k )σ * k H(θ k-1 , I k-1 , j) = H(θ k , I k , j) for any j ∈ N, which proves Claim 3.
It is clear that Claim 3 implies the functoriality statement [iii] of the Proposition.

To finish, we only need to prove Lemma 5.5.1: Proof. (Lemma 5.5.1) First, notice that, since H(θ, I, i) ⊂ Cl(I) for i ≤ ν, the blowing-up is also of order one for (M, θ, H(θ, I, i), E).

By hypotheses, the center C is invariant by θ and, by Proposition 4.3.1, the adapted analytic strict transform θ ′ coincides with the total transform θ * . Thus, if F is the exceptional divisor and J is a coherent ideal sheaf, by Lemma 3.3.1:

θ ′ [O(F )] ⊂ O(F ) ⇒ J θ ′ [(O(-F ))] ⊂ J O(-F )
In particular, this implies that:

θ ′ [J O(-F )] + J O(-F ) = O(-F )(θ ′ [J ] + J )
Now, it rests to prove that the following equality:

H(θ ′ , I ′ , i) = H(θ, I, i) * O(-F )
is valid for all i ≤ ν. Indeed, suppose by induction that the equality is valid for i < k

(notice that for k = 0, the equality is trivial). Since the blowing-up is of order one for (M, θ, H(θ, I, k), E), we have that:

H(θ ′ , I ′ , k) = H(θ ′ , I ′ , k -1) + θ ′ [H(θ ′ , I ′ , k -1)] = H(θ ′ , I ′ , k -1) + θ * [H(θ, I, k -1) * O(-F )] = O(-F ){H(θ, I, k -1) + θ[H(θ, I, k -1)]} * = O(-F )H(θ, I, k) * = H(θ, I, k)
′ which proves the equality and the Lemma.

Proof of Proposition 5.4.2

Consider a 1-foliated ideal sheaf (M, M 0 , θ, I, E) such that type M 0 (θ, I) = 1. Let ν = ν M 0 (θ, I) and Mtg(I) := H(θ, I, ν -1). By Theorem 3.6.1, there exists a resolution σ = (σ 1 , ..., σ r ) of (M, M 0 , θ, Mtg(I), E):

(M r , θ r , (Mtg(I)) r , E r ) • • • (M 0 , θ 0 , (Mtg(I)) 0 , E 0 ) σ r σ 1
Claim 1: the sequence of blowing-up σ is θ-admissible. Furthermore, the center of blowingup C k are totally transverse to θ k-1 .

Proof. Suppose by induction that, for i < k:

a ) The sequence (σ 1 , ..., σ i ) of blowing-up is θ-admissible; b ) For p ∈ V ((Mtg(I)) i ), there exists a coherent coordinate system (x, y) = (x, y 1 , ..., y n-1 ) of O p such that x ∈ Mtg(I) i .O p and ∂ ∂x generates θ i,p := θ i .O p .

We prove the result for k:

• Step k = 1.
In this case, since the type of the tangency chain T g(θ, I) is one, for every p ∈ V ((Mtg(I)) 0 ) the distribution θ p is generated by a non-singular vector field. By the flow-box Theorem, there exists a coherent coordinate system (x, y) = (x, y 1 , ..., y n-1 ) of O p such that θ p is generated by X := ∂ ∂x .

Furthermore, there exists g ∈ T g(θ, I).O p such that X(g) is an unity of O p .

This implies that g = xU (x, y) + h(y) where U (x, y) is an unity. Making the change of coordinates x = g(x, y) and ȳ = y we get a coordinate system such that

x ∈ T g(θ, I).O p and θ p is generated by X = V ∂ ∂

x , where V = U (x, y) + xU x (x, y) is an unity.

•

Step k > 1. Take any p ∈ V ((Mtg(I)) k-1 ). Since the center C k of the blowing-up

σ k : M k -→ M k-1 is contained in V ((Mtg(I)) k-1
), by the induction hypotheses [b] it is also totally transverse to θ at p. This implies that the sequence (σ 1 , ..., σ k ) of blowing-up is θ-admissible.

Consider q ∈ V ((Mtg(I)) k ) and p = σ k (q). If σ k is a local isomorphism over q, the result is trivial, so we assume that q ∈ F k . By the induction hypotheses [ii], there exists a coherent coordinate system (x, y) = (x, y 1 , ..., y n-1 ) of O p such that

x ∈ Mtg(I) k-1 .O p and ∂ ∂x generates θ k-1,p . Since C ⊂ V (Mtg(I) k-1
), without loss of generality I C .O p = (x, y 1 , ..., y t ) and q is the origin of the y 1 -chart. It is now easy to compute the transforms of the blowing-up at q and see that the induction hypotheses

[b] is valid for i = k.
Using claim 1 together and Proposition 4.3.1, we deduce that:

θ k+1 = O(F k )σ * k (θ k ) (5.1)
and, since the center is totally transverse:

θ k+1 [O(F k )] ⊂ O(F k ) (5.2) to simplify notation, define (iσ k ) = σ i+1 • ... • σ k for i < k, (kσ k ) = id and σk = σ 1 • ... • σ k .
We also introduce:

K k (α) = k-1 i=1 [(iσ k-1 ) * O(αF i )]
Using the equation ( 5.1) recursively, we get that:

θ k = K k (1)σ * k θ (5.3)
Using the equation (5.2) recursively, we get that:

θ k (K k (α)) ⊂ K k (α) (5.4)
Furthermore, given an ideal sheaf J , equation (5.4) implies that:

θ k [K k (α)J ] + K k (α)J = K k (α)(J + θ k [J ]) (5.5)
Claim 2: the sequence of blowing-up σ is of order one for (M, M 0 , θ, I, E) and:

H(θ k , I k , j) = K k (-1). j i=0 K k (i)σ * k H(θ 0 , I 0 , i) (5.6)
for all j ≤ ν.

Proof. Suppose by induction that, for k < k 0 :

a ) The sequence (σ 1 , ..., σ i ) of blowing-up is of order one for (M, M 0 , θ, I, E); b ) Equation (5.6) is valid for k < k 0 .

We prove the result for k 0 . Notice that the step k 0 = 0 is trivial, so we can treat only the case k 0 > 0:

• Step k 0 > 0. Using the induction hypotheses [ii] we deduce that:

H(θ k 0 -1 , I k 0 -1 , j) = K k 0 -1 (-1). j i=0 K k 0 -1 (i)σ * k 0 -1 H(θ 0 , I 0 , i) ⊂ ⊂ K k 0 -1 (-1). j i=0 σ * k 0 -1 H(θ 0 , I 0 , i) = K k 0 -1 (-1)σ * k 0 -1 H(θ 0 , I 0 , j)
In particular:

Mtg(I k 0 -1 ) ⊂ (Mtg(I 0 )) k 0 -1 (5.7) Which implies that C k 0 ⊂ V (Mtg(I k 0 -1 )). So the sequence of blowings-up (σ 1 , ..., σ k 0 )
is of order one for (M, M 0 , θ, I, E).

We now verify the induction hypotheses [b] for k = k 0 by induction on j. Indeed, the formula is clearly true for j = 0, so consider it proved for j < j 0 . We prove it for j = j 0 . Indeed, by equation (5.5):

H(θ k 0 , I k 0 , j 0 ) = H(θ k 0 , I k 0 , j 0 -1) + θ k 0 [H(θ k 0 , I k 0 , j 0 -1)] = = H(θ k 0 , I k 0 , j 0 -1) + θ k 0 [K k 0 (-1). j 0 -1 i=0 K k 0 (i)σ * k 0 H(θ 0 , I 0 , i)] = = H(θ k 0 , I k 0 , j 0 -1) + K k 0 (-1). j 0 -1 i=0 K k 0 (i)θ k 0 [σ * k H(θ 0 , I 0 , i)]
Now, using equation ( 5.3) and Lemma 3.3.1, we can continue the deduction:

= H(θ k 0 , I k 0 , j 0 -1) + K k 0 (-1). j 0 -1 i=0 K k 0 (i + 1)σ * k 0 (θ[H(θ 0 , I 0 , i)]) = = H(θ k 0 , I k 0 , j 0 -1) + K k 0 (-1). j 0 -1 i=0 K k 0 (i + 1)σ * k 0 (H(θ 0 , I 0 , i + 1)) = = K k 0 (-1). j 0 i=0 K k 0 (i)σ * k 0 H(θ 0 , I 0 , i) So the formula is proved.
Claim 2 implies that the sequence of θ-admissible blowings-up σ = (σ 1 , ..., σ r ) of order one for (M, M 0 , θ, Mtg(I), E) is also of order one for (M, M 0 , θ, I, E):

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1
such that: Claim 3: The tg-order ν(θ r , I r ) is strictly smaller then ν.

Proof. Let σ = σ 1 • ... • σ r and we recall that (Mtg(I)) r = O Mr , which implies that σ * H(θ 0 , I 0 , ν -1) = K r (1). By claim 2, we deduce that:

H(θ r , I r , ν -1) = K r (-1). ν-1 i=0 K r (i)σ * H(θ 0 , I 0 , i) = = K r (-1). ν-2 i=0 K r (i)σ * H(θ 0 , I 0 , i) + K r (ν -2) = = H(θ r , I r , ν -2) + K r (ν -2)
which implies that:

θ r [H(θ r , I r , ν -1)] + H(θ r , I r , ν -1) = H(θ r , I r , ν -1) + θ r [K r (ν -2)] ⊂ ⊂ H(θ r , I r , ν -1) + K r (ν -2) = H(θ r , I r , ν -1)
Which proves that the chain is stabilizing in at most ν -1 steps.

We now prove the functorial statement [ii] of the proposition:

Claim 4: The ideal sheaves H(I, θ, i) are ω-invariant for all i ∈ N.

Proof. The proof follows, mutantis mutatis, the same proof of Claim 2 contained in the proof of Proposition 5.4.1. So, by part [iv] of Theorem 5.1.1, the resolution σ = (σ 1 , ..., σ r ) is also ω-invariant, because the identity is a chain-preserving smooth morphism between (M, M 0 , 0, Mtg(I), E) and (M, M 0 , ω, Mtg(I), E).

We now prove the functorial statement [iii] of the Proposition.

Let φ : (M, M 0 , θ, I, E M ) -→ (N, N 0 , ω, J , E N ) be a 1-chain-preserving smooth morphism. Consider σ = (σ 1 , ..., σ r ) and τ = (τ 1 , ..., τ r ) the sequences of blowings-up given in the Proposition (the length of the sequence may be chosen to be the same because of the functoriality of Theorem 3.6.1). Furthermore, for any ideal sheaf K over N i-1 , because of the functoriality of Theorem 3.6.1, we deduce that:

(σ i ) * (K.O M i-1 ) = (τ * i K).O M i
In particular, if F M,i is the exceptional divisor of the blowing-up σ i :

M i -→ M i-1 and F N,i
is the exceptional divisor of the blowing-up τ i : N i -→ N i-1 , we have that:

O(-F N,i ).O M i = O(-F M,i )
Furthermore, define K M,k (α) and K N,k (α) in the obvious way. We have that:

K N,i (α).O M i = K M,i (α)
Claim 5: The following equality holds:

H(J i , ω i , j).O M i = H(I i , θ i , j)
for i ≤ r and j ∈ N.

Proof. Suppose by induction that H(ω i , J i , j).O M i = H(θ i , I i , j) for i < k 0 and any j ∈ N.

Then:

H(ω k 0 , J k 0 , j).O M k 0 = (K N,k 0 (-1) j i=0 K N,k 0 (i)τ * k 0 H(ω 0 , J 0 , i)).O M k 0 = K M,k 0 (-1) j i=0 K M,k 0 (i)σ * k 0 H(θ 0 , I 0 , i) = H(θ k 0 , I k 0 , j)
for any j ∈ N, which proves the claim.

It is clear that Claim 5 implies the functoriality statement [iii] of the Proposition.

Appendix: Considerations about the general case

In the general case of a local d-foliated ideal sheaf (M, M 0 , θ, I, E), obtaining a global resolution seems to be a challenging problem that may need new ideas. To discuss the difficulty of this problem, we follow a more intuitive presentation in this section.

We start giving two intuitive reasons of why the one dimensional case is technically simpler:

i ) The only non-trivial generalized Fitting operation is Γ θ,1 . Intuitively, this implies that the tangency chain T g(θ, I) completely describes the intersection between the variety V (I) and the singular distribution θ.

ii ) There exists a dichotomy of θ-admissible centers: either they are θ-invariant, or they are θ-totally transverse.

These two statements don't hold when θ is a d-singular distribution. There exists two naive ideas (maybe complementary) to continue the search of a resolution:

i ) An induction over the leaf dimension d of θ;

ii ) A refinement of the invariants, using the other k-generalized Fitting operations Γ θ,k .

At first, we tried to follow a strictly [I] approach, believing that most of the difficulty could disappear under an induction machinery. This is also the main idea behind the next chapter, where a local uniformization is presented for 2-singular distributions. But, for the general problem, the fact [ii] turned out to be a serious difficulty to this naive idea. A generalization of Proposition 5.4.2 may follow from the exact same arguments of the proof of that result. But this seems technically difficult to prove, because the tg-order ν(θ, I)

is not stable by θ-admissible blowings-up when d > 1. This is illustrated in the following example:

Example 1: Let (M, θ, I, E) = (C 3 , { ∂ ∂x , ∂ ∂y }, (x 2 + zy 3 ), ∅). Notice that:

ν(θ, I) = 2 because: H(θ, I, 0) = (x 2 + zy 3 ) H(θ, I, 1) = (x, zy 2 ) H(θ, I, 2) = O C 3 Let σ : (M ′ , θ ′ , I ′ , E ′ ) -→ (M, θ, I, E) be the blow with center C = V (x, z).
Notice that σ is a θ-admissible blowing-up of order one, but that C is neither invariant, nor totally transverse to θ. In the z-chart we have:

(M ′ , θ ′ , I ′ , E ′ ) = (C 3 , { ∂ ∂x , ∂ ∂y }, (zx 2 + y 3 ), {z = 0})
which implies that:

ν(θ ′ , I ′ ) = 3 because: H(θ, I, 0) = (zx 2 + y 3 ) H(θ, I, 1) = (zx, y 2 ) H(θ, I, 2) = (z, y) H(θ, I, 2) = O C 3 Which implies that ν(θ ′ , I ′ ) > ν(θ, I).
We then turned out for the approach [II]. It seemed reasonable to first answer the following question: what invariants can completely describe the "worst" intersection between a variety and a foliation? We have not been able to give a satisfactory answer so far, although we strongly believe that the generalized Fitting operations are the key for an answer. A naive possibility, which we here present for 2-singular foliations, is the following:

• If type(θ, I) = 2, as invariant take (ν, type);

• If type(θ, I) = 1, then consider a "second chain of tangency's" defined by the operation Γ θ,2 applied to H(θ, I, ν -1). More specifically, consider J = H(θ, I, ν -1) and the second chain of tangency's:

H 2 (θ, J , 0) = J H 2 (θ, J , i) = Γ θ,2 (H 2 (θ, J , i -1)) + H 2 (θ, J , i -1)
This chain also has a length, that we call ν 2 (θ, I), and type, that we call type 2 (θ, I).

As invariant, take (ν, type, ν 2 , type 2 ).

We exemplify this idea, even though it does not seem to work in this naive form: one can not be too "picky" with the choice of the centers:

Example 2: Let (M, θ, I, E) = (C 3 , { ∂ ∂x , ∂ ∂y }, (x 2 + zy 2 ), {z = 0}). Notice that: H(θ, I, 0) = (x 2 + zy 2 ) H(θ, I, 1) = (x, zy) H(θ, I, 2) = O C 3
Furthermore, let J = H(θ, I, ν -1) = H(θ, I, 1), then the second chain of tangency's is given by: H 2 (θ, J , 0) = (x, zy)

H 2 (θ, J , i) = (x, z)
for all i > 0. So, the natural choice of a blowing-up center is E) be the blow with center C. In the z-chart we have:

C = V (H 2 (θ, J , 1)) = V (x, z). Let σ : (M ′ , θ ′ , I ′ , E ′ ) -→ (M, θ, I,
(M ′ , θ ′ , I ′ , E ′ ) = (C 3 , { ∂ ∂x , ∂ ∂y }, (zx 2 + y 2 ), {z = 0})
Notice that, exchanging the coordinates x and y, we are in the same situation of the beginning.

Chapter 6

A local uniformization subordinated to a 2-foliation

Presentation of the result

A local uniformization (see section 3.5) of (M, θ, I, E) at a point p of M :

{τ α : (M α , θ α ) -→ (M, θ)}
is said to be θ-admissible if the morphisms τ α are the composition of θ-admissible local blowings-up.

The main result of this chapter is: Theorem 6.1.1. Let (M, θ, I, E) be a 2-foliated ideal sheaf and p a point of M . Then, there exists a θ-admissible local uniformization of (M, θ, I, E) at p. In particular, if θ is R-monomial, then θ α is R-monomial for every α.

In the following remarks, we briefly discuss the reasons behind the conclusions and hypotheses of the Theorem: Remark 6.1.2. Theorem 6.1.1 is not global because the proof here presented depends on a choice of a particular vector field X contained in the singular distribution θ.O p . This choice is not uniquely defined and, thus, no functorial property is obtained.

Remark 6.1.3. The reason why Theorem 6.1.1 demands the leaf dimension of θ to be two is "hidden" in the Propositions 6.2.4 and 6.2.5 below. All other proofs can be adapted for leaf dimension equals to d. Furthermore, if we assume that a θ-admissible local uniformization is proven for leaf dimension d -1, it is worth remaking that:

• A Proposition 6.2.5 for leaf dimension d seems to follow the same exact steps of the proof for leaf dimension two;

• A Proposition 6.2.4 for leaf dimension d is more delicate (if it is true at all). This is the main technical difficulty for getting a local uniformization for any leaf dimension.

We explain this difficulty in remark 6.3.1.

6.2 Proof of Theorem 6.1.1

In order to prove Theorem 6.1.1 we introduce a new invariant. The λ-order of a foliated ideal sheaf (M, θ, I, E) at a point p of M is given by:

λ p (θ, I) = min{ν p (X, I); X ∈ θ p is regular and type p (X, I) = 1}
If there is no such vector field X ∈ θ p , we define λ p (θ, I) = ∞.

Given an open relatively compact open subset M 0 of M , we define the λ-order on M 0 as:

λ M 0 (θ, I) = sup{λ q (θ, I); q ∈ M 0 }
Notice that this invariant is valid for any leaf dimension of θ and it is clearly upper semicontinuous (because the tg-order is upper semi-continuous). We start given a good condition for the λ-order to be well-behaved: Lemma 6.2.1. If the type p (θ, I) is one, then the λ-order λ p (θ, I) is finite. Furthermore:

λ p (θ, I) = ν q (θ, I)
Remark 6.2.2. The converse is clearly true by a contra-positive argument: if the type p (θ, I) is two, then the λ-order λ p (θ, I) is infinite.

Proof. Fix a point p of M and let ν := ν p (θ, I). Since type M (θ, I) = 1, there exists a finite set of vector fields {X 1 , ..., X ν } contained in θ p and a function f ∈ I such that:

X ν (X ν-1 (...(X 1 (f ))...))
is an unity of O p . Furthermore, it is clear that all vector fields X i are regular (otherwise there would exist a smaller set of vector fields with this property, which contradicts the definition of ν). Consider a ν-tuple α = (α 1 , ..., α ν ) ∈ K ν and the vector field:

Y α = ν i=1 α i X i
It is clear that, for a generic α, if we apply the vector field Y α ν-times on f , we get an unity of O p . Since the vector field Y α is contained in θ p and is generically regular, we conclude that λ p (θ, I) = ν p (θ, I).

And now we give the result that motivates the introduction of this invariant: Proposition 6.2.3. Suppose that the invariant λ p (θ, I) is finite and θ has leaf dimension two. Then there exists a θ-admissible local uniformization of (M, θ, I, E) at p.

The proof of this Proposition depends on the following two Propositions: Proposition 6.2.4. Let (M, M 0 , θ, I, E) be a local 2-foliated ideal sheaf and X a 1-singular distribution defined in an open neighborhood of M 0 . Suppose that there exists an involutive 1-singular distribution ω defined in an open neighborhood of M 0 such that {X , ω}.O M 0 generates θ.O M 0 . Then, there exists a sequence of θ-admissible and X -admissible blowings-up of order one:

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1
such that:

i ) The tg-order ν Mr (X r , I r ) is smaller or equal to ν M 0 (X 0 , I 0 );

ii ) The type type Mr (X r , I r ) is equal to 1.

Proposition 6.2.5. Let (M, M 0 , θ, I, E) be a local 2-foliated ideal sheaf and X a 1-singular distribution defined in an open neighborhood of M 0 . Suppose that:

• The singular distribution X .O M 0 is contained in the singular distribution θ.O M 0 ;

• The type type M 0 (X , I) is 1;

• The tg-order ν M 0 (X , I) is equal to ν M 0 (θ, I);

• There exists a coordinate system (x, y) = (x, y 1 , ..., y n-1 ) defined in an open neighborhood U of M 0 such that the singular distribution X .O M 0 is generated by the vector field

X = ∂ ∂x .
Then, there exists a sequence of θ-admissible and X -admissible blowings-up of order one:

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1
such that:

i ) The tg-order ν Mr (X r , I r ) is strictly smaller then ν M 0 (X 0 , I 0 );

ii ) There exists an involutive 1-singular distribution ω r such that {X r , ω r } generates θ r .

These two propositions will be proved in the next two sections. For now, we assume them in order to prove Proposition 6.2.3:

Proof. (Proposition 6.2.3) We proceed by induction in the invariant λ p (θ, I). Suppose that we have already proved the existence of a θ-admissible local uniformization for a 2-foliated ideal sheaf (M, θ, I, E) at any point p such that λ p (θ, I) < k. We prove the result for k:

•

Step k = 0: If λ p (θ, I) = 0, then I = O p and the result is clear;

• Step k > 0: Since the invariant λ p (θ, I) is finite, we conclude that there exists a regular vector field X in θ p . By the Flow-box Theorem, there exists a relatively compact open neighborhood M 0 of p, a coordinate system (x, y) = (x, y 1 , ..., y n-1 ) defined in an open neighborhood of M 0 and a 1-singular distribution X defined in an open neighborhood of M 0 such that:

• The singular distribution X .O M 0 is contained in the singular distribution θ.O M 0 ;

• The type type M 0 (X , I) is 1;

• The singular distribution X .O M 0 is generated by the vector field X = ∂ ∂x .

Furthermore, since the λ-order is upper semi-continuous, we can further suppose that:

• The tg-order ν M 0 (X , I) is equal to ν M 0 (θ, I) and λ p (θ, I). Now, by Proposition 6.2.5, there exists a sequence σ 1 of θ-admissible and X -admissible blowings-up:

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1 such that: i ) ν Mr (X r , I r ) < ν M 0 (X 0 , I 0 );
ii ) There exists an involutive 1-singular distribution ω r such that {X r , ω r } generates θ r .

Let K 1 be the compact set which is the pre-image of p by the sequence σ 1 of blowingsup. Consider N 0 a relatively compact open neighborhood of K, strictly contained in M r , and let the morphism π : N 0 -→ M r be the inclusion. Consider the 2-local foliated manifold (M r , N 0 , θ r , I r , E r ) and notice that it satisfies the hypotheses of Proposition 6.2.4. So, there exists a sequence σ 2 of θ r -admissible and X r -admissible blowings-up:

(N s , θ r+s , I r+s , E r+s ) • • • (N 0 , θ r , I r , E r ) σ r+s σ r+1
such that ν Ns (X r+s , I r+s ) ≤ ν N 0 (X r , I r ) and type Ns (X r+s , I r+s ) = 1.

In particular, we have that:

ν Ns (X r+s , I r+s ) ≤ ν N 0 (X r , I r ) ≤ ν Mr (X r , I r ) < ν M 0 (X 0 , I 0 )
which implies that:

λ Ns (θ r+s , I r+s ) < λ M 0 (θ, I) = k
Let K 2 be the compact set which is the pre-image of K 1 by the sequence σ 2 of blowings-up. Since the λ-order is strictly smaller then k in every point of K 2 , by induction and the compacity of K 2 , there exists a θ-admissible local uniformization of (N s , θ r+s , I r+s , E r+s ) over all K 2 . Composing this local uniformization with the θ-admissible sequence of blowings-up σ 2 , with the morphism π and finally with the sequence of θ-admissible blowings-up σ 1 , we finally obtain a θ-admissible local uniformization of (M, θ, I, E) at p. Now, we are ready to prove the Theorem:

Proof. (Theorem 6.1.1) If at the point p of M , the λ-order λ p (θ, I) is finite, the result follows from Lemma 6.2.3. So, we can assume that λ-order is infinite at p, which implies that the type type p (θ, I) is two.

Let M 0 be any relatively compact open neighborhood of p and π : M 0 -→ M the inclusion morphism. By Proposition 5.4.1 there exists a sequence σ of invariant θ-admissible blowings-up of order one:

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1 such that: type Mr (θ r , I r ) = 1 • Step k > 0. Consider C k the center of the blowing-up σ k . Since {X k-1 , ω k-1 } gener- ates θ k-1 and C k is X k-1 -invariant, we have that the 2-generalized Fitting ideal sheaf Γ θ k-1 ,2 (I C k ) is contained in I C k . Furthermore: • If ω[I C k ] ⊂ I C k then θ[I C k ] ⊂ I C k ; • If ω[I C k ] = O M k-1 then θ[I C k ] = O M k-1 .
Which implies that σ k is θ k-1 admissible and (σ k , ..., σ 1 ) is θ-admissible.

It is now easy to see (using Lemma 3.2.2 and Proposition 4.4.1) that {X k , ω k } generates θ k .

Claim 2: The sequence of blowings-up σ is θ-admissible of order one for (M, M 0 , θ, I, E). Furthermore:

(Cl X (I)) j = Cl X j (I j )
for all j ≤ r.

Proof. This claim has, mutantis mutatis, the same proof of the Claim 1 contained in the proof of Proposition 5.4.1.

This implies that σ gives rise to an invariant θ-admissible sequence of blowings-up of order one for (M, M 0 , θ, I, E):

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1 such that: H(X r , I r , ν) = Cl Xr (I r ) = (Cl X (I)) r = O Mr which implies that ν Mr (X r , I r ) ≤ ν M 0 (X , I) and type Mr (X r , I r ) = 1.
Remark 6.3.1. See ( * ) above: This is the technical point where we strongly use the fact that the leaf dimension of θ is two. When we apply Theorem 5.3.1, we use the statement

[v] of the Theorem (which is a functorial property of the resolution) to conclude that the sequence of ω-admissible blowings-up are also X -invariant.

A straight proof of Proposition 6.2.4 for general leaf dimension d, would need a local uniformization for leaf dimension d -1 that satisfies some analogous functorial property.

But even for leaf dimension two, obtaining this result is not clear.

6.4 Proof of Proposition 6.2.5

Without loss of generality, we can suppose that there exists a coordinate system (x, y) = (x, y 1 , ..., y n-1 ) defined on an open neighborhood U of M 0 such that the 1-singular distribution X .O U is generated by the vector field X = ∂ ∂x . Let ω be the 1-singular distribution defined as follow:

ω = {Y ∈ θ.O U ; Y (x) ≡ 0} It is clear that: • The 2-singular distribution θ.O M 0 is generated by {X , ω}.O M 0 ; • The ideal (x) is ω-invariant.
Let ν := ν M 0 (X , I) and Mtg X (I) := H(X , I 0 , ν -1). By Theorem 5.3.1 there exists a ωadmissible resolution σ = (σ 1 , ..., σ r ) of the local foliated ideal sheaf (M, M 0 , ω, Mtg X (I), E):

(M r , ω r , (Mtg X (I)) r , E r ) • • • (M 0 , ω 0 , (Mtg X (I)) 0 , E 0 ) σ r σ 1 such that:
Claim 1: The sequence of blowings-up σ is X -totally transverse.

Proof. Suppose by induction that, for i < k:

i ) the sequence (σ 1 , ..., σ i ) of blowing-up is X -totally transverse;

ii ) for each point p contained in the variety V ((Mtg X (I)) i ), there exists a coherent coordinate system (x, y) = (x, y 1 , ..., y n-1 ) of O p such that:

• The function x is contained in the ideal (Mtg X (I)) i .O p ;

• The vector field ∂ ∂x generates the singular distribution X i,p :=

X i .O p ; • The ideal (x) is ω i -invariant.
We prove the result for k:

• Step k = 0. This trivially follows from the choice of the coordinate systems before blowing-up.

• Step k > 0. Consider a point q on the variety V ((Mtg X (I)) k ) and let p = σ k (q). If σ k is a local isomorphism over q, the result is trivial, so we assume that the point q is contained in the exceptional divisor F k . By the induction hypotheses [ii], there exists a coherent coordinate system (x, y) = (x, y 1 , ..., y n-1 ) of O p such that:

• The function x is contained in the ideal (Mtg X (I)) k-1 .O p ; • The vector field ∂ ∂x generates the singular distribution X k-1,p ; Since the center C k of the blowing-up σ k : M k -→ M k-1 is contained in V ((Mtg X (I)) k-1
) we conclude that:

• The center C k is X k-1 -totally transverse at p. This implies that the sequence (σ 1 , ..., σ k ) of blowings-up is X -totally transverse;

• Without loss of generality I C k .O p = (x, y 1 , ..., y t ) and the point q is the origin of the y 1 -chart. It is now easy to compute the transforms of the blowing-up at q and see that the induction hypotheses [ii] is valid for i = k.

Claim 2: The sequence of blowings-up σ is θ-admissible and θ r is generated by {X r , ω r }.

Proof. Suppose by induction that, for i < k:

i ) The sequence (σ 1 , ..., σ i ) of blowing-up is θ-admissible;

ii ) for each point p contained in the variety V ((Mtg X (I)) i ), there exists a coherent coordinate system (x, y) = (x, y 1 , ..., y n-1 ) of O p such that:

• The function x is contained in the ideal (Mtg X (I)) i .O p ;

• The vector field ∂ ∂x generates the singular distribution X i,p :=

X i .O p ; • The ideal (x) is ω i -invariant.
iii ) The singular distribution θ i is generated by {X i , ω i }.

We remark that hypotheses [ii] of the induction was already proved in Claim 1 for any i.

We prove the result for k:

• Step k = 0. This trivially follows from the hypotheses.

• Step k > 0. Since C k is totally transverse to X k-1 , we have that θ k-1 (I C k ) = O M k-1 .
So, to show the induction hypotheses [i] for the step k, we only have to prove

that the 2-generalized Fitting ideal Γ θ,2 (I C k ) is either the structural sheaf O p or is contained in I C k . Since σ k is a ω k-1 -
admissible blowing-up, we have that:

• If ω k-1 [I C k ] ⊂ I C k then Γ θ k-1 ,2 (I C k ) ⊂ I C k ; • If ω k-1 [I C k ] = O M k-1 , we claim that Γ θ k-1 ,2 (I C k ) = O M k-1 .
Indeed, there exists a function h on the ideal I C k .O p and a vector field Y on the singular distribution ω k-1 .O p such that Y (h) is an unity. Furthermore, since there exists a coordinate system such that ω k-1 [(x)] ⊂ (x), we have that Y (x) = xg. Thus:

det X(x) Y (x) X(h) Y (h) = det 1 xg X(h) U
is an unity.

To finish, it is now easy to see (using Lemma 3.2.2 and Proposition 4.4.1) that {X k , ω k } generates θ k .

Claim 3: The sequence of blowings-up σ give rise to a θ-admissible sequence:

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1 such that: ν Mr (X r , I r ) < ν M 0 (X 0 , I 0 )
Proof. This claim has, mutantis mutatis, the same proof of the Claims 2 and 3 contained in the proof of Proposition 5.4.2.

These three Claims are enough to prove the Proposition.

Chapter 7

Application 1: Resolution in Families

Families of ideal sheaves

A smooth family of ideal sheaves is given by a quadruple (B, Λ, π, I) where:

• The ambient space B and the parameter space Λ are two smooth analytic manifolds;

• The morphism π : B -→ Λ is smooth;

• The ideal sheaf I is coherent and everywhere non-zero over B.

Given λ ∈ Λ, the set π -1 (λ) is a regular sub-manifold of B called fiber. A point λ 0 ∈ Λ is called an exceptional value of a smooth family of ideal sheaf (B, Λ, π, I) if the fiber π -1 (λ 0 ) is contained in V (I).

Many works have addressed resolution process for families of ideal sheaves. By this, we intuitively mean a resolution of (B, I, ∅) that preserves, in some way, the structure of family. The precise meaning of resolution in families is not unique in the literature (see e.g [START_REF] Encinas | On algorithmic equiresolution and stratification of Hilbert schemes[END_REF][START_REF] Villamayor | Resolution in families[END_REF]). For example, in [ENV], one defined a stratification Σ in the parameter space Λ in such a way that the resolution algorithm of the parametrized ideal sheaf behaves uniformly along each strata of Σ.

In the context of this work, a smooth family of ideal sheaves (B, Λ, π, I) gives rise to a foliated ideal sheaf (B, θ, I, ∅), where θ is the maximal regular distribution such that (Dπ)θ = 0. This motivates another possible definition of resolution in families:

Uniform Resolution in Families of Ideal sheaves: An uniform resolution of a smooth family of ideal sheaves (B, Λ, π, I) is a sequence σ = (σ 1 , ..., σ r ) of admissible blowings-up of order one:

(B r , θ r , I r , E r ) • • • (B 1 , θ 1 , I 1 , E 1 ) (B, θ, I, ∅) σ r σ 2 σ 1 such that I r = O Br and θ r is Z-monomial.
This kind of resolution in families has originally been introduced at [DR] in the context of smooth families of planar foliations by curves, where it is an essential step in Roussarie's program for the existential part of Hilbert 16 th Problem. This approach is also similar to the one adopted at [V2], where it is proved the existence of an uniform resolution in families for the case dimΛ = 1, under the hypotheses that the morphism π is flat over V (I).

The existence of an uniform resolution in families would give rise to a resolution (in some sense) "uniform" in the parameter space. In particular, the study of the fibers of the resolution (i.e. of the morphism σ r • ... • σ 1 • π) may be useful for equiresolution and bifurcation theory. In particular, it might give rise to a stratification of the parameter space in the same sense given in [ENV].

With the results of this work, we can prove the existence of an uniform resolution for a smooth family of ideal sheaves when dimΛ = dimB -1 (it is a trivial consequence of Theorem 5.3.1). Furthermore, we can eliminate exceptional values of a smooth family of ideal sheaves (see the Theorem 7.1.1 below). This can be seen as a first step in the solution of the problem of uniform resolution in families.

Theorem 7.1.1. Let (B, Λ, π, I) be a smooth family of ideal sheaves such that all fibers are connected. Then, there exists a smooth family of ideal sheaves (B ′ , Λ ′ , π ′ , I ′ ) and two proper analytic maps σ : B ′ -→ B and τ : Λ ′ -→ Λ such that:

i ) The smooth family of ideal sheaves (B ′ , Λ ′ , π ′ , I ′ ) has no exceptional value;

ii ) The following diagram:

B ′ Λ ′ B Λ σ π ′ π τ commutes;
iii ) For any relatively compact open subset B 0 of B, there exists a sequence of invariant admissible blowings-up of order one for (B, B 0 , θ, I, ∅):

(B r , θ r , I r , E r ) • • • (B 1 , θ 1 , I 1 , E 1 ) (B 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1 such that σ| σ -1 B 0 = σ 1 • ... • σ r and I ′ .O Br = I r ;
iv ) For any relatively compact open subset Λ 0 of Λ, there exists a sequence of admissible blowings-up:

(Λ r , E r ) • • • (Λ 1 , E 1 ) (Λ 0 , E 0 ) τ r τ 2 τ 1 such that τ | τ -1 Λ 0 = τ 1 • ... • τ r .
Proof. Consider the two foliated manifolds (B, θ, ∅) and (Λ, ω, ∅), where ω = 0, and let I # be the smaller θ-invariant ideal sheaf containing I.

Claim: There exists an ideal sheaf J over Λ such that J .O B = I # .

Proof. Consider a point λ in Λ and let p be a point contained in the fiber π -1 (λ). Since θ is regular, there exists a coordinate system (x, y) = (x 1 , ..., x d , y 1 , ..., y n-d ) of O p such that π(x, y) = y and { ∂ ∂x 1 , , ..., ∂ ∂x d } is a coherent set of generators of θ p .

Since I # is θ-invariant, by Proposition 4.2.2 there exists a set of generators {f 1 (y), ..., f s (y)} of I # .O p . Let J p be the ideal of O λ generated by {f 1 (y), ..., f s (y)}. Notice that this construction can be done for any point q contained in the fiber π -1 (λ), and generates an ideal J q .

By the construction of J p , there exists an open neighborhood U of p such that, for every q in U ∩ π -1 (λ), J q = J p . Furthermore, by analyticity, if (q i ) is a sequence of points in the fiber σ -1 (λ) that are converging to a point q such that J q 1 = J q i for all i ∈ N, then J q = J q 1 . Because of this two properties and the fact that the fiber σ -1 (λ) is connected, we conclude that the ideal J p is independent of the point p in the fiber π -1 (λ). Now, we only need to define J as the ideal sheaf locally given by J .O λ = J p for some p in the fiber π -1 (λ).

Notice that π : B -→ Λ is a chain-preserving smooth morphism between (B, θ, I # , ∅)

and (Λ, ω, J , ∅). By Theorem 5.1.2 there exists two proper analytic maps σ : B ′ -→ B and τ : Λ ′ -→ Λ and a smooth map π ′ : B ′ -→ Λ ′ such that:

• The morphism σ : B ′ -→ B is a weak-resolution of (B, θ, I # , ∅);

• The morphism τ : Λ ′ -→ Λ is a weak-resolution of (Λ, ω, J , ∅);

• The following diagram:

B ′ Λ ′ B Λ σ π ′ π τ commutes.
Furthermore, given a relatively compact open subset B 0 of B, the proof of Proposition 5.4.1 guarantees that the sequence of invariant blowings-up σ = (σ 1 , ..., σ r ), where σ| σ -1 B 0 =

σ 1 • ... • σ r : (B r , θ r , E r ) • • • (M 1 , θ 1 , E 1 ) (M 0 , θ 0 , E 0 ) σ r σ 2 σ 1
is of order one for (B, B 0 , θ, I, ∅) and I r is of type 1.

Define the ideal sheaf I ′ of B ′ given as the direct limit of the controlled transforms I r over all relatively compact open subsets B 0 of B. By construction (B ′ , Λ ′ , π ′ , I ′ ) has no exceptional value and satisfies all hypotheses of the Theorem.

Resolution of foliations

A nested foliation is a quadruple (M, θ, ω, E):

• (M, θ, E) is a foliated manifold;

• X is an everywhere non-zero involutive singular distribution that is a sub-sheaf of θ.

A d-singular distribution θ is said to have complete intersection if at each point p in M , there exists a coherent set of generators {X 1 , ..., X dp } of θ p such that d p is equal to d.

A nested foliation (M, θ, ω, E) is said to be a nested foliation by curves if X has leaf dimension one and complete intersection. In other words, at each point p in M , there exists a vector field X p in Der p such that {X p } generates X p .

In this work, a resolution of a nested foliation by curves (M, ω, X , E) is a sequence of admissible blowings-up:

(M r , θ r , X r , E r ) • • • (M 1 , θ 1 , X 1 , E 1 ) (M 0 , θ 0 , X 0 , E 0 ) σ r σ 2 σ 1
such that X r is an elementary singular distribution contained in θ r , i.e. at each point p in M , if X p is a vector field generating X p , then the linear part of X p has a non-zero eigenvalue.

Remark 7.2.1. In this definition, we don't restrict the transforms of X to be the analytic strict transform. To obtain a resolution of a nested foliation by curves, one may need to work if other kinds of transforms.

Families of foliations by curves

A smooth family of foliations is given by a quadruple (B, Λ, π, X ) where:

• The ambient space B and the parameter space Λ are two smooth analytic manifolds;

• The morphism π : B -→ Λ is smooth;

• The singular distribution X is everywhere non-zero and dπ(X ) ≡ 0.

Furthermore, we a smooth family of foliations by curves is a smooth family of foliations (B, Λ, π, X ) such that X has leaf dimension one and complete intersection. A smooth planar family of foliations by curves is a smooth family of foliations by curves (B, Λ, π, X )

such that dimΛ = dimB -2.

Given λ ∈ Λ, the set π -1 (λ) is a regular sub-manifold of B called fiber. A point λ 0 ∈ Λ is called an exceptional value of a smooth family of foliations by curves (B, Λ, π, X )

if the fiber π -1 (λ 0 ) is contained in the singular set S(X ).

A notion of resolution process for families of foliations by curves is not unique because the notions of resolution for families of ideal sheaves may be adapted to the case of families of foliations by curves. As an example, we refer to the work [Tr], where a notion of resolution of smooth planar families of foliations by curves is presented. Although the process presented is not a resolution in the sense of this work (because it ends with non-elementary singularities -in particular singular perturbation problems are persistent through this resolution), it is the best known result that preserves the structure of smooth family.

In the context of this work, a smooth family of foliations (B, Λ, π, X ) gives rise to a nested foliation (B, θ, X , E), where θ is the maximal regular distribution such that Dπ(θ) = 0. This motivates another possible definition of resolution in families wich was introduced at [DR] in the context of smooth planar families of foliations by curves. We present a generalization of the idea:

Uniform Resolution in Families of Foliations by curves: An uniform resolution of a smooth family of foliations by curves (B, Λ, π, X ) is a sequence σ = (σ 1 , ..., σ r ) of admissible blowings-up:

(B r , θ r , X r , E r ) • • • (B 1 , θ 1 , X 1 , E 1 ) (B, θ, X , ∅) σ r σ 2 σ 1
such that X r is elementary and θ r is Z-monomial.

In particular, an uniform resolution for smooth planar families of foliations by curves is an essential step in Roussarie's program for proving the existential part of Hilbert 16 th

Problem.

The best result in this context is given by Panazzolo in [P1], where an uniform resolution for smooth planar families of foliations by curves is presented, under the hypotheses that at each point p in B, if X p is a vector field generating X p , then X p has non-zero linear part.

With the results of this work we can eliminate exceptional values of smooth families of foliations by curves (see the Theorem 7.3.1 below). This result is a generalization of Proposition IV.3 of [DR] and can be seen as a first step towards the solution of the problem of uniform resolution in families of foliations by curves.

Theorem 7.3.1. Let (B, Λ, π, X ) be a smooth family of foliations by curves such that all fibers are connected. Then, there exists a smooth family of foliations by curves

(B ′ , Λ ′ , π ′ , X ′ )
and two proper analytic maps σ : B ′ -→ B and τ : Λ

′ -→ Λ such that: i ) (B ′ , Λ ′ , π ′ , X ′ ) has no exceptional value;
ii ) The following diagram:

B ′ Λ ′ B Λ σ π ′ π τ commutes;
iii ) For any relatively compact open subset B 0 of B, there exists a sequence of invariant admissible blowings-up:

(B r , θ r , X r , E r ) • • • (B 1 , θ 1 , X 1 , E 1 ) (B 0 , θ 0 , X 0 , E 0 ) σ r σ 2 σ 1
where

X i = O(-F i ).σ * i X i-1 , such that σ| σ -1 B 0 = σ 1 • ... • σ r and X ′ .O Br = X r ;
iv ) For any relatively compact open subset Λ 0 of Λ, there exists a sequence of admissible blowings-up:

(Λ r , E r ) • • • (Λ 1 , E 1 ) (Λ 0 , E 0 ) τ r τ 2 τ 1 such that τ | τ -1 Λ 0 = τ 1 • ... • τ r .
Proof 

(B r , θ r , (S(X )) r , E r ) • • • (B 0 , θ 0 , (S(X )) 0 , E 0 ) σ r σ 1
such that (S(X )) r is of type 1. E) is an invariant admissible blowing-up of order one between regular singular distributions, then the transform

Claim: If σ : (M ′ , θ ′ , (S(X )) ′ , E ′ ) -→ (M, θ, S(X ),
X ′ := O(-F
).X * is well-defined and:

(S(X )) ′ = S(X ′ )

Proof. At each point pin M there exists a local system of coordinates (x, y) = (x 1 , ..., x d , y 1 , ..., y n-d ) such that the singular distribution θ.O p is generated by { ∂ ∂x 1 , ..., ∂ ∂x d } and the center of blowing-up C is such that I C .O p = (y 1 , ..., y t ). In particular, this implies that the singular distribution X p is generated by a vector field X of the form:

X = d i=1 A i (x, y) ∂ ∂x i
and, for any q in σ -1 (p), the singular distribution X ′ .O q is generated by the vector field X ′ of the form:

X ′ = d i=1 A i (x, y) * O(-F ) ∂ ∂x i = d i=1 A i (x, y) ′ ∂ ∂x i which implies that: (S(X )) ′ = S(X ′ )
In particular, X ′ is analytic and well-defined.

The Claim implies that (σ 1 , ..., σ r ) is also a sequence of invariant admissible blowings-up:

(B r , θ r , X r , E r ) • • • (B 1 , θ 1 , X 1 , E 1 ) (B 0 , θ 0 , X 0 , E 0 ) σ r σ 2 σ 1 such that S(X r
) is of type one. This implies that X r has no exceptional values (otherwise S(X r ) would be of type 2).

Define the foliation by curves X ′ of B ′ as the direct limit of the transforms X r over

all relatively compact open subsets B 0 of B. By construction (B ′ , Λ ′ , π ′ , X ′ ) has no exceptional value and satisfies all hypotheses of the Theorem.

Dim 1 Nested foliation by curves

A dim 1 nested foliation by curves is a nested foliation by curve (M, θ, X , E) such that θ has leaf dimension one and complete intersection. A reduction of (M, θ, X , E) is a sequence of θ-admissible blowings-up σ = (σ 1 , ..., σ r ):

(M r , θ r , X r , E r ) • • • (M 1 , θ 1 , X 1 , E 1 ) (M 0 , θ 0 , X 0 , E 0 ) σ r σ 2 σ 1
where:

• The singular distribution X i is given by

X ′ i-1 .O(-F i ) if the blowing-up is θ i-1 -invariant;
• The singular distribution X i is given by

X ′ i-1 if the blowing-up is θ i-1 -totally transverse.
such that:

• The singular distribution X r is equal to θ r .

Remark that the singular distribution X r will possess all the "good" properties of θ that are preserved by θ-admissible blowings-up. In particular, if θ is R-monomial, so will be X r , which also implies that X r is an elementary vector field and the reduction is actually a resolution of (M, θ, X , E).

For example, consider a vector field:

X = A(x, λ) ∂ ∂x
and let θ =< ∂ ∂x . Then a modification of (M, θ, X , E) gives rise to a resolution of (M, θ, X , E) and, consequently, for the vector field X.

The following result proves that a reduction is always possible: Theorem 7.4.1. Let (M, M 0 , θ, X , E) be a dim 1 local nested foliation by curves. Then, there exists a reduction of (M, M 0 , θ, X , E).

The Claim implies that (σ 1 , ..., σ r ) is also a sequence of invariant admissible blowings-up:

(M r , θ r , X r , E r ) • • • (M 1 , θ 1 , X 1 , E 1 ) (M 0 , θ 0 , X 0 , E 0 ) σ r σ 2 σ 1
such that I(θ r , X r ) = O Mr , which clearly implies the Theorem.

Chapter 8

Application 2: Generalized Flow-Box and a problem proposed by Mattei

Quasi-transversality

A foliated ideal sheaf (M, θ, I, E) is said to be:

• geometrically quasi-transverse if:

O(E) Γ θ,k (O M ) + I ⊂ Γ θ,k (I) + I
for all k ≤ d;

• 1-algebraically quasi-transverse if it is geometrically quasi-transverse, the singular distribution θ has leaf dimension 1 and ν p (θ, I) ≤ 1 for all points p in M . With these examples, we expect to make clear two major intuitive properties of these definitions:

• First intuitive property (from Example 1): If E = ∅ and I is regular, (M, θ, I, E) is geometrically quasi-transverse if there is no leaf of θ that is finitely tangent to V (I);

• Second intuitive property (from Example 2): If (M, θ, I, E) is geometrically quasitransverse, after a sequence of invariant blowings-up there may appear leafs of θ finitely tangent to V (I). On the other hand, if (M, θ, I, E) is 1-algebraically quasi-transverse, no sequence of invariant blowings-up will create this phenomena.

Remark 8.1.1. In section 8.6, we will discuss what would be a good notion of d-algebraically quasi-transversality for d > 1. In particular, the second intuitive property will hold in the generalized context. Now, we formalize these intuitions. We start with the first one: Lemma 8.1.2. Suppose that the ideal sheaf I is regular. Then a d-foliated ideal sheaf (M, θ, I, E) is geometrically quasi-transverse if, and only if, for all point p in V (I) \ E:

dim K L p + dim K T p V (I) = dim K (< L p + T p V (I) >)
where L p is the linear sub-space of T p M generated by θ p and < S > stands for the smallest linear sub-space of T p M containing S.

So, we only need to show that H(θ ′ , I ′ , 1) is θ ′ -invariant. But this clearly follows from Lemma 5.5.1, which states that:

H(θ ′ , I ′ , i) = H(θ, I, i) ′
and the fact that H(θ, I, 1) is θ-invariant.

Sub-Riemannian Geometry

In this section, we introduce some basic concept of sub-Riemannian geometry. We follow closely [Bell].

Basic Definitions

Consider K = R, W a regular analytic manifold and {X 1 , ..., X m } be globally defined analytic vector fields. For each point p in W , we denote by L p the subspace of T p W generated by {X 1 (p), ..., X m (p)}. Given any vector v of L p , there always exists (u 1 , ..., u m ) ∈ K (not necessarily unique) such that:

v = m i=1 u i X i (p)
So, for each point p of W , consider the mapping:

Φ p : R m -→ T p W (u 1 , ..., u m ) → m i=1 u i X i (p)
Notice that Φ p restricted to the linear subspace (kerΦ p ) ⊥ is a linear isomorphism onto L p .

Let Ψ p : L p -→ (kerΦ p ) ⊥ be the inverse mapping. Then, if v and w are vectors contained in L p , we define the sub-Riemannian metric g p (v, w) associated to {X 1 , ..., X m } by:

g p (v, w) =< Ψ p (v), Ψ p (w) >
where <, > is the euclidean norm of R m . Based on this metric, we define the notion of sub-Riemannian norm . p associated with {X 1 , ..., X m }:

v p = g p (v, v) 1 2
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We also define a notion of ∞-sub-Riemannian norm . ∞,p associated to {X 1 , ..., X m }:

v ∞,p = Ψ p (v) ∞
where . ∞ is the ∞-norm of R m .

We extend both norms for every vector v of T p W by setting

v p = v ∞,p = ∞ if v is not contained in L p .
With this metric, we can define a notion of length of a path. Given an absolutely continuous path c(t) contained in W , with t ∈ [a, b], we define:

length(c(t)) = b a ċ(t) c(t) dt length ∞ (c(t)) = b a ċ(t) ∞,c(t) dt
and the distance associated to the metric g is given by: If there is no curve absolutely continuous c(t) such that c(a) = p and c(b) = q, we set d(p, q) = +∞ (this happens, for example, if M is not connected). It is clear that we have the two following relations:

d(p, q) = inf {length(c ( 
v ∞,p ≤ v p ≤ √ m. v ∞,p d ∞ (p, q) ≤ d(p, q) ≤ √ m.d ∞ (p, q) (8.1)

The complex definition

We can extend the precious definitions to the complex setting as follows: let {X 1 , ..., X m } be globally defined analytic vector fields. We remark that W can be seen as a real variety.

Let {Y 1 , ..., Y 2m } be globally defined real-analytic vector fields over W such that {Y i , Y m+i } generates X i . Then, we can define a notion of sub-Riemannian metric and sub-Riemannian norm just as in the real case for {Y 1 , ..., Y 2m }.

We remark that, for each set {X 1 , ..., X m }, the definition of this metric and norms are not unique, because they will actually depend upon the vector fields {Y 1 , ..., Y 2m }.

Global Definitions

From now on, we work with K = R or C. An analytic sub-Riemannian metric on M is a function g : T M ⊗ T M -→ R ∪ {∞} which, locally, may be defined as the metric associated to some system of analytic vector fields. In other words, for each point p in M , there exists a neighborhood U p of p and a set of vector fields {X 1 , ..., X m } defined over U p such that g| Up = g {X 1 ,...,Xm} where g {X 1 ,...,Xm} is the sub-Riemmanin metric on U p associated with {X 1 , ..., X m }. A sub-Riemannian distance on M is a distance that can be defined, via the length paths, from such a metric.

For the sake of simplicity, we shall always suppose in the sequel that a sub-Riemannian metric g : T M ⊗ T M -→ R ∪ {∞} is defined by a given system of global vector fields {X 1 , ..., X m }. This assumption is perfectly legitimate in all purely local questions (in particular, the G-FB property defined below is local).

Let ω g be the singular distribution generated by the given set of global vector fields {X 1 , ..., X m }. Notice that this singular distribution is not necessarily involutive and it depends on the fixed vector fields {X 1 , ..., X m }. Nevertheless, since we are always supposing that g is generated by a fixed system of global vector fields {X 1 , ..., X m }, the singular distribution ω g is well-defined. Let θ g be the smaller (in the sense of sub-sheaves)

involutive singular distribution containing ω g . The involutive singular distribution θ g is well-defined because the intersection of involutive singular distributions is an involutive singular distribution and ω g is a sub-sheaf of Der M .

We are now ready to define the main objects of this Chapter and a notion of quasitransversality:

A sub-Riemannian manifold is a triple (M, g, E) such that:

• (M, E) is an analytic manifold with divisor;

• g is a sub-Riemmanin metric over M totally tangent to E i.e. the divisor E is θ g -invariant.

A sub-Riemannian ideal sheaf is a quadruple (M, g, I, E) such that:

• The triple (M, g, E) is a sub-Riemannian manifold;

• The ideal sheaf I is coherent and everywhere non-zero.

A sub-Riemannian ideal sheaf (M, g, I, E) is said to be:

• geometrically quasi-transverse if (M, θ g , I, E) is geometrically quasi-transverse;

• 1-algebraically quasi-transverse if (M, θ g , I, E) is 1-algebraically quasi-transverse.

Blowing-up

An admissible blowing-up σ :

(M ′ , E ′ ) -→ (M, E) is invariant by (M, g, E) if σ : (M ′ , θ ′ g , E ′ ) -→ (M, θ g , E) is invariant.
The total transform of g under an invariant blowing-up is the metric g ′ over M ′ defined by the pull-back of the vector fields {X 1 , ..., X m }. This process is well-defined by Proposition 4.4.1 and the fact that the blowing-up is invariant. Furthermore, it clearly implies the equality θ g ′ = (θ g ) ′ .

The G -F B property

Let (M, g, I, E) be a sub-Riemannian ideal sheaf. Given p in M and δ > 0, the set:

B g δ (p) = {q ∈ M ; d g (p, q) < δ}
is called the g-ball at p with radius δ.

We say that a sub-Riemannian ideal sheaf (M, g, I, E) satisfies the Generalized Flow-Box property, or simply the G-FB property, if for each point p in the variety V (I) there exists a pair (U p , δ p ) where:

• U p is an open neighborhood of p (in the usual topology of M );

• δ p is a positive real number.

such that, for all points q in (V (I) ∩ U p ) \ E and all positive real number δ < δ p , the g-ball B g δ (q) with center q with radius δ:

• intersects the variety V (I) only at q;

• is homeomorphic to a k q -euclidean ball, where k q is the dimension of the leaf of θ g passing through q.

Remark 8.3.1. If g is locally generated by a single vector field and E = ∅, then the problem described in the introduction is equivalent to asking whether (M, g, I, E) satisfies the G-F B property.

We say that a foliated ideal sheaf (M, θ, I, E) satisfies the Generalized Flow-Box property, or simply the G-FB property, if there exists a sub-Riemannian metric g on M such that:

• For each point p in M , there exists a choice of vector fields {X 1 , ..., X m } that generates

g on an open neighborhood U p of p, such that the singular distribution ω g (generated by {X 1 , ..., X m }) is involutive and equal to θ.O Up ;

• The sub-Riemannian ideal sheaf (M, g, I, E) satisfies the G -F B property.

Lemma 8.3.2. If a foliated ideal sheaf (M, θ, I, E) satisfies the G -F B property, then a sub-Riemannian ideal sheaf (M, g, I, E) such that the involutive singular distribution θ g coincides with θ also satisfies the G -F B property.

Remark 8.3.3. In particular, the G -F B property for a foliated ideal sheaf (M, θ, I, E) is independent of the choice of the sub-Riemannian metric g such that ω g = θ.

Proof. Since the problem is local, without loss of generality we can suppose that M = U p and let {X 1 , ..., X m } be globally defined vector fields defining g.

By hypotheses, there exists a sub-Riemannian metric h over M such that ω h = θ and (M, h, I, E) satisfies the G -F B property. Without loss of generality, this implies that there exists globally defined vector fields {Y 1 , ..., Y s } generating θ and h.

Since {Y 1 , ..., Y s } is a set of generators of θ, there exists an analytic matrix A such that (X 1 , ..., X r ) = A(Y 1 , ..., Y s ). Let A denote the ∞-norm of the matrix A, i.e.

A p = max{ a i,j (p) ; i, j}.

If v is a vector of T p M that can be written as r i=1 u i X i , we have that:

v = r i u i s j=1 a i,j Y j = s j=1 Y j [ r i=1 a i,j u i ]
This implies that max{

r i=1 a i,j u i } ≤ A max{ u i }. Thus: v h,∞,p ≤ A v g,∞,p Since v h,p ≤ √ s v h,∞,p and v g,∞,p ≤ v g,p , apart from taking a smaller open set U p ,
we have that:

v h,p ≤ M v g,p
where M > 0 is a constant that depends on max{ A q ; q ∈ U p }. This is enough to prove that length h (c(t)) ≤ M length g (c(t)) and that d h (p, q) ≤ M d g (p, q), which implies the Lemma.

Setting the Problems 1 and 2

The two problems we want to address are the following:

• Problem 1: Given a sub-Riemmaninan ideal sheaf (M, g, I, E) such that I is regular, is it true that geometrically quasi-transversality implies the G -F B property?

• Problem 2: How can we characterize a sub-Riemmaninan ideal sheaf (M, g, I, E)

that satisfies the G -F B property?

Counter-example to Problem 1

In this section we present an example of a geometrically quasi-transverse 1-foliated ideal sheaf (M, X , I, E), that does not satisfy the G -F B property, even though I is regular.

This example is valid both in R and C.

We start the construction by stating a Lemma:

Lemma 8.5.4. The equation:

(1 + s 2 ) cos(θ) sin(θ) -θ = 0 (8.2)
has an analytic solution (θ, s) = (h(s), s) = (sU (s), s), where U (s) is an unity defined in an open neighborhood of the origin such that U (0) = √ 6 2 .

Now, consider 1-foliated ideal sheaf (M, X , I, E), where:

• The variety M is a small open neighborhood of the origin of R 4 ;

• The singular distribution X is generated by a unique vector field X:

X = y 2 ∂ ∂w + x ∂ ∂y -y ∂ ∂x
• The ideal sheaf I is generated by two functions (zf (x, y), 2wg(x, y)) where:

f (x, y) = y 2 cos(h(x 2 + y 2 )) -xy sin(h(x 2 + y 2 )) g(x, y) = xy(x 2 + y 2 ) 2
where h(s) is given by Lemma 8.5.4;

• The divisor E is empty.

Claim 1: This sub-Riemannian ideal sheaf is geometrically quasi-transverse.

Proof. Notice that:

H(X , I, 1) = (z -f (x, y), 2w -g(x, y), X[z -f (x, y)], X[2w -g(x, y)])
Furthermore, we have that:

X[z -f (x, y)] = 2xy cos(h(x 2 + y 2 )) + (x 2 -y 2 ) sin(h(x 2 + y 2 )) X[2w -g(x, y)] = 2y 2 -(x 2 -y 2 )(x 2 + y 2 ) 2
Now, since the points of tangency between the singular distribution X and the variety (I) are contained in the variety V (H(X , I, 1)), if the variety V (H(X , I, 1)) is just the origin (for a sufficiently small ambient space M ), then the claim 1 is proved. So, we only need to prove that the variety V (X[zf (x, y)], X[2wg(x, y)]) is contained in V (x, y). Indeed, from the equation:

2y 2 -(x 2 -y 2 )(x 2 + y 2 ) 2 = 0
we get two solutions over y close to the origin:

y 1 := x 3 V (x) y 2 := -x 3 V (x)
where V (x) is an analytic unity such that V (0) = 1 2 √ 2. Now, making the substitution on the equation X[zf (x, y)] = 0, we get:

±2x 4 V (x) cos(h(x 2 + x 6 V (x) 2 )) + (x 2 -x 6 V (x) 2 ) sin(h(x 2 + x 6 V (x) 2 )) = 0
now, taking the Taylor expansion in x on the origin, we get:

(±2V (0) + U (0))x 4 + O(x, 5) = 0
where we recall that h(s) = sU (s). Since ±2V (0) + U (0) = ± √ 2 +

√ 6 2 = 0, we conclude that the equation is equivalent, close to the origin to x 4 W (x) = 0, where W (x) is an unity. Thus x 4 = 0, which implies that y = 0 and we are done.

Claim 2: This sub-Riemannian ideal sheaf does not satisfy the G -F B property.

Proof. We prove this claim when K = R. We remark that the complex case trivially follows from the real case.

Notice that the variety V (x, y) is invariant by X, since X is singular at each point of it. So, if we consider the blowing-up σ : M ′ -→ M with center V (x, y), by Lemma 8.4.2 and remark 8.4.3 the the G -F B property is preserved. Since we are in a real field, we may work with a polar blowing-up:

σ : R + × S 1 × R 2 -→ R 4
(r, θ, z, w) → (r cos(θ), r sin(θ), z, w)

So, after the blowing-up, we get:

X ′ = r 2 sin(θ) 2 ∂ ∂w + ∂ ∂θ and I ′ = (z -f ′ (r, θ), 2w -g ′ (r, θ))
, where:

f ′ (r, θ) = r 2 sin(θ)[sin(θ) cos(h(r 2 )) -cos(θ) sin(h(r 2 ))] g ′ (r, θ) = r 6 sin(θ) cos(θ)
Fix r 0 > 0. Notice that the orbit of X ′ passing thought (r, θ, z, w) = (r 0 , 0, 0, 0) at t = 0 is given by:

γ(r 0 , t) = (r 0 , t, 0, r 2 0 4 [2t -sin(2t)])
In particular, notice that: γ(r 0 , h(r 2 0 )) = (r 0 , h(r 2 0 ), 0,

r 2 0 4 [2h(r 2 0 ) -sin(2h(r 2 0 ))])
Now, we claim that γ(r 0 , 0) and γ(r 0 , h(r 2 0 )) are contained in the variety V (I ′ ). Indeed, we

recall that I ′ = (z -f ′ (r, θ), 2w -g ′ (r, θ))
, where:

f ′ (r, θ) = r 2 sin(θ)[sin(θ) cos(h(r 2 )) -cos(θ) sin(h(r 2 ))] g ′ (r, θ) = r 6 sin(θ) cos(θ)
Which allow us to show that:

[z -f ′ (r, θ)](r 0 , 0, 0, 0) = r 2 0 sin(0)[sin(0 -h(r 2 ))] = 0 2w -g ′ (r, θ) (r 0 , 0, 0, 0) = r 6 0 sin(0) cos(0) = 0
and, thus, γ(r 0 , 0) is contained in the variety V (I ′ ). And that:

[z -f ′ (r, θ)](γ(r 0 , h(r 2 0 ))) = r 2 0 sin(h(r 2 0 ))[sin(h(r 2 0 ) -h(r 2 ))] = 0 2w -g ′ (r, θ) (γ(r 0 , h(r 2 0 ))) = 2 r 2 0 4 [2h(r 2 0 ) -sin(2h(r 2 0 ))] -r 6 0 sin(h(r 2 0 )) cos(h(r 2 0 ))
The only thing left to prove is Lemma 8.5.4:

Proof. (Lemma 8.5.4): We start noticing that (θ, s) = (0, s) is a solution of equation (8.2).

So, the equation:

(1 + s 2 )cos(θ) sin(θ) θ -1 = 0 (8.3)
has the same solutions of equation (8.2) apart from (θ, s) = (0, s). Now, taking the Taylor expansion of equation ( 8.3) in relation with the variable θ at (θ, s) = (0, 0), we get:

s 2 - 2 3 (1 + s 2 )θ 2 + O(θ, 3) = 0 (8.4)
So, by the Weierstrass Preparation Theorem and the symmetry of equation ( 8.3) in respect with the transform θ -→ -θ, the equation ( 8.3) can be written as:

(f (s) 2 + θ 2 )u(θ, s) = 0 (8.5)
where u(θ, s) is an unity and f (s) is an analytic function. Furthermore, we have that:

f (s) 2 u(0, s) = s 2
which implies that:

f (s) = ±sU (s)
where U (s) = 1 u(0,s) is an analytic unity in a neighborhood of zero. Taking h(s) = sU (s) gives the desired result. To finish, making the substitution of h(s) into the equation (8.2) and taking the Taylor expansion of this expressions in terms of s, we obtain:

(U (0) - 2 3 U (0) 3 )s 3 + O(s, 4)
which implies that U (0) can be taken equal to √ 6 2 .

The d-dimensional case

In this section we partially extend the results of the previous section to the case of higher leaf dimension.

• The foliated ideal sheaf (M ′ , θ ′ , I ′ , E ′ ) is geometrically quasi-transverse

• The ideal sheaf I ′ is regular;

• The variety V (I ′ ) has dimension one; Furthermore, if θ[I] = O M , then at each point p ∈ V (I), if X and ω are two singular distributions defined over an open neighborhood U p of p such that:

• The distributions X and ω generates θ.O Up ;

• The 1-singular distribution X is generated by a regular vector field X and is totally transverse to I;

• The d -1-singular distribution ω has a generator set {Y 1 , ..., Y s } such that [X, Y i ] ≡ 0.

Then:

• The foliated ideal sheaf (U p , ω, I.O Up , E ∩ U p ) is geometrically quasi-transverse

• The ideal sheaf I.O Up is regular;

• The variety V (I.O Up ) has dimension one;

So, we only need to verify that hypotheses (H) implies that the tg-order ν p (θ, I) is one for every point p in the variety V (I). Fix a point p of the variety V (I), since I is regular there exists a local coordinate system (x, y) = (x 1 , ..., x n-1 , y) such that the ideal I.O p is equal to (x) = (x 1 , ..., x n-1 ).

The hypotheses of geometrically quasi-transverse, implies that:

• Either H(θ, I, 1).O p = O p and the tg-order ν p (θ, I) = 1, or;

• H(θ, I, 1).O p = (x, y r ) for some r ∈ N. In this case, we claim that H(θ, I, 1).O p is θ p invariant, which implies that the tg-order ν p (θ, I) = 1. Indeed, if H(θ, I, 1).O p is not invariant, this implies that the ideal H(θ, I, 1).O p must be equal to (x, y r-1 ).

Thus, H(θ, I, r).O p = O p , which contradicts the hypotheses of geometrical quasitransversality.

So condition [I] of the definition is verified. This implies that hypotheses (H) satisfies all hypotheses of the d-algebraically quasi-transversality and we are done.

Main result

A natural extension of Theorem 8.5.2 is the following: i ) The singular distribution X generated by X is totally transverse to I;

ii ) The singular distribution ω generated by {Y 1 , ..., Y s } is involutive;

iii ) The singular distribution {X , ω} is equal to θ.O U ; iv ) [X, Y i ] ≡ 0 for all i ≤ s.

Remark 8.6.7. This result can be find in the literature when θ is a reduced singular distribution (see e.g. [MY]). Here we prove a slightly more general result. Since the choice of the point p of V (I) was arbitrary, the foliated ideal sheaf (M, θ, I, E)

satisfies the G -F B property.

8.6.9 Proof of Proposition 8.6.6

Since the problem is local, without loss of generality we can suppose that there exists a global coordinate system (x, y) = (x, y 1 , ..., y n-1 ) such that the vector field X = ∂ ∂x is contained in θ and the analytic function x is contained in the ideal I.

There always exists vector fields {Y 1 , ..., Y s } such that {X, Y 1 , ..., Y s } generates θ.

Furthermore, we can suppose that Y i (x) ≡ 0, which implies that: [X, Y j ] = s j=1 A i,j (x, y)Y j Now, consider a vector field of the form Y = s i=1 µ i Y i , where µ i ∈ O M . We have that:

[X, Y ] = s j=1 X(µ j )Y j + s i=1 µ i s j=1 A i,j (x, y)Y j = s j=1 Y j [X(µ j ) + s i=1 µ i A i,j (x, y)]
Since X is a regular vector field, the equations:

X(µ j ) + s i=1 µ i A i,j (x, y) = 0 for j = 1, ..., s give rise to an analytic system of ODE's. Since the system is analytic, there exists s locally defined analytic solutions µ i = (µ i,1 , ..., µ i,s ) such that µ i (0) = e i = (0, ..., 0, 1, 0, ..., 0), where the 1 is on the i position. Without loss of generality, we suppose that these solutions are globally defined.

Let Z i = s j=1 µ i,j Y j , then it is clear that:

• The vector fields {Z 1 , ..., Z s } generates an involutive d -1-singular distribution ω;

• The vector fields {X, Z 1 , ..., Z s } generates θ;

• [X, Z i ] ≡ 0 for all i ≤ s.

8.6.10 Proof of Proposition 8.6.8

Since X is totally transverse to I, by Lemma 8.4.1, the foliated ideal sheaf (M, X , I, E)

satisfies the G -F B property.

Furthermore, since the problem is local, without loss of generality we can suppose that there exists a global coordinate system (x, y) = (x, y 1 , ..., y n-1 ) such that the vector field X is equal to ∂ ∂x and the analytic function x is contained in the ideal I. We can further suppose that Y i (x) ≡ 0 and each Y i is independent of x (because [X, Y i ] ≡ 0). Let g be the sub-Riemannian metric generated by {X, Y 1 , ..., Y s }, g X be the sub-Riemannian metric generated by {X} and g Y be the sub-Riemannian metric generated by {Y 1 , ..., Y s }.

Without loss of generality, the hypotheses implies that there exists δ p > 0 such that: d g X (q, V (I) \ {q}) > δ p d g Y (q, V (I) \ {q}) > δ p for all point q ∈ V (I) \ E. The next two Claims proves the Proposition:

Claim 1: For all point q in V (I) \ E, the g-ball B g δ (q) intersects V (I) only in q.

Proof. Claim 1 will follow if, for all point q in V (I) \ E: d g (q, V (I) \ {q}) > δ So, suppose by absurd that there exists a point q in V (I) \ E such that:

d g (q, V (I) \ {q}) < δ
This implies the existence of a absolutely continuous curve c : [a, b] -→ M such that c(a) = q, c(b) ∈ V (I) \ {q} and length g (c(t)) < δ. We remark that c(t) = (x(t), y(t)) and we define the absolutely continuous curve γ(t) = (0, y(t)). Notice that, since I ⊃ (x), we have that c(a) = (0, y(a)) and c(b) = (0, y(b)). This implies that γ(a) = q and γ(b) ∈ V (I) \ {q}.

• (M, θ, E) est une variété feuilletée;

• M 0 est un ouvert relativement compacte de M .

• Un faisceau d'idéaux feuilleté local est un quintuplet (M, M 0 , θ, I, E), où :

• (M, θ, I, E) est un faisceau d'idéaux feuilleté;

• M 0 est un ouvert relativement compact de M . Maintenant, on définit quelques outils pour étudier "l'interaction" entre une variété et un feuilletage:

• On considère un anneau R tel que Z ⊂ R ⊂ K. On dit qu'une distribution singulière est R-monomiale dans un point p dans M s'il existe un système des coordonnées x = (x 1 , ..., x n ) de O p et un système générateur cohérent {X 1 , ..., X d } de θ p tels que:

• ou bien X i = ∂ ∂x i ; • ou bien X i = n j=1 α i,j x j ∂ ∂x j , où α i,j ∈ R. telle que, étant donné un ouvert U de M , l'application associe à un champ de vecteurs X de Der U l'élément σ * (X) = ( 1 f ⊗ f X * ), où l'idéal principal (f ) engendre O(F ).O σ -1 (U ) et X * est le tire-en-arrière de la dérivation (i.e. X * (σ * f ) = σ * X(f )).

La transformée analytique stricte de θ est la distribution singulière θ a := ζ -1 (θ * ).

On considère la distribution singulière involutive Der M ′ (-logF ) engendrée par toutes les dérivations tangentes à F . La transformée analytique stricte adaptée est la distribution singulière θ a,ad = θ a ∩ Der M ′ (-logF ). 

(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M, θ, I, E) σ r σ 2 σ 1 est dite θ-admissible (resp. θ-invariante) si σ i : (M i , θ i , I i , E i ) -→ (M i-1 , θ i-1 , I i-1 , E i-1 )
est θ i-1 -admissible (resp. θ i-1 -invariante). Une famille lisse des faisceaux d'idéaux est un quadruplet (B, Λ, π, I), où :

• L'espace ambiant B et l'espace des paramètres Λ sont deux variétés analytiques lisses;

• Le morphismee π : B -→ Λ est lisse;

• Le faisceau d'idéaux I est cohérent et partout non nul sur B.

Une famille lisse de feuilletages par courbes est un quadruplet (B, Λ, π, X ), où :

• l'espace ambiant B et l'espace des paramètres Λ sont deux variétés analytiques lisses;

• le morphismee π : B -→ Λ est lisse;

• la distribution singulière X est:

• partout non nulle sur B;

• dπ(X ) ≡ 0;

• localement engendrée par un champ de vecteurs.

On considère un point λ dans Λ: l'ensemble π -1 (λ) est une sous-variété régulière de B qu'on appelle fibre. Un point λ 0 dans Λ est appelé un valeur exceptionnelle d'une famille lisse de faisceaux d'idéaux (respectivement, d'une famille lisse de feuilletages par courbes) si la fibre π -1 (λ 0 ) est contenu dans la variété V (I) (respectivement, dans la variété S(X )). iii ) pour tout sous-ensemble ouvert relativement compact B 0 de B, il existe une suite d'éclatements admissible d'ordre un par (B, B 0 , θ, X , ∅):

(Λ r , E r ) • • • (Λ 1 , E 1 ) (Λ 0 , E 0 ) τ r τ 2 τ 1 telle que τ | τ -1 Λ 0 = τ 1 • ... • τ r .
(B r , θ r , I r , E r ) • • • (B 1 , θ 1 , I 1 , E 1 ) (B 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1 où X i = O(-F i ).σ * i X i-1 , telle que σ| σ -1 B 0 = σ 1 • ... • σ r et X ′ .O Br = X r ;
iv ) pour tout sous-ensemble ouvert relativement compact Λ 0 de Λ, il existe une suite d'éclatements admissible: pour chaque point p dans N , il existe une paire (U p , δ p ), où U p est un voisinage ouvert de p et δ p > 0 est un nombre réel positif, de sorte que l'orbite γ q (t) du champ de vecteurs X passant par un point q dans (N ∩ U p ) \ Sing(X) n'intersecte pas N pour 0 < t < δ p .

(Λ r , E r ) • • • (Λ 1 , E 1 ) (Λ 0 , E 0 ) τ r τ 2 τ 1 telle que τ | τ -1 Λ 0 = τ 1 • ... • τ r .
Le problème est le suivant: Étant donné un triplet (M, N, X), établir des critères locaux en fonction de la sous-variété N et le champ de vecteurs X qui garantissent que la propriété G -F B est satisfaite.

On peut conjecturer que la difficulté du problème réside dans les points de tangence entre la variété N et le champ de vecteurs X. On dit qu'un triplet (M, N, X) est géométriquement quasi-traverse si, à chaque point p dans N , nous avons l'égalité:

dim K T p N + dim K X(p) = dim K (T p N + X(p))
où X(p) est le sous-espace de T p M engendré par X. On peux poser la question suivante:

Question: Est-ce que la quasi-transversalité géométrique implique la propriété G-FB?

On répond à cette question avec deux résultats:

Theorem 9.6.1. Si (M, N, X) est géométriquement quasi-transversal et l'une des conditions suivantes est remplie:

• la dimension de N est un;

• la codimension de N est un;

• (M, N, X) est algébriquement quasi-transversal (voir la définition dans la section 8.1);

alors la propriété G -F B est satisfaite.

Remark 9.6.2. En particulier, si la dimension de M est inférieure ou égale à 3, alors quasi-transversalité géométrique implique toujours la propriété G-FB.

Theorem 9.6.3. Pour dimM ≥ 4, il existe un triplet (M, N, X) géométriquement quasitransversal qui ne satisfait pas la propriété G-FB.

Ces théorèmes sont une conséquence immédiate des résultats figurant dans la section 8.5.

Figure 1 . 2 :

 12 Figure 1.2: An illustration of the G -F B property in Example 2 for δ = π 4 .

3. 2

 2 Transforms of a singular distribution θ Let (M, θ, E) be a d-foliated manifold and σ : (M ′ , E ′ ) -→ (M, E) an admissible blowing-up with exceptional divisor F . At this subsection we define a classical transforms of θ and we introduce a new one. Consider the sheaf of O M ′ -modules O(-F ) ⊗ O M ′ Der M ′ which we denote by BlDer M ′ (from blowed-up derivations). There exists a mapping from Der M ′ to BlDer M ′ : ζ : Der M ′ -→ BlDer M ′ which, given an open subset U of M ′ , associates to a vector field X ∈ Der M ′ (U ) the element ζ(X) = 1 ⊗ X ∈ BlDer M ′ (U ). Notice that this mapping is injective. Given a sub-sheaf ω of Der M ′ , we abuse notation and denote by ζ(ω) the sub-sheaf of BlDer M ′ , with the structure of a O M ′ -module, generated by the image of ω. Reciprocally, given a sub-sheaf ω of BlDer M ′ we denote by ζ -1 (ω) the sub-sheaf of Der M ′ defined in each open set U of M ′ by the following elements:

  an admissible local blowingup of order one, where θ = θ.O M and I = I.O M .

4. 1

 1 Definition and Main resultLet (M, θ, E) be a d-foliated manifold and let C be an analytic sub-manifold of M . Consider the reduced ideal sheaf I C that generates C, i.e. V (I C ) = C. We say that C is a θ-admissible center if:

  admissible blowing-up. A sequence σ = (σ 1 , ..., σ r ) of θ-invariant blowings-up and of θ-totally transverse blowings-up are defined analogously. The following Theorem enlightens the interest of θ-admissible blowings-up: Theorem 4.1.1. Let (M, θ, E) be a R-monomial d-foliated manifold and:

Fix a point

  p ∈ C and take a R-monomial coordinate system x = (x 1 , ..., x n ) of O p and a R-monomial basis {X 1 , ..., X d } of θ p . If the center C is invariant by θ, the Proposition trivially follows from Proposition 4.2.2. So, suppose that the center C is not invariant by θ.

  3.1: Proof. (Theorem 5.3.1): Let N be a relatively compact open subset of M . The tg-order and type (ν(N ), t(N )) := (ν N (θ, I), type N (θ, I)) are well-defined.

  [iv] and[v] of the Theorem follows directly from the functoriality statements [ii] and [iii] of Propositions 5.4.1 and 5.4.2. Furthermore, as all blowings-up are θ-admissible, by Theorem 4.1.1 if θ.O M 0 is R-monomial, so will be its transforms.5.5 Proof of Proposition 5.4.1Consider a d-foliated ideal sheaf (M, M 0 , θ, I, E) such that type M 0 (θ, I) = 2. Let ν = ν M 0 (θ, I) and Cl(I) := H(θ, I, ν) (see section 2.5). By Theorem 5.1.1, there exists a θinvariant resolution σ = (σ 1 , ..., σ r ) of (M, M 0 , θ, Cl(I), E):

.

  Consider the ideal sheaf S(X ) := X [O B ]. By Theorem 7.1.1, there exists two proper analytic maps σ : B ′ -→ B and τ : Λ ′ -→ Λ respecting [ii] and [iv] such that, for every open relatively compact subset B 0 of B, there exists a sequence of invariant admissible blowings-up of order one for (B, B 0 , S(X ), ∅):

Example 1 :

 1 Let (M, I, E) = (R 2 , (y), ∅): i ) Consider θ generated by { ∂ ∂x + x ∂ ∂y }. Then (M, θ, I, E) is not geometrically quasitransverse. Remark that there exists a leaf of θ finitely tangent to V (I); ii ) Consider θ generated by {y ∂ ∂xx ∂ ∂y }. Then(M, θ, I, E) is 1-algebraically quasitransverse. Remark that the leafs of θ are either transverse to V (I) or singular at it. Example 2: Let (M, I, E) = (R 4 , (z, w), E): i ) Let E = {y = 0} and θ be generated by {(x-xz) ∂ ∂z +(y -xw) ∂ ∂w +(1-x 2 ) ∂ ∂x -xy ∂ ∂y }. Then (M, θ, I, E) is geometrically quasi-transverse but it is not 1-algebraically quasitransverse. Remark that there exists a leaf of θ finitely tangent to V (I) contained in the exceptional divisor E; ii ) Let E = ∅ and θ be generated by {x ∂ ∂z + y 2 ∂ ∂w + y ∂ ∂xx ∂ ∂y }. Then (M, θ, I, E) is geometrically quasi-transverse but it is not 1-algebraically quasi-transverse. Remark that after the blowing-up of the origin, in the y-chart, we are precisely in the situation of example 2[i].

  t)); where c(t) is absolutely continuous and c(a) = p; c(b) = q} d ∞ (p, q) = inf {length ∞ (c(t)); where c(t) is absolutely continuous and c(a) = p; c(b) = q}

  Theorem 8.6.4. If (M, θ, I, E) is a d-algebraically quasi-transverse foliated ideal sheaf, then (M, θ, I, E) satisfies the G -F B property.Remark 8.6.5. In particular, if (M, θ, I, E) is a geometrically quasi-transverse d-foliated ideal sheaf, I is regular and V (I) has dimension one, by Lemma 8.6.2, the foliated ideal sheaf (M, θ, I, E) satisfies the G -F B property.The idea to prove such a result is an argument by induction on the leaf dimension of θ.It relies in two Propositions:Proposition 8.6.6. Let (M, θ, I, E) be a geometrically quasi-transverse foliated ideal sheaf and suppose that θ[I] = O M . Then at each point p of V (I), there exists an open neighborhood U of p, a regular vector field X over U and a collection of vector fields {Y 1 , ..., Y s } over U such that:

  Proposition 8.6.8. Let (M, θ, I, E) be a geometrically quasi-transverse d-foliated ideal sheaf such that the singular distribution θ is locally generated by vector fields {X, Y 1 , ..., Y s } sat-isfying conditions [i], [ii], [iii],[iv] of Proposition 8.6.6. Then, if (M, ω, I, E) satisfies the G -F B property, so does (M, θ, I, E).

  La distribution singulière est R-monomiale si elle est R-monomiale dans tous les points p dans M .• L'opération k-Fitting généralisée est une application Γ θ,k qui associe à chaque faisceau d'idéaux cohérent I, un faisceau d'idéaux cohérent localement défini par:Γ θ,k (I).O p = {det[X i (f j )] i,j≤k ; X i ∈ θ p , f j ∈ I.O p }où S est l'idéal engendre par le sous-espace S ⊂ O p .• La chaîne de tangence d'un faisceau d'idéaux feuilleté (M, θ, I, E) est la suite:T g(θ, I) = {H(θ, I, i); i ∈ N} où H(θ, I, i) est le faisceau d'idéaux: I, i + 1) := H(θ, I, i) + θ[H(θ, I, i)]Soit ω un sous-faisceau de Der M ′ . On note ζ(ω) le sous-faisceau de BlDer M ′ engendré par l'image de ω. Réciproquement, si ω est un sous-faisceau de BlDer M ′ , on note ζ -1 (ω) le sous-faisceau de Der M ′ defini dans chaque ouvert U de M ′ pour les éléments:ζ -1 (ω) U = {X ∈ Der U ; ζ(X) ∈ ω U }Comme l'éclatement σ : M ′ -→ M est un morphisme, il engendre une application:σ * : Der M -→ BlDer M ′

•

  Un éclatement admissible d'ordre un est un éclatement admissible:σ : (M ′ , θ ′ , I ′ , E ′ ) -→ (M, θ, I, E)tel que le centre C est contenu dans la variété V (I) et:• la distribution singulière θ ′ est la transformée analytique stricte adaptée de θ;• le faisceau d'idéaux I ′ est la transformée contrôlée de I i.e. I ′ = O(-F )I * où F est le diviseur exceptionnel.• Une résolution d'un faisceau d'idéaux feuilleté (M, θ, I, E) est une suite σ = (σ 1 , ..., σ r ) d'éclatements admissibles d'ordre un:(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M, θ, I, E) σ r σ 2 σ 1 telle que I r = O Mr .Un foncteur résolution est un foncteur R avec:• en entrée: La catégorie des faisceaux d'idéaux feuilleté (M, θ, I, E M ) où les morphismees sont morphismees lisses;• en sortie: La catégorie des suites d'éclatements admissible:(M r , θ r , I r , E r ) • • • (M 1 , θ 1 , I 1 , E 1 ) (M, θ, I, E) σ r σ 2 σ 1où les morphismees sont donnés par le produit cartésien.tel que R(M, θ, I, E M ) est une résolution de (M, θ, I, E).• Un éclatement local est un morphisme τ : M ′ -→ M qui est égal à la composition d'un éclatement σ : M ′ -→ M et d'un isomorphisme local injective π : M -→ M , i.e τ = π • σ.• Une uniformisation locale d'un faisceau d'idéaux feuilleté (M, θ, I, E) sur un point p de M est une collection finie {τ α : M α -→ M, θ α } où:• θ α est une distribution singulière involutive sur M α ;• τ α : M α -→ M est un morphisme propre.telle que :• l'union des images τ α (M α ) est une voisinage ouverte de p;• pour chaque morphisme τ α : M α -→ M , il existe une suite d'éclatements locaux admissible d'ordre un :(M r , θ r,α , I r , E r ) • • • (M 1 , θ 1,α , I 1 , E 1 ) (M, θ, I, E) τ r,α τ 2,ατ1,α telle que I r = O Mr , θ α = θ r,α et le morphisme τ α est égal à la composition d'éclatements locaux: τ α = τ 1,α • ... • τ r,α . 9.3 Éclatement θ-admissible -Chapitre 4 Soit (M, θ, E) une d-variété feuilleté et C une sous-variété analytique de M . Considérons le faisceau d'idéal réduit I C qui engendre C, i.e. V (I C ) = C. On dit que C est un centre θ-admissible si:• C est une sous-variété régulière fermé;• C est à croisement normal avec E;• Il existe 0 ≤ d 0 ≤ d tel que l'idéal k-Fitting généralisée Γ θ,k (I C ) est égal à O M pour tout k ≤ d 0 et Γ θ,k (I C ) est contenu dans I C pour tout k > d 0 . Un éclatement admissible σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) est θ-admissible si le centre C est θ-admissible.Nous soulignons deux cas particuliers:• Un éclatement admissible σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) est θ-invariant si le centre C est θ-invariant; • Un éclatement admissible σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) est θ-totalement transversal si le centre C est θ-totalement transversal.Une suite d'éclatements σ = (σ 1 , ..., σ r ) θ-admissible est une suite:(M r , θ r , E r ) • • • (M 1 , θ 1 , E 1 ) (M 0 , θ 0 , E 0 ) σ r σ 2 σ 1 telle que σ i : (M i+1 , θ i+1 , E i+1 ) -→ (M i , θ i , E i ) est θ i -admissible. Le théorème suivant explique l'intérêt porté à ces éclatements: Théorème 4.1.1 Soit (M, θ, E) une d-variété feuilletée R-monomiale et: σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) un éclatement θ-admissible. Alors θ ′ est R-monomiale.Et, comme corollaire de sa preuve, nous obtenons le résultat suivant: Corollaire 4.1.2 Soit (M, θ, E) une d-variété feuilletée telle que la distribution singulière θ est régulière et: σ : (M ′ , θ ′ , E ′ ) -→ (M, θ, E) un éclatement θ-invariant. Alors θ ′ est régulière. 9.4 Trois résolutions subordonnées à un feuilletage -Chapitre 5 et 6 Une résolution de (M, θ, I, E):

  Théorème 5.1.1 Soit (M, M 0 , θ, I, E) un faisceau d'idéaux feuilleté local. On suppose que I 0 est θ-invariant. Alors il existe une résolution de (M, M 0 , θ, I, E):R inv (M, M 0 , θ, I, E) : (M r , θ r , I r , E r ) • • • (M 0 , θ 0 , I 0 , E 0 ) σ r σ 1 telle que: i ) σ = (σ r , ..., σ 1 ) est une suite d'éclatements θ-invariants; ii ) La composition σ = σ 1 • ... • σ r est un isomorphisme sur M 0 \ V (I 0 ); iii ) Si θ 0 est R-monomial, alors θ r est aussi R-monomial ;iv ) Si θ 0 est régulière, alors θ r est aussi régulière; v ) R inv est un foncteur résolution qui commute avec les morphismes lisses préservechaîne.Théorème 5.3.1 Soit (M, M 0 , θ, I, E) un faisceau d'idéaux feuilleté local, où θ est de dimension 1. Alors, il existe une résolution de (M, M 0 , θ, I, E):R inv (M, M 0 , θ, I, E) : (M r , θ r , I r , E r ) • • • (M 0 , θ 0 , I 0 , E 0 ) σ r σ 1 telle que: i ) σ = (σ r , ..., σ 1 ) est une suite d'éclatements θ-admissible; ii ) la composition σ = σ 1 • ... • σ r est un isomorphisme sur M 0 \ V (I 0 ); iii ) si θ 0 est R-monomial, alors θ r est aussi R-monomial ; iv ) R 1 est un foncteur résolution qui commute avec morphismes lisses 1-préserve-chaîne. v ) si ω est une distribution d-singulière involutive telle que I est ω-invariant et {ω, θ} engendre une distribution (d + 1)-singulière involutive, la suite des éclatements σ = (σ 1 , ..., σ r ) est ω-invariant; Une uniformisation locale de (M, θ, I, E) dans un point p de M : τ α : (M α , θ α ) -→ (M, θ) est dite θ-admissible si les morphismes τ α sont des composés d'éclatements locaux θadmissibles. Théorème 6.1.1 Soit (M, θ, I, E) un faisceau d'idéaux feuilleté où θ est de dimension 1 et p un point dans M . Alors il existe une uniformisation locale θ-admissible de (M, θ, I, E) dans p. En particulier, si θ est R-monomial, alors θ α est R-monomial. 9.5 Application 1 -Résolution dans les familles -Chapitre 7

  Théorème 7.1.1 Soit (B, Λ, π, I) une famille lisse des faisceaux d'idéaux telle que toutes les fibres sont connexes. Alors, il existe une famille lisse des faisceaux d'idéaux(B ′ , Λ ′ , π ′ , I ′ ) et deux applications analytiques propres σ : B ′ -→ B et τ : Λ ′ -→ Λ telles que: i ) la famille lisse de faisceaux d'idéaux (B ′ , Λ ′ , π ′ , I ′) n'a pas de valeurs exceptionnelles;ii ) le diagramme suivant: tout sous-ensemble ouvert relativement compact B 0 de B, il existe une suite d'éclatements admissibles d'ordre un par (B, B 0 , θ, I, ∅):(B r , θ r , I r , E r ) • • • (B 1 , θ 1 , I 1 , E 1 ) (B 0 , θ 0 , I 0 , E 0 ) σ r σ 2 σ 1 telle que σ| σ -1 B 0 = σ 1 • ... • σ r et I ′ .O Br = I r ;iv ) pour tout sous-ensemble ouvert relativement compact Λ 0 de Λ, il existe une suite d'éclatements admissibles:

  Théorème 7.3.1 Soit (B, Λ, π, X ) une famille lisse des feuilletages par courbes telle que toutes les fibres sont connexes. Alors il existe une famille lisse des feuilletages par courbes(B ′ , Λ ′ , π ′ , X ′ ) et deux applications analytiques propres σ : B ′ -→ B et τ : Λ ′ -→ Λ telles que:i ) la famille lisse des feuilletages par courbes (B ′ , Λ ′ , π ′ , X ′ ) n'a pas de valeurs excep-

9. 6

 6 Application 2 -Le temps de retour et un problème proposé par Mattei -Chapitre 8 On considère ici un problème proposé par Mattei à propos d'une action d'un groupe de Lie, qu'on transformera en une question sur l'algèbre de Lie. Pour simplifier, dans cette section, on considère une algèbre de Lie unidimensionnelle. Le cas général est étudié dans le chapitre 8. Néanmoins, nous tenons à souligner que le problème proposé par Mattei est toujours ouvert. Soit M une variété analytique, N une sous-variété régulière de M et X un champ de vecteurs analytique sur M . On dit qu'un triplet (M, N, X) satisfait la G-FB propriété si:

  property if, for each point p in N , there exists an open neighborhood U p ⊂ N of p and open neighborhood V ⊂ G of the neutral element e of G such that:

  singular distribution is a coherent sub-sheaf θ of Der M . A singular distribution is involutive if for each point p in M , the stalk θ p := θ.O p is closed under the Lie bracket operation. Consider the quotient sheaf Q = Der M /θ. The singular set of θ is defined by the closed analytic subset S = {p ∈ M : Q p is not a free O p module}. A singular distribution θ is called regular if S = ∅. On M \ S there exists a unique analytic subbundle L of T M | M \S
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Using again proposition 4.2.3, it is clear that (h i (x)) i∈N contains (f ) # . Moreover, since the structural ring is noetherian, we have that (h i (x)) i≤N is equal to (f ) # for some N ∈ N. Doing this for all f i in the set of generators of I, we get the desired result.

We are ready to prove Lemma 4.2.2:

Proof. (Lemma 4.2.2): We prove the result by induction on the leaf dimension of θ. Fix a R-monomial coordinate system x = (x 1 , ..., x n ) and a R-monomial base {X 1 , ..., X d }. Let (f 1 , ..., f t ) be a set of generators of I and assume by induction that the lemma is true for

By the induction hypotheses, we can assume without loss of generality that:

for all i < d. Now, by lemma 4.2.4 or 4.2.5 there exists another set of generators (h 1 , ..., h l ) such that:

• Either X d (h j ) ≡ 0 if X d is regular, or;

• X d (h j ) = K d,j h j for some K i,j ∈ R, if X d is singular.

Furthermore, as each h i is a part of the Taylor expansion of some f j , we have that:

• X i (h j ) ≡ 0 if X i is regular;

• X i (h j ) = K i,j h j for some K i,j ∈ R, if X i is singular.

for all i ≤ d.

Local coordinates for a θ-admissible center

The main result of this section is the following:

Proposition 4.3.1. Let (M, θ, E) be a d-foliated manifold and C a θ-admissible center.

Then, at each point p ∈ C, there exists a coherent set of generators {Y i , Z j } of θ p with i = 1, ..., r and j = 1, ..., s such that:

Now, consider a point q of M ′ and let p = σ(q). Since C is θ-invariant, by Proposition 4.4.1, the singular distribution θ ′ is equal to the total transform θ * . Since m * p ⊂ m q , by Lemma 3.3.1:

which proves the result.

Chapter 5

Two Resolutions subordinated to a foliation 5.1 A resolution Theorem for an invariant ideal sheaf

A resolution of (M, θ, I, E):

is said to be θ-admissible (resp. θ-invariant) if σ i : (M i , θ i ,

is θ i-1 -admissible (resp. θ i-1 -invariant).

In this first section we consider d-foliated ideal sheaves (M, θ, I, E) such that I is invariant by θ. In this case, we obtain a resolution:

Then, there exists a resolution of (M, M 0 , θ, I, E):

such that:

• The leaves of θ.O Up are given by {q} × W , for every q ∈ V ;

, where E V is a SNC divisor over V ;

• There exist a natural smooth morphism π :

By the coherence of I k-1 and Proposition 4.2.2, without loss of generality, the ideal sheaf I Up := I k-1 .O Up has a finite set of generators {f 1 (y), ..., f k (y)} independent of x.

Let g i ∈ O V be functions such that g i (y) = f i (0, y) and J be the ideal sheaf over O V generated by the (g 1 (y), ..., g t (y)): this clearly implies that J .O V ×W = I Up .

Furthemore, the functorial statement of Hironaka's Theorem 3.6.1 guarantees that the resolution of (U p , 

t dp )(p) for some (t 1 , ..., t dp ).

If L i is the leaf of X i passing through p, by the first part of the proof

Thus, by induction, σ = (σ 1 , ..., σ r ) is a sequence of θ-invariant admissible blowings-up of order one.

The functoriality statement of Theorem 5.1.1 is a direct consequence of the functoriality of Theorem 3.6.1. The R-monomiality statement is a direct consequence of Theorem 4.1.1 and the regularity statement is a direct consequence of Corollary 4.1.2.

To finish, we only need to prove Lemma 5.2.1: 5.3 A resolution Theorem subordinated to a 1-foliation Proof. (Claim 1) Suppose by induction that, for i < k, the sequence (σ 1 , ..., σ i ) is admissible of order one for (M, M 0 , θ, I, E) and:

(Cl(I)) j = Cl(I j ) for j ≤ i. We prove the result for i = k (including k = 1). Since σ k is a blowing-up of order one for (M k-1 , θ k-1 , (Cl(I)) k-1 , E k-1 ), by the induction hypotheses, it is also of order one for

), which implies that (σ 1 , ..., σ i ) is of order one for (M, M 0 , θ, I, E). Now, by Lemma 5.5.1 and the induction hypotheses:

This implies that σ gives rise to an invariant θ-admissible sequence of blowings-up of order one for (M, M 0 , θ, I, E):

such that:

which implies that ν Mr (θ r , I r ) ≤ ν M 0 (θ, I) and type Mr (θ r , I r ) = 1.

We now prove the functorial statement [ii] of the Proposition:

Claim 2: The ideal sheaves H(I, θ, i) are ω-invariant for all i ∈ N.

Proof. We prove the result by induction on i. For i = 0, the result follows by hypotheses, so assume the result proved for i = k. Since {θ, ω} is an involutive singular distribution, the following calculation shows that the Claim 2 is valid for k + 1:

Let K be the compact pre-image of the point p by the sequence of blowings-up. Notice that the sequence σ of blowings-up can be regarded as a sequence of local blowings-up τ = (τ r , ..., τ 1 ) where

Furthermore, by Lemma 6.2.1, notice that the λ-order is finite over all points of K.

By the compacity of K and Lemma 6.2.3, there exists a local uniformization that covers all K. Composing this local uniformization with the sequence of local blowings-up τ , gives a local uniformization of (M, θ, I, E) at p.

Proof of Proposition 6.2.4

If the type type M 0 (X , I) is 1, the result is trivial. So suppose that type M 0 (X , I) is 2.

Let ν = ν M 0 (X , I) and Cl X (I) := H(X , I, ν). By Theorem 5.3.1, there exists a ω-

Furthermore, since Cl X (I) is X -invariant and {X , θ} is an involutive singular distribution, by the part [v] of Theorem 5.3.1, we conclude that the resolution σ = (σ 1 , ..., σ r ) is also X -invariant ( * -see Remark 6.3.1 below). Moreover:

Claim 1: The sequence of blowings-up σ is θ-admissible.

Proof. We prove the result by induction. Suppose that, for i < k:

• The sequence of blowings-up (σ i , ..., σ 1 ) is θ-admissible;

We prove the result for i = k:

•

Step k = 0: It trivially follows from the hypotheses;

Proof. By hypotheses, for each point p in M , let Y be the vector field that generates θ p and X the vector field that generates X p . Since X is a sub-sheaf of θ, there exists a germ

Let I(θ, X ) be the ideal sheaf such that I(θ, X ).O p = (f ). This ideal sheaf is clearly well-defined, coherent and everywhere non-zero.

By Theorem 5.3.1 there exists a θ-admissible resolution σ = (σ 1 , ..., σ r ) of (M, M 0 , θ, I(θ, X ), E): E) is a θ admissible blowing-up of order one, then the transform X ′ is well-defined and:

blowing-up. Fixed a point q in M ′ and p = σ(q), the vector field X ′ that generated X ′ .O q is given by:

which implies that X ′ is well-defined and that:

blowing-up. Fixed a point q in M ′ and p = σ(q), the vector field X ′ that generated X ′ .O q is given by:

which implies that X ′ is well-defined and that: where p = (0, ..., 0) and I = (x 1 , ..., x t ). We are ready to prove the result:

• (⇒) By the hypotheses, we have that:

In particular, ( Γ θ,r (I) + I).O p = O p for k = r. So, there exists a set of analytic germs (f 1 , ..., f r ) contained in the ideal I.O p such that:

is an unity of O p . Without loss of generality, after a change of coordinates, we may assume that f i = x i and X i = ∂ ∂x i (see the proof of 4.3.1 for details on the coordinate change). It is now clear that every vector of T p V (I) must be in a complementary sub-space to {X 1 , ..., X r }, which proves the result.

• (⇐) The hypotheses implies that the linear sub-spaces L p and T p V (I) are transverse at each point p of the set V (I) \ E. So, without loss of generality, we can suppose that

In particular, the ideal Γ θ,r (I).O p is equal to O p and the ideal Γ θ,r+1 (I).O p is contained in the maximal ideal m p (because the Y j are all singular at p). Since this is true for all points outside the exceptional divisor, we have that:

Now, we present two Lemmas that formalizes the second intuitive property: Lemma 8.1.3. Let (M, θ, I, E) be an 1-algebraically quasi-transverse foliated ideal sheaf. For all point p contained in E ∩ V (I) the leaf L of the singular distribution θ passing through p respects one of the following conditions: i ) Either the leaf L is transverse to V (I), or;

ii ) The leaf L is contained in V (I).

Proof. If the leaf L is zero-dimensional, the lemma is trivial. So, we can suppose that L is one-dimensional.

So, we can suppose that the ideal H(θ, I, 1).O p is different from the structural ideal O p . By the flow-box Theorem, there exists a coordinate system (x, y) = (x, y 1 , ..., y n-1 ) such that the vector field X = ∂ ∂x generates θ.O p . Furthermore, by Lemma 4.2.4, there exists a set of generators {f 1 (y), ..., f s (y)} of H(θ, I, 1).O p independent of the coordinate x.

This implies that the intersection L ∩ V (I) is an open subset of L. Since L is locally closed and V (I) is closed, the intersection is a closed subset of L. By connexity, we conclude that L ⊂ V (I). E) be an invariant blowing-up of order one and suppose that (M, θ,

) is geometrically quasi-transverse, because outside the exceptional divisor F , the blowing-up σ is an isomorphism.

The first question is based on the problem proposed by Mattei (see subsection 1.5.5).

The main idea is to find a characterization of the G -F B property that only depends on geometrical conditions. The hypotheses on the regularity of I is actually strong enough for the Problem 1 to have a positive answer when dimM ≤ 3. But it is not true when dimM = 4, situation where we will present a counter-example.

We also remark that the second problem is more general since the variety V (I) may have singularities.

In what follows we will divide the study in two parts: one when the leaf dimension of the singular distribution is one, and another when the leaf dimension is bigger than one.

Nevertheless, these two studies are based on the same techniques, and we now present two

Lemmas that are useful in both of the studies: Consider a sub-Riemannian metric g such that ω g = θ. Since the blowing-up is invariant, by Proposition 4.4.1, we have that θ ′ = θ * . This implies that the pull-back g ′ is such that

Take a relatively compact open neighborhood U of p. Since the blowing-up σ is a proper morphism, V := σ -1 (U ) is a relatively compact open set of M ′ . So, without loss of generality, V is equal to ∪ i≤N U q i , where:

• The points q i are contained on the exceptional divisor F and σ(q i ) = p;

• The pair (U q i , δ i ) satisfies the G -F B property for the sub-Riemannian ideal sheaf

Let δ p := min{δ i ; i ≤ N }. We claim that the pair (U, δ p ) satisfies the G -F B property for the sub-Riemannian ideal sheaf (M, g, I, E) at p.

Indeed, take a point q ∈ (V (I) ∩ U ) \ E:

• ( * ) If q is contained in the center of blowing-up C then q is contained in the singular set Γ θ,d (O M ) (because the blowing-up is of order one). So the leaf of θ passing through q is just {q}, which implies that the g-ball B g δ (q) trivially satisfies the G -F B properties for any δ;

• If q is outside the blowing-up center C then, since g ′ is given by the pull-back of g and at this point σ is a local isomorphism, the g-ball B g δ (q) satisfies the G -F B properties for any δ < δ p .

Remark 8.4.3. The only point where we need the blowing-up to be of order one is in the argument ( * ). If we can obtain the same conclusion under a different hypotheses, the Lemma is also valid.

The 1-dimensional case 8.5.1 Main result

The main result of this section is the following: Theorem 8.5.2. Let (M, θ, I, E) be a geometrically quasi-transverse 1-foliated ideal sheaf.

If one of the following conditions is verified: 8.5 The 1-dimensional case 123 i ) The 1-foliated ideal sheaf (M, θ, I, E) is 1-algebraically quasi-transverse;

ii ) The ideal sheaf I is regular and the variety V (I) has dimension one;

iii ) The ideal sheaf I is regular and the variety V (I) has co-dimension one.

Then (M, θ, I, E) satisfies the G -F B property.

Proof. Since the problem is local, we can fix a point p in M and a relatively compact open subset M 0 of M containing p. By Proposition 5.4.1 there exists a sequence of θ-invariant blowings-up of order one:

Conclusion [I] implies that θ r is non-singular in every point of V (I r ) and no leaf of θ r is contained in V (I). Furthermore, for each point p in V (I r ), the leaf L of θ r through p is either transverse or finitely tangent to V (I r ). We also remark that if I 0 is regular and a leaf L is tangent to V (I r ), then it is contained in E r . Now, we consider separately the various cases of the Theorem: ). In this case, notice that the variety V (I r ) is locally orientable. So, for each point p in V (I r ), let N be a (normal) vector field defined in an open neighborhood U p of p that gives a local orientation for V (I r ) in U p . Furthermore, let X be a vector field defined in U p that generates θ.U p . Then the following function:

is continuous and equal to zero, if and only if, q is contained in the tangency

) has codimension at least two in V (I r ), we can assume that φ(q) ≥ 0 in all points q in U p ∩ V (I r ) because

) is connected. Furthermore, by the continuity of X, we conclude that all orbits of X are cutting V (I r ) ∩ U p with the same orientation. So, by the flow-box Theorem, we conclude that (U p , θ r .O Up , I r .O Up , E r ∩ U p ) satisfies the G -F B property. Since the choice of p in I r is arbitrary, we conclude that

In all the cases, by Lemma 8.4.2, (M 0 , θ 0 , I 0 , E 0 ) satisfies the G -F B property. Since the choice of p was arbitrary, (M, θ, I, E) satisfies the G -F B property.

In the picture r 0 > 0 is fixed. The orbit γ(r 0 , t) is contained in the plane {z = 0} and the variety V (I ′ ) is a curve that cuts the orbit γ(r 0 , t) two times.

Now, since:

and h(s) is a solution of:

(1 + s 2 )cos(θ)sin(θ)θ we conclude that:

and, thus, γ(r 0 , h(r 2 0 )) is contained in the variety V (I ′ ). This implies that for each r 0 > 0 fixed, there exists an orbit of X ′ that cuts V (I ′ ) two times. Furthermore, the time between each cut is equal to h(r 2 0 ), which goes to zero when r 0 goes to zero. This implies that (M ′ , X ′ , I ′ , E ′ ) does not satisfy the G -F B property, which proves the claim.

We also remark that the tg-order ν 0 (X , I) equals two. Indeed we have that H(X, I, 2) = (x 2 , xy, y 2 , z, w) which is invariant by the vector field, thus ν 0 (X , I) ≤ 2. Furthermore, since this example does not satisfy the G -F B property, even though it is geometrically quasi-transverse, we conclude that it can not stabilize at ν ≤ 1 (otherwise it would contradict Theorem 8.5.2).

d-algebraically quasi-transversality

A a foliated ideal sheaf (M, θ, I, E) is d-algebraically quasi-transverse if:

i ) The foliated ideal sheaf (M, θ, I, E) is geometrically quasi-transverse and the tg-order ν p (θ, I) = 1 at all point p in the variety V (I);

ii ) Given an invariant blowing-up of order one σ : (M ′ , θ

, if X and ω are two singular distributions

defined over an open neighborhood U p of p such that:

• The distributions X and ω generates θ.O Up ;

• The 1-singular distribution X is generated by a regular vector field X and is totally transverse to I;

• The (d -1)-singular distribution ω has a generator set {Y

This condition depends on a sequence of blowing-ups and it is quite difficult to define à priori for a general ideal sheaf I. But there is one geometrical interesting case:

Lemma 8.6.2. Let (M, θ, I, E) be a geometrically quasi-transverse d-foliated ideal sheaf and suppose that I is regular and V (I) has dimension one, i.e. is is a regular analytic curve.

Then (M, θ, I, E) is d-algebraically quasi-transverse.

Proof. We claim that the hypotheses (H):

• The foliated ideal sheaf (M, θ, I, E) is geometrically quasi-transverse;

• The ideal sheaf I is regular;

• The variety V (I) has dimension one.

is preserved by invariant blowing-ups of order one. Indeed, given an invariant blowing-up of order one σ : (M ′ , θ ′ , I ′ , E ′ ) -→ (M, θ, I, E), we have that:

We now show how these Propositions are enough to prove the Theorem:

Proof. (Theorem 8.6.4) The case of 1-algebraically quasi-transverse is done by Theorem 8.5.2, so suppose the Theorem proved for d -1-algebraically quasi-transverse foliated ideal sheaves and take (M, θ, I, E) a d-algebraically quasi-transverse foliated ideal sheaf.

Since the problem is local, we can fix a point p in V (I). Take a relatively compact open subset M 0 of M containing p. By Proposition 5.4.1 there exists a sequence of θ-invariant blowings-up of order one: Notice that, because of the chosen decomposition of X and ω:

Furthermore, since (0, ẏ(t)) = γ(t) and ω is independent of the coordinate x:

Which implies that:

which contradicts the absurd hypotheses and Claim 1 is proved.

Claim 2: For all point q in V (I)\E, the g-ball B g δ (q) is homeomorphic to a k q -euclidean ball, where k q is the dimension of the leaf of θ g passing through q.

Proof. Notice that the g Y -ball B g Y δ (q) is homeomorphic to a (k q -1)-euclidean ball for any q in V (I) and δ < δ p . From the explicit expression g X = (dx) 2 and the fact that the vector fields {Y 1 , ..., Y s } are independent of the x-coordinate, we conclude that the g-ball B g δ (q) is homeomorphic to a k q -euclidean ball.

Chapter 9

Les résultats de la thèse en Français Dans ce chapitre notre objectif est d'énoncer tous les résultats importants de la thèse. Pour ce faire, on va aussi présenter les définitions et notations nécessaires.

Relations entre un feuilletage et une variété -Chapitre 2

On commence avec une liste d'objets (voir la section 2.1):

• Une variété feuilletée est un triplet (M, θ, E), où :

• M est une variété analytique régulière de dimension n sur K (où K est R ou C);

• E est une collection ordonnée E = (E (1) , ..., E (l) ), où E (i) est un diviseur régulier de M tel que i E (i) est un diviseur réduit à croisements normaux simples;

• θ est une distribution singulière involutive sur M , tangente à E.

• Un faisceau d'idéaux feuilleté est un quadruplet (M, θ, I, E), où :

• (M, θ, E) est une variété feuilletée;

• I est un faisceau d'idéaux cohérent et ne s'annulent nulle part sur M .

• Une variété feuilletée locale est un quadruplet (M, M 0 , θ, E), où : La tg-ordre de (M, θ, I, E) dans un point p de M est le nombre minimal ν p (qu'on note par ν p (θ, I)) tel que: H(θ, I, ν p ).O p = H(θ, I, i).O p pour tout i supérieur à ν p . Nous distinguons deux cas:

• si H(θ, Iν p ).O p = O p , la chaîne de tangence est de type 1 dans p;

• si H(θ, Iν p ).O p = O p , la chaîne de tangence est de type 2 dans p.

• Un morphisme φ : M -→ N est lisse en rapport avec deux faisceaux d'idéaux feuilletés (M, θ, I, E M ) et (N, ω, J , E N ) si:

• le morphisme φ : M -→ N est lisse;

• l'ensemble φ -1 (E N ) est égal à E M ;

• le faisceau d'idéaux J .O M est égal à I.

On dit qu'un morhisme lisse φ : (M, θ, I, E M ) -→ (N, ω, J , E N ) est préserve-chaîne si:

T g(ω, J ).O M = T g(θ, I)