
HAL Id: tel-00910927
https://theses.hal.science/tel-00910927

Submitted on 28 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sensibilité aux situations de façon collaborative
Michal Szczerbak

To cite this version:
Michal Szczerbak. Sensibilité aux situations de façon collaborative. Networking and Internet Archi-
tecture [cs.NI]. Télécom Bretagne, Université de Rennes 1, 2013. English. �NNT : �. �tel-00910927�

https://theses.hal.science/tel-00910927
https://hal.archives-ouvertes.fr

N° d’ordre : 2013telb0298

Sous le sceau de l’Université européenne de BretagneSous le sceau de l’Université européenne de Bretagne

Télécom Bretagne

En accréditation conjointe avec l’Ecole Doctorale Matisse

Ecole Doctorale – MATISSE

COLLABORATIVE SITUATION AWARENESS

Thèse de Doctorat

Mention : Informatique

Présentée par Michał Krzysztof Szczerbak

Département : RSM

Directeur de thèse : Jean-Marie Bonnin

Soutenue le 18 octobre 2013

Jury :

Anne-Marie Kermarrec Dir. de rech. INRIA Rennes (Présidente)
Noël Crespi Professeur Telecom Sud Paris Paris (Rapporteur)
Isabelle Mirbel M. de conf. Université Nice Sophia Antipolis (Rapporteuse)
Jean-Marie Bonnin Professeur Telecom Bretagne Rennes (Directeur de thèse)
Ahmed Bouabdallah M. de conf. Telecom Bretagne Rennes (Encadrant de thèse)
François Toutain Docteur Orange Labs Lannion (Encadrant de thèse)
Fiora Pirri Professeur Università di Roma Rome (Examinatrice)
Azim Roussanaly M. de conf. LORIA Nancy (Examinateur)
Jean-Michel Portugal Orange Labs Lannion (Invité)

Problématique

On demande souvent à la technologie d’être un prolongement naturel du

comportement des utilisateurs. L’adaptation des différentes solutions techniques

devrait permettre idéalement de simplifier les activités humaines dans leurs formes

originales.

L’objectif de notre recherche consiste à étudier comment un système pourrait

augmenter la compréhension par un utilisateur de sa situation au sens large, pour lui

permettre d’améliorer de façon pertinente sa prise de décision.

Ainsi une décision à prendre dans une situation particulière pourrait être

technologiquement assistée. L’intérêt d’un tel soutien technologique apparaît

clairement dans le cas des situations que l’utilisateur n’a pas encore rencontrées et a

propos desquelles il ne dispose encore d’aucune expérience.

Le comportement naturel humain consiste à se renseigner auprès d’autres personnes

ayant une expérience de la situation en question. Ce type d’échange constitue

l’essence même de l’intelligence collective de la communauté.

D’après les chercheurs, la coopération et la compétition dans les groupes permettent

l’émergence d’une nouvelle intelligence collective hissant l’ensemble du groupe au

degré de compréhension de ses membres les plus avisés.

Le même principe pourrait être appliqué à un système artificiel. Il existe dans ce sens

des systèmes de recommandation basés sur les techniques de filtrage collaboratif,

mais aucun d’eux ne traite du domaine de la sensibilité au contexte et plus

généralement à la situation.

Nous introduisons le système KRAMER comme un outil de soutien aux décisions de

ses utilisateurs basé sur l'appréciation de la situation courante. Il détermine les

suggestions d’actions et l’importance des situations en s’appuyant sur l’ensemble de

ses utilisateurs.

Le principe de notre approche

Le filtrage collaboratif, qui constitue une des solutions techniques implémentant

l’intelligence collective, est déjà utilisé avec succès dans plusieurs systèmes de

recommandation, par exemple dans les boutiques web qui suggèrent les articles à

acheter en fonction de nos goûts et ceux des personnes qui nous ressemblent.

Actuellement la prise en compte de la situation de l’utilisateur (son contexte) par les

systèmes, n’est considérée que pour améliorer et raffiner la liste des objets

recommandés. Ni le contexte, ni la situation ne sont eux-mêmes considérés comme

les objets possibles d’une telle recommandation.

C’est néanmoins l’hypothèse de base de notre recherche : une situation contextuelle

peut constituer l’objet de la recommandation. Les situations suggérées dans ce cas

i

apporteraient de plus une nouvelle connaissance d’ordre supérieure sur la

communauté des utilisateurs, en identifiant les situations importantes pour elle.

Cette connaissance pourrait de plus être exploitée par différents services à la

communauté.

La communication interpersonnelle constitue le point de départ de nos travaux.

Comme nous l’avons déjà mentionné, le processus d’échange des conseils constitue la

structure de communication de base pour l’intelligence collective dans les

communautés humaines. Ainsi notre système en suggérant des situations

importantes à la communauté des utilisateurs, devrait leurs permettre de réagir de

façon éclairée à ces situations.

Nous partons du phénomène du microblogging, que nous sommes une société

toujours connectée et que nous partageons de plus en plus d’informations. Ces

informations sont souvent très personnelles et leur ensemble est très informatif, mais

elles sont très peu structurées. Ainsi la connaissance stockée dans le Web existe déjà,

il faudrait cependant pouvoir la convertir en connaissance collective.

Le fait de traiter des situations au lieu des objets physiques a des conséquences

importantes. Tout d’abord, une situation nécessite un modèle. Nous considérons de

plus la multi-dimensionnalité du contexte, ainsi que le fait qu’une situation est

souvent influencée par le contexte de nos proches. Nous cherchons finalement un

modèle expressif et sémantiquement composé.

Cela implique aussi, que le traitement des situations nécessite des mécanismes de

raisonnement sémantique pour renforcer la nature statistique du filtrage collaboratif

classique. En conclusion nous introduisons un nouveau modèle de situation et un

algorithme innovant pour traiter ces situations afin de proposer un nouveau médium

d’informations social.

L’implémentation

Le premier pas pour implémenter le système est sa décomposition. Suggérer des

situations importantes nécessite trois éléments principaux : le fournisseur des

suggestions, leur destinataire, et le modèle de situations, qui seront expliqués plus

tard dans notre section. Le serveur implémentant le premier point, est le cœur de

notre solution et il utilise notre modèle de situations.

Le service est destiné aux utilisateurs qui contribuent avec leurs propres informations

à notre système, devenant dans le même mouvement les destinateurs de

l’intelligence dérivée en retour. Du fait qu’il s’agit de données et de suggestions très

personnelles et socialement significatives, cette partie du système est implémentée

sous la forme d’un logiciel sur téléphone mobile.

Les smartphones aujourd’hui ne sont pas seulement des outils pour réaliser des

appels. Ils sont aussi capables d’échanger des données de plusieurs types, de

ii

capturer les données de contexte, et d’analyser et de traiter l’ensemble de ces

données. Par ailleurs, ils ont une nature très personnelle. Dans le cas du domaine de

communication interpersonnelle nous employons l’ensemble de ces capacités comme

une extension d’un carnet d’adresse sensible au contexte.

Du point vue de KRAMER, ce module client de notre système a comme objectif (1)

alimenter KRAMER avec des règles de déclenchement d’une action suite à une

situation, (2) recevoir des suggestions des règles venant de KRAMER, et (3)

enregistrer un feedback d’utilisateur afin de réévaluer ces règles. Par ailleurs, d’un

point vue d’utilisateur, (4) l’interface du logiciel doit permettre de définir de

nouvelles règles et (5) l’ensemble des situations définies et reçues doit déclencher les

actions des règles.

Il est aussi requis l’existence d’un système de partage de contexte entre proches, qui

permette de voir ce contexte dans le carnet d’adresse, d’ajouter ce contexte dans les

situations définies, et de déclencher les actions en fonction de ce contexte et des

règles. Nous présentons une implémentation possible d’un tel système, ainsi que les

autres blocs fonctionnels du module, dans le mémoire. Ceci détermine par ailleurs le

périmètre de notre recherche. Nous limitons notre prototype aux notifications ciblant

des actions dans les règles.

Définir une situation importante, en recevoir une nouvelle comme une suggestion, et

déclencher à partir de ces dernières une notification en retour, nécessite déjà d’avoir

un modèle de situation. Une situation constitue pour nous un objet composé de

plusieurs dimensions de contexte (localisation, disponibilité, etc.) pour plusieurs

contacts du carnet d’adresse (plusieurs entités dans un cas plus général que la

communication interpersonnelle).

Nous créons ce modèle en employant les arbres conceptuels, dans lesquels les nœuds

portent les concepts sémantiques pour chaque dimension de contexte et les arcs

définissent les types de ces dimensions. On obtient une composition de plusieurs

triplets de contexte (dimension, relation, valeur) en une structure plus expressive.

Chaque concept dans l’arbre provient d’une taxonomie correspondante à la

dimension, et peut modéliser une partie de la réalité sur un quelconque niveau

d’abstraction.

L’interface du module client permet de définir des situations aussi complexes. Nous

avons implémenté un mécanisme qui peut comparer la situation courante avec

l’ensemble des situations définies dans les règles, afin de déclencher la notification

associée. Pour cela nous adaptons le système de production Rete pour qu’il soit

capable de reconnaître une valeur de contexte sur différents niveaux d’abstraction.

D’un point de vue abstrait, ce mécanisme doit déterminer si deux situations sont en

relation où si l’une est plus abstraite que l’autre, qui est en revanche une version plus

détaillée de la première. Notre modèle de situation permet de le faire simplement,

iii

l’ensemble des situations constituant un treillis de situations organisé par la relation

plus abstrait / plus détaillé.

Le treillis est lui-même un objet abstrait, construit à partir des arbres conceptuels et

des règles de formation des graphes conceptuels de Sowa. Par exemple, la restriction

sémantique d’une valeur dans un nœud d’un graphe conduit à une situation plus

détaillée. De même pour la fusion de deux graphes. Le treillis obtenu ainsi permet de

réduire l’opération de détection d’une situation à celle de l’exploration de ce treillis.

Le cœur de notre système, le serveur KRAMER, utilise le même modèle de situation,

basé sur les mêmes taxonomies que ses clients. Il reçoit l’ensemble des règles de

notification, et a une connaissance de l’ensemble des situations associées. Son objectif

est de les traiter et d’en suggérer une partie aux utilisateurs. Le choix des situations à

recommander à un utilisateur particulier est une fonction de l’importance de ces

situations et de la situation courante.

C’est ici que le système dérive l’intelligence collective, que nous implémentons par le

filtrage collaboratif. Nous trouvons par contre que le traitement sémantique est

beaucoup plus pertinent dans notre cas, que le traitement statistique, qui est employé

d’habitude dans les boutiques web, par exemple.

Cela constitue l’une des hypothèses que notre recherche voulait vérifier :

l’importance d’une situation à l’échelle d’une communauté serait mieux déterminée

si le système KRAMER parvient à identifier les groupes de situations

sémantiquement similaires.

Par exemple, en fonction de l'utilisateur on peut définir les deux situations suivantes :

« le fils est à l’école » et « la fille est à l’école », qui sont toutes deux des versions

concrètes de la situation plus abstraite « l’enfant est à l’école ». Les coupler

permettrait d’une part d’éviter de traiter ces situations comme différentes et d’autre

part d’augmenter leur nombre d’occurrences en les rendant plus populaires. Le

même principe s’applique à toutes les dimensions de contexte.

Nous introduisons un algorithme de traitement des situations exprimées par notre

modèle des arbres conceptuels, qui généralise l’ensemble des situations pour en

trouver celles qui sont les plus importantes pour la communauté d’utilisateurs. Cette

généralisation est par nature opportuniste, dans le sens où les niveaux d’abstraction

obtenus dépendent des situations à l’entrée.

L’algorithme est composé de deux étapes. D’abord l’ensemble des situations est divisé

en groupes des situations ayant la même structure vis-à-vis du modèle de situations.

Ceci est une opération qui utilise une formule récurrente présentée ci-dessous, qui

compare les structures de deux situations. La formule retourne « 1 », si les structures

sont les mêmes.

La deuxième étape prend chaque groupe obtenu séparément et y applique la

généralisation qui est l’innovation principale de cette partie du système KRAMER.

iv

Nous utilisons le prunning des arbres sur une structure du type méta-arbre,

représentant la composition de l’ensemble des situations traitées à la fois. En

conséquence toutes les situations dont tous les concepts sont sémantiquement

proches et n’ayant pas disparu après le processus du prunning, sont généralisées en

une situation.

L’algorithme décrit s’adapte également aux retours d’utilisateurs ayant reçu les

situations suggérées. Une fois la notification déclenchée suite à une situation

recommandée, l’utilisateur peut décider de garder la règle ou la rejeter. Quelle que

soit la décision, elle est prise en compte par le système, influençant ainsi le processus

de généralisation et permettant l’adaptation du système aux besoins d’utilisateurs,

qui eux changent en fonction du temps. L’ensemble du processus peut aussi être

interprété comme une manipulation du treillis des situations.

Expérimentations

Afin d’évaluer le système KRAMER et ses différents paramètres, nous avons réalisé

deux tests. Le premier étant une simulation du comportement du système et son

passage à l’échelle (scalabilité). Le deuxième étant un test d’utilisateurs de petite

dimension qui a permis d’avoir un retour d’expérience sur le système.

Grâce au premier test nous avons appris surtout que la fonction de scalabilité de

l’algorithme de généralisation peut être considérée linéaire. Nous avons exploré

également l’impact de plusieurs facteurs sur cette fonction, par exemple le nombre

des dimensions de contexte, le ratio de feedback négatif dans le système, etc. Mais

pour des configurations de taille raisonnable le traitement des situations ne prend

guère plus que quelques secondes.

Un des résultats de cette partie des tests nous a permis d’observer, est que le système

n’est pas robuste quant à la quantité de situations aléatoires. Notre algorithme, qui ne

permet pas d’obtenir une situation généralisée avec des concepts les plus généraux

possibles, a la spécificité suivante : il produit dans les conditions extrêmes, un

nombre de situations généralisées supérieur au nombre de situations en entrée.

Nous avons réalisé un second test ciblant l’utilisation réelle du système. Afin d’avoir

les résultats initiaux très vite, deux groupes de testeurs, 8 personnes dans chacun

d’entre eux, ont participé à un test scénarisé. En effet nous avons construit un jeu du

type chasse au trésor, où chaque objectif accompli était associé avec une règle

introduite dans le système.

Ce jeu a permis à la plupart des participants d’accomplir un ensemble d’objectifs, en

un nombre de tours largement inferieur à ce que nous avons évalué en l’absence de

soutien par un système comme KRAMER. Une décision sur trois dans tout ce jeu a

été un effet des suggestions du système. Nous avons acquis cette information, ainsi

v

que l’acceptation générale de l’idée, depuis les logs du système et des questionnaires

hors-ligne.

Conclusions

Le système KRAMER que nous avons proposé comme résultat de notre recherche, est

un outil de support de décisions éclairées, sensible au contexte et aux situations. C’est

aussi un outil social d’interaction interpersonnelle, qui augmente l’intelligence

collaborative de ses utilisateurs qui contribuent collectivement à déterminer les

situations importantes, en les fournissant et les réévaluant.

Même si notre prototype a été adapté au scénario de communication, KRAMER peut

être facilement adapté à un domaine quelconque dans lequel le problème est défini

par des graphes conceptuels et dans lequel la logique de déclenchement d’actions

exploiterait une solution bénéficiant d’une approche collective. La domotique en

constitue un exemple intéressant.

D’une point vue implémentation du système, nous apportons deux blocs innovants.

Le premier étant le modèle de situations comme des arbres conceptuels. Cela nous

conduit plus loin à définir un treillis de situations, qui simplifie les manipulations sur

l’abstraction des situations. Le deuxième étant l’algorithme de généralisation

sémantique des arbres conceptuels.

Nous avons effectué deux types de tests, dont l’un relativement innovant. Cela nous

a permis d’évaluer le système de façon globalement positive. Il est clair par contre

qu’un test d’utilisateurs grandeur nature sera nécessaire pour améliorer KRAMER à

des fins notamment de commercialisation. Ce point va constituer une suite ultérieure

au travail de cette thèse.

Par ailleurs, le filtrage d’informations dans KRAMER n’est basé que sur les

mécanismes sémantiques, alors que les applications classiques sont plutôt du type

statistique. Cet aspect des similarités des utilisateurs du système reste encore à

incorporer dans KRAMER et les conclusions sur une éventuelle amélioration du

système de cette manière ne seront pas connues avant le test mentionné

précédemment.

De plus, le fait d’adapter KRAMER à d’autres domaines nécessite d’analyser l’impact

des actions associées aux situations dans les règles de ce système. Notamment, dans

le domaine de la domotique nous imaginons avoir des règles contradictoires. Cela

doit être traité pour que chaque implémentation de KRAMER soit fonctionnelle.

Finalement, il existe également d’autres travaux de recherche à effectuer pour

différentes extensions du système. Ceci ne contredit pas que KRAMER et notre

recherche en général apportent une valeur scientifique significative pour les

domaines de recherche suivants : l’intelligence collective, la sensibilité aux situations,

et le « social computing ».

vi

- 2 -

“Someday my log will have something to say about this.”

The Log Lady

Elizie, za każdy wspólny dzień

- 3 -

Table of contents

About the author .. - 4 -
Acknowledgements ... - 5 -
List of figures and tables ... - 6 -
Glossary ... - 8 -
Abstract ... - 10 -
1. Problem statement .. - 13 -
2. Theoretical background ... - 16 -

2.1. Situation cognition .. - 16 -
2.1.1. Situation Theory ... - 17 -
2.1.2. Situation models ... - 18 -
2.1.3. Situation awareness .. - 21 -

2.2. Decision support ... - 22 -
2.2.1. Recommender systems .. - 22 -
2.2.2. Contextual systems ... - 24 -
2.2.3. Cooperative systems .. - 25 -

3. Proposed solution ... - 27 -
3.1. Working hypothesis .. - 27 -
3.2. Informed decisions.. - 28 -
3.3. Functional decomposition ... - 30 -

4. System implementation ... - 32 -
4.1. Chosen domain .. - 32 -

4.1.1. Interpersonal relations .. - 32 -
4.1.2. Target group ... - 34 -
4.1.3. Use cases ... - 34 -

4.2. Situations model .. - 37 -
4.3. System architecture ... - 42 -
4.4. COSMO client .. - 45 -

4.4.1. Context sharing .. - 46 -
4.4.2. Situations exchange .. - 51 -
4.4.3. Action execution ... - 54 -

4.5. Communication protocol ... - 59 -
4.6. KRAMER server .. - 62 -
4.7. Important situations ... - 63 -

4.7.1. Situation popularity ... - 64 -
4.7.2. Generalization algorithm .. - 67 -
4.7.3. Rules revaluation .. - 74 -

5. Evaluation tests ... - 78 -
5.1. Algorithms simulations .. - 80 -
5.2. Treasure-hunt game .. - 91 -
5.3. Result discussion ... - 99 -

6. System applications .. - 103 -
6.1. Social computing ... - 104 -
6.2. Home automation ... - 106 -

7. Final thoughts.. - 108 -
List of publications .. - 111 -
List of patents ... - 112 -
References ... - 113 -

- 4 -

About the author

I was born and raised in Warsaw, Poland in 1985. After

obtaining my MSc degree at the Electronics

and Information Techniques department of Warsaw

School of Technology (Politechnika Warszawska)

in 2010, my passion for telecommunication

technologies and intelligent services led me to Orange

Labs, the research and development branch of France

Telecom, where I started my PhD research. I have to

admit that the conceptual work has been inspired

greatly by those calm and savage coasts of a beautiful

region of Breizh, to where I have moved in consequence.

Other from the office hours, I love to spend my spare time with my family, lately

especially with a little baby boy, who made the last several months of the research so

much more interesting. Moreover, in the scenery of Armorica countryside I try to teach

my dog to behave, I watch over and over my favourite movies, I complain that I have

already read all the good books there are, and I play an insane amount of board games,

hoping that the latter would become an Olympic discipline.

In the future I would like to devote myself more to breeding dogs and goats,

transforming the forces of nature into heat, and ultimately to doing everything in power

for my household to become a self-sufficient farm. While still contributing to the world

of science, naturally.

- 5 -

Acknowledgements

The research work of this thesis were carried out in the scope of the CIFRE (Convention

industrielle de formation par la recherche) contract in cooperation between Telecom

Bretagne university and Orange Labs research department of Orange telecom operator

under subvention of the French Government (grant number 1067/2010).

I would like to thank my supervisors from both Orange Labs and Telecom

Bretagne, namely Dr. François Toutain and Dr. Ahmed Bouabdallah. I appreciate the

liberty that you gave me, which motivated my independent getting into the bottom of

the problem. Thanks to you I could follow my own hunches for finding a solution to the

research problem you had sketched at the beginning. I am equally thankful to the thesis

director, Prof. Jean-Marie Bonnin, who has assured good framing and structure of my

work for the past three years.

Moreover, I would like to express my gratitude to the Orange Labs team I was

included in, with Christophe Dejouhanet in charge of it, as well as my other fellow

workers from the hallway. Their warm welcome and everyday kindness made the

experience even more enjoyable. I shall also remember interacting with the research

projects leaders, namely Jean-Michel Portugal, Emmanuel Le Huerou, and Claude

Daloz, and other experts, whose interest in the results of my research made it feel useful

in the end. Special thanks to Dominique Deuff for preparing a user test of the KRAMER

system.

I acknowledge also everyone who helped in the process of driving this research

from the very beginning to the very end; everyone expressing positive criticism,

especially the dissertation reviewers, and arranging the day of the thesis defence,

especially the assistants at the RSM department. I am also grateful to all jury members

for accepting the invitation.

Finally, who does one thank for creating that gorgeous Armorica?

- 6 -

List of figures and tables

Figure 2-1. Endsley’s model of situation awareness - 22 -
Figure 2-2. Paradigms for incorporating context in recommender systems - 24 -
Figure 2-3. User influenced by others directly or through derived intelligence - 25 -
Figure 2-4. The collaborative filtering process - 26 -

Figure 3-1. The KRAMER system transferring an experience of a group to a user - 28 -
Figure 3-2. A situation of a user is a composition of his relatives and their context - 29 -
Figure 3-3. Functional decomposition of the KRAMER system - 30 -
Figure 3-4. Client-server architecture inferred from the functional blocks - 31 -
Figure 4-1. Phonebook 2.0 Android application screen - 33 -

Figure 4-2. The meta-model of situations - 37 -

Figure 4-3. Inferring a conceptual tree from the situation meta-model - 38 -

Figure 4-4. Every concept in a modeled situation comes from the respective … - 39 -

Figure 4-5. A modeled situation is a partial representation of the real one - 39 -

Figure 4-6. Situation specialization with two possible operators shown on … - 41 -

Figure 4-7. A sample part of a situation lattice - 42 -

Figure 4-8. The architecture of our prototype, including the context … - 43 -

Figure 4-9. Social relations in the context distribution system - 44 -

Figure 4-10. Two levels of cooperation in KRAMER, links are formed between … - 44 -

Figure 4-11. The generic COSMO architecture - 45 -

Figure 4-12. Structure of the context distribution system and its relation with … - 46 -

Figure 4-13. Microblogging example on Foursquare - 47 -

Figure 4-14. Contextual phonebook example in our demo - 48 -

Figure 4-15. Three upper levels of a sample availability status ontology - 49 -

Figure 4-16. Contact details screen in a demo contextual phonebook - 50 -

Figure 4-17. Context sharing preference table of a user Bob - 50 -

Figure 4-18. Notification rules creation and listing screens in the prototype - 53 -

Figure 4-19. Rules exchange between COSMOs and KRAMER - 53 -

Figure 4-20. A simplified part of a situation lattice from a contextual phonebook …- 55 -

Figure 4-21. A Rete network for two sample situations - 56 -

Figure 4-22. Rete network activating with context updates - 58 -

Figure 4-23. Interfaces shared by the KRAMER and a COSMO in their mutual … - 59 -

Figure 4-24. A logical communication between the KRAMER and a COSMO - 60 -

Figure 4-25. A COSMO module connection with the MQTT service - 61 -

Figure 4-26. Message exchange process between COSMO modules and the … - 61 -

Figure 4-27. The main process of the KRAMER server - 62 -

Figure 4-28. Two semantically close situations meaning one generalizing them … - 65 -

Figure 4-29. Two situations differing in structure - 66 -

Figure 4-30. A part of a situation lattice referring to Table 4-1 - 67 -

Figure 4-31. A meta-graph structure for the generalization algorithm - 71 -

Figure 4-32. Cutting empty branches on one tree example - 73 -

Figure 4-33. A sample multidimensional availability status taxonomy - 74 -

Figure 4-34. A prototype screenshot showing options for a suggestion - 75 -

Figure 4-35. A meta-graph structure for the generalization algorithm with … - 76 -

Figure 5-1. Generate random data process diagram - 80 -

Figure 5-2. Time in [ms] dependency for a number of random situations - 82 -

Figure 5-3. Group number dependency for a number of random situations - 82 -

Figure 5-4. Abstracted situations number dependency for a number of random … - 82 -

- 7 -

Figure 5-5. Generate focused data process diagram - 84 -

Figure 5-6. Time in [ms] dependency for a number of focused situations - 85 -

Figure 5-7. Group number dependency for a number of focused situations - 85 -

Figure 5-8. Abstracted situations number dependency for a number of focused … - 86 -

Figure 5-9. Abstracted situations number dependency for different number of … - 89 -

Figure 5-10. Time in [ms] dependency for different number of focus points - 89 -

Figure 5-11. Abstracted situations number dependency for different ratios of … - 89 -

Figure 5-12. Time in [ms] dependency for different ratios of negative rules - 89 -

Figure 5-13. Abstracted situations number dependency for different ratios of leaf…- 89 -

Figure 5-14. Time in [ms] dependency for different ratios of leaf concepts - 89 -

Figure 5-15. Abstracted situations number dependency for different context … - 89 -

Figure 5-16. Time in [ms] dependency for different context dimensions - 89 -

Figure 5-17. Abstracted situations number dependency in the final simulation - 90 -

Figure 5-18. Time in [ms] dependency in the final simulation - 90 -

Figure 5-19. Taxonomy of relations in the test game - 92 -

Figure 5-20. Taxonomy of locations in the test game - 92 -

Figure 5-21. The user test steps - 93 -

Figure 5-22. The game turn summary for one user - 95 -

Figure 5-23. A game suggested notification - 96 -

Figure 5-24. Cross combination of concepts in the generalization process - 100 -

Table 3-1. Our assumptions - 28 -

Table 4-1. Reference notification situations from the described scenario - 36 -
Table 4-2. Pseudocode of the algorithm grouping situations - 69 -
Table 4-3. Situations from Table 4-1 after the grouping process - 70 -
Table 4-4. Pseudocode of the algorithm generalizing situations - 72 -
Table 4-5. Situations from Table 4-3 after the generalization process - 73 -
Table 4-6. Situations from Table 4-3 after receiving a negative feedback - 75 -
Table 4-7. Situations from Table 4-6 after another generalization process - 76 -
Table 4-8. Pseudocode of the algorithm generalizing situations with negative… - 77 -
Table 5-1. Classification of recommender system evaluation properties - 78 -

Table 5-2. A set of default test parameters - 87 -

Table 5-3. A set of final test parameters - 88 -

Table 5-4. Four abstract game rules - 97 -

Table 5-5. Four abstract rules found in the game - 98 -

Table 7-1. Our contributions ... - 109 -

- 8 -

Glossary

concept

a category of real or abstract objects

context

a set of circumstances accompanying an entity

context awareness

a property of a system being capable of perceiving its context

context dimension

one particular type of context (e.g. location, time, activity, speed, etc.)

COSMO module

Collaborative Situation Module, a client to the KRAMER system

KRAMER server

a central processing unit in the KRAMER system architecture

KRAMER system

Kind of Reasoning that Abstracts Meta-situations for Empowering Recommendations

lattice

a partially ordered set of objects with unique least upper and greatest lower bounds

microblogging

a practice of posting short messages for social network communities to read

ontology

a structure containing concepts describing universe along with their relations

points of interest

types of situations processed by KRAMER that are likely to be important for people

semantics

the meaning of concepts

situation

everything that is going on in a given time

- 9 -

situation awareness

a property of a system being capable of abstracting its situation

social computing

any type of technological support of a social behaviour

taxonomy

a classification of concepts organized by generalization/specialization relations

taxonomy leaf

a concept in a taxonomy having no specializations

- 10 -

Abstract

Situation awareness and collective intelligence are two technologies used in smart

systems. The former renders those systems able to reason upon their abstract

knowledge of what is going on. The latter enables them learning and deriving new

information from a composition of experiences of their users. In this dissertation we

present a doctoral research on an attempt to combine the two in order to obtain, in a

collaborative fashion, situation-based rules that the whole community of entities would

benefit of sharing. We introduce the KRAMER recommendation system, which we

designed and implemented as a solution to the problem of not having decision support

tools both situation-aware and collaborative. The system is independent from

any domain of application in particular, in other words generic, and we apply its

prototype implementation to context-enriched social communication scenario.

Keywords:

situation awareness, collective intelligence, semantic processing, collaborative filtering,

rule-based recommendations, conceptual graphs, social computing

- 11 -

Résumé

La sensibilité à la situation et l’intelligence collective, sont deux technologies utilisées

dans les systèmes intelligents. La première rend ces systèmes capables de raisonnement

sur leur connaissance abstraite sur ce qui se passe. La seconde permet d’apprendre et de

dériver de nouvelles informations à partir de la composition d’expériences de leurs

utilisateurs. Dans ce mémoire de thèse nous présentons une recherche doctorale qui

s’efforce combiner les deux afin d’obtenir, de façon collaborative, un ensemble des

règles de situations, dont le partage soit profitable pour une communauté d’entités.

Nous introduisons le système de recommandation KRAMER, que nous avons conçu et

mis en œuvre comme une solution au problème d’inexistence des outils de support à la

fois sensibles à la situation et collaboratifs. Le système étant générique, nous appliquons

l’implémentation de son prototype à un scénario de communication sociale enrichie de

contexte.

Mots clés :

sensibilité à la situation, intelligence collective, traitement sémantique, filtrage

collaboratif, systèmes de recommandation, graphes conceptuels, informatique sociale

- 12 -

Abstrakt

ģwiadomoĤć sytuacji i inteligencja kolektywna to dwie spoĤród technologii używanych

w systemach inteligentnych. Ta pierwsza sprawia, że systemy te są zdolne do

wnioskowania na podstawie swojej abstrakcyjnej wiedzy o tym, co się wokół nich

dzieje. Ta druga umożliwia ich uczenie się i wywodzenie nowych informacji na

podstawie złożenia doĤwiadczeń swoich użytkowników. W tej rozprawie prezentujemy

pracę badawczą nad połączeniem obu technologii, ażeby poprzez współpracę

użytkowników otrzymać bazujące na sytuacjach reguły, którymi dzielenie się będzie

korzystne dla społecznoĤci jednostek. Przedstawiamy system rekomendacji KRśMER,

który zaprojektowaliĤmy i zaimplementowaliĤmy jako rozwiązanie problemu braku

narzędzi wsparcia decyzji jednoczeĤnie Ĥwiadomych sytuacji i opartych na współpracy.

System jest niezależnie od domeny jego zastosowania generyczny, a jego prototyp

zaadoptowaliĤmy do realiów komunikacji społecznej.

Słowa kluczowe:

ĤwiadomoĤć sytuacji, inteligencja kolektywna, przetwarzanie semantyczne,

rekomendacje bazujące na regułach, grafy koncepcyjne

- 13 -

1. Problem statement

The aim of interpersonal communication services is to support and enhance the human

interactions as they exist in nature. For example, the very telephony extended the

distance for natural human conversations making it much more convenient to initiate.

Today's technical capabilities are much more sophisticated than when the telephone

system was introduced. Phones have been made cordless and embedded with multiple

sensors. As a result, they have become users' smart personal assistants. The problem

extensively explored lately is how to exploit this device intelligence to further facilitate

human natural and social behaviours.

In our research we look into the fact that mobile users' activity, i.e. smartphone

users' activity, generates tons of data, which enables distinguishing traces of their ever-

changing situation. For once, modern personal devices are capable of sensing their

users' whereabouts or any context in general. Moreover, they can also remember any

user interactions with them. For instance, in case of mobile phones, any decision on

social interactions is stored in a call log (synchronous communication) or in a message

box (asynchronous communication). This stands for a lot of unstructured data about

phone users from the device perspective only.

There are many works to uncover the structured knowledge from user context

traces, for example learning daily movement routines [ZHE09], or learning tasks

usually performed in a mobile environment [LEE10]. The common approach is to apply

pattern or association rule mining algorithms to extract the corresponding structures of

contextual data. As a result, designers may be provided with interesting insight into the

possible enhancements to their service usage. An alternative would be giving users

themselves some additional information regarding their current situation, especially if

it is not frequent that a particular one occurs.

In case of critical situations bearing some important circumstances that one has not

encountered before, some help from a smart assistant could be of great value for

making a respective decision. In classical human interactions, people exchange their

experiences by asking questions and sharing advices with one another. This process can

be supported by technology, given the vast amount of above-mentioned activity data.

This group experience remains to be explored for identifying important situations, and

suggesting solutions in a collaborative fashion among users.

- 14 -

Following [SUR05], under the right circumstances, groups are remarkably

intelligent, and are often smarter than the smartest people in them. Those circumstances

are appropriate reasoning mechanisms, deriving their intelligence from users'

participation in the information shaping process. Aggregated and further recombined

data transforms collected intelligence into a truly collective intelligence [GRU07].

According to [ALA08], when a group of individuals collaborate or compete with each

other, intelligence that otherwise didn't exist suddenly emerges. This intelligence is

computed by knowledge mining algorithms. As a result, such interactively derived

social knowledge can be shared with all community members for their benefit via

recommendation technologies, reputation systems and other decision support

mechanisms.

To the best of our knowledge, applying the same principle of a collaborative system

to the user situation awareness has not yet been well explored, if approached at all. We

argue that while people naturally learn from one another about the importance of

situations needing their reaction, modern devices may provide enough valuable context

data to propose a system that supports the sharing process. Being provided with

information concerning other people taking often one kind of action in similar

situations that one encounters for the first time may result in a set of new services of

empowering social value. This thesis proposes a system enabling such services. Its

codename is KRAMER, Kind of Reasoning that Abstracts Meta-situations for

Empowering Recommendations. We predict that it might become a novel smart

decision support tool.

The rest of the document is organized as follows. In Section 2 we describe the state

of the art within the research areas of situation-awareness and decision support

systems. Analysis of multiple research activities reveal them not to be dealing with the

problem as defined above. Therefore, we propose some assumptions and functional

requirements for a system to constitute a good solution in Section 3. Discussion how it

enhances the current research state is also provided. The next section brings the initial

ideas closer to their realization. After having chosen a domain of application for our

system, we proceed to details on the architecture and implementation of all functional

blocks. This is all presented in Section 4. The technologies and mechanisms selected

ought to fulfil all the prior assumptions, which we verify through tests in Section 5.

Afterwards we abstract the system to be applicable to multiple domains and we present

- 15 -

a couple of them in Section 6. Finally, we conclude and point out some future research

directions in Section 7.

- 16 -

2. Theoretical background

In our research we seek to exploit collective intelligence in the domain of context and

situation awareness. Systems based on this kind of intelligence make their individual

users benefit from knowledge of more experienced ones. In that sense, such systems

create a community of users, which mutually contribute to its growth, and in turn get a

support for areas that they are no experts of. Adapting this principle to context would

require operating on experiences of particular sets of context values, which may be

interpreted as situations. Furthermore, one would expect a collectively situation-aware

system to support making decisions while encountering new but important situations.

For this reason, in this Section we look into the existing research works concerning

the areas of situation awareness and decision support systems. We investigate if there

are already existing solutions allowing communities to gain collaborative awareness of

important situations. We explore equally different approaches for defining situations

for them to be taken into account in smart systems, as well as different technical

solutions for such systems to empower decision making. This state of the today's art

leads us to introducing our system in the next sections of this dissertation.

2.1. Situation cognition

In this subsection we investigate the state of the art on the ways that situations are seen

in technology. In particular we discuss definitions of context and situations provided by

both encyclopaedic entries and the Situation Theory, show different approaches to

model real life situations in artificial systems, and explain how incorporating situation

awareness makes those systems become intelligent. In our study we focus on finding a

representation for context, which would form situations well understandable by

humans. In fact, we seek for it to adapt the meaning of a situation from one agent to

another, making it a little blurred, which results in having a mathematical definition

rigor a lesser priority. Therefore, we are referring for the remainder of this section to

contextual situations, which we expect to be at the same time expressive for users and

manageable by a system.

Finally, we search for any situation-aware systems that already provide any type of

decision making support, especially based on a collective knowledge paradigm.

- 17 -

2.1.1. Situation Theory

Our interest in systems that are aware of their situation and of the situations of their

users implies the need to define what a situation is. In encyclopaedic entries including

Cambridge Advanced Learner's Dictionary & Thesaurus1, The American Heritage

Dictionary of the English Language2, and Collins English Dictionary3 we see the term

"situation" to relate to a set of happening things, existing conditions, circumstances and

surroundings of something, someone, or other point in the time-space continuum, like

an event. Other languages (Słownik Języka Polskiego PWN4, Larousse5) also tend to

place a situation in relation between an entity of any type and some surrounding

conditions.

What is therefore a difference between a situation and a context? The same set of

dictionaries explains the context as the circumstances of an event. This makes the two

terms very close, with only a slightly broader meaning for the situation. Cambridge

Dictionary makes the relation explicit as the context is to be a situation within which

something happens. It is then of no surprise that the two terms are frequently used in a

synonymic fashion. They are further fused in spoken language, which is known to be

less accurate than the written one [MEC07].

To find some distinguishing features between situation and context we look into the

domain of event processing. Authors of [ETZ10] point out that situations are things that

happen, and which have a meaning, whereas context is a state, an area in an abstract

space defining some conditions. Based on this approach, and the initial use of the term

"context awareness" with relation to sensor technology, we derive our working relation

between the two terms in question. We treat situations as meaningful, possibly

semantic, interpretations of some context setups.

In our quest to capture the idea of a situation we refer further to the theory

formulated by Barwise and Perry, which tackles the problem from a point of view of

such disciplines as cognitive science, computer science, linguistics, logic, philosophy,

and mathematics [MEC07]. The situation theory [BAR83] is an effort to capture the

meaning and semantics of situations, by approaching them from both mathematical

rigor and practicality perspectives. Even though the theory is considered as not-well-

1 http://dictionary.cambridge.org/
2 http://www.ahdictionary.com/
3 http://www.collinsdictionary.com/dictionary/english
4 http://sjp.pwn.pl/
5 http://www.larousse.fr/dictionnaires/francais

- 18 -

founded set theory [ACZ88], it helps understanding the relations between a situation

and information, and between different classes of situations.

In [COO91] a situation is presented as an object in situation theory related to the

collection of infons that supports it. An infon is another concept coming from the

theory, which is an object carrying information. It is defined as a relation of its

arguments with either positive or negative polarity <<R, a1, ..., an, 0|1>>. A piece of

information is represented in mathematical terms capturing a number of elements being

in a relation to be either true or false. Therefore, a situation is supported by the

composition of a number of such pieces of information. It is not, however, defined by it.

In order to capture further the meaning of situations, the theory explores a more

philosophical approach. In consequence a situation is said to simply describe "what is

going on". However, no ultimate definition can be provided. Devlin explains that

situations are abstract objects, elementary concepts, which cannot be defined precisely

using other mathematical items [DEV91]. In that sense a situation is an abstraction

capturing the state of the universe relating to the complete set of infons supporting it,

mixed with a meaning.

Fortunately, as human beings are able to perceive their situations, and reason upon

them, so can artificial agents. However, neither people nor systems are likely to capture

the state of the whole universe, which finds its reflection in the definition of

individuated situation. Devlin explains individuating a situation by an agent as

perceiving only a part of the reality that is necessary for a situation to be picked out

[DEV91]. An individuated situation becomes a relevant subset of the state of the

universe [DEY00a]. This implies a limitation to a finite set of facts describing situations,

and more importantly enables modelling them for representing in smart systems.

2.1.2. Situation models

In order to reason upon situations, agents and systems need to structure their

understanding of what is going on at a moment. This calls for a model to represent

situations within such computing entities. Those representations are sure to capture but

a fraction of a real situation, with respect to its understanding in a situation theory. In

this subsection we give an overview on the context and situation models. We discuss

their differences regarding their expressiveness, ways of associating a meaning and

technical implications.

- 19 -

[STR04] gives a complete survey on the context model types, which include the key-

value pairs, logic notations and ontologies. It provides also mark-up schemes and

graphical models as ways of rendering context knowledge processable by machines and

humans respectively. The authors provide equally a set of 6 model evaluation

parameters, and they ascertain that the ontology-based models satisfy all of them best.

It seems, for example, that ontologies enable context reasoning and facts derivation, as

explained in [WAN04], and dealing with uncertainty [GU09].

Situations, however, even if being a limited part of the world [BAR83], can

represent something more abstract than a value for just one context dimension.

Therefore, authors of [ANA06a] model their situations as somehow abstract concepts,

which are taken from a situation taxonomy. A set of abstract labels is arranged in the

way that "formal meetings" are special cases for "meeting", for example. In this model,

the situation concepts, and the whole taxonomy for that matter, are set apart from the

context and the corresponding context ontology.

This approach seems too simplistic and not expressive enough. Placing every

meaningful situation in one taxonomy is too limiting, as any sibling concepts should be

disjoint, and parent-child relations require a strict generalization-specialization of

corresponding meanings. There exists a possibility of making the model slightly more

sophisticated, should the multipleinheritance be introduced to the taxonomy [MAR02].

In that case two child concepts of another one could have orthogonal meaning rather

than complementary (e.g. "business meeting" and "stand-up meeting" are two

descendants of a "meeting", which do not exclude one another).

Another problem with the presented model is the lack of connection between the

situation and context ontology structures, preventing any translation from one to

another. The necessary link is discussed in [YAU06]. The situation ontology is divided

into two logical layers, one for lower level context concepts, and another for more

abstract situations. It is an upper level ontology that includes a relation between an

atomic situation and a context value element for a context dimension concept.

The authors of [ANA06a] try to deal with the same issue by introducing a new

situation model in [ANA06b] that considers situations as compositions of different

context dimensions. They limit those dimensions to the following four: spatial, temporal

artefact and personal. The situation model here becomes more expressive, carrying

more information, for the fact of being composed of several pieces of information.

- 20 -

Those pieces of information assembled to represent a situation are called characteristic

features in [MEI04].

Composing a situation out of several elements is present also in other context

modelling approaches. In situation theory, the logic notation introduces basic infons

representing simple situation as in [AKM96], which can be further combined to form

compound infons [KOK09]. In [COO91] authors state that situations are in general a

collection of infons that support them. An abstract situation, which can be sometimes

expressed in few words, is very likely to be explained by giving several facts that do

and do not accompany it.

In [PAD04] we see yet another interesting approach to model this composed nature

of situations. The authors adapt a graphical representation of context within n-

dimensional spaces, where n is a number of context dimensions considered. Whereas a

point in that space represents a precise reading of context sensors, situations take form

of subspaces. This makes a situation to be a composition of those context dimensions,

which it spans, and not those for which they are completely flat (of length 0).

Furthermore, the size of the span determines the range of context values for a given

situation. A similar adaptation can be made for the vector context representation

approach in [DEL12].

The previous space-based situation model does not consider any situation

semantics whatsoever, but the presented principle of seeing a situation as a Cartesian

product of several context dimensions has been considered in [KNO08]. Should every

context dimension of a situation be considered and modelled separately, their combined

Cartesian product would constitute a valid representation of a situation. Other

researchers deal with such one dimension representations, making them based on

<type, operator, value> triples [YAU06], which should describe an entity (called

substantial) [COS06].

Should a set of simple, one dimensional semantic-rich situations, which follow the

above recommendations (e.g. "humidity is 77%" or "wife is in a kitchen") be put together

by adding "AND" operators, one would simply receive composed sentences, possibly

quite long ones. In order for them to be processable by agents one would expect better

structured representation. We identify conceptual graphs as able to represent quite

complex sentences and logical expressions [SOW83]. Using them as a model of

contextual situations is in return quite expressive.

- 21 -

It also remains to be verified if conceptual graphs representing situations are

manageable by systems, and if they enable efficient reasoning upon them. It is often of

interest to compare different situations and judge their mutual similarity. In the case of

a context space-based model, comparison is a matter of a distance between subareas

[PAD04]. Similarity of situations can be also measured in terms of a distance in

ontologies [GAN08]. Conceptual graphs, having multiple ontology concepts

incorporated, is just a more complex case of the latter.

From the theoretical point of view, the six conceptual graph operators [SOW08]

may make one graph to project on another. Thus, a network of dependencies between

many more graphs can be created. As far as a more technical approach is concerned,

there exists multiple implementation works on conceptual graphs comparison

[MON00] [MON01] [POO95] [ZHO02] [REE05]. Even whole ontologies may be

compared and matched with one another for that matter [CRO07]. The computational

complexity reported in the reports is encouraging. Our adaptation, and extension of the

conceptual graph model for situations is detailed in Section 4.2.

2.1.3. Situation awareness

Situation awareness is a property with a crucial impact on decision making and

performance of both human and artificial systems [END95]. In his situation awareness

theory introduction, Endsley presents a model of situation-awareness as an ability to

perceive surrounding elements, comprehend their meaning and project their statuses

into the near future. The author argues for that ability to require a much more advanced

level of understanding than just being aware of numerous pieces of data. What

separates it from context-awareness is operating on already abstract semantic

interpretations of context, which makes it more stable, more certain, and, most of all,

more meaningful to agents and systems [YE07].

The use cases mentioned in [END95] are complex decisions systems like those in

aircrafts or air traffic control. Such tactical and strategic applications, which take into

account many circumstances and have an enormous impact on the safety of people, are

already being based on situation-awareness technology. Also some systems more, let's

say, down to earth, recognise this technology as key for decision support in:

information logistics [MEI04], network communication [BEI03], or driver assistance

[MCC07]. All these systems introduce intelligence in a form of appropriate reaction of

any type for given situations.

- 22 -

Figure 2-1. Endsley’s model of situation awareness [source [END95]]
However, all of those systems are based on rules predefined for the system, or at

best those introduced by a user while initiating the system. While it is probably the best

solution for systems needing strong reliability, like the ones responsible for the safety of

people, other everyday decision support applications could provide a little more

customization and help for doing so. We mention in the introduction section that

defining a functionality of a situation-aware system could be a collaborative effort,

making the system's intelligence become collective. None of the systems reviewed here

introduces such possibility.

2.2. Decision support

In this subsection we investigate the state of the art on different systems that support

their users’ decision making. In particular we focus on recommender systems,

especially those incorporating context awareness, and collective knowledge. We search

for any application of such systems in the domain of situation awareness, and any

indication as to what would be the profit of doing so. We point out those technical

solutions that could be adapted in introducing a collaborative and situation-aware

system.

2.2.1. Recommender systems

The way that people help each other in making decisions is by giving advice. A system

replacing humans in this kind of support is called a recommendation system. A

transcription of using knowledge about the preferences of a person addressed with a

recommendation is used in so-called content-based recommender systems. Suggestions

are made there if a description of an item seems to correspond to a profile of the user's

interests [PAZ07]. The items in question can concern multiple domains ranging from

items to buy to things to see, places to visit, etc.

- 23 -

There are multiple technical approaches to render giving suggestions by computing

systems possible. If an item's characteristics are given by a web store, for instance, a

system still needs to gather information concerning user's preferences. This is done

either by asking the user herself to provide the necessary pieces of information, or by

inferring it from the history of user's interactions with the system [PAZ07]. Both

solutions have their flaws. The first requires an effort from users, which they may be

not willing to make, while the second takes time for an algorithm to learn. In either case

having to much or to little knowledge may result in providing too few or too many

suggestions respectively.

In [ZAI02] the author suggests for simpler cases to limit the amount of knowledge

gathered on a user and rather compare the amount already there with association rules

mined from the whole user population. This approach is based on a collective history,

making the learning process faster. The condition is that for a given domain there exist

few global trends that all users are very likely to follow. In this case the

recommendation system is applied to e-learning, and following particular learning

modules is predicted on those few already done.

On the other hand, [CAO06] presents a domain, where quantitative history data

would not prove any useful. Electronic products are items that become quickly obsolete

and in the same time frequently introduce completely new technologies. Not only can

the history purchases be incomparable with a current market offer, but users may have

little knowledge of what the offer is. Therefore, instead of asking for a desired value of

graphic card memory, the presented system asks users what is the importance of

playing games and graphics design to them. The suggestions are further supported by

domain experts and fuzzy logics.

In spite of different approaches to learning user interests models, content-based

recommender systems are limited by the information at disposal for both items and

users, i.e. the content. Providing this data in a manual way imposes a considerable

effort, while obtaining it automatically is not always possible. Moreover, the classical

recommendation system approach does not consider the fact that the very users tend to

change taste in function of multiple factors. This is an especially crucial point in context

and situation awareness, where decisions are taken in response to particular situations,

and not in all of them.

- 24 -

2.2.2. Contextual systems

Context awareness is a property enabling considering circumstances of events and

surroundings of an entity, see Section 2.1. Applying it to the decision support systems

leads to context-aware recommender systems. Such systems incorporate into

recommendation ratings a third dimension, the context, to the usual two: user and item

[ADO11]. The interest of a user in a particular item may vary in function of different

context dimensions, like mood, time of day, fatigue, etc. For that reason, the suggestions

can be filtered to match better preferences in a given context.

[ADO11] presents three patterns that the use of context can adapt in recommender

systems. The first two include suggestion results filtering either before or after the

classical recommendation derivation is performed. Those two approaches exploit

proximity between contextual data and validity context defined for user interests

[NAU10]. The third approach requires incorporating context into recommendation

functions. Either way, the context component is nothing but a parameter to augment the

accuracy of the suggestions made for any type of item. There is no reference whatsoever

to recommender engines which would consider context as such an item per se.

Figure 2-2. Paradigms for incorporating context in recommender systems [source [ADO11]]

To connect the context with particular item preferences, the corresponding

association rules can be mined like in [HON08]. The links can also be established using

the collaborative filtering technique, like in [CHE05]. In the latter case a prediction for a

user preference for an item depends on the item evaluations in similar contexts,

whereas similarity between contexts is measured by similarity of evaluations for the

same objects in those contexts. Therefore, whatever the context dimensions values really

- 25 -

are, situations are considered similar if a preference for a majority of items varies a

little.

Even though [CHE05] refers to collaborative filtering, the notion of collectiveness

and cooperation is missing there. Whereas the technique seems to relate to an algorithm

applied usually to find similar, like-minded users. In fact, in the context-based

recommender system survey [PAZ07] authors draw a conclusion that combining

content and collaborative information can supplement suggestions by the opinions of a

community of users. This is also an approach we aim to explore. However, neither of

the context-aware recommendation systems studied make use of collective intelligence.

2.2.3. Cooperative systems

As discussed in the introductory section, the collective intelligence principle may enrich

systems, both social and computing ones, with information not available directly

[SUR05] [ALA08]. This knowledge is best considered in decision support systems. As in

real life, a more abstract understanding of the world comes from observing individuals

collaborating and competing. Patterns of their preferences and choices do not exist

unless observed in a larger scale. And those patterns constitute a social experience, the

concept of which can be exploited in recommendation systems.

Figure 2-3. User influenced by others directly or through derived intelligence [source: [ALA08]]

There are two sides for such collaborative systems. First, they transform sets of their

users into true virtual communities [HIL95]. Those communities do not constitute

virtual reality communities, as members do not interact directly with one another. Still,

the very nature of those systems makes the experience to be communautary. Second,

the community experience, or any of its user data for that matter, is not only stored and

redistributed. New data, involving meanings and conclusions, is abstracted, making

collected intelligence to become collective intelligence [GRU06].

- 26 -

One of the most popular cooperative techniques adapted by recommender systems

is collaborative filtering. In a general sense it stands for filtering information as an effect

of any agent collaboration. In particular it can be implemented as a statistical tool to

predict one's preference towards an item, which is based on a database of preferences

for different items by all users [SAR01]. It has been found especially successful in e-

commerce [SCH01a], where web stores measure the utility of collaborative filtering

techniques in a growth of sales thanks to "other users who bought this product were

also interested in..." lists.

Figure 2-4. The collaborative filtering process [source [SAR01]]

According to [DUC09], collaborative filtering is most useful for people unfamiliar

with a given area. In fact, experts rarely need suggestions coming from systems that

may be sometimes wrong. Inexperienced users, however, frequently need any kind of

help to quickly find an item of interest among thousands of not interesting ones. What

makes the collaborative approach particularly interesting is the fact that the

recommendations do not come from a biased seller, not even from the majority of other

users, with which one may not necessarily identify. A priori, collaborative filtering

presents items that like-minded users, which are those whose preferences match in

many cases, find interesting.

As far as using context in recommender systems, there is no notion of such user

similarity in the context-aware collaborative filtering system in [CHE05]. We find it in

[MUN10], where recommendations employing collaborative techniques depend on two

context dimensions: location and time. However, the system presented there seems to

only filter suggestion objects based on relevance to recommendation requests (movie

suggested needs to be one of those played the evening in the given cinema). In

consequence, the context considered is a recommendation context, and not a user-

dependent one.

- 27 -

3. Proposed solution

In the current state of the art we have found no documented research works on

technology empowering user context and situation awareness with an experience of

other people. Context is treated rather as a set of circumstances to filter derived

suggestions, for instance in [MUN10]. We argue that a situation itself can be a subject of

a recommendation. Encountering one could lead towards a wider range of actions and

decisions for a user to take than just buying an item or not. In the same time we

recognise that collaborative techniques, especially the simplicity with which statistical

users-items relations are transformed into collective intelligence are very promising for

our system. We aim to make their application in the global situation awareness domain

more proactive, like the works in [HON08] were with respect to the local context

history.

In the following subsections we define the goals and the frame of our solution to the

problem. We analyse also the main functionalities to provide, which will lead to design

and implement the solution in Section 4.

3.1. Working hypothesis

As stated in Section 1, we seek in our research to investigate a possibility to apply data

mining techniques onto user data of contextual nature. As a result, we expect to harvest

new knowledge about user behaviour in particular situations. We are especially

interested in exploiting the collaborative filtering principle in user telecommunication

interactions. We believe that it could lead in turn to providing new intelligent social

communication services, where each user would benefit from the experience of other

users in certain contextual circumstances.

We design a system that makes the idea of being aware of situations a subject of a

recommendation. This approach has not yet been explored in the research works that

we are aware of. The previous section summarizing the state of the art shows no

connection whatsoever between the systems cognizing context and situations, and those

providing recommendations, even if the latter may take into account some context

notions. Finally, we focus on obtaining a seamless connection between the two areas by

applying collaborative, social techniques.

At the very beginning of our research we formulate the following three

assumptions driving this thesis:

- 28 -

Table 3-1. Our assumptions

A1. Collaborative filtering techniques applied on context data would create new knowledge

A2. This knowledge could introduce a range of new interpersonal communication services

A3. Semantic modelling and reasoning should be employed for context data manipulation

3.2. Informed decisions

The previous subsection lists several hypotheses for our research. Should we treat them

as functional goals of a solution to the problem given in Section 1, we get a set of

requirements for our collaborative situation-aware system. Namely, it ought to present

its users with situations filtered from activity traces of the community in order to

empower both their social situation awareness and decisions related to their

interpersonal relations. The main object being manipulated therefore is the situation,

while the principal technique used is collaborative filtering in its general sense.

Exchanging experience with one another in interpersonal interactions is called

giving advices and suggestions. Smart systems that can do the same are called

recommendation systems. A subset of them is known to implement collaborative

filtering algorithms, which extract knowledge and experience of a group of its users in

order to share it with other ones. We choose for our system KRAMER to be a

recommender system that suggests taking an action whenever the current context state

has been found relevant by other users in the past. This way, one would learn from the

experience of others and would not miss the right circumstances to react to accordingly.

Figure 3-1. The KRAMER system transferring an experience of a group to a user

A particular state of multiple context dimensions can be described in one word as a

situation. One's situation is a set of circumstances, of all what is going on around

[BAR83]. In practical terms it is a processed, abstracted context [DEV91] giving its

semantic interpretation [YE07]. And such situations are objects of analysis for us.

Finding important ones requires the system to observe patterns in users activity

decisions in similar circumstances. If a situation inspires taking certain actions by

- 29 -

people, it is a sign that suggesting taking an action could be beneficial for someone who

has no experience with similar situations.

Now, situations are not only simple single concept ones (e.g. running, at a meeting).

They can be quite complex composited beings describing a state of several entities in

their social context. For example, let's consider a situation, where one's daughter has

finished her classes while his wife is busy at a meeting. First, it is definitely a situation

composed of a couple of circumstances, which we call context dimensions. Second, it

might be important for someone, whose wife is usually responsible for driving their

daughter home - this might require an action to call his daughter to wait for a while or

to simply go pick her up himself.

Figure 3-2. A situation of a user is a composition of his relatives and their context

As a consequence of having situations more semantically complex than object

references that collaborative filtering mechanisms normally deal with, our

recommender system should provide an adjusted implementation of its algorithms.

Typical statistical methods used for suggesting books or movies in web stores are based

on measuring similarities between those objects in terms of their shared owners with

similar tastes. In the case of the situations, having the exact same one happening for

multiple users depend on the degree of granularity of context [BAL07] values.

Therefore, it might be necessary to include a semantic similarity measure.

Besides, the standard mechanisms of processing the objects to find those popular

ones for presenting the respective suggestions to users should be present. Furthermore,

users given with a notification of an important situation should be able to quickly

evaluate it by indicating, for example, that they indeed find it interesting enough to be

presented with it every time in similar circumstances, or on the contrary, that they do

- 30 -

not wish to be bothered with it again. That decision should be taken into consideration

by the system, causing the importance of situations to be constantly revaluated.

As our research for this thesis focuses on creating a system applying collaborative

techniques on identifying important situations, it does intentionally avoid the problem

of harvesting those situations from raw context data. Finding a set of context dimension

values associated with frequently fired action is a subject of data mining algorithms that

would analyse vast logs of community activity. They could constitute an entry sub-

module for the KRAMER system. We make the assumption, however, that there exists a

way for users to contribute with the situations they find initially important. Then our

social mechanisms can make those situations be shared.

3.3. Functional decomposition

In order to learn building blocks needing an implementation, and eventually to propose

an adequate architecture of the KRAMER system, we look into its reduction to the most

important functional components. In the previous subsection we decided that people

can be collaboratively aware of important situations via suggestion mechanisms, which

makes KRAMER a recommendation system. Therefore, its abilities to both manipulate

situations and provide suggestions are two main tasks of our system. This is expressed

on the second upper level in Figure 3-3.

Figure 3-3. Functional decomposition of the KRAMER system

Digging deeper, we notice that suggestions are an effect of some situations

processing algorithms, which harvest those important ones. From another perspective,

recommendations have a purpose of being provided to a user. One might say that they

require such recipients to exist at all. It is also those users who provide the situations to

the system via their context-sensing electronic devices. Finally, the situations need a

- 31 -

well defined model to enable their processing by the system. The "model", "processing"

and set of "user" modules are on the third upper level in Figure 3-3.

Let's focus on the set of blocks representing users. For each user to be able to profit

from the suggestions, she needs to have an interface with the system. This connection

should be available via a device that could sense the user’s context, and exchange

information about situations with other users, like family members or friends. At the

same time the device ought to be personal enough to follow its user in everyday

activities, while preferably not being shared with others. For all of those reasons, we

propose the device to be a mobile smartphone. It is personal [RAE05] and new models

are capable of sensing more and more context dimensions. Furthermore, connectivity

for context exchange can be maintained among contacts in the phonebook.

Figure 3-4. Client-server architecture inferred from the functional blocks

Each user could browse through her contacts to learn their situations, and might

define complex situations to be notified of on top of that. Those locally important

situations should then be contributed to the system, which would perform its

processing in one central entity, a KRAMER server. The situation model would be

obviously common for all user clients and for the server. As a result, a client-server

architecture emerges. We present it along with the communication protocol between

entities in Sections 4.3 and 4.5 respectively. We discuss the particular functional blocks

in Section 4.2, 4.4, 4.6 and 4.7.

- 32 -

4. System implementation

While the previous section introduced a functional overview of the KRAMER system,

this section is focused on bringing all implementation details of each of the system's

modules. We start by choosing as a reference several use cases on one specific domain,

which would demonstrate best the functionality of the system. Then we propose a data

model for representing situations and a global architecture of the system. Finally, we

discuss each system module separately along with communication mechanisms in

between. The heart of novelty of the KRAMER system is presented mainly in

subsections 4.2 and 4.7.

4.1. Chosen domain

An implementation of a generic collaborative situation-aware system prototype needs

selecting at first one specific domain of application. With our system we aim at

introducing a new set of interpersonal telecommunication services, which determines

the domain. In the rest of the subsection we explain how the solution is applied to the

domain, as well as for whom it is addressed, and we give a sample scenario with one

use case for future reference.

4.1.1. Interpersonal relations

Situation-awareness is a property of perceiving and understanding the circumstances in

order to evaluate them and to make conclusions. It is a property of human beings and

autonomous intelligent systems used to support their decision making. In our research

we are more interested in the former, that is humans and their social behaviours. By

enhancing their awareness of current situations we aim at introducing a new set of

interpersonal services supported by our system, KRAMER.

The Section 3.3 sketches a general decomposition for functional blocks of the

KRAMER system. It mentions a central logic along with numerous satellite elements,

which are responsible for two main tasks. First, they gather information about users'

situations. Second, they enable maintaining social relations between users based on this

information. Therefore, in practice those would need to be some personal tools with

communication capabilities.

For that reason, we have chosen a mobile phone as an interface between a user and

the system. Today's smartphones are able not only to place calls or engage an

asynchronous data communication, but also to sense the environment (temperature,

- 33 -

light, noise, etc.) of a user. They assure at once both the communication and situation-

aware aspects. In the same time, such devices are frequently carried around by owners

and hence may be considered as very personal [RAE05].

Therefore, we have decided to express the situation-enabled interpersonal relations

in form of a contextual phonebook application on a mobile phone. As explained in

greater details in Section 4.4, such a phonebook is a live contact list enriched with each

contact's current context (availability, location, etc.). While smartphone sensors can

observe the environment, their communication channels support sharing that

information with others on a preferred level of details.

We have discussed in one of our publications the social mechanisms accompanying

a context-enriched phonebook. It appears according to other researchers (e.g. [SCH01b],

[RAE05], [BAR08]) that presenting a context of each participant of a conversation,

otherwise available in classical face-to-face relations, enhances artificial services with a

notion of naturalness. Furthermore, exchanging those situation dimensions between

users forms a base, on top of which the KRAMER system may operate.

Figure 4-1. Phonebook 2.0 Android application screen [source: Google play]

In consequence, the situations that KRAMER provides suggestions for may be

composed of several context dimensions of a given user and her close contacts. Those

dimensions are the same with the ones presented in a phonebook application, which we

limited for the needs of the prototype to two such dimensions, user's availability and

- 34 -

location. Situations discovered by the system as important are therefore those that share

contacts involved along with their local situations.

Naturally, interpersonal relations in telecommunication services are just one choice

for an application domain. It matches well with the system requirements and it keeps

the system directly evaluable in terms of usability, which we exploit in the user test, see

Section 5.2. However, KRAMER is a tool generic enough to be applied to other

domains, which we discuss in Section 6.

4.1.2. Target group

KRAMER is a recommender system, which first discovers situations important for a

meaningful part of a user community, and then makes suggestions on actions to take

whenever they occur for any community member. Actions that the community

members take in particular circumstances are learnt by the system, and transformed

into situation-based recommendation rules. In that sense KRAMER is a rule-based

system.

Systems based on rules are frequently used to gather an expert knowledge

necessary to either take optimal and fast decisions, or to support such decisions of other

human experts [HAY85]. This is not the case here, as KRAMER gains its experience in a

collaborative fashion from ordinary people and their everyday behaviour. We might

say that the "expert" knowledge is elaborated from a mass of non-expert personal

decisions.

In the real life community members share their experience with one another for the

profit of those less experienced and for the progress of the whole group. The KRAMER

system supports this social mechanism. In consequence, the target of suggestions

provided by the system would be an ordinary member of the community, rather than

any domain expert. Furthermore, KRAMER encourages also its consumers to revaluate

the rules so that the system can improve in time. In that sense, the collaborative

knowledge gathered from non-expert community members transforms the community

into one collective expert in the given domain.

4.1.3. Use cases

Let’s consider the following story to be an informal introduction of some use cases for

the KRAMER system in the social computing domain.

- 35 -

Imagine Ed, a middle-class engineer, privately a husband and a father to a girl, and deep inside a

devoted football fan. A couple of weeks ago he got his first smartphone. He was encouraged by a

number of context sensors embedded in the phone and necessary software, which promised its

intelligent self-adaptation to his needs. In fact, Ed was very sceptic towards the technology

lately, which seemed to add unnecessary burdens upon users, rather than to facilitate natural

ways of contacting his friends, for example. 'If the telephony is supposed to bring people

together, why don't I get the impression of seeing my contact's status or location', he used to

say. His friends have frequently provoked him laughing, 'You'd like to know everything about

everyone, don't you?' 'At least, I wouldn't disturb you with my calls when you're taking a

shower and I wouldn't get irritated when you don't reply in that situation', he always replied.

But as soon as he turned on his smartphone, he got pleasantly surprised. The basic phone

services, like placing a call or sending a short message, were available from a context phonebook.

There were already several of his contacts using this technology, some of them were sharing their

dynamic context information with him, which he saw next to their names and photos. 'Finally I

can learn of my friends' availability before I call', he cried happily. 'Honey, did you know your

sister is abroad again? Calling her for some chit-chat will cost her too, you know? I shall enable

visibility of my status as well. Hey, how does it know that I'm riding in a train - probably it

scans my agenda or senses my activity. I will not share such details with everyone. But I shall

with you, Hon, so that you knew when I'm in the meeting not to be disturbed...'

Ed's wife was already used to his jokes but couldn't resist not teasing back. 'I know you're

very busy not to be disturbed office coffee drinker, but don't forget to sometimes drive your

daughter home when I'm stuck at a meeting, huh?' But Ed had read his phone manual a little

further by that time and he had a response. 'There is no worry, once we get both you and our

little girl a couple of smartphones, I can program a rule that whenever she's finishing classes

while you're at a meeting, I would get notified by the system! Isn't that just splendid?' As Ed

said, so they did indeed. With one simple rule written via the same application, Ed assured his

daughter won't loose time waiting in school because of his short memory.

One evening, after having his daughter driven home, he decided to benefit from the fact of

his wife still being held at work - he turned on a TV with a football match just starting. The very

same moment his phone buzzed. This time it wasn't a simple notification to one of his rules. It

was a suggestion saying: 'You're watching sports, while your friend, Ted, does the same and

your wife is busy.' 'I haven't seen this guy in weeks, in addition he lives not far. What a great

opportunity it is!' he thought and dialled quickly the number. 'Hey, Ted! Are you watching the

game too? Don't you want to come over, I've got some beer in the fridge.. Great, see you soon!".

After putting down the phone, Ed smiled thinking, 'Now I feel close to my friends.'

- 36 -

The above scenario shows the basic idea behind the KRAMER system. Social

interaction in telephony can be enriched with a context sharing mechanism (Ed seeing

his sister-in-law out of country), on top of which additional personalized functionality

can be introduced (Ed's notification rule to pick up his daughter when his wife is unable

to do so). But the key intelligence remains to be harvested from the community. By

learning situations that many users have defined worth being notified of, the system

can derive social intelligence concerning situations that might be important for the

community (getting together to watch sports). In consequence, KRAMER may find

them pertinent and suggest them to those users that have not defined them by

themselves.

The situation of watching sports together with a friend while one’s female partner is

busy will serve as a reference example in this document. It would also be assumed that

the corresponding suggestion comes from three situations previously defined by other

users. Table 4-1 lists all those situations, and a couple more. One can see that the

resulting notification rule (S) is an effect of some semantic processing of the first three.

This process is explained in Section 4.7.

Table 4-1. Reference notification situations from the described scenario

action situation

1

notify me

WHEN

I’m watching football, friend is watching football,

and wife is at a meeting

2 I’m watching football, friend is watching sports,

and girlfriend is busy

3 I’m watching sports, friend is watching sports,

and female partner is shopping

4 I’m watching football, and wife is at a meeting

5 I’m reading, TV is on, and wife is at a meeting

S I’m watching sports, friend is watching sports,

and female partner is busy

- 37 -

4.2. Situations model

Contextual situations, being an object of manipulation and suggestion in the KRAMER

system, need to be defined in terms of a representation model. This model should be

expressive enough to represent complex situations made of several context dimensions

related to several entities. As we explain in Section 2.1.2, that kind of representation has

not been frequently used in the past research works, leaving situations modelled in

most cases as an unstructured composition of several semantic concepts. We, on the

other hand, need to maintain the structure of an entity-context relation of respective

concepts.

We seek a solution in the area of conceptual structures, one example being Sowa's

conceptual graphs [SOW83]. To obtain a structure representing a situation, we start by

defining our model with a meta-model inspired by a CONON upper ontology

[WAN04]. We distinguish, however, substantials (entities) from moments (context

description) as proposed in [COS06]. As a result, we define concepts of a context entity

and its context state. Computation entity and person are subclasses of an entity in

general. Location and activity are domain specific moments.

Figure 4-2. The meta-model of situations

We also introduce relations between moments and substantials (describes), and

between entities and a person (is related to, belongs to) to model the fact that one’s

situation is in fact one’s context along with context of his or her close ones. śs a result,

by instantiating concepts representing a situation and by inferring the respective meta-

concepts relations, we receive a conceptual graph, a conceptual tree to be accurate, an

example of which we present in Fig. 4-3. This conceptual graph has a "me" concept in its

root. We say that this complex situation exists with respect to one particular entity, a

person who perceives the situation.

- 38 -

Figure 4-3. Inferring a conceptual tree from the situation meta-model

Following the notation in [CRO07] we define a situation conceptual graph (tree)

SCG used in the KRAMER system along with its support. It should be noted that

concept types are of four kinds (four concepts in the meta model) and relations are

connecting either two entities or an entity with its context (dotted arrows in Fig. 4-3).

Definition 1. A support is a 5-tuple , where:
─ is a finite, p-ordered set of human relations types ;
─ is a set of finite, p-ordered sets of entity types , e.g. services, devices,

applications, agents, etc.;
─ is a set of finite, p-ordered sets of location types specific the entity type;
─ is a set of finite, p-ordered sets of status types specific the entity type;
─ is a finite set of binary relation types divided into two categories: those connecting

entities to other entities , and those connecting entities
to statuses .

Definition 2. A situation conceptual graph is a 3-tuple , where:
─ is a support;
─ is an ordered, directed graph having edges

and meeting a condition: ;

─ is a labeling of the nodes of G with elements from support S: ; .

Every concept in nodes of such conceptual graphs is a semantic concept taken from

a respective taxonomy. Taxonomies model different context dimensions: human

relations, types of devices, locations, etc. For example, Fig. 4-4 presents a situation, for

which being located in Poland is more relevant than being in any city in particular. As a

result, these semantically labelled graphs become much more expressive than basic

- 39 -

situation taxonomies as presented in [ANA06a]. This will also enable logical

manipulation presented further in this dissertation.

Figure 4-4. Every concept in a modeled situation comes from the respective taxonomy

Moreover, our conceptual graph-based model is consistent with the definition of an

abstract situation in situation theory [DEV91]. Indeed, graphs represent only a part of

the reality, of the real situation. In fact, every other entity taking marginal part in the

situation can be represented as "any" concept, extended further by "any" concept for its

context. "Any" is a root concept for every context taxonomy used in our model and is

normally omitted in the situation representation.

Figure 4-5. A modeled situation is a partial representation of the real one

The motivation for us to select conceptual graphs as a model representing situations

was its expressiveness, but also an easy comparison of conceptual graphs, which

enables logical operations on situations, i.e. their generalization. In fact, in order to

reason about situations, understand them, agents need to be able to compare them with

one another. They need to measure a degree of similarity between a current situation

- 40 -

and their knowledge about pattern situations. Therefore, a situation model should

enable and facilitate this operation.

In case of a plain single concept representation of situations, similarity between two

situations is measured as the similarity between two semantic concepts in the

corresponding ontology. Comparing two complex situations modelled with a

conceptual tree might require measuring similarities of semantic concepts for each

context dimension separately, and calculating their weighted mean. Furthermore, it

would be a graph matching problem between a couple of situation representations.

Even though optimal algorithms for matching graphs in general are reported to be

exponential with respect to the number of nodes in either graph [JIA08], we should

remember that abstract situations do not represent the whole knowledge [DEV91].

Instead, the number of nodes is limited to what is necessary for an agent to detect a

situation. For instance in [MEI04], "travelling" situation is defined only by using any

transportation mean and by the fact of moving significantly. Furthermore, Mugnier

reports in [MUG93] that many inter-conceptual graph operations become polynomial,

should the involved graphs be restricted to trees. In [ZHO02] the implementation of

conceptual trees matching is also reported to be polynomial.

There are also other computationally reasonable implementations of comparing

conceptual graphs: one for calculating an ontology similarity based on projection

between graphs [CRO07], others presenting comparison of two conceptual graphs as a

calculation of their overlapping parts with and without semantic subsumption

[MON00, MON01]. We present our algorithm in Section 4.7.2.

There is also another way of looking at the problem of comparing situations. Most

of the conceptual graph-based comparison algorithms mentioned previously exploit the

fact that concepts in nodes are structured in taxonomies per context dimension. As a

result, "chasing an animal" is supposed to be matched with "chasing a mouse"

[MON01], rather than "travelling by train", as concept of a "mouse" is a specialization of

that of an "animal". A similar idea is to be found in [POO95], where the authors seek for

the most interesting common generalization of two graphs in order to evaluate

"thematic" similarity between two conceptual graphs.

In fact, according to [MUG93], generalization and specialization are said to be the

key computational notions in every reasoning concerning conceptual graphs. Sowa

discusses six canonical formation rules as semantic graph-based operators for

equivalence (copy, simplify), specialization (join, restrict) and generalization (detach,

- 41 -

unrestrict) of conceptual graphs [SOW08]. These operators can be interpreted by either

logical subsumption or graph morphism.

Different researches make use of specialization rules, for instance [LAU07] employs

maximal join operator to perform high-level fusion on heterogeneous information

represented by conceptual graphs. In our work, we are more interested in detecting and

generalizing situations, and therefore finding generalizations of conceptual graphs

associated with them.

Mugnier explains in [MUG93] that for one graph to be a specialization of another,

there needs to be a projection from the second graph to the first. Projection is a sequence

of graph morphisms in a classical graph theory sense, but implying equality of relation

types and taxonomic specialization of concept types. As a result, a specialized graph is a

super-graph of the original one (external join operation) with possibly semantically

narrowed labels (restrict operation), as in the example in Fig. 4-6.

Figure 4-6. Situation specialization with two possible operators shown on our model

This makes the specialization relation a preorder because it is not anti-symmetric as

redundant graphs are still possible. Should the injectivity constraint be introduced and

internal join operator forbidden, the relation becomes a full order. Therefore, conceptual

graphs can form a hierarchy, like in [MUG93] or [LEV92]. As a result, reasoning about

relation between two graphs can be transformed into the problem of traversing such a

hierarchy. One graph is a generalization of another, if it is an ancestor of that graph.

Considering that conceptual graphs represent situations, reasoning about similarity

of two situations is reduced in a way to semantic distance measures as presented in

[GAN08] for ontologies. Moreover, finding more abstract / detailed situations implies

traversing the hierarchy upwards or downwards. Ye et al. introduce this idea in a

concept of situation lattices [YE07], [YE08], [YE09]. Although in [YE07] they model

situations as simple unitary concepts, similarly to [ANA06a], they notice that this

organization reflects the internal structure of situations and is beneficial in identifying

situations.

- 42 -

We define therefore a conceptual graph-based situation lattice similar to that of Ye

as a semi-lattice of situations with an added bottom element as follows:

Definition 3. A situation lattice SL is defined as , where:

- is a set of situation conceptual graphs on a common support;

- a specialization relation is a partial order between situations;

- the top element ⊤ stands for “anything is going on” situation;

- the bottom element ⊥ regroups all the most specific situations.

Figure 4-7. A sample part of a situation lattice

The join and meet operators in the theory of partially ordered sets have separate

meaning from join, restrict, detach and unrestrict operators in conceptual graph theory. In

fact obtaining a meet of two situations requires a sequence of restrict and join graph

operators on them, whereas the lattice join is obtained via graphs’ detachments and

unrestrictions. The operators may become a little confusing especially for the name

“join”, which is shared by the two terminologies. Taking an example of the Fig. 4-7,

“wife is busy and TV is on sports channel” and “TV is on BeIN sport channel”

situations join in the “TV is on sports channel” situation as an effect of detach and

unrestrict operators.

We argue that situations modelled as conceptual graphs can naturally form

situation lattices. One such lattice is an abstract object representing all situations

possible for an agent to be perceived, taking different context dimensions, with values

on different levels of abstraction, into consideration. Situation awareness benefits from

seeing a situation space as such an ordered structure. We show its practical advantages

in the Subsections 4.4 and 4.7, where technical solutions for situation detection and

generalization are inspired by their translation into the lattice traversal problem.

4.3. System architecture

The KRAMER system operates on a client-server architecture. This choice is motivated

in Section 3.3. In the case of the telecommunication domain, clients are applications

- 43 -

residing on mobile phones. Specifically, they are contact lists enriched with context.

Particular combinations of context dimension values for a user and her close contacts

may constitute important situations. Such situations are exchanged with the KRAMER

server, which processes them further. In this scenario we also assume that there is

another system responsible for exchanging context between contacts in the first place.

For the purpose of the prototype, both systems, the KRAMER and the context

distribution one, need setting up a proper infrastructure with a proper architecture. In

both cases there is a server unit in the IP network that mobiles exchange data with.

Then either the exchange is done only in the IP network or with a use of the GSM

network if there is no nearby Wi-Fi access point. The client application isn't in fact

dependent on the way the data is transmitted, it is the phone who assures best

switching. If no network is available at the moment, the transmission would be

reactivated once one of them becomes available.

Figure 4-8. The architecture of our prototype, including the context distribution and KRAMER servers

The context sharing server might be aware of the links between users, depending

on its implementation. If it had no knowledge of the list of contacts each user has, some

additional traffic would be expected. Either way, the information of a user changing

context values should be transmitted only to those who are interested. One further

limitation could be to send this information only to people one wants to share it with,

and with the desired level of details. For those reasons, the data flow would create some

virtual links between users that would correspond to the respective graph of contacts,

which is illustrated on the social level in Fig. 4-9.

- 44 -

Figure 4-9. Social relations in the context distribution system

However, important situations exchange performed by the KRAMER server would

not necessarily result in a similar virtual link graph. In fact, the clients in this

architecture have a priori no connections whatsoever. They are all in one anonymous

collaboration group. However, they would most definitely form those links having no

awareness of that fact. The resulting graph would appear somehow chaotic with

possibly strengthened links for the "like-minded" users. The latter is however a pure

speculation. We have not found any published study on the subject. The fact remains,

that any links in Fig. 4-9 would not necessarily match with those in Fig. 4-10.

Figure 4-10. Two levels of cooperation in KRAMER, links are formed between like-minded anonymous users

- 45 -

4.4. COSMO client

The software residing on a client device ought to be responsible for both detecting

important situations and exchanging data with the system. Following our decision to

adapt our prototype to the interpersonal communication domain of application, it

should integrate with mobile phone's phonebook application. Any other choice in the

future should result in an easy portability of this software, making it an interchangeable

module. We called it the COllaborative Situation MOdule, COSMO for short. It is a

client of the KRAMER server, which interfaces graphically with a user for her

interaction with the system.

The Fig. 4-11 shows the main functional blocks of COSMO in its generic form. The

central situation detection element is provided by real-time context data from an

outside provider. The situations to be detected have two sources, user's own rules

defined via a GUI, or suggestions provided by the KRAMER system. The former are

also shared with KRAMER. Finally, once one of the situations is detected, the proper

action making use of any necessary smartphone resources, and available at the same

time, is performed. COSMO users have further possibility to evaluate the suggestions

received by either accepting them (a positive evaluation), or rejecting them (a negative

evaluation).

Figure 4-11. The generic COSMO architecture

In the following subsections we discuss the details on the structure and

functionalities of our COSMO implementation. The particular nature of context data

source is shown in Section 4.4.1. The way the situations are defined and exchanged is

presented in mid subsection. Finally, in Section 4.4.3, we explain the technology used to

quickly detect situations in function of constantly changing context.

- 46 -

4.4.1. Context sharing

The origin of context data is restricted by neither the COSMO module, nor the

KRAMER system. COSMO receives at its input a flow of constant context information

updates regarding the source. Those updates should just be structured in triples (entity,

context dimension, context value). This way the situation detection element in COSMO

will be able to compare the information with parts of situations to be detected. The

triple would match or not a branch of a tree modelling a situation. For the details of

situation detection mechanism see Section 4.4.3.

Having our prototype applied to the domain of communication between mobile

phone users, we narrowed artificially the nature of the contextual data. The data source

itself is in consequence adjusted accordingly. We consider that important situations

frequently involve other people, especially members of families or close friends. Their

context should be equally taken into consideration while making decisions. We propose

using a contextual phonebook application and a context distribution system. The

former would provide context information regarding each phonebook contact, by using

the latter system.

It is assumed by us that modern smartphones are able to sense several context

dimensions, and that there exists a logic of initial pre-processing those contextual data

in order to obtain a couple of their meaningful semantic representations, which is

required as an entry point of our system. We simply state that this is not a part of our

research objective. From the point of view of our system, there are no restrictions on the

way those representations are obtained, it may be a sophisticated reasoning mechanism

(like translating phone profiles against availability statuses, or matching GPS

coordinates in places types in Google Places API6) [RAE05],[EAG09] or even a user's

manual input. For the needs of the prototype we use Google Places API and manual

input for mapping respectively location and availability statuses into semantic concepts.

Figure 4-12. Structure of the context distribution system and its relation with the COSMO module

6 https://developers.google.com/places/

- 47 -

We define the context source for the COSMO module as follows. Sensors embedded

in a smartphone capture the readings. Those sensors may be of physical or virtual type

[BAL07] and therefore acquire information either about the surroundings of the phone,

or about the state of services and applications on the mobile itself. All of those are

processed by the logic necessary to obtain two semantic concepts. They can then be

shared with the distribution system, the role of which is to inform about updates on

other contacts context changes. The latter is provided to both user interface and the

COSMO. The process is visualized in Fig. 4-12.

As a result, every user, or her mobile phone to be precise, is able to share her actual

location and availability with others via a context distribution system. Every day life in

social networks and messaging tools show that people are eager to share a lot of private

data in an act of social communication. Studies seem to confirm this fact and talk about

new fast mode of chatter and sharing news in communities, which becomes more and

more popular [JAV07]. It is hard to tell exactly the reasons standing behind but we

consider them being related to the natural need of human expressing oneself, and only

recently given some large-scale tools for doing so.

Figure 4-13. Microblogging example on Foursquare [source: Insider]

In a mobile phone contextual information about contacts can be communicated

directly in the phonebook. Each contact list entry would be annotated with two context

dimensions, concepts describing both one's location and availability status, and with a

relationship label. Two former values are those previously learnt by that user's

smartphone and then distributed by the corresponding system. The latter has no

influence on the classical way of interacting with one another, but it enables later

defining contact dependent situations in COSMO. This is static data, defined manually

once, in contrast to the dynamic nature of location and availability context dimensions.

- 48 -

Such a context-rich phonebook is a tool for showing the latest, always up to date

information expressive for every given contact at all times. Barkhuus et al. [BAR08]

further compare such sharing applications to the very practice of microblogging.

However, neither the context-rich phonebook, nor the distribution system is a novel

idea. Context-Phonebook [SCH01b], ContextContacts [RAE05], Connecto [BAR08], and

Whereabouts Clock [BRO07] are just four of such applications. Some researchers claim

that context information sharing with friends is like story telling bringing closer the

contacts to one another, frequently reassuring them [BRO07] and enabling coordination.

Others that their application inspires social decisions to contact or not a friend in

function of his or her location and availability [BAR08].

Figure 4-14. Contextual phonebook example in our demo

However, in all of the mentioned approaches context dimensions are either limited

to just a few possible values (home, school, work, on the way or available, busy, in a

vibrate mode) [SCH01b][BRO07], or completely unrestricted (names provided by GSM

cell identifiers as in [RAE05], free text location naming as in [BAR08]). We need to find

the balance in between the two approaches to “snap the semantic context to the grid”

[GRU07]. Therefore, we provide users with a set of semantic concepts for each context

dimension (e.g. cinema, grocery, boutique, etc. for location). Those sets of concepts are

large but predefined. If needed, they can be modified and enriched as long as the

modifications are propagated through the KRAMER system as well.

Another property of the sets of semantic concepts is that they are organized in

taxonomies (e.g. grocery, boutique being two types of a store). Fig. 4-15 presents three

- 49 -

upper levels of abstraction of a sample availability taxonomy. Profiles “at a meeting”

and “do not disturb” imply both that a user is simply busy. Please note, that this thesis

does not provide a formal taxonomy for any context dimension, it rather just uses some

sample self-defined ones. Nevertheless, the root of every taxonomy is represented by

the most abstract “any” concept. The same applies to the other context dimensions,

which is shown in Fig. 4-4, and the mapping is performed by the logic external to the

COSMO module. The relationship labels like “wife” or “boss” also form a respective

taxonomy with a manual selection of each particular value upon each contact creation.

Figure 4-15. Three upper levels of a sample availability status ontology

Once the local context is sensed and mapped to semantic concepts, it is ready to be

shared among contacts. Context distribution can be assured by a system using a server

as its central element. The server can either keep the knowledge about the relations or

ignore it and just follow the addressing instructions of user devices. The first option

requires less traffic but stores private data in one spot. The other requires for every

context update to be addressed specifically. Probably there could exist yet another,

more intelligent way of assuring what is essential - transmitting context data between

friends and relatives.

Noticeably, this is a sensitive mechanism as users are disclosing some very private

data. Tests performed by some researchers [BRO07] show that people are more

reluctant to share their context with location-based services, for example, than with

their relatives. It appears that who consumes this kind of data is an important factor.

The special nature of close family links motivates Brown et al. to limit their service to

family members only. Due to the anticipation of privacy issues, the researchers even

place their Whereabouts Clock in a kitchen, assumed to be the centre of the family life.

Even though the study of Barkhuus et al. [BAR08] shows that initial scepticism

regarding disclosure of private context data is not that critical in real application use,

we agree that the details that users share should be a function of who can see them

- 50 -

afterwards [LED03]. Therefore, we introduce the possibility of selecting a level of

abstractions of the context that one is willing to share with each contact. Phonebook

contacts can be divided into groups of the closest ones, which see every detail of a user

situation, then those that can see some information, finally those with whom no data is

shared. For example, in Fig. 4-14 the first contact shares only the region as a location

(Bretagne) without disclosing any specific city or building.

Figure 4-16. Contact details screen in a demo contextual phonebook

As shown in Fig. 4-16, abstraction levels are defined separately for every context

dimension of a contact, based on the structure of a corresponding taxonomy, i.e.

taxonomies can differ by the number of abstraction levels (depth of a tree) and

complexity. The preferences regarding the amount of details shared with each contact is

likely to depend on the social closeness, friendship or familiar links felt towards that

particular individual. Users are invited to create this kind of a context sharing

preference table, which should be respected by the distribution system, whatever the

technical solution applied there.

Figure 4-17. Context sharing preference table of a user Bob

- 51 -

4.4.2. Situations exchange

The context sharing described in the previous subsection is already an interesting social

interaction mechanism. It enables people to learn at a glance the context of their close

ones. Being empowered with associating different pieces of information they are

supported in seeing the big picture. In fact, their situation is influenced by those of their

friends and relatives. And as a consequence, without much effort they are given real-

time data that can make their everyday socially aware and informed decisions easier. A

particular context value describing a friend may initiate an interaction, or the opposite,

inspire delaying such interaction.

However, a phonebook or other context monitor is not an application that one

consults every five minutes. The usage of it has a rather on-demand nature. In

consequence, an update on context can pass frequently unnoticed. With some pieces of

information missing, the proper association of a situation could turn impossible, and an

opportunity to react simply missed. It would be an added value for users it they could

define their important situations as a composition of their social context to be notified of

each reoccurrence. It would be also a way to structure situations before providing them

to the KRAMER system.

The goal of KRAMER is to process collaboratively gathered important situations

and suggest notifying those its users that have possibly never encountered them before.

One possible way of introducing such situations in the first place would be to adapt

some data mining mechanisms to learn them without any user interaction. Such

mechanisms are, however, not an object of this thesis. Another, opposite way, would be

to ask the users to provide situations themselves. Linking their effort to feed the

KRAMER system with their instant benefit seemed like an elegant working solution to

employ.

The element described in this subsection is named "situation defining" in Fig. 4-11.

A user via a GUI, integrated with the phonebook application in our prototype, may

specify, which context dimensions of which entities constitute for an important

situation. The situation can be optionally further associated with an action to be

performed automatically. For keeping a user only informed for her to decide on an

action to take, the default action is a simple notification. However, in its generic form,

users define rules of the following structure.

WHEN <situation> THEN <action>

- 52 -

A situation in a rule is modelled as shown in Section 4.2. A list of such rules is

stored locally as a reference for the situation detection mechanism. Furthermore, each

such rule is contributed to the KRAMER server. The latter is expected to suggest

important situations defined by other users, which are also kept as a reference locally

upon receiving. Therefore, the situation detection is performed on situations coming

from both sources. Keeping a unified form of the rules (i.e. the same set of taxonomies

for all context dimensions are stored in every COSMO client and the KRAMER server)

enables the interoperability between COSMOs and KRAMER.

In general, rule-based systems, which rely on situation-action rules, can be

described as a mean to codify the problem-solving know-how of human experts

[HAY85]. They associate a particular production event with a composition of rules. All

rules integrated in the system constitute knowledge and a potentially complex if-then

reasoning to obtain decisions. These are the so-called production systems, Rete being

one example of them [FOR82]. We limit the actions in the prototype to notifications

only, which combines the approaches of a mobile phone personalization [KOR04],

situation-aware reminder [DEY00b], and context-aware notification service [ETT06].

The power lying behind rule-based systems is responsible for its wide use in expert

systems [HAY85], but also in commercial user programmable solutions. On{x}7 is a

recently released application by Microsoft that exposes an API to create simple

contextual rules automating an Android mobile phone. Those rules are called recipes

and they are inspired by the If This Then That technology (IFTTT)8. Motorola

SmartActions9 is yet another example. Those solutions, even though they apply to some

quite complex events, are missing a social context to the rules they enable to program.

In our prototype, users are able to define their situation-based rules concerning

several contacts from the phonebook list via an integrated GUI. A situation is therefore

a composition of possibly multiple local situations of user's contacts. We see the concept

of a situation to be social by its nature, and we incorporate it into the COSMO tool. In

practice, COSMO users are able to select a number of entities and decide for which

context values a given action (notification) should be fired. Furthermore, the values

provided may be already taken from upper levels abstractions of corresponding

taxonomies.

7 https://www.onx.ms/
8 https://ifttt.com/
9 http://www.motorola.com/us/consumers/SMARTACTIONS™/112638,en_US,pd.html?cgid=apps-software

- 53 -

Figure 4-18. Notification rules creation and listing screens in the prototype

Fig. 4-18 presents an example of a created rule in the left and the resulting list of

rules in the right. In this example, being in the Bretagne region, rather than in any town

or building in particular, is enough for the user to be able to help his wife in driving

their daughter home from school. It is important that on the level of rules, contacts are

no longer considered as individuals with particular name and phone number. Instead,

they are represented as concepts of relation with a user. This way these rules can be

shared and reused in the KRAMER system, as explained in the following subsection.

But it is for this reason that COSMO requires annotating each contact with a

relationship concept.

Figure 4-19. Rules exchange between COSMOs and KRAMER

Once a rule is defined it is communicated to the KRAMER server, which in turn

shares its knowledge with its clients. Messages with notification rules being defined by

a user, those being suggested by the system, and finally user evaluations of the latter

- 54 -

ones are illustrated in Fig. 4-19. The latter type of messages is related to the suggestions

received and is discussed in the next subsection. Naturally, since a list of annotated

contacts form a profile (of a user as someone who is married if having a contact labelled

wife or husband, for example) notification rules relating to a situation not possible to a

given user profile may be skipped in transmission.

4.4.3. Action execution

The final task of the COSMO module is its constant monitoring whether the conditions

of one important situation, either defined in person or suggested by the KRAMER

system, are matched by the current context. In that case a proper action depending on

the corresponding rule, for example a notification, should be fired. This functionality is

represented in the centre of Fig. 4-11. The "situation detection" element is provided with

own rules and those being suggested, as well as with context from the sensors and from

the context distribution system. It produces instructions to fire an action associated with

whatever situation is being matched, and instructions to cease the action when a context

update makes the situation no longer matched.

This approach and the current prototype implementation assume that all actions,

even notifications, are of long duration nature (i.e. “keep the notification active” rather

than “notify”). Short time execution actions would require defining actions with an

apposite meaning, e.g. “increase the radio volume” would be a reaction to “decreasing

the radio volume” once the conditions required for the latter action are no more.

The mentioned procedure of triggering appropriate actions requires a mechanism

that is responsive and scalable. An action ought to be fired at the very moment the

current situation matches one of the reference situations. It may happen that several of

the reference situations are co-occurring in one time, therefore the mechanism should

be efficient in detecting them all at once. In order to choose a technical solution for that

problem, an analysis of the situation detection problem needs to be made. We look into

the abstraction of situation lattices in order to learn some practical guidelines.

Following the Def. 3 and the Fig. 4-7 from Section 4.2, all of the possible situations

can be made hierarchical in a partial order. In consequence, situations more abstract are

closer to the top element of the lattice than those that are more detailed. The

specialization of a situation is performed by specializing concepts used in the original

one, or by making it more complex, which is represented on the lattice by joining it with

another situation. So given that the COSMO module stores all the context dimensions of

- 55 -

all its entities, one might say that its knowledge is placed directly in one of the nodes

close to the bottom of the situation lattice.

Assuming that situations defined as important (which users want to be notified of,

for instance) are some rather more generalized ones, for example having less than five

entities involved, they would be rather located closer to the top of the lattice. This

means that a situation defined or suggested can be an abstraction of the situation

actually perceived by the COSMO. Therefore, in order for an abstract situation to be

detected as occurring at a given time, one of its specializations needs to be perceived. In

other words, the relation between a reference situation and the actually modelled by

COSMO one is a relation of generalization/specialization.

Furthermore, the problem of detecting that reference situation can be mapped into a

problem of traversing a lattice. If a situation lattice was representing the space of all of

the situations possible in the world, it would be infinite, for there might be infinite

number of entities detailed in the universe. However, given the finite set of entities

(contacts in a phonebook) and their possible statuses (concepts taken from respective

fixed taxonomies), the lattice itself is also finite. This renders the lattice traversal

mechanism possible. One example of a phonebook-based situation lattice is in Fig. 4-20.

Figure 4-20. A simplified part of a situation lattice from a contextual phonebook situations space

Traversing a situation lattice from the perceived situation all the way to the

reference one requires applying a set of situation generalizing operators. As explained

in Section 4.2, these would be Sowa's detach and unrestrict operators. For example, in

Fig. 4-20, if the current situation were "wife is at a meeting and daughter is in a

classroom" and the reference situation given "wife is busy", one can easily determine

that the latter situation is matched and should be detected as occurring at the moment,

- 56 -

for there exists a path of unrestrict and detach operators (opposite to restrict and join

ones), which can be applied in any order. This seems reasonable as whatever the

location of the daughter set is, if the wife is at a meeting, she is busy (see Fig. 4-15).

In the implementation of the COSMO module, the current situation is naturally

detached into particular context triples, one for each context source being updated for a

given entity. In consequence, the operators needed to be applied to all those simple

situations are first, any necessary unrestrictions generalizing the context conceptual

values, should the rule relate to a more abstract semantic value, and second, a join of all

necessary context dimensions for the required entities. The composed situation with

any necessary context abstraction should be an exact match with the reference situation

for the notification, or any other action, to be fired. This stands for getting from “wife is

at a meeting” and “daughter is in school” situations in the lattice in Fig. 4-20 to the

“wife is busy and daughter is at school” one.

As rule-based systems take frequently the form of production systems in their

implementation, we also adapt one of such production systems following the directives

obtained from the analysis of situation lattices. The production system Rete [FOR82]

associates decisions on performing actions (the productions) with complex set of

conditions, situations in our case. The Fig. 4-21 represents a Rete production network

composed of two situations: "wife is busy and friend is watching sports channel" and

"daughter is in school and wife is busy". The right hand-side part (red nodes) is known

as alpha network, and the left hand side (blue nodes) as beta network.

Figure 4-21. A Rete network for two sample situations

In production system terminology, conditions are simple verifiable facts on a

property or state of an entity. In case of complex situations, these are the simple ones,

- 57 -

consisting of only one entity and one property, relating to one context source. The

situation "wife is busy and friend is watching sports channel" is composed of two such

conditions: "wife is busy" and "friend is watching sports channel". They are marked C2

and C1 in Fig. 4-21 accordingly. This corresponds also with the join/detach relation in

situation lattices. It is to be noted therefore, that the condition C2 is shared in the two

situation, and so is the node in the Rete network.

The alpha network in every Rete network stands for checking validity of each

particular condition. The beta network on the other hand is like a logic composition of

some conditions. It is like a join operator for simple situations. Whenever several

conditions are verified as true, one for an alpha node directly connected to a beta join

node and other for all the upper conditions, a new valid composition of conditions is

propagated downwards into a beta memory, or the production node. The beta network

is therefore performing the join operation, which we defined as necessary of detecting

complex situations.

If the system was to detect such combinations only, the classical form of the Rete

implementation would be enough. However, we say that context may be introduced to

COSMO in a more specialized form than a reference situation would require. If the

reference concept is an abstraction of the perceived one, semantic generalization needs

to be performed. In order to introduce semantic reasoning as explained above, we

enhanced our Rete implementation by replacing the equality (=) condition with

subsumption (≤) one in alpha network. The condition is said to be true if it is equal or

more abstract than the actual data.

Let's take a wife of a user being busy C2: (wife ^state busy). Via a context

distribution system associated with COSMO, she shares with him possibly some greater

deal of details, for example that she is at a meeting w1: (wife ^state at_a_meeting)

at work. According to a taxonomy defined, see Fig. 4-15, being at a meeting means

automatically being busy. Therefore, even though the COSMO receives information

about the meeting taking place at the moment, it is more important for the situation

detection mechanism, that the wife is indeed busy. The condition should be

nevertheless matched. This is assured by checking for concept descendants in alpha

nodes.

The Fig. 4-22 shows a set of COSMO incoming updates about context, which are put

into our Rete network. W1 is matched against the condition C2, as being at a meeting is

- 58 -

a more specific concept than being busy. The second join node cannot fire a notification

yet, as previous conditions are not matched. The second fact, w2, has no impact on the

system, it simply is not matched by neither of the conditions. Finally, w3 is an exact

match for condition C1, which is propagated to the awaiting join node. As a result, the

respective notification is fired.

Figure 4-22. Rete network activating with context updates

If at any moment, before receiving the w3 update, the state of a wife changes, into

being free for example, then the fact that the condition is no longer matched is

propagated through the network. In that case, knowing that daughter enters a mall

would not fire a notification. In the same way, having wife or friend restricted their

preferences for sharing context with the user, notification can no longer be fired as well.

In fact, matching more abstract context concepts against more specific conditions in

Rete is simply not valid, e.g. knowing that a user's friend is in France does not say

anything if he's in front of his TV or not. Whereas his watching a particular sports

channel does.

In reality, anytime a user creates a new notification rule in COSMO, or receives one

from KRAMER, the Rete network in COSMO is updated. As a result, the networks

stored can be more complex that the one in the figure. If there are several situations

requiring one particular condition, a respective alpha node is being shared, and linked

to possibly several join nodes. The output network's complexity is a function of the

number of rules introduced. Nevertheless, the situation detection time is relatively fast.

There are at most n+m Rete nodes to traverse (n being the total number of situations,

and m being the number of conditions in the most complex situation).

Finally, if an action suggested by the KRAMER is the one that is fired, a user can

evaluate the pertinence of the recommendation. In case of a simple notification there are

- 59 -

two buttons displayed. One to accept the notification rule, the other to reject it. The

decision taken here is sent to the KRAMER server as a feedback for revaluating the

situations that it found previously important enough to suggest actions for.

4.5. Communication protocol

The prototype of the KRAMER system is implemented in a client-server architecture,

where COSMO modules are clients to one central KRAMER server. The two types of

entities in our system exchange messages in order to both gain user collective

intelligence and distribute it further among them. There are therefore three interfaces

defined for that communication. The first for submitting newly created rules on the

server. The second for sharing the suggestions on rules with important situations back

with COSMO modules. And finally, the third to provide a feedback on those

suggestions, namely their acceptance or rejection.

Figure 4-23. Interfaces shared by the KRAMER and a COSMO in their mutual communication

For this reason, there is a communication present between every COSMO module

and the KRAMER server. A similar communication is needed for the context

distribution system to work, and even though we implement similar mechanisms in

both cases, the latter is not a part of the KRAMER system, and shall not be detailed in

this dissertation. Nevertheless, the communication in the scope of our system requires a

protocol and transmission technology to be implemented between clients and a server.

We have decided to use the MQ Telemetry Transport protocol10. MQTT is a

lightweight publish/subscribe messaging transport known for its low power usage,

which is critical in mobile environments, and is frequently an issue in constant

connectivity of social applications. On the other hand, a strict real time message

delivery is not a constraint in this case, as exchanging situation-based rules is not a

synchronous voice conversation. The KRAMER server is likely to do the calculations on

important situations periodically rather than in real-time. Every day use of the system

implementing the MQTT proved it to be a good solution. It should be noted that our

10 http://mqtt.org/

- 60 -

choice for the protocol is an arbitrary one. While there exist many different solutions,

for example CoAP11, which is intended for simple electronic devices, looking for the

best one would not have a major impact on the functionalities that the KRAMER system

provides.

From the technical point of view, the MQTT message exchange mechanism requires

an additional server service. Both the client and a server in the KRAMER architecture

subscribe to the MQTT service. They are both treated as clients from this perspective.

Then whenever a new message arrives from one COSMO entity, it is forwarded to the

KRAMER server, and vice versa. It is a kind of an on demand forwarding of a

published message to all subscribers. If there are no messages coming, the service keeps

a minimal activity, just listening for the next one to arrive.

Figure 4-24. A logical communication between the KRAMER and a COSMO

As far as the communication procedure is concerned, upon its first connection,

COSMO subscribes with an id (a mobile phone number in our application) on a

common channel to a server, which in turn creates an MQTT channel dedicated to that

client. The KRAMER server is notified of this fact on its dedicated channel, resulting in

its subscription on the newly created channel. From that moment on any message sent

by the COSMO module is forwarded to the listening KRAMER. Moreover, any time the

KRAMER wishes to publish new suggestion rules, it does so on every channel

separately.

In consequence, it may filter out sets of rules for each COSMO from rules involving

situations not possible and therefore of less interest for some users. If one has no wife,

any rules involving a wife having a particular context would never result in an action.

The rule might be very well transmitted and stored on a COSMO locally, as the

COSMO action execution mechanism does perform that kind of logical filtering.

However, the transmission load could get cut down, should the filtering mechanism be

introduced. Because this functionality is independent of the KRAMER server and its

11 https://datatracker.ietf.org/doc/draft-ietf-core-coap/

- 61 -

collaborative processes themselves, the best place for it would be in the message

exchange block, see Fig. 4-24.

Figure 4-25. A COSMO module connection with the MQTT service

The Fig. 4-25 shows one COSMO connecting to the communication service, and its

dedicated MQTT channel being coupled with itself and with the KRAMER entity. The

Fig. 4-26 presents a sample message exchange between COSMO modules and the

KRAMER server. Those messages are sent as string of characters representing rules

with situations, and some additional pieces of information, like evaluation. Naturally,

they may be encrypted. For the three types of messages, see Fig. 4-26, not to be

confused, each is preceded by a respective key word (e.g. NEW, SUG, EVA). The

situations themselves are formatted in JavaScript Object Notation12. The following is a

sample JSON representation of the situation in Tab. 4-1(S).

{ũpersonŪ:ŪmeŪ,ŪstatusŪ:Ūwatching sportsŪ,ŪrelationsŪ:
[{ũpersonŪ:ŪfriendŪ,ŪstatusŪ:Ūwatching sportsŪ},
{ũpersonŪ:Ūfemale partnerŪ,ŪstatusŪ:ŪbusyŪ}]}

Figure 4-26. Message exchange process between COSMO modules and the KRAMER server

12 http://www.json.org/

- 62 -

4.6. KRAMER server

The goal of the KRAMER system is to learn importance of situations in a collaborative

fashion from its users, and then further share this knowledge with the community, see

Fig. 3-1. We argue that even though one might program his or her own action

(notification) firing situation-aware service based on past experiences or anticipation of

some critical situations possible in the future, one is not very likely to cover all

situations that would be found important once occurred. It would be especially difficult

as far as situations never previously encountered by a given user are concerned.

Therefore, we make the KRAMER system users benefit from the common knowledge of

the whole community. The global knowledge of the system is increased with the larger

number of rules coming from its many users.

Our architectural choice for the system, discussed in Section 4.3, imposes multiple

user clients for one central server, which we call the KRAMER server. The server

interfaces with COSMO clients in a threefold manner, as shown in Fig. 4-23. It receives

new rules defined by users, it sends back suggestions on important ones, and it permits

evaluating those suggestions. Therefore, the KRAMER server is a place, where at first

rules with situations that some users find important are sent and stored in. Later they

are redistributed among all users.

But situations exchange in the scope of the KRAMER system may be of very

different nature, involving different entities, defined on different levels of details.

Naturally, aggregating many rules increases the knowledge and skills of the system

[HAY85]. On the other hand, users should be able to experience service personalization

and not be bothered with every rule that has been introduced to the system. This calls

for a logic harvesting those situations, which are important for users in the community.

As a result, the collected intelligence will be transformed into a collective one [GRU07],

enabling smart recommendations.

Figure 4-27. The main process of the KRAMER server

- 63 -

The Fig. 4-27 presents a schematic view of the KRAMER server. There are two

storages in it, one for the rules contributed by COSMO users, the other for important

situation-based rules that KRAMER suggests. The passage from one to another is done

via a processing element, which is explained in great details in Section 4.7. The

hourglass signifies its periodical execution. There is also a loop going from the

processed rules back into the mechanism, for the new suggestions are elaborated based

on both the former ones, evaluated or not, and new contributions.

4.7. Important situations

KRAMER is a recommender system for situation-aware rules. Among rules contributed

to the server, it needs to find those worth notifying its users of. Therefore, they need to

be rules about executing actions in case of important situations. Users are welcome to

define rules that apply to the situations they know to be important to them. This does

not necessarily apply to situations that one has not encountered before, and may not be

aware of their potential importance. For this reason we make KRAMER a system that

gathers experience about important situations from all its users. The complete database

of rules created by the whole community is stored on the KRAMER server.

Some commercial solutions simply open their rules databases for users to browse

through, like IFTTT recipes archives13. However, provided that the number of such

rules is huge, the problem of users' initial effort to find interesting rules may be too big

of a drawback. KRAMER resolves this issue by seeking the collaborative intelligence in

processing the stored knowledge, and employing collaborative filtering of that data. Its

principle is the same as in other recommender systems widely used in e-commerce

[SCH01a], for example. Users are suggested with an interesting piece of information

that they were not aware of before, which is harvested from other users’ experience.

However, KRAMER rules are more complex beings than the usual subjects of

collaborative filtering in its Web applications. Even if rule actions were taken from a

closed set of simple actions, the situations themselves are represented by limitless

conceptual trees, see Section 4.2. It turns out that the classical implementation of a

collaborative filtering mechanism needs to be customized for the needs of the KRAMER

system. The process of obtaining both rules to be suggested in the system, and the

associated important situations is presented in the following subsections.

13 https://ifttt.com/recipes

- 64 -

4.7.1. Situation popularity

Items that are recommended in classical collaborative filtering-based engines are in

many cases those which have a high rating from like-minded users. The like-

mindedness is being calculated by correlation of ratings on other items. A

corresponding similarity can be also calculated for pairs of items themselves by means

of user-item matrix transformations. As a result, the suggestion is given if the associated

item has statistical chances of being given a high note from the recipient, so whether a

similar item was already given a high note, or the item is rated highly by a user with

similar tastes.

In the case of situations, which are semantic beings, more complex than usual web

store items, the question of their similarity is also of a more complex nature. Such

situations are not only statistically similar in terms of the pure collaborative filtering,

but they may be of different degrees of similarity semantically-wise. This fact has

obviously an impact on our suggestion making algorithm. Moreover, we argue some

situations to be important and worth notifying of, should they form groups of

semantically similar situations that are rated as important in COSMO modules.

Naturally, the rating here is binary: having defined the rule or not. So an important

situation is a frequently defined one.

Considering that situations contributed in rules on the KRAMER server are

modelled as conceptual trees, they are a combination of different context dimension

values taking a form of semantic concepts. Furthermore, each concept is taken from the

respective taxonomy resulting in different levels of abstractions for the considered

information. In consequence, two different situations can have all their concepts the

same but one, which is represented on two levels of details. For example, a situation

"wife is busy and friend is watching a sports channel" is slightly more abstract than

"wife is busy, and friend is watching BeIN sport channel".

The two above situations can be considered very similar. The difference can be

frequently of no relevance for situation aware decision making. Moreover, should they

be treated simply as different objects injected into the system, both of their popularity

ratings would be smaller than their total one. Depending on the granularity of

contextual concepts, there may be many more similar situations created by users that

make use of different levels of details but mean essentially the same. Despite being

- 65 -

possibly widely used, it would appear that they do not interest but a small portion of

users each.

Figure 4-28. Two semantically close situations meaning one generalizing them both

The choice of a very expressive situation model using more or less abstract semantic

concepts to express the context has all the advantages discussed in Section 4.2. For the

requirements of a recommendation mechanism, however, we need to deal with this

sparsity issue. In our algorithm we propose to group situation that are semantically

similar. We do not wish to employ any numeric semantic similarity measure, nor an

artificial threshold to decide if two situations are still similar or not. We introduce an

innovative mechanism, which performs the matching in an opportunistic manner.

In order to consider two situations to be similar, the algorithm looks at all possibly

similar situations at once, and evaluates their similarity as a whole. The actual process is

explained in the following subsection. If some situations are found mutually similar, the

system does not consider but their one representative with a popularity rating being the

total of their individual ratings. The situation representing the group is a generalization

of all situations implied. The generalized situation is the least abstract possible one, and

is calculated by the same grouping algorithm.

The only requirement we put on situations to be similar, is that they need to have

the same number of entities and their context dimensions involved. In other words, the

structures of the corresponding conceptual trees that model those situations need to

match. From the logical point of view, introducing an entity or a context dimension to

one situation makes that element to gain importance while it was previously not

important at all. The presence of such a factor can completely change the meaning of a

situation, which would be further hard to evaluate as the corresponding concept on a

former situation would be the most abstract "any" concept.

Finding the generalization of any two situations is always possible, whatever the

structure of the corresponding graphs. But a concept representing at once some specific

context value and the most abstract "any" value is always the most general of the two,

resulting in an uncontrolled abstraction of the meaning. For example, generalizing "wife

- 66 -

is at (location) work" and "wife is (availability status) busy", presented in Fig. 4-29,

would result in trivial "wife (is anywhere and doing anything)". This does not make

sense with respect to the recommendation system, which ought to suggest meaningful

situations to its users.

Figure 4-29. Two situations differing in structure

We notice that our choice has some practical advantages. While adding or removing

one context description of an entity, possibly eliminating that entity from playing any

role in the situation, can result in a situation similar to the original one, implementation

logic would become greatly complexified, if not even made impossible. Comparing two

graphs or even examining their isomorphism is an NP-complete problem [JIA08].

However, considering only same graph structures reduces in many cases the

complexity of the problem to the polynomial dependence [ELL92].

Therefore, the algorithm implemented in the KRAMER is composed of two steps.

The first being the situations grouping by matching graph structures with respect to the

number of edges and their relation concepts labels. And the second, finding

representatives of sub-groups of those groups that are indeed similar by means of their

opportunistic generalization. Both of those steps are explained in details in the

following subsection, and both of them may be represented as operations of a situation

lattice, the idea of which is introduced in Section 4.2.

An exhaustive situation lattice consists of all the possible situations for a given set

of entities and taxonomies relative to each of the context dimensions. Given that the

"any" concepts are not present in a situation representation, the lattice regroups

situations with all sorts of model structures. Making a situation more complex is an

effect of a Sowa's join operator, which combines two simpler situations into a more

complex one, see Fig. 4-6. The resulting situation is sure to have a structure differing

from both former situations. Eliminating all the join relations in the lattice results in

creating a family of situation lattices, each dealing with only one specific situation

structure. This corresponds to the grouping step of our algorithm.

- 67 -

Figure 4-30. A part of a situation lattice referring to Table 4-1

In a scope of one same-structured situations lattice, the relations maintaining the

hierarchy are those of restriction or unrestriction of semantic concepts. Finding

situations that represent best groups of similar situations in one such lattice is a

question of determining the least common ancestors of all situations introduced to the

algorithm. Neither of the resulting generalizations, however, can cover a situation that

was not introduced. In other words, there cannot exist a case in which at least one path

obtained by series of restrictions leading from the abstracted situation to the bottom

lattice element does not pass through any of the situations in the initial set or one of

their descendants. This, on the other hand, relates to the second step of our algorithm.

For example, Fig. 4-30 presents a case of four situations in a simplified lattice

matching a scheme <a person> is in <a status>. Those situations are last parts of those

in Table 4-1 with one added, (4)"friend is shopping". By analysing the lattice one may

notice that there is one situation, which can represent the (1), (2) and (3). The

generalised "female partner is busy" cannot be restricted to any “leaf” node, which is

not represented by the initial set of situations. Even if there exists a path from it to “wife

is shopping” via “wife is busy”, which is not present in the set, there is situation (3),

which covers that leaf. As a result, the abstract situation sums the ratings of the three

situations covered. Meanwhile, there are situations missing from the set that prevent

including the (4) in the top abstraction, e.g. “friend is at a meeting”. Therefore, the

situation remains not generalized. As a result, two situations represent those four in the

input set, and they are bolded out in the figure.

4.7.2. Generalization algorithm

The situations introduced to the KRAMER system may be more complex than those

presented in the example in the previous subsection, see Table 4-1. But the principal

idea about their grouping and generalizing similar ones remains unchanged. Moreover,

- 68 -

some practical guidelines can be learnt from the lattice approach. In the algorithm

implementation we distinguish also two steps, separating grouping from the

generalization itself. They both serve to find similar situations, the first by analysing the

corresponding graph structures, the other by adding the semantic properties of the

concepts used. The whole process is represented as the centre module in Fig. 4-27.

The first mechanism is based on the adaptation of the algorithm presented in

[ZHO02]. The authors there present a formula to measure semantic similarity between

two conceptual graphs. It is a recursive formula and for every recursion level it

combines all of the possible sub-graphs obtained by cutting a previous level sub-

graph’s root node. For every such combination it calculates semantic similarity of

relation-concept pair for both examined sub-graphs. Finally, the best matching

combination of further sub-graphs is selected and passed to the next call level. The

result given is a number between 0 and 1, where the latter stands for a complete

semantic and structural match.

For grouping purpose, however, KRAMER does not need to calculate the actual

similarity value. We simplify the approach and do not bother about the semantic

similarity between the concepts in nodes of the compared graphs. As explained in the

previous subsection, the grouping step requires finding situations with matching

structures only. This can be evaluated for two given situation trees by always having

the nodes similarity function equal "1". With the edges similarity function

taking either “0”, if the context dimensions do not match, or “1”, if they do, we obtain a

function that for every recursion level returns “1”, if every edge leading from a current

root node has a corresponding edge in the other tree. (1)

We define S to be a set of sub-graphs obtained from eliminating a root node from a

current level of recursion (equal for the two graphs), n and e - correspondingly nodes

and edges of two compared graphs. Let (resp.) be the root node of the graph

obtained by cutting the edge (resp.) from the graph, whose root node is (resp.). For every recursion the best sub-graphs’ match (the max function of all possible

sub-graphs combinations) is selected and normalized to the range <0;1>. If the number

of sub-graphs for the two compared graphs is not equal, “0” value is returned. Two

graphs are considered as a match if the function of their root nodes has value “1”.

- 69 -

While the formula is originally destined for two graphs, we apply it to group all the

situations in the KRAMER database. Therefore, it is applied to every new situation

introduced into the system. Each situation being grouped has its structure compared by

the formula (1) with a single representative of each already existing group, until the

matching is found. It is due to the fact that a priori all group members have the same

graph structures. Once a match is found, the new situation, and the associated rule,

joins the group. If, however, all the results are lower than 1 it means a mismatch, and a

need to create a new group for that particular situation.

Table 4-2. Pseudocode of the algorithm grouping situations

function group_situations(S[1..N]) //S-input set of N situations

 initialize G[] //set of groups of situations

 for i:=1:N

 found:=false

 for j:=1:size(G) //for every existing group

 if match_graphs(S[i],G[j][1])==1//structures match?

 G[j][size(G[j])+1]:=S[i] //add a matching situation

 found:=true

 break //group found, stop looking

 if found==false

 G[size(G)+1][1]:=S[i] //create a new group

 return G

function match_graphs(S,Sr)

 if size(S.edges)!=size(Sr.edges)

 return 0 //different number of edges

 similarity:=1/(size(S.edges)+1) //default similarity 1 if no more edges

 initialize results[size(S.edges)][size(S.edges)]

 for i:=1:size(S.edges) //combine edges types similarity

 for j:=1:size(Sr.edges) //with a deeper level of recursion

 results[i][j]:=sime(S.edges[i],Sr.edges[j])*

 *match_graphs(S\S.edges[i],Sr\Sr.edges[j])/(size(S.edges)+1)

 //formula (1)

 return similarity+sum(results[max(results[])]) //return the best case

The pseudocode in Table 4-2 illustrates the grouping process of the algorithm

including two functions: group_situations and match_graphs. The first iterates over

- 70 -

all situations introduced to the system and calls the latter to check the matching

structures. If a given new situation matches the first from either of groups it is added to

that group. If not, a new group is created. The matching function calculates the best

score for each permutation of compared edges (S.edges) of two situation graphs. If two

edge labels match (sime(a,b)), the function gets deeper, until the situation has no

more edges. In that case the similarity is said to be always 1 (1/(size(S.edges)+1)). If

at any point the number of edges is not equal, 0 is returned instead. See [ZHO02] for a

running example of this kind of algorithm.

To better show the results of the process, let's take an example of the five first

situations from Table 4-1. Even though the situations 1 and 4 have two identical

elements, there is one other element from 1, which is missing in 4 (“friend is watching

football”). Those two situations will not be in the same group of situations sharing one

structure. They cannot be found similar in consequence. Meanwhile, even though the

situation 5 seems to be the odd one out, it has the same structure as situations 1-3. It

would get probably separated in the second step of situations processing, when the

semantic concepts will be considered. As a result, we have two groups, the bigger one

regrouping situations of the following structure: I am in <a state>, <an entity>

is in <a status>, <an entity> is in <a status>.

Table 4-3. Situations from Table 4-1 after the grouping process

G situation

1

I

I’m watching football, friend is watching football, and wife is at a meeting

2 I’m watching football, friend is watching sports, and girlfriend is busy

3 I’m watching sports, friend is watching sports, and female partner is shopping

5 I’m reading, TV is on, and wife is at a meeting

4 II I’m watching football, and wife is at a meeting

After this first grouping step, the proper generalization occurs. In Fig. 4-30 it is

shown that the generalizations derived depend on the actual situations in the initial set

of rules. This has been adapted in the implementation. The level of generalization of the

result situations is a function of semantic concepts used in the input ones. Naturally,

this is performed separately for each group derived in the previous step, but all

situations in such groups are processed simultaneously. For our example in the

previous paragraph, two executions of the generalization algorithm would be called.

- 71 -

Since the group of one situation only is trivial, the example will follow grouped

situations 1, 2, 3, and 5.

The algorithm starts by constructing a graph with the same structure that situations

in the group have. This structure is common for all situations in one group. Each graph

node is represented here, however, as a taxonomy of concepts of a given type

(taxonomy of relationships if the edge leads to the relationship type, taxonomy of

locations for the location type, etc.), creating a kind of a meta-graph. Then every

situation in a group marks its corresponding concepts on this shared taxonomy-based

graph. In Fig. 4-31 we present a representation of the example group on slightly

simplified taxonomies (e.g. in the upper left taxonomy, which stands for a relation type,

situations 1, 2 and 3 marked the same concept, “friend”, and situation 5 marked “TV”).

Figure 4-31. A meta-graph structure for the generalization algorithm

One may notice that bubbles with numbers 1, 2 and 3 representing the presence of

the corresponding situations in particular taxonomies are always near to each other on

those taxonomies. They are related to one another by sibling, parent-child or equality

relations. This corresponds to the general impression one might get by comparing

situations in Table 4-1, where situation 5 feels to be the odd one out. Our algorithm

promotes these close distance relations by finding those situations to be similar, which

cover a complete sub-tree with their marks. Only such situations can be generalized

into one abstract situation.

To find such complete sub-trees, the algorithm performs successive cutting of those

tree branches that point to leafs without marks while having no marked ancestors. Once

a branch is decided to be cut of, all of the ancestor branches leading to that one should

be cut of as well. This process could be equally done on a situation lattice directly. Our

solution, however, uses decomposed structures, taxonomic trees, rather than much

- 72 -

bigger and more memory consuming lattices. Moreover, while the same mechanism is

applied simultaneously to every taxonomy-based tree in the meta-graph, it is enough to

find one situation differing from another on one tree to say that it is overall different.

The following pseudocode illustrates all steps of the generalization algorithm. They

consist of creating a meta-tree, marking concepts of all input situations on appropriate

trees, removing node that were not marked and do not have a marked ancestor, and

finally finding both maximal uncut concepts and groups of situations contributing.

Table 4-4. Pseudocode of the algorithm generalizing situations

function generalize(S[1..N]) //S-input set of N situations

 initialize metatree[size(S[1])]

 for i:=1:N

 for j:=1:size(S[1].nodes) //situations mark values for concepts

 metatree[j].nodes(S[i].nodes[j])[size(metatree[j])+1]:=i

 for i:=1:size(S[1].nodes)

 for j:=1:size(metatree[i].nodes)

 if size(metatree[i].nodes[j])==0 //checking conditions to cut

 && size(metatree[i].nodes[j].children)==0|1

 && no_positive_ancestor(metatree[i].nodes[j])

 metatree[i] \ metatree[i].nodes[j]

 initialize abstractions[size(S[1].nodes)][N]

 for i:=1:size(S[1].nodes)

 for j:=1:N

 if metatree[i].nodes[j]!=null //concepts remaining get generalized

 abstractions[i][j]:=metatree[i].nodes[j].leastancestor

 initialize groups[]

 initialize used[]

 for i:=1:N

 if used\i==used

 groups[size(groups)+1][1]:=S[i] //grouping truly similar situations

 used[size(used)]+1:=i //if all concepts abstracted the same

 for j:=i+1:N //for the compared situations

 if abstractions[][i]==abstractions[][j]

 groups[size(groups)][size(size(groups))+1]:=S[j]

 used[size(used)+1]:=j

 return groups, abstractions

- 73 -

Figure 4-32. Cutting empty branches on one tree example

The Fig. 4-32 presents an family of two trees, one of them being trivial, which is an

effect of the cutting algorithm applied to the first availability status tree of the four

situations in group I in Table 4-3. Semantic concepts representing watching football

(1,2) are taxonomy children of the one representing watching sports in general (3). The

concept of reading is further in that respect from the previous three. Therefore, if the

tree pruning started eliminating all unrepresented branches, the two groups would get

separated in the process. Providing that situations 1, 2 and 3 are found similar on all

other trees, they would get generalized, into the “watching sports” concept in that case.

Even though situations 1 and 2 relate to football only, situation 3 covers all possible

sports concepts, and the three situations generalize as a group. The following table

gives the final effect of the algorithm.

Table 4-5. Situations from Table 4-3 after the generalization process

situation

1,2,3 I’m watching sports, friend is watching sports, and female partner is busy

5 I’m reading, TV is on, and wife is at a meeting

4 I’m watching football, and wife is at a meeting

The presented algorithm will adapt to any set of input situations in its pursuit of the

best generalizations. In the worst case scenario, for some completely semantically

different situations, it would end up distinguishing every situation, and thus returning

the exact same set of situations as it received. Should either of the situations 1 to 3 not

be introduced in the example in Fig. 4-30, no abstract situation could express entirely a

subset of input situations. Whether it would be a bottom-up or top-down approach of

verifying the possible abstractions, the result would be always the same. Similarly, in

our implementation objects metatree[i].nodes[j] would have at most one element,

which would lead to trivial operation of a least common ancestor and groups of

situations of size 1. This proves the correctness of our algorithm.

- 74 -

Let’s notice that we manage to avoid measuring distances between situations that

would require either some arbitrary similarity threshold or much more complicated

calculations. Instead, we are able to obtain the situations generalized opportunistically

by grouping graphs whose concepts have been found in common uncut sub-trees for all

taxonomy trees. In result, concepts remaining in common sub-trees after the cutting

process is finished become generalized into the lowest common ancestor. The

mechanism works equally well for multidimensional taxonomies. If nodes in

taxonomies had possibly more than one parent, like in Fig. 4-33, the generalization

would explore multiple paths for finding the least abstract common ancestor. To the

extent of our knowledge, this is the first algorithm to generalize large sets of such

semantically complex situations.

Figure 4-33. A sample multidimensional availability status taxonomy

4.7.3. Rules revaluation

In the example provided by the previous subsection, the KRAMER recommender

system would provide a suggestion of the rule "notify me when I'm watching sports,

my friend is watching sports, and my female partner is busy". Once the situation

happens for any KRAMER user, the COSMO module would fire a notification, as

described in Section 4.4. This notification would appear with at least two options for a

user to select from. Those options would relate to either accepting or rejecting the

suggestion received. In the first case, the rule would be stored locally in COSMO and

would fire every time the situation reoccurs. Once rejected, however, the rule is

discarded. Furthermore, in both cases, a feedback evaluation is sent to the KRAMER

server.

The evaluation interface is specified for both COSMO and KRAMER, and is present

in Fig. 4-23. While the positive feedback can be treated as yet another contribution of

the same rule, the negative one should be treated in a different manner. Stating that a

situation, which was previously abstracted by the KRAMER, is not interesting or

- 75 -

important for a user may say one of two things. Either the generalization or all its

detailed situations are not good. In both cases, the negative score should be considered

for that rule. In consequence, the reduced rating may influence the level of abstraction

of the suggested situation, or even the very fact if the rule will be suggested in the

future or not.

Figure 4-34. A prototype screenshot showing options for a suggestion

Let's consider the Table 4-5 once again, but let’s this time consider that one user

rejected the suggested rule based on situations 1, 2 and 3. We get a state of the system as

in Table 4-6. This time the marking mechanism includes the information about a

situation being negative by a minus sign. The process runs in a very same way as

before. There may be, however, negative values present, therefore an additional cutting

condition is introduced, see the pseudocode in Table 4-8. Fig. 4-35 replaces the actual

situation number markings with a sum for both positive and negative representations

taken from Table 4-6 and broken into individual concepts. Bubbles with dotted lines

contain only the situation 5, which was previously found different from the others.

Table 4-6. Situations from Table 4-3 after receiving a negative feedback

n situation

3 I’m watching sports, friend is watching sports, and female partner is busy

1 I’m reading, TV is on, and wife is at a meeting

1 I’m watching football, and wife is at a meeting

-1 I’m watching sports, friend is watching sports, and female partner is busy

- 76 -

Figure 4-35. A meta-graph structure for the generalization algorithm with negative feedbacks

Judging by the summary values, some generalizations made previously are now

considered as unwanted by the community (value 0 in Fig. 4-35). This is especially the

case for the second relations of the situations in the example (represented in the bottom

of the figure). In consequence those nodes are eliminated from the trees, leaving the

pairs of situations 1 and 2, and 1 and 3 separate on the trees after being cut. They would

therefore be considered as not similar by our algorithm. Only the situation 2 and 3

would get matched together and generalized. Nota bene, it would be the same

generalization as in Table 4-5 due to the opportunistic nature of the algorithm. But the

corresponding rating is effectively lowered to 2.

Table 4-7. Situations from Table 4-6 after another generalization process

n # situation

1 1 I’m watching football, friend is watching football, and wife is at a meeting

2 2,3 I’m watching sports, friend is watching sports, and female partner is busy

1 4 I’m watching football, and wife is at a meeting

-1 I’m watching sports, friend is watching sports, and female partner is busy

As one may notice, the rules have their life in the KRAMER system as they may be

revaluated by users, which influences the algorithm for finding similar situations.

Therefore, every situation ever committed or evaluated in the system needs to be stored

and remembered either separately, or in a complex meta-tree structure. Situations that

were once found important may be reduced in importance in time, and vice versa. Both

positive and negative feedback, as well as a possibility to introduce new rules makes

- 77 -

the important situations set adapt to users and to their changing needs. For this reason,

the KRAMER system adapts itself to current trends in the community by its evolving

intelligence.

Table 4-8. Pseudocode of the algorithm generalizing situations with negative feedback

function generalize(S[1..N])

 initialize metatree[size(S[1])]

 for i:=1:N

 for j:=1:size(S[1].nodes)

 metatree[j].nodes(S[i].nodes[j])[size(metatree[j])+1]:=±i

 for i:=1:size(S[1].nodes)

 for j:=1:size(metatree[i].nodes)

 if (size(metatree[i].nodes[j])==0

 && size(metatree[i].nodes[j].children)==0|1

 && no_positive_ancestor(metatree[i].nodes[j]))

 metatree[i] \ metatree[i].nodes[j]

 if size(metatree[i].nodes[j])>0

 && sum(metatree[i].nodes[j])<=0 //the negative cutting condition

 && no_positive_ancestor(metatree[i].nodes[j]))

 && metatree[i].nodes[j].parent != null

 metatree[i] \ metatree[i].nodes[j].parent

 ...

 return groups, abstractions

- 78 -

5. Evaluation tests

In order to evaluate the KRAMER system, i.e. whether its definition and

implementation respond well to the tasks stated in the first sections of this dissertation,

we have performed a couple of different types of tests. As KRAMER is a

recommendation system, we have consulted [SCH11] as a reference to decide on the

form of the tests to be issued. As a result, they consisted of both off-line and on-line

evaluations, including a user study of a relatively small scale. The aim being measuring

several properties of the system, as they are presented in [SCH11] and [HER04]. We

group them with respect to a four-element scale variating a perspective, from the most

user centric on top to the most system centric in the bottom, in Table 5-1.

Table 5-1. Classification of recommender system evaluation properties

↑
user perspective

system perspective
↓

trust, utility, risk

p
ri

v
ac

y
 diversity, novelty, serendipity

accuracy, coverage, adaptivity

confidence, scalability, robustness

One classical system property is its accuracy, which is frequently the first

recommender systems’ comparison criterion. It applies to a measure of to what extent

do users agree with the recommendations given. There are multiple formulas adapted

to rating items or their ranking. In the KRAMER system the situations are either

accepted or rejected, which makes for a binary usage prediction of situations found

collaboratively important. The accuracy in this case can be seen as its precision defined

as a ratio between a number of true positives (accepted suggestions) and a sum of both

true and false positives (all suggestions received).

Whereas accuracy is a measure acquired post factum, confidence is rather a degree of

trust a system has for its suggestions while giving them. This property can be used by a

system to filter out those suggestions that it is not confident enough in, or further

research the item. It motivates defining a threshold of whether an item (a situation in

our case) is worth notifying of. Trust from a user perspective is her literal belief that a

system is worth returning to when performing future tasks. Even if it depends on the

accuracy of a system, the parameter, being an effect of a user-system interaction, is of a

much subjective nature.

- 79 -

For some systems it may be of further interest to determine the portion of the items

covered by its recommendations. Because not only should the suggestions be accurate,

but also diverse, novel and serendipitous. Should a system perform well on a whole

item space, the suggestions are likely to be found interesting by either of the properties

evaluating suggestions in terms of their being different, informative or even surprising.

The latter parameters can be measured in a user study, by either enabling an on-line

feedback or asking corresponding questions in a follow-up questionnaire.

Two final user perspective properties are utility and risk. In those two the benefits

for one using a system are opposed to what can be a negative outcome of either a false

positive or a true negative. These two can sometimes even be evaluated without a test

by analysing the nature of a system. This applies also to one further system description

property. Privacy stands for a degree the user disclosed data are not revealed to other

system users, which can be an issue for systems that derive a collective intelligence.

This property is transverse to the two perspectives in Table 5-1, as it is equally related to

the mechanisms handling the data as to users’ perception of a system.

From a more technical point of view, suggestion deriving algorithms should have

their scalability and robustness verified. The former is an ability to operate effectively

for huge collections of items, which is frequently the case in real recommender systems.

The latter is an immunisation to fake data injections into a system, of both malicious

and commercial nature. Finally, due to rapid item collection changes and shifts in

interest trends, a recommendation system should be adaptive enough to capture those

changes, and present its users only the up to date suggestions.

Having presented all the parameters discussed in the literature, only some of them

are addressed in our tests. Those are the most important parameters for the KRAMER

system, which were also determined by the nature of the tests. The first one, which can

be described as an algorithm simulation on synthetic data test, evaluates the system's

scalability, coverage, and robustness (Section 5.1). The second one, being a scenario-

based user study, covers accuracy, utility, trust, and novelty (Section 5.2). In Section 5.3

we evaluate the KRAMER system by means of results obtained for all the mentioned

parameters. We discuss there also an issue of privacy of the data in our system, and the

parameters we did not explore in details.

Unfortunately, we were unable so far to perform a large scale user test, which

would be very likely to provide even more insight into the usage of the KRAMER

system by many people over a long time period.

- 80 -

5.1. Algorithms simulations

Before conducting any user test we decided to perform an off-line simulation of the

KRAMER server algorithm performance. The algorithm concerned is the one described

in Section 4.7. Its goal is to process semantically a set of situations, grouping and

generalizing those that are similar with one another. In other words, it has an input of

many semantically rich conceptual trees. As the number of such structures provided

can be huge, we wish to examine mainly the scalability of the algorithm proposed. To

look into some further properties of our solution, we decided to register also the

number of same structured situations groups, and the number of final rules found.

The tested implementation of the algorithm used Java 1.6 programming language.

The environment consisted of a two core processor (2 x 2,80GHz) personal computer

with 6GB RAM and Windows 7 operating system. Every simulation with a given

configuration of parameters, which are described in further paragraphs, was repeated

10 times, the final result being applied with a mean function of those ten. In most cases

simulations were performed for a range of 10 to 1000 input situations, giving a clear

view of the nature of the scalability function.

Having no existing bases of complex situation data sets, especially using our model

of situations, we begin by creating synthetic data. For every simulation a set of

randomly generated situations is provided to the algorithm. In order to vary the set,

situations are generated with different structures and context concepts, as they were

defined by many users with different needs. We limit however the number of entities

potentially involved in a generated situation to 3, as we find it of little probability that

people would be likely to define situations more complex than that.

Figure 5-1. Generate random data process diagram

The Fig. 5-1 presents a cycle of generating a wanted number of situations, where the

generate_situation function is presented in a form of a pseudocode below. There,

having by each contact a definite location or availability status is a matter of 50%

chance. Furthermore, the number of contacts is also taken randomly from one of the

sets R: {0, 1, 2, 3}, {0, 1, 2}, {1, 2, 3} and {2}, respectively for each function in the family,

- 81 -

with an even probability distribution. Lastly, the situation is checked for being empty,

in which case it is regenerated.

function generate_situation(R)

 empty:=true

 do

 initiate situation

 if rand()>1/2

 situation.location:=random_location()

 empty:=false

 if rand()>1/2

 situation.availability:=random_availability()

 empty:=false

 contacts_number:=rand(R)

 for i:=1:size(R)

 empty:=false

 empty_contact:=true

 do

 initialize contact

 contact.relation:=random_relation()

 if rand()>1/2

 contact.location:=random_location()

 contact_empty:=false

 if rand()>1/2

 contact.availability:=random_availability()

 contact_empty:=false

 while contact_empty

 situation.contact(i):=contact

 if is_empty(situation)

 situation:=generate_situation()

 while empty

 return situation

In order to smoothen the mean functions obtained, which in some cases were

significantly different from the particular simulated ones, a trimming factor of 30% was

applied. As a result, the charts in Fig. 5-2 to 5-4 are averaged functions of 7 simulations

- 82 -

out of 10, for the 3 most extreme ones were removed. Even then the processing time

dependence does not seem stable for one of the functions in the family. Nevertheless, all

three figures enable us to notice several significant facts.

Figure 5-2. Time in [ms] dependency for a number of random situations

Figure 5-3. Group number dependency for a number of random situations

Figure 5-4. Abstracted situations number dependency for a number of random situations

0

50

100

150

200

250

300

1
0

5
0

9
0

1
3

0

1
7

0

2
1

0

2
5

0

2
9

0

3
3

0

3
7

0

4
1

0

4
5

0

4
9

0

5
3

0

5
7

0

6
1

0

6
5

0

6
9

0

7
3

0

7
7

0

8
1

0

8
5

0

8
9

0

9
3

0

9
7

0

0,1,2,3 0,1,2 1,2,3 2

7

17

27

37

47

57

67

77

1
0

5
0

9
0

1
3

0

1
7

0

2
1

0

2
5

0

2
9

0

3
3

0

3
7

0

4
1

0

4
5

0

4
9

0

5
3

0

5
7

0

6
1

0

6
5

0

6
9

0

7
3

0

7
7

0

8
1

0

8
5

0

8
9

0

9
3

0

9
7

0

0,1,2,3 0,1,2 1,2,3 2

10

100

1000

10000

1
0

5
0

9
0

1
3

0

1
7

0

2
1

0

2
5

0

2
9

0

3
3

0

3
7

0

4
1

0

4
5

0

4
9

0

5
3

0

5
7

0

6
1

0

6
5

0

6
9

0

7
3

0

7
7

0

8
1

0

8
5

0

8
9

0

9
3

0

9
7

0

0,1,2,3 0,1,2 1,2,3 2 equal

rules

ms

rules

rules

rules

groups

- 83 -

From the time chart (Fig. 5-2) we learn that the actual computational complexity is a

function made of several simple functions, which results in stair steps effect. Moreover,

the higher the time is, the sooner those steps occur. Also, the bigger condensation of

situations concerning bigger number of contacts in situations, the more operations are

performed by the algorithm. The extreme example one may see for the situations with 2

contacts only, where the time of processing seems exceptionally random starting from

about 300 input rules.

The number of groups found by the algorithm in function of input situations

number (Fig. 5-3) is very stable and seems to saturate on particular levels. The less

possible combinations of entities involved in situations there are, the faster this function

saturates. Those levels are given by the number of all possible situation structures for

respective contacts number possibilities. This can be calculated using the recurrent

formula (2), where n is the number of graph structures representing all combinations of

context dimensions, excluding the relationship context dimension, and k is the number

of such structures used (contacts) per situation.

 (2)

The number of all possible graph structures for a given set of n and k is in fact a

variation with repetition, which excludes being mutual permutations. In that case, the

following properties are present. Selecting any number of times a single element ()

gives always only one possibility (aa...a). Selecting once an element from a set of n

elements possible () is equal . Selecting k times an element from n elements

possible (with repetitions) can be based on selecting k times an element from n-1

elements possible (). The possibilities missing there are those involving at least one

occurence of the n-th element. Therefore conjunction of one element shorter selection

(k-1) of all n elements with that n-th element is added (). This justifies the

formula (2) and leads to the final group count, where C and R are numbers of context

dimensions and relations defined in a situation respectively. (3)

The above formula can be explained as follows. is a number of all permutations

for a C number of context dimensions to be either describing an entity or not. Therefore,

there is always that element present for entity "me". Then, depending on the number of

relations R and non-empty selection of context dimensions describing an entity (),

- 84 -

the number of combinations is given by the application of formula (2). In consequence

the sum of all such combinations for each relation number is calculated. Then there can

be one case, where there are no related entities for either configuration of context

dimensions for "me" (+1), with exception from one empty, without any context

dimensions for any entity, situation (-1).

Finally, the rules number chart (Fig. 5-4) represents a family of functions that is the

most unexpected in this case. We present it in a logarithmic scale and with a f(x)=x

comparison function. Although there is a fragment for which the amount of rules is

actually smaller than the number of initial situations, for the most part it is on a

contrary. The number of rules seems to grow exponentially until saturating on a level of

all rules possible for a particular number of contacts. The period of such saturation for

only 2 contacts function in Fig. 5-4 covers exactly the most random part of the

corresponding time dependency in Fig. 5-2.

This is unacceptable with respect to the aim of the generalizing algorithm, which is

to provide less but more abstract rules derived from the input situations. Further

detailed discussion on this effect, as well as on all other examined dependencies, is

given in Section 5.3. For the moment, let’s assume that this result is dictated by the

random nature of the situations generated, whereas in real life it is not likely that users

would declare every possible situation, limited only by the size of taxonomies. Instead,

we can assume that the tool would be used in some more relevant types of situations,

human “points of interest”.

Figure 5-5. Generate focused data process diagram

- 85 -

We explore this hypothesis in a second approach to simulate the algorithm on

synthetic data. Therefore, we seek the remedy in limiting the pool of situations that

users may find useful to define. In order to generate sets of more focused situations we

need to change the generating mechanism a little. Instead of generating every possible

situation, we imagine having a set of interesting types of situations and drawing from

them. Those points of interest are nothing else than just a fixed set of rules. In result, we

add a second step to the data generation process. We arbitrarily set the number of

points of interest at 500. The final set of 10-1000 situations is drawn from these 500

initial situations.

Figure 5-6. Time in [ms] dependency for a number of focused situations

Figure 5-7. Group number dependency for a number of focused situations

0

20

40

60

80

100

120

1
0

5
0

9
0

1
3

0

1
7

0

2
1

0

2
5

0

2
9

0

3
3

0

3
7

0

4
1

0

4
5

0

4
9

0

5
3

0

5
7

0

6
1

0

6
5

0

6
9

0

7
3

0

7
7

0

8
1

0

8
5

0

8
9

0

9
3

0

9
7

0

0,1,2,3 0,1,2 1,2,3 2

0

10

20

30

40

50

60

70

1
0

5
0

9
0

1
3

0

1
7

0

2
1

0

2
5

0

2
9

0

3
3

0

3
7

0

4
1

0

4
5

0

4
9

0

5
3

0

5
7

0

6
1

0

6
5

0

6
9

0

7
3

0

7
7

0

8
1

0

8
5

0

8
9

0

9
3

0

9
7

0

0,1,2,3 0,1,2 1,2,3 2

groups

rules

rules

ms

- 86 -

Figure 5-8. Abstracted situations number dependency for a number of focused situations

Looking at the family of plots for the number of rules in function of input situations

one can verify that the algorithm works better in terms of its primary aim. Fig. 5-8,

presents in linear scale this time a smaller number of rules than the equality function

f(x)=x. The scenario with limited points of interest, which seems to us to be a more real

life-alike case, proves the algorithm to generalize situations into less numerous

abstractions. After that, we observe some differences regarding the number of rules that

are obtained by different functions for 1000 input situations.

From other charts we learn that the number of groups in Fig. 5-7 is similar in

comparison to fully random data, which is dictated only by the structures of situation

graphs, and not by the concepts used. But most importantly for the scalability

evaluation, Fig. 5-6 shows that the time consumed by the computations seems stable

enough. The steps of sudden function changes are clearly noticeable. From the family of

plots one can deduce that the computational complexity may depend on the number of

situations having more contacts and on the factor of how fast the number of groups gets

saturated.

For the rest of the simulations we preserve the focused way of generating synthetic

situations. In those situations we examine several parameters that may have further

influence on the performance of our algorithm. Knowing that the KRAMER system is

used to process context-rich situations that some of its users find important, while

others not necessarily, leads us to look into the impact on the algorithm of the following

list of parameters:

- amount of points of interest in scale of the whole community,

- ratio of negative decisions on suggestions to all suggestions received,

0

50

100

150

200

250

300

350

400

450

1
0

5
0

9
0

1
3

0

1
7

0

2
1

0

2
5

0

2
9

0

3
3

0

3
7

0

4
1

0

4
5

0

4
9

0

5
3

0

5
7

0

6
1

0

6
5

0

6
9

0

7
3

0

7
7

0

8
1

0

8
5

0

8
9

0

9
3

0

9
7

0

0,1,2,3 0,1,2 1,2,3 2 equal rules

rules

- 87 -

- share of concepts used in situations that are taxonomy leafs to those more abstract,

- number of context dimensions possible to define in situations,

- distribution of number of entities involved in defined situations.

The default parameters values, if not being tested in a particular simulation, are

given in the Table 5-2. As the number of groups being found by the algorithm depends

mostly on the number of contacts taken for the generated situations, and since we have

this parameter fixed for the following tests, we exclude the corresponding figures and

their analyses from the remainder of this section. For each of the listed parameters we

manipulate, efficiency (number of rules) and scalability (time) figures are presented and

discussed.

Table 5-2. A set of default test parameters

Parameter Value

Number of contacts {0, 1, 2, 3}

Points of interest 500

Negative situations ratio 0%

Taxonomy leaf concepts ratio 100%

Context dimensions relation, localization, availability

Distribution of contacts number 25%, 25%, 25%, 25%

Having defined the simulated data generation to be based on a number of pre-

generated situations, we first examine the impact of having different number of such

points of interest in the community. One may observe an obvious dependence that the

more such points are allowed, the more rules can be derived (Fig. 5-9). Still, below the

equality function and within limits of the number of generated situation types. There

are no big differences as far as the time of computing is concerned (Fig. 5-10).

Simulating a more realistic data set requires assuming that some of the KRAMER

suggestions may be found not useful by some users. This would result in having a

degree of negative situations in the set to be generalized. The test shows that the

algorithm, in case of 20% negative rules ratio, derives fewer rules in a slightly higher

time (Fig. 5-11 and 5-12). Should the service offered by the KRAMER system be found

useful, we do not envision much more negative decisions circulating in it. Having more

negative rules than positive ones would mean that users are not satisfied with

KRAMER with little intention to continue using it.

- 88 -

Furthermore, KRAMER users are not limited to selecting semantic concepts only

from taxonomy leafs. Defining already abstract situations by users and having the

algorithm to operate on previously abstracted rules is a very likely case. The charts

show that, for 50% leaf concepts ratio, in a little more time (Fig. 5-13) the algorithm

achieves better abstraction efficiency in terms of output rules (Fig. 5-14) than for

situations with taxonomy leaf concepts only.

For all previous simulations we assumed having just location and availability

context dimensions for each situation contact annotated further with a relationship

concept. If we took two more context types, for example time of day (morning,

afternoon, etc.) and time of year (month, season), users could model rules like: "notify

me whenever my husband is in a pub in the morning". In this case the processing time

function slope steepness would increase considerably (Fig. 5-15) resulting in some more

rules generalized in the process (Fig. 5-16).

Parameters tested in this section were used to model different scenarios for the real

test data. Taking into consideration the nature of the data input into the KRAMER

system and its generalization algorithm, we assume the parameters experienced in a

real test to be close to the values given in Table 5-3. In result we expect the efficiency

and scalability functions to match charts given in Fig. 5-17 and 5-18 (in this case points

of focus parameter is set to 700, while the range for the number of situations are

extended to 7000). Please note that even if the parameter values are not exact, the

resulting charts would still give a good estimation on the algorithm behaviour, as long

as the real data would display a focused nature rather than a completely random one.

Table 5-3. A set of final test parameters

Parameter Value

Number of contacts {0, 1, 2, 3}

Points of interest 700

Negative situations ratio 20%

Taxonomy leaf concepts ratio 50%

Context dimensions relation, localization, availability

Distribution of contacts number 10%, 40%, 40%, 10%

- 89 -

Figure 5-9. Abstracted situations number

dependency for different number of focus points
Figure 5-10. Time in [ms] dependency
for different number of focus points

Figure 5-11. Abstracted situations number

dependency for different ratios of negative rules
Figure 5-12. Time in [ms] dependency
for different ratios of negative rules

Figure 5-13. Abstracted situations number

dependency for different ratios of leaf concepts
Figure 5-14. Time in [ms] dependency

for different ratios of leaf concepts

Figure 5-15. Abstracted situations number

dependency for different context dimensions
Figure 5-16. Time in [ms] dependency

for different context dimensions

0

100

200

300

400

500

600

1
0

9
0

1
7

0

2
5

0

3
3

0

4
1

0

4
9

0

5
7

0

6
5

0

7
3

0

8
1

0

8
9

0

9
7

0

300 500 1000 equal

0

20

40

60

80

100

120

1
0

9
0

1
7

0

2
5

0

3
3

0

4
1

0

4
9

0

5
7

0

6
5

0

7
3

0

8
1

0

8
9

0

9
7

0

300 500 1000

0

100

200

300

400

1
0

9
0

1
7

0

2
5

0

3
3

0

4
1

0

4
9

0

5
7

0

6
5

0

7
3

0

8
1

0

8
9

0

9
7

0

neg 0,0 neg 0,2

0

20

40

60

80

100

120

1
0

9
0

1
7

0

2
5

0

3
3

0

4
1

0

4
9

0

5
7

0

6
5

0

7
3

0

8
1

0

8
9

0

9
7

0

neg 0,0 neg 0,2

0

100

200

300

400

1
0

9
0

1
7

0

2
5

0

3
3

0

4
1

0

4
9

0

5
7

0

6
5

0

7
3

0

8
1

0

8
9

0

9
7

0

only leafs leafs 0,5

0

20

40

60

80

100

120

1
0

9
0

1
7

0

2
5

0

3
3

0

4
1

0

4
9

0

5
7

0

6
5

0

7
3

0

8
1

0

8
9

0

9
7

0

only leafs leafs 0,5

0

100

200

300

400

500

1
0

9
0

1
7

0

2
5

0

3
3

0

4
1

0

4
9

0

5
7

0

6
5

0

7
3

0

8
1

0

8
9

0

9
7

0

no time with time

0

50

100

150

200

250

300

1
0

9
0

1
7

0

2
5

0

3
3

0

4
1

0

4
9

0

5
7

0

6
5

0

7
3

0

8
1

0

8
9

0

9
7

0

no time with time

rules rules

rules rules

rules rules

rules rules

rules

rules

rules

rules ms

ms

ms

ms

F

ig
u

re
 5

-1
7

. A
b

stra
cte

d
 situ

a
tio

n
s n

u
m

b
e

r d
ep

e
n

d
en

cy
 in

 th
e

 fin
al sim

u
la

tio
n

F

ig
u

re
 5

-1
8

. T
im

e
 in

 [m
s] d

e
p

e
n

d
e

n
cy

 in
 th

e fin
a

l sim
u

la
tio

n

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

10

280

550

820

1090

1360

1630

1900

2170

2440

2710

2980

3250

3520

3790

4060

4330

4600

4870

5140

5410

5680

5950

6220

6490

6760

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

10

280

550

820

1090

1360

1630

1900

2170

2440

2710

2980

3250

3520

3790

4060

4330

4600

4870

5140

5410

5680

5950

6220

6490

6760

m
s

ru
les

ru
les

ru
les

- 91 -

5.2. Treasure-hunt game

Large-scale tests of systems provide tons of log data for multi-purpose analysis and

enable learning system's properties in real use. In the case of a recommender system

operating on a completely new type of objects, such as context-rich situations, gathering

the necessary data is likely to take long months. Unfortunately, we did not have means

to perform such a test. But we did manage to undertake a test of a much smaller nature,

which would still provide us with interesting insight. Thanks to a novel scenario-based

approach not only were we able to evaluate quickly several aspects of the KRAMER

system, but we also acquired experience for preparing better future real user tests.

The main focus of the game-test was the suggestions provided and their

appreciation by the users, who received them. Due to the particular nature of object of

recommendations, that is users' socially-enabled situations, we needed to study if the

KRAMER system is understood, accepted and found useful. Even the very first task

might be not trivial as a service, where a well-known phonebook application is turned

into a social context exchange tool that notifies of complex situations, can be at least a

little confusing. Then, the fact of disclosing private context data to contacts can be also

an issue to some.

Therefore, before asking users whether they find KRAMER useful or not, we

needed to introduce them gradually to the service. They were invited to learn the

COSMO application interface while playing with it, and to discover functionalities of

the KRAMER system by simply exchanging contextual information with others, as it is

being done in popular social network services. Finally, an effort to interact with the

system should provide some concrete benefits to user experience. We packaged all this

in a 2-hour test session, which was possible thanks to a preset scenario in a spirit of a

treasure-hunt game.

We have invited a couple of groups of testers, 8 people each. Instead of giving them

the tool and asking to use it so that we could analyze the logs, we prepared a scenario-

based game for them. Our authorial method enabled us to observe most important

system properties in a much shorter and more fun manner. The two groups had the

same test session programs, both divided into two parts. During the first part,

participants learned the interface and functionalities of the COSMO application. In the

same time they learned the rules for the game, which was the second part of each test.

- 92 -

The latter was performed in a special building in Orange Labs in Lannion dedicated to

testing user experience.

The theme of the game for test users was being a merchant in Brittany. Each one

was a merchant of a different good, and they all needed to prepare a reception the

following weekend. For a good reception one needs some snacks, some fruits, some

sweets, and something to drink. Therefore the merchants travelled between five places

in Brittany: Trégastel, Pleumeur-Bodou, Brasparts, Huelgoat and Brocéliande, to find

other merchants willing to sell them the missing goods. As there were 8 merchants in

total, each of them was selling one type of goods from the four mentioned categories,

making for 2 merchants selling goods from one category. To make it more difficult to

the players, and more interesting for the system, the regional law permitted selling

particular goods only in selected places.

In our game-test, every tester played the role of one merchant. The goal was to find

at least one good from three other categories in five days (5 game turns). The theming

required adapting the context dimensions used in the system, especially concerning

taxonomies related to relationship and location. In the game they became respectively,

type of a merchant (Fig. 5-19) and type of terrain (Fig. 5-20). The introductory steps of

the test provided the players information as to what did they sell, and where were they

permitted to do so. Their schematic sequence is shown in Fig. 5-21, and explanation

provided in the following paragraphs.

Figure 5-19. Taxonomy of relations
in the test game

Figure 5-20. Taxonomy of locations
in the test game

- 93 -

Figure 5-21. The user test steps

Before participating in the game, testers needed to learn the application. However,

there was no manual provided to them. The learning process was based on following a

list of instructions given to them and not disclosed to the others. Participants were each

given a mobile phone with the COSMO application installed, and instructed to interact

with the application in a certain way. Even though those interactions were performed

locally, they had an effect on experience of others, as all participants were contacts of

one another.

By following the instructions correctly, not only did they get familiar with the

service, but they were learning the rules for the upcoming game. In the same time we

were able to observe and verify, how well did they do with each aspect of the system,

and how the latter performed in the course of the game. Every interaction has been

monitored during the test and further logged for future off-line studies. Naturally,

testers were invited to ask for help whenever needed. This enabled keeping the

collective test going, while letting us instantly learn the met difficulties.

1

• wait for X to become busy and change your status to busy

• wait for Y to become free and change your status to free

2

• stop sharing location context with: X, Y, ...

• count the number of contacts having stopped sharing location context with

you (note that number)

3

• read a notification rule present in your COSMO

• change your availability status to X

• count the number of notifications received (note that number)

4

• create the rule: "when X is in Y"

• move to location Z

• send an SMS to a contact firing a notification: "you sell V"

5

• receive an SMS saying that you sell X

• play the game as a merchant of X in locations mapped from numbers noted

- 94 -

The first warm-up instruction was to change the user availability status manually

from "free" to "busy" in a particular order. Participants were therefore asked to

(1) acknowledge the fact that this particular phonebook enables sharing their status

with their contacts, (2) understand that the icons and context description next to their

contacts' names signifies current situation of those contacts, and (3) find a way and an

application screen to modify their own status. As it was the first contact with the

application, and good understanding of the context sharing idea is crucial for the whole

service, participants were asked to repeat the task, by "becoming free" again.

As COSMO enables not only sharing context but also deciding how it is shared with

different contacts, the second instruction asked to stop sharing location context

dimension with certain other users. In other words, testers needed to find a way to

change the level of details they would share with some of their contacts into the most

abstract “any” concepts. As a result, a certain number of other users would stop sharing

their location with them as well. Testers were asked to note that number. Coming back

to the initial state required participants to reverse their previous actions once again.

From that moment, tester had the knowledge of how to freely manipulate context

sharing preferences.

The third instruction involved already the notification rules. There was one already

provided in each user's application and was referring to a contact being either ready in

a second or ready in a little while, two instances of being occupied (Fig. 7). After having

studied it, participants were asked to simultaneously change their status to one of the

occupied concepts indicated in their instructions. As a result, several notifications have

been fired for all users, one for each contact entering an availability status from the rule.

This way, participants have learned that having a rule results in a notification, should

the conditions be met. They also obtained a second cipher to note - the number of

notifications received.

The final instruction of this test phase required creating a new notification rule. The

corresponding situation was given by the instructions and it referred to a type of

merchant being in a particular city. Once everyone entered their situations, they were

asked to move to a specific room (place in Brittany). As their location context got

updated automatically, the proper following of the instructions assured for all of them

receiving a notification. Then they were asked to send an SMS message to the person

causing a notification with a name of the good he or she was selling in the game. This

- 95 -

way, testers got a feedback on a situation that they entered, which they were able to link

to a real action - sending an SMS.

Moreover, they were ready to start playing the game. The two numbers they noted

mapped to two cities, in which they were able to sell a good, whose name they received

by an SMS. They were only missing one thing - the knowledge that there is a system

able to recommend an important situation that they did not define themselves, the

KRAMER system. But observing their reaction to that was the aim of the second phase

of the test.

The mechanics of the game were simple, each group of three users in line were

asked to take their game turn. The turn consists of movement (changing a room) and

asking one person in that room two questions of a type: "Can you sell me a cake?", for

example. The person asked need to say "yes" if he or she is a merchant of a respective

good and if it is a correct place to sell it. Otherwise, the reply would be "no". If a

transaction is made, the good represented on a piece of paper is issued. In return, the

person asked may then ask back. This way one learns association links between people,

goods and places, either positive or negative ones.

Figure 5-22. The game turn summary for one user

Keeping in mind that a merchant is to find goods from three other categories than

the one of his good, for example a cider merchant needs to buy one sweet, one snack

and one fruit, it gives at least 10 questions (2 questions per each of 5 turns, plus any

asking back) to guess 3 times one of the needed 7(merchants)*6(goods)*5(places)=210

combinations. With some deduction and some luck, it is possible to achieve the goal.

But as other merchants are also travelling in search for their required goods, the task is

becoming even less obvious. This is where we hope the KRAMER system to intervene.

- 96 -

For each transaction made, the buyer is asked to introduce a corresponding rule

into the COSMO application, for example: "the cake merchant in [a name of the place]".

As discussed in Section 5.3, rules that are defined in COSMO are transmitted to the

KRAMER server, which analyses the inserted situations and suggests important ones to

other users. The same effect was anticipated in the test. Every successful transaction

augments the collective knowledge, making it easier for other buyers. As a result, users

were expected to receive suggestions on a situation defined by at least two other users

(confidence threshold was set to 2 for the test), whenever a described situation re-

occurred.

The suggestion notification was presented in a similar fashion to the normal one,

with a slightly changed text and a special icon next to it (Fig. 5-23). Therefore, the

aspects tested in this game were the ability to understand a received suggestion, and to

make use of it in advancing in the game objective. In other words, we hoped to

evaluate, whether providing new (novelty property) and pertinent (accuracy property)

suggestions help users to acquire needed goods (utility property) and would make

them to rely on the suggestions to assure the win (trust property). The conclusions were

drawn based on the game observations and our questionnaire.

Figure 5-23. A game suggested notification

From the algorithmic point of view, situations processed by the KRAMER server

are a subject of generalization. This effect was also simulated in the test, as there were

some more abstract rules governing the game universe. In fact, every type of good is

permitted to be purchased in a particular type of place. There are four general rules,

listed in Table 5-4, to be discovered during the course of the game. Players are not

conscious of them in the beginning, as their knowledge is limited to what they are

selling and who is the second merchant of the same type of good (step 4 in the first

game phase). The inducted knowledge becomes available as more and more situations

are introduced into the system.

- 97 -

Table 5-4. Four abstract game rules

 Situation

#1 A merchant of drinks can sell his/her goods at the seaside.

#2 A merchant of sweets can sell his/her goods in the forest.

#3 A merchant of snacks can sell his/her goods on the plains.

#4 A merchant of fruits can sell his/her goods in the mountains.

In summary, game participants were expected to follow the KRAMER suggestions

in order to achieve the goal in smaller amount of turns than by playing the same game

without our system. Obviously, frequently a merchant's whereabouts, which one might

got notified of, changed before a player needing his type of good could arrive on place

in time. Moreover, as rules permitted three participants to perform their turns

simultaneously, it happened sometimes on the very player's turn. As a result, a

corresponding notification was disappearing in real time and a player was forced to

interact with other merchants. This caused an entertaining effect that made the game

really a game. Furthermore, it enabled rules introduced into the system to be diverse.

Our initial analysis of the test starts with the learning phase. There, all the

instructions have been completed by all participants. Only testers of age above 60 years

have met some troubles with the service and the notion of "rules", which required our

intervention. One cause of it was that the prototype was not optimized in terms of the

ergonomy. It certainly should be redesigned as far as defining important situations is

concerned. The concept of notification rules is not a trivial one, but is critical in the

KRAMER system. In summary, the learning phase permitted all testers but one to

understand well the ideas of sharing context on different levels of abstractions, and

creating rules launching a notification in a desired situation.

Familiarization with the COSMO application was only a prelude to the KRAMER

system test. This part took a form of 30 minutes long games for both groups. As the

game was based on a semi-cooperative scenario, let's focus on the test group, where all

participants understood the learning phase. The game lasted 4 turns (even less than the

limit of 5). In that time 5 out of 8 participants have reached the goal of having four types

of goods. The players have entered 24 notification rules, among them 2 that were not

correct, which resulted in 9 distinct situations introduced into the system.

- 98 -

Further analyses of the logs show that after a couple of players having luckily found

early in the game that chips can be bought in Pleumeur-Bodou and in Brocéliande, after

14 minutes from the start all players have already bought chips somewhere on the

plains, making snacks no longer needed by anyone. Other types of transactions were

also reported in the course of the game. As a result, KRAMER was generalizing them

into more abstract rules, which could be suggested to users more and more frequently.

After four turns, the system found four abstract rules governing the game (Table 5-5).

These are not exactly the same as those in Table 5-4, as some of them are still their

specializations.

Table 5-5. Four abstract rules found in the game

 Situation

#1 A merchant of juice can sell his/her goods in Pleumeur-Bodou.

#2 A merchant of sweets can sell his/her goods in the forest.

#3 A merchant of chips can sell his/her goods on the plains.

#4 A merchant of fruits can sell his/her goods in the mountains.

The patterns in chasing goods show that some successful transactions were most

probably an effect of following a suggestion received. However, only 7 questioned

users of 8 in the group have noticed notifications for situations that they did not define

themselves. Among those 7, only 5 report to have followed those suggestions, obtaining

a total of 7 goods in this way (almost 2 goods each). In fact for those five testers, either

one transaction was a result of luck or they were the ones not having finished the game

with all four types of goods. All in all, we estimate that 32% of the successful

transactions were inspired by the KRAMER system. One noticeable thing is that only

one tester has reported to notice that a suggestion that she has received was a

generalized one.

Taking into account both test groups, we might say that almost all users understood

our system. Not only did they manage to learn new ideas and ways to manipulate them

via a not optimized user interface of the COSMO application, but they seemed to

appreciate the social aspects of the KRAMER system overall. Learning that context can

be shared on different levels of abstractions, and on those different levels it can be

defined as a notifiable situation is not a trivial thing to do. Nevertheless, some of the

testers were able to employ the concept in a game environment, which was further

- 99 -

demanding as the notion of suggestions was not explained at all before the end of the

test.

After the test we asked the participants if they found the KRAMER suggestions

useful and whether they would like to use a context phonebook with a similar situation-

based notification system in their environment. 13 out of the total 16 testers replied

positively and gave a list of situations especially interesting for KRAMER. Most of them

found the coordination for organizing an event as a situation that sharing location

and/or availability status might prove useful. Knowing the whereabouts of others,

especially their children and grand-children seemed appealing to others. Professional

alerts were also mentioned as yet another use case. Finally, testers imagined wanting to

know the availability of specialists, or open/closed state of places like restaurants.

5.3. Result discussion

Both of the performed tests, the mechanisms simulation and the user study, shed a light

on the KRAMER system's properties enabling us to evaluate it. Among parameters

listed in Table 5-1, there is a great deal that the two tests did cover. The most directly

tested parameter in the simulation is the scalability of the system with respect to the

number of rules contributed to the KRAMER server. Time charts in Section 5.1

approximate the computational complexity function of the generalization algorithm.

From comparing several of the figures we learn that computations time depend mostly

on the amount of context dimensions used in defining situations.

The shape of graphs of the function has a very peculiar, stairs-like nature. It appears

that there are some border factors influencing the scalability function for its lowest

arguments. However, after two such steps, the function becomes linear. We are able to

estimate the bound limits for algorithm’s computational complexity. Formulas (4) and

(5) show the upper and lower bound limits respectively, in dependence of the number

of input situations S and the maximum number of arcs in conceptual graphs describing

them A. (4) (5)

More detailed analyses of the algorithm's performance show that the grouping part

of the algorithm influences the time consumption in a much greater deal than the

generalization part. Furthermore, the algorithm seems to perform closer to the lower

- 100 -

bound limit of the computational complexity (5), judging by the linear graphs.

Particularly Fig. 5-18 promises to process 7000 rules in around 2.5 seconds, which is a

good result for a first implementation algorithm of a recommender system. We say that

the system scales in an acceptable fashion.

Regarding the coverage parameter, from the first test we learn that KRAMER

operating on a completely covered set of data (all possible rules introduced) is not

going to work properly. Fig. 5-2 and 5-4 show that not only the time of processing may

be unacceptably long, but the system ceases to perform his main task of grouping and

abstracting semantically similar situations. For this reason we assume having a number

of situations that would actually have a meaning to users, which we called points of

interest. Having covered all of those in the system would work fine. But the actual

coverage and the number of point of interest depend on the users.

On the other side, knowing that KRAMER would not perform well if being injected

with rules with all random situations tells us a lot about the robustness of the system.

To understand why our system performs so badly in that case, one would need to look

at the definition of similar situations that we adapted in Section 4.7.1. The first

requirement for two situations to be considered as possibly similar was for them to

have a matching graph structure, excluding the empty “any” concepts. The same

applies in the generalization, which cannot have a different structure than the initial

situations. Therefore, a situation like in Fig. 5-24 results in a cross combination of

concepts for the output rules and the exponential output growth (Fig. 5-4).

Figure 5-24. Cross combination of concepts in the generalization process

To avoid the problem, a mechanism for detecting that the system is being spammed

with random rules would be required. This is because a system that does not forget any

- 101 -

of the input rules, even single representatives of such situations, would cause trouble.

Therefore, maybe a mechanism forgetting older rules that were not reused any time

recently could be implemented. This would also be an approach to introduce any kind

of adaptivity to KRAMER. For the moment, this parameter is not considered in our

prototype. Neither was it evaluated in either of the tests.

The second test, a user study in the form of a game, gave us more insight on user

perception of the system, and the suggestions being provided. We tried to show our

testers that the recommendations can be useful, especially in the context of winning a

game before other participants do. Providing that the rules created were correct (the

case for 22 rules out of 24), all of them were related to the goal of the game. Thanks to

them, 5 out of 7 participants have followed the suggestions gathering almost 2/3 of

their goods. In the whole test scale around 1/3 of successful transactions was done after

receiving a recommendation.

During and after the test we asked our volunteers to evaluate different aspects of

the system presented to them, including the interface of the COSMO application. We

have gathered a long list of remarks and ideas, but what is more important, 13 out of 16

participants were interested in using a similar system in the future and gave KRAMER

a positive note. Both the numbers from the previous paragraph and the questionnaire

answers show that users see utility in KRAMER and are willing to trust it. However,

they still have a limited picture of what a system like KRAMER could do, and in which

situations it might prove useful.

Evaluating accuracy would be not fair after this test, as the suggestions were by

definition accurate. The case is similar for parameters like novelty, serendipity or

diversity. Those would require a long-term large-scale test, and a possibility for users to

give a feedback on their impressions for particular suggestions. From the system's point

of view, we have failed to evaluate the confidence parameter, as we were unable to

experiment with the threshold for suggesting rules or not. We have no clear view of

how this parameter should depend on the number of rules introduced into the system.

Again, a large-scale test is required.

The final concern in any system, where users share their private data, is privacy, an

ability of a system to assure that no unintended exploitation of this data would be done

by third parties. A system processing personal situations is especially concerned as

entities with malicious intentions could learn not only one's social graph structure, but

also his whereabouts and those of his close ones. Fortunately, the KRAMER system

- 102 -

deals with the issue in its very fundaments. Noone accessing a KRAMER server could

learn a true situation one finds himself in as the KRAMER system has no knowledge of

the current user context, nor about the contacts he has. The action firing mechanism,

which needs that information, is implemented locally in COSMO modules.

Moreover, sharing situations one wishes to fire an action upon does not

compromise any private data. The very model of situation that we adapt assures that

entities involved in defined situations are not described by names, phone numbers, or

any other private data. The model uses relationship concepts, like "wife", "boss",

"friend", etc. Wanting to be notified of a specific context dimension value of a friend

does not carry any dangerously private data. The same cannot be said about the context

distribution system, which KRAMER may rely on. In this case we imagine a set of

mechanisms to let a user decide, what data she shares, like the abstraction levels

definition as in our prototype. After all, people already share all sorts of private data in

messengers and social networks. KRAMER just makes them be more useful.

Finally, it would take some highly unlike set of relations used in a rule for it to be

associated with a person with such an unlike set of contacts. Assuring that the

respective taxonomy relates to rather usual concepts, eliminates a threat of discovering

someone's potentially embarrassing rule decisions. Moreover, for any situation to be

suggested, it needs to gain enough popularity in the community, and therefore several

similar situations need to be introduced by users, which makes the suggestions both

more abstract and related to at least those several users. However, a more exhaustive

study could tell us more about similar users groups that might be identified based on

situations suggested. In the test game no-one has guessed other participant's identity

this way.

In the questionnaire we have also asked for testers’ appreciation for the COSMO

module design and its ergonomics. It should be noted that the prototype has not been

optimized in this respect, and this part does not concern directly performance of the

KRAMER system, but this kind of feedback would prove useful should a large-scale test

or commercialization be considered. As expected, among others, many testers have

raised the subject of rule situations definition, see Fig. 4-18. The proposed set of simple

dropdown lists filled with taxonomy concepts to choose from is not a user-friendly

approach. However, no better solution has been proposed and this issue is left for

further studies.

- 103 -

6. System applications

For the purpose of prototyping the KRAMER system we have decided to apply the

latter to the domain of interpersonal communication. This prototype enabled us to

validate the idea of having a situation-based recommender system. It also rendered

evaluations of the system possible. However, the KRAMER system itself was designed

to be generic, and we wanted to assure its easy future adaptations for a variety of

domains, the one focusing on the social context of users being just one of them. There

are several properties of KRAMER that stand for its genericity, while several aspects of

it still need some adjustment for porting the system.

One huge advantage of the KRAMER system is the model of situations it adopts.

Conceptual trees may be used for any kind of a situation, not only those involving

context of friends and relatives. We have already introduced computation entities, like

devices, services, applications, agents, etc. in Section 4.2. The composition of context of

those connected things as well as human beings may constitute important situations in

today's digital society. Moreover, the number and nature of context dimensions is not

limited to one's location and activity status. In fact a situation graph may be of any

desired complexity.

While operating on very complex situations may cause an issue as far as the

ergonomy and design of the COSMO module are concerned, it has a minor impact on

the situations processing mechanisms on a KRAMER server. Our generalization

algorithm, Section 4.7, may deal just as well with both broader and deeper trees. One

limitation would be assuring the introduction of any new context dimensions to both

COSMO and KRAMER. Each of them needs to be aware of the corresponding

taxonomies, and share knowledge on any changes to either one of them. The KRAMER

system in general needs to maintain common semantics.

The architecture of the system proposed in Section 4.3 in general case could keep

the client-server nature. Though it would not necessarily use a GSM network, as in Fig.

4-8. It might also introduce a number of new elements, like home gateways aggregating

a set of context-aware home appliances, or other devices processing sensor networks

data into more abstract virtual context dimensions. The COSMO module would still

play the role of an interface with users for managing important situations, both created

and suggested. But the core of the system, the KRAMER server along with its interfaces,

would stay intact.

- 104 -

Finally, further research would need to be done to estimate the impact of

introducing unrestricted actions to be fired upon situation occurrence. By limiting our

prototype to fire notifications only, we have not treated the problem of situations

similarity in the system with respect to the associated actions. Should two different

actions for one situation cause the two rules to be treated separately, or rather force the

actions to be generalized as well, these are a couple of questions we will try to find

answers for in the future.

The following subsections focus on two application domains considered by us,

listing the associated advantages. Please note that this is not an exhaustive list of

KRAMER possible uses. Any entity sensing either internal or external context can be

incorporated into an important situation, making the action taking API the only

limitation of exploiting the collective power, the collective intelligence of which is

provided by the KRAMER. In particular, any mix of such entities and their principal

domains is also possible.

6.1. Social computing

Our initial choice for targeting with KRAMER social behaviours such as interpersonal

communication was due to anticipation that the system would have valuable social

computing features. It supports several natural human needs as far as information

exchange in communities is concerned. Those are namely a need to share information

with others, a desire to stay up to date with new fact about others, an influence that a

community has over each of its member’s information perceiving and over their

making corresponding decisions.

The KRAMER system in its current shape relies on a system sharing different

context dimensions between its users. We see this practice an adaptation of

microblogging phenomena, which is an already popular mode of communication for

people [JAV07]. Those users not only send messages to one another, messages that

disclose a great deal of private information one might add, but they started to broadcast

it to many other people. Tools like social networks enable publishing posts so that all

friends, or even all subscribed users could read, and further comment.

At least in some cases, such messages aim at actually delivering pieces of

information to others. There are many social reasons for doing so, reassuring,

maintaining closeness, and inspiring an informed decision being just three of them. We

argue that one's situation is important information in social interactions. The context of

- 105 -

another person one is in contact with is a naturally present feature in classical

interactions. If the technology is to support such natural circumstances of human

behaviours, the context should play a major role in communication.

We make the context sharing process a further socially meaningful act of

interaction, as the data can be disclosed on different levels of details for different

contacts. Being shared with but a little portion of details might be considered as a signal

that one is not considered to be close and important. As a result, he could revaluate his

levels. Therefore, the adjustment of COSMO sharing preferences is a social negotiation

process in coherence with the real life interpersonal relations. It is also a part of an

indirect communication.

While making a piece of context visible to others is an obvious interaction,

consulting this data by others is an interaction as well. Even though it might not be

acknowledged by the context owner, but it is like asking a question: “I wonder, what

my husband is doing now?”, with a system replying: “He wanted me to tell you that

he's driving a car”. Humans want to learn situations of other people for the same

reasons that those people anticipated sharing them in the first place: taking decisions,

being reassured, etc.

However, an application like phonebook is not something one consults every five

minutes, whereas it might be required to stay up to date. On the other hand, one having

communicated his private piece of data may be hoping for some kind of social

feedback, as he would get in face to face interactions. Therefore we enable defining

important situations in the scope of action firing rules. Every situation defined in

KRAMER is a socially enabled one, because it may involve the context of other contacts.

Furthermore, a decision to fire an action or not is dependant on the levels of details of

the context received.

Finally, the KRAMER system introduces a collective way for a community to

determine important situations. It is known from [SUR05] and [ALA08] that the whole

communities can be empowered from both collaboration and competition of their

members. Technologies like collaborative filtering [SAR01] emulate a huge amount of

information exchange, but making it anonymous. The algorithms associated can

compute a collective intelligence, which is greater than the one of the smartest

individual. KRAMER is a recommender system based on this principle, which in this

application domain is facilitating further the discussed social interactions.

- 106 -

6.2. Home automation

The domain of smart homes (or even smart cities) is directly related to “pervasive

computing”, which is Mark Weiser's model of human seamless interaction with objects

embedded with computational devices [WEI97]. With the technologies like sensor

networks [AKY02] or Internet of Things [ATZ10] getting more and more attention, and

the necessary hardware becoming available at relatively low cost, smart surroundings

are expected to revolutionize our lives really soon. It is therefore not surprising that

researchers already design platforms for smart home automation, [MER08] being one

example of.

Generally, pervasive computing enables the connected computing entities to

cooperate in performing tasks that normally humans needed to do themselves. Devices

embedded in objects like lamps or windows not only sense information about the

objects' context, but may have also access to their execution functions, like switching

on/off or opening/closing. This opens a huge opportunity to program particular tasks

to be performed automatically in given situations. Home intelligence would be made of

such smart applications of a simple rule-based nature: DO <action> WHEN

<situation>.

Considering such rules as a base element of intelligent homes, makes the latter a

perfect domain for the KRAMER system. Researchers have already considered the need

to export one's applications for his smart home to enable their instant mapping on a

different set of objects [CHE09]. This cross house portability of applications is based

there on description files created for a given user, so that her preferences are preserved

in different environments. In consequence, such applications would adapt their

functionality opportunistically according to objects found after the mobility.

The KRAMER system would go another step further. It would render possible both

determining useful applications and sharing them in a community of users. In that

sense not only would it be cross house adaptive, but further “cross similar user”

portable. A dimension of sharing applications in the scope of a community would make

them a subject of KRAMER server processing. And like-wise, it would harvest those

applications, which are considered useful widely among community members, so that

they could be suggested to those, who did not define them themselves.

To give an example of such an application, let's consider the following rule “when

TV set is switched on, and blender is on, turn up the TV volume”. This is a simple

- 107 -

application introducing a possibly useful functionality of adjusting the volume of a TV

set in function of the noise of a blender. There are evidently two parts of the rule

present, which are known from the KRAMER: the condition and the result. The

condition is a composition of values for context dimensions, which ubiquitous devices

are likely to be able to sense. The result is an action, assuming existence of a TV set

providing an API to modify the sound volume.

Visibly, the situations in this application domain do not differ a lot from the ones

adapted in our prototype. Instead of social situations, there would be states of home

environment. Instead of activity-related availability statuses, there would be internal

device states. Instead of interpersonal relations, there would be types of objects.

KRAMER could very well maintain the same situation model and be only introduced

with new taxonomies. Those semantics providing structures would enable the

KRAMER server algorithm to perform its generalization on new context dimensions.

One main challenge to be considered is how the system, i.e. the aggregation

algorithm, would deal with the application actions. Considering a set of simple and

predefined action concepts, having two different outcomes of similar situations, or one

particular outcome common for two different situations in two applications could either

influence the similarity of those situations or not. Moreover, actions available in

pervasive environments could be also modelled by a corresponding taxonomy,

enabling them to be defined on different levels of abstractions, like in Pobicos [LAL10].

Finally, coexistence of several applications might result in their conflicting logics as

explained in [NHL08]. All these issues need to be taken into account while adapting

KRAMER to home automation domain.

- 108 -

7. Final thoughts

In this dissertation we discussed our research results on a collaborative situation-aware

system, KRAMER. Our system learns which situations are important for people in the

community of its users. By enabling the users to associate such situations with firing

particular actions, the knowledge the system acquires is a collection of user-defined

rules of a type DO <action> WHEN <situation>. The data is then processed by the

KRAMER to derive collective intelligence, which is in turn shared with all community

members in the form of suggestions. The system suggests taking particular actions

while facing given important situations.

KRAMER is a recommender system based on a collaborative filtering principle.

Unlike in usual collaborative filtering implementations, the object of recommendations

is not a simple item, like a book or movie, but a pair of a complex situation and an

action. This requires our solution to apply semantic technology to processing

suggestion objects, instead of purely statistic calculations. As a result KRAMER users

are to be empowered with situation-aware recommendations in their decision making

on taking actions.

Therefore, in this thesis we give an answer to the question we asked ourselves

when starting this research: how can a system adapt natural social interactions and

enable one to profit from collaborative knowledge while encountering new situations,

which would potentially require a corresponding decision. The KRAMER system is one

technical solution to a problem of combining situation awareness and collective

intelligence technologies. While the system is completely generic its prototype is

applied to social communication scenario. But the KRAMER system may be adapted to

any domain that deals with the problem expressed as a set of conceptual graphs

associated with an action firing logic, where the solution would be extracted from the

respective data gathered in a collaborative fashion.

Having defined, implemented and tested our system we are ready to evaluate the

initial assumptions listed in Table 3-1. Regarding A1, there is indeed collective

knowledge coming from the composition of many user situation-related experiences.

An intelligence that can be derived of it may not only enhance social communication

services as stated in A2, but further empower situation-aware decision making and

support any kind of rule-based smart systems. Finally, as situations processed in the

scope of the system are conceptual representations of context data describing the

- 109 -

surrounding and social circumstances, it is vital to employ semantic technology, which

supports A3.

In the process of designing our collaborative system, it has acquired a certain

number of unique properties. For example, the KRAMER system adapted to

interpersonal communication domain is a social medium with strong social computing

support. Moreover, several aspects of it, as well as some methodology approaches that

we tackled, constitute our contribution to science. Table 7-1 present a list of those

contributions.

Table 7-1. Our contributions

C1. Use of collaborative filtering in KRAMER enriching situation awareness field

C2. Model of situations defined in KRAMER as semantic conceptual trees

C3. Manipulations on situations facilitated in KRAMER thanks to situation lattices

C4. Algorithm generalizing sets of conceptual trees in KRAMER proposed

C5. Authorial game-based evaluation of KRAMER for a small scale test

While it was possible to draw strong conclusions from the research presented in this

dissertation, there are several elements still missing to make our work more complete.

First of all, we have managed to simplify the prototype of KRAMER by limiting the

possible actions to just notifications. It did make sense for a social communication

scenario, where users are always in charge of their actions, which are not in turn

restricted after having received a notification. We admit, however, that in the home

automation variant, for instance, actions could be programmed to fire automatically,

which would affect the system for reasons stated in Section 6.2.

Moreover, we have also avoided mixing our semantic-centered collaborative

filtering with the classical statistically-oriented one. In particular, it might be beneficial

to not simply group situations by their semantic similarity, but further differentiate

them with respect to which users defined them. Collaborative filtering is often said to

connect like-minded users, as receiving a suggestion of an item well evaluated by one

user depends on evaluation similarity on other items evaluations. In our case it might

happen that not all community members have similar vision on important situations,

and suggestion of the latter would be more accurate should they be compared with

respect to user similarity.

- 110 -

We regret also not to have a possibility to perform a large-scale user test of

KRAMER. One would expect to deepen the system's evaluations by having it tested for

several months on a numerous group of users. For instance, more insight would be

taken on the parameters like coverage and confidence. With bigger expected number of

rules introduced we could observe a real use of the system. As a result, we could

experiment with introducing user-to-user similarity and comparing the results with and

without that notion. We would obtain much more data for further off-line analyses,

with one very important: how would a real usage evolution of the system look like in

function of time. There is a great chance for performing such a test, as the KRAMER

system will be reused in one of the Orange Labs projects following this research.

Furthermore, we have already defined several future expansions for the system.

Adapting KRAMER for further domains of application would seem the most evident

one. Any environment with entities able to sense their context and open to executing

actions on them is suitable. In Section 6.2 we introduce the domain of home appliances,

which would benefit from portable smart application suggestions. The technology of

web services and their composition [ZHA09] is also tempting, but would require

further study, as web services are a priori stateless. Any mix of such domain would be

also interesting.

One other enhancement that we consider is a possibility to operate on situations

slightly more complicated in terms of temporal relations. Being able to differentiate

different elements of a situation as happening in a particular order, simultaneously or

within any other temporal relation from [ALL83] might further augment the number of

use cases for the system. The reason for not taking this aspect yet into implementation is

its negative impact on readability of the COSMO module interface. Ergonomics are

already an issue for defining composed situation, and would require a redesigning

effort should the notion of time be introduced.

- 111 -

List of publications

1. BOUśBDśLLśH śhmed, TOUTśIN François, SZCZERBśK Michał,

and BONNIN Jean-Marie: On the benefits of a network-centric implementation

for context-aware telecom services, ICIN 2011, 15th International Conference

on Intelligence in Next Generation Networks, 4-7 October 2011, Berlin, Germany, pp.

236-240.

2. SZCZERBAK Michał, TOUTAIN François, BOUABDALLAH Ahmed,

and BONNIN Jean-Marie: Collaborative Context Experience in a Phonebook.

WAINA 2012, 26th International Conference on Advanced Information Networking

and Applications Workshops, 26-29 March 2012, Fukuoka, Japan, pp. 1275-1281

3. SZCZERBAK Michał, BOUABDALLAH Ahmed, TOUTAIN François,

and BONNIN Jean-Marie: Generalizing contextual situations. ICSC 2012,

6th IEEE International Conference on Semantic Computing, IEEE, 19-21 September 2012,

Palermo, Italy, pp. 293-301

4. SZCZERBAK Michał, BOUABDALLAH Ahmed, TOUTAIN François,

and BONNIN Jean-Marie: A model to compare and manipulate situations

represented as semantically labelled graphs. ICCS 2013, 20th International

Conference on Conceptual Structures, Ed. Springer-Verlag, 10-12 January 2013,

Mumbai, India, 2013, vol. 7735 - Lecture Notes in Computer Science, pp. 44-57.

5. SZCZERBAK Michał, TOUTAIN François, BOUABDALLAH Ahmed,

and BONNIN Jean-Marie: KRAMER - New Social Medium Based

on Collaborative Recognition of Important Situations. The Computer Journal,

Special Issue on Social Computing, in press.

- 112 -

List of patents

1. Procédé et système de notification, à un utilisateur d'un terminal,

de données contextuelles relatives à des éléments identifiés dans une application

de type répertoire (France)

- 113 -

References

[ACZ88] Aczel, P. (1988) Not-Well-Founded Sets. CSLI Lecture Notes Nr 14,

Center for the Study of Language and Information, Stanford.

[ADO11] Adomavicius, G. and Tuzhilin, A. (2011) Context-Aware

Recommender Systems. Recommender Systems Handbook by Ricci, F.

et al., Springer, pp. 217-253.

[AKM96] Akman, V., and Surav, M. (1996) The Use of Situation Theory in

Context Modeling. Computational Intelligence, vol. 13(3), pp. 427-438.

[AKY02] Akyldiz, I.F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002)

Wireless Sensor Networks: A Survey. Computer Networks Journal,

vol. 38(4), pp. 393–422.

[ALA09] Alag, S. (2008) Collective Intelligence in Action. ISBN 978-1-933988-

31-3, Manning.

[ALL83] Allen, J.F. (1983) Maintaining Knowledge about Temporal Intervals.

Communications of the ACM, vol. 26(11), pp. 832-843.

[ANA06a] Anagnostopoulos, C., Ntarladimas, Y., and Hadjiefthymiades, S.

(2006) Reasoning about Situation Similarity. International IEEE

Conference on Intelligent Systems, pp. 109-114.

[ANA06b] Anagnostopoulos, C., Ntarladimas, Y., and Hadjiefthymiades, S.

(2006) Situation Awareness: Dealing with Vague Context. ACS/IEEE

International Conference on Pervasive Services, pp.131-140.

[ATZ10] Atzori, L., Iera, A., and Morabito, G. (2010) The Internet of Things:

A Survey. Computer Networks Journal, vol. 54(15), pp. 2787-2805.

[BAL07] Baldauf, M., Dustdar, S., and Rosenberg, F. (2007) A Survey

on Context-Aware Systems. International Journal of Ad Hoc

and Ubiquitous Computing, vol. 2, pp. 263-277.

[BAR09] Baralis, E., Cagliero, L., Cerquitelli, T., Garza, P., and Marchetti, M.

(2009) Context-Aware User and Service Profiling by Means of

Generalized Association Rules. 13th International Conference on

Knowledge-Based and Intelligent Information and Engineering Systems

(KES’09), LNCS 5712, pp. 50-57.

[BAR08] Barkhuus, L., Brown, B., Bell, M., Hall, M., Sherwood, S.,

and Chalmers, M. (2008) From Awareness to Repartee: Sharing

- 114 -

Location within Social Groups. SIGCHI Conference on Human Factors

in Computing Systems (CHI’08), pp. 497-506.

[BAR83] Barwise, J. and Perry, J. (1983) Situations and Attitudes. Bradford

Books, The MIT Press, ISBN 0-262-02189-7.

[BEI03] Beigl, M., Krohn, A., Zimmer, T., Decker, C., and Robinson, P. (2003)

AwareCon: Situation Aware Context Communication. Ubiquitous

Computing, Lecture Notes in Computer Science, vol. 2864, pp 132-139.

[BOL07] Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A.,

and Tanca, L. (2007) A Data-Oriented Survey of Context Models.

ACM SIGMOD Record, vol. 36(4), pp 19-26.

[BRO07] Brown, B., Taylor, A.S., Izadi, S., Sellen, A., Kaye, J., and Eardley, R.

(2007) Locating Family Values: A Field Trial of the Whereabouts

Clock. 9th International Conference on Ubiquitous Computing

(UbiComp’07), pp. 354-371.

[CAO06] Cao, Y., and Li, Y. (2006) An Intelligent Fuzzy-Based

Recommendation System for Consumer Electronic Products. Expert

Systems with Applications, vol. 33(1), pp. 230-240.

[CHE02] Chen, G., and Kotz, D. (2002) Context aggregation and dissemination

in ubiquitous computing systems. Fourth IEEE Workshop on Mobile

Computing Systems and Applications, pp. 105-114.

[CHE05] Chen, A. (2005) Context-Aware Collaborative Filtering System:

Predicting the User’s Preference in the Ubiquitous Computing

Environment. Location and Context-Awareness Lecture (LoCA’05),

pp. 244-253.

[CHE09] Cheng, S.T., Wang, C.H., and Chen, C.C. (2009) An Adaptive Scenario

Based Reasoning System Cross Smart Houses. 9th International

Symposium on Communications and Information Technology (ISCIT’09),

pp. 549-554.

[COO91] Cooper, R., and Kamp, H. (1991) Negation in Situation Semantics

and Discourse Representation Theory. Situation Theory and Its

Applications vol. 2, Stanford University.

[COS06] Costa, P.D., Guizzardi, G., Almeida, J.P.A., Pires, L.F., and van

Sinderen, M. (2006) Situations in Conceptual Modeling of Context.

- 115 -

10th IEEE International Enterprise Distributed Object Computing

Conference Workshops, p. 6.

[CRO07] Croitoru, M., Hu, B., Dashmapatra, S., Lewis, P., Dupplaw, D.,

and Xiao, L. (2007) A Conceptual Graph Based Approach

to Ontology Similarity Measure. 15th International Conference on

Conceptual Structures: Knowledge Architectures for Smart Applications,

pp. 154-164.

[DEL12] Delaveau, L., Loulier, B., Matson, E.T., and Dietz, E. (2012) A vector-

space retrieval system for contextual awareness. IEEE International

Multi-Disciplinary Conference on Cognitive Methods in Situation

Awareness and Decision Support, pp. 162-165.

[DEV91] Devlin, K.J. (1991) Situations as Mathematical Abstractions. Situation

Theory and Its Applications vol. 2, Stanford University.

[DEY00a] Dey, A.K. (2000) Providing architectural support for building

context-aware applications. PhD thesis, Georgia Institute

of Technology.

[DEY00b] Dey, A.K. and Abowd, G.D. (2000) CybreMinder: A Context-Aware

System for Supporting Reminders. 2nd international symposium on

Handheld and Ubiquitous Computing (HUC'00), pp. 172-186.

[DUC09] Ducheneaut, N., Partridge, K., Huang, Q., Price, B., Roberts, M.,

Chi, E.H., Belotti, V., and Begole, B. (2009) Collaborative Filtering Is

Not Enough? Experiments with a Mixed-Model Recommender for

Leisure Activities. User Modeling, Adaptation, and Personalization,

LNCS, vol. 5535, pp. 295-306.

[EAG09] Eagle, N., Pentland, A., and Lazer, D. (2009) Inferring Social Network

Structure using Mobile Phone Data. Proceedings of the National

Academy of Sciences (PNAS), vol. 106(36), pp. 15274-15278.

[ELL92] Ellis, G., and Levinson, R. (1992) Multi-Level Hierarchical Retrieval.

Knowledge-Based Systems, Conceptual Graphs Special Issue, vol. 5,

pp. 233-244.

[END95] Endsley, M.R. (1995) Toward a Theory of Situation Awareness

in Dynamic Systems, Human factors, Vol. 37, pp. 32-64.

- 116 -

[ETT06] Etter, R., Dockhorn Costa, P., and Broens, T. (2006) A Rule-Based

Approach Towards Context-Aware User Notification Services.

ACS/IEEE International Conference on Pervasive Services, pp. 281-284.

[ETZ10] Etzion, O., and Niblett, P. (2010) Event Processing in Action.

ISBN 1935182218-9781935182214, Manning.

[FLE09] Fleder, D. and Hosanagar, K. (2009) Blockbuster Culture’s Next Rise

or Fall: The Impact of Recommender Systems on Sales Diversity.

Management Science, vol. 55, pp. 697-712.

[FOR82] Forgy, C.L. (1982) Rete: A Fast Algorithm for the Many Pattern/

Many Object Pattern Match Problem. Artificial Intelligence, vol. 19,

pp. 17-37.

[GAN08] Gandon, F. (2008) Graphes RDF et leur Manipulation pour

la Gestion de Connaissances, Chapter 4: Graphes comme espaces

métriques. HdR, Nice Sophia-Antipolis.

[GRU07] Gruber, T. (2007) Collective Knowledge Systems: Where the Social

Web Meets the Semantic Web. Journal of Web Semantics, vol. 6,

pp. 4-13.

[GU09] Gu, T., Wu, Z., Tao, X., Pung, H.K., and Lu, J. (2009) epSICAR: An

Emerging Patterns based approach to sequential, interleaved and

Concurrent Activity Recognition. IEEE International Conference on

Pervasive Computing and Communications (PerCom‘09), pp. 1-9.

[HAY85] Hayes-Roth, F. (1985) Rule-based systems. Communications of

the ACM, vol. 28, pp.921-932.

[HER04] Herlocker, J.L., Konstan, J.A., Terveen, L.G., and Riedl, J.T. (2004)

Evaluating Collaborative Filtering Recommender Systems. ACM

Transactions on Information Systems, vol. 22, pp.5-53.

[HIL95] Hill, W., Stead, L., Rosenstein, M., and Furnas, G. (1995)

Recommending and evaluating choices in a virtual community

of use. SIGCHI Conference on Human Factors in Computing Systems

(CHI'95), pp.194-201.

[HON08] Hong, J., Suh, E.H., Kim, J., and Kim S.Y. (2008) Context-Aware

System for Proactive Personalized Service Based on Context History.

Expert Systems with Applications, vol. 36, pp. 7448-7457.

- 117 -

[JAV07] Java, A., Finin, T., Song, X., and Tseng, B. (2007) Why We Twitter:

Understanding Microblogging Usage and Communities. 9th

WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social

network analysis, pp. 56-65.

[JIA08] Jiang, X., and Bunke, H. (2008) Graph Matching. Studies

in Computational Intelligence, vol. 73, pp. 149-173.

[KNO08] Knox, S., Shannon, R., Coyle, L., Clear, A.K., Dobson, S., Quigley, A.J.,

and Nixon, P. (2008) Scatterbox: Context-aware message

management. Revue d'Intelligence Artificielle, vol. 22(5), pp. 549-568.

[KOK09] Kokar, M.M. (2009) Ontology-Based Situation Awareness. Information

Fusion, Special Issue on High-level Information Fusion and Situation

Awareness, vol. 10(1), pp. 83-98.

[KOR04] Korpipää, P., Häkkilä, J., Kela, J., Ronkainen, S., and Känsälä, I.

(2007) Utilising context ontology in mobile device application

personalisation. 3rd international conference on Mobile and ubiquitous

multimedia (MUM'04), pp. 133-140.

[LAL10] Lalis, S., Domaszewicz, J., Pruszkowski, A., Paczesny, T.,

Ala-Louko, M., Taumberger, M., Georgakoudis, G., and Lekkas, K.

(2010) Tangible Applications for Regular Objects: An End-User

Model for Pervasive Computing at Home. The Fourth International

Conference on Mobile Ubiquitous Computing, Systems, Services

and Technologies (UBICOMM’10), pp. 385-390.

[LAU07] Laudy, C., Ganascia, J.G., and Sedogbo, C. (2007) High-level Fusion

based on Conceptual Graphs. 10th International Conference on

Information Fusion, pp. 1-8.

[LED03] Lederer, S., Mankoff, J., and Dey, A.K. (2003) Who Wants to Know

What When? Privacy Preference Determinants in Ubiquitous

Computing. Extended Abstracts on Human Factors in Computing Systems

(CHI’03), pp. 724-725.

[LEE10] Lee, A. (2010) Exploiting context for mobile user experience.

Proceedings of the First Workshop on Semantic Models for Adaptive

Interactive Systems (SEMAIS), ACM Press.

[LEV92] Levinson, R., and Ellis, G. (1992) Multilevel Hierarchical Retrieval.

6th Annual Conceptual Graphs Workshop.

- 118 -

[MAK05] Mäkelä, E., (2005) Survey of semantic search research. Seminar

on Knowledge Management on the Semantic Web, Department

of Computer Science, University of Helsinki.

[MAR02] Marcos, E., and Cavero, J.M. (2002) Hierarchies in Object Oriented

Conceptual Modeling. Advances in Object-Oriented Information Systems

Workshop, Lecture Notes in Computer Science, vol. 2426, pp. 24-33.

[MCC07] McCall, J.C., and Trivedi, M.M. (2007) Driver Behavior and Situation

Aware Brake Assistance for Intelligent Vehicles. Proceedings

of the IEEE, vol. 95(2), pp. 374–387.

[MEC07] Mechkour, S. (2007) Overview of Situation Theory and its

application in modeling context. Seminar paper, Univ. of Fribourg.

[MEI04] Meissen, U., Pfennigschmidt, S., Voisard, A., and Wahnfried, T. (2004)

Context-and Situation-Awareness in Information Logistics. Current

Trends in Database Technology - EDBT2004 Workshops, pp. 448-451.

[MER08] Merabti, M., Fergus, P., Abuelma'atti, O., Yu, H., and Judice, C. (2008)

Managing Distributed Networked Appliances in Home Networks.

Proceedings of the IEEE, vol. 96(1), pp. 166-185.

[MON00] Montes-y-Gómez, M, Gelbukh, A., and López-López, A. (2000)

Comparison of Conceptual Graphs. Mexican International Conference

on Artificial Intelligence, pp. 548-556.

[MON01] Montes-y-Gómez, M., Gelbukh, A., López-López, A.,

and Baeza-Yates, R. (2001) Flexible Comparison of Conceptual

Graphs. 12th International Conference on Database and Expert Systems

Applications, pp. 102-111.

[MUG93] Mugnier, M.L. (1995) On Generalization / Specialization for

Conceptual Graphs. Journal of Experimental & Theoretical Artificial

Intelligence, vol. 7, pp. 325-344.

[MUN10] Muñoz-Organero, M., Ramírez-González, G. A., Muñoz-Merino, P. J.,

and Kloos, C. D. (2010) A Collaborative Recommender System Based

on Space-Time Similarities. IEEE Pervasive Computing Magazine,

Vol. 9(3), pp. 81-87.

[NAU10] Naudet, Y., Schwartz, L., Mignon, S., and Foulonneau, M. (2010)

Applications of User and Context-Aware Recommendations Using

- 119 -

Ontologies. Conference Internationale Francophone sur l'Interaction

Homme-Machine (IHM’10), pp. 165-172.

[NHL08] Nhlabatsi, A., Laney, R., and Nuseibeh, B. (2008) Feature Interaction:

The Security Threat from Within Software Systems. Progress

in Informatics, Special Issue on The Future of Software Engineering

for Security and Privacy, vol. 5, pp. 75-89.

[PAD04] Padovitz, A., Loke, S.W., and Zaslavsky, A. (2004) Towards a theory

of context spaces. Second IEEE Annual Conference onPervasive

Computing and Communications Workshops,pp 38-42.

[PAZ07] Pazzani, M., and Billsus, D. (2007) Content-Based Recommendation

Systems. The Adaptive Web, LNCS 4321, pp. 325-341.

[POO95] Poole, J., and Campbell, J.A. (1995) A Novel Algorithm for Matching

Conceptual and Related Graphs. 3rd International Conference

on Conceptual Structures: Applications, Implementation and Theory,

pp. 293-307.

[RAE05] Raento, M., Oulasvirta, A., Petit, R., and Toivonen, H. (2005)

Contextphone: A Prototyping Platform for Contxt-Aware Mobile

Applications. IEEE Pervasive Computing Magazine, Vol. 4(2), pp. 51-59.

[REE05] Reed, R.N., and Kocura, P. (2005) Conceptual Graph based Criminal

Intelligence Analysis. International Conference on Conceptual Structures,

pp. 146-159.

[ROB08] Roberts, M., Ducheneaut, N., Begole, B., Partridge, K., Price, B.,

Bellotti, V., Walendowski, A., and Rasmussen, P. (2008) Scalable

Architecture for Context-Aware Activity-Detecting Mobile

Recommendation Systems. ADAMUS Workshop at IEEE International

Symposium on a World of Wireless Mobile and Multimedia Networks,

pp. 1-6.

[SAR01] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001) Item-based

collaborative filtering recommendation algorithms. 10th International

Conference on World Wide Web (WWW'01), pp. 285-295.

[SAR10] Saruladha, K., Aghila, G., and Raj, S. (2010) A Survey of Semantic

Similarity Methods for Ontology Based Information Retrieval. 2nd

International Conference on Machine Learning and Computing (ICMLC),

pp. 297-301.

- 120 -

[SCH01a] Shafer, J.B., Konstan, J., and Riedl, J. (2001) E-commerce

Recommendation Applications. Data mining and knowledge discovery,

vol. 5, pp. 115-153.

[SCH01b] Schmidt, A., Stuhr, T., and Gellersen, H. (2001) Context-Phonebook –

Extending Mobile Phone Applications with Context. Third

International Workshop on Human Computer Interaction with Mobile

Devices (Mobile HCI’01).

[SCH11] Shani, G. and Gunawardana, A. (2011) Evaluating Recommendation

Systems. Recommender Systems Handbook by Ricci, F. et al., Springer,

pp. 257-297.

[SOW83] Sowa, J. (1983) Conceptual Structures: Information Processing

in Mind and Machine. Ed. Addison-Wesley.

[SOW08] Sowa, J. (2008) Conceptual Graphs. Foundations of Artificial Intelligence,

vol. 3, pp. 213-237.

[STO11] Stojanovic, N., Stojanovic, L., Anicic, D., Ma, J., Sen, S., and Stuhmer,

R. (2011) Semantic complex event reasoning – beyond complex event

processing. Foundations for the Web of Information and Services,

Springer-Verlag Berlin Heidelberg, pp. 253-278.

[STR04] Strang, T., and Linnhoff-Popien, C. (2004) A Context Modeling

Survey. First International Workshop on Advanced Context Modelling,

Reasoning And Management at UbiComp’04.

[SUR05] Surowiecki, J. (2005) The Wisdom of Crowds: Why the Many Are

Smarter Than the Few and How Collective Wisdom Shapes

Business, Economies, Societies and Nations. Anchor, ISBN 978-

0385721707.

[TOU11] Toutain, F., Bouabdallah, A., Zemek, R., and Daloz, C. (2011)

Interpersonal Context-Aware Communication Services. IEEE

Communications Magazine, vol. 49(1), pp. 68-74.

[WAN04] Wang, X.H., Zhang, D.Q., Gu, T., and Pung, H.K. (2004) Ontology

Based Context Modeling and Reasoning Using OWL. Second IEEE

Annual Conference on Pervasive Computing and Communications

Workshops, pp. 18-22.

- 121 -

[WAN07] Wang, F.Y., Zeng, D., Carley, K.M., Mao, W. (2007) Social computing:

from social informatics to social intelligence. IEEE Computer Society,

vol. 22, pp. 79-83.

[WEI97] Weiser, M., and Brown, J.S. (1997) The Coming Age of Calm

Technology. Beyond calculation, ISBN: 0-38794932-1, pp. 75-85.

[YAU06] Yau, S.S., and Liu, J. (2006) Hierarchical Situation Modeling

and Reasoning for Pervasive Computing. 4th IEEE Workshop

on Software Technologies for Future Embedded and Ubiquitous Systems,

pp. 5-10.

[YE07] Ye, J., Coyle, L., Dobson, S., and Nixon, P. (2007) Using Situation

Lattices to Model and Reason about Context. 4th International

Workshop on Modeling and Reasoning in Context, pp. 1-12.

[YE08] Ye, J., Coyle, L., Dobson, S., and Nixon, P. (2008) Representing and

Manipulating Situation Hierarchies using Situation Lattices.

Modelling and Reasoning on Context, pp. 647-667.

[YE09] Ye, J., and Dobson, S. (2009) Human Behaviour Study with Situation

Lattices. IEEE International Conference on Systems, Man and Cybernetics,

pp. 343-348.

[ZAI02] Zaïane, O.R. (2002) Building a Recommender Agent for e-Learning

Systems. International Conference on Computers in Education (ICCE’02),

pp. 55-59.

[ZHA09] Zhao, Z., Laga, N., and Crespi, N. (2009) A Survey of User Generated

Service. IEEE International Conference on Network Infrastructure

and Digital Content (IC-NIDC’09), pp. 241-246.

[ZHE09] Zheng, Y., Zhang, L., Xie, X., and Ma, W.Y. (2009) Mining Interesting

Locations and Travel Sequences from GPS Trajectories.

18th International Conference on World Wide Web, pp. 791-800.

[ZHO02] Zhong, J., Zhu, H., Li, J., and Yu, Y. (2002) Conceptual Graph

Matching for Semantic Search. 10th International Conference on

Conceptual Structures: Integration and Interfaces (ICCS '02), pp. 92-106.

