Préambule Le chaos et la synchronisation

La théorie des systèmes dynamiques a pour but initial la description du mouvement d'un objet comme celui d'une planète ou d'une particule, représenté, en temps continu, par une équation différentielle autonome ou bien, en temps discret, par une application que l'on itère. Elle tient ses origines de la mécanique céleste, avec le travail fondateur de Henri Poincaré motivé par la question de la stabilité du système solaire, qu'il élabora dans son mémoire "Sur le problème des trois corps et les équations de la dynamique" paru en 1890. Sa première découverte fut de réaliser que décrire un mouvement en cherchant à résoudre son équation différentielle associée était une démarche complètement illusoire, une telle solution étant en général impossible à calculer. Dans ses deux traités majeurs "Sur les courbes définies par une équation différentielle" et "Méthodes nouvelles de la mécanique céleste" (publiés respectivement entre 1881 et 1886, et entre 1892 et 1899), il a donc développé une théorie qualitative des équations différentielles basée sur une approche géométrique (plutôt que sur une approche quantitative) et focalisant sur l'ensemble des trajectoires d'une équation donnée (plutôt que sur une solution particulière). On y découvre notamment la notion essentielle d'application de premier retour, qui permet le passage d'un système dynamique à temps continu à un système à temps discret. Le premier grand succès de cette approche fut le théorème de Poincaré- Bendixson (1901, voir [Ben01]), décrivant tous les comportements asymptotiques possibles pour une équation différentielle du plan dont le flot ne s'échappe pas à l'infini. Ce résultat affirme que seulement trois situations peuvent se produire: les trajectoires terminent en des points d'équilibre, ou bien s'enroulent autour d'orbites périodiques, ou dans le dernier cas, s'enroulent autour de cycles limites (c'est-à-dire des cycles composés de points d'équilibre reliés entre eux par des trajectoires appelées connexions hétéroclines).

Poincaré réalisa également que ces connexions hétéroclines et homoclines (trajectoires joignant des points d'équilibre de type "selle" à eux-mêmes) sont la cause de dynamiques beaucoup plus complexes en dimension plus grande, caractérisées par une forte sensibilité aux conditions initiales.

Cette caractéristique leur procure un comportement erratique, imprévisible et ce, malgré leur nature déterministe1 . Après Poincaré, il fallut attendre le travail du météorologue E. Lorenz en 1963 ( [START_REF] Edward | Deterministic nonperiodic flow[END_REF]) pour avoir le premier exemple explicite de système différentiel exhibant une telle sensibilité. Ce n'est qu'en 1975 que l'expression systèmes dynamiques chaotiques fut employée par les mathématiciens T-Y. Li et J.A. Yorke dans [START_REF] Tien | Period three implies chaos[END_REF], sans qu'ils en aient donné une définition rigoureuse. Le chaos est le premier des deux concepts-clés sur lesquels repose cette thèse.

Depuis les années soixante-dix, une grande partie des travaux en systèmes dynamiques fut consacrée à la caractérisation du chaos. Dans le cadre topologique, i.e celui des applications T : X → X continues sur un espace métrique X le plus souvent compact, de nombreuses définitions ont été proposées. Elles reposent sur un ensemble de propriétés qui traduisent toutes, avec plus ou moins de précision, une forme d'instabilité des trajectoires. Parmi ces propriétés, on entend précisément (i.e mathématiquement) par sensibilité aux conditions initiales la définition suivante:

Définition 0.1. Soit (X, d) un espace métrique et T : X → X une application continue. On dit que le système dynamique topologique (X, T) possède la propriété de sensibilité aux conditions initiales lorsqu'il existe une constante c > 0 telle que:

∀x ∈ X, ∀ > 0, ∃y ∈ X, ∃n ∈ N : d (x, y) < et d (T n (x) , T n (y)) > c.

Cette définition exprime que pour n'importe quelle condition initiale, il existe des points aussi proches que l'on veut de celle-ci dont les orbites associées s'éloigneront (au moins à un instant) d'un écart fixé de la trajectoire initiale. Une autre propriété que nous retiendrons (locale cette fois, à l'inverse de la sensibilité qui est une notion globale) est l'entropie topologique ( [START_REF] Adler | Topological entropy[END_REF]), définie comme suit: Définition 0.2. Soit (X, d) un espace métrique compact, et T : X → X une application continue. Pour > 0 et n dans N, un couple de points (x, y) est dit (n, )-séparé lorsqu'il vérifie: max 0≤k≤n d T k (x) , T k (y) > . Notant H n, le cardinal maximal des familles de X dont tous les couples de points distincts sont (n, )-séparés, l'entropie topologique h top (T) est définie par:

h top (T) = lim →0 lim sup n→+∞ 1 n ln (H n, ) .
Le terme H n, représente le nombre d'orbites que l'on peut distinguer au bout d'un temps n, si l'on dispose d'une précision de taille . L'entropie topologique est alors le réel h pour lequel H n, croît en exp (hn), quand n tend vers l'infini: lorsqu'elle est strictement positive, cette quantité est donc significative d'un désordre élevé. Cette autre marque du chaos est décorrélée de la précédente, à savoir qu'aucune des deux n'implique l'autre. Mentionnons que l'entropie ne dépend pas de la métrique choisie, d'où son qualificatif "topologique". L'objet de cette thèse n'étant pas de discuter des liens entre les différentes définitions possibles du chaos (voir à ce sujet [START_REF] Blanchard | On Li-Yorke pairs[END_REF], [START_REF] Blanchard | Asymptotic pairs in positive-entropy systems[END_REF], [START_REF] Huang | Devaney's chaos or 2-scattering implies Li-Yorke's chaos[END_REF]), nous dirons qu'un système est chaotique si son entropie topologique est strictement positive et établirons, dans la première partie, un comportement typiquement responsable de la présence d'entropie. Le chaos a été également étudié pour des systèmes dynamiques mesurés (voir [START_REF] Ledrappier | The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula[END_REF], [START_REF] Ledrappier | The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension[END_REF], [START_REF] Eckmann | Addendum : "Ergodic theory of chaos and strange attractors[END_REF], [START_REF] Benedicks | Sinaȋ-Bowen-Ruelle measures for certain Hénon maps[END_REF], et [START_REF] Young | What are SRB measures, and which dynamical systems have them ?[END_REF] pour une présentation générale du sujet), auquel cas l'espace X est muni d'une mesure invariante par l'application T, mais nous ne considérerons pas ce cadre moins adapté à notre étude. Nous reviendrons sur ce point dans l'Introduction.

La synchronisation est la deuxième notion-clé sur laquelle se base cette thèse. Etant donné un système dynamique composé de sous-systèmes, elle désigne la propriété que ceux-ci se comportent de la même manière au même moment. Cela signifie que leurs trajectoires associées se calquent les unes sur les autres ( [START_REF] Rosenblum | Synchronization : From pendulum clocks to chaotic lasers and chemical oscillators[END_REF]). Historiquement, c'est Chrystiaan Huyghens qui découvrit en 1673 ce phénomène grâce à deux horloges suspendues à une poutre non fixée: comme il l'expliqua dans ses mémoires "Horologium Oscillatorium", au bout d'un certain temps le mouvement de la poutre provoque l'entrée en phase des oscillations des deux pendules. Avec le développement de la théorie des systèmes complexes depuis les années quatre-vingt, cette propriété émergente a été rencontrée à toutes les échelles de la vie courante ( [START_REF] Pikovsky | Synchronization : a universal concept in nonlinear sciences[END_REF]). En biologie, au niveau des réseaux de neurones ( [START_REF] Buzsaki | Neuroscience neuronal oscillations in cortical networks[END_REF], [START_REF] Eytan | Dynamics and effective topology underlying synchronization in networks of cortical neurons[END_REF]), du système cardiovasculaire (synchronisation des battements du coeur et des respirations [ABJ + 00a], [ABJ + 00b]), des rythmes circadiens, en physique ( [START_REF] Kuramoto | Chemical oscillations, waves, and turbulence[END_REF], [START_REF] Herbert | Synchronized chaos and spatiotemporal chaos in arrays of coupled lasers[END_REF]), en économie, en électronique ( [START_REF] Pecora | Synchronization in chaotic systems[END_REF], [START_REF] Campos-Cantón | A simple electronic circuit realization of the tent map[END_REF]), dans le domaine des télécommunications ( [START_REF] Colet | Digital communication with synchronized chaotic lasers[END_REF]) etc. Parmi les différentes formes de synchronisation, il en est une particulièrement importante dans le cadre de ce travail: la synchronisation chaotique ([PC90], [START_REF] Aziz-Alaoui | Synchronization of chaos[END_REF]). Etant donnés deux systèmes chaotiques définis par la même fonction (ou bien par la même équation différentielle), il est possible de les coupler de sorte qu'une synchronisation ait lieu, tout en préservant la dynamique chaotique initiale: les trajectoires effectuent alors (asymptotiquement) le même comportement erratique au même moment. Ce phénomène est remarquable en ce qu'il n'est pas possible de reproduire concrètement deux fois la même trajectoire d'un système chaotique, du fait de sa sensibilité aux conditions initiales.

La notion de désynchronisation

Un autre point de vue sur la synchronisation, à l'origine de ce travail, est la synchronisation maîtreesclave. Elle fut découverte par L.M. Pecora et T.L. Caroll en 1990 ([PC90], [START_REF] Pecora | Driving systems with chaotic signals[END_REF]) alors qu'ils travaillaient sur le système de Lorenz. Rappelons-en les équations:

     ẋ = σ (y -z) ẏ = rx -y -xz ż = xy -bz
, où σ, r, b sont des paramètres. E. Lorenz en a exhibé certaines valeurs pour lesquelles le modèle présente numériquement une forte sensibilité aux conditions initiales. L.M. Pecora et T.L. Caroll ont remarqué que, pour toute solution (x(t), y(t), z(t)) du système, les solutions du système non autonome "dirigé" par la coordonnée x:

Ẏ = rx (t) -Y -x (t) Z Ż = x (t) Y -bZ , vérifient: lim t→+∞ |y (t) -Y (t) | = lim t→+∞ |z (t) -Z (t) | = 0.
La coordonnée "maître" x détermine aymptotiquement les coordonnées "esclaves" y, et z, le long d'orbites. Cette propriété fut appelée synchronisation maître-esclave en 1995 par C. Tresser, P.A. Worfolk et H. Bass ( [START_REF] Tresser | Master-slave synchronization from the point of view of global dynamics[END_REF]), pour éviter la confusion avec la notion de synchronisation présentée ci-dessus. Sous un autre point de vue, E. Pécou découvrit la remarquable propriété suivante ( [START_REF] Pécou | Desynchronization of one-parameter families of stable vector fields[END_REF]).

Reprenons le système non autonome ci-dessus, Ẏ = rλ -Y -λZ Ż = λY -bZ , dans lequel on a cette fois remplacé la trajectoire x(t) par un paramètre λ. Pour chaque valeur de ce paramètre, ce système admet un point d'équilibre asymptotiquement stable. La question se pose alors de savoir s'il est possible de briser cette stabilité en imposant une dynamique sur λ, de sorte que le système devienne chaotique. Si l'on met une action extérieure sur le paramètre λ alors la réponse est non (voir [START_REF] Pécou | Desynchronization of one-parameter families of stable vector fields[END_REF]). Si au contraire on ajoute une équation en λ, laissant ainsi ce paramètre évoluer selon les autres variables du système, alors il est possible d'induire un tel chaos. Il suffit par exemple d'ajouter l'équation en x du système de Lorenz et de choisir les bonnes valeurs des paramètres σ, r, b. Cette déstabilisation fut appelée désynchronisation par E. Pécou, qui démontra qu'elle n'était pas uniquement valable pour le modèle de Lorenz: dans [START_REF] Pécou | Desynchronization of one-parameter families of stable vector fields[END_REF], elle prouva qu'étant donnée une famille à un paramètre de champs de vecteurs lisses sur R n , admettant pour chaque valeur de ce paramètre un unique point d'équilibre asymptotiquement stable, il est possible de désynchroniser ce système en ajoutant une équation en ce paramètre (nous reviendrons sur ce résultat dans l'Introduction).

Cela nous amène à la question suivante, qui sera le premier problème que nous traiterons dans cette thèse: Etant donné un système présentant une dynamique stable, sous quelles conditions peuton le désynchroniser? La reformulation mathématique de ce problème est la suivante: considérons une famille à un paramètre (f λ ) λ∈R de champs de vecteurs lisses sur R n (ou plus généralement sur une variété différentielle) 2 , admettant un point d'équilibre x 0 pour une certaine valeur du paramètre λ 0 . A quelles conditions sur (f λ ) λ∈R peut-on construire une fonction lisse g : R n+1 → R telle que le système dynamique: ẋ = f (x, λ) λ = g (x, λ) , où f (x, λ) = f λ (x) soit chaotique au voisinage du point x 0 ? Suivant l'approche d'E. Pécou, nous nous intéresserons à ce problème (dans la première partie) sous l'angle de la biologie systémique, plus particulièrement des réseaux de régulation génique, pour lequel il présente un intérêt concret clair: une désynchronisation d'un organisme encombrant pourrait être un moyen d'aboutir à sa destruction, par exemple à l'apoptose dans le cas d'une cellule cancéreuse.

Inversement, plutôt que de chercher à déstabiliser, désynchroniser une dynamique stable, on peut bien sûr essayer de contrôler, stabiliser un comportement imprévisible. La synchronisation de systèmes chaotiques est un exemple d'une telle approche, en ce sens qu'elle permet à l'ensemble de ces composantes, vu comme un nouveau (grand) système, d'avoir une dynamique ordonnée. Dans ce contexte, le deuxième problème que nous traiterons sera celui de la synchronisation de systèmes organisés de manière hiérarchique. Son intérêt vient de l'ubiquité de la hiérarchie dans les structures des systèmes complexes caractérisée par une organisation en cascade des composantes de ces systèmes: celles-ci se rassemblent en des groupes de premier niveau, qui eux-mêmes se réunissent en des groupes de deuxième niveau, ces derniers formant à leur tour des groupes de troisième niveau, et ainsi de suite... Nous définirons un cadre mathématique pour étudier la synchronisation de systèmes présentant une telle organisation.

Introduction 1 Préliminaires sur les systèmes dynamiques chaotiques 1.1 Application fer à cheval de Smale

Parmi les différentes caractérisations du chaos qui existent, celle que nous considérerons est la plus faible:

Définition 1.1. Un système dynamique topologique (X, T) sera dit chaotique si son entropie topologique h top (T) est strictement positive.

L'entropie topologique est une notion invariante par conjugaison, c'est-à-dire que deux systèmes topologiquement conjugués ont la même entropie. Un exemple fondamental de système chaotique est le décalage σ (ou shift), sur les suites à deux symboles indexées par Z, dont l'entropie vaut ln (2):

σ : {0, 1} Z → {0, 1} Z x → (x i+1 ) i∈Z .
Muni de la distance d définie par d (x, y)

= n=+∞ n=-∞ |x n -y n | 2 |n|
, l'ensemble {0, 1} Z est un espace de Cantor (i.e un ensemble compact, d'intérieur vide, sans point isolé), sur lequel σ est un homéomorphisme.

Un autre exemple sur lequel nous nous baserons dans le Chapitre 1 est donné par l'application fer à cheval de Smale. Considérons le carré unité S = [0, 1] × [0, 1]. Une application f de classe C 1 de S dans R 2 est dite de type fer à cheval lorsque f contracte S dans la direction horizontale et l'étire dans la direction verticale (ou l'inverse), de telle sorte que l'image f (S) intersecte S en deux rectangles disjoints V 0 et V 1 . Ceci est illustré par la Figure 1. Il existe de nombreuses manières de construire une telle application, le point important étant l'intersection en deux composantes connexes grâce auquel on peut coder, par un élément de {0, 1} Z , l'orbite d'un point restant dans S sous l'itération de f (voir [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[END_REF], [START_REF] Iooss | Comportement chaotique des systèmes déterministes[END_REF], [START_REF] Wiggins | Global bifurcations and chaos[END_REF]): [START_REF] Smale | Diffeomorphisms with many periodic points[END_REF]). Soit f : S → R 2 une application de type fer à cheval sur le carré unité S. Notons:

Théorème 1.2 ([
Λ = n=+∞ n=-∞ f n (S) . S f (S) f -1 (V 0 ) f -1 (V 1 ) V 0 V 1 1 Figure 1: L'application fer à cheval de Smale
L'ensemble invariant Λ est un ensemble de Cantor sur lequel f est topologiquement conjuguée à l'application décalage σ définie ci-dessus: il existe un homéomorphisme φ : Λ → {0, 1} Z tel que l'on a:

φ • f = σ • φ.
Par invariance par conjugaison nous avons donc:

Corollaire 1.3. Une application de type fer à cheval est chaotique, i.e d'entropie topologique strictement positive.

L'intérêt porté à l'application fer à cheval de Smale vient de ce qu'en un sens elle caractérise le chaos (au sens de l'entropie topologique). Ceci est exprimé par le théorème suivant, dû à A. Katok: [START_REF] Katok | Lyapunov exponents, entropy and periodic orbits for diffeomorphisms[END_REF]). Soit f : M → M un difféomorphisme de classe C 1+α (avec 0 < α < 1) d'une variété compacte de dimension 2. Alors, f est d'entropie topologique strictement positive si et seulement si f ou l'un de ses itérés f n admet un fer à cheval.

Théorème 1.4 ([
Ce résultat justifie la démarche classique que nous emploierons dans le Chapitre 1: pour montrer que le système différentiel étudié présente un comportement chaotique, nous construirons une section de Poincaré pour laquelle l'application de retour associée est de type fer à cheval.

Remarque 1.5. Il est facile de voir que l'application fer à cheval de Smale présente la sensibilité aux conditions initiales sur son ensemble de Cantor invariant. En effet, le shift à deux symboles σ est topologiquement transitif sur le compact infini {0, 1} Z (ceci vient du fait qu'il admet une orbite dense, formée à partir de la concaténation de toutes les suites finies d'ordre impair), et l'ensemble de ses points périodiques est dense dans {0, 1} Z . Il est bien connu (voir [BBC + 92] au sujet du chaos au sens de Devaney) qu'une telle application est sensible aux conditions initiales. Cette sensibilité présentée par l'application fer à cheval renforce encore son importance comme marque du chaos. Pour prouver ce résultat (on pourra également consulter [START_REF] Tresser | About some theorems by L. P. Šil nikov[END_REF], [START_REF] Wiggins | Global bifurcations and chaos[END_REF], [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[END_REF]), on considère un cylindre suffisamment petit autour de l'origine, dont la base est incluse dans le plan tangent à la variété stable W s (O) et dont l'axe est tangent à la variété instable. Le mouvement en spirale dû aux valeurs propres complexes ω ± iω permet de construire une section de Poincaré Σ (associée à une application de retour P) sur le bord de ce cylindre, telle que l'image retour P (Σ) intersecte cette section en plusieurs composantes connexes. Ceci fournit donc une infinité dénombrable de fers à cheval (Figure 2). A noter que le théorème reste le même dans le cas inverse λ < -ω < 0. On retrouve également l'application fer à cheval de Smale dans une autre situation classique de chaos géométrique pour un flot en dimension trois: le modèle géométrique de Lorenz apparu lorsque le problème se posa de savoir si les équations originales de Lorenz (données dans le Préambule) vérifiaient effectivement les propriétés remarquées numériquement. Par la suite de nombreux autres problèmes se sont greffés autour de ce modèle (voir [START_REF] Guckenheimer | Structural stability of lorenz attractors[END_REF], [START_REF] Carlos | On C 1 robust singular transitive sets for three-dimensional flows[END_REF], [START_REF] Viana | What's new on Lorenz strange attractors ?[END_REF]). Le modèle géométrique de Lorenz est un champ de vecteurs G de R 3 ayant l'origine O comme point fixe, dont la Jacobienne en l'origine DG (O) admet trois valeurs propres réelles (λ 1 , λ 2 , λ 3 ) vérifiant: -λ 3 < -λ 2 < 0 < λ 1 . Il admet donc une variété instable de dimension un, composée de deux séparatrices γ -et γ + , et une variété stable de dimension deux W s (O). Dans ce modèle on fait l'hypothèse qu'il existe une section de Poincaré Σ transverse à cette variété stable, l'intersectant suivant une courbe Γ qui sépare Σ en deux composantes Σ -et Σ + (comme illustré par la Figure 3). On suppose également que γ -et γ + rencontrent respectivement Σ + et Σ -, de sorte que les images par l'application de retour P dans Σ, P (Σ -) et P (Σ + ) soient deux composantes connexes intersectant à la fois Σ -et Σ + (Figure 4). De plus, il est demandé l'existence d'un feuilletage F de Σ, en courbes verticales, qui soit invariant par P et sur lequel P est contractante: cela signifie que si l est une feuille de F alors P (l ) est incluse dans F, et que P est contractante sur chacune de ces feuilles.

Σ W s (O) γ Σ P (Σ)
L'application de retour P est donc presque une application de Smale, à ceci près que les deux composantes Σ -et Σ + ne sont pas recouvertes entièrement par leurs images sous P: on peut cependant voir qu'elles contiennent chacune deux rectangles qui le sont, formant ainsi un fer à cheval. On peut aussi établir le comportement chaotique en réduisant la dimension du problème à la dimension un, grâce au feuilletage invariant de Σ. Notant I le segment horizontal de Σ dont il est la base, on peut définir une application f de I dans lui-même, de la manière suivante: à tout point x de I, on associe l'intersection de la feuille contenant P (x) avec I. L'application f qui en résulte est donnée par la Figure 5. Il suffit alors d'appliquer le théorème suivant de M. Misiurewicz, qui est une version unidimensionnelle du théorème de A. Katok ([Kat80]): Théorème 1.7 ( [START_REF]Horseshoes for mappings of the interval[END_REF]). Soit f : I → I une application de l'intervalle I pour laquelle il existe un entier n ≥ 1 et deux sous-intervalles J 1 et J 2 de I d'intérieurs disjoints tels que la réunion J 1 ∪ J 2 soit incluse dans f n (J 1 ) et dans f n (J 2 ). Alors f est chaotique, i.e d'entropie topologique strictement positive. λ du champ F λ , globalement attractant, i.e que les valeurs propres de la Jacobienne DF λ (x * λ ) au point x * λ soient toutes de partie réelle négative. On suppose de plus que:

Σ

1. Il existe une unique valeur propre de partie réelle de module maximal.

2. Il existe une valeur de paramètre λ 0 pour laquelle on a:

∂ λ F λ (x * λ ) |λ=λ 0 = 0.
Alors, on peut construire une application g :

I ×U → R de classe C ∞ telle que le système différentiel dans R n+1 : ẋ = F λ (x) λ = g (λ, x) (1) 
soit chaotique.

Les hypothèses 1 et 2 sont génériques à savoir que, dans l'ensemble des familles de champs de vecteurs (F λ ) λ∈I de classe C k admettant pour chaque valeur λ un point fixe globalement attractant, le sous-ensemble de ceux qui vérifient les propriétés 1 et 2 est une intersection dénombrable d'ouverts denses dans cet ensemble. La topologie sous-jacente est bien sûr la topologie C k sur l'ensemble des champs de vecteurs de R n . En particulier, si ces hypothèses ne sont pas vérifiées par la famille (F λ ) λ∈I , elles le seront par une petite perturbation de celle-ci. Les conditions exigées par ce théorème sont donc faibles. Sans perte de généralité on peut supposer que λ 0 = 0 et que x * λ 0 est l'origine dans R n . La preuve de ce résultat se base sur la construction d'une fonction lisse g : R n+1 → R telle que l'origine dans R n+1 soit un point selle pour le système (1), avec une variété instable de dimension un dont l'une des séparatrices est une orbite homocline. Deux cas se présentent alors. Ou bien la valeur propre de partie réelle de module maximal est complexe, auquel cas il suffit d'appliquer le théorème de Shilnikov, ou bien elle est réelle. Dans ce cas, il est possible de modifier la fonction g de sorte qu'elle admette une deuxième orbite homocline pour laquelle on retrouve une section de Poincaré Σ semblable à celle du modèle géométrique de Lorenz, à ceci près que les triangles images P (Σ -), P (Σ + ) intersectent cette fois uniquement Σ -, Σ + , sans chevaucher ces deux composantes. Il suffit alors de perturber encore la construction de g pour retrouver entièrement la situation (chaotique) de ce modèle.

Outils mathématiques pour l'étude des réseaux de régulation génétique

Le Théorème 1.8 d'E. Pécou que nous venons de présenter a été motivé par la biologie des systèmes, le but de l'auteur étant de montrer qu'il est possible d'induire un comportement chaotique dans un système ayant une dynamique très stable, régulière, ce qui est le cas de nombreux réseaux de régulation génétique, comme nous allons l'expliquer. Suivant la même approche qu' E. Pécou, nous nous intéresserons également à la dynamique de ces réseaux. Leur étude nécessite quelques outils mathématiques de théorie qualitative des équations différentielles, que nous présentons dans cette partie.

Définition et graphe d'interaction

Depuis la découverte de la structure en double hélice de l'ADN dans les années 50 par J. Watson et F. Crick, les progrès de la génétique moderne ont mis en évidence les interactions moléculaires entre les composants majeurs des cellules: interactions protéine-protéine, protéine-ADN, protéine-ARN messager, protéine-métabolite etc. En particulier, il a été constaté que les protéines ne sont pas produites indépendamment les unes des autres, mais contrôlent mutuellement leur production, par exemple en activant ou réprimant la transcription des gènes auxquels elles sont associées. La compréhension de ces interactions est un des enjeux majeurs de la biologie systémique ( Un graphe d'interaction ne contient pas d'informations permettant de quantifier les actions mutuelles des gènes, de telles informations étant généralement absentes dans les données expérimentales. Malgré cela, l'analyse de ces graphes a mis en lumière (non seulement pour les RRG mais pour les réseaux biologiques en général) des propriétés dynamiques observées expérimentalement mais longtemps restées incomprises. Ceci, grâce aux motifs remarquables de ces graphes que sont les circuits (voir [START_REF] Kitano | Looking beyond the details : a rise in system-oriented approaches in genetics and molecular biology[END_REF]), ensembles d'arcs partant et arrivant au même sommet. On dit qu'un circuit est positif lorsque le nombre d'arcs négatifs qui le composent est pair, et qu'il est négatif dans le cas contraire. Par exemple, l'irréversibilité de certains phénomènes issus de processus réversibles a été associée aux circuits positifs ([Tho81]), et le comportement oscillant aux circuits négatifs [START_REF] Tyson | On the existence of oscillatory solutions in negative feedback cellular control processes[END_REF]). Nous reviendrons sur ces deux exemples fondamentaux dans la section suivante.

Modélisation par des équations différentielles

Il existe différents types de modélisation des réseaux biologiques regroupés essentiellement en trois catégories (voir leur présentation dans [START_REF] Jong | Modélisation, analyse et simulation des réseaux génétiques[END_REF]). Le cadre continu, i.e celui des équations différentielles, le cadre stochastique et le cadre logique (voir [START_REF] Thomas | Biological Feedback[END_REF] pour une introduction). D'autres méthodes couplent ces approches, ce sont les modèles hybrides. Conformément à notre premier problème, qui consiste à induire du chaos dans une dynamique stable, le cadre qui nous concerne est clairement celui des équations différentielles. En effet, il ne s'agit pas de considérer un système présentant a priori un comportement aléatoire3 ; en outre l'approche logique ne permet pas d'exprimer correctement un comportement chaotique. Le choix de ce cadre est d'autre part imposé par la formulation mathématique même de notre problème (voir la fin du Préambule). Par rapport à la modélisation stochastique, il suppose que les concentrations des constituants du réseau évoluent de manière continue et déterministe. Cela n'est valable que si l'on fait l'hypothèse que ces composants sont présents en grande quantité (i.e que le nombre de leurs molécules est élevé), ce qui n'est pas toujours le cas ( [START_REF] Mcadams | Stochastic mechanisms in gene expression[END_REF]). Une autre possibilité est de considérer une population de cellules: les équations représentent alors le comportement dynamique moyenné des constituants. Nous supposerons donc implicitement que le réseau que nous étudierons satisfait l'une ou l'autre de ces hypothèses (voir le Chapitre 1).

La modélisation par équations différentielles ([JG03], [START_REF] Murray | Mathematical biology[END_REF], [START_REF] Pécou | Mathematical comments on basic topics in systems biology[END_REF]) se fait souvent par un système autonome ẋ = f (x) dans R n , où n est le nombre de composants du réseau (i.e le nombre de sommets de son graphe d'interaction), et où f désigne une fonction lisse sur R n . Les variables x 1 , • • • , x n représentent l'évolution des concentrations de ces constituants. Leurs interactions sont décrites par les composantes f 1 , • • • , f n de f appelées fonctions de régulation. Un arc positif du gène i vers le gène j correspondra à la croissance de la fonction f j en la variable x i , i.e à la positivité du terme ∂f j ∂x i . De même pour les arcs négatifs. Voici deux exemples fondamentaux de circuit issu d'une telle modélisation.

Circuit négatif

Dans un circuit négatif, un composant du réseau est tour à tour activé puis inhibé, de sorte que sa concentration entre en oscillations. Au sein d'un système biologique, la fonction des circuits négatifs est donc d'être source de stabilité pour son fonctionnement interne, en dépit des perturbations extérieures auxquelles il est soumis ([Tys75], [START_REF] Tyson | Sniffers, buzzers, toggles and blinkers : dynamics of regulatory and signaling pathways in the cell[END_REF]). Ce phénomène de stabilité est appelé homéostasie.

Le modèle de Goodwin ([Goo65], [START_REF] Othmer | The qualitative dynamics of a class of biochemical control circuits[END_REF], [START_REF] Jong | Modélisation, analyse et simulation des réseaux génétiques[END_REF]) est l'archétype du modèle de régulation par "feedback" négatif. Sa description simplifiée est la suivante: un gène code pour une enzyme (sa protéine) catalysant une réaction, à l'issue de laquelle est créé un produit, grâce auquel se fait un contrôle de la transcription de ce gène (Figure 7). Si m désigne sa concentration en ARN messager, e la concentration en enzyme, et g celle en la molécule (co-répresseur) qui cause le blocage de la transcription, alors les équations du modèle sont:

     ṁ = k 1 R θ,n (g) -γ 1 m ė = k 2 m -γ 2 e ġ = k 3 e -γ 3 g
, la fonction R θ,n étant la fonction de régulation du système, définie par deux paramètres θ, n. Elle décrit la dépendance du taux de transcription en le co-répresseur g. Les observations expérimentales ont montré que pour des valeurs de g inférieures à un certain seuil θ la transcription se fait à vitesse (constante) maximale, alors qu'au-dessus de θ elle est presque entièrement bloquée. La fonction R θ,n est donc souvent de forme sigmoïdale (voir Figure 8 ci-dessous), ce qui justifie de la modéliser par l'expression suivante:

R θ,n (g) = θ n θ n + g n .
Le coefficient n, appelé coefficient de Hill, est un indice de coopérativité: c'est une mesure du nombre de protéines devant intervenir dans les réactions biochimiques nécessaires à l'inhibition du gène. Plus n est grand, plus la pente de la sigmoïde est forte. Un autre exemple très connu de représentation d'un comportement oscillant par un circuit négatif est le modèle de J-C. Leloup et A. Goldbeter ([LG98]) qui modélise les rythmes circadiens chez la drosophile.

Circuit positif

Dans les années soixante, F. Jacob et J. Monod ont remarqué l'irréversibilité de certains mécanismes biomoléculaires pourtant issus de processus réversibles. Par exemple, la différenciation cellulaire n'est pas réversible, même si elle résulte de processus biochimiques qui le sont: les cellules ne 

Ȧ = ρ A R B 0 ,ν (B) -γ A A Ḃ = ρ B R A 0 ,µ (A) -γ B B . (2) 
Pour µ, ν ≥ 2 fixés, il est possible de représenter l'ensemble des points d'équilibre de ce système, en fonction d'un paramètre K dépendant des paramètres ρ A , ρ B , A 0 , B 0 , γ A , γ B (Figure 10). Dans cette figure, on remarque l'existence de deux valeurs K * , K * * telles que:

-si K est inférieur à K * , le système ci-dessus admet un unique point d'équilibre asymptotiquement stable.

-Si K est dans l'intervalle ]K * , K * * [, alors il admet trois points d'équilibre: deux stables et un instable.

-Si K est supérieur à K * * , le système admet un unique point d'équilibre asymptotiquement stable. Ce graphe obtenu illustre parfaitement le phénomène d'irréversibilité (appelé hystérèse) expliqué précédemment. Un stimulus externe, faisant varier le paramètre K depuis un seuil K 1 > K * vers un seuil K 0 < K * , fait brusquement passer le système d'un état stable à un autre. En retirant le signal, de sorte que la valeur de K augmente de K 0 vers une valeur supérieure à K 1 , le système demeure (irréversiblement) dans ce même état stable. Ce n'est que pour une très forte augmentation de la valeur de K, au-dessus de K * * , que l'on retrouve l'état stable initial. Pour d'autres exemples de circuits positifs réalisés expérimentalement on pourra consulter les travaux sur l'oeuf Xenopus exposés dans [START_REF] Ferrell | Building a cellular switch : more lessons from a good egg[END_REF], [START_REF] Novak | Numerical analysis of a comprehensive model of m-phase control in xenopus oocyte extracts and intact embryos[END_REF].

K K 1 K 0 K * K * *

Bifurcations locales et perturbations singulières

Ici nous présentons deux théorèmes classiques sur lesquels repose le travail effectué dans le Chapitre 1. Le premier relève de la théorie des bifurcations, le deuxième de la théorie des perturbations singulières, deux théories très utiles pour l'étude qualitative des équations différentielles.

Théorème de Andronov-Hopf

Etant donné un champ de vecteurs défini sur R n , des changements qualitatifs de son portrait de phase peuvent apparaître lorsqu'on fait varier les paramètres définissant ce champ: par exemple l'émergence de deux points fixes, ou un échange de stabilité, ou encore l'émergence d'une orbite homocline. La théorie des bifurcations est l'étude de ces changements soudains de portraits de phase. Dans ce paragraphe, nous présentons un cas classique de bifurcation de codimension un, c'est-à-dire concernant des champs de vecteurs dépendant seulement d'un paramètre: la bifurcation de Hopf. Le lecteur pourra se référer à [IJ90], [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[END_REF] et [START_REF] Wiggins | Global bifurcations and chaos[END_REF] pour une présentation du sujet comprenant des bifurcations de codimension supérieure, ainsi que des bifurcations globales. La bifurcation de Hopf est une bifurcation locale causant l'apparition d'orbites périodiques, au voisinage d'un point critique dont la jacobienne associée admet exactement deux valeurs propres de partie réelle nulle. Quand le paramètre varie au voisinage de la valeur de bifurcation, ce point critique perd sa stabilité et une orbite périodique apparaît. Plus précisément, considérons une famille de champs de vecteurs (f µ ) µ∈R vérifiant les deux hypothèses suivantes:

A1 Il existe une valeur µ 0 et un point critique x 0 du champs f µ 0 tels que la Jacobienne D x f µ 0 x 0 admette deux valeurs propres complexes imaginaires pures ±iβ et n -2 valeurs propres de partie réelle non nulle λ 3 , • • • , λ n .

Considérons la fonction f définie par la relation f (x, µ) = f µ (x). Par le théorème des fonctions implicites, la courbe des zéros de f est, dans un voisinage de x 0 , µ 0 , le graphe d'une fonction lisse en la variable µ, définie sur un intervalle comprenant µ 0 . Nous dénotons par φ = (φ 1 , • • • , φ n ) cette fonction, définie sur un intervalle ouvert U.

A2 Pour µ voisin de µ 0 , soit α (µ) ± iβ (µ) les valeurs propres complexes de D x f µ (φ (µ)) qui sont égales à ±iβ en µ 0 . Nous supposons α (µ 0 ) = 0, ce qui signifie que ces deux valeurs propres traversent l'axe imaginaire pur avec une vitesse non nulle.

Théorème 2.2 ([Hop43]

). Soit (f µ ) µ∈R une famille de champs de vecteurs sur R n satisfaisant les hypothèses A1 et A2 ci-dessus. Alors, il existe un changement de variables C k pour lequel le développement de Taylor de degré trois de f est de la forme:

ẋ1 = α (µ 0 ) µ + b 0 x 2 1 + x 2 2 x 1 -ω + a 1 µ + b 1 x 2 1 + x 2 2 x 2 ẋ2 = ω + a 1 µ + b 1 x 2 1 + x 2 2 x 1 + α (µ 0 ) µ + b 0 x 2 1 + x 2 2 x 2 .
Génériquement le coefficient b 0 ci-dessus est non nul. Dans ce cas, pour µ < µ 0 (µ dans U), il existe une orbite périodique pour le champ f µ . L'ensemble de ces orbites périodiques forme une variété de dimension deux, tangente en x 0 , µ 0 au plan engendré par les parties réelles et complexes des vecteurs propres associés à ±iβ. 

Théorème de Tychonoff

Considérons le système différentiel suivant:

ẋ = f (x, y) ẏ = g (x, y) , (3) 
dans lequel f est une fonction continue lipschitzienne de R n+m dans R n , g une fonction continue lipschitzienne de R n+m dans R m , et > 0 est un paramètre. Naturellement, la question se pose de comprendre le comportement d'un tel système lorsque tend vers 0. En un sens, il s'agit d'une perturbation de l'équation à un paramètre ẋ = f (x, y), dans lequel on a oublié la deuxième équation en prenant = 0. Evidemment, la place du paramètre rend cette manipulation illicite: le théorème de Tychonoff traite ce problème de perturbation singulière.

Pour résoudre ce problème, on commence par faire le changement de temps τ = t/ , ce qui permet de transformer le système ci-dessus de la manière suivante:

x = f (x, y) y = g (x, y) , (4) 
x et y désignant les dérivées par rapport au temps τ . Cette fois, le système (4) est une perturbation régulière de l'équation rapide y = g (x, y), dans laquelle x est un paramètre. L'idée générale du théorème de Tychonoff est alors la suivante: soit (x 0 , y 0 ) une condition initiale du système (4), telle que g (x 0 , y 0 ) = 0. Pour > 0 assez petit, le point (x (t) , y (t)) de la trajectoire associée varie presque uniquement selon la coordonnée y, de sorte qu'on peut considérer que cette trajectoire est celle de l'équation rapide (pour la même condition initiale (x 0 , y 0 )), jusqu'à ce qu'elle atteigne un point (x 0 , ξ (x 0 )) de la variété Z (g) = {x, y ∈ R n+m : g (x, y) = 0} des zéros de g. Alors, la trajectoire évolue sur la portion de cette variété décrite par le graphe de la fonction ξ et son mouvement peut être approché par celui de l'équation lente ẋ = f (x, ξ (x)) (pour la condition initiale x 0 ).

Nous présentons maintenant les hypothèses demandées par le théorème de Tychonoff. Ce ne sont pas les plus faibles, mais elles suffiront pour l'étude du système différentiel que nous ferons dans la première partie. Le point (x 0 , y 0 ) désignera une condition initiale du système (3).

B1 Il existe une variété L (appelée variété lente) incluse dans l'ensemble Z (g), telle que L soit le graphe d'une fonction lisse ξ : X → R m définie sur un compact X de R n :

L = {(x, ξ (x)) , x ∈ X}.
De plus, dans un voisinage de L , les zéros de g sont entièrement donnés par la fonction ξ:

∃δ > 0, ∀x ∈ X, ∀y ∈ R m : ||y -ξ (x) || < δ et y = ξ (x) ⇒ g (x, y) = 0.
B2 Pour tout x dans X, le point (x, ξ (x)) est un point d'équilibre asymptotiquement stable de l'équation rapide, et son bassin d'attraction est uniforme en x: il existe un réel a > 0, tel que pour tout x dans X, la boule B (ξ (x) , a) de centre ξ (x) et de rayon a > 0 soit un bassin d'attraction de ξ (x).

B3 Le point x 0 est un point appartenant à l'intérieur X de X. Le point y 0 est un point appartenant au bassin d'attraction du point d'équilibre ξ (x 0 ) pour l'équation rapide y = g (x 0 , y).

Sous ces hypothèses, le théorème s'énonce de la manière suivante: Théorème 2.4 ([Tyc52]). Soit (x 0 , y 0 ) une condition initiale du système singulièrement perturbé (3). On suppose que les hypothèses B1, B2, B3 ci-dessus sont vérifiées. Notant x 0 (t) la solution de l'équation lente ẋ = f (x, ξ (x)) définie par la condition initiale x (0) = x 0 , et I 0 l'intervalle d'existence de cette solution, nous avons:

lim →0 x (t) = x 0 (t) , pour 0 ≤ t ≤ T 0 lim →0 y (t) = ξ (x 0 (t)) , pour 0 < t ≤ T 0
où T 0 est un temps quelconque de l'intervalle I 0 .

Comme expliqué ci-dessus, ce théorème affirme donc que pour t dans I 0 fixé, le flot ϕ (t) = (x (t) , y (t)) du système (3) est approché (quand tend vers 0) par le flot ϕ (t) défini comme la réunion de la trajectoire de l'équation rapide et de celle de l'équation lente. A savoir, ϕ (t) est le flot composé de l'arc vertical d'équation y = y 0 (τ ) , x = x 0 pour 0 ≤ τ ≤ +∞ (où y 0 (τ ) est la solution de l'équation à temps rapide y = g (x 0 , y) ayant y 0 pour condition initiale) et de l'arc horizontal d'équation y = ξ (x 0 (t)) , x = x 0 (t) pour t dans I 0 .

Présentation du Chapitre 1

Ce chapitre a fait l'objet d'une prépublication disponible à l'adresse suivante (voir [START_REF] Poignard | Inducing chaos in a gene regulatory network by coupling an oscillating dynamics with a hysteresis-type one[END_REF]): http://hal.archives-ouvertes.fr/hal-00586219

Il concerne le premier problème auquel nous nous intéressons dans cette thèse qui, rappelons-le, consiste à rendre chaotique un système ayant une dynamique régulière, stable. Comme annoncé précédemment, nous traitons ce problème dans le cadre de la biologie systémique, pour lequel les systèmes présentant une dynamique stable sont les réseaux homéostatiques. Il est donc naturel de s'intéresser plus particulièrement à la question suivante: Etant donné un réseau génétique présentant une régulation homéostatique, comment induire un comportement chaotique dans ce système? L'homéostasie est un type de régulation très répandue dans les réseaux biologiques en général. Le maintien de la température du corps à valeur constante, le PH, la concentration du sucre dans le sang, en sont des exemples emblématiques. Un autre exemple est le contrôle de la concentration interne en ions métal, qui est essentielle à faible dose, mais devient mortelle à forte concentration (voir [PMR + 06]). En général, la rupture de l'homéostasie peut causer des dommages importants comme la maladie de Wilson dans le cas de l'homéostasie du cuivre. Nous avons vu que l'homéostasie d'un RRG est en général associée à un circuit négatif, qui engendre les oscillations du système. Dans le cadre d'une modélisation continue, il est très fréquent que ces oscillations soient causées par une bifurcation de Hopf. Ceci nous amène à considérer le réseau de régulation génétique, appelé V-système (V pour Virginia Tech), créé afin de coupler de la manière la plus simple possible un circuit négatif issu d'une bifurcation de Hopf, avec un circuit positif présentant une hystérèse. Ce réseau a été inventé par J.J. Tyson (d'où son nom en reconnaissance de ses origines4 ) et E. Pécou, spécialement dans le but d'étudier la question ci-dessus. Il est constitué de 4 gènes interagissant par régulation transcriptionnelle. Son graphe d'interaction est le suivant:

A 1 A 2 A 3 A 4 1 Figure 11: Le graphe d'interaction du V-système
Le modèle associé à ce graphe d'interaction est constitué de 4 équations, et 17 paramètres (voir leur présentation au début du Chapitre 1). Notre but est de montrer que, pour certaines valeurs de paramètres, le V-système associé à ces valeurs présente un comportement chaotique, et de comprendre le mécanisme responsable de cette dynamique. En général, la méthode employée pour exhiber un comportement chaotique dans un système différentiel explicite est le calcul numérique d'exposants de Lyapunov dans plusieurs directions: la stricte positivité d'un exposant de Lyapunov suffit à assurer la présence de chaos. Le problème de cette méthode est qu'elle ne permet de conclure que lorsqu'un de ces exposants est significativement positif. Sinon, on ne peut rien dire sur la dynamique du système. C'est le cas du V-système, pour lequel les investigations numériques réalisées par l'équipe de Tyson n'ont pas permis d'aboutir à la chaoticité. De plus, le cadre requis pour démontrer le comportement chaotique d'un système via les exposants de Lyapunov est le cadre mesuré, qui requiert la connaissance d'une mesure invariante par le flot de ce système. Il n'est évidemment pas possible (sauf exceptions) de connaître une telle mesure pour un système différentiel explicite. Pour ces raisons, nous adoptons l'approche décrite auparavant, à savoir la construction d'une section de Poincaré pour le flot associé au V-système, dont l'application de retour est de type fer à cheval. Cette méthode permet en plus de comprendre et d'exhiber le mécanisme responsable du comportement chaotique, de sorte que l'on puisse retrouver ce comportement dans d'autres modèles ayant les mêmes caractéristiques que le V-système (c'est-à-dire ayant un sous-système admettant une bifurcation de Hopf et un autre admettant une hystérèse). Notons qu'il aurait été également possible de chercher à prouver l'existence d'une orbite homocline (de même que dans [START_REF] Pécou | Desynchronization of one-parameter families of stable vector fields[END_REF]) afin de retrouver la situation de Shilnikov, ceci grâce au mouvement en spirale dû à la bifurcation de Hopf. Cependant cette méthode n'est pas très bien adaptée aux réseaux de régulation génétique, car il n'est pas réaliste de chercher une orbite homocline dans ce type de modèles, qui présentent en général un trop grand nombre d'équations et de paramètres (en particulier dans le V-système, défini par 17 paramètres). Un modèle dans lequel elle est utilisée est celui de L. Chua [START_REF] Chua | The double scroll family[END_REF], qui modélise le comportement d'une classe de circuits électroniques (voir aussi l'article [AA99] de A. Alaoui pour un modèle associé à un système différentiel non autonome). La preuve de l'existence d'une orbite homocline est numérique et spécifique à la classe d'équations différentielles linéaires par morceaux composant ce système.

Plan du Chapitre 1

Nous commençons (Partie 1) par définir la notion de Z-courbe, qui sont des courbes dont la dynamique associée est une hystérèse. Ces courbes ont la même forme que le graphe 10 montré précédemment. La Partie 2 contient la présentation et l'analyse des équations du V-système. Ce modèle est composé de deux sous-systèmes V A 1 ,A 2 et V A 3 ,A 4 dans lesquels on exhibe respectivement une bifurcation de Hopf et une hystérèse. En vue de l'analyse géométrique qui suivra, nous effectuons également une première hiérarchie parmi les 17 paramètres afin de passer de la dimension 4 à la dimension 3, en utilisant la théorie des perturbations singulières.

Dans la partie 3, on prouve qu'étant donnée une famille à un paramètre de champs de vecteurs lisses sur R n ayant une bifurcation de Hopf il est possible (sous certaines hypothèses) d'imposer une dynamique de type hystérèse sur ce paramètre, de sorte que le système obtenu admette du chaos. Ce résultat, qui constitue le premier théorème de ce chapitre, répond partiellement à la formulation mathématique du premier problème énoncé dans le Préambule. Nous commençons par le cas de la dimension deux (Section 3.1), pour lequel le théorème s'énonce comme suit: Théorème 3.1. Soit (f µ ) µ∈R une famille à un paramètre de champs de vecteurs lisses sur R 2 satisfaisant les hypothèses A1 et A2 du théorème de Hopf (voir Paragraphe (2.3) ci-dessus). Alors il existe une fonction lisse h définissant une courbe hystérèse dans R 2 , et un réel non nul a, tels que pour tout > 0 assez petit, le système singulièrement perturbé:

   ẋ1 = f 1 (x 1 , x 2 , µ) ẋ2 = f 2 (x 1 , x 2 , µ) μ = h (x 1 + ax 2 , µ) , (5) 
soit chaotique, dans un voisinage de x 0 , µ 0 . Plus précisément, le flot associé au système (5) admet une section de Poincaré dont l'application de retour associée est de type fer à cheval.

L'hypothèse requise sur la fonction φ est générique: de manière informelle, elle signifie que l'axe de la variété de dimension deux de la bifurcation de Hopf est penché par rapport à la verticale (Figure 1.6). Par rapport au résultat d'E. Pécou ([Péc06a]), notre résultat traite du cas d'un échange de stabilité apparaissant au point critique de la bifurcation. L'autre différence, que nous avons déjà présentée ci-dessus, est la technique (plus constructive dans notre cas) employée pour établir le chaos. La section 3.1 est consacrée à la preuve de ce résultat. Le mécanisme créant du chaos repose sur un modèle linéaire composé de deux spirales ayant des centres proches mais distincts, pour lequel nous construisons une section de Poincaré de dimension un, i.e un segment, recouverte deux fois par son application de retour. Ensuite nous montrons que le chaos est préservé quand la situation n'est plus linéaire, en construisant un fer à cheval à partir de ce segment. Notons que l'idée de placer deux spirales l'une au-dessus de l'autre avait déjà été utilisée par R. Lozi dans [LS89] (voir aussi [AA99] pour le chaos "multispiral"). Dans la Section 3.2 qui termine la partie 3, nous étendons le théorème ci-dessus dans le cas général n ≥ 2: Théorème 3.2. Soit (f µ ) µ∈R une famille à un paramètre de champs de vecteurs lisses sur R n satisfaisant les hypothèses A1 et A2 du Paragraphe (2.3) ci-dessus. Notons Π µ 0 le plan engendré par les parties réelles et imaginaires des vecteurs propres associés à ±iβ. Supposons que λ 3 , • • • , λ n soient toutes de partie réelle strictement négative et que la projection du graphe de φ = (φ 1 , • • • , φ n ) sur le plan Π µ 0 ne soit pas réduite au point (φ (µ 0 ) , µ 0 ). Alors il existe deux entiers i, j dans {1, • • • , n}, deux réels non nuls a i , a j et une fonction lisse h dont l'ensemble des zéros est une courbe hystérèse dans R 2 , telle que pour tout > 0 assez petit, le problème singulièrement perturbé suivant:

ẋ = f (x, µ) μ = h (a i x i + a j x j , µ) , (6) 
soit chaotique (au voisinage de x 0 , µ 0 ). Plus précisément, le flot du système (6) admet une section de Poincaré dont l'application de retour associée est de type fer à cheval.

L'hypothèse sur les valeurs propres λ 3 , • • • , λ n force la dynamique à se restreindre à la variété de dimension deux issue de la bifurcation de Hopf, ce qui permet d'appliquer exactement le même raisonnement qu'en dimension deux. Enfin, dans la partie 4, nous utilisons trois échelles de temps afin de se retrouver dans la situation du Théorème 3.1. Ces différentes échelles permettent d'exhiber les paramètres du V-système principalement responsables du comportement chaotique. Nous énonçons les conditions sur ces paramètres sous lesquelles le V-système est proche de satisfaire entièrement celles du Théorème 3.1, assurant le chaos. Pour terminer cette section, nous exhibons un ensemble de paramètres P 1 définissant un V-système V 1 , pour lequel nous montrons numériquement que le mécanisme responsable du chaos étudié auparavant prend place.

Présentation du Chapitre 2

Ce chapitre a fait l'objet d'une prépublication disponible à l'adresse suivante (voir [START_REF] Poignard | Discrete synchronization of hierarchically organized dynamical systems[END_REF]): http://hal.archives-ouvertes.fr/hal-00755688/ La démarche adoptée ici est l'inverse de celle du Chapitre 1, c'est-à-dire que nous nous intéressons maintenant à la synchronisation de systèmes dynamiques. Etant donné un (grand) ensemble de systèmes qui interagissent, certaines propriétés de cet ensemble, vu comme un système dynamique de grande dimension, apparaissent très fréquemment, sans que ces propriétés puissent être déduites de la dynamique de chacune des unités de cet ensemble. La synchronisation est une de ces propriétés émergentes des systèmes complexes. Dans le cadre de la synchronisation chaotique, il est naturel de se demander si, étant donnés n systèmes dynamiques tous définis par le flot chaotique ϕ du système (5) (ou (6)) ci-dessus, il est possible de coupler ces systèmes entre eux afin de les synchroniser. La réponse à cette question est positive et est donnée par un théorème dû à C.W. Wu (see [START_REF] Chai | Synchronization in networks of nonlinear dynamical systems coupled via a directed graph[END_REF]). Outre la synchronisation, d'autres propriétés émergentes caractérisent la nature du système complexe plutôt que son comportement dynamique. Elles rendent compte de la géométrie de la configuration spatiale du système, qui résulte la plupart du temps d'un processus d'évolution. L'une des configurations qui apparaît le plus souvent est la hiérarchie, caractérisée par une organisation en cascade: les composantes du système (par exemple des agents d'une société si l'on se place dans un contexte économique ou social ou bien des particules, si le cadre choisi est celui de la physique) se rassemblent en groupes, qui eux-mêmes forment des groupes de deuxième niveau, ces derniers se rassemblant en groupes de troisième niveau, etc. L'objet du Chapitre 2 est d'étudier la synchronisation de systèmes organisés de manière hiérarchique. En particulier nous nous intéresserons à l'influence de la hiérarchie sur la synchronisation.

Les exemples naturels de structure hiérarchique sont donnés par la théorie des pavages: étant donné un ensemble fini de tuiles remplissant le plan par des copies d'elles-mêmes, il est possible que ces tuiles se regroupent en patchs qui, à taille fixée, existent en nombre fini, de manière telle qu'on puisse à nouveau paver le plan par des copies de ces patchs. Et ainsi de suite, ce processus se répète indéfiniment, les patchs obtenus à chaque étape formant le nouvel ensemble de tuiles avec lesquelles on pave le plan. C'est le cas des pavages de substitution, où les tuiles se rassemblent en des copies homothétiques d'elles-mêmes (voir [START_REF] Goodman-Strauss | Matching rules and substitution tilings[END_REF], [START_REF] Goodman-Strauss | Aperiodic hierarchical tilings[END_REF]), comme le montre la Figure 12 ci-dessous.

Figure 12: Un exemple de pavage substitutif: le pavage en L Evidemment, n'importe quelle configuration périodique présente une telle organisation. L'intérêt porté aux structures hiérarchiques vient de ce qu'elles sont beaucoup plus nombreuses que les périodiques: d'un point de vue mathématique, ceci fut notamment révélé par la découverte d'un ensemble de tuiles pavant le plan de manière apériodique (i.e qu'aucune translation ne laisse invari-ant un pavage issu de ces tuiles) mais pour lequel aucun pavage périodique du plan ne pouvait être obtenu. Ce résultat dû à R. Berger en 1966 ([Ber66]) fut suivi par la découverte (par D. Shechtman en 1982) d'un alliage de manganèse présentant une symétrie d'ordre 5 dans son diagramme de diffraction, mais qui ne possédait aucune invariance par translation. Cette découverte bouleversa la pensée de l'époque selon laquelle un solide était ou bien un cristal parfaitement ordonné (donc périodique) ou bien un solide amorphe, totalement désordonné5 . A mesure que la théorie naissante des quasi-cristaux se développait, l'ubiquité des structures hiérarchiques ne cessa de se renforcer, les quasi-cristaux se révélant posséder de manière naturelle de telles organisations ([KN85], [START_REF] Meyer | Quasicrystals, Diophantine approximation and algebraic numbers[END_REF]). Ces avancées scientifiques n'ont fait que confirmer ce qui était sous nos yeux depuis toujours, à n'importe quelle échelle. Ainsi, l'organisation de la vie en société, l'embranchement des arbres, les lobes des feuilles composées (voir [START_REF] Prusinkiewicz | The algorithmic beauty of plants[END_REF]), les fibres musculaires etc. sont autant de manifestations de cette omniprésence dans notre vie quotidienne.

Objectifs

Malgré l'ubiquité de la hiérarchie dans la nature aussi bien que dans les structures purement mathématiques, très peu d'études ont été effectuées sur la dynamique des systèmes organisés de cette façon. Presque toutes les investigations faites concernent les organisations en réseau périodique, bien que celles-ci apparaissent moins fréquemment. Notons toutefois que certaines investigations numériques sur la synchronisation de systèmes présentant une hiérarchie ont été réalisées par le passé, avec pour objectif principal l'analyse de la route vers la synchronisation. Par exemple dans ([DG08]), A. Díaz-Guilera considère un ensemble fini d'oscillateurs décrits par un modèle particulier issu du modèle continu de Kuramoto (voir [START_REF] Kuramoto | Chemical oscillations, waves, and turbulence[END_REF]), et montre notamment la différence de rapidité des regroupements par paquets jusqu'à la synchronisation complète (voir aussi [START_REF] Balmforth | A hierarchy of coupled maps[END_REF]). Ici, nous cherchons à prouver des résultats, en particulier quant à l'influence de la hiérarchie sur la dynamique de la structure lorsque celle-ci présente des défauts (voir ci-dessous). Nous considérons un ensemble (fini ou infini) de systèmes dynamiques, vus comme des particules (ou agents), interagissant de manière à ce qu'existe dans l'ensemble entier une structure emboîtée en systèmes de plus en plus grands. Voici les hypothèses faites sur la dynamique de ces particules et leurs interactions:

-La dynamique de chaque particule est donnée par une même fonction f : K → K, expansive (i.e que l'on a sup z∈K f (z) > 1), donc éventuellement chaotique, sur un segment K de R.

-Si les particules sont toutes dans le même état à un instant fixé, elles restent synchronisées aux temps suivants (en d'autres termes, une fois atteinte la synchronisation est préservée).

-Dans toute la structure, le processus de regroupement se fait toujours entre un même nombre p d'éléments et ce nombre est le même à tous les étages.

-Dans chaque étage de la hiérarchie, tous les couplages sont les mêmes.

Nous traitons donc deux situations: le cas fini de p n particules et le cas infini d'un ensemble de Cantor de particules indexées par l'ensemble {a 0 , • • • , a p-1 } N des suites en p symboles a 0 , • • • , a p-1 . La Figure 13 représente le cas infini quand p = 3. Dans cette schématisation, les liens entre (les groupes) de systèmes se font composante par composante. Ils représentent les couplages à chaque étage. Les traits représentent les états des particules à un instant fixé, qui tendent 1 Nous considérons d'abord le cas fini de 2 n particules, la situation générale (p n particules) étant complètement similaire. A chaque étage de la hiérarchie nous associons une matrice de structure de taille 2 n . Conformément à la deuxième et à la quatrième hypothèses, nous pouvons supposer qu'elle est définie par un seul paramètre et que la somme de ses lignes vaut un. Nous dénotons par A n 1, 1 , • • • , A n n, n ces n matrices définies par n paramètres. La structure hiérarchique entre les systèmes est alors représentée par la matrice B n, (où = ( 1 , • • • , n )) définie comme le produit de toutes les matrices A n k, k . Maintenant, la synchronisation de nos systèmes s'écrit en termes de l'application couplée G n, = B n, • F n , où F n : R 2 n → R 2 n est la fonction vectorielle dont les composantes sont toutes égales à la fonction f ci-dessus. La synchronisation prend place lorsque l'on a:

max 1≤i,j≤2 n (G n, ) m (X) (i) -(G n, ) m (X) (j) -→ m→∞ 0, pour n'importe quelle condition initiale X = X (1) , • • • , X (2 n ) dans l'ensemble K 2 n (
auquel cas on parle de synchronisation globale) ou seulement pour celles proches de la diagonale dans K 2 n (synchronisation locale). Par exemple, considérons le cas n = 2, c'est-à-dire 2 2 particules, illustré par la Figure 14 ci-dessous. Nous avons deux étages définis par deux paramètres 1 , 2 et nous les associons aux matrices:

A 2 1, 1 =     1 -1 1 0 0 1 1 -1 0 0 0 0 1 -1 1 0 0 1 1 -1     , A 2 2, 2 =     1 -2 0 2 0 0 1 -2 0 2 2 0 1 -2 0 0 2 0 1 -2     .
Ensuite nous représentons l'organisation hiérarchique entre les particules par la matrice B 2, = A 2 2, 2 A 2 1, 1 . Trouver des conditions pour lesquelles l'application G n, synchronise est un problème qui a été très étudié depuis plusieurs décennies (voir [START_REF] Kaneko | Theory and applications of coupled map lattices[END_REF], [START_REF] Fernandez | Global synchronization in translation invariant coupled map lattices[END_REF], [START_REF] Lu | Synchronization analysis of linearly coupled networks of discrete time systems[END_REF], [JJ01], ...) et qui est maintenant bien compris. Tout l'intérêt de notre approche est de nous mener naturellement au cas limite de la synchronisation d'une collection infiniment grande de particules, à savoir une collection indénombrable, ce qui constitue la nouveauté de ce travail. En effet, en regardant la limite (quand n tend vers l'infini) de notre structure en cascade, dans laquelle nos 2 n éléments sont numérotés par des n-uplets de 0 et de 1, nous sommes naturellement amenés à considérer un ensemble de Cantor de systèmes indexés par l'ensemble {0, 1} N des suites de 0 and 1.

Nous définissons donc un nouveau cadre pour le problème de la synchronisation d'un ensemble de Cantor de systèmes, dans lequel les matrices de couplage sont remplacées par des opérateurs, les conditions initiales deviennent des fonctions etc. En utilisant la même approche que celle de B. Fernandez ([Fer08]), nous obtenons un théorème de synchronisation globale qui généralise son résultat, sous la condition que la suite des paramètres définissant les étages de la hiérarchie converge lentement vers 1/2. Ceci constitue le premier résultat de ce Chapitre 2. Un prolongement naturel de la première partie de ce travail est de considérer la situation où dans l'ensemble de nos systèmes certains ne sont pas couplés, la question étant de savoir si la hiérarchie force ceux-ci à la synchronisation avec les autres ou non. Par exemple, la Figure 15 illustre le cas de 2 2 particules quand deux d'entre elles ne sont pas couplées (ce que l'on représente par un lien brisé). Cela revient à remplacer la matrice A 2 1, 1 ci-dessus par celle qui suit:

Ã2 1, 1 =     1 0 0 0 0 1 0 0 0 0 1 -1 1 0 0 1 1 -1     .
S'il existe un tel forçage par la hiérarchie, peut-on autoriser un nombre élevé de systèmes non couplés, à savoir un nombre infini dans notre ensemble de Cantor de systèmes? Comment leur position influence-t-elle la synchronisation? Nous donnons une réponse à ces deux questions en montrant que, du moment que les systèmes non couplés sont uniquement présents aux N plus petites échelles de la hiérarchie (pour un entier N fixé) et qu'ils sont suffisamment espacés, alors on a synchronisation locale sur un voisinage non trivial de la diagonale, qui ne dépend pas de la position des liens brisés dans ces N échelles. Ceci constitue le deuxième résultat du Chapitre 2.

Plan du Chapitre 2 par la relation:

∀ h ∈ C (X, R) , U (h) := lim n→∞ L n, n • • • • • L 1, 1 (h) .
Supposons que la suite satisfasse la condition suivante:

∃a > 1, ∃α > 0, ∀k ≥ 1, |1 -2 k | sup z∈K f (z) ≤ 1 (ak) α .
Alors le système dynamique G = U • F synchronise globalement sur l'ensemble C (X, K) des fonctions continues à valeurs dans K.

Ensuite dans la Section 3.2, nous traitons le cas d'une infinité de liens brisés dans la hiérarchie. L'idée étant d'effectuer un passage à la limite quand n tend vers l'infini, nous redéfinissons cette fois les opérateurs de structure sur les fonctions définies sur les sous-ensembles ouverts-fermés d'ordre n de X, à valeurs dans R. Puis nous définissons les opérateurs avec liens brisés, de manière à ce qu'ils agissent exactement comme les matrices Ãn k, k 1≤k≤n sur R 2 n . De la sorte, la composition Wn, des opérateurs (avec et sans liens brisés) agit comme la matrice de couplage Bn, . Ceci nous permet d'hériter de la notion de familles admissibles emboîtées de sous-opérateurs, grâce à laquelle on peut imposer un nombre infini de liens brisés dans la structure, placés aux N plus petites échelles de la hiérarchie (pour un N fixé) et suffisamment espacés dans celles-ci. Ainsi, après avoir établi l'existence de l'opérateur W défini par la limite des Wn, quand n tend vers l'infini, nous prouvons le deuxième résultat de ce Chapitre 2, assurant qu'une synchronisation locale a lieu si, pour tout n ≥ N + 1, l'opérateur Wn, admet une famille admissible emboîtée de sous-opérateurs et si la suite de paramètres converge rapidement vers 1/2: Théorème 4.2. Fixons N ≥ 1, et = ( k ) k≥1 une suite de nombres réels dans [0, 1] définissant l'opérateur W sur C (X, R) par la relation:

∀ h ∈ C (X, R) , W (h) = lim n→∞ Wn, (h) , où pour tout n ≥ N + 1, l'opérateur Wn, = I n 1, 1 • • • • • I n n-N, n-N • Ĩn n-N +1, n-N +1 • • • • • Ĩn n, n
possède une famille admissible emboîtée de sous-opérateurs. Supposons que la suite satisfasse la condition suivante:

6 sup z∈K |f (z) | 2N +∞ k=1 |1 -2 k | < 1.
Alors le système dynamique G = W •F synchronise sur un voisinage non trivial Ω N de la diagonale

I ∩ C (X, K) dans C (X, R).
Nous terminons le chapitre en donnant les versions générales de ces deux résultats (Corollaires 3.16 et 3.20) dans le cas d'un processus de regroupement entre un nombre p ≥ 3 d'éléments, c'est-à-dire sur un ensemble de Cantor {a 0 , • • • , a p-1 } N défini par un alphabet à p lettres.

Chapitre 1

Inducing chaos in a gene regulatory network

Ce chapitre est une version remaniée de l'article [START_REF] Poignard | Inducing chaos in a gene regulatory network by coupling an oscillating dynamics with a hysteresis-type one[END_REF], dans laquelle nous avons enlevé le résumé et l'introduction, afin de ne pas répéter la présentation faite dans la Partie 3 de l'Introduction de cette thèse.

Problem 1: Given a model of homeostatic regulatory unit, how to induce a chaotic behavior in this system?

As mentionned in the Introduction, we deal with this problem by considering a model called Vsystem, of which equations are presented below. Our goal is to prove that under some conditions on its 17 parameters, this system exhibits a chaotic dynamics, and to explain the mechanism responsible of this behaviour. Let us notice that this result is in coherence with Thomas' conjecture which states that a positive (the bistable switch) and a negative (the Hopf subsystem) loops are necessary conditions for chaos [START_REF] Thomas | Deterministic chaos seen in terms of feedback circuits : analysis, synthesis[END_REF]). Many other conjectures and results linking the properties of the graph interaction of a gene network, with its dynamical behavior have been stated for a few decades (see [START_REF] Kaufman | A new necessary condition on interaction graphs for multistationarity[END_REF], [START_REF] Thomas | On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations[END_REF], [START_REF] Soulé | Graphic requirements for multistationarity[END_REF] and very recently [START_REF] Pécou | The interaction graph structure of mass-action reaction networks[END_REF] and [START_REF] Richard | Stable periodicity and negative circuits in differential systems[END_REF]).

Curves associated to a hysteresis-type dynamics. Notations and definitions

For our study we need to precise mathematically the notion of hysteresis that we have already presented in the Introduction, by defining a curve associated to such a dynamics (also called switch):

Definition 1.1. We call Z-curve a connected curve in R 2 , defined by some equations of the form g (x, y) = 0, where g is a smooth function from R 2 to R, for which there exist two reals x * < x * * such that: (i) For every x < x * or x > x * * , there is only one z in R verifying g (x, z) = 0, and this unique critical point of the equation ẏ = g (x, y) is asymptotically stable.

(ii) For every x * < x < x * * , there are exactly three zeros (x, z i ) i=1,2,3 of g. Among them, two points say z 1 , z 3 are asymptotically stable critical points of ẏ = g (x, y) (and the other one is repulsive).

(iii) For x = x * or x = x * * there are exactly two zeros (x, z i ) i=1,2 of g. One of the z i 's is asymptotically stable and the other one is degenerate. Notation 2.2. In the rest of the text we will only use the notations (x * , y * ), (x * * , y * * ) so as to mention the first and second saddle-node bifurcation points of a given hysteresis.

Remark 2.3. Notice that the inferior and superior branches of a hysteresis defined by a function g are no more invariant when we perturb the equation ẏ = g(x, y) by adding an equation of the form ẋ = f(x, y), as we are going to do in the rest.

We will denote by G 2 the set of smooth real-valued functions g on R 2 defining such curves, and by G c,2 the subset of G 2 composed of hysteresis that can in addition be described as the graph of a (cubic-like) function in the variable y. (By a cubic function we mean a third degree polynomial function). We will also use hysteresis having flat inferior and superior branches and a linear unstable one. We will refer to them as hysteresis with flat branches. They are defined by their points (x * , y * ) and (x * * , y * * ), that we'll also call bifurcation points, even though we cannot really say there is a bifurcation in this case. G p,2 will be the set of piecewise linear functions from R 2 to R, defining such curves. To construct an element h of G p,2 , one can for instance take a negative real a and define the real function e by:

∀x ∈ R, e(x) =    y * * if x ≤ a, (y * * -y * ) x/a + y * if x ∈ [a, 0], y * if x ≥ 0
Then it suffices to bend the graph of e by considering the function h (x, y) = e (xby)y, for a convenient choice of the constant b, and to notice that the three constant branches of the hysteresis defined by h have the desired stability.

2.2. Working out the result in the case n = 2. In all the subsection we set n = 2. The main result of the paper is the following: So a Z-curve can be decomposed in three parts: two stable curves that we call the superior and inferior branches, separated by the unstable branch. A Z-curve thus defines a hysteresis-type dynamics. If y * , y * * are the degenerate critical points of the vector fields g x * and g x * * let us remark that locally in (x * , y * ) a bifurcation (of codimension one) appears, since in a neighborhood of it, we have a stable critical point and an unstable one that collapse and then disappear, as the parameter x varies. This bifurcation is called a saddle-node bifurcation (see [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[END_REF], [START_REF] Wiggins | Global bifurcations and chaos[END_REF]). We call (x * , y * ) the first saddle-node bifurcation point. The same thing happens in the second saddle-node bifurcation point (x * * , y * * ).

Notation 1.2. In the rest of the chapter we will only use the notations (x * , y * ), (x * * , y * * ) so as to mention the first and second saddle-node bifurcation points of a given Z-curve.

Remark 1.3. Notice that the inferior and superior branches of a Z-curve defined by a function g are no more invariant when we perturb the equation ẏ = g (x, y) by adding an equation of the form ẋ = f (x, y), as we are going to do in the following.

We will denote by G 2 the set of smooth real-valued functions g on R 2 defining Z-curves, and by G c,2 the subset of G 2 composed of Z-curves that can in addition be described as the graph of a (cubic-like) function in the variable y. (By a cubic function we mean a third degree polynomial function). We will also use Z-curves having flat inferior and superior branches and a linear unstable one (see Figure 1.2), and will refer to them as Z-curves with flat branches. They are defined by their points (x * , y * ) and (x * * , y * * ), that we'll also call bifurcation points, even though we cannot really say there is a bifurcation in this case. G p,2 will be the set of piecewise linear functions from R 2 to R, defining such curves. To construct an element h of G p,2 , one can for instance take a negative real a and define the real function e by: 2 The V-system

∀x ∈ R, e (x) =    y * * if x ≤ a, (y * * -y * ) x/a + y * if x ∈ [a, 0]. y * if x ≥ 0 O x y 1 y 2 x * x * *

Presentation of the equations

The network we consider concerns four genes of which expressions are regulated at the transcriptional step. The four proteins coded by them are represented by the variables (A i ) i=1,••• ,4 . The regulation functions are of the same kind as in the Goodwin model but they are more complex because there is here a competition among the proteins that block or activate the transcription of the genes associated to them. Here are the (adimensionalized) equations representing their evolution in concentration:

                                                         Ȧ1 = k 1 + k 11 A 1 j 11 2 + k 13 A 3 j 13 2 1 + A 1 j 11 2 + A 2 j 12 2 + A 3 j 13 2 -γ 1 A 1 Ȧ2 = k 21 A 1 j 21 2 1 + A 1 j 21 2 -γ 2 A 2 Ȧ3 = k 3 1 + A 4 j 34 2 -γ 3 A 3 Ȧ4 = k 4 + k 4 A 1 j 41 2 1 + A 1 j 41 2 + A 3 j 43 2 -γ 4 A 4 .
There are 17 parameters in this model: the terms j ik are concentrations assumed to be constant (they represent some thresholds), the quantities k i design kinetics constants and γ i the degradation terms associated to A i . Thus all our parameters are taken in R + . As explained above, the V-system is the matching of two sub-systems that we'll denote V A 1 ,A 2 and V A 3 ,A 4 which are respectively composed of the two first equations and of the last two ones. The first sub-system V A 1 ,A 2 (in which A 3 is this time considered as a parameter) admits a Hopf bifurcation, which creates an oscillating behavior near the associated bifurcation point. The second one V A 3 ,A 4 (in which A 1 is seen as a parameter) admits a hysteresis-type dynamics which makes it jump from a stable steady-state to the other one. Let us describe how the genes act on each other (see the graph of interaction in Figure 11). In each equation the linear degradation of A i is counterbalanced by a nonlinear term. In the first equation, the production of A 1 is activated by itself and by A 3 while A 2 inhibites A 1 : A 2 and A 3 are competing with each other on the operator region of the gene encoding protein A 1 . The second equation tells us that A 1 activates the production of A 2 and bounds it from above by k 21 . The third one is the same as in the Goodwin's model, and shows the inhibition of A 3 by protein A 4 .

In the last equation, the same mechanism appears as in the first one: the more A 3 is produced the more A 4 tends to decrease, while A 1 tends to increase the production of A 4 .

The coupling of an oscillating dynamics with a hysteresis-type one

In this section, we present the analytical study of the V-system. We exhibit some conditions on the parameters for which its sub-systems V A 1 ,A 2 and V A 3 ,A 4 present the two desired dynamics.

2.2.a A local Hopf bifurcation in the sub-system

V A 1 ,A 2
The sub-system V A 1 ,A 2 is the one defined by the equations:

                           Ȧ1 = k 1 + k 11 A 1 j 11 2 + k 13 A 3 j 13 2 1 + A 1 j 11 2 + A 2 j 12 2 + A 3 j 13 2 -γ 1 A 1 Ȧ2 = k 21 A 1 j 21 2 1 + A 1 j 21 2 -γ 2 A 2 ,
where A 3 is considered here as a parameter.

For every A 3 , let F A 3 (A 1 , A 2 ) be the vector field in R 2 associated to V A 1 ,A 2 . Making Ȧ2 = 0 and replacing the expression of A 2 in the first equation, we remark that the nullcline of this system, that is to say the set {(A 1 , A 2 , A 3 ) : F A 3 (A 1 , A 2 ) = (0, 0)}, can be expressed as the graph of a function in the variable A 1 . The Jacobian matrix DF A 3 (A 1 , A 2 ) of our vector field is:

            2A 1 (k 11 -γ 1 A 1 ) j 2 11 1 + A 1 j 11 2 + A 2 j 12 2 + A 3 j 13 2 -γ 1 -2γ 1 A 1 A 2 j 2 12 1 + A 1 j 11 2 + A 2 j 12 2 + A 3 j 13 2 2j 2 21 A 1 (k 21 -k 2 ) j 2 21 + A 2 1 2 -γ 2            
.

Naturally we are interested in the eigenvalues of this matrix for points (A 1 , A 2 , A 3 ) belonging to the nullcline. The calculations are inextricable, but using Mathematica, we find that for the following particular set of parameters:

     k 1 = 0.05, k 11 = 5, k 13 = 2.4, γ 1 = 0.1 j 11 = 2.5, j 12 = 0.5, j 13 = 2 k 2 = 0, k 21 = 0.3, j 21 = 17.5, γ 2 = 0.03
and for the values (A 1 , A 2 , A 3 ) = (16.5139, 4.71033, 3.30896), the jacobian matrix of the system V A 1 ,A 2 (associated to this set of parameters) has two pure imaginary eigenvalues, and so this system admits a local Hopf bifurcation.

2.2.b A hysteresis in the sub-system V A 3 ,A 4

Now we study the second sub-system V A 3 ,A 4 defined by the two equations:

                     Ȧ3 = k 3 1 + A 4 j 34 2 -γ 3 A 3 Ȧ4 = k 4 + k 4 A 1 j 41 2 1 + A 1 j 41 2 + A 3 j 43 2 -γ 4 A 4 .
Making Ȧ4 = 0 and replacing the new expression of A 4 in the third equation, we get that the nullcline associated to this subsystem is:

              A 1 , A 3 , k 4 γ 4      1 + A 1 j 41 2 1 + A 1 j 41 2 + A 3 j 43 2           : (A 1 , A 3 ) ∈ C A 1 ,A 3          , where C A 1 ,A 3 designates the set:              (A 1 , A 3 ) ∈ R 2 + : γ 3 A 3 = k 3 1 + A 1 j 41 2 + A 3 j 43 2 2 1 + A 1 j 41 2 + A 3 j 43 2 2 + k 4 2 γ 2 4 j 2 34 1 + A 1 j 41 2 2              .
We claim this last set defines, under certain conditions on the parameters a Z-curve. To do this we prove the following property:

Property 2.1. Assuming we have k 4 γ 4 j 34 > 2, there exist two numbers 0 < A * 1 < A * * 1 such that:

-

∀A 1 < A * 1 or A 1 > A * * 1 , there is exactly one point in C A 1 ,A 3 -∀A 1 ∈ (A * 1 , A * * 1 )
, there are exactly three points in

C A 1 ,A 3 -If A 1 = A * 1 or A = A * *
1 , there are exactly two points in C A 1 ,A 3 . Proof. To reduce the expressions appeared above, we introduce a new variable:

X = 1 + A 1 j 41 2 .
As we are only interested in the positive values of our variables, we can use X instead of using A 1 in our calculations. Let f X (A 3 ) be the right-hand side of the equation defining the set C A 1 ,A 3 . A simple calculus shows that f X is strictly positive on R * + , tends to zero as A 3 tends to infinity, and that we have f X (0) = 0. Thus the graph of f X has a form given by Figure 1.3:

A 3 f X (A 3 ) O Figure 1.3: Graph of the function f X
Now the idea is to study the intersection of the previous graph with the line γ 3 A 3 when γ 3 varies. Let search on positive values A o 3 for which the tangent at the point

(A o 3 , f X (A o 3 )) passes through (0, 0). Such a point A o 3 verifies the equality f X (A o 3 ) A o 3 = f X (A o 3 ), that is to say: 4 k 4 2 γ 2 4 j 2 34 A o 3 j 43 2 X 2 X + A o 3 j 43 2 2 + k 4 2 γ 2 4 j 2 34 X 2 = X + A o 3 j 43 2 ,
which is equivalent to:

C 0 3 + 3X 2 C 0 1 - k 4 2 γ 2 4 j 2 34 + 3XC 0 2 + X 3 1 + k 4 2 γ 2 4 j 2 34 = 0, where C 0 is equal to A o 3 j 43 2
. And since we have k 4 γ 4 j 34 > 2, there exist two strictly positive solutions (depending on the variable A 1 ) 0 < C 1 < C 2 of this equation, and so two values 0 < A 1 3 < A 2 3 for which the tangent at A i 3 , f X A i 3 passes through the origin. So for every positive A 1 , there exist two thresholds 0 < c 1 (A 1 ) < c 2 (A 1 ) (which are the two slopes of the tangents) such that:

-if γ 3 < c 1 (A 1 ) or γ 3 > c 2 (A 1 ), there is only one point in C A 1 ,A 3 , -if γ 3 = c 1 (A 1 ) or γ 3 = c 2 (A 1 ) there are two points in this curve, -if c 1 (A 1 ) < γ 3 < c 2 (A 1 ) there are three points in it. O γ 3 c 1 (A 1 ) c 2 (A 1 )
Figure 1.4: The curve C A 1 ,A 3 for a fixed A 1

Considering again γ 3 as a fixed parameter, it remains to justify why we can express this last result in terms of the variable A 1 . To do this, we look at the monotony of c i . We have:

c i (A 1 ) = 4k 3 k 4 2 j 43 γ 2 4 j 2 34 X 2 √ C i (X + C i ) 3 1 + k 4 2 γ 2 4 j 2 34 X X + C i 2 2 ,
and because C i is a root of the equation written above, so:

(C i + X) 3 = k 2 4 γ 2 4 j 2 34 (3C i -X) X 2 .
From this last equality, we get two informations: the first one is that the quotient C i /X is a constant and thus does not depend on the variable A 1 , the second one is the following expression of the square root √ C i :

C i = γ 4 j 34 k 4 √ 3 C i + X (C i + X) 2 X 2 + k 4 2 γ 2 4 j 2 34 X C i + X .
Substituting in the expression of c i (A 1 ) we obtain the existence of two strictly positive constants (α i ) i=1,2 , such that for every positive A 1 , we have:

c i (A 1 ) = α i 1 + A 1 j 41 2 ,
which implies the strict monotony of the functions c i . Thus the numbers c -1 1 (γ 3 ) and c -1 2 (γ 3 ) are well defined and distinct because c 1 (A 1 ) = c 2 (A 1 ) for any positive A 1 . Setting A * 1 = c -1 1 (γ 3 ), and A * * 1 = c -1 2 (γ 3 ) we get the result.

Property 2.2. Assuming the parameters satisfy the condition

k 4 γ 4 j 34 > 2, then C A 1 ,A 3 is a Z-curve defined by a function in G c,2 .
Proof. Since the set C A 1 ,A 3 can be expressed as the graph of a function in the variable A 3 , and thanks to the property (2.1), we are sure it has the form of a Z-curve defined by an element of the set G c,2 . To see that the stability conditions required in the definition 1.1 are satisfied, it suffices to consider the sign of the derivatives

∂g ∂A 3 (A 1 , A 3 ) where g (A 1 , A 3 ) = f X (A 3 ) -γ 3 A 3 . For a point (A 1 , A 3 ) in C A 1 ,A 3
, this comes to looking at the sign of the following expression:

4k 3 γ 3 2 k 4 2 j 2 43 γ 4 2 j 2 34 1 + A 1 j 41 2 2 A 3 3 1 + A 1 j 41 2 + A 3 j 43 2 3 -γ 3 .
This expression tends to -γ 3 as A 1 tends to infinity: by continuity this proves that the inferior branch of the curve C A 1 ,A 3 is stable. Necessarily its other parts also have the desired stabilities.

Lastly, the isocline of V A 3 ,A 4 appears as the intersection of the cartesian product of C A 1 ,A 3 by R + with the set:

         (A 1 , A 3 , A 4 ) : A 4 = 1 γ 4      k 4 + k 4 A 1 j 41 2 1 + A 1 j 41 2 + A 3 j 43 2               .
This intersection is a smooth curve in the three-dimensional space (A 1 , A 3 , A 4 ) (see Figure 1.5).

2.2.c Using two scales of time to reduce the dimension of the system

As explained in the Introduction, we aim at exhibiting a mechanism creating chaos in the V-system (and in other ones having the same dynamical features). This needs a geometrical analysis of its phase portrait, which is a difficult task since it is a four-dimensional system.

To reduce the dimension to three, we apply the Tychonoff theorem on slow-fast systems (see the

O A 4 A 1 A 3 1 Figure 1.5: The isocline of the sub-system V A 3 ,A 4 
Introduction), by considering the fourth equation as a fast equation, in which the fast time is τ = γ 4 t. Indeed, this last equation can be rewritten under the form:

1 γ 4 Ȧ4 = k 4 γ 4 1 + A 1 j 41 2 1 + A 1 j 41 2 + A 3 j 43 2 -A 4 .
Thus, if the value γ 4 is very great and of the same order of magnitude as k 4 , the Tychonoff theorem tells us that the dynamics of the V-system is approximately the same as the following slow system S :

                                                 Ȧ1 = k 1 + k 11 A 1 j 11 2 + k 13 A 3 j 13 2 1 + A 1 j 11 2 + A 2 j 12 2 + A 3 j 13 2 -γ 1 A 1 Ȧ2 = k 2 + k 21 A 1 j 21 2 1 + A 1 j 21 2 -γ 2 A 2 Ȧ3 = k 3 1 + A 1 j 41 2 + A 3 j 43 2 2 1 + A 1 j 41 2 + A 3 j 43 2 2 + k 4 2 γ 2 4 j 2 34 1 + A 1 j 41 2 2 -γ 3 A 3 .
,

The assumptions needed to apply this result (see the Introduction) are very easy to verify here since the nullcline of the fourth equation in the variable A 4 is the graph of a function in the other variables and thus is a manifold. Moroever the use of two scales of time does not change the structure of the V-system: it only requires to choose the parameter γ 4 very great and k 4 such that the ratio k 4 /γ 4 be greater or equal to one.

Creating chaos from a family of vector fields admitting a Hopf bifurcation

From the analysis made in Part 2, we are led to investigate chaos in a general differential system obtained as the coupling of a Hopf bifurcation with a system of which nullcline is a Z-curve. This is the aim of Part 3.

Let (f µ ) µ∈R be a generic family of smooth vector fields in R n , depending smoothly on the parameter µ, admitting a local Hopf bifurcation in a point x 0 of R n , for the value of parameter µ 0 . For each real µ, the associated vector field has a flow governed by the equation:

ẋ = f (x, µ) ,
where f is the smooth function naturally defined on R n+1 by the equality f (x, µ) = f µ (x). Our goal is to prove that under an assumption of contractility on the eigenvalues of the Jacobian at x 0 , and under a hypothesis on the curve of critical points of f, which is implicitely defined in a neighborhood of x 0 , we can construct a smooth function g such that the extended singularly perturbed system:

ẋ = f (x, µ) μ = g (x, µ) ,
where is a small positive number, is chaotic.

The result in dimension two

In all the section we deal with the two-dimensional version of the problem (i.e we set n = 2).

3.1.a The hypotheses

Here we precise the assumptions we make on the function f. These are the same as the assumptions A1 and A2 made in the Introduction (Section 2.

3).

H1 There exists a value µ 0 and a critical point x 0 of the field f µ 0 such that the Jacobian D x f µ 0 x 0 has a pair of pure imaginary complex eigenvalues ±iβ with β > 0.

By the implicit function theorem, the curve of zeros of f is, in a neighborhood of x 0 , µ 0 , the graph of a smooth function in the variable µ, defined in a small open interval U. We denote by φ = (φ 1 , φ 2 ) this function.

H2 Let α (µ) ± iβ (µ) be the eigenvalues of the Jacobian D x f µ (φ (µ)) that are equal to ±iβ in µ 0 . We assume we have α (µ 0 ) = 0, which means that the two eigenvalues cross the pure imaginary axis with a non-zero velocity.

Remark 3.1. As said in the Introduction (Section 2.3), Assumptions H1, H2 are not sufficient to get a Hopf bifurcation, but it happens generically. Our result will also work for such a degenerate case.

3.1.b The Theorem

The two-dimensional version of our result is the following:

Theorem 3.2. Let us assume Hypotheses H1, H2 on f are satisfied.

If the function φ verifies (φ 1 (µ 0 ) , φ 2 (µ 0 )) = (0, 0), then there exists a smooth function h in G 2 , and a non zero real number a, such that for every sufficiently small positive number , the singularly perturbed system:

   ẋ1 = f 1 (x 1 , x 2 , µ) ẋ2 = f 2 (x 1 , x 2 , µ) μ = h (x 1 + ax 2 , µ) , (1.1)
taken in a neighborhood V of x 0 , µ 0 enough small, is chaotic.

Notice that the hypothesis on the curve of critical points of f is generic. In particular, it is satisfied by differential models of gene regulatory networks presenting a Hopf bifurcation, notably the V-system. Moreover this condition is the same as the one asked by E.Pécou, in her article [START_REF] Pécou | Desynchronization of one-parameter families of stable vector fields[END_REF]. If one wants to have a Z-curve that can be described as a cubic-like function in the variable µ, the analogous result is the following: Corollary 3.3. With the same assumptions as in Theorem 3.2, there exists a smooth function h in G c,2 , a non zero real a, and two small numbers 0 < 1 < 2 , such that for every in ] 1 , 2 [, the system (1.1), taken in a neighborhood V of x 0 , µ 0 enough small, is chaotic.

The proof of this corollary is the same as the one of (3.2), except for its last step (see subsection 3.1.d).

3.1.c Proof of Theorem 3.2

All along the proof, we assume that we have α (µ 0 ) < 0 (in case of a Hopf bifurcation at µ 0 this means the cycles are stable ones). The case where α (µ 0 ) > 0 is totally similar (see the remark at the end of the subsection).

The idea of the demonstration is to take a function h defining a Z-curve of which stable part intersects the curve of fixed points of f in only one point, say the origin O that belongs to the Hopf bifurcation surface, so as to use the spiraling motion due to this bifurcation. There are infinitely many such smooth functions h: let's take any one in G c,2 , and denote by F the vector field defining system (1.1). Then, the Jacobian at the origin is:

DF (O) =            ∂f 1 ∂µ (O) Df(O) ∂f 2 ∂µ (O) 1 ∂h (0, 0) ∂x 1 a ∂h (0, 0) ∂x 1 1 ∂h (0, 0) ∂µ           
.

Because of the assumption on the curve of critical points of f, the terms on the top right of this matrix are non null, and so all the possible cases can happen concerning its spectrum when vary in ]0, 1[: it can, for instance, be only composed of real eigenvalues, in which case in the neighborhood of the origin the spiraling motion would not exist. So we cannot directly work with any smooth function h in G c,2 . On the other hand, if the function h is in G p,2 then the terms on the bottom left are equal to zero, and the dynamics locally in the origin is the one we want to have. More than that, the following proposition (of which proof is just an application of the implicit function theorem) tells us that given a very small , if the stable branches of the Z-curve have a slope of order , then the dynamics is the same as in this flat case.

Proposition 3.4. Let B be a square matrix of size two, of which spectrum is (α ± iβ), with α, β > 0, and let A ( ) be the matrix of size three:

A ( ) =     a 1,3 B a 2,3 a 3,1 aa 3,1 -γ     ,
where γ is a strictly positive number. Then for any enough small, the spectrum S (A ( )) of A ( ) has the form:

S (A ( )) = {α + z 1 ( ) ± i (β + z 2 ( )) , -γ/ + z 3 ( )},
where the z i ( ) are bounded functions of .

Thus we adopt the following strategy: we first describe the Z-curves with flat branches that are conveniently placed comparing with the curve of critical points φ in order to prove Theorem 3.2 in the (weaker) case when the function h is in G p,2 . And then we will transform the convenient function h into a smooth one.

Let us fix a value µ * * in U greater than µ 0 . Because of the generic assumption there exists a value µ * for which we have φ (µ * ) = φ (µ * * ). Without loss of generality, we suppose that the point (φ (µ * ) , µ * ) is the origin O. We want to work with a function g of which set of zeros is the cartesian product of the straight line (Oφ (µ * * )) with a Z-curve in the plane orthogonal to this line.

To do this we begin by choosing two values

x * 1 , x * * 1 verifying x * 1 < x * * 1 < 0 if φ 2 (µ * * ) > 0 (or else x * 1 > x * * 1 > 0 if φ 2 (µ * * ) < 0)
and such that the Z-curve with flat branches defined by the two bifurcation points (x * 1 , 0) and (x * * 1 , µ * * ) does not intersect the graph of φ in another point than the origin. Besides we ask that the reals x * 1 , x * * 1 are close enough to zero, so that the points (x * 1 , 0) and (x * * 1 , 0) are inside the possible cycle C 0 belonging to the plane µ = 0 (see Figure 1.6).

In the rest of the chapter we will assume (without loss of generality) that φ 2 (µ * * ) > 0, and thus the values x * 1 , x * * 1 will be taken negative. Now that we have defined our function h, we set g (x 1 , x 2 , µ) = h (x 1 + ax 2 , µ), where x 1 + ax 2 = 0 is an equation of the straight line (Oφ (µ * * )). Our first goal is to prove that for a certain choice of the values x * 1 , x * * 1 and µ * * , such a function g verifies that the system: 2.3.a. Using the singular perturbations theory to describe the flow of (2). Let's take a piecewise linear function g from R 3 to R of the same kind as above. By construction, the system (2) admits the origin as unique critical point. Remark that since the function x 1 → h (x 1 , 0) is constant, there exists locally in the origin, an invariant stable manifold of dimension one and an unstable one of dimension two. In fact, we even have that the inferior and superior half planes of the hysteresis, that are the cartesian products of the stable branches of h by (Oφ (µ * * )), are invariant except near the two straight lines ∆ * and ∆ * * (that we'll call the two fold lines of the hysteresis), respectively defined by the equations x 1 + ax 2 = x * 1 and x 1 + ax 2 = x * * 1 . This is clear by the Cauchy-Lipschitz theorem, which can be applied here because the function h is Lipschitz continuous (indeed, the function e defined at the end of 2.1.b is Lipschitz continuous). Using the singular perturbations theory to describe the flow of (1.2)

   ẋ1 = f 1 (x 1 , x 2 , µ) ẋ2 = f 2 (x 1 , x 2 , µ) μ = g (x 1 , x 2 , µ) , (1.2) µ x 1 x 2 (φ(µ * * ), µ * * ) (φ(µ 0 ), µ 0 ) O 1 x 1 x 2 C 0 φ(µ * * ) O x1 + a x2 = 0
Let's take a piecewise linear function g from R 3 to R of the same kind as above. By construction, the system (1.2) admits the origin as unique critical point. Remark that since the function x 1 → h (x 1 , 0) is locally constant, there exists locally in the origin, an invariant stable manifold of dimension one and an unstable one of dimension two. In fact, we even have that the inferior and superior half planes of the Z-curve, that are the cartesian products of the stable branches of h by the line (Oφ (µ * * )), are invariant except near the two straight lines ∆ * and ∆ * * (that we call the two fold lines of the Z-curve), respectively defined by the equations x 1 + ax 2 = x * 1 and

x 1 + ax 2 = x * * 1 .
This is clear by the Cauchy-Lipschitz theorem, which can be applied here because the function h is Lipschitz continuous (indeed, the function e defined at the end of 1.1 is Lipschitz continuous). Moroever, these invariant half planes can be described as (constant) graphs in the variables x 1 , x 2 : namely the graphs ξ -(x 1 , x 2 ) = 0 for (x 1 , x 2 ) above ∆ * and ξ + (x 1 , x 2 ) = µ * * for (x 1 , x 2 ) below ∆ * * . This fact allows us to use the singular perturbation theory:

Proposition 3.5. As > 0 tends to zero, the flow ϕ 2, of (1.2) is C 0 -approached by a flow ϕ 2 of which trajectories are successions of continuous arcs, each of them being the union of a segment of the form x 0 1 , x 0 2 , µ : 0 ≤ µ ≤ µ * * with a solution of one of the equations ẋ = f (x, ξ + (x)) and ẋ = f (x, ξ -(x)). More precisely, we have:

∀M > 0, ∀p ∈ V, ∀t ∈ [0, M ], lim →0 ϕ 2, (p, t) = ϕ 2 (p, t) ,
where V is a neighborhood of x 0 , µ 0 enough small. Proof. It suffices to apply again the Tychonoff theorem on slow-fast systems. The idea is the following: for > 0 enough small, any point which is not a zero of our function g will be carried vertically (that is to say along the µ-axis) by the flow ϕ 2, until it reaches a stable part of the Z-curve, in which case its motion will be defined by the flow reduced on this surface.

To precise this idea, let ϕ + be the reduced flow associated to the slow equation ẋ = f (x, ξ + (x)). By construction of our Z-curve defined by g, its critical point φ (µ * * ) (which is unique in a neighborhood of x 0 , µ 0 enough small) is stable. So, for initial conditions enough close to this point, the trajectories will hit the fold line ∆ * * in a finite time, afterwards they will not exist anymore. Moroever, asking that the value x * * 1 be closer to zero if necessary, we get that these trajectories are almost logarithmic spirals defined by a polar equation of the form:

ρ = ρ 0 e α (µ * * ) β (µ * * ) (θ-θ 0 )
, in the sense that locally in φ (µ * * ), the flow ϕ + is close to its linear part.

The same holds for the reduced flow ϕ -of the other slow equation ẋ = f (x, ξ -(x)). In this case, the trajectories are nearby repulsive logarithmic spirals, having a polar equation defined by the positive coefficient α (0) /β (0) (see Figure 1.7). Now, let us denote by ϕ 2 the continuous flow, of which trajectories are those of the reduced flows ϕ + , ϕ -connected between them by vertical segments of the form

x * 1 , x 0 2 , µ : 0 ≤ µ ≤ µ * * or x * * 1 , x 0 2 , µ : 0 ≤ µ ≤ µ * * .
Tychonoff's theorem tells us that ϕ 2 is the limit of ϕ 2, as tends to zero, in the meaning of Proposition 3.5.

Definition 3.6. The flow ϕ 2 of Proposition 3.5 is called the limit flow associated to the system

(1.2). O x 1 x 2 µ ∆ * * ∆ * ϕ + ϕ - 1 Figure 3.
The dynamics of the flow ϕ 2 .

x 1 Proposition 2.8. There exists a choice of the values x * 1 < x * * 1 < 0 and µ * * > 0 such that the linear limit flow ϕ 3 associated to the system (2) covers at least twice a segment I belonging to the plane µ = 0. More precisely, there exists a decomposition I = I 1 ∪ I 2 in two sub-intervals and a Poincaré return map P (associated to ϕ 3 ) defined on I, such that the images P 2 (I 1 ), P 2 (I 2 ) strictly contain I. 

x 2 ϕ- ϕ+ O ∆ * ∆ * * x1 + a x2 = 0

A linear model creating chaos

Here we simplify again our problem by considering the case where the reduced flows ϕ -and ϕ + (of which orbits are repulsive spirals centered at the origin, and attractive ones centered at φ (µ * * )), are linear. The linear limit flow of Proposition 3.5 obtained by this way is denoted by ϕ 3 . We claim we have: Proposition 3.7. There exists a choice of the values x * 1 < x * * 1 < 0 and µ * * > 0 such that the linear limit flow ϕ 3 associated to the system (1.2) covers at least twice a segment I belonging to the plane µ = 0. More precisely, there exists a decomposition I = I 1 ∪ I 2 in two sub-intervals and a Poincaré return map P (associated to ϕ 3 ) defined on I, such that the images P 2 (I 1 ), P 2 (I 2 ) strictly contain I.

Proof. Let F 1 , F 2 be the linear flows defined in the plane µ = 0, of which orbits are respectively centered at the origin (0, 0) and at the point φ (µ * * ), and have the polar equations:

ρ = ρ 0 e α (0) β (0) (θ-θ 0 ) and ρ = ρ 0 e α (µ * * ) β (µ * * ) (θ-θ 0 )
.

We use these two flows so as to fix the position of the two fold lines ∆ * , ∆ * * of our Z-curve defined by h (i.e to fix the values x * 1 , x * * 1 ). Recall that their slopes is -1/a. (i) We begin with the position of the fold ∆ * . Given an initial condition M 0 = (ρ 0 , θ 0 ) near the origin, any point M = (ρ, θ) belonging to the trajectory (F 1 (M 0 , t)) t∈R satisfies:

M =   ρ0e α (0) β (0) (θ-θ 0 ) cos (θ) , ρ 0 e α (0) β (0) (θ-θ 0 ) sin (θ)    ,
in cartesian coordinates. Derivating this expression in θ, we get that the locus of points at which the tangent of the flow F 1 has a slope equals to -1/a, is a straight line, having a constant angle with the half-axis Ox 1 equals to arctan

    α (0) β (0) a + 1 1 a - α (0) β (0)     ,
or π/2 in the case where a = β (0) /α (0) (see Figure 1.9).

Denote by A the intersection of this straight line with one having an equation of the form x 1 + ax 2 = b where b is strictly negative. Call ∆ this last line, and consider the first return of the point A in ∆, that is to say the point B = F 1 (A, τ (A)), where τ (A) is the first strictly positive time necessary for A to hit this line. We obtain a straight line (OB) which is clearly the locus of first return of the points, in which the slope of the tangent to F 1 is -1/a, in this tangent. To see this, it suffices to observe that the image of a logarithmic spiral under a homotethy is still a spiral of same nature, defined by the same coefficient (here α (0) /β (0)). Remark that (OB) has a slope strictly smaller than a. From the construction of these two lines (OA) and (OB), we adjust the position of ∆ * by taking the circle centered at φ (µ * * ) of ray Oφ (µ * * ): it cuts (OB) in a point at which we draw ∆ * (Figure 1.9). (ii) Then, we consider the flow F 2 , so as to position ∆ * * . Let us denote by J = [A 1 B 1 ] the segment of which extremities are the intersections of ∆ * with our two straight lines (OA) and (OB). We know there is a unique trajectory S 0 of the flow F 1 which is tangent to ∆ * , and that the tangency point is the boundary A 1 of this segment. necessary for the point M to reach ∆ * * ), we get that the image J = [A 1 B 1 ] of J under Ψ 1 is a segment of which extremity B 1 has a strictly positive x 2 -coordinate. Moreover, fixing the value x * * 1 so that the origin be enough close to ∆ * * , we obtain that J intersects the spiral S 0 in at least 3 points having a strictly negative x 2coordinate, and such that the extremity A 1 = Ψ 1 (A 1 ) does not belong to the spiral S 1 (see figure 6). (iii) Now that we have fixed our hysteresis h, let us prove that ϕ 3 is chaotic. By (ii) the segment J contains three points M 1 , M 2 , M 3 of the spiral S 0 (all having a strictly negative x 2 -coordinate) which are consecutive (i.e there exist two times t 1 , t 2 > 0, such that ϕ 3 (t 1 , M 3 ) = M 2 and ϕ 3 (t 2 , M 2 ) = M 1 ). Then let us consider the first return map Ψ in the axis (Ox 1 ) associated to the flow ϕ 3 (or equivalently F 1 ), and set:

I 1 = [Ψ (M 1 ) Ψ (M 2 )] I 2 = [Ψ (M 2 ) Ψ (M 3 )]
.

By construction we have: The return of J in the line (Oφ (µ * * )) by rotations centered at φ (µ * * ) is a segment of the form [OC] with C having a strictly non zero x 2 -coordinate. As the value µ * * ≥ µ 0 was chosen arbitrarily in the construction of our Z-curve defined by the function h, we can take it closer to µ 0 if necessary, so that we can make the spiraling motion of the flow F 2 be very close to a rotation one. Thus denoting by Ψ 1 the application of first return in ∆ * * (i.e defined by the equality Ψ 1 (M ) = F 2 (M, τ (M )), where τ (M ) is the time necessary for the point M to reach ∆ * * ), we get that the image J = [A 1 B 1 ] of J under Ψ 1 is a segment of which extremity B 1 has a strictly positive x 2 -coordinate. Moreover, fixing the value x * * 1 so that the origin be enough close to ∆ * * , we obtain that J intersects the spiral S 0 in at least 3 points having a strictly negative x 2 -coordinate, and such that the extremity A 1 = Ψ 1 (A 1 ) does not belong to the spiral S 1 (see Figure 1.10).

Ψ(J ) = Ψ • Ψ 1 • Ψ 0 (I 1 ) I 1 ∪ I 2 Ψ • Ψ 1 • Ψ 0 (I 1 ) = Ψ • Ψ 1 • Ψ 0 (I 2 ) , which means that the map Ψ • Ψ 1 • Ψ 0 covers the interval I = I 1 ∪ I 2 twice.
(iii) Now that we have fixed our Z-curve (i.e the function h defining it), let us prove that ϕ 3 is chaotic. By (ii) the segment J contains three points M 1 , M 2 , M 3 of the spiral S 0 (all having a strictly negative x 2 -coordinate) which are consecutive (i.e there exist two times t 1 , t 2 > 0, such that ϕ 3 (t 1 , M 3 ) = M 2 and ϕ 3 (t 2 , M 2 ) = M 1 ). Then let us consider the first return map Ψ in the axis (Ox 1 ) associated to the flow ϕ 3 (or equivalently F 1 ), and set:

I 1 = [Ψ (M 1 ) Ψ (M 2 )] I 2 = [Ψ (M 2 ) Ψ (M 3 )]
.

By construction we have:

Ψ(J ) = Ψ • Ψ 1 • Ψ 0 (I 1 ) I 1 ∪ I 2 Ψ • Ψ 1 • Ψ 0 (I 1 ) = Ψ • Ψ 1 • Ψ 0 (I 2 ) , which means that the map Ψ • Ψ 1 • Ψ 0 covers the interval I = I 1 ∪ I 2 twice.
From all of this we conclude that the segment I is a Poincaré section for the linear limit flow ϕ 3 . Let P be the return map of ϕ 3 associated to this section. This map does not cover I twice because we have P (I 2 ) = I 1 , but the map P 2 does (because P (I 1 ) = Ψ • Ψ 1 • Ψ 0 (I 1 ) contains I 2 ), which finishes the proof.

Our application P of the previous proposition is piecewise continuous, because the boundary points of the segments I 1 , I 2 (denoted Ψ (M 1 ) , Ψ (M 2 ) , Ψ (M 3 ) in the previous proof) are discontinuous ones. It is well known that any piecewise continuous application of an interval covering at least twice this interval has strictly positive topological entropy. Thus, we have proved:

Corollary 3.8. There exists a choice of the three values x * 1 < x * * 1 < 0 and µ * * > 0 such that the linear limit flow ϕ 3 associated to the system (1.2) is chaotic.

Proof of the result when the Z-curve is piecewise linear with flat branches

Now let us consider again the limit flow ϕ 2 of the system (1.2), but this time without assuming that ϕ + and ϕ -are linear. In this case we still have a Poincaré return map P associated to ϕ 2 and defined on a segment I = I 1 ∪ I 2 belonging to the plane µ = 0, such that the images P 2 (I 1 ) and P 2 (I 2 ) strictly contain I.

Indeed, making a Taylor development of the function x → f (x, 0) at the origin (0, 0), we get by the implicit function theorem, that the locus of points at which the tangent of the flow ϕ -is parallel to (Oφ (µ * * )) is (locally at (0, 0)) a curve which is tangent to the straight line (OA) of the construction we made above. Similarly the points of first return in these tangents form now a curve tangent (at the origin (0, 0)) to the straight line (OB) we had before. So the circle of ray (Oφ (µ * * )) still cuts this curve in a point at which we can draw the line ∆ * . Then we can go on the same construction as in the linear model. Now, from this segment I constructed above, we can create a rectangular section transverse to the plane µ = 0, admitting a Horseshoe: Proposition 3.9. For the same choice of the values x * 1 , x * * 1 , µ * * taken in Proposition 3.7, there exists a rectangle R transverse to the plane µ = 0, such that for any > 0 enough small, the flow ϕ 2, of the system (1.2) covers at least twice this section, defining by the way a Horseshoe map. More precisely, there exists a decomposition R = R 1 ∪ R 2 in two rectangles such that for any > 0 enough small, the flow ϕ 2, admits a Poincaré return map P defined on R, such that P 2 (R 1 ) , P 2 (R 2 ) are disjoint and contain both one rectangle that intersects R along all its length (see Figure 1.11). From all of this we conclude that the segment I is a Poincaré section for the linear limit flow ϕ 3 . Let P be the return map of ϕ 3 associated to this section. This Proof. Let us fix a positive number s > 0. We consider the rectangle R 1 (s) which is above I 1 , that is to say defined by: R 1 (s) = {(x 1 , x 2 , µ) : (x 1 , x 2 ) ∈ I 1 and µ ∈ [0, s]} , and set R (s) = R 1 (s) ∪ R 2 (s), where R 2 (s) is the rectangle of height s, associated to the segment I 2 . As previously, for any enough small, there exists a Poincaré return map P associated to the flow ϕ 2, which is defined on the rectangle R (s). Each of the images P 2 (R 1 (s)) and P 2 (R 2 (s)) is a rectangle that crosses R (s) by covering all its lenght. Therefore, to obtain a horseshoe, it suffices to verify that these two images are disjoint.

A1 B1 A 1 B 1 x 1 x 2 φ (µ * * ) S 0 J J ∆ * ∆ * * 1 M1 M2 M3 A1 B1 x 1 x 2 I 1 I 2 ∆ * * x1 + ax2 = 0
We first remark that the images under P 2 of the interiors

• R 1 (s), • R 2 (s) of the two rectangles, must be disjoint: indeed there is no point z 1 , z 2 in • R 1 (s) × • R 2 (s) such that P (z 1 ) = P (z 2 ), otherwise we would have ϕ 2, (τ (z 1 ) -τ (z 2 ) , z 1 ) = z 2 ,
and thus either z 1 or z 2 would return in R (s) in a time strictly smaller than the first return time in this section. Then, let Γ (s) be the edge common to our two rectangles, that is the segment above the point Ψ (M 2 ) belonging to both I 1 and I 2 . By construction of the return map P, the distance between P 2 (Ψ (M 2 )) and the boundary of I is strictly positive (see the proof of Proposition 3.7). Thus, as this distance does not depend on and by continuity of each flow ϕ 2, , there exists a value s 0 such that for any > 0 enough small, the image P 2 (Γ (s 0 )) does not intersect the section R (s 0 ). The assertion is proved.

The conclusion of all we have done in Subsection 3.1.c, is that there exists a choice of the values x * 1 , x * * 1 , µ * * for which the associated function g constructed at the beginning of Subsection 3.1.c verifies that (for every > 0 enough small) the system (1.2) is chaotic, which is the piecewise linear version of Theorem 3.2 .

End of the proof of the result

Finally, we can transform the piecewise linear Z-curve into a smooth one, by smoothing the rough edges near the points (x * 1 , µ * ) and (x * * 1 , µ * * ): this does not affect the dynamics of our system since the images (under the flow (φ t ) t∈R ) of the invariant Cantor set included in R (s 0 ) are all at a distance strictly positive of the flat branches, in particular of the rough edges of the Z-curve. The result is proved in the case α (µ 0 ) < 0.

Remark 3.10. In the case where α (µ 0 ) > 0 (which corresponds to a subcritical Hopf bifurcation), it suffices to take the symmetric of the Z-curve we considered above with regard to the axis Ox 1 . The exactly same reasoning applies in this case. The proof is achieved.

3.1.d Proof of Corollary 3.3

Let us consider again the set R (s 0 ) defined above. There exist two small numbers 0 < 1 < 2 such that for any in ] 1 , 2 [, both P 2 (R 1 (s 0 )) and P 2 (R 2 (s 0 )) will cover this set while being at a bounded distance of the plane µ = 0. We can therefore bend the inferior stable branch of the piecewise linear Z-curve defined by the function h without modifying the dynamics established above (see Proposition (3.4) at the end of the remark 3.10 below), and also smooth the rough edge near the point (x * 1 , µ * ). We obtain an inferior branch that can be described as the graph of a smooth function in the variable µ. Applying the same for the superior branch of h, we get the result. Theorem 3.2 can be extended to the case where (f µ ) µ∈R is a family of vector fields in R n , with n ≥ 2, provided we make an additional hypothesis of contractility on the other eigenvalues of the Jacobian at the bifurcation point.

µ = 0 Γ(s 0 ) P 2 (R 1 (s 0 )) P 2 (R 2 (s 0 )) 1

3.2.a The hypotheses

H1 There exists a value µ 0 and a critical point x 0 of the field f µ 0 such that the Jacobian D x f µ 0 x 0 has a pair of pure imaginary complex eigenvalues ±iβ with β > 0, and the other eigenvalues λ 3 , • • • , λ n have a strictly negative real part.

Here again, we denote by φ = (φ 1 , • • • , φ n ) the smooth function defined on a neighborhood U of the bifurcation value µ 0 , that locally defines the graph of fixed points associated to the function f. Hypothesis H2 on the cross of the pure imaginary axis with a non-zero velocity, has not changed. Remark that restricting U if necessary, we have that the eigenvalues λ 2 (µ) , • • • , λ n (µ) (which are equal to λ 2 , • • • , λ n in µ = µ 0 ) have also a strictly negative real part. For each µ in U, we denote by Π µ the plane span by the real and imaginary parts of the eigenvectors associated to α (µ) ± iβ (µ). Note that all those planes are almost parallel because these eigenvectors vary smoothly with the parameter µ.

Under these two assumptions, the center manifold theorem gives us the existence, for every µ in U, of a smooth manifold of dimension two W µ , tangent at the point (φ (µ) , µ) to the plane Π µ . This manifold is attracting for the flow of the equation ẋ = f (x, µ). Moroever, for every µ in U, the dynamics of this system restricted to W µ is given by equations of the form:

u1 = a 0 µ + b 0 u 2 1 + u 2 2 u 1 -ω + a 1 µ + b 1 u 2 1 + u 2 2 u 2 u2 = ω + a 1 µ + b 0 u 2 1 + u 2 2 u 1 + a 0 µ + b 0 u 2 1 + u 2 2 u 2 .
(1.3)

3.2.b The theorem and its proof

The n-dimensional version of our result is the following:

Theorem 3.11. Let us suppose that Hypotheses H1 , H2 on the function f are satisfied. Assume moreover that the projection of the graph x = (φ 1 (µ) , • • • , φ n (µ)) on the plane Π µ 0 is not reduced to the point (φ (µ 0 ) , µ 0 ). Then, there exist two distinct integers i, j in [1, n], two non zero real numbers a i , a j and a smooth function h in G 2 such that for every > 0 enough small, the singularly perturbed system:

ẋ = f (x, µ) μ = h (a i x i + a j x j , µ) , (1.4)
taken in a neighborhood of x 0 , µ 0 enough small, is chaotic.

Proof. The exactly same reasoning as in the two-dimensional case can be applied.

(i) Indeed, let us first fix a value µ * * in U, strictly greater than µ 0 . By assumption on the graph x = φ (µ), there exists a value of the parameter (say 0) which is strictly smaller than µ 0 and such that the projection X 0 of the point (φ (µ * * ) , 0) on the plane Π 0 is not equal to the fixed point (φ (0) , 0). Without loss of generality, we assume that this last point is the origin O = (0,

• • • , 0) of R n+1 .
Then we consider two planes H * , H * * which are parallel to the plane containing the origin and the two points (φ (µ * * ) , 0) , X 0 . There exist two distinct integers i, j in [1, n], such that the equations of these planes are of the form:

a i x i + a j x j = x * a i x i + a j x j = x * * ,
where a i , a j and x * , x * * are four non zero numbers. The intersections H * ∩ Π 0 and H * * ∩ Π 0 are two lines that will be our two fold lines ∆ * , ∆ * * of Subsection 3.1.c. To finish this first step we consider the element h in G p,2 defining the Z-curve with flat branches of which bifurcation points are (x * , 0) and (x * * , µ * * ), in order to prove the piecewise linear version of the result before smoothing this convenient Z-curve.

(ii) Without loss of generality, we can assume that the origin is very close to the two fold lines that intersect by the way a small neighborhood of the origin in R n+1 , in which the flow of the system (1.4) is very close to its linear part. Thanks to the hypothesis H1 , we can therefore construct a rectangular section I in the hyperplane µ = 0, that transversely cross the plane Π 0 , and which is covered twice by the limit flow associated to (1.4). It remains to extend vertically this section I, that is to say to consider the sets

R (s) = {(x, µ) ∈ I × [0, s]} ,
for some small strictly positive s. There exist a value s 0 such that R (s 0 ) is a Horseshoe for the flow of the system (1.4). We conclude by taking off this rectangle from the hyperplane µ = 0, and by smoothing the Z-curve as in the two-dimensional case.

To finish Section 3.2, we also have the similar corollary as in section 2:

Corollary 3.12. With the same assumptions as in Theorem 3.11, there exist two integers i, j in [1, n], two non zero real numbers a i , a j , a smooth function h in G c,2 and two small numbers 0 < 1 < 2 , such that for every in ] 1 , 2 [, the system (1.4), taken in a neighborhood of x 0 , µ 0 enough small, is chaotic.

4 Numerical evidence of a chaotic motion in the V-system

Finally, in order to apply Theorem 3.2 to find chaos in our V-system, it suffices to use three scales of time so that the slow system S written in Section 2.2.c be in fact a slow-fast one. This comes to considering the V-system under the form:

                                                         Ȧ1 = k 1 + k 11 A 1 j 11 2 + k 13 A 3 j 13 2 1 + A 1 j 11 2 + A 2 j 12 2 + A 3 j 13 2 -γ 1 A 1 Ȧ2 = k 2 + k 21 A 1 j 21 2 1 + A 1 j 21 2 -γ 2 A 2 1 γ 3 Ȧ3 = k 3 γ 3 1 1 + A 4 j 34 2 -A 3 1 γ 4 Ȧ4 = k 4 γ 4 1 + A 1 j 41 2 1 + A 1 j 41 2 + A 3 j 43 2 -A 4 ,
in which γ 3 is chosen very great but much less than γ 4 , and the ratios k 3 /γ 3 , k 4 /γ 4 are greater or equal to one. From this use of three scales of time and the study done in Section 2, we are finally able to exhibit the key parameters (among the 17 ones) for which the V-system is very close to satisfy the conditions of Theorem 3.2 ensuring chaos. These conditions are the following:

-The parameters of sub-system V A 1 ,A 2 are such that this system admits a Hopf bifurcation.

-The parameters j 34 , k 3 , k 4 , γ 3 , γ 4 verify the inequalities:

1 γ 3 γ 4 , 2 < k 4 γ 4 j 34 , 1 ≤ k 3 γ 3 , 1 ≤ k 4 γ 4 .
We cannot say that the two conditions are sufficient to get chaos, since we also need that the Hopf bifurcation surface be well positioned compared with the hysteresis surface (conformed with Figure 1.6) and that this last one be enough flat. But this condition, involving notably the parameters of the third group, cannot be quantified. From this hierarchy among the parameters, we are led to the following set of parameters With Xdim we found a Poincaré map that covers twice the section on which it is defined, in an exactly similar way as planned (see figures (12) and ( 13)).

P 1 :                k 1 = 0.
This convinces us that S 1 is chaotic. Such a section can be found for the Virginiator V 1 , by multiplying the parameters k sd , k sda , k dd by a very great number.

Figure 1.12: The Z-curve and the curve of critical points associated to the Hopf bifurcation of the system S 1 Figure 1.12 shows the bifurcation surfaces of the slow system S 1 , associated to the V-system V 1 . Numerical investigations realized with the software Xdim permitted us to find a Poincaré map that covers twice the section on which it is defined, in an exactly similar way as planned (see Figures 1.13, 1.14, and 1.15). We thus can conclude that V 1 is chaotic. Nous avons montré qu'il existe des valeurs de paramètre pour lesquelles le V-système admet un comportement chaotique (ceci, en démontrant l'existence d'un fer à cheval de Smale) et avons mis en évidence les paramètres responsables en grande partie de cette dynamique. Cette présence d'un fer à cheval garantit mathématiquement la robustesse du chaos dans notre système. En effet, l'application fer à cheval est structurellement stable ce qui assure l'existence d'un nombre η 0 > 0 tel que, pour tout 0 < η < η 0 , tout champ de vecteurs de la forme F + ηG (où F dénote le champ définissant le V-système) est chaotique au voisinage du point de bifurcation (voir [START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[END_REF], [START_REF] Iooss | Comportement chaotique des systèmes déterministes[END_REF]). Cette robustesse ne doit pas être confondue avec la sensibilité aux conditions initiales du système.

En pratique, la moindre modification des paramètres du V-système (aussi légère soit-elle) nous fait sortir de la région de paramètres pour laquelle la dynamique est chaotique: comme nous l'avons mentionné dans l'Introduction, le chaos est faible même s'il est théoriquement robuste. C'est là que réside tout l'intérêt de notre travail car une étude purement numérique aurait attribué les variations observées à du bruit. Etant donné que de nombreux réseaux de gènes présentent les mêmes caractéristiques que le Vsystème, à savoir un feedback positif (induit ici par une bifurcation de Hopf) et un feedback négatif (induit par une hystérèse), on peut espérer retrouver un tel chaos dans d'autres réseaux. Outre l'intérêt souligné dans l'Introduction concernant le contrôle de l'activité d'une cellule donnée, la recherche de réseaux génétiques chaotiques ayant un chaos plus fort (caractérisé par exemple par des exposants de Lyapunov strictement positifs) ouvre d'autres perspectives, le chaos pouvant être une des causes de la diversité phénotypique (i.e de la diversité du comportement des cellules). Dans cette direction, les investigations faites dans [START_REF] Munteanu | Phenotypic diversity and chaos in a minimal cell model[END_REF] sur une version du modèle Chemoton ont montré que de faibles changements dans les niveaux de concentration peuvent mener à des modifications importantes dans les caractéristiques phénotypiques du chemoton. L'idée que les variations de l'expression génique pourraient être dues à des effets déterministes non linéaires (en particulier au chaos), et pas seulement au hasard, a aussi été explorée récemment sur le plan expérimental dans [START_REF] Shimojo | Oscillations in notch signaling regulate maintenance of neural progenitors[END_REF] 

et [BHM + 05].
Concernant le problème général de la désynchronisation, il serait naturel de rechercher les conditions minimales requises sur la fonction f pour avoir l'existence d'une fonction g : R n+1 → R telle que le système: ẋ = f (x, µ) μ = g (x, µ) , dans lequel on a posé f (x, µ) = f µ (x), soit chaotique dans un voisinage du point critique. Cela terminerait le travail entrepris par E. Pécou dans [START_REF] Pécou | Desynchronization of one-parameter families of stable vector fields[END_REF], que nous avons poursuivi dans ce chapitre. D'un autre point de vue, on pourrait également s'intéresser à la synchronisation d'un ensemble de systèmes dynamiques plutôt qu'à la désynchronisation d'un système très stable. Si nous prenons le champ de vecteurs F définissant le système (1.1) avec > 0 assez petit pour qu'il soit chaotique, il serait intéressant de regarder s'il est possible de synchroniser un nombre p de systèmes tous définis par F . La réponse à cette question est positive et est donnée par un théorème dû à C.W. Wu (voir [START_REF] Chai | Synchronization in networks of nonlinear dynamical systems coupled via a directed graph[END_REF]). De plus, en étudiant la preuve de ce résultat, on voit que la synchronisation s'effectue grâce à une matrice de couplage qui ne dépend pas de la valeur de : il faut juste un temps plus long pour synchroniser p systèmes définis par un champ F associé à une valeur de paramètre plus petite que .

Chapitre 2

Discrete synchronization of hierarchically organized dynamical systems

Ce chapitre est une version remaniée de l'article [START_REF] Poignard | Discrete synchronization of hierarchically organized dynamical systems[END_REF], dans laquelle nous avons enlevé le résumé et l'introduction, déjà présents dans la Partie 4 de l'Introduction de cette thèse.

Problem 2: Synchronization problem for hierarchically organized dynamical systems. In particular, study of the effect of Hierarchy on the dynamics of the whole set of systems.

As announced in the Introduction, we first deal with this problem in the finite case in view of the second part on the infinite case of a Cantor set of systems, which constitutes the novelty of this work. The influence of Hierarchy on the dynamics is dealt with by considering the situation where some links between the systems are broken inside the whole structure. We will prove it is possible to allow an infinite number of broken links, providing we place them well.

Basic notations and definitions 1.The system

In all the chapter, we consider a segment K of R, stable under a map f : R → R (all the results we present are easily extendable on R 2 n , as mentioned at the end of the chapter). The map f is assumed to be of class C 2 and satisfies sup z∈K f (z) > 1. In particular f can have a chaotic dynamics.

Example 1.1. The typical example is obviously the logistic map defined by f(x) = µx (1x) for x in the segment [0, 1], which exhibits chaos (strictly positive topological entropy) for values of parameter beyond the threshold µ = 3.57.

We are interested in discrete dynamical systems of the form X k+1 = A • F (X k ) where A is a linear map and F is a non-linear one, the components of F being equal to the same real-valued function f. Depending on the space on which this system will be considered, the linear part A will be either an endomorphism acting on R 2 n or an operator acting on the infinite dimensional space of continuous functions on a Cantor set X (see Part 3). The goal is to study the synchronization of such a system, that is to say its convergence to the diagonal of the underlying space, that will be the set of vectors of which coordinates are all the same (denoted by I 2 n ) in Part 2, and the set of constant functions on X (denoted by I) in Part 3.

In the finite dimensional case, we use the notation A either to mention the endomorphism or its matrix represented in the canonical basis (e j ) 1≤j≤2 n of R 2 n . The hierarchical structure will lead to the use of the Kronecker product (that we will denote by ⊗) to define this endomorphism. Given two square matrices M = (m i,j ) 1≤i,j≤m and N = (n i,j ) 1≤i,j≤n respectively of size m and n, the Kronecker product M ⊗ N is the matrix of size mn defined by the equality:

M ⊗ N =    m 1,1 N . . . m 1,n N . . . . . . m n,1 N . . . m n,n N    .
Obviously the same definition works for non-square matrices but we recall it just in this case that interests us.

Vectors, matrices and norms

Each element X of R 2 n will be denoted by a capital letter and its coordinates in the canonical basis (e j ) 1≤j≤2 n in the following way

X (1) , • • • , X (2 n ) .
Given such an element X in R 2 n , we will naturally consider the associated sum-vector X Σ belonging to I 2 n , defined by the equality:

X Σ = X (1) + • • • + X (2 n ) 2 n , • • • , X (1) + • • • + X (2 n ) 2 n .
By convexity the vector X Σ belongs to K 2 n whenever X is in this set.

Given a matrix A, the notations χ A , S (A) , det (A) , rank (A) will classically stand for the characteristic polynomial, spectrum, determinant and rank of A. The algebraic multiplicity of an eigenvalue in χ A will be denoted by the symbol ⊗ . Moreover, the notation [A] i 1 ,••• ,i k will stand for the square submatrix of size i ki 1 + 1, defined by the elements a i,j of A for i, j varying in {i 1 , • • • , i k }. Two matrices will be constantly used in the first part of the paper. These are:

T = 1 - 1 - ,
for a real parameter , and

1 k =    1 • • • 1 . . . . . . 1 • • • 1    ,
of size k. We define similarly 0 k .

Concerning the norms, we denote by • ∞,n the uniform norm on R 2 n , defined by the relation:

X ∞,n = max 1≤i≤2 n X (i) .
In the second part, the same notation • ∞ will also stand for the uniform norm on the complete space C (X, R) of continuous functions on a Cantor set X.

The finite case

In all this part we fix an integer n ≥ 1, and deal with the synchronization problem in R 2 n .

Global synchronization

As explained in the Introduction, we consider the dynamics of particles evolving in time, and interacting hierarchically with each other according to a matching process in groups of size 2 at all the stages of the hierarchy. Namely, setting = ( 1 , • • • , n ) the n-tuple of parameters defining each of them, this organization is represented by the matrix B n, = A n n, n • • • A n 1, 1 , where we have set:

A n 1, 1 =    T 1 . . . T 1    , A n 2, 2 =    T 2 ⊗ I 2 . . . T 2 ⊗ I 2    , • • • , A n n, n = T n ⊗ I 2 n-1 .
Each of these structure matrices corresponds to a particular scale of synchronization: the first one corresponds to the smallest scale (since we act on the systems of smallest dimension, that is of dimension two), while the n th corresponds to the greatest one, with an action on the systems of largest dimension, that is 2 n-1 . We have mentioned the integer n in the notation A n k, k , since our goal is to understand what happens when n goes to infinity. Of course the hierarchical structure we have defined is not used here for the synchronization, as other coupling matrices than B n, could have been used. However, it is the hierarchy which will allow us to synchronize a Cantor set of systems (see Part 3).

With these notations, our problem writes in terms of the coupled map G n, = B n, • F n . The following result extends the one obtained by B. Fernandez (see [START_REF] Fernandez | Global synchronization in translation invariant coupled map lattices[END_REF]):

Theorem 2.1. Assuming the n-tuple = ( 1 , • • • , n ) defining the structure matrices A n 1, 1 , • • • , A n n, n
satisfies the relation:

∀k ∈ {1, • • • , n}, |1 -2 k | sup z∈K f (z) < 1,
then the dynamical system G n, = B n, • F n globally synchronizes, i.e we have:

∀X ∈ K 2 n , max 1≤i,j≤2 n G n, m (X) (i) -G n, m (X) (j) -→ m→∞ 0.
Proof. Following [START_REF] Fernandez | Global synchronization in translation invariant coupled map lattices[END_REF] we introduce:

J = 0 1 1 0 , and C 1 =    J . . . J    , C 2 =    J ⊗ I 2 . . . J ⊗ I 2    , • • • , C n = J ⊗ I 2 n-1 .
For every integers k, l in N, the matrices C l and A n k, k commute. Then it clearly comes, for every

k in {1, • • • , n} and every X in K 2 n : G n, (X) -C k (G n, (X)) ∞ ≤ |1 -2 k | sup z∈K f (z) • X -C k (X) ∞,n ,
from which we get, for every m ≥ 0:

max 1≤i,j≤2 n G n, m (X) (i) -G n, m (X) (j) ≤ n k=0 |1 -2 k | sup z∈K f (z) m • X -C k (X) ∞,n
and the result.

Remark 2.2. As explained in [START_REF] Fernandez | Global synchronization in translation invariant coupled map lattices[END_REF], this result also works for a Lipschitz function f on an interval which can be the whole set R. In this case the Lipschitz constant replace the supremum of the derivative in the assumption of the theorem.

Local synchronization in presence of broken links

2.2.a Position of the problem

Now we address the following question: in the set of our 2 n particles, suppose there is a subset composed of uncoupled elements, can we still make them synchronize with the other ones? In other words, if there are some links that are broken in the hierarchical structure constructed above (see Figure 2.1), can we still synchronize the whole set of particles?

The possible synchronization depends on the new structure matrices Ãn k, k that no more commute since some blocks T 2 ⊗ I 2 k-1 (with 1 ≤ k ≤ n) have been replaced by blocks I 2 k . For instance, the structure matrices associated to the scheme of Figure 2

.1(a) are A n 1, 1 , • • • , A n n-2
, n-2 and for the last two ones:

Ãn n-1, n-1 = T n-1 ⊗ I 2 n-2 I 2 n-2 , A n n, n = T n ⊗ I 2 n-1 .
Computing the spectrum of the new matrix Bn, = Ãn n, n • • • Ãn 1, 1 , is complicated in general because of this loss of commutativity. But as the reals k are always taken very close to 1/2 in our setting, we compute it in the case where we have = (1/2, • • • , 1/2), having in mind the continuity of the eigenvalues (in the coefficients of the matrices). The following lemma presents the main different schemes met in this case. (f) 2 n-1 -1 broken links at the 1 st scale. proof of Lemma 2.3. We only do the case (1) since the demonstrations of the other ones are similar.

From the definition of our hierarchical structure it clearly comes we have, for every n ≥ 1:

Bn+1, 1 2 =         1 2 n+1 1 2 n-1 1 2 n-1 1 2 n-1 1 2 n-1 1 2 n 1 2 n-1 0 2 n-1 0 2 n-1 1 2 n-1 1 2 n+1 1 2 n-1 1 2 n-1 1 2 n-1 1 2 n-1 1 2 n 1 2 n-1 0 2 n-1 0 2 n-1 1 2 n-1         .
By commutativity the sum of the two square matrices defining Bn+1, 1 2 is diagonalizable with eigenvalues 1, 1/2 and 0. The result follows from Lemma 2.4. This lemma gives some important informations for the second part of our work. As we could have expected, looking at the cases (3) and (4), we see that synchronization is not possible if there is only broken links at a given stage. According to the cases (5), (6) the more the broken links are numerous, the more the eigenvalues associated to the transverse directions of the diagonal are close to the value 1. In (5), the diagram contains 2 n -(n + 1) broken links meanwhile the one associated to the case (6) contains 2 n-1 -1 broken ones (recall that the total number of links in any diagram is 2 n -1). As a consequence the structures (5) and (6) will not be chosen when we deal with the infinite case in Part 3. More interesting is the case (1) which reveals the emphasis of the scale at which stand the broken links: to make the eigenvalues associated to the transverse direction tend to 0 as n goes to infinity, they must not be placed at the greatest scales of the diagram, i.e they must not link the biggest sub-systems of our set of particles. Lastly, the case (2) tells us the rate of convergence to zero of the transverse eigenvalues associated to the matrix (corresponding to this case) cannot be better than 1/2 n . With these informations in mind, the question is thus to know how to put a number of broken links inside the hierarchy that tends to infinity when n tends to infinity, while keeping the coupling matrix diagonalizable with eigenvalues associated to the directions transverse to the diagonal tending to zero. (Note that it is easy to construct some examples of diagrams with broken links for which the coupling matrix is not diagonalizable: such an example is given by the one associated to the following Figure 2.2.) Lemma 2.9 above is an answer to this question, under the following condition: the broken links must stand at the first N stages of the hierarchy (for a fixed integer N ), and they must be enough spaced out inside them. In order to establish this lemma, we need the following one. Lemma 2.5. Let N ≥ 1 an integer, and consider two coupling matrices of the same form BN,

1 2 = ÃN N,1/2 • • • ÃN 1,1/2 and B N, 1 2 = Ã N N,1/2 • • • Ã N 1,1/2 , where BN, 1 2 , B N, 1 2 
both contain one broken link, of which position is arbitrary (it can even be at the last N th stage, that is in ÃN N,1/2 or in à N N,1/2 ).

1

Figure 2.2: A diagram with broken links for which the associated coupling matrix is not diagonalizable

Then the matrix 1 2 BN, 1 2 + 1 2 B N, 1 2 
is diagonalizable with following spectrum:

S 1 2 BN, 1 2 + 1 2 B N, 1 2 = {1, λ 1 , • • • , λ N , 0 ⊗2 N -N -1 },
where

λ i ≤ 1, for every i = 1, • • • N .
Proof. We make an induction on N .

For N = 1, there is nothing to do, since we have 1 2 B1,

1 2 + 1 2 B 1, 1 2 = I 2 .
Assume the result is true for an integer N ≥ 2, and consider two matrices BN+1, 1

N +1, 1 2 both containing one broken link at an arbitrary position.

• Assume in a first case that the broken link of BN+1, 1 2 is in the last scale of the hierarchy, that is: ÃN+1 N +1,1/2 = I 2 N +1 . Then we have:

BN+1, 1 2 =        1 2 N 1 2 N 0 2 N 0 2 N 1 2 N 1 2 N        . If B N +1, 1 2 = BN+1, 1 2 
, the result is clear. Otherwise, by symmetry we can assume (without loss of generality) that B N +1, 1 2 has the following form:

B N +1, 1 2 =        1 2 B N, 1 2 1 2 N +1 1 2 N 1 2 B N, 1 2 1 2 N +1 1 2 N        , where B N, 1 2 contains one broken link. Clearly B N, 1 2
is diagonalizable (it is easy to see this as in Lemma 2.3), and as it is one row-sum and one column-sum, it commutes with 1 • The second case to consider is when both BN+1, 1 2 and B N +1, 1 2 have their broken links which are not at the last (N + 1)th scale. By symmetry, we can write, without loss of generality:

BN+1, 1 2 =        1 2 BN, 1 2 1 2 N +1 1 2 N 1 2 BN, 1 2 1 2 N +1 1 2 N        , and B N +1, 1 2 =        1 2 N +1 1 2 N 1 2 B N, 1 2 1 2 N +1 1 2 N 1 2 B N, 1 2        .
Then we have to verify the assumption on the rank required by Lemma 2.4, i.e that the following holds:

rank 1 2 BN+1, 1 2 + 1 2 B N +1, 1 2 = rank 1 4 BN, 1 2 + 1 4 B N, 1 2 + 1 2 N +1 1 2 N
or in other words that we have:

rank 1 2 BN+1, 1 2 + 1 2 B N +1, 1 2 = rank 1 4 BN, 1 2 + 1 4 B N, 1 2 , (2.1) 
the last equality coming from the fact the matrices BN, 1 We first notice that whatever the positions of the broken links inside BN, 1 2 and B

N, 1 2 , we have:

rank 1 2 BN+1, 1 2 + 1 2 B N +1, 1 2 = rank BN, 1 2 B N, 1 2 .
Now, assume that the broken link of BN, 1 stands in the first N -1 scales, from which we get:

rank BN, 1 2 B N, 1 2 = rank        1 2 N -1 1 2 N -1 1 2 B N -1, 1 2 0 2 N -1 1 2 B N -1, 1 2       
, and rank BN,

1 2 + B N, 1 2 = rank        1 2 N -1 1 2 N -1 1 2 B N -1, 1 2 1 2 N 1 2 N -1 1 2 B N -1, 1 2       
, , so it has the desired form. The fact that the broken links are only present at the first N scales of the hierarchy implies that the matrices of the family D N , • • • , D n correspond to the blocks of size 2 N , • • • , 2 n at the bottom of the diagram associated to Bn, (see Figure 2.3). Indeed we have: where the coupling matrices Bn-1, , B n-1, (associated to the tuple ( 1 , • • • , n-1 )) also contain the broken links at the first N stages. Those two matrices form the set D n-1 . That is why we set:

which
D k = 1 (1 -n ) • • • (1 -k+1 ) • [ Bn, ] 1,••• ,2 k , 1 (1 -n ) • • • (1 -k+2 ) k+1 • [ Bn, ] 2 k +1,••• ,2 k+1 , • • • , 1 n • • • k+2 (1 -k+1 ) • [ Bn, ] 2 n -2 k+1 +1,••• ,2 n -2 k , 1 n • • • k+1 • [ Bn, ] 2 n -2 k +1,••• ,2 n ,
Bn, =     (1 -n ) Bn-1, n B n-1, n Bn-1, (1 -n ) B n-1,     ,
D n-1 = { 1 1 -n • [ Bn, ] 1,••• ,2 n-1 , 1 n • [ Bn, ] 2 n-1 +1,••• ,2 n }. Similarly for D n-2 , • • • , D N .
Obviously this definition could also work for a matrix B n, with no broken links, but it is usefulness in this case. In fact, the nested families that interest us are the following ones:

Definition 2.7. Let us fix an integer N ≥ 1 and consider (for n ≥ N + 1), the coupling matrix

Bn, = A n n, n • • • A n N +1, N +1 Ãn N, N • • • Ãn 1, 1 ,
where Ãn N, N , • • • , Ãn 1, 1 are supposed to contain some broken links. Given a nested family D N , • • • , D n of submatrices for Bn, , let's denote by a k the number of broken links of the element D k . We say that D N , • • • , D n is an admissible nested family if the following conditions are satisfied:

-a N ≤ 1. -(a N +1 -a N , • • • , a n -a n-1
) is only composed of 0 and 1, and does not contain two successive 1.

We remark that if the coupling matrix Bn, has an admissible nested family of submatrices, it may not be unique. Moreover, if D N , • • • , D n is such a family, then D N , • • • , D n-1 is also an admissible nested family for D n . As a consequence, among the admissible nested families for a coupling matrix Bn, derived from Bn-1, , there are some that extend the ones of Bn-1, . This will permit us to require in a certain sense the existence of an infinite admissible nested family of sub-operators in the infinite case (see Theorem 3.15).

Example 2.8. A nested family associated to the tuple

(a N +1 -a N , • • • , a n -a n-1 ) = (1, 0, 1, 0, • • • , 1, 0)
is admissible. In this case, the coupling matrix admits a number a n of broken links greater than E (n/2). Of course, this case is interesting since E (n/2) goes to infinity when n does.

Let us go back to the situation where all the parameters are equal to 1/2, that is

( 1 , • • • , n ) = (1/2, • • • , 1/2).
In this case, the admissible nested families permit us to put a high number of broken links inside the hierarchy while keeping the associated coupling matrix diagonalizable with eigenvalues (corresponding to directions transverse to the diagonal) decreasing rapidly. Lemma 2.9. Let us fix an integer N ≥ 1 and consider (for n ≥ N + 1), the coupling matrix

Bn, 1 2 = A n n,1/2 • • • A n N +1,1/2 Ãn N,1/2 • • • Ãn 1,1/2 ,
where Ãn N,1/2 , • • • , Ãn 1,1/2 contain some broken links (that is to say identity blocks I 2 l with l ≤ N -1), in such a way that there exists an admissible nested family of submatrices for Bn, 1 2 . Then Bn, 1 2 is diagonalizable with following spectrum:

S Bn, 1 2 = {1, λ n,1 , • • • , λ n,N , 0 ⊗2 n -N -1 },
the λ n,i being some (possibly equal) positive numbers satisfying:

∀i ∈ {1, • • • , N } , λ n,i ≤ n -N + 1 2 n-N .
Proof.

(1) Let n ≥ N + 1, and consider a matrix Bn, 1 2 satisfying the required assumptions. Let us denote by D N , • • • , D n its admissible nested family of submatrices. Then without loss of generality we have:

Bn, 1 2 (= D n ) =        1 2 D n-1 1 2 C n-1 1 2 D n-1 1 2 C n-1        , (2.2) 
where C n-1 is an element of D n-1 but in which there is zero or one broken link (the other symmetric case for Bn, 1 2 is obtained by exchanging D n-1 and C n-1 ). As in Lemma 2.5 we naturally consider the term 1 2 D n-1 + 1 2 C n-1 : if we prove this term is diagonalizable and its spectrum has the desired form, then the same will hold for Bn, 1 2 . And as the integer n is taken arbitrary, the result will follow.

(2) So let us prove by induction that for every n ≥ N + 1, the following property is true: H n : " Let Bn, 1 2 be a coupling matrix satisfying the required assumptions of this lemma 2.9, and let D n-1 , C n-1 be the matrices defining Bn, 1 2 by the expression (2.2) above. Then we have:

S 1 2 D n-1 + 1 2 C n-1 ={1, λ n,1 , • • • , λ n,N , 0 ⊗2 n-1 -N -1 },
the λ n,k, being some (possibly equal) positive numbers verifying:

∀k ∈ {1, • • • , N }, λ n,k ≤ n -N + 1 2 n-N . Moreover this matrix 1 2 D n-1 + 1 2
C n-1 is diagonalizable, and its rank is the one of Bn, 1

2

."

For n = N + 1, the result is clear if D N or C N contains no broken link. If D N and C N both contain one broken link, the result is given by Lemma 2.5.

Let n ≥ N +2 and assume H n is true. Let Bn+1, 1 2 admitting a nested admissible family D N , • • • , D n+1 , and a N , • • • , a n+1 the successive numbers of broken links associated to this family. We look at the expression of Bn+1, 1 2 in terms of the matrices D n and C n (in a similar way as in the expression (2.2)).

• Assume in a first case C n contains one broken link, i.e a n+1a n = 1 (or in other words D n+1 admits one more broken link than D n ). As before without loss of generality we have:

C n =        1 2 C n-1 1 2 n 1 2 n-1 1 2 C n-1 1 2 n 1 2 n-1       
, where C n-1 contains one broken link. Now, as D N , • • • , D n+1 is an admissible sequence thus we have a na n-1 = 0, (D n and D n-1 have the same number of broken links). So we can write:

D n =        1 2 n 1 2 n-1 1 2 D n-1 1 2 n 1 2 n-1 1 2 D n-1       
.

Since H n is true, the term

1 4 D n-1 + 1 4
C n-1 is diagonalizable and its spectrum has the required form. As in Lemma 2.5 we conclude that the sum 1 4

D n-1 + 1 4 C n-1 + 1 2 n 1 2 n-1 is diagonalizable.
As the terms D n-1 and C n-1 are one-column sum, we clearly have:

rank 1 2 D n + 1 2 C n = rank 1 4 C n-1 1 4 D n-1
from which we obtain (by H n and by Lemma 2.4) that the desired term 1 2

D n + 1 2 C n is
diagonalizable. This equality tells us also that rank Bn+1,

1 2 = rank 1 2 D n + 1 2 C n .
To conclude it suffices to remark we have:

S 1 4 D n-1 + 1 4 C n-1 + 1 2 n 1 2 n = {1, λ n,1 2 , • • • , λ n,N 2 , 0 ⊗2 n -N -1 },
as required.

• In the second case, a n+1a n = 0 (i.e C n contains no broken link), and a na n-1 = 1 (that is to say D n has one more broken link than D n-1 ). Then D n is of the form:

D n =        1 2 D n-1 1 2 C n-1 1 2 D n-1 1 2 C n-1       
.

Since C n = 1 2 n 1 2 n , the assumption H n and the Lemma 2.4 permit to conclude as in the first case.

• The last case is a n+1 -a n = 0 and a n -a n-1 = 0, and is dealt with the exactly same reasoning.

Example 2.10. In the case where N = 2 and n = 5, consider the tuple (a 3a 2 , a 4a 3 , a 5a 4 ) = (1, 0, 1) with a 2 = 1. When the three broken links are present at the second stage, the spectrum associated to this tuple is (1, 3/8, 0, 0, 0). If they are present at the first stage, this spectrum is (1, 3/16, 0, 0, 0).

2.2.b A local synchronization lemma

Now let us prove the synchronization result in this context. As the structure matrices Ãn k, k no more commute, the classical method exposed in [START_REF] Fernandez | Global synchronization in translation invariant coupled map lattices[END_REF] cannot be applied again. More, there is no hope to synchronize globally our system since in general it admits some fixed points outside the diagonal.

Example 2.11. Consider the case n = 2 (i.e dimension 4), with f as the logistic map (taken at the value of parameter µ = 3.57, as in Example (1.1)) and the following structure matrices:

Ã2 1, 1 = T 1 I 2 , A 2 2, 2 = T 2 ⊗ I 2 .
This is the only interesting structure with broken link in this dimension. Then for ( 1 , 2 ) = (0.45, 0.476), we have G2, (X) = B2, • F 2 (X) = X for the value:

X ≈ (0.3394508235, 0.2491080749, 0.7404987705, -0.2406491883) .

For this reason we adopt another approach based on a Taylor development at first order: although the approximations deduced are coarse, it permits us to recover a commutativity on the differential of G n , leading to the existence of a contracting neighborhood of the diagonal I 2 n . This result has been already established notably by W. Lu in [START_REF] Lu | Synchronization analysis of linearly coupled networks of discrete time systems[END_REF] (see also [START_REF] Jost | Spectral properties and synchronization in coupled map lattices[END_REF]) in a general setting (that does not take into account the hierarchical structure and the broken links we are dealing with) but obviously without exhibiting how the contracting neighborhood depends or not on the dimension of the space (here 2 n ). And as we need this information for the second part, we demonstrate this result again: Lemma 2.12. Let us fix an integer N ≥ 1 and take a n-tuple = ( 1 , • • • , n ) with n ≥ N + 1. We consider the system Gn, = Bn, • F n , where the coupling matrix Bn, admits an admissible nested family of submatrices (as in Lemma 2.9). Assume the n-tuple is enough close to 1/2 so that we have:

6 sup z∈K |f (z) | 2N n k=1 |1 -2 k | < 1.
Then, there is a constant Λ n such that, for every > 0 exists a real η N > 0 (that does not depend on n) defining the following neighborhood Ω n of the diagonal:

Ω n = {X ∈ K 2 n , ∀i = j |X (i) -X (j) | ≤ η N },
on which the map Gn, 2N satisfies the inequality:

max 1≤i,j≤2 n Gn, 2N (X) (i) -Gn, 2N (X) (j) ≤ 2 + Λ n + 3 sup z∈K |f (z) | 2N n k=1 |1 -2 k | X (i) -X (j) .
The constant Λ n tends to zero as n tends to infinity. In particular choosing enough small, the dynamical system Gn, synchronizes on the set Ω n for a sufficiently large n.

Proof. We first prove the result for the map G2N n, 1 2 .

For every r ≥ 1, the Taylor formula with bounded remainder applied at first order gives us the following:

Gn, 1 2 r (X) -Gn, 1 2 r (X Σ ) ∞,n ≤ sup t∈[0,1] α (t) + D X Σ Gn, 1 2 r (X -X Σ ) ∞,n ,
where we have set:

α (t) = D (1-t)X Σ +tX Gn, 1 2 r (X -X Σ ) -D X Σ Gn, 1 2 r (X -X Σ ) ∞,n .
Now we fix a small number > 0. The (uniform) continuity of the map X → D X Gn, 1 2 on the compact K 2 n , gives us the existence of a number η r > 0 such that:

∀X, Y ∈ K 2 n × K 2 n , X -Y ∞,n < η r ⇒ D X Gn, 1 2 r -D Y Gn, 1 2 r ∞,n < .
Indeed, for every X, Y ∈ K 2 n , applying successively the mean value inequality leads to the estimation:

D X Gn, 1 2 r -D Y Gn, 1 2 r ∞,n ≤ sup z∈K f (z) r-1 • sup z∈K f (z) • β (X, Y ) ,
where the notation β (X, Y ) stands for the following sum:

β (X, Y ) = r i=1 Gn, 1 2 r-i (X) -Gn, 1 2 r-i (Y ) ∞,n .
This gives us the majoration:

D X Gn, 1 2 r -D Y Gn, 1 2 r ∞,n ≤ r sup z∈K f (z) 2r-2 • sup z∈K f (z) X -Y ∞,n ,
which permits us to choose a convenient real η r depending only on the integer r and the function f. We consider the set

C ηr = {Z = (z (1) , • • • , z (2 n ) ) ∈ K 2 n : ∀i = j z (i) -z (j) < η r }. If X is in C ηr ,
the upper bound in the Taylor inequality above is smaller than X -X Σ ∞,n . We now estimate the second term of the sum for X in this set.

Let P n the matrix of GL 2 n (R) conjugating Bn, 1 2 to its diagonal form (see Lemma 2.9):

            1 λ n,1 . . . λ n,N 0 . . . 0            
.

Clearly P n -1 (X -X Σ ) belongs to the space vect (e 2 , • • • , e 2 n ), as X -X Σ is orthogonal to the diagonal. Setting κ n = P n ∞,n P n -1 ∞,n , it comes: D X Σ Gn, 1 2 r (X -X Σ ) ∞,n ≤ κ n (n -N + 1) sup z∈K f (z) • 1 2 n-N r X -X Σ ∞,n .
The embarrassing condition number κ n = P n ∞,n P n -1 ∞,n may go to infinity as n does (this is the case numerically), but by induction we can see that this number is smaller than 2 nN . Thus if we choose the integer r enough great, for instance r = 2N we get:

D X Σ Gn, 1 2 2N (X -X Σ ) ∞,n ≤ Λ n X -X Σ ∞,n ,
where the term Λ n defined by:

Λ n = (n -N + 1) 2N • 2 2N 2 2 nN sup z∈K f (z) 2N ,
goes to zero as n tends to infinity. The result is proved in the case = (1/2,

• • • , 1/2).
Then, to prove the general case it suffices to compare our map Gn, with the map Gn,1/2 we have just studied. Here again the mean value inequality gives us:

D X Σ Gn, 2N (X -X Σ ) ∞,n ≤ 3 sup z∈K f (z) 2N Bn,1/2 -Bn, ∞,n X -X Σ ∞,n + D X Σ Gn, 1 2 2N (X -X Σ ) ∞,n ≤ Λ n + 3 sup z∈K |f (z) | 2N n k=1 |1 -2 k | ||X -X Σ || ∞,n .
Taking smaller if necessary we get the desired inequality.

Finally, for n enough large the map Gn,

2N

is transversally contracting on Ω n = C η 2N and thus synchronizes. There exists an integer M such that for every X in Ω n , all the iterated Gn,

2N M +s (X) with s in {0, • • • , 2N -1}, belong to this set. And by euclidean division, for every m ≥ 1 exists an integer q such that m = 2N (q -M ) + 2N M + s, with s in {0, • • • , 2N -1}. So we conclude:

∀X ∈ Ω n , max 1≤i,j≤2 n Gn, m (X) (i) -Gn, m (X) (j) -→ m→∞ 0.
Remark 2.13. The crucial point of this lemma lies in the non dependance of the size η 2N (on n) of the neighborhood Ω n on which our system synchronizes: this size stays constant as the dimension n goes to infinity, which will ensure us the existence of a non trivial neighborhood of synchronization in the infinite dimensional case.

Remarks concerning the definition of G n,

To finish this first part, let us underly there are mainly two possibilities for the definition of our dynamical system G n, , that represent the hierarchical structure we have constructed. Besides the one we have chosen G

n, = A n n, n • • • • • A n 1, 1 • F n in Section 2.1, we could have set: G n, = A n n, n • F n • • • • • A n 1, 1 • F n ,
and develop the same approach concerning the local synchronization in presence of broken links. The result of lemma (2.12) is also true with this definition, but this time the size of the synchronization neighborhood depends on n, for is added a term F n at each increasing of the dimension.

Generalization to a Cantor set

Consider again a set of 2 n particles, coupled together according to the hierarchical structure established in Section 2.1. As we have gathered them two-by-two at each step, it is natural to number them by a code with only two letters, say 0 and 1, representing their path to the top of the graph associated to this process: we use 0 if the subsystem is at the left of the one to which it is linked, and 1 if it is at its right. This numbering is one-to-one since every particle admits one and only one such path. As mentioned above, in this finite case we could have synchronized our particles with a different matrix coupling. This is no more the case if we let n tend to infinity. In this limiting case, our set of particles forms a Cantor set, thus (infinite) uncountable, indexed by the set X = {0, 1} N of sequences in 0 and 1, and the previous numbering describe all the possible sequences of this set. Instead of having a vector as initial condition (representing the values at each position k in 1, • • • , 2 n ), we now have a set h (X) for a function h from X to R. But because of this uncountability, there is no straight way to synchronize all our particles as in [START_REF] Fernandez | Global synchronization in translation invariant coupled map lattices[END_REF], [START_REF] Lu | Synchronization analysis of linearly coupled networks of discrete time systems[END_REF], [START_REF] Jost | Spectral properties and synchronization in coupled map lattices[END_REF], for there is no way to write explicitly a series in all the images h (c) for c in X. It is here that the hierarchical structure permits to overpass naturally this difficulty. The structure matrices A n k, k 1≤k≤n of Part 2 become the following structure operators (L k, k ) k∈N * acting on the space of real-valued functions on X:

L k, k (h) = (1 -k ) h + k J k (h) ,
where the function J k (h) is defined by: ∀c ∈ X, J k (h) (c) = h c ,k , the sequence c ,k being obtained from c by only replacing the letter c k with 1c k . Obviously, these operators J k play the same role as the matrices C k in the finite case (see the proof of Theorem 2.1). We look at the infinite composition of our new operators L k, k , i.e at the limit:

lim n→∞ L n, n • • • • • L 1, 1 (h) ,
for a given function h on X. Assuming for the moment such a limit exists (see below), it defines a coupling operator U , (where is the sequence ( k ) k≥1 ) from which we construct, as in Part 2 with G n , a dynamical system leading to the synchronization. Applied to a function h on X, this operator acts on all the terms h (c), as desired.

In this context the diagonal writes I = {h : X → R, h is constant}. Geometrically, given an initial condition h, the new dynamical system will tend to flatten its associated graph {(c, h (c)) : c ∈ X}. We are now able to apply the same reasoning as in Part 2, the main issue being the existence of the operator U .

Global synchronization

3.1.a Existence of the limit operator U

We equip X with the metric:

d(c, c ) = ∞ n=0 |c n -c n | 2 n .
The metric space (X, d) is compact, totally disconnected (i.e its greatest connected component is a point), and without isolated point. We recall that the metric spaces presenting these three characteristics are all homeomorphic. They are called Cantor spaces. It is important to tell that all our results below are true for any other Cantor space than (X, d) (which is not always the case), as they do not depend on the metric chosen (see the point (2) of Remark 3.3 below).

Given a n-tuple (a 1 , • • • , a n ) in {0, 1} n , consider the set:

C a 1 ,••• ,an = {c ∈ X : (c 1 , • • • , c n ) = (a 1 , • • • , a n )}.
It is easy to verify this set is closed and open for the topology defined by d. For every n ≥ 1, we will denote by (C n,k ) 1≤k≤2 n all the 2 n such sets, no matter the way they are ordered. Each C n,k has diameter 1/2 n-1 and we have:

∀n ≥ 1, X = 2 n k=1 C n,k .
The fundamental property is that the set C of all those sets:

C = {C 1,1 , C 1,2 , • • • , C n,k , • • • },
forms a countable basis of open sets of the topological space X. As explained above we are lead to consider the functions from X to R, that will be our new points in the phase space. In fact our results will only concern the space C (X, R) of continuous functions, which we recall is complete for the infinity norm || • || ∞ . The reason is the synchronization is expressed with this norm. The sum of the series n≥0 c n /2 n is an example of such a function. We have:

Proposition 3.1. The set of constant functions on the closed-open sets C is dense in the set

(C (X, R) , || • || ∞ ).
Proof. Any function constant on the closed-open sets of order n for some n ≥ 1, is clearly continuous on X. Then given an element h of C (X, R), define the sequence of functions (h n ) n≥1 by:

∀c ∈ X, h n (c) = h (c 1 , • • • , c n , 1) ,
where 1 denotes the constant sequence equals to one. For every n ≥ 1, the function h n is constant on the (C n,k ) 1≤k≤2 n , and by the uniform continuity of h on the compact X, converges to this function for the infinity norm. Lemma 3.2. For every sequence = ( n ) n≥1 of real numbers in [0, 1], and every continuous function h on X, the following limit:

U (h) := lim n→∞ L n, n • • • • • L 1, 1 (h) , exists as a function of (C (X, R) , || • || ∞ ).
which imposes, as the infinity norm of each L n, n is one:

||U J k ⊥ || ≤ |1 -2 k |.
The equality is reached for the function c → c k -(1c k ). This leads us to the following, for every elements c, c of X:

∀m ≥ 1 : |G m (h) (c) -G m (h) c | ≤ +∞ k=1 |1 -2 k | sup z∈K |f (z)| m ||h -J k (h) || ∞ , ≤ 1 a mα +∞ k=1 1 k mα ||h -J k (h) || ∞ ,
which gives the result.

Remark 3.7.

1. The sequence is asked to converge slowly to 1/2, since we do not know how fast is the convergence to zero of the term ||h -J k (h) || ∞ . This convergence depends in a certain sense, on the metric taken on the Cantor space. For instance, if we take a Lipschitz function h on our set (X, d) as initial condition, it just suffices to ask the terms |1 -2 k | sup z∈K |f (z)| are all strictly smaller than one, because the diameters of the closedopen sets decrease enough strongly to 0.

2. There again, the result also works for a Lipschitz function f on an interval, in which case it is true on C (X, R).

The following corollary gives a threshold for the strength of coupling, under which global synchronization takes place in case of a sequence of parameters ( k ) k≥1 depending only on one parameter :

Corollary 3.8. Let us set 0 = 1 2 • sup z∈K f (z)
and consider the one-parameter sequence ( k ) k≥1 defined by the relation k = 1/2 -/k, for a fixed number > 0 and for every k ≥ 1. Then, if we have < 0 , the dynamical system G = U • F globally synchronizes on the set C (X, K).

Proof. If we have < 0 , there exists a real number a > 1 such that for every k ≥ 1 the following holds:

|1 -2 k | sup z∈K f (z) ≤ 1 ak .
The condition of Theorem 3.6 ensuring synchronization is thus verified for the value α = 1.

Local synchronization in presence of broken links

Finally, as announced before we ask the same question as in Subsection 2.2: assume in our Cantor set of particles, there are infinitely many ones that are not coupled. Can we still synchronize the entire set of particles? As said previously, the work has been already prepared by Lemma 2.9 and 2.12: it just suffices to let the dimension n go to infinity in our estimations, using the fact that the set of constant functions on the closed-open sets C n,k form a 2 n -dimensional space, that we identify with R 2 n .

In order to make this passing to the limit, we have to define again our sequence of structure operators, acting at each step n on this space of constant functions on the C n,k . We begin by the operators having only strong links, setting for every n ≥ 1 and every function h in C (X, R):

∀k ∈ {1, • • • , n} : I n k, k (h) (c) = (1 -k ) h (c 1 , • • • , c n , 1) + k h (c 1 , • • • , c n , 1) ,k .
As in Part 2, we ask that for each diagram of size 2 n , the broken links stay at the smallest N stages of the hierarchical structure (for a fixed N ≥ 1), while being enough spread in those stages (see Lemma 2.9). In this purpose, for every n ≥ N + 1 and every function h in C (X, R), we consider the composition:

Wn, (h) = I n 1, 1 • • • • • I n n-N, n-N • Ĩn n-N +1, n-N +1 • • • • • Ĩn n, n (h) , where = ( 1 , • • • , n ) and the operators Ĩn k, k n-N +1≤k≤n
contain the broken links (note the order of composition has been reversed compared to the definition of Part 2, see Remark 3.10). To define the operators Ĩn k, k , we view the 2 n closed-open sets as points of R 2 n , ordered according to the same rule as the one described at the beginning of Part 3. That is to say, at each stage of the hierarchical diagram of size 2 n , we place on the left the tuples of which letter corresponding to this stage is 0, and on the right those for which this letter is 1 (see Figure 2.4). Obviously, taking the reverse order (where the letter 1 corresponds to the left) changes nothing. Once this order is chosen (for the diagrams of any size), we denote for any function h in C (X, R), and any n ≥ 1, the vector H

n = (h n,1 , • • • , h n,2 n ) in R 2 n ,
of which coordinates (numbered according to this order) are the 2 n distinct values taken by the function h n defined in the proof of Proposition 3.1. That is to say, we set: do on R 2 n , by requiring they satisfy the relations:

           h n,1 = h (0, • • • , 0, 1) h n,2 = h (0, • • • , 0, 1, 1) . . . h n,2 n = h (1, • • • , 1, 1) . ( 2 
∀p ∈ {1, • • • , 2 n } : Ĩn n-k+1, n-k+1 (h) p = Ãn k, k H n p , for k varying in {1, • • • , N }.
Let us give an example when n is small.

Example 3.9. We illustrate the transition from the step n = 3 to n = 4, in case of two broken links placed as in Figure 2.4. The operators Ĩ3 2, 2 , Ĩ3 3, 3 representing the structure of Figure 2.4 are the ones defined by the relations:

Ĩ3 2, 2 (h) (c) = h (c 1 , c 2 , c 3 , 1) if c 1 = 0 I 3 2, 2 (h) (c) otherwise and Ĩ3 3, 3 (h) = I 3 3, 3 (h) .
As one more broken link is added at the step n = 4, the operators Ĩ4 3, 3 , Ĩ4 4, 4 are defined by: Remark 3.10. By considering (for every n ≥ N + 1) the operator Wn, , we have reversed the direction of iteration compared with the finite-dimensional case (i.e with the definition of Bn, ). This comes from the fact in the hierarchical structure constructed in Part 2, the smallest scale (which is the one linking two successive elements X (i) , X (i+1) ) corresponds to the matrix T 1 , and thus remains fixed as the iteration goes on, whereas the smallest scale on the closed-open sets of size n is given by the operator J n . The lector could be easily convinced by himself this reversing is needed for the existence of the limit of Wn, , when n goes to infinity. This existence will be established in Lemma 3.14.

Ĩ4 3, 3 (h) (c) = h (c 1 , c 2 , c 3 , c 4 , 1) if (c 1 , c 2 ) = (0, 0) I 4 3, 3 (h) (c) otherwise and Ĩ4 4, 4 (h) (c) = h (c 1 , c 2 , c 3 , c 4 , 1) if (c 1 , c 2 , c 3 ) = (1, 0, 0) I 4 4, 4 (h) (c) otherwise.

With this construction of the operators Ĩn

k, k n-N +1≤k≤n
, we can now view the operator Wn, as a coupling matrix of the form Bn, , except that here the order of the parameters has been reversed: Definition 3.11. Let us fix an integer N ≥ 1, and consider (for n ≥ N + 1) the composition:

Wn, = I n 1, 1 • • • • • I n n-N, n-N • Ĩn n-N +1, n-N +1 • • • • • Ĩn n, n , where = ( 1 , • • • , n ) and the operators Ĩn k, k n-N +1≤k≤n
(containing the broken links) are associated to the matrices Ãn k, k 1≤k≤N

. Then the following matrix:

Bn, = A n n, 1 • • • • • A n N +1, n-N • Ãn N, n-N +1 • • • • • Ãn 1, n ,
is called the coupling matrix of the operator Wn, .

Note that we have Bn, = Bn, -1 , where -1 denotes the reverse tuple of parameters ( n , • • • , 1 ).

Definition 3.12. Let us consider (for n ≥ N + 1) the operator Wn, above. We define, for k = N, • • • , n -1, for h in C (X, R) and c in X, the following family of 2 n-k real numbers:

D k (h) (c) = (a 1 ,••• ,a n-k )∈{0,1} n-k α k (h) (c)
where α k (h) (c) stands for the notation:

α k (h) (c) = I n n-k+1, n-k+1 • • • • • I n n-N, n-N • Ĩn n-N +1, n-N +1 • • • • • Ĩn n, n (h) (a 1 , • • • , a n-k , c) ,
and we set D n (h) (c) = Wn, (h) (c). This set D k (h) (c) defines a family D k of operators W k associated to Wn, , defined by an expression W k (h) (c) belonging to it. Such an operator W k in D k is called a sub-operator for Wn, .

It is important to notice that each sub-operator W k is of the form Wk,( n-k+1 ,••• , n) . More precisely, we have:

W k (h) (c) = I k 1, n-k+1 • • • • • I k k-N, n-N • Ĩk k-N +1, n-N +1 • • • • • Ĩk k, n (g) (c) , where g (c) = h (a 1 , • • • , a n-k , c).
This permits us to inherit the notion of nested sub-operators for Wn, . For instance, in the example 3.9 above, we have W4, = I 4 1, 1 • I 4 2, 2 • Ĩ4 3, 3 • Ĩ4 4, 4 and the operator W 3 defined by the relation W Now, as in the global synchronization case, for any continuous function h on X, the term lim n→∞ Wn, (h) exists (no matter the positions and the numbers of broken links, inside the N smallest stages). This limit is the desired coupling operator since it acts on (all) the sequences of 0 and 1. Lemma 3.14. Let = ( k ) k≥1 a sequence in [0, 1] N * and consider for every n ≥ N + 1 the operator Wn, (h

3 (h) (c) = I 4 2, 2 • Ĩ4 3, 3 • Ĩ4 4, 4 (h) (1, c) is
) = I n 1, 1 • • • • • I n n-N, n-N • Ĩn n-N +1, n-N +1 • • • • • Ĩn n, n ( 
h) containing some broken links at the first N stages of its hierarchical diagram. For every function h in C (X, R), we set:

W (h) = lim n→∞ Wn, (h) .
Then, W is a well-defined operator on C (X, R).

Proof. The demonstration is the same as the one of Lemma 3.2. Let's take a continuous function h, and the associated sequence (h n ) n≥1 defined as in the proof of Proposition 3.1, that converges to h. We have for any integers p, q ≥ 1:

|| Wp+q, (h) -Wp, (h) || ∞ ≤ 2||h -h p || ∞ + || Wp+q, (h p ) -Wp, (h p ) || ∞ .
Without loss of generality we can assume q ≥ N . Then, as h p is constant on the closed-open sets C p,k of size p, we have:

|| Wp+q, (h p ) -Wp, (h p ) || ∞ ≤ ||I p 1, 1 • • • • • I p p, p (h p ) -I p 1, 1 • • • • • I p p-N, p-N • Ĩp p-N +1, p-N +1 • • • • • Ĩp p, p (h p ) || ∞ ≤ ||I p p-N +1, p-N +1 • • • • • I p p, p (h p ) -Ĩp p-N +1, p-N +1 • • • • • Ĩp p, p (h p ) || ∞ ≤ N k=1 p-N +k ||h p -J p-N +k (h p ) || ∞ ,
the last inequality coming from the commutativity of the operators J l with the operators I p k, k , for any integers k, l. The last term tends to zero as p goes to infinity, and this independently on q. Thus we still have a Cauchy sequence.

From this lemma we define the new dynamical system G = W • F and finally get the second result of our paper: Then the dynamical system G = W • F synchronizes on a non trivial neighborhood Ω N of the diagonal I ∩ C (X, K) in C (X, R).

In fact, the assumption comes to requiring the existence of an infinite admissible nested family of sub-operators for W , constructed by extending at each step n the (finite) such family of Wn, . As mentioned several times before, the proof of this theorem is just a passage to the limit of the estimations done in Lemma 2.12. Obviously, the fact that this lemma is applied to the matrix Bn, instead of Bn, changes nothing, for the required assumption remains the same.

Proof of Theorem 3.15. (1) We first make the same Taylor approximations as in the proof of Lemma 2.12. Let us fix a real > 0. According to the proof of this lemma, there exists a real η 2N > 0 such that for every n ≥ N + 1, and every X, Y in K 2 n we have:

||X -Y || ∞,n ≤ η 2N ⇒ ||D X Ĝn, 2N -D Y Ĝn, 2N || ∞,n ≤ ,
where Ĝn, = Bn, • F n . Let h a function belonging to C (X, K) and H n = (h n,1 , • • • , h n,2 n ) the vector defined previously by the relations (2.3). As the closed-open sets form a partition of X, we have:

X h n (c) dµ (c) = 1 2 n 2 n k=1 h n,k ,
and since X is compact, we remark the following:

X h n (c) dµ (c) -→ n→∞ X h (c) dµ (c) .
We define the sum-vector in I Doing again the same trick as in the end of the proof of Lemma 2.12, we finally obtain the synchronization of G on Ω N . QED.

Corollaries of the results in the general case p n with p ≥ 3

In this last subsection, we present the corollaries of our two theorems on a Cantor set X = {a 0 , • • • , a p-1 } N associated to an alphabet with p ≥ 3 letters, which is the limiting case corresponding to a finite matching process in groups of size p: given a (p -1)-tuple

(k) = 1 (k) , • • • , p-1 (k)
defining the k th stage of the hierarchical structure, the coupling between the gathered elements is now defined by a circulant matrix R (k) , of which entries are 1 -p-1 i=1 With this definition, nothing changes in the approach we have done previously, except the fact the orthogonal of the diagonal J k in C (X, R) becomes:

(k) i , 1 (k) , • • • , p-1 (k) .
J k ⊥ = {h ∈ C (X, R) : p-1 i=0 J k i (h) = 0}.
We get:

Corollary 3.16. Let = (k) k≥1 be a sequence of elements in [0, 1] p-1 , defining the operator U by:

U (h) = lim n→∞ L n, (n) • • • • • L 1, (1) (h) ,
In this case, the coupling matrix admits a number a n of broken links greater than (p -1) E (n/2). By induction, we prove the result equivalent to Lemma 2.9: that is, for any n ≥ N + 1, if Bn, 1 p has an admissible nested family of submatrices, then this matrix is diagonalizable and satisfies: S Bn, 1 p = {1, λ n,1 , • • • , λ n,(p-1)N , 0 ⊗p n -(p-1)N -1 }, the λ n,i being some (possibly equal) positive numbers satisfying:

∀ i ∈ {1, • • • , (p -1) N }, λ n,i ≤ n -N + 1 p n-N .
This leads us to the same estimation as in Lemma 2.12, in which appears the term || Bn, -Bn,

1 p || ∞,n .
Then, denoting by Q k the orthogonal matrix of GL p n (R) conjugating R (k) to its diagonal form, we have: where γ (k) is the eigenvalue (distinct from one) of R (k) having the greatest modulus. Then the dynamical system G = W • F synchronizes on a non trivial neighborhood Ω N of the diagonal I ∩ C (X, K) in C (X, R).

||
Finally, these corollaries directly extend to functions f defined on a convex compact set K of R n and verifying sup z∈K D z f > 1 for some norm on R n , since this case just comes to replacing the coupling matrix Bn, by Bn, ⊗ I d .

Conclusion du Chapitre 2

De ce travail, nous concluons que la structure hiérarchique que nous avons définie et étudiée permet de synchroniser de manière naturelle un ensemble de Cantor de systèmes dynamiques. Ceci fait encore une fois écho à la théorie des pavages, dans laquelle la hiérarchie est souvent imposée pour obtenir de l'apériodicité. On pourrait poursuivre cette étude avec le même cadre que celui que nous avons employé. Un problème intéressant serait de traiter le cas où la structure de la hiérarchie n'est pas répétée à chaque étape: par exemple, on pourrait partir (à la première échelle) d'un processus de regroupement deux par deux, puis rassembler les éléments trois par trois à la deuxième échelle, et ensuite changer encore le type de regroupement à la troisième échelle, et ainsi de suite...Si on impose que la taille du processus de regroupement varie dans un ensemble fini {2, • • • , p}, on peut sûrement trouver des résultats semblables à ceux que nous avons exposés. En théorie des pavages, ce problème apparaît fortement et correspond au cas où la forme des patchs change à chaque étape de regroupement, à la différence des pavages de substitution. Beaucoup de travail reste à faire dans cette direction pour mieux comprendre ces structures hiérachiques.

Plus généralement, cette étude s'inscrit dans la démarche du contrôle de la synchronisation: en effet, avec notre structure hiérarchique ayant une infinité de liens brisés, nous avons développé une manière de synchroniser un ensemble de Cantor de systèmes dynamiques, pour laquelle le "coût" de synchronisation est plus faible que dans le cas où tous les liens de la structure sont forts. Dans ce contexte, une autre direction à suivre serait de regarder la possibilité de synchroniser un ensemble de systèmes, en utilisant le moins possible la matrice de couplage (c'est-à-dire en itérant à la fois sous l'application G n, = B n, • F et sous l'application F, dans les notations que nous avons employées). Etant donnée une suite (a p ) p≥0 de 0 et de 1, en décidant d'itérer sous G n, si a p = 1 et sous F si a p = 0, le problème serait de caractériser les suites (a p ) p≥0 contenant le moins de 1 pour lesquelles une synchronisation a lieu. Sur la synchronisation et la désynchronisation des systèmes dynamiques. Applications.

Camille POIGNARD

Résumé. Cette thèse traite de la synchronisation et de la désynchronisation des systèmes dynamiques. Dans une première partie nous abordons, sous l'angle de la biologie systémique, le problème de la désynchronisation qui consiste à induire un comportement chaotique dans un système ayant une dynamique stable. Nous étudions ce problème sur un réseau génétique appelé V-système, inventé afin de coupler le plus simplement possible une bifurcation de Hopf et une hystérèse. Après avoir démontré qu'un champ de vecteurs de R n présentant un tel couplage peut, sous certaines conditions, avoir un comportement chaotique, nous donnons un ensemble de paramètres pour lequel le V-système associé satisfait ces conditions et vérifions numériquement que le mécanisme responsable du chaos prend place dans ce système. Dans une deuxième partie, nous nous intéressons à la synchronisation de systèmes organisés hiérarchiquement. Nous commençons par définir une structure hiérarchique pour un ensemble de 2 n systèmes par une matrice représentant les étapes d'un processus de regroupement deux par deux. Cela nous amène naturellement au cas d'un ensemble de Cantor de systèmes, pour lequel nous obtenons un résultat de synchronisation globale généralisant le cas fini. Enfin nous traitons de la situation où certains défauts apparaissent dans la hiérarchie, i.e que certains liens entre les systèmes sont brisés. Nous montrons que l'on peut accepter un nombre infini de liens brisés, tout en gardant une synchronisation locale, à condition que ces liens soient uniquement présents aux N premiers étages de la hiérarchie (pour un N fixé) et qu'ils soient suffisamment espacés dans ces étages.

Mots-clés : systèmes dynamiques, chaos, bifurcations, réseaux de régulation génétique, synchronisation.

On the synchonization and desynchronization of dynamical systems. Applications.

Camille POIGNARD

Abstract. This thesis deals with the synchronization and desynchronization of dynamical systems. In a first part we tackle (under a biological viewpoint) the desynchronization problem, which consists in the inducement of a chaotic behavior in a stable dynamical system. We study this problem on a gene regulatory network called V-system, invented in order to couple in a very simple way, a Hopf bifurcation and a hysteresis-type dynamics. After having proved that a vector field on R n admitting such a coupling may, under some conditions, show a chaotic dynamics, we give a set of parameters for which the associated V-system satisfies these conditions and verify numerically that the mechanism responsible of the chaotic motion occurs in this system. In a second part, we take interest in the synchronization of hierarchically organized dynamical systems. We first define a hierarchical structure for a set of 2 n systems by a matrix representing the steps of a matching process in groups of size two. This leads us naturally to the case of a Cantor set of systems, for which we obtain a global synchronization result generalizing the finite case. Finally, we deal with the situation where some defects appear in the hierarchy, that is to say when some links between certain systems are broken. We prove we can afford an infinite number of such broken links while keeping a local synchronization, providing they are only present at the first N stages of the hierarchy (for a fixed integer N ) and they are enough spaced out in these stages.

Keywords : dynamical systems, chaos, bifurcations, gene regulatory networks, synchronization.
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 3 Figure 3: Flot du modèle géométrique de Lorenz (figure tirée de [Via00])
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 10 Figure 10: Courbe des points d'équilibre du système (2)
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 13 Figure 13: Structure hiérarchique dans le cas d'un regroupement trois par trois. Les traits représentent les états des particules à un instant donné
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 12 Figure 1.2: A Z-curve with flat branches
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 2 Figure 2. The Hopf bell-like surface and the surface defined by a piecewise-linear hysteresis.
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 1 Figure 1.6: The Hopf bell-like surface and the surface defined by a piecewise-linear Z-curve
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 4 Figure 4. The flow ϕ 3 .
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 17 Figure 1.7: The dynamics of the flow ϕ 2
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 1 Figure 1.8: The flow ϕ 3
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 5 Figure 5. Construction of the fold line ∆ * .
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 19 Figure 1.9: Construction of the fold line ∆ *
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 6 Figure 6. The one-dimensional section I covered twice by the flow ϕ 3 .
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 1 Figure 1.10: The one-dimensional section I covered twice by the flow ϕ 3
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 1 Figure 1.11: The covering of the rectangle R (s 0 ) by the map P 2 (for a fixed in ] 1 , 2 [)

  05, k 11 = 5, k 13 = 2.4, γ 1 = 0.1 j 11 = 2.5, j 12 = 0.5, j 13 = 2 k 2 = 0, k 21 = 0.3, j 21 = 17.5, γ 2 = 0.03 k 3 = 330, γ 3 = 32, j 34 = 1.5 k 4 = 387, j 41 = 2.9119, j 43 = 0.75, γ 4 = 100.1 .software Xdim for such high values. Remark that the parameters of the system V 1A,B and V 0 A,B are the same, thus V 1 A,B still admits a Hopf bifurcation. Moroever we have k sd k dd j cd = 2.57742 and k sd = k sda thus by the proposition 3.2 the set C 1A,Cis a hysteresis. The figure(11) shows the bifurcation surfaces associated to the slow system S 1 .
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 11 Figure 11. The hysteresis and the curve of critical points associated to the Hopf bifurcation of the system S 1
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 1 Figure 1.13: A trajectory of the system V 1
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 1 Figure 1.15: The Poincaré map of V 1 covers twice the segment on which it is defined
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  (a) One broken link at the scale n -1. 1 (b) One broken link at the 1 st scale. 1 (c) 2 broken links at the scale n -1. 1 (d) 2 n-1 broken links at the 1 st scale.(e) 2 n -(n + 1) broken links at the first n -1 scales.
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 21 Figure 2.1: Diagrams with broken links, in the case n = 4

  spectrum of this matrix has the desired form, since B

2N, 1 2 ,

 2 is at the (last) N th scale. If this is also the case for B then we can conclude the relation (2.1) holds. Otherwise, the broken link of B N, 1 2

Definition 2 . 6 .

 26 Let us fix an integer N ≥ 1 and take a tuple= ( 1 , • • • , n ) in [0, 1] n , for an integer n ≥ N + 1. Consider the coupling matrix Bn, = A n n, n • • • A n N +1, N +1 Ãn N, N • • • Ãn 1, 1 ,containing some broken links (i.e identity blocks I 2 l with l ≤ N -1) at the first N stages of its associated diagram, that is to say in Ãn N, N , • • • , Ãn 1, 1 . For each k = N, • • • , n -1 let us denote by D k the following family of submatrices of size 2 k :

  and let us set D n = { Bn, }. Then, a tuple D N , • • • , D n is said to be a nested family of submatrices for Bn, if for each k = N, • • • , n, D k belongs to D k , and D k is a submatrix of D k+1 .

Figure 2 .

 2 Figure 2.3: A nested family of blocks in the diagram of synchronization with broken links at the first 3 stages

. 3 )

 3 It is now possible to define the operators Ĩn k, k n-N +1≤k≤n so that they act in the same way as the matrices Ãn k, k 1≤k≤N

Figure 2 . 4 :

 24 Figure 2.4: Transition from the step n = 3 to n = 4. The numbering represents the closed-open sets (C 3,k ) k=1,••• ,2 3

  the sub-operator of W4, associated to the sub-diagram on the right of picture 2.4. We have the relation W 3 (h) (c) = W3,( 2 , 3 , 4 ) (g) (c), where g (c) = h (1, c). Definition 3.13. Let us consider (for n ≥ N + 1) the operator Wn, above. Then, a family W N , • • • , W n is said to be a nested family of sub-operators for Wn, if for each k = N, • • • , n, W k belongs to D k , and W k is a sub-operator of W k+1 . A nested family of sub-operators W N , • • • , W n is called admissible if its associated family of coupling matrices D N , • • • , D n is an admissible nested one for Bn, .

  Theorem 3.15. Let us fix N ≥ 1 and = ( k ) k≥1 a sequence of real numbers in [0, 1] defining the operator W on C (X, R) by the relation: W (h) = lim n→∞ Wn, (h), where for every n ≥ N + 1, the operator Wn, =I n 1, 1 • • • • • I n n-N, n-N • Ĩn n-N +1, n-N +1 • • • • • Ĩn n,n has an admissible nested family of sub-operators. Assume the sequence satisfies the following:6 sup z∈K |f (z) | 2N +∞ k=1 |1 -2 k | < 1.

( 2 )|1 - 2

 22 2 n : H n,Σ = X h n dµ, • • • , X h n dµ .Now, for any n ≥ N + 1 and any function g n constant on the closed-open sets of size n, we have W (g n ) = Wn, (g n ). It comes:|| G 2N (h n ) -G 2N X h n dµ || ∞ = || Wn, • F 2N (h n ) -Wn, • F 2N X h n dµ || ∞ = || Ĝn, 2N (H n ) -Ĝn, 2N (H n,Σ ) || ∞,n ,and so by Lemma 2.12 the term on the left is smaller than:+ Λ n ||H n -H n,Σ || ∞,n + ||D H n,Σ Ĝn, 2N -D H n,Σ Ĝn,1/2 2N || ∞,n ||H n -H n,Σ || ∞,n ,providing that our function h satisfies: |h (c)h (c ) | ≤ η 2N for every c, c in X. Now as in the proof of Lemma 3.10 we notice that:||D H n,Σ Ĝn, 2N -D H n,Σ Ĝn,1/2 2N || ∞,n ≤ 3 sup z∈K |f (z)| 2N || Bn,1/2 -Bn, || ∞,nPassing to the limit at infinity, we get:|| G 2N (h) -G 2N X hdµ || ∞ ≤ + 3 sup z∈K |f (z)| 2N +∞ k=1 |1 -2 k | ||h -X h dµ|| ∞ .From this it comes for every sequences c, c' in X:k | sup x,x ∈X |h (x)h x |,which gives the synchronization of the dynamical system G 2N on the neighborhood Ω N of the diagonal J ∩ C (X, K) in C (X, R), defined by:Ω N = {h ∈ C (X, K) : sup x,x ∈X |h (x)h x | ≤ η 2N }.

3. 3

 3 .a Corollary of theorem (3.6) For every (p -1)-tuple(k) = 1 (k) , • • • , p-1 (k) in [0, 1] p-1 the new operator structures L k, (k) write: L k, (k) (h) = 1 -where this time the map J k (h) is defined by the relation:∀c ∈ X, with c k = a i , J k (h) (c) = h (c 1 , • • • , c k-1 , a i+1 mod p , c k+1 , • • • ) .

  Bn, -Bn, 1 p || ∞,n ≤ n k=1 || Ãk, (k) -Ãk, 1 p || ∞,n ≤ n k=1 ||Q k || ∞,n ||Q k -1 || ∞,n |γ (k) coming from the fact that each condition number ||Q k || 2,n ||Q k -1 || 2,n is equal to 1, since the matrix Q k is orthogonal.From this comes the final result: Corollary 3.20. Let us fix N ≥ 1 and =(k) k≥1 a sequence of elements in [0, 1] p defining the operator W on C (X, R) by the relation: W (h) = lim n→∞ Wn, (h), where for every n ≥ N + 1, the operator Wn, =I n 1, (1) • • • • • I n n-N, (n-N ) • Ĩn n-N +1, (n-N +1) • • • • • Ĩn n, (n) (h), has an admissible nested family of sub-operators. Assume the sequence satisfies the following:6 √ p sup z∈K |f (z) | 2N +∞ k=1 |γ (k) | < 1,
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  1.2 Théorème de Shilnikov, modèle géométrique de Lorenz et Théorème d'E. Pécou L'exemple typique de construction d'une application de Smale pour établir le comportement chaotique d'un champ de vecteurs se retrouve dans le théorème de Shilnikov: Théorème 1.6 ([Shi65]). Soit (φ t ) t∈R le flot d'un champ de vecteurs lisse F sur R 3 admettant l'origine O comme point d'équilibre. On suppose que le spectre de la Jacobienne DF (O) de F en O contienne une valeur propre réelle λ et deux valeurs propres complexes conjuguées ω ± iω , telles que: 0 < -ω < λ. On suppose également que la variété instable en l'origine contienne une orbite homocline γ, à distance finie de n'importe quel autre point d'équilibre du champ F. Alors, le flot (φ t ) t∈R admet une section de Poincaré avec un nombre dénombrable de fers à cheval de Smale.

  [START_REF] Kitano | Systems biology : A brief overview[END_REF]), dont l'objectif plus général est l'étude des liens entre les composants d'un système biologique, de petite ou grande échelle (les cellules d'un organisme en constituent un exemple). A l'échelle d'une cellule, il est commode de décrire les mécanismes de régulation sous la forme de réseaux génétiques: Définition 2.1. Un réseau de régulation génétique (RRG) est une représentation abstraite d'un ensemble de gènes, qui interagissent en activant ou réprimant leurs expressions, ceci, via leurs protéines, ARN messagers associés et métabolites.

Ainsi, à l'inverse des deux autres réseaux biomoléculaires (que sont les réseaux métaboliques et les réseaux d'interactions protéines-protéines) un RRG schématise les liens de causalité entre des gènes, plutôt que les mécanismes moléculaires précis mis en oeuvre dans la cellule.

A tout RRG, on peut associer un graphe d'interaction, constitué de sommets représentant un gène, une protéine, l'ARN messager d'un gène, ou bien un métabolite, et reliés entre eux par des arcs représentant les interactions entre les constituants. Un arc se termine par un trait s'il s'agit d'une inhibition (dans ce cas on dit que l'arc est négatif ), par une flèche s'il s'agit d'une activation (arc positif ). Un exemple est donné par la Figure

6

ci-dessous: A B Figure 6: Un exemple de graphe d'interaction

  Table des figures 1 L'application fer à cheval de Smale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Infinité de fers à cheval dans la situation de Shilnikov . . . . . . . . . . . . . . . . . 3 Flot du modèle géométrique de Lorenz (figure tirée de [Via00]) . . . . . . . . . . . . 4 Section de Poincaré dans le modèle géométrique de Lorenz . . . . . . . . . . . . . . . 5 Graphe de la fonction f définie et à valeurs dans le segment I . . . . . . . . . . . . . 6 Un exemple de graphe d'interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Une représentation simplifiée du modèle de Goodwin . . . . . . . . . . . . . . . . . . 8 Forme sigmoïdale de la fonction de régulation R θ,n . . . . . . . . . . . . . . . . . . . 9 Graphe d'interaction associé au système (2) . . . . . . . . . . . . . . . . . . . . . . . 10 Courbe des points d'équilibre du système

Nous traiterons uniquement de systèmes dynamiques déterministes dans cette thèse, et non pas de systèmes dynamiques stochastiques.

Nous traiterons uniquement le cas R n .

noter qu'il aurait été envisageable d'utiliser la notion de chaos stochastique, ce que nous ne ferons pas.

John Tyson, Department of Biological Sciences, Virginia Polytechnic Institute and State University.

D. Shechtman recevra en 2011 le Prix Nobel de Chimie pour sa découverte des quasi-cristaux.

Le Chapitre 2 est organisé en trois parties. La Partie 1 contient les notations de base. Dans la Partie 2, nous considérons le cas fini de 2 n systèmes, ce qui constitue les préliminaires pour la dernière partie concernant le cas d'un ensemble de Cantor. Après avoir présenté le résultat de synchronisation globale dans la Section 2.1, nous traitons de la situation dans laquelle certains liens sont brisés dans la hiérarchie (Section 2.2). Ici, il n'y a aucune chance d'obtenir une synchronisation globale, car le nouveau système dynamique Gn, = Bn, • F n admet en général des points fixes hors de la diagonale (voir l'Exemple 2.11). Nous définissons dans le Paragraphe 2.2.b la notion de famille admissible emboîtée de sous-matrices pour Bn, , pour laquelle les liens brisés restent aux N plus petites échelles (i.e aux N plus petits étages) de la hiérarchie (pour un entier N fixé), tout en étant suffisamment espacés dans ces étages. Dans les diagrammes hiérarchiques associés à des matrices de couplage contenant de telles familles, le nombre de liens brisés peut tendre vers l'infini avec n. Nous montrons (Lemme 2.12) que tout système dynamique Gn, (avec n ≥ N + 1) défini par une matrice de couplage ayant une famille admissible emboîtée de sous-matrices synchronise localement. En outre, nous montrons que la taille du voisinage de synchronisation ne dépend pas de n, ce qui sera le point crucial pour l'étude de la même question dans le cas infini.Dans la Partie 3, nous considérons le cas limite d'un ensemble de Cantor de systèmes indexés par X = {0, 1} N . Cette fois, les conditions initiales ne sont plus des vecteurs mais des fonctions h de X dans R, et la fonction F n est remplacée par la fonction F définie par la relation F (h) = f • h, pour de telles fonctions h. Comme dans la Partie 2, nous définissons la structure hiérarchique parmi nos systèmes comme la limite U de la composition de tous les opérateurs de structure (L k, k ) k≥1 remplaçant les matrices précédentes ( désignant la suite de paramètres ( k ) k≥1 associés aux étages de la hiérarchie). Après avoir justifié l'existence de U sur l'ensemble des fonctions continues sur X, nous montrons le premier théorème de ce Chapitre 2, qui affirme qu'une synchronisation globale a lieu, dès lors que la suite converge lentement vers 1/2: Théorème 4.1. Soit = ( k ) k≥1 une suite de réels dans [0, 1], définissant l'opérateur U sur l'espace (C (X, R) , || • || ∞ ) des fonctions continues du Cantor X dans R (muni de la norme infini),
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associated to the schemes of Figure 2.1 . Then all those matrices Bn, 1 2 are diagonalizable and we have:

1. The spectrum associated to the diagram of Figure 2.1(a) is {1, 1 2 , 0 ⊗2 n -2 }.

2. The spectrum associated to the diagram of Figure 2.1(b) is {1, 1, 0 ⊗2 n -2 }.

3. The spectrum associated to the diagram of Figure 2.1(c) is {1, 1, 0 ⊗2 n -2 }.

4. The spectrum associated to the diagram of Figure 2.1(d) is {1,

5. The spectrum of the diagram of Figure 2.1(e) is {1,

6. The spectrum of the diagram of Figure 2.1(f ) is {1,

The proof of Lemma 2.3 makes use of the following little lemma:

Lemma 2.4. Let (A, B) be two square matrices in R k 2 (for an integer k ≥ 1) and Z the following matrix of size 2k:

Assume that A + B be diagonalizable, and that we have: rank (Z) = rank (A + B). Then, Z is diagonalizable.

Proof. Let us call (λ 1 , • • • , λ p ) the distinct eigenvalues of A + B and (α 1 , • • • , α p ) the dimensions of their associated eigenspaces. Suppose that 0 is an eigenvalue of A + B, say λ 1 = 0 (this will be the case for our structure matrices Bn, ). We have, by the Schur theorem:

so the spectra are the same for both Z and A + B. By assumption, the dimension of the eigenspace associated to 0 for the matrix Z is k + α 1 , which is the multiplicity of 0 in the characteristic polynomial χ Z .

The same happens to the other eigenvalues since for any X = (X 1 , X 2 ) we have:

Thus the matrix Z is diagonalizable. The same reasoning works for the other case where 0 is not an eigenvalue of A + B.

Proof. For h in (C (X, R) , || • || ∞ ), let's consider the sequence (h n ) n≥1 defined as in the proof of Proposition 3.1, that converges to h. Introducing the notation K n

then have, for every integers p, q: 

3.1.b Global synchronization result on C (X, K)

In this context, the global synchronization result is proved by the same technique as in [START_REF] Fernandez | Global synchronization in translation invariant coupled map lattices[END_REF]. We equip X with the Borel σ-algebra and consider the probability measure µ verifying:

Since C generates the topology of X, and for every n ≥ 1 the (C n,k ) 1≤k≤2 n form a partition of X, it is very easy to construct such a probability measure. Proposition 3.4. For every n ≥ 1, the map c → c ,n preserves the measure µ. Consequently for every measurable function h from X to R, we have:

Proof. The map c → c ,n is an involution. Let's take an element C p,k in C . If we have p < n then (C p,k ) ,n = C p,k , otherwise the measure of these two sets is the same by definition of µ. This yields the result by σ-additivity.

From this measure µ, we recover a scalar product , on the space of measurable real-valued functions on X, defined by: h , g = X hg dµ.

We denote by ⊥ the orthogonality for this scalar product. Proposition 3.4 gives us the following: Lemma 3.5. For every k ≥ 1, let us define the subset J k of C (X, R) by:

Then the diagonal I is equal to the intersection of all the J k , and we have the following relation:

Proof. The fact that I is equal to the intersection of all the J k is clear. For the second assertion, if a function h is in J k ⊥ , then we have:

and thus by Proposition 3.4,

which gives the equality h c ,k = -h (c) for almost every sequence c. But as the measure µ is an exterior one this holds for every c in X. Inversely, if h satisfies J k (h) = -h, then for every g in J k we have:

X hg dµ = 0 by Proposition 3.4 again.

Theorem 3.6. Let = ( k ) k≥1 be a sequence of real numbers in [0, 1], defining the operator U as in Lemma 3.2. Assume the following condition holds:

Then the dynamical system G = U • F globally synchronizes on the set C (X, K) of continuous functions having values in K.

Proof. Let us fix an integer k ≥ 1 and take a continuous function h on X, having values in K. As in the finite dimensional case, the operators (J k ) k≥1 commute with the operators (L n, n ) n≥1 and with F. So we have:

Then we observe the equality U J k ⊥ ∞ = |1 -2 k | (the inequality would have sufficed for our proof). Indeed, for a function h in J k ⊥ , we have:

for every continuous function h on X. Assume the following condition holds:

where γ (k) is the eigenvalue (distinct from one) of R (k) having the greatest modulus. Then the dynamical system G = U • F globally synchronizes on the set C (X, K) of continuous functions having values in K.

Remark 3.17. In his article [START_REF] Fernandez | Global synchronization in translation invariant coupled map lattices[END_REF], B. Fernandez proved that the eigenvalue with maximum modulus (different from one) of the coupling matrix tends to 1 when the dimension goes to infinity, in case of a convolution, that is to say when the coupling matrix is circulant with coefficients obtained by summing a given normalized sequence over the dimension. Our situation is completely different here. Indeed, the dimension of our circulant matrix R (k) stays constant when we make the dimension n go to infinity to pass from R 2 n to the Cantor set case. Moreover, the index k going to infinity is not the dimension of a coupling matrix, but the index of the sequence of parameters tuples.

The following corollary gives an example of sequence (k) k≥1 of tuples of parameters for which global synchronization takes place. The chosen case is the easiest one, when all the tuples have the same form, which permits to define such a sequence by only one parameter as in the two-by-two matching process (see Corollary 3.8).

and consider the one-parameter sequence (k) k≥1 of elements in [0, 1] p-1 defined by:

for a fixed number > 0. Then, if we have < 0 , the dynamical system G = U • F globally synchronizes on the set C (X, K).

Proof. With such a definition of the sequence (k) k≥1 , the eigenvalues of each circulant matrix R (k) are 1 and p k (p -1)

. As in Corollary 3.8, we conclude that the condition of Corollary 3.16 ensuring global synchronization is satisfied with α = 1.

3.3.b Corollary of theorem (3.15)

Concerning the local synchronization in presence of broken links, this requires to consider again the spectrum of the structure matrix Bn, = A n n,

As previously, we impose that the broken links be only present in the smallest N stages of the hierarchy, while keeping the same condition that they be enough placed out. In this case, for every n ≥ N + 1, we have:

, where the matrices Bn-1, , B n-1, , ,

n-1, of size p n-1 are associated to the (n -1)-tuple (1) , • • • , (n-1) , and also contain their broken links at the N smallest stages of the hierarchy. From this relation, we clearly define, as in Definition 2.6, the families D N , • • • , D n associated to Bn, and recover the notion of nested family of submatrices for Bn, , which permits us to define again the notion of admissible nested ones: Definition 3.19. Let us fix an integer N ≥ 1 and consider (for n ≥ N + 1), the coupling matrix -(a N +1a N , • • • , a na n-1 ) does not contain two successive numbers of which sum is greater or equal to p.

-Each submatrix (of size p N ) belonging to the family D N of Bn, does not contain more than one broken link.

Indeed, as in Lemma 2.5, it is easy to prove that if the matrices BN, 1