
HAL Id: tel-00911049
https://theses.hal.science/tel-00911049

Submitted on 28 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cryptanalysis of Symmetric-Key Primitives Based on
the AES Block Cipher

Jérémy Jean

To cite this version:
Jérémy Jean. Cryptanalysis of Symmetric-Key Primitives Based on the AES Block Cipher. Cryptog-
raphy and Security [cs.CR]. Ecole Normale Supérieure de Paris - ENS Paris, 2013. English. �NNT : �.
�tel-00911049�

https://theses.hal.science/tel-00911049
https://hal.archives-ouvertes.fr

Université Paris Diderot
(Paris 7)

École Normale Supérieure
Équipe Crypto

Thèse de doctorat

Cryptanalyse de primitives symétriques
basées sur le chiffrement AES

Spécialité : Informatique

présentée et soutenue publiquement le 24 septembre 2013 par

Jérémy Jean

pour obtenir le grade de

Docteur de l’Université Paris Diderot

devant le jury composé de

Directeur de thèse : Pierre-Alain Fouque (Université de Rennes 1, France)

Rapporteurs : Anne Canteaut (INRIA, France)
Henri Gilbert (ANSSI, France)

Examinateurs : Arnaud Durand (Université Paris Diderot, France)
Franck Landelle (DGA, France)
Thomas Peyrin (Nanyang Technological University, Singapour)
Vincent Rijmen (Katholieke Universiteit Leuven, Belgique)

Remerciements

Je souhaite remercier toutes les personnes qui ont contribué de près ou de loin à mes trois
années de thèse. Je remercie Arnaud Durand, Franck Landelle, Thomas Peyrin et Vincent Rijmen
qui ont accepté de participer à ma soutenance de fin de thèse. Je remercie chaleureusement
Anne Canteaut en Henri Gilbert pour avoir accepté la lourde tâche de rapporteur et pour avoir
relu très attentivement ce manuscrit. Je les remercie sincèrement pour leur efficacité et leur
bonne humeur quotidienne.

Je remercie également les organismes qui ont financé mes travaux de recherche et mes
nombreux déplacements durant ces trois années : la DGA et le projet ANR Saphir II qui ont
cofinancé ma bourse de thèse, l’ENS et l’INRIA pour l’environnement matériel ainsi que NTU
pour les séjours que j’ai eu la chance de réaliser à Singapour.

Je suis extrêmement reconnaissant à Pierre-Alain pour avoir suivi mes travaux de recherche
tout en me laissant une très grande liberté d’action. Merci à lui de m’avoir transmis son
expérience de la recherche et pour sa disponibilité quand j’en ai eu besoin. Je remercie également
Thomas Peyrin pour toutes les collaborations que nous avons pu avoir, et pour m’accueillir en
tant que postdoc dans son équipe du NTU à Singapour en 2014. Au-delà de son enthousiasme
scientifique sans limite, je le remercie également en tant qu’ami et plus spécialement pour
m’avoir fait découvrir Catane.

Au cours de ces trois années, j’ai eu la chance de côtoyer de nombreuses personnes du
domaine de la cryptographie, avec qui j’ai eu plaisir à travailler pour apporter quelques
contributions scientifiques. Je remercie donc tous mes coauteurs : Patrick Derbez, Pierre-Alain
Fouque, María Naya-Plasencia, Ivica Nikolić, Thomas Peyrin, Martin Schläffer, Lei Wang et
Shuang Wu. De plus, je souhaite remercier toutes les personnes avec qui j’ai pu échanger de
manière plus informelle et qui ont indirectement contribué à enrichir mes connaissances, et en
particulier Orr Dunkelman, Henri Gilbert, Antoine Joux, Christian Rechberger, Yu Sasaki et
Adi Shamir.

Je tiens également à saluer tous les thésards et chercheurs que j’ai eu le plaisir de croiser à
l’ENS ou ailleurs : Aurélie, Aurore, Céline, Charles, Christina, Damien, Gaëtan, Jean-Christophe,
Léo, Michel, Miriam, Olivier, Mario, Rodolphe, Tancrède, Vadim, Yannick et Yuanmi. Je remercie
plus particulièrement David Pointcheval pour sa direction de l’équipe Crypto de l’ENS et qui a
été directeur de thèse officiel pendant ma première année de thèse.

Cette thèse n’aurait pas été possible sans le soutien administratif de l’ENS. Je remercie
particulièrement Joëlle, Lise-Marie, Michelle et Valérie pour leur efficacité. Je salue également
tout le service informatique pour la mise à disposition et l’installation des machines et serveurs
qui m’ont beaucoup servi.

Enfin, je remercie toute ma famille et tous mes proches pour leur soutien durant ces trois
années de thèse. Merci beaucoup à tous ceux qui ont relu et corrigé des bouts de ce manuscrit.
Au-delà de la thèse, merci beaucoup à mes parents pour leurs encouragements et leur confiance
sans limite, et merci à ma sœur Amélie et à mes petits frères Benjamin et Sébastien. Finalement,
je ne pourrais jamais assez remercier Ève pour son soutien au quotidien. Merci à toi pour avoir
supporté mes longues soirées et week-ends de cryptanalyse et de rédaction. Un grand merci
aussi pour accepter le défi de retourner vivre à l’étranger : sans toi ce départ n’aurait jamais pu
être le même.

À Alice, Bob et Ève.

Table des matières

1 Introduction . 1
1.1 Histoire de la cryptographie . 1
1.2 La cryptographie aujourd’hui . 3

1.2.1 Généralités . 3
1.2.2 Cryptographie asymétrique . 5

1.2.2.1 Algorithme de chiffrement . 5
1.2.2.2 Signature électronique . 5

1.2.3 Cryptographie symétrique . 6
1.2.3.1 Algorithmes de chiffrement par bloc 6
1.2.3.2 Algorithmes de chiffrement par flot 7
1.2.3.3 Fonctions de hachage . 7
1.2.3.4 Code d’authentification de message (MAC) 7

1.2.4 Notions de cryptanalyse . 8
1.3 Fonctions de hachage . 9

1.3.1 Fonctions de hachage cryptographique . 10
1.3.2 Paradoxe des anniversaires . 11
1.3.3 Modes opératoires . 13

1.3.3.1 Construction de Merkle-Damgård 13
1.3.3.2 Attaque par extension (extension attack) 13
1.3.3.3 Attaque par multicollisions . 14
1.3.3.4 Construction wide-pipe . 14
1.3.3.5 Construction sponge . 15

1.4 Algorithmes de chiffrement par bloc . 16
1.4.1 Définition . 16
1.4.2 Construction itérée . 17
1.4.3 Modes opératoires . 18
1.4.4 Fonction de compression . 19
1.4.5 Cryptanalyse des algorithmes de chiffrement par bloc 20

1.4.5.1 Attaque par le milieu . 21
1.4.5.2 Distance d’unicité . 22
1.4.5.3 Modèles d’attaquants . 22

2 Présentation des Travaux . 25
2.1 Présentation des travaux . 25
2.2 Liste des publications . 31

— v —

vi TABLE DES MATIÈRES

3 Differential Cryptanalysis . 33
3.1 Preliminaries . 34

3.1.1 Differentials . 34
3.1.2 Iterated functions . 36
3.1.3 Differential characteristics . 37

3.2 Block ciphers . 39
3.2.1 Basic key recovery attack . 39

3.2.1.1 Efficiency evaluation . 41
3.2.1.2 Improved variants . 42

3.2.2 Resistance against differential cryptanalysis 42
3.3 Markov Ciphers . 43
3.4 Other forms of differential cryptanalysis . 46

3.4.1 Truncated differential cryptanalysis . 46
3.4.2 Impossible differential cryptanalysis . 47

3.4.2.1 Applications . 47
3.4.2.2 Resistance against impossible differential cryptanalysis 48

3.4.3 Boomerang attack . 48
3.4.3.1 Improvements . 50
3.4.3.2 Applications . 51

3.4.4 Related-key attacks . 51
3.5 Hash functions . 54

3.5.1 Generalities . 54
3.5.2 Rebound attack . 55

4 Description of the AES and Cryptanalytic Results . 57
4.1 The AES competition . 57
4.2 Description of the AES block cipher . 58

4.2.1 Key scheduling algorithms . 59
4.2.2 Round function . 61
4.2.3 The substitution layer . 62
4.2.4 The permutation layer . 64

4.2.4.1 ShiftRows . 64
4.2.4.2 MixColumns . 65

4.3 AES-like permutations . 66
4.4 Notable cryptanalytic results . 67

4.4.1 Square attack . 67
4.4.1.1 Attack on 4 rounds . 69
4.4.1.2 Attack on 5 rounds . 69
4.4.1.3 Attack on 6 rounds . 70
4.4.1.4 Extensions to the larger AES variants 71

4.4.2 Improved square attack with partial sums 71
4.4.2.1 First improvement . 71
4.4.2.2 Second improvement . 72
4.4.2.3 Extension to more rounds . 74
4.4.2.4 The herd attack . 74

4.4.3 Collision attack . 75

TABLE DES MATIÈRES vii

4.4.3.1 Distinguishers . 75
4.4.3.2 Collision attack on 4 rounds . 77
4.4.3.3 Extension to 7 rounds . 77

4.4.4 Impossible differential attack . 79
4.4.4.1 Bahrak and Aref attack . 80
4.4.4.2 Improved variants . 82

4.4.5 Related-key attacks . 84
4.4.5.1 Related-key boomerang attack on 7-round AES-128 85

4.4.6 Summary of all the attacks . 86

5 AES in the Secret-Key Model . 89
5.1 A class of attacks against AES . 90

5.1.1 Initial attacks . 90
5.1.2 Generalizations . 90
5.1.3 Attack framework . 92

5.1.3.1 Attack by Demirci and Selçuk . 92
5.1.3.2 Attack by Dunkelman, Keller and Shamir 93

5.1.4 Improvements . 94
5.2 New attacks on 7-round AES . 95

5.2.1 Generalities . 95
5.2.2 Efficient tabulation . 95
5.2.3 A simple attack . 98

5.2.3.1 Precomputation phase . 98
5.2.3.2 Online phase . 98

5.2.4 Efficient Attack . 100
5.2.5 Key recovery . 102

5.3 Extensions to 8 and 9 rounds . 104
5.3.1 Attack on 8-round AES-192 . 104
5.3.2 Attack on 8-round AES-256 . 108
5.3.3 Attack on 9-round AES-256 . 109

6 AES in the Related-Key Model . 111
6.1 Generalities . 112

6.1.1 Motivations . 112
6.1.2 Graph traversal algorithms . 113
6.1.3 Structural evaluation . 116

6.2 Definitions . 118
6.2.1 Substitution-Permutation Network . 118
6.2.2 Truncated and actual differences . 119

6.2.2.1 The substitution layer . 119
6.2.2.2 The permutation layer for AES-like ciphers 120

6.3 Related-key differential characteristics . 120
6.3.1 Differential characteristic search . 120
6.3.2 Precomputation phase . 122

6.3.2.1 The graph GBC . 123
6.3.2.2 The graph GKS . 124

viii TABLE DES MATIÈRES

6.3.3 Online phase . 124
6.4 Enhanced Markov process . 127

6.4.1 The Markov assumption and actual differences 127
6.4.2 Block cipher state compression . 128
6.4.3 Evaluating the number of nodes/edges of GBC and GKS 128

6.4.3.1 Number of nodes . 128
6.4.3.2 Number eBC of edges in GBC . 129
6.4.3.3 Number eKS of edges in GKS . 129

6.4.4 More complete Markov process . 130
6.4.4.1 New state compression . 131
6.4.4.2 Representation of truncated subkeys 131

6.4.5 Explanations . 132
6.5 Applications to SPN and AES-128 . 133

6.5.1 Structural evaluation of SPN AES-like ciphers 133
6.5.1.1 Complexity evaluation . 135

6.5.2 Differential characteristics results for AES-128 135

7 AES in the Open-Key Model . 143
7.1 Generalities . 143

7.1.1 Motivations . 143
7.1.2 Rebound technique . 145
7.1.3 Limited-birthday distinguisher . 146

7.2 Known-key model . 149
7.2.1 Distinguishers for 7 rounds . 149

7.2.1.1 Integral distinguisher . 149
7.2.1.2 Rebound attack . 151
7.2.1.3 Improved distinguisher: start-from-the-middle technique 153

7.2.2 Distinguisher for 8 rounds . 155
7.2.2.1 Fully-active characteristic . 155
7.2.2.2 Non-fully-active characteristic . 158

7.3 Chosen-key model . 161
7.3.1 Distinguisher for 7-round AES . 162

7.3.1.1 Distinguishing algorithm for AES-128 162
7.3.1.2 Experimental verification . 166
7.3.1.3 Success probability . 166
7.3.1.4 Extension to 7-round AES-256 167
7.3.1.5 Extension to 8-round AES-256 167

7.3.2 Distinguisher for 8-round AES . 168
7.3.2.1 Distinguishing algorithm for AES-128 168
7.3.2.2 Experimental verification . 172
7.3.2.3 Extension to 9-round AES-256 172

7.3.3 Distinguisher for 9-round AES-128 . 173
7.3.3.1 Distinguishing algorithm . 173
7.3.3.2 Generic case . 176

8 Improved Rebound Algorithms . 179

TABLE DES MATIÈRES ix

8.1 Description of some AES-like primitives . 180
8.1.1 Description of Grøstl . 180
8.1.2 Description of PHOTON . 182
8.1.3 Description of LED . 183
8.1.4 Description of Whirlpool . 184

8.2 Improved Inbound Part . 185
8.2.1 Fully-active truncated differential characteristic 186

8.2.1.1 The truncated differential characteristic 186
8.2.1.2 Finding a conforming pair . 187
8.2.1.3 Comparison with the ideal case 191

8.2.2 Non-fully-active truncated differential characteristic 192
8.2.2.1 The generic truncated characteristic 192
8.2.2.2 Finding a conforming pair . 193
8.2.2.3 Comparison with ideal case . 195

8.2.3 Application to Grøstl-256 permutations 197
8.2.3.1 Three fully-active states . 197
8.2.3.2 Non-fully-active characteristic . 198

8.2.4 Distinguisher for 10-round Grøstl-512 198
8.2.4.1 The truncated differential characteristic 198
8.2.4.2 Finding a conforming pair . 200
8.2.4.3 Comparison with ideal case . 204

8.2.5 Distinguishers for reduced PHOTON permutations 205
8.3 Improved Outbound Part . 205

8.3.1 Multiple limited-birthday and generic complexity 206
8.3.1.1 Structures of input data . 208
8.3.1.2 Generic algorithm . 209

8.3.2 Truncated characteristic with relaxed conditions 210
8.3.2.1 Relaxed 9-round distinguisher for AES-like permutation 210
8.3.2.2 Comparison with ideal case . 212

8.3.3 Applications . 212
8.3.3.1 AES . 212
8.3.3.2 ECHO . 214
8.3.3.3 Grøstl . 215
8.3.3.4 LED . 216
8.3.3.5 PHOTON . 216
8.3.3.6 Whirlpool . 217

9 Rebound Attacks on ECHO Hash Function . 219
9.1 Description of ECHO . 219

9.1.1 Original description . 220
9.1.2 Alternative description . 222

9.1.2.1 Super-SBox . 222
9.1.2.2 SuperMixColumns . 223

9.1.3 Current cryptanalysis . 226
9.2 Attacks on ECHO-256 . 227

9.2.1 Collision attack on the 4-round compression function 227

x TABLE DES MATIÈRES

9.2.1.1 Truncated differential characteristic 228
9.2.1.2 Super-SBox sparse differentials 228
9.2.1.3 Finding a message pair . 230
9.2.1.4 Step 1 - Partial first inbound . 231
9.2.1.5 Step 2 - Second inbound . 232
9.2.1.6 Step 3 - Merging the two inbounds 234
9.2.1.7 Step 4 - Reaching the collision . 234
9.2.1.8 Experimental verification . 237

9.2.2 Collision attack on the 4-round hash function 237
9.2.3 Collision attack on the 5-round hash function 239

9.2.3.1 The truncated differential characteristic 239
9.2.3.2 Colliding subspace differences . 240
9.2.3.3 High-level outline of the attack 242
9.2.3.4 Details of the attack . 243

9.2.4 Distinguisher for the 7-round compression function 247
9.2.4.1 Finding pairs between S6 and S23 249
9.2.4.2 Finding pairs between S30 and S47 250
9.2.4.3 Merging solutions . 250

9.2.5 Collision attack on the 6-round compression function 252
9.2.6 Chosen-salt attacks on the compression function 252

9.2.6.1 The truncated differential characteristic 252
9.2.6.2 Outline of the attack . 254
9.2.6.3 Finding right pairs . 254
9.2.6.4 Chosen-salt collision attack for 6 rounds 256
9.2.6.5 Chosen-salt distinguisher for 7 rounds 256

Conclusions . 259

Bibliography . 261

Appendices . 275

A Advanced Encryption Standard . 277
A.1 AES S-Box lookup table . 277
A.2 PRESENT S-Box lookup table . 277
A.3 Whirlpool S-Box lookup table . 277

List of Figures . 278

List of Tables . 282

CHAPITRE1
Introduction

1.1 Histoire de la cryptographie

Anciennement considérée comme un art, la cryptographie s’intègre dans le domaine plus
général de la cryptologie, désormais reconnue comme science à part entière. Étymologiquement,
la cryptologie est la science du secret, dans laquelle la cryptographie s’intéresse aux méthodes
de protection de messages ou documents de types très variés. Parallèlement à la conception
de méthodes de protection, on trouve également la cryptanalyse qui consiste à casser ces codes
secrets, c’est-à-dire à se positionner comme l’ennemi qui cherche à retrouver le message original.
Les applications de la cryptographie dans la vie courante sont diverses et adaptables à tout
type de scénario où deux individus sont capables d’échanger des informations. Le but premier
de cette science est de donner la possibilité aux individus de communiquer d’une manière
protégée. À cette fin, on suppose que deux personnes disposent d’un canal de communication
quelconque par lequel un échange d’informations est possible. Le canal de communication est
considéré dans le domaine public et est donc accessible à tout le monde. Il peut être de nature
différente suivant le scénario, mais on peut imaginer qu’il s’agisse d’un courrier postal, d’un
courrier électronique, d’un câble téléphonique, d’ondes radios, d’une petite annonce dans un
journal, etc.

Les premières utilisations connues de la cryptographie remontent à l’Antiquité, où la plus
anciennetrace de message chiffré a été retrouvéee sur une table en argile sur les bords du Tigre
en Irak. Un potier babylonien y avait gravé la recette de son vernis, voulant garder secrète la clé
de sa réussite. La méthode de chiffrement utilisée a été découverte par des archéologues, et
consistait simplement à supprimer certaines lettres de la recette et à remplacer certains mots
par d’autres. Au fil des années, les motivations militaires ont conduit les Hommes à développer
de nouvelles méthodes de chiffrement plus robustes afin d’éviter que les tactiques ou plans
de bataille ne tombent dans les mains de l’ennemi. Les Spartiates ont ainsi inventé le premier
dispositif militaire connu : la scytale, ou bâton de Plutarque. La scytale en elle-même est un
bâton de bois, dont le diamètre est connu uniquement de l’émetteur et du destinataire du
message. Pour chiffrer un message, on enroule un étroit morceau de papyrus autour de la
scytale pour ensuite y écrire le message. Ainsi, seul le destinataire capable d’enrouler à nouveau
le papyrus autour de sa scytale peut lire le message original. Un attaquant qui parviendrait
à récupérer un message chiffré et qui devinerait la manière de chiffrer devrait alors essayer
plusieurs diamètres de bâtons différents pour retrouver le message original.

— 1 —

2 CHAPITRE 1. INTRODUCTION

Ces méthodes basiques de chiffrement ne garantissent pas que le message soit lu uniquement
par le destinataire légitime, mais elles ont probablement été utilisées pendant de nombreuses
années. Il a fallu attendre l’époque de Jules César, vers 50 av. J.-C., pour voir apparaître de
véritables systèmes cryptographiques. Le plus célèbre d’entre eux est le chiffre de César, qui
consiste simplement à décaler les lettres d’un message de trois positions vers la droite dans
l’alphabet latin. La lettre A est ainsi transformée en D, le B en E, etc. Cette nouvelle méthode de
chiffrement est dite de substitution, car chaque lettre du message est remplacée par une autre
(voir Figure 1.1). On peut bien sûr utiliser d’autres valeurs que trois pour le décalage : il y en a 25

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

Lettres du message en clair

Lettres du message chiffré

Figure 1.1: Chiffre de César : les lettres du message en clair sont décalées de trois positions dans
l’alphabet.

pertinentes, étant donné que décaler les lettres de 26 positions ne modifie pas le message initial.
D’autres manières similaires font leur apparition au fil des années, et on peut les classer dans
deux grandes catégories : les substitutions monoalphabétiques ou polyalphabétiques. Le chiffre
de César est une substitution monoalphabétique car tous les A du message seront toujours
remplacés par D, mais on peut citer par exemple le chiffre de Vigenère (1586) dans lequel on ne
se contente pas que d’un seul décalage comme pour César, mais de plusieurs. Ainsi, le A n’est
pas forcément transformé en la même lettre : on parle de substitution polyalphabétique.

La cryptanalyse de ces schémas de chiffrement plus complexes repose principalement
sur l’analyse des fréquences du texte chiffré. Il a fallu attendre le IXe siècle pour que le
mathématicien arabe Al-Kindi s’intéresse à la répétition des lettres dans le message codé par
le chiffre de César et s’aperçoive qu’elle correspond exactement à celle du message original.
En effet, le chiffrement étant monoalphabétique, le nombre de E dans le message original est
le même que le nombre de H dans le message chiffré. En français, le E étant la lettre la plus
fréquente, il est facile de déduire quelle est la lettre correspondante dans le message chiffré, et
ainsi de retrouver tout le message original. Le chiffre de Vigenère peut également être cassé
en procédant à une analyse des fréquences comme l’a fait le mathématicien anglais Charles
Babbage en 1854, dont les résultats ont été publiés en 1863 par le major Friedrich Kasiski. Le
chiffre de Vigenère diffère de celui de César uniquement par le nombre (inconnu) de décalages :
dès lors que ce nombre est connu, le même raisonnement que pour le chiffre de César peut
s’appliquer. Kasiski montre dans ses travaux une manière efficace de récupérer ce nombre en
analysant les répétitions de groupes de lettres dans le message chiffré. Plus récemment au
XXe siècle, des techniques de statistiques utilisent l’indice de coïncidence pour retrouver la même
valeur et également casser le code.

Le bond technologique suivant survient au début du XXe siècle pendant la Première et
la Deuxième Guerres mondiales. Les besoins militaires des différentes armées de protéger
leurs communications ont permis de voir l’apparition de machines spécialement conçues pour

1.2. LA CRYPTOGRAPHIE AUJOURD’HUI 3

le chiffrement et le déchiffrement. Elles utilisent les mêmes procédés connus de substitution,
mais d’une manière plus complexe : on peut citer par exemple la machine Enigma, la C-36, la
machine de Lorenz, la Geheimfernschreiber, etc. La machine allemande Enigma utilise notamment
plusieurs rotors qui agissent indépendamment comme de simples chiffres de substitution, mais
qui sont utilisés les uns à la suite des autres, et tournent comme le font les aiguilles d’une montre
après que chaque lettre ait été traitée. Chaque camp développant ses propres mécanismes
secrets de chiffrement, il était aussi naturel d’essayer d’attaquer les machines adverses. La
machine Enigma a ainsi été décryptée par les britaniques, grâce à la Pologne en 1932 qui a
partagé ses découvertes avec ses alliés peu de temps avant l’invasion du pays par les Allemands
en 1939. Cette percée a permis aux Alliés de lire de nombreux messages allemands interceptés
et aurait ainsi écourté la guerre de plusieurs mois.

Vers le milieu du XXe siècle, la cryptographie est devenue beaucoup plus mathématique
et a été grandement facilitée par l’apparition des premiers ordinateurs. Cette cryptographie
moderne est initiée par le travail de Claude Shannon en 1948 sur la théorie mathématique de
l’information, sur laquelle repose la cryptographie moderne. En 1948, il montre également que
même sur un canal véhiculant l’information de manière très altérée il est possible d’ajouter de la
redondance afin que le message initial puisse être reconstruit après transmission. Enfin, en 1949,
Shannon apporte la première preuve théorique de confidentialité, en lien avec la perfection du
code de Vernam [Sha49], qui est une méthode théorique impossible à casser.

Aujourd’hui, la cryptographie fournit des méthodes de chiffrement afin de pallier d’une
manière relativement sûre tous les défauts des méthodes exposées précédemment. La théorie
mathématique donne de nombreux outils aux cryptographes pour développer des codes
suffisamment robustes afin d’éviter que des cryptanalystes ne les cassent trop rapidement.
En effet, même si l’on sait théoriquement comment créer des codes parfaitement sûrs, il est
quasiment impossible de les utiliser efficacement en pratique. Des contraintes physiques, de
temps ou d’argent imposent de recourir à des outils imparfaits qui bénéficient néanmoins d’une
confiance théorique suffisante.

1.2 La cryptographie aujourd’hui

1.2.1 Généralités

À l’heure où les ordinateurs et les processeurs sont omniprésents, il devient facile d’incor-
porer les possibilités offertes par la cryptographie dans notre quotidien. Parmi ces capacités,
on considère naturellement la confidentialité des données, mais dans beaucoup de cas, elle est
insuffisante. L’authentification des personnes échangeant de l’information peut être bien plus
importante, par exemple lorsque l’on considère un ordre de virement sur un compte bancaire,
l’accès à un réseau internet ou téléphonique, l’accès à un coffre-fort, etc. Ces notions n’appellent
pas nécessairement à une protection des données, mais plutôt à assurer à l’un des participants
(ou à tous) qu’il dialogue avec la bonne personne et non avec un imposteur. Une troisième
notion vient s’ajouter à la confidentialité et à l’authentification : l’intégrité. Les participants
à une conversation veulent s’assurer que les messages qu’ils reçoivent sont bien ceux qui
ont été envoyés par leurs interlocuteurs légitimes, et qu’ils n’ont pas été modifiés pendant la

4 CHAPITRE 1. INTRODUCTION

transmission. La banque a par exemple besoin de vérifier que l’ordre de virement qu’elle reçoit
d’une personne n’a pas été modifié par un attaquant pour en changer le compte créditeur.

La cryptographie moderne suit un certain nombre de principes fondamentaux, énoncés
pour la première fois par Auguste Kerckhoffs en 1883 dans [Ker83]. Le plus important de tous
décrit un système cryptographique comme un algorithme public, qui ne doit utiliser qu’une
petite information secrète que l’on appelle la clef. Suivre ce principe a l’avantage de ne pas
rendre inutilisable l’algorithme choisi si la clef est récupérée par l’ennemi. Avoir un algorithme
secret ralenti théoriquement l’attaquant, mais ne doit pas être la seule source de secret du
système. En effet, il est préférable d’utiliser un algorithme public car celui-ci peut être étudié et
critiqué ouvertement, notamment par le monde académique.

De manière plus formelle, on considère généralement deux personnes (Alice et Bob) qui
s’échangent des messages sur un canal non sécurisé (voir Figure 1.2). On suppose donc
qu’un attaquant (Ève) est capable soit d’écouter le canal (attaquant passif), soit de le modifier
(attaquant actif).

Alice Bob

Eve

Écoute Modifie

Canal non sécurisé

Figure 1.2: Canal de communication : Alice et Bob s’échangent des messages via le canal écouté par Ève.

Les notions précédentes se traduisent alors par :

• La confidentialité. Le message ne peut pas être lu par Ève.
• L’authenticité. Bob reçoit le message venant d’Alice et est convaincu qu’elle en est bien

l’auteur. Si Ève envoie un message à Bob en se faisant passer pour Alice, il le détectera.
• L’intégrité. Si Ève modifie le message original envoyé par Alice, Bob le détectera.

Pour répondre à ces problèmes généraux, on distingue deux grandes familles d’outils
cryptographiques : les systèmes à clef secrète et les systèmes à clef publique. Le premier système
est le plus ancien et celui exposé jusqu’à présent dans ce manuscrit. Par exemple, la clef du
chiffre de César est le décalage utilisé, et celle du chiffre de Vigenère est la connaissance de tous
les décalages. Tous ces cryptosystèmes font l’hypothèse que les utilisateurs qui communiquent
se sont mis d’accord au préalable sur une clef secrète à utiliser. Parfois, l’échange de cette clef
ne peut être fait de manière sûre, et on se ramène au problème d’établir une communication
sécurisée entre deux individus. Dans le deuxième cas, la cryptographie à base de clef publique
permet de pallier ce paradoxe. Chaque utilisateur dispose de deux clefs : une clef publique
qu’il n’est pas nécessaire de protéger au sens de la confidentialité et doit être transmise au

1.2. LA CRYPTOGRAPHIE AUJOURD’HUI 5

destinataire, et une clef privée qui doit être connue d’une et une seule personne. Alice et Bob
peuvent alors échanger de manière sécurisée sans avoir à échanger de clef secrète au préalable :
Alice utilise la clef publique de Bob pour chiffrer le message qu’elle souhaite lui envoyer, et à
sa réception, Bob se sert de sa propre clef secrète pour pouvoir lire le message original. Si sa
clef est restée secrète, il est en théorie le seul à pouvoir lire le message d’Alice.

En pratique, les deux systèmes sont utilisés conjointement : on se sert généralement d’un
algorithme à clef publique pour échanger un secret entre les deux parties, puis ce secret sert de
clef dans le deuxième algorithme à clef secrète qui est plus rapide à utiliser. Nous détaillons
maintenant les primitives de ces deux grandes familles.

1.2.2 Cryptographie asymétrique

Par cryptographie asymétrique, on désigne la cryptographie à clef publique qui nécessite
une paire de clefs par personne : une qui est publique et utilisée par tous, et une autre qui est
privée, uniquement connue et utilisée par une personne. Le terme asymétrique est justifié par
les processus de chiffrement et de déchiffrement qui utilisent des clefs différentes, ce qui n’est
pas le cas pour la cryptographie symétrique. Pour construire ces algorithmes, des problèmes
mathématiques réputés difficiles sont utilisés, ce qui permet de garantir que casser le mode
d’utilisation de la primitive revient à résoudre ces problèmes difficiles. Ceci étant supposé
impossible en temps raisonnable, on estime alors que les algorithmes sont sûrs. Les possibilités
offertes par ces mécanismes sont nombreuses, mais on peut les classer principalement dans
deux grandes catégories : les systèmes de chiffrement et les signatures électroniques.

1.2.2.1 Algorithme de chiffrement

Pour assurer la confidentialité du message qu’Alice envoie à Bob, Alice commence par
récupérer la clef publique de Bob (dans un annuaire, un site Internet, ou en demandant
directement à Bob par exemple) et l’utilise pour chiffrer le message qu’elle souhaite lui envoyer.
Pour Alice, le message chiffré qu’elle envoie à Bob n’a plus aucune signification : Bob est en
effet le seul à pouvoir le déchiffrer avec la clef privée. Le lien entre sa clef publique et privée
permet de déchiffrer le message. À l’heure actuelle, les problèmes durs sur lesquels reposent
les algorithmes de chiffrement asymétriques sont la difficulté de factoriser le produit de deux
nombres premiers (système RSA [RSA78]), le logarithme discret (système ElGamal [ElG85],
système de Schnorr [Sch89]) ou encore le problème du plus court vecteur dans un réseau
(système NTRU [HPS98, SSNO12]).

1.2.2.2 Signature électronique

Les signatures électroniques assurent les mêmes fonctions que les signatures classiques sur
papier : elles authentifient l’auteur d’un message ou d’un document. Pour signer un message
qu’elle envoie à Bob, Alice utilise sa propre clef privée pour créer la signature, l’apposer sur
le message puis elle envoie le tout à Bob. À la réception du message, Bob peut utiliser la clef
publique d’Alice et s’assurer que le message qu’il a reçu a bien été signé par Alice, car elle est
la seule à connaître la clef privée associée à la clef publique qu’il a utilisée pour la vérification.
Les problèmes difficiles pour les algorithmes de signatures sont les mêmes que ceux pour les

6 CHAPITRE 1. INTRODUCTION

algorithmes de chiffrement : le système RSA, ou encore DSA (Digital Signature Algorithm) qui
utilise une variante de ElGamal.

Pour des raisons pratiques d’efficacité, il est préférable d’utiliser un algorithme symétrique
pour le chiffrement. On se sert généralement d’un algorithme à clef publique pour effectuer
l’échange du secret nécessaire entre les deux parties. L’échange de clefs le plus utilisé est
Diffie-Hellman [DH76], du nom de leurs auteurs Whitfield Diffie et Martin Hellman, et est
basé sur le problème difficile du logarithme discret. En terme de cryptanalyse, le principal
problème des modes d’utilisation des algorithmes à clefs publiques est l’attaque par le milieu :
si l’adversaire Ève arrive à remplacer la clef publique du destinataire légitime par la sienne, elle
pourra faire croire aux deux individus honnêtes qu’ils communiquent entre eux, alors qu’elle
agira comme relais et pourra lire tous les message échangés (voir Figure 1.3).

Alice Ève Bob

1 2

34

Figure 1.3: Attaque par le milieu : Ève agit comme intermédiaire entre Alice et Bob pour lire leurs
communications.

1.2.3 Cryptographie symétrique

Par cryptographie symétrique, on fait référence à la cryptographie à clef secrète, les méca-
nismes de chiffrement et de déchiffrement utilisant la même clef pour les deux interlocuteurs
Alice et Bob. Au sein de ce domaine, on distingue plusieurs familles de primitives qui per-
mettent de répondre à différents besoins. Premièrement, on trouve les algorithmes de chiffrement
qui permettent de transformer un message en clair en un message chiffré pour en assurer la
confidentialité. On dispose ensuite de fonctions de hachage, qui sont utilisées dans beaucoup de
domaines de la cryptographie et permettent par exemple de construire une empreinte d’un
message pour en attester une certaine l’intégrité. Enfin, pour garantir l’authenticité de l’origine
d’un message, on peut utiliser les codes d’authentification de message (MAC).

1.2.3.1 Algorithmes de chiffrement par bloc

Cette primitive de chiffrement est la plus répandue et consiste en un algorithme déterministe
paramétré par une clef et qui travaille sur un groupe de bits de taille fixe appelé bloc. Pour
chiffrer (ou déchiffrer) un message de longueur arbitraire, on utilise un mode opératoire qui
permet de lier les résultats de chiffrements des blocs successifs et ainsi produire le chiffrement
du message complet. En 1977, le National Bureau of Standards (désormais le National Institute of
Standards and Technology, NIST) annonce le DES comme standard de chiffrement [DES77] : il
s’agit d’un algorithme intialement développé par IBM qui utilise le réseau de Horst Feistel. Vingt
ans plus tard, et après de nombreuses attaques publiées sur le DES, le NIST lance le concours

1.2. LA CRYPTOGRAPHIE AUJOURD’HUI 7

AES (Advanced Encryption Standard) qui sélectionne un nouveau standard de chiffrement en 2000
[AES01]. Complètement différent de son prédécesseur le DES, ce sont les cryptographes belges
Joan Daemen et Vincent Rijmen qui remportent le concours avec leur soumission Rijndael,
parmi les 15 autres algorithmes proposés [DR02].

1.2.3.2 Algorithmes de chiffrement par flot

Un schéma de chiffrement par flot utilise une clef secrète pour produire une séquence
de caractères (pseudo-)aléatoires aussi longue que le message à chiffrer. Contrairement au
chiffrement par bloc, cet algorithme n’a pas besoin de découper le message clair pour le
chiffrer : on considère le clair en séquence pour opérer un OU exclusif (XOR) entre le caractère
du message et le caractère de la séquence pseudo-aléatoire, ce qui donne le caractère du chiffré.
Moins utilisés en pratique et moins étudiés, ils restent cependant très rapides à exécuter par
leur construction. Faisant suite au concours AES, le projet eSTREAM s’est achevé en 2008
pour sélectionner de nouveaux algorithmes dans un portfolio. L’algorithme de chiffrement
par flot le plus répandu actuellement est RC4 par Ron Rivest, mais on peut également citer
Trivium, Grain, Salsa20, ou encore A5/1, A5/2, etSNOW3G qui sont utilisés dans les
communications mobiles.

1.2.3.3 Fonctions de hachage

Une fonction de hachage est une primitive cryptographique qui doit se comporter comme
une fonction aléatoire. En particulier, elle doit être à sens unique, c’est-à-dire qu’il doit être
difficile de l’inverser. Ces fonctions ne demandent aucun secret et fournissent une empreinte
relativement courte d’un message, ce qui permet d’en donner une certaine preuve d’intégrité
après transmission dans le canal non sécurisé (voir Figure 1.4). Bien qu’utilisées dans tous les
domaines de la cryptographie, symétrique comme asymétrique, elles rentrent généralement
dans la catégorie des primitives à clef secrète : elles utilisent des mécanismes similaires aux
algorithmes de chiffrement, voire sont construites grâce à eux. C’est le cas pour beaucoup de
fonctions de hachage comme MD4, MD5, SHA-1, SHA-2, etc. En 2008, le NIST a lancé une
nouvelle compétition afin de définir un nouveau standard de hachage. La fonction Keccak de
Guido Bertoni, Joan Daemen, Michaël Peeters, et Gilles Van Assche a remporté la compétition
en octobre 2012, devenant ainsi le nouveau standard SHA-3.

PhD.pdf h 50697fb42e88f27b0d19b625b18ae016

Figure 1.4: Fonction de hachage : la fonction h fournit une empreinte courte d’un document.

1.2.3.4 Code d’authentification de message (MAC)

Un MAC consiste en une petite information ajoutée à un message en clair qui permet d’en
vérifier à la fois l’intégrité et la provenance. Un algorithme MAC s’utilise avec une clef secrète
partagée entre Alice et Bob. Alice se sert de la clef pour créer le MAC et l’envoie avec le message
à Bob. Celui-ci le recalcule avec sa copie de la clef et vérifie que le message n’a ni été modifié,

8 CHAPITRE 1. INTRODUCTION

ni créé par un imposteur ne connaissant pas la clef secrète. Les algorithmes MAC ressemblent
fortement aux fonctions de hachage mais demandent des notions de sécurité relativement
différentes : il est possible de construire un algorithme MAC à partir d’une fonction de hachage
(c’est le cas de HMAC) ou d’un algorithme de chiffrement par bloc (comme OMAC ou CBC-MAC).

Dans cette thèse, je me suis intéressé aux fonctions de hachage et aux algorithmes symé-
triques de chiffrement par bloc. Avant de les décrire plus en détails dans les sections suivantes,
nous détaillons quelques notions de cryptanalyse.

1.2.4 Notions de cryptanalyse

Le rôle du cryptanalyste n’a pas changé suivant les évolutions de la cryptographie, mais
les moyens qu’il a à sa disposition sont plus performants. En outre, les schémas auxquels il
s’attaque sont complètement différents des simples algorithmes de substitutions utilisés dans la
première ère de la cryptographie. Dans le cadre de la simple substitution du chiffre de César
par exemple, dès lors que le cryptanalyste intercepte un message chiffré, il n’a plus qu’à essayer
les 25 décalages possibles pour retrouver le message original en clair. Cette méthode de force
brute consiste à essayer tous les scénarios possibles selon le mécanisme de chiffrement jusqu’à
obtenir le résultat ; dans ce cas, le message en clair connu. Une méthode plus raffinée consiste à
analyser la répartition des fréquences des lettres pour obtenir directement le bon décalage, et
aboutir au même résultat. Cette méthode est plus rapide dans le sens où l’on n’essaye que le
bon décalage, et non les 26 possibles. Avec les notions de clefs présentées précédemment pour
les schémas de chiffrement, on peut constater qu’une manière naïve de récupérer le message
original est d’essayer toutes les clefs possibles sur un message intercepté pour retrouver le
message en clair : cette méthode porte le nom de recherche exhaustive ou force brute et s’applique
à tous les schémas de chiffrement.

Du point de vue de l’attaquant, on distingue quatre scénarios d’attaque différents suivant
l’information que cet attaquant est capable de récupérer. Dans tous les cas, le but du cryptana-
lyste est de retrouver la clef utilisée pour le chiffrement des messages qu’il aura intercepté. Par
attaque, on entend une tentative de cryptanalyse d’un schéma donné qui utilise de l’information
dans l’un des cas suivants :

• Chiffré seul (ciphertext only). L’attaquant a en sa possession uniquement un ou plu-
sieurs messages chiffrés, mais ne détient aucune information sur les messages en clair
correspondants. En pratique, ce scénario est le plus courant.

• Clair connu (known plaintext). Dans ce cas, le cryptanalyste a non seulement accès aux
messages chiffrés, mais également aux messages en clair correspondants. On parle de
paires clairs/chiffrés.

• Clair choisi (chosen plaintext). En donnant plus de puissance à l’attaquant, on lui permet
de chiffrer les messages qu’il souhaite avec une clef qui lui est inconnue, et son but est
d’en déterminer la valeur. Bien que ce scénario avantage grandement l’attaquant, on le
retrouve dans diverses implémentations pratiques telles que dans les cartes à puce. La clef
secrète est protégée physiquement, mais on peut demander le chiffrement de messages
par la carte et en récupérer les chiffrés.

• Chiffré choisi (chosen ciphertext). De la même manière, l’attaquant peut dans ce cas
demander le déchiffrement de messages quelconques et obtenir leur déchiffrement par la

1.3. FONCTIONS DE HACHAGE 9

clef secrète.

Ces différents modèles d’attaquant permettent de créer des classes d’attaques distinctes, qui
doivent être envisagées lors du déploiement des cryptosystèmes. Dans tous les cas, en suivant les
principes de Kerckhoffs, l’attaquant est toujours supposé connaître le mécanisme de chiffrement.

Lors de la conception des algorithmes de chiffrement, les cryptographes estiment que la
meilleure attaque dont dispose le cryptanalyste est la recherche exhaustive de la clef. Si tel est
le cas, alors le schéma est sûr, sinon il est considéré comme cassé. Ainsi, la recherche exhaustive
de la clef dans le cas du chiffre de César n’est pas une attaque puisque toutes les clefs sont
essayées. Par contre, l’analyse fréquentielle constitue la meilleure attaque connue puisqu’une
seule clef est essayée. Cette différence entre les systèmes primitifs, comme les chiffres de César
ou de Vigenère, et les méthodes modernes donne une toute autre vision de la cryptanalyse.
En effet, dans les anciens systèmes, le nombre de clefs possibles est relativement petit en
comparaison à la puissance de calcul offerte par les ordinateurs. Cette avancée technologique
permet d’effectuer la recherche exhaustive de manière beaucoup plus rapide, et impose donc
aux cryptographes de concevoir des algorithmes sûrs dont le nombre de clefs ne pourra pas
être atteint par l’ordinateur.

L’ancien standard de chiffrement par bloc DES considère des clefs de 56 bits, ce qui
signifie qu’au plus 256 clefs existent. Ainsi, la recherche exhaustive demande une puissance de
calcul équivalente à 256 = 72 057 594 037 927 936 chiffrements DES. En termes de comparaison,
on estime qu’à l’heure actuelle une machine ordinaire d’un particulier effectue 232 calculs
élementaires en quelques secondes, et que les agences gouvernementales les plus puissantes
atteignent largement 256 calculs, mais pas 280, soit 80 bits de sécurité. Avec l’AES comme
nouveau standard de chiffrement, ainsi que la majorité des algorithmes de chiffrement publiés
depuis, on dispose au minimum de 128 bits de sécurité, ce qui donne une certaine marge de
confiance vis-à-vis de la recherche exhaustive.

1.3 Fonctions de hachage

On appelle fonction de hachage h une fonction mathématique qui associe un message de
longueur arbitraire à une sortie de taille fixe notée n :

h : {0, 1}∗ −→ {0, 1}n

m −→ h(m).

Le paramètre d’entrée de la fonction, représenté comme une séquence de bits, est appelé
message. L’image de ce message par h est appelé haché (ou empreinte). Ce dernier étant de petite
taille, il permet de représenter le message associé d’une manière compacte et donc de l’identifier
rapidement.

Bien que les fonctions de hachage cryptographique soient présentées dans la prochaine
section comme un moyen d’obtenir des notions de sécurité informatique, leurs usages dépassent
le domaine de la cryptographie : on peut citer par exemple le cas de l’algorithmie. La majorité
des utilisations des fonctions de hachage repose sur une représentation courte et de taille fixe
de n’importe quel message. La structure de données appelée table de hachage associe une clef à

10 CHAPITRE 1. INTRODUCTION

un élément de nature quelconque. C’est le cas d’un annuaire téléphonique où les clefs seraient
les initiales des personnes, et les éléments seraient les prénoms et les numéros de téléphone
associés (voir Figure 1.5). Dans une telle structure, les clefs sont les hachés des éléments à
stocker, ou d’une partie des valeurs à enregistrer, comme les initiales des personnes dans
l’annuaire. Une table de hachage se présente le plus souvent comme un tableau, et permet
d’effectuer des recherches en temps quasi constant, d’où son utilité.

A

B

E

S

Alice
0601

Amélie
0602

Benjamin
0606

Bob
0605

Ève
0604

Sébastien
0603

Clefs Valeurs

Figure 1.5: Table de hachage : un annuaire stocke les paires clé/élément comme nom/téléphone.

Selon les utilisations, la complexité de la fonction de hachage peut varier. On peut par
exemple vouloir une fonction qui répartit de manière uniforme les sorties pour des entrées
tirées de manière aléatoire. En effet, pour reprendre l’exemple de l’annuaire téléphonique, si
plusieurs personnes partagent le même initiale, il faut alors stocker les éléments (prénoms et
numéros) au même endroit dans la structure. Ceci pourrait être évité avec une fonction plus
complexe, et garantirait que les données soient bien équilibrées au sein de la table. Ainsi, savoir
construire une fonction de hachage vérifiant certaines propriétés est essentiel.

1.3.1 Fonctions de hachage cryptographique

Les fonctions de hachage cryptographiques ont beaucoup d’applications en sécurité de
l’information, et en particulier dans le cas des signatures électroniques, des MACs, et d’autres
formes d’authentification. Dès lors qu’elles interviennent dans des mécanismes ou protocoles
de cryptographie, il est essentiel que ces fonctions vérifient des propriétés plus fortes que
les fonctions de hachage classiques. En particulier, on attend d’une fonction de hachage
cryptographique qu’elle soit difficile à inverser et que trouver deux messages ayant le même
haché le soit également. Pour une fonction de hachage normale, utilisée par exemple dans une
table de hachage, ces deux propriétés ne sont pas primordiales. Dans la suite, une fonction de
hachage mentionnée sans précision supplémentaire sera supposée cryptographique.

1.3. FONCTIONS DE HACHAGE 11

Plus en détail, les trois propriétés fondamentales qu’une fonction de hachage h doit vérifier
sont les suivantes :

• Résistance en préimage. Cette propriété traduit le caractère à sens unique de la fonction,
c’est-à-dire que h doit être difficile à inverser. Formellement, étant donnée une image y, le
problème est de trouver un message x tel que h(x) = y.

• Résistance en collision. Le problème associé consiste à trouver deux message x et x′ tels
que les images par h soient égales : h(x) = h(x′). Si ce problème est dur pour h, alors on
dit que h résiste aux collisions.

• Résistance en seconde-préimage. Étant donné un message x, il doit être difficile de
trouver un autre message x′ différent de x tel que les deux images par h soient égales, i.e.
h(x) = h(x′).

Dans le cas particulier des fonctions de hachage, la difficulté des problèmes présentés
précédemment est liée à l’ensemble de sortie de la fonction de hachage h, i.e. au nombre de
valeurs possibles que peut prendre cette fonction. Si la fonction de hachage h est supposée
parfaite et sans meilleure attaque que la recherche exhaustive, alors elle s’approche suffisamment
bien d’une fonction aléatoire pour qu’une image y donnée soit atteinte pour un message
aléatoire avec probabilité 2−n. On s’attend ainsi à devoir essayer 2n messages x différents avant
d’en trouver un tel que h(x) = y (voir Table 1.1). Il en est de même pour la seconde préimage.

En terme de réduction, on peut montrer que la résistance en collision implique la résistance
en seconde préimage. En effet, on suppose que h est résistante aux collisions et que x est un
message quelconque d’image y = h(x). Si h n’est pas résistante en seconde préimage, alors on
peut trouver un deuxième message x′ différent de x tel que h(x) = h(x′), ce qui contredit la
résistance en collision.

Dans la section suivante, nous détaillons le paradoxe des anniversaires qui explique la com-
plexité 2n/2 dans le cas de l’attaque en collision.

Résistance Entrée Sortie Contrainte Complexité
Préimage y x h(x) = y 2n

Collision - (x, x′) h(x) = h(x′) 2n/2

Seconde-préimage x x′ h(x) = h(x′) 2n

Table 1.1: Complexité des attaques génériques sur une fonction de hachage h : {0, 1}∗ → {0, 1}n.

1.3.2 Paradoxe des anniversaires

Etant donnée une fonction de hachage h : {0, 1}∗ → {0, 1}n, le principe des tiroirs de
Dirichlet (en anglais, pigeonhole principle) permet d’affirmer qu’il existe des collisions dans h
(voir Figure 1.6). Formellement, cela signifie qu’il est impossible de trouver une application
h : {0, 1}∗ → {0, 1}n qui soit injective, et donc il existe deux messages différents x et x′ tels que
leur image par h soient égales, i.e. h(x) = h(x′).

Le problème des anniversaires consiste à choisir k éléments avec remise dans un ensemble
qui en contient n, et à mesurer à partir de quand un élément déjà pioché l’est à nouveau. Le
problème a initialement été présenté en 1939 par le mathématicien Richard von Mises qui se

12 CHAPITRE 1. INTRODUCTION

demandait combien de personnes il fallait réunir pour que la probabilité que deux d’entre eux
partagent le même jour d’anniversaire soit d’au moins 0.5. Avec une fonction de hachage h, cela
revient à trouver quel est le nombre minimal de messages à considérer afin qu’au moins deux
de leurs images soient égales, avec une probabilité plus grande que p. De manière théorique,
pour une fonction dont le nombre d’images possibles est N, on peut prouver qu’il faut en
moyenne

√
π N/2 messages avant que les images ne collisionnent (voir par exemple [vOW99,

Appendix A]). Ainsi, une fonction de hachage avec des empreintes de n bits offre une sécurité
2n/2 en résistance aux collisions.

x1
y1

x2

y2, y4

x3

y3

x4

x5

y5

h

ImagesMessages

Figure 1.6: Vue schématique d’une fonction de hachage h : l’ensemble des images étant plus petit que
l’ensemble des messages, il y a nécessairement des collisions dans h : e.g. h(x2) = h(x4).

Pour trouver une collision dans h : {0, 1}∗ → {0, 1}n, l’attaque générique la plus efficace
repose sur le paradoxe des anniversaires (birthday attack). Par attaque générique, on entend une
attaque qui s’applique de la même manière quelle que soit la fonction que l’on se donne. Cet
algorithme utilise simplement le paradoxe des anniversaires exposé précédemment en retenant
dans une liste l’ensemble des messages x tirés aléatoirement et leurs images jusqu’à que deux
d’entre elles soient égales. Il faut alors attendre d’avoir environ 2n/2 éléments dans la liste avant
d’obtenir la collision, ce qui donne une attaque en 2n/2 en temps et en mémoire. Cette attaque
a été décrite indépendamment par Merkel et Yuval [Yuv79, Mer90] et permet par exemple
de montrer une attaque sur un schéma de signatures électroniques utilisant une fonction de
hachage.

L’algorithme précédent peut être amélioré pour diminuer la complexité mémoire de 2n/2

à une taille constante et négligeable. On peut par exemple utiliser l’algorithme Rho de Pol-
lard [Pol75] pour ne stocker qu’une nombre fini et maîtrisé de points particuliers. De manière
plus générale, on peut ramener le problème de trouver la collision à une détection de cycle en
introduisant une application pour simuler une marche aléatoire dans l’ensemble des images de
h. On peut par exemple citer les algorithmes de Floyd [Flo67, Knu97] qui mime la progression
du lièvre et de la tortue, ou bien l’algorithme de Brent [Bre80] qui améliore légèrement celui
de Floyd. Pour réduire la complexité en temps, il est possible de paralléliser la recherche de
collision sur plusieurs processeurs : Van Oorschot et Wiener proposent une méthode pour
atteindre un gain linéaire en temps dans [vOW99].

1.3. FONCTIONS DE HACHAGE 13

1.3.3 Modes opératoires

Dans la pratique, une fonction avec un domaine de définition infini comme une fonction
de hachage est difficile à manipuler. Plutôt que de considérer le message en entier, on préfère
ainsi le morceler en plusieurs blocs de taille fixe de K bits, et traiter ces blocs par une fonction
plus simple. Cette idée a initialement été publiée par Michael O. Rabin en 1978 [Rab78]. La
fonction de compression f : {0, 1}K × {0, 1}n → {0, 1}n qui traite les blocs devient donc la brique
de base : elle prend en entrée le résultat du bloc précédent et le bloc courant (voir Figure 1.7).

Une fonction de hachage est ainsi séparée en deux entités, la première étant la fonction
de compression f , et la deuxième le mode opératoire ou algorithme d’extension de domaine, qui
décrit la manière de lier les résultats intermédiaires de la transformation interne. Dans les
paragraphes suivants, nous décrivons des constructions concrètes, l’un des objectifs étant de
conserver les propriétés cryptographiques de la fonction de compression f .

1.3.3.1 Construction de Merkle-Damgård

La construction de Rabin qui découpe le message en blocs de tailles fixes a été prouvée
par Merkle et Damgård : si le message est morcelé correctement et traité par une fonction
de compression résistante aux collisions, alors la fonction de hachage l’est également [Mer90,
Dam90]. Afin de s’assurer que la longueur du message m soit un multiple de la taille du bloc,

pad(m) = m1 m2 m3 m4

fh0 = IV f
h1

f
h2

f
h3

h(m)

Figure 1.7: Construction de Merkle-Damgård : le message m avec le padding pad(m) est morcelé en
quatre blocs, et la fonction de compression f chaine les résultats intermédiaires pour produire h(m).

on ajoute le bit 1 à la fin du message, suivi d’autant de bits à 0 que nécessaire pour atteindre
le nouveau message pad(m) qui a une longueur du multiple voulu (padding). De plus, on
renforce généralement cette complétion par l’ajout d’un bloc supplémentaire au message pour
représenter la longueur réelle du message traité (Merkle-Damgård strengthening). Cela permet,
par exemple, d’éviter des attaques en collision avec des messages de tailles différentes, des
attaques avec des messages très longs, ou encore la recherche de points fixes dans la fonction
de compression f .

1.3.3.2 Attaque par extension (extension attack)

Bien que cette construction soit utilisée dans les fonctions de hachage MD5, SHA-1, SHA-2,
on remarque que le chaînage des blocs permet de déduire le haché du message pad(x)||y
uniquement avec h(x), sans la connaissance de x. De la même manière, on peut calculer le haché
d’un message m′ uniquement avec la connaissance du haché h(k||m) d’un message m connu et
d’une clef k inconnue de longueur connue. Dans ce cas, la construction de Merkle-Damgård
permet d’obtenir la valeur de chaînage α = pad(k||m) après le traitement du message. Même
sans connaître la clef k, il est donc possible de calculer le haché h(m′) pour m′ = pad(k||m)||x.

14 CHAPITRE 1. INTRODUCTION

Cette utilisation d’une fonction de hachage avec une clef secrète intervient dans le calcul d’un
MAC, et une attaque d’extension comme celle-ci permet de signer un message particulier sans
connaître la clef. Ce problème peut être contourné en utilisant h(k||h(k||m)) plutôt que h(k||m)
ou h(m||k). C’est le cas de HMAC qui fait deux évaluations de h pour protéger la clef k par
l’attaque d’extension.

1.3.3.3 Attaque par multicollisions

En terme de sécurité, une fonction de hachage h sur n bits doit être résistante aux simples
collisions, i.e. trouver (x, x′) tels que x 6= x′ et h(x) = h(x′). De manière plus forte, une attaque
en multicollisions consiste à trouver un ensemble X = {xi} de messages deux à deux distincts
tels que toutes les images h(xi) soient égales. Obtenir un ensemble X de cardinal t vérifiant
ces propriétés pour une fonction aléatoire requiert l’évaluation de la fonction 2n·t/(t−1) fois.
En 2004, Antoine Joux montre dans [Jou04] que la construction d’un tel ensemble pour une
fonction de hachage basée sur Merkle-Damgård demande en réalité beaucoup moins d’efforts.
Il remarque que si l’on obtient t collisions dans la fonction de compression f , alors il est possible
de construire 2t collisions dans la fonction de hachage. Avec les notations de la Figure 1.8,

m1

m′1

m2

m′2

m3

m′3

mt

m′t

f f f f
h0 h1 h2 h3 ht−1 ht

Figure 1.8: Construction de multicollisions dans une fonction de hachage basée sur Merkle-Damgård.

si l’attaquant connaît t collisions dans f , c’est-à-dire des blocs de messages m0, . . . , mt tels
que f (mi, hi) = f (m′i , hi) = hi+1, pour 0 ≤ i < t, alors il est possible de construire 2t messages
de t blocs en considérant tous les chemins possibles du graphe entre h0 et ht. Tous ces messages
partagent alors le même haché par la fonction de hachage h construite sur le schéma de Merkle-
Damgård. Ce résultat surprenant se réduit à la recherche de t collisions dans f , et demande
donc uniquement t · 2n/2 évaluations de f .

1.3.3.4 Construction wide-pipe

Pour pallier les deux principaux points faibles de la construction de Merkle-Damgård,
Stefan Lucks a proposé la construction wide pipe [Luc04]. Des attaques précédents, on constate
que la sortie de la fonction de hachage est aussi grande que la taille de l’état interne, à savoir n
bits. Avec la construction wide-pipe, on double la taille de l’état interne, pour que la sortie de la
fonction en soit moitié moins grande : si on veut n bits de sortie, l’état interne est sur 2n bits.
En contrepartie, on est contraint de rajouter une application finale pour compresser la dernière
valeur de chaînage de 2n bits aux n bits voulus.

En termes de sécurité, la réduction classique de la fonction de hachage vers la fonction de
compression reste identique, mais la complexité des attaques est désormais beaucoup élevée.
Pour obtenir une collision dans la fonction de compression, il faut désormais évaluer 22n/2 = 2n

messages, et non plus 2n/2. Pour la résistance en préimage, la complexité reste la même. Doubler
la taille de l’état interne de la fonction de hachage a cependant un inconvénient : la fonction

1.3. FONCTIONS DE HACHAGE 15

de compression doit manipuler plus de données, et peut difficilement être plus efficace. En
revanche, Nandi et Paul ont montré qu’il est possible d’adapter la construction [NP10a] pour
atteindre de meilleures performances.

1.3.3.5 Construction sponge

Un autre type de construction qui a été largement popularisé par l’adoption de Keccak
comme nouveau standard de hachage est la construction éponge, ou sponge construction (voir
Figure 1.9).

Phase d’absorption Phase d’essorage

m0

b bits

c bits
P

m1

P

m2

P

m3

P

z0

b′

c′

P

z1

P

z2

Figure 1.9: La construction éponge (sponge). Les paramètres (b, c) déterminent la phase d’absorption, et
les paramètres (b′, c′) la phase d’essorage.

Ce type d’algorithme peut avoir a des utilisations très diverses, étant donné qu’il peut
prendre n’importe quelle taille de message en entrée et qu’il peut produire autant de bits
de sortie que nécessaire. On peut, par exemple, citer des applications à tous les niveaux de
la cryptographie, que ce soit pour des fonctions de hachage, des MACs, des algorithmes
de chiffrement par blocs ou par flots. On doit principalement ce mode opératoire à Joan
Daemen qui l’avait déjà introduit dans plusieurs primitives, comme la fonction de hachage
cryptographique RADIOGATÚN [BDAP06], qui elle-même améliorait la fonction de hachage
PANAMA [DC98].

Contrairement aux fonctions de compression qui servent de briques de base aux fonctions
de hachage présentées jusqu’à présent, la construction sponge utilise une permutation, sans
procéder à une compression. Nous l’avons notée P dans la Figure 1.9. L’utilisation de cette
construction se déroule en deux temps : d’abord une phase d’absorption, pendant laquelle le
message est progressivement intégré à l’état interne, puis une phase d’essorage, où l’on génère
autant de bits de sortie que nécessaire. Avant de procéder à la première étape, le message m à
intégrer est ajusté à une longueur multiple de la taille de bloc (padding) pour former pad(m),
puis il est découpé en t blocs de mêmes tailles m1|| · · · ||mt. Chacun de ces mi est intégré à l’état
interne par un XOR, puis un appel à P remplace l’état interne actuel s par P(s). Cette phase
d’absorption se répète tant qu’il reste des blocs mi à traiter.

16 CHAPITRE 1. INTRODUCTION

On commence ensuite à construire la sortie de la primitive en prenant autant de blocs de
l’état interne que nécessaire et en les séparant par de nouvelles applications de la permutation
P.

Les paramètres utilisés dans la construction sponge dépendent du niveau de sécurité sou-
haité pour la primitive. On peut par exemple montrer [BDPV08] que la résistance en collision
d’une fonction éponge produisant n bits de sortie et paramétrée par c bits de capacité est
min(2n/2, 2c/2) évaluations de la fonction. L’utilisateur peut librement ajuster le niveau de
sécurité en choisissant une valeur de c appropriée, tout en gardant un bon compromis sécu-
rité/efficacité. En effet, plus la valeur de c est grande, plus le niveau de sécurité sera important,
mais moins la fonction globale sera performante. En revanche, lorsque une forte sécurité n’est
pas la principale fonctionnalité demandée pour une primitive, comme toutes les fonctions à bas
coût (lightweight), on peut obtenir de très bonnes performances avec cette construction sponge.
On peut par exemple citer QUARK [AHMNP10], PHOTON [GPP11] et SPONGENT [BKL+11].

1.4 Algorithmes de chiffrement par bloc

1.4.1 Définition

Un algorithme de chiffrement par bloc constitue la principale méthode de chiffrement
offerte par la cryptographie. Il se classe dans la catégorie symétrique. Cependant, il existe une
deuxième méthode : le chiffrement par flot. La différence entre ces deux méthodes repose
principalement sur le fait de découper ou non le message d’entrée. Dans le cas d’un algorithme
de chiffrement par flot, le message n’est pas découpé, mais on lui applique, bit par bit (ou octet
par octet), un masque similaire au code de Vernam (one-time pad). Cette séquence de masques
représente les bits (ou octets) de sortie de l’algorithme de chiffrement par flot, et doit être la
plus aléatoire possible.

Dans le cas d’un algorithme de chiffrement par bloc, le message d’entrée est découpé
en blocs de taille fixe de n bits (par exemple n = 128 bits ou 16 octets), qui sont tous traités
simultanément par l’algorithme. Un tel algorithme est déterministe et applique une permutation
fixée par le biais d’une clef K de k bits. En effet, un algorithme de chiffrement par bloc définit
une famille de permutations indépendantes paramétrées par une clef :

E : {0, 1}k × {0, 1}n −→ {0, 1}n

(K, m) −→ E(K, m).

Pour échanger un message de manière secrète, Alice et Bob se mettent d’accord sur une
clef secrète K à utiliser, ce qui leur fixe une permutation EK dans la famille E . Ils peuvent
l’utiliser simplement pour chiffrer tous leurs blocs de messages m en Ek(m). Si l’adversaire Eve
parvient à intercepter un ou plusieurs blocs de messages chiffrés, elle ne peut pas retrouver les
messages en clair étant donné qu’elle ne connaît pas la permutation utilisée, c’est-à-dire la clef.
Cet adversaire ne peut alors utiliser que la technique de la force brute pour essayer toutes les
2k permutations possibles jusqu’à ce que le bloc de message déchiffré ait un sens.

1.4. ALGORITHMES DE CHIFFREMENT PAR BLOC 17

1.4.2 Construction itérée

En théorie, il existe 2n! permutations sur n bits, et donc (2n!)2k
familles de permutations

avec des clefs de k bits. Un algorithme de chiffrement est dit idéal si les 2n! permutations
possibles sont équiprobables. Or, dans la pratique, il est impossible de satisfaire cette propriété.
On préfère donc utiliser des algorithmes non idéaux, mais que l’on sait représenter d’une
manière compacte, et donc calculer de manière efficace.

Afin de construire des algorithmes de chiffrement par bloc, on privilégie l’utilisation de
plusieurs applications successives d’une fonction cryptographiquement peu sûre, mais dont
la répétition apporte la sécurité. On doit cette idée à Shannon [Sha49], qui en reprenant les
concepts historiques de substitution et de transposition introduit les notions générales de
confusion et de diffusion. La confusion, qui est liée aux substitutions des schémas plus anciens,
tend à dissimuler le plus possible les liens existant entre la clef, le message en clair et le message
chiffré. La diffusion correspond à la forte dépendance qui doit être présente entre les différents
états intermédiaires du calcul. L’intuition de base serait, par exemple, que tous les caractères
du message chiffrés dépendent de tous les caractères du message d’entrée. Ainsi, même si
deux messages en clair sont très proches et ne diffèrent par exemple que d’un seul caractère,
alors les deux messages chiffrés n’auraient aucun point commun. On parle également d’effet
d’avalanche lorsqu’une différence d’un seul bit entre deux messages entraine d’importantes
différences dans les messages chiffrés associés.

Algorithme d’expansion de clef

K

m = s0 f
s1

. . . f
sr

sr+1 = EK(m)

K0 K1 Kr−1 Kr

Figure 1.10: Algorithme de chiffrement par bloc itéré à clefs alernantes : la fonction f est appliquée r
fois pour apporter la confusion et la diffusion dans l’algorithme. Les sous-clefs sont introduites entre
chaque application de la fonction f .

En pratique, pour construire un algorithme de chiffrement par bloc à la fois compact et
efficace, on utilise la construction itérée, représentée sur la Figure 1.10. Un bloc de message
m initialise la variable s0 et on applique r fois une fonction f plus simple pour produire le
bloc de message chiffré EK(m). La clef secrète K mentionnée précédemment, qui sélectionne
une permutation EK parmi la famille des 2k permutations E , est d’abord étendue à r + 1
sous-clefs K0, . . . , Kr, qui sont ensuite intégrées au sein du calcul. Dans le cas général, chaque
sous-clef ki définit une fonction fki

paramétrée par ki. Dans le cas particulier de la Figure 1.10,
nous présentons le cas du chiffrement par bloc où les sous-clefs sont insérées par l’opération
XOR entre chaque application de la même fonction f . La grande majorité des algorithmes de
chiffrement par bloc utilisés actuellement suit ce principe de conception, comme par exemple
le DES ou l’AES.

18 CHAPITRE 1. INTRODUCTION

1.4.3 Modes opératoires

Tout comme pour les fonctions de hachage, construire une famille de permutations pour
chiffrer des blocs de message est nécessaire, mais il est également primordial de savoir gérer
des messages de plus d’un bloc. Il faut alors lier les blocs de message en clair et chiffrés les uns
avec les autres dans un mode opératoire.

Dans un paragraphe précédent, nous proposions de simplement utiliser une permutation
secrètement choisie EK par Alice et Bob via une clef K pour qu’ils remplacement chacun des
blocs de messages m par leur image EK(m) (voir Figure 1.11). Ce mode opératoire porte le

EK

m0

c0

EK

m1

c1

EK

m2

c2

· · · · · · EK

mt−1

ct−1

Figure 1.11: Le mode ECB (Electronic Codebook). Les t blocs de messages m0, . . . , mt−1 sont traités
indépendamment par la permutation EK.

nom de Electronic Codebook (ECB) et ne devrait jamais être utilisé sur des applications sensibles.
En effet, faire une simple substitution de m par EK(m) a la forte propriété que des blocs de
messages m1 et m2 égaux auront le même bloc de message chiffré. En chiffrés seuls, dès lors
qu’une forte structure existe dans les messages en clair, plus ils sont longs, plus la chance que ce
phénomène arrive sera grande. Ainsi, un attaquant pourra voir des répétitions dans les blocs de
messages chiffrés, et ainsi récupérer de l’information, ce qui voulait être évité. L’exemple le plus
connu et le plus flagrant est le chiffrement d’une image par ECB. Prenons, par exemple, des
images représentant des cartes à jouer, et chiffrons-les avec AES-128 en mode ECB. Puisque

(a) Clair. (b) AES-ECB. (c) AES-CBC. (d) Clair. (e) AES-ECB. (f) AES-CBC.

Figure 1.12: Démonstration des modes ECB et CBC sur des images présentants une forte structure.
L’AES-128 a été utilisé comme algorithme de chiffrement.

qu’il y a très peu de pixels différents dans les images en clair, il y a également très peu de blocs
de messages différents passés au mode ECB. Par conséquent, beaucoup de blocs m sont chiffrés

1.4. ALGORITHMES DE CHIFFREMENT PAR BLOC 19

par le même bloc EK(m) pour une clef donnée, et on visualise directement cet effet dans les
images chiffrées.

Pour pallier ce point faible, il existe plusieurs autres modes, comme le mode de chaînage
CBC (Cipher-Block Chaining). Le mécanisme est décrit sur la Figure 1.13 et le résultat sur
l’exemple précédent est montré sur la Figure 1.12. Le chaînage entraîne une dépendance entre

mt−1

EK

ct−1

· · · · · ·

ct−2

m2

EK

c2

m1

EK

c1

m0

EK

c0

IV

Figure 1.13: Le mode CBC (Cipher-block chaining). Les t blocs de messages m0, . . . , mt−1 sont traités en
chaîine par la permutation EK pour former la séquence de blocs chiffrés c0, . . . , ct−1.

un bloc chiffré et tous les blocs chiffrés précédents, ce qui permet de rendre aléatoire les
entrées séquentielles de la permutation EK. Il existe plusieurs autres modes opératoires pour
les algorithmes de chiffrement par bloc. On peut par exemple citer le chiffrement à rétroaction
d’entrée (Cipher Feedback, CFB) ou de sortie (Output Feedback, OFB), le mode compteur (counter,
CTR), etc.

1.4.4 Fonction de compression

Dans la Section 1.3, nous avons décrit les fonctions de hachage et leurs propriétés, mais
nous n’avons pas proposé de manière de les construire. Beaucoup de fonctions de hachage
se basent en réalité sur un algorithme de chiffrement par bloc pour former leur fonction de
compression. Rappelons qu’une fonction de compression f prend deux paramètres en entrée :
la valeur de chaînage courante h et le bloc de message à intégrer m. La valeur renvoyée f (h, m)
est une nouvelle valeur de chaînage h′ pour la prochaine application de f .

Il existe des schémas célèbres qui permettent de construire f grâce à un algorithme de
chiffrement par bloc E : {0, 1}k × {0, 1}n −→ {0, 1}n comme vu précédemment. La manière
d’utiliser E doit cependant vérifier certains principes des fonctions de hachage, et en particulier
la résistance en préimage. On doit les premières constructions à Davies et Meyer (Figure 1.14a),
et à Matyas, Meyer et Oseas (Figure 1.14b). Dans le cas de Davies-Meyer, on construit la fonction
de compression f avec :

fDM(h, m) = Emi(hi−1)⊕ hi−1,

alors que la construction Matyas-Meyer-Oseas inverse les deux entrées :

fMMO(h, m) = Ehi−1
(mi)⊕mi.

20 CHAPITRE 1. INTRODUCTION

Ehi−1 hi

mi

(a) Davies-Meyer.

Emi hi

hi−1

(b) Matyas-Meyer-Oseas.

Emi hi

hi−1

(c) Miyaguchi-Preneel.

Figure 1.14: Modes opératoires classique pour fonctions de compression à base d’un algorithme de
chiffrement par bloc.

Ces deux méthodes de construction offrent une forte résistance face aux préimages : étant donné
y, il est difficile de trouver (h, m) tels que f (h, m) = y. En revanche, on peut très simplement
créer des point fixes dans la fonction de compression. En effet, si l’on impose f (h, m) = h dans
Davies-Meyer par exemple, alors on déduit que Em(h) = 0, et pour n’importe quel message m,
il suffit alors de choisir h = E−1

m (0).

Une autre variante de construction a par la suite été proposée par Miyaguchi et Preneel
(Figure 1.14c) : elle étend celle de Matyas-Meyer-Oseas en ajoutant la valeur de chaînage
précédente dans le XOR final. Toutes les variantes possibles de construction ont été étudiées
par Preneel, Govaerts et Vandewalle dans [PGV94] : on les surnomme désormais les construc-
tions PGV du nom de leurs auteurs. En combinant les entrées entre elles (ou non), on peut
construire 26 constructions différentes dont beaucoup ne conviennent pas pour une fonction
de compression car elles ne dépendent par exemple pas de hi−1. Cependant, 12 sont prouvées
sûres : on retrouve, par exemple, les trois constructions de Davies-Meyer, Matyas-Meyer-Oseas
et Miyaguchi-Preneel.

1.4.5 Cryptanalyse des algorithmes de chiffrement par bloc

Pour attaquer des schémas de chiffrement par bloc, il existe des méthodes désormais clas-
siques issues d’attaques spécifiques à certaines méthodes de chiffrement. Toutes ces méthodes
convergent vers un seul but : exhiber une propriété non triviale de l’algorithme de chiffrement,
et si possible l’utiliser pour récupérer la valeur secrète utilisée lors d’un (ou de plusieurs)
chiffrement(s). D’une manière générale, comme on l’a déjà mentionné, une attaque consiste
en un algorithme plus efficace que la recherche exhaustive (de la clef), à savoir une technique
moins coûteuse que la recherche des 2k clefs de k bits.

Dans cette thèse, nous nous intéressons exclusivement à des attaques sur des primitives
symétriques, et en particulier au standard de chiffrement actuel : l’AES. Nous détaillerons
beaucoup plus certaines des attaques classiques utilisées actuellement, mais on peut par
exemple citer l’attaque par le milieu qui a été découverte alors que l’on cherchait une manière
de renforcer la sécurité du DES. Celui-ci était le standard de chiffrement entre 1977 et 1999 et
permet de chiffrer avec des clefs de 56 bits. Suivant les cas, on peut vouloir utiliser plus que
56 bits de clefs, et il est alors naturel de se demander comment étendre DES à des clefs plus
grandes. Une première idée consiste à utiliser deux clefs K1 et K2 et d’appliquer deux fois le
DES à un message m successivement avec les deux clefs pour le transformer en son chiffré
c = DESK2(DESK1(m)). Cette méthode semble apporter une sécurité de 2× 56 = 112 bits avec

1.4. ALGORITHMES DE CHIFFREMENT PAR BLOC 21

ces deux clefs, or le mécanisme appelé Double-DES est vulnérable à une technique triviale
d’attaque par le milieu (meet-in-the-middle).

1.4.5.1 Attaque par le milieu

Supposons qu’un adversaire ait obtenu un message m et son chiffré c, et qu’il sache que
le Double-DES a été utilisé. Plutôt que de faire une recherche exhaustive sur les 2112 clefs
(K1, K2) possibles, il va procéder en deux temps. Dans un premier temps, il énumère toutes les
256 clefs K1 possibles, et stocke le chiffrement du message m de 64 bits sous la clef K1 par DES
dans une table T (voir Figure 1.15). Cette table contient des éléments de la forme (e, K1), où

T

m

K 1
=

0

K 1
=

1

K
1 =

2 56−
1

...
c

K
2 =

0
K

2 = 1

K 2
=

2
56 − 1

...

Figure 1.15: Attaque par le milieu. L’attaquant récupère les clefs K1 et K2 plus rapidement que la
recherche exhaustive en utilisant une mémoire de 2|K1| éléments.

e = DESK1(m) et est stockée en classant les éléments e par ordre croissant. Notons au passage
que construire cette table T demande 256 évaluations du DES et une mémoire capable de stocker
les 256 éléments. Dans un deuxième temps maintenant, il va partir du message chiffré c de
64 bits et énumérer toutes les 256 valeurs possibles pour la deuxième clef K2. Pour chacune
de ces valeurs, il calcule le déchiffrement de c par la clef K2 et obtient DES−1

K2
(c). Pour ces

valeurs obtenues en séquence pour chaque nouvelle tentative de K2, on obtient en moyenne
256/264 = 2−8 élément e de la table T. En effet, nous stockons 256 valeurs dans T, vues comme
des variables aléatoires sur 64 bits suivant la loi uniforme, et nous sélectionnons un élément
par 56 bits de DES−1

K2
(c).

Ainsi, pour une valeur de K2 et avec probabilité 2−8, la table T suggère un élément (e, K1)
qui peut correspondre à une valeur correcte pour K1. Cette suggestion construit une paire de clef
(K1, K2) qu’il faut tester sur une nouvelle paire clair/chiffré (m′, c′) que l’adversaire est supposé
avoir. L’information fournie par cette deuxième paire permet de supprimer toutes les sugges-
tions (K1, K2) sauf les valeurs correctes qui vont également vérifier c′ = DESK2(DESK1(m

′)).
Finalement, avec deux paires claire/chiffré, 2× 256 évaluations du DES et en utilisant une
mémoire de 256 éléments, nous avons retrouvé les 112 bits de clef. Cette attaque classique
contredit l’intuition qui pousse à croire que doubler la taille des clefs double la sécurité de la
méthode de chiffrement. Pour répondre au problème intial, il est toutefois possible d’augmenter

22 CHAPITRE 1. INTRODUCTION

la sécurité du DES, mais il faut alors considérer trois clefs (K1, K2, K3) et chiffrer m en

c = DESK3(DES
−1
K2
(DESK1(m

′))).

On appelle cette primitive le Triple-DES. L’appel central consiste en un déchiffrement pour
des raisons de compatibilité avec le simple DES : en effet, prendre K1 = K2 = K3 revient à faire
un simple DES, ce qui peut être utile dans certains cas.

1.4.5.2 Distance d’unicité

Dans l’attaque par le milieu présentée dans la section précédente, nous avons vu que l’adver-
saire a eu besoin de deux couples clair/chiffré pour mener à bien son attaque. D’une manière
générale, on parle de distance d’unicité pour mesurer la quantité d’information nécessaire à cet
adversaire pour isoler théoriquement et sans ambiguité la seule clef secrète possible. Cette
information est mesurée en termes de paires clair/chiffré et rapporte un comportement en
moyenne.

Formellement, la distance d’unicité d se rapproche de l’entropie de Shannon h et peut se
définir de manière inconditionnelle par le nombre minimal de messages chiffrés ci à connaître
pour réduire l’entropie de la clef secrète K à zéro :

d = min
t

h
(

K
∣∣∣ c1, . . . , ct

)
= 0.

1.4.5.3 Modèles d’attaquants

Lorsque l’on considère un attaquant face à un algorithme de chiffrement par bloc, il convient
de modéliser ses capacités afin de borner les requêtes qu’il peut faire. Nous avons déjà évoqué
le modèle à clairs connus, à clairs choisis ou encore à chiffrés choisis, qui sont des scénarios
précisant des contraintes sur l’une des deux entrées de l’algorithme de chiffrement, à savoir le
message. Cependant, il est également possible de préciser les capacités de l’adversaire vis-à-vis
de la seconde entrée de l’algorithme : la clef.

k $← K

Ek

m Ek(m)

Adversaire k

(a) Modèle standard

k $← K

Ek

m, f E f (k)(m)

Adversaire k

(b) Modèle à clefs reliées.

Figure 1.16: Modèles d’attaques en clef secrète : le modèle standard (a) et le modèle en clefs reliées (b) .

Il existe plusieurs modèles de ce point de vue, dont le plus pertinent en pratique est le
modèle standard (Figure 1.16a) dans lequel l’adversaire n’a aucune influence sur la clef secrète.
Celle-ci est choisie aléatoirement dans l’espace K de toutes les clefs possibles, et sert lors

1.4. ALGORITHMES DE CHIFFREMENT PAR BLOC 23

du chiffrement des messages reçus ou choisis par l’adversaire. Un deuxième modèle plus
souple et moins réaliste dans la pratique est le modèle en clefs reliées (Figure 1.16b). Dans
ce cas, l’adversaire ne connaît toujours pas la clef secrète utilisée, mais il peut demander le
chiffrement de messages avec k ou avec n’importe quelle clef reliée à k par une certaine relation
f . L’ensemble des clefs k′ qui sont en relation avec la clef secrète k est également secret, i.e.
l’adversaire ne connait aucune clef k′, mais il peut cependant obtenir plus d’informations sur k
dans ce modèle que dans le modèle standard. La relation f peut varier, et nous considérons un
cas particulier dans le chapitre 6.

k $← K Ek

k m Ek(m)

Adversaire

{mi} tel quePk

(
{mi}

)
vérifiée

(a) Modèle en clef connue.

k Ek

k m Ek(m)

Adversaire
(

k, {mi}
)

tel quePk

(
{mi}

)
vérifiée

(b) Modèle en clef choisie.

Figure 1.17: Modèles d’attaques en clef ouverte : le modèle en clef connue (a) et le modèle en clef choisie
(b). La propriété PK dépend de la clef k, et prend en entrée un ensemble de un ou plusieurs messages.

Un autre ensemble de scénarios a été récemment proposé par Knudsen et Rijmen et consiste
en un modèle complètement ouvert où l’on donne la clef à l’adversaire. Son but n’est plus de la
retrouver comme dans les modèles précédents, mais d’exhiber une propriété non triviale Pk

sur la primitive lorsque tous les paramètres sont connus, y compris la clef k. On distingue plus
particulièrement deux cas : le modèle en clef connue (Figure 1.17a) où l’on donne explicitement
une valeur de k à l’adversaire, ce qui lui fixe totalement la permutation Ek à attaquer. Un
deuxième modèle moins contraint consiste à lui laisser spécifier une valeur particulière de la
clef k (Figure 1.17b) pour lui faciliter la recherche de valeurs satisfaisant Pk. Nous détaillons
ces deux modèles dans le chapitre 7. Dans le chapitre suivant, je détaille les contributions de
cette thèse, chapitre par chapitre.

CHAPITRE2
Présentation des Travaux

2.1 Présentation des travaux

Mes travaux durant cette thèse se sont principalement articulés autour de la compétition
SHA-3. Cette compétition a été annoncée par le National Institute of Standards and Technology
(NIST) à la fin de l’année 2007 et s’est terminée 5 ans plus tard en octobre 2012 par la victoire
de Keccak. Au début de ma thèse, j’ai été amené à étudier la fonction de hachage ECHO,
également soumise à cette compétition. ECHO a atteint la deuxième étape du processus de
sélection, mais n’a pas été choisie pour la finale. Mes premiers travaux ont permis d’appliquer
l’attaque par rebond sur cette fonction, pour montrer plusieurs attaques sur des versions
réduites. Ensuite, j’ai continué l’étude des fonctions de hachage de la compétition SHA-3, en
particulier Grøstl, qui a été sélectionnée pour la finale. Comme ECHO, cette fonction réutilise
les idées de l’AES comme base de la permutation interne de la fonction de compression. Là
encore, l’attaque par rebond peut s’appliquer et il est possible d’améliorer grandement les
résultats précédents. Finalement, dans la dernière partie de ma thèse, j’ai dévié du domaine
des fonctions de hachage pour m’intéresser à l’AES comme algorithme de chiffrement. J’ai pu
l’étudier dans trois modèles différents : le modèle standard, où l’on cherche à récupérer la
clef secrète, le modèle à clefs reliées et le modèle ouvert, où la clef est supposée connue de
l’adversaire.

Chronologiquement, mes travaux présentent une progression des fonctions de hachage vers
les algorithmes de chiffrement par bloc. Cependant, dans ce manuscrit, j’ai préféré commencer
par décrire mes travaux sur l’AES, étant donné que les fonctions de hachage que j’ai étudiées
réutilisent ses concepts structurels. Dans la suite de ce chapitre, je décris plus en détail chacune
de mes contributions.

Chapitre 3

Dans ce chapitre, je reviens sur la cryptanalyse différentielle sur laquelle toute ma thèse
repose. J’y rappelle les principales définitions et notations usuelles utilisées dans la littérature,
ainsi que plusieurs résultats classiques. En particulier, je décris les concepts de différentielle
et de caractéristique différentielle qui sont à la base de la cryptanalyse différentielle. Je détaille
comment ce type d’attaque s’applique aux algorithmes généraux de chiffrement par blocs, et
plus en détail à ceux qui définissent un processus de Markov.

— 25 —

26 CHAPITRE 2. PRÉSENTATION DES TRAVAUX

J’aborde l’attaque différentielle basique de recouvrement de clef, qui demande à un ad-
versaire de construire une différentielle de forte probabilité sur n− 1 tours pour récupérer
efficacement la sous-clef introduite au n-ème tour. Ensuite, je rappelle des variantes de cette
technique, telles que la cryptanalyse en différentielle impossible, la cryptanalyse en différence
tronquée ou encore l’attaque boomerang. Je précise également le modèle à clefs reliées, qui au-
torise l’adversaire à observer le chiffrement de messages avec plusieurs clefs secrètes différentes,
mais qui vérifient une certaine relation.

Enfin, je discute comment ces techniques peuvent être appliquées aux fonctions de hachage.
En effet, contrairement aux algorithmes de chiffrement, celles-ci n’ont aucun paramètre secret et
on peut alors utiliser les techniques de cryptanalyse différentielle différemment pour mettre en
défaut certaines propriétés cryptographiques requises. Dans la dernière section de ce chapitre,
je décris le principe général de l’attaque par rebond, méthode utilisée à de nombreuses reprises
dans les chapitres de ce manuscrit.

Chapitre 4

Le quatrième chapitre est consacré à la description du standard actuel de chiffrement : l’AES
(Advanced Encryption Standard). Je détaille les spécifications exactes des trois versions de l’AES,
et généralise sa structure pour définir la notion de permutation AES-like, qui est utilisée par la
suite pour pouvoir regrouper plusieurs primitives par une même analyse.

La deuxième moitié du chapitre décrit les principales attaques qui ont été publiées sur
l’AES depuis sa présentation en 1997 par Joan Daemen et Vincent Rijmen. Je ne décris pas
toutes les attaques existantes sur l’AES dans ce manuscrit, mais je me suis concentré sur les
plus importantes. Je rappelle en particulier l’attaque intégrale de Knudsen qui a été réutilisée
de nombreuses fois par la suite sur beaucoup d’autres algorithmes, et qui permet de casser 6
tours d’AES. Ensuite, je montre comment la technique des sommes partielles de Ferguson et al.
permet d’optimiser les calculs de l’attaque intégrale, puis comment Henri Gilbert et Marine
Minier ont ajouté un tour dans le distingueur intégral. Par la suite, je rappelle les principales
attaques en différentielle impossible sur l’AES qui ont été pendant longtemps les meilleures
attaques existantes. Finalement, je donne un aperçu des attaques récentes en clefs reliées de
Biryukov et al.

Chapitre 5

Dans ce chapitre, l’AES est étudié dans le modèle standard où un attaquant essaye de
récupérer la clef secrète utilisée lors du chiffrement. Il est classique en cryptanalyse de ne pas
s’attaquer à la primitive complète, mais plutôt de considérer des versions réduites qui sont
plus simples à analyser. Ainsi, dans ce chapitre, je détaille des attaques de recouvrement de
clef sur des versions réduites de l’AES, en ne considérant par exemple que 7 des 10 tours de
l’AES-128. Ce chapitre a largement été inspiré par l’article [DFJ13] que j’ai écrit avec Patrick
Derbez et Pierre-Alain Fouque, publié à Eurocrypt 2013.

Dans ce chapitre, nous montrons comment généraliser et améliorer les attaques sur l’AES
de Demirci et Selçuk [DS08] et de Dunkelman, Keller et Shamir [DKS10]. En 2008, Demirci
et Selçuk ont montré comment monter une attaque de type meet-in-the-middle en tabulant

2.1. PRÉSENTATION DES TRAVAUX 27

complètement le comportement de 4 tours d’AES. En 2010, Dunkelman, Keller et Shamir
ont raffiné cette méthode en proposant d’ajouter une propriété pour ces 4 tours. En effet, ils
procèdent à la même tabulation que Demirci et Selçuk pour les tours du milieu, mais imposent
une propriété différentielle supplémentaire pour les éléments ajoutés à la table. Cette propriété
repose sur une caractéristique différentielle particulière, qui réduit l’entropie possible pour les
tours considérés. Leur attaque propose une manière d’énumérer les éléments à stocker dans les
tables, mais la procédure peut être améliorée. En effet, leur méthode n’est pas optimale et nous
montrons comment gagner un facteur 248 dans la taille de la table à stocker. Cette amélioration
permet d’obtenir les meilleures attaques connues sur 7 tours de toutes les versions de l’AES et
d’atteindre une attaque sur 9 des 14 tours d’AES-256.

Chapitre 6

Dans ce chapitre, je me suis intéressé aux conséquences du modèle en clefs reliées sur la
structure de l’AES. Dans ce modèle, on suppose que l’adversaire est capable de chiffrer ou de
déchiffrer des messages qu’il choisit sur un ensemble de clefs reliées par une certaine relation
publique. Ainsi, contrairement au modèle standard où l’adversaire n’observe le chiffrement
qu’avec une unique clef secrète k, il peut par exemple choisir de chiffrer un même message
avec deux clefs k et k′, telles que k et k′ soient reliées par une différence δ connue : k⊕ k′ = δ.
Plusieurs types de relations sont possibles, mais dans cette thèse, je me suis limité aux relations
différentielles du type k⊕ k′ = δ, qui permettent à l’adversaire d’introduire des différences
dans la clef.

Bien que ce modèle soit moins pertinent dans la pratique que le modèle standard, il offre
cependant de fortes indications sur la qualité de l’algorithme d’expansion de clef utilisé dans les
algorithmes de chiffrement par bloc. Dans le cas particulier de l’AES, le mécanisme d’expansion
de clef repose sur une procédure ad hoc sans véritable justification théorique, et qui permet de
construire des attaques sur les versions complètes de l’AES-192 et l’AES-256 [BKN09, BK09].
Dans ce chapitre, je m’intéresse aux conséquences de ce modèle sur l’AES-128. J’ai pour
cela développé un algorithme de recherche des meilleures caractéristiques différentielles en
clefs reliées sur un nombre arbitraire de tours d’AES-128. Ce chapitre est le résultat d’une
collaboration avec Pierre-Alain Fouque et Thomas Peyrin et a été publié dans l’article [FJP13a]
de Crypto 2013, et dans une version longue dans [FJP13b].

Nous montrons dans ce chapitre que l’algorithme de recherche des meilleurs caractéristiques
différentielles peut se réduire à un algorithme de plus court chemin dans un graphe acyclique
orienté particulier qui représente les transitions différentielles par tour d’AES. Par une variante
de l’algorithme de Dijkstra, il est possible d’énumérer efficacement tous les meilleurs chemins
dans ce graphe et donc les caractéristiques en différentielles tronquées qui possèdent la meilleure
probabilité. Nous détaillons ensuite comment cette représentation définit en réalité un processus
de Markov auquel il est possible d’ajouter de l’information pour trouver les caractéristiques
différentielles avec des différences instantiées. Cette recherche permet de trouver les probabilités
exactes des meilleures caractéristiques différentielles sur l’AES-128.

De plus, les résultats de cette recherche nous permettent de procéder à une analyse struc-
turelle de l’AES-128. Cette analyse a pour but d’estimer la sécurité de la structure de l’AES
lorsque les composants principaux tels que la S-Box et la couche de diffusion linéaire ne sont

28 CHAPITRE 2. PRÉSENTATION DES TRAVAUX

pas spécifiés. Ainsi, la résistance à la cryptanalyse différentielle est exprimée en fonction de
plusieurs paramètres, ce qui permet par exemple d’affirmer qu’il est impossible d’obtenir la
résistance en cryptanalyse différentielle dans le modèle à clefs reliées sans prendre en compte
l’instantiation de la S-Box. En effet, nous détaillons dans ce modèle une attaque structurelle
sur les 10 tours de l’AES-128. De même, dans le cas où l’AES-128 est utilisé dans un mode
tel que Davies-Meyer pour définir une fonction de compression, prouver la résistance à la
cryptanalyse différentielle nécessite de fournir l’instantiation de la S-Box et de la couche linéaire.
Ces résultats théoriques ne remettent pas en cause la sécurité de l’AES mais donnent une
indication de sa qualité structurelle.

Chapitre 7

Dans ce chapitre, j’ai poursuivi l’étude récente de l’AES dans le modèle à clef connue ou
choisie. Dans ce modèle, on suppose que l’adversaire a connaissance de la clef utilisée lors
du chiffrement ou du déchiffrement (clef connue), voire même qu’il est capable de choisir sa
valeur (clef choisie). Ce modèle a initialement été introduit par Lars Knudsen et Vincent Rijmen
[KR07] mais ne représente pas de risques pratiques très importants. Il permet en revanche
d’évaluer les capacités de l’adversaire dans un modèle ouvert qui se rapproche du domaine des
fonctions de hachage.

Je rappelle tout d’abord les principaux algorithmes qui permettent de distinguer l’AES
d’une permutation aléatoire dans ce modèle. Ces résultats se basent sur l’attaque par rebond
[MRST09] et exhibent des propriétés non aléatoires sur des versions de l’AES réduites jusqu’à
8 tours lorsque l’attaquant connaît la valeur de la clef secrète. Le travail que j’ai effectué dans
cette direction a été publié à Indocrypt 2012 dans l’article [DFJ12a] écrit avec Patrick Derbez et
Pierre-Alain Fouque et montre comment il est possible d’étendre les résultats précédents au cas
où l’adversaire peut choisir la valeur de la clef.

Avant ce travail, on ne connaissait pas de méthode qui permettait de tirer parti des degrés
de liberté supplémentaires introduits lors du passage du modèle en clef connue au modèle en
clef choisie. Dans ce chapitre, nous montrons que si l’adversaire a cette capacité, alors il peut
contrôler un tour de plus dans la phase non probabiliste de l’attaque par rebond. Ces nouvelles
techniques consistent principalement à réordonner les étapes des attaques précédentes afin
d’obtenir des attaques optimales dans la classe d’attaques considérée.

Dans ce modèle à clef choisie, nous montrons également le premier distingueur pour 9 tours
d’AES-128, en tant qu’application de l’algorithme de recherche présentée au chapitre précé-
dent. Le problème de montrer une propriété non triviale sur 9 tours d’AES-128 était ouvert
depuis longtemps dans la communauté de la cryptographie symétrique, et nous montrons qu’il
existe un algorithme capable de générer une paires de clefs et une paire de messages vérifiant
toutes les deux certaines relations plus rapidement que pour une famille de permutations
aléatoires. Ce résultat a été publié comme application de l’article [FJP13a] de Crypto 2013.

Chapitre 8

Étant donné que beaucoup de nouvelles attaques sur les fonctions de hachage utilisent la
nouvelle technique de l’attaque par rebond, j’ai dédié tout le huitième chapitre à l’analyse de

2.1. PRÉSENTATION DES TRAVAUX 29

cette méthode. Ce travail a été fait en collaboration avec María Naya-Plasencia et Thomas Peyrin
et a fait l’objet de deux articles : le premier a été publié à Fse 2012 [JNPP12], et le deuxième est
actuellement en soumission.

Ce chapitre analyse successivement les deux parties de l’attaque par rebond. Cette technique
s’inscrit dans le cadre de la cryptanalyse différentielle et donne un moyen de trouver une paire
de messages qui satisfait une caractéristique différentielle donnée. Elle consiste en une première
partie non probabiliste qui trouve efficacement des paires de messages pour la section centrale
de la caractéristique, puis en une deuxième partie, qui énumère ces paires tant qu’aucune ne
vérifie une certaine propriété. Cette deuxième phase est probabiliste et la caractéristique choisie
doit donc faire en sorte que la probabilité de succès soit la plus grande possible.

Nous étudions dans un premier temps la phase non probabiliste, et nous abordons ensuite
la phase probabiliste. Dans ces deux études, nous nous concentrons sur la principale cible
vis-à-vis de ces attaques, à savoir l’AES. La première étape consiste à générer le plus de paires
vérifiant la partie centrale de la caractéristique le plus efficacement possible. Idéalement, nous
voudrions générer une paire en une opération. Plusieurs algorithmes présentés dans le chapitre
7 permettent d’atteindre cet objectif, mais ils sont limités à seulement deux tours d’AES. Avant
notre travail, la question de savoir gérer un tour de plus pour contrôler trois tours centraux
était un problème ouvert. Nous montrons dans ce chapitre que pour une permutation à base
d’AES quand l’état est au moins de taille 8, il existe un algorithme “efficace” générant les paires
voulues pour les tours du milieu de la caractéristique. La complexité amortie de cet algorithme
est moins bonne que le coût idéal d’une opération par paire, mais nous montrons néanmoins
qu’il est possible de gagner un tour supplémentaire dans les distingueurs précédents. La
nouvelle question ouverte est désormais de savoir s’il est possible d’atteindre une meilleure
complexité amortie.

Dans un deuxième temps, nous nous intéressons à la phase probabiliste de l’attaque par
rebond en supposant connu l’algorithme générant les paires pour la section centrale. En consi-
dérant une permutation basée sur l’AES, la phase probabiliste consiste à attendre l’annulation
de différences dans le MixColumns. Pour l’AES par exemple, on attend généralement que
quatre différences se transforment en une seule différence à une position spécifiée à l’avance par
la caractéristique. Pour augmenter la probabilité, nous proposons de relaxer la position de cette
différence. Ainsi, dans le cas de l’AES, la probabilité est par exemple multipliée par quatre. Le
gain global reste marginal, mais améliore cependant toutes les attaques sur des permutations à
bases d’AES utilisant l’attaque par rebond. Hormis ces résultats, la contribution théorique de ce
chapitre consiste en une évaluation de la complexité générique dans le cas d’une permutation
aléatoire. Nous proposons une borne inférieure basée sur l’algorithme du limited-birthday pour
borner la complexité générique de ce problème que nous avons baptisé multiple limited-birthday.
De plus, dans le cas des permutations basées sur l’AES, nous présentons un algorithme qui
résout ce problème plus rapidement que la borne générique.

Chapitre 9

Dans ce dernier chapitre, j’étudie la fonction de hachage ECHO, qui a été soumise à la
compétition SHA-3 du NIST par Henri Gilbert et al. en 2007. Cette fonction de hachage utilise
l’AES comme composant interne pour créer un état de 16 états d’AES. La fonction de compres-

30 CHAPITRE 2. PRÉSENTATION DES TRAVAUX

sion applique 8 tours d’une permutation ressemblant à l’AES ce qui permet alors d’appliquer
des techniques d’analyse similaires. Le point de départ de mon travail a été une erreur dans
une attaque publiée par Martin Schläffer à Sac 2010 et a initialement consisté à la corriger.
L’erreur a été de négliger la résolution d’un système linéaire issu d’un réordonnancement
des opérations de la permutation interne d’ECHO. Ce système est de la forme M× X = A où
certains paramètres sont fixés, mais où la matrice M a une forme très particulière et ne garantit
pas que toutes les valeurs des paramètres fassent que le système ait des solutions. En effet,
je montre dans ce chapitre que pour des valeurs aléatoires des paramètres, le système a une
solution avec probabilité seulement 2−128. Cependant, je montre qu’il est possible de corriger
l’attaque afin de trouver des solutions au même système linéaire. Ceci donne une attaque en
collision pratique sur la fonction de compression d’ECHO réduite à quatre tours. Ce résultat a
été publié dans l’article [JF11] avec Pierre-Alain Fouque à Fse 2011.

Dans un deuxième temps, j’ai continué à travailler sur ECHO en collaboration avec María
Naya-Plasencia et Martin Schläffer pour étendre les résultats précédents en prenant en compte
la correction sur le système linéaire. Ce travail a donné plusieurs résultats qui utilisent tous la
même technique. Nous avons utilisé l’attaque par rebond deux fois à deux endroits différents
dans une longue caractéristique différentielle sur la fonction de compression. Il est possible
d’utiliser une attaque avec plusieurs rebonds sur ECHO étant donné le grand nombre de degrés
de liberté dont on dispose pour cette fonction. Nous avons obtenu plusieurs résultats : une
attaque en collision sur 4 tours de la fonction de hachage, une attaque en collision sur 5 tours
de la fonction de compression, un distingueur sur 7 tours de la fonction de compression, une
attaque en collision sur 6 tours de la fonction de compression ainsi que des attaques lorsque
l’attaquant peut choisir un paramètre additionnel : le sel. Toutes ces attaques ont été publiées
dans un article [JNPS11a] à Sac 2011 ainsi que dans une version étendue de cet article sur
l’ePrint [JNPS11b].

2.2. LISTE DES PUBLICATIONS 31

2.2 Liste des publications

[JF11] Practical Near-Collisions and Collisions on Round-Reduced ECHO-256 Com-
pression Function
Jérémy Jean et Pierre-Alain Fouque
FSE 2011

[JNPS11a] Improved Analysis of ECHO-256
Jérémy Jean, María Naya-Plasencia et Martin Schläffer
SAC 2011

[JNPS11b] ePrint — Version longue de l’article de SAC 2011

[JNPP12] Improved Rebound Attack on the Finalist Grøstl
Jérémy Jean, María Naya-Plasencia et Thomas Peyrin
FSE 2012

[DFJ12a] Faster Chosen-Key Distinguishers on Reduced-Round AES
Patrick Derbez, Pierre-Alain Fouque et Jérémy Jean
INDOCRYPT 2012

[JNP+13] Security Analysis of PRINCE
Jérémy Jean, Ivica Nikolić, Thomas Peyrin, Lei Wang et Shuang Wu
FSE 2013

[DFJ13] Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key
Setting
Patrick Derbez, Pierre-Alain Fouque et Jérémy Jean
EUROCRYPT 2013

[DFJ12b] ePrint — Version longue de l’article d’EUROCRYPT 2013

[JNPP13b] Multiple Limited-Birthday Distinguishers and Applications
Jérémy Jean, María Naya-Plasencia et Thomas Peyrin
SAC 2013

[JNPP13c] ePrint — Version longue de l’article de SAC 2013

[FJP13a] Structural Evaluation of AES and Chosen-Key Distinguisher of 9-round
AES-128
Pierre-Alain Fouque, Jérémy Jean et Thomas Peyrin
CRYPTO 2013

[FJP13b] ePrint — Version longue de l’article de CRYPTO 2013

[JNPP13a] Improved Cryptanalysis of AES-like Permutations
Jérémy Jean, María Naya-Plasencia et Thomas Peyrin
Journal of Cryptology (accepté, à paraître)

CHAPTER3
Differential Cryptanalysis

Contents
3.1 Preliminaries . 34

3.1.1 Differentials . 34

3.1.2 Iterated functions . 36

3.1.3 Differential characteristics . 37

3.2 Block ciphers . 39

3.2.1 Basic key recovery attack . 39

3.2.2 Resistance against differential cryptanalysis 42

3.3 Markov Ciphers . 43

3.4 Other forms of differential cryptanalysis . 46

3.4.1 Truncated differential cryptanalysis . 46

3.4.2 Impossible differential cryptanalysis . 47

3.4.3 Boomerang attack . 48

3.4.4 Related-key attacks . 51

3.5 Hash functions . 54

3.5.1 Generalities . 54

3.5.2 Rebound attack . 55

Differential cryptanalysis has been introduced in 1990 by Eli Biham and Adi Shamir in [BS91a,
BS91b] with DES-like cryptosystems as a direct application. This technique is statistical and
basically observes the propagation of differences between two inputs through a cryptosystem
and tries to predict its behavior with high probability. The method assumes nothing about
the actual values of the two messages, but the attack still needs to impose a fixed difference
between two plaintexts, which makes it a chosen-plaintext attack.

With primitives which are not fully protected against this strategy, we can deduce nontrivial
properties and eventually retrieve the key in the case of some block ciphers. For instance,
the same authors show in [BS93] how to attack the full 16 rounds of DES, which was the
current standard of encryption by the time of the publication in 1992. Later, different tech-
niques like linear cryptanalysis [Mat94a] have been published to attack DES, but differential
cryptanalysis opened a wide line of research in the cryptanalysis of both block ciphers and
hash functions. In 1994, Don Coppersmith has revealed that IBM and the NSA were well

— 33 —

34 CHAPTER 3. DIFFERENTIAL CRYPTANALYSIS

aware of the differential cryptanalysis technique, as the DES has been designed to be resistant
to it. The discovery was decided not be published, as Coppersmith mentions in [Cop94]:

“ After discussions with NSA, it was decided that disclosure of the design considerations
would reveal the technique of differential cryptanalysis, a powerful technique that could
be used against many ciphers. This in turn would weaken the competitive advantage
the United States enjoyed over other countries in the field of cryptography.

”
In the first section of this chapter, we recall the intuition behind the differential cryptanalysis

technique and we precise some definitions that may help the reader for the rest of this document.

3.1 Preliminaries

Attacks built using a differential cryptanalysis usually depend heavily on the targeted primitive
and its inner structure. Indeed, the cryptanalyst needs to study carefully how an input
difference propagates within the system and tries to predict its output value. The term
difference could have several meanings and also depends of the target. When we usually
consider the XOR difference for many primitives like DES in [BS93], other types of differences
have been considered, as modular difference for MD4 in the work of Dobbertin in [Dob96],
signed differences in all the so-called Wang’s attacks [WY05, WYY05b, WYY05a, WLF+05] on
the MD5 family of hash functions, or truncated differences introduced by Knudsen in [Knu94]
to analyze byte-oriented primitives. In the following, we consider the most frequent difference
which is the XOR difference. We denote a⊕ b the XOR difference between the two elements a
and b, but we could adapt ⊕ to any kind of difference.

3.1.1 Differentials

Let F : {0, 1}n → {0, 1}m be a function with n-bit inputs and m-bit outputs used in a cryptosys-
tem. We make the weak assumption that F is not linear, as if it were, we probably could not
use it either as a block cipher or as a compression function. Hence, F being non-linear, a given
input difference δ to F could lead to an output difference ∆. That is, we might find two inputs
elements a and b such that a⊕ b = δ and F(a)⊕ F(b) = ∆. We give the following Definition 3.1.

Definition 3.1 (Differential, [LMM91]). A differential D in a function F : {0, 1}n → {0, 1}m

is a pair composed of an input difference δ and an output difference ∆, and we denote it
δ → ∆. Moreover, if there exists a pair (a, b) of input elements to F such that a⊕ b = δ and
F(a)⊕ F(b) = ∆, we say that (a, b) verifies D, conforms to it or is a right pair.

An important notion about a differential δ→ ∆ is the number of pairs that verify it. That is,
we are interested in the cardinality of the set

Eδ→∆ =
{
(a, b) ∈ 2n × 2n / a⊕ b = δ and F(a)⊕ F(b) = ∆

}
. (3.1)

Since F is not linear, we cannot deduce easily |Eδ→∆|, but if n and m are small enough, we
can go through all the 2n possible inputs for a fixed δ, and check for the differences between

3.1. PRELIMINARIES 35

them. Doing so for all δ, allows to construct the Difference Distribution Table (DDT), which can
be precomputed for small non-linear components as we will discuss in the next chapters.

From the number of pairs |Eδ→∆| that conform to the differential δ → ∆, we deduce its
probability.

Definition 3.2 (Differential probability). Let δ → ∆ be a differential for F. Its differential
probability DPF(δ, ∆) is defined by:

DPF(δ, ∆) =
|Eδ→∆|

2n . (3.2)

The differential probability measures the chance that a random pair (a, b) with input
difference δ results in a pair with difference ∆ through F. That is:

DPF(δ, ∆) = 2−n ·
∣∣∣
{

x/F(x)⊕ F(x⊕ δ) = ∆
}∣∣∣. (3.3)

In terms of probabilities, DPF(δ, ∆) measures the chance that the output difference ∆o

reaches ∆, given that the input difference ∆i equals δ:

DPF(δ, ∆) = Pr(∆o = ∆|∆i = δ). (3.4)

We are generally interested in the maximal value that DPF can reach: the maximal differential
probability.

Definition 3.3 (Maximal Differential Probability). Let F be a non-linear function. We define
the maximal differential probability by the maximal value for DPF(δ, ∆) when the input difference
δ ranges over all the non-zero possible differences. We denote it pF

max:

pF
max = max

δ 6=0,∆
DPF(δ, ∆) (3.5)

This notion is particularly useful for small non-linear components (S-Boxes) that bring
non-linearity in almost all block ciphers.

Definition 3.4 (Impossible differential). Let δ→ ∆ be a differential. If DPF(δ, ∆) = 0, we say
that the differential δ→ ∆ is an impossible differential for F.

The differential cryptanalysis of the function F starts by searching for a differential D = δ→
∆ that holds with very high or very low probability. Then, the adversary asks the encryption
of many chosen-plaintext pairs related by the fixed difference δ and computes the differences
in the corresponding outputs through F. Finally, he tries to detect statistical patterns in their
distribution, which is easier if D has been chosen to hold with very high or very low probability.

This basic strategy allows to detect a statistical bias in F and to distinguish it from random.
Additionally, it is possible to apply similar techniques to block ciphers to perform key recovery
attacks, or also to hash functions to find collisions. In the latter case, F is a compression function
with n > m, and the adversary has to find a pair of inputs (a, b) such that a⊕ b = δ 6= 0 and
F(a)⊕ F(b) = ∆ = 0, i.e. he is looking for a right pair for the differential δ → 0, for some
non-zero difference δ.

36 CHAPTER 3. DIFFERENTIAL CRYPTANALYSIS

3.1.2 Iterated functions

In practice, symmetric primitives such as block ciphers or compression functions F are built
upon a smaller building block f that is iterated a certain amount of times. We refer to such a
function f as a round function and the number r of iterations heavily depends on the targeted
security of F, the structure of f , its differential properties, its algebraic degree, etc. The round
function f is usually cryptographically weak, but its iterations bring security to F.

The function f generally takes two inputs: the first one being the current state of com-
putation, and the second one a round-dependent parameter called round-key. Round keys
may be obtained by the expansion of a master secret k with an optional expansion algorithm:
k→ (k0, . . . , kr−1), but we can also consider the case where all the k0, . . . , kr−1 are independent
and completely specified.

Formally for a non-negative n < r, we write f (sn, kn) = sn+1 the function that transforms
the state sn in one round into the state sn+1, using round-key kn. Initially, state s0 is set to the
input value and state sn is the output of the n-th round. In the case of a compression function,
there is no key involved, and the values ki are public.

Definition 3.5 (Key-alternating primitive). Let F be a function that iterates a round function
f . We say that F is a key-alternating primitive when the general form f (sn, kn) = sn+1 for
n < r becomes f (sn ⊕ kn) = sn+1, where the current state sn and the incoming round-key kn

are XORed prior to the application of the round function f . Moreover, a final round-key kr is
added after the r applications of f to produce the output value.

Optional Expansion Algorithm

k

s0 f
s1

. . . f
sr

sr+1

k0 k1 kr−1 kr

Figure 3.1: Key-alternating block cipher: the function f is applied r times, surrounded by subkey mixing
operations.

In the above example of Figure 3.1, we make the assumption that the primitive is a
key-alternating function (Definition 3.5). This construction is used in almost all modern
algorithms like AES [AES01], PRESENT [BKL+07], SQUARE [DKR97], Serpent [BAK98], etc.
and generalizes the work initiated by Even and Mansour in [EM97, EM91] which consists of
only one application of f surrounded by two independent key additions (see Figure 3.2).

The construction of Even-Mansour is attractive by its minimal character: two keys xored
around a single and publicly known permutation f . This simple block cipher offers n/2-bit
security with 2n-bit keys, and an attack from 1991 by Daemen in [Dae91] shows that this
security bound is tight. The idea by Daemen is simple: the attacker asks for the encryption
of D chosen-plaintext pairs with a fixed input difference ∆ and collects the corresponding

3.1. PRELIMINARIES 37

x f y

k0 k1

Figure 3.2: Even-Mansour construction: y = f (x⊕ k0)⊕ k1.

ciphertexts. He then does the same for T chosen plaintexts through the public permutation f .
If D and T verify DT > 2n, the birthday paradox ensures with high probability that there exists
two pairs (m1, m2) and (m3, m4) such that we get a collision on the n-bit output difference:

(
f (m1 ⊕ k0)⊕ k1

)
⊕
(

f (m2 ⊕ k0)⊕ k1

)
= f (m3)⊕ f (m4).

Since f is known, we know the input and output values to f and to the cipher, which allows
to deduce the two keys k0 and k1. Indeed, the collision on the output difference suggests the
equality of the two pairs

(
f (m3), f (m4)

)
and

(
f (m1 ⊕ k0), f (m2 ⊕ k0)

)
,

which means that f (m3) equals either f (m1 ⊕ k0) or f (m2 ⊕ k0). In terms of inputs, this
implies m3 = m1 ⊕ k0 or m4 = m2 ⊕ k0. As the inputs m1, m2, m3 and m4 are known, we can
recover k0, and therefore k1 by a similar process. Consequently, this procedure suggests a
pair of keys (k0, k1) matching an actual encryption, which can easily be verified with another
plaintext/ciphertext pair.

This gives an attack in 2n/2 encryptions of chosen plaintexts, using T = D = 2n/2 memory.
In 2000, Biryukov and Wagner [BW00] have improved the chosen-plaintext attack into a known-
plaintext attack with the same complexity. Their technique makes use of an advanced slide
attack, and provides an attack in 2n/2 data and memory, with no tradeoff possible. More
recently, Dunkelman, Keller and Shamir have shown in [DKS12] how to improve this slide
attack with any number D of known plaintexts, and a time complexity of T computations that
match DT = 2n. Additionally, they revisit the simplified Even-Mansour scheme using k0 = k1,
which makes the block cipher extremely simple (Figure 3.3) with the same n-bit security. This
simplification has already been discussed by Kilian and Rogaway in [KR96, KR01].

x f y

k k

Figure 3.3: Even-Mansour simplified construction: y = f (x⊕ k)⊕ k.

3.1.3 Differential characteristics

In all the sequel, we assume that the studied primitive F iterates a round-function f as described
in the previous section. When we refer to a difference, we mean a difference in the whole input

38 CHAPTER 3. DIFFERENTIAL CRYPTANALYSIS

state seen as a pair (sn, kn).

Definition 3.6 (Differential characteristic). Let f be a round function iterated r times in F. A
differential characteristic on r′ ∈ {1, . . . , r} rounds in F is a sequence of r′+ 1 differences, denoted
δ0 → · · · → δr′ .

In this context, the probability of differential on F can be approximated more easily by
differential characteristics, which consider consecutive one-round differentials in f . From the
point of view of graph theory, one may think of a differential characteristic as a path in a
graph where the nodes would be the differences between the rounds of F, and the edges the
one-round differentials in f . Hence, a differential would consist of all the paths from a source
node δ to a sink node ∆ (see Figure 3.4).

δ ∆

δ1

δ2

δ3

Figure 3.4: Differential and differential characteristic: example of a 4-round differential δ→ ∆ composed
of 5 differential characteristics with a highlighted one: δ→ δ1 → δ2 → δ3 → ∆.

We say approximation since a differential characteristic from δ to ∆ could represent a
differential with more than one differential characteristic. While in general there are many
differential characteristics within a differential, in some cases, we can find one with a differential
probability much higher than all the others. We can thus approximate the differential by this
particular characteristic, which represents almost the whole differential probability of the
differential itself.

The reason we use characteristics is also that they are easier to construct and handle.
In particular, if we assume the independence of all the one-round elementary differentials
composing a differential characteristic, we can multiply their respective probability to get an
approximation of the differential probability of the differential. The assumption of independence
does not hold in practice, but the computed values for cryptographic primitives are usually
close enough to the real ones. This is actually the case when we consider the differential
probability of a key-alternating cipher averaged over the subkeys.

The reasoning to count the number of right pairs applies in the same manner for differ-
ential characteristics, and this leads to a similar formula for the differential probability of a
characteristic.

Definition 3.7 (Differential probability). Let δ0 → · · · → δr be a differential characteristic for
F. Its differential probability DPF(δ0 → · · · → δr) is defined by:

DPF(δ0 → · · · → δr) =
|Eδ0→···→δr |

2n , (3.6)

where Eδ0→···→δr denotes the set of all right pairs for the differential characteristic δ0 → · · · → δr

similarly as in Equation 3.1 for differentials.

3.2. BLOCK CIPHERS 39

Proposition 3.1 (Differential probability). Let δ0 → · · · → δr be a differential characteristic for
F. If we assume the independence of the r elementary differential probabilities, we can compute the
differential probability DPF(δ0 → · · · → δr) of the differential characteristic by:

DPF(δ0 → · · · → δr) =
r−1

∏
i=0

DP f (δi → δi+1). (3.7)

We elaborate on this independence in the following Section 3.3 on Markov ciphers.

Proposition 3.2 (Differential probability). The differential probability of the r-round differential
δ→ ∆ equals the sum of all the differential probabilities of the r-round differential characteristics whose
first difference is δ and ending difference is ∆. That is:

DPF(δ→ ∆) = ∑
δ1 , ..., δr−1

DFF(δ→ δ1 → · · · → δr−1 → ∆). (3.8)

Obviously, since a differential consists of a set of differential characteristics, its differential
probability can only be greater than or equal to the one of a particular differential characteristic
with the same input and output differences (Corollary 3.3).

Corollary 3.3. Let δ0 → δ1 → · · · → δr−1 → δr be a differential characteristic for F. The differ-
ential probability of the differential δ0 → δr is at least the differential probability of the differential
characteristic δ0 → δ1 → · · · → δr−1 → δr, that is:

DPF(δ0 → δr) ≥ DPF(δ0 → δ1 → · · · → δr−1 → δr). (3.9)

Definition 3.8 (Expected differential probability, EDP). If a function F is parameterized by a
key k, we consider the differential probability DPF[k](δ0 → δr) in a straightforward manner.
Then, we define the expected differential probability EDP(δ0 → δr) of the differential δ0 → δr as
the mean value of DPF[k](δ0 → δr) where the key parameter k follows the uniform distribution
when k ∈ K:

EDP(δ0 → δr) = E

[
DPF[k](δ0 → δr), k

]
= 2−|K| · ∑

k∈K
DPF[k](δ0 → δr).

3.2 Block ciphers

3.2.1 Basic key recovery attack

In the case of block ciphers, we are usually interested in recovering the secret key used: we
assume that the adversary can either get plaintext/ciphertext pairs (known-plaintext attack), or
can ask the encryption of plaintexts of his choice and he receives the corresponding ciphertexts
(chosen-plaintext attack).

As discussed in the preliminaries (Section 3.1), differential cryptanalysis can be used to
exhibit some statistical bias on some block ciphers. Indeed, a particular differential D can hold
with a differential probability higher than the expected average one. Such a differential can

40 CHAPTER 3. DIFFERENTIAL CRYPTANALYSIS

(c, c′)

(p, p′), with p⊕ p′ = δ

Block cipher E
secret key: k
subkeys: k→ (k0, . . . , kr)

DPE (δ→ ∆) = p

fk1

(v1, v′1)

fk2

...

fkr−1

(vr−1, v′r−1)

fkr

Guessed: vr−1 ⊕ v′r−1 = ∆

{kr}

+1

+1

+1

Table T
Suggestions for kr

Figure 3.5: Key recovery and differential cryptanalysis: the adversary uses the high-probability differen-
tial δ→ ∆ to get suggestions for the last subkey kr.

be found by a specific analysis of the targeted cipher, and if it holds for any key, then we can
mount a basic key recovery attack (see Figure 3.5).

Assume that the differential D = δ→ ∆ holds with high probability on r− 1 rounds on a
block cipher E with r rounds. Following the previous notations, the round function f which
takes as input the current state of computation and a round-key parameter k is denoted by fk.
On Figure 3.5, the encryption of the pair (vi, v′i) with fki+1

is denoted

(vi, v′i)
fki+1−→ (vi+1, v′i+1), (3.10)

where (vi+1, v′i+1) is the result of the one-round encryption through fki+1
.

The adversary A is supposed to have oracle access to a black box instantiating E under a
secret key k that he wants to recover. First, A prepares a set of plaintext pairs that all verify the
input difference δ of D, and then he asks the encryption of all the plaintexts pi under the secret
key k to get their respective ciphertexts.

For all the plaintext pairs, the adversary assumes that the differential D has been verified for
the first r− 1 rounds and analyzes the differential transition in the very last round. From the
fixed input difference ∆ to the last round and the known difference c⊕ c′ in the ciphertext, A
gets suggestions for the values of the very last subkey of the cipher. Many subkeys kr are not
possible as they do not connect the input and output of the last round. Hence, this filter allows
to throw away many wrong values for kr. The adversary stores this information by keeping a
mapping T between possible key values for the last subkey kr and how many times they are
suggested.

In the end, when all the pairs have been exhausted, the adversary takes the value with the
highest counter value in the table T : if the differential D has been chosen with a high enough

3.2. BLOCK CIPHERS 41

differential probability, then the correct value for that subkey should be retrieved. Depending
on the block cipher E , the key recovery attack stops here if we can deduce the master key k
from kr, or the adversary needs to finish the recovery by exhausting the remaining unknown
key bits in k. Alternatively, he can also mount the same attack on all rounds but the last one.

We note that the generic algorithm that we have described implicitly considers that the
adversary can attack efficiently one round of the cipher, namely the last one, but the same
strategy could apply if the adversary knew any efficient algorithms to handle more than one
round in the end. Also, everything could easily transpose to a chosen-ciphertext attack where
the adversary recovers< the initial round key(s).

3.2.1.1 Efficiency evaluation

We note that the data complexity, i.e. the number of chosen plaintexts required in this attack
is closely related to the quantity of information needed to distinguish a distribution from the
uniform distribution. Moreover, the same strategy can be applied if the differential D holds
with very low probability: in that case, the adversary needs to consider the reversed table T by
examining the key values kr with the lowest counters.

To perform a more precise evaluation of the data and time complexities of this attack, we
first note that the adversary needs at least 1/p chosen-plaintext pairs if he wants at least one to
verify the (r− 1)-round differential holding with probability p. A rough estimation of the data
complexity D by Lai, Massey and Murphy in [LMM91] gives D = O(1/p), but if we denote
p̃ the average differential probability depending on the block size, the data complexity has
been evaluated more precisely by Blondeau, Gérard and Tillich in [BGT11] as O(1

p ln(p/ p̃)−p).
Moreover, since the targeted round key kr is the last one, its right value should be suggested
more often than the other. To handle this notion, we usually introduce the signal-to-noise ratio,
which measures how a particular event occurs among many others. It is defined as the ratio of
the probability pcorrect that the right value kr is suggested and the probability pincorrect that it is
not. We usually denote it:

S/N
def
:=

pcorrect

pincorrect
. (3.11)

These two probabilities are expressed in terms of parameters depending on the targeted
cipher. First, l the number of bits of kr involved in the last round that we are trying to recover.
Then, we introduce the probability q that a random pair is indeed used as a starting point for
the attack. This probability verifies p ≤ q since we have more pairs than only the right ones
(2−p ≥ 2−q), because we can sometimes directly discard the pair from its output difference: its
form or its value may not be consistent with the output difference of the differential. We call
those pairs the wrong pairs. Hence, the error probability that a consistent pair never suggests
the correct value kr equals q− p ≥ 0. For all the D tested pairs, we thus expect D(q− p) of
them to be completely useless. By denoting σ the average number of suggested values for kr for
a single pair of D, we deduce that the probability that the correct kr will not get suggested is:

pincorrect =
(q− p)σ + p(σ− 1)

2l − 1
=

qσ− p
2l − 1

. (3.12)

Indeed, if the pair is a wrong pair (probability q − p) then all the values suggested (σ) are
wrong, but if it is a right pair (probability p) then all but one values are not the correct ones,

42 CHAPTER 3. DIFFERENTIAL CRYPTANALYSIS

as the correct value is suggested exactly once. Finally, there are a total of 2l − 1 wrong values
among the total 2l possible values for the l bits of kr.

As for pcorrect, the probability that a pair suggests the right value for kr, pcorrect = p, the
probability that the pair verifies the fixed differential characteristic in the first r− 1 rounds. All
in all, the signal-to-noise ratio equals

S/N =
p(2l − 1)
qσ− p

, (3.13)

and is compared to 1 for the relevance of the differential attack with the chosen parameter
values.

If S/N = 1, then the proportion of right pairs is the same as wrong pairs: therefore, no
statistical advantage can be exploited to distinguish the correct value for kr. On the other hand,
if S/N 6= 1, then the adversary can take advantage of the statistical bias introduced by the
differential. If S/N ≥ 1, the correct guess lies in the suggested values with the highest counters
in the table. If S/N ≤ 1, it has been suggested less than the others, so that the adversary finds
it in the lowest counters.

Obviously, the greater the distance |S/N − 1| is for the selected values of the parameters
(p, q, l, σ), the more successful the attack. An extreme case occurs when S/N = 0, which are
called impossible differential attacks (see Section 3.4.2). In theory, Lai, Massey and Murphy show
in [LMM91] that the differential attack implicitly makes the hypothesis of stochastic equivalence,
that we describe in the next section.

3.2.1.2 Improved variants

We note that the strategy exposed previously can be improved in several ways, according to
the cipher. For instance, if the key size of kr is slightly shorter than the one of the full secret
key k, then Biham and Shamir propose in [BS93] a memoryless variant of the attack. The basic
idea is to perform an exhaustive search on the remaining key bits as soon as a value for kr is
suggested. The table T becomes useless as the guessed key material is checked on the fly.

This attack is a chosen-plaintext attack as the adversary explicitly constructs pairs of inputs
that verify a certain difference δ, but with an increase of the data complexity, this attack also
applies in the known-plaintext model. In that case, the method is exactly the same, except that
the adversary waits for plaintext pairs to create the wanted difference δ. Consequently, for a set
of N plaintexts where we can construct (N

2) pairs, the correct difference occurs with probability
1/2n, where n is the bit length of one plaintext. Therefore, the adversary needs to increase the
number of pairs (N

2)/2n that verify the input difference δ for the attack to be successful.

There are several other improvements over this method, but we now consider a natural
question: how to construct a block cipher resistant to this class of attacks?

3.2.2 Resistance against differential cryptanalysis

Since the cryptanalysis of the DES, the National Institute of Standards and Technology (NIST)
announced in 1997 an international competition to find a new standard for encryption called

3.3. MARKOV CIPHERS 43

Advanced Encryption Standard (AES). The resistance against differential cryptanalysis has
been one of the main motivation in the design of the winning algorithm: Rijndael. Its
authors Joan Daemen and Vincent Rijmen describe for instance in [DR02] how they manage to
construct a block cipher resisting to both linear and differential cryptanalysis. We briefly recall
their idea.

As presented before, to mount a differential attack, the adversary needs to find a differ-
ential that holds with high probability. The methodology starts by finding a high-probability
differential characteristic, which ensures a high-probability differential thanks to Theorem 3.2.
Consequently, if one can find a way to upper bound the probability of all differential character-
istics, one could directly deduce the worst impact of any differential attacks on the block cipher.
Indeed, in the security proofs of block ciphers against differential cryptanalysis we usually
conjecture that the high probability differentials have only one high probability differential
characteristic.

In the design of Rijndael, Daemen and Rijmen propose a byte-oriented block cipher based
on a Substitution-Permutation Network (SPN) such that any 4-round differential characteristic
has a probability at most 2−6×25 = 2−150. The inner structure of the permutation ensures a very
fast and complete diffusion after only two rounds. This means that if a single bit difference is
introduced in the input of the round function, only two iterations are required to make the two
outputs completely different. The theoretical point that justifies this diffusion relies on coding
theory: the internal state fits into a square matrix over the finite field GF(28) and is multiplied
by a Maximum Distance Separable (MDS) matrix to ensure maximal diffusion. The differential
properties of this component allows to lower bound the number of active S-Boxes in the cipher,
e.g. 25 active S-Boxes for 4 rounds. Additionally, the chosen S-Box has differential properties
which provide the maximal differential probability for any r-round differential characteristic.

The block cipher accepts different key sizes, and for each of them, the given bound proves
that all differential attacks have a running time greater than the trivial exhaustive search for the
secret key. For instance, the variant AES-128, which uses 128-bit keys has 10 rounds, such that
the probability p of any differential attack is upper bounded by p ≤ 2−300, which is more than
enough to ensure the security up to 2128. Obviously, this strategy does not provide absolute
security, but only resistance to attacks in this class of differential cryptanalysis.

Additionally in [DR06b, DR06a], the same authors present a strong analysis of two rounds
of their cipher and derive precise bounds for differential probabilities. Their analysis has
then been refined by Keliher and Sui in [KS07] where it is shown that the maximal expected
differential probability (MEDP) that we can reach for the AES S-Box is exactly 53× 2−34. Similar
analyses have been conducted for 4-round AES, as in [DLP+09, RTV13].

3.3 Markov Ciphers

In a seminal work, Lai, Massey and Murphy in [LMM91] revisit the differential cryptanalysis
and introduce the class of Markov ciphers. We recall here their main contributions. We denote
the difference in variable x by ∆x. In the following the probabilities are taken over the assumed
uniform distribution of the key space. We suppose all the subkeys to be uniformly distributed
in the the key space, and are independent for one another. While this is not the case in practice

44 CHAPTER 3. DIFFERENTIAL CRYPTANALYSIS

for block ciphers, we detail this hypothesis in the end of this section.

Definition 3.9 (Markov Cipher, [LMM91]). A Markov cipher is an iterated cipher for which the
average difference propagation probability over one round is independent of the input, i.e. for
all α and β

Pr (∆sn+1 = β|∆sn = α ∩ sn = γ) (3.14)

is independent of γ. Stated otherwise, an r-round iterated block cipher is a Markov cipher if
the sequence of output differences after each of the r rounds (∆0, ∆1, . . . , ∆r) seen as discrete
random variables forms a Markov chain, that is:

Pr (∆r = ωr|∆r−1 = ωr−1 ∩ · · · ∩ ∆0 = ω0) = Pr (∆r = ωr|∆r−1 = ωr−1) . (3.15)

The motivation behind the introduction of this class of ciphers is to provide a more precise
evaluation of differential probabilities for a theoretical analysis of differential cryptanalysis. In
particular, the notion of independence of the round keys allows to compute the exact probability
of a differential characteristic.

Theorem 3.1. (Differential probabilities) Let F be a Markov cipher with round function f , and
δ0 → · · · → δr a r-round differential characteristic in F. Then, we can compute the probability of the
differential characteristic by:

DPF(δ0 → · · · → δr) =
r−1

∏
i=0

DP f (δi → δi+1), (3.16)

and the probability of the differential δ0 → δr by:

DPF(δ0 → δr) = ∑
δ1, ..., δr−1

r−1

∏
i=0

DP f (δi → δi+1). (3.17)

Theorem 3.2. If we assume the independence of the round keys, a key-alternating cipher (Definition 3.5)
is a Markov cipher.

To prove this theorem, we use the following result in probability theory.

Proposition 3.3. Let A, B and C three possible events. We have:

Pr (A ∩ B|C) = Pr (A|B ∩ C)× Pr (B|C) . (3.18)

Proof. From the definition of the conditional probability Pr(A|B) = Pr(A∩B)
Pr(B)

, we can write:

Pr (A ∩ B|C) = Pr (A ∩ B ∩ C)
Pr (C)

=
Pr (A|B ∩ C)× Pr (B ∩ C)

Pr (C)

=
Pr (A|B ∩ C)× Pr (B|C)× Pr (C)

Pr (C)

= Pr (A|B ∩ C)× Pr (B|C) ,

3.3. MARKOV CIPHERS 45

which concludes the proof. �

Proof. (of Theorem 3.2) Let F be a key-alternating cipher with round function f . From
Definition 3.5, we have f (sn ⊕ kn) = sn+1, where sn is the current m-bit state input, kn the m-bit
round key input and sn+1 the m-bit output state. We denote xn = sn ⊕ kn.

To prove that F is a Markov cipher, it is sufficient to show that

Pr (∆sn+1 = β|∆sn = α ∩ sn = γ) (3.19)

is independent of the input value sn; that is, given (α, β), the probability is constant and
independent of γ. Due to the linear key addition around the ⊕ operation, we have ∆sn = ∆xn.
Hence:

Pr (∆sn+1 = β|∆sn = α ∩ sn = γ)

= ∑
x

Pr (∆sn+1 = β ∩ xn = x|∆xn = α ∩ sn = γ)

= ∑
x

Pr (∆sn+1 = β|xn = x ∩ ∆xn = α ∩ sn = γ)Pr (xn = x|∆xn = α ∩ sn = γ) ,

from the previous Theorem 3.3. Then, we observe that the second term of the product
Pr (xn = x|∆xn = α ∩ sn = γ) is actually equal to Pr (kn = x⊕ γ). Finally, the first term reduces
to Pr (∆sn+1 = β|xn = x ∩ ∆xn = α) since the two conditions xn = x and ∆xn = α actually set
the two inputs of f . Consequently, we have:

Pr (∆sn+1 = β|∆sn = α ∩ sn = γ) = 2−m ·∑
x

Pr (∆sn+1 = β|xn = x ∩ ∆xn = α) ,

because we make the assumption that the round keys variable are uniformly distributed. Finally,
the probability (3.19) is independent of γ and F is Markov. �

Theorem 3.4. AES with independent round keys is a Markov cipher.

Proof. AES is a key-alternating cipher, so from Theorem 3.2, if we assume that the round keys
are independent and not all generated from a secret key through a key scheduling algorithm,
then AES is a Markov cipher. �

Remark. Theoretically, the majority of block ciphers does not conform to the hypothesis of
independent round-keys since they are usually derived from a single master key k through a
key schedule algorithm. Still, in practice, this assumption makes sense unless the keys from k
are derived in a very basic way, and the practical evaluations confirm it [BS93]. Consequently,
one can assume that DES and AES are Markov ciphers.

Remark. Additionnaly, it is also of interest to study the behaviour of reduced-round AES
when the key is fixed. This has been done for instance by Daemen and Rijmen in [DR06b,
DR06a, DR07, DR09], and they show that there exists some particular characteristics that reach
a differential probability way above the maximal expected differential probability, averaged on
all the keys.

46 CHAPTER 3. DIFFERENTIAL CRYPTANALYSIS

In a differential attack, the adversary usually interacts with a black box outputting cipher-
texts encrypted with a single secret key. But the offline phase of the differential cryptanalysis
which finds a high-probability differential makes the choice of the differential based on an
average behavior over all keys uniformly distributed. For the differential attack to work, Lai,
Massey and Murphy show in [LMM91] that the adversary implicitly makes the following
assumption (Property 3.5) that ensures all keys to behave the same way.

Property 3.5 (Hypothesis of stochastic equivalence, [LMM91]). For virtually all high-probability
r-round differentials δ→ ∆,

PrP ,K (∆r = ∆|∆0 = δ) ≈ PrP (∆r = ∆|∆0 = δ ∩ k = z)

holds for a substantial fraction of the key values z, where PrP ,K averages on both the uniform distribu-
tions of input space P and key space K, whereas PrP averages only on the input space.

Remark. This assumption holds for the majority of block ciphers designed for cryptographical
applications, but we may construct an example such that Property 3.5 does not hold. Anyway,
such a block cipher probably should not be used in any actual cryptosystem.

3.4 Other forms of differential cryptanalysis

3.4.1 Truncated differential cryptanalysis

Another form of differential cryptanalysis has been introduced by Lars Knudsen in [Knu94] and
is called truncated differential cryptanalysis. The technique is a generalization of the differential
cryptanalysis framework in the sense that the adversary follows differences that are partially
determined, rather than fully determined for a classical differential attack. The attack actually
considers the presence of differences between two variables of the primitive.

Formally, we define the truncation as a non-injective function ∆→ ∆̄, which associates the
actual difference ∆ to

∆̄ =

{
0 if ∆ = 0

1 if ∆ 6= 0.

Therefore, a difference is reduced to a 1-bit information. Depending on the structure of the
primitive, we may want to decompose the difference ∆ into a vector of differences (∆i)i such that
it makes sense for the cipher. For instance, we usually consider the 16 differences of the AES
state separately, such that an actual difference ∆ ∈ {0, 1}128 equals ∆ = (∆i)i=0,...,15, ∆i ∈ {0, 1}8,
and is truncated as ∆̄ = (∆̄i)i=0,...,15 with ∆i ∈ {0, 1}. Here, the truncated difference ∆̄ is
reduced to 16 bits.

In general, truncated differential attacks apply more efficiently on block ciphers where the
round function considers parts of the state together, like bytes or nibbles, rather than bit by
bit. This way, one can represent a truncated difference in a single part, say a byte, and trace its
evolution throughout the round function applications. Block ciphers successfully attacked with

3.4. OTHER FORMS OF DIFFERENTIAL CRYPTANALYSIS 47

truncated cryptanalysis include for instance Skipjack [Ski98], where the 31-round impossible
differential from [BBS05] relies on two truncated differentials, and the authors in [KRW99]
show that there exist a 24-round truncated differential that holds with probability 1.

In the next chapters of this document, we use truncated cryptanalysis on several byte-
oriented primitives like the AES block cipher (Chapter 7), and the hash functions Grøstl
(Chapter 8) and ECHO (Chapter 9).

3.4.2 Impossible differential cryptanalysis

Another form of differential cryptanalysis is called impossible differential cryptanalysis and
uses the differentials that hold with probability zero (see Definition 3.4). This is the complete
opposite of the previously described strategy that relies on high-probability differentials: here,
the adversary takes advantage on impossible events.

In detail, the attack methodology starts by finding an r-round differential δ→ ∆ such that
DPF(δ→ ∆) = 0. Then, he uses it in the online phase by querying chosen-plaintext pairs with
input difference δ, and checks whether the differential has been followed in the first r rounds.
This test is performed by guessing key material in the last round and by partially decrypting
the resulting ciphertexts. If the key guess suggests that the impossible differential has been
followed, then the adversary can confidently discard the key guesses and try another one. By
removing all wrong key guesses, the only valid key remains.

3.4.2.1 Applications

The impossible differential attack has been first used by Lars Knudsen on the 128-bit block
cipher DEAL [Knu98], which has been submitted to the AES competition. At the Rump Session
of Crypto 1998, Eli Biham, Alex Biryukov and Adi Shamir introduce the term impossible
differential and show a method to construct an impossible differential on 2k rounds from two
k-round differentials holding with probability 1. The first one transforms δ into δ0 in the
forward direction, while the second one transforms ∆ into δ1 in the backward direction. If the
two differences δ0 and δ1 present incompatibility, then the 2k-round differential δ → ∆ is an
impossible differential. This method has been called miss-in-the-middle.

The same authors also present an application of the miss-in-the-middle technique to IDEA
[LM90], which leads to an attack on 3.5 rounds of the cipher (out of 8.5) with 235 chosen
plaintexts and 264 steps, and another attack on 4.5 rounds with 264 plaintexts and 2112 steps.
This is no longer the best available cryptanalysis of reduced variants of IDEA. Additionally, they
apply the technique to Skipjack [Ski98] which is an unbalanced Feistel network developed by
the NSA and published in 1998. The result in [BBS99, BBS05] shows an impossible differential
attack on 31 rounds (out of 32) of Skipjack to recover the 80-bit secret key, and later, new
attacks on this cipher complete the impossible cryptanalysis, for instance [KRW99, RW03].

This strategy has been applied to many block ciphers, and it has been the best attack against
7-round AES-128 for some time, until the improved meet-in-the-middle attack from [DFJ13]
(see Chapter 5). Previous impossible attacks [BA08, LDKK08, MDRMH10] use truncated
differences (see Section 3.4.1) to show a 4-round impossible differential and extend it to a

48 CHAPTER 3. DIFFERENTIAL CRYPTANALYSIS

7-round attack (see Section 4.4.4.1 for a description of this attack).

3.4.2.2 Resistance against impossible differential cryptanalysis

In a previous paragraph, we say that resisting to differential attack can be achieved by upper
bounding the maximal differential probability of the differentials. However, if a differential
has a zero-probability, it is subject to impossible differential cryptanalysis: hence, we also need
to lower bound the differential probabilities of the differentials. Therefore, if we can lower
bound all differential probabilities of the differentials for any number of rounds of a given
cipher by pmin > 0, then we can guarantee that no impossible differential exists. Contrary to
upper bounding the probability, this task is much more difficult, as we not only need to bound
the probability of differential characteristics, but the probability of differentials, which are less
convenient to handle.

Provable security against differential cryptanalysis has been a very investigated line of
research and still remains of importance matters for designers. In the next section, we recall a
particular class of ciphers that allows to deduce bounds on the differential properties.

3.4.3 Boomerang attack

Another differential cryptanalysis technique is due to David Wagner and has been published
in 1998 in [Wag99]: it is called the boomerang attack. In the original differential attack, one
differential is used to detect a statistical correlation between inputs and outputs. Then, the
impossible differential technique introduces the miss-in-the-middle technique to combine two
differentials with probability 1 to get a longer impossible differential. In the boomerang strategy,
Wagner also proposes to combine two differentials to mount a chosen-plaintext and (adaptive)
chosen-ciphertext attack. The powerful consequence of this technique is the ability to attack a
cipher in a differential manner even when there is no high-probability differential on the whole
cipher, but only on parts of it.

The strategy starts by breaking the cipher E into two parts E0 and E1, with E = E1 ◦ L ◦ E0

and an optional linear of affine mapping L (see Figure 3.6). Then, the adversary finds one
differential on each E0 and E1: since E0 and E1 are basically half the size of E , it should be easier
to find high-probability differentials on them. Then, to connect the two parts and deduce an
attack of the full E , he tries to construct a quartet element (X1, X2, X3, X4) that verifies a certain
relation in the middle on the primitive. Here, the pair of values of the original differential
attack is replaced by a quartet in the boomerang attack.

In the sequel, we assume we know one differential ∆→ ∆∗ in E0 and an other differential
∇ → ∇∗ in E−1

1 . Let p and q be the two respective probabilities. Then, the adversary applies
the following steps:

1. Pick a random pair of inputs (X1, X2) such that the difference X1 ⊕ X2 = ∆.
2. Ask the encryption of the two inputs and store their respective outputs in Y1 and Y2. With

probability p, the differential in the first half E0 is verified so that:

Pr
(
E0(X1)⊕ E0(X2) = ∆∗

)
= p.

3.4. OTHER FORMS OF DIFFERENTIAL CRYPTANALYSIS 49

X1 X2

E0 E0

E1 E1

Y1 Y2

X3 X4

E0 E0

E1 E1

Y3 Y4

∆

∆

∇ ∇

∆∗

∆∗

∇∗ ∇∗

Figure 3.6: The boomerang attack: the adversary tries to find a quartet (X1, X2, X3, X4) that verifies a
certain relation half-way through the cipher. This figure assumes that the affine layer L in the middle is
the identity.

3. With the received values Y1 and Y2 compute the translation by ∇ to get: Y3 = Y1 ⊕∇ and
Y4 = Y2 ⊕∇.

4. Ask the decryption of Y3 and Y4 and store their respective inputs in X3 and X4. With
probability q, each of the two differentials in E−1

1 are verified independently; that is:

Pr
(
E−1

1 (Y1)⊕ E−1
1 (Y3) = E−1

1 (Y2)⊕ E−1
1 (Y4) = ∇∗

∣∣∣Y1 ⊕Y3 = Y2 ⊕Y4 = ∇
)
= q2.

5. Check whether the difference X3 ⊕ X4 = ∆. If it does, then the differential holds and
(X1, X2, X3, X4) is a valid boomerang quartet. Together with the previous probabilities,
this occurs when the differential ∆∗ → ∆ holds in E−1

0 with (X3, X4).

In the end, the total probability that the quartet is a valid boomerang quartet is p2q2, since
the two differentials in E0 and E1 need to be verified twice each. Consequently, if we can find
two differentials with probabilities p and q that cover the full cipher and verify (pq)−2

< 2n

where n is the bit size of the key, then this gives an attack faster than exhaustive search.

We note that the same strategy applies when one considers an additional linear or affine
transformation L in the middle on the cipher: the linear relation still holds in that case.
Moreover, we remark that the previous computations assume the differentials to be regular
differentials, and not truncated differentials. Indeed, for a regular differential D, the differential
probability p is the same whether we consider D or D−1 in the other direction. This is not

50 CHAPTER 3. DIFFERENTIAL CRYPTANALYSIS

the case for truncated differentials, where we would need to consider a probability −→p for the
forward direction, and←−p for the backward direction.

3.4.3.1 Improvements

There have been several improvements over this method. A major one is the amplified boomerang
attack published in [KKS00], and also described under the name rectangle attack in [BDK01],
which turns the boomerang attack into a more classical chosen-plaintext attack. The key
principle is to perform requests only to the encryption oracle, whereas the original boomerang
attack queries both the encryption and decryption oracles.

In the original attack, the adversary performs O
(
(pq)−2

)
chosen-plaintext and chosen-

ciphertext queries to the oracles, whereas the amplified attack uses an amplificated event in the
middle, which reduces the data complexity to O

(
(pq)−1 · 2n/2

)
chosen-plaintext queries. This

drop comes from the linear relation verified by a quartet in the middle.

Namely, the adversary prepares a set of D pairs of plaintexts with chosen input difference
∆, so that a random pair from D verifies the first differential ∆ → ∆∗ in E0 with probability
p. Consequently, there are about 2× (Dp

2) pairs of pairs ((X1, X2), (X3, X4)) such that the two
pairs verify the differential in E0. Since X1 ⊕ X2 = X3 ⊕ X4 = ∆∗, the linear relation in the
middle is verified as soon as X1 ⊕ X3 = ∇∗, which occurs with probability 2−n. Indeed, the
last equality X2 ⊕ X4 = ∇∗ is automatically verified by linearity. Therefore, there are about
2× (Dp

2)× 2−n pairs of pairs with the correct difference ∇∗ for the two pairs at the input of the
second differential ∇∗ → ∇ in E1. In the end, we expect

2×
(

Dp
2

)
× 2−n × q2 ≈ D2 (pq)2

2n

right quartets for the boomerang attack.

This gives a distinguishing attack for the block cipher E when we are able to produce more
right quartets for the block cipher than for a random permutation. In that latter case, we expect
about D2/22n quartets since we have two pairs each constrained on a particular n-bit output
difference ∇. So, if

D2(pq)2

2n >
D2

22n ,

we can attack E , which happens as soon as pq > 2−n/2.

Additionally, in the original description of the boomerang attack [Wag99], Wagner notices
that the middle differences ∆∗ and ∇∗ actually does not need to be specified: the success of the
attack is independent of their values. Therefore, a right quartet can be obtained as long as the
middle linear relations hold:

{
E0(X1)⊕ E0(X2) = E0(X3)⊕ E0(X4)

E0(X1)⊕ E0(X3) = E0(X2)⊕ E0(X4).

This remark directly affects the probability of the differentials in E0 and E1 as we can
consider sums of differential probabilities: p and q become respectively p̂ and q̂, sometimes

3.4. OTHER FORMS OF DIFFERENTIAL CRYPTANALYSIS 51

called amplified probabilities:

p̂ =

√

∑
∆∗

(
DPE0(∆→ ∆∗)

)2
and q̂ =

√

∑
∇∗

(
DPE1(∇∗ → ∇)

)2
. (3.20)

With this remark, the data complexity of the original boomerang attack becomes O
(
(p̂ q̂)−2

)
,

and the data complexity of the amplified boomerang attack O
(
(p̂ q̂)−1 × 2−n

)
. We summarize

the data complexities and conditions on p and q to get the attacks in Table 3.1.

Type Data Condition Reference
Boomerang (pq)−2 (pq)−2

< 2n [Wag99]
Amplified boomerang (pq)−1 × 2−n pq > 2−n/2 [KKS00, BDK01]

Table 3.1: Complexity of boomerang and amplified boomerang attacks: p and q are the differential
probabilities of the differential in E0 and E1, respectively, and can be replaced by p̂ and q̂ defined in
Equation 3.20.

3.4.3.2 Applications

There have been several applications of the boomerang attack to different block ciphers in the
standard model or in the related-key model, and also an extension of the technique to the hash
function domain.

The block cipher COCONUT98 [Vau98, Vau03] by Serge Vaudenay has been the first cryptan-
alyzed by the boomerang attack. In the original boomerang paper [Wag99], Wagner describes a
method using 216 adaptively chosen plaintexts and ciphertexts to break this cipher in about 238

computations with an overwhelming probability of success. This result is possible despite the
“proof” of resistance of COCONUT98 against differential cryptanalysis based on decorrelation
theory [Vau03] since we are using quartets, and not pairs of messages.

Several other block ciphers have been broken or partially broken by the boomerang at-
tack and its variants, as non-exhaustively: AES in [GL08], MARS and Serpent in [KKS00],
an improvement for Serpent in [BDK01] and [BDK02], SC2000 in [BDK02], full KASUMI
in [BDK05b] which is used in 3GPP for mobile communications, PRINCE in [JNP+13].

3.4.4 Related-key attacks

In [Bih93, Bih94], Eli Biham introduces the concept of related-key attacks. In this model, the
adversary is given access to a blackbox construction to which he can query a particular message
under several keys related in some ways. For instance, he could get the result of the encryption
of message m by the secret key k he is trying to recover and a translated key k⊕ δ for some
known (or chosen) difference δ. In practice, this model is obviously less threatening than the
standard model, but it can still be quite devastating when the keys used in a protocol are not
properly generated, when the adversary can encrypt under a subset of unknown keys, etc.

The most notorious example is probably the case of the Wired Equivalent Privacy (WEP)
algorithm used in the encryption of WiFi wireless network communications. The underlying

52 CHAPTER 3. DIFFERENTIAL CRYPTANALYSIS

encryption algorithm is the widely used RC4 stream cipher algorithm: a well-known security
requirement for stream ciphers is to never use the same keystream twice. Indeed, encrypting
two messages m and m′ with the same key k produces two ciphertexts c and c′ respectively,
such that the input and the output differences are equal: m⊕m′ = c⊕ c′. This property is true
for any stream cipher, and if the mistake is done, we can run basic statistical tests as exposed
in the introduction. To prevent this from happening, the WEP includes a 24-bit initialization
vector (IV) to randomize the behavior of the cipher, and this short value is concatenated with
the WEP key. By the birthday paradox, we expect that for every set of 212 encrypted packets, at
least two share the same IV and thus the full two keys are equal. We can thus run devastating
attacks like [TWP07] at that point to recover the plaintexts and eventually the WEP key. This
is an example of a design practically attacked by related keys, but this could be prevented as
done for instance in the WPA by refreshing the keys used in the protocol, or by using a block
cipher like AES.

Theoretically, the relation in the keys can be anything from a constant difference between
two subkeys, a set of keys sharing the same truncated differences, a slid pair in the key
scheduling algorithm, etc. In more detail, a slid pair of keys for a step KS of the key schedule
would consist in the pair (k0, k′0) such that:

k0
KS−→k1

KS−→ k2
KS−→ . . . KS−→ kn

k′0
KS−→ k′1

KS−→ . . . KS−→ k′n−1
KS−→ k′n,

where k′i = ki+1, for i ∈ {0, . . . , n− 1}. We note that this observation is only possible when the
KS function is the same at each step of the key derivation, which is usually not the case in
modern block ciphers where we usually introduce different round-dependent constants at each
application.

Formally, when the adversary in the standard model can only query the oracle using the
secret key k, in the related-key model, he can now query under keys f1(k), . . . , ft(k) for some
relations fi chosen by the adversary. At first, the concept of related keys has been introduced to
analyze the security provided by the key scheduling algorithms of block ciphers. Indeed, all
the subkeys used in a block cipher are generally derived from a single master secret key, and
for efficiency matters, we want the derivation KS to be fast, which can make a quite weak key
scheduling algorithm.

In Chapter 6, we revisit this approach while targeting SPN ciphers, and in particular
the AES-128. Indeed, the key schedule algorithm of AES is somewhat acknowledged to be
the weakest point of the cipher, so that an adversary can take advantage of it in the related-key
model. On the larger variants of the AES, there are two known related-key attacks of the full
AES-192 and AES-256, where we allow the adversary to introduce (and control) differences
in the (sub)keys. These results have been published in two major works, in [BK09] by Alex
Biryukov and Dmitry Khovratovich, and in [BKN09] by Alex Biryukov, Dmitry Khovratovich
and Ivica Nikolić. We note that these two results have been later renamed related-subkey attacks
in [BDK+10] since the relation in the keys is verified on a particular subkey, and not on the
original master key at the input of the key scheduling algorithm.

In comparison to the standard model, it is hard to give a formalization of the related-key
model to provide a formal definition of the security against related-key attacks. In [BK03],

3.4. OTHER FORMS OF DIFFERENTIAL CRYPTANALYSIS 53

Bellare and Kohno give an intuition of the difficulty of the problem: they show that there
exist key relations for which we can find trivial attacks for any block ciphers. While we
could investigate a way to somehow restrict the set of possible relations in the key, we cannot
completely ignore the definition of the targeted cipher, as the key relation may depend on the
cipher definition, as in [BKN09, BK09].

Related-key boomerang attacks

We have mentioned the boomerang attack in the previous section, which considers the en-
cryption decryption of a four-message structure under a single secret key. The concept can
easily be generalized to related keys where the adversary encrypts the four messages under
two, four or more related subkeys (see Figure 3.7). The concept has first been introduced by

X1 X2

E0 E0

E1 E1

Y1 Y2

X3 X4

E0 E0

E1 E1

Y3 Y4

∆

∆

∇ ∇

∆∗

∆∗

∇∗ ∇∗

∆
K 13

∆
K 13

∆K24

∆K24

Figure 3.7: The related-key boomerang attack.

Biham, Dunkelman and Keller in [BDK05a], and then applied to several ciphers like KASUMI in
[BDK05b], AES in [GL08] and later on the largest versions of the AES as we already mentioned
in [BKN09, BK09].

The methodology to find an input structure for the related-key boomerang attack is closely
related to the original boomerang attack: we do not discuss it in this document and refer the
reader to the mentioned works.

54 CHAPTER 3. DIFFERENTIAL CRYPTANALYSIS

3.5 Hash functions

In this section, we give an overview of some cryptanalytic techniques used for attacks on hash
functions. We note that there is a vast literature on the subject, which would probably need
a book by itself to be properly summarized. Instead, we have chosen to discuss some general
ideas (Section 3.5.1) and the recent rebound strategy (Section 3.5.2).

3.5.1 Generalities

Since most of the current hash functions are based on block ciphers by using a mode like
Davies-Meyer (DM) or Matyas-Meyer-Oseas (MMO), we are tempted to reuse the previous
ideas on block ciphers and apply them to hash functions. While this can be done, there are
several differences that help the adversary: first of all, there is no secret in a hash function,
which means that we either know or control the key input to the underlying block cipher. The
adversary can exploit this by choosing the best possible key input or select the one that suits
best his purpose.

A general idea that we have developed for block ciphers is the concept of differential
characteristic: almost all the attacks against hash functions start by devising a high-probability
differential characteristic. If the hash function or its compression function uses an internal
block cipher, we can use the freedom in the key bits to select the characteristic with the highest
differential probability as it is normally key-dependent.

Another consequence of the lack of secret parameter in the hash function is the total
transparency of computations that goes with it. In particular, we do not need to guess key
material to check whether an event has occurred during the computation, like the integral
property for instance, we can directly check for the event and avoid extra computations if
it does not hold (early-abort principle). Additionally, we have mentioned earlier the unicity
distance for block cipher that gives an estimation of the quantity of information required to
determined uniquely and without ambiguity the secret key. Here, this does not make sense
as we need to verify a relation only once, e.g. find two inputs sharing the same image. All
in all, while the cryptanalysis of block ciphers and hash functions use similar technique, the
respective problems are completely different from one another, and one could say that all one
can do when a secret is involved can also be done when none is.

In the case of hash functions, the attacker starts by finding a differential characteristic that
holds with high probability. The probabilities are generally computed whether conditions are
verified along the characteristic. For hash functions from the SHA family like MD4, MD5, SHA-1,
these equations are generally bit conditions and can be enforced with various techniques like
message modification techniques. This topic goes beyond the scope of this document, but we
emphasize that the goal of the attacker here is to partially determine a set of bits during the
hashing process. In the end, he tries to fulfill the remaining conditions by finding values for the
unset bits.

3.5. HASH FUNCTIONS 55

3.5.2 Rebound attack

In this section, we give a high-level introduction to the rebound attack. It has been first proposed
by Mendel, Rechberger, Schläffer and Søren S. Thomsen at Fse 2009 in [MRST09]. This attack is
categorized in the class of differential attacks, as an optimized version specifically dedicated to
hash functions. While differential cryptanalysis for block ciphers discussed in Section 3.2 aims
at recovering the secret of the cryptosystem, here the point of the adversary is to contradict one
of the requirements of the hash function, e.g. the collision or the preimage resistance.

In the rebound attack, the targeted function f is decomposed into three parts:

f = f f w ◦ fin ◦ fbw,

where f can either be a block cipher, a compression function or a permutation depending on
the context (see also Figure 3.8). Then, the adversary tries to find high-probability differentials
in f f w for the forward part and in fbw for the backward part. They are connected in the inbound
part in fin. Now, as we consider a secretless primitive or assuming the key is in the public
domain, we can consume the freedom degree coming from the message and/or key input to
fulfill the strong constraints at the merging point in fin.

fbw fin f f w

Inbound

OutboundOutbound

Figure 3.8: Overview of the rebound attack: we start in the middle in the inbound phase to end in the
two outbound phases.

As in classical differential attacks on hash functions, we first need to construct a high-
probability differential for this scenario, but we now allow the characteristic to have a low
probability in the middle. Indeed, this part lies in the inbound phase where we start by
consuming lots of freedom degrees to generate efficiently partial conforming pairs of messages.
Consequently, we can rather concentrate our efforts on the outer parts so that the backward and
forward outbound phases would be verified with the highest possible probabilities. However,
it is to be noted that the purpose of the rebound attack is to delegate the efficient generation
of the message pairs to the inbound phase where we can consume many freedom degrees
and to exhaust them into the probabilistic outbound phases to filter out a right pair for the
full characteristic. This mechanism therefore assumes that the inbound can generate enough
starting points for the outbound phases, namely name the probability pbw · p f w of the two
outbound phases verifies pbw · p f w > 1/N, where N is the number of pairs the inbound can
generate. This simply means that there is a non-negative amount of freedom degrees for the
complete characteristic.

The rebound attack has been published at the very beginning of the SHA-3 competition
and has first been applied in [MRST09] to reduced version of the Whirlpool and Grøstl

56 CHAPTER 3. DIFFERENTIAL CRYPTANALYSIS

hash functions, both based on the AES. The analysis of Whirlpool has later be refined in
[LMR+09] where the full compression function is attacked by a distinguishing algorithm in
2188 computations. For this attack, the rebound strategy applies once in the message and once
in the key schedule, which allows to connect efficiently the two parts and construct efficiently a
near-collision input to the compression function. This is possible in Whirlpool as the main
permutation is almost the same as the permutation in the key schedule. In Chapter 8, we show
how to increase the probability of the outbound phases to decrease the time complexity of this
attack on Whirlpool.

In some cases, it is possible to extend the general framework of the rebound attack of
Figure 3.8 by considering more than one inbound phase. Naturally, this assumes there are
enough freedom degrees to do so, but we may isolate independent parts of the primitive,
construct a differential characteristic matching the behavior of the rebound, and run the two
or more inbounds. This strategy has been applied for instance to the LANE hash function in
[MNPN+09] or in [JNPS11a] for ECHO as we describe in Chapter 9.

At first, the rebound attack has focused on the AES-like designs like AES, Grøstl and
Whirlpool, probably because truncated differential characteristics can be handled easily for
such designs and they apply perfectly to the rebound technique. However, similar ideas can
be carried out on the completely different ARX designs like it has been done on Luffa in
[KNPRS10] or on Skein in [KNR10].

Throughout this document, we revisit various aspects of the rebound technique and apply
it to different primitives. In Chapter 7, we start by describing the basic application of one
inbound and two inbound phases in a keyless AES settings with 7 rounds. The key is assumed
to be known, and the rebound attack can find an input pair to the cipher more efficiently than
for a random permutation. We present this technique for AES-like permutations in a very
general context to apply it easily on larger functions like Grøstl or ECHO, and present all the
published algorithms improving the capacity of the rebound. Finally, in the last Chapter 8, our
goal is twofold: first, we detail how we can extend the inbound phase by one more round in
some instances of AES-like permutations, and then we show how to increase the probability of
the outbound phases to decrease the overall time complexity requires by the rebound attack.

CHAPTER4
Description of the AES

and cryptanalytic Results

Contents
4.1 The AES competition . 57

4.2 Description of the AES block cipher . 58

4.2.1 Key scheduling algorithms . 59

4.2.2 Round function . 61

4.2.3 The substitution layer . 62

4.2.4 The permutation layer . 64

4.3 AES-like permutations . 66

4.4 Notable cryptanalytic results . 67

4.4.1 Square attack . 67

4.4.2 Improved square attack with partial sums 71

4.4.3 Collision attack . 75

4.4.4 Impossible differential attack . 79

4.4.5 Related-key attacks . 84

4.4.6 Summary of all the attacks . 86

In this section, we describe the structure of all the three variants of the AES. We start in Sec-
tion 4.1 by recalling the history of the selection of the AES in the competition launched by the
NIST. Then in Section 4.2, we precise the complete description of the AES-128, AES-192 and
AES-256, which only differ by their key scheduling algorithms. Finally, we give some of the
main cryptanalysis results that have been published against this cipher (Section 4.4).

4.1 The AES competition

On January 2, 1997, the National Institute of Standards and Technology of the United States
(NIST) has announced a will to replace the current standard of encryption DES. Indeed, the
16 rounds of the DES has been analyzed successfully since the publication of the differential
attack [BS93] and the linear attack [Mat94a]. Moreover, the NIST assesses that 56-bit keys are

— 57 —

58 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

no longer sufficient to thwart the growing threats of cryptanalysis and affordable computing
power.

Rather than imposing the AES as a new publicly available algorithm designed by its own
services like it has been done for its predecessor, the NIST calls for participations [AES97]
under an open process where the interested parties are asked to propose their own block cipher
for public evaluation. The submissions are requested to offer 128-bit blocks and key sizes of 128,
192 and 256 bits, at least. This process starts in early 1998 when the NIST chooses 15 candidates
entering the first of the three rounds of the selection. In alphabetic order, the NIST selects the
following submissions for public evaluation by the cryptographic community:

• CAST-256 (Adams et al.)
• CRYPTON (Lim)
• DEAL (Knudsen)
• DFC (Stern et al.)
• E2 (NTT)
• FROG (Georgoudis et al.)
• HPC (Schroeppel)
• LOKI97 (Brown)

• MAGENTA (Jacobson et al.)
• MARS (IBM)
• RC6 (Rivest et al.)
• Rijndael (Rijmen and Daemen)
• SAFER+ (Massey)
• Serpent (Anderson et al.)
• Twofish (Schneier).

Besides security, an important feature required by the NIST is good performances on major
platforms: for those two reasons, the NIST reduces in August 1999 the possible candidates to
only five so-called AES finalists: MARS, RC6, Rijndael, Serpent, and Twofish. Finally, in
October 2000, the NIST has declared Rijndael as the winner of the competition and begins
the process of standardization. To date, the Belgium block cipher designed by Joan Daemen
and Vincent Rijmen is commonly referred to as AES and is the current standard of encryption
since 2001 by FIPS PUB 197 [AES01].

4.2 Description of the AES block cipher

The Advanced Encryption Standard (AES) [AES01] is an iterated block cipher based on a
Substitution-Permutation Network that can be instantiated using three different key sizes:
128, 192, and 256 bits. The block size for all the variants is the same and is 128-bit large.
The authors Joan Daemen and Vincent Rijmen have reused their earlier design strategies of
the SHARK [RDP+96] and SQUARE [DKR97] block ciphers, which was one of the few ciphers
having keys larger than 128 bits.

This modern design breaks with the Feistel family by introducing a byte-oriented structure,
with a more advanced mathematical background. Namely, the internal state of the primitive
is seen as a 4× 4 matrix of bytes1 as values in the finite field GF(28), which is defined via
the irreducible polynomial x8 + x4 + x3 + x + 1 over GF(2). Therefore, any byte value in the
interval [0, 28 − 1] can be represented as the polynomial in GF(28): for instance, the byte 3 is
represented by x + 1 and 0x42 as hexadecimal representation of 66 is represented by x6 + x.
During the encryption process that we describe in the next paragraphs, the operations on the

1We recall that one byte commonly equals 8 bits, and this is the case in this document.

4.2. DESCRIPTION OF THE AES BLOCK CIPHER 59

state matrix are performed with the field arithmetic. In the sequel, we use an ordering of the 16
bytes inside the matrix as mentioned on Figure 4.1, and we denote by x[j] the j-th byte of this
ordering for a given AES state x, or alternatively if needed x[i, j] or xi,j, 0 ≤ i, j ≤ 3 the matrix
element at index (i, j) in the state.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 4.1: Ordering of the bytes in one AES state.

For a long message m, a block cipher mode transforms m into N chunks of same size
as the block size, m → (m0, . . . , mN−1), and links their results to construct the encrypted
version AESk(m) of m using the key k. The NIST suggests several modes depending on the
scenario: six confidentiality modes [Dwo01a] (ECB, CBC, OFB, CFB, CTR, and XTS-AES), one
authentication mode [Dwo01d] (CMAC), and five combined modes for confidentiality and
authentication [Dwo01c, Dwo01b] (CCM, GCM, KW, KWP, and TKW). In the sequel, we ignore
the mode of operation and concentrate on the primitive of encryption.

On Figure 4.2, we show a schematic view of the AES encryption process. Like any block
cipher, it takes two inputs: the key k and a message m to encrypt, and outputs the corresponding
ciphertext c encrypted under key k: c = AESk(m). In the next two sections, we describe the two
main components: the key schedule (Section 4.2.1) and the round function f (Section 4.2.2).

m

k

c

AES

(a) Black-box view.

Key Schedule

m f
s1

. . . f
sr

c

k

k0 k1 kNr−1 kNr

AES

(b) Complete AES encryption.

Figure 4.2: Encryption with AES: the key k is fed to the key schedule to produce the subkeys, and the
input message m is encrypted using the Nr rounds of the round function f . The ciphertext c corresponds
to c = AESk(m).

4.2.1 Key scheduling algorithms

The AES comes in three variants, which only differ by their key schedules. We recall that a
key scheduling algorithm consists of an algorithm that expands an input key k into a sequence

60 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

of Nr + 1 subkeys k0, . . . , kn. It is sometimes called key expansion. We note that the AES is a
key-alternating cipher (see Section 3.1.2).

Once the subkeys are generated, they are incorporated into the block cipher to combine
the original secret k and the message to encrypt: in the AES, this is achieved by XORing one
subkey between each of the Nr applications of the round function. Consequently, the subkeys
are as large as the block size, that is 128 bits.

The algorithm to expand the original secret k depends on the variant: for AES-128, the
key is exactly as large as the block size, so the initial subkey is fixed to the master key: k0 ← k.
For the largest variants AES-256, the master key k is initially stored into the two first subkeys:
(k0, k1) ← k. For the AES-192, the key size is 1.5 the block-size, so we use (k0, hi(k1)) ← k,
where hi(x) is the highest part of the state, that is bytes 0 to 7 from Figure 4.1.

Then, to produce the following subkeys, we use the algorithms represented schematically
on Figure 4.3. These diagrams show one iteration of the key schedule; therefore, to produce all
the subkeys, we need to run it 10 times for AES-128, 7 times for AES-192 and 6 times for
AES-256.

«S

(a) AES-128.

«S

(b) AES-192.

«S

S

(c) AES-256.

Figure 4.3: Key schedules of the three variants of the AES: AES-128, AES-192 and AES-256. On the
three diagrams, one cell represents one byte, the « performs a rotation upwards by one cell of the whole
4-byte column, and S is the AES non-linear S-Box.

As we describe in the next section, the design of the round function of AES is completely
justified to achieve some resistance against known class of attacks, but on the other hand, the
key schedules are somewhat ad-hoc and do not rely on particular properties. Constructing
a key schedule both efficient and provable secure has been an open problem for a long time,
but the authors of the AES did not truly investigate this direction. They have chosen an
algorithm adapted from the one of SQUARE but not totally linear as its predecessor. It is widely
acknowledged that the key schedule of the AES is the weakest point of its design, while the

4.2. DESCRIPTION OF THE AES BLOCK CIPHER 61

round function has been very strongly and securely designed.

4.2.2 Round function

First, the plaintext initializes the internal state matrix, and then, the encryption process applies
Nr times a round function, where Nr depends of the version of AES: Nr = 10 for AES-128,
Nr = 12 for AES-192 and Nr = 14 for AES-256. Each of the Nr AES round (Figure 4.4)

Round function f

AK SB

S

x
x
x
x

SR

C ← M× C

x
x

x
x

MC

wi−1 xi yi zi wi

Figure 4.4: One round of AES: description of the round function f

applies four operations to the state matrix (except the last one where we omit the MixColumns):

• AddRoundKey (AK) adds the next 128-bit subkey to the state,
• SubBytes (SB) applies the same 8-bit to 8-bit bijective S-Box S 16 times in parallel on

each byte of the state,
• ShiftRows (SR) shifts the i-th row left by i positions,
• MixColumns (MC) replaces each of the four column C of the state by M× C where M is

a constant 4× 4 maximum distance separable matrix over GF(28).

After the Nr-th round has been applied, the last subkey kNr is added to the internal state to
produce the ciphertext c (see Figure 4.2).

In the remaining of this document, we may need to refer to certain states during the
encryption. As depicted on Figure 4.4, we use: wi−1 for the state before the i-th key addition, xi

the state after it, yi the state after the S-Box applications and zi the state before the MixColumns
operation.

We note that the AddRoundKey follows the MixColumns operation, and since they are
both linear, their order can be changed. Sometimes, we thus may swap these two operations
and refer to the equivalent added subkey by ui = M−1(ki).

The AES is a Substitution-Permutation Network where the substitution step is instantiated
by the SubBytes operation that introduces non-linearity in the cipher, and the permutation
phase is the composition of MixColumns and ShiftRows. We give more details of both the S
and P layers in the next two sections.

62 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

4.2.3 The substitution layer

In the AES, the substitution is instantiated by the bijective S-Box S: it is an 8-bit S-Box carefully
chosen to bring as much security as possible. We give in Appendix A.1 its full specifications,
seen as a lookup table of 28 entries, and we give here the formal definition. This part of the
cipher needs to be non-linear, that is why the main operation involved in S is the multiplicative
inverse in the field GF(28). For an element x ∈ GF(28)r {0}, we note x−1 = (x0, . . . , x7) its
multiplicative inverse, i.e. x× x−1 = 1, seen as a vector in the base field GF(2). To complete
this definition, we assume that 0 is sent to itself through the inverse mapping. Then, this vector
is changed into the final output by an affine transformation g : x → A× x⊕ b given below:

x0

x1

x2

x3

x4

x5

x6

x7

g−→

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

A

x0

x1

x2

x3

x4

x5

x6

x7

x

⊕

1
1
0
0
0
1
1
0

b

(4.1)

The main reason for this choice is the quasi-optimal resistance to linear and differential
cryptanalysis in the set of all the 8-bit S-Boxes. We focus here on differential cryptanalysis, and
recall the following Proposition 4.1.

Proposition 4.1 (Maximal differential probability of S). The AES S-Box has maximal differential
probability pmax = 2−6.

For cryptographic applications, the designers of block ciphers want to minimize the maximal
differential probability (see Definition 3.3) that basically expresses how strong the S-Box is
against differential cryptanalysis. Ideally, one wants this probability to be as small as possible:
it cannot be strictly smaller than 2−(n−1) since an entry in the DDT2 is necessarily even. Indeed,
for given non-zero differences ∆i and ∆o the equation

S(x)⊕ S(x⊕ ∆i) = ∆o, (4.2)

has either no solution, or an even number of solutions: as soon as (x, x ⊕ ∆i) verifies Equa-
tion (4.2), it is also the case for (x⊕∆i, x). In the case of the AES, n = 8 would mean pSmax ≥ 2−7.
This bound is not tight for the AES as it only reaches 2−(n−2), which makes pSmax = 2−6.

There have been a lot of research work done in finding good non-linear functions, called al-
most perfect non-linear (APN) functions, see for instance [Nyb91, Nyb93, MS90, Pie90, BCCLC06,
BCC10]. The ideal case 2−(n−1) is (almost) the perfect case where all differences behave the
same way: there is no difference which appears more often than the others so that a differential
cryptanalysis would be much harder to mount. Until the work by Dillon et al. in [BDMW10],

2Difference Distribution Table.

4.2. DESCRIPTION OF THE AES BLOCK CIPHER 63

no APN permutation was known in even dimension, and this is still an open problem to find
one for higher dimensions. We give their result as the following permutation in GF(26):

π6 =

0 54 48 13 15 18 53 35
25 63 45 52 3 20 41 33
59 36 2 34 10 8 57 37
60 19 42 14 50 26 58 24
39 27 21 17 16 29 1 62
47 40 51 56 7 43 44 38
31 11 4 28 61 46 5 49

9 6 23 32 30 12 55 22

,

which has the particularity that for any non-zero α and β in GF(26), the equation

π6(x)⊕ π6(x⊕ α) = β,

has at either 0 or 2 solutions, and nothing else. We now state a more general open problem.

Open problem 1. Find an APN permutation πn in an even-sized field GF(2n) for n > 6. That is,
find a permutation πn that reaches maximal differential probability pπn

max = 2−(n−1).

Still, for the AES, pSmax = 2−(n−2) is good enough to ensure security against basic differ-
ential cryptanalysis beyond exhaustive search. For cryptanalysis applications, we also note
Theorem 4.2 which provides an important property of the AES S-Box.

Theorem 4.2 (Differential Property of S). Given ∆i and ∆o two non-zero differences in GF(28), the
equation

S(x)⊕ S(x⊕ ∆i) = ∆o, (4.3)

has either zero, two of four solutions. This property also applies to S
−1.

Proof. To prevent the prediction of the propagation of differences in the AES, the S-Box S
as been chosen so that almost all differences behave equivalently: none is significantly more
frequent than the others.

The number of solutions N(∆i, ∆o) of the 8-bit Equation (4.3) is almost constant for any
choice of ∆i and ∆o. Like for any permutation, we get on solution to this equation on average
over all choices of differences ∆i and ∆o, but for S there are zero or two, and more rarely four
solutions. In detail, for a fixed ∆i, among the 28 − 1 possible ∆o, there are 27 − 2 of them
for which N(∆i, ∆o) = 0, another 27 − 1 so that N(∆i, ∆o) = 2 and the remaining one gives
N(∆i, ∆o) = 4. Due to symmetry, an even number of solutions means that both x and x⊕ ∆i

are valid.

All in all, if both input and output differences ∆i and ∆o are known, then the values are also
known. This property allows to deduce the values from the knowledge of the differences. �

For a more visual representation of the DDT, we print the two following images (Figure 4.5).
Each image represents the 256× 256 matrix corresponding to the DDT where the coefficients

64 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

are non-negative integers. The pixel at row α and column β has a color which is an affine
function of the number of solutions of Equation (4.3) when ∆i = α and ∆o = β. That is, the
darker the pixel is, the greater is N(∆i, ∆o). On the left, the DDT of S show that there are very
few (∆i, ∆o) such that N(∆i, ∆o) = 4: there are actually exactly one per row, if we discard the
first one. The same reasoning applies on columns. On the right, we have generated the DDT
for a randomly draw permutation π among the 256! existing ones. With no surprise, we see
that the differential properties of π are not as strong as S. Nevertheless, the AES structure in
the standard model can be proven as secure against classical differential attacks even when we
consider a random S-Box like π. Still, there could be other valid attacks that S prevents.

(a) AES S-Box. (b) Random permutation π.

Figure 4.5: Visual representation of the DDT of the AES S-Box ((a), left) and the DDT of a randomly
drawn permutation π ((b), right). Each pixel at coordinate (i, j) is indexed on the gray scale
which represents the increasing number of solutions N(i, j) of Equation (4.3): [0, 2, 4, 6+].

4.2.4 The permutation layer

In each round (Figure 4.4), the substitution layer is followed by the permutation layer to mix the
values within the state. In the AES, this phase is linear and composed of two transformations:
ShiftRows and MixColumns.

4.2.4.1 ShiftRows

The first one is the ShiftRows operation that acts on the rows by changing the positions of
the bytes in the state, but does not modify their values. Namely, the rows of the 4× 4 matrix
are rotated: row i is rotated left by i positions, so that the first row remains unchanged. This
linear operation can be seen as a matrix multiplication PSR × v(yi) where the 16-byte state yi is

4.2. DESCRIPTION OF THE AES BLOCK CIPHER 65

considered as a vector zi = v(yi) of 16 elements in GF(28) and PSR is a 16× 16 permutation
matrix from GF(2).

In terms of indexes in the state (Figure 4.1), the byte permutation can be expressed as:

SR =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

)
, (4.4)

or as explained before, in terms of matrix multiplication by the matrix:

PSR =

1 · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · 1 · ·
· · · · · · · · · · 1 · · · · ·
· · · · · · · 1 · · · · · · · ·
· · · · 1 · · · · · · · · · · ·
· 1 · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · 1 ·
· · · · · · · · · · · 1 · · · ·
· · · · · · · · 1 · · · · · · ·
· · · · · 1 · · · · · · · · · ·
· · 1 · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · 1
· · · · · · · · · · · · 1 · · ·
· · · · · · · · · 1 · · · · · ·
· · · · · · 1 · · · · · · · · ·
· · · 1 · · · · · · · · · · · ·

. (4.5)

4.2.4.2 MixColumns

The second linear transformation is called MixColumns, which acts on the columns. The
operation is a matrix multiplication in GF(28) between a constant matrix M specified in the
AES standard and the state matrix zi. The matrix M is the circulant and invertible matrix
M = cir(2, 3, 1, 1):

M =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 with: M−1 =

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

 , (4.6)

and has been chosen for its good diffusion properties. It is a Maximum Distance Separable
(MDS) matrix that ensures a distance at least 5 between any input/output pairs to the matrix.
In particular, if two inputs x and x′ differ in ni position, then the multiplication ensures that
Mx and Mx′ differ in at least no positions. The MDS property consists in ni + no ≥ 5 for any
inputs with ni 6= 0, otherwise ni = 0 imposes no = 0.

In terms of truncated difference (Section 3.4.1), we denote a difference by a non-white
cell, and no difference by a white cell, see Figure 4.6. Following the MDS property, the byte
difference from Figure 4.6b the MixColumns makes the difference spread to 4 bytes at its
output.

66 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

(a) No difference. (b) One truncated difference in byte 0.

Figure 4.6: Truncated difference representation in AES: no difference on the left, one truncated difference
on the right.

MC

zi wi

Figure 4.7: Transition 1 → 4 in the MixColumns: the truncated difference in zi is expanded to 4
truncated differences in wi with the MixColumns operation.

4.3 AES-like permutations

In this section, we introduce a generalization of the AES round permutation to encompass more
that just the AES. Indeed, there are many symmetric primitives that reuse the design of the
AES with slightly different components. To include all these designs in a single parameterized
one, we introduce the concept of AES-like permutations.

We keep the notations from the AES to name the substitution and permutations layers, but
we generalize the square state to a size t× t and the width of the cell to c bits. In the case of
the AES, we then have t = 4 and c = 8. The non-linear S-Box is still denoted by S, but we do
not necessarily refer to the one of the AES. However, we assume that the generic S verifies
the same good properties as the AES S-Box, in particular the differential properties stated in
Theorem 4.2. We generalize them in Definition 4.1.

Definition 4.1. We say that S generalizes the AES S-Box to c bits if for any random non-zero
∆o, the set {∆i | ∃x, S(x)⊕ S(x⊕ ∆i) = ∆o} has exactly 2c−1 − 1 elements.

The ShiftRows operation does not necessarily shift the cells in a row the same way the
AES does, but we assume that all columns depend on each row, which is possible because
of the square geometry. The MixColumns transformation is supposed to be MDS, where the
MDS bound generalizes to: ni + no ≤ t + 1 if ni and no are the number of active cells at the
input (respectively the output) of the MixColumns. The main consequence of the generalized
diffusion layer mimics the one from the wide trail strategy on the AES: we get full diffusion
after two rounds of the permutation when a single bit is flipped at the input. We note that if
the state were not square, the full diffusion could only be reached after three rounds.

To give an example, we can consider the case of an AES-like permutation with t = 8 and
depict it in Figure 4.8. This example encompasses primitives like Grøstl or Whirlpool, and
we analyze this deeper in Section 8.2.

4.4. NOTABLE CRYPTANALYTIC RESULTS 67

AK SB SR MC

Figure 4.8: Generalized round function of an AES-like permutation with t = 8.

4.4 Notable cryptanalytic results

In this section, we give a non-exhaustive list of cryptanalytic results on the AES or its building
blocks that have been published since the presentation of Rijndael. They include nontrivial
properties of the round function with the square attack [DKR97, KW02], and an improvement
with the partial sum technique [FKL+00], a collision attack on 7 rounds [GM00], impossible
differential attacks on 7 rounds [BA08, LDKK08, MDRMH10], related-key attacks of the full
version of both AES-192 and AES-256 [BKN09, BK09]. Another major work includes the
Asiacrypt 2010 paper by Dunkelman, Keller and Shamir [DKS10] where they improve single-
key attacks on AES-192 and AES-256 with advanced meet-in-the-middle techniques. As we
improve their results in [DFJ12b], we dedicate the complete Chapter 5 to this analysis and recall
theirs.

4.4.1 Square attack

In this section, we recall the square attack, also known as integral attack or sometimes saturation
attack. Lars Knudsen originally develops this technique against the block cipher SQUARE to
break up to 6 rounds of the cipher [DKR97].

The attack is a chosen plaintext attack and aims at recovering the secret key k. It uses the
algebraic structure of the block cipher and works independently of both the bijective S-Box and
the key scheduling algorithm. The basic observation is summarized in Theorem 4.1

Definition 4.2 (δ-set). Let a δ-set be a set of 28 AES states that assume all values on a particular
byte (called active byte) and are constant on the 15 other bytes (called passive bytes).

Property 4.1. Let S be a δ-set. Consider the encryption of each element of this δ-set with three rounds
of AES. We have the property:

∀j ∈ [0, . . . , 15],
⊕

x∈S
x[j] = 0. (4.7)

We say that byte j is balanced after three rounds.

Proof. Let S be a δ-set. As described previously, one round of AES in composed of several
transformations.

First, AddRoundKey and SubBytes apply a bijective transformation (key addition and
S-Box S, respectively) to all the bytes of the state, so that a δ-set is transformed into an other

68 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

⋆

δ-set

ARK

⋆
SB

⋆
SR

⋆
MC

⋆

⋆

⋆

⋆

ARK

⋆

⋆

⋆

⋆

SB
⋆

⋆

⋆

⋆

SR
⋆

⋆

⋆

⋆

MC
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

ARK

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

SB
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

SR
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

MC
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

ARK

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

Figure 4.9: Integral distinguisher on 3-round AES: a byte marked by ⋆ is active, a white byte is passive
and a byte marked by 0 is balanced.

δ-set. Then, the ShiftRows operation shifts the bytes the same way in all the elements of S ,
so that the resulting set is still a δ-set. Finally, the last operation is the MixColumns which
applies the MDS matrix, and transforms the δ-set to a set where all the four bytes of one column
assume all values.

In the second round, the first AddRoundKey and SubBytes keep the structure of the δ-set
and the ShiftRows spreads the four active bytes of the column to one active byte per column.
Consequently, the MixColumns behaves the same way as in the first round: it makes all 16
bytes of the state to assume all values.

In the third round, the first AddRoundKey and SubBytes still maintain this property, as
well as the ShiftRows. Let Z = {zk} be the set of 28 inputs of the third MixColumns and
W = {wk} their respective outputs. To show that the bytes of W are balanced, we compute the
sum for a particular position [i, j]:

⊕

k

wk[i, j] =
⊕

k

MixColumns
([

zk
0,j, zk

1,j, zk
2,j, zk

3,j

]T
)

=
⊕

k

(
2zk

0,j ⊕ 3zk
1,j ⊕ zk

2,j ⊕ zk
3,j

)

= 2×
⊕

k

zk
0,j ⊕ 3×

⊕

k

zk
1,j ⊕

⊕

k

zk
2,j ⊕

⊕

k

zk
3,j.

The coefficients in the matrix multiplication depend on the position [i, j], but in any case, since

4.4. NOTABLE CRYPTANALYTIC RESULTS 69

all the bytes of Z assume all values, the four sums equal zero, so that

∀(i, j),
⊕

k

wk[i, j] = 0,

which proves that all the bytes after 3 rounds of AES of a δ-set are balanced. �

This property actually describes a distinguisher on 3 rounds of AES, and can be used to
construct a key recovery attack on 4, 5 and 6 rounds.

4.4.1.1 Attack on 4 rounds

The attack for 4 rounds is trivial and is a direct application of the distinguisher (Figure 4.10):
the adversary begins by constructing a δ-set and asks its encryption.

⋆

δ-set 3 rounds
?

SB
y

SR
z

MC

g

u4

MC

k4

ARK

c
Ciphertexts

Figure 4.10: Integral attack on 4-round AES: the last equivalent subkey u4 is recovered from the
encryption of a δ-set.

Then, he recovers the bytes of the last equivalent subkey u4 one by one by guessing them
and decrypting the 28 ciphertexts to check whether the balanced property is verified: it must
be for the correct guess, and could be for a wrong one. Suppose he guesses the key byte to the
value g, he then decrypts the corresponding bytes in all the ciphertexts, until S−1(y) and check:

⊕

c
S−1(y) =

⊕

c
(S−1 ◦ SR−1)(c + g) = 0. (4.8)

This test removes about 1/256 key value for that byte, and the adversary performs the
algorithm for the remaining 15 bytes. Therefore, with two δ-sets, the adversary can shrink the
guesses to the correct value and recover the secret key with an overwhelming probability. The
data complexity amounts to 2 · 28 chosen plaintexts and the attack runs in 2 · 28 · 28 · 16 = 221

XOR operations and table lookups as we perform 28 of them for one guess and one δ-set. As we
usually measure an attack in terms of encryption, we assume that a full encryption is composed
of 26 similar simple operations. This makes the time complexity equivalent to 215 encryptions.

4.4.1.2 Attack on 5 rounds

The attack on 4 rounds uses the previous one as a building block by adding one round at the
end (Figure 4.11). To apply the 4-round attack, the adversary first guesses four bytes of the last
equivalent subkey u5 and decrypts a full (shifted) column of the ciphertexts through one round.
This allows to learn the values of one column after the fourth round, and the situation is then

70 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

comparable to the 4-round attack. He guesses an additional byte in u4 and performs the check
on the corresponding balanced byte. This step can be repeated four times for the four values,
and then he needs to guess another column of u5.

⋆

δ-set 3 rounds
?

SB
y

SR
z

MC

G

u4

MC

k4

ARK

•
•
•
•

SB
•
•
•
•

SR
•

•
•
•

MC

G
G

G
G
u5

MC

k5

ARK

c
c

c
c

Ciphertexts

Figure 4.11: Integral attack on 5-round AES: the last equivalent subkey u5 is recovered from the
encryption of a δ-set.

The check on the bytes still removes 1/256 of the 28×(4+1) = 240 guessed values, and we
repeat this procedure 4 times for the 4 (shifted) columns in the ciphertexts. Consequently, with
five or six δ-sets, we should successfully determine the correct secret key: the data complexity
amounts to 5 · 28 chosen plaintexts. The number of computations for a single δ-set equals
232 · (28 · 4 + 4 · 28 · (28)) XOR operations or table lookups, which makes a total time complexity
of approximately 252 simple operations, or 246 encryptions.

4.4.1.3 Attack on 6 rounds

We cannot add one more round at the end since two rounds of AES are sufficient to provide a
complete diffusion, but we can extend by one round at the beginning (Figure 4.12).

The strategy is to construct a structure of chosen plaintexts that contains several δ-sets after
one round and to apply the 5-round attack. Namely, if the initial structure S contains 232

chosen plaintexts where the main diagonal assumes all the possible values, the structure can be
seen as a set of 224 δ-sets of size 28 each.

To identify them, the original attack [DKR97] starts by guessing the 4 diagonal bytes of k0

and selects 28 plaintexts from the structure S such that they result in a δ-set after one round.
From there, the previous 5-round attack can be applied by guessing 5 more bytes and summing
over the 28 partially decrypted ciphertexts to check the balanced state byte. As we guess a
total of 9 key bytes, we need about 10 δ-sets to remove all the wrong key guesses: the data
complexity therefore amounts to 232 chosen plaintexts. The time complexity is equivalent to

232 · 10 · (4 · 232 · 28 · 4 + 4 · 28 · 28) ≈ 277

simple operations as we guess 4 bytes in k0 to construct 10 δ-sets with negligible cost compare
to the remaining operations. Then, we sequentially guess 4 times 4 bytes of u6 and partially
decrypt the 28 ciphertexts through one round, guess the key byte from u5 for the 4 positions
and compute the XOR of the 28 values. Therefore, the time complexity is about 271 encryptions.

4.4. NOTABLE CRYPTANALYTIC RESULTS 71

*
*
*
*

232 chosen plaintexts

G
G
G
G

k0

ARK

*
*
*
*

SB *
*
*
*

SR *
*
*
*

MC *

3 rounds distinguisher

?
SB

y
SR

z
MC

G

u5

MC

k5

ARK

••••
SB
••••

SR
• •••

MC

G
G

G
G
u6

MC

k6

ARK

c
c

c
c

Ciphertexts

Figure 4.12: Integral attack on 6-round AES: the last equivalent subkey u6 is recovered from the
encryption of a δ-set.

4.4.1.4 Extensions to the larger AES variants

We note that the described attacks work for any key sizes, but we can extend the 6-round tech-
nique to 7 rounds by adding one round in the end, and guessing completely its corresponding
subkey k7. This has been first described by Ferguson et al. in [FKL+00]. Naively doing so
increase the time complexity by a factor 28·16 = 2128, but we can remark linear relation in the
bytes from the key schedule in both AES-192 and AES-256 variants.

Namely, for AES-192, we can spare the guess of 2 bytes in u6 and one byte in u5, which
makes the time complexity grows to 271+(16−3)×8 = 2175 encryptions, and requires 232 chosen
plaintexts.

For AES-256, the key scheduling algorithm aligns the subkeys a bit differently, and we
cannot deduce as many bytes from k7. We can only deduce one byte from u5, which makes the
time complexity equivalent to271+(16−1)×8 = 2191 encryptions.

4.4.2 Improved square attack with partial sums

4.4.2.1 First improvement

A first improvement of the square attack reduces the time complexity by a factor of 28. The
observation has been made in [FKL+00] where Ferguson et al. consider the structure S as a
whole, which contains 224 unknown δ-sets. This spares the 4 guesses from k0.

72 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

They observe that even if we cannot distinguish which plaintext belongs to which δ-set,
since we no longer known the 4 corresponding key bytes of k0, we can still apply the previous
5-round attack. Indeed, considering the 232 ciphertexts to perform the check is equivalent at
performing the sum of all the check sums for each of the 224 δ-sets, which is true because
0⊕ 0 = 0. In the end, we save a factor 232 by not guessing 4 bytes in k0, but we need to compute
the XOR of 232 rather than 28. In total, we save a factor 28 in the time complexity.

4.4.2.2 Second improvement

In the same paper [FKL+00], Ferguson et al. also note that we can further improve this result by
a factor 228. The final computed value and the approach to get the data is exactly the same as
before, but they observe a way to group the computations to reduce the number of operations
performed.

Their method is called partial sums as the technique to group the computations relies
on partial summations. Namely, in the previous attack, we compute a sum over all the
224 × 28 = 232 ciphertexts ci that depends on 9 parameters:

• 4 bytes from the ciphertexts ci that we denote by ci,0, ci,1, ci,2 and ci,3,
• 4 key guesses of u6 that we note k0, k1, k2, k3,
• and an additional guess noted k4 from u5.

The sum σ computed to check the balanced state equals:

σ
def
=
⊕

i

S−1
(

Lk0 ,k1,k2,k3 ,k4(ci,0, ci,1, ci,2, ci,3)
)

, (4.9)

with:

Lk0 ,k1,k2,k3 ,k4(ci,0, ci,1, ci,2, ci,3) =

S0 (ci,0 ⊕ k0)⊕ S1 (ci,1 ⊕ k1)⊕ S2 (ci,2 ⊕ k2)⊕ S3 (ci,3 ⊕ k3)⊕ k4, (4.10)

where S0, . . . , S3 are bijective applications of the form x → α× S−1(x) for a fixed non-zero α.
The inner sums in Equation (4.9) that involves the Si come from the MixColumns application
of the penultimate round.

Naively iterating over the different values for the 9-byte parameter requires 272 operations
to evaluate all the sums (see Figure 4.13). Basically, for each ciphertext ci, we loop over the 240

values for the 5 key guesses, and compute the value of the function Lk0,k1,k2 ,k3 ,k4(ci,0, ci,1, ci,2, ci,3)
denoted σi,4. Once we have done that, we have reduced the list of 232 ciphertexts (ci)i to a list
of 232 bytes, and we sum their images by S−1. This requires 232 · 240 = 272 operations.

More efficiently, we start by guessing two values in u6, say k0 and k1 (see Figure 4.14). For
each ciphertext co, we can evaluate the partial sum:

σi,1
def
= S0 (ci,0 ⊕ k0)⊕ S1 (ci,1 ⊕ k1) . (4.11)

That way, we replace the list of 232 ciphertexts by a list of tuples

(σi,1, ci,2, ci,3) , (4.12)

4.4. NOTABLE CRYPTANALYTIC RESULTS 73

ci,0 ci,1 ci,2 ci,3

σi,4

L

ci,0 ci,1 ci,2 ci,3

σi,4

L · · · · · · · · · · · ·

ci,0 ci,1 ci,2 ci,3

σi,4

L

k0
k1
k2
k3
k4

Guessed:
232 ciphertexts

232 sums σi,4

σ

S−1
S−1

S−1

Figure 4.13: Basic summation for the integral attack: for each ciphertext, the guessed values in the
subkeys are used to evaluate L and produce the final sum σ.

that contains the partial sum right behind the non-linear S where to perform the check for the
guesses k0 and k1.

We note that for a single ciphertext ci, the guesses k0 and k1 can take up to 216 values, but
the sum σi,1 only 28. Moreover, for that ciphertext, we are interested in the XOR of all the values,
so it is sufficient to know whether a particular value appear in the summation; that is counting
the occurrence modulo 2. This trick allows to compress the 232 possible tuples (σi,1, ci,2, ci,3)
for all the k0, k1 for a single ciphertext to only 224. Therefore, the initial list of 232 ciphertexts is
reduced to a list of 224 tuples, and this has cost 232 × 216 = 248 operations (Figure 4.14).

ci,0 ci,1 ci,2 ci,3

σi,1

ci,2 ci,3

σi,2

ci,3

σi,3

ci,0 ci,1 ci,2 ci,3

σi,1

ci,2 ci,3

σi,2

ci,3

σi,3

· · · · · · · · ·

ci,0 ci,1 ci,2 ci,3

σi,1

ci,2 ci,3

σi,2

ci,3

σi,3

k0
k1

k2

k3

k4

232 ciphertexts

224 partial sums σi,1

216 partial sums σi,2

28 partial sums σi,3

σ

S
−1(σi,3⊕k4

)

S
−1(σi,3⊕k4

)

S
−1(σi,3⊕k4

)

Figure 4.14: Improved summation for the integral attack: the key bytes are progressively guessed while
the input data structure is being compressed.

74 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

Then, we continue by guessing the third byte k2 and the 224 constructed tuples: the time
complexity equals 224 × 224 = 248, and we can perform the same computation. From a guess k2

and a tuple (σi,1, ci,2, ci,3), we construct the new tuples

(σi,2, ci,3) = (σi,1 ⊕ S2 (ci,2 ⊕ k2) , ci,3),

which can be compressed to 216 possible values. We continue by guessing k3, and we construct
the values

σi,3 = σi,2 ⊕ S3 (ci,3 ⊕ k3)

at a cost of 232 × 216 = 248 to guess 4 bytes from u6 and the 216 previous tuples. Finally, we are
left with a structure of 28 possible values for the partial sum σi,3

σi,3 = S0 (ci,0 ⊕ k0)⊕ S1 (ci,1 ⊕ k1)⊕ S2 (ci,2 ⊕ k2)⊕ S3 (ci,3 ⊕ k3) , (4.13)

and the final guess k4 allows to construct the final sum in Equation (4.9) in time 240 × 28 = 248,
needed to guess the 5 key bytes and the 28 values in the previous structure.

In the end, this technique computes the sum to check the balanced state of a single byte in
the square attack in 248 simple computations and 232 memory units to store the data and the
intermediate sums.

4.4.2.3 Extension to more rounds

Extending the partial sum technique to 7 rounds can be done in a similar way as the extension
of the original square attack: we begin by guessing completely the 16 bytes of the very last
subkey, and then, the technique applies on a similar equation as Equation (4.9), but with more
variables.

For AES-192, the 16 guesses from k7 linearly gives 3 bytes in the two previous subkeys.
The partial sum technique compresses the initial structure of 232 elements into 224 counters: for
each guess of k7, precomputed tables can perform this operation in 232 table lookups. As before,
each compression step is done in the same amount of time, here 2128+32 = 2160 computations.
In terms of AES encryptions, we estimate this to 2155 encryptions.

For AES-256, guessing k7 provides only one additional byte in k5 such that the first step
in the partial sum technique requires 2128+32 = 2160 computations, but then we need to add
the two guesses which increases the complexity to 2176 computations, or in total about 2172

encryptions.

4.4.2.4 The herd attack

In the same paper, Ferguson et al. [FKL+00] show that it is possible to reach an attack with
almost the full codebook and a time complexity of 2120 encryptions. The main point is similar
to the one the partial sum technique: if we have the 2128 ciphertexts corresponding to 2120 δ-sets,
then the sum over them all to check the square property should yield zero, as it is done over
232 ciphertexts for the partial sum.

However, this property would be verified for any bijective application and therefore leaks
no information about the key. To apply it, we can partition the input data to 2120 structures

4.4. NOTABLE CRYPTANALYTIC RESULTS 75

of 28 plaintexts called herds. Now, summing over a herd should yields zero for a correct key
guess, but is unlikely to happen for a random application.

For 7 rounds, this “attack” can be performed in about 2120 encryptions using 264 memory
and all the 2128 plaintexts. We note that we could discuss whether this result actually describes
an attack in the sense that the adversary knows the full codebook, which gives him the ability
to encrypt and decrypt any messages for that secret key and already requires 2128 computations
and memory to retrieve. We can extend this to 8 rounds with 2188 encryptions for AES-192
and 2204 for AES-256.

4.4.3 Collision attack

We describe here the collision attack presented at the AES conference in 2000 by Henri Gilbert
and Marine Minier [GM00]. They revisit the basic integral distinguisher for 3 rounds of AES to
describe a nontrivial property over 4 rounds, and apply it to get a collision attack on reduced
variants of AES.

4.4.3.1 Distinguishers

Similarly as the square property stated in Theorem 4.1, we can formulate their result in the two
following properties.

Property 4.2 ([GM00]). Let S be a δ-set active in one byte α. Consider the encryption of each element
of S with 3 rounds of AES with no whitening subkey. The function that maps α to any byte in the
output state is fully determined by 9 byte parameters.

Proof. Let consider the encryption of a δ-set over 3 rounds of AES with unknown subkeys
ki, . . . , ki+3 as shown on Figure 4.15. We show how to express the bytes x3[0] as a function of
x0[0] depending of constant bytes.

x0

SB

y0

SR

z0

MC

w0

k1 ARK

x1

SB

y1

SR

z1

MC

w1

k2 ARK

x2

SB

y2

SR

z2

MC

w2

k3 ARK

x3

Figure 4.15: Functional distinguisher from Gilbert and Minier for 3 rounds of AES.

76 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

We can trace the encryption of a plaintext x0 in the δ-set in terms of equations dependent of
byte variables. After one round, we can write the variables w0 in terms of affine functions of
y0[i] = S(x0[i]). Namely, we have:

w0[0] = 02 · S(x0[0])⊕ L0

(
S(x0[5]), S(x0[10]), S(x0[15])

)
,

w0[1] = 01 · S(x0[0])⊕ L1

(
S(x0[5]), S(x0[10]), S(x0[15])

)
,

w0[2] = 01 · S(x0[0])⊕ L2

(
S(x0[5]), S(x0[10]), S(x0[15])

)
,

w0[3] = 03 · S(x0[0])⊕ L3

(
S(x0[5]), S(x0[10]), S(x0[15])

)
,

where L0, . . . , L3 are linear functions whose coefficients depend on the matrix M. The remaining
variables w0[j] for j ≥ 4 are independent of the active byte α. We define the added constants in
the previous equations XOR-ed with the key bytes k0[0, 1, 2, 3] by ci and consider the first in x1:

x1[0] = 02 · S(x0[0])⊕ c0

x1[1] = 01 · S(x0[0])⊕ c1

x1[2] = 01 · S(x0[0])⊕ c2

x1[3] = 03 · S(x0[0])⊕ c3

so that the effect of the second round on those bytes leads to the following expression for the
diagonal bytes of w1:

w1[0] = 02 · S
(

02 · S(x0[0])⊕ c0

)
⊕ 03 · S(x1[5])⊕ 01 · S(x1[10])⊕ 01 · S(x1[15]),

w1[5] = 01 · S
(

03 · S(x0[0])⊕ c3

)
⊕ 01 · S(x1[4])⊕ 02 · S(x1[9])⊕ 03 · S(x1[14]),

w1[10] = 02 · S
(

01 · S(x0[0])⊕ c2

)
⊕ 03 · S(x1[7])⊕ 01 · S(x1[8])⊕ 01 · S(x1[13]),

w1[15] = 01 · S
(

01 · S(x0[0])⊕ c1

)
⊕ 01 · S(x1[6])⊕ 02 · S(x1[11])⊕ 03 · S(x1[12]),

that we can reformulate by introducing constants ci, i ≥ 4, for the three last terms of each line.
That is:

x2[0] = 02 · S
(

02 · S(x0[0])⊕ c0

)
⊕ c4,

x2[5] = 01 · S
(

03 · S(x0[0])⊕ c3

)
⊕ c5,

x2[10] = 02 · S
(

01 · S(x0[0])⊕ c2

)
⊕ c6,

x2[15] = 01 · S
(

01 · S(x0[0])⊕ c1

)
⊕ c7.

The same analysis can be performed for the other diagonal bytes, but here we want to get the
expression of x3[0] which lies in the first column of x3 and therefore only depends on the four
diagonal bytes of x2.

As we can express x3[0] with the MixColumns coefficients by:

x3[0] = k3[0]⊕ 02 · S(x2[0])⊕ 03 · S(x2[5])⊕ 01 · S(x2[10])⊕ 01 · S(x2[15]),

4.4. NOTABLE CRYPTANALYTIC RESULTS 77

we can also deduce its dependence to x0[0] from the above equations. Indeed, x3[0] depends on
x0[0] and the parameters c0, . . . , c3 from the first round, c4, . . . , c7 from the second round and
k3[0]. Consequently, the mapping x0[0] → x3[0] is fully determined by the 9 key-dependent
constants (c0, . . . , c7, k3[0]). �

The second property is a direct consequence of the first one, and provide a distinguisher for
4 rounds of AES by giving a way to test whether the 3 first rounds verify the 3-round property.

Property 4.3 ([GM00]). Let S be a δ-set active in a single byte b. Consider the encryption of each
element of S with 4 rounds of AES. The mapping

b→ S
−1
(

14 · x4[0]⊕ 11 · x4[1]⊕ 13 · x4[2]⊕ 09 · x4[3]⊕ k4[0]
)

(4.14)

is fully determined by 9 byte parameters depending on the key and inactive bytes of S .

4.4.3.2 Collision attack on 4 rounds

From the proof of Theorem 4.2, Gilbert and Minier note in [GM00] that the four first constants
c0, . . . , c3 are independent of the bytes x0[1], x0[2] and x0[3], but this is not the case for the four
other constants c4, . . . , c7.

Consequently if we assume that the values for (c4, . . . , c7) are uniformly distributed
over the choices of (x0[1], x0[2], x0[3]), we expect that two elements in a list of 216 elements
(x0[1], x0[2], x0[3]) would produce a collision in the 32-bit value (c4, . . . , c7). That is, by
the birthday paradox, we expect to find (x0[1], x0[2], x0[3]) 6= (x′0[1], x′0[2], x′0[3]) such that
(c4, . . . , c7) = (c′4, . . . , c′7) which incidentally produces the same mapping x0[0]→ x3[0].

From Theorem 4.2, we see that a collision occurs as soon as the linear combination of
x4[0], . . . , x4[3] in the inner expression of Equation (4.14) collides. That is, if for two different
choices (x0[1], x0[2], x0[3]) and (x′0[1], x′0[2], x′0[3]), the equation

14 · x4[0]⊕ 11 · x4[1]⊕ 13 · x4[2]⊕ 09 · x4[3]

= 14 · x′4[0]⊕ 11 · x′4[1]⊕ 13 · x′4[2]⊕ 09 · x′4[3]
(4.15)

holds, then we detect in round 4 that the collision in the two mappings x0[0] → x3[0] and
x′0[0]→ x′3[0] occurs in round 3.

4.4.3.3 Extension to 7 rounds

To apply this technique to 7 rounds of AES, we can prepend one round at the beginning exactly
in the same way as it has been done for the square attack (Section 4.4.1.3), at the expense of
guessing the four corresponding values in the first subkey.

Then, we also add two more rounds at the end. To check for the collision with the
Equation (4.15), we use a meet-in-the-middle strategy to decrease the time complexity by
guessing fewer bytes while using memory to store the intermediate computations. Namely, we
rewrite Equation (4.15), and we note that x4 is pushed to x5 since we have added one round at

78 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

the beginning:

14 ·
(

x5[0]⊕ x′5[0]
)
⊕ 11 ·

(
x5[1]⊕ x′5[1]

)

= 13 ·
(

x5[2]⊕ x′5[2]
)
⊕ 09 ·

(
x5[3]⊕ x′5[3]

) (4.16)

The strategy to apply a key recovery attack with the 4-round distinguisher starts by
encrypting the 232 chosen plaintexts, and continue by guessing the four diagonal key bytes
of k0 (see Figure 4.16). Using precomputation, we can store in small tables the δ-set along

Structure of 232 chosen plaintexts

⋆

⋆

⋆

⋆

k0
ARK

x0

SB

y0

SR

z0

MC

w0

Round 0

4-round Distinguisher Round 1-4

••

x5

SB
••

y5

SR
• •

z5

MC

w5

Round 5

1
1u6

MC

k6

ARK ••
••

••
••

x6

SB

••
••

••
••

y6

SR
• •••

••••
z6

MC
Round 6

1
1

1
1

1
1

1
1

u7
MC

k7

ARK
Ciphertexts

Figure 4.16: Gilbert and Minier attack on 7-round AES based on the 4-round collision distinguisher: the
figure shows the first half of the guessing process to perform the meet-in-the-middle. Hatched bytes
have a non-zero difference.

with the constant values of x1[1, 2, 3] to retrieve efficiently the plaintexts to use. Then, for each
ciphertext pairs, we guess the 10 bytes marked by 1 in Figure 4.16 that allows to partially
decrypt the pair until x5[0] and x5[1]. From those two values, we can compute the left-hand
side of Equation (4.16) and store this value in a table T along with the guessed material. Repeat
this procedure for the 8 other bytes of u7 and the two bytes u6[7] and u6[13] to partially decrypt
x5[2] and x5[3] and compute the right-hand side of Equation (4.16).

This whole procedure takes about 232× 224× 280× 28 ≈ 2144 simple operations and requires
232 chosen plaintexts and 280 memory units to perform the meet-in-the-middle. In the end, this
attack retrieves completely the last subkey k7, and we can apply a more efficient attack on 6
rounds to retrieve the remaining key material if we are targeting either AES-192 or AES-256.
We can for instance use the previously described attack by Ferguson et al. with partials sums
(see Section 4.4.2).

In the case where the block cipher is AES-128, Gilbert and Minier discuss in [GM00, Min02]
a technique to make the exhaustive search more efficient by using large precomputed tables to

4.4. NOTABLE CRYPTANALYTIC RESULTS 79

decrease the number of operations to test a single key. Anyway, this attack remains marginal
for AES-128 as the time complexity is very close to 2128 and the memory requirements are
impractical.

4.4.4 Impossible differential attack

Impossible differential cryptanalysis is a form of differential cryptanalysis that collects infor-
mation on the secret key from impossible events during the encryption of particular pairs of
plaintexts (see Section 3.4.2). In the case of the AES, we usually start by finding an impossible
differential characteristic with the miss-in-the-middle technique by concatenating two differ-
ential characteristics that hold with probability one. For instance, the truncated differential
characteristic in Figure 4.17 is impossible. This particular impossible differential characteristic

∆i

ki ARK

SB SR MC
Round i

ki+1
ARK

SB SR MC

Contradiction

Round i + 1

ki+2
ARK

SB−1 SR−1 MC−1

Round i + 2

ki+3
ARK−1

SB−1 SR−1

Round i + 3

ki+4
ARK−1

∆o

Figure 4.17: Impossible differential characteristic on 4-round AES used in several impossible differential
attacks. Hatched bytes have a non-zero difference.

actually relies on a more general impossibility result for 4 rounds of AES without the last
MixColumns that we state in the following Property 4.4. This property is the basis for almost
all the known impossible differential results on the AES.

Property 4.4. Let (x, y) a pair of input AES states with difference ∆i = x ⊕ y. We consider the
encryption of x and y through 4 rounds of AES while omitting the last MixColumns operation, and
denote ∆o the output difference. If we have:

1. ∆i is active in only one byte position,
2. and ∆o is inactive at least in a shifted column,

then the differential ∆i → ∆o over 4 rounds of AES is impossible.

80 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

Proof. The strategy follows the miss-in-the-middle (Section 3.4.2) argument that consists in
concatenating two differential characteristics that hold with probability one.

In the forward direction, we start round i with a single byte non-zero difference. Conse-
quently, after two full rounds we end up with probability one to a difference active in all the 16
bytes. This follows the design strategy of the AES.

In the backward direction, the four possible patterns of inactive differences lead to a fully
inactive column at the beginning of round i + 3, at least. Backtracking one more round keeps
the inactivity in those four bytes through the MixColumns operation of round i + 2 so that a
diagonal is fully inactive at the beginning of round i + 2.

Therefore, the input difference to round i + 2 should be fully active from the forward
direction and inactive in at least one diagonal from the backwards argument. This contradiction
concludes the proof for the impossible differential ∆i → ∆o. �

4.4.4.1 Bahrak and Aref attack on 7-round AES-128

We now describe the original attack of Bahrak and Aref from [BA08] which gives the basics of
impossible differential attacks on AES.

∆i
4-round

Impossible Differential ∆o

Figure 4.18: Impossible differential on 4-round AES used in the Bahrak and Aref attack.

It relies on Theorem 4.4 by considering the impossible differential of Figure 4.18: they
integrate this 4-round characteristic in a 7-round one by appending 2 rounds where the last
one omits the MixColumns operation, and prepending one round (Figure 4.19).

The technique starts by considering Ns structures of 232 chosen plaintexts such that the
main diagonal assumes all the possible values. We specify the value for Ns as soon as we
have evaluated the conditions for the attack to succeed. One structure allows to construct
Ns × (232

2) ≈ Ns × 263 pairs, which can be filtered after encryption to remove all the pairs whose
ciphertext differences are not inactive of the 8 bytes at positions 1, 2, 4, 5, 11, 14 and 15. This is
a 64-bit condition which leaves only Ns × 2−1 pairs of data.

Then, we guess the 4 bytes k7[12, 9, 6, 3] from the last subkey k7 and partially decrypt
the Ns × 2−1 pairs through round 6. From the difference in the last column in state x6, we
can compute the difference in the same column in z5 using the linearity of the MixColumns.
Therefore, we can remove all the pairs that are not inactive on bytes 12, 14 and 15 on z5. A
random pair passes this test with probability (2−8)3 so only Ns × 2−25 pairs survive.

We continue by guessing the 4 bytes k7[8, 5, 2, 15] and by partially decrypting the corre-
sponding column in the remaining pairs. With the same probability as before, only one byte is
active in the first column of z5. Consequently, there are 2−49 remaining pairs that verify all the
conditions.

Next, we guess two more bytes in the equivalent subkey u6, bytes u6[0] and u6[13], and
partially decrypt the two active bytes at the beginning of round 5. From this, we compute

4.4. NOTABLE CRYPTANALYTIC RESULTS 81

Structure of 232 chosen plaintexts

⋆

⋆

⋆

⋆

k0
ARK

x0

SB

y0

SR

z0

MC

w0

Round 0

4-round I.D.
MC

w1

∆′o
Round 1-4

x5

SB

y5

SR

z5

MC

w5

Round 5

G
G

u6
MC

k6

ARK

x6

SB

y6

SR

z6

Round 6

G
G

G
G

G
G

G
G

k7
ARK

Ciphertexts

Figure 4.19: Differential characteristic used in the Bahrak and Aref attack on 7 rounds AES-128.

the ∆′o difference in state w1 and check if M−1(∆′o) is inactive in at least one byte as the
output difference of the impossible differential from Figure 4.18. This is true with probability
(4

1) · 28 = 2−6, which makes the number of valid pairs until that point to Ns × 2−55.

Now, we use the impossible differential to remove 32 bits of key from the initial subkey
k0. Namely, for each value on the bytes marked by ⋆ in k0 that change the plaintext difference
on one remaining pairs to a single active byte at the input of round 1, we discard this value
with probability 1. To save time, we can precompute a hash table of 240 elements indexed
by the difference in the plaintext: for a 32-bit difference, we directly get the list of 28 wrong
key candidates. Therefore, by exhausting the Ns × 2−55 remaining pairs and the 28 wrong key
values for each pair, we expect

232 × (1− 2−32)Ns×2−55×28

guesses from k7, u6 and k0 to remain. Consequently, wrong values for the 32 bits of k0 are
expected to remain with probability

p = 24+4+2 × 232 × (1− 2−32)Ns×2−55×28

since we guess 4 + 4 bytes in k7 and 2 bytes in u6. To choose the correct number of structures
Ns, we want p≪ 1 while minimizing Ns to reach the smallest data complexity. The smallest Ns

that verifies this is Ns ≈ 285.5, which makes an attack in data complexity 285.5+32 = 2117.5 chosen
plaintexts, and a time complexity equivalent to

2117.5
︸ ︷︷ ︸

Data encryption

+ 284.5 × 232
︸ ︷︷ ︸

4 guesses in k7

+ 260.5 × 264
︸ ︷︷ ︸

8 guesses in k7

+ 236.5 × 280
︸ ︷︷ ︸
All 10 guesses

+ 230.5 × 288
︸ ︷︷ ︸

Discarding values

≈ 2124.5

one-round encryptions, so approximately 2124.5/7 ≈ 2121 AES encryptions. The memory
complexity requires about 2109 bytes to store the discarded values.

82 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

4.4.4.2 Improved variants

The presented impossible differential attack from Bahrak and Aref has been improved in [LDKK08]
by Lu et al., and later by Mala et al. in [MDRMH10].

First improvement

In [LDKK08], Lu, Dunkelman, Keller and Kim notice that the differential property of the AES
S-Box (that we have recalled in Theorem 4.2) can be used to improve the key guesses. Namely,
for a given ciphertext pair, we know the output difference so we can compute the differences in
the last column of y6 at the output of the last SubBytes layer. If we know the differences at
its input in x6 in the same 4 bytes, we can use Theorem 4.2 to deduce the values for the last
column of x6 and incidentally compute the bytes at positions 12, 9, 6, 3 in k7.

Therefore, in a precomputation phase, we exhaust the remaining Ns× 2−1 pairs of ciphertext
(ci, c′i) and for each, we guess the difference in the last column of x6. It can only take 28 − 1
values from the single difference in the column of z5, so we get in average 28− 1 key suggestions
for k7[12, 9, 6, 3] that we store in a table: T[k7[12, 9, 6, 3]] = (ci, c′i). This whole procedure is
performed in S× 2−1 × 28 operations, and allows to get the key suggestions in amortized cost 1
in this part of the attack.

In their paper, Lu et al. show that the number Ns of structures to use is reduced to Ns ≈ 280.2,
which makes an attack with data complexity 280.2+32 = 2112.2. The main consequence of this is
the smaller number of discarded key material per ciphertext pairs. As a minor improvement,
they suggest to derive more impossible differentials by swapping positions of some differences,
but nevertheless, too many key candidates are left after the attack, so that there is a final step of
exhaustive search to recover the complete secret key.

Additionally, they make an observation that uses the key schedule of AES-128 to reduce
the number of key candidates among the successive applications of the modified impossible
differentials used in the attack. They use the same key byte positions in different attacks to
reduce the possible entropy of those bytes.

The time complexity of this modified version of the attack is equivalent to 2117.2 AES
encryptions, and is dominated by the repetition of the simple attack using the multiple
impossible differentials.

Second improvement

In [MDRMH10], Mala, Dakhilalian, Rijmen, and Modarres-Hashemi show that the strategy
devised by Lu et al. using the key schedule of AES-128 can be adapted more efficiently with
a single run of the attack, without repeating it with other impossible differentials. Their main
point switches the order the two probability-one differential characteristics in the miss-in-the-
middle construction of the impossible differential on 4 rounds (see Figure 4.20a).

This variant constructs Ns structures of chosen plaintexts with 264 elements in each structure.
The elements are such that diagonals 0 and 2 assume all the 264 possible values while the others
are constant. Similarly, the ciphertexts are efficiently filtered through the 96-bit filter imposed by

4.4. NOTABLE CRYPTANALYTIC RESULTS 83

∆i

ki

ARK

SB SR MC

Contradiction

ki+1

ARK

SB SR MC

ki+2

ARK

SB−1 SR−1 MC−1

ki+3

ARK−1

SB−1 SR−1

ki+4

ARK−1

(a) New 4-round Impossible Differential (ID).

Structure of 264 chosen plaintexts

k0

ARK

x0

SB

y0

SR

z0

MC

w0

k1

ARK

x1

SB

y1

SR

z1

MC

w1

New 4-round I.D.
MC

w1

∆′′o

k6

ARK

x6

SB

y6

SR

z6

G
G

G
G
k7

ARK
Ciphertexts

(b) 7-round differential characteristic.

Figure 4.20: On the left, (a): Impossible differential characteristic on 4 rounds AES used in the most
efficient impossible differential attack on AES-128 (to date). A hatched byte is an active byte and white
bytes are inactive. On the right, (b): the full 7-round differential characteristic used in the attack with the
(a) one plugged with i = 2.

the desired output difference pattern. Consequently, we are left with Ns× (264

2)× 2−96 ≈ Ns× 231

pairs.

Then, they also use the differential property of the AES S-Box stated in Theorem 4.2 in
the same way as the previous attack from Lu et al.. Since they swapped the order of the two
small characteristics, they use the same argument as Lu et al. to precompute the possible key
candidates, but they perform this computation for the first subkey k0. Since the difference in
the main diagonal of y0 can only take (28 − 1)2 values from the two active differences in w0,
one store about 216 suggestions for k0[0, 5, 10, 15] for each plaintext pairs. Consequently, for a
single guess of k0[0, 5, 10, 15], one expect Ns × 231+16−32 = Ns × 215 pairs of plaintexts to match
the pattern of differences in w0[0, 1, 2, 3].

For each of the Ns × 215 pairs, by precomputing the possible values for the second active
diagonals, we can directly deduce the approximately 216 corresponding values for k0[8, 13, 2, 7].
Here, we know the values for bytes k0[0, 2, 5, 7, 8, 10, 13, 15], and we can use the key scheduling
algorithm of AES-128 (see Figure 4.3a) to deduce the values of two more bytes in the next
subkey, namely k1[0] and k0[2]. With precomputed data over the second round and indepen-
dently for the two active diagonals in x1, we can deduce the values of k1[8] and k1[10], for each
of the 4 possible positions for the inactive bytes in w1: (0, 10), (1, 11), (2, 8) or(3, 9). The time
complexity to get here amounts approximately to 232 × S× 215 × 216 × 4 computations, and we
have 216 × 4 suggestions for the 10 bytes k0[0, 2, 5, 7, 8, 10, 13, 15] and k1[0, 2, 8, 10].

84 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

From the other side, for each of the Ns × 215 ciphertext pairs, we can apply Theorem 4.2 to
get a suggestion for key bytes k7[0, 7, 10, 13]. Indeed, the difference ∆′′o in x6 can only take about
(4

2)× (28 − 1) ≈ 210 values since we want the output difference M−1(∆′′o) of the impossible
differential to be active in a single byte. Therefore, we can precompute the possible values of
k7[0, 7, 10, 13] for a given output difference in the ciphertexts and get them in amortized cost 1.
Hence, we get 210 suggestions for those 4 bytes for each pair.

All in all, for each pair and from both sides we get 216 × 4× 210 suggestions for the 14
independent bytes k0[0, 2, 5, 7, 8, 10, 13, 15], k1[8, 10] and k7[0, 7, 8, 13] such that the input and
output differences of the impossible differential of Figure 4.20a are verified. We deduce that all
those Ns × 215 × 216 × 4× 210 suggestions are wrong.

For a single pair among the Ns × 215, each guess of k0[0, 5, 10, 15] removes about 228 values
among the space of 28×(14−4) = 280 possible values for the targeted key bytes. The probability
that a wrong value remains in the suggestions is therefore 1− 228/28×10 ≈ 1− 2−52. This means
that about

28×14(1− 2−52)Ns×215

values for the 14 independent bytes remain after all the Ns × 215 pairs have been processed.

We note that for each suggestion, the bytes suggested in k0 allow to deduce more bytes
from the key schedule of AES-128. Indeed, the key schedule equations in the AES-128 are
strongly linear and we can deduce k0[4] and k0[6]. Consequently, the entropy of the secret key
is reduced from 128 bits to only 24 bits from all the linear equations between the known bytes
of the subkeys.

There are several attacks that lie on the same curve depending on the choice of the param-
eters: we mention only the one chosen by [MDRMH10] which reaches a data complexity of
2106.2 chosen plaintexts with Ns = 242.2 initial structures, a time complexity equivalent to 2110.2

AES encryptions and a memory of 290.2 AES states.

4.4.5 Related-key attacks

In [Bih93, Bih94], Eli Biham introduces the concept of related-key attacks, which is another
model of differential cryptanalysis that allows the adversary to observe the encryption of
different plaintexts under different keys. The set of keys is initially unknown to the adversary,
but he knows that a certain mathematical relation holds between them. Like in the standard
model, his goal is also to retrieve one or several of those keys.

All the three variants of the AES have been analyzed in this model: the full AES-192
and AES-256 are subject to related-key boomerang attacks while there exists a related-key
boomerang attack on AES-128 reduced to 7 rounds. The results on AES-192 and AES-256
have started in [BDK05a] and [KHP07] where 10-round rectangle attacks were presented. The
first result on the full 14 rounds of AES-256 has been published at Crypto 2009 by Biryukov,
Khovratovich, and Nikolić in [BKN09]. Later, at Asiacrypt 2009, Biryukov and Khovratovich
have improved this by attacking the full 12 rounds of AES-192 in [BK09]. Finally, in [BN10]
at Eurocrypt 2010, Biryukov and Nikolić have developed an automatic tool to search for the
best differential characteristics on AES and other block ciphers and have improved the results

4.4. NOTABLE CRYPTANALYTIC RESULTS 85

on AES-192 and AES-256. Moreover, they give a 7-round related-key boomerang attack on
AES-128.

4.4.5.1 Related-key boomerang attack on 7-round AES-128

The complete description of this attack has been done by Biryukov and Nikolić and can be found
in [BN10]. As in a boomerang attack (see Section 3.4.3), they use two differential characteristics
to cover the 7 rounds of the cipher: the first one with 3 rounds for the top part with no
difference in the key, and the second one with 3 rounds for the bottom with two related-key
keys, extended by one additional round in the end. The model assumes that the adversary can
query the two oracles with the two related keys. The two differential characteristics used are
represented on Figure 4.21.

ki+1

ARK

SB SR MC

ki+2

ARK

SB SR MC

ki+3

ARK

SB SR MC

ki+4

ARK

(a) Top characteristic.

ki+1

ARK

SB SR MC

ki+2

ARK

SB SR MC

ki+3

ARK

SB SR MC

ki+4

ARK

SB SR

ki+4

ARK

(b) Bottom characteristic.

Figure 4.21: Two differential characteristics used in the 7-round related-key boomerang attack on
AES-128: top part in (a) and bottom part in (b). Hatched bytes have non-zero truncated difference, and
gray bytes have known non-zero difference.

The first differential on Figure 4.21a is a truncated differential that holds with probability
4× 2−24 = 2−22 as the position of the active difference in the second round can be placed
on four different bytes. The second one on Figure 4.21b is a fully instantiated differential
characteristic that has 5 active S-Boxes in the three first rounds in the state part, and 1 active
S-Box in the corresponding keys. This second characteristic is the result of the search conducted
in [BN10] and in Chapter 6 as it is the best related-key differential characteristic for 4 rounds of
AES-128. We note that by extending the 3-round characteristic by one round, the ciphertext
difference only depends of the last 3 active difference in the state, and the active S-Box in the
last subkey. Consequently, this difference can only take about (27 − 1)4 ≈ 228 since for a fixed
input difference, the AES S-Box can only reach 27 − 1 output differences.

86 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

The attack starts by requiring the encryption under key k of a structure of 232 chosen
plaintexts Pi that only differ by their main diagonal. This structure is thus transformed into
ciphertexts Ci. By guessing 31 bits of key material allowing to bypass the last added round
in the bottom characteristic, we can construct ciphertext pairs with correct output difference
and query the corresponding plaintexts. If one pair has the correct truncated difference in the
plaintext, the 31-bit guess is correct and we can finish by exhaustively search for the remaining
ones. For a pair of ciphertext, the second characteristic has a probability of 2−6×3 × 2−7 = 2−25

to be verified, assuming the 31-bit guess is correct. Indeed, the last added round is guessed and
we then need to pass 1+ 2 S-Boxes backwards with probability pmax = 2−6 and the last two only
need to have equal difference in the beginning for the two ciphertext pairs. Consequently, the
two pairs conform to the characteristic with probability (2−25)2 = 2−50. Finally, the second pair
for the top characteristic shares the same truncated difference in the plaintext with probability
2−24. In total, we then find a boomerang quartet with probability 2−22−50−24 = 2−96, so that we
need about 233 structures of 232 plaintexts before finding one right quartet. The data complexity
of the attack consists of the encryption of 232+33 = 265 chosen plaintexts and 231+65 = 296

adaptively chosen ciphertexts.

This procedure finds a right quartet and incidentally retrieve 31 bits of the secret key, and
we can finish the key recovery by performing an exhaustive search of the remaining 97 bits in
297 computations.

4.4.6 Summary of all the attacks

In the following two tables, we report the major cryptanalytic results on the three versions of
the AES. First, in Table 4.1 in the secret-key model, and then in Table 4.2, in the related-key
model. As we consider the open-key model in Chapter 7, we recall there the results in that
model.

4.4. NOTABLE CRYPTANALYTIC RESULTS 87

Table 4.1: Best cryptanalytic results on reduced AES variants in the secret-key model.

Version Rounds Data Time Memory Technique Reference

128

6 232 271 232 Square [DKR97]
6 232 248 232 Partial Sums [FKL+00]
7 2128 2120 264 Herd [FKL+00]
7 232 2128 232 Collision [GM00]
7 2112.2 2117.2 2112.2 ID [LDKK08]
7 2106.2 2110.2 290.2 ID [MDRMH10]
7 2116 2116 2116 MITM [DKS10]
7 2105 299 290 MITM Chapter 5
7 297 299 298 MITM Chapter 5

192

6 232 271 232 Square [DKR97]
6 232 248 232 Partial Sums [FKL+00]
7 232 2175 232 Square [DKR97]
7 232 2155 232 Partial Sums [FKL+00]
7 2128 2120 264 Herd [FKL+00]
7 232 2144 232 Collision [GM00]
7 2116 2116 2116 MITM [DKS10]
7 299 299 296 MITM Chapter 5
8 2128 2188 264 Herd [FKL+00]
8 2113 2172 2129 MITM [DKS10]
8 2113 2172 282 MITM Chapter 5
8 2107 2172 296 MITM Chapter 5

256

6 232 271 232 Square [DKR97]
6 232 248 232 Partial Sums [FKL+00]
7 232 2191 232 Square [DKR97]
7 232 2172 232 Partial Sums [FKL+00]
7 2128 2120 264 Herd [FKL+00]
7 232 2144 232 Collision [GM00]
7 2116 2116 2116 MITM [DKS10]
7 299 298 296 MITM Chapter 5
8 2128 2204 264 Herd [FKL+00]
8 2113 2196 2129 MITM [DKS10]
8 2113 2196 282 MITM Chapter 5
8 2107 2196 296 MITM Chapter 5
9 2120 2203 2203 MITM Chapter 5

CP: Chosen-plaintext. ID: Impossible Differential. MITM: Meet-in-the-Middle.

88 CHAPTER 4. DESCRIPTION OF THE AES AND CRYPTANALYTIC RESULTS

Table 4.2: Best cryptanalytic results on reduced AES variants in the related-key model.

Version Rounds Data Time Memory Technique Reference

128
5 239 239 232 Boomerang [Bir04]
6 271 271 232 Boomerang [Bir04]
7 297 297 232 Boomerang [BN10]

192

9 267 2143 264 Boomerang [GL08]
10 2125 2182 264 Rectangle [KHP07]
12 2123 2176 248 Boomerang [BK09]
12 2116 2169 232 Boomerang [BN10]

256

9 299 2120 264 Rectangle [BDK05a, KHP07]
10 2114 2173 264 Rectangle [BDK05a, KHP07]
14 2131 2131 264 Differential [BKN09]
14 299.5 299.5 256 Boomerang [BK09]

CHAPTER5
AES in the Secret-Key Model

Contents
5.1 A class of attacks against AES . 90

5.1.1 Initial attacks . 90

5.1.2 Generalizations . 90

5.1.3 Attack framework . 92

5.1.4 Improvements . 94

5.2 New attacks on 7-round AES . 95

5.2.1 Generalities . 95

5.2.2 Efficient tabulation . 95

5.2.3 A simple attack . 98

5.2.4 Efficient Attack . 100

5.2.5 Key recovery . 102

5.3 Extensions to 8 and 9 rounds . 104

5.3.1 Attack on 8-round AES-192 . 104

5.3.2 Attack on 8-round AES-256 . 108

5.3.3 Attack on 9-round AES-256 . 109

In this chapter, we are interested in the security of the AES versions in the classical setting.
Namely, we have access to an oracle that encrypts and decrypts message blocks of our choice
with a secret key. Our goal as an adversary is to recover the secret key of k bits faster than the
exhaustive search; i.e. with (significantly) less than 2k encryptions.

The content of this chapter is largely inspired from the article [DFJ13] published at Euro-
crypt 2013 and co-authored with Patrick Derbez and Pierre-Alain Fouque. The research line
behind this work goes back to the square attack (Section 4.4.1) and the Gilbert and Minier
attack (Section 4.4.3) on Rijndael, but most importantly to the work by Demirci and Selçuk
in [DS08], and Dunkelman, Keller and Shamir in [DKS10]. To provide a full understanding
of our work, we begin by giving an introduction on these pioneering cryptanalytic results on
reduced variants of the AES in Section 5.1, and we continue by describing our improvements in
the next sections Section 5.2 and Section 5.3.

— 89 —

90 CHAPTER 5. AES IN THE SECRET-KEY MODEL

5.1 A class of attacks against AES

5.1.1 Initial attacks

We recall that the first attack on AES is the SQUARE attack, proposed by Daemen, Knudsen and
Rijmen on the SQUARE block cipher [DKR97]. If we encrypt a δ-set (Definition 4.2) by 3 rounds
of Rijndael, the sum of each byte of the 256 ciphertexts equals zero. This distinguishing
property can be used to mount efficient attacks up to 6 rounds. The first attack has a time
complexity of 272 encryptions and requires 232 messages, and it has been improved by Ferguson
et al. to 246 operations in [FKL+00]. We refer to Chapter 4 for a complete description of these
attacks.

Then, Gilbert and Minier show in [GM00] that this property can be made more precise
using functions of the active byte, which allows to build a distinguisher on 3 rounds. The main
idea is to consider the set of functions mapping one active byte to one byte after 3 rounds. This
set depends on 9 one-byte parameters so that the whole set can be described using a table of
272 entries of a 256-byte sequence (f (0), . . . , f (255)). Their attack allows to break 7 rounds of
AES with a marginal time complexity over exhaustive search.

5.1.2 Generalizations

This idea has been generalized at Fse 2008 by Demirci and Selçuk in [DS08] using meet-
in-the-middle techniques, whereas Gilbert and Minier used collision between the functions.
More specifically, they show that on 4 rounds, the value of each byte of the ciphertext can be
described by a function of the active byte parameterized by 25 in [DS08] and 24 8-bit parameters
in [DTCB09] (see Figure 5.1). The last improvement is due to the observation that the 25th

x

4 rounds

yy = fc1 ,...,c24(x)

Figure 5.1: Byte y at the output can be expressed as a function of byte x at the input that depends on
the 24 byte parameters c1, . . . , c24.

parameter is a key byte which is constant for all functions. Consequently, by considering
(

f (0)− f (0), f (1)− f (0), . . . , f (255)− f (0)
)

we can use only 24 parameters. The main drawback of the meet-in-the-middle attack is the
large memory requirement. Indeed, the basic attack only works for the 256-bit version of the
AES and then Demirci and Selçuk have to use a time/memory tradeoff to extend the attack for
the 192-bit AES version.

At Asiacrypt 2010, Dunkelman, Keller and Shamir develop in [DKS10] many new ideas
to solve the memory problems of the Demirci and Selçuk attacks. First of all, they show

5.1. A CLASS OF ATTACKS AGAINST AES 91

that instead of storing the whole sequence, we can only store the associated multiset, i.e. the
unordered sequence with multiplicity rather than the ordered sequence. This reduces the table
by a factor 4 and spares one guess during the attack. The second and main idea is the differential
enumeration which allows to reduce the number of parameters that describe the set of functions
from 24 to 16. However, to reduce this number, they rely on a special property on a truncated
differential characteristic. The idea consists in using a truncated differential characteristic
whose probability is not too small. The property of this characteristic is that the set of functions
from one state to the state after 4 rounds can only take a restricted number of values, which is
much smaller than the number of all functions. The direct consequence is an increase of the
amount of needed data, but the memory requirement is reduced to 2128 and the same analysis
also applies to the 128-bit version. However, even though many tradeoffs could be used, this
attack is not better than the best attack at that time, which is the impossible differential attack
from Lu, Dunkelman, Keller and Kim [LDKK08] (see Chapter 4 for its description).

The attack devised by Dunkelman, Keller and Shamir uses ideas from the classes of
differential and meet-in-the-middle attacks. We refer to Section 3.2.1 for a more complete
overview of key-recovery differential attacks, and Section 1.4.5.1 for an introduction to meet-in-
the-middle attacks.

In the first stage of differential attacks, we need to find a differential characteristic with
high or low probability covering many rounds (see Section 3.2). Then, in the online stage, the
adversary asks for the encryption of many pairs: for each pair, he tries to decrypt by guessing
the last subkey and if the differential characteristic is followed, then the adversary increases
the counter of the associated subkey. If the probability of the characteristic is high enough,
then the counter corresponding to the right secret-key would be among the higher counters. In
some case, it is also possible to add some rounds at the beginning by guessing part of the first
subkeys.

In [DKS10], Dunkelman et al. propose a novel differential attack. Instead of increasing a
counter once a pair is found, the adversary uses another test to eliminate the wrong guesses of
the first or last subkeys. This test decides with probability one whether the middle rounds are
covered with the differential. The idea is that the middle rounds follow a part of the differential
and the function f that associates each byte of the input state to one byte of the output state
can be stored efficiently. Demirci and Selçuk propose to store in a table the function with no
differential characteristic, which turns out to be much larger that this one. Consequently, in
Dunkelman et al.’s attack, the adversary guesses key material in the first and last subkeys and
looks for a pair that follows the beginning and last rounds of the differential characteristic. Once
such a pair is found, the adversary takes one of the messages that follows the characteristic and
constructs a structure to encrypt which is related to a δ-set for the intermediate rounds. From
the encryption of this set, he can decrypt the last rounds and check whether the encryption of
this δ-set belongs to the table. If this is the case, then the part of the first and last subkeys are
correct and an exhaustive search on the other parts of the key allows to find the full key.

To construct the table, the idea is similar to the attack. We need to find a pair of messages
that satisfies the truncated differential characteristic. Then, we take one message in the pair
and we compute the function f . Dunkelman et al. use a rebound technique to find the pair that
follows the characteristic, and in our work, we adapt the strategy described in Section 7.3.1 for
the chosen-key distinguisher on AES reduced to 7 rounds.

92 CHAPTER 5. AES IN THE SECRET-KEY MODEL

5.1.3 Attack framework

We present here a unified view of the previously known meet-in-the-middle (MITM) attacks
on AES [GM00, DS08, DKS10], where n rounds of the block cipher can be split into three
consecutive parts of n1, n2 and n3 rounds, n = n1 + n2 + n3, such that a particular set of
messages may verify a certain property that we denote ⋆ in the sequel in the n2 middle rounds
(Figure 5.2).

n1 rounds n2 rounds n3 rounds

⋆

Figure 5.2: General scheme of the meet-in-the-middle attack on AES, where some messages in the
middle rounds may verify a certain ⋆ property used to perform the meet-in-the-middle.

The general attack uses three successive steps:

Precomputation phase

1. In this phase, we build a lookup table T containing all the possible sequences
constructed from a δ-set such that one message verifies the ⋆ property.

Online phase

2. Then, in the online phase, we need to identify a δ-set containing a message m
verifying the wanted property.

3. Finally, we partially decrypt the associated δ-set through the last n3 rounds and
check whether it belongs to T.

The two steps of the online phase require to guess some key bytes while the goal of this attack
is to filter some of their values. In the best case, only the right ones should pass the test.

We now precise how the Demirci and Selu̧k attack and the Dunkelman, Keller and Shamir
attack fit into this framework.

5.1.3.1 Attack by Demirci and Selçuk

The starting point is to consider the set of functions

f : {0, 1}8 → {0, 1}8

that maps a byte of a δ-set to another byte of the state after four AES rounds. A convenient
way is to view f as an ordered byte sequence (f (0), . . . , f (255)) so that it can be represented by
256 bytes. The crucial observation made by the generalizing Gilbert and Minier attack is that
this set is tiny since it can be described using 25 byte-parameters (225·8 = 2200) compared with
the set of all functions of this type that counts as many as 28·28

= 22048 elements. Considering
the differences

(
f (0)− f (0), f (1)− f (0), . . . , f (255)− f (0)

)

5.1. A CLASS OF ATTACKS AGAINST AES 93

rather than values, the set of functions can be described by 24 parameters. Dunkelman et al.
identify these parameters as follows:

• the full state x3 of message 0,
• four bytes of state x2 of message 0,
• four bytes of subkey k3.

The four bytes of the state x2 only depend on the column of z1 where the active byte of the
δ-set is located; for instance, if it is column 0, then those bytes are x2[0, 1, 2, 3]. Similarly, the
four bytes of k3 depend on the column of x5 where the byte we want to determine is located; as
an example, if it is column 0, then those bytes are k3[0, 5, 10, 15].

In their attacks [DS08], Demirci and Selçuk use the ⋆ property that does not filter any
message. Consequently, they do not require to identify a particular message m. The data
complexity of their basic attack is very small and around 232 chosen plaintexts. However,
since there is no particular property, the size of the table T is very large and the basic attack
only works for the AES-256. To mount an attack on the AES-192, they consider some
time/memory tradeoff. More precisely, the table T does not contain all the possible states, but
only a fraction α. Consequently, a specific δ-set may not be in the table T, so that we have to wait
for this event and redo the attack O(1/α) times on average. The attack becomes probabilistic
and the memory requirement makes the attack possible for AES-192. The consequence of this
advanced version, which also works for AES-256, is that the amount of data increases a lot.
The time and memory requirements of the precomputation phase are due to the construction
of table T that contains messages for the n2 = 4 middle rounds, which counts as many as
2 8·24 = 2192 ordered sequences of 256 bytes.

Finally, it is possible to remove from each function some output values. Since we know that
these functions can be described by the key of 24 or 32 bytes, one can reduce T by a factor
10 or 8 by storing only the first differences. Such an observation has been used by Wei et al.
in [WLH11].

5.1.3.2 Attack by Dunkelman, Keller and Shamir

In [DKS10], Dunkelman, Keller and Shamir introduced two new improvements to further
reduce the memory complexity of [DS08]. The first one uses multisets, behaving as unordered
sequences, and despite the information lost, the authors show it is still enough so that the
attack succeeds. The second improvement uses a particular 4-round differential characteristic
(Figure 5.3) to reduce the size of the precomputed lookup table T, at the expense of trying more
pairs of messages to expect at least one to conform to the truncated characteristic.

z1

MC

ARK

x2

SB

y2

SR MC

ARK

x3

SB

y3

SR MC

ARK

x4

SB

y4

SR MC

AK

x5

Figure 5.3: The four middle rounds used in the 7-round attack from [DKS10]. Dashed bytes are active,
others inactive.

The main idea of the differential characteristic is to fix the values of as many state-bytes

94 CHAPTER 5. AES IN THE SECRET-KEY MODEL

as possible to a constant. Assume now we have a message m such that we have a pair (m, m′)
that satisfies the whole 7-round differential characteristic and our goal is to recover the key.
Contrary to classical differential attacks, where the adversary guesses some bytes of the last
subkey and eliminates the wrong guess, the smart idea of Dunkelman et al. is to use a table
to recover the right key more efficiently. Usually, differential attacks do not use memory to
recover the key or to find the right pair. The attack principle consists in constructing the δ-set
from m which can be made since we already have to guess some key bytes to check if the pair
(m, m′) has followed the right differential characteristic. Then, the table allows to identify the
right key from the encryption of the δ-set.

It is now easy to see that the differential characteristic can be described using only 16
bytes. The states x3 and y3 can only take 232 possible differences each, so that the number of
solutions for these two states is 264. We also have the 4 key-bytes of u2 and the 4 key-bytes of k3

corresponding to the active bytes of Figure 5.3 in states z2 and x4.

5.1.4 Improvements

Dunkelman et al. show that by using a particular 4-round differential characteristic with a
not too small probability, the active states in the middle of the characteristic can only take 264

values. In their characteristic, they also need to consider the same 8 key bytes1 as Demirci and
Selçuk. They claim:

“ In order to reduce the size of the precomputed table, we would like to choose the δ-set
such that several of these parameters will equal to predetermined constants. Of course,
the key bytes are not known to the adversary and thus cannot be “replaced” by such
constants.

”
In this chapter, we show that it is possible to enumerate the whole set of solutions more

efficiently than by taking all the values for the key bytes such that every value of these bytes are
possible. We show that the whole set can take only 280 values with this efficient enumeration
technique. Of course, it might be possible to improve this result to 264 but not any further since
the key bytes may take all the 264 possible values. Using the same ideas, we show that it is
possible to have an efficient enumeration for a 5-round differential characteristic which allows
us to mount an attack on 9 rounds for AES-256. The bottleneck of the attack is no longer the
memory, but the time and data complexities.

The main technical contribution of this work shows that the number of parameters describing
the functions can be further reduced from 16 to 10. The resulting attack on AES-128 is now
more efficient than the impossible differential attack by Lu, Dunkelman, Keller and Kim
from [LDKK08] and is the most efficient attack on this variant of the AES.

1Those are u2[0, 7, 10, 13] and k3[0, 5, 10, 15].

5.2. NEW ATTACKS ON 7-ROUND AES 95

5.2 New attacks on 7-round AES

5.2.1 Generalities

In the following sections, we use δ-sets as input structured messages, and we compress this
representation by introducing the associated multiset as described in the following Definition 5.1.
We provide an almost optimal way to represent them in Proposition 5.1.

Definition 5.1 (Multisets of bytes). A multiset generalizes the set concept by allowing elements
to appear more than once. A multiset is a set combined by multiplicity for each of its elements.
A set can be written as a multiset where all the elements have multiplicity one.

Proposition 5.1. We can represent a multiset of 256 bytes on 512 bits.

Proof. From the point of view of information theory, as there are about
((

28

28

))
=

(
28 + 28 − 1

28

)
≈ 2506.17

multisets of 256 elements from GF(28), we are able to represent them on 512 bits. Here is one
way of doing it for a given multiset M. In the sequel, we consider that M = {xn1

1 , . . . , xnm
m },

with ∑
m
i=1 ni = 256, that we may represent by

x1 x1 x1 x1︸ ︷︷ ︸
n1

∣∣∣ x2 x2 x2︸ ︷︷ ︸
n2

∣∣∣ . . .
∣∣∣ xm xm xm xm xm︸ ︷︷ ︸

nm

, (5.1)

where the distinct elements are the m elements xi, which appear each with multiplicity ni. In
M, the order of the elements is undetermined.

Consider the set S = {x1, . . . , xm} deduced from M by deleting any repetition of element in
M. As there are at most 256 elements in S, we can encode whether e ∈ GF(28) belongs to S in a
256-bit number s by a 1-bit flag at the position e seen as an index in [0, . . . , 255] in s. Then, to
express the repetition of element, we sort M using the natural order in the integers and consider
the sequence of multiplicity of each distinct element: if x1 < · · · < xm, then we consider the
sequence n1, . . . , nm. We use a second 256-bit number t to store the sequence (∑i

j=1 nj)i seen
as indexes in t, which actually encodes the positions of the vertical separators in the multiset
representation of Equation 5.1. The 512-bit element (s, t) then represents the multiset M. �

Finally, we note that we measure memory complexities of our attacks in number of 128-bit
AES blocks and time complexities in terms of AES encryptions.

In the following, we use the notation ExhaustiveSearch to refer to the final exhaustive
search for the remaining key bytes when the attack is finished. Indeed, the attack we describe
recovers some bytes of the subkeys, and to complete to key recovery and actually find the
missing bytes, we perform a basic exhaustive search implementing by this procedure.

5.2.2 Efficient tabulation

As in the previous results, our attack also uses a large memory lookup table constructed in
the precomputation phase, and used in the online phase. Dunkelman, Keller and Shamir

96 CHAPTER 5. AES IN THE SECRET-KEY MODEL

showed that if a message m belongs to a pair of states conforming to the truncated differential
characteristic of Figure 5.3, then the multiset of differences ∆x5[0] obtained from the δ-set
constructed from m in x1 can only take 2128 values, because 16 of the 24 parameters used to build
the multisets can take only 264 values instead of 2128. We make the following Proposition 5.2
that reduces the size of the table by a factor 248.

Proposition 5.2. If a message m belongs to a pair of states conforming to the truncated differential
characteristic of Figure 5.3, then the multiset of differences ∆x5[0] obtained from the δ-set constructed
from m in x1 can only take 280 values. More precisely, the 24 parameters (which are state bytes of m) can
take only 280 values in that case. Conversely, for each of these 280 values, there exists a tuple (m, m′, k)
such that m is set to the chosen value and the pair (m, m′) follows the truncated characteristic.

Proof. The proof uses rebound-like arguments borrowed from the hash function cryptanalysis
domain [MRST09]. Let (m, m′) be a right pair. We show in the following how the knowledge
of 10 particular bytes restricts the values of the 24 parameters used to construct the multisets,
namely:

x2[0, 1, 2, 3], x3[0, . . . , 15], x4[0, 5, 10, 15]. (5.2)

In the sequel, we use the state names mentioned in Figure 5.4. The 10 bytes

∆z1[0], x2[0, 1, 2, 3], ∆w4[0], z4[0, 1, 2, 3]. (5.3)

can take as many as 280 possible values, and for each of them, we can determine the values of
all the differences shown on Figure 5.4: linearly in x2, applying the S-Box to reach y2, linearly
for x3 and similarly in the other direction starting from z4. By the differential property of the
AES S-Box (Theorem 4.2), we get on average one value for each of the 16 bytes of state x3. In
fact, only 264 values of the 10 bytes lead to a solution for x3 but for each value, there are 216

solutions for x3. From the known values around the two AddRoundKey layers of rounds 3
and 4, this suggests four bytes of the equivalent subkey u2 = MC−1(k2) and four others in
subkey k3: those are u2[0], u2[7], u2[10], u2[13] and k3[0], k3[5], k3[10], k3[15]; they are marked
by a bullet (•) in Figure 5.4.

The converse is now trivial: the only difficulty is to prove that for each value of the 8 key
bytes, there exists a corresponding master key. This actually gives a chosen-key distinguisher
for 7 rounds of AES, as it has been done in [DFJ12a] (see Section 7.3).

To construct the multiset for each of the 280 possible choices for the 10 bytes from Equa-
tion 5.3, we consider all the 28 − 1 possible values for the difference ∆y1[0], and propagate
them until x5. This leads to a multiset of 28 − 1 differences in ∆x5[0]. Finally, as the AES S-Box
behaves as a permutation over GF(28), the sequence in ∆y1[0] allows to derive the sequence in
∆x1[0].

Note that in the present case where there is a single byte of difference between m and m′ in
the state x1, both messages belongs to the same δ-set. This does not hold if we consider more
active bytes as we do in the following Section 5.3. We describe in an algorithmic manner this
proof in Algorithm 5.1. �

5.2. NEW ATTACKS ON 7-ROUND AES 97

x1

SB

y1

SR

z1

MC

w1

Round 1

u1

MC

k1

ARK

x2

SB

y2

SR

z2

MC

w2

Round 2

u2
•

• •
• MC

k2

ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

u3

MC

k3
• • • • ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

u4

MC

k4

ARK

x5

SB

y5

Figure 5.4: Truncated differential characteristic used in the middle of the 7-round attacks on AES. A
hatched byte denotes a non-zero difference, whereas a white cell has no difference.

Algorithm 5.1 – Construction of the tables.
1: function ConstructTable(i, j)
2: bi ← i− 4(i mod 4) mod 16. ⊲ Retrieving the right positions
3: ci ← ⌊bi/4⌋. ⊲ because of the ShiftRows.
4: cj ← ⌊j/4⌋.
5: Empty a lookup table T.
6: Guess values of the 5 bytes ∆z1[bi], x2[4ci], x2[4ci + 1], x2[4ci + 2], x2[4ci + 3].
7: Deduce differences in ∆x3.
8: Guess values of the 5 bytes ∆w4[j], z4[4cj], z4[4cj + 1], z4[4cj + 2], z4[4cj + 3].
9: Deduce differences in ∆y3.

10: Use the property of the AES S-Box to deduce the values in x3 and x′3.
11: Deduce SR−1(u2)[4ci], SR−1(u2)[4ci + 1], SR−1(u2)[4ci + 2], SR−1(u2)[4ci + 3].
12: Deduce SR(k3)[4cj], SR(k3)[4cj + 1], SR(k3)[4cj + 2], SR(k3)[4cj + 3].
13: Empty a multiset M.
14: for all the differences ∆z1[bi] do
15: Obtain a column x2, and then a state x3.
16: Add ∆x5[j] to M.

17: Add M to the lookup table T.

18: return T of size ≈ 280.

98 CHAPTER 5. AES IN THE SECRET-KEY MODEL

5.2.3 A simple attack

5.2.3.1 Precomputation phase

In the precomputation phase of the attack, we build the lookup table that contains the 280

multisets for difference ∆x5 by following the proof of Proposition 5.2 and Algorithm 5.1. This
step is performed by first iterating on the 280 possible values for the 10 bytes of Equation 5.3
and for each of them, we deduce the possible values of the 24 original parameters. Then, for
each of them, we construct the multiset of 28 − 1 differences. Using the differential property of
the AES S-Box (Theorem 4.2), we can count exactly the number of multisets that are computed:

280 ×
(

4× 28 − 1
(28 − 1)2 + 2× (28 − 1)(27 − 1− 1)

(28 − 1)2

)16

≈ 280.09. (5.4)

Finally, the lookup table of the 280.09 possible multisets that we simplify to 280 requires about 282

128-bit blocks to be stored. To construct the table, we have to perform 280 partial encryptions
on 256 messages, which we estimate to be equivalent to 284 encryptions.

5.2.3.2 Online phase

The online phase splits into three parts: the first one finds pairs of messages that conform
to the truncated differential characteristic of Figure 5.5, which embeds the previous 4-round
characteristic in the middle rounds (round 1 to round 5). The second step uses the found pairs
to create a δ-set, test them against the precomputed table and retrieve the secret key in a final
phase.

To generate one pair of messages conforming to the 7 full-rounds of this characteristic
where there are only four active bytes in both the plaintext and the ciphertext differences, we
prepare a structure of 232 plaintexts where the diagonal assumes all the possible 232 values, and
the remaining 12 bytes are fixed to some constants. Hence, each of the 232 × (232 − 1)/2 ≈ 263

pairs we can generate satisfies the plaintext difference. Among the 263 corresponding ciphertext
pairs, we expect 263 · 2−96 = 2−33 to verify the truncated difference pattern. Finding one such
pair then requires 233 structures of 232 messages and 232+33 = 265 encryptions under the secret
key. Using this secret key, the probability that the whole truncated characteristic of Figure 5.5 is
verified is 2−2×3×8 = 2−48 because of the two 4→ 1 transitions in the MixColumns of rounds
0 and 5. By repeating the previous procedure to find 248 pairs, one is thus expected to verify
the full 7-round characteristic.

All in all, we ask the encryptions of 248+65 = 2113 messages to find 248 pairs of messages.
Note that we do not have to examine each pair in order to find the right one. Indeed, if a pair
verifies the full 7-round characteristic, then the ciphertext difference has only four active bytes.
Thus, we can store the structures in a hash table indexed by the 12 inactive bytes to get the
right pairs in average time of one computation.

For each of the 248 pairs, we get 28×(8−2×3) · 28 = 224 suggestions for the 9 key bytes marked
by ⋆ in Figure 5.5:

k−1[0, 5, 10, 15], u5[0], u6[0, 7, 10, 13]. (5.5)

5.2. NEW ATTACKS ON 7-ROUND AES 99

P

⋆
⋆
⋆
⋆

k−1

ARK

x0

SB

y0

SR

z0

MC

w0

Round 0

u0

MC

k0

ARK

x1

SB

y1

SR

z1

MC

w1

Round 1

u1

MC

k1

ARK

x2

SB

y2

SR

z2

MC

w2

Round 2

u2

MC

k2

ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

u3

MC

k3

ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

u4

MC

k4

ARK

x5

SB

y5

SR

z5

MC

w5

Round 5

⋆

u5

MC

k5

ARK

x6

SB

y6

SR

z6

MC

w6

Round 6

⋆

⋆
⋆
⋆

u6

MC

k6

ARK

x7

Figure 5.5: Complete 7-round truncated differential characteristic used in the simple attack.

Indeed, there are 28 possibilities for the bytes from k−1 since the pair of diagonals in x0 need
to be active only in w0 after the MixColumns operation. Among the 232 possible values for
those bytes, only 232 × 2−24 = 28 verify the truncated pattern. The same reasoning applies for
u6[0, 7, 10, 13], and the last byte u5[0] can take all the 28 values.

For all the 224 possibilities, we construct a δ-set to use the precomputed table. To do so,
we partially encrypt the diagonal of one message, using the four known bytes from k−1 and
consider the 28 − 1 possible non-zero differences for ∆x1[0]. This gives one set of 28 plaintexts,
whose corresponding ciphertexts may be partially decrypted using the four known bytes from
u6 and the one from u5. Once decrypted, we can construct the multiset of differences for ∆x5

and check if it lies in the precomputed lookup table. If not, we can discard the subkey with
certainty. On the other hand, the probability for a wrong guess to pass this test is smaller than

100 CHAPTER 5. AES IN THE SECRET-KEY MODEL

280 · 2−467.6 = 2−387.6 so, as we try at most 248 · 224 = 272 multisets, only the right subkey should
verify the test. Note that the probability is 2−467.6 (and not 2−506.17) because the number of
ordered sequences associated to a multiset is not constant.

We summarize the above description in the following Algorithm 5.2, where the initial call to
the function ConstructTable(0, 0) constructs the lookup table for ∆x1 and ∆x5 both at position
zero (Figure 5.4) and is defined in Algorithm 5.1.

Algorithm 5.2 – A simple attack on 7-round AES.
1: function SimpleAttack

2: T0,0 ← ConstructTable(0, 0). ⊲ Algorithm 5.1
3: while true do ⊲ 281 times on average
4: Ask for a structure S of 232 plaintexts Pm

where bytes in diagonals 0 assume all values.
5: Empty a hash table T of list of plaintexts.
6: for all corresponding ciphertexts Cm do
7: index ← MC−1(Cm)[1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15].
8: for all P ∈ T[index] do
9: Consider the pair (P, Pm). ⊲ ∼ 2−33 pairs

10: for all k−1[0, 5, 10, 15] s.t. ∆w0[1, 2, 3] = 0 do ⊲ ∼ 28 times
11: Construct δ-set D from P. ⊲ D ∈ S
12: for all u6[0, 7, 10, 13] s.t. ∆z5[1, 2, 3] = 0 do
13: Decrypt column 0 of x6 for D.
14: for all u5[0] do ⊲ 28 times
15: Decrypt byte 0 of x5 for D.
16: Construct multiset M of ∆x5.
17: if M ∈ T0,0 then
18: return ExhaustiveSearch()
19: T[index]← T[index] ∪ {Pm}.

To evaluate the complexity of the online phase of the simple attack, we count the number
of AES encryptions. First, we ask the encryption of 2113 chosen plaintexts, so that the time
complexity for that step is already 2113 encryptions. Then, for each of the 248 found pairs, we
perform 224 partial encryptions/decryptions of a δ-set. We evaluate the time complexity of this
part to 248+24+8 · 2−5 = 275 encryptions since we can do the computations in a good ordering as
shown in Algorithm 5.2.

All in all, the time complexity is dominated by the 2113 initial encryptions, the data complex-
ity equals 2113 chosen plaintexts, and the memory complexity is 282 since it requires to store 280

multisets.

5.2.4 Efficient Attack

Unlike the previous attacks where the bottleneck complexity is the memory, our attack uses a
smaller table which makes the time complexity to find the pairs the dominating one. Therefore,

5.2. NEW ATTACKS ON 7-ROUND AES 101

we would like to decrease the time spent in that phase. The natural idea is to find a new
property ⋆ for the four middle rounds that can be checked more efficiently.

To do so, we reuse the idea of Dunkelman et al. from [DKS10], which adds an active byte in
the second round of the differential characteristic. The sequence of active bytes becomes:

8
R0−→ 2

R1−→ 4
R2−→ 16

R3−→ 4
R4−→ 1

R5−→ 4
R6−→ 16, (5.6)

with the constraint that the two active bytes of the second round belong to the same diagonal
to be transformed in a column in the next round (see Figure 5.6).

P

⋆
⋆
⋆
⋆

⋆
⋆
⋆

⋆

k−1

ARK

x0

SB

y0

SR

z0

MC

w0

Round 0

u0

MC

k0

ARK

x1

SB

y1

SR

z1

MC

w1

Round 1

u1

MC

k1

ARK

x2

SB

y2

SR

z2

MC

w2

Round 2

u2

MC

k2

ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

u3

MC

k3

ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

u4

MC

k4

ARK

x5

SB

y5

SR

z5

MC

w5

Round 5

⋆

u5

MC

k5

ARK

x6

SB

y6

SR

z6

MC

w6

Round 6

⋆

⋆
⋆
⋆

u6

MC

k6

ARK

x7

Figure 5.6: Complete 7-round truncated differential characteristic used in the efficient attack.

As a consequence, it is now easier to find pairs conforming to that truncated differential
characteristic. Indeed, the size of the structure of plaintexts may take as many as 264 different
values, so that we can construct at most 264 · (264 − 1)/2 = 2127 pairs from each structure.

102 CHAPTER 5. AES IN THE SECRET-KEY MODEL

Therefore, it is enough to ask the encryption of 28·3·3/2127−8·12 = 241 structures to get 272

pairs with the desired output difference pattern, and expect one to conform to the 7-round
characteristic of Figure 5.6.

Consequently in this new setting, we only need 2105 chosen plaintexts. In return, the
number of pairs that the adversary has to consider is increased by a factor 224 and so is the
time complexity. Furthermore, we now need 11 parameters to generate the 24 parameters of
the precomputed table, increasing the memory requirement by a factor 28. These parameters
are the previous 10 ones and the difference in the second active byte of zA.

All in all, the time complexity of this attack is 275+24 = 299 encryptions, the data complexity
is 2105 chosen plaintexts and the memory requirement is 282+8 = 290 128-bit blocks.

Note that the time spent on one pair is the same for both the simple attack and the efficient
one. Indeed, let K be the key bytes needed to construct the multiset. We suppose that we
have a set of pairs such that one follows the differential. To find it, and incidentally some
key-byte values, we proceed as follows: for each pair (m, m′), enumerate all possible values
of K such that (m, m′, K) have a non-zero probability to follow the differential. For each of
them, construct the corresponding multiset from m or m′. If it belongs to the table, then we
expect that it follows the differential characteristic since the table has been constructed that
way. Otherwise, we know with probability 1 that either the pair (m, m′) does not satisfy the
characteristic, or the guessed value from K is wrong.

Assuming that the bytes 0, 3, 4, 5, 9, 10, 14 and 15 of diagonals 0 and 1 of the structure of
plaintexts range over all the values, the two differences in the first state of the second round can
take four different positions: (0, 5), (1, 6), (2, 7) and (3, 4). Similarly, the position of the active
byte in the penultimate round is not constrained; it can be placed anywhere on the 16 positions.
We can also consider the opposite: one active byte at the beginning, and two active bytes in
the end. These possibilities actually define tweaked versions of the property ⋆ and allows
to trade some time for memory: with less data, we can check more tables for the same final
probability of success. Namely, by storing 4× 16 + (4

2)× 4 = 28 tables to cover all the cases by
adapting the proof of Proposition 5.2, the encryption of 241/28 = 233 structures of 264 plaintexts
suffices to expect a hit in one of the 28 tables. Therefore, the memory complexity reaches 298

AES blocks and the time complexity remains unchanged since we analyze 28 times less pairs,
but the quantity of work to check one pair is multiplied by the same factor. We describe this
efficient attack in an algorithmic manner in Algorithm 5.3.

5.2.5 Key recovery

In this section, we present an efficient way to turn this distinguisher into a key recovery attack.
First, let us summarize what the adversary has in his possession at the end of the efficient
attack: a pair (m, m′) following the truncated differential characteristic, a δ-set containing m,
the knowledge of 9 key bytes and the corresponding multiset for which we found a match
in the precomputed table. Thus, there are still 256, 2120 or 2184 possible keys, if we consider
AES-128, AES-192 or AES-256 respectively. As a consequence, performing an exhaustive
search to find the missing key bytes would drastically increase the complexity of the whole
attack, except for the 128-bit version. Even in that case, it seems nontrivial to recover the 256

5.2. NEW ATTACKS ON 7-ROUND AES 103

Algorithm 5.3 – An efficient attack on 7-round AES.
1: function EfficientAttack

2: for all (i, j) ∈ {0, . . . , 3} × {0, . . . , 15} do ⊲ Construction of the 26 Tables
3: Ti,j ← ConstructTable2(i, j).

4: while true do ⊲ 235 times on average
5: Ask for a structure S of 264 plaintexts Pm

where bytes in diagonals 0 and 1 assume all values.
6: for all k ∈ {0, . . . , 3} do ⊲ Position of the non-zero column of ∆x6

7: Empty a hash table T of list of plaintexts.
8: for all corresponding ciphertexts Cm do
9: index ← (SR−1 ◦MC−1(Cm))[{0, . . . , 15} − {4k, . . . , 4k + 3}].

10: for all P ∈ T[index] do
11: Consider the pair (P, Pm). ⊲ 233 pairs by structure on average
12: for all (i, lj) ∈ {0, . . . , 3} × {0, . . . , 3} do
13: j← 4k− 3lj mod 16. ⊲ Assume mod give a positive result.
14: OnlinePhase

(
(P, Pm) , i, j, Ti,j, S

)
.

15: T[index]← T[index] ∪ {Pm}.
1: function OnlinePhase((m, m′) , i, j, T, S)
2: bj ← (j− 4× (j mod 4)) mod 16. ⊲ Retrieving the right positions
3: cj ← ⌊bj/4⌋. ⊲ because of the ShiftRows.
4: Colj ← {4cj, . . . , 4cj + 3}
5: for all k−1[0, 5, 10, 15] s.t. ∆w0[{0, . . . , 3} − {i}] = 0 do
6: Construct δ-set D from m.
7: for all SR(u6)[Colj] s.t. ∆z5[Colj − {j}] = 0 do
8: Decrypt column cj of x6 for D.
9: for all u5[bj] do

10: Decrypt byte j of x5 for D.
11: Construct multiset M of ∆x5.
12: if M ∈ T then
13: return ExhaustiveSearch()

possible keys in less than 296, as the 9 key bytes do not belong to the same subkey.

A natural way to recover the missing bytes would be to replay the efficient attack by using
different positions for the input and output differences. Unfortunately, this increases the
complexity, and it would also interfere with the trade-off since we could not look for all the
possible positions of the differences anymore.

We propose a method that recovers the two last subkeys in a negligible time compared
to the 299 encryptions of the efficient attack. First, the adversary guesses the 11 parameters
used to build the table of multisets, computes the value the corresponding 24 parameters and
keeps the only one used to build the checked multiset. In particular, he obtains the value of
all the intermediate state x3 and one column of x2. As a consequence, and for any position of
the active byte of x5, the Demirci and Selçuk original attack may be performed really quickly.
Indeed, among the 9 (resp. 24) bytes to guess to perform the online (resp. offline) phase, at

104 CHAPTER 5. AES IN THE SECRET-KEY MODEL

least 4 (resp. 20) are already known and the data needed is also in his possession. Finally, the
adversary replays this attack for each position of the active byte of x5 and thus retrieves the
two last subkeys.

5.3 Extensions to 8 and 9 rounds

We can extend the simple attack on the AES presented Section 5.2.3 to an 8-round attack for
both 192- and 256-bit versions by adding one additional round at the end (see Figure 5.7).
The main consequence of this extension is to destroy the linearity existing in the subspace of
differences in the ciphertexts. Now, we apply a non-linear layer on it so that we get pairs of
ciphertexts that are fully active on the 16 bytes, and the differences are completely independent.
This attack is schematized on Figure 5.7. Due to the high complexities, the exhaustive search
happens to be faster to recover the key in the case of AES-128.

The main difficulty compared to the previous attack is that we cannot apply a first step to
the structure to filter the wrong pairs. Indeed, now for each pair from the structure, there exists
at least one key such that the pair follows the differential characteristic. Then our goal is to
enumerate, for each pair and as fast as possible, the key bytes needed to identify a δ-set and
construct the associated multiset assuming that the pair is a right one.

The main idea to do so is the following: if there is a single non-zero difference in a column
of a state before (resp. after) the MixColumns operation, then the difference on same column
in the state after (resp. before) can only assume 28 − 1 values among all the (28 − 1)4 possible
ones. Combining this with the key schedule equations and with the differential property of the
AES S-Box (Theorem 4.2), this leads to an attack requiring 2113 chosen plaintexts, 282 128-bit
blocks of storage and a time complexity equivalent to 2172 (resp. 2196) encryptions on AES-192
(resp. AES-256).

To reach this time complexity, the position of the output active byte must be chosen carefully.
The position of the input active byte for both the pair and the δ-set must be identical, as well as
the output active byte of the pair and the byte that is to be checked. Then, the output difference
must be located at position 1, 6, 11 or 12 in the case of AES-192. As for the AES-256, it can
be located anywhere, except on bytes 0, 5, 10 and 15. Finally, in both cases, the position of the
input difference does not matter.

5.3.1 Attack on 8-round AES-192

Assume the positions of the input and output active bytes of the 4-round differential between
rounds 1 and rounds 5 are respectively 0 and 1. In the first stage of the attack, we ask for the
encryption of 281 structures of 232 plaintexts. This allows the construction of

281 ·
(

232

2

)
≈ 2144

pairs, and for each of them, we apply the following procedure, which enumerates the 224

possible values for the key bytes in about 224 simple operations. Those key bytes are required
to identify a δ-set at the input of AES-192 to perform the attack.

5.3. EXTENSIONS TO 8 AND 9 ROUNDS 105

P

• • • •

k−1

ARK

x0

SB

y0

SR

z0

MC

w0

Round 0

u0

MC

k0

ARK

x1

SB

y1

SR

z1

MC

w1

Round 1

u1

MC

k1

ARK

x2

SB

y2

SR

z2

MC

w2

Round 2

u2

MC

k2

ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

u3

MC

k3

ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

u4

MC

k4

ARK

x5

SB

y5

SR

z5

MC

w5

Round 5

�

u5

MC

k5

ARK

x6

SB

y6

SR

z6

MC

w6

Round 6

N
N
H
H

u6

MC

k6

ARK

x7

SB

y7

SR

z7

MC

w7

Round 7

N
N
N

NN
N
N
N

H
H
H

HH
H
H
H

u7

MC

k7

ARK

x8

Figure 5.7: Complete 8-round truncated differential characteristic used in the 8-round attacks on
AES-192 and AES-256.

For the current pair (see Figure 5.7), the input difference is known and in particular the
input difference in the main diagonal. By guessing the byte difference in byte 0 of w0, we learn
the difference at the input and the output of the first SubBytes. With Theorem 4.2, we deduce
the paired values for those bytes, which linearly give the four diagonal bytes of the first subkey:
k−1[0, 5, 10, 15]. We mark those bytes by a • on Figure 5.7. We store this 32-bit value in a table
T−1 at the index k−1[15]. Since we add one element to T−1 for each guess ∆w0, we expect this
table to contain 28 elements.

106 CHAPTER 5. AES IN THE SECRET-KEY MODEL

Then, for the same pair, we guess the differences in the last column of x6, that is the four
bytes ∆x6[12, 13, 14, 15]. This step performs a meet-in-the-middle technique to recover the
possible values for the key bytes such that the pair follows the differential characteristic of
Figure 5.7.

Step 1. On the one hand, we guess the two bytes ∆z6[3] and ∆z6[6], and linearly compute the
differences in the left half of ∆w6 = ∆x7. Since the pair is fixed, we know its output difference
and incidentally the difference ∆y7 by linearity. Therefore, the input and output differences
of the left halves of ∆x7 and ∆y7 are known, so Theorem 4.2 also applies and determines the
paired values for these bytes. Again, the linear AddRoundKey determines 8 bytes of the
equivalent subkey u7, namely u7[0, 1, 4, 7, 10, 11, 13, 14]. Additionally, as we guessed ∆z6[3, 6],
we also deduce the values of bytes u6[3] and u6[6]. We marked those 10 bytes by N on Figure 5.7.
We store those values of subkeys u6 and u7 in a table T6,7 at index i6,7 that we define later. The
table T6,7 has an expected size of 216 elements.

Step 2. On the other hand, we guess the two other active differences in ∆z6, that is ∆z6[9]
and ∆z6[12] and linearly compute the differences in the right half of ∆w6 = ∆x7. Similarly, we
determine values of the 8 other bytes of the equivalent subkey u7, namely u7[2, 3, 5, 6, 8, 9, 12, 15]
and also the 2 bytes u6[9] and u6[12] for the same reasons as before. Now, we can use a
particularity of the key scheduling algorithm specific to AES-192 (see Figure 5.8) allowing to
match the bytes from this step with one entry of table T6,7 stored in the previous step. The idea
is to take advantage of the linear equations of the key schedule, by expressing u6[4] and u6[6]
as linear functions of bytes from step 1 and 2 to perform a meet-in-the-middle. Namely, from
the MixColumns inverse operation, we have

u6[4] = 14k6[4]⊕ 13k6[5]⊕ 11k6[6]⊕ 9k6[7]

u6[6] = 11k6[4]⊕ 9k6[5]⊕ 14k6[6]⊕ 13k6[7]

and the key schedule equations for AES-192 (see Figure 5.8) give:

k6[4] = k7[8]⊕ k7[12]

k6[5] = k7[9]⊕ k7[13]

k6[6] = k7[10]⊕ k7[14]

k6[7] = k7[11]⊕ k7[15],

which leads to:

u6[4] = 14k7[8]⊕ 14k7[12]⊕ 13k7[9]⊕ 13k7[13]⊕ 11k7[10]⊕ 11k7[14]⊕ 9k7[11]⊕ 9k7[15], (5.7)

u6[6] = 11k7[8]⊕ 11k7[12]⊕ 9k7[9]⊕ 9k7[13]⊕ 14k7[10]⊕ 14k7[14]⊕ 13k7[11]⊕ 13k7[15]. (5.8)

For simplicity, we assume that we get bytes from k7 rather than bytes from u7. To consider
the exact case, we would need to write four more linear relations from the inverse MixColumns
operation to express k7[8], . . . , k7[11] in terms of u7[8], . . . , u7[11]. We can reorder the variables
so that the left-hand sides only contain variables from step 1, and the right-hand sides from
step 2:

u6[4]⊕ 14k7[8]⊕ 13k7[9]⊕ 14k7[12]⊕ 9k7[15] = 11k7[10]⊕ 9k7[11]⊕ 13k7[13]⊕ 11k7[14]

11k7[8]⊕ 9k7[9]⊕ 11k7[12]⊕ 13k7[15] = 14k7[10]⊕ 13k7[11]⊕ 9k7[13]⊕ 14k7[14]⊕ u6[6].

5.3. EXTENSIONS TO 8 AND 9 ROUNDS 107

k−1 kL
0

KS

kR
0 k1

KS

k2 kL
3

KS

kR
3 k4

KS

k5 kL
6

KS

kR
6 k7

Figure 5.8: Five steps of the key scheduling algorithm of AES-192. We denote kL the left part of subkey
k, and kR its right part. The subkeys ki, 0 ≤ i ≤ 7 are 128-bit large and incorporated in the 8-round
encryption depicted on Figure 5.7.

We note that the same separation of variables applies with variables from u7. From this, we
select an entry of the previously stored table T6,7 at the index defined by the two previous
left-hand sides

(
u6[4]⊕ 14k7[8]⊕ 13k7[9]⊕ 14k7[12]⊕ 9k7[15], 11k7[8]⊕ 9k7[9]⊕ 11k7[12]⊕ 13k7[15]

)

and retrieve the full subkey k7 in one operation. The right-hand side linear relations of the
meet-in-the-middle in equations (5.7) and (5.8) define the index i6,7 to store the entries in
table T6,7 in step 1. This whole step is therefore done in 216 simple operations, basically by
enumerating the values of the two guessed bytes ∆z6[9] and ∆z6[12].

Step 3. The knowledge of k7 allows to compute the last column of k5 and u5 by inverting the
last key schedule step (Figure 5.8). From Proposition 5.3 found by Dunkelman et al., we can
also compute k−1[·, 3], that is bytes k15[12, 13, 14, 15].

Proposition 5.3 (Key bridging, [DKS10]). By the key schedule of AES-192, the knowledge of
columns 0, 1, 3 of the subkey k7 allows to deduce column 3 of the whitening key k−1.

108 CHAPTER 5. AES IN THE SECRET-KEY MODEL

Now, with byte k−1[15], we can use table T−1 to select one entry and recover the four
diagonal bytes k−1[0, 5, 10, 15] of k−1.

Finally, for each of the 2144 pairs and for each of the 224 subkeys corresponding to one pair,
the adversary identifies the δ-set and verifies whether the corresponding multiset belongs to
the precomputed table. This part of the attack is the same as the previous attacks described for
7 rounds.

Thus, the time complexity is equivalent to 2144 · 224 · 28 · 2−4 = 2172 encryptions to enumerate
the pair, the key bytes, construct the δ-set and check the precomputed table for the multiset.
The data complexity comes from the encryption of 2113 chosen plaintexts, and the memory
requirements amount to 280 multisets, that is 282 blocks of 128 bits.

5.3.2 Attack on 8-round AES-256

In the case of the 256-bit version, the procedure is very similar. The only difference comes from
the key scheduling algorithm which prevent u6 to be deduced from u7 (see Figure 5.9). Indeed,

k−1 k0

KS

k1 k2

KS

k3 k4

KS

k5 k6

KS

k7 k8

Figure 5.9: Four steps of the key scheduling algorithm of AES-256.

k6 and k7 are independent and the only property we can use is the following one.

Proposition 5.4. By the key schedule of AES-256, the knowledge of the subkey k7 allows to linearly
deduce columns 1, 2 and 3 of k5.

Because of the independence of k6 and k7, we cannot apply the meet-in-the-middle strategy

5.3. EXTENSIONS TO 8 AND 9 ROUNDS 109

on the two linear relations coming from the key schedule as before, so steps 1 and 2 collapse
into a single one. First, we guess the four differences in ∆z6 at once, and deduce the paired
state in x7 from Theorem 4.2 since we know the ciphertext difference for the current pair. Then,
we deduce the full subkey k7 and incidentally u7, and also the four diagonal bytes of u6. This
has been done in 232 simple operations. As the two remaining required bytes u5[13] and k−1[15]
are independent of the current ones, we guess them and then we can construct the δ-set and
finish the attack as before. Then, there are 232+8+8 = 248 possible values for the required key
bytes and we enumerate them in 248 simple operations.

Consequently, the straightforward application of the previous algorithm runs in time
equivalent to 2144 · 248 · 28 · 2−4 = 2196 encryptions, but it is possible to save some data in
exchange for memory by considering several characteristics in parallel. We can bypass the
fact that all the positions for the output active byte do not lead in the same complexity by
performing the check on y5 instead of x5. This is done by just adding one parameter to the
precomputed table and increases its size by a factor 28, from 280 to 288 multisets. Then, we can
look for all the 4 · 16 = 26 differentials in parallel on the same structure.

All in all, the data complexity and the memory requirement become respectively 2113/26 =
2107 chosen plaintexts and 288+2 × 26 = 296 128-bit blocks, while the time complexity remains
equivalent to 2196 encryptions.

5.3.3 Attack on 9-round AES-256

The 8-round attack on AES-256 can be extended to an attack on 9-round by adding one round
right in the middle (see Figure 5.10). This only increases the memory requirements: the time
and data complexities remain unchanged. More precisely, the number of parameters needed
to construct the precomputed table turns out to be 24 + 16 = 40, but they can only assume
28×(10+16) = 2208 different values. By adding the complete 128-bit subkey k3 to the precomputed
table, we can extend the number of covered rounds in the offline phase from 4 to 5. Now, the
multisets are constructed in y6 from a δ-set in x1.

All in all, without the previous tradeoff, the data complexity of the attack stays at 2113

chosen plaintexts, the time complexity remains 2196 encryptions and the memory requirement
reaches about 2210 128-bit blocks to store the large precomputed table.

To reduce its complexity, we can cover only a fraction 2−7 of the possible multisets stored
in the precomputed table. In return, the data and time complexities are increased by a factor
27 by replaying the attack several times. This way, we reach balanced complexities with
2113 × 27 = 2120 chosen plaintexts, 2196 × 27 = 2203 encryptions and a storage of 2210/27 = 2203

blocks of 128 bits.

110 CHAPTER 5. AES IN THE SECRET-KEY MODEL

P

k−1

ARK

x0

SB

y0

SR

z0

MC

w0

Round 0

u0

MC

k0

ARK

x1

SB

y1

SR

z1

MC

w1

Round 1

u1

MC

k1

ARK

x2

SB

y2

SR

z2

MC

w2

Round 2

u2

MC

k2

ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

u3

MC

k3

ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

u4

MC

k4

ARK

x5

SB

y5

SR

z5

MC

w5

Round 5

u5

MC

k5

ARK

x6

SB

y6

SR

z6

MC

w6

Round 6

u6

MC

k6

ARK

x7

SB

y7

SR

z7

MC

w7

Round 7

u7

MC

k7

ARK

x8

SB

y8

SR

z8

MC

w8

Round 8

u8

MC

k8

ARK

x9

Figure 5.10: Complete 9-round truncated differential characteristic used in the 9-round attack on
AES-256.

CHAPTER6
AES in the Related-Key Model

Contents
6.1 Generalities . 112

6.1.1 Motivations . 112

6.1.2 Graph traversal algorithms . 113

6.1.3 Structural evaluation . 116

6.2 Definitions . 118

6.2.1 Substitution-Permutation Network . 118

6.2.2 Truncated and actual differences . 119

6.3 Related-key differential characteristics . 120

6.3.1 Differential characteristic search . 120

6.3.2 Precomputation phase . 122

6.3.3 Online phase . 124

6.4 Enhanced Markov process . 127

6.4.1 The Markov assumption and actual differences 127

6.4.2 Block cipher state compression . 128

6.4.3 Evaluating the number of nodes/edges of GBC and GKS 128

6.4.4 More complete Markov process . 130

6.4.5 Explanations . 132

6.5 Applications to SPN and AES-128 . 133

6.5.1 Structural evaluation of SPN AES-like ciphers 133

6.5.2 Differential characteristics results for AES-128 135

In this chapter, we consider the resistance of the structure of the AES in the related-key model
where the adversary can encrypt plaintexts or decrypt ciphertexts under a set of keys related
by a known relation. By structure, we mean the design of the AES, where the building blocks
have unspecified or unknown values, namely the S-Box or the MDS matrix. An example of
relation can for instance be the case where the adversary has access to two encryption oracles
using keys k and k′ such that k′ = k⊕ δ for a non-zero known difference δ.

Our work is actually more general as it captures not only AES but also any SPN ciphers.
In detail, we develop an efficient and generic algorithm that computes all the best differential
characteristics for general SPN ciphers, including the ones conforming to the AES structure. We

— 111 —

112 CHAPTER 6. AES IN THE RELATED-KEY MODEL

recall that a bound on the differential probability of the differential characteristic for a cipher
give an estimation of its resistance to differential attacks (see Chapter 3). We show how we can
reduce this problem to the shortest path problem in a special class of directed acyclic graphs.

The conclusions of our analysis that we detail in the following sections consist of impos-
sibility results. The resistance of the AES structure against differential cryptanalysis in the
related-key model cannot be proven unless we provide the instantiation of the S-Box. We
consider several scenarios like the classical related-key model, and also the hash function
setting where the adversary can control the key bits. In the latter scenario where both the
key schedule and the message can be considered somewhat independently by the adversary,
we prove the impossibility to ensure the resistance of the AES structure against differential
cryptanalysis unless the instantiations of the S-Box and the linear layer are provided.

This chapter is largely inspired from an article co-authored with Pierre-Alain Fouque and
Thomas Peyrin that has been published at Crypto 2013 in [FJP13a]. We begin this chapter by
a motivation section where we also introduce the literature and previous algorithms in this
research line. This particularly includes other automatic analyses and search algorithms for
differential characteristics.

6.1 Generalities

6.1.1 Motivations

Block ciphers and hash functions are among the most important primitives in cryptography
and while their respective goals are different, they are related in many ways. For example,
most compression functions, which can in turn be used to define a hash function, are built
upon an internal block cipher thanks to classical constructions such as Davies-Meyer (DM),
Matyas-Meyer-Oseas (MMO) or Miyaguchi-Preneel (MP) [ISO04, MMO85, PGV94] (see also
Section 1.4).

One of the main differences between the two families of primitives is that in the case of
the block cipher, the key input is unknown and uncontrolled by the attacker, whereas for
the compression function, the attacker has full control on the key schedule (generally called
message expansion in that context). Yet, the so-called related-key attack scenario [Bih93, BDK08]
is interesting for both cases. This model allows the attacker to incorporate differences not only
in the plaintext or ciphertext input, but also in the key input. While less relevant in practice
than the classical single-key model, it is important to analyze block ciphers in the light of
related-key attacks since the secret keys are often updated in security protocols or differences
can be incorporated using fault attacks (see for instance the WEP case detailed in Section 3.4.4).

Moreover, related-key attacks are also very important when the block cipher is used as
inner primitive of a hash function, and in that setting one can even consider the known-key or
chosen-key models where the attacker is given knowledge or complete control of the key and
his goal is to exhibit some non-ideal property of the primitive (see the following Chapter 7).

To measure the resistance of a primitive against differential cryptanalysis, we often consider
differential characteristics rather than the more general concept of differentials. In that sense,

6.1. GENERALITIES 113

avoiding high-probability related-key differential characteristics is one of the goal of the key
schedule, and so far various directions have been investigated to construct this component.
This has been taken into account in the conception of the Piccolo block cipher [SIH+11]
or in the Whirlpool hash function [BR00], the latter proposing to use the same AES-like
permutation for both the internal permutation and the message expansion part, leading to a
strong key schedule in terms of number of S-Box calls, but quite slow as it represents about half
of the total amount of computations. As a complete opposite, the designers of the LED block
cipher [GPPR11] have chosen to use no key schedule at all, at the expense that an important
number of rounds is required. These two functions can both provide provable security with
regard to related-key differential attacks, but they also both suffer from efficiency issues.

In general, see for example AES or PRESENT [BKL+07], key schedules are built by using an
ad-hoc and relatively light function that is quite different from the main permutation, in a hope
that this will avoid any correlation between the two components and enforce low-probability
related-key differential characteristics. However, because of the heuristic design process and
the difficulty of the task, no real security argument is given and this can eventually lead to
security issues [BK09, BN10]. To help designers and cryptanalysts, many automated differential
analyses have already been applied to various primitives [BN11, WY05, MP08, DR06c, WYY05a,
Leu12, BN10, KBN09, BDF11].

The AES block cipher is currently the most interesting candidate to scrutinize with regard to
related-key, chosen-key attacks or when used as a black-box in cryptosystems. Indeed, during
the NIST SHA-3 hash function competition, many candidates [BBG+09, GKM+11, BD09]
reused some components from the AES. Moreover, previous cryptanalytic results in the related-
key model showing attacks on the full versions of AES-192 and AES-256 [BK09, BKN09]
have been discovered, which give less confidence in the key scheduling algorithms of these two
versions and somehow draw attention on the one of AES-128.

While basic differential and linear attacks against the AES in the single-key scenario seem to
be mastered since the design of the cipher focuses in particular to resist to those class of attacks,
provable security against related-key attacks seems more complex to tackle. In this chapter, we
consider the related-key model applied to SPN ciphers and in particular to the generalized
design of the AES that we already presented as AES-like permutation in Section 4.3. Our work
is then completed by an analysis in the known-key and chosen-key models in the following
Chapter 7.

We now recall the related works done in automated analysis of block ciphers against
differential cryptanalysis (Section 6.1.2), and then we discuss the structural aspect of block
cipher design and analysis (Section 6.1.3).

6.1.2 Graph traversal algorithms

As the algorithm we develop uses graph-based techniques for differential characteristics search,
we recall here a fraction of the literature in the same domain.

In [Mat94b], Matsui proposes an algorithm to find the best differential characteristics for
DES. The strategy to find the best one on n rounds first starts by computing the best ones on
1 to n− 1 rounds. The algorithm works by induction and can be seen as a tree traversal in

114 CHAPTER 6. AES IN THE RELATED-KEY MODEL

a depth-first manner, where the tree represents all the possible differential characteristics in
the cipher layered by round (see Figure 6.1). The nodes represent the actual differences and

∆1

∆5

∆1

p 1
5

∆9

p9
5

∆8
p8

5

p 51

∆4 ∆4
p4

4

p 4
1

∆3

∆7p7
3

∆1p1
3

p3
1

∆2

∆1

p 1
2

∆6
p6

2

∆4
p4

2

p
2 1

Figure 6.1: Example of a tree representing all differential characteristics for 2 rounds of a SPN cipher.
The nodes are values of difference, and pj

i is the differential probability of the 1-round differential
∆i → ∆j.

the edges the possible transitions between them, and are labeled by their probabilities. One
differential characteristic is a path in this tree, for example ∆1 → ∆3 → ∆7, and its probability
equals the product of all traversed edges, e.g. p3

1 p7
3. We are looking for the path with the

highest probability in this tree. The knowledge of the previous best characteristics, i.e. up to
some depth in the tree, allows pruning during the procedure like the A∗ heuristic [HNR68]:
the target value being known (the exhaustive search bound), we can reduce the possibilities
for each one-round transition. Using such an algorithm, the complexity is exponential in the
number of nodes in the tree, and therefore in the block-size and the number of rounds, except
if the pruning is very efficient.

In modern byte-oriented ciphers, designers ensure there is a fast diffusion and that all
actual differential transitions occur with (almost) the same probability: all differences become
equivalent. This is for instance the case in AES as the S-Box has maximal differential probability
2−6. Consequently, Matsui’s search algorithm becomes less efficient since there is no dominant
characteristic. Biryukov and Nikolić propose in [BN10] to restrict the search to truncated
differences to decrease the number of edges in the tree. They also introduce a nice representation
of truncated differences to consider the branching (combinatorial explosion of differences) in

6.1. GENERALITIES 115

the key schedule. Their work replaces the actual differences located at the nodes of the previous
tree representation of Matsui of Figure 6.1 by truncated differences, and the branching is
expressed by the degree of each nodes in the tree.

In this chapter, we present a new algorithm to perform the same search by changing the
tree representation from the previous works into a graph: the nodes and edges have the same
signification as before, but we merge all the nodes representing the same differences after the
same number of rounds into a single one (see Figure 6.2). Matsui’s tree encodes all the paths of

∆1 ∆2

∆3

∆4

∆5

∆4⋆

∆6

∆1⋆

∆7

∆8

∆9

Figure 6.2: Graph representation of the tree from Figure 6.1. Equal differences on a layer have been
grouped into a singe node: we mark by a ⋆ the nodes that represent several nodes in the previous tree.

our graph, from the source node to any nodes in the last layer. Consequently, the numbers of
nodes and edges decrease a lot and become linear in the number of rounds. Finding the best
differential characteristics is reduced to a shortest path problem: we want all the shortest paths
in this graph to get all the differential characteristics with the highest probabilities.

We use a variant of Dijkstra algorithm combined with the A∗ heuristic [HNR68] to explore a
kind of graph product in a breadth-first manner. Our algorithm uses a dynamic programming
method, which has been considered too costly in terms of memory in [BN10]. This approach
solves the problem of finding the best related-key characteristics using graph algorithms in
polynomial time in the number of rounds and exponential in the state size, whereas the previous
best known ways are exponential in both parameters using Matsui’s algorithm variants. We
note that the search in [BN10] has been made possible thanks to an extreme pruning in the
AES tree.

The algorithm computes the probabilities of the differential characteristics by multiplying
the differential probabilities of each traversed edge in a path. As we explain in more detail
in the following, this is based on a Markov process and the same graph-based problem can
be reformulated as a matrix exponentiation. The matrix itself is the transition matrix of the
Markov chain that defines the differential probabilities of all one-round differentials. The matrix
therefore describes one-round transitions in the cipher, and its n-th power corresponds to the
application of n rounds of the cipher. If we evaluate input vectors of the form [1, 0, . . . , 0]T

116 CHAPTER 6. AES IN THE RELATED-KEY MODEL

where all but one coordinate are zero, which corresponds to an input active difference, we can
compute the probabilities of all differential characteristics and incidentally find the best ones.
However, the size of the matrix makes the exponentiation algorithms less efficient that our
graph-based solution, but the core idea is the same.

6.1.3 Structural evaluation

By structural evaluation, we mean the domain of cryptography that analyzes a cryptosystem
in terms of generic constructions using black-box elements. We are interested in how the
building blocks of the primitives interact together, while “ignoring their semantic definitions as
particular functions” as in meet-in-the-middle attacks.

In this line of research, a major result is the conception of Rijndael, or how to construct
a block cipher provably resistant to differential attacks. Daemen and Rijmen show in [DR02]
a lower bound Br on the number of active S-Boxes for any differential characteristic on r
rounds of Rijndael, when no difference is introduced in the key. For an S-Box with maximal
differential probability pmax, this result allows to upper bound the probability of success of any
differential attack on r rounds by pBr

max. For k-bit keys block ciphers, the resistance to differential
cryptanalysis means p−Br

max > 2k, which gives a criteria on r and pmax for the security of the
cipher.

In [BS10], Biryukov and Shamir analyze the SASAS construction, alternating five layers of
non-linear S and affine A functions. In their article, they consider generalized SPN structures

S0,0
k S0,1

k S0,2
k S0,3

k S0,4
k S0,5

k S0,6
k S0,7

k S0,8
k S0,9

k S0,10
k S0,11

k S0,12
k S0,13

k S0,14
k S0,15

k

A0
k

S1,0
k S1,1

k S1,2
k S1,3

k S1,4
k S1,5

k S1,6
k S1,7

k S1,8
k S1,9

k S1,10
k S1,11

k S1,12
k S1,13

k S1,14
k S1,15

k

A1
k

S2,0
k S2,1

k S2,2
k S2,3

k S2,4
k S2,5

k S2,6
k S2,7

k S2,8
k S2,9

k S2,10
k S2,11

k S2,12
k S2,13

k S2,14
k S2,15

k

Figure 6.3: SASAS construction: 5 layers with alternating Substitution (S) and affine layers (A), which
are not necessarily the same and may depend on the secret key k. The figure takes the AES as example:
an arrow is 8-bit wide and there are 16 of them.

where the permutation layer is replaced by an affine mapping, and its diffusion property is
assumed to bring complete diffusion in a single step. This compares for instance with the
two rounds needed to bring full diffusion in the AES. Their motivation has been greatly

6.1. GENERALITIES 117

inspired from the square attack on the Rijndael cipher (see Section 4.4.1), but the weakened
assumptions on the diffusion and the possibly different and key-dependent (thus unknown) S
layers intuitively reduce the strength of the square attack. They show that five such rounds
are vulnerable to a very efficient structural attack, even though the adversary does not know
anything about the inner structure of both S and A. With the same parameters as the AES, the
attack requires 216 chosen plaintexts and 228 simple operations to recover the full secret key k
of 128 bits.

In a related work, Eli Biham studies a similar generic construction proposed by Patarin and
Goubin in [PG97] called 2R. The design also has five rounds, and simply interchanges the S
and A layers (see Figure 6.4); we call it ASASA. However, the assumption on the S-Boxes is
completely different: while Biryukov and Shamir assume bijective mappings, the design from
Patarin and Goubin instantiates the non-linear S-Boxes by quadratic polynomials, making the
S layer non-invertible. In his work [Bih00], Biham describes a generic attack for this kind of

A0
k

S0,0
k S0,1

k S0,2
k S0,3

k S0,4
k S0,5

k S0,6
k S0,7

k S0,8
k S0,9

k S0,10
k S0,11

k S0,12
k S0,13

k S0,14
k S0,15

k

A1
k

S1,0
k S1,1

k S1,2
k S1,3

k S1,4
k S1,5

k S1,6
k S1,7

k S1,8
k S1,9

k S1,10
k S1,11

k S1,12
k S1,13

k S1,14
k S1,15

k

A2
k

Figure 6.4: ASASA construction: 5 layers with alternating Substitution (S) and affine layers (A), which
are not necessarily the same and may depend on the secret key k. The figure takes the AES as example:
an arrow is 8-bit wide and there are 16 of them.

design. The structural weakness comes from the existence of collisions created by the S-Boxes,
and can be exploited by the birthday paradox. Because of the birthday bound, the complexities
of Biham’s attack reach about 260 data and simple operations. This attack does not apply to the
invertible case analyzed by Biryukov and Shamir [BS10] as no collision can arise from them.

The remaining of this chapter introduces definitions and a study of the structural resistance
of generic Substitution-Permutation Networks in the related-key model. Ideally, we would
want a lower bound on the number of active S-Boxes in the related-key model for any number
of rounds, so that we could upper bound the differential probability of any differential char-
acteristics in this model, and consequently lower bound the complexities of any differential
attacks in this general setting. Unfortunately, contrary to the single-key model, it is not possible
to prove anything by hand on the key schedule resistance in the same vein as [DR02]. This

118 CHAPTER 6. AES IN THE RELATED-KEY MODEL

is due to the ad-hoc nature of the key schedule design which makes a formal analysis much
harder than the one of the inner permutation. To tackle this interesting problem anyway, we
build a tool to enumerate and analyze the differential characteristics.

6.2 Definitions

6.2.1 Substitution-Permutation Network

To keep our reasoning as general as possible, we give a generic description of Substitution-
Permutation Network (SPN) ciphers. We consider that the block ciphers studied here take as
input a plaintext or ciphertext of size n bits, and a key of size k bits. The cipher is composed
of R successive applications of a round function, and we denote respectively si and ki the
successive internal states of the block cipher and the key schedule after the i-th round. The
state s0 is initialized with the input plaintext and k0 with the input key. One round i is itself
composed of three layers:

• a key extraction and incorporation layer (AK) where a n-bit round-key rki−1 is extracted
from ki−1 and added to si−1,

• a block cipher permutation layer BC that updates the n-bit current state of the block
cipher after addition of the subkey, i.e. si = BC(si−1 ⊕ rki−1),

• a key schedule transformation layer KS that updates the k-bit current state of the key
schedule, i.e. ki = KS(ki−1),

The final ciphertext is then defined as sR ⊕ rkR.

Definition 6.1. (SPN cipher) Let E be a block cipher whose internal state is viewed as a tBC-cell
vector (where tBC = n

c), each cell representing a c-bit word, and the key schedule as a tKS-cell
vector (where tKS = k

c). The block cipher E is called an SPN cipher when its round function BC
is made of a linear permutation P and a non-linear permutation S, with BC = P ◦ S, the latter
applying one or distinct b-bit S-Boxes to every cell.

In the particular case of AES-like ciphers, the internal state of BC implements an AES-like
permutation (see Section 4.3 for more details), and can therefore be viewed as a square matrix
of c-bit cells with t rows and t columns (n = t2 · c). Then, the linear layer is itself composed
of the ShiftRows transformation (SR), that moves each cell by x positions to the left in its
own row, and the MixColumns transformation (MC), that linearly mixes all the columns of the
matrix separately. Overall, for AES-like ciphers we have BC = P ◦ S = MC ◦ SR ◦ S (Figure 6.5).

We also study the more particular AES-like ciphers that have a key schedule internal state
that can be viewed as a c-bit cell matrix of t rows and t columns for a (t2 · c)-bit key (t rows and
1.5t columns for a (1.5t2 · c)-bit key or t rows and 2t columns for a (2t2 · c)-bit key) and whose
key schedule layer KS is the direct generalization of the AES key schedules to the dimension t
(see Section 4.2.1). We denote this class of ciphers total-AES-like ciphers, which encompasses
all versions of AES. We note that the constant addition of the RCON values in the key schedule
does not affect our reasoning: that is why we omit it in the sequel.

6.2. DEFINITIONS 119

ki−1

rki−1

si−1

t cells

t cells

c bits

S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

SR MC

si

ki

BC

KS

AK

Figure 6.5: One round of the generic SPN and AES-like ciphers.

6.2.2 Truncated and actual differences

We are interested in differential attacks [BS91a, BS91b] (see Chapter 3) and usually, in this
scenario the attacker looks for the bitwise difference between two state values. However, here
we also consider truncated differential attacks [Knu94]. That is, for a state of differences, we
only consider the presence of differences in every cell, regardless of their actual values. To
distinguish between the two, we call the former actual differences and the latter truncated
differences.

Definition 6.2 (Differences). Let A = [Ai,j] and B = [Bi,j] two states. We denote their truncated
difference by ∆ = [∆i,j] with ∆i,j = 1 if and only if Ai,j 6= Bi,j (active cell), and ∆i,j = 0 otherwise
(inactive cell). We denote their actual difference by δ = [δi,j] with δi,j = Ai,j ⊕ Bi,j.

First, we analyze the effect of the cipher transformations on the both truncated differences
and the actual differences.

6.2.2.1 The substitution layer

One can easily check that the substitution layer S has no effect on the truncated difference
of a cell: a cell remains in the same active/inactive situation after application of the bijective
transformation. However, S has an effect on the actual difference of every active cells. This
effect can be visualized by the differential distribution table (DDT) of the S-Box. More precisely,
for each possible pair (δin, δout) of actual differences on the input/output of the S-Box, the table
gives the number DDT(δin, δout) = x of values X that validate this differential transition, i.e.:

S(X)⊕ S(X⊕ δin) = δout.

Alternatively, x/2c represents the differential probability of the transition. An important
criteria that can be derived from this table is the maximal differential probability pmax, which is
the highest possible differential probability when δin 6= 0 and δout 6= 0. For example, the S-Box
implemented in AES has maximal differential probability pmax = 2−6.

120 CHAPTER 6. AES IN THE RELATED-KEY MODEL

In order to measure the quality of a truncated differential characteristic, we use the classical
counting of the number of active S-Boxes appearing in the characteristic, and we denote it | · |.

Definition 6.3. Let v = [∆i] be a vector of truncated differences. The weight of v is the number
of active differences in v: ∑∆i 6=0 1. We denote it |v| and generalize the notion to any matrix v.

6.2.2.2 The permutation layer for AES-like ciphers

Since the SR layer only moves the cells around, it only changes the active/inactive cells positions
in the internal state, but not their number. The same reasoning applies to the actual differences.

The MC transformation being linear, the effect on the values and the actual differences is
the same and therefore for each column of the internal state, the output actual differences
are simply deduced by the application of the MC linear matrix. Concerning the truncated
differences, the effect depends on the branching number BMC of the MC matrix. The branching
number is the minimum amount of active cells one can get on both the input and the output
of the matrix, excluding the case when there are both null. This measure of the diffusion
is crucial for the security of many cryptography primitives and, in general, the MC matrix
is Maximum Distance Separable (MDS), that is BMC = t + 1 is maximal. A valid truncated
differential transition forcing i cells to be inactive on the output happens with probability 2−c·i.

6.3 Related-key differential characteristics

In this section, we explain the inner workings of our generic related-key differential characteristic
search tool for SPN ciphers. As a first step, we model the problem by assuming that the cipher
round function is a Markov process in regard to the truncated differential characteristic search
(Section 6.3.1). This allows to reduce the problem to a shortest path search in a special (r + 1)-
equipartite directed acyclic graph, for which we provide a simple yet powerful algorithm. The
precomputation phase of the process is devoted to building the graphs on which we work
on (Section 6.3.2), while the online phase looks for the shortest paths (Section 6.3.3). Finally,
we explain how to tweak the Markov assumption in order to find not only the best truncated
differential characteristics, but also the actual difference ones (in Section 6.4).

6.3.1 Differential characteristic search

When an attacker considers truncated differentials, he accepts to loose some information (the
actual values of the differences) in order to make the analysis simpler. In general, when dealing
with truncated differentials for SPN ciphers, most of the attacks actually maintain implicitly
more information than just the presence or absence of difference in a cell. For example, in the
case of the AES-128, the truncated differential characteristics found verify the linear conditions
imposed by the key schedule of the cipher. Therefore, the characteristic actually contains more
information than just active/inactive cells.

We describe a first algorithm that generates for any number of rounds all the related-
key truncated differential characteristics for SPN ciphers, whose number of active S-Boxes is
minimal. This analyzes the structure of the cipher in regard to the resistance against related-key

6.3. RELATED-KEY DIFFERENTIAL CHARACTERISTICS 121

attacks. We make a simple assumption: we would like the search to be a Markov process.
More precisely, we assume that the possible differential transitions through a round from one
truncated state to another one does not depend on previous round transitions. If we stick to the
real definition of truncated differentials (i.e. without implicit conditions contained), then this
assumption is verified for SPN ciphers: knowing the truncated input difference of one round
represents all the information needed in order to deduce the possible output ones. We discuss
in Section 6.4 how to adapt ourselves to the case of actual differences.

Graph modeling

In order to find the best r-round related-key truncated differential characteristics, we use a graph
modeling of the problem. Let G be the 2-equipartite directed acyclic graph of all the possible one-
round transitions. Thus, all the best r-round related-key truncated differential characteristics
correspond to all the shortest paths in the (r + 1)-equipartite directed acyclic graph Gr built
by concatenating r copies of G (see Figure 6.6). Namely, denoting G = (V0, V1 ; E0,1) the
2-equipartite graph linking with one cipher round a state in set V0 to a state in set V1 using
some edge in set E0,1, we build the graph Gr representing r rounds of the cipher by Gr =
(V0, . . . , Vr ; E) such that for all i, the subgraph (Vi, Vi+1 ; Ei,i+1) is equal to G. Note that all
edges are oriented from Vi to Vi+1, and that Vi and Vi+1 contain the same number of nodes.

The nodes of the graph stand for all the possible pairs (∆KS, ∆BC) where ∆KS represents the
truncated difference in the key schedule state and ∆BC represents the truncated difference in
the block cipher state. Since we have 2tKS possible values ∆KS and 2tBC possible values ∆BC, all
Vi in the graph are composed of 2(k+n)/c nodes. The edges correspond to a possible one-round
related-key truncated differential characteristic from the input to the output vertex and in the
worst case where all differential transitions are possible, we have 22(k+n)/c edges. A path in Gr

is defined as a sequence of r + 1 nodes, one in each of the Vi.

Instead of viewing one round with the normal SPN layers ordering AK, S and P, we prefer
to slightly shift the window to the left: P, AK and S, the input key of this new window is the
one that has been incorporated into the block cipher state during the previous round (see
Figure 6.6). Then, the cost of the transitions are not associated to the vertices, but to the output
nodes. Indeed, the number of active cells in the output node represents the number of active
S-Boxes during this round1.

We denote CBC (resp. CKS) the total number of active S-Boxes in the internal permutation
part of the block cipher (resp. in the key schedule part) in the whole characteristic. Depending
on the situation considered, one might want to minimize CBC + CKS for classical scenarios,
or instead max{CBC; CKS} for hash function settings, where the key schedule and the block
cipher parts can be attacked independently. In the case of minimizing max{CBC; CKS}, the
algorithm will not be able to find the shortest path since we loose the total order. However,
in most ciphers, CBC > CKS and therefore, we minimize only CBC. For the best found paths, if
max{CBC; CKS} = CBC is verified, we are ensured that we indeed found one of the best paths
minimizing max{CBC; CKS}.

1To be able to associate the number of active S-Boxes in the key schedule to the output node as well, we make
the weak assumption that one round of the key schedule is composed of an S-Box and a linear layer at most.

122 CHAPTER 6. AES IN THE RELATED-KEY MODEL

V0

k0

s0

V1

k1

s1

rk0

AK

KS

P S

(a) Graph G.

V0

k0

s0

V1

k1

s1

V2

k2

s2

V3

k3

s3

V4

k4

s4

V5

k5

s5

rk0 rk1 rk2 rk3 rk4

AK

KS

P S

AK

KS

P S

AK

KS

P S

AK

KS

P S

AK

KS

P S

(b) Graph G5.

Figure 6.6: Examples of simplified versions of the two graphs G and G5. Variables si and ki represent the
current internal permutation/key state respectively, while rki stands for the subkey generated during
the round.

Theorem 6.1. (Search algorithm) Let E be a SPN cipher on n-bit blocks using a k-bit internal state
in the key schedule. Both states are viewed as vectors of b-bit cells. There exists an algorithm A with a
theoretical time complexity of O(r · 2(2n+k)/c) that finds all the best characteristics on r rounds of E . �

We emphasize that algorithm A will find all the shortest paths in Gr representing the
differential transitions of r rounds of E . Moreover, we note that the time complexity of A can
be greatly reduced with heuristics.

We describe in the next two sections our tool that searches for the best r-round related-key
truncated differential characteristics. The precomputation phase (Section 6.3.2) of the tool
constructs the graph G from which one can virtually build Gr. During the online phase (Sec-
tion 6.3.3), the tool looks for the best possible related-key truncated differential characteristics
on r rounds by searching for the cheapest paths of size r in the graph Gr.

6.3.2 Precomputation phase

The precomputation phase builds the graph G. It can be built and stored efficiently by observing
its inner structure: the block cipher internal state output depends only on the block cipher
internal state input and the incoming subkey (deduced by the extraction phase from the key
schedule internal state input), while the key schedule internal state output depends only on the
key schedule internal state input. Therefore, G can actually be described as a special product of
two smaller graphs GBC and GKS (see Figure 6.7), such that an edge (si, k j)→ (si′ , k j′) exists in
G if and only if k j → k j′ exists in GKS and (si, k j)→ si′ exists in GBC.

On the one hand, GBC on Figure 6.7a is a bipartite directed acyclic graph whose input nodes
are all the possible block cipher internal state and subkey pairs, and whose output nodes are all

6.3. RELATED-KEY DIFFERENTIAL CHARACTERISTICS 123

the possible block cipher internal states. The edges represent input nodes that can be mapped
to output nodes through a valid differential transition. On the other hand, GKS on Figure 6.7b
is a 2-equipartite directed acyclic graph, whose input and output nodes are all the possible key
schedule internal states. The edges represent input nodes that can be mapped to output nodes
through a valid differential transition.

(s3, k3)
(s2, k3)
(s1, k3)
(s3, k2)
(s2, k2)
(s1, k2)
(s3, k1)
(s2, k1)
(s1, k1)

s3

s2

s1

(a) Graph GBC.

k1

k2

k3

k1

k2

k3

(b) Graph GKS.

(s3, k3)
(s2, k3)
(s1, k3)
(s3, k2)
(s2, k2)
(s1, k2)
(s3, k1)
(s2, k1)
(s1, k1)

(s3, k3)
(s2, k3)
(s1, k3)
(s3, k2)
(s2, k2)
(s1, k2)
(s3, k1)
(s2, k1)
(s1, k1)

(c) Graph G.

Figure 6.7: Example of graph product to build G, with three possible internal states s1, s2, s3 and three
possible key states k1, k2, k3, where (si , k j) represents a node. An edge (si , k j)→ (si′ , k j′) exists in G if
and only if k j → k j′ exists in GKS and (si , k j)→ si′ exists in GBC.

This observation slightly reduces the amount of computation/memory to build/store G:
the number of vertices in GBC is vBC = 2tBC+tKS + 2tBC and the number of vertices in GKS is
vKS = 2× 2tKS . This has to be compared with the 2× 2tBC+tKS nodes in G. For example, in
the particular case of the AES-128, this trick reduces the number of nodes from 233 in G to
vBC = 232 + 216 in GBC and 217 in GKS and mainly allows to apply an early-abort approach to
prune edges in G in the online phase. More importantly, the total number of edges shrinks
considerably from eBC · eKS to eG = eBC + eKS, which equals to 233.6 + 222.15 in the case of
AES-128 (these edge numbers are explained in Section 6.4.3).

At last, since Gr is the concatenation of r instances of G, we only need to store G to run
computations on Gr and this further saves roughly a factor r. In the case where the cipher
rounds are not the same, we may need to store x different instances of G for x distinct types.

6.3.2.1 The graph GBC

The graph GBC can be built by repeating the three following steps for all the 2tBC possible
truncated differences ∆in on the input and all the 2tBC possible truncated differences ∆out on the
output.

1. Compute all the possible truncated differences ∆x that can be obtained from ∆in through
the P layer (on the backward direction, a truncated difference ∆out stays the same when
inverting the S layer).

2. For every ∆x found, compute all the possible truncated differences ∆k on the key state
that can be obtained from AK−1(∆x ⊕ ∆out).

3. For every ∆k found, add an edge in GBC from input node (∆k, ∆in) to output node ∆out if
none exists.

The time complexity to build GBC depends on the average branching BP of the P layer
and on the average branching Bxor of the subkey XORing layer. It amounts to 22tBC · Bxor · BP

124 CHAPTER 6. AES IN THE RELATED-KEY MODEL

operations. The memory cost to store GBC corresponds to the number of edges eBC of GBC and
is upper bounded by 22tBC · Bxor · BP since one operation on step 3 adds at most one edge. In the
following, we denote succBC(s, k) the set of successors of the state s in the graph GBC using the
key k.

To be able to evaluate properly the time and memory complexity of the related-key differ-
ential characteristics search tool, we give an estimation of the average branching factor Bxor in
the XOR operation in the following Theorem 6.2. As an example, we estimate BP in the case of
AES-128 in Section 6.4.3.2.

Theorem 6.2. The average branching Bxor in the XOR key addition is:

Bxor =
tBC

∑
z=0

tBC

∑
i=0

tBC

∑
j=0

(tBC
i)

2tBC
·
(tBC

j)

2tBC
· Pand(tBC, i, j, z) · 2z.

Proof. We denote X[i] the i-th bit of the word X, and HAM(X) the Hamming weight of the
word X. We recall from [ABNP+11] that for two random k-bit words A and B of Hamming
weight a and b respectively, the probability that HAM(A∧ B) = i, where ∧ stands for the bitwise
AND function, is given by the formula

Pand(k, a, b, i) =
(a

i)(
k−a
b−i)

(k
b)

=
(b

i)(
k−b
a−i)

(k
a)

. (6.1)

All the branching in the ⊕ operation between two words A and B comes from the active
bits in A ∧ B, and we have 2HAM(A∧B) possibilities. Therefore, we can deduce that

Bxor =
tBC

∑
z=0

tBC

∑
i=0

tBC

∑
j=0

(tBC
i)

2tBC
·
(tBC

j)

2tBC
· Pand(tBC, i, j, z) · 2z. (6.2)

In the case of AES-128, this gives us Bxor = 25.15. �

6.3.2.2 The graph GKS

The graph GKS is built by simply going through all the 2tKS possible key schedule internal
state input truncated differences, checking which output truncated differences can be obtained
through the KS layer and adding edges in GKS accordingly2. The time and memory complexities
depend on the average branching BKS of the KS layer and amounts to 2tKS · BKS operations. The
number of edges eKS of GKS equals eKS = 2tKS · BKS. In the sequel, we denote succKS(k) the set of
successors of the key k in graph GKS. We evaluate BKS in the case of AES-128 in Section 6.4.3.3.

6.3.3 Online phase

The online phase finds all the shortest paths in Gr with at most

r ·
(vG

2
· log(

vG

2
) + eG

)

2We assume that the key schedule is simple: given a truncated difference on the input, one can find each
reachable truncated output difference in constant time. This assumption is weaker than the one from footnote 1,
and verified by most ciphers since a very complex key schedule would make the whole primitive inefficient anyway.

6.3. RELATED-KEY DIFFERENTIAL CHARACTERISTICS 125

Algorithm 6.1 – Search all the shortest paths in Gr.
1: function Search(Gr)
2: Copy all nodes of Gr in a new graph G∗r
3: for all v ∈ V0, c(v)← |v| ⊲ Initialize the starting nodes at their weight.
4: for all v ∈ V1, . . . , Vr, c(v)← ∞ ⊲ The other nodes are not reachable yet.
5: SortList(V0) ⊲ Sort by cost c(v) of the nodes.
6: for i = 1→ r do ⊲ Loop over the r rounds.
7: for all v′ ∈ Vi, by increasing c(v′) do ⊲ This ordering ensures the minimization.
8: for all v ∈ succ(v′) do
9: α← c(v′) + |v|

10: if c(v) = ∞ then ⊲ If the node v have not been visited yet,
11: c(v)← α ⊲ we update its cost,
12: Add the edge v′ → v to G∗r ⊲ and we add the associated edge to G∗r .
13: else if c(v) = α then ⊲ If we can reach it at the same cost,
14: Add the edge v′ → v to G∗r ⊲ also add the edge to G∗r .

15: SortList(Vi) ⊲ Sort the next nodes by increasing costs.

16: return G∗r ⊲ Return the graph of shortest paths.

computations and memory r · eG linear in the number of rounds r. This is possible because Gr

is a vertex-weighted directed acyclic graph. Since the edges have a constant weight (the number
of active S-Boxes, i.e. the weights, are on the nodes and not the edges), the function we want to
minimize for each node v ∈ Vi, i ∈ [1, r] is:

|v|+ min
v′ ∈ pred(v)

(
c(v′)

)
, (6.3)

where pred(v) ⊆ Vi−1 is the set of all predecessors of v and c(v′) represents the cost of the
shortest path to v′. In other words, assuming that we know the shortest path costs to all the
nodes v′ ∈ Vi−1, we find the shortest path to any v ∈ Vi by choosing the predecessor of v with
the minimal cost.

This can easily be done by creating a list containing all the nodes v′ ∈ Vi−1 sorted increas-
ingly according to the cost of their shortest path c(v′). Then, starting from the cheapest v′

and ending to the most expensive one, we set the shortest path cost of all the successors v
of v′ to |v|+ c(v′) if and only if the cost of v was not set yet (see Algorithm 6.1). This is an
improvement over the simple shortest path computation in a directed acyclic graph using a
topological order since we can take advantage of the vertex-weighted property.

In practice, we iteratively build a simpler vertex-weighted directed acyclic graph G∗r from
Gr (all the nodes are the same, but with less edges), for which each node v ∈ Vi has a cost equal
to the cost of the shortest path to v in Gr, and an edge leading to v ∈ Vi represents one of the
shortest paths to v (see Figure 6.8).

At this point, in the graph G∗r the costs assigned to all the nodes v in Vr represent the cost
of the shortest path to v in Gr. If vG represents the number of vertices and eG the number of

126 CHAPTER 6. AES IN THE RELATED-KEY MODEL

V0 V1 V2 V3 V4 V5

(s, k)

light

node weights

heavy

Figure 6.8: Example of shortest paths in G5. The dashed edges form an example of a simplified G5. The
thick edges describe paths in the subgraph G∗5 that are shortest paths in G5 to node (s, k). All the nodes
in G∗5 are sorted according to their weight, the top being the cheapest ones.

edges in the graph G, then the complexity of the shortest path search is about

r ·
(vG

2
· log(

vG

2
) + eG

)

operations: the vG
2 · log(vG

2) term comes from the construction of the sorted list of the nodes at
each round, and the eG term is the number of edges visited during each round as we visit all of
them. Note that this is an upper bound on the complexity since we do not need to go through
all vG

2 nodes every rounds, but only a subset of them, and we may cut some edges among all
the eG ones. The term eG = eBC + eKS dominates the complexity, and since eBC ≫ eKS, it can
be approximated by the number eBC ≤ 2(n+k)/c × 2n/c of edges in GBC. Hence, the total time
complexity is O(r · 2(2n+k)/c) for r rounds.

In order to get all the shortest paths in Gr, we need to store at each node v ∈ Vi not only
the first shortest path found to v but all of them (lines 13 and 14 in Algorithm 6.1). In general,
this number is very small and never exceeds the total number of shortest paths anyway. In the
worst case where all paths are the shortest, it amounts to the total number of edges r · eG.

As explained previously, in practice we do not use the graph G directly, but the two separate
graphs GBC and GKS. We can adapt the Algorithm 6.1 for this setting: in order to build G∗r ,
we replace the for all loop of line 8 that iterates over all nodes v′ = (si, ki) ∈ Vi by two for all
loops that describe all ki+1 ∈ succKS(ki) and all si+1 ∈ succBC(si, ki+1).

In [Mat94b], Matsui introduces an argument equivalent to the A∗ optimization for path-
finding or graph traversal algorithms [HNR68] that allows to prune the majority of the edges of
G and to avoid the evaluation of many sets of successors. If we know the costs ck of all k-round
characteristics, 1 ≤ k ≤ n− 1, and we target an n-round characteristic of cost at least cn, then
we can consider only the nodes from V0 that have a cost at most cn − cn−1, and the ones in V1

that have a cost at most cn − cn−2. Intuitively, after one round has been passed, we know that
we paid at least c1, and since there are n− 1 remaining rounds to pass, we will need to pay at
least cn−1. In terms of intervals of costs, for each of the Vi, we only need to consider nodes that
have costs in [ci, cn − cn−i], 0 ≤ i ≤ n assuming c0 = 0. To take advantage of the A∗ heuristic,
we sort the sets of successors in both graphs, so that we can perform an extreme pruning of the
edges whenever the updated costs exceed the current interval, in an early-abort manner.

6.4. ENHANCED MARKOV PROCESS 127

In the next section, we detail how to extend this algorithm to the case of AES-like ciphers,
and we then give the consequences of the search for this class of ciphers in Section 6.5.

6.4 Enhanced Markov process

In this section, we study the special SPN case of AES-like ciphers, where the P layer is composed
of SR and MC (see Section 6.2). In this situation, we are able to compress the states by making
some observations on one AES-like round. This saves a significant amount of computations
and memory. Moreover, we also evaluate the number of nodes and edges of the graph GBC

(and of GKS in the case of total-AES-like ciphers) so as to be able to estimate precisely the time
and memory complexities.

6.4.1 The Markov assumption and actual differences

Our search algorithm (Section 6.3) only works because we place ourselves in a Markov process
scenario. Depending on the analysis we want to conduct on the studied block cipher, we
may want more than just pure truncated differentials. This scenario indeed gives a structural
evaluation of the cipher in regard to the related-key model, but we may want to instantiate the
truncated differences into actual differences. With our current approach, the pure truncated
characteristics found may not be valid since the Markov process did not propagate some
constraints along the rounds, which includes equality conditions between actual differences, or
their difference, or linear relations, etc. For example, choosing a subkey transition in one round
of the AES-128 key schedule affects the possible choices for the next subkeys because of its
strong linearity (see Figure 6.9). To address this deeper analysis, we propose two fundamentally
different approaches.

MC AK

KS

SB

SR MC AK

Figure 6.9: Example of linear incompatibility in the case of AES-128: the linearity of the key schedule
imposes all the active columns [a, b, c, d]T to be equal, which contradicts M · [x, 0, 0, 0]T ⊕ [x′, 0, 0, 0]T =
M · [y, 0, 0, 0]T ⊕ [0, y′, 0, 0]T in the first key addition (AK).

The first one is the filtering. By starting with all the best pure truncated differential
characteristics we have found with the search algorithm, we filter them one by one, until
we reach one that fulfills all the implicit necessary conditions imposed by the block cipher.
Depending on the studied block cipher, we may not find one with the minimal cost: this method
is not guaranteed to find the best differential characteristics with all the extra conditions.

The second method is to consider the same algorithm, but propagating all the information
such that the Markov assumption is verified again. Then, we can directly verify the implicit
conditions and eventually be sure that the search finds valid characteristics. In return, the
overall search introduces more complex operations since the graphs GBC and GKS are bigger.

128 CHAPTER 6. AES IN THE RELATED-KEY MODEL

A mix of the two methods seems to be the best strategy in practice and we give in the
following the detailed study for the case of AES-128. With this more complete Markov process,
the overall complexity of the algorithm is the same as before, except that we perform extra
computations for each visited edges to check for linear consistency by solving small linear
systems, which may all be precomputed.

6.4.2 Block cipher state compression

In the case of AES-like ciphers, the search space can be drastically reduced thanks to some
observations on the round function. We introduce a new compressed view of the block cipher
state.

Definition 6.4 (Compressed state). Let ∆ be a state of truncated differences considered as a
d-column square matrix ∆ = [∆·,1, . . . , ∆·,d]. We denote ∆ the image of ∆ by the non-injective
function:

∆ −→ ∆ =

[∣∣∣∆·,1
∣∣∣, . . . ,

∣∣∣∆·,d
∣∣∣
]

, where: ∀j, ∆
·, j

=
∣∣∣∆·, j

∣∣∣.

We call ∆ the compressed state of ∆.

A compressed state as defined above only describes the number of active cells there are in
each column of the block cipher internal state. The motivation to introduce such a compressed
representation lies in the MDS property of the underlying matrix M of the MC layer. Indeed,
to get the possible output truncated patterns, we only need the number of active cells on the
input, i.e. the weight of that column.

Theorem 6.3. Let E be an AES-like cipher with n-bit blocks using a k-bit internal state in the key
schedule. Both states are viewed as vectors of c-bit cells. With state compression, the time complexity of
Algorithm 6.1 to find all the best differential characteristics for r round of E becomes

O
(

r · 2
√

n
c log2(

n
c)+

n
c

)
,

with a small hidden constant factor. �

6.4.3 Evaluating the number of nodes/edges of GBC and GKS

We now evaluate the characteristics of the two graphs GBC and GKS in the case of AES-like block
ciphers, and give numerical example of the particular case of AES-128.

6.4.3.1 Number of nodes

With this new compressed representation, it is easy to see that the internal state can now take
(t + 1)t possible values instead of 2tBC and GBC now contains (t + 1)t × (2tKS + 1) nodes. The
graph GKS is not affected by the compression of states since we only alter the ones in the
message part.

6.4. ENHANCED MARKOV PROCESS 129

6.4.3.2 Number eBC of edges in GBC

The average branching factor BP of the P layer for AES-like ciphers corresponds to the one of
the MixColumns layer: for a single column with i ∈ [1, t] active differences in its input, we
may choose the location of j active difference in its output, with j ∈ [t + 1− i, t] to respect the
MDS property of the underlying t× t matrix M. Alternatively, we may choose the location of
j ∈ [0, i− 1] inactive differences, which leads to the following formula of BP for the t columns
where the leading 1 comes from the full inactive column:

BP =

(
2−t

(
1 +

t

∑
i=1

(
t
i

) i−1

∑
j=0

(
t
j

)))t

=

(
1 +

t

∑
i=1

i−1

∑
j=0

(
t
i

)(
t
j

))t

. (6.4)

In the case of AES-128, we obtain an average branching of BP = 22.55 for one column of
the P layer. However, to estimate the number eBC of edges in GBC, we have to consider not only
the P layer but also the subkey XOR layer that comes right after it. We cannot use the value we
previously computed for BP since in Theorem 6.2, we assumed that the two words XORed were
random. However, in the current situation, the hamming weight of the column words arriving
from the P layer presents a strong bias towards higher values: this is due to the branching
effect that tends to populate more dense than sparse words. Therefore, we need to tweak the
formula in order to take in account the hamming weight probability of the column words A
and B involved:

Bxor =

(
t

∑
z=0

t

∑
a=0

t

∑
b=0

Pr[HAM(A) = a] · Pr[HAM(B) = b] · Pand(t, a, b, z) · 2z

)t

, (6.5)

where

Pr[HAM(B) = b] =
(

t
b

)
/2t (6.6)

since the subkey column words are not biased, and Pand is defined in the proof of Theorem 6.2.
The hamming weight probabilities Pr[HAM(A) = a] concerning the column words coming from
the P layer are computed by

Pr[HAM(A) = a] =
∑

t
i=1 (

t
i)(

t
a) · 1a<i

1 + ∑
t
i=1 ∑

i−1
j=0 (

t
i)(

t
j)

. (6.7)

In the case of AES-128, the total branching of both P layer and XOR layer amounts to 216.88.
One can see that the branching here is very strong compared to the number of nodes in the
graph GBC, which indicates that this bipartite graph is dense. Therefore, we can instead upper
bound the number of edges eBC by reasoning on the number of nodes eBC ≤ (t + 1)td · 2tBC ,
since two nodes cannot share more than one edge. This gives eBC ≤ 234.6 for AES-128, which
is very close to the reality since in practice, we measure 233.6 edges for GBC.

6.4.3.3 Number eKS of edges in GKS

In the case of total-AES-like ciphers where we generalize the key scheduling algorithms, we
can compute an estimation of the average branching factor BKS of the KS layer to evaluate the

130 CHAPTER 6. AES IN THE RELATED-KEY MODEL

number of edges in GKS. Remember that any S-Box application has no effect on the truncated
differentials search branching, so we only need to consider the XOR operations.

In order to obtain this estimation, we model the total-AES-like ciphers key schedule as the
following operations:

A′0 = A0 ⊕ R0; A′1 = A′0 ⊕ R1; · · · A′t−1 = A′t−2 ⊕ Rt−1, (6.8)

where all words represent a t-bit key state column and A0 and all Ri are random t-bit numbers.
If we denote Bi

KS the average branching concerning the i-th operation (i.e. column), then we
have

BKS =
t−1

∏
i=0

Bi
KS. (6.9)

Note that it is easy to evaluate the average branching B0
KS of the first operation, but hard

to do for the remaining ones. Indeed, in the first operation we consider that both A0 and R0

are random t-bit numbers, but for the next operations the words A′0, . . ., A′t−2 are not random
looking values anymore as their hamming weight are slightly biased towards higher values
due to the effect of the branching in the previous operation. This is the very same problem that
appear for combining the branching of the P and the XOR layer in the previous section.

We then use the same formula of Equation (6.5) to compute Bi
KS, remarking that A0 and Ri

are considered as not biased. This means that

Pr[HAM(A0) = b] = Pr[HAM(Ri) = b] =
(t

b)

2t , (6.10)

while the biased probabilities Pr[HAM(A′i) = a] are computed with:

Pr[HAM(A′i) = a] = (6.11)
(

t

∑
z=0

t

∑
a=0

t

∑
b=0

2z

∑
y=z

Pr[HAM(A′i−1) = a] · Pr[HAM(Ri) = b] · Pand(t, a, b, z) ·
(

z
y− z

)
·

1i+j−y=a

2z

)t

.

We can now estimate the number of edges eKS = 2tKS · BKS in GKS. For AES-128, we
obtain an average branching for the KS layer of BKS = 26.15. Our model and our assumptions
seems to be sound since in practice, we measure an average branching of about BKS = 26.22.
Overall, building/storing GKS during the precomputation phase should not require more than
eKS = 222.15 computations and memory.

6.4.4 More complete Markov process

The related-key differential characteristics outputted by the algorithm from Section 6.3 are valid
only when one deals with truncated differences and these characteristics give an indication
on the structural security provided by the AES-128 key schedule. However, it turns out that
none of them can be instantiated with actual differences, because of inconsistencies in some
linear constraints. Therefore, we apply the techniques proposed in Section 6.4.1: at the cost of a

6.4. ENHANCED MARKOV PROCESS 131

bigger graph G to handle, we first add some more information in the Markov process both on
the representation of the key schedule state and the internal permutation state, and we then
filter the best characteristics obtained and hope to find one that can be instantiated with actual
differences.

6.4.4.1 New state compression

In order to look for actual differences characteristics for AES-128, we slightly reduce the state
compression used for AES-like ciphers presented in Definition 6.4 to decrease the compression
factor.

Definition 6.5 (Semi-compressed state). Let ∆ be a state of truncated differences considered as
a d-column square matrix ∆ = [∆·,1, . . . , ∆·,t]. We denote ∆̃ the image of ∆ by the non-injective
function:

∆ −→ ∆̃ =
[
|∆̃·,1|, . . . , |∆̃·,d|

]
, where: ∀j, ∆̃·, j =

{
∆·, j if |∆·, j| = 1,
|∆·, j| otherwise.

We call ∆̃ the semi-compressed state of ∆.

A semi-compressed state as defined above only describes the number of active cells there
are in each column of the block cipher internal state, and in the event that there is only one,
keep tracks of its position (see example in Figure 6.10). The stored position in the particular
case of a single input active cell provides the additional information needed by the Markov
process to construct actual differences characteristics without inconsistencies.

(a) Truncated state.

2 0

(b) Semi-compressed state.

1 2 0 1

(c) Compressed state.

Figure 6.10: Example of compressed truncated state (c) and semi-compressed truncated state (b) from a
truncated state (a).

6.4.4.2 Representation of truncated subkeys

Keeping in mind that the unique t2-bit truncated difference information is not enough for the
Markov process to find actual differential characteristics, we provide a more complete coding
of the subkeys. Namely, we introduce a representation that allows to encode some particular
cases of linear constraints between the differences, which are needed later to solve systems of
linear equations.

Definition 6.6 (Subkey representation). Let δ = [δx,y] be the actual difference in a subkey k
and ∆ its truncated counterpart, where the t actual differences on each column j are related by
a possibly empty system of linear equations Sj. If the following, we note ∼= the equivalence
between two systems of equations. We call semi-truncated difference of the key k, and denote

132 CHAPTER 6. AES IN THE RELATED-KEY MODEL

it k̃, the t-column square matrix such that:

k̃ =
(

b,
[
k̃·, j
])

,

where: ∀j, k̃·, j =

x if Sj
∼= Mx = 0, with |x| = 1, (type 1)

(x, y) if Sj
∼= Mx⊕ y = 0, with |x| = |y| = 1, (type 2)

∆·, j otherwise. (type 3)

and b may be ⊤ if and only if all columns of the same type are equal in actual differences; it
always equals to ⊥ otherwise. Additionally, we call an extended state a couple (s̃, k̃) of a block
cipher semi-compressed state s̃ and a key schedule semi-truncated difference k̃ and denote∣∣(s̃, k̃)

∣∣ its weight.

This definition behaves as a trade-off between the actual differences, which amounts to a
total of 2c·t2

different differences but keeps the whole relations between the differences, and the
truncated differences which compress to the minimum information on each difference, where
there are only 2t2

of them.

As an example, in the case t = 4, the two linear systems S1 : M[a, 0, 0, 0]T = 0 and
S2 : M[0, 0, 0, b]T = 0 falls into the type 1 category but results in two different columns, where
we store [a, 0, 0, 0]T and [0, 0, 0, b]T respectively, or equivalently the position of the only active
difference, 0 and 3. In this case, the bit b cannot give a relation between a and b since the two
columns are not of the same type; but if S2 were S2 : M[c, 0, 0, 0]T = 0, it could, which would
mean that a = c in terms of actual differences.

6.4.5 Explanations

We explain here the choice of the extra information added in the Markov in comparison to our
preliminary tool. Namely, we keep more information in some special cases to avoid loosing
information of those particular values. In the block cipher, the columns of weight exactly 1 are
stored uncompressed (Definition 6.4); in the key schedule, we encode the position of active
differences in two particular cases (types 1 and 2, Definition 6.6).

Those enhanced representations come into the picture when iterating over the sets of
successors in the two graphs GBC and GKS. To construct the set succKS(k) of successors of a
semi-truncated key k, we consider in a very straightforward manner the sum of two columns
and deduce which one(s) can be reached trough the key schedule algorithm.

In the graph GBC, we want to find the set succBC(s, k) of successors of a semi-compressed
state s and a semi-truncated difference k. To do so, we first construct the set of all truncated
state after the MC layer and check which truncated state s′ can be obtained after the AK(k). For
each of those s′, we may write a homogeneous system of linear equations corresponding to the
two linear AES transformations MC and AK, using the additional information on the columns
of k to check whether the transition is indeed valid. If the input semi-compressed state s is
associated to n actual truncated state, then we write n systems and check if at least one has
non-trivial solutions. In practice, we precompute all the possible systems.

Consequently, the cost update function of the Markov process is done as before, with
extra checks on the transitions/edges available with the added information at each node. This

6.5. APPLICATIONS TO SPN AND AES-128 133

enhanced Markov process thus leads to graphs with more nodes than the one for pure truncated
differentials, but proportionally, there are fewer edges because of the tighter transition function.

6.5 Applications to SPN and AES-128

6.5.1 Structural evaluation of SPN AES-like ciphers

We present here the results on the structural evaluation of the AES-like ciphers in regard to the
related-key model, which provides an estimation of the security provided by their key schedule.
Namely, we ignore the semantic definition of the S-Box and the MDS matrix, and we are only
interested in how they can interact in the related-key setting.

The results are measured in terms of number of active S-Boxes as in [DR02], and presented
in Table 6.1. Lines 2 and 3 of the table provide the minimum number of active S-Boxes (line
2) for any number of rounds when implementing an AES-like cipher with the same size as
AES-128, and the number of truncated characteristics that reach that bound (line 3). In that
case, we count the number of active S-Boxes in both the state and the subkeys, whereas in lines
4 and 5 of Table 6.1, we consider the case of the hash function setting where the block cipher
and its key schedule can be considered somewhat independently by an adversary.

Rounds 1 2 3 4 5† 6 7 8† 9 10†

min(CKS + CBC) 0 1 3 9 11 13 15 21 23 25

Truncated Char. (log2) – 4.52 6.58 10.46 5.00 13.26 16.17 21.34 14.90 21.38

min(max(CBC, CKS)) 0 1 3 6 7 9 11 14 15 17

Truncated Char. (log2) – 4.00 10.00 11.73 10.00 18.92 23.64 >30 >30 >30

Table 6.1: For the AES-128 cipher on r rounds, this table shows: (1) the minimal number CKS + CBC

of active S-Boxes in both the key schedule CKS and in the block cipher CBC achievable in truncated
differential characteristics; and (2), the same figures for the minimal number max(CBC, CKS) for the hash
function setting. Lines 3 and 5 count the number of distinct truncated characteristics that reach that
bound. † For r ∈ {5, 8, 10}, see the following figures for the characteristics.

AK0

KS

SB
SR MC AK1

KS

SB
SR MC AK2

KS

SB
SR MC AK3

KS

SB
SR MC AK4

KS

SB
SR MC AK5

Figure 6.11: Best 5-round truncated differential characteristic for AES-128 with 11 active S-Boxes.

From these results, we can now state the following impossibility result (Theorem 6.4) on the
structure of AES-128.

Theorem 6.4. It is impossible to prove the security of the full AES-128 against related-key differen-
tial attacks without considering the differential property of the S-Box when two keys verify a certain
relation. It is impossible to prove the security of the full AES-128 in the hash function setting without
considering both the differential property of the S-Box and the P layer.

134 CHAPTER 6. AES IN THE RELATED-KEY MODEL

AK

KS

SB

SR MC AK

KS

SB

SR MC AK

KS

SB

SR MC AK

KS

SB

SR MC

AK

KS

SB

SR MC AK

KS

SB

SR MC AK

KS

SB

SR MC AK

KS

SB

SR MC AK

Figure 6.12: Best 8-round truncated differential characteristic for AES-128 with 21 active S-Boxes.

AK0

KS

SB
SR MC AK1

KS

SB
SR MC AK2

KS

SB
SR MC AK3

KS

SB
SR MC

AK4

KS

SB
SR MC AK5

KS

SB
SR MC AK6

KS

SB
SR MC AK7

KS

SB
SR MC

AK8

KS

SB
SR MC AK9

KS

SB
SR MC AK10

Figure 6.13: Best 10-round truncated differential characteristic for AES-128 with 25 active S-Boxes.

In particular, the results in the related-key model extends the famous result by Daemen
and Rijmen on the AES structure in the single-key model from [DR02]. With no difference in
the key, they have shown that there are 55 actives S-Boxes for 10-round AES, which makes the
cipher resistant to differential cryptanalysis as long as the S-Box verifies pmax ≤ 2−3. In the
related-key setting, we show that the S-Box needs to verify at least pmax ≤ 2−6.

Proof. First, in the case where we consider related-key attacks where two keys are related
if their difference verify a certain relation (line 2), we remark that for 10 rounds there exists
a truncated differential characteristic counting only 25 S-Boxes. As we discussed before, this
means that a differential analysis would run in p−25

max operations. Consequently, the structure
of AES-128 on its own is not enough to prove the resistance to related-key attacks for any
ciphers in this class, we at least need to add a criteria on the S-Box via pmax.

Second, with an S-Box on c bits (c = 8 in the AES), the maximal theoretical pmax that can
be obtained is 2−(c−1): consequently, the largest number of rounds that our structural analysis
could attack for AES-like ciphers is 7 rounds. Indeed, for 7 rounds, the 15 active S-Boxes give
a differential analysis in p−15

max ≥ 2105, which might be smaller than 2128. We note that we do
not know how to construct an almost-perfect permutation on c bits acting as an S-Box with
the maximal differential probability 2−(c−1). We recall the open problem previously defined
in Open Problem 1, which challenges to find an almost-perfect permutation in GF(2c), with
c > 6. The S-Box chosen in the AES implements a composition of an affine transformation on
the inverse mapping, and reaches pmax = 2−(c−2). With that weaker S-Box, the largest number
of rounds that our structural analysis could attack is 8 rounds. Indeed, for 8 rounds, the 21

6.5. APPLICATIONS TO SPN AND AES-128 135

active S-Boxes give a differential analysis in p−21
max ≥ 2126, which might be smaller than 2128.

When we instantiate the P layer by the one of the AES-128, we observe that none of the
216.17 characteristics found on 7 rounds by our search algorithm nor the 221.34 ones for 8 rounds
can be instantiated due to linear constraints coming from the key schedule. This means that
proving or disproving the security of the AES-128 in the related-key setting needs to consider
both the differential properties of the S-Box and the linear equations of the P layer.

From an instantiated P layer, we can write a system of linear equations Q whose solutions
are the values of all the truncated differences of the characteristic. Therefore, choosing P such
that Q can be made inconsistent on a small number of rounds brings more security than a
random P. Our tool can be used to write this system of linear equations for any truncated
differential characteristic.

Finally, for 10 rounds in the hash function setting, there exists characteristics with only 17
active S-Boxes in the internal state part and 8 in the key schedule part (Figure 6.13). For the
AES-128, in the best case, the differential probability equals 2−6·17 = 2−102. In this setting,
the adversary is supposed to have full control over the input of both the key schedule and the
block cipher, that is why we considered max(CBC, CKS) as an objective function to minimize in
our search algorithm of Section 6.3. As the previous structural results, this also means that one
cannot prove the security of the full AES-128 against differential cryptanalysis in that setting
by only analyzing its structure. �

6.5.1.1 Complexity evaluation

Our tool has found those results for any number of rounds in a few seconds on a single regular
processor. We note that the minimal characteristics in the single-key scenario are also found
quasi-instantaneously. As a practical evaluation of the number of operations in terms of number
of costs update (line 9 of Algorithm 6.1), we measured at most 221.31 updates in this case, for
the analysis on 10 rounds.

6.5.2 Differential characteristics results for AES-128

Theorem 6.5. After 6 rounds, there is no related-key differential characteristic for AES-128 with a
probability higher than 2−128.

The related-key differential characteristics presented in the previous section are valid only
when one deals with truncated differences, and these characteristics give an indication on the
structural security provided by the AES-128 key schedule. However, due to the choice of the
P layer in AES-128, it turns out that none of them can be instantiated with actual differences,
because of inconsistencies in some linear constraints. To overcome this difficulty, we implement
the ideas exposed in Section 6.4, and at the cost of a bigger graph G to handle, we first add
some more information in the Markov process both on the representation of the key schedule
state and the internal permutation state, and we then filter the best characteristics obtained and
hope to find one that can be instantiated with actual differences. Our algorithm performs a
search fundamentally different from [BN10], but it finds again and more efficiently the same
results.

136 CHAPTER 6. AES IN THE RELATED-KEY MODEL

By a system resolution, we show that from a truncated differential characteristic, we can
decide whether it can be instantiated with actual differences, and even find an associated
differential characteristic with the greatest probability. To do so, we need to write down the
system of linear equations which exists from the cipher definition. In the case of the AES,
there are lots of linear constraints in the key schedule, and others at the MixColumns layer.
To express those equations, we choose a set of independent variables B such that any actual
difference of the differential characteristic can be written as a linear combination of variables
from B. In the case of the AES, we can write all the equations with a basis B of variables from
the key schedule; for example, the t2 − t last cells from the first subkey k0, and each cell of the
first column that goes out of the S-Box in the following subkeys, k1, . . . , kr (see Figure 6.14).

KS KS KS

Figure 6.14: Variables from the key scheduling algorithm used in the system resolution in the case of
AES-128 for r = 3 key schedule steps (t = 4). The ones used in k0 (resp. ki , i > 0 are in colored in gray
(resp. black).

Once the system S of linear equations has been written, we apply the Gauss-Jordan
elimination algorithm to transform it into reduced row echelon form and compute a basis of its
kernel. We note that we want more than a non-trivial solution to the system; namely, we want
each subsystem of S corresponding to each round to have non-trivial solutions. This is taken
care of by the enhanced Markov process that we introduced to deal with actual differences. In
the event that the nullity ν of S of the system is not null, we can get as many as 2c·ν different
possibilities to set the values for the actual differences of the truncated differential characteristic
and any of them would conform to all the linear constraints.

In a second step, we need to take care of the non-linear constraints; namely, that each pair
of input/output actual differences (δin, δout) of the S-Box provide a non-null entry in the DDT.
From the system S , we can write each δin and δout as a linear combinations of variables from
the basis B and gather all the different transitions in a set D =

{
(δk

in → δk
out)
}

. Depending on
the truncated differential characteristic, there may be several transitions which are equal: in
the end, there are |D| different ones. Finally, we enumerate all the elements of the previously
computed kernel to find one which validates all the transitions in D.

Furthermore, each pair (δk
in, δk

out) ∈ D with a certain repetition αk in the characteristic goes
along with a certain probability pk (depending on the DDT), which contributes to the probability
p of the final differential characteristic:

p = ∏
D

pαk
k .

Thus, if there are several kernel elements that validate all the transitions of D, then we may
prefer the one that maximize p.

As an example, our tool has found again the best truncated differential characteristic on
5 rounds of AES-128 with 17 active S-Boxes, and also found how to achieve the greatest
probability 2−105 by instantiating the differences. This has to be compared with the upper
bound of 2−6·17 = 2−102 given in [BN10] since in the best case, all the AES active S-Boxes have
maximal differential probability 2−6. Trying all the possible differences that instantiate this

6.5. APPLICATIONS TO SPN AND AES-128 137

truncated differential characteristic, we show that we cannot reach that bound, but we can only
set 15 out of 17 S-Boxes to the maximal differential probability (see Figure 6.19 for the actual
differential characteristic).

The following Table 6.2 reports the best related-key characteristics found by our tool on
AES-128 up to 5 rounds, with their respective highest achievable probabilities. From 6 rounds,
exhaustive search runs faster that any related-key attacks in this class.

Rounds 1 2 3 4 5

min(CKS + CBC) 0 1 5 13 17

max log2(p) 0 -6 -31 -81 -105

Figure/Table ref. – 6.15/6.3 6.16/6.4 6.17, 6.18 6.19/6.6

Table 6.2: For the AES-128, related-key attacks are faster than exhaustive search only up to 5 rounds.
Our tool retrieved the previous known results and provide the real differential characteristics with
maximum probability.

Complexity evaluation

For 5 rounds, the online phase of our tool performs 235.36 cost updates (line 9 of Algorithm 6.1,
for the transition between V0 and V1), which takes about one hour in a parallelized version of
the shortest path finding algorithm on a 12-core machine. The precomputation step completes
in half an hour on this machine and needs 60GB of memory to store precomputed tables,
notably the GKS graph.

Best characteristic on 2 rounds

KS

k0
AK

x0

SB

2−6

y0

SR

z0

MC

w0

Round 0

KS

k1
AK

x1

SB

y1

SR

z1

MC

w1

Round 1

k9
AK

x8

Legend

0x1C

0x0E

0x12

0x01

0x1D

Figure 6.15: The best differential characteristic on two rounds of AES-128, which has a probability
p = 2−6. There are 28 − 1 similar characteristics with the same differential probability. See also Table 6.3.

138 CHAPTER 6. AES IN THE RELATED-KEY MODEL

Table 6.3: The best differential characteristic on two rounds of AES-128, which has a probability
p = 2−6. The two lines for state differences are respectively the input difference after key addition and
the output difference. See also Figure 6.15.

Round State differences Key differences

Plaintext 1D0E0E12 1C0E0E12 00000000 00000000

0
01000000 00000000 00000000 00000000 1C0E0E12 1C0E0E12 00000000 00000000

1C0E0E12 00000000 00000000 00000000

1
00000000 00000000 00000000 00000000 1C0E0E12 00000000 00000000 00000000

00000000 00000000 00000000 00000000

Ciphertext 1C0E0E12 1C0E0E12 1C0E0E12 1C0E0E12 1C0E0E12 1C0E0E12 1C0E0E12 1C0E0E12

Best characteristic on 3 rounds

KS

k0

AK
x0

SB

2−25

y0

SR

z0

MC

w0

Round 0

KS

k1
AK

x1

SB

2−6

y1

SR

z1

MC

w1

Round 1

KS

k2
AK

x2

SB

y2

SR

z2

MC

w2

Round 2

k9

AK
x8

Legend

0x1C

0x0E

0x12

0x01

0x1D

0x0D

0x90

0x0B

0x45

0x58

0xF7

0x4B

0x9C

Figure 6.16: The best differential characteristic on three rounds of AES-128, which has a probability
p = 2−31. See also Table 6.4.

Table 6.4: The best differential characteristic on three rounds of AES-128, which has a probability
p = 2−31. The two lines for state differences are respectively the input difference after key addition and
the output difference. See also Figure 6.16.

Round State differences Key differences

Plaintext 1C0E0E12 B3580000 1C0E4B12 000000F7

0
00000000 B3580000 00004500 000000F7 1C0E0E12 00000000 1C0E0E12 00000000

1D0E0E12 1C0E0E12 00000000 00000000

1
01000000 00000000 00000000 00000000 1C0E0E12 1C0E0E12 00000000 00000000

1C0E0E12 00000000 00000000 00000000

2
00000000 00000000 00000000 00000000 1C0E0E12 00000000 00000000 00000000

00000000 00000000 00000000 00000000

Ciphertext 1C0E0E12 1C0E0E12 1C0E0E12 1C0E0E12 1C0E0E12 1C0E0E12 1C0E0E12 1C0E0E12

6.5. APPLICATIONS TO SPN AND AES-128 139

Table 6.5: Example of a pair of messages (m, m′) that conforms to the 3-round truncated differential
characteristic for AES-128 of Figure 6.16 with a second set of differences that reaches the same differential
probability. The lines in this array contains the values of two subkeys and internal states before entering
the corresponding round, as well as their differences. Note that discarding the first round provide a test
vector for the differential characteristics of Figure 6.15.

Round k k′ k⊕ k′

0 95220EA1 3C000000 F5416D13 3E000000 AD3E1285 3C000000 CD5D7137 3E000000 381C1C24 00000000 381C1C24 00000000

1 F7416D13 CB416D13 3E000000 00000000 CF5D7137 F35D7137 3E000000 00000000 381C1C24 381C1C24 00000000 00000000

2 96220E70 5D636363 63636363 63636363 AE3E1254 5D636363 63636363 63636363 381C1C24 00000000 00000000 00000000

3 69D9F58B 34BA96E8 57D9F58B 34BA96E8 51C5E9AF 0CA68ACC 6FC5E9AF 0CA68ACC 381C1C24 381C1C24 381C1C24 381C1C24

Round m m′ m⊕m′

Init. 5970F4AD 572C52B7 F3C5C241 6CB59500 616CE889 3C0052B7 CBD97165 6CB5953F 381C1C24 6B2C0000 381CB324 0000003F

0 CC52FA0C 6B2C52B7 0684AF52 52B59500 CC52FA0C 000052B7 06840052 52B5953F 00000000 6B2C0000 0000AF00 0000003F

1 E8000000 00000000 00000000 00000000 EA000000 00000000 00000000 00000000 02000000 00000000 00000000 00000000

2 1EB99500 3E000000 00000000 00000000 1EB99500 3E000000 00000000 00000000 00000000 00000000 00000000 00000000

End 28AB87DB EE0824E3 7D6104A1 08B3C0BE 10B79BFF D61438C7 457D1885 30AFDC9A 381C1C24 381C1C24 381C1C24 381C1C24

Best characteristics on 4 rounds

KS 2−6

k0
AK

x0

SB

2−18

y0

SR

z0

MC

w0

Round 0

KS 2−27

k1
AK

x1

SB

2−12

y1

SR

z1

MC

w1

Round 1

KS

k2
AK

x2

SB

2−12

y2

SR

z2

MC

w2

Round 2

KS

k3
AK

x3

SB

2−6

y3

SR

z3

MC

w3

Round 3

k4
AK

x4

Legend

0x8E

0x7A

0xF4

Figure 6.17: The first best differential characteristic on four rounds of AES-128, which has a probability
p = 2−81. These four rounds are the four first ones of the 5-round best differential characteristic (see
Figure 6.19 and Table 6.6).

140 CHAPTER 6. AES IN THE RELATED-KEY MODEL

KS 2−27

k0
AK

x0

SB

2−12

y0

SR

z0

MC

w0

Round 0

KS

k1
AK

x1

SB

2−12

y1

SR

z1

MC

w1

Round 1

KS

k2
AK

x2

SB

2−6

y2

SR

z2

MC

w2

Round 2

KS 2−6

k3
AK

x3

SB

2−18

y3

SR

z3

MC

w3

Round 3

k5
AK

x5

Legend

0x8E

0x7A

0xF4

Figure 6.18: The second best differential characteristic on four rounds of AES-128, which has a proba-
bility p = 2−81. These four rounds are the four last ones of the 5-round best differential characteristic
(see Figure 6.19 and Table 6.6).

Best characteristic on 5 rounds

Table 6.6: The best differential characteristic on five rounds of AES-128, which has a probability
p = 2−105. The two lines for state differences are respectively the input difference after key addition and
the output difference. See also Figure 6.19.

Round State differences Key differences

Plaintext 7A8E0000 8E7A7A7A 00000000 00000000

0
008E0000 00000000 008E0000 008E0000 7A000000 8E7A7A7A 008E0000 008E0000

00000000 8EF47A7A 8EF47A7A 8EF47A7A

1
00000000 008E0000 00000000 008E0000 00000000 8E7A7A7A 8EF47A7A 8E7A7A7A

8EF47A7A 00000000 8EF47A7A 00000000

2
00000000 008E0000 008E0000 00000000 8EF47A7A 008E0000 8E7A7A7A 00000000

8EF47A7A 8EF47A7A 00000000 00000000

3
00000000 008E0000 00000000 00000000 8EF47A7A 8E7A7A7A 00000000 00000000

8EF47A7A 00000000 00000000 00000000

4
00000000 008E0000 008E0000 008E0000 8EF47A7A 008E0000 008E0000 008E0000

8EF47A7A 8EF47A7A 8EF47A7A 00000000

Ciphertext 7A000000 7A8E0000 7A000000 F47A7A7A F4F47A7A F47A7A7A F4F47A7A F47A7A7A

6.5. APPLICATIONS TO SPN AND AES-128 141

KS 2−6

k0
AK

x0

SB

2−18

y0

SR

z0

MC

w0

Round 0

KS 2−27

k1
AK

x1

SB

2−12

y1

SR

z1

MC

w1

Round 1

KS

k2
AK

x2

SB

2−12

y2

SR

z2

MC

w2

Round 2

KS

k3
AK

x3

SB

2−6

y3

SR

z3

MC

w3

Round 3

KS 2−6

k4
AK

x4

SB

2−18

y4

SR

z4

MC

w4

Round 4

k5
AK

x5

Legend

0x8E

0x7A

0xF4

Figure 6.19: The best differential characteristic on five rounds of AES-128, which has a probability
p = 2−105. See also Table 6.6.

Table 6.7: Example of a pair of messages (m, m′) that conforms to the 5-round truncated differential
characteristic for AES-128 of Figure 6.19. The lines in this array contains the values of the two subkeys
and internal states before entering the corresponding round, as well as their differences. Note that
discarding the first or the last round provide a test vector for the differential characteristics of Figure 6.17
and Figure 6.18.

Round k k′ k⊕ k′

0 6D387102 D0C52A0F 854283FB 208E76EE 17387102 5EBF5075 85CC83FB 200076EE 7A000000 8E7A7A7A 008E0000 008E0000

1 750059B5 A5C573BA 2087F041 000986AF 750059B5 2BBF09C0 AE738A3B 8E73FCD5 00000000 8E7A7A7A 8EF47A7A 8E7A7A7A

2 764420D6 D381536C F306A32D F30F2582 F8B05AAC D30F536C 7D7CD957 F30F2582 8EF47A7A 008E0000 8E7A7A7A 00000000

3 047B33DB D7FA60B7 24FCC39A D7F3E618 8A8F49A1 59801ACD 24FCC39A D7F3E618 8EF47A7A 8E7A7A7A 00000000 00000000

4 01F59ED5 D60FFE62 F2F33DF8 2500DBE0 8F01E4AF D681FE62 F27D3DF8 258EDBE0 8EF47A7A 008E0000 008E0000 008E0000

5 724C7FEA A4438188 56B0BC70 73B06790 86B80590 5039FBF2 A244C60A 87CA1DEA F4F47A7A F47A7A7A F4F47A7A F47A7A7A

Round m m′ m⊕m′

Init. 65380101 FDA4FF6F D0424BEF 7A8E35D8 1FB60101 73DE8515 D0424BEF 7A8E35D8 7A8E0000 8E7A7A7A 00000000 00000000

0 08007003 2D61D560 5500C814 5A004336 088E7003 2D61D560 558EC814 5A8E4336 008E0000 00000000 008E0000 008E0000

1 D2D342E8 CA8E7146 E79EA6D7 3B8E48F9 D2D342E8 CA007146 E79EA6D7 3B0048F9 00000000 008E0000 00000000 008E0000

2 91367406 EF8E3E84 9D8E980B 2BD1EE66 91367406 EF003E84 9D00980B 2BD1EE66 00000000 008E0000 008E0000 00000000

3 4331727A 1E004722 172C7D6A B8EE10F1 4331727A 1E8E4722 172C7D6A B8EE10F1 00000000 008E0000 00000000 00000000

4 CE92FA3E B10007E0 A200CBA6 0D002D37 CE92FA3E B18E07E0 A28ECBA6 0D8E2D37 00000000 008E0000 008E0000 008E0000

End 5FBA1C3F E08C4C0F 4BDA87A9 F6890230 25BA1C3F 9A024C0F 31DA87A9 02F3784A 7A000000 7A8E0000 7A000000 F47A7A7A

CHAPTER7
AES in the Open-Key Model

Contents
7.1 Generalities . 143

7.1.1 Motivations . 143
7.1.2 Rebound technique . 145
7.1.3 Limited-birthday distinguisher . 146

7.2 Known-key model . 149
7.2.1 Distinguishers for 7 rounds . 149
7.2.2 Distinguisher for 8 rounds . 155

7.3 Chosen-key model . 161
7.3.1 Distinguisher for 7-round AES . 162
7.3.2 Distinguisher for 8-round AES . 168
7.3.3 Distinguisher for 9-round AES-128 . 173

In this chapter, we discuss the security of AES in the recent open-key model. This framework
has been introduced by Knudsen and Rijmen at Asiacrypt 2007 in [KR07] and considers the
block cipher where the key acts as an additional input parameter, which might be constant or
not. Consequently, the goal of the adversary is not to recover the bits of the key but rather to
disclose a nontrivial property of the structure of the family of block ciphers.

In the following sections, we analyze an AES-like permutation as defined in Section 4.3, and
we suppose the key to be either known (Section 7.2) or can be chosen (Section 7.3). The results
on AES variants reduced to 7 and 8 rounds in the chosen-key setting have been described in the
paper [DFJ12a] written with Patrick Derbez and Pierre-Alain Fouque and have been published
at Indocrypt 2012. The 9-round distinguisher for AES-128 has been published at Crypto

2013 in [FJP13a] in a paper co-authored with Pierre-Alain Fouque and Thomas Peyrin.

7.1 Generalities

7.1.1 Motivations

In this chapter, we describe several published results that distinguish AES-like permutations in
the open key models where the adversary either knows the key used in the encryption process

— 143 —

144 CHAPTER 7. AES IN THE OPEN-KEY MODEL

or is given access to the complete family of permutations implemented by the considered block
cipher; that is, he can choose the key.

The motivation behind this model is twofold. First, we intuitively give more confidence in a
block cipher that has been analyzed in both the standard model and in the open key model. If
we can somehow show that the block cipher has no particular weakness when an adversary
knows the key or can select some particular keys to pinpoint a certain class of weak keys, then
we have more confidence in it when it is used in a more classical way.

The term weakness happens to be hard to define formally as there is no secret involved
in the process. In the more usual standard model, a key is uniformly and secretly drawn to
be used by the block cipher, and the adversary aims at recovering it or at least tries to build
a distinguishing algorithm. In the known-key model, there is no secret, and the goal of the
adversary is to prove that a structural property can be verified or computed for the block cipher
when the same property for an ideal permutation could only be achieved after a significant
computational effort.

We can for instance examine the block cipher DES when the key is not specified: the
adversary considers the block cipher family seen as a set of 64-bit permutations indexed by a 56-
bit key parameter. A well-known structural property existing in the DES is the complementation
property that a random 64-bit permutation does not have with overwhelming probability. Note
that this property also yields to a related-key distinguisher. Namely, for any message m and any
key k, the knowledge of the ciphertext DESk(m) allows to compute the ciphertext corresponding
to the plaintext m under key k, where x is the bitwise complementary of x:

∀(k, m), DESk(m) = DESk(m).

Consider now the following problem: find a pair of keys (k, k′) and a pair of inputs (m, m′)
such that k′ = k, m′ = m and DESk′(m′) = DESk(m). For a random 64-bit permutation, this
property would be verified with probability 2−64 as a valid pair of keys (k, k) and pair of inputs
(m, m) would result in complementary outputs with probability 2−64. Consequently, the cost
the adversary needs to pay to find such inputs is approximately 264 encryption queries to the
oracle implementing the family of block ciphers. In the case of DES, the structural property
allows to find it in constant time, and for any choice of (k, m). Indeed, for a (k, m), we get
c = DESk(m), and we know with probability 1 that DESk(m) produces c.

More formally, this kind of property is called an evasive property: it can be checked easily
but cannot be satisfied with oracle accesses O to a permutation and its inverse with a non-
negligible probability. Formally, Canetti, Goldreich and Halevi define a property as evasive
in [CGH98, CGH04] by a binary relation R when it is computationally hard to find a value x
such that the pair (x,O(x)) is in R.

In the literature, we find examples of evasive properties that answer to particular problems.
In the seminal work by Knudsen and Rijmen [KR07], the problem is to find a k-sum of plain-
text/ciphertext pairs (x, π(x)) for the permutation π of the known-key AES (Section 7.2.1.1).
In [GP10], Gilbert and Peyrin consider the problem of finding two inputs to a permutation π

that collide on some prescribed bits such that their images by π also collide on some other
bits (Section 7.1.3). Another example can be found in the work by Biryukov, Khovratovich and

7.1. GENERALITIES 145

Nikolić in [BKN09] that finds differential q-multicollisions for a given block cipher, and then
apply this to AES-256.

A second motivation for the open-key model is related to the hash function domain. Indeed,
the open-key framework fills the gap between the standard model for block ciphers and
the security notions for hash functions where no key is involved. The relations between
block-ciphers and hash functions have always been strong since there are many known and
provably secure ways to turn a block cipher into a compression function, like the PGV hash
functions [PGV94, BRS02, BRSS10]. The intuition is that the adversary controls both the key
input and the message input of the block cipher when we consider a hash function or a
compression function. Therefore, it is important to carefully study the block cipher designs in
the open-key model to prevent an oblivious use in a compression function.

7.1.2 Rebound technique

We have already recalled the rebound technique in Section 3.5.2, but we present here how it has
been applied to AES-like permutations in the literature. We describe all the published results
with the unified view of Figure 7.1 on an AES-like permutation. The rebound technique splits
the algorithm in two parts: the inbound phase and the probabilistic outbound phase. For any
size t of the internal state, the inbound phase requires to enumerate the solutions of the middle
rounds efficiently to test them against the outbound phase. We note that whenever we fix the
input and output differences of the inbound phase, there is exactly one solution if the middle
rounds are fully active, which is the case for most of the published results that we detail in the
following. We ideally want to find an algorithm that runs in constant amortized cost to only
pay the workfactor of the outbound phase.

One of the major general improvements to decrease the time complexity of the procedure
consists in including a probabilistic event of the outbound phase into the inbound to control
it. This considerably reduces the number of solutions to generate for the middle round since
the probability of the outbound is significantly increased, but in return the algorithm for the
middle rounds is more complex.

In the following Table 7.1, we summarize the main results published for AES-like permuta-
tions in the open-key model.

Characteristic Known-key Chosen-key
Inbound Total Ref. Section Cond. Ref. Section Cond.

1R 7R
[MRST09] 7.2.1.2 t ≥ 4

[DFJ12a] 7.3.1 AES
[MPRS09] 7.2.1.3 t ≥ 4

2R 8R
[GP10] 7.2.2.1 t ≥ 4

[DFJ12a] 7.3.2 AES
[SLW+10] 7.2.2.2 t ≥ 5

3R 9R [JNPP12] 8.2 t ≥ 8 —

Table 7.1: Advances done in inbound phases of rebound-based algorithms for AES-like permutations.
The variable t represents the size of the square state of the permutation. We give the conditions required
for the algorithms to work. The chosen-key setting in particular requires a key schedule algorithm in
addition to the AES-like permutation.

146 CHAPTER 7. AES IN THE OPEN-KEY MODEL

∆IN

AK

SB SR MC

AK

SB SR MC

AK

SB SR MC

AK

SB SR MC

AK

SB SR MC

AK

SB SR MC

AK

SB SR MC

AK

SB SR MC

AK
∆OUT

Inbound

Outbound

Outbound

Figure 7.1: General framework to apply the rebound technique to an AES-like permutation (here, t = 4).

Inbound phase

See Table 7.1.

7.1.3 Limited-birthday distinguisher

In this section, we precise one of the main type of distinguishers we are using. It has been called
limited birthday distinguishers and has been introduced by Henri Gilbert and Thomas Peyrin
in [GP10]. We are interested in the kind of distinguishers where the attacker is challenged to
find a pair of inputs whose difference is constrained in a predefined input subspace, such that
the ciphertext difference lies in another predefined subspace (Problem 7.1).

Problem 7.1 ([GP10]). Given a permutation π and two subspaces Ein and Eout, find a pair of inputs
(x, x′) such that x⊕ x′ ∈ Ein and π(x)⊕ π(x′) ∈ Eout.

We note that the two subspaces Ein and Eout actually define truncated differences, as they
represent a set of differences. Consequently, Problem 7.1 can be reformulated as follows: find a
pair of inputs (x, x′) such that the input difference x⊕ x′ belongs to the truncated difference
Ein, and that the output difference π(x)⊕ π(x′) belongs to the truncated difference Eout.

7.1. GENERALITIES 147

In the sequel, we denote ni = dim(Ein) and no = dim(Eout) (see Figure 7.2). This problem
generalizes the concept of collision in a function where we want the output space to be empty
(no = 0) and we do not constrain the input at all. By the birthday effect on an n-bit function, we
know we only need to consider about 2n/2 random elements before two of them share the same
image by π. This strategy thus finds a pair of inputs in 2n/2 computations in the case no = 0.

ni

n

n0 n− n0

π

Figure 7.2: Generalized collision problem for the limited birthday problem. Assuming ni ≤ no, the
attacker searches for a pair of inputs to the random permutation π differing in ni known cell positions
such that the output differs in no known cell positions. A gray cell indicates a byte with a non-zero
difference.

More importantly, this property assumes that it is possible to find 2n/2 different inputs. In
the generalized case of Problem 7.1, we restrict the number of possible input pairs. In particular,
for ni = n, we can construct as many as (2n

2) ≈ 22n−1 pairs, whereas for any ni this is reduced to

2n−ni

(
2ni

2

)
≈ 2n−ni · 22ni−1 ≈ 2n+ni−1.

We obtain this by considering all (2ni

2) pairs in the input subspace Ein and then restart with
different bits at the n− ni inactive positions. Consequently, as 2n+ni−1 ≪ 2n/2, we cannot hope
to find a collision on no = n output bits with the input data. That is why Gilbert and Peyrin
have dubbed the algorithm limited birthday, for the restricted amount of freedom at the input of
permutation. To overcome this difficulty, we create more freedom by considering new values of
the constant bits, but this results in independent birthday structures which cannot be combined
to take advantage of the birthday effect.

In the case of an AES-like permutation, we can actually pack c bits together due to the
byte-oriented structure of the primitive. Consequently, the cells depicted on Figure 7.2 actually
represent c bits, and can take as many as 2c different values. Therefore, we have n = ct2, and
both ni and no range in the interval between 0 and t2. To state the time complexity of the
algorithm in the limited case, we need to consider different ranges for the input parameters ni

and no to determine whether the original birthday is more efficient. Without loss of generality,
we assume in the following that ni ≤ no: the attacker thus considers π rather than its inverse
π−1, as it is easier to collide on t2 − no cells than on t2 − ni.

In the event that t2 − no < 2ni, the original birthday effect applies easily as we have enough
freedom at the input to reach a collision on t2 − no cells. We actually need to compute the
image by π of 2c·(t2−no)/2

< 2c·ni input elements randomly drawn in Ein, which is feasible in
time 2c·(t2−no)/2.

148 CHAPTER 7. AES IN THE OPEN-KEY MODEL

On the other hand, if t2 − no ≥ 2ni, then t2 − no − 2ni of the t2 − no cells do not have a
zero-difference at the output. Hence, we need to restart the birthday paradox process about
2c·(t2−no−2ni) times, which costs 2c·(t2−no−2ni) · 2c·ni = 2c·(t2−no−ni) in total.

We summarize the time complexity in the following Theorem 7.1.

Theorem 7.1. Let ni = dim(Ein) and no = dim(Eout). There exists an algorithm called limited-
birthday algorithm that solves Problem 7.1 for an AES-like permutation in time LB(ni, no) where:

log2c

(
LB(ni, no)

)
=

(t2 − no)/2 if t2
< 2ni + no,

ni if t2 = 2ni + no,

t2 − ni − no if t2
> 2ni + no.

As an example, we give the following chart (Figure 7.3) which lists all the complexities
LB(ni, no) for all ni and no in [0, t2] when we fix the parameters t = 4 and c = 8 like the AES.

ni

no

ni: Number of active input bytes

n o
:

N
u

m
be

r
of

ac
ti

ve
ou

tp
u

t
by

te
s

0 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

112

104

96

88

80

72

64

56

48

40

32

24

16

8

4

0

104

96

88

80

72

64

56

48

40

32

24

16

12

8

4

0

96

88

80

72

64

56

48

40

32

24

20

16

12

8

4

0

88

80

72

64

56

48

40

32

28

24

20

16

12

8

4

0

80

72

64

56

48

40

36

32

28

24

20

16

12

8

4

0

72

64

56

48

40

40

36

32

28

24

20

16

12

8

4

0

64

56

48

40

36

36

36

32

28

24

20

16

12

8

4

0

56

48

40

32

32

32

32

32

28

24

20

16

12

8

4

0

48

40

32

28

28

28

28

28

28

24

20

16

12

8

4

0

40

32

24

24

24

24

24

24

24

24

20

16

12

8

4

0

32

24

20

20

20

20

20

20

20

20

20

16

12

8

4

0

24

16

16

16

16

16

16

16

16

16

16

16

12

8

4

0

16

12

12

12

12

12

12

12

12

12

12

12

12

8

4

0

8

8

8

8

8

8

8

8

8

8

8

8

8

8

4

0

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 7.3: Chart of the log2 time complexities for the limited-birthday algorithm in the case of an
AES-like permutation with t = 4 and c = 8. Numbers in blue correspond to the original birthday
algorithm while red ones refer to the limited case. Green ones are the border cases.

7.2. KNOWN-KEY MODEL 149

7.2 Known-key model

7.2.1 Distinguishers for 7 rounds

We present here the three main results published presenting distinguishers for 7 rounds
of an AES-like permutation in the known-key model. By chronological order, the first one
(Section 7.2.1.1) is the original algorithm from Knudsen and Rijmen in [KR07] where they
present the open-key model. As an application, they show that we can use the integral property
of 3 and 4 rounds AES to distinguish it from a random permutation.

Then, the second distinguisher (Section 7.2.1.2) by Mendel, Rechberger Schläffer and
Thomsen in [MRST09] uses the rebound strategy to find a pair of inputs to the AES-like
permutation more efficiently than for a random permutation. Finally, the last algorithm
(Section 7.2.1.3) by Mendel, Peyrin, Rechberger and Schläffer in [MPRS09] improves the previous
result by increasing significantly the probability of the outbound phase.

7.2.1.1 Integral distinguisher

In [KR07], Knudsen and Rijmen propose an integral distinguisher based on their earlier work
with the square attack [DKR97] (see Section 4.4.1). In the known-key model, we assume that
the key is a parameter known to the adversary so that he can start the algorithm by choosing
values right in the middle on the AES computation, and not necessarily at one end, in the
plaintext or the ciphertext.

The integral distinguisher propagates a δ-set from the middle to both ends of the AES-like
permutation (see Figure 7.4) to produce a set P of plaintexts that verify the balance property
such that their corresponding ciphertexts C also verify the same property.

U
U
U
U

U
U
U
U

U
U
U
U

U
U
U
U

⋆

⋆

⋆

⋆

⋆

⋆

⋆

δ-set of 256 states

4R3R
U
U
U
U

U
U
U
U

U
U
U
U

U
U
U
U

Figure 7.4: The full 7-round integral distinguisher for an AES-like permutation (example with t = 4). A
byte marked by ⋆ assumes all 28 values, a white byte is passive and a byte marked by U is balanced.

The forward part of the distinguisher consists of a 4-round integral distinguisher where we
omit the last MixColumns application (see Figure 7.5b). When going backwards, the balance
property is still verified because all the operations of the AES round function are bijective.

To get a δ-set that propagates from the middle, we consider the structure of 2c·(2t−1) states of
Figure 7.4 in the middle of the computation: forwards, the integral distinguisher of Figure 7.5b
applies, and the one from Figure 7.5a for the backward direction. The t− 1 additional active
cells for both sides do not change the balance property because it boils down to the same
summation several time and produces zero since 0⊕ 0 = 0.

As a result the time complexity of this algorithm is equivalent to 2c·(2t−1) encryptions with
small memory requirements.

150 CHAPTER 7. AES IN THE OPEN-KEY MODEL

U
U
U
U

U
U
U
U

U
U
U
U

U
U
U
U

ARK

U
U
U
U

U
U
U
U

U
U
U
U

U
U
U
U

SB
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

SR
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

MC
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

ARK

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

SB
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

SR
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

MC
⋆

⋆

⋆

⋆

ARK

⋆

⋆

⋆

⋆

SB
⋆

⋆

⋆

⋆

SR
⋆

⋆

⋆

⋆

MC
⋆

⋆

⋆

⋆

ARK

⋆

⋆

⋆

⋆

δ-set

(a) Backward integral distinguisher (3 rounds).

⋆

⋆

⋆

⋆

δ-set

ARK

⋆

⋆

⋆

⋆

SB
⋆

⋆

⋆

⋆

SR
⋆

⋆

⋆

⋆

MC
⋆

⋆

⋆

⋆

ARK

⋆

⋆

⋆

⋆

SB
⋆

⋆

⋆

⋆

SR
⋆

⋆

⋆

⋆

MC
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

ARK

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

SB
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

SR
⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

MC
U
U
U
U

U
U
U
U

U
U
U
U

U
U
U
U

ARK

U
U
U
U

U
U
U
U

U
U
U
U

U
U
U
U

SB
U
U
U
U

U
U
U
U

U
U
U
U

U
U
U
U

SR
U
U
U
U

U
U
U
U

U
U
U
U

U
U
U
U

ARK

U
U
U
U

U
U
U
U

U
U
U
U

U
U
U
U

(b) Forward integral distinguisher (4 rounds).

Figure 7.5: Integral distinguisher for 7 rounds of an AES-like permutation (t = 4): a byte marked by ⋆ is
active, a white byte is passive and a byte marked by U is balanced. On the left, (a) shows the backward
part, while the forward part is on (b).

Generic complexity

Showing that the above algorithm actually results in a distinguisher also includes an analysis of
the generic scenario. We need to show that this algorithm is faster for AES than for a random
permutation.

Namely, we are given a random permutation f on ct2 bits, and our goal is to find a set
P of inputs {xi} such that ∑

k
i=1 = f (xi) = 0. This problem is related to the k-sum problem

or generalized birthday problem. It has been studied by David Wagner in [Wag02] where he
proposes an algorithm to solve it that works in time

O
(

k · 2
ct2

1+log2(k)
)

.

In our case, we have ct2 = 128 and k = 2c·(2t−1) = 256 which gives a time complexity of
approximately 258.2 encryptions. Obviously, this is a rough estimate as the big-O notation
masks small constants and memory accesses can be costly, but anyway the integral algorithm
distinguishes the AES-like permutation from a random permutation. We also note that the
XHASH attack due to Bellare and Micciancio in [BM97] might provide an improvement over
the generalized birthday algorithm as it has been noted in [AKK+10, BDPA10].

7.2. KNOWN-KEY MODEL 151

7.2.1.2 Rebound attack

In this section, we give a more efficient known-key distinguisher for 7 rounds of an AES-
like permutation. The algorithm uses the rebound technique [MRST09] that we have already
presented in Section 3.5.2 originally introduced for hash functions. Indeed, the reason why we
can apply it to hash functions is the lack of secret key, but the known-key model effect is the
same.

The application of the technique is basic: we generate many solutions for the middle rounds
2 and 3 at a small cost (inbound phase) and exhaust them in the probabilistic filters of the outer
rounds (outbound phase): MixColumns 4→ 1 transitions in rounds 1 and 5 (see Figure 7.6).

∆IN

k0
AK

x0

SB

y0

SR

z0

MC

w0

Round 0

k1
AK

x1

SB

y1

SR

z1

MC

w1

Round 1

k2
AK

x2

SB

y2

SR

z2

MC

w2

Round 2

k3
AK

x3

SB

y3

SR

z3

MC

w3

Round 3

k4
AK

x4

SB

y4

SR

z4

MC

w4

Round 4

k5
AK

x5

SB

y5

SR

z5

MC

w5

Round 5

k6
AK

x6

SB

y6

SR

z6

MC

w6

Round 6

k7
AK

x7

∆OUT

Figure 7.6: Truncated differential characteristic with t = 4 uses in the rebound distinguisher for 7 rounds
of the known-key AES-like permutation. A black cell has non-zero difference while white cells are
inactive.

The strategy starts by randomizing the difference ∆y2 in state y2 and the difference
∆w3 in state w3. From y2 to x3, the operations are linear (ShiftRows, MixColumns and
AddRoundKey) so that we can propagate the randomized difference at the input of the S-Box
of round 3. Then, starting from w3 and going backwards we can do the same and deduce the
values of the differences in ∆y3.

Consequently, the input and output differences of the SubBytes layer of round 3 are
completely determined. From the differential property of AES S-Box S that we recalled in
Theorem 4.2, we know that the t2 parallel equations S(x) ⊕ S(x ⊕ ∆i) = ∆o for a ∆i at the
input in ∆x3 and a ∆o at the output in ∆y3 all have one solution with probability 1/2. More

152 CHAPTER 7. AES IN THE OPEN-KEY MODEL

specifically, this equation at the state level S(x3) ⊕ S(x3 ⊕ ∆x3) = ∆y3 has 2t2
solutions x3

with probability 2−t2
, for fixed ∆x3 and ∆y3. This means that we have to restart 2t2

times the
randomization of the differences in ∆y2 and ∆w3 before getting 2t2

solutions.

Therefore, for all the (2c − 1)2t ≈ 22ct guessed differences in ∆y2 and ∆w3, we expect to
have 22ct paired values that conform to the truncated differential characteristic of Figure 7.6
reduced to rounds 2 to 3. While solving this inbound phase, we get pairs of states that match
the middle rounds, and we can directly test them against the outer rounds to check whether
the truncated differential transitions t→ 1 hold in the two MixColumns.

For a single pair, the probability of each of the two transitions equals 2−c·(t−1) as we require
only the top cell to remain active at the output of the transition. This event is a c · (t− 1)-bit
filter which makes the total probability of the outbound phase 2−2c·(t−1). By exhausting only
22c·(t−1) of the 22ct possible pairs, we then expect to get one that conforms to the whole 7-round
characteristic. This algorithms cost 22c·(t−1) computations per final pair, and we can get as much
as 22ct−2c·(t−1) = 22c.

We note that this algorithm implicitly assumes that t2 ≤ 2ct, i.e. t ≤ 2c, as we obviously need
more freedom degree in the randomization of the two initial differences to hit values that lead
to the 2t2

solutions around the SubBytes layer. We emphasize that we need 2t2
computations

to get the 2t2
solutions. In the case of the AES, the condition is verified since c = 8 and t = 4,

and the algorithm has a time complexity of 248 simple operations. This algorithm requires to
store about 22c elements in memory to represent the DDT of the S-Box, which amounts to 216

in the case of the AES.

Generic complexity

In comparison, finding two inputs that verify the same criterion for a randomly drawn ct2-bit
permutation π requires approximately

LB(t, t) = 2ct2−2ct = 2ct(t−2)

computations by the limited-birthday algorithm (Theorem 7.1). Indeed, the same property
consists in finding a pair of inputs to π such that the truncated input difference equals ∆IN and
the truncated output difference equals ∆OUT (Figure 7.7), where there are c · t active bits at both
the input and the output.

∆IN
π

∆OUT

Figure 7.7: Differential properties required on the wanted pair for the generic scenario for a random
permutation π.

We note that while the difference in the outputs of Figure 7.6 differs in all the t2 cells, the
actual differences are not all independent. The last MixColumns application being linear, we
can invert it to recover the 4 independent variables from ∆z6 that actually makes a 4-dimensional
output subspace of differences. This is the reason why we consider an output dimension of c · t
rather than c · t2.

7.2. KNOWN-KEY MODEL 153

Consequently, the algorithm based on the rebound strategy is faster than the generic solution
to the problem if the following inequality holds:

2(t− 1) ≤ t(t− 2),

which is independent of c and true as soon as t ≥ 2 +
√

2 , that is t ≥ 4.

7.2.1.3 Improved distinguisher: start-from-the-middle technique

The way to handle the pairs in the previous algorithm is a direct application of the rebound
technique, but in that case, we can adapt it to get a significant improvement in the time
complexity. This trick has been published in [MPRS09] and basically consists in absorbing the
first of the two probabilistic t→ 1 transitions in the inbound phase. This way, we control exactly
how the solutions for the middle rounds behave through one transition and we only need
to pay the second one. Concretely, this makes a distinguisher requiring about 2c(t−1) simple
computations and 2t2

22c memory units to store the DDT of the S-Box and the lists needed in
the inbound phase. We detail how in the following.

The algorithm uses the same truncated differential characteristic (Figure 7.6) and also starts
by randomizing the differences ∆x4 = ∆w3 in w3. We note that we can have as many as
(2c − 1)t ≈ 2ct starting points here. Again, the difference propagates linearly backwards up
to ∆y3. At this point, we do not perform the rebound by randomizing the other side of the
SubBytes layer, but rather we store all the valid input differences for ∆x3. That is, for each of
the t2 output cell differences ∆ in ∆y3, we consider the list

S∆ =
{
(x, x⊕ δ) | S(x)⊕ S(x⊕ δ) = ∆

}
,

which contains all the paired values that transform one input difference δ to the output
difference ∆. From the assumed differential property of the S-Box, these sets contain 2c pairs.
For clarity, we denote Li,j the lists that contains the elements of S∆y3[i,j].

We note that while the lists contain 2c different pairs, the 2c differences between each pairs
are not all different: this is a consequence of the symmetry in the equation S(x)⊕ S(x⊕ δ) = ∆,
where both (x, x ⊕ δ) and (x ⊕ δ, x) belong to the lists, but the difference of the two are δ.
Consequently, the lists inherently represent only 2c−1 − 1 different differences each.

Now, in state x3 we need to propagate and filter lists of paired values to find one pair in
each of the t2 lists that conforms to the truncated pattern up to x0. To filter the pairs in the
MixColumns transition of round 2, we consider t lists of one column at a time. For the first
column for instance, the lists are L0,0, . . . , Lt−1,0 which make as many as (2c)t = 2ct possible
candidates, when we want only a fraction 1/2c·(t−1) of them since we need only the top cell to
be active in that column of z2. To find them all, we guess the difference ∆z2[0, 0] and compute
its image M × ∆z2[⋆, 0] by the MixColumns and lookup the lists for the t differences. We
expect each difference to lie in the t lists with probability (2c−1 − 1)/(2c − 1) ≈ 2−1 so that we
deduce about (2c − 1)× 2−t ≈ 2c−t paired elements for the first column of z2 that verify the
truncated pattern.

By doing so for the t columns in parallel, we end up in z2 with lists of 2c−t paired elements
per column, and we can propagate them backwards up to x2 into the t diagonals of the state, by

154 CHAPTER 7. AES IN THE OPEN-KEY MODEL

x2

SB

y2

SR

z2

MC

w2

Figure 7.8: Round 2 of the characteristic of Figure 7.6 (t = 4). A cell in white is inactive, a cell in gray is
active and hatched bytes trace the evolution of the elements of one list from w2 to x2.

passing the values through the S-Box (see Figure 7.8). The differences in ∆x2 get randomized,
but any tuple of t paired values in the t lists at this point of the algorithm makes a valid pair of
states, in the sense that the truncated differential characteristic from x2 to z4 is already verified.

Now, the improvement in comparison to the classical rebound strategy consists in controlling
the t→ 1 transition of round 1 by carefully choosing the values that make the transition valid.
Again, we guess the difference ∆y1 = ∆z1 in round 1 and compute its image by MixColumns:

M×
[
∆z1[0, 0], 0, . . . , 0

]T
=
[
∆w1[0, 0], . . . ∆w1[t− 1, 0]

]T
.

Performing exactly the same method between z1 and w1 as we have done to match the
lists between z2 and w2 does not work since the lists are smaller. Indeed, they contain about
2c−t elements by assuming t ≤ c so we find the t differences ∆w1[∗, 0] in each of the t lists
with probability 2c−t/2c = 2−t. Consequently, the total probability would be 2−t2

for the t lists.
Hopefully, we still have some freedom degree left: the critical point is the small size of the lists,
but we can introduce new values in the lists that are completely independent of the present
ones. Namely, in the previous step between z2 and w2, we match differences and build lists of
size 2t, but for each found t-tuple of paired values, we can build up to 2t − 1 different tuples
that all share the same difference by swapping the elements of the pairs. This increases the size
of the t lists to 2c−t · (2t − 1) ≈ 2c elements that get randomized in the corresponding lists in
the diagonals of x2 with the effect of S−1. Therefore, we now find the differences ∆w1[∗, 0] in
the t list with probability close to 1 with the corresponding paired t-tuple of values.

All in all, we start by guessing the differences in w3, and by operations on lists of sizes
at most 2c, we manage to construct a pair of states that conform to the truncated differential
characteristic of Figure 7.6 between x0 and y4. To end the algorithm and finally find a pair of
states that matches the whole characteristic, we repeat this procedure about 2c·(t−1) times as
in the rebound technique to pass the t→ 1 probabilistic transition of round 5 that holds with
probability 2−c·(t−1). We thus expect to find one after 2c·(t−1) repetitions and we note that we
can produce about

(2c − 1)t × 2−c·(t−1) ≈ 2c

solutions in time 2c+c·(t−1) = 2ct, since we can pick (2c − 1)t different starting points for ∆w3.

We recall from the description that this algorithm assumes implicitly that t ≤ c, which
would otherwise make the lists empty halfway in the process. In the case of the AES, this
condition is also verified as t = 4 and c = 8 and produces an algorithm with a memory of
about 216 elements, and a running time of 224 computations.

7.2. KNOWN-KEY MODEL 155

Generic complexity

In comparison, finding two inputs that verify the same criterion for a randomly drawn ct2-bit
permutation π requires approximately

LB(t, t) = 2ct2−2ct = 2ct(t−2)

computations by the limited-birthday algorithm (Theorem 7.1). The justification on the output
difference from the previous algorithm still holds.

Consequently, the algorithm based on the rebound strategy is faster than the generic solution
to the problem if t ≤ c and if the following inequality holds:

t− 1 ≤ t(t− 2),

which is independent of c and true as soon as t ≥ 3+
√

5
2 , that is t ≥ 3.

7.2.2 Distinguisher for 8 rounds

7.2.2.1 Fully-active characteristic

At Fse 2010 in [GP10], Henri Gilbert and Thomas Peyrin introduce a way to extend the known-
key result on 7 rounds of an AES-like permutation to 8 rounds. Their algorithm is also based
on the rebound technique but they manage to cover one more round in the inbound phase. The
outbound phase remains the same as the original result [MRST09] by Mendel et al., which has
a probability 2−2c(t−1) of two t→ 1 transitions, but the inbound phase covers x2 in round 2 to
w4 in round 4. The truncated differential characteristic extended by one round from the middle
(round 3) is depicted on Figure 7.9.

Except the limited-birthday distinguisher, the main contribution of their paper revisits the
2-round non-linear construction called Super-SBox, which has already been discussed several
times in the design of the AES by its authors [DR01, DR02, DR06b]. The novelty is to see it as
building to perform cryptanalysis rather that proving bounds on the differential probabilities
of 2-round differentials for uniformly drawn keys. We now recall their main results in our
generalized framework.

Generic Super-SBox construction

As shown on Figure 7.10, we can rewrite the successive transformations of two rounds of
an AES-like permutation and permute the order of the two first SubBytes and ShiftRows
operations. This introduces the non-linear Super-SBox which applies on t columns of ct bits of
the state in parallel.

Therefore, the Super-SBox is a keyed operation that acts as a non-linear permutation of c · t
bits. It is defined as the composition of the four operations:

Super-SBoxk
def
= SubBytes ◦AddRoundKey(k) ◦MixColumns ◦ SubBytes.

156 CHAPTER 7. AES IN THE OPEN-KEY MODEL

∆IN

k0
AK

x0

SB

y0

SR

z0

MC

w0

Round 0

k1
AK

x1

SB

y1

SR

z1

MC

w1

Round 1

k2
AK

x2

SB

y2

SR

z2

MC

w2

Round 2

k3
AK

x3

SB

y3

SR

z3

MC

w3

Round 3

k4
AK

x4

SB

y4

SR

z4

MC

w4

Round 4

k5
AK

x5

SB

y5

SR

z5

MC

w5

Round 5

k6
AK

x6

SB

y6

SR

z6

MC

w6

Round 6

k7
AK

x7

SB

y7

SR

z7

MC

w7

Round 7

k8
AK

x8

∆OUT

Figure 7.9: Truncated differential characteristic uses in the rebound distinguisher for 8 rounds of the
known-key AES-like permutation (with t = 4). A black cell has non-zero difference while white cells are
inactive.

SB SR MC AK SB SR MC

SR SB MC AK SB SR MC

SR Super-SBox SR MC

Figure 7.10: The Super-SBox construction: we obtain it by swapping the order of the operations in two
rounds of the AES-like permutation. The black cells trace the evolution of the cells that go through one
Super-SBox. There are t in parallel: one for each column (t = 4 in this example).

7.2. KNOWN-KEY MODEL 157

The keyed parameter k is a column of the subkey added in the inner AddRoundKey. In the
current model, the key of the AES-like permutation is assumed to be known so each of the t
Super-SBox permutation is fixed.

Distinguishing algorithm

The strategy of the distinguishing algorithm devised in [GP10] mimics the rebound technique
from [MRST09], but the rebound itself is not performed on the c-bit S-Box on one round,
but on the c× t-bit Super-SBox on two rounds. With the same differential properties as S,
the Super-SBox can also construct solutions for the middle rounds from round 2 to round 4
(inbound) and then we propagate them through the same probabilistic filters (outbound phase)
that hold with probability 2−2c(t−1).

While we could construct the difference distribution table (DDT) for the Super-SBox, it
would require 22ct computations and ct× 22ct bits to store in memory. This would give the
solutions to the ?? for any (∆i, ∆o) in one memory access, but together with the cost of the
outbound phase, the algorithm would run in 22ct + 22c(t−1), and that can easily be improved by
not computing the large DDT that is the bottleneck.

Instead, the beginning of the algorithm is to randomize differences in y2 (see Figure 7.9).
From this, we can again compute linearly the difference ∆w2 = ∆x3 at the input of the
Super-SBox. However now, we do not continue in guessing differences at the output of the
Super-SBox, but we consider each of the t Super-SBoxes in parallel and enumerate all the
2ct/2 = 2ct−1 input pairs of values. The factor 2 is explained by the redundancy of the pairs if
we consider all the 2ct values. Since the input difference has been fixed, one value is sufficient
to compute the input pairs to the t parallel Super-SBoxes. So in 2ct−1 simple computations, we
compute in parallel the output pairs of the t Super-SBoxes in y4 and thus in z4, and store each
pair in a table Ti for the i-th Super-SBox indexed by their output differences. The memory
requirements for this step are therefore t · 2ct−1 words of ct bits.

With the t precomputed tables, we can now randomize the difference ∆w4, compute
backwards its image by MixColumns in z4 and check the tables to find a match. As each table
contains 2ct−1 pairs distributed in about 2ct buckets, we expect to find a match in each of the t
tables with a probability very close to 1/2. As we have about (2c− 1)t ≈ 2ct possible differences
∆w3, we expect that every 2t try, we get 2t solutions so that the precomputed tables allows to
construct 2ct solutions for the middle rounds.

Consequently, for a single input difference in y2 and all the (2c − 1)t differences in w4, we
try 2ct pairs of states in the outbound phase that holds with probability 2−2c(t−1). Thus, we
expect to find a solution with probability 2ct−2c(t−1) = 2−c(t−2), which means that we need
to repeat this entire procedure about 2c(t−2) times with a new difference ∆y2. In total, the
time complexity amounts to 2c(t−2)+ct = 22c(t−1) operations, which can also be seen with the
amortized cost 1 of the inbound phase that provides one solution with an average cost of one
computation. Between the different attempts of ∆y2, the t · 2ct−1 words of the memory can be
erased to be reused.

158 CHAPTER 7. AES IN THE OPEN-KEY MODEL

Generic complexity

As before, this algorithm is faster than the generic solution to the problem requiring about
LB(t, t) = 2ct(t−2) operations if the following inequality holds:

2(t− 1) ≤ t(t− 2),

which is independent of c and true as soon as t ≥ 2 +
√

2 , that is t ≥ 4.

7.2.2.2 Non-fully-active characteristic

At Asiacrypt 2010, Sasaki et al. show in [SLW+10] how to decrease significantly the time
complexity of the previous 8-round known-key distinguisher for larger values of t. We describe
their main result with the use of the truncated differential characteristic depicted in Figure 7.11
when t = 4.

∆IN

k0
AK

x0

SB

y0

SR

z0

MC

w0

Round 0

k1
AK

x1

SB

y1

SR

z1

MC

w1

Round 1

k2
AK

x2

SB

y2

SR

z2

MC

w2

Round 2

k3
AK

x3

SB

y3

SR

z3

MC

w3

Round 3

k4
AK

x4

SB

y4

SR

z4

MC

w4

Round 4

k5
AK

x5

SB

y5

SR

z5

MC

w5

Round 5

k6
AK

x6

SB

y6

SR

z6

MC

w6

Round 6

k7
AK

x7

SB

y7

SR

z7

MC

w7

Round 7

k8
AK

x8

∆OUT

Figure 7.11: Non-fully-active truncated differential characteristic used in the improved rebound distin-
guisher for 8 rounds of the known-key AES-like permutation (with t = 4 and s = 1). A black cell has
non-zero difference while white cells are inactive.

The main difference with previous work relies in the new truncated characteristic which
does not include a fully active state of t2 cells in the middle. This particular state acts as the
key point to all the previous work since this is where we perform the rebound. Here, we still

7.2. KNOWN-KEY MODEL 159

use the rebound strategy, but the inbound phase becomes cheaper as the middle states are less
active.

The non-fully-active characteristic is parameterized by a parameter s that describes the
number of non-active “columns” in state w2, and the number of non-active cells in the active
column of z1. On Figure 7.11, we have printed the characteristic with the value s = 1. We
also note that in round 1, the MixColumns transition is a t− s→ t− s transition, whereas in
round 5, it is a s + 1→ t− s such that the MDS bound is tight (s + 1 + t− s = t + 1). The first
transition implies 2(t− s) ≥ t + 1, i.e. 2s + 1 ≤ t for the characteristic to be valid, otherwise
the MDS property would be violated.

To apply the rebound technique, we split the characteristic in two parts: the inbound phase
from y2 to w4, and the outbound phase that propagates outwards from those states. With the
parameter s, the probability of the outbound becomes

2−c·s · 2−c·s = 2−2cs,

by multiplying the probabilities of the two MixColumns transitions in rounds 1 and 5 that both
require to cancel s cells of c bits. Consequently, the inbound only needs to generate 2cs pairs
for the middle rounds. This has to be compared with the 22c(t−1) requirements of the original
rebound algorithm.

Non-fully-active Super-SBox

This new characteristic allows to consider different patterns for the Super-SBox construction,
see Figure 7.12. Namely, from Figure 7.11 we see four difference patterns with different active
positions at the input/output of the Super-SBox. This constrained situation has 2c·t+c·(t−s) =

∆ δ

t
s

t− s− 1
SB MC ARK SB

Figure 7.12: Doubly hatched cells have known non-zero difference, simply hatched cells have unknown
non-zero differences, and white cells are inactive. The key is assumed to be known.

2c·(2t−s) possible pairs of inputs and the probability that one hits a valid pattern at the output is
2−c·(t−(s+1)). We therefore expect to find

2c·(2t−s) × 2−c·(t−(s+1)) = 2c·(t+1)

pairs that verify the truncated pattern.

To generate the pairs in amortized cost of 1 computation, we begin by randomizing all but
one differences at the input and output of the considered Super-SBox. For instance, we let
unconstrained the top difference at the output, but we set all the other differences to random

160 CHAPTER 7. AES IN THE OPEN-KEY MODEL

non-zero values (see Figure 7.12). We note that there are now exactly t− s+ t− (t− s− 1)− 1 =
t fixed differences, so we now expect about 2c pairs to verify all the conditions, and we can
repeat this step about (2c − 1)t ≈ 2ct times with different values for the differences. The goal of
the subsequent steps is to construct a table T indexed by the 2c − 1 values for the remaining
difference δ at the output such that T[δ] contains a valid pair conforming to the differential in
the Super-SBox.

We guess the value of the difference ∆ after the first SubBytes layer. There are 2c− 1 possible
values, and for each of them we compute a small linear system to deduce all the differences
inside the Super-SBox. Indeed, the inner MixColumns operation has only 1 freedom degree
for the differences. This is a consequence of the tightness of MDS bound: t− s + s + 1 = t + 1
for the transition t− s → s + 1. Therefore, the t + 1 differences in the Super-SBox are linear
functions of ∆, so we determine their values.

For all the active transitions with fixed output differences around the S-Box S or its inverse
S−1 at both SubBytes layers, we find a matching pairs of values in small precomputed tables of
2c elements. We observe that there are t such transitions, so that the probability that a match is
found for all of them is 2−t. In return, as soon as one pair is found for the t transitions, we can
swap the elements of the pairs to construct a set of about 2t solutions. So in average, we assume
that we have one solution for any value of the difference ∆, but this behavior intrinsically
assumes that c ≥ t otherwise we would not end up with t valid pairs even once.

At this point, all the doubly hatched cells of Figure 7.12 have known values and differences.
We now determine the remaining differences. To do so, we observe that there are s unset values
at the input on the inactive cells, and exactly s known values among the active cells at the
output. We can thus solve a linear system of equations on the values to compute the missing
ones at the input and propagate them at the output. After this step, everything is fixed, and we
can compute the output difference δ and store the pair of inputs in T[δ].

From fixed differences in t cells at the input/output, this algorithm finds about 2c pairs
conforming the differential in 2c computations and about 2c memory units in small precomputed
tables.

Distinguishing algorithm

To apply this efficient algorithm to the characteristic of Figure 7.11, we start by randomizing the
values of the differences in y2 which propagate linearly to x3 at the input of the Super-SBoxes.
We also randomize all but one of the differences in w4 to reach exactly the requirements of the
previous algorithm where all but one difference on each column of y4 are active. There are
2c·(t−s) ways to randomize the input, and 2c·s for the output, so 2ct in total.

For any 2x ≤ 2ct different starting points of the differences in y2 and w4, we generate about
2x+c·(t+1) pairs for the middle rounds in 2x+c·(t+1) operations. As stated previously, we need
to generate 22cs pairs for the middle rounds to pass the outbound phase in the outer rounds,
which imposes

s ≤ t + 1
2

(7.1)

and a time complexity of 22cs computations to generate the 22cs pairs for a success probability

7.3. CHOSEN-KEY MODEL 161

approximately 1 of the whole algorithm. We note that the previous 2s− 1 ≤ t constraint from
Equation 7.1 is weaker that the required condition 2s + 1 ≤ t for the characteristic not to violate
the MDS bounds. Additionally, as we said, we need t ≤ c, which is true for all known AES-like
permutations.

Generic complexity

As a comparison, the generic complexity is given by the time complexity of the limited-birthday
algorithm in an equivalent setting: LB (t · (t− s), t · (t− s)). With Equation 7.1, we can ensure
that we have enough freedom degrees at the input to perform a simple birthday to reach a
collision on c · t · s bits in the output. Indeed, s ≤ (t + 1)/2 ensures that we can get as many as
2c·t·(t−s) ≥ 2c·t·(t−1)/2 input pairs, which allow to find a collision on at least c · t · (t− 1) output
bits. If s ≥ 1, then t · (t− 1) ≥ t · (t− s), which confirms that we can collide on c · t · s prescribed
bits. We do not consider the case s = 0, since it does not allow to distinguish anything.

Hence, the time complexity of the generic algorithm equals

LB
(

t · (t− s), t · (t− s)
)
= 2c·(t2−t·(t−s))/2 = 2c·t·s/2,

and the algorithm described is a distinguishing algorithm as soon as

2 · c · s < c · t · s
2

,

which is true as soon as t ≥ 5 for integer values of s ∈
[
1, t−1

2

]
.

7.3 Chosen-key model

In this section, we switch to a slightly different model where the adversary can also use the bits
of the key to exhibit nontrivial properties of the permutation. We call this the chosen-key model
and it can actually be declined in two forms whether we allow the key to have differences or
not. If there are differences, it is linked to the related-key model and we can cite the results
from the previous Chapter 6 (see also [BKN09]), and if the key does not have differences, we
call it single-chosen-key model.

In the next two sections, we present an improvement over the known-key methods to
distinguish 7 and 8 rounds of AES by using the additional freedom brought by the key bits.
Before this work, it was unknown how to actually use this extra freedom to decrease the
complexities of the known-key algorithms. These two results have been published in a paper co-
authored by Patrick Derbez and Pierre-Alain Fouque in [DFJ12a] at Indocrypt 2012. The main
point of these two results consists in controlling one more transition 4→ 1 in the MixColumns
that normally lies in the outbound phase. This way, we control it and gain a workfactor of 224

in the time complexity.

While we generalize the known-key algorithms of the previous section to AES-like permu-
tations, it is less obvious to do the same here, as the subkeys are linked by the key schedule
equations. For instance, if the algorithm sets values for some part of a particular subkey, it may

162 CHAPTER 7. AES IN THE OPEN-KEY MODEL

impose strong constraints on other values for different subkeys, which we have to consider.
Consequently in the following, we choose not to make the permutation as general as possible,
but we consider explicitly the AES, and in particular AES-128 and AES-256.

The third result that we present here is the first known distinguisher for 9 rounds of
AES-128 in any model. This one considers chosen and related keys to construct a pair of
keys and a pair of inputs that verify a certain property which is about 213 harder to find for a
random permutation. This result has been published in the Crypto 2013 paper [FJP13a].

7.3.1 Distinguisher for 7-round AES

7.3.1.1 Distinguishing algorithm for AES-128

We consider the 7-round truncated differential characteristic of Figure 7.13 (same one as
Figure 7.6), where the differences in both the plaintext and the ciphertext lie in subspaces of
dimension four. Indeed, the output difference lies in a subspace of dimension four since all
the operations after the last SubBytes layer are linear. With respect to the description of the
distinguisher (Section 7.1.3), the time complexity to find a pair of messages that conforms to
those patterns in a family of pseudo-random permutations is LB(4, 4) = 264 computations.

∆IN

k0
AK

x0

SB

y0

SR

z0

MC

w0

Round 0

k1
AK

x1

SB

y1

SR

z1

MC

w1

Round 1

k2
AK

x2

SB

y2

SR

z2

MC

w2

Round 2

k3
AK

x3

SB

y3

SR

z3

MC

w3

Round 3

k4
AK

x4

SB

y4

SR

z4

MC

w4

Round 4

k5
AK

x5

SB

y5

SR

z5

MC

w5

Round 5

k6
AK

x6

SB

y6

SR

z6

MC

w6

Round 6

k7
AK

x7

∆OUT

Figure 7.13: Truncated differential characteristic with t = 4 uses in the rebound distinguisher for 7
rounds of the known-key AES-like permutation. A black cell has non-zero difference while white cells
are inactive.

7.3. CHOSEN-KEY MODEL 163

The following of this section describes a way to build a key and a pair of messages
that conform to the restrictions of the characteristic with 28 computations using a memory
complexity of 28 bytes. This complexity has to be compared to 216 computations, which is
the minimal time complexity expected for a straightforward application of the rebound attack
on the SubBytes layer of the AES (Section 7.2.1.2). Indeed, we need to repeat at least 216

times a randomized phase and this cannot be decreased. In the following, we proceed slightly
differently to reach a solution in 28 computations by using the key bits.

In terms of freedom degrees, we begin by estimating the number of solutions that we
expect to verify the truncated differential characteristic. There are 16 bytes in the first message,
4 more independent ones in the second message and 16 others in the key: that makes 36
freedom degrees at the input. On a 36-byte random input, the probability that the truncated
differential characteristic is followed depends on the amount of freedom degrees that we loose
in probabilistic transitions within the MixColumns transitions:

• 3 in round 0 to pass one 4→ 1 transition,
• 12 in round 3 to pass four 4→ 1 transitions,
• 3 again in round 4 for the last 4→ 1 transition.

In total, we thus expect

28×(16+4+16) 2−8×(3+12+3) = 28×18

triplets (m, m′, k) composed by a pair (m, m′) of messages and a key k to conform to the
truncated differential characteristic of Figure 7.13. Hence, we have 18 freedom degrees left to
find such a triplet.

First, we observe that whenever we find such a solution for the middle rounds (round
1 to round 4), we are ensured that all the rounds are covered in the complete truncated
differential characteristic due to an outward propagation occurring with probability 1. This can
be compared with the basic rebound technique and its improved version: in the original one
(Section 7.2.1.2), the inbound phase controls none of the two 4→ 1 transitions and we need to
perform 248 computations in the outbound phase, then the improved algorithm (Section 7.2.1.3)
includes one such transition in the inbound to make the outbound cost only 224 computations.
Here, we propose a way to control the two 4→ 1 transitions so that the outbound is verified
with probability 1. Hence, our strategy focuses on the middle rounds.

To reduce the number of valid solutions, we begin by fixing some bytes (see Figure 7.14) to
a random value: ∆z1 and x2[0, . . . , 3]. Therefore, we can deduce the values and differences in
the first column of x2 and y2, as well as the difference ∆x3 by linearity.

Let [∆0, ∆1, ∆2, ∆3]T be the column-vector of deduced differences in ∆y2 and we note
diag(δ0, δ1, δ2, δ3) the differences in the diagonal of ∆x4. Linearly, we can express the differences
around the SubBytes layer of round 3 with these 8 variables (see Equation 7.2).

∆x3 =

2∆0 ∆3 ∆2 3∆1

∆0 ∆3 3∆2 2∆1

∆0 3∆3 2∆2 ∆1

3∆0 2∆3 ∆2 ∆1

SB−→

14δ0 11δ1 13δ2 9δ3

13δ3 9δ0 14δ1 11δ2

14δ2 11δ3 14δ0 9δ1

13δ1 9δ2 14δ3 11δ0

 = ∆y3. (7.2)

164 CHAPTER 7. AES IN THE OPEN-KEY MODEL

z1

MC

w1

Round 1

u2

MC

k2

ARK

x2

SB

y2

SR

z2

MC

w2

Round 2

u3

MC

k3

ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

u4

MC

k4

ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

Figure 7.14: First step of the distinguishing algorithm. Black bytes have known values and differences,
hatched bytes have known differences and white bytes have unknown values and/or differences.

As a consequence, from the differential properties of the AES S-Box (Theorem 4.2), for
i, j ∈ {0, . . . , 3}, ∆j suggests 27 − 1 different values for δi: we store them in the list Li,j:

Li,j =
{

δi

/
∆j → δi is possible

}
. (7.3)

By ∆ → δ possible, we mean that the equation S(x) ⊕ S(x ⊕ ∆) = ∆ has at least two
solutions; that is, the entry (∆, δ) in the DDT of S is non-zero. Once the lists Li,j are constructed,
we build the list Li, for i ∈ {0, . . . , 3}:

Li =
3⋂

j=0

Li,j =
{

δi

/
∀j ∈ {0, . . . , 3}, ∆j → δi is possible

}
. (7.4)

Each Li,j being of size 27 − 1, we expect each Li to contain about 24 elements.

We continue by setting ∆x4[0] to a random value drawn from L0 and x4[0] to a random
value, which allows to determine the value and difference in y4[0]. Since the difference ∆y4 can
only take 28 − 1 values due to the MixColumns transition of round 4, we also deduce ∆w4 and
the remaining differences in ∆y4. The knowledge of ∆y4 suggests about 27 possible values for
δi. As before, we store them in lists called Ti, and we select a value for δi in Li ∩ Ti (Figure 7.15).
We expect each intersection to contain about 23 elements. More rigorously, if we assume that
the lists Li,j and Ti are uniformly distributed, then the probability that L0, L1 ∩ T1, L2 ∩ T2 and
L3 ∩ T3 are not empty is higher than 99.96%. We perform a detailed analysis of the success
probability in the following Section 7.3.1.3. Finally, we compute the values in x3 and in the
diagonal of x4.

We now need to find a key that matches the previous deduced values in the internal states.
We have built a partial pair of internal states that conforms to the middle rounds, but it has
fixed 8 bytes of constraints in the key. Namely, if we denote ki the subkey introduced in round
i and ui = MC−1(ki), then both u3 and k4 have four known bytes (see Figure 7.16).

7.3. CHOSEN-KEY MODEL 165

z1

MC

w1

Round 1

u2

MC

k2

ARK

x2

SB

y2

SR

z2

MC

w2

Round 2

u3

MC

k3

ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

u4

MC

k4

ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

Figure 7.15: Second step of the distinguishing algorithm. Black bytes have known values and differences,
gray bytes have known values, hatched bytes have known differences and white bytes have unknown
values and/or differences.

1
1

1

1
1

1
1

1

4
7
7
7

u3

MC

4
4
4
3

6
6
6
7

2
2
2
2

2
2
2
2

k3

KS

5
5
5

3
3

8

3

3
8

3
3
8

k4

Figure 7.16: Generating a compatible key: gray bytes are known, and numbers indicate the order in
which we guess or determine the bytes.

We start by fixing all the bytes marked by 1 in u3 to random values: this allows to compute
the values of all 2’s in the two last columns of k3. By the column-wise operations of the
AES-128 key schedule, we can get the values of all bytes marked by 3. As for the 4’s, we get
them since there are four known bytes among the eight in the first columns of u3 and k3. Again,
the key schedule gives the 5’s and 6’s, and the MixColumns the 7’s. Finally, we determine
values for all the bytes tagged by 8 from the key schedule equations. By inverting the key
schedule, we are thus able to compute the master key k.

All in all, we start by getting a partial pair of internal states that conforms to the middle
rounds, continue by deriving a valid key that matches the partial known bytes and determine
the rest of the middle internal states to get the pair on input messages. The bottleneck of the
time and memory complexity occurs when handling the lists of size at most 28 elements to
compute intersections. Note that those intersections can be done in roughly 28 computations by
representing lists by 256-bit numbers and then perform logical ANDs. We thus overcome the
bottleneck time complexity of 216 operations required by the rebound technique, but we cannot
get any smaller than 28 computations, which actually equals 2c computations with c the width
of the S-Box.

In the end, we build a pair of messages (m, m′) and a key k that conforms to the truncated
differential characteristic of Figure 7.13 in 28 computations, where it requires 264 computations

166 CHAPTER 7. AES IN THE OPEN-KEY MODEL

in the generic scenario. We note that among the 18 freedom degrees left for the attack, we used
only 10 by setting 10 bytes to random values, so that we expect 28×8 = 264 solutions in total.
All those solutions could be generated in 264 computations by iterating over all the possibilities
of the bytes marked by 1 in Figure 7.16.

7.3.1.2 Experimental verification

Since the complexity is more than practical, we have implemented this algorithm to verify that
it indeed works. We have found for instance the following triplet (m, m′, k) shown in Table 7.2.

Table 7.2: Example of a pair of messages (m, m′) that conforms to the 7-round truncated dif-
ferential characteristic for AES-128 of Figure 7.13. The master key found by the attack is:
93CA1344 10A7EBDF B659C8AF ECC59699. The lines in this array contain the values of two
internal states before entering the corresponding round, as well as their difference.

Round m m′ m⊕m′

Init. E5FC5DFE 79A851F7 7EB9E366 51C3D9C5 F8FC5DFE 79C951F7 7EB96566 51C3D96E 1D000000 00610000 00008600 000000AB

0 76364EBA 690FBA28 C8E02BC9 BD064F5C 6B364EBA 696EBA28 C8E0ADC9 BD064FF7 1D000000 00610000 00008600 000000AB

1 65CC94D1 85BE1AD3 F3D75BF1 ACCBB8BD 8DCC94D1 85BE1AD3 F3D75BF1 ACCBB8BD E8000000 00000000 00000000 00000000

2 E93319CD 88F41390 10623230 F66BFBAD C92309FD 88F41390 10623230 F66BFBAD 20101030 00000000 00000000 00000000

3 89C79074 E09E6F44 F1DBAB2F F984FCC4 1404532A 09774F8D 24BF1AFA CD551921 9DC3C35E E9E920C9 D564B1D5 34D1E5E5

4 867A12E6 BF19139C 1C848362 400030D3 047A12E6 BF5B139C 1C847C62 400030D7 82000000 00420000 0000FF00 00000004

5 84606BEA 0E22D904 3BF29061 9F454807 4B606BEA 0E22D904 3BF29061 9F454807 CF000000 00000000 00000000 00000000

6 FF867544 274436AF 75ECC287 A6BF72F6 3C6A996B 274436AF 75ECC287 A6BF72F6 C3ECEC2F 00000000 00000000 00000000

End C49E4CB3 0C944043 D5ED6D3B 247E3843 2563B1AF 68F0EC8B A6788B48 EEF27E05 E1FDFD1C 6464ACC8 7395E673 CA8C4646

7.3.1.3 Success probability

We propose here a formal analysis of the success probability of a single run of the algorithm.
We are interested in the probability that the intersection of four or five subsets of {1, . . . , 255}
each of size 128 is empty.

To evaluate it, let P denote the set of subsets X ⊂ {1, . . . , 255} such that |X| = 128. We also
define:

T(n, k) := {(X1, . . . , Xn) ∈ Pn | |X1 ∩ . . . ∩ Xn| = k} for n ≥ 1, k ≥ 0.

In others words, |T(n, k)|/|Pn| is the probability that the intersection of n elements from P has
a size equal to k.

Property 7.1. The cardinality of T(n, k) satisfies the following recurrence relation:

∣∣∣T(1, k)
∣∣∣ =

∣∣∣P
∣∣∣ if k = 128, 0 otherwise

∣∣∣T(n + 1, k)
∣∣∣ =

128

∑
l=k

∣∣∣T(n, l)
∣∣∣
(

l
k

)(
255− l
128− k

)
for n ≥ 1, k ≥ 0.

Proof. First, we note that we can partition Pn by the sets:

T(n, Y) := {(X1, . . . , Xn) ∈ Pn | X1 ∩ . . . ∩ Xn = Y} for any subset Y ⊂ {1, . . . , 255}.

7.3. CHOSEN-KEY MODEL 167

Then, we have:
∣∣∣T(n + 1, k)

∣∣∣ = ∑
Y

∣∣∣
{
(X1, . . . , Xn+1) ∈ T(n, Y)×P

/ ∣∣∣Y ∩ Xn+1

∣∣∣ = k
} ∣∣∣

= ∑
Y

∣∣∣T(n, Y)
∣∣∣×
∣∣∣
{

X ∈ P
/ ∣∣∣Y ∩ X

∣∣∣ = k
} ∣∣∣

If we fix a set Y ⊂ {1, . . . , 255}, then a set X ∈ P such that |X ∩Y| = k is obtained by choosing
k elements in Y and 128− k elements in Yc. As a consequence, we obtain:

∣∣∣T(n + 1, k)
∣∣∣ = ∑

Y

∣∣∣T(n, Y)
∣∣∣
(|Y|

k

)(
255− |Y|
128− k

)

=
255

∑
l=0

(
l
k

)(
255− l
128− k

)
∑
|Y|=l

∣∣∣T(n, Y)
∣∣∣.

Finally, we remark that {T(n, Y)}|Y|=l is a partition of T(n, l) and thus:

∣∣∣T(n + 1, k)
∣∣∣ =

255

∑
l=0

(
l
k

)(
255− l
128− k

)∣∣∣T(n, l)
∣∣∣,

which ends the proof. �

Using Maple, we found that the probability of failure of the distinguisher described in
Section 7.3.1 equals:

T(4, 0)
|P|4 ×

(
T(5, 0)
|P|5

)3

≈ 0.04%.

7.3.1.4 Extension to 7-round AES-256

The first step of the attack described in the 7-round distinguisher on AES-128 (Section 7.3.1.1)
still applies in the case of AES-256 since it does not involve the key schedule. Then, we can
generate a compatible key easily since there are only two subkeys involved: we can just choose
bytes of k3 and k4 as we want, except the imposed ones, and deduce the master key afterwards.
This yields to a distinguisher with time and memory complexities around 28 for AES-256.

7.3.1.5 Extension to 8-round AES-256

We use a similar approach as the 7-round distinguisher on AES-128 of Section 7.3.1.1, but the
truncated differential characteristic has one more fully active round in the middle (same one as
Figure 7.9).

We begin by choosing values for ∆z1 and x2[0, . . . , 3]. This allows to deduce ∆x2, ∆y2, and
∆x3. Then, we also set random values for ∆w5 and for the diagonal of x5 to obtain both ∆x5

and ∆y4. Now, we find a value for ∆x4 that is compatible with ∆x3 and ∆y4. Indeed, we cannot
take an arbitrary value for ∆x4 because the probability that it fits is very close to 2−32. However,
we can find a correct value with the following steps:

1. Store the 27 − 1 possible values for ∆x4[0] in a list L0.

168 CHAPTER 7. AES IN THE OPEN-KEY MODEL

2. In a similar way, make lists L1 with ∆x4[1], L2 with ∆x4[2] and L3 with ∆x4[3].
3. Choose a value for (x3[0], x3[5], x3[10], x3[15]) and compute ∆x4[0, . . . , 3].
4. If ∆x4[0, . . . , 3] is not in L0 × L1 × L2 × L3, then go back to step 3.

On average, we go back to the step 3 only
(
28−7

)4
= 24 times since lists are of size 27. In the

same way, we can obtain values for the other columns of x4.

At this point, we have computed actual values in all those internal states, and we need
to generate a compatible key. Finding one can be done using the procedure described in
Figure 7.17. Bytes tagged by 1 are chosen at random, odd steps use the key schedule equations
and even steps the properties of MixColumns.

u2

1
1

1
1

1
1

1
1

2

4

6

8

u3

MC

k2

0
2
2
2

3
4

4
4

5
6

6
6

7
8
8
8

k3

KS

k4

3
3
3

5

5
5 7

7
7

9
9
9

k5

Figure 7.17: Generating a compatible key for AES-256: gray bytes are known, and numbers indicate
the order in which we guess or determine the bytes.

7.3.2 Distinguisher for 8-round AES

7.3.2.1 Distinguishing algorithm for AES-128

We consider the 8-round truncated differential characteristic of Figure 7.18, where the states of
differences in both the plaintext and the ciphertext lie in the same matrix subspaces of dimension
four as before. Indeed, the output difference lies in a subspace of dimension four since all
the operations after the last SubBytes layer are linear. Again, the distinguisher previously
described (Section 7.1.3) claims that the time complexity to find a pair of messages that
conforms to those patterns in a family of pseudo-random permutations requires LB(4, 4) = 264

computations.

The following of this section describes a way to build a key and a pair of messages that
conform to this characteristic in time and memory complexity 224. We note that it is possible
to optimize the memory requirement to 216. As in the previous section, there are 36 freedom
degrees at the input, which shrink to 18 after the consideration of the truncated differential
characteristic. Therefore, we also expect 28×18 solutions in the end.

First of all, we observe that finding 224 triplets (m, m′, k) composed by a key and a pair
of internal states that conform to the rounds 2 to 5 is sufficient since the propagation in the
outward rounds is done with probability 2−24 due to the MixColumns transition of round 1.
The following analysis consequently focuses of those four middle rounds.

In comparison with the previous algorithm for the known-key model due to Gilbert and
Peyrin [GP10] described in Paragraph 7.2.2.1, we control one of the two 4 → 1 transitions
in the inbound phase, such that we only need pass one at a cost of 224 computations in the

7.3. CHOSEN-KEY MODEL 169

∆IN

k0
AK

x0

SB

y0

SR

z0

MC

w0

Round 0

k1
AK

x1

SB

y1

SR

z1

MC

w1

Round 1

k2
AK

x2

SB

y2

SR

z2

MC

w2

Round 2

k3
AK

x3

SB

y3

SR

z3

MC

w3

Round 3

k4
AK

x4

SB

y4

SR

z4

MC

w4

Round 4

k5
AK

x5

SB

y5

SR

z5

MC

w5

Round 5

k6
AK

x6

SB

y6

SR

z6

MC

w6

Round 6

k7
AK

x7

SB

y7

SR

z7

MC

w7

Round 7

k8
AK

x8

∆OUT

Figure 7.18: The 8-round truncated differential characteristic used to distinguish the AES-128. Black
bytes are active, white bytes are not.

outbound phase. To date, it is still unknown how to push this even further by controlling the
two transitions to get an 8-round distinguisher with a workfactor of roughly 28 operations.

We now describe an instance of a problem that we use as a building block in our algorithm,
which is related to the keyed Super-SBox construction.

Problem 7.2. Let a and b be two bytes. Given 32-bit input and output differences ∆in and ∆out of a
Super-SBoxk for an unconstrained k, find all the pairs of 32-bit AES-columns (c, c′) and keys k such
that:

i. c + c′ = ∆in,
ii. Super-SBoxk(c) + Super-SBoxk(c

′) = ∆out,
iii. Super-SBoxk(c) = [a, b, ⋆, ⋆]T.

Considering the key k known and the case where there is no restriction on the output
bytes (iii), we would expect this problem to have one solution on average. Finding it would
naively require 232 computations by iterating over the 232 possible inputs and check whether
the output has the correct ∆out known difference. The additional constraints on the two output

170 CHAPTER 7. AES IN THE OPEN-KEY MODEL

bytes reduce the success of finding a pair (c, c′) of inputs to 2−16, but if we allow the four bytes
in the key k to be chosen, then we expect 216 solutions to this problem.

To find all of them in 216 computations, we proceed as follows (Figure 7.19): the two output
bytes a and b being known, we can deduce the values of the two associated bytes before the
last SubBytes, ã and b̃ respectively. We can also deduce the differences in those bytes since
their output differences are known. Then, we guess the two unset differences at the input of
the last SubBytes: the differences then propagate completely inside the Super-SBox. At both
SubBytes layers, by the differential properties of the AES S-Box, we expect to find one value
on average for each of the six unset transitions. Consequently, the input and output of the
AddRoundKey operation are known, which determine the four bytes of k. In the end, we find
the 216 solutions of Problem 7.2 in 216 computations.

∆in ∆out

a
b

ã
b̃

SB MC ARK SB

Figure 7.19: Black bytes have known values and differences, hatched bytes have known differences and
white bytes have unknown values and/or differences.

To apply this strategy to the 8-round truncated differential characteristic of Figure 7.18, we
start by randomizing the difference ∆y2, the difference ∆w5 and the values in the first column
of w5. Due to the linear operations involved, we deduce ∆x3 = ∆w2 from ∆y2 and ∆y4 from
∆w4. To use the previous algorithm, we randomize the values of the two first columns of w4

(see Figure 7.20). Doing so, the four columns of y4 are constrained on two bytes each and have
fixed differences. Consequently, the four Super-SBoxes between x3 and y4 keyed by the four
corresponding columns of k4 conforms to the requirements of Problem 7.2. The positions of
the known output bytes differ, but the strategy applies in the same way. In time and memory
complexities 216, for i ∈ {0, 1, 2, 3}, we store the 216 solutions for the i-th Super-SBox associated
to the i-th column of x4 in the list Li.

We continue by observing that the randomization of the bytes in w4 actually sets the value
of two diagonal bytes in k5 (k5[0] and k5[5]), which imposes constraints on the elements in the
lists Li. We start by considering the 216 elements of L3, and for each of them, we learn the
values x4[12, . . . , 15] and k4[12, . . . , 15]. Due to the column-wise operations in the key schedule,
we also deduce the value of k4[0]. By filtering the elements of L0 that share this value of k4[0],
we are left with 28 elements for bytes x4[0, . . . , 3] and k4[0, . . . , 3]. At this point, we constructed
216+8 = 224 solutions in 224 computations that we store in a list L0,3.

As k5[5] has been previously determined, we can deduce k4[5] = k5[5] + k5[1] from the AES
key schedule for each entry of L0,3. Again, this adds an 8-bit constraint on the elements of L1:
we expect 28 of them to match the condition on k4[5]. In total, we could construct a list L0,1,3 of
size 224+8 = 232, whose elements would be the columns 0, 1 and 3 of x4 and k4, but as soon as
we get 224 elements in that list, we stop and discard the remaining possibilities.

7.3. CHOSEN-KEY MODEL 171

x2

SB

y2

SR

z2

MC

w2

Round 2

KS

k3 ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

KS

k4 ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

k5 ARK

x5

SB

y5

SR

z5

MC

w5

Round 5

Figure 7.20: Black bytes have known values and differences, gray bytes have known values, hatched
bytes have known differences and white bytes have unknown values and/or differences.

Finally, to ensure the correctness of the choice in the remaining column 2, we need to
consider the subkey k5 and the MixColumns operation in round 4. Indeed, as soon as we
choose an element in both L0,1,3 and L2, x4, k4 and k5 become fully determined, but we need to
ensure that the values x5[10] and x5[15] are consistent with the known ones. In particular, for
x5[10], we have:

k4[10] + k5[6] = k5[10] (7.5)

= w4[10] + x5[10] (7.6)

= z4[8] + z4[9] + 2z4[10] + 3z4[11] + x5[10], (7.7)

and for x5[15]:

k4[11] + k5[7] + k4[15] = k5[11] + k4[15] (7.8)

= k5[15] (7.9)

= w4[15] + x5[15] (7.10)

= 3z4[12] + z4[13] + z4[14] + 2z4[15] + x5[15], (7.11)

where (7.5), (7.8) and (7.9) come from the key schedule, (7.6) and (7.10) from the AddRoundKey
and (7.7) and (7.11) use the equations from the MixColumns. Hence, for each element of L0,1,3,
we can compute:

S(x4[8]) + k4[10] := x5[10] + k5[6] + S(x4[13]) + 2 S(x4[2]) + 3 S(x4[7]), (7.12)

k4[11] + 2 S(x4[11]) := k5[7] + k4[15] + 3 S(x4[12]) + S(x4[1]) + S(x4[6]) + x5[15] (7.13)

and lookup in L2 to find 216 2−8×2 = 1 element that match those two 8-bit conditions. We create
the list L by adding the found element from L2 to each entry of L0,1,3.

172 CHAPTER 7. AES IN THE OPEN-KEY MODEL

All in all, in time and memory complexities 224, we build L of size 224 and we now exhaust
its elements to find one that verifies the 2−24 probability of the 4→ 1 backward transition in
the MixColumns of round 1. Consequently, we expect to find a pair (m, m′) of messages and
a key k that conforms to the 8-round truncated differential characteristic of Figure 7.18 in 224

computations, while it requires LB(4, 4) = 264 computations in the ideal case.

Among the 18 available freedom degrees available to mount the attack, we use 17 of them,
which means that we expect to have 28 solutions. We could have them in time 232, but since we
discarded 28 elements in the algorithm described, we get only 1 in 224 computations. We note
that it is possible to gain a factor 28 in the memory requirements of our attack since we can
implement the algorithm without storing the lists L0, L0,3 and L0,1,3, by using hash tables for
L1, L2 and L3.

7.3.2.2 Experimental verification

We have also implemented this algorithm to verify that it indeed works, and we have found for
instance the triplet (m, m′, k) reported in Table 7.3.

Table 7.3: Example of a pair of messages (m, m′) that conforms to the 8-round truncated dif-
ferential characteristic for AES-128 of Figure 7.18. The master key found by the attack is:
98C45623 6CA00686 301E836D 614DFAB0. The lines in this array contains the values of
two internal states before entering the corresponding round, as well as their difference.

Round m m′ m⊕m′

Init. 9588B342 D43D04D4 AB298AE1 E43687DB 0B88B342 D46904D4 AB29D0E1 E4368728 9E000000 00540000 00005A00 000000F3

0 0D4CE561 B89D0252 9B37098C 857B7D6B 934CE561 B8C90252 9B37538C 857B7D98 9E000000 00540000 00005A00 000000F3

1 53FEBB0F 6BFF8E5E B471A8E3 1A2232A3 0EFEBB0F 6BFF8E5E B471A8E3 1A2232A3 5D000000 00000000 00000000 00000000

2 E9F44380 991A8ECB F7B18344 2C936CEB 65B2054A 991A8ECB F7B18344 2C936CEB 8C4646CA 00000000 00000000 00000000

3 2977F65C 3883EDEF 615D3C9E 5CE5384B 8F24A5A9 2398C0D9 10CEDEEF DFEEB0C3 A65353F5 1B1B2D36 7193E271 830B8888

4 BB1DB144 2BE947C3 5FCD89DF DF1CA0EB 82188658 42FFCAAE B337F0CA 09AB1513 3905371C 69168D6D ECFA7915 D6B7B5F8

5 C3E1961D 02A9713E 770A20D4 5470FA8F 8DE1961D 029B713E 770A3AD4 5470FA27 4E000000 00320000 00001A00 000000A8

6 D79D534C 33CC3861 76635DCD 548870C9 EB9D534C 33CC3861 76635DCD 548870C9 3C000000 00000000 00000000 00000000

7 D7F645C6 89358035 09847940 D831EFDE 0211A2F4 89358035 09847940 D831EFDE D5E7E732 00000000 00000000 00000000

End 16E58308 DFD78F11 A8B05B9D C0A0363E E49CFA83 D4DC9207 FC4CF3C9 9B3BF6FE F279798B 0B0B1D16 54FCA854 5B9BC0C0

7.3.2.3 Extension to 9-round AES-256

We begin as in Section 7.3.2.1 by choosing the difference ∆y2, the difference ∆w6 and the values
in the first column of w6. Then, we deduce ∆w2 = ∆x3 from ∆y2 and ∆y5 from ∆w5. In addition,
we set x3 to a random value, which allows to determine ∆x4. In order to apply the result from
Problem 7.2 again, we set the values in the two first columns of w5 to random values.

As before, for i ∈ {0, 1, 2, 3}, we store in the list Li the 216 possible values of the i-th column
of x5 and the i-th column of k5. Unlike previously, we also obtain values of the i-th column of
SR(k4), but the scenario of the attack still applies. We start by observing that bytes of L0 allow
to compute k4[1] and k4[13], which are bytes of L3. Thus, we can merge L0 and L3 in a list L0,3

containing 216 elements. Then, we construct the list L0,2,3 containing 224 elements of L0,3 × L2.

7.3. CHOSEN-KEY MODEL 173

Finally, from bytes of L0,2,3, we can compute:

3z5[11] := k4[2] + S(k5[15]) + k4[6] + k4[10] + z5[8] + z5[9] + 2z5[10] + x6[10], (7.14)

z5[14] + k4[3] := S(k5[12]) + k4[7] + k4[11] + k4[15] + 3z5[12] + z5[13] + 2z5[15] + x6[15]. (7.15)

As a consequence, we expect only one element of L1 to satisfy those two 8-bit conditions
and so, we obtain 224 solutions for the middle rounds. All in all, this yields a distinguisher
with a time complexity around 224 computations and memory requirements around 216 using
the same trick given in Section 7.3.2.1.

7.3.3 Distinguisher for 9-round AES-128

In this section, we show an algorithm to distinguish 9 rounds of AES-128 in the chosen-key
model. A nontrivial result for AES-128 reduced to 9 rounds has been an open problem for
a long time as we could not extend the 8-round distinguishers presented previously, nor the
recent advances made on a larger geometry with the algorithm suggested in [JNPP12] and
described later in Section 8.2.

The algorithm implemented by the distinguisher tries to find two related permutations
AESk and AESk′ and an input m and m′ to each one such that the differences m ⊕ m′ and
AESk(m)⊕ AESk′(m′) verify specified relations. The relation between the two keys k and k′ is
k⊕ k′ = δ, where δ is a fixed and known difference (defined in Figure 7.21 and Table 7.4).

We achieve this result by considering the best 5-round differential characteristic that exists
on AES-128 and propagating it backwards to reach 9 rounds. This reduced differential
characteristic is not truncated and has been first described as a truncated one in [BN10]. Later,
the tool we have developed to automatically search for related-key differential characteristics
in AES-like permutations (Chapter 6) have rediscovered it and instantiated the truncated
differences to construct an actual differential characteristic. This is the one we use in the
following.

The 5 last rounds hence count 6 active S-Boxes in the key schedule part and 11 in the data
part (rounds 4 to 8 in Figure 7.21). By the backward propagation in the key schedule, we reach
a total of 15 active S-Boxes for the key schedule differential characteristic, whose probability
equals 2−101. Since we have 2128 possible key values, we expect about 227 pairs of keys to
conform to the differential characteristic in the key schedule. In the block cipher part, we
prepend three rounds that we plan to control with an average cost of one computation using the
Super-SBox technique [DR02, GP10], and one more round at the very beginning that we make
as sparse as possible. The entire 9-round differential characteristic is depicted on Figure 7.21.
We also represent the same characteristic without colors in Table 7.4.

7.3.3.1 Distinguishing algorithm

Once this differential characteristic settled, we find inputs that verify the whole characteristic
(see Algorithm 7.1). We start by finding a pair of keys that conforms to the whole differential
characteristic in the key schedule. There are 227 expected such pairs of keys, and we can
generate them at an average cost of one computation by picking random values satisfying all

174 CHAPTER 7. AES IN THE OPEN-KEY MODEL

∆IN

KS

k0
AK

x0

SB

y0

SR

z0

MC

w0

Round 0

KS

k1
AK

x1

SB

y1

SR

z1

Sstart

MC

w1

S′start

Round 1

KS

k2
AK

x2

SB

y2

SR

z2

MC

w2

Round 2

KS

k3
AK

x3

SB

y3

SR

z3

Send

MC

w3

Round 3

KS

k4
AK

x4

SB

y4

SR

z4

MC

w4

Round 4

KS

k5
AK

x5

SB

y5

SR

z5

MC

w5

Round 5

KS

k6
AK

x6

SB

y6

SR

z6

MC

w6

Round 6

KS

k7
AK

x7

SB

y7

SR

z7

MC

w7

Round 7

KS

k7
AK

x7

SB

y7

SR

z7

MC

w7

Round 8

k9
AK

x8

∆OUT

Legend

0x8E

0x7A

0xF4

0x28

0xA6

0xB3

0x78

No diff.

Trunc. diff.

0x3E

0x66

0x41

0xBF

0x95

0x6F

0x92

0x9C

Figure 7.21: Differential characteristic of 9-round AES-128 used in the distinguisher. The colors map
to actual values for the differences, whereas hatched bytes are truncated differences and white ones are
inactive. See also Table 7.4.

the non-linear transitions and then efficiently solve a linear system to retrieve all the subkeys.
We get for instance the pair of keys shown in Table 7.5 and our implementation confirms about
227 are found.

For a pair of keys, we precompute the four arrays Ti that contain the paired values of the
i-th Super-SBox. To construct the tables Ti, we iterate in parallel over the 232 input values
from state Send that corresponds to the i-th Super-SBox and propagate the values backwards
until S′start. We note that the difference in Send is completely determined by our differential

7.3. CHOSEN-KEY MODEL 175

Table 7.4: Differential characteristic used in the distinguisher of 9 rounds of AES-128 in Figure 7.21.
The known differences are represented by their values from 0x00 to 0xFF, and truncated differences as
??, since their values are unknown, but positive. The two lines for state differences are respectively the
input difference after key addition and the output difference.

Round State differences Key differences

Plaintext B3??0000 0000??00 28F47A?? ????0000

1
00??0000 0000??00 000000?? ????0000 B3000000 00000000 A6F47A7A 008E0000

00000000 00000000 8EF47A7A ????????

2
00000000 00000000 28000000 ???????? 00000000 00000000 A6F47A7A A67A7A7A

???????? ???????? ???????? ????????

3
???????? ???????? ???????? ???????? 8E7A7A7A 8E7A7A7A 288E0000 8EF47A7A

??0000?? ????7A7A 8E????7A 0000????

4
??0000?? ????0000 00????00 0000???? 28000000 A67A7A7A 8EF47A7A 00000000

288E0000 8E7A7A7A 00000000 00000000

5
008E0000 00000000 008E0000 008E0000 28000000 8E7A7A7A 008E0000 008E0000

00000000 8EF47A7A 8EF47A7A 8EF47A7A

6
00000000 008E0000 00000000 008E0000 00000000 8E7A7A7A 8EF47A7A 8E7A7A7A

8EF47A7A 00000000 8EF47A7A 00000000

7
00000000 008E0000 008E0000 00000000 8EF47A7A 008E0000 8E7A7A7A 00000000

8EF47A7A 8EF47A7A 00000000 00000000

8
00000000 008E0000 00000000 00000000 8EF47A7A 8E7A7A7A 00000000 00000000

8EF47A7A 00000000 00000000 00000000

9
00000000 008E0000 008E0000 008E0000 8EF47A7A 008E0000 008E0000 008E0000

???????? ???????? ???????? 00000000

Ciphertext ???????? ???????? ???????? 787A7A7A 78F47A7A 787A7A7A 78F47A7A 787A7A7A

Algorithm 7.1 – Distinguishing algorithm for 9 rounds of AES-128.
1: function Distinguisher()
2: while True do
3: Find (k, k⊕ δ) conforming to the KS characteristic ⊲ Done in amortized cost 1
4: for i ∈ {0, . . . , 3} do ⊲ About 232 operations in parallel
5: construct the array Ti of the i-th Super-SBox

6: for all values of the 5 differences in Sstart do ⊲ Done in 240 simple operations
7: Use tables Ti to get a pair of messages (m, m′)

verifying the characteristic from Sstart to Send
8: if backward transition not verified then continue ⊲ Verified with probability 2−7

9: if forward transitions not verified then continue ⊲ Verified with probability 2−48

10: return (k, m, m′) ⊲ Returns after about 255 operations

characteristic. We store the pair in Ti indexed by its difference, so that this precomputation
requires 232 computations, a memory complexity of 232, and depends on the selected pair of
keys. To simplify, we assume the differences in S′start to be uniformly distributed so that each
32-bit difference appears once. While this is not the case in practice, the average cost to find
one solution remains one, so it does not change the complexity estimation.

We continue by picking random values for the 5-byte differences after the second non-linear
layer in Sstart, which linearly fixes all the differences in S′start. Note that we can repeat this

176 CHAPTER 7. AES IN THE OPEN-KEY MODEL

Table 7.5: Example of a pair of keys conforming to the differential characteristic of our 9-round
distinguisher of AES-128 (Figure 7.21). There are about 227 such pairs.

Round k k′ k⊕ k′

0 BD219F91 37EBDD3C 623F76DB 34AD0BBB 0E219F91 37EBDD3C C4CB0CA1 34230BBB B3000000 00000000 A6F47A7A 008E0000

1 290A7589 1EE1A8B5 7CDEDE6E 4873D5D5 290A7589 1EE1A8B5 DA2AA414 EE09AFAF 00000000 00000000 A6F47A7A A67A7A7A

2 A40976DB BAE8DE6E C6360000 8E45D5D5 2A730CA1 3492A414 EEB80000 00B1AFAF 8E7A7A7A 8E7A7A7A 288E0000 8EF47A7A

3 CE0A75C2 74E2ABAC B2D4ABAC 3C917E79 E60A75C2 D298D1D6 3C20D1D6 3C917E79 28000000 A67A7A7A 8EF47A7A 00000000

4 47F9C329 331B6885 81CFC329 BD5EBD50 6FF9C329 BD6112FF 8141C329 BDD0BD50 28000000 8E7A7A7A 008E0000 008E0000

5 0F839053 3C98F8D6 BD573BFF 000986AF 0F839053 B2E282AC 33A34185 8E73FCD5 00000000 8E7A7A7A 8EF47A7A 8E7A7A7A

6 2EC7E930 125F11E6 AF082A19 AF01ACB6 A033934A 12D111E6 21725063 AF01ACB6 8EF47A7A 008E0000 8E7A7A7A 00000000

7 1256A749 0009B6AF AF019CB6 00003000 9CA2DD33 8E73CCD5 AF019CB6 00003000 8EF47A7A 8E7A7A7A 00000000 00000000

8 F152C42A F15B7285 5E5AEE33 5E5ADE33 7FA6BE50 F1D57285 5ED4EE33 5ED4DE33 8EF47A7A 008E0000 008E0000 008E0000

9 544F0772 A51475F7 FB4E9BC4 A51445F7 2CBB7D08 DD6E0F8D 83BAE1BE DD6E3F8D 78F47A7A 787A7A7A 78F47A7A 787A7A7A

part about 28·5 = 240 times. From the precomputed tables Ti, we find on average one pair of
messages that verifies the middle rounds from Sstart to Send. The remaining of the algorithm is
probabilistic: backwards, we expect a fraction of 2−7 pairs to pass the unique specified S-Box
transition in the second round up to ∆IN . Forwards, we expect a fraction of 2−6×8 = 2−48 to
verify the 5 last rounds up to ∆OUT (all 8 transitions have been chosen by our tool to be 8 times
the same one with maximal probability pmax = 2−6). Finally, we expect a fraction 2−7−48 = 2−55

of the pairs generated in the middle to propagate correctly forwards and backwards.

By repeating this process for all 240 differences in Sstart and for 215 distinct pairs of keys,
we expect to find a solution for the whole characteristic in 215 · (232 + 240) ≈ 255 computations.
Note that the remaining freedom degrees allow to get up to 212 solutions in 267 computations
by exhausting the remaining 212 valid pairs of keys.

7.3.3.2 Generic case

For an ideal cipher, the adversary faces a family
{

πi, i ∈ {0, 1}128
}

of random permutations.
His goal is to find a key k and a pair of messages (m, m′) such that: m ⊕ m′ ∈ ∆IN and
πk(m)⊕ πk⊕δ(m′) ∈ ∆OUT, where δ, ∆IN and ∆OUT are specified in Figure 7.21. We recall them
here in hexadecimal notations:

δ =

B3 00 A6 00
00 00 F4 8E
00 00 7A 00
00 00 7A 00

 , ∆IN =

B3 00 28 ??
?? 00 F4 ??
00 ?? 7A 00
00 00 ?? 00

 , ∆OUT =

?? ?? ?? 78
?? ?? ?? 7A
?? ?? ?? 7A
?? ?? ?? 7A

 .

The values marked by ?? are non-zero truncated differences.

On the output, we constrain each of the three independent active bytes in ∆y7 after the last
non-linear layer of the last round to only 127 reachable difference values (since from a fixed
input difference, only 127 output differences can be reached through the AES S-Box), and the
MixColumns layer being linear we have |∆OUT| = 1273 ≈ 221. On the input, 4 bytes in ∆IN can
take any difference value and 1 byte is constrained to only 127 reachable difference values, thus
|∆IN | = 127 · (28 − 1)4 ≈ 239.

The best known way for the attacker to find (k, m, m′) verifying those properties consists in
applying the limited birthday algorithm [GP10]. The additional freedom left in choosing the

7.3. CHOSEN-KEY MODEL 177

key bits does not help the attacker to find the actual pair of messages that verifies the required
property, since the permutations πk and πk⊕δ have to be chosen beforehand. All in all, the
attacker has access to 39 bits of differences at the input and 21 bits at the output, for a pair of
permutations on ct2 = 128 bits. The limited birthday distinguisher on these permutations finds
a solution in time

max
(

min
(

2IN/2, 2OUT/2
)

, 2IN+OUT−n
)

,

with IN = ct2 − 39 and OUT = ct2 − 21, which gives a time complexity equivalent to 268

encryptions.

Consequently, the algorithm we have presented acts as a distinguisher for the AES-128
reduced to 9 rounds 213 times faster than the generic solution with a time complexity of 255

computations. We note that while we can generate 212 solutions with our algorithm in about
267 computations and 232 memory, it would require approximately 212+68 = 280 encryptions for
the generic case.

CHAPTER8
Improved Rebound Algorithms

Contents
8.1 Description of some AES-like primitives . 180

8.1.1 Description of Grøstl . 180

8.1.2 Description of PHOTON . 182

8.1.3 Description of LED . 183

8.1.4 Description of Whirlpool . 184

8.2 Improved Inbound Part . 185

8.2.1 Fully-active truncated differential characteristic 186

8.2.2 Non-fully-active truncated differential characteristic 192

8.2.3 Application to Grøstl-256 permutations 197

8.2.4 Distinguisher for 10-round Grøstl-512 198

8.2.5 Distinguishers for reduced PHOTON permutations 205

8.3 Improved Outbound Part . 205

8.3.1 Multiple limited-birthday and generic complexity 206

8.3.2 Truncated characteristic with relaxed conditions 210

8.3.3 Applications . 212

In this chapter, we revisit the rebound attack strategy. The original technique has been published
at Fse 2009 by Florian Mendel, Christian Rechberger, Martin Schläffer and Søren S. Thomsen
in [MRST09]. This technique has been widely used as a very efficient cryptanalytic technique
during the SHA-3 competition, and it has now entered the collection of classical attacks
designers need to consider when evaluating the security of a new design.

The main motivation of this chapter is to estimate the limitations of the rebound technique,
and to push its capacity as its maximum. Before the work done here, it was for instance an
open problem whether we could apply the rebound technique to 9 rounds of an AES-like
permutation, as the most efficient works only reached 8 rounds [GP10, SLW+10]. In Section 8.2
of this chapter, we show how to extend the inbound phase by one round to control a total of
three rounds in the middle of a truncated differential characteristic, which makes the complete
attack to reach 9 rounds. This work has been done in collaboration with María Naya-Plasencia
and Thomas Peyrin, and has been published at the Fse 2012 conference [JNPP12]. It has been

— 179 —

180 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

solicited and accepted for publication in the Journal of Cryptology [JNPP13a]. The process of
publication is still pending.

While Section 8.2 considers an improvement over the inbound part of the rebound strategy,
Section 8.3 tackles the probabilistic outbound phase. We show how to increase the probability
of the probabilistic filter so that the overall time complexity of the rebound attacks can be
decreased. In return, the generic case serving as a comparison criterion needs to be changed as
well, and the generic complexity also decreases. This work has also been done in collaboration
with María Naya-Plasencia and Thomas Peyrin, and is currently in submission to a conference.

In all the subsequent sections of this chapter, we consider the generalized framework of
AES-like permutations already presented in Section 4.3. Before introducing our improvements
of the rebound technique, we start by giving the specifications of some AES-like primitives that
are cryptanalyzed in this chapter.

8.1 Description of some AES-like primitives

8.1.1 Description of Grøstl

The hash function Grøstl-0 has been submitted to the SHA-3 competition under two
different versions: Grøstl-0-256, which outputs a 256-bit digest and Grøstl-0-512 with
a 512-bit one. For the final round of the competition, the candidate has been tweaked to
Grøstl, with corresponding versions Grøstl-256 and Grøstl-512.

The Grøstl hash function handles messages by dividing them into blocks after some
padding and uses them to update iteratively an internal state (initialized to a predefined IV)
with a compression function. Messages are of maximal bit-length 2n · (264 − 1)− 64− 1 for
Grøstl-n, with n ∈ {256, 512}. This compression function is itself built upon two different
permutations, namely P and Q. Each of those two permutations reuses the well-understood
wide-trail strategy of the AES. As an AES-like Substitution-Permutation Network, Grøstl
enjoys a strong diffusion in each of the two permutations, and by its wide-pipe design, the size
of the internal state is ensured to be at least twice as large as the final digest.

The compression function f256 of Grøstl-256 uses two 256-bit permutations P256 and
Q256, which are similar to the two 512-bit permutations P512 and Q512 used in the compression
function f512 of Grøstl-512. More precisely, for a chaining value h and a message block m,
the compression functions (Figure 8.1) produces the output:

f256(h, m) = P256(h⊕m)⊕Q256(m)⊕ h, (8.1)

or: f512(h, m) = P512(h⊕m)⊕Q512(m)⊕ h. (8.2)

The internal states are viewed as matrices of bytes of size 8× 8 for the 256-bit version
and 8× 16 for the 512-bit one. The permutations strictly follow the design of the AES (see
Section 4.2 for the full specifications) and are constructed as Nr iterations of the composition of
four basic transformations:

R
def
:= MixCells ◦ ShiftBytes ◦ SubBytes ◦ AddRoundConstant. (8.3)

8.1. DESCRIPTION OF SOME AES-LIKE PRIMITIVES 181

Pw

Qw

h

m

fw(h, m)

Figure 8.1: The compression function of Grøstl using the permutations Pw and Qw, with w ∈
{256, 512}.

All the linear operations are performed in the same finite field GF(28) as in the AES, defined
via the irreducible polynomial x8 + x4 + x3 + x + 1 over GF(2). The AddRoundConstant (AC)
operation adds a predefined round-dependent constant, which significantly differs between P
and Q to prevent the internal differential attack [Pey10] that takes advantage of the similarities
between P and Q. The SubBytes (SB) layer is the non-linear layer of the round function R
and applies the same S-Box as in the AES to all the cells of the internal state. The ShiftBytes
(Sh) transformation shifts cells in row i by τP[i] positions to the left for permutation P and
τQ[i] positions for permutation Q. We note that τ also differs from P to Q to emphasize the
asymmetry between the two permutations. Finally, MixCells (MC) is implemented in Grøstl
by the MixBytes (Mb) operation that applies the circulant MDS constant matrix M

M = circ(2, 2, 3, 4, 5, 3, 5, 7) =

2 2 3 4 5 3 5 7
7 2 2 3 4 5 3 5
5 7 2 2 3 4 5 3
3 5 7 2 2 3 4 5
5 3 5 7 2 2 3 4
4 5 3 5 7 2 2 3
3 4 5 3 5 7 2 2
2 3 4 5 3 5 7 2

independently to all the columns of the state. In Grøstl-256, there are Nr = 10 rounds, and

τP = [0, 1, 2, 3, 4, 5, 6, 7]

and τQ = [1, 3, 5, 7, 0, 2, 4, 6],

whereas for Grøstl-512, there are Nr = 14 rounds and:

τP = [0, 1, 2, 3, 4, 5, 6, 11]

and τQ = [1, 3, 5, 11, 0, 2, 4, 6].

Once all the message blocks of the padded input message have been processed by the
compression function, a final output transformation is applied to the last chaining value h to
produce the final n-bit hash value

h′ = truncn(P(h)⊕ h),

where truncn only keeps the last n bits.

182 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

Compression function distinguisher

In this chapter, we mostly consider distinguishers of the inner permutations of particular
symmetric primitives, however in the case of Grøstl, it is also interesting to look at not
only P and Q, but also at the compression function f itself. For that matter, we can generate
compression function input values (h, m) such that ∆IN = m⊕ h belongs to a subset of size IN,
and such that ∆IN ⊕ ∆OUT = f (h, m)⊕ f (m, h)⊕ h⊕m belongs to a subset of size OUT. Then,
one can remark that:

f (h, m)⊕ f (m, h) = P256(h⊕m)⊕Q256(m)⊕ P256(m⊕ h)⊕Q256(h)⊕ h⊕m, (8.4)

f (h, m)⊕ f (m, h) = Q256(m)⊕Q256(h)⊕ h⊕m. (8.5)

Hence, it follows that:

f (h, m)⊕ f (m, h)⊕ h⊕m = Q256(m)⊕Q256(h). (8.6)

Since the permutation Q is supposed to have no structural flaw, the best known generic
algorithm requires

max{min{
√

2n/IN ,
√

2n/OUT }, 2n/(IN ·OUT)}

operations to find a pair (h, m) of inputs such that h⊕m ∈ IN and f (h, m)⊕ f (m, h)⊕ h⊕m ∈
OUT. The situation is exactly the same as the permutation distinguisher with permutation Q.
Note that both IN and OUT are specific to our attacks.

We emphasize that even if trivial distinguishers are already known for the Grøstl com-
pression function (e.g. , fixed-points), no distinguisher is known for the internal permutations.
Moreover, our observations on the compression function use the differential properties of the
internal permutations.

8.1.2 Description of PHOTON

PHOTON is a lightweight hash function family that is composed of an AES-like permutation in
a sponge function mode as a domain extension algorithm (see Figure 8.2). It has been designed
by Jian Guo, Thomas Peyrin and Axel Poschmann and has been presented at Crypto 2011
in [GPP11]. The security proof of sponge functions being directly based on the security of the
internal permutation, it is important to study distinguishers for this component. Five distinct
functions exist in the PHOTON family, all performing 12 rounds of an AES-like permutation,
and having the set of parameters described in Table 8.1.

The nibble-sized cells for c = 4 uses the S-Box from PRESENT (see Appendix A.2), while
the S-Box for the case c = 8 is the one from the AES. The diffusion layer is implemented by an
MDS matrix like in the AES, but the coefficients of the matrix are not the same. Namely, the
designers of PHOTON have investigated a new way to construct MDS matrices, which allow
more efficient evaluations in hardware. In detail, they select the matrix as the t-th power of a

8.1. DESCRIPTION OF SOME AES-LIKE PRIMITIVES 183

Absorbing phase Squeezing phase

m0

l bits

m bits

P

m1

P

m2

P

m3

P

z0

l′

m′

P

z1

P

z2

Figure 8.2: The sponge construction.

Sponge Perm.
Name h l m l′ m′ t c

PHOTON-80/20/16 80 80 20 84 16 5 4
PHOTON-128/16/16 128 128 16 128 16 6 4
PHOTON-160/36/36 160 160 36 160 36 7 4
PHOTON-224/32/32 224 224 32 224 32 8 4
PHOTON-256/32/32 256 256 32 256 32 6 8

Table 8.1: Variants of the PHOTON hash function family. For one variant, h denotes the output size in
bits, l and m parameterizes the sponge absorbing phase, l′ and m′ the squeezing phase, and (t, c) are the
two parameters of the AES-like permutation.

companion matrix:

AT =

0 0 . . . 0 c0

1 0 . . . 0 c1

0 1 . . . 0 c2
...

...
. . .

...
...

0 0 . . . 1 ct−1

,

by choosing the appropriate t coefficients (c0, . . . , ct−1) such that AT is MDS.

8.1.3 Description of LED

The LED block cipher has been designed by Jian Guo, Thomas Peyrin, Axel Poschmann
and Matt Robshaw and has been first published at Ches 2011 in [GPPR11], and updated later
in [GPPR12]. It is a lightweight block cipher based on an AES-like permutation with parameters

184 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

t = 4 and c = 4 for all its versions and comes in two versions which handle either 64- or 128-bit
keys. A notable difference in comparison to the AES is its S-Box: it uses the one from PRESENT
(see Appendix A.2). Moreover, the authors reused the diffusion layer design of the PHOTON
hash function family.

The 64-bit version LED-64 is composed of 32 rounds, divided into 8 steps of 4 rounds each.
Between two steps, a 64-bit secret key K is added to the internal state, without key schedule
(see Figure 8.3).

P

K1

4 rounds

K1

4 rounds

K1

· · ·

K1

4 rounds

K1

C

Figure 8.3: The LED-64 block cipher. There is only one 64-bit key denoted K1.

One particularity of the LED block cipher is the absence of key scheduling algorithm. This
makes the overall performance to increase a lot in comparison to the AES, but in return, it
needs to have a lot more rounds to achieve enough security. The 64-bit version of the cipher
adds the master key K1 between each of the steps, and the 128-bit version has two 64-bit keys
K1 and K2, which are introduced alternatively (see Figure 8.4).

P

K1

4 rounds

K2

4 rounds

K1

· · ·

K2

4 rounds

K1

C

Figure 8.4: The LED-128 block cipher. There are two 64-bit keys denoted K1 and K2.

In total, the LED-64 internal permutation contains 32 rounds and the LED-128 internal
permutation contains 48 rounds. To differentiate each round, constants are added with the
AddRoundKey operation of the AES-like permutation: the constant added at round i is of the
form:

α0 β0,i 0 0
α1 β1,i 0 0
α2 β2,i 0 0
α3 β3,i 0 0

 ,

where β0,i, . . . , β3,i depend on the round i, which is not the case for the constants α0, . . . , α3.

8.1.4 Description of Whirlpool

Whirlpool [BR00, BR11] is a 512-bit hash function whose compression function is built upon
a block cipher E in a Miyaguchi-Preneel mode:

h(H, M) = EH(M)⊕M⊕ H.

This block cipher E uses two 10-round AES-like permutations with parameters t = 8
and c = 8, one for the internal state transformation and one for the key schedule. The first

8.2. IMPROVED INBOUND PART 185

permutation is fixed and takes as input the 512-bit incoming chaining variable, while the second
permutation takes as input the 512-bit message block, and it round keys are the successive
internal states of the first permutation.

We note that the diffusion layer in Whirlpool operates on the rows for the MixColumns
layer that applies the MDS matrix, and on the columns for the ShiftRows operation. Even
if the terms MixColumns and ShiftRows do not reflect the actual operations, we keep their
names for the sake consistency with all the other notations used in this document. See the
round function of Figure 8.5 for the three main operations.

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

SR MC

Figure 8.5: One round of the Whirlpool hash function inner permutation.

The non-linear S-Box of Whirlpool is reported as a lookup table in Appendix A.3. As
for the linear MDS layer, the square matrix used is a circulant matrix as in the AES, but of size
8× 8 defined by:

M = circ(1, 1, 4, 1, 8, 5, 2, 9) =

1 1 4 1 8 5 2 9
9 1 1 4 1 8 5 2
2 9 1 1 4 1 8 5
5 2 9 1 1 4 1 8
8 5 2 9 1 1 4 1
1 8 5 2 9 1 1 4
4 1 8 5 2 9 1 1
1 4 1 8 5 2 9 1

.

We now describe the improvements we have found on the inbound phase on AES-like
primitives.

8.2 Improved Inbound Part

AES-based functions and permutations have attracted of a lot of analysis in the recent years,
mainly due to the SHA-3 hash function competition. In particular, the rebound attack (see
Section 3.5.2) allows to break several proposals and many improvements/variants of this
method have been published (Chapter 7).

Yet, it remained an open problem whether it would be possible to reach one more round with
this type of technique compared to the state-of-the-art. We summarize the results in this research

186 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

field in the following Table 8.2, where we report the major works done in cryptanalyzing AES-
based primitives with rebound-like arguments. Then, in the next two sections, we consider
the problem of extending the inbound phase by one round, to tackle truncated differential
characteristics of 9 rounds: Section 8.2.1 considers fully active characteristics in the three
middle rounds, whereas Section 8.2.2 generalizes the case by adding parameters to capture
non-fully-active characteristics, as Sasaki et al. have done in [SLW+10]. In both cases, we show
an algorithm to “efficiently” generate pairs conforming to the middle rounds, which results
in distinguishing algorithms under certain conditions for some AES-based primitives. As
applications, we have focused on the two variants of the Grøstl hash functions, and present
distinguishers for their reduced variants.

Target Rounds Time Memory Ideal Reference

Grøstl-256

8 (dist.) 2112 264 2384 [GP10]

8 (dist.) 248 28 296 [SLW+10]

9 (dist.) 2368 264 2384 Section 8.2.1, [JNPP13a]

10 (zero-sum) 2509 − 2512 [BCD11]

Grøstl-512

7 (dist.) 2152 256 2512 [SLW+10]

8 (dist.) 2280 264 2448 Section 8.2.4, [JNPP13a]

9 (dist.) 2328 264 2384 Section 8.2.4, [JNPP13a]

10 (dist.) 2392 264 2448 Section 8.2.4, [JNPP13a]

PHOTON-224/32/32
8 (dist.) 28 24 210 [GPP11]

9 (dist.) 2184 232 2192 Section 8.2.5, [JNPP13a]

Table 8.2: Best attacks on the inner permutation of some targets where our analysis is applicable. By
best analysis, we mean the ones on the highest number of rounds.

8.2.1 Fully-active truncated differential characteristic

In this section, we describe a distinguisher for 9 rounds of an AES-like permutation with certain
parameters t and c. For the sake of clarity, we first describe the attack for a truncated differential
characteristic with three fully active states in the middle, but we generalize our method in the
next Section 8.2.2 by introducing a characteristic parameterized by variables controlling the
number of active cells in some particular states.

8.2.1.1 The truncated differential characteristic

The truncated differential characteristic we use has the sequence of active cells

t
R1−→ 1

R2−→ t
R3−→ t2 R4−→ t2 R5−→ t2 R6−→ t

R7−→ 1
R8−→ t

R9−→ t2, (8.7)

where the size of the input and output difference subsets are both IN = OUT = 2ct, since
there are t active c-bit cells in the input of the truncated characteristic, and the t2 active cells in
the output are linearly generated from only t active cells. The actual truncated characteristic
instantiated with t = 8 is described in Figure 8.6.

8.2. IMPROVED INBOUND PART 187

SB SR MC

SB SR MC

SB SR MC

SB SR MC

SB SR MC

SB SR MC

SB SR MC

SB SR MC

SB SR MC

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Figure 8.6: The 9-round truncated differential characteristic used to distinguish an AES-like permutation
from an ideal permutation.

Note that there are three fully active internal states in the middle of the differential char-
acteristic, and this kind of path is impossible to solve with previous rebound or Super-SBox
techniques. The number of controlled rounds would indeed be too small and the cost for the
uncontrolled part would be extremely high.

8.2.1.2 Finding a conforming pair

The method to find a pair of inputs conforming to this truncated differential characteristic is
similar to the rebound technique: we first find many solutions for the middle rounds (from the
beginning of round 3 to the end of round 6) and then we filter them out during the outwards
probabilistic transitions through the MixColumns layers (round 2 and round 7). Since in our
case we have two MixColumns transitions t → 1 (see Figure 8.6), the outbound phase has
a success probability of 2−2c(t−1) and is straightforward to handle once we found enough
solutions for the inbound phase.

188 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

In order to find solutions for the middle rounds (see Figure 8.7), we propose an algorithm
inspired by the ones by María Naya-Plasencia in [NP10b, NP11]. As in [LMR+09, GP10],
instead of dealing with the classical t2 parallel c-bit SubBytes S-Box applications, one can
consider the t parallel tc-bit S-Boxes (named Super-SBoxes) each composed of two S-Box layers
surrounding one MixColumns and one AddRoundConstant function. The part of the internal
state modified by one Super-SBox is called a Super-SBox set. The total state is formed by t
such sets, and their particularity is that their transformation through the Super-SBox can be
computed independently.

We start by choosing the input difference δIN after the first SubBytes layer at round 3 in
state S1 and the output difference δOUT after the last MixColumns layer at round 6 in state
S12. Both δIN and δOUT are exact differences, not truncated ones, but they are chosen so that
they are compliant with the truncated characteristic in S0 and S12. Since we have t active cells
in S1 and S12, there are as many as (2c − 1)2t ≈ 22ct different ways of choosing (δIN , δOUT).
Note that differences in S1 can be directly propagated to δ′IN in S3 since MixColumns is linear.
We continue by computing the t forward Super-SBox sets independently by considering the 2ct

possible input values for each of them in state S3. This generates t independent lists, each of
size 2ct and composed by paired values in S3 that can be used to compute the corresponding
paired values in S8. Doing the same for the t backwards Super-SBox sets from state S12, we
again get t independent lists of 2ct elements each, and we can compute for each element of
each list the pair of values of the Super-SBox set in state S8, where the t forward and the t
backward lists overlap. In the sequel, we denote Li the ith forward Super-SBox list and L′i the
ith backward one, for 1 ≤ i ≤ t.

In terms of freedom degrees in state S8, we want to merge 2t lists of 2ct elements each for
a merging condition on 2× ct2 bits, where we use the definition of list merging from [NP11],
on ct2 for values and ct2 for differences since the merging state is fully active. We then expect
22t×ct 2−2ct2

= 1 solution on average as a result of the merging process.

In the following, we describe a method to find this solution and we compute its complexity
afterwards. In comparison to the algorithm suggested in [JNPP12] where the case t = 8 is
treated, we generalize the concept to any t, especially odd ones where the direct extension of
[JNPP12] is not applicable. To detail this algorithm, we use an auxiliary parameter t′ ∈ [1, t]
such that the time complexity will be written in terms of t′. In the end, we give the best choice
for t′ such that the time complexity is minimal for any t.

Step 1. We start by considering every possible combination of elements in each of the first t′

lists L′1, . . . , L′t′ . There are 2c·t·t′ possibilities (see Figure 8.8).
Step 2. Each choice in Step 1 fixes the first t′ columns of the internal state (both values and

differences) and thus forces 2c constraints on t′ cells in each of the t lists Li, 1 ≤ i ≤ t.
For each list Li, we then expect on average 2ct 2−2ct′ = 2 c(t−2t′) elements to match this
constraint for each choice in Step 1, and these elements can be found with one operation
by sorting the lists Li beforehand1.

Step 3. We continue by considering every possible combination of elements in each of the t− t′

last lists Lt−t′+1, . . . , Lt. Depending on the value of t′, we may have different scenarios at
this point: if t− 2t′ ≥ 0, then the time complexity is multiplied by 2 c(t−2t′)(t−t′), which

1We consider lists for the sake of clarity, but we can reach the constant-time access of elements using hash tables.
Otherwise, it would introduce a logarithmic factor.

8.2. IMPROVED INBOUND PART 189

SB SR MC

SB SR MC

SB SR MC

SB SR MC

S0 S1 S2 S3

S3 S4 S5 S6

S6 S7 S8 S9

S9 S10 S11 S12

Round 3

Round 4

Round 5

Round 6

δIN δ′IN

δOUTδ′OUT

Figure 8.7: Inbound phase for the 9-round distinguishing attack on an AES-like permutation instantiated
with t = 8. The four rounds represented are the rounds 3 to 6 from the whole truncated differential
characteristic. A gray cell indicates an active cell; hatched (or colored) cells emphasize one Super-SBox
set: there are seven similar others for each one of the two hatched senses.

is the number of expected elements in the lists. Otherwise, the probability of success
decreases from 1 to 2 c(t−2t′)(t−t′), as the constraints imposed by the previous step are too
strong and elements in those lists would exist only with probability smaller than 1.

Step 4. We now need to ensure that the first t′ lists L1, . . . , Lt′ and the t− t′ last lists L′t−t′+1, . . . , L′t
contain a candidate fulfilling the constraints deduced in the previous steps. In the L′i lists,
we already determined 2c(t− t′) bits so that there are 2ct−2c(t−t′) elements remaining in
each of those. Again, we can check if these elements exist with one operation by sorting
the lists beforehand. Finally, the value and difference of all the cells have been determined,
which leads to a probability 2ct−2ct = 2−ct of finding a valid element in each of the first t′

lists Li.

All in all, trying all the 2c·t·t′ elements in Step 1, we find

2 c·t·t′+c(t−2t′)(t−t′)+(ct−2c(t−t′))(t−t′)−ct·t′ = 1

solution during the merge process. We find this solution in time Tm operations, with two cases
to consider. Either t− 2t′ ≥ 0, in which case we enumerate 2 c·t·t′ elements in Step 1 followed by
the enumeration of 2 c(t−2t′) elements in Step 2. In that case, we have

log2(Tm) = ctt′ + c(t− 2t′)(t− t′) = 2t′2 − 2tt′ + t2. (8.8)

190 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

L′1 L′2 L′3 L′4

(a) Step 1.

L5L6L7L8

(b) Steps 2 and 3. (c) Steps 4.

Figure 8.8: In the case where t = 8, the figure shows the steps to merge the 2× t lists. Grey cells denote
cells fully constrained by a choice of elements in L′1, . . . , L′t/2 during the first step.

Otherwise, if t− 2t′ ≤ 0, the conditions imposed by the elements enumerated in the first steps
make the lists from Step 2 to be nonempty with probability smaller than 1. Hence, we simply
have log2(Tm) = ctt′. This can be summarized by:

log2(Tm) =

{
c · Pt(t′) if t− 2t′ ≥ 0 with Pt(X) = 2X2 − 2tX + t2,

c ·Qt(t′) if t− 2t′ ≤ 0 with Qt(X) = tX.
(8.9)

To find the value t′ that minimizes the time complexity, we need to determine for which
value the minimum of both polynomials Pt and Qt is reached. For Pt, we get t

2 and the nearest
integer value satisfying t− 2t′ ≥ 0 is ⌈ t

2⌉. For Qt, we get ⌊ t
2⌋. For example, see Figure 8.9a and

Figure 8.9b, when t equals 8 and 7 respectively.

1 2 3 t
2

5 6 7 8

8

16

24

32

40

48

56

64
P8 Q8

(a) t = 8.

1 2 3 t
2

4 5 6 7

8

16

25
28
32

40

49
P7 Q7

(b) t = 7.

Figure 8.9: Plot of the two polynomials Pt and Qt in two cases: t = 8 and t = 7.

Consequently, if t is even we set t′ = t
2 , which leads to an algorithm running in 2 ct2/2

computations and t′ · 2 ct memory. If t is odd, then we need to decide whether t′ should be ⌊ t
2⌋

or ⌈ t
2⌉. If we write t = 2k + 1, this is equivalent to find the smallest value between Pt(k) and

8.2. IMPROVED INBOUND PART 191

Qt(k + 1). We find Pt(k) = 2k2 + 2k + 1 and Qt(k + 1) = 2k2 + 3k + 1 so that Pt(k) < Qt(k + 1)
(see for example Figure 8.9b when t = 7). Hence, when t is odd, we fix t′ = ⌈ t

2⌉. Note that
t
2 = ⌈ t

2⌉ if t is even.

Summing up, for any t, our algorithm performing the merge requires Tm computations,
with:

log2(Tm) = c · Pt

(⌈
t
2

⌉)
= ct2 − 2c

⌊
t
2

⌋ ⌈
t
2

⌉
(8.10)

and a memory requirement of t · 2ct.

Hence, from a pair of random fixed differences (δIN , δOUT), we have shown how to find
a pair of internal states of the permutation that conforms to the middle rounds. To pass the
probabilistic transitions of the outbound phase, we need to repeat this merging procedure
22c(t−1) times by picking another couple of differences (δIN , δOUT). In total, we find a pair of
inputs to the permutation that conforms to the truncated differential characteristic in time
T9 = 22c(t−1) · Tm computations, that is:

log2(T9) = ct(t + 2)− 2c
(⌊

t
2

⌋ ⌈
t
2

⌉
+ 1
)

(8.11)

with a memory requirement of t · 2ct.

8.2.1.3 Comparison with the ideal case

In the ideal case (Section 7.1.3), obtaining a pair whose input and output differences lie in a
subset of size IN = OUT = 2ct for a ct2-bit permutation requires

LB(t, t) = 2max
{

ct(t−1)
2 , ct2−ct−ct

}

= 2ct(t−2), (8.12)

computations (assuming t ≥ 3). Therefore, our algorithm distinguishes an AES-like permutation
from a random one if and only if its time complexity is smaller than the generic one. This
occurs when

log2(T9) ≤ ct(t− 2),

which happens as soon as t ≥ 8. Note that for the AES in the known-key model, we have t = 4
and thus our attack does not apply.

One can also derive slightly cheaper distinguishers by aiming at fewer rounds: instead of
using the 9-round truncated characteristic from Figure 8.6, it is possible to remove either round
2 or 8 and spare one t → 1 truncated differential transition. Overall, the generic complexity
remains the same and this gives a distinguishing attack on the 8-round reduced version of the
AES-like permutation with T8 computations, with:

log2(T8) = log2(Tm) + c(t− 1) = ct(t + 1)− c
(

2
⌊

t
2

⌋ ⌈
t
2

⌉
+ 1
)

(8.13)

and still 2ct memory provided that t ≥ 6. If we spare both t→ 1 transitions, we end up with a
7-round distinguishing attack with time complexity T7 = Tm and t · 2ct memory for any t ≥ 4.
Note that those reduced versions of this attack can have a greater time complexity than other
techniques: we provide them only for the sake of completeness.

192 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

8.2.2 Non-fully-active truncated differential characteristic

8.2.2.1 The generic truncated characteristic

In [SLW+10], Sasaki et al. present new truncated differential characteristics that are not totally
active in the middle. Their analysis allows to derive distinguishers for 8 rounds of AES-like
permutations with no totally-active state in the middle, provided that the state-size verifies
t ≥ 5. In this section, we reuse their idea by introducing an additional round in the middle (see
also Section 7.2.2.2), which is the unique fully active state of the characteristic. With a similar
algorithm as in the previous section, we show how to find a pair conforming to that case.

SB

nB

Sh Mb

SB

nB
Sh Mb

SB

mB

Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB

mF

Sh Mb

SB

nF
Sh Mb

SB Sh Mb

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Figure 8.10: Non-fully-active truncated differential characteristic on 9 rounds of an AES-like permutation
instantiated with t = 8.

To keep our reasoning as general as possible, we parameterize the truncated differential
characteristic by four variables (see Figure 8.10) such that trade-offs will be possible by finding
the right values for each one of them. Namely, we denote nB the number of active diagonals
in the plaintext (alternatively, the number of active cells in the second round), nF the number
of active diagonals in the ciphertext (alternatively, the number of active cells in the eighth
round), mB the number of active cells in the third round and mF the number of active cells in

8.2. IMPROVED INBOUND PART 193

the seventh round.

Hence, the sequence of active cells in the truncated differential characteristic becomes:

t nB
R1−→ nB

R2−→ mB
R3−→ t mB

R4−→ t2 R5−→ t mF
R6−→ mF

R7−→ nF
R8−→ t nF

R9−→ t2, (8.14)

with the constraints nF + mF ≥ t + 1 and nB + mB ≥ t + 1 that come from the MDS property.
The amount of solutions that can be generated for the differential path equals to (log2):

ct2 + ctnB − c(t− 1)nB − c(t−mB)− ct(t−mF)− c(t− 1)mF − c(t− nF) (8.15)

= c(nB + nF + mB + mF − 2t). (8.16)

From the MDS constraints mB + nB ≥ t + 1 and mF + nF ≥ t + 1, we can bound the amount
of expected solutions by 2 c(t+1+t+1−2t) = 22c. This means that, there will always be at least 22c

freedom degrees, independently of t.

8.2.2.2 Finding a conforming pair

As in the previous case, the algorithm that finds a pair of inputs conforming to this characteristic
first produces many pairs for the middle rounds and then exhausts them outwards until one
passes the probabilistic filter. The cost of those uncontrolled rounds is given by:

2c(t−nB) 2c(t−nF) = 2c(2t−nB−nF), (8.17)

since we need to pass one nB ← mB transition in the backward direction and one mF → nF in
the forward direction.

We now detail a way to find a solution for the middle rounds (Figure 8.11) when the input
difference δIN after the first SubBytes layer in state S1 and the output difference δOUT after the
last MixColumns layer in state S12 are fixed in such a way that the truncated characteristic
holds in S0 and S12. The beginning of the attack is exactly the same as before in the sense
that once the input and output differences of the middle rounds have been fixed, we generate
the 2t lists that contains the paired values of the t forward Super-SBox sets and the t backward
Super-SBox sets. Again, the same 2t lists overlap and we show how to find the solution of the
merging problem in 2ct·min(mF ,mB ,⌈ t

2 ⌉) computations and mB · 2ct memory. We recall that Li is the
ith forward Super-SBox list (orange) and L′i is the ith backward one (blue), for 1 ≤ i ≤ t.

We proceed in three steps: the first one guesses the elements from some lists, which
determines the remaining cells and we finish by checking probabilistic events. Without loss of
generality, we assume in the sequel that mB ≤ mF; if this is not the case, then we start Step 1 by
guessing elements of lists Li in S8. We split the analysis into two cases, depending on whether
mB ≤ ⌈ t

2⌉ or mB > ⌈ t
2⌉.

First case: mB ≤ ⌈ t
2⌉ — In this case, we use the strong constraints on the vector spaces spanned

by the mB differences on each column to find a solution to the merge problem.

Step 1. We start by guessing the elements of the mB lists L′1, . . . , L′mB
in state S6. There is

a total of 2ctmB possible combinations.
Step 2. In particular, the previous step sets the differences of the mB first diagonals of

S6 such that there are exactly mB known differences on each of the t columns of

194 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

SB
mB

SR MC

SB SR MC

SB SR MC

SB SR MC
mF

S0 S1 S2 S3

S3 S4 S5 S6

S6 S7 S8 S9

S9 S10 S11 S12

Round 3

Round 4

Round 5

Round 6

δIN δ′IN

δOUTδ′OUT

Figure 8.11: Inbound phase for the 9-round distinguisher attack on an AES-like permutation instantiated
with t = 8 with a single fully-active state in the middle. A gray cell indicates an active cell; hatched (or
colored) cells emphasize one Super-SBox set: there are seven similar others.

the state. This allows to determine all the differences in S5 since there are exactly
mB independent differences in each column of that state. Consequently, we linearly
learn all the differences of S6.

Step 3. Since all differences are known in S6, we determine 1 element in each of the
t− mB remaining L′i lists: they are of size 2ct and we count ct bits of constraints
coming from t differences. From the known differences, we also get a suggestion
of 2ct−cmB values for the cells of each column. Indeed, the elements of the t lists Li

in S5 can be represented as disjointed sets regarding the values of the differences,
since the differences can only take 2cmB values per column. Assuming that they are
uniformly distributed2, we get 2ct/2cmB = 2ct−cmB elements per disjointed set for
each list: they all share the same value of the differences, but have different values.
Additionally, the ct-bit constraints on each list Li allows to find one element in each,
and therefore a solution to the merge problem, with probability

2((ct−cmB)−ct)t = 2−ctmB .

Step 4. Finally, trying all the 2ctmB elements in (L′1, . . . , L′mB
), we expect to find

2ctmB 2−ctmB = 1

2This is a classical assumption, and here it is due to the non-linear S-Box.

8.2. IMPROVED INBOUND PART 195

solution that gives a pair of internal states conforming to the four middle rounds
with a few operations.

Second case: mB > ⌈ t
2⌉ — The columns of differences are less constrained, and it is enough to

guess ⌈ t
2⌉ lists in the first step to find a solution to the merge problem.

Step 1. We start by guessing the elements of the ⌈ t
2⌉ lists L′1, . . . , L′mB

in state S6. There is
a total of 2ct⌈ t

2 ⌉ possible combinations.
Step 2. The previous step allows to filter 2c(t−2⌈ t

2 ⌉) elements in each of the t lists Li.
Depending on the parity of t, we get 1 element per list for even t, and 2−c for odd
ones. Indeed, t− 2⌈ t

2⌉ = ⌊ t
2⌋ − ⌈ t

2⌉ equals 0 when t is even, and −1 when t is odd.
In the latter odd case, there are then a probability 2−ct that the t elements are found
in the t lists Li.

Step 3. In the event that elements have been found in the previous step, we determine
completely the remaining 2ct(t − ⌈ t

2⌉) values and differences of the remaining
t− ⌈ t

2⌉ = ⌊ t
2⌋ lists L′i. We find a match in those lists with probability

2−ct × 2(ct−2ct)(t−⌈ t
2 ⌉) = 2−ct(1+⌊ t

2 ⌋).

Step 4. Finally, trying all the 2ct⌈ t
2 ⌉ elements in (L′1, . . . , L′⌈ t

2 ⌉
), we expect to find

2ct⌈ t
2 ⌉ 2−ct(1+⌊ t

2 ⌋) = 1

solution that gives a pair of internal states that conforms to the four middle rounds
with a few operations.

Hence, in both cases, from random differences (δIN , δOUT), we find a pair of internal states

of the permutation that conforms to the middle rounds in time 2ct min(mB ,⌈ t
2⌉) and memory

mB2ct. To pass the probabilistic transitions of the outbound phase, we need to repeat the
merging 2c(2t−nB−nF) times by picking another couple of differences (δIN , δOUT). In total, we
find a pair of inputs to the permutation conforming to the truncated differential characteristic
in time complexity

2 ct min(mB ,⌈ t
2 ⌉) 2c(2t−nB−nF) = 2 c(t(min(mB ,⌈ t

2 ⌉)+2)−nB−nF)

and memory complexity mB · 2ct.

Finally, without assuming mB ≤ mF, the time complexity T of the algorithm generalizes to:

log2(T) = c
(

t ·min
{

mB, mF,
⌈

t
2

⌉}
+ 2t− nB − nF

)
, (8.18)

with nF + mF ≥ t + 1 and nB + mB ≥ t + 1, and memory requirements of mB · 2ct.

8.2.2.3 Comparison with ideal case

In the ideal case, the generic complexity LB(a, b) is given by the limited birthday distinguisher
that we recall here:

log2c

(
LB(a, b)

)
= max

{
min

{
t2 − a

2
,

t2 − b
2

}
, t2 − a− b

}
, (8.19)

196 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

since we get an input space of size IN = 2c·a and output space of size OUT = 2c·b. Without
loss of generality, assume that a ≤ b: this only selects whether we attack the permutation or its
inverse. In that case, we recall that we can rewrite the complexity as:

log2c

(
LB(a, b)

)
=

C1(a, b) := (t2 − b)/2, if: t2
< 2a + b,

C2(a, b) := a, if: t2 = 2a + b,

C3(a, b) := t2 − a− b, if: t2
> 2a + b.

(8.20)

In the case of the 9-round distinguisher, the generic complexity equals LB(t · nB, t · nF) since
there are nB active diagonals at the input, and nF active diagonals at the output. Let us compare
T and the case of C3(t · nB, t · nF) where t > 2nB + nF corresponding to the limited birthday
distinguisher. We want to find set of values for the parameters (t, nF, nB, mF, mB) such that
our algorithm is faster that the generic one, that is T is smaller than C3(t · nB, t · nF). In the
event that min

(
mF, mB,

⌈ t
2

⌉)
is either mF or mB, we can show that T is always greater than

C3 (t · nB, t · nF), and so are the cases involving C2 (t · nB, t · nF) and C1 (t · nB, t · nF).

We consider the case min
(
mF, mB,

⌈ t
2

⌉)
=
⌈ t

2

⌉
:

log2c

(
C3 (t · nB, t · nF)

)
− log2c

(
T
)
= t (t− nF − nB)− t

⌈
t
2

⌉
− 2t + nB + nF. (8.21)

With t as a parameter and nF, nB ∈ {1, . . . , t}, our algorithm turns out to be a distinguisher
when the quantity from (8.21) is positive, which is true as soon as:

(nB + nF)(1− t) + t
(

t− 2−
⌈

t
2

⌉)
≥ 0. (8.22)

Since t−
⌈ t

2

⌉
=
⌊ t

2

⌋
, we can show that if nF ∈ {1, . . . , t} and nB ∈ {1, . . . , t} are chosen such

that

2 ≤ nF + nB ≤
t

t− 1

(⌊
t
2

⌋
− 2
)

, (8.23)

then our algorithm is more efficient than the generic one. Note that this may happen only
when t ≥ 8 and that mF and mB are still constrained by the MDS bound: nF + mF ≥ t + 1 and
nB + mB ≥ t + 1.

We can also consider an 8-round case by considering the characteristic from Figure 8.10
where the last round is removed3: the generic complexity becomes LB(t · nB, nF). Note that the
complexity of our algorithm remains unchanged: there are still two probabilistic transitions to
pass. For t ≥ 4, we can show that there are many ways to set the parameters (nF, nB, mF, mB)
so that T ≥ C(t · nB, nF), and the best choice providing the most efficient distinguisher happens
when the MDS bounds are tight, i.e.: nF + mF = t + 1 and nB + mB = t + 1.

For the sake of completeness, we can also derive distinguishers for 7-round of the per-
mutation by considering the characteristic from Figure 8.10 where the first and last rounds

3We still assume that nB ≤ nF. If not, then the generic complexity becomes LB(nB , t · nF) by removing the first
round.

8.2. IMPROVED INBOUND PART 197

are removed, as soon as t ≥ 4. The generic complexity in that scenario is LB(nB, nF). Again,
there are several ways to set the parameters, but the one that minimizes the runtime T of our
algorithm also verifies the MDS bounds: nB = 1, mB = t, mF = 1 and nF = t.

We give examples of more different cases in Table 8.3, which for instance match the AES
and Grøstl instantiations. We note that the complexities of our algorithm may be worse that
other published results.

Rounds
Cipher Parameters Complexities
t c nB mB mF nF log2(T) log2(C)

9 8 8 1 8 8 1 368 log2 LB(t · nB, t · nF) = 384
8 8 8 8 1 4 5 88 log2 LB(nB, t · nF) = 128
8 8 8 5 4 1 8 88 log2 LB(t · nB, nF) = 128
7 8 8 8 1 1 8 64 log2 LB(nB, nF) = 384
8 7 8 7 1 4 4 80 log2 LB(nB, t · nF) = 112
8 7 8 4 4 1 7 80 log2 LB(t · nB, nF) = 112
7 7 8 7 1 1 7 56 log2 LB(nB, nF) = 280
8 6 8 6 1 4 3 72 log2 LB(nB, t · nF) = 96
8 6 8 3 4 1 6 72 log2 LB(t · nB, nF) = 96
7 6 8 6 1 1 6 56 log2 LB(nB, nF) = 192
8 5 4 5 1 4 2 32 log2 LB(nB, t · nF) = 40
8 5 4 2 4 1 5 32 log2 LB(t · nB, nF) = 40
7 5 4 5 1 1 5 20 log2 LB(nB, t · nF) = 60
8 4 8 4 1 4 1 56 log2 LB(nB, t · nF) = 64
8 4 8 1 4 1 4 56 log2 LB(t · nB, nF) = 64
7 4 8 4 1 1 4 32 log2 LB(nB, t · nF) = 64

Table 8.3: Examples of reached time complexities of our algorithm for several numbers of rounds and
different (t, c) scenarios.

8.2.3 Application to Grøstl-256 permutations

The permutations of the Grøstl-256 hash function implement the previous generic algo-
rithms will the following parameters: t = 8, c = 8 and Nr = 10.

8.2.3.1 Three fully-active states

From the analysis of Section 8.2.1, we can directly conclude that this leads to a distinguishing
attack on the 9-round reduced version of the Grøstl-256 permutation with

2c(t2/2+2(t−1)) = 2368

computations and 2ct = 264 memory, when the ideal complexity requires 2ct(t−2) = 2384

computations.

198 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

As detailed previously, we could derive distinguishers for 8-round Grøstl-256 with

2c(t2/2+t−1) = 2312

computations and for 7-round Grøstl-256 with 2ct2/2 = 2256, but those results are more
costly than previous known results.

Similarly, as explained in Section 8.1.1, this result also induces a nontrivial observation
on the 9-round reduced version of the Grøstl-256 compression function with identical
complexities.

8.2.3.2 Non-fully-active characteristic

With the generic analysis of Section 8.2.2 that uses a single fully-active middle state, t = 8 only
allows to instantiate the parameterized truncated differential characteristic with nF = nB = 1,
which determines mF = mB = 8. Indeed, (8.23) imposes 2 ≤ nB + nF ≤ 16

7 , which gives integer
values nF = nB = 1. Note that it is exactly the case of the three fully-active states in the middle
treated in Section 8.2.1, with the same complexities.

For 8-round distinguishers, the case t = 8 where nB ≤ nF may give the parameters nB = 5,
mB = 4, mF = 1 and nF = 8 with the last round of the characteristic of Figure 8.10 is removed.
If nB > nF, we instantiate the characteristic with the first round removed with the values nB = 8,
mB = 1, mF = 4 and nF = 5. In both cases, the time complexity of the distinguishers are 288

computations with 264 of memory requirements, whereas the generic algorithm terminates in
about 2128 operations.

As for 7-round distinguishers, removing both first and last rounds of the characteristic
of Figure 8.10 leads to an efficient distinguishers for Grøstl-256 when nB = 8, mB = 1,
mF = 1 and nF = 8. The corresponding algorithm runs in 264 computations with 264 of memory
requirements, when the corresponding generic algorithm needs 2384 operations to terminate. We
note that those 8- and 7-round distinguishers are not as efficient as other available techniques.

8.2.4 Distinguisher for 10-round Grøstl-512

The 512-bit version of the Grøstl hash function uses a non-square 8× 16 matrix as 1024-bit
internal state, which therefore presents a lack of optimal diffusion: a single difference generates
a fully active state after three rounds where a square state only needs two. This allows to add an
extra round to the generalization of the regular 9-round characteristic of AES-like permutation
(Section 8.2.1) to reach 10 rounds.

8.2.4.1 The truncated differential characteristic

To distinguish the permutation P512 reduced to 10 rounds, we use the truncated differential
characteristic with the sequence of active bytes

64
R1−→ 8

R2−→ 1
R3−→ 8

R4−→ 64
R5−→ 128

R6−→ 64
R7−→ 8

R8−→ 1
R9−→ 8

R10−→ 64, (8.24)

8.2. IMPROVED INBOUND PART 199

where the size of the input differences subset is IN = 2512 and the size of the output differences
subset is OUT = 264. We note that it would work exactly the same way for the other permutation
Q512.

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Round 10

Figure 8.12: The 10-round truncated differential characteristic used to distinguish the permutation P of
Grøstl-512 from an ideal permutation.

The actual truncated characteristic is represented on Figure 8.12. Again, we split the
characteristic into two parts: the inbound phase involving a merging of lists in the four
middle rounds (round 4 to round 7), and an outbound phase that behaves as a probabilistic
filter ensuring both 8 −→ 1 transitions in the outward directions. Again, passing those two

200 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

transitions with random values occurs with probability 2−112.

8.2.4.2 Finding a conforming pair

In the following, we present an algorithm to solve the middle rounds in time 2280 and memory
264. In total, we need to repeat this process 2112 times to get a pair of internal states that
conforms to the whole truncated differential characteristic, and then cost 2280+112 = 2392

computations and 264 in memory. The strategy of this algorithm (see Figure 8.13) is similar
to the one presented in [NP11, NP10b] and the one from the previous section: we start by
fixing the difference to a random value δIN in S1 and δOUT in S12 and linearly deduce the
difference δ′IN in S3 and δ′OUT in S10. Then, we construct the 32 lists corresponding to the 32
Super-SBoxes: the 16 forward Super-SBoxes have an input difference fixed to δ′IN and cover
states S3 to S8, whereas the 16 backward Super-SBoxes spread over states S10 to S6 with an
output difference fixed to δ′OUT. In the sequel, we denote Li the 16 forward Super-SBoxes and
L′i the backward ones, 1 ≤ i ≤ 16.

SB Sh Mb

SB Sh Mb

SB Sh Mb

SB Sh Mb

S0 S1 S2 S3

S3 S4 S5 S6

S6 S7 S8 S9

S9 S10 S11 S12

δIN δ′IN

δOUTδ′OUT

Figure 8.13: Inbound phase for the 10-round distinguisher attack on the Grøstl-512 permutation P512.
The four rounds represented are the rounds 4 to 7 from the whole truncated differential characteristic
(Figure 8.12). A gray byte indicates an active byte; hatched (or colored) bytes emphasize the Super-
SBoxes.

The 32 lists overlap in S8, where we merge them on 2048 bits to find 264×32 2−2048 = 1
solution, since each list is of size 264. The 2048 bits come from 1024 bits of values and 1024 bits
of differences. The naive way to find the solution would cost 21024 in time by considering each
element of the Cartesian product of the 16 lists Li to check whether it satisfies the output 1024
bit difference condition. We describe now the algorithm that achieves the same goal in 2280

8.2. IMPROVED INBOUND PART 201

computations.

First, we observe that due to the geometry of the non-square state, any list Li intersects
with only half of the L′i. For instance, the first list L1 associated to the first column of state S7
intersects with lists L′1, L′6, L′11, L′12, L′13, L′14, L′15 and L′16. We represent this property with a
16× 16 array on Figure 8.14: the 16 columns correspond to the 16 lists L′i and the lines to the Li,
1 ≤ i ≤ 16. The cell (i, j) is white if and only if Li has a non-null intersection with the list L′j,
otherwise it is gray.

Then, we note that the MixColumns transition between the states S8 and S9 constraints
the differences in the lists L′i : in the first column of S9 for example, only three bytes are active,
so that the same column in S8 can only have (28 − 1)3 ≈ 23×8 different differences, which
means that knowing three out of the eight differences in an element of L′1 is enough to deduce
the other five. For a column-vector of differences lying in a n-dimensional subspace, we can
divide the 264 elements of the associated lists in 28n disjointed sets of 264−8n values each. So,
whenever we know the n independent differences, the only freedom that remains lies in the
values. The bottom line of Figure 8.14 reports the subspace dimensions for each L′i.

Using a guess-and-determine approach, we derive a way to use the previous facts to find
the solution to the merge problem in 2280 computations. As stated before, we expect only one
solution; that is, we want to find a single element in each of the 32 lists. In the sequel, we
describe a sequence of four guess-and-determine steps illustrated by pictures before and after
each determine phase.

X

XX

XXX

XXXX

XXXX

XXXX

XXXX

XXX

XX

X

X

X

X

X

Number of different differences in each L′i

Li

L′i

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

3 4 3 4 5 6 8 6 5 4 3 4 3 2 2 2

(a) Initial guesses.

 X

 XX

XXXX X XXX

XXXXX X XX

XXXXXX X X

XXXXXXX X

XXXXXXX X

XXX

XX

X

X

X

X

X

Number of different differences in each L′i

Li

L′i

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

3 4 3 4 5 6 8 6 5 4 3 4 3 2 2 2

(b) End of first determine step.

Figure 8.14: First guess on the algorithm. A X means we know both value and difference for that byte,
a means that we only determined the difference for that byte and white bytes are not constrained yet.

Step 1. We start by guessing the values and the differences of the elements associated to the

202 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

lists L′2, L′3, L′4 and L′5. For this, we try all the possible combinations of their elements, there are
24×64 = 2256 in total. For each one of the 2256 trials, all the checked cells X from Figure 8.14a
now have known value and difference. From here, 8 bytes are known in each of the four lists L5,
L6, L7 and L8: this imposes a 64-bit constraint on those lists, which filter out a single element
in each. Thereby, we determine the value and difference in the other 16 bytes marked by X

in Figure 8.14b. In lists L′1 and L′16, we have reached the maximum number of independent
differences (three and two, respectively), so we can determine the differences for the other bytes
of those two columns: we mark them by . In L4, the 8 constraints (three X and two) filter
out one element; then, we deduce the correct element in L4 and mark it by X. We can now
determine the differences in L′15 since the corresponding subspace has a dimension equal to
two. See Figure 8.14b for the current situation of the guess-and-determine algorithm.

Step 2. At this point, no more byte can be determined based on the information propagated so
far. We continue by guessing the elements remaining in L′6 (see Figure 8.15a). Since there are
already six byte-constraints on that list (three X), only 216 elements conform to the conditions.
The time complexity until now is thus 2256+16 = 2272 computations.

 X

 X

 XX

XXXX X XXX

XXXXX X XX

XXXXXX X X

XXXXXXX X

XXXXXXX X

XXXX

XXX

XX

 X

X

X

X

X

Number of different differences in each L′i

Li

L′i

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

3 4 3 4 5 6 8 6 5 4 3 4 3 2 2 2

(a) Second guess: L′6.

X X

XX

XXX X XXXX

XXXX X XXX

XXXXX X XX

XXXXXX X X

XXXXXXX X

XXXXXXX X

XXXXXXX X

XXX

XX

X X

X

X

X

X

Number of different differences in each L′i

Li

L′i

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

3 4 3 4 5 6 8 6 5 4 3 4 3 2 2 2

(b) End of the second determine step.

Figure 8.15: Second guess on the algorithm. A X means we know both value and difference for that
byte, a means that we only determined the difference for that byte and white bytes are not constrained
yet.

Guessing the list L′6 implies a 64-bit constraint of the list L9 so that we get a single element
out of it and determine four yet-unknown other bytes. This enables to learn the independent
differences in L′14 and therefore, we filter an element from L3 (two X and four). At this
stage, the list L′1 is already fully constrained on its differences, so that we are left with a set of
264−3×8 = 240 values constrained on five bytes (five X). Hence, we are able to determine all the
unset values in L′1: see Figure 8.15b for the current situation.

8.2. IMPROVED INBOUND PART 203

Step 3. Again, the lack of constraints prevents us to determine more bytes. We continue by
guessing the 28 elements left in L1 (two X and three), which makes the time complexity
increase to 2280 (see Figure 8.16a).

X X XXXXXX

XX

XXX X XXXX

XXXX X XXX

XXXXX X XX

XXXXXX X X

XXXXXXX X

XXXXXXX X

XXXXXXX X

XXX

XX

X X

X

X

X

X

Number of different differences in each L′i

Li

L′i

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

3 4 3 4 5 6 8 6 5 4 3 4 3 2 2 2

(a) Third guess: L1.

X X XXXXXX

XX X XXXXX

XXX X XXXX

XXXX X XXX

XXXXX X XX

XXXXXX X X

XXXXXXX X

XXXXXXX X

XXXXXXX X

XXXX

XXX X

X XX

X X

X

X

X X

Number of different differences in each L′i

Li

L′i

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

3 4 3 4 5 6 8 6 5 4 3 4 3 2 2 2

(b) End of the third determine step.

Figure 8.16: Third guess on the algorithm. A X means we know both value and difference for that byte,
a means that we only determined the difference for that byte and white bytes are not constrained yet.

The list L1 being totally known, we derive the vector of differences in L′13, which adds an
extra byte-constraint on L2 where only one element was left, and so fully determines it. From
here, L′7 becomes fully determined as well (four X) and so is L′16. In the latter, the differences
being known, we were left with a set of 264−2×8 = 248 values, which are now constrained on six
bytes (six X).

Step 4. We describe in Figure 8.16b the knowledge propagated so far, with time complexity
2280 and probability 1. In this step, no new guess is needed, and we show how to end the
algorithm by probabilistic filtering on the remaining unset lists.

First, we observe that L10 is over-determined (four X and one) by one byte. This means
that we get the correct value with probability 2−8, whereas L11 is filtered with probability 1
(four X). We assume the correct values are found, such that the element of L′8 happens to be
correctly defined with probability 2−16 (five X), L′9 with probability 1 (four X) and L′15 also
with probability 1 since we get 6 X that complete the knowledge of the 2-dimensional subspace
of differences (six X and two •). We continue in L′11 by learning the full vector of differences
(three independent X for a subspace of dimension 3), which constraints L12 on 11 bytes (five X

and one) so that we get a valid element with probability 2−24.

At this point, L16 is reduced to a single element with probability 2−8 (three X and three
•), which adds constraints on the three lists L′11, L′13 and L′14, where we already know all the

204 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

X X XXXXXX

XX X XXXXX

XXX X XXXX

XXXX X XXX

XXXXX X XX

XXXXXX X X

XXXXXXX X

XXXXXXX X

XXXXXXX X

XXXXXXX X

XXXXXXX X

X XXXXXXX

X XXX

X XX

X X X

X XXXXXXX

Number of different differences in each L′i

Li

L′i

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

3 4 3 4 5 6 8 6 5 4 3 4 3 2 2 2

(a) Almost finished.

X X XXXXXX

XX X XXXXX

XXX X XXXX

XXXX X XXX

XXXXX X XX

XXXXXX X X

XXXXXXX X

XXXXXXX X

XXXXXXX X

XXXXXXX X

XXXXXXX X

X XXXXXXX

X XXXXXXX

X XXXXXXX

X XXXXXXX

X XXXXXXX

Number of different differences in each L′i

Li

L′i

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

3 4 3 4 5 6 8 6 5 4 3 4 3 2 2 2

(b) Finished.

Figure 8.17: End of the guess-and-determine algorithm. (a): After list L16 has been fully determined, we
filter L′10, . . . , L′14 with probability 1 and then L13, . . . , L15 with probability 2−64. (b): Each of the 32 lists
has been reduced to one element in 2280 operations.

differences (Figure 8.17a). Consequently, we get respectively 5, 5 and 6 independent values
(X) on subspaces of respective dimensions 3, 3 and 2, which filter those three lists to a single
element with probability 1. Finishing the guess and determine technique is done by filtering
L′10 and L′12 with probability 1 (four X in a subspace of dimension 4 for both lists), and then
the three remaining lists L13, L14 and L15 are all reduced to a single element which are the valid
one with probability 2−64 for each (eight X). After this, if a solution is found, everything has
been determined (Figure 8.17b).

In total, for each guess, we successfully merge the 32 lists with probability

2−8−16−24−40−64−64−64 = 2−280,

but the whole procedure is repeated 264×4+16+8 = 2280 times, so we expect to find the one
existing solution. All in all, we described a way to do the merge with time complexity 2280

and memory complexity 264. The final complexity to find a valid candidate for the whole
characteristic is then 2392 computations and 264 memory.

8.2.4.3 Comparison with ideal case

In the ideal case, obtaining a pair whose input difference lies in a subset of size IN = 2512

and whose output difference lies in a subset of size OUT = 264 for a 1024-bit permutation
requires LB(512, 64) = 2448 computations. We can directly conclude that this leads to a
distinguishing attack on the 10-round reduced version of the Grøstl-512 permutation
with 2392 computations and 264 memory. Similarly, as explained in Section 8.1.1, this results

8.3. IMPROVED OUTBOUND PART 205

also induces a nontrivial observation on the 10-round reduced version of the Grøstl-512
compression function with identical complexity.

One can also derive slightly cheaper distinguishers by aiming fewer rounds while keeping
the same generic complexity: instead of using the 10-round truncated characteristic from
Figure 8.12, it is possible to remove either round 3 or 9 and spare one 8 → 1 truncated
differential transition. Overall, this gives a distinguishing attack on the 9-round reduced version
of the Grøstl-512 permutation with 2336 computations and 264 memory. By removing both
rounds 3 and 9, we achieve 8 rounds with 2280 computations.

One can further gain another small factor for the 9-round case by using a 8→ 2 truncated
differential transition instead of 8 → 1, for a final complexity of 2328 computations and 264

memory. Indeed, the generic complexity drops to LB(512, 128) = 2384 since OUT = 2128.

8.2.5 Distinguishers for reduced PHOTON permutations

Using the same cryptanalysis technique, it is possible to study the recent lightweight hash
function family PHOTON [GPP11], which is based on five different versions of AES-like per-
mutations. Using the notations previously described in Section 8.1.2, the five versions (c, t)
for PHOTON are (4, 5), (4, 6), (4, 7), (4, 8) and (8, 6) for increasing versions. All versions are
defined to apply Nr = 12 rounds of an AES-like process.

Since the internal state is always square, by trivially adapting the method from Section 8.2.1
to the specific parameters of PHOTON, one can hope to obtain distinguishers for 9 rounds of the
PHOTON internal permutations. However, we are able to do so only for the parameters (4, 8)
used in PHOTON-224/32/32 (see Table 8.2 with the comparison to previously known results).
Indeed, the size t of the matrix plays an important role in the gap between the complexity of
our algorithm and the generic one. The bigger is the matrix, the better is the gap between the
algorithm complexity and the generic one.

8.3 Improved Outbound Part

In this section, we propose another new improvement of the previous rebound techniques,
reducing the complexity of known differential distinguishers and by a lesser extend, reducing
some collision attack complexities. We observe that the gap between the distinguisher com-
plexity and the generic case is often large and some conditions might be relaxed in order to
minimize as much as possible the overall complexity. The main idea is to generalize the various
rebound techniques and to relax some of the input and output conditions of the differential
distinguishers. That is, instead of considering pre-specified active cells in the input and output
like full columns or diagonals, we consider several possible position combinations of these cells.
In some way, this idea is related to the outbound difference randomization that was proposed
in [DGPW12] for a rebound attack on Keccak, a non-AES-like function. Yet, in [DGPW12], the
randomization was not used to reduce the attack complexity, but to provide enough freedom
degrees to perform the attack.

As this improvement affects directly the properties of the inputs and outputs, we now

206 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

have to deal with a new differential property observed and we name this new problem the
multiple limited-birthday problem, which is more general than the limited-birthday one. A very
important question arising next is: what is the complexity of the best generic algorithm for
obtaining such set of inputs/outputs? For previous distinguishers, where the active input and
output columns were fixed, the limited-birthday algorithm (Section 7.1.3) is yet the best one for
solving the problem in the generic case. Now, the multiple limited-birthday is more complex,
and in Section 8.3.1 we discuss how to bound the complexity of the best generic distinguisher.
Moreover, we also propose an efficient, generic and non-trivial algorithm in order to solve
the multiple limited-birthday problem, providing the best known complexity for solving this
problem.

Finally, we generalize the various rebound-like techniques in Section 8.3.2 and we apply our
findings in Section 8.3.3 on various AES-like primitives such as AES [AES01], ECHO [BBG+09],
Grøstl [GKM+11], LED [GPPR11], PHOTON [GPP11] and Whirlpool [BR11]. Our results
are summarized and compared to previous works in Table 8.4.

8.3.1 Multiple limited-birthday and generic complexity

In this section, we present a new type of distinguisher: the multiple limited-birthday. It is
inspired from the limited-birthday one (see Section 7.1.3), where some of the input and output
conditions are relaxed. We discuss how to bound the complexity of the best generic algorithm
for this problem, and we provide an efficient algorithm that solves the problem with the best
known complexity. In more detail, we fix the number of active diagonals (resp. anti-diagonals)
in the input (resp. output), but not their positions. Therefore, we have (t

nB
) possible different

configurations in the input and (t
nF
) in the output. We state the following problem.

Problem 8.1 (Multiple limited-birthday). Let nF, nB ∈ {1, . . . , t}, P a permutation from the sym-
metric group SS from the set of states S , and ∆IN be the set of truncated patterns containing all the (t

nB
)

possible ways to choose nB active diagonals among the t ones. Let ∆OUT defined similarly with nF active
anti-diagonals. The problem asks to find a pair (m, m′) ∈ S2 of inputs to P such that m⊕m′ ∈ ∆IN

and P(m)⊕ P(m′) ∈ ∆OUT.

We conjecture that the best generic algorithm for finding one solution to Problem 8.1 has a
time complexity that is lower bounded by the limited-birthday algorithm (Section 7.1.3) when
considering

IN =

(
t

nB

)
2t·c·nB and OUT =

(
t

nF

)
2t·c·nF .

This can be reasonably argued as we can transform the multiple limited-birthday algorithm
into a similar (but not equivalent) limited-birthday one, with a size of all the possible truncated
input and output differences of IN and OUT respectively. Solving the similar limited-birthday
problem requires a complexity of LB(IN, OUT), but solving the original multiple limited-
birthday problem would require an equal or higher complexity, as though having the same
possible input and output difference sizes, for the same number of inputs (or outputs), the
number of valid input pairs that can be built might be lower. This is directly reflected on the

8.3. IMPROVED OUTBOUND PART 207

Target Subtarget Rounds Type Time Memory Ideal Reference

AES-128 Cipher

8 KK dist. 248 232 265 [GP10]

8 KK dist. 244 232 261 Section 8.3.3.1

8 CK dist. 224 216 265 Chapter 7

8 CK dist. 213.4 216 231.7 Section 8.3.3.1

AES-128 DM-mode
6 collision 256 232 265 [MPRS09]

6 collision 232 216 265 Section 8.3.3.1

ECHO Permutation

7 dist. 2118 238 21025 [SLW+10]

7 dist. 2102 238 2256 Section 8.3.3.2

8 dist. 2151 267 2257 [NP11]

8 dist. 2147 267 2256 Section 8.3.3.2

Grøstl-256 Permutation

8 dist. 216 28 233 [SLW+10]

8 dist. 210 28 231.5 Section 8.3.3.3

9 dist. 2368 264 2384 Section 8.2

9 dist. 2362 264 2379 Section 8.3.3.3

Grøstl-256 Comp. func.
6 collision 2120 264 2257 [Sch11]

6 collision 2119 264 2257 Section 8.3.3.3

Grøstl-256 Hash func.
3 collision 264 264 2129 [Sch11]

3 collision 263 264 2129 Section 8.3.3.3

LED-64 Cipher

15 CK dist. 216 216 233 [GPPR11]

16 CK dist. 233.5 232 241.4 [NWW13]

20 CK dist. 260.2 261.5 266.1 [NWW13]

19 CK dist. 218 216 233 Section 8.3.3.4

PHOTON-80/20/16 Permutation
8 dist. 28 24 211 [GPP11]

8 dist. 23.4 24 29.8 Section 8.3.3.5

PHOTON-128/16/16 Permutation
8 dist. 28 24 213 [GPP11]

8 dist. 22.8 24 211.7 Section 8.3.3.5

PHOTON-160/36/36 Permutation
8 dist. 28 24 215 [GPP11]

8 dist. 22.4 24 213.6 Section 8.3.3.5

PHOTON-224/32/32 Permutation

8 dist. 28 24 217 [GPP11]

8 dist. 22 24 215.5 Section 8.3.3.5

9 dist. 2184 232 2192 Section 8.2

9 dist. 2178 232 2187 Section 8.3.3.5

PHOTON-256/32/32 Permutation
8 dist. 216 28 225 [GPP11]

8 dist. 210.8 28 223.7 Section 8.3.3.5

Whirlpool Permutation
10 dist. 2176 28 2384 [LMR+10]

10 dist. 2115.7 28 2125 Section 8.3.3.6

Whirlpool Comp. func.
7.5 collision 2184 28 2256 [LMR+10]

7.5 collision 2176 28 2256 Section 8.3.3.6

Whirlpool Hash func.
5.5 collision 2184 28 2256 [LMR+10]

5.5 collision 2176 28 2256 Section 8.3.3.6

Table 8.4: Known and improved results for various rebound-based attacks on AES-based primitives.

208 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

complexity of solving the problem, as in the limited-birthday algorithm, it is considered that
for 2n inputs queried, we can build 22n−1 valid input pairs. The optimal algorithm solving
Problem 8.1 would have a time complexity T such that: LB(IN, OUT) ≤ T.

(t
nB
) Possible inputs (t

nF
) Possible outputsP

Figure 8.18: Possible inputs and outputs of the relaxed generic distinguisher. The blackbox P implements
a random permutation uniformly drawn from SS . The figure shows the case t = 4, nB = 1 and nF = 2.

We have just provided a lower bound for the complexity of solving Problem 8.1 in the ideal
case, but an efficient generic algorithm is not known. For finding a solution, we could repeat the
algorithm for solving the limited-birthday while considering sets of input or output differences
that do not overlap, with a complexity of min{LB(IN, OUT), LB(IN, OUT)}, where:

IN = 2t·c·nB IN =

(
t

nB

)
2t·c·nB

OUT = 2t·c·nF OUT =

(
t

nF

)
2t·c·nF .

We propose in the sequel a new generic algorithm to solve Problem 8.1 whose time
complexity verifies the claimed bound and improves the complexity of the algorithm previously
sketched. It allows then to find solutions faster than previous algorithms, as detailed in Table 8.5.
Without loss of generality, because the problem is completely symmetrical, we explain the
procedure in the forward direction. The same reasoning applies for the backward direction,
when changing the roles between input and output of the permutation, and the complexity
would then be the lowest one.

From Problem 8.1, we see that a random pair of inputs has a probability Pout = (t
nF
)2−t(t−nF)c

to verify the output condition. We therefore need at least P−1
out input pairs so that one verifying

the input and output conditions can be found. The first goal of the procedure consists in
constructing a structure containing enough input pairs.

8.3.1.1 Structures of input data

We want to generate the amount of valid input pairs previously determined, and we want
do this while minimizing the numbers of queries performed to the encryption oracle, as the
complexity directly depends on them. A natural way to obtain pairs of inputs consists in
packing the data into structured sets. These structures contain all 2ct possible values on n′B
different diagonals at the input, and make the data complexity equivalent to 2n′Bct encryptions.

8.3. IMPROVED OUTBOUND PART 209

If there exists n′B ≤ nB such that the number N of possible pairs (2n′Bct

2) we can construct
within the structure verifies N ≥ P−1

out , then Problem 8.1 can be solved easily by using the
birthday algorithm. If this does not hold, we need to consider a structure with n′B > nB. In this
case we can construct as many as

(
n′B
nB

)
2(n

′
B−nB)tc

(
2nBtc

2

)

pairs (m, m′) of inputs such that m⊕m′ already belongs to ∆IN . We now propose an algorithm
that handles this case.

We show how to build a fixed number of pairs with the smallest structure we could find,
and we conjecture that the construction is optimal in the sense that this structure is the smallest
possible. The structure of input data considers n′B diagonals D1, . . . , Dn′B

assuming all the 2ct

possible values, and an extra diagonal D0 assuming 2y
< 2ct values. In total, the number of

queries equals 2y+n′Btc. Within this structure, we can construct a number of pairs parameterized
by n′B and y > 0 that is equal to

Npairs(n
′
B, y)

def
:=
(

n′B
nB

)(
2nBct

2

)
2y 2(n

′
B−nB)tc +

(
n′B

nB − 1

)(
2y+(nB−1)ct

2

)
2(n

′
B−(nB−1))ct.

The first term of the sum considers the pairs generated from nB diagonals among the
D1, . . . , Dn′B

diagonals, while the second term considers D0 and nB − 1 of the other diagonals.
The problem of finding an algorithm with the smallest time complexity is therefore reduced
to finding the smallest n′B and the associated y so that Npairs(n′B, y) = P−1

out . Depending
on the considered scenarios, P−1

out would have different values, but finding (n′B, y) such that
Npairs(n′B, y) = P−1

out can easily be done by an intelligent search in log(t) + log(ct) simple
computations by trying different parameters until the ones that generate the wanted amount of
pairs P−1

out is found.

When y = 0, we compute the number of terms as Npairs(n′B, 0) := (n′B
nB
)(2nBct

2)2(n
′
B−nB)tc.

8.3.1.2 Generic algorithm

Once we have found the good parameters n′B and y, we generate the 2y+n′Bct inputs as previ-
ously described, and query their corresponding outputs to the permutation P. We store the
input/output pairs in a table ordered by the output values. Assuming they are uniformly
distributed, there exists a pair in this table satisfying the input and output properties from
Problem 8.1 with probability close to 1.

To find it, we first check for each output if a matching output exists in the list. When this is
the case, we next check if the found pair also verifies the input conditions. The time complexity
of this algorithm therefore is about

2y+n′Bct + 22y+2n′BtcPout

computations. The first term in the sum is the number of outputs in the table: we check for
each one of them if a match exists at cost about one computation. The second term is the

210 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

number of output matches that we expect to find, for which we also test if the input patterns
conform to the wanted ones.

Finally, from the expression of Pout, we approximate the time complexity 2y+n′Bct + 22y+2n′BtcPout

to 2y+n′Bct operations, as the second term is always smaller than the first one. The memory
complexity if we store the table would be 2y+n′Bct as well, but we can actually perform this
research without memory, as in fact what we are doing is a collision search. In Table 8.5, we
show some examples of different complexities achieved by the bounds proposed and by our
algorithm.

Parameters (t, c, nB, nF) bound
LB(IN, OUT)

Our algorithm bound
LB(IN, OUT)

(8, 8, 1, 1) 2379 2379.7 2382

(8, 8, 1, 2) 2313.2 2314.2 2316.2

(8, 8, 2, 2) 2248.4 2250.6 2253.2

(8, 8, 1, 3) 2248.19 2249.65 2251.19

(4, 8, 1, 1) 261 262.6 263

(4, 4, 1, 1) 229 230.6 231

Table 8.5: Examples of time complexities for several algorithms solving the multiple limited-birthday
problem.

8.3.2 Truncated characteristic with relaxed conditions

In this section, we present a representative 9-round example of our new distinguisher.

8.3.2.1 Relaxed 9-round distinguisher for AES-like permutation

We show how to build a 9-round distinguisher when including the idea of relaxing the input
and output conditions. In fact, this new improvement allows to reduce the complexity of the
distinguisher, as the probability of verifying the outbound is higher. We point out that we have
chosen to provide an example for 9 rounds to extend the improved results for the inbound
phase of the previous Section 8.2.

We also recall that for a smaller number of rounds, the only difference with the presented
distinguisher is the complexity Cinbound for the inbound part, that can be solved using already
described and well-known methods such as rebound attacks, Super-SBox or start-from-the-
middle, depending on the particular situation that we have. For the sake of simplicity, in the
end of this section, we provide the complexity of the distinguisher depending on the inbound
complexity Cinbound.

In the end of the section, we compare our distinguisher with the previously explained
best known generic algorithm to find pairs conforming to those cases. We show how the
complexities of our distinguisher are still lower than the lowest bound for such a generic case.

Following the notation from the previous section, we parameterize the truncated differential
characteristic by four variables (see Figure 8.19) such that trade-offs are possible by finding the

8.3. IMPROVED OUTBOUND PART 211

right values for each one of them. Namely, we denote c the size of the cells, t× t the size of
the state matrix, nB the number of active diagonals in the input (alternatively, the number of
active cells in the second round), nF the number of active independent diagonals in the output
(alternatively, the number of active cells in the eighth round), mB the number of active cells in
the third round and mF the number of active cells in the seventh round.

Hence, the sequence of active cells in the truncated differential characteristic becomes:

t nB
R1−→ nB

R2−→ mB
R3−→ t mB

R4−→ t2 R5−→ t mF
R6−→ mF

R7−→ nF
R8−→ t nF

R9−→ t2, (8.25)

with the constraints nF + mF ≥ t + 1 and nB + mB ≥ t + 1 that come from the MDS property,
and relaxation conditions on the input and output, meaning that the positions of the nB input
active diagonals, and of the nF active anti-diagonals generating the output can take any possible
configuration, and not a fixed one. This allows to increase the probability of the outbound
part and the number of solutions conforming to the characteristic. The binary logarithm of the
amount of solutions that we can now generate equals to:

log2

((
t

nB

)(
t

nF

))
+ ct2 + ctnB

− c(t− 1)nB − c(t−mB)− ct(t−mF)− c(t− 1)mF − c(t− nF),

which simplifies to:

c(nB + nF + mB + mF − 2t) + log2

((
t

nB

)(
t

nF

))
.

If follows from the MDS constraints that there are always at least (t
nB
)(t

nF
)22c freedom

degrees, independently of t.

nB active cells nF active cells

mB active cells
mF active cells

1R

1R

1R

1R

(t
nB
) (t

nF
)

1R

S1

1R

S0

1R

S2

1R

S3

1R

S4

1R

S5 S6

1R 1R

1R

S7

1R

S8 S9

Figure 8.19: The 9-round truncated differential characteristic used to distinguish an AES-like permutation
from an ideal permutation. The figure shows some particular values: t = 8, nB = 5, mB = 4, mF = 4 and
nF = 5.

To find a conforming pair we use the algorithm proposed in Section 8.2 for solving the
inbound part and finding a solution for the middle rounds. The cost of those uncontrolled
rounds is given by:

Coutbound :=
2c(t−nB)

(t
nB
)
· 2c(t−nF)

(t
nF
)

=
2c(2t−nB−nF)

(t
nB
)(t

nF
)

,

212 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

since we need to pass one nB ← mB transition in the backward direction with (t
nB
) possibilities

and one mF → nF transition in the forward direction with (t
nF
) possibilities.

8.3.2.2 Comparison with ideal case

As we discussed in Section 8.3.1, in the ideal case, the generic complexity T is bounded by

LB(IN, OUT) ≤ T ≤ min
{

LB(IN, OUT), LB(IN, OUT)
}

,

where we have

IN =

(
t

nB

)
2t·c·nB IN = 2t·c·nB

OUT =

(
t

nF

)
2t·c·nF OUT = 2t·c·nF .

We have proposed the algorithm with the best known complexity for solving the problem
in the ideal case in Section 8.3.1, for being sure that our distinguishers have smaller complexity
than the best generic algorithm, we compare our complexities with the inferior bound given:
LB(IN, OUT), so that we are sure that our distinguishers are valid.

We recall here that the complexity of the distinguishers that we build varies depending on
the number of rounds solved in the middle, or the parameters chosen, and we provide some
examples of improvements of previous distinguishers and their comparisons with the general
bounds and algorithms in the next section.

8.3.3 Applications

In this section, we apply our new techniques to improve the best known results on various
primitives using AES-like permutations. When we randomize the input/output differences
positions, the generic complexities that we compare with are the ones coming from the classical
limited-birthday problem LB(IN, OUT) (updated with the right amount of differences), since
they lower bound the corresponding multiple limited-birthday problem.

8.3.3.1 AES

We recall that the full specifications of the AES are given in Section 4.2.

Distinguisher

Except for the biclique technique [BKR11] which allows to do a speed-up search for the key
by a factor of 0.27, the current best distinguishers can reach 8 rounds with 248 computations
in the known-key model (see [GP10]) and with 224 computations in the chosen-key model
(see Chapter 7). By relaxing some input/output conditions, we are able to obtain an 8-round
distinguisher with 244 computations in the known-key model and with 213.4 computations in
the chosen-key model.

8.3. IMPROVED OUTBOUND PART 213

In the case of the known-key distinguisher, we start with the 8-round differential character-
istic depicted in Figure 8.20. One can see that it is possible to randomize the position of the
unique active byte in both states S1 and S6, resulting in 4 possible positions for both the input
and output differences. We reuse the Super-SBox technique that can find solutions from state
S2 to state S5 with a single operation on average. Then, one has to pay 224/4 = 222 for both
transitions from state S2 to S1 backward and from state S5 to S6 forward, for a total complexity
of 244 computations. In the ideal case, our multiple limited-birthday problem gives us a generic
complexity bounded by 27 computations.

1R 1R

1R

1R

1R

S1
1R

S0

1R
S2

1R
S3

1R
S4 S5

1R 1R

1R 1R

1R 1R

1R
S6

1R
S7 S8

Figure 8.20: Differential characteristic for the 8-round known-key distinguisher for AES-128

Concerning the chosen-key distinguisher, we start with the 8-round differential characteristic
depicted in Figure 8.21. Here, we use the technique introduced in Section 7.3 that can find
solutions from state S2 to state S6 with a single operation on average. It is therefore not possible
to randomize the position of the unique active byte in state S6 since it is already specified.
However, for the transition from state S2 to S1, we let two active bytes to be present in S2, with
random positions (6 possible choices). This happens with a probability 6 · 2−16 and the total
complexity to find a solution for the entire characteristic is 213.4 computations. In the ideal
case, our multiple limited-birthday problem gives us a generic complexity bounded by 231.7

computations.

1R

1R

1R

1R

1R

1R

S0
1R

S1

1R
S2

1R
S3

1R
S4

1R
S5

1R
S6

1R
S7 S8

Figure 8.21: Differential characteristic for the 8-round chosen-key distinguisher for AES-128

214 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

Collision

It is also interesting to check what happens if the AES cipher is plugged into a classical
Davies-Meyer mode in order to get a compression function. A collision attack for this scenario
was proposed in [MPRS09] for 6 rounds of AES with 256 computations. By considering the
characteristic from state S1 to state S7 state in Figure 8.20 (the MixColumns in the last round
is omitted for AES, thus S7 contains only a single active byte), and by using the technique
introduced in Section 7.3 (only for chosen-key model, but in the Davies-Meyer mode the key
input of the cipher is fully controlled by the attacker since it represents the message block
input), we can find solutions from state S2 to state S6 with a single operation on average. Then,
one has to pay a probability 2−24 for the differential transition from state S2 to state S1 when
computing backward. One cannot randomize the single active cells positions here because the
collision forces us to place them at the very same position. Getting the single input and output
active bytes to collide requires 28 tries and the total complexity of the 6-round collision search
is therefore 232 computations.

8.3.3.2 ECHO

The ECHO hash function reuses the AES for its compression function: we present dedicated
attacks for this hash functions in the next Chapter 9, so refer to that chapter or to the submission
document [BBG+09] for its complete description.

Distinguisher for 8 rounds

The current best distinguisher for the full ECHO permutation has been published by María
Naya-Plasencia in [NP11]. The algorithm improves a rebound technique with a non-fully-active
characteristic from Sasaki et al. in [SLW+10] and runs in 2151 computations and 267 memory.

Using the same strategy as [NP11], we relax the outbound phase by allowing more truncated
patterns in both the plaintext and the ciphertext. While the inbound phase remains unchanged
with the same average time complexity of 265 computations to get one pair for the middle
rounds, we increase the probability Pout = 2−32 × 2−54 of the outbound phase. Namely, the
backward part of probability p1 = 2−32 which makes a precise AES state to become inactive can
be randomized to any of the four possibles AES states, so that we get a probability of success of
4× p1. Similarly, in the forward part of probability p2 = 2−54 can be increased to 4× p2 for the
same reasons. In return, we now have four possibles truncated patterns at both sides, which
makes the generic complexity cheaper and bounded by 2252. Overall, we gain a factor 42 = 24

over the previous algorithms, so that we can distinguish 8 rounds of the ECHO permutation in
265+86/24 = 2147 computations and memory 267.

Distinguisher for 7 rounds

In the original paper [SLW+10], Sasaki et et al. also introduce a distinguisher on 7 rounds of
the ECHO permutation which requires 2118 computations and 238 memory.

Using a similar strategy, we derive a distinguisher requiring 2102 computations and the
same amount of memory. The idea consists in relaxing the outbound phase of probability 2−118

8.3. IMPROVED OUTBOUND PART 215

by allowing 3 out of 4 AES states with one column active after the probabilistic filter. Due to the
SuperMixColumns linear transformation (see Section 9.1.2, [Sch10, JF11]), the probability of
the whole outbound phase increases to 4 · 2−96 · 2−8 = 2−102. Indeed, while a 4→ 4 transition
in the SuperMixColumns transformations occurs with probability 2−24, a 4→ 12 transition
occurs with probability 2−8.

8.3.3.3 Grøstl

Distinguisher

The current best known-key distinguishers on Grøstl-256 internal permutations can reach 8
rounds with 216 computations (see [SLW+10]), 9 rounds with 2368 computations (see Section 8.2)
and 10 rounds with a zero-sum distinguisher requiring 2509 computations (see [BCD11]).

For the 8-round distinguisher case, we use the same attack as in [SLW+10] with only a
single inactive diagonal on the input and a single inactive column on the output, but their
positions can be randomized through the 8 possible choices. Overall, we gain a factor 82 over
the previous complexity, leading to 210 operations, while the multiple limited-birthday problem
gives a generic complexity bounded by 231.5.

The 9-round case is already described in Section 8.3.2, and we minimize the distinguisher
complexity by using parameters nB = 1, mB = 8, mF = 8, nF = 1. Again, we can randomize
the forward and backward single active cell position (for an improvement factor of t2) and this
gives a total complexity of 2362 computations, while the multiple limited-birthday problem has
a generic complexity bounded by 2379 computations.

Collision

We recall that Grøstl-256 uses two AES-like 512-bit permutations P and Q in a special mode
in order to build its compression function:

h(H, M) = Q(M)⊕ P(M⊕ H)⊕ H.

In [Sch11], a semi-free-start collision on 6 rounds of the compression function is given, with
a differential characteristic equivalent to the one from state S1 to state S7 in Figure 8.20 (but with
t = 8). We can randomize the position of the single active byte forward in S1 and backward
in S6, however not all 8 positions are possible. Indeed, in order to get a collision, in [Sch11]
solutions are found for the 6-round characteristic in Q and for the 6-round characteristic in P,
and a birthday between the two sets is performed to match the differences in both the input
and the output. The issue is that the ShiftRows constants defined in P and Q are different and
some positions randomization always fail to provide a collision. When analyzing the distinct
ShiftRows constants from P and Q, one can check that the position of the active columns
in S2 and diagonals in S5 can be chosen such that there are two single active byte position
randomizations possible for both the input and the output. This improves the total collision
complexity by a factor 2 and not 4 because we are performing a birthday.

Concerning the hash function, we can improve the 3-round collision attack given in [Sch11],
but by only randomizing the single active byte position in the output (the input is fully active

216 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

in the differential characteristic). Again, two positions are possible for randomization and since
no birthday is applied between the two permutations, we get an improvement by a factor 2.

Note that for the first submitted version of Grøstl (renamed Grøstl-0), the active cells
position randomization gain factor is much higher (8 positions are possible instead of 2 for both
forward and backward) because the issue with the distinct ShiftRows constants in P and Q is
avoided. However, nothing can be improved concerning the internal differential attacks [Pey10]
because they require the single active bits position to be placed exactly where the constants
between P and Q are different.

8.3.3.4 LED

The best attacks on LED so far reach 15, 16 and 20 rounds with 216, 233.5 and 260.2 computations
respectively (chosen key distinguishers from [GPPR11, NWW13]).

We describe a chosen-key distinguisher that can reach 19 rounds (over 32) with 218 compu-
tations only. We use the differential characteristic from Figure 8.22 with a fixed single active
nibble difference in the key input K. We solve independently the 4-round subparts from state

1R
S0

AK
S′0

4R
S1

AK
S′4

1R
S5

1R
S6

1R
S7

1R
S8

AK
S′8

1R
S9

1R
S10

1R
S11

1R
S12

AK
S′12

4R
S13

AK
S′16

1R
S17

1R
S18 S′18

Figure 8.22: 19-round truncated differential characteristic for LED-64.

S5 to S′8 and from state S9 to S′12. Each subpart can be handled with the Super-SBox technique
with 212 computations on average (for example the Super-SBox technique finds one solution on
average from state S6 to S′8, and the differential transitions from state S6 to S5 cost 212 tries).
For each subpart, the single nibble difference has to be erased by the fixed key difference (in S5

and in S′12) and this happens with probability 2−4. Therefore, 216 computations are required to
generate one solution per subpart. We now have to connect solutions of these two subparts and
we first handle the connection of the single active nibble difference (from S′8 to S9) by producing
22 solutions for each subpart, and merging these single nibble differences using the birthday
paradox. Once a solution is found for the difference merge, we simply connect the values of
the two subparts by choosing the appropriate value of the key K. The rest of the differential
characteristic is verified with probability 1: generating a solution for the entire characteristic
therefore costs 218 computations, while in the ideal case the limited-birthday problem gives us
233 computations.

8.3.3.5 PHOTON

The current best distinguishers on the internal permutations of PHOTON can reach 8 rounds
with very low complexity, 28 for the four first functions and 216 for PHOTON-256/32/32. For
9 rounds, only PHOTON-224/32/32 was attacked (with complexity 2184) because it is the
only one that uses a large enough internal state.

For all the 8-round attacks, the differential characteristics considered are equivalent to the
one depicted in Figure 8.20 for AES-128, but with a matrix size adapted to the parameter t. As
such, we can randomize the forward and backward single active cell position, which provides

8.3. IMPROVED OUTBOUND PART 217

in total a complexity improvement factor of t2 (t forwards and t backwards) and of course, the
ideal complexity decreases as well according to the multiple limited-birthday problem. It is to
be noted that, as in [GPP11], the complexities for 8 rounds of PHOTON are average complexities
per solution, but finding a single solution might cost more because the inbound solving outputs
2t·c solutions with 2t·c computations.

8.3.3.6 Whirlpool

The current best distinguishing attack for Whirlpool can reach the full 10 rounds of the
internal permutation and compression function with 2176 computations, while the best col-
lision attack can reach 5.5 rounds of the hash function and 7.5 rounds of the compression
function [LMR+10] with 2184 computations. We show how to improve the complexities of all
these attacks.

Distinguisher

We reuse the same differential characteristic from [LMR+10] for the distinguishing attack
on the full 10-round Whirlpool compression function (which contains no difference on
the key schedule of E), but we let three more active bytes in both states S1 and S8 of the
outbound part and this is depicted in Figure 8.23. The effect is that the outbound cost of the
differential characteristic is reduced to 264 computations: 232 for the differential transition from
state S2 to S1 and 232 from state S7 to S8. Moreover, we can leverage the difference position
randomization in states S1 and S8, which both provide an improvement factor of (8

4) = 70. The
inbound part in [LMR+10] (from states S2 to S7) requires 264 computations to generate a single
solution on average, and we obtain a final complexity of 264 · 264 · (70)−2 = 2115.7 Whirlpool
evaluations, while the multiple limited-birthday problem has a generic complexity bounded by
2125 computations.

(8
4) (8

4)

1R

S1

1R

S0

1R

S2

1R

S3

1R

S4

1R

S5

1R

S6 S7

1R 1R

1R

S8

1R

S9 S10

Figure 8.23: 10-round truncated differential characteristic for the full Whirlpool compression function
distinguisher.

Collision

We reuse the same differential characteristic from [LMR+10] for the 7.5-round collision attack
on the Whirlpool compression function that contains no difference on the key schedule of E,
but we let one more active byte in both states S0 and S7 of the outbound part (see Figure 8.24).
From this, we gain an improvement factor of 28 in both forward and backward directions of the
outbound (from state S1 to S0 and from state S6 to S7), but we have two byte positions to collide

218 CHAPTER 8. IMPROVED REBOUND ALGORITHMS

on with the feed-forward instead of one. After incorporating this 28 extra cost, we obtain a final
improvement factor of 28 over the original attack (it is to be noted that this improvement does
not work for 7-round reduced Whirlpool since the active byte position randomization would
not be possible anymore). The very same method applies to the 5.5-round collision attack on
the Whirlpool hash function.

1R

S0

1R

S1

1R

S2

1R

S3

1R

S4

1R

S5

1R

S6

.5R

S7 S8

Figure 8.24: 7.5-round truncated differential characteristic for the Whirlpool compression function
collision.

CHAPTER9
Rebound Attacks on ECHO

Contents
9.1 Description of ECHO . 219

9.1.1 Original description . 220

9.1.2 Alternative description . 222

9.1.3 Current cryptanalysis . 226

9.2 Attacks on ECHO-256 . 227

9.2.1 Collision attack on the 4-round compression function 227

9.2.2 Collision attack on the 4-round hash function 237

9.2.3 Collision attack on the 5-round hash function 239

9.2.4 Distinguisher for the 7-round compression function 247

9.2.5 Collision attack on the 6-round compression function 252

9.2.6 Chosen-salt attacks on the compression function 252

In this chapter, we give an analysis of the ECHO-256 variant of the ECHO hash function
[BBG+09]. It has been developed by Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles
Macario-Rat, Thomas Peyrin, Matt Robshaw and Yannick Seurin, and has been submitted as a
candidate for the SHA-3 competition. It has been selected to enter the second round of the
selection but was not accepted to enter the final.

The content of this chapter is largely inspired by the article [JF11] co-authored with Pierre-
Alain Fouque and published at Fse 2011, and by the article [JNPS11a] written together with
María Naya-Plasencia and Martin Schläffer and published at Sac 2011. Some results have been
reported in an extended version of the Sac 2011 paper in [JNPS11b].

9.1 Description of ECHO

The hash function ECHO is a wide-pipe AES-based design that echoes the well-known operations
of the AES. Indeed, one goal of the designers is to reuse the AES design principles to reach an
effective security against differential cryptanalysis. This has clearly been the strongest point in
the design of the AES, so that a larger variant as a hash function should provide very good
resistance as well.

— 219 —

220 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

The NIST has chosen ECHO to enter the second round on the 24 July 2009, for both its
unique hash algorithm design and for its performance on current high-end platforms, even if AES-NI
instructions are required to achieve impressive performance. Unfortunately, the NIST has not
selected ECHO for the final round, mostly due to the very good performances of its competitors,
despite that the security margin for collision has not been threatened.

9.1.1 Original description

ECHO is an iterated hash function and its compression function updates an internal state
described by a 16× 16 matrix of elements from GF(28), and can be viewed as a 4× 4 matrix of
16 AES states (Figure 9.1).

Figure 9.1: The internal state of ECHO is seen as a square matrix 4× 4 of AES states of 128 bits.

Transformations on this large 2048-bit state are very similar to the one of the AES (see
Figure 9.2), the main difference being the equivalent S-Box called BigSubWords (BigSB), which
consists of two AES rounds. There are two constants added in those rounds that act as round
keys: the first one is a counter depending on the current AES state being processed, and the
second one is a salt. This salt parameter is constant for the compression function, and behaves
as an additional input value to the function. These constants are mainly introduced to break
the existing symmetries of the AES unkeyed permutation [LSWD04]. Since we are not using
any property relying on symmetry and that adding constants does not change differences, we
omit these steps in the following.

The diffusion of the AES states in ECHO follows the wide trail strategy [DR02] and is
ensured by two big transformations: BigShiftRows (BigSR) and BigMixColumns (BigMC). As
in the AES, the BigShiftRows only moves the cells of the internal states in a row, while the
BigMixColumns linearly mixes the four states within a column.

BigSB

0
1
2
3

BigSR

0
1

2
3

BigMC

2 rounds AES AESMixColumns

Figure 9.2: One round of the ECHO permutation. Each of the 16 cells is an AES state.

The permutation P used in the compression function f applies 8 rounds of the composition
of the three presented layers: BigMC ◦ BigS ◦ BigSB, and in the end, the BigFinal operation

9.1. DESCRIPTION OF ECHO 221

adds the current state to the initial one (feed-forward) and compresses the output by XORing
columns together to produce the new chaining value (see Figure 9.3).

The mode of operation chosen for ECHO is the HAIFA framework [BD06], which fixes some
issues of the famous Merkle-Damgård construction. In more detail, the salt parameter of
ECHO is used directly in the HAIFA mode of operations to differentiate each new message
block and prevent fixed points. It is to be noted that even if the salt is a known parameter,
then the previously known attacks on the Merkle-Darmgård construction are also prevented
in the HAIFA framework thanks to an additionnal counter parameter incorporated in each
compression function calls

Two versions of the hash function ECHO have been submitted to the SHA-3 competition:
ECHO-256 and ECHO-512, which share the same state size (2048 bits) and inner permutation
P, but inject messages of size 1536 or 1024 bits respectively in the compression function. Note
that the message is padded by adding a single 1 followed by zeros to fill up the last message
block. The last 18 bytes of the last message block always contain the 2-byte hash output size,
followed by the 16-byte message length.

h m

P

f (h, m)

Figure 9.3: Compression function of ECHO-256.

By using the notation s = [C0, C1, C2, C3] to denote a state s where the four columns are
named Ci, the final compression step BigFinal can be described by (see also Figure 9.3 and
Figure 9.4):

f (h, m) = Compress
(

P(h||m)⊕ (h||m)
)

where:

Compress
(
[C0, C1, C2, C3]

)
= C0 ⊕ C1 ⊕ C2 ⊕ C3 for ECHO-256,

Compress
(
[C0, C1, C2, C3]

)
=
[
C0 ⊕ C2, C1 ⊕ C3

]
for ECHO-512.

h m

P

f (h, m)

Figure 9.4: Compression function of ECHO-512.

222 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

Notation

We name each state during the application of the ECHO permutation: we start with S0, where
the current chaining value (or IV1) and the message are combined and end the first round after
eight transformations in S8. To refer to the AES-state at row i and column j of a particular
ECHO-state Sn, we use the notation Sn[i, j]. Additionally, we introduce the term column-slice to
refer to a thin column of size 16× 1 of the ECHO state. Finally, in an AES-state, we consider
four diagonals (from 0 to 3): diagonal j ∈ [0, 3] consists in the four elements (i, i + j (mod 4)),
with i ∈ 0, . . . , 3.

9.1.2 Alternative description

For an easier description of some of the following attacks, we use an equivalent description of
one round of the ECHO permutation (see Figure 9.5).

BSB BSR BMC

SB SR MC SB SR MC BSR BMC

1 round of AES 1 round of AES

SR SB MC SB SR BSR MC BMC

Super-SBox SuperMixColumns

Figure 9.5: Alternative view of one round of the inner permutation of ECHO.

First, we swap the BigShiftRows transformation with the MixColumns transformation of
the second AES round. Second, we swap SubBytes with ShiftRows of the first AES round.
Swapping these operations does not change the computational result of ECHO and similar
alternative descriptions have already been used in the analysis of AES. Hence, one round of
ECHO results in the two transformations Super-SBox (SubBytes ◦MixColumns ◦ SubBytes)
and SuperMixColumns (BigMixColumns ◦MixColumns), which are only separated by byte-
shuffling operations, that we may call SuperShiftRows (ShiftRows ◦ BigShiftRows).

9.1.2.1 Super-SBox

The Super-SBox has first been analyzed by Daemen and Rijmen in [DR06b] to study two
rounds of AES and has been independently used by Lamberger et al. in [LMR+09] and Gilbert
and Peyrin in [GP10] to analyze AES-based hash functions. We have already described this
non-linear construction in Section 7.2.

1Initial Vector.

9.1. DESCRIPTION OF ECHO 223

9.1.2.2 SuperMixColumns

In a similar way, by permuting the BigShiftRows transformation with the parallel MixColumns
transformations of the second AES round, a new “super” linear operation has been introduced
by Martin Schläffer in [Sch10], which works on column-slices of size 16× 1.

The matrix of the SuperMixColumns transformation is defined as the Kronecker product
(or tensor product) of M with itself, M being the matrix of the MixColumns operation in the
AES:

MSMC = M⊗M

=

2M 3M M M
M 2M 3M M
M M 2M 3M

3M M M 2M

=

4 6 2 2 6 5 3 3 2 3 1 1 2 3 1 1
2 4 6 2 3 6 5 3 1 2 3 1 1 2 3 1
2 2 4 6 3 3 6 5 1 1 2 3 1 1 2 3
6 2 2 4 5 3 3 6 3 1 1 2 3 1 1 2
2 3 1 1 4 6 2 2 6 5 3 3 2 3 1 1
1 2 3 1 2 4 6 2 3 6 5 3 1 2 3 1
1 1 2 3 2 2 4 6 3 3 6 5 1 1 2 3
3 1 1 2 6 2 2 4 5 3 3 6 3 1 1 2
2 3 1 1 2 3 1 1 4 6 2 2 6 5 3 3
1 2 3 1 1 2 3 1 2 4 6 2 3 6 5 3
1 1 2 3 1 1 2 3 2 2 4 6 3 3 6 5
3 1 1 2 3 1 1 2 6 2 2 4 5 3 3 6
6 5 3 3 2 3 1 1 2 3 1 1 4 6 2 2
3 6 5 3 1 2 3 1 1 2 3 1 2 4 6 2
3 3 6 5 1 1 2 3 1 1 2 3 2 2 4 6
5 3 3 6 3 1 1 2 3 1 1 2 6 2 2 4

.

As described previously in Section 4.2, the matrix M represents a maximum distance
separable (MDS) code: it has good diffusion properties since its branch number, i.e. the sum of
input and output active bytes, will always be 0 or greater than 5. However, Martin Schläffer
noted in [Sch10] that MSMC is not a MDS matrix and its branch number is only 8, and not 17.
This surprising linear behavior affects the security of the primitive as the diffusion is not as
perfect as it could be.

From this observation, it is possible to build sparse truncated differentials (Figure 9.6) where
there are only 4 active bytes in both the input and the output slices of the transformation. The
differential characteristic 4 → 16 → 4 holds with probability 2−24, which reduces to 28 the
number of valid differentials, among the 232 existing ones.

For a given position of output active bytes, valid slices of differences actually lie in a
subspace of dimension one. In particular, in order for slice s, s ∈ {0, 4, 8, 12}, to follow the

224 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

MC BMC

SuperMixColumns

Figure 9.6: The SMC layer in the particular case of the truncated differential 4→ 16→ 4 for a single
slice. This figure shows four parallel slices of the type 4→ 16→ 4. Black bytes are active where white
ones are inactive.

truncated differential 4→ 16→ 4 of Figure 9.6, we need to pick each slice of differences in the
one-dimensional subspace spanned by the vector vs, where:

v0 = [E000 9000 D000 B000]T,

v4 = [B000 E000 9000 D000]T,

v8 = [D000 B000 E000 9000]T,

v12 = [9000 D000 B000 E000]T.

While this new approach of the combined linear layers allows to build sparser truncated
differentials, it also caused erroneous conclusions when it has been used in the original
article [Sch10]. Namely, at the end of the attack, where two partial solutions need to be
merged to get a solution for the whole differential characteristic, everything relies on this
critical transformation: we need to solve 16 systems of linear equations that do not always
have solution. This is due to the fact that several sub-matrices of MSMC used in the system
resolutions do not have full rank.

In more detail, the error in [Sch10] boils down to the linear equation

MSMC

[
a0 x0 x1 x2 a1 x3 x4 x5 a2 x6 x7 x8 a3 x9 x10 x11

]T
=

[
b0 b1 b2 b3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

]T
,

(9.1)

where ai and bi are known values, xi are unknowns and ∗ is any value in GF(28). It has been
assumed in [Sch10] this equation has solutions for any values of the constants ai, bi. We show
in the following that the structure of the matrix MSMC makes the analysis more complex, and
some constants in particular are not independent but are expressed as linear functions of the
others.

By discarding the lines from MSMC associated to the unspecified values ∗ of the Equation 9.1,

9.1. DESCRIPTION OF ECHO 225

we can rewrite it as:

6 2 2 5 3 3 3 1 1 3 1 1
4 6 2 6 5 3 2 3 1 2 3 1
2 4 6 3 6 5 1 2 3 1 2 3
2 2 4 3 3 6 1 1 2 1 1 2

×

x0
...

x11

 =

4 6 2 2
2 3 1 1
2 3 1 1
6 5 3 3

×

a0

a1

a2

a3

⊕

b0

b1

b2

b3

 .

Then, by transforming this system of linear equations into reduced row echelon form, we
get:

1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

×

x0
...

x11

 =

c0

c1

c2

c3

 ,

where c0, . . . , c3 are linear functions of a0, . . . , a3, b0, . . . , b3, and the fourth equation gives a
linear relation between them such that the system is consistent. In this particular case, the
relation is:

2a0 + 3a1 + a2 + a3 = 14b0 + 11b1 + 13b2 + 9b3.

As long as this relation is verified, the system is consistent, but for random values of the
constants, there is no solution with probability 255/256.

In total, there are 16 possibilities to generalize Equation 9.1, by combining the positions of
the constants. Namely, we denote by α ∈ {0, . . . , 3} the four scenarios (α, 4 + α, 8 + α, 12 + α)
for the positions of the ai, and by β ∈ {0, . . . , 3} the four scenarios (4β, 4β + 1, 4β + 2, 4β + 3)
for the positions of the bi. We denote Sα,β the resulting system, such that Equation 9.1 would
refer to S0,0. The following Table 9.1 lists all the linear constraints for all the 16 scenarios.

226 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

α β Condition for Sα,β

0 0 14b0 + 11b1 + 13b2 + 9b3 = 2a0 + 3a1 + a2 + a3

1 0 11b0 + 13b1 + 9b2 + 14b3 = 2a0 + 3a1 + a2 + a3

2 0 13b0 + 9b1 + 14b2 + 11b3 = 2a0 + 3a1 + a2 + a3

3 0 9b0 + 14b1 + 11b2 + 13b3 = 2a0 + 3a1 + a2 + a3

0 1 14b0 + 11b1 + 13b2 + 9b3 = a0 + 2a1 + 3a2 + a3

1 1 11b0 + 13b1 + 9b2 + 14b3 = a0 + 2a1 + 3a2 + a3

2 1 13b0 + 9b1 + 14b2 + 11b3 = a0 + 2a1 + 3a2 + a3

3 1 9b0 + 14b1 + 11b2 + 13b3 = a0 + 2a1 + 3a2 + a3

0 2 14b0 + 11b1 + 13b2 + 9b3 = a0 + a1 + 2a2 + 3a3

1 2 11b0 + 13b1 + 9b2 + 14b3 = a0 + a1 + 2a2 + 3a3

2 2 13b0 + 9b1 + 14b2 + 11b3 = a0 + a1 + 2a2 + 3a3

3 2 9b0 + 14b1 + 11b2 + 13b3 = a0 + a1 + 2a2 + 3a3

0 3 14b0 + 11b1 + 13b2 + 9b3 = 3a0 + a1 + a2 + 2a3

1 3 11b0 + 13b1 + 9b2 + 14b3 = 3a0 + a1 + a2 + 2a3

2 3 13b0 + 9b1 + 14b2 + 11b3 = 3a0 + a1 + a2 + 2a3

3 3 9b0 + 14b1 + 11b2 + 13b3 = 3a0 + a1 + a2 + 2a3

Table 9.1: Linear constraint required to ensure the consistency of the system of linear equations Sα,β.

9.1.3 Current cryptanalysis

We give in this section the most notable cryptanalytic results published on the building blocks of
the ECHO-256 hash function. The larger ECHO-512 hash function has received significantly
less amount of cryptanalysis, but we note that all the attacks listed here can probably be
adapted in some ways to this larger case.

Table 9.2: Best known cryptanalytic results on ECHO-256 to date.

Target Rounds Time Memory Generic Type Reference

IP

7 2384 264 21024 Dist. [MPRS09]

8 2768 2512 21024 Dist. [GP10]

8 2182 237 2256 Dist. [SLW+10]

8 2151 267 2256 Dist. [NP11]

CF

4 252 216 2256 Collision Section 9.2.1, [JF11]

6 2193 2128 2256 Collision Section 9.2.5, [JNPS11a]

6 2160 2128 2256 Collision * Section 9.2.6, [JNPS11b]

7 2193 2128 2240 Dist. Section 9.2.4, [JNPS11a]

7 2160 2128 2240 Dist. * Section 9.2.6, [JNPS11b]

HF
4 264 264 2128 Collision Section 9.2.2, [JNPS11b]

5 2112 285.3 2128 Collision Section 9.2.3, [JNPS11a]
IP: Internal Permutation. Dist.: Distinguisher.
CF: Compression Function. * : Chosen salt
HF: Hash Function.

9.2. ATTACKS ON ECHO-256 227

9.2 Attacks on ECHO-256

In this section, we present the most efficient cryptanalytic results that has been published on
ECHO. The earliest results working at the AES-state level like done in [GP10, MPRS09] are not
considered here. Indeed, the latest results have shown that an analysis conducted at the byte
level yields much lower time complexities as we can control more precisely the propagation of
differences.

We describe several attacks on both the compression function and the hash function.

1. In Section 9.2.1, we give a collision attack on the 4-round compression function that
has been published in a paper co-authored by Pierre-Alain Fouque at Fse 2011 in [JF11],
which corrects the previous attack from [Sch10].

2. In Section 9.2.2, we extend the previous attack from the compression function reduced to
4 rounds to the hash function reduced to 4 rounds [JNPS11b].

3. In Section 9.2.3, we show a collision attack on the hash function reduced to 5 rounds that
has been published in an article written with María Naya-Plasencia and Martin Schläffer
at Sac 2011 in [JNPS11a].

4. In Section 9.2.4, we present a distinguishing attack on the compression function reduced
to 7 rounds, and has been published in the same article as the previous one.

5. In Section 9.2.5, we extend the previous attack with a free-start collision attack on the
6-round compression function.

6. In Section 9.2.6, we show how the salt can be used to decrease the time complexity of
the 7-round distinguisher (near-collisions) on the compression function and to reach a
collision attack on the compression function reduced to 6 rounds [JNPS11b].

9.2.1 Collision attack on the 4-round compression function

This attack has been published at Fse 2011, mostly to emphasize an error in a previous paper
and corrects it by mounting an collision attack on the ECHO-256 compression function reduced
to four rounds.

The new attack exploits ideas from the rebound strategy, but uses them a bit differently
in almost all the steps of the attack. The intuition is simple and is justified by the two levels
of ECHO: one state of ECHO is built on top of 16 AES states, which are independent at some
point during the inner permutation. In the original rebound technique, the randomization of
differences around the non-linear layer is performed on the same state, whereas in ECHO, we
can randomize one state without affecting the others thanks to this independency.

In more detail, rather than randomizing the differences in both sides of the non-linear layer,
we can use some of the independent states to randomize both the values and n differences on
one side, propagate them towards the other side, and therefore solve linear equations to deduce
the n independent differences on this side. Now, we can apply the original rebound technique
on a problem reduced by n.

228 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

9.2.1.1 Truncated differential characteristic

The truncated differential characteristic we use (see Figure 9.7) is mostly borrowed from [Sch10]
and counts 418 active S-Boxes for the ECHO-permutation reduced to 4 rounds. In comparison
to the characteristic from [Sch10], we increase significantly the number of active S-Boxes in
the first round to decrease the time complexity of the attack. The attack being quite technical,
colors have been used in order to improve the reader’s understanding of the attack.

We begin by describing an elementary algorithm used to find paired inputs to sparse
differentials in the Super-SBox, and we continue by the explanation of the complete attack.

9.2.1.2 Super-SBox sparse differentials

In the differential characteristic described, there are many differential transitions through the
Super-SBox of the third round where input differences are reduced to one active byte. We are
then interested in differential transitions such as the one described in Figure 9.8. For this kind
of transition, we could find a paired input following a given differential by using the DDT of
the Super-SBox but this would require about 264 operations and 264 memory units to store
the information. Even if in this particular case, one could compute and store smaller tables of
240 elements for the four possible positions of active bytes, we show in the following how to
construct a pair of columns satisfying this differential in about 27 computations.

We denote the input difference of Figure 9.8 by ∆i = [δi, 0, 0, 0]T, which is reduced to
a single active byte δi arbitrarily set at position 0 and let the output difference be ∆o =[
δ1

o , δ2
o , δ3

o , δ4
o
]T. We want to find a pair of AES-columns (c1, c2) following the differential

∆i → ∆o; that is:

c1 ⊕ c2 = ∆i,

and: Super-SBox(c1)⊕ Super-SBox(c2) = ∆o.

We can already estimate the number of solutions of this problem. With fixed input and
output differences, there are exactly 232 possible input pairs, which are transformed into 232

output pairs with an assumed uniform distribution of differences. This hypothesis is classical
and justified by the good differential properties of the AES S-Box. Consequently, the particular
output difference given as parameter is reached with probability 2−32, which makes on average
232−32 = 1 solution to the problem.

To find this solution efficiently, we start by precomputing the differential distribution table of
the AES S-Box in 216 computations. The differential properties of the AES S-Box (Theorem 4.2)
restrict the number of output differences of the first SubBytes layer to 27 − 1. Denoting δ′i one
of the output differences of this layer and λ the associated value such that

S−1(λ) + S−1(λ + δ′i) = δi, (9.2)

we can propagate this difference ∆′i = [δ′i , 0, 0, 0]T linearly to learn the four differences at
the input of the second SubBytes layer. We note ∆′o = MC(∆′i) = [δ1

o
′, δ2

o
′, δ3

o
′, δ4

o
′
]T those

differences. Here, both the input and the output differences are known and the four differentials
δi

o
′ → δi

o in the S-Box have non-zero differential probability with probability approximately

9.2. ATTACKS ON ECHO-256 229

S
0

S
R

S
1

S
B

S
2

M
C

S
3

S
B

S
4

S
R

S
5

B
S
R

S
6

M
C

S
7

B
M
C

S
8

S
8

S
R

S
9

S
B

S
1
0

M
C

S
1
1

S
B

S
1
2

S
R

S
1
3

B
S
R

S
1
4

M
C

S
1
5

B
M
C

S
1
6

S
1
6

S
R

S
1
7

S
B

S
1
8

M
C

S
1
9

S
B

S
2
0

S
R

S
2
1

B
S
R

S
2
2

M
C

S
2
3

B
M
C

S
2
4

S
2
4

S
R

S
2
5

S
B

S
2
6

M
C

S
2
7

S
B

S
2
8

S
R

S
2
9

B
S
R

S
3
0

M
C

S
3
1

B
M
C

S
3
2

⊕

S
3
3

B
F

S
3
4

Figure 9.7: The truncated differential characteristic used in this attack on the ECHO-256 compression
function reduced to four rounds. To find a valid pair of messages, we split the characteristic into two
parts: the first inbound between S7 and S14 (red bytes) and the second inbound between S16 and S31
(yellow bytes). Black bytes are the only active bytes, blue bytes come from the chaining value and gray
bytes in the first round are set to get a collision (or a near-collision) in the compression step.

230 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

∆i

δi

SB

λ

∆′i

δ′i

MC

λ1

λ2

λ3

λ4

∆′o

δ1
o
′

δ2
o
′

δ3
o
′

δ4
o
′

SB

∆o

δ1
o

δ2
o

δ3
o

δ4
o

Figure 9.8: A sparse differential in the Super-SBox with only one active input byte.

2−4. Since we can restart with 27 − 1 different δ′i , we get approximately 23 valid differential
transitions. Each of these transitions fixes the underlying values, noted λ1, λ2, λ3, λ4.

At this point, all intermediate differences conform to the characteristic, but in terms of
values, we need to ensure that λ is consistent with λ1, λ2, λ3, λ4. To check this, we exhaust the
24 − 1 valid vectors of values we can build by interchanging λi and λi + δi

o
′
. All in all, among

the 23+4 vectors of values we can build, only a fraction 2−8 satisfies the 8-bit condition on λ.
This means that the considered differential transition ∆i → ∆o through the Super-SBox occurs
with probability 2−1 and if the transition exists, we can recover an actual AES-column pair in
about 27 computations. We note that the cost of generating the 24 vectors when the differentials
exist is absorbed by all the cases where the differentials are impossible.

We note that our strategy to adapt the general case of the Super-SBox when the input (or
output) differences verify additional properties has also been independently considered by
Sasaki et al. in [SLW+10] that we have described in Section 7.2.2.2.

9.2.1.3 Finding a message pair

To find a pair of messages that follows the differential characteristic of Figure 9.7, our attack
splits the whole characteristic into two distinct inbound phases and merges them at the end.
In the sequel, we refer to these two parts as first inbound and second inbound. The attack of
Schläffer in [Sch10] proceeds similarly but uses the basic rebound attack technique in the two
inbounds. We reuse this idea of finding pairs of messages conforming to partial truncated parts
but most of our new techniques avoid the rebound attack on the Super-SBox.

Both inbounds are represented in Figure 9.7: the first one starts in S7 and ends in S14 and
fixes the red bytes of the two messages, whereas the second one starts at S16 until the end of
the four rounds in S31 and fixes the yellow bytes. We also represent the chaining value in the
first round of the characteristic by the blue bytes. We now give an overview of the attack, and
then describe to all the steps in a more detailed way.

Step 1. We begin by finding a pair of BigColumns satisfying the truncated characteristic
reduced to the first BigColumns between S7 and S12. This is done with a randomized AES-
state on the column, used to solve linear equations giving all differences between S7 and S9.
Indeed, differences between S7 and S9 for the first column only depend on the four differences

9.2. ATTACKS ON ECHO-256 231

in S7[2,0]2. Then, we search for valid differential transitions through the AES S-Box between S9
and S10 to finally deduce a good pair of BigColumns.

Step 2. Once we have solved the first BigColumn, we can deduce all differences between S12
and S16. Indeed, the sparse SuperMixColumns transition imposes strong constraints on the
differences as exposed in Section 9.1.2.2, and we thus have a starting point to find a message
pair for the second inbound of the whole truncated characteristic: namely, states between S16
and S31 (yellow bytes). To do so, the idea is similar as in Step 1: since all differences between
S20 and S24 only depend on the four differences of S243, we can use a randomized AES-column
c in S18 to get four independent linear equations in S20 and thus deduce all differences between
S20 and S24. Then, we search for input values for the 15 remaining sparse differentials in the
Super-SBox with the dedicated efficient algorithm.

Step 3. First, we find a pair of BigColumns between S7 and S12 similarly as before, indepen-
dently for the second and the third BigColumns. We enforce the linear constraints imposed by
the sparse differential in the SuperMixColumns and merge the solutions from the first and
second inbounds by deterministically deducing the last pair of BigColumns. Then, we verify
probabilistically that the truncated characteristic for the BigColumn is verified, which holds
with probability 2−32.

Step 4. We reach the collision in the feed-forward of the compression function by consuming
the remaining freedom degrees in the gray bytes of state S7 to force a zero sum between S0
and S32. The attack time complexity can be made practical at this point by discarding the
zero-difference requirement of the collision on some bytes to produce near-collisions.

9.2.1.4 Step 1 - Partial first inbound

This step finds a pair of BigColumns satisfying the truncated differential of Figure 9.9a. The
reason why we consider the first column separately is twofold: first, this allows to enforce the
extra linear relations imposed by the sparse differential in the SuperMixColumns between
S14 and S16, and also to avoid the rebound technique on the Super-SBox which would be less
efficient than our method.

As described on Figure 9.9b, we begin by choosing random values (λ0, λ1, λ2, λ3) for the
first AES-column of S11[0,0] (blue bytes), and a random value δ for the difference in that column.
We note that we have about 28×4 × (28 − 1) ≈ 240 ways of selecting this pair of AES-columns.
Since both values and differences are known, we can propagate them backwards until S8, and
therefore compute the differences in S8[0,0]. As there is only one active byte per slice in the
considered BigColumn of S7, each of the associated four slices of S8 lies in a subspace of
dimension one. Therefore, solving four simple linear systems leads to the determination of the
12 other differences of S8.

Therefore, in the active slice of S9 of Figure 9.9 at the input of the SubBytes layer, the four
first paired bytes have known values and differences, whereas in the 12 other positions, only
differences are set. We now randomize the three remaining differences in S11 and linearly
compute the differences in the corresponding states in S10. With probability 2−12, we find good

2Linear relations can be deduced by linearly propagating differences in S7[2,0] forwards until S9.
3Linear relations can be deduced by linearly propagating the four differences of S24[0,0] backwards until S20.

232 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

BMC SR SB MC

δλ0
λ1
λ2
λ3

S7 S8 S9 S10 S11

(a) Truncated differential. (b) Flow of AES states.

Figure 9.9: Truncated differential characteristic (a) used for the first inbound of the attack for one
BigColumn. We represent on (b) the order in which AES states are randomized (black) or deduced by
a small rebound attack (gray).

values for these 12 paired byte pairs, so we need to repeat this process about 212 times with
new differences in S11.

All in all, we can restart about 240 × (28 − 1)3 ≈ 264 times, but we only need 212 operations
to find a paired BigColumn that conforms to the truncated differential. We note that as soon
as we get one solution, we can construct 212 of them by swapping elements. Consequently, we
can get up to 264 solutions, but the cost to get on is 212 computations.

9.2.1.5 Step 2 - Second inbound

We now get a partial message pair conforming to the first inbound of the truncated characteristic
reduced to a single BigColumn. Rather than completing this partial message pair for the three
other active slices in S12, we now find a message pair conforming to the second inbound of the
truncated characteristic, located in the third round from S16 to S24 (yellow bytes).

Indeed, the knowledge of a single active slice pair of S12 is sufficient to get a starting point
to find a message pair for the second inbound, i.e. yellow bytes. This is due to the sparse
transition in the SuperMixColumns: as explained in Section 9.1.2.2, differences in S14 lie in
subspaces of dimension 1. In particular, once a slice pair for the first slice of S12 is known and
computed forwards to S14 (black and red bytes on Figure 9.10), there is no more choice for the
other differences in S14.

Consequently, all differences between S12 and S17 have been determined by linearity of
involved transformations, and in particular, we know the differences of states S16 and S17.

At this point, only the input differences of the 16 Super-SBoxes of the third round are
known in state S17. We note that all operations between S20 and S24 are linear, so that any
differences in those states can be expressed as a linear function of any four differences, for
example the four differences in the first AES-column of S20[0,0] (black bytes on Figure 9.11).

We start by randomizing the difference δ in the state S20, at the output of the SubBytes layer
where the corresponding input difference has already been fixed previously. As a consequence,
we determine in average one value λ0 for that byte. Then, we randomize the values of the

9.2. ATTACKS ON ECHO-256 233

S12

SR

S13

BSR

S14

SuperShi�Rows

Figure 9.10: The SuperShiftRows layer where only the values and differences of the first slice of S12
are known (black and red bytes).

δ λ0

λ1

λ2

λ3

MC

S18[0,0]

SB

S19[0,0] S20[0,0]

Figure 9.11: The MixColumns and SubBytes transitions on the first AES-column between S18[0,0] and
S20[0,0].

inactive bytes of the same column, that we denote λ1, λ2 and λ3. We compute the image of this
paired AES-column forwards until S20, where we compute the four differences, and as stated
before, this allows to compute all the differences between S20 and S24.

S17

SB

S18

MC

S19

SB

S20

Super-SBox

Figure 9.12: Last step to get a partial message pair conforming to the second inbound of the characteristic:
finding the 15 remaining AES-columns using the sparse Super-SBox properties. Black bytes are active
and yellow bytes have already been defined in the previous step, as well as differences of the first
AES-column of the first AES-state. Gray bytes are inactive and the target of this step.

We now have 15 sparse differentials in the Super-SBox between S17 and S20 where all
differences have been previously set. As described in Section 9.2.1.2, the 15 transitions have
a non-zero differential probability simultaneously with probability 2−15 and by the efficient
algorithm we have proposed, we can recover the 15 AES-column pairs in parallel in about
27 simple operations. We expect to find a solution after 215 retries, for an overall cost of
215+7 = 222 simple operations. We note that for a single starting point in S17, we can get up to
(27 − 1)× 28×3 × 2−15 ≈ 216 solutions for that part (the yellow bytes).

234 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

In the collision attack on the compression function, we further extend this step by proba-
bilistically filtering the active bytes in the MixColumns transition between S26 and S27. Among
the 216 partial pairs of messages we can build that follow the truncated characteristic between
S16 and S26, we expect only one to verify the 4→ 2 transition in the MixColumns. If found,
this pair conforms to the truncated characteristic until the end of the four rounds. We note
that we reduce to two active bytes and not one or three as this is the best tradeoff to lower the
overall time complexity of the collision attack.

9.2.1.6 Step 3 - Merging the two inbounds

Here, we merge the solutions from the first and second inbounds of the characteristic. We
begin by repeating step 1 for the second and the third BigColumns between S7 and S11. Thus,
what we have found so far is a partial pair of messages for the first inbound and a partial pair
of messages that fixed the yellow bytes in the second inbound. To merge them, we need to
consider the extra linear conditions imposed at the sparse SuperMixColumns differential. In
detail, we write independently 16 systems of linear equations like Equation 9.1 and we derive
for each of the 16 slices the formal condition reported Table 9.1. In each of the 16 relations, all
but one variables have been fixed by the previous steps. Indeed, the fourth paired BigColumn
in the first inbound has been left unset to enforce the linear relations.

Consequently, we merge the solutions by deducing the missing parts of the partial pair
of messages in the first inbound. As we have not controlled the truncated behavior of the
last BigColumn, we then need to ensure that it conforms to the truncated characteristic of
Figure 9.7. Namely, we want four transitions 3← 4 between S8 and S7 in the BigMixColumns,
which holds with probability (2−8)4 = 2−32. So we need to repeat all the previous steps
about 232 times, at a cost of about 232 × 24 = 236 computations by generating a new paired
BigColumn for the third column.

9.2.1.7 Step 4 - Reaching the collision

After four rounds, the reduced compression function applies the feed forward and XORs the
four BigColumns together (BigFinal):

S33← S0⊕ S32,

h′ ← S33[∗, 0]⊕ S33[∗, 1]⊕ S33[∗, 2]⊕ S33[∗, 3].

This compression operation allows to build the differential characteristic such that differ-
ences would cancel out each other. As shown on Figure 9.13, states S0 and S32 XORed together
lead to state S33 where there are three active AES-states in each row. In terms of differences, if
each row sums up to zero, then we get a collision for the compression function in S34 after the
BigFinal.

As we constructed the characteristic until now, in both S0 and S32, we still have freedom
on the values (bytes in white): only differences in S32 located in the two first slices are known
from the message pair conforming to the second inbound of the truncated characteristic. Since
we want zero difference in h′, these differences impose constraints on the two other active
pair states per row in S0. Namely, for each row r of S0 where active AES states are located in

9.2. ATTACKS ON ECHO-256 235

S0

4R

S32 S33

Figure 9.13: Feed-forward after the inner permutation reduced to 4 rounds. Gray bytes are active with
known values and differences; black bytes are active with unknown values and differences; blue, yellow
and green bytes are inactive with known values.

columns cr and c′r, we have

∆S0[r, cr]⊕ ∆S0[r, c′r] = ∆S32[r, 0].

Additionally, differences in S4 are known by linearly propagating the known differences from
S7.

After the feed-forward, we reach a collision by canceling differences of each row inde-
pendently: we describe the reasoning for an arbitrary row. We want to find paired values
in the two active states of the considered row of S0, say (A, A′) and (B, B′), such that they
propagate with correct differences in S4, which are known, and with correct diagonal values
(red bytes) in S7 after the MixColumns. In the sequel (Figure 9.14), we subscript the AES-state
A by j to indicate that Aj is the AES-state A propagated until ECHO-state Sj with relevant
transformations according to Figure 9.7.

SR S-SB SR MC

A0 B0 A1 B1 A4 B4 A6 B6 A7 B7

A′0 B′0 A′1 B′1 A′4 B′4 A′6 B′6 A′7 B′7

Figure 9.14: Propagation of the pairs of AES-states (Ai , A′i) and (Bi , B′i) in a single ECHO-row in the first
round. Non-white bytes represent active bytes; those in S7 (in red) are the known values and differences
from the message pair conforming to the first inbound of the truncated characteristic.

The known differences of S4 actually sets the output differences of the Super-SBox layer:
namely,

A4 ⊕ A′4 = ∆4

and B4 ⊕ B′4 = ∆′4,

where ∆4 and ∆′4 are the known differences in the considered row of S4, which are known.
The constraint on the known diagonal values in A7 and B7 restricts the available freedom in
the choice of the AES-columns of A6 and B6 (and linearly, to their equivalent A′6 and B′6 with
diagonal values in A′7 and B′7) to reach the already-known diagonal values in S7 (red bytes),
due to the first inbound as well.

An alternative way of stating this is: we can construct freely the three first columns of
(A4, A′4) and (B4, B′4) and deduce deterministically the fourth ones with the next MixColumns

236 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

transition, since 4 out of 8 input or output bytes of MixColumns fix the 4 others. Furthermore,
this means that if the three first columns of A1, A′1, B1 and B′1 are known, then we can learn the
values of the remaining columns of S1 (bytes in gray).

We thus search for valid input values for the three first Super-SBoxes of S1: to do so, we
randomize the two differences per AES-column in this state and get valid paired values with
probability 2−1 in 214 computations with respect to the output differences ∆4, by guessing the
two differences inside the Super-SBox. Consequently, we can deduce the differences of the
same AES-columns in B1⊕ B′1 to get a zero sum with S32 after the BigFinal. This holds with the
same 2−1 probability, with respect to ∆′4. Once we have the three differential transitions for the
three first AES-columns of both AES-states, all the corresponding values are then known and
we propagate them in A6, A′6, B6 and B′6 (black bytes). Since in S7, diagonal values are known,
we deduce the remaining byte of each column in A6, A′6, B6 and B′6 (gray) and propagate them
backwards until S1.

The final step defines the nature of the attack: to get a collision, we check if those constrained
values cancel out in the feed-forward, which holds with probability 2−32. Restarting with new
random values in S1 and in parallel on the four rows, we find a collision in 214 22 232 = 248

computations. Indeed, we need to repeat 232 times the search for valid paired input values for
the Super-SBox, which is done in time 214 and succeeds with probability 2−2.

After we have found message pairs following both inbounds of the truncated differential
characteristic so that the merge is possible, we need to finalize the attack by merging the two
partial solutions. This means finding values for each white bytes in the truncated differential
characteristic, and in particular, at the second SuperMixColumns transition between S14 and
S16. For each of the 16 slices, we get a system of linear equations like Equation 9.1. In each
solution set, each variable only depends on 3 others, and not on all the 11 others. This stems
from the strong structure of the matrix MSMC. For example, in the first slice, we have:

L0(x0, x3, x6, x9) = c0

L1(x1, x4, x7, x10) = c1

L2(x2, x5, x8, x11) = c2

where L0, L1, L2 are linear functions and c0, c1, c2 constants linearly deduced from the 8
known-values ai and bi, 0 ≤ i ≤ 3, of the considered system. Consequently, by indirectly
choosing values for gray bytes in S14, we set the values of half of the unknowns per slice. For
example, the system for the first slice becomes:

L′0(x0, x3) = c′0
L′1(x1, x4) = c′1
L′2(x2, x5) = c′2

where L′0, L′1, L′2 are linear functions and c′0, c′1, c′2 some constants. Those three equations are
independent, which allows to do the merge in three steps: one on each pair of slices (1, 5),
(2, 6) and (3, 7) of S12. The Figure 9.15 represents in color only the first step, on the slice pair
(1, 5) of S12. We show in following that each of the three steps can be done in 232 computations,
by focusing on the first one.

9.2. ATTACKS ON ECHO-256 237

S7

BMC

S8

SR

S9

SB-MC-SB

S12

SR-BSR

S14

Blue, red and yellow bytes

Green bytes

Figure 9.15: After randomization of states S7[1,3] and S7[2,2], all values of gray bytes are known. Colors
show the flow of values in one step of the merging process.

Because of the dependencies between bytes within a slice in S14, any choice of blue bytes in
S12[0,0] determines blue bytes on S12[1,1] (and the same for yellow and red bytes, Figure 9.15).
In total, we can choose

(
28×4

)3
= 296 different values for the blue, yellow and red AES-columns

of state S12. Since we are dealing with values, we propagate them backwards until S8. The
BigMixColumns transition from S7 to S8 for these two slices imposes the 8 green values in
S8[2,0] and S8[3,1]. Going forwards through the Super-SBox, we deduce green values in S14
and check whether the four pairs of green bytes satisfy the linear constraints in S14, which
occur with probability

(
2−8
)4

= 2−32. We then have to restart with approximately 232 new blue
bytes and random yellow and red ones before satisfying the four constraints simultaneously.

After repeating this step for slices (2, 6) and (3, 7), we get a valid message pair that follows
all the truncated differential characteristic of Figure 9.7.

9.2.1.8 Experimental verification

We have implemented every part of this attack to check the validity of our claims and avoid a
new introduction of mistakes. As detailed in the last part, we have decreased the requirements
of the attack to get a practical time complexity. As a result, we can produce near-collisions in
about 236 operations where the bottleneck is the very last step, with low memory requirements
of about 216 stored elements.

We give the following Table 9.3 as an example of a near-collision on 512− 4× 4× 8 = 384
bytes.

9.2.2 Collision attack on the 4-round hash function

In this section, we describe a way to extend the compression function collision attack presented
in the previous section into a collision attack on the 4-round hash function ECHO-256 with
time and memory complexity of 264. We have just shown how to find a message pair (M1, M′1)
and a chaining value h such that f (h, M1) = f (h, M′1), where f is the ECHO-256 compression
function. To get a collision in the hash function, the difference then consists in finding a
message block M0 which verifies f (IV, M0) = h. This way, the collision in the hash function is
the result of an internal collision in the compression function. Consequently, we do not need to

238 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

Table 9.3: Example of a near-collision on 384 bits out of 512 bits of the output of the ECHO-256
compression function reduced to 4 rounds. The constants added during the inner permutation have
been ignored. A byte difference .. means zero difference.

S[i, j] hi h′i hi ⊕ h′i
S0[0, 0] DEDF73AC E834ABF3 1DA654E7 8B80E057 DEDF73AC E834ABF3 1DA654E7 8B80E057
S0[1, 0] 8C82AF64 E938032D EA498F65 4F3FA168 8C82AF64 E938032D EA498F65 4F3FA168
S0[2, 0] A3DEC6EE BDD97F9C 69425DE7 B88FAE55 A3DEC6EE BDD97F9C 69425DE7 B88FAE55
S0[3, 0] E0276510 531114BA 8EA8ADD3 9037426B E0276510 531114BA 8EA8ADD3 9037426B

S[i, j] m m′ m⊕m′

S0[0, 1] B1B7D769 8B7AD57A 7B57FF05 472BECEF B1B7D769 8B7AD57A 7B57FF05 472BECEF
S0[1, 1] D9E41EF0 FB869029 29B437B2 CC398919 D9E41EF0 FB869029 29B437B2 CC398919
S0[2, 1] CAAAC63A E8B4F522 DCA83BB4 52227A82 B6477E77 581C4385 A0035D3E 8C061217 7CEDB84D B0A8B6A7 7CAB668A DE246895
S0[3, 1] 9142CAB0 D8421346 E35702E9 477A5AAB 6104E89C 8E995FCC 2AF9D466 B2C3D16C F046222C 56DB4C8A C9AED68F F5B98BC7
S0[0, 2] F097871F B8733C73 3BD02C4C F7004240 A1E83191 315E7268 04D6F3D6 BF87220C 517FB68E 892D4E1B 3F06DF9A 4887604C
S0[1, 2] A765E039 EB6C558F B444631F DD4BC1AB 6993F70F 5F87B6BF 6402FB87 CA7859C6 CEF61736 B4EBE330 D0469898 1733986D
S0[2, 2] BCEAEFAA 8304B57E F2C6732D D396D8F8 2507A8FD 67F83C71 9B523FBF 3534F32E 99ED4757 E4FC890F 69944C92 E6A22BD6
S0[3, 2] C406CB83 EA157529 E008A7CB 11675D1A 005DF381 40322440 16E70F34 454F1318 C45B3802 AA275169 F6EFA8FF 54284E02
S0[0, 3] 84258159 7A87E98E B750B21D 31D0F510 0429D2E3 5B02D7DE A22839AA 174013DA 800C53BA 21853E50 15788BB7 2690E6CA
S0[1, 3] A5808F25 DBDE4281 ECAFEF87 3607ACBB 8EEC6709 3B61D819 29D65D83 09B27795 2B6CE82C E0BF9A98 C579B204 3FB5DB2E
S0[2, 3] E9B4133F F7C776FC E9F2C741 754EBC6B E9B4133F F7C776FC E9F2C741 754EBC6B
S0[3, 3] 8C219844 7E17C475 7AED625F 3B685665 8C219844 7E17C475 7AED625F 3B685665

S[i, j] hi+1 h′i+1 hi+1 ⊕ h′i+1
S34[0, 0] 0EC3168C C7F787CA 4006FA09 3E29BA5E 0E55168C C7F714CA 4006FA0E C129BA5E ..96....93..07 FF......
S34[1, 0] FF729D65 2B555D10 AD0CF15C 9A9AFF87 FF179D65 2B55D810 AD0CF1D5 779AFF87 ..65....85..89 ED......
S34[2, 0] 7E2C1C9D 542E3BE0 AF880377 8887502A 7ED31C9D 542EF8E0 AF88037A 7587502A ..FF....C3..0D FD......
S34[3, 0] A776FCAF 96C2F792 FF051583 FF6482C6 A771FCAF 96C2F592 FF0515CC 0A6482C6 ..07....02..4F F5......

take care of the padding in that scenario. For any message M, we would have:

ECHO4R(IV, M0||M1||M) = ECHO4R(IV, M0||M′1||M),

where || denotes the concatenation of messages and ECHO4R the ECHO-256 hash function
reduced to 4 rounds.

As in most of the attacks on ECHO, we use the rebound technique with multiple inbound
phases to find a valid message pair. The truncated differential characteristic used here is the
same as in the previous section (Figure 9.7). The first inbound is located in the second round
between states S7 and S14 and can be done in parallel on the four BigColumns and the second
one is in the third round between states S16 and S24. We extend the latter by a probabilistic
outbound phase to filter out some of its valid pairs in order to reduce the number of active
bytes in the final fourth round. In the sequel, we consider the alternative description of the
permutation (see Section 9.1.2).

At first, we precompute and store the differential distribution table T of the Super-SBox
in time and memory 264. Then, we randomize the differences around the merging point: the
SuperMixColumns at the end of the second round. Using T , we find a pair of internal states
conforming to the second inbound and the outbound phase. This can be done in the same
way as in the previous attack in less than 264 computations. We then find a valid pair of
BigColumns for the first BigColumn in the first inbound: this fixes the value of diag(S7[0, 0])
overlapping with an AES state directly coming from the previous chaining value yet to be
determined.

By generating 264 message M0, we obtain a list L of 232 chaining values sharing the same
value on diag(S7[0, 0]). We now generate all the 232 possible BigColumns pairs for the second
BigColumn in the first inbound. For each pair, we compute the value of diag(S7[3, 1]): we
expect one element of L to share this value because L contains 232 elements. Consequently, we
can update L by completing each of its entries by the associated pair for the second BigColumn

9.2. ATTACKS ON ECHO-256 239

and get 232 pairs for L again. For the third BigColumn, we compute 264 pairs conforming to
the path among the 296 possible ones. With the same argument, for any element of L, we expect
to find 232 pairs where the value of diag(S7[2, 2]) matches the one dictated by that particular
chaining value. We link each of the 232 elements of L with a set E of 232 valid pairs for the third
BigColumn. In other words, we get 264 pairs where the three first BigColumns match the
respective chaining value.

At this point, each of the 232 entries of L consists of a chaining value h = f (IV, M0), a
pair of BigColumns for the two first BigColumns and a set E of 232 valid pairs for the third
BigColumn, all conforming to the first inbound. As demonstrated in the previous section, the
128-bit condition to merge the two inbound phases can be deported to the fourth BigColumn in
the first inbound. More precisely, once we know a pair for each of the three first BigColumns,
we can deduce the fourth one so that the merge around the SuperMixColumns layer is
possible. For each entry in L and for each associated set E, we are in that case so that we can
deduce the pair for the fourth BigColumn. Finally, we check if the truncated path is verified
for that BigColumn and if the value in diag(S7[3, 1]) matches the expected one. The two events
occur with probability 2−64 but since we can repeat the check 232 × 232 = 264 times, we should
find one M0 and one pair for each of the four BigColumns.

Finally, we can finish the attack as before by ensuring that the differences cancel out in the
feed-forward and by merging the two partial solutions. We note that the merging is slightly
different since we need to take care of the known AES states in S7 but we can still perform it in
less than 264 computations.

9.2.3 Collision attack on the 5-round hash function

In this section, we give a collision attack on the hash function ECHO-256 reduced to 5 rounds.
The strategy first finds a sparse truncated differential characteristic and then, we observe an
unwanted linear behavior in the output space of differences. This allows to efficiently find
collision in the hash output with the birthday algorithm. We give all the details of this attack in
the following sections.

9.2.3.1 The truncated differential characteristic

In this attack on the ECHO-256 hash function, we use two message blocks where the first one
does not contain differences. For the second one, we use the truncated differential characteristic
given in Figure 9.16. We use colors (red, yellow, green, blue, cyan) to describe different phases
of the attack and to denote their resulting solutions. Active bytes are denoted by black color,
and active AES states contain at least one active byte. Hence, the sequence of active AES states
for each round of ECHO is as follows:

5
r1−→ 16

r2−→ 4
r3−→ 1

r4−→ 4
r5−→ 16.

Note that in this truncated characteristic, we keep the number of active bytes low, except for
the beginning and end. Therefore, we have enough freedom to find many solutions. We do not
allow differences in the chaining input (blue) and in the padding (cyan). The last 16 bytes of
the padding contain the message length and the two bytes above contain the size of the hash

240 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

function output. Note that the AES states containing the chaining values (blue) and padding
(cyan) do not get mixed with other AES states until the first BigMixColumns transformation.
Since the lower half of the state (row 2 and 3) is truncated to compute the final hash value, we
force all differences to be in the lower half of the message: the feed-forward then preserves that
property.

9.2.3.2 Colliding subspace differences

In the following, we show that the resulting output differences after 5 rounds lie in a vector
space of reduced dimension. This can be used to construct a distinguisher for 5 rounds of the
ECHO-256 hash function. However, due to the low dimension of the output vector space, we
can even extend this distinguisher to get a collision attack on 5 rounds of the ECHO-256 hash
function.

First, we need to determine the dimension of the vector space at the output of the hash
function. This dimension is upper-bounded by the number of active bytes prior to the linear
transformations in the last round (16 active bytes after the last SubBytes), combined with
the number of active bytes at the input due to the feed-forward (0 active bytes in our case).
Here, with the characteristic from Figure 9.16, this would result in a vector space dimension of
(16+ 0)× 8 = 128. However, a weakness in the combined transformations SuperMixColumns,
BigFinal and the output truncation reduces the vector space to a dimension of 64 at the output
of the hash function for this characteristic.

We can indeed move the BigFinal function prior to SuperMixColumns, since BigFinal
is a linear transformation and the same linear transformation MSMC is applied to all columns
in the SuperMixColumns. Then, we get 4 active bytes at the same position in each AES
state of the 4 resulting column-slices. To each active column-slice C16, we first apply the
SuperMixColumns multiplication with MSMC and then, a matrix multiplication using

Mtrunc
def
:=
[

I8

∣∣∣ 08

]
,

which truncates the lower 8 rows. Since only 4 bytes are active in C16, these transformations can
be combined into a transformation using a reduced 4× 8 matrix Mcomb applied to the reduced
input C4, which contains only the 4 active bytes of C16:

Mtrunc ·MSMC · C16 = Mcomb · C4,

The multiplication with zero differences of C16 removes 12 columns of MSMC while the
truncation removes 8 rows of MSMC. For example, considering the first active column-slice
leads to:

Mtrunc ·MSMC ·
[

a 0 0 0 b 0 0 0 c 0 0 0 d 0 0 0
]T

=

4 6 2 2 6 5 3 3
2 3 1 1 4 6 2 2
2 3 1 1 2 3 1 1
6 5 3 3 2 3 1 1

T

︸ ︷︷ ︸
Mcomb

·

a
b
c
d

 .

Analyzing the resulting matrix Mcomb for all four active column-slices shows that in each
case, the rank of Mcomb is two, and not four. This reduces the dimension of the vector space in

9.2. ATTACKS ON ECHO-256 241

S
0

S
R

S
1

S
B

S
2

M
C

S
3

S
B

S
4

S
R

S
5

B
S
R

S
6

M
C

S
7

B
M
C

S
8

S
8

S
R

S
9

S
B

S
1
0

M
C

S
1
1

S
B

S
1
2

S
R

S
1
3

B
S
R

S
1
4

M
C

S
1
5

B
M
C

S
1
6

S
1
6

S
R

S
1
7

S
B

S
1
8

M
C

S
1
9

S
B

S
2
0

S
R

S
2
1

B
S
R

S
2
2

M
C

S
2
3

B
M
C

S
2
4

S
2
4

S
R

S
2
5

S
B

S
2
6

M
C

S
2
7

S
B

S
2
8

S
R

S
2
9

B
S
R

S
3
0

M
C

S
3
1

B
M
C

S
3
2

S
3
2

S
R

S
3
3

S
B

S
3
4

M
C

S
3
5

S
B

S
3
6

S
R

S
3
7

B
S
R

S
3
8

M
C

S
3
9

B
M
C

S
4
0

⊕

S
4
1

B
F

S
4
2

T
r
u
n
c

S
4
3

Figure 9.16: [

Rebound attack on 5 rounds of the ECHO hash function.] The truncated differential characteristic
to get a collision for 5 rounds of ECHO-256. Black bytes are active, blue and cyan bytes are
determined by the chaining input and padding, red bytes are values computed in the red
inbound phase, yellow bytes in the yellow inbound phase and green bytes in the outbound
phase.

242 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

each active column-slice from 32 to 16. Since we have four active columns, the total dimension
of the vector space at the output of the hash function is 64. Furthermore, column i ∈ {0, 1, 2, 3}
of the output hash value depends only on columns 4i of state S38. It follows that the output
difference in the first column i = 0 of the output hash value depends only on the four active
differences in columns 0, 4, 8 and 12 of state S38, which we denote by a, b, c and d. To get a
collision in the first column of the hash function output, we get the following linear system of
equations:

Mcomb ·
[

a b c d
]T

=
[

0 0 0 0 0 0 0 0
]T

.

Since we cannot control the differences a, b, c and d in the following attack, we need to find
a solution for this system of equations by brute-force. However, the brute-force complexity
is less than expected due to the reduced rank of the given matrix. Since the rank is two, 216

solutions exist and a random difference results in a collision with a probability of 2−16 instead
of 2−32 for the first output column. Since the rank of all four output column matrices is two,
we get a collision at the output of the hash function with a probability of 2−16×4 = 2−64 for the
given truncated differential characteristic.

9.2.3.3 High-level outline of the attack

To find input pairs according to the truncated differential path given in Figure 9.16, we use a
rebound attack with multiple inbound phases. Furthermore, we also use multiple outbound
phases and separate the merging process into three different parts which can be solved mostly
independently:

1. First Inbound between S16 and S24: find 296 partial pairs (yellow and black bytes) with
a complexity of 296 computations and 264 memory.

2. First Outbound between S24 and S31: filter the previous solutions to get 1 partial pair
(green, yellow and black bytes) with a complexity of 296 computations and 264 memory.

3. Second Inbound between S7 and S14: find 232 partial pairs (red and black) for each of
the first three BigColumns and 264 partial pairs for the last BigColumn of state S7 with
a total complexity of 264 computations and memory.

4. First Part in Merging the Inbound Phases: combine the 2160 solutions of the previous
phases according to the 128-bit SuperMixColumns condition given in Section 9.1.2.2.
We get 232 partial pairs (black, red, yellow and green bytes between state S7 and S31) with
296 computations and 264 memory.

5. Merge Chaining Input: repeat from Step 1 for 216 times to get 248 solutions for the
previous phases. Compute 2112 chaining values (blue) using 2112 random first message
blocks. Merge these solutions according to the overlapping 20 bytes (red with blue/cyan)
in state S7 to get 248 × 2112 × 2−160 = 1 partial pair in 2112 computations in time and 248

memory.
6. Second Part in Merging the Inbound Phases: find one partial solution for the first two

columns of state S7 according to the 128-bit condition imposed at the SuperMixColumns
transition between S14 and S16 with complexity 264 in time and memory.

7. Third Part in Merging the Inbound Phases: find one solution for all remaining bytes (last
two columns of state S7) by fulfilling the resulting 192-bit condition using a generalized
birthday attack with 4 lists [Wag02]. The complexity is 264 in time and memory to find

9.2. ATTACKS ON ECHO-256 243

one solution, and 285.3 computations and memory to find 264 solutions.
8. Second Outbound Phase to get Collisions: in a final outbound phase, the resulting

differences at the output of the hash function collide with a probability of 2−64 and we
get one collision among the 264 solutions of the previous step.

The total time complexity of the attack is 2112 computations and determined by Step 5; the
memory complexity is 285.3 and determined by Step 7.

9.2.3.4 Details of the attack

In this section, we describe in detail each step of the collision attack on 5 rounds of ECHO-256.
Note that some phases are also reused in the following attacks on the compression function of
Section 9.2.4.

First Inbound between S16 and S24

We first search for internal state pairs conforming to the truncated differential characteristic in
round 3 (yellow and black bytes). We start the attack by choosing differences for the active bytes
in state S16 such that the truncated differential characteristic of SuperMixColumns between
state S14 and S16 is fulfilled (Section 9.1.2). We compute this difference forward to state S17
through the linear layers.

We continue by randomly choosing differences for state S24 and compute them backwards
to state S20, the output of the Super-SBoxes. Since we have 64 active S-Boxes in this state,
the probability of a differential is about 2−1×64. Hence, we need 264 starting differences but
as soon as we get one, we can construct 264 of them, so we get 264 solutions for the inbound
phase in round 3 in about 264 operations. We determine the right pairs for each of the 16
Super-SBox between state S17 and S20 independently: using the differential distribution table
of the Super-SBoxes, we can find one right pair with average complexity one.

In total, we compute 296 solutions for this inbound phase in 296 computations and memory
complexity of at most 264 to store the DDT of the Super-SBoxes. For each of these pairs,
differences and values of all yellow and black bytes in the third round of Figure 9.16 are
determined.

Second outbound between S24 and S31

In the outbound phase, we ensure the propagation in round 4 of the truncated differential
characteristic by propagating the right pairs of the previous inbound phase forwards to state
S31. With a probability of (2−3×8)4 = 2−96, we get four active bytes after MixColumns in state
S31 (green) conforming to the truncated characteristic. Hence, among the 296 right pairs of the
inbound phase between S16 and S24, we expect to find one such right pair.

The total complexity to find this partial pair between S16 and S31 is then 296 computations
by exhausting the set of solutions obtained in previous step. Note that for this pair, the
values and differences of the yellow, green and black bytes between states S16 and S31 can
be determined. Furthermore, note that for any choice of the remaining bytes, the truncated

244 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

differential characteristic between state S31 and state S40 is fulfilled.

Second inbound between S7 and S14

Here, we search for many pairs of internal states conforming to the truncated differential
characteristic between states S7 and S14. Note that as we have done before in Figure 9.16 for
the 4-round attack, we can independently search for pairs for each of the four BigColumn in
state S7, since they stay independent until they are mixed by the following BigMixColumns
transformation between states S15 and S16. For each BigColumn, four Super-SBoxes are
active, and we need at least 216 starting differentials for each one to find the first right pair.

The difference in S14 is already fixed due to the yellow inbound phase but we can still
choose at least (28 − 1)4 ≈ 232 differences for each active AES state in S7. Using the rebound
technique, we can find one pair on average for each starting difference in the inbound phase.
Then, we independently iterate through all 232 starting differences for the first, second and
third column and through all 264 starting differences for the fourth column of state S7. We
get 232 right pairs for each of the first three columns and 264 pairs for the fourth column. The
complexity to find all these pairs is 264 in time and memory.

We note that while we could apply similar techniques as the one presented in the previous
attack (Section 9.2.1) that decrease the minimal time complexity of the rebound strategy, here
the gain would be negligible in comparison to the much higher complexities of all the other
steps.

For each resulting right pair, the values and differences of the red and black bytes between
states S7 and S14 can be computed. Furthermore, the truncated differential characteristic
in backward direction, except for two cyan bytes in the first states, is fulfilled. In the next
phase, we partially merge the right pairs of the yellow and red inbound phase together,
while also considering the extra linear conditions imposed by the sparse differential in the
SuperMixColumns.

First part in merging the inbound phases

Until now, we have constructed one pair for the yellow inbound phase and in total, 232 × 232 ×
232 × 264 = 2160 pairs for the red inbound phase. Among these 2160 pairs, we expect to find 232

right pairs which also satisfy the 128-bit condition of the SuperMixColumns between states
S14 and S16 (see Section 9.1.2.2). In the following, we show how to find all these 232 pairs using
a meet-in-the-middle strategy with a complexity of 296 operations.

First, we combine the 232× 232 = 264 pairs determined by the two first BigColumns of state
S7 in a list L1 and the 232 × 264 = 296 pairs determined by the last two BigColumns of state S7
in a list L2. Note that the pairs in these two lists are independent. Then, we separate the linear
relations from Table 9.1 into terms determined by L1 and terms determined by L2 to perform
the meet-in-the-middle.

Then, we can simply merge these lists to find those pairs which satisfy the 128-bit condition
imposed by the SuperMixColumns and store these results in list L12. This way, we get
264 × 296 × 2−128 = 232 right pairs with a total complexity of 296 computations. We note that the

9.2. ATTACKS ON ECHO-256 245

memory requirements can be reduced to 264 if we do not store the elements of L2 but compute
them online. The resulting 232 solutions are partial right pairs for the black, red, yellow and
green bytes between state S7 and S31.

Merge chaining input

Next, we need to merge the 232 results of the previous phases with the chaining input (blue)
and the bytes fixed by the padding (cyan). The chaining input and padding overlap with the
red inbound phase in state S7 on 5× 4 = 20 bytes. This results in a 160-bit condition on the
overlapping blue/cyan/red bytes. To find a pair verifying this condition, we first generate 2112

random first message blocks, compute the blue bytes of state S7 and store the results in a list
L3.

Additionally, we repeat 216 times from the yellow inbound phase but with other starting
points4 in state S24. This way, we get 216 × 232 = 248 right pairs for the combined yellow and
red inbound phases, which also satisfy the 128-bit condition of SuperMixColumns between
states S14 and S16. This requires about 216 × 296 = 2112 operations. We store the resulting 248

pairs in list L12.

Next, we merge the lists according to the overlapping 160 bits and get 248 × 2112 × 2−160 = 1
right pair. If we compute the 2112 message blocks of list L3 online, the time complexity of this
merging step is 2112 operations, with memory requirements of 248 states to store the list L12. For
the resulting pair, all differences between states S4 and S33 and all colored byte values (blue,
cyan, red, yellow, green and black) between states S0 and S31 can be determined.

Second part in merging inbound phases

To completely merge the two inbound phases, we need to find values for the white bytes. We
use Figure 9.17 to illustrate the second and third part of the merge inbound phase. In this
figure, we only consider values and therefore, do not show active bytes (black). Furthermore,
all brown and cyan bytes have already been chosen in one of the previous steps. In the second
part of the merge inbound phase, we only choose values for the gray and light-gray bytes. All
other colored bytes show steps of the third and last merging phase (next section).

S7

BMC

S8

SR-SB-MC
SB-SR-BSR

S14

MC
BMC

S16

Figure 9.17: States used to merge the two inbound phases with the chaining values. The merge inbound
phase consists of three parts. Brown bytes show values already determined (first part) and gray values
are chosen at random (second part). Green, blue, yellow and red bytes show independent values used in
the generalized birthday attack (third part) and cyan bytes represent values with the target conditions.

4Until now, we have chosen only 296 out of 2128 differences for this state.

246 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

We first choose random values for all remaining bytes of the first two columns in state S7
(gray and light-gray) and independently compute the BigColumns forward to state S14. Note
that we need to try 22×8+1 values for AES state S7[2, 1] to also match the 2-byte (cyan) and 1-bit
padding at the input in AES state S0[2, 3]. Then, all gray, light-gray, cyan and brown bytes
have already been determined either by an inbound phase, chaining value, padding or just by
choosing random values for the remaining free bytes of the first two columns of S7. However,
all white, red, green, yellow and blue bytes are still free to choose.

By considering the linear SuperMixColumns transformation between state S14 and S16,
we observe that in each column-slice, 14 out of 32 input/output bytes are already fixed and
2 bytes are still free to choose. Hence, we expect to get 216 solutions for this linear system of
equations. Unfortunately, also for the given position of already determined 14 bytes, the linear
system of equations does not have a full rank. Again, we can determine the resulting system
using the matrix MSMC of SuperMixColumns. As an example, for the first column-slice, the
system is given as follows:

MSMC · [A0 L0 L1 L2 A1 L′0 L′1 L′2 A2 x6 x7 x8 A3 x9 x10 x11]
T

=[B0 B1 B2 B3 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11]
T.

The free variables in this system are x6, . . . , x11 (green). The values A0, A1, A2, A3, B0, B1,
B2, B3 (brown) have been determined by the first or second inbound phase and the values L0,
L1, L2 (light-gray) and L′0, L′1, L′2 (gray) are determined by the choice of arbitrary values in state
S7. We proceed as before and determine the linear system of equations which needs to have a
solution:

3 1 1 3 1 1
2 3 1 2 3 1
1 2 3 1 2 3
1 1 2 1 1 2

 ·

x6

x7

x8

x9

x10

x11

=

c0

c1

c2

c3

 .

The resulting linear 8-bit equation to get a solution for this system can be separated into
terms depending on values of Li and on L′i, and we get

f1(Li) + f2(L′i) + f3(ai, bi) = 0,

where f1, f2 and f3 are linear functions. For all other 16 column-slices and fixed positions of
gray bytes, we get matrices of rank three as well. In total, we get 16 8-bit conditions and the
probability to find a solution for a given choice of gray and light-gray values in states S14 and
S16 is 2−128. However, we can find a solution to these linear equations using the birthday effect
and a meet-in-the-middle attack with a time and memory complexity 264.

We start by choosing 264 different values for each of the first (gray) and second (light-gray)
BigColumns in state S7. We compute these values independently forward to state S14 and
store them in two lists L and L′. We also separate all equations of the 128-bit condition into
parts depending only on values of L and L′. We apply the resulting functions f1, f2 and f3 to
the elements of lists Li and L′i, and merge two lists L and L′ using the birthday effect.

9.2. ATTACKS ON ECHO-256 247

Third part in merging inbound phases

We continue with a generalized birthday match to find values for all remaining bytes of the
state (blue, red, green, yellow, cyan and white of Figure 9.17). For each BigColumn in state S14,
we independently choose 264 values for the green, blue, yellow and red columns, and compute
them independently backward to S8. We need to match the values of the cyan bytes of state S7,
which results in a condition on 24 bytes or 192 bits. Since we have four independent lists with
264 values in state S8, we can use the generalized birthday attack [Wag02] to find one solution
with a complexity of 2192/3 = 264 in both time and memory.

In more detail, we need to match values after the BigMixColumns transformation in the
backward direction. Hence, we first multiply each byte of the four independent lists by the four
multipliers of the InvMixColumns transformation. Then, we get 24 equations containing only
XOR conditions on bytes between the target value and elements of the four independent lists,
which can be solved using a generalized birthday attack.

To improve the average complexity of this generalized birthday attack, we can start with
larger lists for the green, blue, yellow and red columns in state S14. Since we need to match a
192-bit condition, we can get 23·x × 2−192 = 2x solutions with a time and memory complexity
of max{264, 2x} (see [Wag02] for more details). Note that we can even find solutions with an
average complexity of 1 using lists of size 296. Each solution of the generalized birthday match
results in a valid pair conforming to the whole 5-round truncated differential characteristic.

Second outbound phase to get collisions

For the collision attack on 5 rounds, we start the generalized birthday attack of the previous
phase with lists of size 285.3. This results in 23·85.3 × 2−192 = 264 solutions with a time and
memory complexity of 285.3, or with an average complexity of 221.3 per solution. These solutions
are propagated outwards in a second, independent outbound phase. Since the differences
at the output collide with a probability of 2−64, we expect to find one pair which collides at
the output of the hash function. The time complexity is determined by merging the chaining
input and the memory requirements by the generalized birthday attack. To summarize, the
complexity to find a collision for 5 rounds of the ECHO-256 hash function is given by about
2112 compression function evaluations with memory requirements of 285.3.

9.2.4 Distinguisher for the 7-round compression function

In this section, we detail the distinguisher on the compression of ECHO-256 reduced to 7
rounds in the known-salt model. The truncated differential characteristic that we use now is
depicted on Figure 9.18.

First, we show how to obtain partial solutions that verify the characteristic from the state S6
to S23 with an average time complexity of 264 computations, as we obtain 264 solutions with a
cost of 2128 computations. These partial solutions determine also the values of the blue bytes of
Figure 9.18. Next, we show how to do the same for the yellow part of the characteristic from
S30 to S47. Finally, we explain how to merge these partial solutions to find one that verifies the
complete characteristic.

248
C

H
A

P
T

E
R

9.
R

E
B

O
U

N
D

A
T

TA
C

K
S

O
N

E
C
H
O

H
A

SH
FU

N
C

T
IO

N

SR

H M S1

SB

S2

MC

S3

SB

S4

SR

S5

BSR

S6

MC

S7

BMC

S8

S8

SR

S9

SB

S10

MC

S11

SB

S12

SR

S13

BSR

S14

MC

S15

BMC

S16

S16

SR

S17

SB

S18

MC

S19

SB

S20

SR

S21

BSR

S22

MC

S23

BMC

S24

S24

SR

S25

SB

S26

MC

S27

SR

S28

SB

S29

BSR

S30

MC

S31

BMC

S32

S32

SR

S33

SB

S34

MC

S35

SB

S36

SR

S37

BSR

S38

MC

S39

BMC

S40

S40

SR

S41

SB

S42

MC

S43

SB

S44

SR

S45

BSR

S46

MC

S47

BMC

S48

S48

SR

S49

SB

S50

MC

S51

SB

S52

SR

S53

BSR

S54

MC

S55

BMC

S56

S56

BF

S57

Figu
re

9.18:
Tru

ncated
d

ifferential
characteristic

for
the

d
istingu

isher
on

the
7-rou

nd
com

p
ression

fu
nction

of
E
C
H
O
-
2
5
6

.

9.2. ATTACKS ON ECHO-256 249

9.2.4.1 Finding pairs between S6 and S23

We explain here how to find 264 solutions for the blue part with a time complexity of 2128

operations and 264 in memory. This is done with a stop-in-the-middle algorithm similar to the
one presented by María Naya-Plasencia in [NP11] for improving the time complexity of the
ECHO-256 distinguisher. This algorithm has to be adapted to this particular situation, where
all the active states belong to the same BigColumn.

We start by fixing the difference in S8 to a chosen value, so that the transition between S6
and S8 is verified. We fix the difference in the active diagonals of the two AES-states S23[0, 0]
and S23[3, 1] to a chosen value.

From state S8 to S13, we have four different Super-SBox groups involved in the active part.
From states S16 to S22, we have 4× 4 Super-SBox groups involved (4 per active AES state).
Those 16 groups, as well as the 4 previous ones, are completely independent from S16 to S22
(respectively from S8 to S13). From the known difference in S8, we build four lists of values
and differences in S13: each list corresponds to one of the four Super-SBox groups. Each list
is of size 232 because once we know the input difference, we try all the possible 232 possible
values and then we can compute the values and differences in S13 (as we said, the four groups
are independent in this part of the characteristic). In the sequel, those lists are denoted Li

A,
i = 0, . . . , 3.

There are 64 bits of differences not yet fixed in S23. Each active diagonal only affects the
AES state where it is in, so we can independently consider 232 possible differences for one
diagonal and 232 differences for the other. We can now build the 16 lists corresponding to the 16
Super-SBox groups as we did before, but considering that the 8 lists corresponding to 8 groups
of the two AES states S16[0, 0] and S16[3, 0], as they have their differences in S22 already fixed,
have a size of 232 (corresponding to the possible values for each group). These are the lists
Li

0,0 and Li
3,0, with i ∈ [0, 3] that represent the ith diagonal of the state. But the lists Li

1,0, Li
2,0,

with i ∈ [0, 3], as they do not have yet the difference fixed, have a size of 232+32 each, as we can
consider the 232 possible differences for each not fixed diagonal independently.

Next, we go through the 264 possible differences of the first two diagonals (diagonals 0 and
1) of the active AES state in S15. For each one of these 264 possible differences:

• The associated differences in the two same diagonals in the four active AES states of S16
can be computed. Consequently, we can check in the previously computed ordered lists
Li

j,0 with j ∈ [0, 3] and i ∈ [0, 1] where we find this difference. Here, i is either 0 or 1
because we are just considering the first two diagonals. For j ∈ {0, 3}, on average, we
obtain one match on each one of the lists L0

0,0, L1
0,0, L0

3,0 and L1
3,0. For j ∈ {1, 2}, we obtain

232 matches, one for each of the 232 possible differences in the associated diagonals in S23.
That is, 232 matches for L0

1,0 and L1
1,0, where a pair of values formed by one element of each

list is only valid if they were generated from the same difference in S23. Consequently, we
can construct the list L0,1

1,0 of size 232 where we store the values and differences of those
two diagonals in the AES state S16[1, 0] as well as the difference in S23 from which they
were generated. Repeating the process for L0

2,0 and L1
2,0, we construct the list L0,1

2,0 of size
232. We can merge the lists L0,1

1,0, L0,1
2,0 and the four fixed values for differences and values

obtained from the matches in the lists L0
0,0, L1

0,0, L0
3,0 and L1

3,0, corresponding to the AES

250 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

states S16[0, 0] and S16[3, 0]. This generates the list L0,1 of size 264. Each element of this
list contains the values and differences of the two diagonals 0 and 1 of the four active
AES states in S16. As we have all the values for the two first diagonals in the four AES
states, for each one of these elements, we compute the values in the first two diagonals
of the active state in S15 by applying the inverse of BigMixColumns. We order them
according to these values.

• Next, we go through the 264 possible differences of the two next diagonals (diagonals 2
and 3) of the active AES state in S15. For each one of these 264 possible differences:

– All the differences in the AES state S13[0, 0] are determined. We check in the lists
L0

A, L1
A, L2

A and L3
A if we find a match for the differences. We expect to find one in

each list and this determines the values for the whole state S15[0, 0] (as the elements
in these lists are formed by differences and values). This means that the value of the
active AES state in S15 is also completely determined. This way, we can check in
the previously generated list L0,1 if the correct value for the two diagonals 0 and 1
appears. We expect to find it once.

– As we have just found a valid element from L0,1, it determines the differences in the
AES states S23[1, 0] and S23[2, 0] that were not fixed yet. Now, we need to check if,
for those differences in S23, the corresponding elements in the four lists Li

1,0, Li
2,0

for i ∈ [2, 3] that match with the differences fixed in the diagonals 2 and 3 of S15 5,
satisfy the values in S15 that were also determined by the lists Li

A. This occurs with
probability 2−64.

All in all, the time complexity of this algorithm is 264 · (264 + 264) = 2129 computations with
a memory requirement of 264. The resulting expected number of valid pairs is 264 · 264 · 264 ·
2−64 · 2−64 = 264.

9.2.4.2 Finding pairs between S30 and S47

In quite the same way as the previous section, we can find solutions for the yellow part with an
average cost of 264 computations. To do so, we take into account the fact that the MixColumns
and BigMixColumns transformations commute. So, if we swap their positions between states
S39 and S40, we only have one active AES state in S39. We fix the differences in S47 and in
two AES states, say S32[0, 0] and S32[1, 1], and we still have 232 possible differences for each of
the two remaining active AES states in S32. Then, the lists Li

A are generated from the end and
contain values and differences from S40. Similarly, the lists Li

j,j contain values and differences

from S38. We can apply the same algorithm as before and obtain 264 solutions with a time
complexity of 2128 computations and 264 in memory.

9.2.4.3 Merging solutions

In this section, we explain how to get a solution for the whole characteristic. As explained in
Section 9.2.4.1, we can find 264 solutions for the blue part, that have the same difference for
the active AES states of columns 0 and 1 in S23. We obtain 264 solutions from a fixed value
for the differences in S8 and the AES states S23[0, 0] and S23[3, 1]. Repeating this process for
the 232 possible differences in S8, we obtain in total 296 solutions for the blue part with the

5 We expect one match per list.

9.2. ATTACKS ON ECHO-256 251

same differences in the columns 0 and 1 in S23. The cost of this step is 2160 in time and 296 in
memory.

The same way, using the algorithm explained Section 9.2.4.2, we can also find 296 solutions
for the yellow part, that have the same difference value for the AES active states of columns
0 and 1 in S32 (we fix the difference value of these two columns in S32, and we try all the 232

possible values for the difference in S47). The cost of this step is also 2160 in time and 296 in
memory.

Now, from the partial solutions obtained in the previous steps, we want to find a solution
that verifies the whole differential characteristic. For this, we want to merge the solutions from
S23 with the solutions from S32. We know that the differences of the columns 0 and 1 of S24
and S31 are fixed. Hence, from S24 to S31, there are four AES states for which we know the
input difference and the output difference, as they are fixed6. We can then apply a variant of
the Super-SBox technique in these four AES states: it fixes the possible values for the active
diagonals of those states.

The differences in the other four AES states in S24 that are fixed are associated to other
differences that are not fixed7. There are 264 possible differences, each one associated to 232

solutions for S32-S47 given by the solutions that we found in the second step. For each one
of these 264 possible differences, one possible value is associated by the Super-SBox. When
computing backwards these values to state S24, as we have also the values for the other four
AES states of the columns 0 and 1 that are also fixed (in the third step), we can compute the
values for these two columns in S23, and we need 32× 2 bit conditions to be verified on the
values. So for each one of the 264 possible differences in S31, we obtain 296−64 = 232 that verify
the conditions on S23. In total, we have 264+32 = 296 possible partial matches.

For each of the 264 possible differences in S31, its associated 232 possible partial matches also
need to verify the 128-bit condition in S30-S32 at the SuperMixColumns layer (Section 9.1.2.2)
and the remaining 2 × 32 bit conditions on the values of S23. Since for each of the 264

differences we have 232 possible associated values in S32, the probability of finding a good pair
is 296−128−64+32 = 2−64.

If we repeat this merging procedure 264 times, namely for 232 differences in the columns 0
and 1 of S23 and for 232 differences in the columns 0 and 1 of S32, we should find a solution.
We then repeat the procedure for the cross product of the 232 solutions for each side. As we do
not want to compute them each time that we use them, as it would increase the time complexity,
we can just store the 264+32+32 = 2128 solutions for the first part and use the corresponding
ones when needed, while the second part is computed in sequence. The complexity would be:
2192 + 2192 + 296+64 in time and 2128 in memory. So far, we have found a partial solution for the
differential part for rounds from S6 to S48. We still have the passive bytes to determine and the
condition to pass from S50 to S51 to verify. This can be done exactly as in the second and third
parts of the merge inbound phase of the previous attack (in Section 9.2.3.4) with no additional
cost.

6 S24[0, 0], S24[0, 1], S24[1, 1], S24[3, 0] correspond to S31[0, 0], S31[0, 1], S31[1, 0], S31[3, 1], respectively.
7 S24[1, 0], S24[2, 0], S24[2, 1], S24[3, 1] correspond to S31[1, 3], S31[2, 2], S31[2, 3], S31[3, 2].

252 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

9.2.5 Collision attack on the 6-round compression function

Moreover, since we can find x solutions with complexity max{x, 296} in time and 296 memory
for the (independent) merge inbound phase, we can get x < 2193 solutions with time complexity
2193 + max{x, 296} ≈ 2193 and 2128 memory. We need only 296 of these solutions to pass the
probabilistic propagation in the last round from S50 to S51. Hence, we can find a complete
solution for the whole characteristic with a cost of about 2193 computations and 2128 in memory.

Furthermore, with a probability of 2−128, the input and output differences in S0 and S48
collide in the feed-forward and BigFinal transformation. Therefore, we can also generate free-
start collisions for 6 rounds of the compression function with a time complexity of 2193 + 2128 ≈
2193 computations and 2128 memory.

9.2.6 Chosen-salt attacks on the compression function

In this section, we show how to get a collision attack for 6 rounds and a distinguisher for 7
rounds of the ECHO-256 compression function in the chosen-salt model. For both attacks, we
get a complexity of 2160 compression function evaluations with memory requirements of 2128.

The attacks on the hash functions of ECHO can be extended to the compression function in
a straightforward way. In this case, instead of the chaining value, a 512-bit value of another
inbound phase is merged with the first inbound phase. In fact, we can continue with a similar
3-round path in backward direction as we have in the hash function case in forward direction.
Then, the full active ECHO state is located in the middle round and we can construct attacks for
up to 7 rounds for the compression functions of ECHO-256 (see Figure 9.19).

9.2.6.1 The truncated differential characteristic

We use the 7-round truncated differential characteristic given in Figure 9.19. Black bytes
are active and colored bytes show the different inbound and outbound phases. Since the
characteristic is sparse, we are able to find many right pairs that conform to it. We can
already compute the expected number of right pairs by considering the MixColumns and
SuperMixColumns transformations. At the input, we can freely choose the 256-byte values,
the 16-byte difference between the values and the 16-byte salt. We get a reduction of pairs
at the first MixColumns and SMC of round 1, the second MixColumns of round 3, the first
MixColumns and SMC of round 4, the BMC of round 5 and the second MixColumns of
round 6. The differential probability (in base-2 logarithm) for the path is given as follows:

8× (−12− 3− 48− 48− 12− 48− 12) = −8× 183.

To summarize, the expected number of pairs conforming to this 7-round truncated differen-
tial path is

28×(256+16+16) × 2−8×183 = 2800,

which corresponds to 800 degrees of freedom. Note that this is much more than for the
characteristics given in [MPRS09] and [GP10].

9.2. ATTACKS ON ECHO-256 253

SR

H
M

S
1

SB

S
2

M
C

S
3

SB

S
4

SR

S
5

B
SR

S
6

M
C

S
7

B
M
C

S
8

S
8

SR

S
9

SB

S
1
0

M
C

S
1
1

SB

S
1
2

SR

S
1
3

B
SR

S
1
4

M
C

S
1
5

B
M
C

S
1
6

S
1
6

SR

S
1
7

SB

S
1
8

M
C

S
1
9

SB

S
2
0

SR

S
2
1

B
SR

S
2
2

M
C

S
2
3

B
M
C

S
2
4

S
2
4

SR

S
2
5

SB

S
2
6

M
C

S
2
7

SR

S
2
8

SB

S
2
9

B
SR

S
3
0

M
C

S
3
1

B
M
C

S
3
2

S
3
2

SR

S
3
3

SB

S
3
4

M
C

S
3
5

SB

S
3
6

SR

S
3
7

B
SR

S
3
8

M
C

S
3
9

B
M
C

S
4
0

S
4
0

SR

S
4
1

SB

S
4
2

M
C

S
4
3

SB

S
4
4

SR

S
4
5

B
SR

S
4
6

M
C

S
4
7

B
M
C

S
4
8

S
4
8

SR

S
4
9

SB

S
5
0

M
C

S
5
1

SB

S
5
2

SR

S
5
3

B
SR

S
5
4

M
C

S
5
5

B
M
C

S
5
6

S
5
6

B
F

S
5
7

Figure 9.19: The truncated differential path to get collisions for 6 rounds and near-collisions for 7 rounds
of the ECHO-256 compression function. Black bytes are active, red bytes are values computed in the
first inbound phase, yellow bytes in the second, blue bytes in the third and green bytes in the fourth
inbound or second outbound phase, and cyan bytes in the third outbound phase. Purple bytes are
determined in the first outbound phase and gray bytes are chosen in the merge inbound phase.

254 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

9.2.6.2 Outline of the attack

The main idea of the attack is to find solutions for the forward and backward parts indepen-
dently for fixed differences at the same layer between states S30 and S32. For the yellow/purple
part, we can find 2128 pairs with a complexity of 2128 computations by choosing the salt value.
For the green/blue/red part, we detail how to find 2128 pairs as well, but with a complexity of
2160 computations by constructing the salt.

Then, we just need to match the 128-bit salt values of the forward and backward parts and
fulfill the 128-bit condition on the input (red) and output (yellow) values of SuperMixColumns
for the merge to be possible. Since we get 2128 independent pairs for both the forward and
backward parts, we can fulfill the resulting 256-bit condition by merging the two resulting lists.

9.2.6.3 Finding right pairs

In this section, we show how to find a pair for the first 6 rounds of the 7-round truncated
differential characteristic of Figure 9.19. We detail how to find such a right pair in 2160

computations with 2128 memory. We use this pair in the chosen-salt model to get a collision for
6 rounds and a distinguisher for 7 rounds of the ECHO-256 compression function.

Inbound between S30 and S40

We choose a difference for state S32 such that the differential in the SuperMixColumns
transformation between state S30 and S32 is fulfilled. Then, for each of the 2128 differences in
state S40, we perform an inbound phase between states S32 and S40. In average, we get one
solution with average complexity one: we can then compute 2128 pairs for the yellow inbound
phase with complexity 2128 computations. We store these pairs sorted by their difference in
state S40 in list L1.

Outbound between S40 and S47

We continue to find pairs which also satisfy the truncated differential characteristic until state
S47. We choose 2128 random pairs for the AES state in S47 (according to the given truncated
differential characteristic) and compute backwards to state S40. For each resulting difference in
S40, we lookup the matching difference in list L1. To match also the values, we can construct
the 128-bit salt value accordingly. Thus, we get 2128 pairs with 2128 computations according to
the truncated differential characteristic from state S32 to state S48.

Inbound between S23 and S30

The red inbound phase is the same as in the hash function attack (Section 9.2.3): we start with
the difference between states S30 and S32, which has been chosen in the yellow inbound phase.
Then, we do four independent inbound phases for each BigColumn in state S23. Since we can
start with at least 232 differences for each column in state S23, we also get 232 pairs for each
column with a time complexity of 232 computations.

9.2. ATTACKS ON ECHO-256 255

Inbound between S15 and S23

Independently from the previous step, in the blue inbound phase, we start with a fixed
difference in state S15 and compute this difference forward to state S17. Again, we can choose
all 232 differences for each BigColumn of state S23 and perform the blue inbound phases
independently for each active AES state in the backward direction. For each column, we get 232

pairs with a complexity of 232 operations.

Merging inbounds

When merging the solutions of the blue and red inbound phases, we want to get one pair
with average complexity one. Note that for each inbound phase and each column of state
S23, we have 232 right pairs. Moreover, we are allowed to set the salt value. We then start by
matching the differences in the overlapping four bytes of each BigColumn. Since we have
232 solutions for each of the blue and the red part, we get 232 × 232 × 2−32 = 232 pairs with
matching differences but non-matching values.

To match also these 4-byte values, we only set the four diagonal bytes of the salt value. For
each of the 232 pairs with matching differences, we compute the diagonal bytes of the salt such
that the values also match. We sort the resulting list according to the 4-byte salt value and
repeat the same for all four BigColumns of state S23. Then, we just need to iterate through
all four lists and search for matching salt values. Note that for some salt values, we get no
solution, but for some we will get more than one solution. On average, we expect to get 232

matching pairs with a complexity of 232 computations with chosen diagonal bytes of the salt.

Inbound between S6 and S15

To find a pair of states conforming to the green part, we first choose a difference verifying the
truncated differential characteristic between state S6 and state S8. The second starting point
for the green inbound phase is the difference in state S15, which has been chosen in the blue
inbound phase. Again, we get one pair on average for each starting differential. This pair
needs to be connected with the solutions of the blue inbound phase. To do so, we first match
the values in the diagonal bytes of state S15. Remember that in the previous phases, we have
constructed 232 pairs for a single difference in state S15. Among these pairs, we expect to find
one such that the diagonal 4-byte values between the green and blue inbound phase match. To
connect the other 12 bytes, we can simply set the remaining 12 bytes of the salt value. Hence,
we get one solution for the combined green, blue and red part with an average complexity of
232 computations.

First Part in Merging Inbound Phases

To merge the inbound phases, we first compute 2128 pairs for the yellow/purple part with a
time and memory complexity of 2128 and store these pairs in a list L2. Similarly, we compute
2128 pairs for the green/blue/red part. Since the complexity to compute one solution for this
part is 232 computations, the time complexity to compute all 2128 pairs is 2160 operations. To
connect the resulting pairs between states S30 and S32, we need to satisfy two 128-bit conditions.

256 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

First, we need to verify the 128-bit linear condition due to the sparse SuperMixColumns
differential recalled in Section 9.1.2.2. Second, since each solution of the yellow/purple and
green/blue/red part has also a different salt value, we need to match the 128-bit salt as well. In
the end, this leads to a 256-bit condition, which we can be satisfied by merging the two lists L1

and L2 under that condition to produce 2128 × 2128 × 2−256 = 1 right pair, which satisfies the
whole 6-round truncated differential path. The time complexity of this step is 2160 computations
with memory requirements of 2128.

Second Part in Merging Inbound Phases

In the second part of the merge inbound phase, we need to find values for the first two columns
of Figure 9.17. This part of the attack is the same as in the hash function attack on ECHO-256
(see Section 9.2.3).

Third Part in Merging Inbound Phases

The only difference in the third part of the merge inbound phase is that we change the time-
memory trade-off slightly to get an average complexity of 1 for each solution. Again, we do
a generalized birthday attack [Wag02] but this time, we start with 296 independent values for
each column of state S30 (Figure 9.17). Since we have a 192-bit condition in state S23, we get
23×96 × 2−192 = 296 solutions with a complexity of 296 in time and memory, or with an average
complexity of 1 per solution. It follows that we can find up to 2160 right pairs for the 6-round
truncated differential path with a total complexity of 2160 operations and memory requirements
of 2128.

9.2.6.4 Chosen-salt collision attack for 6 rounds

To get a collision for 6 rounds of the 512-bit compression function of ECHO-256 in the chosen-
salt model, we need to ensure that the differences in the feed-forward cancel the output
differences of the permutation: this happens with a probability of 2−128. Since we can find 2160

pairs for the truncated differential path with a complexity of 2160 computations, we expect to
find 232 collisions at the output of the 6-round compression function with a time complexity of
2160 computations and memory requirements of 2128.

9.2.6.5 Chosen-salt distinguisher for 7 rounds

To get a chosen-salt distinguisher for the compression function of ECHO-256 reduced to 7
rounds, we use the complete truncated differential characteristic given in Figure 9.19. Note that
the last round of this truncated differential characteristic holds with probability (2−3×8)4 = 2−96.
Furthermore, with an additional 32-bit condition on the active bytes in state S52, we can fix the
difference at the output of the permutation, prior to the feed-forward. In this case, only the
16-byte differences in the diagonal bytes of the output of the compression function change for
each additional found pair.

In other words, the vector space of differences at the output of the compression function
is reduced to a dimension of 128. We use a third outbound phase to satisfy these conditions

9.2. ATTACKS ON ECHO-256 257

in the last round. Since we can find one solution for the white bytes of the 6-round path with
an average complexity one, we can find one pair which also satisfies the conditions in the last
round with a time and memory complexity 2128 operations. Note that we can find up to 232

such pairs with a total complexity of 2160 computations in time and 2128 memory.

The generic complexity for a random function with 2048 input bits and 512 output bits is
given by the limited-birthday algorithm (see Section 7.1.3). The 128 active inputs allow to reach
a collision on 256 output bits in 2128 operations, so that we reach the collision on the 384 wanted
bits by repeating this procedure 2128 times. All in all, the generic complexity requires about
2256 evaluations of the compression functions. Therefore, the algorithm we have described
is a chosen-salt distinguisher for 7 rounds of the ECHO-256 compression function with a
complexity of 2160 computations in time and uses a memory of 2128 elements.

Conclusions

In the first chapters of the document, we have recalled the basics of the differential cryptanalysis
techniques and its most notable applications to the cryptanalysis of the AES. Then, we have
studied this block cipher in several security models in three different chapters. First, in the most
classical standard model where the adversary can only make encryptions/decryptions queries
to a blackbox embedding the secret key k. We have shown how to improve the previous best
impossible differential cryptanalysis on all variants of the AES. For instance, we have detailed
a key-recovery attack on 7 rounds of AES-128 with complexities below 2100, and a new attack
on 9 rounds of AES-256 with smaller complexities than previous work. In the next model, we
have analyzed the AES in the related-key model where the adversary observes the encryption
of messages under an unknown key k and a second key k⊕ δ where δ is a known difference.
Thanks to an algorithm searching automatically for differential characteristics, we have proved
impossibility results linked to the provable security of the structure of the AES in this model.
Finally, we have scrutinized the possible improvements of the previously known algorithms in
the open-key model. In that setting, the adversary knows or can choose the key bits to help
him satisfy some nontrivial properties on the AES faster than for an ideal permutation. We
have shown how to significantly improve the previous time complexities by efficiently using
the freedom degrees in a rebound attack on the AES permutation.

Then, we have been interested in the cryptanalysis of hash functions, and especially by the
rebound strategy. The results of the penultimate chapter are twofold. Indeed, we have studied
the limitations of the two parts of the rebound technique: the inbound and the outbound
phases. First, we have shown that for larger variants of AES-like permutation, it is possible to
control one more round in the inbound phase, in the middle of the differential characteristic.
This has allowed to improve the best results on the Grøstl hash function, which was still in
the final of the SHA-3 selection process. Second, we have shown that relaxing some constraints
introduced in the outbound phase, it is possible to increase the probability of this filter and
decrease the overall time complexity of all the rebound attacks. This has slightly improved
almost all the previous rebound attacks published so far.

Finally, we have detailed new attacks on the ECHO hash function in the last chapter. This
hash function has also been a candidate in the SHA-3 competition, but has not been selected
for the final. In that chapter, we have described several rebound-based attacks with multiple
inbound phases. We have for instance detailed a distinguishing attack on 7 rounds of the inner
permutation of the compression function and a collision attack on its variant reduced to 6
rounds.

The different subjects that I have addressed in the document probably leave many open
problems that could be interesting research directions for anyone interested. For instance, it
would be interesting to study again the differential cryptanalytic framework of Chapter 5 to

— 259 —

260 CHAPTER 9. REBOUND ATTACKS ON ECHO HASH FUNCTION

check whether we could use a different property for the meet-in-the-middle attack on the AES.
So far, we have used a particular differential characteristic to reduce the entropy of the middle
rounds, maybe we could imagine using another one, or combine it with impossible differential
techniques.

As we have solved an open problem in the Chapter 6 of this document by constructing a
distinguisher for 9 rounds of AES-128, the new natural open problem would be to extend it
by one more round to reach the full 10 rounds of the AES-128. First, the current technique for
9 rounds should be more investigated to check whether it could be directly extended, or if a
completely new approach could be successful. This result would complete the already known
distinguishers for the full variants of AES-192 and AES-256 published a few years ago. The
main difficulties in the case of the smaller variant are the reduced amount of freedom degrees
available to the cryptanalyst and the low bounds of the generic algorithms.

Finally, there may still exist some possible improvements of the rebound attack on AES-like
permutations. The open question of whether we could add a third round in the inbound phase
in some cases has been answered positively in the Chapter 8, but it would be interesting to
check whether we could add another one with similar or different techniques.

Bibliography

[ABNP+11] Mohamed Ahmed Abdelraheem, Céline Blondeau, María Naya-Plasencia, Marion Videau,
and Erik Zenner. Cryptanalysis of ARMADILLO2. In Dong Hoon Lee and Xiaoyun
Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in
Computer Science, pages 308–326. Springer, December 2011. (Cited on page 124)

[AES97] Announcing Request for Candidate Algorithm Nominations for the Advanced Encryption
Standard (AES). National Institute of Standards and Technology (NIST), September 1997.
(Cited on page 58)

[AES01] Advanced Encryption Standard (AES). National Institute of Standards and Technology
(NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001. (Cited on pages 7,
36, 58, and 206)

[AHMNP10] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and María Naya-Plasencia. Quark: A
Lightweight Hash. In Stefan Mangard and François-Xavier Standaert, editors, Cryptographic
Hardware and Embedded Systems – CHES 2010, volume 6225 of Lecture Notes in Computer
Science, pages 1–15. Springer, August 2010. (Cited on page 16)

[AKK+10] Jean-Philippe Aumasson, Emilia Käsper, Lars R. Knudsen, Krystian Matusiewicz,
Rune Steinsmo Ødegård, Thomas Peyrin, and Martin Schläffer. Distinguishers for the
Compression Function and Output Transformation of Hamsi-256. In Ron Steinfeld and
Philip Hawkes, editors, ACISP 10: 15th Australasian Conference on Information Security and
Privacy, volume 6168 of Lecture Notes in Computer Science, pages 87–103. Springer, July
2010. (Cited on page 150)

[BA08] Behnam Bahrak and Mohammad Reza Aref. Impossible differential attack on seven-round
AES-128. IET Information Security, 2(2):28–32, 2008. (Cited on pages 47, 67, and 80)

[BAK98] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A New Block Cipher Proposal.
In Serge Vaudenay, editor, Fast Software Encryption – FSE’98, volume 1372 of Lecture Notes
in Computer Science, pages 222–238. Springer, March 1998. (Cited on page 36)

[BBG+09] Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin, Matt
Robshaw, and Yannick Seurin. SHA-3 Proposal: ECHO. Submission to NIST (updated),
2009. (Cited on pages 113, 206, 214, and 219)

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In Jacques Stern, editor, Advances in Cryptology –
EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 12–23. Springer,
May 1999. (Cited on page 47)

[BBS05] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. Journal of Cryptology, 18(4):291–311, September
2005. (Cited on page 47)

[BCC10] Céline Blondeau, Anne Canteaut, and Pascale Charpin. Differential properties of power
functions. IJICoT, 1(2):149–170, 2010. (Cited on page 62)

— 261 —

262 BIBLIOGRAPHY

[BCCLC06] Thierry P. Berger, Anne Canteaut, Pascale Charpin, and Yann Laigle-Chapuy. On Almost
Perfect Nonlinear Functions Over F2

n. IEEE Transactions on Information Theory, 52(9):4160–
4170, 2006. (Cited on page 62)

[BCD11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-Order Differential
Properties of Keccak and Luffa. In Antoine Joux, editor, Fast Software Encryption – FSE 2011,
volume 6733 of Lecture Notes in Computer Science, pages 252–269. Springer, February 2011.
(Cited on pages 186 and 215)

[BD06] Eli Biham and Orr Dunkelman. A Framework for Iterative Hash Functions: HAIFA. In In
Proceedings of Second NIST Cryptographic Hash Workshop, 2006. (Cited on page 221)

[BD09] Eli Biham and Orr Dunkelman. The SHAvite-3 Hash Function. Submission to NIST
(Round 2), 2009. (Cited on page 113)

[BDAP06] Guido Bertoni, Joan Daemen, Gilles Van Assche, and Micha"el Peeters. RadioGat
’un, a Belt-and-Mill Hash Function. NIST - Second Cryptographic Hash Workshop, August
24-25, 2006. (Cited on page 15)

[BDF11] Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic Search of
Attacks on Round-Reduced AES and Applications. In Phillip Rogaway, editor, Advances
in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages
169–187. Springer, August 2011. (Cited on page 113)

[BDK01] Eli Biham, Orr Dunkelman, and Nathan Keller. The Rectangle Attack - Rectangling the
Serpent. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001, volume
2045 of Lecture Notes in Computer Science, pages 340–357. Springer, May 2001. (Cited on
pages 50 and 51)

[BDK02] Eli Biham, Orr Dunkelman, and Nathan Keller. New Results on Boomerang and Rectangle
Attacks. In Joan Daemen and Vincent Rijmen, editors, Fast Software Encryption – FSE 2002,
volume 2365 of Lecture Notes in Computer Science, pages 1–16. Springer, February 2002.
(Cited on page 51)

[BDK05a] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-Key Boomerang and Rectangle
Attacks. In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 507–525. Springer, May 2005. (Cited on
pages 53, 84, and 88)

[BDK05b] Eli Biham, Orr Dunkelman, and Nathan Keller. A Related-Key Rectangle Attack on the
Full KASUMI. In Bimal K. Roy, editor, Advances in Cryptology – ASIACRYPT 2005, volume
3788 of Lecture Notes in Computer Science, pages 443–461. Springer, December 2005. (Cited
on pages 51 and 53)

[BDK08] Eli Biham, Orr Dunkelman, and Nathan Keller. A Unified Approach to Related-Key
Attacks. In Kaisa Nyberg, editor, Fast Software Encryption – FSE 2008, volume 5086 of
Lecture Notes in Computer Science, pages 73–96. Springer, February 2008. (Cited on page
112)

[BDK+10] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi Shamir.
Key Recovery Attacks of Practical Complexity on AES-256 Variants with up to 10 Rounds.
In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of
Lecture Notes in Computer Science, pages 299–319. Springer, May 2010. (Cited on page 52)

[BDMW10] K.A. Browning, J.F. Dillon, M.T. McQuistan, and A.J. Wolfe. An APN permutation
in dimension six. McGuire, Gary (ed.) et al., Finite fields. Theory and applications.
Proceedings of the 9th international conference on finite fields and applications, American
Mathematical Society (AMS). Contemporary Mathematics 518., 2010. (Cited on page 62)

BIBLIOGRAPHY 263

[BDPA10] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Note on zero-sum distinguishers
of Keccak-f. NIST mailing list, 2010. (Cited on page 150)

[BDPV08] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the Indiffer-
entiability of the Sponge Construction. In Nigel P. Smart, editor, Advances in Cryptology
– EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 181–197.
Springer, April 2008. (Cited on page 16)

[BGT11] Céline Blondeau, Benoît Gérard, and Jean-Pierre Tillich. Accurate estimates of the data
complexity and success probability for various cryptanalyses. Des. Codes Cryptography,
59(1-3):3–34, 2011. (Cited on page 41)

[Bih93] Eli Biham. New Types of Cryptoanalytic Attacks Using related Keys (Extended Abstract).
In Tor Helleseth, editor, Advances in Cryptology – EUROCRYPT’93, volume 765 of Lecture
Notes in Computer Science, pages 398–409. Springer, May 1993. (Cited on pages 51, 84,
and 112)

[Bih94] Eli Biham. New Types of Cryptanalytic Attacks Using Related Keys. Journal of Cryptology,
7(4):229–246, 1994. (Cited on pages 51 and 84)

[Bih00] Eli Biham. Cryptanalysis of Patarin’s 2-Round Public Key System with S Boxes (2R). In
Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture
Notes in Computer Science, pages 408–416. Springer, May 2000. (Cited on page 117)

[Bir04] Alex Biryukov. The Boomerang Attack on 5 and 6-Round Reduced AES. In Dobbertin
et al. [DRS05], pages 11–15. (Cited on page 88)

[BK03] Mihir Bellare and Tadayoshi Kohno. A Theoretical Treatment of Related-Key Attacks:
RKA-PRPs, RKA-PRFs, and Applications. In Eli Biham, editor, Advances in Cryptology
– EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 491–506.
Springer, May 2003. (Cited on page 52)

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full AES-192
and AES-256. In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009,
volume 5912 of Lecture Notes in Computer Science, pages 1–18. Springer, December 2009.
(Cited on pages 27, 52, 53, 67, 84, 88, and 113)

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-
Lightweight Block Cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2007, volume 4727 of Lecture Notes in
Computer Science, pages 450–466. Springer, September 2007. (Cited on pages 36 and 113)

[BKL+11] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici, and In-
grid Verbauwhede. spongent: A Lightweight Hash Function. In Bart Preneel and Tsuyoshi
Takagi, editors, Cryptographic Hardware and Embedded Systems – CHES 2011, volume 6917
of Lecture Notes in Computer Science, pages 312–325. Springer, September / October 2011.
(Cited on page 16)

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and Related-Key
Attack on the Full AES-256. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 231–249. Springer, August 2009.
(Cited on pages 27, 52, 53, 67, 84, 88, 113, 145, and 161)

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique Cryptanalysis
of the Full AES. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology
– ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 344–371.
Springer, December 2011. (Cited on page 212)

264 BIBLIOGRAPHY

[BM97] Mihir Bellare and Daniele Micciancio. A New Paradigm for Collision-Free Hashing:
Incrementality at Reduced Cost. In Walter Fumy, editor, Advances in Cryptology – EURO-
CRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages 163–192. Springer, May
1997. (Cited on page 150)

[BN10] Alex Biryukov and Ivica Nikolić. Automatic Search for Related-Key Differential Char-
acteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and
Others. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110
of Lecture Notes in Computer Science, pages 322–344. Springer, May 2010. (Cited on pages
84, 85, 88, 113, 114, 115, 135, 136, and 173)

[BN11] Alex Biryukov and Ivica Nikolić. Search for Related-Key Differential Characteristics in
DES-Like Ciphers. In Antoine Joux, editor, Fast Software Encryption – FSE 2011, volume
6733 of Lecture Notes in Computer Science, pages 18–34. Springer, February 2011. (Cited on
page 113)

[BR00] Paulo S. L. M. Barreto and Vincent Rijmen. The Whirlpool Hashing Function. Submitted
to NESSIE, September 2000, 2000. (Cited on pages 113 and 184)

[BR11] Paulo S. L. M. Barreto and Vincent Rijmen. Whirlpool. In Henk C. A. van Tilborg and
Sushil Jajodia, editors, Encyclopedia of Cryptography and Security (2nd Ed.), pages 1384–1385.
Springer, 2011. (Cited on pages 184 and 206)

[Bre80] Richard P. Brent. An Improved Monte Carlo Factorization Algorithm. BIT, 20:176–184,
1980. (Cited on page 12)

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of the Block-
Cipher-Based Hash-Function Constructions from PGV. In Moti Yung, editor, Advances
in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages
320–335. Springer, August 2002. (Cited on page 145)

[BRSS10] John Black, Phillip Rogaway, Thomas Shrimpton, and Martijn Stam. An Analysis of the
Blockcipher-Based Hash Functions from PGV. Journal of Cryptology, 23(4):519–545, October
2010. (Cited on page 145)

[BS91a] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In
Alfred J. Menezes and Scott A. Vanstone, editors, Advances in Cryptology – CRYPTO’90,
volume 537 of Lecture Notes in Computer Science, pages 2–21. Springer, August 1991. (Cited
on pages 33 and 119)

[BS91b] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. Journal
of Cryptology, 4(1):3–72, 1991. (Cited on pages 33 and 119)

[BS93] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full 16-Round DES. In
Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, volume 740 of Lecture Notes
in Computer Science, pages 487–496. Springer, August 1993. (Cited on pages 33, 34, 42, 45,
and 57)

[BS10] Alex Biryukov and Adi Shamir. Structural Cryptanalysis of SASAS. Journal of Cryptology,
23(4):505–518, October 2010. (Cited on pages 116 and 117)

[BW00] Alex Biryukov and David Wagner. Advanced Slide Attacks. In Bart Preneel, editor,
Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science, pages 589–606. Springer, May 2000. (Cited on page 37)

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodology,
Revisited (Preliminary Version). In 30th Annual ACM Symposium on Theory of Computing,
pages 209–218. ACM Press, May 1998. (Cited on page 144)

BIBLIOGRAPHY 265

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
J. ACM, 51(4):557–594, 2004. (Cited on page 144)

[Cop94] Don Coppersmith. The Data Encryption Standard (DES) and its strength against attacks.
IBM J. Res. Dev., 38(3):243–250, May 1994. (Cited on page 34)

[Dae91] Joan Daemen. Limitations of the Even-Mansour Construction (Rump Session). In Hideki
Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, Advances in Cryptology – ASI-
ACRYPT’91, volume 739 of Lecture Notes in Computer Science, pages 495–498. Springer,
November 1991. (Cited on page 36)

[Dam90] Ivan Damgård. A Design Principle for Hash Functions. In Gilles Brassard, editor, Advances
in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer, August 1990. (Cited on page 13)

[DC98] Joan Daemen and Craig S. K. Clapp. Fast Hashing and Stream Encryption with PANAMA.
In Serge Vaudenay, editor, Fast Software Encryption – FSE’98, volume 1372 of Lecture Notes
in Computer Science, pages 60–74. Springer, March 1998. (Cited on page 15)

[DES77] Data Encryption Standard. National Bureau of Standards, NBS FIPS PUB 46, U.S. Depart-
ment of Commerce, January 1977. (Cited on page 6)

[DFJ12a] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Faster Chosen-Key Distinguishers
on Reduced-Round AES. In Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT,
volume 7668 of Lecture Notes in Computer Science, pages 225–243. Springer, 2012. (Cited on
pages 28, 31, 96, 143, 145, and 161)

[DFJ12b] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Recovery Attacks
on Reduced-Round AES in the Single-Key Setting (extended version). Cryptology ePrint
Archive, Report 2012/477, 2012. (Cited on pages 31 and 67)

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Recovery Attacks
on Reduced-Round AES in the Single-Key Setting. In EUROCRYPT, Lecture Notes in
Computer Science, 2013. to appear. (Cited on pages 26, 31, 47, and 89)

[DGPW12] Alexandre Duc, Jian Guo, Thomas Peyrin, and Lei Wei. Unaligned Rebound Attack:
Application to Keccak. In Anne Canteaut, editor, Fast Software Encryption – FSE 2012,
volume 7549 of Lecture Notes in Computer Science, pages 402–421. Springer, March 2012.
(Cited on page 205)

[DH76] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. IEEE Transac-
tions on Information Theory, 22(6):644–654, 1976. (Cited on page 6)

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square. In Eli
Biham, editor, Fast Software Encryption – FSE’97, volume 1267 of Lecture Notes in Computer
Science, pages 149–165. Springer, January 1997. (Cited on pages 36, 58, 67, 70, 87, 90,
and 149)

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks on 8-Round
AES-192 and AES-256. In Masayuki Abe, editor, Advances in Cryptology – ASIACRYPT 2010,
volume 6477 of Lecture Notes in Computer Science, pages 158–176. Springer, December 2010.
(Cited on pages 26, 67, 87, 89, 90, 91, 92, 93, 101, and 107)

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryptography: The
Even-Mansour Scheme Revisited. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer
Science, pages 336–354. Springer, April 2012. (Cited on page 37)

266 BIBLIOGRAPHY

[DLP+09] Joan Daemen, Mario Lamberger, Norbert Pramstaller, Vincent Rijmen, and Frederik
Vercauteren. Computational aspects of the expected differential probability of 4-round
AES and AES-like ciphers. Computing, 85(1-2):85–104, 2009. (Cited on page 43)

[Dob96] Hans Dobbertin. Cryptanalysis of MD4. In Dieter Gollmann, editor, Fast Software Encryp-
tion – FSE’96, volume 1039 of Lecture Notes in Computer Science, pages 53–69. Springer,
February 1996. (Cited on page 34)

[DR01] Joan Daemen and Vincent Rijmen. The Wide Trail Design Strategy. In Bahram Honary,
editor, 8th IMA International Conference on Cryptography and Coding, volume 2260 of Lecture
Notes in Computer Science, pages 222–238. Springer, December 2001. (Cited on page 155)

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, 2002. (Cited on pages 7, 43, 116, 117, 133, 134, 155, 173, and 220)

[DR06a] Joan Daemen and Vincent Rijmen. Two-Round AES Differentials. Cryptology ePrint
Archive, Report 2006/039, 2006. (Cited on pages 43 and 45)

[DR06b] Joan Daemen and Vincent Rijmen. Understanding Two-Round Differentials in AES. In
Roberto De Prisco and Moti Yung, editors, SCN 06: 5th International Conference on Security
in Communication Networks, volume 4116 of Lecture Notes in Computer Science, pages 78–94.
Springer, September 2006. (Cited on pages 43, 45, 155, and 222)

[DR06c] Christophe De Cannière and Christian Rechberger. Finding SHA-1 Characteristics: General
Results and Applications. In Xuejia Lai and Kefei Chen, editors, Advances in Cryptology –
ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages 1–20. Springer,
December 2006. (Cited on page 113)

[DR07] Joan Daemen and Vincent Rijmen. Probability distributions of correlation and differentials
in block ciphers. J. Mathematical Cryptology, 1(3):221–242, 2007. (Cited on page 45)

[DR09] Joan Daemen and Vincent Rijmen. New criteria for linear maps in AES-like ciphers.
Cryptography and Communications, 1(1):47–69, 2009. (Cited on page 45)

[DRS05] Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa, editors. Advanced Encryption
Standard - AES, 4th International Conference, AES 2004, Bonn, Germany, May 10-12, 2004,
Revised Selected and Invited Papers, volume 3373 of LNCS. Springer, 2005. (Cited on pages
263 and 270)

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A Meet-in-the-Middle Attack on 8-Round AES.
In Kaisa Nyberg, editor, Fast Software Encryption – FSE 2008, volume 5086 of Lecture Notes
in Computer Science, pages 116–126. Springer, February 2008. (Cited on pages 26, 89, 90, 92,
and 93)

[DTCB09] Hüseyin Demirci, Ihsan Taskin, Mustafa Coban, and Adnan Baysal. Improved Meet-in-
the-Middle Attacks on AES. In Bimal K. Roy and Nicolas Sendrier, editors, Progress in
Cryptology - INDOCRYPT 2009: 10th International Conference in Cryptology in India, volume
5922 of Lecture Notes in Computer Science, pages 144–156. Springer, December 2009. (Cited
on page 90)

[Dwo01a] M. Dworkin. Recommandations for Block Cipher Modes of Operation. SP 800-38a,
National Institute of Standards and Technology (NIST), 2001. (Cited on page 59)

[Dwo01b] M. Dworkin. Recommandations for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC. SP 800-38a, National Institute of Standards and Technology
(NIST), 2001. (Cited on page 59)

BIBLIOGRAPHY 267

[Dwo01c] M. Dworkin. Recommandations for Block Cipher Modes of Operation: The CCM Mode
for Authentication and Confidentiality. SP 800-38a, National Institute of Standards and
Technology (NIST), 2001. (Cited on page 59)

[Dwo01d] M. Dworkin. Recommandations for Block Cipher Modes of Operation: The CMAC Mode
for Authentication. SP 800-38a, National Institute of Standards and Technology (NIST),
2001. (Cited on page 59)

[ElG85] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985. (Cited on page 5)

[EM91] Shimon Even and Yishay Mansour. A Construction of a Cipher From a Single Pseudoran-
dom Permutation. In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors,
Advances in Cryptology – ASIACRYPT’91, volume 739 of Lecture Notes in Computer Science,
pages 210–224. Springer, November 1991. (Cited on page 36)

[EM97] Shimon Even and Yishay Mansour. A Construction of a Cipher from a Single Pseudoran-
dom Permutation. Journal of Cryptology, 10(3):151–162, 1997. (Cited on page 36)

[FJP13a] Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. Structural Evaluation of AES and
Chosen-Key Distinguisher of 9-round AES-128. In CRYPTO, Lecture Notes in Computer
Science, 2013. to appear. (Cited on pages 27, 28, 31, 112, 143, and 162)

[FJP13b] Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. Structural Evaluation of AES and
Chosen-Key Distinguisher of 9-round AES-128 (extended version). Cryptology ePrint
Archive, Report 2013/366, 2013. (Cited on pages 27 and 31)

[FKL+00] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David Wagner,
and Doug Whiting. Improved Cryptanalysis of Rijndael. In Bruce Schneier, editor, Fast
Software Encryption – FSE 2000, volume 1978 of Lecture Notes in Computer Science, pages
213–230. Springer, April 2000. (Cited on pages 67, 71, 72, 74, 87, and 90)

[Flo67] Robert W. Floyd. Nondeterministic Algorithms. J. ACM, 14(4):636–644, October 1967.
(Cited on page 12)

[GKM+11] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Chris-
tian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl – a SHA-3 candidate.
Submission to NIST (Round 3), 2011. (Cited on pages 113 and 206)

[GL08] Michael Gorski and Stefan Lucks. New Related-Key Boomerang Attacks on AES. In
Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors, Progress in Cryptology
- INDOCRYPT 2008: 9th International Conference in Cryptology in India, volume 5365 of
Lecture Notes in Computer Science, pages 266–278. Springer, December 2008. (Cited on
pages 51, 53, and 88)

[GM00] Henri Gilbert and Marine Minier. A Collision Attack on 7 Rounds of Rijndael. In AES
Candidate Conference, pages 230–241, 2000. (Cited on pages 67, 75, 77, 78, 87, 90, and 92)

[GP10] Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved Attacks for AES-
Like Permutations. In Seokhie Hong and Tetsu Iwata, editors, Fast Software Encryption
– FSE 2010, volume 6147 of Lecture Notes in Computer Science, pages 365–383. Springer,
February 2010. (Cited on pages 144, 145, 146, 155, 157, 168, 173, 176, 179, 186, 188, 207,
212, 222, 226, 227, and 252)

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family of Lightweight
Hash Functions. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume
6841 of Lecture Notes in Computer Science, pages 222–239. Springer, August 2011. (Cited on
pages 16, 182, 186, 205, 206, 207, and 217)

268 BIBLIOGRAPHY

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED Block
Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded
Systems – CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages 326–341.
Springer, September / October 2011. (Cited on pages 113, 183, 206, 207, and 216)

[GPPR12] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The LED Block Cipher.
Cryptology ePrint Archive, Report 2012/600, 2012. (Cited on page 183)

[HNR68] Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis For The Heuristic Deter-
mination Of Minimum Cost Paths. IEEE Transactions on Systems, Science, and Cybernetics,
SSC-4(2):100–107, 1968. (Cited on pages 114, 115, and 126)

[HPS98] Jeffrey Hoffstein, Jill Pipher, and JosephH. Silverman. NTRU: A ring-based public key
cryptosystem. 1423:267–288, 1998. (Cited on page 5)

[ISO04] ISO. ISO/IEC 10118-3:2004: Information technology — Security techniques — Hash-functions —
Part 3: Dedicated hash-functions. feb 2004. (Cited on page 112)

[JF11] Jérémy Jean and Pierre-Alain Fouque. Practical Near-Collisions and Collisions on Round-
Reduced ECHO-256 Compression Function. In Antoine Joux, editor, Fast Software Encryp-
tion – FSE 2011, volume 6733 of Lecture Notes in Computer Science, pages 107–127. Springer,
February 2011. (Cited on pages 30, 31, 215, 219, 226, and 227)

[JNP+13] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, Lei Wang, and Shuang Wu. Security Analysis
of PRINCE. In FSE, Lecture Notes in Computer Science, 2013. to appear. (Cited on pages
31 and 51)

[JNPP12] Jérémy Jean, María Naya-Plasencia, and Thomas Peyrin. Improved Rebound Attack on
the Finalist Grøstl. In Anne Canteaut, editor, Fast Software Encryption – FSE 2012, volume
7549 of Lecture Notes in Computer Science, pages 110–126. Springer, March 2012. (Cited on
pages 29, 31, 145, 173, 179, and 188)

[JNPP13a] Jérémy Jean, María Naya-Plasencia, and Thomas Peyrin. Improved Cryptanalysis of
AES-like Permutations. J. Cryptology, 2013. to appear. (Cited on pages 31, 180, and 186)

[JNPP13b] Jérémy Jean, María Naya-Plasencia, and Thomas Peyrin. Multiple Limited-Birthday
Distinguishers and Applications. In SAC, Lecture Notes in Computer Science, 2013. to
appear. (Cited on page 31)

[JNPP13c] Jérémy Jean, María Naya-Plasencia, and Thomas Peyrin. Multiple Limited-Birthday
Distinguishers and Applications. Cryptology ePrint Archive, Report 2013/521, 2013.
(Cited on page 31)

[JNPS11a] Jérémy Jean, María Naya-Plasencia, and Martin Schläffer. Improved Analysis of ECHO-
256. In Ali Miri and Serge Vaudenay, editors, SAC 2011: 18th Annual International Workshop
on Selected Areas in Cryptography, volume 7118 of Lecture Notes in Computer Science, pages
19–36. Springer, August 2011. (Cited on pages 30, 31, 56, 219, 226, and 227)

[JNPS11b] Jérémy Jean, María Naya-Plasencia, and Martin Schläffer. Improved Analysis of
ECHO-256 (extended version). Cryptology ePrint Archive, Report 2011/422, 2011. (Cited
on pages 30, 31, 219, 226, and 227)

[Jou04] Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded
Constructions. In Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004,
volume 3152 of Lecture Notes in Computer Science, pages 306–316. Springer, August 2004.
(Cited on page 14)

BIBLIOGRAPHY 269

[KBN09] Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolić. Speeding up Collision Search for
Byte-Oriented Hash Functions. In Marc Fischlin, editor, Topics in Cryptology – CT-RSA 2009,
volume 5473 of Lecture Notes in Computer Science, pages 164–181. Springer, April 2009.
(Cited on page 113)

[Ker83] Auguste Kerckhoffs. La Cryptographie Militaire. Journal des Sciences Militaires, IX:5–38,
1883. (Cited on page 4)

[KHP07] Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-Key Rectangle Attacks on
Reduced AES-192 and AES-256. In Alex Biryukov, editor, Fast Software Encryption –
FSE 2007, volume 4593 of Lecture Notes in Computer Science, pages 225–241. Springer,
March 2007. (Cited on pages 84 and 88)

[KKS00] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In Bruce Schneier, editor, Fast Software Encryption –
FSE 2000, volume 1978 of Lecture Notes in Computer Science, pages 75–93. Springer, April
2000. (Cited on pages 50 and 51)

[KNPRS10] Dmitry Khovratovich, María Naya-Plasencia, Andrea Röck, and Martin Schläffer. Crypt-
analysis of Luffa v2 Components. In Alex Biryukov, Guang Gong, and Douglas R. Stinson,
editors, SAC 2010: 17th Annual International Workshop on Selected Areas in Cryptography,
volume 6544 of Lecture Notes in Computer Science, pages 388–409. Springer, August 2010.
(Cited on page 56)

[KNR10] Dmitry Khovratovich, Ivica Nikolić, and Christian Rechberger. Rotational Rebound
Attacks on Reduced Skein. In Masayuki Abe, editor, Advances in Cryptology – ASI-
ACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages 1–19. Springer,
December 2010. (Cited on page 56)

[Knu94] Lars R. Knudsen. Truncated and Higher Order Differentials. In Bart Preneel, editor,
Fast Software Encryption – FSE’94, volume 1008 of Lecture Notes in Computer Science, pages
196–211. Springer, December 1994. (Cited on pages 34, 46, and 119)

[Knu97] Donald E. Knuth. The art of computer programming, volume 2 (3rd ed.): seminumerical
algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997. (Cited
on page 12)

[Knu98] Lars Knudsen. DEAL - A 128-bit Block Cipher. In NIST AES Proposal, 1998. (Cited on
page 47)

[KR96] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key Search. In
Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture Notes in
Computer Science, pages 252–267. Springer, August 1996. (Cited on page 37)

[KR01] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key Search (an
Analysis of DESX). Journal of Cryptology, 14(1):17–35, 2001. (Cited on page 37)

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some Block Ciphers.
In Kaoru Kurosawa, editor, Advances in Cryptology – ASIACRYPT 2007, volume 4833 of
Lecture Notes in Computer Science, pages 315–324. Springer, December 2007. (Cited on
pages 28, 143, 144, and 149)

[KRW99] Lars R. Knudsen, Matthew J. B. Robshaw, and David Wagner. Truncated Differentials and
Skipjack. In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666
of Lecture Notes in Computer Science, pages 165–180. Springer, August 1999. (Cited on page
47)

270 BIBLIOGRAPHY

[KS07] Liam Keliher and Jiayuan Sui. Exact maximum expected differential and linear probability
for two-round Advanced Encryption Standard. IET Information Security, 1(2):53–57, 2007.
(Cited on page 43)

[KW02] Lars R. Knudsen and David Wagner. Integral Cryptanalysis. In Joan Daemen and Vincent
Rijmen, editors, Fast Software Encryption – FSE 2002, volume 2365 of Lecture Notes in
Computer Science, pages 112–127. Springer, February 2002. (Cited on page 67)

[LDKK08] Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New Impossible Differ-
ential Attacks on AES. In Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das,
editors, Progress in Cryptology - INDOCRYPT 2008: 9th International Conference in Cryptol-
ogy in India, volume 5365 of Lecture Notes in Computer Science, pages 279–293. Springer,
December 2008. (Cited on pages 47, 67, 82, 87, 91, and 94)

[Leu12] Gaëtan Leurent. Analysis of Differential Attacks in ARX Constructions. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT, volume 7658 of Lecture Notes in Computer Science,
pages 226–243. Springer, 2012. (Cited on page 113)

[LM90] Xuejia Lai and James L. Massey. A Proposal for a New Block Encryption Standard. In
Ivan Damgård, editor, Advances in Cryptology – EUROCRYPT’90, volume 473 of Lecture
Notes in Computer Science, pages 389–404. Springer, May 1990. (Cited on page 47)

[LMM91] Xuejia Lai, James L. Massey, and Sean Murphy. Markov Ciphers and Differential Crypto-
analysis. In Donald W. Davies, editor, Advances in Cryptology – EUROCRYPT’91, volume
547 of Lecture Notes in Computer Science, pages 17–38. Springer, April 1991. (Cited on pages
34, 41, 42, 43, 44, and 46)

[LMR+09] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and Martin
Schläffer. Rebound Distinguishers: Results on the Full Whirlpool Compression Function.
In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, volume 5912 of
Lecture Notes in Computer Science, pages 126–143. Springer, December 2009. (Cited on
pages 56, 188, and 222)

[LMR+10] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and Martin
Schläffer. The Rebound Attack and Subspace Distinguishers: Application to Whirlpool.
Cryptology ePrint Archive, Report 2010/198, 2010. (Cited on pages 207 and 217)

[LSWD04] Tri Van Le, Rüdiger Sparr, Ralph Wernsdorf, and Yvo Desmedt. Complementation-Like
and Cyclic Properties of AES Round Functions. In Dobbertin et al. [DRS05], pages 128–141.
(Cited on page 220)

[Luc04] Stefan Lucks. Design Principles for Iterated Hash Functions. Cryptology ePrint Archive,
Report 2004/253, 2004. (Cited on page 14)

[Mat94a] Mitsuru Matsui. The First Experimental Cryptanalysis of the Data Encryption Standard.
In Yvo Desmedt, editor, Advances in Cryptology – CRYPTO’94, volume 839 of Lecture Notes
in Computer Science, pages 1–11. Springer, August 1994. (Cited on pages 33 and 57)

[Mat94b] Mitsuru Matsui. On Correlation Between the Order of S-boxes and the Strength of DES.
In Alfredo De Santis, editor, Advances in Cryptology – EUROCRYPT’94, volume 950 of
Lecture Notes in Computer Science, pages 366–375. Springer, May 1994. (Cited on pages 113
and 126)

[MDRMH10] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud Modarres-Hashemi.
Improved Impossible Differential Cryptanalysis of 7-Round AES-128. In Guang Gong and
Kishan Chand Gupta, editors, Progress in Cryptology - INDOCRYPT 2010: 11th International
Conference in Cryptology in India, volume 6498 of Lecture Notes in Computer Science, pages
282–291. Springer, December 2010. (Cited on pages 47, 67, 82, 84, and 87)

BIBLIOGRAPHY 271

[Mer90] Ralph C. Merkle. A Certified Digital Signature. In Gilles Brassard, editor, Advances in
Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 218–238.
Springer, August 1990. (Cited on pages 12 and 13)

[Min02] M. Minier. Preuves d’Analyses et de Sécurité en Cryptologie à Clé Secrète. PhD thesis, Université
de Limoges, France, 2002. (Cited on page 78)

[MMO85] S.M. Matyas, C.H. Meyer, and J. Oseas. Generating Strong One-Way Functions With
Cryptographic Algorithm - IBM Technical Disclosure Bulletin, Vol. 27, No. 10A, 1985.
(Cited on page 112)

[MNPN+09] Krystian Matusiewicz, María Naya-Plasencia, Ivica Nikolić, Yu Sasaki, and Martin Schläf-
fer. Rebound Attack on the Full Lane Compression Function. In Mitsuru Matsui, editor,
Advances in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer
Science, pages 106–125. Springer, December 2009. (Cited on page 56)

[MP08] Stéphane Manuel and Thomas Peyrin. Collisions on SHA-0 in One Hour. In Kaisa Nyberg,
editor, Fast Software Encryption – FSE 2008, volume 5086 of Lecture Notes in Computer Science,
pages 16–35. Springer, February 2008. (Cited on page 113)

[MPRS09] Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schläffer. Improved
Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and
AES Block Cipher. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini,
editors, SAC 2009: 16th Annual International Workshop on Selected Areas in Cryptography,
volume 5867 of Lecture Notes in Computer Science, pages 16–35. Springer, August 2009.
(Cited on pages 145, 149, 153, 207, 214, 226, 227, and 252)

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. The
Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr Dunkelman,
editor, Fast Software Encryption – FSE 2009, volume 5665 of Lecture Notes in Computer Science,
pages 260–276. Springer, February 2009. (Cited on pages 28, 55, 96, 145, 149, 151, 155, 157,
and 179)

[MS90] Willi Meier and Othmar Staffelbach. Nonlinearity Criteria for Cryptographic Functions.
In Jean-Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology – EURO-
CRYPT’89, volume 434 of Lecture Notes in Computer Science, pages 549–562. Springer, April
1990. (Cited on page 62)

[NP10a] Mridul Nandi and Souradyuti Paul. Speeding Up the Wide-Pipe: Secure and Fast
Hashing. In Guang Gong and Kishan Chand Gupta, editors, Progress in Cryptology -
INDOCRYPT 2010: 11th International Conference in Cryptology in India, volume 6498 of
Lecture Notes in Computer Science, pages 144–162. Springer, December 2010. (Cited on page
15)

[NP10b] María Naya-Plasencia. How to Improve Rebound Attacks. Cryptology ePrint Archive,
Report 2010/607, 2010. (extended version). (Cited on pages 188 and 200)

[NP11] María Naya-Plasencia. How to Improve Rebound Attacks. In Phillip Rogaway, editor,
Advances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 188–205. Springer, August 2011. (Cited on pages 188, 200, 207, 214, 226, and 249)

[NWW13] Ivica Nikolic, Lei Wang, and Shuang Wu. Cryptanalysis of Round-Reduced LED. In FSE,
Lecture Notes in Computer Science, 2013. to appear. (Cited on pages 207 and 216)

[Nyb91] Kaisa Nyberg. Perfect Nonlinear S-Boxes. In Donald W. Davies, editor, Advances in
Cryptology – EUROCRYPT’91, volume 547 of Lecture Notes in Computer Science, pages
378–386. Springer, April 1991. (Cited on page 62)

272 BIBLIOGRAPHY

[Nyb93] Kaisa Nyberg. Differentially Uniform Mappings for Cryptography. In Tor Helleseth,
editor, Advances in Cryptology – EUROCRYPT’93, volume 765 of Lecture Notes in Computer
Science, pages 55–64. Springer, May 1993. (Cited on page 62)

[Pey10] Thomas Peyrin. Improved Differential Attacks for ECHO and Grøstl. In Tal Rabin, editor,
Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 370–392. Springer, August 2010. (Cited on pages 181 and 216)

[PG97] Jacques Patarin and Louis Goubin. Asymmetric cryptography with S-Boxes. In Yongfei
Han, Tatsuaki Okamoto, and Sihan Qing, editors, ICICS 97: 1st International Conference on
Information and Communication Security, volume 1334 of Lecture Notes in Computer Science,
pages 369–380. Springer, November 1997. (Cited on page 117)

[PGV94] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Functions Based on Block
Ciphers: A Synthetic Approach. In Douglas R. Stinson, editor, Advances in Cryptology
– CRYPTO’93, volume 773 of Lecture Notes in Computer Science, pages 368–378. Springer,
August 1994. (Cited on pages 20, 112, and 145)

[Pie90] Josef Pieprzyk. Non-linearity of Exponent Permutations. In Jean-Jacques Quisquater and
Joos Vandewalle, editors, Advances in Cryptology – EUROCRYPT’89, volume 434 of Lecture
Notes in Computer Science, pages 80–92. Springer, April 1990. (Cited on page 62)

[Pol75] John Pollard. A Monte Carlo method for factorization. BIT Numerical Mathematics,
15(3):331–334, 1975. (Cited on page 12)

[Rab78] Michael O. Rabin. Digitalized Signatures. In Richard J. Lipton and Richard A. DeMillo,
editors, Foundations of Secure Computation, pages 155–166. Acedemic Press, New York, 1978.
(Cited on page 13)

[RDP+96] Vincent Rijmen, Joan Daemen, Bart Preneel, Anton Bossalaers, and Erik De Win. The
Cipher SHARK. In Dieter Gollmann, editor, Fast Software Encryption – FSE’96, volume
1039 of Lecture Notes in Computer Science, pages 99–111. Springer, February 1996. (Cited on
page 58)

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for Obtaining Digital
Signature and Public-Key Cryptosystems. Communications of the Association for Computing
Machinery, 21(2):120–126, 1978. (Cited on page 5)

[RTV13] Vincent Rijmen, Deniz Toz, and Kerem Varici. On the Four-Round AES Characteristics. In
WCC 2013, Bergen, Norway, April 2013. (Cited on page 43)

[RW03] Ben Reichardt and David Wagner. Markov Truncated Differential Cryptanalysis of Skipjack.
In Kaisa Nyberg and Howard M. Heys, editors, SAC 2002: 9th Annual International Workshop
on Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer Science, pages
110–128. Springer, August 2003. (Cited on page 47)

[Sch89] Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards. In Gilles
Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in
Computer Science, pages 239–252. Springer, August 1989. (Cited on page 5)

[Sch10] Martin Schläffer. Subspace Distinguisher for 5/8 Rounds of the ECHO-256 Hash Function.
In Alex Biryukov, Guang Gong, and Douglas R. Stinson, editors, SAC 2010: 17th Annual
International Workshop on Selected Areas in Cryptography, volume 6544 of Lecture Notes in
Computer Science, pages 369–387. Springer, August 2010. (Cited on pages 215, 223, 224,
227, 228, and 230)

[Sch11] Martin Schläffer. Updated Differential Analysis of Grøstl. Grøstl website, January
2011. (Cited on pages 207 and 215)

BIBLIOGRAPHY 273

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell Systems Technical
Journal, 28(4):656–715, 1949. (Cited on pages 3 and 17)

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita, and
Taizo Shirai. Piccolo: An Ultra-Lightweight Blockcipher. In Bart Preneel and Tsuyoshi
Takagi, editors, Cryptographic Hardware and Embedded Systems – CHES 2011, volume 6917
of Lecture Notes in Computer Science, pages 342–357. Springer, September / October 2011.
(Cited on page 113)

[Ski98] SKIPJACK and KEA Algorithm Specifications Version 2.0. National Institute of Standards
and Technology (NIST), May 1998. (Cited on page 47)

[SLW+10] Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, and Kazuo Ohta. Non-full-active Super-
Sbox Analysis: Applications to ECHO and Grøstl. In Masayuki Abe, editor, Advances in
Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages
38–55. Springer, December 2010. (Cited on pages 145, 158, 179, 186, 192, 207, 214, 215, 226,
and 230)

[SSNO12] Siamak Fayyaz Shahandashti, Reihaneh Safavi-Naini, and Philip Ogunbona. Private
Fingerprint Matching (Short Paper). In Willy Susilo, Yi Mu, and Jennifer Seberry, editors,
ACISP 12: 17th Australasian Conference on Information Security and Privacy, volume 7372 of
Lecture Notes in Computer Science, pages 426–433. Springer, July 2012. (Cited on page 5)

[TWP07] Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin. Breaking 104 Bit WEP in Less
Than 60 Seconds. In Sehun Kim, Moti Yung, and Hyung-Woo Lee, editors, WISA 07: 8th
International Workshop on Information Security Applications, volume 4867 of Lecture Notes in
Computer Science, pages 188–202. Springer, August 2007. (Cited on page 52)

[Vau98] Serge Vaudenay. Provable Security for Block Ciphers by Decorrelation. In Michel Morvan,
Christoph Meinel, and Daniel Krob, editors, STACS, volume 1373 of Lecture Notes in
Computer Science, pages 249–275. Springer, 1998. (Cited on page 51)

[Vau03] Serge Vaudenay. Decorrelation: A Theory for Block Cipher Security. Journal of Cryptology,
16(4):249–286, September 2003. (Cited on page 51)

[vOW99] Paul C. van Oorschot and Michael J. Wiener. Parallel Collision Search with Cryptanalytic
Applications. Journal of Cryptology, 12(1):1–28, 1999. (Cited on page 12)

[Wag99] David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, Fast Software Encryption
– FSE’99, volume 1636 of Lecture Notes in Computer Science, pages 156–170. Springer, March
1999. (Cited on pages 48, 50, and 51)

[Wag02] David Wagner. A Generalized Birthday Problem. In Moti Yung, editor, Advances in
Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages
288–303. Springer, August 2002. (Cited on pages 150, 242, 247, and 256)

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of
the Hash Functions MD4 and RIPEMD. In Ronald Cramer, editor, Advances in Cryptology –
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 1–18. Springer,
May 2005. (Cited on page 34)

[WLH11] Yongzhuang Wei, Jiqiang Lu, and Yupu Hu. Meet-in-the-Middle Attack on 8 Rounds of
the AES Block Cipher under 192 Key Bits. In Feng Bao and Jian Weng, editors, ISPEC,
volume 6672 of Lecture Notes in Computer Science, pages 222–232. Springer, 2011. (Cited on
page 93)

274 BIBLIOGRAPHY

[WY05] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Ronald
Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 19–35. Springer, May 2005. (Cited on pages 34 and 113)

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In
Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes
in Computer Science, pages 17–36. Springer, August 2005. (Cited on pages 34 and 113)

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search Attacks on
SHA-0. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 1–16. Springer, August 2005. (Cited on page 34)

[Yuv79] Gideon Yuval. How to Swindle Rabin. Cryptologia, 3:187–189, 1979. (Cited on page 12)

Appendices

— 275 —

APPENDIXA
Advanced Encryption Standard

A.1 AES S-Box lookup table

Table A.1: The AES S-Box (see Section 4.2.3).

63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

A.2 PRESENT S-Box lookup table

Table A.2: The 4-bit PRESENT S-Box.

C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

A.3 Whirlpool S-Box lookup table

— 277 —

Table A.3: The Whirlpool S-Box.

18 23 c6 E8 87 B8 01 4F 36 A6 d2 F5 79 6F 91 52
60 Bc 9B 8E A3 0c 7B 35 1d E0 d7 c2 2E 4B FE 57
15 77 37 E5 9F F0 4A dA 58 c9 29 0A B1 A0 6B 85
Bd 5d 10 F4 cB 3E 05 67 E4 27 41 8B A7 7d 95 d8
FB EE 7c 66 dd 17 47 9E cA 2d BF 07 Ad 5A 83 33
63 02 AA 71 c8 19 49 d9 F2 E3 5B 88 9A 26 32 B0
E9 0F d5 80 BE cd 34 48 FF 7A 90 5F 20 68 1A AE
B4 54 93 22 64 F1 73 12 40 08 c3 Ec dB A1 8d 3d
97 00 cF 2B 76 82 d6 1B B5 AF 6A 50 45 F3 30 EF
3F 55 A2 EA 65 BA 2F c0 dE 1c Fd 4d 92 75 06 8A
B2 E6 0E 1F 62 d4 A8 96 F9 c5 25 59 84 72 39 4c
5E 78 38 8c d1 A5 E2 61 B3 21 9c 1E 43 c7 Fc 04
51 99 6d 0d FA dF 7E 24 3B AB cE 11 8F 4E B7 EB
3c 81 94 F7 B9 13 2c d3 E7 6E c4 03 56 44 7F A9
2A BB c1 53 dc 0B 9d 6c 31 74 F6 46 Ac 89 14 E1
16 3A 69 09 70 B6 d0 Ed cc 42 98 A4 28 5c F8 86

List of Figures

1.1 Chiffre de César . 2
1.2 Canal de communication . 4
1.3 Attaque par le milieu . 6
1.4 Fonction de hachage . 7
1.5 Table de hachage . 10
1.6 Vue schématique d’une fonction de hachag . 12
1.7 Construction de Merkle-Damgd̊ . 13
1.8 Construction de multicollisions . 14
1.9 La construction sponge . 15
1.10 Algorithme de chiffrement par bloc itéré à clefs alternantes 17
1.11 Le mode ECB . 18
1.12 Démonstration des modes ECB et CBC sur des images présentants une forte structure . . . 18
1.13 Le mode CBC . 19
1.14 Modes opératoires pour fonctions de compression à base de chiffrement par bloc 20
1.15 Attaque par le milieu . 21
1.16 Modèles d’attaques en clef secrète . 22
1.17 Modèles d’attaques en clef ouverte . 23

— 278 —

List of Figures 279

3.1 Key-alternating block cipher . 36
3.2 Even-Mansour construction . 37
3.3 Even-Mansour simplified construction . 37
3.4 Differential and differential characteristic . 38
3.5 Key recovery and differential cryptanalysis . 40
3.6 The boomerang attack . 49
3.7 The related-key boomerang attack. 53
3.8 Overview of the rebound attack . 55

4.1 Ordering of the bytes in one AES state. 59
4.2 Encryption with AES . 59
4.3 Key schedules of the three variants of the AES . 60
4.4 One round of AES: description of the round function f . 61
4.5 Visual representations of two difference distribution tables 64
4.6 Truncated difference representation in AES . 66
4.7 Transition 1→ 4 in the MixColumns . 66
4.8 Generalized round function of an AES-like permutation with t = 8. 67
4.9 Integral distinguisher on 3-round AES . 68
4.10 Integral attack on 4-round AES . 69
4.11 Integral attack on 5-round AES . 70
4.12 Integral attack on 6-round AES . 71
4.13 Basic summation for the integral attack . 73
4.14 Improved summation for the integral attack . 73
4.15 Functional distinguisher from Gilbert and Minier for 3 rounds of AES. 75
4.16 Gilbert and Minier attack on 7-round AES . 78
4.17 Impossible differential characteristic on 4-round AES . 79
4.18 Impossible differential on 4-round AES . 80
4.19 Differential characteristic used in the Bahrak and Aref attack 81
4.20 Impossible differential attack on 7-round AES by Mala et al. 83
4.21 Relatad-key boomerang attack on 7-round AES-128 . 85

5.1 Functional relation in 4-round AES . 90
5.2 General scheme of the meet-in-the-middle attack on AES . 92
5.3 Middle rounds from the 7-round attack on AES . 93
5.4 7-round characteristic used in the attacks on AES . 97
5.5 Complete 7-round characteristic for the simple attack . 99
5.6 Complete 7-round truncated differential characteristic used in the efficient attack. 101
5.7 8-round characteristic fir the 8-round attacks . 105
5.8 Five steps of the key scheduling algorithm of AES-192 . 107
5.9 Four steps of the key scheduling algorithm of AES-256. 108
5.10 9-round characteristic for the 9-round attack on AES-256. 110

6.1 Tree representation of a set of differential characteristics . 114
6.2 Graph representation of a set of differential characteristics . 115
6.3 SASAS construction . 116
6.4 ASASA construction . 117
6.5 One round of the generic SPN and AES-like ciphers. 119
6.6 Examples of simplified versions of the two graphs G and G5 122
6.7 Example of graph product to build G . 123
6.8 Example of shortest paths in G5 . 126
6.9 Example of linear incompatibility in the case of AES-128 . 127
6.10 Compressions of an AES state . 131

280 List of Figures

6.11 Best 5-round truncated differential characteristic for AES-128 with 11 active S-Boxes. . . . 133
6.12 Best 8-round truncated differential characteristic for AES-128 with 21 active S-Boxes. . . . 134
6.13 Best 10-round truncated differential characteristic for AES-128 with 25 active S-Boxes. . . 134
6.14 Variables used as a basis in the system resolution . 136
6.15 Best differential characteristic on 2-round AES-128 . 137
6.16 Best differential characteristic on 3-round AES-128 . 138
6.17 First best differential characteristic on 4-round AES-128 . 139
6.18 Another best differential characteristic on 4-round AES-128 140
6.19 Best differential characteristic on 5-round AES-128 . 141

7.1 General framework to apply the rebound technique . 146
7.2 Generalized collision problem for the limited birthday problem 147
7.3 Chart of the log2 time complexities for the limited-birthday algorithm 148
7.4 The full 7-round integral distinguisher for an AES-like permutation 149
7.5 Integral distinguisher for 7 rounds of an AES-like permutation 150
7.6 Characteristic for the 7-round known-key distinguisher on AES-like permutations 151
7.7 Generic constraints required for a random permutation . 152
7.8 Second round of the 7-round characteristic used in the known-key distinguisher 154
7.9 8-round characteristic used in the known-key distinguisher on AES-like permutations . . . 156
7.10 The Super-SBox construction . 156
7.11 Non-fully-active truncated differential characteristic on 8 rounds 158
7.12 Sparse Super-SBox differential . 159
7.13 7-round characteristic used in the chosen-key distinguisher on AES 162
7.14 First step of the distinguishing algorithm . 164
7.15 Second step of the distinguishing algorithm . 165
7.16 Generating a compatible key for AES-128 . 165
7.17 Generating a compatible key for AES-256 . 168
7.18 8-round characteristic used in the chosen-key distinguisher on AES-128 169
7.19 Chosen-key Super-SBox differential . 170
7.20 Middle round of the 7-round characteristic of the chosen-key distinguisher of AES-128 . . 171
7.21 Differential characteristic of 9-round AES-128 used in the distinguisher 174

8.1 The compression function of Grøstl using the permutations P and Q 181
8.2 The sponge construction. 183
8.3 The LED-64 block cipher . 184
8.4 The LED-128 block cipher . 184
8.5 One round of the Whirlpool hash function inner permutation. 185
8.6 Characteristic used in the 9-round attack on AES-like permutations 187
8.7 Inbound phase for the 9-round distinguishing attack . 189
8.8 Steps of the merging process for the 9-round distinguisher 190
8.9 Plot of the two polynomials Pt and Qt . 190
8.10 Non-fully-active truncated differential characteristic on 9 rounds 192
8.11 Non-fully-active inbound phase for the 9-round distinguisher attack 194
8.12 Characteristic used in the 10-round attack on the permutation of Grøstl-256 199
8.13 Inbound phase for the 10-round distinguishing attack on Grøstl 200
8.14 First step of the guess and determine algorithm . 201
8.15 Second step of the guess and determine algorithm . 202
8.16 Third step of the guess and determine algorithm . 203
8.17 Fourth step of the guess and determine algorithm . 204
8.18 Possible inputs and outputs of the relaxed generic distinguisher 208
8.19 Generalized 9-round truncated differential characteristic for the relatex outbound 211
8.20 Differential characteristic for the 8-round known-key distinguisher for AES-128 213

List of Figures 281

8.21 Differential characteristic for the 8-round chosen-key distinguisher for AES-128 213
8.22 19-round truncated differential characteristic for LED-64. 216
8.23 Characteristic used in the 10-round attack on Whirlpool 217
8.24 Characteristic used in the 7.5-round attack on Whirlpool 218

9.1 The internal state of ECHO is seen as a square matrix 4× 4 of AES states of 128 bits. 220
9.2 One round of the ECHO permutation . 220
9.3 Compression function of ECHO-256. 221
9.4 Compression function of ECHO-512. 221
9.5 Alternative view of one round of the inner permutation of ECHO. 222
9.6 The SuperMixColumns layer . 224
9.7 Characteristic used in the 4-round attack on ECHO-256 . 229
9.8 A sparse differential in the Super-SBox with only one active input byte. 230
9.9 Characteristic for a single BigColumn . 232
9.10 The SuperShiftRows layer . 233
9.11 Part of the second inbound in the 4-round attack on ECHO-256 233
9.12 Second inbound in the 4-round attack on ECHO-256 . 233
9.13 Feed-forward after the inner permutation reduced to 4 rounds 235
9.14 Collision in the feed-forward of 4-round ECHO-256 . 235
9.15 Final step of the collision attack of ECHO-256 compression function 237
9.16 Characteristic for the 5-round collision attack on ECHO-256 hash function 241
9.17 Merging the inbound phases. 245
9.18 Characteristic used in the 7-round attack on the ECHO-256 compression function 248
9.19 Rebound attack on 7 rounds of the ECHO compression function. 253

List of Tables

1.1 Complexité des attaques génériques sur une fonction de hachage 11

3.1 Complexity of boomerang and amplified boomerang attacks 51

4.1 Best cryptanalytic results on reduced AES variants in the secret-key model. 87

4.2 Best cryptanalytic results on reduced AES variants in the related-key model. 88

6.1 Structural evaluation of the AES-128 in the related-key model 133
6.2 Best related-key differential attacks on AES-128 . 137
6.3 Best differential characteristic on 2-round AES-128 . 138
6.4 Best differential characteristic on 3-round AES-128 . 138
6.5 Pair of messages for the 3-round characteristic . 139
6.6 Best differential characteristic on 5-round AES-128 . 140
6.7 Pair of message for the 5-round characteristic . 141

7.1 Summary of rebound-based algorithms for AES-like permutations 145
7.2 Pair of messages for the 7-round chosen-key distinguisher of AES-128 166
7.3 Pair of messages for the 8-round chosen-key distinguisher of AES-128 172
7.4 Differential characteristic of 9-round AES-128 used in the distinguisher 175
7.5 Pair of keys used in the 9-round chosen-key distinguisher on AES-128 176

8.1 Variants of the PHOTON hash function family . 183
8.2 Rebound attacks with an improved algorithm for the inbound phase 186
8.3 Examples of parameters for our improved inbound algorithm 197
8.4 Known and improved results for various rebound-based attacks on AES-based primitives. . 207
8.5 Complexities of some algorithms solving the multiple limited-birthday problem 210

9.1 Linear constraint required to ensure the consistency of the system of linear equations Sα,β. 226
9.2 Best known cryptanalytic results on ECHO-256 to date. 226
9.3 Example of a near-collision on 384 bits of ECHO-256 compression function 238

A.1 The AES S-Box . 277
A.2 The 4-bit PRESENT S-Box. 277
A.3 The Whirlpool S-Box. 278

— 282 —

List of Algorithms

5.1 Construction of the tables . 97
5.2 A simple attack on 7-round AES . 100
5.3 An efficient attack on 7-round AES . 103
6.1 Search all the shortest paths in Gr . 125
7.1 Distinguishing algorithm for 9 rounds of AES-128 . 175

— 283 —

Author Index

Abdelraheem, Mohamed Ahmed 124

Adleman, Leonard M. 5

Akishita, Toru 113

Anderson, Ross J. 36

Aref, Mohammad Reza 47, 67, 80

Assche, G. Van 150

Assche, Gilles Van 15

Aumasson, Jean-Philippe 16, 150

Bahrak, Behnam 47, 67, 80

Barreto, Paulo S. L. M. 113, 184, 206

Baysal, Adnan 90

Bellare, Mihir 52, 150

Benadjila, Ryad 113, 206, 214, 219

Berger, Thierry P. 62

Bertoni, G. 150

Bertoni, Guido 15, 16

Biham, Eli 33, 34, 36, 42, 45, 47, 50, 51, 53, 57,
84, 88, 112, 113, 117, 119, 221

Billet, Olivier 113, 206, 214, 219

Biryukov, Alex 27, 37, 47, 52, 53, 67, 84, 85, 88,
113–117, 135, 136, 145, 161, 173

Black, John 145

Blondeau, Céline 41, 62, 124

Bogdanov, Andrey 16, 36, 113, 212

Bossalaers, Anton 58

Bouillaguet, Charles 113

Boura, Christina 186, 215

Brent, Richard P. 12

Browning, K.A. 62

Canetti, Ran 144

Canteaut, Anne 62, 186, 215

Charpin, Pascale 62

Chen, Hui 34

Clapp, Craig S. K. 15

Coban, Mustafa 90

Coppersmith, Don 34

Daemen, J. 150

Daemen, Joan 7, 15, 16, 36, 43, 45, 58, 67, 70, 87,
90, 116, 117, 133, 134, 149, 155, 173, 220, 222

Dakhilalian, Mohammad 47, 67, 82, 84, 87

Damgård, Ivan 13

De Cannière, Christophe 113, 186, 215

De Win, Erik 58

Demirci, Hüseyin 26, 89, 90, 92, 93

Derbez, Patrick 26, 28, 31, 47, 67, 89, 96, 113,
143, 145, 161

Desmedt, Yvo 220

Diffie, Whitfield 6

Dillon, J.F. 62

Dobbertin, Hans 34

Duc, Alexandre 205

— 285 —

286 LIST OF ALGORITHMS

Dunkelman, Orr 26, 37, 47, 50–53, 67, 82, 84,
87–94, 101, 107, 112, 113, 221

Dworkin, M. 59

ElGamal, Taher 5

Even, Shimon 36

Feng, Dengguo 34

Ferguson, Niels 67, 71, 72, 74, 87, 90

Floyd, Robert W. 12

Fouque, Pierre-Alain 26–28, 30, 31, 47, 67, 89,
96, 112, 113, 143, 145, 161, 162, 215, 219, 226,
227

Gauravaram, Praveen 113, 206

Gérard, Benoît 41

Gilbert, Henri 67, 75, 77, 78, 87, 90, 92, 113,
144–146, 155, 157, 168, 173, 176, 179, 186,
188, 206, 207, 212, 214, 219, 222, 226, 227, 252

Goldreich, Oded 144

Gorski, Michael 51, 53, 88

Goubin, Louis 117

Govaerts, René 20, 112, 145

Guo, Jian 16, 113, 182, 183, 186, 205–207, 216,
217

Halevi, Shai 144

Hart, Peter 114, 115, 126

Hellman, Martin E. 6

Henzen, Luca 16

Hiwatari, Harunaga 113

Hoffstein, Jeffrey 5

Hong, Seokhie 84, 88

Hu, Yupu 93

ISO 112

Isobe, Takanori 113

Jean, Jérémy 26–28, 30, 31, 47, 51, 67, 89, 112,
143, 162, 180, 186, 219, 226, 227

Joux, Antoine 14

Käsper, Emilia 150

Keliher, Liam 43

Keller, Nathan 26, 37, 47, 50–53, 67, 82, 84,
87–94, 101, 107, 112

Kelsey, John 50, 51, 67, 71, 72, 74, 87, 90

Kerckhoffs, Auguste 4

Khovratovich, Dmitry 27, 52, 53, 56, 67, 84, 88,
113, 145, 161, 212

Kilian, Joe 37

Kim, Jongsung 47, 67, 82, 84, 87, 88, 91, 94

Knezevic, Miroslav 16

Knudsen, Lars 47

Knudsen, Lars R. 28, 34, 36, 46, 47, 58, 67, 70,
87, 90, 113, 119, 143, 144, 149, 150, 206

Knuth, Donald E. 12

Kohno, Tadayoshi 50–52

Lai, Xuejia 34, 41–44, 46, 47

Laigle-Chapuy, Yann 62

Lamberger, Mario 43, 56, 188, 207, 217, 222

Le, Tri Van 220

Leander, Gregor 16, 36, 113

Leurent, Gaëtan 113

Li, Yang 145, 158, 179, 186, 192, 207, 214, 215,
226, 230

Lu, Jiqiang 47, 67, 82, 87, 91, 93, 94

Lucks, Stefan 14, 51, 53, 67, 71, 72, 74, 87, 88,
90

LIST OF ALGORITHMS 287

Macario-Rat, Gilles 113, 206, 214, 219

Mala, Hamid 47, 67, 82, 84, 87

Mansour, Yishay 36

Manuel, Stéphane 113

Massey, James L. 34, 41–44, 46, 47

Matsui, Mitsuru 33, 57, 113, 126

Matusiewicz, Krystian 56, 113, 150, 206

Matyas, S.M. 112

McQuistan, M.T. 62

Meier, Willi 16, 62

Mendel, Florian 28, 55, 56, 96, 113, 145, 149,
151, 153, 155, 157, 179, 188, 206, 207, 214,
217, 222, 226, 227, 252

Merkle, Ralph C. 12, 13

Meyer, C.H. 112

Micciancio, Daniele 150

Minier, M. 78

Minier, Marine 67, 75, 77, 78, 87, 90, 92

Mitsuda, Atsushi 113

Modarres-Hashemi, Mahmoud 47, 67, 82, 84,
87

Murphy, Sean 34, 41–44, 46

Nandi, Mridul 15

Naya-Plasencia, María 16, 29–31, 56, 124, 145,
173, 179, 188, 200, 207, 214, 219, 226, 227, 249

Nikolic, Ivica 31, 51, 207, 216

Nilsson, Nils 114, 115, 126

Nyberg, Kaisa 62

Ødegård, Rune Steinsmo 150

Ogunbona, Philip 5

Ohta, Kazuo 145, 158, 179, 186, 192, 207, 214,
215, 226, 230

Oseas, J. 112

Paar, Christof 36, 113

Patarin, Jacques 117

Paul, Souradyuti 15

Peeters, M. 150

Peeters, Michael 16

Peeters, Micha"el 15

Peyrin, Thomas 16, 27–29, 31, 51, 112, 113,
143–146, 149, 150, 153, 155, 157, 162, 168,
173, 176, 179–183, 186, 188, 205–207, 212,
214, 216, 217, 219, 222, 226, 227, 252

Pieprzyk, Josef 62

Pipher, Jill 5

Pollard, John 12

Poschmann, Axel 16, 36, 113, 182, 183, 186,
205–207, 216, 217

Pramstaller, Norbert 43

Preneel, Bart 20, 58, 84, 88, 112, 145

Pyshkin, Andrei 52

Rabin, Michael O. 13

Raphael, Bertram 114, 115, 126

Rechberger, Christian 28, 55, 56, 96, 113, 145,
149, 151, 153, 155, 157, 179, 188, 206, 207,
212, 214, 217, 222, 226, 227, 252

Reichardt, Ben 47

Rijmen, Vincent 7, 28, 36, 43, 45, 47, 56, 58, 67,
70, 82, 84, 87, 90, 113, 116, 117, 133, 134, 143,
144, 149, 155, 173, 184, 188, 206, 207, 217,
220, 222

Rivest, Ronald L. 5

Robshaw, Matt 113, 183, 206, 214, 219

Robshaw, Matthew J. B. 36, 47, 113, 183, 206,
207, 216

288 LIST OF ALGORITHMS

Röck, Andrea 56

Rogaway, Phillip 37, 145

Safavi-Naini, Reihaneh 5

Sakiyama, Kazuo 145, 158, 179, 186, 192, 207,
214, 215, 226, 230

Sasaki, Yu 56, 145, 158, 179, 186, 192, 207, 214,
215, 226, 230

Schläffer, Martin 28, 30, 31, 55, 56, 96, 145,
149–151, 153, 155, 157, 179, 188, 207, 214,
215, 219, 222–224, 226–228, 230, 252

Schneier, Bruce 50, 51, 67, 71, 72, 74, 87, 90

Schnorr, Claus-Peter 5

Selçuk, Ali Aydin 26, 89, 90, 92, 93

Seurin, Yannick 36, 113, 206, 214, 219

Shahandashti, Siamak Fayyaz 5

Shamir, Adi 5, 26, 33, 34, 37, 42, 45, 47, 52, 57,
67, 87, 89–93, 101, 107, 116, 117, 119

Shannon, Claude E. 3, 17

Shibutani, Kyoji 113

Shirai, Taizo 113

Shrimpton, Thomas 145

Silverman, JosephH. 5

Sparr, Rüdiger 220

Staffelbach, Othmar 62

Stam, Martijn 145

Stay, Michael 67, 71, 72, 74, 87, 90

Sui, Jiayuan 43

Taskin, Ihsan 90

Tews, Erik 52

Thomsen, Søren S. 28, 55, 96, 113, 145, 149,
151, 155, 157, 179, 206

Tillich, Jean-Pierre 41

Toz, Deniz 16, 43

Van Assche, Gilles 16

van Oorschot, Paul C. 12

Vandewalle, Joos 20, 112, 145

Varici, Kerem 16, 43

Vaudenay, Serge 51

Verbauwhede, Ingrid 16

Vercauteren, Frederik 43

Videau, Marion 124

Vikkelsoe, C. 36, 113

Wagner, David 37, 47, 48, 50, 51, 67, 71, 72, 74,
87, 90, 150, 242, 247, 256

Wang, Lei 31, 51, 145, 158, 179, 186, 192, 207,
214–216, 226, 230

Wang, Xiaoyun 34, 113

Wei, Lei 205

Wei, Yongzhuang 93

Weinmann, Ralf-Philipp 52

Wernsdorf, Ralph 220

Whiting, Doug 67, 71, 72, 74, 87, 90

Wiener, Michael J. 12

Wolfe, A.J. 62

Wu, Shuang 31, 51, 207, 216

Yin, Yiqun Lisa 34, 113

Yu, Hongbo 34, 113

Yu, Xiuyuan 34

Yuval, Gideon 12

Zenner, Erik 124

Résumé

Dans cette thèse, nous nous intéressons à la cryptanalyse de certaines primitives de cryptographie
symétrique qui utilisent les concepts de construction du schéma de chiffrement AES. Nous commençons
par une analyse de l’AES lui-même dans trois modèles de sécurité différents : le modèle standard, le
modèle à clefs reliées et le modèle ouvert. Dans le modèle standard, où l’adversaire cherche à récupérer
la clef secrète, nous décrivons les meilleures attaques différentielles existantes sur cet algorithme de
chiffrement, en améliorant les attaques différentielles précédemment publiées. Ensuite, nous procédons
à une analyse structurelle de l’AES dans le modèle à clefs reliées. Nous montrons des résultats d’impos-
sibilité, indiquant que l’on ne peut pas prouver la sécurité de la structure de l’AES contre les attaques
différentielles dans ce modèle. Enfin, dans le modèle ouvert, nous proposons le premier distingueur pour
neuf tours d’AES-128, ce qui résout un problème ouvert depuis plusieurs années dans la communauté
symétrique.

Dans une deuxième partie, nous analysons en détail l’application de l’attaque par rebond sur les
primitives basées sur l’AES. Nous montrons qu’il est possible de considérer un tour de plus dans la
première des deux phases de cette stratégie, ce qui améliore les meilleurs résultats connus sur les
permutations à base d’AES. Ceci résout le problème ouvert consistant à augmenter le nombre total de
tours attaqués grâce à cette technique. Nous montrons également qu’il est possible de relâcher certaines
contraintes pour augmenter la probabilité de succès de la deuxième étape. Ceci conduit à une diminution
des complexités de toutes les attaques publiées. Nous appliquons ces améliorations à la fonction de
hachage Grøstl, obtenant les meilleures attaques sur la permutation interne. Finalement, nous nous
intéressons à la fonction de hachage ECHO pour montrer qu’il est possible d’appliquer plusieurs fois
l’attaque par rebond et ainsi attaquer plus de tours de la permutation interne.

Abstract

In this thesis, we are interested in the cryptanalysis of some symmetric primitives using the structural
concepts of the current encryption standard AES. We begin by an analysis of the AES itself in three
different security models: the standard model, the related-key model and the open-key model. In the
standard model, where the adversary tries to recover the secret key, we describe the best differential
attacks, improving on the results previously published on this block cipher. Then, we conduct a
structural analysis of the AES in the related-key model. We show impossibility results claiming that one
cannot prove the security of the structure of the AES against differential cryptanalysis in that model.
Finally, in the open-key model, we propose the first distinguisher for 9-round AES-128, which solves a
long-lasting open problem in the symmetric community.

In a second part, we scrutinize the application of the rebound technique to AES-based permutations.
We show that it is possible to control one more round in the first of the two parts of this strategy, which
improves the best known results on this type of permutation. This result solves the open problem
consisting in increasing the total number of rounds that can be attacked thanks to this technique. We
also discuss the possibility to relax some constraints in the second phase to increase its probability of
success. This reduces all the time complexities of the results previously published using the rebound
technique. We apply these improvements to the Grøstl hash function and reach the best cryptanalysis
to date on the internal permutation. Finally, we study the ECHO hash function and show how we can
apply the rebound technique multiple times to attack more rounds of the internal permutation.

	Introduction
	Histoire de la cryptographie
	La cryptographie aujourd'hui
	Généralités
	Cryptographie asymétrique
	Algorithme de chiffrement
	Signature électronique

	Cryptographie symétrique
	Algorithmes de chiffrement par bloc
	Algorithmes de chiffrement par flot
	Fonctions de hachage
	Code d'authentification de message (MAC)

	Notions de cryptanalyse

	Fonctions de hachage
	Fonctions de hachage cryptographique
	Paradoxe des anniversaires
	Modes opératoires
	Construction de Merkle-Damgård
	Attaque par extension (extension attack)
	Attaque par multicollisions
	Construction wide-pipe
	Construction sponge

	Algorithmes de chiffrement par bloc
	Définition
	Construction itérée
	Modes opératoires
	Fonction de compression
	Cryptanalyse des algorithmes de chiffrement par bloc
	Attaque par le milieu
	Distance d'unicité
	Modèles d'attaquants

	Présentation des Travaux
	Présentation des travaux
	Liste des publications

	Differential Cryptanalysis
	Preliminaries
	Differentials
	Iterated functions
	Differential characteristics

	Block ciphers
	Basic key recovery attack
	Efficiency evaluation
	Improved variants

	Resistance against differential cryptanalysis

	Markov Ciphers
	Other forms of differential cryptanalysis
	Truncated differential cryptanalysis
	Impossible differential cryptanalysis
	Applications
	Resistance against impossible differential cryptanalysis

	Boomerang attack
	Improvements
	Applications

	Related-key attacks

	Hash functions
	Generalities
	Rebound attack

	Description of the AES and Cryptanalytic Results
	The AES competition
	Description of the AES block cipher
	Key scheduling algorithms
	Round function
	The substitution layer
	The permutation layer
	ShiftRows
	MixColumns

	AES-like permutations
	Notable cryptanalytic results
	Square attack
	Attack on 4 rounds
	Attack on 5 rounds
	Attack on 6 rounds
	Extensions to the larger AES variants

	Improved square attack with partial sums
	First improvement
	Second improvement
	Extension to more rounds
	The herd attack

	Collision attack
	Distinguishers
	Collision attack on 4 rounds
	Extension to 7 rounds

	Impossible differential attack
	Bahrak and Aref attack
	Improved variants

	Related-key attacks
	Related-key boomerang attack on 7-round AES-128

	Summary of all the attacks

	AES in the Secret-Key Model
	A class of attacks against AES
	Initial attacks
	Generalizations
	Attack framework
	Attack by Demirci and Selçuk
	Attack by Dunkelman, Keller and Shamir

	Improvements

	New attacks on 7-round AES
	Generalities
	Efficient tabulation
	A simple attack
	Precomputation phase
	Online phase

	Efficient Attack
	Key recovery

	Extensions to 8 and 9 rounds
	Attack on 8-round AES-192
	Attack on 8-round AES-256
	Attack on 9-round AES-256

	AES in the Related-Key Model
	Generalities
	Motivations
	Graph traversal algorithms
	Structural evaluation

	Definitions
	Substitution-Permutation Network
	Truncated and actual differences
	The substitution layer
	The permutation layer for AES-like ciphers

	Related-key differential characteristics
	Differential characteristic search
	Precomputation phase
	The graph GBC
	The graph GKS

	Online phase

	Enhanced Markov process
	The Markov assumption and actual differences
	Block cipher state compression
	Evaluating the number of nodes/edges of GBC and GKS
	Number of nodes
	Number eBC of edges in GBC
	Number eKS of edges in GKS

	More complete Markov process
	New state compression
	Representation of truncated subkeys

	Explanations

	Applications to SPN and AES-128
	Structural evaluation of SPN AES-like ciphers
	Complexity evaluation

	Differential characteristics results for AES-128

	AES in the Open-Key Model
	Generalities
	Motivations
	Rebound technique
	Limited-birthday distinguisher

	Known-key model
	Distinguishers for 7 rounds
	Integral distinguisher
	Rebound attack
	Improved distinguisher: start-from-the-middle technique

	Distinguisher for 8 rounds
	Fully-active characteristic
	Non-fully-active characteristic

	Chosen-key model
	Distinguisher for 7-round AES
	Distinguishing algorithm for AES-128
	Experimental verification
	Success probability
	Extension to 7-round AES-256
	Extension to 8-round AES-256

	Distinguisher for 8-round AES
	Distinguishing algorithm for AES-128
	Experimental verification
	Extension to 9-round AES-256

	Distinguisher for 9-round AES-128
	Distinguishing algorithm
	Generic case

	Improved Rebound Algorithms
	Description of some AES-like primitives
	Description of Grøstl
	Description of PHOTON
	Description of LED
	Description of Whirlpool

	Improved Inbound Part
	Fully-active truncated differential characteristic
	The truncated differential characteristic
	Finding a conforming pair
	Comparison with the ideal case

	Non-fully-active truncated differential characteristic
	The generic truncated characteristic
	Finding a conforming pair
	Comparison with ideal case

	Application to Grøstl-256 permutations
	Three fully-active states
	Non-fully-active characteristic

	Distinguisher for 10-round Grøstl-512
	The truncated differential characteristic
	Finding a conforming pair
	Comparison with ideal case

	Distinguishers for reduced PHOTON permutations

	Improved Outbound Part
	Multiple limited-birthday and generic complexity
	Structures of input data
	Generic algorithm

	Truncated characteristic with relaxed conditions
	Relaxed 9-round distinguisher for AES-like permutation
	Comparison with ideal case

	Applications
	AES
	ECHO
	Grøstl
	LED
	PHOTON
	Whirlpool

	Rebound Attacks on ECHO Hash Function
	Description of ECHO
	Original description
	Alternative description
	Super-SBox
	SuperMixColumns

	Current cryptanalysis

	Attacks on ECHO-256
	Collision attack on the 4-round compression function
	Truncated differential characteristic
	Super-SBox sparse differentials
	Finding a message pair
	Step 1 - Partial first inbound
	Step 2 - Second inbound
	Step 3 - Merging the two inbounds
	Step 4 - Reaching the collision
	Experimental verification

	Collision attack on the 4-round hash function
	Collision attack on the 5-round hash function
	The truncated differential characteristic
	Colliding subspace differences
	High-level outline of the attack
	Details of the attack

	Distinguisher for the 7-round compression function
	Finding pairs between S6 and S23
	Finding pairs between S30 and S47
	Merging solutions

	Collision attack on the 6-round compression function
	Chosen-salt attacks on the compression function
	The truncated differential characteristic
	Outline of the attack
	Finding right pairs
	Chosen-salt collision attack for 6 rounds
	Chosen-salt distinguisher for 7 rounds

	Conclusions
	Bibliography
	Appendices
	Advanced Encryption Standard
	AES S-Box lookup table
	PRESENT S-Box lookup table
	Whirlpool S-Box lookup table

	List of Figures
	List of Tables

