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Problématique

On  demande  souvent  à  la  technologie  d’être  un  prolongement  naturel  du

comportement  des  utilisateurs.  L’adaptation  des  différentes  solutions  techniques

devrait permettre idéalement de simplifier les activités humaines dans leurs formes

originales.

L’objectif  de  notre  recherche  consiste  à  étudier  comment  un  système  pourrait

augmenter la compréhension par un utilisateur de sa situation au sens large, pour lui

permettre d’améliorer de façon pertinente sa prise de décision. 

Ainsi  une  décision  à  prendre  dans  une  situation  particulière  pourrait  être

technologiquement  assistée.  L’intérêt  d’un  tel  soutien  technologique  apparaît

clairement dans le cas des situations que l’utilisateur n’a pas encore rencontrées et a

propos desquelles il ne dispose encore d’aucune expérience. 

Le comportement naturel humain consiste à se renseigner auprès d’autres personnes

ayant  une  expérience  de  la  situation  en  question.  Ce  type  d’échange  constitue

l’essence même de l’intelligence collective de la communauté. 

D’après les chercheurs, la coopération et la compétition dans les groupes permettent

l’émergence d’une nouvelle intelligence collective hissant l’ensemble du groupe au

degré de compréhension de ses membres les plus avisés.  

Le même principe pourrait être appliqué à un système artificiel. Il existe dans ce sens

des systèmes de recommandation basés sur les  techniques de filtrage collaboratif,

mais  aucun  d’eux  ne  traite   du  domaine  de  la  sensibilité  au  contexte  et  plus

généralement à la situation.

Nous introduisons le système KRAMER comme un outil de soutien aux décisions de

ses  utilisateurs  basé  sur  l'appréciation  de  la  situation  courante.  Il  détermine  les

suggestions d’actions et l’importance des situations en s’appuyant sur l’ensemble de

ses utilisateurs.

Le principe de notre approche

Le  filtrage  collaboratif,  qui  constitue  une  des  solutions  techniques  implémentant

l’intelligence  collective,  est  déjà  utilisé  avec  succès  dans  plusieurs  systèmes  de

recommandation, par exemple dans les boutiques web qui suggèrent les articles à

acheter en fonction de nos goûts et ceux des personnes qui nous ressemblent.

Actuellement la prise en compte de la situation de l’utilisateur (son contexte) par les

systèmes,  n’est  considérée  que  pour  améliorer  et  raffiner  la  liste  des  objets

recommandés. Ni le contexte, ni la situation ne sont eux-mêmes considérés comme

les objets possibles d’une telle recommandation.

C’est néanmoins l’hypothèse de base de notre recherche : une situation contextuelle

peut constituer l’objet de la recommandation. Les situations suggérées dans ce cas
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apporteraient  de  plus  une  nouvelle  connaissance  d’ordre  supérieure  sur  la

communauté  des  utilisateurs,  en  identifiant  les  situations  importantes  pour  elle.

Cette  connaissance  pourrait  de  plus  être  exploitée  par  différents  services  à  la

communauté.

La  communication  interpersonnelle  constitue  le  point  de  départ  de  nos  travaux.

Comme nous l’avons déjà mentionné, le processus d’échange des conseils constitue la

structure  de  communication  de  base  pour  l’intelligence  collective  dans  les

communautés  humaines.  Ainsi  notre  système  en  suggérant  des  situations

importantes à la communauté des utilisateurs, devrait leurs permettre de réagir de

façon éclairée à ces situations. 

Nous  partons  du  phénomène  du  microblogging,  que  nous  sommes  une  société

toujours  connectée  et  que  nous  partageons  de  plus  en  plus  d’informations.  Ces

informations sont souvent très personnelles et leur ensemble est très informatif, mais

elles sont très peu structurées. Ainsi la connaissance stockée dans le Web existe déjà,

il faudrait cependant pouvoir la convertir en connaissance collective.

Le  fait  de  traiter  des  situations  au lieu  des  objets  physiques  a  des  conséquences

importantes. Tout d’abord, une situation nécessite un modèle. Nous considérons de

plus  la  multi-dimensionnalité  du  contexte,  ainsi  que  le  fait  qu’une  situation  est

souvent influencée par le contexte de nos proches. Nous cherchons finalement un

modèle expressif et sémantiquement composé. 

Cela implique aussi, que le traitement des situations nécessite des mécanismes de

raisonnement sémantique pour renforcer la nature statistique du filtrage collaboratif

classique. En conclusion nous introduisons un nouveau modèle de situation et un

algorithme innovant pour traiter ces situations afin de proposer un nouveau médium

d’informations social. 

L’implémentation

Le premier pas pour implémenter le système est  sa décomposition.  Suggérer des

situations  importantes  nécessite  trois  éléments  principaux :  le  fournisseur  des

suggestions, leur destinataire, et le modèle de situations, qui seront expliqués plus

tard dans notre section. Le serveur implémentant le premier point, est le cœur de

notre solution et il utilise notre modèle de situations. 

Le service est destiné aux utilisateurs qui contribuent avec leurs propres informations

à  notre  système,  devenant  dans  le  même  mouvement  les  destinateurs  de

l’intelligence dérivée en retour. Du fait qu’il s’agit de données et de suggestions très

personnelles et socialement significatives, cette partie du système est implémentée

sous la forme d’un logiciel sur téléphone mobile.

Les  smartphones  aujourd’hui  ne  sont  pas  seulement  des  outils  pour  réaliser  des

appels.  Ils  sont  aussi  capables  d’échanger  des  données  de  plusieurs  types,  de
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capturer  les  données  de  contexte,  et  d’analyser  et  de  traiter  l’ensemble  de  ces

données. Par ailleurs, ils ont une nature très personnelle. Dans le cas du domaine de

communication interpersonnelle nous employons l’ensemble de ces capacités comme

une extension d’un carnet d’adresse sensible au contexte.

Du point vue de KRAMER, ce module client de notre système a comme objectif (1)

alimenter  KRAMER avec  des  règles  de  déclenchement  d’une  action  suite  à  une

situation,  (2)  recevoir  des  suggestions  des  règles  venant  de  KRAMER,  et  (3)

enregistrer un feedback d’utilisateur afin de réévaluer ces règles. Par ailleurs, d’un

point  vue  d’utilisateur,  (4)  l’interface  du  logiciel  doit  permettre  de  définir  de

nouvelles règles et (5) l’ensemble des situations définies et reçues doit déclencher les

actions des règles. 

Il est aussi requis l’existence d’un système de partage de contexte entre proches, qui

permette de voir ce contexte dans le carnet d’adresse, d’ajouter ce contexte dans les

situations définies,  et  de déclencher les  actions  en fonction de ce contexte et  des

règles. Nous présentons une implémentation possible d’un tel système, ainsi que les

autres blocs fonctionnels du module, dans le mémoire. Ceci détermine par ailleurs le

périmètre de notre recherche. Nous limitons notre prototype aux notifications ciblant

des actions dans les règles.

Définir une situation importante, en recevoir une nouvelle comme une suggestion, et

déclencher à partir de ces dernières une notification en retour, nécessite déjà d’avoir

un modèle  de  situation.  Une situation constitue  pour  nous  un objet  composé  de

plusieurs  dimensions  de  contexte  (localisation,  disponibilité,  etc.)  pour  plusieurs

contacts  du  carnet  d’adresse  (plusieurs  entités  dans  un  cas  plus  général  que  la

communication interpersonnelle). 

Nous créons ce modèle en employant les arbres conceptuels, dans lesquels les nœuds

portent  les  concepts  sémantiques  pour  chaque  dimension  de  contexte  et  les  arcs

définissent les types de ces dimensions. On obtient une composition de plusieurs

triplets de contexte (dimension, relation, valeur) en une structure plus expressive.

Chaque  concept  dans  l’arbre  provient  d’une  taxonomie  correspondante  à  la

dimension,  et  peut  modéliser  une  partie  de  la  réalité  sur  un  quelconque  niveau

d’abstraction.

L’interface du module client permet de définir des situations aussi complexes. Nous

avons  implémenté  un  mécanisme  qui  peut  comparer  la  situation  courante  avec

l’ensemble des situations définies dans les règles, afin de déclencher la notification

associée.  Pour  cela  nous  adaptons  le  système de  production  Rete  pour  qu’il  soit

capable de reconnaître une valeur de contexte sur différents niveaux d’abstraction.

D’un point de vue abstrait, ce mécanisme doit déterminer si deux situations sont en

relation où si l’une est plus abstraite que l’autre, qui est en revanche une version plus

détaillée de la première. Notre modèle de situation permet de le faire simplement,
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l’ensemble des situations constituant un treillis de situations organisé par la relation

plus abstrait / plus détaillé.

Le treillis est lui-même un objet abstrait, construit à partir des arbres conceptuels et

des règles de formation des graphes conceptuels de Sowa. Par exemple, la restriction

sémantique d’une valeur dans un nœud d’un graphe conduit à une situation plus

détaillée. De même pour la fusion de deux graphes. Le treillis obtenu ainsi permet de

réduire l’opération de détection d’une situation à celle de l’exploration de ce treillis.

Le cœur de notre système, le serveur KRAMER, utilise le même modèle de situation,

basé sur les  mêmes taxonomies  que ses clients.  Il  reçoit  l’ensemble des règles de

notification, et a une connaissance de l’ensemble des situations associées. Son objectif

est de les traiter et d’en suggérer une partie aux utilisateurs. Le choix des situations à

recommander à  un utilisateur particulier  est  une fonction de l’importance de ces

situations et de la situation courante.

C’est ici que le système dérive l’intelligence collective, que nous implémentons par le

filtrage  collaboratif.  Nous  trouvons  par  contre  que  le  traitement  sémantique  est

beaucoup plus pertinent dans notre cas, que le traitement statistique, qui est employé

d’habitude dans les boutiques web, par exemple. 

Cela  constitue  l’une  des  hypothèses  que  notre  recherche  voulait  vérifier :

l’importance d’une situation à l’échelle d’une communauté serait mieux déterminée

si  le  système  KRAMER  parvient  à  identifier  les  groupes  de  situations

sémantiquement similaires. 

Par exemple, en fonction de l'utilisateur on peut définir les deux situations suivantes :

« le fils  est à l’école » et « la fille est à l’école », qui sont toutes deux des versions

concrètes  de  la  situation  plus  abstraite  « l’enfant  est  à  l’école ».  Les  coupler

permettrait d’une part d’éviter de traiter ces situations comme différentes et d’autre

part  d’augmenter  leur  nombre  d’occurrences  en  les  rendant  plus  populaires.  Le

même principe s’applique à toutes les dimensions de contexte.

Nous introduisons un algorithme de traitement des situations exprimées par notre

modèle  des  arbres  conceptuels,  qui  généralise  l’ensemble  des  situations  pour  en

trouver celles qui sont les plus importantes pour la communauté d’utilisateurs. Cette

généralisation est par nature opportuniste, dans le sens où les niveaux d’abstraction

obtenus dépendent des situations à l’entrée.

L’algorithme est composé de deux étapes. D’abord l’ensemble des situations est divisé

en groupes des situations ayant la même structure vis-à-vis du modèle de situations.

Ceci est une opération qui utilise une formule récurrente présentée ci-dessous, qui

compare les structures de deux situations. La formule retourne « 1 », si les structures

sont les mêmes.

La  deuxième  étape  prend  chaque  groupe  obtenu  séparément  et  y  applique  la

généralisation qui est l’innovation principale de cette partie du système KRAMER.
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Nous  utilisons  le  prunning  des  arbres  sur  une  structure  du  type  méta-arbre,

représentant  la  composition  de  l’ensemble  des  situations  traitées  à  la  fois.  En

conséquence  toutes  les  situations  dont  tous  les  concepts  sont  sémantiquement

proches et n’ayant pas disparu après le processus du prunning, sont généralisées en

une situation.

L’algorithme  décrit  s’adapte  également  aux  retours  d’utilisateurs  ayant  reçu  les

situations  suggérées.  Une  fois  la  notification  déclenchée  suite  à  une  situation

recommandée, l’utilisateur peut décider de garder la règle ou la rejeter. Quelle que

soit la décision, elle est prise en compte par le système, influençant ainsi le processus

de généralisation et permettant l’adaptation du système aux besoins d’utilisateurs,

qui  eux changent  en fonction du temps.  L’ensemble du processus peut aussi  être

interprété comme une manipulation du treillis des situations.

Expérimentations

Afin d’évaluer le système KRAMER et ses différents paramètres, nous avons réalisé

deux tests.  Le premier étant une simulation du comportement du système et son

passage à  l’échelle  (scalabilité).  Le deuxième étant  un test  d’utilisateurs  de petite

dimension qui a permis d’avoir un retour d’expérience sur le système.

Grâce au premier test nous avons appris surtout que la fonction de scalabilité de

l’algorithme  de  généralisation  peut  être  considérée  linéaire.  Nous  avons  exploré

également l’impact de plusieurs facteurs sur cette fonction, par exemple le nombre

des dimensions de contexte,  le  ratio de feedback négatif dans le système, etc. Mais

pour des configurations de taille raisonnable le traitement des situations ne prend

guère plus que quelques secondes. 

Un des résultats de cette partie des tests nous a permis d’observer, est que le système

n’est pas robuste quant à la quantité de situations aléatoires. Notre algorithme, qui ne

permet pas d’obtenir une situation généralisée avec des concepts les plus généraux

possibles,  a  la  spécificité  suivante :  il  produit  dans  les  conditions  extrêmes,  un

nombre de situations généralisées supérieur au nombre de situations en entrée.

Nous avons réalisé un second test ciblant l’utilisation réelle du système. Afin d’avoir

les résultats initiaux très vite, deux groupes de testeurs, 8 personnes dans chacun

d’entre eux, ont participé à un test scénarisé. En effet nous avons construit un jeu du

type  chasse  au  trésor,  où  chaque  objectif  accompli  était  associé  avec  une  règle

introduite dans le système.

Ce jeu a permis à la plupart des participants d’accomplir un ensemble d’objectifs, en

un nombre de tours largement inferieur à ce que nous avons évalué en l’absence de

soutien par un système comme KRAMER. Une décision sur trois dans tout ce jeu a

été un effet des suggestions du système. Nous avons acquis cette information, ainsi
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que l’acceptation générale de l’idée, depuis les logs du système et des questionnaires

hors-ligne.

Conclusions

Le système KRAMER que nous avons proposé comme résultat de notre recherche, est

un outil de support de décisions éclairées, sensible au contexte et aux situations. C’est

aussi  un  outil  social  d’interaction  interpersonnelle,  qui  augmente  l’intelligence

collaborative  de  ses  utilisateurs  qui  contribuent  collectivement  à  déterminer  les

situations importantes, en les fournissant et les réévaluant.

Même si notre prototype a été adapté au scénario de communication, KRAMER peut

être facilement adapté à un domaine quelconque dans lequel le problème est défini

par des graphes conceptuels et dans lequel la logique de déclenchement d’actions

exploiterait  une  solution  bénéficiant  d’une  approche  collective.  La  domotique  en

constitue un exemple intéressant.

D’une point vue implémentation du système, nous apportons deux blocs innovants.

Le premier étant le modèle de situations comme des arbres conceptuels. Cela nous

conduit plus loin à définir un treillis de situations, qui simplifie les manipulations sur

l’abstraction  des  situations.  Le  deuxième  étant  l’algorithme  de  généralisation

sémantique des arbres conceptuels.

Nous avons effectué deux types de tests, dont l’un relativement innovant. Cela nous

a permis d’évaluer  le système de façon globalement positive. Il est clair par contre

qu’un test d’utilisateurs grandeur nature sera nécessaire pour améliorer KRAMER à

des fins notamment de commercialisation. Ce point va constituer une suite ultérieure

au travail de cette thèse.

Par  ailleurs,  le  filtrage  d’informations  dans  KRAMER  n’est  basé  que  sur  les

mécanismes sémantiques, alors que les applications classiques sont plutôt du type

statistique.  Cet  aspect  des  similarités  des  utilisateurs  du  système  reste  encore  à

incorporer  dans  KRAMER et  les  conclusions  sur  une  éventuelle  amélioration  du

système  de  cette  manière  ne  seront  pas  connues  avant  le  test  mentionné

précédemment.

De plus, le fait d’adapter KRAMER à d’autres domaines nécessite d’analyser l’impact

des actions associées aux situations dans les règles de ce système. Notamment, dans

le domaine de la domotique nous imaginons avoir des règles contradictoires. Cela

doit être traité pour que chaque implémentation de KRAMER soit fonctionnelle. 

Finalement,  il  existe  également  d’autres  travaux  de  recherche  à  effectuer  pour

différentes  extensions  du  système.  Ceci  ne  contredit  pas  que  KRAMER et  notre

recherche  en  général  apportent  une  valeur  scientifique  significative  pour   les

domaines de recherche suivants : l’intelligence collective, la sensibilité aux situations,

et le « social computing ».
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Glossary 

concept 

a category of real or abstract objects 

context 

a set of circumstances accompanying an entity 

context awareness  

a property of a system being capable of perceiving its context  

context dimension 

one particular type of context (e.g. location, time, activity, speed, etc.) 

COSMO module 

Collaborative Situation Module, a client to the KRAMER system 

KRAMER server 

a central processing unit in the KRAMER system architecture 

KRAMER system 

Kind of Reasoning that Abstracts Meta-situations for Empowering Recommendations  

lattice 

a partially ordered set of objects with unique least upper and greatest lower bounds 

microblogging 

a practice of posting short messages for social network communities to read 

ontology 

a structure containing concepts describing universe along with their relations  

points of interest 

types of situations processed by KRAMER that are likely to be important for people 

semantics 

the meaning of concepts 

situation  

everything that is going on in a given time 
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situation awareness 

a property of a system being capable of abstracting its situation 

social computing 

any type of technological support of a social behaviour 

taxonomy 

a classification of concepts organized by generalization/specialization relations 

taxonomy leaf 

a concept in a taxonomy having no specializations 
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Abstract 

Situation awareness and collective intelligence are two technologies used in smart 

systems. The former renders those systems able to reason upon their abstract 

knowledge of what is going on. The latter enables them learning and deriving new 

information from a composition of experiences of their users. In this dissertation we 

present a doctoral research on an attempt to combine the two in order to obtain, in a 

collaborative fashion, situation-based rules that the whole community of entities would 

benefit of sharing. We introduce the KRAMER recommendation system, which we 

designed and implemented as a solution to the problem of not having decision support 

tools both situation-aware and collaborative. The system is independent from  

any domain of application in particular, in other words generic, and we apply its 

prototype implementation to context-enriched social communication scenario. 

 

Keywords: 

situation awareness, collective intelligence, semantic processing, collaborative filtering, 

rule-based recommendations, conceptual graphs, social computing 
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Résumé 

La sensibilité à la situation et l’intelligence collective, sont deux technologies utilisées 

dans les systèmes intelligents. La première rend ces systèmes capables de raisonnement 

sur leur connaissance abstraite sur ce qui se passe. La seconde permet d’apprendre et de 

dériver de nouvelles informations à partir de la composition d’expériences de leurs 

utilisateurs. Dans ce mémoire de thèse nous présentons une recherche doctorale qui 

s’efforce combiner les deux afin d’obtenir, de façon collaborative, un ensemble des 

règles de situations, dont le partage soit profitable pour une communauté d’entités. 

Nous introduisons le système de recommandation KRAMER, que nous avons conçu et 

mis en œuvre comme une solution au problème d’inexistence des outils de support à la 

fois sensibles à la situation et collaboratifs. Le système étant générique, nous appliquons 

l’implémentation de son prototype à un scénario de communication sociale enrichie de 

contexte. 

 

Mots clés : 

sensibilité à la situation, intelligence collective, traitement sémantique, filtrage 

collaboratif, systèmes de recommandation, graphes conceptuels, informatique sociale 
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Abstrakt 

ģwiadomoĤć sytuacji i inteligencja kolektywna to dwie spoĤród technologii używanych 

w systemach inteligentnych. Ta pierwsza sprawia, że systemy te są zdolne do 

wnioskowania na podstawie swojej abstrakcyjnej wiedzy o tym, co się wokół nich 

dzieje. Ta druga umożliwia ich uczenie się i wywodzenie nowych informacji na 

podstawie złożenia doĤwiadczeń swoich użytkowników. W tej rozprawie prezentujemy 

pracę badawczą nad połączeniem obu technologii, ażeby poprzez współpracę 

użytkowników otrzymać bazujące na sytuacjach reguły, którymi dzielenie się będzie 

korzystne dla społecznoĤci jednostek. Przedstawiamy system rekomendacji KRśMER, 

który zaprojektowaliĤmy i zaimplementowaliĤmy jako rozwiązanie problemu braku 

narzędzi wsparcia decyzji jednoczeĤnie Ĥwiadomych sytuacji i opartych na współpracy. 

System jest niezależnie od domeny jego zastosowania generyczny, a jego prototyp 

zaadoptowaliĤmy do realiów komunikacji społecznej. 

 

Słowa kluczowe: 

ĤwiadomoĤć sytuacji, inteligencja kolektywna, przetwarzanie semantyczne, 

rekomendacje bazujące na regułach, grafy koncepcyjne 
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1.  Problem statement 

The aim of interpersonal communication services is to support and enhance the human 

interactions as they exist in nature. For example, the very telephony extended the 

distance for natural human conversations making it much more convenient to initiate. 

Today's technical capabilities are much more sophisticated than when the telephone 

system was introduced. Phones have been made cordless and embedded with multiple 

sensors. As a result, they have become users' smart personal assistants. The problem 

extensively explored lately is how to exploit this device intelligence to further facilitate 

human natural and social behaviours. 

In our research we look into the fact that mobile users' activity, i.e. smartphone 

users' activity, generates tons of data, which enables distinguishing traces of their ever-

changing situation. For once, modern personal devices are capable of sensing their 

users' whereabouts or any context in general. Moreover, they can also remember any 

user interactions with them. For instance, in case of mobile phones, any decision on 

social interactions is stored in a call log (synchronous communication) or in a message 

box (asynchronous communication). This stands for a lot of unstructured data about 

phone users from the device perspective only. 

There are many works to uncover the structured knowledge from user context 

traces, for example learning daily movement routines [ZHE09], or learning tasks 

usually performed in a mobile environment [LEE10]. The common approach is to apply 

pattern or association rule mining algorithms to extract the corresponding structures of 

contextual data. As a result, designers may be provided with interesting insight into the 

possible enhancements to their service usage. An alternative would be giving users 

themselves some additional information regarding their current situation, especially if 

it is not frequent that a particular one occurs. 

In case of critical situations bearing some important circumstances that one has not 

encountered before, some help from a smart assistant could be of great value for 

making a respective decision. In classical human interactions, people exchange their 

experiences by asking questions and sharing advices with one another. This process can 

be supported by technology, given the vast amount of above-mentioned activity data. 

This group experience remains to be explored for identifying important situations, and 

suggesting solutions in a collaborative fashion among users. 
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Following [SUR05], under the right circumstances, groups are remarkably 

intelligent, and are often smarter than the smartest people in them. Those circumstances 

are appropriate reasoning mechanisms, deriving their intelligence from users' 

participation in the information shaping process. Aggregated and further recombined 

data transforms collected intelligence into a truly collective intelligence [GRU07]. 

According to [ALA08], when a group of individuals collaborate or compete with each 

other, intelligence that otherwise didn't exist suddenly emerges. This intelligence is 

computed by knowledge mining algorithms. As a result, such interactively derived 

social knowledge can be shared with all community members for their benefit via 

recommendation technologies, reputation systems and other decision support 

mechanisms. 

To the best of our knowledge, applying the same principle of a collaborative system 

to the user situation awareness has not yet been well explored, if approached at all. We 

argue that while people naturally learn from one another about the importance of 

situations needing their reaction, modern devices may provide enough valuable context 

data to propose a system that supports the sharing process. Being provided with 

information concerning other people taking often one kind of action in similar 

situations that one encounters for the first time may result in a set of new services of 

empowering social value. This thesis proposes a system enabling such services. Its 

codename is KRAMER, Kind of Reasoning that Abstracts Meta-situations for 

Empowering Recommendations. We predict that it might become a novel smart 

decision support tool.  

The rest of the document is organized as follows. In Section 2 we describe the state 

of the art within the research areas of situation-awareness and decision support 

systems. Analysis of multiple research activities reveal them not to be dealing with the 

problem as defined above. Therefore, we propose some assumptions and functional 

requirements for a system to constitute a good solution in Section 3. Discussion how it 

enhances the current research state is also provided. The next section brings the initial 

ideas closer to their realization. After having chosen a domain of application for our 

system, we proceed to details on the architecture and implementation of all functional 

blocks. This is all presented in Section 4. The technologies and mechanisms selected 

ought to fulfil all the prior assumptions, which we verify through tests in Section 5. 

Afterwards we abstract the system to be applicable to multiple domains and we present 
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a couple of them in Section 6. Finally, we conclude and point out some future research 

directions in Section 7. 
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2.  Theoretical background 

In our research we seek to exploit collective intelligence in the domain of context and 

situation awareness. Systems based on this kind of intelligence make their individual 

users benefit from knowledge of more experienced ones. In that sense, such systems 

create a community of users, which mutually contribute to its growth, and in turn get a 

support for areas that they are no experts of. Adapting this principle to context would 

require operating on experiences of particular sets of context values, which may be 

interpreted as situations. Furthermore, one would expect a collectively situation-aware 

system to support making decisions while encountering new but important situations. 

For this reason, in this Section we look into the existing research works concerning 

the areas of situation awareness and decision support systems. We investigate if there 

are already existing solutions allowing communities to gain collaborative awareness of 

important situations. We explore equally different approaches for defining situations 

for them to be taken into account in smart systems, as well as different technical 

solutions for such systems to empower decision making. This state of the today's art 

leads us to introducing our system in the next sections of this dissertation. 

2.1.  Situation cognition 

In this subsection we investigate the state of the art on the ways that situations are seen 

in technology. In particular we discuss definitions of context and situations provided by 

both encyclopaedic entries and the Situation Theory, show different approaches to 

model real life situations in artificial systems, and explain how incorporating situation 

awareness makes those systems become intelligent. In our study we focus on finding a 

representation for context, which would form situations well understandable by 

humans. In fact, we seek for it to adapt the meaning of a situation from one agent to 

another, making it a little blurred, which results in having a mathematical definition 

rigor a lesser priority. Therefore, we are referring for the remainder of this section to 

contextual situations, which we expect to be at the same time expressive for users and 

manageable by a system.  

Finally, we search for any situation-aware systems that already provide any type of 

decision making support, especially based on a collective knowledge paradigm. 
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2.1.1. Situation Theory 

Our interest in systems that are aware of their situation and of the situations of their 

users implies the need to define what a situation is. In encyclopaedic entries including 

Cambridge Advanced Learner's Dictionary & Thesaurus1, The American Heritage 

Dictionary of the English Language2, and Collins English Dictionary3 we see the term 

"situation" to relate to a set of happening things, existing conditions, circumstances and 

surroundings of something, someone, or other point in the time-space continuum, like 

an event. Other languages (Słownik Języka Polskiego PWN4, Larousse5) also tend to 

place a situation in relation between an entity of any type and some surrounding 

conditions. 

What is therefore a difference between a situation and a context? The same set of 

dictionaries explains the context as the circumstances of an event. This makes the two 

terms very close, with only a slightly broader meaning for the situation. Cambridge 

Dictionary makes the relation explicit as the context is to be a situation within which 

something happens. It is then of no surprise that the two terms are frequently used in a 

synonymic fashion. They are further fused in spoken language, which is known to be 

less accurate than the written one [MEC07]. 

To find some distinguishing features between situation and context we look into the 

domain of event processing. Authors of [ETZ10] point out that situations are things that 

happen, and which have a meaning, whereas context is a state, an area in an abstract 

space defining some conditions. Based on this approach, and the initial use of the term 

"context awareness" with relation to sensor technology, we derive our working relation 

between the two terms in question. We treat situations as meaningful, possibly 

semantic, interpretations of some context setups. 

In our quest to capture the idea of a situation we refer further to the theory 

formulated by Barwise and Perry, which tackles the problem from a point of view of 

such disciplines as cognitive science, computer science, linguistics, logic, philosophy, 

and mathematics [MEC07]. The situation theory [BAR83] is an effort to capture the 

meaning and semantics of situations, by approaching them from both mathematical 

rigor and practicality perspectives. Even though the theory is considered as not-well-

                                                 
1 http://dictionary.cambridge.org/ 
2 http://www.ahdictionary.com/ 
3 http://www.collinsdictionary.com/dictionary/english 
4 http://sjp.pwn.pl/ 
5 http://www.larousse.fr/dictionnaires/francais 
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founded set theory [ACZ88], it helps understanding the relations between a situation 

and information, and between different classes of situations. 

In [COO91] a situation is presented as an object in situation theory related to the 

collection of infons that supports it. An infon is another concept coming from the 

theory, which is an object carrying information. It is defined as a relation of its 

arguments with either positive or negative polarity <<R, a1, ..., an, 0|1>>. A piece of 

information is represented in mathematical terms capturing a number of elements being 

in a relation to be either true or false. Therefore, a situation is supported by the 

composition of a number of such pieces of information. It is not, however, defined by it. 

In order to capture further the meaning of situations, the theory explores a more 

philosophical approach. In consequence a situation is said to simply describe "what is 

going on". However, no ultimate definition can be provided. Devlin explains that 

situations are abstract objects, elementary concepts, which cannot be defined precisely 

using other mathematical items [DEV91]. In that sense a situation is an abstraction 

capturing the state of the universe relating to the complete set of infons supporting it, 

mixed with a meaning. 

Fortunately, as human beings are able to perceive their situations, and reason upon 

them, so can artificial agents. However, neither people nor systems are likely to capture 

the state of the whole universe, which finds its reflection in the definition of 

individuated situation. Devlin explains individuating a situation by an agent as 

perceiving only a part of the reality that is necessary for a situation to be picked out 

[DEV91]. An individuated situation becomes a relevant subset of the state of the 

universe [DEY00a]. This implies a limitation to a finite set of facts describing situations, 

and more importantly enables modelling them for representing in smart systems. 

2.1.2. Situation models  

In order to reason upon situations, agents and systems need to structure their 

understanding of what is going on at a moment. This calls for a model to represent 

situations within such computing entities. Those representations are sure to capture but 

a fraction of a real situation, with respect to its understanding in a situation theory. In 

this subsection we give an overview on the context and situation models. We discuss 

their differences regarding their expressiveness, ways of associating a meaning and 

technical implications. 
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[STR04] gives a complete survey on the context model types, which include the key-

value pairs, logic notations and ontologies. It provides also mark-up schemes and 

graphical models as ways of rendering context knowledge processable by machines and 

humans respectively. The authors provide equally a set of 6 model evaluation 

parameters, and they ascertain that the ontology-based models satisfy all of them best. 

It seems, for example, that ontologies enable context reasoning and facts derivation, as 

explained in [WAN04], and dealing with uncertainty [GU09]. 

Situations, however, even if being a limited part of the world [BAR83], can 

represent something more abstract than a value for just one context dimension. 

Therefore, authors of [ANA06a] model their situations as somehow abstract concepts, 

which are taken from a situation taxonomy. A set of abstract labels is arranged in the 

way that "formal meetings" are special cases for "meeting", for example. In this model, 

the situation concepts, and the whole taxonomy for that matter, are set apart from the 

context and the corresponding context ontology. 

This approach seems too simplistic and not expressive enough. Placing every 

meaningful situation in one taxonomy is too limiting, as any sibling concepts should be 

disjoint, and parent-child relations require a strict generalization-specialization of 

corresponding meanings. There exists a possibility of making the model slightly more 

sophisticated, should the multipleinheritance be introduced to the taxonomy [MAR02]. 

In that case two child concepts of another one could have orthogonal meaning rather 

than complementary (e.g. "business meeting" and "stand-up meeting" are two 

descendants of a "meeting", which do not exclude one another). 

Another problem with the presented model is the lack of connection between the 

situation and context ontology structures, preventing any translation from one to 

another. The necessary link is discussed in [YAU06]. The situation ontology is divided 

into two logical layers, one for lower level context concepts, and another for more 

abstract situations. It is an upper level ontology that includes a relation between an 

atomic situation and a context value element for a context dimension concept. 

The authors of [ANA06a] try to deal with the same issue by introducing a new 

situation model in [ANA06b] that considers situations as compositions of different 

context dimensions. They limit those dimensions to the following four: spatial, temporal 

artefact and personal. The situation model here becomes more expressive, carrying 

more information, for the fact of being composed of several pieces of information. 
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Those pieces of information assembled to represent a situation are called characteristic 

features in [MEI04]. 

Composing a situation out of several elements is present also in other context 

modelling approaches. In situation theory, the logic notation introduces basic infons 

representing simple situation as in [AKM96], which can be further combined to form 

compound infons [KOK09]. In [COO91] authors state that situations are in general a 

collection of infons that support them. An abstract situation, which can be sometimes 

expressed in few words, is very likely to be explained by giving several facts that do 

and do not accompany it. 

In [PAD04] we see yet another interesting approach to model this composed nature 

of situations. The authors adapt a graphical representation of context within n-

dimensional spaces, where n is a number of context dimensions considered. Whereas a 

point in that space represents a precise reading of context sensors, situations take form 

of subspaces. This makes a situation to be a composition of those context dimensions, 

which it spans, and not those for which they are completely flat (of length 0). 

Furthermore, the size of the span determines the range of context values for a given 

situation. A similar adaptation can be made for the vector context representation 

approach in [DEL12]. 

The previous space-based situation model does not consider any situation 

semantics whatsoever, but the presented principle of seeing a situation as a Cartesian 

product of several context dimensions has been considered in [KNO08]. Should every 

context dimension of a situation be considered and modelled separately, their combined 

Cartesian product would constitute a valid representation of a situation. Other 

researchers deal with such one dimension representations, making them based on 

<type, operator, value> triples [YAU06], which should describe an entity (called 

substantial) [COS06]. 

Should a set of simple, one dimensional semantic-rich situations, which follow the 

above recommendations (e.g. "humidity is 77%" or "wife is in a kitchen") be put together 

by adding "AND" operators, one would simply receive composed sentences, possibly 

quite long ones. In order for them to be processable by agents one would expect better 

structured representation. We identify conceptual graphs as able to represent quite 

complex sentences and logical expressions [SOW83]. Using them as a model of 

contextual situations is in return quite expressive. 
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It also remains to be verified if conceptual graphs representing situations are 

manageable by systems, and if they enable efficient reasoning upon them. It is often of 

interest to compare different situations and judge their mutual similarity. In the case of 

a context space-based model, comparison is a matter of a distance between subareas 

[PAD04]. Similarity of situations can be also measured in terms of a distance in 

ontologies [GAN08]. Conceptual graphs, having multiple ontology concepts 

incorporated, is just a more complex case of the latter.  

From the theoretical point of view, the six conceptual graph operators [SOW08] 

may make one graph to project on another. Thus, a network of dependencies between 

many more graphs can be created. As far as a more technical approach is concerned, 

there exists multiple implementation works on conceptual graphs comparison 

[MON00] [MON01] [POO95] [ZHO02] [REE05]. Even whole ontologies may be 

compared and matched with one another for that matter [CRO07]. The computational 

complexity reported in the reports is encouraging. Our adaptation, and extension of the 

conceptual graph model for situations is detailed in Section 4.2. 

2.1.3. Situation awareness 

Situation awareness is a property with a crucial impact on decision making and 

performance of both human and artificial systems [END95]. In his situation awareness 

theory introduction, Endsley presents a model of situation-awareness as an ability to 

perceive surrounding elements, comprehend their meaning and project their statuses 

into the near future. The author argues for that ability to require a much more advanced 

level of understanding than just being aware of numerous pieces of data. What 

separates it from context-awareness is operating on already abstract semantic 

interpretations of context, which makes it more stable, more certain, and, most of all, 

more meaningful to agents and systems [YE07]. 

The use cases mentioned in [END95] are complex decisions systems like those in 

aircrafts or air traffic control. Such tactical and strategic applications, which take into 

account many circumstances and have an enormous impact on the safety of people, are 

already being based on situation-awareness technology. Also some systems more, let's 

say, down to earth, recognise this technology as key for decision support in: 

information logistics [MEI04], network communication [BEI03], or driver assistance 

[MCC07]. All these systems introduce intelligence in a form of appropriate reaction of 

any type for given situations. 
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Figure 2-1. Endsley’s model of situation awareness [source [END95]] 
However, all of those systems are based on rules predefined for the system, or at 

best those introduced by a user while initiating the system. While it is probably the best 

solution for systems needing strong reliability, like the ones responsible for the safety of 

people, other everyday decision support applications could provide a little more 

customization and help for doing so. We mention in the introduction section that 

defining a functionality of a situation-aware system could be a collaborative effort, 

making the system's intelligence become collective. None of the systems reviewed here 

introduces such possibility. 

2.2.  Decision support 

In this subsection we investigate the state of the art on different systems that support 

their users’ decision making. In particular we focus on recommender systems, 

especially those incorporating context awareness, and collective knowledge. We search 

for any application of such systems in the domain of situation awareness, and any 

indication as to what would be the profit of doing so. We point out those technical 

solutions that could be adapted in introducing a collaborative and situation-aware 

system. 

2.2.1. Recommender systems 

The way that people help each other in making decisions is by giving advice. A system 

replacing humans in this kind of support is called a recommendation system. A 

transcription of using knowledge about the preferences of a person addressed with a 

recommendation is used in so-called content-based recommender systems. Suggestions 

are made there if a description of an item seems to correspond to a profile of the user's 

interests [PAZ07]. The items in question can concern multiple domains ranging from 

items to buy to things to see, places to visit, etc. 
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There are multiple technical approaches to render giving suggestions by computing 

systems possible. If an item's characteristics are given by a web store, for instance, a 

system still needs to gather information concerning user's preferences. This is done 

either by asking the user herself to provide the necessary pieces of information, or by 

inferring it from the history of user's interactions with the system [PAZ07]. Both 

solutions have their flaws. The first requires an effort from users, which they may be 

not willing to make, while the second takes time for an algorithm to learn. In either case 

having to much or to little knowledge may result in providing too few or too many 

suggestions respectively. 

In [ZAI02] the author suggests for simpler cases to limit the amount of knowledge 

gathered on a user and rather compare the amount already there with association rules 

mined from the whole user population. This approach is based on a collective history, 

making the learning process faster. The condition is that for a given domain there exist 

few global trends that all users are very likely to follow. In this case the 

recommendation system is applied to e-learning, and following particular learning 

modules is predicted on those few already done. 

On the other hand, [CAO06] presents a domain, where quantitative history data 

would not prove any useful. Electronic products are items that become quickly obsolete 

and in the same time frequently introduce completely new technologies. Not only can 

the history purchases be incomparable with a current market offer, but users may have 

little knowledge of what the offer is. Therefore, instead of asking for a desired value of 

graphic card memory, the presented system asks users what is the importance of 

playing games and graphics design to them. The suggestions are further supported by 

domain experts and fuzzy logics. 

In spite of different approaches to learning user interests models, content-based 

recommender systems are limited by the information at disposal for both items and 

users, i.e. the content. Providing this data in a manual way imposes a considerable 

effort, while obtaining it automatically is not always possible. Moreover, the classical 

recommendation system approach does not consider the fact that the very users tend to 

change taste in function of multiple factors. This is an especially crucial point in context 

and situation awareness, where decisions are taken in response to particular situations, 

and not in all of them. 
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2.2.2. Contextual systems 

Context awareness is a property enabling considering circumstances of events and 

surroundings of an entity, see Section 2.1. Applying it to the decision support systems 

leads to context-aware recommender systems. Such systems incorporate into 

recommendation ratings a third dimension, the context, to the usual two: user and item 

[ADO11]. The interest of a user in a particular item may vary in function of different 

context dimensions, like mood, time of day, fatigue, etc. For that reason, the suggestions 

can be filtered to match better preferences in a given context. 

[ADO11] presents three patterns that the use of context can adapt in recommender 

systems. The first two include suggestion results filtering either before or after the 

classical recommendation derivation is performed. Those two approaches exploit 

proximity between contextual data and validity context defined for user interests 

[NAU10]. The third approach requires incorporating context into recommendation 

functions. Either way, the context component is nothing but a parameter to augment the 

accuracy of the suggestions made for any type of item. There is no reference whatsoever 

to recommender engines which would consider context as such an item per se. 

 

Figure 2-2. Paradigms for incorporating context in recommender systems [source [ADO11]] 

To connect the context with particular item preferences, the corresponding 

association rules can be mined like in [HON08]. The links can also be established using 

the collaborative filtering technique, like in [CHE05]. In the latter case a prediction for a 

user preference for an item depends on the item evaluations in similar contexts, 

whereas similarity between contexts is measured by similarity of evaluations for the 

same objects in those contexts. Therefore, whatever the context dimensions values really 
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are, situations are considered similar if a preference for a majority of items varies a 

little. 

Even though [CHE05] refers to collaborative filtering, the notion of collectiveness 

and cooperation is missing there. Whereas the technique seems to relate to an algorithm 

applied usually to find similar, like-minded users. In fact, in the context-based 

recommender system survey [PAZ07] authors draw a conclusion that combining 

content and collaborative information can supplement suggestions by the opinions of a 

community of users. This is also an approach we aim to explore. However, neither of 

the context-aware recommendation systems studied make use of collective intelligence. 

2.2.3. Cooperative systems 

As discussed in the introductory section, the collective intelligence principle may enrich 

systems, both social and computing ones, with information not available directly 

[SUR05] [ALA08]. This knowledge is best considered in decision support systems. As in 

real life, a more abstract understanding of the world comes from observing individuals 

collaborating and competing. Patterns of their preferences and choices do not exist 

unless observed in a larger scale. And those patterns constitute a social experience, the 

concept of which can be exploited in recommendation systems. 

 

Figure 2-3. User influenced by others directly or through derived intelligence [source: [ALA08]] 

There are two sides for such collaborative systems. First, they transform sets of their 

users into true virtual communities [HIL95]. Those communities do not constitute 

virtual reality communities, as members do not interact directly with one another. Still, 

the very nature of those systems makes the experience to be communautary. Second, 

the community experience, or any of its user data for that matter, is not only stored and 

redistributed. New data, involving meanings and conclusions, is abstracted, making 

collected intelligence to become collective intelligence [GRU06]. 
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One of the most popular cooperative techniques adapted by recommender systems 

is collaborative filtering. In a general sense it stands for filtering information as an effect 

of any agent collaboration. In particular it can be implemented as a statistical tool to 

predict one's preference towards an item, which is based on a database of preferences 

for different items by all users [SAR01]. It has been found especially successful in e-

commerce [SCH01a], where web stores measure the utility of collaborative filtering 

techniques in a growth of sales thanks to "other users who bought this product were 

also interested in..." lists. 

 

Figure 2-4. The collaborative filtering process [source [SAR01]] 

According to [DUC09], collaborative filtering is most useful for people unfamiliar 

with a given area. In fact, experts rarely need suggestions coming from systems that 

may be sometimes wrong. Inexperienced users, however, frequently need any kind of 

help to quickly find an item of interest among thousands of not interesting ones. What 

makes the collaborative approach particularly interesting is the fact that the 

recommendations do not come from a biased seller, not even from the majority of other 

users, with which one may not necessarily identify. A priori, collaborative filtering 

presents items that like-minded users, which are those whose preferences match in 

many cases, find interesting. 

As far as using context in recommender systems, there is no notion of such user 

similarity in the context-aware collaborative filtering system in [CHE05]. We find it in 

[MUN10], where recommendations employing collaborative techniques depend on two 

context dimensions: location and time. However, the system presented there seems to 

only filter suggestion objects based on relevance to recommendation requests (movie 

suggested needs to be one of those played the evening in the given cinema). In 

consequence, the context considered is a recommendation context, and not a user-

dependent one. 
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3.  Proposed solution 

In the current state of the art we have found no documented research works on 

technology empowering user context and situation awareness with an experience of 

other people.  Context is treated rather as a set of circumstances to filter derived 

suggestions, for instance in [MUN10]. We argue that a situation itself can be a subject of 

a recommendation. Encountering one could lead towards a wider range of actions and 

decisions for a user to take than just buying an item or not. In the same time we 

recognise that collaborative techniques, especially the simplicity with which statistical 

users-items relations are transformed into collective intelligence are very promising for 

our system. We aim to make their application in the global situation awareness domain 

more proactive, like the works in [HON08] were with respect to the local context 

history. 

In the following subsections we define the goals and the frame of our solution to the 

problem. We analyse also the main functionalities to provide, which will lead to design 

and implement the solution in Section 4. 

3.1.  Working hypothesis 

As stated in Section 1, we seek in our research to investigate a possibility to apply data 

mining techniques onto user data of contextual nature. As a result, we expect to harvest 

new knowledge about user behaviour in particular situations. We are especially 

interested in exploiting the collaborative filtering principle in user telecommunication 

interactions. We believe that it could lead in turn to providing new intelligent social 

communication services, where each user would benefit from the experience of other 

users in certain contextual circumstances. 

We design a system that makes the idea of being aware of situations a subject of a 

recommendation. This approach has not yet been explored in the research works that 

we are aware of. The previous section summarizing the state of the art shows no 

connection whatsoever between the systems cognizing context and situations, and those 

providing recommendations, even if the latter may take into account some context 

notions. Finally, we focus on obtaining a seamless connection between the two areas by 

applying collaborative, social techniques. 

At the very beginning of our research we formulate the following three 

assumptions driving this thesis: 
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Table 3-1. Our assumptions 

A1.   Collaborative filtering techniques applied on context data would create new knowledge 

A2.   This knowledge could introduce a range of new interpersonal communication services 

A3.   Semantic modelling and reasoning should be employed for context data manipulation 

3.2.  Informed decisions 

The previous subsection lists several hypotheses for our research. Should we treat them 

as functional goals of a solution to the problem given in Section 1, we get a set of 

requirements for our collaborative situation-aware system. Namely, it ought to present 

its users with situations filtered from activity traces of the community in order to 

empower both their social situation awareness and decisions related to their 

interpersonal relations. The main object being manipulated therefore is the situation, 

while the principal technique used is collaborative filtering in its general sense. 

Exchanging experience with one another in interpersonal interactions is called 

giving advices and suggestions. Smart systems that can do the same are called 

recommendation systems. A subset of them is known to implement collaborative 

filtering algorithms, which extract knowledge and experience of a group of its users in 

order to share it with other ones. We choose for our system KRAMER to be a 

recommender system that suggests taking an action whenever the current context state 

has been found relevant by other users in the past. This way, one would learn from the 

experience of others and would not miss the right circumstances to react to accordingly. 

 

Figure 3-1. The KRAMER system transferring an experience of a group to a user 

A particular state of multiple context dimensions can be described in one word as a 

situation. One's situation is a set of circumstances, of all what is going on around 

[BAR83]. In practical terms it is a processed, abstracted context [DEV91] giving its 

semantic interpretation [YE07]. And such situations are objects of analysis for us. 

Finding important ones requires the system to observe patterns in users activity 

decisions in similar circumstances. If a situation inspires taking certain actions by 
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people, it is a sign that suggesting taking an action could be beneficial for someone who 

has no experience with similar situations. 

Now, situations are not only simple single concept ones (e.g. running, at a meeting). 

They can be quite complex composited beings describing a state of several entities in 

their social context. For example, let's consider a situation, where one's daughter has 

finished her classes while his wife is busy at a meeting. First, it is definitely a situation 

composed of a couple of circumstances, which we call context dimensions. Second, it 

might be important for someone, whose wife is usually responsible for driving their 

daughter home - this might require an action to call his daughter to wait for a while or 

to simply go pick her up himself. 

 
Figure 3-2. A situation of a user is a composition of his relatives and their context 

As a consequence of having situations more semantically complex than object 

references that collaborative filtering mechanisms normally deal with, our 

recommender system should provide an adjusted implementation of its algorithms. 

Typical statistical methods used for suggesting books or movies in web stores are based 

on measuring similarities between those objects in terms of their shared owners with 

similar tastes. In the case of the situations, having the exact same one happening for 

multiple users depend on the degree of granularity of context [BAL07] values. 

Therefore, it might be necessary to include a semantic similarity measure. 

Besides, the standard mechanisms of processing the objects to find those popular 

ones for presenting the respective suggestions to users should be present. Furthermore, 

users given with a notification of an important situation should be able to quickly 

evaluate it by indicating, for example, that they indeed find it interesting enough to be 

presented with it every time in similar circumstances, or on the contrary, that they do 
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not wish to be bothered with it again. That decision should be taken into consideration 

by the system, causing the importance of situations to be constantly revaluated. 

As our research for this thesis focuses on creating a system applying collaborative 

techniques on identifying important situations, it does intentionally avoid the problem 

of harvesting those situations from raw context data. Finding a set of context dimension 

values associated with frequently fired action is a subject of data mining algorithms that 

would analyse vast logs of community activity. They could constitute an entry sub-

module for the KRAMER system. We make the assumption, however, that there exists a 

way for users to contribute with the situations they find initially important. Then our 

social mechanisms can make those situations be shared. 

3.3.  Functional decomposition 

In order to learn building blocks needing an implementation, and eventually to propose 

an adequate architecture of the KRAMER system, we look into its reduction to the most 

important functional components. In the previous subsection we decided that people 

can be collaboratively aware of important situations via suggestion mechanisms, which 

makes KRAMER a recommendation system. Therefore, its abilities to both manipulate 

situations and provide suggestions are two main tasks of our system. This is expressed 

on the second upper level in Figure 3-3. 

 

Figure 3-3. Functional decomposition of the KRAMER system 

Digging deeper, we notice that suggestions are an effect of some situations 

processing algorithms, which harvest those important ones. From another perspective, 

recommendations have a purpose of being provided to a user. One might say that they 

require such recipients to exist at all. It is also those users who provide the situations to 

the system via their context-sensing electronic devices. Finally, the situations need a 
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well defined model to enable their processing by the system. The "model", "processing" 

and set of "user" modules are on the third upper level in Figure 3-3. 

Let's focus on the set of blocks representing users. For each user to be able to profit 

from the suggestions, she needs to have an interface with the system. This connection 

should be available via a device that could sense the user’s context, and exchange 

information about situations with other users, like family members or friends. At the 

same time the device ought to be personal enough to follow its user in everyday 

activities, while preferably not being shared with others. For all of those reasons, we 

propose the device to be a mobile smartphone. It is personal [RAE05] and new models 

are capable of sensing more and more context dimensions. Furthermore, connectivity 

for context exchange can be maintained among contacts in the phonebook. 

 

Figure 3-4. Client-server architecture inferred from the functional blocks 

Each user could browse through her contacts to learn their situations, and might 

define complex situations to be notified of on top of that. Those locally important 

situations should then be contributed to the system, which would perform its 

processing in one central entity, a KRAMER server. The situation model would be 

obviously common for all user clients and for the server. As a result, a client-server 

architecture emerges. We present it along with the communication protocol between 

entities in Sections 4.3 and 4.5 respectively. We discuss the particular functional blocks 

in Section 4.2, 4.4, 4.6 and 4.7. 
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4.  System implementation 

While the previous section introduced a functional overview of the KRAMER system, 

this section is focused on bringing all implementation details of each of the system's 

modules. We start by choosing as a reference several use cases on one specific domain, 

which would demonstrate best the functionality of the system. Then we propose a data 

model for representing situations and a global architecture of the system. Finally, we 

discuss each system module separately along with communication mechanisms in 

between. The heart of novelty of the KRAMER system is presented mainly in 

subsections 4.2 and 4.7. 

4.1.  Chosen domain 

An implementation of a generic collaborative situation-aware system prototype needs 

selecting at first one specific domain of application. With our system we aim at 

introducing a new set of interpersonal telecommunication services, which determines 

the domain. In the rest of the subsection we explain how the solution is applied to the 

domain, as well as for whom it is addressed, and we give a sample scenario with one 

use case for future reference. 

4.1.1. Interpersonal relations 

Situation-awareness is a property of perceiving and understanding the circumstances in 

order to evaluate them and to make conclusions. It is a property of human beings and 

autonomous intelligent systems used to support their decision making. In our research 

we are more interested in the former, that is humans and their social behaviours. By 

enhancing their awareness of current situations we aim at introducing a new set of 

interpersonal services supported by our system, KRAMER. 

The Section 3.3 sketches a general decomposition for functional blocks of the 

KRAMER system. It mentions a central logic along with numerous satellite elements, 

which are responsible for two main tasks. First, they gather information about users' 

situations. Second, they enable maintaining social relations between users based on this 

information. Therefore, in practice those would need to be some personal tools with 

communication capabilities. 

For that reason, we have chosen a mobile phone as an interface between a user and 

the system. Today's smartphones are able not only to place calls or engage an 

asynchronous data communication, but also to sense the environment (temperature, 
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light, noise, etc.) of a user. They assure at once both the communication and situation-

aware aspects. In the same time, such devices are frequently carried around by owners 

and hence may be considered as very personal [RAE05]. 

Therefore, we have decided to express the situation-enabled interpersonal relations 

in form of a contextual phonebook application on a mobile phone. As explained in 

greater details in Section 4.4, such a phonebook is a live contact list enriched with each 

contact's current context (availability, location, etc.). While smartphone sensors can 

observe the environment, their communication channels support sharing that 

information with others on a preferred level of details.  

We have discussed in one of our publications the social mechanisms accompanying 

a context-enriched phonebook. It appears according to other researchers (e.g. [SCH01b], 

[RAE05], [BAR08]) that presenting a context of each participant of a conversation, 

otherwise available in classical face-to-face relations, enhances artificial services with a 

notion of naturalness. Furthermore, exchanging those situation dimensions between 

users forms a base, on top of which the KRAMER system may operate. 

 
Figure 4-1. Phonebook 2.0 Android application screen [source: Google play] 

In consequence, the situations that KRAMER provides suggestions for may be 

composed of several context dimensions of a given user and her close contacts. Those 

dimensions are the same with the ones presented in a phonebook application, which we 

limited for the needs of the prototype to two such dimensions, user's availability and 
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location. Situations discovered by the system as important are therefore those that share 

contacts involved along with their local situations. 

Naturally, interpersonal relations in telecommunication services are just one choice 

for an application domain. It matches well with the system requirements and it keeps 

the system directly evaluable in terms of usability, which we exploit in the user test, see 

Section 5.2. However, KRAMER is a tool generic enough to be applied to other 

domains, which we discuss in Section 6. 

4.1.2. Target group 

KRAMER is a recommender system, which first discovers situations important for a 

meaningful part of a user community, and then makes suggestions on actions to take 

whenever they occur for any community member. Actions that the community 

members take in particular circumstances are learnt by the system, and transformed 

into situation-based recommendation rules. In that sense KRAMER is a rule-based 

system. 

Systems based on rules are frequently used to gather an expert knowledge 

necessary to either take optimal and fast decisions, or to support such decisions of other 

human experts [HAY85]. This is not the case here, as KRAMER gains its experience in a 

collaborative fashion from ordinary people and their everyday behaviour. We might 

say that the "expert" knowledge is elaborated from a mass of non-expert personal 

decisions. 

In the real life community members share their experience with one another for the 

profit of those less experienced and for the progress of the whole group. The KRAMER 

system supports this social mechanism. In consequence, the target of suggestions 

provided by the system would be an ordinary member of the community, rather than 

any domain expert. Furthermore, KRAMER encourages also its consumers to revaluate 

the rules so that the system can improve in time. In that sense, the collaborative 

knowledge gathered from non-expert community members transforms the community 

into one collective expert in the given domain. 

4.1.3. Use cases 

Let’s consider the following story to be an informal introduction of some use cases for 

the KRAMER system in the social computing domain. 
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Imagine Ed, a middle-class engineer, privately a husband and a father to a girl, and deep inside a 

devoted football fan. A couple of weeks ago he got his first smartphone. He was encouraged by a 

number of context sensors embedded in the phone and necessary software, which promised its 

intelligent self-adaptation to his needs. In fact, Ed was very sceptic towards the technology 

lately, which seemed to add unnecessary burdens upon users, rather than to facilitate natural 

ways of contacting his friends, for example. 'If the telephony is supposed to bring people 

together, why don't I get the impression of seeing my contact's status or location', he used to 

say. His friends have frequently provoked him laughing, 'You'd like to know everything about 

everyone, don't you?' 'At least, I wouldn't disturb you with my calls when you're taking a 

shower and I wouldn't get irritated when you don't reply in that situation', he always replied. 

But as soon as he turned on his smartphone, he got pleasantly surprised. The basic phone 

services, like placing a call or sending a short message, were available from a context phonebook. 

There were already several of his contacts using this technology, some of them were sharing their 

dynamic context information with him, which he saw next to their names and photos. 'Finally I 

can learn of my friends' availability before I call', he cried happily. 'Honey, did you know your 

sister is abroad again? Calling her for some chit-chat will cost her too, you know? I shall enable 

visibility of my status as well. Hey, how does it know that I'm riding in a train - probably it 

scans my agenda or senses my activity. I will not share such details with everyone. But I shall 

with you, Hon, so that you knew when I'm in the meeting not to be disturbed...' 

Ed's wife was already used to his jokes but couldn't resist not teasing back. 'I know you're 

very busy not to be disturbed office coffee drinker, but don't forget to sometimes drive your 

daughter home when I'm stuck at a meeting, huh?' But Ed had read his phone manual a little 

further by that time and he had a response. 'There is no worry, once we get both you and our 

little girl a couple of smartphones, I can program a rule that whenever she's finishing classes 

while you're at a meeting, I would get notified by the system! Isn't that just splendid?' As Ed 

said, so they did indeed. With one simple rule written via the same application, Ed assured his 

daughter won't loose time waiting in school because of his short memory. 

One evening, after having his daughter driven home, he decided to benefit from the fact of 

his wife still being held at work - he turned on a TV with a football match just starting. The very 

same moment his phone buzzed. This time it wasn't a simple notification to one of his rules. It 

was a suggestion saying: 'You're watching sports, while your friend, Ted, does the same and 

your wife is busy.' 'I haven't seen this guy in weeks, in addition he lives not far. What a great 

opportunity it is!' he thought and dialled quickly the number. 'Hey, Ted! Are you watching the 

game too? Don't you want to come over, I've got some beer in the fridge.. Great, see you soon!". 

After putting down the phone, Ed smiled thinking, 'Now I feel close to my friends.' 
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The above scenario shows the basic idea behind the KRAMER system. Social 

interaction in telephony can be enriched with a context sharing mechanism (Ed seeing 

his sister-in-law out of country), on top of which additional personalized functionality 

can be introduced (Ed's notification rule to pick up his daughter when his wife is unable 

to do so). But the key intelligence remains to be harvested from the community. By 

learning situations that many users have defined worth being notified of, the system 

can derive social intelligence concerning situations that might be important for the 

community (getting together to watch sports). In consequence, KRAMER may find 

them pertinent and suggest them to those users that have not defined them by 

themselves. 

The situation of watching sports together with a friend while one’s female partner is 

busy will serve as a reference example in this document. It would also be assumed that 

the corresponding suggestion comes from three situations previously defined by other 

users. Table 4-1 lists all those situations, and a couple more. One can see that the 

resulting notification rule (S) is an effect of some semantic processing of the first three. 

This process is explained in Section 4.7. 

Table 4-1. Reference notification situations from the described scenario 

# action situation 

1 

notify me 

WHEN 

I’m watching football, friend is watching football,  

and wife is at a meeting 

2 I’m watching football, friend is watching sports,  

and girlfriend is busy 

3 I’m watching sports, friend is watching sports,  

and female partner is shopping 

4 I’m watching football, and wife is at a meeting 

5 I’m reading, TV is on, and wife is at a meeting 

S I’m watching sports, friend is watching sports,  

and female partner is busy 
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4.2.  Situations model 

Contextual situations, being an object of manipulation and suggestion in the KRAMER 

system, need to be defined in terms of a representation model. This model should be 

expressive enough to represent complex situations made of several context dimensions 

related to several entities. As we explain in Section 2.1.2, that kind of representation has 

not been frequently used in the past research works, leaving situations modelled in 

most cases as an unstructured composition of several semantic concepts. We, on the 

other hand, need to maintain the structure of an entity-context relation of respective 

concepts. 

We seek a solution in the area of conceptual structures, one example being Sowa's 

conceptual graphs [SOW83]. To obtain a structure representing a situation, we start by 

defining our model with a meta-model inspired by a CONON upper ontology 

[WAN04]. We distinguish, however, substantials (entities) from moments (context 

description) as proposed in [COS06]. As a result, we define concepts of a context entity 

and its context state. Computation entity and person are subclasses of an entity in 

general. Location and activity are domain specific moments.  

 

Figure 4-2. The meta-model of situations 

We also introduce relations between moments and substantials (describes), and 

between entities and a person (is related to, belongs to) to model the fact that one’s 

situation is in fact one’s context along with context of his or her close ones. śs a result, 

by instantiating concepts representing a situation and by inferring the respective meta-

concepts relations, we receive a conceptual graph, a conceptual tree to be accurate, an 

example of which we present in Fig. 4-3. This conceptual graph has a "me" concept in its 

root. We say that this complex situation exists with respect to one particular entity, a 

person who perceives the situation. 
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Figure 4-3. Inferring a conceptual tree from the situation meta-model 

Following the notation in [CRO07] we define a situation conceptual graph (tree) 

SCG used in the KRAMER system along with its support. It should be noted that 

concept types are of four kinds (four concepts in the meta model) and relations are 

connecting either two entities or an entity with its context (dotted arrows in Fig. 4-3). 

Definition 1.   A support is a 5-tuple                         , where: 
─    is a finite, p-ordered set of human relations types        ; 
─      is a set of finite, p-ordered sets of entity types        , e.g. services, devices, 

applications, agents, etc.; 
─      is a set of finite, p-ordered sets of location types         specific the entity type; 
─      is a set of finite, p-ordered sets of status types         specific the entity type; 
─    is a finite set of binary relation types divided into two categories: those connecting 

entities to other entities                                      , and those connecting entities 
to statuses                      . 

Definition 2.   A situation conceptual graph is a 3-tuple            , where: 
─                          is a support; 
─                is an ordered, directed graph having edges                

                                                             
and meeting a condition:                                        ; 

─   is a labeling of the nodes of G with elements from support S:                              ;              . 

Every concept in nodes of such conceptual graphs is a semantic concept taken from 

a respective taxonomy. Taxonomies model different context dimensions: human 

relations, types of devices, locations, etc. For example, Fig. 4-4 presents a situation, for 

which being located in Poland is more relevant than being in any city in particular. As a 

result, these semantically labelled graphs become much more expressive than basic 
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situation taxonomies as presented in [ANA06a]. This will also enable logical 

manipulation presented further in this dissertation. 

 

Figure 4-4. Every concept in a modeled situation comes from the respective taxonomy  

Moreover, our conceptual graph-based model is consistent with the definition of an 

abstract situation in situation theory [DEV91]. Indeed, graphs represent only a part of 

the reality, of the real situation. In fact, every other entity taking marginal part in the 

situation can be represented as "any" concept, extended further by "any" concept for its 

context. "Any" is a root concept for every context taxonomy used in our model and is 

normally omitted in the situation representation. 

  

Figure 4-5. A modeled situation is a partial representation of the real one 

The motivation for us to select conceptual graphs as a model representing situations 

was its expressiveness, but also an easy comparison of conceptual graphs, which 

enables logical operations on situations, i.e. their generalization. In fact, in order to 

reason about situations, understand them, agents need to be able to compare them with 

one another. They need to measure a degree of similarity between a current situation 
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and their knowledge about pattern situations. Therefore, a situation model should 

enable and facilitate this operation.  

In case of a plain single concept representation of situations, similarity between two 

situations is measured as the similarity between two semantic concepts in the 

corresponding ontology. Comparing two complex situations modelled with a 

conceptual tree might require measuring similarities of semantic concepts for each 

context dimension separately, and calculating their weighted mean. Furthermore, it 

would be a graph matching problem between a couple of situation representations. 

Even though optimal algorithms for matching graphs in general are reported to be 

exponential with respect to the number of nodes in either graph [JIA08], we should 

remember that abstract situations do not represent the whole knowledge [DEV91]. 

Instead, the number of nodes is limited to what is necessary for an agent to detect a 

situation. For instance in [MEI04], "travelling" situation is defined only by using any 

transportation mean and by the fact of moving significantly. Furthermore, Mugnier 

reports in [MUG93] that many inter-conceptual graph operations become polynomial, 

should the involved graphs be restricted to trees. In [ZHO02] the implementation of 

conceptual trees matching is also reported to be polynomial.  

There are also other computationally reasonable implementations of comparing 

conceptual graphs: one for calculating an ontology similarity based on projection 

between graphs [CRO07], others presenting comparison of two conceptual graphs as a 

calculation of their overlapping parts with and without semantic subsumption 

[MON00, MON01]. We present our algorithm in Section 4.7.2. 

There is also another way of looking at the problem of comparing situations. Most 

of the conceptual graph-based comparison algorithms mentioned previously exploit the 

fact that concepts in nodes are structured in taxonomies per context dimension. As a 

result, "chasing an animal" is supposed to be matched with "chasing a mouse" 

[MON01], rather than "travelling by train", as concept of a "mouse" is a specialization of 

that of an "animal". A similar idea is to be found in [POO95], where the authors seek for 

the most interesting common generalization of two graphs in order to evaluate 

"thematic" similarity between two conceptual graphs. 

In fact, according to [MUG93], generalization and specialization are said to be the 

key computational notions in every reasoning concerning conceptual graphs. Sowa 

discusses six canonical formation rules as semantic graph-based operators for 

equivalence (copy, simplify), specialization (join, restrict) and generalization (detach, 
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unrestrict) of conceptual graphs [SOW08]. These operators can be interpreted by either 

logical subsumption or graph morphism.  

Different researches make use of specialization rules, for instance [LAU07] employs 

maximal join operator to perform high-level fusion on heterogeneous information 

represented by conceptual graphs. In our work, we are more interested in detecting and 

generalizing situations, and therefore finding generalizations of conceptual graphs 

associated with them.  

Mugnier explains in [MUG93] that for one graph to be a specialization of another, 

there needs to be a projection from the second graph to the first. Projection is a sequence 

of graph morphisms in a classical graph theory sense, but implying equality of relation 

types and taxonomic specialization of concept types. As a result, a specialized graph is a 

super-graph of the original one (external join operation) with possibly semantically 

narrowed labels (restrict operation), as in the example in Fig. 4-6.  

 

Figure 4-6. Situation specialization with two possible operators shown on our model  

This makes the specialization relation a preorder because it is not anti-symmetric as 

redundant graphs are still possible. Should the injectivity constraint be introduced and 

internal join operator forbidden, the relation becomes a full order. Therefore, conceptual 

graphs can form a hierarchy, like in [MUG93] or [LEV92]. As a result, reasoning about 

relation between two graphs can be transformed into the problem of traversing such a 

hierarchy. One graph is a generalization of another, if it is an ancestor of that graph. 

Considering that conceptual graphs represent situations, reasoning about similarity 

of two situations is reduced in a way to semantic distance measures as presented in 

[GAN08] for ontologies. Moreover, finding more abstract / detailed situations implies 

traversing the hierarchy upwards or downwards. Ye et al. introduce this idea in a 

concept of situation lattices [YE07], [YE08], [YE09]. Although in [YE07] they model 

situations as simple unitary concepts, similarly to [ANA06a], they notice that this 

organization reflects the internal structure of situations and is beneficial in identifying 

situations. 
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We define therefore a conceptual graph-based situation lattice similar to that of Ye 

as a semi-lattice of situations with an added bottom element as follows: 

Definition 3. A situation lattice SL is defined as             , where: 

-       is a set of situation conceptual graphs on a common support; 

- a specialization relation   is a partial order between situations;  

- the top element ⊤ stands for “anything is going on” situation; 

- the bottom element ⊥ regroups all the most specific situations. 

 

Figure 4-7. A sample part of a situation lattice 

The join and meet operators in the theory of partially ordered sets have separate 

meaning from join, restrict, detach and unrestrict operators in conceptual graph theory. In 

fact obtaining a meet of two situations requires a sequence of restrict and join graph 

operators on them, whereas the lattice join is obtained via graphs’ detachments and 

unrestrictions. The operators may become a little confusing especially for the name 

“join”, which is shared by the two terminologies. Taking an example of the Fig. 4-7, 

“wife is busy and TV is on sports channel” and “TV is on BeIN sport channel” 

situations join in the “TV is on sports channel” situation as an effect of detach and 

unrestrict operators. 

We argue that situations modelled as conceptual graphs can naturally form 

situation lattices. One such lattice is an abstract object representing all situations 

possible for an agent to be perceived, taking different context dimensions, with values 

on different levels of abstraction, into consideration. Situation awareness benefits from 

seeing a situation space as such an ordered structure. We show its practical advantages 

in the Subsections 4.4 and 4.7, where technical solutions for situation detection and 

generalization are inspired by their translation into the lattice traversal problem. 

4.3.  System architecture 

The KRAMER system operates on a client-server architecture. This choice is motivated 

in Section 3.3. In the case of the telecommunication domain, clients are applications 
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residing on mobile phones. Specifically, they are contact lists enriched with context. 

Particular combinations of context dimension values for a user and her close contacts 

may constitute important situations. Such situations are exchanged with the KRAMER 

server, which processes them further. In this scenario we also assume that there is 

another system responsible for exchanging context between contacts in the first place. 

For the purpose of the prototype, both systems, the KRAMER and the context 

distribution one, need setting up a proper infrastructure with a proper architecture. In 

both cases there is a server unit in the IP network that mobiles exchange data with. 

Then either the exchange is done only in the IP network or with a use of the GSM 

network if there is no nearby Wi-Fi access point. The client application isn't in fact 

dependent on the way the data is transmitted, it is the phone who assures best 

switching. If no network is available at the moment, the transmission would be 

reactivated once one of them becomes available. 

 

Figure 4-8. The architecture of our prototype, including the context distribution and KRAMER servers 

The context sharing server might be aware of the links between users, depending 

on its implementation. If it had no knowledge of the list of contacts each user has, some 

additional traffic would be expected. Either way, the information of a user changing 

context values should be transmitted only to those who are interested. One further 

limitation could be to send this information only to people one wants to share it with, 

and with the desired level of details. For those reasons, the data flow would create some 

virtual links between users that would correspond to the respective graph of contacts, 

which is illustrated on the social level in Fig. 4-9. 
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Figure 4-9. Social relations in the context distribution system 

However, important situations exchange performed by the KRAMER server would 

not necessarily result in a similar virtual link graph. In fact, the clients in this 

architecture have a priori no connections whatsoever. They are all in one anonymous 

collaboration group. However, they would most definitely form those links having no 

awareness of that fact. The resulting graph would appear somehow chaotic with 

possibly strengthened links for the "like-minded" users. The latter is however a pure 

speculation. We have not found any published study on the subject. The fact remains, 

that any links in Fig. 4-9 would not necessarily match with those in Fig. 4-10. 

 

Figure 4-10. Two levels of cooperation in KRAMER, links are formed between like-minded anonymous users  
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4.4.  COSMO client 

The software residing on a client device ought to be responsible for both detecting 

important situations and exchanging data with the system. Following our decision to 

adapt our prototype to the interpersonal communication domain of application, it 

should integrate with mobile phone's phonebook application. Any other choice in the 

future should result in an easy portability of this software, making it an interchangeable 

module. We called it the COllaborative Situation MOdule, COSMO for short. It is a 

client of the KRAMER server, which interfaces graphically with a user for her 

interaction with the system. 

The Fig. 4-11 shows the main functional blocks of COSMO in its generic form. The 

central situation detection element is provided by real-time context data from an 

outside provider. The situations to be detected have two sources, user's own rules 

defined via a GUI, or suggestions provided by the KRAMER system. The former are 

also shared with KRAMER. Finally, once one of the situations is detected, the proper 

action making use of any necessary smartphone resources, and available at the same 

time, is performed. COSMO users have further possibility to evaluate the suggestions 

received by either accepting them (a positive evaluation), or rejecting them (a negative 

evaluation). 

 

Figure 4-11. The generic COSMO architecture 

In the following subsections we discuss the details on the structure and 

functionalities of our COSMO implementation. The particular nature of context data 

source is shown in Section 4.4.1. The way the situations are defined and exchanged is 

presented in mid subsection. Finally, in Section 4.4.3, we explain the technology used to 

quickly detect situations in function of constantly changing context. 

  



 
- 46 - 

4.4.1. Context sharing 

The origin of context data is restricted by neither the COSMO module, nor the 

KRAMER system. COSMO receives at its input a flow of constant context information 

updates regarding the source. Those updates should just be structured in triples (entity, 

context dimension, context value). This way the situation detection element in COSMO 

will be able to compare the information with parts of situations to be detected. The 

triple would match or not a branch of a tree modelling a situation. For the details of 

situation detection mechanism see Section 4.4.3. 

Having our prototype applied to the domain of communication between mobile 

phone users, we narrowed artificially the nature of the contextual data. The data source 

itself is in consequence adjusted accordingly. We consider that important situations 

frequently involve other people, especially members of families or close friends. Their 

context should be equally taken into consideration while making decisions. We propose 

using a contextual phonebook application and a context distribution system. The 

former would provide context information regarding each phonebook contact, by using 

the latter system. 

It is assumed by us that modern smartphones are able to sense several context 

dimensions, and that there exists a logic of initial pre-processing those contextual data 

in order to obtain a couple of their meaningful semantic representations, which is 

required as an entry point of our system. We simply state that this is not a part of our 

research objective. From the point of view of our system, there are no restrictions on the 

way those representations are obtained, it may be a sophisticated reasoning mechanism 

(like translating phone profiles against availability statuses, or matching GPS 

coordinates in places types in Google Places API6) [RAE05],[EAG09] or even a user's 

manual input. For the needs of the prototype we use Google Places API and manual 

input for mapping respectively location and availability statuses into semantic concepts. 

 

Figure 4-12. Structure of the context distribution system and its relation with the COSMO module 

                                                 
6 https://developers.google.com/places/ 
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We define the context source for the COSMO module as follows. Sensors embedded 

in a smartphone capture the readings. Those sensors may be of physical or virtual type 

[BAL07] and therefore acquire information either about the surroundings of the phone, 

or about the state of services and applications on the mobile itself. All of those are 

processed by the logic necessary to obtain two semantic concepts. They can then be 

shared with the distribution system, the role of which is to inform about updates on 

other contacts context changes. The latter is provided to both user interface and the 

COSMO. The process is visualized in Fig. 4-12. 

As a result, every user, or her mobile phone to be precise, is able to share her actual 

location and availability with others via a context distribution system. Every day life in 

social networks and messaging tools show that people are eager to share a lot of private 

data in an act of social communication. Studies seem to confirm this fact and talk about 

new fast mode of chatter and sharing news in communities, which becomes more and 

more popular [JAV07]. It is hard to tell exactly the reasons standing behind but we 

consider them being related to the natural need of human expressing oneself, and only 

recently given some large-scale tools for doing so. 

 

Figure 4-13. Microblogging example on Foursquare [source: Insider] 

In a mobile phone contextual information about contacts can be communicated 

directly in the phonebook. Each contact list entry would be annotated with two context 

dimensions, concepts describing both one's location and availability status, and with a 

relationship label. Two former values are those previously learnt by that user's 

smartphone and then distributed by the corresponding system. The latter has no 

influence on the classical way of interacting with one another, but it enables later 

defining contact dependent situations in COSMO. This is static data, defined manually 

once, in contrast to the dynamic nature of location and availability context dimensions. 
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Such a context-rich phonebook is a tool for showing the latest, always up to date 

information expressive for every given contact at all times. Barkhuus et al. [BAR08] 

further compare such sharing applications to the very practice of microblogging. 

However, neither the context-rich phonebook, nor the distribution system is a novel 

idea. Context-Phonebook [SCH01b], ContextContacts [RAE05], Connecto [BAR08], and 

Whereabouts Clock [BRO07] are just four of such applications. Some researchers claim 

that context information sharing with friends is like story telling bringing closer the 

contacts to one another, frequently reassuring them [BRO07] and enabling coordination. 

Others that their application inspires social decisions to contact or not a friend in 

function of his or her location and availability [BAR08]. 

 

Figure 4-14. Contextual phonebook example in our demo 

However, in all of the mentioned approaches context dimensions are either limited 

to just a few possible values (home, school, work, on the way or available, busy, in a 

vibrate mode) [SCH01b][BRO07], or completely unrestricted (names provided by GSM 

cell identifiers as in [RAE05], free text location naming as in [BAR08]). We need to find 

the balance in between the two approaches to “snap the semantic context to the grid” 

[GRU07]. Therefore, we provide users with a set of semantic concepts for each context 

dimension (e.g. cinema, grocery, boutique, etc. for location). Those sets of concepts are 

large but predefined. If needed, they can be modified and enriched as long as the 

modifications are propagated through the KRAMER system as well.  

Another property of the sets of semantic concepts is that they are organized in 

taxonomies (e.g. grocery, boutique being two types of a store). Fig. 4-15 presents three 
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upper levels of abstraction of a sample availability taxonomy. Profiles “at a meeting” 

and “do not disturb” imply both that a user is simply busy. Please note, that this thesis 

does not provide a formal taxonomy for any context dimension, it rather just uses some 

sample self-defined ones. Nevertheless, the root of every taxonomy is represented by 

the most abstract “any” concept. The same applies to the other context dimensions, 

which is shown in Fig. 4-4, and the mapping is performed by the logic external to the 

COSMO module. The relationship labels like “wife” or “boss” also form a respective 

taxonomy with a manual selection of each particular value upon each contact creation. 

 

Figure 4-15. Three upper levels of a sample availability status ontology 

Once the local context is sensed and mapped to semantic concepts, it is ready to be 

shared among contacts. Context distribution can be assured by a system using a server 

as its central element. The server can either keep the knowledge about the relations or 

ignore it and just follow the addressing instructions of user devices. The first option 

requires less traffic but stores private data in one spot. The other requires for every 

context update to be addressed specifically. Probably there could exist yet another, 

more intelligent way of assuring what is essential - transmitting context data between 

friends and relatives. 

Noticeably, this is a sensitive mechanism as users are disclosing some very private 

data. Tests performed by some researchers [BRO07] show that people are more 

reluctant to share their context with location-based services, for example, than with 

their relatives. It appears that who consumes this kind of data is an important factor. 

The special nature of close family links motivates Brown et al. to limit their service to 

family members only. Due to the anticipation of privacy issues, the researchers even 

place their Whereabouts Clock in a kitchen, assumed to be the centre of the family life. 

Even though the study of Barkhuus et al. [BAR08] shows that initial scepticism 

regarding disclosure of private context data is not that critical in real application use, 

we agree that the details that users share should be a function of who can see them 
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afterwards [LED03]. Therefore, we introduce the possibility of selecting a level of 

abstractions of the context that one is willing to share with each contact. Phonebook 

contacts can be divided into groups of the closest ones, which see every detail of a user 

situation, then those that can see some information, finally those with whom no data is 

shared. For example, in Fig. 4-14 the first contact shares only the region as a location 

(Bretagne) without disclosing any specific city or building. 

 

Figure 4-16. Contact details screen in a demo contextual phonebook 

As shown in Fig. 4-16, abstraction levels are defined separately for every context 

dimension of a contact, based on the structure of a corresponding taxonomy, i.e. 

taxonomies can differ by the number of abstraction levels (depth of a tree) and 

complexity. The preferences regarding the amount of details shared with each contact is 

likely to depend on the social closeness, friendship or familiar links felt towards that 

particular individual. Users are invited to create this kind of a context sharing 

preference table, which should be respected by the distribution system, whatever the 

technical solution applied there. 

 

Figure 4-17. Context sharing preference table of a user Bob 
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4.4.2. Situations exchange 

The context sharing described in the previous subsection is already an interesting social 

interaction mechanism. It enables people to learn at a glance the context of their close 

ones. Being empowered with associating different pieces of information they are 

supported in seeing the big picture. In fact, their situation is influenced by those of their 

friends and relatives. And as a consequence, without much effort they are given real-

time data that can make their everyday socially aware and informed decisions easier. A 

particular context value describing a friend may initiate an interaction, or the opposite, 

inspire delaying such interaction. 

However, a phonebook or other context monitor is not an application that one 

consults every five minutes. The usage of it has a rather on-demand nature. In 

consequence, an update on context can pass frequently unnoticed. With some pieces of 

information missing, the proper association of a situation could turn impossible, and an 

opportunity to react simply missed. It would be an added value for users it they could 

define their important situations as a composition of their social context to be notified of 

each reoccurrence. It would be also a way to structure situations before providing them 

to the KRAMER system. 

The goal of KRAMER is to process collaboratively gathered important situations 

and suggest notifying those its users that have possibly never encountered them before. 

One possible way of introducing such situations in the first place would be to adapt 

some data mining mechanisms to learn them without any user interaction. Such 

mechanisms are, however, not an object of this thesis. Another, opposite way, would be 

to ask the users to provide situations themselves. Linking their effort to feed the 

KRAMER system with their instant benefit seemed like an elegant working solution to 

employ. 

The element described in this subsection is named "situation defining" in Fig. 4-11. 

A user via a GUI, integrated with the phonebook application in our prototype, may 

specify, which context dimensions of which entities constitute for an important 

situation. The situation can be optionally further associated with an action to be 

performed automatically. For keeping a user only informed for her to decide on an 

action to take, the default action is a simple notification. However, in its generic form, 

users define rules of the following structure. 

WHEN <situation> THEN <action> 
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A situation in a rule is modelled as shown in Section 4.2. A list of such rules is 

stored locally as a reference for the situation detection mechanism. Furthermore, each 

such rule is contributed to the KRAMER server. The latter is expected to suggest 

important situations defined by other users, which are also kept as a reference locally 

upon receiving. Therefore, the situation detection is performed on situations coming 

from both sources. Keeping a unified form of the rules (i.e. the same set of taxonomies 

for all context dimensions are stored in every COSMO client and the KRAMER server) 

enables the interoperability between COSMOs and KRAMER.  

In general, rule-based systems, which rely on situation-action rules, can be 

described as a mean to codify the problem-solving know-how of human experts 

[HAY85]. They associate a particular production event with a composition of rules. All 

rules integrated in the system constitute knowledge and a potentially complex if-then 

reasoning to obtain decisions. These are the so-called production systems, Rete being 

one example of them [FOR82]. We limit the actions in the prototype to notifications 

only, which combines the approaches of a mobile phone personalization [KOR04], 

situation-aware reminder [DEY00b], and context-aware notification service [ETT06]. 

The power lying behind rule-based systems is responsible for its wide use in expert 

systems [HAY85], but also in commercial user programmable solutions. On{x}7 is a 

recently released application by Microsoft that exposes an API to create simple 

contextual rules automating an Android mobile phone. Those rules are called recipes 

and they are inspired by the If This Then That technology (IFTTT)8. Motorola 

SmartActions9 is yet another example. Those solutions, even though they apply to some 

quite complex events, are missing a social context to the rules they enable to program. 

In our prototype, users are able to define their situation-based rules concerning 

several contacts from the phonebook list via an integrated GUI. A situation is therefore 

a composition of possibly multiple local situations of user's contacts. We see the concept 

of a situation to be social by its nature, and we incorporate it into the COSMO tool. In 

practice, COSMO users are able to select a number of entities and decide for which 

context values a given action (notification) should be fired. Furthermore, the values 

provided may be already taken from upper levels abstractions of corresponding 

taxonomies.  

                                                 
7 https://www.onx.ms/ 
8 https://ifttt.com/ 
9 http://www.motorola.com/us/consumers/SMARTACTIONS™/112638,en_US,pd.html?cgid=apps-software 
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Figure 4-18. Notification rules creation and listing screens in the prototype 

Fig. 4-18 presents an example of a created rule in the left and the resulting list of 

rules in the right. In this example, being in the Bretagne region, rather than in any town 

or building in particular, is enough for the user to be able to help his wife in driving 

their daughter home from school. It is important that on the level of rules, contacts are 

no longer considered as individuals with particular name and phone number. Instead, 

they are represented as concepts of relation with a user. This way these rules can be 

shared and reused in the KRAMER system, as explained in the following subsection. 

But it is for this reason that COSMO requires annotating each contact with a 

relationship concept. 

 

Figure 4-19. Rules exchange between COSMOs and KRAMER 

Once a rule is defined it is communicated to the KRAMER server, which in turn 

shares its knowledge with its clients. Messages with notification rules being defined by 

a user, those being suggested by the system, and finally user evaluations of the latter 
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ones are illustrated in Fig. 4-19. The latter type of messages is related to the suggestions 

received and is discussed in the next subsection. Naturally, since a list of annotated 

contacts form a profile (of a user as someone who is married if having a contact labelled 

wife or husband, for example) notification rules relating to a situation not possible to a 

given user profile may be skipped in transmission. 

4.4.3. Action execution 

The final task of the COSMO module is its constant monitoring whether the conditions 

of one important situation, either defined in person or suggested by the KRAMER 

system, are matched by the current context. In that case a proper action depending on 

the corresponding rule, for example a notification, should be fired. This functionality is 

represented in the centre of Fig. 4-11. The "situation detection" element is provided with 

own rules and those being suggested, as well as with context from the sensors and from 

the context distribution system. It produces instructions to fire an action associated with 

whatever situation is being matched, and instructions to cease the action when a context 

update makes the situation no longer matched.  

This approach and the current prototype implementation assume that all actions, 

even notifications, are of long duration nature (i.e. “keep the notification active” rather 

than “notify”). Short time execution actions would require defining actions with an 

apposite meaning, e.g. “increase the radio volume” would be a reaction to “decreasing 

the radio volume” once the conditions required for the latter action are no more.  

The mentioned procedure of triggering appropriate actions requires a mechanism 

that is responsive and scalable. An action ought to be fired at the very moment the 

current situation matches one of the reference situations. It may happen that several of 

the reference situations are co-occurring in one time, therefore the mechanism should 

be efficient in detecting them all at once. In order to choose a technical solution for that 

problem, an analysis of the situation detection problem needs to be made. We look into 

the abstraction of situation lattices in order to learn some practical guidelines. 

Following the Def. 3 and the Fig. 4-7 from Section 4.2, all of the possible situations 

can be made hierarchical in a partial order. In consequence, situations more abstract are 

closer to the top element of the lattice than those that are more detailed. The 

specialization of a situation is performed by specializing concepts used in the original 

one, or by making it more complex, which is represented on the lattice by joining it with 

another situation. So given that the COSMO module stores all the context dimensions of 
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all its entities, one might say that its knowledge is placed directly in one of the nodes 

close to the bottom of the situation lattice. 

Assuming that situations defined as important (which users want to be notified of, 

for instance) are some rather more generalized ones, for example having less than five 

entities involved, they would be rather located closer to the top of the lattice. This 

means that a situation defined or suggested can be an abstraction of the situation 

actually perceived by the COSMO. Therefore, in order for an abstract situation to be 

detected as occurring at a given time, one of its specializations needs to be perceived. In 

other words, the relation between a reference situation and the actually modelled by 

COSMO one is a relation of generalization/specialization.  

Furthermore, the problem of detecting that reference situation can be mapped into a 

problem of traversing a lattice. If a situation lattice was representing the space of all of 

the situations possible in the world, it would be infinite, for there might be infinite 

number of entities detailed in the universe. However, given the finite set of entities 

(contacts in a phonebook) and their possible statuses (concepts taken from respective 

fixed taxonomies), the lattice itself is also finite. This renders the lattice traversal 

mechanism possible. One example of a phonebook-based situation lattice is in Fig. 4-20. 

 

Figure 4-20. A simplified part of a situation lattice from a contextual phonebook situations space 

Traversing a situation lattice from the perceived situation all the way to the 

reference one requires applying a set of situation generalizing operators. As explained 

in Section 4.2, these would be Sowa's detach and unrestrict operators. For example, in 

Fig. 4-20, if the current situation were "wife is at a meeting and daughter is in a 

classroom" and the reference situation given "wife is busy", one can easily determine 

that the latter situation is matched and should be detected as occurring at the moment, 
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for there exists a path of unrestrict and detach operators (opposite to restrict and join 

ones), which can be applied in any order. This seems reasonable as whatever the 

location of the daughter set is, if the wife is at a meeting, she is busy (see Fig. 4-15). 

In the implementation of the COSMO module, the current situation is naturally 

detached into particular context triples, one for each context source being updated for a 

given entity. In consequence, the operators needed to be applied to all those simple 

situations are first, any necessary unrestrictions generalizing the context conceptual 

values, should the rule relate to a more abstract semantic value, and second, a join of all 

necessary context dimensions for the required entities. The composed situation with 

any necessary context abstraction should be an exact match with the reference situation 

for the notification, or any other action, to be fired. This stands for getting from “wife is 

at a meeting” and “daughter is in school” situations in the lattice in Fig. 4-20 to the 

“wife is busy and daughter is at school” one. 

As rule-based systems take frequently the form of production systems in their 

implementation, we also adapt one of such production systems following the directives 

obtained from the analysis of situation lattices. The production system Rete [FOR82] 

associates decisions on performing actions (the productions) with complex set of 

conditions, situations in our case. The Fig. 4-21 represents a Rete production network 

composed of two situations: "wife is busy and friend is watching sports channel" and 

"daughter is in school and wife is busy". The right hand-side part (red nodes) is known 

as alpha network, and the left hand side (blue nodes) as beta network.  

 

Figure 4-21. A Rete network for two sample situations 

In production system terminology, conditions are simple verifiable facts on a 

property or state of an entity. In case of complex situations, these are the simple ones, 
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consisting of only one entity and one property, relating to one context source. The 

situation "wife is busy and friend is watching sports channel" is composed of two such 

conditions: "wife is busy" and "friend is watching sports channel". They are marked C2 

and C1 in Fig. 4-21 accordingly. This corresponds also with the join/detach relation in 

situation lattices. It is to be noted therefore, that the condition C2 is shared in the two 

situation, and so is the node in the Rete network. 

The alpha network in every Rete network stands for checking validity of each 

particular condition. The beta network on the other hand is like a logic composition of 

some conditions. It is like a join operator for simple situations. Whenever several 

conditions are verified as true, one for an alpha node directly connected to a beta join 

node and other for all the upper conditions, a new valid composition of conditions is 

propagated downwards into a beta memory, or the production node. The beta network 

is therefore performing the join operation, which we defined as necessary of detecting 

complex situations. 

If the system was to detect such combinations only, the classical form of the Rete 

implementation would be enough. However, we say that context may be introduced to 

COSMO in a more specialized form than a reference situation would require. If the 

reference concept is an abstraction of the perceived one, semantic generalization needs 

to be performed. In order to introduce semantic reasoning as explained above, we 

enhanced our Rete implementation by replacing the equality (=) condition with 

subsumption (≤) one in alpha network. The condition is said to be true if it is equal or 

more abstract than the actual data. 

Let's take a wife of a user being busy C2: (wife ^state busy). Via a context 

distribution system associated with COSMO, she shares with him possibly some greater 

deal of details, for example that she is at a meeting w1: (wife ^state at_a_meeting) 

at work. According to a taxonomy defined, see Fig. 4-15, being at a meeting means 

automatically being busy. Therefore, even though the COSMO receives information 

about the meeting taking place at the moment, it is more important for the situation 

detection mechanism, that the wife is indeed busy. The condition should be 

nevertheless matched. This is assured by checking for concept descendants in alpha 

nodes. 

The Fig. 4-22 shows a set of COSMO incoming updates about context, which are put 

into our Rete network. W1 is matched against the condition C2, as being at a meeting is 
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a more specific concept than being busy. The second join node cannot fire a notification 

yet, as previous conditions are not matched. The second fact, w2, has no impact on the 

system, it simply is not matched by neither of the conditions. Finally, w3 is an exact 

match for condition C1, which is propagated to the awaiting join node. As a result, the 

respective notification is fired. 

 

Figure 4-22. Rete network activating with context updates 

If at any moment, before receiving the w3 update, the state of a wife changes, into 

being free for example, then the fact that the condition is no longer matched is 

propagated through the network. In that case, knowing that daughter enters a mall 

would not fire a notification. In the same way, having wife or friend restricted their 

preferences for sharing context with the user, notification can no longer be fired as well. 

In fact, matching more abstract context concepts against more specific conditions in 

Rete is simply not valid, e.g. knowing that a user's friend is in France does not say 

anything if he's in front of his TV or not. Whereas his watching a particular sports 

channel does. 

In reality, anytime a user creates a new notification rule in COSMO, or receives one 

from KRAMER, the Rete network in COSMO is updated. As a result, the networks 

stored can be more complex that the one in the figure. If there are several situations 

requiring one particular condition, a respective alpha node is being shared, and linked 

to possibly several join nodes. The output network's complexity is a function of the 

number of rules introduced. Nevertheless, the situation detection time is relatively fast. 

There are at most n+m Rete nodes to traverse (n being the total number of situations, 

and m being the number of conditions in the most complex situation). 

Finally, if an action suggested by the KRAMER is the one that is fired, a user can 

evaluate the pertinence of the recommendation. In case of a simple notification there are 
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two buttons displayed. One to accept the notification rule, the other to reject it. The 

decision taken here is sent to the KRAMER server as a feedback for revaluating the 

situations that it found previously important enough to suggest actions for.  

4.5.  Communication protocol 

The prototype of the KRAMER system is implemented in a client-server architecture, 

where COSMO modules are clients to one central KRAMER server. The two types of 

entities in our system exchange messages in order to both gain user collective 

intelligence and distribute it further among them. There are therefore three interfaces 

defined for that communication. The first for submitting newly created rules on the 

server. The second for sharing the suggestions on rules with important situations back 

with COSMO modules. And finally, the third to provide a feedback on those 

suggestions, namely their acceptance or rejection. 

 

Figure 4-23. Interfaces shared by the KRAMER and a COSMO in their mutual communication 

For this reason, there is a communication present between every COSMO module 

and the KRAMER server. A similar communication is needed for the context 

distribution system to work, and even though we implement similar mechanisms in 

both cases, the latter is not a part of the KRAMER system, and shall not be detailed in 

this dissertation. Nevertheless, the communication in the scope of our system requires a 

protocol and transmission technology to be implemented between clients and a server.  

We have decided to use the MQ Telemetry Transport protocol10. MQTT is a 

lightweight publish/subscribe messaging transport known for its low power usage, 

which is critical in mobile environments, and is frequently an issue in constant 

connectivity of social applications. On the other hand, a strict real time message 

delivery is not a constraint in this case, as exchanging situation-based rules is not a 

synchronous voice conversation. The KRAMER server is likely to do the calculations on 

important situations periodically rather than in real-time. Every day use of the system 

implementing the MQTT proved it to be a good solution. It should be noted that our 

                                                 
10 http://mqtt.org/ 
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choice for the protocol is an arbitrary one. While there exist many different solutions, 

for example CoAP11, which is intended for simple electronic devices, looking for the 

best one would not have a major impact on the functionalities that the KRAMER system 

provides. 

From the technical point of view, the MQTT message exchange mechanism requires 

an additional server service. Both the client and a server in the KRAMER architecture 

subscribe to the MQTT service. They are both treated as clients from this perspective. 

Then whenever a new message arrives from one COSMO entity, it is forwarded to the 

KRAMER server, and vice versa. It is a kind of an on demand forwarding of a 

published message to all subscribers. If there are no messages coming, the service keeps 

a minimal activity, just listening for the next one to arrive. 

 

Figure 4-24. A logical communication between the KRAMER and a COSMO 

As far as the communication procedure is concerned, upon its first connection, 

COSMO subscribes with an id (a mobile phone number in our application) on a 

common channel to a server, which in turn creates an MQTT channel dedicated to that 

client. The KRAMER server is notified of this fact on its dedicated channel, resulting in 

its subscription on the newly created channel. From that moment on any message sent 

by the COSMO module is forwarded to the listening KRAMER. Moreover, any time the 

KRAMER wishes to publish new suggestion rules, it does so on every channel 

separately.  

In consequence, it may filter out sets of rules for each COSMO from rules involving 

situations not possible and therefore of less interest for some users. If one has no wife, 

any rules involving a wife having a particular context would never result in an action. 

The rule might be very well transmitted and stored on a COSMO locally, as the 

COSMO action execution mechanism does perform that kind of logical filtering. 

However, the transmission load could get cut down, should the filtering mechanism be 

introduced. Because this functionality is independent of the KRAMER server and its 
                                                 

11 https://datatracker.ietf.org/doc/draft-ietf-core-coap/ 
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collaborative processes themselves, the best place for it would be in the message 

exchange block, see Fig. 4-24. 

 
Figure 4-25. A COSMO module connection with the MQTT service 

The Fig. 4-25 shows one COSMO connecting to the communication service, and its 

dedicated MQTT channel being coupled with itself and with the KRAMER entity. The 

Fig. 4-26 presents a sample message exchange between COSMO modules and the 

KRAMER server. Those messages are sent as string of characters representing rules 

with situations, and some additional pieces of information, like evaluation. Naturally, 

they may be encrypted. For the three types of messages, see Fig. 4-26, not to be 

confused, each is preceded by a respective key word (e.g. NEW, SUG, EVA). The 

situations themselves are formatted in JavaScript Object Notation12. The following is a 

sample JSON representation of the situation in Tab. 4-1(S). 

{ũpersonŪ:ŪmeŪ,ŪstatusŪ:Ūwatching sportsŪ,ŪrelationsŪ: 
[{ũpersonŪ:ŪfriendŪ,ŪstatusŪ:Ūwatching sportsŪ}, 
{ũpersonŪ:Ūfemale partnerŪ,ŪstatusŪ:ŪbusyŪ}]} 

 

 
Figure 4-26. Message exchange process between COSMO modules and the KRAMER server 

                                                 
12 http://www.json.org/ 
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4.6.  KRAMER server 

The goal of the KRAMER system is to learn importance of situations in a collaborative 

fashion from its users, and then further share this knowledge with the community, see 

Fig. 3-1. We argue that even though one might program his or her own action 

(notification) firing situation-aware service based on past experiences or anticipation of 

some critical situations possible in the future, one is not very likely to cover all 

situations that would be found important once occurred. It would be especially difficult 

as far as situations never previously encountered by a given user are concerned. 

Therefore, we make the KRAMER system users benefit from the common knowledge of 

the whole community. The global knowledge of the system is increased with the larger 

number of rules coming from its many users.   

Our architectural choice for the system, discussed in Section 4.3, imposes multiple 

user clients for one central server, which we call the KRAMER server. The server 

interfaces with COSMO clients in a threefold manner, as shown in Fig. 4-23. It receives 

new rules defined by users, it sends back suggestions on important ones, and it permits 

evaluating those suggestions. Therefore, the KRAMER server is a place, where at first 

rules with situations that some users find important are sent and stored in. Later they 

are redistributed among all users. 

But situations exchange in the scope of the KRAMER system may be of very 

different nature, involving different entities, defined on different levels of details. 

Naturally, aggregating many rules increases the knowledge and skills of the system 

[HAY85]. On the other hand, users should be able to experience service personalization 

and not be bothered with every rule that has been introduced to the system. This calls 

for a logic harvesting those situations, which are important for users in the community. 

As a result, the collected intelligence will be transformed into a collective one [GRU07], 

enabling smart recommendations. 

 
Figure 4-27. The main process of the KRAMER server 
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The Fig. 4-27 presents a schematic view of the KRAMER server. There are two 

storages in it, one for the rules contributed by COSMO users, the other for important 

situation-based rules that KRAMER suggests. The passage from one to another is done 

via a processing element, which is explained in great details in Section 4.7. The 

hourglass signifies its periodical execution. There is also a loop going from the 

processed rules back into the mechanism, for the new suggestions are elaborated based 

on both the former ones, evaluated or not, and new contributions. 

4.7.  Important situations 

KRAMER is a recommender system for situation-aware rules. Among rules contributed 

to the server, it needs to find those worth notifying its users of. Therefore, they need to 

be rules about executing actions in case of important situations. Users are welcome to 

define rules that apply to the situations they know to be important to them. This does 

not necessarily apply to situations that one has not encountered before, and may not be 

aware of their potential importance. For this reason we make KRAMER a system that 

gathers experience about important situations from all its users. The complete database 

of rules created by the whole community is stored on the KRAMER server. 

Some commercial solutions simply open their rules databases for users to browse 

through, like IFTTT recipes archives13. However, provided that the number of such 

rules is huge, the problem of users' initial effort to find interesting rules may be too big 

of a drawback. KRAMER resolves this issue by seeking the collaborative intelligence in 

processing the stored knowledge, and employing collaborative filtering of that data. Its 

principle is the same as in other recommender systems widely used in e-commerce 

[SCH01a], for example. Users are suggested with an interesting piece of information 

that they were not aware of before, which is harvested from other users’ experience. 

However, KRAMER rules are more complex beings than the usual subjects of 

collaborative filtering in its Web applications. Even if rule actions were taken from a 

closed set of simple actions, the situations themselves are represented by limitless 

conceptual trees, see Section 4.2. It turns out that the classical implementation of a 

collaborative filtering mechanism needs to be customized for the needs of the KRAMER 

system. The process of obtaining both rules to be suggested in the system, and the 

associated important situations is presented in the following subsections. 

                                                 
13 https://ifttt.com/recipes 
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4.7.1. Situation popularity 

Items that are recommended in classical collaborative filtering-based engines are in 

many cases those which have a high rating from like-minded users. The like-

mindedness is being calculated by correlation of ratings on other items. A 

corresponding similarity can be also calculated for pairs of items themselves by means 

of user-item matrix transformations. As a result, the suggestion is given if the associated 

item has statistical chances of being given a high note from the recipient, so whether a 

similar item was already given a high note, or the item is rated highly by a user with 

similar tastes.  

In the case of situations, which are semantic beings, more complex than usual web 

store items, the question of their similarity is also of a more complex nature. Such 

situations are not only statistically similar in terms of the pure collaborative filtering, 

but they may be of different degrees of similarity semantically-wise. This fact has 

obviously an impact on our suggestion making algorithm. Moreover, we argue some 

situations to be important and worth notifying of, should they form groups of 

semantically similar situations that are rated as important in COSMO modules. 

Naturally, the rating here is binary: having defined the rule or not. So an important 

situation is a frequently defined one. 

Considering that situations contributed in rules on the KRAMER server are 

modelled as conceptual trees, they are a combination of different context dimension 

values taking a form of semantic concepts. Furthermore, each concept is taken from the 

respective taxonomy resulting in different levels of abstractions for the considered 

information. In consequence, two different situations can have all their concepts the 

same but one, which is represented on two levels of details. For example, a situation 

"wife is busy and friend is watching a sports channel" is slightly more abstract than 

"wife is busy, and friend is watching BeIN sport channel".  

The two above situations can be considered very similar. The difference can be 

frequently of no relevance for situation aware decision making. Moreover, should they 

be treated simply as different objects injected into the system, both of their popularity 

ratings would be smaller than their total one. Depending on the granularity of 

contextual concepts, there may be many more similar situations created by users that 

make use of different levels of details but mean essentially the same. Despite being 
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possibly widely used, it would appear that they do not interest but a small portion of 

users each. 

 

Figure 4-28. Two semantically close situations meaning one generalizing them both 

The choice of a very expressive situation model using more or less abstract semantic 

concepts to express the context has all the advantages discussed in Section 4.2. For the 

requirements of a recommendation mechanism, however, we need to deal with this 

sparsity issue. In our algorithm we propose to group situation that are semantically 

similar. We do not wish to employ any numeric semantic similarity measure, nor an 

artificial threshold to decide if two situations are still similar or not. We introduce an 

innovative mechanism, which performs the matching in an opportunistic manner. 

In order to consider two situations to be similar, the algorithm looks at all possibly 

similar situations at once, and evaluates their similarity as a whole. The actual process is 

explained in the following subsection. If some situations are found mutually similar, the 

system does not consider but their one representative with a popularity rating being the 

total of their individual ratings. The situation representing the group is a generalization 

of all situations implied. The generalized situation is the least abstract possible one, and 

is calculated by the same grouping algorithm.  

The only requirement we put on situations to be similar, is that they need to have 

the same number of entities and their context dimensions involved. In other words, the 

structures of the corresponding conceptual trees that model those situations need to 

match. From the logical point of view, introducing an entity or a context dimension to 

one situation makes that element to gain importance while it was previously not 

important at all. The presence of such a factor can completely change the meaning of a 

situation, which would be further hard to evaluate as the corresponding concept on a 

former situation would be the most abstract "any" concept.  

Finding the generalization of any two situations is always possible, whatever the 

structure of the corresponding graphs. But a concept representing at once some specific 

context value and the most abstract "any" value is always the most general of the two, 

resulting in an uncontrolled abstraction of the meaning. For example, generalizing "wife 
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is at (location) work" and "wife is (availability status) busy", presented in Fig. 4-29, 

would result in trivial "wife (is anywhere and doing anything)". This does not make 

sense with respect to the recommendation system, which ought to suggest meaningful 

situations to its users. 

 

Figure 4-29. Two situations differing in structure 

We notice that our choice has some practical advantages. While adding or removing 

one context description of an entity, possibly eliminating that entity from playing any 

role in the situation, can result in a situation similar to the original one, implementation 

logic would become greatly complexified, if not even made impossible. Comparing two 

graphs or even examining their isomorphism is an NP-complete problem [JIA08]. 

However, considering only same graph structures reduces in many cases the 

complexity of the problem to the polynomial dependence [ELL92].  

Therefore, the algorithm implemented in the KRAMER is composed of two steps. 

The first being the situations grouping by matching graph structures with respect to the 

number of edges and their relation concepts labels. And the second, finding 

representatives of sub-groups of those groups that are indeed similar by means of their 

opportunistic generalization. Both of those steps are explained in details in the 

following subsection, and both of them may be represented as operations of a situation 

lattice, the idea of which is introduced in Section 4.2. 

An exhaustive situation lattice consists of all the possible situations for a given set 

of entities and taxonomies relative to each of the context dimensions. Given that the 

"any" concepts are not present in a situation representation, the lattice regroups 

situations with all sorts of model structures. Making a situation more complex is an 

effect of a Sowa's join operator, which combines two simpler situations into a more 

complex one, see Fig. 4-6. The resulting situation is sure to have a structure differing 

from both former situations. Eliminating all the join relations in the lattice results in 

creating a family of situation lattices, each dealing with only one specific situation 

structure. This corresponds to the grouping step of our algorithm. 
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Figure 4-30. A part of a situation lattice referring to Table 4-1 

In a scope of one same-structured situations lattice, the relations maintaining the 

hierarchy are those of restriction or unrestriction of semantic concepts. Finding 

situations that represent best groups of similar situations in one such lattice is a 

question of determining the least common ancestors of all situations introduced to the 

algorithm. Neither of the resulting generalizations, however, can cover a situation that 

was not introduced. In other words, there cannot exist a case in which at least one path 

obtained by series of restrictions leading from the abstracted situation to the bottom 

lattice element does not pass through any of the situations in the initial set or one of 

their descendants. This, on the other hand, relates to the second step of our algorithm. 

For example, Fig. 4-30 presents a case of four situations in a simplified lattice 

matching a scheme <a person> is in <a status>. Those situations are last parts of those 

in Table 4-1 with one added, (4)"friend is shopping". By analysing the lattice one may 

notice that there is one situation, which can represent the (1), (2) and (3). The 

generalised "female partner is busy" cannot be restricted to any “leaf” node, which is 

not represented by the initial set of situations. Even if there exists a path from it to “wife 

is shopping” via “wife is busy”, which is not present in the set, there is situation (3), 

which covers that leaf. As a result, the abstract situation sums the ratings of the three 

situations covered. Meanwhile, there are situations missing from the set that prevent 

including the (4) in the top abstraction, e.g. “friend is at a meeting”. Therefore, the 

situation remains not generalized. As a result, two situations represent those four in the 

input set, and they are bolded out in the figure. 

4.7.2. Generalization algorithm 

The situations introduced to the KRAMER system may be more complex than those 

presented in the example in the previous subsection, see Table 4-1. But the principal 

idea about their grouping and generalizing similar ones remains unchanged. Moreover, 
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some practical guidelines can be learnt from the lattice approach. In the algorithm 

implementation we distinguish also two steps, separating grouping from the 

generalization itself. They both serve to find similar situations, the first by analysing the 

corresponding graph structures, the other by adding the semantic properties of the 

concepts used. The whole process is represented as the centre module in Fig. 4-27. 

The first mechanism is based on the adaptation of the algorithm presented in 

[ZHO02]. The authors there present a formula to measure semantic similarity between 

two conceptual graphs. It is a recursive formula and for every recursion level it 

combines all of the possible sub-graphs obtained by cutting a previous level sub-

graph’s root node. For every such combination it calculates semantic similarity of 

relation-concept pair for both examined sub-graphs. Finally, the best matching 

combination of further sub-graphs is selected and passed to the next call level. The 

result given is a number between 0 and 1, where the latter stands for a complete 

semantic and structural match. 

For grouping purpose, however, KRAMER does not need to calculate the actual 

similarity value. We simplify the approach and do not bother about the semantic 

similarity between the concepts in nodes of the compared graphs. As explained in the 

previous subsection, the grouping step requires finding situations with matching 

structures only. This can be evaluated for two given situation trees by always having 

the nodes similarity function      equal "1". With the edges similarity function      

taking either “0”, if the context dimensions do not match, or “1”, if they do, we obtain a 

function that for every recursion level returns “1”, if every edge leading from a current 

root node has a corresponding edge in the other tree.                                                                              (1) 

We define S to be a set of sub-graphs obtained from eliminating a root node from a 

current level of recursion (equal for the two graphs), n and e - correspondingly nodes 

and edges of two compared graphs. Let       (resp.      ) be the root node of the graph 

obtained by cutting the edge     (resp.    ) from the graph, whose root node is    (resp.   ). For every recursion the best sub-graphs’ match (the max function of all possible 

sub-graphs combinations) is selected and normalized to the range <0;1>. If the number 

of sub-graphs for the two compared graphs is not equal, “0” value is returned. Two 

graphs are considered as a match if the     function of their root nodes has value “1”. 
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While the formula is originally destined for two graphs, we apply it to group all the 

situations in the KRAMER database. Therefore, it is applied to every new situation 

introduced into the system. Each situation being grouped has its structure compared by 

the formula (1) with a single representative of each already existing group, until the 

matching is found. It is due to the fact that a priori all group members have the same 

graph structures. Once a match is found, the new situation, and the associated rule, 

joins the group. If, however, all the results are lower than 1 it means a mismatch, and a 

need to create a new group for that particular situation. 

Table 4-2. Pseudocode of the algorithm grouping situations 

function group_situations(S[1..N])       //S-input set of N situations 

   initialize G[]                        //set of groups of situations 

   for i:=1:N 

      found:=false 

      for j:=1:size(G)                   //for every existing group 

         if match_graphs(S[i],G[j][1])==1//structures match? 

            G[j][size(G[j])+1]:=S[i]     //add a matching situation 

            found:=true 

            break                        //group found, stop looking 

      if found==false 

         G[size(G)+1][1]:=S[i]           //create a new group 

   return G 

 

function match_graphs(S,Sr) 

   if size(S.edges)!=size(Sr.edges) 

      return 0                           //different number of edges 

   similarity:=1/(size(S.edges)+1)          //default similarity 1 if no more edges 

   initialize results[size(S.edges)][size(S.edges)] 

   for i:=1:size(S.edges)                //combine edges types similarity  

      for j:=1:size(Sr.edges)            //with a deeper level of recursion 

         results[i][j]:=sime(S.edges[i],Sr.edges[j])*  

         *match_graphs(S\S.edges[i],Sr\Sr.edges[j])/(size(S.edges)+1) 

                                         //formula (1) 

   return similarity+sum(results[max(results[])])  //return the best case 

The pseudocode in Table 4-2 illustrates the grouping process of the algorithm 

including two functions: group_situations and match_graphs. The first iterates over 
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all situations introduced to the system and calls the latter to check the matching 

structures. If a given new situation matches the first from either of groups it is added to 

that group. If not, a new group is created. The matching function calculates the best 

score for each permutation of compared edges (S.edges) of two situation graphs. If two 

edge labels match (sime(a,b)), the function gets deeper, until the situation has no 

more edges. In that case the similarity is said to be always 1 (1/(size(S.edges)+1)). If 

at any point the number of edges is not equal, 0 is returned instead. See [ZHO02] for a 

running example of this kind of algorithm. 

To better show the results of the process, let's take an example of the five first 

situations from Table 4-1. Even though the situations 1 and 4 have two identical 

elements, there is one other element from 1, which is missing in 4 (“friend is watching 

football”). Those two situations will not be in the same group of situations sharing one 

structure. They cannot be found similar in consequence. Meanwhile, even though the 

situation 5 seems to be the odd one out, it has the same structure as situations 1-3. It 

would get probably separated in the second step of situations processing, when the 

semantic concepts will be considered. As a result, we have two groups, the bigger one 

regrouping situations of the following structure: I am in <a state>, <an entity> 

is in <a status>, <an entity> is in <a status>. 

Table 4-3. Situations from Table 4-1 after the grouping process 

# G situation 

1 

I 

I’m watching football, friend is watching football, and wife is at a meeting 

2 I’m watching football, friend is watching sports, and girlfriend is busy 

3 I’m watching sports, friend is watching sports, and female partner is shopping 

5 I’m reading, TV is on, and wife is at a meeting 

4 II I’m watching football, and wife is at a meeting 

 

After this first grouping step, the proper generalization occurs. In Fig. 4-30 it is 

shown that the generalizations derived depend on the actual situations in the initial set 

of rules. This has been adapted in the implementation. The level of generalization of the 

result situations is a function of semantic concepts used in the input ones. Naturally, 

this is performed separately for each group derived in the previous step, but all 

situations in such groups are processed simultaneously. For our example in the 

previous paragraph, two executions of the generalization algorithm would be called. 
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Since the group of one situation only is trivial, the example will follow grouped 

situations 1, 2, 3, and 5. 

The algorithm starts by constructing a graph with the same structure that situations 

in the group have. This structure is common for all situations in one group. Each graph 

node is represented here, however, as a taxonomy of concepts of a given type 

(taxonomy of relationships if the edge leads to the relationship type, taxonomy of 

locations for the location type, etc.), creating a kind of a meta-graph. Then every 

situation in a group marks its corresponding concepts on this shared taxonomy-based 

graph. In Fig. 4-31 we present a representation of the example group on slightly 

simplified taxonomies (e.g. in the upper left taxonomy, which stands for a relation type, 

situations 1, 2 and 3 marked the same concept, “friend”, and situation 5 marked “TV”). 

 

Figure 4-31. A meta-graph structure for the generalization algorithm 

One may notice that bubbles with numbers 1, 2 and 3 representing the presence of 

the corresponding situations in particular taxonomies are always near to each other on 

those taxonomies. They are related to one another by sibling, parent-child or equality 

relations. This corresponds to the general impression one might get by comparing 

situations in Table 4-1, where situation 5 feels to be the odd one out. Our algorithm 

promotes these close distance relations by finding those situations to be similar, which 

cover a complete sub-tree with their marks. Only such situations can be generalized 

into one abstract situation. 

To find such complete sub-trees, the algorithm performs successive cutting of those 

tree branches that point to leafs without marks while having no marked ancestors. Once 

a branch is decided to be cut of, all of the ancestor branches leading to that one should 

be cut of as well. This process could be equally done on a situation lattice directly. Our 

solution, however, uses decomposed structures, taxonomic trees, rather than much 
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bigger and more memory consuming lattices. Moreover, while the same mechanism is 

applied simultaneously to every taxonomy-based tree in the meta-graph, it is enough to 

find one situation differing from another on one tree to say that it is overall different. 

The following pseudocode illustrates all steps of the generalization algorithm. They 

consist of creating a meta-tree, marking concepts of all input situations on appropriate 

trees, removing node that were not marked and do not have a marked ancestor, and 

finally finding both maximal uncut concepts and groups of situations contributing.  

Table 4-4. Pseudocode of the algorithm generalizing situations 

function generalize(S[1..N])              //S-input set of N situations 

   initialize metatree[size(S[1])] 

   for i:=1:N 

      for j:=1:size(S[1].nodes)           //situations mark values for concepts 

         metatree[j].nodes(S[i].nodes[j])[size(metatree[j])+1]:=i 

   for i:=1:size(S[1].nodes) 

      for j:=1:size(metatree[i].nodes) 

         if size(metatree[i].nodes[j])==0 //checking conditions to cut 

          && size(metatree[i].nodes[j].children)==0|1 

          && no_positive_ancestor(metatree[i].nodes[j]) 

            metatree[i] \ metatree[i].nodes[j] 

   initialize abstractions[size(S[1].nodes)][N] 

   for i:=1:size(S[1].nodes) 

      for j:=1:N 

         if metatree[i].nodes[j]!=null    //concepts remaining get generalized 

            abstractions[i][j]:=metatree[i].nodes[j].leastancestor 

   initialize groups[] 

   initialize used[] 

   for i:=1:N 

      if used\i==used 

         groups[size(groups)+1][1]:=S[i]  //grouping truly similar situations 

         used[size(used)]+1:=i            //if all concepts abstracted the same 

         for j:=i+1:N                     //for the compared situations 

            if abstractions[][i]==abstractions[][j] 

               groups[size(groups)][size(size(groups))+1]:=S[j] 

               used[size(used)+1]:=j 

   return groups, abstractions 
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Figure 4-32. Cutting empty branches on one tree example 

The Fig. 4-32 presents an family of two trees, one of them being trivial, which is an 

effect of the cutting algorithm applied to the first availability status tree of the four 

situations in group I in Table 4-3. Semantic concepts representing watching football 

(1,2) are taxonomy children of the one representing watching sports in general (3). The 

concept of reading is further in that respect from the previous three. Therefore, if the 

tree pruning started eliminating all unrepresented branches, the two groups would get 

separated in the process. Providing that situations 1, 2 and 3 are found similar on all 

other trees, they would get generalized, into the “watching sports” concept in that case. 

Even though situations 1 and 2 relate to football only, situation 3 covers all possible 

sports concepts, and the three situations generalize as a group. The following table 

gives the final effect of the algorithm. 

Table 4-5. Situations from Table 4-3 after the generalization process 

# situation 

1,2,3 I’m watching sports, friend is watching sports, and female partner is busy 

5 I’m reading, TV is on, and wife is at a meeting 

4 I’m watching football, and wife is at a meeting 

The presented algorithm will adapt to any set of input situations in its pursuit of the 

best generalizations. In the worst case scenario, for some completely semantically 

different situations, it would end up distinguishing every situation, and thus returning 

the exact same set of situations as it received. Should either of the situations 1 to 3 not 

be introduced in the example in Fig. 4-30, no abstract situation could express entirely a 

subset of input situations. Whether it would be a bottom-up or top-down approach of 

verifying the possible abstractions, the result would be always the same. Similarly, in 

our implementation objects metatree[i].nodes[j] would have at most one element, 

which would lead to trivial operation of a least common ancestor and groups of 

situations of size 1. This proves the correctness of our algorithm. 
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Let’s notice that we manage to avoid measuring distances between situations that 

would require either some arbitrary similarity threshold or much more complicated 

calculations. Instead, we are able to obtain the situations generalized opportunistically 

by grouping graphs whose concepts have been found in common uncut sub-trees for all 

taxonomy trees. In result, concepts remaining in common sub-trees after the cutting 

process is finished become generalized into the lowest common ancestor. The 

mechanism works equally well for multidimensional taxonomies. If nodes in 

taxonomies had possibly more than one parent, like in Fig. 4-33, the generalization 

would explore multiple paths for finding the least abstract common ancestor. To the 

extent of our knowledge, this is the first algorithm to generalize large sets of such 

semantically complex situations. 

 

Figure 4-33. A sample multidimensional availability status taxonomy  

4.7.3. Rules revaluation 

In the example provided by the previous subsection, the KRAMER recommender 

system would provide a suggestion of the rule "notify me when I'm watching sports, 

my friend is watching sports, and my female partner is busy". Once the situation 

happens for any KRAMER user, the COSMO module would fire a notification, as 

described in Section 4.4. This notification would appear with at least two options for a 

user to select from. Those options would relate to either accepting or rejecting the 

suggestion received. In the first case, the rule would be stored locally in COSMO and 

would fire every time the situation reoccurs. Once rejected, however, the rule is 

discarded. Furthermore, in both cases, a feedback evaluation is sent to the KRAMER 

server. 

The evaluation interface is specified for both COSMO and KRAMER, and is present 

in Fig. 4-23. While the positive feedback can be treated as yet another contribution of 

the same rule, the negative one should be treated in a different manner. Stating that a 

situation, which was previously abstracted by the KRAMER, is not interesting or 
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important for a user may say one of two things. Either the generalization or all its 

detailed situations are not good. In both cases, the negative score should be considered 

for that rule. In consequence, the reduced rating may influence the level of abstraction 

of the suggested situation, or even the very fact if the rule will be suggested in the 

future or not. 

 

Figure 4-34. A prototype screenshot showing options for a suggestion 

Let's consider the Table 4-5 once again, but let’s this time consider that one user 

rejected the suggested rule based on situations 1, 2 and 3. We get a state of the system as 

in Table 4-6. This time the marking mechanism includes the information about a 

situation being negative by a minus sign. The process runs in a very same way as 

before. There may be, however, negative values present, therefore an additional cutting 

condition is introduced, see the pseudocode in Table 4-8. Fig. 4-35 replaces the actual 

situation number markings with a sum for both positive and negative representations 

taken from Table 4-6 and broken into individual concepts. Bubbles with dotted lines 

contain only the situation 5, which was previously found different from the others. 

Table 4-6. Situations from Table 4-3 after receiving a negative feedback 

n situation 

3 I’m watching sports, friend is watching sports, and female partner is busy 

1 I’m reading, TV is on, and wife is at a meeting 

1 I’m watching football, and wife is at a meeting 

-1 I’m watching sports, friend is watching sports, and female partner is busy 
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Figure 4-35. A meta-graph structure for the generalization algorithm with negative feedbacks 

Judging by the summary values, some generalizations made previously are now 

considered as unwanted by the community (value 0 in Fig. 4-35). This is especially the 

case for the second relations of the situations in the example (represented in the bottom 

of the figure). In consequence those nodes are eliminated from the trees, leaving the 

pairs of situations 1 and 2, and 1 and 3 separate on the trees after being cut. They would 

therefore be considered as not similar by our algorithm. Only the situation 2 and 3 

would get matched together and generalized. Nota bene, it would be the same 

generalization as in Table 4-5 due to the opportunistic nature of the algorithm. But the 

corresponding rating is effectively lowered to 2. 

Table 4-7. Situations from Table 4-6 after another generalization process 

n # situation 

1 1 I’m watching football, friend is watching football, and wife is at a meeting 

2 2,3 I’m watching sports, friend is watching sports, and female partner is busy 

1 4 I’m watching football, and wife is at a meeting 

-1  I’m watching sports, friend is watching sports, and female partner is busy 

 

As one may notice, the rules have their life in the KRAMER system as they may be 

revaluated by users, which influences the algorithm for finding similar situations. 

Therefore, every situation ever committed or evaluated in the system needs to be stored 

and remembered either separately, or in a complex meta-tree structure. Situations that 

were once found important may be reduced in importance in time, and vice versa. Both 

positive and negative feedback, as well as a possibility to introduce new rules makes 
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the important situations set adapt to users and to their changing needs. For this reason, 

the KRAMER system adapts itself to current trends in the community by its evolving 

intelligence.  

Table 4-8. Pseudocode of the algorithm generalizing situations with negative feedback 

function generalize(S[1..N])  

   initialize metatree[size(S[1])] 

   for i:=1:N 

      for j:=1:size(S[1].nodes) 

         metatree[j].nodes(S[i].nodes[j])[size(metatree[j])+1]:=±i 

   for i:=1:size(S[1].nodes) 

      for j:=1:size(metatree[i].nodes) 

         if (size(metatree[i].nodes[j])==0  

          && size(metatree[i].nodes[j].children)==0|1 

          && no_positive_ancestor(metatree[i].nodes[j]))  

            metatree[i] \ metatree[i].nodes[j] 

         if size(metatree[i].nodes[j])>0  

          && sum(metatree[i].nodes[j])<=0   //the negative cutting condition 

          && no_positive_ancestor(metatree[i].nodes[j])) 

          && metatree[i].nodes[j].parent != null 

            metatree[i] \ metatree[i].nodes[j].parent 

   ... 

   return groups, abstractions 
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5.  Evaluation tests 

In order to evaluate the KRAMER system, i.e. whether its definition and 

implementation respond well to the tasks stated in the first sections of this dissertation, 

we have performed a couple of different types of tests. As KRAMER is a 

recommendation system, we have consulted [SCH11] as a reference to decide on the 

form of the tests to be issued. As a result, they consisted of both off-line and on-line 

evaluations, including a user study of a relatively small scale. The aim being measuring 

several properties of the system, as they are presented in [SCH11] and [HER04]. We 

group them with respect to a four-element scale variating a perspective, from the most 

user centric on top to the most system centric in the bottom, in Table 5-1. 

Table 5-1. Classification of recommender system evaluation properties 

↑ 
user perspective 

 

system perspective 
↓ 

trust, utility, risk 

p
ri

v
ac

y
 diversity, novelty, serendipity 

accuracy, coverage, adaptivity 

confidence, scalability, robustness 

 

One classical system property is its accuracy, which is frequently the first 

recommender systems’ comparison criterion. It applies to a measure of to what extent 

do users agree with the recommendations given. There are multiple formulas adapted 

to rating items or their ranking. In the KRAMER system the situations are either 

accepted or rejected, which makes for a binary usage prediction of situations found 

collaboratively important. The accuracy in this case can be seen as its precision defined 

as a ratio between a number of true positives (accepted suggestions) and a sum of both 

true and false positives (all suggestions received). 

Whereas accuracy is a measure acquired post factum, confidence is rather a degree of 

trust a system has for its suggestions while giving them. This property can be used by a 

system to filter out those suggestions that it is not confident enough in, or further 

research the item. It motivates defining a threshold of whether an item (a situation in 

our case) is worth notifying of. Trust from a user perspective is her literal belief that a 

system is worth returning to when performing future tasks. Even if it depends on the 

accuracy of a system, the parameter, being an effect of a user-system interaction, is of a 

much subjective nature. 
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For some systems it may be of further interest to determine the portion of the items 

covered by its recommendations. Because not only should the suggestions be accurate, 

but also diverse, novel and serendipitous. Should a system perform well on a whole 

item space, the suggestions are likely to be found interesting by either of the properties 

evaluating suggestions in terms of their being different, informative or even surprising. 

The latter parameters can be measured in a user study, by either enabling an on-line 

feedback or asking corresponding questions in a follow-up questionnaire. 

Two final user perspective properties are utility and risk. In those two the benefits 

for one using a system are opposed to what can be a negative outcome of either a false 

positive or a true negative. These two can sometimes even be evaluated without a test 

by analysing the nature of a system. This applies also to one further system description 

property. Privacy stands for a degree the user disclosed data are not revealed to other 

system users, which can be an issue for systems that derive a collective intelligence. 

This property is transverse to the two perspectives in Table 5-1, as it is equally related to 

the mechanisms handling the data as to users’ perception of a system. 

From a more technical point of view, suggestion deriving algorithms should have 

their scalability and robustness verified. The former is an ability to operate effectively 

for huge collections of items, which is frequently the case in real recommender systems. 

The latter is an immunisation to fake data injections into a system, of both malicious 

and commercial nature. Finally, due to rapid item collection changes and shifts in 

interest trends, a recommendation system should be adaptive enough to capture those 

changes, and present its users only the up to date suggestions. 

Having presented all the parameters discussed in the literature, only some of them 

are addressed in our tests. Those are the most important parameters for the KRAMER 

system, which were also determined by the nature of the tests. The first one, which can 

be described as an algorithm simulation on synthetic data test, evaluates the system's 

scalability, coverage, and robustness (Section 5.1). The second one, being a scenario-

based user study, covers accuracy, utility, trust, and novelty (Section 5.2). In Section 5.3 

we evaluate the KRAMER system by means of results obtained for all the mentioned 

parameters. We discuss there also an issue of privacy of the data in our system, and the 

parameters we did not explore in details. 

Unfortunately, we were unable so far to perform a large scale user test, which 

would be very likely to provide even more insight into the usage of the KRAMER 

system by many people over a long time period. 
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5.1.  Algorithms simulations 

Before conducting any user test we decided to perform an off-line simulation of the 

KRAMER server algorithm performance. The algorithm concerned is the one described 

in Section 4.7. Its goal is to process semantically a set of situations, grouping and 

generalizing those that are similar with one another. In other words, it has an input of 

many semantically rich conceptual trees. As the number of such structures provided 

can be huge, we wish to examine mainly the scalability of the algorithm proposed. To 

look into some further properties of our solution, we decided to register also the 

number of same structured situations groups, and the number of final rules found. 

The tested implementation of the algorithm used Java 1.6 programming language. 

The environment consisted of a two core processor (2 x 2,80GHz) personal computer 

with 6GB RAM and Windows 7 operating system. Every simulation with a given 

configuration of parameters, which are described in further paragraphs, was repeated 

10 times, the final result being applied with a mean function of those ten. In most cases 

simulations were performed for a range of 10 to 1000 input situations, giving a clear 

view of the nature of the scalability function. 

Having no existing bases of complex situation data sets, especially using our model 

of situations, we begin by creating synthetic data. For every simulation a set of 

randomly generated situations is provided to the algorithm. In order to vary the set, 

situations are generated with different structures and context concepts, as they were 

defined by many users with different needs. We limit however the number of entities 

potentially involved in a generated situation to 3, as we find it of little probability that 

people would be likely to define situations more complex than that. 

 

Figure 5-1. Generate random data process diagram 

The Fig. 5-1 presents a cycle of generating a wanted number of situations, where the 

generate_situation function is presented in a form of a pseudocode below. There, 

having by each contact a definite location or availability status is a matter of 50% 

chance. Furthermore, the number of contacts is also taken randomly from one of the 

sets R: {0, 1, 2, 3}, {0, 1, 2}, {1, 2, 3} and {2}, respectively for each function in the family, 
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with an even probability distribution. Lastly, the situation is checked for being empty, 

in which case it is regenerated. 

function generate_situation(R) 

   empty:=true 

   do 

      initiate situation 

      if rand()>1/2 

         situation.location:=random_location() 

         empty:=false 

      if rand()>1/2 

         situation.availability:=random_availability() 

         empty:=false 

      contacts_number:=rand(R) 

      for i:=1:size(R)  

         empty:=false 

         empty_contact:=true 

         do 

            initialize contact 

            contact.relation:=random_relation() 

            if rand()>1/2 

               contact.location:=random_location() 

               contact_empty:=false 

            if rand()>1/2 

               contact.availability:=random_availability() 

               contact_empty:=false 

         while contact_empty 

         situation.contact(i):=contact 

      if is_empty(situation) 

         situation:=generate_situation() 

   while empty 

   return situation 

 

In order to smoothen the mean functions obtained, which in some cases were 

significantly different from the particular simulated ones, a trimming factor of 30% was 

applied. As a result, the charts in Fig. 5-2 to 5-4 are averaged functions of 7 simulations 
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out of 10, for the 3 most extreme ones were removed. Even then the processing time 

dependence does not seem stable for one of the functions in the family. Nevertheless, all 

three figures enable us to notice several significant facts. 

 

Figure 5-2. Time in [ms] dependency for a number of random situations 

 

Figure 5-3. Group number dependency for a number of random situations 

 

Figure 5-4. Abstracted situations number dependency for a number of random situations 
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From the time chart (Fig. 5-2) we learn that the actual computational complexity is a 

function made of several simple functions, which results in stair steps effect. Moreover, 

the higher the time is, the sooner those steps occur. Also, the bigger condensation of 

situations concerning bigger number of contacts in situations, the more operations are 

performed by the algorithm. The extreme example one may see for the situations with 2 

contacts only, where the time of processing seems exceptionally random starting from 

about 300 input rules. 

The number of groups found by the algorithm in function of input situations 

number (Fig. 5-3) is very stable and seems to saturate on particular levels. The less 

possible combinations of entities involved in situations there are, the faster this function 

saturates. Those levels are given by the number of all possible situation structures for 

respective contacts number possibilities. This can be calculated using the recurrent 

formula (2), where n is the number of graph structures representing all combinations of 

context dimensions, excluding the relationship context dimension, and k is the number 

of such structures used (contacts) per situation. 

                                                                                                        (2) 

The number of all possible graph structures for a given set of n and k is in fact a 

variation with repetition, which excludes being mutual permutations. In that case, the 

following properties are present. Selecting any number of times a single element (   ) 

gives always only one possibility (aa...a). Selecting once an element from a set of n 

elements possible (   ) is equal       . Selecting k times an element from n elements 

possible (with repetitions) can be based on selecting k times an element from n-1 

elements possible (     ). The possibilities missing there are those involving at least one 

occurence of the n-th element. Therefore conjunction of one element shorter selection 

(k-1) of all n elements with that n-th element is added (     ). This justifies the  

formula (2) and leads to the final group count, where C and R are numbers of context 

dimensions and relations defined in a situation respectively.                     (3) 

The above formula can be explained as follows.    is a number of all permutations 

for a C number of context dimensions to be either describing an entity or not. Therefore, 

there is always that element present for entity "me". Then, depending on the number of 

relations R and non-empty selection of context dimensions describing an entity (    ), 
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the number of combinations is given by the application of formula (2). In consequence 

the sum of all such combinations for each relation number is calculated. Then there can 

be one case, where there are no related entities for either configuration of context 

dimensions for "me" (+1), with exception from one empty, without any context 

dimensions for any entity, situation (-1). 

Finally, the rules number chart (Fig. 5-4) represents a family of functions that is the 

most unexpected in this case. We present it in a logarithmic scale and with a f(x)=x 

comparison function. Although there is a fragment for which the amount of rules is 

actually smaller than the number of initial situations, for the most part it is on a 

contrary. The number of rules seems to grow exponentially until saturating on a level of 

all rules possible for a particular number of contacts. The period of such saturation for 

only 2 contacts function in Fig. 5-4 covers exactly the most random part of the 

corresponding time dependency in Fig. 5-2. 

This is unacceptable with respect to the aim of the generalizing algorithm, which is 

to provide less but more abstract rules derived from the input situations. Further 

detailed discussion on this effect, as well as on all other examined dependencies, is 

given in Section 5.3. For the moment, let’s assume that this result is dictated by the 

random nature of the situations generated, whereas in real life it is not likely that users 

would declare every possible situation, limited only by the size of taxonomies. Instead, 

we can assume that the tool would be used in some more relevant types of situations, 

human “points of interest”. 

 

Figure 5-5. Generate focused data process diagram 
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We explore this hypothesis in a second approach to simulate the algorithm on 

synthetic data. Therefore, we seek the remedy in limiting the pool of situations that 

users may find useful to define. In order to generate sets of more focused situations we 

need to change the generating mechanism a little. Instead of generating every possible 

situation, we imagine having a set of interesting types of situations and drawing from 

them. Those points of interest are nothing else than just a fixed set of rules. In result, we 

add a second step to the data generation process. We arbitrarily set the number of 

points of interest at 500. The final set of 10-1000 situations is drawn from these 500 

initial situations. 

 

Figure 5-6. Time in [ms] dependency for a number of focused situations 

 

Figure 5-7. Group number dependency for a number of focused situations 
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Figure 5-8. Abstracted situations number dependency for a number of focused situations 

Looking at the family of plots for the number of rules in function of input situations 

one can verify that the algorithm works better in terms of its primary aim. Fig. 5-8, 

presents in linear scale this time a smaller number of rules than the equality function 

f(x)=x. The scenario with limited points of interest, which seems to us to be a more real 

life-alike case, proves the algorithm to generalize situations into less numerous 

abstractions. After that, we observe some differences regarding the number of rules that 

are obtained by different functions for 1000 input situations.  

From other charts we learn that the number of groups in Fig. 5-7 is similar in 

comparison to fully random data, which is dictated only by the structures of situation 

graphs, and not by the concepts used. But most importantly for the scalability 

evaluation, Fig. 5-6 shows that the time consumed by the computations seems stable 

enough. The steps of sudden function changes are clearly noticeable. From the family of 

plots one can deduce that the computational complexity may depend on the number of 

situations having more contacts and on the factor of how fast the number of groups gets 

saturated. 

For the rest of the simulations we preserve the focused way of generating synthetic 

situations. In those situations we examine several parameters that may have further 

influence on the performance of our algorithm. Knowing that the KRAMER system is 

used to process context-rich situations that some of its users find important, while 

others not necessarily, leads us to look into the impact on the algorithm of the following 

list of parameters: 

- amount of points of interest in scale of the whole community, 

- ratio of negative decisions on suggestions to all suggestions received, 
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- share of concepts used in situations that are taxonomy leafs to those more abstract, 

- number of context dimensions possible to define in situations, 

- distribution of number of entities involved in defined situations. 

The default parameters values, if not being tested in a particular simulation, are 

given in the Table 5-2. As the number of groups being found by the algorithm depends 

mostly on the number of contacts taken for the generated situations, and since we have 

this parameter fixed for the following tests, we exclude the corresponding figures and 

their analyses from the remainder of this section. For each of the listed parameters we 

manipulate, efficiency (number of rules) and scalability (time) figures are presented and 

discussed. 

Table 5-2. A set of default test parameters 

Parameter Value 

Number of contacts {0, 1, 2, 3} 

Points of interest 500 

Negative situations ratio 0% 

Taxonomy leaf concepts ratio 100% 

Context dimensions relation, localization, availability 

Distribution of contacts number 25%, 25%, 25%, 25% 

 

Having defined the simulated data generation to be based on a number of pre-

generated situations, we first examine the impact of having different number of such 

points of interest in the community. One may observe an obvious dependence that the 

more such points are allowed, the more rules can be derived (Fig. 5-9). Still, below the 

equality function and within limits of the number of generated situation types. There 

are no big differences as far as the time of computing is concerned (Fig. 5-10). 

Simulating a more realistic data set requires assuming that some of the KRAMER 

suggestions may be found not useful by some users. This would result in having a 

degree of negative situations in the set to be generalized. The test shows that the 

algorithm, in case of 20% negative rules ratio, derives fewer rules in a slightly higher 

time (Fig. 5-11 and 5-12). Should the service offered by the KRAMER system be found 

useful, we do not envision much more negative decisions circulating in it. Having more 

negative rules than positive ones would mean that users are not satisfied with 

KRAMER with little intention to continue using it. 
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Furthermore, KRAMER users are not limited to selecting semantic concepts only 

from taxonomy leafs. Defining already abstract situations by users and having the 

algorithm to operate on previously abstracted rules is a very likely case. The charts 

show that, for 50% leaf concepts ratio, in a little more time (Fig. 5-13) the algorithm 

achieves better abstraction efficiency in terms of output rules (Fig. 5-14) than for 

situations with taxonomy leaf concepts only. 

For all previous simulations we assumed having just location and availability 

context dimensions for each situation contact annotated further with a relationship 

concept. If we took two more context types, for example time of day (morning, 

afternoon, etc.) and time of year (month, season), users could model rules like:  "notify 

me whenever my husband is in a pub in the morning". In this case the processing time 

function slope steepness would increase considerably (Fig. 5-15) resulting in some more 

rules generalized in the process (Fig. 5-16). 

Parameters tested in this section were used to model different scenarios for the real 

test data. Taking into consideration the nature of the data input into the KRAMER 

system and its generalization algorithm, we assume the parameters experienced in a 

real test to be close to the values given in Table 5-3. In result we expect the efficiency 

and scalability functions to match charts given in Fig. 5-17 and 5-18 (in this case points 

of focus parameter is set to 700, while the range for the number of situations are 

extended to 7000). Please note that even if the parameter values are not exact, the 

resulting charts would still give a good estimation on the algorithm behaviour, as long 

as the real data would display a focused nature rather than a completely random one. 

Table 5-3. A set of final test parameters 

Parameter Value 

Number of contacts {0, 1, 2, 3} 

Points of interest 700 

Negative situations ratio 20% 

Taxonomy leaf concepts ratio 50% 

Context dimensions relation, localization, availability 

Distribution of contacts number 10%, 40%, 40%, 10% 
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Figure 5-9. Abstracted situations number  

dependency for different number of focus points 
Figure 5-10. Time in [ms] dependency  
for different number of focus points

 
Figure 5-11. Abstracted situations number 

dependency for different ratios of negative rules 
Figure 5-12. Time in [ms] dependency  
for different ratios of negative rules

  
Figure 5-13. Abstracted situations number 

dependency for different ratios of leaf concepts 
Figure 5-14. Time in [ms] dependency  

for different ratios of leaf concepts

  
Figure 5-15. Abstracted situations number 

dependency for different context dimensions 
Figure 5-16. Time in [ms] dependency  

for different context dimensions 
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5.2.  Treasure-hunt game 

Large-scale tests of systems provide tons of log data for multi-purpose analysis and 

enable learning system's properties in real use. In the case of a recommender system 

operating on a completely new type of objects, such as context-rich situations, gathering 

the necessary data is likely to take long months. Unfortunately, we did not have means 

to perform such a test. But we did manage to undertake a test of a much smaller nature, 

which would still provide us with interesting insight. Thanks to a novel scenario-based 

approach not only were we able to evaluate quickly several aspects of the KRAMER 

system, but we also acquired experience for preparing better future real user tests. 

The main focus of the game-test was the suggestions provided and their 

appreciation by the users, who received them. Due to the particular nature of object of 

recommendations, that is users' socially-enabled situations, we needed to study if the 

KRAMER system is understood, accepted and found useful. Even the very first task 

might be not trivial as a service, where a well-known phonebook application is turned 

into a social context exchange tool that notifies of complex situations, can be at least a 

little confusing. Then, the fact of disclosing private context data to contacts can be also 

an issue to some. 

Therefore, before asking users whether they find KRAMER useful or not, we 

needed to introduce them gradually to the service. They were invited to learn the 

COSMO application interface while playing with it, and to discover functionalities of 

the KRAMER system by simply exchanging contextual information with others, as it is 

being done in popular social network services. Finally, an effort to interact with the 

system should provide some concrete benefits to user experience. We packaged all this 

in a 2-hour test session, which was possible thanks to a preset scenario in a spirit of a 

treasure-hunt game. 

We have invited a couple of groups of testers, 8 people each. Instead of giving them 

the tool and asking to use it so that we could analyze the logs, we prepared a scenario-

based game for them. Our authorial method enabled us to observe most important 

system properties in a much shorter and more fun manner. The two groups had the 

same test session programs, both divided into two parts. During the first part, 

participants learned the interface and functionalities of the COSMO application. In the 

same time they learned the rules for the game, which was the second part of each test. 
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The latter was performed in a special building in Orange Labs in Lannion dedicated to 

testing user experience. 

The theme of the game for test users was being a merchant in Brittany. Each one 

was a merchant of a different good, and they all needed to prepare a reception the 

following weekend. For a good reception one needs some snacks, some fruits, some 

sweets, and something to drink. Therefore the merchants travelled between five places 

in Brittany: Trégastel, Pleumeur-Bodou, Brasparts, Huelgoat and Brocéliande, to find 

other merchants willing to sell them the missing goods. As there were 8 merchants in 

total, each of them was selling one type of goods from the four mentioned categories, 

making for 2 merchants selling goods from one category. To make it more difficult to 

the players, and more interesting for the system, the regional law permitted selling 

particular goods only in selected places. 

In our game-test, every tester played the role of one merchant. The goal was to find 

at least one good from three other categories in five days (5 game turns). The theming 

required adapting the context dimensions used in the system, especially concerning 

taxonomies related to relationship and location. In the game they became respectively, 

type of a merchant (Fig. 5-19) and type of terrain (Fig. 5-20). The introductory steps of 

the test provided the players information as to what did they sell, and where were they 

permitted to do so. Their schematic sequence is shown in Fig. 5-21, and explanation 

provided in the following paragraphs. 

  

Figure 5-19. Taxonomy of relations  
in the test game 

Figure 5-20. Taxonomy of locations  
in the test game
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Figure 5-21. The user test steps 

Before participating in the game, testers needed to learn the application. However, 

there was no manual provided to them. The learning process was based on following a 

list of instructions given to them and not disclosed to the others. Participants were each 

given a mobile phone with the COSMO application installed, and instructed to interact 

with the application in a certain way. Even though those interactions were performed 

locally, they had an effect on experience of others, as all participants were contacts of 

one another. 

By following the instructions correctly, not only did they get familiar with the 

service, but they were learning the rules for the upcoming game. In the same time we 

were able to observe and verify, how well did they do with each aspect of the system, 

and how the latter performed in the course of the game. Every interaction has been 

monitored during the test and further logged for future off-line studies. Naturally, 

testers were invited to ask for help whenever needed. This enabled keeping the 

collective test going, while letting us instantly learn the met difficulties. 

1 

• wait for X to become busy  and change your status to busy  

• wait for Y to become free and change your status to free 

2 

• stop sharing location context with: X, Y, ... 

• count the number of contacts having stopped sharing location context with 

you (note that number) 

3 

• read a notification rule present in your COSMO 

• change your availability status to X 

• count the number of notifications received (note that number) 

4 

• create the rule: "when X is in Y" 

• move to location Z 

• send an SMS to a contact firing a notification: "you sell V" 

5 

• receive an SMS saying that you sell X 

• play the game as a merchant of X in locations mapped from numbers noted 
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The first warm-up instruction was to change the user availability status manually 

from "free" to "busy" in a particular order. Participants were therefore asked to  

(1) acknowledge the fact that this particular phonebook enables sharing their status 

with their contacts, (2) understand that the icons and context description next to their 

contacts' names signifies current situation of those contacts, and (3) find a way and an 

application screen to modify their own status. As it was the first contact with the 

application, and good understanding of the context sharing idea is crucial for the whole 

service, participants were asked to repeat the task, by "becoming free" again. 

As COSMO enables not only sharing context but also deciding how it is shared with 

different contacts, the second instruction asked to stop sharing location context 

dimension with certain other users. In other words, testers needed to find a way to 

change the level of details they would share with some of their contacts into the most 

abstract “any” concepts. As a result, a certain number of other users would stop sharing 

their location with them as well. Testers were asked to note that number. Coming back 

to the initial state required participants to reverse their previous actions once again. 

From that moment, tester had the knowledge of how to freely manipulate context 

sharing preferences. 

The third instruction involved already the notification rules. There was one already 

provided in each user's application and was referring to a contact being either ready in 

a second or ready in a little while, two instances of being occupied (Fig. 7). After having 

studied it, participants were asked to simultaneously change their status to one of the 

occupied concepts indicated in their instructions. As a result, several notifications have 

been fired for all users, one for each contact entering an availability status from the rule. 

This way, participants have learned that having a rule results in a notification, should 

the conditions be met. They also obtained a second cipher to note - the number of 

notifications received. 

The final instruction of this test phase required creating a new notification rule. The 

corresponding situation was given by the instructions and it referred to a type of 

merchant being in a particular city. Once everyone entered their situations, they were 

asked to move to a specific room (place in Brittany). As their location context got 

updated automatically, the proper following of the instructions assured for all of them 

receiving a notification. Then they were asked to send an SMS message to the person 

causing a notification with a name of the good he or she was selling in the game. This 
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way, testers got a feedback on a situation that they entered, which they were able to link 

to a real action - sending an SMS. 

Moreover, they were ready to start playing the game. The two numbers they noted 

mapped to two cities, in which they were able to sell a good, whose name they received 

by an SMS. They were only missing one thing - the knowledge that there is a system 

able to recommend an important situation that they did not define themselves, the 

KRAMER system. But observing their reaction to that was the aim of the second phase 

of the test. 

The mechanics of the game were simple, each group of three users in line were 

asked to take their game turn. The turn consists of movement (changing a room) and 

asking one person in that room two questions of a type: "Can you sell me a cake?", for 

example. The person asked need to say "yes" if he or she is a merchant of a respective 

good and if it is a correct place to sell it. Otherwise, the reply would be "no". If a 

transaction is made, the good represented on a piece of paper is issued. In return, the 

person asked may then ask back. This way one learns association links between people, 

goods and places, either positive or negative ones. 

 

Figure 5-22. The game turn summary for one user 

Keeping in mind that a merchant is to find goods from three other categories than 

the one of his good, for example a cider merchant needs to buy one sweet, one snack 

and one fruit, it gives at least 10 questions (2 questions per each of 5 turns, plus any 

asking back) to guess 3 times one of the needed 7(merchants)*6(goods)*5(places)=210 

combinations. With some deduction and some luck, it is possible to achieve the goal. 

But as other merchants are also travelling in search for their required goods, the task is 

becoming even less obvious. This is where we hope the KRAMER system to intervene. 
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For each transaction made, the buyer is asked to introduce a corresponding rule 

into the COSMO application, for example: "the cake merchant in [a name of the place]". 

As discussed in Section 5.3, rules that are defined in COSMO are transmitted to the 

KRAMER server, which analyses the inserted situations and suggests important ones to 

other users. The same effect was anticipated in the test. Every successful transaction 

augments the collective knowledge, making it easier for other buyers. As a result, users 

were expected to receive suggestions on a situation defined by at least two other users 

(confidence threshold was set to 2 for the test), whenever a described situation re-

occurred. 

The suggestion notification was presented in a similar fashion to the normal one, 

with a slightly changed text and a special icon next to it (Fig. 5-23). Therefore, the 

aspects tested in this game were the ability to understand a received suggestion, and to 

make use of it in advancing in the game objective. In other words, we hoped to 

evaluate, whether providing new (novelty property) and pertinent (accuracy property) 

suggestions help users to acquire needed goods (utility property) and would make 

them to rely on the suggestions to assure the win (trust property). The conclusions were 

drawn based on the game observations and our questionnaire. 

 

Figure 5-23. A game suggested notification 

From the algorithmic point of view, situations processed by the KRAMER server 

are a subject of generalization. This effect was also simulated in the test, as there were 

some more abstract rules governing the game universe. In fact, every type of good is 

permitted to be purchased in a particular type of place. There are four general rules, 

listed in Table 5-4, to be discovered during the course of the game. Players are not 

conscious of them in the beginning, as their knowledge is limited to what they are 

selling and who is the second merchant of the same type of good (step 4 in the first 

game phase). The inducted knowledge becomes available as more and more situations 

are introduced into the system. 
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Table 5-4. Four abstract game rules 

  Situation 

#1 A merchant of drinks can sell his/her goods at the seaside. 

#2 A merchant of sweets can sell his/her goods in the forest. 

#3 A merchant of snacks can sell his/her goods on the plains. 

#4 A merchant of fruits can sell his/her goods in the mountains. 

 

In summary, game participants were expected to follow the KRAMER suggestions 

in order to achieve the goal in smaller amount of turns than by playing the same game 

without our system. Obviously, frequently a merchant's whereabouts, which one might 

got notified of, changed before a player needing his type of good could arrive on place 

in time. Moreover, as rules permitted three participants to perform their turns 

simultaneously, it happened sometimes on the very player's turn. As a result, a 

corresponding notification was disappearing in real time and a player was forced to 

interact with other merchants. This caused an entertaining effect that made the game 

really a game. Furthermore, it enabled rules introduced into the system to be diverse. 

Our initial analysis of the test starts with the learning phase. There, all the 

instructions have been completed by all participants. Only testers of age above 60 years 

have met some troubles with the service and the notion of "rules", which required our 

intervention. One cause of it was that the prototype was not optimized in terms of the 

ergonomy. It certainly should be redesigned as far as defining important situations is 

concerned. The concept of notification rules is not a trivial one, but is critical in the 

KRAMER system. In summary, the learning phase permitted all testers but one to 

understand well the ideas of sharing context on different levels of abstractions, and 

creating rules launching a notification in a desired situation. 

Familiarization with the COSMO application was only a prelude to the KRAMER 

system test. This part took a form of 30 minutes long games for both groups. As the 

game was based on a semi-cooperative scenario, let's focus on the test group, where all 

participants understood the learning phase. The game lasted 4 turns (even less than the 

limit of 5). In that time 5 out of 8 participants have reached the goal of having four types 

of goods. The players have entered 24 notification rules, among them 2 that were not 

correct, which resulted in 9 distinct situations introduced into the system. 
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Further analyses of the logs show that after a couple of players having luckily found 

early in the game that chips can be bought in Pleumeur-Bodou and in Brocéliande, after 

14 minutes from the start all players have already bought chips somewhere on the 

plains, making snacks no longer needed by anyone. Other types of transactions were 

also reported in the course of the game. As a result, KRAMER was generalizing them 

into more abstract rules, which could be suggested to users more and more frequently. 

After four turns, the system found four abstract rules governing the game (Table 5-5). 

These are not exactly the same as those in Table 5-4, as some of them are still their 

specializations. 

Table 5-5. Four abstract rules found in the game 

  Situation 

#1 A merchant of juice can sell his/her goods in Pleumeur-Bodou. 

#2 A merchant of sweets can sell his/her goods in the forest. 

#3 A merchant of chips can sell his/her goods on the plains. 

#4 A merchant of fruits can sell his/her goods in the mountains. 

 

The patterns in chasing goods show that some successful transactions were most 

probably an effect of following a suggestion received. However, only 7 questioned 

users of 8 in the group have noticed notifications for situations that they did not define 

themselves. Among those 7, only 5 report to have followed those suggestions, obtaining 

a total of 7 goods in this way (almost 2 goods each). In fact for those five testers, either 

one transaction was a result of luck or they were the ones not having finished the game 

with all four types of goods. All in all, we estimate that 32% of the successful 

transactions were inspired by the KRAMER system. One noticeable thing is that only 

one tester has reported to notice that a suggestion that she has received was a 

generalized one. 

Taking into account both test groups, we might say that almost all users understood 

our system. Not only did they manage to learn new ideas and ways to manipulate them 

via a not optimized user interface of the COSMO application, but they seemed to 

appreciate the social aspects of the KRAMER system overall. Learning that context can 

be shared on different levels of abstractions, and on those different levels it can be 

defined as a notifiable situation is not a trivial thing to do. Nevertheless, some of the 

testers were able to employ the concept in a game environment, which was further 
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demanding as the notion of suggestions was not explained at all before the end of the 

test.  

After the test we asked the participants if they found the KRAMER suggestions 

useful and whether they would like to use a context phonebook with a similar situation-

based notification system in their environment. 13 out of the total 16 testers replied 

positively and gave a list of situations especially interesting for KRAMER. Most of them 

found the coordination for organizing an event as a situation that sharing location 

and/or availability status might prove useful. Knowing the whereabouts of others, 

especially their children and grand-children seemed appealing to others. Professional 

alerts were also mentioned as yet another use case. Finally, testers imagined wanting to 

know the availability of specialists, or open/closed state of places like restaurants. 

5.3.  Result discussion 

Both of the performed tests, the mechanisms simulation and the user study, shed a light 

on the KRAMER system's properties enabling us to evaluate it. Among parameters 

listed in Table 5-1, there is a great deal that the two tests did cover. The most directly 

tested parameter in the simulation is the scalability of the system with respect to the 

number of rules contributed to the KRAMER server. Time charts in Section 5.1 

approximate the computational complexity function of the generalization algorithm. 

From comparing several of the figures we learn that computations time depend mostly 

on the amount of context dimensions used in defining situations. 

The shape of graphs of the function has a very peculiar, stairs-like nature. It appears 

that there are some border factors influencing the scalability function for its lowest 

arguments. However, after two such steps, the function becomes linear. We are able to 

estimate the bound limits for algorithm’s computational complexity. Formulas (4) and 

(5) show the upper and lower bound limits respectively, in dependence of the number 

of input situations S and the maximum number of arcs in conceptual graphs describing 

them A.                            (4)                          (5) 

More detailed analyses of the algorithm's performance show that the grouping part 

of the algorithm influences the time consumption in a much greater deal than the 

generalization part. Furthermore, the algorithm seems to perform closer to the lower 
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bound limit of the computational complexity (5), judging by the linear graphs. 

Particularly Fig. 5-18 promises to process 7000 rules in around 2.5 seconds, which is a 

good result for a first implementation algorithm of a recommender system. We say that 

the system scales in an acceptable fashion. 

Regarding the coverage parameter, from the first test we learn that KRAMER 

operating on a completely covered set of data (all possible rules introduced) is not 

going to work properly. Fig. 5-2 and 5-4 show that not only the time of processing may 

be unacceptably long, but the system ceases to perform his main task of grouping and 

abstracting semantically similar situations. For this reason we assume having a number 

of situations that would actually have a meaning to users, which we called points of 

interest. Having covered all of those in the system would work fine. But the actual 

coverage and the number of point of interest depend on the users. 

On the other side, knowing that KRAMER would not perform well if being injected 

with rules with all random situations tells us a lot about the robustness of the system. 

To understand why our system performs so badly in that case, one would need to look 

at the definition of similar situations that we adapted in Section 4.7.1. The first 

requirement for two situations to be considered as possibly similar was for them to 

have a matching graph structure, excluding the empty “any” concepts. The same 

applies in the generalization, which cannot have a different structure than the initial 

situations. Therefore, a situation like in Fig. 5-24 results in a cross combination of 

concepts for the output rules and the exponential output growth (Fig. 5-4). 

 

Figure 5-24. Cross combination of concepts in the generalization process 

To avoid the problem, a mechanism for detecting that the system is being spammed 

with random rules would be required. This is because a system that does not forget any 
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of the input rules, even single representatives of such situations, would cause trouble. 

Therefore, maybe a mechanism forgetting older rules that were not reused any time 

recently could be implemented. This would also be an approach to introduce any kind 

of adaptivity to KRAMER. For the moment, this parameter is not considered in our 

prototype. Neither was it evaluated in either of the tests. 

The second test, a user study in the form of a game, gave us more insight on user 

perception of the system, and the suggestions being provided. We tried to show our 

testers that the recommendations can be useful, especially in the context of winning a 

game before other participants do. Providing that the rules created were correct (the 

case for 22 rules out of 24), all of them were related to the goal of the game. Thanks to 

them, 5 out of 7 participants have followed the suggestions gathering almost 2/3 of 

their goods. In the whole test scale around 1/3 of successful transactions was done after 

receiving a recommendation. 

During and after the test we asked our volunteers to evaluate different aspects of 

the system presented to them, including the interface of the COSMO application. We 

have gathered a long list of remarks and ideas, but what is more important, 13 out of 16 

participants were interested in using a similar system in the future and gave KRAMER 

a positive note. Both the numbers from the previous paragraph and the questionnaire 

answers show that users see utility in KRAMER and are willing to trust it. However, 

they still have a limited picture of what a system like KRAMER could do, and in which 

situations it might prove useful. 

Evaluating accuracy would be not fair after this test, as the suggestions were by 

definition accurate. The case is similar for parameters like novelty, serendipity or 

diversity. Those would require a long-term large-scale test, and a possibility for users to 

give a feedback on their impressions for particular suggestions. From the system's point 

of view, we have failed to evaluate the confidence parameter, as we were unable to 

experiment with the threshold for suggesting rules or not. We have no clear view of 

how this parameter should depend on the number of rules introduced into the system. 

Again, a large-scale test is required. 

The final concern in any system, where users share their private data, is privacy, an 

ability of a system to assure that no unintended exploitation of this data would be done 

by third parties. A system processing personal situations is especially concerned as 

entities with malicious intentions could learn not only one's social graph structure, but 

also his whereabouts and those of his close ones. Fortunately, the KRAMER system 
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deals with the issue in its very fundaments. Noone accessing a KRAMER server could 

learn a true situation one finds himself in as the KRAMER system has no knowledge of 

the current user context, nor about the contacts he has. The action firing mechanism, 

which needs that information, is implemented locally in COSMO modules. 

Moreover, sharing situations one wishes to fire an action upon does not 

compromise any private data. The very model of situation that we adapt assures that 

entities involved in defined situations are not described by names, phone numbers, or 

any other private data. The model uses relationship concepts, like "wife", "boss", 

"friend", etc. Wanting to be notified of a specific context dimension value of a friend 

does not carry any dangerously private data. The same cannot be said about the context 

distribution system, which KRAMER may rely on. In this case we imagine a set of 

mechanisms to let a user decide, what data she shares, like the abstraction levels 

definition as in our prototype. After all, people already share all sorts of private data in 

messengers and social networks. KRAMER just makes them be more useful. 

Finally, it would take some highly unlike set of relations used in a rule for it to be 

associated with a person with such an unlike set of contacts. Assuring that the 

respective taxonomy relates to rather usual concepts, eliminates a threat of discovering 

someone's potentially embarrassing rule decisions. Moreover, for any situation to be 

suggested, it needs to gain enough popularity in the community, and therefore several 

similar situations need to be introduced by users, which makes the suggestions both 

more abstract and related to at least those several users. However, a more exhaustive 

study could tell us more about similar users groups that might be identified based on 

situations suggested. In the test game no-one has guessed other participant's identity 

this way. 

In the questionnaire we have also asked for testers’ appreciation for the COSMO 

module design and its ergonomics. It should be noted that the prototype has not been 

optimized in this respect, and this part does not concern directly performance of the 

KRAMER system, but this kind of feedback would prove useful should a large-scale test 

or commercialization be considered. As expected, among others, many testers have 

raised the subject of rule situations definition, see Fig. 4-18. The proposed set of simple 

dropdown lists filled with taxonomy concepts to choose from is not a user-friendly 

approach. However, no better solution has been proposed and this issue is left for 

further studies. 
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6.  System applications 

For the purpose of prototyping the KRAMER system we have decided to apply the 

latter to the domain of interpersonal communication. This prototype enabled us to 

validate the idea of having a situation-based recommender system. It also rendered 

evaluations of the system possible. However, the KRAMER system itself was designed 

to be generic, and we wanted to assure its easy future adaptations for a variety of 

domains, the one focusing on the social context of users being just one of them. There 

are several properties of KRAMER that stand for its genericity, while several aspects of 

it still need some adjustment for porting the system. 

One huge advantage of the KRAMER system is the model of situations it adopts. 

Conceptual trees may be used for any kind of a situation, not only those involving 

context of friends and relatives. We have already introduced computation entities, like 

devices, services, applications, agents, etc. in Section 4.2. The composition of context of 

those connected things as well as human beings may constitute important situations in 

today's digital society. Moreover, the number and nature of context dimensions is not 

limited to one's location and activity status. In fact a situation graph may be of any 

desired complexity. 

While operating on very complex situations may cause an issue as far as the 

ergonomy and design of the COSMO module are concerned, it has a minor impact on 

the situations processing mechanisms on a KRAMER server. Our generalization 

algorithm, Section 4.7, may deal just as well with both broader and deeper trees. One 

limitation would be assuring the introduction of any new context dimensions to both 

COSMO and KRAMER. Each of them needs to be aware of the corresponding 

taxonomies, and share knowledge on any changes to either one of them. The KRAMER 

system in general needs to maintain common semantics. 

The architecture of the system proposed in Section 4.3 in general case could keep 

the client-server nature. Though it would not necessarily use a GSM network, as in Fig. 

4-8. It might also introduce a number of new elements, like home gateways aggregating 

a set of context-aware home appliances, or other devices processing sensor networks 

data into more abstract virtual context dimensions. The COSMO module would still 

play the role of an interface with users for managing important situations, both created 

and suggested. But the core of the system, the KRAMER server along with its interfaces, 

would stay intact. 
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Finally, further research would need to be done to estimate the impact of 

introducing unrestricted actions to be fired upon situation occurrence. By limiting our 

prototype to fire notifications only, we have not treated the problem of situations 

similarity in the system with respect to the associated actions. Should two different 

actions for one situation cause the two rules to be treated separately, or rather force the 

actions to be generalized as well, these are a couple of questions we will try to find 

answers for in the future. 

The following subsections focus on two application domains considered by us, 

listing the associated advantages. Please note that this is not an exhaustive list of 

KRAMER possible uses. Any entity sensing either internal or external context can be 

incorporated into an important situation, making the action taking API the only 

limitation of exploiting the collective power, the collective intelligence of which is 

provided by the KRAMER. In particular, any mix of such entities and their principal 

domains is also possible. 

6.1.  Social computing 

Our initial choice for targeting with KRAMER social behaviours such as interpersonal 

communication was due to anticipation that the system would have valuable social 

computing features. It supports several natural human needs as far as information 

exchange in communities is concerned. Those are namely a need to share information 

with others, a desire to stay up to date with new fact about others, an influence that a 

community has over each of its member’s information perceiving and over their 

making corresponding decisions. 

The KRAMER system in its current shape relies on a system sharing different 

context dimensions between its users. We see this practice an adaptation of 

microblogging phenomena, which is an already popular mode of communication for 

people [JAV07]. Those users not only send messages to one another, messages that 

disclose a great deal of private information one might add, but they started to broadcast 

it to many other people. Tools like social networks enable publishing posts so that all 

friends, or even all subscribed users could read, and further comment. 

At least in some cases, such messages aim at actually delivering pieces of 

information to others. There are many social reasons for doing so, reassuring, 

maintaining closeness, and inspiring an informed decision being just three of them. We 

argue that one's situation is important information in social interactions. The context of 
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another person one is in contact with is a naturally present feature in classical 

interactions. If the technology is to support such natural circumstances of human 

behaviours, the context should play a major role in communication. 

We make the context sharing process a further socially meaningful act of 

interaction, as the data can be disclosed on different levels of details for different 

contacts. Being shared with but a little portion of details might be considered as a signal 

that one is not considered to be close and important. As a result, he could revaluate his 

levels. Therefore, the adjustment of COSMO sharing preferences is a social negotiation 

process in coherence with the real life interpersonal relations. It is also a part of an 

indirect communication. 

While making a piece of context visible to others is an obvious interaction, 

consulting this data by others is an interaction as well. Even though it might not be 

acknowledged by the context owner, but it is like asking a question: “I wonder, what 

my husband is doing now?”, with a system replying: “He wanted me to tell you that 

he's driving a car”. Humans want to learn situations of other people for the same 

reasons that those people anticipated sharing them in the first place: taking decisions, 

being reassured, etc. 

However, an application like phonebook is not something one consults every five 

minutes, whereas it might be required to stay up to date. On the other hand, one having 

communicated his private piece of data may be hoping for some kind of social 

feedback, as he would get in face to face interactions. Therefore we enable defining 

important situations in the scope of action firing rules. Every situation defined in 

KRAMER is a socially enabled one, because it may involve the context of other contacts. 

Furthermore, a decision to fire an action or not is dependant on the levels of details of 

the context received. 

Finally, the KRAMER system introduces a collective way for a community to 

determine important situations. It is known from [SUR05] and [ALA08] that the whole 

communities can be empowered from both collaboration and competition of their 

members. Technologies like collaborative filtering [SAR01] emulate a huge amount of 

information exchange, but making it anonymous. The algorithms associated can 

compute a collective intelligence, which is greater than the one of the smartest 

individual. KRAMER is a recommender system based on this principle, which in this 

application domain is facilitating further the discussed social interactions. 
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6.2.  Home automation 

The domain of smart homes (or even smart cities) is directly related to “pervasive 

computing”, which is Mark Weiser's model of human seamless interaction with objects 

embedded with computational devices [WEI97]. With the technologies like sensor 

networks [AKY02] or Internet of Things [ATZ10] getting more and more attention, and 

the necessary hardware becoming available at relatively low cost, smart surroundings 

are expected to revolutionize our lives really soon. It is therefore not surprising that 

researchers already design platforms for smart home automation, [MER08] being one 

example of. 

Generally, pervasive computing enables the connected computing entities to 

cooperate in performing tasks that normally humans needed to do themselves. Devices 

embedded in objects like lamps or windows not only sense information about the 

objects' context, but may have also access to their execution functions, like switching 

on/off or opening/closing. This opens a huge opportunity to program particular tasks 

to be performed automatically in given situations. Home intelligence would be made of 

such smart applications of a simple rule-based nature: DO <action> WHEN 

<situation>. 

Considering such rules as a base element of intelligent homes, makes the latter a 

perfect domain for the KRAMER system. Researchers have already considered the need 

to export one's applications for his smart home to enable their instant mapping on a 

different set of objects [CHE09]. This cross house portability of applications is based 

there on description files created for a given user, so that her preferences are preserved 

in different environments. In consequence, such applications would adapt their 

functionality opportunistically according to objects found after the mobility. 

The KRAMER system would go another step further. It would render possible both 

determining useful applications and sharing them in a community of users. In that 

sense not only would it be cross house adaptive, but further “cross similar user” 

portable. A dimension of sharing applications in the scope of a community would make 

them a subject of KRAMER server processing. And like-wise, it would harvest those 

applications, which are considered useful widely among community members, so that 

they could be suggested to those, who did not define them themselves. 

To give an example of such an application, let's consider the following rule “when 

TV set is switched on, and blender is on, turn up the TV volume”. This is a simple 
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application introducing a possibly useful functionality of adjusting the volume of a TV 

set in function of the noise of a blender. There are evidently two parts of the rule 

present, which are known from the KRAMER: the condition and the result. The 

condition is a composition of values for context dimensions, which ubiquitous devices 

are likely to be able to sense. The result is an action, assuming existence of a TV set 

providing an API to modify the sound volume. 

Visibly, the situations in this application domain do not differ a lot from the ones 

adapted in our prototype. Instead of social situations, there would be states of home 

environment. Instead of activity-related availability statuses, there would be internal 

device states. Instead of interpersonal relations, there would be types of objects. 

KRAMER could very well maintain the same situation model and be only introduced 

with new taxonomies. Those semantics providing structures would enable the 

KRAMER server algorithm to perform its generalization on new context dimensions. 

One main challenge to be considered is how the system, i.e. the aggregation 

algorithm, would deal with the application actions. Considering a set of simple and 

predefined action concepts, having two different outcomes of similar situations, or one 

particular outcome common for two different situations in two applications could either 

influence the similarity of those situations or not. Moreover, actions available in 

pervasive environments could be also modelled by a corresponding taxonomy, 

enabling them to be defined on different levels of abstractions, like in Pobicos [LAL10]. 

Finally, coexistence of several applications might result in their conflicting logics as 

explained in [NHL08]. All these issues need to be taken into account while adapting 

KRAMER to home automation domain. 
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7.  Final thoughts 

In this dissertation we discussed our research results on a collaborative situation-aware 

system, KRAMER. Our system learns which situations are important for people in the 

community of its users. By enabling the users to associate such situations with firing 

particular actions, the knowledge the system acquires is a collection of user-defined 

rules of a type DO <action> WHEN <situation>. The data is then processed by the 

KRAMER to derive collective intelligence, which is in turn shared with all community 

members in the form of suggestions. The system suggests taking particular actions 

while facing given important situations. 

KRAMER is a recommender system based on a collaborative filtering principle. 

Unlike in usual collaborative filtering implementations, the object of recommendations 

is not a simple item, like a book or movie, but a pair of a complex situation and an 

action. This requires our solution to apply semantic technology to processing 

suggestion objects, instead of purely statistic calculations. As a result KRAMER users 

are to be empowered with situation-aware recommendations in their decision making 

on taking actions. 

Therefore, in this thesis we give an answer to the question we asked ourselves 

when starting this research: how can a system adapt natural social interactions and 

enable one to profit from collaborative knowledge while encountering new situations, 

which would potentially require a corresponding decision. The KRAMER system is one 

technical solution to a problem of combining situation awareness and collective 

intelligence technologies. While the system is completely generic its prototype is 

applied to social communication scenario. But the KRAMER system may be adapted to 

any domain that deals with the problem expressed as a set of conceptual graphs 

associated with an action firing logic, where the solution would be extracted from the 

respective data gathered in a collaborative fashion. 

Having defined, implemented and tested our system we are ready to evaluate the 

initial assumptions listed in Table 3-1. Regarding A1, there is indeed collective 

knowledge coming from the composition of many user situation-related experiences. 

An intelligence that can be derived of it may not only enhance social communication 

services as stated in A2, but further empower situation-aware decision making and 

support any kind of rule-based smart systems. Finally, as situations processed in the 

scope of the system are conceptual representations of context data describing the 
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surrounding and social circumstances, it is vital to employ semantic technology, which 

supports A3. 

In the process of designing our collaborative system, it has acquired a certain 

number of unique properties. For example, the KRAMER system adapted to 

interpersonal communication domain is a social medium with strong social computing 

support. Moreover, several aspects of it, as well as some methodology approaches that 

we tackled, constitute our contribution to science. Table 7-1 present a list of those 

contributions. 

Table 7-1. Our contributions 

C1.   Use of collaborative filtering in KRAMER enriching situation awareness field 

C2.   Model of situations defined in KRAMER as semantic conceptual trees  

C3.   Manipulations on situations facilitated in KRAMER thanks to situation lattices  

C4.   Algorithm generalizing sets of conceptual trees in KRAMER proposed  

C5.   Authorial game-based evaluation of KRAMER for a small scale test  

While it was possible to draw strong conclusions from the research presented in this 

dissertation, there are several elements still missing to make our work more complete. 

First of all, we have managed to simplify the prototype of KRAMER by limiting the 

possible actions to just notifications. It did make sense for a social communication 

scenario, where users are always in charge of their actions, which are not in turn 

restricted after having received a notification. We admit, however, that in the home 

automation variant, for instance, actions could be programmed to fire automatically, 

which would affect the system for reasons stated in Section 6.2. 

Moreover, we have also avoided mixing our semantic-centered collaborative 

filtering with the classical statistically-oriented one. In particular, it might be beneficial 

to not simply group situations by their semantic similarity, but further differentiate 

them with respect to which users defined them. Collaborative filtering is often said to 

connect like-minded users, as receiving a suggestion of an item well evaluated by one 

user depends on evaluation similarity on other items evaluations. In our case it might 

happen that not all community members have similar vision on important situations, 

and suggestion of the latter would be more accurate should they be compared with 

respect to user similarity. 
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We regret also not to have a possibility to perform a large-scale user test of 

KRAMER. One would expect to deepen the system's evaluations by having it tested for 

several months on a numerous group of users. For instance, more insight would be 

taken on the parameters like coverage and confidence. With bigger expected number of 

rules introduced we could observe a real use of the system. As a result, we could 

experiment with introducing user-to-user similarity and comparing the results with and 

without that notion. We would obtain much more data for further off-line analyses, 

with one very important: how would a real usage evolution of the system look like in 

function of time. There is a great chance for performing such a test, as the KRAMER 

system will be reused in one of the Orange Labs projects following this research. 

Furthermore, we have already defined several future expansions for the system. 

Adapting KRAMER for further domains of application would seem the most evident 

one. Any environment with entities able to sense their context and open to executing 

actions on them is suitable. In Section 6.2 we introduce the domain of home appliances, 

which would benefit from portable smart application suggestions. The technology of 

web services and their composition [ZHA09] is also tempting, but would require 

further study, as web services are a priori stateless. Any mix of such domain would be 

also interesting. 

One other enhancement that we consider is a possibility to operate on situations 

slightly more complicated in terms of temporal relations. Being able to differentiate 

different elements of a situation as happening in a particular order, simultaneously or 

within any other temporal relation from [ALL83] might further augment the number of 

use cases for the system. The reason for not taking this aspect yet into implementation is 

its negative impact on readability of the COSMO module interface. Ergonomics are 

already an issue for defining composed situation, and would require a redesigning 

effort should the notion of time be introduced. 
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