
HAL Id: tel-00910330
https://theses.hal.science/tel-00910330

Submitted on 27 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Techniques pour l’analyse formelle de systèmes
dynamiques non-linéaires

Romain Testylier

To cite this version:
Romain Testylier. Techniques pour l’analyse formelle de systèmes dynamiques non-linéaires. Autre
[cs.OH]. Université de Grenoble, 2012. Français. �NNT : 2012GRENM097�. �tel-00910330�

https://theses.hal.science/tel-00910330
https://hal.archives-ouvertes.fr

Université de Grenoble

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel :

Présentée par

Romain Testylier

Thèse dirigée par Thao Dang

préparée au sein Verimag
et de Mathématiques, Sciences et Technologies de l’Information, Infor-
matique

Analyse d’accessibilité
des systèmes dynamiques
non-linéaires

Thèse soutenue publiquement le 7/12/2012,
devant le jury composé de :

Erika Abraham
Professeur, Université d’Aix-la-Chapelle, Rapporteur

Eric Goubault
Directeur de Recherche, CEA, Rapporteur

Olivier Bournez
Professeur, Ecole Polytechnique, Examinateur

Bertrand Jeannet
Chargé de Recherche, INRIA, Examinateur

Carla Piazza
Professeur, Université d’Udine, Examinatrice

Thao Dang
Chargée de Recherche, Verimag/CNRS, Directeur de thèse

2

Remerciements

J’adresse ces premiers remerciements à l’ensemble des membres de mon jury
de thèse, pour m’avoir fait l’honneur d’accepter d’évaluer mes travaux. Je les
remercie d’avoir assisté à ma soutenance malgré une météo éxécrable ainsi
qu’une visio-conférence peu audible.

Je remercie également ma directrice de Thèse, Thao Dang pour m’avoir
donné l’opportunité de faire cette thèse et, sans qui, je n’aurai pu mener
ces travaux à terme. Je lui suis particulièrement reconnaissant pour son sou-
tien, ses conseils ainsi que pour sa patience et sa disponibilité.

Je remercie par la même occasion Oded Maler pour m’avoir ouvert les portes
de son équipe au sein du laboratoire Verimag.

Je remercie de plus l’ensemble des membres du laboratoire pour l’ambiance
chaleureuse dans laquelle j’ai pu travailler. Je voudrais spécialement re-
mercier Nicolas, Valentin, Giovanni et Tayeb du bureau 39 pour leur aide
ainsi que pour les discussions nombreuses et variées que nous avons eue.

Je remercie enfin mes parents pour leurs soutiens et leurs encouragements. Je
les remercies de plus pour l’économie faites en divers suivies psychiatriques
pendant ces derniers mois de rédaction ainsi que pour ce super pot de thèse.

3

Contents

Introduction (in French) 7

1 Introduction 14
1.1 Motivations . 14
1.2 State of the art . 15

1.2.1 Direct reachability computation techniques 15
1.2.2 Techniques based on systems approximation 17
1.2.3 Invariant computation 19

1.3 Outline of the thesis . 19

2 Preliminaries 21
2.1 Dynamical systems . 21

2.1.1 Continuous dynamical systems 21
2.1.2 Hybrid systems . 23

2.2 Reachable sets . 24
2.2.1 Set representations . 24

2.3 General Notation . 28

3 Dynamic hybridization using curvature over simplicial do-
mains 30
3.1 Hybridization . 31
3.2 Affine interpolation . 35

3.2.1 Error bound . 38
3.2.2 Isotropic map . 40

3.3 Curvature tensor estimation 46
3.4 Reachability analysis using hybridization 52
3.5 Domain construction algorithm 53

3.5.1 Shape and size . 53
3.5.2 Orientation and placement 54
3.5.3 Set splitting . 56

3.6 Optimal domain for quadratic functions 57

4

3.7 Experimental results . 60

4 Reachability analysis for polynomial dynamical systems 65
4.1 Preliminaries . 66

4.1.1 Template polyhedra . 66
4.1.2 Bernstein expansion 67

4.2 Reachable set approximation using template polyhedra 69
4.2.1 Method for multi-affine functions 70
4.2.2 Optimization-based method 70

4.3 Computing bound functions in the unit box domain 72
4.3.1 Using a convex hull lower facet 73
4.3.2 Using linear least squares approximation 75

4.4 Extension to polyhedral domains 77
4.4.1 Using a box approximation 77
4.4.2 Using a change of variables 79

4.5 Algorithms . 80
4.5.1 Reachability analysis 80
4.5.2 Choice of the template 82
4.5.3 Dynamical templates for oriented boxes 82
4.5.4 Bernstein coefficient interpolation 84

4.6 Discussion . 85
4.6.1 Approximation error 85
4.6.2 Computation cost . 85

4.7 Experimental results . 86
4.7.1 Prey predator model and performance evaluation . . . 86
4.7.2 A model of insect nest-site choice 88
4.7.3 FitzHugh-Nagumo neuron model 91
4.7.4 A control system . 92
4.7.5 Randomly generated systems 94

5 Redundant constraints for refinement 97
5.1 Reachability algorithm . 98

5.1.1 Algorithm . 99
5.1.2 Approximation error 101

5.2 Refinement using sharp angle 103
5.2.1 Refinement using critical direction 106

5.3 Experimentation . 111

6 Implementation 114
6.1 Architecture . 115
6.2 Data structures . 116

5

6.2.1 Dynamical system description 116
6.2.2 Set representations . 117

6.3 Algorithms . 118
6.3.1 Image computation . 118
6.3.2 Hybridization . 119
6.3.3 Reachability analysis 119

6.4 Interfaces . 120
6.4.1 Reachability parameters 120
6.4.2 Visualization . 121

6.5 External ressources . 121

7 Conclusion 123
7.1 Contributions . 123
7.2 Perspectives . 124

Conclusion (in French) 126

6

Introduction (in French)

Cette thèse présente plusieurs contributions concernant la vérification formelle
de systèmes dynamiques non-linéaires. Dans cette introduction nous présentons
dans un premier temps, nos motivations et la problématique traitée dans cette
thèse. Nous résumons ensuite les principales approches existantes pour la
vérification formelle de systèmes dynamiques et nous finissons par présenter
les grandes lignes de cette thèse.

Motivations

Les systèmes à dynamiques continues représentent un concept mathématique
où un ensemble de règles fixées décrivent l’évolution de l’état d’un système
en fonction du temps dans un ensemble appelé espace d’état.

Le nombre de variables de ce système correspond à la dimension de
l’espace d’état; à tout moment le comportement du systèmes est donné
par un vecteur de nombre réel représentant les valeurs des variables d’état.
Les systèmes à temps continu sont largement utilisés pour modéliser des
phénomènes physiques, des réactions chimiques et des systèmes biologiques
dans de nombreux domaines d’ingénierie. De plus, pour refléter les change-
ments de dynamique qui peuvent être induits par un contrôleur digital ou des
interactions environnementales, le concept des systèmes hybrides, combinant
des comportements continus et discrets, a été introduit. Depuis plus d’une
décennie, l’analyse de ces systèmes hybrides et leur synthèse sont une part
importante de la recherche dans la théorie des systèmes.

L’un des problèmes les plus étudiés concernant ces systèmes est l’analyses
formelle de leur comportement. Parmi ces analyses, l’analyse d’accessibilité
consiste à trouver les états qui peuvent être atteints par le système. Cette
analyse est importante pour la vérification de sûreté et la synthèse de contrôleurs
qui sont utilisées dans de nombreuses applications critiques telles que la plan-
ification de trajectoire sure pour les voitures autonomes ou l’évitement de
collision en aéronautique, domaines où des erreurs de conception et des bugs
peuvent mener à des résultats catastrophiques. L’un des facteurs contribuant

7

à la complexité de l’analyse formelle de ces systèmes vient de l’analyse ex-
haustive des comportements continus. De nombreux outils et algorithmes
ont été développés pour analyser certaine dynamiques ”simples”, cependant
l’analyse de dynamiques plus complexes tel que les dynamiques non-linéaires
reste un challenge, en particulier en grandes dimensions.

Dans cette thèse, nous nous penchons sur le problème du calcul de l’ensemble
atteignable de systèmes continus à dynamique non-linéaire en vue d’une ex-
tension vers l’analyse de systèmes hybrides. Nous nous concentrons en par-
ticulier sur les problèmes liés a la montée en dimension de nos méthodes.

Nous présentons dans la section suivante les approches existantes pour
l’analyse des dynamiques continues des systèmes hybrides.

État de l’art

Comme mentionné précédemment, un important problème de vérification
est celui de l’accessibilité. Étant donné un système dynamique et un en-
semble d’états initiaux, ce problème de vérification consiste à trouver si une
trajectoire peut atteindre certains états. De nombreuses méthodes ont été
développées pour répondre à ce problème d’accessibilité utilisant différentes
représentations d’ensemble, différents niveaux de complexité et différents
niveaux de précision.

A cause de l’absence de solution analytique générale pour des équations
différentielles, l’ensemble des états accessibles à un temps donné ne peut
généralement qu’être approximé. Une première approche pour résoudre ce
problème est le calcul direct basé sur la discrétisation du temps. Cela con-
siste à calculer l’ensemble contenant tous les états visités par les trajectoires
possibles du système, dans un petit intervalle de temps et à recommencer la
même opération pour l’intervalle suivant.

Des techniques d’approximation et d’abstraction de systèmes ont aussi été
proposées pour réduire les problèmes d’accessibilité initiaux à des problèmes
plus simples à analyser.

Une autre approche se concentre sur le calcul et la certification de barrières
et d’invariants. Au lieu d’effectuer un calcul précis de l’ensemble accessible,
leurs but sont d’obtenir des approximations suffisamment bonnes pour prou-
ver des propriétés de sûreté données.

Nous présentons dans la suite de ce chapitre les méthodes utilisant ces
approches.

8

Techniques de calcul direct

Les techniques dites de calcul direct de l’ensemble accessible nécessitent
généralement d’établir un algorithme de calcul d’image basé sur des ensem-
bles. Cette approche est basée sur les techniques d’intégration numérique qui
permettent de résoudre des équations différentielles non-linéaires. Le but de
cette intégration numérique est d’approximer une unique solution à chaque
pas de temps basée sur une ou plusieurs solutions précédentes. Le calcul
d’accessibilité requiert cependant de calculer l’ensemble de toutes les solu-
tions possibles et donc d’être basé sur le calcul d’ensemble. Nous appellerons
ce problème le problème du calcul d’image

Nous présentons dans ce qui suit, les techniques développées avec cette
approche pour les systèmes dynamiques linéaires et non-linéaires.

Systèmes linéaires

Le calcul d’accessibilité pour les systèmes linéaires (éventuellement avec entrées)
est un des problèmes les plus étudiés dans le cadre de la vérification des
systèmes hybrides. De nombreux algorithmes ont été proposés.

Le calcul de l’ensemble accessible exact par calcul symbolique est proposé
dans [65, 8] pour des systèmes linéaires avec certaines structures propres et
des ensembles initiaux semi-algébriques.

Pour des systèmes non-autonomes linéaires, plus généraux, les entrées
peuvent être traitées en utilisant la somme de Minkowski. La complexité
de cette opération dépend principalement de la représentation des ensembles
choisie pour décrire l’ensemble atteignable. Cette opération peut être ef-
fectuée efficacement sur les représentations des zonotopes et les fonctions de
support. des méthodes de calcul d’accessibilité basées sur les zonotopes sont
présentées dans [48, 1, 49]. Ces méthodes sont actuellement les plus à même
de monter en dimension, cependant leur extension à l’analyse de systèmes
hybrides est difficile à cause de l’opération d’intersection requise par la partie
discrète de ces systèmes. Une généralisation récente de ces méthodes, aux
représentations utilisant des fonctions de support a été présentée dans [66].

D’un autre coté, les entrées peuvent être traitées par optimisation en util-
isant des polyhèdres convexes généraux, tel que dans les techniques présentées
dans [96, 85, 28, 29]. Ces techniques sont basées sur le principe maximal du
contrôle optimum [58]. D’autres techniques utilisent des classes particulières
de polyhèdres tels que les hyper-rectangles [93] et les parallelotopes [60] pour
approximer l’ensemble accessible. Ces techniques proposent un bon compro-
mis entre précision et efficacité des opérations sur les ensembles.

De plus, une méthode basée sur les ellipsoides est présentée dans [61, 23]

9

pour les systèmes linéaires avec entrée et est étendue dans [62, 59] pour gérer
les contraintes d’état.

Ces méthodes ont mené au développement de nombreux outils pour l’analyse
d’accessibilité des systèmes hybrides avec des dynamiques linéaires tels que
d/dt [10], MPT [64], SpaceEx [46], Ellipsoidal Toolbox (ET) [63].

Systèmes polynomiaux

Des techniques d’accessibilité basées sur le calcul d’image d’ensemble par des
systèmes polynomiaux sont proposées dans [34, 39]. Elles sont inspirées par
les techniques de modélisation issues du domaine de la création géométrique
assistée par ordinateur et utilisent différentes représentations des polynômes
tel que les simplexes de Bézier et les polynômes de Bernstein. Ces techniques
peuvent être utilisées pour réduire un problème d’optimisation polynomial
vers un problème d’optimisation linéaire plus simple à résoudre.

De plus, des méthodes d’analyse d’accessibilité pour les systèmes multi-
affines sont proposées dans [19, 22]. Elles sont basées sur une propriété
spéciale des fonctions multi-affines sur les sommets des hypercubes.

Systèmes non-linéaires

Une approche pour l’analyse des systèmes non-linéaires se base sur le suivi
de l’évolution des faces de polyhèdres. La representation de ces faces pour
les polyhèdre non-convexes est complexe et seul deux classes particulières de
polyhèdre sont utilisées. L’une d’elle est la classe des polyhèdres orthogonaux
[37] qui mena à la première version de l’outil d/dt; l’autre classe de polyhèdre
est la projection en 2 dimensions de polyhèdre de plus grande dimension [50]
qui est utilisée dans l’outil Coho [50]. Le désavantage de ces méthodes est
leur limitation à des systèmes de faible dimension.

Une approche alternative est basée sur l’utilisation de courbes de niveaux
pour représenter les états atteignables. Ceux-ci peuvent ainsi être déterminés
par des solutions de viscosité pour des équations différentielles partielles de
Hamilton-Jacobi-Isaacs ne dépendant pas du temps [72, 71, 70]. Cependant,
la résolution numérique d’équations différentielles partielles est souvent basée
sur la discrétisation de l’espace et est seulement efficace sur des systèmes de
faible dimension.

Techniques basées sur l’abstraction de systèmes

L’abstraction de système est une approche différente et peut être employée
pour analyser une large classe de systèmes non-linéaires. Ces techniques

10

reposent sur le calcul de systèmes approximés qui sont plus simples à analyser.
Il est nécessaire que ces systèmes approximés assurent que la satisfaction de
propriétés de sûreté par leur analyses implique celles des systèmes originaux.

Approximation de systèmes

L’approximation de systèmes a pour but de calculer un système de transition
qui sur-approxime le système original et mène à l’utilisation de techniques
de vérification qui ont fait leurs preuves.

La plupart de ces techniques sont basées sur l’utilisation de dynamiques
pour lesquelles, il existe des algorithmes d’accessibilité efficaces pour chaque
région de l’espace d’état. Ce type d’abstraction requiert de calculer une
partition de l’espace d’état. Cette partition peut être calculée à priori, en
utilisant des classes d’ensemble prédéfinis tel que les hypercubes ou les sim-
plexes. Elle peut aussi être calculée à-la-volée pendant l’analyse. La tech-
nique présentée dans [12, 13], appelée hybridization, est basée sur le calcul
de systèmes linéaires ou multi-affines par morceaux. Cette technique con-
struit un automate hybride comme approximation d’une dynamique con-
tinue complexe. Sa variante, appelée hybridization dynamique, est présentée
dans [36], elle utilise un partitionnement à-la-volée de l’espace en régions
se chevauchant. Une autre méthode présentée dans [2] utilise des modèles
linéarisés par morceau comme approximations.

Ces techniques ont été implémentées dans différents outils: d/dt [10]
peut effectuer l’analyse d’accessibilité de systèmes non-linéaire en utilisant
les techniques d’hybridization. Hsolver [82] est un outil permettant l’analyse
de systèmes hybrides avec des dynamiques non-linéaires par l’utilisation de
techniques de propagation des contraintes [82].

Interprétation abstraite

L’interprétation abstraite est une théorie de l’approximation discrète de la
sémantique de systèmes sur ordinateur principalement appliquée à l’analyse
statique et à la vérification de logiciel. Elle a été récemment étendue à
l’analyse de systèmes hybrides en utilisant différents types de représentation
pour les ensembles. L’outil HybridFluctuat [24] est le résultat de ces
recherches. Il peut calculer l’ensemble atteignable d’un système non-linéaire
en interaction avec un programme C. D’autres travaux basés sur l’interprétation
abstraite utilisant des polyhèdres sont présenté dans [85, 35].

11

Abstraction de prédicats

L’abstraction de prédicats peut être utilisée pour améliorer l’analyse d’accessibilité.
Elle consiste à analyser la valeur de vérité d’un ensemble de prédicats plutôt
que de calculer des ensembles d’état continus [6, 5]. Des techniques de raf-
finement guidées par les contre-exemples [30] sont une autre application im-
portante de cette approche. Ces techniques ont été utilisées dans de nom-
breux domaines tel que l’analyse de timing d’automates temporisés [7], la
vérification de programmes C [17] et la vérification symbolique de modèles
[31]. L’abstraction de prédicat est utilisée dans les outils Bandera [32],
SLAM [18] et Feaver [52] pour l’analyse de programmes C et Java.

Calcul d’invariant

Le calcul d’invariant et les certificats de barrière sont des techniques alter-
natives à l’analyse d’accessibilité. L’idée derrière l’approche du certificat de
barrière est de trouver un barrière séparant les bons et les mauvais états
que nous pouvons certifier comme inviolables. Les barrières sont définies
par des inégalités polynomiales et le signe de leurs dérivées directionnelles
à leurs frontières est utilisé pour certifier son inviolabilité. Cette approche
est proposée pour la vérification de sûreté dans [80, 95, 83] et utilisée dans
[79, 81] pour le calcul d’invariants linéaires ou polynomiaux. Les certificats
d’égalités polynomiaux [86, 88] sont une approche similaire qui correspond
cependant plus à une certification de stabilité. Dans ce cas le certificat peut
être établit par la résolution d’un système d’équation ou par le calcul de la
base de Gröbner.

Les invariants différentiels sont une généralisation des barrières polyno-
miales. Ils peuvent être formés par des formules logiques contenant des
équations et des inégalités polynomiales. Ils sont introduits dans [76] et
utilisés dans des procédures automatisées de recherches d’invariants [77, 78].
Ces techniques ont été implémentées dans l’outil KeYmaera [75]. Cet outil
de vérification peut calculer des invariants pour les systèmes hybrides avec
des dynamiques non-linéaires.

Plan de la thèse

Le Chapitre 2 présente quelques notions basiques ainsi que les notations
utilisées dans cette thèse. Nos contributions sont présentées dans les trois
chapitres suivant. Le Chapitre 4 contient une section préliminaire qui ne
concerne que le contenu de ce chapitre.

12

Le Chapitre 3 présente notre première contribution qui concerne la tech-
nique d’hybridization dynamique. Nous proposons une nouvelle méthode
pour calculer les domaines d’approximations dans lesquels les dynamiques
sont approximées. Nous utilisons la courbure du système dans la construc-
tion de domaine, pour obtenir un bon compromis entre précision et efficacité.

Dans le Chapitre 4 nous présentons nos contributions à l’analyse de
systèmes polynomiaux. Nous proposons plusieurs améliorations d’une méthode
utilisant l’expansion de Bernstein [34, 39].

Le Chapitre 5 présente une méthode de raffinement de la précision des
analyses basées sur le calcul de polyhèdres pour les systèmes avec entrées.
Cette méthode permet d’accrôıtre la précision de l’analyse en ajoutant des
contraintes redondantes aux polyhèdres. Nous montrons les possibilités d’utilisation
de cette méthode sur des systèmes à grande dimension.

Pour chacun de ces chapitres, nous finissons avec des résultats expérimentaux
obtenus en utilisant un nouvel outil qui est présenté dans le Chapitre 6.

Le Chapitre 3, le Chapitre 4 et le Chapitre 5 peuvent être lus séparément,
cependant, nous conseillons au lecteur de lire le Chapitre 2 en premier, pour
comprendre les notations utilisées dans cette thèse.

13

Chapter 1

Introduction

This thesis presents a number of contributions concerning the formal verifi-
cation of nonlinear dynamical systems. In this introduction, we first present
our motivations and the problems that we address. We then provide a sur-
vey of the existing approaches to the formal verification of dynamical systems
and we finish by presenting the outlines of the thesis.

1.1 Motivations

Dynamical systems are a mathematical concept where a set of fixed rules
describes the temporal evolution of the state of a system in a set called the
state space. The number of variables of the system corresponds to the di-
mension of the state space; at any time the behavior of the system is given
by the values of the variables. Continuous dynamical systems are widely
used to model physical phenomena such as chemical reactions and biological
phenomena in engineering applications. In addition, to capture the dynamics
changes that can be induced by a digital controller or environmental interac-
tions, the concept of hybrid systems, which combine continuous and discrete
behaviors, has been introduced. Since a few decades, hybrid systems analysis
and synthesis are an important part of the research in systems theory.

One of the most studied problems in hybrid systems is the formal anal-
ysis of their behaviors. One type of formal analysis, namely reachability
analysis, involves finding the states that can be reached by the system. This
analysis is important for safety verification and controller synthesis which
are used in many critical applications, such as safe trajectory planification
for autonomous cars or plane collision avoidance, where errors and bugs can
lead to disastrous results. One factor contributing to the complexity of for-
mal analysis of hybrid systems comes from the exhaustive analysis of their

14

continuous behaviors. While many efficient tools and algorithms have been
developed to analyze constant-derivative and linear continuous dynamics, the
analysis of non-linear dynamics remains a challenge.

In this thesis, we address the problem of computing reachable states of
a nonlinear continuous system in view of an extension to hybrid systems
analysis. We also focus on the problem of designing scalable methods to
perform analysis on larger systems.

We continue in the next section with a review of the existing approaches
to the analysis of continuous dynamics of hybrid systems.

1.2 State of the art

As mentioned earlier, an important verification problem is the reachability
problem. Roughly speaking, it can be stated as follows. Given a dynamical
system and a set of possible initial states, we want to know whether if there is
a trajectory that reaches a given state. To address this reachability problem,
a variety of methods have been developed to deal with different types of dy-
namics. They use different set representations and have different complexity
and accuracy level.

Due to the lack of analytic solution of general differential equations, the
reachable set at a given time is often approximated. A common approach
to reachable set approximation is a direct computation based on a time dis-
cretization, that is computing the set containing all possible states visited by
the trajectories for a small time interval, and then continuing for the next
interval.

Systems approximation and abstraction techniques have also been pro-
posed to reduce the reachability analysis problem to a problem on a simpler
system to analyze.

Another approach focuses on the computation of invariant and barrier
certificate. Instead of performing precise computation of the reachable sets,
its goal is to obtain an approximation sufficiently good to prove a given safety
property.

We now review the analysis methods developed using these approaches.

1.2.1 Direct reachability computation techniques

Direct reachability computation techniques usually require establish-
ing a numerical scheme and realizing this scheme on sets. This approach is
inspired by numerical integration which is a common method to solve non-
linear differential equations. The goal of traditional numerical integration

15

is to approximate a single solution at each time step based on the solution
at one or several previous steps. Reachability computation however involves
the set of all possible solutions and thus requires performing the scheme on
sets, which often reduces to the problem of computing the image of a set
by a function; from now on we call this problem the image computation
problem.

We proceed with a discussion on the techniques developed along this line
for linear and polynomial dynamical systems.

Linear systems

Reachable set computation for linear dynamical systems (possibly with in-
put) has been one of the most studied problems of hybrid systems verification.
Many efficient algorithms have been proposed.

Exact computation of reachable sets by symbolic computation is proposed
in [65, 8] for linear systems with special eigenstructures and semi-algebraic
initial sets.

For general non-autonomous linear systems, the input can be treated
using the Minkowski sum. The complexity of this operation mainly depends
on the set representation that is used to describe the reachable set. The
Minkowski sum can be performed efficiently on the zonotope and support
function representations. Zonotope-based reachability computation methods
are presented in [48, 1, 49]. These techniques are currently the most scalable
in dimension, however their extension to hybrid systems analysis is hard
because of the difficulties in computing the intersection operation, needed to
deal with discrete transitions of hybrid systems. A recent generalization of
this method to the support functions has been presented in [66].

On the other hand, input can be treated by optimization using general
convex polyhedra, such as in the techniques presented in [96, 85, 28, 29].
These techniques are based on the Maximum Principle in optimal control [58].
Other techniques use particular classes of polytopes like hyper-rectangles [93]
and parallelotopes [60] to approximate the reachable sets. These techniques
provide a good trade-off between precision and efficiency of set operations.

In addition, an ellipsoid-based method is presented in [61, 23] for linear
systems with input and is extended in [62, 59] to treat state constraints.

The above results led to the development of a number of tools for reach-
ability analysis of hybrid systems with linear dynamics such as d/dt [10],
MPT [64], SpaceEx [46], Ellipsoidal Toolbox (ET) [63].

16

Polynomial systems

Reachability techniques based on image computation for polynomial systems
are proposed in [34, 39]. These techniques are inspired by modeling tech-
niques from Computer Aided Geometric Design (CAGD) and use different
polynomial representations, such as the Bézier simplex, the box splines and
the Bernstein polynomials, to reduce a polynomial optimization problem to
a linear one which can be solved more efficiently.

In addition, reachability analysis methods for multi-affine systems, which
are a particular class of polynomials, are proposed [19, 22]. They are based
on a special property of the multi-affine function values on the rectangle
vertices.

Nonlinear systems

One approach to reachability analysis of non-linear systems is based on using
polyhedra and tracking the evolution of their faces under nonlinear dynamics.
The facet representation of non-convex polyhedra is hard and thus two partic-
ular classes of non-convex polyhedra are used. One is the class of orthogonal
polyhedra [37] which led to the first version of the tool d/dt; and the other
is based on the two-dimensional projections of high-dimensional polyhedra
[50] which led to the tool Coho [50]. The drawback of these methods is their
high complexity in handling non-convex polyhedra and they are thus limited
to low-dimensional systems.

An alternative approach is based on the use of level sets to represent the
reachable sets which can be determined using the viscosity solution of a time
dependent Hamilton-Jacobi-Isaacs partial differential equation [72, 71, 70].
However, numerical resolution of partial differential equations is often based
on a spatial discretization and is efficient only for low dimensional systems.

1.2.2 Techniques based on systems approximation

Systems approximation is another approach to analyze a large class of non-
linear systems. These techniques rely on the computation of an approximate
system which is easier to analyze. An important requirement for this approx-
imation is conservativeness, which ensures that the satisfaction of a safety
property by the approximate system implies that this property is also satis-
fied by the original system.

17

Systems approximation

Abstraction, aims to compute a transition system which is an over-approximation
of the original systems and is amenable to verification by well-established
verification techniques.

Most techniques for automatically constructing approximate systems are
based on the use of simpler dynamics (for which there exist efficient reacha-
bility algorithms) in each region of the state space. This kind of abstraction
requires computing a partition of the state space. This partition can be com-
puted a-priori using predefined classes of sets such as boxes or simplices, or
can be performed on-the-fly during the analysis. The technique proposed in
[12, 13], called hybridization, is based on the computation of piecewise linear
and multi-affine systems. This technique constructs a hybrid automaton as
approximation of a complex continuous dynamical system. Its variant, called
dynamic hybridization, where the partition is not fixed and created dynam-
ically, is presented in [36]. Another method presented in [2] uses piecewise
linearized models as approximations.

Systems approximation techniques have been implemented in different
tools: the tool d/dt [10] can perform the reachability analysis of continuous
non-linear dynamics using the hybridization techniques. Hsolver [82] is a
software package for the safety verification of hybrid systems. It supports
hybrid systems with nonlinear dynamics and nonlinear reset functions by
using constraint propagation based abstraction refinement method [82].

Abstract interpretation

Abstract interpretation is a theory of discrete approximation of the semantics
of computer systems mainly applied to the static analysis and verification of
software. It has been recently extended to hybrid systems analysis using
different set representations (such as polyhedra and zonotopes). The tool
HybridFluctuat [24], the result of this research, is a static analyzer which
can compute the reachable set of nonlinear continuous dynamics in interac-
tion with a C program. Besides, other works based on abstract interpretation
using template polyhedra are presented in [85, 35].

Predicates abstraction

Predicate abstraction can be used to enhance reachability analysis. It in-
volves tracking the truth values of a set of predicates instead of tracking
the continuous states [6, 5]. Counter-example guided abstraction refinement
techniques [30] are another important result. These techniques have been

18

used in many fields such as timing analysis of timed automata [7], verifica-
tion of C programs [17], and symbolic model checking [31]. The predicate
abstraction approach is used in the tool Bandera [32], SLAM [18] and
Feaver [52] for analysis of C and Java programs.

1.2.3 Invariant computation

Invariant and barrier certificate based verification techniques are an alter-
native to reachability analysis. The basic idea behind the barrier certificate
approach is to find a barrier separating good and bad states that we can show
to be impenetrable by the dynamics of the system. The barrier is defined
using a polynomial inequality and the sign of a directional derivative at the
barrier boundary is used to certify the impenetrability condition.

This approach is proposed for safety verification in [80, 95, 83] and used
in [79, 81] for linear and polynomial invariant computation for linear and
non-linear systems. Polynomial equality certificates [86, 88] are a similar
approach which corresponds more to stability certificates than separation
between good and bad states. In this case the certificate can be established
by linear equation solving or Gröbner basis computation.

Differential invariants are a generalization of polynomial barriers. They
can be formed by general logical formula containing polynomial equations
and polynomial inequalities. They are introduced in [76] and later used in
automatic procedures that search for differential invariants [77, 78]. These
techniques have been implemented in the tool KeYmaera [75]. This hybrid
verification tool can compute invariants for hybrid systems. This tool sup-
ports systems with nonlinear dynamics and non-deterministic discrete and
continuous input.

1.3 Outline of the thesis

Chapter 2 is devoted to the basic notions and notations that are used in this
thesis. Our contributions are presented in the three chapters that follows.
Chapter 4 contains a preliminary section which concerns only the content
presented therein.

Chapter 3 presents our first contribution which concerns the dynamic hy-
bridization technique. We propose a new way to compute approximation
domains in which the dynamics are approximated more accurately. In addi-
tion, we make use of curvature to develop a method for domain construction
which provides a good trade-off between precision and domain size.

19

In Chapter 4 we describe our contributions to formal analysis of poly-
nomial dynamical systems. We propose a number of enhancements for the
reachability method which uses the Bernstein expansion [34, 39].

Chapter 5 presents a refinement method for polytope-based reachability
analysis of systems with input. This method increases the accuracy of the
reachable set computation by using redundant constraints. We show the
applicability of this method for systems in high dimensions.

Each of these chapters ends with the experimental results obtained using
a new prototype tool which is presented in Chapter 6.

Chapter 3, Chapter 4 and Chapter 5 can be read independently; however,
we recommend the reader to read Chapter 2 first to understand the notations
used in the thesis.

20

Chapter 2

Preliminaries

Résumé: Dans ce chapitre, nous présentons quelques notions
basiques sur l’analyse d’accessibilité, les représentations d’ensemble
ainsi que les notations utilisées dans cette thèse.

In this chapter, we present some preliminary notions that will be used
in the rest of this thesis. In the following, we present some preliminaries
on the continuous dynamical systems and hybrid systems representation. In
a second section, we present some definitions about the set representations
used in this thesis. At last, we present the notations which will be used in
the following chapters.

2.1 Dynamical systems

In this section we present some generalities about the continuous and hybrid
dynamical systems.

2.1.1 Continuous dynamical systems

Continuous dynamical systems are systems whose states evolve according to
an independent variable often given as time. In this thesis we use the set of
positive real numbers R+ including 0 as the time domains.

We can differentiate continuous autonomous systems and continuous sys-
tems with inputs. Continuous autonomous systems are systems which do not
depend on an input. They can be defined as follows.

21

Definition 1 (Continuous autonomous system). Continuous autonomous
systems are systems whose behaviors are governed by ordinary autonomous
differential equations:

ẋ(t) = f(x(t)) (2.1)

where x ∈ Rn represents the state of the system at time t, f : Rn → Rn is a
function representing the system dynamics.

The behavior of a continuous dynamical system is characterized by the
solutions to the initial-value problem of its differential equation.

We assume that f is globally Lipschitz continuous in x, which guarantees
that there exists a unique solution to (2.1) for every initial condition in Rn.

In many cases, to model physical phenomena, we need to add an input
variable which can reflect, for example, perturbations, external controls or
approximation errors.

Definition 2 (Continuous system with input). A continuous system with
input is described by

ẋ(t) = f(x(t),u(t)) (2.2)

where u(·) : R+ → Uµ represents the continuous input variables included in
the set of admissible input values Uµ.

In this thesis we assume that the sets Uµ of all possible input values are
compact and convex.

For simplicity we will sometimes use the following notations to represent
continuous systems:

ẋ = f(x), x ∈ R
n.

and
ẋ = f(x,u), x ∈ R

n,u ∈ U ⊂ R
n.

Definition 3 (Trajectory). For a continuous autonomous system, a trajec-
tory starting from a state in the state space p ∈ Rn is a function Φf (p, t) :
R+ → Rn such that Φf (p, t) is the solution of the system (2.1). For systems
with input, the system trajectory starting from a state p ∈ Rn under the in-
put u(·) ∈ U is a function Φf (p, t,u) : R+ → Rn such that Φf (p, t,u) is the
solution of the system (2.2).

Trajectories can be computed by solving analytically the differential equa-
tions or approximated by using numerical analysis methods, such as Euler
or Runge-Kutta. If a state q belongs to a trajectory Φf (p, t) starting from
p, we say that q is reachable from p.

For deterministic systems, a single trajectory can represent all the reach-
able states from an initial state. However, in the presence of an input or

22

when the initial state is not known exactly and is given in a continuous set,
the number of possible trajectories could be infinite. In this case, formal
analysis often requires set-based computations.

In many modern engineering applications, the modeling process requires
considering discrete events which change the continuous dynamics. For ex-
ample, those discrete behaviors can be introduced in mechanical systems to
model collisions. These models are called hybrid systems because they ex-
hibit both continuous and discrete behaviors. In the following, we describe
a well-established formalism used to model these systems.

2.1.2 Hybrid systems

Hybrid systems are systems which combine both continuous and discrete
dynamics. Continuous behaviors usually represent the evolution of physical
variables such as spatial position, temperature or proteinic concentration.
The discrete behaviors represent changes in dynamics which can be induced
among other things by switching control laws or environment responses.

A classical formalism to describe hybrid systems is given by the hybrid
automata [68, 4]. The discrete behaviors are modeled by an automaton
where in each discrete state (mode), the behaviors of continuous variables
are specified using differential equations.

Definition 4 (Hybrid systems). A hybrid automaton is a tuple of the fol-
lowing components:

• A set of locations representing the discrete states.

• A set of continuous variables.

• A set of invariants (which are subsets of the state space) corresponding
to the set of admissible values for the continuous variables in a given
location.

• For each location, a continuous vector field specifying the evolution
of the continuous variables (usually described by a differential equa-
tion).

• A set of discrete transitions between locations which specify the discrete
behavior of the system. Each transition is associated with a guard

represented by a subset of the state space. A reset map is associated
with each transition to specify the change in the continuous variables
after a transition.

23

A classical example which illustrates hybrid systems is a bouncing ball,
a physical system with impact. In this example, the ball is dropped from
an initial height and bounces off the ground, dissipating its energy with
each bounce. The ball exhibits continuous dynamics between each bounce;
however, as the ball impacts the ground, its velocity undergoes a discrete
change modeling an inelastic collision.

In the next section, we present the notion of reachable sets and discuss
some set representations used in the next chapters.

2.2 Reachable sets

We consider a continuous dynamical system with input

ẋ = f(x,u),

where x ∈ Rn is a state variable and u ∈ U a possible input. The initial
states are given by a compact set P ⊂ Rn. The reachable sets can be defined
as follows:

Definition 5 (Reachable sets). A reachable set from an initial set P ⊂ Rn

under the autonomous dynamics f at time t, denoted Reach(P , t), is defined
as follows:

Reach(P , t) = {x ∈ R
n, | ∃y ∈ P , | x = Φf (y, t)}

In the case of system with input, the reachable set at time t from an initial set
P under the dynamics f and the input u, denoted Reach(P , t,u), is defined
as follows:

Reach(P , t,u) = {x ∈ R
n,u ∈ U | ∃y ∈ P | x = Φf (y, t,u)}

In a similar way, we denote by Reach[0,t](P) the set containing all the
reachable states starting from a state in P until a time t.

In the following, we present some preliminaries about set representations.

2.2.1 Set representations

In this thesis we base our work on convex polyhedra as a representation of
sets. In addition, we consider only bounded sets. We begin by the notation
for the box representation, which is frequently used in the thesis.

24

Boxes

Boxes (also called hyper-rectangles or intervals products) are one of the sim-
plest sub-class of convex polyhedra. They can be represented by two vectors
b,b ∈ Rn representing the lower and upper bounds of the intervals for each
dimension. The resulting set is obtained by the product of these intervals
and is symmetrical according to its centroid.

Definition 6 (Box). A box B ⊂ Rn can be represented by its lower and upper
bounds b ∈ Rn and b ∈ Rn such that

B =
{
x ∈ R

n | bi ≤ x ≤ bi, i ∈ {1 · · ·n}
}

where bi and bi represent the ith elements of b and b. This representation is
also known as interval product and can be expressed as

B = [b1, b1]× [b2, b2]× · · · × [bn, bn].

Figure 2.1 gives an illustration of a 2-dimensional box in the interval
[2, 4]× [1, 4], represented by two vectors b = (2, 1) and b = (4, 4).

For a bounded set A we give the definition of its minimal bounding box
that we denote by �(A).

Definition 7 (Minimal bounding box). A box B ⊂ Rn is the minimum
bounding box of a set A ⊂ Rn, denoted by �(A), if

�(A) = [b1, b1]× [b2, b2]× · · · × [bn, bn]

where bi = inf{xi | x ∈ A} and bi = sup{xi | x ∈ A}.

In the remainder of the thesis, we will use the term bounding box as an
abbreviation of the minimal bounding box.

Simplex

A simplex is a generalization of the notion of a triangle or tetrahedron to
arbitrary dimension.

Definition 8 (Simplex). A simplex ∆ is a n-dimensional polytope which is
the convex hull of its n + 1 vertices V = {v1, . . . ,vn+1}.

∆ =

{
x ∈ R

n | x =
∑

v∈V

αvv,
∑

v∈V

αv = 1, ∀v ∈ V αv ≥ 0

}

Simplices can be used to compute affine interpolations of non-linear sys-
tems, this will be discussed in Chapter 3.

Figure 2.2 gives an illustration of a 2-dimensional simplex represented by
3 vertices.

25

0

0

1

2

3

4

1 2 3 4 5 6

B

Figure 2.1: A box represented by two vectors b = (2, 1) and b = (4, 4).

0

0

1

2

3

4

1 2 3 4 5 6

∆

v1

v2

v3

Figure 2.2: A 2-dimensional simplex represented by the vertices v1 =
(5, 4), v2 = (3, 1) and v3 = (2, 3).

26

Polytopes

Polytopes are a generalization of convex polyhedra. They can be defined by
half-spaces intersection, or as the convex hull of vertices. 1

We denote a polytope represented by a set of half-spaces H by
HPolytope or constraint polytope and we define them as follows:

Definition 9 (HPolytope). Half-space based polytopes, also called constraint-
based polytopes, are convex polyhetopes represented by the intersection of a set
H of half-spaces. Each half-space H of H corresponds to a linear inequality
such that

H = {x ∈ R
n | a·x ≤ b}

where a ∈ Rn and b ∈ R. We denote by normal vector the vector a because
it is always orthogonal to the boundary of the half-space H. A HPolytope P
represented by a set H of half-spaces can be defined by

P =
⋂

H∈H

H.

Additionally we can use the following expression:

P = {x ∈ R
n | Ax ≤ b}

where A ∈ Rm×n is a matrix whose lines correspond to normal vectors and
b ∈ Rm is called a polyhedral coefficient vector.

This representation allows to compute intersection and affine transfor-
mation easily. The intersection of a HPolytope P represented by a list of
constraints H with a half-space H can be expressed by adding H to the list
H. The affine transformation by a matrix T ∈ Rn×n is given by

TP = {x ∈ R
n | (T−1)TaHx ≤ bH, ∀H ∈ H}.

The convex union of two convex polyhedra can be efficiently computed in
some cases with sparse matrix A [91], however in the general case it often
requires computing or approximating vertex representations.

Another representation uses vertices in the state space. We call a poly-
tope represented by a list of vertices V by VPolytope, defined as follows:

Definition 10 (VPolytope). Vertex-based polytopes can be represented by the
convex hull of a list of vertices V . A VPolytope P can be expressed as:

VPolytope =

{
x ∈ R

n | x =
∑

v∈V

αvv,
∑

v∈V

αv = 1, ∀v ∈ V αv ≥ 0

}
.

1Vertices are points in the n-dimensional space which is usually used to represent a set
boundary.

27

0

0

1

2

3

4

1 2 3 4 5 6

v2

v3

v4

v5

v6

v1

P

Figure 2.3: A polytope represented
by the convex hull of the set of its
vertices {v1,v2, . . . ,v6}.

0

0

1

2

3

4

1 2 3 4 5 6

H6

H1

H2

H3

H4

H5

P

Figure 2.4: The polytope of
Figure 2.3 represented by the
intersection of its half-spaces
H1,H2, . . . ,H6.

This representation is suitable for the affine transformation and the con-
vex union. The intersection with half-spaces can be efficiently realized using
Binary Partitioning Trees [94].

Figure 2.3 and Figure 2.4 illustrate these two representations for a 2-
dimensional polytope with 6 facets. The dotted lines in Figure 2.4 represent
the half-spaces and the arrows their normals.

Other representations such as zonotopes or template support functions
can be used for special kinds of polytopes, however this thesis does not use
them directly.

We end this chapter by a summary of the most common notations that
we will use in this thesis.

2.3 General Notation

The following tables present the notation used in this document.

28

Variables
a, b, . . . , z scalars
n number of continuous variables, also called the

system dimension
x1, . . . , xn components of the vector x
u input to a dynamical system

Vectors and matrices
a,b, . . . , z vectors
A,B, . . . ,Z matrices
ai ith element of the vector a
Ai,j jth element of the ith column of the matrix A
||x|| Euclidian norm of the vector x
||x||∞ infinity norm of the vector x
a · b scalar product of the vectors a and b
AB multiplication of the matrices A and B

Sets
R set of real numbers
[a, b] continuous interval between the scalar a and b
Rn state space
A,B, . . . ,Z sets
U input set
A
⊕

B Minkowski sum of the sets A and B
A⊖ B Minkowski difference of the sets A and B
A
⋂
B intersection between the sets A and B

HPolytope a polytope based on constraints
VPolytope a polytope based on vertices

Continuous system
f(·), g(·), l(·) vector of functions
fi(·) ith component of the vector of function f()
Reach(P , t) reachable set from P at time t
Reach(P , [0, t]) reachable set from P during the time interval

[0, t]
Φf (t,p) the trajectory starting from the state p of the

system f
Φf (t,p, u(·)) the trajectory starting from the state p of the

system f under the input u(·)

29

Chapter 3

Dynamic hybridization using
curvature over simplicial
domains

Résumé: Nous présentons dans ce chapitre la première contri-
bution de cette thèse qui concerne la technique d’hybridization
dynamique qui peut être utilisée pour analyser un grand nombre
de systèmes non-linéaires. Nous proposons une nouvelle formula-
tion de l’erreur d’approximation basée sur la courbure du système.
Nous présentons ensuite une méthode de construction de domaine
d’approximation qui améliore l’efficacité de cette méthode. Nous
prouvons, par la suite, l’optimalité de cette méthode de construc-
tion de domaine d’approximation pour certaines catégories de
systèmes quadratiques. Nous finissons par présenter quelques
résultats expérimentaux.

The problem that we address in this chapter concerns the computation
of approximate system for reachability analysis of non-linear dynamical sys-
tems, using the dynamic hybridization approach. We propose a new method
for constructing linearization domains.

We consider the following domain construction problem:

• Rn ⊆ Rn a state space.

30

• P ⊆ Rn a set representing the initial states.

• An autonomous continuous system described by the following differen-
tial equations:

ẋ(t) = f(x(t)), (3.1)

where x(t) : R → Rn, f(x(t)) : Rn → Rn and t ∈ R+. We can write the
equation (3.1) as follows

ẋ1(t) = f1(x(t)),
ẋ2(t) = f2(x(t)),

. . . ,
ẋn(t) = fn(x(t))

We want to construct a domain ∆ ⊆ Rn containing the initial set where
the dynamics f is approximated by a simpler one. To take into account the
distance between the exact reachable set and the reachable set computed
using this approximation, an input function included in a set U is added to
the approximate system.

We are particularly interested in three criteria which are partially con-
flicting:

• The approximation error is smaller than a desired error bound.

• The approximate system can be efficiently computed.

• The system evolution remains in ∆ as long as possible because when
the system is outside the domain, the approximation error bound may
be no longer valid.

We start by recalling the hybridizations techniques. We then describe a
new method to create simplicial hybridization domains which provides a good
trade-off between these criteria. This method can be used for the hybridiza-
tion technique based on affine interpolation over simplices. We will also
present an estimation of the interpolation error for a large class of nonlinear
systems. The next sections explain how we integrate these new theoretical
results in the reachability analysis and we present some experimental results.

3.1 Hybridization

These techniques are based on a partition of the state space which can be
computed in a precomputation step or constructed dynamically during the
analysis.

31

Static hybridization

This approach initially presented in [13] relies on the creation of a composite
vector field with linear or multi-affine dynamics from a precomputed parti-
tioning mesh. This composite vector field defines an abstract model for the
original nonlinear system. This partitioning mesh can be defined as follows.

Definition 11 (mesh). A mesh of a set Rn is a collection M = {Ml, l ∈ L}
where L is a set of discrete location such that

•
⋃

l∈L M
l = Rn.

• For all l 6= l′ ∈ L, Ml ∩ Ml′ = bound(Ml) ∩ bound(Ml′) where
bound(Ml) denotes the boundary of the set Ml.

In the case where all the set Ml are simplices, the mesh is called a simplicial
mesh.

The first condition in Definition 11 ensures the coverage of the entire state
space; the second one indicates that the elements of the mesh have disjoint
interiors.

The composite vector field can then be defined as follow.

Definition 12 (composite vector field). A composite vector field on a domain
Rn is a collection

F = {(Ml,U l, f l), l ∈ L}

where M = {Ml, l ∈ L} is a mesh of Rn and for all l ∈ L, f l : Rn → Rn is
the dynamics of the element Ml and U l is the set of admissible inputs. This
set consists of continuous functions of the form u : R+ → Rn.

A composite vector field which conservatively approximates a nonlinear
system is defined as follow.

Definition 13 (conservative approximation using composite vector field). A
composite vector field F = {(Ml,U l, f l), l ∈ L} approximates conservatively
a nonlinear vector field ẋ(t) = f(x(t)),

∀l ∈ L, ∀x ∈ Ml, ∃u ∈ U l s.t. f(x) = f l(x) + u

This composite vector field corresponds to a hybrid system.

Definition 14 (hybrid system from composite vector field). The hybrid sys-
tem corresponding to the composite vector field F = {(Ml,U l, f l), l ∈ L} is
H(F) = (L,x, I, F, E) where

32

• L is the set of discrete locations,

• x = (x1, . . . , xn) are the continuous variables,

• I is the set of location invariants each of which is the domain of an
element of M.

• F a set of vector fields such that for each l the vector field inside Ml

is defined by F l = fl(x,u) with u(·) ∈ U l.

• E is the set of discrete transitions such that

∀e = (l, l′) ∈ EGe = bound(Ml) ∩ bound(Ml′)

and the reset function Re is the identity functions.

Figures 3.1 illustrates this definition. The Figure 3.1(a) represents the
initial set of the reachability problem, f(x) is a nonlinear system. In Fig-
ure 3.1(b) the state space is partitioned with a mesh over the state space
where the dynamics f is conservatively approximated. Figure 3.1(c) shows
the reachable set computed inside the first element of the mesh; the inter-
section with its boundary is then computed. Starting from the intersection
the reachable sets are computed in the other elements, as illustrated by Fig-
ure 3.1(d).

Dynamic hybridization

This technique presented in [36] is based on a dynamically constructed mesh.
Initially a hybridization domain M0 (where the dynamics is approxi-

mated) is built around the initial set P0. An approximate system is then
computed and the reachability analysis is performed on this system until the
reachable set Pk is not included in M0.

Once the reachable set intersects with the neighboring elements of M0,
the set Pk is removed and a new approximation domain is created around the
previously computed set Pk−1 and the analysis continues from Pk−1 using
the new approximate system, as illustrated in Figure 3.2(d).

Note that according to a desired precision, the size of the domains is
bounded. In some cases, the reachable set Pk can be too large and its in-
clusion in a domain can be impossible. A simple method to deal with this
problem is to split the set and create two approximation domains. Fig-
ures 3.2 illustrates this solution. The Figure 3.2(a) shows the initial set P0

of the reachability problem, f(x) is a nonlinear dynamics. In Figure 3.2(b)
a domain is created around the initial set where the dynamics is conserva-
tively approximated. The reachability computation can then be carried out

33

ẋ = f(x)

P0

(a)

ẋ = l3(x,u) ẋ = l4(x,u)

ẋ = l2(x,u)ẋ = l1(x,u)

P0

(b)

ẋ = l1(x,u) ẋ = l2(x,u)

ẋ = l3(x,u) ẋ = l4(x,u)

P0

(c)

ẋ = l1(x,u) ẋ = l2(x,u)

ẋ = l3(x,u) ẋ = l4(x,u)

P0

(d)

Figure 3.1: Illustration of the hybridization technique.

until intersection with the domain boundary, as shown in Figure 3.2(c). A
new domain is then computed around the last reachable set which does not
intersect the domain boundary in Figure 3.2(d).

The advantage of this method is the avoidance of intersection computa-
tion with the domains, only inclusion tests are required.

34

ẋ = f(x)

P0

(a)

P0

ẋ = l1(x,u)

(b)

P0

Pk

(c)

P0

ẋ = l2(x,u)

Pk−1

(d)

Figure 3.2: Illustration of the dynamic hybridization technique.

3.2 Affine interpolation

We want to approximate the vector of nonlinear functions f(x) by a simpler
one in a hybridization domain ∆. In this work, we choose affine systems
with input as the approximate system class. This choice is motivated by the
great number of available reachability techniques for this class of systems
(see Section 1.2.1 page 15)

We denote an affine system by

˙x(t) = l(x(t)), l : Rn → R
n,x ∈ R

n

35

The choice of the class of approximation domains, which are simplices,
is driven by the above choice of the class of approximate systems. Indeed,
simplices are the most used class of polyhedra for computing affine approx-
imation of nonlinear dynamics. Many numerical methods like finite-element
methods use simplicial meshes [90].

More importantly over a non-degenerated simplex we can compute a lin-
ear interpolation of a nonlinear function by solving a set of linear equations
for which the solution is unique. We recall that in a n dimensional space, a
simplex can be represented by the convex hull of a set of (n+ 1) vertices:

∆ = conv{v1, . . . ,vn+1} ⊂ R
n

The affine approximation is formed from a n× n matrix that we denote
A and a column vector b of size n:

l(x) = Ax+ b,A ∈ R
n×n,b ∈ R

n

To compute this affine function we interpolate the nonlinear function f at
the vertices of the simplex ∆. To this end, we have to solve a set of (n+1)n
equations defined by

f(vi) = Avi + b, i ∈ {1, . . . , n+ 1}

where {vi, i ∈ {1, . . . , n+ 1}} is the set of vertices of ∆.
The number of equations is equal to the number of unknown variables

forming A and b, which guarantees the uniqueness of the solution if the
simplex ∆ is full-dimensional.

In addition, to be conservative, it is important to take into consideration
the distance between the original and the approximating functions for all
points of the domain ∆. We define this metric by the infinite norm of the
difference between the original and the approximate systems:

‖f(x)− l(x)‖∞,x ∈ ∆

Since computing this distance for each point in ∆ is impossible, we use
a bound of this distance that we call error bound and denote it by µ. This
bound can be defined as follows:

µ = max
x∈∆

‖f(x)− l(x)‖∞

This bound is then used to define the input set Uµ ⊂ Rn

Uµ : {u | u ∈ R
n ∧ ‖u‖∞ ≤ µ} .

36

Let U the set of input function in the form R+ → Uµ. Finally the approximate
system for the domain ∆ is

ẋ(t) = l(x(t)) + u(t),u(t) ∈ Uµ, x(t) ∈ ∆. (3.2)

The error bound µ is the key to the quality of the approximation; a
large error can lead to large over-approximation error in the reachable set
computation and to wrapping effects. Its effects on the distance between the
trajectories of the original system and the approximate system is given in
the following lemma

Lemma 1. For all u(·) ∈ U , for all t ≥ 0, for all x ∈ ∆

‖Φf (x, t)− Φl(x, t,u(·))‖∞ ≤
µ

2
(eLt − 1)

where L is the Lipschitz constant for the function f .

This result is a consequence of the Fundamental Inequality theorem [92]
from the theory of dynamical systems. A proof of this lemma can be found
in [12].

In the following, we consider the error bound µ as a given parameter for
the reachability analysis, and we want to construct a simplicial domain ∆
with the following property

1. The initial set P is included in ∆.

2. The distance between the interpolating and the original system does
not exceed the error bound given as the parameter, that is

∀x ∈ ∆, ‖f(x)− l(x)‖∞ ≤ µ.

3. To save computation time we want to maximize the volume of this
domain, which induces less new domain constructions.

It is important to consider that, in addition to the inclusion property, the
simplex must be positioned around P according to the evolution direction. A
good positioning strategy can increase the time during which the computed
reachable set are included in the domain, and then it tends to minimize
the occurrence of new domain computations. This will be discussed in Sec-
tion 3.5.

In the next subsection, we establish the relation between the error bound
and the shape of the simplicial domain.

37

3.2.1 Error bound

Estimating the errors between the original and the approximate systems is
a key for controlling the analysis precision. We present in the following a
new formulation of the error bound which is the base of our contribution
concerning hybridization domains construction. We start by recalling the
error bound used in previous works [13, 36].

Previous works

The following error bounds µ have been used in previous works for two cases:
the vector field f is Lipschitz and f is a C2 function.

• If f is Lipschitz and L is its Lipschitz constant, then

µ ≤ ̺max
2nL

n+ 1
= µ(̺max).

where ̺max is the maximal edge length of the simplex.

• If f is C2 on ∆ with bounded second order derivatives then

µ ≤
Kn2

2(n+ 1)2
̺2max = µ(̺max) (3.3)

where K is a bound on the second derivatives of f

K = max
i∈{1,...,n}

sup
x∈∆

j=n∑

j=1

k=n∑

k=1

∣∣∣∣
∂2fi(x)

∂xj∂xk

∣∣∣∣ .

We write the above error bounds as a function of ̺max to emphasize that it
depends on the maximal simplex edge length ̺max.

Tighter error bound

We have shown in [38, 40] that one can obtain a better error bound which
depends on.

• The radius of the smallest containment ball that we denote as rmin.

• A smoothness measure that we call maximal curvature denoted by γ.

38

rc

Smallest containment circle Circumcircle

Figure 3.3: The smallest containment circle of the same triangle (shown on
the left), which should not be confused with its circumcirle (shown on the
right).

Given a hybridization domain ∆ ⊂ Rn, The smallest containment ball is
the smallest ball in Rn that contains the simplex. Figure 3.3 illustrates this
notion.

To express the maximal curvature of f(x) = (f1(x), f2(x), . . . , fn(x)) in
a domain ∆ we first introduce the notion of directional curvature for one
function fi(x), i ∈ {1, . . . , n}. To compute the directional curvature of a
function fi(x) we use the Hessian matrix defined as:

Hi(x) =




∂2fi
∂x2

1

∂2fi
∂x1x2

. . .
∂2fi
∂x1xn

∂2fi
∂x1x2

∂2fi
∂x2

2

. . .
∂2fi
∂x2xn

. . .
∂2fi
∂x1xn

∂2fi
∂x2xn

. . .
∂2fi
∂x2

n




. (3.4)

The curvature along a direction given by a unit vector d ∈ Rn is defined
as:

∂fi(x,d) = dTHi(x)d

The maximal curvature is given by the minimal real number that satisfies
the following condition:

∀i ∈ {1, . . . , n} : max
x∈∆, ||d||=1

|∂fi(x,d)| ≤ γ. (3.5)

The following theorem gives the bound of the interpolation error.

39

Theorem 1 (Interpolation error bound). Let l(x) be the affine function that
interpolates the functions f(x) over a simplex ∆. Then, for all x ∈ ∆

||f(x)− l(x)|| ≤ γ
r2min

2
.

A proof of this theorem can be found in [90].
Now the domain ∆ is constructed based on the condition on its maximal

radius of its smallest containment ball. We can see that within a ball of
radius rc, if the curvature is constant in every direction, the simplices with
the largest volume that guarantee the interpolation error bound of Theorem 1
are equilateral (i.e. all the edges have the same length). However, this error
bound is appropriate only when the directional curvatures are not much
different in every direction. There are functions where the largest curvature
in one direction greatly exceeds the largest curvature in another, and in
these cases, it is possible to achieve the same accuracy with non-equilateral
simplices. Intuitively, we can stretch an equilateral simplex along a direction
in which the curvature is small in order to obtain a new simplex with larger
size.

In order to show the convergence of this method, we consider the approx-
imation error in terms of the Hausdorff distance. Let Reachf (P , t) be the
reachable set of the original nonlinear system (3.1) and Reachl(P , t) be the
set computed using the approximate system (3.2).

Theorem 2.

dH(Reachf (P , t), Reachl(P , t)) ≤ µ(
eLt − 1

L
+ 2reLt)

where t ∈ R+. L is the Lipschitz constant for the function f and r is the
time step of the integration scheme used to study the approximate systems.

A proof of this theorem can be established using the Lemma 1 and can
be found in [12].

In the following section we introduce a way to exploit this fact in order
to achieve better accuracy.

3.2.2 Isotropic map

A better way to judge the approximation quality of a simplex is to map it to
an “isotropic” space where the curvature bounds are isotropic (that is identi-
cal in each direction). Indeed, it is possible to derive an error bound similar
to the one in Theorem 1 but with the radius of the smallest containment ball
in this “isotropic” space [90]. To explain this, we define a curvature tensor
matrix. We assume the boundedness of directional curvature of f .

40

Definition 15. Given a subset ∆ of Rn and a symmetric positive-definite
matrix C, if for any unit vector d ∈ Rn,

∀i{1, . . . , n} ∀x ∈ ∆ : max |dTHi(x)d| ≤ dTCd,

we say that in the set ∆ the directional curvature of f is bounded by C
and we call C a curvature tensor matrix of f in ∆.

C = ΩΞΩT

where Ω = [ω1ω2 . . .ωn] and

Ξ =




ξ1 0 . . . 0
0 ξ2 . . . 0

. . .
0 0 . . . ξn


 .

The vectors ωi and values ξi are the eigenvectors and eigenvalues of a
symmetric positive-definite matrix C.

Let ξmax and ξmin be the largest and smallest eigenvalues of C. The
curvature matrixC can be specified using an estimate of the Hessian matrices
Hi. This will be discussed in more detail in Section 3.3.

We now define a matrix T which maps a point in the original space (that
is, the domain over which the functions f are defined) to an isotropic space:

T = Ω




√
ξ1/ξmax 0 . . . 0

0
√
ξ2/ξmax . . . 0

. . .

0 . . .
√
ξn/ξmax


ΩT . (3.6)

Given a set ∆ ⊂ Rn, let ∆̂ denote the set resulting from applying the
linear transformation specified by the matrix T to ∆, that is,

∆̂ = {Tx | x ∈ ∆}.

Geometrically, the transformation T “shortens” a set along the directions
in which f has high curvatures. An illustration of this transformation is
depicted in Figure 3.4, where the application of the transformation T to an
ellipsoid representing the level set of the directional curvature at simplex
center produces a circle. When applying T to the triangle inscribed in the
ellipsoid shown on the left, the result tends to be an equilateral triangle if the
initial one is well shaped and has a maximal volume according to an error
bound.

41

∆ ∆̂

T

Figure 3.4: Illustration of the transformation to the isotropic space.

Theorem 3. Let l be the affine function that interpolates the functions f
over the simplex ∆. Then, for all x ∈ ∆

||f(x)− l(x)|| ≤ C∆ r2c (∆̂)

2
= ǫ(rc).

where C∆ is the maximal curvature in ∆ and rc(∆̂) is the radius of the

smallest containement of the transformed simplex ∆̂.

The idea of the proof is as follows.

Proof. Let
φ(x) = f(T−1x)

be the function defined over the isotropic space. Similarly, for the linear
interpolating function l, we define

λ(x) = l(T−1x).

Note that φ(x̂) = f(x). So the range of φ over the domain ∆̂ is the same
as the range of f over the domain ∆. The curvature of φ has a bound that
is independent of direction. Let Gi(x) denote the Hessian matrix of φ(x).
Indeed,

∂φi(x,d) = dTGi(x)d

= (T−1d)THi(x)(T−1d)

It then follows from the definition of the maximal curvature (Definition 15,
page 41) that we have for all i ∈ {1, . . . , n}

maxx∈∆,||d||≤1|∂φi(x,d)| ≤ γ∆.

42

Using Theorem 3,

max
x∈∆

||φ(x)− λ(x)|| ≤ γ∆
r2c (∆̂)

2
.

By the above definitions of the functions φ and λ, we have f(x) = φ(x̂)
and l(x) = λ(x̂) we have

max
x∈∆

||f(x)− l(x)|| = max
x∈∆̂

||φ(x)− λ(x)||.

It then follows that for all x ∈ ∆

||f(x)− l(x)|| ≤ γ∆
r2c (∆̂)

2
.

To show the interest of this error bound, we first show that using trans-
formation T the smallest containment ball radius is reduced or at worst
unchanged; hence we can use larger simplices for the same error bound.

Lemma 2. Given a simplex ∆ ⊂ Rn, the radius of the smallest containment
ball of ∆̂ is not larger than the radius of the smallest containment ball of ∆,
that is rc(∆̂) ≤ rc(∆).

The proof can be directly established from the construction of the trans-
formation matrix T. The error bound of Theorem 3 is at least as good as
that of Theorem 1. For a “thin” simplex whose longer edges are along the
directions of the eigenvectors associated with smaller eigenvalues, the ratio

rc(∆̂)

rc(∆)
can be as small as

√
ξmin/ξmax. In the worst case, when the simplex is

“parallel” to an eigenvector associated with the largest eigenvalue, this ratio
is 1.

Furthermore, we compare the new error bounds with the ones shown on page
38 in (3.3) which were used in the previous work. We first notice that the
bound K in (3.3) must be larger than γ∆. To see this, we notice that any
matrix norm is always larger than the maximum of the absolute values of the
eigenvalues. It is, however, not easy to relate the smallest containment ball
with the simplex size. For comparison purposes, we can use the following
result.

43

Lemma 3. Let ∆ be a simplex in Rn with the maximal edge length ̺max.
Then, the radius rc(∆) of its smallest containment sphere satisfies

rc(∆) ≤ ̺max

√
n

2(n+ 1)

where n is the dimension of the system.

Proof. We begin with some intermediate results.
We first prove that the center p of the smallest containment ball B is

inside the simplex ∆. We suppose that the contrary is true. Hence, the
hyperplane h of a face of the simplex separates the center and the vertex
opposite this hyperplane. In other words, the vertex and the center are on
the opposite side of the hyperplane. Let ph be the intersection of h with
ph. It is not hard to see that the smallest containment ball of ph, on one
hand, has a radius smaller than that of B and, on the other hand, contains
∆. Thus, B is not the smallest containment ball.

We can also prove that if a vertex of ∆ is not in the boundary of B then
the center p lies in the face of the simplex opposite to this vertex. The proof
of this can be found in, for example, [42].

We now proceed with the proof of the lemma. Since p is in ∆, we can
write it as a linear combination of the vertices {v1, . . . ,vn+1} of ∆:

p = λ1v
1 + λ2v

2 + . . .+ λn+1v
n+1 (3.7)

such that
∑n+1

i=1 λi = 1 and ∀i ∈ {1, . . . , n+ 1}λi ≥ 0.
Let λn+1 be a positive coefficient among {λ1, . . . , λn+1} such that λn+1 ≥

λi for all i ∈ {1, . . . , n + 1}. Since λn+1 > 0, the center p does not lie in
the face opposite vk+1. Hence, using the above fact, vn+1 must lie in the
boundary of B. Without loss of generality, we can assume that vn+1 is the
origin. Similarly, for any positive coefficient λi, v

i is in the boundary of B,
which means that the vector 2p− vi is perpendicular to the vector vi, that
is the scalar product

vi · (2p− vi) = 0.

It then follows that
2vi · p = vi · vi.

Hence, for any coefficient λi ≥ 0,

2λi(v
i · p) = λi(v

i · vi).

Then,
n∑

i=1

λi(v
i · p) =

1

2

n∑

i=1

λi(v
i · vi).

44

Using (3.7) and the fact that for every i ∈ {1, . . . , n} vi · vi is smaller than
the maximal edge length of the simplex,

p · p ≤
1

2
̺2max

n∑

i=1

λi.

Since
∑n

i=1 λi = 1− λn+1 and p · p = rc(∆), we have

rc(∆) ≤
1

2
̺2max

n∑

i=1

λi.

In addition, since λn+1 ≥ λi for all i, we have

rc(∆) ≤ ̺2max

n

2(n+ 1)
.

A direct consequence of this result is the following ratio between the old
and new error bounds for any simplex.

Theorem 4. For any simplex ∆ with the maximal edge length ̺max, the ratio
between the new error bound µ̄new of Theorem 3 and the old error bound µ̄
in (3.3) satisfies the following inequality:

µ̄new(rc(∆̂))

µ̄(̺max)
≤

n+ 1

2n
.

In two dimensions, compared to the old error bound, the new error bound

is reduced at least by the factor 4/3. The reduction factor
2n

n+ 1
grows when

the dimension n increases and approaches 2 when n tends to infinity.

This reduction is very useful especially in high dimensions because when
dividing a simplex in order to satisfy some edge length bound, the number
of resulting subsets grows exponentially with the dimension. Moreover, as
in the above discussion of Lemma 2, by choosing an appropriate orientation,
we can reduce this ratio further by

√
ξmin/ξmax.

To compute the transformation matrix T we need to estimate a curvature
tensor for the system, the next section gives a method to compute this matrix
for a large class of nonlinear functions.

45

3.3 Curvature tensor estimation

We first consider the case where the Hessian matrices are constant, as is the
case with quadratic functions. To compute a curvature tensor matrix, we first
define a matrix Ci as the matrix with the same eigenvectors and eigenvalues
as Hi, except that each negative eigenvalue ξ of Hi is replaced with the
positive eigenvalue −ξ. Note that we can, in this case, omit the simplex in
the notation of the curvature tensor matrix. Hence, Ci is guaranteed to be
positive definite. If any eigenvalue of Hi is zero, we substitute it with some
small positive value. That is, for each matrix Hi, we define

Ci(∆) = [ωi
1 . . .ω

i
n]




|ξi1| 0 . . . 0
0 |ξi2| . . . 0

. . .
0 0 . . . |ξin|


 [ωi

1 . . .ω
i
n]

T

where ωi
j (with j ∈ {1, . . . , n}) are the eigenvectors of Hi. We denote by

ξimax the eigenvalue with the largest absolute magnitude of Ci. Among the
matrices Ci we can choose the one with the largest absolute eigenvalue to be
a curvature tensor matrix.

For more general classes of functions where the Hessian matrices are not
constant, we can estimate the curvature tensor matrix using optimization.
We observe that, given a simplex ∆, by definition, for each i ∈ {1, . . . , n}
the eigenvalues of the Hessian matrix Hi are inside the interval [−γQ, γQ]
where γQ is the maximal curvature of f inside Q, a subset of Rn . Hence, the
error bound is determined by the maximal eigenvalue ξmax(C) of the matrix

C. Note additionally that rc(∆̂) depends on |det(T)|1/n where det(T) is the
determinant of the transformation matrix defined in (3.6).

Therefore, we want to find a positive-definite matrix C that satisfies
the condition of Definition 15 of curvature tensor and, in addition, makes
|ξmax(C)||det(T)|2/n as small as possible. To do so, we formulate this prob-
lem as solving the following constrained optimization problem:

min |ξmax(C)||det(T)|2/n

s.t. ∀i ∈ {1, . . . , n} ∀x ∈ Q ∀d ∈ Rn :

||d|| = 1 ∧ |∂2fi(x,d)| ≤ |dTCid|.

Again, we express C in its eigen-decomposition form. Let ξ1, ξ2, . . . , ξn

be the eigenvalues in increasing order of C, that is 0 < ξ1 ≤ ξ2 ≤ . . . ≤ ξn,
and ω1,ω2, . . . ,ωn be the corresponding eigenvectors. From now on we use

46

superscripts to denote eigenvectors since subscripts will be used to denote
their coordinates. Thus,

C = SΞST

where
Ξ = diag(ξ1, ξ2, . . . , ξn)

Therefore, minimizing over all possible matricesC satisfying the definition 15
page 41 is equivalent to minimizing over all possible ξi and all possible or-
thogonal matrices S.

Notice that, by the definition of the matrix T,

|det(T)| = |det(C)|1/2 = |(Πn
j=1ξ

j)|1/2

The objective function can therefore be written as:

|ξmax(C)||det(T)|2/n = |ξn| |(Πn
j=1ξ

j)|1/n.

On the other hand, the constraint from Definition 15 can be written as:

∀i ∈ {1, . . . , n} ∀x ∈ Q ∀d ∈ Rn :

||d|| = 1 ∧ |∂2fi(x,d)| ≤ |dTSΞSTd|.

This problem might not have a solution or it might have a solution with
some eigenvalue equal to 0, which makesC singular. In the following, we con-
sider another approach, which involves approximating C by making the error
bound as small as possible while respecting the constraint from Definition 15.

Since the error bound depends on the maximal eigenvalue of C and the
product of the eigenvalues of C, we estimate C by determining successively
its eigenvalues ξj and eigenvectors ωj such that each ξj is made as small as
possible while satisfying the condition of Definition (15).

More precisely, in the first step we determine ξn such that

∀x ∈ Q ∀i ∈ {1, . . . , n} d ∈ R
n : ||d|| = 1 ∧ ξn ≥ |∂2fi(x,d)|.

We can find ξn by solving the following n optimization problems

ξn,i = maxx∈Q ∧ ||d||=1|∂
2fi(x,d)|, i ∈ {1, . . . , n}

Then we take the largest among the computed maximal values:

ξn = maxi∈{1,...,n}ξ
n,i.

47

In other words, by (3.5), ξn is exactly the largest curvature of f in Q. The
corresponding eigenvector ωn is chosen as the unit vector d along which the
second-order directional derivative of the corresponding fi is the largest.

To determine the remaining (n− 1) eigenvalues, let (n− 1) vectors

ω1, . . . ,ωn−1

in Rn form an orthonormal basis for the orthogonal complement of span{ωn}
in Rn. Then, any vector d ∈ Rn can be expressed as:

d =
n−1∑

j=1

αjω
j + βωn (3.8)

where α = (α1, . . . , αn−1) ∈ Rn−1 and β ∈ R.
Let

Sn−1 = [ω1ω2 . . .ωn−1]

and Ξn−1 be the diagonal matrix with ξ1, ξ2, . . . , ξn−1 as its diagonal elements.
Note that the superscripts here indicate that these matrices are used to
compute the eigenvalue ξn−1. We define then

Cn−1 = Sn−1Ξn−1(Sn−1)T .

Then, it is not hard to see that

dTCd = αTCn−1α+ ξnβ2.

The condition of Definition 15 becomes

∀i ∈ {1, . . . , n}, ∀α ∈ Rn−1, ∀β ∈ R, ∀x ∈ Q :

αTCn−1α ≥ |∂2fi(x,d)| − ξnβ2. (3.9)

We denote the right hand side as a function of α and β:

wi(α, β) = |∂2fi(x,d)| − ξnβ2,

and
ηi(α) = maxβ∈Rw

i(α, β). (3.10)

The condition (3.9) is then equivalent to

∀i ∈ {1, . . . , n}, ∀α ∈ Rn−1, ∀x ∈ Q :

αTCn−1α ≥ ηi(α) (3.11)

48

Lemma 4. If β maximizes wi(α, β) in (3.10) then β satisfies

∂2fi(x,d)

|∂2fi(x,d)|
∂gi(x,d) = ξnβ. (3.12)

where
gi(x) = ∂fi(x,ω

n)

Intuitively, ∂gi(x,d) is the first-order directional derivative of gi with
respect to the vector d, and gi(x) = ∂fi(x,ω

n) is the first-order directional
derivative of fi with respect to the vector ωn.

Proof. To solve (3.10), we consider the critical points of wi(α, β) with respect
to β. To express the partial derivative of wi(α, β), we first rewrite the second-
order directional derivative of fi as the following sum:

∂2fi(x,d) =
∑

j,k

H i
j,k(x)djdk

where H i
j,k is the element of the jth line and the kth column of the Hessian

matrix of the function fi.
Then,

∂

∂β
(∂2fi(x,d)) =

∑

j,k

H i
j,k(x)(dj

∂dk
∂β

+ dk
∂dj
∂β

)

=
∑

j,k

H i
j,k(x)(djω

n
k + dkω

n
j) (from (3.8))

= 2
∑

j,k

H i
j,k(x)djω

n
k

= 2∂(∂fi(x,ω
n),d)

= 2∂gi(x,d) (from (3.12))

In addition,
∂

∂β
(ξnβ2) = 2ξnβ.

Note that the critical points that satisfy ∂2fi(x,d) = 0 are not among the
maxima of wi(α, β). It then follows from the above that the critical points
that are candidates to be among the maxima satisfy:

∂2fi(x,d)

|∂2fi(x,d)|
∂gi(x,d) = ξnβ.

This establishes the proof of the lemma.

49

To determine β, we consider two cases:

• If ∂2fi(x,d) > 0, the equation (3.12) can be rewritten as:

∑

j,k

H i
j,kω

n
j dk = ξnβ.

It then follows from (3.8) that

∑

j,k

H i
j,kω

n
j (

n−1∑

1

αjω
j
k + βωn

k) = ξnβ.

Note that ξn and ωn are now known, from the above we can determine
β as a function of α and ω1,ω2, . . . ,ωn−1. From now on, for clarity,
we denote by βn the value of β satisfying the above, since this value
corresponds to the eigenvalue ξn and the eigenvector ωn computed in
the first step. Hence, if ∂2fi(x,d) > 0

βn =
(ωn)THi(

∑n−1
j=1 αjω

j)

ξn − (ωn)THiωn
.

• If ∂2fi(x,d) < 0, similarly we obtain

βn =
−(ωn)THi(

∑n−1
j=1 αjω

j)

ξn + (ωn)THiωn
.

With the above βn, ηi(α) in (3.10) can be determined. Hence, the con-
dition (3.9) becomes

αTCn−1α ≥ u(α) = |∂2fi(x,d)| − ξn(βn)2 (3.13)

where d =
∑n−1

1 αjω
j + βnωn.

We now come to the same problem as the initial but with only (n − 1)
eigenvalues to determine. We can repeat this procedure to determine all
the eigenvalues. More precisely, we determine ξn−1 by solving the following
optimization problem over the variables z =

∑n−1
j=1 αjω

j and x.

ξn−1,i = max(|∂2fi(x, z + βnωn)| − ξn(βn)2)

s.t. x ∈ Q ∧

z ∈ Rn ∧

||z + βnωn|| = 1.

50

Then, ξn−1 is determined as the largest of all ξn−1,i.
To reduce further to the problem with (n− 2) eigenvalues, we write:

dTCd = αTCn−2α+ ξn(βn)2 + ξn−1(βn−1)2.

where α is now a vector in Rn−2.
Then, the sequence of optimization problems can be formulated as follows.

For k = n− 1, n− 2, . . . , 1

ξn−k,i = max |∂2fi(x, z +
n∑

j=n−k+1

βjωj)| −
n∑

j=k+1

ξj(βj)2

s.t. x ∈ Q ∧

z ∈ Rn ∧

||z +
∑n

j=k+1 β
jωj|| = 1

(3.14)

Then, ξn−k is the largest value of all ξn−k,i.

In the above procedure, in order to proceed from the computation of the
eigenvector ξn−k to that of ξn−k−1 we need to compute the corresponding
eigenvector ωn−k. As an example, in the step k = n − 1, we obtain the
solution d = z + βnωn of the optimization problem. Let denote this d
by dn−1 and we want to compute the corresponding eigenvector ωn−1. To
this end, we use the following scheme. Indeed, at each step k, ωk is made
orthogonal to the previous ωk+1, . . . ,ωn by substracting the projection of dk

in the directions of ωk+1, . . . ,ωn.

uk = dk −
n∑

j=k+1

(ωj)Tdk

(ωj)Tvj
ωj

Then we determine the eigenvector ωk as:

ωk =
uk

||uk||
.

Such n vectors ωk span the same subspace as n vectors dk.

Finally, we construct the matrix C as follows:

C = S




ξ1 0 . . . 0
0 ξ2 . . . 0

. . .
0 0 . . . ξn


ST

51

where ξj with j ∈ {1, . . . , n} are the computed eigenvalues, and S = (ω1ω2 . . .ωn)
is an orthonormal matrix containing the computed eigenvectors.

In the following, we presents how this curvature tensor can be used in the
hybridization domain construction.

3.4 Reachability analysis using hybridization

Once the curvature tensor matrix is estimated, we can compute from it an
isotropic transformation T. This can then be used to create hybridization
domains for reachability computation. The reachability computation accu-
racy depends on the precision of the curvature tensor approximation, since
the latter is directly related to the error bound that is used to define the
input set Uµ. In the curvature estimation described in the previous section,
the optimization problems are solved over all x ∈ Q, that is the computed
estimate is valid for the whole set Q. The estimation precision can be im-
proved by using a dynamical curvature estimation that is invoked each time a
new hybridization domain needs to be created. In this case, the optimization
domains can be chosen as a neighborhood of the current states of the system.

The reachability computation algorithm using hybridization is summa-
rized by Algorithm 1 where P is a convex polyhedron containing all the
initial states of the system. In each iteration, we first estimate the curvature
tensor within a zone containing the current set Pk. This matrix is then used
to construct the simplicial domain ∆. We perform the reachability computa-
tion from Pk under the approximated linear interpolating dynamics defined
within ∆. This generates the convex polyhedron Pk+1. If this polyhedron
contains points outside the current domain ∆ we retrieve the previous poly-
hedron Pk and construct around Pk a new hybridization domain. Note that
when the polyhedron Pk becomes too large to be included in ∆, splitting is
required.

It is worth mentioning that in this algorithm, we use convex polyhedra to
represent reachable sets. However, the proposed hybridization and domain
construction methods can be combined with the algorithms using other set
representations (such as [61, 49]) however the linear interpolation requires
the simplex vertices computation.

The next section presents an algorithm for computing the simplex vertices
and propose some strategies for positioning and rotating the simplex in the
state space.

52

Algorithm 1 Reachability computation using hybridization

Input: Initial convex polyhedron P , interpolation error tolerance ε

P0 = P , k = 0
C = CurvatureEstimation(Pk)
∆ = DomainConstruct(Pk,C, ε)
while k ≤ kmax do
Pk+1 = Reach(Pk,∆)
if Pk+1 ∩ ∆̄ 6= ∅ then

/* ∆̄ is the complement of ∆ */
∆ = DomainConstruct(Pk, ε)

else
k = k + 1

end if
end while

3.5 Domain construction algorithm

We consider the problem of constructing a simplex around a polyhedron P
with the objective of achieving a good approximation quality when perform-
ing analysis on the approximate system to yield the result for the original
system.

3.5.1 Shape and size

We first consider the accuracy criterion. More precisely, we want to guarantee
that the linear function that interpolates f satisfies the given desired error
bound, µ. Let γ be the maximal curvature within a region of interest around
the initial set, and for short we write it without specifying the simplex.

Theorem 3 indicates that the interpolation error variation depends on
the radius rc(∆̂). In order to exploit this result, we first transform the set

P to P̂ = TP in the isotropic space. Let C be the ball of radius
√
2µ/γ

the centroid of which coincides with that of the set P̂ . We assume that P̂ is
entirely included in C. If this is not the case, the polyhedron P have to be
split, this will be discussed later.

Let ε = T−1(C) be the ellipsoid resulting from applying the inverse trans-
formation T−1 to the ball C. Then, according to Theorem 3 the interpolation
error associated with any simplex inside the ellipsoid ε is guaranteed to be
smaller than or equal to µ.

53

Since there are many simplices that can be fit inside a ball, we proceed
with the problem of choosing a simplex that is good with respect to other
optimization criteria, namely the simplex volume and the time of evolution
within the simplex.

Lemma 5. Let ∆r be an equilateral simplex that is circumscribed by the
ball C. Then, T−1(∆r) is a largest volume simplex inscribed in the ellipsoid
ε = T−1C.

Proof. The proof of this result relies on two standard results. First, the linear
transformation preserves the volume ratio between two measurable bodies.
Second, the simplices inside a ball with the largest volume are equilateral.

It follows from the lemma that we only need to consider the simplices
resulting from applying T−1 to the largest equilateral simplices inscribing in
the ball C. Any such simplex is guaranteed to be inscribed in the ellipsoid ε
and to have the largest volume.

3.5.2 Orientation and placement

It remains to select one of the above simplices to meet the staying time
requirement. To this end, we use the following heuristics. We sample tra-
jectories starting at a number of points inside and around the polyhedron P
and then determine an average evolution direction d for a given time interval.
We then want the simplex to be “aligned” with this direction d, as shown in
Figure 3.5.

!!!
!!!
!!!
!!!

d

P

Figure 3.5: Illustration of the average evolution direction d.

Note that we are considering only the equilateral simplices inscribed in C.
We now first pick an equilateral simplex ∆r aligned with an axis, say x1, as
shown in Figure 3.6. This equilateral simplex can be efficiently constructed

54

since, due to its alignment, the construction can be done by recursively re-
ducing to lower dimensions. Without loss of generality, we can assume that
the simplex has a vertex p on this axis x1. We now want to compute the
linear transformation M which rotates it to align with −d. To do so, we
compute its inverse transformation as follows. Choosing a simplex vertex p
as a “pivot” vertex, we define its associated median axis as the line passing
through p and perpendicular to the hyperplane containing the corresponding
base. Let q be the vector representing this median axis, as shown in Fig-
ure 3.6.

q x1

x2

Figure 3.6: Illustration of a simplex median axis.

We want to compute a transformation R which aligns q with −d. This
transformation is decomposed into (n−1) successive rotations, each of which
is on a two-dimensional plane defined by two coordinate axes.

These rotations are illustrated with a 3-dimensional example in Fig-
ure 3.7. The median axis q of the simplex lies on the axis x1. The bold
line segment represents the vector −d to rotate. After the first rotation by
the angle θ1 around the axis x1, the new vector is on the plane (x1, x2). The
second rotation by the angle θ2 is around the axis x3 to finally align the vec-
tor with q. The required transformation M is then obtained by computing
the inverse of R, that is M = R−1.

θ2

X2 X2 X2

X3

X1

X3

−e

θ1 θ1

X1 X1

Figure 3.7: Successive rotations needed to align a vector with the axis x1.

55

Once the simplex is correctly oriented, we want to position it in the state
space such that we tend to maximize the staying time criteria. Intuitively, we
can see this operation as translating the simplex along the average evolution
direction d while satifying the inclusion constraint as shown in Figure3.8.

!!!
!!!
!!!
!!!

P

∆

d

Figure 3.8: Placement of the simplex around the set P with respect to d

This translation can be computed by solving the following optimization
problem:

max{d · t | P ⊂ translation(∆, t)}

Where t ∈ Rn and translation(∆, t) represents the simplex obtained by
translating ∆ by t.

Note that this optimization failed if P cannot be contained in the simplex
∆. In the following subsection, we present some methods to deal with this
problem.

3.5.3 Set splitting

In some cases, the set P can be elongated or just too big to be contained in
a simplex satisfying the error bound. Then, to preserve a good precision, we
can split the set P into smaller sets and continue the analysis with each set
separately. We present now some heuristics to efficiently split the set P .

An intuitive criterion for splitting a set is to detect the edge with the
highest length and use an orthogonal slicing hyperplane to create two new
sets. The costs of the edge length detection and the slicing operation depend
strongly on the class of set representations.

An intuitive method uses bounding box approximation. We first consider
axis aligned boxes which can be represented by two vectors l,u ∈ Rn (see
the set representation section page 24). Computing the bounding boxes of
P is in general a trivial task.

We can then identify the axis along which the set is the most elongated
by computing maxi∈{1,...,n}ui − li then split our initial polytope using the
hyperplane xi = (ui + li)/2. Figure 3.9-A illustrates this method; we can see

56

that the splitting hyperplane is an an axis with no consideration of the shape
of the set.

A more sophisticated method involves using oriented boxes that keep a
global shape information as shown in Figure 3.9-B. An oriented box can
also be represented by two vectors l and u in conjunction with an n by n
orthogonal matrix which represents the oriented bounding box axes. These
axes can be determined by using advanced mathematical procedures like
Principal Component analysis (PCA) [56].

A B

Figure 3.9: Set slicing using bounding box

The following section is concerned with a proof of the optimality of this
construction method for the class of quadratic systems.

3.6 Optimal domain for quadratic functions

We show a class of quadratic functions f for which the domain construction
based on equilateral simplices in an isotropic space is optimal. This optimal-
ity property is stated as follows: given an error tolerance ε, the computed
simplex ∆ has the largest volume and, in addition, the error between f and
its linear interpolation over ∆ is not greater than ε.

Let each quadratic function fi be written as

fi(x) = xTHix+ (mi)Tx+ pi

where Hi is a real-valued matrix of size n×n, mi ∈ Rn and pi ∈ R. Note that
we use the same notation Hi here because the Hessian matrix of fi is exactly

57

Hi. For every i ∈ {1, . . . , n}, we define the interpolation error function as

ei(x) = fi(x)− li(x)

which is also a quadratic function. We now study this error function and
seek its maxima.

The error function can be expressed as:

ei(x) = (wi)Tx+ qi + xTHix

where wi ∈ Rn and qi ∈ R. Note that the level sets of this function form
a family of conics with a common center, denoted by ci. Indeed, they are
ellipsoids if det(Hi) > 0 and hyperboloids if det(Hi) < 0. We now derive the
error in a neighborhood of this common center. Let δ ∈ Rn be a deviation
from the common center ci, then for every i ∈ {1, . . . , n}

ei(ci + δ) = (wi)T (ci + δ) + qi − (ci + δ)THi(ci + δ)

= [(wi)Tc+ qi − (ci)THici] +

(wi)Tδ − 2δTHici − δTHiδ

= ei(ci) + (wi)Tδ − 2(ci)THiδ − δTHiδ.

Since c is the common center of the family of conics corresponding to the
error function, c satisfies the following

wi − 2Hici = 0.

Then,

(wj)Tδ = 2(Hici)Tδ

= 2(ci)THiδ.

It then follows from the above that

ei(ci + δ) = ei(ci)− δTHiδ.

We also observe that, the symmetric matrix Hi can be decomposed as

Hi = SWTDWST

where D is a diagonal matrix with entries σj ∈ {−1, 0,+1}; W is a diagonal
matrix whose entries on the diagonal are the square roots of the absolute
values of the eigenvalues ξj of Hi; S is an orthonormal matrix containing the
eigenvectors of Hi. We define a linear transformation

Ti = WTST .

58

Lemma 6. Using the transformation δ̂ = Tiδ, the term δTHiδ in the error
ei(ci + δ) can be transformed into a quadratic form

δTHiδ =
n∑

j=1

σi
1δ̂

2
j

where for all j ∈ {1, . . . , n} σi
j ∈ {−1, 0,+1}.

Proof. Using δ = T−1δ̂ and Hi = SWTDWST , we obtain after some
straightforward calculation:

δTHiδ = (T−1δ̂)T SWDWTSTT−1δ̂

= (δ̂)TDδ̂.

Therefore,

δTHiδ = δ̂
T




σ1 0 . . . 0
0 σ2 . . . 0

. . .
0 0 . . . σn


 δ̂

= (σ1δ̂
2
1 + σ2δ̂

2
2 + . . .+ σnδ̂

2
n).

where ∀j ∈ {1, . . . , n} : σj ∈ {−1, 0,+1}. In other words, using the linear
transformation Ti we transform the matrix Hi into a diagonal matrix D
which has only entries 0, +1 and −1 on the diagonal.

Again, we can see that the interpolation error in the new space (resulting
from the transformation T) is isotropic, that is it does not depend on the

direction of δ̂.

We identify a class of quadratic systems such that for every function fi,
σi
j are all equal to either +1 or −1. In the isotropic space the level sets of

the error are spheres with a common center. The circumsphere of ∆̂ is the
level set of value zero (due to interpolation over the vertices). Hence, the
maximal value of |ei(x)| is achieved at ci and is directly related to the square

of the radius of the circumsphere of ∆̂.
Using the above reasoning, we can determine the maximal value of every

error function |ei(x)| (i ∈ {1, . . . , n}). Let fi be the function that corresponds
to the largest value. We then take the associated matrixTi to be the isotropic
transformation T for domain construction purposes. Note that in this case,
the circumsphere radius is also the radius of the smallest containment ball of

59

∆ in the Theorem 3. For a given fixed circumsphere radius (corresponding
to an error tolerance), an equilateral simplex has the optimal shape because
it has the largest volume.

The number of entries +1 of D is called the positive index of inertia of Hi,
and the number of entry −1 is called the negative index of inertia. According
to Sylvester’s law of inertia, the positive and negative indices of Hi are also
the number of positive and negative eigenvalues of Hi.

Theorem 5. For the class of quadratic functions f such that all the Hessian
matrices have either only positive eigenvalues or only negative eigenvalues,
the domain construction method based on equilateral simplices in the isotropic
space is optimal.

When this condition on the eigenvalues is not satisfied, the theorem no
longer holds, that is starting from equilateral simplices in the isotropic space
does not yield an optimal construction. For example, in 2 dimensions, in the
case where the number of σj equal to +1 is equal to that of σj equal to −1

(which implies that the error is a harmonic function of δ̂), the maximal error
is not achieved at the common center but on the boundary of the simplex.
Investigating the optimality conditions for the remaining cases is part of our
undergoing work.

In the next section, we present some experimental results.

3.7 Experimental results

We implemented the domain construction algorithm and tested in on various
examples. For nonlinear optimization we use the publicly available NLopt
library [55] which provides a common interface for a number of different
optimization algorithms. For the computation of reachable sets of the ap-
proximate piecewise-affine systems, we used the algorithms implemented in
the tool d/dt [10].

We first illustrate the interest of the algorithm by a number of experiments
on a 2-dimensional system, the dynamics of which is described as follows:

ẋ1 = x2 − x3
1 + x1x

2
2 (3.15)

ẋ2 = x3
1 (3.16)

This example is adapted from the one used in the study of stabilization of
systems with uncontrollable linearization in [89] (page 346). The initial set
is a small box [0.5, 0.51]× [0.5, 0.51]. The error tolerance is equal to 0.5.

60

Figure 3.10 shows the reachable set computed using a hybridization with-
out isotropic transformation. The hybridization domains are chosen to be
equilateral and oriented along the local evolution direction of the dynamics.
We can see that without using an isotropic transformation, the domains are
small and thus a lot of domains were created.

Figure 3.10: Domains constructed without isotropic transformation.

Figure 3.11 shows the reachable set computed using a hybridization with
an isotropic transformation. In this experiment, the curvature estimation
was done dynamically when each domain is created. We can see that the
domains are larger for the same accuracy and less domains are needed.

The reachability computation can be further improved by using smaller
optimization domains around the reachable sets. This in general requires
some rough approximation of the reachable set within a number of next it-
erations. This is illustrated by the reachable set shown in Figure 3.12.

In order to illustrate the effect of error bounds, we fix the radius of the
smallest containment ball in the isotropic space and perform two experiments:
the first one with the curvature tensor estimated over a large zone and the
second over a smaller zone. We observe that the hybridization domains in
the two experiments are the same. However, a high curvature bound was
computed in the first experiment and thus the corresponding error bound is

61

Figure 3.11: Domains constructed with the curvature tensor dynamically
estimated over large zones.

large, which results in a large input set. This causes the system to expand
fast, as one can see in Figure 3.7. On the other hand, with a better curva-
ture estimate in the second experiment, the error bound is smaller and the
reachable set computation is more accurate (see Figure 3.7).

In order to evaluate the performance of the algorithm, we performed a set
of experiments on some polynomial systems (of degree 4) which are randomly
generated. We report in the following the average computation times of 100
iterations for systems up to 7 dimensions. For each dimension, we tested 4
systems. In these experiments, for each system the curvature tensor matrix
was estimated only once. The reason we did not go beyond 7 dimensions is
that the optimization took a lot of computation time (while the computation
time for treating approximate piecewise affine systems is much less), as shown
in Figure 3.15. Indeed, for a n-dimensional system, to estimate the curva-
ture tensor matrix, we need to compute n eigenvalues, each of which requires
solving n constrained optimization problems with 2n variables. Indeed, the
curvature tensor estimation can be done a-priori over a large analysis zone
and such a global estimate can be used for the whole reachability computation
process. This alone can significantly improve the accuracy of the reachable
set approximation, compared to the domain construction without isotropic

62

Figure 3.12: Domains constructed with the curvature tensor dynamically
estimated over small zones.

Figure 3.13: Reachability computation with a large error bound.

63

Figure 3.14: Reachability computation with a smaller error bound.

transformation, as shown in the above 2-dimensional example. In order to
include dynamics curvature estimation, we need more performant optimiza-
tion tools, such as those for specific classes of systems.

Dimension Total time (s) Optimisation time (s)
2 0.53 0.05
3 0.96 0.63
4 7.87 7.01
5 57.05 48.22
6 90.77 80.78
7 302.5 269.22

Figure 3.15: Computation times for polynomial systems.

To sum up, our preliminary experiments demonstrated the interest of the
proposed domain construction algorithm in terms of accuracy improvements.
The practical efficiency of the algorithm is still limited by the required non-
linear optimization.

64

Chapter 4

Reachability analysis for
polynomial dynamical systems

Résumé: Nous présentons dans ce chapitre, nos contribution
concernant l’analyse d’accessibilité des systèmes polynomiaux. Nous
présentons une approche basée sur la formulation du problème de
calcul d’image en un problème d’optimisation polynomial. Nous
présentons ensuite certains mécanismes permettant de réduire
ce problème à des problèmes d’optimisation linéaires, en util-
isant des fonctions affines de borne. Nous présentons ensuite
des méthodes de calcul pour ces fonctions basées sur l’expansion
de Bernstein. Nous présentons ensuite de nouvelles stratégies
pour choisir des patrons utilisés pour fixer préalablement la forme
des polyhèdres, de façon à refléter l’effet de la dynamique sur
l’orientation des faces du polyhèdre approximant l’image. Nous
finissons par présenter certaines études de cas sur plusieurs systèmes
biologiques.

While the hybridization technique can be used on a large class of nonlinear
dynamics, other techniques can be developed to deal more efficiently with
particular class of nonlinear dynamics, such as polynomial dynamics.

In this chapter, we focus on the following computation problem: given
a set of initial states in Rn, compute the trajectory set of a discrete-time
dynamical system described by the following difference equation:

x(k + 1) = π(x(k)) (4.1)

65

where π : Rn → Rn is a multivariate polynomial.
Our interest in polynomial systems is motivated by their applicability

in modeling a variety of phenomena in bio-chemical networks and economy.
To extend to continuous-time models, a time discretization is needed and
conservativeness of approximation needs to be guaranteed. It is however
important to note that discrete-time systems can also be directly used to
model many biological systems, since experimental data are often obtained
by sampling biochemical reaction outputs, and in addition, such models are
ready to be used for computer aided analysis and numerical simulation.

The problem (4.1) for polynomial systems was previously considered in
the work [34, 39], which was inspired by the techniques from Computer Aided
Geometric Design (CADG). In this chapter, we pursue the direction by ex-
ploiting further the special properties of a technique from CADG, namely
the Bernstein expansion, we only need to solve linear programming (LP)
problems instead of polynomial optimization problems.

In the first section, we present some preliminary notions concerning a
special kind of convex polyhedra and the Bernstein expansion of polynomial
functions. We then address the reachability computation by formulating an
optimization problem and we show how to use bound functions to get a linear
relaxation of this problem. The next section presents different algorithms
to compute these bound functions over the unit box domain. The next
section propose some methods for extending these techniques to polyhedral
domains. Finally we present an implementation of these algorithms and some
experimental results.

4.1 Preliminaries

4.1.1 Template polyhedra

When the system starts from an initial set P0, we have to deal with set
of solutions. To charaterize this set of solutions we use a special kind of
HPolytopes with fixed geometric form, called template polyhedra [87, 27].
Template polyhedra are commonly used in the static analysis of programs
for computing invariants. Ranges [33] and the octagon domains [69] are spe-
cial template polyhedra. General template polyhedra are used as an abstract
domain to represent sets of states in [87, 27]. A template is a set of normal
direction given by vectors in Rn. We denote a template by an m × n ma-
trix T which correspond to the matrix A of the polyhedron representation
in Section 2.2.1 page 27. Given such a template T and a polyhedral coeffi-
cient vector c ∈ Rm, a template polyhedron is defined by considering the

66

conjunction of the linear inequalities of the form

∧

i=1,...,m

Tix ≤ ci.

We denote this polytope by 〈T, c〉. By varying the values of the elements
of c, one can create a family of template polyhedra corresponding to the
template T.

The advantage of template polyhedra over general convex polyhedra is
that the Boolean operations (union, intersection) and common geometric
operations can be performed more efficiently [87].

4.1.2 Bernstein expansion

To discuss the Bernstein expansion of polynomials, we use multi-indices of
the form i = (i1, i2, . . . , in) where each ij is a non-negative integer. Given two
multi-indices i and d, we write i ≤ d if for all j ∈ {1, . . . , n}, ij ≤ dj. Also,

we write i
d
for (i1/d1, i2/d2, . . . , in/dn) and

(
i

d

)
for the product of binomial

coefficients

(
i1
d1

)(
i2
d2

)
. . .

(
in
dn

)
. In addition we use the unit box that we

denote by Bu which corresponds to the interval product [0, 1]n

A n-variate polynomial π : Rn → Rn can be represented using the power
base as follows:

π(x) =
∑

i∈Id

aixi

where ai is a vector in Rn; xi corresponds to the monomial term
∏n

k=1 x
ik
k ;

i and d are two multi-indices of size n such that i ≤ d; Id is the set of all
multi-indices i ≤ d, that is Id = {i | i ≤ d}. The multi-index d is called the
degree of π.

The polynomial π can also be represented using the Bernstein expansion.
In order to explain this, we first introduce Bernstein polynomials. For x =
(x1, . . . , xn) ∈ Rn, the ith Bernstein polynomial of degree d is defined as
follows:

Bd,i(x) = βd1,i1(x1) . . . β
dn,in(xn) (4.2)

where for a real number y, βdj ,ij(y) =
(
dj
ij

)
yij(1− ydj−ij).

Then, for all x ∈ Bu, the polynomial π can be written using the Bernstein
expansion as follows:

π(x) =
∑

i∈Id

biBd,i(x)

67

where for each i ∈ Id the Bernstein coefficient bi is defined as:

bi =
∑

j≤i

(
i

j

)
(
d

j

)aj. (4.3)

The following lemma presents some important properties on the Bernstein
coefficients.

Lemma 7. Bernstein coefficient properties:

1. Convex-hull property:

Conv{(x, π(x)) : x ∈ Bu} ⊆ Conv{(i/d,bi) | i ∈ Id}.

The points ((i/d,bi) are called the control points of π.

2. The above enclosure yields:

∀x ∈ Bu : π(x) ∈ ✷({bi | i ∈ Id})

where ✷ denotes the bounding box of a point set.

3. Sharpness of some special coefficients:

∀i ∈ I0
d
: bi = π(i/d),

where I0
d

is the set of all the vertices of the box described by the interval
product [0, d1]× [0, d2] . . .× [0, dn].

The first two properties can be visually illustrated by plotting a one-
dimensional system with its control points as shown in the following example.

Example Figure 4.1 represents the control points of an arbitrary polyno-
mial of degree 5 given by:

π(x) = 1− x+ 3x2 − x3 + 2x4 − 2.5x5.

The set of all multi-indices for this example is Id = {0, 1, 2, 3, 4, 5}. Using
the formula (4.3) we compute for each i ∈ Id the corresponding Bernstein
coefficient which gives us the vector ordered by the increasing order of the
multi-indices i:

Bcoef = (1, 0.8, 0.9, 1.2, 2, 1.5).

We observe the inclusion of the polynomial in the convex hull of the control
points represented by the dotted polygon.

68

Figure 4.1: Control points of a one dimensional polynomial system of degree
5

Since we are concerned with dealing with n-dimensional polynomial dy-
namics, we will consider Bcoef as a matrix whose columns are indexed by i/d
with i ≤ d and lines correspond to indexes of the polynomial πk, k ≤ n.

With respect to our reachability problem that requires computing the im-
age of a set by a polynomial system, the Bernstein expansion is of particular
interest, since they can be used to efficiently compute affine bounds for the
system, as shown in Section 4.2.2.

4.2 Reachable set approximation using tem-

plate polyhedra

In this section, we present two approaches for computing the reachable set,
the first one concerns only multi-affine systems. The second one concerns
more general polynomial dynamics and is based on the formulation of a
polynomial optimization problem and then is reduced to a problem of linear
optimization using bound functions.

69

4.2.1 Method for multi-affine functions

We propose a method specialized for multi-affine systems, a particular case
of polynomial systems. Multi-affine systems are systems composed by poly-
nomials which are affine in each of their variables, i.e. if d is the degree of an
affine system π, dk ≤ 1 for all k ∈ {1, . . . , n}. We will exploit the following
property of such systems to obtain a time-efficient reachability algorithm.

Theorem 6. Given a box B ⊆ Rn, let VB be the set of its vertices. If π is a
multi-affine function, then

π(B) ⊆ conv{π(v) | v ∈ VB}

A proof of this well-known property of multi-affine functions can be found
in [20].

Note that the above theorem is only applicable to the sets which are axis-
aligned hyper-rectangles. Hence, even if the initial set satisfies this condition,
after the application of π, the resulting set is a general convex polyhedron
and we need to approximate it by an axis-aligned hyper-rectangle. Using the
theorem, to compute π(B) it suffices to compute the images of the vertices
of B and then take the convex hull of the resulting points.

Before continuing, we remark that a number of different methods for the
multi-affine systems have also been developed in [19, 22]. These methods are
however based on a rectangular partition of the state space, while we allow
reachable sets to be represented by unions of polyhedra.

We now present the second method for more general polynomial dynam-
ics.

4.2.2 Optimization-based method

Optimization problem formulation

To compute the reachable set from a template polyhedron, at each time step,
we need to compute the image of a polyhedron P by the polynomial π. The
template matrix T, which is of size m × n, is assumed to be given; the
polyhedral coefficient vector c ∈ Rm is, however, unknown. The problem we
now focus on is thus to find c such that

π(P) ⊆ 〈T, c〉. (4.4)

For safety verification purposes, exact computation of reachable sets is often
not possible (due to undecidability issues for example) and one thus needs
to resort to over-approximations, and when an over-approximation does not
allow proving a safety property, the approximation needs to be refined.

70

It is not hard to see that the following condition is sufficient for (4.4) to
hold:

∀x ∈ P : Tπ(x) ≤ c.

Therefore, ∀i ∈ {1, . . . ,m} to determine ci, one can formulate the follow-
ing optimization problems:

maximize Σn
k=1Ti,kπk(x)

subject to x ∈ P .
(4.5)

where Ti is the ith row of the matrix T and Ti,k is its kth element. Note
that the above functions to optimize are polynomials. This problem is com-
putationally difficult, despite recent progress in the development of methods
and tools for polynomial programming (see for example [45]). An alterna-
tive solution is to find their affine bound functions as discussed in the next
subsection.

Approximation using bound functions

Affine bound functions can be used in order to replace the polynomial opti-
mization problem by a linear programming one, which can be solved more
efficiently (in polynomial time) using well-developed techniques, such as Sim-
plex and interior point techniques [84]. We first give a formal definition for
these functions.

Definition 16 (Upper and lower bound functions). Given f : Rn → R, the
function u : Rn → R is called an upper bound function of f w.r.t. a set
P ⊂ Rn if ∀x ∈ P : f(x) ≤ u(x). A lower bound function can be defined
similarly.

The following property of upper and lower bound functions is easy to
prove.

Lemma 8. Given X ,Y ⊆ Rn s.t. Y ⊆ X , if υ is an upper (lower) bound
function of f w.r.t. X , then υ is an upper (lower) bound function of f w.r.t.
Y.

For each k ∈ {1, . . . ,m}, let uk(x) and lk(x) respectively be an upper
bound function and a lower bound function of πk(x) w.r.t. a bounded poly-
hedron P ⊂ Rn. Given a template matrix T, we consider the following
optimization problem:

∀i ∈ {1, . . . ,m}, ci = Σn
k=1Ti,kωk. (4.6)

where the term Ti,kωk is defined as follows:

71

• If the element Ti,k > 0,

Ti,kωk = Ti,k max uk(x) subject to x ∈ P .

• If the element Ti,k < 0,

Ti,kωk = Ti,k min lk(x) subject to x ∈ P .

The following lemma is a direct result of (4.6).

Lemma 9. If c ∈ Rm satisfies (4.6), then π(P) ⊆ 〈T, c〉.

Proof. It is indeed not hard to see that the solution ci of the optimization
problems (4.6) is greater than or equal to the solution of (4.5). Hence, if
c satisfies (4.6), then ∀i ∈ {1, . . . ,m} ∀x ∈ P : Σn

k=1Ti,kπk(x) ≤ ci. This
implies that ∀x ∈ P : Tπ(x) ≤ c, that is the image π(P) is included in
〈T, c〉.

We remark that if all the bound functions in (4.6) are affine and P is a
bounded convex polyhedron, c can be computed by solving 2n linear pro-
gramming problems. It remains now to find the affine bound functions uk(x)
and lk(x) for π w.r.t. a polyhedron P , which is the problem we tackle in the
next section.

In the next section we present some methods to compute such bound
functions.

4.3 Computing bound functions in the unit

box domain

To compute bound functions, we use the methods based on the Bernstein
expansion, published in [53]. Computing convex lower bound functions for
polynomials is a problem of great interest, especially in global optimization.
The reader is referred to [53, 54, 47] for more detailed descriptions of these
methods.

It is important to note that the methods described in this section only
work for the case where the variable domain is the unit box Bu. The reason is
that it employs the expression of the control points of the Bernstein expansion
in (4.3) which is only valid for this unit box. Their extensions to arbitrary
polyhedral domains are discussed in the next section. Therefore, in what
follows, we assume that our initial polyhedron P is included in the unit box.

72

A simple lower bound function is a constant function, which can be di-
rectly deduced from the second property of the Bernstein expansion:

πk(x) ≥ b0k

where b0k = min{bi
k | i ∈ Id}. The lower bound function for the polynomial

πk(x) is then:

lk(x) = bi
0

k = b0k.

Two methods for computing better bound functions are presented in the
following sections, for each of them we illustrate their its algorithm with an
example using a one-dimensional polynomial system presented on page 68.

4.3.1 Using a convex hull lower facet

The first step of this method [54] involves computing the affine lower bound
function whose corresponding hyperplane passes through this control point
(i0b0). Then, additionally, (n − 1) hyperplanes passing through n other
control points are determined. This allows constructing a sequence of n affine
lower bound functions l0, l1, . . . ln. The method ends up with ln, a function
whose corresponding hyperplane passes through a lower facet of the convex
hull spanned by these control points. Note that we can easily compute an
upper bound function of π by computing a lower bound function for −π using
this method and then multiply each resulting function by −1.

We describe the algorithm for computing these functions published in [53].
Let us consider a polynomial πk(x), which is the kth component of π(x) and
for simplicity, we denote it simply by p(x). The Bernstein coefficient of p is
denoted by the scalars bi. We shall compute an affine lower bound function
denoted by l(x).

• Iteration 1.

– Define the direction u1 = (1, 0, . . . , 0).

– Compute the slopes from each bi to b0 in the direction u1:

∀i ∈ Id : i1 6= i01, g1i =
bi − b0

i1/d1 − i01/d1

– Let i1 be the multi-index with the smallest absolute value of g1i .
Define the lower bound function:

l1(x) = b0 + g1i1u
1 · (x− i0/d).

73

• Iteration j = 2, . . . , n.

– Compute the direction ūj = (β1, . . . , βj−1, 0, . . . , 0) such that ūj ·(
ik−i0

d

)
= 0 for all k = 1, . . . , j−1. This requires solving a system

of j − 1 linear equations with j − 1 unknown variables. Then
normalize uj = ūj/||ūj||.

– Compute the slopes from each bi to b0 in the direction uj:

∀i ∈ Id :
i− i0

d
· uj 6= 0, gji =

bi − lj−1(i/d)

(i/d− i0/d) · uj

– Let ij be the multi-index with the smallest absolute value of gji .
Define the lower bound function:

lj(x) = lj−1(x) + gj
ij
uj · (x− i0/d).

Figure 4.2: Affine lower bound functions passing by the lower facets of the
control points convex hull

74

Example Figure 4.2 illustrates this algorithm for a one-dimensional case
using the example presented in page 68. We recall that the Bernstein coeffi-
cients of this polynomial are

Bcoef = (1, 0.8, 0.9, 1.2, 2, 1.5)

We compute the lower bound in one iteration with the parameters u1 = (1)
and b0 = 0.8. The smallest absolute value of the slope is computed with the
b3 = 0.9 with

g13 =
0.8− 0.9

0.4− 0.6
= 0.5.

Then the computed lower bound is

l(x) = 0.8 + 0.5(x− 0.2) = 0.5x+ 0.7

This method was previously proposed for the reachability analysis prob-
lem in [39], we now describe a new method to compute these affine bound
functions which can produce more precise results.

4.3.2 Using linear least squares approximation

The essence of the second method [47] for computing bound functions is to
find a hyperplane that is close to all the control points, using linear least
squares approximation. This can lead to tighter bound functions since the
general shape of the function graph is better captured. More concretely, we
denote by {ij | 1 ≤ j ≤ nb} be the set of all the multi-indices, nb is thus
their number. The set of all control points is denoted similarly. Let A be a
matrix of size nb × (n+ 1) such that its elements are defined as follows. For
all 1 ≤ j ≤ nb and 1 ≤ k ≤ n,

Aj
k =

ijk
dk

and Aj
n+1 = 1. Let ζ be the solution of the following linear least squares

approximation problem:
ATAζ = ATb. (4.7)

Then, the affine function

l̃(x) =
n∑

k=1

ζkxk + ζn+1

75

corresponds to the ”median” axis of the convex hull of all the control points.
It thus suffices to shift it downward by the amount:

δ = max{l̃(
ij

d
)− bj | 0 ≤ j ≤ nb}.

This results in a lower bound function illustrated at the right of Figure 4.3.

l(x) = l̃(x)− δ, for all x ∈ Bu.

Figure 4.3: Computation of the affine lower bound functions using Linear
Least Square approximation

Example Using the one dimensional system given page 68, we can compute
the matrix

A =

(
0 0.2 0.4 0.6 0.8 1
1 1 1 1 1 1

)
.

We recall that
b = (1, 0.8, 0.9, 1.2, 2, 1.5).

We obtain from (4.7), the following problem

(
2.2 3
3 6

)(
ζ1
ζ2

)
=

(
4.34
7.40

)
.

76

By solving this linear equalities system we obtain the linear least square
approximation

l̃(x) = ζ1x+ ζ2 = 0.9143x+ 0.7762.

Then we compute δ = 0.2419 with the coefficient b3 and we get the affine
lower bound

l(x) = l̃(x)− δ = 0.9143x+ 0.5343.

The left plot in Figure 4.3 shows the linear least squares approximation
computed for the polynomial given in example. The second one represent
the final affine function computed after shifting downward the previous affine
function.

4.4 Extension to polyhedral domains

As mentioned earlier, the methods to compute affine bound functions for
polynomials in Section 4.3 can be applied only when the set P is inside the
unit box Bu anchored at the origin. To extend it to polyhedral domains, we
have to perform a change of variable to map the initial polyhedron to the
unit box. To this end, [39] presented a method based on box approximation.
We propose another method on a change of variables. We also discuss a
comparison between these two methods.

Throughout this section we use the following 2 dimensional system as an
illustrative example for each method:

π1(x) = x2
1 + 2x2 + 1,

π2(x) = x2
2 − x2 + 2,

with x1, x2 ∈ R and an initial set represented by a triangle which is not
included in the unit box, with the following vertices: (1, 1), (3, 3), (4, 1).

4.4.1 Using a box approximation

If we over-approximate P with a box B, it is then possible to derive a formula
expressing the Bernstein coefficients of π over B. However, this formula is
complex and its representation and evaluation can become expensive.

We alternatively consider the composition of the polynomial π with an
affine transformation τ that maps the unit box to B. The functions resulting
from this composition are still polynomials, for which we can compute their
bound functions over the unit box, using the formula (4.3) of the Bernstein
expansion. This is explained more formally in the following.

77

Let B be the bounding box of the polyhedron P represented by the vector
r ∈ Rn and r ∈ Rn. The affine function τ that maps the unit box Bu to B can
be easily defined as: τ(x) = diag(λ)x + g where g ∈ Rn such that gi = ri,
and diag(λ) is a n × n diagonal matrix with the elements on the diagonal
defined as follows: for each i ∈ {1, . . . , n}, λi = ri − ri.

The composition γ = (π o τ) is defined as γ(x) = π(τ(x)). The functions
τ and γ can be computed symbolically, which will be discussed later.

Lemma 10. Let γ = π o τ . Then, π(P) ⊆ γ(Bu).

Proof. By the definition of the composition γ, γ(Bu) = {π(τ(x)) | x ∈ Bu}.
Additionally, τ(Bu) = B. Therefore, γ(Bu) = π(B). Since the polyhedron P
is included in its bounding box B, we thus obtain π(P) ⊆ π(B) = γ(Bu).

We remark that the above proof is still valid for any affine function τ . This
means that instead of an axis-aligned bounding box, we can over-approximate
P more precisely with an oriented (i.e. non-axis-aligned) bounding box. The
directions of an oriented bounding box can be computed using Principal
Component Analysis (PCA) [56]. A detailed description of the method can
be found in [39].

B

1

2

3

4

5

1 2 3 4 5 6
0

x

y

Bu

P

Figure 4.4: Box approximation of P and mapping function τ

Example Figure 4.4 shows the initial set of the section example and its
box approximation oriented with axis in this case defined by the intervals
[2, 5]× [1, 4]. The transformation τ is illustrated by the arrows showing the
mapping the unit box Bu vertices to the box B, we denote the equations of

78

τ by τ1 and τ2 such that:

τ1(x1) = 3x1 + 2,

τ2(x2) = 3x2 + 1.

Geometrically speaking, this transformation corresponds to a scale by a factor
3 followed by the translation by the vector (2, 1). The final composition γ
gives the following system:

π1 o τ(x) = 9x2
1 + 12x1 + 6x2 + 7,

π2 o τ(x) = 9x2
2 + 6x2 − 3x2 + 2,

and the the initial set becomes Bu. We can now use the methods presented in
the previous section to compute a linear optimization problem approximating
the initial problem 4.5 using the Bernstein expansion of this new system.
As this method relies on the computation and the composition of mapping
functions, we describe in the next subsection an innovative technique to map
the polyhedron P to the unit box.

4.4.2 Using a change of variables

The polyhedron P can also be mapped to the unit box Bu by a change of
variables as follows. We assume that the polyhedron P is bounded and let
V = {v1, . . . ,vl} be the set of its vertices. We first express the coordinates of
a point x inside the polyhedron P as a linear combination of its the vertices,
that is

x =
l∑

j=1

αjv
j = ν(α1, . . . , αl)

such that

∀j ∈ {1, . . . , l} αj ≥ 0 (4.8)
l∑

j=1

αj = 1. (4.9)

We then substitute x in π with ν(α1, . . . , αl) to yield a new polynomial in
α1, . . . , αl.

We denote µ = π o ν, that is π(x) = µ(α1, . . . , αl). Furthermore, in order
to retain the relation between αj expressed in the constraint (4.9) we can use

αl = 1−
l−1∑

j=1

αj

79

to substitute αl in µ by the above sum, in order to obtain a polynomial with
(l − 1) variables, denoted by ξ(β) where α̃ = (α1, . . . , αl−1).

Note that the constraints (4.8-4.9) indicate that γ is inside the unit box
B′
u in Rl−1. This implies that a bound function computed for the polynomial

ξ(α̃) on this unit box is also a bound function for the original polynomial π
on the polyhedron P without additional error, unlike in the above-described
case of box approximations. It then suffices to compute the bound functions
for π over the polyhedron P using the Bernstein expansion of ξ over the B′

u.

Example The initial set in the above example, is a triangle composed
by the vertices (2,2), (5,1) and (4,4) which gives the followings change of
variable:

x1 = 2α1 + 5α2 + 4α3,

x2 = 2α1 + α2 + 4α3.

using the property 4.8 we can remove the last variable α using the equation

α3 = 1− α2 − α1

that lead to the following equations:

x1 = −2α1 + α2 + 4,

x2 = −2α1 − 3α2 + 4.

The polynomial system obtained using this change of variable is

ξ1(α) = (−2α1 + α2 + 4)2 + 2(−2α1 − 3α2 + 4) + 1,

ξ2(α) = (−2α1 − 3α2 + 4)2 − (−2α1 − 3α2 + 4) + 2,

with α1, α2, α3 ∈ [0 . . . 1]. We can now compute affine bounds for this poly-
nomial system and use them for the reachability analysis. To do so, we have
to transform each template direction in the α̃ basis and use the previously
presented algorithms to compute the next polyhedral coefficient vector b.

We present now the main algorithm which performs the reachable set
analysis, we will also present some strategy for computing appropriate tem-
plate direction, bernstein coefficient by interpollation and accurately approx-
imate a set by a box for unit box mapping.

4.5 Algorithms

4.5.1 Reachability analysis

Algorithm 2 summarizes the main steps of our approach with affine bounds
for over-approximating the reachable set of the system x(k + 1) = π(x(k))

80

where the initial set P0 is a bounded polyhedron in Rn represented by a
template matrix A ∈ Rm×n and a polyhedra coefficient vector b ∈ Rm such
that

P0 : {x ∈ R
n|A · x ≤ b}.

The function ComputeTemplate(A, π) computes a template matrix for
the next reachable set, in the case of non variating template this function
just return A. To unify the two methods of mapping a polyhedron to the
unit box in the same abstract algorithm, we use β to denote both of the
transformations using either a box approximation or a change of variables. In
the same way we use the function BoundFunctions() to denote the methods
for affine bounds computation presented in section 4.2.2.

Algorithm 2 Reachable set computation

/* Inputs: convex polyhedron P0 = 〈A,b〉, polynomial π, the number of
iterations kmax*/

k = 0
repeat

/*Compute the template for the next polyhedron*/
T = ComputeTemplate(A, π)
/*Compute the function mapping the unit box Bu to the polyhedron Pk*/

β = UnitBoxMap(Pk)
γ = π o β
/*Compute the affine bound functions*/
(u, l) = BoundFunctions(γ)
for all Ti in T do
for all j = 1 to j = n do
if Ti,k > 0 then
b̄i = c̄i + Ti,jmax(uj(x), x ∈ Bu)

else
b̄i = c̄i + Ti,jmin(lj(x), x ∈ Bu)

end if
end for

end for
Pk+1 = 〈T, b̄〉 /* Construct the template polyhedron and return it */
k ++

until k = kmax

In the following subsection, we present some strategy to efficiently choose
template directions.

81

4.5.2 Choice of the template

In this subsection, we present a method for choosing a dynamical template
that reflects as much as possible the changes in the shape of the reachable
sets Pk induced by the dynamics.

We consider the template Tk for the polyhedron

Pk =
{
x ∈ R

n| Tk · x ≤ bk
}
.

In the next iteration, we want to compute a new template Tk+1 For that
purpose, we use a local linear approximation of the dynamics of the polyno-
mial dynamical system (x(k + 1) = π(x(k))) given by the first order Taylor
expansion around the centroid ck ∈ Rn of the last computed polyhedron Pk:

π(x) ≈ Lk(x) = f(ck) + J(ck)(x− ck)

where J is the Jacobian matrix of the function π. Let us denote Fk =
J(ck) and hk = f(ck)− J(ck)ck, then in a neighborhood of ck the nonlinear
dynamics can be roughly approximated by x(k+1) = Fkx(k)+hk. Assuming

that Fk is invertible, this gives x(k) = Fk−1
x(k + 1)−Fk−1

hk. Transposing
the constraints on x(k) given by Pk to x(k + 1), we obtain

TkFk−1
x(k + 1) ≤ ck +TkFk−1

hk.

Then, it appears that a reasonable template for Pk+1 can be Tk+1 =
TkFk−1

. This new template Tk+1 can then be used in the next iteration for
the computation of the polyhedron Pk+1 using the method described in the
previous section.

Figure 4.5 illustrates the benefit of using dynamical templates computed
using the above linear approximation. Indeed, the over-approximation error
(drawn in grey) in the case of using a static template is larger than the error
in the case of a dynamical template.

4.5.3 Dynamical templates for oriented boxes

We also present a low-cost method to compute an oriented box B used to
over-approximate the reachable sets.

As presented in Section 4.2.2 we use a box approximation Bk to map a
polyhedron Pk to the unit box Bu. This box Bk can be oriented to map
more precisely the set Pk however computing an oriented box by an analysis
method such as Principal Component Analysis is a costfull operation. We

82

Reachability iteration

Exact reachable set

Dynamic case

Static case

Figure 4.5: Benefits of using dynamical templates in place of static ones.

implement a simple method to approximate the oriented box Bk when the
initial set is a box.

By considering that the initial set P0 is often given as a box, the bounding
box B0 of this set is aligned with the axis. We can consider this box as a
template polyhedron represented by

Bk =

{
x ∈ R

n|

(
Tk

−Tk

)
x ≤ ck

}
.

where Tk ∈ Rn×n is a n by n orthogonal matrix and ck ∈ R2n the poly-
hedral coefficient. In a similar way to the polyhedra Pk, the accuracy will
be better if we use dynamical templates which take into consideration the
dynamics of the system (essentially the rotation effects).

We will actually choose Tk to obtain an oriented rectangular box. By

Using oriented boxUsing parallelotope

Over approximation

Figure 4.6: Benefits of using oriented rectangular boxes.

83

making this choice, we avoid some overapproximation that can occur when
the parallelotope becomes elongated, (see Figure 4.6 for an illustration of
this problem). We should mention that the image of an oriented rectangular
box by a linear map is not necessarily an oriented rectangular box so we
can not use directly the matrix (Fk)−1 computed previously. To solve this
problem we will use an popular technique in interval analysis [74] based on
the QR-Decomposition of matrices. Essentially, Fk will be written as the
product of two matrices Fk = QkRk where Qk is an orthogonal matrix and
Rk is an upper triangular one. Then, to choose the template Ck+1 of the
next oriented box Bk+1, we apply our rotation transformation matrix Qk to
the given rectangular box Tk which is equivalent to choose the template

Tk+1 = TkQk⊤.

Of course, in that case, we will deal with non-aligned-axis boxes which can
cause higher degrees for our polynomial but the approximation will be less
conservative than using static templates for Tk.

4.5.4 Bernstein coefficient interpolation

We present here an alternative and innovative approach to compute the Bern-
stein coefficient using interpolation at points i/d with i ≤ d.

Indeed, let Binter the matrix whose lines are indexed by i ≤ d and columns
by j ≤ d with the coefficients Bd,i(j/d) and π the matrix whose lines are also
indexed by i ≤ d are π(i/d).

Then the following equalities can be stated from the Bernstein expansion:

π(j/d) =
∑

i∈Id

biBd,i(j/d),

π = BcoefBinter,

then
Bcoef = Binter

−1π.

where Bcoef is a matrix whose lines indexed by i ≤ d are the polynomial
system Bernstein coefficients bi. The Bernstein coefficients can the be de-
termined by computing the inverse of the matrix Binter. An interesting fact
is that, if the polynomial system maximal dimension do not change during
the unit box mapping step (by using axis aligned box approximation by ex-
ample), the matrix Binter

−1 can be reused at each reachability iteration and
can be computed before starting the analysis.

84

4.6 Discussion

In this section we discuss precision and complexity of the proposed methods.

4.6.1 Approximation error

The approximation errors are caused by the bound functions and the use
of template polyhedra. When a box approximation is used, this causes an
additional error. The following lemma states an important property of the
Bernstein expansion.

Lemma 11. Let Cπ,B(x) be the piecewise linear function defined by the Bern-
stein control points of π with respect to the box B. Then, for all x ∈ B,

||π(x)− Cπ,B(x)||∞ ≤ Kρ2(B)

where || · ||∞ is the infinity norm on Rn, ρ(B) is the box size (i.e. its largest
side length), Kk = maxx∈B;i,j∈{1,...,n}|∂i∂jπk(x)|, K = maxk∈{1,...,n}Kk.

From this result it can be proven that in one-dimensional case, the error
between the bound functions computed using the Bernstein expansion and
the original polynomial is quadratic in the length of box domains. This
quadratic convergence seems to hold for higher dimensional cases in practice,
as shown in [53]. We conjecture that there exists a subdivision of the box B
which allows a quadratic convergence of the error. This subdivision method
is similar to the one used for finding roots of a polynomial with quadratic
convergence [73].

Hence, when more accurate reachable set approximations are required,
we can divide the unit box into non-overlapping sub-boxes. Then, for each
sub-box, we compute a bounding function, with which we then compute a co-
efficient for each template. Finally, for each template, we take the largest co-
efficient to define the template polyhedron. Since the sub-boxes are smaller,
the bound functions are more precise, we can thus improve the coefficients
as much as desired. This division idea can also be similarly used to reduce
the error caused by oriented box approximation. The error inherent to the
approximation by template polyhedra can be controlled by fine-tuning the
number of template constraints.

4.6.2 Computation cost

Concerning complexity, when a box approximation is used, the computation
of bound functions and PCA only require manipulating matrices and lin-
ear equations. Linear programming can be solved in polynomial time. When

85

iterating these methods to compute the reachable set of a polynomial dynam-
ical system, if the number of template constraints is constant, the complexity
depends linearly on the number of iterations.

It is important to take into consideration that, when using box approxi-
mation for unit box mapping, the use of oriented boxes changes the degree
of the composed polynomials. If d = (d1 . . . dn) is the degree of each vari-
able of a polynomial and dmax is its maximal degree, the composition of the
polynomial with the mapping functions can have in the worst case a degree
dγ = (dmax . . . dmax). This can heavily increase the number of Bernstein
coefficients which would be equals to (dmax + 1)n.

Regarding accuracy, the method using a change of variables is performant,
since the polyhedral constraints are exactly captured. This is also confirmed
by experimental results. However, the LP problems to solve are in higher
dimension, which is (l − 1) where l is the number of vertices of the polyhe-
dra. In addition, this method requires computing the vertices of template
polyhedra, which is expensive and our experimentation shows that this costs
a large part of computation time. This can be improved by considering the
coefficients of template polyhedra as parameters, and since the template is
fixed, we can deduce a symbolic expression of the vertices of the parametric
polyhedra, which can be used to derive the (parametric) change of variable
to map the polyhedra to the unit box.

The next section presents some experimental results.

4.7 Experimental results

We developed a new tool for performing analysis of polynomial systems which
is an implementation of the techniques presented in this chapter. This tool is
presented in more detail in Chapter 6. In the following, we demonstrate the
methods with four examples: a multi-affine system modeling a prey-predator
dynamics, a model of insect nest-site choice, a biological system and a control
system (modeled as a hybrid system). The time efficiency of the tool was
also evaluated by considering a number of randomly generated polynomials.

4.7.1 Prey predator model and performance evalua-
tion

In this first example we use the approximation with bound functions method
to compute the reachable sets on generalized Lotka-Volterra equations. These
systems model the dynamics of the population of n biological species known
as the prey predator model. Its equations are given by ẋi = xi(ri + Aix)

86

where i ∈ {1, 2, . . . , n}, ri is the i
th elements of a vector r ∈ Rn and Ai is the

ith line of a matrix A ∈ Rn×n.

Figure 4.7: Reachability computation for a 2 dimensional predator-prey
model using dynamical template with axis aligned (left) and oriented (right)
bounding boxes.

We performed reachable set computation for an Euler discretized Lotka-
Voltera system for the case n = 2:

{
x1(k + 1) = x1(k) + h(0.1x1 − 0.01x1x2)
x2(k + 1) = x2(k) + h(−0.05x2 + 0.001x1x2)

Figure 4.7 shows the cyclic behavior of the reachable set analysis com-
puted using a discretization time h = 0.3 with an initial box included in
[49, 51]× [14, 16] during 700 iterations. The figure on the left was computed
in 1.87 seconds using dynamical template polyhedra and bounding boxes
aligned with axis. The other one was computed in 3.46 seconds using dy-
namical templates and oriented boxes. A significant gain of precision using
the oriented box can be observed however the computation time is almost
double.

We also evaluated the performance of our method using two ways of
computing the Bernstein coefficients (explicitly and by interpolation) with
recursively generated n-dimensional Lotka-Volterra equations given by:





x1(k + 1) = x1(k) + h (x1(k)(1− x2(k) + xn(k)))
xi(k + 1) = xi(k) + h (xi(k)(−1− xi+1(k) + xi−1(k)))
xn(k + 1) = xn(k) + h (xn(k)(−1− x0(k) + xn−1(k)))

where i ∈ {2, . . . , n− 1}. We used axis aligned bounding boxes to make the
change of variable. (see tables 4.1).

We observe that the interpolation method provides more effective results
than the explicit computation of Bernstein coefficient but requires to compute
the matrix Binter

−1 before starting the analysis.

87

dim explicit interpol Binter
−1

2 0.00235 0.00221 0.00001
3 0.00536 0.00484 0.00004
4 0.01112 0.01008 0.00008
5 0.02612 0.02124 0.00052
6 0.068 0.0499 0.0016

dim explicit interpol Binter
−1

7 0.1905 0.1274 0.0099
8 0.5682 0.3674 0.0494
9 1.935 1.265 0.266
10 6.392 4.441 1.623
11 21.98 16.03 10.36

Table 4.1: Computation time for one reachable set computation iteration
for some generated Lotka-Voltera systems

4.7.2 A model of insect nest-site choice

We also study a model of a decision making mechanism used by a swarm of
honeybees to select one among many different nest-sites [25]. This is built
upon classical mathematical models of the spread of diseases, information
and beliefs. The bee population is divided into 5 groups:

• X: neutral bees that have not chosen a site

• Y1: evangelic bees dancing for the site 1

• Y2: evangelic bees dancing for the site 2

• Z1: non-evangelical bees which have been converted to the site 1

• Z2: non-evangelical bees which have been converted to the site 2

The bees dance not only to advertise the quality of a site but also to trans-
mit to the other bees information about the direction and distance to the
site. Non-evangelical bees stay idle but may take up dancing when they are
stimulated by a dancing bee. For simplicity, we also use the names of the
groups to denote the respective numbers of individuals in each group.

The equations describing the evolutions of the variables are as follows:

Ẋ(t) = −β1X(t)Y1(t)− β2X(t)Y2(t),

Ẏ1(t) = β1X(t)Y1(t)− γY1(t) + δβ1Y1(t)Z1(t) + αβ1Y1(t)Z2(t),

Ẏ2(t) = β2X(t)Y2(t)− γY2(t) + δβ2Y2(t)Z2(t) + αβ2Y2(t)Z1(t),

Ż1(t) = γY1(t)− δβ1Y1(t)Z1(t)− αβ2Y2(t)Z1(t),

Ż2(t) = γY2(t)− δβ1Y2(t)Z2(t)− αβ2Y1(t)Z2(t),

where β1 and β2 are scalar parameters representing a measure of how vigor-
ously the bees dance for the sites 1 and 2 respectively; α is the parameter

88

representing the proportionality of switching back to the neutral state, and γ
is the proportionality of conversion from the dancing state to the idle state.
The proportionality of conversion from the neutral state to any site Yi is 1
and from the idle state to Yi is δ.

In this case study, we want to study the influence of the parameter β2 on
the possibility of achieving a consensus on nest-site choice.

Using the Euler discretization method we obtains the following discrete-
time dynamics.

X(k + 1) = X(k) + h(−β1X(k)Y1(k)− β2X(k)Y2(k)),

Y1(k + 1) = Y1(k) + h(β1X(k)Y1(k)− γY1(k) + δβ1Y1(k)Z1(k) + αβ1Y1(k)Z2(k)),

Y2(k + 1) = Y2(k) + h(β2X(k)Y2(k)− γY2(k) + δβ2Y2(k)Z2(k) + αβ2Y2(k)Z1(k)),

Z1(k + 1) = Z1(k) + h(γY1(k)− δβ1Y1Z1 − αβ2Y2Z1),

Z2(k + 1) = Z2(k) + h(γY2(k)− δβ1Y2(k)Z2(k)− αβ2Y1(k)Z2(k)),

We choose a discretization time h = 0.01. In the following, β1N = 1.0,
the initial set is a small box centered at (N, 0, 0, 0, 0), where N is the total
number of honeybees arbitrary fixed to 1000.

Figure 4.8 and Figure 4.9 show the evolution of the proportions of con-
verted honeybees ((Yi+Zi)/N) during 6000 iterations, with different interval
values of the parameter β2. The blue sets (in lighter color) correspond to the
proportions of bees supporting the site 1 and the red sets (in darker color)
correspond to those supporting the site 2. These results were obtained using
the method for multi-affine systems which took about 7.5s

First we consider that at the beginning no honeybees dance for the site
2, in other words β2 = 0. After 300 iterations the site 2 is discovered and its
propaganda begins. We can observe two main comportments: a consensus
and the absence of consensus. We consider that there is a consensus if the
distance between the proportions of honeybees supporting the site 1 or 2 is
large and tends to increase.

Figure 4.8 shows the analysis using the parameters α = 0.7, γ = 0.3 and
β2 ∈ [1, 1.2]. We observe that β2 is marginally superior to β1, however we
can see that there is no consensus between the two evangelical groups.

Figure 4.9 shows that a consensus can be observed if the measure of
how vigorously the bees dance for sites 2 is increased. In this analysis the
parameters stay the same except for β2 ∈ [1.5, 2.0]. We observe a clear
consensus for the site 2 despite its lateness.

Another way to obtain a consensus without modifying β2 is to reduce
α which corresponds to the proportionality of honeybees reconversion to
another site. When α = 0.2, the late propaganda of the site 2 leads to a
consensus to choose the site 1 as shown in Figure 4.10.

89

Figure 4.8: No consensus is observed with α = 0.7, γ = 0.3 and β2 ∈ [1, 1.2].

Figure 4.9: A consensus for the site 2 is observed with α = 0.7, γ = 0.3 and
β2 ∈ [1.5, 2].

Finally, to compare the two proposed methods, Figure 4.11 shows the
projection of the reachable sets on the variables Y1 and Y2 during the first
150 iterations, with α = 0.7, γ = 0.3 and β2 = 1.2. We plot the results
obtained by the two methods and we can see that the sets computed using
the method for multi-affine systems are larger than those computed using

90

Figure 4.10: A consensus for the site 1 is observed with α = 0.2, γ = 0.3 and
β2 ∈ [1, 1.2].

the Bernstein expansion. We observe a gain of precision with the Bernstein
method, however the computation time of this method is 25.06s and is more
than 250 times superior than the computation time of the other method
which is 0.09s.

4.7.3 FitzHugh-Nagumo neuron model

The third biological example is the FitzHugh-Nagumo neuron model describ-
ing the electrical activity of a neuron [43]. It can be expressed by a polynomial
dynamical system:

ẋ = x− x3 − y + 7/8 (4.10)

ẏ = 0.08(x+ 0.7− 0.8y) (4.11)

We now study an Euler time discretization scheme of the above differential
equation with the time step 0.2. The initial set is an octagon included in the
bounding box [0.9, 1.1]× [2.4, 2.6].

Figure 4.12 shows two reachable set evolutions where the initial set is a
regular octagon included in the bounding box [0.9, 1.1] × [2.4, 2.6]. In both
cases, we use box approximation method for unit box mapping using only
axis aligned rectangles. The computation time is 8.16 seconds using a static
template and 8.22 seconds using the dynamical templates each one with 8

91

Figure 4.11: Reachability analysis during 150 iterations using the two reach-
ability methods, the black outlines set are computed with the Bernstein
expansion method, the red outlines set correspond to the result using the
method for multi-affine systems.

directions. We can see from the figure a huge precision improvement obtained
by using dynamical templates, at little additional cost.

Figure 4.13 shows two reachable sets computed using the same template.
The one computed by the method using a change of variables is much more
precise, which allowed observing a limit cycle. To visually demonstrate an
accuracy improvement, Figure 4.13 only shows the results of a few first com-
putation steps. The computation time of the method using a box approx-
imation after 500 steps is 8.98 and that of the method using a change of
variables is 8.8.

4.7.4 A control system

The fourth example is the Duffing oscillator taken from [57, 44]. This is
a nonlinear oscillator of second order, the continuous-time dynamics is de-
scribed by

ÿ(t) + 2ζẏ(t) + y(t) + y(t)3 = u(t)

92

Figure 4.12: Reachability computation for the FitzHugh-Nagumo neuron
model using static (left) and dynamical (right) template polyhedra.

where y ∈ R is the state variable and u ∈ R is the control input. The damping
coefficient ζ = 0.3. In [44], using a forward difference approximation with
a sampling period h = 0.05 time units, this system is approximated by the
following discrete-time model:

x1(k + 1) = x1(k) + hx2(k)

x2(k + 1) = −hx1(k) + (1− 2ζh)x2(k) + hu(k)− hx3
1(k)

In [44], an optimal predictive control law u(k) was computed by solving a
parametric polynomial optimization problem.

We model this control law by the following switching law with 3 modes:

u(k) = 0.5k if 0 ≤ k ≤ 10

u(k) = 5− 0.5(k − 10)/3 if 10 < k ≤ 40

u(k) = 0 if k > 40

The controlled system is thus modeled as a hybrid automaton [3] with 3
discrete states. The initial set is a rectangle such that 2.49 ≤ x1 ≤ 2.51 and
1.49 ≤ x2 ≤ 1.51.

The results obtained using the two methods are shown in Figure 4.14
which are coherent with the phase portrait in [44]. We can see that the
method using a change of variables achieved better precision since the reach-
able set it computed is include in the set computed by the other method.
However, the method using a change of variables is less time-efficient. For
70 steps, the computation time of the method using a box approximation
is 1.25s while that of the method using a change of variables is 1.18s. We
also used this example to compare the two methods of computing bound
functions and observed that they produced equally accurate results.

93

Figure 4.13: FitzHugh-Nagumo neuron model. The evolution of the reach-
able set computed using the two methods: using a box approximation and
using a change of variables.

4.7.5 Randomly generated systems

In order to evaluate the performance of our methods, we tested them on a
number of randomly generated polynomials in various dimensions and max-
imal degrees (the maximal degree is the largest degree for all variables). For
a fixed dimension and degree, we generated different examples to estimate
an average computation time. In the current implementation, polynomial
composition is done symbolically, and we do not yet exploit the possibil-
ity of sparsity of polynomials (in terms of the number of monomials). The
computation times in seconds for the method using a box approximation (ab-
breviated to BA) and the method using a change of variables (abbreviated
to CV) are shown in the table in Figure 4.15.

As expected, the computation time grows linearly w.r.t. the number of
steps. This can be explained by the use of template polyhedra where the
number of constraints can be chosen according to required precisions and
thus the complexity of the polyhedral operations can be better controlled,
compared to general convex polyhedra. Indeed, when using general polyhe-
dra, the operations, such as the convex hull, may increase their geometric
complexity (roughly described by the number of vertices and constraints).

On the other hand, we also compared the two methods for computing

94

Figure 4.14: The Duffing oscillator: the reachable set computed using a
change of variable is more accurate than the one computed using a box
approximation.

dim degree nb template time (s) time (s)
monomials size method BA method CV

2 2 4 4 0.02 0.02
3 2 6 6 0.02 0.02
4 2 8 8 0.06 0.09
5 2 10 10 0.35 0.71
6 2 12 12 4.34 5.64
7 2 14 14 63.25 72.61

Figure 4.15: Computation time for randomly generated polynomial systems
in various dimensions and degrees

95

dim degree time (s) time (s)
method LSA method CHF

1 2 0.003 0.002
2 2 0.005 0.005
3 2 0.012 0.008
4 2 0.036 0.039
5 2 0.138 0.139
6 2 0.725 0.692
7 2 3.176 2.621
8 2 17.461 10.868
9 2 116.383 43.664

Figure 4.16: Comparing efficiency of the two methods for computing bound
functions on randomly generated polynomial systems

bound functions: using a lower convex hull facet (abbreviated to CHF) and
using the least squares approximation (abbreviated to LSA). The average
computation time for one step of reachability computation is shown in Ta-
ble 4.16. In this experiment we used box templates. Moreover, the computa-
tion time for polynomial composition is not included, since the computation
of bound functions is not a dominant part of the total computation time.
We were not able to test systems of dimensions higher than 9 because poly-
nomial composition becomes prohibitively costly. This issue can be handled
by computing the Bernstein coefficients without explicit polynomial compo-
sition, which is indeed a topic of our current research. We have observed that
the method using the least squares approximation would be more performant
than the one using a lower convex hull facet for systems of dimension beyond
9. The latter requires solving n systems of linear equations in dimensions
increasing from 1 to n. The former requires solving only one linear system
in dimension (n + 1). Using Gaussian elimination to solve a system of n
equations for n unknowns has complexity of O(n3). Thus, the complexity of
the method using a lower convex hull facet is roughly O((n− 1)2n2/4) while
the complexity of the other is O((n+ 1)2).

96

Chapter 5

Redundant constraints for
refinement

Résumé: Nous présentons dans ce chapitre, la dernière contri-
bution qui concerne l’analyse d’accessibilité de systèmes linéaires
avec entrées. Ces systèmes ont un grand intérêt malgré leur
linéarité car ils peuvent être les résultats de techniques d’approximation
de systèmes comme celle présentée dans le Chapitre 3. Nous
présentons ici, une technique pour raffiner l’approximation de
l’ensemble accessible durant l’analyse d’accessibilité. Nous présentons
comment l’addition de contraintes redondantes dans la descrip-
tion des ensembles accessibles peut contribuer, par la suite, à
réduire l’erreur d’approximation. Nous proposons ensuite deux
critères afin de trouver des directions optimales pour l’ajout de
contraintes redondantes. Nous finissons par présenter nos résultats
expérimentaux sur des systèmes de dimension 2 à 100.

In this chapter, we revisit the problem of approximating reachable sets
of linear continuous systems with input, which was investigated in [11, 41].
Linear systems with input are of particular interest in the approximation of
non-linear systems as in the hybridization technique.

As discussed in Chapter 3, the approximation accuracy is important espe-
cially when the computed over-approximations do not allow proving a prop-
erty. We propose a method for refining a reachable set approximation by

97

adding redundant constraints to decrease the over-approximation in some
critical directions. We also introduce the notion of directional distance which
is appropriate for measuring approximation effectiveness with respect to ver-
ifying a safety property.

The refinement techniques presented in the following sections concern the
reachability computation methods based on convex polyhedra which possess
a constraints based representation. This representation facilitates the add of
redundant constraints and will be discussed in Section 5.2.

The reachability problem is given by:

• P0 ⊂ Rn a convex polyhedron which represents the initial states,

• B ⊂ Rn a convex polyhedron in a state space which represents a set of
unsafe states,

• An affine transition system which can represent the integration scheme
of a continuous time dynamical system.

x(k + 1) = l(x(k)) + u(k) = Ax(k) + b+ u(k) (5.1)

where A ∈ Rn×n, b ∈ Rn, x(k) : N∗ → Rn and u(k) : N∗ → U
represents the input included in a set U ⊂ Rn.

In the following, we present a reachability algorithm for linear systems
with input. In the next sections we will present a novel way to reduce the
approximation error that we call refinement. We present two refinement
criteria refinement, the first is based on the angle between adjacent faces and
the second on finding some critical directions. We will end by presenting
some experimental results.

5.1 Reachability algorithm

We consider that P0 is a convex polyhedron which admits the following
representation:

P0 = {x | N0x ≤ c0} = 〈N0, c0〉

where N0 ∈ Rm×n is a matrix whose lines represent the normal vectors of
the half-spaces of the initial set and c0 is its associated polyhedral coefficient
vector.

For simplicity we denote each normal by nk
i with i ∈ {1, . . . ,m} such that

N0 = (n0
0, . . . ,n

0
m)

T .

We will also denote by Reach(H,u) the image of an half-space H by the
affine dynamics under a fixed input u ∈ U

98

5.1.1 Algorithm

To deal with such dynamics, we make use of the technique, which was first
suggested in [96] and then applied in [11, 41, 14] for hybrid systems. This
technique is based on the Maximum Principle in optimal control [58]. In the
following, we recap the main idea of this technique.

It can be proven that for an autonomous linear system the evolution of
the normal nk

i of each half-space is governed by the adjoint system whose
dynamics is described by the following equation:

nk+1
i = −ATnk

i . (5.2)

By the Maximum Principle [58], for every half-space

Hi = Hspace(nk
i , c

k
i) = {x | nk

i · x ≤ cki }

supporting Pk there exists an input ũ ∈ U such that computing the successors
of Hi under ũ is sufficient to derive a tight polyhedral approximation of the
reachable set.

It is easy to see that the change of normal direction under the dynamics of
this system is only induced by the matrix A. Indeed, geometrically speaking,
the term (b+u(k)) of the system (5.1) corresponds to a translation and does
not change the normal vector direction. Thus the evolution of a half space
orientation under a linear dynamics with inputs is also given by the equation
5.2.

The following proposition shows that one can compute the successor of a
half-space of the convex polyhedron Pk.

Let a half-space Hi = Hspace(nk
i , c

k
i) which supports the convex polyhe-

dron Pk. We can compute with (5.2) the vector nk+1
i , the resulting normal

under the system dynamics. Let ũi ∈ U be the solution of the following
linear optimization problem :

ũi = argmaxnk+1
i · u over u ∈ U

Using this input, we can compute the coefficient c̃k+1
i corresponding to

the result of the following optimization problem:

c̃k+1
i = maximize nk+1

i · (Ax(k) + b+ ũi)
over x(k) ∈ Rn

subject to nk
i · x(k) ≤ cki .

Then, the half-space Hspace(nk+1
i , c̃k+1

i) corresponds to the image of Hi

under the input ũi,

Hspace(nk+1
i , c̃k+1

i) = Reach(Hi, ũi).

99

Proposition 12.

∀u ∈ U , Reach(Hi,u) ⊆ Hspace(nk+1
i , c̃k+1

i). (5.3)

Proof. We start by considering the problem of the successor of a half-space
Hi = Hspace(nk

i , c
k
i) under the dynamics (5.1) with a fixed input u. Given a

normal nk+1
i computed with using (5.2), the polyhedral coefficient ck+1

i can
be then obtained by the Maximum Principle [96] by solving the following
optimization problem:

ck+1
i = maximize nk+1

i · (Ax(k) + b+ u)
over x(k) ∈ Rn

subject to nk
i · x(k) ≤ cki .

By considering the associativity of the dot product, the only term depending
of the input u is nk+1

i ·u. This term corresponds to the objective function of
the maximization problem for computing ũi then

∀u ∈ U , nk+1
i · u ≤ nk+1

i · ũi.

This implies that ck+1
i ≤ c̃k+1

i then

Hspace(nk+1
i , ck+1

i) ⊆ Hspace(nk+1
i , c̃k+1

i).

As the evolution of the normal nk+1
i is independent of the input, for all

u ∈ U the boundaries of the half-spaces Hspace(nk+1
i , ck+1

i) are parallel to
each other, as shown in Figure 5.1.

The following proposition [96, 41] shows that one can conservatively ap-
proximate the reachable set from the convex polyhedron Pk = 〈Nk, ck〉.

Proposition 13. For every i ∈ {1, . . . ,m}, let c̃ki the polyhedral coefficient
obtained from Proposition 12. We obtain the following inclusion:

Reach(P0, k + 1) ⊆
m⋂

i=0

Hspace(nk+1
i , c̃k+1

i).

Algorithm 3 summarizes this method.

We denote by ̂Reachk+1(P0) the approximation obtained. Note that if
the input set U is a bounded convex polyhedron then ũi(k) can be selected
at one of its vertices at every time point k.

In the following, we talk about the over-approximation induced by this
algorithm and we present a way to refine the reachable sets.

100

Pk

nk
i

nk+1
i

Hspace(nk+1
i , c̃k+1

i)

Hspace(nk+1
i , ck+1

i)

Figure 5.1: Illustration of the new half-space computation; the set on the
right represents the interval where the half-space can be shifted according to
u ∈ U . The dashed line is an example with an arbitrary u, the plain line
represents the half space computed with ũ.

5.1.2 Approximation error

The following propositions concern the over-approximation error.

Proposition 14. For a linear system x(k+1) = Ax(k)+b+u(k) where the
set of input function is a singleton, the equality in Proposition 13 is achieved,

that is the set R̂eachk(P0) = Reach(P0, k).

To prove this result, we notice that the image of the intersection of two
sets A and B by a function g satisfies g(A∩B) ⊆ g(A)∩g(B). In particular, if
g is injective, g(A∩B) = g(A)∩ g(B). Indeed, the solutions of deterministic
systems are injective since they do not cross one another. On the contrary,
the solutions of non-deterministic systems are generally not injective (since
from different initial states, different inputs may lead the system to the same
state). This implies that for linear systems with uncertain input, Algorithm 3
produces only an over-approximation of this set.

Proposition 15. If a half-space H supports the initial set P0, that is its
boundary contains a point in P0, then for every k > 0 the half-space Reach(H, k)

101

Algorithm 3 Over-approximating Reach(P0, k)

/*Compute the half-space directions for the next polyhedron*/
/*Input: Pk = 〈Nk, ck〉*/
Nk+1 = ComputeTemplate(Nk)
for all nk+1

i in Nk+1 do
/*Compute ũi(k)*/
ũi(k) = maximize nk+1

i · u(k)
over u(k) ∈ Rn

subject to u(k) ∈ U .
/*Compute ck+1

i */
ck+1
i = maximize nk+1

i · (Ajx(k) + bj + ũi(k))
over x(k) ∈ Rn

subject to T(k) · x(k) ≤ c(k)
end for
return Pk + 1 = 〈Nk+1, ck+1〉

computed as shown in the formula (5.3) supports the exact reachable set
Reach(P0, k).

The proof of this can be straightforwardly established from the fact that
the supporting point y∗(k) = Φl(y, k, ũ) of each Reach(H, k) is indeed a
point in the exact reachable set from P0 since it is computed as a successor
from a point in P0 under an admissible input function.

It is important to consider that the shape of the exact image of a convex
polyhedron by a discrete linear dynamics with inputs depends of the input
set U and is not necessary a polyhedron. The following example illustrates
this fact.

Example We consider the following 2-dimensional system:

x(k + 1) =

(
2.04 −0.64
0.84 0.24

)
x+

(
1.5
−0.8

)
.

The initial set P0 is a box represented by the following constraints:




x1 ≤ 2
x2 ≤ 2

−x1 ≤ −1
−x2 ≤ −1

Figure 5.2 shows the exact image Reach(P0, k) of a convex polyhedron
P0 by the this system (5.1.2) and the approximation obtained using Algo-

102

rithm (3) R̂eachk(P0) with an input included in a ball centered at origin of
radius 0.5. In this case the exact reachable set has curved faces and is not a
polyhedra.

Figure 5.2: One reachable set for a linear system with an input included in
a ball

When the input set is a polyhedron, the exact reachable set is a polyhe-
dron with more facets that the initial set as illustrated in figure 5.3.

Refinement From the above results, to improve the approximation accu-
racy one can use additional half-spaces in the description of the initial set,
such that with respect to the initial set their associated constraints are re-
dundant, but under the system’s dynamics they evolve into new half-spaces
which can be useful for bounding the approximation in some directions. In
order to significantly reduce the approximation error which is measured by
the Hausdorff distance between the approximated and the exact sets, it is
important to find the area when the difference between these sets is large.
In the following, we propose two methods for refining the reachable set ap-
proximation by dynamically adding constraints.

5.2 Refinement using sharp angle

As mentioned earlier, the constraints to add should not change the polyhe-
dron and thus must be redundant. Another requirement is that the corre-
sponding half-spaces should be positioned where the approximation error is

103

Figure 5.3: One reachable set for a linear system with input included in a
cube

large. The over-approximation error indeed occurs mostly around the inter-
sections of the half-spaces. In addition, this error is often large when the
angle between two adjacent half-spaces, which can be determined from their
normal vectors, is smaller than some threshold σ. We call them adjacent
half-spaces with sharp angle.

Indeed, when two adjacent half-spaces form a sharp angle, the area near
their intersection is elongated, which can causes a large difference between the
polyhedral approximation and the actual reachable set. Hence, in order to
better approximate the exact boundary, one needs to use more approximation
directions.

A constraint to add can be determined as follows. We consider a con-
vex polyhedron P = 〈N, c〉 where N ∈ Rm×n and c ∈ Rm. Let Hi =
Hspace(ni, ci) and Hj = Hspace(nj, cj) two half-space of P corresponding
to adjacent faces with sharp angle. The normal vector nij of the new con-
straint can be defined by a linear combination of ni and nj: nij = w1n

i+w2n
j

where w1, w2 ∈ R+. We next determine a supporting point of the constraint.
To this end, we find a point on the facet in the intersection between the
half-spaces Hi and Hj by solving the following linear programming problem:

104

minimize nij · x
over x ∈ Rn

subject to nk · x ≤ c, k ∈ {1, · · · ,m}\{i, j}
ni · x = ci

nj · x = cj.

(5.4)

The solution x∗ of the above LP problem yields the new constraint nij ·x ≤
nij · x∗, which can be used for refinement purposes.

It is important to note that while sharp angles between half-spaces are
useful to identify the areas where the approximation error might be large,
sharp angles can also be formed when the system converges to some steady
state. In this case, “curving” the approximated set does not significantly
improve the accuracy, because their normal vectors under the system’s dy-
namics become very close to each other, and we choose not to add constraints
in this case.

Dynamical refinement

In the above we showed how to determine redundant constraints for refine-
ment. The refinement process can be done dynamically as follows. During
the computation, if at the kth step, the sharp angle criterion alerts that the
approximation error might be large, we move r ≤ k steps backwards and
add constraints for each pair of adjacent half-spaces with sharp angles. The
computation is then resumed from the (k − r)th step.

An important remark is that the larger r is, the more significant accuracy
improvement is achieved, at the price of more computation effort. Indeed,
when we backtrack until the first step, the half-spaces corresponding to the
added constraints actually support the boundary of the initial set. Thus, by
Proposition 15, their successors also support the exact reachable set from
P0, which guarantees approximation tightness. On the contrary, if r < k,
it follows from the above LP problem (5.4) that the added constraints only
support the approximated reachable set and their boundaries therefore are
not guaranteed to contain a truly reachable point.

Figure 5.4 illustrates the improvement in accuracy achieved by this method
for a 2-dimensional linear system whose matrix is a Jordan block1. The col-
ored parts correspond to the approximation error which is reduced by adding
constraints using the sharp angle criterion.

1A Jordan block is a matrix whose main diagonal is filled with a fixed number and all
the entries which are directly above and to the right of the main diagonal are 1.

105

Figure 5.4: Adding constraints can reduce approximation error (which is the
colored areas in the figure).

5.2.1 Refinement using critical direction

A good compromise between accuracy and computation time depends on the
problems to solve and the available computation budget. In this section, we
discuss a refinement procedure specific for safety verification problems. As
we have seen earlier, in order to guarantee a desired approximation error
bound, measured using the Hausdorff distance between the approximated
and the exact sets, one needs to assure that their difference does not exceed
the bound in all directions. Nevertheless, when reachability analysis is used
to prove a safety property, this measure is not appropriate for characterizing
the potential of reaching a unsafe zone. In this case, one is more interested
in computing an approximation that may not be precise (with respect to the
Hausdorff distance to the exact set) but enables deciding whether the exact
set intersects with the unsafe set. To this end, we use a measure, called
directional distance.

Directional distance

Given two convex sets A and B in Rn, a Boolean function contact(A,B) =
true if and only if the following two conditions are satisfied:

106

1. Int(A) ∩ Int(B) = ∅;

2. δA∩ δB 6= ∅ where Int(A) is the interior of A and δA is its boundary.

Intuitively, contact(A,B) is true if and only if A and B intersect with each
other and, in addition, they intersect only on their boundaries.

If A ∩ B 6= ∅, the directional distance between A and B is defined as

ρ(A,B) = inf
p∈Rn

{||p|| : contact(A,B + p)}.

where ||p|| denotes the Euclidian length of the vector p, B+p = {x+p | x ∈
B} is the result of translating the set B by the vector p.

If A and B are in contact, ρ(A,B) = 0. Note that if the sets A and B are
overlapping, the above ρ(A,B) > 0 measures the “depth” of the intersection
of the two sets. To generalize this definition to overlapping sets, we need to
distinguish this case from the case where A and B do not intersect. To do so,
we use a signed version of the directional distance that has positive values if
the two sets are non-overlapping and negative values otherwise.

Definition 17. Given two convex sets A and B in Rn, the signed directional
distance between A and B is defined as

ρs(A,B) =

{
ρ(A,B) ifA ∩ B 6= ∅,
−ρ(A,B) otherwise.

This directional distance in two and three dimensions has been used in
robotics for collision detection [67]. The advantages of using the signed di-
rectional distance for the safety verification problem are the following:

• It measures the potential and the degree of collision between two mov-
ing objects, which, in the context of reachability computation, provides
useful information on the necessity of refining reachable set approxima-
tions.

• For convex polyhedral sets, it can be estimated efficiently, as we will
show in the sequel.

Signed directional distance estimation and refinement algorithm

The signed directional distance between two convex polyhedra can be com-
puted using existing algorithms (such as in [26]). However, these algorithms
are specific for two and three dimensions and require complete polyhedral
boundary descriptions (such as their vertices and facets). In high dimensions

107

these descriptions are very expensive to compute, which will be discussed
more in Section 5.3. We therefore focus on the problem of estimating the
signed distance using only constraint descriptions of polyhedra. Our solu-
tion can be summarized as follows. The underlying idea is based on the
relation between the signed directional distance ρs(A,B) and the Minkowski
difference A⊖ B. The latter is defined as follows:

A⊖ B = {b− a | a ∈ A ∧ b ∈ B}.

Intuitively, the Minkowski difference contains the translation directions
that can bring A into contact with B. Its relation with the signed distance
that we exploit is expressed by: ρs(A,B) = ρs(0,A ⊖ B) where 0 is the
singleton set that contains the origin of Rn. Again, the vertex description
of the Minkowski difference set can be expensive to compute, we resort to
a constraint description of this set that can be efficiently computed. To
this end, we consider a particular set of translation vectors corresponding to
moving the half-space of a face e corresponding to a half-space He of A in the
direction of its normal ne by a distance de so that the half-space touches B.
Then, it can be proved that the half-space Hde = {x : ne · x ≤ de} contains
at least one face of the exact Minkowski difference A ⊖ B. Let M be the
convex polyhedron composed by the intersections of all such half-spaces Hde .
This implies that

A⊖ B ⊆ M =
⋂

∀e

{x | ne · x ≤ de}.

de

He

ne

A

B

Figure 5.5: Estimation of the directional distance.

In two or three dimensions, it is possible to obtain the exact constraint
description of A⊖B by considering other translation types (such as an edge
of A moves along an edge of B). Nevertheless, this computation requires the
vertex descriptions of the polyhedra and we thus omit it.

108

Since M is an over-approximation of A⊖ B, it can be proved that

{
ρs(0,M) ≤ ρs(A,B) ifA ∩ B = ∅,
ρs(0,M) ≥ ρs(A,B) otherwise.

The distance ρs(0,M) can then be easily determined, since it is exactly
the largest value of all de. We use ρs(0,M) as an estimate of the signed
directional distance between A and B.

It is important to note that this estimate is conservative regarding its
utility as a critical situation alert. Indeed, if the two sets do not overlap, the
result is smaller than the exact separating distance; otherwise, its absolute
value is larger than the exact penetration distance. It is important to note
again that the above estimation, which does not involve expensive vertex
computation, is time-efficient.

In the context of safety verification, the set A plays the role of the reach-
able set and B the unsafe set. The constraints of A corresponding to the
largest values of de are called critical because they are closest to B with re-
spect to the directional distance measure. Their identification is part of the
above computation of the signed directional distance between A and B.

Even if the angle between a critical constraint and one of its adjacent
constraints does not satisfy the sharp angle criterion, we still refine around
their intersection. The refinement can then be done using the same method
for adjacent half-spaces with sharp angles, described in the previous section.

Refinement using constraints from the safety specification

Let ΛB̄ be the set of normal vectors of the complement of each half-space of
the unsafe set B. In many cases, intersection of the reachable set and B can
be tested more easily if the reachable set description contains a constraint
whose normal vector coincides with a vector in ΛB̄. Hence, for each direction
d ∈ ΛB̄, the predecessors of d by the adjoint system can be used to define
constraints to add, again by solving the LP problem (5.4). The refinement
using the predecessors of such directions is needed when the reachable set is
close to the unsafe set. The refinement procedure using critical directions is
summarized in Algorithm 4.

In this algorithm, P0 is the initial polyhedron. The function dir(Pk)
returns the set of normal vectors of the constraints which represent Pk. The
function AddConstraints(Pk,Λ) adds to the half-spaces of Pk the new half-
spaces that support P with normal vectors in Λ. The operator Prer(Λ)
computes the orientation of Λ vectors r steps backward using the adjoint
system presented in (5.2) page 99.

109

Figure 5.6: Refinement using critical directions on a 2-dimensional example.

Algorithm 4 Refinement Using Critical Directions

P1 = R̂each1(P0) /* One step computation */
k = 1
while k ≤ kmax do
if ρs(P

k,B) ≤ η then
/* retrieve the set of critical constraints */
Hk

c = criticalConstraints(Pk,B)
/* Retrieve r-step predecessors of the normal vectors of Hk

c */
Λk−r

c = Prer(dir(H
k
c))

Λk−r
b = Prer(ΛB̄) /* Predecessors of the normal vectors of B */

Λk−r = Λk−r
b ∪ Λk−r

c

Pk−r = AddConstraints(Poly(Pk−r),Λk−r)
k = k − r

end if
Pk+1 = R̂each1(Pk) /* One step computation */
k = k ++

end while

110

Figure 5.6 shows the result obtained for a 2-dimensional system in Jordan
block form using the above algorithm. The rectangle on the right is the
unsafe set. When the reachable set is close to the unsafe set, the algorithm
backtracks a number of steps and adds new constraints. This refinement
allows approximating more precisely the actual reachable set near the bad
set and thus proving that the system does not enter the unsafe set. The
colored zones are the parts of the over-approximation error eliminated by
the added constraints. It can be seen from the figure that the aprroximation
is refined only in the critical zones near the unsafe set.

5.3 Experimentation

We emphasize that in our development so far the algorithms use the con-
straint description and do not require the vertex description of polyhedra.
Indeed, the transformation from a constraint description to a vertex descrip-
tion is known as vertex enumeration and the inverse transformation is known
as facet enumeration. To show the computational complexity of these prob-
lems, we mention the algorithm published in [16] which finds mv vertices
of a polyhedron defined by a non-degenerate system of m inequalities in n
dimensions (or, dually, the facets of the convex hull of m points in n dimen-
sions, where each facet contains exactly n given points) in time O(mnmv)
and O(mn) space.

From our experience in using polyhedra for reachability computation for
continuous and hybrid systems, we noticed that many operations (such as,
the convex-hull) are extremely time-consuming, especially in high dimen-
sions. Degeneracy of sets, such as flatness, which occurs frequently in reach-
able set computation, is also another important factor that limits the scal-
abibility of existing polyhedron-based algorithms. It is fair to say that they
can handle relatively well systems of dimensions only up to 10. This therefore
motivated a lot of research exploiting other set representations, as discussed
in the state of the art.

On the other hand, when trying to solve a specific verification problem,
it is not always necessary to maintain both the vertex and the constraint
descriptions of polyhedra. Indeed, for many tasks in a verification process,
vertex enumeration can be avoided, such as in the algorithms we presented
so far. We have implemented the above described algorithms of reachabil-
ity computation with refinement for linear continuous systems and this im-
plementation enabled us to handle continuous systems of dimensions much
higher than what can be treated by typical polyhedron-based reachability
analysis algorithms, such as [14].

111

dim n Final number of added constraints Computation time in seconds
2 32 0.4
5 59 9.14
10 10 150.93
20 – –
50 – –
100 – –

Table 5.1: Computation time for 100 steps on some linear systems in Jordan
block form using the implementation with vertex computation.

In the following, we present some experimental results obtained using this
implementation. To evaluate the performance of our methods, we generated
a set of linear systems in Jordan block form in various dimensions up to
100 with the values in the diagonal are all equal to (−0.8). The input set
U = [−0.1, 0.1]n and the initial set P0 = [−1, 1]n are boxes (whose number
of constraints equal to 2n). The threshold for the sharp angle criterion is
σ = 60 degrees.

To show the advantage of the constraint-based implementation, we also
tested an implementation using vertex computation on the same examples.
In this implementation with vertex computation, the constraint adjacency
information can be directly derived and the constraints to add are easier to
compute. However, the cost for vertex computation is high, which limited
the application of this implementation to the examples of dimensions only
up to 10, as shown in Table 5.1. For the example in 10 dimensions, we had
to fix a smaller maximal number of constraints to add, in order to produce
the result in a feasible computation time.

The constraint-based implementation is more time-efficient and thus al-
lows us to handle systems of higher dimensions, as shown in Table 5.2.

This method was presented and published in [15]. This refinement tech-
nique is similar to the well-known counter-example based refinement ap-
proaches in the idea of guiding the refinement process using the previously
explored behaviors. However, to the best of our knowledge, the idea of using
redundant constraints for refinement purposes is new. Another novelty in
our results is the use of the directional distance to measure approximation
effectiveness in proving safety properties and to guide the refinement process.

112

dim n Final number of added constraints Computation time in seconds
2 32 0.48
5 59 0.76
10 36 2.22
20 38 3.67
50 94 42.07
100 197 335.95

Table 5.2: Computation time for 100 steps on the same linear systems in
Jordan block form using the constraint-based implementation.

113

Chapter 6

Implementation

Résumé: Dans ce chapitre, nous présentons un outil prototype
dans lequel nous avons implanté les méthodes présentées dans les
chapitres précédents. Nous présentons dans un premier temps
l’architecture globale du programme, nous décrivons ensuite ses
fonctionnalité et nous finissons par présenter ses interfaces d’entrée
et de sortie.

In this chapter, we describe an implementation of the techniques pre-
sented in the previous chapters in a prototype tool named NLToolBox. The
two major functionalities of the tool are

• reachability analysis of discrete-time polynomial systems,

• reachability analysis of continuous-time and discrete-time nonlinear
systems using hybridization.

For both of these functionalities, reachable set refinement using redundant
constraints can be used to obtain accuracy gain. For the analysis of ap-
proximated systems generated by the hybridization process, the tool can be
connected to other existing tools for linear systems. Currently this part is
implemented in the framework of the tool d/dt [10] and we are planning to
connect it to the tool SpaceEx [46] of Verimag.

In the following we first present the global architecture of this tool, then
we describe the implemented data structures and main algorithms. We end
this chapter with a short description of the user interface.

114

6.1 Architecture

The architecture of this tool has been designed to be extendable in terms
of set representations, methods for handling approximated systems, and dy-
namical system description formalisms. The architecture of the tool is sum-
marized by the class diagram in Figure 6.1.

Figure 6.1: Class diagram of the program

The main components of this tool are the following:

• ReachableSet: an interface for the set representations which specifies
the common operations needed by the reachability analysis methods.

115

• DynamicalSystem: an interface for the dynamical system description
formalisms.

• ReachProxy: a proxy class that calls the image computation and
hybridization from the chosen reachability method. Additionally, asso-
ciated with this class is a class for computing polytopic templates and
for performing refinement using the techniques presented in Chapter 5.

6.2 Data structures

6.2.1 Dynamical system description

We have implemented three classes for dynamical system descriptions, which
are children of the interface DynamicalSystem:

• The classNonlinearSystem is a general proxy class to describe a large
class of nonlinear dynamics. The systems are described in C functions.

• The class AffineSystem describes affine dynamics with input repre-
sented by a matrix A, a vector b and a possible input set U which
correspond to the following differential equation:

ẋ(t) = Ax(t) + b+ u(t),u(·) ∈ U ,

The current version of the tool supports polytopes and hypersphere for
representing of the input sets.

• The class PolynomialSystem is composed of objects of the class
Polynomial that are themselves composed of objects of the class
Monomial. Each monomial is characterized by a multi-index vec-
tor representing the exponent of each variable and a coefficient. For
example, the monomial of 3 variables x1, x2 and x3 given by −3x2

1x3 can
be associated with the multi-index vector (2, 0, 1) and the coefficient
−3. We implement a parser to construct monomials, polynomials and
polynomial systems from strings. For example, the FitzHugh-Nagumo
neuron model described in Cahpter 4 by the differential equations

ẋ1 = x1 − 0.33x3
1 − x2 + 0.875

ẋ2 = 0.08x1 − 0.64x2 + 0.056

can be constructed using the following strings

x1’ = x1 - 0.33*x1^3 - x2 + 0.875

x2’ = 0.08*x1 - 0.64*x2 + 0.056

116

The common functions of each dynamical system class are: eval() which
returns the evaluation of the dynamics at a given point, and derivative()
which returns the derivation of the right part of the differential equations.
The PolynomialSystem class contains additional methods to compute the
Bernstein representation coefficients. Such a coefficient is stored in a struc-
ture of map type using its associated multi-index as a key of the map. To
avoid iterating on the multi-indices the Bernstein coefficients of which are all
0, we only store multi-indices associated with at least one non-zero Bernstein
coefficient.

6.2.2 Set representations

The current set representations are

• boxes, represented by two interval bound vectors (left and right);

• polytopes, represented by constraints (described by a matrix A and a
vector b which corresponds to the constraints Ax ≤ b). This represen-
tation contains additional constructors for template polyhedra, such as
rectangles or octagons in 2 dimensions.

The methods needed by the reachability analysis are the inclusion test
and the affine transformation. The polytope class contains an additional
method to add redundant constraints used by the refinement techniques.

Inclusion test This operation is required for checking the inclusion of a
set in an approximation domain when using the hybridization method. For
boxes, the inclusion test is trivial, we just compare the bound vector coeffi-
cients. For polytopes the inclusion is tested by a partial vertex enumeration
described in the following. To check if the polytope described by the matrix
A ∈ Rm×n and the vector b ∈ Rm is included in the polytope represesented
by the matrix A′ ∈ Rm′×n and the vector b′ ∈ Rm′

, we solve a set of linear
optimization problems

maximize A′
ix i ∈ 1, 2, . . . ,m′

subject to Ax ≤ b

where A′
i corresponds to a line of the matrix A′. The optimization result

is then compared to the coefficient of b, if it is larger than b′i, the inclusion
test returns false; otherwise it continues with other values of i. If for all
i ∈ 1, 2, . . . ,m′ the optimization result is not larger than b′i, the inclusion
test returns true.

117

Bounding box computation This operation is needed by the computa-
tion of the unit box map for the Bernstein methods. It is implemented for
polytopes by solving linear optimization problems.

6.3 Algorithms

We present in this section the implemented algorithms to perform set image
computation and hybridization during the reachability analysis.

6.3.1 Image computation

According to the reachability parameters, the ReachProxy class creates an
instance of the chosen methods and calls iteratively the image computation
method reach(). The methods reach() takes as input arguments in parame-
ters a set instance and a dynamical system. There are 3 reachability methods
implemented as classes using the factory design pattern.

• the class ReachBernstein implements the techniques developed in
Chapter 4 for the analysis of polynomial system using polytopes. For
clarity we summarize the main steps of this image computation method
as follows:

1. A unit box map is computed for mapping the set in question to
the box represented by the intervals [0, 1]n.

2. A template is computed using the class TemplateBuilder. This
template will define the shape of resulting polytope of the image
approximation. According to the analysis parameters, the tem-
plate can be static (that is, all the instances of the class Polytope
share the same constant matrixA) or dynamic. The dynamic tem-
plates computation uses a local approximation of the dynamics to
compute a transformation matrix reflecting the rotation of the
template induced by the dynamics.

3. A new polynomial dynamical system is created by composing the
initial system given in the argument of the problem and the unit
box mapping function computed int Step 1. The Bernstein coef-
ficients are then computed for this new polynomial system.

4. Using the Bernstein coefficients, a set of affine bound functions
are computed.

5. For each template direction, we solve a linear optimization prob-
lem to compute a new constraint of the polytope.

118

6. Once all new constraints have been computed, the method returns
the new polytope.

• An additional class ReachMultiAffine as been written to efficiently
perform analysis on multi-affine systems using the bounding boxes ver-
tices as presented in Chapter 4.

• The class ReachLinear performs the analysis of linear system with
input with the method based on optimal control presented in Chapter 5.

6.3.2 Hybridization

This part involves the hybridization techniques presented in Chapter 3. If
the reachability method for approximated systems has been chosen in the
reachability parameters, theReachProxy class will create an instance of the
class ReachHybridization and will call the method getApproximation()
to obtain a hybridization domain and an affine system with input associated
with this domain. This approximated system is then used as parameter of
the reach() method from the ReachLinear class.

The getApproximation() method takes as arguments a nonlinear dynam-
ics, an initial set and a desired error bound (given in the analysis parameter).
The hybridization computation is done in the following steps:

1. According to the dynamics, a curvature tensor is computed globally
for quadratic systems or locally for general nonlinear dynamics (which
requires solving nonlinear optimization problems). An isotropic trans-
formation matrix is computed from the curvature tensor.

2. A set of vertices representing a simplex containing the initial set is
constructed with respect to a size constraint given by the specified
error bound.

3. An affine system is interpolated from the simplex vertices. An input is
added to the system to take into account the approximation error.

4. The system and the simplex are returned as the current approximated
system.

6.3.3 Reachability analysis

The main steps of the reachability analysis procedure are the following:

119

1. Initialization: in this step the user gives the analysis parameters and
chooses the reachability methods to use. The methods proposed de-
pends on the class of system dynamics. An instance of the classReach-
Proxy is created with the initialization parameters and an instance of
the image computation classes (or the hybridization class) are created
in ReachProxy. If the hybridization method is used, a first approxi-
mated system is computed.

2. Iterative computation: In this step, the reachable sets are iteratively
computed, and each step returns a new reachable set which is stored
in a list and then used as argument in the next reachability iteration.
The number of iterations is fixed by the user.

If the hybridization method is used, an inclusion test is performed
on the current hybridization domain. If the result is negative, a new
approximation domain is computed and the analysis restarts from the
previous reachable set.

If refinement is used, an additional test is performed after the calling
the reach() method to check refinement conditions, and if necessary
redundant constraints are added to the previously computed set and
the analysis is restarted from this set.

3. Result export: The final step consists in saving the result in a file
which can be executed in Matlab to visualize the result.

6.4 Interfaces

The main procedure of the program takes as input an initial set and a dynam-
ical system. Additional user-defined parameters include a maximal number
of iterations, the output file name and the reachability method.

6.4.1 Reachability parameters

Here is the list of reachability parameters athe user should provide:

• Reachability method: A choice between the available reachability
methods. The available methods according to the type of dynamical
systems are shown in the following table.

• Number of iterations: An integer corresponding to the maximal
number of reachability iterations.

120

Affine Multi-
affine

Polynomial Nonlinear

ReachLinear X

ReachMultiAffine X

ReachBernstein X X X

Hybridization
+ ReachLinear

X X X X

• Output file name: A string.

According to the chosen reachability method, additional parameters are
required:

• For image computation with the Bernstein and Linear methods:

– Use dynamical refinement with sharp angle (y/n).

– Use dynamical refinement with critical directions(y/n).

– Maximal number of constraints for each set (integer).

• For the Bernstein method: use dynamical template (y/n).

• Hybridization: maximal error bound (real).

6.4.2 Visualization

To visualize the reachability analysis results, the user can use an auto-
generated script for Matlab. Boxes and polytopes represented by vertices
are plotted using the basic plotting tool of matlab. For plotting polytopes
represented by constraints we use the freely available function plotregion [21]
which plots closed convex regions in 2 and 3 dimensions.

In the case of systems with higher dimensions we plot its bounding pro-
jections on the axes chosen by the user. Figure 6.2 shows an example of
the exported script that represents 3 octagonal reachable sets of an Euler
discretization of the system (6.2.1). The result of the script execution in
Matlab is shown in Figure 6.3.

6.5 External ressources

This tool was written in C++ and contains more than 3000 lines of code.
The linear optimization problems (needed by the approach using the Bern-
stein expansion or for adding redundant constraints) are solved using the

121

% AUTO-GENERATED SCRIPT

% This script requires the PLOTREGION function

% http://www.mathworks.com/matlabcentral/fileexchange/9261

% Be sure to have this function in the same folder of this script

pcolor = [0.8,0.3,0.3]; % polyhedra color

% ######################### iteration 1

A = [1 0; 0 1; -1 0; 0 -1 ;

0.7 0.7; -0.7 0.7; -0.7 -0.7; 0.7 -0.7

];

b = [0.572568; 2.57669; -0.202627; -2.37616;

2.16096; 1.67215; -1.88935; -1.28145;];

plotregion(-A,-b,[],[],pcolor);

% ######################### iteration 2

A = [1 0 ;0 1 ;-1 0 ;0 -1 ;

0.7 0.7 ;-0.7 0.7 ;-0.7 -0.7 ;0.7 -0.7

];

b = [0.372606; 2.56258; 0.0958849; -2.36167;

1.99753; 1.87028; -1.68001; -1.41524;];

plotregion(-A,-b,[],[],pcolor);

% ######################### iteration 3

A = [1 0 ;0 1 ;-1 0 ;0 -1 ;

0.7 0.7 ;-0.7 0.7 ;-0.7 -0.7 ;0.7 -0.7

];

b = [0.143865; 2.54518; 0.449822; -2.34287;

1.81466; 2.10437; -1.42514; -1.56737;];

plotregion(-A,-b,[],[],pcolor);

set(gca,’Xlim’,[-0.6 0.7]);

set(gca,’Ylim’,[2.2 2.7]);

xlabel(’x1’,’fontsize’,12);

ylabel(’x2’,’fontsize’,12);

%END

Figure 6.2: An example of auto-
generated script which plot 3 sets

Figure 6.3: The plotting result of
the execution of the script in Fig-
ure 6.2

open source lpsolve API (v 5.5.2.0)1. The nonlinear optimization problems
(required to compute the curvature tensor in the hybridization technique) are
solved using the NLopt library [55], a free/open-source library which pro-
vides a common interface for a number of different free optimization routines.
A number of usual matrix operations such as inversion, eigenvalues an eigen-
vectors computation or QR-Decomposition are performed using the routines
of the freely available software package LAPACK [9]. Some reachability
function for continuous-time system analysis use the d/dt library.

1http://lpsolve.sourceforge.net/5.5/

122

Chapter 7

Conclusion

7.1 Contributions

In this thesis, we presented our contributions to the formal analysis of dy-
namical systems. These analysis methods can be used for safety verification
of critical systems. More concretely, we focused on the problem of efficiently
computing an accurate approximation of the reachable sets under nonlinear
dynamics given by differential equations. Our aim was also to design scalable
methods which can handle large systems.

Hybridization technique The first contribution of this thesis concerns
the dynamic hybridization technique for a large class of nonlinear systems.
We focused on the hybridization domain construction such that the linear
interpolation realized in this domain ensures a desired error between the
original system trajectories and those computed with the approximated sys-
tem. In addition, we showed how one can use the curvature of the system to
increase the domain volume. This aims to decrease the occurrences of new
hybridization domain computations and thus save computational efforts. We
also proved the optimality of this domain construction method for a class of
quadratic systems. This construction method was implemented in a new tool
and we have experimentally demonstrated the effectiveness of this method.

Bernstein expansion based techniques The second research direction
that we followed concerns a subclass of nonlinear dynamical systems which
are the polynomial systems. Our results for this problem are based on the
Bernstein expansion properties to approximate an initial reachability com-
putation (which requires solving polynomial optimization problems) with
an accurate over-approximation (which requires solving linear optimization

123

problems). To this end, we proposed some novel methods to map a set to the
unit box using a change of variables, to compute affine function using Linear
Least Square approximation and to choose some template directions which
approximate accurately the exact reachable sets. We applied our methods to
many biological systems. Due to the optimization problem formulation, the
current version is restrained to polytopes represented by constraints.

Refinement using redundant constraints The last theoretical contri-
bution concerns the reachability analysis of linear systems with polyhedral
input. We were interested in this problem because such systems often result
from approximation of nonlinear systems (as the one presented in Chapter 3).
We proposed a technique to refine the reachable sets during the analysis to
gain accuracy. This technique is based on the addition of redundant con-
straints in the description of the reachable set which contributes to reduce
the over-approximation error in the next reachable set. Criteria for adding
new faces can be the angle between adjacent faces or a directional distance
to the bad set. We have implemented and tested this technique on high
dimensional systems.

7.2 Perspectives

These contributions have opened many possibilities for extension and re-
search opportunities.

Hybridization technique We plan to investigate alternative methods
for computing the isotropic transformation matrix without computing the
curvature tensor (which requires solving non-linear optimization problems).
Another possible amelioration of this technique concerns the set splitting
method in which the dynamics could be taken into consideration.

Bernstein expansion based techniques We plan to extend this tech-
nique to continuous time polynomial systems and to nonlinear systems with
input. The dynamic template computation can be improved by computing
a system approximation for each facet of the polytope rather than at its
centroid. An extension to another type of polytope representation could be
developed with support functions, encoding the set as the the solution to
linear optimization problems. This representation is efficient for the convex-
hull and the Minkowsky sum operations, often required by the analysis of
systems with input.

124

Refinement using redundant constraints A possible direction concerns
the application of this technique to the hybrid systems analysis especially for
the refinements using critical directions by involving guards and invariants.
In addition, exploring the Minkowski difference between the reachable set
and the unsafe set would allow a better measure of critical proximity of the
reachable set under the dynamics of the system.

The integration of all these methods in a hybrid system verification frame-
work also will be an important part of future works.

125

Conclusion (in French)

Contributions

Nous avons présenté dans cette thèse nos contributions à l’analyse formelle
de systèmes. Les méthodes proposées peuvent être utilisées dans le cadre
de l’analyse de sûreté de systèmes critiques. Plus concrètement, nous nous
sommes concentrés sur le problème du calcul efficace d’approximation précise
des ensembles accessibles sous des dynamiques non-linéaires données par des
équations différentielles. Nous avons aussi travaillé à rendre ces méthodes
applicables sur des systèmes à grande dimension.

Hybridization dynamique La première contribution de cette thèse con-
cerne la technique d’hybridization dynamique qui peut être utilisée pour anal-
yser un grand nombre de systèmes non-linéaires. Nous nous sommes penchés
sur la construction de domaines d’approximation telle que l’approximation
de système qui y est calculée, respecte une précision donnée impactant la dis-
tance entre ses trajectoires et celles du système original. De plus, nous avons
proposé l’utilisation de la courbure du système afin d’augmenter le volume
du domaine. Cette technique de construction de domaine d’approximation
augmente l’efficacité de cette approche en diminuant le nombre de domaines
d’approximation requis durant l’analyse. Nous avons, de plus, prouvé l’optimalité
de cette méthode pour certaines catégories de systèmes quadratiques. Cette
nouvelle méthode de construction a été implantée dans un outil prototype et
nous avons expérimentalement démontré l’efficacité de cette méthode.

Calcul d’image pour les systèmes polynomiaux La seconde direc-
tion de recherche que nous avons prise, concerne une classe particulière de
système non-linéaire: les système polynomiaux. Notre approche est basée sur
la formulation du problème de calcul d’image en un problème d’optimisation
polynomial puis sur sa relaxation linéaire en utilisant des fonctions affines de
borne. Nous utilisons pour calculer ces fonctions, l’expansion de Bernstein.
Nous avons proposé de nouvelles méthodes de calcul de ces bornes affines qui

126

améliorent la précision de l’approximation de l’image. Nous avons, de plus,
proposé de nouvelles stratégies afin de choisir des patrons utilisés pour fixer
préalablement la forme des polyhèdres, de façon à refléter l’effet de la dy-
namique sur l’orientation des faces du polyhèdre approximant l’image. Nous
avons implanté cette méthode de calcul d’image et l’avons testé sur plusieurs
systèmes biologiques.

Raffinement en utilisant des contraintes redondantes La dernière
contribution concerne l’analyse d’accessibilité de systèmes linéaires avec entrées.
Ces systèmes ont un grand intérêt malgré leur linéarité car ils peuvent être les
résultats de techniques d’approximation de systèmes comme celle présentée
dans le Chapitre 3. Nous proposons ici, une technique pour raffiner l’approximation
de l’ensemble accessible durant l’analyse d’accessibilité. Cette technique est
basée sur l’addition de contraintes redondantes dans la description des ensem-
bles accessibles qui contribuent par la suite à réduire l’erreur d’approximation.
Nous proposons deux critères afin de trouver des directions optimales pour
l’ajout de contraintes redondantes. Nous avons implanté et testé cette tech-
nique sur des systèmes de dimension 2 à 100.

Perspectives

Ces contributions ouvrent de nouvelles opportunités de recherches. L’intégration
de ces méthodes dans un environnement de vérification de systèmes hybrides
est pour le moment, notre priorité.

Hybridization dynamique Nous comptons rechercher des solutions alter-
natives pour calculer la matrice de transformation isotropique sans passer par
le tenseur de courbure qui demande de résoudre des problèmes d’optimisation
non-linéaires. Une autre amélioration de cette technique concerne le découpage
d’ensemble qui pourrait prendre en compte la dynamique afin de choisir de
coupes plus efficaces.

Calcul d’image pour les systèmes polynomiaux L’objectif principal
des travaux actuels sur cette méthodes est son extension aux systèmes poly-
nomiaux à temps continu ainsi qu’aux systèmes avec entrées. La stratégie
de choix de patron peut être améliorée en calculant une approximation du
système sur chaque face plutôt qu’en son centre. Une extension à d’autres
types de représentation d’ensemble pourrait être développée en utilisant, par
exemple, les fonctions de support. Cette représentation permettrait une plus

127

grande facilité à effectuer les opérations de calcul de l’enveloppe convexe et
des sommes de Minkowski souvent requises avec les systèmes non-autonomes.

Raffinement en utilisant des contraintes redondantes L’ajout de
nouveaux critères pour calculer des contraintes redondantes représente une
évolution possible de cette méthode. Son utilisation dans le cadre de systèmes
hybrides permettrait d’ajouter les gardes dans le calcul des directions cri-
tiques. De plus, l’utilisation de cette technique pour l’analyse de systèmes
non-linéaire est envisagée pour les systèmes polynomiaux.

128

Bibliography

[1] Matthias Althoff, Colas Le Guernic, Bruce H. Krogh, and Bruce H.
Krogh. Reachable set computation for uncertain time-varying linear
systems. In HSCC, pages 93–102, 2011.

[2] Matthias Althoff, Olaf Stursberg, and Martin Buss. Reachability anal-
ysis of nonlinear systems with uncertain parameters using conservative
linearization. IEEE, 2008.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic anal-
ysis of hybrid systems. Theoretical Computer Science, 138:3–34, 1995.

[4] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, Pei-Hsin Ho,
and Pei-Hsin Ho. Hybrid automata: An algorithmic approach to the
specification and verification of hybrid systems. In Hybrid Systems,
pages 209–229, 1992.

[5] Rajeev Alur, Thao Dang, Franjo Ivancic, and Franjo Ivancic. Progress
on reachability analysis of hybrid systems using predicate abstraction.
In HSCC, pages 4–19, 2003.

[6] Rajeev Alur, Thao Dang, Franjo Ivancic, and Franjo Ivancic. Predicate
abstraction for reachability analysis of hybrid systems. pages 152–199,
2006.

[7] Rajeev Alur, Alon Itai, Robert P. Kurshan, Mihalis Yannakakis, and
Mihalis Yannakakis. Timing verification by successive approximation.
pages 142–157, 1995.

[8] Hirokazu Anai, Volker Weispfenning, and Volker Weispfenning. Reach
set computations using real quantifier elimination. In HSCC, pages 63–
76, 2001.

129

[9] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[10] Eugene Asarin, Olivier Bournez, Thao Dang, and Oded Maler. Ap-
proximate reachability analysis of piecewise-linear dynamical systems,
2000.

[11] Eugene Asarin, Olivier Bournez, Thao Dang, Oded Maler, and Oded
Maler. Approximate reachability analysis of piecewise-linear dynamical
systems. 2000.

[12] Eugene Asarin, Thao Dang, and Antoine Girard. Reachability analysis
of nonlinear systems using conservative approximation. In HSCC, pages
20–35, 2003.

[13] Eugene Asarin, Thao Dang, Antoine Girard, and Antoine Girard. Hy-
bridization methods for the analysis of nonlinear systems. pages 451–
476, 2007.

[14] Eugene Asarin, Thao Dang, Oded Maler, and Oded Maler. The d/dt
tool for verification of hybrid systems. In CAV, pages 365–370, 2002.

[15] Eugene Asarin, Thao Dang, Oded Maler, Romain Testylier, and Romain
Testylier. Using redundant constraints for refinement. 2011.

[16] David Avis, Komei Fukuda, and Komei Fukuda. A pivoting algorithm
for convex hulls and vertex enumeration of arrangements and polyhedra.
pages 295–313, 1992.

[17] Thomas Ball, Sriram K. Rajamani, and Sriram K. Rajamani. Bebop: A
symbolic model checker for boolean programs. In SPIN, pages 113–130,
2000.

[18] Thomas Ball, Sriram K. Rajamani, and Sriram K. Rajamani. The slam
project: debugging system software via static analysis. In POPL, pages
1–3, 2002.

[19] Grégory Batt, Boyan Yordanov, Ron Weiss, Calin Belta, and Calin
Belta. Robustness analysis and tuning of synthetic gene networks. pages
2415–2422, 2007.

130

[20] Calin Belta and Luc C. G. J. M. Habets. Controlling a Class of Nonlin-
ear Systems on Rectangles. IEEE Transactions on Automatic Control,
51:1749–1759, 2006.

[21] Per Bergström.

[22] Spring Berman, Ádám M. Halász, Vijay Kumar, and Vijay Kumar.
Marco: A reachability algorithm for multi-affine systems with appli-
cations to biological systems. In HSCC, pages 76–89, 2007.

[23] Oleg Botchkarev, Stavros Tripakis, and Stavros Tripakis. Verification
of hybrid systems with linear differential inclusions using ellipsoidal ap-
proximations. In HSCC, pages 73–88, 2000.

[24] Olivier Bouissou, Eric Goubault, Sylvie Putot, Karim Tekkal, Franck
Védrine, and Franck Védrine. Hybridfluctuat: A static analyzer of nu-
merical programs within a continuous environment. In CAV, pages 620–
626, 2009.

[25] N.F. Britton, N. R. Franks, S. C. Pratt, and T. D. Seeley. Deciding on a
new home: how do honeybees agree? In Proceedings of the Royal Society
of London Series B - Biological Sciences, 269(1498), pages 1383–1388,
2002.

[26] S. A. Cameron and R. K. Culley. Determining the minimum transla-
tional distance between two convex polyhedra. Proceedings of Interna-
tional Conference on Robotics and Automation,, 48.

[27] Liqian Chen, Antoine Miné, Ji Wang, Patrick Cousot, and Patrick
Cousot. Interval polyhedra: An abstract domain to infer interval linear
relationships. In SAS, pages 309–325, 2009.

[28] Alongkrit Chutinan, Bruce H. Krogh, and Bruce H. Krogh. Computing
approximating automata for a class of linear hybrid systems. In Hybrid
Systems, pages 16–37, 1997.

[29] Alongkrit Chutinan, Bruce H. Krogh, and Bruce H. Krogh. Verifica-
tion of polyhedral-invariant hybrid automata using polygonal flow pipe
approximations. In HSCC, pages 76–90, 1999.

[30] Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H. Krogh, Olaf
Stursberg, Michael Theobald, and Michael Theobald. Verification of
hybrid systems based on counterexample-guided abstraction refinement.
In TACAS, pages 192–207, 2003.

131

[31] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, Helmut
Veith, and Helmut Veith. Counterexample-guided abstraction refine-
ment. In CAV, pages 154–169, 2000.

[32] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach,
Corina S. Pasareanu, Robby, Hongjun Zheng, and Hongjun Zheng. Ban-
dera: extracting finite-state models from java source code. In ICSE,
pages 439–448, 2000.

[33] P. Cousot and R. Cousot. Static determination of dynamic properties
of programs. In Proc. of the Second Int. Symp. on Programming, pages
106–130, 1976.

[34] Thao Dang. Approximate reachability computation for polynomial sys-
tems. In HSCC, pages 138–152, 2006.

[35] Thao Dang, Thomas Martin Gawlitza, and Thomas Martin Gawlitza.
Template-based unbounded time verification of affine hybrid automata.
In APLAS, pages 34–49, 2011.

[36] Thao Dang, Colas Le Guernic, and Oded Maler. Computing reachable
states for nonlinear biological models. In Computational Methods in
Systems Biology, 7th International Conference, CMSB 2009, Bologna,
Italy, August 31-September 1, 2009. Proceedings, volume 5688 of Lecture
Notes in Computer Science, pages 126–141. Springer, 2009.

[37] Thao Dang and Oded Maler. Reachability analysis via face lifting. In
HSCC, pages 96–109, 1998.

[38] Thao Dang, Oded Maler, and Romain Testylier. Accurate hybridization
of nonlinear systems. In HSCC, pages 11–20, 2010.

[39] Thao Dang, David Salinas, and David Salinas. Image computation for
polynomial dynamical systems using the bernstein expansion. In CAV,
pages 219–232, 2009.

[40] Thao Dang and Romain Testylier. Hybridization domain construction
using curvature estimation. In HSCC, pages 123–132, 2011.

[41] Thi Xuan Thao Dang, Docteur De L’inpg, Specialite Automatique,
Dang Thi, Xuan Thao, Verification Et, Synthese Des, Systemes Hy-
brides, Oded Maler, M. Jean, Della Dora, M. Bruce Krogh, M. Mar-
cel Staroswiecki, M. Oded Maler, Directeur De These, Directeur De
These, M. Eugene Asarin, M. Pravin Varaiya, and M. Pravin Varaiya.
Vérification et synthèse des systèmes hybrides. 2000.

132

[42] Ding-Zhu Du and Frank Hwang, editors. Computing in Euclidean ge-
ometry. 1992.

[43] R. FitzHugh. Impulses and physiological states in theoretical models of
nerve membrane. Biophysical J., 1:445–466, 1961.

[44] I.A. Fotiou, P. Rostalski, P.A. Parrilo, and M. Morari. Parametric op-
timization and optimal control using algebraic geometriy methods. In-
ternational Journal of Control, 79(11):1340–1358, 2006.

[45] Ioannis A. Fotiou, Pablo A. Parrilo, Manfred Morari, and Manfred
Morari. Parametric optimization and optimal control using algebraic
geometry. 2006.

[46] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-
jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler. Spaceex: Scalable verification of hybrid systems.
In Proc. 23rd International Conference on Computer Aided Verification
(CAV), LNCS. Springer, 2011.

[47] J. Garloff and A.P. Smith. Rigorous affine lower bound functions for
multivariate polynomials and their use in global optimisation. In Pro-
ceedings of the 1st International Conference on Applied Operational Re-
search, Tadbir Institute for Operational Research, Systems Design and
Financial Services, volume 1 of Lecture Notes in Management Science,
pages 199–211, 2008.

[48] Antoine Girard. Reachability of uncertain linear systems using zono-
topes. In HSCC, pages 291–305, 2005.

[49] Antoine Girard, Colas Le Guernic, and Oded Maler. Efficient compu-
tation of reachable sets of linear time-invariant systems with inputs.
In João P. Hespanha and Ashish Tiwari, editors, HSCC, volume 3927.
Springer, 2006.

[50] Mark R. Greenstreet, Ian Mitchell, and Ian Mitchell. Reachability anal-
ysis using polygonal projections. In HSCC, pages 103–116, 1999.

[51] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, Pravin Varaiya,
and Pravin Varaiya. What’s decidable about hybrid automata? pages
94–124, 1998.

[52] Gerard J. Holzmann, Margaret H. Smith, and Margaret H. Smith. Au-
tomating software feature verification. pages 72–87, 2000.

133

[53] J. Garloff and A.P. Smith. An improved method for the computation
of affine lower bound functions for polynomials. In C. A. Floudas and
P. M. Pardalos, editor, Frontiers in Global Optimization, Series Noncon-
vex Optimization and Its Applications, pages 135–144. Kluwer Academic
Publ.,Boston, Dordrecht, New York, London, 2004.

[54] J. Garloff and A.P. Smith. A comparison of methods for the compu-
tation of affine lower bound functions for polynomials. In C. Jermann,
A. Neumaier, and D. Sam, editors, Global Optimization and Constraint
Satisfaction, LNCS, pages 71–85. Springer, 2005.

[55] S.G. Johnson. The NLopt nonlinear optimization package
http://ab-initio.mit.edu/nlopt.

[56] I. T. Jolliffe. Principal Component Analysis. Springer, 2002.

[57] D.W. Jordan and P. Smith. Nonlinear Ordinary Differential Equations.
Oxford Applied Mathematics and Computer Science. Oxford University
Press, 1987.

[58] Rudolf Emil Kalman. Topics in mathematical system theory. 1969.

[59] Shahab Kaynama, John Maidens, Meeko Oishi, Ian M. Mitchell, Guy A.
Dumont, and Guy A. Dumont. Computing the viability kernel using
maximal reachable sets. In HSCC, pages 55–64, 2012.

[60] E.K. Kostoukova. State estimation for dynamic systems via parallelo-
topes: Optimization and parallel computations. In Optimization Meth-
ods and Software, pages 269–306, 1999.

[61] Alexander B. Kurzhanski and Pravin Varaiya. Ellipsoidal techniques for
reachability analysis. In Nancy A. Lynch and Bruce H. Krogh, editors,
HSCC, volume 1790. Springer, 2000.

[62] Alexander B. Kurzhanski, Pravin Varaiya, and Pravin Varaiya. Ellip-
soidal techniques for reachability under state constraints. pages 1369–
1394, 2006.

[63] A. A. Kurzhanskiy and P. Varaiya. Ellipsoidal toolbox. Technical report,
EECS Department, University of California, Berkeley, May 2006.

[64] Michal Kvasnica, Pascal Grieder, Mato Baotic, Manfred Morari, and
Manfred Morari. Multi-parametric toolbox (mpt). In HSCC, pages
448–462, 2004.

134

[65] Gerardo Lafferriere, George J. Pappas, Sergio Yovine, and Sergio Yovine.
Symbolic reachability computation for families of linear vector fields.
pages 231–253, 2001.

[66] Colas Le Guernic and Antoine Girard. Reachability analysis of hybrid
systems using support functions. In Ahmed Bouajjani and Oded Maler,
editors, 21st International Conference on Computer Aided Verification,
CAV 2009, June, 2009, volume 5643 of Lecture Notes in Computer Sci-
ence, pages 540–554, Grenoble, France, 2009. Springer.

[67] M.C. Lin and D. Manocha. Collision and proximity queries. In Handbook
of Discrete and Computational Geometry, 2003.

[68] Oded Maler, Zohar Manna, Amir Pnueli, and Amir Pnueli. From timed
to hybrid systems. In REX Workshop, pages 447–484, 1991.

[69] Antoine Miné. A new numerical abstract domain based on difference-
bound matrices. 2007.

[70] Ian M. Mitchell. Scalable calculation of reach sets and tubes for nonlin-
ear systems with terminal integrators: a mixed implicit explicit formu-
lation. In HSCC, pages 103–112, 2011.

[71] Ian M. Mitchell, Re M. Bayen, and Claire J. Tomlin. A time-dependent
hamilton-jacobi formulation of reachable sets for continuous dynamic
games. IEEE Transactions on Automatic Control, 50:947–957, 2005.

[72] Ian M. Mitchell, Claire Tomlin, and Claire Tomlin. Overapproximating
reachable sets by hamilton-jacobi projections. pages 323–346, 2003.

[73] Bernard Mourrain, Jean Pascal Pavone, and Jean Pascal Pavone. Sub-
division methods for solving polynomial equations. pages 292–306, 2009.

[74] N.S. Nedialkov, K.R. Jackson, and G.F. Corliss. Validated solutions
of initial value problems for ordinary differential equations. Applied
Mathematics and Computation, (105):21–68, 1999.

[75] André Platzer and Jan-David Quesel. Keymaera: A hybrid theorem
prover for hybrid systems (system description). In IJCAR, pages 171–
178, 2008.

[76] André Platzer. Differential-algebraic dynamic logic for differential-
algebraic programs. J. Log. Comput, 2008.

135

[77] André Platzer, Edmund M. Clarke, and Edmund M. Clarke. Computing
differential invariants of hybrid systems as fixedpoints. In CAV, pages
176–189, 2008.

[78] André Platzer, Edmund M. Clarke, and Edmund M. Clarke. Computing
differential invariants of hybrid systems as fixedpoints. pages 98–120,
2009.

[79] Stephen Prajna. Barrier certificates for nonlinear model validation.
pages 117–126, 2006.

[80] Stephen Prajna, Ali Jadbabaie, and Ali Jadbabaie. Safety verification
of hybrid systems using barrier certificates. In HSCC, pages 477–492,
2004.

[81] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. A framework for
worst-case and stochastic safety verification using barrier certificates.
IEEE Transactions on Automatic Control, 52(8):1415–1429, 2007.

[82] Stefan Ratschan and Zhikun She. Safety verification of hybrid systems
by constraint propagation-based abstraction refinement. ACM Trans.
Embed. Comput. Syst., 6(1), February 2007.

[83] Enric Rodŕıguez-Carbonell, Ashish Tiwari, and Ashish Tiwari. Generat-
ing polynomial invariants for hybrid systems. In HSCC, pages 590–605,
2005.

[84] S. Boyd and S. Vandenberghe. Convex optimization. Cambridge Uni.
Press, 2004.

[85] Sriram Sankaranarayanan, Thao Dang, Franjo Ivancic, and Franjo Ivan-
cic. Symbolic model checking of hybrid systems using template polyhe-
dra. In TACAS, pages 188–202, 2008.

[86] Sriram Sankaranarayanan, Henny Sipma, Zohar Manna, and Zohar
Manna. Constructing invariants for hybrid systems. In HSCC, pages
539–554, 2004.

[87] Sriram Sankaranarayanan, Henny B. Sipma, Zohar Manna, and Zohar
Manna. Scalable analysis of linear systems using mathematical program-
ming. pages 25–41, 2005.

[88] Sriram Sankaranarayanan, Henny B. Sipma, Zohar Manna, and Zohar
Manna. Constructing invariants for hybrid systems. pages 25–55, 2008.

136

[89] S. Sastry. Nonlinear Systems: Analysis, Stability and Control.

[90] Jonathan Richard Shewchuk. What is a good linear element? interpo-
lation, conditioning, and quality measures. 2002.

[91] Axel Simon and Andy King. Exploiting sparsity in polyhedral analysis.
In SAS, pages 336–351, 2005.

[92] A. Stuart and A.R. Humphries. Dynamical Systems and Numerical
Analysis. Number vol. 8.

[93] Olaf Stursberg, Bruce H. Krogh, and Bruce H. Krogh. Efficient rep-
resentation and computation of reachable sets for hybrid systems. In
HSCC, pages 482–497, 2003.

[94] William C. Thibault and Bruce F. Naylor. Set operations on polyhedra
using binary space partitioning trees. SIGGRAPH Comput. Graph.,
21(4), August 1987.

[95] Ashish Tiwari, Gaurav Khanna, and Gaurav Khanna. Nonlinear sys-
tems: Approximating reach sets. In HSCC, pages 600–614, 2004.

[96] Pravin Variaya. Reach set computation using optimal control. In KIT
workshop on verification of hybrid systems, Grenbole, France, 1998.

137

