Dynamique d'un gaz de bosons ultra-froids dans un milieu désordonné :

Effets des interactions sur la localisation et sur la transition d'Anderson

Benoît Vermersch sous la direction de

Jean-Claude Garreau

23 septembre 2013

Lille

Un gaz de bosons ultra-froids (1)

■ 1960 : Premier laser à Rubis

1980-1995 : Refroidissement et piégeage des atomes

Un gaz de bosons ultra-froids (1)

■ 1960 : Premier laser à Rubis

■ 1980-1995 : Refroidissement et piégeage des atomes

Un gaz de bosons ultra-froids (2)

■ 1995 : Premier Condensat de Bose-Einstein

■ 1 objet quantique macroscopique (> 10000 atomes)

Un gaz de bosons ultra-froids (3)

 Des phénomènes spectaculaires : Soliton [Becker *et al.*, 2008], Transition de Mott [Greiner *et al.*, 2002], ...

... dans un milieu désordonné

(a) perfect lattice

(b) interstitial impurity

(d) anion vacancy

lologies

Objectif de la thèse

Sommaire

Localisation d'Anderson

Le système unidimensionnel

Le système tridimensionnel

Sommaire

Localisation d'Anderson

Le système unidimensionnel

Le système tridimensionnel

1.1 : Le cadre du problème

1.1 : Le cadre du problème

1.2 : Un phénomène non-intuitif

PHYSICAL REVIEW

VOLUME 109, NUMBER 5

MARCH 1, 1958

Absence of Diffusion in Certain Random Lattices

Explication 1D

• Cristal parfait : Délocalisation du paquet

• Cristal avec des défauts : Interférences destructives \rightarrow Localisation

Rôle de la dimension

- Théorie d'échelle par "le gang des quatre" [Abrahams, Anderson, Licciardello et Ramakrishnan]
- Comportement des systèmes électroniques de taille finie
- Conductance $g \propto L^{\beta}$
- $\beta = d \log g / d \log L$

Rôle de la dimension

- Théorie d'échelle par "le gang des quatre" [Abrahams, Anderson, Licciardello et Ramakrishnan]
- Comportement des systèmes électroniques de taille finie
- Conductance $g \propto L^{\beta}$
- $\beta = d \log g / d \log L$

Exemple 2D

Sans désordre

Avec désordre

1.3 : Situations physiques

Courant électrique dans les solides [Anderson, 1958]

- Ondes électromagnétiques et sonores [Chabanov et al., 2000, Hu et al., 2008].
- Ondes de matière (atomes froids)
 - Potentiel de tavelures optiques (speckle)
 [Billy et al., 2008, Kondov et al., 2011, Jendrzejewski et al., 2012]
 - Réseaux bichromatiques [Roati et al., 2008]
 - Rotateur pulsé [Chabé et al., 2008]

1.3 : Situations physiques

- Courant électrique dans les solides [Anderson, 1958]
- Ondes électromagnétiques et sonores [Chabanov et al., 2000, Hu et al., 2008].
- Ondes de matière (atomes froids)
 - Potentiel de tavelures optiques (speckle)
 [Billy et al., 2008, Kondov et al., 2011, Jendrzejewski et al., 2012]
 - Réseaux bichromatiques [Roati et al., 2008]
 - Rotateur pulsé [Chabé et al., 2008]

1.3 : Situations physiques

- Courant électrique dans les solides [Anderson, 1958]
- Ondes électromagnétiques et sonores [Chabanov et al., 2000, Hu et al., 2008].
- Ondes de matière (atomes froids)
 - Potentiel de tavelures optiques (speckle)
 [Billy et al., 2008, Kondov et al., 2011, Jendrzejewski et al., 2012]
 - Réseaux bichromatiques [Roati et al., 2008]
 - □ Rotateur pulsé [Chabé et al., 2008]

Une expérience d'atomes froids (Institut d'Optique)

■ Collisions entre particules ↔Interférences quantiques

- Travail expérimental [Lucioni et al., 2010]
- Approche à plusieurs corps [Delande et al., 2013]
- Simulations numériques dans le régime de champ moyen [Flach, Shepelyansky, ..]
- Études des excitations du condensat [Lugan et al., 2007, Gaul & Müller, 2011]

- Collisions entre particules ↔Interférences quantiques
- Travail expérimental [Lucioni et al., 2010]
- Approche à plusieurs corps [Delande *et al.*, 2013]
- Simulations numériques dans le régime de champ moyen [Flach, Shepelyansky, ..]
- Études des excitations du condensat [Lugan *et al.*, 2007, Gaul & Müller, 2011]

- Collisions entre particules ↔Interférences quantiques
- Travail expérimental [Lucioni et al., 2010]
- Approche à plusieurs corps [Delande et al., 2013]
- Simulations numériques dans le régime de champ moyen [Flach, Shepelyansky, ..]
- Études des excitations du condensat [Lugan et al., 2007, Gaul & Müller, 2011]

- Collisions entre particules ↔Interférences quantiques
- Travail expérimental [Lucioni et al., 2010]
- Approche à plusieurs corps [Delande *et al.*, 2013]
- Simulations numériques dans le régime de champ moyen [Flach, Shepelyansky, ..]
- Études des excitations du condensat [Lugan *et al.*, 2007, Gaul & Müller, 2011]

- Collisions entre particules ↔Interférences quantiques
- Travail expérimental [Lucioni et al., 2010]
- Approche à plusieurs corps [Delande *et al.*, 2013]
- Simulations numériques dans le régime de champ moyen [Flach, Shepelyansky, ..]
- Études des excitations du condensat [Lugan et al., 2007, Gaul & Müller, 2011]

Sommaire

Localisation d'Anderson

Le système unidimensionnel

Le système tridimensionnel

2.1 : L'équation d'Anderson-Schrödinger non-linéaire discrète

$$i\dot{\phi}_n = \mathbf{v}_n \phi_n - \phi_{n+1} - \phi_{n-1} + \mathbf{g} |\phi_n|^2 \phi_n$$

- Désordre : $v_n \in [-W/2, W/2]$ est aléatoire
- Couplage : normalisé à 1.
- Interactions : équation de Gross-Pitaevskii.
- $g = 0 \iff$ Localisation d'Anderson

2.2 : Stratégie 1 : Système de taille finie

- Destruction de la localisation aux temps très longs
- Conséquence : Caractérisation complète impossible
- Stratégie 1 : Système fini ouvert (absorbeur numérique)
- Influence de la condition initiale L_0

Exemple avec W = 2, $L_0 = 7$

 $\begin{array}{l} \text{Localisé} \\ g = 0 \end{array}$

Chaotique $g \sim 10$

Auto-piégé $g \sim 100$

- 2.2 : Stratégie 1 : Système de taille finie
- Notre observable : probabilité de survie $p(t) = \sum_n |\phi_n|^2$

Figure: $t = 10^5 W = 4$.

3 régimes : quasi-localisé, chaotique et auto-piégé. (décrit égalementiversité par [Laptyeva *et al.*, 2010]) Expérience à Florence :

• Largeur du paquet : $\sigma \propto t^{\alpha}$, $\alpha \approx 0.2 - 0.4$ [Lucioni *et al.*, 2011]

Comprendre ces 3 régimes :

$$i\dot{\phi}_{n} = \left(\mathbf{v}_{n} + \mathbf{g}|\phi_{n}|^{2}\right)\phi_{n} - \phi_{n+1} - \phi_{n-1}$$

Localisé

Chaotique (à un instant donné)

Auto-piégé

Comprendre ces 3 régimes :

$$i\dot{\phi}_{n} = \left(\mathbf{v}_{n} + \mathbf{g}|\phi_{n}|^{2}\right)\phi_{n} - \phi_{n+1} - \phi_{n-1}$$

Chaotique (à un instant donné)

Auto-piégé

Auto-piégé

Le régime auto-piégé :

Argument énergétique :

$$E = E_{\rm int} + E_{
m pot} + E_{
m kin}$$

- Travail dans une bande de Bloch : $E_{\rm pot} + E_{\rm kin} < E_{\rm max}$
- Si $E_{\mathrm{int}}(t=0) > E_{\mathrm{max}}$, $E_{\mathrm{int}}(t) = E E_{\mathrm{pot}} E_{\mathrm{kin}} > 0$

Comprendre ces 3 régimes :

$$\dot{i\phi_n} = \left(\mathbf{v_n} + \frac{\mathbf{g}|\phi_n|^2}{\phi_n - \phi_{n+1} - \phi_{n-1}}\right)$$

Représentation en modes propres :

$$\dot{d}_{\nu} = \epsilon_{\nu} d_{\nu} + g \sum_{\nu_{1}, \nu_{2}, \nu_{3}} I_{\nu, \nu_{1}, \nu_{2}, \nu_{3}} d_{\nu_{1}}^{*} d_{\nu_{2}} d_{\nu_{3}}$$
(1)

- Localisé : Populations sont stables
- Chaotique : Excitation de nouveaux modes
- Auto-piégé : Dynamique entre modes excités

• Objectif : Noter l'apparition des nouveaux modes

- $\blacksquare \rightarrow$ étudier l'apparition des fréquences correspondantes.
- Régime chaotique ?
- Avantages numériques considérables.

- Objectif : Noter l'apparition des nouveaux modes
- \blacksquare \rightarrow étudier l'apparition des fréquences correspondantes.
- Régime chaotique ?
- Avantages numériques considérables.

- Objectif : Noter l'apparition des nouveaux modes
- \blacksquare \rightarrow étudier l'apparition des fréquences correspondantes.
- Régime chaotique?
- Avantages numériques considérables.

- Objectif : Noter l'apparition des nouveaux modes
- \blacksquare \rightarrow étudier l'apparition des fréquences correspondantes.
- Régime chaotique?
- Avantages numériques considérables.

- Représentation mode $|\phi\rangle = \sum_{\nu} d_{\nu} |\nu\rangle$
- Nombre d'états : Nombre modes excités.

$$P=rac{1}{\sum_
u |d_
u|^4}$$

- Régime localisé P = P(t = 0)
- Régime chaotique : nouvelles fréquences
- Régime auto-piégé : Nombre fini de fréquences.

- Représentation mode $|\phi\rangle = \sum_{\nu} d_{\nu} |\nu\rangle$
- Nombre d'états : Nombre modes excités.

$$P=rac{1}{\sum_
u |d_
u|^4}$$

- Régime localisé P = P(t = 0)
- Régime chaotique : nouvelles fréquences
- Régime auto-piégé : Nombre fini de fréquences.

- Représentation mode $|\phi\rangle = \sum_{\nu} d_{\nu} |\nu\rangle$
- Nombre d'états : Nombre modes excités.

$$P=rac{1}{\sum_
u |d_
u|^4}$$

- Régime localisé P = P(t = 0)
- Régime chaotique : nouvelles fréquences
- Régime auto-piégé : Nombre fini de fréquences.

- Représentation mode $|\phi\rangle = \sum_{\nu} d_{\nu} |\nu\rangle$
- Nombre d'états : Nombre modes excités.

$$P=rac{1}{\sum_
u |d_
u|^4}$$

- Régime localisé P = P(t = 0)
- Régime chaotique : nouvelles fréquences
- Régime auto-piégé : Nombre fini de fréquences.

• Spectre de puissance : $S_f \propto |TF[P(t)]|^2$

Notre observable : Entropie spectrale

$$H = -\frac{\int df \ S_f \log S_f}{\log f_{\max}}$$

- Sinusoïde : $S_f = \delta(f f_0) \rightarrow H = 0$
- Bruit blanc : $S_f = 1/f_{max} \rightarrow H = 1$

Notre observable : Entropie spectrale

$$H = -\frac{\int df \ S_f \log S_f}{\log f_{\max}}$$

• Sinusoïde :
$$S_f = \delta(f - f_0) \rightarrow H = 0$$

• Bruit blanc : $S_f = 1/f_{max} \rightarrow H = 1$

Notre observable : Entropie spectrale

$$H = -\frac{\int df \ S_f \log S_f}{\log f_{\max}}$$

• Sinusoïde :
$$S_f = \delta(f - f_0) \rightarrow H = 0$$

• Bruit blanc : $S_f = 1/f_{max} \rightarrow H = 1$

Résultats

Les 3 régimes sont visibles

Caractérisation complète du système

- Lois d'échelle $\tilde{g} = gL_0^{-3/4}$, $\tilde{H} = HL_0^{3/4}(L_0 \ge \ell(W))$
- Résonance log-normale $\tilde{H} = H_{\max} \exp \left[-\frac{(\log \tilde{g} \log \tilde{g}_c)^2}{2\sigma^2}\right]$

Caractérisation complète du système

• et le désordre !

Conclusion 1^{ere} partie

Résultats :

- Description des régimes
- Mise en évidence de la nature chaotique
- Lois d'échelles
- \Box Caractérisation complète L_0, g, W
- □ Autre approche : longueur de localisation effective
- Effets de décohérence
- Perspectives :
 - \Box Comprendre l'exposant de la loi d'échelle $L_0^{-3/4}$
 - Effets du bruit quantique
 - □ Caractériser le régime de sous-diffusion

Sommaire

Localisation d'Anderson

Le système unidimensionnel

Le système tridimensionnel

3.1 : Le rotateur pulsé quasi-périodique

$$h = \frac{p^2}{2} + K \cos x \left(1 + \varepsilon \cos \omega_2 t \cos \omega_3 t\right) \sum_n \delta(t - n)$$

- Système équivalent au modèle d'Anderson 3D
- Localisation dynamique.

3.1 : Le rotateur pulsé quasi-périodique

$$h = \frac{p^2}{2} + K \cos x \left(1 + \varepsilon \cos \omega_2 t \cos \omega_3 t\right) \sum_n \delta(t - n)$$

• Régime localisé petits $(K, \epsilon) \rightarrow$ Régime diffusif grands (K, ϵ)

Résultats expérimentaux

 Récente démonstration expérimentale de l'universalité de la transition d'Anderson [Lopez et al., 2012]

- Résultats pour un gaz de particules isolées.
- Notre étude théorique : un condensat de Bose-Einstein

- 3.2 : L'effet des interactions
- un condensat de Bose-Einstein quasi-1D
- avec conditions aux bords 2π -périodique.

- \blacksquare Dans le régime de faibles interactions : $E_{\rm int} \ll E_{\rm kin}$
- Equivalence brisée avec le modèle d'Anderson 3D

- 3.2 : L'effet des interactions
- un condensat de Bose-Einstein quasi-1D
- avec conditions aux bords 2π -périodique.

- \blacksquare Dans le régime de faibles interactions : $E_{\rm int} \ll E_{\rm kin}$
- Équivalence brisée avec le modèle d'Anderson 3D

- 3.3 : Équations de Bogoliubov
- Le condensat est-il stable?

$$\Psi = \sqrt{N}\phi + \sum_{k} b_{k}u_{k} + b_{k}^{\dagger}v_{k}^{*}$$

Évolution du condensat (équation GP)

$$i\hbar d_t \phi = h\phi + g|\phi|^2\phi$$

Évolution de la fraction non-condensée [Castin & Dum, 1998] :

$$i\hbar d_t \begin{bmatrix} u_k \\ v_k \end{bmatrix} = \begin{bmatrix} Q \\ Q^* \end{bmatrix} \begin{bmatrix} h+2g|\phi|^2-\mu & g\phi^2 \\ -g\phi^{*2} & -h-2g|\phi|^2+\mu \end{bmatrix} \begin{bmatrix} Q \\ Q^* \end{bmatrix} \begin{bmatrix} u_k \\ v_k \end{bmatrix}$$

• Nombre d'excitations $N_{\rm b} = \langle v_k | v_k \rangle$

3.4 : Stabilité du condensat

• Un condensat pulsé est stable pour les faibles forces d'interactions.

3.4 : Stabilité du condensat

Un condensat pulsé est stable pour les faibles forces d'interactions.

Régime localisé

 Excitations sont aussi localisées [Lugan et al., 2007, Gaul & Müller, 2011]

Régime diffusif

Propriétés critiques

Hypothèse :

$$\sigma^2 = t^{\beta} \mathcal{F}\left[(K - \tilde{K}) t^{\alpha} \right],$$

• ν exposant critique pour longueur de cohérence $\xi \sim |K - \tilde{K}|^{-\nu}$

• limites localisées et diffusives \Rightarrow

$$\sigma^2 = t^{2/3} \mathcal{F}\left[(K - \tilde{K}) t^{1/3\nu} \right]$$

Propriétés critiques

 \blacksquare Le condensat et les excitations possèdent le même paramètre de stochasticité critique \tilde{K}

Propriétés critiques

• valeur $\nu = 1.6$ cohérente avec l'expérience sur des particules isolées

- \blacksquare Universalité de la transition d'Anderson : indépendance de ν par rapport aux détails microscopiques
- Le concept s'applique aux quasi-particules de Bogoliubov

Conclusion $2^{\hat{e}me}$ partie

- Le formalisme de Bogoliubov nous a permis de :
 - montrer la stabilité d'un condensat pulsé
 - mettre en évidence l'universalité de la transition d'Anderson pour un gaz de bosons ultra-froids
- Perspectives
 - Construire l'expérience
 - □ Caractériser le condensat pour des temps plus longs
 - Nouvelles approches théoriques : Wigner, Husimi tronquée, TEBD, théories Bogoliubov ordre supérieur
 - □ Construire l'expérience

Le défi des simulateurs quantiques

- Comprendre des systèmes complexes à l'aide de petits systèmes, plus simples
- Quelques défis : Des systèmes encore plus complexes
 - □ Effet Hall Quantique.
 - Fermions Majorana
 - Théorie des jauges propres au modèle standard.

Merci

Merci pour votre attention

- Anderson, P. W. (1958) Physical Review, 109 (5), 1492–1505.
- Becker, C., Stellmer, S., *et al.* (2008) *Nature Physics*, **4** (6), 496–501.
- Billy, J., Josse, V., et al. (2008) Nature (London), **453**, 891–894.
- Castin, Y. (2011). In : http ://www.phys.ens.fr/~castin/.
- Castin, Y. & Dum, R. (1998) Physical Review A, 57 (4), 3008–3021.
- Chabanov, A. A., Stoytchev, M., et al. (2000) Nature (London), 404 (6780), 850–853.
- Chabé, J., Lemarié, G., et al. (2008) Phys. Rev. Lett. 101 (25), 255702.

- Delande, D., Sacha, K., et al. (2013) New Journal of Physics, 15 (4), 045021.
- Gaul, C. & Müller, C. (2011) *Physical Review A,* 83 (6), 063629–.
- Greiner, M., Mandel, O., *et al.* (2002) *Nature (London)*, **415**, 39–44.
- Hu, H., Strybulevych, A., *et al.* (2008) *Nature Phys.* **4**, 945–948.
- Jendrzejewski, F., Bernard, A., *et al.* (2012) *Nature Physics*, **8** (5), 398–403.
- Kondov, S. S., McGehee, W. R., *et al.* (2011) *Science*, **334** (6052), 66–68.
- Laptyeva, T. V., Bodyfelt, J. D., *et al.* (2010) *EPL* (*Europhysics Letters*), **91** (3), 30001.

- Lopez, M., Clément, J.-F., et al. (2012) Physical Review Letters, 108 (9).
- Lucioni, E., Deissler, B., *et al.* (2010) *Idea,* (x), 8.
- Lucioni, E., Deissler, B., *et al.* (2011) *Physical Review Letters*, **106** (23), 230403.
- Lugan, P., Clément, D., *et al.* (2007) *Physical Review Letters*, **99** (18), 180402–.
- Roati, G., D'Errico, C., et al. (2008) Nature, 453 (7197), 895–8.

$\widehat{H} = \int d_x \widehat{\Psi}^{\perp}(x) h(x,t) \widehat{\Psi}(x) + \frac{g_{1D}}{2} \int d_x \widehat{\Psi}^{\perp}(x) \widehat{\Psi}^{\perp}(x) \widehat{\Psi}(x) \widehat{\Psi}(x)$

$$h = \frac{p^2}{2} + K \cos x \left(1 + \varepsilon \cos \omega_2 t \cos \omega_3 t\right) \sum_n \delta(t - n)$$

 $\widehat{\Psi} = \widehat{a}_{\phi}\phi + \widehat{\Psi}_{\perp} \quad , \quad \langle \widehat{\Psi}_{\perp}^{\dagger}\widehat{\Psi}_{\perp} \rangle \ll \langle \widehat{a}_{\phi}^{\dagger}\widehat{a}_{\phi} \rangle$

[Castin, 2011]

$$\widehat{\Psi}_{\perp} = rac{\widehat{a}_{\phi}}{\sqrt{\widehat{a}_{\phi}^{\dagger}\widehat{a}_{\phi}+1}}\sum_{k=1}^{\infty}b_{k}u_{k} + b_{k}^{\dagger}v_{k}^{*}$$

$$\widehat{H} = \int d_x \widehat{\Psi}^{\perp}(x) h(x,t) \widehat{\Psi}(x) + \frac{g_{1D}}{2} \int d_x \widehat{\Psi}^{\perp}(x) \widehat{\Psi}^{\perp}(x) \widehat{\Psi}(x) \widehat{\Psi}(x)$$
$$h = \frac{p^2}{2} + K \cos x \left(1 + \varepsilon \cos \omega_2 t \cos \omega_3 t\right) \sum \delta(t-n)$$

$$\label{eq:phi} \begin{split} \widehat{\Psi} &= \widehat{a}_{\phi} \phi + \widehat{\Psi}_{\perp} \quad, \quad \langle \widehat{\Psi}_{\perp}^{\dagger} \widehat{\Psi}_{\perp} \rangle \ll \langle \widehat{a}_{\phi}^{\dagger} \widehat{a}_{\phi} \rangle \\ \bullet \quad \text{[Castin, 2011]} \end{split}$$

$$\widehat{\Psi}_{\perp} = \frac{\widehat{a}_{\phi}}{\sqrt{\widehat{a}_{\phi}^{\dagger}\widehat{a}_{\phi} + 1}} \sum_{k=1}^{\infty} b_k u_k + b_k^{\dagger} v_k^*$$

п

$$\begin{split} \widehat{H} &= \int d_x \widehat{\Psi}^{\perp}(x) h(x,t) \widehat{\Psi}(x) + \frac{g_{1D}}{2} \int d_x \widehat{\Psi}^{\perp}(x) \widehat{\Psi}^{\perp}(x) \widehat{\Psi}(x) \widehat{\Psi}(x) \\ h &= \frac{p^2}{2} + K \cos x \left(1 + \varepsilon \cos \omega_2 t \cos \omega_3 t \right) \sum_n \delta(t-n) \\ \widehat{\Psi} &= \widehat{a}_{\phi} \phi + \widehat{\Psi}_{\perp} \quad , \quad \langle \widehat{\Psi}_{\perp}^{\dagger} \widehat{\Psi}_{\perp} \rangle \ll \langle \widehat{a}_{\phi}^{\dagger} \widehat{a}_{\phi} \rangle \end{split}$$

• [Castin, 2011]

$$\widehat{\Psi}_{\perp} = \frac{\widehat{a}_{\phi}}{\sqrt{\widehat{a}_{\phi}^{\dagger}\widehat{a}_{\phi} + 1}} \sum_{k=1}^{\infty} b_k u_k + b_k^{\dagger} v_k^*$$

$$\widehat{H} = \int d_x \widehat{\Psi}^{\perp}(x) h(x,t) \widehat{\Psi}(x) + \frac{g_{1D}}{2} \int d_x \widehat{\Psi}^{\perp}(x) \widehat{\Psi}^{\perp}(x) \widehat{\Psi}(x) \widehat{\Psi}(x)$$

$$h = \frac{p^2}{2} + K \cos x \left(1 + \varepsilon \cos \omega_2 t \cos \omega_3 t\right) \sum_n \delta(t - n)$$

$$\widehat{\Psi} = \widehat{a}_{\phi}\phi + \widehat{\Psi}_{\perp} \quad , \quad \langle \widehat{\Psi}_{\perp}^{\dagger}\widehat{\Psi}_{\perp} \rangle \ll \langle \widehat{a}_{\phi}^{\dagger}\widehat{a}_{\phi} \rangle$$

[Castin, 2011]

$$\widehat{\Psi}_{\perp} = rac{\widehat{a}_{\phi}}{\sqrt{\widehat{a}_{\phi}^{\dagger}\widehat{a}_{\phi}+1}}\sum_{k=1}^{\infty}b_{k}u_{k}+b_{k}^{\dagger}v_{k}^{*}$$

Propriétés critiques

Assumption :

$$\sigma^2 = t^{\beta} \mathcal{F} \left[(K - K_c) t^{\alpha} \right],$$

• ν critical exponent for the coherence length $\xi \sim |K - K_c|^{-\nu}$

$$\begin{array}{ll} \xi & \propto & \sigma \Rightarrow \mathcal{F}(y) \sim y^{2\nu} & , K < K_c \\ \xi & \propto & \sigma^2/t \Rightarrow \mathcal{F}(y) \sim y^{\nu} & , K > K_c \end{array}$$

• localized limit : $\sigma^2 \sim t^{\beta} \left[(K - K_c) t^{\alpha} \right]^{2\nu} \sim \text{cste}, \Rightarrow \beta - 2\alpha \nu = 0$

• diffusive limit : $\sigma^2 \propto t^{\beta} \mathcal{F} [(K - K_c)t^{\alpha}]^{\nu} \sim t \Rightarrow \beta + \alpha \nu = 1$

• critical regime $\sigma^2 = t^{2/3} \mathcal{F} \left[(\mathcal{K} - \mathcal{K}_c) t^{1/3\nu} \right]$ [?, Lopez *et al.*, 2012]

•
$$\Lambda = \langle p^2 \rangle t^{-2/3} = F\left[(K - K_c) t^{1/3\nu} \right] \Longrightarrow \left(\frac{d \log \Lambda}{dK} \right)_{K_c} \propto t^{1/3\nu}$$

