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M. Adam PARUSINSKI Université de Nice Sophia Antipolis (Examinateur)



Resolution of singularities in foliated spaces



Remerciements
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Résumé

Considérons une variété regulière analytique M sur R ou C, un faisceau d’idéaux I défini sur

M , un diviseur à croisement normaux simples E et une distribution singulière involutive θ

tangent à E. L’objectif principal de ce travail est d’obtenir une résolution des singularités du

faisceau d’idéaux I qui préserve certaines “bonnes” propriétés de la distribution singulière

θ. Ce problème est naturel dans le contexte où on doit étudier “l’interaction” d’une variété

et d’un feuilletage.

Pour être plus explicite, considérons un éclatement admissible

σ : (M
′

, E
′

) −→ (M,E).

Il existe plusieurs notions de transformée de la distribution singulière θ par l’éclatement σ.

On travaillera avec une transformée algébriquement bien adaptée, qu’on appelle transformée

analytique stricte et qu’on note θ
′

. On peut désormais écrire l’éclatement de la façon suivante:

σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E)

Dans ce contexte, on cherche une “bonne” résolution de I, i.e., une suite d’éclatements

admissible ~σ = (σr, ..., σ1) :

(Mr, θr, Er) · · · (M1, θ1, E1) (M, θ,E)
σr σ2 σ1

telle que

• Le faisceau d’idéaux I.OMr
est principal et son support est contenu dans Er;

• La distribution singulière θr a les mêmes “bonnes” propriétés que θ.
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La bonne propriété considérée dans ce travail s’appelle R-monomialité: elle est l’une des

plus simples propriétés qu’on peut exiger d’une distribution singulière, après la régularité.

On remarque que cette propriété est liée à l’existence d’intégrales premières monomiales

pour la distribution singulière θ et, donc, est aussi reliée au problème de la monomilisation

des applications et de résolution “quasi-lisse” des familles d’idéaux.

Dans la première partie, on introduit la notion de centre θ-admissible, qui est bien

adaptée à la distribution singulière. On donne une (bonne) description géométrique de ces

centres pour une distribution singulière quelconque et on démontre que les éclatements avec

de tels centres préservent la propriété de R-monomialité.

Dans la deuxième partie, on démontre l’existence d’une résolution des singularités de

l’idéal I en utilisant seulement des éclatements dont les centres sont θ-admissibles:

• Le premier résultat donne une résolution globale si le faisceau d’idéaux I est invariant

par la distribution singulière θ (et aucune hypothèse sur la distribution singulière θ

n’est demandée);

• Le deuxième résultat donne une résolution globale si la distribution singulière θ est de

dimension 1 (et aucune hypothèse sur le faisceau d’idéaux I n’est demandée);

• Le troisième résultat donne une uniformisation locale si la distribution singulière θ est

de dimension 2 (et aucune hypothèse sur le faisceau d’idéaux I n’est demandée).

Dans la troisième partie, on présente deux utilisations des résultats précédents. La première

application concerne la résolution des singularités en famille analytique, soit pour une

famille d’idéaux, soit pour une famille de champs de vecteurs. Pour la deuxième, on applique

les résultats ´à un problème de système dynamique, motivé par une question de Mattei.

Avant de finir, on remarque que d’autres applications sont aussi possibles. En parti-

culier, nous pensons que les outils développés dans cette thèse seront utiles pour traiter

l’équi-résolution de Zariski et la monomialisation des applications analytiques.



Abstract

Let M be an analytic manifold over R or C, I a coherent and everywhere non-zero ideal

sheaf over M , E a reduced SNC divisor and θ an involutive singular distribution everywhere

tangent to E. The main objective of this work is to obtain a resolution of singularities for

the ideal sheaf I that preserves some “good” properties of the singular distribution θ. This

problem arises naturally when we study the “interaction” between a variety and a foliation.

More precisely, let:

σ : (M
′

, E
′

) −→ (M,E).

be an admissible blowing-up. There exists several notions of transforms for a singular dis-

tribution θ. We work with an “algebraically well-adapted” one called adapted strict analytic

transform, denoted by θ
′

. The blowing-up can now be written as:

σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E)

In this context, we search a “good” resolution of I, i.e. a sequence of admissible blowings-up

~σ = (σr, ..., σ1):

(Mr, θr, Er) · · · (M1, θ1, E1) (M, θ,E)
σr σ2 σ1

such that

• The ideal sheaf I.OMr
is principal and its support is contained in Er;

• The singular distribution θr have the same “good” properties of θ.
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The “good” property we are mainly interested is called R-monomiallity: it is one of the

simplest properties after regularity. We remark that this property is related to the existence

of monomial first integrals for the singular distribution θ and, thus, is also related with the

monomialisation of analytic maps and the “quasi-smooth” resolution of a family of ideal

sheaves.

In a first part, we introduce the notion of θ-admissible center, which, intuitively speak-

ing, is “well-adapted” to the leafs of the foliation associated to the singular distribution θ

(the analog to require that a center has SNC with a divisor). We give a (good) geometrical

description of these centers for general involutive singular distributions and prove that

blowings-up with such centers preserve the R-monomiality property.

In a second part, we prove the existence of a resolution of singularities for the ideal

sheaf I by blowings-up with θ-admissible centers in the following cases:

• In the first result, we give a global resolution if the ideal sheaf I is invariant by the

singular distribution θ (and no extra hypotheses on the singular distribution θ);

• In the second result, we give a global resolution if the singular distribution θ is one

dimensional (and no extra hypotheses on the ideal sheaf I);

• In the third result, we give a local uniformization if the singular distribution θ is two

dimensional (and no extra hypotheses on the ideal sheaf I).

In a third part, we present two applications of these results. The first application deals

with a resolution for analytic families, either for a family of ideal sheaves or vector fields.

The second applications deals with a dynamical system problem, motivated by a question

of Mattei.

To conclude, we remark that other applications seem possible. In particular, we be-

lieve that the tools developed in this thesis may be useful for dealing with the Zariski

equiresolution and the monomialisation of analytic maps.
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Chapter 1

Introduction

1.1 Historical overview and motivation

The interest in resolution of singularities dates back to 1860, when the problem of “re-

solving” an algebraic curve C over the complex plane was brought to the attention of the

mathematical community (see [Ha]). By “resolving” an algebraic curve, we mean some kind

of process where the input is a singular curve C and the output is a regular curve C
′

. This

process is motivated by the desire to give a local description of the curve C in the vicinity

of its singularities.

Since then, many different resolution processes for an algebraic curve were proposed.

We refer to Kollar’s book [Ko] for a nice exposition of different methods. But the problem

was destinated to have a much wider generality: it naturally motivated the same problem

for surfaces and for general varieties. The resolution of algebraic varieties was obtained in

1964 by Hironaka (see the original article [Hi]; see section 3.6 below), and is a landmark on

the subject. We refer to an article of Hauser [Ha] for a more complete historical overview.

A connected field of interest is the resolution of foliations. Here the goal is to give a

local description of the leaves of a foliation in the vicinity of a singularity. The first result

on the subject dates back to Bendixson in 1902, where he states that a resolution of a

foliation by curves on the plane is possible (see [Ben]). A complete proof of this result was
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firstly given by Seidenberg in 1968 (see [Se]). The extension of this result for dimension

three ambient spaces is much more recent: in 2004, Cano proves the result for codimension

one foliations (see [Ca]); in 2007, Panazzolo proves the result for foliations by curves (see

[P2]). No general result is known for arbitrary dimensions.

In applications, sometimes we are lead to combine both subjects. For example, sup-

pose that we have an ambient space containing a variety and a foliation, but the object

of study is the “interaction” between them (see chapter 8 for an example of this kind of

problem). In this case, either the resolution of the variety or the resolution of the foliation

should take into account the other object. Since we still do not have a general result of

resolution for foliations, we may try to resolve the variety in a way that does not make the

foliation “worse”. This leads to the (informal) formulation of the main problem of this thesis:

Problem: Can we obtain a resolution of singularities for a variety that preserves

good conditions of an ambient foliation?

We give a rigorous formulation of this problem at the end of the next section. This

problem is not only natural, but also establishes a bridge between algebraic/analytic-

geometry and dynamical system. Our ambition is that not only the results of this work,

but also the techniques here developed, will be of interest to everyone that works with the

interaction between varieties and foliations.

1.2 The main problem

A foliated manifold is a triple (M, θ,E) where:

• M is a smooth analytic manifold of dimension n over a field K, where the field K is

either R or C;

• E is an ordered collection E = (E(1), ..., E(l)), where each E(i) is a smooth divisor on

M such that
∑

iE
(i) is a reduced divisor with simple normal crossings;
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• θ is an involutive singular distribution defined over M and everywhere tangent to E.

We recall the basic notions of singular distributions (we follow closely [BB]). Let DerM

denote the sheaf of analytic vector fields over M , i.e. the sheaf of analytic sections of

TM . A singular distribution is a coherent sub-sheaf θ of DerM . A singular distribution is

involutive if for each point p in M , the stalk θp := θ.Op is closed under the Lie bracket

operation. All singular distributions of this thesis are involutive unless stated otherwise.

Consider the quotient sheaf Q = DerM/θ. The singular set of θ is defined by the

closed analytic subset S(θ) = {p ∈ M : Qp is not a free Op module}. A singular distribu-

tion θ is called regular if S(θ) = ∅. On M \ S(θ) there exists a unique analytic subbundle

L of TM |M\S(θ) such that θ is the sheaf of analytic sections of L. We assume that the

dimension of the K vector space Lp is the same for all p ∈ M \ S (this always holds if M

is connected). It will be called the leaf dimension of θ and denoted by d. In this case θ is

called an involutive d-singular distribution and (M, θ,E) a d-foliated manifold.

Given a point p in M , a coherent set of generators of θp is a set {X1, ..., Xdp} of

dp ≥ d vector fields germs with representatives defined in a neighborhood Up of p such that

{X1, ..., Xdp}.Oq generates θq for every q ∈ Up.

We recall that a blowing-up σ : (M
′

, E
′

) −→ (M,E) is admissible if the center C is

a closed and regular submanifold of M that has simple normal crossings with E (see section

3.1 or pages 137-138 of [Ko] for details).

We introduce a natural transform of θ under admissible blowing-up called adapted

analytic strict transform. It is an involutive singular distribution θ
′

, everywhere tangent to

E
′

, obtained as a suitable extension of the pull-back of θ from M \ C to M
′ \ σ−1(C). The

precise definition is given in section 3.2: we stress that, in general, it is neither the strict

nor the total transform of θ (see section 3.2). We denote an admissible blowing-up by:

σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E)
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A foliated ideal sheaf is a quadruple (M, θ, I, E) where:

• (M, θ,E) is a foliated manifold;

• I is a coherent and everywhere non-zero ideal sheaf of M .

The support of I is the subset:

V (I) := {p ∈M ; I.Op ⊂ mp}

where mp is the maximal ideal of the structural ring Op.

An ideal sheaf I is invariant by a singular distribution θ if θ[I] ⊂ I, where θ is re-

garded as a set of derivations taking action over I. An analytic sub-manifold N is invariant

by a singular distribution θ if the reduced ideal sheaf IN that generates N (i.e. V (IN) = N)

is invariant by θ (see section 2.4 for details).

We say that an admissible blowing-up σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E) is of order one

on (M, θ, I, E) if the center C is contained in the variety V (I) (see section 3.3 or definition

3.65 of [Ko] for details). In this case, the controlled transform of the ideal sheaf I is the

coherent and everywhere non-zero ideal sheaf Ic := O(−F )(I.OM
′ ), where F stands for the

exceptional divisor of the blowing-up (see section 3.3 or subsection 3.58 of [Ko] for details).

Finally, an admissible blowing-up of order one of the foliated ideal sheaf is the mapping:

σ : (M
′

, θ
′

, I ′

, E
′

) −→ (M, θ, I, E)

where the ideal sheaf I ′

is the controlled transform of I.

A resolution of a foliated ideal sheaf (M, θ, I, E) (see section 3.5 for details) is a

sequence of admissible blowing-ups of order one:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M, θ, I, E)
σr σ2 σ1

such that Ir = OMr
. In particular, I.OMr

is the ideal sheaf of a SNC divisor on Mr with

support contained in Er.
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Our main objective is to find a resolution algorithm that preserves as much as possi-

ble “good” properties that the singular distribution θ might possess. For example, one

could ask if, assuming that the singular distribution θ is regular (i.e. S(θ) = ∅), there exists

a resolution of the foliated ideal sheaf (M, θ, I, E) such that the singular distribution θr is

regular. Unfortunately, it is easy to get examples of foliated ideal sheaves whose resolution

necessarily breaks the regularity of a regular distribution:

Example 1.2.1. Let (M, θ, I, E) = (C2, ∂
∂x
, (x, y), ∅): the only possible strategy for a reso-

lution is to blow up the origin, which breaks the regularity of the distribution.

The next best thing is a (locally) monomial singular distribution: given a ring R such

that Z ⊂ R ⊂ K, a d-singular distribution θ is R-monomial at p ∈ M if there exists a local

coordinate system x = (x1, ..., xn) and a coherent set of generators {X1, ..., Xd} of θp such

that:

• Either Xi = ∂
∂xi

, or;

• Xi =
∑n

j=1 αi,jxj
∂

∂xj
with αi,j ∈ R.

A singular distribution is R-monomial if it is R-monomial at every point p ∈M (see section

2.2 for details).

The main problem of this work can now be enunciated rigorously:

Problem: Given a foliated ideal sheaf (M, θ, I, E) such that the singular distribu-

tion θ is R-monomial, is there a resolution of (M, θ, I, E):

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M, θ, I, E)
σr σ2 σ1

such that the singular distribution θr is also R-monomial?

In this thesis we prove the following:
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• If the ideal sheaf I is invariant by the singular distribution θ (i.e. θ[I] ⊂ I), then there

exists a resolution that preserves regularity and R-monomiality (see Theorem 5.1.1);

• If the leaf dimension of the singular distribution θ is one, then there exists a resolution

that preserves R-monomiality (see Theorem 5.3.1);

• If the leaf dimension of the singular distribution θ is two, then there exists a local

uniformization that preserves R-monomiality (see Theorem 6.1.1).

We are more precise in the formulation of these results in section 1.4.

1.3 Example

We give a simple example in order to illustrate the difficulty of the problem. We work over

the Z-monomial foliated ideal sheaf (M, θ, I, E) = (C3, θ, I, ∅), where θ is a Z-monomial

singular distribution generated by the regular vector field X = ∂
∂z

+ z ∂
∂x

and I is an ideal

generated by (x, y).

On one hand if we consider the admissible blowing-up of order one σ : (M
′

, θ
′

, I ′

, E
′

) −→
(M, θ, I, E) with center C = V (x, y) we obtain a resolution of I. On the other hand, the

transform of the singular distribution θ (in this case, the adapted analytic strict transform

and the strict transform coincide) restricted to the x-chart is generated by the vector field:

X
′

= x
∂

∂z
+ z(x

∂

∂x
− y

∂

∂y
)

which is not Z-monomial (indeed the linear part is nilpotent). So, this naive attempt breaks

Z-monomiality. Intuitively, this happens because the center C is tangent to the orbit of the

vector field X at the origin.

So, let σ : (M
′

, θ
′

, I ′

, E
′

) −→ (M, θ, I, E) be the admissible blowing-up of order one

with center C = V (x, y, z). The only interesting chart is the z-chart, where we obtain:

I∗ = (x
′

z
′

, y
′

z
′

) X∗ = 1
z
′ (z

′ ∂

∂z
′ − x

′ ∂

∂x
′ − y

′ ∂

∂y
′ ) + ∂

∂x
′

I
′

= (x
′

, y
′

) X
′

= z
′ ∂

∂z
′ + (z

′ − x
′

) ∂

∂x
′ − y

′ ∂

∂y
′
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where I∗ and X∗ stand for the pull-back of the ideal sheaf and the vector field respectively.

We claim that θ
′

is Z-monomial. Indeed, if we consider the change of coordinates:

(x̃, ỹ, z̃) = (2x
′ − z

′

, y
′

, z
′

)

we obtain that the vector field X∗ in these new coordinates is given by:

X
′

= z̃
∂

∂z̃
− x̃

∂

∂x̃
− ỹ

∂

∂ỹ

Now, let σ : (M
′′

, θ
′′

, I ′′

, E
′′

) −→ (M
′

, θ
′

, I ′

, E
′

) be the admissible blowing-up of order

one with center C ′

= V (x
′

, y
′

). Once again, we obtain a resolution of I ′

that breaks Z-

monomiality. Indeed, the transform of the singular distribution θ
′

restricted to the x
′

-chart

is generated by the vector field:

X
′′

= x
′′

z
′′ ∂

∂z′′
+ (z

′′ − x
′′

)x
′′ ∂

∂x′′
− z

′′

y
′′ ∂

∂y′′

which is not Z-monomial (indeed the linear part is nilpotent). So, this naive attempt breaks

Z-monomiality. Intuitively, this happens because the vector field X
′

is singular in the origin

and transverse to the center C everywhere else.

So, let σ : (M
′′

, θ
′′

, I ′′

, E
′′

) −→ (M
′

, θ
′

, I ′

, E
′

) be the admissible blowing-up of order

one with center C ′

= V (x
′

, y
′

, z
′

). The only interesting chart is the z
′

-chart, where we

obtain:

I
′′

= (x
′′

, y
′′

) X
′′

= z
′′ ∂

∂z
′′ + (1 − 2x

′′

) ∂

∂x
′′ − 2y

′′ ∂

∂y
′′

We leave to the reader the verification that X
′′

is Z-monomial.

We finally claim that a third blowing-up with center C ′′

= V (x
′′

, y
′′

) gives a resolu-

tion of I
′′

such that θ
′′′

is Z-monomial. The crucial intuitive reason is that the vector field

X
′′

is everywhere transverse to the center C ′′

. We leave the details to the interested reader.

1.4 Ideas and results

In Chapter 2 we define some tools to study the interaction between a singular distribution

(or a foliation) and an ideal sheaves (or varieties). It is well-known that a good strategy to
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do so when the singular distribution is regular are Fitting ideals (see definition in [Te]). In

section 2.3 we introduce a notion of k-generalized Fitting ideals, which coincides with the

definition of Fitting ideals when the singular distribution θ is regular.

This tool allows us to tackle one of the first difficulties of the main problem: how to

control the transforms of a singular distribution θ under blowing-up. We deal with this

difficulty restricting the possible centers of blowing-up to θ-admissible centers (see section

4.1 for the precise definition).

Intuitively, a center C is θ-admissible at a point p in C if there exists a local decom-

position θp = θtr + θinv (as Op-modules) of the singular distribution θp into two singular

distributions {θtr, θinv} such that:

• The singular distribution θtr is totally transversal to C, i.e. no vector of TpC is contained

in the subspace of TpM generated by θtr;

• The singular distribution θinv is everywhere tangent to C, i.e. C is invariant by θinv.

Later, we formalize this intuitive interpretation (see Proposition 4.4.1). An admissible

blowing-up with a θ-admissible center is called a θ-admissible blowing-up. This notion is

defined for arbitrary singular distributions, but is particularly important for R-monomial

singular distributions because of the following result:

Theorem 1.4.1. Let (M, θ,E) be a R-monomial d-foliated manifold and:

σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E)

a θ-admissible blowing-up. Then θ
′

is R-monomial.

This is proved in chapter 4, Theorem 4.1.1.

Nevertheless, the definition of θ-admissible center seems to have a much wider range of

application. We believe that this kind of blowing-ups could preserve other interesting

conditions of a singular distribution θ (actually, it may even be a necessary condition). For
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example, if θ has leaf dimension one and has only canonical singularities (see I.1.2 of [Mc]

for the definition), then θ
′

has only canonical singularities if, and only if, the blowing-up

is θ-admissible (this follows from fact I.2.8 of [Mc] and Proposition 4.4.1 below). More

generally, it seems that a similar statement holds for an arbitrary d-foliated manifold.

Based on Theorem 1.4.1, the next step is to look for a resolution of a foliated ideal

sheaf (M, θ, I, E) with only θ-admissible blowings-up. To achieve this goal, we introduce a

new invariant called the tg-order (abbreviation for tangency order) attached to each point p

in M and denoted by νp(θ, I) (see section 2.5 for the precise definition). This invariant gives

a measure of the order of tangency between an ideal sheaf I and a singular distribution θ,

even if one of the objects is singular.

The idea behind the invariant is a notion of tangency chain of ideal sheaves (see sec-

tion 2.5 for the precise definition). This “chain” can be seen as a sequence of ideal sheaves

(In), where the n-ideal sheaf In contains all the analytic informations about order n

tangency points between the ideal sheaf I and the singular distribution θ. This chain gives

a well-known stratification of the variety V (I) into locally closed sub-varieties where θ is

n-tangent to V (I). But the fact that the information is analytic and not only geometric is

crucial.

This invariant allows us to prove the two main results of this work, which give a

θ-admissible resolution if:

• Either the ideal sheaf I is θ-invariant, or;

• The singular distribution θ has leaf dimension equal to one.

In order to be precise, we define the notion of local foliated ideal sheaves as quintuples

(M,M0, θ, I, E):

• (M, θ, I, E) is a foliated ideal sheaf;

• M0 is an open relatively compact subset of M .
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A resolution of a local foliated ideal sheaf (M,M0, θ, I, E) is a resolution of the foliated ideal

sheaf (M0, I0, θ0, E0) := (M0, I.OM0
, θ.OM0

, E ∩M0). With this notation, we present the

main Theorems of this work in their simplest forms:

Theorem 1.4.2. Let (M,M0, θ, I, E) be a local d-foliated ideal sheaf and suppose that I0 is

θ0-invariant. There exists a resolution of (M,M0, θ, I, E):

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1

such that:

i ) ~σ = (σr, ..., σ1) is a sequence of θ-admissible blowings-up;

ii ) The composition σ = σ1 ◦ ... ◦ σr is an isomorphism over M0 \ V (I0);

iii ) If θ0 is R-monomial, then so is θr;

iv ) If θ0 is regular, then so is θr.

Theorem 1.4.3. Let (M,M0, θ, I, E) be a local foliated ideal sheaf and suppose that θ has

leaf dimension equal to 1. There exists a resolution of (M,M0, θ, I, E):

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1

such that:

i ) ~σ = (σr, ..., σ1) is a sequence of θ-admissible blowings-up;

ii ) The composition σ = σ1 ◦ ... ◦ σ1 is an isomorphism over M0 \ V (I0);

iii ) If θ0 is R-monomial, then so is θr.

In fact Theorems 1.4.2 and 1.4.3 are corollaries of the more general Theorems 5.1.1 and

5.3.1, where we also prove the functoriality of the resolution for a certain kind of morphisms

called chain-preserving smooth morphisms (see section 2.6 for the definition).



1.4 Ideas and results 11

The study of a θ-admissible resolution when the singular distribution θ has leaf di-

mension bigger then one has some extra difficulties that we describe in section 5.7.

Nevertheless, we can present a slightly weaker result for a singular distribution with leaf

dimension equals to two. A local uniformization of a foliated ideal sheaf (M, θ, I, E) at a

point p of M is a finite collection of pairs {τα : Mα −→M, θα} where:

• τα : Mα −→M is a proper analytic morphisms;

• θα is a singular distributions Mα.

such that:

• The union of the images
⋃
τα(Mα) is an open neighborhood of p.

• For each morphism τα : Mα −→M there exists a sequence of admissible local blowings-

up of order one:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M, θ, I, E)
τr,α τ2,α τ1,α

such that Ir = OMr
, θα = θr and the morphism τα is the composition of this local

blowings-up: τα = τ1,α ◦ ... ◦ τr,α.

where a local blowing-up is the composition of a blowing-up with a injective local isomor-

phism (see section 3.4 for the precise definition on local blowings-up and section 3.5 for

more details about local uniformizations). A local uniformization is θ-admissible if all local

blowings-up are θ-admissible.

Accepting this weaker “resolution”, we are able to obtain the following result:

Theorem 1.4.4. Let (M, θ, I, E) be a 2-foliated ideal sheaf and p a point of M . Then,

there exists a θ-admissible local uniformization of (M, θ, I, E) at p. In particular, if θ is

R-monomial, then θα is R-monomial for every α.

This is proved in chapter 6, Theorem 6.1.1.
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1.5 Applications and Open problems

1.5.1 Application 1: Resolution in Families - Chapter 7

Resolution of singularities in families (or simultaneous resolution of singularities) is a natural

problem which has been considered by several authors. For instance, we could mention the

following two motivations:

• ZP) The Zarisky search for a good notion of “equiresolution” (see [Z, ENV, V3] for

some results on the subject);

• RP) The study of bifurcations of vector fields and the 16o Hilbert problem (see [R] for

more details on the subject).

We start by being more precise about ZP . Following the results in [ENV], we can change

focus from an “equiresolution” to a resolution of a smooth family of ideal sheaves. In this

work, we define smooth family of ideal sheaves to be a quadruple (B,Λ, π, I) where:

• The ambient space B and the parameter space Λ are two smooth analytic manifolds;

• The morphism π : B −→ Λ is smooth;

• The ideal sheaf I is coherent and everywhere non-zero over B.

Given λ ∈ Λ, the set π−1(λ) is a regular sub-manifold of B called fiber. A point λ0 ∈ Λ

is called an exceptional value of a smooth family of ideal sheaves (B,Λ, π, I) if the fiber

π−1(λ0) is contained in V (I).

Strictly saying, we would like to find a family of resolutions with respect to π, i.e. a

resolution ~σ = (σr, ..., σ1) of (B, I, ∅) such that π ◦ σ is smooth, where σ = σ1 ◦ ... ◦ σr. This

would give the notion of equiresolution desired by Zariski (but we remark that we have

fixed a family structure already).

Since this is not always possible (see example 1.2.1), one may try to find a weaker

notion of resolution for a family of ideal sheaves. We work with a new one called uniform
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resolution in families of ideal sheaves (see section 7.1 for the definition) which was first

introduced (in a different context) in [DR]. As a first step to obtain an uniform resolution,

we present the following result on elimination of exceptional values:

Theorem 1.5.2. Let (B,Λ, π, I) be a smooth family of ideal sheaves such that all fibers are

connected. Then, there exists a smooth family of ideal sheaves (B
′

,Λ
′

, π
′

, I ′

) and two proper

analytic maps σ : B
′ −→ B and τ : Λ

′ −→ Λ such that:

i ) The smooth family of ideal sheaves (B
′

,Λ
′

, π
′

, I ′

) has no exceptional value;

ii ) The following diagram:

B
′

Λ
′

B Λ

σ

π
′

π

τ

commutes;

iii ) For any relatively compact open subset B0 of B, there exists a sequence of admissible

blowings-up of order one for (B0, I0, E0) = (B0, I.OB0
, ∅):

(Br, Ir, Er) · · · (B1, I1, E1) (B0, I0, E0)
σr σ2 σ1

such that σ|σ−1B0
= σ1 ◦ ... ◦ σr and I ′

.OBr
= Ir;

iv ) For any relatively compact open subset Λ0 of Λ, there exists a sequence of admissible

blowings-up by (Λ0, E0) = (Λ0, ∅):

(Λr, Er) · · · (Λ1, E1) (Λ0, E0)
τr τ2 τ1

such that τ |τ−1Λ0
= τ1 ◦ ... ◦ τr.

This is proved in section 7.1 Theorem 7.1.1.
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Remark 1.5.3. To make the statements of the Theorem more clear, suppose that the analytic

manifolds B and Λ are compact. In this case, σ is the composition of a sequence of blowing-

ups ~σ = (σr, ..., σ1) and τ is the composition of a sequence of blowing-ups ~τ = (τr, ..., τ1) that

commutes at each step, i.e. the following diagram:

Br · · · B1 B

Λr · · · Λ1 Λ

πr

σr

τr

σ2 σ1

τ2 τ1

π1 π

commutes, where Br = B
′

, Λ
′

= Λr and the morphisms πi : Bi −→ Λi are all smooth.

Now, we are more precise about RP. A smooth family of foliations by curves is given by a

quadruple (B,Λ, π,X ) where:

• The ambient space B and the parameter space Λ are two smooth analytic manifolds;

• The morphism π : B −→ Λ is smooth;

• The singular distribution X is:

• Everywhere non-zero over B and dπ(X ) ≡ 0;

• At each point p in B, there exists a vector field Xp that generates the singular

distribution Xp.

We recall that the set S(X ) := V (X [OB]) is the singular set of the vector field X . A point

λ0 ∈ Λ is called an exceptional value of a smooth family of vector field (B,Λ, π,X ) if the

fiber π−1(λ0) is contained in S(X ).

Finding a general resolution of vector fields is a very difficult problem, yet to be

solved. Nevertheless, based on the Bendixson-Seidenberg result for planar vector fields, one

could hope to find a resolution when dimΛ = dimB − 2. In this case, we say that the

family of foliations by curves is planar. This problem is an essential step in the so-called
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Roussarie’s program (see [DR]) to prove the existential part of the 16th Hilbert problem and

has been solved in some cases. In particular, we mention the following:

• Denkowska and Roussarie [DR]: The authors propose a different meaning of “resolving

families of foliation by curves”. Their idea is to change focus from a family to the

foliation associated to it. It is worth remarking that this idea motivated this thesis;

• Panazzolo [P1]: The author presents a resolution (in the sense of Denkowska and

Roussarie) of a smooth family of foliation by curves (B,Λ, π,X ) when the restriction

of the linear part of X to the leafs are non-zero;

• Trifonov [Tr]: The author presents a reduction of a smooth family of foliation by

curves (B,Λ, π,X ) into another smooth family of vector field (B
′

,Λ
′

, π
′

,X ′

) where

no “persistent” singularity exists. It is worth remarking that (B
′

,Λ
′

, π
′

,X ′

) may still

be complicated since singular perturbations phenomenas are persistent through this

reduction. Nevertheless, this is the best known reduction that preserves smoothness.

In this work, we prove a generalization of Proposition IV.3 of [DR], concerning elimination

of exceptional values. This can be seen as a first step to find the resolution proposed in [DR]:

Theorem 1.5.4. Let (B,Λ, π,X ) be a smooth family of foliations by curves such that all

fibers are connected. Then, there exists a smooth family of foliations by curves (B
′

,Λ
′

, π
′

,X ′

)

and two proper analytic maps σ : B
′ −→ B and τ : Λ

′ −→ Λ such that:

i ) (B
′

,Λ
′

, π
′

,X ′

) has no exceptional value;

ii ) The following diagram:

B
′

Λ
′

B Λ

σ

π
′

π

τ

commutes;
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iii ) For any relatively compact open subset B0 of B, there exists a sequence of admissible

blowings-up by (B0,X0, E0) = (B0,X .OB0
, ∅):

(Br,Xr, Er) · · · (B1,X1, E1) (B0,X0, E0)
σr σ2 σ1

where Xi = σ∗
iXi−1.O(−Fi), such that σ|σ−1B0

= σ1 ◦ ... ◦ σr and X ′

.OBr
= Xr;

iv ) For any relatively compact open subset Λ0 of Λ, there exists a sequence of admissible

blowings-up by (Λ0, E0) = (Λ0, ∅):

(Λr, Er) · · · (Λ1, E1) (Λ0, E0)
τr τ2 τ1

such that τ |τ−1Λ0
= τ1 ◦ ... ◦ τr.

This is proved in Section 7.1, Theorem 7.3.1.

1.5.5 Application 2: Generalized Flow-Box and a problem pro-

posed by Mattei - Chapter 8

Mattei’s Problem

The problem proposed by Mattei concerns the action of an specific algebraic Lie Group

action. Consider a general Lie group G acting on an analytic manifold M :

A : G×M −→ M

(g,m) 7→ g(m)

and an analytic sub-variety N of M . We say that the triple (M,N,A) satisfies the G-FB

property if, for each point p in N , there exists an open neighborhood Up ⊂ N of p and open

neighborhood V ⊂ G of the neutral element e of G such that:

T ) For all point q in Up, and for all g in V , the point g(q) is contained in N if, and only

if, g(q) = q.
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It is clear that such a property is not always satisfied. So, Mattei suggests to introduce an

extra hypothesis: For every point p of N , let Lp be the analytic sub-variety of M given by

the orbit of G through p. We say that the triple (M,N,A) is geometrically quasi-transverse

if:

H ) The tangent space of N and Lp at p have trivial intersection.

Geometric intuition leads one to ask the following natural question (see figure 1.1):

• General Problem: If the triple (M,N,A) is geometrically quasi-transverse, does it

satisfy the G− FB property?

The original problem of Mattei deals with a more specific case where A : G×M →M is an

algebraic group action. More precisely:

• M is the space of the k-jets of 1-form germs in (C2, 0), singular at the origin;

• The group G is the product G1×G2, where G1 is the group of the k-jets germs of unities

u of (C2, 0), and G2 is the group of k-jets of bi-holomorphic germs F : (C2, 0) → (C2, 0);

• Given a point jk(ω) of M and (u, F ) of G, the action (u, F ) ∗ (jk(ω)) is given by

jk(u(F ∗ω)) (where jk is the function that maps an analytic germ to its k-jet).

And then, the question can finally be formulated as follows:

• Mattei Problem: Suppose M , G and A are as above and let N ⊂M be an analytic reg-

ular sub-variety (not necessarily algebraic) such that the triple (M,N,A) is geometric

quasi-transverse. Does the triple (M,N,A) satisfy the G− FB property?

The original motivation of this question is to prove that the semi-universal equisingular

unfolding of one-forms constructed by Mattei is actually universal (see Theorem 3.2.1 of

[Ma]).

In this work, we are going to give a positive answer to the general question under

additional hypotheses, and a counter-example for dimM = 4 (see section 8.5.3 and notice

that the vector field is complete). Nevertheless, we stress that the Mattei problem is still

open.
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Figure 1.1: In the left, the phase space of Example 1. In the right the phase space of Example 2.

Generalized Flow-Box problem

In order to deal with the above problem, we change focus from the Lie group to the Lie

algebra and we reformulate the problem in a dynamical system language. To simplify the

discussion, we presently consider a one-dimensional Lie algebra. The general case is studied

in chapter 8.

Let M be an analytic manifold, N a regular sub-manifold of M and X an analytic

vector field over M . We say that the triple (M,N,X) satisfies the G-FB property

(Generalized Flow-Box) if: for each point p of N , there exists a pair (Up, δp), where Up is an

open neighborhood of p and δp > 0 is a positive real number, such that the orbit γq(t) of

the vector field X passing through the point q of (N ∩ Up) \ Sing(X) does not intersect N

for 0 < ‖t‖ < δp. In section 8.3 we give a more general definition, in the context of a fixed

Sub-Riemannian metric on M .

The problem is, given a triple (M,N,X), to establish a local criterium depending

on the sub-variety N and the vector field X which guarantees that the G − FB property

holds. We give two preliminary examples to motivate:

Example 1: Consider (M,N,X) = (R2, V (y), ∂
∂x

+ x ∂
∂y

) (see figure 1.1, left). A

simple calculation shows that the G − FB property is not satisfied at the origin. This

happens because there is a tangent point between the vector field and the variety.
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Figure 1.2: An illustration of the G− FB property in Example 2 for δ = π
4 .

Example 2: Consider (M,N,X) = (R2, V (y), y ∂
∂x

− x ∂
∂y

) (see figure 1.1, right).

Notice that the G − FB property is satisfied even at the origin, which is singular. For

example, figure 1.2 shows the case of δ = π
4
.

So, one may conjecture that the difficulty of the problem lies in the tangency points

between the variety N and the vector field X (just as for the group actions).

We say that a triple (M,N,X) is geometrically quasi-transverse if, at each point p in

N :

dimKTpN + dimKX(p) = dimK(TpN +X(p))

where X(p) is the subspace of TpM generated by X. In section 8.1 we give a more general

definition, and Lemma 8.1.2 provides the link between these two definitions. In other words,

geometrically quasi-transverse triples (M,N,X) don’t have points of tangency between the

variety and the vector field. Following the intuition of these examples, we may ask the

following question:

Question: Does geometrical quasi-transversality implies G-FB?

We answer this question with two results:

Theorem 1.5.6. If (M,N,X) is geometrically quasi-transverse and one of the following
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conditions is satisfied:

• The dimension of N is one;

• The codimension of N is one;

• (M,N,X) is algebraically quasi-transverse (see definition in section 8.1).

Then, the G− FB property holds.

Remark 1.5.7. In particular if the dimension ofM is smaller or equal to 3, then geometrical

quasi-transversality always implies G-FB.

The next result shows that the additional condition of algebraic quasi-transversality

cannot be dropped for dimM ≥ 4:

Theorem 1.5.8. For dimM ≥ 4, there exists a geometrical quasi-transverse triple (M,N,X)

that does not satisfy the G− FB property.

These Theorems are a reinterpretation of the results contained in section 8.5.

1.5.9 Further applications and Open Problems

We start presenting two objects of research where the techniques here developed could be

useful:

• Monomialization of maps: An analytic map Φ : M −→ N is monomial if at every

point p in M , there exists a system of coordinates (x) = (x1, ..., xm) over Op and

(y) = (y1, ..., yn) of OΦ(p) such that:

Φ(x) = (Φ1(x), ...,Φn(x)) = (
n∏

j=1

x
q1,j
j , ...,

n∏

j=1

x
q1,j
j )

where the exponents qi,j are natural numbers such that the matrix:




q1,1 ... q1,n
...

. . .
...

qn−d,1 ... qn−d,n



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is of maximal rank. The problem is the following: given an analytic map Φ : M −→ N

such that dΦ is generically of maximal rank then, up to a sequence of blowings-up in

M and N , can we assume that the map Φ : M −→ N is monomial?

In other words, can we find two analytic proper morphisms σ : M
′ −→ M and

τ : N
′ −→ N , which are compositions of blowings-up, and a monomial analytic map

Φ
′

: M
′ −→ N

′

such that the following diagram:

M
′

N
′

M N

σ

Φ
′

Φ

τ

commutes?

This problem is stated by King in [Ki]. The best results, up to our knowledge,

are given by:

• Cutkosky in a series of papers [Cu1, Cu2, Cu3], where he (mainly) proves two

results: the monomializtion of mapping exists along a valuation (a local uni-

formization result) and a global monomialization of maps exists if dimM = 3 and

dimN = 2;

• Dan Abramovich, Jan Denef and Kalle Karu in [ADK], where they prove that

a monomialization process by “modifications”, instead of blowings-up, always

exists.

We stress that these results are stated in the algebraic category and for a more general

class of fields of characteristic zero.

A possible strategy for tackling the problem is to find a resolution of all Fit-

ting ideals related to the map Φ : M −→ N . This does not seem to be possible,
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at least for the notion of resolution we gave in this work (it seems that, in general,

Fitting ideals can not be monomialized). Nevertheless, we remark that Fitting ideals

are related with singular distributions, and this might be a key idea for applying the

present work to the problem of monomialization of maps.

• Equiresolution: In this part we allow ourself to be less precise. We follow the ideas

from [V2, V3], even though we work in the analytic category. We refer to these two

articles for details. An idealistic ideal is a triple (M, I, E) where:

• M is a smooth analytic manifold of dimension n over a field K, where the field K

is either R or C;

• I is a coherent and everywhere non-zero ideal sheaf over M ;

• E is an ordered collection E = (E(1), ..., E(l)), where each E(i) is a smooth divisor

on M such that
∑

iE
(i) is a reduced divisor with simple normal crossings.

Consider a smooth subvariety N of V (I) and fix a point p in N . We say that the

idealistic triple (M, I, E) is equiresolvable along N locally at p if there exists a triple

(U, π : U → Y, σ : U
′ → U), where:

• U is an open neighborhood of p;

• The morphism π : U −→ Y is smooth;

• The morphism σ : (U
′

, E
′

) −→ (U,E) is the composition of admissible blowings-

up that gives a resolution of (U, I.OU , E ∩ U).

such that:

• The morphism π ◦ σ : U
′ −→ Y is smooth;

• For each point q in Y , the morphism σ restricted to the fiber U(q) = π−1({q})

over q: σq : U
′

(q) −→ U(q) is the composition of blowings-up that resolve

(U(q), I.OU(q), E ∩ U(q));

• For any subset {E(i1), ..., E(is)} ⊂ E
′

, if we define:

F (i1, ..., is) = E(i1) ∩ ... ∩ E(is)
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Then either F (i1, ..., is) is empty or the induced morphism F (i1, ..., is) −→ Y is

also smooth.

In [V3] the author answers an old question of Zariski about the equiresolution for

the case of hypersurfaces. In particular, it gives a characterization of equiresolvable

parameter spaces based on a purely geometrical notion called “equisingularity” (see

[V3] for details).

In [ENV], the authors shift the focus from equiresolutions to resolution of fami-

lies. Once fixed a family of idealistic ideals, they describe the necessary conditions

that a resolution algorithm needs to verify, so that an equiresolution may be obtained.

They finish giving a stratification of the parameter space into locally closed subsets

over which equiresolution may be obtained.

We believe that using the ideas of this thesis, one could look for a principaliza-

tion of ideal sheaves satisfying the condition (AE) of [ENV] (at least for some cases).

This belief is motivated by the intuitive interpretation of the condition (AE) of the

same article: the centers of the resolution sequence should “spread evenly” over

the parameter space N . In the context of this work, consider a foliated ideal sheaf

(M, θ, I, E) such that dπ(θ) = DerN . If there exists a resolution of (M, θ, I, E)

by θ-invariant centers (which is a particular kind of θ-admissible centers - see

Theorem 5.1.1 and Proposition 5.4.1 for results in this direction), then there exists a

equiresolution of the family.

And now, we present four open problems that seem to be natural follow-ups of this thesis:

• The general resolution of foliated spaces: The main problem of this work still

does not have a complete solution. Can we obtain a global resolution that preserves

R-monomiality for a general d-singular distribution? If not, can we at least get a local

uniformization?

• Blowing-up foliations: The “informal” problem presented in section 1.1 have differ-

ent possible interpretations. In general:
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• What kind of property of a singular distribution θ can be preserved through a

resolution of an ideal sheaf?

Since we already have good results when using θ-admissible blowing-ups, we are lead

to consider the properties that a θ-admissible blowing-up might preserve. For example:

• Does θ-admissible blowing-up preserves canonicity? And log-canonicity?

• Is the property of being θ-admissible necessary to preserve R-monomiality?

• Marked ideals: A foliated marked ideal sheaf is a quintuple (M, θ, I, s, E) where:

• (M, θ, I, E) is a foliated ideal sheaf;

• s is a positive integer.

The support of the (I, s) is the subset:

V (I, s) = {p ∈M ; I.Op ⊂ ms
p}

where mp is the maximal ideal of the structural ideal Op.

An admissible blowing-up σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E) is of order s by (M, θ, I, s, E)

if the center C is contained in the variety V (I, s).

There exists a natural transform of I over admissible blowing-ups of order s

called s-controlled transform. It is the coherent and everywhere non-zero ideal sheaf

Ic,s defined as Ic,s = O(−sF )(I.OM
′ ), where F stands for the exceptional divisor of

the blowing-up. We denote an admissible blowing-up of order s by:

σ : (M
′

, θ
′

, I ′

, s, E
′

) −→ (M, θ, I, s, E)

where the ideal sheaf I ′

is the s-controlled transform of I.

A resolution of a foliated marked ideal sheaf (M, θ, I, s, E) is a sequence of

admissible blowing-ups of order s:

(Mr, θr, Ir, s, Er) · · · (M1, θ1, I1, s, E1) (M0, θ0, I0, s, E0)
σr σ2 σ1
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such that V (Ir, s) = ∅. In this case, we can formulate an analogous version of the

main problem of this work for marked ideals:

Open Problem - Marked ideals: Given a foliated marked ideal sheaf (M, θ, I, s, E) such

that the singular distribution θ is R-monomial, is there a resolution of (M, θ, I, s, E):

(Mr, θr, Ir, s, Er) · · · (M1, θ1, I1, s, E1) (M0, θ0, I0, s, E0)
σr σ2 σ1

such that the singular distribution θr is also R-monomial?

• Generalized Flow-Box problem for higher dimensions: In section 8.6 we prove

that a class of foliated ideal sheaves called d-algebraically transverse (see Theorem

8.6.4) satisfies the G−FB property. But this property is far from being easy to verify.

Either a better definition, or a better characterization of the definition is necessary,

and remains an open problem.
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Chapter 2

Relations between Foliations and

Varieties

2.1 Main Objects

We stress that all objects of this work are analytic. We start with a list of the main objects

of this work:

A manifold with divisor is a pair (M,E):

• M is a smooth analytic manifold of dimension n over K (where K is R or C);

• E is an ordered collection E = (E(1), ..., E(l)), where each E(i) is a smooth divisor on

M such that
∑

iE
(i) is a reduced divisor with simple normal crossings.

A foliated manifold is a triple (M, θ,E):

• (M,E) is an analytic manifold with divisor;

• θ is an involutive singular distribution defined over M and everywhere tangent to E.

A foliated ideal sheaf is a quadruple (M, θ, I, E):

• (M, θ,E) is a foliated manifold;
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• I is a coherent and everywhere non-zero ideal sheaf over M .

A local foliated manifold is a quadruple (M,M0, θ, E):

• (M, θ,E) is a foliated manifold;

• M0 is an open relatively compact subset of M .

We recall the basic notions of singular distributions (we follow closely [BB]). Let DerM

denote the sheaf of analytic vector fields over M , i.e. the sheaf of analytic sections of

TM . A singular distribution is a coherent sub-sheaf θ of DerM . A singular distribution is

involutive if for each point p in M , the stalk θp := θ.Op is closed under the Lie bracket

operation.

Consider the quotient sheaf Q = DerM/θ. The singular set of θ is defined by the

closed analytic subset S = {p ∈ M : Qp is not a free Op module}. A singular distribution θ

is called regular if S = ∅. On M \ S there exists a unique analytic subbundle L of TM |M\S

such that θ is the sheaf of analytic sections of L. We assume that the dimension of the K

vector space Lp is the same for all points p in M \S (this always holds if M is connected). It

will be called the leaf dimension of θ and denoted by d. In this case θ is called an involutive

d-singular distribution and (M, θ,E) a d-foliated manifold.

A coherent set of generators of θp is a set {X1, ..., Xdp} of dp ≥ d vector fields germs

with representatives defined in a neighborhood Up of p such that {X1, ..., Xdp}.Oq generates

θq for every q ∈ Up.

According to the Stefan-Sussmann Theorem (see [St, Su]) an involutive singular dis-

tribution θ is integrable, i.e. for all point p in M , there exists an immersed locally closed

submanifold (N, φ) passing through p such that:

• Dqφ(TqN) = Lφ(q) for all q ∈ N

where Lq ⊂ TMq is the linear subspace generated by θq. The maximal connected sub-

manifolds with respect to this property are called leaves and denoted by L. The partition
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of M into leaves is called the singular foliation generated by θ (not necessarily saturated).

A singular foliation should be seen as a geometrical counterpart of a singular distri-

bution, just as a variety is a geometrical counterpart of an ideal sheaf. We remark that two

different singular distributions may generate the same singular foliation. We say that θ is

a full involutive singular distribution if, for every involutive singular distribution ω that

generates the same singular foliation as θ, the singular distribution ω is a sub-sheaf of θ.

2.2 The R-monomial singular distribution

Given a ring R such that Z ⊂ R ⊂ K and a point p in M , we say that a d-singular distribution

θ is R-monomial at p if there exists a local coordinate system x = (x1, ..., xn) and a coherent

set of generators {X1, ..., Xd} of θp such that:

• Either Xi = ∂
∂xi

, or;

• Xi =
∑n

j=1 αi,jxj
∂

∂xj
with αi,j ∈ R.

In this case, we say that x = (x1, ..., xn) is a R-monomial coordinate system and {X1, ..., Xd}
is a R-monomial basis of θp. A singular distribution is R-monomial if it is R-monomial in

all points. A foliated manifold (M, θ,E) (respectively a foliated ideal sheaf (M, θ, I, E)) is

R-monomial if θ is R-monomial.

Lemma 2.2.1. The R-monomiality is an open condition i.e. if θ is R-monomial at p in M ,

then there exists an open neighborhood U of p such that θ is R-monomial at every point q in

U .

Examples:

• Any regular distribution is a Z-monomial singular distribution;

• We say that a d-singular distribution θ is R-monomially integrable at p if there exists

a local coordinate system x = (x1, ..., xn) and n−d monomial functions λi =
∏n

j=1 x
qi,j
j

for 1 ≤ i ≤ n− d with exponents qi,j ∈ R such that:
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• Each λi is a first integral for all vector fields contained in θp, and;

• The matrix:

(qi,j) :=




q1,1 ... q1,n
...

. . .
...

qn−d,1 ... qn−d,n




is of maximal rank.

Lemma 2.2.2. Given a singular distribution θ:

I ) If it is full and R-monomially integrable, then it is R-monomial;

II ) If it is R-monomial, then it is R-monomially integrable.

In particular, we say that θp is meromorphically (respectively Darboux ) monomially

integrable if R = Z (respectively R = R).

Now, we prove the above Lemmas:

Proof. (Lemma 2.2.1): Let θ be a R-monomial d-singular distribution over p ∈ M . There

exists an open set U ⊂ M containing p, a R-monomial coordinate system x = (x1, ..., xn)

defined over U and a R-monomial basis {X1, ..., Xd} such that Xi is defined over U for all

i ≤ d. We claim that θ is R-monomial at every point q ∈ U .

Fix q ∈ U . There exists ξ = (ξ1, ..., ξn) ∈ K
n such that q = ξ in the coordinate sys-

tem x = (x1, ..., xn).

First, suppose that all vector fields:

Xi =
n∑

j=1

αi,jxj
∂

∂xj

are singular at p. Without loss of generality, suppose that ξ = (ξ1, ..., ξt, 0, ..., 0), where

ξi 6= 0 for all i ≤ t. Consider the matrix:

A =




α1,1 ... α1,t

...
. . .

...

αd,1 ... αd,t



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and let s be its rank. Without loss of generality, we assume that:

A =


 D B

0 0




where D is a s× s-diagonal matrix, B is a s× (d− s)-matrix and both matrices have only

elements in R. This implies that:

• Xi = αi,ixi
∂
∂xi

+
∑n

j=s αi,jxj
∂

∂xj
with αi,i 6= 0 for all i ≤ s;

• Xi =
∑n

j=t+1 αi,jxj
∂

∂xj
for all i > s.

and all αi,j ∈ R. Now, taking the change of coordinates (y1, ..., yn) = (x1 − ξ1, ..., xn − ξn)

we obtain:

• Xi = αi,i(yi + ξi)
∂
∂yi

+
∑t

j=s αi,j(yj + ξj)
∂

∂yj
+
∑n

j=t+1 αi,jyj
∂

∂yj
for all i ≤ s;

• Xi =
∑n

j=t+1 αi,jyj
∂

∂yj
for all i > s.

And q = (0, ..., 0) at this coordinate system. We proceed with three coordinate changes:

• First change: let yi = ξi(−1 + exp(αi,iȳi)) for all i ≤ s and yi = ȳi otherwise. One can

easily check that this is bi-analytic in an open neighborhood of the origin and that:

∂

∂ȳi
= αi,i(yi + ξi)

∂

∂yi

for all i < s. This implies that:

• For i ≤ s, we have that Xi = ∂
∂ȳi

+
∑t

j=s αi,j(ȳj + ξj)
∂

∂ȳj
+
∑n

j=t+1 αi,j ȳj
∂

∂ȳj
;

• For i > s, we have that Xi =
∑n

j=t+1 αi,j ȳj
∂

∂ȳj
.

In what follows, we drop the bars;

• Second change: let yi = −ξi + (ȳi + ξi) exp(
∑s

j=1 αj,iȳj) if s < i ≤ t and ȳi = yi

otherwise. One can easily check that this is bi-analytic in an open neighborhood of the

origin and that:

∂

∂ȳi
=

∂

∂yi
+

t∑

j=s

αi,j(yj + ξj)
∂

∂yj

for all i < s. This implies that:
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• For i ≤ s, we have that Xi = ∂
∂ȳi

+
∑n

j=t+1 αi,j ȳ
∂

∂ȳj
;

• For i > s, we have that Xi =
∑n

j=t+1 αi,j ȳj
∂

∂yj
.

In what follows, we drop the bars again;

• Third change: let yi = ȳi exp(
∑s

j=1 αj,iȳj) if i > t and ȳi = yi otherwise. One can

easily check that this is bi-analytic in an open neighborhood of the origin and that:

∂

∂ȳi
=

∂

∂yi
+

n∑

j=t+1

αi,jyj
∂

∂yj

for all i < s and

ȳi
∂

∂ȳi
= y1

∂

∂yi

for i > t. This implies that:

• For i ≤ s, we have that Xi = ∂
∂ȳi

;

• For i > s, we have that Xi =
∑n

j=t+1 αi,j ȳj
∂

∂yj
.

which forms a R-monomial basis.

Now, suppose that for i ≤ r, the vector field Xi is non-singular at p. Without loss of

generality, Xi = ∂
∂xi

and Xj(xi) ≡ 0 whenever i ≤ r and j > r. In particular, when we make

the translation (y1, ..., yn) = (x1 − ξ1, ..., xn − ξn), we have that Xi = ∂
∂yi

for i ≤ r.

Consider the quotient OU/(x1, ..., xr). It is another regular ring with a R-monomial

singular distribution {X̄r+1, ..., X̄t} that is all singular over the origin. Using the first part

of the proof, there exists a change of coordinates in Oq/(x1, ..., xr) that turns {X̄r+1, ..., X̄t}
into a R-monomial basis. Moreover, this coordinate change is invariant by the first

r-coordinates. Taking the equivalent change in Oq, we conclude the Lemma.

Proof. (Lemma 2.2.2)

I ) Consider a vector field X =
∑n

i=1 aixi
∂
∂xi

locally defined in p. Since θp is full and

R-monomially integrable, we have that X ∈ θp if, and only if, it satisfies the following
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system of equations:





X(λ1) = 0
...

X(λn−d) = 0

⇔





∑n

i=1 aiq1,i = 0
...

∑n

i=1 aiqn−d,i = 0

Since the matrix of the exponents (qi,j) is of maximal rank, the solutions of this system

forms a subspace L ⊂ K
n of dimension d. Take a generator set (A1, ..., Ad) of L, where

Ak = (ak,1, ..., ak,n) ∈ Rn, and consider the associated vector fields Xk =
∑n

i=1 ak,ixi
∂
∂xi

.

Clearly Xk is contained in θp. Apart from a Gram-Schmidt process and a change in

the coordinate systems, we can assume that:

Xk = ak,kxk
∂

∂xk
+

n∑

i=d+1

ak,ixi
∂

∂xi

where ak,k 6= 0, for all k ≤ d. If ak,i = 0 for all d + 1 ≤ i ≤ n, then instead of

Xk = αk,kxk
∂

∂xk
, consider the vector field Xk = ∂

∂xk
. After this process, we claim that

{X1, ..., Xd} generates θp.

Indeed, let X =
∑n

i=1 αi(x) ∂
∂xi

be an arbitrary vector field locally defined in p

such that: 



X(λ1) = 0
...

X(λn−d) = 0

⇔





∑n

i=1
αi(x)
xi
q1,i = 0

...
∑n

i=1
αi(x)
xi
qn−d,i = 0

This implies that, either αi(x)
xi

is analytic or qj,i = 0 for all 1 ≤ j ≤ n− d. We remark

that, by construction, if qj,i = 0 for all 1 ≤ j ≤ n − d, then ∂
∂xi

∈ {X1, ..., Xd}. So,

without loss of generality, we assume that ᾱi(x) := αi(x)
xi

is analytic for all i, which

implies that X =
∑n

i=1 ᾱi(x)xi
∂
∂xi

. Thus, clearly X must be a Op-linear combination

of {X1, ..., Xd}.

II ) Take a coherent set of generators {X1, ..., Xd} of θp such that:

• Either Xi = ∂
∂xi

and we set ai,i = 1, ai,j = 0 otherwise, or;

• Xi =
∑n

j=1 αi,jxj
∂

∂xj
with αi,j ∈ R.
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and consider an arbitrary monomial λ =
∏n

k=1 x
qk
k . This monomial is a first integral of

θp if, and only if, it satisfies the following system of equations:





X1(λ) = 0
...

Xd(λ) = 0

⇔





∑n

i=1 a1,iqi = 0
...

∑n

i=1 ad,iqi = 0

Since the matrix (ai,j) is of maximal rank, the solutions of this system is a subspace

L ⊂ K
n of dimension n − d. So, take a generator set (Q1, ..., Qn−d) of L, where

Qk = (qk,1, ..., qk,n) ∈ Rn, and consider the associated monomial λk =
∏n

i=1 x
qk,i
i . By

construction, λk are the searched first integrals.

2.3 Generalized k-Fitting Opperation

Let (M, θ,E) be a foliated manifold. The generalized k-Fitting operation (for k ≤ d) is a

mapping Γθ,k that associates to each coherent ideal sheaf I over M the ideal sheaf Γθ,k(I)

whose stalk at each point p in M is given by:

Γθ,k(I).Op =< {det[Xi(fj)]i,j≤k; Xi ∈ θp, fj ∈ I.Op} >

where < S > stands for the ideal generated by the subset S ⊂ Op. The operation Γθ,1 will

play an important role in this work and, for simplifying the notation, we denote it by θ[I].

Remark 2.3.1. If I is a coherent ideal sheaf, then Γθ,k(I) is also coherent for every k ≤ d.

This follows from the coherence of the singular distribution θ.

Remark 2.3.2. In this work, we mainly use the ideal sheaf < Γθ,k(I) + I >. In particular,

we notice that if θ = DerM then the ideal sheaf < Γθ,k(I) + I > coincides with the usual

k-Fitting ideal sheaf (see [Te]).

Remark 2.3.3. If θ = DerM , the generalized 1-Fitting ideal sheaf coincides with the deriva-

tive ideal (see chapter 3.7 of [Ko] for details on derivative ideal sheaves).
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Lemma 2.3.4. A d-singular distribution θ is regular at a point p in M if, and only if,

< Γθ,d(mp) +mp >= OM , where mp stands for the maximal ideal of the structural ideal Op.

Proof. First suppose that θ is a regular distribution in a point p of M . In this case, there

exists a coordinate system x = (x1, ...., xn) of Op and a coherent set of generators {X1, ..., Xd}
of θp which, by the flow-box Theorem, can be assumed to be equal to { ∂

∂x1

, ..., ∂
∂xd

}. Now, it

is clear that the determinant of the matrix:
∥∥∥∥∥∥∥∥

X1(x1) ... X1(xd)
...

. . .
...

Xd(x1) ... Xd(xd)

∥∥∥∥∥∥∥∥

is one. Thus, Γθ,d(mp).Op is equal to Op, which implies that < Γθ,d(mp) + mp > is equal to

OM .

Now, suppose that < Γθ,d(mp) + mp > is equal to OM . This implies that Γθ,d(mp).Op is

equal to Op. So, there exists a coherent set of generators {X1, ..., Xdp} of θp and a collection

of functions {f1, ..., fd} ⊂ mp such that the determinant of the matrix:

∥∥∥∥∥∥∥∥

X1(f1) ... X1(fd)
...

. . .
...

Xd(f1) ... Xd(fd)

∥∥∥∥∥∥∥∥

is an unity of Op. In particular, this implies that the vector fields {X1, ..., Xd} are regular

and generates linearly independent vectors of TpM . Since the leaf-dimension of θ is d, we

conclude that dp may be taken equal to d and the singular distribution θ is regular.

Given a coherent ideal sheaf I, we say that:

• I is invariant by θ or θ-invariant if θ[I] ⊂ I;

• I is totally transverse to θ or θ-totally transverse if Γθ,d(I) = OM .

The θ-differential closure of I is the smallest θ-invariant ideal sheaf I# containing I.

Remark 2.3.5. The existence of the θ-differential closure I# is a consequence of the Zorn

Lemma.
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2.4 Geometric invariance

Consider (M, θ,E) a foliated manifold and I a coherent ideal sheaf. We say that I is

geometrically invariant by θ if every leaf of θ that intersects V (I) is totally contained in V (I).

This definition corresponds to the geometrical intuition of what invariance by a folia-

tion means. But it does not corresponds to the notion of θ-invariance that we have defined:

Example: Consider (M, θ,E) = (K2, ∂
∂x
, ∅) and I = (yx, y2). Notice that I is not invariant

by θ, since θ[I] = (y). But I is geometrically invariant by θ because V (I) = {y = 0} is a

leaf of θ.

The following result gives the relation between these two notions of invariance:

Lemma 2.4.1. Let θ be an involutive d-singular distribution and I a coherent ideal sheaf.

• I) If I is an ideal sheaf θ-invariant, then I is geometrically invariant by θ;

• II) If I is a reduced ideal sheaf geometrically invariant by θ, then I is θ-invariant.

Now, consider N a sub-variety of M . We denote by IN the reduced ideal sheaf over M

such that V (IN) = N . We say that:

• N is invariant by θ if IN is invariant by θ;

• N is geometrically invariant by θ if IN is geometrically invariant by θ.

Remark 2.4.2. Since IN is a reduced ideal sheaf, by Lemma 2.4.1, the two definitions always

coincide for sub-varieties.

Now we prove the Lemma of this section:

Proof. (Lemma 2.4.1): We start supposing that θ is a 1-singular distribution. Take a point

p in V (I) and let L be the leaf of θ through p (recall that L is a sub-manifold of M).
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• I): If L is zero dimensional then it is clear that L ⊂ V (I), so we assume that L is one

dimensional. In this case, for each point q in L ∩ V (I), the singular distrbution θq is

generated by a regular vector field Xq and, by Lemma 4.2.4, there exists a system of

generators {f1, ..., fs} of I.Oq such that Xq(fi) ≡ 0. This implies the existence of an

open neighborhood Uq of q and a local coordinate system (x, y) = (x, y1, ..., yn−1) over

Uq, such that Xq = ∂
∂x

and I = (f1(y), ..., fr(y)). Thus (L∩Uq)∩ V (I) = L∩Uq, and,

since the choice of q in L was arbitrary, L∩V (I) is an open subset of L. Furthermore,

since L is locally closed and V (I) is closed, L ∩ V (I) is a closed subset of L. Thus

L ⊂ V (I).

• II): We claim that V (I) ⊂ V (θ[I]). The claim implies the result because:

θ[I] ⊂
√
θ[I] ⊂

√
I = I

So, take p ∈ V (I) and let L be the leaf of θ passing through p. If L is zero dimensional,

then all vector fields germs of θp are singular and it is clear that p ∈ V (θ[I]), so we

assume that L is one dimensional. In this case θp is generated by a regular vector

field Xp. Consider f ∈ I.Op: by hypotheses f |L ≡ 0, which implies that Xp(f)|L =

Xp(f |L) ≡ 0. Since the choice of f ∈ I.Op is arbitrarily, p ∈ V (θ[I]).

Now, we prove the result for θ an involutive d-singular distribution. Take a point p in V (I)

and let L be the leaf of θ through p and {X1, ..., Xdp} be a set of coherent generators of θ in

a small neighborhood Up of p.

• I): For a sufficiently small neighborhood Up of p, every point q in Up ∩ L is the image

of the flow (FlX1

t1
◦ ... ◦ FlXdp

tdp
)(p) = q for some (t1, ..., tdp) ∈ K

dp , where FlXt (p) is the

flow of the vector field X at time t and with initial point p (see Lemma 3.24 of [Mi]).

Since Xi(I.OUp
) ⊂ I.OUp

by hypotheses, by the first part of the proof FlXi

t (p) ∈ V (I)

for any t. A recursive use of this argument implies that q ∈ V (I). Thus, V (I) ∩ L is

open in L. Furthermore, since L is locally closed and V (I) is closed, L ∩ V (I) is a

closed subset of L. Thus L ⊂ V (I);

• II): Take any vector field X in θp and let γ be the orbit of X at p. Since L ⊂ V (I),

it is clear that γ ⊂ V (I) and, by the first part of the proof, X(I.Op) ⊂ I.Op. Since
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the choice of the point and vector field is arbitrarily, we conclude that θ[I] ⊂ I.

2.5 Chain of Ideal sheaves

A chain of ideal sheaves consists of a sequence (Ii)i∈N such that:

• Ii is an ideal sheaf over OM ;

• Ii ⊂ Ij if i ≤ j.

The length of a chain of ideal sheaves at a point p of M is the minimal number νp ∈ N such

that Ii.Op = Iνp .Op for all i ≥ νp. We distinguish two cases:

• if Iνp .Op = Op, then the chain is said to be of type 1 at p;

• if Iνp .Op 6= Op, then the chain is said to be of type 2 at p.

Given a chain of ideal sheaf (In), it is not difficult to see that the functions:

ν : M −→ N , type : M −→ {1, 2}
p 7→ νp p 7→ typep = type of (In) at p

are upper semi-continuous. So, given a subset U of M , the definition of length and type

naturally extends to U as follows:

• The length of (In) at U is νU := sup{νp; p ∈ U};

• The type of (In) at U is typeU := sup{typep; p ∈ U}.

Notice that νU may be infinity. Nevertheless, if U is a relatively compact open subset of M ,

νU is necessarily finite.

Given a foliated ideal sheaf (M, θ, I, E), the tangency chain of the pair (θ, I) is de-

fined as the following chain of ideal sheaves:

T g(θ, I) = {H(θ, I, i); i ∈ N}
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where the ideal sheaves H(θ, I, i) are given by;





H(θ, I, 0) := I
H(θ, I, i+ 1) := H(θ, I, i) + θ[H(θ, I, i)]

At each p ∈M , the length of this chain is called the tangent order (or shortly, the tg-order)

at p, and is denoted by νp(θ, I). The type of the chain is denoted by typep(θ, I).

Remark 2.5.1. Suppose that θ is generated by a regular vector field X and let γp be the

orbit of X passing through a point p of V (I). In this simple case, we can interpret these

invariants as follow:

• If the orbit γp is contained in the variety V (I), then the type of (θ, I) at p is two;

• If the orbit γp is not contained in V (I), then the type of (θ, I) at p is one. Furthermore,

the tg-order of (θ, I) is equal to the order of tangency between the orbit γp and the

variety V (I) at p.

In other words, the type identifies the presence of invariant leaves and the tg-order measures

the order of tangency between the a leaves and the variety V (I).

2.6 Smooth morphism and Chain-preserving smooth

morphism

A morphism φ : M −→ N between regular analytic manifold is smooth if, and only if, it is

a local submersion. In particular, a projection is smooth.

Remark 2.6.1. In the algebraic category, a morphism φ : X −→ Y between two schemes is

said to be smooth if:

• it is locally of finite type;

• it is flat;

• for every geometric point ȳ −→ Y the fiber Xȳ = X ×Y ȳ is regular.
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Given two foliated ideal sheaves (M, θ, I, EM) and (N,ω,J , EN), a morphism φ : M −→
N is smooth with respect to (M, θ, I, EM) and (N,ω,J , EN) if:

• The morphism φ : M −→ N is smooth;

• The set φ−1(EN) is equal to EM ;

• The ideal sheaf J .OM is equal to I.

In this case, we abuse notation and denote the morphism as:

φ : (M, θ, I, EM) −→ (N,ω,J , EN)

Notice that this definition is independent of the singular distributions θ and ω. We say that

a smooth morphism φ : (M, θ, I, EM) −→ (N,ω,J , EN) is chain-preserving if:

T g(ω,J ).OM = T g(θ, I)

i.e H(ω,J , i),OM = H(θ, I, i) for all i ∈ N.

Remark 2.6.2. A morphism may be chain preserving even if θ and ω are very “differ-

ent”. This notion depends on the interaction between the singular distributions and the ideal

sheaves. This implies, for example, that outside the support of the ideal sheaves, the singular

distributions don’t need to satisfy any relation.

We will further say that a smooth morphism φ : (M, θ, I, EM) −→ (N,ω,J , EN) is

k-chain-preserving if the morphism is chain preserving and θ and ω have leaf dimension

equal to k.

Whenever we work with local foliated ideal sheaf, a morphism φ : (M,M0, θ, I, EM) −→
(N,N0, ω,J , EN) satisfies a property P if:

φ|M0
: (M0, θ.OM0

, I.OM0
, EM ∩M0) −→ (N0, ω.ON0

,J .ON0
, EN ∩N0)

satisfies property P , where P may be: smoothness, chain-preserving smoothness and k-

chain-preserving smoothness.
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Blowings-up

3.1 Admissible blowings-up

Let σ : M
′ −→ M be a blowing-up with center C, F be the exceptional divisor of the

blowing-up and S a subset of M :

• The total transform of S is S∗ = σ∗S = σ−1S;

• The strict transform of S is Ss := σsS = σ−1(S \ C) (where S stands for the topological

closure of S).

Given (M,E) an analytic manifold with divisor, a blowing-up σ : M
′ −→ M is said to be

admissible by (M,E) if:

• The center C is a closed and regular sub-manifold of M ;

• The center C has SNC with E.

If σ : M
′ −→M is an admissible blowing-up, there is a natural structure of analytic manifold

with divisor in M
′

given by the pair (M
′

, E
′

), where E
′

= ((E(1))s, ..., (E(l))s, F ). We denote

this blowing-up by:

σ : (M
′

, E
′

) −→ (M,E)

A sequence ~σ of admissible blowings-up is a sequence (σr, ..., σ1) such that:

(Mr, Er) · · · (M1, E1) (M0, E0)
σr σ2 σ1
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where σi : (Mi, Ei) −→ (Mi−1, Ei−1) is an admissible blowing-up for (Mi−1, Ei−1) and Ei =

E
′

i−1. We establish the following notations:

• The exceptional divisor of σi is denoted by Fi;

• σ := σ1 ◦ ... ◦ σr;

• [iσ] := σi+1 ◦ ... ◦ σr;

• [σi] := σ1 ◦ ... ◦ σi.

3.2 Transforms of a singular distribution θ

Let (M, θ,E) be a d-foliated manifold and σ : (M
′

, E
′

) −→ (M,E) an admissible blowing-up

with exceptional divisor F . At this subsection we define a classical transforms of θ and we

introduce a new one.

Consider the sheaf of OM
′ -modules O(−F )⊗O

M
′
DerM ′ which we denote by BlDerM ′ (from

blowed-up derivations). There exists a mapping from DerM ′ to BlDerM ′ :

ζ : DerM ′ −→ BlDerM ′

which, given an open subset U of M
′

, associates to a vector field X ∈ DerM ′ (U) the element

ζ(X) = 1 ⊗X ∈ BlDerM ′ (U). Notice that this mapping is injective.

Given a sub-sheaf ω of DerM ′ , we abuse notation and denote by ζ(ω) the sub-sheaf

of BlDerM ′ , with the structure of a OM
′ -module, generated by the image of ω. Reciprocally,

given a sub-sheaf ω of BlDerM ′ we denote by ζ−1(ω) the sub-sheaf of DerM ′ defined in each

open set U of M
′

by the following elements:

ζ−1(ω)U = {X ∈ DerU ; ζ(X) ∈ ωU}

Since the blowing-up σ : M
′ −→ M is a morphism, it gives rise to a mapping on the

structural sheaves σ∗ : OM −→ OM
′ . Abusing notation, this morphism also gives rise to an
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application:

σ∗ : DerM −→ BlDerM ′

which, given an open subset U of M , associates to a vector field X of DerU the element

σ∗(X) = ( 1
f
⊗ fX∗), where the principal ideal (f) is equal to O(F ).Oσ−1(U) and X∗ is the

pull-back of the derivation (i.e. X∗(σ∗f) = σ∗X(f)).

The necessity to consider meromorphic functions is illustrated by the following exam-

ple:

Example: M = C
2, X = ∂

∂x
and let V (x, y) be the center of blowing-up. Then:

• In the x-chart X∗ = 1
x
(x ∂

∂x
− y ∂

∂y
);

• In the y-chart X∗ = 1
y

∂
∂x

.

In particular, even though θ is analytic, we cannot guarantee that σ∗θ is analytic.

Remark 3.2.1. The blowing-up of an analytic vector field has at most poles of order one

(as in the previous example). This implies that σ∗ : DerM −→ BlDerM ′ is well-defined.

The image σ∗(θ) is a coherent sub-sheaf of the sheaf of OM
′ -modules BlDerM ′ . We

remark that θ∗ is also a morphism of Lie-algebras.

We now define two possible transforms of θ:

• The total transform of θ is given by θ∗ := σ∗(θ);

• The analytic strict transform of θ is given by θa := ζ−1(θ∗).

Whenever ζ−1σ∗θ is isomorphic to σ∗θ, we will abuse notation and write θ∗ = ζ−1(θ∗).

We claim that the analytic strict transform is an involutive d-singular distributions

(not necessarily tangent to E
′

). The following Lemma proves the claim:
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Lemma 3.2.2. The sub-sheaf θa is an involutive d-singular distribution. Moreover, consider

a point q of M
′

and let p = σ(q) and {X1, ..., Xdp} be a coherent set of generators of θp. Then

θaq has a coherent set of generators {Yi, Zj,Wk} with i = 1, ..., r, j = 1, ..., s (r+ s = dp) and

k = 1, ..., t, where:

• Yi = (O(F )X∗
i ).Oq whenever X∗

i .Oq is not analytic;

• Zj = X∗
j .Oq whenever X∗

j .Oq is analytic;

• Wk = O(−F )
∑
γi,kYi for some Γθ,k ∈ Or

U such that Wk /∈< Yi, Zj >.

Consider the involutive n-singular distribution DerM ′ (−logF ) of DerM ′ composed by

all the derivations leaving the exceptional divisor F invariant. The adapted analytic strict

transform of θ is defined as θa,ad = θa ∩DerM ′ (−logF ). It follows from Oka’s Theorem that

θa,ad is an involutive d-singular distribution.

Now, we prove the result stated on this subsection:

Proof. (Lemma 3.2.2)

• Coherence: If q is a point outside the exceptional divisor F , the result is clear because

σ is a local isomorphism and, thus, ζ : θaq −→ θ∗q is a local isomorphism. So, consider

the point q contained in F and let p = σ(q). If {X1, ..., Xdp} is a coherent set of

generators of θp, then it is clear that:

θ∗q =< σ∗(ζ(X1)), ..., σ
∗(ζ(Xdp)) > .Oq =< (

1

f
⊗ fX∗

1 ), ..., (
1

f
⊗ fX∗

dp
)) > .Oq

Take U a sufficiently small neighborhood of q and (x, y) = (x, y1, ..., yn−1) a coordinate

system such that f = x and θaU =< ( 1
x
⊗xX∗

1 ), ..., ( 1
x
⊗xX∗

dp
) > .OU . Notice that when-

ever X∗
i .OU is an analytic vector field: ( 1

x
⊗xX∗

i .OU) = (1⊗X∗
i .OU). Reorganizing the

set of generators, we can suppose that σ∗
U =< ( 1

x
⊗Y1), ..., ( 1

x
⊗Yr), (1⊗Z1), ..., (1⊗Zs) >

where r + s = dp, Yi = xX∗
i .OU (such that Yζ(0, y) 6≡ 0) and Zi = X∗

i .OU .

Let R be the sub-module of relations of {Yi|x=0}, i.e. the r-tuples (f1, ..., fr) ∈ Or
U such
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that (
∑r

i=1 fiYi)|x=0 ≡ 0. It is easy to see that this is the same sub-module of relations

of {Yζ(x)|x=0, Yζ(yj)|x=0}i≤r,j≤n−1. Thus, by the Oka’s Theorem (see Theorem 6.4.1 of

[Ho]), R is finitely generated: R = (F1, ..., Ft) where Fi = (f1,i, ..., fr,i).

In particular, for every j ≤ t,
∑
fi,jYi is divisible by x. So, for each Fj, we

have that:
r∑

i=1

(
fi,j
x

⊗ Yi) = (
1

x
⊗

r∑

i=1

fi,jYi) =: (1 ⊗Wj)

We claim that {Yi, Zj,Wk}i≤r,j≤s,k≤t generates θaU , which implies the coherence. Indeed,

consider X ∈ θaU : we only need to check that ζ(X) ∈ {ζ(Yi), ζ(Zj), ζ(Wk)}i≤r,j≤s,k≤t.

We know there exists α ∈ Or
U and β ∈ Os

U such that:

ζ(X) = (1 ⊗X) =
∑

αi(
1

x
⊗ Yi) +

∑
βj(1 ⊗ Zj)

Now, αi = xα̃ζ(x, y) + ᾱζ(y) and thus:

ζ(X) =
∑

α̃i(x, y)(1 ⊗ Yi) +
∑

βj(1 ⊗ Zj) +
∑

ᾱi(y)(
1

x
⊗ Yi)

It is clear that
∑
ᾱi(y)Yi is divisible by x. This implies that (ᾱi) ⊂ R. So, there exists

γ ∈ Ot
U such that (ᾱ) =

∑
γkFk. This finally implies that:

ζ(X) =
∑

α̃ζ(x, y)(1 ⊗ Yi) +
∑

βj(1 ⊗ Zj) +
∑

γk(1 ⊗Wk)

• Involutiviness: For any point q of M
′

, consider vector fields X and Y contained in

θaq . Then the elements ζ(X) and ζ(Y ) are contained in θ∗q . Since θ∗q is closed under

Lie brackets, necessarily [ζ(X), ζ(Y )] ∈ θ∗q and since the Lie bracket of two analytic

derivations is still an analytic derivation, we deduce that [X, Y ] ∈ θaq .

• Leaf dimension: Since the blowing-up σ : M
′ −→ M and the morphism ζ : θa −→ θ∗

are local isomorphisms in an open and dense set, θa has also leaf dimension d.
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3.3 Transforms of foliated manifolds and foliated ideal

sheaves

Given (M, θ,E) a foliated manifold and σ : (M
′

, E
′

) −→ (M,E) an admissible blowing-up,

there is a natural structure of foliated manifold associated to (M
′

, E
′

) given by (M
′

, θ
′

, E
′

)

where θ
′

is the adapted analytic strict transform of θ. We denote the blowing-up by:

σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E)

A sequence ~σ of admissible blowings-up gives rise to a sequence:

(Mr, θr, Er) · · · (M1, θ1, E1) (M0, θ0, E0)
σr σ2 σ1

where σi : (Mi, θi, Ei) −→ (Mi−1, θi−1, Ei−1) is an admissible blowing-up and θi = θ
′

i−1.

Given an admissible blowing-up σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E), let F be the excep-

tional divisor of the blowing-up and consider a coherent everywhere non-zero ideal sheaf I
over M . We define two transforms of I:

• The total transform of I is I∗ := σ∗I = I.OM
′ ;

• The strict transform of I is Is := ∪i∈N(σ∗I : O(iF )), where O(iF ) is the ideal sheaf

O(F )i.

Furthermore, if C ⊂ V (I), then we also define:

• The controlled transform of I is Ic := I∗.O(−F ).

The following Lemma gives a crucial algebraic relation between the interactions of θ and I
under blowing-up based on the k-generalized Fitting opperations:

Lemma 3.3.1. Let σ : (M
′

, θ
′

, E
′

) → (M, θ,E) be an admissible blowing-up over a foliated

ideal sheaf (M, θ, I, E). Then:

• [Γθ,s(I)]∗ ⊂ Γθ∗,s(I∗);
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• [Γθ,s(I) + I]∗ = Γθ∗,s(I∗) + I∗.

for all s ≤ d.

Remark 3.3.2. In the above Lemma, if θ∗ is a meromorphic singular distribution, there

is a natural way to extend the definition of the operation Γθ∗,s to the sheaf of meromorphic

functions over M .

Proof. Notice that, since σ∗ : DerM → BlDerM ′ is a morphism, it is clear that:

[Γθ,s(I)]∗ ⊂ Γθ∗,s(I∗)

And, in particular [Γθ,s(I) + I]∗ ⊂ Γθ∗,s(I∗) + I∗. To prove the other inclusion, fix a point q

of M
′

, let p = σ(q) and consider a coherent set of generators {g1, ..., gt} of Γθ∗,s(I∗).Oq. For

simplicity, we assume that s = 1 (the other cases follows from analogous reasons). We can

chose the generators gi’s of the following form:

gi =
∑

j

X∗
i,j(

∑

k

ai,j,kf
∗
i,j,k)

where Xi,j are vector fields of θp, ai,j,k are functions in Oq and fi,j,k are functions in I.Op.

This clearly implies that gi is contained in the ideal ([Γ1,θ(I)]∗ + I∗).Oq, which proves the

other inclusion. This finally gives the desired result.

Given (M, θ, I, E) a foliated ideal sheaf, we say that an admissible blowing-up σ :

(M
′

, θ
′

, E
′

) −→ (M, θ,E) is of order one for (M, θ, I, E) if C ⊂ V (I). In this case, there is

a natural structure of foliated ideal sheaf associated to (M
′

, θ
′

, E
′

) given by (M
′

, θ
′

, I ′

, E
′

),

where I ′

is the controlled transform of I. We denote the blowing-up by:

σ : (M
′

, θ
′

, I ′

, E
′

) −→ (M, θ, I, E)

A sequence ~σ of admissible blowings-up of order one is a sequence (σr, ..., σ1) of admissible

blowings-up such that:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1

where σi : (Mi, θo, Ii, Ei) −→ (Mi−1, θi−1, Ii−1, Ei−1) is an admissible blowing-up of order

one for (Mi−1, θi−1, Ii−1, Ei−1) and Ii = I ′

i−1.
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3.4 Local blowings-up

Following (section 2.4 of) [BM3], a local blowing-up is a morphism τ : M
′ −→ M that is

equal to the composition of a blowing-up σ : M
′ −→ M̃ and an injective local isomorphism

π : M̃ −→M , i.e τ = π ◦ σ. Furthermore:

• If the blowing-up σ : (M
′

, E
′

) −→ (M̃, Ẽ) is admissible, we say that τ : (M
′

, E
′

) −→
(M,E) is an admissible local blowing-up, where Ẽ = π−1(E);

• If the blowing-up σ : (M
′

, θ
′

, I ′

, E
′

) −→ (M̃, θ̃, Ĩ, Ẽ) is an admissible blowing-up of

order one, we say that τ : (M
′

, θ
′

, I ′

, E
′

) −→ (M, θ, I, E) is an admissible local blowing-

up of order one, where θ̃ = θ.O
M̃

and Ĩ = I.O
M̃

.

A sequence ~τ of admissible local blowings-up of order one is a sequence (τr, ..., τ1) such that:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
τr τ2 τ1

where τi : (Mi, θi, Ii, Ei) −→ (Mi−1, θi−1, Ii−1, Ei−1) is an admissible local blowing-up of

order one.

3.5 Resolution and local uniformization of an ideal

sheaf

A resolution of a foliated ideal sheaf (M, θ, I, E) is a sequence ~σ = (σ1, ..., σr) of admissible

blowings-up of order one:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M, θ, I, E)
σr σ2 σ1

such that Ir = OMr
. In particular, I.OMr

is the ideal sheaf of a SNC divisor on Mr

contained in Er. A resolution of a local foliated ideal sheaf (M,M0, θ, I, E) is a resolution

of (M0, θ.OM0
, I.OM0

, E ∩M0). A weak-resolution of a foliated ideal sheaf (M, θ, I, E) is a

proper and analytic morphism:

σ : M
′ −→M
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such that, for every relatively compact open subset M0 of M , there exist a resolution of

(M,M0, θ, I, E):

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1

such that σ|σ−1M0
= σ1 ◦ ... ◦ σr.

A “good” resolution will also respect a functorial property. More precisely, following

[Ko] (see definition 3.31), we look for a functor R that has:

• input: The category whose objects are foliated ideal sheaves (M, θ, I, EM) and whose

morphisms are smooth morphisms;

• output: The category whose objects are admissible blowing-up sequences:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M, θ, I, E)
σr σ2 σ1

with specified admissible centers Ci and whose morphisms are given by the Cartesian

product.

The functor R is said to be a resolution functor if for all (M, θ, I, EM), it associates a

resolution of (M, θ, I, EM) that commutes with smooth morphisms. One can define in the

same manner the notion of resolution functor for local ideal sheaves with divisor and for

weak-resolution functors.

Remark 3.5.1. For such a functor to be well defined, we will accept blowings-up with empty

centers (isomorphisms).

Following (the ennunciate of Theorem 1.1 of) [BM3], a local uniformization of a foliated

ideal sheaf (M, θ, I, E) at a point p of M is a finite collection of pairs {τα : Mα −→ M, θα}
where:

• τα : Mα −→M is a proper analytic morphism;

• θα is a singular distribution over Mα.



50 Chapter 3. Blowings-up

such that:

• The union of the images
⋃
τα(Mα) is an open neighborhood of p.

• For each morphism τα : Mα −→M there exists a sequence of admissible local blowings-

up of order one:

(Mr, θr,α, Ir, Er) · · · (M1, θr,α, I1, E1) (M, θ, I, E)
τr,α τ2,α τ1,α

such that Ir = OMr
, θα = θr,α and the morphism τα is the composition of this local

blowings-up: τα = τ1,α ◦ ... ◦ τr,α.

To simplify notation, we abuse notation and denote a local uniformization {τα : Mα −→
M, θα} simply as {τα : (Mα, θα) −→ (M, θ)}.

3.6 The Hironaka’s Theorem

Let us state the version of Hironaka’s Theorem that we are going to use:

Theorem 3.6.1. (Hironaka): Let (M,M0, θ, I, E) be a local foliated ideal sheaf. Then there

exists a resolution of (M,M0, θ, I, E):

R(M,M0, θ, I, E) : (Mr, θr, Ir, Er) · · · (M0, θ0, I0, E0)
σr σ1

such that:

• The composition σ = σ1 ◦ ... ◦ σr is an isomorphism over M0 \ V (I0);

• R is a resolution functor that commutes with smooth morphisms.

Remark 3.6.2. The above Theorem is an interpretation of Theorem 1.3 of [BM2] or Theo-

rems 2.0.3 and 6.0.6 of [W] in the following sense:

• Neither of the Theorems need the notion of singular distribution;
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• Theorem 1.3 of [BM2] is enunciated in algebraic category. But the paragraph before

Theorem 1.1 of [BM2] justifies the analytic statement;

• In [BM2] and [W], the authors work with marked ideal sheaves. We specialize their

result to marked ideal sheaves with weight one. The reader may verify that the definition

of Support and (weak) transform give rise to the interpretations formulated in this work;

• In order to stress the functorial property of the resolution, we follow Kollor’s presen-

tation (see [Ko]).

Remark 3.6.3. The functorial property implies an intuitive sense of “unicity”. For example,

let Ci be the centers of R(M,M0, θ, I, E) and N a compact analytic manifold. Then Ci ×N

are the centers of R(M ×N,M0 ×N,ω, I.OM×N , E ×N) for any singular distribution ω.

An important consequence of the functoriality is the following global version of Theorem

3.6.1:

Theorem 3.6.4. Let (M, θ, I, E) be a foliated ideal sheaf. Then there exists a proper analytic

morphism:

RG(M, θ, I, E) = σ : M̃ −→M

such that:

• for every M0 ⊂ M relatively compact open set, σ|σ−1M0
is the composition of the

sequence of blowings-up R(M,M0, θ, I, E) given on Theorem 3.6.1;

• σ is an isomorphism over M0 \ V (I);

• RG(M, θ, I, E) is a weak-resolution functor that commutes with smooth morphisms.

The proof of Theorem 3.6.4 follows the same steps of Theorem 13.3 of [BM1]. We

present the proof because the idea will be useful for us.

Proof. (Theorem 3.6.4): Let (Ui)i∈N be an open cover of M by relatively compact subsets

Ui of M such that Ui ⊂ Ui+1. Theorem 3.6.1 guarantees the existence of a resolution

~σi = (σi,1, ..., σi,ri) for each (M,Ui, θ, I, E). Consider the morphism, σi := σi,1 ◦ ... ◦ σi,ri .
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The inclusion ǫi : Ui −→ Ui+1 is a smooth morphism and, by the functoriality of

Theorem 3.6.1, there exists a smooth morphism δi : U
′

i −→ U
′

i+1 such that the following

diagram:

U
′

i U
′

i+1

Ui Ui+1

σi

δi

ǫi

σi+1

commutes. It is clear that M is isomorphic to the direct limit of the Ui, i.e. the disjoint union

⊔Ui identified by the morphisms ǫi. Let M
′

be the direct limit of U
′

i (identified by the mor-

phisms δi) and σ : M
′ −→M be the direct limit of σ. By construction, σ|U ′

i
coincides with σi.

The functorial statement follows from the functoriality of each σi.
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The θ-admissible blowing-up

4.1 Definition and Main result

Let (M, θ,E) be a d-foliated manifold and let C be an analytic sub-manifold of M . Consider

the reduced ideal sheaf IC that generates C, i.e. V (IC) = C. We say that C is a θ-admissible

center if:

• C is a regular closed sub-variety;

• C has SNC with E;

• There exists 0 ≤ d0 ≤ d such that the k-generalized Fitting-ideal Γθ,k(IC) is equal to

the structural ideal OM for all k ≤ d0 and is contained in the ideal sheaf IC otherwise.

We give a geometrical interpretation of θ-admissible centers in Remark 4.3.2.

Examples:

• If C is an admissible and θ-invariant center, it is θ-admissible;

• If C is an admissible and θ-totally transverse center, it is θ-admissible;

• Let (M, θ,E) = (C3, { ∂
∂x
, ∂
∂y
}, ∅) and C = {x = 0}. Then C is a θ-admissible center, but

it is neither invariant nor totally transverse. Indeed, Γθ,1(IC) = OM and Γθ,2(IC) ⊂ IC.
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• Let (M, θ,E) = (C3, { ∂
∂x
, ∂
∂y
}, ∅) and C = {x2 − z = 0}. Then C is not a θ-admissible

center. Indeed, Γθ,1(IC) = (x, z).

An admissible blowing-up σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E) is θ-admissible if the center C is

θ-admissible. We emphasize two particular cases of θ-admissible blowings-up:

• An admissible blowing-up σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E) is θ-invariant if the center C
is θ-invariant (i.e θ[IC] ⊂ IC);

• An admissible blowing-up σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E) is θ-totally transverse if the

center C is totally transverse to θ (i.e Γθ,d(IC = OM).

A sequence ~σ = (σ1, ..., σr) of θ-admissible blowings-up is a sequence of admissible blowings-

up:

(Mr, θr, Er) · · · (M1, θ1, E1) (M0, θ0, E0)
σr σ2 σ1

such that σi : (Mi+1, θi+1, Ei+1) −→ (Mi, θi, Ei) is a θi-admissible blowing-up. A sequence

~σ = (σ1, ..., σr) of θ-invariant blowings-up and of θ-totally transverse blowings-up are defined

analogously. The following Theorem enlightens the interest of θ-admissible blowings-up:

Theorem 4.1.1. Let (M, θ,E) be a R-monomial d-foliated manifold and:

σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E)

a θ-admissible blowing-up. Then θ
′

is R-monomial.

The proof is divided in three parts. The two first subsections prove the existence of

a “good” coordinate systems. The proof of the Theorem is given in subsection 4.4. An

important corollary of the proof of this Theorem is the following:

Corollary 4.1.2. Let (M, θ,E) be a d-foliated manifold such that θ is regular and:

σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E)

a θ-invariant blowing-up. Then, θ
′

is regular.

Which is proved in the end of this chapter.
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4.2 Local coordinates for a θ-invariant center

The main result of this subsection is the following:

Proposition 4.2.1. Let (M, θ,E) be a R-monomial d-foliated manifold and C an invariant

θ-admissible center. Then, at each point p ∈ C, there exists a R-monomial coordinate system

x = (x1, ..., xn) such that IC.Op = (x1, ..., xt).

In what follows, C is always a θ-invariant admissible center and, given a point p of M ,

we denote by IC the ideal IC.Op when there is no risk of confusion on the point p.

The fundamental step for proving proposition 4.2.1 is the following result:

Lemma 4.2.2. Let (M, θ,E) be a R-monomial d-foliated manifold and I a θ-invariant

regular coherent ideal sheaf. Given a point p of M and a R-monomial coordinate system x =

(x1, ..., xn) with a R-monomial basis {X1, ..., Xd}, there exists a set of generators {f1, ..., ft}
of I := I.Op such that:

• Xi(fj) ≡ 0 if Xi is regular;

• Xi(fj) = Ki,jfj for some Ki,j ∈ R, if Xi is singular.

Let us see how this result proves proposition 4.2.1:

Proof. (Proposition 4.2.1) Take p ∈ C. Our proof is by induction on the pair (d, n), where d

is the leaf dimension of θp and n is the dimension of the ring Op.

Notice that for d = 0 or n = 1 the result is trivial (if n = 1, the support of the

ideal is a point). By induction, suppose that for all (d
′

, n
′

) < (d, n), where < is the

lexicografical order, there is always a R-monomial coordinate system x = (x1, ..., xn′ ) such

that IC = (x1, ..., xt). We prove it to (d, n).

Fix a R-monomial coordinate system x = (x1, ..., xn) and {X1, ..., Xd} a R-monomial

basis. By lemma 4.2.2, there exists a set of generators {f1, ..., ft} of the ideal IC such that:
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• Xi(fj) ≡ 0 if Xi is regular;

• Xi(fj) = Ki,jfj for some Ki,j ∈ R, if Xi is singular.

We have two cases to consider:

• Case I: Without loss of generality, suppose X1 = ∂
∂x1

and that Xj(x1) = 0 for all

j 6= 1. Since X1(fi) ≡ 0 for all i, the set of generators is independent of x1.

Let Up be an open neighborhood of p such that the coordinate system x = (x1, ..., xn)

is well defined over Up and the vector fields Xi have representatives over Up. Consider

the quotient:

Π : OUp
−→ OUp

/(x1)

The image of the distribution θ by Π is a R-monomial involutive (d − 1)-singular

distribution θ̄ given by the image of Xi, for i > 1. We denote the image of the

coordinate system x = (x1, ..., xn) by Π as x̄ = (x̄2, ..., x̄n). By induction, there exists

a change of coordinates over OUp
/(x1) such that ĪC = (x̄2, ..., x̄t). Doing the equivalent

change of coordinates in OUp
, since the change is invariant by x1, we get IC = (x2, ..., xt).

• Case II: All vector fields of the R-monomial basis {X1, ..., Xd} are singular:

Xi =
n∑

j=1

αi,jxj
∂

∂xj

Since IC is regular, we can suppose that f1 is regular and, without loss of generality,

that ∂
∂x1

f1(p) 6= 0. Take the change of coordinates x̄1 = f1 and x̄i = xi otherwise. In

the new coordinates, we get:

Xi =
n∑

j=2

αi,jx̄j
∂

∂x̄j
+K1,ix̄1

∂

∂x̄1

because Xi(f1) = K1,if1 for K1,j ∈ R. Notice that {X1, ..., Xd} is also a R-monomial

basis at this coordinate system. We drop the bars of this coordinate system in order

to have simpler notation.
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Let Up be an open neighborhood of p such that the coordinate system x = (x1, ..., xn)

is well defined over Up and the vector fields Xi have representatives over Up. Consider

the quotient:

Π : OUp
−→ OUp

/(x1)

Notice that OUp
/(x1) is an analytic manifold of dimension n − 1. The image of the

distribution θ by Π is a R-monomial involutive singular distribution θ̄ given by the

image of all Xi. Furthermore, θ̄ satisfies one of the following conditions:

• Either θ̄ is a R-monomial singular distribution of dimension d, or;

• θ̄ is a R-monomial singular distribution of dimension d − 1 and we can assume

X1 = x1
∂

∂x1

.

Either way, by induction, there exists a R-monomial coordinate system x̄ = (x̄2, ..., x̄n)

at OUp
/(x1) such that ĪC = (x̄2, ..., x̄t+1). Doing the equivalent change of coordinates

in Op, since the change is invariant by x1, we deduce the result.

In order to prove Lemma 4.2.2, we will need some preliminary definitions:

• Let Ôp denote the completion of Op and fix a coordinate system x = (x1, ..., xn). We

introduce the topology of simple convergence in Ôp, defined by a countably many semi

norms:

f =
∑

aαx
α −→ |aα|

Thus fi −→ f means that the coefficients of xα in fi converges to the coefficient of xα

in f ;

• Fixed a coordinate system x = (x1, ..., xn), and given α = (α1, ..., αn) ∈ N
n, let δα be

the derivation ∂α1

∂x1

...∂
αn

∂xn
. Given two functions f, g ∈ Op we say that g is contained in

the Taylor expansion of f at p if, for all α, either δαg(p) = δαf(p) or δαg(p) = 0.

We also recall the following result (see section 6.3 and Theorems 6.3.4 and 6.3.5 of [Ho]):
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Proposition 4.2.3. Let I be an ideal of Op and (fn)n∈N ⊂ I be a sequence of analytic

function germs which converges simply to an analytic function germ f . Then, f ∈ I.

We start the proof of Lemma 4.2.2 supposing that the distribution θ has leaf dimension

1. In the next Lemma, the coordinate system (x, y) = (x, y1, ..., yn−1) is fixed:

Lemma 4.2.4. In the notation of Lemma 4.2.2, if θp has leaf dimension 1 and θp =<

∂
∂x
>, then there exists a set of generators (h1, ..., ht) of I such that X(hi) ≡ 0. Moreover,

if (f1, ..., fr) is any set of generators of I, we can choose (h1, ..., ht) such that each hj is

contained in the Taylor expansion of a fi at p.

Proof. Take (f1, ..., fr) any set of generators of I and let f := f1. Consider its Taylor

expansion in x:

f =
∞∑

i=0

hi(y)xi

Since I is invariant by X, we have that (f)# ⊂ I (we recall that (f)# is the θ-differential

closure of the ideal (f)). We claim that (hi(y))i∈N = (f)#.

Indeed, let us prove that h0(y) ∈ (f)# (the proof for the other coefficients is analo-

gous). We set g0 = f and define recursively the expressions:

gi+1 := gi − xX(gi)
1

i

It is easy to see that:

gi = h0(y) +
∞∑

j=i

βi,jhj(y)xj

for some βi,j ∈ K. It is clear that the sequence (gn)n is contained in I and converges simply

to h0(y). By Proposition 4.2.3, this implies that h0(y) ∈ (f)# ⊂ I. Repeating the process

for every i ∈ N, we conclude that hi(y) ∈ I for all i. Thus (hi(y))i∈N ⊂ (f)#.

Using again Proposition 4.2.3, it is clear that the ideal generated by (hi(y))i∈N contains

(f)#. Moreover, since the structural ring is noetherian, we have that (hi(y))i≤N = (f)# for

some N ∈ N. Doing this for all the generators of I, we get the desired result.



4.2 Local coordinates for a θ-invariant center 59

In the next Lemma, the R-monomial coordinate system x = (x1, ..., xn) is fixed:

Lemma 4.2.5. In the notation of Proposition 4.2.2, if θp has leaf dimension 1 and θp =<

X > where X is a singular R-monomial vector field, then there exists a set of generators

(h1, ..., ht) of I such that X(hi) = Kihi, for Ki ∈ R. Moreover, if (f1, ..., fr) is any set

of generators of I, we can choose (h1, ..., ht) such that each hj is contained in the Taylor

expansion of a fi at p.

Proof. Let (f1, ..., fr) be a set of generators of I and set f = f1. Since the coordinate

system is R-monomial we have that X =
∑n

i=1Kixi
∂
∂xi

for Ki ∈ R. Taking any monomial

xα = xα1

1 ...x
αn
n we get:

X(xα) =
n∑

i=1

Kiαix
α = Kαx

α

For some Kα ∈ R (because αi ∈ Z and Ki ∈ R). Since the number of different monomials

is countable, there exists a countable set R
′ ⊂ R such that Kα ∈ R

′

, for all α ∈ Z
n. This

allow us to rewrite the Taylor expansion of f = f1 in the following form:

f(x) =
∑

i∈N
hi(x)

with hi(x) such that Xhi(x) = Kihi(x), Ki ∈ R
′

and Ki 6= Kj whenever i 6= j. Moreover,

since there exists a representative of f convergent in a open neighborhood of p (thus ab-

solutely convergent), hi(x) ∈ Op. We claim that (hi(x))i∈N = (f)#. Indeed, we show that

h0 ∈ (f)# (the others are analogous). Define g0 = f and:

g1 :=
1

K0 −K1

(K1f−X(f)) =
1

K0 −K1

[
∑

i∈N
Kihi(x)−K1

∑

i∈N
Kihi(x)] = h0+

∑

i≥2

βi,1hi ∈ (f)#

where βi,1 = Ki−K1

K0−K1

. We define recursively:

gn =
1

K0 −Kn

(Kngn−1 −X(gn−1)) = h0 +
∑

i≥n+1

βi,nhi ∈ (f)#

for non-zero constants βi,n. It is clear that (gn) ⊂ I converges simply to h0(x). By the

proposition 4.2.3, this implies that h0(x) ∈ (f)#. Repeating the process for every i ∈ N, we

conclude that (hi(y)) ⊂ (f)# for all i.
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Using again proposition 4.2.3, it is clear that (hi(x))i∈N contains (f)#. Moreover,

since the structural ring is noetherian, we have that (hi(x))i≤N is equal to (f)# for some

N ∈ N. Doing this for all fi in the set of generators of I, we get the desired result.

We are ready to prove Lemma 4.2.2:

Proof. (Lemma 4.2.2): We prove the result by induction on the leaf dimension of θ. Fix a

R-monomial coordinate system x = (x1, ..., xn) and a R-monomial base {X1, ..., Xd}. Let

(f1, ..., ft) be a set of generators of I and assume by induction that the lemma is true for

d
′

< d.

By the induction hypotheses, we can assume without loss of generality that:

• Xi(fj) ≡ 0 if Xi is regular;

• Xi(fj) = Ki,jfj for some Ki,j ∈ R, if Xi is singular.

for all i < d. Now, by lemma 4.2.4 or 4.2.5 there exists another set of generators (h1, ..., hl)

such that:

• Either Xd(hj) ≡ 0 if Xd is regular, or;

• Xd(hj) = Kd,jhj for some Ki,j ∈ R, if Xd is singular.

Furthermore, as each hi is a part of the Taylor expansion of some fj, we have that:

• Xi(hj) ≡ 0 if Xi is regular;

• Xi(hj) = Ki,jhj for some Ki,j ∈ R, if Xi is singular.

for all i ≤ d.

4.3 Local coordinates for a θ-admissible center

The main result of this section is the following:

Proposition 4.3.1. Let (M, θ,E) be a d-foliated manifold and C a θ-admissible center.

Then, at each point p ∈ C, there exists a coherent set of generators {Yi, Zj} of θp with

i = 1, ..., r and j = 1, ..., s such that:
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• IC.Op is totally transverse to {Yi};

• IC.Op is invariant by {Zj};

• There exists a coordinate system x = (x1, ..., xn) of Op such that: IC.Op = (x1, ..., xt),

Yi = ∂
∂xi

and Zj(xi) = 0 for i = 1, ..., r;

• If θ is R-monomial, then there exists a R-monomial coordinate system x = (x1, ..., xn)

such that {Yi, Zj} is a R-monomial basis. Moreover, this coordinate system can be

chosen so that IC.Op = (x1, ..., xt), Yi = ∂
∂xi

and Zj(xi) = 0 for i = 1, ..., r.

In what follows, C is always a θ-admissible center and, given a point p of M , we denote

by IC the ideal IC.Op when there is no risk of confusion on the point p.

Proof. (Proposition 4.3.1): We prove this Proposition for θ a R-monomial singular distri-

bution. In the general case, we only have to prove the first three statements, and it is not

necessary to be careful with coordinate changes.

Fix a point p ∈ C and take a R-monomial coordinate system x = (x1, ..., xn) of Op

and a R-monomial basis {X1, ..., Xd} of θp. If the center C is invariant by θ, the Proposition

trivially follows from Proposition 4.2.2. So, suppose that the center C is not invariant by θ.

There exists a maximal integer d0 > 0 such that Γθ,d0(IC) = OM . This implies that there

exists (f1, ..., fd0) ⊂ IC such that the determinant of the matrix:

A =

∥∥∥∥∥∥∥∥

X1(f1) ... X1(fd0)
...

. . .
...

Xd0(f1) ... Xd0(fd0)

∥∥∥∥∥∥∥∥

is an unity of Op. Without loss of generality, we assume that Xi = ∂
∂xi

for i ≤ d0 and

Xj(xi) = 0 for i ≤ d0 and j > d0.

The next step is a change of coordinate system and R-monomial basis that diagonal-

izes the matrix A in Op. But we need to be careful with this process, so to not destroy the

R-monomial structure.
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Without loss of generality, we assume that Xi(fi) is an unity for i ≤ d0. Consider

the change of coordinates x̄1 = f1 and x̄i = xi otherwise. After the change we get:

X1 = U ∂
∂x̄1

Xi(x̄1) = gi(x̄)

for some unit U of Op. Notice that X1 is equivalent to ∂
∂x̄1

and that {X1, Xi − gi
U
X1} is a

R-monomial basis of this new coordinate system.

Repeating this process for all the others fi, with i ≤ d0 we can assume that x = (x1, ..., xn)

is a R-monomial coordinate system of Op such that fi = xi and Xi = ∂
∂xi

for i ≤ d0.

Let Yi := Xi for i ≤ d0 and Zj := Xj+d0 for j ≤ dp − d0. It is clear that {Yi} is

totally transverse to IC and that {Yi, Zj} is a R-monomial basis. Let us prove that IC is

invariant by {Zj}: Since IC is θ-admissible, we conclude that Γd0+1(IC) ⊂ IC. In particular,

taking Z =
∑
hjZj a Op-linear combination of the {Zj}, we get:

det

∥∥∥∥∥∥∥∥∥∥∥

Y1(f1) ... Y1(fd0) Y1(g)
...

. . .
...

...

Yd0(f1) ... Yd0(fd0) Yd0(g)

Z(f1) ... Z(fd0) Z(g)

∥∥∥∥∥∥∥∥∥∥∥

∈ IC −→ det

∥∥∥∥∥∥
Id Yi(g)

0 Z(g)

∥∥∥∥∥∥
∈ IC

So Z(g) ∈ IC for every g ∈ IC and we conclude that IC is invariant by {Zj}.

In this coordinate system, we have that IC = (x1, ..., xd0 , h1, ..., hs) where hi does not

depend on (x1, ..., xd0).

Let Up be an open neighborhood of p such that the coordinate system x = (x1, ..., xn) is well

defined over Up and the vector fields Xi have representatives over Up. Consider the map:

Π : OUp
−→ OUp

/(x1, ..., xd0)

We denote the image of the coordinate system x = (x1, ..., xn) under Π by x̄ = (x̄d0+1, ..., x̄n).

At this coordinate system the image ĪC of IC is generated by (h̄1, ..., h̄s), and the image θ̄ of
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the singular distribution θ is generated by {Z̄j}. This implies that ĪC is invariant by θ̄ and,

by Proposition 4.2.1, there exists a change of coordinates such that ĪC = (x̄d0+1, ..., x̄t) and

{Z̄j} is a R-monomial basis of θ̄. Since neither Zj nor hi depends on (x1, ..., xd0), using the

equivalent change of coordinates in Op we get IC = (x1, ..., xt) and {Yi, Zj} a R-monomial

basis such that Zj(xi) = 0 for i < d0.

Remark 4.3.2. If a center C is θ-admissible, for each point p in C, there exists two singular

distributions germs θinv and θtr such that:

• The singular distribution θp is generated by {θinv, θtr};

• The ideal IC is invariant by θinv;

• The ideal IC is totally transverse by θtr.

4.4 Proof of Theorem 4.1.1

We present a Proposition that trivially implies Theorem 4.1.1:

Proposition 4.4.1. Let (M, θ,E) be a d-foliated manifold, C a θ-admissible center and

σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E) the blowing-up with center C. For a point q in the exceptional

divisor F , let p = σ(q). Then there exists a coherent set of generators {Yi, Zj} of θp with

i = 1, ..., r and j = 1, ..., s (the same of Proposition 4.3.1) such that:

• The singular distribution θ
′

.Oq is generated by {O(F )Y ∗
i , Z

∗
j }.Oq.

• If the singular distribution θ is R-monomial, so is θ
′

.

Proof. In the notation of the enunciate, consider the coordinate system x = (x1, ..., xn) of

Op and the coherent set of generators {Yi, Zj} of θp given by Proposition 4.3.1. In this case,

we have that IC := IC.Op = (x1, ..., xt) is totally transverse to {Yi} and invariant by {Zj}.

Consider a vector field X contained in θp:

X =
∑

Ai

∂

∂xi
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such that IC is invariant by X. This implies that (Ai)i≤t ⊂ IC. After the blowing-up, without

loss of generality, we can assume that q is the origin of the x1 chart:

(x1, y2, ..., yt, xt+1, ..., xn) = (x1, x1x2, ..., x1xt, xt+1, ..., xn)

In this chart, we get:

X∗ = A∗
1

∂

∂x1
+

t∑

i=2

1

x1
(A∗

i − A∗
1yi)

∂

∂yi
+

n∑

i=t+1

A∗
i

∂

∂xi

Since (Ai)i≤t ⊂ IC, the function 1
x1

A∗
i is analytic for i ≤ t. Thus, X∗ is analytic. In

particular, this implies that Z∗
j are all analytic.

In the other hand, the expressions of the blowing-up of the Yi are given by the fol-

lowing expressions:

• If t = r, we can always assume that q is the origin of the x1 chart:

Y ∗
1 = ∂

∂x1

∗
= 1

x1

(x1
∂

∂x1

−∑m

i=t yi
∂
∂yi

)

Y ∗
i = ∂

∂xi

∗
= 1

x1

∂
∂yi

(4.1)

• If t > r, then:

• The point q can be assumed to be the origin of the x1 chart and the transform

expressions are the same as in (4.1);

• The point q can be assumed to be the origin of the xt chart:

Y ∗
i = ∂

∂xi

∗
= 1

xt

∂
∂yi

(4.2)

for all i ≤ r.

Thus, they are all meromorphic and we must multiply by O(F ) exactly one time to

get analytic vector fields. Furthermore, we claim that {O(F ).Y ∗
i , Z

∗
j }.Oq is contained in

DerOq
(−logF ). Indeed:

• It is clear by the expressions (4.1) and (4.2) that O(F )Y ∗
i .Oq leaves F = {x1 = 0}

invariant.
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• Consider a vector field X contained in θp such that IC is invariant by X. Then:

[X∗(O(F )) + O(F )].Oq = [X∗(I∗C) + I∗C ].Oq = (X(IC) + IC)∗.Oq = I∗C .Oq = O(F ).Oq

Thus Z∗
j .Oq is contained in DerOq

(−logF ).

By Lemma 3.2.2, the singular distribution θa.Oq is generated by {O(F ).Y ∗
i , Z

∗
j ,Wk}.Oq where

Wk is a combination of Y ∗
i .Oq that is analytic and not generated by {O(F ).Y ∗

i , Z
∗
j }.Oq. We

have two cases to consider:

i ) If t = r, then there exists a linear combination that generates W1 = ∂
∂x1

. But

remark that W1 is not contained in DerOq
(−logF ) and O(F )Y ∗

1 .Oq = x1
∂

∂x1

is the

minimal multiple of W1 contained in DerOq
(−logF ). Thus: θ

′

.Oq is generated by

{O(F ).Y ∗
i , Z

∗
j }.Oq;

ii ) If t > r, then it is clear by the expressions (4.1) and (4.2) that there is no possible

Wk. This implies that θ
′

.Oq is generated by {O(F ).Y ∗
i , Z

∗
j }.Oq.

Furthermore, if the θ is R-monomial, we can write Zj in one of the following forms:

Zj =
∑n

i=1 αi,jxi
∂
∂xi

Zj = ∂
∂xkj

with αi,j ∈ R and kj > t. Without loss of generality, we assume that q is in the x1-chart so

to get:

Z∗
j =

∑t

i=j(αi,j − α1,j)yi
∂

∂y1
+
∑n

i=t+1 αi,jxi
∂
∂xi

Z∗
j = ∂

∂xkj

which are R-monomial at the origin. Moreover, using the expressions (4.1) and (4.2), it is

clear that {O(F )Y ∗
i , Z

∗
j } is a R-monomial basis at the origin. Now, the the same proof of

Lemma 2.2.1 is enough to show that θ
′

is also R-monomial at q.

And we are finally ready to prove corollary 4.1.2:

Proof. (Corollary 4.1.2) By Lemma 2.3.4, a d-singular distribution θ is regular at a point p

of M if, and only if, Γd,θ(mp) + mp = OM , where mp is the maximal ideal of the structural

ideal Op.
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Now, consider a point q of M
′

and let p = σ(q). Since C is θ-invariant, by Proposi-

tion 4.4.1, the singular distribution θ
′

is equal to the total transform θ∗. Since m∗
p ⊂ mq, by

Lemma 3.3.1:

Γd,θ
′ (mq) = Γd,θ∗(mq) ⊃ Γd,θ∗(m∗

p) ⊃ [Γd,θ(mp)]
∗ = OM

′

which proves the result.



Chapter 5

Two Resolutions subordinated to a

foliation

5.1 A resolution Theorem for an invariant ideal sheaf

A resolution of (M, θ, I, E):

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M, θ, I, E)
σr σ2 σ1

is said to be θ-admissible (resp. θ-invariant) if σi : (Mi, θi, Ii, Ei) −→ (Mi−1, θi−1, Ii−1, Ei−1)

is θi−1-admissible (resp. θi−1-invariant).

In this first section we consider d-foliated ideal sheaves (M, θ, I, E) such that I is

invariant by θ. In this case, we obtain a resolution:

Theorem 5.1.1. Let (M,M0, θ, I, E) be a local d-foliated ideal sheaf. Suppose that I0 is

invariant by θ0, i.e. θ[I].OM0
⊂ I.OM0

. Then, there exists a resolution of (M,M0, θ, I, E):

Rinv(M,M0, θ, I, E) : (Mr, θr, Ir, Er) · · · (M0, θ0, I0, E0)
σr σ1

such that:
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i ) ~σ = (σr, ..., σ1) is a sequence of invariant blowings-up (in particular, a sequence of

θ-admissible blowings-up);

ii ) The composition σ = σ1 ◦ ... ◦ σr is an isomorphism over M0 \ V (I0);

iii ) If θ0 is R-monomial, then so is θr;

iv ) If θ0 is regular, then so is θr;

v ) Rinv is a resolution functor that commutes with chain-preserving smooth morphisms.

This functoriality property allows us to prove a global result just as in the Hironaka’s

Theorem:

Theorem 5.1.2. Let (M, θ, I, E) be a d-foliated ideal sheaf. Suppose that I is invariant by

θ. Then there exists a proper analytic morphism:

RGinv(M, θ, I, E) = σ : (M̃, θ̃) −→ (M, θ)

such that:

i ) for every M0 ⊂M a relatively compact open set of M , σ|σ−1M0
is the composition of

the sequence of blowings-up Rinv(M,M0, θ, I, E) given on Theorem 5.1.1;

ii ) If θ is R-monomial, so is θ̃;

iii ) If θ is regular, so is θ̃;

iv ) σ is an isomorphism over M \ V (I);

v ) RGinv(M, θ, I, E) is a weak-resolution functor that commutes with chain-preserving

smooth morphisms.

The proof follows, mutatis mutandis, the same proof of Theorem 3.6.4.
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5.2 Proof of Theorem 5.1.1

By the Hironaka’s Theorem 3.6.1, there exists a resolution ~σ = (σ1, ..., σr) of (M,M0, θ, I, E):

R(M,M0, θ, I, E) : (Mr, θr, Ir, Er) · · · (M0, θ0, I0, E0)
σr σ1

where σi : (Mi, θi, Ii, Ei) −→ (Mi−1, θi−1, Ii−1, Ei−1) has center Ci. Claim: The admissible

sequence of blowings-up ~σ = (σ1, ..., σr) is θ-invariant.

Proof. Suppose by induction that the centers Ci are θi−1-invariant for i < k. We need to

verify that Ck is also θk−1-invariant (including for k = 1).

First, notice that Ik−1 is invariant by θk−1. This follows from the induction hypothe-

ses and a recursive use of the following lemma:

Lemma 5.2.1. Consider an admissible blowing-up of order one σ : (M
′

, θ
′

, I ′

, E
′

) −→
(M, θ, I, E) with a center C invariant by θ. Then I ′

is invariant by θ
′

.

This Lemma is proved in the end of this section. We continue with the proof of the

Claim: Since Ck is regular, by Lemma 2.4.1, we only need to verify that Ck is geometrically

invariant by θk−1. We divide in two cases:

• First case: θk−1 has leaf dimension one. Let L be a connected leaf of θk−1 with

non-empty intersection with Ck. We need to verify that L ⊂ Ck, which is clear if L is

zero-dimensional. So, assume that the leaf L is one-dimensional and take a point p in

Ck ∩ L.

Locally, the singular distribution θk−1.Op is generated by a unique non-singular

vector field germ Xp with a representative in an open neighborhood Up of p. By the

flow-box Theorem there exists a coordinate system (x, y) = (x, y1, ..., yn−1) in Up such

that Xp = ∂
∂x

.

Furthermore, without loss of generality, Up = V × W where V is a domain of

K
n−1 and W a domain of K such that:
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• The leaves of θ.OUp
are given by {q} ×W , for every q ∈ V ;

• The divisor Ek−1 ∩ Up is equal to EV ×W , where EV is a SNC divisor over V ;

• There exist a natural smooth morphism π : V ×W −→ V .

By the coherence of Ik−1 and Proposition 4.2.2, without loss of generality, the ideal

sheaf IUp
:= Ik−1.OUp

has a finite set of generators {f1(y), ..., fk(y)} independent of x.

Let gi ∈ OV be functions such that gi(y) = fi(0, y) and J be the ideal sheaf

over OV generated by the (g1(y), ..., gt(y)): this clearly implies that J .OV×W = IUp
.

Furthemore, the functorial statement of Hironaka’s Theorem 3.6.1 guarantees that

the resolution of (Up, I.OUp
, Ek−1 ∩Up) and (V,J , EV ) commutes. This finally implies

that Ck = π(Ck)×W (see remark 3.6.3) and the intersection L∩Ck must be open over

L. By analyticity it is also closed and L ⊂ Ck;

• Second case: θk−1 has leaf dimensional d. Let L be a connected leaf of θk−1 with

non-empty intersection with Ck. Take a point p ∈ Ck ∩ L and a coherent set of

generators {X1, ..., Xdp} of θ.Op with representatives defined in an open neighborhood

Up of p. Without loss of generality, every point q of Up ∩ L is contained in the image

of the flux (FlX1

t1
◦ ... ◦ FlXdp

tdp
)(p) for some (t1, ..., tdp).

If Li is the leaf of Xi passing through p, by the first part of the proof Li ⊂ Ck. A

recursive use of this argument implies that (FlX1

t1
◦ ...◦FlXdp

tdp
)(p) ∈ Ck for small enough

(t1, ..., tdp) which implies that L ∩ Ck is open over L. By analyticity it is also closed,

which implies that L ⊂ Ck.

Thus, by induction, ~σ = (σ1, ..., σr) is a sequence of θ-invariant admissible blowings-up of

order one.

The functoriality statement of Theorem 5.1.1 is a direct consequence of the functoriality

of Theorem 3.6.1. The R-monomiality statement is a direct consequence of Theorem 4.1.1

and the regularity statement is a direct consequence of Corollary 4.1.2.

To finish, we only need to prove Lemma 5.2.1:
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Proof. (Proof of Lemma 5.2.1): Since C is a regular sub-manifold geometrically invariant by

θ, by Lemma 2.4.1 it is also invariant by θ. Furthermore, by Lemma 3.3.1 we have that:

θ[IC] ⊂ IC −→ θ∗[O(F )] ⊂ O(F )

Moreover, σ is a θ-admissible blowing-up and, by Proposition 4.4.1, θ
′

= θ∗. Thus, again by

Lemma 3.3.1:

θ
′

[I ′

] + I ′

= θ∗[I∗.O(−F )] + I ′ ⊂
θ∗[I∗]O(−F ) + I∗θ∗[O(−F )] + I ′

= I ′

5.3 A resolution Theorem subordinated to a 1-foliation

In this section we consider foliated ideal sheaves (M, θ, I, E) such that θ has leaf dimension

one. In this case, our main result is the following:

Theorem 5.3.1. Let (M,M0, θ, I, E) be a local 1-foliated ideal sheaf. Then, there exists a

resolution of (M,M0, θ, I, E):

R1(M,M0, θ, I, E) : (Mr, θr, Ir, Er) · · · (M0, θ0, I0, E0)
σr σ1

such that:

i ) ~σ = (σr, ..., σ1) is a sequence of θ-admissible blowings-up;

ii ) The composition σ = σ1 ◦ ... ◦ σ1 is an isomorphism over M0 \ V (I0);

iii ) If θ0 is R-monomial, then so is θr;

iv ) R1 is a resolution functor that commutes with 1-chain-preserving smooth morphisms.

v ) If ω is a d-involutive distribution such that I is ω-invariant and {ω, θ} is an in-

volutive d + 1-singular distribution, the sequence of blowings-up R1(M,M0, θ, I, E) is

ω-invariant;
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Remark 5.3.2. The functorial property [v] of Theorem 5.3.1 will be used in the proof of

Proposition 6.2.4 below.

The functorial property [iv] of Theorem 5.3.1 allows us to prove a global result just as

in the Hironaka’s Theorem:

Theorem 5.3.3. Let (M, θ, I, E) be a 1-foliated ideal sheaf. Then there exists a proper

analytic morphism:

RG1(M, θ, I, E) = σ : (M̃, θ̃) −→ (M, θ)

such that:

i ) for every M0 ⊂ M relatively compact open set of M , σ|σ−1M0
is the composition of

the sequence of blowings-up R1(M,M0, θ, I, E) given on Theorem 5.3.1;

ii ) If θ is R-monomial, so is θ̃;

iii ) σ is an isomorphism over M \ V (I);

iv ) RG1(M, θ, I, E) is a weak-resolution functor that commutes with 1-chain-preserving

smooth morphisms.

The proof follows, mutatis mutandis, the same proof of Theorem 3.6.4.

5.4 Proof of Theorem 5.3.1

Let us start giving the intuitive idea of the proof. Given a local 1-foliated ideal sheaf

(M,M0, θ, I, E) the main invariant we consider is the pair:

(ν, t) := (νM0
(θ, I), typeM0

(θ, I))

where we recall that the tg-order νM0
(θ, I) stands for the length of the tangency chain

T g(θ, I) overM0 and the typeM0
(θ, I) stands for the type of this chain atM0 (see section 2.5).

The proof of the Theorem relies on two steps:
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• First step: (ν, 2) −→ (ν, 1);

• Second step: (ν, 1) −→ (ν − 1, 2).

which shows that this invariant drops. The following Propositions formalize the above steps:

Proposition 5.4.1. Let (M,M0, θ, I, E) be a local d-foliated ideal sheaf and suppose that

typeM0
(θ, I) = 2. Then, there exists a sequence of θ-invariant admissible blowings-up of

order one:

S1(M,M0, θ, I, E) : (Mr, θr, Ir, Er) · · · (M0, θ0, I0, E0)
σr σ1

such that:

i ) νMr
(θr, Ir) ≤ νM0

(θ, I) and typeMr
(θr, Ir) = 1;

ii ) If ω is a d
′

-involutive distribution such that I is ω-invariant and {ω, θ} generates an

involutive d+ d
′

-singular distribution, the sequence of blowings-up is ω-invariant;

iii ) If φ : (M,M0, θ, I, EM) −→ (N,N0, ω,J , EN) is a chain-preserving smooth mor-

phism, then there exists a chain-preserving smooth morphism ψ : (Mr, θr, Ir, EM,r) −→
(Nr, ωr,Jr, EN,r).

Proposition 5.4.2. Let (M,M0, θ, I, E) be a local 1-foliated ideal sheaf and suppose that

typeM0
(θ, I) = 1. Then, there exists a sequence of θ-admissible blowings-up of order one:

S2(M,M0, θ, I, E) : (Mr, θr, Ir, Er) · · · (M0, θ0, I0, E0)
σr σ1

such that:

i ) νMr
(θr, Ir) < νM0

(θ, I);

ii ) If ω is a d-involutive distribution such that I is ω-invariant and {ω, θ} generates an

involutive d+ 1-singular distribution, the sequence of blowings-up is ω-invariant;
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iii ) If φ : (M,M0, θ, I, EM) −→ (N,N0, ω,J , EN) is a 1-chain-preserving

smooth morphism, then there exists a 1-chain-preserving smooth morphism ψ :

(Mr, θr, Ir, EM,r) −→ (Nr, ωr,Jr, EN,r).

These two Propositions will be proved in the next two sections. For now, we assume

them so to prove Theorem 5.3.1:

Proof. (Theorem 5.3.1): Let N be a relatively compact open subset of M . The tg-order

and type (ν(N), t(N)) := (νN(θ, I), typeN(θ, I)) are well-defined.

In particular, if N1 and N2 are two relatively open subsets of M such that N1 ⊂ N2,

then (ν(N1), t(N1)) ≤ (νN2
(θ, I), typeN2

(θ, I)) (where the order is lexicographically).

Fix N a relatively compact open subset of M such that M0 ⊂ N . We claim that there exists

M0 ⊂ N0 ⊂ N a relatively compact open subset N0 that satisfies M0 ⊂ N0 ⊂ N0 ⊂ N and

a sequence of θ-admissible blowings-up:

(Nr, θr, Er) · · · (N1, θ1, E1) (N0, θ0, E0)
σr σ2 σ1

such that (ν(Nr), t(Nr)) < (ν(N), t(N)).

We prove the claim: Take any relatively compact open subset N0 satisfying

M0 ⊂ N0 ⊂ N0 ⊂ N . If (ν(N0), t(N0)) < (ν(N), t(N)), the claim is obvious, so

assume that (ν(N0), t(N0)) = (ν(N), t(N)). By Propositions 5.4.1 or 5.4.2 applied to

(N,N0, θ, I, E), there exists a sequence of θ-admissible blowings-up:

(Nr, θr, Er) · · · (N1, θ1, E1) (N0, θ0, E0)
σr σ2 σ1

such that (ν(Nr), t(Nr)) < (ν(N0), t(N0)) = (ν(N), t(N)), which proves the claim.

As a mater of fact, the recursive use of this claim will prove the Theorem: since the

pair (ν, t) is bounded below by (0, 1) one cannot recursively apply the claim an infinite
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number of times. Once the process stops, we restrict all blowings-up to M0 and its

transforms, which is well-defined because of the functoriality statements of Propositions

5.4.1 and 5.4.2.

The functoriality statements [iv] and [v] of the Theorem follows directly from the

functoriality statements [ii] and [iii] of Propositions 5.4.1 and 5.4.2. Furthermore, as all

blowings-up are θ-admissible, by Theorem 4.1.1 if θ.OM0
is R-monomial, so will be its

transforms.

5.5 Proof of Proposition 5.4.1

Consider a d-foliated ideal sheaf (M,M0, θ, I, E) such that typeM0
(θ, I) = 2. Let ν =

νM0
(θ, I) and Cl(I) := H(θ, I, ν) (see section 2.5). By Theorem 5.1.1, there exists a θ-

invariant resolution ~σ = (σ1, ..., σr) of (M,M0, θ, Cl(I), E):

(Mr, θr, (Cl(I))r, Er) · · · (M1, θ1, (Cl(I))1, E1) (M0, θ0, (Cl(I))0, E0)
σr σ2 σ1

Claim 1: The sequence of blowings-up ~σ is θ-admissible of order one for (M,M0, θ, I, E).

Furthermore:

(Cl(I))j = Cl(Ij)

for all j ≤ r.

The main step for proving the claim is the following Lemma:

Lemma 5.5.1. Let σ : (M
′

, θ
′

, I ′

, E
′

) −→ (M, θ, I, E) be an invariant θ-admissible blowing-

up of order one for (M, θ, Cl(I), E). Then:

H(θ
′

, I ′

, i) = H(θ, I, i)′

= H(θ, I, i)∗O(−F )

for every i ≤ ν. In particular: (Cl(I))
′

= Cl(I ′

).

Which we prove in the end of this section. We now proceed with the proof of the Claim

1:
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Proof. (Claim 1) Suppose by induction that, for i < k, the sequence (σ1, ..., σi) is admissible

of order one for (M,M0, θ, I, E) and:

(Cl(I))j = Cl(Ij)

for j ≤ i. We prove the result for i = k (including k = 1). Since σk is a blowing-up of order

one for (Mk−1, θk−1, (Cl(I))k−1, Ek−1), by the induction hypotheses, it is also of order one for

(Mk−1, θk−1, Cl(Ik−1), Ek−1). Finally, since Ik−1 ⊂ Cl(Ik−1), the blowing-up σk is of order one

for (Mk−1, θk−1, Ik−1, Ek−1), which implies that (σ1, ..., σi) is of order one for (M,M0, θ, I, E).

Now, by Lemma 5.5.1 and the induction hypotheses:

(Cl(I))k = (Cl(I))
′

k−1 = (Cl(I)k−1)
′

= Cl(I ′

k−1) = Cl(Ik)

This implies that ~σ gives rise to an invariant θ-admissible sequence of blowings-up of

order one for (M,M0, θ, I, E):

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1

such that:

H(θ, Ir, ν) = Cl(Ir) = (Cl(I))r = OMr

which implies that νMr
(θr, Ir) ≤ νM0

(θ, I) and typeMr
(θr, Ir) = 1.

We now prove the functorial statement [ii] of the Proposition:

Claim 2: The ideal sheaves H(I, θ, i) are ω-invariant for all i ∈ N.

Proof. We prove the result by induction on i. For i = 0, the result follows by hypotheses, so

assume the result proved for i = k. Since {θ, ω} is an involutive singular distribution, the

following calculation shows that the Claim 2 is valid for k + 1:

ω[H(I, θ, k + 1)] = ω[θ[H(I, θ, k)] +H(I, θ, k)] ⊂
θ[ω[H(I, θ, k)]] + θ[H(I, θ, k)] + ω[H(I, θ, k)] ⊂ H(I, θ, k + 1)
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So, by part [iv] of Theorem 5.1.1, the resolution ~σ = (σ1, ..., σr) is also ω-invariant,

because the identity is a chain-preserving smooth morphism between (M,M0, θ, Cl(I), E)

and (M,M0, {θ, ω}, Cl(I), E). This proves the functorial statement [ii] of the Proposition.

We now prove the functorial statement [iii] of the Proposition:

Let φ : (M,M0, θ, I, EM) −→ (N,N0, ω,J , EN) be a chain-preserving smooth mor-

phism. Let ~σ = (σ1, ..., σr) and ~τ = (τ1, ..., τr) be the sequences of blowings-up given in

the Proposition (the length of the sequence may be chosen to be the same because of the

functoriality of Theorem 5.1.1). Furthermore, for any ideal sheaf K over Ni−1, because of

the functoriality of Theorem 5.1.1, we deduce that:

(σi)
∗(K.OMi−1

) = (τ ∗i K).OMi

In particular, if FM,i is the exceptional divisor of the blowing-up σi : Mi −→ Mi−1 and FN,i

is the exceptional divisor of the blowing-up τi : Ni −→ Ni−1, we have that:

O(−FN,i).OMi
= O(−FM,i)

Claim 3: The following equality holds:

H(Ji, ωi, j).OMi
= H(Ii, θi, j)

for i ≤ r and j ∈ N.

Proof. Suppose by induction that H(ωi,Ji, j).OMi
= H(θi, Ii, j) for i < k and any j ∈ N.

Then:

H(ωk,Jk, j).OMk
= (O(−FN,k)τ ∗kH(ωk−1,Jk−1, j)).OMk

=

= O(−FM,k)σ∗
kH(θk−1, Ik−1, j) = H(θk, Ik, j)

for any j ∈ N, which proves Claim 3.

It is clear that Claim 3 implies the functoriality statement [iii] of the Proposition.

To finish, we only need to prove Lemma 5.5.1:
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Proof. (Lemma 5.5.1) First, notice that, since H(θ, I, i) ⊂ Cl(I) for i ≤ ν, the blowing-up

is also of order one for (M, θ,H(θ, I, i), E).

By hypotheses, the center C is invariant by θ and, by Proposition 4.3.1, the adapted

analytic strict transform θ
′

coincides with the total transform θ∗. Thus, if F is the

exceptional divisor and J is a coherent ideal sheaf, by Lemma 3.3.1:

θ
′

[O(F )] ⊂ O(F ) ⇒ J θ′

[(O(−F ))] ⊂ JO(−F )

In particular, this implies that:

θ
′

[JO(−F )] + JO(−F ) = O(−F )(θ
′

[J ] + J )

Now, it rests to prove that the following equality:

H(θ
′

, I ′

, i) = H(θ, I, i)∗O(−F )

is valid for all i ≤ ν. Indeed, suppose by induction that the equality is valid for i < k

(notice that for k = 0, the equality is trivial). Since the blowing-up is of order one for

(M, θ,H(θ, I, k), E), we have that:

H(θ
′

, I ′

, k) = H(θ
′

, I ′

, k − 1) + θ
′

[H(θ
′

, I ′

, k − 1)] =

H(θ
′

, I ′

, k − 1) + θ∗[H(θ, I, k − 1)∗O(−F )] =

O(−F ){H(θ, I, k − 1) + θ[H(θ, I, k − 1)]}∗ =

O(−F )H(θ, I, k)∗ = H(θ, I, k)
′

which proves the equality and the Lemma.

5.6 Proof of Proposition 5.4.2

Consider a 1-foliated ideal sheaf (M,M0, θ, I, E) such that typeM0
(θ, I) = 1. Let ν =

νM0
(θ, I) and Mtg(I) := H(θ, I, ν − 1). By Theorem 3.6.1, there exists a resolution ~σ =

(σ1, ..., σr) of (M,M0, θ,Mtg(I), E):

(Mr, θr, (Mtg(I))r, Er) · · · (M0, θ0, (Mtg(I))0, E0)
σr σ1
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Claim 1: the sequence of blowing-up ~σ is θ-admissible. Furthermore, the center of blowing-

up Ck are totally transverse to θk−1.

Proof. Suppose by induction that, for i < k:

a ) The sequence (σ1, ..., σi) of blowing-up is θ-admissible;

b ) For p ∈ V ((Mtg(I))i), there exists a coherent coordinate system (x, y) =

(x, y1, ..., yn−1) of Op such that x ∈ Mtg(I)i.Op and ∂
∂x

generates θi,p := θi.Op.

We prove the result for k:

• Step k = 1. In this case, since the type of the tangency chain T g(θ, I) is one,

for every p ∈ V ((Mtg(I))0) the distribution θp is generated by a non-singular

vector field. By the flow-box Theorem, there exists a coherent coordinate system

(x, y) = (x, y1, ..., yn−1) of Op such that θp is generated by X := ∂
∂x

.

Furthermore, there exists g ∈ T g(θ, I).Op such that X(g) is an unity of Op.

This implies that g = xU(x, y) + h(y) where U(x, y) is an unity. Making the

change of coordinates x̄ = g(x, y) and ȳ = y we get a coordinate system such that

x̄ ∈ T g(θ, I).Op and θp is generated by X = V ∂
∂x̄

, where V = U(x, y) + xUx(x, y) is

an unity.

• Step k > 1. Take any p ∈ V ((Mtg(I))k−1). Since the center Ck of the blowing-up

σk : Mk −→ Mk−1 is contained in V ((Mtg(I))k−1), by the induction hypotheses [b]

it is also totally transverse to θ at p. This implies that the sequence (σ1, ..., σk) of

blowing-up is θ-admissible.

Consider q ∈ V ((Mtg(I))k) and p = σk(q). If σk is a local isomorphism over

q, the result is trivial, so we assume that q ∈ Fk. By the induction hypotheses [ii],

there exists a coherent coordinate system (x, y) = (x, y1, ..., yn−1) of Op such that

x ∈ Mtg(I)k−1.Op and ∂
∂x

generates θk−1,p. Since C ⊂ V (Mtg(I)k−1), without loss of

generality IC.Op = (x, y1, ..., yt) and q is the origin of the y1-chart. It is now easy to
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compute the transforms of the blowing-up at q and see that the induction hypotheses

[b] is valid for i = k.

Using claim 1 together and Proposition 4.3.1, we deduce that:

θk+1 = O(Fk)σ∗
k(θk) (5.1)

and, since the center is totally transverse:

θk+1[O(Fk)] ⊂ O(Fk) (5.2)

to simplify notation, define (iσk) = σi+1 ◦ ... ◦ σk for i < k, (kσk) = id and σ̄k = σ1 ◦ ... ◦ σk.

We also introduce:

Kk(α) =
k−1∏

i=1

[(iσk−1)
∗O(αFi)]

Using the equation (5.1) recursively, we get that:

θk = Kk(1)σ̄∗
kθ (5.3)

Using the equation (5.2) recursively, we get that:

θk(Kk(α)) ⊂ Kk(α) (5.4)

Furthermore, given an ideal sheaf J , equation (5.4) implies that:

θk[Kk(α)J ] + Kk(α)J = Kk(α)(J + θk[J ]) (5.5)

Claim 2: the sequence of blowing-up ~σ is of order one for (M,M0, θ, I, E) and:

H(θk, Ik, j) = Kk(−1).

j∑

i=0

Kk(i)σ̄∗
kH(θ0, I0, i) (5.6)

for all j ≤ ν.

Proof. Suppose by induction that, for k < k0:

a ) The sequence (σ1, ..., σi) of blowing-up is of order one for (M,M0, θ, I, E);
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b ) Equation (5.6) is valid for k < k0.

We prove the result for k0. Notice that the step k0 = 0 is trivial, so we can treat only the

case k0 > 0:

• Step k0 > 0. Using the induction hypotheses [ii] we deduce that:

H(θk0−1, Ik0−1, j) = Kk0−1(−1).
∑j

i=0 Kk0−1(i)σ̄
∗
k0−1H(θ0, I0, i) ⊂

⊂ Kk0−1(−1).
∑j

i=0 σ̄
∗
k0−1H(θ0, I0, i) = Kk0−1(−1)σ̄∗

k0−1H(θ0, I0, j)

In particular:

Mtg(Ik0−1) ⊂ (Mtg(I0))k0−1 (5.7)

Which implies that Ck0 ⊂ V (Mtg(Ik0−1)). So the sequence of blowings-up (σ1, ..., σk0)

is of order one for (M,M0, θ, I, E).

We now verify the induction hypotheses [b] for k = k0 by induction on j. In-

deed, the formula is clearly true for j = 0, so consider it proved for j < j0. We prove

it for j = j0. Indeed, by equation (5.5):

H(θk0 , Ik0 , j0) = H(θk0 , Ik0 , j0 − 1) + θk0 [H(θk0 , Ik0 , j0 − 1)] =

= H(θk0 , Ik0 , j0 − 1) + θk0 [Kk0(−1).
∑j0−1

i=0 Kk0(i)σ̄
∗
k0
H(θ0, I0, i)] =

= H(θk0 , Ik0 , j0 − 1) + Kk0(−1).
∑j0−1

i=0 Kk0(i)θk0 [σ̄
∗
kH(θ0, I0, i)]

Now, using equation (5.3) and Lemma 3.3.1, we can continue the deduction:

= H(θk0 , Ik0 , j0 − 1) + Kk0(−1).
∑j0−1

i=0 Kk0(i+ 1)σ̄∗
k0

(θ[H(θ0, I0, i)]) =

= H(θk0 , Ik0 , j0 − 1) + Kk0(−1).
∑j0−1

i=0 Kk0(i+ 1)σ̄∗
k0

(H(θ0, I0, i+ 1)) =

= Kk0(−1).
∑j0

i=0 Kk0(i)σ̄
∗
k0
H(θ0, I0, i)

So the formula is proved.

Claim 2 implies that the sequence of θ-admissible blowings-up ~σ = (σ1, ..., σr) of order

one for (M,M0, θ,Mtg(I), E) is also of order one for (M,M0, θ, I, E):

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1
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such that: Claim 3: The tg-order ν(θr, Ir) is strictly smaller then ν.

Proof. Let σ̄ = σ1 ◦ ... ◦ σr and we recall that (Mtg(I))r = OMr
, which implies that

σ̄∗H(θ0, I0, ν − 1) = Kr(1). By claim 2, we deduce that:

H(θr, Ir, ν − 1) = Kr(−1).
∑ν−1

i=0 Kr(i)σ̄
∗H(θ0, I0, i) =

= Kr(−1).
∑ν−2

i=0 Kr(i)σ̄
∗H(θ0, I0, i) + Kr(ν − 2) =

= H(θr, Ir, ν − 2) + Kr(ν − 2)

which implies that:

θr[H(θr, Ir, ν − 1)] +H(θr, Ir, ν − 1) = H(θr, Ir, ν − 1) + θr[Kr(ν − 2)] ⊂
⊂ H(θr, Ir, ν − 1) + Kr(ν − 2) = H(θr, Ir, ν − 1)

Which proves that the chain is stabilizing in at most ν − 1 steps.

We now prove the functorial statement [ii] of the proposition:

Claim 4: The ideal sheaves H(I, θ, i) are ω-invariant for all i ∈ N.

Proof. The proof follows, mutantis mutatis, the same proof of Claim 2 contained in the proof

of Proposition 5.4.1.

So, by part [iv] of Theorem 5.1.1, the resolution ~σ = (σ1, ..., σr) is also ω-invariant,

because the identity is a chain-preserving smooth morphism between (M,M0, 0,Mtg(I), E)

and (M,M0, ω,Mtg(I), E).

We now prove the functorial statement [iii] of the Proposition.

Let φ : (M,M0, θ, I, EM) −→ (N,N0, ω,J , EN) be a 1-chain-preserving smooth mor-

phism. Consider ~σ = (σ1, ..., σr) and ~τ = (τ1, ..., τr) the sequences of blowings-up given in

the Proposition (the length of the sequence may be chosen to be the same because of the

functoriality of Theorem 3.6.1). Furthermore, for any ideal sheaf K over Ni−1, because of

the functoriality of Theorem 3.6.1, we deduce that:

(σi)
∗(K.OMi−1

) = (τ ∗i K).OMi
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In particular, if FM,i is the exceptional divisor of the blowing-up σi : Mi −→ Mi−1 and FN,i

is the exceptional divisor of the blowing-up τi : Ni −→ Ni−1, we have that:

O(−FN,i).OMi
= O(−FM,i)

Furthermore, define KM,k(α) and KN,k(α) in the obvious way. We have that:

KN,i(α).OMi
= KM,i(α)

Claim 5: The following equality holds:

H(Ji, ωi, j).OMi
= H(Ii, θi, j)

for i ≤ r and j ∈ N.

Proof. Suppose by induction that H(ωi,Ji, j).OMi
= H(θi, Ii, j) for i < k0 and any j ∈ N.

Then:

H(ωk0 ,Jk0 , j).OMk0
= (KN,k0(−1)

∑j

i=0 KN,k0(i)τ̄
∗
k0
H(ω0,J0, i)).OMk0

=

KM,k0(−1)
∑j

i=0 KM,k0(i)σ̄
∗
k0
H(θ0, I0, i) = H(θk0 , Ik0 , j)

for any j ∈ N, which proves the claim.

It is clear that Claim 5 implies the functoriality statement [iii] of the Proposition.

5.7 Appendix: Considerations about the general case

In the general case of a local d-foliated ideal sheaf (M,M0, θ, I, E), obtaining a global

resolution seems to be a challenging problem that may need new ideas. To discuss the

difficulty of this problem, we follow a more intuitive presentation in this section.

We start giving two intuitive reasons of why the one dimensional case is technically

simpler:

i ) The only non-trivial generalized Fitting operation is Γθ,1. Intuitively, this implies

that the tangency chain T g(θ, I) completely describes the intersection between the

variety V (I) and the singular distribution θ.
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ii ) There exists a dichotomy of θ-admissible centers: either they are θ-invariant, or they

are θ-totally transverse.

These two statements don’t hold when θ is a d-singular distribution. There exists two naive

ideas (maybe complementary) to continue the search of a resolution:

i ) An induction over the leaf dimension d of θ;

ii ) A refinement of the invariants, using the other k-generalized Fitting operations Γθ,k.

At first, we tried to follow a strictly [I] approach, believing that most of the difficulty

could disappear under an induction machinery. This is also the main idea behind the next

chapter, where a local uniformization is presented for 2-singular distributions. But, for the

general problem, the fact [ii] turned out to be a serious difficulty to this naive idea. A

generalization of Proposition 5.4.2 may follow from the exact same arguments of the proof

of that result. But this seems technically difficult to prove, because the tg-order ν(θ, I)

is not stable by θ-admissible blowings-up when d > 1. This is illustrated in the following

example:

Example 1: Let (M, θ, I, E) = (C3, { ∂
∂x
, ∂
∂y
}, (x2 + zy3), ∅). Notice that:

ν(θ, I) = 2

because:

H(θ, I, 0) = (x2 + zy3)

H(θ, I, 1) = (x, zy2)

H(θ, I, 2) = OC3

Let σ : (M
′

, θ
′

, I ′

, E
′

) −→ (M, θ, I, E) be the blow with center C = V (x, z). Notice that σ is

a θ-admissible blowing-up of order one, but that C is neither invariant, nor totally transverse

to θ. In the z-chart we have:

(M
′

, θ
′

, I ′

, E
′

) = (C3, { ∂
∂x
,
∂

∂y
}, (zx2 + y3), {z = 0})

which implies that:

ν(θ
′

, I ′

) = 3
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because:

H(θ, I, 0) = (zx2 + y3)

H(θ, I, 1) = (zx, y2)

H(θ, I, 2) = (z, y)

H(θ, I, 2) = OC3

Which implies that ν(θ
′

, I ′

) > ν(θ, I).

We then turned out for the approach [II]. It seemed reasonable to first answer the

following question: what invariants can completely describe the “worst” intersection

between a variety and a foliation? We have not been able to give a satisfactory answer so

far, although we strongly believe that the generalized Fitting operations are the key for an

answer. A naive possibility, which we here present for 2-singular foliations, is the following:

• If type(θ, I) = 2, as invariant take (ν, type);

• If type(θ, I) = 1, then consider a “second chain of tangency’s” defined by the operation

Γθ,2 applied to H(θ, I, ν − 1). More specifically, consider J = H(θ, I, ν − 1) and the

second chain of tangency’s :

H2(θ,J , 0) = J
H2(θ,J , i) = Γθ,2(H2(θ,J , i− 1)) +H2(θ,J , i− 1)

This chain also has a length, that we call ν2(θ, I), and type, that we call type2(θ, I).

As invariant, take (ν, type, ν2, type2).

We exemplify this idea, even though it does not seem to work in this naive form: one can

not be too “picky” with the choice of the centers:

Example 2: Let (M, θ, I, E) = (C3, { ∂
∂x
, ∂
∂y
}, (x2 + zy2), {z = 0}). Notice that:

H(θ, I, 0) = (x2 + zy2)

H(θ, I, 1) = (x, zy)

H(θ, I, 2) = OC3
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Furthermore, let J = H(θ, I, ν − 1) = H(θ, I, 1), then the second chain of tangency’s is

given by:

H2(θ,J , 0) = (x, zy)

H2(θ,J , i) = (x, z)

for all i > 0. So, the natural choice of a blowing-up center is C = V (H2(θ,J , 1)) = V (x, z).

Let σ : (M
′

, θ
′

, I ′

, E
′

) −→ (M, θ, I, E) be the blow with center C. In the z-chart we have:

(M
′

, θ
′

, I ′

, E
′

) = (C3, { ∂
∂x
,
∂

∂y
}, (zx2 + y2), {z = 0})

Notice that, exchanging the coordinates x and y, we are in the same situation of the begin-

ning.



Chapter 6

A local uniformization subordinated

to a 2-foliation

6.1 Presentation of the result

A local uniformization (see section 3.5) of (M, θ, I, E) at a point p of M :

{τα : (Mα, θα) −→ (M, θ)}

is said to be θ-admissible if the morphisms τα are the composition of θ-admissible local

blowings-up.

The main result of this chapter is:

Theorem 6.1.1. Let (M, θ, I, E) be a 2-foliated ideal sheaf and p a point of M . Then,

there exists a θ-admissible local uniformization of (M, θ, I, E) at p. In particular, if θ is

R-monomial, then θα is R-monomial for every α.

In the following remarks, we briefly discuss the reasons behind the conclusions and

hypotheses of the Theorem:

Remark 6.1.2. Theorem 6.1.1 is not global because the proof here presented depends on a

choice of a particular vector field X contained in the singular distribution θ.Op. This choice

is not uniquely defined and, thus, no functorial property is obtained.
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Remark 6.1.3. The reason why Theorem 6.1.1 demands the leaf dimension of θ to be two

is “hidden” in the Propositions 6.2.4 and 6.2.5 below. All other proofs can be adapted for leaf

dimension equals to d. Furthermore, if we assume that a θ-admissible local uniformization

is proven for leaf dimension d− 1, it is worth remaking that:

• A Proposition 6.2.5 for leaf dimension d seems to follow the same exact steps of the

proof for leaf dimension two;

• A Proposition 6.2.4 for leaf dimension d is more delicate (if it is true at all). This is

the main technical difficulty for getting a local uniformization for any leaf dimension.

We explain this difficulty in remark 6.3.1.

6.2 Proof of Theorem 6.1.1

In order to prove Theorem 6.1.1 we introduce a new invariant. The λ-order of a foliated

ideal sheaf (M, θ, I, E) at a point p of M is given by:

λp(θ, I) = min{νp(X, I); X ∈ θp is regular and typep(X, I) = 1}

If there is no such vector field X ∈ θp, we define λp(θ, I) = ∞.

Given an open relatively compact open subset M0 of M , we define the λ-order on

M0 as:

λM0
(θ, I) = sup{λq(θ, I); q ∈M0}

Notice that this invariant is valid for any leaf dimension of θ and it is clearly upper semi-

continuous (because the tg-order is upper semi-continuous). We start given a good condition

for the λ-order to be well-behaved:

Lemma 6.2.1. If the typep(θ, I) is one, then the λ-order λp(θ, I) is finite. Furthermore:

λp(θ, I) = νq(θ, I)
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Remark 6.2.2. The converse is clearly true by a contra-positive argument: if the typep(θ, I)

is two, then the λ-order λp(θ, I) is infinite.

Proof. Fix a point p of M and let ν := νp(θ, I). Since typeM(θ, I) = 1, there exists a finite

set of vector fields {X1, ..., Xν} contained in θp and a function f ∈ I such that:

Xν(Xν−1(...(X1(f))...))

is an unity of Op. Furthermore, it is clear that all vector fields Xi are regular (otherwise there

would exist a smaller set of vector fields with this property, which contradicts the definition

of ν). Consider a ν-tuple α = (α1, ..., αν) ∈ K
ν and the vector field:

Yα =
ν∑

i=1

αiXi

It is clear that, for a generic α, if we apply the vector field Yα ν-times on f , we get an unity

of Op. Since the vector field Yα is contained in θp and is generically regular, we conclude

that λp(θ, I) = νp(θ, I).

And now we give the result that motivates the introduction of this invariant:

Proposition 6.2.3. Suppose that the invariant λp(θ, I) is finite and θ has leaf dimension

two. Then there exists a θ-admissible local uniformization of (M, θ, I, E) at p.

The proof of this Proposition depends on the following two Propositions:

Proposition 6.2.4. Let (M,M0, θ, I, E) be a local 2-foliated ideal sheaf and X a 1-singular

distribution defined in an open neighborhood of M0. Suppose that there exists an involutive

1-singular distribution ω defined in an open neighborhood of M0 such that {X , ω}.OM0
gen-

erates θ.OM0
. Then, there exists a sequence of θ-admissible and X -admissible blowings-up of

order one:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1

such that:

i ) The tg-order νMr
(Xr, Ir) is smaller or equal to νM0

(X0, I0);
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ii ) The type typeMr
(Xr, Ir) is equal to 1.

Proposition 6.2.5. Let (M,M0, θ, I, E) be a local 2-foliated ideal sheaf and X a 1-singular

distribution defined in an open neighborhood of M0. Suppose that:

• The singular distribution X .OM0
is contained in the singular distribution θ.OM0

;

• The type typeM0
(X , I) is 1;

• The tg-order νM0
(X , I) is equal to νM0

(θ, I);

• There exists a coordinate system (x, y) = (x, y1, ..., yn−1) defined in an open neighbor-

hood U of M0 such that the singular distribution X .OM0
is generated by the vector field

X = ∂
∂x
.

Then, there exists a sequence of θ-admissible and X -admissible blowings-up of order one:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1

such that:

i ) The tg-order νMr
(Xr, Ir) is strictly smaller then νM0

(X0, I0);

ii ) There exists an involutive 1-singular distribution ωr such that {Xr, ωr} generates θr.

These two propositions will be proved in the next two sections. For now, we assume

them in order to prove Proposition 6.2.3:

Proof. (Proposition 6.2.3) We proceed by induction in the invariant λp(θ, I). Suppose that

we have already proved the existence of a θ-admissible local uniformization for a 2-foliated

ideal sheaf (M, θ, I, E) at any point p such that λp(θ, I) < k. We prove the result for k:

• Step k = 0: If λp(θ, I) = 0, then I = Op and the result is clear;
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• Step k > 0: Since the invariant λp(θ, I) is finite, we conclude that there exists a regular

vector field X in θp. By the Flow-box Theorem, there exists a relatively compact open

neighborhood M0 of p, a coordinate system (x, y) = (x, y1, ..., yn−1) defined in an open

neighborhood of M0 and a 1-singular distribution X defined in an open neighborhood

of M0 such that:

• The singular distribution X .OM0
is contained in the singular distribution θ.OM0

;

• The type typeM0
(X , I) is 1;

• The singular distribution X .OM0
is generated by the vector field X = ∂

∂x
.

Furthermore, since the λ-order is upper semi-continuous, we can further suppose that:

• The tg-order νM0
(X , I) is equal to νM0

(θ, I) and λp(θ, I).

Now, by Proposition 6.2.5, there exists a sequence ~σ1 of θ-admissible and X -admissible

blowings-up:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1

such that:

i ) νMr
(Xr, Ir) < νM0

(X0, I0);

ii ) There exists an involutive 1-singular distribution ωr such that {Xr, ωr} generates

θr.

Let K1 be the compact set which is the pre-image of p by the sequence ~σ1 of blowings-

up. Consider N0 a relatively compact open neighborhood of K, strictly contained in

Mr, and let the morphism π : N0 −→Mr be the inclusion. Consider the 2-local foliated

manifold (Mr, N0, θr, Ir, Er) and notice that it satisfies the hypotheses of Proposition

6.2.4. So, there exists a sequence ~σ2 of θr-admissible and Xr-admissible blowings-up:

(Ns, θr+s, Ir+s, Er+s) · · · (N0, θr, Ir, Er)
σr+s σr+1
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such that νNs
(Xr+s, Ir+s) ≤ νN0

(Xr, Ir) and typeNs
(Xr+s, Ir+s) = 1.

In particular, we have that:

νNs
(Xr+s, Ir+s) ≤ νN0

(Xr, Ir) ≤ νMr
(Xr, Ir) < νM0

(X0, I0)

which implies that:

λNs
(θr+s, Ir+s) < λM0

(θ, I) = k

Let K2 be the compact set which is the pre-image of K1 by the sequence ~σ2 of

blowings-up. Since the λ-order is strictly smaller then k in every point of K2, by

induction and the compacity of K2, there exists a θ-admissible local uniformization

of (Ns, θr+s, Ir+s, Er+s) over all K2. Composing this local uniformization with the

θ-admissible sequence of blowings-up ~σ2, with the morphism π and finally with the

sequence of θ-admissible blowings-up ~σ1, we finally obtain a θ-admissible local uni-

formization of (M, θ, I, E) at p.

Now, we are ready to prove the Theorem:

Proof. (Theorem 6.1.1) If at the point p of M , the λ-order λp(θ, I) is finite, the result

follows from Lemma 6.2.3. So, we can assume that λ-order is infinite at p, which implies

that the type typep(θ, I) is two.

Let M0 be any relatively compact open neighborhood of p and π : M0 −→ M the

inclusion morphism. By Proposition 5.4.1 there exists a sequence ~σ of invariant θ-admissible

blowings-up of order one:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1

such that:

typeMr
(θr, Ir) = 1
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Let K be the compact pre-image of the point p by the sequence of blowings-up. Notice

that the sequence ~σ of blowings-up can be regarded as a sequence of local blowings-up

~τ = (τr, ..., τ1) where τi = id ◦ σi for i > 1 and τ1 = π1 ◦ σ1.

Furthermore, by Lemma 6.2.1, notice that the λ-order is finite over all points of K.

By the compacity of K and Lemma 6.2.3, there exists a local uniformization that covers all

K. Composing this local uniformization with the sequence of local blowings-up ~τ , gives a

local uniformization of (M, θ, I, E) at p.

6.3 Proof of Proposition 6.2.4

If the type typeM0
(X , I) is 1, the result is trivial. So suppose that typeM0

(X , I) is 2.

Let ν = νM0
(X , I) and ClX (I) := H(X , I, ν). By Theorem 5.3.1, there exists a ω-

admissible resolution ~σ = (σ1, ..., σr) of the local foliated ideal sheaf (M,M0, ω, ClX (I), E):

(Mr, θr, (ClX (I))r, Er) · · · (M0, θ0, (ClX (I))0, E0)
σr σ1

Furthermore, since ClX (I) is X -invariant and {X , θ} is an involutive singular distribution,

by the part [v] of Theorem 5.3.1, we conclude that the resolution ~σ = (σ1, ..., σr) is also

X -invariant (∗ - see Remark 6.3.1 below). Moreover:

Claim 1: The sequence of blowings-up ~σ is θ-admissible.

Proof. We prove the result by induction. Suppose that, for i < k:

• The sequence of blowings-up (σi, ..., σ1) is θ-admissible;

• {Xi, ωi} generates θi.

We prove the result for i = k:

• Step k = 0: It trivially follows from the hypotheses;
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• Step k > 0. Consider Ck the center of the blowing-up σk. Since {Xk−1, ωk−1} gener-

ates θk−1 and Ck is Xk−1-invariant, we have that the 2-generalized Fitting ideal sheaf

Γθk−1,2(ICk) is contained in ICk . Furthermore:

• If ω[ICk ] ⊂ ICk then θ[ICk ] ⊂ ICk ;

• If ω[ICk ] = OMk−1
then θ[ICk ] = OMk−1

.

Which implies that σk is θk−1 admissible and (σk, ..., σ1) is θ-admissible.

It is now easy to see (using Lemma 3.2.2 and Proposition 4.4.1) that {Xk, ωk}
generates θk.

Claim 2: The sequence of blowings-up ~σ is θ-admissible of order one for

(M,M0, θ, I, E). Furthermore:

(ClX (I))j = ClXj
(Ij)

for all j ≤ r.

Proof. This claim has, mutantis mutatis, the same proof of the Claim 1 contained in the

proof of Proposition 5.4.1.

This implies that ~σ gives rise to an invariant θ-admissible sequence of blowings-up of

order one for (M,M0, θ, I, E):

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1

such that:

H(Xr, Ir, ν) = ClXr
(Ir) = (ClX (I))r = OMr

which implies that νMr
(Xr, Ir) ≤ νM0

(X , I) and typeMr
(Xr, Ir) = 1.

Remark 6.3.1. See (∗) above: This is the technical point where we strongly use the fact

that the leaf dimension of θ is two. When we apply Theorem 5.3.1, we use the statement

[v] of the Theorem (which is a functorial property of the resolution) to conclude that the
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sequence of ω-admissible blowings-up are also X -invariant.

A straight proof of Proposition 6.2.4 for general leaf dimension d, would need a local

uniformization for leaf dimension d − 1 that satisfies some analogous functorial property.

But even for leaf dimension two, obtaining this result is not clear.

6.4 Proof of Proposition 6.2.5

Without loss of generality, we can suppose that there exists a coordinate system (x, y) =

(x, y1, ..., yn−1) defined on an open neighborhood U ofM0 such that the 1-singular distribution

X .OU is generated by the vector field X = ∂
∂x

. Let ω be the 1-singular distribution defined

as follow:

ω = {Y ∈ θ.OU ;Y (x) ≡ 0}

It is clear that:

• The 2-singular distribution θ.OM0
is generated by {X , ω}.OM0

;

• The ideal (x) is ω-invariant.

Let ν := νM0
(X , I) and MtgX (I) := H(X , I0, ν − 1). By Theorem 5.3.1 there exists a ω-

admissible resolution ~σ = (σ1, ..., σr) of the local foliated ideal sheaf (M,M0, ω,MtgX (I), E):

(Mr, ωr, (MtgX (I))r, Er) · · · (M0, ω0, (MtgX (I))0, E0)
σr σ1

such that:

Claim 1: The sequence of blowings-up ~σ is X -totally transverse.

Proof. Suppose by induction that, for i < k:

i ) the sequence (σ1, ..., σi) of blowing-up is X -totally transverse;

ii ) for each point p contained in the variety V ((MtgX (I))i), there exists a coherent

coordinate system (x, y) = (x, y1, ..., yn−1) of Op such that:
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• The function x is contained in the ideal (MtgX (I))i.Op;

• The vector field ∂
∂x

generates the singular distribution Xi,p := Xi.Op;

• The ideal (x) is ωi-invariant.

We prove the result for k:

• Step k = 0. This trivially follows from the choice of the coordinate systems before

blowing-up.

• Step k > 0. Consider a point q on the variety V ((MtgX (I))k) and let p = σk(q). If

σk is a local isomorphism over q, the result is trivial, so we assume that the point q is

contained in the exceptional divisor Fk. By the induction hypotheses [ii], there exists

a coherent coordinate system (x, y) = (x, y1, ..., yn−1) of Op such that:

• The function x is contained in the ideal (MtgX (I))k−1.Op;

• The vector field ∂
∂x

generates the singular distribution Xk−1,p;

Since the center Ck of the blowing-up σk : Mk −→ Mk−1 is contained in

V ((MtgX (I))k−1) we conclude that:

• The center Ck is Xk−1-totally transverse at p. This implies that the sequence

(σ1, ..., σk) of blowings-up is X -totally transverse;

• Without loss of generality ICk .Op = (x, y1, ..., yt) and the point q is the origin of

the y1-chart. It is now easy to compute the transforms of the blowing-up at q and

see that the induction hypotheses [ii] is valid for i = k.

Claim 2: The sequence of blowings-up ~σ is θ-admissible and θr is generated by {Xr, ωr}.

Proof. Suppose by induction that, for i < k:

i ) The sequence (σ1, ..., σi) of blowing-up is θ-admissible;

ii ) for each point p contained in the variety V ((MtgX (I))i), there exists a coherent

coordinate system (x, y) = (x, y1, ..., yn−1) of Op such that:
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• The function x is contained in the ideal (MtgX (I))i.Op;

• The vector field ∂
∂x

generates the singular distribution Xi,p := Xi.Op;

• The ideal (x) is ωi-invariant.

iii ) The singular distribution θi is generated by {Xi, ωi}.

We remark that hypotheses [ii] of the induction was already proved in Claim 1 for any i.

We prove the result for k:

• Step k = 0. This trivially follows from the hypotheses.

• Step k > 0. Since Ck is totally transverse to Xk−1, we have that θk−1(ICk) = OMk−1
.

So, to show the induction hypotheses [i] for the step k, we only have to prove

that the 2-generalized Fitting ideal Γθ,2(ICk) is either the structural sheaf Op or is

contained in ICk . Since σk is a ωk−1-admissible blowing-up, we have that:

• If ωk−1[ICk ] ⊂ ICk then Γθk−1,2(ICk) ⊂ ICk ;

• If ωk−1[ICk ] = OMk−1
, we claim that Γθk−1,2(ICk) = OMk−1

. Indeed, there exists a

function h on the ideal ICk .Op and a vector field Y on the singular distribution

ωk−1.Op such that Y (h) is an unity. Furthermore, since there exists a coordinate

system such that ωk−1[(x)] ⊂ (x), we have that Y (x) = xg. Thus:

det

∥∥∥∥∥∥
X(x) Y (x)

X(h) Y (h)

∥∥∥∥∥∥
= det

∥∥∥∥∥∥
1 xg

X(h) U

∥∥∥∥∥∥

is an unity.

To finish, it is now easy to see (using Lemma 3.2.2 and Proposition 4.4.1) that {Xk, ωk}
generates θk.

Claim 3: The sequence of blowings-up ~σ give rise to a θ-admissible sequence:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1
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such that:

νMr
(Xr, Ir) < νM0

(X0, I0)

Proof. This claim has, mutantis mutatis, the same proof of the Claims 2 and 3 contained in

the proof of Proposition 5.4.2.

These three Claims are enough to prove the Proposition.



Chapter 7

Application 1: Resolution in Families

7.1 Families of ideal sheaves

A smooth family of ideal sheaves is given by a quadruple (B,Λ, π, I) where:

• The ambient space B and the parameter space Λ are two smooth analytic manifolds;

• The morphism π : B −→ Λ is smooth;

• The ideal sheaf I is coherent and everywhere non-zero over B.

Given λ ∈ Λ, the set π−1(λ) is a regular sub-manifold of B called fiber. A point λ0 ∈ Λ is

called an exceptional value of a smooth family of ideal sheaf (B,Λ, π, I) if the fiber π−1(λ0)

is contained in V (I).

Many works have addressed resolution process for families of ideal sheaves. By this,

we intuitively mean a resolution of (B, I, ∅) that preserves, in some way, the structure of

family. The precise meaning of resolution in families is not unique in the literature (see

e.g [ENV, V2]). For example, in [ENV], one defined a stratification Σ in the parameter

space Λ in such a way that the resolution algorithm of the parametrized ideal sheaf behaves

uniformly along each strata of Σ.

In the context of this work, a smooth family of ideal sheaves (B,Λ, π, I) gives rise
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to a foliated ideal sheaf (B, θ, I, ∅), where θ is the maximal regular distribution such that

(Dπ)θ = 0. This motivates another possible definition of resolution in families:

Uniform Resolution in Families of Ideal sheaves: An uniform resolution of a

smooth family of ideal sheaves (B,Λ, π, I) is a sequence ~σ = (σ1, ..., σr) of admissible

blowings-up of order one:

(Br, θr, Ir, Er) · · · (B1, θ1, I1, E1) (B, θ, I, ∅)
σr σ2 σ1

such that Ir = OBr
and θr is Z-monomial.

This kind of resolution in families has originally been introduced at [DR] in the con-

text of smooth families of planar foliations by curves, where it is an essential step in

Roussarie’s program for the existential part of Hilbert 16th Problem. This approach is also

similar to the one adopted at [V2], where it is proved the existence of an uniform resolution

in families for the case dimΛ = 1, under the hypotheses that the morphism π is flat over V (I).

The existence of an uniform resolution in families would give rise to a resolution (in

some sense) “uniform” in the parameter space. In particular, the study of the fibers of

the resolution (i.e. of the morphism σr ◦ ... ◦ σ1 ◦ π) may be useful for equiresolution and

bifurcation theory. In particular, it might give rise to a stratification of the parameter space

in the same sense given in [ENV].

With the results of this work, we can prove the existence of an uniform resolution

for a smooth family of ideal sheaves when dimΛ = dimB − 1 (it is a trivial consequence of

Theorem 5.3.1). Furthermore, we can eliminate exceptional values of a smooth family of

ideal sheaves (see the Theorem 7.1.1 below). This can be seen as a first step in the solution

of the problem of uniform resolution in families.

Theorem 7.1.1. Let (B,Λ, π, I) be a smooth family of ideal sheaves such that all fibers are

connected. Then, there exists a smooth family of ideal sheaves (B
′

,Λ
′

, π
′

, I ′

) and two proper

analytic maps σ : B
′ −→ B and τ : Λ

′ −→ Λ such that:
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i ) The smooth family of ideal sheaves (B
′

,Λ
′

, π
′

, I ′

) has no exceptional value;

ii ) The following diagram:

B
′

Λ
′

B Λ

σ

π
′

π

τ

commutes;

iii ) For any relatively compact open subset B0 of B, there exists a sequence of invariant

admissible blowings-up of order one for (B,B0, θ, I, ∅):

(Br, θr, Ir, Er) · · · (B1, θ1, I1, E1) (B0, θ0, I0, E0)
σr σ2 σ1

such that σ|σ−1B0
= σ1 ◦ ... ◦ σr and I ′

.OBr
= Ir;

iv ) For any relatively compact open subset Λ0 of Λ, there exists a sequence of admissible

blowings-up:

(Λr, Er) · · · (Λ1, E1) (Λ0, E0)
τr τ2 τ1

such that τ |τ−1Λ0
= τ1 ◦ ... ◦ τr.

Proof. Consider the two foliated manifolds (B, θ, ∅) and (Λ, ω, ∅), where ω = 0, and let I#

be the smaller θ-invariant ideal sheaf containing I.

Claim: There exists an ideal sheaf J over Λ such that J .OB = I#.

Proof. Consider a point λ in Λ and let p be a point contained in the fiber π−1(λ). Since θ

is regular, there exists a coordinate system (x, y) = (x1, ..., xd, y1, ..., yn−d) of Op such that

π(x, y) = y and { ∂
∂x1,

, ..., ∂
∂xd

} is a coherent set of generators of θp.
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Since I# is θ-invariant, by Proposition 4.2.2 there exists a set of generators {f1(y), ..., fs(y)}
of I#.Op. Let Jp be the ideal of Oλ generated by {f1(y), ..., fs(y)}. Notice that this con-

struction can be done for any point q contained in the fiber π−1(λ), and generates an ideal Jq.

By the construction of Jp, there exists an open neighborhood U of p such that, for

every q in U ∩ π−1(λ), Jq = Jp. Furthermore, by analyticity, if (qi) is a sequence of points

in the fiber σ−1(λ) that are converging to a point q such that Jq1 = Jqi for all i ∈ N, then

Jq = Jq1 . Because of this two properties and the fact that the fiber σ−1(λ) is connected, we

conclude that the ideal Jp is independent of the point p in the fiber π−1(λ).

Now, we only need to define J as the ideal sheaf locally given by J .Oλ = Jp for

some p in the fiber π−1(λ).

Notice that π : B −→ Λ is a chain-preserving smooth morphism between (B, θ, I#, ∅)

and (Λ, ω,J , ∅). By Theorem 5.1.2 there exists two proper analytic maps σ : B
′ −→ B and

τ : Λ
′ −→ Λ and a smooth map π

′

: B
′ −→ Λ

′

such that:

• The morphism σ : B
′ −→ B is a weak-resolution of (B, θ, I#, ∅);

• The morphism τ : Λ
′ −→ Λ is a weak-resolution of (Λ, ω,J , ∅);

• The following diagram:

B
′

Λ
′

B Λ

σ

π
′

π

τ

commutes.

Furthermore, given a relatively compact open subset B0 of B, the proof of Proposition 5.4.1

guarantees that the sequence of invariant blowings-up ~σ = (σ1, ..., σr), where σ|σ−1B0
=

σ1 ◦ ... ◦ σr:

(Br, θr, Er) · · · (M1, θ1, E1) (M0, θ0, E0)
σr σ2 σ1



7.2 Resolution of foliations 103

is of order one for (B,B0, θ, I, ∅) and Ir is of type 1.

Define the ideal sheaf I ′

of B
′

given as the direct limit of the controlled transforms

Ir over all relatively compact open subsets B0 of B. By construction (B
′

,Λ
′

, π
′

, I ′

) has no

exceptional value and satisfies all hypotheses of the Theorem.

7.2 Resolution of foliations

A nested foliation is a quadruple (M, θ, ω, E):

• (M, θ,E) is a foliated manifold;

• X is an everywhere non-zero involutive singular distribution that is a sub-sheaf of θ.

A d-singular distribution θ is said to have complete intersection if at each point p in M ,

there exists a coherent set of generators {X1, ..., Xdp} of θp such that dp is equal to d.

A nested foliation (M, θ, ω, E) is said to be a nested foliation by curves if X has leaf

dimension one and complete intersection. In other words, at each point p in M , there exists

a vector field Xp in Derp such that {Xp} generates Xp.

In this work, a resolution of a nested foliation by curves (M,ω,X , E) is a sequence

of admissible blowings-up:

(Mr, θr,Xr, Er) · · · (M1, θ1,X1, E1) (M0, θ0,X0, E0)
σr σ2 σ1

such that Xr is an elementary singular distribution contained in θr, i.e. at each point p in

M , if Xp is a vector field generating Xp, then the linear part of Xp has a non-zero eigenvalue.

Remark 7.2.1. In this definition, we don’t restrict the transforms of X to be the analytic

strict transform. To obtain a resolution of a nested foliation by curves, one may need to

work if other kinds of transforms.
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7.3 Families of foliations by curves

A smooth family of foliations is given by a quadruple (B,Λ, π,X ) where:

• The ambient space B and the parameter space Λ are two smooth analytic manifolds;

• The morphism π : B −→ Λ is smooth;

• The singular distribution X is everywhere non-zero and dπ(X ) ≡ 0.

Furthermore, we a smooth family of foliations by curves is a smooth family of foliations

(B,Λ, π,X ) such that X has leaf dimension one and complete intersection. A smooth

planar family of foliations by curves is a smooth family of foliations by curves (B,Λ, π,X )

such that dimΛ = dimB − 2.

Given λ ∈ Λ, the set π−1(λ) is a regular sub-manifold of B called fiber. A point

λ0 ∈ Λ is called an exceptional value of a smooth family of foliations by curves (B,Λ, π,X )

if the fiber π−1(λ0) is contained in the singular set S(X ).

A notion of resolution process for families of foliations by curves is not unique be-

cause the notions of resolution for families of ideal sheaves may be adapted to the case

of families of foliations by curves. As an example, we refer to the work [Tr], where a

notion of resolution of smooth planar families of foliations by curves is presented. Although

the process presented is not a resolution in the sense of this work (because it ends with

non-elementary singularities - in particular singular perturbation problems are persistent

through this resolution), it is the best known result that preserves the structure of smooth

family.

In the context of this work, a smooth family of foliations (B,Λ, π,X ) gives rise to

a nested foliation (B, θ,X , E), where θ is the maximal regular distribution such that

Dπ(θ) = 0. This motivates another possible definition of resolution in families wich was

introduced at [DR] in the context of smooth planar families of foliations by curves. We

present a generalization of the idea:
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Uniform Resolution in Families of Foliations by curves: An uniform resolu-

tion of a smooth family of foliations by curves (B,Λ, π,X ) is a sequence ~σ = (σ1, ..., σr) of

admissible blowings-up:

(Br, θr,Xr, Er) · · · (B1, θ1,X1, E1) (B, θ,X , ∅)
σr σ2 σ1

such that Xr is elementary and θr is Z-monomial.

In particular, an uniform resolution for smooth planar families of foliations by curves

is an essential step in Roussarie’s program for proving the existential part of Hilbert 16th

Problem.

The best result in this context is given by Panazzolo in [P1], where an uniform reso-

lution for smooth planar families of foliations by curves is presented, under the hypotheses

that at each point p in B, if Xp is a vector field generating Xp, then Xp has non-zero linear

part.

With the results of this work we can eliminate exceptional values of smooth families

of foliations by curves (see the Theorem 7.3.1 below). This result is a generalization of

Proposition IV.3 of [DR] and can be seen as a first step towards the solution of the problem

of uniform resolution in families of foliations by curves.

Theorem 7.3.1. Let (B,Λ, π,X ) be a smooth family of foliations by curves such that all

fibers are connected. Then, there exists a smooth family of foliations by curves (B
′

,Λ
′

, π
′

,X ′

)

and two proper analytic maps σ : B
′ −→ B and τ : Λ

′ −→ Λ such that:

i ) (B
′

,Λ
′

, π
′

,X ′

) has no exceptional value;
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ii ) The following diagram:

B
′

Λ
′

B Λ

σ

π
′

π

τ

commutes;

iii ) For any relatively compact open subset B0 of B, there exists a sequence of invariant

admissible blowings-up:

(Br, θr,Xr, Er) · · · (B1, θ1,X1, E1) (B0, θ0,X0, E0)
σr σ2 σ1

where Xi = O(−Fi).σ
∗
iXi−1, such that σ|σ−1B0

= σ1 ◦ ... ◦ σr and X ′

.OBr
= Xr;

iv ) For any relatively compact open subset Λ0 of Λ, there exists a sequence of admissible

blowings-up:

(Λr, Er) · · · (Λ1, E1) (Λ0, E0)
τr τ2 τ1

such that τ |τ−1Λ0
= τ1 ◦ ... ◦ τr.

Proof. Consider the ideal sheaf S(X ) := X [OB]. By Theorem 7.1.1, there exists two proper

analytic maps σ : B
′ −→ B and τ : Λ

′ −→ Λ respecting [ii] and [iv] such that, for every open

relatively compact subset B0 of B, there exists a sequence of invariant admissible blowings-up

of order one for (B,B0,S(X ), ∅):

(Br, θr, (S(X ))r, Er) · · · (B0, θ0, (S(X ))0, E0)
σr σ1

such that (S(X ))r is of type 1.

Claim: If σ : (M
′

, θ
′

, (S(X ))
′

, E
′

) −→ (M, θ,S(X ), E) is an invariant admissible



7.3 Families of foliations by curves 107

blowing-up of order one between regular singular distributions, then the transform

X ′

:= O(−F ).X ∗ is well-defined and:

(S(X ))
′

= S(X ′

)

Proof. At each point pin M there exists a local system of coordinates (x, y) =

(x1, ..., xd, y1, ..., yn−d) such that the singular distribution θ.Op is generated by { ∂
∂x1

, ..., ∂
∂xd

}
and the center of blowing-up C is such that IC.Op = (y1, ..., yt). In particular, this implies

that the singular distribution Xp is generated by a vector field X of the form:

X =
d∑

i=1

Ai(x, y)
∂

∂xi

and, for any q in σ−1(p), the singular distribution X ′

.Oq is generated by the vector field X
′

of the form:

X
′

=
d∑

i=1

Ai(x, y)∗O(−F )
∂

∂xi
=

d∑

i=1

Ai(x, y)
′ ∂

∂xi

which implies that:

(S(X ))
′

= S(X ′

)

In particular, X ′

is analytic and well-defined.

The Claim implies that (σ1, ..., σr) is also a sequence of invariant admissible blowings-up:

(Br, θr,Xr, Er) · · · (B1, θ1,X1, E1) (B0, θ0,X0, E0)
σr σ2 σ1

such that S(Xr) is of type one. This implies that Xr has no exceptional values (otherwise

S(Xr) would be of type 2).

Define the foliation by curves X ′

of B
′

as the direct limit of the transforms Xr over

all relatively compact open subsets B0 of B. By construction (B
′

,Λ
′

, π
′

,X ′

) has no

exceptional value and satisfies all hypotheses of the Theorem.
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7.4 Dim 1 Nested foliation by curves

A dim 1 nested foliation by curves is a nested foliation by curve (M, θ,X , E) such that θ has

leaf dimension one and complete intersection. A reduction of (M, θ,X , E) is a sequence of

θ-admissible blowings-up ~σ = (σ1, ..., σr):

(Mr, θr,Xr, Er) · · · (M1, θ1,X1, E1) (M0, θ0,X0, E0)
σr σ2 σ1

where:

• The singular distribution Xi is given by X ′

i−1.O(−Fi) if the blowing-up is θi−1-invariant;

• The singular distribution Xi is given by X ′

i−1 if the blowing-up is θi−1-totally transverse.

such that:

• The singular distribution Xr is equal to θr.

Remark that the singular distribution Xr will possess all the “good” properties of θ that

are preserved by θ-admissible blowings-up. In particular, if θ is R-monomial, so will be

Xr, which also implies that Xr is an elementary vector field and the reduction is actually a

resolution of (M, θ,X , E).

For example, consider a vector field:

X = A(x, λ)
∂

∂x

and let θ =< ∂
∂x

. Then a modification of (M, θ,X , E) gives rise to a resolution of

(M, θ,X , E) and, consequently, for the vector field X.

The following result proves that a reduction is always possible:

Theorem 7.4.1. Let (M,M0, θ,X , E) be a dim 1 local nested foliation by curves. Then,

there exists a reduction of (M,M0, θ,X , E).
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Proof. By hypotheses, for each point p in M , let Y be the vector field that generates θp

and X the vector field that generates Xp. Since X is a sub-sheaf of θ, there exists a germ

f ∈ Op such that X = fY .

Let I(θ,X ) be the ideal sheaf such that I(θ,X ).Op = (f). This ideal sheaf is clearly

well-defined, coherent and everywhere non-zero.

By Theorem 5.3.1 there exists a θ-admissible resolution ~σ = (σ1, ..., σr) of

(M,M0, θ, I(θ,X ), E):

(Mr, θr, [I(θ,X )]r, Er) · · · (M0, θ0, [I(θ,X )]0, E0)
σr σ1

Claim: If σ : (M
′

, θ
′

, [I(θ,X )]
′

, E
′

) −→ (M, θ, I(θ,X ), E) is a θ admissible blowing-up of

order one, then the transform X ′

is well-defined and:

[I(θ,X )]
′

= I(θ
′

, I ′

)

Proof. • Suppose that σ : (M
′

, θ
′

, [I(θ,X )]
′

, E
′

) −→ (M, θ, I(θ,X ), E) is an θ-invariant

blowing-up. Fixed a point q in M
′

and p = σ(q), the vector field X
′

that generated

X ′

.Oq is given by:

X
′

= f ∗Y ∗O(−F ).Oq = [f ∗O(−F )]Y
′

.Oq

which implies that X
′

is well-defined and that:

[I(θ,X )]
′

= I(θ
′

, I ′

)

• Suppose that σ : (M
′

, θ
′

, [I(θ,X )]
′

, E
′

) −→ (M, θ, I(θ,X ), E) is a θ-totally transverse

blowing-up. Fixed a point q in M
′

and p = σ(q), the vector field X
′

that generated

X ′

.Oq is given by:

X
′

= f ∗[O(−F )Y
′

].Oq = [f ∗O(−F )]Y
′

.Oq

which implies that X
′

is well-defined and that:

[I(θ,X )]
′

= I(θ
′

, I ′

)
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The Claim implies that (σ1, ..., σr) is also a sequence of invariant admissible blowings-up:

(Mr, θr,Xr, Er) · · · (M1, θ1,X1, E1) (M0, θ0,X0, E0)
σr σ2 σ1

such that I(θr,Xr) = OMr
, which clearly implies the Theorem.
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Application 2: Generalized Flow-Box

and a problem proposed by Mattei

8.1 Quasi-transversality

A foliated ideal sheaf (M, θ, I, E) is said to be:

• geometrically quasi-transverse if:

O(E)
√

Γθ,k(OM) + I ⊂
√

Γθ,k(I) + I

for all k ≤ d;

• 1-algebraically quasi-transverse if it is geometrically quasi-transverse, the singular dis-

tribution θ has leaf dimension 1 and νp(θ, I) ≤ 1 for all points p in M .

Example 1: Let (M, I, E) = (R2, (y), ∅):

i ) Consider θ generated by { ∂
∂x

+ x ∂
∂y
}. Then (M, θ, I, E) is not geometrically quasi-

transverse. Remark that there exists a leaf of θ finitely tangent to V (I);

ii ) Consider θ generated by {y ∂
∂x

− x ∂
∂y
}. Then(M, θ, I, E) is 1-algebraically quasi-

transverse. Remark that the leafs of θ are either transverse to V (I) or singular at

it.
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Example 2: Let (M, I, E) = (R4, (z, w), E):

i ) Let E = {y = 0} and θ be generated by {(x−xz) ∂
∂z

+(y−xw) ∂
∂w

+(1−x2) ∂
∂x
−xy ∂

∂y
}.

Then (M, θ, I, E) is geometrically quasi-transverse but it is not 1-algebraically quasi-

transverse. Remark that there exists a leaf of θ finitely tangent to V (I) contained in

the exceptional divisor E;

ii ) Let E = ∅ and θ be generated by {x ∂
∂z

+ y2 ∂
∂w

+ y ∂
∂x

− x ∂
∂y
}. Then (M, θ, I, E) is

geometrically quasi-transverse but it is not 1-algebraically quasi-transverse. Remark

that after the blowing-up of the origin, in the y-chart, we are precisely in the situation

of example 2[i].

With these examples, we expect to make clear two major intuitive properties of these defi-

nitions:

• First intuitive property (from Example 1): If E = ∅ and I is regular, (M, θ, I, E) is

geometrically quasi-transverse if there is no leaf of θ that is finitely tangent to V (I);

• Second intuitive property (from Example 2): If (M, θ, I, E) is geometrically quasi-

transverse, after a sequence of invariant blowings-up there may appear leafs of θ finitely

tangent to V (I). On the other hand, if (M, θ, I, E) is 1-algebraically quasi-transverse,

no sequence of invariant blowings-up will create this phenomena.

Remark 8.1.1. In section 8.6, we will discuss what would be a good notion of d-algebraically

quasi-transversality for d > 1. In particular, the second intuitive property will hold in the

generalized context.

Now, we formalize these intuitions. We start with the first one:

Lemma 8.1.2. Suppose that the ideal sheaf I is regular. Then a d-foliated ideal sheaf

(M, θ, I, E) is geometrically quasi-transverse if, and only if, for all point p in V (I) \ E:

dimKLp + dimKTpV (I) = dimK(< Lp + TpV (I) >)

where Lp is the linear sub-space of TpM generated by θp and < S > stands for the smallest

linear sub-space of TpM containing S.
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Proof. Let r = dimKLp. There exists a coherent set of generators {X1, ..., Xr, Y1, ..., Ys}
of θp such that: the vector fields Xi are regular and generates Lp, the vector fields Yi are

singular and r + s = dp. In particular, this implies that the ideal sheaf Γθ,k(Op) is equal to

Op for k ≤ r and the ideal sheaf Γθ,k(Op) contain the maximal ideal sheaf mp for k > r.

Now, let t = codimKTpV (I). There exists a local coordinate system x = (x1, ..., xn)

where p = (0, ..., 0) and I = (x1, ..., xt). We are ready to prove the result:

• (⇒) By the hypotheses, we have that:

(
√

Γθ,k(Op) + I).Op ⊂ (
√

Γθ,k(I) + I).Op

for all k ≤ d. In particular, (
√

Γθ,r(I) + I).Op = Op for k = r. So, there exists a set

of analytic germs (f1, ..., fr) contained in the ideal I.Op such that:

det

∥∥∥∥∥∥∥∥

X1(f1) ... X1(fr)
...

. . .
...

Xr(f1) ... Xr(fr)

∥∥∥∥∥∥∥∥

is an unity of Op. Without loss of generality, after a change of coordinates, we may

assume that fi = xi and Xi = ∂
∂xi

(see the proof of 4.3.1 for details on the coordinate

change). It is now clear that every vector of TpV (I) must be in a complementary

sub-space to {X1, ..., Xr}, which proves the result.

• (⇐) The hypotheses implies that the linear sub-spaces Lp and TpV (I) are transverse

at each point p of the set V (I)\E. So, without loss of generality, we can suppose that

Xi = ∂
∂xi

for i = 1, ..., r ≤ t. In particular, the ideal Γθ,r(I).Op is equal to Op and the

ideal Γθ,r+1(I).Op is contained in the maximal ideal mp (because the Yj are all singular

at p). Since this is true for all points outside the exceptional divisor, we have that:

V (Γθ,k(OM) + I) \ E = V (Γθ,k(I) + I) \ E

Which clearly implies that V (Γθ,k(I) + I) ⊂ V (Γθ,k(OM) + I) ∪ E. Thus:

O(E)
√

Γθ,k(OM) + I ⊂
√

Γθ,k(I) + I

for all k ≤ d.
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Now, we present two Lemmas that formalizes the second intuitive property:

Lemma 8.1.3. Let (M, θ, I, E) be an 1-algebraically quasi-transverse foliated ideal sheaf.

For all point p contained in E∩V (I) the leaf L of the singular distribution θ passing through

p respects one of the following conditions:

i ) Either the leaf L is transverse to V (I), or;

ii ) The leaf L is contained in V (I).

Proof. If the leaf L is zero-dimensional, the lemma is trivial. So, we can suppose that L is

one-dimensional.

If the ideal H(θ, I, 1).Op = (I + θ[I]).Op is equal to Op then it is clear that the leaf

L is transverse to V (I).

So, we can suppose that the ideal H(θ, I, 1).Op is different from the structural ideal

Op. By the flow-box Theorem, there exists a coordinate system (x, y) = (x, y1, ..., yn−1) such

that the vector field X = ∂
∂x

generates θ.Op. Furthermore, by Lemma 4.2.4, there exists a

set of generators {f1(y), ..., fs(y)} of H(θ, I, 1).Op independent of the coordinate x.

This implies that the intersection L ∩ V (I) is an open subset of L. Since L is lo-

cally closed and V (I) is closed, the intersection is a closed subset of L. By connexity, we

conclude that L ⊂ V (I).

Lemma 8.1.4. Let σ : (M
′

, θ
′

, I ′

, E
′

) −→ (M, θ, I, E) be an invariant blowing-up of order

one and suppose that (M, θ, I, E) is 1-algebraically quasi-transverse. Then (M
′

, θ
′

, I ′

, E
′

) is

algebraically quasi-transverse.

Proof. It is clear that (M
′

, θ
′

, I ′

, E
′

) is geometrically quasi-transverse, because outside the

exceptional divisor F , the blowing-up σ is an isomorphism.
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So, we only need to show that H(θ
′

, I ′

, 1) is θ
′

-invariant. But this clearly follows from

Lemma 5.5.1, which states that:

H(θ
′

, I ′

, i) = H(θ, I, i)′

and the fact that H(θ, I, 1) is θ-invariant.

8.2 Sub-Riemannian Geometry

In this section, we introduce some basic concept of sub-Riemannian geometry. We follow

closely [Bell].

8.2.1 Basic Definitions

Consider K = R, W a regular analytic manifold and {X1, ..., Xm} be globally defined analytic

vector fields. For each point p in W , we denote by Lp the subspace of TpW generated by

{X1(p), ..., Xm(p)}. Given any vector v of Lp, there always exists (u1, ..., um) ∈ K (not

necessarily unique) such that:

v =
m∑

i=1

uiXi(p)

So, for each point p of W , consider the mapping:

Φp : R
m −→ TpW

(u1, ..., um) 7→ ∑m

i=1 uiXi(p)

Notice that Φp restricted to the linear subspace (kerΦp)
⊥ is a linear isomorphism onto Lp.

Let Ψp : Lp −→ (kerΦp)
⊥ be the inverse mapping. Then, if v and w are vectors contained

in Lp, we define the sub-Riemannian metric gp(v, w) associated to {X1, ..., Xm} by:

gp(v, w) =< Ψp(v),Ψp(w) >

where <,> is the euclidean norm of R
m. Based on this metric, we define the notion of

sub-Riemannian norm ‖.‖p associated with {X1, ..., Xm}:

‖v‖p = gp(v, v)
1

2
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We also define a notion of ∞-sub-Riemannian norm ‖.‖∞,p associated to {X1, ..., Xm}:

‖v‖∞,p = ‖Ψp(v)‖∞

where ‖.‖∞ is the ∞-norm of Rm.

We extend both norms for every vector v of TpW by setting ‖v‖p = ‖v‖∞,p = ∞ if

v is not contained in Lp.

With this metric, we can define a notion of length of a path. Given an absolutely

continuous path c(t) contained in W , with t ∈ [a, b], we define:

length(c(t)) =
∫ b

a
‖ ˙c(t)‖c(t)dt

length∞(c(t)) =
∫ b

a
‖ ˙c(t)‖∞,c(t)dt

and the distance associated to the metric g is given by:

d(p, q) = inf{length(c(t)); where c(t) is absolutely continuous and c(a) = p; c(b) = q}
d∞(p, q) = inf{length∞(c(t)); where c(t) is absolutely continuous and c(a) = p; c(b) = q}

If there is no curve absolutely continuous c(t) such that c(a) = p and c(b) = q, we set

d(p, q) = +∞ (this happens, for example, if M is not connected). It is clear that we have

the two following relations:

‖v‖∞,p ≤ ‖v‖p ≤
√
m.‖v‖∞,p

d∞(p, q) ≤ d(p, q) ≤ √
m.d∞(p, q)

(8.1)

8.2.2 The complex definition

We can extend the precious definitions to the complex setting as follows: let {X1, ..., Xm}
be globally defined analytic vector fields. We remark that W can be seen as a real variety.

Let {Y1, ..., Y2m} be globally defined real-analytic vector fields over W such that {Yi, Ym+i}
generates Xi. Then, we can define a notion of sub-Riemannian metric and sub-Riemannian

norm just as in the real case for {Y1, ..., Y2m}.

We remark that, for each set {X1, ..., Xm}, the definition of this metric and norms

are not unique, because they will actually depend upon the vector fields {Y1, ..., Y2m}.
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8.2.3 Global Definitions

From now on, we work with K = R or C. An analytic sub-Riemannian metric on M is a

function g : TM ⊗TM −→ R∪{∞} which, locally, may be defined as the metric associated

to some system of analytic vector fields. In other words, for each point p in M , there exists

a neighborhood Up of p and a set of vector fields {X1, ..., Xm} defined over Up such that

g|Up
= g{X1,...,Xm} where g{X1,...,Xm} is the sub-Riemmanin metric on Up associated with

{X1, ..., Xm}. A sub-Riemannian distance on M is a distance that can be defined, via the

length paths, from such a metric.

For the sake of simplicity, we shall always suppose in the sequel that a sub-Riemannian

metric g : TM ⊗ TM −→ R ∪ {∞} is defined by a given system of global vector fields

{X1, ..., Xm}. This assumption is perfectly legitimate in all purely local questions (in

particular, the G-FB property defined below is local).

Let ωg be the singular distribution generated by the given set of global vector fields

{X1, ..., Xm}. Notice that this singular distribution is not necessarily involutive and

it depends on the fixed vector fields {X1, ..., Xm}. Nevertheless, since we are always

supposing that g is generated by a fixed system of global vector fields {X1, ..., Xm}, the

singular distribution ωg is well-defined. Let θg be the smaller (in the sense of sub-sheaves)

involutive singular distribution containing ωg. The involutive singular distribution θg is

well-defined because the intersection of involutive singular distributions is an involutive

singular distribution and ωg is a sub-sheaf of DerM .

We are now ready to define the main objects of this Chapter and a notion of quasi-

transversality:

A sub-Riemannian manifold is a triple (M, g,E) such that:

• (M,E) is an analytic manifold with divisor;

• g is a sub-Riemmanin metric over M totally tangent to E i.e. the divisor E is θg-



118 Chapter 8. Application 2: Generalized Flow-Box and a problem proposed by Mattei

invariant.

A sub-Riemannian ideal sheaf is a quadruple (M, g, I, E) such that:

• The triple (M, g,E) is a sub-Riemannian manifold;

• The ideal sheaf I is coherent and everywhere non-zero.

A sub-Riemannian ideal sheaf (M, g, I, E) is said to be:

• geometrically quasi-transverse if (M, θg, I, E) is geometrically quasi-transverse;

• 1-algebraically quasi-transverse if (M, θg, I, E) is 1-algebraically quasi-transverse.

8.2.4 Blowing-up

An admissible blowing-up σ : (M
′

, E
′

) −→ (M,E) is invariant by (M, g,E) if

σ : (M
′

, θ
′

g, E
′

) −→ (M, θg, E) is invariant.

The total transform of g under an invariant blowing-up is the metric g
′

over M
′

de-

fined by the pull-back of the vector fields {X1, ..., Xm}. This process is well-defined by

Proposition 4.4.1 and the fact that the blowing-up is invariant. Furthermore, it clearly

implies the equality θg′ = (θg)
′

.

8.3 The G− FB property

Let (M, g, I, E) be a sub-Riemannian ideal sheaf. Given p in M and δ > 0, the set:

Bg
δ (p) = {q ∈M ; dg(p, q) < δ}

is called the g-ball at p with radius δ.

We say that a sub-Riemannian ideal sheaf (M, g, I, E) satisfies the Generalized Flow-

Box property, or simply the G-FB property, if for each point p in the variety V (I) there

exists a pair (Up, δp) where:
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• Up is an open neighborhood of p (in the usual topology of M);

• δp is a positive real number.

such that, for all points q in (V (I) ∩ Up) \ E and all positive real number δ < δp, the g-ball

Bg
δ (q) with center q with radius δ:

• intersects the variety V (I) only at q;

• is homeomorphic to a kq-euclidean ball, where kq is the dimension of the leaf of θg

passing through q.

Remark 8.3.1. If g is locally generated by a single vector field and E = ∅, then the problem

described in the introduction is equivalent to asking whether (M, g, I, E) satisfies the G−FB
property.

We say that a foliated ideal sheaf (M, θ, I, E) satisfies the Generalized Flow-Box property,

or simply the G-FB property, if there exists a sub-Riemannian metric g on M such that:

• For each point p in M , there exists a choice of vector fields {X1, ..., Xm} that generates

g on an open neighborhood Up of p, such that the singular distribution ωg (generated

by {X1, ..., Xm}) is involutive and equal to θ.OUp
;

• The sub-Riemannian ideal sheaf (M, g, I, E) satisfies the G− FB property.

Lemma 8.3.2. If a foliated ideal sheaf (M, θ, I, E) satisfies the G − FB property, then

a sub-Riemannian ideal sheaf (M, g, I, E) such that the involutive singular distribution θg

coincides with θ also satisfies the G− FB property.

Remark 8.3.3. In particular, the G− FB property for a foliated ideal sheaf (M, θ, I, E) is

independent of the choice of the sub-Riemannian metric g such that ωg = θ.

Proof. Since the problem is local, without loss of generality we can suppose that M = Up

and let {X1, ..., Xm} be globally defined vector fields defining g.

By hypotheses, there exists a sub-Riemannian metric h over M such that ωh = θ
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and (M,h, I, E) satisfies the G−FB property. Without loss of generality, this implies that

there exists globally defined vector fields {Y1, ..., Ys} generating θ and h.

Since {Y1, ..., Ys} is a set of generators of θ, there exists an analytic matrix A such

that (X1, ..., Xr) = A(Y1, ..., Ys). Let ‖A‖ denote the ∞-norm of the matrix A, i.e.

‖A‖p = max{‖ai,j(p)‖; i, j}.

If v is a vector of TpM that can be written as
∑r

i=1 uiXi, we have that:

v =
r∑

i

ui

s∑

j=1

ai,jYj =
s∑

j=1

Yj[
r∑

i=1

ai,jui]

This implies that max{‖∑r

i=1 ai,jui‖} ≤ ‖A‖max{‖ui‖}. Thus:

‖v‖h,∞,p ≤ ‖A‖‖v‖g,∞,p

Since ‖v‖h,p ≤ √
s‖v‖h,∞,p and ‖v‖g,∞,p ≤ ‖v‖g,p, apart from taking a smaller open set Up,

we have that:

‖v‖h,p ≤M‖v‖g,p

where M > 0 is a constant that depends on max{‖A‖q; q ∈ Up}. This is enough to prove that

lengthh(c(t)) ≤ Mlengthg(c(t)) and that dh(p, q) ≤ Mdg(p, q), which implies the Lemma.

8.4 Setting the Problems 1 and 2

The two problems we want to address are the following:

• Problem 1: Given a sub-Riemmaninan ideal sheaf (M, g, I, E) such that I is regular,

is it true that geometrically quasi-transversality implies the G− FB property?

• Problem 2: How can we characterize a sub-Riemmaninan ideal sheaf (M, g, I, E)

that satisfies the G− FB property?
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The first question is based on the problem proposed by Mattei (see subsection 1.5.5).

The main idea is to find a characterization of the G − FB property that only depends on

geometrical conditions. The hypotheses on the regularity of I is actually strong enough

for the Problem 1 to have a positive answer when dimM ≤ 3. But it is not true when

dimM = 4, situation where we will present a counter-example.

We also remark that the second problem is more general since the variety V (I) may

have singularities.

In what follows we will divide the study in two parts: one when the leaf dimension

of the singular distribution is one, and another when the leaf dimension is bigger than one.

Nevertheless, these two studies are based on the same techniques, and we now present two

Lemmas that are useful in both of the studies:

Lemma 8.4.1. (Local Triviality) Let (M, θ, I, E) be a geometrically quasi-transverse foliated

ideal sheaf such that θ is totally transverse to I. Then, (M, θ, I, E) satisfies the G − FB

property.

Proof. This result follows trivially from the Flow-Box Theorem.

Lemma 8.4.2. (Blowing-up reduction) Let σ : (M
′

, θ
′

, I ′

, E
′

) −→ (M, θ, I, E) be an invari-

ant blowing-up of order one and suppose that (M
′

, θ
′

, I ′

, E
′

) satisfies the G− FB property.

Then (M, θ, I, E) satisfies the G− FB property.

Proof. If a point p in M is outside the center C, then σ is an isomorphism close to σ−1(p)

and the result follows trivially. So, consider p a point over the center C.

Consider a sub-Riemannian metric g such that ωg = θ. Since the blowing-up is in-

variant, by Proposition 4.4.1, we have that θ
′

= θ∗. This implies that the pull-back g
′

is

such that ωg
′ = θ

′

.

Take a relatively compact open neighborhood U of p. Since the blowing-up σ is a
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proper morphism, V := σ−1(U) is a relatively compact open set of M
′

. So, without loss of

generality, V is equal to ∪i≤NUqi , where:

• The points qi are contained on the exceptional divisor F and σ(qi) = p;

• The pair (Uqi , δi) satisfies the G − FB property for the sub-Riemannian ideal sheaf

(M
′

, g
′

, I ′

, E
′

) at qi.

Let δp := min{δi; i ≤ N}. We claim that the pair (U, δp) satisfies the G− FB property for

the sub-Riemannian ideal sheaf (M, g, I, E) at p.

Indeed, take a point q ∈ (V (I) ∩ U) \ E:

• (∗) If q is contained in the center of blowing-up C then q is contained in the singular set

Γθ,d(OM) (because the blowing-up is of order one). So the leaf of θ passing through q

is just {q}, which implies that the g-ball Bg
δ (q) trivially satisfies the G−FB properties

for any δ;

• If q is outside the blowing-up center C then, since g
′

is given by the pull-back of g and

at this point σ is a local isomorphism, the g-ball Bg
δ (q) satisfies the G−FB properties

for any δ < δp.

Remark 8.4.3. The only point where we need the blowing-up to be of order one is in the

argument (∗). If we can obtain the same conclusion under a different hypotheses, the Lemma

is also valid.

8.5 The 1-dimensional case

8.5.1 Main result

The main result of this section is the following:

Theorem 8.5.2. Let (M, θ, I, E) be a geometrically quasi-transverse 1-foliated ideal sheaf.

If one of the following conditions is verified:
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i ) The 1-foliated ideal sheaf (M, θ, I, E) is 1-algebraically quasi-transverse;

ii ) The ideal sheaf I is regular and the variety V (I) has dimension one;

iii ) The ideal sheaf I is regular and the variety V (I) has co-dimension one.

Then (M, θ, I, E) satisfies the G− FB property.

Proof. Since the problem is local, we can fix a point p in M and a relatively compact open

subset M0 of M containing p. By Proposition 5.4.1 there exists a sequence of θ-invariant

blowings-up of order one:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1

such that:

I ) typeMr
(θr, Ir) = 1;

II ) νMr
(θr, Ir) ≤ νM0

(θ, I);

Conclusion [I] implies that θr is non-singular in every point of V (Ir) and no leaf of θr is

contained in V (I). Furthermore, for each point p in V (Ir), the leaf L of θr through p is

either transverse or finitely tangent to V (Ir). We also remark that if I0 is regular and a

leaf L is tangent to V (Ir), then it is contained in Er.

Now, we consider separately the various cases of the Theorem:

i ) If (M0, θ0, I0, E0) is 1-algebraically quasi-transverse, then conclusion [II] implies that

θr is totally transverse to Ir. So, by Lemma 8.4.1, (Mr, θr, Ir, Er) satisfies the G−FB

property;

ii ) If I is regular and V (I) has dimension one, we remark that V (Ir)∩Er has dimension

zero and V (Ir) is transverse to Er. Since Er is invariant by θr, we conclude that θr must

be transverse to every point in V (Ir) ∩ Er, which implies that θr is totally transverse

to Ir. So, by Lemma 8.4.1, (Mr, θr, Ir, Er) satisfies the G− FB property;
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iii ) If I is regular and V (I) has co-dimension one, we divide in two cases:

a If K = C, then the variety of tangencies V (θ[Ir]) ∩ V (Ir) is of codimension

one in V (Ir). On the other hand, the variety of tangencies V (θ[Ir]) ∩ V (Ir)

must be contained in the exceptional divisor Er, and V (θ[Ir]) ∩ V (Ir) must be

equal to an union of connected components of Er ∩ V (Ir). Since the singular

distribution has only finite tangencies with the variety V (Ir), we conclude that

V (θ[Ir])∩V (Ir) must be empty. So, θr is totally transverse to Ir and, by Lemma

8.4.1, (Mr, θr, Ir, Er) satisfies the G− FB property;

b If K = R, then we can assume that the variety of tangencies V (θ[Ir])∩V (Ir) has

codimension at least two (by the same argument of item [iii][a]). In this case,

notice that the variety V (Ir) is locally orientable. So, for each point p in V (Ir),

let N be a (normal) vector field defined in an open neighborhood Up of p that

gives a local orientation for V (Ir) in Up. Furthermore, let X be a vector field

defined in Up that generates θ.Up. Then the following function:

φ : Up ∩ V (Ir) −→ R

q 7→ < N,X > (q)

is continuous and equal to zero, if and only if, q is contained in the tangency

variety V (θ[Ir]) ∩ V (Ir). Since V (θ[Ir]) ∩ V (Ir) has codimension at least two

in V (Ir), we can assume that φ(q) ≥ 0 in all points q in Up ∩ V (Ir) because

V (Ir) \ V (θ[Ir]) is connected. Furthermore, by the continuity of X, we conclude

that all orbits of X are cutting V (Ir) ∩ Up with the same orientation. So, by

the flow-box Theorem, we conclude that (Up, θr.OUp
, Ir.OUp

, Er ∩Up) satisfies the

G − FB property. Since the choice of p in Ir is arbitrary, we conclude that

(Mr, θr, Ir, Er) satisfies the G− FB property;

In all the cases, by Lemma 8.4.2, (M0, θ0, I0, E0) satisfies the G − FB property. Since the

choice of p was arbitrary, (M, θ, I, E) satisfies the G− FB property.
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8.5.3 Counter-example to Problem 1

In this section we present an example of a geometrically quasi-transverse 1-foliated ideal

sheaf (M,X , I, E), that does not satisfy the G − FB property, even though I is regular.

This example is valid both in R and C.

We start the construction by stating a Lemma:

Lemma 8.5.4. The equation:

(1 + s2) cos(θ) sin(θ) − θ = 0 (8.2)

has an analytic solution (θ, s) = (h(s), s) = (sU(s), s), where U(s) is an unity defined in an

open neighborhood of the origin such that U(0) =
√
6
2
.

Now, consider 1-foliated ideal sheaf (M,X , I, E), where:

• The variety M is a small open neighborhood of the origin of R4;

• The singular distribution X is generated by a unique vector field X:

X = y2
∂

∂w
+ x

∂

∂y
− y

∂

∂x

• The ideal sheaf I is generated by two functions (z − f(x, y), 2w − g(x, y)) where:

f(x, y) = y2 cos(h(x2 + y2)) − xy sin(h(x2 + y2))

g(x, y) = xy(x2 + y2)2

where h(s) is given by Lemma 8.5.4;

• The divisor E is empty.

Claim 1: This sub-Riemannian ideal sheaf is geometrically quasi-transverse.

Proof. Notice that:

H(X , I, 1) = (z − f(x, y), 2w − g(x, y), X[z − f(x, y)], X[2w − g(x, y)])
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Furthermore, we have that:

X[z − f(x, y)] = 2xy cos(h(x2 + y2)) + (x2 − y2) sin(h(x2 + y2))

X[2w − g(x, y)] = 2y2 − (x2 − y2)(x2 + y2)2

Now, since the points of tangency between the singular distribution X and the variety (I)

are contained in the variety V (H(X , I, 1)), if the variety V (H(X , I, 1)) is just the origin (for

a sufficiently small ambient space M), then the claim 1 is proved. So, we only need to prove

that the variety V (X[z− f(x, y)], X[2w− g(x, y)]) is contained in V (x, y). Indeed, from the

equation:

2y2 − (x2 − y2)(x2 + y2)2 = 0

we get two solutions over y close to the origin:

y1 := x3V (x)

y2 := −x3V (x)

where V (x) is an analytic unity such that V (0) = 1
2

√
2. Now, making the substitution on

the equation X[z − f(x, y)] = 0, we get:

±2x4V (x) cos(h(x2 + x6V (x)2)) + (x2 − x6V (x)2) sin(h(x2 + x6V (x)2)) = 0

now, taking the Taylor expansion in x on the origin, we get:

(±2V (0) + U(0))x4 +O(x, 5) = 0

where we recall that h(s) = sU(s). Since ±2V (0) +U(0) = ±
√

2 +
√
6
2

6= 0, we conclude that

the equation is equivalent, close to the origin to x4W (x) = 0, where W (x) is an unity. Thus

x4 = 0, which implies that y = 0 and we are done.

Claim 2: This sub-Riemannian ideal sheaf does not satisfy the G− FB property.

Proof. We prove this claim when K = R. We remark that the complex case trivially follows

from the real case.

Notice that the variety V (x, y) is invariant by X, since X is singular at each point
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of it. So, if we consider the blowing-up σ : M
′ −→ M with center V (x, y), by Lemma 8.4.2

and remark 8.4.3 the the G−FB property is preserved. Since we are in a real field, we may

work with a polar blowing-up:

σ : R
+ × S1 × R

2 −→ R
4

(r, θ, z, w) 7→ (r cos(θ), r sin(θ), z, w)

So, after the blowing-up, we get:

X
′

= r2 sin(θ)2
∂

∂w
+

∂

∂θ

and I ′

= (z − f
′

(r, θ), 2w − g
′

(r, θ)), where:

f
′

(r, θ) = r2 sin(θ)[sin(θ) cos(h(r2)) − cos(θ) sin(h(r2))]

g
′

(r, θ) = r6 sin(θ) cos(θ)

Fix r0 > 0. Notice that the orbit of X
′

passing thought (r, θ, z, w) = (r0, 0, 0, 0) at t = 0 is

given by:

γ(r0, t) = (r0, t, 0,
r20
4

[2t− sin(2t)])

In particular, notice that:

γ(r0, h(r20)) = (r0, h(r20), 0,
r20
4

[2h(r20) − sin(2h(r20))])

Now, we claim that γ(r0, 0) and γ(r0, h(r20)) are contained in the variety V (I ′

). Indeed, we

recall that I ′

= (z − f
′

(r, θ), 2w − g
′

(r, θ)), where:

f
′

(r, θ) = r2 sin(θ)[sin(θ) cos(h(r2)) − cos(θ) sin(h(r2))]

g
′

(r, θ) = r6 sin(θ) cos(θ)

Which allow us to show that:

[z − f
′

(r, θ)](r0, 0, 0, 0) = r20 sin(0)[sin(0 − h(r2))] = 0
[
2w − g

′

(r, θ)
]

(r0, 0, 0, 0) = r60 sin(0) cos(0) = 0

and, thus, γ(r0, 0) is contained in the variety V (I ′

). And that:

[z − f
′

(r, θ)](γ(r0, h(r20))) = r20 sin(h(r20))[sin(h(r20) − h(r2))] = 0
[
2w − g

′

(r, θ)
]

(γ(r0, h(r20))) = 2
r2
0

4
[2h(r20) − sin(2h(r20))] − r60 sin(h(r20)) cos(h(r20))
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z

w

θ

γ(r0, t)

V (I ′

)

r0 > 0

z = 0

Figure 8.1: In the picture r0 > 0 is fixed. The orbit γ(r0, t) is contained in the plane {z = 0} and

the variety V (I ′

) is a curve that cuts the orbit γ(r0, t) two times.

Now, since:

2
r20
4

[2h(r20)− sin(2h(r20))]− r60 sin(h(r20)) cos(h(r20)) = r20[h(r20)− sin(h(r20)) cos(h(r20))(1 + r40)]

and h(s) is a solution of:

(1 + s2)cos(θ)sin(θ) − θ

we conclude that:

[2w − g
′

(r, θ)](γ(r0, h(r20))) = 0

and, thus, γ(r0, h(r20)) is contained in the variety V (I ′

). This implies that for each r0 > 0

fixed, there exists an orbit of X
′

that cuts V (I ′

) two times. Furthermore, the time between

each cut is equal to h(r20), which goes to zero when r0 goes to zero. This implies that

(M
′

, X
′

, I ′

, E
′

) does not satisfy the G− FB property, which proves the claim.

We also remark that the tg-order ν0(X , I) equals two. Indeed we have that

H(X, I, 2) = (x2, xy, y2, z, w) which is invariant by the vector field, thus ν0(X , I) ≤ 2.

Furthermore, since this example does not satisfy the G − FB property, even though it is

geometrically quasi-transverse, we conclude that it can not stabilize at ν ≤ 1 (otherwise it

would contradict Theorem 8.5.2).
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The only thing left to prove is Lemma 8.5.4:

Proof. (Lemma 8.5.4): We start noticing that (θ, s) = (0, s) is a solution of equation (8.2).

So, the equation:

(1 + s2)cos(θ)
sin(θ)

θ
− 1 = 0 (8.3)

has the same solutions of equation (8.2) apart from (θ, s) = (0, s). Now, taking the Taylor

expansion of equation (8.3) in relation with the variable θ at (θ, s) = (0, 0), we get:

s2 − 2

3
(1 + s2)θ2 +O(θ, 3) = 0 (8.4)

So, by the Weierstrass Preparation Theorem and the symmetry of equation (8.3) in respect

with the transform θ −→ −θ, the equation (8.3) can be written as:

(f(s)2 + θ2)u(θ, s) = 0 (8.5)

where u(θ, s) is an unity and f(s) is an analytic function. Furthermore, we have that:

f(s)2u(0, s) = s2

which implies that:

f(s) = ±sU(s)

where U(s) =
√

1
u(0,s)

is an analytic unity in a neighborhood of zero. Taking h(s) = sU(s)

gives the desired result. To finish, making the substitution of h(s) into the equation (8.2)

and taking the Taylor expansion of this expressions in terms of s, we obtain:

(U(0) − 2

3
U(0)3)s3 +O(s, 4)

which implies that U(0) can be taken equal to
√
6
2

.

8.6 The d-dimensional case

In this section we partially extend the results of the previous section to the case of higher

leaf dimension.
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8.6.1 d-algebraically quasi-transversality

A a foliated ideal sheaf (M, θ, I, E) is d-algebraically quasi-transverse if:

i ) The foliated ideal sheaf (M, θ, I, E) is geometrically quasi-transverse and the tg-order

νp(θ, I) = 1 at all point p in the variety V (I);

ii ) Given an invariant blowing-up of order one σ : (M
′

, θ
′

, I ′

, E
′

) −→ (M, θ, I, E), the

foliated ideal sheaf (M
′

, θ
′

, I ′

, E
′

) is also d-algebraically quasi-transverse;

iii ) If θ[I] = OM , then at each point p ∈ V (I), if X and ω are two singular distributions

defined over an open neighborhood Up of p such that:

• The distributions X and ω generates θ.OUp
;

• The 1-singular distribution X is generated by a regular vector field X and is

totally transverse to I;

• The (d − 1)-singular distribution ω has a generator set {Y1, ..., Ys} such that

[X, Yi] ≡ 0.

Then (Up, ω, I.OUp
, E ∩ Up) is d− 1-algebraically quasi-transverse.

This condition depends on a sequence of blowing-ups and it is quite difficult to define à priori

for a general ideal sheaf I. But there is one geometrical interesting case:

Lemma 8.6.2. Let (M, θ, I, E) be a geometrically quasi-transverse d-foliated ideal sheaf and

suppose that I is regular and V (I) has dimension one, i.e. is is a regular analytic curve.

Then (M, θ, I, E) is d-algebraically quasi-transverse.

Proof. We claim that the hypotheses (H):

• The foliated ideal sheaf (M, θ, I, E) is geometrically quasi-transverse;

• The ideal sheaf I is regular;

• The variety V (I) has dimension one.

is preserved by invariant blowing-ups of order one. Indeed, given an invariant blowing-up of

order one σ : (M
′

, θ
′

, I ′

, E
′

) −→ (M, θ, I, E), we have that:
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• The foliated ideal sheaf (M
′

, θ
′

, I ′

, E
′

) is geometrically quasi-transverse

• The ideal sheaf I ′

is regular;

• The variety V (I ′

) has dimension one;

Furthermore, if θ[I] = OM , then at each point p ∈ V (I), if X and ω are two singular

distributions defined over an open neighborhood Up of p such that:

• The distributions X and ω generates θ.OUp
;

• The 1-singular distribution X is generated by a regular vector field X and is totally

transverse to I;

• The d− 1-singular distribution ω has a generator set {Y1, ..., Ys} such that [X, Yi] ≡ 0.

Then:

• The foliated ideal sheaf (Up, ω, I.OUp
, E ∩ Up) is geometrically quasi-transverse

• The ideal sheaf I.OUp
is regular;

• The variety V (I.OUp
) has dimension one;

So, we only need to verify that hypotheses (H) implies that the tg-order νp(θ, I) is one for

every point p in the variety V (I). Fix a point p of the variety V (I), since I is regular there

exists a local coordinate system (x, y) = (x1, ..., xn−1, y) such that the ideal I.Op is equal to

(x) = (x1, ..., xn−1).

The hypotheses of geometrically quasi-transverse, implies that:

• Either H(θ, I, 1).Op = Op and the tg-order νp(θ, I) = 1, or;

• H(θ, I, 1).Op = (x, yr) for some r ∈ N. In this case, we claim that H(θ, I, 1).Op is

θp invariant, which implies that the tg-order νp(θ, I) = 1. Indeed, if H(θ, I, 1).Op

is not invariant, this implies that the ideal H(θ, I, 1).Op must be equal to (x, yr−1).

Thus, H(θ, I, r).Op = Op, which contradicts the hypotheses of geometrical quasi-

transversality.



132 Chapter 8. Application 2: Generalized Flow-Box and a problem proposed by Mattei

So condition [I] of the definition is verified. This implies that hypotheses (H) satisfies all

hypotheses of the d-algebraically quasi-transversality and we are done.

8.6.3 Main result

A natural extension of Theorem 8.5.2 is the following:

Theorem 8.6.4. If (M, θ, I, E) is a d-algebraically quasi-transverse foliated ideal sheaf, then

(M, θ, I, E) satisfies the G− FB property.

Remark 8.6.5. In particular, if (M, θ, I, E) is a geometrically quasi-transverse d-foliated

ideal sheaf, I is regular and V (I) has dimension one, by Lemma 8.6.2, the foliated ideal

sheaf (M, θ, I, E) satisfies the G− FB property.

The idea to prove such a result is an argument by induction on the leaf dimension of θ.

It relies in two Propositions:

Proposition 8.6.6. Let (M, θ, I, E) be a geometrically quasi-transverse foliated ideal sheaf

and suppose that θ[I] = OM . Then at each point p of V (I), there exists an open neighborhood

U of p, a regular vector field X over U and a collection of vector fields {Y1, ..., Ys} over U

such that:

i ) The singular distribution X generated by X is totally transverse to I;

ii ) The singular distribution ω generated by {Y1, ..., Ys} is involutive;

iii ) The singular distribution {X , ω} is equal to θ.OU ;

iv ) [X, Yi] ≡ 0 for all i ≤ s.

Remark 8.6.7. This result can be find in the literature when θ is a reduced singular distri-

bution (see e.g. [MY]). Here we prove a slightly more general result.

Proposition 8.6.8. Let (M, θ, I, E) be a geometrically quasi-transverse d-foliated ideal sheaf

such that the singular distribution θ is locally generated by vector fields {X, Y1, ..., Ys} sat-

isfying conditions [i], [ii], [iii], [iv] of Proposition 8.6.6. Then, if (M,ω, I, E) satisfies the

G− FB property, so does (M, θ, I, E).
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We now show how these Propositions are enough to prove the Theorem:

Proof. (Theorem 8.6.4) The case of 1-algebraically quasi-transverse is done by Theorem

8.5.2, so suppose the Theorem proved for d − 1-algebraically quasi-transverse foliated ideal

sheaves and take (M, θ, I, E) a d-algebraically quasi-transverse foliated ideal sheaf.

Since the problem is local, we can fix a point p in V (I). Take a relatively compact

open subset M0 of M containing p. By Proposition 5.4.1 there exists a sequence of

θ-invariant blowings-up of order one:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M0, θ0, I0, E0)
σr σ2 σ1

such that:

i ) typeMr
(θr, Ir) = 1;

ii ) νMr
(θr, Ir) ≤ νM0

(θ, I);

By hypotheses [II] of the d-algebraically quasi-transverse definition, we have that

(Mr, θr, Ir, Er) is d-algebraically quasi-transverse. Furthermore, by hypotheses [I] of the

d-algebraically quasi-transverse definition, we have that νMr
(θr, Ir) = 1. This implies that

θr[I] = OMr
. By Proposition 8.6.6, without loss of generality, there exists a regular vector

field X and an involutive singular distribution ω generated by vector fields {Y1, ..., Ys} such

that:

• The vector fields {X, Y1, ..., Ys} generates θr;

• [X, Yi] ≡ 0 for all i ≤ s.

By hypotheses [III] of the d-algebraically quasi-transverse definition, (Mr, ω, Ir, Er) is a

d − 1-algebraically quasi-transverse foliated ideal sheaf. By the induction hypotheses, the

foliated ideal sheaf (Mr, ω, Ir, Er) satisfies the G − FB property. So, by Proposition 8.6.8,

the foliated ideal sheaf (Mr, θr, Ir, Er) also satisfies the G − FB property. Finally, by

Lemma 8.4.1, the foliated ideal sheaf (M0, θ0, I0, E0) satisfies the G− FB property.
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Since the choice of the point p of V (I) was arbitrary, the foliated ideal sheaf (M, θ, I, E)

satisfies the G− FB property.

8.6.9 Proof of Proposition 8.6.6

Since the problem is local, without loss of generality we can suppose that there exists

a global coordinate system (x, y) = (x, y1, ..., yn−1) such that the vector field X = ∂
∂x

is

contained in θ and the analytic function x is contained in the ideal I.

There always exists vector fields {Y1, ..., Ys} such that {X, Y1, ..., Ys} generates θ.

Furthermore, we can suppose that Yi(x) ≡ 0, which implies that:

[X, Yj] =
s∑

j=1

Ai,j(x, y)Yj

Now, consider a vector field of the form Y =
∑s

i=1 µiYi, where µi ∈ OM . We have that:

[X, Y ] =
∑s

j=1X(µj)Yj +
∑s

i=1 µi

∑s

j=1Ai,j(x, y)Yj =
∑s

j=1 Yj[X(µj) +
∑s

i=1 µiAi,j(x, y)]

Since X is a regular vector field, the equations:

X(µj) +
s∑

i=1

µiAi,j(x, y) = 0

for j = 1, ..., s give rise to an analytic system of ODE’s. Since the system is an-

alytic, there exists s locally defined analytic solutions ~µi = (µi,1, ..., µi,s) such that

~µi(0) = ei = (0, ..., 0, 1, 0, ..., 0), where the 1 is on the i position. Without loss of generality,

we suppose that these solutions are globally defined.

Let Zi =
∑s

j=1 µi,jYj, then it is clear that:

• The vector fields {Z1, ..., Zs} generates an involutive d− 1-singular distribution ω;

• The vector fields {X,Z1, ..., Zs} generates θ;

• [X,Zi] ≡ 0 for all i ≤ s.
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8.6.10 Proof of Proposition 8.6.8

Since X is totally transverse to I, by Lemma 8.4.1, the foliated ideal sheaf (M,X , I, E)

satisfies the G− FB property.

Furthermore, since the problem is local, without loss of generality we can suppose

that there exists a global coordinate system (x, y) = (x, y1, ..., yn−1) such that the vector

field X is equal to ∂
∂x

and the analytic function x is contained in the ideal I. We can further

suppose that Yi(x) ≡ 0 and each Yi is independent of x (because [X, Yi] ≡ 0). Let g be

the sub-Riemannian metric generated by {X, Y1, ..., Ys}, gX be the sub-Riemannian metric

generated by {X} and gY be the sub-Riemannian metric generated by {Y1, ..., Ys}.

Without loss of generality, the hypotheses implies that there exists δp > 0 such that:

dgX (q, V (I) \ {q}) > δp

dgY (q, V (I) \ {q}) > δp

for all point q ∈ V (I) \ E. The next two Claims proves the Proposition:

Claim 1: For all point q in V (I) \ E, the g-ball Bg
δ (q) intersects V (I) only in

q.

Proof. Claim 1 will follow if, for all point q in V (I) \ E:

dg(q, V (I) \ {q}) > δ

So, suppose by absurd that there exists a point q in V (I) \ E such that:

dg(q, V (I) \ {q}) < δ

This implies the existence of a absolutely continuous curve c : [a, b] −→ M such that

c(a) = q, c(b) ∈ V (I) \ {q} and lengthg(c(t)) < δ. We remark that c(t) = (x(t), y(t)) and we

define the absolutely continuous curve γ(t) = (0, y(t)). Notice that, since I ⊃ (x), we have

that c(a) = (0, y(a)) and c(b) = (0, y(b)). This implies that γ(a) = q and γ(b) ∈ V (I) \ {q}.
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Notice that, because of the chosen decomposition of X and ω:

‖ ˙c(t)‖g,c(t) = ‖ ˙x(t)‖gX ,c(t) + ‖ ˙y(t)‖gY ,c(t) ≥ ‖ ˙y(t)‖gY ,c(t)

Furthermore, since (0, ˙y(t)) = ˙γ(t) and ω is independent of the coordinate x:

‖ ˙y(t)‖gY ,c(t) = ‖ ˙γ(t)‖gY ,c(t) = ‖ ˙γ(t)‖gY ,γ(t)

Thus:

‖ ˙c(t)‖g,c(t) ≥ ‖ ˙γ(t)‖gY ,γ(t)

Which implies that:

lengthgY (γ(t)) ≤ lengthg(c(t)) < δ

which contradicts the absurd hypotheses and Claim 1 is proved.

Claim 2: For all point q in V (I)\E, the g-ball Bg
δ (q) is homeomorphic to a kq-euclidean

ball, where kq is the dimension of the leaf of θg passing through q.

Proof. Notice that the gY -ball BgY
δ (q) is homeomorphic to a (kq − 1)-euclidean ball for any

q in V (I) and δ < δp. From the explicit expression gX = (dx)2 and the fact that the vector

fields {Y1, ..., Ys} are independent of the x-coordinate, we conclude that the g-ball Bg
δ (q) is

homeomorphic to a kq-euclidean ball.



Chapter 9

Les résultats de la thèse en Français

Dans ce chapitre notre objectif est d’énoncer tous les résultats importants de la thèse. Pour

ce faire, on va aussi présenter les définitions et notations nécessaires.

9.1 Relations entre un feuilletage et une variété -

Chapitre 2

On commence avec une liste d’objets (voir la section 2.1):

• Une variété feuilletée est un triplet (M, θ,E), où :

• M est une variété analytique régulière de dimension n sur K (où K est R ou C);

• E est une collection ordonnée E = (E(1), ..., E(l)), où E(i) est un diviseur régulier

de M tel que
∑

iE
(i) est un diviseur réduit à croisements normaux simples;

• θ est une distribution singulière involutive sur M , tangente à E.

• Un faisceau d’idéaux feuilleté est un quadruplet (M, θ, I, E), où :

• (M, θ,E) est une variété feuilletée;

• I est un faisceau d’idéaux cohérent et ne s’annulent nulle part sur M .

• Une variété feuilletée locale est un quadruplet (M,M0, θ, E), où :
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• (M, θ,E) est une variété feuilletée;

• M0 est un ouvert relativement compacte de M .

• Un faisceau d’idéaux feuilleté local est un quintuplet (M,M0, θ, I, E), où :

• (M, θ, I, E) est un faisceau d’idéaux feuilleté;

• M0 est un ouvert relativement compact de M .

Maintenant, on définit quelques outils pour étudier “l’interaction” entre une variété et un

feuilletage:

• On considère un anneau R tel que Z ⊂ R ⊂ K. On dit qu’une distribution singulière

est R-monomiale dans un point p dans M s’il existe un système des coordonnées

x = (x1, ..., xn) de Op et un système générateur cohérent {X1, ..., Xd} de θp tels que:

• ou bien Xi = ∂
∂xi

;

• ou bien Xi =
∑n

j=1 αi,jxj
∂

∂xj
, où αi,j ∈ R.

La distribution singulière est R-monomiale si elle est R-monomiale dans tous les points

p dans M .

• L’opération k-Fitting généralisée est une application Γθ,k qui associe à chaque faisceau

d’idéaux cohérent I, un faisceau d’idéaux cohérent localement défini par:

Γθ,k(I).Op = 〈{det[Xi(fj)]i,j≤k; Xi ∈ θp, fj ∈ I.Op}〉

où 〈S〉 est l’idéal engendre par le sous-espace S ⊂ Op.

• La châıne de tangence d’un faisceau d’idéaux feuilleté (M, θ, I, E) est la suite:

T g(θ, I) = {H(θ, I, i); i ∈ N}

où H(θ, I, i) est le faisceau d’idéaux:





H(θ, I, 0) := I
H(θ, I, i+ 1) := H(θ, I, i) + θ[H(θ, I, i)]
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La tg-ordre de (M, θ, I, E) dans un point p de M est le nombre minimal νp (qu’on note

par νp(θ, I)) tel que:

H(θ, I, νp).Op = H(θ, I, i).Op

pour tout i supérieur à νp. Nous distinguons deux cas:

• si H(θ, Iνp).Op = Op, la châıne de tangence est de type 1 dans p;

• si H(θ, Iνp).Op 6= Op, la châıne de tangence est de type 2 dans p.

• Un morphisme φ : M −→ N est lisse en rapport avec deux faisceaux d’idéaux feuilletés

(M, θ, I, EM) et (N,ω,J , EN) si:

• le morphisme φ : M −→ N est lisse;

• l’ensemble φ−1(EN) est égal à EM ;

• le faisceau d’idéaux J .OM est égal à I.

On dit qu’un morhisme lisse φ : (M, θ, I, EM) −→ (N,ω,J , EN) est préserve-châıne

si:

T g(ω,J ).OM = T g(θ, I)

i.e H(ω,J , i),OM = H(θ, I, i) pour tout i ∈ N. Si la dimension de θ et ω est égale à

k, on dit que le morphisme φ : M −→ N est k-préserve-châıne.

9.2 Éclatements - Chapitre 3

On présente les outils et les notations plus importants concernant un éclatement:

• Soit (M, θ,E) une variété d-feuilletée et σ : (M
′

, E
′

) −→ (M,E) un éclatement

admissible avec diviseur exceptionnel F . On considère le faisceau de OM
′ -module

BlDerM ′ := O(−F ) ⊗O
M

′
DerM ′ . Il existe une application de DerM ′ sur BlDerM ′ :

ζ : DerM ′ −→ BlDerM ′

telle que, donné un ouvert U de M
′

, l’application associe à un champ de vecteur

X ∈ DerM ′ (U) l’élément ζ(X) = 1 ⊗X ∈ BlDerM ′ (U).
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Soit ω un sous-faisceau de DerM ′ . On note ζ(ω) le sous-faisceau de BlDerM ′

engendré par l’image de ω. Réciproquement, si ω est un sous-faisceau de BlDerM ′ ,

on note ζ−1(ω) le sous-faisceau de DerM ′ defini dans chaque ouvert U de M
′

pour les

éléments:

ζ−1(ω)U = {X ∈ DerU ; ζ(X) ∈ ωU}

Comme l’éclatement σ : M
′ −→M est un morphisme, il engendre une application:

σ∗ : DerM −→ BlDerM ′

telle que, étant donné un ouvert U de M , l’application associe à un champ de

vecteurs X de DerU l’élément σ∗(X) = ( 1
f
⊗ fX∗), où l’idéal principal (f) engendre

O(F ).Oσ−1(U) et X∗ est le tire-en-arrière de la dérivation (i.e. X∗(σ∗f) = σ∗X(f)).

La transformée analytique stricte de θ est la distribution singulière θa := ζ−1(θ∗).

On considère la distribution singulière involutive DerM ′ (−logF ) engendrée par

toutes les dérivations tangentes à F . La transformée analytique stricte adaptée est la

distribution singulière θa,ad = θa ∩DerM ′ (−logF ).

• Un éclatement admissible d’ordre un est un éclatement admissible:

σ : (M
′

, θ
′

, I ′

, E
′

) −→ (M, θ, I, E)

tel que le centre C est contenu dans la variété V (I) et:

• la distribution singulière θ
′

est la transformée analytique stricte adaptée de θ;

• le faisceau d’idéaux I ′

est la transformée contrôlée de I i.e. I ′

= O(−F )I∗ où F

est le diviseur exceptionnel.

• Une résolution d’un faisceau d’idéaux feuilleté (M, θ, I, E) est une suite ~σ = (σ1, ..., σr)

d’éclatements admissibles d’ordre un:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M, θ, I, E)
σr σ2 σ1
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telle que Ir = OMr
.

Un foncteur résolution est un foncteur R avec:

• en entrée: La catégorie des faisceaux d’idéaux feuilleté (M, θ, I, EM) où les mor-

phismees sont morphismees lisses;

• en sortie: La catégorie des suites d’éclatements admissible:

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M, θ, I, E)
σr σ2 σ1

où les morphismees sont donnés par le produit cartésien.

tel que R(M, θ, I, EM) est une résolution de (M, θ, I, E).

• Un éclatement local est un morphisme τ : M
′ −→ M qui est égal à la composition

d’un éclatement σ : M
′ −→ M̃ et d’un isomorphisme local injective π : M̃ −→ M , i.e

τ = π ◦ σ.

• Une uniformisation locale d’un faisceau d’idéaux feuilleté (M, θ, I, E) sur un point p

de M est une collection finie {τα : Mα −→M, θα} où:

• θα est une distribution singulière involutive sur Mα;

• τα : Mα −→M est un morphisme propre.

telle que :

• l’union des images
⋃
τα(Mα) est une voisinage ouverte de p;

• pour chaque morphisme τα : Mα −→ M , il existe une suite d’éclatements locaux

admissible d’ordre un :

(Mr, θr,α, Ir, Er) · · · (M1, θ1,α, I1, E1) (M, θ, I, E)
τr,α τ2,α τ1,α

telle que Ir = OMr
, θα = θr,α et le morphisme τα est égal à la composition

d’éclatements locaux: τα = τ1,α ◦ ... ◦ τr,α.
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9.3 Éclatement θ-admissible - Chapitre 4

Soit (M, θ,E) une d-variété feuilleté et C une sous-variété analytique de M . Considérons

le faisceau d’idéal réduit IC qui engendre C, i.e. V (IC) = C. On dit que C est un centre

θ-admissible si:

• C est une sous-variété régulière fermé;

• C est à croisement normal avec E;

• Il existe 0 ≤ d0 ≤ d tel que l’idéal k-Fitting généralisée Γθ,k(IC) est égal à OM pour

tout k ≤ d0 et Γθ,k(IC) est contenu dans IC pour tout k > d0.

Un éclatement admissible σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E) est θ-admissible si le centre C est

θ-admissible. Nous soulignons deux cas particuliers:

• Un éclatement admissible σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E) est θ-invariant si le centre C
est θ-invariant;

• Un éclatement admissible σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E) est θ-totalement transversal si

le centre C est θ-totalement transversal.

Une suite d’éclatements ~σ = (σ1, ..., σr) θ-admissible est une suite:

(Mr, θr, Er) · · · (M1, θ1, E1) (M0, θ0, E0)
σr σ2 σ1

telle que σi : (Mi+1, θi+1, Ei+1) −→ (Mi, θi, Ei) est θi-admissible. Le théorème suivant

explique l’intérêt porté à ces éclatements:

Théorème 4.1.1 Soit (M, θ,E) une d-variété feuilletée R-monomiale et:

σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E)

un éclatement θ-admissible. Alors θ
′

est R-monomiale.

Et, comme corollaire de sa preuve, nous obtenons le résultat suivant:
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Corollaire 4.1.2 Soit (M, θ,E) une d-variété feuilletée telle que la distribution sin-

gulière θ est régulière et:

σ : (M
′

, θ
′

, E
′

) −→ (M, θ,E)

un éclatement θ-invariant. Alors θ
′

est régulière.

9.4 Trois résolutions subordonnées à un feuilletage -

Chapitre 5 et 6

Une résolution de (M, θ, I, E):

(Mr, θr, Ir, Er) · · · (M1, θ1, I1, E1) (M, θ, I, E)
σr σ2 σ1

est dite θ-admissible (resp. θ-invariante) si σi : (Mi, θi, Ii, Ei) −→ (Mi−1, θi−1, Ii−1, Ei−1)

est θi−1-admissible (resp. θi−1-invariante).

Théorème 5.1.1 Soit (M,M0, θ, I, E) un faisceau d’idéaux feuilleté local. On sup-

pose que I0 est θ-invariant. Alors il existe une résolution de (M,M0, θ, I, E):

Rinv(M,M0, θ, I, E) : (Mr, θr, Ir, Er) · · · (M0, θ0, I0, E0)
σr σ1

telle que:

i ) ~σ = (σr, ..., σ1) est une suite d’éclatements θ-invariants;

ii ) La composition σ = σ1 ◦ ... ◦ σr est un isomorphisme sur M0 \ V (I0);

iii ) Si θ0 est R-monomial, alors θr est aussi R-monomial ;

iv ) Si θ0 est régulière, alors θr est aussi régulière;

v ) Rinv est un foncteur résolution qui commute avec les morphismes lisses préserve-

châıne.
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Théorème 5.3.1 Soit (M,M0, θ, I, E) un faisceau d’idéaux feuilleté local, où θ est de di-

mension 1. Alors, il existe une résolution de (M,M0, θ, I, E):

Rinv(M,M0, θ, I, E) : (Mr, θr, Ir, Er) · · · (M0, θ0, I0, E0)
σr σ1

telle que:

i ) ~σ = (σr, ..., σ1) est une suite d’éclatements θ-admissible;

ii ) la composition σ = σ1 ◦ ... ◦ σr est un isomorphisme sur M0 \ V (I0);

iii ) si θ0 est R-monomial, alors θr est aussi R-monomial ;

iv ) R1 est un foncteur résolution qui commute avec morphismes lisses 1-préserve-châıne.

v ) si ω est une distribution d-singulière involutive telle que I est ω-invariant et {ω, θ}
engendre une distribution (d + 1)-singulière involutive, la suite des éclatements ~σ =

(σ1, ..., σr) est ω-invariant;

Une uniformisation locale de (M, θ, I, E) dans un point p de M :

τα : (Mα, θα) −→ (M, θ)

est dite θ-admissible si les morphismes τα sont des composés d’éclatements locaux θ-

admissibles.

Théorème 6.1.1 Soit (M, θ, I, E) un faisceau d’idéaux feuilleté où θ est de dimen-

sion 1 et p un point dans M . Alors il existe une uniformisation locale θ-admissible de

(M, θ, I, E) dans p. En particulier, si θ est R-monomial, alors θα est R-monomial.

9.5 Application 1 - Résolution dans les familles -

Chapitre 7

Une famille lisse des faisceaux d’idéaux est un quadruplet (B,Λ, π, I), où :
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• L’espace ambiant B et l’espace des paramètres Λ sont deux variétés analytiques lisses;

• Le morphismee π : B −→ Λ est lisse;

• Le faisceau d’idéaux I est cohérent et partout non nul sur B.

Une famille lisse de feuilletages par courbes est un quadruplet (B,Λ, π,X ), où :

• l’espace ambiant B et l’espace des paramètres Λ sont deux variétés analytiques lisses;

• le morphismee π : B −→ Λ est lisse;

• la distribution singulière X est:

• partout non nulle sur B;

• dπ(X ) ≡ 0;

• localement engendrée par un champ de vecteurs.

On considère un point λ dans Λ: l’ensemble π−1(λ) est une sous-variété régulière de B

qu’on appelle fibre. Un point λ0 dans Λ est appelé un valeur exceptionnelle d’une famille

lisse de faisceaux d’idéaux (respectivement, d’une famille lisse de feuilletages par courbes)

si la fibre π−1(λ0) est contenu dans la variété V (I) (respectivement, dans la variété S(X )).

Théorème 7.1.1 Soit (B,Λ, π, I) une famille lisse des faisceaux d’idéaux telle que

toutes les fibres sont connexes. Alors, il existe une famille lisse des faisceaux d’idéaux

(B
′

,Λ
′

, π
′

, I ′

) et deux applications analytiques propres σ : B
′ −→ B et τ : Λ

′ −→ Λ telles

que:

i ) la famille lisse de faisceaux d’idéaux (B
′

,Λ
′

, π
′

, I ′

) n’a pas de valeurs exceptionnelles;

ii ) le diagramme suivant:

B
′

Λ
′

B Λ

σ

π
′

π

τ



146 Chapter 9. Les résultats de la thèse en Français

commute;

iii ) pour tout sous-ensemble ouvert relativement compact B0 de B, il existe une suite

d’éclatements admissibles d’ordre un par (B,B0, θ, I, ∅):

(Br, θr, Ir, Er) · · · (B1, θ1, I1, E1) (B0, θ0, I0, E0)
σr σ2 σ1

telle que σ|σ−1B0
= σ1 ◦ ... ◦ σr et I ′

.OBr
= Ir;

iv ) pour tout sous-ensemble ouvert relativement compact Λ0 de Λ, il existe une suite

d’éclatements admissibles:

(Λr, Er) · · · (Λ1, E1) (Λ0, E0)
τr τ2 τ1

telle que τ |τ−1Λ0
= τ1 ◦ ... ◦ τr.

Théorème 7.3.1 Soit (B,Λ, π,X ) une famille lisse des feuilletages par courbes telle que

toutes les fibres sont connexes. Alors il existe une famille lisse des feuilletages par courbes

(B
′

,Λ
′

, π
′

,X ′

) et deux applications analytiques propres σ : B
′ −→ B et τ : Λ

′ −→ Λ telles

que:

i ) la famille lisse des feuilletages par courbes (B
′

,Λ
′

, π
′

,X ′

) n’a pas de valeurs excep-

tionnelles;

ii ) le diagramme suivant:

B
′

Λ
′

B Λ

σ

π
′

π

τ

commute;

iii ) pour tout sous-ensemble ouvert relativement compact B0 de B, il existe une suite

d’éclatements admissible d’ordre un par (B,B0, θ,X , ∅):

(Br, θr, Ir, Er) · · · (B1, θ1, I1, E1) (B0, θ0, I0, E0)
σr σ2 σ1
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où Xi = O(−Fi).σ
∗
iXi−1, telle que σ|σ−1B0

= σ1 ◦ ... ◦ σr et X ′

.OBr
= Xr;

iv ) pour tout sous-ensemble ouvert relativement compact Λ0 de Λ, il existe une suite

d’éclatements admissible:

(Λr, Er) · · · (Λ1, E1) (Λ0, E0)
τr τ2 τ1

telle que τ |τ−1Λ0
= τ1 ◦ ... ◦ τr.

9.6 Application 2 - Le temps de retour et un problème

proposé par Mattei - Chapitre 8

On considère ici un problème proposé par Mattei à propos d’une action d’un groupe de

Lie, qu’on transformera en une question sur l’algèbre de Lie. Pour simplifier, dans cette

section, on considère une algèbre de Lie unidimensionnelle. Le cas général est étudié dans

le chapitre 8. Néanmoins, nous tenons à souligner que le problème proposé par Mattei est

toujours ouvert.

Soit M une variété analytique, N une sous-variété régulière de M et X un champ de

vecteurs analytique sur M . On dit qu’un triplet (M,N,X) satisfait la G-FB propriété si:

pour chaque point p dans N , il existe une paire (Up, δp), où Up est un voisinage ouvert de

p et δp > 0 est un nombre réel positif, de sorte que l’orbite γq(t) du champ de vecteurs X

passant par un point q dans (N ∩ Up) \ Sing(X) n’intersecte pas N pour 0 < ‖t‖ < δp.

Le problème est le suivant: Étant donné un triplet (M,N,X), établir des critères lo-

caux en fonction de la sous-variété N et le champ de vecteurs X qui garantissent que la

propriété G− FB est satisfaite.

On peut conjecturer que la difficulté du problème réside dans les points de tangence

entre la variété N et le champ de vecteurs X. On dit qu’un triplet (M,N,X) est
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géométriquement quasi-traverse si, à chaque point p dans N , nous avons l’égalité:

dimKTpN + dimKX(p) = dimK(TpN +X(p))

où X(p) est le sous-espace de TpM engendré par X. On peux poser la question suivante:

Question: Est-ce que la quasi-transversalité géométrique implique la propriété G-

FB?

On répond à cette question avec deux résultats:

Theorem 9.6.1. Si (M,N,X) est géométriquement quasi-transversal et l’une des conditions

suivantes est remplie:

• la dimension de N est un;

• la codimension de N est un;

• (M,N,X) est algébriquement quasi-transversal (voir la définition dans la section 8.1);

alors la propriété G− FB est satisfaite.

Remark 9.6.2. En particulier, si la dimension de M est inférieure ou égale à 3, alors

quasi-transversalité géométrique implique toujours la propriété G-FB.

Theorem 9.6.3. Pour dimM ≥ 4, il existe un triplet (M,N,X) géométriquement quasi-

transversal qui ne satisfait pas la propriété G-FB.

Ces théorèmes sont une conséquence immédiate des résultats figurant dans la section

8.5.
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