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travailler avec toi.

Je remercie les rapporteurs de ma thèse Bruno Bouzy et Alain Dutech qui
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Abstract

My thesis is entitled ”Contributions to Simulation-based High-dimensional
Sequential Decision Making”. The context of the thesis is about games,
planning and Markov Decision Processes.

An agent interacts with its environment by successively making decisions.
The agent starts from an initial state until a final state in which the agent
can not make decision anymore. At each timestep, the agent receives an
observation of the state of the environment. From this observation and its
knowledge, the agent makes a decision which modifies the state of the en-
vironment. Then, the agent receives a reward and a new observation. The
goal is to maximize the sum of rewards obtained during a simulation from
an initial state to a final state. The policy of the agent is the function which,
from the history of observations, returns a decision.

We work in a context where (i) the number of states is huge, (ii) re-
ward carries little information, (iii) the probability to reach quickly a good
final state is weak and (iv) prior knowledge is either nonexistent or hardly
exploitable. Both applications described in this thesis present these con-
straints: the game of Go and a 3D simulator of the european project MASH
(Massive Sets of Heuristics).

In order to take a satisfying decision in this context, several solutions are
brought:

1. Simulating with the compromise exploration/exploitation (MCTS)

2. Reducing the complexity by local solving (GoldenEye)

3. Building a policy which improves itself (RBGP)

4. Learning prior knowledge (CluVo+GMCTS)

Monte-Carlo Tree Search (MCTS) is the state of the art for the game of
Go. From a model of the environment, MCTS builds incrementally and asy-
metrically a tree of possible futures by performing Monte-Carlo simulations.
The tree starts from the current observation of the agent. The agent switches

3
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between the exploration of the model and the exploitation of decisions which
statistically give a good cumulative reward. We discuss 2 ways for improving
MCTS : the parallelization and the addition of prior knowledge.

The parallelization does not solve some weaknesses of MCTS; in particular
some local problems remain challenges. We propose an algorithm (Golden-
Eye) which is composed of 2 parts: detection of a local problem and then its
resolution. The algorithm of resolution reuses some concepts of MCTS and
it solves difficult problems of a classical database.

The addition of prior knowledge by hand is laborious and boring. We
propose a method called Racing-based Genetic Programming (RBGP) in
order to add automatically prior knowledge. The strong point is that RBGP
rigorously validates the addition of a prior knowledge and RBGP can be used
for building a policy (instead of only optimizing an algorithm).

In some applications such as MASH, simulations are too expensive in time
and there is no prior knowledge and no model of the environment; therefore
Monte-Carlo Tree Search can not be used. So that MCTS becomes usable
in this context, we propose a method for learning prior knowledge (CluVo).
Then we use pieces of prior knowledge for improving the rapidity of learning
of the agent and also for building a model. We use from this model an
adapted version of Monte-Carlo Tree Search (GMCTS). This method solves
difficult problems of MASH and gives good results in an application to a
word game.
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Chapter 1

Introduction

Solving complex problems is always an exciting challenge.

For example, implementing a MCTS algorithm for playing chess better
than me (amateur) is a challenge.

Another interesting perspective is to solve a complex problem by starting
with almost nothing (e.g. without prior knowledge, agnostic framework,
unknown goal, no - or few - assumptions on the architecture1 ...). In the
space exploration, robots have to solve difficult problems in an unknown
environment without help. In 2012, the robot Curiosity explores the planet
Mars sometimes without human intervention because communications take a
lot of time between Earth and Mars. The robot makes autonomous decisions
in order to reach a destination in an environment where humans have never
walked. Possibly, when communications take too much time, the robot will
evolve autonomously in a completely unknown environment and will have to
determine itself what is interesting for humans.

This thesis has allowed me to do both. The first has been the creation of
a chess engine who plays chess better than me. In addition to the state of
the art, I have reused in my chess program an algorithm called MCTS which
has been very efficient in the field of Go. The second was the elaboration
of an algorithm for solving complex problems in an unknown environment
(a 3D simulator). In this introduction, a first part is dedicated to present
definitions of problems, the second presents applications on which I have
worked2. The third part elaborates the issues and the fourth presents state
of the art for solving those problems.

1No assumption on architecture can be useful for the genericity - the interface or the
solver should not be redefined at each time the robot solves a new task.

2My work on chess is not presented in this thesis.
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1. INTRODUCTION

1.1 Game, Planning, MDP

During this thesis, I have worked on sequential decisions-making problems
in the context of games, planning and MDP.

An agent (e.g a Chess player or a robot) interacts with its environment
by successively making decisions (e.g. playing moves for the chess player or
moving for the robot). The agent starts from an initial state until a final state
in which the agent can not make decision anymore (e.g. a mate for Chess
or the robot is fallen into a hole). At each time step, the agent receives an
observation (e.g. the chessboard or the view of robot cameras) of the state of
the environment. From this observation and its knowledge, the agent makes
a decision which modifies the state of the environment. Then, the agent
receives a reward and a new observation. The goal is that the agent learns
what it must do in the environment (e.g win a chess game or explore the
environment) thanks to rewards given to the agent.

This section defines terms relating to these problems.
A Markov decision process (MDP) is a 4-tuple (S,A, P (., .), R(., .)) where

• S is a finite set of states,

• A is a finite set of actions.

• Pa(s, s′) = Pr(st+1 = s′|st = s, at = a) is the probability that action a
on the state s leads to state s′ at time t+ 1.

• Ra(s, s
′) is the immediate reward received after transition to state s′

from state s with transition probability Pa(s, s
′).

There is a state space S; elements of S are termed states; a component of
state is termed feature. When making a decision d (i.e. action) in state s,
we switch to a state s′; we note s′ = s.d. In terms of graph, we can imagine
that s and s′ are nodes, and there is an edge (directed link) from s to s′,
with label d. A decision d is legal in s if there is an out-edge from s with
label d. Going from s to s′ by action d is termed a transition. Some states
are equipped with a reward. A state for which the situation can not change
anymore, and this whatever the decisions is called a final state (or terminal
state).

A simulation is a sequence of states. Each state is labelled with

• either the name of the player who makes a decision at this state;

• or a probability distribution on legal decisions at this state.

6



1.2. APPLICATIONS

There might be one player, or many players. When there are more than
one player, the MDP is termed a stochastic game (SG). A history is a se-
quence of states with actions between them. It is legal if it is a sequence
s1, d1, s2, d2, s3, ... of states such that sk+1 = sk.dk for all k. A strategy is a
mapping from legal histories to actions. A state is distinguished as the initial
state.

A policy denoted π is a function which returns from a state s a deci-
sion d and γ is the discount factor which satisfies 0 < γ ≤ 1. The goal
is to find a strategy π such that starting at the initial state and making
decisions with the strategy, the expected sum of rewards over a simulation∑+∞

t=0 γ
tRπ(st)(st, st+1) is as high as possible. The discount factor γ is typi-

cally closed to 1. When there is an opponent, we want the sum of rewards to
be as high as possible for a given opponent, or for the worst case on possible
opponents, depending on the context.

Some simple elements have a huge impact on the difficulty of the problem:

• sometimes, we know all probability distributions involved, and some-
times we can just simulate them;

• sometimes, we can simulate, for any s and d, the transition s′ = s.d;

• sometimes, typically in a physical system, if we want to simulate s′ =
s.d, then we must first find s (by successive transitions);

• sometimes, the environment is partially observable. A partially observ-
able MDP is denoted POMDP.

A classical SG where we can easily simulate is 2 player zero-sum board
game which is deterministic, sequential and with perfect information such as
Chess and the game of Go. A 2 player zero-sum game is a game where a
player’s gain (or loss) is exactly balanced by the loss (or gain) of its opponent.

MDP solving consists in, given a MDP, finding an approximately optimal
policy. For solving MDP, we distinguish 2 kinds of learning. In online learn-
ing, the learning is performed in real time during the simulations, whereas in
offline mode the learning is performed once and for all in a separate training
phase.

1.2 Applications

The applications on which I have worked belong to the domain of games,
planning and POMDP. To support my thesis, I worked on 2 projects called
MoGo (game) and MASH (planning and MDP). First I present the project

7



1. INTRODUCTION

MoGo, a software of Go and then I describe 2 applications of the project
MASH.

1.2.1 MoGo

MoGo is a software of Go, designed in 2006 by Sylvain Gelly and Yizao Wang.
The game of Go (Fig. 1.1) is a 2 player game originated in China more than
2,500 years ago. Several rules (such as counting points) are available following
the country. MoGo plays with Chinese Rules. The game of Go is a board
game. The board is called a goban. The classical size of the goban is 19x19.
Each player has stones (= pawns). The player, who starts the game, is Black
whereas the second player is White. The Black player puts one of its black
stones on an empty intersection of the board, then the turn passes to the
White player who puts one of its white stone and alternatively, both players
put a new stone on an empty intersection of the goban or not (= pass) until
both players agree on the end of the game. Stones can be captured but are
never moved from an intersection to another. A player passes to mean the
end of the game. The game finishes when both players pass. The goal is to
control a biggest territory than his opponent (Right of Fig. 1.1). A chain is a
4-connected group of stones of same color (Fig. 1.1). For more details about
rules, http://gobase.org/studying/rules.

Even if the game of Go is an adversarial game (2 players), fully observ-
able and easy to simulate whose rules are very simple, playing well is very
difficult. So, this game is a real nice challenge for artificial intelligence. After
the famous win of Deep Blue against the world champion of chess Garry Kas-
parov in 1997, the game of Go is become the new challenge of the Artificial
Intelligence. MoGo was the first program who beats with reasonable number
of handicap stones (i.e. MoGo has an advantage of 9 stones), the 7 August
2008 against Kim MyungWan 8p (a professional player with a very high-level
grade) on KGS (Fig. 1.1). The precedent main result about a match between
a program against a strong player was in 1995, the professional player Janice
Kim defeated the top program of the day despite of a whopping 25 stone
handicap.

Some other results are given in the following links:
http://senseis.xmp.net/?MoGo and newer, http://www.lri.fr/ tey-
taud/mogo.html

1.2.2 MASH

Many specialized methods (e.g. in Data Mining [Savaresi et al., 2002]
[Defays, 1977]) are proved efficient in a lot of specific domains. Ensemble

8



1.2. APPLICATIONS

Figure 1.1: The famous game between MoGo and Kim MyungWan (8p).
Left: White to play. MoGo starts with an advantage of 9 stones. Center:
Black to play. Middle Game. Example of white (and black) chain is respec-
tively O3 O2 P2 Q2 Q3 (and Q16 R16 R17). Right: Counting points.
The game is finished and MoGo won by 1.5 points (black territories-white
territories+0.5 of komi for avoiding draw games).

methods such as Adaboost [Freund and Schapire, 1995] try to take advan-
tage of each specific method by building more collaborative approaches
[Dubout and Fleuret, 2011]. In this context, the MASH project 3 was
created. The aim of this project is to create new tools for the collaborative
development of large families of feature extractors in order to start a
new generation of learning software with great prior model complexity.
Targeted applications of the project are (i) classical vision problems and (ii)
goal-planning in a 3D video game and with a real robotic arm.

Below, we describe a goal-planning problem in the 3D video game. This
problem is named “blue flag then red flag“. The environment is first de-
scribed, then methods, observations, decisions, and rewards. Finally, the
best solution of this problem is given. In the last subsection, a second prob-
lem in the 3D video game is briefly discussed. This second problem is named
”10 flags“.

Environment

The environment is a square various size room with globally grey textures.
The square room enclosed by 4 walls, contains an avatar and 2 flags. One of
the two flags is red and the other flag is blue (See Fig. 1.2).

3http://mash-project.eu/wiki/index.php/About the MASH project. MASH means
MAssive Sets of Heuristics.
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blue red identity

Figure 1.2: ”blue flag then red flag” application. Top: a view of the 3D
avatar. Bottom: Images resulting of the application of the 3 heuristics on
the top view.

Methods

Methods are heuristics. More specifically, a heuristic is an image processing
operator. The heuristic is applied on the view of the 3D avatar (Fig. 1.2). 3
heuristics are used:

• red which indicates if a pixel (an element of the view of 3D avatar) is
red or not

• blue which indicates if a pixel is blue or not

• identity which transforms the value of the pixel to a gray-scale value.

Each heuristic gives around 100,000 features. In the observation, the solver
ignores what heuristic provides the feature and has no notion of heuristics.

Building an observation

The cumulative number of features given by the 3 heuristics red, blue and
identity are 3×100, 000 features but it’s too huge. In order to reduce the size
of observation space, 10,000 features are randomly selected over the 300,000
features. The observation given to the solver will be always made with these
10,000 features.

10
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Decisions

There are 4 decisions:

• 0 (which means “go forward”)

• 1 (which means “go backward”)

• 2 (which means “turn right”)

• 3 (which means “turn left”)

Note that the solver does not know the meaning of decisions.

Rewards

• Hit a wall: -1

• Touch the first time the blue flag: +5

• Touch (or hit) another time the blue flag: 0

• Hit the red flag without touched the blue flag: -5

• Hit the red flag after having touched the blue flag: +10

• Else: 0.

This definition of rewards is not informative, because most often, the avatar
moves without touching anything and receives a reward of 0.

Goal

A final state is reached if and only if once having touched the blue flag,
the red flag is touched. The best cumulative reward is 15, by first touching
the blue flag and then touching the red flag without hitting wall. We can
distinguish 2 subgoals (i) touch the blue flag and then (ii) touch the red flag.

A second application: touch 10 flags

The environment is the same except 3 red flags and no blue flag (Fig. 1.3).
Decisions don’t change. Only 2 heuristics (in state of 3) are used: red
and identity. The task is failed (bad final state) if after the application of
150 decisions, no red flag is touched, then a reward of -1000 is generated.
Touching a red flag gives a reward of 10 points. Finally, when a red flag
is touched, it disappears and reappears in another place. The final good

11
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Figure 1.3: “10 flags“ application.

state is reached when 10 flags touched. The optimal cumulative reward is so
100 = 10× 10 and is obtained if the wall has not been hit (else reward = -1
as in the first application described before).

Brief summary

MASH is partially observable, heavy to simulate, we have no access to the
transition probabilities, and we can not undo, we are totally agnostic on the
problem (We ignore the semantic of actions/observations).

1.3 Issues

In order to understand issues tackled in this thesis, we will compare the game
of Go and the MASH applications.

In a first section, we will discuss differences between the two applications.
In a second section, we will discuss similarities; in a third section, we will
give more details on one famous specific case, namely Nalimov tables; and in
a fourth section, we will explain the issues tackled in this thesis.

1.3.1 Differences between both problems

Reminder, the game of Go is an adversarial game (2 players), fully observ-
able and easy to simulate whereas MASH is partially observable, heavy to
simulate, we have no access to the transition probabilities, we can not undo
and we are totally agnostic on the problem.

12
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Another difference can be remarked. Although the decision space is dis-
crete and not too huge in both applications, the decision space is very small
for the MASH applications (only 4 decisions), whereas for the game of Go,
the number of decisions per state is greater than 200 in average.

1.3.2 Similarities between both problems

But in both cases, we can notice 4 constraints:

1. the number of states is huge

2. the reward carries little information

3. small probability to reach quickly a good final state

4. no knowledge or inexploitable knowledge

Illustration(s) of these constraints:
1 - A lot of states can be due to:

• Case 1 - A : Stochasticity (e.g. a real case such as a robot-arm in a noisy
environment. In the MASH application, the simulator is stochastic)

• Case 1 - B : Dimensionality of the state space (e.g. in the MASH
problem, dim = 10, 000 because of the random sampling of 10,000
features and in MoGo, dim = 361 - if each component of the state is
one intersection of the board of size 19x19)

It leads to the Exponential states. In the MASH problem, #S > 210000;
we assume that a feature can have at least 2 values. In MoGo, #S '
10171; this information can be seen and compared with other games at
en.wikipedia.org/wiki/Game complexity.

2 - Reward which carries little information is: a reward giving little in-
formation such as a direction for reaching a goal. Most of cases, you obtain
almost always the same reward during a simulation. For the MASH applica-
tion, the avatar receives very often the reward 0 because of moving without
hitting a wall or a flag. The reward does not give a good information such
as a distance to a flag; there is no idea about the direction to accomplish the
task.

For the MoGo application, the reward information is delayed. The reward
is given at the end of the game (i.e. at the end of a simulation of 150 moves
in average) and represents a win or a loss. When no reward, we can consider
the reward is 0 like in MASH.

13
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3 - Small probability to reach quickly a good final state: The number of
final states is weak. For the MASH application, the only case to reach a final
state is to touch the blue flag and the red flag. There are more situations
in which the avatar has not touched the red flag and still more situations in
which the avatar has not touched the blue flag (with or without touching the
red flag).

For MoGo application, a final state can not be reached without defining
clearly territories (which assumes to play around 150 moves).

• Case 3 - A : The length of an optimal (or good) strategy is big. The
more the strategy is long, the more the “quickly“ is difficult to realize.
For the MASH project, a complete turn requires already 60 decisions
and sometimes, through a room requires more 60 decisions. So, for
touching optimally a flag, 60 decisions can be required times by 2 for
touching optimally the second flag.
For the MoGo project, the length of a game is closed to 150 moves (i.e.
75 decisions per player). Against a strong player, the win is a very
difficult task to realize. Either the loss is quick, or the winner is not
clearly defined before 150 moves.

• Case 3 - B : Reach a bad final state is easy. The more there are bad
final states, the more the “good” is difficult to realize. For the second
application of MASH, touching 10 flags, after 150 decisions, if a flag is
not touched, the task is failed. In MoGo, a decision which leads to a
bad state (a loss) is very easy against a good player because only one
decision can destroy all your good decisions you have already played
and lead to a defeat even if you played then optimally.

4 - No prior knowledge or inexploitable prior knowledge: For the MASH
project, there is no prior knowledge. We are no hypothesis on the structure
of the state, no idea of the meaning of values of components of the state.
The number of decisions and the semantic of decisions are unknown and the
reward carries little information.

Inexploitable knowledge can mean:

• Case 4 - A : wrong knowledge (e.g. false human idea).

• Case 4 - B : knowledge that we don’t know how to use. Before 2006,
classical algorithms did not exploit very well with basic prior knowledge
such as patterns in the game of Go.

• Case 4 - C : too computationally expensive knowledge. In the game of
Go, it’s possible to have an efficient evaluation function, but it requires
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Table 1.1: The first column Application is the name of the application.
The second column State is an evaluation of the dimensionality of the state
space (followed sometimes by the number of states). The third column is
the number of possible decisions. The fourth column is the knowledge of the
transition function. The fifth column is: the environment is partially observ-
able (yes) or not (no). The sixth column is an idea of the number of decisions
before reaching a good final state. smtm, avg and decs are respectively the
abbreviation of sometimes, average and decisions. For all applications, the
reward (different of evaluation function) carries little information.

Application State Dec Transition Prior PO Solution
Chess Endgame < 1047 15 in avg Yes Not a lot No smtm, more 100 moves

Chess 1047 30 in avg Yes A lot No 50 moves
Go 9x9 1038 60 in avg Yes Inexploitable No 45 moves in avg

Go 19x19 10170 250 in avg Yes Inexploitable No 150 moves in avg
MASH 210,000 4 No No Yes smtm, more 100 decs

a lot of analysis such as predicting territory [Bouzy, 2003], determining
the status of a chain...

1.3.3 Considering the number of states for the end
game of Chess

Nalimov tablebases4 are database for end games of Chess. The algorithm
generating the database is inapplicable for the Game of Go because along
the game, stones are added on the board whereas in Chess pieces are removed
by capture. However, 3 over 4 constraints are checked (See Fig. 1.4). What
is about the last constraint which concerns the number of states? In 2012, we
can consider that the number of states is not too large with 6 pieces because
6-pieces tablebases have been generated. On the contrary, 7-pieces is too
huge.

1.3.4 Main issues tackled in this thesis

A brief summary of properties of applications is presented in Tab. 1.1.
This study of properties leads to the following question: How to solve

complex tasks under these 4 constraints? Reminder, the 4 con-
straints are:

1. the number of states is huge

4http://www.k4it.de.
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Move

Kf7-e6
Kf7-f6
Kf7-f8
Kf7-g6
Kf7-e8
Rg7-h7
Rg7-g6
Rg7-g5
Rg7-g4
Rg7-g3
Rg7-g2
Rg7-g1
Ng8-e7
Ng8-f6
Ng8-h6

Value

Win in 262
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw
Draw

Win in 262

White to move

Figure 1.4: From http://www.k4it.de. Nalimov tablebases: an example
which gives an idea of “the state space is huge or not“, today (in 2012). In
the end of the game of Chess, 3 constraints over 4 are checked. (i) The reward
carries little information (win or loss), (ii) the probability to reach quickly
a good final state is small. In the example, more 200 moves are necessary
for winning and only one move (i.e. Ke6) wins. All other moves lead to a
draw. (iii) There is less available prior knowledge as in the middle game.
Understanding moves are very difficult even for a grandmaster, a very strong
player in chess (Why Ke6 is the only winning move?). (iv ?) What is about
the number of states? Because 6-pieces are solved but not 7-pieces, we can
consider the number of states is not too huge with 6 pieces on the board, but
becomes huge when added a seventh piece.

2. the reward carries little information

3. small probability to reach quickly a good final state

4. no knowledge or inexploitable knowledge

More specifically, for the game of Go, how to improve a player in order
to finally beat a professional player? For the MASH application, how to find
the task and accomplish it?
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Figure 1.5: Illustration of one problem. White to play. Mate in 2 moves.
The goal is to find the optimal move Qa7+ (the White Queen located at a1
goes to a7 and gives chess denoted by + to the Black King located at b8 ).

1.4 State of the Art

For solving these kinds of problems, some algorithms exist.
We will illustrate some of them on Chess (Fig. 1.5). We use 325, 500, 950,
+∞ as heuristic values for respectively Knight, a Rook, a Queen, a King.
In Fig. 1.5, there are one black Knight at g7, one black Rook at g3, one
white Queen at a1, one white King at b6 and one black King at b8. A state
is a position of chess plus the color of the player to move. The Queen can
move along columns, rows and diagonals, the Rook can move along columns
and rows and King one of 8 neighbours squares which is not controlled by
the opponent 5. If the King of the player is in check (i.e. captured by the
opponent by changing the player to play), the player must remove chess by
moving the King for example. If this situation is impossible, the game is
lost for the player in check. See http://en.wikipedia.org/wiki/Rules of chess
for a complete rule.

5Knowing the movement of the Knight is not necessary for understanding.
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Algorithms presented in this introduction are the brute force, expert
knowledge, greedy algorithms, dynamic programming, QLearning, Direct
Policy Search and some tree searches such as MinMax, Alpha-Beta, A*,
Proof-Number Search and Monte-Carlo Tree Search. The Nested Monte-
Carlo Search algorithm will be briefly described.

1.4.1 Brute force

By a full search, all policies within a well-defined subspace of policy are tried
and the brute force chooses the best one. Main problems are:

• the number of policies which can be extremely large, or even infinite

• the variance of the return may be large, in which case, a large number of
simulations is required to accurately estimate the return of each policy.

For these reasons, the brute force can not work on both applications
MASH and the Game of Go.

1.4.2 Expert Knowledge

Expert knowledge uses prior knowledge in order to infer rules which can
be useful to find/solve more efficiently a task. Expert knowledge can have
different forms such as mathematical rules, patterns.

For example, the Expert knowledge given in Fig. 1.6 is a pattern and
can be applied on Fig. 1.5. For White, a7 (A2 on Fig. 1.6) is controlled by
the White King b6 and the White Queen a1; for Black, only the black king
controls a7 and c7 (C2 on Fig. 1.6). c7 is controlled by the white King for
White. The pattern is checked. The White King is not in check and the
Queen controls directly A2. Another example where the pattern is matched
is Fig. 1.7.

The policy returns the decision which corresponds to play the Queen in
the location A2 in Fig. 1.6. With this expert knowledge, the optimal move
will be played (i.e. Qa7+ in Fig. 1.5 and Qc7+ in Fig. 1.7).

Defining an expert rule is not easy. In some cases, the rule is too fuzzy or
useless and can not be exploited. In some other cases, a rule falsely restricts
the search space because the knowledge can be wrong, false or incomplete.
In our example (Fig. 1.6), the pattern is incomplete. 3 other rules are neces-
sary: In Fig. 1.6, first, no white piece at the location C1, second, the White
Queen can move without making chess its own King and third, no black piece
controls indirectly the square C1 or C3 by transparency through the White
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Ctrl(W) >= 2
Ctrl(B) == 1

k

Ctrl(B) == 1
[ Ctrl(W) >1

or ( (Ctrl(W) == 1)
and 

(no ctrl by Q) ) ]

+
White King is not in check

White Queen controls directly  A1

2

1

A B C
Mate in 2 moves (at more)

White Q goes to A1
From B2, Black King 
goes to C2 (if legal)

Then, White Q goes to C1 
(checkmate)  

Always 
true?

Border

empty

Figure 1.6: Expert knowledge (Pattern). White to Play. The 6-squares
represent a pattern which should be checked on the board. The letter k is
the location of the Black King. Ctrl(color) is the number of pieces of the
player color which controls the location. (W for White and B for Black). Q
means Queen. In the square C1, the condition ”no ctrl by Q” means that the
White Queen does not control the square C1. Bottom Left is 2 other rules
for a complete checking of the pattern. If the pattern is checked, then we
can apply the conclusion shown by the arrow. But if the pattern is checked
on the board, is the conclusion always true?

Queen. Fig. 1.8 gives 3 counter-examples. In Fig.1.7, add a white rook at
c7, the Queen can not move to C7 because the piece can not capture a piece
of own side; add a black Rook at h3, the Queen can not move to c7 without
making its own King in check. For a complete correctness of this rule, many
positions have been generated and a checking of the availability of the mate
has been done.

In conclusion, it’s hard to have a robust rule. Moreover, it lacks genericity;
this illustrative rule is too specific for being used in another application.

In the game of Go, there are too many expert rules to add in order to
have a perfect player. In the MASH application, there is no prior knowledge.

19



1. INTRODUCTION

Figure 1.7: White to Play. Mate in 2 moves. The square c7 (A2 on Fig. 1.6)
is directly controlled by the Queen. The bishop h2 and the queen g3 control
this square (Ctrlc7(W ) = 2). Only the black King controls c7 (Ctrlc7(B) = 1)
and e7 (C2 on Fig. 1.6). The pawn controls e7. The white King is not in
check. So, all conditions are filled to checkmate.

1.4.3 Greedy algorithm

A greedy algorithm such as the algorithm of Prim [Prim, 1957] chooses step
by step an optimal local choice in order to find the optimal solution or a
solution close to the optimal. For evaluating a state s, an evaluation function
is required.
For the game of Chess, the evaluation function can be the gain of material
or minus the number of answers of the opponent. In our example (Fig. 1.5),
with the gain of material as the evaluation function, greedy algorithm chooses
Qxg7, a very suboptimal move (From a winning position, the move can lead to
a losing position). Qxg7 is the only move winning material. If the evaluation
function is minus the number of opponent answers, then the greedy algorithm
can choose the optimal move Qa7+, but a second move Qa8+ (very bad) can
be also chosen because this move has the same value (i.e. Both moves leave
a single answer to the opponent.).

A basic greedy algorithm can not be applied on MASH. Indeed, the eval-
uation function corresponds to return the reward, but without prior knowl-
edge, the evaluation function is necessarily the reward. The reward carries
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Figure 1.8: White to Play. All conditions are filled too. But here, the mate
in 2 moves is impossible.

little information. Moreover, MASH is model-free, we can not undo; applying
the decision is required in order to retrieve the reward. For the application
of Go, an efficient evaluation function requires a lot of ”handcrafted-works“.

1.4.4 Dynamic Programming

The dynamic programming (DP) [Bellman, 1957] is the computation of the
V function by backwards application of Bellman’s operator, i.e. until con-
vergence apply (1.1) and (1.2) in turn:

• for each state s,

π(s) = argmax
a

∑
s′

Pa(s, s
′)(Ra(s, s

′) + γV (s′)) (1.1)

• for each state s,

V (s) =
∑
s′

Pπ(s,s′)(Rπ(s)(s, s
′) + γV (s′)) (1.2)

The value iteration is the same as DP without storage of optimal actions
(which are recomputed when needed). An enhancement of Value Iteration is
Focus Topological Value Iteration [Dai et al., 2009].

Another variant is the policy iteration. We apply many steps (1.2) (until
convergence) before re-applying step (1.1). Some examples of Policy Iteration
are the Rollout Classification Policy Iteration [Dulac-Arnold et al., 2012] or
Online least-squares policy iteration [Buşoniu et al., 2010].
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(KQkrn)

Kc8

Qa7+

Kc8
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Kb6 Qxg7
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Figure 1.9: Dynamic Programming : With the material King Queen for
White, search of all mates in one move and king, rook, knight for Black and
then search all “is mate in one move“ and then search all mates in 2 moves
... until the current position is found.

The main idea of DP is to find all final states and then updates by back-
propagation - as if we back in time (Fig. 1.9).

We solve our small problem (Fig. 1.5) by starting from goal states and go
back to the current position. We generate all good final states (i.e. all mates
in one move for White). Then we generate all positions where whatever the
Black decision, White mates in one move. After this, we generate all position
where White mates in 2 moves, and so on until the current position given in
Fig. 1.5) is found or no new mate has been found. The second case could
occur if White can not win. The algorithm can be applied because of the
small number of pieces on the board.

The illustrative algorithm described before can not be applied due to:

• the number of final positions is too large for the game of Go
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• the set of final states is unknown for the MASH application.

More generally, for DP, applications on MASH are model-free and can not
be applied.

1.4.5 QLearning

The QLearning algorithm has been designed by Watkins
[Watkins and Dayan, 1992]. One iterates updates of the value Q(s, a)
along trajectories following:

Q(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+ αt(st, at)︸ ︷︷ ︸
learning rate

×


learned value︷ ︸︸ ︷

Rt+1︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

max
at+1

Q(st+1, at+1)︸ ︷︷ ︸
max future value

−Q(st, at)︸ ︷︷ ︸
old value


(1.3)

Some other variants inspired of QLearning exist such as SARSA
[Rummery and Niranjan, 1994] or with eligibility trace [Singh et al., 1996].
From samples of trajectories, Fitted Q Iteration [Ernst et al., 2005] approx-
imates the Q function with a regressor such as Neural Networks or Random
Forests [Breiman, 2001].

For computing the Q values, simulations are done. We illustrate the idea
of the algorithm on our problem (Fig. 1.5) with 5 random simulations. Only
for QLearning, the game is seen as a stochastic game coming from the fact
that the opponent is not modeled. We assume that in the implementation,
the solver has no idea of the Black player. These 5 ”random” simulations
are:
1. Qa7+ (Kc8) 2. Qxg7
1. Qxg7 (Rg4) 2. Qxg4
1. Qxg7 (Rh3)
1. Qf6 (Kc8) 2. Qf7 (Kd8) 3. Qa7 (Kc8) 4. Qc7#
1. Qa7+ (Kc8) 2. Kc5
Even if the simulation 1. Qa7+ (Kc8) 2. Qc7# has not occurred, an algo-
rithm of the family of QLearning can find the optimal way to win. Indeed,
the situation met after 1. Qa7+ (Kc8) is met once again in the fourth sim-
ulation after 1. Qf6 (Kc8) 2. Qf7 (Kd8) 3. Qa7 (Kc8) in which the optimal
move Qc7# is played. Through simulations and updates, we can assume
that useful information will be propagated (for example at the 5th simula-
tion) and the algorithm will be able to play the optimal way to win (i.e. 1.
Qa7+ (Kc8) 2. Qc7#).
The main idea is that the optimal path has been never simulated but it can
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be found.
QLearning can not be applied in the game of Go; one reason is that QLearn-
ing with lookup table requires to keep all visited states and so, it takes too
much memory. An extrapolation tool able to generalize on a very abstract
space such as positions of Go should be defined. What is very difficult. For
MASH applications, the same reason occurred. Moreover, finding trajectories
which lead to a good final state is very difficult.

1.4.6 Direct Policy Search

A direct policy search (DPS) is an optimization of a parametric pol-
icy on simulated costs. There exist a lot of Direct Policy Search
such as gradient methods, stochastic methods or evolutionary algorithms
[Heidrich-Meisner and Igel, 2008]. When parameters are discrete without no-
tion of order, gradient methods can not be applied.

For our problem (Fig. 1.5), a parametric policy (Alg. 1) is defined.
param1 and param2 are parameters to optimize. We can assume that the
Direct Policy Search is a Random Search (parameters are tried randomly).
With param1 ≥ 0 (e.g. param1 = 1) and param2 = 0, the DPS will see after
simulations that the policy is better than param1 < 0 (e.g. param1 = −∞)
and param2 > 0 (e.g. param2 = +∞) (See Fig. 1.10).

After learning, when the policy is with

• param1 < 0 and param2 > 0, it plays randomly.

• param1 ≥ 0 and param2 > 0, the policy plays Qxg7, the only move
which wins material.

• param1 ≥ 0 and param2 > 0, it will play again a random move but
the improvement can be seen after because if ever the opponent lets
his knight without defense catchable by the opponent (e.g. after 1.
Qc4 (Ra3)), then the policy will return a good move (the capture of
the Knight).

Direct Policy Search can address model-free problems and is a good can-
didate for solving MASH applications. For the game of Go, the difficulty lies
in designing the policy. DPS could be used as a second stage for optimizing
other parametric algorithms.

1.4.7 MinMax

In 2-player adversarial large games, a good player must take into account
decisions by the opponent. Fortunately, for a 2-player adversarial board
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Algorithm 1 An example of parametric policy to optimize. param1 and
param2 are initially fixed to respectively −∞ and +∞. Capturing an oppo-
nent piece is good, so param1 should be optimally fixed to a value ≥ 0. Cap-
turing a piece of less value is very often good V alue(s[dest]) > V alue(s[loc]),
but if the value of the opponent piece is smaller than the value of the at-
tacking piece and if this opponent piece has a protection, then the capture
is often not good. So, param2 should be optimally fixed to 0.

Function Policy(s)
Let mvout the ”returned” move initialized randomly
for mv ∈ list of moves from the state s do

Let loc the starting location of the move mv
Let dest the destination of the move mv
if V alue(s[dest]) > param1 then

if V alue(s[dest]) > V alue(s[loc]) ∨
Control(s[dest], opponent) ≤ param2 then
mvout = mv
break

Return mvout

game which is sequential, symmetric with perfect information, it is easy to
implement a model. When this is done, simulations can be run on the model.
Chess and the game of Go are 2 examples. MASH applications are not a
2-player board game and above all, is model-free. Implementing a model
is not possible; building automatically the model seems to be very hard.
Algorithms MinMax, AlphaBeta, A∗, Proof Number Search and Monte-Carlo
Tree Search presented hereafter requires a model and can not be used on the
MASH applications. These algorithms build a subtree in the tree of possible
decisions.

Fig. 1.11 illustrates the tree of possible decisions from the position in
Fig. 1.5. Of course, all possible decisions are not represented but by pruning
(which consists in neglecting some possible decisions), this kind of tree can
be obtained. A node corresponds to a position of chess (including the player
to play). The root node corresponds to the position given Fig. 1.5 and an
edge is a move.

MinMax [Heineman et al., 2009] is one of the main tree search algorithms
for 2 player zero-sum games. The algorithms belongs to the family of Dy-
namic Programming algorithms. The game tree is visited in order to move
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Figure 1.10: Direct Policy Search Left: By simulations, I will learn that
capturing a piece is good. So, in Fig. 1, param1 will be fixed to 0 (for
example). param2 is still fixed to its initial value +∞. Center: But, after
running new simulations, I will learn that capturing a protected piece may
be bad. param2 will be fixed to 0. The direct policy search searches best
values of param1 and param2. Perhaps, I will learn more and more complex
rules such as the Example of 2 threats at Right. However, it’s dependent of
the structure of the policy and the direct policy search which is used. With
the structure of policy given by Fig. 1, the rule of “2 threats” can not be
learnt.

up recursively the best value αbest to the root of the tree. But at each step,
the player to play maximises its score, whereas the opponent minimizes it.
The NegaMax (in Chapter 7 of [Heineman et al., 2009]) is the MinMax al-
gorithm reposing on the fact that max(a, b) = −min(−a,−b). NegaMax is
simpler; we present this version in Alg. 2.

The policy returns the move (i.e. one edge of the root of the tree) which
leads to the value computed by MinMax.

One of the main troubles of the algorithm is the horizon effect. On
Fig. 1.12, depth = 1 is not sufficient to see that capturing the Knight is bad.
depth = 2 is better because the move is no longer chosen, but no differenti-
ation between Qe5+ and Qa7+ is done. With depth = 3, the optimal move
is found.

1.4.8 Alpha-Beta

Alpha-Beta [Knuth and Moore, 1975] is an optimization of MinMax algo-
rithm by avoiding to study useless branches. This algorithm is not an ap-
proximation of MinMax; results given by MinMax and Alpha-Beta will be
always the same. Alpha-Beta cuts some branches of the tree. The two kinds
of cut-off are presented in Fig. 1.13.
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Figure 1.11: Tree of considered moves from the problem in Fig. 1.5. M2
means ”Mate in 2 moves“. For comparison with other values, M2 = 99,998 =
100,000 - 2 (A mate is equals to 100,000 minus the number of moves to mate).
Except M2, evaluation given in the interior of a node nd is the cumulative
sum of all winning materials for the first player from the root to the node
nd - e.g. From the root, the move Qxg7 wins a knight, the evaluation is 325
(value of a knight). After the move Qxg7, Rxg7 wins the Queen (evaluated
to 950). In the resulting node, the evaluation is of 325 − 950 = −625. All
possible decisions are not represented except the answer Kc8 after the move
Qa7+ and the answers Ka8 and Kc8 after the move Qe5+.

The algorithm (in its ”Nega” version) is shown in Alg. 3.

In Fig. 1.14, thanks to an alpha cut-off, 2 nodes are not visited in com-
parison with nodes visited by MinMax at depth = 3 (See Fig. 1.12).

The algorithm does not work very well in the Game of Go, because eval-
uation function is either too slow or too weak and the number of moves per
position is too big (around 250 in average).

1.4.9 A*

A* uses best-first search strategy.

Best-first search

Best-first search is a search algorithm with in general a greedy strategy.
Best-first search explores a graph by expanding the most promising node
chosen according to a specified rule. In our example, the rule can be one of
2 examples of evaluation function given in Section 1.4.3.
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Algorithm 2 MinMax algorithm (Negamax version). It moves up the best
value to the root of the tree.

Function minimax(node, depth)
if node is a terminal node or depth ≤ 0 then

Return the heuristic value of node
α = −∞
for child ∈ node do
α = max(α,−minimax(child, depth− 1))

{evaluation is identical for both players}
Return α

Algorithm 3 AlphaBeta algorithm (“Nega“ version). As MinMax, it moves
up the best value to the root of the tree.

function alphabeta(node,A,B, depth) {A < B}
if node is a terminal node ∨ depth ≤ 0 then

Return the value of the node node
else
best = −∞
for each child of node do
val = −alphabeta(child,−B,−A, depth− 1)
if val > best then
best = val
if best > A then
A = best
if A ≥ B then

Return best {The cut-off}
Return best
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A*

The A* [Hart et al., 1968] is a search algorithm of path in a graph between
an initial node and a final node. At each timestep, it chooses a leaf of tree
to expand using a best-first search strategy.

The B* algorithm, [Berliner, 1979], a variant of A* has been extended
to 2-player deterministic zero-sum games. In fact, the only change is to
interpret ”best” with respect to the side moving in that node. So you would
take the maximum if your side is moving, and the minimum if the opponent
is moving. Equivalently, you can represent all intervals from the perspective
of the side to move, and then negate the values during the back-up operation.

In our illustration of the principle of A* (Fig. 1.15) on the same prob-
lem (Fig. 1.5), all leaves (in state of one) with a same maximal value are
expanded. An iteration corresponds to expand all leaves bounded with this
best value. Because of the principle “my opponent minimizes my score which
I maximise”, expanded leaves have not necessarily the best value but have
best value according to the MinMax principle. That’s why in the third it-
eration in Fig. 1.15, expanded leaves are nodes after Qe5+ and Qa7+ with
the value of 0 and not the leaf after Qxg7-Rb3+ with a value of +325.

1.4.10 Proof Number Search

Proof Number Search (PNS) is a game tree search algorithm invented
by Victor Allis [Allis et al., 1994], with applications mostly in endgame
solvers, but also for sub-goals during games. Some variants are PDS-PN
[Winands et al., 2002] or PN2 [Nagai, 1998].

The following description comes from the article entitled PDS-PN: A New
Proof-Number Search algorithm [Winands et al., 2002].
Proof-number (PN) search is a best-first search algorithm especially suited
for finding the game-theoretical value in game trees [Allis, 1994]. Its aim is to
prove the true value of the root of a tree. A tree can have three values: true,
false or unknown. In the case of a forced win, the tree is proved and its value
is true. In the case of a forced loss or draw, the tree is disproved and its value
is false. Otherwise the value of the tree is unknown. In contrast to other
best-first algorithms PN search does not need a domain-dependent heuristic
evaluation function to determine the most-promising node to be expanded
next [Allis et al., 1994]. In PN search this node is usually called most-proving
node. PN search selects the most-proving node using two criteria: (1) the
shape of the search tree (the number of children of every internal node) and
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(2) the values of the leaves. These two criteria enable PN search to treat
game trees with a non-uniform branching factor efficiently.

Below we explain PN search on the basis of the AND/OR tree depicted
in Fig. 1.16, in which a blue circle denotes an OR node, and a red circle
denotes an AND node. The numbers to the right of a node denote the proof
number (upper) and disproof number (lower). A proof number represents the
minimum number of leaf nodes which have to be proved in order to prove
the node. Analogously, a disproof number represents the minimum number
of leaves which have to be disproved in order to disprove the node. Because
the goal of the tree is to prove a forced win, winning nodes are regarded as
proved. Therefore, they have proof number 0 and disproof number inf. Lost
or drawn nodes are regarded as disproved. They have proof number inf and
disproof number 0. Unknown leaf nodes have a proof and disproof number of
unity. The proof number of an internal AND node is equal to the sum of its
children’s proof numbers, since to prove an AND node all the children have
to be proved. The disproof number of an AND node is equal to the minimum
of its children’s disproof numbers. The disproof number of an internal OR
node is equal to the sum of its children’s disproof numbers, since to disprove
an OR node all the children have to be disproved. Its proof number is equal
to the minimum of its children’s proof numbers. The procedure of selecting
the most-proving node to expand is the following. We start at the root.
Then, at each OR node the child with the lowest proof number is selected as
successor, and at each AND node the child with the lowest disproof number
is selected as successor. Finally, when a leaf node is reached, it is expanded
and its children are evaluated. This is called immediate evaluation. In the
naive implementation (See Fig. 1.16), proof and disproof numbers are each
initialised to unity in the unknown leaves. In other implementations, the
proof number and disproof number are set to 1 and n for an OR node (and
the reverse for an AND node), where n is the number of legal moves. A
disadvantage of PN search is that the whole search tree has to be stored in
memory. When the memory is full, the search process has to be terminated
prematurely.

The algorithms such as AlphaBeta, A* and Proof Number Search are
inefficient in the game of Go because of the number of states and the difficulty
to implement an efficient evaluation function.

1.4.11 Iterative deepening depth-first search

For speaking about Iterative deepening depth-first search (IDDFS), we
present 2 different search strategies: Depth-first strategy (DFS) and Breadth-
first strategy (BFS) and then we argue that IDDFS is a compromise between
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the two.

Depth-first search strategy

Depth-first search (DFS) [Korf, 1985] is an algorithm for traversing or search-
ing a tree or more generally graph. One starts at the root (selecting some
node as the root in the graph case) and explores as far as possible along each
branch before backtracking. In Fig. 1.17, nodes are visited in the following
order : A B D E C F G.
The advantage of the algorithm is to find rapidly a solution but with little
probability to be optimal. However, some troubles should be treated such
as the no termination of the DFS strategy (e.g. In the case of a graph, if
no limit of the depth has been defined, an infinite loop can be occurred if a
sequence of decisions comes back to a state already seen.).

Breadth-first search strategy

Breadth-first search (BFS) [Korf, 1985] is a strategy for searching in a tree
or more generally graph when search is limited to essentially two operations:
(a) visit and inspect a node of a graph; (b) gain access to visit the nodes that
neighbor the currently visited node. One starts at a root node and inspects
all the neighboring nodes. Then for each of those neighbor nodes in turn, it
inspects their neighbor nodes which were unvisited, and so on. In Fig. 1.17,
nodes are visited in the following order : A B C D E F G. The advantage of
the algorithm is to find an optimal solution but can take time if the solutions
are at a large depth.

Iterative deepening depth-first search strategy

Iterative deepening depth-first search [Korf, 1985] is a state space search
strategy in which a depth-limited search is run repeatedly, increasing the
depth limit with each iteration until it reaches the depth of the shallowest
goal state. The design of IDDFS is a compromise between Depth-first search
and Breadth-first search. IDDFS has the drawback that it explores the same
nodes multiple times and an advantage is that the nodes do not have to be
stored in memory.

The strategy IDDFS applied to Alpha-Beta solves the problem of the
choice of the parameter depth for Alpha-Beta by incrementing progressively
the depth. From our problem (Fig. 1.5), if we extend the tree of considered
moves on Fig. 1.11 to higher depths (for example 10), AlphaBeta with depth
= 10 will explore a lot of nodes following the branch beginning by Qe5+
before studying the optimal branch given by Qa7+. Although IDDFS will

31



1. INTRODUCTION

Algorithm 4 An implementation of Iterative Deepening Depth-first Search.

Function iddfs(root, goal)
depth = 0
while true do
result = dls(root, goal, depth)
if result is a solution then

Return result
depth+ +

Function dls(node, goal, depth)
if depth ≥ 0 ∧ node == goal then

Return node
else

if depth > 0 then
for each child in expand(node) do
dls(child, goal, depth− 1)

else
Return no solution

visit the root node and some nodes more times than AlphaBeta with depth =
10, IDDFS will visit fewer nodes. Some nodes are visited more times because
after a new increment of the depth, the algorithm starts at the root again.
Because of the mate in 2 moves, Alpha-Beta with an IDDFS strategy will stop
when the intern variable depth in the function iddfs is equals to 3 (instead
of 10) and will not explore the branch given by Qe5+ until a depth of 10.

Proof-Number Search can be implemented with an iterative deepening
depth first strategy such as PN* [Seo et al., 2001].

1.4.12 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a recent Tree Search algorithm
[Coulom, 2006] for finding optimal decisions by taking random decisions in
the decision space and building a tree search according to the result. In
MCTS, the tree is built incrementally and an asymmetric manner by doing
Monte-Carlo simulations (Fig. 1.18). Each simulation starts at the root node
until a leaf is reached following a rule (which we can call policy of the tree).
In 2 player game, the most common rule is argmaxd∈D(s)ucb(d) using the
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Upper Confidence Bound (UCB) formula:

ucb(d) =
Wins(s, d)

Sims(s, d)
+

√
2× log(Sims(s))

Sims(s, d))
(1.4)

where s is the state with which is bound a node of the tree and d a decision
in the set of possible decisions D(s). Monte-Carlo Tree Search with UCB
formula is called UCT [Kocsis and Szepesvari, 2006] and UCB is a bandit
formula. The first term Wins(s, d)/Sims(s, d) which is the win rate is the

exploitation and the second term
√

2× log(Sims(s))
Sims(s,d))

is the exploration. More

generally, the exploration term is weighted by a constant and is the compro-
mise between exploration and exploitation.

In general, when a leaf is reached, a simulation called the default policy
is launched, the first state met in the default policy is added in the tree. In
our illustration (Fig. 1.19), the whole simulation is kept in the tree. But for
other problems, some kinds of troubles such as storage will be met. That’s
why more commonly, after each simulation, only one node is added in the
tree.

Because of its robustness, the policy is in general the move which has
been the most simulated and not the move with the best score or a score
such as the win rate. Between a first decision which has been simulated
1,000,000 times with a win rate of 70% and a second decision with a win rate
of 90% simulated only 10 times, it is better to take the first decision because
of accuracy.

A state of the art of MCTS can be found at [Browne et al., 2012]. Monte-
Carlo Tree Search is the state of the art for the Game of Go.

1.4.13 Summary

In this thesis, we have discussed below a long list of algorithms; other al-
gorithms nonetheless exist. There are other algorithms such as Fictitious
Play [Brown, 1951] or Nested Monte-Carlo Search (NMCS) [Cazenave, 2009]
given in Alg. 5 which can be extended to tree searches such as Nested Roll-
out Policy Adaptation [Rosin, 2011] [Cazenave and Teytaud, 2012] or Nested
Monte-Carlo Tree Search [Baier and Winands, 2012]. But they can not be
applied to the game of Go or MASH. For example, NMCS is an algorithm
for one player game and requires a model of the application.

Most of algorithms can not be applied in our context because

• on MASH, applications are model-free
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Algorithm 5 Nested Monte-Carlo Search.

Function nested(level, node)
if level == 0 then
ply = 0
seq = {}
while num children(node) > 0 do

CHOOSE seq[ply] = child i with probability
1/num children(node)
node = child(node, seq[ply])
ply + +

Return (score(node), seq)
else
ply = 0
seq = {}
best score = +∞
while num children(node) > 0 do

for child i of node do
temp = child(node, i)
(results, new) = nested(level − 1, temp)
if results < best score then
best score = results
seq[ply] = i
seq[ply + 1...] = new

node = child(node, seq[ply])
ply + +

Return (best score, seq)
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• on the game of Go, modeling the principle of minmax is important in
2-player adversarial game and/or the complexity of the problem is too
hard for classical algorithms.

So, the 2 interesting algorithms are the recent algorithm called Monte-Carlo
Tree Search in order to implement a strong engine of Go and Direct Policy
Search for solving MASH applications. In this thesis, we will bring 4 answers
for solving tasks under the 4 constraints seen in Section 1.3.

• In a first part, we will see 2 online learning of Simulations (Monte-Carlo
Tree Search) which correspond to the 2 first answers:

– Simulating with the compromise between exploration/exploitation
(classical MCTS)

– Reducing the complexity of the problem by local searches (Gold-
enEye, a mix between A* and MCTS)

• In a second part, we will see 2 offline learning of Simulations (DPS)
which correspond to the 2 last answers:

– Building a Policy by genetic programming (RBGP)

– Learning prior knowledge (CluVo+GMCTS)
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Figure 1.12: MinMax following different depths. MinMax visits all nodes.
For each of depths, in bold, the move chosen by MinMax.
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Figure 1.13: From http://fr.wikipedia.org/wiki/Elagage alpha-beta. The 2
cut-offs of Alpha-Beta. Computing the value in the subtree modeled by the
circle within a cross is useless. Left: An alpha cut-off. The value of the
first child of the Min node V is 4. The value of the Max node U will be of
5 (maximum between 5 and a value smaller than 4). Right: A beta cut-off.
The value of the first child of the Max node V is 4. The value of the Min
node U will be of 3 (minimum between 3 and a value greater than 4).

Figure 1.14: Nodes visited by Alpha-Beta. One alpha cut-off.
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Figure 1.15: Nodes visited by an algorithm of A∗ family.
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Figure 1.16: Nodes visited by Proof Number Search.
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Figure 1.17: From wikipedia. A tree whose nodes are labelled in order to
illustrate the route followed by different strategies.

Figure 1.18: The basic MCTS process.
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Figure 1.19: Monte-Carlo Tree Search. Right (or left) of a node, sim is the
number of times that a node has been visited. The parameter depth is not a
parameter of MCTS; it has been defined here for needs of the illustration.
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Part I

Online learning of Simulations :
Monte-Carlo Tree Search
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Chapter 2

Simulating with the
Exploration/Exploitation
compromise (Monte-Carlo Tree
Search)

This part is heavily based on Scalability and Parallelization in Monte-Carlo
Tree Search (CG 2010) [Bourki et al., 2010].

2.1 Introduction

Since 2006, Monte-Carlo Tree Search (MCTS[Chaslot et al., 2006,
Coulom, 2006, Kocsis and Szepesvari, 2006]) is a revolution in games
and planning, with applications in many fields. It is widely said that MCTS
has some scalability advantages.

It is quite natural, then, to parallelize MCTS, both on multi-
core machines [Wang and Gelly, 2007] and on clusters [Gelly et al., 2008,
Cazenave and Jouandeau, 2007]. In this chapter, after an introduction to
MCTS (Section 2.2), we (i) discuss the scalability of MCTS, showing big
limitations to this scalability, and not only due to RAVE (Section 2.3); (ii)
compare existing algorithms on clusters (Section 2.4).

2.2 Monte-Carlo Tree Search

We below introduce Monte-Carlo Tree Search, i.e. MCTS. MCTS is the
state of the Art of the game of Go; MCTS was a revolution in 2007. All best
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go engines such as MoGo, Fuego, CrazyStone, Zen use MCTS. Even some
historic programs such as ManyFaces have alike adopted MCTS. MoGo is
the first program1 who has won with

• 9 handicap stones in 19x19 against a 8p player (Myungwan Kim at
2008 US Go Congress, 2008-08-07)

• 7 handicap stones in 19x19 against a professional player with the high-
est2 rank (9p) (Chun-Hsun Chou at Taiwan Open 2009, 2009-02)

• 6 handicap stones in 19x19 against a 1p player (Li-Chen Chien at Tai-
wan Open 2009, 2009-02)

MCTS has been applied in other two player game such as
Shogi [Sato et al., 2010] or connection game such as Havannah
[Teytaud and Teytaud, 2009], in single-player game such as SameGame
[Schadd et al., 2008], in General Game Playing [Méhat and Cazenave, 2010],
in Real-Time Game (e.g. Pacman [Samothrakis et al., 2011], in partially
observable game such as Poker [Ponsen et al., 2010] or UrbanRivals
[Teytaud and Flory, 2011]. MCTS has been used in non-game, too, such as
[de Mesmay et al., 2009] or

• Combinatorial Optimisation (e.g. in Security [Tanabe et al., 2009])

• Constraint Satisfaction [Baba et al., 2011]

• Scheduling Problems [Silver and Veness, 2010]

We here present the MCTS variant termed UCT
[Kocsis and Szepesvari, 2006], which is shorter to present and very
general; the formulas involved in our programs are more tricky and can
be found in [Gelly and Silver, 2007, Lee et al., 2009, Gelly et al., 2008,
Teytaud and Teytaud, 2009]; these details do not affect the parallelization,
and UCT is a trustable algorithm in the general case of games and planning.

UCT is presented in Alg. 6. The reader is referred to
[Kocsis and Szepesvari, 2006] for a more detailed presentation, and
to [Gelly and Silver, 2007, Wang and Gelly, 2007, Coulom, 2006,
Chaslot et al., 2007] for a more comprehensive introduction in particu-
lar for the specific case of binary rewards and two-player games.

1http://www.computer-go.info/h-c/index.html.
2CrazyStone is the first program who has won against a professional player with H7

(Kaori Aoba -4p- at UEC Cup, 2008-12-14).
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Algorithm 6 Overview of the UCT algorithm for two-player deterministic
games. The adaptation to stochastic cases or one-player games is straightfor-
ward. UCT takes as input a situation s ∈ S, and outputs a decision. For any
situation s and any decision d, s′ = s.d denotes the situation s′ subsequent
to decision d in situation s. T is made of two mappings (initially identically
0), NT and ST : NT is a mapping from S to N (i.e. maps situations to inte-
gers) and ST is a mapping from S to R. S is the set of states, ST stands for
the sum of rewards at a given state and NT stands for the number of visits
at a given state. Inspired by [Coulom, 2006, Wang et al., 2008], we propose
PW (n) = Kn1/4.

Function UCT (s)
T ← 0
while TimeLeft> 0 do
PerformSimulation(T, s)

Return r maximizing NT (s.r)

Function reward = PerformSimulation(T, s)
if s is a final state then

return the reward of s
else

if NT (s) > 0 then
Choose the set of admissible decisions thanks to progressive
widening PW and the heuristic H as follows:
R = PW (NT (s)) // R ∈ N is the size of the considered pool of moves
W = {H(s, i); i ∈ [[1, R]]} // W is the considered pool of moves
Choose the move to be simulated as follows:
if Color(s)=myColor then
ε = 1

else
ε = −1

d = arg maxd∈W Score(ε.ST (s.d), NT (s.d), NT (s))
else
d = MC(d) /* MC(d) is a heuristic choice of move */

reward = PerformSimulation(T, s.d) // reward∈ {0, 1}
Update the statistics in the tree as follows:
NT (s)← NT (s) + 1
ST (s)← ST (s) + reward
Return reward

Function Score(a, b, c)
Return a/b+

√
2 log(c)/b /* plenty of improvements are

published in the literature for specific problems*/

Function H(s, i)
Return the ith best move according to the heuristic in situation s.
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A formula involved in our program is the score. The score for a decision
d (i.e. a legal move) is as follows:

score(d) = α p̂(d)︸︷︷︸
Online

+β ̂̂p(d)︸︷︷︸
Transient

+(γ +
C

log(2 + n(d))
) H(d)︸ ︷︷ ︸
Offline

(2.1)

where the coefficients α, β, γ and C are empirically tuned coefficients de-
pending on n(d) (number of simulations of the decision d) and n (number of
simulations of the current board).

The logarithmic formula C/ log(2 + n(d)) is a progressive unpruning.
The main idea of this formula is: (i) initially, the most important part

is the offline learning; (ii) later, the most important part is the transient
learning (RAVE values); (iii) eventually, only the “real“ statistics (online
values) matter.

RAVE values are defined by the following formula given in
[Gelly and Silver, 2007]. Let Qrave(s, d) be the rapid value estimate for de-
cision d in state s. After each episode s1, d1, s2, d2, ..., sT , the action values
are updated for every state st ∈ S and every subsequent decision dt2 such
that dt2 ∈ D(st1) the set of legal decisions following the state st1 , t1 ≤ t2 and
∀t < t2, dt 6= dt2 .

n(st1 , dt2) ← n(st1 , dt2) + 1

Qrave(st1 , dt2)← Qrave(st1 , dt2) +
1

n(st1, dt2)
[Rt1 −Qrave(st1 , dt2)]

(2.2)
where n(s, d) counts the number of times that decision d has been selected
at any time following state s and Rt1 the reward given to the agent at the
time t1.

In addition to the parallelization of Monte-Carlo Tree Search
[Gelly et al., 2008], some improvements of the Monte-Carlo simulations
(e.g. Approach Moves in [Chaslot et al., 2009]) and the building of an
opening book by using MCTS in offline mode [Audouard et al., 2009]
[Gaudel et al., 2010], some of my main contribution is to have added the
term C/ log(2 + n(d)) in Eq. 2.1, tuned the coefficient C and introduced
some expertises [Chaslot et al., 2009] given in Fig. 2.2. The introductions of
these expertises are described below.

H(d) is the sum of two terms: patterns, as in [Bouzy and Chaslot, 2005,
Chaslot et al., 2007, Coulom, 2007], and rules detailed below:

• capture moves (in particular, string contiguous to a new string in atari),
extension (in particular out of a ladder), avoiding self-atari, atari (in
particular when there is a ko), distance to border (optimum distance =
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Figure 2.1: Left: A move producing an empty triangle for black. Right:
A corner situation of Go. Let wtriangle the coefficient associated with the
empty triangle. If we considered the black move at the blue cross B2, the
empty triangle is matched 4 times at this location; wtriangle will be added
4 times in H(B2). Typically, the empty triangle is a bad shape; in MoGo,
wtriangle = −1.

3 in 19x19 Go), short distance to previous moves, short distance to the
move before the previous move; also, locations which have probability
nearly 1/3 of being of one’s color at the end of the game are preferred.

The following rules are used in our implementation in 19x19, and improve
the results:

• Territory line (i.e. line number 3), Line of death (i.e. first line),
Peep-connect (ie. connect two strings when the opponent threatens
to cut), Hane (a move which “reaches around” one or more of the op-
ponent’s stones), Threat, Connect, Wall, Bad Kogeima (same pattern
as a knight’s move in chess), Empty triangle (three stones making a
triangle without any surrounding opponent’s stone).

A coefficient is associated with each rule or pattern. The coefficient is
typically between 0 and 1 for a good shape or between -1 and 0 for a bad
shape. Sometimes, the coefficient can be greater/smaller than 1/-1 for very
good/bad shape. Fig. 2.1 shows a pattern matching.

They are used both (i) as an initial number of RAVE simulations (ii) as
an additive term in H. The additive term (ii) is proportional to the number
of AMAF-simulations (AMAF = All Moves As First, also termed RAVE for
Rapid Action-Value Estimates in the MCTS context).

These shapes are illustrated on Fig. 2.2. With a naive hand tuning of pa-
rameters, only for the simulations added in the AMAF statistics, they provide
63.9±0.5 % of winning rate against the version without these improvements.
Parameters have been then automatically tuned in [Chaslot et al., 2009].
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Threat Line of Peep Hane Connect
death connect

Wall Bad Empty Empty Line of
Kogeima triangle triangle influence

Line of Kogeima Kosumi Kata Bad Tobi
defeat

Figure 2.2: We here present shapes for which exact matches are required
for applying the bonus/malus. In all cases, the shapes are presented for the
black player: the feature applies for a black move at one of the crosses. The
reverse pattern of course applies for white. Threat is not an exact shape to be
matched but just an example: in general, black has a bonus for simulating
one of the liberties of an enemy string with exactly two liberties, i.e. to
generate an atari.
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N =Number Succes rate of 2N simulations Success rate of 2N simulations
of simulations against N simulations in 9x9 Go against N simulations in 19x19 Go

1 000 71.1 ± 0.1 % 90.5 ± 0.3 %
4 000 68.7 ± 0.2 84.5 ± 0.3 %
16 000 66.5 ± 0.9 % 80.2 ± 0.4 %
256 000 61.0 ± 0.2 % 58.5 ± 1.7 %

Table 2.1: Scalability of MCTS for the game of Go. These results show a
decrease of scalability as computational power increases.

2.3 Scalability of MCTS

The scalability of MCTS, i.e. its ability to play better when additional
computational power or time is provided, is often given as an argument in
favor of it. Also, it is said that the parallelization is very efficient; the
conclusion of these two statements is that with big clusters, programs should
now be much stronger than humans in games in which single computers
are already at the level of beginners. We will here give more informations
(limitations) on this scalability.

The number of simulations per move is usually much larger in real games
than in experimental results published in papers, because of limited compu-
tational power - it’s difficult, even with a cluster, to have significant results
corresponding to the computational power associated to realistic time set-
tings on a big machine. In this section, we investigate the behavior of MCTS
when the time per move is increased (Section 2.3.1), followed by counter-
examples to scalability (Section 2.3.2).

2.3.1 The limited scalability by numbers

It is usually said that MCTS is highly scalable, and provides improvements
of constant order against the baseline when the computational power is dou-
bled. We here show that things are not so constant; results are presented
in Tab. 2.1 for the game of Go. These numbers show the clear decrease of
scalability as the computational power increases. This is not specific to Go;
Tab. 2.2 shows that the situation is similar in Havannah. This holds even
when the opponent is a MCTS also; this is not equivalent to the case of the
scalability study http://cgos.boardspace.net/study/index.html which
considers non-MCTS opponents as well; we here see that just against the
same MCTS program, we have a limit in scalability; this even happens in
19x19. In Havannah with slow simulations (the operational case, with the
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Number of fast Success
simulations rate
100 vs 50 68.6 ± 0.68%

1000 vs 500 63.57 ± 0.76%
2000 vs 1000 59.0 ± 1.0%
4000 vs 2000 53.9 ± 1.6%
10000 vs 5000 55.2 ± 1.6%
20000 vs 10000 54.89 ± 1.25%

Number of slow Success
simulations rate
100 vs 50 63.28 ± 0.4%

1000 vs 500 57.37 ± 0.9%
2000 vs 1000 56.42 ± 1.1%
4000 vs 2000 53.24 ± 1.42%
10000 vs 5000 52 ± 1.6%

Table 2.2: Scaling for the game of Havannah, for fast (left) and slow (right)
simulations. As we can see, the success rate is not constant, but decreases
when the number of simulations increases.

best performance in practice), 10 000 simulations per move give only 52%
winning rate against 5 000 simulations per move (Tab. 2.2). This suggests
that the scalability is smaller than expected from small scale experiments.
Usually people do not publish experiments with so many simulations because
it is quite expensive; nonetheless, real games are played with more than this
kind of numbers of simulations and the numbers in the tables above are
probably greater than the scalability in realistic scenarios.

A particularity of these numbers is that they are in self-play; this provides
a limitation even in the ideal case in which we only consider an opponent of
the same type; it is widely known that the improvement is much smaller
when considering humans or programs of a different type. Interestingly
[Kato, 2009] has shown that his MCTS implementation reaches a plateau
against GnuGo when the number of simulations goes to infinity. This shows
limited scalability, to be confirmed by situations (practically) unsolved by
Monte-Carlo Tree Search, presented in section below.

2.3.2 Counter-examples to scalability

Heuristic refers to experience-based techniques for problem solving, learning,
and discovery. Where the exhaustive search is impractical, heuristic methods
are used to speed up the process of finding a satisfactory solution.

The RAVE heuristic ([Bruegmann, 1993, Gelly and Silver, 2007]) is
known to be very efficient in several games: it introduces a bias in H. It
is nonetheless suspected that RAVE is responsible for the bad asymptotic
behavior of some MCTS programs. We below recall some known counter-
examples when RAVE is included, and then give a detailed presentation of
other counter-examples which do not depend on RAVE.
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Counter-examples based on RAVE values. Martin Müller
posted in the computer-Go mailing list the situation shown in
Fig. 2.3(left, http://fuego.svn.sourceforge.net/viewvc/fuego/trunk/
regression/sgf/rave-problems/) in which their MCTS implementation
Fuego does not find the good move due to RAVE (discussed in Sec-
tion 2.3.2), because the only good move is good only if played first (the RAVE
value[Gelly and Silver, 2007] does not work in this case) - such cases are
clearly moderately sensitive to computational time or computational power,
and this has impacts in terms of scalability.

Other counter-examples. Importantly, Fig. 2.3(right) from
[Berthier et al., 2010] shows that there are some bad behaviours even without
RAVE values. Below, we propose new clear examples of limited speed-up,

Figure 2.3: Left: white to play, an example by M. Müller of bad scalability
due to RAVE. RAVE gives a very bad value to the move B2 (second row,
second column), because it only makes sense if it’s the first move, whereas
this is the only move avoiding the seki (otherwise, black A5 and the two
black stones A2 and B1 are alive). Right, white to play: an example of bad
behavior shown in [Berthier et al., 2010], independently of Rave values: in
many cases (yet not always, this depends on the first simulations), MoGo is
almost sure that he is going to win as white by playing C1, whereas it is a
loss for white.

that have the following suitable properties:

• These situations are extremely easy for human players. Even a beginner
can solve them.

• These counter-examples are independent of RAVE, as shown in our
experiments.
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Such situations are given in Fig. 2.4. These situations are semeais; it is
known since [Coulom, 2009, Lee et al., 2009] that MCTS algorithms are weak
in such cases. We show that this weakness remains without RAVE and even
with inclusion of specific tactical solvers.

Figure 2.4: Left: black to play. It is here necessary to play in the semeai.
Right: black to play: playing in the semeai is useless as the semeai is won
anyway (black has two more liberties than white) - good moves are outside
the semeai. MoGo often makes the mistake of playing in the semeai.

It is often said that classical solvers are able to solve semeais and therefore
including expert modules should improve MCTS algorithms by including
semeai solver. We have therefore tested two ways of including expertise in
MCTS:

• Expertise: we introduce a bias in the score, as usually per-
formed in MCTS algorithms [Chaslot et al., 2006, Coulom, 2006,
Lee et al., 2009]. Some virtual wins are added to UCT statistics so
that moves which are good according to our tactical semeai solver
called GoldenEye (Chapter 3) are more simulated; the idea, detailed
in [Chaslot et al., 2006, Coulom, 2006, Lee et al., 2009] consists in in-
creasing the score of moves evaluated as necessary by the semeai solver,
so that the heuristic H is more favorable to them. Only moves nec-
essary for solving the semeai are given a bonus; no move at all if the
semeai is won even if the player to play passes.

• Conditioning: then, all simulations which are not consistent with the
solver are discarded and replayed. This means that when the solver
predicts that the semeai is won for black (the solver is called at the
end of the tree part, before the MC part), before the Monte-Carlo
(MC) part, then the Monte-Carlo simulation is replayed until it gives
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a result consistent with this prediction. Human experts could validate
the results (i.e. only simulations consistent with the semeai solver were
included in the Monte-Carlo) and the quality of the solver is not the
cause for results in Tab. 2.3; the coefficients have been tuned in order
to be a minimum perturbation for having a correct solving for Fig. 2.4,
left: the coefficients are (i) the size of semeais considered (ii) the weight
of the expertise in the function H (for versions with expertise).

The results are presented in Tab. 2.3. In order to be implementation-
independent, we consider the performance for fixed numbers of simulations;
the slowness of the tactical solver can’t be an explanation for poor results.
From these negative results, and also for many trials with various tunings,
all of them leading to success rates lower than 50 % against the baseline, we
include that including expert knowledge is very difficult for semeais; it is true
that tactical solvers can solve semeais, but they do not solve the impact of
semeais on the rest of the board: in conditioning, if simulations are accepted
as soon as they are consistent with the semeai solver, then the result of the
semeai will be understood by the program but the program might consider
cases in which black played two more stones than necessary - this is certainly
not a good solving of the semeai.

These examples of bad behavior are not restricted to MoGo. Fig. 2.5
is a game played by Fuego and Aya in the 56th KGS tournament (february
2010); Fuego (a very strong program by Univ. Alberta) played (1) and lost
the game.

Figure 2.5: Fuego as white played the very bad move (1) during the 56th

KGS tournament and lost the game. This is an example of situation very
poorly handled by computers.
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Version of the algorithm Percentage of “good” moves

Situation in which the semeai should be played
1K sims per move

MoGo 32 %
MoGo with expertise 79 %

MoGo with conditioning 24 %
MoGo with exp.+condit. 84 %

Situation in which the semeai should not be played
1K sims per move / 30K sims per move

MoGo 100% / 58 %
MoGo with expertise 95 % / 51 %

MoGo with conditioning 93 % / 0 %
MoGo with exp.+condit. 93 % / 54 %

Table 2.3: These results are for Fig. 2.4; black should or should not play in the
semeai (left or right situation in Fig. 2.4). All results are averaged over 1000+
runs. Bold is for results with more than 75 % on correct moves. We point
out that the Go situations under consideration are very easy, understandable
by very beginners. We see that (i) with 30K sims/move, many versions play
the semeai whenever it is useless, and all versions play it with significant
probability, which is a disaster since in real situations there are many time
steps at which the MCTS program can have the opportunity of such a bad
move and even only one such move is a disaster because it is completely
wasted (ii) removing RAVE does not solve the problem (iii) adding a tactical
solver can work better (moderately better) with the traditional solution of
adding expertise as virtual wins, but results remain very moderate, and far
from what can do even a beginner. We also tested many parameterizations
in self-play and none of these tests provided more than 50 % of success rate
in self-play.

2.4 Message-passing parallelization

Multi-core machines are more and more efficient, but the bandwidth is
nonetheless limited, and the number of cores is much bigger when we consider
clusters than when we consider a single machine. This is why message-passing
parallelization (in which communications are explicit and limited) must be
considered. We’ll see here that, in particular in 19x19, the technique is quite
efficient from a parallelization point of view: the main issue for MCTS is
not the computational power, but the limits to scalability emphasized in
Section 2.3.

The various published techniques for the parallelization of MCTS are as
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follows:

• Fast tree parallelization consists in simulating the multi-core process
on a cluster; there is still only one tree in memory, on the master,
and slaves (i) compute the Monte-Carlo part (ii) send the results to
the master for updates. This is sensitive to Amdahl’s law, and is
quite expensive in terms of communication when RAVE values are
used[Hill and Marty, 2008, Gelly et al., 2008].

• Slow tree parallelization consists in having one tree on each computation
node, and to synchronize these trees slowly, i.e. not at each simulation
but with frequency e.g. three times per second [Gelly et al., 2008]. The
synchronization is not on the whole tree; it is typically performed as
follows:

– Select all the nodes with

∗ at least 5% of the total number of simulations of the root;

∗ depth at most d (e.g. d = 3);

– Average the number of wins and the number of simulations for
each of these nodes.

This can be computed recursively (from the root), using commands
like MPI AllReduce which have a cost logarithmic in the number of
nodes. A special case is slow root parallelization: this is slow tree
parallelization, but with depth at most d = 0; this means that only the
root is considered.

• Voting schemes. This is a special case of tree parallelization advocated
in [Chaslot et al., 2008], that we will term here for the sake of compari-
son with other techniques above very slow root parallelization: this
is slow root parallelization, but with frequency f = 1/t with t the time
per move: the averaging is only performed at the end of the thinking
time. There is no communication during the thinking time, and the
drawback is that consequently there is no load balancing.

It is usually considered that fast tree parallelization does not perform
well; we will consider only other parallelizations. We present in Tab. 2.4 the
very good results we have in 19x19 and the moderately good results we have
in 9x9 for slow tree parallelization.

We can compare slow root parallelization to the “voting scheme”
very slow root parallelization: with 40 machines and 2 seconds per move
in 9x9 and 19x19, the slow root parallelization wins clearly against the version
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Configuration of game Winning rate in 9x9 Winning rate in 19x19
32 against 1 75.85 ± 2.49 % 95.10±01.37 %
32 against 2 66.30 ± 2.82 % 82.38±02.74 %
32 against 4 62.63 ± 2.88 % 73.49±03.42 %
32 against 8 59.64 ± 2.93 % 63.07±04.23 %
32 against 16 52.00 ± 3.01 % 63.15±05.53 %
32 against 32 48.91 ± 3.00 % 48.00±09.99 %

Table 2.4: Experiments showing the speed-up of ”slow-tree parallelization”
in 9x9 and 19x19 Go. We see that a plateau is reached somewhere between
8 and 16 machines in 9x9, whereas the improvement is regular in 19x19 and
consistent with a linear speed-up - a 63% success rate is equivalent to a
speed-up 2, therefore the results sill show a speed-up 2 between 16 and 32
machines in 19x19. Experiments were reproduced with different parameters
with strong difference; in this table, the delay between two calls to the ”share”
functions is 0.05s, and x is set to 5%. The numbers with high numbers of
machines will be confirmed in Tab. 2.5.

Framework Success rate
against voting schemes

9x9 Go 63.6 % ± 4.6 %
19x19 Go 94 % ± 3.2 %

Table 2.5: The very good success rate of slow tree parallelization versus very
slow tree parallelization. The weakness of voting schemes appears clearly, in
particular for the case in which huge speed-ups are possible, namely 19x19.

with very slow root parallelization, as shown by Tab. 2.5. with a frequency
1/0.35 against the very slow root parallelization. As a rule of thumb, it
is seemingly good to have a frequency such that at least 6 averagings are
performed; 3 per second is a stable solution as games have usually more
than 2 seconds per move; with a reasonably cluster 3 times per second is a
negligible cost.

We now compare slow tree parallelization with depth d =
1, to the case d = 0 (slow root parallelization) advocated in
[Cazenave and Jouandeau, 2007]. Results are as follows and show that d = 0
is a not so bad approximation:
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Time per move Winning rate of slow-tree-parallelization
(depth=1) against slow-root-parallelization

2 50.1 ± 1.1 %
4 51.4 ± 1.5 %
8 52.3 ± 1 %
16 51.5 ± 1 %

These experiments are performed with 40 machines. The results are signifi-
cant but very moderate.

2.5 Conclusion

We revisited scalability and parallelism in MCTS.
The scalability of MCTS has often been emphasized as a strength of these

methods; we show that when the computation time is already huge, then
doubling it has a smaller effect than when it is small. This completes results
proposed by Hideki Kato[Kato, 2009] or the scalability study http://cgos.

boardspace.net/study/index.html; the scalability study was stopped at
524288 simulations, and shows a concave curve for the ELO rating in a frame-
work including different opponents; Hideki’s results show a limited efficiency,
when computational power goes to infinity, against a non-MCTS algorithm.
Seemingly, there are clear limitations to the scalability of MCTS; even with
huge computational power, some particular cases can’t be solved. We also
show that the limited speed-up exists in 19x19 Go as well, and not with
much more computational time than in 9x9 Go. In particular, cases involv-
ing visual elements (like big yose) and cases involving human sophisticated
techniques around liberties (like semeais) are not properly solved by MCTS,
as well as situations involving multiple unfinished fights. Our experiments
also show that the situation is similar in Havannah with good simulations.
The main limitation of MCTS is clearly the bias, and for some situations
(as those proposed in Fig. 2.4) introducing a bias in the score formula is not
sufficient; even discarding simulations which are not consistent with a tacti-
cal solver is not efficient for semeai situations or situations in which liberty
counting is crucial.

Several parallelizations of MCTS on clusters have been proposed. We
clearly show that communications during the thinking time are necessary for
optimal performance; voting schemes (“very” slow root parallelization) don’t
perform so well. In particular, slow tree parallelization wins with probabil-
ity 94 % against very slow root parallelization in 19x19, showing that the
slow tree parallelization from [Gelly et al., 2008] or the slow root paralleliza-
tion from [Cazenave and Jouandeau, 2007] are probably the state of the art.
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Slow tree parallelization performs only moderately better than slow root par-
allelization when MCTS is used for choosing a single move, suggesting that
slow root parallelization (which is equal to slow tree parallelization simpli-
fied to depth= 0) is sufficient in some cases for good speed-up - when MCTS
is applied for proposing a strategy (as in e.g. [Audouard et al., 2009] for
opening books), tree parallelization naturally becomes much better.
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Chapter 3

Reducing the complexity by
local solving

The work presented in this chapter has not been already published.

3.1 Introduction

A drawback of MCTS engines of Go is that sometimes, parts of the goban
(e.g. corners) are badly evaluated. Some tactics situations are very badly
understood by MCTS. The semeai is an example. A semeai (or capturing
race) is a mutual capturing contest. This is a tactical situation created in
positions when both players have groups striving to capture each other, in
some area of the board. Typically it is not possible for each side to create a
safe group with two eyes. Fig. 3.1 and Fig. 3.4 show examples.

We propose to solve some capturing races. First, some terms of Go game

Figure 3.1: A basic semeai.
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are explained, then a state of the art is presented and a semeai solving algo-
rithm is given. Finally, some results are shown.

3.2 Glossary of Go terms

We explain some terms of the game of Go such as ko, seki, shicho and
tsumego.

Liberty: A liberty of a group G is a free intersection neighbouring the
group G.

Atari: A group is in atari if the group has only one liberty. The opponent
threatens to capture the group at his next move.

Ko: Players are not allowed to make a move that returns the game to the
previous position. This rule, called the ko rule, prevents unending repetition.
Fig. 3.2 depicts 2 kinds of ko. The ko makes harder the Go game, because
a local situation becomes global. Indeed, a player can not recapture a stone
but it can threat something in another place of the goban; the second player
has the choice:

• he can answer to the threat but then the first player can retake the ko
(the situation has changed)

• or win the ko (e.g. by protecting his stone in atari) but in counter-part,
the first player will execute his threat.

Seki: Seki is a Japanese go term which means mutual life. In its simple
form, it is a kind of symbiosis where two live groups share liberties which
neither of them can fill without dying (Fig. 3.2).

Shicho: Shicho is a technique for capturing a group of stones. The number
of liberties of the attacked group alternates between 1 and 2 at each move,
until this group has no more liberty and up to be captured. Fig. 3.2 gives an
example.

Tsumego: Like semeai, a tsumego (or death/life problem) is a tactical
situation met on a part of the goban. The life of a group is in pending. A
tsumego concerns the life of one group whereas the semeai is about several
groups. Fig. 3.2 and Fig. 3.25 give examples.

Approach move: A move that must be played before taking an opponent
liberty, because doing so directly would put us in atari or leave us with a
critical weakness (Right in Fig. 3.12). In effect, an approach move increases
the actual number of liberties of the opponent group.
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Figure 3.2: Left: The ko rule. Black to Play. In the game of Go, it
is forbidden to come back to positions already seen. The last move (the
white stone with a blue triangle) has captured a black stone in the blue cross
intersection. Black can not play into the blue cross intersection because
black captures the white stone with a blue triangle and we come back to a
precedently met situation. Top Left / Bottom Left depicts a ko respectively in
the center / on the border of the goban. Top Center: Seki. If Black/White
plays F1 (or F2), then White/Black captures the group stones by playing F2
(or F1). The 2 groups E1 and G1 (with cross) are alive by seki. Right:
Shicho. Top Right: Black to Play. The starting of the Shicho. The white
triangle stone will be captured. Bottom Right shows how. Black plays at the
cross and captures the white group. Bottom Center is a tsumego. The
statement can be either ”White to play and kills the black group“ or ”Black
to play and lives“.
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3.3 State of the art

For solving a capturing race in any position of Go, this situation should be
found. Once detected, another algorithm should be able to give the solu-
tion. First, we present briefly some techniques of detection and secondly, we
present some algorithms for solving capturing races.

3.3.1 Detection of the Semeai

For finding semeai, the most common mechanism is analysis of groups.
First, we determine the safety of groups. Unsafe and enclosed groups
are searched. A semeai is likely to occur when 2 such groups of
both players are neighbours. GNU Go, a software of Go game,
uses this technique (See Chapter 12 of GNU Go’s documentation -
http://gnu.cs.pu.edu.tw/software/gnugo/gnugo toc.html). In 1999, Martin
Mueller proposes a similar method in [Müller, 1999]. But the analysis is
prone to error of coding.

3.3.2 Resolution of the Semeai

There are 2 kinds of resolution:

• A static resolution by using analysis and mathematical rules

• A dynamic resolution by tree search.

Without tree

Sometimes, simple semeais can be solved statically by counting
liberties. Solvers have been developed by analyzing eye shape
[Vilà and Cazenave, 2003], as well as external and common liberties
[Nakamura, 2008] [Müller, 2002]. Wolf studies semeais with approach moves
[Wolf, 2012]. More involved rules also exist in the literature for human play-
ers [Hunter, 2003].

No simulation is necessary; it solves really quickly semeais which can be
very big. However, a lot of rules is required and frontiers should be well-
defined.

With tree

Solvers given in this section are mainly applied to tsumegos. Algorithms
for solving tsumegos and semeais are similar, except they require specific
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Figure 3.3: Left: A closed semeai. Center: A little open semeai. Right:
An open semeai.

knowledge (e.g. the shape of eyes for tsumegos or counting liberties for
semeais).

GoTools [Wolf, 1994] implemented by Wolf in 1994 solve tsumegos. The
algorithm which solves tsumego can be applied to semeais [Wolf, 1994]. But
it is not its primary function. GoTools uses a classical alpha-beta with hash
tables.

Proof Number Search is another common algorithm for solving small
tactical problems such as tsumego [Saito et al., 2007]. It is used for instance
in Explorer.

Explorer is a software of Go with a solver specialized in one-eye tsumego
problem [Kishimoto and Müller, 2003]. Explorer uses Depth-First Proof
Number Search.

Open problems: A problem of Go is said open if the considered area
of the problem is not completely surrounded by stones. In closed problems,
solvers will consider all the legal moves in the enclosed area. In open prob-
lems, finding the set of moves to be considered is a challenge. Fig. 3.3 depicts
open and closed problems.

A first solution could be to add automatically stones for closing the prob-
lem. A risk is to change the nature of the problem.

Pruning is another solution. [Chen and Zhang, 2006] solves open capture
problems with AlphaBeta and a highly selective heuristic of moves.

[Niu and Müller, 2006] presents a solution for solving open tsumegos,
with pruning, and especially with some mechanisms, based on automatic
responses, to prevent the search from expanding where the boundary is not
perfectly defined. But it is difficult to have an exhaustive list of all these
mechanisms. The problem can not be too opened and groups surrounding
the problem must be safe.

Abstract Proof Search (APS) [Cazenave, 2000] uses another approach. It
is able to generate small sufficient sets of moves by assuming the problem can
be won under a given number n of moves. Those move generations rely on
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Figure 3.4: Caption for semeais. Left: a semeai. Right: the caption.

ad hoc functions. The algorithm has been mainly used to solve open capture
problems in the game of Go. APS can be applied for solving semeais, but
it’s not its primary target and these ad hoc functions become complex when
n increases.

Another solution consists in gradually expanding the sets of moves. Ab-
stract Proof Search has been extended with an iterative widening approach
[Cazenave, 2001] [Cazenave, 2004].

Monte-Carlo Tree Search [Zhang and Chen, 2008] is another way for solv-
ing open problems.

3.4 GoldenEye algorithm: combining A* and

MCTS

The algorithm called GoldenEye decomposes in two parts (Fig. 3.5) :

• the detection of the semeai

• the resolution of the semeai

3.4.1 Statistical detection

In this section, the method of detection is presented. From some results,
parameters of the detection are fixed. Finally, we introduce some ways for
improving the detection.
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Figure 3.5: Algorithm for really choosing the move. The outputs are blue,
green and red rectangles. A yellow diamond-shape is a condition. A blue
rectangle means a winning case with nothing to do: the best case. Like blue
rectangle, a red rectangle means nothing to do but in the bad case: it is the
worst case. A green rectangle means something to do for winning. We say
that the opponent can hope a win if (i) either we have proved that it is a
win for the opponent if he is the first to play in the semeai; (ii) or we got an
estimation > 50% for the opponent, in case we don’t play in the semeai.
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The approach

From the current position, pure random simulations are done. Some statistics
are collected such as the number of times that a stone is dead whereas another
is alive at the end of a simulation.

Let Sb a black stone and Sw a white stone.
ADnbSims(s1, s2) is defined as the frequency of simulations where s1 is alive
and s2 is dead at the end, through nbSims simulations. We define

semnbSims(Sb, Sw) = ADnbSims(Sb, Sw) + ADnbSims(Sw, Sb) (3.1)

Two stones Sb and Sw are said to be in semeai if

semnbSims(Sb, Sw) >= ρ (3.2)

where ρ ∈ [0; 1] is a fixed parameter and nbSims the number of random
simulations.

For avoiding semeais where the fight is too unequal, a second condition
has been added. The condition is

min(ADnbSims(Sb, Sw), ADnbSims(Sw, Sb)) > σ (3.3)

where σ ∈ [0; 1] is a fixed parameter.

Semeais are built by aggregation of stones said to be in semeai.
The aggregation stone by stone1 works well in practice in the sense that

results are consistent with the connexity of groups. It rarely occurs that
a stone of a group is marked in semeai but not the whole group (Fig. 3.7
features one example of this situation).

On the computer-go mailing-list, a very similar idea has been exposed by
Jonas Kahn on January 13, 2011: ”[...] A semeai is then two groups of stones
with anti-correlation P((white stones live and black stones live) OR (white
stones die and black stones die)) almost 0, whereas P(B lives) and P(W lives)
both nonzero and non-one.“ The anti-correlation and the function sem are
both indicators of the existence of a semeai and they are almost equivalent.

The detection of semeais restricts candidate area(s) of the goban where
the engine should focus. Some works using statistics such as [Coulom, 2009]
are another mean for finding these areas. [Coulom, 2009] is moreover a tool
for deciding the importance of a semeai and/or may detect some candidate
areas in which a semeai could be found.

1instead of group by group.
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Choosing parameters

3 parameters are used in the detection:

1. the number of random simulations nbSims

2. the threshold ρ

3. the threshold σ.

After having observed statistical data (such as the percentage of life of a
stone in situations with or without semeai) from random simulations, σ has
been fixed to 0.14.

After some experiments such as in Fig. 3.6 and Fig. 3.7, we notice that
100 random simulations is enough in most cases for a correct detection of
semeai. In a complex situation such as Fig. 3.7, running more simulations
is useful because it stabilizes the detection. However, it is a position where
the detection of semeais is difficult and a little ambiguous even for human
players.

For determining ρ, several detections of semeais have been launched in the
position given in Fig. 3.6. With ρ = 0.5, only one semeai is detected and very
badly. Some stones that have been detected in the same semeai are obviously
unrelated to each other. ρ = 1 would be the ideal value if the simulations
had perfect play; however, it is too strict. Because of random simulations,
some strange situations can occur (e.g. a frontier group of a semeai is killed
...) and so with ρ = 1, some semeais could be undetected. ρ = 0.75 detects
too many semeais. ρ = 0.83 is a good compromise, the quality of detections
being admissible (Fig. 3.7). That’s why for all experiments, ρ = 0.83 and
nbSims = 100.

Improvements

The detection is not perfect, particularly in complex situations with a lot of
stones on the goban. Some improvements can be made such as:

• choosing ρ dynamically. We have found empirically that open situations
have better results with lower ρ values.

• correcting the detection:

– eliminating a group surrounded by only one opponent group does
not belong to a semeai but more probably to a life and death
problem (see Fig. 3.25)
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ρ = 0.5 ρ = 0.75

ρ = 0.83 ρ = 1

Figure 3.6: Top: a situation of Go for testing the detector of semeais. Top of
the goban is a situation maybe too huge for considering that it is a semeai.
Perhaps, the space between the 2 groups is sufficient for the life of both
groups. Left of the goban is a confused situation. Right and bottom of the
goban are 2 small semeais. Groups enclosing the semeai at bottom are clearly
alive with 2 eyes. Groups T2 and T9 enclosing the semeai at right are not
alive; even the white group T2 is in danger in comparison to the black group
T9. Bottom: Semeais detected following ρ after 100 random simulations.
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Figure 3.7: Different detections of semeais with ρ = 0.83 and 100 random
simulations. Top right: In the group of black stone, the stone Q15 is
in the semeai whereas the stone Q16 has not been included. Bottom left:
The only case where the group Q18 has been included in the semeai. 2
semeais are detected in Bottom center and Bottom right. By human
view, Bottom right can be considered as the best detection. With 100,000
random simulations and ρ = 0.83, Bottom right is the only case seen over
10 runs.
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Figure 3.8: A pattern for detecting semeai.

– avoiding the situation Achille against Goliath (e.g. one group of
one stone with few liberties against a big group with many liberties
is not in semeai)

– using patterns such as Fig. 3.8

– correcting groups which are poorly built (Top right in Fig. 3.7
shows an incomplete group in the semeai)

– using a distance between groups (e.g. groups which are not neigh-
bours are not in semeai - The group A19 and the group L1 at case
ρ = 0.5 in Fig. 3.6 are in a same semeai but have no common
point.).

3.4.2 Resolution

Once a semeai has been detected, the resolution begins. When several se-
meais have been detected, one resolution is performed for each semeai, and
the biggest one is chosen (i.e. the semeai with the greatest number of black
stones and white stones), among those with something to do (green rectan-
gles in Fig. 3.5). Note that GoldenEye is not able to evaluate the importance
of a semeai in the whole goban; [Coulom, 2009] could be fruitful for that.

In Fig. 3.5, the resolution starts with the question ”my opponent can hope
to win? “. For answering, the passmove is played (which consists in changing
the player) and an estimation for winning the semeai is computed. For
estimating, an algorithm of tree search with running a small number nbMC
of Monte-Carlo (MC) simulations is launched. Typically, nbMC = 2, 000.
When the estimation has been performed, we go backward by cancelling
the pass move. The answer is yes if the semeai is solved as a win or the
estimation is strictly greater than a threshold θ, In this case, we wish to
solve it. We build a new tree by using the same algorithm of tree search.
Since the main goal is to solve it, we run a larger number of Monte-Carlo
simulations. Typically, nbMC = 100, 000, but the search stops as soon as
a solution is found. If the semeai is not completely solved, we compute an
estimation exactly as we have made for the opponent. If the estimation is
strictly greater than the same threshold θ, the move with the best estimation
is returned.
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For each candidate move, the number of Monte-Carlo simulations
nbSimulations and the number of winning Monte-Carlo simulations nbWins
are stored in memory. The winrate is a percentage defined as:

winrate =
nbWins+K

nbSimulations+ 2K
(3.4)

with K is a constant strictly positive fixed to 0.5. In this formula, the
numbers K and 2K are added so that the winrate is 50% when there is no
simulation for the move. The constant K has been chosen as small as possible
in order to the added terms K and 2K becomes insignificant in the fraction
as soon as possible.

The estimation is the winrate and θ = 50%.
Thus, the semeai is solved dynamically by tree search. In the following, a

first part describes the motivation for the algorithm. The structure of data
is given in a second part and the principle of search is given in a third part.
Then we decompose the solving by describing the Monte-Carlo simulation
and then the tree search. Finally, 2 main improvements are given.

Motivation

For entertaining humans, newspapers often offer small tactical problems.
The given solution is simple and short (Fig. 3.9). We wish to propose an
algorithm which solves small tactical problems by building only main lines
like in the solution given by the newspaper.

A main assumption is that the play is almost perfect because of much
prior knowledge about the kind of problem and the simplicity of the solution
(i.e. lines of the solution are not too long and there are few replies). Conse-
quently, a small tree should be sufficient for solving the problem. Moreover,
simulations are assumed to be realistic.

In Fig. 3.9, imagine the first try is 1. Nf5+ Kd8 2. Nxd4 a2 3. Nc2 Rb2
and then White loses. Either White has played the optimal way or he has
committed a mistake. As Black has won and we assume that he plays almost
perfect, improving the black play is useless. The main idea is to find where
White has played a bad move and corrects it. Thanks to a lot of knowledge,
we search the most likely error of the white player. If the error exists, the
error is

• either 1. Nf5+

• or 2. Nxd4 after 1. Nf5+ Kd8

• or 3.Nc2 after 1. Nf5+ Kd8 2. Ra8+ 2. Nxd4 a2

73



3. REDUCING THE COMPLEXITY BY LOCAL SOLVING

  
 White to play and draw

Djaja
Donner book

1. Nf5+ Kd8 2.Ra8+ 
[2. Nxd4 a2 3. Rb7 
(3. Nc2 Rb2 and Black 
wins.) 3. ... a1Q 
4. Rxb6 Qxd4 5. a7] 
2. ... Kxd7 3. a7 Ra4 
4. Rg8 Rba6 5. Nh6!! 
and now White has 
perpetual check along 
the g-file !
Draw. 1/2-1/2

Figure 3.9: From the site chessbase.com. Inspiration of the algorithm. Left:
The problem. Right: The solution.

We decide that the bad move is 2. Nxd4 and we decide to correct it by
playing 2. Ra8+. From this position, a new simulation is launched: 2.
... Kxd7 3. a7 Ra4 4. Rg8 Rab6 5. Nh6 and the game is draw (the
goal is accomplished). Now, maybe Black has played the optimal way or he
has committed a mistake. We try to improve the black play and the next
correction should focus on one of black moves among:

• 1. ... Kd8 after 1.Nf5+

• 2. ... Kxd7 after 1.Nf5+ Kd8 2.Ra8+

• 3. ... Ra4 after 1. Nf5+ Kd8 2. Ra8+ Kxd7 3. a7

• 4. ... Rab6 after 1. Nf5+ Kd8 2. Ra8+ Kxd7 3. a7 Ra4 4. Rg8

and so on. Note that the correction is not searched in the following line 1.
Nf5+ Kd8 2. Nxd4 because Black has won in this variant. In this way, the
main goal is to prove as soon as possible that the position is a draw.

Describing the architecture

Semeai: The semeai is a structure which mainly contains the list of black
stones in semeai and the list of white stones in semeai. For each color, a main
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stone is designed as the goal for the opponent. The semeai is won for the
player who captures the main stone of the opponent. Typically, for a given
color, the main stone is one stone of the largest group of that color in semeai.
The structure also contains some information such as frontier groups.

The tree: The tree is a graph where a node is a position of Go and an
edge is a move. For a given node nd, a child is a node obtained after the
application of the move on the position of Go defined by the node nd. The
root is the position of Go when the semeai is detected. A leaf is a node with
no edge.

Search principle

The algorithm is an iterative best-first search (Part 1.4.9); it is akin to A∗.
An iteration is composed of 3 parts (Alg. 7). A first part consists in choosing
a leaf which obtains the best evaluation in the tree. The second part is the
Monte-Carlo simulation starting from the chosen leaf. In this part, all the
positions of the simulation are added in the tree. The third part is the update
of the tree.

Algorithm 7 Building the tree. The function playOneMCSimulation re-
turns the last created node at the end of the simulation.

Function BuildTree(tr,maxSimulations)
for sim ∈ 1..maxSimulations do

if tr is solved then
break

nextLeaf = ChooseLeaf(tr.root))
lastLeaf = playOneMCSimulation(nextLeaf)
update the tree tr from the lastLeaf until tr.root

At the first iteration, the chosen leaf is the root. The problem of choosing
a leaf is really raised at the second iteration. For presenting the algorithm,
we propose a simple example where one iteration is sufficient for solving a
semeai (Fig. 3.10 and Fig. 3.11).

The example shows several things such as:

• a Monte-Carlo simulation

• how the tree is updated
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Figure 3.10: End of the game between 2 professional players O Meien and
Cho Sonjin. Black to play. After H12-H11-J13-K12-K13, O Meien sees his
mistake and resigns. Even if the situation is not a semeai but a shicho,
the solver detects it as a semeai (groups F11 and F12) and solves it. The
simulation begins by H12, the opponent plays H11 (forced move to not lose
the semeai). But then, the semeai is considered as finished and lost for
White because of the favorable shicho for Black. After H11, it follows J13-
K12-K13-L12-M12-L13-L14-M13-N13-M14-M15-N14-O14-N15-N16-O15-
N17-P15-P14-Q15-Q14-R15-S15-R14-R13-S14-S13-T14-T15-H13-T13-H12
and H14 captures the white group. Fig. 3.11 gives steps of the resolution.
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Figure 3.11: A preliminary resolution. The illustrated situation is given
in Fig. 3.10. Step 0: creation of the root node and initialization. The
simulation starts. Step 1: expanding the root by creating all children.
Step 2: H12 has the best expertise (e.g. threat to win the semeai in one
move); H12 is chosen. Step 3: the situation of the semeai is unclear; then
the chosen leaf is expanded. Only one child is created because H11 is the
only move which prevents to lose the semeai. Step 4: H11 is forced and so
chosen. Step 5: the evaluator detects the end of the semeai by the capture
of the white group with a shicho. The simulation is finished. The update
of the tree begins. The last created node is so solved as a loss (thick black
circle). Step 6: all children (here, there is only 1 child) are solved as loss,
therefore the node is solved as a win (thick blue circle). Step 7: at least,
one node is solved as a win; therefore, the node is solved as a loss. Step 8:
the root node is solved. The resolution is finished. The semeai is a win and
H12 is the winning move. A better solution may exist, but no other solution
is searched. 77
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Monte-Carlo Simulation

The Monte-Carlo simulation is given in Alg. 8.

Algorithm 8 The Monte-Carlo simulation. Arguments: lf is a leaf of the
tree. The function staticEval is used to determine the end of the simulation.
It returns the status of the semeai (Win or Loss) if it is able to determine it
statically, or Unknown if it can not.

Function playOneMCSimulation(lf)
Let board a copy of lf.board (board = lf.board)
nextNode = lf
while staticEval(board) == Unknown do

Build the list of moves lm thanks to some rules
for Each move mv ∈ lm do

Compute an expertise K of the move mv following
the board board
Add a new child ch of nextNode
Store the move mv, the expertise K and the result
of the application of the move mv on a copy of the
board board in the new child ch

nextNode = Argmaxch∈Children(nextNode)ch.K
Play the corresponding move nextNode.mv on the
board board

Return nextNode

After presenting the main parameter of the simulation, the process for
considering new moves is explained and the expansion of leaves is then pre-
sented. Some expertises are then given for doing intelligent simulations.
Finally, the module which evaluates the end of the semeai (i.e. the function
staticEval) is exposed.

Maximal length of the simulation. The horizon horizon of the simu-
lation is the maximal length of a simulation, counting from the root and not
from the leaf where the simulation starts.

Expansion of new considered moves. The classical expansion is for a
given stone, to consider its 8 neighbours and the 4 neighbours at a distance
of one jump in straight line (at Left in Fig. 3.12). When a group is captured
but the simulation is not finished, all the locations where the stones have

78



3.4. GOLDENEYE ALGORITHM: COMBINING A* AND MCTS

Figure 3.12: Expansion of moves around a black stone. Blue crosses are
(new) considered moves. Left: classical expansion. Center Left: expan-
sion with an opponent white stone. Center Right: expands or not around
the black stone encircled by 3 white stones? Stones marked by blue square
are strong. The move marked by a blue circle is so not considered. On the
other side, stone marked by blue triangle is weak; the move marked by a
cross is considered. Right: Approach move. If Black plays directly at blue
circle, he puts itself in atari. The approach move is the blue cross.

been captured are new candidates. When a move has been considered, the
move is always considered in the following sequence of the simulation (except
forced cases, for instance, step 4 in Fig. 3.11). Fig. 3.12 gives main rules for
expanding new moves such as approach moves. Rules are completed with
specific complex conditions for preventing to add some moves evaluated as
useless. For instance, the jump in straight line (tobi) can be not considered
if the move is not directly linked to a stone in semeai.

In the phase of initialisation, considered moves are empty locations
around stones in semeai (e.g. Fig. 3.4) according to rules of expansion. Each
time a move is played, old considered moves from the beginning of the simu-
lation are still candidates and new candidates are given by rules of expansion
(except forced cases).

Creation of nodes. When a leaf lf is expanded, the list of considered
moves is generated and for each move of the list, a child node is added to
lf . We have decided to store the whole simulations in the tree (Fig. 3.11)
because we expect that the size of the tree will remain sufficiently small that
we won’t run out of memory; also we believe that MC simulations are of
adequate quality. At each node of a MC simulation, all the possible children
will be added to the tree.

Expertise and policy of the simulation. MC simulation continues only
on the child with the best complete expertise.
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The complete expertise is a linear combination of about thirty compo-
nents. These expertises are given in GoldenEye for doing realistic and almost
perfect simulations. There are specific expertises for semeais. First of all,
a semeai is a capturing race. Thus, filling liberties of the opponent group
in semeai is really good. Increasing liberties of his own group in semeai is
good too but less important, because the move delays the capture of one of
the groups. On the contrary, playing a move which decreases the number of
liberties of his own group is generally very bad.

There are a lot of other expertises more classical in the Go game such
as saving a group in atari, patterns of connection/disconnection, approach
moves, capturing big groups, creating an eye... Some expertises depend on
the last move played by the opponent in the simulation, such as the expertise
of blocking when the opponent tries to flee.

The policy of the MC simulation is to choose the move which has the best
complete expertise K.

Evaluation of winning/losing a semeai. In the module, some tech-
niques of captures are implemented such as shicho. The module is able to
recognize if one group has built 2 eyes (alive group). It sometimes happens
that one group in semeai manages to flee to the outside, and in this case
the complexity of the semeai explodes. In order to avoid this bad case, the
semeai is considered as a win for the player who has successfully increased
the number of liberties of his main semeai group by 4.

Moreover, the player to play at the current position loses the semeai if
the length of the simulation beginning at the root of the tree exceeds horizon
moves. The parameter horizon has been fixed to 30.

The module is very efficient. For instance, the module is able to compute
a long sequence for determining how the semeai finishes, for instance when
the problem reduces to a shicho (Fig. 3.10). Thus, the simulations can be
stopped earlier and the search tree is smaller. In counterparts, the module
is computationally expensive.

The update of the tree

When the MC simulation is terminated, the update of the tree starts from
the last created node in the simulation to the root of the tree. Some pieces
of updated information are:

• the number of winning simulations

• the number of simulations
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• whether the node is solved.

Solved node. A node is solved as “losing“ if at least, one of children nodes
is solved and the result is a win. A node is solved as ”winning“ if all children
nodes are solved and all results are losses. A tree is solved if and only if its
root is solved (Fig. 3.11).

Other data is updated in the tree such as the result of the last MC
simulation in a node.

Choosing leaf

The result res of the last MC simulation in a node is one of the main com-
ponents for choosing the leaf where to start the next MC simulation. The
algorithm for choosing a leaf is given in Alg. 9. The algorithm uses the
depth of the leaf in the tree, the relevance of the branch from where the leaf
is and the current situation on the goban linked with the leaf but the number
of children or the remaining number of children in a node are not used in
GoldenEye (See paragraph 3.4.2 for more details.).

One key point is that the tree is not fully covered for choosing the leaf.
In particular, for a node whose last simulation has been won (res == win),
we descend automatically to the child node where the last simulation has
been won; other children are not visited at this time. It is the principle of
improving the play of the actual losing player as it has been seen in part 3.4.2.

An example for choosing the next leaf is given in Fig. 3.13.

Evaluation of a leaf. The function which gives a score of the leaf lf is
Alg. 10.

The evaluation of a leaf is a compromise between the expertise, the depth
of the leaf and a third term which replaces the term of exploitation.

Deep leaves are penalized (w1 < 0). In a leaf, the exploitation is unknown
because it has not been already simulated. However, the branch from where
the leaf comes is known. Nodes belonging to the branch have such statistics;
a kind of term of exploitation can be computed. This evaluation will give the
interest of the branch. Note that the number of children or the remaining
number of children to prove for each nodes of the branch are not used for
evaluating the relevance of the branch. A leaf whose branch seems to be
good (i.e. well studied, with a lot of simulations) and promising (with a lot
of wins) should be favored. The term is the average on exploitation terms of
all nodes belonging to the branch and of the same color than the leaf. The
coefficient w2 > 0 weighs this ”exploitation term“. This shape of exploitation
is studied in Section 3.5 and is denoted the heuristic H0.
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Figure 3.13: An example of solving semeai after 9 iterations. Top Left:
The semeai (triangles) with all considered moves at beginning (blue crosses).
Locations with blue square-crosses are moves proved as loss. (The winning
move is D1). Top Right: Statistics at the root of the tree after 9 iterations.
Bottom: The tree built after 9 iterations. A square with a number n
denotes the remaining number of leaves to expand. A blue circle is a node in
which the last simulation has been a win and a thick circle is a node solved as
loss. At the 10th iteration, the next selected leaf will be in one of the squares
pointed by a green arrow.
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Algorithm 9 The recursive function in order to choose the leaf where the
next MC simulation starts.

Function ChooseLeaf(nd)
Let res the result of the last simulation of the current
node nd.
Let lfbest initialized to an empty node (lfbest = null).
if nd is solved then

Return null
if nd is a leaf then

Return nd
if res is a win then

Let wcnd be the winning child node
Return ChooseLeaf(wcnd)

else
for each child ch of nd do
lftemp = ChooseLeaf(ch)
if lftemp is null then

continue
if lfbest is null then
lfbest = lftemp

else
if evalLeaf(lfbest) < evalLeaf(lftemp) then
lfbest = lftemp

Return lfbest

The coefficients w1 and w2 are fixed parameters2.

Some improvements in the solving

In order to solve more efficiently semeais, we present 2 generic heuristics:

• Global Contextual Monte-Carlo

• Inhibition

Global contextual Monte-Carlo. The heuristic Global Contextual
Monte-Carlo (gcmc) is inspired by [Rimmel and Teytaud, 2010]

2The values of coefficients w1 and w2 are not specified.
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Algorithm 10 Evaluation of a leaf.

Function evalLeaf(lf)
Let Kbest be the best value of the expertise knowledge
among lf and its brothers.
Let d be the depth of the leaf lf in the tree
Let µ be the average win rate of ancestor nodes which
are of the same color than lf .
Let w1 be the coefficient of the depth d
Let w2 be the coefficient of the average win rate µ
Return ((lf.K −Kbest) + w1 ∗ d+ w2 ∗ µ)

For any situation, when the opponent plays a given move, the player has
often an automatic answer. For example, in Fig. 3.13, if white tries to flee
by playing G2, then black blocks automatically by playing H2. The idea is
to find generically the automatic reply by using statistics.

It’s a kind of RAVE not on one move but on a couple of moves.
2 static variables gcmcWins and gcmcSim depending on the color of the

player, a first move and a second move are defined.
Generally, all nodes of the tree have their own variables. But in our case,

for memory problems and because we need a lot of simulations in order to
have significant statistics, only the root node has these 2 variables. For this
reason, the heuristic is called global.

gcmcWins and gcmcSim are initialized to 0. These 2 variables are up-
dated in this way: Let mvik the kth move played by the ith player and a given
simulation mv1

1 mv
2
2 mv

1
3 mv

2
4 ... mv

2
2j mv

1
2j+1 ... mv

i
n. In this simulation,

the player who has won is denoted w and the player who has lost is denoted
l. For all couples of moves (mvlk,mv

w
k+1) of the simulation,

gcmcWins[w][mvlk][mv
w
k+1] + + (3.5)

gcmcSim[w][mvlk][mv
w
k+1] + + (3.6)

For all couples of moves (mvwk ,mv
l
k+1) of the simulation, only gcmcSim is

incremented.
gcmcSim[l][mvwk ][mvlk+1] + + (3.7)

During the choice of a leaf and the simulation, the heuristic gives a bonus
in the expertise. Let mvc1last the last move played by the opponent c1 and
mvcand the candidate move for the player c2. The bonus is given under
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the shape coeff×gcmcWins[c2][mvc1last][mvcand]/gcmcSim[c2][mvc1last][mvcand]
with coeff a tuned coefficient.

The heuristic gcmc is denoted H1 .

Inhibition. The main idea is to allow the algorithm to go out of a local
minimum. We wish to avoid staying in an unsolved node which has good
statistics but which seems to be recently refuted. Good statistics come from
a lot of winning simulations. However, the node seems to be newly bad
because the k last simulations including this node have been lost. Thus, the
heuristic favors the exploration.

A node is inhibited if its k last simulations have been lost. A node is
reactivated if all brothers are inhibited or solved. If a node is reactivated,
all inhibited brothers are reactivated, too. While a given node remains in-
hibited, this node and the resulting subtree are not visited anymore. In our
experiments, k is fixed to 10. The heuristic inhibition is denoted H2 .

The heuristic inhibition is a temporary pruning; the branching factor
(i.e. number of children at each node) is temporarily reduced and the size of
the tree to browse is smaller. Other techniques such as Progressive Widening
[Coulom, 2007] and Progressive Unpruning [Chaslot et al., 2007] controls the
branching factor.

Summary

GoldenEye builds incrementally a tree with a local search. The tree is ini-
tialized from the current situation on the goban. At each iteration,

1. a part of the tree is browsed in order to choose a leaf;

2. a MC simulation is then launched from the chosen leaf;

3. the tree is finally updated.

Information in the node. In a node nd, pieces of information are :

• board the board

• mv the move

• res the result of the last simulation. In the case of win, wcnd is the
pointer on the last simulated child node. In the case of loss, wcnd is
null.

• K the value of the expertise
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• children the list of children nodes (when leaf, the list children is empty)

• father the father of the node (when root, the pointer father is null)

• d the depth of the node (d = father.d+ 1 and when root, d = 0)

• nbWins the number of winning simulations

• nbSimulations the number of simulations

• solv the result of solving. When unsolved, solv = unknown and when
solved, solv = win or solv = loss.

Properties and disadvantages. As proofs are memorized by the propa-
gation of solved nodes, GoldenEye proposes a complete resolution for open
problems but only one winning move is given. When there are several win-
ning moves, the given move may not be the best.

The scoring function is the win rate of semeais or when solved, a boolean
which indicates if the semeai is won; GoldenEye does not know how many
points it represents on the board.

There are aggressive but necessary prunings. The length of a simulation
is bounded.

Many human expertises have been added. It allows to have efficient and
natural MC simulations. With efficient simulations, we hope to build the tree
as small as possible. Thereby, GoldenEye can help humans to understand a
semeai and see the main variants of an open semeai. GoldenEye saves the
tree built during the solving in a sgf file and a user can look into the solution
with a human interface such as gogui. Another goal of this solver has been
to collaborate with other go engines. Thus, the solver used in MoGo (See
Section 2.3.2) is this version of GoldenEye.

3.4.3 Hierarchical solving

The algorithm can not solve some kinds of semeais because with the best
defense/attack, sometimes the semeai finishes in a draw (i.e. seki) or with
some conditions (i.e. ko). Fig. 3.14 shows examples.

A semeai can finish

• by the death of one group (most common)

• by the life of both groups, too (seki)

• or by the death of one group with a ko.
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Figure 3.14: Different possible ends of the semeai. Left: A created situ-
ation. White to play - the semeai ends by a seki after the sequence E4-E3-
D3-C1-G1. Right: From a game between 2 amateur players. Black to play
- a ko appears in the sequence J2-J4-J3-J1-H1-G1-E4-J1(ko).

4 ways to win a semeai have been identified:

• win

• win with ko

• draw with ko

• loss with ko

In order to be able to solve all cases, several trees (4 in total) are built.
These trees are built independently with their own goal. The first tree tries
to win without ko. The second tree tries to win with ko. The third tree tries
to draw with/without ko (seki) and the last tree tries to lose with ko.

The order - win > win without ko > draw > loss with ko - is similar to the
evaluation function in [Cazenave, 2001] for solving death/life problems. But
claiming that a win with ko is better than a draw without ko is debatable
because it depends of the ko threats on the whole goban. However, the
situation of draw is less frequent. So, we have not distinguished cases ”draw
without condition“ and ”draw with condition“ and we have estimated that
the win with ko is better.

The algorithm is given in Alg. 11. We switch from one tree to another,
going to more ambitious when the winrate is more than 66% and less ambi-
tious when the winrate is less than 33%. GoldenEye now solves both semeais
given in Fig. 3.14.
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Conditions of winning semeai is dependent of the tree. For example,
in the building of the first tree, if a ko is met during the simulation, the
simulation is considered as a loss whereas in the other trees, the simulation
can be considered as a win.

Simulations are not reused between trees, however good moves at the root
are transmitted under the form of a bonus of expertise in other trees.

The final choice of the decision is a little bit complicated to explain. For
choosing the move which should be played, we must first choose the best tree
among the 4 and then from this tree, the best move. The choice of the best
tree depends on whether the tree is solved, and in this case it leads to a win
or a loss. By assuming that no tree is solved, we take the first tree where
several simulations have been made and whose winrate is more than 66% in
the classical order win > win without ko > draw > loss with ko. Is it better
to choose the move given by the solved tree “win with ko” or the move with
a winrate of 60% given by the tree “win without ko” but unsolved? The
question is open.

3.5 Results

This section shows some experiments on the GoldenEye algorithm. First,
experiments are performed on a testbed of 10 semeais. Then, improvements
about the exploitation, global contextual Monte-Carlo and inhibition called
respectively H0, H1 and H2 are compared. A study of the parameter horizon
is then made. Some resolutions of difficult and classical semeais are shown. A
question about the accuracy of winrate will show that this information could
be sparingly taken account. At the end, some failure cases will be shown.

3.5.1 Semeais from Yoji Ojima

GoldenEye has been tested a lot on semeais created by Yoji Ojima3 in
April 2008. These problems are given in Tab. 3.1. and can be found at
http://comments.gmane.org/gmane.games.devel.go/15386.

Results of GoldenEye on these semeais are shown in Tab. 3.2. Through
these results, we can conclude that all semeais are well-detected by Golden-
Eye. This is already a good result. The semeai mc148 is an exceptional case.
GoldenEye returns always the good move until 104 simulations. With 105

simulations, GoldenEye returns only 1 time over 2 the good answer. In the
solving, GoldenEye is optimistic but then becomes pessimistic after a deeper

3the author of the strong engine Zen
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study of the semeai. Certainly, GoldenEye finds a good response for the op-
ponent but he does not see the refutation of this move or maybe, the semeai
can not be won without ko. But globally, the quality of solving increases
with the number of simulations. When simulations are overspread by packs
on different ways to solve the semeai, all distributions seem to be equivalent.

For comparison, MoGo has been tested on these 10 semeais. Results are
given in Tab. 3.3. If we compare Tab. 3.2 and Tab. 3.3, with a same number
of simulations,

• when the number of simulations is small (i.e. ≤ 104), GoldenEye fails
around 2 times less than MoGo.

• however, when the number of simulations is higher than 104, numbers
of failures are almost equals; GoldenEye and MoGo are equivalent.

Thus, at constant number of simulations, GoldenEye is better on these 10 se-
meais. For measuring at constant time, we have remarked that the execution
time of a simulation of GoldenEye is 10 times slower than MoGo. With this
assumption, we can conclude that at time constant MoGo and GoldenEye
are equivalent for well playing the 10 semeais. An interesting point is that
MoGo and GoldenEye are complementary; semeais where MoGo failed are
well-solved by GoldenEye and vice versa.

3.5.2 Comparison between improvements

Now, we propose different comparisons about the exploitation term (H0 ),
the global contextual Monte-Carlo (H1 ) and the inhibition (H2 ).

Experiment about the exploitation term Tab. 3.4 is a preliminary
experiment about the impact of the exploitation term in the full resolution
of semeai. We can see that semeais are fully solved more rapidly. Over 5 runs
and whatever the semeai, the maximal number of performed simulations with
H0 is smaller than the minimal number of performed simulations without H0.
This conclusion is not so clear in Fig. 3.15, but it seems to be confirmed for
the semeai mc147 in Fig. 3.16. For all full resolutions with H0 (orange curve),
less simulations have been performed in comparison without H0 (blue curve).
The exploitation term seems to have a positive impact in the resolution of
semeais.

Study about the number of simulations for solving completely a
semeai In Fig. 3.15, the first and the third semeais are solved very quickly
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mc140 mc141 mc142

mc143 mc144 mc145

mc146 mc147 mc148

mc149

Table 3.1: The 10 semeais from Yoji Ojima. Black to play

90



3.5. RESULTS

GoldenEye 10 20 50 100 103 104 105 (10;103) (100;100) (103;10) (104;1)
mc140 0 0 20 20 20 20 20 20 20 20 20
mc141 0 0 0 5 20 20 20 20 20 20 20
mc142 0 20 20 20 20 20 20 20 20 20 20
mc143 0 0 7 6 8 18 20 18 17 18 18
mc144 0 0 0 19 19 20 20 20 20 19 20
mc145 0 13 11 20 20 20 20 20 20 20 20
mc146 0 0 20 20 20 20 20 20 20 20 20
mc147 0 0 0 0 5 10 20 17 17 12 16
mc148 0 0 0 0 20 20 9 20 20 20 20
mc149 0 0 0 1 8 10 8 14 16 11 14
Failed 200 167 122 89 40 22 23 11 10 20 12

Table 3.2: Results on the semeais from Yoji Ojima following the couple
(nbPacks;nbSimByPacks). For the seven first columns, nbPacks = 1, which
means that the hierarchical solving is deactivated; only the mode “win with-
out condition” is used. For each experiment, 20 runs have been performed.
For each experiment in the four last columns, the hierarchical solving is ac-
tivated (nbPacks > 1); a total of 10,000 simulations have been overspread
differently. The last row is the total number of unsuccessful runs; the maxi-
mal number is nbRunsPerExperiment× nbProblems = 20× 10 = 200.

MoGo 100 200 500 103 104 105

mc140 12 14 20 20 20 20
mc141 4 7 10 14 18 20
mc142 0 0 1 3 16 20
mc143 6 7 9 14 19 17
mc144 0 0 0 1 13 16
mc145 0 2 2 13 19 20
mc146 5 9 19 20 20 20
mc147 0 0 0 0 0 1
mc148 4 1 0 3 20 19
mc149 0 0 11 17 19 20
Failed 169 140 128 95 36 27

Table 3.3: Results of MoGo on the semeais from Yoji Ojima. For each
experiment, 20 runs have been performed. The first row is the number of
simulations.

mc144 mc145
H0 no H0 H0 no H0

3,676 7,969 1,673 1,820
3,920 9,622 1,675 1,844
4,538 14,145 1,676 1,887
5,018 17,435 1,679 1,946
6,032 19,476 1,680 2,147

Table 3.4: Impact of the exploitation term in the full resolution of semeais
mc144 and mc145. Heuristics H1 and H2 are activated.
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Figure 3.15: Mean number of simulations for solving completely a semeai.
H0, H1 and H2 correspond respectively to w2 > 0, global contextual Monte-
Carlo and inhibition. When no H0, w2 = 0. A limit of 30,000 simulations has
been imposed. The y-axis is the average of (i) number of simulations when
full resolution or of (ii) 3 × the limit (i.e 3 × 30, 000 = 90, 000) when no
full resolution. The semeais 1,2,3,4,5 and 6 are respectively mc140, mc141,
mc142, mc144, mc145, mc146. In terms of full resolutions, the heuristic
H0 alone seems to be good in the semeai mc144 but does not improve or
damage in other semeais. The heuristic H1 alone is good in the semeai
mc146 but gives very bad results in the semeai mc141. Even combined with
other heuristics, the heuristic H2 gives good results in all cases.
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mc141 mc147
5,381 — 5,415 90,080 — 81,050 > 1, 500, 000

H1 533 — 601 33,584 — 30,023 734,724
H2 670 — 610 22,570 — 22,681 370,695

H1+H2 447 — 449 34,397 — 26,505 227,712

Table 3.5: Three semeais with black to play. The table gives the number
of simulations done in order to have a complete resolution of the semeai.
The semeai on the third column is the problem 1201 from goproblems.com.
In this experiment, H0 is always activated (i.e. w2 > 0). > x means that
there is no complete resolution after x simulations. When there are 2 scores,
it corresponds to the results of 2 runs. Through these preliminary results,
Alone, H1 or H2 improves the rapidity of the resolution. Cumulative, we can
not conclude. H1+H2 seems to be not as good as H2 alone on the second
problem but better than H1 alone or H2 alone on semeais mc141 and mc147.
On the semeai mc147, without heuristic, the solver has not be able to give
a complete resolution after 1,500,000 simulations in the run whereas with
H1, only 700,000 has been sufficient. With H2, we can divide the number
of simulations by 2 and the combination of H1 and H2, the number is still
divided by 2 for finally solving completely the semeai with around 200,000
simulations.
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Figure 3.16: Number of simulations for solving completely the semeai mc147.
In this experiment, the heuristic H2 is always activated. When deactivated,
no result can be obtained due to memory swap. A limit of 1,000,000 simula-
tions has been imposed.

by the solver in all variants. The last semeai is the most complicated. With-
out heuristic, GoldenEye has been unable once time over 20 to provide a full
resolution. Adding H0 seems to brings nothing. However, with the heuristic
gcmc alone, GoldenEye solves it very fast. With the heuristic inhibition,
it is more true. The combination seems to be more efficient. However, the
heuristic gcmc can introduce a very bad bias as we can see on the second
semeai. The 2nd semeai is solved very quickly (around 1,000 simulations are
sufficient), but with gcmc alone, the solver is sometimes no more able to fully
solve it in less 30,000 simulations.

For all cases, the heuristic inhibition is the only modification with which
we can claim that the heuristic improves the solver for a faster full resolution.

These results are inclined to be checked in Tab. 3.5.
In Fig. 3.16, the bad bias of the heuristic gcmc seems to be confirmed. But

globally, in the most of runs, the semeai is solved 3 times more quickly with
the heuristic H1. Using the Wilcoxon test, we get the following statistical
confidence (1− p, with p the p-value of the null hypothesis):

• p(H0 is better than nothing) = 0.99992

• p(H1 is better than nothing) = 0.99986
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Figure 3.17: Execution time and memory used for solving the semeai mc147.
H0 and H1 are deactivated.

• p(H0+H1 is better than nothing) = 0.99875

• p(H1 is better than H0 ) = 0.99875

• p(H0+H1 is better than H0 ) = 0.99369

• p(H0+H1 is better than H1 ) = 0.81783

The heuristic H0 seems to be less efficient but more stable; all runs with
only H0 have given just about 600,000 simulations. H0 or H1 alone seems
to bring something in the full resolution of semeais. The combination of H0
and H1 does not solve the problem of the instability of the heuristic H1.
Following the test of Wilcoxon, the combination of both heuristics is better
than H1 alone with a probability of 81%.

When gcmc works (i.e. H1 activated), semeais are solved very more
rapidly (for instance, the number of simulations is divided by 3 on semeai
mc147 and on semeai mc146, the heuristic H1 alone is the most efficient after
the combination of H0 and H1 ). However, gcmc can introduce a very bad
bias in the resolution of the semeai and then the behaviour of the resolution is
completely reversed (e.g. semeais mc141 and mc147 ). Yet, next experiments
are performed with H0 and H1 activated.

Impact of the heuristic Inhibition in terms of time and memory
Following a fixed number of simulations, the execution time and the used
memory have been measured when the heuristic H2 (inhibition) is or is not
activated.

In Fig. 3.17, in terms of time, the heuristic H2 allows to win a lot of times.
When H2 deactivated, the increase of the curve is exponential and dramati-
cally accelerates a lot around 175,000 simulations. With 200,000 simulations,
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the execution time is greater than 20 minutes, whereas the execution time is
smaller than 2 minutes with H2 activated. Certainly, the algorithm without
H2 becomes inexploitable after 200,000 simulations. The increase of time is
explained by the kind of the algorithm. For remembering, the algorithm is
like A∗. Even if GoldenEye does not cover the whole tree in our variant, the
more the tree grows, the more there are leaves, and so the more the selection
of next leaf takes time. One of the property of the heuristic inhibition is to
makes smaller the tree to cover; some parts of the tree are not visited. The
heuristic inhibition delays intelligently the explosion of the execution time.
Even if in Fig. 3.17, we don’t observe an exponential curve (orange curve),
we can assume with more simulations, we will observe the same result as the
blue curve.

The delay is intelligent because it inhibits some parts of the tree which
becomes unpromising and economizes simulations to refute them. Without
the heuristic H2, the good move A2 is not the move returned even after
150,000 simulations, whereas with H2, after 10,000 simulations, GoldenEye
seriously begins to study the good move A2 and can even already consider it
as the best move. One of this intelligent mechanism is that the good move
seems to be found more efficiently.

Another property of the modification inhibition is memory savings. In
Fig. 3.17, when no H2 with a fixed number of simulations, the execution time
is greater, but moreover, the used memory becomes greater after 100,000
simulations. With 200,000 simulations,

• when H2, only 13% of the 4 gigabytes of RAM are used

• when no H2, around 22% of the memory are used.

Like the explosion of the execution time, the swap of the memory is delayed,
too. I have no logical explanation of that. Maybe, simulations are smaller or
GoldenEye does not go in complicated variants.

The heuristic inhibition seems to be efficient:

• less time and less memory are used in order to solve fully the semeai

• for finding more rapidly the good move

However, these points should be verified on other semeais (in particular,
memory savings which has no logical explanation).

3.5.3 Study of the parameter horizon of the simulation

The horizon horizon of the simulation is the maximal length of a simulation,
counting from the root of the tree.
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Figure 3.18: Black to play. What does it choose the horizon of the simulation
for this problem? 37 moves (19 Black moves+18 White moves) are necessary
to capture the white group on the 10th row.

Mode Resolution with horizon = 33 Resolution with horizon = 34
only win 200 sims - T9 (10 sims - 4.54%) 1000 sims - R9 (1000 sims - 99.95%)
at least, win with ko 500 sims - T9 (13 sims - 3.57%) no simulation
at least, draw with ko 300 sims - J9 (300 sims - 99.83%) no simulation
at least, loss with ko no simulation no simulation

Table 3.6: Resolution of the semeai in Fig. 3.18 following 2 horizons. ”500
sims - T9 (13 sims - 3.57%)“ means 500 simulations (5 packs of 100 sim-
ulations) have been made in the tree ”win with ko“, the best move is T9,
13 simulations beginning by T9 have been done and 3.57% of these simu-
lations have led to a win. These results show that the horizon of the sim-
ulation should be well-tuned. Except the parameter horizon, both experi-
ments have been launched with the same parameters (i.e. nbPacks = 10 and
nbSimByPacks = 100).
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Figure 3.19: The raccoon semeai from a webpage of Denis Feldman. Black
to play. E1 is the winning move.

For other problems, we have fixed the horizon to 30. But in the Fig. 3.18,
the semeai is too big for being solved in 30 moves. In fact, at least 38 moves
are necessary for capturing the white group with the best defense. So, the
horizon simulation should be at least 37. However, in our case (Table. 3.6),
34 moves are sufficient because the evaluator of the end of semeai (i.e. the
module which evaluates the end of the MC simulation - See paragraph 3.4.2)
is able for some cases to answer several moves in advance. On the other
hand, the resolution is clearly false with a horizon of 33 moves.

The second study is about the impact of the horizon on a complete
resolution of a semeai. We have decided to take the semeai called raccoon
(Fig. 3.19).

All results shown in Fig. 3.7 involve runs in which a good detection4

of the semeai has been made. Results in Fig. 3.7 show that the bigger the
horizon is, the more simulations are necessary for a complete resolution (more
than 10,000 simulations), whereas between 1,000 and 2,000 simulations are
sufficient to solve the raccoon semeai. A second point is that if the horizon
is too small, it leads to a bad full resolution. If the horizon is optimal
horizon = 12 in the sense that it corresponds to the maximal length of
an optimal solution, the semeai is solved faster. In fact, less than 1000
simulations are needed. But sometimes, if a bad way in the resolution is
taken, it can try another mode of win and lose precious simulations for solving
them. It happens one time in the run 3. The main risk to have a horizon

4some tries have led to a bad detection or no detection of the raccoon semeai due to
the unclear status of the black group D3 in Fig. 3.19.
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5 10 12 15 30 60
W 100 - F2(18%) 2100 - F7(23%) 763 - E1(win) 2541 - E1(win) 1254 - E1(win) 11137 - E1(win)

1 WK 595 - ?(loss) 97800 - F7(1.2%) 0 0 0 0
DK 22 - F2(win) 76 - F2 (win) 0 0 0 0
LK 0 0 0 0 0 0
W 200 - C2(30%) 1500 - F2(23%) 523 - E1(win) 1692 - E1(win) 1667 - E1(win) 13600 - E1(98%)

2 WK 1456 - ?(loss) 98400 - F7(0.4%) 0 0 0 0
DK 188 - C2(win) 76 - F2(win) 0 0 0 0
LK 0 0 0 0 0 0
W 6146 - E1(win) 2531 - E1(win) 1908 - E1(win) 1537 - E1(win)

3 WK 798 - E1(win) 300 - F2(73%) 0 0
DK 0 0 0 0
LK 0 0 0 0
W 567 - E1 (win) 2959 - E1(win) 51662 - E1(win) 104 - E1(99.9%)

4 WK 0 0 0 0
DK 0 0 0 0
LK 0 0 0 0
W 1742 - E1(win) 2066 - E1(win) 1542 - E1(win)

5 WK 0 0 0
DK 0 0 0
LK 0 0 0

Table 3.7: Resolutions on the semeai called ”raccoon” (Fig. 3.19) following
different horizons. The first row is the value of the parameter horizon. The
first column is the number of the run. W, WK, DK and LK are respectively
the mode ”win“, ”win with ko“, “draw” and “loss with ko”. For reading
results, there are different cases. Case 1: the cell containing “100 - F2(18%)“
means “ With the horizon = 5, for the run 1, 100 simulations have been
done with the mode ”win“, the best move is F2 with a winrate of 18%.
Case 2: ”798 - E1(win)“ means ”With horizon = 12, for the run 3, after
798 simulations, the semeai has been solved in the mode “win with ko”; the
solution is a win and E1 is the winning move. Other cases, “0” means no
simulation and when the resolution leads to a loss, no move is proposed.
All experiments have been launched with nbPacks = +∞ (in theory) and
nbSimByPacks = 100.
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too huge is to lose the solver in deep and useless variants. The simulation
given at left in Fig. 3.21 is an example; many useless moves are played and
the simulation seems to go towards the center of the goban. The simulation
becomes inefficient; this situation should be avoided.

Thus, the choice of the parameter horizon is a compromise between a
correct full resolution (i.e. horizon not to small) and efficient Monte-Carlo
simulations (i.e. horizon not to huge). We suggest to take horizon = 30 but
horizon = 20 is sufficient for many cases. However, if you wish to fix the
parameter dynamically, you can count liberties of groups of semeai. It gives
an idea of a lower bound lbhor for the horizon. In our experiment (Exp. 3.5.3),
30 is clearly not enough (because both white group and black groups in
semeai are 19 liberties); 38 moves are at least necessary for capturing one
group. Because of the variety of moves played in a semeai such as approach
moves or moves increasing the number of liberties of one group, we suggest
to add 10 for taking account such moves. We suggest dynamically to take
horizon = lbhor + 10.

3.5.4 Difficult semeais

In this subsection, we present some semeais with a high level of difficulty
solved by GoldenEye.

Fig. 3.20 and Fig. 3.22 present these semeais. All resolutions have
been launched with horizon = 30, nbPacks = +∞ (in theory) and
nbSimByPacks = 100.

First Semeai: a win with ko

The resolution of problem 378 (Fig. 3.20) has been tested on different sizes
of goban.

Tab. 3.8 presents the resolution of this semeai on different sizes of the
goban. For each size, the total number of simulations has been around
100,000 simulations (e.g. 84, 400 + 14, 321 + 1, 200 ≈ 100, 000 in 9x9). The
3 experiments have been launched with nbPacks = 100 (i.e. +∞ in theory).
The resolution is faster in 9x9 and in 13x13 than in 19x19. In 19x19, a lot of
simulations (around 40,000) are spent uselessly in modes ”draw” and ”loss
with ko”, whereas 20,000 simulations are sufficient for solving in mode ”win
with ko“.
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Figure 3.20: 2 semeais of level 5d. Left: Problem 378 from the site
goproblems.com. Black to play. The algorithm solves it well as a “win with
ko“. The ko appears in the following line: C8-C9-E9-D8-F9-D9-A8-A5-B9-
A7-B9-A9-A8(ko)-B5. Right: Problem from the site wikipedia.fr. White
to play. Win without condition. The winning move is D1.

9x9 13x13 19x19
W 84400 - C8(9608 - 5.82%) 88100 - C12(8921 - 6.58%) 43700 - C18(4590 - 9.07%)

WK 14321 - C8(win) 11887 - C12(win) 19541 - C18(win)
DK 1200 - C9(624 - 95.76%) no simulation 17435 - C18(win)
LK no simulation no simulation 19166 - C18 (win)

Table 3.8: Resolution of the problem 378 (Fig. 3.20) on different sizes of
goban. In 9x9, 13x13 and 19x19, the winning move is respectively C8, C12
and C18. The interesting lines are WK, DK and LK. The line WK shows the
number of simulations for a full resolution in the mode win with ko. Lines
DK and LK show the number of uselessly spent simulations. The line W is
not interesting because on 3 sizes, the win without condition (line W) has
not been proved as impossible (loss) or possible (win).
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Move Nb Sim Winrate
A2 1944 16.04%
C2 6649 70.91%
D2 3993 53.14%
B1 2373 25.32%
A3 1786 11.25%
A1 737 0.67%
C1 1624 5.48%
A4 490 7.34%
E3 1616 6.68%
D1 553393 98.64%
F2 6724 57.43%
G2 1296 5.94%
E1 2038 11.18%
F1 2421 18.95%

Figure 3.21: Statistics after the full resolution of the semeai at right in
Fig. 3.20. Left: one of the most simulated sequences. Right: number of
simulations done and winrate for all considered moves in the initial situation
(Right in Fig. 3.20)

Second Semeai: an open semeai

The semeai has been tested on a 19x19 goban. The algorithm has solved it
in 589445 simulations.

Other semeais

Fig. 3.22 shows 2 other difficult semeais tested on 19 × 19 goban and the
resolution of GoldenEye. The first semeai (at left) is almost fully solved.
GoldenEye has seen a win with a ko, but he has not finished to prove that
the semeai can not be won without a ko. The second semeai (at right) is
not fully solved but GoldenEye is very optimistic about the win. The engine
returns the good move Q1.

3.5.5 The accuracy of the score

When the resolution is not finished, the score of the move is given by its
winrate (Eq. 3.4).

C2 is a move which loses the semeai in the semeai given at right in
Fig. 3.20. However, in the table given in Fig. 3.21, after 6649 simulations
beginning by C2, the winrate is still high (around 70%). When the resolution
is not finished, can we trust the winrate?

Before solving a semeai, it is logical to have a winrate closed to 90%.
The curve (in particular, the case ”win is ko“) indicates that it is not true.
Moreover, there is no clue such as an increase of the winrate in order to
know if the semeai will be won. The curve ”win with ko“ has decreased
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Figure 3.22: 2 difficult problems from the site goproblems.com (Top)
and logs of GoldenEye about the resolution after 2000 × 100 simulations
(Bottom). White to play. Left: problem 196 (level 6d). N1 is the winning
move. Right: problem 122 (level 6d), classical semeai called ”pear and
ant“. Q1 is the winning move. Q1 is a very difficult and illogical move: (i) a
bad shape (empty triangle) appears, (ii) the move is located on the first row
and moreover, (iii) the number of liberties of the white group R1 does not
increase after Q1.
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Figure 3.23: Accuracy of the score Left: The tested semeai. Black to play.
The winning move is B3. Right: Score of the best move (i.e. winrate in
%) for each mode of win For each mode of win, the score begins moderately
(around 60%) but after some simulations, the score decreases until 1.5% for
one case. However, against all odds, the semeai is solved as a win.

to 1.5% before to be solved as a win. The semeai was easy to solve (few
nodes are enough) but the bias in the resolution was globally bad: a lot of
simulations have been defeats. In contrary, a winrate of 99% can be seen on
losing semeais. More badly, sometimes the resolution is false.

3.5.6 Failure cases

We have presented semeais in which the solver works. However, sometimes
GoldenEye fails. The first reason is a bad detection or no detection. We have
seen too that GoldenEye evaluation (i.e. winrate) can be false. He is unable
to see the solution because the solution is too hard. But sometimes, a full
solving can be even wrong. The horizon may be too short. Some other cases
can occur. Fig. 3.24 is 3 situations in which GoldenEye proposes a bad full
resolution of semeai because of a bad prunings or a bug.

In real games, results of GoldenEye are less good. Semeais are more com-
plicated and rare. The problem is often a combination of different problems
such as connection between 2 groups and semeai. When a semeai appears,
the semeai status is already clear or it is not interesting for the victory. In
general, either all groups are alive and there is no semeai or no group is
alive and we can consider that all groups in one semeai and the solution is
very complex because the question is not about 2 groups but different set of
groups which survive at the end of the game. It is perhaps one of the reasons
that the solver has not been worked with MoGo. No very good results has
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Figure 3.24: Failed full resolutions. Left: Black to play. GoldenEye does
not consider the winning move M15 because the move is too far from the
semeai. The semeai is solved as a loss; no move is given. Center: White to
play. GoldenEye does not consider the move H19 (after White F19 and Black
F18), the unique move winning the semeai, because of a rule which prevents
expansion of seemingly useless moves. This rule is bad in this situation. The
semeai is solved as a loss; no move is given. Right: Black to play. Another
variant of ”pear and ant“ in 9×9. After the sequence E2-D2-D1, GoldenEye
considers only the move E4. E1 is the good move in this situation. Maybe
it is a bug or a misunderstood situation by GoldenEye. The semeai is solved
as a win; but the given winning move is wrong (E2 instead of D1).

been found in real game.

3.5.7 Discussion

The first version of the algorithm solves efficiently small problems with few
Monte-Carlo simulations. This point was one of the first motivations of the
algorithm.

Even if at constant time MoGo and GoldenEye seem to be the same
strength for playing semeais, at fixed number of simulations GoldenEye plays
more often the good move than MoGo (Tab. 3.2 and Tab. 3.2).

Unfortunately, we have tested our program on more and more difficult
problems; this version of the algorithm becomes quickly unusable on these
problems (Fig. 3.17). Moreover, the winrate can be in disagree with the
result given by the full resolution (Fig. 3.23). This statement is more true
on harder and harder problems. Controlling efficiently the local search is an
option.

For restricting the search to a small part of the goban, a lot of tricks have
been developed such as

• an horizon not to big
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• aggressive prunings

• efficient Monte-Carlo simulations with a lot of expertises.

• efficient small tactical solvers for detecting more rapidly who wins the
semeai before the capture of one group (e.g. Fig. 3.10)

Despite a lot of human expertises and efficient small tactical solvers, sim-
ulations tends to go to the center of the goban (e.g. at left in Fig. 3.21).
Moreover, we have seen some cases where the solving was false because of a
bad pruning (Fig. 3.24) or a horizon too small (Tab. 3.7). The complexity
of the problem is sometimes beneficial in order to converge on the good so-
lution. We have already seen a semeai solved as a win with a bad move (at
right in Fig. 3.24) and on a bigger goban, the semeai is not solved but its
estimation is very optimistic and the answer linked to this estimation is the
good move (at right in Fig. 3.22).

Instead of controlling the locality of the search, another option is to use
statistics for guiding the building of the tree. Some new statistic tools have
been elaborated. Thanks to the heuristic inhibition, GoldenEye can fully
solve more difficult problems; one reason is: for a given time, we can do more
simulations (Fig. 3.17). The heuristic related to the exploitation term allows
to concentrate on interesting branches of the tree. In addition, the heuris-
tic inhibition allows to eliminate more rapidly newly unpromising branches.
Against a lot of human expertises, some statistic tools can be used. The
heuristic gcmc seems to be unstable but is a generic solution for finding
moves or sequence of moves forgotten in the human expertise. The solving
is more efficient thanks to these heuristics.

For solving all cases, we should again and again add expertises and rules
giving a more and more complex engine to maintain. However, GoldenEye
is able to solve a lot of semeais whose some are difficult (level > 1dan).

3.6 Conclusion

We have proposed a solver of semeais (GoldenEye) whose goals are:

• produce a full resolution of an open semeai in order to be used and
studied by humans

• correct weaknesses of other go engines.

Unlike MoGo, GoldenEye produces proof (a full resolution of a problem).
Without GoldenEye, I would have never known that there was a ko in a real
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game (at right in Fig. 3.14) or I would have never created a small semeai
finishing by a seki (at left in Fig. 3.14).

The solver must be automatic; which implies 2 steps: (i) detection and
(ii) resolution.

The user (or the engine) does not show where semeai(s) is/are located;
the solver must be able to find by itself a semeai(s). We have proposed a
statistical detection by using random simulations. This part is very short in
execution time and efficient on invented problems5 but much less efficient in
real game6.

For solving semeais, we have proposed an algorithm based on a local
search. The algorithm is a combination between A∗ and Monte-Carlo Tree
Search. A leaf is selected like in A∗, but the algorithm does not browse
the whole tree for the selection of the leaf. Like Monte-Carlo Tree Search,
statistics and a term of exploitation are used and Monte-Carlo simulations
are performed.

The heuristic inhibition, a mechanism for pruning temporary, is the im-
provement which has brought the more good things in terms of time and
memory; some difficult semeais become feasible and fully solvable by Golden-
Eye. Therefore, this heuristic is a very interesting hint for improving Monte-
Carlo Tree Search or browsing graph algorithms in particular A∗. However,
the heuristic inhibition is based on a boolean evaluation: the win or the
loss of the simulation. When the evaluation is not a boolean, maybe we
can decide to have a rule which transforms a number to a boolean (e.g. the
evaluation is greater than a threshold).

As such, GoldenEye was unable to solve some particular cases of semeai.
We have added different modes for winning a semeai and a mechanism of
switching between them: the hierarchical resolution.

In further works, GoldenEye shall be compared with Proof Number
Search (PNS) and its variants and shall be improved. GoldenEye does not use
the number of children or the number of children remaining to prove. Thus,
the concept of proving of PNS could be introduced as a bonus in the expertise
or when GoldenEye evaluates the relevance of a branch from where a cur-
rently evaluated leaf comes. Introducing some works such as mathematical
rules [Hunter, 2003] for improving the tactical solver which evaluates the end
of a semeai is probably a way for making more efficient GoldenEye. Even if
the semeai is completely solved, the solution is not sure because of prunings.
Another algorithm which uses extension of moves such as [Cazenave, 2001]
could be applied after the full resolution of the semeai. The algorithm will

5generally, these situations are devoid of useless stones
6generally complex situations, where groups are nested into each other, are generated
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check the validity of the resolution by considering secondary moves and when
necessary, it will correct the resolution.

GoldenEye does not use hash tables and is not parallelized. Unfortu-
nately, it seems difficult to use hash tables and the parallelization. Maybe,
with a hierarchical solving, one processor can be dedicated to a way of win-
ning. However, they are hints for improving GoldenEye.

GoldenEye has been extended for solving death/life problems, another
weakness of MoGo. Thanks to random simulations, GoldenEye uses the
percentage of times that a stone is alive for determining a group in danger
(detection). Then, GoldenEye searches to know if the group can live or not
(resolution). The resolution is globally the same. There are some differences
such as the expertise (patterns for killing/building an eye). A case where
MoGo has played badly in an important game is described in Fig. 3.25;
GoldenEye correctly analyzes the death/life problem. Since I have the feeling
that there are more death/life problems than semeais, a further work could
be to try a cooperation between MoGo and GoldenEye in a version death/life
problems.
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Figure 3.25: White to play. A critical situation where MoGo lost a game
against a 9P professional player. The life of the white group G1 is in pending.
MoGo (White) has already lost the game. However, even if we put a komi
which allows to White to win, MoGo plays a bad move (H1) and then as
Black, MoGo resigns. GoldenEye adapted to the death/life problems plays
a good move (i.e. J2) and after the bad move played by MoGo (i.e. A9)
in the game, GoldenEye plays again J2, the move, played by the 9p player,
which kills the white group G1. Note that both groups G1 and H2 are an
example of false semeai. Black stones are stones of sacrifice. Even after being
captured, they prevent to the white group G1 to live.
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Algorithm 11 The hierarchical resolution of a semeai. Based on the per-
centage of success, GoldenEye switches between the different ways to win.
One own tree is dedicated to a way to win. GoldenEye is firstly optimist
and tries to win without condition. The moment where GoldenEye can
decide to switch or not between trees is called a possible switch. The al-
gorithm has 2 parameters: nbPacks is the number of possible switches and
nbSimByPacks is the maximal number of simulations done between two
possible switches. When no full resolution, the total number of simulations
is nbPacks× nbSimByPacks spread over the different trees.

Function hierarchicalSolv(nbPacks, nbSimByPacks)

Let trw, trwk, trdk and trlk 4 static variables containing
respectively the tree “win without ko”, “win with ko”,
“draw” and “loss with ko”
trcur = trw
for iter ∈ 1..nbPacks do
BuildTree(trcur, nbSimByPacks)
Let winrate the winrate of the root of the current
tree
if winrate > 66% {we switch the effort on a more
ambitious goal} then

if trcur == trwk ∧ trw is not solved then
trcur = trw

else
if trcur == trdk ∧ trwk is not solved then
trcur = trwk

else
if trcur == trlk ∧ trdk is not solved then
trcur = trdk

if winrate < 33% {we switch the effort on a less
ambitious goal} then

if trcur == trw ∧ trwk is not solved then
trcur = trwk

else
if trcur == trwk ∧ trdk is not solved then
trcur = trdk

else
if trcur == trdk ∧ trlk is not solved then
trcur = trlk

if trcur is solved then
break
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Part II

Offline learning of Simulations :
Direct Policy Search
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In online learning, the learning is performed in real time during the sim-
ulations, whereas in offline mode the learning is performed once and for all
in a separate training phase.

Monte-Carlo Tree Search can be used in mode offline. The algorithm has
been used for building an opening book of MoGo [Gaudel et al., 2010]. But
for building an opening book, transitions should be deterministic and above
all, the initial state should be always the same. It’s not the case in MASH
applications.

In this part, we will describe 2 offline learning of simulations. In a
first chapter, we will see the RBGP algorithm and in a second chapter the
CluVo+GMCTS algorithm.
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Chapter 4

Building a Policy by Genetic
Programming (RBGP)

Adding expert knowledge is boring, uneasy and biased by human ideas. We
wish to automatize the generation of prior knowledge, by randomly drawing
new patterns and by testing them through bandits and races. This idea leads
to a new algorithm called Racing-Based Genetic Programming.

This chapter is heavily based on Progress-rate in Noisy Genetic Program-
ming for choosing λ (EA2011) [Hoock and Teytaud, 2011].

We also use material from

• Intelligent Agents for the Game of Go (CIM Journal 2010)
[Hoock et al., 2010]

• Bandit-based Genetic Programming (EuroGP 2010)
[Hoock and Teytaud, 2010]

4.1 Introduction

Genetic programming (GP) consists in automatically building a program
for solving a given task. The fitness function quantifies the efficiency of a
program for this task.

Non-regression testing consists in testing each new version of a pro-
gram, in order to check that it is at least as good as the previous version.
Non-regression testing is very difficult when the fitness function is noisy, as
it is uncertain. Statistical tests have to take into account the high number of
tests - this is a non-trivial issue. The present work originates in the tedious
non-regression testing in a highly collaborative development, often poorly
performed by humans. Individual developers don’t care of the global risk
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due to multiple testings (Multiple Simultaneous Hypothesis Testing). Tests
had to be automatized, simultaneously with the development of improve-
ments in a search module by automatic means in order to get rid of human
biases in such developments.

Noisy GP is an important problem, related to many applications. In
particular, direct policy search with symbolic controllers is noisy genetic pro-
gramming, as well as the design of sorting algorithms faster on average on a
huge number of instances. Bandits have been investigated very early for this
problem[Koza, 1992, Holland, 1973]. However, bandits address the problem
of the load balancing between different possible mutations, but not the vali-
dation of the selection, i.e. the halting criterion for the offspring evaluation.
Races[Mnih et al., 2008] have the double advantage of considering the load
balancing and the statistical validation. [Mnih et al., 2008] considers the case
in which we look for all good mutations. We might, in GP, be more inter-
ested in finding one good mutation, as µ good mutations do not necessarily
cumulate to one better mutation. Yet, the case of selecting several good
mutations is important also, but it was shown in [Hoock and Teytaud, 2010]
that there are frameworks in which µ = 1 is more relevant and we focus on
this case. In the case of continuous optimization, races have been theoret-
ically analyzed as a tool for ensuring optimal rates (within log factors) in
[Rolet and Teytaud, 2010]. A partial theoretical analysis, essentially ensur-
ing consistency, was proposed for GP in [Hoock and Teytaud, 2010]: we here
extend this work by an analysis of progress rate. Importantly, the theoretical
analysis proposes a choice for λ by optimisation of the progress rate.

4.2 Framework and notations

Consider a program P , and a set M of possible mutations; let P +m be the
program after application of mutation m. Assume that the fitness is stochas-
tic; f(P+m) is a random variable with values in [−1, 1]. In all the chapter we
consider maximization. We consider (1+λ) genetic programming algorithms
as in Alg. 12; this is a simple (1 + λ)-algorithm[Hoock and Teytaud, 2010].

All this section is written assuming that the range of fitness values is
bounded in absolute value by 1, i.e. when we compute the fitness of a point
we get an answer between −1 and 1. We assume that the fitness is unbiased,
i.e. the expected value of the measurements is equal to the real fitness. This
is standard in e.g. Monte-Carlo sampling, or in some randomized forms of
Quasi-Monte-Carlo samplings.

Hoeffding and Bernstein bounds quantify the effect of noise on empirical
averages. In noisy cases, the fitness fitness(x) of a point x is unknown:
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Algorithm 12 One-plus-lambda Racing-Based Genetic Programming
(RBGP). We assume c > 1 so that K is finite.

RBGP algorithm.
Parameters: a risk level δ, a pop. size λ, a coefficient
c > 1, a threshold ε > 0.
Let K = 1/(

∑
n≥1 1/nc)

Let P be a program to be optimized
Let M be a set of possible mutations on P
Let n← 0
while There is some time left do

while no mutation accepted do
Let n← n+ 1
Randomly draw pop = {m1, . . . ,mλ} in M
Perform a Bernstein race with risk δn = Kδ/nc

on pop and threshold ε
if A mutation m is selected then
P ← P +m

we have only access to y1, . . . , yk, k real numbers, if fitness(x) has been

approximated k times; a natural estimate is ̂fitness(x) = 1
k

∑k
i=1 yi.

Hoeffding or Bernstein bounds state that with probability at least 1− δ,
|fitness(x)− ̂fitness(x)| < deviation, where deviation is

deviationHoeffding =
√

log(2/δ)/k. (4.1)

[Audibert et al., 2006, Mnih et al., 2008] has shown the efficiency of us-
ing Bernstein’s bound instead of Hoeffding’s bound, in some settings. The
deviation term is then:

deviationBernstein =
√
σ̂22 log(3/δ)/n+ 3 log(3/δ)/k. (4.2)

This equation depends on σ̂2, the empirical variance of the measurements
y1, . . . , yk. An interesting feature of this equation is that using σ̂2 and not
the real variance σ2 is not an approximation: the inequality is rigorous with
σ̂2 (contrarily to many asymptotic confidence intervals).

The Bernstein race is a typical one, following [Mnih et al., 2008], except
that we want to validate one and only one mutation, because in our frame-
work it is known [Hoock and Teytaud, 2010] that two good mutations do not
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necessarily cumulate, in the sense that sometimes:

Ef(P +m1) > Ef(P )

Ef(P +m2) > Ef(P )

and yet Ef(P +m1 +m2) < Ef(P ).

In a (1 + λ)-GP, we look for a mutation which provides a better success
rate than the current parent, i.e. a higher fitness. However, we will here
translate the fitness by substracting the fitness of the parent; i.e. with a
fitness function with values in [−1, 1] and a parent z, we define

fitness′(x) = (fitness(x)− fitness(z))/2;

this just doubles the number of calls to the fitness. Therefore, in the Bernstein
race, and without loss of generality, we look for a mutation which gives a
positive fitness, instead of a mutation with fitness(x) > fitness(z). The
Bernstein race is as presented in Alg. 13, and the computeBounds function

Algorithm 13 Bernstein race for selecting good individuals in a population
pop. M is the complete set of arms (global variable; see Alg. 12).

BernsteinRace(pop, δ, ε)
while pop 6= ∅ do

for all m ∈ pop do
Let n be the number of simulations of mutation
m.
Simulate m n more times (i.e. now m has been
simulated 2n times).

//this ensures nbTests(m) = O(log(n(m)))
computeBounds(m,M, δ)
if lb(m) > 0 then

Return individual corresponding to mutation
m.

else if ub(m) < ε then
pop = pop \ {m} m is discarded.

Return “no good individual in the offspring!”

is defined as shown in Alg. 14.
where # denotes the cardinal operator.
Important properties of Bernstein’s races as above, and which hold with

probability at least 1− δ, are the followings ([Mnih et al., 2008]).
Properties of Bernstein races.
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Algorithm 14 Function for computing a lower and an upper bound on arm
m with confidence 1− δ, where pop is the complete set of arms.

Function computeBounds(m, pop, δ)
Static internal variable: nbTests(m), initialized at 0.
Let n = nbTests(m).
Let r be the total reward over those n simulations.
δm = δ/(#pop× π2nbTests(m)2/6)
nbTests(m) = nbTests(m) + 1
lb(m) = r

n − deviationBernstein (δm, n).
ub(m) = r

n + deviationBernstein (δm, n).

• Property 1. The number of evaluations in a Bernstein race

– with population size #pop;

– with parameters δ and ε;

– with a population such that, with p = max(ε,maxm∈pop Ef(P +
m)), all expected fitness values are in [−Θ(ε), p] (possibly all fitness
values ≤ 0, case in which there’s no good mutation).

is

Time(pop, δ, ε) = Θ(Th(#pop, δ, ε, p))

where

Th(#pop, δ, ε, p) =

(
log(

#pop log(1/p)

δ
)

)
max

(
σ2/p2, 1/p

)
(4.3)

with: σ2 is an upper bound on the variance of fitness values:

σ2 = sup
m

E(f(P +m)− Ef(P +m))2.

• Property 2. If a mutation is selected, then it has fitness > 0.

• Property 3. If there is a mutation with fitness ≥ ε then the race will
return a mutation.

We will here focus on the case σ2 = Θ(1) (which corresponds to the
applicative framework in which variance does not decrease; this is consistent
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with many applicative fields, in particular when optimizing the parameters
of a strategy with optimal success rate < 100% - yet, other cases might be
considered in a future work), and therefore Eq. 4.3 can be replaced by Eq. 4.4
without significant loss:

Th(#pop, δ, ε, p) =

(
log(

#pop log(1/p)

δ
)

)
/p2. (4.4)

Properties of RBGP. Eq. 4.4 and properties of Bernstein races above
lead to the following properties of RBGP, which hold (all simultaneously)
with probability at least 1− δ: if there are

• n− 1 iterations of RBGP in which all mutations have expected fitness
∈ [−ε, 0];

• and thereafter, 1 iteration of RBGP with at least one mutation with
expected fitness p and all other mutations with expected fitness in [−ε, p].

then

• Property A: RBGP will not return a bad mutation (i.e. a mutation
with fitness ≤ 0);

• Property B: If there is a mutation with fitness ≥ ε then a mutation will
be found;

• Property C: And in that case the halting time is at most

O

(
n−1∑
i=1

Th(λ,Kδ/ic, ε, p) + Th(λ,Kδ/nc, p)

)
(4.5)

Eq. 4.5 will be central in the progress rate analysis below.

4.3 Experiments with RBGP algorithm

Life is a Game of Go in which rules have been made unnecessarily complex,
according to an old proverb. As a matter of fact, Go has very simple
rules, is very difficult for computers, is central in education in many
Asian countries (part of school activities in some countries) and has
NP-completeness properties for some families of situations[Crasmaru, 1999],
and PSPACE-hardness for others[Lichtenstein and Sipser, 1980], and
EXPTIME-completeness for some versions [Robson, 1983]. It has also been
chosen as a testbed for artificial intelligence by many researchers. The
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main tools, for the game of Go, are currently MCTS/UCT (Monte-Carlo
Tree Search, Upper Confidence Trees); these tools are also central in many
difficult games and in high-dimensional planning. An example of nice Go
game, won by MoGo as white in 2008 in the GPW Cup, is given in Fig. 4.1
(left). Since these approaches have been defined [Chaslot et al., 2006,

Figure 4.1: Left: A decisive move (number 28) played by MoGo as white, in
the GPW Cup 2008. Right: An example from Senseis of good large pattern
in spite of a very bad small pattern. The move 2 is a good move.

Coulom, 2006, Kocsis and Szepesvari, 2006], several improvements
have appeared like First-Play Urgency [Wang and Gelly, 2007],
Rave-values [Bruegmann, 1993, Gelly and Silver, 2007] (see ftp:

//ftp.cgl.ucsf.edu/pub/pett/go/ladder/mcgo.ps for B. Brueg-
man’s unpublished paper), patterns and progressive widening
[Coulom, 2007, Chaslot et al., 2007], better than UCB-like (Upper Confi-
dence Bounds) exploration terms [Lee et al., 2009], large-scale parallelization
[Gelly et al., 2008, Chaslot et al., 2008, Cazenave and Jouandeau, 2007,
Kato and Takeuchi, 2008], automatic building of huge opening books
[Audouard et al., 2009]. Thanks to all these improvements, our imple-
mentation MoGo already won even games against a professional player in
9x9 (Amsterdam, 2007; Paris, 2008; Taiwan 2009), and recently won with
handicap 6 against a professional player (Tainan, 2009), and with handicap 7
against a top professional player, Zhou Junxun, winner of the LG-Cup 2007
(Tainan, 2009). Besides impressive results for the game of Go, MCTS/UCT
have been applied to non-linear optimization [Auger and Teytaud, ], optimal
sailing [Kocsis and Szepesvari, 2006], active learning [Rolet et al., 2009].
The formula used in the bandit is incredibly complicated, and it is now very
hard to improve the current best formula [Lee et al., 2009].

Here we will consider only mutations consisting in adding patterns in our
program MoGo. Therefore, accepting a mutation is equivalent to accepting a
pattern. A mutation is a pattern with a coefficient (Fig. 4.2). The coefficient
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Figure 4.2: A random pattern of size 2x2 for black (Left) and its matchings
(Right). The associated coefficient is either 0.75 for good shapes or −0.75
for bad shapes. At left, the blue cross is the considered decision, the letter B
in the blue circle means either a black stone or an empty location. At right,
blue crosses indicate matched locations. The matching considers rotation
and symmetry of the pattern. For white, the pattern is reversed (e.g. the
letter B in the blue circle means a white stone or an empty location).

has been always fixed to 0.75 for good shapes or -0.75 for bad shapes. The
size of a pattern has been limited to 5 × 5. When the pattern is bigger, it
matches very rarely and the impact of the pattern becomes negligeable. The
introduction of one mutation in MoGo is exactly the same as the introduction
of one pattern (e.g. Fig. 2.2) described in Section 2.2. We experiment ran-
dom patterns for biasing UCT. The reader interested in the details of this
is referred to [Lee et al., 2009]. Our patterns contain jokers, black stones,
empty locations, white stones, locations out of the goban, and are used as
masks over all the board: this means that for a given location, we consider
patterns like “there is a black stone at coordinate +2,+1, a stone (of any
color) at coordinate +3,0, and the location at coordinate -1,-1 is empty”.
This is a very particular form of genetic programming. We consider here
the automatic generation of patterns for biasing the simulations in 9x9 and
19x19 Go. Please note that: (1) When we speak of good or bad shapes here,
it is in the sense of ”shapes that should be more simulated by a UCT-like
algorithm”, or ”shapes that should be less simulated by a UCT-like algo-
rithm”. This is not necessarily equivalent to “good” or “bad” shapes for
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human players (yet, there are correlations). (2) In 19x19 Go, MoGoCVS is
based on tenths of thousands of patterns as in [Chaslot et al., 2007]. There-
fore, we do not start from scratch. A possible goal would be to have similar
results, with less patterns, so that the algorithm is faster (the big database
of patterns provides good biases but it is very slow). (3) In 9x9 Go, there are
no big library of shapes available; yet, human expertise has been encoded in
MoGo, and we are far from starting from scratch. Engineers have spent hun-
dreds of hours manually optimizing patterns. The goals are both (i) finding
shapes that should be more simulated (ii) finding shapes that should be less
simulated.

Section 4.3.1 presents our experiments for finding good shapes in 9x9 Go.
Section 4.3.2 presents our experiments for finding bad shapes in 9x9 Go.
Section 4.3.3 presents our unsuccessful experiments for finding both good
and bad shapes in 19x19, from MoGoCVS and its database of patterns as
in [Chaslot et al., 2007]. Section 4.3.4 presents results on MoGoCVS with
patterns removed, in order to improve the version of MoGoCVS without the
big database of pattern.

4.3.1 Finding good shapes for simulations in 9x9 Go

Here the baseline is MoGo CVS. All programs are run on one core, with
10 000 simulations per move. All experiments are performed on Grid5000.
The selection rule, not specified in RBGP, is the upper bound as in
UCB[Lai and Robbins, 1985, Auer et al., 2002]: we simulate s such that
ub(s) is maximal. We here test modifications which give a positive bias
to some patterns, i.e. we look for shapes that should be simulated more
often.

For each iteration, we randomly generate some individuals, and test them
with the RBGP algorithm. For the three first iterations, 10 patterns were ran-
domly generated; the two first times, one of these 10 patterns was validated;
the third time, no pattern was validated. Therefore, we have three version
of MoGo: MoGoCVS, MoGoCVS+P1, and MoGoCVS+P1+P2, where P1 is
the pattern validated at the first iteration and P2 is the pattern validated at
the second iteration. We then tested the relative efficiency of these MoGos
as follows:

Tested code Opponent Success rate
MoGoCVS + P1 MoGoCVS 50.78%± 0.10%
MoGoCVS + P1 + P2 MoGoCVS +P1 51.2%± 0.20%
MoGoCVS + P1 + P2 MoGoCVS 51.9%± 0.16%

We also checked that this modification is also efficient for 100 000 simula-
tions per move, with success rate 52.1±0.6% for MoGoCVS+P1+P2 against
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0.75 0.75 -0.75 -0.75
P1 P2 P3 P4 Caption

Table 4.1: Mutations P1, P2, P3 and P4 found by RBGP in 9x9. The
pattern P1 is a famous human pattern in the game of Go; the name of this
pattern is the Hane and it is considered as a good shape. The pattern P2
favours the moves beside 2 stones. The pattern P3 avoids the moves on the
fourth line. The pattern P4 avoids the moves in an empty zone.

MoGoCVS. There was no pattern validated during the third iteration, which
was quite expensive (one week on a cluster). We therefore switched to an-
other variant; we tested the case |S0| = 1, i.e. we test one individual at a
time.We launched 153 iterations with this new version. There were therefore
153 tested patterns, and none of them was validated.

4.3.2 Finding bad shapes for simulations in 9x9 Go

We now switched to the research of negative shapes, i.e. patterns with
a negative influence of the probability, for a move, to be simulated. We
kept |S0| = 1, i.e. only one pattern tested at each iteration. There were
173 iterations, and two patterns P3 and P4 were validated. We verified
the quality of these negative patterns as follows, with mogoCVS the version
obtained in the section above:

Tested code Opponent Success rate
MoGoCVS + P1 + P2 + P3 MoGoCVS + P1 + P2 50.9%± 0.2%
MoGoCVS + P1 + P2 + P3 MoGoCVS 52.6%± 0.16%
MoGoCVS + P1 + P2 + P3 + P4 MoGoCVS + P1 + P2 + P3 50.6%± 0.13%
MoGoCVS + P1 + P2 + P3 + P4 MoGoCVS 53.5%± 0.16%

This leads to an overall success of 53.5% against MoGoCVS, obtained by
RBGP. The four mutations found by RBGP are given in Tab. 4.1.
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4.3.3 Improving 19x19 Go with database of patterns

In 19x19 Go, all tests are performed with 3500 simulations per move. Here
also, we tested the case |S0| = 1, i.e. we test one individual at a time. We
tested only positive biases. The algorithm was launched for 62 iterations.
Unfortunately, none of these 62 iterations was accepted. Therefore, we con-
cluded that improving these highly optimized version was too difficult. We
switched to another goal: having the same efficiency with faster simulations
and less memory (the big database of patterns strongly slowers the simula-
tions and takes a lot of simulations), as discussed below.

4.3.4 Improving 19x19 Go without database of pat-
terns

We therefore removed all the database of patterns; the simulations of MoGo
are much faster in this case, but the resulting program is nonetheless
weaker because simulations are far less efficient (see e.g. [Lee et al., 2009]).
Fig. 4.1 (right) presents a known (from Senseis http://senseis.xmp.net/

?GoodEmptyTriangle#toc1) difficult case for patterns: move 2 is a good
move in spite of the fact that locally (move 2 and locations at the east,
north, and north east) form a known very bad pattern (termed empty tri-
angle), termed empty triangle, and is nonetheless a good move due to the
surroundings.

We keep |S0| = 1, 127 iterations. There were six patterns validated,
validated at iterations 16, 22, 31, 57, 100 and 127. We could validate these
patterns Q1,Q2,Q3,Q4,Q5,Q6 as follows. MoGoCVS+AE means MoGoCVS
equipped with the big database of patterns extracted from games between
humans.
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Tested code Opponent Success rate
MoGoCVS + Q1 MoGoCVS 50.9%± 0.13%
MoGoCVS + Q1 + Q2 MoGoCVS + Q1 51.2%± 0.28%
MoGoCVS + Q1 + Q2 + Q3 MoGoCVS + Q1 + Q2 56.7%± 1.50%
MoGoCVS + Q1 + ... + Q4 MoGoCVS + Q1 + Q2 + Q3 52.1%± 0.39%
MoGoCVS + Q1 + ... + Q5 MoGoCVS + Q1 + ... + Q4 51.1%± 0.20%
MoGoCVS + Q1 + ... + Q6 MoGoCVS + Q1 + ... + Q5 54.1%± 0.78%

MoGoCVS + Q1 + Q2 MoGoCVS 53.4%± 0.50%
MoGoCVS + Q1 + Q2 + Q3 MoGoCVS 57.3%± 0.49%
MoGoCVS + Q1 + ... + Q4 MoGoCVS 59.4%± 0.49%
MoGoCVS + Q1 + ... + Q5 MoGoCVS 58.6%± 0.49%
MoGoCVS + Q1 + ... + Q6 MoGoCVS 61.7%± 0.49%

MoGoCVS MoGoCVS + AE 26.6%± 0.20%
MoGoCVS + Q1 MoGoCVS + AE 27.5%± 0.49%
MoGoCVS + Q1 + Q2 MoGoCVS + AE 28.0%± 0.51%
MoGoCVS + Q1 + Q2 + Q3 MoGoCVS + AE 30.9%± 0.46%
MoGoCVS + Q1 + ... + Q4 MoGoCVS + AE 32.1%± 0.43%
MoGoCVS + Q1 + ... + Q5 MoGoCVS + AE 30.9%± 0.46%
MoGoCVS + Q1 + ... + Q6 MoGoCVS + AE 32.8%± 0.47%

An important property of RBGP is that all validated patterns are confirmed
by these independent experiments. We see however that in 19x19, we could
reach roughly 30% of success rate against the big database built on human
games (therefore our RBGP version uses far less memory than the other
version); we will keep this experiment running, so that maybe we can go
beyond 50 %. Nonetheless, we point out that we already have 60 % against
the version without the database, and the performance is still increasing
(improvements were found at iterations 16,22,57,100,122,127, with regular
improvements - we have no plateau yet) - therefore we successfully improved
the version without patterns, which is lighter (90% of the size of MoGoCVS
is in the database).

4.4 Progress rate of Racing-based GP

λ has been fixed to 1 on precedent experiments. But maybe, a better
value can be found. We propose a study of progress in Noisy Genetic
Programming for choosing λ.
Progress rate theory is classical in continuous
optimization[Auger and Hansen, 2006]. The progress rate will be here
adapted to noisy GP. We will consider T (formally defined below), the
number of fitness evaluations before finding a good mutation. The progress
rate is then defined as 1/T , the inverse time before finding a good mutation.
We will then, following the continuous case, choose parameters that optimize
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the progress rate. Note that here, the progress rate is a success probability;
this is equivalent to classical criteria [Beyer, 2001] only in restricted settings
(see assumptions in Section 4.4).

We consider that randomly drawn mutation have fitness1:

• q > 0 with probability f > 0;

• ≤ 0 otherwise.

We will study the behavior of (1 + λ)-GP depending on q and f . The other
relevant parameters are:

• λ (the offspring size);

• ε, the threshold of the Bernstein races (see Alg. 12);

• c, a parameter used in Alg. 12 and which is of moderate importance as
shown below.

The different cases under analysis are (i) q = ε (ii) q >> ε. We will in-
vestigate the running time, i.e. the number T of fitness evaluations be-
fore finding a good mutation with probability at least 1 − 2δ. It is already
known[Hoock and Teytaud, 2010] that with probability at least 1− δ,

• if there is a good mutation (fitness ≥ q), it will be found;

• no bad mutation (fitness < 0) will be selected. Possibly, the race
replies that it did not find any good mutation.

We will show (i) that a too mild rejection threshold ε has bad effects
(section 4.4.1); (ii) that a good tuning provides significant improvements
(section 4.4.2); (iii) that there is a parameter free version with ensures that
there’s no infinite loop (section 4.4.3).

4.4.1 Too mild rejection: q >> ε

Here, the precision required for rejecting a bad mutation is very small in
front of the quality of good mutations. The following result shows that in
that case the choice of λ is crucial: λ should be of the order

log(δ)/ log(1− f) (4.6)

Theorem 1: rejection pressure too small (ε too small). Assume
that q > ε. Then,

1We recall that fitnesses are translated as explained in Section 4.2 so that the parent
has fitness 0 and therefore “good” mutations are mutations with value > 0.

127



4. BUILDING A POLICY BY GENETIC PROGRAMMING (RBGP)

• If λ ≥ d log(δ)
log(1−f)

e, then T = Θ(λ log(λ/(qδ))/q2).

• If λ ≤ log(1/2)
log(1−f)

, then T = Ω(log(1/(f 2εδ)/ε2).

The proof is in [Hoock and Teytaud, 2011].

Remark: In the case q >> ε, this theorem implies that λ ≥ d log(δ)
log(1−f)

e is

much better than λ ≤ log(1/2)
log(1−f)

.

4.4.2 Well tuned parameters: q = ε

Theorem 2: population size with well tuned parameters. Assume
that q = ε > 0. Then,

T = Θ(
λ log(λ log(1

ε
)/δ)

(1− (1− f)λ)ε2
). (4.7)

The proof is in [Hoock and Teytaud, 2011].
Remark: Theorem 2 provides an evaluation of the cost

T = Θ(
λ log(λ log(1

ε
)/δ)

(1− (1− f)λ)ε2
).

If we neglect all logarithmic factors,

• this is linear as a function of λ if λ ' 1/n, i.e. the overall cost is linear
as a function of 1/(fε2).

• this is linear as a function of 1/(fε2) if λ = 1.

We therefore see that the population size does not matter a lot when the
parameter ε is chosen so that it nearly matches q.

4.4.3 No prior knowledge

The analysis above has the weakness that it requires some knowledge on the
fitnesses of possible mutations, in order to choose ε, the parameter used in
the rejection rule. The main risk is a too strong rejection: q << ε would lead
to the rejection of the best mutations. We here investigate results possible
with no knowledge at all.

Theorem 3: population size with q << ε. Consider RBGP with the
Bernstein race as in Alg. 15. Then, with probability 1− δ, no bad mutation
is accepted, and if the probability of a good mutation is positive, then

T <∞. (4.8)

The proof is in [Hoock and Teytaud, 2011].
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Algorithm 15 Variant of Bernstein race: a pattern is rejected as soon as its
average fitness is below 0.

BernsteinRace(pop, δ, ε)
while pop 6= ∅ do

for all m ∈ pop do
Let n be the number of simulations of mutation
m.
Simulate m, n more times

(i.e. now m has been simulated 2n times).
//this ensures nbTests(m) = O(log(n(m)))

computeBounds(m,M, δ)
if lb(m) > 0 then

Return individual corresponding to mutation
m.

else if average fitness(m) < 0 then
pop = pop \ {m} m is discarded.

Return “no good individual in the offspring!”

4.5 Experimental results

The theoretical results above for choosing the population size are rather
preliminary; the population size can be chosen optimally only if we have
many informations. On the other hand, it proposes a criterion different from
classical Bernstein races: acceptance is based on the same criterion as usual
Bernstein races, but rejection is based on a simple naive empirical average,
and with this criterion we have T finite without any prior knowledge. We
here experiment rules a bit more complicated than algorithms above.

We have already tried the algorithm on the program MoGo (a software
of Go) without real success against the full version of the software (Fig. 4.3).

We have decided to compare with another testbed. The testbed is Monte-
Carlo Tree Search (MCTS [Chaslot et al., 2006, Coulom, 2006]) on the game
NoGo [Chou et al., 2011]. It is a two-player board game. It is a variant of
the game of Go. The rule is the following : the first player which captures
one or several stone(s) has lost and the pass move is forbidden. This game
has been designed by the Birs seminar on games as a nice challenge for game
developers. In all our experiments, we have worked on the size 7x7 of the
game.

The baseline is the program NoGo (adapted from MoGo[Lee et al., 2009])
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Figure 4.3: Preliminary results of the study of λ on MoGo. No real success
against the full version of the software.

without mutation. In our experiments, we have added some rules in order to
reject more rapidly some bad mutations, combining Alg. 13 (which requires
some knowledge on the distributions) and Alg. 15 (which requires no knowl-
edge). This leads to Alg. 16, which is somehow a combination of these two
algorithms, empirically developed for our problem.

Fig. 4.4 shows a slightly better result for λ = 16, for a fixed number of
mutations compared to λ = 1 and λ = 2; but more extensive experiments
(possibly on toy datasets) are required; results are nearly the same for all
λ in our real-world case. In all cases, we could get a nice curve, with a
very significant (almost 70%) success rate against the baseline, which is still
clearly increasing (yet, in a slower manner).

Another question is about the best population size λ in our experiments.
It seems that we have generally a good mutation with frequency 1/15. Using
Eq. 4.6, with δ = 0.05 and assuming f ' 1/15, we get λ ' log(0.05)/ log(1−
1/15) ' 43. Therefore our analysis suggests a population size λ ' 43.

4.6 Conclusion

The use of Bernstein races for rigorously performing non-regression testing
was already proposed in [Hoock and Teytaud, 2010]. We here investigate the
natural question of the choice of the population size λ, and the modification
of Bernstein races when no prior knowledge is available:

• Choosing the population size. The good news is that we find a
formula for optimally choosing λ, equal to log(δ)/ log(1−f) where f is
the frequency of good mutations and δ the risk level chosen by the user.
Unfortunately, f is unlikely to be known unless the fitness improvement
q that one can expect from good mutations is nearly known, and in this
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Algorithm 16 Empirically modified version of Bernstein race for our prob-
lem. It is essentially Alg. 15, with a bit more of rejection for fastening the
algorithm.

BernsteinRace(pop, δ, ε)
while pop 6= ∅ do

for all m ∈ pop do
Let n be the number of simulations of mutation
m.
Simulate m n more times (i.e. now m has been
simulated 2n times).

//this ensures nbTests(m) = O(log(n(m)))
computeBounds(m,M, δ)
if lb(m) > 0 then

Return individual corresponding to mutation
m.

else if average fitness(m) <
0.004 or (average fitness < 0.006 and n > 105)
then
pop = pop \ {m} m is discarded.

Return “no good individual in the offspring!”
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Figure 4.4: Top: win rate of NoGo+mutations against the baseline (i.e.
NoGo without mutation). Win rates are given with a precision of +/-0.3%.
Bottom: the “running time“ (measured by the cumulated number of simu-
lations) for finding a good mutation.
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case the user is likely to choose ε of the order of q, and we show that
in this case there is little to win by a good choice of λ: λ = 1 performs
at least nearly as well as all values of λ.

• What if we have no prior knowledge ? We could propose a mod-
ified Bernstein race (Alg. 15) which has the advantage that it always
converges (T <∞), independently of all parameters.

In the experiments, we heuristically combined our various tools for optimiz-
ing the performance, proposing Alg. 16. Importantly, we got a very signifi-
cant result on a new game, NoGo, recently proposed by the Birs seminar on
games - the curve shows a regular improvement, for each parametrization of
the algorithm. Importantly, we made this work with applications in minds;
further investigations, on toy datasets for convenience and clarity, are nec-
essary - so that we can see experimental results with confidence intervals,
bridging the gap between our maths and our real-world experiments. We
have presented RBGP for optimizing Monte-Carlo Tree Search. But it can
be used for building a policy; a mutation is not a pattern but a “sub-policy”.
However, using RBGP for solving tasks in the MASH project is not feasible
because RBGP needs a lot of simulations for validating rigorously a mutation
and simulations in MASH applications are much too expensive.
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Chapter 5

Learning prior knowledges

RBGP is already a way for learning prior knowledge by adding it directly
in the solver or by building a policy. RBGP solves slowly a problem by
optimizing the solver; we wish to learn prior knowledge for solving quickly a
complex task.

This part is essentially based on the article Solving a Goal-planning task
in the MASH project [Hoock and Bibai, 2012].

As it has been seen in Section 1.2.2, there is no information that can help
us to infer knowledge for solving more efficiently the problem. But we can
simulate several scenarios in order to build a knowledge. First, we define
notations (Section 5.1). Then,

1. We learn a categorization of actions (cf Section 5.2); this categorization
of action will induce a family of macro-actions.

2. We learn a clustering of the features (i.e., in MASH terminology, a
clustering of the state variables - Section 5.3)

3. A tree of subgoals is built, by simulations (Section 5.5), using the
macro-actions defined above; this tree of subgoals is related to MCTS
trees, and is a form of learnt model of the problem. This tree of sub-
goals is the policy; the memory of the policy is a pointer to a node of
this tree.

4. Voting schemes (Section 5.4) are used for making decisions when the
memory points to some nodes of the tree.
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Figure 5.1: Top: 3 different views of the avatar. Bottom: Images resulting
of the application of the blue heuristic. Left: The blue flag is not seen,
no features are activated. Center: The blue flag is far, few features are
activated. Right: The blue flag is closer, more features are activated.

5.1 Notations

An observation is a perception of the avatar on a state (which, in the fully
observable case, is a state) and is denoted by o and a state is denoted by s.

From a given state st, the state reached after the application of one de-
cision on the state st is denoted by st+1. The function which gives the
observation o from a given state s is denoted by Ω(s).

The set of observations is denoted by O, the set of states by S, the set of
features by F , the set of decisions by U , a feature by f and a decision by u.

Let rt the reward and finishedt the boolean variable which states if
the state st+1 is terminal (or final), MakeTransition denotes the transi-
tion function (i.e. the application of the decision ut on the given state st)
and returns the new state st+1, the boolean finishedt and the reward rt:
(st+1, finishedt, rt) = MakeTransition(st, ut).

When a transition is applied on a state st, features of the observation
Ω(st) are activated or deactivated (Fig. 5.1). In our implementation, an
activated feature is boolean (or binary) and has a value 1; a deactivated
feature is a binary feature and has a value 0. Given an observation ot, Fa(t)
denotes the set of active features of this observation.
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5.2 Learning a Categorization of the Deci-

sions

At the beginning, the algorithm (or solver) has no idea of the meaning of de-
cisions. But by doing simulations, the impact of a decision on an observation
can be studied. In this section, we present in a first part different categories
of decision and in a second part a use of this categorization in an experiment
on the second MASH application (cf Section 1.2.2).

5.2.1 Categorization

Formally, a decision u is :

• periodic if ∃k ∈ N∗,∀st ∈ S st+k = st

• stationary if ∀st ∈ S ∃K ∈ N∗,∀j ∈ N∗ st+K = st+K+j

• final1 if ∀st ∈ S st+1 is a final state.

with st+x the state st obtained after applying x times the decision u.
A decision u− is the inverse of a decision u+ if st = st+2 with (st+1, , ) =

MakeTransition(st, u
+) and (st+2, , ) = MakeTransition(st+1, u

−) ( de-
notes an ignored information.).

Notice that, (i) when the environment of a given application is partially
observable 2, we work with a memory (Section 5.4.1) and on the observation
Ω(s) instead of the state s and (ii) when we are in a stochastic application,
we use in these equations approximations instead of equalities.

First, from a given state st, we categorize a decision u by applying it
several times. Let k the number of times the decision u has been applied.

1. A first case is to reach a final state by applying the first time (k = 1)
the decision u. The decision is categorized as a final decision.

2. A second case is the decision has no more impact on the observation
(Ω(st+k−1) ≈ Ω(st+k)). The decision u is categorized as a stationary
decision.

3. A third case is the initial observation Ω(st) is seen a new time
(Ω(st+k) ≈ Ω(st)). The decision u is categorized as a periodic deci-
sion.

1In MASH, there is no final decision, but draw of letters (cf Section 5.6.1) contains one
2MASH is partially observable
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4. A fourth case is the initial observation Ω(st) is seen a new time after
applying the decision u one time (k = 1) and another decision u∗ 6= u
one time, too. Decisions u and u∗ are categorized as inverse decisions.

Pieces of information will be very useful for simulating more efficiently.

5.2.2 Experiment on 10 flags problems

We propose a first use of the categorization of decisions. We consider the
”10 flags” problem (Section 1.2.2).

The policy based on decision stumps is given in Alg. 17.
A Direct Policy Search with an evolutionary strategy is used for learning

parameters. The best policy is evaluated anew and compared with a new
one at each time. Each policy is evaluated on 10 tests.

The policy contains 3 parameters:

• decision forward a decision

• decision turn a decision

• prob real between 0 and 1.

We compare 2 methods for learning these parameters. The first method
is a random search. In the second method, parameters values are also chosen
randomly, but the choice can be biased by the categorization of decisions.

More precisely, the second method is

• With probability 1/10, use the first method.

• Otherwise,

– For the parameter decision forward, draw randomly a decision
which is stationary (if not, draws randomly a decision).

– For the parameter decision turn, draw randomly a decision which
is periodic (if not, draws randomly a decision).

– For the parameter prob, draw randomly a value between 0 and 1.

Results are shown in Fig. 5.2. The categorization of decisions allows to
learn faster the best policy. Note that this version of Direct Policy Search
does not work on the ”blue flag then red flag” application. The reason is that
the policy in Alg. 17 does not use a memory, which is required for solving
the “blue flag then red flag“ problem.
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Algorithm 17 the policy on decision stumps. The 3 parameters are
decision turn, decision forward and prob. From the decision u, the function
GetMaximalNbRepeat returns the number of times k that the decision u has
been repeated in order to categorize it (Section 5.2.1); this is the maximal
number of times that the decision u can be repeated.

π(o)
Let u a static variable containing the decision
Let l a static variable containing the remaining number
of times that the decision u will be repeated
Let fj the jth feature
Let vj the value of the jth feature of the observation o.

for each components j of the observation o do
if feature j is boolean then

if vj > 0 then
u = $decision forward$
l = 1

if l > 0 then
l −−
Return u

Let p a value initialized randomly between 0 and 1.
if p > $prob$ then
u = $decision turn$

else
u is randomly chosen

l = 1 + rand() mod GetMaximalNbRepeat(u)
l −−
Return u
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Figure 5.2: Direct Policy Search on Decision Stumps applied to All You Can
Eat problem (i.e. 10 flags application). In order to compare the best policy
and a new one, both policies are tested 10 times (T=10). During the learning
phase, 3 parameters (p = 3) are learnt : decision forward, decision turn
and prob. In All You Can Eat Problem (= 10 flags problem), the 2 used
heuristics (h = 2) are red and identity with a random sampling of 10,000
features. Red curves are obtained without the categorization of decisions and
blue curves with the categorization of decisions. SDPS means Stump Direct
Policy Search and DPSDC means Direct Policy Search with Categorization
of Decisions. The parameter L given by the function GetMaximalNbRepeat
(in Alg. 17) is the maximal length of a macro-decision, i.e. a decision repeated
several times (See Section 5.4); auto means that L is computed automatically
following the decision u; by default, L = 50. Conclusion: The best policy
is found faster with a learning of the categorization of decisions (blue
curves).
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5.3 Learning a Clustering of the Features

A feature in MASH is a binary observed state variable. Features are grouped;
a group of features is termed a heuristic. Often, these features have related
behavior, but the learning must work without any information on these fea-
tures. The idea is to clusterize relevant features that can help the algorithm to
find goal. To solve this issue, we propose an algorithm of clustering (Alg. 18)
called CluVo for finding correlated features. CluVo makes no assumption
about the number of clusters and is completely unsupervised (Features are
not labelled.). In the MASH problem, it should, ideally, construct 2 clus-
ters : ”Features which come from the blue heuristic“ and ”Features which
come from the red heuristic“.

Algorithm 18 the complete Clustering (generation of the collection + clus-
tering). The name CluVo comes from the contraction of words Clustering
and Vote. The function GenerateNewDatabase is described in Alg.20 and
the function Clusterize is described in Alg. 21.

Function CluV o()
Let clusters a static variable containing all clusters of
features.
Initialization: each cluster is composed of one feature.

for iteration in 1..+∞ do
ldb = GenerateNewDatabase(iteration)
nbClus = size(clusters)
clusters = Clusterize(ldb, clusters)
if nbClus 6= size(clusters) then
nbClus = size(clusters)

else
break

In the clustering, we distinguish 3 parts : (i) The generation of collection
(or database) of lists of features by doing simulations - (ii) Clustering features
- (iii) The metric which is the correlation between 2 features.

5.3.1 Simulations for the generation of the collection

For the generation of the collection, following the number of iterations, sim-
ulations are done differently:
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• for the first 3 iterations, decisions are chosen randomly;

• but from the 4th iteration, decisions are chosen following a probability:

– either randomly

– or by vote (see Section 5.4.4).

Some features are very difficult to be activated with random simulations.
That’s why the vote is used for guiding the simulation. Indeed, given a
cluster, the vote is very efficient for activating these features but needs several
updates of Eq. 5.3 before to be used efficiently. That’s why the vote is not
used at the first 3 iterations. Another good point of the vote is that when
efficient, it activates together features which are truly correlated; from the
4th iteration, there is less risk to clusterize 2 falsely correlated features.

The generation of the collection is shown in Alg. 19 (for the first gen-
eration) and Alg. 20. A list of features is added in the collection at the
end of the application of a macro-decision (see Section 5.4.2). The function
GetMacroDecisionLength returns the length of the macro-decision and is
defined in the caption of Alg. 22. The function GetDecisionByV ote returns
the decision chosen by a vote.

Algorithm 19 Generation of collection of lists of features for the first it-
eration beginning to 1. A collection of lists of features is a list of lists of
features.

Function GenerateNewDatabase F irstIteration()
Let PARAM GNDFI1 a static parameter fixed to 20
Let ldb the list of lists of features
nbLoops = PARAM GNDFI1 ∗#U
for i in 1..nbLoops do

Let s a state initialized randomly
Let u a random decision
Let GetActiveFeatures(o) the function which returns the list of
active features of an observation o
lactive = GetActiveFeatures(Ω(s))
l = GetMacroDecisionLength(Ω(s), u,NULL); finished = false
for j in 1..l do

s, finished, = MakeTransition(s, u)
lactive = Append(GetActiveFeatures(Ω(s)), lactive)
if finished then

break
if Size(lactive) < 2 then

Decrement i
else

Push(lactive, ldb)
Return ldb
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Algorithm 20 Generation of collection of lists of features (i.e. list of lists of
features). nbLoops simulations in which macro-decisions (Section 5.4.2) are
used are performed. During the application of a macro-decision, all activated
features are kept in a list lactive. This list lactive is added in the collection at
the end of the application of the macro-decision.

Function GenerateNewDatabase(iteration)
Let P GND1 a static parameter fixed to 20
Let P GND2 a static parameter fixed to 4
Let P GND3 a static parameter fixed to 4
Let P GND4 a static parameter fixed to 100
Let P GND5 a static parameter fixed to 4
if iteration == 1 then

Return GenerateNewDatabase F irstIteration()
Let clusters a static variable containing all clusters of features.
Let ldb the list of lists of features
nbLoops = P GND1 ∗#U
for i in 1..nbLoops do

Let s a state initialized randomly
Explore(s) a

Let clust initialized to an empty cluster
if iteration >= P GND2 ∧maxcl∈clusters(Size(cl)) > 1 then

clust = ChoiceOneCluster(Ω(s), clusters)
maxK = P GND3
if clust 6= ∅ then

maxK = P GND4b

for k in 1..maxK do
Let u initialized to a random decision
Let lactive initialized to an empty list of features
if clust 6= ∅ ∧ k mod P GND5 6= 0 then

u = GetDecisionByV ote(Ω(s), clust) c

l = GetMacroDecisionLength(Ω(s), u,NULL)
finished = false
for j in 1..l do

(s, finished, ) = MakeTransition(s, u)
Increment numDec
Append(GetActiveFeatures(Ω(s)), lactive)
if finished then

break
Push(lactive, ldb)

d

if finished then
break

Return ldb

aapply exploration decisions on the state s until a feature
of the observation Ω(s) is activated (See Section 5.4.3).

bThe number of macro-decisions applied during a simu-
lation is denoted maxK. By default, maxK is small (i.e.
P GNCD3); the risk of bad correlation between features is
high due to random decisions. When a cluster of features can
guide the simulation by the mechanism of vote, maxK is high
(i.e. P GNCD4).

creturns a decision given from active features of the obser-
vation Ω(s) and belonging to clust. (See Section 5.4.4).If no
active features, a random decision is taken.

dlactive is not added if lactive == ∅.
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5.3.2 Clustering features

The approach of our algorithm is hierarchical. There exist 2 main fam-
ilies of clustering algorithms : (i) The divisive (or top-down) clustering
[Savaresi et al., 2002] starts from one cluster and gradually splits clusters.
(ii) The agglomerative (or bottom-up) clustering [Defays, 1977] starts from
a set of small clusters and then aggregates them. Because of the system of
vote (Eq. 5.3), a bottom-up clustering is surely better. The shown algorithm
is therefore agglomerative. Therefore, each feature corresponds to a cluster
at the beginning of the CluVo algorithm.

Algorithm 21 The Clustering phase. SelectTwoFeatures(lclus, ldb) selects
2 features by using either the list of clusters lclus or the collection of the list
of features ldb. Merge(clus1, clus2, lclus) creates a new cluster into the set
lclus by merging clus1 and clus2 and then removes them from the set lclus.

Function Clusterize(ldb, lclus)
Let P C1 a static parameter fixed to 104

Let P C2 a static parameter fixed to 107

Let nbClus the number of clusters initialized to the
size of ldb
nbTry = min(max(P C1, nbClus× nbClus), P C2)
while nbTry > 0 ∧ nbClus > 1 do

Decrement nbTry
(f1, f2) = SelectTwoFeatures(lclus, ldb)
Let clus1 the cluster of features to which the feature
f1 belongs
Let clus2 the cluster of features to which the feature
f2 belongs
if clus1 6= clus2 ∧ f1 and f2 are correlateda then
Merge(clus1, clus2, lclus)
nbClus = size(lclus)
nbTry = min(max(P C1, nbClus ×
nbClus), P C2)

Return lclus

aSee Section 5.3.3
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5.3.3 Metric

This section describes the similarity measure used in Alg. 21. Let ldb the
collection of the list of features as obtained by Alg. 20. Let f1 and f2 two
features of the set of features obtained thanks to a uniform draw.

Let Db(f) = {list ∈ ldb; f ∈ list} with f a feature and Db(f1, f2) =
Db(f1) ∩Db(f2)

Let Card(X) = #X the number of elements of the set X.
The features f1 and f2 are significantly correlated if #Db(f1, f2)) > 5

and 3×#Db(f1, f2) >= max(#Db(f1),#Db(f2)).
The numbers 5 and 3 have been fixed after experiments.

5.4 The policy

The policy π makes a decision π(o,M) depending on o (its current observa-
tion) and M (its memory which is for us a pointer to a node in the tree of
subgoals). This decision is, as far as possible, a good decision, and we will
note π(o) instead of π(o,M) for short (yet, it depends on the memory, which
is a static variable of our policy).

Sometimes, the solver should be able to realize several small tasks as
subgoals for realizing the complete task3. A small task is called a subgoal.
A lot of works on subgoals have been already produced in the literature
such as [Stolle and Precup, 2002], [Schmidhuber and Wahnsiedler, 1992],
[Wolfe and Barto, 2005], [Menache et al., 2002] or [Bibai et al., 2010]. In or-
der to realize this task, the policy must be able to switch from a subgoal to
another subgoal.

The first subsection (Section 5.4.1) describes the memory and subgoals
given by gn in Alg. 22, the second subsection introduces macro-decisions (Sec-
tion 5.4.2) and the two last subsections describe the mechanism of choosing
decisions when about a given subgoal, there is:

• no observed information: the exploration (Section 5.4.3)

• observed information: the vote (Section 5.4.4).

5.4.1 Memory for switching subgoals

The policy is a tree of subgoals. A node of the tree is a subgoal; a subgoal
is:

3e.g. in the main MASH application, the avatar must touch the blue flag (first small
task) and then touch the red flag (second small task); which implies to keep the information
that the blue flag has been touched.
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Algorithm 22 A simplified version of our policy. The primitive
GetDecision is a function which returns a decision u. The primitive
GetMacroDecisionLength is a function which returns the number of times
that the decision u is repeated (cf Macro-Decisions in Section 5.4.2). This
number is fixed according to the categorization of the decision u (cf Sec-
tion 5.2.1) and the active features in the observation o. Optionally, the set
of active features is restricted to the list of features given by the node gn
(cf subgoal in Section 5.4.1). The function GetDecision(o, gn) returns either
a final decision when the subgoal gn (Section 5.4.1) is a final decision, or a
decision by vote if some features given by the node gn are activated in the
observation o, or else a decision for exploration.

Function π(o)
Let ga a static variable containing a tree of subgoals
Let gn the current node and root the root node of ga
Let u a static variable containing the decision
Let l a static variable containing the remaining number
of times that the decision u will be repeated
if gn is root ∨ IsReached(gn, o) then
gn = ChooseNextNode(gn)
l = 0

if l == 0 then
Build a new Macro-Decision (u, l)

• u = GetDecision(o, gn)

• l = GetMacroDecisionLength(o, u, gn)

Decrement l
Return u
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• either a list of features and a minimum number of features to be acti-
vated for the subgoal to be fulfilled

• or a final decision if it exists.

The memory is a pointer to one node in this tree. At the beginning of a run
of the policy, the memory points to the root node. From a given observation
o, when the memory points to subgoal gn, then the algorithm applies action
u chosen by the function GetDecision(o, gn) in Alg. 22. The memory pointer
switches from subgoal gn to subgoal gn′ when at least nb(o) features of node
gn are activated (function IsReached); gn′ is chosen by ChooseNextNode().

5.4.2 Useful Macro-Decisions

A Macro-Decision [Mcgovern et al., 1997] (or Macro-Action) is a decision
repeated several times. A Macro-Decision is modeled by the couple (u, l).

• u is the decision

• l is the number of times that the decision is repeated.

A decision can be useless because the application of the decision on the
state st has no more impact (stationary decision), or the decision is the
inverse of the last decision, or when the avatar has made a complete turn,
it does not need to continue to turn (periodic decision). The set of useful
decisions for a given state st is denoted Uok.

5.4.3 Exploration for finding a subgoal

In the MASH application, the environment is partially observable. The
environment must be explored. But because of the size of the en-
vironment, classical Random Search algorithm can not be applied.
Macro-decisions is a tool that can help to explore more rapidly the
environment[Mcgovern et al., 1997]. During the exploration, when there is
no activated features in the observation Ω(st)

4 and then a given decision ac-
tivates features in the observation Ω(st+1), this decision can be considered
as a good one5. These decisions can be found statistically after a lot of
explorations.

4In the MASH application, the flag is not seen.
5To find a flag, some decisions are more useful than others (e.g. the decision to turn is

good).
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In order to choose good decisions for finding a subgoal, we define the
variable called disc(Fclus, u). Let Fclus a set of features

disc(Fclus, u) = #{ut, ut == u∧Fa(t) == ∅∧Fa(t+1)∩Fclus 6= ∅} (5.1)

The formulas can be updated at each simulation after a MakeTransition.
Then for a given node gn, the decision for exploration is given by

• Let obj the set of features given by the node gn.

• with probability proportional to

– disc(obj, u), if u ∈ Uok then return the decision u

– 1, return a random decision.

• else return a random decision

When features have been activated, decisions can be now chosen by using
these activated features.

5.4.4 Vote for reaching a subgoal

Given a cluster of features6, a set of decisions and from an initial state s0

whose observation Ω(s0) contains some activated features, a sequence of de-
cisions which leads to the activation of a maximum of features of the cluster
is searched. This mechanism describes the main component (i.e. the vote) of
the function GetDecision (cf caption of Alg. 22); it is present in the genera-
tion of the database (GetDecisionByV ote in Alg. 20) during the clustering,
in the policy (Alg. 22) and in GMCTS (Alg. 23).

A decision can activate new features or deactivate features. Here, the goal
is to activate a maximal number of features of the cluster. In order to do
this, the idea is that each active feature votes for a decision which increases
the number of active features of the cluster.

For each couple (f, u) ∈ F×U is associated a score score(f, u). score(f, u)
is a cumulative number of activated features (cf Eq. 5.3). A vote is defined
by

V ote(f) = Argmaxu∈Uscore(f, u). (5.2)

Let Fv(u) = {f ∈ Fa(t)∩FClus, u == V ote(f)} the set of active features
of the observation Ω(st) belonging to a cluster (or set of correlated features)
FClus and which vote for the decision u.

Then, the decision by vote is given by Argmaxu∈Uok
#(Fv(u)).

6a cluster can be the list of features given by a subgoal.
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We can interpret as: For each decision u, we count the number of active
features which vote for the decision u. The decision which received most
votes is selected. The vote is inspired by the meta-classifier Adaboost
[Freund and Schapire, 1995] which ranks a given element in a class (among
different classes) using weak classifiers. Features can be seen as weak
classifiers and decisions as classes.

The function called score gives a cumulative number of features of one
cluster which have been activated from a sample of states. More precisely, let
(st, u, st+1) the state s, the decision u and the state st+1 obtained immediately
after applying the decision u on the state s.

Let Fa|Fclus(t) the set of active features of the observation Ω(st) belonging
to the cluster Fclus (Fa|Fclus = Fa(t) ∩ Fclus). Let fa ∈ Fclus an active
feature of the observation Ω(s). Then

score(fa, u) =
∑
st

(#Fa|Fclus(t+ 1)−#Fa|Fclus(t)). (5.3)

The signification of the formula is to activate for a given cluster more
features in the observation Ω(st+1) than activated features of the observation
Ω(st).

Note that fa ∈ Fa(t) but maybe, fa /∈ Fa(t+ 1). In this case, the feature
fa has been deactivated when the decision u has been applied on the state
st.

The function called score can be updated at any moment when a decision
is applied.

5.5 Learning a Sequence of Subgoals

The categorization of decisions and the Clustering of features are unsuper-
vised methods, the information of the reward has not been used. Now, for
building a policy, represented by a tree of successive subgoals as described in
Section 5.4.1, we use the reward. This section describes this process.

The proposed algorithm (Alg. 23) is a Monte-Carlo Tree Search
[Coulom, 2006] on subgoals. The algorithm is called GMCTS (Goal Monte-
Carlo Tree Search). GMCTS builds incrementally the tree by doing Monte-
Carlo simulations. The learnt sequence of subgoals is the most simulated
sequence of subgoals in the tree.

We describe in a first subsection the Monte-Carlo simulation and in a
second subsection the policy of GMCTS.
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5.5.1 Monte-Carlo simulation

For each Monte-Carlo simulation, we

1. start to the root of the tree,

2. repeat

(a) choose a subgoal

• either we choose the most promising

• or we add and choose a new one

(b) achieve the subgoal by repeating

i. we apply the voting scheme

ii. we keep rewards

iii. until we have accomplished the subgoal

(c) until a final state is reached

At the end of the Monte-Carlo simulation, the tree is updated with kept
rewards.

5.5.2 Policy of GMCTS

The policy of the GMCTS is given by Alg. 24
Given the node gn, the function ChooseNewGoal creates a new

child node of gn and returns it (exploration), whereas the function
ChooseBestGoal returns the most promising child node of gn (exploitation).

Let nb children the number of children of gn.

• With a probability 1/nb children, we explore with adding a new sub-
goal.

• With a probability 1− (1/nb children), we exploit the most promising
subgoal.

We find again a common statement of the compromise explo-
ration/exploitation: the more we have simulated, the more we exploit. In-
deed, the more we have simulated a node, the more we have added children,
then the smaller the probability to add a new subgoal is, thus the more we
exploit.

Following a mode, the most promising is the child node which maximizes

• either the average of cumulative rewards (mode 1)
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Algorithm 23 Monte-Carlo Tree Search for searching goal. The argument
maxSimulation is a parameter of the GMCTS algorithm and denotes the
number of simulations which will be done to build the tree ga. Macro-
decisions are used in the GMCTS algorithm.

Function Gmcts(maxSimulation)
Let ga a static variable containing a tree of subgoals
Let root the root of the tree ga.
for sim in [[1;maxSimulation]] do

Let s initialized to the initial state.
(rcum, finished, gn) = (0, false, root)
while finished 6= true do
gn = ChooseNextGoal(gn)
reached = false
while reached 6= true ∧ finished 6= true do
u = GetDecision(Ω(s), gn)
l = GetMacroDecisionLength(Ω(s), u, gn)
for j in 1..l do

(s, finished, r) = MakeTransition(s, u)
rcum = r + rcum
reached = IsReached(gn,Ω(s))
if reached ∨ finished then

break
{this loop is the application of the Macro-
decision (u, l) on the state s}

UpdateTree(rcum, gn) {Pieces of information in a
node which are to update are : (i) the number of sim-
ulations (ii) the average of the cumulative rewards
and (iii) the cumulative reward. All nodes visited
during the simulation (going from the node gn to
root) are updated.}
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Algorithm 24 The policy of GMCTS.

Function ChooseNextGoal(gn)
Let P CG1 a static parameter fixed to 3
if IsLeaf(gn) then

Return ChooseNewGoal(gn)
mode = 1
if rand() mod P CG1 6= 0 then
mode = 2

if rand() mod Size(Children(gn)) 6= 0 then
Return ChooseBestGoal(gn,mode)

else
Return ChooseNewGoal(gn)

• or the cumulative reward of its last simulation (mode 2)

The mode 1 is chosen with a probability 1/3 whereas the mode 2 is chosen
with a probability 2/3.

5.6 Experiments

Experiments with CluVo+GMCTS algorithm are presented. For the gener-
icity, the algorithm has been applied on another application: optimization of
a draw of letters. First, the letter’s draw testbed is described. Then, results
on this testbed and on the main application of MASH are given. Finally,
results are discussed.

5.6.1 The optimization of a draw of letters

The longest word is a game where a draw of 10 letters is made and the goal
is to produce the longest correct word according to a dictionary of around
300,000 French words7. But, in order to have interesting draws, letters are
not drawn equiprobably. The goal is to find the best distribution of letters
in order to have draws with long correct words (Fig. 5.4).

7http://www.pallier.org/ressources/dicofr/dicofr.html.
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00100 00010 10000 10000 00010 00011 
       A             B              C              D              E              F      

11000 10000 11111 00100 11111 00001
      G             H              I               J             K             L  

10000 10000 00010 00111 11101 00100 
      M             N              O              P            Q              R        

01000 10000 01000 00001 11111 01000
      S              T              U              V             W            X

01010 00010
      Y              Z

Observation

QAKKIW

95% to choose a vowel
5% to choose a consonant

If vowel, the probability of having the letter I is of
45% (i.e. 5/(1+1+5+1+1+2))

Consonant

Add S

Add W

Figure 5.3: Letters distribution in LD(NbL = 5, , ). Top left : a distribu-
tion of letters. Bottom left : an example of the observation given to the
agent which describes this distribution. Top right : the new distribution
after adding the letter S. Adding the letter W does not change anymore the
distribution because the maximal number NbL of W in the distribution is
reached (stationary decision). The new observation given to the agent will
be the same as bottom left with one green zero changed into 1. Bottom
right : a draw in progress. This draw represents distributions at Top; W,
K, I and Q are letters which have the greater probability to be drawn.

Figure 5.4: The longest word. Left: an example of poor draw. The longest
word is only composed of 4 letters. Right: an example of rich draw. The
longest word is composed of 10 letters. By considering these 2 draws in
LD( , , NbDraws = 2), the reward given to the agent is of 7 (i.e. (4+10)/2).
With one of the distributions given in Fig. 5.3, the probability to have the
poor draw is greater than the probability to have the rich draw.
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State

The state is a vector of size NbL × 26; each of the 26 groups contains NbL
features. Each feature is 0 or 1. The state describes a distribution on words
as follows: we randomly draw 10 letters, and we start by randomly draw a
consonant - each consonant has probability proportional to the number of 1
in its features. Then, for each letter, we switch from vowel to consonant or
from consonant to vowel with probability 95%; and letters are drawn among
consonants or vowels with probability proportional to the number of features
at 1 (Fig. 5.3). The initial distribution contains each letter one times.

Decisions

27 decisions are possible. Each decision (except the decision ”not add”)
consists in adding one letter; the feature which is activated among the NbL
corresponding features is randomly drawn.

Reward

The reward is 0 if s is not terminal. When s is terminal, the reward is
computed as the average length of longest words through NbDraws draws.

Terminal State

Let Mal the maximal number of letters we can add in all. A state is terminal
if either Mal letters have been added or the decision ”not add” has been
taken.

For different variants of this problem, the letter’s draw application will
be denoted LD(NbL,Mal,NbDraws). A difficulty of this testbed is that
the reward is stochastic. Like in the MASH application, we work in a setting
with no prior knowledge.

5.6.2 Results

For both applications, all tests have been made with 100 evaluations and all
experiments have been exactly made with the same algorithm. No parameter
has been modified.

Results on the draw of letters

Results of clustering is given in Tab. 5.1.
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iteration of GMCTS

CluVo+GMCTS on Letters’Draw application - LD(20,200,10)
mean cumulated reward

Run 1
Run 2
Min of all runs
Avg of all runs
Max of all runs

Figure 5.5: Results of GMCTS on LD(20,100,10). Run 1 and Run 2 corre-
spond to 2 runs. The mean cumulative reward corresponds to the average
length of longest words on draws of 10 letters.
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iteration of GMCTS

CluVo+GMCTS on Letters’Draw application - LD(100,2000,10)
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Min of all runs
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Figure 5.6: Results of GMCTS on LD(100,1000,10). The errorline of the
average curve is the standard deviation computed on all remaining runs. The
errorline of the curve ”One Run“ is the standard deviation computed through
100 evaluations.
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Application LD(20,200,10) LD(100,2000,10)
Nb Runs 43 35
Iterations between 3 and 4 3 (except one run with 4)
Error 2 0
Incomplete 1 0
Success 40/43 35/35

Table 5.1: Results of clustering on Letter’s Draw application. The row Iter-
ations is the number of iterations of Clustering. The row Error is the number
of runs with bad correlation(s). The row Incomplete is the number of runs
where the correct number of clusters has not been found. The row Success
is the number of runs with complete clustering without bad correlation.

Results of GMCTS are shown in Fig. 5.5 and Fig. 5.6 in which the number
of iterations is the number of simulations of the GMCTS algorithm. The
mean cumulative reward corresponds to the average length of longest words.

Results on the MASH application: ”blue flag then red flag“

Note that CluVo+GMCTS does not work on the ”10 flags” application be-
cause the clustering always fails; results are on the ”blue flag then red flag“
application.

Results of the Clustering are : Over 12 runs, the number of runs with a
bad correlation of features has been of 9. For the 3 other runs, 2 runs needed
5 iterations, one needed 8 iterations. At the end of the Clustering, 2 clusters
have been well found.

Results of GMCTS are presented in the Tab. 5.2.

Discussions

Letter’s draw optimization

The clustering works well. Although in LD(100, 2000, 10) application, the
size of the state space is 5 times larger and the maximal length of a simulation
is 10 times bigger than in LD(20, 100, 10), the clustering works always well
and the GMCTS algorithm does not need more simulations to converge in
average. In a similar application, the french TV game “Des Chiffres et Des
Lettres“, the longest word has in average a length of 8.12 letters (Average
calculated over 275 draws). In Fig. 5.5 and Fig. 5.6, best runs have very
good results; their score (given by the mean cumulative reward) reaches or
exceeds a little 8.12. The score in average (around 7.5) is good, too.
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5.6. EXPERIMENTS

Run Iteration AvgCR Success
1 1 −13.65

10 4.82
100 9.67

2 1 8.87
10 10.62
100 10.2

3 1 12.09± 1.06 81%
10 12.64± 1.03 86%
100 11.38± 1.21 77%

Table 5.2: Results of GMCTS on MASH application. The column Itera-
tion is the number of simulation of GMCTS. AvgCR means the average of
cumulative reward. The optimal cumulative reward is 15. The last column
Success is the percentage of evaluations where the goal ”touch the blue flag
and then the red flag” has been accomplished (through 100 evaluations).

For information, I give best sequences of subgoal found in the experiments
LD(20,200,10) and LD(100,2000,10). A subgoal (cf Section 5.4.1 for the
definition) is labelled by

• either the letter (which the subgoal describes) optionally followed be-
tween parenthesis by the proportion of features to activate (by default,
the proportion is 1)

• or ”finish“ when we want to take a final decision.

In LD(20,200,10), the best sequence of subgoals among all runs is :
O(0.1)−R− A− T − E − S(0.8)−N − I(0.9)− finish

In LD(100,2000,10), the best sequence of subgoals among all runs is :
T − I(0.9)− E(0.8)− L(0.6)−R−N(0.7)− S − A− finish

In french, the 10 most common letters8 are

E S A I T N R U L O

Therefore, GMCTS has added the most common letters in French for im-
proving the draw of letters.

MASH Application: ”blue flag then red flag“

The results are slow but stable. With 12 restarts on the clustering stage (2
hours each), we get 3 successes (which were detected as successes by heuristics

8http://en.wikipedia.org/wiki/Letter frequency
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5. LEARNING PRIOR KNOWLEDGES

without further testing); then, GMCTS could be successful on each of these
3 runs (8 hours each run). So on a parallel machine all this could be done
in 10 hours, or 48 hours on a sequential machine. The success rate of CluVo
is 25%9 (tested on 12 runs, and success can be detected on the fly) and the
success rate of GMCTS is 100% (i.e. the goal ”touch the blue flag then touch
the red flag“ is successfully found).

For information, like in the precedent discussion on results about the draw
of letters, I give some sequences of subgoals found by GMCTS in the MASH
application. The name of the subgoal (i.e. blue or red) is labelled by the
color which the subgoal describes. On the second run given in Tab. 5.2, the
best sequence of subgoals was:

• after 1 simulation
blue(0.8)− red(0.3)

• after 10 simulations
blue− red

• after 100 simulations
blue(0.8)− blue− blue(0.2)− red− red(0.5)

After 10 simulations, GMCTS had found the optimal sequence of subgoals
(i.e. blue− red). Why GMCTS has not converged to the optimal sequence?
In fact, touching the blue flag several times is not penalized whereas touching
the red flag without touched the blue flag is penalized by -5. Thus, it is better
to be sure to have touched the blue flag (even trying again and again) before
going to the red flag.

5.7 Conclusion

In this chapter, we have proposed a generic algorithm CluVo+GMCTS which
solves a very complex10 task in an unknown environment of large size. In
this environment, the semantics of decisions are unknown, there is no prior
knowledge and pure random search gives very rarely an informative reward.
Our approach combines macro-actions, categorization of actions, feature se-
lection, subgoal learning, clustering and Monte-Carlo Tree Search. The Clus-
tering method tries to learn some knowledge and from those results, GMCTS

9On n machines (one CluVo per machine), the success rate of CluVo would be around
1− (3/4)n; this good parallel behavior is because we can detect successful runs of CluVo
by considering empirical performance of GMCTS after the n instances of CluVo.

10the complexity is due to the agnostic context and without prior knowledge.
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5.7. CONCLUSION

tries to find a strategy for reaching the goal. The genericity of the algorithm
has been shown on 2 applications. 2 applications is not a big number, but
they are very different, and no knowledge about the problem has been in-
cluded. Clearly, 2 applications is not enough for showing the genericity of an
approach, but further tests are in progress.

In further work, we will compare GMCTS with other algorithms such as
Nested Monte-Carlo Search adapted to goal space. This work is a step in the
direction of truly generic algorithms for very difficult settings, with no prior
knowledge on actions, rewards, transitions. In the future we might extend
the genericity by (i) testing on additional problems (ii) if necessary reworking
the algorithm.
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For solving complex tasks under 4 difficult constraints

1. the number of states is huge

2. the reward carries little information

3. small probability to reach quickly a good final state

4. no knowledge or inexploitable knowledge

several answers have been brought:

• simulating using the exploration/exploitation compromise

• reducing the complexity of the problem by local searches

• building policies using genetic programming

• learning prior knowledge

and so, we have proposed respectively 4 solvers:

• 2 model-based algorithms:

– Monte-Carlo Tree Search

– GoldenEye (a mix between MCTS and A*)

• 2 model-free algorithms:

– RBGP (using bandits/races for genetic programming)

– CluVo+GMCTS (using clustering of features, macro-actions, sub-
goals and Monte-Carlo Tree Search)

We will make a point about these algorithms and then we will discuss
about several open questions.

Monte-Carlo Tree Search: The Monte-Carlo Tree Search has proved
its efficiency in the Game of Go. MoGo, our software of Go, won the
first ever 9x9 game against a top pro11 as black. In 2012, Zen, the
best Go program, has beaten Takemiya Masaki a 9p professional player
with only 4 handicap stones. The first victory of a machine against a pro-
fessional Go player in an even game on the big 19×19 board is getting closer.

GoldenEye: Our GoldenEye solver handles the problem of searching
local tasks in a global environment; the solving starts locally but gradually

11the top pro was Zhou Junxun (9p)
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expands over the whole board if necessary. GoldenEye algorithm (in partic-
ular the local search) is a first step for a generic integration of exact solver
in MCTS.

MCTS and GoldenEye don’t work on MASH applications because they
need a model.

RBGP: We have proposed a Direct Policy Search called RBGP which
optimizes a Monte-Carlo Tree Search by automatically adding knowledge.
RBGP validates rigorously the added knowledge by taking into account Mul-
tiple Simultaneous Hypothesis Testing. RBGP has given good results for
improving MoGo.

RBGP does not work on Mash. RBGP needs many simulations for
validating rigorously a mutation; simulations in MASH are much too
expensive.

CluVo+GMCTS: The CluVo+GMCTS algorithm is the only algorithm
which has worked on the main MASH application. It combines several meth-
ods such as Categorization of decisions, Macro-Decisions, Clustering, Monte-
Carlo Tree Search12 on subgoals and Vote.

The categorization of decisions enabled to do more intelligent simu-
lations by avoiding useless or backward decisions and macro-decisions have
been a tool for exploring efficiently the environment.

The clustering (CluVo) on features has been useful for solving a com-
plex task with no assumption about the architecture of the state. From the
results of clustering, subgoals have been defined. The main MASH task is
simple (i.e. blue flag then red flag) but it needs a memory (due to partial
observation) and it might be more complicated such as blue flag then red flag
then yellow flag, the red flag again to do x > 0 times. Without clustering
and a definition of subgoal, it seems impossible to solve this kind of goal.

Then, GMCTS used efficiently the results of clustering for solving tasks.
GMCTS has built the memory (required for solving the main Mash problem)
but has not been the main component of the policy for making a decision.

This is the vote which has been the main component of the policy. The
vote has been efficient for

• guiding simulations used to generate database before clustering

• accomplishing a subgoal

12Note that MCTS can be applied because it’s not the classical Monte-Carlo Tree Search
- nodes are not states but goals (The ’G’ of GMCTS) and edges are not actions but
selections of goal.
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My two main applications are the game of Go and the Mash framework.
The game of Go has a model whereas MASH is model-free. We have seen
algorithms for solving the game of Go, but these algorithms were based on
the model and knowledge of this game.

Go without knowledge. Go can be implemented as a stochastic game
without knowledge and without model. In this case, MCTS can not be
applied. RBGP should give some results but the engine would remain weak;
this depends on the definition of the policy and mutations. It might be
possible to apply CluVo+GMCTS on this version, since a stone can be seen
as a feature which votes for a move. This would require much care on how
to implement the game of Go.

Building a model for using Monte-Carlo Tree Search? Even if all
algorithms presented in this thesis are based on simulations, unfortunately
the same exact algorithm could not be used on both applications (i.e. the
Game of Go and MASH) because the game of Go has a model which tells us,
given a state and an action, in which state we arrive, whereas in MASH we
are obliged to execute the action (which is expensive) to find out, and we can
not go back (i.e. MASH is model-free). Although GMCTS is a Monte-Carlo
Tree Search, the algorithm is different to the Monte-Carlo Tree Search used
in MoGo, because the decision space of GMCTS is made from subgoals.

Would it be possible to build, in a more automatic and a more generic
way, a model on MASH so as to use Monte-Carlo Tree Search more directly
than in the present work? Some algorithms are able to learn a model of
the problem [Bongard et al., 2006] [Schmidt and Lipson, 2009]. Simulations
are an efficient tool for difficult problems with a precise model, such as de-
layed reward and/or partially observable games (e.g. many wins in phantom-
go [Cazenave and Borsboom, 2007] and [Cazenave, 2006]). My work already
guides simulations with macro-actions and above all integrates a MCTS in a
context model-free and slow, via the learning on the fly, in a model.

Monte-Carlo Tree Search and a lot of other algorithms could be applied
and therefore, numerous new doors would be open.
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Täıwan, Province De Chine.

[Hoock et al., 2010] Hoock, J.-B., Lee, C.-S., Rimmel, A., Teytaud, F., Tey-
taud, O., and Wang, M.-H. (2010). Intelligent Agents for the Game of Go.
IEEE Computational Intelligence Magazine.

[Hoock and Teytaud, 2010] Hoock, J.-B. and Teytaud, O. (2010). Bandit-
Based Genetic Programming. In 13th European Conference on Genetic
Programming, Istanbul, Turkey. Springer.

[Hoock and Teytaud, 2011] Hoock, J.-B. and Teytaud, O. (2011). Progress
Rate in Noisy Genetic Programming for Choosing λ. In Artificial Evolu-
tion, Angers, France.

[Hunter, 2003] Hunter, R. (2003). Counting Liberties and Winning Captur-
ing Races. Slate and Shell.

180



BIBLIOGRAPHY

[Kato, 2009] Kato, H. (2009). Post on the computer-go mailing list, october.

[Kato and Takeuchi, 2008] Kato, H. and Takeuchi, I. (2008). Parallel monte-
carlo tree search with simulation servers. In 13th Game Programming
Workshop (GPW-08).

[Kishimoto and Müller, 2003] Kishimoto, A. and Müller, M. (2003). Df-pn
in go: An application to the one-eye problem. In ACG, pages 125–142.

[Knuth and Moore, 1975] Knuth, D. E. and Moore, R. W. (1975). An anal-
ysis of alpha-beta pruning. Artif. Intell., 6(4):293–326.

[Kocsis and Szepesvari, 2006] Kocsis, L. and Szepesvari, C. (2006). Bandit-
based monte-carlo planning. In ECML’06, pages 282–293.

[Korf, 1985] Korf, R. E. (1985). Depth-first iterative-deepening: An optimal
admissible tree search. Artificial Intelligence, 27:97–109.

[Koza, 1992] Koza, J. R. (1992). Genetic Programming: On the Program-
ming of Computers by means of Natural Evolution. MIT Press, Mas-
sachusetts.

[Lai and Robbins, 1985] Lai, T. and Robbins, H. (1985). Asymptotically
efficient adaptive allocation rules. Advances in Applied Mathematics, 6:4–
22.

[Lee et al., 2009] Lee, C.-S., Wang, M.-H., Chaslot, G., Hoock, J.-B., Rim-
mel, A., Teytaud, O., Tsai, S.-R., Hsu, S.-C., and Hong, T.-P. (2009). The
Computational Intelligence of MoGo Revealed in Taiwan’s Computer Go
Tournaments. IEEE Transactions on Computational Intelligence and AI
in games, pages 73–89.

[Lichtenstein and Sipser, 1980] Lichtenstein, D. and Sipser, M. (1980). Go
is polynomial-space hard. J. ACM, 27(2):393–401.

[Mcgovern et al., 1997] Mcgovern, A., Sutton, R. S., and Fagg, A. H. (1997).
Roles of macro-actions in accelerating reinforcement learning. In In Grace
Hopper Celebration of Women in Computing, pages 13–18.
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MCTS: a revolution in the game of Go

Principle of MCTS (Coulom, 2006)

Principle

Construction of an unbalanced subtree of possible futures

Evaluation through Monte-Carlo simulations

Use a formula to bias the subtree

typically, a bandit formula (e.g. UCB1 - Auer & al., 02)

3 main steps

Descent in the subtree

Evaluation of the leaves

Growth and update of the subtree
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MCTS: a revolution in the game of Go

Principle of MCTS - after a first simulation
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MCTS: a revolution in the game of Go

Principle of MCTS - after a second simulation
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MCTS: a revolution in the game of Go

Principle of MCTS - after a third simulation
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MCTS: a revolution in the game of Go

Principle of MCTS - after a fourth simulation
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MCTS: a revolution in the game of Go

Principle of MCTS - after a fifth simulation
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Parallelization

Improving MCTS

Limited efficiency of parallelization

Adding prior knowledge ==> not so easy (gnugo
counter-example)

This thesis: adding prior knowledge
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Parallelization

Example: Slow tree parallelization (Gelly & al, 2008)

Principle (Cazenave & Jouandeau, 2007)

Each computation node builds his own tree.
Every T0 second:

average statistics in the tree for all nodes

with a depth ≤ K
with at least Nmin simulations

Variant:
slow root parallelization: only the root is considered
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Parallelization

Principle of Slow tree parallelization - 2 trees
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Parallelization

Principle of Slow tree parallelization - conditions for merging
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Parallelization

Principle of Slow tree parallelization - results after merging
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Parallelization

Results on MoGo, our MCTS engine of Go (Bourki & al, CG 2010)

Speed-up of slow tree parallelization

Plateau reached around 16 cores in 9x9

Regular improvement in 19x19
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Parallelization

Scalability of the MCTS on games

games

ability to play better when additional computational power or
time is provided

Scalability of the MCTS for the game of Go

Summary

The 2N vs N performance decreases with N
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Different ways for generating prior knowledge in MCTS

Adding prior knowledge ==> not so easy (Gelly, 07)
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Different ways for generating prior knowledge in MCTS

Where will we add/build prior knowledge in MCTS?
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2 Adding static prior knowledge (= patterns)

3 Adding dynamic prior knowledge (= local solver)
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6 Conclusion
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Formula for biasing the tree

Using exploration/exploitation formula for biasing the subtree

Formula in MoGo

score(d) = αp̂(d) + β��p(d) + (γ + C
log(2+n(d)))H(d)

3 terms

p̂(d) = online estimate

��p(d) = RAVE values (not detailed here; knowledge from
simulations)

H(d) = offline learning + exploration
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Introducing expert knowledge in the formula

Introduce expert knowledge Vexpert in the formula score

Vexpert is added in 2 terms:

H(d)+ = Vexpert(d)

roughly speaking, ��p(d) = initialized at Vexpert (virtual wins)
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Introducing expert knowledge in the formula

Contributions (Chaslot & al, ACG 2009)

Human prior knowledge

Static prior knowledge

handcrafting Vexpert

tuning expertise weight C

Results

one pattern, small improvements (< 1%).

cumulated, 63.5%± 0.5 against the baseline.
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Outline

1 Introduction

2 Adding static prior knowledge (= pattern matching)
3 Adding dynamic prior knowledge (= local solver)

Unsolved local situations
GoldenEye

Detection of this local situation
Resolution
Improving the resolution : the heuristic inhibition

Results
GoldenEye in MoGo

4 Validating prior knowledge (RBGP)

5 Building prior knowledge (CluVo+GMCTS)

6 Conclusion
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Unsolved local situations

Play or not in the semeai ? Unsolved situation in spite of comput.
power
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Unsolved local situations

GoldenEye (Unpublished)

A tactical solver

detect these situations

solve them
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GoldenEye (detection)

GoldenEye

Detection by patterns?

too numerous shapes

semeai = XOR between groups’lives

A statistical approach

ADsims(s1, s2) = frequency of s1 alive and s2 dead in sims
simulations

semsims(Sb, Sw) = ADsims(Sb, Sw) + ADsims(Sw, Sb)

2 stones Sb and Sw are in semeai if:
semsims(Sb, Sw) ≥ ρ

Semeais built by aggregation of stones.

Other approach

Criticality (Coulom, 2009)
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GoldenEye (detection)

Detection depending on ρ
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GoldenEye (resolution)

Local search

Local search

Control the expansion of moves

Efficient evaluator

Expansion of
moves
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GoldenEye (resolution)

Monte Carlo simulation

Situation: End game between 2
professional players

Resolution
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GoldenEye (resolution)

After 9 iterations
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GoldenEye (resolution)

MCTS*

A combination between MCTS and A*

browse a part of the tree

for choosing a leaf (A*)

launch a MC simulation from this leaf (MCTS)

update the tree

Other approaches

Proof Number Search (Allis & al, 1994) and variants (e.g.
Winands & al, 2002).
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The heuristic inhibition

Inhibition

Principle: a temporary pruning

A node is inhibited if its k last simulations have been lost.

A node is reactivated if all brothers are inhibited or solved.

When a node is reactivated, all brothers are also
reactivated.

When inhibited, the node and the resulting subtree are not
visited anymore

Advantages

Reduce considerably the part of the tree to browse.

Avoid to spend time in recently refuted variants.

Controlling the branching factor (i.e. nb children at each node)
Progressive Widening (Coulom, 07), Progressive Unpruning (Chaslot, 07) ...
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Results

10 semeais from Yoji Ojima, the author of Zen. Black to play.
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Results

Impact of the heuristic H2 : inhibition (1/2)

In difficult semeais,

Fully solved more rapidly.
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Results

Impact of the heuristic H2 : inhibition (2/2)

With a same number of simulations

Exponentially less spent time

Less used memory
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Results

Comparison GoldenEye and MoGo

Comparison

In terms of simulations, GoldenEye is better

In terms of time, GoldenEye and MoGo are similar
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GoldenEye in MoGo

How to introduce dynamic prior knowledge in MoGo? (Bourki & al,
CG 2010)

Two solutions for using dynamic knowledge:

by Expertise

by Conditioning

Expertise

We introduce a bias in the score.

Conditioning

All simulations not consistent with the solver are discarded and
replayed.
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GoldenEye in MoGo

Play or not in the semeai ?

Results

We get an improvement when the semeai
should be played (MoGo+exp.+cond.)

We get no improvement when the semeai
should not be played
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Introduction

Outline

1 Introduction

2 Adding static prior knowledge (= patterns)

3 Adding dynamic prior knowledge (= local solver)
4 Validating prior knowledge

1 Evolutionary algorithm
2 Application to MCTS
3 Statistics
4 RBGP Algorithms
5 Experiments

5 Building prior knowledge (CluVo+GMCTS)

6 Conclusion
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Evolutionary algorithm

Evolutionary algorithm

Evolutionary algorithm

automatic building of a program by trial (mutation) and
error (test)

solving a task

3 main troubles
1 cost of the evaluation of a mutation
2 size of the huge set of possible mutations
3 stochastic fitness function
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Evolutionary algorithm

Noisy evolutionary algorithm

Noisy EA with binary fitness values

I have a program P;

I have a set S of possible mutations on P;

One Monte-Carlo evaluation of P+ m for m ∈ S provides:

Either I get a win versus P (fitness = 1);
or I get a loss (fitness = 0).

We want:

to find a good mutation in S
(expectation > 0.5, if any);
not to validate a bad mutation.
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Evolutionary algorithm

Evolutionary algorithm

Evolutionary algorithm

automatic building of a program

2 main issues
1 load balancing
2 statistical validation

bandit-based approach
⇒ load balancing

racing-based approach ⇒ both!
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Application to MCTS

Application to MCTS

1st wins vs pros in the game of Go
by our program MoGo

better if good “bias”

handcrafting this bias ?

boring
tedious
uneasy (error prone)
biased by human ideas

⇒ EA!

Goals

automatize random generation of
patterns

automatize validation
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Application to MCTS

Validation/rejection of multiple mutations

MSHT effect

difficult

so many trials ⇒ cumulated risk:

5% of risk per test + 100 tests = 99.4% of risk
(= 1 − (1 − 0.05)100).

whenever we have 95% confidence, if 100 trials, with
probability 99.4%, we accept a bad modification.
⇒ Multiple Simultaneous Hypothesis Testing
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Statistics

Validation by Hoeffding bounds or Bernstein bounds (V. Mnih & al,
2008)

Hoeffding’s bound

deviationHoeffding(δ, n) =
�

log(2/δ)/(2n). (1)

Bernstein’s bound

deviationBernstein = σ̂
�

2 log(3/δ)/n+ 3 log(3/δ)/n (2)

Bernstein bounds versus Hoeffding bounds

Bernstein better if small variance

here variance roughly 1/4

so, we keep Hoeffding
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Statistics

Racing algorithms

Stopping algorithms

running tests until validation or rejection

Bandit algorithms

distributing the computational effort among individuals

Racing algorithms = bandit + stopping

distributing the computational effort plus validating
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RBGP Algorithm

RBGP Algorithm (Hoock & O. Teytaud, EuroGP 2010 and EA 2011)

RBGP algorithm.
S = S0 = some set of mutations.
while S �= ∅ do
Select s ∈ S // the selection rule is not specified here

// (the result is independent of it)
Let n be the number of simulations of mutation s.
Simulate s n more times (i.e. now nbSim(s) = 2n).

//this ensures nbTest(s) = O(log(nbSim(s)))
computeBounds(s)
if lb(s) > 0.501 then
Accept s; exit the program.

else if ub(s) < 0.504 then
S = S \ {s} s is discarded.

end if
end while
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RBGP Algorithm

Compute Bounds

Function computeBounds(s) (for countable S)
Static internal variable: nbTest(s), initialized at 0.
Let n be the number of times s has been simulated.
Let r be the reward over those n simulations.
nbTest(s) = nbTest(s) + 1
Let i be such that si = s and δi = 6δ/(π2i2).

Let lb(s) = r/n− deviationHoeffding

�
δi/(

�
π2nbTest(s)2

6

�
), n

�
.

Let ub(s) = r/n+ deviationHoeffding

�
δi/(

�
π2nbTest(s)2

6

�
), n

�
.

Parameters

n = number of simulations of mutation s

nbTest(s) = number of times mutation s has been selected
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RBGP Algorithm

Some maths

Risk for tth test of mutation i:

δi/

�
π2t2

6

�

.

�
t>0 δi/(π

2t2/6) = δi ⇒ the risk for mutation i (over all t) is
≤ δi;
�

i>0 δi = δ ⇒ risk (over all i, t) ≤ δ.

⇒ MSHT ok!

Properties of RBGP (with proba ≥ 1 − δ)

Termination: Halts after finite time.

Efficiency: If ∃ mutation ≥ 0.504 ⇒ one pattern found.

Consistency: No bad mutation accepted.

49/91

Introduction Static Dynamic Validation Building Conclusion

Experiments

Protocol

Algorithm

Random pattern = mutation

While(1) S=random set of patterns ; RBGP(S)

3 testbeds

9x9 Go (tested with the program MoGo)

19x19 Go

7x7 NoGo (a variant of Go)
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Experiments

Results

good results in 9x9 Go (53.5% - 4 mutations)

19x19 (with the big database)

probably too strong coefficients
towards adaptive strength of mutation ?

good results in 19x19 Go light, i.e. without the big
database (61% - 6 mutations)

very good results in Nogo (almost 70% - 43 mutations)

Importantly: very difficult for programmers!
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Experiments

Summary

Properties of RBGP

terminates

efficient

consistent

takes into account MSHT effect.

Runtime Analysis

Let λ the size of the population S.

Theoretically, the choice of λ should be log(δ)/ log(1 − f )
(Hoock & Teytaud, EA 2011)

Experimentally, results are nearly the same
==> λ = 1 is sufficient
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Examples

Outline

1 Introduction

2 Adding static prior knowledge (= patterns)

3 Adding dynamic prior knowledge (= local solver)

4 Validating prior knowledge (RBGP)
5 Building prior knowledge (CluVo+GMCTS)

1 MASH framework
2 Algorithm

6 Conclusion
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MASH framework

MASH ==> Without model

MCTS

Requires a model

MCTS unusable

Goal : MCTS usable in PO case without model?

Build a model

MASH framework

no prior knowledge

no model
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MASH framework

Mash framework (1/4)

Environment

Square room

Grey textures
Enclosed by 4 walls

One avatar

2 flags

Blue
Red

View of the avatar
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MASH framework

Mash framework (2/4)

Observation

3 heuristics

Blue
Red
Identity

Each heuristic gives 100,000 features

One feature per pixel

300,000 features ==> 10,000 features

Random sampling

More than 210,000 observations

For the solver

Sequence of numbers (e.g. 0 235 1 0 1 ...)

No notion of heuristics
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MASH framework

Mash framework (3/4)

Action

4 actions

Go forward
Go backward
Turn right
Turn left

For the solver

Actions are 0, 1, 2, 3

==> Agnostic
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MASH framework

Mash framework (4/4): one of the tasks (“blue then red”)

Rewards

Hit a wall: -1

Touch the first time the blue flag: +5

Touch another time the blue flag: 0

Touch the red flag:

After having touched the blue flag: +10 ==> Final state
Without having touched the blue flag: -5

By default: 0

Optimal cumulative reward: +15

For the solver

Moving without touching anything ==> 0

Very rare reward information
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MASH framework

Solving “blue then red“ : a challenge

Easy

Very small action space

No bad final state

Difficult

Huge state space

No prior knowledge

Reward carries little information

Small probability to reach quickly a good final state

The length of a correct sequence of actions could be
greater than 100

Partially observable (PO)

Simulations are expensive

No model
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Algorithm

Motivation

”Philosophy“

Optimize or improve a policy ==> Impossible:

Reward carries little information
No prior knowledge ==> direction toward a good final state
is unknown
Small probability to reach quickly a good final state
Simulations are expensive
==> Random is not an option

First of all, reach a good final state
1 Acquire know-how

Be able to accomplish difficult subtasks

almost impossible randomly
maybe have nothing to do with the real task

2 Combine know-how for accomplishing the task
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Algorithm

Algorithm (Hoock & Bibai, TAAI 2012)

1 Building Macro-Actions (MAs)

categorize actions
build meaningful MAs using the categories

2 Clustering features

Simulate (with macro-actions)
Clustering of features (by merge of clusters)

3 GMCTS

subgoal = a cluster of features
policy with memory = tree of subgoals:
+ start at root
+ in a node, vote: use actions which tend to activate this

node’s features
this tree of subgoals is built using MCTS
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Algorithm

1 Building Macro-Actions (MAs)

categorize actions
build meaningful MAs using the categories

2 Clustering features

Simulate (with macro-actions)
Clustering of features (by merge of clusters)

3 GMCTS

subgoal = a cluster of features
policy with memory = tree of subgoals:
+ start at root
+ in a node, vote: use actions which tend to activate this

node’s features
this tree of subgoals is built using MCTS
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Algorithm

Learning a categorization of actions

Learning

Repetitive scenario

Study of impact

Categorization

stationary (action applied many times ==> state becomes
fixed)

e.g. go forward

periodic (action applied many times ==> loop)

e.g. turn left

inverse (action a + action b = action b + action a = no
action)

e.g. turn left and turn right
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Algorithm

Macro-actions

Remark

Simulations very expensive

15 actions / second

Random search

Inefficient

Proposed tool 1 : we need Macro-Actions (MAs)

actions repeated several times

==> Better exploration of the environment

Macro Q-Learning (Sutton & al, 1997)

Proposed tool 2 : we use categories of actions for defining MAs

More efficient random simulations

e.g. If last action == turn left then no turn right
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Algorithm

1 Building Macro-Actions (MAs)

categorize actions
build meaningful MAs using the categories

2 Clustering features

Simulate (with macro-actions)
Clustering of features (by merge of clusters)

3 GMCTS

subgoal = a cluster of features
policy with memory = tree of subgoals:
+ start at root
+ in a node, vote: use actions which tend to activate this

node’s features
this tree of subgoals is built using MCTS
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Algorithm

Clustering (CluVo)

Algorithm: An agglomerative approach

Initialization: one feature = one cluster

Repeat
Generate a collection of lists of features

==> Simulations

Merge some clusters

Until the nb of clusters does not change
anymore

Expected behaviour on ”blue then red“:

Finding 2 clusters

Features provided by the red heuristic
Features provided by the blue heuristic
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Algorithm

1 Building Macro-Actions (MAs)

categorize actions
build meaningful MAs using the categories

2 Clustering features

Simulate (with macro-actions)
Clustering of features (by merge of clusters)

3 GMCTS

subgoal = a cluster of features
policy with memory = tree of subgoals:
+ start at root
+ in a node, vote: use actions which tend to activate this

node’s features
this tree of subgoals is built using MCTS
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Algorithm

Policy with memory

Sometimes,

Accomplish several small tasks (subgoals)

Divide and Conquer
Divide & Evolve (Bibai & al, 10), Qcut (Menache & al, 02)

Touching the blue flag then touching the red flag

(1) (2)

policy[ BlueCluster ] policy[ RedCluster ]

Solution

Memory = tree of subgoals
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Algorithm

Memory

Subgoal

Activate the largest possible number of features of a cluster

e.g. MASH application, touch a flag

==> Voting scheme

Voting scheme

Learning statistically with simulations

Representation of the memory

Memory represented by a tree

Tree of subgoals

Node: a subgoal
Edge: decision of subgoal to accomplish
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Algorithm

Learning a sequence of goals

GMCTS

Goal Monte Carlo Tree Search

Algorithm

Loop: 1..maxSimulations

Restart the application
Repeat

Choose the most promising subgoal or create a new subgoal
while subgoal not reached

- Apply voting scheme
- Keep rewards in memory

Until a final state is reached
Update tree (e.g. with kept rewards)

Return the most simulated sequence of subgoals
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Algorithm

Results of combination MA + CluVo + GMCTS

CluVo (2 hours per run including 10 minutes for MA)

12 restarts

3 successes

GMCTS (8 hours per run)

Computational time

48 hours on a sequential machine

10 hours on a parallel machine
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Algorithm

Summary

Efficient simulations

Macro-actions for exploration

Categorization of action for avoiding useless actions

The policy

Generic?

Applied successfully on 2 different applications

e.g. Optimization of a letters draw
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Outline

1 Introduction

2 Adding static prior knowledge (= patterns)

3 Adding dynamic prior knowledge (= local solver)

4 Validating prior knowledge (RBGP)

5 Building prior knowledge (CluVo+GMCTS)

6 Conclusion
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Conclusion

Prior knowledge

static
(patterns)

dynamic (local
solver)

Adding prior knowledge for improving MCTS

By hand

Automatically

Racing-based Genetic Programming
Rigorous validation

Generating prior knowledge for using MCTS in difficult cases

MASH:

PO (tree of subgoals)

expensive simulations

no model
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Perspective

GoldenEye

Compare MCTS* with the state
ot the art (e.g. PNS)

Find new solutions for adding
dynamic knowledge in MoGo

Find other applications for
MCTS*

GMCTS

GMCTS with another definition
of subgoal and another scheme
(instead of voting)

Check the genericity of the
algorithm

RBGP

Choose randomly or adapt the
coefficient of the random pattern,
instead of fixed values

Non pure random patterns?

“Improve” the bound formula

getting rid of the union
bound
better parametrization of
the δi (we want

�
= δ,

many possible cases)
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Thank you!
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Appendix
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AMAF (Gelly & Silver, ICML 2007)

AMAF (=RAVE)

Keep for each node n and each
move d
the number of wins amafWins and
losses amafLosses where d has
been played after n.

Compute a score
��p(d) = amafWins(d)

amafWins(d)+amafLosses(d)

empirical score when d has been
played after n

80/91



Introduction Static Dynamic Validation Building Conclusion

Static : Pattern matching

wempty = −1
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RBGP : Random pattern = Mutation

0.75
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RBGP : The population size

Let λ the size of the population S.

Runtime Analysis

How to choose the parameter λ ?

Bigger λ is, ...

... Better the quality is ...

... But more rapidly the cost increase

Theoretically,
λ = log(δ)/ log(1 − f ) (3)

with f the frequency of good mutations

and δ the risk level chosen by the user

proof in Hoock & Teytaud, EA 2011
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RBGP : Results

9x9 Go

Far less human expertise

positive patterns and negative patterns

Positive patterns

Negative patterns

53.5% +/-0.16 against the baseline
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RBGP : Results

19x19 Go

a lot of human expertise already exists in the full MoGo

no mutation validated by RBGP
not so bad, humans often validate bad mutations :-)
maybe better with smaller mutation strength ?

19x19 with no database - light MoGo

better for saving up memory
faster
easier for RBGP
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RBGP : Results
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RBGP : Results

testbed NoGo

a variant of game of Go

a nice challenge for game developpers according to the
Birs seminar on games

no human expertise
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RBGP : Results
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CluVo+GMCTS : Activate/deactivate features
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CluVo+GMCTS - Voting scheme (1/2) : A simple policy

Voting scheme

Goal ==> Activate the largest
possible number of features of a
cluster.

For a given cluster,

Vote

some features are activated

use these features for choosing an
action

Exploration

No feature is activated

choose an action for activating features

e.g. applied on MASH

Goal ==> Touch
a flag.

For a given flag,

the flag is seen

move toward the
flag

No flag is not seen

find as soon as
possible the flag
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CluVo+GMCTS - Voting scheme (1/2) : Main components of the
policy

Vote

Each activated feature
votes for an action

==> Increase the number
of activated features

Exploration

Some actions activate
more frequently features

==> Activate as soon as
possible some features
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