
HAL Id: tel-00912491
https://theses.hal.science/tel-00912491v1

Submitted on 2 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resiliency in Distributed Workflow Systems for
Numerical Applications

Laurentiu Trifan

To cite this version:
Laurentiu Trifan. Resiliency in Distributed Workflow Systems for Numerical Applications. Perfor-
mance [cs.PF]. Université de Grenoble, 2013. English. �NNT : �. �tel-00912491�

https://theses.hal.science/tel-00912491v1
https://hal.archives-ouvertes.fr

Resiliency in Distributed

Workflow Systems for Numerical

Optimization Applications:

Design and Experiments

Laurentiu Trifan

OPALE Team

“Joseph Fourier” University

2013 September

file:laurentiu.trifan@inria.fr
http://www.inria.fr/equipes/opale/
http://edmstii.ujf-grenoble.fr/

1. Reviewer:

2. Reviewer:

Day of the defense:

Signature from head of PhD committee:

ii

Abstract

Put your abstract or summary here, if your university requires it.

iv

To ...

Acknowledgements

I would like to acknowledge the thousands of individuals who have coded

for the LaTeX project for free. It is due to their efforts that we can generate

professionally typeset PDFs now.

Contents
1 Introduction 1

1.1 Context . 1

1.2 Problem . 1

1.3 Proposed Solutions . 3

1.4 Organization of the Mansucript . 6

2 State of the art 9

2.1 Introduction . 9

2.2 Distributed Computing Infrastructures and Middleware Software 9

2.2.1 Overview of Grid Computing Systems 9

2.2.1.1 History . 10

2.2.1.2 Classification . 10

2.2.1.3 User Interaction . 12

2.2.1.4 Programming Models 13

2.2.2 Grid5000 . 14

2.2.2.1 General View . 14

2.2.2.2 Architecture . 16

2.2.2.3 Tools . 16

2.2.3 Middleware Systems . 19

2.2.3.1 Globus Toolkit . 20

2.2.3.2 Distributed Interactive Engineering Toolbox (DIET) . . 20

2.2.3.3 OAR . 21

2.2.3.4 ProActive . 23

2.3 Fault Tolerance Methods in Distributed and Parallel Systems 26

2.3.1 Faults - General View . 26

2.3.2 Fault Tolerance Techniques . 28

2.3.2.1 Fault Detection (1) . 28

2.3.2.2 Fault Recovery . 29

2.3.2.3 Redundancy . 29

2.3.3 Checkpoint/Restart . 30

2.3.3.1 Globality . 30

iii

CONTENTS

2.3.3.2 Independent vs Coordinated Checkpoint 31

2.3.3.3 Message Logging . 32

2.3.3.4 Multilevel Checkpoint 33

2.3.3.5 Checkpoint Storage . 33

2.4 Workflow Systems . 34

2.4.1 General View . 34

2.4.1.1 Basic Components of a Workflow System 35

2.4.1.2 Models of Abstract Workflow: Control vs Data Driven . 39

2.4.1.3 Workflow Patterns in Control Driven Models 41

2.4.1.4 Dynamicity in Workflow Systems 43

2.4.1.5 Exception Handling in Workflow Systems 44

2.4.2 Examples of Fault Tolerant Workflow Systems 46

2.4.2.1 Askalon . 47

2.4.2.2 Kepler . 49

2.4.3 YAWL - Yet Another Workflow Language 50

2.4.3.1 Architecture . 50

2.4.3.2 YAWL Custom Service 51

2.4.3.3 Data in YAWL . 52

2.4.3.4 Dynamicity . 53

2.4.3.5 Exception Handling . 54

2.5 Resilience for Long-running Simulation and Optimization Applications . 56

2.5.1 Exception Types . 57

2.5.1.1 Resource Limitation Exceptions 57

2.5.1.2 Application Exceptions 59

2.5.2 Exception Detection . 60

2.5.3 Exception Treatment and Recovery 60

3 Platform Design 63

3.1 Numerical Optimization Applications . 64

3.2 OMD2 Project . 66

3.3 Numerical Application Test-Cases . 67

3.4 Famosa Execution Chain . 68

3.5 Large Scale Test-Case . 71

iv

CONTENTS

3.6 Exception Types . 73

3.6.1 Practical Exceptions . 73

3.6.2 Practical Detection . 74

3.7 Platform Design Issues . 74

3.7.1 Data Management and Data Synchronization 76

3.7.2 Exception Detection and Recovery Using YAWL 77

4 Implementation and Results 81

4.1 Interface Between YAWL and External Computing Resources 81

4.2 YAWL and Grid5000 . 85

4.2.1 Interface Between YAWL and Grid5000 88

4.2.2 Resource Reservation and Deployment on Grid5000 Infrastructure 89

4.2.3 Distribution of Computation on Grid5000 Infrastructure 90

4.2.4 Passing to a Larger Scale . 92

4.3 Resilience: Scenarios and Implementation 96

4.3.1 Sequential Execution on Multiple Different Machines 96

4.3.2 Parallel Execution on Two Different Clusters 100

4.3.3 Sequential Execution with Timeout Exception Handling 101

4.3.4 Distributed Execution with Resource Balancing 103

4.3.5 Speed-up Gain in Large Scale Optimization Application 106

5 Conclusions and Perspectives 113

References 119

v

CONTENTS

vi

1. Introduction
1.1 Context

The design and implementation of large scientific applications, corroborated with the

large demand for computational power has led to continuously growing High Perfor-

mance Computing(HPC) systems under the form of GRID infrastructures or clusters

of computing nodes. These applications imply processing large data sets, control flow

management and execution on distributed resources. To fill the gap between non-

experimented scientists playing the role of users and the complexity of these large

distributed systems, the need for user environments easy to configure and deploy has

increased considerably. To achieve this, the HPC research community is showing a

great interest in workflow systems. These systems provide solutions for facilitating

the access to large distributed infrastructures for scientists working in domains like

Bio-Informatics, Forecast, Pharmacy, Aeronautics and Automobiles, etc.

1.2 Problem

The large scientific applications involve multiple disciplines in their design and imple-

mentation. This means that the execution environment has to regroup all the necessary

tools belonging to each discipline and put them at scientists’ disposal using user-friendly

interfaces. Another characteristic of these applications is their dynamicity. Since their

execution time can span over days or even weeks, it is difficult to foresee every exe-

cution scenario before execution starts and integrate it in the application design. The

execution platform is supposed to be able to adapt to all these run-time situations and

make sure the application succeeds to an end.

The main drawback represents the increased vulnerability to faults. The causes are

multiple but the main ones distinguish as follows. First there is the computing infras-

tructure. With the advent of exascale systems, the number of processors is expected

to reach the level of millions according to (2). If the building components are not

fault tolerant, even the simple applications are prone to failures during their execution.

Not only the physical platform must be reliable in order to assure safe communica-

tion between computing nodes, but also the applications have to adapt their software

1

1. INTRODUCTION

components to the distributed nature of the infrastructure to minimize error effects.

Insufficient resilience at both hardware and software level would render extreme scale

systems unusable and would prevent scientific applications from completing or obtain-

ing the correct result.

The fault tolerance aspect has been widely studied from the hardware and system

point of view. Network failures, systems out of memory, down resources and others are

mostly taken care by the middle-ware layer of a computing infrastructure and dealt

with techniques like checkpoint/restart, job migration. These techniques experience

inadequacies in their traditional form when used for continuously growing exascale sys-

tems. The complexity of new scientific applications that these systems are supposed to

execute will result in larger amounts of data to be check-pointed and increased sources

of faults: soft errors, silent soft errors, transient and permanent software and hardware

errors. The application logic becomes important when evaluating error propagation

and deciding the recovery strategy. Errors in the design or configuration of algorithms

will have serious repercussions in the safety of the execution. If there is a way to correct

these errors on the fly, a lot of time and resources will be saved. (2) states that for

exascale systems faults will be continuous and across all parts the hardware and soft-

ware layers, which will require new programming paradigms. Here are some important

remarks that sustain the importance of the problem:

• Present applications and system software are not fault tolerant nor fault aware

and are not designed to confine errors /faults, to avoid or limit their propagation

and to recover from them when possible.

• There is no communication or coordination between the layers of the software

stack in error/fault detection and management, nor coordination for preventive

and corrective actions.

• There is almost never verification of the results from large, long running scale

simulations.

• There are no standard metrics, no standardized experimental methodology nor

standard experimental environment to stress resilience solutions and compare

them fairly.

2

1.3 Proposed Solutions

As mentioned in the beginning of the previous section, workflow systems have gained

a lot of interest from the distributed computing community. They are seen as a viable

solution for adapting complex scientific applications to large scale distributed comput-

ing resources. But as stated in (3), “current Grid Workflow Management Systems still

cannot deliver the quality, robustness and reliability that are needed for widespread ac-

ceptance as tools used on a day-to-day basis for scientists from a multitude of scientific

fields”. Because of the graph structure of a workflow application, recovery techniques of

workflow have attracted enough attention in recent years. Still, (4) claims that several

critical issues regarding the distributed recovery have not been addressed like recovery

during error occurrence or synchronization. Even though the above cited paper deals

with distributed transactional processing systems, the concepts discussed in it can be

applied also in scientific workflow systems.

1.3 Proposed Solutions

To address the problems presented until now, or at least a part of them, we pro-

pose the development of an execution platform based on YAWL(Yet Another Workflow

Language (5)) workflow system, complementary to a resiliency algorithm that is in

charge of error detection, error handling and recovery. YAWL was developed based on

a rigorous analysis of existing workflow management systems and languages. As the

official manual states (6), YAWL is based on one hand on Petri nets, a well-established

concurrency theory with a graphical representation and on the other hand on the well

known workflow patterns (7). Even though at its origins YAWL is designed to deal

with management work scenarios, it contains a set of services in its architecture that

allows to address some of the most important issues present in current scientific work-

flow systems like dynamicity, exception handling or flexibility. The most important

such service is the YAWL Worklet Service with its two sub-services: Worklet Selection

Service (8) and Worklet Exception Service (9).

The Selection Service provides each task of a process instance with the ability to

be linked to a dynamically extensible repertoire of actions. In this way the right action

is chosen contextually and dynamically from this repertoire to carry out the task. In

YAWL such an action is called a worklet, which is a small, self-contained, complete

workflow process. The global description of the process is provided at design time

3

1. INTRODUCTION

and only at run-time, when a specific task gets enabled by the engine, the appropriate

worklet is selected, using an associated extensible set of rules. New worklets for han-

dling a task may be added to the repertoire at any time during execution, as different

approaches to complete a task are developed and derived from the context of each pro-

cess instance. Notable is the fact that once chosen that worklet becomes an implicit

part of the process model for all current and future instantiations, allowing a natu-

ral evolution of the initial specification. A bottom-up approach to capture contextual

data are the Ripple Down Rules (10) which comprise a hierarchical set of rules with

associated exceptions.

The Exception Service extends the capabilities of the Selection Service in order to

provide dynamic exception handling with corrective and compensatory actions. The

Exception Service uses the same repertoire and Ripple Down Rules as the Selection

Service. For every unanticipated exception (an event not expected to occur in most

instances, so excluded from the main logic) a set of repertoire-member exception han-

dling processes are defined, known as exlets, which will be dynamically incorporated

in the running process. An exlet can also contain a compensatory action in the form

of a worklet, defined in the same manner as for the Selection Service. Each exception

has also a set of rules attached that will help choosing the right exlet at run-time, ac-

cording to their predicate. If an unanticipated exception occurs (an event for which a

handling exlet has not been defined), either an existing exlet can be manually selected

from the repertoire, or one can be adapted on the fly, or a new exlet can be defined and

deployed while the parent workflow instance is still active. The method used to handle

the exception and the context in which it has occurred are captured by the system

and immediately become an implicit part of the parent process model. This assures

the continuous evolution of the process while avoiding the need to modify the original

definition.

The above mentioned services are built-in and ready to use by any user. An increase

in flexibility is obtained also through the concept of Custom Service. It is a web-based

service responsible for the execution of one specific task, part of a workflow specification.

The engine orchestrates the delegation of tasks to different services according to user

specification. This service-oriented, delegated execution framework is the extensibility

cornerstone of the YAWL system. A communication is established between the engine

and the service summarized in the following steps:

4

1.3 Proposed Solutions

• The engine notifies a service that a task is scheduled to be delegated to it.

• The service informs the engine that it has taken responsibility for executing a

task.

• The service performs the task’s activities, as appropriate.

• The service informs the engine that the task’s execution has completed, allowing

the engine to continue processing the specification instance and determine the

next task or set of tasks for scheduling (if the instance has not completed).

The YAWL workflow system represents the upper layer of the execution platform

where the user can model its application in terms of a workflow specification. Once the

execution starts, tasks are delegated to custom services. Every custom service commu-

nicates with a distributed computing platform on which executes the code associated

with every task. The obtained results are then transferred to the engine. During the

execution of a workflow specification there are two algorithms activated. One is for sav-

ing the state of the workflow at specific intervals according to some heuristics (built-in

or user-specified) and also to transfer the saved data from different remote machines .

The second algorithm is responsible for resilience. It detects any exception risen by the

system using the Exception Service then it evaluates its propagation throughout the

rest of the application and in the end tries to diminish its effects so that the application

can continue execution. This can be achieved locally but sometimes it can require the

recovery of a previous checkpoint. The resilience algorithm emphasizes the propaga-

tion and recovery part, since the goal is to contain the damages as soon as possible and

perform the recovery phase as locally as possible in order to avoid re-execution of tasks

not influenced by the exception that occurred.

We use the Custom Service concept also to connect the workflow upper layer, repre-

sented by YAWL, to a distributed computing platform called Grid5000. This platform

is composed of several homogeneous clusters grouped by site and interconnected using

a high speed network. Its main advantage is the flexibility, being a platform created

especially for research purposes, thus presenting less constraints than a commercial or

just public grid. The YAWL Custom Service is the link point between YAWL and

Grid5000. Each service is installed on Grid5000 and customized according to the type

5

1. INTRODUCTION

of tasks it is designed to execute. Since we are working with multidisciplinary appli-

cations we can create dedicated services for each discipline involved in the computing

process and delegate the work load corresponding to each discipline to the appropriate

service.

The tests performed to validate our execution platform are based on numerical op-

timization applications prepared by our colleagues in Sophia Antipolis. Their level of

complexity varies from very simple ones used to test basic features of the platform to

large scale applications that need tens of computing nodes located on several clusters

in the computing grid.

1.4 Organization of the Mansucript

The rest of this manuscript is organized as follow:

• Chapter 2 gives the reader an overview of what already exists in the two research

areas on wich this thesis is based: High Performance Computing (HPC) infras-

tructures and Workflow Systems. The two concepts are always presented to the

reader from fault tolerance point of view, as the basic technology to render our

execution platform resilient.

• Chapter 3 focuses on the theoretical aspects of this thesis without going into the

implementation details. We describe the structure of a numerical optimization

application. Also we present some test-cases from Sophia Antipolis that we use

to test our platform and finally we present the exception and exception treatment

concepts that we want to implement for such applications.

• Chapter 4 presents all the implementation issues of the platform. We explain the

reason for our choice of different components, like Grid5000 and YAWL and also

the mechanism of interconnection of these two. We also describe the extensions

that we have added to accommodate the optimization applications presented in

the previous chapter. Finally we describe our resilience algorithm using different

resilience scenarios that could interest a numerical researcher.

6

1.4 Organization of the Mansucript

• The last chapter concludes the previous chapters and proposes a set of perspec-

tives to improve the work that has been done and also to extend the current

platform with new features.

7

1. INTRODUCTION

8

2. State of the art
2.1 Introduction

Fault tolerance is nowadays an indispensable characteristic for the distributed com-

puting infrastructures which have gradually increased in capacity over the last years

making their coordination very difficult. Bigger capacity allowed execution of more

complex scientific applications, but not every scientist knows how to operate with big

computing platforms. This encouraged development of middleware systems that are

offering a variety of services from low-level functions like allocating computing nodes

individually to high-level functions of application description and configuration, using

workflow systems and full infrastructure isolation as it’s the case with cloud computing.

In this chapter we will present in detail what type of distributed computing infras-

tructures are available and how they have evolved in time. Then we will show how these

systems are affected by faults and what are the standard techniques to handle them.

We will also present the concept of computing workflow systems that have emerged

recently as a solution for executing long-running complex scientific applications on dis-

tributed infrastructures. The last part of this chapter, an introduction to the basic idea

of this thesis, will explain what does resilience mean and which type of exceptions are

concerned by this fault tolerance procedure.

2.2 Distributed Computing Infrastructures and Middle-

ware Software

2.2.1 Overview of Grid Computing Systems

The continuous advances in information technology applications manifested at every

level like speed, performance and cost. To keep up with these demands, the same

advances had to be obtained for the underlying architecture. This explains the evolution

of grid technologies regarding their development, deployment and application execution.

We mentioned grid technologies, but new distributed systems paradigm have emerged in

the last years, like utility computing, everything as a service or cloud computing. Since

their characteristics often coincide with those of a grid system and an exact distinction

9

2. STATE OF THE ART

is hard to be made, we will focus our description only on the grid technologies. A quite

complete taxonomy of grid systems is presented in (11) that aims, as the authors claim,

to facilitate a study of grid systems under one framework and ease the understanding

of their similarities and differences.

2.2.1.1 History

Grid computing systems have evolved rapidly since their first use. At the beginning (in

the 90’s) the implementation was reduced to only a model of meta-computing where

resources were shared inside supercomputers. Then it evolved to the integration of

middleware systems (year 1998) that had to glue different grid technologies. The third

evolution level (year 2001) concentrated on the fast data transfer and storage request

brokers for persistent data storage. Later the web technologies started to be com-

bined with the grid systems (year 2002). The next generation of grid systems defined

by experts from the European Commission emphasize the need for grids to support

the Ambient Intelligence (AmI) vision, where humans are surrounded by computing

technologies without being intrusive.

2.2.1.2 Classification

Even though the new generation grid systems are interesting for the future development

of grid systems, we will emphasize only those characteristics that we used for our

experiments and that are relevant for the type of applications we executed on them.

Firstly, grid systems can be characterized by their spanning size. We can include here

global grids that provide computational power everywhere in the world. To achieve this,

they often use the Internet infrastructure so they are also called Internet grids. Another

type, implemented more often, would be the national grids restricting the computer

resources only to one country’s borders. They are often developed as infrastructures for

research experiments, Europe being the leader in building such grid systems. The rest of

the categories addresses a much smaller number of users, like enterprises, departments

or even personal users.

A different criteria of classification for grid systems is their accessibility level. On

one side we have the so called closed grids where the structure of the underlying in-

frastructure is fixed and the nodes are usually stationary. The connection between

different machines is often wired and the user can access the grid through well specified

10

2.2 Distributed Computing Infrastructures and Middleware Software

fixed entry points. On the other side we have the so called accessible grids in which we

include ad-hoc, wireless and mobile grids. The ad-hoc grids (12) allows a spontaneous

association of computing nodes that forms a computing grid, with nodes being able to

join or leave at any moment. Wireless grids (13) integrate in their composition devices

like sensors, laptops or even mobile phones. Depending on their technical specifications

these devices can be used for computing purposes, as grid nodes, or just as connecting

devices. Mobile grids (14) represent an answer to the increased market gain of PDAs

or smart phones that combined can offer a considerable computing power.

The level of interaction between the user and the computing infrastructure classifies

grid systems into batch grids and interactive grids. The batch type is closer to the

traditional grids, where real time interaction is not supported. Users submit their

jobs, and then the middleware system handles their execution by exchanging messages

between computing nodes through message passing interface (MPI) methods. Batch

grids use a system of waiting queues in which the submitted applications are buffered

before allocation on computing resources for execution. This adds an extra time for the

overall execution of an application as seen by the user. Instead, the interactive grids

allow interactive sessions for the users through which they can control or modify their

running jobs.

The traditional grid systems are managed using a centralized approach where the

experienced staff has a detailed view of the underlying architecture. It is easy to

deploy and control but quite exposed to faults and lacks scalability. A more flexible

architecture is the peer to peer (P2P) one. In this case, every node is controlled

separately and can join or leave the system at any moment. However, the novelty is

represented by the manageable grids (15). Aiming complete autonomy, this type of grid

is supposed to be able to automatically configure, adapt and control itself with very few

human intervention. Some examples of this kind of grid systems are: Autonomic grids

(IBM OptimalGrid), Knowledge grids (OntoGrid, InteliGrid, K-WfGrid) and Organic

grids.

The current trend is the evolution of grid systems toward service oriented architec-

tures (SOA). The computing resources, remotely shared by multiple users, are now

offered with a set of computing services. Features like availability or accessibility are

now better quantified for each user and provided more on-demand like services. This

11

2. STATE OF THE ART

Figure 2.1: Resource Management System Abstract Structure (taken from (17))

produces an increased efficiency in resource utilization, by acquiring them only when a

demand is made. To give some examples of categories of such platforms, we will mention

Everything as a Service (EaaS), Utility Computing and Cloud Computing (16).

2.2.1.3 User Interaction

We described before the grid systems using general criteria but nothing has been said

about the possibilities of an external user to interact with such systems. In order to

ensure communication between user and grid system and access its computing nodes,

a Resource Management System (RMS) is used. At an abstract level, a RMS provides

three fundamental services: resource dissemination, resource discovery and scheduling

of resources for job execution (17). In figure 2.1 are described the main requirements of

a RMS without specifying the particular machines that implement and provide those

requirements. The various ways to implement these characteristics will determine the

architecture of RMS systems and also their classification.

A first distinction criteria represents the organization of machines inside the grid.

This influences the way machines communicate to each other and can determine the

architecture and scalability of the system. For example, in a flat organization every

machine can directly communicate with the others in the system. Alternatives to this

are the hierarchical organization (different levels with direct communication between

neighbor levels) and the cell organization in which machines are disposed in distinct

12

2.2 Distributed Computing Infrastructures and Middleware Software

structures and where machines belonging to the same cell can directly communicate

between themselves.

Another characteristic that differentiates RMS types is the resource model. This

represents the way a RMS describes the available resources for the user. More precisely,

it offers the interface between the user and the computing nodes. The user instead of

dealing directly with the machines, will handle meta-resources where data referring

to a resource is whether described in a particular language that allows queries to be

formulated to address resources, or as an object model where operations on the resources

are defined inside the resource model.

Mapping resources to jobs can also be done in various ways. This task is devoted to

the scheduler that uses a specific policy to address it. It is the choice of policy together

with the scheduler organization that make the difference between RMS systems. The

scheduling task can be done by a centralized resource, but this diminish considerably

the scalability. The alternatives to this solution are the hierarchical model and the

decentralized model. The policy through which a mapping is done usually depends

on the estimation of the actual state of the resources in the system. The two main

options are the predictive and non-predictive estimation. The techniques to make an

estimation are based on heuristics, probability models or machine learning.

2.2.1.4 Programming Models

A grid computing system implies distributed computing resources and also parallel cores

sharing the same memory. These resources need to be able to communicate between

themselves so that an application is executed in a distributed but coordinated manner.

Also, when executed on distributed resources, scientific applications need a different

programming approach than the standard one. To adapt application programming

requirements (memory and CPU) and map them on distributed resources, organizations

from all over the world have established a common library standard called Message

Passing Interface (MPI). This allows developers to implement programs or libraries

that obey the same specifications thus ensuring a set of features necessary for both

HPC applications and systems (like computing grids) (18):

• Standardization: MPI is supported on almost all HPC platforms

13

2. STATE OF THE ART

• Portability: same source code can be transferred to a different platform with no

modifications if that platform supports the MPI standard

• Performance Opportunities: new hardware features can be better exploited for

improved performance

• Functionality: hundreds of routines that address every programming paradigm

• Availability

At the beginning MPI was conceived only for distributed memory architectures.

With the advances in hardware trends, shared memories started to be used in networked

platforms so MPI adapted its standards to handle both types of memory architectures

(see Figure 2.2).

Figure 2.2: Distributed and Hybrid Memory Architecture

In the following sections we will describe distributed computing infrastructures first

from a hardware point of view, using Grid5000 as an example, and then from a software

point of view by presenting several middleware systems.

2.2.2 Grid5000

2.2.2.1 General View

Grid’5000 (19) is a scientific instrument for the study of large scale parallel and

distributed systems. It aims at providing a highly reconfigurable, controllable and easy

to monitor experimental platform to its users. 17 laboratories are involved in France

with the objective of providing the community a testbed allowing experiments in all the

14

2.2 Distributed Computing Infrastructures and Middleware Software

Figure 2.3: Grid’5000 Research Applicability

software layers between the network protocols up to the applications (see Figure 2.3).

In addition to theory, simulators and emulators, there is a strong need for large scale

testbeds where real life experimental conditions hold. The size of Grid’5000, in terms of

number of sites and number of processors per site (9 sites, 7244 coeurs), was established

according to the scale of experiments and the number of researchers involved in the

project.

The platform is devoted to experiments from various fields that suppose an open

access to the computing resources. Thus users are required to respect some basic

rules concerning resource usage, like avoiding to occupy the platform for a long time

15

2. STATE OF THE ART

or respecting the privacy of other users without abusing the low security level of the

nodes. When deploying an experiment on the platform there is a set of steps one must

always follow: connecting to the platform through one of its sites only, reserving the

necessary resources for his application, configuring the resources if necessary, running

the experiment, retrieving the results and free the resources.

2.2.2.2 Architecture

Beside the 9 sites in France, Grid’5000 has connected two extra sites in Luxembourg

and Porto Alegro(Brasil). The general topology is pictured in Figure 2.4. Every user

that wants to use Grid’5000 needs an account to connect to the platform. Basic knowl-

edge of SSH are needed to use Grid’5000 as this is the technology used for connection.

On every site a user owns a home directory that is shared through NFS with all the

component clusters (see Figure 2.5). This is not the case with two home directories be-

longing to different sites. In this situation, the user is responsible for synchronizing the

data between directories. As a consequence, a user will have as many home directories

as sites in the platform.

2.2.2.3 Tools

The interaction with Grid’5000 platform requires the use of different software tools.

Some of them are standard tools, not specific to Grid’5000, like SSH. Others were

specially developed and supported by Grid’5000 staff like OAR, taktuk, KAAPI etc.

We will present two of them that support a basic usage of Grid’5000 platform.

1. OAR (21)

Represents the resource manager for Grid’5000 that allocates resources to users

for their experiments. It allows them to create jobs on the platform’s sites

by blocking a certain amount of resources for a desired period of time. Each

Grid’5000 site has 1 OAR resource manager. We will further describe OAR when

we will talk about middleware systems in the following section.

2. Kadeploy (22)

16

2.2 Distributed Computing Infrastructures and Middleware Software

Figure 2.4: Grid’5000 Topology (taken from (20))

17

2. STATE OF THE ART

Figure 2.5: Shared Home Directory on Grid’5000

By default Grid’5000 nodes are running with a given operating system based on

GNU/Linux. This environment provides basic functionality for running jobs but

forbids any modification or new installation. Applications submitted on Grid’5000

vary a lot in requirements so very often the default functionality is insufficient.

The purpose of Kadeploy is to give opportunity to users to change the default

environment installed on the nodes with a customized one that meets their re-

quirements.

The Grid’5000 staff offers a set of reference environments with a kernel sup-

ported on any type of hardware present on the platform. A user can start from

such an environment and customize it. After finishing he has to register the

new environment in a database along with the default ones. Having your own

environment presents some advantages like:

• installing whatever libraries you need for your applications

• connecting as root on the nodes

18

2.2 Distributed Computing Infrastructures and Middleware Software

• reproducing the experiments without being affected by default system up-

dates performed by Grid’5000 administrators

2.2.3 Middleware Systems

Resource management is essential to constructing and using computational grid sys-

tems. It is implemented inside middleware platforms providing the necessary level of

abstraction and services to facilitate the design, development, integration and deploy-

ment of distributed applications in heterogeneous computing systems. A middleware

platform involves integration of multiple systems like databases, networking, operating

systems, programming languages and others. When designing a middleware system

two main approaches co-exist nowadays (23):

• A first approach presents to the user a uniform view of the resources and it is the

user’s responsibility to handle the heterogeneity of these resources when designing

his applications. This means that the system ensures communications between

nodes but leaves to the user’s responsibility the choice of nodes according to his

application’s requirements.

• The second approach is more restraining in transparency. Users submit jobs to

computational servers that offer specific computational services. Also known as

Application Service Provider (ASP), this model offers for free or using a charging

system, computational resources to users, like Internet providers offer network

access to clients.

The main difference between the two systems is the granularity level. In the

first case the user is able more or less to adapt the granularity of his application

to the available resources. In the second case, the granularity is quite coarse

but addresses a wider user public since no advanced knowledge about distributed

systems are required. We will exemplify these concepts by presenting four mid-

dleware systems: OAR and Globus as part of the first category described earlier,

ProActive and Diet as part of the second category.

19

2. STATE OF THE ART

Our research interests have focused on ProActive and OAR (as part of Grid5000

platform), being the reason for which we give a more detailed presentation in the

following. Even though ProActive was a complete middleware with a wide range

of services included, we chose Grid5000 with OAR since it answered better to our

need for low-level configuration of computing nodes.

2.2.3.1 Globus Toolkit

Globus Toolkit is a software project that aims to support development of distributed

computing infrastructures with all the required services for easy user access. These

services include security, resource access, resource management, data movement, re-

source discovery and others. The Globus Toolkit is destined to all kind of distributed

resources like computers, storage devices, services, networks or sensors. The idea is to

federate all these resources in one infrastructure and provide necessary tools to design

and implement applications that will be executed on this infrastructure (24). In fig-

ure 2.6 is presented the general architecture of the Globus Toolkit which is basically

a service oriented architecture (SOA). We can see that is formed of a set of service

implementations that represent the core of the infrastructure, taking care of execution

management, data movement, monitoring, discovery and so forth. There are also three

containers used to host user-developed services written in different programming lan-

guages like Java, Python or C. At the upper layer there are the client libraries that

allow client programs in Java, C and Python to invoke operations on both core services

and user-developed services.

2.2.3.2 Distributed Interactive Engineering Toolbox (DIET)

(25)

A representative example of an Application Service Provider middleware system

is DIET. It is a toolbox for developing ASP systems on Grid platforms based on a

Client/Agent/Server scheme. The user requests for resources are shared among a hi-

erarchy of Local Agents and Master Agents. Figure 2.7 represents the organization of

this agents hierarchy. The different agents have a particular role and interact with each

other to assure the proper computational services for users. Thus, a client is the appli-

cation that connects the user to DIET from a web page or from a compiled program.

20

2.2 Distributed Computing Infrastructures and Middleware Software

Figure 2.6: Globus Architecture (taken from (24))

The Master Agent (MA) accepts computation requests from the clients and contacts

the servers for computational abilities and chooses the best one. It then returns a

reference of the chosen server to the demanding client. A Local Agent (LA) transmits

requests and information between MAs and servers. Finally, a Server Daemon (SeD)

incorporates a computational server and hosts a set of information regarding problems

that can be solved on the server, available memory or computational power.

2.2.3.3 OAR

OAR is batch management system used on Grid5000 platform for resource manage-

ment. In this role it handles very well the scalability of the platform and its hetero-

geneity. For instance the latest version of OAR uses the Linux kernel feature called

cpuset that helps identifying which resource can be used by a particular process.

OAR is also appreciated for being able to manage all types of complex resource

hierarchy. Thus inside a grid infrastructure, OAR can configure resource structures like

cluster, switch, host, cpu and individual cores. This means that it can isolate a process

up to the core level which improves resource usage especially when dealing with multi-

core machines. Another important feature is the grid resources interconnections which

21

2. STATE OF THE ART

Figure 2.7: Hierarchy of DIET Agents (taken from (23))

22

2.2 Distributed Computing Infrastructures and Middleware Software

facilitates communication between jobs, clusters or resource sites (26, 27). Among the

features OAR provides to users we mention:

• interactive jobs - instant resource reservation for a specific amount of timeout

• advanced reservations - resources are reserved at a given date for a given amount

of time

• batch jobs - a script is associated to a job that will run in background

• best effort jobs - resources can be released at any moment for a more efficient

usage

• deploy jobs - a customized OS environment can be deployed on the allocated

resources with full access

Beside this, OAR allows also to visualize a reservation, check its status, cancel a

reservation or verify the status of the nodes.

2.2.3.4 ProActive

ProActive (PA) is an open source middle-ware software presented as a Java library,

aiming to simplify the programming of multi-threaded, parallel and distributed appli-

cations for Grids, multi-core, clusters and data-centers. With a small set of primitives,

ProActive provides an API allowing the development of parallel applications which can

be deployed on distributed systems using the deployment framework. ProActive doesn’t

require any modification to Java or to the Java Virtual Machine, therefore allowing the

deployment of applications using ProActive API on any operating system that provides

a compatible JVM. In the rest of this subsection we will concentrate on the deployment

framework with its two main components, PA Scheduler and PA Resource Manager.

1. ProActive Scheduler (28)

Executing parallel tasks on distributed resources, requires a main system for

managing resources and handling task executions, also known as a batch sched-

uler. The scheduler enables users to submit jobs, containing one or several tasks,

and then to execute these tasks on available resources. The ProActive Scheduler

23

2. STATE OF THE ART

is connected to the Resource Manager which provides resource abstraction. The

Scheduler is accessible either from a Java programming API or a command-line

based job submitter.

In ProActive Scheduler a job is the entity to be submitted to the scheduler,

composed of one or more tasks. A task is the smallest schedulable entity, and

will be executed in accordance to a scheduling policy on the available resources.

There are two types of tasks:

• Java Task its execution is defined by a Java class extending the JavaExe-

cutable class from the ProActive Scheduler API.

• Native Task its execution can be any user program, a compiled C/C++

application, a shell or batch script; a native task can be specified by a

simple command line, or by a generation script that dynamically generates

the command to be executed.

By default the Scheduler will schedule the registered jobs according to a FIFO

policy, but if a job needs to be executed faster one may increase its priority or

contact the Scheduler manager. A job can be created using an XML descriptor or

the provided ProActive Scheduler Java API. When creating a job, one can spec-

ify several parameters like: name, priority, cancelJobOnError, restartTaskOn-

Error, nbMaxOfExecution, logFile, variables, genericInformation, JobClasspath,

inputSpace (an URL representing an abstract (or real) link to a real data space),

outputSpace. Similar to a job, a task can also have different parameters, some

of them being identical to those for a job. Some parameters specific to a task

are: Walltime (timeout), parameters (to be transferred to the executable), num-

berOfNodes, scripts, selectionScript, pre/post script (to be executed before and af-

ter the executable), cleaning-script (executed after the executable or post-script).

2. ProActive Resource Manager (29)

The Resource Manager is an entity in charge of nodes acquisition/release from

particular underlying infrastructures. It consists of two components: infrastruc-

ture manager and node source policy.

24

2.2 Distributed Computing Infrastructures and Middleware Software

The infrastructure manager is responsible for communication with an infras-

tructure, having three default implementations: Default Infrastructure Manager

(used with the ProActive agent), GCM Infrastructure Manager (able to ac-

quire/release nodes described in the GCM deployment descriptor), GCM Cus-

tomized Infrastructure (can deploy/release a single node to/from the infrastruc-

ture).

Node source policy is a set of rules and conditions which describes when and how

nodes have to be acquired or released. Policies use node source API to manage

the node acquisition. There are 4 policies implemented which should cover the

most common scenarios: static node source policy, time slot policy, release when

scheduler is idle policy, scheduler loading policy.

New infrastructure managers or node source policies can be integrated into the

Resource Manager as plug-ins, like SSH Infrastructure (a basic but effective way

to acquire resources through an SSH connection), PBS Infrastructure (acquires

resources on an existing PBS installation). Beside this, the Resource Manager

also supports the integration with the Amazon EC2, but more importantly, the

integration with a virtual infrastructure. Such an infrastructure runs a virtual

software and then can be used as a resource pool for Resource Manager (RM)

execution. RM nodes belonging to a virtual infrastructure are acquired in the

following way:

• Contact the virtual machine manager for powering on the virtual machines

that will be used to run RM nodes.

• Start the RM nodes this step requires the retrieval of the information pro-

vided in the previous step.

• Register RM nodes done either by remote or local node registration.

There are several types of virtualizing software that Resource Manager can han-

dle, like VMWare products, XenServer or xVM VirtualBox.

25

2. STATE OF THE ART

ProActive has been the initial middleware choice for our platform. Unfortunately we

gave up this idea when we couldn’t use the virtualization system to simulate a cluster

platform before passing to a real infrastructure. A second reason was the overhead cre-

ated by superposing ProActive onto Grid5000 (the physical infrastructure we planned

to use) that already has its own middleware, which is OAR, even if it offers less features

to manage the computing resources.

2.3 Fault Tolerance Methods in Distributed and Parallel

Systems

Despite their usefulness for executing long-running applications, distributed systems

are inherently affected by faults. Whether we talk about hardware or software faults,

when they occur the correct execution of the application is endangered. This can

manifest as a complete stop of the system or just by producing wrong results.

2.3.1 Faults - General View

There are three main levels from where faults can be generated and those are the

human failures, soft faults and hardware faults (30). Of course these main levels support

variations and to classify them the literature uses models of failures as presented in (31):

• Byzantine Faults : They are the most difficult to deal with, since the part of

the system that functions correctly is not able to detect them. Also it accepts

input from nodes affected by them, thus spreading rapidly the error in the entire

system.

• Fail-stop Faults : A node affected by such a fault ceases to produce output and

stops any interaction with the environment. This makes it easier for the system

to detect the fault and to take needed measures to overcome it.

• Fail-stutter Faults : This model is an extension of the Fail-stop model, considered

too simplistic. Beside the fail-stop faults, this model includes also the so-called

performance faults. When such a fault occurs, the affected component contin-

ues to function correctly regarding its output, but provides unexpectedly low

performance.

26

2.3 Fault Tolerance Methods in Distributed and Parallel Systems

Figure 2.8: Fault Causality Chain (taken from (33))

What makes a distributed system stop functioning correctly is not the fault itself

but the effect it produces on the system. Figure 2.8 shows how a fault initiates the

dis-functionality in the system, propagating until the failure occurs that will trigger

other faults in turn (32).

A distributed system (34) can be abstracted to a set of processes communicating

through messages using communication channels. This model of communication is

prone to failures of different kind. If a message is not delivered the waiting process

can stop or continue with an omitting message which can lead to wrong results. Also,

giving the distributed nature of the applications, if one machine participating at the

execution fails it will affect the results of the whole application. Without a global watch

for synchronization, the coordination between processes is done using the following

models:

• synchronous - the time allocated for exchanging messages is limited.

• asynchronous - the communication channel handles delivery of messages but does

not limit the time to do that; in presence of faults, the coordination between

processes is affected.

• asynchronous with fault detection - this model assures consensus between pro-

cesses in presence of faults.

Before a system reaches a failure state because of a fault there are different methods

to avoid the fault occurrence. For example one can use fault prevention, especially when

we deal with development faults, by respecting development rules like modularization,

string typing, etc. A system developer can also try to reduce the number of faults both

during development and maintenance of the system. A very popular method nowadays

is fault prediction that aims at estimating the occurrence and consequence of faults

using system modeling and evaluation. A very interesting study has been done in (35)

where the authors have analyzed failures contained in five years of event logs from a

27

2. STATE OF THE ART

production high performance computing cluster. Based on this they have determined

the distribution of failure inter-arrivals of specific components of the computing system

(CPU, disk storage, etc.). This allowed them to build holistic failure models based on

the component-usage of applications which they applied to derive the optimal time to

checkpoint.

These methods do not aim at eliminating faults completely (36, 37) and in a large

distributed system, like computing clusters, grids or high performance computing sys-

tems (HPC), the presence of a fault tolerant mechanism has become indispensable.

2.3.2 Fault Tolerance Techniques

The use of large scale distributed systems is justified by the increased demand in

resources from application domains like numerical optimization and simulation. As we

have seen before it is impossible to fully eliminate faults from such systems, so the

only way to ensure correct results when executing applications is to use fault tolerant

mechanisms.

2.3.2.1 Fault Detection (1)

Before dealing with faults/failures, the system must be able to detect them first.

Unfortunately there are also undetected faults called silent for which there are only a

few ways to deal with (38):

• ignore them assuming that their impact is not crucial for the final results

• develop resistant algorithms that, by construction, can deal with a high level of

undetected faults (39)

• use redundancy and on-line checking

• store, transfer and compute on an encoded version of data

The detection of a fault can be done while executing the application (concomitant)

or by interrupting the execution service (preemptive). In the first case there is always

the need of some kind of redundancy that can manifest under various forms: error code

correction, duplication and comparison, watchdog, type checking, etc.

28

2.3 Fault Tolerance Methods in Distributed and Parallel Systems

2.3.2.2 Fault Recovery

As shown in Figure 2.8 a fault usually triggers a failure of a part or the entire system.

After detection, the goal is to bring the system in a coherent state that allows it to

restart execution. Of course this requires a mechanism for fault treatment. Nowadays

there are three main mechanisms for treating faults:

1. Failure correction - The system tries to repair the error and reach a coherent state

from which it can continue execution.

2. Compensation - This method is used both for fault detection and recovery of the

system and it requires an important amount of redundancy.

3. Checkpoint/Restart - The coherent state of the system is saved periodically in a

secure space. When a failure occurs the execution will restart from a state prior

to the failure.

In (40) the fault tolerance methods presented above are classified according to the

way they relate to the failure from a temporal point of view. The first class is rep-

resented by the failure avoidance methods that take preventive actions before failures

occur. The second class is called failure effect avoidance where the application ex-

ecution is continued until its termination, even if failures have occurred. A sort of

compensation mechanism, either at run time or at algorithmic level, ensures that the

execution terminates and the correct results are delivered. In this class we can include

techniques like replication or algorithm based fault tolerance methods (ABFT). The

third class is represented by failure effects repair techniques that consists of repairing

the effects produced by the failures. Despite their usefulness, the preventive fault tol-

erance techniques are not developed enough to be used independently. More research

is required to prove that their benefits outcome their disadvantages. This is why the

most studied and implemented methods are those treating the failures generated by

faults when a prevention has not been possible.

2.3.2.3 Redundancy

All the recovery methods previously presented demand a certain level of redundancy.

This can be expressed in a spatial dimension when components of the system (usually

29

2. STATE OF THE ART

processes) are replicated (compensation) and then their results compared for validation.

Redundancy can also be expressed in a temporal dimension when a critical part of a

process is treated multiple times to ensure again the obtaining of correct results. Last,

we have the informational redundancy when data, code or other type of information is

stored on stable memory devices (checkpoint/restart). In the following we will focus

on describing different mechanisms to implement the checkpoint/restart procedure and

all the coordination protocols that come with it.

2.3.3 Checkpoint/Restart

Checkpoint/Restart is a traditional and efficient fault tolerance mechanism for dis-

tributed systems and applications. It consists of periodically saving the state of a

running system on a stable storage so that when affected by a failure the system can

restart execution from a previous consistent point using a rollback procedure. The

checkpoint/restart procedure is quite complex and has some weak points whose effects

every implementation tries to diminish (40):

• Saving the state of a distributed system is often a difficult task.

• The time to save the execution state can become very large.

• The time interval between two consecutive checkpoints must be well chosen to

avoid spending more time for saving the state of the execution than for the actual

execution.

2.3.3.1 Globality

Saving the state of a running system translates into saving the state of each com-

ponent process independently along with the messages found in the communication

channels. The state of the system is considered consistent if no orphan message is

present in the collection of processes. Such a message is described by the existence of a

receiving process but the absence of the sending one. When recovering after a failure,

a system should rollback to the most recent consistent state, also called a recovery

line (see Figure 2.9). The condition of consistency is difficult to achieve since it is not

possible to implement a global clock for coordination. In the following section we will

present the advantages and disadvantages of two important checkpoint protocols.

30

2.3 Fault Tolerance Methods in Distributed and Parallel Systems

Figure 2.9: Recovery Line (taken from (34))

Figure 2.10: Domino Effect (taken from (34))

2.3.3.2 Independent vs Coordinated Checkpoint

One possibility of saving a system’s state is by independently saving the local state

of each process in the system, from time to time, with no coordination between them

(41). This approach is preferred especially for large distributed systems where the time

effort of coordination would be too high. The downside of this protocol is the difficulty

of reaching a recovery line when roll-backing the application. Because each process

took an individual checkpoint regardless of the other processes in the system, its saved

state might be inconsistent with the others’ states which forces the rollback procedure

to choose a different saved state further back in time. This can generate the so called

domino effect in which no intermediary consistent state is found so the application is

roll-backed at the beginning (see Figure 2.10).

31

2. STATE OF THE ART

The second checkpoint protocol is the coordinated protocol (42). In this case all

processes have to synchronize before saving their state on the stable storage. The

advantage of this method is that the consistency of the state is already assured when

the checkpoint is performed so when a failure occurs the application will rollback to

the most recent checkpoint, thus avoiding the domino effect. The downside is the extra

time needed for synchronization, that for a large system can affect considerably the

execution time.

The research community keeps an active interest on improving these two protocols.

The most common alternative to a global checkpoint protocol is the incremental check-

point. In (43) the authors propose a model that alternates global checkpoints with

incremental ones. The first checkpoint is a global one saving the entire data along with

the stack of the application. What follows is a set of incremental checkpoints which

only save the address spaces that have changed since the previous checkpoint. Another

full checkpoint will be performed if its cost is cheaper than the recovery cost for an

incremental checkpoint.

Another approach for optimizing checkpoint performance is proposed in (44). The

authors want to automatically adapt a fault-tolerance protocol to the minimal require-

ments of an application. The specialization of the protocol is done at the level of an

abstract representation of the execution which permits important optimization ar run

time. Thanks to this it is possible to compute the strictly required set of computation

to resend messages to the failed processors.

2.3.3.3 Message Logging

A special type of a system model called piecewise deterministic model allows reducing

the frequency of checkpoints. In such a model the execution is assumed to take place

as a series of intervals and controlled by events. Inside an interval every event is

deterministic but the beginning of each interval is triggered by a non deterministic

event, such as the receipt of a message. Given these characteristics, a system can

register only the non deterministic events and just replay the deterministic ones inside

an interval to reach a desired consistent state. This method of recovery is called message

logging (34, 45). An important detail is that every process in the system will store its

own non deterministic events and log the deterministic ones, so when a failure occurs,

32

2.3 Fault Tolerance Methods in Distributed and Parallel Systems

only the faulty processes will rollback and replay the logged messages to reach again

the consistent state before the failure (40).

2.3.3.4 Multilevel Checkpoint

For some type of HPC systems it is preferred a multi-level checkpoint strategy, com-

bining local and global checkpointing for enhanced reliability. This means that each

computing node is equipped with a checkpoint system that saves the node’s state on the

local storage but at the same time there is a global checkpoint system that usually saves

the entire application state in a parallel file system. The global checkpoint is used only

when local recovery of a node’s failure is not possible due to loss of checkpoint data.

In (46) is presented an extended version of a multi-level checkpoint system. Beside the

local and global checkpoints there is an intermediary level based on topology-aware

Reed-Solomon encoding scheme that is used to encode the checkpoint files. This can

be later used to recover a checkpoint when all its files have been lost due to some hard

failures. This way the global parallel file system checkpoint is less stressed during the

execution which improves the global execution time.

2.3.3.5 Checkpoint Storage

The performance of saving the state of an application is very much influenced by the

type of storage used to backup the data. The most important is that the information

should be safely stored. In this regard the most effective system is the stable storage

which is designed to survive anything except calamities. The main idea behind stable

storage is to have multiple disk copies of the same data and periodically update it on

all the copies (34).

In (47) is contested the habit of saving the state of an application into a single shared

file because of the incapacity of the file system to cope with a lot of small writes. This

results in bad performance for the file system which in general is optimized for large,

aligned writes to non-shared files. To solve this issue the authors propose a virtual

parallel log structured file system called PLFS. Its role is to remap an application’s

preferred data layout into one which is optimized for the underlying file system.

An interesting approach aiming to eliminate the overhead of checkpointing on a

stable storage is proposed in (48). The goal is to remove stable storage when saving

the state of a parallel and distributed system by replacing it with memory and processor

33

2. STATE OF THE ART

redundancy. The diskless checkpoint is performed as a coordinated checkpoint where all

the processors synchronize before saving their state into the memory and not on disk.

After doing this, the in-memory checkpoints are encoded and stored in checkpointing

processors. The main disadvantages of this method is that it reduces the failure coverage

compared to a disk-based checkpoint and introduces memory and processor overhead.

The utility of a checkpoint strategy for Infrastructure-as-a-Service(IaaS) cloud com-

puting is studied in (49). They propose first to build a dedicated checkpoint repository

using the local disks of computing nodes. This will enhance performance under con-

currency for read and write operations. At the same time this scheme has a great

potential for scalability, since the storage repository will grow when more computing

nodes are used. Along with the repository solution they propose to perform a sort of

incremental checkpoint to save the state of the infrastructure, that in their case trans-

lates into virtual disk images from every deployed node. Finally they tackle also the

problem of restart delay that every system encounters after performing a checkpoint

recovery. Their solution is to optimize this delay by using a lazy transfer and adaptive

prefetching. This is possible because a virtual machine instance typically access only a

small fraction of the virtual machine image throughout their run-time.

2.4 Workflow Systems

2.4.1 General View

First used as business process management tools or in the field of bio-informatics

for DNA sequencing (50, 51), workflow systems have gained a significant importance

in the field of high performance computing. A main reason for which they have been

taken in consideration is the increased complexity of the scientific applications. This

complexity translates both in the application structure and in a growth in the demand

of computational resources. Also the control and management of these applications

become harder to achieve, this being in a direct relation with an increased volume of

data. Workflow systems are considered to be the appropriate tools to accommodate

these requirements and simplify the scientist’s job by allowing him to focus more on the

scientific aspect of the application. They allow the user to describe the scientific process,

organize it in tasks and execute it to create an output (52, 53, 54, 55, 56, 57, 58, 59).

34

2.4 Workflow Systems

2.4.1.1 Basic Components of a Workflow System

The Workflow Management Coalition (60) gives a set of definitions for concepts

related to workflows. The most important are presented below:

• Workflow - “Is concerned with the automation of procedures where tasks are

passed between participants according to a defined set of rules in order to achieve

or contribute to an overall goal.”

• Workflow Management System - “A system that defines, creates and manages

the execution of workflows through the use of software, running on one or more

workflow engines, which is able to interpret the process definition, interact with

process participants and, where required, invoke the use of IT tools and applica-

tions.”

• Process Definition - “A representation of a process in a form which supports

automated manipulation, such as modeling or enactment by a workflow manage-

ment system. The process definition consists of a network of activities and their

relationships, criteria to indicate the start and termination of the process and

information about the individual activities, such as participants, associated IT

applications and data.”

• Activity - “A description of a piece of work that forms one logical step within a

process. An activity may be a manual or automated. A workflow activity requires

human and/or machine resources to support process execution.”

• Instance - “The representation of a single enactment of a process, or activity

within a process, including its associated data. Each instance represents a sep-

arate thread of execution of the process or activity, which may be controlled

independently and will have its own internal state and externally visible identity,

which may be used as a handle, for example, to record or retrieve audit data

relating to the individual enactment.”

• Transition - “A point during the execution of a process instance where one activity

completes and the thread of control passes to another, which starts.”

35

2. STATE OF THE ART

Figure 2.11: Main Components Of a Grid Workflow System (taken from (61))

The definitions given above characterize workflow systems in general. However, no

matter how a system is adapted for a specific domain, these concepts will be present

under various names but with the same significance. An intuitive domain of application

is the scientific one. Here a workflow can be seen as a set of nodes, or tasks (a.k.a.

“activity”) interconnected by directed links (a.k.a. “transition”), representing data or

control flows/dependencies (52). Figure 2.11 describes the basic architecture of a grid

workflow system. It emphasizes the main idea of a grid workflow approach, which is to

separate the process description of a scientific experiment from the system responsible

with the execution.

By analyzing the basic components of a workflow system we can deduce some of the

ancestor systems from which it was inspired. Thus, a lot of workflow systems base

their internal mechanism on Petri nets. These were defined in 1962 by Carl Adam

Petri as a tool for modeling and analyzing processes. Among the attributes of this

tool we distinguish three important ones: graphical description of a process, strong

mathematical basis, complete formalism (62). Also in (62) is explained that such a

formal concept allows a precise definition of a process. Thus, unlike other schematic

techniques, Petri net formalism avoids ambiguities, uncertainties and contradictions.

36

2.4 Workflow Systems

Figure 2.12: A Classic Petri Net (taken from (62))

A classic Petri net is represented by places and transitions. These two entities can be

linked together by a directed arc. Arcs can be directed from a place to a transition and

vice-versa. Also a place can have tokens represented by black dots. The distribution

of these tokens in the Petri net can change according to the state of the process.

Transitions are able to change the state of a process by moving tokens from one place

to another when enabled. Figure 2.12 shows a classic Petri net modeling the process

of dealing with an insurance claim.

Other systems that present similarities with a workflow system are the Finite State

Automata and Grafcet.

• A Finite State Automata (63) is a device that can be in one of a finite number

of states. An important subset of states are the final state. If the automaton

is in a final state we say that the input, a sequence of symbols, was accepted.

The interpretation of the symbols depends on the application, most of the time

representing events. The symbols belong to a finite set of symbols called an

alphabet. If a particular symbol in a particular state triggers a transition from

that state to another one, that transition is labeled with that symbol. The labels

of transitions can contain one particular symbol that is not in the alphabet. A

transition is labeled with (not present in the alphabet) if it can be traversed with

no input symbol 2.13.

37

2. STATE OF THE ART

Figure 2.13: Simple Finite State Automata (taken from (63))

• A Grafcet (64) is a way of representing the analysis of an automat, well suited

for sequential evolutionary systems, i.e. decomposable in stages. It derives from

the Petri net mathematical model. Thus it is a graphical language representing

the functioning of an automat by a set of:

– stages to which actions are associated

– transitions between stages to which conditions of transition are associated

– directed links between stages and transitions

Returning to the scientific domain, the execution of a scientific application goes

through different stages depending on the level of description of the workflow associated

with the application. These stages form the life-cycle of a workflow. According to (52)

most of the authors identify three different levels in the description of a workflow:

• Abstract workflow - At this level the user only defines the structure of the ap-

plication, specifying all the composing tasks and how they are interconnected.

However, there is no detail about how the tasks are implemented or how the

input data is delivered.

38

2.4 Workflow Systems

Figure 2.14: Workflow Model

• Concrete workflow - At this level the user defines the input/output parameters

and also the software tools used for every task’s execution.

• Workflow instances - At this stage the user specifies the actual values of input

parameters. He defines also the mapping of tasks on computing resources.

These levels can be visualized in figure 2.14. In practice these levels are not always

respected and sometimes they are even considered restrictive so they are partly ignored

at design time. Still, it is important to define them at a theoretical level so that

designers consider them as starting points from which they adapt their real systems.

2.4.1.2 Models of Abstract Workflow: Control vs Data Driven

In the case of abstract workflow we distinguish two main models: control-driven and

data-driven workflows. The difference between these models is made by the signification

given to the links between tasks. In the control-driven approach these links are used

39

2. STATE OF THE ART

Figure 2.15: Data Driven Workflow

to control the sequence of execution of each task with respect to that of previous

tasks. With the expansion of application domain, the control structures evolved in

time according to the applications’ specificity. We can find simple control structures

like pure sequences or more complex types like splits, joins, loops, etc.. To describe

every control behavior that can appear in a workflow application the workflow patterns

(65) have been proposed and we will describe them in more detail in the next section.

In the data-driven approach the links between tasks are actually data dependencies.

In this model a task is considered an activity that consumes input data and produces

output data. This means that a task is enabled as soon as its input data is available.

All the tasks can run concurrently and those that have not the input data available

will just block. (52, 66)

In figures 2.15 and 2.16 are represented the two workflow models. In the data

driven model there are no control structures. The XOR join used at task 4 in the

control driven model can be emulated in the data driven model only by replicating task

4. However, a test and its contrary, concerning for example the value of a parameter,

is performed at the level of tasks 2 and 3. The result of this evaluation conditions the

execution of task 4. This way only one instance of task 4 will be executed.

As in the case of the different levels of definition of a workflow application, this

classification (control vs data driven) is rather theoretical. In practice no workflow

40

2.4 Workflow Systems

Figure 2.16: Control Driven Workflow

system is based entirely on one model or the other. Most of them adopt a hybrid

approach between the two models in order to assure the requirements of the application

domain they were designed for. For both models we can find arguments in favor or

against. For example the data-driven approach ensures default parallel execution of

independent tasks. Also it is better suited to model exception detection at parameter

level since every task first has to verify the integrity of its input data before execution

but also of the produced output data after execution. The downside of this model is

the limited means of representation of more complex applications that we usually find

in the scientific domain. This is why control-driven approach offers more control over

the actual execution of the tasks.

The consequence of so many possibilities of designing a workflow systems is the

absence of a common workflow language. This would allow scientists to execute a

workflow application within a Grid environment independent of the tool that he used

to create that workflow. The existence of so many workflow architectures makes it

impossible to share workflows across working groups using different tools or execute on

Grids where those tools are not installed (67).

2.4.1.3 Workflow Patterns in Control Driven Models

According to the official website (68) “the Workflow Patterns initiative” is a joint

effort of Eindhoven University of Technology (led by Professor Wil van der Aalst) and

41

2. STATE OF THE ART

Queensland University of Technology (led by Professor Arthur ter Hofstede) which

started in 1999. The aim of this initiative is to provide a conceptual basis for process

technology. In particular, the research provides a thorough examination of the vari-

ous perspectives (control flow, data, resource, and exception handling) that need to

be supported by a workflow language or a business process modeling language. The

results can be used for examining the suitability of a particular process language or

workflow system for a particular project, assessing relative strengths and weaknesses

of various approaches to process specification, implementing certain business require-

ments in a particular process-aware information system, and as a basis for language

and tool development.” Process modeling systems like Petri nets often lack support

for more complex control structures (multiple instance, cancellation or the generalized

OR-join). Workflow patterns represent a good tool to compensate this by extending

these systems in order to deal with these control structures (6). We present in figure

2.17 some of the basic control flow patterns.

(a) Sequence Pattern (execute B after A or A after B) (b) Parallel Split Pattern (ex-

ecute B,C,D after A)

(c) Synchronization Pattern

(execute E after B,C,D)

(d) Exclusive Choice Pattern

(execute one of B,C,D after A)

Figure 2.17: Basic Workflow Patterns

42

2.4 Workflow Systems

2.4.1.4 Dynamicity in Workflow Systems

Very often a scientist can not predict from the design phase all the scenarios that

his experiments will follow during execution. Instead when formulating experiments

as scientific workflows, the scientist can design an initial workflow and subsequently

test it with different combination of parameters and process adaptation until a suitable

solution is found. But in a static implementation of the workflow system this would

mean restarting the whole experiment from the beginning each time a design modifica-

tion or a modified parameter value is tested (69). To avoid this overhead, the system

must be flexible and accept change during run-time, thus continuing the initial thread

of execution. Also in some cases, the tasks to be performed or parameters to be used at

a certain point may be so dependent on the results provided by the previous tasks that

it does not make any sense to try to predict them. The most desirable solution would

be to enable the specification of the next task and their inter-dependencies as soon as

the current task has finished. Nowadays, the application of computational technolo-

gies to new problems and the need to get more accurate outcomes demand the use of

updated (and in some cases real-time) data inputs. The Dynamic Data Driven Applica-

tion Systems (DDDAS) (52) concept entails capabilities where application simulation

can dynamically accept and respond to field data and measurements. Nevertheless,

final computations and data management are going to be performed on real resources.

This can involve issues such as availability, capacity, performance limitations that could

prevent the normal executions of the experiment. Having a system that can address dy-

namically all these faulty scenarios, significantly improves the performance. Also going

further, dynamicity can be a great tool to address faulty design errors (by modifying

the thread of execution at run-time, or changing parameters’ values), programming

errors, or other type of application errors, thus contributing to the resiliency of the

system.

Since a workflow description spans over multiple levels (as described in 2.4.1.1),

dynamicity requirements can be formulated almost at each of these levels (52):

• Dynamicity at abstract level - When an experiment is too big the scientist may

have difficulties to design it completely. When this is the case, it would be helpful

if the abstract representation of a workflow application can be modified during

43

2. STATE OF THE ART

execution according to the current context. This way the user can add new tasks,

delete old tasks that are not needed anymore, or change the execution flow (70).

• Dynamicity at concrete level - Even if the abstract representation remains stable

all along the execution, a user might need to adapt parameter values or even add

new parameters if needed. This requirement can be a consequence of the fact

that data is not always available at the beginning of the execution but obtained

at run-time. Also the user can change values of parameters in order to improve

the quality of the results and perform comparisons and other necessary tests.

Certain values of parameters can cause erroneous behavior (exceptions) of the

application and have to be changed in order to re-establish the normal path and

save the work done until the exception detection.

• Dynamicity at instance level - Changing resources during execution is justified

by several reasons. For example the user can decide between sparing resources

of an infrastructure and choose smaller resources for non-critical tasks or on the

contrary, allocate powerful resources for critical tasks. Another reason are the

multiple ways in which a computing resource can fail causing the application to

stop. Sometimes is useful to choose the computing resource of a task at run-time

when all the technical requirements are defined (capacity, software tools, etc.).

(66)

2.4.1.5 Exception Handling in Workflow Systems

When executing a scientific application on a Grid infrastructure through a work-

flow system, failures can occur for various reasons: hardware/system failures (network

failures, resource non-availability, system out of memory) but also application fail-

ures(faulty algorithm, infinite loops, inadequate parameter values, stack overflow, run-

time exception, programming bug). The first type of failures are mostly treated by the

middleware layer residing between the workflow environment and the Grid infrastruc-

ture. Grid workflow systems should be able to identify and handle errors and support

reliable execution no matter the type of failure (71). The different error handling proce-

dures can be divided into two main categories: task-level and workflow-level techniques

(72). Task-level techniques mask the effects of the execution failure of tasks in the

workflow, while workflow-level techniques manipulate the workflow structure such as

44

2.4 Workflow Systems

execution flow, to deal with erroneous conditions. The main task-level techniques are

the following:

• Retry - Is the simplest recovery technique, as it simply tries to execute the same

task on the same resource after failure occurrence.

• Migration (or alternate resource) - Submits failed task to another resource (73).

• Checkpoint/Restart - An application/task is progressively restarted from the last

good checkpoint, if available, on different resources in case of failures. The mi-

gration algorithm determines the best migration path (74, 75, 76).

• Replication (or over-provisioning) - Is a fault tolerance mechanism where multiple

copies of an application (with the same input data set) are executed in parallel

(73, 77).

The above mentioned fault tolerant techniques are mostly dedicated to hardware

and system failures. They can also be used for application failures but their efficiency

can prove to be very weak. Here is a set of reasons for which more advanced recovery

techniques grouped in the concept of resiliency have to be developed that could address

this type of failures (2):

1. If a task fails, not because of a resource failure, but because of a failure in the task

itself (e.g. run-time exception or programming bug), using the retry or migration

recovery techniques will only waste valuable resources without having a chance

to successfully complete.

2. The amount of data needed to be check-pointed and the expected rate of faults

for large systems are already exposing the limits of traditional checkpoint/restart

techniques.

3. The most common parallel programming model, MPI, does not offer a paradigm

for resilient programming. A failure of a single task often leads to the killing

of the entire application. An exception is the MPI implementation for volatile

resources (MPICH V) (45, 78).

45

2. STATE OF THE ART

4. Most applications (and system) software are not fault tolerant nor fault aware

and are not designed to confine error/faults, to avoid or limit their propagation,

and to recover from them when possible (except in limited cases (39, 78)).

5. There is little communication or coordination between the layers of the software

stack in error/fault detection and management, or coordination for preventive

or corrective actions. An example of such an infrastructure is presented in (1).

However the number of such infrastructures is still low.

6. Errors, fault root causes, and propagation are not always well understood.

7. There are no standard metrics, no standardized experimental methodology, nor

standard experimental environment to stress resilience and compare them fairly.

The workflow system should be able to monitor the application’s execution and

detect any software error, treat it (if possible) and continue the execution in a safe

manner. Since this type of failures didn’t benefit of wide studies and experiments like

the hardware/system failures, the research agenda should follow mainly two important

tracks as stated in (2):

• Extend the applicability of rollback toward more local recovery, reducing check-

point size, error and fault confinement, dynamic error handling by applications.

• Fault avoidance and fault oblivious software to limit the recovery from rollback,

situation awareness, system level fault prediction for time optimal check-pointing

and migration.

Next we will present a set of representative workflow systems for scientific

computation, insisting on YAWL system which is the one we have chosen to

integrate in our computing platform.

2.4.2 Examples of Fault Tolerant Workflow Systems

The number of available grid workflow platforms is growing rapidly every year. Mak-

ing an exhaustive survey is almost impossible and out of our scope. We will only present

some systems that we consider relevant for the scientific field and that promote similar

features with the one that we want to integrate in our platform.

46

2.4 Workflow Systems

2.4.2.1 Askalon

Askalon (79) is one of the most complete workflow systems that we found in the

literature and specially designed to simplify the design and execution of scientific work-

flow applications on the Grid. It contains all the necessary floors for such a goal, as

depicted in figure 2.18. Thus Askalon can build an abstract workflow model using the

AGWL XML based language that shields the application developer from the grid. The

resulting XML file is then transferred to the set of middleware services that support

the execution on the Grid. The Resource Manager service is responsible for allocation

of resources and deployment of required services for the execution. The Enactment

Engine service is in charge of a reliable and fault tolerant execution of workflows (80).

The paper proposes a master-slave distributed architecture for the execution engine.

The master part parses the workflow representation and after some format translations

it is sent to the workflow scheduler. After the workflow is mapped onto a grid infras-

tructure, the master engine partitions it and allocate the resulting partitions to the

slave engines. An eventual unrecoverable crash of a slave engine is monitored by the

master engine that will mark the entire subworkflow associated to the slave as failed. It

will then ask for a rescheduling procedure, will re-partition the workflow and migrate

the execution to another site. Also the master engine chooses a slave engine as a back-

up before initiating the workflow execution. This way if the master engine crashes too

there will always be a replacement available.

The DEE engine of Askalon can perform also application-level checkpoints for a

fast execution restore in case of failures. Such a checkpoint will contain the state of the

workflow activities and the state of the data dependencies. The different checkpoints

performed by DEE are classified according to their level in the application: activity-

level, light-weight workflow and workflow-level (see figure 2.19). More details can be

found in the above cited paper.

The Performance Analysis performs automatic instrumentation and bottleneck de-

tection and feeds the Performance Prediction service with statistics that help to esti-

mate execution time of activities through training phase. The mapping of activities

onto Grid resources is achieved by the Scheduler service using graph-based heuristics

and optimization algorithms.

47

2. STATE OF THE ART

Figure 2.18: Askalon Architecture (taken from (79))

Figure 2.19: Askalon Checkpoint Classification (taken from (79))

48

2.4 Workflow Systems

Figure 2.20: Checkpoint Model in Kepler System (taken from (83))

2.4.2.2 Kepler

Kepler(81) is based on the collaboration of several large scale projects with the aim

of developing an open source scientific workflow system. This system allows scientists

to combine data integration with analysis or visualization steps. Kepler is based on

Ptolemy II system (82) developed at UC Berkley, a system for heterogeneous hierar-

chical modeling. Kepler can model a workflow system as a composition of independent

components (actors) that communicate through well-defined interfaces. An actor repre-

sents an operation with parameters that operates on input data to produce some output

data. Also, according to (72) Kepler has been extended to support seamless access to

remote resources and services. Finally in (83) it is presented a method for capturing

data values and control dependencies for provenance information in the Kepler system.

It also describes how Kepler is using a Checkpoint composite actor to provide fault tol-

erance. The error detection is realized through port conditions that evaluate the input

or output data. An error is signaled if the evaluation results to false. The Checkpoint

composite actor contains a primary subworkflow and optionally several alternate sub-

workflows. When an error occurs in the primary subworkflow the Checkpoint actor can

choose either to re-execute it or to call the execution of an alternate subworkflow. The

number of times such a procedure can be applied is configurable in the design phase.

If the upper limit of re-executions is exceeded the error is sent higher in the workflow

hierarchy. In figure 2.20 is presented an example of a workflow Checkpoint model in

the Kepler system.

49

2. STATE OF THE ART

2.4.3 YAWL - Yet Another Workflow Language

YAWL is a workflow language designed and developed by Wil van der Aalst (Eind-

hoven University of Technology, the Netherlands) and Arthur ter Hofstede (Queensland

University of Technology, Australia) in 2002. After analyzing a wide variety of work-

flow management systems and languages they decided to base their language on the

Petri nets. The reason for choosing this mathematical model is its enhanced expres-

siveness. It offers a good formal semantics despite the graphical nature, behaves much

better when dealing with state based workflow applications and offers a multitude of

analysis techniques (84). However it proved out that using only Petri nets was not

enough to model more complex control structures. A good example are the advanced

synchronization patterns like AND join and XOR join (65) or the multiple instance

patterns. In consequence, they extended the initial language with additional features

to accommodate these control structures (84). These features are all grouped under

the concept of workflow patterns (68).

Beside the workflow language concept, YAWL extends to a wider concept represent-

ing an entire workflow system. All the components described in section 2.4.1.1 are

present in YAWL. Their detailed description is given in (6), we will only enumerate the

basic ones present in any workflow system:

• Workflow Process - A set of interdependent activities that need to be performed.

• Workflow Specification - Detailed description of a process ready to be deployed

in a workflow engines.

• Case - A specific instantiation of a workflow model.

• Task - A description of a unit of work, part of a workflow application.

2.4.3.1 Architecture

Having a workflow language formally based on Petri nets and implementing the well-

known workflow patterns (7), YAWL extends these concepts with dedicated constructs

to deal with patterns like cancellation, synchronization of active branches only and mul-

tiple concurrently executing instances of the same task. Moreover, YAWL is based on a

service-oriented architecture (see Figure ??) that greatly contributes to its extensibility.

50

2.4 Workflow Systems

From a software engineering point of view YAWL has three main components: YAWL

Editor, YAWL Engine and YAWL Services. YAWL is conceived on a server-client

model and consists mainly of a set of servlets that act as server or client classes for the

different services implemented. As a consequence these services need to be hosted by

a servlet container, the most popular being Apache Tomcat (6). The YAWL Engine is

responsible for the scheduling of task’s execution and also for managing the data flow

inside a workflow application. This coordination is accomplished using the so-called

YAWL Custom Services (85). A Custom Service is usually a web-based service that is

able to communicate with the YAWL Engine facilitating its interaction with external

software in charge of executing tasks. This communication is done through special end-

points called interfaces (see Figure ??). Every interface has a different role: loading

and unloading workflow cases in the engine, exception handling, logging or interaction

with a Custom Service.

2.4.3.2 YAWL Custom Service

Normally a Custom Service can be developed in any programming language and can

be deployed (locally or remotely) on any kind of platform. The only condition is to

be able to send and receive HTTP messages. The communication between the YAWL

Engine and a Custom Service is done using a specific procedure depicted in figure 2.21.

Being in charge of tasks’ execution, a Custom Service is able to receive notifications

from the engine when new tasks are ready to be executed, inform the engine that it

has accepted a task, execute the activities contained in a task and inform back the

engine that a task execution has finished, allowing the engine to continue the rest of

the workflow’s execution.

Custom Services are registered to the Engine by specifying basic authentication

credentials, and a location in the form of a base URL. Once registered, a Custom

Service may receive HTTP messages from the Engine at endpoints identified by URLs

derived from the base URL provided at registration. On the other hand, the Custom

Service can send HTTP messages to the Engine at endpoints identified by URLs that

the Custom Service is assumed to know. A collection of Java classes included in the

YAWL distribution provide several APIs that can be used to implement the required

endpoints on top of the HTTP protocol (85).

51

2. STATE OF THE ART

Figure 2.21: YAWL Custom Service Protocol (taken from (85))

2.4.3.3 Data in YAWL

The data transfer between tasks in a workflow application or between the engine

and the external environment is done through XML documents. There are two levels

available for data definition: net and task level. The net data is defined as global data

that every task can access during execution. The task data is accessed and modified

only within an individual instance of a task. Data types are defined using XML Schema

and apart from the default set existing in the YAWL distribution a users can define

their own custom data types. Concerning data usage, there are input and output

variables, input/output or local variables. The general rule is that data is written to

input variables and read from output variables. Local variables are only defined at net

level and are used to pass initial data to the application.

Data transfer is possible only between net variables to task variables. No direct

transfer is allowed between variables of distinct tasks. It is considered that task vari-

ables are local to the tasks they belong to and no direct access should be given to

outside world. The definition of data transfer is done using parameters. They describe

how data should be extracted from variables of a specific level and handled to variables

of a different level (net to task→ input parameter or task to net→ output parameter).

52

2.4 Workflow Systems

When transferring data, some basic rules have to be respected. One of them is

that all input variables, except those associated with the top-level net, must have

data provided to them from the corresponding net variables via an input parameter

definition. An input variable of the net level has data supplied from the external

environment (e.g. user input) once the execution of a net specification has started.

Data can also be assigned at design time, but only to local net variables. Also each

output variable requests data from the environment once the corresponding net or task

is executed (6).

2.4.3.4 Dynamicity

YAWL language supports flexibility through a number of constructs at design time.

Like many other languages, YAWL supports parallel branching, choice, and iteration

natively, which allow for certain paths to be chosen, executed, and repeated based on

conditions and data values of the executing instance. In addition (and unlike most

other languages), YAWL also supports advanced constructs such as multiple atomic

and multiple composite tasks, where several instances of a task or sub-net can be

executed concurrently and dynamically created. Another interesting feature are the

cancellation sets, which allow for arbitrary tasks (or set of tasks) to be canceled or

removed from a process instance. YAWL also supports flexibility through its service

oriented architecture that we already described in 2.4.3.2. In the YAWL distribution

there are already a set of built-in services designed to serve standard functions needed

in a process execution (YAWL Resource Service, YAWL Worklet Selection Exception

Service, etc.). One of the most important built-in service, providing dynamic flexibility

support for YAWL processes is the Worklet Service (69, 86).

YAWL provides each task of a process instance with the ability to be linked to

a dynamically extensible repertoire of actions. In this way the right action is chosen

contextually and dynamically from this repertoire to carry out the task. In YAWL

such an action is called a worklet, which is a small, self-contained, complete workflow

process. The global description of the process is provided at design time. At run-time,

when a specific task gets enabled by the engine, the appropriate worklet is contextually

selected, using an associated set of rules. The context of a process is defined by the

contextual data that can be categorized as follows:

53

2. STATE OF THE ART

• Generic data : Data that are considered likely to occur within any process. For

instance, in a numerical optimization simulation, the input geometry data is

considered as generic.

• Case dependent with a priori knowledge : Data that are known to be pertinent to

a particular case when the workflow is instantiated. For instance, some process

specific parameters that are used only under certain circumstances.

• Case dependent with no a priori knowledge : Data that only becomes known

when the case is active and deviations from the known process occur. A typical

example is an error code that will change the execution flow.

The YAWL approach to capture contextual data are Ripple Down Rules (RDR)

(86, ch.4), which comprise a hierarchical set of rules with associated actions. A RDR

knowledge base is a collection of simple rules of the form if condition then conclusion,

conceptually arranged in a binary tree structure (see Figure 2.22). Such a decision

tree like structure allows to define the most specific case fitting with given contextual

data and therefore to decide the most appropriate worklet to handle that data. A

typical example is the case where several methods are available to solve a linear system

according to the kind of input data (for instance if the input matrix is diagonal or

sparse)

2.4.3.5 Exception Handling

The Worklet Exception Service extends the capabilities of the Worklet Service to

provide dynamic exception handling with corrective and compensatory actions (86, ch.

5). The Exception Service uses the same repertoire and Ripple-Down-Rules as the

Worklet Selection Service. For every unanticipated exception (an event not expected

to occur in most instances, so excluded from the main logic) a set of exception handling

processes are defined, known as exlets, which will be dynamically incorporated in the

running process. An exlet can also contain a compensatory action in the form of a

worklet, defined in the same manner as for the Selection Service. Each exception has

also a set of rules attached that will help choosing the right exlet at run-time, according

to the predicate evaluated to true. If an unanticipated exception occurs (an event for

which a handling exlet has not been defined), either an existing exlet can be manually

54

2.4 Workflow Systems

Figure 2.22: Conceptual Structure of a Ripple-Down-Rule Tree (taken from (6))

55

2. STATE OF THE ART

selected from the repertoire, or one can be adapted on the fly, or a new exlet can be

defined and deployed while the parent workflow instance is still active. The method

used to handle the exception and the context in which it has occurred are captured by

the system and immediately become an implicit part of the parent process model. This

ensures the continuous evolution of the process while avoiding the need to modify the

original definition. There are three types of exceptions that are defined by the service

for handling, as detailed below:

• Pre/Post Constraints exceptions - Rules applied to a work item or case imme-

diately before and its after execution. An exception is raised whenever input or

output data do not meet the criteria.

• Time Out - Occurs when a work item has an enabled timer and the deadline for

that timer is reached.

• Resource Unavailable - Triggered by the Resource Service when an attempt has

been made to allocate a work item to a resource but that allocation is not possible

for various reasons.

When one of the above mentioned exceptions occurs, an appropriate exlet, if defined,

will be invoked. Each exlet may contain any number of steps, or primitives. The

available pre-defined primitives are the following: Remove Work Item, Remove Case,

Remove All Cases, Suspend Work Item, Suspend Case, Suspend All Cases, Continue

Work Item, Continue Case, Continue All Cases, Restart Work Item, Force Complete

Work Item, Force Fail Work Item, Compensate. A number of compensatory worklets

may be executed consecutively by adding a sequence of compensation primitives to an

exlet.

2.5 Resilience for Long-running Simulation and Optimiza-

tion Applications

Numerical simulation plays an important role in most scientific research fields and

usually give rise to very large scale experiments. This reflects into significant volumes

of data to be transferred and a substantial demand for computing resources.

56

2.5 Resilience for Long-running Simulation and Optimization Applications

The application areas that our colleagues from Sophia Antipolis focus on concern

optimization of complex systems arising from physics or engineering. From a physical

point of view, they study Fluid and Structural Mechanics and Electromagnetics. Major

applications include multidisciplinary optimization of aerodynamic configurations or

geometrical optimization.

The multidisciplinary aspect of applications requires a certain heterogeneity both

at software level and computing resources level. The integration of such various dis-

ciplines involves powerful computing infrastructures and particular software coupling

techniques. Simultaneously, advances in computer technology militate in favor of the

use of massively parallel PC-clusters including thousands of processors connected by

high speed gigabits/sec wide area networks. The main difficulty still remains how-

ever in the deployment and control of complex distributed applications on grids by the

end-users. Indeed, the deployment of the computing grid infrastructures and of the

applications in such environments still requires specific expertise by computer science

specialists (87).

From the above introduction we can observe that long-running simulation and op-

timization applications are affected by exceptions at multiple levels. In Figure 2.23

are presented the main stages of a typical numerical optimization application of the

kind that we address in this work. The tasks in the computing chain represent int this

order the optimization part, the meshing of the geometry model, the partitioning of the

mesh model, the solver of the optimization ecuations and finally the performance anal-

yser. They represent at the same time the logical pieces of the application but also the

blocks where some exceptions can appear. This can happen either before the execution

of a block, during the execution or at the exit when the results are produced. Since

the hardware errors are out of our scope, we will describe only exceptions concerning

resource limitations and application level exceptions.

2.5.1 Exception Types

2.5.1.1 Resource Limitation Exceptions

Even though grid middleware systems are more and more performant and they should

cope with most of applications’ requirements, the heterogeneity of simulation and opti-

mization applications can determine unexpected errors regarding resource performance.

57

2. STATE OF THE ART

Figure 2.23: Standard Optimization Application

58

2.5 Resilience for Long-running Simulation and Optimization Applications

Thus, the most common exceptions that we encounter are:

• Out of CPU time - This can happen if the CPU time is limited on the computing

platform used (e.g. grid or cloud computing).

• Out of memory or disk storage - If a job launches too many processes on a proces-

sor the memory or disk space available for a job is exceeded. In our experiment

the meshing task (figure 2.23) turns out to be likely to this kind of error.

• Wrong OS - A numerical optimization application is multidisciplinary by nature

so every logical task can have different requirements in terms of software to use,

operating systems type or version and may sometimes run on different OS or

architecture. If the job/jobs in charge of executing a task are allocated resources

with the wrong requirements, it can result in a failure, blocking the execution of

the rest of the application.

• Non availability of web-services - If a web-service in charge of execution of an

application’s task becomes unavailable (e.g. if network is down), the whole ap-

plication’s execution suffers.

2.5.1.2 Application Exceptions

The application exceptions represent the focus of this thesis and most of the research

efforts were made to develop mechanisms to detect and treat these exceptions. Based

on Figure 2.23 we can identify the nature of these exceptions:

• Input/Output parameters - Every task receives a set of input parameters and

produces a set of output parameters to other tasks. A wrong value of those

parameters may produce wrong final results or even crash some task.

• Meshing errors - The software in charge of this task can generate a wrong mesh

or the output file can get broken which will affect the dependent tasks.

• Convergence problems - The solver task can end up in an infinite loop, overloading

the computing resources and blocking the application.

• Algorithm design - If the end-user inserted design errors in his algorithm, these

can whether go through execution silently but affecting the final results, or stop

the application in the middle of the execution.

59

2. STATE OF THE ART

2.5.2 Exception Detection

Detecting application and resource limitation exceptions is a more abstract task than

the general detection used for errors in distributed systems. Most of these exceptions

can go unidentified, making visible only the effects produced in the system. The differ-

ent exception types presented above can be detected at different levels of the execution:

• Operating system level - At this level we can detect errors like CPU time or

memory shortage. The method to detect such exceptions is to invoke special

OS commands that shows the level of resource utilization by a process or set

of processes (e.g. free, vmstat, top). Also at this level we can detect if the

requirements of the job match with the configuration of the operating system,

triggering an exception if this is not the case.

• Service level - This is the level where we detect if web- services in charge with

execution of tasks from applications are functioning correctly. The easiest way to

test if a service is responsive is to put a timeout on the execution of that service

for a specific task and trigger an exception if the timeout value is exceeded by

the execution time.

• Application level - The rest of the exceptions are treated at the application level.

When dealing with values for input/output parameters, the most common way

is to place value constraints before and after the execution of specific tasks. If

the values of the parameters violate those constraints, an exception is triggered.

The convergency problems are usually detected by placing timeout constraints

and trigger exceptions if the solver task that should converge exceeds the timeout

with its execution time.

2.5.3 Exception Treatment and Recovery

For this phase the most important aspect is to determine the origin of the exception.

Otherwise there is a risk to repeat the occurrence of the same exception. When we know

the origin of an exception we can determine easier the recovery point for an application.

When working with simulation and optimization applications the two main options are

whether to put exception detectors all over in the application space thus assuring a very

fine detection of the origin of the error, or to adopt a user-defined strategy in which

60

2.5 Resilience for Long-running Simulation and Optimization Applications

the user places detectors only in critical points of the application based on his a priori

knowledge.

The usual approach to facilitate recovery for application exceptions is similar to

the one presented in 2.3.2.2 for general exception handling in distributed systems,

meaning saving the state of the application represented by all the available information

about the processes and data (88). By doing this we have sufficient data to restore an

application state after a recovery procedure but also we can modify specific parameter

values as a fault treatment procedure in order to avoid future occurrences. If the

application context permits, we can isolate critical tasks determined by the user and

save only their application context, thus performing a local exception treatment and

recovery that increases the recovery speed which is essential in long-running simulation

and optimization applications. When the exception is related to resource limitation,

the recovery procedure consists in transferring a task’s state on a different computing

resource that meets the requirements of that task and re-execute it.

Considering the similarities between workflow systems for numerical applications

and those for business processing we mention also an original recovery solution pre-

sented in (89). The authors proposed a practical solution for on-line attack recovery

of workflows. The recovery system discovers all damages caused by the malicious tasks

and automatically repairs the damages based on data and control dependencies between

workflow tasks.

61

2. STATE OF THE ART

62

3. Platform Design
An important challenge in computer science nowadays lies in the integration of var-

ious expertise in complex application areas such as simulation and optimization in

aeronautics, automotive and nuclear simulation. For example, the design of a space

shuttle calls for aero-thermal, aero-structure and aerodynamics disciplines which all

interact in hypersonic regime, together with electro-magnetics.

The integration of such various disciplines requires powerful computing infrastruc-

tures and particular software coupling techniques. Simultaneously, advances in com-

puter technology encourages the use of massively parallel PC-clusters including thou-

sands of processors connected by high-speed networks. This conjunction makes it pos-

sible to combine computational methods and computer science for better performance.

New approaches including evolutionary algorithms, parametrization, multi-hierarchical

decomposition lend themselves seamlessly to parallel implementations in such comput-

ing infrastructures.

However, even if today there would be available petaflop computers, numerical sim-

ulation teams are not fully ready to use them. Despite the fact that each discipline

has made significant progress to develop tools that cope with the computational power,

coupling them for designing large multidisciplinary systems is still in an incipient state.

The main reasons for this situation are:

• Simulation and optimization algorithms that scale well with large computing

infrastructures are quite seldom.

• In a multidisciplinary context, coupling disciplinary analysis with optimization

while benefiting from several parallelization levels remains a technical and sci-

entific issue. The amount of exchanged data needs to be reduced to achieve

a speed-up. Parameter definitions may be widely different between disciplines,

therefore creating incompatible interfaces.

• Interfaces are long and difficult to code, accessibility in different operating sys-

tems, conflicting requirements of the simulators, software licenses attached to

particular nodes, heterogeneous computing nodes and connecting network.

63

3. PLATFORM DESIGN

3.1 Numerical Optimization Applications

Optimization problems involving systems governed by Partial Differential Equations

(PDEs), such as optimum shape design in aerodynamics or electromagnetism, are more

and more complex. In certain situations, the major difficulty resides in the costly

evaluation of a function by means of a simulation, and the numerical method to be

used must exploit at best the problem characteristics (regularity or smoothness, local

convexity). In many other cases, several criteria are to be optimized and some are non

differentiable and/or non convex. A large set of parameters, sometimes of different

types (boolean, integer, real or functional), are to be taken into account, as well as

constraints of various types (physical and geometrical, in particular). Additionally,

todays most interesting optimization pre-industrial projects are multidisciplinary, and

this complicates the mathematical, physical and numerical settings. Developing robust

optimizers is therefore an essential objective to make progress in this area of scientific

computing.

In the area of numerical optimization algorithms, our team aims at adapting classi-

cal optimization methods (simplex, gradient, quasi-Newton) when applicable to relevant

engineering applications, as well as developing and testing less conventional approaches

such as Evolutionary Strategies (ES), including Genetic or Particle-Swarm Algorithms,

or hybrid schemes, in contexts where robustness is a very severe constraint.

The application domains of the optimization methods mentioned above cover a large

spectrum. The most important for the team is the Aeronautics and Space. The demand

of the aeronautical industry remains very strong in aerodynamics, as much for conven-

tional aircraft, whose performance must be enhanced to meet new societal requirements

in terms of economy, noise, vortex production near runways, etc. Our implication con-

cerns shape optimization of wings or simplified configurations. Our current involve-

ment with Space applications relates to software platforms for code coupling. Also

the team’s expertise in theoretical and numerical modeling, in particular in relation to

approximation schemes, and multilevel, multi-scale computational algorithms, allows

us to envisage to contribute to integrated projects focused on disciplines other than, or

coupled with fluid dynamics, such as structural mechanics, electromagnetism, biology

and virtual reality, image processing, etc in collaboration with specialists of these fields.

The main objectives of these applications is to reduce the mock-up process and improve

64

3.1 Numerical Optimization Applications

Figure 3.1: Optimization Loop

size and precision of modeling, innovate and improve customer requirements or reduce

simulation time.

This explains the interest in integrating various expertise in complex application

areas to design and develop high-performance distributed scientific workflows for mul-

tidisciplinary optimization applications combining powerful computing infrastructures

with specific software coupling techniques.

In an optimization process there are multiple tools involved organized in a well defined

structure in order to obtain the right outcome (figure 3.1). The design loop starts with

a set of Design Variables. These design variables are used for Geometry Generation

starting from a Reference Geometry and resulting an Updated Geometry. This is the

base for the Grid Generation phase that like the geometry starts from a Reference Grid.

It follows the Physical Analysis stage where all the Initial Boundary and Conditions are

specified. A set of Solution Fields are generated followed by a Post-Processing phase

where all the Cost Function Constraints are verified. If these constraints are respected

it means that the required level of optimization has been reached so the application

stops. Otherwise an Optimization Algorithm is executed to modify the design variables

in a proper way and the whole process starts again until the constraints are met.

65

3. PLATFORM DESIGN

All the application stages identified above are prone to errors. We will see in the next

sections what type of errors can occur in such an optimization chain, where can they

occur and what fault tolerance solutions can be applied to ensure a safe execution.

3.2 OMD2 Project

The OMD2 project (90) is an industry research project gathering small and medium

enterprises (SMEs) like CD-adapco, SIREHNA, ACTIVEEON, university research in-

stitutions like INRIA, ENSM-SE, UTC, ECP, IRCCyN, ENS CACHAN, DIGITEO

consortium and RENAULT car manufacturer as the coordinator. The project started

on the 2nd of July 2009 for a duration of 3 years. It benefited of a financial support of

2.8Me from the National Research Agency (according to program Conception et Sim-

ulation 2008) and had a total budget of 7.3Me. It aimed to connect multidisciplinary

teams (fluids and solid mechanics, applied mathematicians and computer scientists) for

solving difficult industrial problems. The strategy evolved around three directions:

• the up-scaling of existing design algorithms for (task and data) distributed com-

puting

• their integration in a distributed, collaborative, open software platform

• their application to real automotive design problems with environmental objec-

tives

Beside linking existing software together, OMD2 provided new control algorithms for

multidisciplinary simulations, uncertainty propagation and optimization that work in

a HPC environment. The final objective was to create a collaborative design platform

that worked in general HPC distributed environments. Users were supposed to interact

with the platform in the SCILAB environment. The developments were validated on

important car industry test cases related to car environmental impacts. The project

split in several work packages and sub-packages. Our team, had a more significant

contribution in packages related to functional specification of the platform, its con-

ception and development, culminating with the development of interfaces between the

computing platform and the optimization algorithms provided by our partner teams.

66

3.3 Numerical Application Test-Cases

As a final objective, OMD2 project was destined to prepare the French design com-

munity to the coming of HPC age by simulating, testing and optimizing on large parallel

computer infrastructures. Eventually it created links between the engineering design

community and the more advanced HPC communities like bio-informatics and clima-

tology by sharing middleware and computing environments (91).

3.3 Numerical Application Test-Cases

OPALE team obtained a set of test-case applications as a partner in the OMD2

project. I will insist only on those that we actually used for our tests and just briefly

present the others to help the reader better understand the type of applications we are

working with.

The first test-case represents a 2D air-conditioning pipe for a car (figure 3.2). The

objective of the test-case was to do some preliminary tests of methods and algorithms

proposed by different partners and also to prepare procedures for the more complex

3D cases. As for the objective of the problem itself, it resumed to finding the optimal

geometry to:

• minimize the pressure loss between inlet and outlet

• minimize the standard deviation of the output speed profile

The geometry of the test-case is described by 13 parameters marked in figure 3.2

(left) and its computation time is estimated at around 3 minutes on a desktop computer.

The second test case (92) (figure 3.3), which will also have its Famosa architecture

described, treats the same problem as the previous one but in 3D. Regarding the

objectives of the test-case, beside testing algorithms of optimization there is also the

test of distant computation. The reason for this extra objective is the large execution

time that requires using high performance computing infrastructure. The problem’s

objective is also to find an optimal geometry modeled this time by 8 parameters. One

solution will be composed of 300000 cells for the mesh design and would take about 25

minutes of computation time which impose the use of HPC for optimization.

67

3. PLATFORM DESIGN

Figure 3.2: Test Case 1 - 2D Air Conditioning Pipe

3.4 Famosa Execution Chain

We first ran our experiments on the Famosa execution platform developed by our

colleagues from Sophia Antipolis. Famosa has been developed in C++ and devoted to

multidisciplinary design optimization in engineering. It is composed actually of several

libraries with different functionality. For example we can find inside the platform a

library that implements various optimization algorithms like steepest descent, multi-

directional search algorithm or the efficient global optimization method. It contains also

an evaluation library managing the performance estimation process (communication

with external simulation tools). Other libraries are related to database creation, meta-

model creation, etc.

The OPALE team uses this platform to test its methodological developments in mul-

tidisciplinary design optimization (see figure 3.4). From a software architecture point

of view it is composed of two main stages: the optimization stage and the evaluation

stage. The optimization stage takes as an input a function to optimize and an initial

geometry. After each step it will produce a design variable vector that will represent

the input for the evaluation action. With this design vector the platform will execute

first the meshing procedure. The meshing can be partitioned so that parallelism can

68

3.4 Famosa Execution Chain

Figure 3.3: Test Case 1 - 3D Air Conditioning Pipe

be used through MPI. Based on the meshing results, the solver will compute the func-

tion to optimize. If the values of specific parameters respect certain constraints the

procedure is stopped. Otherwise a new iteration is started from the optimization stage.

Comparing figure 3.1 with figure 3.4 we notice that the application stages rep-

resented by the geometry generation, mesh generation and solver are all included in

the runsolver.sh. This script will execute on a single machine excluding the possibility

of using a distributed computing platform for more demanding applications. Inside

this script there is a pre-treatment phase in which are created all the symbolic links

69

3. PLATFORM DESIGN

Figure 3.4: Famosa Computing Chain

to the executable software for geometry generation, meshing, solver, etc. Then these

executables are called sequentially according to the application structure using a set

of configuration files already existing or created during execution from one stage to

another. The call to the runsolver.sh script is done inside Famosa tool.

The main advantage of this procedure is the fast implementation and execution

launching. However, any error that occurs at any level will affect the entire script

execution and a complete restart is needed. The monolithic structure doesn’t allow any

intermediary configuration, nor intermediary fault tolerance procedures implemented to

prevent complete re-execution. The solution to this problem was to adapt the execution

structure from figure 3.4 to the general optimization loop described in figure 3.1. By

identifying in the Famosa execution chain every optimization phase described in 3.1

we were able to restructure the monolithic script into several smaller execution units,

each associated with one optimization phase (see Figure 3.5).

This new structure allows a better control of the execution, facilitating an exception

handling procedure that targets exceptions specific to each execution stage. In the

following sections we will present what type of exceptions can affect an optimization

process, which one we are interested in treating and how the new structure helped us

developing a good algorithm for exception treatment.

70

3.5 Large Scale Test-Case

Figure 3.5: Standard Optimization Application

3.5 Large Scale Test-Case

The last test-case takes the optimization process to a larger scale to emphasize the

distributed characteristics of our platform. It is considered as a realistic design of exper-

iments exercise aimed at exploring a parameter space. The idea is to have an optimizer

code at the beginning of the execution that will generate N different files containing

geometrical parameters that have to be simulated. These files are being distributed on

M ¡= N different nodes possibly running on different clusters of a distributed execution

platform like Grid5000. For each file one must deploy on each node all the simulation

tools already used in previous test-cases and defined in the Famosa computing chain

(Figure 3.5): mesher, partitioner, parallel simulator, etc., and execute each of the

individual workflow on K different cores, depending on each cluster. Each simulator

has to return a locally produced result file that will provide the input data for the final

code which produces a response surface. In figure 3.6 you can see an example of such

a parameter surface. The meaning of the horizontal axes (geometrical parameters X1

and X2) is explicated in figure 3.7 while the vertical ax measures the speed variation

at the pipe’s exit. Based on this, the experiment designer can identify the parameter

areas that have a special meaning for his research. In our tests we can also introduce

application faults by modifying some parameters and use the exception treatments that

we will present in the following sections to ensure a safe execution.

71

3. PLATFORM DESIGN

Figure 3.6: Parameter Surface (taken from (93))

Figure 3.7: Air Conditioning Pipe Parameter Set (taken from (93))

72

3.6 Exception Types

3.6 Exception Types

3.6.1 Practical Exceptions

All computation stages are usually controlled by parameters, so an error in their con-

figuration can determine an unpredicted behavior that the execution platform should

detect. In some cases, a wrong configuration at one level can determine exceptions

at the following stages, making it difficult to detect the origin of the exception in or-

der to correct it. Most often the effect of these exceptions translates into a very long

execution, maybe infinite loops. Based on the description of the Famosa execution

platform presented at 3.4 we give some practical examples of errors that can occur at

the levels mentioned above. With the help of our colleagues from Sophia Antipolis we

have imagined several scenarios that they have translated in the configuration files of

a specific application. Here we present the description of each scenario by mentioning

the execution stage that has been affected:

• Invalid geometry - The set of design parameters, provided for instance by the

optimizer, does not generate a suitable geometry in the CAD module of GMSH.

Typically, some surfaces exhibit self-intersections, yielding the failure of the ge-

ometry construction process. In that case, GMSH generates no output mesh

file.

• Invalid mesh - The mesh generated by GMSH is adapted to the current geometry.

For instance, the grid size is automatically reduced in locations where the geome-

try exhibits a high curvature, to improve simulation accuracy. For some extreme

geometrical cases, as it is the case here, the mesh tends to be so much refined

at some locations that its size becomes huge and the mesh generation process

becomes exceedingly long.

• Divergence problem at solver level - The flow solver is an iterative process that

can possibly not converge, if the numerical parameters chosen by the user are not

suitable. This choice is not straightforward since it depends on the mesh quality,

the numerical methods used, inlet / outlet flow conditions, etc.

73

3. PLATFORM DESIGN

• Incomplete convergence at solver level - Even when the flow solver does not di-

verge, the convergence may not be complete. As for the previous case, if the nu-

merical parameters chosen by the user are not suitable, the residual error which

monitors the convergence may stall instead of tending to zero, yielding a solution

of poor quality and a large simulation time.

3.6.2 Practical Detection

The responsibility of translating this erratic behavior for the YAWL Exception

Service belongs to the custom service in charge of the task’s execution where the

exception occurred. From the list of exceptions presented so far, we treat in our

applications only timeout errors and resource allocations errors. However most

of these errors, especially application exceptions like meshing or solver errors,

can be translated easily into time-out errors and thus can be treated by our

platform. A numerical optimization expert knows that inside a solver task resided

a process of convergence. With a proper experience and some apriori knowledge

of the application specifics he can estimate an execution time threshold that when

exceeded implies a lack of convergence. This is why in such cases we can trigger

an exception of the type timeout. The same logic can be applied when dealing

with the meshing procedure. It can happen that sometimes these computation

intensive tasks respect the execution time threshold imposed by the application

designer but they are still affected by errors. In this case a solution is to put

some constraints on the output results of the operation. In the case that these

constraints are not met an exception can be triggered to signal the event. These

are just two examples of how application specific faults can be translated in events

that YAWL can understand and treat.

3.7 Platform Design Issues

Figure 3.8 represents how our execution platform translates the test case from

figure 3.3 using the standard optimization application stages depicted in figure 3.5.

This example shows how simple is to model numerical optimization applications

using YAWL workflow system. The logical units are easily translated into one or

74

3.7 Platform Design Issues

Figure 3.8: YAWL Optimization Abstract Representation

several workflow tasks as is the case for the meshing procedure that is represented

by mesh generation and mesh solving tasks. The connections between the tasks

are actually a way for transferring parameters values. This architecture ensures a

greater flexibility in configuring every logical unit separately from the others and

also to better localize an error in the execution chain.

Originally YAWL was not designed to communicate with a distributed com-

puting infrastructure. The already existing services address only aspects like

dynamicity and exception handling. Also as described in 2.4.3.3, the internal

data management mechanism existing in YAWL is not suited to cope with the

amount of data that is usually being transferred when working with distributed

computing infrastructures. To address these limitations of YAWL we used a set

of tools already present in the YAWL package dedicated to extend the platform

when needed. Using the YAWL workflow system we are able to orchestrate the

pool of available services so that each task gets associated the service that is

suited for its execution. The orchestration is realized with a master-slave archi-

tecture. The YAWL engine registers all the available services spread on resources

of a computing infrastructure. After associating services to workflow tasks, it

delegates work to these services and manages the execution flow (see Figure 3.9).

To this purpose there are two main issues:

– Data synchronization

– Resilience

75

3. PLATFORM DESIGN

Figure 3.9: Execution Platform Architecture

3.7.1 Data Management and Data Synchronization

At the moment we were implementing our execution platform the data man-

agement in YAWL was the one described in 2.4.3.3. This was enough for simple

workflow processes for which the input and output data was represented by small

application parameters. However the system proved to be limited when dealing

with large data flows that had to be transferred from one task to another. Things

get even more complicated when tasks execute in a distributed manner and when

the computing nodes for each task are located in different clusters. It became

clear that a new protocol was needed to handle the data transfer and storage

independently of the application’s nature.

When we decided to address the data transfer problem we had to choose be-

tween two major approaches. The first one is rather decentralized in the sense

that the data has to follow the flow of the application as indicated by the work-

flow description. If the next task will be executed on the same node/cluster as

the current one, the cost of data transfer is determined only by the transfer of

output data on the local disk. The cost becomes higher if the execution of the

next task takes place on a different cluster.

The other solution is to save the data on a central machine (stable storage)

accessible by all the other computing nodes. Whenever a task wants to save its

output data it will transfer it on the stable storage. At its turn, when a new task

76

3.7 Platform Design Issues

needs input data from the previous ones, it will access the stable storage to get

it locally.

In the first method the number of transfers is at the most equal to the number

of flow connections between tasks, corresponding to the case where each task is

executed on a different site. On the other hand, in the second case every data

transfer between two tasks requires two transfers with the central storage. The

advantage of the centralized solution is the fact that at each point in the execution

the stable storage has a global and coherent state of the application so it suits

much better when dealing with faults. If the fault tolerant procedure requires

coming back to a previous state of the application, this state can be recovered

from the central storage unit. Since this last characteristic meets better our

resilience requirements, we chose to implement this second approach.

Starting from the centralized approach we chose to implement a model in which

every task has the option of doing a check-out to get data from the central data

storage or commit changes in data after its execution. This offers a larger flexi-

bility in choosing a strategy of data backup for resilience purposes, combining the

options presented above according to each task’s nature and also to important

points in the application’s semantic. The actual implementation can be done us-

ing different existing software. One option is to use a version control system like

SVN or GIT. For simplicity and rapidity we chose to use just the Linux based

command rsync. The details will be presented in section 4.1.

3.7.2 Exception Detection and Recovery Using YAWL

The first step in treating application exceptions is to detect them. For doing

that we use the exception handling support offered by YAWL and presented in

section 2.4.3.5.

As we have seen in 3.6.1 the exceptions presented there are recognizable by the

YAWL system. For detection and signalization we use the Ripple Down Rules

system (86, ch.4) integrated in YAWL and described in section 2.4.3.4 of the State

of the Art chapter. With it we can obtain the current execution context of the

77

3. PLATFORM DESIGN

application and detect that the concerned parameter or timeout value is breaking

the rule or set of rules already set for it, thus raising an exception. The system

will trigger the right treatment procedure represented by an exlet (see section

2.4.3.5 from the State of the Art chapter). Inside the exlet the user can take

the action he thinks appropriate in order to treat the error and eventually retry

an execution of the affected part choosing whether to keep the same computing

conditions or adapting them to avoid the same exception again.

Timeout on Task Execution In order to illustrate the exception treatment

mechanism presented in the previous section we will use a simple timeout example.

Figure 3.10 shows a workflow specification called Timer Test aiming at executing

any computation. The first task has a YAWL Custom Service associated for its

execution and an execution time limit of ten seconds after which an exception

is triggered. Using the Ripple Down Rules feature of YAWL we’ve associated

a decision tree file to the timeout exception that when triggered will call the

execution of an exlet. Inside the exlet we execute a compensation procedure that

will indicate to the next task in the main workflow wheather to continue the

normal execution or re-execute the first task.

Fault Origin

As shown in figure 3.10 the recovery point is established during the design phase

at the beginning of Timer Task task. This means that the user needs advanced

knowledge about the application to be able to design the workflow in such a way

that the recovery of execution is done at the right point when a specific error

occurs. Even though this solution seems cumbersome, doing it differently is very

hard. The alternative would be to implement an automatic mechanism that tracks

the origin of the fault in the workflow structure and reestablishes the execution

flow at that point. The difficulty comes from the fact that a fault occurring

during or at the end of the execution of a task is not necessarily a consequence

of that task’s execution or parameters values. These are a kind of faults that

do not provoke an immediate failure but rather propagate in it until they are

detected at the level of several tasks after their occurrence. To be able to recover

78

3.7 Platform Design Issues

Figure 3.10: Time Out Exception Handling Example

at the right point in the execution the system must know in detail the semantic

of the application being executed. This is quite hard to achieve, especially in

our case where the execution platform is supposed to support multidisciplinary

applications that can greatly vary in context and semantics.

The research topic concerning recovery after failure has been treated since a

long time in the literature. For example in (94) the authors want to prove that

a reliable way of executing business workflows in the presence of failures is to

treat them as transactions. This parallel is especially useful for semantic failures

because the workflow system can apply the same rollback mechanism used in

database systems that assures reaching a consistent state after a recovery process.

However the paper states that it is not possible to present a general solution

for workflow recovery because there exist different workflow types which require

different recovery approaches.

Continuing the idea of workflow transactional systems, in (4) is presented a dead-

lock free attack recovery algorithm for coordinated recovery in a distributed

transactional system (workflow or database). The emphasis is put on features

79

3. PLATFORM DESIGN

like unrecoverable transactions, dependency relations between tasks/transactions

or concurrency restrictions during a recovery process. They introduce the con-

cept of recovery analysis. This is composed of a damage tracing stage where

all the damaged tasks/transactions are identified through dependency relations

and a recovery scheme generation that generates recovery transactions and ex-

ecution orders according to the result of damage tracing. The workflow model

they analyzed is quite theoretical. When trying to apply it for a real domain, like

numerical optimization, a lot of obstacles can appear during implementation. In

(89) is proposed a prototype recovery system for workflows by the same authors.

In a more advanced system (83) the idea is to use a provenance framework added

to the Kepler scientific workflow system that keeps track of data dependencies.

The collected data is then used to provide failure recovery.

80

4. Implementation and Results

4.1 Interface Between YAWL and External Comput-

ing Resources

The services that we developed focus on the main activities performed when

treating a workflow application: execution and data transfer. In the following

paragraphs we will present details of implementation for each of these services.

1. Execution Service

The first custom service we developed was designed to simply execute a

shell command as part of a workflow task execution phase and retrieve its

execution status. The aim was to interconnect the YAWL engine can be

interconnected with a general external application written in any language.

In our case we have used a YAWL Custom Service, which is a java application

with HTTP capabilities that was running inside the client’s Tomcat server.

At the core of each custom service are the following Java classes:

– A Java servlet interface responsible for receiving event notifications from

the engine (InterfaceB EnvironmentBasedServer).

– Methods that allow a YAWL Custom Service to call specific end-points

on the engine side (InterfaceB EnvironmentBasedClient).

– An abstract utility class that encapsulates much of the functionality of

the other two previous classes, designed to be extended by the primary

class of each Custom Service (InterfaceBWebsideController).

As required by the YAWL architecture, we first implemented the mandatory

method, handleEnabledWorkitemEvent, declared in the InterfaceBWebside-

Controller which encapsulates all the necessary steps in a task’s execution:

81

4. IMPLEMENTATION AND RESULTS

– engine connection : Using the default credentials (user and password)

the service first connects to the YAWL engine before any exchange of

messages is done.

– check-out : This is an interaction initiated by the service through which

it informs the engine that it is ready to execute the workitem. When

this occurs, the engine processes the workitems input data, and includes

it in the data structure returned to the custom service. The engine also

moves the workitem state from enabled to executing, denoting that a

custom service is currently executing the workitem (i.e. the workitem

is in progress). In our case the input data is represented by the name

of the shell script to be executed and the directory where this script is

located.

– execution : In this step we first extract the parameter values from the

data structure with which we construct the command to be executed

and we specify also the directory on the computing system where this

command has to be executed. Then, by using Java API, we build a new

system process that will actually execute the associated work.

– result mapping : After execution, we retrieve the status code and we

map it in the workitem’s output data. This will allow post processing

for exception detection or other purposes.

– check-in : Another interaction with the engine initiated by the service

to indicate that it has completed execution of the workitem. In this

step we send also the result data back to the engine, that will move the

workitem from executing to completed state.

As the execution platform evolved we had to modify this service in or-

der to accommodate new requirements mainly related to integration on a

distributed infrastructure(e.g. Grid5000). The most important one is the

specification of a data transfer activity along with the direction of trans-

fer(not needed when running both the YAWL engine and client on the same

machine)

The final objective for developing such a service was to facilitate a distributed

collaborative execution in which each computation step can be performed

82

4.1 Interface Between YAWL and External Computing Resources

Figure 4.1: YAWL Distributed Collaborative Execution

on a different cluster according to the machine architecture and operating

system needed (see Figure 4.1).

2. Data Transfer Service

This is not an independent YAWL custom service from a physical point of

view but one integrated in the previous service. However it deserves a sepa-

rated presentation because it is independent from a logical point of view and

can be integrated in any other YAWL custom service. As the name indicates,

its main functionality is to transfer data produced by different tasks so that

it is available to every future task that will need it. The approach followed

uses a stable storage location to store the data globally and available for

every cluster and an on-demand data transfer so that every task decides in-

dependently whether it needs a data update transfer from the stable storage

before execution or a data store transfer after it has finished execution and

produced new data. Every application will have a global directory repre-

senting the data and it is supposed that every task in the application knows

the location of this directory on the cluster on which it executes, as well the

internal structure of the directory so that any information can be traceable

using a combination of absolute and relative path location. The different

steps performed by the data transfer service when invoked are presented in

the following pseudo-code:

83

4. IMPLEMENTATION AND RESULTS

Algorithm 1 Perform Data Transfer

transfer direction← getTransferDirection(workitem data)

yawl transfer codelet id← findDataTransferSpecId(session handle)

switch (transfer direction)

case LOCAL TO REMOTE:

transfer case id← launchCase(yawl transfer codelet id, codelet data)

waitTransfer()

result← execute(workitem reference)

break

case REMOTE TO LOCAL:

result← execute(workitem reference)

transfer case id← launchCase(yawl transfer codelet id, codelet data)

waitTransfer()

break

case LOCAL TO REMOTE TO LOCAL:

transfer case id← launchCase(yawl transfer codelet id, codelet data)

waitTransfer()

result← execute(workitem reference)

transfer case id← launchCase(yawl transfer codelet id, codelet data)

waitTransfer()

break

default:

result← execute(workitem reference)

end switch

84

4.2 YAWL and Grid5000

Reading the pseudo-code from algorithm 1, we can distinguish four main

possibilities:

(a) A new task retrieves data from the stable storage then performs the exe-

cution. Any new data produced on the local directory is not transferred

on the stable storage. This corresponds to the situation when the new

data is needed by a future task that will execute on the same cluster

and no other task from a different cluster will need it.

(b) A new task performs the execution then stores the produced data on

the stable storage. This corresponds to the situation when the last

updated data was already on the executing cluster so there is no need

in retrieving it from the stable storage, but future tasks executing on

different clusters will need the updated data produced by the current

task.

(c) A new task has to first retrieve the updated data from the stable storage,

perform execution and then update the stable storage with the new

produced data.

(d) A new task has to execute only without any data retrieve or update.

In the above explication of the data transfer pseudo-code, the data storage

is respresented in our case by the local machine where the YAWL engine is

installed and the data transfer is actually performed using rsync. Grid5000

has a quite strict security policy forbidding any communication initiated

from the inside of the infrastructure to the external world, including any

data transfer procedure too. That is why we had to initiate the transfer

from the outside world, the stable storage in our case. To do that we use a

command execution codelet, rsync being the called command. The codelet

is triggered by a YAWL Custom Service that is running on one of Grid5000

nodes. The entire protocol is presented in figure 4.2.

4.2 YAWL and Grid5000

The Grid5000 general architecture has already been described in section 2.1.5

and remembered in figure 4.3. In the following we denote:

85

4. IMPLEMENTATION AND RESULTS

Figure 4.2: Data Transfer Protocol

86

4.2 YAWL and Grid5000

Figure 4.3: Grid5000 Default Architecture

– site - geographical related machines

– cluster - architecturally homogeneous set of machines inside a site

– node - a machine within a cluster that can have multiple processors while

each processor can have multiple cores

To emulate the YAWL engine-service communication on this architecture, the

placement of the different YAWL components would have been the following:

– YAWL engine is installed on the user’s personal computer (hereafter called

the local machine)

– YAWL Custom Services are installed on each cluster’s frontal machine

– jobs are launched by the custom service on the computing nodes

There were two main drawbacks using Grid5000 in this form:

1. A service had to run continuously on the frontal machine. As this is a

multi-user machine, this could have an important impact on its performance,

especially if more than one service is needed on one frontal machine and

would violate the terms of use established by the founders of Grid5000.

87

4. IMPLEMENTATION AND RESULTS

Figure 4.4: Grid5000 Yawl Adapted Architecture

2. Every time a new task was executed, the service on the frontal machine had

to perform a custom environment deployment, containing all the software

tools needed for the application execution (procedure that will be described

in section 4.5), that takes a significant amount of time.

4.2.1 Interface Between YAWL and Grid5000

To avoid this, the technical staff of Grid5000 proposes a solution in which the

user recreates the cluster structure at a smaller scale, using only the number of

nodes he estimates that will be needed for the application. In this way one of

the nodes acquired will play the role of the frontal machine dedicated to only one

user. Also, the custom environment mentioned above will be deployed only once

for all the nodes as a pre-configuration procedure before the actual execution of

an application. Thus the default frontal machine won’t be held occupied by any

custom service and the deployment time is separated from the execution time.

This new architecture is graphically described in figure 4.4 and in grater details

in section 4.5.

The communication between the YAWL engine and the custom services is done

through a Tomcat server. With the described architecture, this would require

88

4.2 YAWL and Grid5000

that the HTTP ports on the frontal and access machines are left open, which is

against Grid5000 security policy that blocks every communication to the external

network. As a consequence we had to use SSH port forwarding in order to wrap

the HTTP messages in SSH packets. Problems were in the opposite direction as

well. Our user-machine (where the YAWL engine was installed) was protected

also by a firewall machine. To reach it through SSH we had to use multi-hop SSH

port forwarding.

4.2.2 Resource Reservation and Deployment on Grid5000 Infras-

tructure

The deployment phase is actually included in the recreation of the cluster struc-

ture and all is embedded in a deployment script. Before launching this script,

a custom environment is created. By environment in Grid5000 we understand

an operating system and a set of programs. Creating custom environments is a

feature of Grid5000 that allows users to adapt a pre-existing environment to their

needs that will replace the default one installed on the nodes. Thus the users can

control the entire software stack for experiments and reproducibility. In our case

this was useful because on the default environment we didn’t have enough rights

to install the software stack needed for our experiments. As an example, on our

environment we installed software tools like YAWL, MPI, OpenFOAM, etc. The

main logical steps performed are the following:

– Acquisition of a predefined number of nodes in a cluster.

– Deployment of the custom environment on these nodes.

– Configuring a root node on which administration tools are installed. This

node will be the new frontal machine.

– Configuring the other nodes as computing nodes.

After this phase, we start the tomcat servers on the user machine and on

each of the frontal machines. The first one will actually start the YAWL engine

that will guide the application execution. The other ones will deploy the custom

services necessary for individual task executions. Then, using multi-hop SSH port

89

4. IMPLEMENTATION AND RESULTS

forwarding we established the communication channel between the YAWL engine

and each of the custom services. Now the YAWL engine is able to register all the

available services so that the user can assign to tasks composing the application

the right service from the list.

Figure 4.5 describes an updated scheme of resource reservation and deployment

more suited for large scale application where a significant number of services is

needed for a workflow execution. In this configuration both node reservation and

deployment is launched from a common script placed on a chosen frontal machine

of one of Grid5000 site, the script being triggered from the local machine. The

allocation is done in a loop until the desired number of nodes is obtained. This

loop uses a configuration file where the user has specified for each desired Grid5000

site how many nodes to reserve per iteration (PHASE 1). Once all the nodes are

acquired the deployment phase begins. The custom environment archive is located

uniquely on the same frontal machine as the script and sent through HTTP to

all previously reserved nodes (PHASE 2). At the end of deployment a file will

contain addresses of nodes that have been correctly deployed and another file

will be filled with the failed ones. Then custom services can be sent on each of

the proper nodes and the Tomcat server is started so that the YAWL engine can

communicate with them using multi-hop SSH port forwarding (PHASE 3). So this

time every deployed node contains a different Yawl Custom Service entity being

used at the same time as an interface with the YAWL engine and a computing

node. This is useful when dealing with many small tasks. If the workflow contains

also computing intensive tasks, we can associate several nodes and parallelize the

task using MPI on them.

4.2.3 Distribution of Computation on Grid5000 Infrastructure

We tested the distributed capabilities of our platform with a workflow appli-

cation that contains two branches modeling the air-conditioning pipe test-case

(see section 3.3). The execution of the computing intensive tasks of each branch

is assigned to custom services located on clusters of Grid5000 with no commu-

nication line in-between. The output files of these tasks are then transferred on

90

4.2 YAWL and Grid5000

Figure 4.5: Grid5000 Resource Allocation and Deployment

91

4. IMPLEMENTATION AND RESULTS

Figure 4.6: Grid5000 Distributed Test Case 2

the local machine and used as input data for the following tasks (see figure 4.6).

The purpose is only to show the platform’s capability to execute applications in a

distributed manner as well as data transfer between the engine and the services.

One example of useful case would be to execute the same application on two

different clusters with different parameters and then compare the results.

4.2.4 Passing to a Larger Scale

In previous sections we presented how YAWL was configured to communicate

with Grid5000 in order to execute workflow tasks on grid resources. The main

component that assures this communication is the YAWL Custom Service. The

biggest issue when deploying the infrastructure is the important amount of man-

ual actions that have to be performed. Thus, every Custom Service has to be

deployed on a grid cluster inside the custom environment previously configured,

then the ssh port-forwarding command must be launched to let HTTP messages

circulate between the YAWL engine machine and the clusters and finally the

Custom Service has to be registered within the YAWL engine. Although time

92

4.2 YAWL and Grid5000

consuming, all these actions are feasible when dealing with experiments that re-

quire only few clusters, but the situation changes radically if an experiment needs

a considerable number of tasks executed in parallel. Such a large scale experiment

can be modeled in the YAWL workflow language using the concept of multiple in-

stance atomic tasks and multiple instance composite tasks. They allow the user to

run multiple instances of a task concurrently. The user can fix several parameters

for a multiple instance task like the following:

– Minimum Instances - Represents the minimum number of instances of the

task that will be started when the task is activated.

– Maximum Instances - Represents the maximum number of instances of the

task that can be created.

– Continuation Threshold - If the number of instances created exceeds this

parameter and the amount equal to this parameter have completed, the

multiple instance task itself is considered complete and will trigger relevant

outgoing flows from it.

Beside these three parameters, the designer can also specify the Instance Creation

Mode that can either be static or dynamic. Static means that the number of

instances initially created cannot vary once the task is activated while in the

dynamic mode more instances can be created even after the activation of the

task. In figure 4.7 we modeled in YAWL language the test-case described in

section 3.5 of the previous chapter using multiple instance composite tasks.

However this approach was design by YAWL developers to run several task

instances but on a single service (i.e. machine). This service is regsitered manually

through the YAWL administration GUI. In our case, if we want to use 100 Custom

Services deployed on 5 different clusters we have to register manually the services

with a YAWL engine one by one which can be very inconvenient.

The solution came from the YAWL features and its interface system. Thus a

YAWL user has been provided with possibility to implement a special interface,

93

4. IMPLEMENTATION AND RESULTS

Figure 4.7: Large Scale Optimization Process

94

4.2 YAWL and Grid5000

Figure 4.8: Classic Style YAWL Custom Service Implementation (taken from (85))

called Observer Gateway that allows multiple Java objects, Custom Services in-

cluded, to register interest with an instance of a YAWL engine so that it receives

notifications regarding when an atomic task’s workitem of a workflow application

becomes available for execution. The registering object has to provide a set of

listener style methods that are activated by the reception of events sent by the

Observer Gateway implementing class. Since the call into the listener method is

executed on the YAWL’s run-time thread, it is better to use dedicated threads

for every such call. Using the Observer Gateway has several advantages of which

we mention:

– the necessity to register each service URL with the YAWL engine is removed.

– with a well implemented manager application interacting with the engine,

the communication between a Custom Service and the YAWL engine can be

done via any form of net protocol.

Figures 4.8 and 4.9 show the difference between the standard way of managing

Custom Services when each service had to register with the service individually

and the one proposed by the implementation of an Observer Gateway manager

class.

For the implementation part we adopted as a model the InterfaceB EngineBasedClient

class that already implements the ObserverGateway interface. This way the event

announcing system was already implemented. To this we added a queuing sys-

tem that is holding references to all the available YAWL Custom Services in the

95

4. IMPLEMENTATION AND RESULTS

Figure 4.9: Observer Gateway YAWL Custom Service Implementation (taken from

(85))

computing platform. The tasks’ stack is managed internally by the YAWL engine

so no structure had to be added to this purpose. Additionally a dictionary keeps

associations between workitems and services so that when another task has to

be executed by the same service it will be put on hold until the current task is

executed. The liberation of a service is done when a status complete event is

announced for the workitem currently being executed by the demanded service.

Figure 4.10 displays the main stages of the new task execution process described

above.

4.3 Resilience: Scenarios and Implementation

The following test-scenarios were imagined to illustrate the distributed, inter-

disciplinary aspect of our platform along with its ability to recover execution

after an application exception occurs. These scenarios also put in evidence the

evolution stages of the implementation. All of the presented scenarios are based

on the 3D car air-conditioning duct test-case described in section 3.3.

4.3.1 Sequential Execution on Multiple Different Machines

The first scenario (figure 4.11) involves the execution of the application re-

specting the sequence of execution of the composing tasks but each on a different

96

4.3 Resilience: Scenarios and Implementation

Figure 4.10: Task - Service Association

97

4. IMPLEMENTATION AND RESULTS

Figure 4.11: Test Case 2 Multiple Cluster

cluster of the Grid5000 infrastructure. As explained before, most of the scientific

applications are interdisciplinary by nature and most often the tools required to

execute the application are distributed on proprietary sites which do not always

coincide geographically. This scenario aims to show that our platform supports

such a configuration by associating execution of tasks to clusters that are known

to have the needed tools to accomplish their execution. The same execution ser-

vice has been deployed previously on all the clusters concerned leaving to the

YAWL engine the orchestration of these services.

The set of images in figure 4.12 represent snapshots of the outcome given

by the linux top command launched in parallel on both clusters (Grenoble and

Sophia Antipolis) on which the application is being executed. The name of the

command currently executing is highlighted, indicating the associated task in the

workflow description. In this scenario, at any given time, there is only one active

cluster. Note that the Num3Sis task has four processes in parallel due to its

multi-threaded nature.

98

4.3 Resilience: Scenarios and Implementation

Figure 4.12: Sequential Execution on Multiple Clusters Visualization

99

4. IMPLEMENTATION AND RESULTS

Figure 4.13: Parallel Execution - Test Case 2

4.3.2 Parallel Execution on Two Different Clusters

Sometimes it is useful for a scientist to compare performance of two different

solver tools running at the same time. To illustrate we designed the scenario in

figure 4.13. It represents the parallel execution of two instances of the same

application on two different clusters. Such a configuration can also be seen as an

example of a fault tolerance strategy, namely redundancy. When the execution

of an application, or just a part of it is critical, we can distribute the execution

on independent clusters and choose the result by respecting the criteria of cor-

rectness and time. Finally, a scientist can imagine such a scenario when he wants

to execute the same application but with a different configuration regarding the

values of parameters involved. At the end of the execution he can make a compar-

ison study to evaluate different aspects of the application: result values, platform

dependency, convergency, etc.

The same type of snapshots (figure 4.14), as presented for the previous case,

are taken for this application too. This time the two clusters are active both at

100

4.3 Resilience: Scenarios and Implementation

Figure 4.14: Parallel Execution on Multiple Clusters Visualization

the same time because they are executing different instances of the same test-case

in parallel.

4.3.3 Sequential Execution with Timeout Exception Handling

A first step before executing this scenario on the real application was to inte-

grate in the platform and test the YAWL Exception Service presented in chapter

2 section 2.4.3. We developed a test-case (figure 4.15) in order to better under-

stand how this service works. The purpose was to generate a timeout exception

during the execution of a workflow task that would be caught by the YAWL

Exception Service. When this event arrives, an exlet is triggered that would

launch a compensatory worklet. The figures below represent the main workflow

101

4. IMPLEMENTATION AND RESULTS

Figure 4.15: Timeout Test and Exception Treatment

specification and the exlet respectively. The task Timer Task has associated a

timeout of 10s and for its execution a shell execution YAWL Custom Service is

in charge. Beside the common variables for a shell execution, there is also nr-

Restarts that will be used to decide whether to stay in the restarting loop or

break out of it. The Timer Check task is decorated with an XOR split with

two branches: restart and continue. A Ripple Down Rule is created for the main

specification (called timer test.xrs). This rule specifies that if a timeout exception

occurs for the Timer Task task then an exlet is enabled that will suspend the cur-

rent workitem, execute a compensatory worklet and then continue the execution

of the workitem. The compensatory worklet (TimeOutExlet.yawl) contains only

one task called TimeOutTreatment in which the nrRestarts variable will be incre-

mented by 1. The TimeOutTreatment task must be associated with the custom

service timeOutExceptionHandlingService that will perform the increment.

The next step was to design a workflow (figure 4.16) for the second test-case

that would integrate a dump and restore service for a computing-intensive task,

mesh solving, that will archive on the local storage the input data used by this

102

4.3 Resilience: Scenarios and Implementation

Figure 4.16: Exception Treatment with Dump and Restore Features

task. Also we provide a global parameter, timeout, storing information about the

maximum time allowed for the task to execute. If the task exceeds the time limit,

a global result parameter will be set to 1, otherwise to 0. The timeout check task

has the exception service activated and tests the value of the result parameter set

at the previous task. If it’s 1, an exception treatment procedure will be triggered

with an exlet included in which the user can modify the value of timeout parameter

or any solver parameter that influence the computing time (e.g. the maximum

number of iterations) and re-execute the mesh solving task. Before re-execution,

the old state is restored by dump and restore task.

4.3.4 Distributed Execution with Resource Balancing

The last scenario, and most evolved, aims to regroup in one workflow applica-

tion all the concepts already presented like: distributed parallel execution, data

transfer, exception handling, but also to introduce a new one, resource balancing,

that increases the level of flexibility for the user. More precisely a scientist can

decide, according to the nature of the application, if fast execution is more im-

portant than saving resources or just accept a slower execution when not enough

103

4. IMPLEMENTATION AND RESULTS

resources are available. He can also increase the computing power at run-time in

case more resources are needed but they were not available when the application

was initially configured.

In figure 4.17 is presented the workflow description of the air-conditioning duct

test-case (same as the one in figure 4.11) with some modifications that allow

the parallel execution of the solver task on two different clusters with different

computing resources (e.g. in terms of memory size or computing power). The

small cluster contained 1 node with 2 processors and 4 cores per processor while

the big cluster contained 2 nodes with 2 processors per node and 4 cores per

processor. We deployed a YAWL execution custom service on each cluster. The

internal architecture of the solver task allows parallelization of the execution using

MPI by specifying the number of processes to create in parallel. This means that

the fastest execution will be achieved when the number of processes created by

MPI will be equal to the number of cores available on the cluster. In order to

put in evidence the capability of the platform to switch between different clusters

when executing a task, we set a timeout execution parameter on the solver task

with a value that is too small for the 8 cores cluster and big enough for the 16

cores cluster. We also enabled the YAWL Exception Service in order to catch a

post-constraint exception generated by the timeout expiry. Another parameter

decides which cluster to choose for execution. So, at the beginning the system

will choose the execution of the solver task on the 8 cores cluster. When the

timeout will expire, an exception will be generated and detected by the Exception

Service. This will trigger the exception treatment procedure in which we change

the cluster. This way we can opt for the 16 cores cluster and re-execute the solver

task. Because of a faster execution time, the timeout exception will no longer be

triggered, allowing the execution of the application to end normally. On the

figure one can also notice at the level of which tasks a data transfer procedure is

performed and in which direction.

A part of the experiment involved also some measurements to see how execution

time varies according to the number of resources used, among those available on

the cluster. In this case we required for a total of 16 processes. In this way we

104

4.3 Resilience: Scenarios and Implementation

Figure 4.17: Distributed Resource Balancing

105

4. IMPLEMENTATION AND RESULTS

could notice that the execution time was decreasing when increasing the number

of processes, K, on condition that K was inferior to the number of cores available

on the cluster. When this condition was not met any more, the execution time

started to increase again. The results presented in figure 4.18 show that the

minimum execution time is reached when the available resources are fully used

(8 cores in the left part and 16 cores in the right part). However, we notice that

the absolute minimum time is obtained in the right part of the figure when the

number of processes equals the number of cores in service. Any under-usage or

over-usage of the resources causes this time to be larger.

4.3.5 Speed-up Gain in Large Scale Optimization Application

In section 4.2.3 we described how our platform has been extended to sup-

port a very large scale execution (typically involving hundreds of machines on

5 different sites). This allowed us to conceive a large scale test-case that uses

computing resources at grid level. We added also exception treatment capabili-

ties that with the help of some important YAWL features didn’t require radical

changes compared to the previous test cases.

The description of the test case has already been presented in the previous

chapter in section 3.5. The YAWL workflow description is presented in figure

4.19, top part. The first two tasks correspond to the optimizer code mentioned

in the description section 4.2.3. These will produce the N different files contain-

ing geometrical parameters. The next task, distributed simulation, is a multiple

instance composite task meaning that it will contain multiple workflow sub-nets.

Each of these sub-nets represents a full simulation process containing tasks for

mesh generation, mesh partitioning and solver as depicted in figure 4.19, bottom

part. Like in previous test cases, the solver task (the most computing intensive

one) has an exception treatment mechanism associated. Every simulation branch

is independent from the others with its own set of parameters. Thus if an excep-

tion appears on one branch the treatment procedure will not influence the other

branches that can continue their execution unhindered. Of course, the service

associated with problematic branch will be blocked till the branch successfully

106

4.3 Resilience: Scenarios and Implementation

completes. However, the experiment designer has the possibility to specify how

many branches from the maximum available have to successfully complete so that

the multiple composite task from figure 4.19 is considered completed.

To implement the test-case described above we first created an environment

that installed all the necessary software tools (including the Tomcat server) to

correctly execute the application. Also the environment will contain the YAWL

Custom Service needed for tasks execution. Using the schema depicted in figure

4.5 we allocate as many nodes as we wish from Grid5000 and we deploy the

custom environment on them. At design time we set the number of instances we

want for the multiple instance composite task representing the mesh and solver

processes in figure 4.19. Of course this number must be less or equal to the

number of different files produced by the previous tasks (this is called N, the

database size). The list of deployed services is kept in a file that is accessible

by the YAWL engine. This will use only the default service for the registered

atomic tasks and the list of all services for the distributed simulation task from

figure 4.19. The mechanism used to allocate services to instances of this task is

described in section 4.2.4.

During our experiments we varied the database size (N) from 2 to 64 and we run

the workflow on various configurations varying from 2 to 64 different machines.

We encountered various technical obstacles of which the most important one is

related to the number of different threads used by the engine. When the values

of the database size were large, the number of threads produced by the YAWL

engine was bigger than the maximum set in the operating system. By increasing

this value we could finally execute normally a large scale application.

The purpose of this large scale application was to measure the speed-up execu-

tion time that we get when we increase the number K of custom services gradually

while the database size is fixed to a value of N = 64. When the number of ser-

vices is less than 64 then each service will be used k = 64

K
times resulting a longer

execution time. The shortest execution time is of course obtained for K = 64

services running in parallel. if we note t0 the average time (this is an average

107

4. IMPLEMENTATION AND RESULTS

time since the G5K clusters are heterogeneous, in particular the number of cores

per processor as well as the type of processor may slightly vary) it takes to one

custom service to execute one instance of the task, then the total execution time

is T = t0N

K
and the speed-up S = t0N

T
= K.

We took execution time measurements for different number of services varying

from 1 to 64. We chose to perform around 20 iterations for one distributed simulation

instance which gave a t0 = 10min. In consequence, the execution of an applica-

tion with 64 instances for the distributed simulation task associated to only one

computing node lasted around 11 hours. On the opposite, when we were using

64 nodes with 4 cores each, we obtained an execution time of around 10 minutes.

We excluded from this measurements the custom environment deployment time

which varied considerably with the number of nodes. If sending the operating

system image on every node was done in parallel using Grid5000 tools, the instal-

lation and activation of some additional software tools was performed iteratively

in a loop which generated the overhead. The average deployment time for one

node was around 5 minutes and could go up to 30 minutes when deploying on 64

nodes.

We can see in figure 4.20 how the speed-up increases when the number of ser-

vices responsible for executing the multiple composite task distributed simulation

is increased. The variations is somehow linear depending however of the hetero-

geneity of Grid5000 clusters and to a certain point of the relation between the

number of instances to execute and the available number of services in charge

of execution. Complementary, figure 4.21 illustrates the descending curve of

the execution time measured in seconds relatively to the increasing number of

computing nodes (i.e. services).

This test case shows us that executing a large scale numerical simulation ap-

plication in a distributed manner can produce a significant speed-up but the user

must wisely adapt the number of nodes working in parallel so that he takes full

advantage of their computing power without wasting too much of it.

108

4.3 Resilience: Scenarios and Implementation

Figure 4.18: Execution time vs resources for the execution of 16 processes on 2

different clusters

109

4. IMPLEMENTATION AND RESULTS

Figure 4.19: Large Scale Optimization Process With Exception Handling

110

4.3 Resilience: Scenarios and Implementation

Figure 4.20: Speed-Up Execution Time

111

4. IMPLEMENTATION AND RESULTS

Figure 4.21: Large Scale Execution Time

112

5. Conclusions and Perspectives
The study performed during this thesis was founded on two major research

directions: construction of a flexible multidisciplinary workflow execution plat-

form for computing intensive numerical optimization applications and resiliency

at application level. The chapters composing this manuscript approached these

research themes gradually from general concepts and past research activity in the

field, to a specific implementation proposed by this thesis.

In chapter 2 we have first presented an overview of existing distributed comput-

ing systems based on their hardware and middleware. We presented the evolution

of this kind of systems in time from a hardware point of view and also the different

types we can find according to their purpose and structure. Then we analyzed

more in depth the Grid5000 grid system by emphasizing its architecture and dif-

ferent tools used for resource management. Going up one level, we analyzed these

systems judging by their middleware layer. We detailed the ones we have tested

for our platform, like OAR part of Grid5000. Among all these options we have

chosen to use Grid5000 since it’s a research dedicated computing infrastructure

with a great flexibility concerning resource management. Another reason was the

quality of the technical support and most important its proximity.

We continued this chapter with workflow systems, a major component in the

construction of our execution platform. We described the architectures on which

modern workflow systems are based and how the concept migrated from manage-

ment applications to the HPC field. Then we explained the features a workflow

system requires, to be considered dynamic and fault tolerant and why the current

fault tolerant techniques cannot apply efficiently to a workflow system. In com-

parison to other scientific workflow systems like Askalon or Kepler, we showed

that YAWL has the right properties and a good potential to answer to our needs

of dynamicity and fault tolerance. Another reason for which YAWL proved to be

a good choice is its flexibility to add extensions through YAWL Custom Services.

113

5. CONCLUSIONS AND PERSPECTIVES

Chapter 3 was designed to explain the concepts directly related to the thesis

objectives. We first presented the structure of a numerical optimization applica-

tion with its optimization loop, showing the different stages from generating the

mesh to computation of cost functions. With this structure in mind we detailed

the main test-case (2D and 3D format of the air conditioning pipe) proposed by

the OMD2 project. This was the cornerstone for all the workflow variations we

proposed in the thesis to support our experiments. The necessary tools to execute

the test-case were provided by our colleagues in Sofia Antipolis. We presented the

logical execution chain and the modifications we proposed. The test-case section

is completed with the description of a large scale application.

Afterwards we discussed the type of exceptions we can encounter during the exe-

cution of a numerical simulation application. Starting from a general classification

of faults that are common to distributed environments, no matter the type of ap-

plication, we emphasized the exceptions that are specific to the numerical field.

The low level exceptions like CPU errors or out of memory situations are com-

mon to all type of applications since they are related to the hardware platform

and only influence the application execution in an indirect manner. On the other

side we have the application exceptions which are characteristic to each type of

applications. In the case of numerical simulation applications the application

exceptions are consequences of bad functioning of different execution stages like

meshing, solver or the simulation algorithm in general. We concluded this pre-

sentation of exceptions with how we translate them in YAWL language so that

they are easily intercepted and treated by the execution platform.

At the end of the chapter we showed the logical steps we propose to treat excep-

tions. We gave a theoretical view of how we want to deal with concepts like data

management, data synchronization and also exception detection and recovery. We

showed that, for YAWL, a lot of application exceptions translate into parameter

exceptions and timeout exceptions. Finally we tackled a sensitive topic in excep-

tion treatment, that of fault origin. We have seen that our choice of manually

pointing the origin point of fault is the desired one giving the time constraints

imposed to this thesis.

114

Chapter 4 is where we proposed our implementation version of the concepts

presented in the previous chapter. We described how we connected YAWL with

Grid5000 and all the service extensions we have added to YAWL so that the re-

sulting platform can meet the needs for executing tasks on Grid5000. We gave de-

tailed explanations of the algorithms implementing data transferring and storage

but also the technical modifications we introduced between YAWL and Grid5000

so that the Grid5000 resources are accessible to YAWL engine as well. We com-

pleted the execution platform implementation with the modifications we applied

to YAWL engine so that it can handle a large scale distributed application.

In the second part of this chapter we presented a series of scenarios that we

conceived to illustrate the distributed computation and resilience capabilities of

our platform. We began with some basic scenarios like a sequential execution on

multiple clusters or a distributed execution on two different clusters to highlight

the basic characteristics. Then we showed how a timeout exception scenario is

manageable for the platform. Composing and extending the previous scenarios

we finished the tests with two complex scenarios. The first one showed that our

platform is capable of adapting during run-time to the users needs and computing

infrastructure constraints when the main goal is the execution results. The second

complex scenario proved that the execution platform can also support large scale

executions by managing tens of YAWL Custom Services located on as many

different computing nodes with no boundaries regarding the hosting infrastructure

site location.

Even if at the end of this thesis we have a functional multidisciplinary execution

platform for scientific numerical applications along with a prototype of a fault

tolerant mechanism, there is still space for many improvements so that what we

propose can be widely accepted and used by non computer scientists.

In the short term perspective we think that YAWL should include in its stan-

dards an extension for dealing with real distributed workflows. Even though it

contains the concept of multiple instance composite task, we have seen that this

was mostly designed to run several instances of a task on a single service, not on

a lot of services. When a workflow application scales to a considerable number

115

5. CONCLUSIONS AND PERSPECTIVES

of instances that should be allocated to custom services, the current procedure

of allocating tasks to services proved to be very cumbersome and time consum-

ing. Also the YAWL engine is not prepared to handle the significant amount of

threads that are generated when a large scale application executes. A version of

the algorithm presented in section 4.2.4 ought to be added to YAWL standard

so that the platform can have better chances of being adopted by scientists.

In the current version, our platform separates the computing platform deploy-

ment from the actual application execution. We consider that the deployment

step should be translated into a YAWL Custom Service that gives the user the

possibility to specify the computing constraints for his application. This could

mean specifying the number of nodes, their type, the duration and secondary

alternatives in case the main reservation fails. To really support the user in this

matter a graphical user interface can be envisioned. Moreover, the current GUI

used for execution monitoring in YAWL should be modified so that the user can

have a better visibility regarding which task is currently executing, what are the

intermediary results or on which node/nodes on the platform is executed.

The way we use Grid5000 as a computing infrastructure can be categorized as

Hardware as a Service(HaaS) i.e. we reserve and address each not individually.

Despite a better access to the level of the computing nodes, it remains a difficult

way of managing resources especially for a non computer scientist. A medium

term perspective could be to modify the platform so as to access an Infrastructure

as a service (IaaS) model (e.g. a cloud service).

To increase the potential of our platform we could extend and adapt it for

applications from other scientific fields than numerical simulation. One example

are the DNA Next Generation Sequencing(NGS) methods (95). These represent

innovations in DNA sequencing that allow the standard process to be parallelized

in order to lower the costs and increase the DNA sequence throughput. These

methods produce a very large quantities of data that need to be processed and

analyzed. With the evolution of distributed computing platforms and algorithms

that are able to process these amounts of data, the NGS methods have contin-

uously improved. A very popular programming model that adapts very well to

116

this kind of applications is the Map Reduce model (96). It is designed to process

and generate large data sets and to run on large distributed computing infras-

tructures. This way the programmer can focus more on the algorithm than on

the hardware infrastructure.

Developing the platform around application exceptions we neglected the low-

level exceptions leaving them in the responsibility of the underlying computing

infrastructures. Despite the fact that most modern infrastructures are managed

by middleware layers that take responsibility for a lot of hardware errors, we can

never be sure how those errors are treated or if their impact is just hidden to the

user. Sometimes these errors can affect the normal execution of an application

influencing the results or just stopping the execution completely. It would be

useful that when these errors are not actually treated by the computing platform

to raise them at application level and to develop treatment procedures the same

way we did for application exceptions. This would increase the robustness of our

execution platform, no matter the type of exceptions it must face.

Finally we would like to present another important topic that we did not explore

so deeply: the dynamicity of our workflow system. We believe that an important

improvement for our platform would be to render the workflow applications fully

reconfigurable at run-time. This implies that if an exception occurs or some

parameters values have changed after the execution started, the workflow is able

to change its structure dynamically and seamless to the execution process. A

starting point to achieve this is given by the Ripple Down Rules that we already

used. We have only used this technique for the exception treatment procedure but

it can be used as well for choosing an execution direction, at run-time, according

to the current context of the application.

Exploring better the dynamicity of our platform we can support another impor-

tant perspective for this research activity, the designation of the root cause of an

exception. At the moment the point in the workflow where the application will

restart the execution after an exception treatment procedure is indicated stat-

ically at design time by the workflow architect. This can work very fine for a

117

5. CONCLUSIONS AND PERSPECTIVES

few well defined exceptions for which the root cause can be known in advance.

But most of the exceptions produce visible effects only after affecting a signifi-

cant part of intermediary results (see (4)). By re-executing the applications from

states corresponding to those visible effects we risk to reproduce the same bad

behavior increasing the costs of the execution. With an automatic root cause

designation algorithm we can simplify the workflow design and be more efficient

in workflow exception recovery procedures.

Designating automatically the root cause is somehow related to having a sort

of learning mechanism that accompanies the execution thread and learns the

structure of the workflow at run-time. This way the best re-execution point, based

on the root cause, is chosen in case an exception occurs. Some good starting

articles in this direction can be found in the following list: (4, 10, 89).In the

general case, the existence of such an algorithm looks very unlikely. However

it may be possible to design one within a particular application context, like

numerical optimization.

118

References
[1] R. Gupta, P. Beckman, B.-H. Park, E. Lusk, P. Har-

grove, A. Geist, D. K. Panda, A. Lumsdaine, and

J. Dongarra. CIFTS: A Coordinated Infrastruc-

ture for Fault-Tolerant Systems. In Parallel Pro-

cessing, 2009. ICPP ’09. International Conference on,

pages 237 –245, september 2009. iii, 28, 46

[2] J. Dongarra, P. Beckman, T. Moore, P. Aerts,

G. Aloisio, J.-C. Andre, D. Barkai, J.-Y. Berthou,

T. Boku, B. Braunschweig, F. Cappello, B. Chap-

man, C. Xuebin, A. Choudhary, S. Dosanjh, T. Dun-

ning, S. Fiore, A. Geist, B. Gropp, R. Harrison,

M. Hereld, M. Heroux, A. Hoisie, K. Hotta, Z. Jin,

I. Yutaka, J. Fred, K. Sanjay, K. Richard, K. David,

K. Bill, L. Jesus, A. Lichnewsky, T. Lippert, B. Lucas,

B. Maccabe, S. Matsuoka, P. Messina, P. Michielse,

B. Mohr, M. S. Mueller, W. E. Nagel, H. Nakashima,

M. E. Papka, D. Reed, M. Sato, E. Seidel, J. Shalf,

D. Skinner, M. Snir, T. Sterling, R. Stevens, F. Stre-

itz, B. Sugar, S. Sumimoto, W. Tang, J. Taylor,

R. Thakur, A. Trefethen, M. Valero, A. Van Der

Steen, J. Vetter, P. Williams, R. Wisniewski, and

K. Yelick. The International Exascale Soft-

ware Project roadmap. International Journal of

High Performance Computing Applications, 25(1):3–

60, February 2011. 1, 2, 45, 46

[3] K. Plankensteiner, R. Prodan, T. Fahringer,

A. Kertesz, and P. Kacsuk. Fault-tolerant be-

havior in state-of-the-art Grid Workflow

Management Systems. Technical report, Insti-

tute for Computer Science, University of Innsbruck,

18 October 2007. 3

[4] W. Zang, M. Yu, and P. Liu. A Distributed Al-

gorithm for Workflow Recovery. International

Journal of Intelligent Control and Systems, March

2007. 3, 79, 118

[5] YAWL: Yet Another Workflow Language. http:

//www.yawlfoundation.org/, 14 October 2009. 3

[6] YAWL - User Manual. http://www.yawlfoundation.

org/manuals/YAWLUserManual2.3.pdf, 2012. 3, 42, 50,

51, 53, 55

[7] Workflow Patterns Home Page. http://www.

workflowpatterns.com/, 2010-2011. 3, 50

[8] W. M. P van der Aalst, M. Adams, A. H. M. ter Hof-

stede, M. Pesic, and H. Schonenberg. Flexibility as

a Service. Technical report, Business Process Man-

agement Center, 2008. 3

[9] M. Adams, A. H. M. ter Hofstede, W. M. P. van der

Aalst, and D. Edmond. Dynamic, Extensible

and Context-Aware Exception Handling for

Workows. In Proceedings of the 15th Interna-

tional Conference on Cooperative Information Sys-

tems, November 2007. 3

[10] P. Compton, G. Edwards, B. Kang, L. Lazarus,

R. Malor, T. Menzies, P. Preston, A. Srinivasan, and

S. Sammut. Ripple Down Rules: Possibilities

and Limitations. In AAAI Knowledge Acquisition

for Knowledge, 1991. 4, 118

[11] N. Antonopoulos, G. Exarchakos, M. Li, and A. Li-

otta. Handbook of Research on P2P and Grid Systems

for Service-Oriented Computing: Models, Methodolo-

gies and Applications. IGI Global, 2010. 10

[12] D. C. Marinescu, G. M. Marinescu, Y. Ji, L. Boloni,

and H. J. Siegel. Ad Hoc Grids: Communication

and Computing in a Power Constrained Envi-

ronment. In Performance, Computing, and Com-

munications Conference, 2003. Conference Proceed-

ings of the 2003 IEEE International, pages 113 – 122,

april 2003. 11

[13] L. W. McKnight, J. Howison, and S. Bradner.

Guest Editors’ Introduction: Wireless Grids–

Distributed Resource Sharing by Mobile, No-

madic, and Fixed Devices. Internet Computing,

IEEE, 8(4):24 – 31, july-august 2004. 11

[14] W. Li, Z. (Tommy) Xu, B. Li, and Y. Gong. The Vega

Personal Grid: A Lightweight Grid Architec-

ture. 11

[15] R. Desmarais and H. Muller. A Proposal for

an Autonomic Grid Management System. In

Software Engineering for Adaptive and Self-Managing

Systems, page 11, may 2007. 11

[16] C. Hewitt. ORGs for Scalable, Robust, Privacy-

Friendly Client Cloud Computing. Internet

Computing, IEEE, 12(5):96 –99, sept.-oct. 2008. 12

[17] K. Krauter, R. Buyya, and M. Maheswaran. A Tax-

onomy and Survey of Grid Resource Manage-

ment Systems. Software Practice and Experience,

32:135–164, 2002. 12

[18] B. Barney. Message Passing Interface, October

2012. 13

[19] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jean-

not, Y. Jegou, S. Lanteri, J. Leduc, N. Melab,

G. Mornet, R. Namyst, P. Primet, and O. Richard.

Grid’5000: a large scale, reconfigurable, con-

trolable and monitorable Grid platform. In

Grid’2005 Workshop. IEEE/ACM, November 13-14

2005. 14

[20] Grid5000 website. Grid5000 Network Interlink,

January 2013. 17

[21] M. C. Cera, Y. Georgiou, O. Richard, N. Maillard,

and P. O. A. Navaux. Supporting MPI Malleable

Applications upon the OAR Resource Man-

ager. 2009. 16

[22] E. Jeanvoine, L. Sarzyniec, and L. Nussbaum. Kade-

ploy3: Efficient and Scalable Operating Sys-

tem Provisioning for HPC Clusters. Rapport

de recherche RR-8002, INRIA, June 2012. 16

[23] The Diet Team. Diet User Manual, July 2012. 19,

22

[24] I. Foster. Globus Toolkit Version 4: Software

for Service-Oriented Systems. In IFIP Interna-

tional Conference on Network and Parallel Comput-

ing, number 3779 in LNCS, pages 2–13. Springer-

Verlag, 2005. 20, 21

119

http://dx.doi.org/10.1177/1094342010391989
http://dx.doi.org/10.1177/1094342010391989
http://www.yawlfoundation.org/
http://www.yawlfoundation.org/
http://www.yawlfoundation.org/manuals/YAWLUserManual2.3.pdf
http://www.yawlfoundation.org/manuals/YAWLUserManual2.3.pdf
http://www.workflowpatterns.com/
http://www.workflowpatterns.com/
https://computing.llnl.gov/tutorials/mpi/##What
https://www.grid5000.fr/mediawiki/index.php/Network_interlink
http://hal.inria.fr/hal-00710638
http://hal.inria.fr/hal-00710638
http://hal.inria.fr/hal-00710638
http://graal.ens-lyon.fr/DIET/UsersManualDIET2.8.1/node2.html

REFERENCES

[25] A. Amar, R. Bolze, A. Bouteiller, A. Chis, Y. Caniou,

E. Caron, P. K. Chouhan, G. Le Mahec, H. Dail, B. De-

pardon, F. Desprez, J.-S. Gay, and A. Su. DIET: New

Developments and Recent Results. Technical

Report RR2006-31, Laboratoire de l’Informatique

du Parallélisme (LIP), october 2006. 20

[26] OAR Team. OAR Documentation, June 2012. 23

[27] OAR Team. OAR Wiki Documentation, Septem-

ber 2011. 23

[28] ProActive Scheduling Manual. http:

//proactive.inria.fr/release-doc/Scheduling/pdf/

ProActiveSchedulerManual.pdf, January 2011. 23

[29] ProActive Resource Manager Manual.

http://proactive.inria.fr/release-doc/Resourcing/

pdf/ProActiveResourceManagerManual.pdf, January

2011. 24

[30] R. Lauwereins. The Importance of Fault-

Tolerance for Massively Parallel Supercom-

puters. June 1992. 26

[31] M. Treaster. A Survey of Fault-Tolerance and

Fault-Recovery Techniques in Parallel Sys-

tems. ACM Computing Research Repository (CoRR),

501002:1–11, 2005. 26

[32] B. Schroeder and G. A. Gibson. Understanding

failures in petascale computers. Journal of

Physics: Conference Series, 78(1), 2007. 27

[33] X. Besseron. Tolérance aux fautes et reconfiguration

dynamique pour les applications distribuées à grande

échelle. These, Institut National Polytechnique de

Grenoble - INPG, April 2010. 27

[34] A. S. Tanenbaum and S. van Maarten. Distributed

Systems: Principles and Paradigms (2nd Edition).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

2006. 27, 31, 32, 33

[35] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer,

and F. Cappello. Modeling and tolerating het-

erogeneous failures in large parallel systems.

In Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage

and Analysis, SC ’11, pages 45:1–45:11, 2011. 27

[36] L. Zhiling and L. Yawei. Adaptive Fault Man-

agement of Parallel Applications for High-

Performance Computing. IEEE Transactions on

Computers, 57(12):1647–1660, 2008. 28

[37] L. Yawei and L. Zhiling. Exploit failure prediction

for adaptive fault-tolerance in cluster comput-

ing. In Sixth IEEE International Symposium on Clus-

ter Computing and the Grid, 2006. CCGRID 06., 1,

pages 8 pp. –538, may 2006. 28

[38] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer,

and M. Snir. Toward Exascale Resilience. Int.

J. High Perform. Comput. Appl., 23(4):374–388,

November 2009. 28

[39] C. Zizhong and J. Dongarra. Algorithm-based

checkpoint-free fault tolerance for parallel

matrix computations on volatile resources. In

Parallel and Distributed Processing Symposium, 2006.

IPDPS 2006. 20th International, april 2006. 28, 46

[40] F. Cappello. Fault Tolerance in Petascale/

Exascale Systems: Current Knowledge,

Challenges and Research Opportunities.

International Journal of High Performance

Computing Applications, 23(3):212–226, 2009.

http://www.odysci.com/article/1010112993228110.

29, 30, 33

[41] A. Guermouche, T. Ropars, E. Brunet, M. Snir,

and F. Cappello. Uncoordinated Check-

pointing Without Domino Effect for Send-

Deterministic MPI Applications. In Parallel

Distributed Processing Symposium (IPDPS), pages

989 –1000, may 2011. 31

[42] A. Oliner, L. Rudolph, and R. Sahoo. Cooperative

checkpointing theory. In Parallel and Distributed

Processing Symposium, page 10, april 2006. 32

[43] N. Naksinehaboon, Y. Liuand, C. Leangsuksun, R. Nas-

sar, M. Paun, and S. L. Scott. Reliability-

Aware Approach: An Incremental Check-

point/Restart Model in HPC Environments.

In Proc. 8th Intl. Symp. on Cluster Computing and

the Grid (CCGRID), 2008. 32

[44] X. Besseron, S. Jafar, T. Gautier, and J.-L. Roch.

CCK: An Improved Coordinated Check-

point/Rollback Protocol for Dataflow Appli-

cations in Kaapi. pages 3353 –3358, 2006. 32

[45] A. Bouteiller, P. Lemarinier, K. Krawezik, and

F. Capello. Coordinated checkpoint versus

message log for fault tolerant MPI. In 2003

IEEE International Conference on Cluster Comput-

ing, 2003. Proceedings., pages 242 – 250, december

2003. 32, 45

[46] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cap-

pello, N. Maruyama, and S. Matsuoka. FTI: high

performance fault tolerance interface for hy-

brid systems. In Proceedings of 2011 International

Conference for High Performance Computing, Net-

working, Storage and Analysis, SC ’11, pages 32:1–

32:32. ACM, 2011. 33

[47] J. Bent, B. Mcclelland, G. Gibson, P. Nowoczynski,

G. Grider, J. Nunez, M. Polte, and M. Wingate. Plfs:

A checkpoint filesystem for parallel applica-

tions. Technical report, 2009. 33

[48] J.S. Plank, K. Li, and M.A. Puening. Diskless check-

pointing. IEEE Transactions on Parallel and Dis-

tributed Systems, 9(10):972 –986, October 1998. 33

[49] B. Nicolae and F. Cappello. BlobCR: efficient

checkpoint-restart for HPC applications on

IaaS clouds using virtual disk image snap-

shots. In Proceedings of 2011 International Con-

ference for High Performance Computing, Network-

ing, Storage and Analysis, SC ’11, pages 34:1–34:12,

2011. 34

120

http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2006/RR2006-31.pdf
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2006/RR2006-31.pdf
http://oar.imag.fr/documentation/
https://www.grid5000.fr/mediawiki/index.php/OAR
http://proactive.inria.fr/release-doc/Scheduling/pdf/ProActiveSchedulerManual.pdf
http://proactive.inria.fr/release-doc/Scheduling/pdf/ProActiveSchedulerManual.pdf
http://proactive.inria.fr/release-doc/Scheduling/pdf/ProActiveSchedulerManual.pdf
http://proactive.inria.fr/release-doc/Resourcing/pdf/ProActiveResourceManagerManual.pdf
http://proactive.inria.fr/release-doc/Resourcing/pdf/ProActiveResourceManagerManual.pdf
http://tel.archives-ouvertes.fr/tel-00486939
http://tel.archives-ouvertes.fr/tel-00486939
http://tel.archives-ouvertes.fr/tel-00486939
http://doi.acm.org/10.1145/2063384.2063444
http://doi.acm.org/10.1145/2063384.2063444
http://dx.doi.org/10.1177/1094342009347767
http://doi.acm.org/10.1145/2063384.2063427
http://doi.acm.org/10.1145/2063384.2063427
http://doi.acm.org/10.1145/2063384.2063427
http://doi.acm.org/10.1145/2063384.2063429
http://doi.acm.org/10.1145/2063384.2063429
http://doi.acm.org/10.1145/2063384.2063429
http://doi.acm.org/10.1145/2063384.2063429

REFERENCES

[50] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,

M. Greenwood, T. Carver, K. Glover, M. Pocock,

A. Wipat, and P. Li. Taverna: a tool for the

composition and enactment of bioinformat-

ics workflows. Bioinformatics, 20(17):3045–3054,

November 2004. 34

[51] P. Fisher, H. Noyes, S. Kemp, R. Stevens, and A. Brass.

A Systematic Strategy for the Discovery of

Candidate Genes Responsible for Phenotypic

Variation. In Keith DiPetrillo, editor, Cardiovas-

cular Genomics, 573 of Methods in Molecular Biol-

ogy, pages 329–345. Humana Press, 2009. 34

[52] M. Caeiro-Rodriguez, T. Priol, and Z. Nemeth. Dy-

namicity in Scientific Workflows. Technical re-

port, Institute on Grid Information, Resource and

Workflow Monitoring Services, 31 August 2008. 34,

36, 38, 40, 43

[53] M. Ghanem, N. Azam, M. Boniface, and J. Ferris.

Grid-Enabled Workflows for Industrial Prod-

uct Design. In Second IEEE International Con-

ference on e-Science and Grid Computing, 2006. e-

Science ’06., page 96, december 2006. 34

[54] M. Vasko and S. Dustdar. A View Based Analysis

of Workflow Modeling Languages. In Proceed-

ings of the 14th Euromicro International Conference

on Parallel, Distributed, and Network-Based Process-

ing, pages 293–300, Washington, DC, USA, 2006.

IEEE Computer Society. 34

[55] E. Deelman and Y. Gil. ManagingLargeScale-

ScientificWorkflowsInDistributedEnviron-

mentsExperiencesAndChallenges. In e-Science

and Grid Computing, 2006. e-Science ’06. Sec-

ond IEEE International Conference on, page 144,

december 2006. 34

[56] E. Deelman, S. Callaghan, E. Field, H. Francoeur,

R. Graves, V. Gupta, T. H. Jordan, C. Kesselman,

P. Maechling, G. Mehta, D. Okaya, K. Vahi, and

L. Zhao. Managing Large-Scale Workflow Exe-

cution from Resource Provisioning to Prove-

nance Tracking: The CyberShake Example. In

In Proceedings of the Second IEEE international Con-

ference on E-Science and Grid Computing, pages 4–6,

2006. 34

[57] W. Jianwu, I. Altintas, C. Berkley, L. Gilbert, and

M. B. Jones. A High-Level Distributed Execu-

tion Framework for Scientific Workflows. In

IEEE Fourth International Conference on eScience,

2008. eScience ’08., december 2008. 34

[58] J. Montagnat, D. Lingrand, and X. Pennec. Flex-

ible and efficient workflow deployement of

data-intensive applications on grids with

MOTEUR. In GRIDS with MOTEUR, in

quot;International Journal of High Performance Com-

puting Applicationsquot;, To appear in the special

issue on Workflow Systems in Grid Environments,

page 3, 2007. 34

[59] The Diet Team. Workflow management in Diet.

In Diet User Manual. July 2012. 34

[60] Workflow Management Coalition - Termi-

nology Glossary. http://www.wfmc.org/index.php?

option=com_docman&task=doc_download&gid=93&Itemid=

72, February 1999. 35

[61] Z. Zhao, A. Belloum, H. Yakali, P. Sloot, and

B. Hertzberger. Dynamic Workflow in a Grid

Enabled Problem Solving Environment. In CIT

’05 Proceedings of the The Fifth International Confer-

ence on Computer and Information Technology, 2005.

36

[62] W. Van Der Aalst, K. Van Hee, Prof. Dr. Kees,

M. Hee, R. De Vries, J. Rigter, E. Verbeek, and

M. Voorhoeve. Workflow Management: Mod-

els, Methods, and Systems, 2002. 36, 37

[63] Finite State Automata. http://www.eti.pg.gda.pl/

katedry/kiw/pracownicy/Jan.Daciuk/personal/thesis/

node12.html. 37, 38

[64] Grafcet. http://fr.wikipedia.org/wiki/Grafcet. 38

[65] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede,

B. Kiepuszewski, and A. P. Barros. Workflow Pat-

terns. Distributed and Parallel Databases, 14:5–51,

2003. 10.1023/A:1022883727209. 40, 50

[66] S. Shankar and D. J. DeWitt. Data driven work-

flow planning in cluster management systems.

In Proceedings of the 16th international symposium on

High performance distributed computing, HPDC ’07,

pages 127–136, 2007. 40, 44

[67] M. Shields. Control- Versus Data-Driven Work-

flows. In Ian J. Taylor, E. Deelman, D. B. Gan-

non, and M. Shields, editors, Workflows for e-Science,

pages 167–173. Springer London, 2007. 41

[68] Workflow Patterns Official Website. http://www.

workflowpatterns.com/. 41, 50

[69] M. Adams, Ter A. H. M. Hofstede, D. Edmond, and

W. M. P. van der Aalst. Implementing Dynamic

Flexibility in Workflows using Worklets. Tech-

nical report, BPM Center Report BPM-06-06, BPM-

center.org, 2006. 43, 53

[70] D. Abramson, C. Enticott, and I. Altinas. Nim-

rod/K: Towards massively parallel dynamic

Grid workflows. In International Conference for

High Performance Computing, Networking, Storage

and Analysis, 2008. SC 2008., pages 1 –11, november

2008. 44

[71] K. Plankensteiner, R. Prodan, and T. Fahringer.

A New Fault Tolerance Heuristic for Scien-

tific Workflows in Highly Distributed Envi-

ronments Based on Resubmission Impact. In

Fifth IEEE International Conference on e-Science,

2009. e-Science ’09, december 2009. 44

[72] J. Yu and R. Buyya. A Taxonomy of Workflow

Management Systems for Grid Computing.

Technical report, JOURNAL OF GRID COMPUT-

ING, 2005. 44, 49

[73] G. Kandaswamy, A. Mandal, and D. A. Reed. Fault

Tolerance and Recovery of Scientific Work-

flows on Computational Grids. In 8th IEEE In-

ternational Symposium on Cluster Computing and the

Grid, 2008. CCGRID ’08., may 2008. 45

121

http://dx.doi.org/10.1007/978-1-60761-247-6_18
http://dx.doi.org/10.1007/978-1-60761-247-6_18
http://dx.doi.org/10.1007/978-1-60761-247-6_18
http://dx.doi.org/10.1109/PDP.2006.17
http://dx.doi.org/10.1109/PDP.2006.17
http://graal.ens-lyon.fr/DIET/UsersManualDIET2.8.1/node2.html
http://www.wfmc.org/index.php?option=com_docman&task=doc_download&gid=93&Itemid=72
http://www.wfmc.org/index.php?option=com_docman&task=doc_download&gid=93&Itemid=72
http://www.wfmc.org/index.php?option=com_docman&task=doc_download&gid=93&Itemid=72
http://www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/thesis/node12.html
http://www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/thesis/node12.html
http://www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/thesis/node12.html
http://fr.wikipedia.org/wiki/Grafcet
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.1023/A:1022883727209
http://doi.acm.org/10.1145/1272366.1272383
http://doi.acm.org/10.1145/1272366.1272383
http://dx.doi.org/10.1007/978-1-84628-757-2_11
http://dx.doi.org/10.1007/978-1-84628-757-2_11
http://www.workflowpatterns.com/
http://www.workflowpatterns.com/
http://www.yawl-system.com/documents/Implementing%20Worklets.pdf
http://www.yawl-system.com/documents/Implementing%20Worklets.pdf

REFERENCES

[74] X. Besseron and T. Gautier. Optimised Recov-

ery with a Coordinated Checkpoint/Rollback

Protocol for Domain Decomposition Applica-

tions. In Modelling, Computation and Optimization

in Information Systems and Management Sciences,

14 of Communications in Computer and Information

Science, pages 497–506. 2008. 45

[75] L. ZongWei. Checkpointing for workflow recov-

ery. In Proceedings of the 38th annual on Southeast

regional conference, ACM-SE 38, pages 79–80, 2000.

45

[76] C. Buligon, S. Cechin, and I. Jansch-Pôrto. Imple-

menting rollback-recovery coordinated check-

points. In Proceedings of the 5th international con-

ference on Advanced Distributed Systems, ISSADS’05,

pages 246–257, 2005. 45

[77] L. Ramakrishnan, C. Koelbel, Y.-S. Kee, R. Wol-

ski, D. Nurmi, D. Gannon, G. Obertelli, A. Yarkhan,

A. Mandal, T. M. Huang, K. Thyagaraja, and

D. Zagorodnov. VGrADS: Enabling e-Science

Workflows on Grids and Clouds with Fault

Tolerance. In Proceedings of the Conference on

High Performance Computing Networking, Storage

and Analysis, SC ’09, pages 47:1–47:12, New York,

NY, USA, 2009. ACM. 45

[78] W. Bland, P. Du, A. Bouteiller, T. Herault,

G. Bosilca, and J. Dongarra. A checkpoint-on-

failure protocol for algorithm-based recovery

in standard MPI. In Proceedings of the 18th in-

ternational conference on Parallel Processing, Euro-

Par’12, pages 477–488, 2012. 45, 46

[79] T. Fahringer, R. Prodan, D. Rubing, F. Nerieri,

S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong, A. Vil-

lazon, and M. Wieczorek. ASKALON: a Grid

application development and computing en-

vironment. In The 6th IEEE/ACM International

Workshop on Grid Computing, 2005., pages 10 pp.–,

2005. 47, 48

[80] R. Duan, R. Prodan, and T. Fahringer. DEE: A

Distributed Fault Tolerant Workflow Enact-

ment Engine for Grid Computing. In High Per-

formance Computing and Communications, 3726 of

Lecture Notes in Computer Science, pages 704–716.

Springer Berlin / Heidelberg, 2005. 47

[81] I. Altintas, A. Birnbaum, Kim K. Baldridge, W. Sud-

holt, M. Miller, C. Amoreira, Y. Potier, and B. Lu-

daescher. A Framework for the Design and

Reuse of Grid WorkFlows. In International

Workshop on Scientific Aspects of Grid Computing,

pages 120–133. Springer-Verlag, 2005. 49

[82] PtolemyII website. Ptolemy II Project and Sys-

tem. 49

[83] D. Crawl and I. Altintas. A Provenance-Based

Fault Tolerance Mechanism for Scientific

Workflows. In In Intl. Provenance and Annotation

Workshop (IPAW), 2008. 49, 80

[84] W. M. P. van der Aalst and Ter A. H. M. Hofstede.

Workflow Patterns: On the Expressive Power

of (Petri-net-based) Workflow Languages. In

of DAIMI, University of Aarhus, pages 1–20, 2002.

50

[85] YAWL - Technical Manual. http://www.

yawlfoundation.org/manuals/YAWLTechnicalManual2.1.

pdf, 2010. 51, 52, 95, 96

[86] M. Adams, Ter A. H. M. Hofstede, W. M. P. van der

Aalst, and N. Russell. Modern Business Process Au-

tomation. Springer, 2010. 53, 54, 77

[87] T. Nguyên, L. Trifan, and J.-A. Désidéri. A Dis-

tributed Workflow Platform for Simulation.

In Proceedings of the 4th International Conference on

Advanced Engineering Computing and Applications in

Sciences, ADVCOMP 2010, Florence, Italy, 2010. 57

[88] E. Sindrilaru, A. Costan, and V. Cristea. Fault Tol-

erance and Recovery in Grid Workflow Man-

agement Systems. In Complex, Intelligent and

Software Intensive Systems (CISIS), 2010 Interna-

tional Conference on, pages 475 –480, february 2010.

61

[89] M. Yu, P. Liu, and W. Zang. The implementation

and evaluation of a recovery system for work-

flows. Journal of Network and Computer Applica-

tions, 32(1):158–183, January 2009. 61, 80, 118

[90] OMD2 project website. http://omd2.scilab.org/.

66

[91] R. Le Riche, D. Caromel, and R. Duvigneau. Op-

timization tools and applications developed

during the OMD & OMD2 projects. In Fo-

rum Teratech 2011, Complex systems engineering

workshop (atelier ingénierie des systèmes complexes),

Palaiseau, France, June 2011. 67

[92] A. Zerbinati, J.-A. Désidéri, and R. Duvigneau. Ap-

plication of Metamodel-Assisted Multiple-

Gradient Descent Algorithm (MGDA) to Air-

Cooling Duct Shape Optimization. In ECCO-

MAS - European Congress on Computational Methods

in Applied Sciences and Engineering - 2012, Vienna,

Autriche, Sep 2012. 67

[93] Opale Team website. https://team.inria.fr/opale/

software/. 72

[94] J. Eder and W. Liebhart. Workflow Recovery. In

in IFCIS Conference on Cooperative Information Sys-

tems, pages 124–134. Society Press, 1996. 79

[95] M. P. Kumar, K. Nayong, L. Andre, K. Joohyun, and

J. Shantenu. Understanding mapreduce-based

next-generation sequencing alignment on dis-

tributed cyberinfrastructure. In Proceedings of

the 3rd international workshop on Emerging compu-

tational methods for the life sciences, ECMLS ’12,

pages 3–12. ACM, 2012. 116

[96] D. Jeffrey and G. Sanjay. MapReduce: simpli-

fied data processing on large clusters. Commun.

ACM, 51(1):107–113, January 2008. 117

122

http://doi.acm.org/10.1145/1127716.1127735
http://doi.acm.org/10.1145/1127716.1127735
http://dx.doi.org/10.1007/11533962_22
http://dx.doi.org/10.1007/11533962_22
http://dx.doi.org/10.1007/11533962_22
http://doi.acm.org/10.1145/1654059.1654107
http://doi.acm.org/10.1145/1654059.1654107
http://doi.acm.org/10.1145/1654059.1654107
http://www.springerlink.com/content/ec0wyg2ut397pcky/abstract/
http://www.springerlink.com/content/ec0wyg2ut397pcky/abstract/
http://www.springerlink.com/content/ec0wyg2ut397pcky/abstract/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://www.yawlfoundation.org/manuals/YAWLTechnicalManual2.1.pdf
http://www.yawlfoundation.org/manuals/YAWLTechnicalManual2.1.pdf
http://www.yawlfoundation.org/manuals/YAWLTechnicalManual2.1.pdf
http://dx.doi.org/10.1016/j.jnca.2008.03.007
http://dx.doi.org/10.1016/j.jnca.2008.03.007
http://dx.doi.org/10.1016/j.jnca.2008.03.007
http://omd2.scilab.org/
http://hal.inria.fr/emse-00686596
http://hal.inria.fr/emse-00686596
http://hal.inria.fr/emse-00686596
http://hal.inria.fr/hal-00742948
http://hal.inria.fr/hal-00742948
http://hal.inria.fr/hal-00742948
http://hal.inria.fr/hal-00742948
https://team.inria.fr/opale/software/
https://team.inria.fr/opale/software/
http://doi.acm.org/10.1145/2483954.2483957
http://doi.acm.org/10.1145/2483954.2483957
http://doi.acm.org/10.1145/2483954.2483957
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492

Declaration

I herewith declare that I have produced this paper without the prohib-

ited assistance of third parties and without making use of aids other

than those specified; notions taken over directly or indirectly from other

sources have been identified as such. This paper has not previously been

presented in identical or similar form to any other French or foreign ex-

amination board.

The thesis work was conducted from 02/12/2009 to 30/04/2013 under

the supervision of Nguyen TOAN at INRIA.

Grenoble,

	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Proposed Solutions
	1.4 Organization of the Mansucript

	2 State of the art
	2.1 Introduction
	2.2 Distributed Computing Infrastructures and Middleware Software
	2.2.1 Overview of Grid Computing Systems
	2.2.1.1 History
	2.2.1.2 Classification
	2.2.1.3 User Interaction
	2.2.1.4 Programming Models

	2.2.2 Grid5000
	2.2.2.1 General View
	2.2.2.2 Architecture
	2.2.2.3 Tools

	2.2.3 Middleware Systems
	2.2.3.1 Globus Toolkit
	2.2.3.2 Distributed Interactive Engineering Toolbox (DIET)
	2.2.3.3 OAR
	2.2.3.4 ProActive

	2.3 Fault Tolerance Methods in Distributed and Parallel Systems
	2.3.1 Faults - General View
	2.3.2 Fault Tolerance Techniques
	2.3.2.1 Fault Detection CIFTSACoordinatedInfrastructureForFaultTolerantSystems
	2.3.2.2 Fault Recovery
	2.3.2.3 Redundancy

	2.3.3 Checkpoint/Restart
	2.3.3.1 Globality
	2.3.3.2 Independent vs Coordinated Checkpoint
	2.3.3.3 Message Logging
	2.3.3.4 Multilevel Checkpoint
	2.3.3.5 Checkpoint Storage

	2.4 Workflow Systems
	2.4.1 General View
	2.4.1.1 Basic Components of a Workflow System
	2.4.1.2 Models of Abstract Workflow: Control vs Data Driven
	2.4.1.3 Workflow Patterns in Control Driven Models
	2.4.1.4 Dynamicity in Workflow Systems
	2.4.1.5 Exception Handling in Workflow Systems

	2.4.2 Examples of Fault Tolerant Workflow Systems
	2.4.2.1 Askalon
	2.4.2.2 Kepler

	2.4.3 YAWL - Yet Another Workflow Language
	2.4.3.1 Architecture
	2.4.3.2 YAWL Custom Service
	2.4.3.3 Data in YAWL
	2.4.3.4 Dynamicity
	2.4.3.5 Exception Handling

	2.5 Resilience for Long-running Simulation and Optimization Applications
	2.5.1 Exception Types
	2.5.1.1 Resource Limitation Exceptions
	2.5.1.2 Application Exceptions

	2.5.2 Exception Detection
	2.5.3 Exception Treatment and Recovery

	3 Platform Design
	3.1 Numerical Optimization Applications
	3.2 OMD2 Project
	3.3 Numerical Application Test-Cases
	3.4 Famosa Execution Chain
	3.5 Large Scale Test-Case
	3.6 Exception Types
	3.6.1 Practical Exceptions
	3.6.2 Practical Detection

	3.7 Platform Design Issues
	3.7.1 Data Management and Data Synchronization
	3.7.2 Exception Detection and Recovery Using YAWL

	4 Implementation and Results
	4.1 Interface Between YAWL and External Computing Resources
	4.2 YAWL and Grid5000
	4.2.1 Interface Between YAWL and Grid5000
	4.2.2 Resource Reservation and Deployment on Grid5000 Infrastructure
	4.2.3 Distribution of Computation on Grid5000 Infrastructure
	4.2.4 Passing to a Larger Scale

	4.3 Resilience: Scenarios and Implementation
	4.3.1 Sequential Execution on Multiple Different Machines
	4.3.2 Parallel Execution on Two Different Clusters
	4.3.3 Sequential Execution with Timeout Exception Handling
	4.3.4 Distributed Execution with Resource Balancing
	4.3.5 Speed-up Gain in Large Scale Optimization Application

	5 Conclusions and Perspectives
	References

