N
N

N

HAL

open science

Arithmetic recodings for ECC cryptoprocessors with
protections against side-channel attacks
Thomas Chabrier

» To cite this version:

Thomas Chabrier. Arithmetic recodings for ECC cryptoprocessors with protections against side-
channel attacks. Other [cs.OH]. Université de Rennes, 2013. English. NNT: 2013REN1S064 . tel-

00910879v2

HAL Id: tel-00910879
https://theses.hal.science/tel-00910879v2

Submitted on 13 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00910879v2
https://hal.archives-ouvertes.fr

ANNEE 2013

UNIVERSITE DE &

RENNES 1

THESE / UNIVERSITE DE RENNES 1

sous le sceau de ["Université Européenne de Bretagne

pour le grade de
DOCTEUR DE L’UNIVERSITE DE RENNES 1

Mention : Informatique
Ecole doctorale MATISSE

présentée par
Thomas Chabrier

préparée a l'unité de recherche UMR6074 IRISA

Institut de recherche en informatique et systémes aléatoires - CAIRN
Ecole Nationale Supérieure des Sciences Appliquées et de Technologie

Thése soutenue a Lannion

Arithmetic Recodings le 18 juin 2013
devant le jury composé de :
for ECC Lilian BOSSUET
. Maitre de conférences HDR, Université Jean Monnet,

CryptOprO CesSsors Wlth St-Etienne, laboratoire Hubert Curien / rapporteur

. . Laurent IMBERT
Protectlons agalnst ((]?ltlargé d(e;‘rm()c}glci}eli\TTRS, HDR, LIRMM /rapporteur

uy
. rofesseur, Université de Br ne Sud b-STICC

Side-Channel Attacks oot ettt de Bretagne Sud, Lab STICC/

William MARNANE

Senior Lecturer, University College Cork, Ireland / ex-
aminateur

Emmanuel CASSEAU
Professeur, Université de Rennes 1, IRISA / directeur
de thése

Arnaud TISSERAND
Chargé de recherche CNRS, HDR, IRISA / co-directeur
de thése

Résumé

Cette these porte sur ’étude, la conception matérielle, la validation théorique et pratique,
et enfin la comparaison de différents opérateurs arithmétiques pour des cryptosystémes basés
sur les courbes elliptiques (ECC). Les solutions proposées doivent étre robustes contre certaines
attaques par canaux cachés tout en étant performantes en matériel, tant au niveau de la vitesse
d’exécution que de la surface utilisée. Dans ECC, nous cherchons & protéger la clé secréte, un
grand entier, utilisé lors de la multiplication scalaire. Pour nous protéger contre des attaques par
observation, nous avons utilisé certaines représentations des nombres et des algorithmes de calcul
pour rendre difficiles certaines attaques ; comme par exemple rendre aléatoires certaines représen-
tations des nombres manipulés, en recodant certaines valeurs internes, tout en garantissant que
les valeurs calculées soient correctes. Ainsi, 'utilisation de la représentation en chiffres signés,
du systéme de base double (DBNS) et multiple (MBNS) ont été étudiés. Toutes les techniques
de recodage ont été validées théoriquement, simulées intensivement en logiciel, et enfin implan-
tées en matériel (FPGA et ASIC). Une attaque par canaux cachés de type template a de plus
été réalisée pour évaluer la robustesse d’un cryptosystéme utilisant certaines de nos solutions.
Enfin, une étude au niveau matériel a été menée dans le but de fournir & un cryptosystéme ECC
un comportement régulier des opérations effectuées lors de la multiplication scalaire afin de se
protéger contre certaines attaques par observation.

Summary

This Ph.D. thesis focuses on the study, the hardware design, the theoretical and practical
validation, and eventually the comparison of different arithmetic operators for cryptosystems
based on elliptic curves (ECC). Provided solutions must be robust against some side-channel
attacks, and efficient at a hardware level (execution speed and area). In the case of ECC, we
want to protect the secret key, a large integer, used in the scalar multiplication. Our protection
methods use representations of numbers, and behaviour of algorithms to make more difficult
some attacks. For instance, we randomly change some representations of manipulated numbers
while ensuring that computed values are correct. Redundant representations like signed-digit
representation, the double- (DBNS) and multi-base number system (MBNS) have been studied.
A proposed method provides an on-the-fly MBNS recoding which operates in parallel to curve-
level operations and at very high speed. All recoding techniques have been theoretically validated,
simulated extensively in software, and finally implemented in hardware (FPGA and ASIC). A
side-channel attack called template attack is also carried out to evaluate the robustness of a
cryptosystem using a redundant number representation. Eventually, a study is conducted at the
hardware level to provide an ECC cryptosystem with a regular behaviour of computed operations
during the scalar multiplication so as to protect against some side-channel attacks.

I1I

Acknowledgements /Remerciements

Ah les remerciements! C’est une des premiéres parties du manuscrit, mais en réalité, c’est
celle que j’ai rédigée en tout dernier. L’écriture de ces lignes me tient donc particuliérement a
coeur pour deux raisons : tout d’abord car elles marquent la fin et la validation de ma thése,
mais surtout parce que je vais pouvoir remercier toutes les personnes qui m’ont accompagné et
soutenu durant cette aventure.

En effet, pendant plus de trois ans, mon travail ne s’est pas déroulé tel un long fleuve tran-
quille ; quelques moments de doute sont venus le parsemer et ce malgré mon naturel joyeux et
optimiste. J’ai réussi & traverser les péripéties, les rebondissements et les obstacles grace a 1’ac-
tion de nombreux personnages : principaux ou secondaires, proches ou éloignés, récurrents ou
ponctuels, ils m’ont tous apporté une aide précieuse.

Dans un premier temps, je voudrais remercier Monsieur Guy GOGNIAT, professeur & 'uni-
versité de Bretagne Sud, pour m’avoir fait I’honneur de présider le jury de cette thése.

Je remercie également Messieurs Lilian BOSSUET de I'université Jean Monnet & Saint Eti-
enne, et Laurent IMBERT, chargé de recherche CNRS au laboratoire d’informatique, de robo-
tique et de microélectronique de Montpellier (LIRMM), qui ont bien voulu accepter le role de
rapporteur. En particulier, Laurent IMBERT m’aura permis, de par sa rigueur, d’améliorer la
qualité de ce document. Je le remercie donc pour la relecture attentive de ce mémoire, et il ne
fait nul doute que ses conseils me seront profitables.

De méme, je remercie William MARNANE, professeur & l'université de Cork en Irlande, pour
avoir accepté de juger ce travail de thése. Il m’a accueilli chaleureusement pendant tout un été
dans son laboratoire lors d’un séjour de mobilité. Cette expérience a été trés enrichissante tant
d’un point de vue humain que professionnel.

A présent, je souhaite remercier mon directeur de thése Monsieur Emmanuel CASSEAU,
professeur & l'université de Rennes 1, pour la confiance qu’il m’a accordée en encadrant ma thése
sur un sujet assez éloigné de ses domaines de recherche. En particulier, ses qualités humaines et
le recul qu’il m’a aidé & prendre m’ont permis de travailler dans des conditions sereines.

Mes remerciements vont ensuite & mon co-directeur de thése, Monsieur Arnaud TISSERAND,
chargé de recherche CNRS & linstitut de recherche en informatique et systémes aléatoires
(IRISA). I est difficile de décrire en quelques phrases, I’aide qu’Arnaud m’a apportée. En effet,
il m’a guidé, corrigé et méme parfois bousculé tout au long de la thése afin de me faire avancer
de maniére constructive. Son exigence et sa pédagogie m’ont permis d’approfondir et de préciser
mes recherches. Sa porte est toujours restée grande ouverte et je le remercie vraiment pour sa
disponibilité et pour le temps qu’il m’a consacré. Je n’imagine pas aujourd’hui avoir pu accomplir
ces travaux de thése sans sa participation.

Je remercie également ’ensemble de mes collégues de travail. En particulier, je remercie An-
drianina, Antoine, Jérémie, Renaud, Cécile, Ludovic, Danuta et Karim pour les échanges de

v

connaissance et les moments de détentes.

Merci & tous ceux qui sont venus jusqu’en Bretagne me rendre visite, mes proches et mes
amis, et a tout ceux que j’aurais pu oublier.

Merci & ma belle-famille, ma famille, ma mére, ma sceur Daphné et mes fréres Mathieu et
David pour leur soutien inconditionnel et leurs encouragements qui ont été autant de bouffées
d’oxygéne dans les moments de doute. J’ai de plus une pensée toute particuliére pour mon pére
qui, j’en suis sir, aurait été trés fier de moi.

Et voici le meilleur pour la fin! Je remercie Cindy pour m’avoir accompagné en Bretagne ou
elle a parfois di supporter mes humeurs, pour l'intérét qu’elle a porté a mon travail et surtout
pour tous les moments de bonheur et de rire. Elle a toujours été la pour moi en me soutenant
dans les moments difficiles, et elle a su faire en sorte que je termine ce manuscrit de thése avec
le sourire.

VI

Contents

[List of Acronyms/Notations|

[Abstract 1n French|
[ntroduction|

(1 _State of the Art|

Im

Elliptic Curves

[1.1.2 Weierstrass Eiquations|o Lo

[1.1.3 Group Law| . . .

[1.1.4 Discrete Logarithm Problem|.

[1.1.5 Security Evaluation|. oo

[1.1.6 Point Representati

ONS| . .« o e e

[1.1.7 Scalar Multiplicati

ON| . . . v v o

T2

Double-Base and Multi-Base Number System|

[1.2.1 Double-Base Number System|

[1.2.2 Multi-Base Number System|,

3

Arithmetic in a Large Prime Field]

[1.3.1 Definitions and Properties|,

[1.3.3 Montgomery Meth

od|

[1.3.4 Modular Multiplication| oo

[1.3.5 Modular Inversion|

[1.4.1 Simple Side-Channel Analysis|

1.4.2 Differential Side-Channel Analysis

Hardware Implementations of Scalar Random Recoding Countermeasures|

[2.1 Random Number Generator (RNG)|.

[2.2 Double-Based Number System Random Recoding|

[2.2.1 Proposed Arithmetic Countermeasure]

[2.2.2 Experiment Results and Implementation|

2.2.3 FPGA Implementation|. oL,

2.2.4 ASIC Implementation|,

p3

Signed-Digit Representations| oo o

[2.3.1 Avizienis System|

[2.3.2 Number of Binary

Signed-Digit Representations|.

[2.3.3 Random Recoding

15

21
21
21
22
23
24
24
25
27
29
29
33
34
35
36
36
37
39
40
42
43

45
45
46
46
48
51
ol
22
92
o4
o4

VII

Contents

[2.3.4 Width—w Signed-Digit (wSD)| 56
[2.3.0 Implementation|. 58

[2.4 Comparison| 61
.o Conclusionl. L 62
|3 Practical Security Evaluation Using Template Attacks| 65
[3.1 Template Attacks| o 66
[3.1.1 Template Generation|. L o 66
[3.1.2 Template Classification| 67

3.2 Used Architecture for the Attacks. 0. 68
[3.2.1 Measurement Setups| Lo 68
[3.2.2 Proposed Architecturel 68
3.2.3 FPGA Implementation 70
.24 Power Modell 71

3.3 Template Attacks Implementations 72
3.3.1 Template Attack with a SPA Countermeasure 73

3.3.2 Evaluation of Traces Number During Templates Generation 76

3.3.3 Template attacks with a DPA Countermeasure 77

[3.4 Number ot Recoded Digits tor an Attack| 86
[3.4.1 Weight ot Recodings| 86
[3.4.2 Recoding Possibilities of Imitial Bits| 86
[3.4.3 Antecedents of Recodings| 0L 88
[3.4.4 Evaluation of the Number of Recoded Digits| 88

[B.o Conclusionl. 90
4 On-the-Fly Multi-Base Recoding] 93
[4.1 Proposed Muti-Base Recoding and Scalar Multiplication in ECC| 93
[4.1.1 Unsigned Algorithms| 94
[4.1.2 Implementation ot the Divisibility Tests| 97
[4.1.3 Implementation of the Exact Division by Multiple-Base Elements| 100
[4.1.4 Unsigned Multiple-Base Recoding Unit|. 104
415 Validationl e 106

[4.2 Signed-Digit Optimizations| 107
[4.2.1 Signed-Digit MBNS Recoding| 107
[4.2.2 Experimental Analysis| oo o 109
42,3 Randomized Selection Functionlo 109
[4.2.4 FPGA Implementation|. 109
[4.2.5 ASIC Implementation| 110

[4.3 Comparison to State-of-Art| Lo 112
[4.3.1 Costs of Curve-Level Operations] 112
[4.3.2 Performance Comparisons| 112

[4.4 Extended Signed-Digit MBNS Recoding| 117
[4.4.1 Implementation Results|, 118
442 Performancel. 119

4o Conclusionl. L 122

VIII

Contents

["Atomic Blocks through Regular Algorithms|

b.1 Scheduling Sequences|. Lo
.2 Atomic Scalar Multiplication|o 00000
6.3 Experiment Results and Implementation|
6.4 Implementation| L
b.4.1 Arithmetic Hardware Implementation|
b.4.2 Global FPGA Implementation Results|
b.4.3 Global ASIC Implementation Results|.
I;lils(i g:(]ll(:lllSiQIll

iConclusionl

|[Appendix A Complete ECC Processor|

[Appendix B Proof of Exact Division Algorithm Starting from MSW]|

|[Appendix C Montgomery Inversion|

145

147

151

157

166

IX

List of Acronyms/Notations

ADD
ALAP
ALU
ASAP
ASIC
BRAM
BSD
CMOS
DBL
DBNS
DLP
DPA
DSP
EAC
ECC
ECDLP
ECDSA
EPL

FF
FIPS
FPGA
FSM
ged

Affine Coordinates.

Addition/Subtraction over a finite field.
Point Addition.

As-Late-As-Possible.

Arithmetic Logic Unit.
As-Soon-As-Possible.

Application Specific Integrated Circuit.
Block RAM.

Binary Signed-Digit.

Complementary Metal-Oxide-Semiconductor.
Point Doubling.

Double-Base Number System.

Discrete Logarithm Problem.

Differential Power Analysis.

Digital Signal Processing.

Euclidean Addition Chain.

Elliptic Curve Cryptography.

Elliptic Curve Discrete Logarithm Problem.
Elliptic Curve Digital Signature Algorithm.
Point Eleventupling.

Flip-Flop.

Federal Information Processing Standard.
Field Programmable Gate Array.

Finite State Machine.

Greatest Common Divisor.

GF
GMP
HDL

I0B
ISE

gm
JTAG
LBS
lem
LSB
LSW
LT
LUT

mADD
MBNS
MI
MM
MSB
mSUB
MSW
NAF
NIST
NOP

PPR
PRNG
QPL
RAM
RNG

Galois Field.

GNU Multiple Precision Arithmetic Library.
Hardware Description Language.
Inversion over a finite field.
Input/Output Block.

Integrated Software Environment.
Jacobian Projective Coordinates.
Modified Jacobian Projective Coordinates.
Joint Test Action Group.

List-Based Scheduling.

Least Common Multiple.

Least Significant Bit.

Least Significant Word.

List of Terms.

Look-Up Table.

Multiplication over a finite field.
Mixed Point Addition.

Multi-Base Number System.
Montgomery Inversion.

Montgomery Multiplication.

Most Significant Bit.

Mixed Point Subtraction.

Most Significant Word.
Non-Adjacent Form.

National Institute of Standards and Technology.
No Operation.

Standard Projective Coordinates.
Post Place & Route.

Pseudo Random Number Generator.
Point Quintupling.

Random Access Memory.

Random Number Generator.

List of Acronyms/Notations

ROM

SCA
sign(k;)
SPA
SPL
SUB
TPL
TRNG
ucC
UEB
VHDL
VHSIC

Read Only Memory.

Square over a finite field.
Side-Channel Attack.

Sign of the number k at the index 7.
Simple Power Analysis.

Point Septupling.

Point Subtraction.

Point Tripling.

True Random Number Generator.
University College Cork.

Université Européenne de Bretagne.
VHSIC Hardware Description Language.
Very High Speed Integrated Circuit.

Summary in French/Résumé en
Francais

Cette thése de doctorat s’intitule « recodages arithmétiques pour des cryptoprocesseurs ECC
robustes aux attaques par observation ». Elle porte sur ’étude et la validation expérimentale de
méthodes de protection contre certaines attaques physiques sur des systémes cryptographiques
basés sur les courbes elliptiques. Les systémes cryptographiques asymétriques existants sont
soumis a de fortes contraintes en termes de sécurité et de performance. En effet, 'utilisation
d’algorithmes sirs théoriquement n’est plus suffisante contre les attaques physiques. Notam-
ment, les attaques par observation représentent un type d’attaque extrémement efficace contre
de tels systémes non protégés. Etudier différentes méthodes pour se protéger contre ce type d’at-
taque peut ainsi consister & changer les représentations internes des nombres et les algorithmes
de calcul pour rendre plus difficiles certaines attaques; comme par exemple & rendre aléatoires
certaines représentations des nombres calculés tout en garantissant que les valeurs théoriques
calculées soient correctes.

Sans le savoir, nous utilisons quotidiennement la cryptographie a clé publique ; par exemple
en retirant de ’argent liquide dans un distributeur de billets, ou lors de la saisie et de I’envoi de
notre numéro de carte de crédit sur Internet. Des protocoles d’authentification ou de signature
numeérique permettent par exemple de vérifier I'identité des acteurs d’une transaction électron-
ique. Le cryptosystéme RSA (initiales de ses auteurs Rivert, Shamir et Adleman [108]) et le
cryptosystéme basé sur les courbes elliptiques (Elliptic Curve Cryptosystems, ECC) sont ainsi
deux des cryptosystémes de référence pour la plupart des acteurs du monde économique. Mais
quelque soit le systeme cryptographique utilisé, il doit démontrer un niveau de sécurité théorique
ne laissant place & aucune attaque réalisable & un cott raisonnable. C’est pourquoi des études
sont menées afin d’en connaitre le niveau de sécurité actuel. En effet, si ’on suit la célébre loi de
Moore [91] qui mentionne que la puissance de calcul des ordinateurs double environ tous les 18
mois, on peut s’interroger car avec l'augmentation des capacités de calcul de nos ordinateurs, le
niveau de sécurité des clés d’'une taille donnée, baisse en conséquence. Par exemple, une équipe
de chercheurs en cryptographie est parvenue au bout de deux ans et demi & casser le chiffrement
RSA 768 bits [69]. Au total, ce sont ’équivalent de 1700 cceurs qui ont été utilisés pendant
un an pour réaliser la factorisation du module RSA, nombre long de 768 bits (soit 232 chiffres
décimaux).

De plus, les attaques cryptographiques sont divisées en deux grandes familles, les attaques
théoriques et physiques. Les attaques théoriques sont généralement implicitement assimilées a
des attaques en « boite noire » parce que les valeurs des variables temporaires utilisées durant
le calcul ne sont pas accessibles par I'attaquant. Cependant, quand les algorithmes sont im-
plantés dans des dispositifs physiques, d’autres attaques deviennent réalisables. Ces attaques,
initialement proposées dans 73], consistent a exploiter et observer les caractéristiques physiques
d’un cryptosystéme, ou bien & modifier le fonctionnement des circuits. Contrairement aux at-

taques théoriques, certaines variables internes aux algorithmes peuvent étre lues ou modifiées.
Ces attaques se divisent en deux grandes familles : la premiére contient les attaques en obser-
vation tandis que la seconde regroupe les attaques par injection de faute. Ces types d’attaque
ont récemment vu le jour dans le monde des systémes embarqués. Les implémentations naives
d’algorithmes cryptographiques peuvent se révéler et ainsi constituer des failles béantes dans la
sécurité d’un systéme. Ces attaques reposent sur ’accés physique que peut avoir un attaquant
a4 un composant manipulant des données secrétes. Le modéle de « boite noire » souvent utilisé
en cryptanalyse s’efface donc ici devant un modéle plus complexe ot tous les moyens d’observa-
tion peuvent étre utilisés par un attaquant pour récupérer de 'information. Un attaquant n’a
plus besoin de résoudre le probléme mathématique sous-jacent au cryptosystéme. La sécurité
et Vefficacité des implantations matérielles d’algorithmes cryptographiques constituent donc un
véritable défi pour les mathématiciens, informaticiens, électroniciens et les concepteurs de circuits
embarqués.

Le systéme cryptographique choisi doit ainsi utiliser des contre-mesures visant a se protéger
des attaques possibles : les algorithmes retenus doivent s’avérer résistants & un certain nombre
d’attaques connues et néanmoins rester aussi efficaces que possible en vue d’une implémentation.
Les attaques qui nous intéressent dans le cadre de cette thése sont les attaques par observation,
aussi appelées attaques par canaux cachés ou par canaux auxiliaires.

Les attaques par canaux cachés découlent de I'observation pure du composant. Afin d’ex-
pliquer ce genre d’attaques, faisons une corrélation avec un exemple clair et parlant : 1’histoire
d’un vol de documents dans un coffre-fort. Un voleur, équipé d’un stéthoscope, tente d’ouvrir le
coffre convoité. Pour cela, il a besoin du code actionnant 'ouverture dudit coffre, code qu’il ne
connait pas mais qu’il va tenter de découvrir. Aussi, il n’a besoin que d’écouter et analyser ce
qu’il entend lorsqu’il tourne le bouton. En effet, deux bruits différents peuvent s’entendre; un
« clic » pouvant signifier ainsi qu'un des engrenages est en bonne position, tandis que ’autre
bruit signifiant au contraire que I'engrenage ne fait pas partie du code actionnant I'ouverture
du coffre. Il ne reste plus qu’a analyser les différents bruits afin de percer le secret du coffre. Le
stéthoscope est ici I’outil nécessaire a cette entreprise, il amplifie simplement le son que ’on ne
peut entendre a l’oreille. Similairement au stéthoscope qui est utilisé ici pour découvrir le code
du coffre-fort, nous pouvons mesurer par exemple 1’énergie consommée par le circuit lors d’une
exécution d’un algorithme considéré, et ainsi rechercher de I'information, et tenter de trouver
la clé secréte d’un algorithme cryptographique. Ainsi, on pourra, via un oscilloscope, visualiser
le courant consommé par un circuit. Auparavant, le courant, variable au cours du temps, aura
été amplifié car celui-ci étant en effet trés faible. Vient ensuite une étape d’analyse ot ’on peut
observer les différentes opérations utilisées, et si la clé de chiffrement est fonction de ces opéra-
tions, celle-ci pourrait étre alors révélée. Cet exemple s’appuie sur un type de canal caché, ou
canal auxiliaire. Ces canaux peuvent consister en n’importe quelle quantité mesurable en lien
avec l'exécution d’un algorithme exploitant de 'information secréte. Certaines sources retenues
et étudiées sont le temps d’exécution de ’algorithme, la consommation électrique ou le rayon-
nement électromagnétique du circuit sur lequel s’exécute 'algorithme.

Dans la cryptographie a clé publique (RSA ou ECC), I'arithmétique joue un réle important
dans la mise en place de cryptosystémes a la fois efficaces et sirs. En particulier, il existe es-
sentiellement deux types d’implémentation de cryptosystémes basés sur les courbes elliptiques :
soit la courbe elliptique est définie sur un corps de caractéristique paire (IFam) soit sur un corps
de grande caractéristique premiére (F,= avec p > 3). Dans le cadre de cette thése, nous nous
sommes principalement intéressés aux corps premiers [, avec p un grand nombre premier (de
160 & 600 bits). Mais nos propositions peuvent étre appliquer & d’autres types de courbes.

L’arithmétique des corps finis doit étre trés rapide étant donnée la quantité de calculs effectués
mais tout en nécessitant de ressources limitées (surface de circuit, taille mémoire, consommation

6

Summary in French/Résumé en Francais

d’énergie). De plus, elle doit offrir un bon niveau de robustesse vis & vis des attaques physiques.
Les types de calculs nécessaires sont des additions, soustractions, multiplications (de deux vari-
ables ou d’une variable par une ou des constantes), inversions et exponentiations. Ces opérations,
qui peuvent paraitre plus simples sur des petits entiers ou approximations de nombres réels, sont
assez complexes sur des corps finis (F,, ou Fam) avec des tailles de nombres de quelques centaines
de bits, par exemple de 160 & 600 bits pour les courbes elliptiques en cryptographie , App. Al
F, est le corps fini a p éléments, o p est un grand nombre premier. Les éléments de F), sont
manipulés exactement comme des entiers modulo p.

De plus, la recherche de cryptosystémes asymétriques strs et efficaces a conduit, ces derniéres
années, a un large développement de l'utilisation des courbes elliptiques. En effet, ces objets math-
ématiques permettent de concevoir des schémas cryptographiques qui requiérent les longueurs
de clefs les plus courtes pour un niveau de sécurité donné, en comparaison & d’autres cryptosys-
témes proposés . C’est pourquoi les systémes cryptographiques basés sur les courbes elliptiques
peuvent étre trés attractifs, notamment pour les applications qui utilisent des ressources limitées
(mémoire, puissance, bande passante, ...). L’utilisation des courbes elliptiques en cryptographie
a été proposée indépendamment par Koblitz [71] et Miller au milieu des années 80. Depuis,
ECC fait I'objet d’études intensives.

Une courbe elliptique peut étre définie de maniére trés générale comme ’ensemble des solu-
tions d’une équation & deux variables. Une courbe elliptique est tout d’abord un objet géométrique :
c’est une courbe non-singuliére obéissant & ’équation y? = f(x), avec f ayant un degré égal a
3 ou 4. Géométriquement, une courbe non-singuliére est une courbe qui n’admet qu’une seule
tangente en tout point. C’est ce genre de courbes définies sur un corps fini que nous utilisons en
cryptographie. De plus, une courbe elliptique est aussi un objet algébrique.

La figure [T présente une interprétation géomeétrique de la loi d’addition sur une courbe ellip-
tique. P et @ sont deux points appartenant a la courbe elliptique d’équation y? = 23 — 2 +1 dans
le corps R. I’addition de point P+ @ est ainsi représentée differemment lorsque P # +@Q (figure
de gauche) et P = £Q (figure de droite). Quand P = @, nous avons P+ @ = P+ P = [2]P. Dans
ce cas, un doublement de point (DBL) est calculé. De plus, les courbes elliptiques sont munies
d’un point & l'infini noté O. Quand P = —(@), nous avons P+ @ = P — P = . Sinon, quand
P # +@Q, Paddition de point P + @ est calculée (ADD).

y2:x3—x+l y2:x3—x+l
1:5 4 1.5 4

[2]p

FIGURE 1 — Somme de 2 points appartenant & la courbe elliptique dans R.

Dans les cryptosystémes basés sur les courbes elliptiques, la clé secréte est utilisée lors de la
multiplication scalaire par un point d’une courbe elliptique. Cette opération représente la plus
grande part du temps d’exécution d’un protocole ECC. La multiplication scalaire correspond &
une suite de doublements (DBL) et d’additions (ADD) de points qui correspondent & des opérations
dans I, pour le calcul de

[K|lP=P+P+---+P,
k fois

ou k est un grand entier et P un point d’une courbe elliptique définie sur [F,,. La figure présente
deux versions algorithmiques du calcul de [k] P, utilisant la représentation binaire de k. Ces deux
versions consistent & parcourir les bits de k en partant des poids faibles (algorithme de gauche)
ou des poids forts (algorithme de droite). L’exécution des algorithmes présentés dans la figure
nécessitent en moyenne (n—1)DBL+n/2ADD. En effet, pour des raisons de sécurité, il est nécessaire
que le scalaire k ait un nombre de 0 équivalent au nombre de 1 dans sa représentation binaire.

entrée : k = (k‘n_lkn_Q ... klko)g, Pe E(Fp)
sortie : Q = [k]P

1:]| Q<«+— 0O QR+—O0

2 pour ide 0 & n — 1 faire pour i de n —1 & 0 faire

3 sik;=1lalors Q<«+— Q-+ P ADD Q +— 2|Q DBL
4: P+ 2|P DBL sikj=1alors Q«— Q+ P ADD
) retourner Q retourner Q

FIGURE 2 — « Doublement et addition » de droite & gauche et de gauche & droite pour le calcul
de [k|P.

L’algorithme de droite est inspirée de la formule suivante :
k1P = koP + 2] (k1 P+ 2 (koP + - + [2](kn 1 P)))
tandis que celui de gauche applique la formule suivante :
[K]P = koP + k1 ([2]P) + ko ([4]P) + - -+ + kn—1([2" '] P).

Lorsque nous parcourons les bits du scalaire £ de gauche a droite, un doublement de point,
suivi d’'une addition de points sont effectués si le bit du scalaire vaut 1. Sinon, lorsque le bit
du scalaire vaut 0, une seule opération au niveau de la courbe est effectuée, un doublement de
point. Ces algorithmes présentent clairement la corrélation entre les bits de la clé secréte k et
certaines opérations. De plus, dans le cadre de I’exécution d’un cryptosystéme a base de courbes
elliptiques, le nombre d’opérations dans le corps [F,, effectuées lors d’une addition de deux points
(ADD) différe du nombre d’opérations effectuées dans F, lors d’'un doublement de point (DBL).
Donc en général, une ADD et un DBL ont des traces d’exécution différentes. De plus, il n’est pas
possible d’observer deux ADDs consécutifs : si deux opérations « identiques » se succédent, il
s’agit obligatoirement d’au moins un doublement de point. Ainsi, un attaquant peut savoir si le
bit traité vaut 0 ou 1; et avec la trace de consommation compléte, il peut connaitre le scalaire
secret.

Summary in French/Résumé en Francais

ol

Voltage

l

Time

==

- T—

AR “lmJa

==
=
= ——
=
=
T

F1GURE 3 — Mesure sur une carte FPGA de la consommation électrique lors d’une multiplication
scalaire utilisant ’algorithme « doublement et addition » de gauche & droite.

Pour illustrer cet exemple, nous pouvons voir dans la figure 3 comment une mesure de la
consommation électrique d’un circuit effectuant une multiplication scalaire permet d’observer la
succession de doublements et d’additions, ce qui permet de retrouver les bits du scalaire k.

Protéger les implémentations de multiplication scalaire contre ce type d’attaques consiste
a faire en sorte que le cryptosystéme exécute une séquence d’opérations qui ne peut pas étre
reliée aux bits traités du scalaire k. Les contre-mesures classiques (voir [65] pour plus de détails)
utilisent ainsi un algorithme de multiplication scalaire régulier, ou bien rendent ’addition et le
doublement de point indistinguables 'uns de 'autre.

L’attaque par observation décrite ci-dessus exploite I'information observable par le bais d’un
canal auxiliaire lors de r exécutions de lalgorithme considéré (dans la figure 3, r = 1) et
rechercher de l'information dans les traces de mesure obtenues. Lorsque r est de 'ordre de
10 ou moins, on parle d’attaques par analyse simple, sinon d’attaques par analyse différentielle
(r > 10). Dans ce cas, on recherche de 'information entre ces r mesures et les données ma-
nipulées a l'aide d’outils statistiques. Cette famille d’attaques par observation exploite une fuite
d’information plus fine que les attaques par analyse simple qui relient les opérations exécutées
et le canal caché mesuré.

Protéger un cryptosystéme contre les attaques par analyse simple n’est pas suffisant pour
étre robuste contre les attaques différentielles par observation. Les contre-mesures classiques
consistent a changer la valeur des variables intermédiaires : ajouter de 1’aléa sur le scalaire k [35],
sur le point de base P [79] ou sur l'équation de la courbe [67] pendant les différents calculs de
Q = [k]P. Par exemple, Coron dans [35] propose d’effectuer la multiplication scalaire [K']P a
la place de [k|P ou k' = k + g#E(F,) avec #E(F,) lordre de la courbe elliptique E(F,) et g
un nombre aléatoire. Chaque nouvelle multiplication scalaire permet de rendre imprévisible la
valeur de la clé, et donc sa représentation, mais tout en garantissant la valeur exacte du résultat.

Ainsi, 'utilisation de différentes représentations de nombres peut étre exploitée comime contre-
mesure contre certaines attaques par canaux cachés : une clé de chiffrement pourra utiliser une
certaine représentation lors d’une multiplication scalaire, et aura une autre représentation lors
d’une autre multiplication scalaire. Le but de ces différentes représentations est de ne pas pouvoir
découvrir cette clé; car ainsi, & chaque nouvelle exécution de l'algorithme de chiffrement, la
signature en courant de celui-ci ne pourra étre mis en corrélation avec une exécution antérieure.

Dans une représentation redondante, un nombre peut avoir plusieurs représentations possi-

bles. Dans cette thése, plusieurs représentations redondantes ont été étudiées : en chiffres binaires
signés, en double-base et en multi-base. Ces trois représentations sont extrémement redondantes,
et leur utilisation peut permettre la protection d’un cryptosystéme contre certaines attaques
par canaux cachés. Pour cela, le scalaire k est changé a la volée et aléatoirement en une autre
représentation. Ces représentations n’ont rien de nouveau, étant déja bien connues par la com-
munauté scientifique. Mais bien qu’étudiées, il y a peu d’implémentation logicielles et encore
moins d’implémentation matérielles sur de tels recodages pour leur utilisation dans les courbes
elliptiques. Pour chaque représentation redondante étudiée, une implémentation matérielle de la
méthode permettant de changer aléatoirement un nombre entier en une autre représentation a
été réalisée. En effet, nous voulions montrer que l'utilisation de ces représentations est applica-
ble et réalisable en matérielle. En particulier, nous comparons la surface utilisée et la fréquence
d’horloge de ces méthodes sur un cryptosystéeme ECC.

Dans une représentation en chiffres binaires signés, un entier k peut s’écrire :
n
k= Zkﬂ’ avec k; € {—1,0,1}.
0

Les algorithmes de multiplication scalaires correspondants s’obtient directement en remplacant
les lignes

«sik;=1alors Q<+ Q+ P »,
des algorithmes présentés dans la figure [2| par
«si k; # 0 alors Q < Q + sign(k;) P »,

ou sign(k;) représente le signe du chiffre de k& a l'indice i. Lorsque k; = —1, une soustraction
de point est réalisée (SUB). En pratique, 'opération et le coit de ADD et SUB sont considérés
équivalents. De plus, cette représentation peut étre modifiée pour faire en sorte que ’exécution
de la multiplication scalaire soit plus rapide. En effet, la représentation redondante en chiffres
binaires signés peut étre étendue en une représentation redondante en chiffres signés par fenétre
de w bits.

k=Y 2k avec ki €{0,£1,43,...,£2" -1}
=0

Sur w chiffres consécutifs, il est assuré qu’au maximum un chiffre est différent de zéro. Ainsi, il
y a plus de 0 dans cette représentation, ce qui permet de réaliser moins d’additions de point, et
donc d’accélérer 'exécution de la multiplication scalaire. Mais cette représentation nécessite le
pré-calcul des points P; = [j]P pour tout j € {3,5,...,2¥ — 1} ([3]P,[5]P,...,[2¥ —1]P), ce qui
peut étre coliteux en terme de surface utilisée. La multiplication scalaire est réalisée en utilisant
les additions/soustractions de point (par rapport au signe de k;) avec les pré-calculs des points
P;. Le pseudo-code correspondant est

«si k; # 0 alors Q < Q + sign(k;) Py, ».

Différentes représentations d’un nombre en chiffres binaires signés peuvent étre obtenues en rem-
plagant certaines séquences de chiffre par d’autres : 01 < 11 et 01 < 11.

Ainsi, différentes représentations d’un entier k£ peuvent étre obtenues, via un nombre aléatoire qui
décide du changement de certaines séquences. L’utilisation du scalaire k dans cette représentation

10

Summary in French/Résumé en Francais

redondante peut ainsi constituer une contre-mesure contre certaines attaques par observation.
Cette méthode a été testée en logicielle et implémentée en matérielle (FPGA et ASIC). L’unité
de recodage a une fréquence d’horloge plus rapide et sa surface représente environ 20% qu’un
cryptoprocesseur ECC.

Afin d’évaluer la robustesse de cette contre-mesure, une attaque par analyse différentielle,
une attaque par template a été réalisée. L’idée de cette attaque, introduite dans [27], est tout
d’abord de construire une base de données mémorisant le comportement du canal caché mesuré
pour des opérations connues. La fuite d’information d’un circuit est donc caractérisée : le profil
du cryptosystéme est établi pour un grand nombre de messages et d’hypothéses de clés. Cette
phase peut aussi permettre de recueillir des détails concernant I'implantation de 'algorithme
cryptographique. Ensuite, I’attaquant tente de retrouver la clé secréte en analysant des mesures
d’un canal caché provenant du cryptosystéeme attaqué.

Une attaque par template a ainsi été réalisée lors d’un projet de mobilité internationale de
trois mois & 'UCC (University College Cork) en Irlande. Ce projet de mobilité a été financé
par le college doctoral international (CDI) de 'université européenne de Bretagne (UEB). Lors
de l'attaque par template réalisée, le scalaire k est représenté en chiffres binaires signés. Pour
chaque multiplication scalaire effectuée, k est changé aléatoirement en une autre représentation.

Dans l'attaque réalisée, nous avons tenté de deviner les trois premiers bits de k utilisés dans la
multiplication scalaire, en faisant ’hypothése que le point de base P ne change pas. Le profil du
cryptosystéme a été établi en obtenant un grand nombre de mesures (1000) de la consommation
électrique du circuit FPGA pour chacune des clés possibles (23 = 8 clés possibles). Ensuite, nous
avons acquis une centaine de mesures avec une clé secréte inconnue.

Afin de valider ce type d’attaque, nous avons tenté de deviner les trois premiers bits de la
clé secréte utilisés avec un algorithme de multiplication scalaire non protégé. Ensuite, une fois
que nous avons deviné les bits de la clé secréte, nous avons implanté la contre-mesure dans le
cryptosystéme. Nous n’avons pas pu deviner les bits attaqués du scalaire k& avec 1’'utilisation de
cette contre-mesure. Le fait que 'attaque par template échoue a deviner la clé secréte a donc
permis d’évaluer la robustesse de la contre-mesure utilisée, en changeant aléatoirement le scalaire
dans une représentation redondante des nombres lors de chaque nouvelle multiplication scalaire.

D’autres représentations redondantes des nombres ont été étudiées dans cette thése. Par
exemple, nous utilisons un systéme de nombre en double-base [44] (DBNS pour double-base
number system). Celui-ci permet de représenter les entiers comme une somme de puissances
combinées de deux nombres premiers by et by. Généralement, les deux bases utilisées sont les
bases (b1, b2) = (2,3). Dans ce cas, un nombre entier k s’écrit :

n'—1

k= Z kblibyt avec k; € {—1,1}, u;,v; > 0.
i=0

Pour les calculs ECC en DBNS, une nouvelle opération au niveau de la courbe doit étre définie :
le triplement de point [3]P = P+ P+ P (noté TPL). En effet, il est plus intéressant d’avoir cette
nouvelle opération que d’effectuer un doublement puis une addition de point : un TPL est méme
plus rapide qu’une ADD. L’avantage de ce systéme est que la représentation d’un nombre est creuse
(posséde beaucoup d’éléments nuls), et n’est pas unique (c’est un systéme redondant) : il peut
meéme en exister de nombreuses. En effet, 127 a par exemple 783 représentations différentes :

127 = 2233 4+ 2132 4 2030 — 9233 4 2430 | 9031 — 9332 o133 1 9030 — |
Cette représentation étant creuse, elle permet d’accélérer ’exécution de la multiplication

scalaire car moins d’additions de points seront effectuées. De plus, il est nécessaire d’avoir un

11

nombre en DBNS avec des exposants décroissants afin de calculer efficacement la multiplication
scalaire : ug > +-- > w1 et wvg > --- > v,r_q. Ainsi, un systéme en double-base avec des
exposants décroissant est appelé une chaine DBNS .

L’idée est d’utiliser la redondance qu’offre le systéme en double-base afin que la représenta-
tion du scalaire, préalablement convertie en chaine DBNS, soit différente au cours du temps, et
ce aléatoirement. La conversion d’un entier en une chaine DBNS se fait par un programme fourni
par les auteurs de [46]. Ainsi, ce systéme de représentation permet de pouvoir rendre aléatoire
le scalaire utilisé lors de la multiplication scalaire dans les courbes elliptiques. Ceci est réalisé
par I'utilisation de régles telles que 1 +2 = 3, ou 1 + 3 = 22 par exemple. Grace a l'utilisation
de ces régles, on va pouvoir développer un terme, ou réduire la chaine DBNS en choisissant le
terme a réduire ou & développer aléatoirement. Les regles d’expansion et de réduction de termes
ont été implémentées en matériel. Cette méthode de représentation de la clé secréte peut donc
constituer une contre-mesure face a certaines attaques par canaux auxiliaires. Elle a été testée
en logicielle et implémentée en matérielle (FPGA et ASIC). L’unité de recodage a une fréquence
d’horloge plus rapide et sa surface représente moins de 7% qu’un cryptoprocesseur ECC.

La méthode précédente nécessite d’avoir au préalable le scalaire & déja en chaine DBNS.
Nous avons donc étudié et implémenté en matériel une méthode permettant de coder un entier
en DBNS. Plus généralement, nous avons implémenté en matériel une méthode permettant de
recoder un entier en multi-base (MBNS pour multi-base number system). DBNS est un cas
particulier de MBNS. Un entier en MBNS utilise plusieurs bases (b1, bo, ..., b;) et s’écrit :

n’'—

l
k=Y (kJ[o7) avec k==L

i=0 j=1

—_

En général, les bases utilisées sont (2,3,5) et (2,3,5,7). Comme pour le DBNS;, cela peut néces-
siter de nouvelles opérations sur la courbe. Par exemple, si les nombres 5 et 7 appartiennent a
la multi-base, un quintuplement (QPL) et septuplement (SPL) de points sont définis.

Ainsi, nous fournissons la premiére implémentation matérielle de la conversion d’un entier
en MBNS. Le codage d’un nombre en MBNS se fait a la volée par une unité de recodage qui
opére en paralléle des opérations au niveau de la courbe : par exemple, pendant le calcul d’un
doublement de point, nous avons le temps d’obtenir un nouveau terme MBNS et de lancer les
opérations au niveau de la courbe. Ceci permet de lancer la prochaine opération au niveau de la
courbe sans interruption. De plus, une méthode a été proposée afin de recoder aléatoirement le
scalaire k : lors de chaque recodage, la représentation de k en MBNS peut étre différente. Encore
une fois, ceci peut permettre de procurer une contre-mesure face a certaines attaques par canaux
auxiliaires.

Enfin, une méthode de protection contre les attaques par analyse simple a été étudiée et
implémentée en matériel. Dans cette méthode, nous utilisons des algorithmes déja existants de
multiplication scalaire. Nous les modifions de maniére & pouvoir les effectuer en commencant par
les poids faibles (algorithmes de droite a gauche). Ainsi, les opérations au niveau de la courbe
peuvent s’effectuer en paralléle. Une multiplication scalaire peut donc effectuer & chaque tour
de boucle une méme séquence d’opérations au niveau de la courbe. Ainsi, les algorithmes de
multiplication scalaire ont un comportement régulier : il ne dépendent pas de la clé secréte. En
pratique, il n’y a pas en matériel d’unités qui réalisent les opérations au niveau de la courbe (ADD,
DBL). En effet, ce sont les unités arithmétiques au niveau du corps (par exemple des unités de
multiplication et d’addition modulaire) qui sont effectuées en paralléle. Ainsi, ce sont certaines
opérations au niveau du corps IF, qui sont effectuées en paralléle. Dans cette méthode, nous

12

Summary in French/Résumé en Francais

faisons I'’hypothése que plusieurs unités arithmétiques sont implantées.

Les opérations au niveau de la courbe peuvent étre vues comme une succession d’opération
au niveau du corps considéré. Nous proposons ainsi des séquences composés d’opérations dans
F, qui effectuent des opérations au niveau de la courbe. De plus, chaque séquence est composée
de plusieurs blocs, et chaque bloc contient un méme nombre générique d’unités arithmétiques.
Ainsi, nous fournissons plusieurs séquences possibles pour les opérations au niveau de la courbe
qui s’effectuent en parallele. L’idée est alors d’exprimer les opérations effectuées au cours de
I’algorithme comme une succession de motifs identiques. Un attaquant effectuant une lecture
simple de la consommation énergétique ou du rayonnement électromagnétique pendant la multi-
plication scalaire ne verrait alors qu’une suite de blocs d’opérations semblables et n’obtiendrait
ainsi aucune indication sur les branches conditionnelles suivies par l'algorithme de multiplication
scalaire.

Nous proposons ainsi plusieurs séquences qui effectuent des opérations au niveau de la courbe.
Lorsqu’une seul séquence est implémentée, I'algorithme de multiplication scalaire n’effectuera
qu’'une succession de ce bloc. Cette méthode peut servir de contre-mesure contre certaines at-
taques par observation par analyse simple. Lorsque de nombreuses séquences sont implémentées,
cela peut servir de contre-mesure contre certaines attaques par observation par analyse différen-
tielle.

Une multiplication compléte a été implémentée en matérielle (FPGA et ASIC) en suivant
cette méthode. Ainsi, des tests ont été menés pour connaitre la surface utilisée et la vitesse de
notre implémentation par rapport au nombre de séquence et d’unité arithmeétique. En moyenne,
nous utilisons plus de surface (environ 7%) par rapport au cryptosystéme ECC avec lequel nous
nous comparons, mais en allant tout aussi vite en terme de fréquence d’horloge.

Ainsi, nous avons étudié durant cette thése des méthodes pour se protéger contre certaines
attaques par observation. Notamment, nous avons étudié, testé et implémenté en logiciel et en
matériel plusieurs recodages arithmétiques. De plus, une autre méthode a été étudiée et utilisée.
Cette méthode s’appuie sur le fait qu’au niveau matériel, un grand nombre de calculs peuvent
de faire en paralléle.

Cependant, nous ne pouvons pas garantir ’efficacité réelle de nos contre-mesures. En effet, il
n’est pas suffisant d’attaquer un cryptosystéme pour conclure de 'efficacité de tel ou tel contre-
mesure ou algorithme. Il est en effet nécessaire de connaitre théoriquement la robustesse de
chaque recodage arithmétique réalisé. Ceci reste un travail et une démarche captivants pour de
futures recherches.

13

Introduction

The history of cryptography is both long and fascinating. Its known origins date from the
building of the Egyptian civilization about 4 000 years ago . Since the invention of writing and
the first wars, it has always been important to be able to transmit protected messages, that is to
say messages which cannot be understood by enemies even in case of interception. Encryption is
the ability to make a message not understandable. The reverse process, i.e. to make the encrypted
information understandable again, is decryption. The concepts of confidentiality, authenticity,
integrity, and non-repudiation are the core of cryptographic schemes :

— confidentiality ensures that both sender and receiver of a message are the only ones who
can read it.

— authentication is the process of verifying and proving identity of both sender and receiver.

— integrity guarantees that the message is not modified during the transfer.

— non-repudiation ensures that the sender of a message cannot deny having sent the message,
and that the recipient cannot deny having received it.

Encryption is a cryptographic primitive which is used to provide confidentiality. There are
two basic techniques for encrypting information: symmetric cryptography (also called private-key
cryptography) and asymmetric cryptography (also called public-key cryptography). In symmetric
encryption, two involved parties share a key. To provide privacy, this key needs to be secret.
Both sender and receiver can encrypt and decrypt all messages with their secret key, called
private key. However, the use of symmetric system leads to constraints on keys distribution and
management. Keys must be distributed only to the concerned parties . For efficient key
management, a trusted third party is often required.

Asymmetric encryption uses a pair of keys. Each sender/receiver has a public and a private
key. The public key is available to anyone and must be distributed before the first communica-
tions. The private key is only known by the sender. A message encrypted with the public key of
a user, can only be decrypted using the corresponding private key of that particular user.

Without knowing it, we use daily public-key cryptography, for example when withdrawing
cash, or when using our credit card on the Internet. The RSA (initials of its authors Rivert,
Shamir and Adleman [108]) and the elliptic curve cryptosystems are thus two of the ref-
erence public-key cryptosystems for most economic actors. However, whatever the cryptosystem
used, it must have a theoretical security level such that there are not any practicable attacks
in a reasonable amount of time or cost. That is why studies are conducted to evaluate the se-
curity level of cryptosystems. Indeed, if one follows Moore’s famous law [91] which states that
the computing power of computers, more or less doubles every 18 months, one can wonder if
cryptosystems security is still enough. For example, an international team of mathematicians,
computer scientists and cryptographer researchers managed to factorize the 768-bit (232-digit)
number RSA-768 after two and a half years of computations. They occupied the equivalent
of 1700 usual processor cores for a year.

15

Moreover, the research of secure and efficient asymmetric cryptosystems has led, in recent
years, to extensive development of the use of elliptic curves. Indeed, these mathematical objects
allow the design of cryptographic schemes which require shorter key lengths for a particular
level of security, in comparison to existing cryptosystems such as RSA . Table (1] gives
security equivalences between elliptic curves cryptography (ECC) and RSA cryptosystems key
lengths . The column labelled “strength” gives the approximate number of bits of security
the cryptosystems offer.

security level (bits)
strength ‘ ECC ‘ RSA

80 160 | 1024
112 224 | 2048
128 256 | 3072
192 384 | 8192
256 012 | 15360

Table 1: Comparison of ECC and RSA key sizes for different security requirements (from [95]).

An elliptic curve can be a geometric or an algebraic object; and in a very general way, it is
defined by the set of solutions of an equation in two variables. In elliptic curves for cryptography,
arithmetic is a casual role in the implementation of cryptosystems to ensure efficiency and secu-
rity. In particular, finite-field arithmetic must be very fast according to the amount of required
computations, and use limited resources (circuit area, memory size, power consumption). How-
ever, it must also provide a good level of robustness against physical attacks. Required finite-field
operations are: additions, subtractions, multiplications (with two variables, or with one variable
by one constant) and inversions. These operations, which may seem simple enough over small
integers or real numbers approximations are quite complex over finite fields (F, or Fom) with
sizes of several hundred bits, for example from 160 to 600 bits for elliptic curves cryptography
(ECC) Appendix A|. Thus, arithmetic is a key element for designing efficient and secure
cryptosystems in elliptic curves cryptography.

In this Ph.D. thesis, we use ECC based on the algebraic structure of elliptic curves over
the finite field F),. All work will have to fit the context of secure and efficient implementations:
side-channel attacks and efficient implementations are two important areas of research in ECC.

Arithmetic over the finite-field), should be fast to perform computations on a large amount
of operations (addition, subtraction, multiplication, inversion in the finite field) on large num-
bers. For cost reasons, arithmetic operators should also be area, memory and power efficient.
Moreover for security reasons, they should not reveal internal information at runtime using phys-
ical attacks such as side-channel analysis.

Table [T] shows that for a same security level, ECC needs key sizes smaller than RSA. There-
fore, the use of elliptic curves is a decisive advantage in the context of embedded devices when
resources (power, memory, frequency, bandwidth, etc.) are limited. However whereas modern
cryptography meets with an excellent security level for authentication, confidentiality, etc., new
attacks have recently emerged in the world of embedded systems. Naive implementations of cryp-
tographic algorithms can constitute flaws into the system security. These attacks exploit some
correlations between secret values manipulated in the device and physical parameters measured

16

Introduction

on the device such as power consumption, electromagnetic emanations or computation timing.
Black-box model, often used in cryptanalysis, fades here before so a more complex model where
all observation can be used by an attacker to retrieve information. The security and efficiency
of implementations is a real challenge for mathematicians, computer scientists and electronic
engineers for both hardware and software cryptosystems.

Cryptographic attacks are divided into two large families, theoretical and physical attacks.
Theoretical attacks are usually considered as black bozr attacks because the values of temporary
variables used during the computation are not accessible by an attacker. However, when algo-
rithms are implemented in embedded systems, other attacks become achievable. These attacks
consist in side-channels exploitations or circuit operations modifications. Contrary to theoretical
attacks, some internal variables to algorithms can be read or modified. These attacks can be
divided into two main groups: the first contains observation attacks, while the second includes
perturbation attacks (e.g. fault injections).

Thus, the chosen cryptosystem must use countermeasures to protect itself from possible
attacks: chosen algorithms should be resistant to a number of known attacks and nevertheless
still remain as efficient as possible in view of an implementation. The attacks which we are
interested in are side-channel attacks.

Side-channel attacks come from pure observation of the component. To explain this kind of
attack, let us do a correlation with a clear example: the story of the theft of documents in a
safety box. A thief, equipped with a stethoscope, tries to open the safety lock. For this, he/she
needs the code actuating the opening of the safety box, code that he/she does not know and that
he/she will try to discover. Also, he/she only needs to listen to and analyse what it means when
he/she turned the knob. Indeed, two different sounds can be heard; whether a “click” means one
of the gears is in a good position, the other sound means that the gear is not part of the code
which unlatches the safety box. The only thing left to do is to analyse the different sounds to
discover the secret. The stethoscope is the required tool in this endeavour, it just amplifies the
sound that one can hear. Similarly to the way, this stethoscope is used to discover the code of
the safety box, one can measure for example the power consumption of a circuit when running an
algorithm. With these measurements, one can search for information, and try to find the secret
key of an encryption algorithm. Thus, it is possible, via an oscilloscope to measure the consumed
power by a circuit. Then there is a stage of analysis where one could observe the different opera-
tions executed. If the encryption key is a function of these operations, it could then be revealed.
This example is based on a type of side channel. Side channels can consist in any measurable
quantity in connection with the execution of an algorithm exploiting secret information. Some
used and studied sources are the running time, power consumption or electromagnetic radiation
of the circuit on which algorithms run. The aim is to retrieve informations, such as the secret
key used in a cryptosystem.

However, there are a-plenty of countermeasures against side-channel attacks in the literature.
Some of them are theoretical and use different number representations and algorithms. Calcula-
tion algorithms can be changed at the curve level or at the field level. For instance, Pamula [99]
performed researches at the CAIRN team by changing algorithms at low level, with hardware
implementations and results. However in practice, there are few software results, and even less
hardware results.

In this thesis, we study some existing protections at the arithmetic level and we implement
them in hardware. We do not change curve parameters, but we change the number representa-
tions and the calculation algorithms. Indeed, we want to show that most of solutions are realistic
in hardware and implementable. In addition, we want to know what is the costs of the proposed

17

solutions in term of area or clock frequency.

Thus, we evaluate the cost of some methods and protections. In particular, each method and
implementation are validated (at theoretical and practical levels), finely designed in hardware
and practically evaluated on different FPGAs (area, clock frequency and robustness). It enables
to compare some implementations on several platforms.

The organization of this work is detailed in the following.

We shall study efficient and secure cryptographic implementations. Chapter [I] introduces
all necessary concepts for an understanding of the basic elements. Also, it gives the reader
concepts about the understanding of subsequent chapters. Thus, chapter [I] deals with elliptic
curves elements, arithmetic over finite fields and side-channel analysis. In addition, we work on
arithmetic algorithms and various representations of numbers. Speed and area of the various
operators are theoretically estimated and practically evaluated on FPGAs. Some algorithms or
number representations can have specific characteristics, and modify power consumption during
encryption.

Chapter [2] deals with redundant representations, and in particular how to randomly recode
numbers. In a redundant system number, some numbers have several representations, thus
the name redundant. These representations are known in the literature. We implement the
proposed solutions and we propose hardware implementations for on-the-fly random recodings
of the scalar digits using two methods, the double-base number system (DBNS) and signed-digit
(SD) representation. The very high redundancy of these representations allows us to randomly
choose among several representations of the key digits. This may be used as a countermeasure
against some side-channel attacks.

Side-channel attacks pose a serious threat to implement cryptographic algorithms. Proposed
methods can be countermeasures against some side-channel attacks. In chapter 3] we perform
a specific side-channel attack on an implementation using a countermeasure implemented in
chapter In particular, a template attack is performed to practically evaluate the proposed
countermeasure. The advanced statistical attack is performed on an implementation based on
ECC. In a template attack, the attacker is assumed to know characteristics of a side channel
over some processed data of a device. This characterization is stored and called template. The
attacker matches the templates based on different key guess with the recorded traces. Thus,
the robustness of the proposed countermeasure based on signed-digit representations which use
randomized recoding of a number, is evaluated in this chapter, by performing a practical attack
by observation.

Chapter [] deals with very sparse and redundant representations. Redundant representations
based on DBNS or multi-base number system (MBNS) allow to accelerate the encryption. How-
ever most of redundant methods require pre-computations and off-line recodings. In this chapter,
we provide a fast recoding method which can be fully implemented in hardware with and without
pre-computations. It is the first presented hardware implementation. MBNS terms are obtained
on-the-fly using a special recoding unit which operates in parallel to curve-level operations and
at very high speed. This ensures that all recoding steps are performed fast enough to schedule
the next curve-level operations without interruptions. In addition, using such representations
enable to add randomness in the scalar recoding. Thus, it can be a protection against some
side-channel attacks.

Finally, chapter [f| deals with methods and algorithms which can be performed as a succession
of unique patterns. If encryptions have a regular behaviour, attackers may be not allowed to guess
the secret key. It can provide countermeasures against some side-channel attacks. When adding
randomization in this protection against side-channel attacks, an attack by observation may be
even more difficult to perform. A scalar multiplication is implemented with the aforementioned

18

Introduction

protections. Thus, we compare cryptosystems with and without countermeasures. In the same
way, we compare the evolution of the area and the clock frequency in function of protections and
different devices or platforms.

A conclusion finishes this thesis about our overall work, and makes suggestions for future
works.

19

Chapter 1

State of the Art

1.1 Elliptic Curves

The mid-1980s saw the emergence of a fascinating cryptographic idea, that of using elliptic
curves in cryptosystems |86, [71]. Basically, elliptic curve cryptography (ECC) involves a public
curve F(K) where K is a finite field. In ECC, considered finite fields are K = F, for a large
prime p, or binary fields K = Fom for suitable integers m. In this Ph.D. thesis, we only consider
elliptic curves over large characteristic fields, i.e. elliptic curves over the finite field F), with p a
large prime. However, all this work can be performed over binary fields with slightly adaptations.
The set of points of an elliptic curve E defined over F), is denoted E(F,).

This section deals with the background on elliptic curves to be able to understand and to use
in a cryptographic purpose. This section is particularly based on [114], [115], [74] and [60] for
the mathematical aspects of cryptography, and on [34], [64] and |12] for the use of elliptic curves
in cryptography.

1.1.1 Definitions

Formally, an elliptic curve E defined over a field K is the set of K-rational points including
a point denoted O € F(K), called point at infinity. The elliptic curve E is a non-singular cubic
projective curve. Below, we explain each word of the previous definition:
— A cubic curve is an algebraic curve of order three defined by equation f(z,y,z) = 0, where
f(z,y,2) is a polynomial in z, y and z arguments in K,
— A projective 2-space over a field K, denoted P?(K), is the set of all (2 + 1)-tuples such that
at least one x; is non-zero modulo the equivalence relation R

(o, x1,22) R (Yo,y1,¥y2) <= A€ K*, (wo, 21, 22) = Ayo, Y1, ¥2),

— A curve where all points are non-singular is a non-singular curve (or smooth curve). Geo-
metrically, it is a curve with a unique tangent at any point. A point P of a curve E defined
by the equation f(z,y,z) = 0 is a singular point if the three partial derivatives of f are
zeros at point P

ory _of
or|p Oy

_of

P_E

P

Figure [I.1] presents graphic illustrations of two singular cubic curves over R. Indeed, the
two curves have a singular point at the origin. The discriminant A of curve equations is zero.
Reciprocally, A = 0 implies that the curve is singular.

21

1.1. Elliptic Curves

yZ:x3))2:)c3+x2
0:6 o /
0:4 1
0:4
0.2 0:2 1

0.5

Figure 1.1: Two singular cubic curves (from [114, p. 43]).

1.1.2 Weierstrass Equations

Let an elliptic curve over a field K be an algebraic non-singular cubic curve. An elliptic curve
can be written like a cubic equation of the form (see [34, p. 268])

Y2Z 4+ a1 XYZ +asYZ? = X3 + 4o X% Z + as X Z% + a6 22,

with ai, a2, as, a4, a¢ € K and with an additional point, called point at infinity O = [0, 1, 0].
By a change of variables © = X/Z and y = Y/Z, the Weierstrass equation of a general elliptic
curve over a field K is of the form

E(K) : 9?4+ a1zy + azy = x° + asx® + aqx + ag,

where coefficients a1, ae, a3, a4, ag € K. With an adequate change of variables, Weierstrass
equations defined over a specific K can be simplified. In particular, if the characteristic of K is
not equal to 2 or 3, the simplified Weierstrass affine equation is

E(K) : y* =2°+ax +b,

with a = a4 and b = ag.

The curve E is non-singular, and thus is an elliptic curve, if and only if A is non-zero over
the field K: the discriminant A of such a curve is A = —16(4a3 + 27b%). Thus this curve has a
unique tangent at any point.

For faster performances in field-level operations, computations on elliptic curves are often
performed with the special case @ = —3. When using the general case (any a), it is possible to
obtain the value a = —3 for an isogenous elliptic curve, and to perform computations on this
curve rather than on the original one (see for justification).

An isogeny from Ej and Es is a morphism

¢: By — Ey satisfying ?(0)=0.

where F7 and FE» are two elliptic curves. F1 and FEs are isogenous if there is an isogeny from Fy
to By with ¢(E1) # {O} (it is an equivalence relation).

22

Chapter 1. State of the Art

1.1.3 Group Law

Let E be an elliptic curve given by the Weierstrass equation. Since the equation has degrees
three, a line intersects the curve E at exactly three points P, @ and R. When the line is tangent
to F, one denotes P = (). Assuming by a natural geometric addition law, the set of points
E(K) forms an abelian group. The group of an elliptic curve is the set of K-rational points.
K-rational points satisfying Weierstrass equation, with the point at infinity O, form an abelian
group. Operations in this group are performed using the chord and tangent rule. This result is
the main reason for the interest in elliptic curves. The point at infinity O is the neutral element
(or identity element).

The composition law for curves F defined over K has the following properties (see [114], p.51]
for more details):

-VP,QeE P+Q€eE, (closure)
- VPekFE P+0O=P, (identity element)
-VP,QeFE P+Q=Q+P, (commutativity)
- Let Pe E I(-P)eE|P+(-P)=0, (opposite element)
~Let PQ,Rc FE (P+Q)+R=P+ (Q+R). (associativity)

Geometrically, the sum of two distinct K-rational points P and ¢ which differ from O, is
obtained by the line which intersects E at a third point R, also a K-rational point. Then
(P4 @)+ R = 0. The opposite of R is the result of the sum P + (). Now finding the opposite
of R can be done by setting R = (z,y) giving —R = (z,—y). When P and @ are not distinct,
the sum is obtained similarly by considering the tangent to E at that point. This operation is
called point doubling. Two operations are the main ones used in cryptography based on elliptic
curves: point addition P+ @) where P # +(Q (denoted by ADD) and point doubling [2]P = P+ P
(denoted by DBL).

Figure |L.2]illustrates the chord and tangent rule on the elliptic curve y? = 23 — 2 + 1 defined
over R. This figure presents the point addition P+ Q with P, € E where P and @ are distinct
(on the left) and where P and @ are the same point (on the right), called point doubling.

y2:x3—x+l y2:x3—x+l
1.5 4

P

Figure 1.2: Mlustration of the group law on R generated using Maple.

23

1.1. Elliptic Curves

This notation is extended to the scalar multiplication, i.e. the computation of

[K|lP=P+P+---+P,

k times

with k € Z, a large integer in the range 160—-600 bits for typical cryptographic sizes [57, Appendix
A]. In addition, we have [0]P = O. For all k € Z, one can extend the scalar multiplication defi-
nition: [0]P = O, [#E(F,)|P = O, and [k]|P = [-k|(—P) for k < 0.

Algebraic formulas for this group law are derived from the geometric description. Let P, =
(z1,y1) and Py = (x2,y2) be two points of E. Coordinates of P3 = P, + P, are:

z3 =\ — 21 — 29 ys = A1 — x3) — 1,
29 if P, £ +P,,
: _) wmo—x
if P1 = P2.
2y

Thus, computing point doublings or point additions is a sequence of operations over the
considered field. Note that the presented formulas require one inversion for each curve-level
operation.

1.1.4 Discrete Logarithm Problem

Public-key cryptosystems rely on one-way trapdoor functions. Computing the inverse of in-
jective functions f~! with f : A — B is hard except if one knows some specific information.
Proving the existence of the one-way trapdoor is still an open problem, but some hard mathe-
matical problems are used as the basis for a trapdoor [116]|. In particular, the discrete logarithm
problem (DLP) relies on the same underlying problem. The security of cryptosystems based
on elliptic curves is based on the difficulty of the discrete logarithm problem. Protocols and
cryptosystems, like Diffie-Hellman or ElGamal, are also based on the DLP.

The DLP on a multiplicative group G is stated as follows: given an element e of a group
and x an element of the order n subgroup generated by e, find the integer d € [0,n — 1] such
as x = e?. The elliptic curve discrete logarithm problem (ECDLP) asks for a solution d to the
equation [d]P = @ for given points P,Q € E(F,;) and Q € (P) = {0, P,[2]P,--- ,[n—1]P} with
[F, a finite field, and n the order of P.

Up to now, there is no sub-exponential complexity algorithm for solving ECDLP. Some
methods solve the ECDLP, like Pollard’s p (complexity in O(y/n) [85]) or Shanks’ babystep-
giantstep (complexity in O(y/n) but with O(y/n) storages [32]). The selection of curve parameters
is important for security reasons. Curves studied must be robust according to ECDLP.

1.1.5 Security Evaluation

Estimating the number of points on an elliptic curve is a fundamental problem for security
evaluation. Indeed, the discrete logarithm problem is easy to solve when the cardinal of the
group is smooth, i.e. when numbers are a product of small primes. Thus it is important to verify
that the number of points on the curve is divisible by a large prime number for cryptographic
applications [34, p. 479]. The number of points in E(F,) is denoted #E(F,), and is called the
order of E over [F),.

24

Chapter 1. State of the Art

The Hasse-Weil interval ensures that the cardinal of a curve is close to p for an elliptic curve.
In particular, Hasse’s theorem states: #E(F,) =p+1—a, with |a,| < 2,/p with an elliptic
curve I/ defined over a finite field IF,,. Thus one has the interval:

(VP —1)? S #E(F,) < (Vp+1)*

Note that if #E(F,) is prime, E(F,) is a cyclic group and any point except O in E(F)) is a
generator of E(IF,) (see [57, p. 84] for an example).

An exponential method to find #E(F),) is presented in [114, p. 372]. In [113] Schoof presents
an algorithm which calculates #E(F,) in polynomial time. The idea is to compute the value of
(ap mod 1) for a great deal of small primes [and then to use the Chinese remainder theorem to
reconstruct a,.

1.1.6 Point Representations

The affine representation (denoted A) is implicitly considered yet such as a point P = (z,y)
with z, y € IFIQ). In this coordinate system, the addition and doubling formulas present sequences
of additions (denoted A), multiplications (denoted M), squares (denoted S) and inversions (denoted
I) over a prime field F),. Inversion is a relatively expensive operation compared to multiplication
in terms of computation time and area. The typical inversion cost assumption in F, is about 15
to 45 multiplications (1I ~ 15 to 45M) [19]. The use of other coordinate systems enables us to
avoid computing modular inversions, and so to accelerate the computation of ADD and DBL. In
practice, the addition cost at the field level is not taken into account because it is a very cheap
operation compared to M.

The use of projective coordinates (denoted P) avoids performing modular inversions. The
Weierstrass projective equation over F,, is:

Y2Z 4+ a1 XYZ +asYZ? = X3 4 auX?Z + au X Z? + ag Z°.

Projective coordinates solve the modular inversions by adding the third coordinate Z. Inver-
sions are replaced with several other field-level operations. The foundation of these inversion-free
coordinate systems can be explained by the concept of equivalence class. A point in projective
coordinates, denoted (X : Y : Z) is the equivalent class of (X,Y, Z) according to the equivalence
relation, that is

(X :Y:2Z) = {(a,b,c) € F3\(0,0,0) | 3A € F%, (a,b,¢) = (AX, AV, AZ)}.

The opposite of point (X : Y : Z)is (X : =Y : Z). The point at infinity O is the only one
which has the coordinate Z equals to zero: (0,1,0). Conversion from affine (x,y) to projective
coordinates (X : Y : Z) is straightforward. The inverse conversion requires inversions in F,. In
practice, this conversion is only used one time at the end of the computation of [k]P in order to
be in affine coordinate.

(z,y) = (z:y:1),
(X:Y:Z+#0)> (X/2,Y/)2).

Formulas for point addition and doubling are obtained by transforming the projective coor-
dinates into affine coordinates and then applying the formulas in affine. It is then possible to
choose the third coordinate Z so as to remove the inversions in F,. One can find the formulas
in [34], [64] or [12].

Several projective coordinate systems have been proposed over I, to speed up computation
of ADD and DBL operations:

25

1.1. Elliptic Curves

— standard projective coordinates (denoted P),
— Jacobian projective coordinates (denoted J),
— modified Jacobian coordinates (denoted J),
— etc.

Table presents the properties of some coordinate systems (“coord”). Note that in all cases,
the opposite of the point (X : Y : Z)is (X : =Y : Z).

’ references ‘ coord H representation of P ‘ conv in A ‘ curve equation ‘ O
P (X:Y:2) (X/2,Y]Z) | Y?Z=X34+aXZ?+0bZ3 | (0:1:0)
|57, pp. 86-95] 9 2 4
J (X:Y:2) (X/Z2,Y)Z3) | Y2 =X34aXZ*+bZ5 | (1:1:0)
[33] Jm (X:Y:Z:aZ* | (X)Z2,Y)Z3) | Y2=X3+aXZ*+bZ5 | (1:1:0)

Table 1.1: Properties of different projective coordinate systems.

The choice of the coordinate system is determined by the number of operations at the field
level to perform during the computation of point doubling and addition. Table [I.2] compares
the cost of DBL and ADD for several coordinate systems in F,. These costs come from the web
site Explicit-Formulas Database http://hyperelliptic.org/EFD. We apply the typical cost
assumption used in many references: 1S = 0.8 M and general parameters for the curve constants
a and b. Note that there is no coordinate system that provides both fastest DBL formula and
fastest ADD formula.

| coordinate [[ADD | DBL |
A 3M+1I [4M+1I
P 9.8M 13.6M
J 7.4M 15M
Jm ™ 16.6M

Table 1.2: Costs in multiplication and inversion for point doubling and addition in several coor-
dinate systems (from EFD).

To always use the best cost for DBL and ADD, operations can be performed in mixed coor-
dinates. Cohen et al. in [33] change the coordinate system during the point computation to
select the most appropriate one. The choice is then based on the efficiency with respect to the
concerned operation and the cost of transformation from one coordinate system to another one.
For instance, when using projective coordinates and starting from a given affine point (z,y), one
easily converts to projective coordinates by adding a one at the third coordinate, i.e. having the
projective point (X : Y : 1). To recover the affine point from (X : Y : Z) # O, one must first
compute Z~! in the considered field. Then, one obtains the affine point (XZ~1, Y Z71).

Let Crdy, Crds and Crds be three coordinate systems. The mixed addition (denoted mADD)
of two points in coordinate Crdy and Crds respectively and the result is in coordinate Crds is
denoted Crdy + Crdo — Crds. For instance, J + A — J is a point addition with a point in
Jacobian and the second in affine coordinate. The result of this point addition is in Jacobian
coordinate. The use of mixed coordinates can accelerate the computations.

In this study, we focus only on Jacobian coordinates system and the mixed addition J +.4 —
J. Table reports computation costs, given in field operations (M, S) for various curve-level
operations over [, from literature. For multiple publications from a group of authors, we only

26

http://hyperelliptic.org/EFD

Chapter 1. State of the Art

report the best results. ADBL denotes a sequence of A\ successive DBL operations, as for the
computation of [2"]P. ADBL formula is used when it is faster than their equivalent sequence of
DBL: ADBL formula is faster than successive DBL from A > 8.

curve-level operations
curves references ADD mADD DBL
EFD 11IM+5S | TM+4S | 1M+ 8S
0t -3 7[40u41u87u75] 12M 448 | 8M+3S | 4M 463
[78], 76| 11IM+ 58 | TM+4S | 2M + 8S
[54] n/a n/a | 1M+ 8S
_ o || EFD, (78], [77], 76, [75] || 114+ 5 | 7M+ 45 | 34+ 55
[40], [41] 12M 448 | 8M 435 | 4M+4S
curves references ADBL
a+#—3 [40], [41], [61], [87] ANM + (4X + 2)S

Table 1.3: Costs of curve-level operations from literature and curves over F,,.

1.1.7 Scalar Multiplication

Scalar multiplication is the most time consuming operation in ECC based protocols. Let E
be an elliptic curve defined over F), and P € E(F,) be a point on E, with [, a large prime field.
Scalar multiplication is denoted by [k]P where P is a curve point and k a scalar, i.e. a large
integer used as private/public key in protocols.

Figure illustrates the typical number of operations required at each level. One [k]P
requires hundreds of curve-level operations (k is n bits long with n about 160-600). Each curve-
level operation (ADD, DBL) requires a sequence of 8-12 field-level operations. Finally, each field
operation requires tens (for large operators) to hundreds (for small iterative operators) of clock
cycles.

one scalar multiplication

(k] P
ADD, DBL, . .. hundreds of curve operations DBL
M,8,IinF, thousands of field operations M- [M[S]--

clock cycles — I M D

Figure 1.3: Pyramid of operations in a scalar multiplication (arbitrary scale).

The scalar k is an n-bit integer k = (kp—1kn—2...k1ko)2. Usually n and the size of p (#bits)
are similar and in the range 160-600 bits for typical cryptographic sizes.

Algorithm in figure [L.4] presents the two classic [k] P algorithms, called double-and-add, start-
ing from least and most significant bits of k. They are based on the following observation:

=
~
I

koP + k1([2]P) + ko([4]P) + - - - + kn_1([2" 1] P),
KP = koP+ 2P+ (kP + o+ [2)(knaP))).

27

1.1. Elliptic Curves

In this algorithm, the point addition operation @) < @ + P is only performed when the ith
bit of the scalar k equals to 1.

input: k = (k‘n_lk‘n_g ... klk‘o)g, Pe E(Fp)
output: Q = [k|P

.| Q«+—0 Q+— 0O

2: || forifrom 0 ton—1do for i from n — 1 downto 0 do

3 ifk;,=1then Q+— Q+ P (ADD) Q +— 2|Q (DBL)
4: P+ 2P (DBL) ifki=1then Q+— Q+ P (ADD)
5: || return Q return Q

Figure 1.4: Right-to-left and left-to-right binary “double-and-add” algorithms to compute [k]P.

The double-and-add algorithm is not unique to elliptic curves. It is applicable to any group.
When the group law is written multiplicatively, the double-and-add algorithm is called “square-
and-multiply”. The average runtime of double-and-add algorithm to compute [k]P is:

1
|logs k| DBL + 5 (1 + [logy k|)ADD = (n — 1)DBL + gADD,

since the binary expansion of the integer k has in average n/2 number of zeros. The theoretical
security of ECDLP comes from the fact that given two points P and @ such that Q = [k]|P,
finding the integer k is not feasible in practice (for well chosen curves), see [57, Sec. 4.1] for
details and theoretical attacks.

The computation of the opposite of a point (—@Q) is straightforward. Thus point subtraction
(SUB) P — @ is as efficient as point addition (4: —P = (z,—y) and J: —P = (X : =Y : 2)
for curves over F,,). This motivates the use of signed digits. A non-adjacent form (NAF) of k
is a representation where in two consecutive signed digits k; € {—1,0,1}, maximum one digit
is different to zero, i.e., kiy1k; = 0 for all i > 0 (see |57, Sec. 3.3.1] for details and conversion
algorithm). A scalar k has a unique NAF representation.

Scalar multiplication using NAF recoding is straightforward: replace lines

“if k; — 1 then Q « Q + P”,
in algorithm on figure [T.4] by
“if k; # 0 then Q «+ Q + sign(k;) P”,

where sign(k;) is the sign of the digit k;. The computation cost is on average % ADD + n DBL
(cost for point subtraction is ADD). Indeed, the average number of non-zero digits among all NAF
representations is n/3 (see |14] for an analysis of the NAF density).

Another optimization, called wNAF, processes a window of w digits of k (with larger k; values).
The representation wNAF uses digits k; € {0, 41,43, £5,...,£2%"1 -1} and at most one of any w
consecutive digits is non-zero (see |57, Sec. 3.3.1], NAF is wNAF for w = 2). Thus wNAF guarantees
that on average there is a density of w}H non-zero digits in the key representation, that is
point additions.

n
w—+1
n .
WNAF(k) = > k2’ with |k;| < 2@t
=0

28

Chapter 1. State of the Art

Thus if w =2, k; € {0,+1}; if w =3, k; € {0,£1,£3}; if w =4, k; € {0,4+1,£3,£5,+7};
etc. Multiples of P, the constant points P; = [j]P, must be pre-computed and stored for all
j€{3,5,7,...,2v71 —1}.

For instance, if £ = 763 = (1011111011)9, the wNAF representation of k for 2 < w < 4 is:

2NAF(k) = 10100000101,
3NAF(k) = 00300001003,
4NAF(K) = 00300000005.

In practice, wNAF is used with w < 4 for limited storage overhead. Scalar multiplication is
done using point addition/subtraction (depending of the sign of k;) of pre-computed multiple
P;. The corresponding pseudo-code is

“if k; # 0 then Q < Q + sign(k;) Py, "

The computation cost is on average ;5 ADD + nDBL without the pre-computation step. This
type of pre-computation may be interesting if the same point P is reused.

The representation wNAF has a window of w digits and can skip consecutive zeros after a non-
zero digit k; is processed. In this sense, an optimization of the simple wNAF scalar multiplication
can be performed by a sliding window algorithm for scalar multiplication [34, Sec. 13.1.2].
Sliding method is more efficient than the scalar algorithm with wNAF, but with a higher storage
of pre-computed points.

1.2 Double-Base and Multi-Base Number System

Various methods have been proposed to speed up scalar multiplication. Among them scalar
recoding is popular: non-adjacent form (wNAF), double-base number system (DBNS, typically
with bases 2 and 3), multi-base number system (MBNS with bases such as (2,3,5,7)) [42].
DBNS and MBNS represent numbers as the sum of terms such as £235°7%. Fast recoding
methods can require pre-computations: multiples of base point for wNAF and off-line conversion
for DBNS and MBNS. In this section, we present DBNS and MBNS for ECC.

1.2.1 Double-Base Number System

Double-base number system (DBNS) was initially introduced in [38], used for modular expo-
nentiation in [43], for signal processing in [44] and for ECC in [40], [46], [6], |7], [45] and [41]
(which is very complete).

The concept of DBNS has some advantages in implementing elliptic curve scalar multiplica-
tion. The DBNS simultaneously uses two bases for representing numbers. In most works, bases
are 2 and 3. In this work, we assume the same choice (i.e. B = (2,3)). Thus an integer k is a
sum of n’ terms and is represented by:

n'—1

k=) 523",
1=0

where s; = £1 and (u;,v;) € N. The size (or length) of a DBNS expansion is equal to the number
of terms n/, which can be different to the number of bits n of the integer. Most of the time, n’
is small compared to n: one has n’ < n. Triplets (s;, u;, v;) are called terms and are the “digits”
of the DBNS expansion. DBNS is a sparse number system (i.e. the number of terms is small).

29

1.2. Double-Base and Multi-Base Number System

Whether one considers signed (s; = £1) or unsigned (s; = 1) expansions, this representation is
a redundant number system (i.e. some numbers have several representations). An integer which
can be written as a sum of n’ terms, but cannot be represented with (n’ — 1) or fewer terms is
called canonic double-base representation. For instance, the value 127 has 783 different unsigned
DBNS representations among them six canonic representations which can be written as a sum
of three terms [8|:

127 = 2233 4+ 2132 4 2030
= 2233 4 2430 4 9031
= 2737 + 2137 4 203"

The total number f(k) of unsigned DBNS for an integer £ > 0 is given by the following
recursive function (see [41] for details):

1 it k=1,
f(k) =< fUi—=1)+f(k/3) i k=0 (mod3),
f(k—1) otherwise.

For instance, 10, 100 and 1000 have 5, 402 and 1295579 different DBNS representations,
respectively. For large numbers, finding a representation of minimal length, in a reasonable
amount of time, is a very large problem. One can use the greedy approach presented in figure [[.5]
to quickly find a representation, based on the determination of the best default approximation
of k by a term, i.e. the largest integer < k of the form 2“3.

Converting Numbers to DBNS

Finding one of the best DBNS expansion of an integer in an efficient way can be done
by the following algorithm in figure from [44]. LT denotes the list of terms which stores
the DBNS recoding of k. Each term corresponds to a triple (s,u,v) with s = +1 such that
k=Sl s 2ui3v

input: a positive integer k
output: list of terms LT which stores the DBNS recoding of k
LT = ((81, ui, Ul), (82, ug, Ug), c.)

LT < ()
s+ 1
while k£ # 0 do
find the best approximation of k£ of the form 2%3Y
LT <~ LT U (s,u,v)
if £k < 2“3" then
S 4 —s
k< |k —2"3"|
return LT

Figure 1.5: Greedy algorithm to convert integers into DBNS (from [44]).

30

Chapter 1. State of the Art

The greedy algorithm provides expansions of length n/. It terminates after n’ = (10?%0 §k>

steps [43], and enables to very quickly find a DBNS expansion of a given integer. This algorithm
finds the best approximation of the form 2"3" of k, and then computes |k — 2*3"|. This method
is applied until reaching zero. See the following example from [46| for an illustration.

Example. Let k = 841232. One has the sequence of approrimations:

841232 = 273% + 1424
1424 = 2136 — 34
34 = 2232 — 2

Therefore, the recoding is: 841232 = 273% 4+ 2136 _— 2232 4 ol

This approach sometimes fails in finding a minimal representation. For example, the minimal
representation of 41 is 32 +9 = 2°3° + 2032 whereas algorithm in figure returns
41 = 36+4+1 = 2232 4 2230 4+ 2030,

The crucial problem of this algorithm is to find the best default approximation of k (line 3 of
algorithm in figure|1.5)) of the form 2%3Y. A method has been proposed in [93| using lookup-tables
with specific addressing scheme. However this approach may be too costly for cryptographic sizes,
and unrealistic for hardware implementation. Another method, presented in [9], uses continued
fractions, Ostrowski’s number systems and diophantine approximation. This method can be
reformulated as finding integers v and v

ulog2 4+ vlog3 < logk,

such that no other integer gives a better approximation to logk. An approach can consist in
scanning points with integer coordinates near the line y = —klogs 2+1logs k. One only keeps the
best approximations, that is points which have the smallest vertical distance to the right line |9].

Another method, a tree based approach is proposed in [45] for binary to DBNS conversion.
Assuming that the number k is coprime to 6, a tree is built by considering k — 1 and k + 1: the
powers of 2 and 3 are removed from k& — 1 and k£ + 1 as much as possible. For each node, 1 is
added and subtracted, and then the process is reapplied until reaching 1. Repeating this will
create a binary tree.

These methods allow to recode an integer into DBNS. This recoding leads to a very sparse
representation. This inherent spareness of DBNS leads to fewer curve-level operations in elliptic
curves. That is why DBNS can be very attractive when considering ECC.

Double-Base Number System for Elliptic Curve Cryptography

In curve-based cryptosystems, the core operation that needs to be optimized as much as
possible is the scalar multiplication [k]P. For ECC computations in DBNS, a new curve-level
operation needs to be defined: point tripling [3|P = P+ P+ P (denoted by TPL). It is faster than
an addition point (ADD) in Jacobian coordinates (see below in table for costs of curve-level op-
erations). Naive scalar multiplications in DBNS can be computed in a simple way: for each term
(8, ui,v;) in the expansion, required operations are u; DBLs, v; TPLs and ADD/SUB accordingly to
the symbol of s;, sign(s;). Several variants with close performances exist. DBNS is a very sparse
representation. Then, the number of point additions is reduced: the computing cost of the scalar
multiplication follows a sublinear complexity of less than (logk/loglog k) additions [43|, where

31

1.2. Double-Base and Multi-Base Number System

k is the scalar.

In [40] and [46] a special type of DBNS recoding is proposed, called DBNS chain. The scalar
multiplication can be efficiently computed using DBNS with non-increasing exponents, where
ug is considered the largest exponent of powers of 2, while u,s_; is the smallest one (the same
notation applies for v; exponents and powers of 3)

Uy > - > Uy and vg > - > Upq.

Finding a DBNS expansion with non-increasing exponents [41] can be computed using the
greedy algorithm in figure[I.6] LT denotes the list of terms which stores the DBNS recoding of
k.

input: a positive integer k, and tmaz, Umaz > 0 the largest allowed binary and ternary exponents
output: list of terms LT which stores the DBNS recoding of k
LT = ((sl,ul,vl), (s2,u2,v2),. ..), with u; < w1 and v; <wv;_q fori>1

LT < ()
s+ 1
while £ > 0 do
Find the best approximation of k& of the form 2%3% with 0 < u < Umee and 0 < v < Vpaz
LT < LT U (s,u,v)
Umaz < U Umag € U
if £ < 23" then
§ 4 —s
k<« |k —2"3"|
return LT

,_.
<

Figure 1.6: Greedy algorithm to convert integers into DBNS with non-increasing exponents
(from [41]).

Parameters g, and vp,q, are the upper bounds for the exponents in the expansion of k.
Clearly, one can suppose that inputs g, and Ve, require e, < logy(k) < n and vpgee <
log (k).

Let t; = 2"*3%. Using a non-increasing sequence of exponents, the value k = Z?;Bl s;t; can
be factorized by t,/_1:

n'—2
k= (Z sty + Sn/l) X tn/—1,

i=0
where ¢, = 2% ~"/-137%/—1_ In the same way, one can factorize Z:";f sit;. This computation
can be applied until reaching +1. This method is similar to Horner scheme.

For instance, k = 15679 can be recoded into DBNS with non-increasing exponents:
15679 = 203° 4 2%3° + 2137 + 2930 = 21322131 (28% + 1) + 1) + 1.

Without considering non-increasing exponents, the computation cost of [15679]P is
3ADD + 9DBL + 10TPL = (n/ — 1)ADD + (3°7 " w;)DBL + (30, v;) TPL operations. When one
considers non-increasing exponents, the cost of [15679]P reduces to only

32

Chapter 1. State of the Art

3ADD + 6DBL + 5TPL = (n/ — 1)ADD + u(DBL + vgTPL operations.

In [40|, a scalar multiplication algorithm dedicated to DBNS with non-increasing exponents is
proposed. This algorithm is given in figure [[.7] with & in DBNS chain. The cost of this algorithm
is

(n’ — 1)ADD + uoDBL + v TPL,

operations at the curve level. The number of terms in the DBNS expansion is represented by
n’. To evaluate this cost at the field level (number of multiplication), one must consider what
formulas are used. Indeed, when one uses the formula ADBL (resp. ATPL) for A successive DBL
(resp. TPL), wug (resp. vp) cannot be replaced by A to have the cost at the field level: A must
be replaced by each factorized term (Z;if u; — uit1) for point doublings (Z:i62 v; — viq1 for
point triplings). This is due to the fact that the formulas of ADBL and ATPL are not a product of
a function of \. For instance, a complexity in Jacobian for ADBL is 4AM + (4 + 2)S:

5DBL = 20M + 228 #* 3DBL 4+ 2DBL = 20M+ 24S,

5DBL 3DBL 2DBL
} 1 | {4 f -

input: a point P € E(F,), and an integer k = Z?;Bl 8;2%i3% with s; = &1,
such that ug > --- > wu,y—p and vg > - -+ > vy
output: the point Q = [k]P € E(F,)

Q « soP

for ¢ from 0 to n’ — 2 do
U <— Uj — Uit V< Vj — Vi1
Qe 299 Qe BQ
Q< Q+sinlP

if u,_1 # 0 then
Q « [2-11Q

if v,,_1 # 0 then
Q <« [3"]Q

return @

[

Figure 1.7: Right-to-left scalar multiplication algorithm (from [40]).

Table [T.4] presents performance of DBNS scalar multiplication from literature in terms of
costs in field-level operations, evaluation for a = —3 and a # —3 (any a), over F,, in Jacobian
coordinates, and n = 160 bits. Results can be different according to the authors because the
input values Up,q; and vimg, in figure @can be different when one converts an integer into DBNS
with non-increasing exponents. The length of a representation can increase, but the maximum
powers of 2 and 3 can be smaller.

1.2.2 Multi-Base Number System

Multi-base number system (MBNS) is a generalization of DBNS with more than two bases [87],
[75], [77], and [102]. There are several other works on MBNS but without comparisons to state-
of-the-art (e.g. [103]). A multi-base B is a tuple of [co-prime integers (b1, b2, ...,b;). Number

33

1.3. Arithmetic in a Large Prime Field

’ curves \ references H number of required multiplications | pre-computations

[40] 1863.0M 0
- [41] 1722.3M 0
a7 =3 7] 1558.4M 7 points
[46] 1615.3M 0
i 3 [46] 1563.2M]
N 7] 1504.3M 7 points

Table 1.4: Comparison of DBNS scalar multiplication methods (curves with n = 160).

x is represented as the sum of terms z = Z?;Bl (si Hé‘:1 b;j’i) with s; = &1. MBNS is a very
sparse and redundant representation. In literature, proposed multi-bases are often (2,3,5) and
(2,3,5,7). MBNS are even shorter and more redundant than DBNS. The number of represen-
tations grows very fast in the number of base elements (see the formula in 88| for details). For
example (from [87]), 100 has 402 DBNS representation with the bases (2, 3), 8 425 representations
using the bases (2,3,5), and has 43 777 representations using the bases (2,3,5,7) (considering

only unsigned representations, i.e. s; = 1).

For ECC computations in MBNS, new curve-level operations need to be defined: point quin-
tupling [5]P (QPL), point septupling [7)P (SPL), point eleventupling [11]P (EPL), etc. These new
operations are more efficient than equivalent sequences of ADD, DBL and TPL operations.

Table reports computation costs, given in field-level operations (M, S) for various curve-
level operations over I, from literature. For multiple publications from a group of authors,
we only report the best results. We remind that ADBL (resp. ATPL) denotes a sequence of A
successive DBL (resp. TPL) operations (e.g. k = 2* or k = 3%).

In |87] and |102] conversion into a MBNS chain uses good/best approximations of k using
terms of form + ngl bjj similarly to DBNS conversion. Using such a strategy is possible but
is very difficult: the conversion in a MBNS chain is away from the optimal. In [75] and [77]
conversion uses an adaptation of wNAF to multi-base (with detection of b; multiples into a lim-
ited window) but it requires pre-computations and additional storage. Digits of the conversion
algorithm are generated by repeatedly dividing the positive integer k& by the bases, allowing re-

2_ PR
mainders of {O, +1,...,+ {bjé IJ }\{j:bj, £2bj,...,+ VJQ 1J } for each base b;. The conversion

ensures that no consecutive digits are non-zero. Similarly to NAF, the authors define a window
w non-adjacent form for multi-base representations. To our knowledge, |77| and 75| provide the
best MBNS results but without hardware implementation.

Once a scalar is converted into MBNS, scalar multiplication is similar to DBNS algorithms
with more curve-level operations (e.g. QPL, SPL, etc.). MBNS helps to reduce the total cost of
curve-level operations compared to DBNS, but it has the same limitation: the need for off-line
conversion with huge tables and/or long pre-computations.

1.3 Arithmetic in a Large Prime Field

Efficient implementation of arithmetic operations on finite fields is an important pre-requisite
in ECC. Indeed, operations on elliptic curves are performed using operations in the prime field
Fp. Figure shows that each curve-level operation requires several operations at the field level.
We will therefore focus in this section on modular arithmetic for large elements (160-600 bits).

34

Chapter 1. State of the Art

curve-level operations
curves references TPL QPL SPL EPL
EFD 5M + 10S n/a n/a n/a
[40], [41] 10M + 68 n/a n/a n/a
187] 10M+6S | 15M + 108 n/a n/a
a+#—3 78] 6M+ 10S | 10M+ 14S | 17M+ 148 | 27M + 18S
54] 5M+10S | 7M+16S | 15M+24S | 17M + 308
[76] 6M+ 11S | 9M+ 158 | 13M+ 18S n/a
[75] OM+ 7S | 14M+10S | 19M+ 12S | 29M + 16S
EFD ™+ 7S n/a n/a n/a
[40], [41] 10M + 68 n/a n/a n/a
4e —3 [87] n/a 15M + 88 n/a n/a
78] TM+7S | 1IM+ 11S | 18M+ 11S | 28M+ 158
[771, [76] ™+ 8S | 10M+ 12S | 14M + 158 n/a
E OM+5S | 14M+8S | 19M+10S | 29M + 148
curves references ATPL
0t -3 | [40], [41], [61] (IIA—=1)M+ (44X +2)8
87] 10AM + (61 — 5)S
curves references ATPL / A'DBL
a3 40], [41] (11A + 4N —)M+ (4\ + 4N + 3)8

Table 1.5: Costs of curve-level operations from literature and curves over I,.

A natural number x is represented in a positional system with a radix of 2 on n bits. Thus
we have

n—1

i

T = (Tp_1Tp_2- - T1T0)2 = E x;2.
i=0

Notation ()2 means that elements into brackets are the representation bits with radix of 2, least
significant on the right.

1.3.1 Definitions and Properties
Let p be a large prime integer. I, is the field Z/pZ with Z/pZ = {r + pZ,r € [0,p — 1]}. In

other words, one has:

Ve eF,, Alre[0,p—1] suchas r=2 (mod p).

The field IF,, has a finite cardinal of p elements. Thus, the characteristic of F,, denoted

char(F,), is the additive order of 1. Thus with p a prime number, char(F,) = p, and F), is a
prime field of characteristic p.

35

1.3. Arithmetic in a Large Prime Field

1.3.2 Modular Addition

The classic modular addition is presented in Fig . For two elements (a,b) €]Fg, the
algorithm computes a + b and a + b — p. It returns a + b when a +b —p < 0, else a + b — p.

input: p a prime number, and (a,b) €]Ff2
output: (a+b) mod p

T+ a+bd
T« T-p
if 77 < 0 then
return T
else
return 7"

Figure 1.8: Classic modular addition.

Omura [96] optimizes modular addition by avoiding making a comparison and by calculating
only additions. Line 2 of the classical algorithm is replaced by 7" <— T — m with m = 2" — p.
The Omura modular addition returns (77 mod 2") if 7" > 2" else T = a + b. This comparison
and the operation (mod 2") are straightforward when one considers radix 2.

The two previous modular additions are dependent on the carry propagations. Redundant
representations like carry save and borrow save can be advantageous in avoiding the delay of
carry or borrow propagation. However whereas conversion from binary to redundant representa-
tions is straightforward, the inverse conversion is not. In addition, comparison of two numbers
in redundant representation is more complex than in binary. Thus, these representations can be
used only if several successive additions must be performed. For more details on these represen-
tations, addition algorithms and corresponding implementations, one can see [92, Chap. 2| for
more details.

Methods for modular subtraction are similar to modular addition methods. For two elements
(a,b) € IFIQJ, a modular subtraction preforms a —b and @ — b+ p. It returns a — b when a — b > 0,
or a — b+ p otherwise.

1.3.3 Montgomery Method

Montgomery [89] introduced a new way to represent elements of Z/pZ. Numbers are repre-
sented in a so called Montgomery representation which is especially used for modular multipli-
cation.

Modular multiplication over F,, consists in computing 7' = (a x b) mod p with (a,b) € F3.
The classical algorithm for performing such a modular multiplication consists in computing the
multiple-precision multiplication a x b, and then performing modular reduction. The classic
reduction is the Euclidean division. For an integer x and a positive integer p, a basic relation is

rmodp=ux—plz/p],

which is equivalent to the quotient/remainder decomposition z = gp + r, where r is the modulo
result (z mod p). Thus, the division operation which is the number ¢ begets a modulo. By this
equation, it is possible to find a power of the base B™ such that B™p < x < B™*!p. The quotient
|x/B™p| € [1,B — 1]. Thus one can replace = by x — B"p |x/B™p|, divide B™p by B (that is a

36

Chapter 1. State of the Art

right shift by one digit), and repeat this method until one has the result of the division |z/p]
(see |36] for details). No multiplications are performed when one considers B as the base.

Methods exist for which no divisions are required: the Montgomery method eliminates the
division step by computing (zR~! mod p), with R a power of the base. Let p and R be two
coprime positive integers and p’ = —p~! mod R. Then, for any integer x, the number y =
x + p(xp’ mod R) is divisible by R with y/R = zR~! mod p. In addition, if 0 < z < Rp, the
difference y/R — (xR~ mod p) is either 0, or p. In our case, p is a prime number, and when R
is a power of the base 2, the operation (mod R) is trivial: it is a division by R to obtain y:

y/R=xR mod p = (z + p((zp)&(R — 1)) > s,

zp’ mod 28

with R = B® = 2° and “> s” a right shift of s bits.

Hence for 0 < x < Rp, one has a way to compute R~ mod p. It is called the Montgomery
reduction of z. Montgomery reduction is a generalization of an old method due to Hensel in [59)
(see [15] for more details). With a suitable choice of R, a Montgomery reduction can be effi-

ciently computed. The typical choice for R is 2" with p is n-bit long. It implies that R > p and
ged(p, R) = 1.

If R and p are coprime and 0 < x < p, the residue class (R, p) of x, or Montgomery
representation, denoted by square brackets, of = is

[x] = xR mod p.

1.3.4 Modular Multiplication

Modular multiplication operation is widely used in the context of public key cryptography,
including RSA and ECC. Modular multiplication over a prime field F,,, with p a big prime, con-
sists in computing (a x b mod p) with (a,b) € F2.

The Montgomery multiplication, denoted MM of integers a and b is defined by
MM(a, b) = abR™! mod p.

One has the following properties with 0 < a,b < p :
~ MM([a],) = [ab],
— MM([a],1) = a mod p.

Figure [L.9| presents a naive algorithm for multiplying two integers ¢ and b modulo a prime p,
by applying the reduction of Montgomery.

Below, we explain possible improvements and provide corresponding algorithms (from [49]).
Instead of computing the product of two integers and then performing the reduction of the result,
one can alternate partial products and their accumulations with reductions. It allows to compute
ph = p~! modulo the radix, instead of p’. In addition, we consider binary representations. Thus
p= Z?:_ol pi2t with p; € {0,1}, R = 2", and p{, = 1 mod 2. Whereas the algorithm in figure
can be in subquadratic time (there exist subquadratic methods for multiplication), we use a
method which is in quadratic time. Indeed, such a method can be easily parallelizable and more
efficient in hardware. Moreover, the operation (mod 2™) is just a truncation. The algorithm in

37

1.3. Arithmetic in a Large Prime Field

input: p a prime number, (a,b) € IFZ%, and R =0b"
with ged(p,b) = 1, all in radix b representation
output: MM(a,b) = TR ! mod p with T = abmod p

p < —p~'mod R
T < ab

M + Tp' mod R
T+ T+ Mp
return 7/R

Figure 1.9: Montgomery multiplication (from [49)]).

input: p a prime number, and (a,b) €]Fz% on n bits
output: MM(a,b) = TR ' mod p with T = ab mod p

T+0
for i from 0 to n — 1 do
T+ T+ a;b
parity =Ty
T = (T + parity - p)/2
ifT>pthenT <+ T —p
return T

Figure 1.10: Improved Montgomery multiplication (from [49]).

figure [I.10] presents another version of the algorithm in figure [I.9]

To compute a Montgomery multiplication, the multiplications at line 3 and the reductions
at line 5 are alternated at each loop iteration. The computation of the parity value (line 4) is
equivalent to the computation of the variable M of the previous algorithm in figure [I.9

The algorithm in figure taken from [119] was chosen and implemented for the product
of two integers modulo a prime number. It follows the Montgomery multiplication method, but
instead of using the data a and p directly, we cut them into words. The algorithm scans the
multiplicand b word by word, and the multiplier a digit by digit:

b= (bt ... pMpO))y,

a=(anp—1---aiap),

p=(pt=1 ... pMp0))
with ¢t = [n + 1/w]. The number of bits per word is represented by w, and the number of words
by ¢. Thus bZ(]) is the 7th bit of the jth word, b; ; represents the b vector bits of position ¢ to j,
and (z]y) is the concatenation of two bits sequences.

The computed value carry is on two bits, and the result of the modular multiplication 7" is on
n+1 bits. Line 7 performs the left shift (division by two). The algorithm in figure performs
this operation at line 5. In our implementation, lines 6 and 7 are performed simultaneously:

(carry, (TLSJ;)Q . -Téj)Tugj:ll))) — a;b9) + carry + TY + parity - p¥).

38

Chapter 1. State of the Art

input: p a prime number, and (a, b) € IF'Z% on n bits
output: MM(a,b) = TR mod p with T = ab mod p

T+ 0
for i from 0 ton —1 do
parity = TO(O) + aibéo)
(carry, T) < a;p©) + 7O + parity - p(©)
for j from 0 tot—1do
(carry, T(j)) — aib(j) + carry + TG + parity .p(j)
TG ()
T e (carry| 7))
ifT>pthenT <+ T —p
return 7T’

—_

Figure 1.11: Montgomery multiplication (from [119]).

This algorithm is suitable for hardware implementation because it requires only shifts and
additions, and is parallelizable [119]. This parallelization is described in figure m process C
represents lines 3 and 4, while process D lines 6 and 7. Each column describes each value of ¢
which can be a parallelizable process. Except the first column, each column begins 2 cycles after
the previous column and takes as input the result of the previous cycle. Indeed, it is necessary
for example that the second process C' takes as input the value of 7 corresponding to the line
4 of the algorithm in figure [[.11]

1.3.5 Modular Inversion

The modular inversion a~! mod p corresponds to finding the integer b such as (a x b =

1 mod p). Fermat’s little theorem states that if p is a prime number, then for any integer a, the
number aP — a is an integer multiple of p. That is

@ lt=1modp <= a!=a’"?modp.
The modular inverse corresponds to a modular exponentiation. Another method uses the
greatest common divisor (gcd) [118]. This method consists by computing (a~! = X mod p) such
as

aX +pY = 1.

An efficient algorithm, called binary Euclidean |70, Sec 4.5.2|, uses the gcd method in radix
2 to compute modular inversion. Montgomery modular inversion method [72] is similar to the
gcd method.

The Montgomery inversion (denoted MI) of an integer a is

MI(a) = a~'2" mod p,

with a < p, where p is a prime number, and n = |log, p| + 1. The inversion algorithm con-
sists of two phases. The output of phase 1 (algorithm in figure is the integer r such that
r = a~'2* mod p, where n < k < 2n. This result is then corrected using phase 2 (algorithm in
figure to obtain the Montgomery inverse z = a~'2" mod p.

39

1.4. Side-Channel Attacks and Countermeasures

(0,0

Figure 1.12: Diagram of Montgomery multiplication algorithm dependency (from [119]).

The interest for Montgomery inversion is that it computes an inverse element with the product
of the quantity R. Thus, when computing an inversion followed by a multiplication, one does
not need to perform a correction step for having the expected result:

a~'b mod p = MM(MI(a),b) = MI(a)b x R"' =a 'Rxbx R =a xb.

One has the following properties with 0 < a < p :
a”! = MM(MI(a),1) = MM(a"'R,1) =a - R- R},
a~ b1 = MI(MM([a], [6]) = MI([ab]) = MI(abR) = (abR)~' - R = (ab)~!.

1.4 Side-Channel Attacks and Countermeasures

The use of embedded modules for cryptographic applications introduced a new cryptanalytic
approach. Indeed, cryptographic protocols and algorithms were considered to be secure from a
theoretical point of view if parameters were well chosen. However, the advent of embedded sys-
tems has created new links between cryptography, electronic and physical security. Passing from
a high-level mathematical description to a netlist of gates and then to a silicon chip introduces
hidden weaknesses and information leakages.

Side-channel attacks (SCAs) are attacks which try to break cryptosystems by exploiting in-
formation leakages from hardware implementations. A large number of attacks, such as Simple
Power Analysis (SPA) and Differential Power Analysis (DPA) have been reported on a wide
variety of cryptographic implementations [107], [80], [35], [84], [30]. SCAs exploit some correla-
tions between secret values manipulated in the device and physical parameters measured from

40

Chapter 1. State of the Art

input: p a prime number, and a € F,
output: r and k such as r = a1k modpand n <k <2n

1: u<p,va,r<0, s+ 1

2: k<0

3: while v > 0 do

4: if v is even then u < u/2, s < 2s

5: elsif v is even then v < v/2, r < 2r

6: elsif u > v then u < (u —v)/2, r <1 +35, s+ 25
7 else v+ (v—u)/2, s r+s, r2r

8: k+—k+1

9: ifr>pthenr«r—p

10: return r

Figure 1.13: Montgomery inversion — Phase 1 (from [72]).

input: p a prime number, k£ such as n < k < 2n, and r € F,, from phase 1
output: r such as r = MI(a) = a~'2" mod p

1: for j from 1 to k£ — n do

2 if r is even then r < r/2
3: else r < (r+p)/2

4: return r

Figure 1.14: Montgomery inversion — Phase 2 (from [72]).

the device such as power consumption, electromagnetic emanations or computation timing. One
can refer to [80] for a complete introduction on power analysis based SCAs.

In this section, we focus on two kinds of SCAs. Simple and differential side-channel analysis
rely on the following physical property: a circuit is physically made of thousands of logical
gates switching differently depending on the executed operations and on the manipulated data.
The cryptographic device is attacked by observing physical properties of the device. Therefore
power consumption and electromagnetic emanation and may leak information on both operations
and data. By monitoring a device performing cryptographic operations, an observer may infer
information on the implementation of the program executed and on the secret data involved.

In ECC, scalar multiplication [k]P is the key operation. The scalar k is considered as the
secret key. This section explains how these attacks can be used to recover the secret key k. An
attacker can measure a trace of [k] P computation. A trace is a succession of values over time. For
instance a power trace is a graph of consumed power over time. Such a trace is measured from
a cryptographic device and recorded using a digital oscilloscope. Oscilloscopes can be controlled
remotely by a computer via a general-purpose interface bus or an Ethernet interface. Based
on this interface, the recorded traces can also be transferred to a PC and then, they can be
thoroughly analysed.

41

1.4. Side-Channel Attacks and Countermeasures

1.4.1 Simple Side-Channel Analysis

Simple side-channel analysis was introduced by Kocher et al. in [73|. Secret key information
is extracted from one or very few traces due to leakage from the execution of key dependent
code.

Power consumption or electromagnetic radiation of a cryptosystem is different following on
the performed operation and handled operands. For instance, a modular multiplication requires
more clock cycles than an addition, and this difference may be visible on measured trace of side
channel. In particular, costs of curve-level operations in table indicate that a point addition
needs more field-level operations than point doubling.

Some implementations of the scalar multiplication are particularly vulnerable to SCAs since
formulas for point additions and doublings have different behaviour. The execution path for
scalar multiplication algorithms presented in section [[.1.7]is determined by bits of the secret key.
Consequently, under these conditions, cryptosystems generate traces of side channels that can
be easily distinguishable. In the “double-and-add” algorithm in figure , the duration (the
size on the trace) of each operation can indicate if it is a point doubling DBL (short pattern) or
a point addition ADD (longer pattern).

input: k= (kn_lkn_g . klk‘o)g, P e E(Fp)
output: Q = [k]P

1: Q+—O0O

2 for ¢ from n — 1 downto 0 do

3 Q20 (DBL)
4 ifk;=1thenQ+— Q+ P (ADD)

Figure 1.15: Left to right binary “double-and-add” algorithms to compute [k]P.

Recovering the secret bits from the sequence of operations is straightforward: considering
the left-to-right implementation, a DBL followed by an ADD corresponds to the digit key 1, and
a DBL followed by another DBL corresponds to the digit key 0. For instance, figure 1.16 presents
an in-house power consumption leakage based on a scalar multiplication implementation with
the double-and-add algorithm in figure [[.15] Figure 1.16 was measured at University College
Cork (UCC, Ireland) during a stay of three months. An attacker can distinguish a power trace
generated by point additions and point doublings. Thus, one can guess some key bits because
patterns DBL + ADD (resp. one DBL) correspond to the manipulated key bit 1 (resp. 0).

Two main countermeasures preventing simple SCAs are about regular and atomic algorithms.
Regular algorithms always perform the same sequence of operations. To achieve this property,
the maximal number of operations that can be required per scalar bit (one DBL and one ADD) is
always performed. Double-and-add-always and Montgomery ladder |90] [66] [65] belong to this
category. The second countermeasure is about atomic algorithms. Computed operations during
the scalar multiplication algorithm can be done as a succession of identical atomic patterns. The
measured side channel would be a succession of similar patterns. Several loop iterations may
be necessary to the processing of a scalar bit. For instance, an atomic method in [28| performs
one loop iteration for a bit 0 and two loop iterations for a bit 1. Each iteration is composed of
several operations at the field level.

42

Chapter 1. State of the Art

ADD

Voltage

l

Time

==

- T—

P

Figure 1.16: Scalar multiplication power consumption leakage trace.

Simple SCAs can be difficult to perform. Indeed, traces are often influenced by the crypto-
graphic device and experimental noise.

1.4.2 Differential Side-Channel Analysis

A more sophisticated attack, called differential side-channel analysis, can be performed. In
contrast to simple SCAs, this type of attack requires a large amount of measurements from a
side channel to determine the key. These measurements are processed using statistical tools.
Simple SCAs exploit the relationship between the performed operations and the side channel,
whereas differential SCAs exploit the relationship between the processed data and the measured
side channel. Traces are measured from side channels where the same device is used to operate
on different data. The large number of traces is also used to reduce noise by averaging.

This attack was initially proposed in [73|. Differential SCAs use statistics to reveal be-
havioural differences which are difficult to find with simple SCAs. Differential SCAs basically
consist in acquiring many leakage traces of a large number of executions in which a constant se-
cret key is manipulated. These traces are stored along with the known input value. Then, a key
hypothesis is made on some bits of the secret key. A statistical process is performed according to
the key hypothesis and the known input on one hand, and the collected traces on the other hand.
Reproducing this process for all possible considered pieces of the key reveals the correct one, i.e.
the value of the targeted key bits. This process is eventually iterated on the remaining unknown
key bits until all of them are recovered, or until the last ones can be found by exhaustive search.

Classical countermeasures used for protecting scalar multiplication implementations against
differential SCAs consist in blinding (i.e. randomizing) the internal variables of the computa-
tion using arithmetic properties at different levels: group arithmetic, point representation, and
modular arithmetic. All countermeasures lead to randomization on the curves |67, on the point
P [79] or on the scalar k [35].

For instance, Coron in [35] computes the scalar multiplication [k']P instead of [k]P where
k' = k + r#E(F,) where #E(F,) is the order of E(F,) and r a random number. Another
method consists in applying a multiplicative blinding to the point coordinates using the projective
representation redundancy [4].

In addition, randomization can be lead at the field level [48] instead of performing blinding

43

1.4. Side-Channel Attacks and Countermeasures

countermeasures at the curve level.

DPA countermeasures are provided in most ECC based protocols, or ECC cryptographic
schemes, which are based on randomization. In practice, very few ECC protocols, such as ellip-
tic curve digital signature algorithm (ECDSA), do not incorporate any DPA countermeasures.

A SCA will be performed in this Ph.D. thesis on a scalar multiplication, operation which
dominates the computation time in elliptic curve cryptography protocols. The concerned attack
is a particularly interesting class of a probabilistic SCA, called template attacks which was in-
troduced in . In a template attack, the attacker is assumed to know characteristics of a side
channel of some processed data of a device. This characterization is stored and called template.
The attacker matches the templates based on different key hypotheses with the recorded traces.

44

Chapter 2

Hardware Implementations of Scalar
Random Recoding Countermeasures

In a conventional non-redundant number system, all numbers are represented in a unique
way (canonical representation). A redundant number system allows multiple representations of
some numbers, thus the name redundant. We propose hardware implementations for on-the-fly
random recodings of the scalar k using two methods, the double-base number system (DBNS)
and the signed-digit (SD) representation. The hardware implementation of DBNS recoding was
published in [25].

The very high redundancy level of these representations allows us to randomly choose among
several representations of the scalar digits k;. Redundant representations, and in particular
theoretical solutions, are a common knowledge. In this chapter, we deal with hardware imple-
mentations which provide a small overhead. Then the number and order of operations at curve
level (point additions, doublings and triplings) are randomized. This may be a protection against
some side-channel attacks.

This kind of protection requires a random number. In this way, another representation can
be randomly chosen from the output of a random number generator (RNG) block. In practice,
random bits are produced by a RNG. Ideally, the randomness is produced by a true random
generator (TRNG). However, a pseudo random number generator (PNRG) may be sufficient for
our applications with the use of seeds generated by a TRNG.

2.1 Random Number Generator (RNG)

Randomization implies the use of RNG. A RNG can be described as being true random
number generator (TRNG) or as being pseudo random number generator (PRNG). TRNGs use
a physical noise source such as radioactive decay, meta-stability, thermal noise or jitter variations
in free running oscillators, to produce a random signal. One can use hybrid RNGs: a PRNG,
characterized by high speeds, produces random numbers, and a TRNG produces the random
seed.

In this Ph.D. thesis, we do not implement a RNG. However, a RNG was developed in the
team (CAIRN team), with on-line randomness monitoring to provide the random bits required.
This kind of RNG is based on rings oscillators sampling for the physical noise source (random
jitter produced by one or several free running oscillators). See [111] and [110] for details. In
practice, a RNG is used in many cryptographic protocols.

45

2.2. Double-Based Number System Random Recoding

2.2 Double-Based Number System Random Recoding

A double-base expansion of k is of the form

n'—1

k=) 523",
=0

with s; = 1. In this chapter, we only consider DBNS chains where exponents are non-increasing;:
ug > -+ > Up—q and vy > -+ > vy (see section . When n is the length of £ in binary,
n’ corresponds to the number of terms. In general, n’ < n. That is why DBNS is a sparse
representation.

2.2.1 Proposed Arithmetic Countermeasure

In this work, we use random representations of k in DBNS. This is possible because the
DBNS is extremely redundant: for instance, 10, 100 and 1 000 have 5, 402 and 1295 579 different
DBNS representations, respectively [41]. The idea is to use this natural redundancy to produce
on-the-fly another representation of k£ in DBNS. From now on, we consider to already have k in
DBNS chain (conversion from the standard binary representation to DBNS is studied in chap-
ter [f). Random recodings are applied using the following identities [44]:

Ii: 142 = 3,
I: 143 = 2%
I;: 1423 = 3%
Li: 1+1 = 2.

Those identities can be applied in two different ways: one can reduce (e.g. 1+ 2 — 3) or
expand (e.g. 3 — 1+ 2) DBNS terms. Reductions may accelerate the [k]P computation time
due to the fact that it reduces the number of curve-level operations. Thus there are two recoding
rules for each presented identity:

: gitlgi—1 4 9igi—1 — 9igj Ry,
=
' gi—lgs+l _ 9i=l3j — 9i3j Rao,
: 2i—235+1 4 92i=23) — 9i3j Rs,
=
i zyml il = 9 Ry,
0 213352 4 92i3/=2 = 2i3J Rs,
3 =))) . .
2i—33J+2 _ 9i=337 — 9i3J R,
. 2137 4 217137 = 2037 Ry,
=
! i1z _ 913J = 2i3J Rs.

When several rules can be applied, one can randomly recode the scalar & amongst possible
rules. Thus, it may introduce randomness in the power traces. In addition, expansions slow
down the scalar multiplication by increasing the number of terms. There should be a trade-off

46

Chapter 2. Hardware Implementations of Scalar Random Recoding Countermeasures

between the computation time and the amount of randomness introduced by expansions. Fig-
ure [2.1] illustrates some examples of DBNS recodings for the scalar value £ = 140400. In this
ﬁgure, we can see that the DBNS representation of k£ change according to what rule is applied.
In addition, we can see the [k]P computation time at the curve level for each representation. In
this figure, mADD and mSUB stand for mixed point addition and subtraction.

@© 2836 — 2036 42433

|_.__a exp. Ra

red. Ry
l 1
@ 2637+ 2133 ® 2737 — 2736 — 2636 + 2433
exp. R1 ‘ ’ exp. Ru I——‘:l exp. R1

red. R1

1 1 I 1

@ 2736 +2036+2133 @ 2037+2032-2132 @ 273720637 +2133 @ 2737 — 2736 — 2735 — 2635 + 2433

reduction xpanion (mabD) Cam)
time

aos0P = B - P)) ® 00O0CODOeCo0ooD
— [2'5)([2234)P + P) o 0O LO@CL00Co
(233 P)— P) 4) ® @OLC0OCOec0DD®
= [213%]([223%]([2!3°]P + P) + P) ® @O0 @ O
— [2432)([2239)([2°57] + P) - P) ® COOLLe.0 000D
— (2439 ([223%)([213°] - P) + P) ® 0L00O0LLeCoooo
— (243912232239 (28] (2°8'] - P) — P) - P) + P) @ @ @0 00 m@Co00m@®

Figure 2.1: Examples of some possible DBNS recodings for k£ = 140 400.

In some cases, some rules cannot be applied due to neighbouring terms. For instance, if
two consecutive terms k; = (s;,u;,v;) and ki1 = (8;—1,u;—1,v;—1) share the same exponent
(e.g. u; = u;—1) then reductions based on rule R; cannot be applied. Even for expansions,
some limits exist due to the fact that the sequence of exponents must be kept non-increasing:
ug > <+ > Up_1 and vg > -+ > vy_1 (DBNS chain). To always ensure that recodings only
produce non-increasing sequences of exponents, three consecutive terms must be read for each
rule. The second read term is recoding according to the previous and the next one. With this
method one can ensure to always have a DBNS chain. Indeed, only rules implying non-increasing
exponent are applied. This has been validated by numerous tests, but a future work could consist
by providing a proof.

More recoding identities and rules can be applied like 22 + 2 = 32 — 3 for instance. This type
of recoding does not change the number of terms. Indeed, this identity transforms two terms
into other two terms.

Below we provide a complete example of a situation where some rules should be discarded.
We use the k value presented in figure 2.I] For instance, when starting with k& = 140400 =
2737 _ 9736 _ 9735 _ 9635 4 9433 (which is the recoding 7 in figure , one may think that
the reduction 273% + 2735 B3, 9935 can be applied. However, this reduction would produce a
non-non-increasing sequence of exponents for this specific value of k. Indeed the new recoded
DBNS representation would be 2737 —293% — 2635 4 2433 which is not a non-increasing exponents
sequence of terms. The previous DBNS expansion gives the following computation sequence

2433 (2232 (2139(—2230+203%) — 1) + 1). Thus, the DBNS scalar multiplication in the algorithm

47

2.2. Double-Based Number System Random Recoding

in figure [I.7] section [[.2.1] cannot be applied with this DBNS expansion.

A same DBNS recoding does not have only one antecedent. Let LT be the list of terms
T which stores the DBNS recoding of k. Each term T is in the shape of T; = (s;,u;,v;).
Randomizing a pattern LT = (T,/_;---Tp) allows to have several DBNS chains (7, ,---T)
such as (Tyy_1---Tp) # (T),_,---Ty). The strength of this random recoding is that even with
only one random recoding of a DBNS chain, the operations for [k]P computation can be totally
different. It is sufficient to have several differences in exponents of one term to have a completely
different computation for [k]P. For instance, recodings 1, 4, 5 and 6 in figure seem to be very
similar and have a same number of terms, but the operations during the scalar multiplication
are totally different. This is due to the fact that the scalar multiplication algorithm computes a
DBNS chain with &k in the Horner scheme.

In practice, several random recodings are performed. We statistically note that we do not
provide a final recoding which was ever produced with such a strategy. As an experiment, we
randomly recoded one thousand times a scalar k, and we repeated it for one thousand different
scalars where k was 160 and 224-bit long. This ensures that none of the recodings of k was
produced by another recoding. However a more important experimental and a theoretical study
have still to be carried out.

2.2.2 Experiment Results and Implementation

The experiments reported below have been realized using the curve P-224 provided by
NIST (FIPS 186-2), see [57, appendix A.2.1] for details. The prime field I, is defined with
p = 2224 2% 11 (n = 224 is the size of the prime field). The experimental setup was as follows.
For each scalar k, the binary representation of k is converted into DBNS using the algorithm pro-
vided by Dr. Christophe Doche, with the condition s; € {—1,1}. Then 10000 random recodings
among all applicable rules, from R; to Rg, are applied to recode k. For each DBNS recoding,
the number of curve-level operations (ADD, DBL, TPL) is counted. The number of expansion and
reduction rules which can be applied is taken into account.

Table 2.1 presents the obtained statistics for 1000 scalars & and 10 000 random DBNS recod-
ings for each scalar. The average value (avg.) and the standard deviation (std. dev.) of each
rule number which can be applied are reported for reductions and for expansions. In addition,
we give the average in percent of each rule according to the two possible rules (reduction and
expansion).

| rules | | R | Ro | Rs | Ra | Rs | Re | Rr | Rs |
avg. 594.4 | 750.3 | 544.1 | 450.0 | 157.5 | 166.8 | 975.9 | 1010.9
reductions | std. dev. || 48.5 | 81.0 | 62.8 | 46.9 | 34.9 | 38.3 67.8 86.6
avg. [%] 12.8 | 16.1 | 11.7 9.7 3.4 3.6 21.0 21.7

avg. 561.8 | 743.0 | 537.4 | 437.8 | 150.6 | 163.2 | 1039.2 | 1031.8
expansions | std. dev. || 45.4 | 82.3 | 62.8 | 474 | 343 | 37.3 71.8 88.6
avg. %] 12.0 | 159 | 11.5 9.4 3.2 3.5 22.3 22.1

Table 2.1: Experiment results of DBNS random recodings for the number of times each rule can
be applied.

Rules R; and Rg are the most often used rules both for reductions and expansions. Note that

48

Chapter 2. Hardware Implementations of Scalar Random Recoding Countermeasures

given three successive terms, in 6.7 % of cases no rule can be applied. The average length of the
obtained DBNS chain n’ is 62 with a standard deviation equals to 4.1. Rules R5 and Rg are the
less used. The probability that an expansion can be computed by these two rules is smaller than
the other rules because the exponents used by these rules are greater for rules Rs and Rg. That
is why adding more rules can be inefficient, because the added rules would often not be used. In
addition, the hardware implementation could be more complex and slower.

The maximal exponent of powers of 2 and 3 are 112 and 71, respectively. Then the average
cost for computing [k]P using the random DBNS recoding is

62 ADD + 112DBL + 71 TPL.

The average cost of [k]P has been computed using the PARI/GP (http://pari.math.
u-bordeaux.fr/)) program kindly provided by Dr. Christophe Doche. This program gener-
ates a signed DBNS chain using pre-computations and where approximations are obtained by a
search table. When no random recoding is performed, the average cost for computing [k]P is

50 ADD + 112DBL + 71 TPL,

that is 12 more point additions when one recodes randomly a signed DBNS chain with n = 224.
It corresponds to 133 multiplications over a prime field when using mixed addition (7 +.A — J)
of which the cost is TM 4 48S.

Note that the first term (sg, ug, vg) is never transformed for efficiency purposes. Indeed, our
random recoding unit does not impact the maximum exponents of the bases. The number of
point doublings and triplings does not change. Otherwise, the number of DBL and TPL would
become larger, and thus the [k] P computation time can be changed and increased.

ADD with additional cost in M
n [46] ‘ random recoding | difference || of the random recoding
160 35 46 11 112.2
192 || 43 56 13 132.6
224 50 62 12 122.4
256 57 69 12 122.4
384 84 95 16 163.2
021 || 114 134 20 204.0

Table 2.2: Costs in M using random DBNS recoding.

Table presents the number of point additions for 1000 scalars. For each scalar, 10000
random recodings have been performed. We use the standard cost approximation S ~ 0.8M to
calculate the additional cost in multiplication of the random recodings. The number of point
additions determines the length of a DBNS chain. The difference in the number of point additions
for the two methods is evaluated. For instance, the initial DBNS chain has in average 35 terms
for n = 160, while the DBNS chain has in average 46 terms after 10000 random recodings. It
corresponds to 11 additional terms, which is 112.2 multiplications over I, (M) for an initial scalar
k in DBNS. In average, the additional cost represents about 7% more multiplications (at the
field level) in the scalar multiplications with random recodings.

Table shows the difference according to the multiplication number for the random re-
coding method with the PARI/GP program provided by [46]. This difference is similar for all

49

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

2.2. Double-Based Number System Random Recoding

prime fields, except for n = 521. For n = 521, the number of terms is much higher than for the
other value of n. Indeed, the DBNS chain for n = 521 is sparser. Thus, reduction rules are not
performed as many the other prime fields. Therefore, the DBNS chain increases with expansion
rules until the recoded chain is so big that reduction rules can be practically applied on each
recoding.

In practice, the length n’ of a random recoding DBNS chain increases up to about 80 recod-
ings. When one considers more than 80 recodings for one initial DBNS chain, every length of
DBNS chain recoding is similar with a change of 1. Figure 2.2 presents the length variation
of one initial DBNS chain, from 1 to 100 recodings on the prime field with n = 224. Reduction
rules are often performed from 80 random recodings. Experimentally, we note that the length
or the number of point additions practically does not change when one randomly recodes 1000
times a DBNS chain. When one considers a large number of DBNS chain and perform random
recodings, the length evolution follows the figure 2.2 without peaks.

65 ! ! ! . !

Number of
point additions

0 20 40 60 80 100 120 140 160 180 200

Number of random recodings

Figure 2.2: Length evolution of one DBNS chain randomly recoded on P-224.

Figure presents the architecture of the implemented recoding unit. This unit randomly
recodes the scalar k on-the-fly. The scalar k, represented in a DBNS chain, is stored in a specific
register as a sequence of terms (s;, a;, b;). Two specific blocks check which rules, from Ry to Rg,
can be applied. One block is dedicated to reductions and the other to expansions. The both
blocks take three consecutive terms as inputs.

In case of a reduction, one of the original two terms is modified accordingly to the selected
rule (addition /subtraction on the exponents and sign adjustment), while the other term is deleted
from the DBNS chain.

In case of an expansion, the block checks whether inserting a new term still leads to a non-
increasing sequence of exponents. Using 3 random bits produced by a RNG, one rule is randomly
selected among the set of allowed rules and then applied. For all applicable rules, one is selected;
the block checks if application of rules will produce a valid sequence of exponents (non-increasing
exponents).

When a reduction is possible, the controller selects the outputs of the reduction block, else
those of the expansion block. This allows to randomly recode a DBNS chain by reducing as
much as possible the length of the DBNS chain.

A global controller (CTRL) generates all high-level control signals for the architecture units

(these signals and clock are not represented on the figure). It also determines the times number
the scalar must be randomly recoded. Then, it provides the global control with informations on

50

Chapter 2. Hardware Implementations of Scalar Random Recoding Countermeasures

which curve-level operations must be launched.

‘ CTRL * » global ctrl ‘ RNG >
N

‘ et expansion

new T \:\1,\
(SI- uj, Vi} gj N >
o S
k

choose [
expansion —}

vector
possibilities | 8

YYY

34l

=

reduction

’—’ | ’
remove T;. w "
z ! insert new term

between T, and T,y

Figure 2.3: Architecture of the on-the-fly recoding unit with random DBNS chains.

2.2.3 FPGA Implementation

All hardware implementations reported in this section have been described in VHDL and
implemented on a XC5VLX50T FPGA using ISE 12.4 from Xilinx with standard efforts for
synthesis, place and route. We report numbers of clock cycles, best clock frequencies and numbers
of occupied slices. We also report numbers of look-up tables (LUTs with 6 inputs in Virtex 5)
and flip-flops (FFs) for area. A XC5VLX50T contains 7200 slices with 4 LUTs and 4 flip-flops
per slice. We use flip-flops for all storage elements.

FPGA implementation results are reported in table 23] for the proposed recoding. The area
required by the recoding unit represents less than 7% compared to the complete ECC processor
studied in appendix [A] The recoding unit can work at a clock frequency greater than 250 MHz
which is faster than the clock frequency of our arithmetic units in F,,.

area freq.

block slices (FF/LUT) | MHz
expansion 102 (93/352) | 325
reduction 23 (26/101) 289

complete DBNS recoding H 147 (186/431) ‘ 289 ‘

Table 2.3: FPGA Implementation results of the DBNS recoding unit.

2.2.4 ASIC Implementation

All ASIC results reported in this thesis have been synthesized into gate-level netlists using
standard Vi, (SVT) cells of an industrial 130nm bulk CMOS technology library using Synopsys
Design Compiler G-2012.06-SP5. The standard cells used were restricted to a set {nand2, nor2,
xor2, inv} of logic gates without loss of generality.

ol

2.3. Signed-Digit Representations

The DBNS recoding implementation is applied with a maximum path delay constraint of
10ns and 5ns from all inputs to all outputs. Tables and report area in pm? and power
estimation in yW. The area required by the recoding unit is very small compared to the total
area of the complete ECC processor (see appendix [A)).

’ delay H combinational ‘ buf/inv ‘ non combinational ‘ total ‘

10 3425.2 413.5 1849.7 5274.9
) 3427.2 413.5 1849.7 5276.9

Table 2.4: Area results (in gm?) of ASIC implementation for DBNS recoding.

’ delay H cell internal ‘ net switching ‘ total dynamic | cell leakage

10 92.6 17.2 109.8 1.6
) 185.2 34.4 219.6 1.7

Table 2.5: Power results in (uW) of ASIC implementation for DBNS recoding.

An on-the-fly recoding unit in DBNS has been implemented in FPGA. In addition, the cost
of the DBNS random recoding unit is very small compared to the total cost of a complete
ECC processor both in clock frequency and silicon area aspects. This recoding unit provides a
countermeasure which changes on-the-fly a DBNS signed representation of an integer. A future
work could be to evaluate the security of such a recoding.

In this section, we provide random recodings from a DBNS chain. It is our initial condi-
tion. We will see in chapter [f] the conversion from an integer into DBNS. The recoding of the
scalar can be used as a countermeasure against some side channel attacks, by referring to the
second countermeasure of Coron (see [35] for details). In the following, we have studied another
redundant system which deals with signed-digit representation.

2.3 Signed-Digit Representations

Carry-free addition property lies in the redundancy of signed-digit number systems. However,
we just use this system for its redundancy to change the representation of numbers on-the-fly.
We first present relevant questions concerning random binary signed-digit representations and
how to reduce the numbers of Os of a number binary representation in order to speed up the
scalar multiplication on elliptic curves.

2.3.1 Avizienis System

Avizienis introduced in [5] a redundant notation for some number representations. Initially,
these redundant representations were proposed for computing additions without carry propaga-
tion. This redundancy obviously leads to the representation of an integer in different ways, and
needs more bits. For instance, if one chooses to represent numbers in radix 10 with digits in

the following, we will see which parameters we can consider to have a redundant system.

92

Chapter 2. Hardware Implementations of Scalar Random Recoding Countermeasures

Let SB.s.an be the set of numbers in base B with n digits in {6,6 +1,--- ,6 4+ a} where ¢ is
a positive or negative integer, and « a strictly positive integer. Such a system can be redundant
(see [92], Sec. 2.6] for details). The next theorem explains how to determine all these parameters
to have a redundant system.

In the theorem p. 35|, we know thatif « > B—1, k € [J(anl) (”“)'EB”*”] Vk € Gpsan

B-1 > B-1
with G a,n be the set of numbers that one can write with the system Sg s4.,. The writing of
an integer in the system Sp s, is not unique. It is a redundant system.

The next step is to determine which parameter values can be taken. In our case, we want
B =2 and n = |logy p| + 1 because we work in the binary base and all elements are in the finite
field IF,. In addition, we want to have a signed-digit representation. Therefore we take 6 = —1
and a = 2. It means that all digits will be in the set {—1,0,1}. This system with these values
allows the representation of negative integers because § is negative, and is redundant because we
have o = 2 > 1 = B — 1. In addition, the system Sg s+ is symmetrical. Thus the set of digits
used is in {0, +1,---,0 + o} with —0 > 0 and o = —20. With this system, we have

k= k2 where k; € {~1,0,1},
0

with k a strictly positive integer of length n + 1 in 2-radix. In the following, we denote 1 for
—1. When using this set of digits, one can consider the binary signed-digit (BSD) representation.
We can note that this notation system is not conceptually different from the borrow-save nota-
tion [56]. Signed-digit representations can be used in the context of canonic signed-digit (CSD)
representation , Booth recoding and NAF representation Sec. 3.3.1].

However, with the aforementioned systems, numbers are recoding in a subset of the considered
redundant systems. In addition, there is no redundancy in these subsets. Recodings do not use
the redundancy provided by these systems.

The system Sz _1 2, does not allow us to compare integers represented with the set S Sec.
2.6]. For that, we must have —2§ > B + 1. We do not know this property, and to add two in-
tegers represented in S is a difficult issue. In our case, we just want to represent the scalar k
in a redundant representation to only use it for ECC scalar multiplication. The scalar is not
added or compared with an integer. Curve-level operations are performed according to digits of
k. Thus, we can neglect the fact that k cannot be compared when it is represented with the
System 527_1727,1.

Thus, S2 12, represents numbers in a redundant representation. For instance, for the inte-
ger k = (11)19, one has:

= (01011)psp = 23 + 2! + 20,

= (01111)gsp = 23 + 22 — 2! + 20,

= (10101)gsp = 2% — 22 — 20,

From [100|, Sec. 14.2], we know that this digit set is maximally redundant because we have
0+a =B—1=1. It refers to a measure of the redundancy of a signed-digit representation. The
range of numbers that can be represented by this signed-digit representation is [27"+1 — 2 2 —
2—n+1].

Now, we have a way to represent an integer in a redundant representation. The next question
would be to know the total number of BSD for an integer (same thing applies for DBNS, see

93

2.3. Signed-Digit Representations

section [1.2.1]). Indeed, the goal is to randomly represent a given integer by using several times
the redundancy of the employed representation. For cryptographic purpose, a number must have
a great deal of representations.

2.3.2 Number of Binary Signed-Digit Representations

Let A(k,n) be the number of binary signed-digit representations for an integer k € [0, 2" — 1]
that is n bits long. It corresponds to the system Sp _j2,. From [50], one has the following

lemmas:
- A0,n)=1
- A1,n) =n,
— AM2F,n) =n —k,

— for k even, A\(k,n) = A(5,n —1),
— for k odd, A(k,n) = A(55t,n — 1) + AM(EL, n — 1),
~for2n <k <2 —1, ANk,n) = Ak —2""1,n—1).

With these properties, one can compute recursively the number of binary signed-digit repre-
sentations for an integer.

For instance, one has

A(11,5) = 8,
A(149,9) — 50,
A(1365,12) = 233,
A(87381,17) = 4181,

with n = 1+ |logy(k)|+1. These instances mean that there are 50 signed-digit representations
of the number 149 using five digits. If one wants to have more representations, it is sufficient
to add more digits to n. The following part deals with the random recoding of a number in
signed-digit representation.

When £ is in the range 160-500 for typical cryptographic sizes, the number of binary signed-
digit representations is greater than in average 2'°°. This average was produced by applying the
A formula for 10000 values. Thus, we can consider that k has a very large number of possible
representations. One can use such a representation to randomly recode a large integer for the
scalar multiplication: it could be used as a countermeasure against some side-channel attacks.

2.3.3 Random Recoding

Considering a positive integer k, different signed-digit representations of this number can be
obtained by replacing sequences by other sequences:
01 =11 and 01 < 11.

We denote f(a,b) the function which applies to the previous two transformations:
f:{1,0,1} x {1,0,1} — {1,0,1} x {1,0,1}. (2.1)

h

it
1) =
1) =
)=

Chapter 2. Hardware Implementations of Scalar Random Recoding Countermeasures

f(1,1) = (0,1).) _
For other elements (a,b) € {1,0,1} x {1,0,1}, f(a,b) = (a,b).

Let k be a number in binary representation where k = (k;,—1 - - - k1kg)2. One could think that
it is sufficient to scan k two digits by two digits; change or not (k;t1, k;) according to a random
bit. With this method, we change (kz+1, i) to f(kip1, ki) = (ki q,k;) if the random bit is 1.
When the random bit is 0, f(ki+1, ki) = (kit1, ki); the function f is not applied. In the next
loop iteration, we scan (k:Hg, kiy1) or (kiyo, ki,) according to f(kiy1, ki).

However this strategy is not complete because we do not have all possible representations.
Such a strategy is equivalent to the Booth recoding. To have all possible representations, digits
must interact with the previous digit and the next one. First of all, three digits by three digits
of k are scanned in one direction (most or least significant digit first). According to a random
value, the three considered digits are modified: the function f is applied to the two first (resp.
the two last) digits; then the function f is applied to the two last (resp. the two first) digits.

If one first changes (kiy1,ki) to f(kiy1, ki) = (ki q,k;), the digits (kj, k;—1) can then be
changed by the function f. This method enables k; to interact with all possible values: kjy1,
ki1, ki, or kj_,. All digits of k can interact with the previous digit and the next one, before
or after that the function f was applied. It enables to have all possible representations.

As an example, let £ = 11 = (1011)2. With the first method, we cannot obtain the last value
(recoded digits are in bold font):
k=1011 — 1111 — 1101.

The algorithm in figure presents a right-to—left algorithm which computes a random
signed-digit representation of an integer k. The integer k is n bits long, and the output algo-
rithm is kgsp. As input, there is a random vector
(rd™=D, rd®=2) ... rd® rdD) where rd® is on 3 bits rd® = (rdy),rd" rd’). This algo-
rithm provides a random representation of an integer according to a random vector. The result
of this algorithm is on n 4 1 bits.

input: a positive integer k = (ky,—1-- - ko)e,
a random vector (rd™= V... rdV) with rd® = (rdg)rdgz)rd((f))Q
output: k= (ky---ko)Bsp where k; € {—1,0,1}

1: for i from 1ton—1do

2: ifrd) =1 then

3: if rdgi) =1 then

4: (Kit1, ki) < f(Kiv1, ki)
5: if rd(()i) =1 then

6: (ki, ki—l) < f(kl, ki—l)
7 else

8: if rd}’ =1 then

9: (ki, /{1'71) — f(kz, /{1;1)
10: if rd\”) =1 then
11: (Kit1, ki) < f(Kiv1, ki)

12: return &k

Figure 2.4: Right—to-left random signed-digit representation recoding.

99

2.3. Signed-Digit Representations

It is possible to have the algorithm in figure 2.4] in a left—to-right version. We present an
instance of a random signed-digit recoding in figure [2.5|in a left—to—right version. We change the
representation of the number 11 = (01011)3 by a random vector (above the arrows). This figure
shows that one can change the representation of a number according to a random number. In
addition, a number representation can be very different according to another representation. We
can see that numbers can be recoded in different patterns.

Q1911

010 | 100

_Jv -
11011 01011
101 T 114 101 Y o000
R 3 ¥ 3
11111 10111 01111 01011

1 T 010 “Y 001

010 "T101 gt] 010 1111
11011 11101 101017 01011 01101 01111 01107

Figure 2.5: Example of recoding for 11 = (01011),.

One must keep in mind that the purpose of this signed-digit representation is for ECC scalar
multiplication. In this context, our approach is to randomize the scalar k, and thus the sequence
which leads to the computation of [k]P. For that, k is represented is binary signed-digits and
we randomize it. However this representation may have a too important Hamming weight,
decreasing the numbers of 0s. It means that using a randomized signed-digit scalar increases the
running time of the scalar multiplication algorithm. The following part is about increasing the
numbers of 0s in a signed-digit representation.

2.3.4 Width—w Signed-Digit (wSD)

A width—w signed-digit representation of a strictly positive integer k is an expression

n
k= 2'k;, where k; € {0,+1,43,...,£(2" — 1)},
i=0

and no w consecutive digits k; are non-zero. The length of this representation is n+ 1. In binary
representation, k is n bits long.

For instance, with w = 2 we have (k)asp where k is a positive integer and k; € {3,1,0,1,3}.
w = 1 corresponds to the binary signed-digit representations (BSD), (k)1sp = (k)BsD-

Let k be a strictly positive integer. One has:

— (k)2sp = (k)sp,

— k does not have a unique width—w SD representation, denoted (k),sp (contrary to wNAF),

— the length (k),sp is one more digit than the length of the binary representation of k:

n+1=|logy k| + 2,

— the average density of non-zero digits among all width—w SDs of length n is w#“

The wNAF representation is similar to wSD and has the same properties except that k does
not have a unique representation (k),sp, contrary to (k),mr. In addition the set of digits k; in

the wSD representation is higher than for wNAF. k; € {0,£1,+3,...,+(2*~! —1)} in a width-w

56

Chapter 2. Hardware Implementations of Scalar Random Recoding Countermeasures

NAF representation. Thus more points must be pre-computed in wSD than in wNAF.

(k)wsp can be efficiently computed using the algorithm in figure The scalar k is consid-
ered in binary signed-digit representation of length n+ 1. k is scanned w digits by w digits from
right-to-left. We compute the decimal value of each word (line 6). This value can be negative.
If the value is even, we perform a left shift by one, and we have a new width—w (line 4). If the
value is odd, the least significant digit of each word takes the computed value (line 7) and the
other digits take the value 0 (line 8).

input: window width w, and k = (ky, - - - ko)gsp where k; € {—1,0,1}
output: (k)wsp

1. 1+—0

2: while i <n do

3 if k‘i =0 then

4: 14— 1i+1

5: else

6: ki +— Qw_lki_i_w_l + -+ 21ki+1 + 2Oki
7 (kivw—1- - kiz1) <— (0---0)

8 14— i+ w

9: return k

Figure 2.6: Computing the width—w SD of a positive integer in BSD representation.

In the algorithm in figure we use a positive integer k calculated by the algorithm in
figure in a random binary signed-digit representation. However it is not necessary to wait
for the result of the new random representation of k in SD to perform (k),sp. The conversion
of a positive integer in wSD can be managed on-the-fly. Both algorithms can be computed at
the same time. It is sufficient to wait for the computation of w random digits in signed-digit
representation, and start the computation in SD for these w digits. The algorithm in figure 2.7]
computes a random (k),sp using the two previous methods.

As an example, let k = (1365)19 = (10101010101)2. Some width—w SDs representations of k

for w = 2 and w = 3 are:

110101111011)gsp = (01010030100

() (3)25D
(101101011101)psp = (100301010101)25p
(k)2sp (0101101 01111)psp = (010030100301)25p
(01 01)psp = (010030030101)25p

o7

2.3. Signed-Digit Representations

input: window width w, and k = (k,—1-- - ko)2
output: (k)wsp

1: 5+—0
2: forifrom1lton—1do

3: change (kit1, ki, ki—1) according to a random vector
4: if j # w—1 then
5: j—j+1
6: else
7 if k;_—1 # 0 then
8: kicw—1 — 29 Thig 4 4+ 20k g
9: (ki_g'--ki_w) — (0--'0)
10: j<+—0
11: if j # 0 then
12: je—1
13: while k,,_,,1; do
14: je—j+1
15: kn—wtj <— 2V Tk 4+ -+ 4 2%y
16: (kn s kn—w—f—j—l—l) — (O s O)

17: return k

Figure 2.7: Computing the width—w SD of a positive integer in binary representation.

[(11010111111T)gsp = (010005003003)35p
(011111010101)sp = (010030030005)35p
(k)3sp { (101101110111)5sp = (100300050005)35p
(110110101101)gsp = (010030005003)35p

\

It is not necessary to wait for the end of the computation of (k),sp to use it. We can use the
new random representation of k gradually. When digit k; is used, the next digit can be already
computed, or will be computed before we need to use it. Therefore there is no latency during
the scalar multiplication. In addition, a new representation of k can be computed before the end
of a scalar multiplication which can be calculated by the algorithm in figure [2.8] By the same
token, the width-w NAF method is similar to the width-w SD method for scalar multiplication.
One just must pre-compute more points (at line 2): 2¥~2.

2.3.5 Implementation

Figure 2.9 presents the architecture of the implemented recoding unit which starts from the
least significant digit. It refers to the algorithm in figure 2.6 This unit recodes the scalar k on-
the-fly using randomly chosen binary signed-digit representations. The scalar k is represented
and stored in binary. The two-input multiplexers selects two consecutive digits of k to perform
f(kj, kj—1), where f refers to the function . The two-output demultiplexers stores performed
results by the function f in the appropriate digits. A control unit creates one signal which controls
each multiplexer and demultiplexer according to a random vector.

o8

Chapter 2. Hardware Implementations of Scalar Random Recoding Countermeasures

input: k = (k,—1---ko)2, and P € E(F))
output: Q = [k]P

Use algorithm in figure to compute (k)ysp according to a random vector
Compute P; = [i]P for i € {1,3,...,(2* = 1)}
QR+—O0
for ¢ from n — 1 downto 0 do
Q«— [2Q
if (k; #0) then
if k; > 0 then
Q— Q+ Py
else
Q«—Q— Py,
return Q

—_
—_— O © 00~ O U W N

—_

Figure 2.8: Width—w SD method for point multiplication.

The scalar k is always kept in binary representation. First, the register k£ sends the three first
bits (kok1k2)2. The function f randomly changes these three bits in (k(k}k5)psp = (k(kikS)sD-
Next, the register k sends k3, and f randomly changes (k}kbks)sp. This operation is repeated
until the k,_1 is sent. A w-bit register receives all randomly changed digits, waits for w digits,
and computes the decimal value of the w-bit word (line 8 of algorithm in figure . Once the
value is computed, the controller can launch the appropriate curve-level operation.

Kis 2 curve-level
Py = .
Ki-1 =) @, operation
8) 2 g
= c =
>
@ —ok f ion flI
2 i unction f|
o
o
- < ¥
=~ o~ y =
k'+1 = >C<
ALEN

Figure 2.9: Architecture of the on-the-fly recoding unit with random window w signed-digit
representations.

FPGA implementation results are reported in table 2.6 for the proposed recoding correspond-
ing to the algorithm in figure[2.7 Two versions have been implemented: outputs are not encoded
in the same way. The first presented version is implemented in sign magnitude and the second
in one hot encoding. For instance with w = 2, the digit set is {3,1,0, 1,3}, and two circuit-level
codings have been used:

99

2.3. Signed-Digit Representations

=l

y 0

20
+ _— 3

—_

For an index i, each digit of k may have 1 + 2% values in sign magnitude (on the left). In
this version, k; is encoded on w + 1 bits. There is one bit for the sign, and the others for coding
the value of |k;| in binary. The digit zero can be encoded in two ways: the sign bit can be 1
or 0. We have k; = (ki,,, - , ki, ki,)2. For instance, if k; = —3 and w = 3, the output will be
ki = (1,0,1,1)o. If k; = 5 and w = 3, the output will be k; = (0,1,0, 1)a.

In the one hot encoding version, there is one signal wire for each value. Outputs have always
the same Hamming weight. In addition, this solution allows to have a constant Hamming dis-
tance. Indeed, the digit zero is the only one which can be consecutive due to the SD properties
(section . Therefore two signals can code this value. If zero is coded with the first signal,
the second zero will be coded by the second one. For instance, if k; = —3 and w = 2, the
output will be k; = (1,0,0,0,0,0)2. In the same way, if k; = 0 and k;4; = 0, the outputs will be
k‘i = (0, 0, 1, 0, 0, 0)2 and k‘i+1 = (0, 0, 0, 1, 0, 0)2.

All hardware implementations reported in this section have been described in VHDL and
implemented on a XC5VLX50T FPGA using ISE 12.4 from Xilinx with standard efforts for
synthesis, place and route. FPGA implementation results are reported in table 2:6] for the wSD
random recoding unit with w € {1,2,3} and n € {160, 192,224}. The scalar k is always kept in
binary representation, and random recoding is computed on-the-fly.

area freq.

n | w | slices (FF/LUT) | MHz
1 587 (850/1779) 251

160 | 2 | 784 (1353/2249) 245
3 | 814 (1516/2301) 217

1| 781 (1009/2595) 232

192 | 2 | 851 (1605/2928) 240
3 | 989 (1803/3220) 205

1| 819 (1169/2707) || 203

224 | 2 | 1054 (1860/3352) 205
3 | 1154 (2091/3607) | 196

Table 2.6: FPGA implementation results of the wSD random recoding unit in one hot encoding.

In table each digit of k is encoded on 2% +2 bits (one hot encoding). The sign magnitude
implementation has an equivalent speed and less than 0.5% circuit area compared to the one hot

60

Chapter 2. Hardware Implementations of Scalar Random Recoding Countermeasures

encoding implementation.

Tables 2.8] and [2.7] report ASIC implementation results of the wSD random recoding in one
hot encoding with n € {160,224} and w € {1,2,3}. The wSD recoding implementation is

applied with a maximum path delay constraint of 10ns and 5ns from all inputs to all outputs
(see section for tools details).

’ n ‘ w ‘ delay H combinational ‘ buf/inv ‘ non combinational total

] 10 20174.0 2805.9 28107.6 48 281.6

5 20200.2 2763.5 28107.6 48307.9

160 | 2 10 29556.0 3130.6 28420.3 57976.3
5 29598.3 3104.4 28420.3 58018.7

5 10 40255.2 3171.0 47281.1 87536.3

5 40287.5 3142.7 47281.1 87568.6

. 10 23278.4 3284.0 33158.7 56 437.2

5 23381.3 3249.7 33158.7 56 540.1

994 | 9 10 43559.4 3622.8 50264.5 93824.0
5 43368.8 3596.6 50264.5 93953.1

5 10 47720.9 3616.8 55951.0 103671.9

5 46216.0 3544.2 55951.0 102167.1

Table 2.7: Area results (in um?) of ASIC implementation of the wSD random recoding unit in
one hot encoding.

2.4 Comparison

In order to numerically validate our method, we compared our results to software results
provided by PARI/GP which is a computer algebra system with many powerful number theory
functions. We also used this software environment to experimentally evaluate the number of
operations performed by the two proposed random recoding methods. All obtained results have
been compared to standard recoding methods (NAF, wNAF see |57, p. 98]).

Below we compare our DBNS recoding and scalar multiplication algorithms. We report results
for short Weierstrass curves (y? = 23 — ax + b) over F, with an unspecified curve parameter a
and curves where the parameter a = —3, using Jacobian coordinates (denoted [J). We use best
operation costs at curve level reported in table[I.3]in section [[.1.6] and table [I.5in section [.2.2]

The reported experiments have been realized using a prime field on 160 bits. We also used
mixed point addition: Jacobian coordinates with affine ones (denoted .A). mADD is the cost of
point addition in mixed coordinates (J +.4 — J).

We compared the [k]P computation cost using our random DBNS recoding to the results
based on wSD recoding and on standard methods. The average cost for computing [k]P using
10000 random DBNS recoding on 160 bits is

62 ADD + 112DBL + 71 TPL.

The corresponding results are reported in table [2.9] where M is the cost of one multiplication in

61

2.5. Conclusion

’ n ‘ w ‘ delay H cell internal | net switching | total dynamic | cell leakage

1 10 1708.0 83.2 1791.2 17.0

) 3416.6 167.7 3584.4 17.0

160 | 2 10 1742.6 136.6 1879.3 20.0
3 3483.8 274.8 3758.6 20.0

5 10 2921.2 96.9 3018.1 30.5

5 5845.1 195.1 6040.2 30.5

1 10 2041.9 100.5 21424 19.9

5] 4080.6 203.4 4284.1 20.0

994 | 9 10 3126.8 116.0 3242.8 32.7
5 6257.2 233.8 6491.1 32.7

3 10 3483.6 116.2 3599.9 37.5

5 6968.7 2334 7202.1 35.6

Table 2.8: Power results in (uW) of ASIC implementation of the wSD random recoding unit in
one hot encoding.

F,. We use the standard cost approximation for square S ~ 0.8 M.

performances with

method a=—3 ‘ a# —3
double-and-add 1922.0M | 1985.3M
NAF, SD 1659.7M | 1723.0M

3NAF, 3SD 1520.2M | 1583.7M

4NAF, 4SD 1436.1M | 1499.1M
DBNS random recoding || 1659.2M | 1771.4M

Table 2.9: Comparison of scalar multiplication with n = 160.

The costs of wNAF and wSD are similar. wSD representation requires more pre-computed
points than wNAF but this method has the advantage of having a randomized behaviour for several
scalar multiplications. In addition, random recoding in DBNS needs more M for computing scalar
multiplications than standard DBNS scalar multiplications. Indeed, the random recoding of a
DBNS chain is less sparse than the initial one: several random recodings are performed to ensure
that a recoding was not ever produced.

2.5 Conclusion

In this chapter two methods have been studied. In particular, we use two redundant repre-
sentations for on-the-fly random recoding of the scalar k£ using the double-base number system
and the signed-digit representation.

Thus, we have seen that the use of these representations can be considered realistic in hard-
ware and implementable. The on-the-fly recoding units in DBNS and in wSD have been imple-
mented in a FPGA and in an ASIC. All recoding units can work at a clock frequency greater

62

Chapter 2. Hardware Implementations of Scalar Random Recoding Countermeasures

than the complete ECC processor (appendix . In addition, the FPGA area required by the
DBNS (resp. wSD) recoding unit represents less than 7% (resp. 28%) compared to the complete
ECC processor.

Starting from a scalar k in binary representation, our method randomly provides different
representations of the recoded scalar k. Then the number and the order of curve-level operations
(point additions, doublings and triplings) is randomized during several scalar multiplications
[k]P. Thus, it could be used as a countermeasure against some side-channel attacks. However,
the security against side-channel attacks of such implementations must be evaluated by attacks.
Only one attack is performed to evaluate arithmetic level protections against some side channel
attacks. The attack results are reported in the next chapter [3|

A study between each protection system should be theoretically and practically evaluated
and compared to know the tradeoffs between protection levels and hardware implementation
results. In other words, what is the cost of each protection system, and how resistant is each
system?

63

Chapter 3

Practical Security Evaluation Using
Template Attacks

Very efficient side-channel attacks (SCA) have been proposed such as power analysis [80)
or electromagnetic radiations analysis [3]| [112]. Side-channel attacks allow the extraction of
secret informations from running devices by measuring and analysing physical parameters such
as power consumption, electromagnetic radiations or computation time. For instance, recording
and analysing the instantaneous power consumption of a circuit may lead to very efficient power
attacks (see side-channel attacks text book [80]). Simple power analysis (SPA, see [80, Chap. 5])
directly uses the fact that basic implementations of point addition and point doubling operations
have different power traces. Thus, the recorded power traces will directly show where/when
are the ADD operations and the sequence of DBL ones. With classical methods such as the
double-and-add algorithm, the bits of k can be guessed. In addition, point additions (ADD) and
subtractions (SUB) can be computed in such a way that there are indistinguishable in the traces.
This motivates the use of signed digits. Thus an attacker cannot guess when there is an ADD or
a SUB. It complicates the attack when there are a large number of non-zero digits.

Recently, a particularly interesting class of a probabilistic side-channel attack, called tem-
plates attacks was introduced in [27]. In a template attack, the attacker is assumed to know
characteristics of a side channel over some processed data in a device. This characterization is
stored and called template. The attacker matches the templates based on different key guess
with the recorded traces.

In this chapter, two template attacks are performed on the point scalar multiplication, opera-
tion which dominates the computation time in ECC protocols. The goal of the performed attacks
is to practically evaluate a DPA countermeasure based on scalar recoding in signed digits. The
first (resp. second) one is on an implementation with a countermeasure against simple (resp.
differential) side-channel attacks. The countermeasure against simple side-channel attacks uses
a regular scalar multiplication algorithm [31]. For the second template attack, the scalar is ran-
domly recoded. The scalar is recoded using a redundant representation studied and implemented
in chapter [2} signed-digit representations can be used to be robust against differential SCAs.

Notations used below, which are the same ones as [80], are:
— k= (kn—1---kiko)2, k > 1 is the n-bit scalar,
— k@ is a possible key value for k,

— [is the number of collected traces,
— D is the number of points in each trace,

65

3.1. Template Attacks

OO
+2 +2)

-T= 1 D is the matrix of power consumption values of size [x D. Each
BSOS

row corresponds to one power trace t. 1" can be seen as a set of [traces t.

3.1 Template Attacks

Template attacks, introduced by Chari et al. [27], are a type of side-channel attack. This
attack model used in [52,53,81,198,/104,/117] is powerful: the adversary has full access to a
device and is able to record side-channel data for chosen keys and plaintexts. These attacks
characterize leakage information and obtain information on manipulated data. They are not
about the execution regularity or the execution order of computed operations like in classical
simple analysis. These attacks deal with the residual leakage according to the manipulated data.
For example, one can consider the Hamming weight or the Hamming distance model.

Template attacks consist of two phases. The first one, the profiling phase, also named template
generation, is the characterization where an attacker records side-channel data for chosen keys
and plaintexts. A side channel of a device is characterized and templates are generated under
attacker control. The second phase, the profiling phase, also named template classification, uses
the characterization results to evaluate what is the probability that the secret key (i.e. the
scalar)) k used by a cryptographic device is equal to k.

3.1.1 Template Generation

In this first phase, a large amount of traces are gathered. A trace is measured from a side
channel such as power consumption or electromagnetic emanation. All traces are taken from the
same operation or the same cryptographic algorithm. Templates are generated by traces with
the properties of the probability distribution for all points. In other words, templates consist in
estimating the distribution defined by the mean vector m and the noise covariance matrix C of
the points.

Ideally, templates must be built for each possible operation, that is for all possible data and
key hypothesis used by a cryptographic algorithm. In addition, each of these values is built for
a large number of traces {. Thus, for each pair of possible data and key hypothesis, we have [
traces and one corresponding template (m,C) [80, Sec. 4.2.1].

l

1 .

m = (my,---,mp) with mi:;ZtE”,
j=1

!
C = 1 9 —m)T(EY) —m).
-1 =

where () is the jth trace, and tgj) is the jth trace sample of the ith measure.

Determining the size of the covariance matrix can be a delicate issue in this attack. Direct
computations by handling a huge amount of points in the trace can be inefficient. Using the
entire trace will lead to large matrix inversion problems. Indeed, without reducing traces, a great
deal of matrices of size D are going to be inverted. Experimentally, we observed that if D is

2000 or longer, it will take too much time and can run into accuracy problems. Some errors

66

Chapter 3. Practical Security Evaluation Using Template Attacks

may occur in the second phase, the template classification (e.g. when inverting the covariance
matrix).

The solution is to reduce the length of traces: some points leak more information than others
and these are the points to use. The determination for a practical template attack of these points,
so called interesting points or points of interest, is an important issue. The interesting points
make for reducing the trace length because not all points of a trace are part of the template. They
can be chosen by selecting points with maximal variance or with large differences between the
average traces. Another technique for data analysis and processing called principal component
analysis can be applied.

In practice, templates can be generated in different ways. One can consider templates with
power models, templates for intermediate values [58|] or templates for pairs of data and keys ,
pp. 105-118]. The strategy varies from one device to another or the operations performed in the
attacked device. In the case where one builds templates for each pair (d(i), k(i)), the interesting
points of a trace are all points or all instructions which involve d¥, () and functions of (d(i), k(i)).

3.1.2 Template Classification

This second phase consists in acquiring one or more traces ¢ with the unknown secret key
k, and in computing the probability that the actual device uses the secret key k(™). From this
second phase, T is the matrix which corresponds to the set of traces ¢, with D points in each
trace. For each generated template (m,C) a4 k) and its corresponding traces, the probability
density function pr of the multivariate normal distribution can be calculated as follows:

) 1 1 —1
r(tEY) = pr(t; (m, C) g o) = exp 3 (tmmC T =m)T
pr(t|k™) = pr(t; (m, C) 4 y0) TP a0

This probability must be computed with all templates generated during the first phase. Indeed,
templates have been built for different pairs of (d(?, k(). Assuming that the attacked subkey
can take K values, one must calculate all probabilities

pr(t|kW), prk®), - prk®),

with K as the total number of possible subkeys. When K is high, it can be difficult to generate
associated templates. In practice, template attacks are performed to guess a part of the secret
key. The highest probability should indicate the correct template. Indeed, each probability is
associated with one template, and so with one key. To refine these results, one can calculate
the probability of each possible template using Bayes’ theorem recalled below. The probability
pr(k(i)]t) which can be viewed as an update function of probabilities, is then computed on the
prior probability p(k®) and pr(t|k?) for j =1,--- ,K:

pr(tk®) x p(k@)
S (pr(tlk@) x p(k@))

However this equation may not be sufficient because a single trace may not have enough
information available to reveal the key. Indeed, some noise are present in every measurement in
practice. The side-channel information related to the attacked sequences (the signal) needs to
be larger than the side-channel information related to the unrelated sequences (the noise) , p-
74]. A perfect measurement setup would be a setup that only measures the power consumption
of the part of the cryptographic device that is relevant for the attack. The power consumption
of all other parts of the device is noise from the attacker’s point of view Sec. 3.5].

pr(kWt) =

67

3.2. Used Architecture for the Attacks

In order to enhance the efficiency of this attack, one can increase the number of measured
traces. Considering a set of traces T' allows to minimize the probability of false classification
errors. The probability pr(k®|T) is computed like an extension from pr(k®|t), and is calculated
by multiplying the probabilities and applying iteratively Bayes’ theorem. Thus, one computes
the probability pr(k(®|T), that is a key corresponding to the measured traces:

(T pr(t@ k)) p(k)
S (T pr(tD1©)) x (k@)

where [is the number of traces in T'. The higher the set of traces is, the more the success of the
attack is increased.

pr(kO|T) =

3.2 Used Architecture for the Attacks

In this chapter, we use a generic architecture designed for ECC operations in the University
College Cork (UCC, Ireland) by Byrne et al. |[24]. The provided architecture and all works in this
chapter were carried out by a doctoral exchange student, and was completed by using the funds
from the European mobility grant from UEB (Université Européenne de Bretagne) to carry out
research in UCC for three months (see appendix |Al).

3.2.1 Measurement Setups

Experimental template attacks were carried out on a Xilinx XC5VLX50 FPGA embedded
on a Sasebo-GII. An oscilloscope measures the power consumption of the main power supply
for the FPGAs internal logic. It is possible to measure the instantaneous power consumption of
the board during the runtime of a cryptographic operation. The dynamic power consumption at
the internal power nets is directly affected by the dynamic power consumption of cryptographic
operation executed on the FPGA.

In order to implement the cryptoprocessor on the board, a wrapper was created to act as the
input/output interface. The wrapper consists of a counter, a FSM (finite state machine) and
a ROM instruction set containing the input points and a set of keys for testing. The counter
counts through each instruction in the ROM. The FSM controls the loading of the input points
and the scalar k and then triggers the processor to start the point scalar multiplication [24].

3.2.2 Proposed Architecture

An architecture for the scalar point multiplication can be generated for any characteristic
p through the aforementioned reconfigurable architecture [24]. The architecture is described in
appendix [A]

An architecture was generated for the NIST recommended prime characteristic field pige =
2192_264_1[57] Annex A.2.1]. The ECC processor (for curves over F,, n = 192 bits and Jacobian
coordinates) presented in figure includes one dedicated unit for each modular operation
(modular addition, subtraction, multiplication and inversion).

The processor was generated for the Euclidean addition chains algorithm from [22]. This
algorithm provides a regular behaviour for scalar multiplication. Given a point P on an elliptic
curve F and an integer k = (kj—1 - - ko)2 transformed into an Euclidean addition chain (EAC),
one can calculate the scalar multiplication [k]P (algorithm in figure[3.2)). Let the EAC computing
the integer k be v = (1,2,3,v4,- -+ ,vs) with v; € N. One can replace the v;s by 0 and 1, which
gives the chain ¢. Thus, we use the notation ¢ = (¢4, - ,¢s) with ¢; € {0,1} to describe the

68

Chapter 3. Practical Security Evaluation Using Template Attacks

192

»data_out
sel(0) 192 —— sel(1)
data_in—2 > din PoutA 199, GF(p) Inverter
Dout B 4| —»
T{) sel(2}
p [i
™y Multiplier
RAM N sel(3)
i A GF(p) Adder _[j_
¥ addr ———————— sel(4)
s we GF(p) N
Subtracter
3, load »
ROM otrl 73 sel Address
Decoder
addr

T4 Controller

Figure 3.1: Specific cryptographic architecture for the NIST curve P-192 (from [24]).

EAC generated for k . The chain ¢ is computed by the algorithm provided in for each
scalar multiplication.

input: P € E(F,), and the chain ¢ = (¢4 - - - ¢5)2 computing the scalar k&
output: [k]P

Uy [Q]P
Ug «~— P
for ¢ from 4 to s do
if ¢; = 1 then
Uiy < U + Uy
U2 — U2
else
Ui+ Ui +Uy
U2 — U1
U+ Ui +Uy
11: return Uy

—
<

Figure 3.2: Scalar multiplication using Euclidean addition chains (from [31]).

The field operation count of the algorithm in figure is (s — 2)ADD + 1DBL. It performs
the scalar multiplication using one initial point doubling and then only point additions. This
method allows to avoid simple power analysis attacks. Indeed, with only point additions, the
analysis of side-channel information does not enable us to identify the bit pattern of the chain ¢
which computes the scalar k.

In figure 3.3, a power trace of a part of a scalar multiplication using the algorithm in figure|3.2
is presented. The algorithm in figure [3.2] prevents simple power attacks. That is why there are
only point additions in this power trace. One cannot guess key digits used with one single power
trace.

The power consumption of the device is measured along a resistor using a digital oscilloscope.

69

3.2. Used Architecture for the Attacks

The recorded voltage drop is proportional to the power consumption of the FPGA. In addition,
the power supply (Vpp) is fixed. Thus, we refer to the voltage drop as power consumption and
to the corresponding trace as power trace in this chapter.

0.216 |

0.215 |-

0214

point additions

0.213

0.212

0.211

Voltage

o.21 |

0.209

0.208

di i [i i i L i
4500 5000 5500 5000 6500 7000 7500 8000

Time (ns)

Figure 3.3: Power trace of the scalar multiplication during five iterations.

3.2.3 FPGA Implementation

Table 3.1 reports FPGA implementations of the ECC processor (for curves over F),, n = 192
bits and Jacobian coordinates). Two versions are implemented. The first one uses BRAMs while
the second one does not. The implementation uses Euclidean addition chains method with one
arithmetic unit per field operation. Hardware implementations reported in this chapter have been
described in VHDL and implemented on a XC5VLX50 FPGA using ISE 9.2 from Xilinx with
standard efforts for synthesis, place and route. We report best clock frequencies and numbers
of occupied slices. We also report numbers of look-up tables (LUTs with 6 inputs in Virtex 5)
and flip-flops (FFs) for area. A XC5VLX50 contains 7200 slices with 4 LUT and 4 flip-flops per
slice.

memory area freq.
type slices (FF/LUT) | BRAM | MHz
distributed | 2455 (2200/7 945) 0 154
BRAM | 2035 (1933/7022) 6 154

Table 3.1: FPGA implementation results for the complete ECC processor over I, with n = 192
bits.

70

Chapter 3. Practical Security Evaluation Using Template Attacks

3.2.4 Power Model

Power consumption or electromagnetic emanations of a device depend on the operations they
perform,; on the data they process and is often proportional to the Hamming weight of the ma-
nipulated values. The bit switching activity consumes power in FPGAs. If we assume that the
target device behaves accordingly to the Hamming weight model, the difference of scalar multi-
plications for different keys can be observed by measuring these side channels. Indeed, whereas
the algorithm in figure [3.2] always performs point additions, the Hamming distance and weight
is different for each key (see example below).

Example. Let us see what happens with two different chains ¢ and ¢':

¢ = (100110)s ¢ = (110101)s
begin (Uy,Usz) = ([2]P, P) begin (U7,U3) = (]2|P, P)
ca=1 (U,U2) = ([3]P,P) cp=1 (U, U3) = (8], P)
cs =0 (U, U2) = ([4]P, [3]P) s =1 (U, U3) = (4P, P)
cg =0 (U,U2) = ([T|P, [4]P) cg =0 (U1, U3) = ([5]P,[4]P)
cr =1 (U, U2) = ([11]P, [4]P) ¢z =1 (U, U3) = (9P, [4]P)
cgs =1 (Ur,U2) = ([15]P, [4]P) cg =0 (U1, U3) = ([13]P,[9]P)
co =0 (Uy,Usz) = ([19]P, [15]P) co =1 (U],U3) = ([22) P, [9]P)
end Uy = [34]P end Uy = [31]P

In the circuit, a 192-bit wide RAM is implemented. Outputs are registered and data is
stored in LUTs. This distributed RAM is used for storing intermediate values. We can see in
the example that for different values ¢; of a chain, the RAM which contains all coordinates of
Uy and Uy, is different. In addition, all intermediate values computed during a point addition
are stored in the RAM. In Jacobian coordinates, the running time for a point addition expressed
in terms of field operations is 9 additions, 11 multiplications and 5 squares. When the FPGA
computes a point addition, the power consumption of logic cells, the number of transitions and
the Hamming weight of the RAM change following the bit pattern of the chain computing the
scalar k. Indeed, input and output points, U; and Us, are different depending on whether the
key bit value is 1 or 0. The number of transitions (0 — 1 and 1 — 0) that occur in the circuit
during a certain time interval is different according the processed bit.

Power consumption of a circuit depends on the number of logic cells. What consumes is the
Hamming distance change at the output of the RAM. As that change propagates through the
circuit, other lines and buses change value and consume power until it reaches a register.

Figure 3.4 shows the difference in the mean power consumption for 1000 scalar multiplica-
tions with a constant scalar k, and 1000 scalar multiplications with another constant scalar k’.
The number 1000 is an arbitrarily choice. Below in section 3.3.2, we discuss on the number of
acquired traces for each possible key. For a same operation when mean power traces are sub-
tracted, no peaks are present. There are also smaller peaks at the beginning when computing the
only point doubling [2]P. Figure 3.4 shows that the power consumption can be used to create
templates to distinguish the difference between scalar multiplications performed with different
secret keys. Indeed, there are distinct peaks when examining averages. These peaks indicate that
power consumption only depends on some data at few instances, and that there is a difference

71

3.3. Template Attacks Implementations

of leaking information with different keys.

0.0015 — : —
0.001— —

0.0005 —

-0.0005 — ‘“

-0.0011 : i : : i —

—
-

Power Difference
—

ERMAEL CRTEEETEEE
e

-0.0015 — —

I | I I | | I
500 1000 1500] 2000 2500 3000 3500
Time (ns)

o

Figure 3.4: Difference between mean traces for 2 keys.

Attacks can be performed and the figure 3.4 has been generated because traces are aligned.
Indeed, the oscilloscope is triggering: it is configured to start recording the considered side
channel with the trigger signal. In the cryptoprocessor, the control signal triggers a delay loop
in the finite state machine that waits until the scalar multiplication is complete.

3.3 Template Attacks Implementations

The goal of template attacks is to guess a part of the key k used by the cryptographic
algorithm executed on the device under attack. Indeed, for template attacks, we are not attacking
the entire scalar operation. We investigate a specific operation. One needs to decide which part
of the algorithm to attack. For example, one can need some simple operations where the secret
key k and the known point P are processed with an intermediate value, function of £ and P.

In our attack, we only focus on several bits of the key. The set of these bits that we want to
guess must be small enough to try all possible subkeys. The measured side channel in this attack
is the power consumption of the cryptographic device. Communications are opened up and data
are sent via the serial port to the FPGA which is set up for USB communications. A trigger
signal notifies the oscilloscope when to start and when to finish trace acquisition. The result of
the computation [k]P is read back to ensure correct operation. The same point P is sent twenty
times before reading back the power trace. The oscilloscope averages the traces to reduce noise
by a twenty iterations loop. This loop improves trace quality. If one sends the same data many
times, and takes the average, there will be less noise on the trace. It returns a “cleaner” trace.
There is an average parameter which tells the oscilloscope how many times to average traces.
Using this method, an attacker is powerful. Then, through a numerical computing environment,
Matlab, the same data is also sent many times. The bigger the value for the average is, the
cleaner the traces are, but the longer it takes to acquire them.

72

Chapter 3. Practical Security Evaluation Using Template Attacks

3.3.1 Template Attack with a SPA Countermeasure

Let the secret key k = (kig1---kiko)2. For this attack, we focus on the first three bits
evaluated by the algorithm in figure 3.2l The goal of this attack is to guess three bits of the
chain ¢ which corresponds to the unknown secret key. That is why we now consider that we
want to guess the three initial bits of the key instead of the three bits of the chain for the sake
of simplicity. The number three is an arbitrarily choice. For that, the first strategy is to build
templates for the 22 = 8 possible values. We use this characterization for the attack. Here,
templates are generated for all possible key values, because the input data P is supposed to be
fixed.

Thus each possible key is sent via the serial port to the FPGA in order to measure the
resulting power consumption. Building templates involves modelling the mean and covariance
power consumption. One needs to be sure to measure enough traces to provide an accurate
model, which is typically assumed in the region of 1000 traces. On this device, we execute, read
back and acquire 1000 traces for each key, (kO kM ... k(M) = (000,001,---,111);. That
is 1000 scalar multiplications for each possible key. Thus, the set of traces T is a matrix of

8 x 1000 = 8000 rows.

The next step is to determine the interesting points. The strategy for providing the most
information for the template is to take the vectors of means, to compute differences of each pair
of mean vectors and sum them up. The highest peaks are the interesting points. These points
allow firstly to reduce the traces length, and secondly to concentrate on points which leak more
information than some others. Indeed, selecting interesting points allows to reduce redundant
information. By this method, the information is reduced when the power consumption is the
same, else the characteristics difference are discorded.

0,04

0,035 — : : —

o
r=)
@

I
|

0,025

Power Difference

o
=
=

I
|

0 bl | T P LT P e L Lo | o Do s MJ 0 LIV O O NP PO IO " gt 11

I Y t {17 i He
1000 1500 2000 - 2500 3000 3500
Time (ns)

Figure 3.5: Interesting points (crosses) used to build templates.

Figure 3.5 shows the difference of means between different scalar multiplications. Crosses,
which are the peaks of correlation traces, indicate the interesting points in time retained to
generate templates. Only several points for each peak are necessary. One just needs to take the
index of these points and then, to reduce the actual traces. These interesting points of power
traces give the locations where the power transitions for the different operations occur.

Indeed, when traces have almost the same power consumption at a given time, the difference

73

3.3. Template Attacks Implementations

of means is closed to 0 at this time. In this case, this point is not characteristic. When one mean
of traces has not the same power consumption than the others at the same time, there will be a
big peak due to the computation of the differences of each pair of mean vectors. It means that
this point is characteristic to a trace. If there is a peak of power consumption at this time with
a trace computed with an unknown key, one could guess the key used because only one template
corresponds to this peak. A lower peak is present when several means of traces have almost
the same power consumption, and the others do not. This peak is less characteristic, because it
corresponds to a set of templates, i.e. a set of possible keys.

Reducing number of traces points allows to build templates for each possible operation. A
vector of means and a covariance matrix, computed with the interesting points of the traces,
characterize each power trace. This way, eight templates are built, that is eight vectors of means
and eight matrices of covariance, because we focus on three bits of the key. These vectors and
matrices correspond to the templates which represent the behaviour of the device when it pro-
cesses a specific key. Indeed, the noise generated by the device varies according to the key used,
and thus, created templates represent the distribution of probability pr(k®|t).

Now, the characterization is used with power traces from the device under attack to determine
the secret key k. One must evaluate the probability density function of the multivariate normal
distribution with the templates and the power traces of the device. In other words, we use these
templates to know the probability that a key corresponds to the collected traces. For that, 100
traces are recorded with an unknown secret key. From this second phase, a trace ¢ corresponds
to a trace measured with the unknown secret key. T is the matrix of power consumption values
which represents the set of 100 measured traces.

The probability pr(k®)|t) is computed for each possible key and for each trace. These prob-
abilities measure how well the generated templates fit to each trace ¢t. Figure 3.6 shows the
mean and the standard deviation of probabilities pr(k(®|t) for the collected traces corresponding
to a key value. The standard deviation is truncated when the value is out of the range [0, 1].
Intuitively, the correct key seems to be the key hypothesis k() = 5. Indeed the majority of
probabilities pr(5|t) are much higher than for all others key guesses. For the key k() = 5, we
have a mean of probability 0.74 for the 100 traces, and a standard deviation of 0.26.

1 —
il f —=—Mean of probability 7

0.9 B]

o
@
[

I

o
~
[

o
o
F

Probability
R R E

o
I

{

3 4
Key hypothesis

Figure 3.6: Mean and standard deviation of probabilities for each key hypothesis k().

Figure 3.7 shows the probability pr(k(i)\t) for the 100 collected traces, and for two keys pos-
sibilities. The key with the highest probability should indicate the correct template k(") = 5,

74

Chapter 3. Practical Security Evaluation Using Template Attacks

and another key guess k(¥ = 7. For example, the probability pr(k(i)|t) is 0.48 for the 75th trace
for the key k() = 5. Most of the time, the key guess k) = 5 leads to the highest probability.
That is why attacks based on a single trace do not always succeed. Indeed, with only one or few
traces, the key k) = 7 could lead to the highest probability. However with several traces, we
can see that the key k() = 7 does not correspond to the correct template.

o
w0
I

|

o
@
I

|

o o
o ~
T I

|

Probability
T

o
EN
[

o
w
[

02—

01—

Traces for key = 7

C AN

09—

08—

07—

o
o
I

Probability
T

o
Y
I

|

o
w
I

|

o
N
T

|

- =
I I
Z
—

‘ | U , i

| | —
70 80 90 100

50 60
Traces for key = 5
Figure 3.7: The probabilities pr(k®|t) for each trace t with k() =7 and k() = 5.

100 traces have been recorded from the device under attack with an unknown secret key. For
each trace, the probability density function was computed, and then, one can multiply the key
probabilities for each trace by each other and scale again. This extension from pr(k®|t) allows
to compute the probability pr(k(®|T") where T is the matrix with 100 rows of power consumption
values. Each row corresponds to one power trace. The result of this probability confirms the
impression at the beginning, that is the key k() = 5 is the correct one. Indeed, for all key
possibilities, the probability is close to 0 except for the key k() = 5 where this probability is
almost 1. The figure 3.8 shows how the probability pr(k(®|T)) evolves as a function of the number
of traces for k) = 5. The correct key leads to a probability of almost 1 after 13 traces. This
probability minimizes the probability of errors and reveals the correct key used by the device.
Furthermore the traces order does not have an impact on this probability: the correct key leads

75

3.3. Template Attacks Implementations

to a probability of almost 1 after a number of traces between 7 and 18 when one considers 1 000
experiments (each experiment corresponds to a different traces order).

Probability

I | | | | | | b —
20 30 40 50 60 70 80 90 100

Traces

Figure 3.8: Evolution of the probabilities pr(k®|T) with an increasing number of traces (k(*) =
5).

For a secure implementation against SPA, a template attack succeeds to find a piece of the
secret key. The key k can be revealed by repeating this method until guessing the entire key.

This template attack has been performed with a fixed parameter. In particular, we have built
the templates with 1000 traces collected for each possible key. Afterwards, we will examine the
number of the gathered traces and see the evolution for a practical template attack.

3.3.2 Evaluation of Traces Number During Templates Generation

The first phase of a template attack consists in the profiling phase. Templates are generated
according to a mean vector and a noise covariance matrix which are calculated from a large
amount of gathered traces. On the previous template attack, 1000 traces were acquired for each
possible key. For each one, the 1000 traces are very similar because the same key and the same
data have been processed. Whereas the 1000 traces are collected with the same input point and
the same key, there is a difference between every power trace due to noise. In order to view these
differences, one can examine power consumption at a fixed time to see how the points of power
traces are distributed. Differences are presented by the histogram in figure 3.9 with 1000 traces
at only one point at time 2000ns. For each trace at time 2000 ns, we group traces which have
the same power consumption. We can see that figure 3.9 is in the shape of a Gaussian.

Figure 3.9 shows that points in the power traces seem to follow a normal distribution. That
is why one must measure a large amount of traces for a same key and the same data to obtain
average power traces with the less electric noise. Afterwards, we are going to try to determine
how many traces are necessary to generate good templates. By “good templates”, we mean that
the generated templates allow to succeed a template attack with a very high probability.

We consider that the obtained accuracy with 1000 traces is always sufficient. Thus we choose
this accuracy as a reference: 1000 traces correspond to a 100 percent accuracy. Figure
presents the evolution of the accuracy of the obtained average in function of the number of

76

Chapter 3. Practical Security Evaluation Using Template Attacks

w0 - i =

Frequency of occurence
z E
T
|

&
i

0‘.’20‘3 0.2065 0.207 0.2075 0.208 0.2085 0.203 0:2095 0.21
Power

Figure 3.9: Histogram of the power consumption at 2 000 ns.

collected traces. For example, we can see that from 400 collected traces, the accuracy is greater
than 0.995.

For each possible key which leads to an accuracy of 0.995, the attack template is always
achieved with the secure implementation against SPA from 390 traces. We have the same results
when we collect 1000 traces. The probabilities pr(k(?|T) always indicate the correct key used
by the cryptographic device for a number of traces from 390 to 1 000.

Below, we will attempt a template attack with a secure implementation against DPA, based
on a random binary signed-digit recoding of the scalar k. This countermeasure allows us to add
randomness on the scalar for the scalar multiplication. To have a bigger probability to guess the
correct key, we will build templates with 1000 traces for each possible key.

3.3.3 Template attacks with a DPA Countermeasure

Randomizing the scalar k in the scalar multiplication [k]P can be used as DPA countermea-
sure. The first countermeasure of Coron [35], which randomizes the scalar k in (k + r#E(F,))
where r is a random number, is not applied in this section. Template attacks can be efficient
when one applies this countermeasure. Indeed, the lattice reduction method allows to guess the
private key by using the property ¥’ = k mod N. The only effect of such a countermeasure is to
increase the length of the system to solve [94].

In a non-redundant number system, all numbers can be represented in a unique way. A redun-
dant number system allows multiple representations of some numbers, thus the name redundant.
We propose an on-the-fly random recoding of the scalar digits k; using a signed-digit (SD) rep-
resentation. The redundancy of this representation allows to randomly choose among several
representations of the key digits k;. Then the number and order of operations at the curve
level (point additions and point doublings) are randomized with a basic scalar multiplication
algorithm. This may protect from some power or electromagnetic radiation attacks. Whereas re-
dundancy of signed-digit number systems can be interesting in their carry-free addition property,

7

3.3. Template Attacks Implementations

o
0
)

o
o
o0
&

o
w0
®

Percentage of precision

097

0 100 200 300 400 500 600 700 800 900 1000

Number of traces

Figure 3.10: Evolution of the accuracy of the average obtained in function of the number of
collected traces.

we just use this system for its redundancy, and change the number representation on-the-fly.

This countermeasure has been studied above in the section2.3.3] The aforementioned section
provides a unit which recodes on-the-fly an integer into a randomized signed-digit representation.
The recoding unit was highly tested and integrated into the elliptic curve cryptosystem.

In this section, we perform a template attack on an implementation which includes the afore-
mentioned recoding unit which provides a countermeasure against some side-channel attacks.
The obstacle that comes into play in such an implementation is that the internal variables of the
computation are randomizing.

input: Pe E(Fp) and k = (kn—l cee kle)QSD with k; € {I,O, 1}
output: Q = [k|P

1: @+ O

2: for ¢ from n — 1 downto 0 do
3: Q + 2]Q

4: if k; # 0 then

6: else

7 Q +Q+P

8: return

Figure 3.11: Double-and-add-always applied with signed-digits for scalar multiplication.

Let the secret key k = (k,—1---kiko)2. The scalar k, represented in binary representation,
is randomly recoded on-the-fly in a signed-digit representation k = (ky, - - - kiko)2sp with k; €
{1,0,1}. The recoding unit is based on the algorithm in figure , and is used for each scalar
multiplication. The chosen scalar multiplication is presented in figure [3.11] and prevents against
simple SCAs. Indeed, this algorithm always performs a point doubling and then a point addition
whatever the processed bit. The computation cost is on average n ADD + nDBL. Whereas this

78

Chapter 3. Practical Security Evaluation Using Template Attacks

algorithm is resistant against simple side-channel attacks, fault attacks become possible. Indeed,
it introduces dummy operations: an ADD is always performed but the output of the ADD may not
be used by the algorithm.

Like in the previous template attack in section 3.3, we always focus on three bits evaluated
by the scalar multiplication algorithm (in figure . The three bits starting most significant
digit first are recoded according to the fourth digit 0, 1 or 1 (see algorithm in figure . Indeed,
the fourth digit can be recoded before the third in 0, 1 or 1. Moreover, the third digit can change
according to the fourth digit. That is why one needs to consider the fourth digit (knowing that
we are most significant digit first).

the three initial || the 4th digit is 0 | the 4th digit is 1 | the 4th digit is 1 || number of
bits of the key * % 0 % %k k1 * % *1 possibilities

000 001, 011, 111 001, 011, 111 7

001 011, 111 010, 110 000 6

010 110 011, 111, 101 011, 001, 111 8

011 111, 101 100 010, 110 6

100 101, 111 101, 111, 011 6

101 111 110 100 4

110 111 111, 101 4

111 110 2

Table 3.2: Recoding possibilities for 3 initial bits.

Table [3:2] shows all possible recodings according to the three initial bits. For example, the
key (001)2 has six possible recodings according to the fourth digit which can be ever recoded by
the recoding unit. In addition, some recodings are in several key possibilities. For example, the
initial sequences (010)2 and (011)2 can be recoded in (111). The two recoded digits are bold
font:

0101 — 1101 — 1111,
0110 — 1110.

The final recoding can be the same for different initial sequences. Therefore, for different key
recodings, traces will match to themselves because the recoding will be the same for different
keys. A template will have exactly the same behaviour for several keys. We can feel that a
template attack will be very difficult to perform on such an implementation. One can think that
it is sufficient to consider four bits instead of three. However in this case, the problem will be
the same. Indeed, if we consider four bits, the number of possibilities will increase, and we will
have to consider the fifth digit. Thus, some recodings will be in several key possibilities. In this
case, the complexity of a template attack increases more and more. In this attack, we try to
guess three digits of the secret key. Below in section [3.4.4] we discuss on the number of randomly
recoded digits.

FPGA Implementation

The binary signed-digit recoding unit was added to the cryptoprocessor. This unit provides a
random representation of the scalar k digit by digit according to a random number. Figure [3.12
presents the architecture of the cryptoprocessor (for curves over IF,, n = 192 and Jacobian

79

3.3. Template Attacks Implementations

coordinates) with the binary signed-digit unit. The controller launches the corresponding curve-
level operation according to a digit of k; € {—1,0, 1} on 2 bits provided by the binary signed-digit
unit.

The randomness was provided by a pseudo random sequence generator with linear feedback
shift registers (LFSR). The period of the sequence was 24 — 1 = 16383. The period is large
enough for the application. Indeed, templates are built with 1000 traces. Thus, the provided
randomness is sufficient for randomly recoding a number in signed digits. The primitive polyno-
mial used was !4 + 212 + 2 + 2 + 1.

192,

pdata_out
sel(0
192 se|@ Dout A 122 sel(1)

data_in din GF(p) Inverter
rdm Dout B 1192 (9)

Y

sel(2)

GF(p)

Y

—
o VT— Multiplier
© SD rve-level RAM
N dperation » GF(p) Adder sel(3)
" .
@ recoding |-, /, . e —-
= addr GF(p) sel(4)
we
N 2 Subtracter |17
]
3, load N
ROM 5sel " Address
ctrl
Decoder
addr
*—4— Controller
7

Figure 3.12: Architecture of the cryptoprocessor with the binary signed-digit recoding unit (with
the NIST curve P-192).

Table reports FPGA implementations of the ECC processor (for curves over [, n = 192
bits and Jacobian coordinates). The implementation uses double-and-add-always method with
one arithmetic unit per field operation. Table [3.3] presents implementation results with and
without the key recoding unit.

SD random memory area freq.
recoding unit type slices (FF/LUT) ‘ BRAM | MHz
th distributed || 2808 (2732/9066) 0 150
wi
BRAM 2313 (2260/8855) 6 150
_ distributed || 2550 (2484/8507) 0 150
without
BRAM 2084 (2073/7985) 6 150

Table 3.3: FPGA implementation results for the complete ECC processor over I, with n = 192
bits.

We can see in table [3:3] that the version where the secret key is randomly recoded on-the-fly
can work at the same frequency as the implementation without this countermeasure. However
the protected version needs more registers and LUTs than the unprotected one (about 10% more
slices). In addition, it is not necessary to wait for the end of the computation of the key recoding
unit to use it. Recoding can be performed in parallel to point operations. The combination
of recoding and scalar multiplication algorithms allows to overlap recoding steps by curve-level

80

Chapter 3. Practical Security Evaluation Using Template Attacks

operations. When the digit k; is used, the next digit is already recoded, or will be recoded before
the cryptosystem needs to use it. Therefore there is no latency during the scalar multiplication.
Indeed, recoding a digit requires few clock cycles, whereas a curve-level operation requires hun-
dreds to thousands of clock cycles.

Two side-channel attacks will be performed in the next section. Like for the previous tem-
plate attack, templates are built on the same principle. A large number of traces are measured
for all possible keys. Then, we estimate the mean vector and the covariance matrix of the multi-
variate normal distribution according to the interesting points. In the second phase, we use the
characterization with power traces from the device under attack to determine the secret key.

We know that the number of possible recodings is different according to initial sequences
(table .2). One can think that this difference could allow to find information with a sequence
which has a small number of possible recodings. That is why the first template attack is on a
key which has a small number of possible recodings. The second template attack is an extension
of the first one: we focus on six bits of the key. The first three bits evaluated are randomly
recoded, while the next three bits are not. For this attack, templates are built for the first three
bits, and then for the next three bits evaluated by the scalar multiplication algorithm.

Template attack on the DPA secure implementation

In this template attack, we want to guess three bits of the key. To see if the countermeasure
is efficient, we will perform a template attack with the key (111)s which has the less possible
recodings. Indeed, table shows that the subkey value (111)2 can be recoded by itself or by the
sequence (110)2. A unit recodes randomly the three bits on-the-fly using randomly chosen bi-
nary signed-digit representations, whereas there are only two possibilities. This template attack
is performed with the same method as the previous attack. In the training phase, 8 templates
are built with 1000 traces for each possible key by measuring the electrical activity. Templates
are built according to the interesting points which contain the most information, by calculating
the sum of the mean trace difference. In addition, it allows to reduce the number of points of
each trace. The attack phase consists in measuring the power consumption of the cryptographic
system with the secret key during 100 scalar multiplications. The attacker should be able to
extract the key of the attacked device in this profiling phase.

The probabilities pr(k®|t) are computed. They are based on the result of the template
matching using Bayes’ theorem to answer the following question: given a trace ¢, what is the
probability that the secret key of the device is equal to k()? Figure 3.13 shows these probabilities
for each possible key. The top figure shows the probabilities pr(k®|t) for each 100 traces ¢ and
keys k(?). The bottom figure shows the mean and the standard deviation of probabilities pr (k¥ |t)
for the collected traces corresponding to a key value.

By the top figure, we can see that the probabilities are distributed and dispersed between
each possible key. For the 100 traces, different templates fit to a given trace. The probabilities
pr(k@|t) are the highest for too many different keys, and so they indicate too many different
templates. No information can be deduced from this figure, and neither when one computes
the mean and the standard deviation for each possible key. Indeed, by the bottom figure, the
mean of probabilities for the 100 traces are about 0.2 for three key values, and their standard
deviations are about 1.75. The means and the standard deviations are too low to deduce any
information. These values are also distributed between each possible key.

With these results, we cannot deduce the best guess for the key used by the device. Ex-

81

3.3. Template Attacks Implementations

0.8

Probability
o
[=2]

I
i

0.2

T T
‘ —=—Mean of probability ‘

o4
2}
T

Probability

e

B
1T

1

L}

i T~ \/

3 4 5 6 7
Key hypothesis

Figure 3.13: The probabilities pr(k(i)|t), mean and standard deviation of probabilities for each
key hypothesis &(®.

tending this approach to determine the probability pr(k‘(i)|T) does not give either result on the
key processed. Indeed, all probabilities pr(k(|T) are close to 0 for all key values. Thus, even
with a key which has few possible recodings, this template model attack seems to be not practical.

Second template attack on the DPA secure implementation

In this template attack, we want to guess six bits of the key. The recoding unit recodes the
three first bits on-the-fly using randomly chosen binary signed-digit representations, while the
recoding unit is disabled for the next three bits. Two distinct template attacks are performed
separately with the same approach. The fourth bit is read but is not modified by the recoding
unit.

The first one deals with the first three recoded bits. In the training phase, 1 000 power traces
are measured to characterize the device under attack. Therefore 23 = 8 templates are built
according to the three recoded bits and in particular according to their corresponding interesting
points which contain the most information. After this profiling phase, the attacker should be
able to extract the key of the attacked device.

The second one deals with the next three bits of the key. This sequence of bits does not
change during the scalar multiplication, the random recoding unit being disabled. Therefore
templates are built according to the eight possible keys, and seventeen possible input data, that
is 8 X 17 = 136 templates. Indeed, the first three bits are randomly recoded and seventeen inter-

82

Chapter 3. Practical Security Evaluation Using Template Attacks

mediate values (see table can be calculated by the scalar multiplication algorithm. The point
@ used in the algorithm in figure [3.11] is not the same according to the first three bits, and so
can have seventeen different values according to the first three recoded bits. Thus, templates are
built with all possible keys (23 = 8) and the seventeen possibilities for the point . We wanted
to know if an attacker could guess the correct key and to see the evolution of the probability
density function of the multivariate normal distribution with a large number of templates. We
can see the limitation of the attack for generating a large number of templates, i.e. 136. Indeed,
weeks were necessary to measure the 136 x 1000 = 136 000 traces. It would take too much time
to measure so many traces to build templates for an attacker.

Probability

T T
= —=—Mean of probability

0.81

Probability
o
o
]
1

<
N
T

0.2

1
7 8 9 10 11

Key hypothesis

Figure 3.14: The probabilities pr(k(®|t), mean and standard deviation of probabilities for each
key hypothesis k() (the three first bits are randomly recoded on-the-fly).

The attack phase consists in measuring the power consumption of the device with a secret
key. In this context, the probability distribution of the power consumption is computed for
the 100 measured traces. Figure 3.14 shows the probability density function for the first three
bits recoded on-the-fly and for the next three bits with templates built during the previous
training phase. The top figure shows the probabilities pr(k(®)|t) for each trace ¢ corresponding to
each possible key. The bottom figure shows the mean and the standard deviation of probabilities
pr(k®|t) for the collected traces corresponding to a key value.

For the first attack, keys are between k(%) = (000)y = 0 and k(7 = (111) = 7. The key is
recoded on-the-fly using randomly chosen binary signed-digit representations. Probabilities are
distributed and dispersed between each possible key value. No templates seem to fit a given trace.
In addition, the mean and standard deviation of probabilities pr(k(i)\t) for each 100 traces do
not give any intuition about the correct key. There is not a majority of traces which a template

83

3.3. Template Attacks Implementations

matches. The highest probabilities pr(k()|t) are shared between all possible keys. Thus, one
cannot guess what key value is used for the first three bits.

The key hypothesis between 8 and 15 corresponds to the possible keys (000,001, --,111)
for the next three bits. This piece of the key does not change for different scalar multiplica-
tions. Their probabilities pr(k®|t) are computed with each template. Figure 3.14 shows these
probabilities for each key hypothesis and one input data. Indeed, there are 186 templates, and
each key hypothesis corresponds to seventeen point inputs. Two key guesses seem to be the
correct key. The majority of the 100 traces collected are higher for k() = 8 and k(Y = 12. In
addition, the mean and the standard deviation of probabilities for these two keys confirm this
impress. The key value k() = 8 has a mean of 0.67 with a standard deviation about 1.6. The
key value k) = 12 has a mean of 0.42 with a standard deviation about 1.8. Thus two keys
distinguish themselves, but the key k(! = 8 seems to be the correct one. For all other templates
corresponding to the other input points, the probability pr(k()|t) is always between 0 and 0.3.
The templates based on these input points and all key values do not match the traces.

Figure 3.15 shows how the probability pr(k(®[t) evolves in the first attack as a function of
the number of traces for each possible key. Each template is associated with a key, and the
probabilities pr(k:(i)|t) measure how well the templates fit to a given trace. With these keys
recoded on-the-fly, one template fits to a given trace, and one fits to another. The probabilities
pr(k®|t) are shared between each possible key.

In addition, the probability pr(k()|T) where T is the set of the 100 traces does not give either
information. Indeed, for each key hypothesis, this probability is close to 0. This result is logical
because for all possible keys and collected traces, the probability pr(k(i)]t) is 0 for several values
of k() and traces t. This template attack performed on such an implementation does not succeed
with a key recoded using randomly chosen binary signed-digit representations.

Probability

0 10 20 30 40 50 60 70 80 90 100
Traces

Figure 3.16: Evolution of the probabilities pr(k®|T) with an increasing number of traces for
k@) = 8.

Figure 3.16 shows how the probability pr(k®|T) evolves as a function of the traces for k() = 8
(i.e. bits (000)2 for the next three bits) and one input data. This key guessed leads to almost

84

Chapter 3. Practical Security Evaluation Using Template Attacks

—y

o
©

=
o

I
n

Probability

o
N

=]

—y

e
©

bt
o

o
n

Probability

%

Traces for key = 2 Traces for key =3

-y

o
©

e
o

=
S

Probability

=
)

o
—

Traces for key = 4 Traces for key = 5

o

e .
e—_
R

o
2

Probability
f=J
'S

s
L

0 20 80 100 0 20 80 100

50 40 60
Traces for key =6 Traces for key =7

Figure 3.15: The probabilities pr(k®|t) for some traces t.

0.8 after 12 traces, and to almost 0.88 after 81 traces. The key k(¥ = 8 is the correct one. The
second key, k(W = 12, which could be the correct key, has a probability pr(k®|T) close to 0
for all input data, like for all the other key possibilities. The mean and standard deviation of
probabilities pr(k@|t) for k) = 12 was lower than for the key k() = 8. In addition, we can see
in figure 3.14 that the number of higher probabilities pr(k()|t) is superior for k) = 8 than for
k() = 12. These results confirm that the key k(! = 12 is not the correct key value.

This second template attack with a DPA countermeasure does not succeed to guess the first
part of the randomly recoded key. For a key which is the same for all scalar multiplications,
the template attack allows to find the correct key. In this second attack, templates have been
built for different pairs of key guesses and input points. In particular, all possible keys have been
associated with all possible input points, and one template fits to the given traces. It means that
we guessed the three bits of the key (k1ss, k187, k1s6) even if the number of templates to generate

85

3.4. Number of Recoded Digits for an Attack

increases consequently. In addition, we also know the corresponding point used by the three next
bits, and so the key value which has generated this input point. In this attack, the template
which matches the correct key guess corresponds to a certain input point). This input point
fits to the computation of the key value (111). Thus, the first three bits of the key can be (010),
(011), or (100). However we do not have any more information to deduce the correct first three
bits among these three key possibilities.

3.4 Number of Recoded Digits for an Attack

Below, we consider the weight of a recoding, its number of digits different from zero. For
instance, the recoding (101) has a weight of 2.

3.4.1 Weight of Recodings

In the previous section, table [3.2] presents all possible recodings for three bits. This table
shows that a sequence of bits can have several recoding possibilities. In addition, recodings can
have the same weight. Thus, a sequence which can be recoded as (111) and (111) has two possible
recodings. However the digit 1 can be viewed like the digit 1. Indeed, most of scalar multiplication
algorithms scan the key k digit by digit. When k; = 1, a point subtraction is calculated. When
k; = 1, a point addition is calculated. An implementation of these computations can be calculated
so that a point addition and a point subtraction are indistinguishable [57, p. 98].

Thus, the sequence of operations that leads to a point addition or a point subtraction can be
similar. Indeed, the opposite of a point can be calculated in a straightforward way. For example,
in affine coordinate, opposite of the point (z,y) is the point (z, —y). In projective and Jacobian
coordinates, the opposite point (X : Y : Z) is (X : =Y : Z). Thus, either one computes the
opposite of a point and then computes a point addition, or one computes a point subtraction
according to the formula of a point addition by integrating the opposite point.

In practice, one can consider two recodings with the same weight like one recoding. For
instance, (101) and (101) can be considered equivalents, because ADD and SUB can be considered
equivalents. However, the number of possible recodings is not the same as previously in the
table This property, combined with the use of a redundant system increases the security of
the countermeasure: the number of possible recodings is closer to the total number of recodings,
whereas the number of possible recodings decreases.

3.4.2 Recoding Possibilities of Initial Bits

Tables and show all possible recodings for one, two and three initial bits, re-
spectively. We can see their number of possibilities, denoted by “# poss”, with and without the
hypothesis 1 < 1, that is the digit 1 is considered such the digit 1.

the first initial || the 2nd digit is 0 | the 2nd digit is 1 | the 2nd digit is 1 # poss
bit of the key *0 x1 *1 7 poss with 1 <1
0 1 1 3 2
1 0 2 2

Table 3.4: Recoding possibilities for one bit.

86

Chapter 3. Practical Security Evaluation Using Template Attacks

the two initial || the 3rd digit is 0 | the 3rd digit is 1 | the 3rd digit is 1 # poss
bits of the key * % 0 *x 1 *x 1 # poss with 1 & 1
00 01, 11 01, 11 5 3
01 11 10 00 4 4
10 11 11, 01 4 3
11 10 2 2
Table 3.5: Recoding possibilities for two bits.
the three initial || the 4th digit is 0 | the 4th digit is 1 | the 4th digit is 1 # poss
bits of the key * % %0 — s % %1 # poss with 1 <1
000 001, 011, 111 001, 011, 111 7 4
001 011, 111 010, 110 000 6 6
010 110 011, 111, 101 011, 001, 111 8 6
011 111, 101 100 010, 110 6 6
100 101, 111 101, 111, 011 6 4
101 111 110 100 4 4
110 111 111, 101 4 3
111 110 2 2

Table 3.6: Recoding possibilities for three bits.

When one considers that the digit 1 is equivalent to the digit 1, the number of possible re-
codings decreases. Indeed, the sequences (101) and (101) are considered as one possible recoding
for the initial bits (100) with the hypothesis 1 < 1.

However according to the total number of possible recodings, the number of recodings for
an initial sequence is higher when one considers 1 < 1. Indeed, the total number of possible
recodings for 1, 2 and 3 bits are 3, 9 and 27, respectively (see section for the exact number
of binary signed-digit representations). When one considers 1 < 1, the total number of possible
recodings for 1, 2 and 3 bits are 2, 4 and 8, respectively (for n bits, there are 2™ possible recod-
ings). In this way, 0 and 1 can be recoded in each possible recoding (in table . Otherwise,

(14 1), 1 cannot be recoded in 1.

In addition, the interval of the number of possibilities is shrunk. Indeed, for three initial
bits, the interval of the number of possibilities is between 2 and 6 when one considers 1 < 1.
Otherwise, the interval is between 2 and 8. For two initial bits, the number of possibilities of
recoding is between 2 and 5 over 9 possibilities when one considers that 1 and 1 are processed
separately. Otherwise, the number of recoding possibilities is between 2 and 4 over 4 possibilities.

Thus, considering that digit 1 is equivalent to digit 1 increases the security of the counter-
measure. Indeed, more initial sequences can be recoded in a same sequence. For example, the
sequence (111) is one of the recodings for (010) and (011). However all initial sequences can be
recoded in a sequence which has the same weight as (111). Therefore in this case, all values will
match themselves because the recoding will be the same for all different keys. By extending this
principle, a template will have exactly the same behaviour for several keys.

87

3.4. Number of Recoded Digits for an Attack

3.4.3 Antecedents of Recodings

Tables [3.7] and show all possible antecedents for each possible recoding. Recodings
with a same weight are grouped to see the number of different antecedents.

all possible || possible number of | number of

recodings || antecedents | antecedents | different antecedents

0 0,1 2 }2
1 0,1 2
' b
1 0 1

Table 3.7: Antecedents for all possible recodings for one initial bit.

all possible || possible number of | number of
recodings || antecedents | antecedents | different antecedents

00 00, 01 2 }2

01 00, 01, 10 3 }3

01 00 1

10 01, 10, 11 3 }3

10 0

11 10, 11 2

11 00, 01, 10 3 A

11 00 1

11 0

Table 3.8: Antecedents for all possible recodings for two initial bits.

According to table 3.6 one could think that the recoding possibilities for the three initial
bits (111) is weak because only two recodings are possible: (110) and (111). However we can
see that these recodings have 6 and 8 different antecedents, respectively. In other words, these
recodings match 6 and 8 different templates. Thus, the security of this countermeasure is not
only related to the number of possible recodings, but also to the number of possible antecedents
for each possible recoding.

For example, let us consider the recoding possibilities for the two initial bits (10). This
sequence can be recoded to (01), (10) and (11). It can be also recoded to (11), but this recoding
is always considered by the sequence (11). The number of antecedents for each recoding is 2, 3
and 4, respectively. Therefore, when the sequence (10) does not change by the recoding, three
traces out of four have the same behaviour. For each possible recoding, each sequence has the
same behaviour as another.

3.4.4 Evaluation of the Number of Recoded Digits

The presented template attacks are on 3 bits of the key. Such an attack did not succeed
with a protection based on a signed-digit representation of the key. A question could be, what

88

Chapter 3. Practical Security Evaluation Using Template Attacks

all possible || possible number of | number of different
recodings || antecedents antecedents | antecedents

000 000, 001 2 }2
001 000, 001, 010 3 }3
001 000 1

010 001, 010, 011 3 }3
010 0

011 010, 011, 100 3

011 000, 001 2 } .
011 000, 010 2

011 0

100 011, 100, 101 3 }3
100 0

101 100, 101, 110 3

101 010, 011, 100 3 .
101 0

101 0

110 101, 110, 111 3 \
110 001, 010, 011 3 6
110 0

110 0 ’
111 110, 111 2

111 100, 101, 110 3

111 010, 011, 100 3

111 000, 001, 010 3 .
111 000 1

111 0

111 0

111 0

Table 3.9: Antecedents for all possible recodings for three initial bits.

happens if one considers 1, 2, 4 or more bits of the key to build templates? Does the template
attack work with the countermeasure?

First of all, when one considers 4 or more bits instead of 3, the attacker must build more
templates: 2* = 16 templates for four bits of the key, that is 2" templates for n bits of the key.

89

3.5. Conclusion

Thus, the complexity of performing a template attack becomes more impractical when increasing
the number of considered bits of the key. In addition, the number of recoding possibilities will
increase consequently. Some values will be in several key possibilities, and the complexity of a
template attack will increase more and more. In addition, the number of different antecedents
for all possible recodings increases more and more when one considers 4 or more bits.

When one wants to consider 1 or 2 bits of the key to build templates, the number of possible
recodings is of course less than when considering 3 bits of the key. However the number of possible
recodings is closer to the total number of recodings. The number of different antecedents for
each possible recoding is also closer to the total number of antecedents.

Particularly, when one considers 1 bit of the key to build templates, digits 0 and 1 can be
recoded in each possible recoding when considering that 1 is equivalent to 1. In addition, digits 0
and 1 can be the antecedents of all possible recodings.

When one considers 2 bits of the key to build templates with the hypothesis that digit 1
is equivalent to digit 1, the number of possible recodings is between 2 and 4, over 4 possible
recodings. When one considers 3 bits of the key, the interval is between 2 and 6 over 8 possible
recodings. Therefore, there are more possible recodings for 2 bits than for 3 according to the
total number of possible recodings. In the same way, there are more antecedents for all possible
recodings for 2 bits than for 3 according to the total number of possible antecedents.

For building templates, an attacker cannot choose a too large number of bits if he/she wants
to build templates for each possible key. From 7 bits, the attack can be very difficult to perform
due to the too large number of templates to build. In addition, by choosing few bits of the key,
traces match with more traces according to the number of possible recodings.

3.5 Conclusion

In this chapter, template attacks were performed to guess a part of the secret key. Templates
were built to characterize a cryptographic device. The device computes a scalar multiplica-
tion [k]P where k represents the secret key (i.e. the scalar) and P a fixed point of an elliptic
curve. A template consists of a mean vector and a covariance matrix. These values were esti-
mated by the power consumption measured for different keys. The goal of template attacks is
to guess a part of the key k used.

This strategy for building templates was used to perform template attacks. First of all, a
template attack was performed on a secure implementation against simple SCAs using a typ-
ical countermeasure. The template attack succeeds to guess three bits of the key used by the
cryptographic algorithm executed by the device. Then, a template attack was performed on a
secure implementation against differential SCAs. The countermeasure uses a redundant number
system which allows to randomly choose among several representations of the key digits. Thus,
the key k was randomly recoded on-the-fly and had different representations for different scalar
multiplications. The performed template attack does not succeed to guess a part of the key with
such a countermeasure.

We know that the number of key recodings depends on the key value. Thus the recoding
of a key is not equiprobable according to the other key recodings. An attacker could use this
observation to deduce some information about the key. An attacker could know that a key has
for instance 6 possible recodings, and so deduces that this key belongs to a key subset.

90

Chapter 3. Practical Security Evaluation Using Template Attacks

Another solution to perform and succeed in doing a template attack might be to build tem-
plates of templates. Indeed, for each key value several recodings are possible, and one needs to
separate each possible recoding of the templates built for one key. Thus templates would be not
built for each possible key, but for each possible recoding of the key. For example, 4 templates
must be built for the key value (110) when one wants to guess 3 bits of the key. One would
compute the probability that a key matches a subset of templates. Thus, instead of building
2™ templates, one can build 3" templates for each digit possibility if k; can take three different
digits. In other words, one can build templates for all key hypothesis.

The complexity of building these templates comes from the fact that an attacker must choose
and block the recoding of each key. In addition, if an attacker can choose any recoding, the
number of traces acquisitions increases consequently because the number of recodings is much
higher than a system without random recoding. For example, for templates built for 3 digits of
the key, the attacker must build 43 templates instead of 23 = 8 which is the number of recodings.
This new number of templates is much higher according to the initial number of templates to
build, and can be an obstacle for an attacker. Indeed, it may take too much time to measure so
many traces to build the required templates.

91

Chapter 4

On-the-Fly Multi-Base Recoding

In ECC, many works concern security and speed of the main operation, the scalar multiplica-
tion. Scalar representation significantly impacts the number of point operations to be executed
and the overall computation time. Consequently scalar recoding methods are very popular: non-
adjacent forms (NAF and wNAF), double- or multi-base number systems (DBNS/MBNS), etc.
Previous fast recoding methods require a pre-computation step prior to scalar multiplication.
For wNAF, several multiples of P must be precomputed and stored. For DBNS/MBNS, the scalar
is generally recoded off-line. In addition, previous DBNS and MBNS recoding methods do not
provide any hardware implementation.

In this chapter, we provide an on-the-fly hardware implementation of a multi-base recoding
method for ECC scalar multiplication. The three first sections are made up of two conference
articles published in ARITH [26] and SympA [11] 2013. However this chapter provides more
explanations, methods and hardware implementations.

In section 4.2| we present a method and its FPGA implementation to recode, on-the-
fly, the scalar using MBNS without pre-computation. Our recoding is performed in parallel to
curve-level operations (addition, doubling, tripling, etc). The recoding method uses very cheap
divisibility tests for each base element (e.g. 2,3,5,7) and an efficient implementation of exact
division algorithms used for multiple-precision arithmetic. Exact division refers to division where
the remainder is known to be zero.

We only deal here with elliptic curves defined over), but our method can be easily applied in
the Fom case (fine tuning is slightly different due to different cost ratios I/M and 8/M). Section [4.1]
presents a simple unsigned version of our method while section [4.2] presents optimizations using
signed-digit multi-base representation. Section compares our results to state-of-art ones.
Section [4.4] evaluates our method with pre-computed points.

4.1 Proposed Muti-Base Recoding and Scalar Multiplication in
ECC

The notations used in this chapter are:

— k= (kn—1kn—2 ... kiko)2 is the n-bit scalar (k > 1) stored into a ¢ words by w bits memory
with w(t — 1) < n < wt (i.e. last word may be padded using 0s). k) denotes the ith word
of k starting from least significant for 0 <17 < ¢,

— B is the multi-base with [elements (co-prime integers), B = (b1, ba, . .., b;) under conditions
by < by <--- < by,

93

4.1. Proposed Muti-Base Recoding and Scalar Multiplication in ECC

— predicate divisible(x, B) returns true if x is divisible by at least one base element in B (false
for the other case),

— number z is represented as the sum of terms x = Z:‘;l (di IT. bej’i> with d; = £1,

J=17j
L 5% in the multi-base B (index i may be

— term (d;,e1;,€2,,...,€,) is defined by d; x szl ;

omitted when context is clear),

— @, P are points on the curve, the scalar multiplication computes @ = [k]P.

In practice in the circuit, a large integer is represented and stored in multi-precision into a ¢
words vector by w bits. The storage of k in multi-precision is illustrated at the architecture level
in figure .1} The input of the memory block is the address of the jth word of k. The output
on the read port is the content of the word k). In our hardware implementations, this memory
block will be implemented in LUT (look-up table) to measure the impact of n and w in relation
to the circuit area. Obviously, the presented method can be applied to implementations with
dedicated memory blocks (e.g. BRAM in Xilinx FPGAs).

w bits
=1 Q| Kpw—1 ktaw—2 k—1)ws1| Fe—1)w w
<
g
E k(l) — koow—1 ko.w—2 c oo k‘w+1 kw [logo(£)] +1
[
k(o) = kw—l kw—2 o kl kO

Figure 4.1: Storage of k into t words by w bits.

In this section, we present a simple unsigned version (d; = 1) of the method for the sake of
simplicity. This allows us to provide simple explanations of architecture units and scheduling
aspects. Section details more efficient versions based on signed representation (d; = £1). All
architecture units described in this section can be directly used or slightly adapted for signed
representation.

4.1.1 Unsigned Algorithms

The MBNS unsigned recoding algorithm is presented in figure Its principle is simple.
Divisibility of k£ by BB elements is tested. When k is not divisible, 1 is subtracted to k. In practice,
by = 2 will be selected for efficiency purpose (divisibility is ensured 50% of time). This means
that k — 1 will be divisible by 2 (if b; > 2, it still works but with more iterations). For lines 8-12,
the scalar k is divided by all base elements b; in B as much as possible. To this end, we use cheap
divisibility tests and exact divisions when divisibility is ensured. This division step provides the
term exponents eq, es, ..., ;. LT denotes the list of terms which stores the MBNS recoding of
k, LT = ((dl, €1,1,€2,15- -+ 61,1), (dg, €1,2,€22, ... ,6[72), ..) with d; € {0, 1}. Only the first term
may have d; = 0 (if the initial &k is immediately divisible by one base element). Divisibility tests
at line 3 and 10 can be shared. The algorithm stops when k& < 1 due to Horner form such as
20355¢(1 4 2735 (1)).

Such a strategy is not a new one: similar methods are discussed in [1], [2], [29], [38], [39], [76], [77]
and |78|. In particular, these references deal with the conversion of an integer in MBNS, and
some of them extend to windowed multi-base chains (MBNS is a generalization of DBNS).

94

Chapter 4. On-the-Fly Multi-Base Recoding

input: a positive integer k, and the multi-base B = (b1, ba, ..., b)
output: list of terms LT which stores the MBNS recoding of k
LT = ((dl, €1,1,€2,15- -+ 6171), (dg, €1,2,€22, ... ,6[72), ..)

1. LT« 0
2: while k£ > 1 do
3: if not (divisible(k, B)) then (divisibility test)
4: d+1
% k+—k—1
6: else
T d<+0
8: for j from 1 to [do
9: e;j <0
10: while k£ = 0 mod b; do (divisibility test)
11: ej<e;+1
12: k< k/b; (exact division)

13: LT «+ LT U (d,e1,e2,...,¢€)
14: return LT

Figure 4.2: MBNS recoding algorithm (unsigned version).

Divisibility tests are detailed in section f.1.2] They are implemented using ¢ + ¢ clock cycles
(¢ is a small constant) for all b; # 2 and only one for b; = 2° with s < w (parameter s will
be explained latter). Once k is divisible by b;, we use fast exact division algorithms to perform
k < k/b; with one dedicated optimized algorithm for each base element. Exact divisions are
detailed in section [4.1.3] The computation time for each exact division is ¢ + ¢’ clock cycles for
all b; # 2. In case of division by 2° we only use shifts.

MBNS recoding algorithm in figure works in a serial way: one multi-base term at a time
and starting with the least significant one of k. Each term can be immediately used in the
scalar multiplication algorithm in figure [£.3] This algorithm computes the scalar multiplication
() = [k]P using LT (the MBNS representation of k). This algorithm is a multi-base adaptation
of the standard left-to-right scalar multiplication algorithm (see for instance [57, Sec. 3.3.1]).
Operation @ + d x P at line 5 is NOP (no operation) or ADD since d € {0, 1}.

input: P € E(F,), and the list of terms LT which stores the MBNS recoding of the scalar k

LT = ((dl, 61,1, 6271, ceey 6171), (dg, 6172, 62’2, e ,6[72), ..)
output: Q = [k|P

:Q+ 0O
foreach ¢ in LT do (t=(d,e1,e2,...,€))
Q+—Q+dxP (d € {0,1} = NOP/ADD)
for j from 1 to [do
P« [b7]P (DBL, TPL, QPL, ...)
T Q< Q+P
return Q)

N etk W

Figure 4.3: MBNS scalar multiplication algorithm @ = [k]P.

95

4.1. Proposed Muti-Base Recoding and Scalar Multiplication in ECC

The combination of recoding algorithm in figure [£.2] and scalar multiplication algorithm
in figure allows to overlap recoding steps and curve-level operations. For instance, when
divisibility by 3 is detected, exact division by 3 and TPL operations can be launched in parallel.
The same approach applies for other base elements (division by 2 and DBL, division by 5 and QPL,
etc.). The recoding algorithm produces a MBNS representation with a recursive factorization
similar to Horner scheme. Figure [.11] illustrates a complete example. Unlike previous DBNS
and MBNS methods, our recoding can be fully embedded in hardware and operates on-the-fly.
Firstly, we do not need costly tables or computations such as the approximation of k£ by multi-
base terms. This strategy is closed to the ideas of Longa . Secondly, as soon as a divisibility
is detected, we can launch the corresponding curve-level operation. There is no need to wait for
a complete term before starting corresponding curve-level operations.

However as we start with least significant terms first, we cannot use point addition with
mixed coordinates (mADD). We are obliged to use standard point addition which is a little slower.
Clearly our method is not competitive compared to the fastest state-of-art ones when costly off-
line recoding is possible. However it provides the first full on-the-fly hardware implementation.
Off-line recodings limit practical applications in secure embedded systems.

Overlapping recoding and curve-level operations is possible due to the very fast divisibility
tests and exact divisions. For instance, with n = 160, w = 12 and ¢ = 14, divisibility tests by
all b; # 2 and exact division by one b; # 2 require ¢t +3 = 17 and ¢ + 4 = 18 clock cycles,
respectively. These small durations must be compared to the duration of one DBL, TPL, QPL, etc.
These curve-level operations are significantly slower than the recoding steps required to produce
one new term (at least one order of magnitude).

There is a short latency at the very beginning (less than 0.01% of total [k]P computation
time for n = 160 and even less for larger fields). The first curve-level operation is determined
using the first divisibility test results. After ¢4 ¢ clock cycles there are two cases: i) k is divisible
by one multi-base element b; then a DBL, TPL, QPL, etc. can be launched depending on which b;
divides k, ii) k is not divisible by B elements and an ADD can be launched.

Let C(bj) be the curve-level operation related to multi-base element b;, e.g. C(2) = DBL,
C(3) = TPL. Let TIME(op) be the computation time of curve-level operation op. The number
of terms in LT is denoted n/. The total computation time of scalar multiplication [k]P where k

is recoded by LT is: n’ - TIME(ADD) + 25:1 ((e Git) - TIME(C(bj))>

For instance, if b; € (2,3,5,7), n’ point additions (ADD), Z;il ez; point doublings (DBL),

Z?lzl es; point triplings (TPL), Z;‘lzl es; point quintuplings (QPL) and Z?lzl e7,; point septu-
plings (SPL) will be launch. The number of curve operations depends on the MBNS representation

of k.

Selection of multi-base elements in B requires an experimental evaluation. Figure 4] reports
statistical [k]P results on the total computation time (in M) for 100000 random 160-bit values
recoded using the unsigned MBNS algorithm and for various multi-bases. These results show
that the most efficient multi-base is B = (2,3,5,7) with our parameterslﬂ. Adding b; = 11 does
not improve the performance while it makes the architecture larger and slower. This will also
be confirmed in the signed case in section [£.2] Base by is always selected as 2 due to simple
divisibility and exact division by 2 for standard binary representation of k.

1. curves over F,, n = 160, simplified Weierstrass equation, Jacobian coordinates, costs of curve-level in

table

96

Chapter 4. On-the-Fly Multi-Base Recoding

2300 F
= 2200 -
2100 |
2000 |
1900 |-
1800 |

1700 1 1 1 1 1 1 1 1
(2,7) (2,5) (2,3) (2,5,7) (2,3,7) (2,3,5) (2,3,5,7) (2,3,5,7,11)

computation time

Figure 4.4: Statistical performance evaluation of unsigned MBNS recoding and scalar multipli-
cation.

Recoding algorithm presented in figure [£.2] is a simple unsigned version. In section [£.2] we
will present extensions to signed MBNS with fewer terms leading to faster computations. Scalar
multiplication algorithm in figure [£.3]is not secure against SCAs. Simple power analysis attacks
can be used due to the different behaviour of curve-level operations in lines 3 and 5. In such an
attack, whereas one cannot directly “read” the bits of the key, an attacker could distinguish the
curve-level operations, and thus the attacker could reconstruct the scalar k used. We will see in
section f.2] how signed MBNS recoding can be used as a protection against some attacks.

4.1.2 Implementation of the Divisibility Tests

At each recoding step, the scalar remainder must be tested for divisibility by all b; for
1 < j < [. Testing divisibility by 2° with s < w in a radix-2 representation is straightforward
and is implemented in a very small module of the recoding unit (see section . One has just
to check if least significant bit(s) is(/are) zero(s) or not. For b; # 2, we use a very old method
based on specific properties of the sum of argument digits modulo b;. This method for divisibility
test by b; in radix-r representation is reported in a Blaise Pascal’s post-mortem publication [101]
(in Latin, see [109] for comments in English). This method is often called Pascal’s tape or ribbon.
Latter in this chapter, we will see that the most efficient multi-bases are (2, 3,5) and (2,3,5,7).
Then, we first provide details for divisibility tests by b; € {3,5,7} as they lead to the most
efficient B. Table reports the remainders 2/ mod b; for b; € {3,5,7} and i < 16. They form
a periodic sequence.

1
bj ||16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3 T2 1 2 1 2 1 2 1 2 1 2 1 2 2 1
5) 13 4 2 1 3 4 2 1 3 4 2 1 3 2 1
7 2 1 4 2 1 4 2 1 4 2 1 4 2 1 2 1

Table 4.1: Pascal’s tapes for divisibility tests by b; € {3,5,7} (values are 2¢ mod b;).

97

4.1. Proposed Muti-Base Recoding and Scalar Multiplication in ECC

Using table with Pascal’s tape in case b; = 3 (the periodic sequence is (21)*), one has:

kmod 3= (...+ 2%k3 + 2%ky 4 2%k + ko) mod 3
:(...+2k3+k2+2k1+k0)m0d3

— <Z(2k2i+1 + k:Qi)> mod 3

«

Computation of « requires the sum of many 2-bit words (n > 100, where k is the n-bit
scalar). « is a multi-bit integer, then it must be recursively reduced using the same method.
There is a trade-off between the size of the intermediate accumulators and the reduction com-
pletion. Architecture presented on figure decomposes this large operation into partial sums
accumulated and partial reduction on a limited number of bits for each word of the scalar. This
is the purpose of the light blocks denoted “) for b; = 3” and connected registers on figure .
Then t clock cycles are required for the accumulation and partial reduction. The very last reduc-
tion steps and comparison to b; is denoted “R for b;” in the second type of light blocks. Clock,
reset and enable signals are not represented on the figures.

w bits [1.() — fw — w — fw
] |Z for b; = 3| |Z for b; = 5| |Z for b; = 7|
s : - 3 5 4
g : 1A reqg. reqg. reqg.
<||[CC— 5
| IR for b; =3| |R forb;=5| [R forb; =7
k mem. 11 r1 1

divisible by 3 divisible by 5 divisible by 7
Figure 4.5: Divisibility test architecture.

The same kind of computation is performed for all b; # 2. For b; = 7, the sum uses 3-bit
words with the sequence (421)*. For b; = 5, the sequence is (3421)* where the digit 3 requires
a specific treatment. A first solution uses 3 = 1+ 2 and an unsigned sum with additional inputs.
A second solution considers 3 = —2 mod 5 and a signed sum with less operands (but with sign
extension). Architecture on figure allows parallel divisibility test by several b; in only one
computation. For instance, if k is divisible by 15, both divisibility tests by b; = 3 and b; = 5
return true after ¢ + 3 (resp. ¢+ 4) clock cycles with w = 12 (resp. w = 24). The memory
element for k storage on the left of figure will be shared with other units as we will see in
section .1.3] and section 1.4l

The parameter w significantly impacts performances. The lengths of remainders sequences
for b; = 3,5,7 are 2,4, 3, respectively (see table . To avoid complex decoding schemes, we
use multiples of the least common multiple of the lengths. As lem(2,4,3) = 12, we tried imple-
mentations for w = 12 and w = 24 (larger multiples of 12 would slow down the recoding).

All hardware implementations reported in this chapter have been described in VHDL and
implemented on a XC5VLX50T FPGA using ISE 12.4 from Xilinx with standard efforts for
synthesis, place and route. We report numbers of clock cycles, best clock frequencies and numbers
of occupied slices. We also report numbers of look-up tables (LUTs with 6 inputs in Virtex 5)
and flip-flops (FFs) for area. A XC5VLX50T contains 7200 slices with 4 LUT and 4 flip-flops
per slice. We use flip-flops for all storage elements. FPGA implementation results are reported

98

Chapter 4. On-the-Fly Multi-Base Recoding

in table for divisibility tests by b; € {3,5, 7}. Implementation results are the same whatever
the value ¢, and so whatever n. Indeed, all block outputs do not depend on t. Thus table
reports FPGA implementation results only for w € {12,24}, without the memory element for k
storage. Two versions have been implemented, where only the divisibility test unit by 5 changes.
Indeed, the periodic sequence for 5 in table[d.1]is (3421)*. The first version (i) considers 3 = 142
(unsigned version), while the second (ii) considers 3 = —2 mod 5 (signed version). The second
version requires the use of 2’s complement representation to perform all intermediate sums.

Below, all unit implementations of the divisibility test unit are done with the first version
(i). Indeed, the unsigned version of the divisibility test unit for b; = 5 is more efficient in clock
frequency and circuit area. This may be related to the extra cost of the sign extension for
additions/subtractions in 2’s complement.

divisibility area freq. | clock

w | version for 5 || slices (FF/LUT) | MHz | cycles

19 i 25 (40/81) 543 t 13
ii 41 (38/111) | 451

04 i 67 (53/152) 549 _—
ii 86 (48/187) 549

Table 4.2: FPGA implementation results for divisibility tests by b; € {3,5,7}.

FPGA implementation results are reported in table [£.3] for n = 160, 256 and 521 bits, and
for divisibility tests by b; € {3,5,7}. These implementation results include the memory element
for k storage.

area freq. | clock

n | w | t || slices (FF/LUT) | MHz | cycles
160 12 | 14 30 (56/98) 423 | t+3
24 | 7 65 (74/189) 410 | t+4

956 12 | 22 32 (57/99) 422 | t+3
24 | 11 64 (80/196) 395 | t+4

o1 12 | 44 34 (58/100) 420 | t+3
24 | 22 || 69 (82/214) 388 | t+4

Table 4.3: FPGA implementation results for divisibility tests by b; € {3,5,7} and n €
{160, 256,521} bits.

Directly apply the Pascal’s tapes method for more divisibility tests, like b; € {3,5,7,9, 11, 13},
complicates the control and increases the number of internal registers used during the accumu-
lation loop. Table reports the remainder 2° mod b; for b; € {9,11,13} and i < 16. Periodic
sequences for b; € {9,11,13} increases significantly, and their coefficients in the Pascal’s tapes
become more complex. It leads to a more complex control.

Arithmetic parameters of the architecture have been modified to have more complex divisi-
bility tests and to study the links between the length and the form of the periodic sequence in the

99

4.1. Proposed Muti-Base Recoding and Scalar Multiplication in ECC

7
b; |16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
9 T 8 4 2 1 5 7 8 4 2 1 5 7 8 4 2 1
11949 10 5 8 4 2 1 6 3 7 9 10 5 8 4 2 1
303 8 4 2 1 7 10 5 9 11 12 6 3 8 4 2 1

Table 4.4: Pascal’s tapes for divisibility tests by b; € {9,11,13} (values are 2/ mod b;).

Pascal’s tapes. Instead of considering bit remainders 2¢ mod b;, we considered sub-words remain-
ders (212)Z mod b;. The Pascal’s tape is reported in table for b; € {3,5,7,9,11,13,17,25}.

In this table, values are remainders (212)i mod b; for 7 < 9.

1
b; 9 8 7 6 5 4 3 2 1 0
3 11 1 1 1 1 1 1 1 1
) 11 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1
9 11 1 1 1 1 1 1 1 1
my3 9 5 4 1 3 9 5 4 1
B3yp1r 1 1 1 1 1 1 1 1 1
1716 1 16 1 16 1 16 1 16 1
25 6 11 16 21 1 6 11 16 21 1

Table 4.5: Pascal’s tapes for divisibility tests by b; € {3,5,7,9,11,13,17,25} (values are
(2'2)" mod b;).

Lines corresponding to the divisors 3, 5, 7, 9 and 13 in table [L.5] report the same periodic
sequence (1)*: a unique accumulation register can be used. The same accumulator is shared
during the ¢ clock cycles, and then a final reduction “R” for each divisor b; € {3,5,7, 32} is
computed in the architecture in figure In this chapter, we are interested in only b; € {3,5, 7}
and small powers of these values. Indeed, several curve-level operations can be launched if the
scalar is divisible by a power of b;. For instance, when the scalar is divisible by a 32, two TPLs
can be launched. In this version, the accumulation register output is larger (w + [logy(t)] bits)
than registers output in figure [4.5

FPGA implementation results for divisibility tests are reported in table [4.6] for n = 160, 256
and 521 bits, and b; € {3,5,7,9}.

4.1.3 Implementation of the Exact Division by Multiple-Base Elements

Here, ezact division k/b; means that we know that the dividend k is divisible by the divisor
b; (using divisibility tests presented above). Divisibility property allows to significantly optimize
the division algorithm. [62] provides an efficient algorithm when the radix is prime or power of
2. This algorithm is often used in multiple-precision software libraries such as GMP. Division
by 2% is not considered in this section. It is performed using shifts in the global recoding unit
presented in section [£.1.4]

100

Chapter 4. On-the-Fly Multi-Base Recoding

w bits £ w

w + [log,(t)]

re

t words
CTRL

k mem. I | | I
R’ for b; =3 R’ for b; =5 R’ for b; =7 R’ for b; =9

+1 +1 +1 +1
divisible by 3 divisible by 5 divisible by 7 divisible by 9

Figure 4.6: Divisibility test architecture by b; € {3,5,7,9} with the Pascal’s tapes improvement.

area freq. | clock

n | w | t || slices (FF/LUT) | MHz | cycles
160 12 | 14 32 (86/98) 454 | t+3
24 | 7 || 50 (136/142) | 490 | t+4

956 12 | 22 37 (88/99) 460 | t+3
24 | 11 52 (148/149) 495 | t+4

501 12 | 44 35 (90/105) 424 | 143
24 | 22 55 (152/152) 485 | t+4

Table 4.6: FPGA implementation results for divisibility tests by b; € {3,5,7,9} and n €
{160, 256, 521} bits, with the Pascal’s tapes improvement.

We use a dedicated version of algorithm presented in [62| for b; € {3, 5,7} and optimized for
hardware implementation. The algorithm, presented in figure .7 operates in ¢ iterations in a
word-serial way starting with least significant (w is the word size). Iteration number i deals with
k() the ith word of k. The inverse of divisor b; modulo 2% is a constant and always exists since
multi-base elements are co-prime and include 2.

The main differences for the 3 operations (b; € {3,5,7}) are the multiplication by modular
inverse line 4 and the comparison to constants line 7. All other elements are shared in the
architecture (operators, control, registers).

Table [I.7] reports binary representations of modular inverses for exact division by 3, 5, 7
and 12/24-bit words. Multiplication r x (bj_1 mod 2%) at line 4 in figure is implemented
as a sequence of additions/subtractions and shifts using an in-house multiplication by constant
algorithm |16]|. Subtraction at line 3 is inserted in the sequence. Some adders in the 3 sequences
are shared to reduce area. Table reports the number of additions/subtractions «y required to
perform 7 x (b;1 mod 2%).

The architecture of our exact division by b; € {3,5, 7} unit is presented on figure (without
clock, reset and enable signals). At iteration i, word k@ read (R port) from scalar memory, is
added to —c and used in the addition sequence (block denoted “x(b; mod 2")” and “+ seq.”)
corresponding to b;. The correct value is selected by MUX1 and written in scalar memory (W
port). We use an in-place version of the algorithm k < k/b; to keep memory footprint as small
as possible.

101

4.1. Proposed Muti-Base Recoding and Scalar Multiplication in ECC

input: two integers k = (k"1 ... k(0); and b;, where k mod b; = 0
output: k/b;

c+ 0
for i from 0 tot— 1 do
r k@ — ¢
71X (bj_l mod 2%)
c+0
for h from 1 to b; — 1 do
ifr>hx[(2¥—1)/bj] then
c+—c+1
L@ (wal - 'TO)
return k

—

Figure 4.7: Exact division k/b; algorithm (from [62]).

b, bj_1 mod 212, ~ bj_1 mod 224, v

3 || (101010101011)9, 3 | (101010101010101010101011)9, 4
(110011001101)9, 3 | (110011001100110011001101)9, 4

7 || (110110110111)9, 3 | (110110110110110110110111)9, 4

Table 4.7: Modular inverses used in exact divisions.

Operation sequences leading to the computations y = x1 x 37! mod 2%, 3/ = 2/ x 51 mod 2v
and y” = 2/ x 77! mod 2% for a length word w = 12 (resp. w = 24) are reported in table
(resp. in table . Multiplication 7 x (b;1 mod 2%) at line 4 in figure partially used:
only the first w bits are used (line 9). Thus operation sequences in tables and can be
simplified. For instance, the line y' = 2, + (2} x 2'2) in table is unnecessary.

2731 = 3! mod 2!2 \ 3277 = 5! mod 2!2 \ 3511 = 7~ mod 2'2 \

To= x4+ (v1x2%) |ah= o+ (2 x2Y) | 2f= 2]+ (2 x29)

3= zo+ (rax2Y) | 2= b+ (2] x2%) |2h= af+ (2 x23)

z4= —xo+ (v1 x2Y) | 2= af— (24 x2?) |y = —af+ (z] x2'?)
y= —wz3+ (x4 x28) | ¢ = 2+ (2} x22)

Table 4.8: Operation sequences for the multiplication by constants with w = 12.

Comparisons in loop lines 6-8 of the algorithm in figure [f.7] are unrolled and implemented as
combinatorial logic (block denoted “cmp. b;”) for each specific b; € {3,5,7}. The correct value
c is selected by MUX2 and is sent to the addition sequences.

The exact division unit has been implemented least significant word (LSW) first. A second
version has been studied and implemented most significant word (MSW) first. The exact division
starting from MSW (most significant word) algorithm is presented in figure and its proof
is proposed in appendix The proof of division exact algorithm starting from LSW (least
significant word) is proved in [62]. The strategy is the same for the computation of r x (b]-_1 mod
2") in both exact division versions. The only difference between the two algorithms is the

102

Chapter 4.

On-the-Fly Multi-Base Recoding

11184811 = 3! mod 224 \

13421773 = 5! mod 224 \

14380471 = 7! mod 22 \

T3
Iy
L5

Y

To =

x1 + (x1 x 24)
ro + (22 x 22)
r3 + (23 x 28)
—x3 + (21 x 28)
—x4 + (5 x 216)

rh=) — (2] x 22)
o= b+ (2] x 2%)
x) o + (zf x 212)
= 2 — () x 22)
y = af+ (2) x 2%

G @ x2)
o5 = af+ (2] x2°)
o = 2 + (2 x 221)
ol = —al + (2 x 224)
d= o+ (o x 2)
y' =y — (ag x 2%)

Table 4.9: Operation sequences for the multiplication by constants with w = 24.

w bits ; w w w
) e C— ——
— o i | x X L x
B } = :37" mod 2% :57" mod 2" 77" mod 2%
g : Tdseq. | | +seq. | | 7 + seq.
il | | N ! - -
S . == .
k mem. O cmp. 3 | | cmp. 5 | | cmp. 7
| | |
sel. bj (l Mle2

Figure 4.8: Exact division unit architecture.

computation of the value ¢ at line 8 in figure [f.7] and at line 3 in figure [£.9]

input: two integers k = (k= ... k()5 and b;, where k mod b; = 0

output: k/b;

1: ¢+ 0

2: forifromt¢—1to0do
¢+ (c+k®D)mod b
r k@O —¢

r <7 x (b~! mod 2%)

4
d:
6: kO (ry_1---m0)
7

Figure 4.9: Exact division k/b; algorithm starting most significant words first.

Here is an example in hexadecimal of an exact division by b; = 3 starting from MSW for
a word length w = 12 with a dividend k& = (1170000261);9 = (045 BCC 985)16 and the value
371 mod 2% = (AAB)s:

(045 — (045 mod 3)) x AAB = (045 — 0) x AAB = 02E 017
(BCC — ((0+ BCC) mod 3)) x AAB = (BCC — 2) x AAB = 7DC 3EE
(985 — ((2 + 985) mod 3)) x AAB = (985 — 0) x AAB = 658 DD7

k/3 = (0173EE DD7) 4
= (390000 087)10

103

4.1. Proposed Muti-Base Recoding and Scalar Multiplication in ECC

In practice, the value ¢ in the second exact division algorithm in figure [£.9] comes directly from
the divisibility test unit. Indeed, exact division starting from MSW unit accumulates k) modulo
b; for each word. For instance, the divisibility test unit returns (22;1}73 (® mod b;)) mod b;
for the three last words of k. For the first word k), the divisibility test unit returns 0 when the
scalar k is divisible by b;, i.e. k= (Zf;é (% mod b;)) mod b; = 0 mod b;.

FPGA implementation results for the exact division unit are reported in table [£.10] for
n = 160. For w = 24, speed decreases due to the complexity of the comparison blocks. For
instance, in case b; = 7, six comparisons are required. The version starting from LSW is slower
than the MSW version because comparisons are required. The number of clock cycles is ¢ +O(1)
where the constant depends on w, and is the same for the two versions.

starting area freq. | clock

from w || slices (FF/LUT) | MHz | cycles
12 || 59 (138/171) | 291 | t+4
24 152 (441/448) 202 | t+5
12 73 (178/206) 442 | t+4
24 178 (494/540) 346 | t+5

LSW

MSW

Table 4.10: FPGA implementation results for exact division by b; € {3,5,7} and n = 160 bits.

4.1.4 Unsigned Multiple-Base Recoding Unit

The complete recoding unit architecture is presented in figure with the exact division
starting from LSW. The scalar memory stores the scalar k£ (¢t words by w bits). The small sub-
traction block is in charge of line 5 in the recoding algorithm figure [£:2 The DTD-2 block is
in charge of divisibility test (1-bit result) and exact division (w-bit bus) by 2 or small powers
of 2 (2° with s < w, if s > w several iterations are used). Divisibility test unit for other base
elements is described in section (3-bit output) while the exact division unit is described
in section [£.1.3] (w-bit output). MUX selects which unit output should be written in the scalar
memory. The global controller (CTRL) generates all high-level control signals for the architecture
units (these signals and clock are not represented on the figure). It also provides the global
control with informations on which curve-level operations must be launched.

w bits I I I |
R 71— [P
» | exact div.
Hg w ! division test
2l B == 305,71 3057
| |6 | L—7 |
k mem. 13

L— global ctrl
Figure 4.10: Complete recoding unit architecture.

The proposed architecture has been implemented with exact division starting from LSW and
MSW. The exact division unit is the one which is implemented with these two versions. Indeed,

104

Chapter 4. On-the-Fly Multi-Base Recoding

only divisibility tests and exact divisions can start from the right or the left, and the implemen-
tation of divisibility tests is the same when one begins from both sides. All other components
must start from LSW. For the exact division starting from MSW, a second counter has been
implemented in order to send the scalar k by the other way according to all other components.
Thus, when results are stored from MSW, one needs to wait t+4 clock cycles for w = 12 (t+5 for
w = 24) to perform operations which starts from LSW. Indeed, a component starting from LSW
must wait the end of operations performed from MSW. For instance, when one computes an
exact division starting from MSW and wants to add one to the scalar after the division, he/she
must wait the result of the division. However when one computes an exact division starting from
LSW and wants to subtract one to the scalar after the division, he/she can wait the result of the
first word of the division and launch the subtraction just after.

The FPGA implementation results for the complete recoding unit are reported in table [.11]
for B = (2,3,5,7) and the two versions of the exact division unit (see sectionfor comparison
to a ECC processor). The MBNS recoding unit is smaller than the total area of a complete ECC
processor and it can operate at 200 MHz. For two different sizes of n, hardware implementations
have a little more area for a same clock frequency. We plan to investigate additional pipeline
stages in the recoding unit to increase the clock frequency (but with more complex control).

exact division area freq.
n starting from | w || slices (FF/LUT) | MHz
12 14 1/412 2
LSW 5 (301/412) 37
160 24 316 (682/908) 202
MSW 12 149 (326/422) 262
24 313 (732/895) 206
12 1 2/41 2
LW 55 (302/415) 37
956 24 321 (683/897) 202
12 1 4/4 262
MSW 79 (334/468) 6
24 || 377 (733/1002) 262

Table 4.11: FPGA implementation results for complete recoding unit with B = (2,3,5,7).

The implementation requires an initial step which consists to load the scalar k£ into scalar
memory word by word. It is not necessary to wait that the computed scalar be loaded to launch
divisibility tests. It is sufficient to wait one clock cycle to ensure that the first word is loaded.
Thus one clock cycle is necessary to know if the scalar is divisible by a small power of 2, and
t + 3 clock cycles to know if the scalar can be divided by one of the others multi-base elements
for w = 12 (¢ + 4 clock cycles for w = 24). If the scalar is not divisible, the controller launches
the computation £ — 1. Thus, the multi-base recoding unit needs to wait ¢t 4 3 clock cycles in the
worst case to launch the first curve-level operation for w = 12 (¢ + 4 clock cycles for w = 24).

When the first curve-level operation is launched, the proposed multi-base recoding unit finds
sequences of addition, doubling, tripling, quintupling and septupling points to launch. Finding
a new recoding sequence of k such as k = (213°25%37% + 1) x £/ takes [e1/12] clock cycles for
e1 point doublings whatever w. For w = 12, it takes ex(t +4) + es(t +4) + e4(t + 4) clock cycles
for ey point triplings, es point quintuplings and e4 point septuplings, with (e2 + e3 + e4)(t + 3)
clock cycles for the divisibility tests. In addition, one needs to wait ¢ 4+ 3 clock cycles again to

105

4.1. Proposed Muti-Base Recoding and Scalar Multiplication in ECC

know if k is not any more divisible by a multi-base element (one must replace t +4 by t 4+ 5 and

t+3 by t+4 when w = 24). After having found this sequence, a point addition can be launched,

and one needs to wait ¢ + 1 clock cycles to compute the new number k in £ — 1 whatever w.
Thus, recoding #’ computing to (2°1 - [J}_, b%) x 2’ takes

l

t(Q(ZeZ-) +1) + (fer/121 +7(3 i) +3)

l
=2 =2

clock cycles (replace 7 by 9 and 3 by 4 for w = 24).

For n = 160, w = 12 and t = 14, recoding a scalar corresponding to 283%527! requires 262
clock cycles. This is less than one DBL operation (even for a parallel architecture). It reduces to
157 clock cycles for w = 24 and ¢t = 7. The same term recoding requires 712 clocks cycles for
n = 521 and w = 12 (382 clock cycles for w = 24).

The recoding unit operates significantly faster than curve-level operations and in parallel to
them. It provides curve-level operations to be launched on-the-fly without interruptions for curve-
level schedule as illustrated on figure [L.11] On this figure, “CL0” denotes curve-level operations,
DT denotes divisibility test, “res.” their results and “/b;” exact division by b;. For k = 87, the
recoding algorithm produces 87 = 0 + 3! x (1 + 227%).

The first term (0 + 3) recoding is performed as fast as possible while for the second one
(1 +227Y) it is spread over the computations but without interrupting, curve-level operations.
This provides us options when designing the control. Divisibility by 22 is detected using only
one DT (2 < w), this would not be the case for b; # 2. For instance, divisibility by 32 requires
our DT and exact division blocks to be used twice.

CLO: TPL [aD [pBL ~ [pBL [sPL [ADD -
T T 1 T T
res.: Ti?) i@ i|—>22,7 1]
= E] time
£ T T T T T
k: 87 29 28 T T 7 T T 1 T 0 T
P: P 3P 3P 6P 12P 84P 84P
Q: 0 O 3P 3P 3P 3P 87P

Figure 4.11: MBNS recoding and scalar multiplication illustration for & = 87.

For IF,, implementations, a limited w is sufficient to ensure a fast recoding compare to curve-
level operations. In case of curves defined over Fom, it may be necessary to use larger w. However
even in that case, the recoding unit is still small in a complete processor.

4.1.5 Validation

Both recoding and scalar multiplication algorithms have been implemented in PARI/GP
(http://pari.math.u-bordeaux.fr/) and SAGE (http://www.sagemath.org/) mathematical
softwares (two people were in charge of one version GP or SAGE). The results of the two versions
have been compared to the mathematical values and cross-checked for very large random data
sets (millions of scalars for many sizes n € [160, 600] bits).

Functional validation of the architecture was done using some VHDL simulations on limited
sets of random data and compared to the mathematical values. For performance validation, a

106

http://pari.math.u-bordeaux.fr/
http://www.sagemath.org/

Chapter 4. On-the-Fly Multi-Base Recoding

great deal of random tests and comparisons to state-of-art results have been performed. The
corresponding results are reported in section

4.2 Signed-Digit Optimizations

The unsigned recoding algorithm in figure £.2] of section f.1.1] only performs k < k — 1 when
k is not divisible by B elements (this corresponds to a point addition at the curve level). We
recall that d = 0 only for the very first term when the initial &k is divisible by, at least, one base
element in B. For all other terms d = 1. As with other number systems (e.g. Booth recoding [13],
wNAF, Avizienis representations [5], DBNS, etc.), using signed digits may help us to reduce the
number of terms.

4.2.1 Signed-Digit MBNS Recoding

A simple modification of the MBNS recoding algorithm figure [4:2] is required to support
signed digits as illustrated on figure [L.12] A selection function S has been introduced to select
the digit d = £1 to be used for each term (d, e, €9, ..., ¢e;) when k is not divisible by B elements.
Depending on d, updating the scalar requires a subtraction (d = 1 similarly to the unsigned
version) or an addition (d = —1). The scalar multiplication algorithm figure is unchanged.
At the curve level, digit values correspond to: a point addition when d = 1, a point subtraction

when d = —1 and no operation when d = 0 (for the very first term only).
unsigned version signed version
4: d<+1 — 4 d « S(k)

b k+—k—1 5: k+—k—-d

Figure 4.12: Modifications between the unsigned and signed versions of the recoding algorithm.

Determining S such that the recoding algorithm always produces the shortest list of terms is
a very hard problem. We experimented with several heuristic selection functions and trade-offs
between recoding performances (LT length) and implementation complexity (i.e. silicon area
and recoding speed). Below, we present and compare 4 of these selection functions.

Minimum value selection function (min)

min is illustrated on figure [f.13] When £ is not divisible, then k—1 and &k + 1 will be divisible
by, at least, 2 (we always use by = 2 in practice) and potentially other b;. For each value k — 1
and k + 1, divisibility tests and exact division units are used to produce k' and k”. k' (resp. k")
corresponds to k — 1 (resp. k + 1) divided as much as possible by B elements. S returns d = 1
if £/ < k" else it returns d = —1 (test k' < k” leads to similar performances). The min selection
function only provides a local minimum for the total number of terms.

S

divisibility exact

k

1 tests divisions

not divisible

Figure 4.13: Principle of the min selection function.

107

4.2. Signed-Digit Optimizations

A second scalar memory (¢ words x w bits) has been added in the recoding unit to store
both &’ and k”. The exponents corresponding to both & — 1 and %k + 1 have been computed and
stored during the exploration. The controller is adapted such that the correct set of exponents
is selected.

The authors from [45] use a similar strategy. However they claim that tree based approach
conversion is too costly for hardware implementation of systems using integers in the crypto-
graphic range (p. 437, Sec. 3). In this chapter, we show that such a strategy can be easily
implemented in hardware, without reducing the clock frequency and with a weak additional area

(see sections 4.2.4and 4.2.5)).

Maximum number of divisors selection function (max_nb_div)

In min, half of divisibility tests and exact divisions are discarded. Indeed, either k or k' is
unused at each step by S. In max_nb_div, the number of base elements b; which divide k —1 and
k + 1 is counted. S returns d according to the maximum number of divisors among k£ — 1 and
k + 1. Only divisibility unit for £ —1 and k£ + 1 is used, not the exact division unit. max_nb_div
is a cheap optimization but with low efficiency (see section .

Approximated minimum value selection function (approx)

To provide a cheap optimization but with higher performances, the approx selection function
compares approximations of k' and k” from min (instead of computing them exactly like in min).
Exponents e} correspond to the divisibility test results for k—1: k—1 =k’ 1_[2:1 b;lj
e/ are those for k + 1. The approximations of &" and k" are respectively defined by

. Exponents

!
¢' = |logy(k —1)] + 1~ Z ¢} logy (b)),
i=1

and

l

§" = |logy(k+1)] +1— Ze;-' log, (b;),
j=1

where |log,(k—1)] +1 is the position of the most significant bit (MSB) of k£ —1 (idem for k+1).
MSB positions can be easily detected using the divisibility test unit (during the ¢ iteration loop
for each word). Approximation of weight Hé.:l b;lj (or with e} exponents) uses the sum of
multiplications by log,(b;) constants. The divisibility unit returns limited exponents: e’ <1 for
b; # 2 and e;- < w for bj = 2 (see section . Then, there is no need for multiplications.

As an example, for B = (2,3,5,7), 0’ = MSB(k — 1) — ep, 2 — 1.5ep,—3 — 2.25€p,—5 — 2.75ep,—7
where ey, —2 < w and ep,—3, €p,=5, €p,—7 < 1. The constants come from: logy 3 ~ 1.59, log, 5 ~
2.32, and log, 7 & 2.81. The approximation for both k¥’ and k", as well as their comparison, can

be easily implemented using a very small circuit which uses several adders in practice (see [16]).

2 steps minimum value selection function (min2)

The last selection function uses the time margin illustrated on figure [£.4] using a recursion
limited to the next term. The first step uses min with (k — 1,k + 1) to produce (k’,k”). The
second step uses min with (K" — 1,k 4+ 1,k” — 1,k” + 1) to produce (', ¢”,¢",¢"). S returns d

108

Chapter 4. On-the-Fly Multi-Base Recoding

according to the minimum value among ¢’, (", ", ¢"".

Below, we compare all selection functions.

Authors of [45] proposed a tree-based approach for recoding k in DBNS (B = (2,3)). Their
approach is to have a bound, a number of minimum selection function min. It is a generalization
of min2. Fixing a bound, they can use min4 function, for 4 steps minimum value selection
function. The last step uses min, and S returns d according to the minimum value among with
all computed terms.

We use a similar approach where the bound is limited to 2 (i.e. it corresponds to our
min2 optimization) due to implementation limitations in hardware. We plan to study hardware
implementations of this type of idea for larger bounds (e.g. 3 or 4). For their experiments, they
chose a bound equals to 4 which “is a good compromise between the length of the chain and the
time necessary to find it”.

4.2.2 Experimental Analysis

Figure presents statistical analysis results for average computation time (in multiplica-
tion over F),: M) of 100 000 scalar multiplications with 160-bit random scalars recoded. Figure
uses our signed MBNS algorithm for various multi-bases and the 4 selection functions presented
in section . Most efficient multi-bases are B = (2,3,5) and B = (2,3,5,7) with very close
performance. Selection function max_nb_div is not efficient. Selection functions min and approx
have very close performance. The best performance is obtained by min2 with slightly better com-
putation time than approx. Selection function approx is the best trade-off between performance
and recoding cost (min and min2 require longer computations and more energy).

4.2.3 Randomized Selection Function

We experimented with a simple randomized selection function (rnd) as a protection against
some side channel attacks. When k is not divisible by B elements, S returns d = 1 or d = —1
randomly. Obviously this leads to larger number of terms (and point additions/subtractions)
in the recoding as reported in table (for simplified Weierstrass curves with a # —3 and
100000 random scalars). This table provides the differences according to the multiplication
number. Proposed randomization scheme allows a scalar sub-string to be represented using
totally different recodings for several [k]P with the same k. This is a direct protection against
some differential attacks due to the very huge number of different representations using signed
digits, see |87, Tab. 2, p. 394|. For protection against simple attacks (based on only one trace
or a very few traces), real robustness of the randomized selection function relies on the fact that
point addition and point subtraction cannot be distinguished in traces. Indeed, protecting the
sign change when using point subtraction is supposed to be simple in the circuit. However we
still must perform a more complete security evaluation at hardware level using a very advanced
attack system and to compare to other protection schemes (e.g. addition chains [23]).

4.2.4 FPGA Implementation

The signed MBNS recoding algorithm has been implemented on FPGA (see end of sec-
tion for target and tools details). Table reports corresponding results for approx
selection function, B = (2,3,5,7), n = 160 and n = 256 bits and the two versions of exact
division, when starting from LSW and MSW. The signed recoding unit includes: a second scalar
memory (¢t words by w bits), the specific circuit for approx selection function and a complete unit
control. Compared to the unsigned version table [f.11] area overhead for signed version is very

109

4.2. Signed-Digit Optimizations

2200 o .
N unsigned --B---
T signed/max_nb_div ---&---
— 2100 'E"l;: otsl signed/min ---%---
=) T signed/approx —-sx---
g 2000 - e signed/min2 —=a—
& 1900 |
g
2 1800 |
IS
o
o
1700
1600 T T T T T T T T
2,7) (2,5) 2,3) 257 (237 (235 (2357 (2,357,11)
2200 -
- unsigned --&--
s signed/max_nb_div ---&---
- 2100 e O~ signed/min ---%---
=) =N signed/approx —-—»---
2 2000 P R signed/min2 —a—
& 1900 F
©
g— 1800
S
o
[8)
1700
1600 T T T T T T T T
2,7 (2,5) (2,3) (2,5,7) (2,3,7) (2,35 (2,357 (2,3,5,7,11)

Figure 4.14: Statistical performance evaluation of signed MBNS recoding and scalar multiplica-
tion (top: a # —3, bottom: a = —3).

small: 13% more slices (8% FF and 13% LUTs). In Virtex 5 FPGAs, very small memories, such
scalar ones, can be efficiently implemented using distributed RAMs in the LUTs of SLICEMs.
This explains why only 25 additional flip-flops are required for the signed version while there is
a 168-bit memory (¢ = 14 and w = 12) for the second scalar memory. The same clock frequency
is achieved for both signed and unsigned versions (the critical path is the exact division unit).

In order to compare the MBNS recoding unit to a complete ECC processor, table in
appendix |A| reports two FPGA implementations (a small version and a large one) of an ECC
processor provided by the authors of [24] (for curves over [F,,, n = 160 bits and Jacobian coordi-
nates). Our MBNS signed recoding unit works at higher frequency than the ECC processor. In
addition its area represents less than 10% (resp. 7%) for n = 160 and w = 12 compared to the
complete small (resp. large) version of the ECC processor.

4.2.5 ASIC Implementation

Tables [{.14] and [A15] report ASIC implementation results of the signed MBNS recoding
implementation starting from LSW. The signed MBNS recoding implementation is applied with
a maximum path delay constraint of 10ns and 5ns from all inputs to all outputs.

ASIC results reported have been synthesized into gate-level netlists using standard Vi, (SVT)
cells of an industrial 130nm bulk CMOS technology library using Synopsys Design Compiler G-

110

Chapter 4. On-the-Fly Multi-Base Recoding

rnd min diff.
B M | #ADD M | #apD || [%]
(2,3) 1960.5 | 49.3 || 1738.5 | 34.0 || 12.8

(2,3,5) 1843.0 | 39.8 || 1673.7 | 28.0 || 10.1
(2,3,5,7) || 1811.4 | 348 || 1670.0 | 24.8 | 8.5
(2,3,5,7,11) || 1816.7 | 32.1 || 16935 | 229 || 7.3

Table 4.12: Average computation time (M) and point addition number (#ADD) for n = 160 bits
scalar multiplications with the randomized selection function.

exact division area freq.
n | starting from | w || slices (FF/LUT) | MHz
12 161 (326/466 236
LSW (326/466)
160 24 || 338 (724/1005) 202
12 1 4 261
MSW 67 (350/465) 6
24 || 339 (781/1015) 206
12 168 (329/469 236
LSW (329/469)
956 24 || 343 (727/1008) 202
12 1 2 261
MSW 89 (369/502) 6
24 || 401 (795/1112) | 206

Table 4.13: FPGA implementation results for complete signed recoding unit with B = (2,3,5,7).

2012.06-SP5. The standard cells used were restricted to a set {nand2, nor2, xor2, inv} of logic
gates without loss of generality.

Below, figure reports a pie chart which illustrates the area in ASIC for each unit (fig-
ure [4.10) of the MBNS recoding, with n € {160,256} and w = 12, and with a maximum path
delay constraint of 10ns.

mem. 1 mem. 2 mem. 1
exact division

mem. 2 DTD-2
DTD-2

exact division div. test

CTRL div. test CTRL

Figure 4.15: Pie chart of the ASIC area with w = 12 (right: n = 160, left: n = 256).

111

4.3. Comparison to State-of-Art

’ n ‘ delay ‘ w H combinational ‘ buf/inv ‘ non combinational ‘ total ‘

10 12 12072.9 919.8 22643.0 34716.0

160 24 26 364.8 2469.0 35478.5 61843.3
5 12 10902.9 912.8 12594.0 28496.9

24 26 756.1 2202.7 35478.5 62234.6

10 12 16 026.6 13414 30334.6 46 361.3

956 24 25336.0 2628.4 44277.5 69613.5
5 12 13959.0 1218.3 29753.7 29753.7

24 26672.9 2366.1 44277.5 69 950.4

Table 4.14: Area results (in pm?) of ASIC implementation for complete signed recoding unit
with B = (2,3,5,7).

’ n ‘ delay ‘ w H cell internal ‘ net switching | total dynamic | cell leakage

10 12 1425.3 166.9 1592.3 12.2

160 24 2445.6 307.0 2752.7 21.0
5 12 2255.6 267.6 2523.3 10.1

24 5044.9 656.4 5701.4 21.6

10 12 1854.2 183.2 2037.4 16.5

956 24 2842.0 3104 3152.5 24.2
5 12 3579.6 366.0 3945.7 15.6

24 0823.4 661.6 6485.1 24.7

Table 4.15: Power results in (uW) of ASIC implementation for complete signed recoding unit
with B = (2,3,5,7).

4.3 Comparison to State-of-Art

Below we compare our MBNS recoding and scalar multiplication algorithms for various multi-
bases to state-of-art methods. We report results over I, for simplified Weierstrass curves (y? =
23 — ax + b) with unspecified parameter a and a = —3, using Jacobian coordinates, similarly to

most of DBNS/MBNS references.

4.3.1 Costs of Curve-Level Operations

Table reports computation costs, given in field-level operations (M, S) for various curve-
level operations over IF,, from literature. For multiple publications from a group of authors, we
only report the best results. Some costs of curve-level operations have already been presented in
chapter [EFD is the web site Explicit-Formulas Database http://hyperelliptic.org/EFD.
ADBL (resp. ATPL) denotes a sequence of A successive DBL (resp. TPL) operations (e.g. k = 2* or
k=3%).

4.3.2 Performance Comparisons

Some previous scalar multiplication algorithms require additional points to speed up com-
putations (see [57, Sec. 3.3.1] for wNAF, |7] for DBNS and [77] for MBNS). These additional

112

http://hyperelliptic.org/EFD

Chapter 4. On-the-Fly Multi-Base Recoding

curve-level operations
curves | references ADD mADD DBL TPL | @ [seL EPL
EFD 11M+ 58 | TM+ 4S8 | 1M+ 83 | 5M + 10S n/a n/a n/a
[40], [41] 12M+4S | 8M+ 35 | 4M+ 65 | 10M+ 65 n/a n/a n/a
87 12M+4S | 8M+3S | 4M+6S | 10M+6S | 15M + 10S n/a n/a
a# —3 |78 11IM+ 58 | TM+4+4S | 2M+8S | 6M+ 10S | 10M+ 14S | 17TM+ 14S | 27M 4 188
I54] n/a n/a | 1M+ 8S | 5M+10S | 7M+16S | 15M+ 24S | 17M + 308
[76] 11M+ 58 | 7M+4S | 2M48S | 6M+11S | 9M+ 15S | 13M + 188 n/a
|75] 12M+4S | 8M+3S | 4M+6S | M+ 7S 14M + 108 | 19M + 128 | 29M + 16S
EFD 11M+ 58 | 7M+4S | 3M+ 58 | 7M+ 7S n/a n/a n/a
[40], Ja1] 12M 1 4S | 8M+3S | 4M+4S | 10M+ 6S n/a n/a n/a
4 —3 T Iéﬁ n/a n/a n/a n/a 15M + 83 n/a n/a
[78] 11M+5S | 7M+4S | 34+ 58 | 7TM+7S | 11M+ 11S | 18M+ 118 | 28M + 158
[77], [76] 11M+5S | 7M+4S | 3M4 55 | 7M+8S | 10M+ 128 | 14M + 158 n/a
B 11M+5S | 7TM+4S | 3M+5S | OM+5S | 14M+8S | 19M+ 10S | 29M + 148
curves references ADBL ATPL
ot —3 0], J41], 61, AN+ (4X\ + 2)8 (11X — DM+ (4X + 2)8
87 ANM + (41 + 2)8 10AM + (6X — 5)S
curves references ATPL / A'DBL
a#—3 [40], J41] (1IA + 4N — 1M+ (4X + 4X + 3)S

Table 4.16: Costs of curve-level operations from literature and curves over IF,,.

points are multiples of the initial point P and are stored in the cryptoprocessor during the com-
plete scalar multiplication (2 n-bit registers per additional point). For instance wNAF requires
the set of additional points {[3]P, [5]P, [7]P,...,[2*~! — 1]P} to be pre-computed prior to [k]P
operation. Most of methods assume pre-computed points represented using affine coordinates
to benefit from fast mixed coordinates addition mADD. Table reports some costs of typical
pre-computations. Costs at field level include a conversion to affine coordinates which requires
field inversions (usually 1M+ 1S + 21 per addition point). We assume 1I = 15M for I, inversion,
and we apply the typical cost assumption used in many references: 1S = 0.8 M.

computation time
pre-computations | methods ’ a# —3 ‘ a= -3
3P 3NAF 1mADD + 1DBL 49.4M 49.0M
DBNS 1TPL 44.8M 44.4M
4NAF 3mADD + 2DBL 140.8M | 140.0M
31P, [5)P, [7)P el
DBNS 2mADD + 1DBL + 1TPL | 136.2M | 135.4M

Table 4.17: Typical costs of pre-computations for additional points.

These costs can be neglected for multiple successive [k]P operations with the same point P,
but it is not the case if the point P changes before each scalar multiplication (e.g. support of
various protocols/sizes, base point randomization method, etc.).

Table compares scalar multiplication methods from literature to our signed MBNS in

113

4.3. Comparison to State-of-Art

terms of performances and pre-computations for curves over F,,, Jacobian coordinates, a # —3,
n = 160 bits and 100000 random scalars. Table reports similar comparisons for a = —3.
Our signed MBNS scalar multiplication method has been evaluated using the approx selection
function and for the multi-bases (2,3), (2,3,5) and (2,3,5,7). In these tables, DBNS results
have been computed using the PARI/GP program kindly provided by the author of [46]. This
program generates a signed DBNS chain using pre-computations and where approximations are
obtained by a search table.

pre-computations
references methods performances | storage ‘ operations recoding
double-and-add 1985.3M 0 0 0
NAF 1723.0M 0 1) on-the-fly & very cheap
3NAF 1583.7M 1 point 49.4M on-the-fly & very cheap
4ANAF 1499.1M 3 points 157.8M on-the-fly & very cheap
[40] DBNS 1863.0M 0 0 off-line & costly
[41] DBNS 1722.3M 0 0 off-line & costly
[7] DBNS 1558.4M 7 points >150M off-line & costly
|46] DBNS 1615.3M 0 0 off-line & costly
6HBTF 4 1803.8 0 0 on-the-fly & small
] 6HBTF 5 1627.2 0 0 off-line & small
12HBTF 4 1701.4 1 point 25M on-the-fly & small
12HBTF 1555.5 1 point 56.8M off-line & small
(2,3) MBNS 1746.2M 0 0 on-the-fly & small
this work | (2,3,5) MBNS 1679.9M 0 0 on-the-fly & small
(2,3,5,7) MBNS 1670.4M 0 0 on-the-fly & small

Table 4.18: Comparison of scalar multiplication methods (curves with a # —3 and n = 160).

Pre-computation of 7 points for reference 7| is more costly than 4NAF pre-computations
(table . For 3NAF and 4NAF methods, when adding the overhead cost for pre-computing ad-
ditional points, scalar multiplication computation time raises 1633.1M and 1656.9M, respectively
(for a # —3). Thus, 3NAF method can be considered faster than 4NAF when adding costs of
pre-computed points.

Results of the table which refer to |77] and |78| are based on a left-to-right MBNS scalar
multiplication algorithm to benefit from fast mixed coordinates addition mADD while the scalar
is recoded using a right-to-left algorithm (this strategy prevents them from providing an on-the-
fly computation). If we use a similar strategy, the computation cost reduction is estimated to
4.8 = ((11+5x0.8) — (7+4 x 0.8)) times the number of ADD operations. In case B = (2,3,5)
and n = 160, this leads to a reduction about 134M. Hence, references |77] and |78| are still faster
than our method but with a much smaller difference, but without hardware implementations.

The hybrid binary-ternary number system (HBTNS) [39], a special case of double-base repre-
sentation, can be used to find a short and sparse representation for a single scalar. The window
hybrid binary-ternary form (wHBTF), introduced in [2] is based on HBTNS. Their method could
be fully implemented in hardware and thus could work on-the-fly. They give the number of

114

Chapter 4. On-the-Fly Multi-Base Recoding

pre-computations
references methods performances | storage ‘ operations recoding
double-and-add 1922.0M 0 1) 0
NAF 1659.7M 0 0 on-the-fly & very cheap
3NAF 1520.2M 1 point 49.0M on-the-fly & very cheap
4ANAF 1436.1M 3 points 156.6M on-the-fly & very cheap
|46] DBNS 1563.2M 0 0 off-line & costly
7] DBNS 1504.3M 7 points >150M off-line & costly
1645.4M 0 0 off-line & costly
1606.4M 1 point ~40M off-line & costly
[87] (2,3,5)MBNS 1566.4M 3 points ~150M off-line & costly
1552.3M 7 points >150M off-line & costly
1486.4M 5 points >150M off-line & costly
(2, 3)NAF 1514.0M 0 0 small
(2,3,5)NAF 1490.0M 0 0 small
(2,3,5,7)NAF 1491.0M 0 0 small
(2, 3)NAF3 1460.0M 1 point ~40M small
[78] (2,3,5)NAF3 1444.0M 1 point ~40M small
(2,3,5,7)NAF3 1449.0M 1 point ~40M small
(2,3)NAF, 1384.0M 3 points >150M small
(2,3,5)NAF, 1383.0M 3 points >150M small
(2,3,5,7)NAF, 1394.0M 3 points >150M small
7] (2,3,5)NAF 1460.0M 0 0 costly
(2,3,5)NAF 1426.0M 6 points >150M costly
GHBTF o 1752.6 0 0 on-the-fly & small
B GHBTF 1576.0 0 0 off-line & small
12HBTF 4 1647.7 1 point 24.2M on-the-fly & small
12HBTF 1501.7 1 point 56M off-line & small
(2,3)MBNS 1686.2M 0 0 on-the-fly & small
this work | (2,3,5)MBNS 1631.0M 0 0 on-the-fly & small
(2,3,5,7)MBNS 1625.2M 0 0 on-the-fly & small

Table 4.19: Comparison of scalar multiplication methods (curves with ¢ = —3 and n = 160).

curve-level operations, and we have computed the cost of scalar multiplication according to the
costs of ADD and mADD, i.e. the recoding is considered on-the-fly or not. That is why we give two
results for the methods 6HBTF and 12HBTF according to the recoding: when it is considered to
be on-the-fly & small (wHBTF 4) or off-line & small (wHBTFp).

Figure presents the number of curve-level operations for various mutli-bases and DBNS
recodings computed using the PARI/GP program from reference [46]. Results correspond to
n = 160, curve with a # —3, and the approx selection function.

115

4.3. Comparison to State-of-Art

120
100 ADD == DBL K X TPL T 1 QPL & Yy SPL | 1 EPL © 2

operation number

’DBNS_prg" (213) (2!3!5) (2331557) (21355!771 1)

Figure 4.16: Comparison of curve-level operations count.

We obtain similar results with curves provided by the NIST (FIPS 186-2 see |57, appendix A.2.1]
for details). Table presents the number of curve-level operations of 100000 scalar multipli-
cations using the approx selection function and our signed MBNS algorithm with the different

prime fields and bases. The reported experiments have been realized for different curves, with
a= -3 and a # —3.

NIST performance with

B curves curve-level operations a# —3 ‘ a=-3
(2,3) 41.2ADD + 107.1DBL + 53.7TPL 2109.9M | 2045.5M
(2,3,5) P-192 || 33.9ADD + 85.8DBL + 42.1TPL + 17.1QPL 2030.9M | 1976.5M
(2,3,5,7) 30.1ADD + 75.6DBL + 35.9TPL + 14.6QPL + 9.1SPL 2020.0M | 1959.7M
(2,3) 47.9ADD + 124.4DBL + 62.4TPL 2452.8M | 2378.0M
(2,3,5) P-224 || 39.5ADD + 99.7DBL + 49.0TPL + 19.9QPL 2361.3M | 2298.1M
(2,3,5,7) 35.1ADD + 88.0DBL + 41.7TPL + 17.1QPL + 10.6SPL | 2348.9M | 22278.8M
(2,3) 54.7ADD + 142.5DBL + 71.4TPL 2803.3M | 2717.8M
(2,3,5) P-256 || 45.2ADD + 113.8DBL + 56.1TPL + 22.8QPL 2700.2M | 2627.7M
(2,3,5,7) 32.4ADD + 95.5DBL + 45.8TPL + 18.6QPL + 15.8SPL | 2575.4M | 2506.4M
(2,3) 82.3ADD + 214.0DBL + 104.2TPL 4209.6M | 4081.2M
(2,3,5) P-384 || 68.0ADD + 170.7DBL + 84.3TPL + 34.0QPL 4055.4M | 3953.3M
(2,3,5,7) 60.4ADD + 151.0DBL + 71.6TPL + 29.0QPL + 18.0SPL | 4037.7M | 3917.1M
(2,3) 111.8ADD + 290.1DBL + 145.5TPL 5714.0M | 5539.8M
(2,3,5) P-521 || 92.3ADD + 231.8DBL + 114.3TPL + 46.4QPL 5503.6M | 5363.6M
(2,3,5,7) 82.1ADD + 205.0DBL + 97.2TPL + 39.7QPL + 24.6SPL | 5482.2M | 5318.6M

Table 4.20: Curve-level operations count (NIST curves).

Authors of [47] proposed a similar recoding approach. They use a 4 steps minimum selection
function min4 presented above in section They recode two scalars in DBNS (B = (2,3)) to
perform two scalar multiplications with joint sparse form method. With inverted Edwards coor-
dinates and n = 192, they obtain a performance of 72ADD+ 107DBL+53TPL curve-level operations.
We have similar results for the recoding with n = 192. However they use mixed addition when

116

Chapter 4. On-the-Fly Multi-Base Recoding

they produce multiplication costs. It implies that they recode a scalar into DBNS, then compute
the result as a sum of terms, and finally perform an adaptation of the standard right-to-left
scalar multiplication algorithm. Using this adaptation allow them to have less multiplications
(1952M) by the use of mixed addition. Their limitation is that they must store all terms and
wait for the scalar totally recoded to begin scalar multiplication. This strategy prevents them
from providing an on-the-fly computation.

4.4 Extended Signed-Digit MBNS Recoding

Above, we proposed a multi-base recoding for ECC scalar multiplication without pre-computation.
This section is not a part of the ARITH paper. Several scalar multiplication methods use pre-
computations. In this part, we allow to have pre-computations. We want to see what happens at
theoretical and practical levels. We want to know if the MBNS recoding method is more efficient
with pre-computed points, and how choose them.

A simple modification of the signed-digit MBNS recoding algorithm figure is required to
others digits than —1 and 1. We denote extended signed-digit MBNS recoding when d can have
other digits than —1 and 1. The selection function S on figure selects the digit d to be used.
For instance, one can choose d such that d = £3. At curve level, digit values always correspond
to: the point addition @ + [3]P when d = 3, the point subtraction @ — [3]P when d = —3, and
no operation when d = 0.

Thus points must be pre-computed when S selects the digit d such that d # +1 and d # 0.
For instance F|_3 = P3 = [3]P when d = 43. Line 3 of the scalar multiplication algorithm on
figure becomes @ < Q + sign(d) x Pg. It is the same strategy used by the wNAF method.
The scalar multiplication algorithm performs point addition in Jacobian, and thus pre-computed
points do not require field inversions. For instance, pre-computing the point [3]P costs 13M with
a = —3, and 12.6M with a # —3, instead of 49.4M and 49.0M with 3NAF method.

The selection function can select a large set of numbers. Number of pre-computed points
depends on the set of d. Let the digit set of d be denoted D. For instance, Dy; denote that
d € {£1}, D41 +3 denote that d € {£1,£3}, etc. The number of pre-computed points is equal to
#{|d;|}\{£1,0}. We recall that d = 0 only for the very first term when the initial k is divisible
by, at least, one base element in B. The value £1 is not considered because it corresponds to the
point P. For instance, one precomputed point must be calculated for D3, Dis, ..., D41 43,
D41,45, etc. Similarly to the way, two precomputed points must be calculated when D43 45,
D+1,3,45, Di1,+5,-7, etc.

From now, we consider that Dy, corresponds to Di4,. Indeed, when one considers the pre-
computed point [3]P, having d; = +3 can enable to have a better approximation of k, with only
one pre-computed point. In addition, the elements of d must be chosen with attention.

First, one always should have odd elements in d. Indeed, when k is not divisible by the
multi-base elements, k£ plus or minus an even element will be not divisible by at least by = 2.

Second, one should have all |d;| ¢ B. The reasons for this choice are the same than previously:
if k is not divisible by the multi-base elements, the computation of k + b; cannot be divisible by
b;. For instance, if d; = 3 and k is not divisible by the multi-base elements, one has k mod 3 # 0.
Thus the number k£ + 3 wont be divisible by the base 3. Having d; = £3 prevents the possibility
from being divisible by 3 with by = 3. Therefore D should be a set of prime numbers different

117

4.4. Extended Signed-Digit MBNS Recoding

from the multi-base. For instance, when B = (2, 3), it may be not interesting to have +3 € D.

Third, the values —1, 1, the prime number immediately greater than b; or his opposite must
be in d (b; is considered to be the maximum value of the multi-base B). Else, k may never be 1
when one computes k < k + d;: in this case, the recoding algorithm never stops. For instance,
when B = (2,3), d; can take values in Dy, D15, D17, ..., D5, D57, D5 711, etc. For instance, if
the digit set is D7 or D7 11, the recoding algorithm can never stop if £ reaches the value 5.

Once one chose the appropriate set of D, the selection function S selects between all values
k — d; when k is not divisible by any multi-base elements. When the set D is big, one could
think that the selection function becomes too complex to evaluate. For instance, S can choose
the values between £ — 5, k — 1, k+ 1 and k + 5 with D7 5. However the controller does not
become more complex and unrealistic in hardware.

Indeed, the best value k — d; can be defined during a curve-level operation (ADD, DBL, TPL,
etc.). These operations require a sequence of 8-12 field-level operations, and each field requires
tens (for large operators) to hundreds (for small iterative operators) of clock cycles (see figure
in section for the typical number of operations required at each level).

Thus, S just needed to choose between the first two value of D, and selecting one. Then, S
selects between the selected value and the third value of D to select the best one. This process
is realized iteratively until S scanned all values of D. That is why S is not more complex with a
bigger set D. In addition, there is no need to have more than the two initial registers with this
strategy. Only two registers are necessary to compute and choose between the two values k — d;
and k — d;.

The selection function S works during the curve-level operations. Thus, the more S is used,
the more scalar multiplication is fast. Indeed, S will have more time to select the best value.
Moreover, the fact that S works during the curve-level operations enables to add noise in the
power traces. Thus, it could be more difficult for an attacker to have clean traces and thus to
guess the scalar.

4.4.1 Implementation Results

The Signed MBNS recoding algorithm with several pre-computed points has been imple-
mented on FPGA (see end of section for target and tools details). In theory, a ROM is
implemented to store the pre-computed points.

Our implementation launches the curve-level operations with the corresponding point (e.g.
P, [3]P, etc.) to be computed. Each pre-computed point does not change during the scalar
multiplication. Thus in practice, FPGA compilation tools consider each pre-computed point like
constants during circuit operation. Registers are replaced by logic. Therefore FPGA implemen-
tations are practically the same than in table [£.I3] which reports the signed MBNS recoding
implementation results for approx selection function, B = (2,3,5,7), n € {160,256} bits and the
two versions of exact division.

The version with 1 (resp. 5, 10) pre-computed point requires 1% more area (resp. 3%, 4%)
compared to area results of ASIC implementation without pre-computations (table . The
version with 1 (resp. 5, 10) pre-computed point has 10% more total dynamic power (resp. 18%,
23%) compared to power results of ASIC implementation without pre-computations (table [4.15)).

118

Chapter 4. On-the-Fly Multi-Base Recoding

4.4.2 Performance

Table [£.21] reports some costs of point pre-computations. Costs at field level do not include
a conversion to affine coordinates which requires field inversions. Indeed, the considered scalar
multiplication does not use mixed additions. There are two costs for the pre-computation of
[11] P, because when 5 € B, it can be more interesting to use the operation sequence of QPL (only
when a # —3). Else, only the mADD, ADD, DBL and TPL formulas are necessary to pre-compute
the points in table [L.21] For these points, it is sufficient that 2 and 3 are in the multi-base. In
practice, it is always considered.

computation time

pre-computations ’ a# -3 ‘ a=-3
[5]P 1mADD + 2DBL 25.0M | 24.2M
[7]P 1mADD + 3DBL 32.4M | 31.2M
[11]P ImADD + 2DBL + 1TPL 38.0M | 34.4M
[11)P 1mADD + 1DBL + 1QPL 37.4M 36.8M
[13]P 1mADD + 2DBL + 1TPL 38.0M | 34.4M
[17]P 1mADD + 2DBL 39.8M 38.2M
[5)P, [7|P 2mADD + 1DBL + 1TPL 40.8M | 40.0M
[5)P, [11]P 2mADD + 2DBL + 1TPL 48.2M | 44.6M
[5]P, [13]P 2mADD + 2DBL + 1TPL 48.2M | 44.6M
[5]P, [17|P 2mADD + 4DBL 50.0M | 48.4M
[7]P, [11]P 1mADD + 1ADD + 3DBL + 1TPL | 60.4M | 56.4M
[7)P, [13]|P 2mADD + 3DBL + 1TPL 55.6M | 51.6M
[7)P, [17|P 2mADD + 4DBL 50.0M | 48.4M
[11]P, [13]P 2mADD + 2DBL + 1TPL 48.2M 47M
[11]P, [17]P ImADD + 1ADD + 4DBL + 1TPL | 67.8M | 63.4M

Table 4.21: Typical costs of pre-computations for additional points.

Table £.23] and table [£.24] compares scalar multiplication methods with the extended MBNS
method with different pre-computed points for curves over I, Jacobian coordinates, n = 160
bits, 100000 random scalars, ¢ # —3 and a = —3. The extended MBNS scalar multiplication
method has been evaluated using approx selection function and for multi-bases (2,3), (2,3,5)
and (2,3,5,7). These two tables use a method which can be fully embedded in hardware, work
on-the-fly. In addition, this method requires a small area.

We can see in table and table that the more pre-computed points there are, the
more interesting it is. In addition, results are quite similar for a same number of the set D.
Thus, it can be not interesting to have pre-computed points which have a bigger cost of pre-
computations. One has just to select pre-computed points with the lower cost.

We obtain similar results with curves provided by the NIST. Table presents the number
of curve-level operations of 100 000 scalar multiplications using the signed MBNS algorithm with
the different provided prime fields and bases, and with one pre-computed point. The reported
experiments have been realized for different curves, with the approx selection function, a = —3

119

4.4. Extended Signed-Digit MBNS Recoding

and a # —3.

NIST performance with

B curves D curve-level operations a=-3 ‘ a# -3
(2,3) Dis 32.4ADD + 106.1DBL + 54.5TPL 1915.1 M | 19793 M
(2,3,5) P-192 | Dy 7 27.1ADD + 78.1DBL + 41.5TPL + 20.9QPL 1886.0M | 1938.0 M
(2,3,5,7) D111 || 24.4ADD + 71.9DBL + 34.5TPL + 14.0QPL + 11.9SPL 1887.6 M | 1949.6 M
(2,3) Dis 37.6ADD + 123.3DBL + 63.4TPL 2226.1 M | 2300.8 M
(2,3,5) P-224 | Dy, 31.5ADD + 90.7DBL + 48.3TPL + 24.3QPL 2192.5M | 2253.0 M
(2,3,5,7) D111 || 28.3ADD + 83.6DBL + 40.0TPL + 16.3QPL + 13.8SPL | 2194.2 M | 2266.3 M
(2,3) Dis 43.0ADD + 141.0DBL + 72.4TPL 2544.5M | 2629.9M
(2,3,5) P-256 | Dy 7 36.0ADD + 103.7DBL + 55.TPL + 27.8QPL 2506.2M | 2575.4M
(2,3,5,7) D111 || 32.4ADD + 95.5DBL + 45.8TPL + 18.6QPL + 15.8SPL 2508.4M | 2590.8M
(2,3) Dis 65.1ADD + 214.3DBL + 107.2TPL 3827.1 M | 3955.7 M
(2,3,5) P-384 | Dy 7 54.3ADD + 154.8DBL + 83.4TPL + 41.9QPL 3768.7M | 3872.3 M
(2,3,5,7) D111 || 48.7ADD + 142.8DBL + 69.0TPL + 28.0QPL + 23.9SPL | 3769.5 M | 3893.3 M
(2,3) Dis 87.8ADD + 287.7DBL + 147.5TPL 5189.2 M | 5363.3 M
(2,3,5) P-521 | Dy 73.5ADD + 211.2DBL + 112.7TPL + 56.7QPL 5112.8 M | 5253.6 M
(2,3,5,7) Dy,11 || 66.3ADD + 194.3DBL + 93.4TPL + 38.1QPL + 32.4SPL | 5118.0 M | 5285.9 M

120

Table 4.22: Curve-level operations count with one pre-computed point (NIST curves).

Chapter 4. On-the-Fly Multi-Base Recoding

performance with

B D curve-level operations a=-3 ‘ a# -3
D1 34.1ADD + 89.0DBL + 44.6TPL | 1686.2 M | 1746.2 M
Ds 34.2ADD + 88.9DBL + 44.4TPL | 1694.1 M | 1747.4 M
D15 26.8ADD + 88.0DBL + 45.2TPL | 1588.9 M | 1642.2 M
D17 27.6ADD + 83.4DBL + 48.3TPL | 1605.5 M | 1658.2 M
D111 27.5ADD + 90.3DBL + 44.0TPL | 1598.9 M | 1652.6 M
D13 27.5ADD + 88.3DBL + 45.2TPL | 1599.5 M | 1652.9 M
D117 28.9ADD + 88.1DBL + 45.3TPL | 1621.1 M | 1674.5 M
D57 27.6ADD + 88.5DBL + 44.7TPL | 1597.3 M | 1650.6 M
Ds.11 27.7ADD + 80.7DBL + 49.6TPL | 1606.5 M | 1658.6 M
D513 98.2ADD + 90.3DBL + 43.6TPL | 1604.4 M | 1657.9 M
Ds 17 927.3ADD + 88.7DBL + 44.6TPL | 1592.6 M | 1645.9 M
D157 24.3ADD + 84.2DBL + 47.8TPL | 1556.4 M | 1609.2 M
Di5.11 || 24.3ADD + 84.1DBL + 47.9TPL | 1556.8 M | 1609.6 M

(2,3) | D1513 || 24.2ADD + 89.1DBL + 44.7TPL | 1550.9 M | 1604.4 M
D157 24.8ADD + 87.5DBL + 45.7TPL | 1560.5 M | 1613.8 M
Di711 || 24.8ADD + 91.1DBL + 43.5TPL | 1557.7M | 1611.5 M
Di713 || 24.3ADD + 83.3DBL + 48.3TPL | 1556.5 M | 1609.2 M
D1 717 25.8ADD + 83.1DBL + 48.6TPL | 1579.9 M | 1632.6 M
D1i11,13 || 24.7ADD + 81.2DBL + 49.8TPL | 1566.4 M | 1618.8 M
Di,11,17 || 24.8ADD + 88.6DBL + 45.1TPL | 1560.9 M | 1614.4 M
D1 13,17 || 24.8ADD + 87.3DBL + 46.0TPL | 1561.5 M | 1614.8 M
D5 711 25.0ADD + 87.4DBL + 45.5TPL | 1559.7M | 1612.9 M
Ds713 || 24.6ADD + 88.8DBL + 44.6TPL | 1552.5 M | 1605.8 M
Ds717 || 24.6ADD + 82.1DBL + 48.9TPL | 1559.4 M | 1611.8 M
Ds.11,13 || 25.4ADD + 82.5DBL + 48.6TPL | 1570.7 M | 1623.2 M
Ds11.17 || 24.3ADD + 82.7DBL + 48 4TPL | 1553.5 M | 1605.9 M
Ds13.17 || 24.5ADD + 89.0DBL + 44.5TPL | 1550.8 M | 1604.2 M

Table 4.23: Comparison of scalar multiplication methods (B = (2, 3), curves with n = 160).

121

4.5. Conclusion

performance with
B D curve-level operations a=-3 ‘ a# —3

Dy 28.1ADD + 71.2DBL + 35.0TPL + 14.2QPL 1631.0M | 1679.9 M
Dy 28.1ADD + 70.7DBL + 35.0TPL + 14.3QPL 1637.4M | 1682.5 M
D 7 22.4ADD + 64.9DBL + 34.5TPL + 17.3QPL 1564.7M | 1607.9 M
D11 23.0ADD + 71.1DBL + 35.4TPL + 14.1QPL 1565.2M | 1610.6 M
D113 22.5ADD + 67.5DBL + 31.2TPL + 18.5QPL 1565.2M | 1608.4 M
D117 23.3ADD + 64.2DBL + 31.1TPL + 20.0QPL 1582.8M | 16249 M
D711 22.6ADD + 70.2DBL + 30.4TPL + 17.7QPL 1560.0 M | 1603.8 M
D713 22.8ADD + 70.1DBL + 36.2TPL + 13.7QPL 1559.1M | 1604.4 M
(2,3,5) D77 23.3ADD + 65.9DBL + 37.7TPL + 14.6QPL 15712 M | 1615.6 M
Dy 711 20.3ADD + 67.1DBL + 32.9TPL + 17.5QPL 1531.4M | 1575.0 M
D1 713 20.2ADD + 65.2DBL + 34.8TPL + 17.0QPL 1532.2M | 1575.7TM
D177 20.6ADD + 62.5DBL + 34.7TPL + 18.3QPL 1542.3 M | 15849 M
Dij1,13 20.3ADD + 64.9DBL + 33.0TPL + 18.4QPL 1535.5M | 15784 M
Dy 1117 20.4ADD + 65.6DBL + 33.4TPL + 17.8QPL 1535.9M | 1579.1 M
D1 13,17 20.7ADD + 67.4DBL + 32.0TPL + 18.0QPL 1539.3 M | 1582.7M
D7 11,13 20.4ADD + 66.8DBL + 32.7TPL + 17.6QPL 1531.0M | 1574.3 M
Dra1,17 20.3ADD + 66.7DBL + 32.1TPL + 17.9QPL 1529.7M | 1573.0 M
Dr713,17 20.7ADD + 67.4DBL + 37.9TPL + 13.8QPL 1530.6 M | 15754 M
D, 25.0ADD + 62.8DBL + 29.8TPL + 12.2QPL + 7.6SPL | 1625.2 M | 1670.4 M
D11 25.0ADD + 62.7DBL + 29.7TPL + 12.2QPL + 7.6SPL | 1624.0 M | 1674.1 M
Dy 20.2ADD + 59.7DBL + 28.6TPL 4 11.6QPL + 9.9SPL | 1565.8 M | 1617.3 M
Dy 13 20.2ADD + 59.5DBL + 28.0TPL + 15.6QPL + 7.0SPL | 1560.9 M | 1608.9 M
D1y 20.2ADD + 54.4DBL + 25.9TPL + 15.8QPL + 9.9SPL | 1577.7M | 1626.9 M
(2,3,5,7) | Di1.13 19.9ADD + 53.9DBL + 27.6TPL + 15.0QPL + 9.7SPL | 1568.0 M | 1617.1 M
D117 20.0ADD + 59.2DBL + 29.1TPL + 14.8QPL + 7.0SPL | 1555.4 M | 1603.6 M
Di1113 || 18.1ADD + 55.4DBL + 28.3TPL + 14.7QPL + 9.1SPL | 1539.4 M | 1588.5 M
D1 11,17 18.1ADD + 55.6DBL + 27.7TPL + 14.8QPL + 9.2SPL | 1541.3 M | 1590.6 M
D1 13,17 18.3ADD + 56.7DBL + 27.0TPL + 14.7QPL + 9.3SPL | 1542.6 M | 1592.1 M
Di1,13,17 || 18.0ADD + 56.0DBL + 28.6TPL + 14.2QPL + 9.0SPL | 1534.7 M | 1583.9 M

Table 4.24: Comparison of scalar multiplication methods (B € {(2,3,5),(2,3,5,7)}, curves with

n = 160).

4.5 Conclusion

In this chapter, we proposed a simple multi-base recoding algorithm which can be fully
implemented in hardware without any pre-computations for ECC scalar multiplication. The
scalar recoding is performed on-the-fly and in parallel to curve-level operations without additional
latency. The proposed recoding circuit uses cheap divisibility test by multi-base elements (e.g.
(2,3,5,7)) and exact division using very small dedicated hardware units. Whereas we proposed
and used only “classic” algorithms, we provide the first complete hardware implementation. Thus,

DBNS/MBNS methods can be used in hardware.

122

Chapter 4. On-the-Fly Multi-Base Recoding

Our MBNS recoding and scalar multiplication method is a little less competitive compared
to other DBNS/MBNS methods when off-line recoding can be used. When we allow us to have
pre-computations, our MBNS recoding can always be a little less competitive. In addition, pre-
computation costs can be neglected for multiple successive [k]P operations with the same P.
Thus, MBNS recoding with pre-computations is clearly justified.

Whereas our method is a little less competitive, our method leads to more efficient solutions
in embedded applications fully integrated in hardware without resources for costly recoding and
limited storage.

As future work, we plan to deal with more advanced recoding schemes to reduce the number
of produced terms, and with more statistical results for a better set of the output of S. Indeed,
most of the time is spent in curve-level operations. Thus, all units can be used until that the
current curve-level operation is finished to find a better decomposition of the scalar. For instance,
why not adding +1 to k even if k is divisible by a multi-base element? All these possibilities can
improved more randomization schemes to increase robustness against side channel attacks.

123

Chapter 5

Atomic Blocks through Regular
Algorithms

In this chapter, we use existing scalar multiplication algorithms in a different way. These
algorithms can have a regular behaviour such that they can provide a countermeasure against
some simple side-channel attacks. In addition, we work at the field level to produce a regular
sequence of operations, that is atomic blocks. Randomization can be added in the sequences.
Again, it can be used as a countermeasure against some differential attacks. Hardware imple-
mentations of the proposed solutions are provided in this chapter.

When scalar multiplication algorithms are considered with least significant bits first, i.e.
right-to-left algorithms, some curve-level operations can be computed in parallel. We use existing
algorithms and perform them in other way. Figure [5.I] presents two right-to-left methods to
compute [k] P: double-and-add (on the left) and double-and-add-always (on the right) algorithms.
The point P is updated at the end of the computation of @’ on the right algorithm.

However as the below algorithms start with least significant bits first, point additions with
mixed coordinates (mADD) cannot be used. Standard point addition are obliged to be used, which
is a little slower.

input: k£ = (kn_lkn_g .]{21]{30)2, P e E(Fp)
output: Q = [k|P

1: | Q«+— O QR<+—O0O

2: || for i from 0 ton —1 do for i from 0 ton —1 do

3 ifk;=1then Q +— Q+ P Q+Q+P // P« 2|P
4: P+ [2]P if k; =1 then Q + Q'

5: || return Q return Q)

Figure 5.1: Right-to-left scalar multiplication algorithms.

The number of curve-level operations of the double-and-add-always algorithm is n ADD + n DBL.
Indeed, one ADD and one DBL are always performed at each loop iteration. The two curve-level
operations are performed at line 3.

However point additions and point doublings can be performed at the same time, with a
multiplexer controlling the output of ADD. In this case, when one considers real execution time

125

of the right algorithm in figure the cost is reduced to n ADD if ADD and DBL (at line 3) are
computed in parallel, since a DBL is usually faster than an ADD.

Other scalar multiplication algorithms can use such a parallelization scheme. Thus, real ex-
ecution time is smaller than their corresponding sequential costs. For instance, the Montgomery
ladder [90] algorithm can use such a parallelization scheme. The idea of this method is that the
difference between the 2 points P and) at each loop iteration is constant and corresponds to
the initial point P. The real execution time of the Montgomery ladder algorithm is reduced to
(n — 1) ADD when ADD and DBL are performed in parallel.

Other scalar multiplication algorithms can use this parallelisation scheme. NAF has a repre-
sentation where at most one digit k; € {—1,0,1} is non-zero over two consecutive digits. So,
an ADD can be performed in parallel to 2DBLs. The algorithm in figure presents the NAF
method for scalar multiplication starting least significant digit first, also called the right-to-left
scalar multiplication using NAF method. The NAF length of k is at most one more digit than the
length of the binary representation of k: k = (kpkn—1...k1ko)2 where k; € {0, £1}. Usually, NAF
method for scalar multiplication starts most significant digit first (i.e. left-to-right).

input: P e E(Fp), and k = (knkn—l e klkO)Q where ki S {0, :|:1} and ki+1k}i =0 Vi
output: Q = [k|P

QR0
for ¢ from 0 to n do
if k; # 0 then
Q<+ Q+kP
P« [2]P
return @

Figure 5.2: Right-to-left NAF method for scalar multiplication.

When one starts least significant digit first, lines 4 and 5 of the algorithm in figure [5.2] can
be performed in parallel. Obviously, reading and writing the point P cannot be an option.
Performing in parallel the two aforementioned lines does not involve reading and writing at the
same time. Indeed, the first step of the lines 4 and 5 is to read the point P. So, when the point
doubling at line 5 is calculated, the new point P can be stored without any problem. At each
loop iteration the register which contains the point P is sent to the two curve-level operations
ADD and DBL. At the end of DBL, the register P is updated.

In addition, one can use the inherent property of the NAF method, that is no two consecutive
signed digits k; € {—1,0,1} are non-zero. Both algorithms in figure and compute scalar
multiplication using NAF method. The algorithm in figure [5.3] presents another way to use this
NAF property. Each computation at line 3 can be performed in parallel.

We can remark that the scalar k& can be negative at the loop iteration n’ by beginning least
significant digit first. When one considers the first n’ bits of k, (k. _1 - - - ko), then one can have:

(151 2k < 0) with k; € {—1,0,1} and with n’ < n.

In the algorithm in figure the three following operations are computed in parallel:
P+ [4]P
Q' <+ Q+ kP
Q" + Q + ki1 [2]P

126

Chapter 5. Atomic Blocks through Regular Algorithms

input: P € E(F,), and k = (kpkp—1 ..
output: Q = [k]P

. klko)g where k; € {0, :]:1} and ki+1ki =0 W

1. Q0O
2: for i from 0 to |n/2] do
P« [4lp /) Q< Q+ kP
if k'QZ‘ 7& 0 then
Q<+ Q
elsif k9,41 # 0 then
Q <_ Q//

return @

/] Q" Q+ky1[2]P

Figure 5.3: Extended right-to-left NAF method for scalar multiplication.

with k is in NAF representation (k; € {1,0,1}). Points P in bold font are the same value, i.e.
the same point. This point is read simultaneously for the three calculations. The output of the
calculation P < [4]P is updated only at the end of the iteration.

An example with k£ = (10010100010000101001000001)s = (28 375615)1¢ is carried out as be-
low. If one denotes Py the value of P, the input point of the algorithm in figure[5.3] the columns

P, Q, @ and Q" represent [z]Fy. For instance, for i = 2, P = 64 is P = [64] P,.
L[» | Lhoi | @ [k [@ | K
init. 1 0 intermediate key
0 4 1 1 1 0 0 (01)
1 16 - 0 - 0 1 (0001)
2 64 - 0 - 0 - (000001)
3 256 63 1 63 0 - (01000001)
4 1024 575 0 - 1 575 (1001000001)
5 4096 -1473 0 575 1 -1473 (101001000001)
6 16 384 - 0 -1473 0 - (00101001000001)
7 65 536 - 0 - 0 - (0000101001000001)
8 262144 64063 1 64063 0 - (010000101001000001)
9 1048576 - 0 - 0 64063 (00010000101001000001)
10 4194 304 -984 513 1 -984 513 0 - (0100010000101001000001)
11 16777216 | -5178817 1 | -5178817 0 -984 513 (010100010000101001000001)
12 67108864 | 28375615 0 - 1 28375615 || (10010100010000101001000001)
end 28375615 k

Above, all intermediate states are made explicit. We can see that the value of the point
returned by the algorithm in figure |5.3|is always equal to [k']|P (k" is the intermediate key of k).

The sequential equivalent of the algorithm in figure for the three operations at line 3 is:
Q'+ Q+kyP

P+ [2]P

Q" Q + kg1 P

127

P+ 2|P

The proposed algorithm is an adaptation of the scalar multiplication with k in NAF represen-
tation starting from least significant bits (main loop):
for ¢ from 0 to n do
P+ [2]P

which can be seen like below (by taking the advantage of the NAF representation,
i.e. kiki-i-l =0 VZ)
10
while 7 < n do
if k; # 0 then
Q<+ Q+kP
P «+ [4]P
141+ 2
else
P« [2]P
11+ 1

The algorithm in figure [5.4]is a new representation of the algorithm in figure [5.3]

input: Pe E(Fp), and k = (knfl e /{1]{50)2 where ki S {0, :|:1} and k‘i+1k‘i =0 Wi
output: Q = [k|P

1: Q«+ O
2: for i from 0 to |n/2| do
3: P+ [2]P
4 P" + [2]P' // Q' + Q+ kyP // Q"+ Q + ki P’
5 if k‘gi 7& 0 then
6: Q<+ Q'
7: elsif]{322‘+1 7'5 0 then
8. Q — Q//
9 P+ P
10: return @

Figure 5.4: Extended right-to-left NAF method for scalar multiplication.

In practice, it is not necessary to have registers for the points P/, P, @’ et Q" (lines 3 and 4
of the algorithm in figure . Indeed, the algorithm in figure shows that the points P’ and
P are not necessary. Besides, either Q' or Q” must be computed; then the point @Q stores the
computation according to ko; and ko;r1. Whereas there are two ADDs at line 4, only one point
addition is computed.

When one computes Q" < @ + ko;+1[2] P, the point [2]P is computed during the calculation
of P « [4]P: indeed, [4]P = [2]([2]P). Thus, the calculation of Q" does not require one DBL.
This can be seen in figure 5.5

In this way, whereas the algorithm in figure [5.3] and [5.4] perform 2 ADDs, it is possible to

128

Chapter 5. Atomic Blocks through Regular Algorithms

compute only 1ADD in parallel to 2DBLs. Thus, it allows to reduce the real execution time
to (|n/2] + 1) ADD when the ADD and DBLs are performed in parallel. Figure presents the
parallelization between two curve-level operations for 2NAF. The very first ADD must begin after
1DBL. Then, one ADD is performed during 2DBLs, and an input point is selected among the
outputs of the 2 previous DBLs.

This method cannot be extended to vNAF for v > 3. Indeed, if v = 3, a doubling is performed
to both the point P and the pre-computed point P3 = [3]P. Thus, we only consider this method
with v = 2. Whereas wNAF is the classical notation, the term w has been already defined in the
previous chapters: let k = (kp_1kn—2...k1ko)2 be the n-bit scalar stored into a ¢ words by w
bits memory with w(t — 1) < n < wt (i.e. last word may be padded using 0s). For 0 < i < ¢,
k() denotes the ith word of k starting from least significant.

time
> DBL execution time
I I
I |
’—» DBL —— DBL » DBL ——:—v bBL -
I I
P T4 e ADD execution time
L
ADD ADD |-
Q " !

Figure 5.5: Parallelization for the right-to-left scalar multiplication using NAF representation.

When one considers NAF method for scalar multiplication, the real execution time is (|n/2] +
1) ADD if all computations at line 3 in figure are computed in parallel. Indeed, an ADD is
always performed during 2DBLs. In addition, the computation of 2DBLs is generally faster in
field-level operations than one ADD (see table in section for typical curve-level costs in
Jacobian). If it is not the case, the real execution time is 7 DBL.

In practice, performing the two curve-level operations ADD and DBL in parallel does not mean
that there is a component for an ADD and another for a DBL. Generally, some arithmetic units are
implemented, and curve-level operations use and share all arithmetic units. The two curve-level
operations ADD and DBL are a sequence of additions, subtractions, multiplications and squares
over the field IF,,. Parallelizing ADD and DBL implies that several multipliers and adders must be
implemented. Thus, the number of implemented arithmetic units is an important issue. Indeed,
there is a trade-off between speed and area which is affected by the number of implemented
arithmetic units. More arithmetic units will reduce execution time but will increase circuit area.
Of course, if a circuit only contains one multiplier and one adder, our method is not relevant.
Scheduling methods can be used to schedule resources, i.e. select the order of execution of
arithmetic units for the operation sequences ADDs and DBLs.

5.1 Scheduling Sequences

A simple methodology, named as-soon-as-possible (ASAP) [120], schedules operations either
at the earliest time step possible (latest time step possible is referred to the ALAP methodology).
More advanced scheduling algorithms, such as list-based scheduling (LBS) , can efficiently

129

5.2. Atomic Scalar Multiplication

schedule a set of instructions given a set of resource constraints. However here we just focus on
the ASAP method. Indeed, we just want to show that sequences of curve-level operations can
be considered as a graph, and so that there are several possibilities for scheduling curve-level
operations.

ASAP assumes limitless resources. At each time step a number of operations can be sched-
uled. Results for these operations are not available until the next time step. In an ASAP scheme,
the operations are allocated to the earliest possible time step. Figure [5.6] presents the schedule
for a point doubling in Jacobian coordinates for curve parameter a = —3 (from EFD). The cor-
responding formula is given below in table 5.1} Each line of figure [5.6] corresponds to one time
step, i.e. to the operations which can be performed in parallel. An ASAP approach identifies
any operations whose operands are available, and schedules them to the next possible time step.
Operations in a same line (same time step) can be computed in parallel. But all operations are
considered to be scheduled in a same time step. There is no difference between multiplications
and additions. For example, figure 5.6/ shows that at least 9 time steps are necessary to perform
a DBL. All field-level operations are assumed to have a length 1, i.e. to take one time step. In
practice, one can consider that it is not the case: for instance, a multiplication can run during
several additions.

We can see in figure [5.6] dependencies of each modular operation for a DBL. The operation
sequences which lead to a DBL, can be different according the number of arithmetic units in the
circuit. So, there are more possible operation sequences when one considers several DBLs with
one ADD.

5.2 Atomic Scalar Multiplication

Chevallier-Mames et al. introduced the concept of atomicity. Atomic algorithms produce
a regular sequence of operations. So ADD and DBL are expressed as a repetition of instruction
blocks which appear equivalent for SPA. Such a block is called side-channel atomic block. Atom-
icity consists then of expressing ADD and DBL as sequences of atomic patterns.

For example, [28| proposed a pattern constituted by one multiplication, two additions and
one negation. When operations are not used, it is possible to compute dummy operations to
always have the same operation sequences. From the execution of the scalar multiplication
algorithm, one may observe the number of performed atomic patterns but cannot distinguish
the process scalar bits. In App. BJ] and , other atomic pattern improvement methods
have been proposed. They minimize the number of required field-level operations by the use of
Jacobian coordinates and by introducing the use of squaring, which is generally cheaper than
multiplication: a square is often considered to be equivalent to 0.8 multiplication over IF),.

Unified formulas are a type of atomicity by providing a same formula for both ADD
and DBL sequences. They render an ADD indistinguishable from a DBL. Using these formulas, one
may observe the number of operations but cannot differentiate between the processed scalar bits,
assuming that an ADD and a DBL are indistinguishable. Thus, it can be used as a countermeasure
against SPA.

Our solution is to use parallelization of right-to-left algorithms, and thus to provide a sequence
of field-level operations for the computation of one ADD and vDBLs with the vNAF method. In
figure [5.6] we can see that, when one implements less than 2 multipliers, and less than 4 adders,
ASAP scheduling for point doubling shows that there are several operation sequences for the DBL
computation. We consider that there is at least one multiplier and one adder implemented. If not,

130

Chapter 5. Atomic Blocks through Regular Algorithms

X4

\X

®)
(%)
K&

é YoaL

Figure 5.6: ASAP schedule for point doubling (Jacobian coordinates and a = —3).

no parallelization can be performed, and our solution is not relevant. So, we can already guess
that, when one computes 2DBLs and one ADD in parallel, there are several operation sequences
corresponding to a number of multipliers and adders.

A Python script has been written which provides all possible operation sequences for a generic
number of arithmetic units. The Python script takes in input formulas of DBL and ADD, the
number of multipliers and adders implemented, and the number of DBLs to perform in parallel
to one ADD. For instance, the right-to-left NAF algorithm in figure computes in parallel 2 DBLs
and 1 ADD.

Thus, NAF method for scalar multiplication provides first a DBL, and then sequences of iden-
tical patterns. These patterns, which perform 2DBLs and 1ADD, are a succession of field-level
operations which can contain for example 3 multiplications and 2 additions. Multiplications by
constants are considered as additions. Curve-level operations are a succession of field-level op-
erations. For example, the DBL formula in Jacobian with a = —3 is presented below in table
(from EFD) [Q]P = [2](X1 : Yl : Zl) = (XDBL : YDBL : ZDBL)-

131

5.2. Atomic Scalar Multiplication

Rl =71 x 7
R2=Y1xY1
R3 = X1 x R2
R4=X; - R1
R5 = X1+ R1
R6 = R4 x R5
R7 =3 x R6
R8 = R7 x R7
R9 =8 x R3
Xper = R8 — RY
R11=Y+2;

R12 = R11 x R11
R13 = R12 — R2
Zppr, = R13 — R1

R15=4x R3
R16 = R15 — XpgL
R17 = R2 x R2
R18 =8 x R17

R19 = R7 x R16
Yopr = R19 — R18

Table 5.1: Point doubling formula in Jacobian, with a = —3 (from EFD).

It is obvious that several operation sequences can lead to the DBL computation can be different.
For instance, the register R2 (line 2) can be computed before the register R1 (line 1). One can
visualize this property in figure[5.6] the ASAP scheduling for DBL. Table[5.2]presents two possible
sequences for 2DBLs and 1 ADD in Jacobian with a = —3 (from EFD). Each operation corresponds
to a modular operation over FF,,. These two sequences compute the two points

[4](X1 : Yl : Zl) = (XQDL . YEJDL . ZQDL);
and

(Xo:Ys:Zy) 4 (X3:Y3:Z3) = (Xaop : Yaop : Zaop),
with 3 multipliers and 3 adders. QDL refers to the coordinates after computing a point quadru-
pling. Each line of figure [5.6] is computed in parallel, one after the other. The two possible
sequences 2DBLs and 1 ADD in table correspond to one iteration loop of the scalar multiplica-
tion algorithm using the NAF method in figure [5.3] and [5.4]

Our Python script renames all temporary variables, and re-uses variables which are not used
anymore. Indeed, we want to reduce the number of registers as much as possible. When there is
no operation (symbol (), dummy operations can be performed.

An atomic block should be a sequence of operations which cannot be directly linked to the
key digits. There, atomicity consists in always computing a sequence of field-level operations
in parallel (for instance, 3 multiplications and 3 additions in table . Furthermore, these
operation sequences are computed to have a regular scalar multiplication algorithm by performing

132

eel

J0 oouanbas © ojur suoryerado [9AS-P[OY JO 90UNDAS 97} SUTILIM-0I UT SISISU0D AJIOTWOJR ‘SN],

‘(eotregsur 10§ fo[rered ut qqy 1 pue s7ddg) [rered ut suoreiado [oA9]-0AIND JO sedUenbos

‘Prrered ur @y 1 pue s19ag 103 seousnbes o[qissod omT, :z°G 9[qe],

T @ouanbas

¢ @ouenbas

multiplier 1 multiplier 2 multiplier 3 adder 1 adder 2 adder 3
Rl=27,x 2%, R2=Y, xY; RAL = Zy x Zo R11=Y; + 74 R65 = Zo + Z3 (Ys = —Y3)
R3 = X; x R2 R11 = R11 x R11 | R17= R2 x R2 R4=X; - R1 R5=X1+R1 0
R5= R4 X R5 R2 =73 x Zs R44 = X3 x R41 R4=8x%x R3 R11=R11—-R2 | R3=4x R3
R1 = X5 x R2 R45 = Z3 x R2 R65 = R65 x R65 || R5 =3 x R5 R11=R11 - R1 R17 =8 x R17
R8 = R5 x R5 R21 = R11 x R11 | R45 =Y x R45 R1 = R44 — R1 RG65 = R65 — R41 |
R41 = Z5 x R41 0 0 R8=R8—RA R4=2xRI1 R65 = R65 — R2
R41 =Y3; x R4l R4 =R4x RA Zypp = R65 x R1 R3=R3—RS8 R25 = R8+ R21 | R44 = R8 — R21
R3 = R5 x R3 R25 = R44 x R25 | R2=R2 x R4 R41=R41 —R45 | 0 0
R4=R1x R4 0 0 R3 = R3 — R17 R25 =3 x R25 R41 = 2 x R41
R65 = R25 x R25 | R1 = R3 x R3 R11 = R41 x R41 || R3 = R3+ R11 R5=2x R2 0
R8 = R8 x Rl R3 =R3 x R3 R17=R1 x R1 R11 = R11 — R4 0 0
R4 = R45 x R4 0 0 R44 =8 x R8 R8=4x RS R17 =8 x R17
0 0 0 Xqor = R65 — R44 | R3=R3— R1 Xup = R11 — R5
0 0 0 ZpL = R3 — R21 R8 = R8 — XqoL R2 = R2 — Xyp
R8 = R25 x RS R2 = R41 x R2 0 R4=2x R4 0 0
0 0 0 Yoo = R8 — R17 Yiop = R2—- R4 0
Rl=27,x 27, R2=Y, x Y, RAL = Zy x Zo RIl=Y, + 7, R65 = Zo + 73 (Vs = —Y3)
R3 =X; x R2 R11=R11 x R11 | R17= R2 x R2 R4=X; - R1 R5=X;+R1 0
R5 = R4 x R5 R42 = 73 X Z3 R65 = R65 x R65 || R11 = R11 — R2 R17 =8 x R17 0
R2 = X5 x R42 R44 = X3 x R41 | RAT = Zs x R41 R5=3x R5 R3=4xR3 R11 = R11 - R1
R8 = R5 X R5 R1 =R11 x R11 | R45 = Z2 x R42 R2 = R44 — R2 R65 = R65 — R41 | R4 =8 x R3
R45 =Y, x R45 RAT = Y3 x R4T 0 R4 =2x R2 R8=R8—R4 R65 = R65 — R42
R4 =RA X RA Zyp = R65 X R2 | () R3=R3—-R8 R44 = R8 — R1 R25 = R8+ R1
R5 = R42 x R4 R3 = R5 x R3 R25 = R44 X R25 || R4T=RAT —R45 | 0
R4=R2x R4 0 0 R3 = R3 — R17 R25 =3 x R25 RAT =2 x RAT
RA1 = RA7 x RA7 | R17= R3 x R3 R42 = R25 x R25 || R3 = R3+ R11 R11=2x R5 0
R3=R3x R3 R2 = R17 x R17 | R8 = R8 x R17 R41 = R41 — R4 U 0
R4 = R45 x R4 0 0 R41 =8 x R8 R8=4x RS R2=8x R2
0 0 0 Xoo = R42 — R41 | R3 = R3 — R17 Xupp = R41 — R11
0 0 0 Zg. = R3— R1 R8=R8— Xq. | R5=R5— Xup
R5 = RA7T x R5 R8 = R25 x R8 0 0 0 R4=2x R4
0 0 0 Yipp = R5 — R4 Yoo = R8 — R2 0

SWILI0Z[Y Ie[nSoy YSnoIy) ssporg o1woly ¢ ejdey)

5.3. Experiment Results and Implementation

identical atomic patterns. Table[5.2] proposes two different atomic patterns. In addition, a scalar
multiplication performing one of these patterns always performs 2DBLs and 1 ADD in a same way,
by using 3 multipliers and 3 adders. Once again, each line of table [5.2] must be performed in
parallel.

The two sequences use 20 temporary variables, in 16 time steps. The execution time of
one time step corresponds to the execution time for a multiplication. These sequences perform
2DBLs and 1ADD, but with less field-level operations than when one computes the three curve-
level operations one after the other: first 1DBL, then 1DBL and finally 1ADD. Indeed, at the very
beginning, ADD and DBL can compute a same modular operation. In addition, simplifications can
be done when several doublings are performed one after the other. Our Python script simplifies
all non-necessary computations.

Sequences in table are provided for the NAF method scalar multiplication algorithm in
figures and This algorithm performs point additions @ + P or @ % [2]P. Input points
of ADD and the 2DBLs can be different. That is why the provided sequences consider that the
input point of ADD is different to the 2DBLs. In addition, a point subtraction can be computed.
Sequences provide this case by the expression Y3 = —Y3 in brackets. This operation is always
performed. The controller stores the result when a point subtraction is performed.

Atomic sequences in table provides regular behaviour of the NAF method for scalar mul-
tiplication. Thus, it can provide a countermeasure against some simple side channel attacks.
Thus, our Python script provides several sequences for a number of multipliers and adders. One
sequence can be performed [n/2] times to have the result of the scalar multiplication [k]P (with
a DBL at the first loop iteration).

In addition, our Python script produces several possible sequences for a given number of
multipliers and adders. The produced sequences are in the same time step which is as small as
possible. Thus, when several sequences are implemented, one can randomly perform a sequence.
For instance, when 2 sequences are implemented, scalar multiplications use randomly the two
sequences during the |n/2] iterations. In the same way, if one implements |n/2| sequences,
the scalar multiplication algorithm can use all sequences once. Of course, sequences must be
based on the same number of adders and multipliers with the same time step. For several scalar
multiplications, the circuit will not have the same behaviour when one has such a strategy. Thus,
this may lead to a countermeasure against some differential side channel attacks. Below, we
provide the architecture with the storage of the sequences. In hardware, a ROM is implemented
and stores sequences.

5.3 Experiment Results and Implementation

The experiments reported below have been performed using our Python script. Table [5.3]
presents the number of all possible sequences, with the minimum time step for different numbers
of multipliers (denoted mult.) and adders (denoted add.). We give the number of required
registers to perform 2DBLs and 1ADD in parallel. It corresponds to NAF right-to-left method
(algorithms in figure and for scalar multiplication.

Let Seq be the set of all possible sequences for (2/3)DBLs and 1ADD, for a specific number
of multipliers and adders, and “addByMult” the number of re-used adders during only one
multiplication time step. Indeed, a modular addition is faster than a modular multiplication
over the finite field F),. Therefore multiple calls can be done to the adders. For example, if
three adders are implemented with the parameter addByMult = 2, six modular additions can

134

Chapter 5. Atomic Blocks through Regular Algorithms

be performed during multiplications: first 3 modular additions are computed in parallel, and
then 3 other modular additions can be computed in parallel. These six modular additions are
performed during one multiplication time step.

We give the occupation rate for the multipliers and the adders. The occupation rate is divided
into two columns for the adders when addByMult = 2. That is why there is the symbol) in
the second column of “add. 2” when addByMult = 1. Indeed when addByMult = 1, the adders
can be used during one multiplication time step. Thus, adders and multipliers are considered to
be computed in the same execution time.

When there are less multipliers and adders, the possible sequences for curve-level operations
and the time step increases. In addition, having the parameter addByMult > 1 reduces the
execution time for several DBLs and one ADD, but the occupation rate for the second adder is
between 20% and 40%. Thus, if one wants to have all arithmetical units occupied, a large
number of dummy operations must be computed. If dummy operations are performed, each
atomic block comprises the same sequence of field-level operations. For instance, 2DBLs and
1 ADD can always be performed in parallel with 3 multiplications and 3 additions. With dummy
operations, the device will always use all arithmetic units, and thus it could make more uniform
the power consumption. Thus, it could be more difficult for an attacker to guess the secret key.

number of time occupation rate
mult. | add. | addByMult || registers | # Seq | step | mult. [%] | add. 1[%] | add. 2 [%]

) 1 18 28231 | 21 80 88 0

2 19 45543 | 18 89 48 20

5 5 1 21 932 20 80 88 0
2 20 1991 | 18 89 48 20

. 1 21 895 20 80 88 0

2 20 1771 | 18 89 36 15

5 1 19 17474 | 20 67 92 0

2 19 23615 | 13 82 62 40

3 3 1 20 375 16 67 77 0
2 20 635 13 82 59 23

A 1 20 151 16 67 58 0

2 20 436 13 82 46 19

Table 5.3: Experiment results for different number of multipliers and adders with NAF right-to-left
atomic methods.

5.4 Implementation

Our Python script gives several sequences for several DBLs and 1ADD. Each sequence cor-
responds to a sequence of field-level operations. Below, we present an architecture of the NAF
right-to-left atomic methods. In our architecture, each field-level operation is written by 17 bits: 5
bits for the first operand address, 5 bits for the second one, 2 bits for the modular operation
(+,—, x), and 5 bits for the address of the result. 5 bits are sufficient because less than 2° = 32
temporary variables are necessary to perform 2DBLs with 1 ADD.

Thus a sequence is written in our architecture as a succession of instructions. Each address
corresponds to a memory address where values are stored. Figure illustrates this method.
A global controller generates all high-level control signals for the architecture units. If several

135

5.4. Impleme

ntation

sequences of DBLs with one ADD are implemented, a random number is sent to the controller, and
the controller selects which sequence will be performed.

sequence of

B 3x5+2 -
«—2 >
sequence of @ operand 1 |@ operand 2|op] @ result |A
DBLs + 1ADD '@ operand 1 | @ operand 2[op| ~ @ result |

/-@_099@nq 1

\

Field-level
instruction

number of time steps

X
sequence of .
DBLs + 1ADD ((number oimultlpllers)

A
v

(number of adders) x (addByMult))

DBLs + 1ADD 101101000 e
t
curve-level X
.) number of registers
instructions

register memory
Figure 5.7: Hlustration of the sequences.

In practice, registers are stored into ¢ words by w bits. In our architecture, we consider to have
a register file with a read and a write port. Thus an address refers to the first word. At each clock
cycle, a word is sent to an arithmetic unit (modular addition/subtraction and multiplication).
Results of the computed operation are sent word by word ¢ times to the corresponding address
register. Figure presents the unit architecture for m arithmetic units (multipliers and adders
over the finite field F)). The global controller controls the registers memory and all arithmetical
units. Once again, if several sequences of DBLs with one ADD are implemented, the controller
selects a sequence according to a random number.

In our hardware architecture, a RAM is implemented to store points and all intermediate
values (“mem.” block). The RAM output depends on the implemented number m of arithmetic
units: the RAM sends 2 x w bits for each arithmetic unit, that is a 2wm bit output. Indeed,
all arithmetic units have two input operands on w bits. For instance, when 3 multipliers and 2
adders are implemented, the RAM sends (3 4+ 2) x 2 x w = 10w bits. One a same way, each
arithmetic unit has a w-bit output. Thus, the RAM input is wm bits.

The two bits of the sequences (op in figure correspond to the field-level operation to
be computed. One bit is necessary for the adders to know if a modular addition or a modular

136

Chapter 5. Atomic Blocks through Regular Algorithms

modular add./sub.
< w > m
sequence of T [ooooTTTTTTITTTTTTTA
DBLs + 1ADD |.5
12
2wm
N—g
——t
o modular mult.
sequence of wl unit 1+m’ W
pes+ta0D | (||| |
mem. | DY
field-level 5m € \—y _
. . — |
instructions —* 5m :
I:T:l unit m
l_ m
random seed —— © + global ctrl wmn

Figure 5.8: Architecture overview.

subtraction must be computed. In the next section, we provide implementation results for
arithmetic units: addition/subtraction unit and multiplication unit over the prime field F,,.

All hardware implementations reported in this chapter have been described in VHDL and
implemented on a XC5VLX50T FPGA using ISE 14.1 from Xilinx with standard efforts for
synthesis, place and route (except in table where different FPGAs are used). We report
numbers of clock cycles, best clock frequencies and numbers of occupied slices. We also report
numbers of look-up tables (LUTs with 6 inputs in Virtex 5) and flip-flops (FFs) for area. A
XC5H5VLX5H0T contains 7200 slices with 4 LUTs and 4 flip-flops per slice. We use flip-flops for all
storage elements.

5.4.1 Arithmetic Hardware Implementation

In this section, we present implementations of modular arithmetic over the prime field F,,. All
elements of [F), are n-bit long in the range 160-600 bits for typical cryptographic sizes. Modular
addition/subtraction and multiplication receive w bits at each clock cycle (during ¢ clock cycles).
Thus inputs and outputs of the two units are w-bit long, and each unit is performed in a constant
execution time.

Modular Addition/Subtraction

A same unit has been implemented for both modular addition and subtraction with the
method presented in Sec. 3.2]. The bit op allows to perform modular addition or subtraction:
op = 0 refers to a modular addition, while op = 1 refers to a modular subtraction.

a + (op XOR b) if0<(aopb)<p

a op bmod p =
a + (op XOR b) 4 (NOT(op) XOR p) else

137

5.4. Implementation

The FPGA implementation results for the modular addition/subtraction are reported in Ta-
ble for n € {160,224} and for different parameters of w and t.

area freq. | clock
n t | w || slices (FF/LUT) | MHz | cycles
20 [8 || 277 (333/403) | 259
14 | 12 || 294 (346/410) | 257
160 | 10 | 16 286 (330/375) 259
24 || 287 (330/415) | 255 |
5 | 32 289 (328/462) 254
32| 8 374 (481/516) 257
256 | 16 | 16 361 (478/471) 248
8 | 32 || 397 (476/553) | 250

Table 5.4: FPGA implementation results for modular addition/subtraction.

Modular Multiplication

Modular multiplication has been implemented using the Montgomery multiplication (MM)
method. The Montgomery multiplication algorithm was presented in section [I.3|figure [[.11], and
computes MM(a,b) = abR™' = TR™! mod p where R is a power of the base (R = 2"). The
architecture of the Montgomery multiplication is presented below in figure [5.9]

Inputs are w-bit long, but the first step of the algorithm is to wait for all ¢ words of the
operands a and b. Then, the multiplicand is scanned bit by bit, while the multiplier is scanned
word by word. The FPGA implementation results for the Montgomery multiplication are re-
ported in Table [5.5 for n € {160,224} and for different parameters of w and ¢.

area freq. clock
n | t | w || slices (FF/LUT) | MHz cycles

20 | 8 || 521 (694/865) | 212
14 | 12 || 451 (733/791) | 205
160 | 10 | 16 || 493 (708/842) | 207
24 || 387 (755/700) | 195
()
()

tw(t +1) + 2t + 1
5132 452 (740/763 192

32| 8 | 632(967/984) | 202
256 | 16 | 16 || 699 (987/1091) | 206
8 | 32 || 636 (1005/859) | 187

Table 5.5: FPGA implementation results for Montgomery multiplication.

Modular addition/subtraction and multiplication units have been highly tested and verified
by a C program which uses the library GMP (GNU Multiple Precision). Each unit computed a
great deal of values provided by a file, and results have been verified for different parameters ¢

138

Chapter 5. Atomic Blocks through Regular Algorithms

register a
b%} a
1
2 " —
@ w o
@ 0 =
o b~ T— »1
w
parity) computation of TV
w
_— e gy
i e
register | , —::r—'- L ey W2
parity |1 :
"0" / 0><
g | o "2
@ P A » 1E
g w
© I
T0 T
memory T }4—
Figure 5.9: Architecture for Montgomery multiplication.
and w.

Whereas the Montgomery inversion is not used in this chapter, this unit has been implemented
and presented in appendix [C]

5.4.2 Global FPGA Implementation Results

The FPGA implementation results are reported in table for n € {160,192,256} and
w € {16,32} with different numbers of multipliers and adders. The FPGA implementation
performs an ECC scalar multiplication which follows the architecture presented in figure for
the NAF method, and one sequence of 2DBLs with 1ADD (see end of section for target and
tools details). Our implementation works at higher clock frequency than the ECC processor
(in appendix [A)) provided by the authors of (for curves over F),, n = 160 and Jacobian
coordinates). In addition its area can be considered equivalent for n = 160 and w = 32 compared
to the complete large version of the ECC processor which uses two arithmetic units per field
operation. When five sequences are implemented, hardware implementations have the same
clock frequency and about 7% more area. When ten sequences are implemented, hardware
implementations have about 4% smaller clock frequency and about 10% more area.

139

5.4. Implementation

number of area freq.

n | multipliers | adders | w slices (FF/LUT) | MHz
5 5 16 || 2188 (2407/5866) 219

32 || 2273 (2425/5826) | 193

160 3 5 16 || 2726 (3140/6720) | 219
32 || 2796 (3202/6592) 191

5 4 16 || 2911 (3489/7094) 215

32 || 2938 (3547/7053) | 187

5 5 16 || 2589 (2889/6980) 195

32 || 3912 (4536/9215) | 189

102 3 5 16 || 3233 (3748/8026) | 193
32 || 3310 (3811/8026) 188

5 4 16 || 3452 (3977 /8433) 193

32 || 3478 (3989/8434) | 184

5 5 16 || 3478 (4003/8943) 186

32 || 3530 (4061/8656) 185

956 3 5 16 || 4279 (4964/10918) | 183
32 || 4357 (5027/10492) | 186

5 4 16 || 4563 (5249/11648) | 183

32 || 4578 (5282/11009) | 181

Table 5.6: FPGA implementation results.

For n = 160 bits, the implementation computes 80 times 2 DBLs with 1 ADD in parallel with the
right-to-left 2NAF algorithm. When the number of sequences is equal to one, the implementation
always performs the same sequence of field-level operations. When the number of sequences is
equal to ten, each sequence is performed in average between eight times.

Table 5.7 reports FPGA implementation results for various FPGAs. For each FPGA result,
one sequence of 2DBLs with 1ADD is implemented for n = 192, w = 32 and three units of
multiplier and adder. In our implementation, multipliers take the same number of cycles for
each FPGAs. On a same way, adders terminate in a constant time for each FPGAs. In addition,
our implementation always compute a sequence whatever the digit of k, and all sequence have the
same depth: each sequence has the same execution time. Thus, we can use the clock frequency
to compare devices between each other.

In this thesis, we only focus on Xilinx FPGAs. Xilinx provide several FPGA families, and
each family fits for many different markets. Provided informations come from the Xilinx web
sitehttp://www.xilinx.com/products/silicon-devices/fpga/index.htm. Thus, each family
targets a specific implementation :

— gpartan family for low-power footprint,

— virtex family for high performances,

— artix family for lower power,
kintex family for intermediate solutions,
zynq family for high-end embedded-system.

140

http://www.xilinx.com/products/silicon-devices/fpga/index.htm

Chapter 5. Atomic Blocks through Regular Algorithms

family

nb. per slice of

LUTs FFs

device

area

slices (FF/LUT)

freq.
MHz

virtex 4

XC4 VSX55

3793 (3810/8979)

139

virtex 5 4 4 XC5 VLX50 3792 (3811/8991) | 168
virtex 5 4 4 XC5 VLX50T 3310 (3811/8026) | 188
virtex 5 4 4 XC5 VSX50T 3792 (3810/8991) | 188
virtex 5 4 4 XC5 VFX70T 3310 (3811/8026) | 188
spartan 6 | 4 8 XC6 SLX75L 3788 (3912/9093) | 69
spartan 6 | 4 8 XC6 SLXT75 3789 (3912/9093) | 108
spartan 6 | 4 8 XC6 SLX75T 3789 (3912/9093) | 108

virtex 6 4 8 XC6 VLX75TL || 3792 (3811/8991) | 163
virtex 6 4 8 XC6 VSX315TL || 3310 (3811/8026) | 163
virtex 6 4 8 XC6 VLX760L || 3792 (3810/8979) | 163

artix 7 4 8 XC7 A200T 3783 (3810/8995) | 136

artix 7 4 8 XC7 A200TL 3791 (3811/8991) | 129
kintex 7 4 8 XC7 K410T 3793 (3810/8990) | 196
kintex 7 4 8 XC7 K410TL 3791 (3811/8990) | 140
virtex 7 4 8 XC7 VX330T 3793 (3810/8990) | 196
virtex 7 4 8 XC7 VH580T 3793 (3810/8979) | 178
virtex 7 4 8 XC7 V585T 3793 (3810/8979) | 178

zyng | 4 | 8 | XC77020 | 3783 (3910/8978) | 198 |

Table 5.7: FPGA implementation results (n = 192 and w = 32).

For each FPGA family, there are several devices. The first number is for the FPGA version.
For instance, XC6 stands for the 6th FPGA series. The next number is for the FPGA sizes.
For instance, the XC6VLXT75T is the smallest, the XC6VLX240T is the mid-range and the
XC6VLXT720 is the largest Xilinx Virtex 6 FPGA. The number of logic cells, embedded memory,
DSP modules, user 10s, etc. increases according to the size of the considered device. In addition,
there is a specific application for each FPGA family:

— LX for high-performance logic,
— LXT for high-performance logic with power serial connectivity,

141

5.4. Implementation

— LXTL for lower power,

— SX for optimized for DSP and memory-intensive applications,

— SXT for DSP and memory-intensive applications,

FX for optimized for embedded processing and data communications,
FXT for embedded processing with highest speed serial connectivity.

Once again, table reports FPGA results for a same implementation and for various FP-
GAs. Each line is coloured in grey. The more dark the colour is, the more area the circuit
requires, and the lower clock frequency is.

Direct comparison in term of area is difficult when the number of LUTs and flip-flops per
slice is different between FPGAs. However, several FPGAs require about 10570 slices, and the
majority of FPGAs requires about 3 700 slices.

5.4.3 Global ASIC Implementation Results

ASIC results have been synthesized into gate-level netlists using standard Vj;, (SVT) cells of
an industrial 130nm bulk CMOS technology library using Synopsys Design Compiler G-2012.06-
SP5. The standard cells used were restricted to a set {nand2, nor2, xor2, inv} of logic gates
without loss of generality. The scalar multiplication implementation is applied with a maximum
path delay constraint of 10ns from all inputs to all outputs.

ASIC results follows the architecture presented in figure for the 3NAF method, one se-
quence of 2DBLs with 1ADD and two multiplier and adder units. Results have been synthesized
for n € {160, 192,256} and w € {16,32}.

’ n ‘ w H combinational ‘ buf/inv ‘ non combinational ‘ total
160 16 238698.9 10118.2 164 398.5 403 098.2
32 218409.0 12260.7 153512.2 371921.2
199 16 293257.4 12329.6 201928.5 495186.0
32 291 586.4 17172.2 203 555.5 495205.5
956 16 330537.9 14163.6 226975.1 957513.1
32 327086.6 18757.0 228604.0 555690.5

Table 5.8: Area results (in ym?) of ASIC implementation of the (n = 160).

’ n ‘ w H cell internal ‘ net switching ‘ total dynamic ‘ cell leakage ‘

160 16 9975.3 496.5 10172.0 134.9
32 9065.7 503.5 9569.4 124.9
192 16 11848.4 589.8 12438.4 165.8
32 11985.6 625.7 12611.6 166.2
956 16 13321.5 654.1 13976.1 186.7
32 13443.9 695.9 14140.0 185.3

Table 5.9: Power results in (#W) of ASIC implementation of the (n = 160).
Area and power results of ASIC implementation are higher than ASIC results of the large

142

Chapter 5. Atomic Blocks through Regular Algorithms

version of the ECC processor (appendix : 20% (resp. 13%) more total area for n = 160 and
w = 16 (resp. w = 32). In addition, there is 2% for n = 160 and w = 16 more total dynamic
power for our power results in ASIC; and 4% less total dynamic power for w = 32.

When we add one multiplier and adder unit to the previous ASIC implementation (that is
three multipliers and three adders are implemented), there are about 10% more total area and
7% more total dynamic power in ASIC.

5.5 Conclusion

In this chapter, we use existing scalar multiplication algorithms in a different way. These
algorithms can have a regular behaviour such that they can provide a countermeasure against
some side-channel attacks. Atomic sequences have been provided for some of the right-to-left
scalar multiplication algorithms. With the supposition that some field-level operations can be
computed in parallel, we provide several atomic sequences. A Python script provides all possible
sequences for a generic number of multipliers and adders and for the computation of 2DBLs with
one ADD in parallel. This script can have in input any ADD and DBL formulas. In addition, the
number of temporary variables is reduced as much as possible, and the Python script simplifies
computations when some values can be re-used.

When one chooses to have several different sequences, the implementation randomly selects
one sequence for each computation of DBLs with one ADD. Once again, it may lead to a counter-
measure against some differential attacks. Indeed, for several scalar multiplications, the sequence
of operations which leads to the computation of [k]P can be different. A full hardware imple-
mentation has been implemented according to such a strategy. However one must be cautious
when several sequences are implemented. Indeed, one needs to know how many differences there
are between sequences: two sequences can be provided for 2DBLs and 1 ADD with only very few
differences. In this case, the implementation behaviour would be very similar between the two
sequences, because the majority of used registers will be the same.

In this study, multiplications and squares are performed without differences, i.e. 1M = 18.
The typical cost assumption used in many references is that one square corresponds to 0.8 multi-
plication. Thus, instead of having only multipliers and adders, one could have some arithmetical
units which take into account the difference between squares and multiplications. In this case
our Python script must be extended. It would provide all possible operation sequences for a
generic number of adders, multipliers and squares. In addition, the same reasoning can be done
between additions and multiplications by one constant. By keeping this reasoning, only one type
of arithmetic unit can be implemented: it may be interesting to only perform operations in the
form of ab &+ c¢. Operations at the curve level can be expressed with only this type of operation.

All these improvements could lead to a more efficient countermeasure against simple SCA.
Indeed, it could protect an ECC cryptosystem both at a high level (curve-level operations) and
at a lower level (field-level operations). However, the security against SCAs of such an imple-
mentation must be evaluated by attacks.

In our hardware architecture, a RAM is implemented to store points and all intermediate
values. The RAM can be implemented in three different ways. With the first one, the RAM
output depends on the implemented number of arithmetic units: the RAM sends 2 x w bits
for each arithmetic unit. Indeed, all arithmetic units have two input operands on w bits. For
instance, when 3 multipliers and 2 adders are implemented, the RAM sends (3+2) x2xw = 10w

143

5.5. Conclusion

bits. The first strategy has been implemented in our architecture.

Secondly, the RAM output could only depend on one type of arithmetic unit. If adder delays
were shorter than multiplier delays, the RAM could send all data to the multipliers, and then to
the adders without delay penalty. In this case, the output of the RAM is reduced to 6w bits for
the implementation of 3 multipliers and 2 adders. This second strategy could reduce the circuit
area according to the first one.

Thirdly, the RAM could have only a 2w-bit output by extending this reasoning. The RAM
could send data to each arithmetic unit, one after the other: the RAM could send data to the
first multiplier, then to the second multiplier, etc. This third strategy could reduce the circuit
area according to the second one. However, there is a time penalty with this strategy. Indeed,
the last arithmetic unit calculates and sends the computed value latter according to the first one.
Thus, the RAM needs more clock cycle to store all computed values.

144

Conclusion

The theoretical security of cryptosystems based on elliptic curves usually relies on the ECDLP
problems. However the security of the cryptosystems against physical attacks, which are consid-
ered as very strong threats in embedded security applications, should be provided by cryptosys-
tem designers. Recently, very efficient side-channel attacks have been proposed such as power
consumption or electromagnetic emanation analysis.

In this Ph.D. thesis, protections at the arithmetic level against some side-channel attacks,
and more particularly against some attacks by observation, are provided for ECC scalar multi-
plication. We implement them in hardware. Each method and each implementation has been
validated (at theoretical and practical levels), designed in hardware and practically evaluated on
FPGAs and ASICs. We wanted to show that most of solutions are realistic in hardware and im-
plementable. In addition, we wanted to know what is the costs of the proposed solutions in term
of area or clock frequency. We compared our results to a complete ECC processor in appendix [A]
provided by the authors of (for curves over [F,,, n = 160 bits and Jacobian coordinates).

In this work, countermeasures used for protecting scalar multiplications are based on a spe-
cific type of blinding: randomizing the scalar. Some redundant representations are studied and
used to randomly recode the scalar k. This countermeasure consists in computing scalar mul-
tiplication with a randomly recoded k for each scalar multiplication. Thus, the sequence of
operations which leads to the computation [k]P will be different for all recodings of k. Such a
method can be used as a countermeasure against some differential SCAs.

For each studied redundant representation, the scalar k can be randomly recoded on-the-fly.
We considered signed-digit representation, which can be a redundant representation. A scalar
was randomly recoded in signed-digit representation, and we studied a width—w signed-digit
representation for both accelerating the scalar multiplication and having a random recoding of
k. A complete hardware implementation provided an on-the-fly random recoding of the scalar k
for several w. The FPGA area represented less than 28% than the complete ECC cryptosystem,
and worked at a greater clock frequency.

We considered that the use of such a representation can be a countermeasure against some
SCAs. To validate this countermeasure, a practical SCA has been performed on a scalar multi-
plication where the scalar k was randomly recoded on-the-fly using a signed-digit representation.
The considered SCA was performed in collaboration with the cryptographic group from UCC. A
generic architecture was designed for ECC operations at UCC, and the countermeasure imple-
mentation has been integrated to the ECC cryptoprocessor. The attack, called template attack,
is a powerful one: the attacker is assumed to know characteristics of a side channel over some
processed data of a device. This attack enabled to evaluate the robustness of the countermea-
sure. Such an attack failed in finding a piece of the scalar k. However evaluating how much this
countermeasure is efficient against SCAs is still an open and a hard problem.

Other redundant representations have been studied. The double-base number system (DBNS)

145

simultaneously uses two bases for representing numbers. We used the DBNS natural redundancy
to on-the-fly randomly recode the scalar k. First, we considered to have k£ in a DBNS chain
to randomly recode the scalar into another DBNS chain. This method was implemented in
hardware and practically evaluated on FPGAs and ASICs. The FPGA area required by the
DBNS recoding unit represented less than 7% compared to the complete ECC processor, and
worked at a greater clock frequency.

Then, conversion from an integer into multi-base number system (MBNS) has been studied
(DBNS is a particular case of MBNS). Thus, we proposed a multi-base recoding algorithm which
can be fully implemented in hardware for ECC scalar multiplications. The scalar recoding was
performed on-the-fly and in parallel to curve-level operations without additional latency. Two
versions were provided, one without any pre-computations, and the other with pre-computed
points to accelerate scalar multiplications. To our knowledge, it seems that we provided the first
on-the-fly hardware implementation of a multi-base recoding method for ECC scalar multiplica-
tion. The FPGA area represented less than 10% than the ECC processor, and our MBNS signed
recoding unit worked at higher frequency.

Lots of parameters during the recoding of an integer into MBNS can be changed to accel-
erate the scalar multiplication. For example, we plan to reduce the number of produced terms
and improve randomization schemes to increase robustness against SCAs. Indeed, more ran-
domizations can be made on the scalar k£ during the recoding into MBNS. However this MBNS
recoding countermeasure has not been practically evaluated yet. Studying such countermeasures
is an important issue and perspective. Randomizations do not have a uniform distribution: two
recodings can have some identical patterns. Then, the question would be: how can we evaluate
the information leakage, i.e. the robustness of randomizations?

Another kind of countermeasure against SCAs has been studied. We used existing scalar
multiplication algorithms to perform them in such a way that they have a regular behaviour.
In addition, we worked at the field level to produce a regular sequence of operations, that is in
performing a succession of curve-level operations regardless on the scanned bits. Such methods
can be used as countermeasures against simple SCAs. Thus, each curve-level operation was
performed with a sequence of identical operations at the field level. We developed a program
which gives all possible sequences according to generic parameters. In addition, randomization
can be added in the sequences. Thus, we provided a method which can be a countermeasure
against some both simple and differential SCAs, but an evaluation of randomizations is necessary
to know if it does not affect the natural protection of this method against simple SCAs.

Hardware implementations with the proposed solutions have been provided. Using such
methods, a complete ECC scalar multiplication has been implemented in hardware. Compared to
the ECC processor provided by the authors of , ours worked at an equivalent clock frequency,
but with about 7% more area. Thus, a future work could consist in providing a pipelined
architecture. In addition, our hardware implementation has been designed for a generic numbers
of arithmetic units: multiplication and addition/subtraction over the finite field F,,. Future works
could consist in implementing other arithmetic units to accelerate the field-level operations and
to improve the security of the cryptoprocessor.

Eventually, the hardware implementation can randomly choose among several implemented
sequences. One could add more randomizations in several levels: randomization on registers,
on operations, on memory addresses, ... to provide more countermeasures against differential
SCAs. However, the security against SCAs of such an implementation must be evaluated by
attacks.

146

Appendix A

Complete ECC Processor

During the thesis, i spent three months at University College Cork (UCC, Ireland) through a
doctoral exchange student which was completed by using the funds from the European mobility
grant from UEB (Université Européenne de Bretagne). I worked under the supervision of Dr.
Liam Marnane and with members of the Coding and Cryptography Research group: Dr. Brian
Baldwin, Dr. Andrew Byrne and Neil Hanley.

A generic architecture was designed for ECC operations (figure at UCC. The architec-
ture incorporates a RAM block, a ROM controller and some arithmetic units for a given field.
Everything can be configured from the size of the RAM block, to arithmetic units operations
(number of modular additions and multiplications) and generating the ROM instructions for a
given algorithm. A set of sequences and a simple state machine controls the processor. The ECC
processor is configurable for some scalar multiplication algorithms and for any characteristic and
field but here the focus is on the prime field implementations [21, Chap. 3].

A customized processor has been generated using this architecture. VHDL files are generated
according to a scalar multiplication algorithm, a prime field, and a specific number of arithmetic
units. Thus, we have the source code of the generated ECC processor. It has been adapted to
our needs.

The initial task was to perform a side-channel attack with the generated processor (chap-
ter 3). Then, a unit which recodes on-the fly the scalar k (section 3.3.3) was added to the
processor. In addition, more scalar multiplication algorithms with their appropriate parameters
have been added in order to compare some proposed methods to a complete ECC processor.

FPGA implementations reported in this appendix have been described in VHDL and imple-
mented on a XC5VLX50 FPGA using ISE 9.2 from Xilinx with standard efforts for synthesis,
place and route. We report best clock frequencies and numbers of occupied slices. We also
report numbers of look-up tables (LUTs with 6 inputs in Virtex 5) and flip-flops (FFs) for area.
A XC5VLX50 contains 7200 slices with 4 LUT and 4 flip-flops per slice.

Table reports FPGA implementations of an ECC processor (for curves over F,, n €
{160, 192} bits and Jacobian coordinates). The first one (small version) uses the NAF method with
one arithmetic unit per field operation, while the second (large version) uses the 4NAF method
and two arithmetic units per field operation but one modular inversion. The implementation
with the FEuclidean addition chains method was provided and generated by the cryptographic
processor generator provided by the author of [24].

ASIC implementations reported in this appendix have been synthesized into gate-level netlists
using standard Vi, (SVT) cells of an industrial 130nm bulk CMOS technology library using

147

»data_out
n 5% (0) dout A "/ » [\Sfl
data_in—/] £—°—' din GF(p) inverter
dout B /e~ \— (P) v
sel
e _:I GF(p) multiplier 1 %T
RAM IBS _:| GF(p) multiplier 2 H—{*—
?’ addr E
é) we N sel
A1) GF(p)adder 1 %;
3, load GF(p) adder 2 D
> LN p) adder
ROM otrl 75 sl address _:| '
decoder &, :
addr ' |
T controller ¥ T
LN _;I GF(p) subtracter 1 %
GF(p) subtracter 2 %

Figure A.1: Reconfigurable cryptographic processor (from [24]).

Synopsys Design Compiler G-2012.06-SP5 applying a maximum path delay constraint of 10ns
from all inputs to all outputs. The standard cells used in both cases were restricted to a set
{nand2, nor2, xor2, inv} of logic gates without loss of generality.

Tables and report ASIC implementations of an ECC processor (for curves over Fp,
n = 160 bits and Jacobian coordinates) using two methods. The first one (small version) uses
the NAF method with one arithmetic unit per field operation, while the second (large version)
uses the 4NAF method and two arithmetic units per field operation but one modular inversion.

148

Appendix A. Complete ECC Processor

memory area freq.
n method version type slices (FF/LUT) | BRAM | MHz
distributed || 2204 (3971/6816) 0 155
NAF small
160 BRAM 1793 (3641/6182) 6 155
distributed || 3182 (4668/7361) 0 142
4NAF large
BRAM 2427 (4297/6 981) 6 142
distributed || 2 2484 1
double-and-add-always SLbune 550 (2484/8507) 0 o0
109 BRAM 2084 (2073/7985) 6 150
Euclidean addition chains distributed || 2455 (2200/7 945) 0 154
BRAM 2035 (1933/7022) 6 154

Table A.1: FPGA implementation results for a complete ECC processor over).

’ method H combinational ‘ buf/inv ‘ non combinational total
NAF (small) 95980.8 10853.2 87458.9 185174.9
ANAF (large) 170099.8 16 740.7 142379.4 321412.7

Table A.2: Area results (in ym?) of ASIC implementation for a complete ECC processor over F,,
with n = 160.

’ method H cell internal ‘ net switching | total dynamic | cell leakage
NAF (small) 7179.3 300.9 7480.2 82.7
ANAF (large) 9585.6 385.9 9971.5 111.7

Table A.3: Power results in (uW) of ASIC implementation for a complete ECC processor over
F, with n = 160.

149

Appendix B

Proof of Exact Division Algorithm
Starting from MSW

In this appendix, we give a proof of exact division algorithm starting from MSW presented
in section . The algorithm is written below. k = (kp—1kn—2...k1ko)2 is the n-bit scalar
(k > 1) stored into a t words by m bits memory with m(t — 1) < n < mt (i.e. last word may be
padded using 0s). k%) denotes the ith word of k starting from least significant for 1 <1 < t.

input: two integers k = (k) ... k() and b;, where k mod b; = 0
output: k/b;

1: ¢+ 0

2: for ¢ from ¢t to 1 do

3: ¢+ (c+ k@) modb
4: r« k@O —¢

5 7 <7 x (b~! mod 2™)
6 ki(l) — (Tm,1 s 7"0)

7: return k

Figure B.1: Exact division k/b; algorithm starting most significant words first.

Proof. When one unrolls algorithm in figure [4.9] with the integer k and the divisor b, the exact
division corresponds to:

K = k/b= (<

(k(t) ~ (k® mod b)) x (b~ mod zm)) mod 2””) x 9mt=1) 4
(<(k;<t—1> — (kW + kY mod b)) x (b~! mod 2m)> mod 2m> x 2m(t=2) 4

C+

t
((k(l) _ (Zk(j) mod b)) X (b_1 mod 2m)> mod 2™.
j=1

151

When k') = k() /b is the ith word of the exact division k/b, we have the following equation:
. . t .
— ;D /p = ((k(” — (3" kY mod b)) « (67! mod 2’”)) mod 2™.
j=i

If one writes k' = bk; + ¢; with k; = ¢; mod b, then the previous equation becomes:

t

L0 — G /b = ((— (ch mod b)) X (b_1 mod 2m)> mod 2™.

j=i
In order to prove algorithm figure , we calculate b x k' and we will verify that:

m

bxk = k = Zk(i)zi*1 = Z(kib—l—ci)Qiil.

i=1 =1

That is b x k') = k() = k;b+ ¢;. Below, we will write b~! instead of (b~ mod 2m) In addition,

m has be chosen such that 2™ = 1 mod b. Thus 2™ — 1 is multiple of b, and ’y = €10,2™[.
In addition, —y = b~! mod 2™ because by = —1 mod 2™, and so v = (—b)~! mod 2’”
: 2" —1 2mtl 41
t(z)/b: k‘i—l-Cib_l = k;+c¢; X — b = ki—l—cixib—i_ ,
because 2m+bl+1 = - me L = p=1 mod b. When 2¢; +1 < b, t() /b < ZZ=L hecause 2 bfl + meﬂ =

with the maximum value of k; is mefl. Else the value ¢() /b is larger than 2" and one

needs to add the carry 2™ to the next computation b x #'+1) = b x (t0+1) /b) which corre-
sponds to b x 2™. For simplification, we add the value ab with o € {0,1} to all computations
bx k'O Vi€ {2,---,m} instead of having two cases.

3x2™m
b

Computation for i = 1, that is b x k'():
bx KO = bx (kl +eb™! = (3) mod b)b) — bx (ki +erbh),
=1

because k is divisible by b, and so (37", k@) mod b) = (327", ¢; mod b) = 0 mod b. By replacing
b=! by —~, we have:

bx KW =bx (ki 4+ bt
= bk1 — bycy
=bk1 — (2" - 1)y
= bk1 + ¢1 — 2™ (c1 + ab)

m

=bky +c +27(— (Z —¢;) mod b+ ab)
=2

&

:k(1)+2m<—cl+((¢;) mod b)—i—ab).

=1

The final expression contains two terms, bk, + ¢; = bk’ = k(1) and 2m(— (X", —c;) mod b).
The second term is obviously greater than 27, and so will be added to the next operation bx k'(2).
We have the first expression expected, that is k() = bk’ = by + ¢;. Below, we directly replace

152

Appendix B. Proof of Exact Division Algorithm Starting from MSW

bb~1 by —3y = (=27 +1).

Computation for i = 2, that is b x k/(?):
bx kK®? =bx (kg + b7t = (321, ¢;) mod b) b*1>. However one needs to add the previous

carry computed during b x k(1)

m

bx @ —px <k‘2 +ebt = ((Z ¢;) mod b)b_l) - ((Z —¢;) mod b) + ab
i=2 i=2
= bko +c9 — z:cZ) mod b (Z —¢;) mod b) + ab
=2 1=2

&

s
[|
)

+2m<—cz+((¢;) mod b)—l—ab)

:bk:2+02—|—2m(—02 icl modb —{—ab)
=2

'MS

I|
I\

= k@ 4 2’”(—c2+ (() ¢) modb) + ozb)

(2

In a same way, the final expression of b x k(?) contains two terms, bko + co = bk'® = k2 and
2m(— g+ (3215 i) mod b)) This second term, greater than 2™, will be added to the next

operation b x k'3, In addition,

Z ¢i) mod b) (Z —¢;) mod b) + ab =0,
=2 =2

because

Em: i ¢;) mod b,
1=2

1=2

if ", ¢; > b, that is when o = 1. That is why

cy — ch) mod b) (Z —¢;) mod b) + ab = cy.
=2 =2

Computation for i = 3, that is b x &/®):

m

bx K'® =bx (k‘3 +esb™' = (O e) mod b)b”)-
=3

153

However one needs to add the previous carry computed during b x k' @),

bx kG =bx (k‘3 e ((ici) mod b)b‘1> + (— e+ (Em:cz mod b)) + ab
=3 =2

= bkg +cs — (O) mod) — ca+ (O ¢;) mod b) + ab
=3 =2

&

Il
w

+2m(—03+((¢;) mod b)+ab)

2

= bks 4+ c3 + 2m(—c3+ ((ZC’) mod b) +ab>
i=3

— k® 4+ 2’"(—c3+ ((Zm:cz) mod b) + ab).

=3

This computation enables to have the expected result bks + ¢ = bk'®) = kB3 plus a carry
which will be added to the next b x k. We can see that the result of b x k'3 is similar to
the previous calculation of bx k'®. Thus all computations b x k') are in the form for 1 < j < m.

Computation all values j € {2,--- ,m — 1}, that is b x &'0):

bx kKW —px (kj + cjb—1 _ ((zmz ¢;) mod b)b—l) + (— cj—1+ ((zm: ¢;) mod b)) + ab

i=j i=j—1

= bkj +¢j — ((i ci) mod b) — ¢j—1 + ((Zm: ¢i) mod b) + ab
i=j i=j—1
+ 2’”(—cj+ ((i ¢;) mod b) + ab)

i=j

= bl +27(— s+ ((ici) mod b) + ab)
i=j

= kW 4+ 2m(—cj+ ((i ¢;) mod b) + ab)

i=j

We can see that we have the expected result, corrected by the carry obtained during the
computation for b x kU~ In addition,

((Z ¢;) mod b) — ((Z —¢;) mod b) + ab =0,
i=j i=j
because
Zci —b= (ch> mod b,
i=j i=j
if E:lj ¢; > b, that is when o = 1. That is why:
m m
cj — ((Z ¢;) mod b) — ((Z —¢;) mod b) + ab = ¢;.
i=j =]

154

Appendix B. Proof of Exact Division Algorithm Starting from MSW

Now, we must compute b x k'™ knowing that:

k™ /b = k0 — (k™) mod b)
=km+Cm —Cm
= kma

in adding the carry obtained during the computation b x k' (m=1) that is

m

—Cyn— 1—|— Z ¢i) modb

i=m—1

bx KM — b« (km —Cm_1 + ((i ¢;) mod b)) + ab

i=m—1
= bk, — bem—1 + b((cm—1 + ¢) mod b)) + ab
=km+cm
= k™).

Thus, we can see that:
bx KD = kb+e; = kO,

for all i € [0,m]. Thus:

m

bxk = (kib+c)2" Zk’)QZ L=k,

i=1

which is the expected result.

155

Appendix C

Montgomery Inversion

Montgomery inversion |72] has been implemented following algorithms in figure and
presented in section [I.3] Contrary to the modular addition and multiplication implementations
presented in section [5.4.1] execution time is not constant. It changes in function of the number
to be inverted. Figure[C.I]presents the architecture of the Montgomery inversion which performs
a~! mod p where p is a large prime number.

The global controller generates high-level control signals for the architecture unit. The con-
troller calls for right shifts registers u and v, and according to this shift, it calls for left shifts
registers r and v (algorithm in figure . During the second phase (algorithm in figure ,
the controller selects between a shift or a sum according the register value r.

The FPGA implementation results for the Montgomery inversion are reported in table [C.]
for different parameters of w and t. Hardware implementation results have been described in
VHDL and implemented on a XC5VLX50T FPGA using ISE 14.1 from Xilinx with standard
efforts for synthesis, place and route. We report numbers of clock cycles, best clock frequencies
and numbers of occupied slices. We also report numbers of look-up tables (LUTs with 6 inputs
in Virtex 5) and flip-flops (FFs) for area. A XC5VLX50T contains 7200 slices with 4 LUTs and
4 flip-flops per slice. We use flip-flops for all storage elements. The implementation has been
tested on 100000 random number a. We give the minimum and the maximum clock cycles which
has been necessary to perform a Montgomery inversion for the 100 000 random numbers.

area freq. clock
n t | w slices (FF/LUT) | MHz cycles
20 | 8 1132 (1975/3054) | 130 9632 — 13028
14 | 12 || 1198 (2071/3388) | 130 | 8359 — 11284
160 | 10 | 16 || 1094 (1974/2984) | 130 5117 - 6894
24 || 1134 (2069/3257) | 130 4133 — 5562
5 | 32| 1124 (1973/3301) | 132 2270 — 3038
28 | 8 1473 (2743/4248) | 130 | 11027 — 14901
224 | 14 | 16 || 1541 (2742/4188) | 130 6155 — 8293
7 |32 || 1496 (2743/4253) | 132 2675 — 3582

Table C.1: FPGA implementation results for Montgomery inversion.

157

phase 1

|
p

reg.r

phase 2

+ XN _ XN

1

<<
>>
>>

reg. r reg. s reg. u 7 reg. v 7

.
-
e

P o o o o o o

Figure C.1: Architecture for Montgomery inversion.

158

Bibliography

1]

2]
3]

14]

5]

6]

[7]

18]

9]

[10]

[11]

[12]

[13]

J. Adikari, V. Dimitrov, and L. Imbert. Hybrid binary-ternary joint form and its application
in elliptic curve cryptography. In Proc. 19th Symposium on Computer Arithmetic (ARITH),
pages 76-83. IEEE Computer Society, 2009.

J. Adikari, V. S. Dimitrov, and L. Imbert. Hybrid binary-ternary number system for elliptic
curve cryptosystems. IEEE Transaction Computers, 60(2):254-265, 2011.

D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM side-channel(s). In Proc.
4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES),
volume 2523 of LNCS, pages 29-45. Springer, 2003.

T. Akishita and T. Takagi. Zero-value point attacks on elliptic curve cryptosystem. In
Proc. 6th Information Security Conference (ISC), volume 2851 of LNCS, pages 218-233.
Springer, 2003.

A. Avizienis. Signed-digit number representations for fast parallel arithmetic. IRE Trans-
actions on Electronic Computers, 10(3):389-400, 1961.

R. Barua, S. K. Pandey, and R. Pankaj. Efficient window-based scalar multiplication on
elliptic curves using double-base number system. In Proc. 8th International Conference on
Progress in Cryptology (INDOCRYPT), volume 4859 of LNCS, pages 351-360. Springer,
2007.

D. J. Bernstein, P. Birkner, T. Lange, and C. Peters. Optimizing double-base elliptic-
curve single-scalar multiplication. In Proc. 8th International Conference on Progress in
Cryptology (INDOCRYPT), volume 4859 of LNCS, pages 167-182. Springer, 2007.

V. Berthé and L. Imbert. On converting numbers to the double-base number system. In
Advanced Signal Processing Algorithms Architectures and Implementations XIV (SPIE),
volume 5559, pages 70-78, 2004.

V. Berthé and L. Imbert. Diophantine approximation, Ostrowski numeration and the
double-base number system. Discrete Mathematics and Theoretical Computer Science,
11(1):153-172, 2009.

G. M. Bertoni, L. Breveglieri, P. Fragneto, G. Pelosi, and P. Di Milano. Parallel hardware
architectures for the cryptographic tate pairing. In Proc. 8rd International Conference
on Information Technology: New Generations (ITNG), pages 186-191. IEEE Computer
Society, 2006.

K. Bigou, T. Chabrier, and A. Tisserand. Opérateur matériel de tests de divisibilité par
des petites constantes sur de trés grands entiers. In 15éme Symposium en Architectures
nouvelles de machines (SympA), 2013.

I. F. Blake, G. Seroussi, and N. P. Smart. Flliptic curves in cryptography, volume 265.
Cambridge University, 1999.

A. D. Booth. A signed binary multiplication technique. Quarterly Journal of Mechanics
and Applied Mathematics, 4(2):236-240, 1951.

159

Bibliography

[14] W. Bosma. Signed bits and fast exponentiation. Journal de théorie des nombres de Bor-
deauz, 13:27-41, 2001.

[15] A. Bosselaers, R. Govaerts, and J. Vandewalle. Comparison of three modular reduction
functions. In Proc. 13th Annual International Cryptology Conference on Advances in Cryp-
tology (CRYPTO), volume 773 of LNCS, pages 175-186. Springer, 1994.

[16] N. Boullis and A. Tisserand. Some optimizations of hardware multiplication by constant
matrices. IEEE Transactions on Computers, 54(10):1271-1282, 2005.

[17] E. Brier and M. Joye. Fast point multiplication on elliptic curves through isogenies. In Proc.
15th International Symposium Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes (AAECC), volume 2643 of LNCS, pages 43-50. Springer, 2003.

[18] E. Brier, M. Joye, and T. E. De Win. Weierstrass elliptic curves and side-channel attacks.
In Proc. 6th International Conference on Theory and Practice in Public Key Cryptography
(PKC), volume 2274 of LNCS, pages 335-345. Springer, 2002.

[19] M. Brown, D. Hankerson, J. Lopez, and A. Menezes. Software implementation of the
NIST elliptic curves over prime fields. In Proc. 1st Conference on Topics in Cryptology:
The Cryptographer’s Track at RSA, volume 2020 of LNCS, pages 250-265. Springer, 2001.

[20] J. A. Buchmann. Introduction to cryptography. Springer, second edition, 2004.

[21] A. Byrne. Reconfigurable Architectures for Elliptic Curve and Pairing Based Cryptography.
PhD thesis, University College Cork, Ireland, 2010.

[22] A. Byrne, N. Méloni, F. Crowe, W. P. Marnane, A. Tisserand, and E. M. Popovici. SPA
resistant elliptic curve cryptosystem using addition chains. International Journal of High
Performance Systems Architecture, 1(2):133-142, 2007.

[23] A. Byrne, N. Méloni, A. Tisserand, E. M. Popovici, and W. P. Marnane. Comparison
of simple power analysis attack resistant algorithms for an elliptic curve cryptosystem.
Journal of Computers, 2(10):52-62, 2007.

[24] A. Byrne, E. M. Popovici, and W. P. Marnane. Versatile processor for GF(p™) arithmetic
for use in cryptographic applications. IET Computers & Digital Techniques, 2:253-264,
2008.

[25] T. Chabrier, D. Pamula, and A. Tisserand. Hardware implementation of DBNS recoding
for ECC processor. In Asilomar Conference on Signals, Systems and Computers, pages
1129-1133. IEEE, 2010.

[26] T. Chabrier and A. Tisserand. On-the-fly multi-base recoding for ECC scalar multiplication
without pre-computations. In Proc. 21th Symposium on Computer Arithmetic (ARITH).
IEEE Computer Society, 2013.

[27] S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In Proc. 4th International Workshop
on Cryptographic Hardware and Embedded Systems (CHES), volume 2523 of LNCS, pages
13-28. Springer, 2002.

[28] B. Chevallier-Mames, M. Ciet, and M. Joye. Low-cost solutions for preventing simple side-

channel analysis: Side-channel atomicity. IEEE Transactions on Computers, 53(6):760—
768, 2004.

[29] M. Ciet, M. Joye, K. Lauter, and P. L. Montgomery. Trading inversions for multiplications
in elliptic curve cryptography. Designs, Codes and Cryptography, 39(2):189-206, 2006.

[30] C. Clavier, J.-S. Coron, and N. Dabbous. Differential power analysis in the presence of
hardware countermeasures. In Proc. 2nd International Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES), volume 1965 of LNCS, pages 252-263. Springer,
2000.

160

Bibliography

31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

C. Clavier and M. Joye. Universal exponentiation algorithm - a first step towards prov-
able SPA-resistance. In Proc. 3rd International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), volume 2162 of LNCS, pages 300-308. Springer, 2001.

H. Cohen. A course in computational algebraic number theory, volume 138 of Graduate
Texts in Mathematics. Springer, first edition, 2000.

H. Cohen, M. Atsuko, and O. Takatoshi. Efficient elliptic curve exponentiation using
mixed coordinates. In Proc. 8th International Conference on the Theory and Applications
of Cryptology and Information Security: Advances in Cryptology (ASIACRYPT), volume
1514 of LNCS, pages 51-65. Springer, 1998.

H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren.
Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics and its
Applications. Chapman and Hall/CRC, 2005.

J.-S. Coron. Resistance against differential power analysis for elliptic curve cryptosystems.
In Proc. 1st International Workshop on Cryptographic Hardware and Embedded Systems
(CHES), volume 1717 of LNCS, pages 292-302. Springer, 1999.

R. Crandall and C. Pomerance. Prime numbers: a computational perspective, volume 182.
Springer, 2001.

J.-P. Deschamps, J. L. Imana, and G. D. Sutter. Hardware implementation of finite-field
arithmetic. McGrawHill-Hill, 2009.

V. Dimitrov and T. Cooklev. Hybrid algorithm for the computation of the matrix poly-
nomial I + A+ ...+ AN~ IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 42(7):377-380, 1995.

V. Dimitrov and T. Cooklev. Two algorithms for modular exponentiation using nonstan-
dard arithmetics. IEICE Transaction on Fundamentals of Electronics, Communications
and Computer Sciences, 78(1):82-87, 1995.

V. Dimitrov, L. Imbert, and P. K. Mishra. Efficient and secure elliptic curve point multi-
plication using double-base chains. In Proc. 11th International Conference on the Theory
and Application of Cryptology and Information Security (ASIACRYPT), volume 3788 of
LNCS, pages 59-78. Springer, 2005.

V. Dimitrov, L. Imbert, and P. K. Mishra. The double-base number system and its ap-
plication to elliptic curve cryptography. Mathematics of Computation, 77(262):1075-1104,
2008.

V. Dimitrov, G. Jullien, and R. Muscedere. Multiple-base Number System: Theory and
Applications, volume 2. CRC Press, 2012.

V. S. Dimitrov, G. A. Jullien, and W. C. Miller. An algorithm for modular exponentiation.
Information Processing Letters, 66(3):155-159, 1998.

V. S. Dimitrov, G. A. Jullien, and W. C. Miller. Theory and applications of the double-base
number system. IEEE Transactions on Computers, 48(10):1098-1106, 1999.

C. Doche and L. Habsieger. A tree-based approach for computing double-base chains. In
Proc. 13th Australasian Conference on Information Security and Privacy (ACISP), volume
5107 of LNCS, pages 433-446. Springer, 2008.

C. Doche and L. Imbert. Extended double-base number system with applications to elliptic
curve cryptography. In Proc. 7th International Conference on Cryptology (INDOCRYPT),
volume 4329 of LNCS, pages 335-348. Springer, 2006.

161

Bibliography

147]

48]

[49]

[50]
[51]

[52]

[53]

[54]

[53]

[56]

[57]
[58]
[59]
[60]

[61]

62]

[63]

162

C. Doche, D. R. Kohel, and F. Sica. Double-base number system for multi-scalar mul-

tiplications. In Proc. 28th Annual International Conference on Advances in Cryptology:
the Theory and Applications of Cryptographic Techniques (EUROCRYPT), volume 5479
of LNCS, pages 502-517. Springer, 2009.

V. Dupaquis and A. Venelli. Redundant modular reduction algorithms. In Smart Card
Research and Advanced Applications, volume 7079 of LNCS, pages 102-114. Springer, 2011.

S. R. Dussé and B. S. Kaliski. A cryptographic library for the motorola DSP56000. In
Proc. 9th Annual International Conference on Advances in Cryptology: the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), volume 473 of LNCS, pages
230-244. Springer, 1991.

N. Ebeid and M. A. Hasan. On binary signed digit representations of integers. Designs,
Codes and Cryptography, 42(1):43-65, 2007.

H. M. Edwards. A normal form for elliptic curves. Bulletin of the American Mathematical
Society, 44(3):393-422, 2007.

P. Fouque, G. Leurent, D. Réal, and F. Valette. Practical electromagnetic template at-
tack on HMAC. In Proc. 11th International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), volume 5747 of LNCS, pages 66—-80. Springer, 2009.

B. Gierlichs, K. Lemke-Rust, and C. Paar. Templates vs. stochastic methods. In Proc.
8th International Workshop on Cryptographic Hardware and Embedded Systems (CHES),
volume 4249 of LNCS, pages 15-29. Springer, 2006.

P. Giorgi, L. Imbert, and T. Izard. Optimizing elliptic curve scalar multiplication for small

scalars. In Proc. Mathematics for Signal and Information Processing, volume 7444, page
74440N. SPIE, 2009.

C. Giraud and V. Verneuil. Atomicity improvement for elliptic curve scalar multiplication.
In Smart Card Research and Advanced Application, volume 6035 of LNCS, pages 80-101.
Springer, 2010.

A. Guyot, Y. Herreros, and J.-M. Muller. JANUS, an on-line multiplier /divider for manip-
ulating large numbers. In Proc. 9th IEEE Symposium on Computer Arithmetic (ARITH),
pages 106-111. IEEE Computer Society, 1989.

D. Hankerson, S. Vanstone, and A. Menezes. Guide to Elliptic Curve Cryptography.
Springer, 2004.

N. Hanley, M. Tunstall, and W. P. Marnane. Using templates to distinguish multiplications
from squaring operations. International Journal of Information Security, 10(4):255-266,
2011.

K. Hensel. Theorie der algebraischen Zahlen, volume 1. BG Teubner, 1908.

J. Hoffstein, J. Pipher, and J. H. Silverman. An Introduction to Mathematical Cryptography.
Springer, first edition, 2008.

K. Itoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara. Fast implementation of
public-key cryptography on a DSP TMS320C6201. In Proc. 1st International Workshop
on Cryptographic Hardware and Embedded Systems (CHES), volume 1717 of LNCS, pages
61-72. Springer, 1999.

T. Jebelean. An algorithm for exact division. Journal of Symbolic Computation, 15(2):169—
180, 1993.

I. T. Jolliffe. Principal Component Analysis. Springer, second edition, 2002.

Bibliography

[64] M. Joye. Introduction élémentaire a la théorie des courbes elliptiques. Technical report,
Université Catholique de Louvain UCL, 1995.

[65] M. Joye. Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical
Society Lecture Note Series, chapter Defenses Against Side-Channel Analysis, pages 87—
100. Cambridge University Press, 2005.

[66] M. Joye, C. K. Kog, C. Paar, and S.-M. Yen. The Montgomery powering ladder. In Proc.
4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES),
volume 2523 of LNCS, pages 291-302. Springer, 2003.

[67] M. Joye and C. Tymen. Protections against differential analysis for elliptic curve cryp-
tography - an algebraic approach. In Proc. 3rd International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), volume 2162 of LNCS, pages 377-390. Springer,
2001.

[68] D. Kahn. The Codebreakers: The Story of Secret Writing. Scribner Book Company, second
edition, 1996.

[69] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, P. Gaudry, P. L. Montgomery,
D. A. Osvik, H. T. Riele, A. Timofeev, and P. Zimmermann. Factorization of a 768-bit

RSA modulus. In Proc. 30th Annual International Cryptology Conference on Advances in
Cryptology (CRYPTO), volume 6223 of LNCS, pages 333-350. Springer, 2010.

[70] D. E. Knuth. The art of computer programming: seminumerical algorithms, volume 2.
Addison-Wesley, third edition, 1997.

[71] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203-209,
1987.

[72] C. K. Kog. The Montgomery modular inverse - revisited. I[EEE Transactions on Computers,
49(7):763-766, 2000.

[73] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Proc. 19th Annual In-
ternational Cryptology Conference on Advances in Cryptology (CRYPTO), LNCS, pages
388-397. Springer, 1999.

|74] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge
University Press, second edition, 1994.

[75] P. Longa. Accelerating the scalar multiplication on elliptic curve cryptosystems over prime
fields. Master’s thesis, University of Ottawa, 2007.

[76] P. Longa and C. Gebotys. Setting speed records with the (fractional) multibase non-
adjacent form method for efficient elliptic curve scalar multiplication. Technical Report
118, Cryptology ePrint Archive (IACR), 2008.

[77] P. Longa and C. Gebotys. Fast multibase methods and other several optimizations for
elliptic curve scalar multiplication. In Proc. 12th International Conference on Theory
and Practice in Public Key Cryptography (PKC), volume 5443 of LNCS, pages 443-462.
Springer, 2009.

[78] P. Longa and A. Miri. New multibase non-adjacent form scalar multiplication and its
application to elliptic curve cryptosystems. Technical Report 52, Cryptology ePrint Archive
(TACR), 2008.

[79] H. Mamiya, A. Miyaji, and H. Morimoto. Efficient countermeasures against RPA, DPA,
and SPA. In Proc. 6th International Workshop on Cryptographic Hardware and Embedded
Systems (CHES), volume 3156 of LNCS, pages 343-356. Springer, 2004.

163

Bibliography

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]
[90]
[91]

[92]
193]

194]

[95]

[96]

164

S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets of
Smart Cards (Advances in Information Security). Springer, 2007.

M. Medwed and E. Oswald. Template attacks on ECDSA. In Proc. 9th International
Workshop on Information Security Applications (WISA), volume 5379 of LNCS, pages
14-27. Springer, 2008.

N. Méloni. New point addition formulae for ECC applications. In Proc. 1st International
Workshop on the Arithmetic of Finite Fields (WAIFI), volume 4547 of LNCS, pages 189—
201. Springer, 2007.

A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

T. S. Messerges. Using second-order power analysis to attack DPA resistant software.
In Proc. 2nd International Workshop on Cryptographic Hardware and Embedded Systems
(CHES), volume 1965 of LNCS, pages 238-251. Springer, 2000.

S. D. Miller and R. Venkatesan. Spectral analysis of Pollard rho collisions. In Proc. 7th
International Conference on Algorithmic Number Theory (ANTS), volume 4076 of LNCS,
pages 573-581. Springer, 2006.

V. S. Miller. Use of elliptic curves in cryptography. In Proc. 5th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO), volume 218 of LNCS, pages
417-426. Springer, 1986.

P. K. Mishra and V. Dimitrov. Efficient quintuple formulas for elliptic curves and efficient
scalar multiplication using multibase number representation. In Proc. 10th International
Conference on Information Security (ISC), volume 4779 of LNCS, pages 390-406. Springer,
2007.

P. K. Mishra and V. Dimitrov. A graph theoretic analysis of double base number systems.
In Proc. 8th International Conference on Progress in Cryptology (INDOCRYPT), volume
4859 of LNCS, pages 152-166, 2007.

P. L. Montgomery. Modular multiplication without trial division. Mathematics of Compu-
tation, 44(170):519-521, 1985.

P. L. Montgomery. Speeding the pollard and elliptic curve methods of factorization. Math-
ematics of Computation, 48(177):243-264, 1987.

G.E. Moore. Progress in digital integrated electronics. In Electron Devices Meeting, Inter-
national, volume 21, pages 11-13. IEEE, 1975.

J.-M. Muller. Arithmétique des Ordinateurs. Masson, 1989.

R. Muscedere, V. S. Dimitrov, G. A. Jullien, and W. C. Miller. Efficient conversion from
binary to multi-digit multi-dimensional logarithmic number systems using arrays of range
addressable look-up tables. Proc. 21st IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP), pages 130-138, 2002.

P. Q. Nguyen and J. Stern. Lattice reduction in cryptology: An update. In Proc. 4th
International Symposium on Algorithmic Number Theory, volume 1838 of LNCS, pages
85-112. Springer, 2000.

National Institute of Standards and Technology (NIST). Recommended elliptic curves for
federal government use, 1999. Available at http://csrc.nist.gov/encryption.

J. Omura. A public key cell design for smart card chips. In Proc. 1st International
Symposium on Information Theory and its Applications (ISITA), pages 983-985, 1990.

http://csrc.nist.gov/encryption

Bibliography

[97] E. Oswald. Advances in Elliptic Curve Cryptography, volume 317 of London Mathematical
Society Lecture Note Series, chapter Side Channel Analysis, pages 69-86. Cambridge
University Press, 2005.

[98] E. Oswald and S. Mangard. Template attacks on masking - resistance is futile. In Proc. 7th
The Cryptographer’s Track at RSA Conference (CT-RSA), volume 4377 of LNCS, pages
243-256. Springer, 2007.

[99] D. Pamula. Arithmetic operators on GF(2™) for cryptographic applications: performance
- power consumption - security tradeoffs. PhD thesis, Silesian University of Technology
(PL) and University of Rennes 1 (FR), 2012.

[100] K. K. Parhi. VLSI digital signal processing systems: design and implementation. John
Wiley & Sons, 1999.

[101] B. Pascal. (Buvres complétes, volume 5, chapter De Numeribus Multiplicibus, pages 117
128. Librarie Lefévre, 1819.

[102] G. N. Purohit and A. S. Rawat. Fast scalar multiplication in ECC using the multi base
number system. International Journal of Computer Science Issues, 8(1):131-137, 2011.

[103] G. N. Purohit, A. S. Rawat, and M. Kumar. Elliptic curve point multiplication using
MBNR and point halving. International Journal of Advanced Networking and Applications,
3(5):1329-1337, 2012.

[104] C. Rechberger and E. Oswald. Practical template attacks. In Proc. 5th International
Workshop on Information Security Applications (WISA), volume 3325 of LNCS, pages
440-456. Springer, 2004.

[105] G. W. Reitwiesner. Binary arithmetic. Advances in Computers, 1:231-308, 1960.

[106] Certicom Research. Standards for efficient cryptography, SEC 1: Elliptic curve cryptogra-
phy, 2000.

[107] M.-S. Rita. Smartly analyzing the simplicity and the power of simple power analysis on
smartcards. In Proc. 2nd International Workshop on Cryptographic Hardware and Embed-
ded Systems (CHES), volume 1965 of LNCS, pages 78-92. Springer, 2000.

[108] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 21(2):120-126, 1978.

[109] J. Sakarovitch. Elements of Automata Theory, chapter Prologue: M. Pascal’s Division
Machine, pages 1-6. Cambridge, 2009.

[110] R. Santoro, O. Sentieys, and S. Roy. On-the-fly evaluation of FPGA-based true random
number generator. In Proc. 8th International Symposium on VLSI (ISVLSI), pages 55—60.
IEEE Computer Society, 2009.

[111] R. Santoro, A. Tisserand, O. Sentieys, and S. Roy. Arithmetic operators for on-the-fly
evaluation of TRNGs. In Proc. Advanced Signal Processing Algorithms, Architectures and
Implementations X VIII, volume 7444, pages 1-12. SPIE, 2009.

[112] L. Sauvage, S. Guilley, and Y. Mathieu. Electromagnetic radiations of FPGAs: High
spatial resolution cartography and attack on a cryptographic module. ACM Transactions
on Reconfigurable Technology and Systems (TRETS), 2(1):4-28, 2009.

[113] R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p.
Mathematics of Computation, 44(170):483-494, 1985.

[114] J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in
Mathematics. Springer, second edition, 1985.

165

Bibliography

[115]

[116]

[117]

[118]

[119]

[120]

166

J. H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves, volume 151 of
Graduate Texts in Mathematics. Springer, 1994.

J. H. Silverman and J. Suzuki. Elliptic curve discrete logarithms and the index calculus.
In Proc. 6th of the International Conference on the Theory and Applications of Cryptology
and Information Security: Advances in Cryptology (ASIACRYPT), LNCS, pages 110-125.
Springer, 1998.

F.-X. Standaert and C. Archambeau. Using subspace-based template attacks to compare
and combine power and electromagnetic information leakages. In Proc. 10st International
Workshop on Cryptographic Hardware and Embedded Systems (CHES), volume 5154 of
LNCS, pages 411-425. Springer, 2008.

J. Stein. Computational problems associated with Racah algebra. Journal of Computational
Physics, 1(3):397-405, 1967.

A. F. Tenca and C. K. Kog. A scalable architecture for Montgomery multiplication. In Proc.
1st International Workshop on Cryptographic Hardware and Embedded Systems (CHES),
volume 1717 of LNCS, pages 94-108. Springer, 1999.

R. A. Walker and S. Chaudhuri. Introduction to the scheduling problem. IEEFE Design &
Test of Computers, 12(2):60-69, 1995.

	List of Acronyms/Notations
	Abstract in French
	Introduction
	State of the Art
	Elliptic Curves
	Definitions
	Weierstrass Equations
	Group Law
	Discrete Logarithm Problem
	Security Evaluation
	Point Representations
	Scalar Multiplication

	Double-Base and Multi-Base Number System
	Double-Base Number System
	Multi-Base Number System

	Arithmetic in a Large Prime Field
	Definitions and Properties
	Modular Addition
	Montgomery Method
	Modular Multiplication
	Modular Inversion

	Side-Channel Attacks and Countermeasures
	Simple Side-Channel Analysis

	Hardware Implementations of Scalar Random Recoding Countermeasures
	Random Number Generator (RNG)
	Double-Based Number System Random Recoding
	Proposed Arithmetic Countermeasure
	Experiment Results and Implementation
	FPGA Implementation
	ASIC Implementation

	Signed-Digit Representations
	Avizienis System
	Number of Binary Signed-Digit Representations
	Random Recoding
	Width–w Signed-Digit (wSD)
	Implementation

	Comparison
	Conclusion

	Practical Security Evaluation Using Template Attacks
	Template Attacks
	Template Generation
	Template Classification

	Used Architecture for the Attacks
	Measurement Setups
	Proposed Architecture
	Power Model

	Number of Recoded Digits for an Attack
	Weight of Recodings
	Recoding Possibilities of Initial Bits
	Antecedents of Recodings
	Evaluation of the Number of Recoded Digits

	Conclusion

	On-the-Fly Multi-Base Recoding
	Proposed Muti-Base Recoding and Scalar Multiplication in ECC
	Unsigned Algorithms
	Implementation of the Divisibility Tests
	Implementation of the Exact Division by Multiple-Base Elements
	Unsigned Multiple-Base Recoding Unit
	Validation

	Signed-Digit Optimizations
	Signed-Digit MBNS Recoding
	Experimental Analysis
	Randomized Selection Function
	FPGA Implementation
	ASIC Implementation

	Comparison to State-of-Art
	Costs of Curve-Level Operations
	Performance Comparisons

	Extended Signed-Digit MBNS Recoding
	Implementation Results
	Performance

	Conclusion

	Atomic Blocks through Regular Algorithms
	Scheduling Sequences
	Atomic Scalar Multiplication
	Experiment Results and Implementation
	Implementation
	Arithmetic Hardware Implementation
	Global FPGA Implementation Results
	Global ASIC Implementation Results

	Conclusion

	Conclusion
	Appendix Complete ECC Processor
	Appendix Proof of Exact Division Algorithm Starting from MSW
	Appendix Montgomery Inversion
	Bibliography

